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Abstract 

Wave overtopping at coastal structures occurs as a sequence of discrete events. 

This phenomenon is, however, commonly characterised as a continuous 

process. This mean discharge measurement is not always the most appropriate 

measure of the hazard at a coastal structure. It is often the case that the event 

with the maximum individual overtopping volume poses the greatest risk to 

personnel and property. In cases where recreational and transport 

infrastructure may be a secondary "user" of the structure, quantifying this 

hazard becomes particularly important. 

An obstacle to the accurate quantification of individual overtopping events 

obtained from random wave models, both physical and numerical, is the small 

number of large events obtained from tests. Individual overtopping is analysed 

probabilistically. The tendency for the extremes of the distributions to be poorly 

described leads to significant errors when predicting the extreme events. This is 

complicated further by the existence of distinctive regimes of the overtopping 

response - waves may overtop in a "green-water" manner or impulsively break 

onto the structure resulting in a violent overtopping event. The aim of this 

research is to develop and validate a method focussed on giving the best-

possible quantification of maximum overtopping within the fixed constraint of 

laboratory testing time. 

Specifically, the approach taken here is to apply statistical tools to increase the 

occurrence frequency of the most extreme individual overtopping events for a 

given sea state. In basic terms, seas more extreme than the standard design 

conditions are used for testing purposes. The overtopping measurements from 

these extreme tests are analysed using the probability distributions of the 

design sea parameters. This process ensures the extreme sea tests produce 

results representative of the design sea case, but with the response distribution 

shifted to describe better the extreme region. In effect, this procedure replicates 

several repeat tests of the design sea with a single test run. 



The strength of this method is that it makes no strong assumptions on the 

factors influencing the overtopping response. In doing so, the advantages of 

random wave modelling are retained. It is also ideally suited to shallow water 

applications as no wave transformation effects need be modelled. All the 

statistical processes are based upon measurements taken after transformation 

of the sea. This thesis develops and examines the application of this method to 

vertical seawall overtopping and offers guidance on the optimum usage of the 

technique. The technique, as demonstrated, shows a reduction in test length by 

a factor of 2-4 to be feasible. Overtopping measurements from physical model 

tests using extreme sea tests were similar to those obtained from conventional 

design sea testing. 
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1 Introduction 

1.1 Background & Research Drivers 

Engineering problems are often concerned with the extreme behaviour of a 

particular system.This may. be  the extreme. values of a quantifiable response or 

a unique infrequent event. In some circumstances these events may be 

relatively straightforward to analyse. A simple structural element may be 

subjected to an ever increasing load. The extreme deflections may be measured 

and the force associated with the eventual failure may be recorded. The fact that 

there is a direct correlation between a single parameter (i.e. force) and the 

response is. well understood. In more complex problems the cause and effect 

relationships are less clear. The causal parameters governing the extreme 

behaviour may not be well understood. Indeed, in the case.failure mode analysis 

the extreme response may not be fully defined. Many marine engineering 

environment situations are subject to these problems. 

Oceans are observed as random processes measured in terms of global values 

and summary statistics. Many, characteristics of a system can be inferred from 

these values and parameters. A coastal engineer may be able to reproduce a 

particular sea and examine the rate at which waves overtop a seawall. A study 

on a Wave Energy Converter (WEC) may reveal the operational characteristics 

in a particular environment. These are both essentially mean responses. The 

examination of the extreme behaviour is more complex. In the seawall example 

this is the largest single overtopping event In the.WEC this may represent the 

failure of the device. Understanding these extremes is often extremely 

important. The largest overtopping volume is often associated with the greatest 
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risk to personnel or property. The failure of a WEC represents lost investment 

and confidence. The factors influencing these extreme events may differ 

significantly from those relating to the "mean" response. If these infrequent 

events are to be well understood long simulations of various sea states are 

required. This is inefficient and potentially expensive. The feasibility of methods 

for reducing the lengths of these tests is explored in this research. 

1.2 Outline of this Research 

1.2.1 Objectives and Thesis Structure 

The broad aim of this project was to examine methods to improve efficiency and 

increase modelling confidence in the quantification of extreme values for 

marine modelling problems, the motivation for which is discussed above (1.1). 

In order to investigate a given technique the following objectives were set: 

Select a marine response suitable for benchmarking new tools and 

methods. 

Quantify the uncertainty.and error associated with the extreme response 

using conventional modelling tools. 

Develop and optimise new methods for extreme response analysis. 

Benchmark the magnitude of the response obtained using the new 

analysis methods with the benchmark values. 

Quantify the accuracy of the "mean" extreme response. Do the 

new methods produce an acceptably accurate estimate of the. 

response? 

Compare the uncertainty in the estimated values produced using 

the new method. Do the new methods improve efficiency when 

compared to conventional testing? 

The above objectives are necessarily broad, being based upon a generic 

response and an undefined modelling method. The structure of this thesis does, 

however, follow the path laid out by these objectives. 
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Individual wave overtopping volumes at vertical seawalls were chosen as the 

benchmark study case (Objective 1; §2-4). Overtopping presents an interesting 

challenge as the response is potentially non-linear and non-monotonic. These 

factors, combined with typically small sample sizes, tend to result in large 

degree of uncertainty in the, estimated response magnitude. The choice of a 

shallow-water coastal response also introduces the challenges of incorporating 

wave transformation effects. In some senses this increases the complexity of the 

research, but it also plays to the strengths of statistical techniques that might 

not otherwise be of primary interest. Specifically, it was determined that a 

coastal engineering problem would be ideal for applying the Importance 

Sampling technique that forms the backbone of this research. 

It should be noted that this work is not intended to be an "overtopping thesis". 

The study of overtopping has been conducted as part of a wider study into 

techniques for shortening test lengths. The overtopping behaviour has not been 

characterised using a wide ranging set of variables. Attention has instead been 

devoted to quantifying the uncertainty over a narrow range of sea-states and 

structural configurations (Objective 2; §3-4). Studies, at this level of detail are 

rarely feasible in a commercial context in the coastal engineering field. The 

context and relevance of this work is outlined below (1.2.2). 

The modelling technique studied in detail in this thesis is an adaptation of the 

Importance Sampling methodology employed in the field of Monte Carlo 

statistics. The Importance Sampling technique was chosen for study as it 

potentially reduces test sequence lengths while largely maintaining the benefits 

of random wave modelling. Its non-deterministic nature also makes it a 

promising candidate for shallow water applications as wave transformation 

effects need not be modelled. This technique has been developed (Objective 3; 

§5) and compared to conventional modelling results (Objective 4; §6-7) in the 

course of this research. A brief overview of the technique is given below 

(1. 2.3). 
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1.2.2 Overtopping Research Context 

It is noted above that this research is not intended to characterise overtopping 

behaviour over a wide range of conditions. This has already been examined in 

detail in several studies, the results of which are encapsulated in the European 

Overtopping Manual (EurOtop,. 2007). This research takes a small "slice" of the 

conditions covered in these larger studies and attempts to quantify the 

uncertainty involved in the modelling process. 

The specifics of overtopping behaviour are addressed in detail within the main 

body of this thesis. In brief, vertical seawall overtopping has several interesting 

properties which are relevant to examining the quantification of extreme 

responses: 

• Several different overtopping modes are possible. In broad terms, waves 

may overtop, in a non-breaking (green-water/pulsating) or breaking 

(violent/impulsive) manner. This contributes to non-linear and non 

monotonic nature of the response (described below). 

• The response is non-linear when measured against a number of 

parameters. This is particularly evident when examining overtopping 

measurements against freeboard height. Waves which are below a 

certain threshold relative to the freeboard will exhibit no overtopping. 

Beyond this threshold the volumes will increase exponentially, with the 

caveat that the behaviour may also be non-monotonic. 

• Mean and individual overtopping volumes may be non-monotonic when 

assessed against parameters such as wave height. In essence, the largest 

waves may not produce the largest overtopping response. The 

interactions with the seawall are complex and are difficult to 

characterise. 

• Seawall (and breakwater) overtopping is a coastal phenomena measured 

in shallow water. The wave transformations involved in moving from 

deep-water are non-trivial to quantify accurately, particularly if required 

at the level of individual waves. 
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Many coastal design scenarios require low-admissible overtopping rates. 

That is, only a very low number of overtopping waves is acceptable. The 

sampling error involved in quantifying the extreme response from model 

tests will be large in these situations. 

The uncertainty in quantifying overtopping responses is large, a fact widely 

recognised by those working in the field. A "factor of two" is often given as a 

rule-of-thumb for the expected variation from a given mean value. This large 

uncertainty provides a good opportunity for developing and evaluating error 

reducing techniques. 

1.2.3 Importance Sampling Methodology 

The broad aim of this research is to improve the efficiency of random wave 

modelling when examining extreme values of a given response (e.g. vertical sea 

wall overtopping). In essence this requires that test lengths are shortened while 

maintaining the same level of accuracy as would be achieved with a 

conventional modelling approach. Alternatively, longer tests lengths may be 

used but with the response quantified with greater confidence. 

In order to achieve this aim a technique, referred to here as "Importance 

Sampling",, has been explored and developed. Importance Sampling, in its 

original form, is a variance reduction method employed in the field of Monte 

Carlo modelling. In basic terms the magnitude of the response in one 

distribution (the design condition) is inferred from a second, more extreme, 

distribution (this is explained in more detail in §2.6). This more extreme 

distribution will contain a greater proportion of large magnitude events (e.g. 

individual overtopping, volumes) and therefore increases the efficiency of the 

modelling process by avoiding the generation, or measurement, of many smaller 

inconsequential events. In the context of this research this more extreme 

distribution relates to measurements obtained with an Extreme Sea. This 

Extreme Sea is a sea state more energetic than the conventionally modelled 

Design Sea state. The design waves (or wave groups) associated with the 

maximum response in the Design Sea will occur more frequently in the Extreme 
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Sea. In effect, results equivalent to several repeat tests (of a standard fixed 

length) may be obtained with a single Extreme Sea test. 

DeslnSe 	 §5.3 

Spectrum (Design) 
Paaametnc (ag. JONSWAP) 
Serves as Physical Modul lngt4 

LJL 
Seectral Inhlatton §5.3.1 

I - Spectral Inflation Factor 
XI, 

S,, 

Extreme Sea 	 §5.3 

Spectrum (EXtTerne 
Calculated from Spectral Inflation Rules 
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Phyalcij Model §3 

Time Series Generation 
Design&EsvemeSeas 

Measure: 0, V. V, n,(t( etc. 
locKient time seoes measured aUnear 
the structure (Design & Extreme Seas) 
atrmng with contemporaneous oiellopeing 
,etonses (Extreme Sea only) 

I I 
i 	a 

Output: Individual Wave Pwameters 
Height pesiod eta matched to 
individual overtopoing volumes  

Extreme Sea FlilerIna 	 §54 
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of The Design Sea 

Overall test length is reduced 

outwit 	 §5.6 

Filtered Extreme Sea Dataset 
Waves & responses are iresentatrve of 

the Design Sea 
V,, analysed using blodk analysis 

Figure 1.1 Outline of Importance Sampling Methodology 

The Importance Sampling methodology explored is outlined by the flowchart 

illustrated in Figure 1.1. Information relating to the separate processes are 

marked by bold text in the following description of the technique. 



The challenge with the Importance Sampling approach is to relate the waves in 

the Extreme Sea to the Design Sea conditions. The Extreme Sea spectrum is 

calculated through a process referred to here as Spectral Inflation by which 

the Design Sea spectrum is scaled both in term of elevation (by Hm0) and time 

(by Tn). The generated spectra serve as the inputs to the modelling system 

(Physical Model). For this application, this takes the form of a small scale 

vertical seawall installed in a two-dimensional wave flume. Elevation time 

series measurements are taken in shallow water at, or near, the structure. This 

is an important feature of the Importance Sampling method as it avoids the 

need to model complex transformations as the waves propagate up the beach 

from deep to intermediate or shallow water depth. The Design Sea must 

therefore be generated in the flume to provide a description of the design sea 

state in the vicinity of the structure 1. It is this shallow water data that is used in 

the Extreme Sea filtering process described below. The Extreme Sea is used to 

collect the overtopping time series data (individual volumes with time stamps). 

The ability to record the response along with the contemporaneous sea state is 

a requirement of the Importance Sampling method. 

The measured elevation time series is analysed to produce a number of time 

series parameters (e.g. wave heights and periods). The Extreme Sea individual 

overtopping events are paired with appropriate individual waves based upon 

their respective time stamps. These data matrices are used to filter the overly-

extreme waves from the Extreme Sea dataset. If this process is effective the 

resulting filtered dataset will contain only waves representative of the Design 

Sea. 

The filtering process is conducted by producing, joint probability distributions 

describing the individual wave parameters in the Design Sea (Design Sea 

Probability Analysis). These distributions are produced using Kernel Density 

Estimation (KDE), a non-parametric method that requires relatively few 

assumptions regarding the underlying nature of the data. Low probability 

I In the course of this research the overtopping volumes associated with the Design Sea state 
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waves are removed from the Extreme Sea dataset, along with their associated 

overtopping events, based upon these Design Sea distributions (Extreme Sea 

Filtering). 

The resulting filtered Extreme Sea dataset must be further analysed to quantify 

the extreme individual overtopping parameters (Output). The parameters in 

question are the maximum individual volume (V) or a particular exceedance 

value (e.g. Vl%). This is achieved through a processed referred to here as "Block 

Analysis". This involves dividing the Extreme Sea dataset (in the form of a time 

series of individual wave measures and overtopping volumes) into a number of 

equal duration blocks. Each block is intended to be representative of an 

individual Design Sea test (of e.g. 1000 waves) but with a shorter duration (in 

line with the efficiency improvement aims of the Importance Sampling method). 

Each block is then analysed (in terms of V. and V,) as if the results were 

obtained from a conventional random sea test. 

The background of the Importance Sampling method is described in §2.6. The 

experimental programme (physical model), overtopping measurements and 

associated measurements are discussed in §3 and §4. The detailed methodology 

of the Importance Sampling method is described in §5. Also detailed here are 

the methods used in the estimation of the Design Sea joint probability 

distributions and the Block Analysis method used to investigate the filtered 

Extreme Sea dataset. The application of the Importance Sampling method using 

the measurements obtained in the experimental programme is described in §6. 

The choice of filtering parameters and the optimisation of the joint probability 

distribution fitting procedure is also discussed. 

1.2.4 Terminology and Conventions 

The provided glossary outlines the notation used throughout this thesis. The 

terminology used within the marine and coastal engineering community is often 

specific to a particular research/engineering niche, and meanings can differ. 



"Response" 

The term "response" describes a particular behaviour induced by the sea. In this 

research it primarily refers to waves overtopping a coastal structure. In other 

fields it may refer to dynamic behaviour observed in Wave Energy Converter 

(WEC), or a force exerted on fixed structure. 

Sea State Characterisation 

Sea state parameters may be defined using either frequency-domain or time-

domain analysis. This research has used frequency domain parameters for the 

characterisation of sea states, unless otherwise stated. The term "significant 

wave height" has been taken to refer to Hmo. 

Individual Wave Characterisation 

Individual wave parameters, such as height and period, have been derived using 

zero downcrossing analysis, unless otherwise stated. The rationale for this 

methodology is explained in the main body of the thesis. 

"Extreme" waves and events 

The term "extreme" is used to refer to the largest event, or expected event, in a 

particular record. Thus the "extreme wave height" is simply the largest 

measured wave height. This is a near universal definition, but the term has also 

been used as synonym for "rogue" or "freak" waves in various publications. 

An "extreme event" is the largest measured response (overtopping volume) in a 

given record. In order to avoid confusion with the "Extreme Seas" used in the 

Importance Sampling method, the term "Maximum Individual Overtopping 

Volume" has been used to describe these largest events. 

"Importance Sampling" 

The Importance Sampling method detailed here may differ from more 

conventional applications. Unless otherwise stated, "Importance Sampling" 

refers to the method described within the main body of this thesis. 



2, Literature Review 

2.1 Introduction 

A significant volume of literature exists describing overtopping at coastal 

structures. The published research and guidance covers topics including 

overtopping mechanisms (i.e. the actual nature of the overtopping response), 

overtopping hazards and measurement uncertainties. The most relevant 

elements of this research are examined below. In broad terms the literature 

detailed here may be divided into two broad categories. Firstly, the nature of the 

overtopping response and its associated uncertainties are examined. This 

includes a discussion of the motivation for examining overtopping behaviour 

(e.g. understanding the hazard to properties and personnel). Particular 

attention is paid to the quantification of individual overtopping events, as 

opposed to mean discharge. Secondly the improvement of modelling efficiency 

is explored. Traditional irregular wave modelling techniques tend to be 

inefficient in terms of the test length when examining extreme responses. 

Ongoing research and prospective techniques for addressing this issue are 

discussed. 
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2.2 Hazard Assessment - Mean and Individual Responses 

2.2.1 The Need to Quantify Overtopping Response 

Figure 2.1 Wave overtopping at a monolithic breakwater (© Gerard Fournier / Edftions 
Jos le Doare) 

The need to quantify the overtopping volume at a seawall or breakwater is 

largely borne out of the requirement to assess the hazard at the structure. This 

hazard may be assessed in terms of the threat to the users of the structure, or 

the dangers faced by the structure itself. The critical "design" hazard will 

depend very much on the function and nature of the coastal structure. 

Coastal defence structures vary in their primary purpose and may have several 

secondary uses. The most obvious purpose of a coastal structure is to protect 

property, with the design parameters depending very much on the nature of 

this property. Port infrastructure, for example, will likely have different 

requirements compared to an ocean-side residential housing development. The 

hazard posed may come directly from wave impact or from flooding. Identifying 

the nature of the hazard will drive the methodology used in quantifying 

overtopping events. 
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Figure 2.2 Overtopping damage to railway infrastructure in Port Elizabeth, South Africa 

Transport infrastructure, usually in the form of roads and railways, is often 

incorporated closely with coastal defences as a primary or secondary user. 

Promenades consisting of roadways, with pedestrian access, may also be 

observed in many coastal towns. The issue of pedestrian access is an important 

one. Coastal structures may act as recreational areas for activities such as 

fishing, water sports or as a general amenity space. It would be wrong to 

assume that the public will always remove themselves from danger when faced 

with overtopping at a seawall or breakwater. In fact, people may gather at the 

crest of the structure to "enjoy" the overtopping. This is perhaps based on the 

attitude that the seawall will protect them, with the overtopping being little 

more than superficial spray. This perception belies the fact that at least 12 

people have died due to wave overtopping in UK between 1999 and 2002 

(Allsop et aL, 2003). The media reporting of these events also tends to give the 

impression that this events are due to "freak" waves or circumstances. The 

overtopping limits for pedestrian access will tend to be more restrictive than 

the requirements required for structural safety (Franco et aL, 1994). 
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Breakwaters may have similar overtopping limit requirements to seawalls in 

many respects, such as structural safety and user protection. An additional 

factor that may be significant is the need to minimise "wave transmission". 

Wave transmission at a monolithic structure occurs when the overtopping mass 

of water creates waves behind the breakwater. Mechanisms other than 

overtopping may be responsible for wave transmission. In porous structures 

such as rubble mound breakwaters waves may be transmitted directly through 

the structure. 

In the vast majority of design cases it is desirable to reduce wave overtopping, 

all other factors being equal. There are, however, a few notable exceptions to 

this rule. In the case of breakwater design some wave transmission may be 

desirable to facilitate the formation of salients for beach protection purposes 

(Goda, 2000). A more recent development is a desire to capture the power of 

overtopping for energy generation purposes. The most prominent example of 

this is probably "Wave Dragon" as originally designed by Aalborg University, 

Denmark and now being developed by Wave Dragon ApS. Wave Dragon is a 

floating Wave Energy Converter (WEC) consisting of a reservoir replenished by 

overtopping waves (Tedd, 2007). The overtopping waves generate a head 

difference between the reservoir and ocean surface, allowing the water to be 

returned to the sea through turbines. 

It should be noted that coastal structures may have rather high permissible 

overtopping levels. Low crested breakwaters can offer cost effective solutions 

where access is not required at all times. In these cases quantifying the 

overtopping behaviour may be of low importance in the design process. 

Regardless of whether overtopping is a parameter to be minimised or 

maximised, it is important that the behaviour is properly understood. Efficient 

design relies on the definition of the constraints for a particular application. At a 

seawall or breakwater it is unlikely to be acceptable to simply "build it high" in 

order to minimise overtopping. The cost of extreme over-specification is 

unacceptable in most instances, especially as coastal defences are often 

13 



constructed using public funds. Accurate estimation of overtopping response 

allows engineers to design structures more closely to specification with less 

need for expensive margins of error. 

2.2.2 Tolerable Mean and Individual Overtopping Response 

When examining overtopping we are usually concerned with characterising the 

behaviour associated with a particular sea state. The choice of parameters used 

to measure overtopping is dependent on the nature of the hazard and the 

quality of the prediction and modelling tools available. In this research 

overtopping is quantified in terms of the volume of water deposited landward of 

the structure. Other measures of overtopping include the water throw velocity 

(Bruce et aL, 2001) and post-overtopping forces (Ingram et aL, 2008). 

Overtopping at a structure occurs as a series of discrete events (individual 

overtopping volumes). In many cases it may be desirable or necessary to 

characterise overtopping as a continuous process. In this case the overtopping 

is measured as a volume flow rate per unit length of structure. It is usual to refer 

to this mean measurement as the "overtopping discharge". It should, however, 

be noted that this expression is occasionally used to refer to overtopping in a 

more general sense. The relationship between individual overtopping volumes 

(V1) and the overtopping discharge (q) is given by the expression 

Now  

q= V, 
tmax 

(1) 

where N.w  is the number of overtopping waves and t represents the duration 

of the measurement window. 

Treating overtopping as a continuous process measured by the mean discharge 

has practical advantages. Experimentally, whether in the lab or the field, it is 

relatively easy to measure. The total volume of water collected over a length of 

structure is simply divided by the collection time (t). Measurement of 

individual volumes requires real-time data-logging in order that the discrete 

events may be quantified. 
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Type 	Surface Armounng 	 Mean Discharge q 

(1/s/rn) 

Coastal dyke Concrete on front slope, with soil on crown <5 

and back slope 

Concrete on front slope and crown, with soil 20 

on back slope 

Concrete on front slope, crown and back slope 50 

Revetment 	No pavement on ground 	 50 

Pavement on ground 	 200 

Table 2.1 Tolerable discharge for structural safety (Goda, 2000) 

Tolerable overtopping limits are often given in terms of the mean discharge. 

Goda (2000) published structural safety guidance originally determined from 

studies carried out in the late 1960s. The tolerable discharge limits were based 

on damage observed at the structures in Japan after exposure to typhoons. 

Goda's results are reproduced in Table 2.1 with notation and units updated for 

uniformity. These figures now form part of the guidance in EurOtop manual 

(Pullen etal., 2007). 
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Figure 2.3 Permissible Mean Overtopping Discharges (Franco et al., 2004) 

While the structural safety of the seawall or breakwater is obviously important, 

it may not be the critical consideration when determining the tolerable 

discharge. The limits for utilisation tend to be more stringent than structural 

requirements. These "functional safety" limits take into account pedestrian and 

vehicle access. It may also take into account damage to buildings, although this 

might be seen as more akin to structural safety. Franco et al. (1994) expanded 

on Goda's guidelines to produce discharge guidance for a number of scenarios 

(Figure 2.3). The pedestrian and vehicular limits were determined through 

laboratory measurements at full and reduced (1:20) scale. The full scale testing 

was conducted by directing a known volume of water at a representative 

velocity at the subject. The "subject" consisted of both ballasted mannequin 

dummies and volunteers (the paper's lead author). The dummy had to be 

ballasted up to double the man's actual weight to have the same falling 

response. It can perhaps be tentatively concluded that testing with inanimate 



models tends to produce a conservative estimate of a person's response to an 

overtopping wave. 

Endoh & Takahashi (1994) investigated the dangers faced by pedestrians on 

breakwaters. This research was prompted by the recognition that breakwaters 

in Japan were increasingly serving as public recreation areas. This research 

experimentally and numerically investigated the dangers faced by a person hit 

by an overtopping wave. This included both the falling response and the danger 

of being swept off the structure. The authors found that a discharge rate of 0.04 

l/s/m would knock a person over, with a flow of 6 I/s/rn carrying them into the 

sea. These figures closely agree with the guidance of Franco et aL (1994). 

Overtopping measurements from field studies, laboratory tests and numerical 

models were examined in the course of the CLASH 2  project. In the course of this 

project AlIsop (2005) collated and updated the tolerable overtopping levels 

from the sources stated above (Table 2.2). These limits were later incorporated 

in the EurOtop guidance outlined below. 

User 	Hazard type and reason Mean Discharge q 

(I/s/rn) 

Max Volume 

Vmax (I/rn) 

Pedestrians 	Trained staff, well shod 1-10 500 at low level 

and protected. 

Aware pedestrian, able to 0.1 20-50 	at 	high 

tolerate 	getting 	wet, level or velocity 

wider walkway. 

Vehicles 	Driving 	at 	low 	speed, 10-50 100-1000 

overtopping by pulsating 

flows at low flow depths. 

Driving at moderate or 0.01-0.05 5-50 

high 	speed, 	impulsive 

overtopping. 

Table 2.2 EurOtop tolerable overtopping limits 

2 Crest Level Assessment of coastal Structures by full scale monitoring, neural network 
prediction and Hazard analysis on permissible wave overtopping 
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The current "state of the art" overtopping guidance is contained within the 

European Overtopping Assessment Manual (EurOtop). EurOtop's guidance 

contains Goda's (2000) structural limits (Table 2.1) as well incorporating 

functional limits from the CLASH project. The limits relating to pedestrian and 

vehicle access are reproduced in Table 2.2. The guidance incorporates findings 

from the CLASH project in noting a range of discharges acceptable to people on 

the structure. It is noted by CLASH and EurOtop that an individual's 

understanding and perception of overtopping processes will affect vulnerability 

when on a coastal structure. The overtopping limits recognise that trained staff 

members are deemed to be able to cope with a higher mean discharge than the 

general public. This higher limit does however require that there is no 

overtopping jet falling on the personnel and that there is a low danger of falling 

from the walkway. EurOtop also contains the proviso that a low discharge limit 

of 0.03 1/s/m might be more suitable for particularly hazardous structures, such 

as those with narrow walkways or no clear view of the sea. 

The vast majority of published overtopping limit guidance relates hazard to 

mean discharge rather than maximum individual volumes. The mean discharge 

may not, however, be the best measure of the most extreme hazard. The mean 

discharge does not distinguish between a long series of moderately sized events 

and a few large overtopping volumes. This maximum individual event volume 

(V) is not closely related to the mean discharge (Smith et aL, 1994), although 

large individual volumes will tend to be observed in seas with large discharge 

rates. Franco et aL's (1994) experiments suggest an individual overtopping 

volume of 50 1/rn could knock a person over when striking their upper body. 

Overtopping flows at low level may be considerably higher and the EurOtop 

manual suggests up to 2000 1/rn is acceptable for trained staff subjected to low 

level flows on a dike. At a vertical seawall this limit is reduced to 100 1/rn. 

Maximum volumes for other scenarios and situations are given in Table 2.2. 



2.2.3 Nature of the Overtopping Response 

The behaviour of waves at seawalls is complex with a number of factors 

influencing the nature of the overtopping response. Understanding these 

response modes is important when attempting to predict overtopping volumes 

(and forces) or when analysing model measurements. 

A wave train propagating along a beach will undergo transformations as the 

water depth reduces. These transformations are primarily due to refraction, 

shoaling and wave breaking (Goda, 2000). Wave diffraction due to structures 

and geographic features may also occur. 

Wave refraction occurs in shallow water (depth less than approximately one 

half the wavelength) when the beach surface starts to exert a significant 

influence on the wave kinematics. The effect is that the wave fronts tend to 

transform to the contours of the bottom topography. In the case of a planar 

beach the waves will become aligned with the shoreline. This is clearly a three-

dimensional phenomenon and does not influence the two-dimensional 

experiments conducted as part of this research. The other three-dimensional 

transformation of note is wave diffraction. Diffraction is a process by which 

wave direction changes due to the presence of obstacles such as breakwaters or 

islands. The waves will tend to pivot around the extremity of the structure. 

While these processes are not directly relevant to the overtopping experiments 

detailed here, it is important to acknowledge their influence should the 

developed techniques be applied to three-dimensional modelling in the future. 

Wave shoaling is the process by which the wave height changes as the velocity 

of the waves (wave celerity) is reduced by the decreasing water depth. The 

reduction in celerity is accompanied by a reduction in wavelength. If no energy 

dissipation occurs, the constant energy flux will result in an increase in wave 

height (see e.g. Goda, 2000 and Oumeraci et al., 2001). This clearly results in an 

increase in wave steepness (H/L) and thereby influences the onset of wave 

breaking. 
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Wave breaking is a process which is very significant to the overtopping 

response observed at seawalls and breakwaters. Wave breaking irreversibly 

dissipates energy and results in a reduction in wave height. The exact process 

that results in a wave breaking is complex, but may be treated as a function of 

the wave steepness and relative water depth. The wave shoaling and breaking 

relationship for H1/3 ( El mo) is represented graphically by Goda (2000) for a 

number of beach gradients. The relationship for a 1/30 beach is illustrated in 

Figure 2.4. 
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Figure 2.4 Estimates of wave heights in the surf zone (Goda, 2000) 

The influence of the wave transformation behaviour becomes clear when 

examining the mechanism of individual overtopping events. Historically, 

overtopping has been treated as monotonic process dependent on a fixed set of 

parameters (see §2.3). Individual overtopping events were assumed to vary by 

degree, but were treated as essentially similar in the nature of the response. 

Qualitative observations, however, revealed this to be false. The violence of 

wave overtopping events would vary considerably. This behaviour was formally 

characterised by Allsop et al. (1995) and Oumeraci et al. (2001). The 
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overtopping behaviour can be separated into three broad categories: pulsating 

overtopping; impulsive overtopping; and broken-wave overtopping. 

Figure 2.5 Pulsating ("green-water") overtopping at a vertical seawall at model scale 

Pulsating overtopping tends to occur in deeper water with waves of lower 

steepness. This response is also referred to as "green-water" and reflecting 

wave overtopping. The overtopping wave in this scenario will runup the 

structure before passing over the seawall crest, as illustrated in the physical 

modelling images in Figure 2.5. 

Figure 2.6 Impulsive ("violent") overtopping a vertical seawall at model scale 

Impulsive overtopping tends to occur in shallower water with waves of higher 

steepness. If the wave breaks immediately in front of the structure it may 

violently impact the structure producing a highly aerated, high velocity 

overtopping jet. This process is clearly illustrated in the physical modelling 

images in Figure 2.6. 
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Broken-wave overtopping occurs when waves break some distance prior to 

impact with the structure. In general terms, this type of overtopping response 

may be treated as a less severe version of impulsive overtopping due to the 

energy dissipation of the breaking process. 
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Figure 2.7 PROVERBS (Oumeraci et ci., 2001) response parameter map with vertical wall 
guidance highlighted. 

The PROVERBS project (Oumeraci et al., 2001) used the relative wave height at 

the structure (Hm / h) to determine the wave behaviour. When taken into 

consideration with the structure type (e.g. vertical seawall, rubble mound 

breakwater etc.) the wave regime at the structure may be predicted. This 

procedure is illustrated by the aparameter  map" in Figure 2.7. At a vertical 

structure "impact loads" (impulsive overtopping) are expected for relative wave 

height values greater than 0.35. PROVERBS does not offer extensive guidance on 

wave overtopping volumes and the map reproduced here is intended for the 

prediction of wave forces on structures. 
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Ailsop et al. (1995) developed the empirical h* parameter for prediction of the 

overtopping regime at the structure: 

h.
- hS  2•ir•h 

2 Hmo g•T 
(2) 

The hs parameter significantly differs from the relative water depth with the 

inclusion of the wave period, thereby accounting for average steepness of the 

waves impacting the structure. Laboratory tests showed impulsive overtopping 

events predominated for seas with h. < 0.3. The h parameter is the method 

recommended both by the EA-Manual and EurOtop for identification of the 

overtopping regime. 

2.3 Mean Overtopping Volumes 

This thesis is primarily devoted to understanding the nature of individual 

overtopping responses. The majority of published guidance is, however, based 

upon predicting the mean overtopping rate. While these prediction methods are 

not used extensively in this research, it is worthwhile examining the basis 

behind them. 
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Figure 2.8 Overtopping rate prediction chart for 1:10 bottom slope and offshore 
steepness of 0.036 (Goda, 2000). Labels have been added to Goda's original diagram 
denoting a range of h values. 
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Goda (2000) produced design diagrams predicting the overtopping rate for 

vertical revetments for a range of bathymetry gradients (1:10 and 1:30), as 

shown in the example in Figure 2.8. These empirical charts, originally published 

in the 1970s, were produced from laboratory tests using irregular (random) 

seas. The discharge prediction for a particular bathymetry and offshore 

steepness is a function of the relative water depth (h/Hm) and the relative crest 

freeboard (R/Hmo). It should be noted that Goda's terminology and notation 

differs in some respects from convention. In particular Goda uses a measure of 

wave height denoted as the "equivalent deepwater wave height" (Ho'). This term 

describes the wave height after refraction and diffraction effects, but before 

transformation due to shoaling and breaking. In the context of a two-

dimensional example Ho' is equivalent to the offshore significant wave height 

(H mo_offshore) 

Goda's charts, as is intuitively expected, predict that a reduction in relative 

freeboard results in an increase in the overtopping discharge for a given relative 

water depth. The trend with changing relative depth, however, is not consistent. 

The outer extremes of the chart (i.e. shallow and deep water) show the lowest 

overtopping rates with the maximum occurring in the relative depth range of 

approximately 1.0 to 2.0. Considering the observations relating to wave 

behaviour at the structure (2.2.3) it is expected that a range of overtopping 

behaviours, from pulsating to impulsive to broken waves, will be observed as 

the water depth reduces. It is these changes in overtopping regime that result in 

the non-linear variation in overtopping response at the structure that Goda's 

chart clearly illustrates. 

The overtopping regime changes in Figure 2.8 may be more clearly understood 

by use of the wave breaking parameter (h) as described above (2.2.3). 

