
Abstract Specification of Grammar

Michael Newton

Ph.D.

University of Edinburgh
1992

I declare that this thesis has been composed by me and that the work reported
here is original except where acknowledged otherwise.

Michael Newton

July 23, 1992

• •

11

4D

I would primarily like to thank my excellent and conscientious supervisors,
Ewan Klein and Don Sannella. I would also like to thank Ingemarie Bethke
and Mike Reape, who also acted as supervisors (official and de facto) dur¬
ing the early stages of this work. Thanks for forbearance on the part of
those unfortunate enough to have shared an office with me, particularly Lex
Holt, TeXie extraordinaire. General thanks to all around the Centre who
have taken the time and trouble to point out to me the errors of my various
ways. Thankyou to Edinburgh University, the British Council and the Com¬
monwealth Universities Commission, for feeding me for three years. Lastly,
thanks to my friends in Edinburgh and elsewhere (including family!) for
keeping me sane, and particularly to Ms Deirdre King of Cork City, the
realest person I've ever known.

111

Table of Contents

1. Introduction 4

1.1 The Problem of Abstraction 4

1.2 Programs and Specifications 9

1.3 Universal Algebra 12

1.4 First Order Logic 14

1.5 Initiality 16

1.6 Specification and Implementation 20

1.7 Sorts and ASL Specification Operations 23

1.7.1 Sorts and basic specifications 23

1.7.2 Refinement, enrich and derive 25

1.7.3 Subsorts, reachable and extend 29

1.7.4 Parameterisation and signature morphisms 35

1.7.5 Constructors, extractors and partial operations 37

1.8 Syntax and Semantics of ASL 40

1.9 Montague, ADJ, and Initial Algebra Semantics 46

1.10 Other Styles of Specification in Computer Science 49

1.11 Real Programmers 51

1.12 Real Linguists 52

1.13 Coda 55

1

Table of Contents 2

2. Grammars 57

2.1 Strings, Substitution and Constituency 59

2.2 Intension and Grammar 63

2.3 Coda 73

3. Refinement and Implementation 75

3.1 Patr-II 76

3.1.1 Prolog 78

3.1.2 Back to Patr-II 81

3.1.3 Constructor-extractor implementation 85

3.2 Abstract Features 91

3.3 LFG 94

3.4 Immediate Dominance and Linear Precedence 100

3.5 GPSG 106

3.6 HPSG Ill

3.7 Coda 117

4. Institutions 118

4.1 Introduction 119

4.1.1 Using different institutions 120

4.1.2 Defining institutions 121

4.2 Institutions and Implementation 122

4.2.1 The institution of pure predicate logic 123

4.2.2 Semi-institution morphisms and change institution 126

4.2.3 Prolog 127

Table of Contents 3

4.2.4 Patr-II 128

4.3 An Open-Arity Feature-Value Institution 132

4.4 Model Morphisms and Initiality 136

4.5 Coda 140

5. Unbounded Dependencies 141

5.1 Modularity, Parameterisation, Abstraction 142

5.2 Unbounded Dependencies 144

5.3 Equality and Level of Abstraction 147

5.4 Topicalisation 151

5.5 A Simple Implementation: Topicalisation 157

5.6 Refining the Abstraction 159

5.7 Relativisation 164

5.8 Implementation 169

5.9 Coda 172

6. Germanic Word Order and Dependency Grammar 173

6.1 Dependent Clause Order 173

6.2 Dependency Grammar 175

6.3 Implementation 179

6.4 Dependency Constituents 184

6.5 Coda 186

7. Conclusions 187

A. Bibliography 190

Chapter 1

Introduction

1.1 The Problem of Abstraction

Science is concerned with modelling observable phenomena. The task of grammar
is to model human language. There are many steps and aspects to be considered
for any modelling task, including fixing an interpretative framework, working out

a specific syntax sufficient for the task, isolating conditions in this syntax which
all models should satisfy, demonstrating (preferably constructively) the existence
of such models, describing a system of deduction for the system and showing this
to be (at least) sound. In a simple task many of these steps may be trivial or

void; in a more complex case one can rapidly be overwhelmed with detail. A

level of informality that may cause no problem when dealing with a simple task

may hide all sorts of errors and omissions in a more complex one. I would argue

that an important step in avoiding such problems, in grammar as elsewhere, is
to employ a (preferably formal) language of description which explicitly reflects
the many distinct tasks and levels, and their interaction. The theory of algebraic

specification languages offers the promise of a single formal setting in which to

consider all of the above steps. In this thesis, I aim to demonstrate that, in the

investigation of grammar, good use can be made of some of the central ideas in

specification, including refinement, modularisation, parameterisation, and explicit

4

Chapter 1. Introduction 5

levels of abstraction. Primarily, I want to illustrate the importance of the distinc¬
tion between abstract descriptions and concrete representations, and the interplay

between them.

There are many grammar-writing frameworks in which one can define models
for the syntax of natural language: GB, LFG, GPSG, HPSG, various categorial

frameworks, and so on. Although they approach their tasks in different ways and at

different levels of formality, they all employ some notional domain, whose objects

(most typically derived from tree diagrams) are meant to correspond to utterances,

with particular features of the objects corresponding to particular observable fea¬
tures of such utterances. In model theory, we devise a syntax to describe these

features (a signature), and try to formally describe both the domain of interpreta¬

tion, and the correspondence between the syntax and the elements of that domain.

Thus the objects are said to model the signature (in the formal, model-theoretic

sense), and the precise correspondence between the utterances and the domain
of interpretation is called a model. Sometimes, less formally, the domain itself is
referred to as a model.

Very often a linguist seeking to account for (part of) a particular language will
also find her work suggesting extensions or refinements to the defining framework
in which her work is cast. In practice, working either on or within a formalism may

"feel" very much like programming (perhaps the former is "system programming"),
and this is very far from coincidence. Indeed very often it is programming: a

model which can be demonstrated running on a computer is at least a step toward

psychological plausibility. In algebraic specification, a program is considered as an

algebra, and an algebra is just a certain kind of model. We consider a program

purely in terms of its input/output behaviour, thus abstracting away from the

procedural details of just what algorithm is used to produce this behaviour.

Programming, according to one view, is a discipline precisely concerned with
the breaking down of modelling tasks into subtasks trivial to the point of being
routine. In programming as well as grammar writing one most often has to con¬

sider a vast, if not infinite, range of data. This very often makes real "proof"
that what you have is a correct model impossible, but nevertheless some effort has

Chapter 1. Introduction 6

been put in by computer scientists to move toward this goal. Some of this work

might profitably be considered for use in the process of producing natural language

grammars. At least one advantage might be to give a rigorous and unified way

of working on frameworks. It may also lead ultimately to more meaningful inter-
framework comparison, and perhaps even to eliminating altogether the need for
distinct frameworks: such frameworks invariably incorporate a range of individ¬
ual hypotheses and arbitrary design decisions, which, in a less parochial setting,

could more easily be considered individually on their merits for incorporation or

rejection.

It is interesting to note that much of theoretical computer science has been
involved with moving away from the imperative notion of computation, toward
declarative characterisation of information systems (Backus 1978), and to some

extent, this spirit has carried over to the computational linguistics community.

One motivation for this trend has been the provision of abstract specifications for

programs (or modules), against which putative implementations could be mea¬

sured, allowing implementations to be freely interchanged within a larger system.
So one notion of specification has been to give input and output conditions re¬

quired of any program which purports to model the specified task. If the effect
of every construct in a programming language can be specified in terms of pre-
and post-conditions, one might then proceed to show of a particular program

whether, given the input conditions, the output conditions hold. To produce such
a "proof" for an existing program can be a very difficult task, but an alternative
is to attempt to integrate the production of the proof with that of the program,

or even make it the driving force (Gries 1981). Another tack is the attempt to

produce declarative programming languages, such as (pure) Prolog, in which the

program can be viewed as describing, in logical terms, how input and output are

related, but the interpreter imposes a particular notion of execution upon this

description. These approaches might be said to meet in so-called wide-spectrum

languages (Sannella 1986). Such a language can be viewed as an enrichment of
an executable (probably declarative) language by non-executable forms of descrip¬

tion, in order to make easier the initial description of required behaviour. Such a

Chapter 1. Introduction 7

specification will admit many eventual implementations — if it is loose they need
not even all be isomorphic. It also comes equipped with a notion of refinement,

by which another, very similar, specification is shown to admit no models not ad¬

mitted by the first. By a sequence of such refinements, embodying a sequence of

design decisions, we may eventually move to an executable specification, which we

know to satisfy the original specification also. The term "wide-spectrum" comes

from this ability to express all stages in the spectrum from very loose, abstract

specification, to executable program.

Experience suggests that the question of which comes first, specification or

program (module), is not a particularly enlightening one. The point is simply
that the specification says what we think is important about the program. Then
the program gives us a tool for re-examining that notion of what is important:
to what extent does the program capture the behaviour we expected and what
other behaviour would we like to see, does this behaviour (or lack of it) arise
from the specification, or merely from this implementation of it, and how can the

specification be changed to reflect our newly acquired knowledge of what really is

important? That the "program" be running on a computer is not really central to
this process: we see the same process at work whenever we choose to examine a

particular model in order to gain insight into a wider problem. To put it in terms

of stepwise refinement, this amounts to saying

1. we don't always necessarily make the right design decisions at each stage

(sometimes we have to backtrack) and

2. sometimes it can be useful, in order to investigate the design we have so

far, to make a refinement that goes all the way to executability, even if the
refinements that get us there are rather dubious or unmotivated (prototyp¬

ing!).

So abstract specification starts from the need for powerful modularisation and

parameterisation facilities (data types, modules, etc.), and on top of that requires
a vocabulary for specifying what is important about a model. There are two

central ideas behind this. One is the ability to make statements which, while

Chapter 1. Introduction 8

not by themselves admitting of interpretation as programs, can be seen as giving

partial or incomplete descriptions of programs, and thus can also be given a precise

semantics, namely the class of models to which they apply. The second is to have
a sufficiently powerful technique for expressing levels of abstraction. Very often
it is difficult or impossible to describe some required behaviour without giving an

example of how it is to be achieved, for example, using auxiliary operations, even

though there may be many other ways of achieving the same result. We need
to be able to indicate that these details are unimportant: what is important is
the result, ft is tempting to suppose that this second is all you need: here's a

program, here's the level of abstraction at which it is to be considered. 1 think
where this fails is in not allowing you to capture every stage of the development

process explicitly: in particular, there would be no way to say what is importantly

wrong about a program: what you fail to mention at all is not necessarily wrong,

just unimportant (as far as you know anyway).

This should be quite a familiar phenomenon from the construction of grammar

fragments. In a simple rewrite grammar R a statement like "S —» NP VP"

will be interpreted as saying that a noun phrase and a verb phrase can be put

together to form a sentence. If we decide that this is an important abstract feature
of grammars of English, we can form from R, using an abstraction operation, a

specification which requires this feature, without saying anything about any other
details of implementation which may have occurred in R. If in investigating such
a system, however, we realise that it is not adequate to deal with agreement

between subject and verb (we may have I eat but not I eats), we can then form an

abstract specification which insists that subject and verb agree, but which need
not spell out the full details of a grammatical fragment, down to the last lexical

entry. Thus we have a method of expressing what we learnt from the simple (but

wrong) implementation. Having discovered that the failure to mention agreement

is important, we can deal with it in a way that does not depend on any particular

implementation.

The aim of this thesis is to produce some specifications which precisely and

plausibly (if not completely) describe some taxonomy and postulates used in mod-

Chapter 1. Introduction 9

era linguistics. For instance, one might begin with the specification of some gross

phenomenon such as constituent structure, one refinement of which could be via a

construction utilising a combination of immediate dominance structure and linear

precedence ordering (the IDLP format of GPSG (Gazdar et al. 1985)). This is a

refinement precisely because it narrows the class of models. Specifications supply

a vocabulary, and restrictions on the interpretation of that vocabulary.

If we aim to produce a specification of the range of natural language gram¬

mars (universal grammar), we can employ the discipline of stepwise refinement,
whereby a series of specifications is produced, each more constrained than the

last, gradually winnowing away grammars which never occur in natural language,
with each constraining step representing some claim about universal grammar. In
order to make such a claim (e.g. "all natural languages have an IDLP presen¬

tation" — c.f. Section 3.4), we need to be able to relate these vocabularies one

to another. If UG is to define the range of natural languages, and IDLP defines

grammars with an IDLP presentation, we require UG C IDLP (UG refines IDLP).
However, a specification X such that X C Y can also be used to describe some

subproblem of the problem addressed in Y. Thus we can use specifications to set

up taxonomies in which a phenomenon can be described, and refinement either to
make claims about "universal grammar", or to focus on particular languages or

implementation techniques. I hope that specifications from different grammatical
frameworks will turn out to involve subspecifications amenable to generalisations
which will concretely identify the same idea across different frameworks.

1.2 Programs and Specifications

The first use of logical axioms in the specification of programs was in so-called

Floyd-Hoare assertions. Gries (1981) represents perhaps the apogee of this style.
This system is designed for use with traditional imperative programming languages,
in which program statements are primarily step-by-step instructions to the ma¬

chine, rather than just definitions or descriptions. Such languages include Fortran,

Chapter 1. Introduction 10

Algol, and their many descendants. In this system, the specification of a program
consists of two logical statements (or assertions), the precondition, giving the prop¬

erties expected of the program's input variables, and the postcondition, giving the

required properties of its output variables. Associated with each type of program

command is a rule of deduction, using which one may, from the state of the vari¬

ables before the execution of such a command, deduce their state thereafter. We

view the statements of the program as subprograms. For each of these subpro¬

grams, we prove that certain input conditions imply certain output conditions.
We then compose these subprograms, with the output conditions of one statement

becoming the input conditions of the next. Thus a program can be proved to

be correct with respect to a specification, by showing that if the precondition is
true before execution of the program, the postcondition must be true afterward.
The idea here was that a specification provides a standard, against which different

implementations can be measured.

Gries (1981) describes a discipline in which proof and program are developed

hand-in-hand, starting from a Floyd-Hoare specification. The driving force is the
breakdown of the proof task into smaller and smaller subproofs, with the choice
of how to make that breakdown governed by the available rules of inference. The
construction of the program becomes no more than a record of the rules used
at each step of the proof, that is, a syntactic representation of the proof. This
identification of proof and program is a familiar one in constructive type theory

(Martin-Lof 1982).

On another tack, the automation of proof construction has long been a central
concern in Artificial Intelligence. If the particular inference rules used in a theorem

prover could be viewed as the operations of a programming language, then the
theorem prover could in turn be viewed a system which automatically produces

programs from specifications. Since (theoretically!) only the theorem prover need
know about these inference rules, the precise sequence of instantiated rules used

(which constitute the program for Gries or Martin-Lof) becomes irrelevant to
the user. Since the specification itself can be directly executed, we may as well

say that it is the program. This is the perspective taken in the discipline of

Chapter 1. Introduction 11

logic programming (in which a program consists purely of logical statements). In

particular, viewing the deduction rule of Robinson (1965) (called resolution) as a

programming construct gives us the programming language Prolog (Colmerauer
et al. 1973, Kowalski 1974), the dominant language in logic programming, and
one which has also found widespread acceptance in the computational linguistics

community.

We are now in a position to write down a few logical axioms, and have Prolog

interpret these as a program. What more could we ask? As anyone who has done

very much work in the language will know, the answer is "quite a bit". I will only
consider its deficiencies as a specification language.

1. Limitation to the Horn clause fragment of predicate logic means one cannot

write specifications which use axioms like Vu. f inite(u) —» (present(u) V

past(u)) or Wxy. x + y — y + x, yet such statements are often the clearest

way of expressing a concept. It would be useful to have a formal language in
which specifications using such axioms have a precise meaning, and can be

explicitly related to programs (in Prolog or anything else) which implement
them.

2. It is quite possible to write a logically complete description of a system

in the Prolog language which nevertheless fails as a program because of the

particular control strategy employed by the Prolog interpreter. For instance,
it may loop indefinitely without ever finding an answer. It would be useful
if we could say that this was correct as a specification (that is, a complete

description of the system being modelled), but not as an implementation, and
to have a formal language in which it has a precise meaning, which makes

explicit its relationship to any reformulation (possibly even in a different

language) which does run correctly.

3. Because the semantics of Prolog is tied to the initial model of a description

(more of this below), there is no way to make loose, or partial, specifications,
which describe some features of a system, but make no claim to be complete.

Chapter 1. Introduction 12

In a formal specification language which makes explicit the relationship be¬
tween such specifications and implementations of them, more and more such

specifications can be gradually (and explicitly) accreted as investigation of
the system proceeds, until the description is complete.

The key to solving the second problem is the use of a richer system of specification,
which contains the programming language (or languages) as a subset. For the first

problem, it will also be necessary to abandon the restriction to predicative Horn
clauses. For most of this thesis, I will be content to allow myself arbitrary first
order sentences, possibly involving sorts, equality and partial operations. Later,

in Chapter 4, we will see some machinery for combining specifications written in
different logics. In order to address the third problem, we need to be able to

produce (at least) two different specifications from the same axioms, one of which
is used to refer to the class of all models which satisfy the axioms, and the other

of which is used to refer to a particular model (the term model) or subclass of
models (the initial models). It is time that I introduced the algebraic concepts on

which such specifications will be based.

1.3 Universal Algebra

In mathematics, it is common to characterise a system in terms of a few simple

statements, or axioms. Perhaps the prototypical example is Euclid's axiomatisa-
tion of geometry. At that time, statements in natural language were used, but

today, it is probable that some formal language, such as predicate logic, might
be employed. In Universal Algebra (Burris Sz Sankappanavar, 1981), a class of
unrestricted algebras is presented in the abstract by giving a set name A and a

number of operation or function symbols upon that set. These names are said to

form the signature of the class of algebras. An algebra of that class is simply a

model interpreting the syntax supplied by the signature. That is, it must provide
an actual set (carrier) to correspond to the name A, and functions on that set to

correspond to each operation symbol.

Chapter 1. Introduction 13

More generally, to present any abstract algebra, we simply add to the above

equations (also known as sentences) which equate terms built from the opera¬

tors, and possibly some variables. These equations are interpreted in a particular

algebra of that class by insisting that for any instantiation of the variables, the

object which interprets the left hand side term is the same as that which interprets

the right (so all equations are effectively universally quantified). The algebras for
which this holds are said to satisfy the equations.

For instance, we might specify a set name A, a nullary operator (constant) e,

and an infix binary operator • and equations

(1.1) x ■ e = e ■ x = x

(x ■ y) ■ z = x ■ (y ■ z)

This defines the monoids, the most general interpretation of which is to suppose

A consists of strings over some alphabet, • is concatenation, and e is the empty

string. But there are many other interpretations: for instance the integers form a

monoid if we interpret ■ as addition, and e as zero.

One way we might generalise this is to allow other forms of sentence. For

instance, instead of only allowing sentences which are implicitly universally quan¬

tified, we might make this quantification explicit and allow existential quantifica¬
tion too. Then in the above we need not have supplied the e operator, but could
instead have replaced the sentences there by

(1.2) 3Nx(x ■ i = i ■ x — x)

WxWyWz((x ■ y) • z = x ■ (y ■ z))

Chapter 1. Introduction 14

1.4 First Order Logic

First order formulae can be defined from a set of atomic formulae by closure under
the following rules.

1. If (f) is a first order formula, then -if ("not ^>") is a first order formula.

2. If <f> and if are first order formulae, fAip ("</!> and ?/>"), is a first order formula.

3. If ^ is a first order formula, and £ is a variable, then Vx. f ("for every x,

is a first order formula.

We may as well suppose that there is a fixed stock of variables, X say (so x £ X).
Fixed syntax, like "-1", "A" and "V" , is called logical syntax. There are many

different first order logics, corresponding to different notions of atomic formula.
To each such notion, there corresponds a different definition of signature, which
describes the variable, or non-logical, part of the syntax.

A sentence is a formula which is closed with respect to each variable. Vx.f

is closed with respect to x, and with respect to any variable y with respect to

which f is closed; ~<(f> and f\ A f2 are closed with respect to x if and only if their

constituent subformulae (</>, and f\ and f2, respectively) are closed with respect

to x. An atomic formula f is closed with respect to x only if x does not occur in

<t>.

In pure predicate logic, a signature E is a collection of predicate names, divided

into subclasses E;, for i — 0,1,2.... If p £ E,-, p is said to be of arity i, and for any

sequence X\,.. .X{ of variables (not necessarily distinct), p(x\,.. .xi) is an atomic
formula. We get sentences like Vx . -i(lexical(x) A phrasal(x)).

In a (functional) predicate logic, a signature may also include function (or oper¬

ation) names of the various arities. The definition of atomic formulae is generalised

by replacing the sequence aq,...Xi of variables by a sequence of terms,

Chapter 1. Introduction 15

where a term is either a variable, or has the form /(«i,... Uj), where / is an op¬

eration of arity j, and u1?... Uj is a sequence of j terms. The language of Prolog
is a subset of such a language. We get sentences like Vx . precedes(x, hd(x)).

In a language with equality, we always have the binary predicate _ = which
we may as well consider part of the fixed (logical) syntax. (The underscores, _, are
meant to indicate where the arguments should be written, so _ = _ indicates an

infix predicate, producing atomic formulae written x = y, instead of = (x,i/)). In
an equational logic, this is the only predicate. We get sentences like Vxy . x + y =

y + x.

An algebra is simply a model of a first order signature E, that is, a domain of
interpretation, and a map which interprets the syntax of S in that domain. These
define a semantics for the syntax of E. (When I refer to the semantics of a formal

language in this way, I take no particular position on whether natural language
"semantics" should be seen as an instance of this, as in Montague grammar, or an

entirely separate endeavour, as in GB.) A E-model M must provide

1. a domain of interpretation, or carrier, [M].

2. for every predicate name p of arity i in E, a set [Mp] C [M]\ that is, a set of

z-tuples drawn from [M]. In a language with equality, [M =] = {(x,x)|x £

[Af]}, the diagonal relation on [M].

3. for every operation name / of arity i in E, a (total) function [Mf] : [M]1 —>

[M], which maps z-tuples over [M] into [M\}

Where the name of the model is obvious or unimportant I may just write \p\ instead
of [Mp], and so on. We must imagine that every variable x names a point [x] £ [M],
Then f(x) names the point [/(®)] = [/]([#]), where / is an operation of arity 1.
More generally, if / is an operation of arity j and the terms ti,...tj name the

1For the interpretation [Mp] of a predicate name p one sometimes sees \p]M, [p]m,
[[p]]M, and various other forms besides (similarly for operation names).

Chapter 1. Introduction 16

points [ti],... [tj], then f(t\,... tj) names the point ... tj)] = [/]([<i],... [£,]).
M is said to satisfy an atomic formula p{t\,.. .ti) if ([ti],... [i,-]) G [Mp]. A model
satisfies -><p if it does not satisfy cp. A model satisfies <p Axp if it satisfies both cp and

xp. A model satisfies Vx . cp if it satisfies cp, independent of the value [x] associated
with x; that is, no matter what value [x] takes. Thus the question of whether a

model satisfies a sentence is also independent of the values associated with the

variables. If M satisfies cp, write M \= <j>.

"-i" binds most tightly, and "V" least, so for instance ->(/) A x/) means (-><j>) A tfp,
and Vx . <f> A x)> means Vx . (<^> A xp). There are various metasyntactic definitions we

can make, in order to produce shorter or more easily understood sentences. We

write

1. <p V xp (u<f> or ipv) for ->(~«p A ->xp),

2. cp —* xp (u<p implies xpn) for -><p V xp,

3. (p <r^ xp ("<p if and only if xpn) for (<p —> xp) A {xp —> cp),

4. 3x . <p ("there exists x such that <pv) for -A/x . -xp,

5. VxxX2 • • • xn . <p for Vxj . Vx2 ... Vxn . cp, and

6. 3xix2 .. • xn . <p for 3xi. 3x2 ... 3x„ . <p.

1.5 Initiality

We might try to use the following set of statements in predicate logic to characterise
addition in successor arithmetic.

E = Vx.p(o,x,x)

Mxyz ,p(x,y,z) -> p(s(x),y, s(z))

The following Prolog implementation is just a syntactic variant of E.

Chapter 1. Introduction 17

p(o,X,X) .

P(s(X),Y,s(Z)) p(X,Y,Z).

We have a operation of arity zero (that is, a constant) o, intended to represent zero,

a unary operation s, intended to represent successor (the successor of 0 is 1, the
successor of 1 is 2, and so on), and a three-place predicate p, where p(£i, t2, £3) is in¬
tended to mean that [H] plus [t2] is [t3]. Thus we might describe the intended model
I as follows. The carrier [/] consists of the digit strings 0,1,2,3,4,5,6,7,8,9,10,11
and so on. [Jo] = 0, and [/s] is the function which maps 0 to 1, 1 to 2, 2 to 3,
and so on. [7p] should be a predicative representation of addition, containing all

triples (x, y, x + y) (so (0,3, 3), (2,2,4), and so on).

The model (T say) used by Prolog is the least Herbrand model (Lloyd 1984),
also called the freely generated or (canonical) term model. In this model, the
elements of the carrier are just the ground terms (i.e., the terms containing no

variables), to wit, o,s(o),s(s(o)), and so on. [To] = o, and [Ts] is the function
which maps any ground term t to the ground term s(£). [Tp] contains triples
of ground terms such that the number of occurrences of s in the first element,

plus the number in the second, is equal to the number in the third (for example

(o,s(s(s(o))),s(s(s(o)))), (s(s(o)),s(s(o)),s(s(s(s(o))))), and so on).

How can T be called an implementation of addition, if it is not the same

as the intended model /? If we imagine the objects of the carrier as dots on a

blackboard, with arrows to show how the syntax of the signature is interpreted

(something like Figure 1-1), we can look on 0,1,2,3... as being just labels for
the objects, which help us explain what arrows should point where. The only

difference in the blackboard diagram of T would be a one-to-one relabelling, of 0
to o, 1 to s(o), and so on. The two models are called isomorphic. It is impossible
to distinguish them using only the syntax of the signature: there is no sentence

in that syntax which is satisfied by one but not by the other. As models of E,
there is really nothing to choose between them. There are many other models of
E which are also isomorphic to /. They are all one-to-one re-labellings. We might

Chapter 1. Introduction 18

1 2
o

s

s
4

Figure 1—1: Blackboard model of I

label the points by 0,1,10,11,100,101..., or by 1,11,111,1111..., or by any other

such sequence.

