

Optimizing calibration kernels and sampling pattern for ESPIRiT based compressed sensing implementation in 3D MRI

Arnold Julian Vinoj Benjamin 1st Year PhD Institute for Digital Communications (IDCOM) University of Edinburgh

The new hope: Compressed Sensing or Compressive Sensing

E. Candès, J. Romberg, and T. Tao, "Robust Uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Information Theory, 2006

D. Donoho, "Compressed sensing," IEEE Trans. Information Theory, 2006

- It states that signals or images can be accurately reconstructed from far fewer measurements than traditional methods that satisfy Shannon-Nyquist theorem under certain conditions.
- It works on two principles, sparsity and incoherence.

Potential applications

Compressed Sensing provides a new way of thinking about signal acquisition.

Applications areas already include:

- Medical imaging
- •Hyperspectral imaging
- Astronomical imaging
- •Distributed sensing
- Radar sensing
- •Geophysical (seismic) exploration
- •High rate A/D conversion

Rice University single pixel camera

Courtesy: Mike Davies (University of Edinburgh)

MRI data acquisition

k-space data

		•	The readout gradient	
Ī		-	G _x is on for the echo	
			duration (i.e.) a line	
			of k-space is acquired	
			for each echo along	
			the x direction.	
		•	The phase encode	
			gradient G _y varies for	Gz
			every repetition pulse	G
			which causes the	Gy
- [•	shift in k-space along	G>
	k _x (Frequency encoding)		y direction.	

Spin Echo Pulse sequence diagram

TE- Echo Time; TR – Repetition time

- Acquisition Time is proportional to the number of phase encodes (N_p) (i.e.) equal to the number of repetitions (TR's)

MR image acquisition: Challenges

- an inherently slow process.
- Complete measurements can be costly and time consuming.
- Currently, parallel imaging is used to speed up image acquisition.
- However, there is a great need for further acceleration in several MRI applications due to clinical time constraints (i.e. maximum permissible time inside an MRI scanner) and local motion (i.e. due to breathing, beating heart) as a result of the long data acquisition process.
- **Compressed Sensing** is the answer to solve this problem as it has been shown to provide further acceleration in MR data acquisition.

Compressed Sensing (CS) in MRI (Sparse MRI)

Michael 'Miki' Lustig

A successful application of CS has three requirements:

- Transform sparsity: The desired image should have a sparse representation in a known transform domain (i.e., it must be compressible by transform coding).
- Incoherence of undersampling artifacts: The artifacts in linear reconstruction caused by k-space undersampling should be incoherent (noise like) in the sparsifying transform domain.
- Nonlinear reconstruction: The image should be reconstructed by a nonlinear method that enforces both sparsity of the image representation and consistency of the reconstruction with the acquired samples.

Lustig, M., Donoho, D. L., Santos, J. M., & Pauly, J. M. (2008). Compressed sensing MRI. *Ieee Signal Processing Magazine*, 25(2), 72-82. doi: Doi 10.1109/Msp.2007.914728

Random Sampling Mask R=3

Random Sampling Mask R=4

Original Image

Compressed Sensing Reconstruction R=3

Original Image

Compressed Sensing Reconstruction R=4

Error R=3

CS implementation in MRI Scanner: Challenges

- CS works well for a random undersampling scheme that requires subsampling in both directions.
- It cannot be implemented in traditional 2D MRI because of the presence of only one phase encode direction. Subsampling the frequency encode or readout does not provide a reduction in scan time.
- However, it can be implemented in 3D MRI by exploiting the two phase encoding directions (generally k_v and k_z)
- We have successfully managed to implement this subsampling scheme by modifying a clinical 3D MRI sequence (efGRE3d). As a result 3d MRI datasets can be acquired at reduced scan times.
- It has been validated by custom built in-house phantom data so far. The next step is to collect real brain data from volunteers at reduced scan times and test the efficacy of CS reconstruction.

Effect of Sampling Mask

Poisson Disk Subsampling R=4

Random Subsampling R=4

Uniform Subsampling R=4

Effect of Sampling Mask

Poisson Disk Subsampling R=4

Random Subsampling R=4

Uniform Subsampling R=4

Effect of calibration size/central data

Poisson Disk R=4 32x32 centre

Poisson Disk R=4 24x24 centre

Poisson Disk R=4 16x16 centre

Effect of calibration size/ central data

Poisson Disk R=4 32x32 centre

Poisson Disk R=4 24x24 centre

Poisson Disk R=4 16x16 centre

RMSE/ nRMSE values

Calibrat- ion size	Type of sampling mask	RMSE	nRMSE (%)	No. of samples	R
16x16	Poisson Disk	5.8933	20.98	7625	4.02
24x24	Poisson Disk	5.1622	17.65	7495	4.09
32x32	Poisson Disk	5.0043	16.78	7460	4.11
32x32	Random	7.2809	26.85	7576	4.05
32x32	Uniform	5.5393	18.59	7680	4.00

Discussion/ Open Questions??

- Does the performance of CS reconstruction depend on the contrast setting in the image??
- Can an intuitive subsampling scheme be designed according to the type of structure being imaged??
- Is there any other way to quantify reconstruction errors apart from RMSE and nRMSE values??
- Is it important to investigate the nature of the error rather than just look at error values??
- Can the performance of CS reconstructions improve if an efficient segmentation method is incorporated into the algorithm??

Acknowledgements

- Prof Ian Marshall (CCBS, University of Edinburgh)
- Prof Mike Davies (IDCOM, University of Edinburgh)
- Wajiha Bano, Zaid Mahbub