Rewriting h* in terms of wavelength gives - 

h2  
* 	11 

	 (3) 
1 mO_inshore 

where 
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g•T 
Lm 	

2 	
(4) 

ir  

If the wave steepness and the relative water depths are known, as they are in 

this case, hs may be expressed as: 

h2  

h.= Hmo,i . L 

h2 	1/ h \2 Hmo,o 

ks .Hmoo Lk s (Hmoo ) 	L 	
(5) 

1 
- 	 x Relative Depth 2  xWave Steepness. 
- Shoaling Coefficient 

The offshore wave height must be translated to give the inshore wave height 

through use of a shoaling coefficient (ks). The value of k for a given wave 

steepness, bottom slope and relative water depth may be determined using 

Shuto's method as described by Goda (2000). Given that these values are 

known, values of h* may be incorporated into Goda's prediction chart (Figure 

2.8). 

Modifying the relative depth axis in Figure 2.8 to include the associated hs 

values gives a clearer understanding of the overtopping processes involved. 

Seas with values of h below 0.3 are expected to result in predominately 

impulsive (breaking) waves at the structure. Strongly impulsive conditions are 

expected to be observed for h* values below 0.2 (Allsop et al., 2005). It is within 

this strongly impulsive region that the largest overtopping discharges are 

observed. It is clear, therefore, that a change in overtopping regime is an 

important factor that must be accounted for when designing or assessing a 

vertical coastal structure. In this particular chart, a reduction in relative depth 

from a ratio of 3 to 2 may increase the overtopping discharge by an order of 

magnitude for some relative freeboard configurations. Further reducing the 

relative depth will eventually result in the overtopping discharge tending 

towards zero. At these very low relative depths the wave regime has shifted to 
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broken wave conditions, with much of the energy dissipated prior to impacting 

the structure. 

While it is clear from examination of the chart in Figure 2.8 that the overtopping 

regime influences the discharge rate, this was not explicitly commentated upon 

in Goda's guidance. The non-monotonic behaviour at the seawall complicated 

attempts to provide formulaic, empirical predictions of the overtopping 

discharge. Franco et al. (1994) gave the following equation based upon two-

dimensional scale model testing: 

Rc  
q 	

= 0.2 exp( —4.3--'  

	

Hmo) 	 (6) 
MO  

While not explicitly stated by Franco et aL, Equation (6) may be considered valid 

for approximately 0.7 < R/Hmo < 2.8 based on the fitted data. Ailsop et al. 

(1995) modified this equation based upon physical model tests in deep and 

shallow water, 

q 	
0.03 . exp (-2.05 __), 

(7) Hm o 
Fg-H13 o  

valid for 0.03 < Rc/HmO < 3.2. This range of relative freeboard is significantly 

wider than both Franco et aL's formula and Goda's design chart (Figure 2.8). 

There is no attempt, however, to account for the effects of the relative water 

depth at the structure. There is therefore no consideration of any relationship 

between the wave regime at the structure and the overtopping volume. 
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Figure 2.9 Overtopping discharges compared with the empirical equation of Franco et al. 

(1994) as modified by Besley et al. (1998). Q= qJ(g•H m03)112 . Plot reproduced from Ailsop 

etal. (2005). 

AlIsop et aL's (1995) development of the h parameter allowed for a more 

refined and representative description of the overtopping discharge. Rather 

than using a single empirical equation, pulsating (predominately non-breaking 

waves) and impulsive (predominately breaking waves) sea conditions were 

treated as two separate cases. This revised approach is incorporated in the UK's 

Environment Agency's "Wave Overtopping at Seawalls - Design and Assessment 

Manual" (Besley, 1999) and is also described by Besley et al. (1998). The 

prediction for pulsating wave conditions (h* > 0.3, see §2.2.3) is essentially a 

modified version of Franco et aL's (1994) equation, taking the form 

	

( 	 \ q 	 Rc 
= 0.05 exp _2.78_) 

	

g7H70
Hmo 	 (8) 

valid for 0.03 < Rc/Hmo < 3.2. This equation is compared with full scale and 

model data in Figure 2.9. Good agreement between the data with h* > 0.3 

(predicted pulsating) and the formula is evident with relatively little scatter. It 

is clear, however, that the data regarded as impulsive according to h* do not 

show a good fit with Franco et aL's exponential formula. 
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In order to account for the differing behaviour of impulsive seas (h* :5 0.3) a 

different formula taking account of h* star is used, taking the form 

Qh = 1.37 x 10 	R 324, 	 (9) 

valid for 0.05 < Rh < 1.0. This formula is given in terms of the "dimensionless 

crest freeboard", notated as Rh and defined as 

Rc 
Rh= — h. 	 (10) 

Hm o 

The dimensionless discharge for impulsive sea conditions (Qh) is given by 

Q 

Qh = h2Jg 	
(11) 

The impulsive wave equation (9) was revised by Bruce et al. (2001) following 

small scale model tests. This revised equation takes the form 

Qh = 1.92 x 	R 11 	 (12) 

with the valid dimensionless crest freeboard (Rh) range being unchanged. This 

revised equation is incorporated in the European Overtopping Manual (Pullen 

et aL, 2007) which represents the current "state-of-the-art" in overtopping 

prediction. The manual's guidance for pulsating sea conditions (Equation (8)) 

remains unchanged. 

The treatment of the overtopping discharge in two separate equations clearly 

indicates an attempt to account for the non-monotonic nature of the 

overtopping response. In the main this approach has been successful, and has 

proved more effective than a "one size fits all" approach, with the scatter in the 

predicted discharges significantly reduced (Allsop et al., 2005). It should be 

noted, however, that the treatment of seas as simply impulsive or pulsating is a 

simplification of the processes involved. The collection of discrete overtopping 

events which produce the overtopping discharge may not be uniform in their 

behaviour. The h parameter gives guidance on the expected predominant 

behaviour but does not necessarily describe the overtopping action of every 
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event in the sea. Examination of Figure 2.9 shows that while Franco et aL's 

exponential formula poorly predicts the discharge of the h predicted impulsive 

seas as a whole, several of these impulsive results do show good agreement 

with the pulsating equation. It may be that the h parameter did not successfully 

predict the predominant behaviour for these tests, or the impulsive waves were 

not dominant in their contribution to the total overtopping volume. In either 

case it is clear that care must be taken if individual wave behaviour is to be 

characterised using the h parameter or similar method. 

2.4 Individual Overtopping Volumes 

2.4.1 Studies and Prediction Methods 

Guidance relating to tolerable overtopping limits has suggested that individual 

overtopping volumes may be a more accurate measure of hazard than the mean 

discharge (see §2.2.2). There has, however, been relatively little research 

conducted into characterising individual overtopping events. The little guidance 

that has been published has concentrated on describing the overtopping 

volumes through use of the Weibull distribution. 

Franco et al. (1994) examined the distribution of individual overtopping 

volumes obtained from small scale model tests. A three-parameter Weibull 

distribution was fitted to the test results: 

b 

P(V1 ~tv)=exp(— a 
) 	

(13) 

where P(V ;!: v) is the probability that an individual event volume (V1) exceeds a 

given a given value (v) and a, b' and c are respectively the shape, scale and 

location parameters. In this case the distribution describes the individual 

volume exceedance probability. More commonly the distribution is expressed as 

a non-exceedance probability, i.e. the probability that an individual volume will 

not exceed a given value. While this distinction makes little practical difference, 

the non-exceedance probability has become the conventional measure and will 

be used as the basis of the distributions in this thesis. Franco etaL also fitted the 
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distribution to all the waves in the test (Nw) rather than just the overtopping 

waves (N0). As the non-overtopping waves will obviously be assigned an 

overtopping volume of zero the use of three-parameter distribution 

incorporating a location parameter is necessitated. If the distribution is used to 

describe only the overtopping waves the location parameter may be neglected 

(P(V>0)=1). Using a two-parameter Weibull distribution written in terms of 

non-exceedance the overtopping volume distribution may be described as: 

vb 
P(V ~ v) = 1— exp 

(- -) . 

	 (14) 

Franco et aL's (1994) model tests yielded shape parameter (b) value of 0.75, 

which it is claimed showed little variability. The scale parameter was found to 

be a function of the average individual overtopping volume ( V ) with the 

relationship 

a = 0.84 V = 0.84• 
TrnQ 	

(15) 
N 

Franco et aL also offer a formula for the prediction of the proportion of 

overtopping waves: 

N,w 	1 R 2  

	

= exp(_- j _). 	 (16) 
 HmO  Nw  

This relationship is based on the assumption that the proportion of overtopping 

waves is Rayleigh distributed and related to the relative freeboard. This 

relationship appears to be supported by Franco et aL's experimental results. 

This equation is also reproduced in the EA-Manual (Besley, 1999) with the 

proviso that it is valid only for pulsating seas for relative freeboards 0.03 < 

Rc/Hmo <3.2. Franco et aL's tests were conducted in relatively deep water and 

can not be considered valid for cases where impulsive (breaking) waves may 

dominate. 

30 



The EA-Manual recommends that for impulsive seas (h* < 0.3) the following 

equation is used to describe the proportion of overtopping waves: 

Now 
 = 0.031 . Rj ° •99  

N. 
(17) 

valid for 0.05 < Ri < 1.0, where Ri is dimensionless crest freeboard as defined in 

Equation (10). 

Regime s0 , Scale Parameter (a) Shape Parameter (b) 

Pulsating 0.02 0.74'V 0.66 

0.04 	 0.90' V 	 0.82 

Impulsive 	- 	 0.92' V 	 0.85 

Table 2.3 Weibull distribution scale and shape parameters as given in the Wave 
Overtopping of Seawalls - Design and Assessment.Manual (Besley, 1999) 

The EA-Manual uses the two parameter Weibull distribution (Equation (1)) to 

describe individual overtopping volumes. Unlike Franco et al. (1994), the shape 

and scale distributions are chosen based on the predominant sea state 

(pulsating or impulsive). This guidance is reproduced here in Table 2.3. In the 

case of pulsating seas the distribution scale and shape is influenced by the 

offshore steepness (s on). It is noted by Besley (1999) that model tests confirmed 

Franco et aL's (1994) estimation of the shape parameter (b = 0.75) as generally 

accurate for pulsating seas. Tests had also revealed, however, that the shape 

parameter took a lower value for long-crested waves, hence the dependency on 

Sop observed in Table 2.3. Besley also notes that a "conservative approach" was 

taken when specifying the shape parameter. This essentially means that the 

predicted shape parameter may be expected to be lower than is observed in 

practice, thus extending the tail of distribution. No such dependence on wave 

steepness was seen in the impulsive tests. 
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Figure 2.10 Weibull probability distributions of individual wave overtopping with various 
shape (b) values and scale value (a) of 1.0. 

The European Overtopping Manual (EurOtop - Pullen et al., 2007) effectively 

reverts to the guidance of Franco et al. (1994) as described above. This is 

justified by authors on the basis that the shape parameters given in the EA-

Manual are mostly within the range 0.6 to 0.9. A shape parameter value of 0.75, 

as given by Franco et al. (1994), represents the average of this range of values. 

In turn, the reasoning given for this simplification is the observation that the 

distribution shape varies little over this shape parameter range. The 

distribution shapes are illustrated here in Figure 2.10, with the scale parameter 

set to a value of 1.0. While the distributions are similar in form, they show a 

notable deviation at the low probability extreme. The 0.1% exceedance 

probability volume shows a disagreement of approximately 30%. The 

justification for this simplification, compared to the EA-Manual, may be that the 

small datasets used to deduce the steepness-dependent shape parameters may 

only create the illusion of increased accuracy. 

32 



Given the distribution of individual overtopping events it is possible to estimate 

the maximum overtopping volume (V) if the total number of overtopping 

events is known. Franco et al. (1994), Besley (1998) and Pullen et al. (2007) use 

the following relationship to describe the probability of an overtopping event 

exceeding V: 

1 
P(V ~ Vmax). 

"ow 
(18) 

Given that N. is known, or can be predicted, for a particular test the expected 

value of V. may be calculated based upon the Weibull distribution 

Vmax  = a - (In(N0 )) '/b. 	 (19) 

where a and b are the scale and shape parameters respectively. This 

relationship is common to the guidance of Franco et al. (1994), the EA-Manual 

(Besley, 1999) and EurOtop (Pullen et aL, 2007). The suitability of this method 

to describe the extreme of a distribution is discussed in depth in this thesis. 
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Figure 2.11 Predicted values for V 	as given by the EA-Manual (Besley, 1999) and 
EurOtop (Pu lien et al., 2007) for a nominal shape parameter (a = 1). 

It is detailed above that the EurOtop manual uses a single shape parameter in 

contrast to the multiple steepness dependent b values given in the earlier EA- 
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Manual. Using the V. prediction formula (Equation (19)) it is possible to 

examine the influence of the shape parameter. Figure 2.11 illustrates the 

variation of V. with shape parameter for a range of N0 values. It is notable 

that the use of single shape parameter may produce a non-conservative 

estimate of the maximum overtopping volume. The multiple shape parameters 

of the EA-Manual were abandoned, however, due to the inherent uncertainty 

present in the estimation of the shape parameter. The variation in shape 

parameter is examined in the course of this research. 

Despite the near universal use of the Weibull distribution to describe individual 

overtopping volumes there is little published detailed justification for this. 

Franco et al. (1994) and the EA-Manual claim the distribution offers a good fit to 

the individual overtopping data but do not publish any justification beyond 

qualitative goodness-of-fit observations. It should be noted, however, that there 

is little evidence to suggest that the Weibull distribution does not offer a good fit 

to the overtopping volumes. 

2.4.2 Error and Uncertainty 

There have been few published studies examining systematically the errors 

associated with predicting and measuring the largest overtopping events. Much 

of the recognition that significant uncertainty is present is either based upon 

experience or an intuitive understanding of the prediction methods. 

Two broad sources of uncertainty are present in the measurement of V. from 

model testing. The first is simply the error associated with the measurement 

system. The second is the inherent variability present in the measurement of a 

single value from a stochastic process. Pearson et aL (2001) examined these 

uncertainties as part of the VOWS project. The error in the overtopping volume 

measurement system, similar to that used in this research (3.3.2 and §3.3.3), 

was determined to be negligible. The greater uncertainty was present in the 

scatter of the results obtained from repeat tests with the same sea state. It 

should be noted that the scope of this study was quite small. Relatively little 

analysis was conducted into the uncertainty associated with repeat tests using 
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different realisations of the elevation time series (produced from the same 

spectrum). 

The term "same sea state" is used here to describe tests carried out with the 

same inputted wave energy spectrum. Repeat tests may consist of simple 

nominally identical test runs (see §3.5.3 for information) or different time-

domain realisations of the spectrum. While there are several methods for 

producing linear elevation time series from the spectrum, the most commonly 

used in wave tank facilities is the concept of sinusoidal superposition with 

pseudo-random phase angles. These phase angles are uniformly distributed 

between 0 and 2rr and are produced using a random number generating 

algorithm3. These algorithms take a single seed number to produce a vector of 

values, hence taking the form of pseudo-random system. 

Repeat tests carried out by Pearson et al. (2001) with nominally identical 

elevation-time histories (i.e. same seed number) showed the lowest variability 

in Vma, with errors typically in the range of 5 - 8%. Altering the seed number 

increased the variability, with the typical scatter increasing to 15 - 20%. This 

relationship is intuitively expected to be true. In a perfectly repeatable system 

the error in V. would be zero for tests with the same seed number. V. will, 

however, always vary with different realisations of the spectrum. V. is a 

measurement of a single event, and the wave, or wave group, producing that 

single event is unlikely to be reproduced exactly in different realisations of the 

elevation-time history. 

Pearson et al. (2001) examined the influence of test length on the overtopping 

measurements. The mean discharge was shown to be a stationary process, with 

the variability reducing as the test length increased from —100 to —1000 waves. 

The results obtained appear to support the established use of 1000 wave tests 

when quantifying the mean response. 

A suitable random number generating algorithm is outline by Goda (2000). Various standard 
routines also exist in packages such as MATLAB. 
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The influence of test length on the value of V. shows a different relationship 

than observed with the mean response. Longer test lengths resulted in an 

increased average value of V.. This is the expected behaviour, based on the 

probabilistic relationship between the number of events and the expected 

extreme of a distribution (Equation (19)). Interestingly, the Vm results 

obtained by Pearson et aL (2001) show little change in the magnitude of the 

standard deviation with increasing test length. 

Empirical prediction methods for V. (2.4.1) are based upon various 

parameters describing the sea state and structure configuration. These 

parameters are incorporated into the prediction formula in the form of the 

Weibull scale (a) and shape (b) parameters. Napp (2004) examined shape and 

scale parameters fitted to distributions of overtopping data obtained from 

physical modelling testing under impulsive conditions. The mean value of the 

"dimensionless scale parameter" (a/V) was found to be distributed around 

1.0, similar to the EA-Manual value of 0.92 (Table 2.3). The scatter observed in 

the shape parameter was quite large, with values distributed between —0.7 and 

—1.3. The mean of the measured shape parameter was 0.96, close to the EA-

Manual value of 0.85. As with the scale parameter, significant scatter was 

observed, with shape parameter values varying between —0.6 and —1.5. 

Relatively small errors in the estimation of the shape parameter may result in 

large variations in the estimation of as previously illustrated in Figure 

2.10. 

Napp (2004) found, based upon three-dimensional testing, that the values of 

Vnm  were overestimated by the EA-Manual impulsive formulae by an average 

factor of approximately 1.25. Attempts to fit new scale and shape parameters as 

a function of h* (Equation (3)) produced little improvement in the accuracy of 

the estimation. It was suggested that this lack of improvement was largely due 

to the level of scatter in the scale and shape parameters. 

A clear source of error in the estimation of V. lies in determining the number 

of overtopping waves (N0). Napp (2004) showed the measured value of N0 
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(from three-dimensional tests) predicted by the EA-Manual may vary by up to 

an order of magnitude compared to the experiments in extreme cases, although 

more normally it fell within a factor of 5. The validity of these measurements 

assumes that the experimental equipment is capable of accurately recording 

individual overtopping events. This may not necessarily be the case. The 

practicalities of overtopping detection are discussed in §3.3. In brief, very small 

overtopping events are often indistinguishable from the background noise of 

the measurement system. This necessitates the use of a threshold system to 

identify the overtopping waves. Adjusting this threshold will yield varying 

values of N0. Given this potential source of uncertainty, attention was paid in 

this research to improving the effectiveness of the overtopping detection 

system. This is an area of overtopping research which is fraught with difficulty. 

Overtopping is a chaotic process and many events are difficult to define both 

qualitatively (e.g. through observation) or quantitatively, using measurement 

and detection apparatus. 

2.5 NewWave and Related Approaches 

2.5.1 Deterministic Wave Groups - "NewWave" 

A feature of random wave modelling is that individual tests will tend to have 

rather long durations. Extending the test run will produce a more 

representative sample of waves for a particular sea state. Practical concerns 

will, however, tend to hinder any desire to carry out very long duration tests. 

In cases where only the maximum response is of interest only a handful of 

waves in the random sea will produce results of interest. For this type of 

modelling situation deterministic techniques potentially offer wave descriptions 

equivalent to an infinite number of random wave model tests. This clearly 

makes this type of technique very attractive in terms of accuracy and efficiency. 

The "NewWave" wave group as described by Tromans et aL (1991) produces a 

probabilistic description of the extreme wave (defined as the maximum crest 

elevation) for a particular sea frequency spectrum. The NewWave group 

37 



effectively describes the average shape surrounding the extreme crest as 

obtained from an infinite number of random seas. On the face of it, this property 

suggests a potential for the NewWave theory to produce maximum response 

results comparable to random wave model testing without the associated 

efficiency penalties. 
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Figure 2.12 NewWave time history with nominal crest elevation. Based on JONSWAP 

spectrum with y = 3.3. 

An example of a typical NewWave elevation-time history is illustrated in Figure 

2.12. This particular example is derived from a JONSWAP spectrum with a peak 

amplification factor (y) of 3.3. 

Tromans et al. suppose that the expected surface elevation (1*)  surrounding a 

crest (measured at time ti) may be described as a function of time by the 

expression 

= a p(r) + q(r) 
	

(20) 

where t = t - ti and a is the crest elevation. The expression consists of 

deterministic (p(t)) and random (g(t)) part. The Gaussian (random) part has a 

value of zero at the crest. Taking the deterministic part only, 

= a p(r), 	 (21) 



the most probable elevation surrounding the crest is described. As such, the 

deterministic expression p(t) relates to the autocorrelation function of the 

surface elevation, with a value of 1 at the crest (t = 0). This function is described 

by the Fourier transform of the frequency spectrum, with zero phase angles: 

N 
1 

P(T) 	d cos(wr) 	 (22) 
n 

where 

d = 	 (23) 

and a is the surface-elevation standard deviation of the underlying random sea. 

It can be shown by linear wave theory (see e.g. Krogstad & Arntsen. 2000) that 

the surface elevation variance is given by the expression 

Var(i7)= or 2 	 (24) 

It may be observed from equations (22) and (24) that p(r = 0) = 1. Essentially, 

the expression p(t) describes the most probable shape surrounding the wave 

crest for a particular spectrum. This shape is then scaled for a particular crest 

elevation to give the most probable surface elevation surrounding the crest (ld*) 

as expressed in equation (21). Including spatial dependence (X) gives the final 

NewWave expression 

N 
crc' 

= 	
d, cos (kX - wr), 	 (25) 

n 

where k is the wavenumber, related to the wavelength (L) by 

2ir 
kn  - Tn 	 (26) 

The NewWave theory has been primarily applied using numerical modelling 

tools to investigate deep-water engineering problems. In particular, the method 

has been used to investigate forces on fixed offshore platforms. Rozario et al. 
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(1993) examined shear forces acted at the base of the North Sea Tern platform. 

Field data describing the forces exerted on the platform was provided by strain-

gauge instrumentation. Wave kinematics derived from the NewWave theory 

were used to predict the base shear force using a hydrodynamic model of the 

structure. The NewWave values agreed both with the field measurements and 

similarly derived predictions using synthesised linear random elevation-time 

histories. 

2.5.2 Combined Deterministic and Random Seas 

The prime benefit of the NewWave theory is the more realistic description of 

the wave shape and kinematics immediately surrounding the extreme wave 

crest when compared to regular waves (Tromans et a!, 1991). The adjacent 

waves (see Figure 2.12) do not represent the average shape of the waves 

adjacent to the extreme wave. This is not relevant in structures or devices 

where there is little or no dynamic response, such as the Tern platform 

examined by Rozario et al. (1993). In the case of floating vessels/devices and 

dynamically responding fixed structures the waves preceding and succeeding 

the extreme waves may also influence the response. These dynamic responses 

are usually examined using randomly generated waves, with associated 

uncertainty in the magnitude and shape of the largest wave. An attempt to 

combine the efficiency advantages of deterministic modelling with the variable 

load histories of a random wave model has been made by Cassidy et al. (2001) 

in the form of the Constrained NewWave theory. This technique involves 

embedding a NewWave group within a conventionally generated elevation-time 

history. In doing so control is exerted over the elevation and shape of the largest 

crest while the preceding and successive waves are representative of a real sea. 

Several NewWave groups may be embedded within the random wave train. 

At present the principles of the Constrained NewWave method have not been 

applied to the field of coastal engineering. While coastal structures do not, in 

general, exhibit dynamic response mode there remains a possible influence of 

wave grouping on the measured response. An example is the influence of wave 
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setup at sloping and permeable structures, where waves preceding the 

overtopping wave cause a rise in the local mean water level, influencing the 

runup and overtopping response. A deterministic wave group embedded within 

a random sea may offer some insight into these behaviours. It would need to be 

proven, however, that the embedded deterministic group (e.g. NewWave) 

described the wave shape associated with the extreme response (i.e. the design 

wave). 

2.5.3 Coastal Engineering Applications 

The use of NewWave and similar deterministic techniques is not, as yet, well 

established for shallow water applications. The kinematics of focused wave 

groups propagating into shallow water was examined by Hunt et al. (2003). 

Wave interactions with a structure (e.g. overtopping or similar) were not 

examined in this research. 

Recent research has extended the use of focused wave groups to examination of 

individual overtopping volumes at vertical seawalls. Jayaratne et al. (2008) 

examined violent overtopping behaviour using this technique. The breaking 

properties of the wave were adjusted by shifting the focus location and 

amplitude. The focused wave groups were generated using JONSWAP and 

square "top-hat" spectra. The aim of the experimental programme was to gain 

insight into the overtopping process rather than to quantify a particular design 

scenario. The measured overtopping volumes were not compared to 

measurements obtained using conventional random sea tests. 

Examination of the overtopping results obtained by Jayaratne et al. (2008) 

illustrates the potential benefits of the deterministic approach. A series of ten 

repeat tests showed a variability of only ±6% in the overtopping volume for 

"low-aeration" events. More aerated violent events showed greater variation, 

although this is not specifically quantified in the published results. Nevertheless, 

this high level of repeatability suggests that focused wave groups may be useful 

tool for the physical modeller. The "missing link" in this area of research (if 

NewWave, and similar techniques, are to be used as an engineering design tool) 
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would appear to be the lack of cross-comparison with conventional modelling 

techniques. 

2.6 Importance Sampling 

Importance Sampling is a variance reducing technique employed in the 

application of Monte Carlo modelling. In particular it has been demonstrated in 

the field of structural engineering (e.g. Melchers, 1989). Monte Carlo 

simulations of structural failure are concerned with low-probability failure 

modes. Importance Sampling involves increasing the "severity" of the load 

distribution, compared to the design case, to better describe the failure regime 

of the system. 
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Figure 2.13 Basic Importance Sampling schematic illustrating the design region (some low 
probability contour) explored by conventional modelling compared to the Importance 
Sampling region. 

An example of how the system may be applied in a structural modelling system 

is described diagrammatically in Figure 2.13. A range of loads and resistances 

(corresponding to different structural configurations) are simulated in the 

model. If the load stress is greater than the resistance stress (i.e. the strength) 

failure will occur. it is observed that few simulations will result in failure. The 
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Importance Sampling technique stretches the modelling region to provide more 

failure test cases. Low probability failure modes, where the design probability 

contour crosses the limit state line, are described better by the Importance 

Sampling model inputs. 

The Importance Sampling technique was recognised as potentially having 

applications in field of overtopping modelling (Wolfram et al., 2004). 

Quantifying the extreme overtopping behaviour for a particular sea state is 

hampered by low sample sizes. The complex nature of the overtopping response 

(§1.2.2) also presents further sources of uncertainty. 
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Figure 2.14 Hypothetical wave height probability distributions for Design and Extreme 
Seas showing the maximum wave height. 

The Importance Sampling technique is applied in a marine modelling scenario 

by moving from a design (random) sea condition to a larger, more extreme sea. 

This is illustrated, in terms of wave height, by the distributions in Figure 2.14. 

Many more measurements may be made for the design wave height, reducing 

the sampling error. The advantage with this approach is that it is non-

deterministic. There is no requirement to model the wave transformations 

involved in moving from deep to shallow water. 

The process illustrated above is, however, a simplification of the processes 

involved in overtopping. In reality it is unlikely to be possible to define a design 
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wave height. Overtopping is a non-linear and potentially non-monotonic 

process influenced by a number of wave, characteristics. Knowledge on the 

detailed behaviour of overtopping waves is often limited. Indeed, if the 

technique is to be employed beyond the field of overtopping it must be assumed 

that detailed wave interaction knowledge will be limited. 

The concept of a limit state function does not translate well to the overtopping 

application, at least not as defined here. This research is concerned with 

maximum overtopping volumes, rather than failure modes. 

This research has concentrated on developing an adaptation of the Importance 

Sampling technique for use in quantifying extreme responses in the marine 

environment This has concentrated on applying the concept of the "extreme 

sea". While the "Importance Sampling" terminology has been retained, the 

methods detailed here differ significantly from the traditional application. 

2.7 Summary 

The majority of overtopping research has concerned the examination of mean 

overtopping discharge. While there is useful and high quality published 

guidance on individual overtopping events it is noted that there is limited 

information concerning the errors and uncertainties associated with these 

measurements. The experimental programme detailed in §3 was conducted, in 

part, to quantify these uncertainties, as presented in §4. 

Two approaches are identified for the improvement of efficiency in random 

wave testing. The majority of recent and ongoing work concentrates on 

deterministic methods (e.g. NewWave). The alternative approach is a 

probabilistic approach which aims to reduce test lengths by removing 

"unimportant" waves from the sea state. This Importance Sampling technique is 

briefly outlined in §1 and explored in detail in the following chapters (5 and 

§6). The experimental programme (3) was conducted, in part, to provide data 

for the application of the Importance Sampling technique. 
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3 Experimental Programme 

3.1 Introduction 

The experimental programme conducted during this research examines 

overtopping at vertical seawalls. All testing was conducted in the University of 

Edinburgh's two-dimensional wave tank. This test programme was designed to 

examine both the inherent uncertainty present in overtopping measurements, 

and to produce data for use in the Importance Sampling technique outlined in 

§1.2.3 and described in detail in §5. This chapter outlines both the apparatus 

and the analysis methods used to extract the overtopping volumes from the raw 

measurements. The test programme is also explained in detail. 

3.2 Experimental Facilities 

3.2.1 Two-Dimensional Wave Tank 

Figure 3.1 Seawall model installed in the wave flume with the adjustable beach visible. 
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The experimental testing that formed the backbone of this research was 

conducted in the two-dimensional "blue" tank located at The University of 

Edinburgh (Figure 3.1). This facility has been used in several coastal 

engineering studies, including the Violent Overtopping Waves at Seawalls 

(VOWS) project. 

The flume has a working length of approximately 20m, a nominal width of 0.4m 

and a fixed water depth of 0.7m. The tank is of a modular construction, with 

each section 3.3m in length. The tank is raised approximately lm from the 

ground and the bottom and both sides are glazed. 

Waves are generated by a single flap-type wavemaker designed and 

manufactured by Edinburgh Designs Ltd. The wavemaker actively absorbs 

reflected waves through the use of a force feedback system. Control is applied 

using Edinburgh Designs' proprietary software, capable of producing regular 

and irregular seas based upon standard spectra. 

Irregular waves are generated through the input of standard spectra. These are 

defined using the real peak frequency (f r) and a nominal gain function. In the 

case of the JONSWAP spectrum the peak amplification factor (y) is also 

specified. This spectrum is converted to a time-series within the WAVE software 

after specification of a seed-number to determine the sinusoidal component 

start phases. The ability to set the seed number (1-100) allows many unique 

time-domain realisations of the same spectrum to be generated. 

The water surface-elevation is measured using water-piercing resistance-type 

wave gauges. These gauges consist of two parallel vertical metallic prongs. The 

voltage measured across these elements is directly proportional to the water 

elevation. The input unit to the data logging computer allows the voltage offset 

and amplification (gain) to be adjusted for each gauge. A gain value of 0.5 Volts / 

1 cm was used. Given that the data acquisition card has a limit for each channel 

of ± 10 Volts, this allows the measurement of wave amplitudes up to ± 200 mm. 

In very extreme cases amplitudes up to approximately 150 mm may be 
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generated in the flume. There is therefore little chance of crests or troughs being 

"clipped" by the data logging system. 
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Figure 3.2 Wave gauge calibration chart with linear fitted calibration curve 

The wave gauges are calibrated by being moved through a fixed distance of 100 

mm, with the offset adjusted such that the voltage output is zero at the still 

water level. Given that the voltage and surface elevation are linearly related, the 

gauges may be calibrated base4 upon two measurements. This linear 

relationship was confirmed by the measurements illustrated in Figure 3.2. 

The beach, partially visible in Figure 3.1, is fitted in sections corresponding to 

the modular design of the wave tank. The beach must therefore be terminated at 

one of these tank section joints. In practice, the seawall model must also be 

positioned at one of these section joins as the beach behind the structure must 

be removed to allow installation of the overtopping collection system (3.3.1). 

The gradient of each section is infinitely adjustable. Water-piercing constant 

gradient beaches of steepness 1:10 to 1:30 may be accommodated. Shallower 

beaches require a "dog-leg" gradient, with a steep section at the seaward end, if 

they are to extend beyond the still water level. 
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3.2.2 Vertical Seawall Model 

Two vertical seawall models were used for this research. Early tests were 

carried out using an existing model of total height 200 mm with an optional 

30mm extension. This model consisted of a transparent acrylic seawall and 

frame incorporating a chute leading to a loadcell equipped collection tank (see 

§3.3.1 for more detail). The seawall crest was fitted with two metallic strips for 

overtopping event detection purposes. 

While this existing model was adequate for initial testing, it was fairly limited in 

terms of configuration options. The design of the frame and overtopping 

collection chute prevented the seawall being easily modified for different 

seawall heights. Adjustment of the freeboard to depth ratio was also limited to 

finite steps. A new model was designed and constructed to allow greater testing 

flexibility (Figure 3.3). 

Figure 3.3 Seawall model with water collection chute and extension sections (metallic 
overtopping detection strips not shown) 



The seawall model has an effective crest width (excluding frame sides) of 375 

mm. The seawall height may be adjusted in 10 mm increments by use of 

extension sections bolted to the underside of the main seawall (Figure 3.3). The 

lowermost of these sections is profiled to ensure a close fit with the beach. The 

brackets supporting the seawall in the tank are fitted through slots in the frame, 

allowing for a continuously adjustable freeboard to depth ratio. 

Figure 3.4 Metallic overtopping detection strips as fitted to model seawall 

The seawall model incorporates metallic strips for the detection of individual 

overtopping events (Figure 3.4). These strips consist of sections of aluminium 

tape, commonly used in the repair of printed circuit boards and other 

applications where a thin conductive surface is required. A 9 Volt supply was 

connected between the strips, with the overtopping water completing the 

circuit. Silicone grease was applied to the gap between the strips to reduce 

water pooling. The voltage across the strips was logged, an overtopping event 

showing up as a spike in the signal. A precise timecode may then be applied to 

the overtopping event which, combined with the loadcell readings from the 
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collection tank, may be used to determine the individual overtopping values. 

This procedure is detailed in §3.3.2 and §3.3.3. 

The discharge from overtopping waves is directed into the collection tank via a 

chute integral to seawall model structure, as illustrated in Figure 3.3. The 

measurement of the overtopping discharge is detailed in §3.3.1. 