Isomorphism is an equivalence relation on models, which is to say, it is reflexive

(each M isomorphic to M), symmetric (ifM is isomorphic to M', M' is isomorphic
to M), and transitive (if M is isomorphic to M' and M' is isomorphic to M", M
is isomorphic to M"). Thus any collection of models over the same signature can

be sorted into distinct isomorphism classes of mutually isomorphic models. The

isomorphism class of / and T is a very special one, the class of initial models. Often
we speak of the initial model, since isomorphic models are not distinguishable in

the logic anyway. There are, however, non-initial models of the axioms in E. The

simplest of these, O say, has only one object, call it 0, with [o] = 0, [s]0 = 0, and

[p] = {(0, 0, 0)}. This was clearly not the sort of model we had in mind in writing
E. The initial models are the ones we were after. What distinguishes the initial
from the non-initial models?

We have already seen one characterisation, which is to say that an initial model

is isomorphic to the canonical term model. To build the term model in a language
without equality, as we have seen, we set the carrier to be the collection of terms,
and then put into the interpretation of the predicates those terms whose value must

be there, in virtue of the supplied axioms. For instance, the first axiom of E tells

Chapter 1. Introduction 19

us that [Tp] must contain, for every ground term t, the tuple (o, f,f). Sometimes,
this procedure is not well-defined. For instance, if we have an axiom p(o) V q(o),
we know we should be trying to put the term o into either [p], or [q], but we have
no way of telling which. In such cases, there is no canonical term model, and there

are no initial models. The reason for the restriction to Horn clauses in Prolog is
that a collection of Horn clauses is guaranteed to have an initial model.

Another characterisation of the initial models of E is that they have the prop¬

erty of satisfying exactly those sentences over the signature of E which are satisfied

by every model of E. /, T, O and every other model of E must satisfy sentences

like p(s(o), s(o), s(s(o))). In order that a model fail to be isomorphic to the term

model, it must be the case that it identifies the values of some terms, and/or con¬
tains some objects which are not reachable (are not the value of any ground term).
For any such model it is possible to devise a sentence which distinguishes it from
the initial models. For O, one such sentence is p(s(o),o,o). Thus any non-initial
model satisfies sentences not satisfied by all models. One way to describe the op¬

eration of Prolog when faced with a query 4> given E, is to say that it tries to prove

that <f> is true in every model of E. It does this by reference to an initial model.

The situation is slightly more complicated in languages with equality. In that

case, the objects of the model are not terms, but equivalence classes of terms.

If the axioms insist that two terms be equal (say o + o — o), then those terms
are held to be equivalent. The equivalence classes are closed under symmetry
and transitivity. A term is interpreted by its equivalence class. Thus both o and

o + o are interpreted by the class containing both of them ([o + o] = [o]), and the
sentence o + o = o is satisfied. Assignment of tuples to predicates proceeds much
as before, except that the objects in the tuples are equivalence classes.

The central idea of algebraic specification is to abstract away from details of

algorithm by identifying any program with the algebra defined by its functionality.

Early work in the area, such as Goguen et al. (1975), constructed specifications
from a signature and a set of equations, and associated these with the initial

algebra. In Section 1.2 we saw some reasons why it would be useful to be able
to refer to other models too, and we shall consider this question further in the

Chapter 1. Introduction 20

following section. Specifications which refer to models not all mutually isomorphic
are called loose. ASL (Sannella and Wirsing 1983), the specification language used
in this thesis, allows such specifications.

1.6 Specification and Implementation

Suppose that we wish to model some observable phenomena. We begin by fixing
some vocabulary in which to make our observations: a signature. We proceed to

construct logical sentences using this vocabulary, which describe the regularities we

observe (or seem to observe) in the system. In order to sharpen our understanding
of the system, and to see to what extent our description is correct or adequate,
we need to produce a model. If the sentences we produce all happen to have a

positive conditional form A ^ A ... A (j)n —> <f>o for some n > 0 — the n = 0

case is simply <j)o — where for each i, fa is atomic), then they define an initial

model, which has the useful property of satisfying only those sentences satisfied

by all models of our description.

In general, however, there is no reason we should suppose that our obser¬
vations need be restricted to this class of sentences. For instance, the sentence

Vx . ~i(lexical(x) A phrasal(x)) may well be the clearest way of expressing some

observed property. A description including such a sentence will not, in general,

admit an initial model. In a specification language in which the only specifications
are collections of sentences, and in which these are always interpreted initially, a
set of observations including such a sentence has no formal meaning. We must

strive to reformulate our description in such a way that it does conform to the
conditional sublogic; but having done so, there is no way of giving formal expres¬
sion to the question of whether the model so specified conforms to our original

observation, because that original observation has no formal status, even though
it may be the clearest and most natural expression of the properties we require.

Thus it is natural to require (at least) two different ways of specifying a class
of models: one to be interpreted by the class of all models of the system (in which

Chapter 1. Introduction 21

we may use any axiom), and another to be interpreted by the isomorphism class
of initial models of the axioms (for which case we must restrict ourselves to the
conditional form). A specification which admits non-isomorphic models is called
loose. These two alternatives can be enshrined in the definition of two distinct

specification-building operations.

As mentioned, it is usually useful in trying to understand a system to have a

concrete model. The abstraction of algebraic specification is to identify implemen¬
tations (i.e. programs) with single models (or collections of isomorphic models).
In (software) engineering, the production of an implementation at an early stage,

for investigative purposes, is called prototyping. In order to move from a loose

specification to a concrete model, it may be necessary to introduce some con¬

structive syntax which does not correspond directly to anything observable in the

system. We would want to say that the meaning of such a specification resides in
its behaviour with respect to the syntax corresponding to observable features of
the system. Thus we require the means to hide particular details of construction:

a third specification-building operation.

In general the move from loose specification to model may involve many such
more-or-less arbitrary design decisions. Specifications will be more flexible and
understandable if we break this process up, describing each design decision by
a separate specification. The overall progress toward description occurs by step¬

wise refinement, each step consisting of producing a refined specification, reflecting
either a new, independent observation of the system, or a constructive design deci¬
sion. Thus these design decisions are motivated, not by observation of the physical

system, but by the need to decide something in order to produce a program, and

(by the way) by the desire to keep that program simple and comprehensible. Thus
we have two, mutually informative, processes of refinement: one which gradually
refines our abstract understanding of the system, and, taking off where that leaves

off, another which produces actual models of the abstract specifications, for the

purpose of further investigating the correctness and adequacy of the abstraction.

A useful facility in this process will be the ability to put two specifications

together in such a way that models of the resulting specification must be usable in

Chapter 1. Introduction 22

interpreting either one of the two constituent specifications. Breaking up complex

specifications by such means into simpler subspecifications again makes them easier
to understand, and more flexible, in that the same subspecifications may be a

useful component of many, very different, larger constructions. At the level of a
concrete model, a particular construction may only rely on fairly trivial details of
a subconstruction. In that case, we can define a parameterised model construction,

which, supplied with any suitable value for the subconstruction, will complete the

larger construction on top of it.

Sannella (1989) describes a discipline for producing programs using stepwise

refinement, in the Extended ML specification language. This thesis employs the

specification language ASL (Sannella and Wirsing 1983), and in the next section,
I describe ASL specification-building operations for performing all the sorts of
tasks just outlined. ASL was designed as a kernel language, in terms of which

higher-level languages may be defined (for instance, Sannella and Tarlecki (1986)
represents an early attempt to define the semantics of Extended ML in terms

of ASL). I chose this language partly because its semantics is quite simple and

easy to understand, though the obverse of this is that specifications quickly get

syntactically complex. Another reason for the choice was the hope that it might
become apparent in the course of this work what kind of higher-level operations
would be particularly useful in linguistic applications, but unfortunately this has
not become any clearer to me. I think that the choice of a language which is not
tied to initial semantics was a good one, for the sorts of reasons outlined above,
and I hope that such will become evident as the thesis progresses. Extended
ML would have offered the advantage that it is a true wide-spectrum language,

designed to use the same logic as the ML programming language, so that, just
as Horn clause descriptions in predicate logic can be run as Prolog programs,

Extended ML descriptions of a certain form can be run as ML programs. On
the other hand, I am not convinced that it is wise to associate one's specification

language too closely with a particular programming language, since it may incline
one toward descriptions nearer to those that can be run, at the expense of a

perhaps clearer description, which may be more easily implemented in another

Chapter 1. Introduction 23

programming language altogether. (For instance, ML is a functional programming

language, but in many ways a logic programming language such as Prolog is more

suited to computational linguistics. Sannella and Wallen (1987) describes how

ML-style modules may be added to Prolog, but at the time of writing this is only

just being implemented (Paxton 1992)). There are many subsets of ASL, even
restricted to only one logic, which could be given procedural interpretations —

unfortunately, running implementations do not exist. However in Chapter 4, we
see some theory which allows programs written in existing programming languages

(such as Prolog) to be incorporated into ASL specifications.

1.7 Sorts and ASL Specification Operations

Algebraic specification is usually done in multisorted algebra. A standard alge¬
bra begins with some domain of interpretation. In multisorted algebra there may

be several different domains of interpretation. A multisorted algebra, then, con¬

sists of the various domains of interpretation, together with functions upon them.

ASL-style specifications talk about classes of algebras. Specification-building op¬

erations, by which specifications may be combined to produce compound specifi¬

cations, will map classes of algebras to classes of algebras.

1.7.1 Sorts and basic specifications

In multisorted logic, signatures include a set of sort names, and arities cannot be
described just by numbers, but must employ sort names. For instance, if we use

the sort name Nat to represent natural numbers, we might describe the arities of

the operations in E by

opn o * Nat

opn s : Nat —> Nat

pred p C Nat x Nat x Nat

Chapter 1. Introduction 24

So o is a constant (miliary operation) of sort Nat, s is a unary operation of sort

Nat, and p is a three-place predicate over Nat. In a model M, sort names are

each assigned a domain of interpretation, or carrier, and function and predicate
names are assigned functions and predicates of appropriate arity: so Nat is assigned
some set [MNat], and s is assigned a function [Ms] : [MNat] —> [MNatj. Variables
must now be assumed to be associated with a particular sort, and then terms of
the various sorts can recursively be built up. For instance if f : A —> B, then

f (t) is a valid term if and only if t is of sort A, in which case f (t) is of sort B.

Quantifiers should now specify the sort of their associated variable, for instance Vx:
Nat. p(o,x,x), but may be omitted where obvious. Similarly universal quantifiers
"V" may be omitted at the outermost level. So all the following are equivalent:

axiom Vx: Nat. p(o, x, x)
axiom Vx . p(o, x, x)
axiom p(o, x, x)

As an example, semigroups consist of some set [Gpd] (the domain of interpretation

corresponding to the sort name Gpd, for "groupoid") together with a binary func¬
tion [_ • _] : [Gpd] x [Gpd] —> [Gpd]. The following specification might be used to

define what it means to be a semigroup:

(1.3) (Semi-group)
SGP = sort Gpd

opn _ • _ : Gpd x Gpd —> Gpd

axiom x • (y ■ z) = (x • y) • z

SGP is a basic specification. It begins by giving sort names (here just Gpd), each of
which is to be given a corresponding carrier, or domain of interpretation ([Gpd]).
In addition we may give operation names, corresponding to functions on these
domains. Lastly we may say something about how these functions are to behave.
For instance, here we require [_ • _] to be associative. A model for a specification

(such as SGP) is an algebra consisting of a carrier set to interpret each sort name

(in this case just Gpd), and a function to interpret each operation name (in this case

Chapter 1. Introduction 25

just one function on the set, to interpret _ • _). If there are additional conditions,
such as the associativity in SGP, the models must also satisfy these.

So no matter what values in [Gpd] x, y and z take on, if we are to have a model
of SGP, the resulting values of [x • (y • z)] and [(x ■ y) ■ z] must be the same. Models
will include: strings over various alphabets, using concatenation to interpret

equivalence classes of _-_-terms over some set of variables under associativity (i.e.:
each equivalence class contains all alternative bracketings of a term), using term

construction to interpret _ • natural numbers (or integers, or real or complex
numbers, or matrices of them) under addition (or multiplication); any collection
of functions closed under composition; any group or (small) category (in the sense

of group or category theory), and many more. For instance, we may define a

model in which the carrier is the set of non-empty strings over {0,1}, to wit

{0,1, 00,01,10,11,000, 001,...}, and [_ • _] is given by concatenation: so in order
to calculate the value of [_•_] given two input strings (101 and 001 say), we simply
write the two strings down, in that order, juxtaposed (101001).

(1.4) Call this model N.

1.7.2 Refinement, enrich and derive

SGP is a basic specification. It describes a signature, and some conditions on that

signature. Its semantics is the class of all models over that signature which satisfy
those conditions. We don't have to have axioms in a basic specification:

BINOP = sort Gpd

opn _ ■ _ : Gpd x Gpd —> Gpd

is a valid specification. Like SGP, its models must interpret Gpd and _ • _, but
unlike in SGP, [_•_] need not be associative. SGP is a refinement of BINOP (SGP C

BINOP), because every model of SGP is a model of BINOP. Basic specifications
are the atomic building blocks from which compound specifications are built, using

specification-building operations. For instance, the operation enrich may be used

to build, from BINOP, a compound specification SGP2:

Chapter 1. Introduction 26

SGP2 = enrich BINOP by
axiom x • (y ■ z) = (x ■ y) ■ z

SGP2 has exactly the same models as SGP. enrich is just one example ofmany pos¬

sible specification-building operations which can be useful in building compound

specifications. The operations used in this paper are drawn from the ASL specifi¬

cation language (Sannella and Wirsing 1983). For any such specification-building

operation, the constituent specification(s) (such as BINOP in SGP2) will be se-

mantically grounded as a collection of models, and the compound specification
will also need to be so grounded. Clearly then, the semantics of specification-

building operations like enrich must consist of maps from collections of models
to collections of models. The construction

enrich A by
sorts S opns F axioms E

admits only models which besides having all the attributes of models of A, also

interpret S and F and satisfy the conditions in E. For example, the class of
monoids (semigroups with identity) is (almost) a refinement of SGP:

(1.5) (Monoid)
MON = enrich SGP by

opn e ■> Gpd

axiom x ■ e — e ■ x — x

This is a refinement not because it refers to SGP, but because every model of
MON is also a model of SGP, if you ignore e. In fact to be a true refinement this

"forgetting" must be said explicitly, because to say every model of B is a model
of A implies that they have the same signature. We write Sig[A] to denote the

signature of a specification A, so for instance Sig[SGP]=BINOP. So MON is not

quite a refinement of SGP, because SigfSGP] is strictly contained in Sig[MON],
where we require them to be equal. However the specification

(1.6) (Hide identity)

Chapter 1. Introduction

Sig[SGP]:
Gpd

27

Sig[MON]
- Gpd

subset inclusion

Figure 1—2: The Sig[SGP]-reduct of M

HIDEID = derive from MON by inclusion of SigfSGP]

is truly a refinement of SGP, since the effect of deriving by an included signature

(SigfSGP] is a subset of SigfMON]) on any particular model M of MON, is simply
to forget about interpreting the rest of SigfMON] (namely e). I write inclusion
of SigfSGP] to specify the signature morphism (map) which maps every piece of
syntax in SigfSGP] to the same piece of syntax in SigfMON]. Since any SigfMON]-
model M is itself a map from SigfMON] into some interpretative domain, we

may compose the inclusion morphism to SigfMON], with the model map M from

SigfMON], to obtain a map from SigfSGP] into the interpretative domain of M,
i.e. a model of SigfSGP], called the Sig[SGP]-reduct of M, written Sig[SGP]
(see Figure 1-2). The carriers of the models of HIDEID still contain their unit
elements, but the signature no longer names them. A model consists of carriers,

together with maps which interpret the signature in terms of those carriers. Then

M|sig[scP] no longer so maps the operation name e, despite the fact that the
object to which M maps e is still present in the domain of interpretation, just
because e is not in the signature of ^IsigfSGP]* ^or instance, the integers under
addition, with e interpreted as zero, form a model of MON, and the corresponding

Chapter 1. Introduction 28

model of HIDEID is exactly the same except that it can no longer interpret any

syntax involving e. Zero is still there, it's just that e is no longer mapped to it.
In particular, zero will not be reachable, as there is no term in the new signature
which names it. So Sig[HIDEID]=Sig[SGP], and also every model of HIDEID is
a model of SGP (write Mod[HIDEID]CMod[SGP]). Note that the converse is not

true (the inclusion is proper, Mod[HIDEID]cMod[SGP]). There are models of SGP
which are not models of HIDEID. For instance, N (1.4), the non-empty strings over

{0,1}, under concatenation, forms a model of SGP, but not of HIDEID, since there
is no unit element in the domain. If we put the empty string into the domain, the
result is still a model of SGP, but is now also a model of HIDEID, since it is the

same as that model of MON which interprets by concatenation over the same

domain, but also interprets e by the empty string.

So refinement is a semantic notion, where the fact that one specification may

be a syntactic component of another (as A is of enrich A by...) is simply a con¬

venience for neatly organising the information, in a way which reflects somewhat
ideas on modular program construction. These are separate, albeit related, issues.
Note that the derive construct may be used with any signature morphism, not

only inclusions, as we shall see in Subsection 1.7.4.

In MON we used the enrich construction to say that a monoid is a semigroup,
with certain additional properties. This would be particularly appropriate if the
definition of the additional properties relied heavily on the properties of SGP, but

in the case of MON, the property of having an identity is not particularly bound
to that of associativity. It might therefore be preferable if we could produce a

separate specification of binary operations with identity (which we might be able
to use elsewhere, even in the absence of associativity), and say that a monoidal

algebra is both a semigroup, and an algebra with (binary) identity.

ID enrich BINOP by

opn e » Gpd

axiom x ■ e = e • x — x

MON2 SGP+ID

Chapter 1. Introduction 29

Any model of the specification A+B must have all the attributes of models of
both A and B, thus M0N2 describes exactly the same class of models as MON,

but makes clearer the mutual independence of the required properties of monoids

(though in such a simple case, it probably makes little difference).

1.7.3 Subsorts, reachable and extend

In single-sort algebra, a model was said to be reachable if every object was the
value of a ground term. In multisorted algebra, this can be generalised to say that
a given set of sorts S is reachable in a model (or the model is reachable on those

sorts), if every object of those sorts is the value of a term containing no variables of
those sorts. That is, the terms which name the objects of those sorts may include
variables of sorts not in S (we say the objects, and the model, are reachable from
the sorts not in S). Those variables may then be given any value in the carrier of
the appropriate sort. Thus the variables act as slots where inputs (from sorts other
than S) can be fitted, and every element of the sorts in S must be expressible by
some such choice of inputs. We might also describe this by saying that the sorts S

are (in that model) generated by the elements of the sorts not in S. Consider the

example of a semigroup being generated by some subset of its underlying domain.

SUB = sorts Sub,Gpd

axiom Sub C Gpd

(1.7) (Generated Semigroup)
GSGP = reachable SUB + SGP

on {Gpd}

The axiom Sub C Gpd means that in every model of SUB, every object of [Sub]
must also be an object of [Gpd].2 Models of GSGP must do the jobs of both SUB

2Sometimes I will use x :Gpd as an atomic formula, for instance Va: :Sub . x: Gpd. What
should this mean, when the variable x has already been given the sort Sub? In this case,

Chapter 1. Introduction 30

(two sorts, one within the other), and SGP (associative binary operation), and

further, the elements of [Gpd] must be reachable from those of [Sub]. This simply
means that every element of the semigroup can be formed from elements of the
subset by successive application of the associative operation _ • That is, the
closure of the subset under

_ • _ is the whole semigroup, and not just some subset
of it. For instance, we can construct a model of SigfGSGP] which is like the model
N (1.4) of SGP, but which also interprets Sub by the set {0,1}. This is a model
of GSGP, because the non-empty strings over the alphabet {0,1} are generated by
that alphabet (under concatenation). Equivalently, any element of [Gpd] may be
expressed as a term using _ • _, where variables take on values in Sub: for instance,
010 = [a: • (y • z)\, where x takes on the value 0, y the value 1, and z the value
0. However the model of Sig[GSGP] in which [Sub] = {0,1}, and which, like N,
has

_ • _ interpreted by concatenation, but in which [Gpd] contains all strings over

{0,1}, including the empty string, is not a model of GSGP, because it is impossible
to produce the empty string from 0's and l's using concatenation. But if we put
the empty string into [Sub], we would again have a model of GSGP.

(1.8) Call this model E.

In like manner, we may describe the reachable monoids:

(1.9) (Generated Monoid)
GMON = reachable SUB + MON

on {Gpd}

One important use of reachability is that it gives us enough structure to make
recursive definitions. For instance, consider

x : Gpd should be interpreted as stating that the value of x is in the carrier of Gpd. So
Va:: Sub. x : Gpd is the same as Sub C Gpd. It can be considered an abbreviation for an

expression like Vx : Sub . 3y : Gpd ,x = y. If I fail explicitly to give a sort for a variable,
but the only possibilities are, say, Sub and Gpd, where Sub C Gpd (as, for example, with
the variable i in enrich SUB+SGP by 3i.i -i — i), one should assume the most general
sort, that is Gpd, the containing (rather than contained) sort.

Chapter 1. Introduction 31

FSUB = sort Sub

opn f : Sub —> Sub

FEND = enrich SUB + SGP by

opn f : Gpd —> Gpd

axiom f(x ■ y) = f (a;) • f (y)

If F specifies a single model, F say, of FSUB+GSGP, then F+FEND also has only
a single model. F acts as the base case for defining f, and FEND is the recursive
case. But if F specified a model of FSUB+SGP, but not FSUB+GSGP (i.e. the
model F was not reachable on Gpd), then F+FEND has many models, since for

any unreachable i E [Gpd], [f(«)] could take on any value in [Gpd].

The specification

UR1 = enrich SUB + SGP by

axiom 3x: Gpd . ->x : Sub A Vr: Sub, y: Gpd. x^r-y

certainly has plenty of models. For instance in the model

[Sub] = {0}

[Gpd] = {0,1}

[•] is given by ordinary multiplication

the object 1 satisfies the requirements for x in the axiom of URl. But the specifi¬
cation UR1+GSGP is inconsistent, i.e. is satisfied by no model, since in a reachable

model, every element of [Gpd] is the value of a _ • _-term with variables in Sub, for
some value of those variables, and since

1. using associativity, any such term involving more than zero _ • _'s can be
rewritten in the form r • i, where r is a variable of sort Sub and t is a _ •

term with variables in Sub, and

2. any such term involving zero _ ■ _'s is a variable of sort Sub.

Chapter 1. Introduction 32

Note however that although every model of UR1 is unreachable, not every un¬

reachable model of SUB+SGP satisfies the axiom of UR1. For instance in the

model

[Sub] = {0}

[Gpd] = {0,1}

[•] is given by addition modulo 2 (so 1 + 1 = 0 modulo 2)

the object 1 is the only unreachable element, but 1 = [-](0,1), so 1 cannot fill the
role of x in the axiom of UR1. In general, one cannot write an axiom which is
satisfied by all and only the reachable models. That is why we require an explicit

specification-building operation in our metalanguage if we are to be able to limit

specifications to reachable models (in order to get enough structure to do things
like making recursive definitions as in FEND above), but still have the ability to

talk, in other specifications, about the class of all models (or to refer to reachability
on different sorts).

Earlier, in Section 1.6 we saw that we might, as well as the class of all models
of a set of axioms, like to be able to refer to the class of initial models of those

axioms. In ASL, this class can be picked out using a specification like

(1.10) NAT = extend 0 by

opn o > Nat

opn s : Nat —» Nat

pred p C Nat x Nat x Nat

axiom p(o, x, x)
axiom p(x,y,z) -> p(s(x),y, s(z))

Here 0 stands for the empty specification, which has an empty signature and no

axioms. It has one (empty) model. The construction extend A by... specifies
the free extension of the models of A by the given syntax and axioms. The free
extension of a model M is given (up to isomorphism) by a term model with a

constant corresponding to every object in M. This construction may be performed

Chapter 1. Introduction 33

subject to some conditions. Thus we can specify the freely generated (or simply

free) semigroup over Sub:

(1.11) (Freely generated semigroup)
FGS = extend sort Sub

by sort Gpd

opn _ • _ : Gpd X Gpd —> Gpd

axiom SubCGpd
axiom x ■ (y ■ z) = (x ■ y) ■ z

Like derive, the extend operation transforms sets of models by performing a

construction, in this case free extension, on every model of the set. Intuitively, the
free extension assumes the least objects it can, subject to the given axioms, without

equating any new terms except those explicitly identified by axioms. The free
extension of a set A by the binary operation and the axiom x-(y-z) = (x-y)-z is

(isomorphic to) the (non-empty) strings over A. In FGS, we extend the specification
sort Sub, so all models M' of FGS extend some model M consisting of a set [MSub].
The condition Sub C Gpd means that, in the extensions M', [M'Gpd] contains the

objects of [MSub] = [M'Sub], plus new objects to serve as the values of [M'_-
The rule is that that these new objects should all be distinct, from each other,
and from [M'Sub], except where the axioms imposed in the extension require them
to be identified. For instance, if o £ [MSub], then we require of a free extension

properties including [M'_ • _](o, [M'_ ■ _](o, o)) = [M'_ ■ _]([M'_ • _](o, o), o), and
[M'_ ■ _](o, o) 7^ o. All such models M' are isomorphic, so we speak of the free
extension of Sub (by the given operations and axioms). Up to isomorphism, FGS

yields the non-empty strings over Sub: we can think of the objects of [M'Gpd]
as being non-empty finite lists of objects from [MSub], with [M'_ ■ _] interpreted
by concatenation. Intuitively, all properties of a free extension follow from the

properties of the model being extended, and the explicitly added structure. Note
FGS C GSGP, but the converse is not true. For instance, the model E (1.8) of
GSGP above, in which [i?Gpd] contains all strings over {0,1}, [FiSub] contains 0,

1, and the empty string (written e), and [£_•_] is calculated by concatenation,

Chapter 1. Introduction 34

is not a model of FGS, because it equates some _ • _-terms formed from elements
of [i£Sub], e.g. [E_ • _] (e, e) = e. We can similarly specify the freely generated

monoid, consisting of all strings over Sub (including the empty string):

(1.12) (Freely generated monoid)
FGM = extend sort Sub

by sort Gpd

opn _ • _ : Gpd x Gpd —* Gpd

opn e > Gpd

axiom SubCGpd

axiom x • (y ■ z) = (x ■ y) • z

axiom x ■ e = e ■ x = x

Initial models are reachable models in which predicates are only inhabited as

required, and terms are only equated as required. Although it may be possible
to rewrite collections of axioms in such a way as to restrict from reachable to

initial models without the need of a special extend operation, in the case of

performing a free extension on an existing specification, we would need to think
of the meaning of the embedded specification as a set of axioms. We have just

seen that a specification reachable T on S cannot be characterised in this way.

Thus the specification-building operation extend is required, if we are to be able
to refer to free extensions of arbitrary specifications.

Note however that extend cannot be used with arbitrary axioms, and it can

be quite difficult to tell whether it is well-defined given some particular set of ax¬
ioms. However conditional axioms of the form <f>1 A ... <f)n —> <j>, where <j>, ... <f>n
are atomic formulae and all variables are universally quantified, are guaranteed
to produce a well-defined free extension. Even if it is well-defined, the resulting
model can sometimes behave in a most counterintuitive fashion. Fortunately, if we

limit ourselves to persistent extensions, the result is well-defined and well behaved

(Ehrig and Mahr 1985). Persistence of an extension is most easily guaranteed by
checking for two other properties, sufficient completeness, and hierarchical consis¬

tency, which may be explained as follows. Because the extend operation in FGM

Chapter 1. Introduction 35

only constrains the new objects it creates to be in the new sort Gpd, rather than
the existing Sub, it does not create new objects of existing sorts. This property is
called sufficient completeness. The only pre-existing terms are variables x of sort
Sub. Then only terms to which an existing term x will be equated are x ■ e, e ■ x,

or other terms formed using _ • _ from one occurrence of x and arbitrarily many

occurrences of e. Because all of these denote the same object, no existing objects
will equated, or more generally, invested with any new properties which could have
been expressed in the pre-extension syntax. This property is called hierarchical

consistency. Together, these two properties guarantee a persistent extension.

1.7.4 Parameterisation and signature morphisms

The free extension is a very concrete construction, ft maps single models to

single models. Every model of FGM is specifically constructed from a model of
sort Sub. Any implementation M of sort Sub (so M has only one model M, up
to isomorphism) can be made into an implementation of FGM (the strings over

[AfSub]), by just adding FGM, so: M+ FGM. Using this fact, and a little lambda

(A) notation, we can construct a parameterised implementation.

(1.13) PFGM = AAksort Sub . X + FGM

For any specifications A and B, F = AA:A . B is a function on specifications,
ft takes any specification X which refines the specification A and performs the
constructions given by the specification B. Semantically, then, it takes a set of
models of A to a set of models of (the appropriate instantiation of) B. A gives
the type of the parameter X. If A' EI A, then the result of applying F to A' is
written F(A'). If B' is the result of substituting A' for every free (i.e. not bound

by an embedded A) occurrence of X in B, then the models of F(A') are exactly
the models of B'. So for instance PFGM(M) specifies exactly the same models as

M+ FGM. If a parameterised specification happens to map single models to single
models (as PFGM does), then it can be used as a parameterised implementation,
since for any implementation M of sort Sub, PFGM(M) is an implementation of
FGM.

Chapter 1. Introduction 36

It will be recalled (Section 1.5) that the central idea of algebraic specification
is to abstract away from details of algorithm by identifying any program with
the algebra defined by its functionality. PFGM may be thought of as a concrete

module (or parameterised program) in the programming language sense: linked
to an appropriate program module (model) M, it yields a program (i.e. up to

isomorphism, a single model). For example if NAT, containing sort Nat, is a

program implementing the natural numbers, then

NAT* = PFGM(derive from NAT by [Subi—>Nat])

references: NAT (1.10)

implements strings of natural numbers. This illustrates the other major use of

derive, in renaming, derive from NAT by [Subi—>Nat] allows us to interpret

any model M of NAT as a model of sort Sub by first mapping Sub to Nat, and then

interpreting Nat using M. In this way, we match Nat to the signature required of
the parameter X of PFGM.

[Subi >Nat] is meant to indicate a signature morphism which maps the sort

name Sub (and that alone) to the sort name Nat, and leaves everything else un¬

changed. A signature morphism is a map on syntax. It maps sort names to sort

names and operation names to operation names. There is no standard syntax

for specifying signature morphisms. In this thesis, in addition to the syntax just

described, I use inclusion of SigfSGP] (as in the specification HIDElD (1.6)) to
specify the inclusion morphism, which maps all the syntax in Sig[SGP] unchanged
into SigfMON]. Thus the map

inclusion : Sig[SGP] —► Sig[MON]

differs from the identity map

identity : Sig [SG P] —> Sig[SGP]

only in that it has a different range, SigfMON], differing from SigfSGP] only in

containing the constant e. It will be useful to have syntax to add to a description

Chapter 1. Introduction 37

like [Subi—>Nat] the information that some piece of syntax should not appear

in the domain (as with e in the inclusion map), in order to override the default
that syntax not mentioned should appear in both signatures ("everything else

unchanged"). I shall write this [17^—>e]: the morphism which maps everything

except e to itself, so e appears in the range, but not the domain, of the morphism.
So we could have written [/—>e] instead of inclusion in HIDEID, as they would
describe the same morphism. A signature morphism specification like [Sub 1—>

Nat,/—* o,s,p] might be read "rename Nat to be Sub, and forget o, s and p".
The signature of

DNAT = derive from NAT by [Sub 1—> Nat,/-* o,s,p]

(the domain signature of the morphism) would thus be the same as Sig[NAT] (the

range signature of the morphism), but with Sub instead of Nat, and with o, s and

p removed. That is, Sig[DNAT] contains the sort Sub, and nothing else. This is the

morphism which ought more properly to have been used in NAT* above, though
I shall introduce in Section 1.8 some abbreviatory notation by which the usage in
NAT* is well-formed.

By "forgetting" syntax, we can easily make previously reachable elements un¬

reachable. For instance, in NAT (1.10), all of [Nat] was reachable (from 0), but in
DNAT no element of [Nat] is reachable (can be the value of a term other than a

variable of sort Nat). So even though all models of NAT are initial, no model of
DNAT is even reachable, let alone initial (regardless of what axioms initiality is
considered with respect to).

1.7.5 Constructors, extractors and partial operations

Often it will be convenient to allow ourselves partial operations, to be interpreted

by partial functions. Whereas an ordinary (total) function / : A —> B associates
with every a £ A a unique /(a) £ B, if / is partial (write / : A-AB), then not

every (or, indeed, any) a £ A need have an associated value /(a), though where
such a value exists, it must be unique. Thus if f : A-^*B names a partial operation

Chapter 1. Introduction 38

and t is a term of sort A, the term f (t), even though well-formed, may fail to denote
any point in the carrier [A]. We modify the definition of satisfaction of an atomic
formula to say that p (ti,...t,-) is satisfied if and only if each of [tj],... [f,] does
denote a point in the appropriate carrier (or is well-defined, or simply defined),
and ([tj],... [£,•]) E [p]. Thus for any term t, the effect of the formula t — t is to

assert that t is defined, and nothing more. This we abbreviate D t. For partial f,
we may take f(t) to be defined in a free extension, only for those values of t where
some axiom of the extension insists it be defined. For instance, in

extend NAT by

opn predecessor : Nat^>Nat

axiom predecessor(s(r)) = x

predecessor would be defined on [s(t)j for every ground t (so 1,2,3...), but
undefined at 0. Partial functions can be useful in so-called constructor-extractor

implementations.3 For instance, we can obtain very nearly the effect of FGS (1.11)

by adding extractors (and equations) to the constructor _ •_ of GSGP (1.7).

(Non-empty lists)
NEL = enrich GSGP by

opn hd : Gpd —> Sub

opn tl : Gpd-TGpd

axiom Vr : Sub.hd(r) = r

3At the level of programming language, the use of partial operations is often held
to be confusing, and, at least in a naive implementation, quite inefficient.Goguen and

Meseguer (1987a) and Goguen and Meseguer (1987b) push sort inclusions into the sig¬
nature, employing an order-sorted logic, to overcome these and related problems. This
accords with the view, presented in Chapter 4, that different programming languages

may be embodied by different institutions (logics), and that specifications employing dif¬
ferent institutions may be tied together using the change institution operation, also

presented there. For the purposes of abstract specification, however, it will be simpler
to stick with ordinary first order logic.

Chapter 1. Introduction 39

axiom Vr : Sub, x : Gpd.hd(r • x) = r

axiom Vr : Sub, x : Gpd.tl(r • x) — x

axiom hd(x) = h A tl(x) = t —> x = h • t

_ • _ is called a constructor, because it can be used to construct new objects from

old, and the operation hd is called an extractor, because it can be used to extract

the old elements from which a new one is made (Goguen et al. 1975). The use of
extractors makes NEL very nearly the same as FGM. The extractor equations make
it impossible to equate Gpd-terms without also equating Sub-terms. For instance in
the model E (1.8) described above, we would be trying to set [hd]([_*_](e, 0)) = e,

but this is not consistent with the fact that [_•_](e, 0) = 0, because we would also
want [hd](0) = 0, so no interpretation of hd and tl can make E into a model of
NEL. For the cases where [Sub] contains at least two elements, the models of NEL
are in one-to-one correspondence with the models of FGM, with the correspondence

being given by signature inclusion reduct. (When [Sub] has only one element, NEL
also admits cycles, that is, models of addition modulo some integer n, where is

interpreted by addition modulo n, Sub by the singleton containing 1, and [tl(x)]
is [x] — 1 modulo n.) One advantage of directly using reachability (here inherited
from GSGP) and constructor/extractor equations, as compared to using extend
is that the free extension may simply not exist if we start to use axioms involving

-i, V or 3. But while using reachable and/or derive with constructors and
extractors may get us models in situations where extend doesn't, their use still

requires considerable care in order to avoid inconsistency. Of course this technique

may also give us non-isomorphic classes of enrichments, which extend cannot (on
a model-by-model basis), but in many cases, it gives classes we can nevertheless

successfully reason about. For instance, an axiom f(l) = 1 Vf (1) = 0 is unlikely to

produce a well-defined free extension, or indeed an isomorphic class of models, but

is likely to produce two isomorphism classes, one for each disjunct, about which
we may be able to reason separately.

Chapter 1. Introduction 40

1.8 Syntax and Semantics of ASL

This section loosely follows the presentation in Sannella and Wirsing (1983),
though the choice of logic and specification operations is not identical. It would be

pedagogically convenient not to have to describe signatures which distinguish be¬
tween predicates, total operations, and partial operations. A little thought should
convince the reader that any basic specification involving predicates and/or to¬

tal and/or partial operations may be encoded to similar effect by another basic

specification involving only predicates, or, equally, by one involving only total op¬
erations (and equality), or by one involving only partial operations (and equality).
However these encodings will behave differently with respect to reachable and
extend. The choice of partial operations seems give the most satisfactory solu¬
tion. The least satisfactory part of this solution is the encoding of predicates. One

approach is to let definedness encode predicate satisfaction. Wherever p(H,... tn)
appears in a formula, it may be taken as an abbreviation of Dp(H,... tn), which in
turn abbreviates p(H,... tn) = p(H,... tn). In order to determine whether a model
satisfies p(ii,.. . tn), instead of seeing whether (t\,... tn) lies in a set [p], we must
see whether the partial function [p] is defined at The problem with
this encoding is that of which value [p] is to take, when it is defined. For instance
in a free extension, if we say nothing about what this value is to be, then each

ground term p(H,... tn) will come to denote a new object. As a trick to prevent

this sort of problem, we can specify that whenever p(H,... tn) is defined, its value
is equal to that denoted by tx. Of course p(H,.. •tn) can only be satisfied when
the terms ti,...tn are defined, but the converse does not hold: p(t1,...tn) need
not be defined just because H,.. ,tn are. Rather, just as we would need to specify

anything required to be in a set-of-tuples interpretation of [p], we must specify any

tuples at which the partial function [p] must be defined. The declaration

pred p C Xj xX2x...X„

can be taken to abbreviate

Chapter 1. Introduction 41

opn p : Xj x X2 x ... X^-bXi

axiom x = p(2q, X2, ■ ■ ■ xn) —* x — Xi

The declaration of a total function

opn f : Xx x X2 x ... Xn —» X

can be taken to abbreviate

opn f : Xj x X2 x ... X„-AX

axiom Vaqx2 • • • xn.T)f (a^, x2,... xn)

Both of these encoding axioms are well-behaved in free extensions.

I shall therefore just assume here the logic with partial operations and equality.

Putting predicates and total functions into the signatures is not difficult, merely
tedious. What follows is probably best read as a sketch, which is easily filled out

to deal more directly with (for example) predicates. These problems exemplify
the fact that the precise notion of logic underlying the specification language may

never be exactly what we want for every situation. This can be addressed by

parameterising the specification language by an arbitrary institution (Sannella and
Tarlecki 1985). Institutions are a formalisation of the idea of logical framework.

They will be introduced in Chapter 4.

The syntax of ASL specifications may be described as follows:

Spec ::= Basic | Sum | Reach | Derive | Extend
Basic sorts sorts opns partial operations axioms sentences

Sum ::= Spec + Spec

Reach reachable Spec on set of sorts

Derive derive from Spec by signature morphism
Extend ::= extend Spec by Basic

The semantics of a specification S is given by its signature (Sig[Sj) and the
class of models of that signature which it admits (Mod[Sj). A signature S is just

Chapter 1. Introduction 42

a collection of sort and operation names: £ = (sorts(£),opns(£)). Notice the col¬
lection of operation names opns(£) is indexed by arity. The arity of an operation
just gives the sorts of its arguments and result, for instance the arity of

opn f : Xi x X2 x ... X„-bX

above is Xi x X2 x ... Xn^>X. X x X may be abbreviated as X2, X x X x X as X3,
and so on. The signature, SigfSGP], of SGP (1.3) has sorts(Sig[SGP])={Gpd}, and

opns(Sig[SGP])i = {_•_} for i = Gpd x Gpd-b-Gpd but empty otherwise. A Ti-model
M interprets each sort X by a set [MX], and each operation f : Xi x X2 x ... X„-AX

by a (partial) function [Mf] : [MXj] x [MX2] x ... [MXn]-b[MX]. We say S' refines
S if Mod[S"']CMod[5]. If also S' has only one model, up to isomorphism, it is said
to implement S.

A signature morphism o :£—>£' is a map which takes every sort name

s £ sorts(E) to a sort name cr(s) £ sorts(E'), and every operation name fi £

opns(E),- of arity i to an operation name cr(/,-) £ opns(£')a(q. Note this definition
involves extending cr from sort names to arities, but this is quite straightforward,
for instance ct(A^B) = cr(A)-b-cr(B). In the same way a maps any piece of syntax

using £ to a corresponding piece using £'. In this way, a signature morphism
a : E —» £' can be used to interpret any £' model M' as a E model oM1 (or

M'\a), the o-reduct of M' (as for instance in Figure 1-2). To interpret any piece
of syntax built out of E via this reduct model, first map that syntax into £'

using cr, then interpret the result using M'. The simplest examples are when the

signature morphism is an inclusion (or the identity), like the inclusion of Sig[SGP]
in SigfMON], Any model for MON (1.5) can act as a model for SGP (1.3): the
extra mechanics to interpret e are simply not used. In such a case, (E C £'), we
write M'\y. for the inclusion reduct.

Alg(E) denotes the class of all models (algebras) of the signature S. When a

model M satisfies a sentence </>, write M \= <f>. The following equations give the
semantics of the different constructs.

Sig[sorts S opns F axioms E] = (S,F)

Chapter 1. Introduction

Modfsorts S opns F axioms E\ = {AeAlg({S,F))s.t.A\=E}

43

Sig[T 4- T'] = Sig[T] U Sig[T']

Mod[T + T'] = {A E Alg(Sig[T + T']) s.t. A|gig[T] £ Mod[T]
and ^lsig[T'] e Mod[T']}

Sig[reachable T on 5] = Sig[T]

Mod[reachable T on S1] = {A E Mod[T]s.t. A reachable on S"}

Sigfderive from Tby <r] = E, where o : E —» Sig[T]
Modfderive from T by a) — {A\a s.t. A E Mod[T]}

Sig[extend T by sorts 5 opns F axioms E] = Sig[T] U (S,F)
Mod[extend Tby sorts S opns F axioms E] =

{A\A freely extends some A' E Mod[T] by S, F subject to E}

A basic specification selects all models of the given signature which satisfy its
axioms. This is where we start: give some syntax and say what it does. T + T'
selects models of the combined sorts and operations which can be used as either T

or T' models. This is useful in modular construction. For instance, we could write

a specification BOOL of the booleans once and for all, and just add it into other

specifications when required. For any specification T and set of sorts S, reachable
T on S selects those models of T such that every element of the carriers for the
sorts S is expressible as a term with only variables of sorts from sorts(T) — S.
For instance, in any model of FGM (1.12), we can say that every string over a set

(sort) Sub is expressible as a _ • _-term with variables over Sub, and so the model
is reachable on the set of sorts {Gpd}.

The three specification-building operations described in the preceding para¬

graph (basic specification, the "plus" construction, and reachable) all act in some

sense as filters, though the first two filter all algebras of appropriate signature, and
the third just those of the specification T. In contrast, the other two (derive and

extend) have quite a constructive flavour, in that they are based on maps which

Chapter 1. Introduction 44

take an individual model, and transform it in some way. Sets of models are then

mapped model by model, so that, for instance, a singleton set (a set containing

just one model) will be mapped to another singleton set. This guarantees that

applying them to a consistent specification (one which has a model) can never

yield an inconsistent specification (one which has no models). This makes them

very useful in specifying implementations (single models), since any specification
constructed entirely from them must be consistent (provided, of course, that all
extensions are well-defined). This need not be true of the first three operations.

derive from T by <7, for any specification T and signature morphism a : E —>

Sig[T], is based on the <r-reduct construction, making each model of T into a S-
model by first applying a to any E-syntax which requires interpretation. This
tends to be most useful in renaming, for example to distinguish multiple copies,
and in "forgetting" syntax which is no longer required. Informally I may sometimes
write T\a for derive from T by cr, though this notation is properly reserved for
models. Similarly T|e stands for derive from T by inclusion of E.

The construction extend T by sorts S opns F axioms E depends upon the
formation of the free extension, which was described in Section 1.7.3. Roughly,
we get this by (recursively) adding new objects to the carriers as required by F,

identifying objects only when required by E. For instance, extending a sort A

where [A] = {0} by a total function f : B —> B and axiom A C B gets us, up

to isomorphism [B] = {0, f(0), f (f (0))...}. As outlined in Section 1.7.3, extend
cannot be used with arbitrary axioms. However Tarlecki (1984) shows that the free
extension is well-defined if we limit ourselves to universally quantified conditionals
of the form <f>-y A . .. <j>n —> <f>, where each <f> is an equation or an inequation. In

the presence of partial functions or predicates (as opposed to just total functions),
hierarchical consistency requires that the tuples of existing objects assigned to any

existing predicate, or those at which any existing partial operation is defined, are
not changed by the extension. (If we only have total functions, this is obviously
not a problem, and so we would only have to worry about additions to the equality

predicate, i.e. equating existing terms.) We will write 0 to abbreviate the unique

empty specification, sorts 0 opns 0 axioms 0. So, for instance,

Chapter 1. Introduction 45

extend 0 by
sort Nat

opn 0 > Nat

opn S : Nat —> Nat

implements successor notation for natural numbers. Because of this constructive

flavour, derive and extend can be used to write specifications which can be

viewed as parameterised programs, or program modules. A parameterised program

is (essentially) a map from models to models. Such a map can be extended in
an obvious way to map sets of models to sets of models (as a parameterised

specification), but the converse clearly does not hold: a map from sets of models
to sets of models need not map a singleton to a singleton. But those, such as

PFGM (1.13), which do, may be viewed as parameterised programs. Parameterised

specifications may be written using syntax borrowed from the lambda calculus.
The specification F = XX: S; . S0 is interpreted by the function whose value on any

specification S refining Sj (written F(S)) is the interpretation of the specification
obtained by substituting all free occurrences of X in SQ by S.

In future, I will write S' [I S if S"|sig[s] refines S. So S' may contain some extra

syntax, but in other respects every model of S' acts like a model of S. When the

inclusion is strict (Mod[5'|sig[s]]cMod[5]), I may write S' C S. So for example
MON □ SGP , since C now takes care of "forgetting" e. Then for a parameterised
construction F = XX: A . B, if A' C A, let F(A') be the same as

A' + F(derive from A' by inclusion of Sig[A])

This construction uses derive to "forget" any extraneous syntax, so fitting the

argument supplied to F to its requirement specification A, and then adds it back
in explicitly using the "+" construction. The enrich construction may be defined

metasyntactically by

enrich T by sorts S opns F axioms E =

T + sorts (sorts(T) U 5) opns (opns(T) U F) axioms E

where U represents set union.

Chapter 1. Introduction 46

1.9 Montague, ADJ, and Initial Algebra Se¬

mantics

Richard Montague is perhaps best known for work such as Montague (1973), in
which he supports his claim that there is no fundamental difference between nat¬

ural language and formal language by giving a formal syntax for a subset of the

words, phrases and sentences of English, and providing for this syntax a formal,
model-theoretic interpretation, intended to capture some of the everyday mean¬

ing of those words, phrases and sentences. Slightly less well known is work such
as Montague (1970). Here, Montague defines a system of Universal Grammar

(UG), by which he means, a framework within which grammars in general may be
defined.

Algebraic specification in computer science starts with the work of the ADJ

group (e.g. Goguen, Thatcher and Wagner 1978). The ADJ group had the insight
that by associating programs and algebras, one abstracts away from the details of
calculation. An algebra associates operation names only with functions, not with

algorithms. The functionality of a program is what is important in using it. If
this can be specified once and for all, we can change the underlying algorithm at

will without harming any user of the program. So one needs to be able to specify
a single algebra (or isomorphism class thereof) with the required functionality.
The ADJ approach to this was to give term equations which describe the required

properties. But there will be many algebras which satisfy these equations, not
all isomorphic. The algebra (actually, isomorphism class) chosen was the initial

algebra, that which assumes the least entities subject to equating the fewest terms.
A program is then said to implement the specification if it supplies algorithms with
this functionality.

Janssen (1983) suggests (and I would concur here) that the approach of Mon¬

tague (1970) to specification does not differ in essence from that used by the ADJ

group, except that the former was developed primarily with natural language in

mind, and the latter with computer programs.

Chapter 1. Introduction 47

As noted, Montague is also interested in producing plausible grammars within
his framework, such as Montague (1973). Like the ADJ specifications, these are

really just single algebras. Even if one accepts that this is ultimately the right
level of description, insisting that all specifications correspond to a single algebra
limits the sort of descriptions by which this goal may be approached. For instance,

grounding specifications as classes of algebras it becomes much easier to break up
the notion "grammar" into treatments of the various linguistic phenomena, for
instance into some "core" grammar, treatments of relatives, co-ordination, and
so on. This also opens the possibility that we may write specifications designed
to say in the most general terms how a treatment of (say) relatives may be got

from a simpler grammar with certain minimal features. Such a specification may

encompass the approaches of a great many different styles of grammar to such a

problem, and is thus a further abstraction away from actual details of "program",
or construction. The point of this abstraction, as before, is an attempt to describe

what it means to be a solution to the problem, other than by saying, "here is a

solution".

Montague provides a space of grammars (UG) and some examples of gram¬
mars in that space, but provides no means of carving out subspaces, or classes,
of grammars. Chomsky (1986) uses the term Universal Grammar to refer to a

system which describes all and only the (idealised, potential) human languages.

Montague's UG framework is clearly capable of describing systems bearing little
resemblance to human language, and indeed was never claimed to describe only

potential human languages. Thus it is perfectly reasonable to use this framework
to describe computer programs, which do not appear likely candidates for admis¬
sion as potential human languages. Nevertheless, we can imagine some restriction
of Montague's framework corresponding to Chomsky's conception of Universal
Grammar. But there is no way of describing this restriction in the language of
the framework, nor any means of explicitly referring to cross-linguistic phenom¬

ena, because the framework only describes single models. What is missing, from
both Montague's UG, and the work of the ADJ group, is any means of referring
to (non-isomorphic) classes of models. Even though it may be reasonable to as-

Chapter 1. Introduction 48

sociate the division of a program into modules with the construction of a larger

algebra from smaller ones, conceptually it may be easier to break the description
of an algebra up by describing a series of classes to which it must belong. This
is stepwise refinement, by which we may form successively more specific specifica¬
tions as we flesh out the important behaviour of a system (Sannella 1986). This
leads us to ground a specification semantically as a class of (not necessarily iso¬

morphic) algebras. This style of semantics is sometimes called loose specification.
This class-of-algebras, stepwise refinement approach is more closely aligned with
the idea that the task of linguistics is to constrain the class of possible natural

language grammars. This framework also simplifies somewhat the discipline of

writing down as much as possible about one's notion of the problem at every stage

of investigation, which is a good way of sharpening one's perception of what has
been achieved, and what has not, and for communicating precise, formally worked
results at a highly abstract level.

Montague (1970) sets up the mechanics of a particular logical framework,
which Montague hoped would suffice for all linguistic/semantic and philosoph¬

ical/mathematical endeavour. Janssen extends the claim to computer science.
However Janssen also generalises Montague's logic somewhat, suggesting already
the question of whether there can be a single right logic for all things and all
time. This setting up of a logical framework corresponds to defining an insti¬
tution. Goguen and Burstall (1985) describes "the notion of an institution as a

precise generalisation of the informal notion of logical system". It is Goguen's
thesis that the main difference between very many specification languages is just
the logical system in which they are operating. These includes systems of equa-
tional logic (as used in Universal Algebra), Horn clause logic (as used in Pure

Prolog), first order logic with or without equality, and various restrictions thereof,
as well as systems which admit partial operations or order-sorted signatures. This

phenomenon is surveyed in Goguen (1987). His conclusion is that there can be
no single right choice of logical framework. It is possible to parameterise a speci¬
fication language (such as ASL) by an institution, so that one in fact has a whole

family of specification languages, which can be used together using operations like

Chapter 1. Introduction 49

change institution (Sannella and Tarlecki 1988). So there is no need to limit
oneself to a single logical language, even within one specification.

Thus I see two main deficiencies in Montague's UG as a framework for linguistic
endeavour. The first (as with the ADJ framework) is that our ability to abstract
across grammars, and to manipulate these abstractions, is limited by the insistence

on initiality of models. The second is that there is no reason why we should limit
ourselves forever to any single logical language.

1.10 Other Styles of Specification in Computer

Science

The preceding section was devoted to some reasons why I feel the grounding of

specifications as classes of models is a useful tool for the specifier of a large infor¬
mation system (computer system, or natural language system). It also suggests
that grounding a specification as a single model is entirely reasonable from the

point of view of the programmer, or more generally, the implementor of (any part

of) such a system. Furthermore, the specifier can look at the particular specifi¬
cation language, and the programmer at the particular programming language,
as being embodied by the particular logic (institution) in which this grounding
is pursued. In practice, these two jobs are quite likely to be performed by the
same individual(s), and this is no bad thing, since the properties of an implemen¬
tation should suggest improvements in the specification no less than the other way
around.

However in Pereira and Shieber (1984) we see the semantics of a language like
Patr-II described, not as an institution, but in terms of what has become known
as domain theory (Stoy 1977). But this style of specification is motivated not by
the needs of the specifier of a system, or an implementor of a program involved in
that system, but by the specifier of a programming language, or the implementor
of a compiler or interpreter for such a language. Taking a step back, it is obvious
that a compiler or interpreter is a program — so why shouldn't we handle their

Chapter 1. Introduction 50

specification and implementation in just the same way we have been advocating
for other programs?