3.2.3 Data Acquisition and Data Handling 
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Figure 3.5 Wave-flume systems and data-acquisition schematic diagram 

The data logging system is separate to the wave generation hardware (Figure 

3.5). The synchronisation of these systems is discussed in §3.4.2. Several data 

logging and analysis systems have been used during the course of this research. 

Early testing was carried out using logging and analysis programmes running in 

HP-VEE and FORTRAN. In order to expand the flexibility and capability of the 

facility the software was later updated to a combination of Aalborg University's 

WaveLab 2 software and custom-written MATLAB code. 

In the course of this testing several long test programmes were undertaken. 

Testing of this nature is always prone to "human-error". This could simply be 
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the wrong spectral values entered into the sea input file or an incorrectly 

transcribed wave-gauge calibration function. While great care may be taken 

when setting up individual tests, this type of error is often difficult to detect and 

diagnose. Given that this research is concerned with assessing, and reducing, 

uncertainty in model testing, it was considered especially important to minimise 

these experimental errors. The following test procedures were therefore 

rigorously followed to minimise the risk of these errors, and allow easy 

examination of the wave generation and logging parameters post-testing. 

All sea input files are written and checked prior to testing commencing. 

The input files are not edited on a test-by-test basis to allow full 

traceability of input conditions.. 

The set-up parameters of each individual test were stored alongside the 

logged data. A clearly defined reference system was also used. 

. All data channels were logged in the form of raw voltage inputs. The 

nature of the logging system allows the calibration functions to be stored 

within the same file for easy translation to the correct units. Should a 

calibration error be detected the function may be altered easily. 

The logged data was analysed in the main-using a combination of WaveLab and 

MATLAB routines (see §3.4). A custom function is used to import the data files 

into MATLAB, applying the calibration functions to the raw data in the process. 

This script is incorporated into a larger programme which archives the data in a 

form (MAT files) which is easily and efficiently accessed by other MATLAB 

routines. The data handling procedures used are intended to minimise the need 

for manual data entry (with the associated risk of error). Data files belonging to 

common test series are combined to form a single data structure that may be 

loaded into MATLAB programmes as a single entity. 
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3.3 Overtopping Measurement 

3.3.1 Overtopping Collection and Measurement 

The overtopping water is collected in a loadcell equipped tank mounted beneath 

the chute of the seawall model assembly, as illustrated schematically in Figure 

3.2. This equipment has been in use for some time and is well proven. The 

assembly consists of two major elements, a watertight outer shell which 

provides a dry bay and the collection tank itself. The collection tank is 

suspended from the loadcell and hangs freely inside the outer shell. The 

collection tank has a maximum capacity of 20 litres. 
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Figure 3.6 Loadcell calibration chart with linear fitted calibration line 

The output from the loadcell is logged using the data acquisition system (3.2.3) 

allowing for the measurement of individual overtopping volumes. The gain and 

offset of the signal is adjustable through an operational amplifier. The loadcell 

signal voltage was adjusted to give a value close to zero when the tank was 

empty, although this is not essential as the analysis software measures change 

in volume4, not absolute values. The gain was set such that the Voltage when the 

tank was full would not exceed 10 Volts (the limit of the data acquisition 

4 While the loadcell obviously measures weight, the output will hereforth be referred to in terms 
of volume (1 kg = 1 litre), in line with the conventional measurement of individual overtopping 
events. 
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system). A calibration chart for the loadcell is shown in Figure 3.6 illustrating 

the linear behaviour of the measurement system. This loadcell calibration 

proved to be very stable, and no significant variation in calibration function was 

noted throughout the experimental programme. 

3.3.2 Overtopping Event Detection and Measurement - Legacy System 

Individual overtopping volumes are produced based on the signals logged from 

the overtopping detection (metallic strips) and overtopping measurement 

(loadcell) channels. This allows for increased accuracy compared to monitoring 

the measurement channel alone. The overtopping detection channel allows for 

precise timecode to be assigned to an overtopping event, which is particularly 

important in this research. 

Advance Time Step 
t=t+t 

Assess Detector Voltage 
Voltage > ThreshoId 0 1 

Iv 

Assess Detector Gradient 
Gradient > ThresholdG rad 

Check Interval to Previous Event 
t - t 1 > OT Spread Limit 

V 

Log Overtopping Timecode 
ti  t 

Figure 3.7 Overtopping detection logic flow chart - legacy system 
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The analysis procedure outlined here describes the original FORTRAN code 5 , 

later transferred to MATLAB. This system was used for early testing and was 

later testing changed to a new implementation, described in §3.3.3. 
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Figure 3.8 Overtopping event measurement with detection strip signal alongside raw and 
processed loadcell measurements 

The analysis logic is illustrated by the chart in Figure 3.7. Individual 

overtopping events are identified by voltage spikes in the detection channel 

(Figure 3.8). These spikes are identified by their steep positive gradient. If and 

when a spike is detected which exceeds the chosen threshold it must also 

exceed a set minimum voltage. This prevents low voltage noise caused by small 

drops of water and other interference from registering an overtopping event. An 

overtopping wave may not result in a clean single spike. Voltage spikes very 

close together are therefore treated as a single event. The overtopping detection 

parameter values are given in Appendix 1. 

The FORTRAN overtopping analysis software was produce by Dr Jonathan Pearson, then of the 
University of Edinburgh. 
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Figure 3.9 Overtopping record with multiple overtopping events 

Once the individual overtopping event timecodes have been determined, the 

individual overtopping volumes may be analysed. Significant oscillations may be 

observed in the loadcell data, particularly when the volumes of water deposited 

in the collection tank are large. It is necessary therefore to use an averaged 

value based on the loadcell measurements between the detected overtopping 

events. As there is a small time delay between the overtopping wave passing 

over the detection strips and arriving in the collection tank, this average should 

not be taken over the entire time between overtopping timecodes. The solution 

is to use the average volume over the second-half of the interval between 

events. The collection tank volume may then be represented as stepped output, 

as illustrated in Figure 3.9. This output may be easily translated into a time-

stamped list of individual overtopping volumes. 

3.3.3 Overtopping Event Detection and Measurement — New Implementation 

While the original (legacy") overtopping code generally worked well, some 

limitations and discrepancies were noted in its output. The overtopping code 

described here works on the same basic principle as the legacy system, using 

the spikes in the overtopping detection channel to identify overtopping waves. 
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The code primarily differs in the logic used to identify an event and the method 

used to deduce the volume from the loadcell. 

The problem of defining an overtopping wave is perhaps more difficult than it 

appears on initial inspection. In a distribution curve of volumes obtained from a 

hypothetical infinitely long test, the volumes will vary from zero up to the large 

(extreme) values. This effectively means that overtopping volumes may be 

infinitely small. 

In practice, a wave may deposit only a very small volume of water over the crest 

of the seawall. These low extremes may appear initially insignificant, but if the 

overtopping response is to be correctly characterised it is important to 

understand the range of values obtained. Understanding the total number of 

overtopping waves is also important, as it is an input into the probability theory 

used to predict the maximum overtopping volume (V 1 ). 

Experience with the legacy code demonstrated that it was often difficult to find 

an optimum sensitivity for the overtopping detection system. A highly sensitive 

system would appear to pick up all genuine overtopping events, but would also 

detect many apparently spurious events. A number of causes are hypothesised 

for this behaviour. Water may pool at the crest or on the tank/frame sides, 

creating false spikes when it runs across the strips. Interference from other 

equipment sharing the laboratory may also be picked up on the metallic strips 

and associated wiring. The nature of the overtopping events is also not entirely 

consistent. If the overtopping event produces a wide sheet of water a large, 

easily identifiable spike will be apparent on the detection readings. If the wave 

should produce only a small rivulet of water, the spike may be less obvious. 

Overly low detection sensitivity will clearly result in overtopping events being 

erroneously ignored. This will have the secondary effect of the overtopping 

volumes being wrongly assigned to other detected events, reducing confidence 

in the measured individual volumes. 
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Figure 3.10 Overtopping detection logic flowchart - new implementation 

In order to ensure the small overtopping volumes were detected without the 

side-effect of spurious events, a secondary detection logic was added to the 

system (Figure 3.10). In this new implementation, spikes in the detection 

channel are assessed as Definite or Possible events. 

Definite events are defined by the Voltage gradient in the overtopping spike 

passing an upper threshold. This is identical in principle to the legacy detection 

code. Events identified as Definite are logged without any further checking. 

Possible events are defined by the Voltage gradient in the overtopping spike 

passing a lower threshold. This high sensitivity criterion will likely log many 

spurious events. A secondary check is therefore necessary to determine which 

spikes should be disregarded. This is carried out through examination of the 

loadcell channel. 
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Figure 3.11 Overtopping detection strip measurement (Possible event) with loadcell 

measurement and fitted envelope. 
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Figure 3.12 Rate of change of fitted loadcell envelope illustrated in Figure 3.11. Detection 

threshold for Possible events indicated. 

It was noted when examining the logged overtopping data that even small 

volumes result in an oscillation in the loadcell signal due to the negligible 



damping in the suspended collection tank. The presence of this oscillation is 

used as the secondary check to confirm the validity of Possible overtopping 

events. The procedure for identifying this oscillation is thus: 

Carry out envelope fitting to the loadcell channel, as illustrated in Figure 

MIN 

Differentiate the envelope amplitude (width) in order to identify sudden 

expansions associated with overtopping induced oscillations. 

If the differential of the amplitude exceeds a set threshold (Figure 3.12), 

and occurs with a defined window following a Possible spike in the 

detection channel, confirm the overtopping event. 

It should be noted that many small volume events are identified as Definite, with 

the inverse also occurring. This system is designed such that an overtopping 

event is unlikely to be missed, while spurious measurements are reduced. Very 

small overtopping volumes may be vulnerable to being missed by the secondary 

check in the Possible identification logic, but no more, and probably less, than 

was the case using the legacy system. 
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Figure 3.13 Schematic representation of loadcell averaging period between two 
overtopping events 

The method used for extracting the individual volumes from the loadcell data 

was altered from the legacy software. A representation of the two methods is 

illustrated in Figure 3.13. Individual volumes are determined based on the 

volume of water in the tank between overtopping events. It is not desirable to 

calculate this volume based on a straightforward average due to the finite length 

of time required for the overtopping water to travel from the seawall crest to 

the tank. Examination of overtopping data yielded minimum (Llmin) and 

maximum (LTm) values for this lag. Taking these lag values into account allows 

the averaging time to be maximised. It also prevents a potential problem where 

the legacy system would include a proportion of this lag time in the averaging 

calculation when the time between events was very short. This would result in 

the volumes being wrongly assigned between the two events. 



A quality control measure employed in the overtopping system is the setting of 

an overtopping threshold. This minimum value, set to zero for this research, 

prevents the noise and oscillation in the system from identifying unrealistic 

negative overtopping volumes. This type of output may occur when measuring 

very small overtopping volumes, especially when preceded by a significantly 

larger volume. A similar check measure was employed in the legacy overtopping 

code. 

Values for the overtopping analysis parameters are given in Appendix 1. 

3.4 Software Tools 

3.4.1 Sea State and Wave Analysis Tools 

Several routines were used to produce time-domain and frequency-domain 

statistics for the elevation-time histories measured in the tank. Much of the 

analysis software/code was produced by third-parties and brief details of these 

tools are given below. Where necessary, new routines were written, in 

particular for time-domain analysis of individual waves and these are also 

outlined. 

The calculation of the global sea statistics (e.g. Mm0, Tm etc.) was primarily 

carried out using the WaveLab 2 package, produced by Aalborg University, 

Denmark. This programme analyses time-series in both the frequency and time 

domain. While WaveLab is a powerful, proven and user-friendly package it does 

have some limitations. Primary among these is the inability to integrate the 

programme with custom routines (e.g. running in MATLAB). 

Several functions contained in the Wave Analysis for Fatigue and Oceanography 

(WAFO) MATLAB toolbox produced by Lund University, Sweden were used 

during the course of this research. The use of these tools is detailed where 

relevant. 
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Figure 3.14 Zero downcrossing analysis of an elevation time series 

Characterisation of waves is a necessary input to many of the analysis 

techniques employed in this research. The elevations of the crest and trough, as 

well as the wave period, are measured using zero-downcrossing analysis 

(Figure 3.14). The convention employed here is to refer to the trough elevation 

as positive in the downwards direction. 

The simplest form of analysis is to base the zero-crossing and turning points 

(crest and trough) on the nearest logged data point. However, this clearly 

introduces a level of inaccuracy, and will result in the underestimation of the 

crest and trough heights. To reduce this error interpolation functions are used 

to describe better the regions between the discrete data points. The zero-

crossing points are found using linear interpolation between the measurements 

above and below the still water level. The crest and trough values are estimated 

through a parabolic fitting technique, as suggested by Goda (2000). The 

elevations are given by the relationship: 

Tlmax/min = C - 
B 2 	

(27) 

where 



1 
(28) 

B = 1 	 (29) 

and 

C 

= 	

(30) 

The "i" subscript relates to the data point with the largest positive or negative 

value (for crest and trough respectively) lying between two-crossing points. The 

parabolic relationship may also be used to estimate the crest/trough time: 

B 
tmaxti_Ltt5A 	 (31) 

where At is the sampling interval (assumed to be constant). 

The wavelength (L) is, unless otherwise stated, calculated from the period (T) 

and water depth (h) as 

g 	 2irh 
L=—T 2 tanh 	. 	 (32) 

2m 	 L 

This expression must be solved numerically. In this research this was achieved 

using the Newton-Raphson iteration method. 

3.4.2 Sea Synchronisation and Initialisation 

It was noted in §3.2.3 that the data logging computer system is physically 

separate from the wave generation hardware. While this is not necessarily a 

significant drawback when dealing with single tests, it makes repeat tests with 

identical seas difficult to compare. This is particularly true when the matching 

of waves and events between identical repeat seas is critical. To overcome this a 

robust method of synchronising and initialising logged time-series data was 

implemented. 
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The solution was to record the analogue input to the wavemaker on the data 

logging computer (Figure 3.5). This channel is effectively treated as a wave 

gauge input. This analogue input allows the start-time of the wavemaker to be 

identified, assuming that data acquisition is initiated prior to activating the 

wavemaker. 
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Figure 3.15 Wavemaker signal with activation time identified by exceedance of a set 
threshold (dashed lines) 

The post-processing of the data file is carried out in MATLAB, and is 

incorporated into the data import routines described in §3.2.3. The start-point 

of wave generation is identified by the wavemaker signal exceeding a set 

threshold, as shown in Figure 3.15. This threshold is set high enough so that 

low-level noise does not erroneously set the initialisation point 6. Spurious 

spikes in the data are also identified and removed. Once the start point of wave 

generation is identified a wave propagation margin is added. This allows the sea 

to become established and avoids the logging of still water at the start of the 

experiment. A margin of 20 seconds was used for the testing carried out in this 

6 The data acquisition is capable of resolving the logged signal to intervals of 0.00488 Volts (20 
Volts range with 12 bit resolution). The initialisation threshold was set to 0.005 Volts - slightly 
above the lowest non-zero measurement 
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research. The end point is determined by the desired duration of the test and is 

simply measured from the start point. The recorded timecodes are corrected to 

account for the removed data. 

While the above method was generally effective, it was observed to 

demonstrate some slight variability. Noise in the recorded wavemaker signal 

would cause nominally identical tests to initialise at slightly different times, 

usually in the order of 0.5 seconds. It should be noted that this noise was only 

apparent in the logged duplicate wavemaker signal and was not present in the 

primary signal transmitted to the wavemaker. 

In order to provide close synchronisation between tests with identical seas (as 

required for the calibration seas) a cross-correlation method was used. The first 

sea in the sequence was processed using the threshold exceedance procedure 

described above. The wavemaker signal from subsequent tests was compared to 

this first test using a cross correlation function incorporated within MATLAB. 

The lag between the tests was identified based upon the maximum correlation 

value. The start point of the second sea was then set based upon this lag. The 

value of the cross-correlation coefficient also provides a useful quality check 

function should an incorrect, supposedly identical signal be inputted to the 

wavemaker. 

3.5 Test Procedures 

3.5.1 Wave Tank Calibration 

The techniques used in this research rely primarily on sea parameters 

measured at or near the model. Producing the correct sea in the tank is not 

necessarily a straightforward procedure. For a given spectrum (e.g. JONSWAP 

with y = 3.3) the tank input is given as a real peak frequency input and a non-

dimensional gain value (3.2.1). The results of previous testing allow this gain 

value to be determined fairly easily for deep water. The resulting shallow water 

conditions, however, are dependent on the beach bathymetry and depth at the 

structure. Due to the number of variables it is not generally possible to examine 



previous tests in order to determine the correct wave flume inputs. It should be 

noted that the "offshore" conditions in the wave flume may often more correctly 

be referred to as intermediate depth conditions, rather than true deep water. 

The approach initially attempted was to translate the target shallow water sea 

parameters to deep water through use of a shoaling model. The model used was 

that of Shuto (1974) as described by Goda (2000). This method calculates the 

transformation through use of a shoaling coefficient (K 5), which relates to ratio 

of shallow and deep water wave heights: 

K5 
= Hmo(i,ihore) 

Hmo (offshore) 
(33) 

Shuto's method for the calculation of the shoaling coefficient is represented 

graphically, but may also be determined numerically. This procedure is 

described by Goda (2000). 

The experience from this experiment is that the shoaling coefficients measured 

in the wave tank do not compare well to Shuto's predictions. A possible reason 

for this is the relatively close location of the deep water wave gauges to the 

wavemaker due to the long installed beach. The "deep" water measurements 

may also more accurately be referred to as intermediate depth, perhaps 

impairing the accuracy of the shoaling estimation. Wave conditions were 

therefore manually and iteratively adjusted based on the observed shoaling 

coefficient to achieve the target wave conditions. It should be noted again that 

this procedure only applied to the spectrum gain factor. The target peak 

frequency, entered as an input to the wavemaker software, was accurately 

reproduced in the flume. 

3.5.2 Calibration Seas 

When conducting physical model testing in a wave tank, accurately measuring 

the sea state is Often complicated by the presence of the model. It may be the 

case that the model physically interferes with the placement of the 
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measurement equipment. This may be particularly true for floating models 

covering a relatively large area. 

In coastal engineering modelling it tends to be physically impossible to position 

the wave gauges close to the structure. A more significant problem is the 

influence the model has on the wave climate. Waves will reflect off the structure, 

influencing the instantaneous surface-elevation in the tank. This effect is not 

limited to coastal engineering. These reflections and radiated waves may be 

observed when testing, for example, wave energy converters (WECs). The 

reflections are particularly strong when modelling monolithic structures such as 

the vertical seawalls used in this research. In order to accurately measure the 

incident elevation time series in the absence of strong reflections tests were 

conducted using "calibration seas". 

Tests using a calibration sea are conducted with the seawall model (in this 

instance) absent. The beach bathymetry is unchanged, except that it is extended 

to pierce the still water level. A wave gauge positioned at the intended model 

location records the incident waves without the superposition of the strongest 

reflected components. This elevation time history will record any 

transformation effects induced by the beach, but the reflections and local wave 

deformations due to the structure will not be present. A separate test, using an 

identical generated time-series, is carried out to measure the response of the 

model. The synchronisation procedure described in §3.4.2 is used to match 

waves from the calibration tests to the response measurement tests. 

While this technique doubles the number of tests required for each unique sea, 

it was felt that it was the most robust sea characterisation technique available. 

The alternative approach is the application of reflection analysis techniques (e.g. 

Mansard & Funke, 1987). These techniques use measurements from an array of 

wave gauges (typically three measurements for long crested seas) to separate 

the incident and reflected seas. This process is carried out in the frequency 

domain. Elevation time series, as required in this research, must be 

"reconstructed" using inverse Fourier transforms (IFFT) methods with the 



values translated from the measurement point to the structure location. There 

are also doubts over the reliability of measurements taken near the structure. 

The sea state near the vertical seawall was observed to be frequently "chaotic", 

particularly when impulsive overtopping events occurred. In this case aeration 

of the water may be evident, potentially reducing the accuracy of the resistance-

type wave gauges. 

3.5.3 Identical Sea Repeatability 

The use of calibration seas, described above, requires a high degree of 

repeatability from the wave tank. In order to check the repeatability of the wave 

tank, a series of tests was undertaken. Three nominally identical repeat tests 

were conducted, with an Hmo value of 0.06 m and a peak frequency of 0.85 Hz 

(Tp  z 1.18 s). A JONSWAP spectrum was used with a peak amplification value (y) 

of 3.3. The agreement between sea measurements from the repeat tests was 

examined in both the frequency and time domains. The tests were carried out 

with a constant plane beach installed (gradient of 1:17). Two wave gauges were 

used for each test, one in deep water prior to the beach, and the other in a depth 

of 140 mm. These test parameters represent a fairly typical experimental 

configuration for overtopping modelling. 
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Figure 3.16 Deep water spectra measured from three nominally identical repeat wave 
flume tests 
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Figure 3.17 Shallow water spectra (h = 0.14 m) measured from three nominally identical 
repeat wave flume tests 



Sea Parameter 	Sea 1 Sea 2 Sea 3 Mean 

Deep Water (h = 0.7 m) 

Hm0 [m] 	 0.0601 0.0601 0.0612 0.0605 ± 1.2% 

T [s] 	 1.18 1.18 1.18 1.18 ± 0.0% 

T1,0 IsI 	 1.09 1.09 1.09 1.09 ± 0.0% 

Tm [s] 	 0.977 0.973 0.970 0.973 ± 0.3% 

Hrn2ir [mJ 	 0.113 0.110 0.113 0.112 ± 1.8% 

Shallow Water (h = 0.14 m) 

Hmo [m] 	 0.0430 0.0429 0.0437 0.0433 ± 1.5% 

T [s] 	 1.18 1.18 1.18 1.18 ± 0.0% 

T 1 ,o  [SI 	 1.07 1.08 1.07 1.07 ± 0.6% 

Tm [s] 	 0.970 0.960 0.950 0.960 ± 1.0% 

H, 	[m] 	 0.083 0.085 0.086 0.0847 ± 1.97% 

Table 3.1 Comparison of deep and shallow water sea parameters from three nominally 
identical repeat tests. 

The spectra for both deep and shallow water were analysed for both deep water 

(Figure 3.16) and shallow water (Figure 3.17) measurements. Visual inspection 

of the spectra indicates very good agreement between the repeat tests. This is 

borne out by the sea parameters, measured both in the frequency and time 

domains (Table 3.1). Wave height parameters (Hm0 and H 1 ) agree to within 

2% in both shallow and deep water. Measurements of wave periods showed 

typical errors of less than 1%. The greater error shown by the wave height 

parameters may be due, at least in part, to wave gauge calibration drift. During 

all experimental test runs the wave gauges were periodically recalibrated to 

minimise this source of error. 

Deep Seal Sea2 Sea3 

Sea 1 1 0.991 0.984 

Sea 2 0.991 1 0.984 

Sea 3 0.984 0.984 1 

Shallow Sea 1 Sea 2 Sea 3 

Seal 1 0.975 0.977 

Sea 2 0.975 1 0.970 

Sea3 0.977 0.970 1 

Table 3.2 Elevation-time history correlation matrix for deep and shallow water 
measurements. 
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The ability to replicate accurately individual waves in an elevation time series is 

highly important for this research (3.5.2). In order to establish the degree of 

repeatability, the correlations of the measured elevation time series were 

calculated (Table 3.2). The average deep water cross-correlation value was 0.99, 

dropping slightly to 0.97 for the shallow water measurements. These high 

correlations would appear to support the low variability observed in the 

parameters detailed in Table 3.1. 
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Figure 3.18 Shallow-water elevation time histories measured from three repeat tests. 

A representative sample of the measured elevation time series is illustrated in 

Figure 3.18. The agreement between the three tests appears to be good with few 

deviations. 

3.6 Test Programme 

3.6.1 Test Series Setup 

Several test series were conducted during the course of this research aimed at 

quanti1ring the overtopping volume uncertainty (4), and in applying the 

Importance Sampling method (5). The rationale for the design of these 

experiments is given below, along with more detailed explanations in the 

respective chapters where appropriate. 
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The test series are defined primarily by their input spectrum, the bathymetry 

and the configuration of the seawall. The tests were designed to deliver a 

particular overtopping regime (2.2.3), overtopping ratio (Now/Nw) and wave 

steepness (Sop). The guidance contained within the EA-Manual was used to 

define the sea state and seawall configuration. The relative depth was chosen to 

give the correct overtopping regime, using the hs formula (Equation (2)). The 

relative freeboard was set to give the target overtopping rate. These 

dimensionless parameters were then converted to real measurements through 

selection of Hm. The scale was chosen such that the total overtopping volume 

was manageable, in that very small volumes introduce measurement errors 

while large volumes require recourse to a siphoning system to prevent 

overflowing of the overtopping collection tank. Finally, short "pilot" tests were 

conducted to check the agreement with the prediction formulae. If necessary 

the seawall geometry or sea-statewas adjusted to give the target values. It 

should be noted that the purpose of these tests was not to check the accuracy of 

the EA-Manual or EurOtop formulae, hence the iterative adjustment of the test 

configuration. 
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3.6.2 Summary of Test Series 

Configuration Beach h5  Rc  Seawall Overtopping 

Code Gradient [mm] [mm] Model §3.2.2 Code §33 

X 	- 1:30 140 60 Old Legacy 

Y 1:30 160 100 New New- 

Implementation 

Table 3.3 Model and wave-tank configurations 

Reference # Tests 	N0/N 	Sop 	 HmOjnshore - Hm&otTshore 

[m] 	[m] 

X Configuration Tests 

2X 8 x 500s 460/4200 0.024 0.037 0.068 

4AX 9 x 1000s 790/10500 0.042 0.042 0.072 

4BX 2 x 1000s 390/2000 0.043 0.052 0.096 

Y Configuration Tests (s 0.02) 

2AY 10 x 1000s 220/8600 0.020 0.046 0.066 

2BY 6 x 1000s 260/4900 0.019 0.050 0.072 

2CY 4x1000s 370/3100 0.020 0.055 0.078 

2DY 4x500s 250/1600 0.020 0.061 0.086 

Y Configuration Tests (s(,p  z 0.04) 

4AY 10x1000s 450/11500 0.042 0.046 0.066 

4BY 6 x 1000s 440/6500 0.042 0.050 0.072 

4CY 5 x 1000s 540/5200 0.042 0.054 0.080 

4DY 3 x bOOs 520/3000 0.042 0.060 0.088 

Table 3.4 Summary of test series (detailed list of all tests provided in Appendix 2) 

The wave tank configurations of the two test configurations presented in this 

research are outlined in Table 3.3. The sea-states and overtopping summaries 

for the tests conducted with these configurations are detailed in Table 3.4. 

The X-configuration tests consist of three test series. Two of these series (2X 

and 4AX) consisted of multiple repeat tests with s op  values of 0.02 and 0.04 
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respectively. These tests were designed to allow the evaluation of repeat test 

uncertainty. The third X-conflguration test series (4BX) consisted of two 1000 

second repeat tests. This test series was originally conducted as an "Extreme 

Sea" for appraisal of the Importance Sampling method (5). 

The Y-conflguration tests series represent a more through attempt to appraise 

the Importance Sampling concept. As with the X-conflguration tests, several 

repeat tests (2AY and 4AY) were conducted to establish the underlying 

uncertainty and establish baseline overtopping volumes for assessment of the 

Importance Sampling method. Several Extreme Seas, with increasing 

overtopping rates, were then produced for Sop = 0.02 (2Y) and s,,p  = 0.04 (4Y). 

The number of repeat tests in these test series was determined by the 

requirement to produce a similar number of overtopping events to the baseline 

datasets (2AY and 4AY). The rationale for this is explained in detail in §5. 

3.7 Summary 

The experimental programme produced detailed measurements of individual 

overtopping volumes for several sea states through a number of repeat tests. 

This differs from the conventional approach to random wave modelling where 

the response to a certain test configuration or sea state is typically characterised 

using a single 1000 wave elevation time series. The larger datasets employed 

here allow the uncertainties associated with the extreme response to be 

examined in more detail, as detailed in §4. 

These large "baseline" datasets also serve as the Design Seas for use in the 

application of the Importance Sampling method, explained in detail in §5. 

Several Extreme Sea datasets were also produced as part of the experimental 

programme. The Importance Sampling results obtained using these Design and 

Extreme Sea datasets are detailed in §6. 
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4411  Individual Overtopping Distributions 

4.1 Introduction 

The prime goal of this research is the reduction of uncertainty in marine 

modelling applications. The role and importance of uncertainty may not, 

however, always be recognised. The majority of testing or modelling is not 

conducted with the express aim of quantifying the largest values. In the case of 

wave overtopping, a particular sea state and structure configuration may be 

characterised by single test run with a typical 1000 wave random sea. This test 

will give a value for the mean response (e.g. q or V) and a value for the extreme 

response (e.g. V. or Vl%). It is tempting to effectively treat these values as 

absolute, without paying proper regard to the level of associated uncertainty. 

The practicalities and expense involved in conducting long test programmes 

will tend to preclude quantification of these uncertainties. In order to address 

this issue the expected uncertainties (for V. in particular) have been studied 

and compared to the measured values obtained from the experimental 

programme (3). 

4.2 Distribution Fitting Method and Choice 

4.2.1 Application of the Weibull Distribution 

The Weibull distribution is well established as a method for the description of 

individual overtopping volumes. It is the distribution used by Franco et al. 

(1994), the EA-Manual (Besley, 1999) and EurOtop (Pullen et al., 2007). The 

reasoning driving the use of this distribution is not always clear, although that is 

not to say it is the wrong choice. 
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The measurement of individual overtopping volumes is a relatively recent 

introduction to coastal engineering practice. Franco et aL (1994) initially 

attempted to fit the volumes obtained from non-impulsive overtopping tests 

(2.2.3) using a Rayleigh distribution (exactly equivalent to a Weibull 

distribution with a shape parameter set to 2.0). Qualitative review of the 

goodness of fit demonstrated that the extreme values showed a poor fit with 

this distribution. The Weibull distribution appeared to show a closer agreement 

to the dataset The Weibull distribution has continued to be the recommended 

method for describing individual overtopping volumes and is incorporated in 

the EA and EurOtop manuals (2.4.1). 

The choice of distribution family must be based upon the observed goodness-of-

fit to collected data. Given the complex interaction of processes that may be 

involved in a single overtopping event there is little theoretical basis to inform 

the choice of distribution family. 

4.2.2 Weibull Distribution Fitting Methodology 

The Weibull distribution is described by up to three parameters: scale (a), shape 

(b) and location (c). The location parameter is useful for offsetting the 

distribution where some threshold exists below which data is not recorded. The 

EA-Manual Project Report (Besley et aL, 1999b) notes that this value is very 

small and therefore recommends the use of two-parameter distribution (with c 

= 0). The two parameter Weibull distribution (Equation (14)) is also used in the 

EurOtop manual. 

Besley et al. (1999b) fitted two-parameter Weibull distributions to individual 

overtopping measurements taken at a vertical seawall subjected to both 

pulsating and impulsive wave conditions. It was noted that the distribution 

fitted the data well except for low values of V/V where some divergence was 

noted. In most engineering applications, where the extreme response is of 

primary interest, accurately describing these low volume events is of limited 

importance. The approach taken for the EA-Manual was to choose the shape of 
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distribution based upon overtopping volumes greater than the mean (V/V 

>0) 7 . 

The non-exceedance probability of a ranked data point (I) is strictly defined as: 

Now 
	 (34) 

This definition is troublesome, however, when defining the probabilities for 

Weibull distribution fitting. It is clear, by inspection, that the highest ranked 

volume (i.e. V1 ) will correspond to P = 1. This is not achievable with Weibull 

distribution, as the maximum value is infinite (i.e. P < 1). 

In order to produce meaningful ranked probability values for a dataset it is 

necessary to rescale (and/or shift) the distribution. A commonly applied 

solution is the "Weibull formula": 

	

P(V1  <v) = 
N0 + 1 • 
	 (35) 

It has been noted (e.g. Goda, 2000) that this position formula underestimates 

the non-exceedance probability when handling small datasets. It is therefore 

suggested that the Bernard position (e.g. Zhang et al., 2006) plotting formula is 

used: 

- 0.3 

	

N0  + 0.4 
	 (36) 

The Bernard position formula shifts and rescales the distribution, through the 

numerator and denominator respectively. It should be noted that several 

plotting position formulae are available, and their usage is a subject of 

considerable debate. A more complex formula is outlined by Goda (2000). 

Goda's method, however, may only be applied where there is a priori knowledge 

of the Weibull shape parameter. 

This Weibull fitting methodology and its reasoning is not explicitly explained in the EA-Manual 
(Besley et al., 1999). Full details are given in the accompanying project record (Besley et al., 
1999b). 



Plotting against a Weibull scale (e.g. Figure 4.1) allows the agreement with the 

Weibull distribution to be assessed qualitatively. Weibull distributed data will 

be displayed as a straight line, allowing a simple visual check of the quality of fit. 

Quantification of the Weibull parameters (scale and shape) is achieved through 

a linear fit to the data (as displayed on the Weibull axes). The scale (a) and 

shape parameters are given by the formulae, 

a = exp (-) 
	 (37) 

b = m 	 (38) 

where m andy0  represent the gradient and y-axis intercept of the linear fit. 
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Figure 4.1 Measured overtopping volumes (s = 0.02, Series 2AY) plotted on Weibull 
axes. A Weibull distribution has been fitted to all data points, with a second distribution 
fitted only to volumes > V. 
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Figure 4.2 Measured overtopping volumes (s 0  = 0.04, Series 4AY) plotted on Weibull axes 
with fitted distributions. A Weibull distribution has been fitted to all data points, with a 
second distribution fitted only to volumes > V. 

Deviations at the lower "extreme", similar to those observed Besley et al. 

(1999b), are apparent in both the Sop = 0.02 (Figure 4.1) and the s, = 0.04 

(Figure 4.2) datasets. 

Besley et al. (1999b) do not attempt to explain the difficulty in accurately 

describing the smallest overtopping volumes with the Weibull distribution. The 

non-linear response observed at vertical seawalls (i.e. transition from non-

impulsive to impulsive - §2.2.3) may explain why all events in the dataset do not 

fit the same parametric distribution. Indeed, the EA-Manual gives different 

shape parameters based upon the dominant overtopping mode (2.4.1). 
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Figure 4.3 Typical histogram of measured overtopping volumes (s = 0.02). 