And there is no reason why we should not. Domain theory is essentially just
a specialised kind of model theory, and the definition of domains appropriate to

a language is just the definition of the appropriate classes of models for an in¬
stitution of that language. The constructions chosen in such work have many

special properties which make them suited to procedural interpretation, but this

doesn't stop us taking a pre-procedural perspective on them. We have seen some

hints already (Section 1.5) as to how the model theoretic perspective can be tied
to the procedural (proof theoretic), by looking for some routine system of calcu¬
lation (proof theory) capable of answering questions such as whether any/all of
the models of a given specification satisfy some given sentence of the language.
In particular, any given definition of model morphism preserves satisfaction of a

particular class of sentences, and thus if there is an initial model relative to such a

definition, it satisfies such a sentence exactly when every model does so. This does
not mean that deciding whether the initial model satisfies a given query sentence

is necessarily routine, though this may be true for particular kinds of query, such
as conjunctions of atomic formulae, existentially quantified (as in Prolog).

Nor is it the case that the over-arching theory of how the different forms of se¬
mantics slot together is well-established and completely understood. As with any

other scientific endeavour, the elucidation of a particular perspective or modelling
construction feeds back into our understanding of the overall task. In this case I

use the term "modelling construction" very loosely, to say that both the model
theoretic and the proof theoretic approaches to specification and semantics can be
said to be about "modelling" a formal language. Domain theory is one technique
which offers some promise of elucidating the connection between the two perspec¬

tives. In particular it is part of the trend to see them as different manifestations

of a more abstract semantics. Closely linked to domain theory in this trend is the

more sophisticated use of categories (in the sense of category theory) as domains
of interpretation. Also related are the use of type hierarchies, such as that of

Martin-Lof (1982).

Chapter 1. Introduction 51

1.11 Real Programmers

One day, perhaps not too far off, we may understand enough of this connection

to make the use of such techniques a practical background for the development

of large computer systems. In the short term, however, it seems to me that that
an ASL-style class-of-models approach offers the best hope for improving the way

we specify and implement large systems. At the moment, more theoretical effort

goes into the proof theoretic perspective, and this is probably just as well, as more
"real" (commercial) system specification and implementation is done in algebraic-

style model theoretic vein. This should not be taken to mean that its use is

widespread, but more that the use of algebraic style specification in commercial
environments has begun, and little else really has even done that. For an informal
overview of the philosophy and research programme behind ASL, see Sannella and

Tarlecki (1992).

One should not, however, imagine from this that specification language inven¬
tors also invented the problem they aim to solve! The problem of how to go about
the specification and implementation of large computer systems is enormous. It

generates and consumes huge amounts of money and effort. There exist a vast

number of proprietary "systems" which companies can purchase in an effort to
ease this task. While these will generally offer some forms to follow in the process,

they tend to be as much about management (costing, delegation and co-ordination
of personnel) as anything else. Computer system development seems to lead to
difficulties in management in a way which previous engineering tasks have not.

Part of the reason is certainly the difficulty of semantics. It is clear that there
is more to the semantics of programming than knowing the result of machine
instructions. The specifier/programmer has some idea of what needs to be achieved
and what this implies for the program. She has besides this an array of techniques
and tricks for coming up with an actual program which does these things. The

investigation of such a program may give her a more accurate idea of what the
task entails, and so on.

Chapter 1. Introduction 52

However as soon as the task becomes so large that it cannot be carried out by
one individual, we see the deficiencies of carrying out this process in an informal

way. Misunderstandings develop. Subsystems fail to fit together as expected.
For instance, one person may make a broad specification which breaks the task
down in a conceptually clear fashion into two subtasks, only to have the (plural)
implementors discover that this conceptually clear division is not the appropriate

one for implementation. There may be no way to avoid this, but what we can do is

try to ensure that we discover it at the earliest possible point, by producing simple

implementations at an early stage. Even if these suffer known deficiencies, they

may be enough to show us that the current division of the task is not appropriate.

One of the difficulties in such a process is the language the various individuals
should use to communicate their work. Usually, it is natural language, sometimes

helped and sometimes hindered by the sort of proprietary systems alluded to.

How widely a formal language will ever become used is debatable, but at least
it has proved itself useful in some cases. For instance, it is only quite recently
that the correspondence was noticed between, on the one hand, the sort of con¬
flict just outlined, where the appropriate divisions of a task for specification and

implementation differ, and on the other, the distinction between specifications of

parameterised programs, and program specifications which are themselves param-
eterised (Sannella and Tarlecki 1988). For a description of the practical application
of loose specification and stepwise refinement, see Sannella (1989).

1.12 Real Linguists

It will be noted that the overwhelming majority ofmy examples of "real" linguistic
frameworks are in the feature-value tradition. Of course it is true that these

frameworks have developed in intimate association with the burgeoning field of

Computational Linguistics, and so one would expect them to be more liable to fit
into the context of a theory borrowed from Computer Science. I have little doubt
that fitting other frameworks into this setting could be a much more difficult

Chapter 1. Introduction 53

task, but the need to do so is all the more urgent. The fact that the ideas arise
from Computer Science does not mean that concerns of executability need be

paramount, since in any case much of the point of algebraic semantics is that it
abstracts away from procedurality.

Just as formal specifications may never be more than one tool of many em¬

ployed in trying to keep a software project on course, they are never likely to be
the whole story of linguistic endeavour. For instance, social factors are bound to

influence either. But this has not stopped specifications being of use in convey¬

ing certain kinds of information in developing computer systems, and they can

be used in much the same way in linguistics. A large computer system, incor¬

porating input from many directions (perhaps communication over "noisy" lines,

perhaps real-time monitoring of physical systems) is itself subject to vagaries be¬

yond what goes on in the silicon, and cannot be thought of as a mere program.

But it has parts which are programs, and these parts must cope in some way with
the unpredictability of the other parts, which might remain only loosely speci¬
fied. There is some parallel between the ideas of graceful degradation, and the

performance/competence distinction.

Anyone who has written a fairly large program (or even more so, been one

of many participants in such a task), will know how easy it is for unconsidered
and apparently trivial details to turn up in the most unlikely places, revealing an

aesthetically splendid program to be, in fact, useless. Again, whether a model is

running on a computer is not of primary concern (though having a computational

implementation often makes deficiencies easier to spot). The same phenomenon
will beset anyone dealing with formally precise model construction, including,
for instance, workers in the tradition of Montague grammar, or in the semantics
of feature-value formalisms. If someone suggests a possible problem in such a

construction, it is generally quite obvious whether it is a problem in fact. It may
take some time to identify the real source of the problem, and solving the problem

may mean anything from a simple correction to a complete redesign, but the status

of the claim as a genuine "bug" is rarely in doubt.

In contrast, linguistic arguments (notably in the Government and Binding the-

Chapter 1. Introduction 54

ory (GB) of Chomsky (1981)) very often seem to involve considerable equivocation
over whether a putative difficulty has the status of a genuine deficiency of the

analysis. For instance, such an equivocation might take the form "perhaps if we
assumed a treatment for case theory which XYZ and a theory of theta-roles such

that ABC...". Papers are liable to begin "assume some form of X-bar theory",

yet there appears to be no standard definition of what it means to be a (generic,
rather than specific) X-bar theory: only some example theories, which in turn may

be built on similarly imprecisely grounded notions. Even if we take it that the

only X-bar theories (or whatever) are say a half dozen well-known versions, if we

multiply this out for all the other variables in the system, the result is simply more

than we can adequately cope with in an informal way. This is evidenced by pre¬

cisely the sort of equivocations just alluded to. To many people who have worked
with large formal systems, this ability to pull out of the air a "tweak" to cover

practically any potential problem which is pointed out is deeply suspicious. How

many variables have simply been neglected? It is entirely possible, for instance,
that this tweak is inconsistent with every possible setting of such an unconsidered

variable, in very different and unobvious ways. Can we be sure that this tweak is

compatible with the one suggested last week or last year?

It is essential that an analysis be falsiftable: that we should be able to tell

unequivocally when it truly describes an observation of the phenomenon under

study, and when it does not. In a complicated, informally presented system, such
an argument is never likely to be unequivocal, even to experts in the system.

Contrast this to a (more-or-less) formally presented system: for instance Kaplan
and Zaenen (1987) is a description of long distance dependencies in LFG (one
of the feature-value systems I will consider). This analysis suffers the following

deficiency: their rule (71) which describes the modification of a noun phrase by
a relative clause is, as given there, insufficient to force any feature other than
RELMOD to appear on the mother NP. The obvious fix (add f=j to the decoration
on the daughter NP) would cause cyclity in the model, which is explicitly ruled out
elsewhere in the paper. Even with little or no background in LFG, it is possible to

spot such a deficiency, and formally trace a proof of inconsistency, in such a way

Chapter 1. Introduction 55

that it cannot be denied. It is unlikely that an inconsistency could be so readily
demonstrated in an informally presented system.

I do not wish to appear dismissive of the programme of GB. In many ways

it embodies just the sort of characteristics one would look for in an attempt at

abstract specification. For instance, in the principles and parameters approach to

the study of language (e.g. Reape and Engdahl 1990), which has become central
in GB (and elsewhere), the idea of constraining the class of possible languages by
the imposition of various principles has a clear counterpart in the idea of stepwise

refinement. For another example, the attempt to draw a strong line between
a fixed Universal Grammar and various language-dependent variables is clearly
reminiscent of the distinction in logic between logical and non-logical syntax, and

suggests it may perhaps ultimately be viewed as an institution. But it seems

that only canonical models (trees of some sort) are ever defined, and then a few
variations on them are considered. If one does not define a class of models in

which to move, this can never be more than grasping in the dark. Any claims
that it is too early to consider such a move are long since void. The system is far
too complex to be dealt with in this way. If it turns out that a choice of model
class is insufficient to the task, so be it. That too is subject to review. But I

am convinced that the example of computer systems amply illustrates the folly of

specifying ever more properties a system should have, without ever stopping to

ground it in a precisely defined implementation.

1.13 Coda

With these background preliminaries complete, I shall move on to consider how
ideas of modularisation, parameterisation, loose specification, and stepwise refine¬

ment may be useful in describing models for linguistic theory. In Chapter 2, I
will consider why the desire to model constituency leads to the introduction of an

auxiliary, or intensional, sort. We shall see some simple examples of grammatical
models. In Chapter 3, I consider the need to classify this intensional domain along

Chapter 1. Introduction 56

several different dimensions, and how this can be done using features. I discuss

PATR-II, LFG, GPSG and HPSG. In Chapter 4 I introduce "the notion of an

institution as a precise generalisation of the informal notion of logical system"

(Goguen and Burstall 1985). The change institution operation can be used to

link together specifications written using different institutions (logics). In Chap¬
ter 5 I develop an abstract specification of what it means to treat the phenomenon
of topicalisation, and develop a parameterised implementation which, given a core

treatment with certain minimal properties, will yield a simple extension which
treats topicalised sentences. I then present a similar two-pronged development,
of an abstract and a concrete specification, this time for "wh"-relative clauses.

In Chapter 6 I consider a simple example of the use of loose specification and

parameterisation in developing a treatment which admits different refinements for

modelling different languages (in this case, dependent clause order in English,
German and Dutch). In Chapter 7 I present some conclusions and directions for
further study.

Chapter 2

Grammars

Algebraic-style specifications may be a useful tool in the writing of natural lan¬

guage grammars. Grammars attempt to model human languages, or parts of
them. As with programs, there may be many equivalent ways to implement es¬

sentially the same account. For instance, much as one may choose from a range

of programming languages, there are many grammatical frameworks in which a

grammar may be constructed. We might employ context-free rewrite rules (Hopkin
and Moss 1976), such as S —> NP VP (a sentence is (or may be) a noun phrase
followed by a verb phrase), or we might employ the categorial slash of Lambek

(1958) and replace VP by the compound term S\NP (something which looks for
a noun phrase to the left in order to form a sentence). Within a framework there
are still many ways of achieving the same goal: for instance we could equally have

replaced NP by the compound term S/VP.

The principles and parameters approach to the study of linguistic structure

has become ubiquitous over the last decade. The principles part is easily set into
the discipline of stepwise refinement. It is a philosophy of applying successively
more constraints to a system, slowly narrowing down to the required behaviour,

eliminating possible behaviours as we go, in just the way that stepwise refinement
filters away more models at each step. The ideal is that through this process, the

range of possible grammars should become so constrained that variation across

languages should be explicable in terms of the values taken by a few parameters,

or variables, of the system. For example, in one of the seminal works for this

57

Chapter 2. Grammars 58

approach, Rizzi (1982) suggests that what appear superficially to be quite different
restrictions on the syntax of so-called wh-constructions (such as I wonder who the

jury will blame, or the actor who no-one remembers) in English and in Italian,
can in fact be viewed as the same restriction, parameterised by a variable set of

bounding nodes, which take on slightly different values for the two languages. We
can imagine that this might ultimately be characterised by a specification like

(Universal Grammar)
UG = AB:BOUNDSETS• • • .WHX(B) + other subspecifications

where WHX is a specification of the wh-construction, parameterised by a set B of

possible bounding nodes, and UG is a parameterised specification built up from
WHX and specifications of the various other linguistic phenomena, such that, when

supplied values for B and whatever parameters the other subspecifications may

require, UG produces a specification of a single model (grammar) of a particular

language.

Many theories propose independent "levels" of representation (c- and f-structure
in LFG, S-structure, LF and so on in GB and its ancestors: see for instance Sells

(1985)), which can only "communicate" in given ways (via rules or relations). This
is very reminiscent of the central idea of modular program construction, where a

task is divided into various subtasks, performed by separate modules which com¬

municate only by mutual invocation of those items explicitly made visible to the
outside.

In attempting to extend coverage, it is quite common to assume some "core"

theory, which one then builds upon. For instance we could view the metarules
of GPSG (Gazdar et al. 1985) as extending a core of explicitly given phrase
structure rules. This extending construction is more or less independent of the

particular phrase structure rules used. Such constructions are just another form
of parameterised description. (The GB notion of "core" grammar, which is only
intended to exclude marked, more-or-less one-off constructions, is a considerably
more restrictive use of the term than I employ here).

Chapter 2. Grammars 59

Certainly there seem to be enough parallels between the linguistic task and the
software engineering task to make further investigation worthwhile.

2.1 Strings, Substitution and Constituency

I shall consider grammars of sentence structure, which operate at the level of how
sentences may be built up from words. Models must contain (at the very least)
objects to correspond to words, an operation to correspond to forming sequences

of words, and some means of identifying which of those sequences are well-formed

strings of the language. I want first to construct a specification we could use to

type a parameter which can be thought of as standing for some "core" grammar

(for instance covering ordinary subject-verb-object type sentences), which we can

then extend (for instance to cover relative clause constructions). In order that
this parameter be able to range as widely as possible, we should require of it the
minimal structure which still allows us to perform the necessary constructions

upon it. Thus I shall begin by aiming just at well-formedness. This is really no

restriction, since models involving more sophisticated interpretative domains and
constructions are certainly still among the class which deal with well-formedness.
As with the formation of HIDEID (1.6) from MON (1.5) above, we should just have
to "fit" them to the parameter, by using the derive construction to "forget" those

parts we don't require. Separating a semantic domain (like the value of the SEM

attribute in Pollard and Sag 1987) which deals with (something like) the everyday
sense of meaning, and excludes everything else (word order, phonology and so on)
is a convenience which marks it off for future use, say in semantic processing. In
the context of building a specification at the most general level, there is no need
to make such a separation.

(2.1) LEX* = derive from FGM
by [Lex i—> Sub, Lex* i—> Mon]

Chapter 2. Grammars 60

(Well-formed strings)
WFS = enrich LEX*

by sort Wf s

axiom Wf s C Lex*

We use FGM (1.12) to form strings. Note [Lexi—►Sub,Lex* i—►Mon] represents a

signature morphism which maps the sort names Lex and Lex* to the sort names

Sub and Mon respectively, but changes no other name. At first it seems counter¬

intuitive that [Lexi ►Sub] is used to change a model of "sort Sub" to one of
"sort Lex" (which is what it is doing). The morphism seems to be going the

wrong way! If you think about it though, in order to form a model of "sort
Lex" we must interpret the sort name Lex. Now if all we have is a model M

interpreting the sort name Sub, one way to go about interpreting Lex is first
to map it to Sub, and then interpret this using M (see again Figure 1-2). So

[Lexi—►Sub,Lex* i—►Mon] is the correct morphism for the above renaming. We

compose the signature morphism and the mapping of M from syntax to semantics
to form the reduct M\[ieXi ►sub.Lex*. ►Hon]- So all this was just to form strings of
words. Now we observe that only some of these strings are well-formed strings. In

summary, we denote the set of well-formed strings (of some language) by the sort

name Wf s and insist that every such string is a string of words.

Perhaps the fundamental observation in attempts to characterise sentence-level

grammar is that there is some interchangeability relation, whereby related words

may be substituted one for the other without changing the well-formedness or

otherwise of a sentence. The constituent tradition proceeds to generalise this by

noticing that there are strings of words which, in a given context, may likewise be

interchanged. For instance, the introductory linguistics textbook Radford (1988)
lists as the first diagnostic under "Testing the Structure" (p90),

Does it have the same distribution as (i.e. can it be replaced by) an

appropriate phrase of a given type? If so, it is a phrase of the relevant

type.

Chapter 2. Grammars 61

Of course, this is only meant to be one diagnostic in the context of a particular

system, as witnessed by the fact that it cannot be applied without knowing some

types and corresponding phrases. The best generalisation I can manage across

grammars of how substitution is done is to say that if we conclude that x • s • y is

well-formed, partly in virtue of s being a well-formed string with some particular

characteristics, and these characteristics are shared by another well-formed string

s', then we can likewise conclude that x • s' • y is well-formed. Although notions of
what it means to be a constituent vary very widely, the idea that the parsing of
a constituent contributes to the parsing of the whole can generally be seen there
in some form or other, and may be used more widely than in just substitution.

Another way of looking at this is to say s is well-formed in the context of x
and y. "Well-formed in the empty context", "well-formed in some context", or

simply "well-formed" are then all equivalent. I won't be considering discontinuous

constituency here, so such a relation should correspond to some subrelation of the

substring relation.

Different models go about describing characteristics of strings in very different

ways. It seems appropriate to begin by supposing that we do not need explicitly to

represent such details — they would be part of the construction which is "derived

away". Can we then simply say that constituency is a subrelation of substring?
Let's try it and see.

enrich WFS by

opn : Lex* x Wf s x Lex*-bWfs

axiom u = u = x\ • u\ • y±

is supposed to stand for some version of parsing constituency, as discussed
above. We need some sort of index on subconstituents, since the same string may

appear as a subconstituent more than once. This is what x,y are doing in x[u]y.
So, given any well-formed string u and word strings x and y, if x[u]y is defined,
then its value is the well-formed string x-u-y. This is supposed to express u being
a subconstituent of x • u • y. The sense of "constituency" is very weak. It could
be any subrelation of the substring relation. x[u]y is not meant to say exactly

Chapter 2. Grammars 62

how x and y contribute to the parse, only that there is some process by which the

string u may be built up into the string x - u • y, i.e. that u is a stage in a parse of
x • u- y. At this stage we have not even claimed that a constituent can necessarily
be expressed as a string of (immediate) subconstituents, let alone that such an

expression would be unique.

I want now to claim that there is a problem with making these definitions

simply in terms of strings. As stated previously, what I was trying to specify was

a notion of subconstituency which could be used as an argument type, like saying
in English "take some notion of subconstituency and augment it as follows", except
that I try to say precisely what I mean by "some notion of subconstituency". I

try to keep that notion as weak as possible, so that the parameter can range as

widely as possible over specifications which might act in its place in the augmented

construction, i.e. so that the augmentation is applicable to as many models (or
classes of models) as possible. In this spirit, I say essentially we are talking about
a substring, and where it occurs.

Here is where equating well-formed strings with strings over Lex, and trying
to deal with subconstituency just in terms of these strings, causes trouble (despite
the fact that I am free to introduce other domains in construction), for has
no way of distinguishing between different readings of the same string.

Consider the ambiguous sentence I saw the man with the telescope. In one

reading the man has the telescope, in the other, I am looking through the telescope
at him. In many grammars, this ambiguity is evidenced by having two constituency

structures, one for each reading. In the first the man with the telescope is a

constituent, in the second, it is not. For instance, in the first reading we may

describe the man with the telescope as a noun phrase, and use this characterisation
in deciding that I saw the man with the telescope is a sentence. In the second

reading, we might decide that saw the man, and hence saw the man with the

telescope, is a verb phrase. We say nothing about the man with the telescope.

Such a grammar cannot be described by as it stands, simply because the
term

Chapter 2. Grammars

I-saw[the-man-with-the-telescope]e

63

cannot be simultaneously defined and undefined. Formal languages, such as first
order logic, are usually designed to be unambiguous, even if achieving this means

imposing explicit brackets (e.g. <j> A V £)) or precedence conventions. The

language we read or hear clearly does not contain such disambiguation, because
the ambiguity persists. The syntax of the language we read or hear is basically
a sequence of words (albeit partly disambiguated by factors like punctuation or

intonation). The preceding argument shows that with this definition of syntax,

subconstituency is not a purely syntactic notion. It becomes necessary to intro¬

duce into the metalanguage, some syntax of disambiguation. Montague (1970)
deals with this by the use of a relation between expressions of the ambiguous lan¬

guage, and those of an unambiguous one. This is equivalent to adding bracketings

to, or imposing a tree structure on, the ambiguous language. Essentially these
are records of the different parses of a string (Janssen 1983). They are a static

representation of a procedural notion. Subconstituency may well be a syntactic
notion in terms of such a disambiguated language, but the addition of brackets is a

step on the way to interpretation, and is therefore a semantic operation. However
it is usual in linguistics to refer to the objects of this new domain as giving the

syntax of the well-formed strings.

2.2 Intension and Grammar

When we set up a system to describe some phenomena, we first give ourselves syn¬

tax for the parts of the model which are to correspond to what we can observe: in

this case, words, their sequence in strings, and the well-formedness of those strings.
Models which can be described with this syntax alone are called extensional. It
turns out (as we have just seen) that extensional models of this syntax are not

adequate to capture constituency. In a similar way, in modelling the meaning of
natural language, we find that modelling nouns as objects and verbs as predicates
does not give enough metalanguage to describe completely models which capture

Chapter 2. Grammars 64

[the man smiles]

/ \
[the man] [x] = an intension for the string x

the man smiles

Figure 2—1: Possible parses can be represented as trees

entailments involving concepts like belief. Models which do this will need to have
a more complex construction, and a metalanguage for describing them will need
to be capable of detailing how observable entities might appear within this more

complex construction. The extra level of complexity is sometimes called an inten-

sional dimension. Some such intensional dimension is needed in order to capture

syntactic constituency and ambiguity, and our specifications will need to establish
some vocabulary by which we can refer to this dimension. We will replace Wf s by a

disambiguating domain Syn of syntactic intensions. Some examples of the sorts of
domains used for this purpose are bracketed strings, category symbols (S, NP...),
terms (S\NP), and various graph structures (most notably trees). An intension
for a string will correspond roughly to a parse of the string. It must record at least
whatever information from the parse is relevant to its incorporation as a sub-parse
of a larger string. This may or may not be all it records.

When we say the man is a constituent of the man smiles, this is shorthand for

saying that there is a parse of the man smiles which has as a sub-parse a parse of
the man. There are at least two obvious and interdefinable ways of representing
the parsing relation: parse in one step, sometimes called immediate constituency,
or parse in zero or more steps. For instance, in the man smiles, for most grammars
of English, the man is an immediate constituent, because there are no constituents

properly containing the man and properly contained in the man smiles, but man
would not be an immediate constituent of the sentence, because it is properly

contained in the intermediate constituent the man. Possible parses can of course

be represented by trees (Figure 2-1), in which intensions are nodes, and one-step

parse is given by daughterhood.

I shall use the sort name Syn to stand for syntactic intensions, and Syn* to

Chapter 2. Grammars 65

stand for strings thereof. The predicate r i—>• x I will use to stand for immediate

constituency, where r is the mother and x is the sequence of daughters. Somehow
the intensional domain must be related to the lexical domain Lex. For simplicity,
I shall also use i—> for this, so I must make Lex a subsort of Syn.

(2.2) (Lexicon)
LXN = enrich sort Syn

by sort Lex

axiom Lex C Syn

(2.3) (Syntactic Intensions)
SYN* = derive from FGM

by [Syn i ► Sub, Syn* i—* Gpd]

(2.4) (Grammar)
GMR = enrich SYN*

by pred _ h-► _ C Syn X Syn*

axiom -is i—> s

The transitive (zero or more step) relation is the one we require to talk about
well-formed substitution (I shall refer to this relation simply as constituency): for
instance, we may replace the noun man in the sentence the man smiles by such

strings as child, old man, and so on. From the above irreflexive, parse-in-one-

step, immediate constituency relation _ m _ we can define the zero-or-more-step

relation
_ h-+* _.

(2.5) PARSE = extend GMR by
pred _ _ C Syn* x Syn*

axiom x i—x

axiom x i—>* x' A y >* y' —» x • y h->* x' ■ y'
axiom r h iAi i—»* x' —► r i—>* x'

Chapter 2. Grammars 66

A B C D

R S T U V W X Y Z

Figure 2-2: A-B-C-Di-V R-S-T-U-V-W-X-Y-Z

Note
_ _ also extends _ i—» _ across _ • from Syn to Syn*. rni represents a

local tree with the intension r as the mother and the intensions x as the daughters.
x i—>* x' represents the existence of a sequence of parse trees with the intensions
x along the roots and x' along the leaves. This is illustrated in Figure 2-2. The
idea of constituency is now expressed relative to a parse. We will say s is an

immediate constituent of r if r,s in Syn, and there exist x,y in Syn* such that
r i—> x • s ■ y. Note that x and y may correspond to a sequence of intensions, or
even to e. Replacing i—> by i—»* gives us the definition of (eventual) constituent.

Because the extend operation of PARSE (2.5) does not introduce any new

functions, and because the axioms have the form of universally quantified condi¬
tionals whose consequents involve no predicate which was part of the specification

being extended (not even equality), the extension cannot create new objects of
old sorts, nor change the assignment of existing properties (equality included) to
existing objects. That is, the extension is sufficiently complete, and hierarchically

consistent, and therefore persistent.