When examining distributions of overtopping volumes it is worth considering 

the level of uncertainty associated with very small overtopping volumes. The 

detection and measurement of these events, which may only be a few millilitres, 

is difficult to achieve in practice. Careful attention was paid to accurately 

quantifying these small volumes (3.3) obtained from the experimental 

programme. Nevertheless, the confidence in the measurements of these very 

small volumes is naturally less than the larger, more easily detected, events. It is 

suspected that some of these very small events are "false-positives". An 

inspection of the histogram in Figure 4.3 illustrates the large number of small 

volume events typically observed in a sample of overtopping measurements. 

Given that very small events are difficult to quantify and are of significantly less 

interest than more extreme events, the approach taken by Besley et al. (1999b) 

would appear to be justified. The methodology of choosing the Weibull shape 

parameter (b) based upon V/V > 0 has therefore been adopted in this 

research. 



4.3 Extreme Value Distribution 

4.3.1 Extreme Value Distribution Theory 

The maximum individual overtopping volume (V) is conceptually a very 

simple parameter to define. It simply represents the largest individual 

overtopping measurement taken over a chosen time period (or number of 

waves) for a particular sea. This may not, however, always be the most 

appropriate definition. Empirical prediction equations (2.4) do not, and 

cannot, produce a set of individual overtopping volumes, but instead take a 

probabilistic approach. The most probable value of V. may be determined 

from distribution produced by the prediction formula. 

The use of a single measurement to define V. for a particular sea state clearly 

introduces the possibility of significant sampling error. Indeed, the reduction of 

this sampling error is a major motivation for the research presented in this 

thesis. This sampling error potentially may be reduced by defining V.  

probabilistically, using the approach taken with the empirical prediction 

formulae. In this case, the distribution is fitted to the data collected from a 

particular test. This approach requires that there is sufficient confidence in the 

fit of the distribution to the data. 

The use of a probabilistic method will typically reduce the variance of V. when 

compared to the raw measurements, with the mean of V. ideally unchanged. 

The desirability of this trait is debatable. It could be argued that the choice of 

technique is dependent on the number of tests to be conducted. If data is 

available from a large number of repeat tests the use of the raw V. values may 

be more appropriate as the sampling errors will be negated. Financial and time 

pressures, however, mean that numerous tests for the quantification of V. are 

rarely feasible. If it is believed that the variability of the probability distribution 

parameters is less than that of the probabilistic approach may offer greater 

confidence. 
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Probabilistic methods base the prediction of V. on the number of overtopping 

waves (N0). The EA-Manual (Besley, 1999) and the European Overtopping 

Manual (Pullen et al., 2007) describe the probability of an individual volume as 

the inverse of N0. Applying this to the widely used Weibull distribution gives 

the relationship, 

	

1 	/ vm—c 
b  

	

No 	
xp(— 	

a ) 

• 	 (39) 

Rearranging for V: 

Vmax = a (In(N0 )) 11b. 	 (40) 

This definition may not be the most appropriate for the prediction of the 

extreme value (V) and is not widely used outside of the coastal engineering 

field. A more conventional statistical definition as described by Coles (2001) 8  is 

outlined below. V1,...,VN0W are independent, unsorted variables. 

P(Vmax!! ~ v)P(Vl ~ V,...,VN 0w :5V) 

= P(V1  :5 v) x, ... ,x P(VNOW  :5 v) = (F(V))%'0w 	(41) 

The function F(v) is the non-exceedance probability (Cumulative Distribution 

Function (CDF)) of the overtopping volume. Rather than estimate V. directly 

from this function, the maximum values are predicted using the extreme value 

distribution derived above. Rewriting to state this distribution explicitly: 

F,,(v) = G(v) = (F(v))N0 	 (42) 

where 

Fvmax (v) = P(Vm  :5  i,) 	 (43) 

The probability density function (g(v)) is the differential of the CDF (G(v)): 

8 Coles (2001) describes this technique in general terms, not as a tool for this specific 
application. 



g(v) = G'(v) 
	

(44) 

It is straightforward to calculate the expected (i.e. mean) value of V. using the 

following relationship: 

fC OE(V,) 
 = 	

v g(v)dv. 	 (45) 
0 

The variance of V. a,, and by implication the standard deviation (a) may also be 

determined: 

co  Var(V,) = cr2  = f tv - E(l)} 2  g(v)dv 	 (46) 

Determining the value of V. using this method potentially allows for a more 

complete understanding of errors associated with the extreme values. Rather 

than simply returning a single value of V. a measure of the uncertainty 

associated with the prediction may be incorporated into the result 

4.3.2 Extreme Value Distribution vs. EA-Manual/EurOtop 

The difference between these Vn=  estimation methods may be demonstrated 

for different values of N0. Predicted V. values were calculated using a shape 

parameter of 0.75, as given by the EurOtop manual. A nominal value of 1.0 was 

used for the scale parameter. Values of 5, 10, 50, 100 were chosen for N0. This 

relates to overtopping rates of 0.5% to 10% for a typical 1000 wave test In real 

terms, this range covers low to fairly extreme rates of overtopping. Results are 

given in Table 4.1. 



Now 	Vmax,a 1m3/mI 	Vmb 1m3/mI 	Vma,b/ Vmaza 	G(Vma b) 

EA-Manual, 	Extreme Value 	 [m3/m] 

EurOtop 	Distribution 

5 1.88 3.18 1.69 2.31 

10 3.05 4.35 1.43 2.53 

50 6.16 7.55 1.23 2.93 

100 7.66 9.10 1.19 3.07 

Table 4.1 Predicted V values and standard deviation based upon Weibull distribution 
with a shape parameter (b) of 0.75 and a nominal scale parameter (a) value of 1.0. 

Examination of the predicted V. results shows significant variation between 

the two methods, particularly for low values of N0. In the case of N0 = 5, the 

extreme value distribution gives an expected value of V. that is almost a factor 

of 1.7 larger than the current recommended formulae. The more extreme tests 

show smaller, but still notable, increases of the order of -1.2 to —1.4. The 

standard deviations obtained from the extreme value distribution are also of 

interest. The Now  = 5 example shows a standard deviation that is greater than 

70% of V suggesting a high level of uncertainty when working with these 

small datasets. It is interesting to note that the value of the standard deviation 

increases only marginally with N0. This agrees with physical model data 

published by Pearson et al. (2001) showing little or no change in standard 

deviation with increasing test-length/dataset-size. 

The example in Table 4.1 relates to a single Weibull shape parameter as given 

by the EurOtop manual. While this is convenient to analyse, distributions fitted 

to test results show significant scatter in terms of the shape parameter (Napp, 

2004). The EA-Manual also includes a range of values in its empirical prediction 

formulae (2.4.1). Figure 4.4 to Figure 4.7 illustrate predicted V. values for the 

two definitions over a range of shape parameters. A nominal value of 1.0 is used 

for the scale parameter. 
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Figure 4.4 EA-Manual/EurOtop and Extreme Value Distribution V,, predictions for 
varying Weibull shape parameters. N w  = 5. 
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Figure 4.5 EA-Manual/EurOtop and Extreme Value Distribution V, predictions for 
varying Weibull shape parameters. N = 10. 
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Figure 4.6 EA-Manual/EurOtop and Extreme Value Distribution V max  predictions for 

varying Weibull shape parameters. N w  = 50. 
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Figure 4.7 EA-Manual/EurOtop and Extreme Value Distribution V 	predictions for 

varying Weibull shape parameters. N. = 100. 

The increase in V. as predicted by the extreme value distribution is most 

evident in the cases where the datasets are small. In all cases the gap between 

the methods narrows as the value of the shape parameter increases. 
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Figure 4.8 Ratio between V,,,.a ,, as predicted by the extreme value distribution to EA- 
Manual/EurOtop. 

The relationship between the V. methods is illustrated in Figure 4.8. In the 

case of N0 = 5 the increase in V. is approximately 2.0 for low values of the 

shape parameter (b z 0.6). In the range of the prediction formulae the increase 

is between —15% to -- 100%. It is interesting to re-examine the results obtained 

by Napp (2004). It was noted that V. was under predicted by a factor of 

approximately 1.25, even after attempts were made to improve the estimation 

of the scale and shape parameters. It is expected that this disagreement may be 

reduced, at least in part, if the extreme value distribution is used to estimate the 

value V. The tests carried out by Napp had shape parameters that generally 

agreed, on average, with the EA-Manual impulsive guidance. These overtopping 

tests resulted in the order of —100 events per test. The values illustrated in 

Figure 4.8 suggest that the results obtained by Napp are under predicted by a 

factor of 1.5 to 1.2, accounting for the majority of the error. On this basis it 

would appear that Equation (45) will provide a more accurate estimate of the 

average value Of Vm as estimated from the Weibull distribution. 

4.3.3 V - Estimation from Extreme Value Distribution 

A single overtopping test will give a single sample for V. All but one of the 

measurements are disregarded. It may, however, be useful to include these 



measurements in the quantification of V. through use of a fitted distribution. 

Current practice (e.g. EA-Manual / EurOtop) is to use a Weibull distribution for 

individual volumes and analysis of the tests conducted in this research would 

appear to support this method (4.1). Weibull distributions were fitted to 

measurements from 52 tests corresponding to test programmes 2Y and 4Y as 

outlined in §3.6.2. The overtopping ratios of these tests (N0/N) cover a range 

of approximately 2%-20%. The expected maximum overtopping volume 

(E(V)) was calculated for each test distribution using both the extreme value 

distribution (Equation (45)) and the method of the EA-Manual/EurOtop 

(Equation (40)). 
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Figure 4.9 Measured V compared to probabilistic V, obtained from fitted Weibull 
distributions. 



0.5 

0.4 

E0.3 
* a E > 

w 
0.2 

0.1 

0 

Figure 4.9 illustrates the fitted maximum volumes (E(V m )) to the measured 

volumes obtained from the individual tests. The fitted and measured volumes 

show fairly good correlation for both the EV and EA-Manual/EurOtop 

distributions. Visual examination of the results suggests that there is a tendency 

for the EA-Manual/EurOtop equation to underestimate the value of V, a 

relationship not obviously apparent in the EV estimates. 
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Figure 4.10 Measured V, compared to probabilistic V, obtained from fitted Weibull 
distributions - Vmax  < 0.5 litres. 

The cluster of smaller overtopping measurements (V 	< 0.5 litres in the 

model) observed in Figure 4.9 is illustrated in Figure 4.10. The underestimation 

of V. by the EA-Manual/EurOtop equation is clear, with the EV equation 

apparently showing the closest agreement. 

While the E(V) values obtained from the EV distribution appear, on average, 

to show good agreement with the measured volume, there is clearly a high level 

of scatter present. An advantage of the EV distribution is that it allows for an 

estimation of the uncertainty through use of the theoretical variance and 

standard deviation (4.3). 
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Figure 4.11 Measured V max  compared to probabilistic Vma. (Extreme Value Distribution) 
obtained from fitted Weibull distributions. Error bars represent 1 standard deviation, as 
defined by the Extreme Value Distribution. 
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Figure 4.12 Plot as Figure 4.11, but showing V.< 0.5 litres enlarged. 
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Figure 4.11 and Figure 4.12 illustrate the E(V) values from the fitted EV 

distributions, plotted here with error bars corresponding to ± 1 standard 

deviation as calculated from Equation (46). In the vast majority of cases the 

measured value of V. lies within this range. 

It is difficult to quantify the effectiveness of the extreme value distribution 

based upon a single test. In order to examine the method's effectiveness the 

average agreement across the dataset must be assessed. The ratio of the fitted to 

measured V. values will be denoted as a in the following discussion: 

E(Vmax ) 
(47) 

max 

where 	a> 1: 	overestimation by fitted distribution 

a < 1: underestimation by fitted distribution 

Test Programme EA-Manual/EurOtop Extreme Value Distribution 

Mean (a) 	a(a) / a Mean (a) a(a) / a 

2Y 0.846 	0.240 1.063 0.240 

4Y 0.847 	0.262 1.024 0.260 

2Y & 4Y 0.847 	0.249 1.044 0.248 

Table 4.2 Fitted V compared to measured V 

The average agreement between the EA-Manual/EurOtop equation and the EV 

distribution is outlined in Table 4.2. There is no significant variation between 

the two datasets (5op = 0.02 & 0.04). Taking the results from the two datasets 

the EurOtop method under-predicts the measured V. by an average of -25%. 

The EV distribution shows a significantly improved estimation, with V. over-

predicted by only 4-5%. The standard deviation of a appears to suggest the 

uncertainty associated with the two methods is virtually identical, with a values 

25% from the mean not uncommon. 

On the basis of the results outlined above it would appear that the extreme 

value distribution offers the best estimation of V. for a Weibull distribution 

fitted to a individual test. 
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4.3.4 Estimated Vm  Variation 

The value of 	as estimated from a parametric distribution, is usually given 

as a single value with no reference to the associated uncertainty. This is the case 

with the formulae given in the EA and EurOtop manuals (2.4.1). Using the 

extreme value distribution, as detailed above (4.3.1), allows for the calculation 

of the expected standard deviation of Vm. (Equation (46)). The standard 

deviation, when compared to the expected (mean) value of Vax, may be used as 

a measure of the relative error in Vm. The ratio of the standard deviation to the 

expected value is defined as the "coefficient of variation" (Cv): 
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Figure 4.13 Expected Coefficient of Variation (Cv) dependency on N ow  for selected Weibull 
shape parameters (b) 

The relationship between the expected coefficient of variation and the number 

of overtopping waves (N0) is illustrated in Figure 4.13. Plots are given for 

Weibull shape (b) parameters corresponding to a selection of the 

recommendations given by the EA-Manual & EurOtop (see Table 2.3). The value 
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of Cv is not given for N0 < 5, where the EA-Manual deems the use of the Weibull 

distribution to be invalid. 

It is observed in Figure 4.13 that Cv increases inversely with shape parameter 

(b), with the three distributions showing broadly similar behaviour. The 

variation increases as the value of N0 reduces. This characteristic is significant 

to the assessment of low admissible overtopping scenarios. Confidence in the 

measured value of V will be comparatively low for low N0 tests. 
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Figure 4.14 Extreme Value Distribution V, 	predictions for varying Weibull shape 

parameters (nominal scale parameter: a = 1). 

Further insight is gained by examining the expected value of V. for selected 

values of N0. Figure 4.14 illustrates the expected values of V. described in 

detail in §4.3.2. It is noted that the dependence on the shape parameter is 

reduced for low values of N0. The variation in V. over the range of shape 

parameters given by the EA-Manual and EurOtop is less than 40% for the 5 

event case, whereas the variation is approximately 75% for the N0 = 100 

scenario. It is suggested that for low N0 predictions that it is more important to 

consider the inherent variation in V. rather than the uncertainty in the shape 

parameter. This observation would tend to support, at least in low admissible 

overtopping situations, the approach of EurOtop in selecting a single shape 

parameter, rather than the multiple values given by the EA-Manual. 
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4.4 Individual Volume Exceedance Probability 

The expected value of V. is effectively a function of time (or more correctly 

N0). This is clearly useful when attempting to quantify the maximum value 

over a certain length of time, such as for a particular storm or wave tank test. It 

may be more useful, however, to be able to apply a measure of the largest 

overtopping volumes independently of the measurement duration. This may be 

achieved by examining the individual volume exceeded by a certain proportion 

of measured events. The value V, refers to volume exceeded by x % of the 

overtopping waves in a sequence. In a large dataset this may be inferred directly 

from the data through analysis of the, ranked data. In overtopping work, 

however, the datasets are unlikely to be large enough (in the hundreds) for the 

accurate quantification of the lowest probability events. It is more normal, 

therefore, to calculate exceedance probabilities based upon some parametric 

probability distribution. In the case of the commonly used Weibull distribution 

the value of V, is calculated thus, 

= a (- ln(1 - X%))1/b, 	 (49) 

where a and b represent the scale and shape parameters respectively. 

It should be noted that the convention used here is to describe the exceedance 

probability in terms of overtopping events (N0) rather than the number of 

waves (Nw) measured at the structure. This choice of definition may be a point 

of contention with some of those working in the coastal and marine engineering 

field, although it is the convention used in the majority of publications. In many 

cases the value of N w  is nominal, introducing an element of uncertainty into the 

calculation. It also confusing, in terms of statistical convention, to base the 

exceedance values on the total number of waves. The non-overtopping waves, 

having a null value, are not incorporated into the dataset represented by the 

fitted distribution. 
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4.5 Repeat Test Uncertainty 

4.5.1 Methodology and Outline Results 

The standard distribution as predicted by the extreme value distribution 

(4.3.2) gives a measure of the uncertainty expected in the value of Vm 

obtained from a set of N. measurements. If the distribution (g(v)) is known the 

variance (and the standard deviation) may be calculated using Equation (46). In 

the analysis above (4.3.3) distributions of the Weibull family were fitted to 

results obtained from each individual test. These distributions may be based 

upon a relatively small number of measurements. In the case of 1% of the waves 

overtopping, only 10 measurements will be produced from a typical 1000 wave 

test. Repeat tests carried out with the same input spectrum would be expected 

to produce identical overtopping volume distributions if the test length is 

sufficiently long. 

The two "baseline" test series 2AY and 4AY are examined here in order to 

establish a reliable estimation of V. for their respective input spectra. Both 

these test series consist of 10 unique time-series realisations produced with 

different seed numbers used to generate the pseudo-random distribution of 

phase angles. The datasets contain 219 and 448 overtopping events in total for 

the 2AY and 4AY test series respectively. Fitting a Weibull distribution to this 

complete dataset rather than the individual tests will give a more accurate 

description of the individual volume distribution f(v) for the two sea states. 

Calculating the average value of N0 for each test allows the calculation of the 

extreme value distribution (g(v)) and the expected value of V. (E(Vmax)). It 15 

also possible, given that the total number of overtopping events is known, to 

calculate the expected value of V. for the entire dataset. These test series 

baseline values will be notated as Vma,çbase here and are described in Table 4.3. 
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2AY 	 4AY 

#Tests 10 10 

All Data 

Now  219 448 

V. [1] 0.976 0.405 

E(V) [1] 0.960 0.5323 

Individual Test Run 

Mean N0 9  21.9 44.8 

Mean V. [1] 0.344 0.229 

E(Vmax) [1] {Vmax.base} 0.432 0.268 

Table 4.3 Measured and expected V,, values for MY and 4AY datasets 

The value of E(V) for a single "average test 1' (1000 waves) shows good 

agreement with the mean of the measured V. values. The agreement is within 

—25% and —20% for the 2AY and 4AY datasets respectively. 

4.5.2 Observed Variation in Welbull Parameters 

The uncertainty of probabilistically obtained overtopping measures (E(Vmax) 

and exceedance levels) will be dependent on variations in the Weibull 

distribution parameters. The Weibull scale and shape parameters obtained from 

distributions fitted to individual tests from the s, = 0.02 & 0.04 test series are 

presented here. These results are compared to published values given by the 

EA-Manual and EurOtop (2.4.1 and Table 2.3). 

The average value of Now is expressed as a non-integer value here for extreme value 
distribution calculation purposes. 
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Figure 4.15 Weibull scale parameter(a) normalised by V for s,,, = 0.02 & 0.04 test series 

The Weibull scale parameter (a) values obtained from the individual test 

distributions, normalised against that test's V measurement, are illustrated in 

Figure 4.15. A large degree of scatter is apparent for both test series, although 

this is more prevalent in the Sop = 0.02 series. Many scale parameter values 

disagree significantly with the published scale parameters (EA-Manual and 

EurOtop). 

The mean values of the scale parameter are also illustrated in Figure 4.15. The 

= 0.02 dataset produced a mean normalised scale parameter of 0.91. Under 

pulsating conditions the EA-Manual predicts a normalised a value of 0.74 where 

Sop = 0.02. If impulsive events dominate, a value of 0.92 is recommended. The 

figure obtained is clearly closer to the impulsive value, despite pulsating events 

being the observed dominant response (5.3.3). 

The Sop = 0.04 dataset produced a mean normalised scale parameter of 0.82, 

with the EA-Manual recommended a value of 0.90 for pulsating conditions. The 
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EurOtop recommendation is a fixed value of 0.84, as originally given by Franco 

et al. (1994). 
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Figure 4.16 Weibull shape parameter (b) for s, = 0.02 & 0.04 test series 

The Weibull shape parameter (b) values obtained from the individual test 

distributions are illustrated in Figure 4.16. The values are highly scattered, 

particularly the Sop = 0.02 measurements. The mean of the Sop = 0.02 tests was 

0.91. This is significantly higher than the expected value (0.66) given by the EA-

Manual for pulsating conditions. The impulsive shape parameter, given by the 

EA-Manual, is 0.85 with EurOtop recommending a value of 0.75. The sop = 0.04 

dataset produces a mean shape parameter of 0.78. This shows close agreement 

with both the EurOtop value (0.75) and the EA-Manual recommendation for 

pulsating conditions (0.82). 

The scale and shape parameters from the s = 0.02 tests show closer agreement 

with the EA-Manual's impulsive regime guidance than the pulsating overtopping 

values. This is at odds with the observed behaviour, which suggested pulsating 

events were dominant. 



The scale and shape parameters from the Sop = 0.04 tests were close to those 

given by the EA-Manual for pulsating conditions (as observed during testing). 

The parameters also showed close agreement with the values given by the 

EurOtop manual. 

It is not possible, nor was it intended, to validate the Weibull parameters of the 

published guidance (EA-Manual and EurOtop). This could only be achieved 

through a test matrix examining a wide range of sea states and structure 

configurations, whereas this testing was intended to investigate the variability 

associated with repeat tests. It is of interest to note, however, that the 

parameter means are largely within the range of values found in the published 

guidance. 

The difficulty in characterising a particular test through its Weibull distribution 

is apparent through the level of variation in both the scale and shape 

parameters. Certainly, it would not be possible to make an informed comparison 

of the two test series illustrated here based only upon single test runs. This level 

of uncertainty present in the distributions may support and justify the less 

complex approach of EurOtop (compared to the EA-Manual), where single 

values are given for the scale and shape parameters. 



4.5.3 Observed Variation in Vm 
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Figure 4.17 Measured values of Vr for s, = 0.02 and s, = 0.04 test series. Values 

normalised against the test series mean. The dashed lines represent a deviation of x/+ 2 

from the mean. Note V-axis log scale. 

The individual V. values measured from the Sop = 0.02 and 0.04 test series are 

illustrated in Figure 4.17 with the values normalised against the mean (for that 

particular test series). It is clear that there is inherent scatter in the values 

obtained for these repeat tests, with both the Sop = 0.02 and 0.04 test series 

showing broadly similar behaviour. The majority of the measurements fall 

within a factor of x/+ 2.0 from the mean of their test series. This variation 

appears to be slightly higher than the expected coefficient of variation (4.3.4) 

would suggest. 
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Figure 4.18 Expected values of V obtained from individually fitted Weibull distributions 

for s.P  = 0.02 and sop  = 0.04 series. Values normalised against the test series mean. The 

dashed lines represent a deviation of x/+ 2 from the mean. 

The expected values of V. as calculated from individually fitted Weibull 

distributions are illustrated in Figure 4.18. The scatter is broadly similar to that 

observed for the directly measured Vm values (Figure 4.17). This is at odds 

with the expected observation if the underlying distribution and N0-per-test 

were consistent (in which case there would be no observed scatter). 
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normalised against the test series mean. The dashed lines represent a deviation of x/+ 2 

from the mean. 

The variation in measured N0 falls approximately within the range of x/-- 2 

from the mean, as illustrated in Figure 4.19. The large magnitude of these 

variations, only marginally smaller than observed for the measured V,1 values, 

may partially explain the behaviour in the expected Vm predictions. The 

variation in the Weibull shape and scale parameters is discussed below (4.5.2). 

The high level of scatter in N0 qualitatively agrees with the observations of 

Napp (2004), although Napp's measurements were not based on repeat tests 

with the same spectrum. 
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Figure 4.20 EA-Manual/EurOtop method predicted V maK  values for a range of baseline N0. 

The dashed lines represent calculations for values of x/+ a factor of 2 in N. from the 
baseline N,. Weibull shape parameters are a =1, b = 0.75. 
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Figure 4.21 Extreme Value method predicted 	values for a range of baseline N. The 

dashed lines represent calculations for values of x/+ a factor of 2 in N. from the baseline 
N. Weibull shape parameters are a =1, b = 0.75. 

The variation in N ow  is significant as it used as an input in both the prediction 

formulae of the EA-Manual and EurOtop (2.4.1) and the Extreme Value method 
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(4.3.1). Figure 4.20 illustrates the predicted Vm over a range of N ow  values for 

fixed values of the Weibull scale and shape parameters (a =1, b =0.75). V,a. is 

calculated using the method of the EA-Manual and EurOtop (2.4.1). The 

influence of x/_  2 factor variation in the "baseline" value of N ow  is also indicated. 

This process is repeated using the Extreme Value formula (4.3.1) as illustrated 

in Figure 4.21. 

The influence of the uncertainty in Now is similar for both the EurOtop and 

Extreme Value predicted Vm. The uncertainty in the EurOtop curve relates to 

approximately V. ± 30%. The variation reduces slightly for the Extreme Value 

prediction to approximately ± 25%. The relative uncertainty is greatest at the 

lower values of N0: ± —85% for EurOtop, ± —40% for Extreme Value Theory. 

This level of uncertainty is significant, but is lower than the relative uncertainty 

in Now  (x/— factor 2 in this example). 
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Figure 4.22 Measured and fitted Weibull derived V, values compared to V. s = 

0.02. The dashed lines represent a deviation of ±1 a from the baseline value. 
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Figure 4.23 Measured and fitted Weibull derived Vmax values compared to 	s = 
0.04. The dashed lines represent a deviation of ±1 a from the baseline value. 

The measured (Vm) and fitted Weibull (E(Vm)) extreme values for each 

individual test are plotted in Figure 4.22 (sop = 0.02) and Figure 4.23 (Sop = 

0.04). The value Of Vm is normalised against representing the expected 

"baseline" value of V. for the complete datasets (4.5.1). The standard 

deviation (a), as calculated from the Extreme Value Distribution, is also 

illustrated. It is observed that the majority of measurements Wm  and E(Vm)) 

fall within the bounds of ± 1 a. It is interesting to note that the mean of E(V) 

falls below (4.5.1) in both test series. This phenomena is discussed in 

detail below (4.5.2). 

The perceived benefit of working with probabilistically derived value of V. is 

that the extreme value is inferred from many measurements (in the form of the 

fitted distribution) rather than a single value (the measured V). In doing so it 

is hoped that the inherent variability in V. will be reduced. It is clear from 

Figure 4.22 and Figure 4.23, however, that the values of V. and EW)  are 

closely correlated. 
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Figure 4.24 Relationship between measured V and fitted Weibull derived V. (E(V,)) 
for s = 0.02 & 0.04 test series. 

The relationship between V. and E(Vm) is illustrated clearly in Figure 4.24. 

Both test series present a high degree of correlation between the measured and 

expected values of Vm. The values are close to equivalent (1:1) in each case 

(1:1.25 and 1:0.72 respectively). It is clear that the individual values Vmax and 

EW) are closely coupled. 

In the fitting of distributions to small samples the largest value (V) will have a 

proportionally larger influence in the fitting process, producing the high 

interdependence between V. and E(V) observed here. It should be recalled 

that the procedure used by the EA-Manual (Besley et al., 1999b) is followed 

here, by which only values exceeding V are used to assess the goodness-of-fit 

(4.2.2). This typically results in a distribution determined by less than 50% of 

the collected sample. In the case of the 5op = 0.02 tests this relates to 

approximately 10 overtopping events. On this basis there would appear to be 

little advantage in evaluating the extreme response (Vm) based upon 



individually fitted Weibull distributions. The use of fitted distributions also 

introduces the disadvantage that the estimation Of Vm is potentially influenced 

by measurements from a different response regime to the maximum value 

( 2.2.3). 

4.5.4 Observed Variation in Exceedance Probability 

The value of a given exceedance probability is dependent on the Weibull 

parameters (scale and shape). The observed uncertainty in these parameters is 

discussed in §4.5.2 and §4.5.3. 
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Figure 4.25 Weibull cumulative density functions for individual s = 0.02 test series. 
Selected exceedance probabilities are indicated. 

The Cumulative Density Functions (CDF) obtained from the Sop = 0.02 tests are 

illustrated in Figure 4.25. The EurOtop distribution is also plotted for 

comparison. A selection of exceedance levels (50%, 10%, 5%, 1%) are also 

indicated. The scattered scale and shape parameters observed in §4.5.2 produce 

a highly variable set of distributions. Examination of the exceedance levels 

suggests a high level of scatter in the associated volumes. 
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Figure 4.26 Normalised overtopping volumes for selected exceedance probabilities. 

Individual tests - 	 = 0.02. 

The overtopping volumes associated with the exceedance levels illustrated in 

Figure 4.25 are reproduced in Figure 4.26. The volumes have been normalised 

against the mean volume (for the given exceedance level) for the purposes of 

clarity. Variations from the mean in excess of a factor of two are apparent for all 

illustrated exceedance levels. There is some indication that the scatter increases 

for lower exceedance values, with the exception of the 50% (median) quantile. 
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Figure 4.27 Weibull cumulative density functions for individual s 0 , = 0.04 test series. 

Selected exceedance probabilities are indicated. 

The Weibull CDF distributions for the s op = 0.04 dataset are illustrated in Figure 

4.27. The distributions are highly variable, but show greater coherence than the 

Sop = 0.02 tests (Figure 4.25). In particular the less variable nature of the shape 

parameter observed in §4.5.2 results in a fairly consistent gradient in the CDF 

plots. A high level of scatter is still apparent, however, for the selected 

exceedance levels. 
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Figure 4.28 Normalised overtopping volumes for selected exceedance probabilities. 

Individual tests - s = 0.04. 

While the distributions for the Sop= 0.04 tests appear less diverse than the Sop = 

0.02 plots, the volume exceedance values remain highly scattered, as illustrated 

in Figure 4.28. The volumes vary by approximately a factor of two from the 

mean, although the variation is slightly smaller than observed for the 5op = 0.02 

tests. The scatter increases as the exceedance probability reduces with the 

exception of the Vso% values. 

The quantile value (V, c%) scatter present in both test series is broadly similar in 

magnitude to the variation observed in the Vm measurements (4.5.3). There is 

some evidence that the lowest probability events are associated with the 

greatest degree of uncertainty in both datasets. The exception to this 

observation in both cases is the V5o% values, representing the median of the 

distribution. This is counterintuitive, as it would usually be expected that the 

distribution is better defined for these relatively high probability events. It 

should be recalled, however, that Weibull fitting methodology applied here 

selects the shape parameter based upon the volumes exceeding the mean 

(p4.2.2). In the case of the long-tailed, positively-skewed distributions present 

in overtopping studies, the median value (Vso%) will fall below the mean (V). 

The distribution may not, therefore, be considered valid for this probability 
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region (V < V). The optimisation of distributions for low probability events is 

not always explicitly explained in the published guidance (e.g. EA-Manual and 

EurOtop). Care must therefore be exercised if these parameters are to be used 

for the quantification of values below V. 

4.6 Summary 

The baseline (Design Sea) datasets from the experimental programme (3) 

were examined to quantify the uncertainty in individual overtopping 

parameters. It is noted that significant uncertainty is present in most individual 

overtopping measures (e.g. Vmax, Vxo,,, N0 etc.). Typically parameters varied 

from their relevant mean value by a factor of two. The fitted Weibull 

distributions also showed significant scatter (in terms of their scale and shape 

parameters) for the individual 1000 wave tests. The results obtained here are 

used as a benchmark for the application of the Importance Sampling technique, 

as described in §5 and §6. 

In addition to examining overtopping uncertainties the estimation of V. from 

a fitted probability distribution was also explored. In particular, the use of an 

extreme value method was examined. This method produced a slightly higher 

estimate, under most circumstances, of the maximum individual overtopping 

volume (V) relative to the estimation procedure used in the currently used 

published guidance. The use of an extreme value method also allows for an 

estimate of the uncertainty associated with V. through the calculation of the 

standard deviation. 

The significance of these findings is discussed further in §7. 
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Sle Improved Methods for Wave Modelling 

5.1 Introduction 

Physical model tests using random waves are inefficient when characterising 

the extreme response. In this chapter a technique known as "Importance 

Sampling" is described. This technique aims to reduce the length of random 

wave tests while maintaining the advantages of random wave testing, namely 

the absence of the need for a priori knowledge of a functional relationship (or 

relationships) describing the nature and magnitude of the response. 

The conceptual development of the "Importance Sampling" technique is 

explained. The elements required for applying the technique in practice are 

described along with the techniques required to analyse the output data. 

5.2 Importance Sampling 

5.2.1 Importance Sampling Basis and Philosophy 

The sampling errors inherent with the quantification of the maximum individual 

overtopping volume are difficult to reduce while maintaining the advantages of 

random wave modelling. Random wave testing has several strengths when 

examining complex wave interactions in shallow water. Perhaps most 

importantly, few (if any) assumptions need be made regarding the relationship 

between individual wave characteristics and the measured discrete response. 

Providing that a significantly long test is conducted, the response distribution 

should be representative of that particular sea state, with the important proviso 

that the extremes of the distribution are likely to be poorly defined. In most 

practical cases the modeller need not be concerned with the actual processes 
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that have produced the response. The lack of an accurate description of the 

relationship between the response and the wave parameters is an obstacle to 

reducing the sampling error associated with the maximum response. This is one 

of the major barriers to the application of deterministic wave groups to vertical 

seawall overtopping (2.5). 

The lack of a requirement to understand the exact relationship between 

individual waves and the response reveals another strength of random wave 

modelling. Coastal engineering models very often involve transforming offshore 

wave climates to shallower inshore regions. In cases where a representative 

model has been constructed the transformations of individual waves and groups 

should be accurately reproduced, resulting in a representative sea state at the 

structure. 

These random wave model strengths also represent the barriers to reducing the 

sampling error. Deterministic modelling attempts to improve the sampling 

efficiency by creating a particular wave at some point in time and space. This is 

clearly the antithesis of a random wave model. The Importance Sampling 

techniques described here attempt to maintain the advantages of random wave 

modelling as much as is practically possible and thereby sidestep the obstacles 

present in a purely deterministic approach. 

Two variations on the Importance Sampling method are outlined below (5.2.2 

and §5.2.3). The basic philosophy for both is the same. It is first assumed that a 

more energetic sea will produce more large events at the structure. The 

distribution of responses will be shifted both in terms of the mean of the 

responses and the extreme region. This assumption is likely to be valid for the 

vast majority of marine engineering applications, although what constitutes a 

"more extreme" sea is debatable and is covered in this research. 

If the assumption stated above holds true, model tests carried out using a sea 

more extreme than the design sea will produce more instances of the maximum 

response. This, of course, is a fairly obvious statement. The challenge is to 

113 



analyse meaningfully these "extreme sea" test results. It is the process of testing 

with an extreme sea and the associated statistical analysis that forms the basis 

of the Importance Sampling method. 

The potential strength of using Importance Sampling is that it relies almost 

entirely on measurements taken at, or near, the structure. It maintains the 

strength of conventional random modelling in that wave transformations due to 

the sea bathymetry need not be modelled in detail. The technique is based upon 

the measurement of the waves as they naturally occur, with no need to generate 

deterministic waves or groups. 

In this research two distinct Importance Sampling methods were investigated. 

The basic theory and differences between these methods is explained and 

examined below. The descriptions below are intended to illustrate the thought 

processes involved in formulating the foundations of the Importance Sampling 

method. 

5.2.2 Importance Sampling - Wave Identification 

Importance Sampling, is a variance reduction technique most commonly used in 

the field of structural failure analysis (see e.g., Melchers, 1999). It is a technique 

applied to the modelling of systems where the probability of failure is low. This 

is clearly a situation analogous to the low frequency occurrence of large 

overtopping events. 
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Figure 5.1 Hypothetical wave height probability distributions for Design and Extreme Seas 
showing the maximum wave height (from an original sketch by Prof. Julian Wolfram 

(Wolfram et ol., 2004)). 

Importance Sampling examines the largest events in one distribution (the 

"Design Sea") through the use of a second, more extreme distribution (the 

"Extreme Sea"). The use of this technique is perhaps best explained by simple, 

one-dimensional, example. Figure 5.1 illustrates two wave height distributions 

at tank scale representing the Design and Extreme Seas. In this example the 

magnitude of the hypothetical response is assumed to be directly related to the 

wave height. The design wave associated with the largest response is therefore 

simply the wave with the largest wave height (Hm). This wave, by definition, is 

at the extreme of the distribution with only a single occurrence in any particular 

test. 

The use of the Extreme Sea moves the point of interest away from the extremity 

of the wave height distribution. The expected frequency (fJ of occurrence of the 

design wave height in the Extreme Sea is described by the ratio of the 

probability densities: 

fDestgn - PDesign (H) 

fExtreme - "Extreme (H) 	
(50) 
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This "wave identification" technique is an elegant method for reducing the 

sampling error associated with low frequency events. A further advantage is 

that waves, larger than the maximum design wave height will be included in the 

test run. This allows for the extreme region of the response to be better 

understood. In the wave overtopping application, the responses associated with 

these larger-than-design waves may indicate a change in overtopping regime 

(2.2.3). Given the inherent uncertainty associated with defining the Design Sea 

state, the knowledge that a change in response behaviour is imminent may be 

valuable when producing conservative design/assessment guidance. 

The Importance Sampling technique also allows for a number of different 

Design Seas to be analysed using a single Extreme Sea distribution. Marine 

studies are often carried out on the basis of return periods. The distributions in 

Figure 5.1 may be considered as having return periods of, say, 100 years 

(Design Sea) and 10 000 years (Extreme Sea). The Importance Sampling 

technique in this example will return a value for the maximum response in the 

100 year Design Sea with improved confidence. It is possible though to replace 

this particular Design Sea with distributions representing different return 

periods as necessary (e.g. 50 years, 200 years etc.). The Design distribution will 

tend towards the Extreme distribution as the return period increases, with the 

sampling frequency reducing and the confidence intervals expanding. 

The example outlined above is based upon one parameter (wave height). In the 

case of wave overtopping it is not likely that any single wave parameter is 

directly related to the individual overtopping volume. Precious little research 

has been conducted associating overtopping volume with the contemporaneous 

characteristics of the elevation time series. Some indication,, however, of the 

joint relationship of the overtopping behaviour may be found in the empirical 

prediction formulae for the individual volume distribution (2.4). The method 

described by Besley (1999) indicates a dependence on both significant wave 

height and mean/peak period. This does not necessarily indicate that individual 

volumes will be related to the height and period of individual waves but it does 

116 



suggest that a simple one-dimensional application of the Importance Sampling 

method may be insufficient. 

Design Sea Parameters 
	

Extreme Sea Parameters 

Measure or set the Design Sea 
	

Define the Extreme Sea (e.g. spectral 

parameters (e.g. H, T) 
	

inflation) 

Define Design Waves 
	

Extreme Sea Testing 

Determine the value of the 
	

Physical or numerical model testing 
parameters describing the individual 

Design Waves 

Identify Design Waves 

The expected number of Design 
Waves observed in the Extreme Sea is 

given by the PDF ratio 

Quantify Response 

Measure the response associated 
with the Design Waves 

Figure 5.2 Importance Sampling methodology - wave identification 

Figure 5.2 illustrates how the Importance Sampling method may be applied to a 

modelling situation where there is a clear understanding of the qualitative 

relationship between the relevant individual wave parameters and the 

response. Defining these relationships may be relatively straightforward in 

some applications. A possible application may be situations with a significant 

"air-gap problem". An example of this would be wave loading on the underside 

of a bridge or jetty. Few waves will make contact with the structure, giving the 

characteristic problem of a very small sample size. The magnitude of the load 

exerted on the structure will be closely related to the wave crest elevation 

(Alisop et al., 2006) in this example. 

The "wave identification" Importance Sampling example appears to be a 

powerful technique but the need to define the nature of the relationship 

between the wave parameters and the individual overtopping presents a 
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formidable challenge. It may also rather defeat the purpose of the applying the 

Importance Sampling technique to a particular problem at all. The technique 

becomes limited to situations where the response is well characterised, 

suggesting that the uncertainty associated with the measurements is already 

low. Given that this technique is ideally not limited only to vertical seawall 

overtopping applications a new approach is desirable. This requirement led to 

the formulation of the "wave exclusion" method outlined in the following 

section. 

5.2.3 Importance Sampling - Wave Exclusion 

The method outlined above involves identifying the design waves within an 

Extreme Sea. In cases where these parameters are difficult to define the 

practicality of this approach becomes severely limited. The "wave exclusion" 

method detailed here attempts to sidestep this limitation by removing 

irrelevant data, rather than attempting to identif' the design waves. 
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Figure 5.3 Hypothetical wave height probability distributions for Design and Extreme Seas 

showing the maximum wave height and excluded data. 

The philosophy behind the wave exclusion method remains broadly similar to 

the conventional Importance Sampling method (5.2.2). The extreme events in 

the Design Sea are examined using a second, more Extreme Sea. Taking the 

same one-dimensional example from above, the wave height distributions of 
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these seas are illustrated in Figure 5.3. The maximum wave height is marked on 

the axis as before. The key difference here is that this maximum wave height is 

no longer considered to be the design wave height. It is not assumed that the 

largest response is associated with Hm. Instead, the overly-extreme waves (H> 

Hmax) are excluded from the Extreme Sea dataset along with their associated 

responses. The result is a dataset containing waves representative of the Design 

Sea, but with the distribution shifted to give more of the largest waves. The 

responses will be similarly representative of the Design Sea, but will also be 

shifted to better describe the extreme region of their distribution. 

The wave exclusion method relies on some knowledge on the relationship 

between individual wave parameters and the associated response. In the 

example above it is assumed that increasing the wave height will produce more 

extreme responses. The relationship may, however, be relatively weak. It is not 

assumed that the response is strictly proportional to the wave height. Rather, 

the working principle is that an increase in average wave height will result in a 

shift in the distribution towards the extreme region. 
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Figure 5.4 Importance Sampling methodology - wave exclusion 

The flowchart in Figure 5.4 illustrates how the wave exclusion method may be 

applied to a modelling problem using univariate distributions. The Extreme Sea 

dataset is filtered such that no single parameter (as included in the univariate 

distributions) is outside the limits of theDesign Sea. These waves in the filtered 

dataset are considered to be representative of the Design Sea, with the 

distribution shifted to produce a greater number of extreme events. This 

method is illustrated by example in §6. 
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5.3 Design and Extreme Seas 

5.3.1 Spectral Inflation 

I,. 

- --Design 
- Extreme 
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Frequency 

Figure 5.5 Design and Extreme Sea JONSWAP spectra for nominal H andT with y = 3.3. 
Extreme Sea spectra correspond to spectral inflation values of 1.1, 1.2 and 1.3. 

The Importance Sampling technique requires testing be carried out with a sea 

more extreme than the conventionally used design sea (5.2). The scaling of the 

Design Sea to produce the Extreme Sea is carried out through manipulation of 

the spectral parameters. The most intuitive measure for moving between the 

Design and Extreme Sea conditions is through scaling of the surface elevation, 

the most obvious measure being the significant wave height (HmO). The surface 

elevation is measured in both space and time. In order to correctly move to the 

Extreme Sea distribution a spectral "inflation" method which accounts for wave 

period should be used. 

The technique employed here is to maintain the peak offshore steepness (s 0 ) 

between the Design and Extreme Seas. The scaling in therefore applied in both 

elevation and time (i.e. the wave period). The "shape" of the waves in terms of 

the individual wave steepnesses are thereby maintained (ignoring, at this stage, 

non linear effects). The use of offshore spectral measures is intended to avoid 

the need to account for the spectral transformations as the waves propagate 
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from deep to shallow water. A major objective of Importance Sampling 

technique is to avoid the requirement for detailed descriptions of these 

transformation processes (5.2.1). The "Spectral Inflation Factor" 1s is defined 

simply as the ratio of Design to Extreme Sea Hmo values: 

HmoExme - 

IS - LI 
"mO,Design 

The peak period (T a) of the spectrally inflated sea is back-calculated based upon 

maintained steepness: 

1 
2ir 

tv
o 2  

T— 9  
(52) 

The definition of the spectrum in terms Hmo and T (or f) is useful as most 

spectra UONSWAP, Pearson Moskowitz etc.) are parameterised in these terms 10 . 

JONSWAP spectra with inflation factors of 1.1, 1.2 and 1.3 are illustrated in 

Figure 5.5. 

The elevation-time histories produced for this research were based upon the 

JONSWAP spectrum with a peak amplification factor (y) of 3.3. In experimental 

applications these spectra were produced using Edinburgh Design's Wave 

software (3.2.1). This software allows the peak frequency (f r) to be directly 

input, while the target value of Hmo must be achieved through measurement and 

calibration based upon wave gauge measurements. In practice, determining the 

correct gain value was not onerous, requiring iteration using a small number of 

short (-250 wave) tests. Applying the spectral inflation process is therefore 

achievable with little difficulty in an experimental setting' 1. Spectra produced 

10 The original spectral equations are often defined by fetch distance (JONSWAP) and the wind 
speed defined at a given height above sea level (JONSWAP and PM). The "parameterised" 
versions of these spectral equations may be given in terms of H113 rather than Hmo (e.g. Goda, 
2000). This reflects common practice at the time of derivation. To maintain clarity, and because 
the difference between H13 and Hmo tends to be small, the significant wave height is defined 
exclusively in terms of Hmo in this instance. 
11 The application of the spectral inflation process was further simplified in this research by a 
useful quirk of the spectral formulae implementation in the Wave software. A particular "gain" 
value in the spectral function corresponds to a constant value of 	Thus once the calibration 

(51) 
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for synthesising seas for numerical modelling purposes are easily produced 

using the parameterised spectral equations. Where required in this research 

these spectra were produced using the equations given by Goda (2000). 

5.3.2 Non-Linearity and Wave Transformations 

In a situation where the sea is adequately described by linear theory, the move 

from the Design Sea to the Extreme Sea may be visualised as a simple scaling 

exercise in both space (wave elevation) and time (wave period). The shapes of 

the individual waves in terms of asymmetry and crest front steepness will, on 

average, be unchanged. In a linear sea application the distributions of the 

relevant parameters for Wave Identification (5.2.2) or Wave Exclusion (5.2.3) 

may be readily produced from the spectrum. The simplest method for achieving 

this is to fit distributions to measurements from synthesised elevation-time 

histories. While fairly crude, this is computationally inexpensive and readily 

implemented. Alternatively, more sophisticated parametric methods are 

available for producing distributions directly from the spectrum (e.g. joint-

distribution of wave height and period, see Goda (2000)). 

The use of the Importance Sampling method in linear seas has some attractive 

applications for deep-water modelling situations. An example may be the 

exploration of the "air-gap" problem whereby only infrequently large waves 

surpass the threshold at which they impact the underside of a structure (e.g. a 

fixed oil platform, bridge or jetty). Dynamic responses of floating structures 

such as wave energy converters or floating oil platforms (as explored by Cassidy 

et aL(2001) using the "Constrained NewWave" theory) may also be of interest. 

The use of the technique in linear seas also lends itself well to the proposed 

Importance Sampling "pre-filtering" method (7.3) 

While linear wave theory greatly simplifies the implementation of the 

Importance Sampling technique, the sea states involved in coastal engineering 

research are likely to be significantly non-linear. This manifests itself in 

has been completed for the Design Sea, the spectral inflation process may applied simply by 
calculating the correct value of f for the Extreme Sea and holding the gain parameter constant 
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asymmetry in the wave profiles. This asymmetry may be observed around the 

still water line, with the individual wave crest elevations being greater, on 

average, than the corresponding trough elevation. Goda (2000) showed that 

crest elevation of laboratory generated regular waves may account for up to 

80% of the wave height. Asymmetry is also observed as the front of the wave 

profile becomes steeper than the rear. 

The effectiveness of the Importance Sampling method is potentially affected by 

increased non-linearity in the Extreme Sea. Goda (2000) proposes the following 

formula (with notation updated here) for describing the index of non-linearity 

(fl): 

Hmo 
mo = — coth 3 (k . h) 

p 

(53) 

The spectral inflation method involves maintaining a constant value of sop 

(p5.3.1). Inspection of above formula shows that the H/L term will remain 

constant. The water depth (h) is also constant. The increase in non-linearity is 

therefore related to the wavenumber (k), which is directly calculated from the 

wavelength (U. 
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Figure 5.6 Non-linearity index for deep water laboratory measurements. 
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The value of the non-linearity index ((fl) was calculated for deep-water 

measurements taken from the laboratory tests detailed in §3.6.2 (Figure 5.6). It 

is observed that the non-linearity index remains fairly constant for the Sop = 0.04 

test series. There is a more marked increase in the s, = 0.02 test series, with an 

increase in H.o of 30% relating to an increase of approximately 40% in the 

value of if Nevertheless, all the deep-water values of fl illustrated in Figure 5.6 

correspond to relatively mild non-linearity. Charts produced by Goda (2000) 

illustrate strong surface-elevation non-linearity for values of fl over 0.05, 

outwith the range of these measurements. 

The above analysis is encouraging in terms of suggesting only mild increase in 

overall non-linearity of the sea state in the Importance Sampling application. 

This gives confidence that the mechanisms acting upon the incident wave train 

will be similar in both the Design and Extreme Seas. It should be recalled, 

however, that the Importance Sampling method is based upon measurements 

from individual waves and/or short wave groups (5.2.1). The Importance 

Sampling method is expected to be effective if a hypothetical design wave from 

the design sea is reproduced and identified accurately in the Extreme Sea. It is 

desirable, for practical reasons, to describe this design wave in the simplest 

terms possible, for example wave height and period. In a laboratory situation it 

is postulated that this design wave will be subject to approximately the same 

degree of non-linearity in both the Design and Extreme Seas, regardless of the 

value of fl. 

5.3.3 Overtopping Regime Changes 

Wave overtopping at vertical seawalls is a non-linear process. Overtopping 

waves may be broadly characterised as pulsating (green-water), impulsive 

(violent) or broken. The overtopping regime is commonly predicted using either 

the relative wave height (Hm0/hs), as recommended by PROVERBS (Oumeraci et 

al., 2001) or the h parameter (Equation (2)) as used by the EA and EurOtop 

manuals (2.2.3). In both cases these methods describe the predominant regime 

for a particular sea state. They do not predict the behaviour of individual waves. 
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Ideally the Spectral Inflation process (5.3.1) would not involve a change of 

overtopping regime. In practice this may be difficult to achieve, particularly as 

the conditions which bring about the onset of a change in regime may be 

unknown or poorly defined. 

The Design Sea tests carried out as part of the experimental programme were 

formulated to produce predominately pulsating overtopping events. The h 

parameter for the sop = 0.02 tests, however, falls below the threshold at which 

impulsive events would be expected to be predominant 12. In practice, 

qualitative observation of the Design Sea tests showed little evidence of 

impulsive overtopping. 

Figure 5.7 and Figure 5.8 illustrate the values of the mean discharge obtained 

from the s, = 0.02 and s = 0.04 test series respectively. These values have 

been plotted against the h parameter to give a measure of the expected 

overtopping regime. Plotted alongside the measured results are the predicted 

discharge values obtained from the empirical equations given by the EA-Manual. 

While this research does not examine mean discharge, this comparison gives a 

useful indication of the change in predominant regime in moving from the 

Design Sea to the Extreme Sea. It should be noted that the leftmost values 

(lower h*) represent the more extreme seas in these plots. 

12 The target parameters were chosen to give an h. parameter relating to pulsating overtopping. 
The average value of Hmo obtained from the repeated test runs was slightly larger than that 
measured from the calibration sea, resulting in the lower value of h. 
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Figure 5.7 Theoretical (EA-Manual) overtopping discharge values (q) for breaking 
(impulsive) and non-breaking (pulsating) conditions. Data points represent measured 

values for the s0, = 0.02 test series (3.6.2) 

The values of h obtained for the Sop = 0.02 test series all fall below the threshold 

(ha < 0.3) where the predominant behaviour is expected to be impulsive. The 

least extreme sea, however, shows very close agreement with the prediction 

with the pulsating prediction formulae, as illustrated in Figure 5.7. This agrees 

with the observed overtopping behaviour, where few impulsive overtopping 

events were evident. The trend observed with increased Spectral Inflation 

(reduced ha) is for the tests to show closer agreement with impulsive 

overtopping formulae. 
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Figure 5.8 Theoretical (EA-Manual) overtopping discharge values (q) for breaking 
(impulsive) and non-breaking (pulsating) conditions. Data points represent measured 

values for the s, = 0.04 test series (3.6.2) 

The trend observed for the Sop = 0.04 test series (Figure 5.8) is similar to that 

observed for the Sop = 0.02 results (Figure 5.7). The least extreme seas appear to 

correspond to the pulsating prediction with the more extreme seas agreeing 

with the impulsive formulae. The results illustrated in Figure 5.8 appear to 

suggest that the two largest seas are predominately impulsive. It is worth 

considering that these are empirical equations based upon datasets with 

considerable scatter. It is not, therefore, unreasonable that a sea with an h 

value of little over 0.3 should exhibit impulsive overtopping behaviour. It is also 

feasible that all these seas were primarily pulsating at the structure, and have 

simply resulted in larger than predicted discharge values for that sea. The 

values obtained are all within a factor of two of the pulsating prediction, which 

represents fairly typical scatter for this type of prediction. This explanation 

would agree with the qualitative observations of the tests, which suggested a 

fairly limited number of impulsive overtopping events. The discrepancy with 

the sop = 0.02 dataset may conceivably be caused by steeper waves in the Sop = 

0.04 dataset creating more impulsive-like events as they impact the seawall. 

Further investigation of this phenomenon would likely require more data than 

was collected during the course of this research. In particular, video recording 
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at the structure would be of interest to establish the overtopping mechanism of 

individual waves. 

The issue of greatest significance to the Importance Sampling method is to 

establish whether moving from one predominant response regime to another 

adversely affects the effectiveness of the technique. In extremis, this will clearly 

be the case. It would not be feasible to infer the behaviour of a Design Sea 

containing solely pulsating waves from an Extreme Sea containing solely 

impulsive waves. In reality, this would represent a very large inflation of the 

Design Sea spectrum. The nature of the overtopping response is, at present, 

defined by the predominant behaviour. If the Extreme Sea produces design 

wave group(s) at a greater frequency than the Design Sea, even if the response 

of this wave group differs from the predominant behaviour, then the principles 

of the Importance Sampling method remain true. It is also worth noting that the 

most extreme response from a particular sea exhibit different behaviour than 

the predominant behaviour. In a pulsating sea it is possible that the extreme 

response will relate to a violent overtopping event. The Importance Sampling 

method will produce more of these rare impulsive events. The projected 

benefits of the Importance Sampling method in describing non-linear behaviour 

are discussed in §5.2.1. 

5.4 Multivariate Data Filtering 

5.4.1 Data Filtering Methodology 

The Wave-Exclusion Importance Sampling method outlined in §5.2.3 is 

illustrated using univariate distributions. This was the method originally 

considered as the basis of technique. Based upon a chosen upper quantile the 

Extreme data would be filtered based upon the distributions of the chosen 

parameters. Based upon these individual parameters, the measurements taken 

within this filtered Extreme Sea dataset would be within the limits of the Design 

Sea. Recalling that the purpose of the wave-exclusion method is to produce a 

dataset containing only waves representative of the Design Sea, but with a 

greater number of extreme waves (and events), suggests that this technique 
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would initially appear to be valid. Examining the bivariate distributions, 

however, highlights the limitation of this technique. 
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Figure 5.9 Joint-Distribution of Height and Period. (s = 0.04. Test Reference: 4AYcaIl). 

The bivariate distribution in Figure 5.9 illustrates a typical theoretical joint 

distribution of wave height and period. The data in this example is measured in 

the wave flume in shallow water (test reference 4AYcall). The upper limits of 

the individual parameters are shown, as determined from their respective 

univariate distributions. It is clear that serial filtering by single parameters will 

produce a "square-edged" distribution, as illustrated by the 99% quantiles in 

Figure 5.9, which does correspond to the shape of the data "cloud". The obvious 

solution to this univariate data-exclusion problem is to instead use joint-

probability distributions for the filtering process which account for the 

relationships between the multiple parameters. These distributions may be 

produced from theory or from empirical fitting, as discussed below (5.5). 

The filtering process for single joint-probability distribution is identical to that 

applied to the single univariate case. That is, the data lying outwith a particular 

quantile level are removed from the dataset. 
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5.4.2 Bivariate Filtering 

Multivariate (joint) probability distributions may, in theory, describe the 

relationship between many variables. In reality, it is usually impractical to 

describe the relationship between large numbers of variables with a single 

probability distribution. This so called "curse of dimensionality" is particularly 

damaging to estimates at the extreme of a distribution (Wand & Jones, 1995). In 

the context of the Importance Sampling technique, it is unlikely that the end 

user will be satisfied with a limit of only 2-3 variables. It is also clear, however, 

that a univariate approach cannot account for any interaction between 

variables, as discussed above. 
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Figure 5.10 KDE bivariate probability matrix for four parameters. Outer contours 

represent 99.9% non-exceedance. 

The approach taken is to conduct the filtering process based upon a matrix of 

bivariate distributions, accounting for joint relationships on a "parameter-pair" 

basis. An example of a bivariate distribution matrix is illustrated in Figure 5.10 
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for four variables. The total number of distributions in the matrix is derived 

from the binomial coefficient: 

Np aranwters . 
Nd?.ibutio = 2 (Nparameters  - 2)! 

The use of bivariate distributions retains the flexibility of the Importance 

Sampling method (by allowing the use of non-parametric techniques) while 

accounting for the interaction between the measured wave parameters. More 

complex multivariate methods are difficult, if not effectively impractical, to 

implement and are unlikely to be suited to the Kernel Density Estimation 

method (KDE - §5.5) utilised here. 

The final filtering consideration is the choice of quantile at which the filtering 

process should be applied. Ideally the non-exceedance level should be set at 

100% to prevent a non-conservative output from the filtering process. The often 

asymptotic nature of the probability distributions, however, makes this 

impractical. The upper filtering bound was, therefore, set at 99.9%, deemed to 

be the highest practical limit for the KDE method (see §5.5). 

5.5 Kernel Density Estimation 

5.5.1 Kernel Density Estimation Basics 

Kernel Density Estimation (KDE) is a non-parametric technique for fitting 

distributions to a set of data. The Importance Sampling technique, as 

implemented here, is heavily reliant on this technique for fitting distributions to 

Design Sea measurements. This section aims to give an outline of the KDE 

method as implemented in this research. The formulae and methods outlined 

below have been implemented either in custom MATLAB functions or in 

functions incorporated in the WAFO toolbox. Where not otherwise referenced, 

the formulae detailed below are as given by Wand & Jones (1995). 

The simplest non-parametric fItting technique is probably the histogram. While 

useful for visualising data, histograms have the disadvantage that the centre 
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position and size of each bin may strongly influence the resulting shape of the 

distribution. A further disadvantage is that the resulting distribution consists of 

a series of step changes, rather than a smoothed continually varying curve. 

0.25 

(a) Narrow Kernel 
(h=2.0) 

0.15 

0. 

0.1  

(S 
• 54 55 

12 

(b) Wide Kernel 

0-j 	 (h5 2.5) 

0.15 

x 
0. 

0.1 

•5 .  
2 	4 6 * 8 10 	12 

x 

Figure 5.11 IJnivariate kernel density estimates for a small dataset. Examples a given for 

two kernel sizes ("bandwidths"). 

KDE methods are similar in concept to the histogram, but crucially avoid the 

requirement to bin the data. Instead an individual "kernel" is placed at the 

location of each data point Superposition of these kernels produces an estimate 

of the shape of the probability distribution. A simple example of this technique 

using six data points is illustrated in Figure 5.11. The size of the individual 

kernel is determined by its "bandwidth" (h). It may be observed that increasing 

the bandwidth (Figure 5.11(b) over Figure 5.11(a)) results in increased 

smoothing of the distribution, as well as slightly extending the extreme tails of 

the curve. Care must be taken that the chosen bandwidth neither over nor 

under-smoothes the estimated probability density distribution, as discussed in 

detail below. 

U 

(a) Epanechnikov 	(b) Biweight 
	

(c) Triangular 
	

(d) Rectangular 

Figure 5.12 Commonly used kernel shapes 
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In addition to the kernel bandwidth, a variety of shapes are available to describe 

the individual kernels. Four common kernel shapes (Epanechnikov, Biweight, 

Triangular and Rectangular) are illustrated in Figure 5.12. The Gaussian 

(normal) kernel is also commonly used. It is noted by Wand & Jones (1995) that 

kernel shape is of considerably less importance than the kernel width 

(bandwidth) in influencing the estimated distribution. Wand & Jones (1995) 

suggest that the Epanechnikov kernel is optimal. It is noted, however, that other 

kernels are only marginally less effective. The Epanechnikov kernel has, 

therefore, been used throughout this research, with investigations 

concentrating on the selection of the bandwidth parameter. 

The examples illustrated above (Figure 5.11 and Figure 5.12) outline the 

approach in producing univariate density estimations. The extension of the 

technique to multivariate estimation, as required for this research, is 

conceptually straightforward. In the bivariate case a two dimensional kernel is 

applied. The bandwidth may vary for the two dimensions and the axes of the 

kernel may be rotated from the coordinate axes. This process may be applied to 

higher dimensions, but easy visualisation is not possible above three 

dimensions. 
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Figure 5.13 Contour plot illustrating quantile levels for joint-distribution of wave height 
and period 
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Once the probability density has been estimated for the dataset, it is 

straightforward to calculate the quantile levels, as illustrated in Figure 5.13. 

This is most easily applied by numerical integration of the probability 

distribution surface, which is returned by the software (custom MATLAB and 

WAFO toolbox functions) as a matrix map. 

5.5.2 Multivariate Kernel Density Estimation 

A univariate kernel density estimate is made up of individual kernels (k) 

summed to describe a vector (z) representing a particular parameter (e.g. wave 

height). These individual kernels have the property: 

f k(z)dz = 1. 	 (55) 

The fact that the integral of these individual kernels is defined and finite allows 

for these kernels to be easily scaled such that the resulting formulation correctly 

represents a probability density distribution, as is described in detail below. 

This research utilises the Epanechnikov kernel (Epanechnikov, 1969), described 

in univariate form as 

k(z) = (1 - z 2 ) 1(IzI<1). 	 (56) 

In order to describe a d-variate, n-length, dataset (X1 1 ...,X) a multivariate 

version of the kernel is required. Each data will contain d-number of values, 

with the components notated as: 

X, = [Xjl,...,Xjd] T . 	 (57) 

Similarly, the vector (x) of d-number parameters is represented thus: 

x= [xl,...,xd ] T . 	 (58) 

The multivariate kernel is derived from the univariate formula to produce a 

radially symmetric kernel in d dimensions. in the case of Epanechnikov formula 

the kernel will take the form (Silverman, 1986): 
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K(x) = 2 1 
Cd 

(d + 2)(1 - xTx). 1 1xT x <i} 	 (59) 

where Cd represents the unit volume of a d-dimensional sphere: 

d/2 

Cd 

	

 
r(.fl  + 1) 
	 (60) 

It may be shown by inspection that the multivariate Epanechnikov kernel with d 

= 1 is identical to univariate version described in Equation (56). Similar to the 

univariate case (Equation (55)), the multivariate kernel satisfies the condition: 

f K(x)dx= 1. (61) 

In order to apply the KDE method effectively it is usually necessary to rescale, 

and possibly rotate, the kernel. This is achieved through the application of a 

bandwidth matrix to produce a rescaled kernel formula (KH): 

KH(x;H) = 1H1"2 K (H 1/2  . x). 	 (62) 

The bandwidth values (h1,...,hI1,?d(d+1)) are described in a symmetric "bandwidth 

matrix" (H). In the bivariate case this matrix takes the form: 

H=  

[h 2   h1 
h 	

(63) 

If there is no rotation applied to the kernel the value of h3 will be zero, with the 

bandwidth matrix taking the form 

(64) 

where I is the identity matrix. 

Finally, the estimated probability density function (f(x)) may be calculated 

through summation of the scaled kernels: 
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f(x) = 
n'>KH(x—Xi). 	

(65) 

5.5.3 Kernel Rotation 

The rotated and scaled kernel is easily visualised in two-dimensional space, as 

illustrated later in this chapter. In the case of identical scaling (constant 

bandwidth) and no rotation, the kernel will be symmetrical around the axes. In 

reality, it is noted by Wand & Jones (1995) that it is rarely practical to apply 

identical smoothing in all dimensions. This is intuitively true when dealing with 

joint-distributions describing variables of differing scale and magnitude, such as 

wave-height and wave-period. The benefits of using rotated kernels are less 

clear. In a bivariate distribution Wand & Jones (1995) suggest that the benefits 

of kernel rotation are marginal when both variables are normally distributed. 

This is not the case, however, when the dataset is non-Gaussian. The efficiency' 3  

of the density estimation fell to a low of approximately 25% when using non-

optimally rotated kernels in the presented study. Given the non-Gaussian nature 

of many of the parameters measured in coastal waters it was deemed that the 

use of rotated kernels should be explored in the application of the Importance 

Sampling method. 

The two bandwidths (for the bivariate case) and the rotation angle are a 

function of all three bandwidth parameters (hi ... 3) contained with the bandwidth 

matrix H described in Equation (63). A simple "blind" optimisation may not 

require knowledge of the actual rotation angle and smoothing along the rotated 

axes. If, however, it is desirable to exert constraints, or a fixed rotation angle, the 

bandwidth matrix must be translated to a more manageable form. The three 

parameters required are: 

13 Wand & Jones (1995) measured efficiency using the Asymptotic Relative Efficiency (ARE) 
criterion. In simple terms this technique compares the quality-of-fit of one distribution (e.g. 
rotated kernel estimation) with the quality-of-fit of another distribution (e.g. non-rotated kernel 
estimation). The "quality-of-fit" is determined through comparison of the estimated distribution 
(KDE) with the parent distribution from which the dataset was generated. The disagreement 
between these distributions was calculated by Wand & Jones using the Asymptotic Mean 
Integrated Square Error (AMISE). 
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hx: 	The bandwidth along the rotated X axis, 

hy: 	The bandwidth along the rotated Y axis, 

0: 	The angle of rotation [rads]. 

Neither Wand & Jones (1995) nor Silverman (1986) detail this relationship. It 

may, however, be deduced through comparison to the standard rotation matrix. 

In the bivariate case this will take the form: 

H1/2- 
[hx 2 	0 

_1/ 	
cos0 sin01 

 - [ - 0 	h21 y I 	—sinO cosO 	 (66) 
FhxCOS8 hsin8 1  

J—h y .sin6 hcos6] 

Rewriting the bandwidth matrix in the same form (H 1 /2): 

2 _h/ 2 a j h3 ] 
h 	h21 	c 	

(67) 
2] 

The matrix inverse square root calculation required in Equation (67) is not 

necessarily trivial. It is, however, easily carried out in software packages such as 

MATLAB. The following formulae will therefore refer to the three resultant 

parameters (a, b ,c). 



xl 
Figure 5.14 Generic bivariate kernel with vector (X) transformed by the bandwidth matrix 

(H). 

Inspection of Equations (66) and (67) reveal that these bandwidth matrices 

cannot be directly equivalent, as the matrix in Equation (66) is not necessarily 

symmetrical, unlike the standard bandwidth matrix. Indeed, Equation (66) will 

only be symmetrical in the case where there is no applied rotation. In order to 

understand how these two forms of the bandwidth matrix can produce 

equivalent results it is important to note the radially symmetrical nature of the 

bivariate kernel, a generic example of which is illustrated in Figure 5.14. A 

vector (x) is transformed by the bandwidth matrix (H) to affect the rotation and 

smoothing. This transformed vector has the value H 1 /2x (see Equation (62)). 

Inspection of the kernel in Figure 5.14 illustrates that any vector lying the same 

distance from the origin as H 1/2x will produce the same kernel density value. In 

other words, the two forms of the bandwidth matrix will give identical results if 

the magnitude of H 1 /2x is identical for given values of hx, hy and 0. It is also 

noted from Equation (62) that both forms of the bandwidth matrix must have 

equal determinants. This relationship gives rise to the following four equations: 

a2  + c2  = (h .cos9) 2  + (h . sinG) 2 	 (68) 
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b 2 +c2  = (h•sin9)2  +(h•cos9)2 	 (69) 

c (a + b) = sin 0 cos 8• (h -  h) 	 (70) 

a b - c2  = 
	 (71) 

Combining these formulae allows transformation of the standard three 

parameter bivariate bandwidth matrix (Equation (63)) to the form hx, hy and 0. 