Now in any implementation S of LXN + GMR (2.2, 2.4) in which _ i—> _ is

finite, Syn and i—> can be viewed as giving, respectively, the atomic categories
and context-free rewrite rules of a simple phrase structure grammar (PSG; see for
instance Hopkin and Moss 1976). For example the grammar

VP

VP

Chapter 2. Grammars 67

NP —♦ NP PP

NP —► the man

VT —* saw

PP —► with the telescope

is equivalent to the specification S below

LXNg = extend 0 by
sorts Lex,Syn

axiom Lex C Syn

opns saw, the,man, with, the, telescope > Lex

opns vp,vt,np,pp > Syn

(2.6) S = derive from
extend LXN$ + SYN* by

pred _ i—> _ C Syn x Syn*

axioms vph^vt-np, vpi->vt-np-pp, nph->np-pp,

PPh-*with-the-telescope,

NPi—>the-man, VTi—>saw

by inclusion of Sig[LXN+GMR]

references: LXN (2.2), GMR (2.4)

where the effect of LXNs is just to specify sorts containing the required objects,
and no more. Every model of S is isomorphic to the model S which has

(2.7) [S'Lex] = {saw,the,man,with,telescope}
[5Syn] = [5Lex] U {VP,VT,NP,PP}

[5_ • _] given by concatenation

[S_ i—► _] given by
VP [5 i—►] VT NP
VP [5 H VT NP PP

Chapter 2. Grammars 68

NP [5 H NP PP
NP [S i—>] the man

VT [5 .-»] saw
PP [5 h] with the telescope

If I had used enrich rather than extend above, I would have been allowing
models with extra (unreachable) objects, as well as models which map two or

more constants to the same object, but this was not the intention in the given

PSG.

I shall digress briefly to consider another class of models, and how to specify
them. This time, _(—>•_ will not be finite. They are the so-called categorial

grammars (see for instance Lambek 1958), in which, besides atomic categories
like S and NP, we have categorial terms formed by (recursively) combining the
atomic categories using / and \. S\NP is the intension given to a string which
will form a sentence when preceded by a noun phrase, for instance a verb phrase.

(S\NP)/NP is the intension given to a transitive verb, since it forms a verb phrase
when followed by an NP. As with PSGs, there is a natural class of models in

addition to the term models, constructed from sets of word strings of the various

classes.

(Freely Generated Category Algebras)

CATp = XX: sort Basic.
extend X

by sort Syn

axiom Basic C Syn

opns : Syn x Syn —>• Syn

(2.8) (Simple Applicative Categorial Grammars)
ACG = extend SYN* + CATp(sort Basic)

by pred _ i—» _ C Syn X Syn*

axiom r s ■ (s\r)
axiom r i—> (r/s) • s

Chapter 2. Grammars 69

ACGcGMR (2.4), and any implementation of ACG + LXN (2.2) in which the set
of lexical categories Lex is finite gives an applicative categorial grammar. In ACG,
i—► can be viewed as metasyntax, in that r i—> x is exactly equivalent to 3.s. (x =
s ■ (s\r) Vx = (r/s) • s). Thus rni implies x is a string of exactly two intensions.
In defining a model like S (2.7), we have a choice of either having VT i—► saw, where
VT names a pre-terminal, encapsulating transitive verbs by virtue of being able
to immediately dominate any one of them, and nothing else, or having VT = saw,

where VT names an abstract lexical entry, and saw, loves and so on are just

different names for the same object (saw = loves = VT). In a model of ACG,

however, we cannot have VT i—»• saw, since saw is not a string of exactly two

intensions. Thus in refinements of ACG, we must use abstract lexical entries, so

that saw = loves = VT. Then the grammar

Basic Categories:

S, NP, N

Lexical Entries:

with:

with:

man:

telescope:
the:

saw:

N

N

NP/N

(NP\S)/NP

(NP\NP)/NP
((NP\S)\(NP\S))/NP

is equivalent to the specification C below

(Basic categories)

BSCc = extend 0

by sort Basic

opns S,NP,N > Basic

C derive from

extend ACG + CATp(BSCc)

Chapter 2. Grammars 70

by sort Lex

axiom Lex c Syn

opns saw, the, mam, with, telescope > Lex

axioms man = telescope = n

axioms the = np/n , saw = (np\s)/np
axiom withj = (np\np)/np
axiom with2 = ((np\s)\(np\s))/np

by inclusion of Sig[LXN+GMR]

references: LXN (2.2), GMR (2.4)

Recall (Section 1.8) that CATp(BSCc) abbreviates

BSCc + CATp(derive from BSC(;by inclusion of sort Basic)

derive from BSC^ by inclusion of sort Basic employs the signature morphism
which "forgets" those parts of the signature of BSC^ not contained in the signature

specified by sort Basic (i.e. the constants s, np and n), and leaves everything else

unchanged. This is needed here in order to "fit" BSC^ to the signature required

by CATp. Every model of C is isomorphic to the model C which has

[CSyn] = all terms built using \ and / from basic terms S,NP,N

[CLex] = {N, NP/N, NP\S, (NP\NP)/NP, ((NP\S)\(NP\S))/NP}
[C_ • _] given by concatenation

[C(r »-> x)] iff there is an s in [CSyn] s.t. x = s (s\r) orx = (r/5) s

e.g.: NPi—>(NP/N) N

My categorial digression complete, I shall return to considering the problem of

ambiguity, and how this may be dealt with using (->• (Figure 2-3). The two senses

of our ambiguous phrase can be represented by the two distinct ways in which it
can be licensed. So, because in the model S (2.7) above we have

VT • NP • PP 1—saw • the • man • with • the • telescope and
VT • NP saw • the • man • with • the • telescope,

Chapter 2. Grammars 71

saw the man with the telescope saw the man with the telescope

/V
FA/V

Figure 2—3: Dealing with ambiguity

then we say VT • NP • PP and VT ■ NP are both intensions for that string. If also

then we say also that VP licenses the string via either of these intension strings.
If r i—>* w for some r in Syn, we say r licenses w. If r i—»* x and x i—»* w, we say r

licenses w via x. Now if

then NP is a constituent of VT • NP at the position indexed by saw and e, or indeed

by VT and e, but assuming (as we would expect) that

then NP will not be a constituent of VT • NP • PP at those indices. Even though
VT • NP and VT ■ NP • PP lie in Syn* rather than Syn, and hence cannot license, their
roles in the parse are sufficient to deal with the ambiguity. In this formulation,
substitution of one constituent for another corresponds just to different realisations
of the same constituent intension: instead of talking about substituting a squirrel
for the man in saw the man with the telescope, we simply note

VP h->* VT • NP • PP and

VP i—>* VT • NP,

VT • NP i->* saw • NP

VT • NP • PP saw • NP,

VP i—saw • NP • with • the • telescope and
NP a • squirrel.

Chapter 2. Grammars 72

These ideas should be equally applicable to any constituency grammar, even

though they have been exemplified here in a context-free PSG.

At first it may seem unnecessary to force to be concatenation on intensions,

just because it is concatenation on extensions (i.e. on Lex*). For instance, we may
like to have it be multiset union, to reflect a claim that linear order is independent
of dominance structure (c.f. IDLP, Section 3.4). But if, as seems desirable in a

broad specification, we are going to be able to index the position of subconstituents

by words, intensions, or a mixture of the two, then the axioms will practically
force to be concatenation on intensions as well as on Lex*. (Proper) strings of
intensions are best thought of as just indices for constituency, which is why they

do not license.

Since the implementation S (2.6) of LXN + GMR (2.2, 2.4) gives a PSG, as

above, then also S + PARSE (2.5) has (up to isomorphism) only one model, and
can therefore be viewed as a program implementing an (abstract) parser for S.
Let us briefly consider how, for given S, S + PARSE may be viewed as a program.

There is a famous "equation" in logic programming,

ALGORITHM = LOGIC + CONTROL

(Kowalski 1979). The motivation behind abstract specification has been to give
the logic of programs in a manner which is as far as possible independent of the
control. Thus, when we write a "pure" Prolog program, we actually specify the

logic of the program. Prolog itself has a built-in search strategy, which takes
care of the control. However, problems of any complexity quickly get beyond
what is easily dealt with in this "pure" language, for several reasons. One is that
the Horn-clause logic used in Prolog was chosen because it admits straightforward

procedural interpretation by any one of several search strategies, but unfortunately
this does not make it well suited as a language for specifying the logic of a problem,

independently of concerns about control. Another reason is that a single search

strategy can never be appropriate for all applications. For instance, breadth-
first search always finds any finite solution eventually, but may be horrendously

inefficient, and may loop indefinitely if no solution exists. Any algorithm which

Chapter 2. Grammars 73

is guaranteed to find any finite solution eventually, even though it may never

terminate, is called a partial (or semi-) decision procedure (Rogers 1967). At this
level of abstraction we will be happy to show that even a partial decision procedure

exists. The conditional form (Pi A ... A Pn —» P) of the axioms of PARSE (2.5)
makes it easy to rewrite directly into (roughly!) Prolog syntax.

... (insert clauses for S here) ...
Xh->* X.

X0-Xe->*Y0-Y XO-Xlt-V Y0-Y1, Xl-Xi->* Yl-Y.

[R|Y]-Yh->*X Ri—>X0, XOi-V X.

The use of an associative operation as the basis for encoding strings is not very

efficient (we see issues of control re-intruding already!). A common technique in
Prolog is to represent strings by a pair of lists X-Y, also called a difference list,
where X and Y are variables standing for lists. Prolog lists are written [RIX],
where R is the first element of the list, and X is the tail of the list, that is, the
list obtained when the first element is deleted. (The empty list is written []).
A breadth-first interpretation of this will yield a partial decision procedure for

Prolog-style queries on PARSE (2.5).

2.3 Coda

In a formal treatment, the use of strings of words to model statements in human

language is naturally suggested by our familiarity with the written word. The

adequacy and relevance of this approach to modelling the spoken word is open to

debate, but does not concern us here. Themajority of work in the syntax of natural

language is founded on some notion of constituency, which we take as meaning that
some substrings of a statement appear to exhibit a privileged status, by virtue of
various properties, including substitution properties. A natural assumption might
be that subconstituency can be represented as a relation on strings, akin to the

substring relation. However this fails because constituency appears to be context

Chapter 2. Grammars 74

dependent. So a substring may appear to act like a constituent in isolation, but
fail to do so when put in a given context. It seems inevitable that some kind of
intensional domain will be required. A parse-in-one step relation on the intensions
can then be used to represent immediate constituency. We proceed to consider (in
the abstract) how such systems can deal with the various cross-cutting dimensions
of natural language syntax (case, agreement, and so on).

Chapter 3

Refinement and Implementation

In this chapter I will consider refinements to the basic predicate i—► of GMR (2.4),
designed to give us some vocabulary for the specification of more complex gram¬

matical phenomena, such as agreement. I will consider the "core" part of several
standard grammatical frameworks, attempt to describe some of the ideas they

employ in an abstract enough fashion that their approaches can more easily be
seen as the conjunction of several such abstract specifications, some in common,

and some not. I attempt to sketch how we can make further refinements of these
abstract approaches to produce implementations, that is, single models, equivalent
to the standard models for grammars in the various frameworks.

The frameworks I shall mainly consider are LFG, GPSG and HPSG. Sells

(1985) contains brief introductions to both LFG and GPSG, as well as Government
and Binding theory (GB), to which limited reference will also be made. Bresnan

(1982) is the standard reference for LFG, as is Gazdar et al. (1985) (henceforth:

GKPS) for GPSG. For LFG, some reference is also made to Kaplan and Zaenen

(1987). For HPSG, I refer to the presentation in Pollard and Sag (1987) (hence¬
forth: P&S). These three frameworks have in common that they have all been
defined in some kind of attribute-value language, also called feature-value, feature
structure or unification-based formalisms. One of the simplest such languages is

Patr-II. Shieber (1986) gives some of the history of these systems, describes the
patr-II language, and discusses what enhancements would be needed in order to
define LFG, GPSG or HPSG.

75

Chapter 3. Refinement and Implementation 76

3.1 Patr-II

Perhaps the most obvious move away from context-free PSGs is to put more struc¬

ture into the intensions, with the consequent ability to replace a great multiplicity
of rules by a few more general ones. Categorial grammars offer an extreme ex¬

ample of this. All the work done by the rules in a PSG has been moved into the

intensions themselves, by means of the operations \ and /. Then a rule r i—> s ■ t

becomes equivalent to t — (s\r) V s = (r/t). Only two rules are needed.

Another direction would be to add structure for dealing with agreement. Some

grammars may not make any external distinction between NPs, so that a context
well-formed for one NP is well-formed for any other. Such a grammar must ignore
issues such as agreement, allowing, for instance, John smile as a sentence. Many

grammars, however, do take sufficient account of agreement phenomena to disallow
John smile. In such a grammar, there can no longer be a single intension, "NP".
For instance, if we are to allow the women smile, we must have different intensions
for John and the women. The atomic category labels NP, S and so on give one way
of classifying intensions, agreement properties give another. One common way of

doing this is to make cat a partial function which maps full intensions to atomic

category labels, and agr a partial function into some domain modelling agreement

properties. This might lead to the specification of rules like

(3.1) cat(s) = S A

cat(ra) = NP A

cat(u) = VP A

agr(n) = agr(u)
—> s i—> n • v

cat(r) = NP A

num(agr(r)) = SINGULAR A

pers(agr(r)) = 3
—> r john

Chapter 3. Refinement and Implementation 77

cat(r) = VP A

num(agr(r)) = SINGULAR A

pers(agr(r)) = 3
—> r i—► smiles

This is (modulo trivial notational variance) exactly the form of rules in the grammar-

writing language PATR-II, and (3.1) could be run as a PATR-II program. The sen¬

tences are all implicitly universally quantified over their respective variables, so

for instance the second says that any r with category NP and the specified agree¬

ment properties can act as an intension for john. Given a PATR-II interpreter,
we should be able to issue the query

(3.2) ? cat(s) — s A s i—►* n • smiles

and expect an answer like

s

ii =

cat: S

cat: NP

agr:
num: SINGULAR

pers: 3

(and possibly other answers besides). PATR-II only knows about two kinds of

properties: those expressed by unary partial functions (features in feature-value
languages) like cat, agr and so on, and those expressed by ■-*. PATR-II keeps
track of features, and is able to deduce what features are required of an object s in
order that a goal like (3.2) be satisfiable. The matrix notation merely summarises
the features we need to look for in the objects to which s and n are to correspond,
in order that the sentence in the query is valid. So for instance, any object n

Chapter 3. Refinement and Implementation 78

must be mapped by cat to the object NP, and by agr to an object which is itself

mapped by num to the object SINGULAR, and by pers to the object 3. It could

just be considered alternative notation for

cat(s) = S A

cat(ra) = NP A

num(agr(n)) = SINGULAR A

pers(agr(n)) = 3

The answer means that the program (grammar) entails that the formula in the

query (3.2) is provably satisfied by any objects s and n which satisfy the conditions

given in the answer, which is to say, any model of the PATR-II grammar satisfies
the formula with respect to any variable assignment which satisfies the proper¬

ties listed in the answer. This is analogous to the way Prolog gives as answers

properties of variable assignments which make the query valid. Before we come

to consider just what are the intended model(s) of a PATR-II program, it will be
useful to recall the simpler case of Prolog.

3.1.1 Prolog

A Prolog implementation of successor arithmetic like

plus(0,X,X).

plus(s(X),Y,s(Z)) plus(X,Y,Z).

might answer a query

? plus(s(s(0)), X, Y).

by printing something like

X = _54, Y = s(s(_54)) .

Chapter 3. Refinement and Implementation 79

which is like Y = s(s(X)). This means that the query sentence is satisfied in any

model, with respect to any choice of X and Y which satisfies this property. Unfortu¬

nately, Prolog is not capable of considering properties like cat (X) = np, because
it does not deal with true equality: when we write X = Y in a Prolog program,

this is interpreted syntactically, by term identity. Thus, PATR-II grammars cannot

directly be interpreted as Prolog programs.

In algebraic semantics, we identify a program with a model. The only difference
is that in a program, we may need to concern ourselves with how the result of a
function application, say, is calculated, but in a model we are only interested that

there be an answer. What model is chosen for the semantics of a Prolog program?
A Prolog program can be read as a specification in a very obvious way, for instance,

PLUS = sort All

pred plus C All x All X All

opn 0 > All

opn s : All —► All

axiom plus(0,z,:z)
axiom plus(:r, y, z) —► plus(s(:r), y, s(z))

But, as a specification, this will have many models. What model is to give the
semantics of the corresponding program (PPP say)? Given the preceding descrip¬
tion of the semantics of a Prolog query, it will need to be a model such that any

query is satisfied just in case every model of the specification satisfies the query.

Such a model is called initial, and is unique up to isomorphism. (It should be
remembered, though, that queries may be drawn only from a limited repertoire —
in Prolog, conjunctions of atomic formulae. See Lloyd (1984) for technical details.)
This is the model defined by

(Prolog plus program).
PPP = extend 0 by

sort All

pred plus C All x All x All

Chapter 3. Refinement and Implementation 80

opn 0 > All

opn s : All —> All

axiom plus(0, x, x)
axiom plus(x, y, z) —> plus(s(x), y, s(;z))

The use of extend means we get only reachable models, and terms are equated

only when they must be (in this case, not at all). These, the initial models, are

mutually isomorphic. For Prolog programs, it easy to see how such specifications

may be read as a recipe to construct the initial model. Sorts are interpreted by
the sets of ground terms of those sorts, constants are interpreted as themselves (0
as 0), and operations by term formation (so s is interpreted by the function that

maps any ground term t to the ground term s(t)). Prolog "axioms" give us the
base cases for what to put into the interpretation of the predicates (so for plus we

start off with triples (0,t,t) for all ground terms t), and the conditional program
clauses may be read as recursive recipes for completing predicate interpretation

(thus for plus, recursively add for each triple (x, y, z) already in the interpretation,
the new triple (s(x), y, s(z))). So now, instead of trying to reason about whether
a sentence is satisfied in all models of PLUS, we can just reason about whether it

is satisfied in the initial model given by PPP.

So when we ask Prolog

? plus(s(s(0)), 0, Y).

and receive the reply

Y = s(s(0)) .

we can view this as telling us either that the term s(s(0)) is an appropriate object
for Y in the initial model, or that in any model, the value of that term will make

the query sentence true. Now when we ask

? plus(s(s(0)), X, Y).

Chapter 3. Refinement and Implementation

and get the response

81

X = _54, Y = s(s(_54)) .

the underscore (_54) tells us that, in the initial model, any ground term t can be
used as the object X, provided s(s (£)) is used for Y. Equivalently, for an arbitrary

model, we could select any object for X, provided we use for Y the object reached

by two applications of the function interpreting the operation name s.

Prolog answers are always either ground, or contain underscore variables. Thus

they not only give us relations which must hold between the objects corresponding
to the query variables (for instance Y = s(s(X))), but also give us a recipe for

finding such objects (by choosing arbitrary objects for underscore variables).

3.1.2 Back to Patr-II

A PATR-II query

? cat(s) = S A s i—john • smiles

might produce an answer like

■5 — cat: S

or, alternatively,

cat(s) = S.

This is to mean that, in an arbitrary model, s may correspond to any object such

that cat(s) = S. This, however, does not tell us how to actually find such an 5,

and indeed there may not be one. In particular, there will be no such s in the
initial model specified by

Chapter 3. Refinement and Implementation 82

extend 0 by
sorts Lex,Syn

pred _ i—> _ C Syn x Syn*

opns john, smiles > Lex

opns NP,VP,S,SINGULAR,PLURAL,0,1,2,3 Syn

opns cat, agr,num, pers : Syn-bSyn
axiom Lex C Syn

axiom cat(ra) = NP A

cat(u) = VP A

agr(ra) = agr(u)

axiom cat(r) = NP A

num(agr(r)) = SINGULAR A

pers(agr(r)) = 3
—> r h john

axiom cat(r) = VP A

num(agr(r)) = SINGULAR A

pers(agr(r)) = 3
-»rH smiles

(since the operations — cat,agr,num,pers — are partial, and only defined when
the axioms insist they be defined). So, while the selection of an s with this

property would indeed show 3s . cat(s) = s a s h->* john • smiles to be true, if we
are dealing with the initial model, there is no such s, and we should really return
some value like false or no to indicate failure. This would of course ruin the

usefulness of Patr-II. By simply adding signature information and restricting to

the initial interpretation, a Prolog program is made to specify its intended model,
but the correspondence (between program syntax and intended model) is not quite
so obvious for patr-II.

Chapter 3. Refinement and Implementation 83

Nevertheless there are parts of the interpretation given to a PATR-II grammar
which do have an initial flavour: the fact that the constants (atoms in the termi¬

nology of feature-value work: john, NP, SINGULAR and so on) are kept distinct,
and that r i—> x and x i—>* y should only hold when forced to by the conditions

(rules) of the grammar. The rules can be bolted on at the end, using the free
extension operation.

(3.3) (A Lexicon)
PWDS = extend 0

by sorts Lex

opns john, smiles :—*• Lex

(3.4) (Some atoms)
PAT = extend sort Lex

by sort Atom

opns NP,VP,S,SINGULAR,PLURAL,0,1,2,3 ► Atom

(3.5) (Atoms are intensions)
ATOM = sorts Atom,Syn

axiom Atom C Syn

(Some features)
FSYN = sorts Syn

opns cat, agr,num, pers : Syn-bSyn

(Lexical entries program)
PLEX = extend

Sig[PWDS + PAT + FSYN] + ATOM

by pred lex C Syn x Lex

axiom cat(r) = NP A

num(agr(r)) = SINGULAR A

pers(agr(r)) = 3
—> lex(r, john)

Chapter 3. Refinement and Implementation 84

axiom cat(r) = VP A

num(agr(r)) = SINGULAR A

pers(agr(r)) = 3
—> lex(r, smiles)

(The parsing part of the grammar)
PP = extend

Sig[PLEX] + ATOM + LXN + SYN*

by pred _ i—> _ C Syn x Syn*

axiom cat(s) = S A

cat(n) = NP A

cat(u) = VP A

agr(n) = agr(u)
—y s i—► n • v

axiom lex(r,tu) —► r w

references: LXN (2.2), SYN* (2.3)

In PWDS and PAT we use extend to ensure that the words and atoms are all

kept distinct. ATOM will be used to include the sort Atom, used in constructing
the atoms, in the sort Syn. FSYN gives us the vocabulary to refer to the partial
functions cat, agr, num and pers. PL EX uses extend to create lexical entries

lex(r,u;) relating words w and intensions r. This predicate contributes to the
definition of in PP. By using extend to define these two predicates we ensure

that they are satisfied only when they must be, in virtue of the axioms (rules) in
the extensions.

PWDS+PAT+PLEX+PP is quite a concrete construction, but it does still admit

non-isomorphic models. What it fails to specify is, what the elements of Syn are,

and how cat, agr and so on behave on them. But this is as far as free extension
can take us on this vocabulary. If FSYN used extend, the functions cat, agr

and so on would be everywhere undefined, and the only elements of Syn would be
those of Lex and Atom. This is clearly not what we require.

Chapter 3. Refinement and Implementation 85

What can we say of the intended model M (say) of FSYN? A Patr-II inter¬
preter works by attempting to gradually build up a verifying model. Whenever it
is faced with a set of equational conditions, it attempts to extend the model to sat¬

isfy these axioms. In a free extension, properties hold just in case they are satisfied
in every suitable extension. In M, however, a set of equations should be satisfi-
able by some choice of objects for variables, if and only if there is some suitable
extension in which they are satisfied by some choice of objects for variables.

3.1.3 Constructor-extractor implementation

In the implementation of our PATR-II grammar, an alternative way of adding, say,
number information to a category would have been to use terms like NP(siNGULAR)

(a strategy employed in so-called definite clause grammars). There is no particular
reason to give NP different status to SINGULAR: instead we could employ a single
constructor f, say, and terms like f (NP, SINGULAR). But as we add more and more

features, and allow the values they take on to themselves have complex structure,

we might get terms like

f (f (S, NIL, BACK,f (NP, x, NIL, NIL)), a:, FORW,f (NP, y, NIL, NIL))

and much worse, and it becomes extremely difficult to keep track of which ar¬

gument is supposed to correspond to which feature, at which level of embedding
of a term. So instead we employ extractors (Section 1.7.5) to do the work of
remembering argument position.

(3.6) (The intended model M of FSYN)
PSYN = extend sorts Lex,Atom by

sorts Avs,Syn

opn f : Syn4 —■> Avs

opns cat, agr,num, pers : Avs —> Syn

axiom Lex, Atom, Avs C Syn

axiom cat(f (aq, x2, x3, x4)) — aq

axiom agr(f (aq, x2, x3, x4)) — x2

Chapter 3. Refinement and Implementation 86

axiom num(f (x1? x2, x3, x4)) = x3

axiom pers(f (x1? x2> x3, x4)) = x4

Recall Syn4 abbreviates Syn X Syn X Syn X Syn. So f recursively constructs complex
attribute-value structures (Avs) out of four-tuples of intensions, one correspond¬

ing to each feature cat, agr, num, pers. Thus if one feature is defined, all are.
This defines a so-called fixed arity feature-value system. In an open arity system,

their definedness is independent. We shall see an example of such a system in

Section 3.3. In PATR-II this would be redundant, as the language does not talk
about undefined features. Up to isomorphism, PWDS+PAT+PSYN +PLEX-fPP
has only one model. In a model of PWDS+PAT+PSYN+PLEX+PP-I-PARSE (2.5)
we should be able to ask Bsn.s i—►* n • smiles and be given an answer like

•s = f(s,
n = f (NP, f singular, 3),_,_)

(where the underscores indicate that any value will do) or, with a little syntactic

sugar,

s =

n

cat: S

cat: NP

agr:
num: SINGULAR

pers: 3

PATR-II is just one, very simple, executable example of a feature-value language.
These can all be viewed as being based on specifications which use just the ex¬

tractors, where there is a canonical choice of (often anonymous) constructor(s).
Although I have employed several sorts in modelling PATR-II, it is not truly a

multi-sorted language, as the user is not able to make further sortal distinctions.