1 
ta2 - b

2  
h=— 	+ a2 +b2 +2.c2 	 (72) 

4 cos2O 	
] 

 

1 1b 2  - a2 	
_ 1/2 	 (73) 

h _ 	
Fcos2O +a2+b2-I-2.c2j 

1 	2•c 	 (74) 
0 	arctan  

a — b 

The reverse transformation is given by the formulae: 

a = [(hr• cos0)2  + (Fly  sin0)2 - c 2]/'2 	 (75) 

b = [(hr sin0) 2  + (h cos0)2 - c2 ]_1/2 	 (76) 

where 

c= 	•sin20 
	

(77) 
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Figure 5.15 Radially symmetrical kernel (a) and reshaped and rotated kernel (b) with h = 

2, h=O.5and8=n/6. 

The result of the x vector transformation process illustrated in Figure 5.14 is 

that the radially symmetric kernel (K) is transformed into a rescaled and 

rotated kernel (KH). This process is illustrated by the kernels plotted in Figure 

5.15. The bandwidth matrix H was produced using Equations (75) to (77) to 

give a rotation angle of ii/6 radians. The bandwidth parameters for the rotated 

axes were set to hx = 2 and hy = O.S. The kernel shapes were produced using the 

WAFO MATLAB toolbox, which has the capacity to take an externally calculated 

bandwidth matrix as an input. 

The method outlined above for calculating the kernel reshaping properties 

allows for more intuitive and transparent investigation of the KDE method 

when compared to the standard three-parameter bivariate bandwidth matrix 

(Equation (63)). A particular strength is the ability to prescribe a particular 

rotation angle, leaving only two bandwidth parameters to be optimised. This is 

not possible with the standard matrix as the rotation angle is a property of all 

three parameters (hi..3). 
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5.5.4 Bandwidth Estimation - Normal Scale Rule 

The value of the kernel bandwidth is extremely important for optimising the 

estimated probability distribution for a set of data. A variety of methods are 

available for estimating the bandwidth values. Only a fairly small subset is 

appropriate, however, for the purposes of this research. The main requirement 

for the density methods in the Importance Sampling method is that they are 

entirely data-driven. That is, they are estimated based only upon the 

information garnered from the input dataset. This allows the greatest degree of 

flexibility in applying the importance Sampling method, as the kernel density 

estimates need not be "tuned" as new or drastically altered parameters are 

selected for inclusion in the analysis. 

A commonly applied method as described by Silverman (1986) and Wand & 

Jones (1995) is the "normal scale rule". This technique optimises the bandwidth 

parameter for a normally distributed dataset. The bandwidth value (hi) is given 

as 

hs 	
F8.1r1/2.R(k) 

1/
l 5 

0 	 (78) 

where 

R(k)=Jk(x)dx 	 (79) 

= f z 2  k(z)dz 	 (80) 

and n is the total number of samples. The example above describes a univariate 

case. In order to calculate the bandwidth matrix (H) for a multivariate dataset 

the above equations are applied to each dimension in turn. 

The primary advantage of the normal scale method is that it is easily applied 

with minimum of computational effort. The clear disadvantage is that it will give 

sub-optimal performance where the dataset is not normally distributed. This 
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tends to manifest itself in over-smoothing of distribution (Wand & Jones 1995). 

This is potentially significant as many wave parameter distributions show 

significant bias away from Normal distributions. It also does not allow for easy 

calculation of kernels with rotated axes, or for estimation of the smoothing 

parameter (5.5.2). 

The limitations of the normal scale rule are not necessarily fatal to the 

application of the technique. This research is primarily concerned with 

accurately describing the behaviour near the boundaries of the dataset. In the 

case of the wave-exclusion method (5.2.3) the main requirement is to produce 

a filtering "window" through which the most extreme data is removed from the 

dataset. If over-smoothing has little influence on the extremes of the 

distribution the filtering process will be relatively unaffected. 

5.5.5 Bandwidth Estimation - Least Squares Cross Validation (LSCV) 

The second method explored for estimation of the bandwidth is the technique of 

Least Squares Cross-Validation (LSCV) as described by Silverman (1986) and 

Wand & Jones (1995). This method, as with the normal scale rule (5.5.4), is 

fully automatic, being reliant only on the inputted dataset. 

The LSCV estimator operates by examining the sensitivity of removing a single 

data sample on the estimate of the distribution. In essence, the distribution is 

calculated using the complete dataset (n samples) and then recalculated using 

the dataset with a single datum removed (n-i samples). The error between 

these distributions is calculated for each sample in turn to give a measure of the 

"averaged" error. This process is repeated as required in order to iterate an 

optimal values of the bandwidth matrix (H). 

The LSCV value is calculated from 

LSCV(H,KH) f f(x; H,KH) 2 dX - 2 . n' 	f_ (Xi; H,KH) 	 (81) 

where the "leave-one out" density estimator is given by 
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f_l(Xt;H,KH) = (n - 1) - 'KH (x—X). 	 (82) 
1*1 

The minima of LSCV(H) will correspond to the estimated optimal bandwidth 

matrix (H). Unlike the normal scale rule (5.5.4) this method allows the 

inclusion of rotated kernels as the bandwidth matrix may be optimised in its 

entirety. The normal scale rule only allows for estimates of individual variants. 

In order to apply the LSCV technique of the bandwidth matrix it is necessary to 

select a range of bandwidth values over which to conduct the optimisation. The 

approach suggested by Wand & Jones (1995) is to select an upper bound for the 

bandwidth parameters using the "oversmoothed" bandwidth (hos): 

h05 
 - 243 R(k) 

1/5 

- 	
(83) 

35.2(k)2.fl] 	
•a  

where a is the standard deviation of the sample, n is the number of samples and 

R(k) and 1e2(k) are described in Equations (79) and (80). As the name suggests, 

the oversmoothed bandwidth parameter describes a bandwidth with a 

bandwidth known to be larger than the optimal value. It is also observed, 

through comparison with Equation (78), that the relationship with the normal 

scale bandwidth (h5) may be shown to be: 

- = 0.93 
h05  

(84) 

The attractiveness of the LSCV technique lies in the lack of assumptions 

required in selecting the values of KDE parameters (H, a etc.). This is in line 

with the philosophy and requirements of the Importance Sampling method 

(5.2.1). The major disadvantage is the increased computational effort required. 
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5.6 Filtered Dataset Analysis 

5.6.1 Definition of Extreme Values 

The Importance Sampling method, as detailed above (5.2), delivers a filtered 

dataset of waves and their associated measured responses. This filtered 

extreme sea dataset is intended to contain waves representative of the design 

sea condition, but with the response distribution shifted to produce 

proportionally more of the largest magnitude events. A major challenge in 

applying the Importance Sampling technique is the analysis and interpretation 

of this extreme sea dataset. 

The simplest value for characterising the extreme overtopping response is 

the largest single value obtained from a given record. The average value of V.  

will increase with the length of the test, due to its probabilistic nature. V. is a 

function of the test length. Straightforward comparisons of V. values can 

therefore only be made for tests of the same length 14 . 

If the Importance Sampling method has been applied effectively all the results 

contained within the filtered extreme sea dataset should be representative of 

the design sea conditions. The largest results obtained from the filtered dataset 

should therefore represent design sea overtopping volumes. It is difficult, 

however, to put these measurements in context in terms of Vm. The filtered 

dataset is effectively equivalent to a certain number of repeat tests with the 

design sea. If a functional relationship between the overtopping response (i.e. 

its magnitude) and the contemporaneous wave climate could be known it would 

be possible to relate the value of N in the extreme sea to an equivalent N w  for 

the design sea conditions. Given this information it would be possible to identify 

N maximum overtopping events in the filtered extreme sea dataset for a given 

design N. Indeed, this is the approach originally considered as the basis of the 

Importance Sampling method (Wave Identification - §5.2.2). 

14 Test length is defined here as the total number of waves (Nw). 
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The Importance Sampling method applied here assumes there is no known 

functional relationship between the measured individual wave parameters and 

their associated overtopping volume (Wave Exclusion - §5.2.3). While this 

presents advantages in terms of flexibility, it also prevents easy analysis of the 

V. values. The alternative that has been explored has been to calculate the 

maximum overtopping values in terms of exceedance probabilities. 

The exceedance value (e.g. Vl%) is not strictly dependent on test length, 

although confidence in the calculated results will decrease for shorter tests 

(4.5.4). Characterising the extreme behaviour in terms of a certain exceedance 

probability sidesteps the problem of defining a particular "Design Sea 

equivalent test length" for the filtered Extreme Sea dataset. 
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Figure 5.16 Idealised overtopping volume CDF distributions (Weibull) for Design, Extreme 

and Filtered seas. 

The nature of the Importance Sampling technique produces different 

probability distributions for the design sea and the filtered extreme sea 

datasets. The filtered extreme sea is shifted to produce more occurrences of the 

largest events. This behaviour is observed clearly in the example data presented 

in Figure 5.16. If the Importance Sampling technique has been applied 

successfully, the Design Sea and filtered Extreme Sea distributions should 

converge to produce similar tails. Low exceedance overtopping volumes are 
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therefore expected to converge for the design and filtered extreme seas, as 

illustrated in the example in Figure 5.16. 

5.6.2 Block Value Analysis 

The Importance Sampling method is proposed as a tool for improving the 

"efficiency" of random wave model testing. In essence the goal is to shorten the 

test length without impairing the accuracy of the obtained results. It is 

proposed, therefore, that changes in efficiency brought about by the Importance 

Sampling method are simply defined by the reduction in test length achieved. 

This term will be referred to as the Filtering Coefficient defined as: 

Filtering Coefficient = 
NWEX ,. e 	

(85) 
N Design 

Thus a lower value of the filtering coefficient indicates the need for a shorter 

Extreme Sea. It should be noted that test length has been defined in terms of the 

total number of waves (Nw). This is useful when comparing results from 

laboratory testing conducted at different scales. It would be equally correct to 

refer to test length in terms of time, assuming the test scale remains constant. 

The move from the Design Sea to Extreme Seas of increasing Spectral Inflation 

Factors (Is)  will produce more overtopping results for a given test length. The 

test series conducted for assessing the Importance Sampling technique (3.6.2) 

involved multiple repeat Design Sea tests, each of a nominal 1000 waves. The 

Extreme Sea test series were designed to produce approximately the same total 

number of overtopping events (N0) as the Design Sea dataset. 
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Figure 5.17 Hypothetical block analysis example (plots for illustration purposes only). 
Three Design Sea tests are replicated by two shorter Extreme Seas, each divided into 
three blocks. Each Extreme Sea block contains the same number of overtopping events as 

a single Design Sea test. 

The analysis of a given Extreme Sea dataset involves combining the wave 

measurements, with associated overtopping values where appropriate, into a 

single long record. This record is then divided into equal length segments, with 

the number of segments equalling the number of Design Sea tests, as 

represented graphically in Figure 5.17. The average number of overtopping 

events within each "block" will be similar to the average number of overtopping 

events for each Design Sea test. Each of these blocks effectively represents a 

short duration test with the Design Sea. The Importance Sampling technique 

may then be applied to each of these blocks to produce a number of filtered 

Extreme Sea datasets. 

The data within the filtered Extreme Sea blocks may then analysed in the same 

manner as outlined in §4.5. This analysis technique effectively holds the average 

value of N0 constant, rather than working with a fixed test length (Nw). It would 

also be possible to vary the test length within the laboratory. The practicalities 

of this will depend of the facility. In the case of the wave flume used in this 
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experimental programme (3.2.1) the test lengths are not infinitely adjustable 

and the record from a particular test would require trimming to adjust it to the 

predetermined length. 

Setting the length of each block to produce the same N0, on average, as the 

Design Sea requires some a priori knowledge of the process (i.e. the value of 

N0). A practical application of the technique may be free from this constraint as 

the value of V.% is independent of the test length, although confidence may be 

low for short tests. The block analysis approach would therefore be abandoned 

and V, calculated from the entire filtered Extreme Sea dataset. In the example 

outlined in §6 the block analysis approach is used to cross compare the Extreme 

Sea output with the baseline Design Sea values. 

The combination of the tests into a single record assumes that the elevation 

time series may be treated as a stationary process. Given that each Extreme Sea 

test in a given series is produced from the same spectrum this assumption is 

valid. It should be noted the combined record was produced in such a way that 

the "breaks" between the tests were identified. This was to prevent anomalies 

when examining the influence of wave groups (e.g. the effect of the preceding 

waves on overtopping behaviour). 

5.7 Summary 

Two distinct, but related, versions of the Importance Sampling technique were 

proposed for detailed examination. The method selected (Wave Exclusion) is 

intended to avoid the requirement for a detailed functional relationship 

between individual wave parameters and the overtopping response. This 

methodology potentially offers significant flexibility in the application of the 

technique to overtopping modelling and other relatively poorly understood 

phenomena. 

A non-parametric method (Kernel Density Estimation) was explored for the 

estimation of the Design Sea probability distributions required for the 

application of Importance Sampling. Kernel Density Estimation requires 
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relatively few assumptions regarding the underlying nature of the distribution 

and is therefore in keeping with the aim of producing a flexible methodology. 

The basis of the technique is explained along with several options for 

optimisation of the resulting probability distributions. 
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6 Importance Sampling Results and Analysis 

6.1 Introduction 

This chapter details the results obtained from the application of the previously 

described Importance Sampling technique (5) to experimental vertical seawall 

overtopping measurements conducted at small scale (3). The input wave 

parameters required to implement the technique are selected based on 

observations of the overtopping behaviour. The method is then implemented 

using these input conditions to produce estimates of V. and Vl% for two 

different Design Seas. 

The optimisation of the probability estimation procedure is examined and the 

effect on the Importance Sampling output presented 

6.2 Importance Sampling Wave Parameters 

6.2.1 Design Wave Groups 

The Importance Sampling technique, in both Wave-Identification (5.2.2) and 

Wave-Exclusion (5.2.3) forms, requires a definition of the design wave group 15 . 

The requirement of this definition varies considerably between the two 

methods. 

Wave Identification 

The Wave- Identifi cation method relies on a known functional relationship 

describing the expected response associated with a given wave group. This 

15 The term "wave group" is used loosely here. It may refer to 1a single wave, or even potentially a 
small portion.of a single wave. 
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functional relationship need not precisely quantify the expected response 

associated with the wave group, but rather identify the most extreme wave 

groups within a given record. This is a non-trivial procedure given the 

potentially complex nature of the hydrodynamic response at a fixed or floating 

structure. In the case of wave overtopping the response has been observed to be 

non-linear, giving rise to the likelihood of multiple functional relationships. The 

response may also be non-monotonic when measured against certain 

parameters (e.g. wave height), further complicating attempts to identify the 

design wave group. The Wave- I dentificati on Importance Sampling technique 

requires accurate identification of these design wave groups in order to be 

effective. It may be quite feasible to identify a subset of wave groups likely to 

produce large overtopping responses. This information is not sufficient, 

however, to identify the ratio of design wave group occurrence frequencies 

between the Design and Extreme Seas (Equation (50)). 

Wave Exclusion 

The definition of the design wave group required for the Wave-Exclusion 

technique is somewhat different. A detailed functional relationship between the 

wave group and the overtopping volume is not necessary. Instead, a subset of 

parameters describing the design wave group is required (5.2.3). For example, 

in a simple scenario it may be sufficient to describe a wave only by its height. 

The Importance Sampling technique produces an upper bound for this 

parameter, but it is not necessarily the wave with the greatest height that 

produces the largest magnitude response. A more complex modelling scenario 

may, for example, require the inclusion of the wave period. The Wave-Exclusion 

process will now also exclude non-representative wave periods. Associated 

parameters, such as wave steepness, will also be filtered from the Extreme Sea 

dataset. 

It is important to distil down the available range of wave group describing 

parameters to a small subset of significant measurements. A large number of 

parameters increases computational effort and also risks unnecessary "over - 
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filtering" of the dataset. Perhaps counter-intuitively, the conservative approach 

is to use a smaller number of filtering parameters. The selection of these 

parameters for use in the Wave-Exclusion Importance Sampling technique is 

outlined below. 

6.2.2 Wave Parameters 

T 

Time 	> 
Figure 6.1 Generic wave group with labelled measurement parameters 

The simplest wave parameters can be defined as being measured in space or 

time. Parameters produced from a point measurement (e.g. wave gauge) will 

produce measurements in terms of elevation (e.g. wave height) and period (e.g. 

down-crossing period, crest period etc.). These measurements may be 

considered to be "primary" parameters. All other "secondary" parameters (e.g. 

steepness, wavelength) are produced using these measurements. 

The Wave-Exclusion Importance Sampling technique may be applied using only 

these primary parameters, and that is the approach taken here. This is 

consistent with the relatively scant knowledge describing the relationship 

between the individual wave form and the overtopping response. In modelling 

situations where a response function is better defined, more sophisticated 

parameters (e.g. crest front steepness) may be substituted into the filtering 

process. This approach may potentially improve the efficiency of the filtering 
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process by reducing the number of variates included in the KDE estimation 

stage. 

Wave Elevation Parameters 

An obvious parameter for characterising the vertical displacements of a wave is 

the wave height. This is simply defined as the difference between the maximum 

and minimum elevation between successive zero-crossings. In this research the 

convention is to use the zero-downcrossing method (e.g. Figure 6.1) unless 

otherwise stated. The wave height has the drawback, however, of not being 

measured against a fixed reference plane. The alternative approach is to define 

the waves using the crest (ic)  and trough (iT)  elevations directly. These 

measurements are taken from the still water level, providing a fixed frame of 

reference to the seawall structure. 

Wave Period Parameters 

>(>i< >< 	> 
Ttf 	 Ttb 	 Td 	 Tcb 

Time 

Figure 6.2 Generic wave with labelled period measurements 

A variety of parameters are available for characterising the zero-crossing 

behaviour of an individual wave. The wave period (T) was measured using zero 

downcrossing analysis, as illustrated in Figure 6.2. The zero downcrossing 

method is intuitively appropriate for overtopping analysis as it defines an 

individual wave with the trough prior to the crest. This allows a steep crested 

wave to be logically defined in terms of its period and height. 
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Further parameters are available to characterise the wave in the time-domain 

(see e.g. Guedes Soares et al., 2004). These include the crest and trough period 

(Tc  and Tt  respectively). The wave may be further subdivided into four 

constituent periods describing the front and back of the crest and trough. The 

notation in Figure 6.2 has been formulated for consistency, but it should be 

noted that there appears to be no convention for the naming of these 

parameters. The application of these wave period measurements has not been 

explored in this research, but it is suggested that they may be of relevance to 

future research. Several "steepness coefficients", as described by Guedes Soares 

et al. (2004) may be formulated using these measures. These may possibly 

provide future tools for the characterisation of wave-by-wave overtopping. 

6.2.3 Wave Group Definition 

The datasets from the X test series (3.6.2) were examined to establish any 

dependence between the parameters discussed and the measured individual 

overtopping volumes. This analysis is not intended to produce a full functional 

relationship, but rather qualitatively highlight any relevant interactions 

between the wave group and the structure. 
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Wave Height & Crest Elevation 
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Figure 6.3 Individual overtopping volumes plotted against individual wave height. XA Test 

series. 
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Figure 6.4 Individual overtopping volumes plotted against individual wave crest elevation. 

s = 0.02 & s0 ,, = 0.04. AX Test series. 

157 



The relationships between the overtopping volume and individual wave height 

and crest elevation are illustrated in Figure 6.3 and Figure 6.4 respectively for 

the AX test series. The distribution of data points would appear to be broadly 

similar for both the wave height and crest elevation plots. 

It is clear that the largest waves (in terms of crest elevation or wave height) 

tend to produce the largest overtopping volume. It is also apparent, however, 

that many large waves also produce a rather small overtopping response. There 

are also a number of relatively large events associated with waves significantly 

smaller than the maximum (e.g. less than half the height/crest-elevation). A 

large wave does not necessarily result in a large overtopping volume, nor is a 

large overtopping volume necessarily indicative of a large wave. 

1.2  

• Design 	
= 0.04 

1 	1.Extreme 

0.8 

0.6 

0.4 

0.2 

0 

0 	 0.02 	0.04 	0.06 	0.08 	0.1 	0.12 

Wave Height Imi 

Figure 6.5 Individual overtopping volumes plotted against individual wave height. Design 

and Extreme Seas illustrated. 
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Figure 6.6 Individual overtopping volumes plotted against individual wave crest elevation. 

Design and Extreme Seas illustrated. 

Further evidence that a univariate approach is unlikely to be sufficient is 

presented when examining results taken from an Extreme Sea (413X test series). 

This data is available for the Sop = 0.04 sea state and the measurements are 

overlaid against the Design Sea data in Figure 6.5 (wave height) and Figure 6.6 

(crest elevation). It is noted that the overtopping volume "upper limit" for a 

given wave height or crest elevation is often higher in the Extreme Sea. A cluster 

of measurements exhibiting this behaviour is highlighted in the above plots. The 

bulk of the measurements in the Extreme Sea do lie within, or close, to the 

boundary of the Design Sea data cloud. The highlighted data points are 

sufficient, however, to give a spurious output in the case of a univariate data 

filtering process. 

Binned Overtopping Volume Analysis 

While the wave-height/crest-elevation appears to exert a strong influence on 

the magnitude of the overtopping response, there are clearly other factors that 

must be explored. 
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It has been noted above that there has been no formal attempt to produce a 

detailed functional overtopping relationship. Rather, the bivariate relationship 

between the crest elevation and other selected parameters has been explored. 

The aim here is to identify useful trends that may be incorporated into the 

Importance Sampling filtering process. The analysis has taken the two datasets 

from the AX test series. Each overtopping wave in assigned a "bin" defined by 

the two parameters, and the mean volume for each bin expressed in the three-

dimensional column plots presented below. 

Crest & Trough Elevation 

Figure 6.7 Binned mean overtopping volumes by crest and trough elevation 

It is observed in Figure 6.7 for both test series that the overtopping volume 

increases with crest elevation, as previously illustrated in Figure 6.4. The joint 

relationship with trough elevation differs between the test series. The 

measurements from the Sop = 0.02 test series show little correlation with the 

trough elevation. In the case of the steeper test series (s op  = 0.04) the 

relationship is markedly different. The joint relationship suggests that the 

largest events are associated with waves with deep preceding troughs for a 

given crest elevation bin. This effectively indicates that waves with a large zero-

downcrossing wave height are the most likely to be associated with the largest 

overtopping volumes. This wave height relationship is less strong for the Sop = 

0.02 sea state. 
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Crest Elevation and Wave Period 
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Figure 6.8 Binned mean overtopping volumes by crest elevation and wave period 

The overtopping volume joint-relationship with crest elevation and zero-

downcrossing period is illustrated in Figure 6.8. The s op  = 0.02 test series shows 

a general trend for overtopping volumes to increase with period, with this being 

more apparent for the larger crest elevations. This is intuitively reasonable due 

to the greater "elevated" mass of water per wave. The largest volumes in the Sop 

= 0.04 test series are associated with the longer period waves. There is not, 

however, a definitive trend across the crest elevation bins. 

It would be intuitively expected that the joint relationship would be similar for 

the both test series. These plots effectively examine the dependency on wave 

steepness, with the same crest/period bin in each plot corresponding to the 

same individual wave steepness. It is clear from examination of the plots that 

both the distribution and particularly the magnitude of the volumes differ 

significantly. This lends support to the hypothesis that several parameters must 

be included in Importance Sampling filtering process. 
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Crest Elevation and Preceding Crest Elevation 
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Figure 6.9 Binned mean overtopping volumes by crest elevation and preceding crest 

elevation 

The vertical seawalls used in this research are expected to produce few 

"hysteresis" effects. The overtopping wave is expected to be primarily 

influenced by the properties of a single wave, rather than long wave groups. 

Vertical seawalls are, however, highly reflective structures. The wave preceding 

the overtopping wave will interact in some manner with the overtopping wave 

immediately prior to its impact with the seawall. This may conceivably be in the 

form of wave setup, or a non-linear action which may "trip" the wave into 

breaking. 

The overtopping volumes binned by the overtopping wave crest elevation and 

the crest elevation of the preceding wave are illustrated in Figure 6.9. It is noted 

that the largest distributions tend to be associated with the larger preceding 

crest elevations. This relationship is quite clear for the steeper (Sop = 0.04) test 

series, even if the very large measurement in the extreme bin (largest crest 

elevations) is excluded. This relationship is less apparent for the Sop = 0.02 data, 

although several of the largest measurements are contained within the large 

preceding crest bins. 
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6.3 KDE Parameters 

6.3.1 Optimisation of KDE Parameters 

Kernel Density Estimation (KDE - §5.5) is used to produce Probability Density 

Functions (PDF) describing the Design Sea states for use in the Importance 

Sampling filtering process (5.2.3). KDE is a non-parametric technique in which 

few assumptions need to be made regarding the underlying properties of the 

sample data. 

The properties of the KDE distribution are determined by the size and shape of 

the kernels forming the distribution (5.5.1). In the case of a bivariate 

distribution the size is altered in two dimensions by the bandwidth matrix 

(5.5.2). The kernel may be resized over axes coincident with the data axes, or 

the axes may be rotated (5.5.3). The bandwidth matrix controls the level of 

smoothing applied to the KDE distributions. Oversmoothing the distribution will 

tend to obscure the detail of the underlying distribution (e.g. bimodal properties 

may be masked). Undersmoothing the distribution will exaggerate the influence 

of individual data points, making the distribution less representative of the 

system as a whole. 

The dimensionless kernel shape (i.e. ignoring the resizing due to the bandwidth 

matrix) is determined by an underlying kernel density function (5.5.1 and 

Figure 5.12). It is noted by Wand & Jones (1995) that the choice of kernel 

density function is relatively unimportant in influencing the KDE distribution. 

The Epanechnikov kernel (5.5.2 - Equation (56)) is therefore used throughout 

this research, with optimisation techniques concentrating on selection of the 

bandwidth parameters. 

The optimisation technique employed here is Least Squares Cross Validation 

(LSCV - §5.5.5). This is a data driven method requiring no subjective decisions 

on behalf of the user. A disadvantage is that the convergence can be somewhat 

unreliable for different data samples drawn from the same parent distribution 
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(Silverman, 1986; Wand & Jones, 1995). Two broad approaches are therefore 

suggested: - 

Direct estimation from LSCV, noting possible problems with convergence 

of the optimisation algorithm. 

Pre-selection of the bandwidth matrix using guidance inferred from LSCV 

optimisation of synthesised (or previously measured) datasets. 

Method 2 has the advantage that the bandwidth matrix parameters can be 

averaged over a number of tests, minimising the uncertainty involved with 

direct application of the LSCV method. The obvious obstacle is obtaining the 

datasets with which the LSCV optimisation can be applied. In cases where a 

large Design Sea dataset in available this is feasible by simply averaging the 

results obtained for each sample using Method 1. In practice this is unlikely to 

be feasible as, by design, the Importance Sampling method is intended to reduce 

the length of Design Sea testing required for an experimental programme. The 

alternative is to use synthesised data. Two synthesised data approaches are 

detailed below. It is important to remember at this stage that LSCV procedure is 

only concerned with the selection of the bandwidth matrix, not the distributions 

themselves. The KDE method always uses the Design Sea data to produce the 

probability density distributions, regardless of applied bandwidth optimisation 

procedure. 

Another noted limitation of the LSCV procedure is the considerable 

computational effort required. A single bivariate KDE probability distribution 

takes of the order of a few seconds to calculate for a typical --1000 sample 

dataset. The LSCV technique, however, requires N+1 iterations of the KDE 

estimation (recall the "leave one out" basis of the technique - §5.5.5) for each 

set of input conditions (i.e. the bandwidth matrix). This must then be repeated 

multiple times to conduct the optimisation. A single bivariate optimisation takes 

several hours, even when utilising a powerful computing facility. 
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Parametric Spectrum - Synthesised Sea 

The simplest solution available to produce datasets for LSCV optimisation is to 

describe the sea state using a standard parametric spectrum (e.g. JONSWAP). 

Different realisations of the elevation time series may then be synthesised using 

linear wave theory. In the examples illustrated below (6.3.2 & §6.3.3) 10 

unique elevation time series were produced, each consisting of -1000 waves. 

The elevation time series were produced from a JONSWAP spectrum (y = 3.3) 

with a nominal Hmo and T 16. This method does not account for any shallow 

water transformation of the spectrum (if the model input spectrum is used) or 

wave train. It is, however, easily applied without any requirement for model test 

data. 

Measured Spectrum - Synthesised Sea 

The second approach explored is to synthesise the elevation time series based 

upon a measured spectra. In the examples explored below (6.3.2 ) the spectra 

are measured from the Design Sea (2AY & 4AY). The elevation time series are 

synthesised using linear wave theory in the same manner as described above. 

Measured Sea (Design Sea dataset) 

The most realistic elevation time series information is obtained from physical 

model testing without recourse to synthesised data. Thus all wave 

transformation processes are correctly accounted for. It is, however, unrealistic 

to expect this data to be available when applying the IS method. Indeed, where 

large design sea datasets available the advantages of IS method (primarily 

improved efficiency) are largely moot. In this case, this design sea data (test 

series 2AY and 4AY - §3.6.2) are available and may be used for cross-

comparison with the synthesised optimisation approaches explored above. 

16 The linear nature of this method (with constant y = 3.3) effectively renders the process 
dimensionless. The analysis has, therefore, only been conducted for single value of Hmo (= 1) and 
T(= 1). 
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6.3.2 Bivariate Bandwidth 

LSCV Methodology 

The LSCV optimisation technique minimises the value of the LSCV over a range 

of bandwidth values. In order to keep the computational requirements 

manageable the optimisation was conducted over a 7 x 7 grid for each bivariate 

distribution. The optimisation was conducted over the range 0.5•h0 - 1.0h0, 

where h0 is the oversmoothed bandwidth estimator (5.5.5). 

The bandwidth minimum was calculated, to a value of 3 significant figures, 

through cubic spline interpolation of the LSCV values. This process significantly 

reduced the computational requirements of the optimisation. A final cross check 

was made comparing the interpolated LSCV minima with the calculated LSCV 

value for this optimised bandwidth. This error was shown to be less the 1% in 

all cases. 

The LSCV results are illustrated below for the various scenarios described in 

§6.3.1. The mean value of the normal scale rule bandwidth estimator (h - 

§5.5.4) is also plotted. It should be recalled that the value of h has a constant 

ratio with overscaled bandwidth used as the upper bound of the optimisation 

(h / h,s  = 0.93). In each optimisation scenario 10 different realisations (or 

measurements) of the elevation time series were used to produce the inputs to 

the optimisation. Where a measured spectrum was used this was taken from a 

wave gauge measurement in shallow water from a single -4000 wave test (YA 

dataset - §3.6.2). This spectral measurement was taken from the first numbered 

test in each test series (i.e. 2AYcall and 4AYcall). 

The LSCV optimisation process was carried out for the four parameters 

identified in §6.2.3, namely: 

• Wave period (T) 

• Trough elevation (iT) 

• Crest elevation (ic) 

• Preceding-wave crest elevation (ic-i) 
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Measured Spectrum - Synthesised Sea 
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Figure 6.11 LSCV bandwidth values relative to normal scale rule bandwidth - Measured 
Spectrum (Reference: 2AYcall) with synthesised seas. Dashed lines represent mean. s = 

0.02. 
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Figure 6.12 LSCV bandwidth values relative to normal scale rule bandwidth - Measured 
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Measured Sea (Design Sea Dataset) 
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Figure 6.13 LSCV bandwidth values relative to normal scale rule bandwidth - Measured 
elevation time series (Test Series: 2AY) with synthesised seas. Dashed lines represent 
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Figure 6.14 LSCV bandwidth values relative to normal scale rule bandwidth - Measured 
elevation time series (Test Series: 4AY) with synthesised seas. Dashed lines represent 
mean. s, = 0.04 
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Bandwidth Analysis Summary 

The LSCV bandwidth values illustrated in Figure 6.11 to Figure 6.14 show 

significant levels of scatter for all bivariate data pairs. While some plots show 

reduced scatter there are no clear patterns between similar bivariate pairs. In 

some cases it is noted that the LSCV bandwidth value is at the upper boundary 

of the optimisation range. This result is somewhat unexpected as this boundary 

represents the bandwidth produced by the oversmoothing criterion (5.5.5). 

This represents a bandwidth for which the KDE is known to be sub-optimal 

(hence the term "oversmoothed"). It was therefore decided not to redefine the 

upper boundary as it was felt unwise to use bandwidth estimates which are 

known to be greater than the theoretical upper limit. None of the bandwidth 

values were on the lower boundary (half the oversmoothed bandwidth), 

although in some cases the minima were close to this lower boundary. 

The mean LSCV bandwidth values relative to the normal scale bandwidth 

(represented by the dashed lines in the above plots) are examined below for 

each analysis method (as described in §6.3.1). 

Second Variate 

Figure 6.15 Wave Period mean h Lscv  bandwidth for various bivariate distributions 
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Figure 6.16 Trough Elevation mean h Lxv  bandwidth for various bivariate distributions 
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Figure 6.18 Preceding-Crest Elevation mean h Lscv  bandwidth for various bivariate 
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The wave period bandwidth value for three different bivariate distributions are 

described in Figure 6.15. The agreement between the measured spectrum-

synthesised data (2AY - Synth & 4AY - Synth) and the measured data is quite 

good. The bandwidth obtained with the fully synthesised data shows the 

greatest disagreement with the measured data. 

This pattern is repeated to a lesser extent across the bandwidth values obtained 

for the trough elevation (Figure 6.16), crest elevation (Figure 6.17) and 

preceding crest elevation (Figure 6.18). The scatter in the results appears to be 

quite significant. 

6.3.3 Kernel Rotation 

The theory describing kernel rotation is described in §5.5.3. In simple terms, 

kernel rotation is equivalent to rotating the axes of the bivariate distribution. In 

doing so the kernels may be resized along these rotated axes, producing a more 

natural fit to the underlying data structure. 