Chapter 3. Refinement and Implementation 87

In a single-sorted language like PATR-II, there is just one constructor. In a multi-
sorted setting, we typically have one constructor per sort. Pollard and Sag (1987),
for instance, use multiple sorts, and associate each sort with a characteristic set

of features, each taking values of a named sort. Again, the features can usefully
be viewed as extractors, where each sort is associated with a single constructor

(and/or some constants), of arity determined by the sorts associated with the
characteristic features. In the single-sorted approach, the constructor typically
becomes cluttered with features which are irrelevant as often as not. In a multi-

sorted approach, the constructors are designed in such a way that only relevant
features participate in a construction. For example, to recast the preceding gram¬

mar to make better use of sorts, we might have

(3.7) (Sorted Syn program)
SSP = extend sort Lex

by sorts Syn,Cat,Agr,Num,Pers

opns NP,VP,S ► Cat

opns 1,2,3 > Pers

opns SINGULAR,PLURAL > Num

axiom Lex C Syn

opn (_,_) : Cat x Agr —> Syn

opn cat : Syn —> Cat

opn agr : Syn —> Agr
axiom cat((x,?/)) = x

axiom agr({x,y)) = y

opn (_,_) : Num x Pers —>■ Agr
opn num : Agr —> Num

opn pers : Agr —> Pers
axiom num((r,?/)) = x

axiom pers((r,y)) = y

Chapter 3. Refinement and Implementation 88

(Lexical entries program)
SPLEX = extend Sig[PWDS] + Sig[SSP]

by pred lex C Syn x Lex

axiom cat(r) = NP A

num(agr(r)) = SINGULAR A

pers(agr(r)) = 3
—> lex(r, john)

axiom cat(r) = VP A

num(agr(r)) = SINGULAR A

pers(agr(r)) = 3
—* lex(r, smiles)

(3.8) (The parsing part of the grammar)
SPP = extend Sig[SPLEX] + SYN*

by pred _ i—► _ C Syn X Syn*

axiom cat(s) = S A

cat(n) = NP A

cat(u) = VP A

agr(n) = agr(u)

axiom lex(r, w) —► r i—> w

references: SYN* (2.3)

Models of PWDS + SSP + SPLEX + SPP are mutually isomorphic. In a model
of PWDS + SSP + SPLEX + SPP + PARSE(2.5) the query (3.2) might elicit the
response

^ = (s,_),
n — (NP, (singular, 3))

or equivalently

Chapter 3. Refinement and Implementation 89

s = cat: S

cat: NP

n =

agr:
num: SINGULAR

pers: 3

The use of extend, rather than reachable enrich, in the specifications PSYN

(3.6) and SSP (3.7) merely serves to keep the constants distinct. Thus we could
have written them instead using reachable, by including axioms to keep the
constants distinct, so NP ^ VP, NP ^ john,.... Clearly this will be rather awkward
as the number of constants grows large. However, as mentioned before, this route

does have the advantage that we could include axioms of the form, say

conjunction of equations (cat(x) = VP V cat(x) = s)

Of course this means we would have non-isomorphic satisfying models, but it

may be that we can nevertheless answer many queries about the class of models

(determine whether the corresponding sentences are true in all models of the class),
perhaps by reference to a model of a more complex structure designed with those

queries in mind. The use of free extensions is one very general way of finding
an implementation for a specification, and there are others which will work for
different classes of underlying specifications, but all are liable, sooner or later,
to fall short. For that reason, it seems of primary importance to draw a firm
distinction between specifying a class of models with which to reason, and the
isolation of a single model or routine system of calculation in which features of
the models may be tested against experience. Considered merely as refinements
of the class of validating models, imposition of the axioms poses no problem.
Of course implementation is important, but perhaps we had better be certain of

Chapter 3. Refinement and Implementation 90

our ground before spending too much time on abstruse model constructions of
uncertain generality.

Thus it would seem wise to progress by delineating, to the best of our knowl¬

edge at a given time, the set of validating models we want to consider. Given
such a specification, it is very likely that implementations capable of deciding de¬
sired forms of query will suggest themselves. Such implementations may, when

compared against actual linguistic behaviour, in turn suggest deficiencies in the
current delineation of suitable models; and so the process continues. This is how
science proceeds: we observe, we model, we compare.

Work such as Pollard and Sag (1987) is probably best seen primarily as pre¬

senting such a specification of validating models. It also spends much time in

suggesting how to build canonical models for (that is, to implement) the fragment
it presents (and many papers have been written to do more of this), but in the
absence of formal modularisation techniques, it is difficult to be certain how those

models will or should interact with what is not given. (For instance, one topic
not treated in detail in P&S, but much investigated since, is the issue of how

properly to deal with set-valued features). This is not meant to suggest that there
is anything wrong with what is presented there; but rather to suggest that by

recognising that we will always be dealing with fragments, and by adopting from
the beginning modular techniques for formally combining such fragments, we may
avoid much duplication of effort (for instance by producing a single implementa¬
tion of, say, relative clauses, which can be used, without modification, to extend
a whole range of different kinds of "core" grammars). We work in tandem on

both a general specification of a class of models, and model constructions (possibly

abstruse, but of certain generality).

Chapter 3. Refinement and Implementation 91

3.2 Abstract Features

We have already seen that there are at least two ways of representing the cross-

cutting dimensions along which a feature like cat or agr divides the intensions: we
can use a single-sorted approach, or amulti-sorted one. Another variation would be

to use more subsorts in place of atomic constants. But the purpose of all of these is

to classify the objects of Syn across several dimensions, in order to provide a richer
structure to represent the niceties of grammatical judgement. Such a classification

simply defines an equivalence relation on Syn, since the effect of such a relation
is to partition the carrier into distinct equivalence classes. Since other ways of

specifying such effects imply an equivalence relation, but not necessarily vice-versa,
at the more abstract level, the use of equivalence relations is appropriate. The use

features (extractors) is simply one technique for implementing equivalences.

(3.9) (Partial Equivalence Relations)
PEQV = sort Syn

pred _ = _ C Syn X Syn

axiom r = s —> s = r

axiom r = s/\s = t —> r = t

(3.10) (Total Equivalence Relations)
EQV = enrich PEQV

by axiom r = r

(3.11) (Atomic Categories: S, NP...)
CAT = derive from PEQV

by [_ —cat _1—* _ = J

(3.12) (Agreement)
AGR = derive from PEQV

by [_ —agr _ 1 * _ = -]

Chapter 3. Refinement and Implementation 92

An equivalence relation is reflexive, symmetric, and transitive. A partial equiv¬
alence relation need not be reflexive, but it must be symmetric and transitive,

and thus if r = r', r' = r by symmetricity, and, combining these two facts using

transitivity, r = r (and r' = r'). A partial equivalence relation, like a total one,

partitions its domain of definition into equivalence classes. In fact the only differ¬
ence is that, in the partial case, there may be a class of objects which play no part

in the relation at all. That is, there may be zero, one or more r in Syn such that
for no r' is r = r'. Every model of PEQV is such that Vr. (3r'. r = r') r = r,

and in a total equivalence relation, Vr.r = r. Instead of agr(ra) = agr(u), we

have n =agr vi with no need of special sorts or constants.

One way to get the effect of cat(ra) = NP is to use a representative of the
class, so n =Cat John. Or we can also name the equivalence classes, so np(n) «->

n —cat John, or n : NP <-> n =cat john. Partial functions (like cat) are just
one way of implementing partial equivalence relations (like =Cat)- If this is the

technique chosen, then the equivalence relation can be defined (by r =cat (s)

cat(r) = cat(s)), and, this done, the old (functional) syntax can de derived away,

thus giving an implementation (of =Cat)- But there are other implementation
techniques which could be chosen, such as axiomatising the relation directly.

So if S is any sentential intension (say S i—►* john • smiles), NP a noun phrase
intension (so perhaps NP i—>* the • women) and VP a verb phrase intension (say for
eats fish), we might replace S >NP VP by

Vsnu : Syn.s =cat SAn =cat NP A v =cat VP A n =agr v —> s n ■ v

Note that the cat and agr equivalences need not be total. For instance, in a model
of CAT-fAGR+ACG (2.8), we might only have =agr defined for nominal intensions
(such as nouns and noun phrases). So if he is an intension for he, then for any
n such that n =Cat he and n =agr he, then n\S (employing the categorial slash)
could serve as a possible intension for smiles, sleeps and so on, and likewise if
n —cat he but n y^agr he, n\S might be an intension for smile, sleep and so on.

Another way of putting more structure on the intensions might be to separate

the "N" and "P" of "NP". Suppose we have a rule like S—>PP VP, for sentences

Chapter 3. Refinement and Implementation 93

like From the cave came a terrible groan. We might like to replace this rule and
S—>NP VP by a more general rule S—>XP VP, where the "X" of XP may take
on different values: N, P and so on. (Presumably we will also need some way to

forbid S—>VP VP, for instance a side condition like Xg{N,P} on the rule). We

might say the category XP is underspecified, in that we know it is a full phrase,
but we don't know what sort. This is the basis of X-bar theory (Jackendoff 1977).
Although there are all sorts of possible variations on the theory, the basic notion

is that every intension has a major category (N, V and so on), and a bar level.
The number of bar levels may vary, but the lexical level (noun, verb...) is bar-0,
the next level is bar-1, and so on up to the full phrase level (NP, VP...), which
will have the highest bar number. But as with category values, the important

thing is the division into the different classes. How we name the classes is not so

important.

(3.13) (Major Category)
MAJ = derive from PEQV

by [_ =maj _ 1 * _ = _]

(3.14) (Bar Level)
BAR = derive from PEQV

by [_ =bar _ 1 ► _ = _]

(3.15) XBAR = enrich CAT + MAJ + BAR
by axiom r =maj s A r =bar s —> r =cat s

Clearly there is more to agreement than is seen in AGR (3.12). In fact AGR does
no more than give a simple vocabulary to talk about agreement. Likewise XBAR

(3.15) does not aim to say very much about X-bar theory. Rather it is intended
as a highly abstract characterisation suitable for use in tying together modular

descriptions involving X-bar theory, as GMR (2.4) was intended to do for modules

involving constituency. XBAR, for instance, does nothing to ensure that =maj

and =bar are orthogonal: they could even coincide. Since other constructions are

unlikely to rely crucially on this orthogonality, we have no need to insist on it at

Chapter 3. Refinement and Implementation 94

this point. There may even turn out to be languages in which it is natural to allow
them to coincide. Perhaps as we investigate specific constructions which use an X-
bar theory, and as we come to see what properties of the theory such constructions

actually rely on, it will become clearer what the abstract requirements for such a

theory really are.

3.3 LFG

Grammars in LFG are given by annotated context-free rewrite rules. For instance,
S —> NP VP, might be annotated

(3.16) S —>• NP VP

T subj =j t=|

The f=j annotation on the VP indicates that the mother (|) must share all the
properties of the daughter (j) so annotated, except the category label (S or VP).
The NP is annotated fsubj =J.. Here subj is a partial function which indicates
the subject of a phrase. Such an annotation says that the NP is the mother's

subject.

In LFG, the c-structure is the part of an intension dealing with category labels
and context-free rules, that is, the major category plus the bar level. The rest is
called f-structure, and it is the sharing of f-structure which is indicated by |=l-
The f-structure shared by the S and VP in an instance of the preceding rule might
be described in matrix feature-value notation by s, as follows.

s =
subj: n

pred: smiles(n)

where n= pred: john

Chapter 3. Refinement and Implementation 95

n is the f-structure corresponding to the NP. Syntactically, the only purpose of
the pred values is to encode which grammatical functions (subj,obj...) must be
defined, and which may (optionally) be. In what follows I will therefore only deal
with that function, and not explicitly mention pred values.

In GPSG and HPSG, the part of the intension shared in the way the f-structure
is in LFG is called the head, and a daughter marked j=j is called a head daughter.
As with c-structure, f-structure can be represented by an equivalence relation,

_ =hd _j on Syn. The purpose of =hd, in all three frameworks, is to group together
the various properties shared by mother and head daughter. If the value of subj
is one such property (and it is), then r =hd s should mean subj(r) is defined only
when subj(s) is, when they should have the same value. This can be expressed
by the axiom r =hd s —■> (subj(r) = t <-» subj(s) = t), which may be abbreviated
r =hd s —> subj(r) = subj(s). Note =hd also groups together properties expressed
by equivalence relations, such as =agr- LFG puts everything except category into
f-structure.

(3.17) (Head Sharing)
HEAD = derive from PEQV by [_ =hd _ 1—* _ = _]

(3.18) (In LFG, intensions consist only of c-structure and f-structure)
CF = enrich HEAD + CAT

by axiom r —cat s A r =hd s —» r = s

(3.19) (Head functions)
HFN = enrich HEAD

by opn hfn : Syn-b-Syn
axiom r =hd s hfn(r) = hfn(s)

(3.20) (Subject is a head function)
SUBJ = derive from HFN

by [subj i—> hfn]

(3.21) (Object is a head function)

Chapter 3. Refinement and Implementation 96

OBJ = derive from HFN

by [obj i—> hfn]

(3.22) (Other head properties)
HPRP = enrich HEAD + PEQV

by axiom r = r A r =hd s —> r = s

(3.23) (Agreement is a head property)
HAGR = derive from HPRP

by [_ =agr _ 1 * _ = _]

references: CAT (3.11), PEQV (3.9)

Functions like subj and obj shared by mothers and head daughters can be defined
using HFN, as in SUBJ and OBJ. Properties shared by mother and head daughter
which take the form of an equivalence relation, like =agr (so that if m =hd h,
then also m =agr h), may be defined using HPRP. Note HAGR refines AGR (3.12),
modulo signature (HAGR C AGR).

Rules like (3.16) above fit easily into the PATR-II format (except we use =Cat

instead of cat, and so on):

Tl —cat NP A V —cat VP A S —cat 6

A n = subj (s) A v =hd s —* s i—» n • v

Agreement is achieved in LFG by specifying in lexical entries the agreement

properties which values of functions like subj must have, when they are defined.
Lexical entries also specify which such functions must be defined, and which may

(optionally) be defined. Then any function not mentioned in the lexical entry

must, by default, not be defined. In our language of partial operations, it is more

convenient to have the default be the optional case: we say which functions must

be defined (Dsubj(u)), and which must not (->Dobj(u)). If we say nothing about
a function, it may or may not be defined. (Recall that Dt, for any term t, is
shorthand for t = t, which is satisfied in a model if and only if the term t denotes
an object in the appropriate carrier).

Chapter 3. Refinement and Implementation 97

v =cat VP A (n = subj(u) n =agr he)
a Dsubj(u) a -iDobj(w) a -iDobj2(u) a . • •

->oh smiles

So to a (very simplified) example grammar.

(Some constants).
LC = sort Syn

opns s,np,vp,3s ► Syn

(LFG toy grammar specification).
LTGO = extend LC+CF+SUBJ+OBJ+PWDS+ATOM+AGR+LXN

by pred _ i—► _ C Syn x Syn*

axiom n =cat npar =cat vp a s =cat s a

n — subj (s) a v =hd s —> 5 i—> n • n

axiom n =cat npan =agr 3s a -iDsubj(n)
A -iDobj(n) -tun john

axiom v =cat vp A (n = subj (n) —> n —aSr 3s)
A Dsubj(u) A -iDobj(n) smiles

references: PWDS (3.3), ATOM (3.5), AGR (3.12), LXN (2.2)

This example makes no abstract use of bar-level, so I will not bother to use XBAR

(3.15). Once again, this specification says nothing to guarantee the existence of
intensions with the required properties. In producing a refinement to rectify this,
we could adopt the strategy suggested for Patr-II of adding a single constructor.

Unfortunately in the obvious formulation, the only elements of Syn which have obj
undefined are the constants. We need the ability to build intensions in which obj

does not figure, a system of open arity. We can employ a place-holding constant,

0 say. There is no need to include a place in the constructor for hd, because it can
be defined in terms of the other features.

LAT = extend sort Lex

Chapter 3. Refinement and Implementation 98

by sort Atom

opns S,NP,VP,3S :—y Atom

(Syn program)
LSYN = derive from

extend sorts Lex,Atom by
sorts Avs, AtomO, Syn, SynO

opn 0 v AtomO

opn : AtomO X AtomO X SynO

X SynO —>Avs

opns subj,obj : Avs —>SynO

pred _ =hd _ Q Syn x Syn

pred _ =cat _ C Syn x Syn

pred _ =agr _ C Syn X Syn
axiom Lex, Atom, Avs C Syn C SynO

axiom Atom C AtomO C SynO

axiom {x,y2,y3,y4) =Cat (x,z2,z3,z4)
axiom Va: Atom. a =Cat (a, X2, x3, x4) =cat a
axiom {yux,y3,y4) =agr {zi,x,z3,z4)
axiom Va: Atom. a =agr (®i, a, x3, x4) =agr a

axiom subj (®i, X2, x3, x4) = 0:3

axiom obj (xi,X2, x3, x4) = x4

axiom (y,x2,x3,x4) =hd {z,x2,x3,x4)
by [i/—> 0, Avs, AtomO, SynO,

Recall [/—> 0, Avs, AtomO, SynO, specifies the signature morphism which

"forgets" 0, Avs, AtomO, SynO, and and leaves everything else unchanged.

Up to isomorphism, LTGO+LAT+LSYN has only one model.

Typically an LFG rule for verb phrases in English might run

VP —> V (NP) (NP)...

T=i T obj =| t °bj 2

Chapter 3. Refinement and Implementation 99

where the brackets around NP indicate an optional argument. LTGO ignored the
VP rule, and instead gave the lexical entry for smiles's category as VP, when,

according to LFG orthodoxy, it should be listed as a V with obj, obj 2 and so on

undefined. This was purely for simplicity: in a simple "core" account like LTGO,
there is no difficulty in treating optionality as an abbreviatory convention for a

collection of rules, one for each choice of allowed argument sets. The obvious
formulation for the case when the argument is missing would be

Vvv'. v =cat VAd' =cat VP A v =hd v' —> v' ^ v .

But this would recognise v' i—V hates where v' =cat VP and obj(u') has a value
which does not appear in the parse. That is, hates by itself would be recognised as

a verb phrase, even though its object does not appear with it. There is nothing to

prevent the V-by-itself option applying even when obj is defined. We can easily

prevent this from happening by changing our formulation of the no-object rule to

Vvv'. v =Cat V A v' =cat VP A v =hd v' A -iDobj(w) —* v' i—>■ v .

This works perfectly well for most purposes, but not for some more "difficult"

constructions, such as relative clauses. According to the treatment in Kaplan and
Zaenen (1987), a relative construction such as the man Kim hates, there is a v'
such that v' hates, v' =cat VP, and obj(u') is associated with an intension
for the man, even though the man does not appear in the parse of v'. One way of

viewing this treatment is to say that we do have v' •—>* hates, even when obj(u')
is defined, but when we look for intensions s of matrix (non-embedded) sentences,
we not only look for s =Cat s5 but also for parses where every subj (obj, obj2...)
value is associated with a node of the parse. In standard presentations of LFG

(Bresnan 1982), this is an artifact of the procedural definition of the correspon¬

dence between c-structure and f-structure. To directly encode this declaratively,
we would have to explicitly build up whole trees as syntactic objects, and in¬
troduce syntax to keep track of which rule they were constructed by and which

obligations they discharge where. This may be even further complicated because

(contrary to assumptions detailed in the paper) Kaplan and Zaenan's treatment

Chapter 3. Refinement and Implementation 100

forces cyclicity in the model structures. Yet the treatment above is good for the
"core" part of LFG. The desire to extend this to unbounded dependencies has

greatly complicated the essentially simple core treatment, making it difficult to
understand and model-theoretically dubious. I think this illustrates the difficul¬
ties and dangers of the "all-or-nothing" approach to building complex models, and

suggests the potential advantages offered by a truly modular approach. In Sec¬
tion 5.3 I suggest that the role of equality in the intensional domain ought to be to
encode distributional equivalence. This is not consistent with having intensions be
whole trees. I therefore suggest (also in Section 5.3) a class of models for LFG in
which intensions consist of atomic category labels, plus an f-structure which dis¬

tinguishes between values taken internally or externally (relative to a tree rooted
at such an intension). These models will be amenable to the modular treatment
of unbounded dependencies presented later in Chapter 5.

3.4 Immediate Dominance and Linear Prece¬

dence

GPSG, and later HPSG and even some recent versions of LFG, use some form

of immediate dominance/linear precedence (IDLP) format. The idea here is that
immediate constituency in natural language can always be described by specifying
these two concepts (immediate dominance and linear precedence) separately. Lin¬
ear precedence refers to the possible sequences in which a collection of intensions
can occur if they are to be the daughters of some local tree. Natural languages (or
at least, most grammars for natural languages) appear to exhibit strong regulari¬
ties as to what may precede what, at the level of sisters. In English, for instance,
noun phrases precede any sister verb phrases. So

sentence: NP • VP Jesus wept

verb phrase: believe • NP • VP believe Jesus wept

verb phrase: persuade • NP • VP persuaded John to come

Chapter 3. Refinement and Implementation 101

and so on. But ID LP format embodies a stronger claim, that we can classify
all strings of intensions according to whether they are OK for linear precedence

(lpok), or whether they are not. If -ilpok(;r), there is no r such that r i—► x. This
is intended to formulate potential ordering of daughters, independent of what the
mother may be. So if r i-» x, then of course lpok(x), but if in addition x' is a

permutation of x such that lpok(a;/), then also r t—> x'. This might be expressed
as follows:

(3.24) (Possible daughter sequences)
LPOK = enrich SYN* by

pred lpok C Syn*

(3.25) (Permutations)
PERM = extend SYN* by

pred _ m __ Q. Syn* x Syn*

axiom x ■ y • z XJ y ■ x ■ z

axiom xtxij/AyMz—> x w z

(3.26) LP = enrich LPOK + PERM + GMR
by axiom r m► x —■> lpok(x)

axiom r h i A i M i' A lpok(a:,) r x'

references: SYN* (2.3), GMR (2.4)

LPCGMR, because every model of LP includes a model of GMR (2.4). In fact,
LP C GMR, because there are models of GMR for which no definition of lpok will

make the axiom of LP hold true. So LP embodies a universal claim about natural

language, in that it excludes certain forms of grammar, which (the claim runs)
natural language does not require. For example, if a, 6, c, d are in Syn, it disallows

Chapter 3. Refinement and Implementation 102

any grammar in which a i—> c ■ d, a i—► d • c, and b ^ c • d, but not b h-► d ■ c.1 Recall
the PSG model 5 (2.7):

S(Lex) = {saw,the,man,with,the,telescope}
S(Syn) = S(Lex) U {VP,VT,NP,PP}
S(_ ■ _) given by concatenation

1—9► _) given by
VP h-> VT NP

VP i—► VT NP PP

NP i—►NP PP

NP i-> the man

VT t—> saw

PP t-> with the telescope

S can, by the existence of a suitable interpretation of lpok, be shown to be a

model of (LXN + LP)|Sig[S] (2-2, 2.6). As there do not exist r, r', x, x' in S such that
r i—> x, r't—> x', x M x' and x ^ x', we can be sure that one such interpretation
would be the set formed by all the x such that r i—> x :

(3.27) {VT NP, VT NP PP, NP PP, the man, saw, with the telescope}

IDLP is generally associated (as for instance in GKPS) with another claim, that

lpok depends only on what pairs (sequences of length two) are allowed.

(3.28) (Binary LP)
LPBIN = enrich LP by axiom lpok(u;)

Wst: Syn, xyz : Syn* ,w = x- s- y- t- z—> lpok(s • t)

1In practice, quite a lot of the work done today on developing these frameworks is
on modifying this notion of LP, because there are various phenomena and languages
which do not seem to be amenable to this treatment. Crossing dependencies, addressed
in Chapter 6, is such a phenomenon, though I take a somewhat different approach to

solving the problem.

Chapter 3. Refinement and Implementation 103

This trivially gives lpok(e) and Vr : Syn. lpok(r) in any model of LPBIN. If

a, 6, c, d, e are of sort Syn, LPBIN would (for example) disallow any grammar in
which a i—^ c • d, a i—^ d • c, and b i—> c ■ d ■ e, but not b i—> d ■ c • e. S has no

rules of this form and can be shown to be an implementation (modulo signature)
of LPBIN+ LXN (2.2) by the demonstration of an appropriate lpok. As there do
not exist r,r',x,x' in S such that r * x, r' x', x m x' and x ^ x', we just
need to show that there is no pair of intensions which appear in different orders in

different rules. This shows that the closure of our previous choice of lpok under
the axiom of LPBIN will suffice:

(3.29) {e, VT, NP, VP, PP, the, man, saw, with, telescope,
VT NP, VT PP, NP PP, the man, with the, with telescope, the t.s.,

VT NP PP, with the telescope}

(where e is the empty string). In GKPS precedence is expressed by a relation

_ X where s X t means s-daughters must precede ^-daughters, in any local tree

in which both occur. This is clearly equivalent to -<lpok(t • s). GKPS also has

_ X _ antisymmetric and transitive, but I prefer not to follow suit here. Having

sXi and iXs would simply mean s and t could never appear as sisters. So if X is

antisymmetric, and we want to forbid s and t ever appearing as sisters, we would
have to express this by -i3r: Syn, xyz: Syn* .rt-^x-s-y-t-zVrt->x-t-y-s-z,
rather than the simpler s X t A t X s. The restriction to antisymmetry on _ X _

seems doubly peculiar in that we are still allowed to specify that two instances of
the same intension cannot appear as sisters (t X 1).

Insisting on transitivity seems to have been mainly a device to simplify spec¬

ifications, and as such is an implementation technique. Unlike antisymmetry,

transitivity does restrict the class of grammars. Of course if r X s and 5X1, and
we have sister instances of r, s and t, then we must in any case have r preceding
t. The only time it makes any difference is when we have r and t sisters, but not
s. In that case, r must precede t in a model where _ X _ is transitive, but not

necessarily otherwise. As far as I am aware, no work has been done on whether

restricting to transitive models is the right thing to do for all languages. If we look

Chapter 3. Refinement and Implementation 104

at the -4-transitivity condition in terms of lpok, we begin to see how peculiar it

really is.

Wrst .r-<sAs-^t—>r^t

= Vrst. -ilpok(r • s) A -ilpok(s • t) —> ->lpok(r • t)
= Vrsf . -i(lpok(r • s) V lpok(s • f)) —* ->lpok(r • t)
= Vrst. (lpok(r • s) V lpok(s • t)) V ->lpok(r • t)
= Vrf . lpok(r • t) —> Vs.lpok(r • s) V lpok(s • t)

Finally, IDLP format is usually presented via immediate dominance rules, which
are like the immediate constituency rules except that the right hand side,
instead of being an ordered collection (sequence or string) of intensions, is an

unordered one (a multiset or bag). This summarises the information which, in

_ h-» is duplicated across permutations, and is neater to work with than ensuring

permutation invariance (modulo lpok) all the time.

(3.30) (Free Abelian Monoids — multisets)
FGAM = extend sort Sub by

sort Gpd

opn _ • _ : Gpd X Gpd —» Gpd

opn e ► Gpd

axiom SubCGpd

axiom x ■ (y • z) — (x • y) ■ z

axiom x • y — y ■ x

axiom x ■ e = e • x = x

(3.31) (Multisets over Syn)
MSYN = derive from FGAM

by [Syn i—» Sub, MSyn i—> Gpd, 0 i—* e, _ + _ 1—> _ • _]

(3.32) (Immediate Dominance)
IMD = enrich MSYN

Chapter 3. Refinement and Implementation 105

by pred _ <1 _ C Syn x MSyn

axiom —>3 <J s

(3.33) (Project strings onto multisets)
MIX = extend SYN* + MSYN by

opn |_| : Syn* —► MSyn

axiom |e| = 0

axiom Vr :Syn, x: Syn* . |r • x| = r + |x|

(3.34) IDLP = enrich GMR + LPOK + IMD + MIX
by axiom r x <-> r <\ |a:| A lpok(;r)

r <4 u represents immediate dominance. It indicates that there are (or may be)
local trees with mother r and daughters u (in no particular order). The intensions
in a string x together form a unique multiset \x\. For every permutation x' of

x, |x'| = |»|. So r t—> x is exactly the same as r <1 |x|, plus lpok(x). Every
model expressible using permutations is expressible using immediate dominance,
and vice-versa. An IDLP equivalent of S (2.7) might have, in addition to lpok in

(3.29), the following:

VP <1 VT+NP

VP <1 VT+NP+PP

NP < NP+PP

NP < the+man

TV <1 saw

PP <1 with+the+telescope

The version of IDLP in GPSG or HPSG, will be an implementation of IDLP +

LPBIN.