The datasets obtained from the 2AY and 4AY datasets are examined here using 

the LSCV optimisation method. The kernels are rotated over the range -it/4 :5 B 

:5 1t/4. 101 linearly spaced rotation angles (0) were examined over this range. 
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The analysis was conducted for each of the ten —1000 wave seas in each 

dataset. It should be noted that this procedure was time-consuming, with each 

dataset (with 6 bivariate distributions) taking approximately 36 hours to 

analyse using a powerful remote computing facility 17. This limitation made it 

impractical to optimise the bandwidth values using the LSCV method, as this 

procedure would be required for each value of 0. Instead, the bandwidth was 

estimated for the rotated axes using the Normal Scale Rule (5.5.4). 

17 The computing time required is likely to approximately double for a standard desktop 
computer 
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Figure 6.19 LSCV analysis of kernel rotation angle for bivariate joint distributions. 2AY 

dataset (s = 0.02). 
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Figure 6.20 LSCV analysis of kernel rotation angle for bivariate joint distributions. 4AY 
dataset (s = 0.04). 

The results of the LSCV optimisation are illustrated above for the 2AY (Figure 

6.19) and 4AY (Figure 6.20) datasets. It is observed that there are significant 

differences in the LSCV values obtained for each individual sea, although in most 

cases the trends are similar. In some cases very clear optimums are identified 

(e.g. Trough - Preceding Crest). In other parameter-pairs, however, the 

minimum (indicating the optimum LSCV value) is not particularly well defined. 
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This is observed in the Crest - Preceding Crest piots for both datasets, where 

the individual sea results show considerable variability. This behaviour is also 

noted in the Crest - Period results obtained for the 2AY dataset. In this case the 

average LSCV value suggests the optimum value of 0 is close to it/4 (the upper 

boundary of the optimisation), while examination of Figure 6.19 suggests this 

optimised value is only very slightly preferable to a zero rotation angle. 

The optimised rotation angles are given below for the 2AY (Table 6.1) and 4AY 

(Table 6.2) datasets. These are the angles used in the application of the 

Importance Sampling method outlined in §6.4.3. 

sop = 0.02 Trough Crest Pre-Crest 

Period -0.707 0.738 0.361 

Trough - -0.361 -0.283 

Crest - - 0.047 

Table 6.1 LSCV optimised rotation angles measured in radians. MY dataset (s 0  = 0.02). 

sop  = 0.04 Trough Crest Pre-Crest 

Period -0.615 -0.141 -0.110 

Trough - -0.298 -0.330 

Crest - - 0.314 

Table 6.2 LSCV optimised rotation angles measured in radians. 4AY dataset (s 0  = 0.04). 

6.4 Importance Sampling Results 

6.4.1 Extreme Sea Filtering 

The 2Y and 4Y test series (3.6.2) were used to analyse the effectiveness of the 

Importance Sampling technique. It should be recalled that each test series 

consists of a "baseline" dataset (2AY & 4AY) consisting of ten —1000-wave 

Design Sea tests each produced from the same spectrum but with a different 

realisation of the elevation time series (i.e. with a different set of random phase 

angles). In addition to these Design datasets there are three sets of Extreme 

Seas for the two test series. These conform to Spectral Inflation Factors (5.3.1) 

of 1.1, 1.2 and 1.3. This relates to an increase in Hmo of 10%, 20% and 30% with 
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the steepness held constant at 0.02 and 0.04 for the 2Y and 4Y test series 

respectively. The lengths of these Extreme datasets was chosen to produce 

approximately similar numbers of overtopping waves (N0) as measured in the 

combined Design Sea dataset. It should be noted that the Extreme Sea tests are 

treated here as single continuous test, although for practical purposes they were 

measured as a number of shorter tests (of -500 or -1000 waves). The MATLAB 

software used to conduct the analysis takes account of discontinuities in the 

combined record to prevent incorrect analysis of "wave groups" that actually 

comprise measurements from two separate test records. 

The filtering process was carried out based upon the four parameters discussed 

in §6.2.3. The resulting bivariate KDE probability matrix (illustrated previously 

in Figure 5.10) produces a filtered Extreme Sea dataset using the process 

described in §5.4. The KDE distributions are produced from a single measured 

Design Sea test (-1000 waves), reflecting the methodology required for a "real 

life" application of the Importance Sampling application where only limited 

Design Sea data is likely to be available. The KDE bandwidth matrix is selected 

as a factor of the normal scale bandwidth, as described above (6.3.2). Three 

bandwidth estimation methods were used: 

Normal Scale Rule 

LSCV optimised parametric spectrum - synthesised sea ("LSCV - Synth") 

LSCV optimised measured spectrum - synthesised sea ("LSCV - 

Meas/Synth"). 

These methods are all available to the engineer applying the Importance 

Sampling technique with only limited Design Sea data. The influence of kernel 

rotation (6.4.3) was examined using elevation time series measured in the 

flume ("LSCV - Meas"). 

6.4.2 Extreme Sea Block Analysis (Optimised Bandwidth) 

The output of the filtered Extreme Seas was analysed using the "block analysis" 

approach outlined in §5.6.2. This involves dividing the filtered Extreme Sea 
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record into ten equal length segments (measured in terms of Nw). The outputs of 

these segments (i.e. the individual overtopping volumes) are then examined as 

if they are measured outputs from a number of discrete tests. It should be 

recalled that the length of the Extreme Sea datasets were chosen such that the 

total number of overtopping waves (N0) is similar to the measurements taken 

from the Design Sea dataset (see §3.6.2 for further information). 

The output from the blocks is examined in terms of V. and Vl% (the 

overtopping volume exceeded by 1% of overtopping waves). It is noted that the 

definition of Vm obtained from the filtered Extreme Sea output is problematic 

(5.6.2). The expected value of Vm will increase with test length due to the 

increased sample size (N0). The blocks comprising each filtered Extreme Sea 

output represent, in theory, the output from a longer Design Sea test, with the 

distribution shifted to produce more extreme events. Recalling, however, that 

each block is intended to approximate a —1000 wave Design Sea test, and that 

the upper bounds of the overtopping volumes are intended to be similar, it may 

be appropriate to examine the value of Vm in the conventional manner. The 

V. values for each block are therefore presented below for comparison with 

the Design Sea output 

In both cases (VIPC and Vl%) the filtered Extreme Sea block analysis output is 

expressed as a factor of the mean Design Sea output (i.e. the mean of V. or 

Vl%). Results are presented for both 2Y and 4Y test series (5op = 0.02 and 0.04 

respectively). Results using the three bandwidth estimator approaches 

described above (6.4.1) are discussed. 

Extreme Sea Filtering Level 

The filtering process was applied using each of the ten Design Sea tests (for both 

the 2AY and 4AY datasets). The level of filtering for each Extreme Sea dataset 

may be expressed by the proportion of waves remaining after the filtering 

process (NFilter1 / N). This ratio may describe either the full dataset (Nw) or the 

overtopping waves only (N0). These "filtering coefficients" are illustrated in the 

plots below. In each case the data points represent the average filtering 
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coefficient for each dataset with the error bars describing the range of values 

obtained (representing the spread across the ten Design Sea tests used as the 

input to the filtering process). 
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Figure 6.21 Filtering level for all measured waves (N w ) for Extreme Seas in the 2Y dataset 

1.000 

0.950 

z 0.900 

0.850 

2 0.800 

0.750 

0.700 

NW 	 Normal Scale 

s0 = 0.04 	 •LSCV - Synth 

ALSCV - Meas/Synth 

I 
1.1 	 1.2 	 1.3 

Spectral Inflation Factor [-] 

Figure 6.22 Filtering level for all measured waves (N w) for Extreme Seas in the 4Y dataset 

The level of filtering for the complete datasets (Nw) is described in Figure 6.21 

(2Y: Sop = 0.02) and Figure 6.22 (4Y: s, = 0.04). The level of filtering appears to 

be broadly similar for the two datasets. The lowest level of spectral inflation 

(1.1) shows approximately 95% of the waves retained. Increasing the spectral 

inflation value to 1.2 gives a filtering coefficient of —90%. The strongest filtering 
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occurs, as expected, in the 1.3 spectral inflation dataset with approximately 80% 

of the dataset retained after filtering. These filtering coefficients are expressed 

more precisely in Table 6.3. 

Dataset 	 Bandwidth Method Spectral Inflation Factor 

1.1 1.2 1.3 

2Y 	 Normal Scale 0.954 0.907 0.824 

LSCV - Synth 0.945 0.892 0.805 

LSCV - Meas/Synth 0.939 0.884 0.797 

4Y 	 Normal Scale 0.969 0.916 0.830 

LSCV - Synth 0.960 0.901 0.806 

LSCV - Meas/Synth 0.964 0.909 0.820 

Table 6.3 Average N filtering coefficient for 2Y and 4Y test series. 

The filtering coefficients obtained for the three bandwidth selection methods 

are broadly similar. The normal scale rule KDE distributions give rise to the 

least severe filtering. This is due to the LSCV estimated bandwidths having 

values below that of the normal scale rule (see § 6.3.2). The smaller bandwidths 

will produce probability distributions which are less "spread" at the extreme, 

therefore resulting in slightly fewer events passing through the filter. 

The variation between the size of the filtered Extreme Sea outputs (using 

different Design Sea inputs) is typically of the order of 1-2%, with the largest 

variation seen for the most Extreme Sea (spectral inflation factor of 1.3). 
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Figure 6.23 Filtering level for overtopping waves (N) for Extreme Seas in the 2Y dataset 
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Figure 6.24 Filtering level for overtopping waves (N 0 ) for Extreme Seas in the 4Y dataset 

The level of filtering for the overtopping wave datasets (N0) is described in 

Figure 6.23 (2Y: sop = 0.02) and Figure 6.24 (4Y: Sop = 0.04). In this case the level 

of filtering varies considerably between the 2Y and 4Y test series, contrasting 

with the agreement observed for the N filtering measure. In the case of the Sop 

= 0.02 measurements, between 40% and 50% of the overtopping waves are 

retained. It is intuitive that the filtering for the overtopping waves (N0) be 

more severe than for the entire dataset (Nw) as the majority of overtopping 

events will be found at the extremes of the distributions where the filtering is 

applied. Nevertheless, the level of filtering observed here is very high. The 

filtering is more moderate for the steeper test series (Sop = 0.04) with 50% - 

80% of the overtopping waves retained. The filtering coefficient is also more 

linear in relation to the spectral inflation factor. The average filtering 

coefficients for both test series are given in Table 6.4. 

Dataset Bandwidth Method Spectral Inflation Factor 

Dataset 1.1 1.2 1.3 

2Y Normal Scale 0.518 0.524 0.415 

LSCV - Synth 0.464 0.475 0.365 

LSCV - Meas/Synth 0.412 0.442 0.347 

4Y Normal Scale 0.836 0.678 0.539 

LSCV - Synth 0.805 0.636 0.497 

LSCV - Meas/Synth 0.816 0.653 0.519 

Table 6.4 Average N filtering coefficient for 2Y and 4Y test series. 



The sensitivity of the filtering coefficient to the input Design Sea is greater for 

N0 data than observed with N coefficients. The N0 filtering coefficient varies 

by 7% - 10% in the case of the 2Y test series, compared to a maximum of --2% 

for the N data. The variability is smaller for the 4Y test series with a 

disagreement of 3 % - 6% from the mean. 
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Figure 6.26 V max  block analysis (LSCV - Meas/Synth Method). 4Y test series. "X" denotes 
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Examples of filtered Extreme Sea Vnim outputs are illustrated above for the two 

test series (2Y: Figure 6.25; 4Y: Figure 6.26). These results only illustrate the 

output obtained using the "LSCV - Meas/Synth" bandwidth estimator method 

for clarity. It should be recalled that a single Design Sea measurement is used as 

an input to the filtering process. The results expressed here use the same input 

sea in all cases 18. The sensitivity to the Design Sea input is examined below 

(6.4.4). 

The results obtained from the Extreme Seas show broad agreement with the 

Design Sea output for both test series. The agreement in the 2Y test series (Sop = 

0.02) shows the poorest agreement, particularly for the 1.1 spectral inflation 

dataset (213Y). The output obtained here is non-conservative, although it 

remains within a factor of two of the mean Design Sea output. It is noted above 

(Figure 6.23) that the level of filtering applied to this dataset is more severe 

than would intuitively be expected and stands apart from the approximately 

linear filtering coefficient trend seen in the 4Y dataset (Figure 6.24). The mean 

results obtained for the 1.2 and 1.3 spectral inflation datasets (2CY and 4DY) 

show good agreement with the Design Sea data, particularly in the case of the 

1.2 spectral inflation factor. It is observed that the variability of the results 

obtained from the Extreme Sea datasets tends to rise for the larger spectral 

inflation factors. 

The mean Vm values obtained for the 4Y test series (Figure 6.26) show good 

agreement with the Design Sea dataset. The level of uncertainty observed in the 

Extreme Seas is broadly similar to Design Sea dataset. 

18 Test references 2AYcal8 and 4AYcal7 for the 2Y and 4Y test series respectively. 
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Figure 6.27 Vmax  block analysis (multiple bandwidth methods). 2Y test series. Emphasised 

data points denotes mean for each Extreme Sea dataset. 
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The results illustrated for the two datasets (Figure 6.25 and Figure 6.26) are 

reproduced above with additional data representing the output from the two 

other bandwidth estimation methods ("Normal Scale Rule" and "LSCV-Synth"). 

The emphasised, enlarged, data points represent the mean value for each 

filtered Extreme Sea dataset. 

it is observed that the outputs from the different filtering methods are in close 

agreement for both the 2Y test series (Figure 6.27) and the 4Y test series 

(Figure 6.28). In both cases the mean Vva1ue obtained with the Normal Scale 

Rule is slightly higher than the LSCV bandwidth methods. This is likely related 

to the less severe filtering applied by the "smoother" probability distributions 

obtained from these Normal Scale probability distributions (6.4.1). The results 

obtained from both LSCV estimation methods show very close agreement 
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Examples of filtered Extreme Sea Vl% outputs are illustrated above for the two 

test series (2Y: Figure 6.29; 4Y: Figure 6.30). These results only illustrate the 

output obtained using the "LSCV - Meas/Synth" bandwidth estimator method 

for clarity. 

The results obtained for the 2Y test series (Figure 6.29) underestimate the 

overtopping volume for both 1.1 and 1.2 spectral inflation factor datasets (213Y 

and 2CY) respectively. The results obtained for the most extreme dataset (2DY, 

spectral inflation factor of 1.3) show close agreement with the Design Sea 

values. This differs somewhat from the trend observed in V. data illustrated 

previously, where the largest volumes were associated with 1.2 spectral 

inflation factor. In all cases the mean value of V1% is within a factor of two of the 

Design Sea data, although it is non-conservative in this example. The variability 

associated with the Extreme Sea dataset is somewhat larger than observed in 

the Design Sea. 

The results for the 4Y test series (Figure 6.30) show closer agreement with the 

mean value of Vl% within 10 - 15% of the mean Design Sea value. The variability 

of the measurements is similar to those observed in the Design Sea tests. 
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The three bandwidth estimation methods are compared in Figure 6.31 (2Y test 

series) and Figure 6.32 (4Y test series). The methods produce broadly similar 

outputs, as observed with the Vmax results discussed above. The Normal Scale 

Rule method gives the most conservative estimate of Vl% in all cases except the 

most Extreme Sea in the Sop = 0.02 dataset (2DY). There is minimal 

disagreement between the LSCV estimation methods. 
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6.4.3 Extreme Sea Block Analysis (Optimised Kernel Rotation) 

The kernel rotation angles detailed in §6.3.3 are compared here to results 

obtained using the Normal Scale Rule bandwidth estimator. 

Extreme Sea Filtering Level 
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Figure 6.33 Filtering level for all measured waves (N e) for Extreme Seas in the 2Y dataset 
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Figure 6.34 Filtering level for all measured waves (N w) for Extreme Seas in the 4Y dataset 
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Figure 6.35 Filtering level for overtopping waves (N) for Extreme Seas in the 2Y dataset 

1.000 

0.900 

0.800 

0.700 

0.600 

0.500 

0.400 

0.300 

0.200 

N 	 • Normal Scale 

0.04 	
4 Rotated 

T 
I 

- 

1.1 	 1.2 	 1.3 

Spectral Inflation Factor [-] 

Figure 6.36 Filtering level for overtopping waves (N) for Extreme Seas in the 4Y dataset 

It is observed in the piots above that the results obtained using the kernel 

rotation angle are very similar to those obtained using the conventional Normal 

Scale Rule. This is particularly true for the results obtained from the 4Y test 

series (Sop = 0.04). Where there is an observable difference the filtering process 

is slightly less severe in the rotated kernel case. 
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Figure 6.37 	block analysis (rotated bandwidth method). 2Y test series. Emphasised 
data points denotes mean for each Extreme Sea dataset. 
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Figure 6.38 V, 	block analysis (rotated bandwidth method). 4Y test series. Emphasised 
data points denotes mean for each Extreme Sea dataset. 
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Figure 6.39 V j%  block analysis (rotated bandwidth method). 2Y test series. Emphasised 
data points denotes mean for each Extreme Sea dataset. 
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Figure 6.40 V j%  block analysis (rotated bandwidth method). 4Y test series. Emphasised 
data points denotes mean for each Extreme Sea dataset. 
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The Vmax block analysis results are detailed above for 2Y (Figure 6.37) and the 

4Y (Figure 6.38) test series. There is little observable difference between the 

results, mirroring the behaviour of the filtering coefficient results outlined 

above. 

This behaviour is repeated for the Vl% results (2Y: Figure 6.39; 4Y: Figure 6.40). 

The results obtained from the rotated kernel filtering process are, to all intents 

and purposes, identical to those obtained with the Normal Scale Rule. 

6.4.4 Sensitivity to Design Sea Input 

The results presented above are based upon a single Design Sea test selected 

from each dataset (2AY and 4AY). The mean extreme value (Vmax or Vl%) is 

presented for each filtered Extreme Sea. The sensitivity of this "mean - extreme" 

value to the Design Sea input (used to produce the filtering probability 

distributions) is examined here. 

The sensitivity to the Design Sea is presented below as the "Variation from the 

Baseline". The "baseline" value is simply the mean V. or Vl% value obtained 

for that particular filtered Extreme Sea taken across all ten Design Sea inputs. 
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Figure 6.41 Variation in mean V n,, with changing Design Sea Input. 2Y test series. 
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Figure 6.42 Variation In mean V,, x  with changing Design Sea Input. 4Y test series. 

The variation in V. is illustrated above for the sop = 0.02 (Figure 6.41) and Sop 

= 0.04 (Figure 6.42) test series. The results show markedly different behaviour. 

The 2Y test series show variations of a factor of 1.5 -2 from the baseline for the 

larger spectral inflation factors. The variation is considerably smaller for the 

lowest spectral inflation factor, with a variation of a factor of approximately 1.2. 

The sensitivity to the Design Sea input is considerably smaller for all results in 

the 4Y test series. In this case the results are spread by a factor of 1.10 - 1.15 

from the baseline. 



V1%  Sensitivity 

4 	 - ____________ 

cc 

0.5 

0.25 

1.1 	 1.2 	 1.3 

Spectral Inflation Factor [-J 

Figure 6.43 Variation in mean V 1, with changing Design Sea Input. 2Y test series. 
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Figure 6.44 Variation in mean V j%  with changing Design Sea Input. 4Y test series. 

The sensitivity of the Vl% to the input sea condition is very much the same as 

those observed in the V. results. Given the close correlation of Vl% to V. this 

outcome is expected. 
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6.4.5 Efficiency Gains 
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Figure 6.45 Extreme Sea dataset test lengths relative to the Design Sea dataset. 

The overreaching aim of the Importance Sampling technique is to increase the 

efficiency of random wave modelling. In real terms this is measured by the 

reduction in test length. The relative test lengths (in terms of N) of the Extreme 

Seas (prior to filtering) are illustrated in Figure 6.45. It should be recalled that 

these test lengths were chosen such that the Extreme Sea datasets would 

contain a similar number of overtopping events as the Design Sea dataset. 

If the results outlined in this chapter are deemed acceptable it is seen that the 

Importance Sampling technique potentially offers very significant saving in 

modelling time. The use of modest spectral inflation (I = 1.1) almost halves the 

test length. In the largest Spectral Inflation scenario the test length is reduced 

below 30% of its original length. 

6.5 Summary 

The Importance Sampling method outlined in §5 is applied here using small 

scale overtopping measurements (3). This includes an analysis of the Kernel 

Density Estimation (KDE) optimisation techniques also described in the 

previous chapter. The efficiency gains achievable with the Importance Sampling 

technique are quantified primarily using the baseline values detailed in §4. The 
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influence of certain assumptions and parameters (e.g. spectral inflation factor) 

are examined along with the sensitivity to the choice of Design Sea. The 

obtained results suggest it is viable to utilise Extreme Sea tests with durations of 

25% - 60% of the parent Design Sea, depending on the level of spectral inflation. 

The significance of these findings are discussed in §7. 
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7Discussion 

7.1 Overtopping Measurement and Behaviour 

The uncertainty inherent in overtopping measurements was examined based 

upon experimental results. In contrast to earlier studies these experimental 

results involved repeat tests using the same input spectrum and experimental 

setup. A detailed analysis of these results is outlined in P.S. 

7.1.1 Measured Now  and Vm Uncertainty 

The number of overtopping waves (N0) and the peak individual overtopping 

volume (V) are parameters that may be determined directly from 

overtopping measurements (i.e. they are not inferred from fitted probability 

distributions). The value of N ow  is of interest as it is used in the calculation of a 

number of other overtopping parameters. The value of N0 is relevant here if 

the value of Vm is to be inferred from a particular probability distribution (e.g. 

EurOtop guidance). The probabilistic nature of the overtopping response gives 

rise to larger expected values Of V max  as Now increases. 

The published guidance (EA-Manual and EurOtop) uses the two-parameter 

Weibull distribution to describe individual overtopping volumes. The impact of 

the error in Now is twofold. Firstly, the probability associated with V is 

defined by N0. If, for example, N0 = 100, then V mm  = Vl%. Secondly, the Weibull 

scale parameter is a function of V , which is, in turn, a function of N0 and V0i 

(the total overtopping volume collected over the measurement period). 

202 



The variability in V. and N0 was examined in §4. The analysis was based on 

two datasets with s, values of 0.02 and 0.04 (datasets 2AY and 4AY 

respectively, see §3.6.2). Ten repeat tests were conducted for each dataset, each 

conforming to the same spectrum but with a different realisation of the 

elevation time series (i.e. with a different set of random phaseang1es). The tests 

were designed to produce overtopping ratios (N0/N) of approximately 5% 

under conditions which were predominately pulsating, but with overtopping 

regimes close to where impulsive conditions would be expected. Qualitative 

observations of the experiments appeared to confirm this behaviour. These 

tests also form the Design Sea datasets used in exploring the Importance 

Sampling technique (7.2). - 

There is little published literature on the uncertainties associated with 

overtopping measurements. The magnitudes of these uncertainties are often 

informally referred to within the coastal engineering community as being with a 

"factor of two" from the mean. This belief would appear to well justified based 

upon the results collected here. The value of Now  varied by slightly less than a 

factor of two from the mean for both datasets. While significant in its own right, 

the influence of this uncertainty is reduced when calculating the expected peak 

individual overtopping volume from the EurOtop Weibull distribution, relating 

to an error of approximately ±30% in V. 

The "factor of two" rule also stands up well when examining the variability in 

V. for the two datasets. All but one test result in each dataset was within a 

factor of two of the mean V max  value. 

7.1.2 Weibull Distribution and E(V m )/ V Uncertainty 

The two-parameter Weibull distribution is well established for the description 

of individual overtopping volumes, as noted above. The EA and EurOtop 

manuals give empirical guidance on the selection of these Weibull parameters 

for engineering design purposes. While it is not the purpose of this research to 

validate this guidance some limited comparisons can be made with the 

established approaches, as discussed below. 
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The use of fitted parametric distributions (e.g. Weibull) can be useful in the 

analysis of collected datasets. Whilst exceedance probabilities (V xo,b) can be 

inferred directly from the data, this process is unreliable, or impossible, with 

small datasets. In a dataset, for example, with 20 data it would not be possible to 

directly determine an exceedance probability below Vs%,  and this result would 

be subject to uncertainty borne by being determined from a single sample. The 

use of fitted distributions potentially negates this effect. This same approach 

may also be applied to the estimation of V. If determined from a fitted 

distribution the expected value of V. (EW m )) is no longer based upon a single 

measurement, but is determined by sample size taken as a whole. 

Weibull distributions were fitted to ten seas in the two datasets (2AY and 4AY). 

These datasets typically consisted of 20 - 40 samples. Examination of the 

Weibull parameters (scale (a) and shape (b)) show significant scatter with 

variations of up 40-60% from the mean. The scatter is slightly greater for the 

shape parameter values. The significance of this scatter is apparent when 

examining the resulting individual volume parameters. The values of E(V) 

show no reduced scatter when compared to the measured Vm values, and are 

actually more widely distributed for the Sop = 0.02 dataset. 

The scatter observed in V. results is also present in the fitted exceedance 

levels. The scatter in Vl% is of the order of a factor of 2 - 3 from the mean. This 

scatter is not restricted to low exceedance probabilities, with similar behaviour 

observed at the 50% quantile (median) level. 

There appears to be no appreciable advantage in using fitted Weibull 

distributions to calculate V. in the datasets measured here. It is also noted 

that the values of V. (as measured) and E(V) are closely correlated. This is 

likely due to the small sample sizes employed. This increases the influence that 

single data points (i.e. V) will have on the Weibull fitting procedure. These 

small sample sizes are, however, typical of a challenging coastal engineering 

scenario. Structures with high permissible discharge rates (i.e. large value of 

N0) are less likely to require accurate quantification of the extreme individual 

204 



overtopping volumes. Seawalls and breakwaters protecting, for example, 

important infrastructure or areas with public access will be designed for low 

discharge rates. The small sample sizes employed here are not, therefore, 

atypical. 

7.1.3 Application of the Extreme Value Distribution 

While the use of fitted Weibull distributions appear to offer no advantage in 

terms of reducing uncertainty, they do present some useful opportunities to 

examine the sensitivity of the overtopping response to certain input parameters 

(e.g. N0). 

The expected value of V. was examined for a number of Weibull distribution 

shape parameters with varying values of N0. It is important at this stage to 

recall the definition of the as calculated from the Weibull distribution. The 

EA and EurOtop manuals define the probability of an individual overtopping 

volume exceeding V as: 

1 
P( ~tV)=—. 

- 

 Now  
(86) 

The volume associated with this probability is calculated from a given Weibull 

distribution using the formula: 

VMax = a (ln(N0))1/b. 	 (87) 

This definition of the extreme value is, however, somewhat unconventional. The 

relationship actually describes the exceedance probability associated with the 

largest event in the record, not the most probable value of the largest event. 

The expected value of Vmax is described better by employing an extreme value 

distribution. As the name suggests, this method produces a probability 

distribution of V1 values. If the Cumulative Probability Distribution (CDF) of 

the individual overtopping volumes (F(V)) is known, the CDF of V (G(V)) may 

be calculated using the relationship: 
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G(v) = (F(v))N0v . 	
(88) 

Calculating the Probability Density Function (g(v)) from the CDF allows the 

expected value of V. to be expressed thus: 

fc oE(11) 
 = 	

v g(v)dv. 	 (89) 
0 

This approach also has the advantage that the variance, and therefore the 

standard deviation (a), may be extracted from the extreme value distribution: 

00  Var(V,,) = a2  = 	- Efl)} 2  g(v)dv. 	 (90) 

The estimates of V. obtained from the extreme value distribution are higher 

than those using the EA-Manual/EurOtop methodology. In small datasets (N0 < 

10) the extreme value may increase E(Vm) by a factor of two for Weibull 

distributions with a small shape parameter (< 0.6). It is more typical, however, 

for the increase to be of the order of a factor of 1.2 - 1.5 for samples of '-50 

measurements. In tank testing terms this corresponds to a 1000 wave test with 

5% of the waves overtopping. This is typical of the tests conducted in this 

research. 

The ability to estimate the standard deviation for a particular distribution 

allows a quantitative estimation of the expected uncertainty associated with 

various shape parameter values and levels of N0. It was observed that the 

magnitude of the standard deviation relative to V. (i.e. the coefficient of 

variation (Cu)) increased considerably for low values of N0. The value of C v  was 

greater than 0.7 for N0 < 10 compared to C v  < 0.4 for N0> 50. The sensitivity 

to the shape parameter was shown to be comparatively small with a difference 

in Cv of approximately 0.1 across the range of shape parameters given the EA-

Manual. The large predicted standard deviations are corroborated by the 

scattered V. results recorded in the physical model programme. 
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7.1.4 Comparison to Existing Guidance 

Two engineering guidance manuals have been referred to frequently in this 

research: the EA-Manual (1999) and EurOtop (2007). These publications use 

the Weibull distribution to estimate the value of Vm, using the prediction 

formula described above (Equation (88)). The guidance is given in the form of 

the Weibull scale and shape parameters. A methodology is also outlined for 

estimation of N0 (see §2.4.1 for more information). 

Although the methodology is broadly similar in both manuals, the EA-Manual 

gives a matrix of scale and shape parameters with the appropriate value 

dependent upon the predominant overtopping regime (i.e. breaking or non-

breaking) and the offshore peak steepness (sop). The EurOtop manual takes a 

simpler approach by defining only a single shape parameter, with the scale 

parameter described as a function of V. The dependence on the overtopping 

regime is therefore removed. While this approach may appear less advanced 

than the EA-Manual guidance the data collected in this research would appear 

to support this approach. The shape parameters recorded in the repeat tests 

(datasets 2AY an 4AY) show considerable variability, as discussed above. Shape 

parameters over the range 0.4 - 1.6 were recorded. This is considerably greater 

than the range of shape parameters given in the EA - Manual (0.66 - 0.85). 

Given the level of uncertainty in the Weibull distributions the pragmatic 

approach would appear to be to adopt a single shape parameter, as taken by the 

EurOtop guidance. This value (b = 0.75) appears to offer good agreement with 

the datasets recorded here. 

It should be noted that it was not the intention of this research to validate the 

EA-Manual or EurOtop guidance. It is possible that more extensive testing 

would suggest that the approach of the EA-Manual, with its dependence on the 

overtopping regime and 5op, is preferable. This testing would, however, have to 

take account of the variability inherent in the measurement of overtopping data. 

Repeated or long duration, tests would be required to ensure sufficient 

confidence in the fitted distributions. It would not be satisfactory to quantify the 
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scale or shape parameter based upon a single iteration of a particular test setup, 

except possibly in cases where the dataset is large (high Now). 

7.2 Importance Sampling 

7.2.1 Method Overview 

Modelling Inefficiency 

The analysis outlined above details the high level of uncertainty associated with 

the prediction and measurement of extreme overtopping volumes, both in 

terms of the peak individual volume (Vrn) and low exceedance volumes (e.g. 

Vl%). In addition to this uncertainty, the physical and numerical modeller must 

also contend with the inefficiency of the modelling process when testing using 

random seas. Standard practice is to use elevation time series' consisting of a 

nominal 1000 waves. Only a small number of waves will be significant for the 

quantification of the extreme response. In the case of the measured V. only 

one wave, by definition, will be of interest. 

This inefficiency is potentially costly. In the relatively small scale wave flume 

facility used in this research (3.2.1) 1000 waves equates to a test length of 

approximately 20 minutes. In a large experimental facility the durations may be 

much longer. At the GWK facility in Hanover, Germany, a 1000 wave test with a 

mean wave period of —8 seconds will take —2 hours to complete. A more typical 

test will take —1 hour. Large test matrices may therefore be costly in terms of 

facility hire and personnel cost. Regardless of the financial considerations 

(which may not be particularly relevant in an academic environment), it is 

attractive to increase the proportion of useful data obtained for a test 

programme. 

Deterministic Modelling 

If a functional relationship can be established between the incident waves and 

the overtopping response then deterministic approaches become attractive. A 

deterministic approach involves generating a particular wave (or wave group) 

rather than the long random elevation time series used in conventional testing. 
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The difficulty with this approach is twofold. Firstly, the generation of the 

functional relationships is likely to require considerable research into the wave 

interaction with the structure or device in question. This may reduce the 

flexibility of the technique when applied to new applications. Secondly, for 

coastal applications the transformation of the wave group as it propagates into 

shallow (or intermediate depth) water must be taken into account. At present 

no established deterministic modelling procedure exists, although recent 

research is promising (Jayaratne et al., 2008). 

While deterministic modelling is likely to come to further prominence in the 

future, random wave modelling still offers many important features for the 

modelling of coastal structures. The strongest advantage of random wave 

modelling is the non-requirement for a functional relationship describing the 

response. It is instead assumed that within a long enough test series the 

response will be adequately characterised. Indeed, the development of 

functional relationships for deterministic modelling purposes is likely to be 

dependent on random wave modelling. 

The development of functional relationships may be complicated by the 

potentially non-linear response at the structure. Waves may overtop the 

structure in a non-breaking or breaking (violent) manner. The "sudden switch" 

which may be observed as waves change regime will require different wave 

groups to reproduce the appropriate response. This non-linear behaviour may 

impair the quality of fit of the parametric distributions (e.g. Weibull) to the 

measured data. If the prime reason for the physical modelling programme is to 

quantify the extreme behaviour it is not particularly desirable to have a fitted 

distribution which is dominated by events corresponding to a different 

response mode. 

Importance Sampling Philosophy 

These considerations led to the development of the Importance Sampling 

technique outlined in this thesis. The challenge here is to increase the 

proportion of "extreme" events occurring within a random sea. This was to be 



achieved without recourse to detailed functional relationships. The aim was to 

produce a robust, flexible technique which retains the most useful features of 

conventional random wave testing while reducing its inherent inefficiency. 

In order to produce more extreme events it is necessary to use a more Extreme 

Sea. The Extreme Sea is produced from the Design Sea (used in conventional 

testing) based'on the Spectral Inflation process (5.3.1). This process "scales" 

the Design Sea spectrum in both space (in terms of HmO) and time (in terms of 

Tn). This Extreme Sea will clearly produce events more extreme than found in 

the Design Sea. The challenge of the Importance Sampling technique is to 

remove these overly extreme events. The result is a "filtered" Extreme Sea 

dataset containing waves/events representative of the Design Sea, but with the 

distribution shifted to produce more of the largest events. 