Chapter 3. Refinement and Implementation 106

3.5 GPSG

The components of GPSG are

(3.35) immediate dominance rules e.g. S —* X2, H[—SUBJ]

(3.36) linear precedence rules e.g. [SUBCAT] -< ~[SUBCAT]

(3.37) feature co-occurrence restrictions e.g. [AGR] D [+V, —N]

(3.38) feature specification defaults e.g. [PFORM] D [BAR 0]

(3.39) universal feature instantiation principles, and

(3.40) metarules

In GPSG and HPSG, =maj is a head property.

(3.41) HMAJ = derive from HPRP

by [_ —maj _ •—» _ = _]

Note HMAJCMAJ (3.13). Thus GPSG will refine HMAJ + IDLP + LPBIN + XBAR

(3.34, 3.28, 3.15). Specification and implementation of GPSG can proceed in much
the way outlined in the LFG example, except that, rather than specifying phrase
structure rules using i—», we encode ID (immediate dominance) rules using <1, and
LP (linear precedence) rules using -<. Most difficulties will arise with GPSG's
use of defeasible default inheritance. For simplicity, I will again assume a feature

MAJ, and just write [MAJ V] (or [V]) rather than [+V, —N], as in GKPS.

Since feature co-occurrence restrictions (FCRs) filter possible intensions, it will
be useful to consider them first. FCRs are a means by which we exclude certain

objects from the grammar proper. For instance, the example FCR in (3.37) means
that if the agreement feature is defined on an intension, then it ought to have major

category V. I will suppose the existence of a specification GFEAT which sets up

Chapter 3. Refinement and Implementation 107

the feature system in terms of partial equivalences, perhaps using a constructor

like f in the specification PSYN (3.6) of PATR-II intensions. However I will now
be proceeding to exclude some of these intensions, and I will want to refer to this

reduced collection of intensions as Syn, so GFEAT would actually need to use a

different sort name, say Syn', such that Syn C Syn'. So rather suppose GFEAT is
akin to

derive from PSYN by [Syn' i—■» Syn] (PSYN: 3.6)

We might then proceed to give predicates for each restriction.

FCRl = enrich GFEAT

by pred fcrl C Syn'
axiom ...

(The FCR [AGR] D [+V,-N] of (3.37))
FCR12 = enrich GFEAT

by pred fcrl2 C Syn'
axiom fcrl2(r) <-» (Dagr(r) —> r =maj v)

FCRs = enrich FCRl + ... + FCR12 + ... by

sort Syn

axiom Syn C Syn'
axiom r: Syn <->■ fcrl(r) A ... A fcrl2(r) A ...

Perhaps the most obvious example of defeasible inheritance is in the inclusion
of bar level among head properties. This seems very strange, as we expect bar
level in general to increase from daughter to mother. Inspection of the rules

given in GKPS shows that most in fact specify the (different) bar levels taken by
mother and head daughter. The idea is that when this is done (i.e. when the rules

explicitly contradict the usual convention), the "default" that mother and daughter
share bar level is overridden. But as we have just said, the majority of rules (and

Chapter 3. Refinement and Implementation 108

in particular, all the lexical rules) do make use of this explicit specification of bar

levels, so really we might just as well cease to look on bar level as a head property,

and instead add explicit equality of bar level to those few rules which allow it.

For instance, the ID rule in (3.35) would then become S —> X2, H2[—SUBJ].
The superscripted 2 indicates bar level, X can stand for any intension (in this

case, any intension of bar level two), H indicates the head daughter, and S is an

abbreviation for [V, +SUBJ, BAR2]. Similar comments apply to the placement
of the subj feature among head properties (in GPSG, [+SUBJ] merely serves

to distinguish sentences from VPs). Using partial equivalences and so on, the

example of (3.35) becomes part of the specification of immediate dominance:

GID = extend FCRs -f MSYN by

pred _ <] _ C Syn x MSyn

(S —+X2,H2[-SUBJ])
axiom v =maj VP =maj s A

U —bax VP —bax ^ "~~bax % A

V =subj VP 7^subj $ A
V =hd S —> S <] X + V

references: MSYN (3.31)

The treatment of linear precedence presents no great difficulties. The example of

(3.36) will form part of such a treatment:

GPREC = extend FCRs by

pred _ -X _ C Syn x Syn

(the LP rule [SUBCAT] -< ~[SUBCAT] of (3.36):)
axiom r —subcat r A s T^subcat s —► r 8 s

LPREL = enrich LPBIN by

pred _ -X _ C Syn x Syn

Chapter 3. Refinement and Implementation 109

axiom lpok(r • s) <-»• ->< r

references: LPBIN (3.28)

The place where defeasible defaults are most heavily used is in the feature spec¬

ification defaults (FSDs). These make little sense at all in a loose specification.

Coming to implementation, it is notoriously difficult to model these defaults com¬

putationally in a uniform way. It is not even clear that the system as outlined

does what was intended. However the intention is that they describe some core,

or default, behaviour, which can be overridden in the case of related, but slightly

different, exceptional behaviour. For instance, the default in (3.38) is intended to

prevent the feature PFORM from being defined, except when a value is imposed,
for instance by an ID rule like the following one for give:

VP —» H[3], NP, PP[PFORM to)

One way to handle this is, instead of having an extractor for PFORM, have an

extra constructor

opn pform : Syn —> Syn,

and when specifying immediate dominance, instead of requiring a PP[PFORM to),
insist on an intension of the form pform(p), where p is a PP. We would then need
to specify also the behaviour of the intensions of the form pform(r) with respect

to dominance:

r <J t + x —» pform(r) <1 pform(t) + x.

(This is an oversimplification, as this formulation would not cope with multiply-
headed local trees). Notice that the sort of constructions being undertaken here

depend only on a few details of the remainder of the system, suggesting that we

may be able to make a parametrised construction, which could be applied to any

"core" system which could supply notions like PP and immediate dominance. All

Chapter 3. Refinement and Implementation 110

the matters dealt with by FSDs in GKPS ought to be susceptible to such modular
treatments. In Chapter 5 we will see in detail how this strategy may be employed
to deal with some unbounded dependency phenomena.

The function agr acts in much the same way as subj in LFG to give agreement,
in that lexical entries for verbs will specify what sort of agr values they may

have. However, instead of having phrase structure rules specify where this value
must be found, this is dealt with by the control agreement principle. The control

agreement principle is supposed to mediate with a semantic treatment to identify
when semantic functors require syntactic agreement (as between a subject and
a verb phrase). This is quite a modular approach, as it is parameterised by a

simple (semantic) type system in which words are assigned semantic types from
some domain, Sem say, containing a constructor (_,_) : Sem x Sem-bSem. The
central idea is that if typ(s) = (typ(f), typ(r)), we never allow r <1 s + t + z unless

agr(s) = t. Again this is complicated by all sorts of matters which would probably
be better dealt with independently. It is also extended to deal with "control" verbs.

The system is only sketched and is largely of interest as a putative cross-linguistic

principle, and in interfacing with semantics. It is not heavily used in the English

fragment of GKPS, where it is just supposed to deal with subject agreement,

and agreement in control verbs. For this reason I will not go into details of its
treatment. Similarly, the complications on the head feature convention (detailing

just which head features should be inherited when) are not relevant in a core

treatment, and neither is the foot feature principle. These three are called universal

feature instantiation principles. They act as a filter on the immediate dominance

rules, disallowing particular instances. One way to achieve this filtering would be
to specify four separate predicates

preds idr, cap, ffp, hf c C Syn X MSyn

for the immediate dominance rules and the three universal feature instantiation

principles, and then define

r <] x idr(r, x) A cap(r,x) A ffp(r, x) A hfc(r, x)

Chapter 3. Refinement and Implementation 111

but (as intimated) I shall not consider the details of specifying these predicates.

The last component of GPSG is the metarules. These deal with matters such
as passivisation, unbounded dependencies, conjunction, and so on. Their specifi¬
cation need not offer any special challenge, but as most of these constructions do
not depend heavily on the fine details of the core treatment, they are exactly the
sorts of things we should consider specifying and implementing in a more modular
fashion.

(GPSG Core)
GCOR = GID + GPREC + LPREL + IDLP

3.6 HPSG

The components of HPSG are

(3.42) declarations, of features appropriate on a sort, with their own associated

sorts, e.g.

syn: SyntacticValue

dtrs: ConstituentStructure

: PhrasalSign

(3.43) grammatical principles, e.g.

dtrs: HeadedStructure
syn: loc: head: h

dtrs: head_dtr: syn: loc: head: h

(3.44) grammatical rules, e.g.

Chapter 3. Refinement and Implementation 112

syn:loc: subcat: ()

dtrs:
heacLdtr: syn: loc: lex:

comp_dtrs: ([])

(3.45) the lexical hierarchy, which I won't consider here.

Specification and implementation of HPSG can proceed in very much the way of
the multi-sorted feature grammar SPP (3.8). As stated there, when we list the
features appropriate for a given type, we are really giving the arity of a constructor
of the type, and extractors on it. For instance from (3.42) we read the need for
a constructor from SyntacticValue x ConstituentStructure to PhrasalSign,

with corresponding extractors syn and dtrs:

sorts PhrasalSign,LexicalSign,Syn
axiom PhrasalSign, LexicalSign C Syn

sorts SyntacticValue,ConstituentStructure

opn phrasal_sign : SyntacticValue X ConstituentStructure
—> PhrasalSign

opn syn : PhrasalSign —> SyntacticValue

opn dtrs : PhrasalSign —> ConstituentStructure

axiom syn(phrasal_sign(s, d)) — s

axiom dtrs(phrasal_sign(s, d)) = d

(I have left out the PHON and SEM attributes for simplicity). Now any object of
sort ConstituentStructure is either a headed structure or a coordinate structure.

sorts HeadedStructure,CoordinateStructure

axiom HeadedStructure, CoordinateStructure

C ConstituentStructure

Chapter 3. Refinement and Implementation 113

HeadedStructure in turn has attributes head_dtr, comp_dtrs and adj_dtrs

opn headed_structure : Syn X Syn* X MSyn —» HeadedStructure

opn head_dtr : HeadedStructure —■» Syn

opn comp_dtrs : HeadedStructure —» Syn*

opn adj_dtrs : HeadedStructure —* MSyn

axiom head_dtr(headed_structure(/i, c, a)) = h
axiom comp_dtrs(headed_structure(/i, c, a)) = c

axiom adj_dtrs(headed_structure(h, c, a)) = a

and so on. Since HPSG explicitly builds parse trees into the intensions, by record¬

ing the unique daughters of any phrasal sign, GPSG's distinction between universal
instantiation principles and feature co-occurrence restrictions is not needed. Like
the latter, HPSG's grammar principles (which may be language specific or uni¬

versal) restrict which signs can be considered intensions. We can use the same

technique to enforce them. We change every constructor of Syn into a constructor

of the supersort Syn', and every extractor on Syn to one on Syn'. Crucially, we do
not change any arguments to the constructors. To every principle Pi there corre¬

sponds an implicational formula (f>i(r), where r stands for a point at which Pi is
to hold. Then r: Syn <-» (f)\{r) A ... A </>,(r) A For instance, the principle (3.43)
says that if a mother's dtrs value is headed, then its syntactic value's local head
features are shared with the local head features of the syntactic value of the head

daughter. (So this principle just enforces the sharing of head features between
mother and head daughter.) So if HFEAT is the result of specifying Syn', we might
have

PRINC1 = enrich HFEAT by

pred princl C Syn'
axiom princl(m)

(dtrs(m) : HeadedStructure
—> head(loc(syn(head_dtr(dtrs(m)))))

= head(loc(syn(ra))))

Chapter 3. Refinement and Implementation 114

HPRINC = enrich PRINC1 + PRINC2 +... by

sort Syn

axiom Syn C Syn'
axiom r: Syn princl(r) A princ2(r) A ...

Similarly to every rule i?, there corresponds a formula (r). For instance,
the rule (3.44) describes intensions which have an empty subcat list, a single

complement daughter, and a head daughter marked lex:—. We might then get

HID = extend HPRINC + MIX by

pred _ <J _ C Syn x MSyn

axiom subcat(loc(syn(r))) = e

A comp_dtrs(dtrs(r)): Syn
A lex(loc(syn(head_dtr(dtrs(r))))) = —

—> r <] head_dtr(dtrs(r))
+ |comp_dtrs(dtrs(r))|

references: MIX (3.33)

Among the grammatical principles is supposed to be a constituent order principle,
which ought to take the form of a map from ConstituentStructure to sequences

of words. However P&S takes only a tentative stance on how this principle is

to work, and so instead of attempting to specify this map, it gives a few linear

precedence constraints, rather like those of Section 3.4, employing some ad hoc
notation. The first of these is

(3.46) HEAD[LEX -] < []

This is supposed to do the same job as the linear precedence statement (3.36) for
GPSG:

[SUBCAT] ~ [SUBCAT]

Chapter 3. Refinement and Implementation 115

That is, it insists that lexical heads precede their sisters. The fact that (3.36)
encodes this is due to the fact that all and only lexical heads have SUBCAT

defined. The reason that this was not written

H[—LEX] -< []

is because the "H[]" notation is purely the formal syntax used to specify which

daughter in an ID-rule is head, and it has no status outside ID-rules. In particular,
there is nothing in the internal structure of the object modelling that intension
which directly encodes the fact that it is head (although, fortuitously, definedness
of SUBCAT happens to correspond to being a lexical head). Of course we could
add a (non-head) feature to directly encode being a head (say [+HD]), and so

insist that different intensions must be used in head positions than in non-head

positions, but this is not necessary in GPSG (because we can use definedness of
SUBCAT instead). However if we are to make sense of (3.46), we must either
abandon the requirement of Section 3.4 that specification of LP be an ordering
of intensions independent of context, or add to intensions some means (like the
feature HD) of creating distinct intensions according to whether they are to act
as heads, complements, or whatever. Taking the latter course, we can require (for

instance) that Syn be divided into subsorts according to what kind of daughter it
can act as, to be defined by the value of a feature dtyp. So HFEAT might run in

part

HFEAT = extend 0 by

sorts PhrasalSign,LexicalSign, Syn'
axiom PhrasalSign, LexicalSign C Syn'

sorts Syntact icValue,Const ituentStructure

sorts HeadedStructure,CoordinateStructure

axiom HeadedStructure, CoordinateStructure

C ConstituentStructure

sort Dtyp

Chapter 3. Refinement and Implementation 116

opns hd, cmp, adj > Dtyp

opn phrasal_sign : SyntacticValue

X ConstituentStructure

X Dtyp —>PhrasalSign

opn syn : PhrasalSign —> SyntacticValue

opn dtrs : PhrasalSign —> ConstituentStructure

opn dtyp : PhrasalSign —> Dtyp

axiom syn(phrasal_sign(s, d,t)) = s

axiom dtrs(phrasal_sign(.s, d, t)) = d
axiom dtyp(phrasal_sign(s, d, t)) = t

sorts Hd, Cmp, Adj

axiom phrasal_sign(s, d, hd) : Hd

axiom phrasal_sign(s, d, cmp) : Cmp
axiom phrasal_sign(s, d, adj) : Adj

opn headed_structure : Hd X Cmp* x MAdj

—* HeadedStructure

opn head_dtr : HeadedStructure —> Hd

opn comp_dtrs : HeadedStructure —> Cmp*

opn adj_dtrs : HeadedStructure —> MAdj

axiom head_dtr(headed_structure(/i, c, a)) = h
axiom comp_dtrs(headed_structure(/j, c, a)) = c

axiom adj_dtrs(headed_structure(/i, c, a)) = a

Then we could express linear precedence, and an HPSG core, as follows:

HPREC = extend HFEAT by

pred _ -X _ C Syn x Syn

axiom Vh: Hd, r: Syn'. h -< r

Chapter 3. Refinement and Implementation 117

HCOR = HID+HPREC+LPREL+IDLP

3.7 Coda

The primary aim of this chapter has been to illustrate the applicability of for¬

malised notions of refinement and implementation in specifying the formal prop¬
erties of different linguistic programs, and illuminating some of their shared prop¬

erties. In particular, I hope to have shown how feature-value grammars are natu¬

rally viewed as specifications in ordinary first-order logic, together with a handful
of more-or-less standard implementation techniques. A standard technique for

producing implementations of particular forms of specification amounts to the
definition of a programming language. Such a technique is unlikely to itself be

susceptible to specification in the way we have already seen, especially if it is to

operate over a variety of different signatures. But clearly we would like some way

of avoiding the duplication of effort involved with writing out essentially the same

refinement every time want to write a new or extended grammar fragment. We

may even want to be able to tie together partial implementations which use differ¬
ent techniques. This is the same as the problem of how to view a "real" program,
in Prolog or ML say, as an implementation of an ASL specification, or how to tie

together programs written in different languages. It was this sort of problem which
led to the idea that a specification language could be parameterised by different
institutions (logics). This is addressed in the next chapter.

Chapter 4

Institutions

It will be recalled that ASL was designed to be a kernel language, in terms of which
more quotidian languages could be defined. Yet even here I have used a version
which differs from "standard" ASL in offering partial operations. The changes
to the underlying logical framework are in this case strictly generalisations, and
add little syntactic burden to specifications which do not use partiality, but in

general there is no single right choice of logical framework. This phenomenon
is described in Goguen (1987), "One, None, A Hundred Thousand Specification

Languages". Besides surveying the problem, the main purpose of that paper is
to provide a very informal introduction to the method of institutions, developed

by Goguen and various others (Goguen and Burstall 1985, Goguen and Burstall

1986, Sannella and Tarlecki 1987). It is Goguen's thesis that the main difference
between very many of these specification languages is just the logical system in
which they are operating. Goguen and Burstall (1985) describes "the notion of
an institution as a precise generalisation of the informal notion of logical system".
This includes systems of equational logic (as used in Universal Algebra), Horn
clause logic (as used in Pure Prolog), first order logic with or without equality,
and various restrictions thereof, as well as systems which admit partial operations
or order-sorted signatures.

118

Chapter 4. Institutions 119

4.1 Introduction

It is my hope that any reader will be able to pick up from what follows an idea of
the "shape" of an institution, and that a reader familiar with just the basic idea of
Universal Algebra (see Section 1.3) should see how institutions have been arrived
at by generalising from that point. From Goguen and Burstall (1986):

Intuitively, an institution is a formalisation of the notion of "logical

system" having the following:

signatures which generally provide vocabularies for sentences

E-sentences for each signature E

E-models for each signature E,

a E-satisfaction relation, of E-sentences by E-models, and

signature morphisms which describe changes of notation, with cor¬

responding transformations for sentences and models.

(The map from signature morphisms to transformations on models is called the
reduct functor.) Although the above lists all the constituent parts of an institu¬

tion, in order to be called an institution, these parts must obey the satisfaction

condition, which requires that satisfaction is preserved under change of notation

(signature morphisms). Without worrying about the details of the morphisms, it
should be clear, from Section 1.4, how to construe the two "settings" of Section 1.3

(the equational one of (1.1) and the quantificational one of (1.2)) as institutions.
In each case, signatures consist of function symbols, indexed by a (numeric) arity,
and models must interpret these by actual functions of appropriate arity. Terms
are built up from function symbols and variables as in Section 1.4, and equality

is the only predicate. The quantificational institution is just the first order logic
built up from these atomic formulae, i.e. from equations. In the purely equational

institution, the equations themselves are (the only) sentences, and a model M
satisfies an equation t = t' just in case [t] = [t'\ no matter what values [x] 6 [M]

Chapter 4. Institutions 120

are assigned to the variables x € X. When a model M satisfies a sentence s, we

write M (= s.

Historically, the generalisation from Universal Algebra to institutions was pre¬

ceded by that to multi-sorted algebras. These may involve, not just one, but any
number of set names (more properly sort names). Operators must then be in¬
dexed by the names which are to correspond to the sets for each argument, and
to that for the result. This is, of course, merely a more complex institution. The

preceding work was based on an institution which also allowed partial operations
and predicates.

4.1.1 Using different institutions

The paper Goguen and Burstall (1985) presents some mathematics which might

conceivably be used to allow one to work in more than one institution (multi¬
plex institutions). However the mathematics is quite complicated, and is limited

(as ASL is not) to putting together classes of models which correspond to theo¬
ries (i.e. the maximal classes of models satisfying some set of sentences of the

institution). Sannella and Tarlecki (1985) describes how the language ASL may

be further generalised by leaving the underlying institution as a parameter, and

defining specification-building operations as far as possible in terms of an arbi¬

trary institution. However in order to write an actual specification, one must use

a specific institution. Sannella and Tarlecki (1985) might be thought of as a recipe
to simplify the production of a specification language for any institution one cares

to define. This theory is recapitulated in Sannella and Tarlecki (1988) in order
to introduce a specification-building operation which allows specifications writ¬

ten in different institutions to be tacked together, by the use of semi-institution

morphisms. (These are simpler than the institution morphisms of Goguen and
Burstall (1985).) A semi-institution morphism is a mapping between institutions
that maps signatures to signatures, signature morphisms to signature morphisms,

and, in a fashion consistent with the signature map, models to models (in category

theory terms, a natural transformation on models). A semi-institution morphism

Chapter 4. Institutions 121

7 :/—>/' can be used to define a new specification-building operation, change
institution of SP via 7 (where SP is a E-specification in /), which specifies
those models in the institution /' which may be formed by mapping a model of
the /-specification SP into /' using 7. The details of these definitions will be given

later, in Section 4.2.2.

4.1.2 Defining institutions

Churning through all the definitions and conditions needed to demonstrate insti-

tutionality can be a tiresome and difficult task. Goguen and Burstall (1986) give
some theory designed to make this process easier, but it is conceptually quite diffi¬

cult, and probably more general than is usually required. Tarlecki (1984) presents
a class of abstract algebraic institutions, which includes most familiar algebraic

variants, but this is aimed at generalising some results about term algebras, and

certainly does not make it any easier to produce a definition. A common trick

is to start with a very general institution, and define others as restrictions of it.
For instance, Goguen and Burstall (1985) demonstrates institutionality for (multi-
sorted) (total) first order predicate logic (TP, say), and then defines the institution
of (multi-sorted) first order predicate logic with equality (TPQ) by restricting to

signatures containing equality predicates for each sort, signature morphisms which

preserve these, and models which correctly interpret them. Since TP reducts pre¬

serve this property of models, the reduct functor can remain unchanged and the
satisfaction condition follows from that of TP. If reducts did not preserve the

interpretation of equality we would not have a true restriction, and the satisfac¬
tion condition would not be met. A natural question to ask is why this cannot

be achieved by writing a specification in TP. The answer is that the restriction
cannot be expressed by sentences of the institution, that is to say, equality is not

a first order property. Another example from the same paper shows that the Horn

clause fragment of TPQ is an institution, because this class of sentences (Horn
clauses) is closed under translation by signature morphism.

In the main body of the text I will show, as an example, how to construe

Chapter 4. Institutions 122

pure, single-sorted predicate logic as an institution, and give some examples of

institutions-by-restriction. The idea is that the proofs for most algebraic-style
institutions will be much the same, and other proofs can be described in terms of

this one. The mass of detail is unfortunately irksome, but should not need to be

suffered too often. In Section 1.8 I described the operations of ASL in terms of the

institution Q, of (multi-sorted) equational logic, assuming a certain encoding for

predicates, in order to simplify exposition, by keeping down the size of signatures.

Otherwise, though, it would be better to suppose that the "standard" institution,
in which all specifications outwith this chapter are written, is PQ, the institution
of multi-sorted partial predicate logic with equality.

4.2 Institutions and Implementation

In algebraic specification, programs are identified with models. For any program¬

ming language, then, if we have a (complete) specification of a program, we must

have some way of associating that specification with a single model. One way

to go about this is to apply stepwise refinement of a loose specification until it

only has one model. But suppose we have made refinements which identify some

subtask whose implementation in a particular programming language is appar¬

ent, even though the corresponding subspecification could still have many models.
The appropriate refinement at this point is to replace that subspecification by
the implementation. For instance, if the programming language in question, was,

say, Prolog, then the implementation looks just like a specification in (single-

sorted) predicate logic anyway, but that specification will probably have many

(non-isomorphic) models. In the case of Prolog, we can transform any program

into a specification of the intended model in single-sorted predicate logic just by

prefixing it with "extend 0 by", but even then, we may need to show how we

can use this single-sort specification in refining a multi-sorted specification. One
solution is to treat multi-sorted and single-sort logics as different institutions, and
use a semi-institution morphism from the latter to the former with the change

Chapter 4. Institutions 123

institution operation. To begin with then, here is the institution of pure, single-
sorted predicate logic.

4.2.1 The institution of pure predicate logic

The description in Section 1.4 of single-sort pure predicate logic does most of
the work associated with defining it as an institution (say SP), describing sig¬

natures, models, sentences, and satisfaction. I will go over this again below (the
presentation is slightly different, but equivalent). In addition we must characterise

change of notation, by giving a definition of signature morphism, and show that
satisfaction is preserved under change of notation.

We fix a collection of variables X. A signature E is a set of predicate names,

indexed by arity; so for instance E3 is the set of three place predicates. Models
M of E must supply

1. a carrier set (written [M]),

2. for every predicate name p E S;, an interpretation [Mp\ consisting of a set

of z-tuples over the carrier [M],

Signature morphisms cr : E —> E' map predicate names pi E E; to predicate
names opi E E(. Given a signature morphism o : E —» E', any E'-model M' can
be interpreted as a S-model oM' (or M'|CT), the cr-reduct of M\ by defining

1. [aM'] = [M'], and

2. [(oM')p] = [M'(crp)] for every predicate p E S.

For any signature E, the E-formulae of rank 0 have the form p(x l5... x,), where

p E St and xi,... xt- E X. A signature morphism a : E —> E' can be extended to

formulae of rank 0 by setting <j(p(x\,...x,-)) = (crjp)(x1,.. .Xi). For any n > 0, the
E-formulae of rank n are all formulae having the forms

1. -K?f>, where f is a E-formula of rank n — 1

Chapter 4. Institutions 124

2. <p Aip, where (p and ip are E-formulae of rank less than n, and one of them

is of rank n — 1 exactly

3. Vx . <p, where cp is a E-formula of rank n — 1 and x £ X

A signature morphism o : E —> E' can be extended from rank n — 1 to rank n by

setting

1. ct(-k^) = ->(o»

2. cr(qi> Aip) = (o(p) A (crip)

3. <r(Vx.(p) = Wx.(ocp)

E-sentences are formulae which are closed with respect to every variable. A formula
is closed with respect to a variable x if it has the form

1. p(x-i,... Xi), where p £ Eand x ^ Xj £ X, for 1 < j < i.