The filtering technique is a probabilistic process which identifies waves (rather 

than events) that are outwith the expected conditions for the Design Sea. This 

requires the following: 

• A method for describing individual waves and wave groups. 

• Input data describing the Design Sea conditions. 

• A method for estimating probability distributions based on the Design 

Sea data. 

The Importance Sampling technique does not require that the shallow water 

transformation processes be understood in detail. The Spectral Inflation process 

is applied offshore (e.g. as input to the wavemaker). The filtering process is then 

based upon measurements taken in shallow water. In doing so the method 

retains the strengths of a conventional stochastic approach (i.e. random wave 

modelling). Deterministic modelling (e.g. NewWave) requires a more complete 

understanding of these transformation processes. 
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7.2.2 Method Application 

Design Wave Group 

The Importance Sampling technique takes as an input a subset of individual-

wave characterisation parameters defining the "Design Wave Group". Unlike the 

conventional definition of a "Design Wave" these parameters are not quantified 

at this stage. Rather, the upper limits are determined based upon a series of 

bivariate probability distributions produced from Design Sea data measured in 

shallow water. 

In the absence of a well-described functional relationship there is some 

difficulty in determining the parameters to be used to characterise these Design 

Wave groups. It is also desirable to minimise the number of parameters to 

prevent the Importance Sampling technique from becoming unwieldy and 

computationally expensive. In its simplest form a wave may be defined in terms 

of elevation and time by its zero-downcrossing wave-height and wave-period. 

The wave-height has the drawback, however, that it is not measured from a 

fixed reference plane. The definition may be further refined, therefore, by 

substituting the maximum crest elevation and trough elevation for the wave-

height. These measures are taken from the still water level and will therefore 

remain fixed relative to the seawall structure. 

A final parameter used in the definition of the Design Wave group is the 

maximum crest elevation of the preceding wave. The influence of wave 

groupiness on wave overtopping is not a well understood (or studied) 

phenomenon. There is some evidence observed here that large preceding wave 

crests tend to result in larger individual overtopping volumes, particularly in 

steeper seas. It is thought that this behaviour may be related to the interaction 

of the reflected preceding wave with the overtopping wave, perhaps "tripping" 

the wave into breaking. This phenomenon would perhaps form an interesting 

topic for future research. 
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The final Design Wave group was therefore defined by the following 

parameters: 

• Wave period (T) 

• Trough elevation (iT) 

• Crest elevation (ic) 

Preceding-wave crest elevation (ic-i) 

Importance Sampling Filtering 

The Design Wave Group parameters form the input to the Importance Sampling 

filtering technique. An array of six bivariate joint distributions (in the case of 

four input parameters) describes the interactions between each parameter pair. 

These distributions are produced based upon Design Sea measurements 

collected in shallow water. The solution used to formulate these distributions is 

Kernel Density Estimation (KDE), a non-parametric technique that is driven 

solely by the collected dataset. This is attractive as it retains the flexibility of the 

technique should different a different set of Design Wave parameters be 

selected. 

The mathematics of KDE are described in detail in §5.5. In simple terms a KDE 

probability estimation is produced by the summation of many individual 

kernels, one for each sample in the dataset. The size and shape of these kernels 

will influence the form of the final probability distribution. In this research two 

elements were examined: 

• The "bandwidth" parameters, describing the size of the individual 

kernels along the x and y axes of the bivariate distributions. 

• The orientation of the kernel. The kernel is resized along a rotated set of 

axes. 

These elements were optimised using a technique known as Least Squares 

Cross Validation (LSCV - §5.5.5). This technique was found to be 

computationally highly expensive and the optimised bandwidth parameters 
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appeared to show poor convergence. This convergence was lessened when 

determining the optimum rotation angle. 

The Importance Sampling technique was applied using the optimised 

bandwidth parameters and rotation angles. The bandwidth parameters were 

also calculated using the "Normal Scale Rule" method. The normal scale rule is 

quickly and simply determined from the data (without the need for costly 

optimisation) but is based upon the assumption that the sample is normally 

distributed. This assumption may not be justified here. 

After estimation of the bivariate distributions the low probability events (> 

99.9% non-exceedance) are removed from the Extreme Sea dataset. The results 

of the experimental programmed are discussed below. These results showed 

little sensitivity to the different bandwidth optimisation methods. Changes in 

kernel rotation angle also produced little difference in the outcome. 

Measurements taken with the Normal Scale bandwidth and zero - rotation 

angle showed' a variation of only a few percent from the optimised values. This 

result is somewhat surprising as kernel density estimation is known to be 

highly sensitive to the kernel shape. The explanation may lie in the relative level 

relative of filtering applied to the Extreme Sea datasets. It is noted that the 

number of overly-extreme waves removed the Extreme Sea dataset is broadly 

similar for the different KDE optimisation techniques. The definition of the 

extreme of the distribution appears to be fairly insensitive to the range of 

bandwidth parameters used in this research. 

It is suggested, based upon the above observations, that the Normal Scale rule is 

adequate for the estimation of the bandwidth parameters and that there is little 

benefit in applying kernel rotation. This solution avoids the need for costly, and 

perhaps ultimately impractical, use of the LSCV optimisation technique. 
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7.2.3 Achievable Gains 

Importance Sampling Test Programme 

The Importance Sampling technique was examined using two test series with 

peak offshore steepnesses (Sop) of 0.02 and 0.04. Each test series consisted of 

ten baseline Design Sea tests of —4000 waves and three sets of Extreme Sea 

tests. 

The Design Sea tests were conducted under predominately non-breaking 

conditions, although violent breaking events were observed for both test series. 

This suggests the largest overtopping volumes may not be associated with non-

breaking waves. 

Spectral Inflation values of 1.1, 1.2 and 1.3 were applied to produce the Extreme 

Seas. The lengths of the Extreme Sea datasets (in terms of N) were chosen to 

produce similar number of overtopping events (N0) to the Design Sea dataset. 

The Importance Sampling technique was applied to the Extreme Sea dataset 

using various KDE optimisation methodologies. As the outputs obtained from 

these methods were broadly similar no distinction will be made between the 

results in the discussion below. 

The analysis of the Extreme Sea datasets was conducted by dividing the wave 

record into 10 equal length blocks, effectively creating the equivalent of 10 

short random seas. The overtopping outputs in these blocks were then 

compared to the overtopping measurements from the 10 long Design Sea tests. 

This analysis was conducted for both Vmax and Vl% measurements. 

The outputs from the Importance Sampling method (V and Vl%) are broadly 

similar to the results obtained from the conventional Design Sea tests. The 

scatter in the results is typically of the order of factor of two from the mean. The 

overall agreement with the Design Sea is within a factor of 1.5 from the mean. It 

is noted, however, that the results are not necessarily conservative. The 

Importance Sampling technique may potentially underestimate (or 
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overestimate) the extreme overtopping volumes. This uncertainty is, based 

upon the results collected here, within the range typically accepted for 

overtopping quantification. 

The Spectral Inflation factors used here produced Extreme Sea datasets 

significantly shorter than the Design Sea case. A fairly modest spectral inflation 

factor of 1.1 approximately halved the test length, while the largest spectral 

inflation level produced a test length approximately a quarter of the length of 

the conventional tests. This equates to a 10,000 wave test series being 

replicated using only 2500 waves, plus the 1000 waves required to define the 

Design Sea state. Further efficiency gains could be achieved if the requirement 

to measure the Design Sea was removed. The possibility of achieving this is 

discussed briefly below. 

7.2.4 Noted Limitations 

The Importance Sampling technique, in its current form, requires measured 

data describing the Design Sea. This takes the form of an elevation time series 

measured in shallow water thereby describing the incident wave climate at the 

structure. 

If the Importance Sampling technique is to offer significant efficiency savings it 

is required that these Design Sea test are kept relatively short. It was decided 

that a single Design Sea test (-1000 waves) be used as the input to the 

Importance Sampling analysis. If this technique is applied in a "real world" 

scenario this may represent the test used to characterise the mean response. 

In this case, ten realisations of the Design Sea were available for the two 

datasets (Sop = 0.02 and 0.04). Examining the sensitivity of the Importance 

Sampling technique to the input Design Sea revealed differing behaviour 

between the two test series. In the Sop = 0.02 test series, varying the choice of 

Design Sea altered the mean V. and Vl% values by a factor of 1.5 - 2.0. This is 

clearly significant, although it is within the "factor of two" uncertainty 

commonly quoted for overtopping measurements. 
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The sensitivity of the Sop = 0.04 datasets to the Design Sea input condition is 

somewhat smaller. The variation in the mean V nm  and Vl% values is typically of 

the order of 1.10-1.15 from the mean. 

7.3 Further Work and Devetopment 

The Importance Sampling technique, as outlined here, is intended as a first 

iteration of the method. In effect, it is a feasibility study examining its suitability 

for deployment in commercial and academic research fields. 

One recognised drawback is the requirement for a measured Design Sea dataset 

for the production of the filtering probability distributions. Removing this 

element would improve efficiency (less testing) and flexibility. Extreme Sea 

datasets could be reanalysed using different Design Sea test conditions without 

recourse to tank testing. A time-domain numerical modelling approach (e.g. 

Boussinesq) may offer a solution for the production of the shallow water Design 

Sea elevation time series. 

The Importance Sampling technique, as described, removes overly-extreme 

waves and their associated responses from a measured sequence of waves 

(5.2.3) in a spectral-inflated sea (5.3.1). While this brings about an 

improvement in efficiency compared to conventional modelling, a certain 

proportion of the waves are disregarded with no useful information having 

been extracted. A suggested method, referred to as "pre-filtering", involves 

removing these overly-extreme waves prior to generation. There are several 

challenges presented by this technique. The filtered waves and wave groups 

would require "re-stitching" to assemble a continuous elevation time series. 

Some understanding of the wave transformation effects would also be required 

to translate the elevation time series, measured at the structure, to an input to 

the wavemaker (or numerical model). The absence of a requirement to model 

wave transformations is a feature of the "conventional" Importance Sampling 

method developed in this research. The pre-filtering technique is effectively 

deterministic in this regard and loses this key advantage of the conventional 
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method. In deep and intermediate water applications, however, this element of 

the method becomes less important The pre-filtering technique has 

applications for modelling scenarios where the structure (or device) cannot 

withstand the overly extreme events produced during conventional Importance 

Sampling. For example, a study into the stability of rubble breakwaters would 

not be feasible using the Importance Sampling technique in its current form due 

to the damage inflicted on the structure. 
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8 Conclusions 

This research investigated the feasibility of adapting and applying a statistical 

technique (Importance Sampling) to the measurement of individual 

overtopping volumes at vertical seawalls. While the basis of this technique 

originates from the field of Monte Carlo modelling the methodology developed 

here is novel and differs significantly from the original application. The aim of 

Importance Sampling is to improve the efficiency of random wave modelling for 

the purposes of quantifying the largest overtopping volumes. This technique 

was developed during the course of this research with consideration to future 

maritime engineering applications. Care was taken to ensure the developed 

technique would not be limited to seawall modelling applications. 

Examination of the published literature identified little information regarding 

the level of uncertainty associated with the prediction and measurement of 

maximum individual overtopping values (e.g. Vm). In order to address this 

knowledge gap the uncertainty associated with maximum overtopping values in 

two large overtopping datasets was quantified. This data also provides a 

benchmark by which the effectiveness of the Importance Sampling technique 

may be measured. Conclusions relating to this study are presented below 

alongside the conclusions relating to the Importance Sampling technique. 

8.1 Individual Overtopping Volume Uncertainty 

Little previous work was identified into the uncertainty associated with 

quantification of maximum individual overtopping volumes. A physical 

modelling programme was developed to collect data for study of this 



uncertainty. Repeat vertical seawall overtopping tests using the same 

deep water spectrum but with different realisations of the elevation time 

series were successfully conducted. Measured values of Vl% and N ow  

showed considerable variability for these repeat tests. Variations of a 

factor of two from the "baseline" value should be expected for these 

parameters. 

. Weibull distributions fitted to the repeat tests show considerable 

uncertainty. Examining the scale and shape parameters reveals 

variability from the mean by a factor of two. The uncertainty is 

manifested in considerable variability in the exceedance volumes (V,cq). 

Again, a variation of a factor of two is expected in V,. This variation is 

not limited to the least probable (extreme) events. 

. Small sample sizes (e.g. SO samples in a typical N ow  / Nw  = 5% test) 

results in a high correlation between Vm and E(Vm) (i.e. the value of 

V. determined probabilistically from the distribution). The use of fitted 

Weibull distributions should not be considered as a viable technique for 

reducing uncertainty in the quantification of extreme overtopping 

volumes. 

• The value of Vl% is closely correlated with V. for small sample sizes. 

There is no reduction in uncertainty by characterising the extreme 

overtopping volume using Vl% rather than Vm. 

• The use of an extreme value distribution was identified as an alternative 

to the V. estimation procedure employed in the EA-Manual and 

EurOtop. This approach provides a theoretical basis for the estimation of 

the V. uncertainty. 

• The use of an extreme value distribution was explored through the 

examination of two large overtopping datasets. The resulting V.  

estimate was higher by up to a factor of two in small datasets (N0< 10). 

Larger datasets show a more typical increase of 20 - 50%. It is 

recommended that consideration be given by the EurOtop authors to 

shifting to this method in any future version of the manual 
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• The use of a single scale and shape parameter in the EurOtop guidance 

appears to be justified. The average of the distributions fitted to the 

measured data shows good agreement with the EurOtop guidance. The 

scattered nature of the individual fitted distributions suggests that a 

more complex characterisation is likely to be difficult to achieve. 

8.2 Importance Sampling 

• A novel Importance Sampling methodology was developed and applied 

to vertical seawall overtopping measurements obtained from the 

experimental programme. The aim of providing an efficiency 

improvement over the conventional random wave modelling approach 

was achieved for the modelled examples. The Importance Sampling 

technique produced datasets between 25% - 60% of the Design Sea 

dataset depending on the level of spectral inflation. 

• The Importance Sampling technique physical measurement programme 

was conducted successfully for three Extreme Sea datasets. This related 

to increases in Hm0 of 10%, 20% and 30% (Spectral Inflation factors of 

1.1, 1.2 and 1.3). These test lengths were, respectively, —60%, —40% and 

—25% of the length of the original Design Sea test series. 

• Kernel Density Estimation (KDE) presented a practical technique for 

non-parametric estimation of probability distributions based upon 

measured Design Sea data. The technique was successfully implemented 

for the filtering of the Extreme Sea dataset. 

• The Least Squares Cross Validation (LSCV) KDE optimisation technique 

proved to be unwieldy and inefficient in practice. The resulting Vm and 

Vl% outputs were relatively insensitive to the optimisation technique. It 

is recommended, therefore, that the LSCV technique is not applied to the 

estimation of the KDE parameters. The simpler Normal Scale Rule is 

sufficient. 

• The use of "kernel rotation" for the production of the KDE distributions is 

not recommended. The V. and Vl% values showed little sensitivity to 
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the optimised rotation angle. The LSCV optimisation process is also 

computationally expensive, further reducing the attractiveness of this 

refinement. 

• Vmax and Vl% values obtained using the Importance Sampling technique 

showed broad agreement with the baseline measurements obtained 

from the Design Sea tests. The uncertainty in the measurements was 

typically of the order of a factor of two from the mean. 

• The sensitivity of the process to the Design Sea input was not 

conclusively ascertained. A conservative estimate suggests the mean V.  

or Vl% may vary by a factor of two. The uncertainty observed in the sop = 

0.04 dataset was considerably smaller than this result, with typical 

variations of a factor of 1.10 - 1.15. 
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Glossary 

Notation Units Definition 

a [-] Weibull scale parameter 

b [-] Weibull shape parameter 

c [-] Weibull location parameter 

f [Hz] Peak spectral frequency 

H [m] Individual wave height (crest to trough) 

H113 [m] Significant wave height defined as the average of the 
third largest waves 

Hmo [m] Significant wave height measured from the spectrum. 

H mo = 4.0mo 1I2  

H0  [m] Equivalent 	deepwater 	wave 	height. 	Defined 	as 
significant wave height after refraction and diffraction 
effects but before transformation due to shoaling and 
breaking 

h [m] Depth at the toe of the structure 

L [m] Wavelength from zero-downcrossing analysis (unless 
otherwise stated) 

Lm [m] Wavelength associated with the mean wave period 

L0  [m] Peak offshore wavelength calculated from the spectrum 

[-] nth  spectral moment 

Nw Number of waves 

Now [-1 Number of overtopping waves 
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Notation Units Definition 

q [m3/s/m] or Mean overtopping discharge 
[I/s/rn] 

Qh Dimensionless 	mean 	overtopping 	discharge 	for 
impulsive seas 

Rc [m] Seawall (or breakwater) crest freeboard as measured 
from the still water line 

[-] Dimensionless crest freeboard for impulsive seas 

s [-] Wave steepness (s = H / L) 

sop Peak offshore wave steepness. s 0,, = Hm / L0  

T [s] Wave period from zero-downcrossing analysis (unless 
otherwise stated) 

Tm [s] Mean wave period 

Tp  [s] Peak wave period measured from the spectrum 

V [m3] or [1] Individual overtopping volume 

V, [m3] or [1] Individual overtopping volume exceeded by x% of 
overtopping waves 

V (Vbar) 
[m3] or [I] Mean individual overtopping volume 

Vmax [m3] or [1] Maximum individual overtopping volume 

Vi [m3] or [1] Total cumulative overtopping volume collected over a 
defined period of time 

lic [m] Wave crest elevation 

TIT [m] Wave trough elevation (positive downwards) 
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Appendix 1- Physical Model Parameters 

I Wav.PrOPa > 

Figure A1.1 Schematic representation of the wave flume with numbered sections 

Configuration Wave flume gradient by section 

Code 

1 2 3 4 	5 6 7 

X - - 1:20 1:30 	1:30 1:30 1:30 

Y - - 1:17 1:30 	1:30 1:30 1:30 

Table A1.1 Wave flume beach gradients 

Reference Wave Gauge Positions measured from the wavemaker Imi 
1 2 3 4 5 6 

2A 3.75 10.49 13.45 13.55 13.80 - 

4AX 3.75 10.49 13.45 13.55 13.80 - 

4BX 3.75 10.49 13.45 13.55 13.80 - 

2" 5.5 5.825 6.313 14.062 14.233 14.49 

2BY 5.5 5.858 6.394 14.039 14.219 14.49 

2CY 5.5 5.893 6.483 14.014 14.205 14.49 

2DY 5.5 5.933 6.582 13.989 14.189 14.49 

4AY 5.5 5.655 5.888 14.212 14.323 14.49 

4BY 5.5 5.671 5.926 14.195 14.313 14.49 

4CY 5.5 5.688 5.969 14.178 14.303 14.49 

4DY 5.5 5.706 6.016 14.159 14.292 14.49 

Table A1.2 Wave Gauge Positions 
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Variable Legacy New 
Name  

Notes 	 - - 

graddecti 40 25 Detection strip gradient threshold [V/s] 
Detection strip gradient threshold ("Possible" event) 

graddect2 - S [V/si 
vlowl 3.5 0.5 Detection strip voltage threshold [VJ 

vlow2 - 0 Detection strip voltage threshold ("Possible" event) [V] 

gradamp - 0.5 Loadcell envelope gradient threshold [V/s] 

spread 0.5 0.6 Minimum gap between events [s] 

lagMx - 0.5 Maximum collection lag (3.3.3) [s] 

lagMn - 0.25 Minimum collection lag (3.3.3) [s] 
Table A1.3 Overtopping detection and measurement parameters 

Note: The legacy and new implementations use different overtopping detection 

apparatus (the detection strips on the crest of the seawall). Although identical in 

concept the two sets of apparatus differed in their detection characteristics. The 

values voltage gradient and threshold values detailed in Table A1.3 are 

therefore not directly comparable between the two systems. 
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Appendix 2 - Physical Model Test Results 

The results obtained from the physical modelling programme are outlined in the 

table below. Each test reference refers to two separate tests: a calibration test 

with the beach extended to pierce the still water line and a second overtopping 

test with the seawall apparatus installed. 
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Deep Water Measurements 

(Calibration Test) 

H mo TP  Tm  sop H mo 

[ml (SI [s] [m] 

0.062 1.321 0.981 0.023 0.033 

0.062 1.388 0.997 0.021 0.033 

0.064 1.321 0.977 0.023 0.034 

0.064 1.321 1.036 0.023 0.034 

0.063 1.365 0.970 0.022 0.034 

0.078 1.412 0.997 0.025 0.043 

0.076 1.343 1.032 0.027 0.042 

0.077 1.300 1.017 0.029 0.042 

0.068 1.346 1.001 0.024 0.037 

Shallow Water Measurements 
(Calibration Test) 

T Tm  h. Hmdhs 
[sJ [si 

1.412 0.953 0.419 0.236 

1.365 0.936 0.433 0.236 

1.321 0.951 0.404 0.246 

1.321 0.927 0.425 0.246 

1.365 0.948 0.416 0.240 

1.343 0.965 0.312 0.309 

1.365 0.948 0.336 0.297 

1.321 0.979 0.314 0.298 

1.352 0.951 0.382 0.263 

Overtopping Measurements 
(Overtopping Test) 

N. q 

film/si 
Vbar  
[I] 

Vmax  

[I] 

570 0.0378 0.0908 0.6818 

561 0.0224 0.1399 1.1356 

573 0.0444 0.1485 2.5517 

540 0.0441 0.1008 0.5011 

577 0.0202 0.1024 0.3601 

561 0.0184 0.0719 0.6560 

542 0.0452 0.1087 0.7056 

550 0.0339 0.1155 0.6039 

559.3 0.0333 0.1098 0.8995 

N 

78 

30 

56 

82 

37 

48 

78 

55 

58.0 

Reference 	Duration 
rd 

2AX1 

2AX2 

2AX3 

2AX4 

2AX5 

2AX6 

2AX7 

2AX8 

Mean 

500 

500 

500 

500 

500 

500 

500 

500 

4AX1 1000 0.074 1.059 0.885 0.042 0.043 1.078 0.859 0.391 0.311 73 1197 0.0105 0.0538 0.3400 

4AX2 1000 0.073 1.059 0.884 0.042 0.043 1.078 0.846 0.409 0.306 76 1198 0.0108 0.0535 0.3388 

4AX3 1000 0.073 1.041 0.883 0.043 0.043 1.024 0.845 0.410 0.306 89 1200 0.0091 0.0382 0.1776 

4AX4 1000 0.072 1.059 0.874 0.041 0.043 1.097 0.856 0.402 0.305 80 1213 0.0133 0.0623 0.3116 

4AX5 1000 0.071 1.041 0.871 0.042 0.043 1.059 0.856 0.403 0.304 114 1217 0.0127 0.0418 0.2488 

4AX6 1000 0.072 1.041 0.863 0.043 0.042 1.078 0.845 0.415 0.302 105 1228 0.0137 0.0491 0.5890 

4AX7 1000 0.069 1.041 0.866 0.041 0.041 1.041 0.850 0.425 0.292 83 1223 0.0099 0.0446 0.3460 

4AX8 1000 0.073 1.059 0.880 0.042 0.043 1.059 0.859 0.399 0.305 85 1204 0.0123 0.0542 0.4433 

4AX9 1000 0.073 1.097 0.879 0.039 0.042 1.097 0.864 0.397 0.302 84 1206 0.0133 0.0594 0.3315 

Mean 0.072 1.055 0.876 0.042 0.043 1.068 0.853 0.406 0.304 87.7 1209.6 0.0117 0.0508 0.3474 

4BX1 1000 0.096 1.205 0.930 0.042 0.053 1.205 0.961 0.257 0.378 211 1138 0.0585 0.1040 0.9968 

4BX2 1000 0.095 1.205 0.920 0.042 0.052 1.205 0.954 0.267 0.369 179 1152 0.0493 0.1032 0,7847 

Mean 0.096 1.205 0.925 0.042 0.052 1.205 0.957 0.262 0.373 195.0 1145.0 0.0539 0.1036 0.8908 



Deep Water Measurements 
(Calibration Test) 

Shallow Water Measurements 
(Calibration Test) 

Overtopping Measurements 
(Overtopping Test) 

Reference Duration H.0  T Tm  5op Hmo T Tm  h. HmJhs Nm  Nw  q Vbar  Vmax  

[s] [m] (s] (sJ (ml [s] (S] Il/mis] [I] (I] 

2AY1 1000 0.065 1.489 1.171 0.019 0.044 1.437 1.159 0.274 0.278 21 861 0.0037 0.0654 0.3054 

2AY2 1000 0.067 1.437 1.174 0.021 0.047 1.437 1.162 0.258 0.295 20 858 0.0036 0,0674 0.3241 

2AY3 1000 0.066 1.437 1.176 0.020 0.046 1.437 1.151 0.270 0.286 19 867 0.0049 0.0966 0.4040 

2AY4 1000 0.065 1.437 1.151 0.020 0.045 1.437 1.159 0.269 0.284 13 860 0.0022 0.0634 0.1772 

2AY5 1000 0.066 1.437 1.21 0.020 0.046 1.437 1.193 0.252 0.286 6 835 0.0012 0.0745 0.1782 

2AY6 1000 0.064 1.437 1.178 0.020 0.045 1.437 1.169 0.267 0.281 30 853 0.0045 0.0565 0.4815 

2AY7 1000 0.067 1.437 1.169 0.021 0.046 1.437 1.170 0.258 0.290 37 851 0.0039 0.0398 0.3077 

2AY8 1000 0.065 1.463 1.179 0.020 0.045 1.463 1.159 0.269 0.283 30 861 0.0105 0.1309 0.9763 

2AY9 1000 0.065 1.437 1.178 0.020 0.045 1.437 1.159 0.272 0.280 22 861 0.0030 0.0508 0.1853 

2AY10 1000 0.065 1.489 1.17 0.019 0.045 1.489 1.167 0.267 0.282 21 855 0.0018 0.0329 0.0975 

Mean 0,066 1.45 1.176 0.020 0.046 1.445 1.165 0.266 0.285 21.9 856.2 0.0039 0.0678 0.3437 

2BY1 1000 0.072 1.517 1.246 0.020 0.050 1.517 1.207 0.224 0.314 45 827 0.0157 0.1306 0.8800 

2BY2 1000 0.073 1.517 1.225 0.020 0.051 1.546 1.229 0.212 0.320 45 812 0.0155 0.1291 0.5682 

2BY3 1000 0.071 1.517 1.233 0.020 0.050 1.517 1.212 0.223 0.313 18 823 0.0043 0.0898 0.3864 

2BY4 1000 0.072 1.546 1.221 0.019 0.050 1.575 1.244 0.213 0.311 49 802 0.0206 0.1578 1.3309 

2BY5 1000 0.071 1.546 1.244 0.019 0.049 1.546 1.237 0.217 0.308 47 806 0.0148 0.1184 0.7100 

2BY6 1000 0.071 1.575 1.281 0.018 0.050 1.517 1.230 0.216 0.313 52 811 0.0170 0.1226 0.7291 

Mean 0.071 1.536 1.242 0.019 0.050 1.536 1.227 0.218 0.313 42.7 813.5 0.0147 0.1247 0.7674 

2CV2 1000 0.078 1.606 1.295 0.019 0.055 1.606 1.292 0.179 0.343 76 772 0.0258 0.1272 0.7229 

2CY3 1000 0.078 1.575 1.303 0.020 0.056 1.575 1.302 0.174 0.348 87 766 0.0205 0.0884 0.7871 

2CY4 1000 0.076 1.638 1.309 0.018 0.054 1.638 1.281 0.185 0.338 97 779 0.0371 0.1435 1.5872 

2CY5 1000 0.079 1.546 1.302 0.021 0.056 1.546 1.279 0.179 0.349 106 780 0.0322 0.1141 1.0502 

Mean 0.078 1.591 1.302 0.020 0.055 1.591 1,289 0.179 0.345 91.5 774.3 0.0289 0,1183 1.0368 



2DY1 

20Y2 

2D'Y3 

2DY4 

Mean 

500 

500 

500 

500 

4AY1 

4AY2 

4AY3 

4AY4 

4AY5 

4AY6 

4AY7 

4AY8 

4AY9 

4AY1O 

Mean 

4BY1 

4BY2 

4BY3 

4BY4 

4BYS 

4BY6 

Mean 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

Reference Duration I H, 

Deep Water Measurements 

(Calibration Test) 

TP 	Tm  
[s] 	[s]  

0.084 1.638 1.347 

0.086 1.638 1.353 

0.087 1.707 1.331 

0.087 1.638 1.329 

0.086 1.655 1.340 

Shallow Water Measurements 
(Calibration Test) 

Hmo Tp Tm  h. 

[m] Es] [sJ 
0.060 1.707 1.325 0.156 

0.061 1.707 1.365 0.145 

0.061 1.707 1.341 0.149 

0.062 1.707 1.344 0.146 

0.061 1.707 1.344 0.149 

Overtopping Measurements 
(Overtopping Test) 

H mo/hs 	Now 	N 	q 	Vbar 	Vmax  

76.0 393.0 0.0546 0.1346 1.0840 

59.0 384.0 0.0653 0.2075 1.3360 

52.0 391.0 0.0619 0.2232 0.8630 

58.0 387.0 0.0514 0.1661 1.2311 

61.3 388.8 0.0583 0.1828 1.1102 

0.374 

0.380 

0.381 

0.388 

0.381 

sop 

0.020 

0.020 

0.019 

0.021 

0.020 

0.046 

0.039 

0.041 

0.045 

0.041 

0.042 

0.041 

0.044 

0.041 

0.040 

0.042 

0.066 0.9526 0.8678 

0.065 1.024 0.8718 

0.065 1.011 0.8539 

0.066 0.9752 0.8631 

0.066 1.011 0.8702 

0.066 0.999 0.8774 

0.064 0.999 0.8633 

0.066 0.9752 0.8835 

0.065 1.011 0.8619 

0.066 1.024 0.8696 

0.066 0.998 0.868 

0.072 1.05 0.9162 0.042 

0.072 1.037 0.9029 0.043 

0.071 1.024 0.913 0.043 

0.071 1.05 0.9157 0.041 

0.072 1.078 0.918 0.040 

0.071 1.05 0.916 0.041 

0.072 1.048 0.914 0.042 

0.046 1.050 0.868 0.472 0.288 

0.045 1.024 0.868 0.485 0.280 

0.045 1.011 0.877 0.471 0.283 

0.046 1.037 0.869 0.473 0.287 

0.046 1.024 0.880 0.459 0.288 

0.046 1.037 0.876 0.464 0.288 

0.044 1.064 0.871 0.487 0.277 

0.046 0.964 0.882 0.455 0.290 

0.045 1.024 0.868 0.482 0.282 

0.046 1.024 0.860 0.481 0.288 

0.046 1.026 0.872 0.473 0.285 

0.050 1.050 0.910 0.396 0.313 

0.049 1.037 0.919 0.393 0.309 

0.050 1.037 0.917 0.392 0.310 

0.049 1.037 0.910 0.402 0.308 

0.049 1.092 0.921 0.393 0.307 

0.049 1.092 0.912 0.402 0.306 

0.049 1.058 0.915 0.396 0.309 

37.0 1150.0 0.0026 0.0266 0.1628 

32.0 1144.0 0.0038 0.0441 0.1789 

39 1169 0.0058 0.0560 0.4053 

34 1156 0.0020 0.0223 0.0761 

47 1147 0.0042 0.0336 0.2619 

44 1137 0.0053 0.0449 0.3465 

33 1155 0.0029 0.0328 0.1616 

49 1129 0.0056 0.0426 0.2691 

82 1157 0.0044 0.0200 0.1717 

51 1147 0.0038 0.0276 0.2563 

44.8 1149.1 0.0040 0.0350 0.2290 

67 1089 0.0075 0.0421 0.2545 

72 1105 0.0089 0.0465 0.4160 

56 1093 0.0063 0.0424 0.3127 

91 1090 0.0068 0.0282 0.2110 

85 1087 0.0103 0.0454 0.7508 

69 1089 0.0065 0.0352 0.3394 

73.3 1092.2 0.0077 0.0400 0.3807 



0.081 1.064 0.9558 0.046 

0.081 1.122 0.9487 0.041 

0.080 1.107 0.9543 0.042 

0.079 1.092 0.946 0.042 

0.079 1.138 0.95 0.039 

0.080 1.105 0.9509 0.042 

0.090 1.17 1.004 0.042 

0.088 1.138 0.9935 0.043 

0.088 1.187 0.9983 0.040 

0.088 1.165 0.9986 0.042 

0.054 1.122 0.964 0.324 0.340 

0.055 1.154 0.959 0.324 0.344 

0.054 1.107 0.959 0.330 0.337 

0.054 1.122 0.967 0.325 0.337 

0.054 1.138 0.962 0.331 0.335 

0.054 1.129 0.962 0.327 0.339 

0.061 1.170 1.025 0.256 0.381 

0.060 1.138 1.013 0.268 0.372 

0.059 1.187 1.009 0.272 0.371 

0.060 1.165 1.016 0.265 0.375 

107 1044 0.0177 0.0619 0.5211 

115 1051 0.0190 0.0619 0.4191 

80 1045 0.0168 0.0788 0.4946 

136 1054 0.0199 0.0548 0.4709 

98 1050 0.0193 0.0738 0.4145 

107.2 1048.8 0.0185 0.0662 0.4640 

177 994 0.0373 0.0790 0.6377 

180 1004 0.0399 0.0831 0.6891 

167 999 0.0369 0.0828 0.8131 

174.7 999 0.0380 0.0816 0.7133 

4CY1 

4CY2 

4CY3 

4CY4 

4CY5 

Mean 

1000 

1000 

1000 

1000 

1000 

4DY1 
	

1000 

4DY2 
	

1000 

4DV3 
	

1000 

Mean 

Deep Water Measurements 	 Shallow Water Measurements 	 Overtopping Measurements 

(Calibration Test) 	 (Calibration Test) 	 (Overtopping Test) 

Reference Duration 	Hmo 	T 	Tm 	sop 	Hmo 	T 	Tm 	h. 	Hmjhs 	Now 	N 	q 	V r 	Vmax  

Fsl 	Fml 	Isi 	Isi 	 [ml 	[s] 	[si 	 [i/mis] 	[I] 	(I) 