2. <p A xp, where both <p and ip are closed with respect to x,

3. -><p, where <p is closed with respect to x, or

4. Vy. (p, where y £ X and either y — x or <p is closed with respect to x,

A variable assignment v for a E-model M is a map v : X —* [M\. We define

satisfaction of a E-formula by a E-model M with respect to a variable assignment
v : X —► [M] (write M (p) as follows.

1. M |=" p(xi,... X{), where p £ E,-, just in case (u(xi),... v^xf)) £ [Mp\.

2. M ^ -i<p, where <p is a E-formula of rank n — 1, just in case M y=A (p.

3. M)=" (p Aip, where one of (p and ip is of rank n — 1 and the other is of rank
at most n — 1, just in case M \=" (p and M \=u (p.

Chapter 4. Institutions 125

4. M f=" \/x. <p, where is a E-formula of rank n — 1, just in case M \="' <f> for

every assignment v' : X —> [M] such that implies ^'(y) = t'(y).

Then say a E-model M satisfies a E-sentence (p (write M |= <p) just in caseM f=" <p
for every variable assignment v : X —> [M].

That completes definition of the constituent parts of this logic. Now in order to
show that they constitute an institution, we must prove the satisfaction condition:

that if <p is a E-sentence, a : £ —> E' is a signature morphism, and M' is a E'-model,
oM' satisfies <j> iff (if and only if) M' satisfies ofi. This shows that satisfaction
is invariant under change of notation. We prove the stronger condition, that for

any signature morphism o : E —► £', E-formula E'-model M', and variable

assignment v : X —■> [M'], oM' \=" <f> if and only if M' 1=^ a<f>. The proof, by
induction on rank, follows.

If <f> is a E-formula of rank 0, o : E —» £' is a signature morphism, M' is a

E'-model, and v : X —> [M'\ is a variable assignment, then clearly crM' 1=" (j>
iff M' \=u a<j>. Now make the inductive assumption that for any E-formula </> of
rank less than n (some n > 0), signature morphism a : E —> £', E'-model M' and
variable assignment v : X —> [M1], M' cr(f> iff oM' \=" <f>. Then

1. M' 1=^
iff M' \="
iff M' CT (j)

iff oM' <f>

iff oM' 1=" -i(j>

2. M' \=u cr((f) A tp)
iff M' (<r<f>) A (crip)
iff M' \=u crp and M' |=" crip
iff crM' \=u cp and oM' \=" ip
iff crM' \=u <p A ip

3. M' |=" <j(VX . <fi)

Chapter 4. Institutions 126

iff M' \=u Vx . (<j(f>)
iff M' \="' a<j> for every assignment u' : X —> [M']

such that x ^ y G A" implies i/'(y) = v(y)
iff M' \=u' crcf) f°r every assignment v' : X -* [crM']

such that implies v'(y) = v(y)
iff crM' |="' <j) for every assignment v' : X —> [crM']

such that x ^ y G X implies v\y) — v(y)
iff <tM' |=" Vx. (j>

Thus by induction, M' |=" crcj) iff crM' j=l/' (f>, for (f> of any rank n > 0. The
satisfaction condition follows immediately. Thus we have an institution, SP.1 We
can obtain metasyntactic definitions of V,—and 3.

4.2.2 Semi-institution morphisms and change institution

While we can simulate functions in the preceding institution by using predicates
and adding suitable axioms, some of these axioms will be existentially quantified,
and therefore not suitable for use in specifying an initial algebra. Even if we
restrict to conditional form, the only initial algebra is the trivial one, and no

objects are ever reachable (since they can only be named by a variable). Thus in
order to produce an institution in which to model Prolog programs, we ought to

modify the institution of Subsection 4.2.1 by adding operation names directly to

signatures, and adding their interpretation as total functions to the model (call
this institution STP). This is tedious but not difficult. We then get the familiar
ideas of reachability and initiality from Section 1.5. So now the Prolog program

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

:In order to deal properly with the extend operation, the definition of an institution
must be augmented with a definition of model morphisms: see Section 4.4.

Chapter 4. Institutions 127

can be written in STP as

PLUS = extend 0

by \/x . plus(0, x, x)

Vxyz . plus (a:, y, z) —► plus(s(a;), y, s(z))

In order to incorporate this into a larger specification in a multi-sorted institution,
we can use a semi-institution morphism, and the change institution operation.
These should first be spelt out in more detail.

A semi-institution morphism is a mapping between institutions, 7

which maps signatures £ of / to signatures 7(E) of signature morphisms a :

£ —» £' of I to signature morphisms 7(0") : 7(E) —> 7(S') of I', and E-models M
of I to 7(E)-models 7(M) of I'. Furthermore, this map must respect the reduct

functor, in that if a : E —> E' is a signature morphism in I and M' is a E'-model,
then 7(aM1) = (7a)(7M'). Loosely, a semi-institution morphism maps models of
one institution into models of another, in a way which respects changes of notation

(signature morphisms). A semi-institution morphism 7 :/—>/' can be used to

define a new operation, change institution of SP via 7 as follows:

Sigfchange institution of SP via 7] = 7(Sig[5"P]),
Mod[change institution of SP via 7] = 6 ModfSP]}

Thus change institution of SP via 7 describes models in the institution /' which

may be formed by mapping a model of the /-specification SP into /' using 7.

4.2.3 Prolog

We require a semi-institution morphism, single say, from STP into our familiar
multi-sorted institution PQ. Somehow, sorts will need to be imposed on STP

models. The simplest solution is to introduce a single sort, All say, which names

the (previously anonymous) single sort modelled by [M] in any STP model M.
Then for any single-sorted signature £, define

Chapter 4. Institutions

1. sorts(single E) = {All},

128

2. for any i > 0, (single E)aii'-»aii = opns(E;),

3. for any i > 0, (single S)ah' = preds(E,-),

4. for o : E —> E' a signature morphism in STP, single(cr) : single(E) ->

single(E') is a signature morphism in PQ such that for any q e E (whether
q names a function or a predicate), (single cr)q = single(cr^), and

5. for M a E-model, [(single M)A11] = [M], and for any q € E, [(singleM)q] =
[Mq]■

If M' is a E'-model and o : E —> E' is a signature morphism (in STP), then

single(o-M') = (single cr)(singleM'). This shows that single respects change of
notation in the required fashion, and is a semi-institution morphism. Thus we

could for instance use

derive from

change institution PLUS via single

by [int i—* All]

in a larger specification, in order to implement the integers with addition.

4.2.4 PATR-II

Now consider the case of PATR-II. As already indicated in Section 3.1.3, one

way of adding, say, number information to a category would be to use terms

like NP(SINGULAR). There is no particular reason to give NP different status to

SINGULAR: instead we could employ a single constructor f, say, and terms like

f(NP, SINGULAR). But as we add more and more features, and allow the values
they take on to themselves have complex structure, we might get terms like

f (f (S, NIL, BACK, f (NP, X, NIL, NIL)), X, FORW, f (NP, y, NIL, NIL))

Chapter 4. Institutions 129

and much worse, and it becomes extremely difficult to keep track of which argu¬

ment is supposed to correspond to which feature, at which level of embedding of
a term. However we can make use of this correspondence between features and

argument positions in a term to form the basis of a semi-institution morphism,
which allows us to use the more perspicuous notation of extractors (i.e. feature
names: cat,agr and so on) without having to explicitly write out equations like

cat(f {xi, x2, x3, £4)) = xi, as we did in PSYN (3.6). We begin by defining the
domain institution, Patr.

Again we can start from single-sorted, total, predicate logic (STP). Now we

will restrict to signatures containing only atoms So, plus one other operation name,

consisting of a list of length some fx > 0. The arity of this operation must also
be Call the elements of this list S(l),..., E(is). For clarity, it will be simpler
to assume that the arguments to this operation are infixed, so that the operation
name could be written (E(l) E(«s) : _). For the purposes of defining the
internal workings of this institution, the peculiar syntactic form of this operation
name is quite irrelevant, but it will be useful when it comes to defining a semi-

institution morphism patr : Patr —► PQ. Signature morphisms clearly only exist
between signatures E and E' when = ?£'• For any such signature E, the set of E-

sentences is empty (as there are no predicate names), so the satisfaction condition
is trivial, and we have an institution. Patr inherits from STP its notions of

reachability and initiality. For example, in the institution Patr, models of the

specification

PSP = extend 0 by

atoms NP,VP,S,SINGULAR,PLURAL,

1, 2, 3, j ohn, smiles

opn (cat, agr, num, pers)

have objects in one-to-one correspondence to the terms built up in the usual way
from the constants NP, VP, S, SINGULAR, PLURAL, 1, 2, 3, john and smiles using
the operation (catagrnum:_, pers :_), e.g.:

(cat: NP, agr: (cat: smiles, agr: 2, num: SINGULAR, pers: 3) num: VP, pers : 1).

Chapter 4. Institutions 130

We require a semi-institution morphism patr from Patr into our familiar multi-
sorted setting PQ. For any Patr-signature E, set

1. sorts(patrE) = {Syn},

2. (patrS)^syn = So,

3. (patr E)Syn^Syn = {E(l), ..., E(i'e)},

and patr(E) otherwise empty. If <7 : E —► E' is a signature morphism in Patr,
define patr(cr) to be the PQ-signature morphism such that

1. (patr cr)(Syn) = Syn,

2. (patr<x)(a) = patr(cra) for a G E0, and

3. (patr a)(E(j)) = patr(E'(j')) for 1 < j < iE.

If M is a E-model in Patr, then set

1. [(patrM)Syn] = [M],

2. [(patrM)a] = [Ma] for each a G E0, and

3. [(patrM)(E(jf))](x), where 1 < j < and x G [M], to be undefined, unless

xf(x) = {xj\x = [M(S(l):a:i,...,E(iE):siE)], some Xi,...xiE G [M]} con¬

tains exactly one such point xj (i.e. xY(x) = {xj}), when [(patrM)(E(j))](a;) =
Xj.

This last clause could do with further explanation. In order to determine the

value of [(patrAf)(E(j))] at some point x G [M], one must first determine which

iE-tuples (xi,...Xis) make [M(E(1) : aq,..., S(zE) : z,E)] equal to x. Form the
set Xj1(x) selecting just the value xj from each such tuple. If this set is a

singleton {xj}, then [(patrM)(S(,7))](a;) = xj, otherwise it is undefined. Thus if
M is initial, then

[(patrM)(E(j))]([M(E(l):x„... Efe): *,„)] = x„

Chapter 4. Institutions 131

but [(patrM)(S(;))] is undefined at [Ma] (any a E So).

If a : S —> S' is a signature morphism in Patr and M' is a E'-model, then

patr(aM') = (patr <r)(patr M'). This shows that patr respects signature mor-

phisms in the required fashion, and so is a semi-institution morphism.

We can use patr to translate a specification like PSP into PQ and produce a

domain of intensions for use in PATR-II models. For instance, in implementing

LXN (2.2), the specification

PWDS + change institution PSP via patr

has the same (mutually isomorphic) models as the specification

derive from PWDS + PAT + PSYN by [i/—> Atom, Avs,f]

references: PWDS (3.3), PAT (3.4), PSYN (3.6)

All we are doing here is using the term structure to ensure that we get all the re¬

quired attributes, without having to write out new equations (cat(f (aq, cc2, £3, £4)) =
aq and so on) for every new PATR-II specification. It is much more a programming

language than a "real" logic. The patr-images of non-initial models are rather

uninuitive. Even the initial models differ from more familiar ideas about feature-

value models (as in, say, GKPS) in that the order in which the features are listed
is important: models of

extend 0 by

atoms NP,VP,S,SINGULAR,PLURAL,

1, 2, 3, john, smiles

opn (agr, num, cat, pers)

are not the same as those of PSP. No other work can be done in Patr, since it has no

sentences. For instance, it would have been nice if we could have identified, while

still in Patr, which objects should go into Lex. Having decided that this is the
correct style of model, we are unable to apply the discipline of stepwise refinement

Chapter 4. Institutions 132

within Patr. Thus Patr cannot be used as the basis of a wide-spectrum language.
In the following section, we see a feature-value institution in which the non-initial
models do correspond to more familiar ideas of feature-value models (as in, say,

GKPS), and which could potentially be used as a wide-spectrum language. It is
also an open-arity institution, in that it is possible for one feature to fail to take

a value, without all of them doing so.

4.3 An Open-Arity Feature-Value Institution

The strategy used in models M for this institution is to provide some base set [M\
which interprets path expressions over a signature. If fx and /2 are features, and
a an atom, fx : /2 : a is a path expression describing a point at which the value
of fx is such that the value of f2 is a. Atoms a are interpreted by points [Ma],
and features / by total functions [Mf] on [M], where [Mf]([Ma]) will be a point
where the feature / takes the value a (the value of the path expression f :a). The
idea then is to think of objects / as sets, drawn from this base — that is, sets of

paths — but we need to restrict to a collection [MT] of coherent path sets, which
excludes I such that i, [Ma] £ I and i ^ [Ma], or [Mf]{i), [Mf](j) £ I such that

i,j £ [M] are incoherent (for atoms a and features /). Then for I £ [MT], i is an

element of the set corresponding to the value of the feature / at I if and only if

[Mf](i) £ I. Call the institution Open.

We fix a collection of variables X. A signature E consists of atoms E0, features

Ex, and sorts S2. (In this formulation, the elements of S2 might better be termed

predicates, but sorts is the more usual term). Models M of E must supply:

(4.1) a set [M], and an irreflexive, symmetric incoherence relation _M_ C

[M] x [M] (write [MX] for the collection of coherent subsets of [M],
[MT] = {/ C [M]|no i,j £ I satisfies Imj}))

(4.2) for each a £ E0, an object [Ma] £ [M] such that [M] 3 i [Ma] implies
iM[Ma],

Chapter 4. Institutions 133

(4.3) for every / E Si, a map [Mf] : [M] —> [M] such that i\ij implies

[Mf]{i)M[Mf)(j), and

(4.4) for every s E S2, a collection [Ms] C [MT]

Signature morphisms a : E —» S' map atoms to atoms, features to features, and
sorts to sorts. Any E'-model M' can be interpreted as a E-model crM' (or M'\a),
the o-reduct of M', by defining

1. [crM'\ = [M'], and M— _m'~ (so aiso [(cAf')T] - [M'T]),

2. [(crM')a] = [Af'(cra)] for every a E S0 (this satisfies the condition in 4.2

above),

3. [(<rM')/] = [M'(af)] for every / E Si (this satisfies the condition in 4.3

above),

4. [(crM')s] = [M'(crs)] for every s E S2.

For any signature S, the S-sentences of rank 0 are

1. T ("top"),

2. x, for i£(f,

3. a, for a E So, and

4. s, for 5 E S2.

For any r > 0, the S-sentences of rank r + 1 are either

1. feature terms /: <f>, where / E Si and <f> is a S-sentence of rank r,

2. conjunctions <f> A where <j> and if are S-sentences, one of rank r, the other
of rank at most r, or

3. negations where <f> is a S-sentence of rank r.

Chapter 4. Institutions 134

Assume metasyntactic definitions for V, —> and <->. A signature morphism o :

E —» E' can be extended to map E-sentences to E'-sentences by setting

1. <r(T) = T,

2. o(x) = rr, each x E X,

3. o= (crf):(a<f>), each E-sentence <^>,

4. cr(<^ A 0) = A (o"ip), all E-sentences <f> and ^>, and

5. = —>(cr<^>), all S-sentences <^.

For any E-model M set

1. [[MT]} = {(I,v)\I E [MT], v : * - [MT]},

2. for x E X, [[Ma;]] = v)\v '• X —> [MT]},

3. for a E E0, [[Ma]] = {({[Ma]}, v)\v \ X —> [MT]},

4. for s E S2, [[Ms]] = {(I,v)\I E [Ms], v : X —» [MT]},

5. for E-sentence <j) and f E Hi,

[|M(/:«j] = {</,x)|/ € [MT], ({i|[A//](0 e I},v) € [[Mffl],

6. for any E-sentences p and ip, [[M(<j> A ^>)]] = [[M^]] fl [[M^>]], and

7. for <j> a E-sentence,

[WW)]] = I€ [MT], „ : A" - [MT], (,» £ [[Mfl).

Then say M |= <p (for any E-sentence (j>) if and only if for every I E [MT] there
exists a V[: X —» [MT] such that (I,ni) E [[M<^]].

In order to show that these definitions constitute an institution, we need to

prove the satisfaction condition: that for any signatures E, E', signature morphism
<t : E —* E', E'-model M' and E-sentence <j>, M' |= ocj) iff oM' |= <f>. We prove the

stronger condition, [[M'(<r<^)]] = [[(uM')^]].

Chapter 4. Institutions 135

1. (I,n)e[[M'(aT)]]
iff (I,v) G [[M'T]]
iff I G [M'T] and v : X —* [M'T]
iff I G [(crM')T] and v : X —> [(crM')T]
iff </,„)€ [[(<rM')T]]

2. For any x £ X, (I, v) G [[Af(<ra:)]]
iff (/, f) G [[M'x]]
iff / G [M'T], v : X —> [M'T] and v(x) — I
iff I G [(crM')T], v : —► [(uM')T] and i/(x) = /
iff (/,!/) G [[(ctM')x]]

3. For a G S0, (I, v) G [[M'(cra)]]
iff I = {[M'(cra)]} and v : X —> [M'T]
iff I = {[(crM')a]} and v : X —> [(<jM')T]
iff (7,1/) G [[(ffM')o]]

4. For 5 G S2, (/, f) G [[M'(as)]]
iff I G [M'(crs)] and v : X —> [M'T]
iff I G [(crM')s] and v : X —> [(aM')T]
iff (7, j/) G [[(<rM')s]]

Thus the condition is satisfied for S-sentences of rank 0. Now make the inductive

assumption that the condition holds for all S-sentences of rank less than or equal
to r, some r > 0. Then

1. For any S-sentence (j> of rank r and / G S1? (7, ^) G [[M'(cr(f :<J>))]]
iff (/,»>epf'((<7/):(<70)]]
iff 1 € [M'TJ, <{i|[MV/)](i) € /}, f)€
iff I € [(ffM')T], {{i|[(aM')/](i) e /}, f) e [[(<TM')ffl
iff (/,f)S[[(<tM')(/:,S)]]

2. For any S-sentences (j> and such that one is of rank r
and the other is of rank at most r, (I,u) G [[M'(<r(</> A VO)]]

Chapter 4. Institutions 136

iff (/,i/) G A (cn/>))]]
iff (/,i/) G [[A7'(<^)]] and (J>") ^ [[M'(a-V')]]
iff G [[{o-M')4>]\ and (I,v) G [[(aM')ip}\
iff (7,i/)g[[(*M')(*A^)]]

3. For any E-sentence <j> of rank r, (7, i/) G [[M'(cr(-><^))]]
iff (7,1/) G [[^'(-M))]]
iff 7 G [M'T], f : —► [M'T] and (/, i/) 0 [[M'(<r^)]]
iff / G [(crM')T], v : X -+ [(aM')T] and (7, j/) 0 [[(crAf')^]]
iff (7,r)G[[(aM')H)]]

Thus, by induction, the condition is proven.

4.4 Model Morphisms and Initiality

The main difficulty in formulating institutions such as Open (besides guaranteeing
the satisfaction condition), is in getting the right notion of initiality. The definition
of initiality independent of institution rests on the precise definition of model

morphism employed. So far we have neglected to consider model morphisms. To
deal with them properly, we should modify the definition of an institution to

identify, in categorical terms, certain minimal requirements they should meet. I
do not intend to consider them in such detail, but in any case most algebraic

morphisms have a similar structure. In essence, they are structure-preserving

maps, between models of the same signature (E say). For instance, if h : Mi —> M2
is a monoid morphism, h[[M_ ■ _](x,y)) = [M2_ ■ _\(h(x), h(y)) for every x, y in
the carrier of the monoid. In sketch, if we consider all the denotations supplied by
a model M as sets (so, for example, if / is partial function name, the denotation

[Mf] is a set of pairs (x,y) such that (x,y),(x,z) G [Mf] implies y = z), then
a model morphism h : Mi —» M2 is a map from [Mi] to [M2] such that for every

q E E, h[Miq] C [M2q]. This works even when q is a sort name. This implies
that the h-image of M1? formed by [hM\] = h[Mi] and [[hMi)q] = h[M\q] for

Chapter 4. Institutions 137

all q E £, is a E-submodel of M2. Algebraic morphisms are designed to preserve

the satisfaction of certain E-sentences or formulae. The sort of definition above

would mean that if Mi and M2 are augmented by variable valuations such that
for any x E A, [M2x] = then always M\ |= <f> and M2 (= <f> implies that
the E-submodel h(M\) of M2 also satisfies (f>, for any E-formula f of rank 0. This

preservation of satisfaction then extends to a larger class of all positive E-formulae.

By varying the precise definition of morphism (across different institutions), we

can vary the class of E-formulae whose satisfaction is preserved in the submodel.

Such a definition should make the collection of E-models which satisfy any

collection E of positive £-sentences into a category (see Pierce (1990) for an intro¬
duction to basic category theory). A model I is called initial in such a category if,
for each model M in the category, there exists a unique model morphism from I to
M. Thus any positive E-formula satisfied in initial I must be satisfied in everyM.

If there is an initial model, it must be unique, up to isomorphism. The existence

of an initial model can be guaranteed, in algebraic institutions, by limiting E to

a class of conditional sentences (Tarlecki 1984).

The choice of _M_ (rather than [MT]) as basic in Open was made precisely
so that the effect of the usual definition of model morphism would be to put into

-M-i (f°r M initial) only those objects which must be there, so that [MT] will then
contain everything that could be there (so initial models are maximally coherent).
One class of sentences for which initial models will be defined consists, for any

signature E, of all E-sentences of the form <j>\ A ... A 4>n —* s, where s E S2, n > 0,

and each <f>i either involves no sorts, or, if it does, is of the form f1 '■ f2 fj '■

for some s' E S2, /1, /2,... fj E £1, j > 0.2 Say that an object (coherent path set)
I E [MT] is reachable in M just in case it is uniquely described by some ground

2Consider the initial model My of a signature alone (i.e. with no axioms added).
Since no axiom of the above conditional form forces elements of the base [My] to become

equated, the base is the same in any initial model over such axioms. Since the truth of

any sentence is defined relative to [T], no such axiom can force any new pairs into the
incoherence relation, so incoherence too is invariant in initial models over such axioms.

Chapter 4. Institutions 138

sentence <f>i : i.e. for some <f>i containing no variables and some v : X —» [M],

[[M<^/]] = {(/, v)}. If every I G [MT] is reachable, we say that M is reachable.
Then a model is initial just when it is reachable and only interprets different terms

(terms and sentences are conflated here) by the same object when every model
does likewise.

We can define a semi-institution morphism open into our more familiar first

order institution PQ as follows. Set

1. sorts(open E) = {All} U E2,

2. (open E)_aii = E0,

3. (open E)A11^A11 = Ej

and open(E) otherwise empty. If o : E —* E' is a signature morphism in the
domain institution of open, then for any q G S,-,0 < i < 3, set (open(cr))(<7) =

open(<7<?). Then open(<r) is a signature morphism from open(E) to open(E').
If M' is a S'-model in the domain institution, then set

1. [(openM')All] = [APT],

2. [(openAP)a] = {[M'a]} for each a G S(,,

3. [(openAP)s] = {I G [APT]|(7, v) G [[APs]], some n}

4. [(openAP)/](7) = {i\[M'f](i) G /}.

If also o : E —> E' is a signature morphism in the domain institution, open(crM') =

(opencr)(openM'). This shows that open respects signature morphisms in the

required fashion, and so is an institution morphism. We could, for instance, in this

institution easily write a specification of the feature system for GPSG (Section 3.5)

Thus in any such model, the truth of any sentence not involving sorts is determined by
the signature alone.

Chapter 4. Institutions 139

which incorporates FCRs from the beginning, without requiring the explicit su-

persort Syn':

OFCR = extend 0 by

atoms N,V,0,1...

feats maj ,bar,...

sorts Maj ,Bar,Syn,Fcrl,Fcr2...

axioms N —> Maj, V —> Maj...

axioms 0 —► Bar, 1 —> Bar...

axiom -iagr:T —> Fcrl2

axiom maj : v —■» Fcrl2

axiom maj : Maj A bar: Bar A . ..

A FcrlA Fcr2 A ... —>Syn

Then open can be employed to "translate" OFCR into our familiar institution,
where we could proceed to bolt on ID and LP rules:

extend

change institution OFCR via open

by pred _ <1 _ C Syn x MSyn

(Alternatively, we could change the feature-value institution to have predicates of

arity greater than one, and specify <1 in that institution as well.) In Open, unlike

Patr, we do get classes of models we can work with, with objects consisting of
coherent sets of paths. This allows us also to write more abstract specifications
in Open. For instance we can express the above FCR more abstractly by the

specification

0F12 = sort Syn

atom v

Chapter 4. Institutions 140

feats maj,agr

axiom Syn A agr: T —► maj : V

and then note that OFCR is an implementation: OFCR C OF12.

4.5 Coda

In this chapter we have seen how different forms of logic may be construed as

different institutions. Different institutions carry different notions of signature

morphism, reachability and free extension. A specification which is awkward or

impossible in one institution may be completely natural in another. Notably, the
free extension construct can be viewed as an (abstract) programming language, so
the notion of institution can be used to capture the use of different programming

languages. The use of semi-institution morphisms allows us to use the mechanics of
a model in one institution to define a similar model in quite a different institution.

This can be used in fitting a module written in one programming language to the

parameter of a parameterised module written in another, or in formally showing
a program in a specialised logic to be an implementation of a specification in, say,
full first order logic.

Chapter 5

Unbounded Dependencies

There are many styles and notations of grammar. In general, they all do quite well
with a core of simple declarative sentences. The constructs of the grammar which
deal with such sentences will usually be relatively simple and often constitute an

easily identifiable sub-formalism. Typically, while some more complex phenomena

may be handled with little extra effort, others require more difficult extensions to

the basic grammar. In many cases, one feels that the spirit of these extensions
does not vary markedly from grammar to grammar, and that notational differences

spring just from the core mechanism being extended. Modularity (and parame-

terisation) may be helpful here, both at the level of description (a parameterised

specification which, given a class of models covering at least the core phenomena,
describes a class which also covers the additional phenomena) and at the level of
construction (another such specification, with the additional property that, given
a single model, it describes a single model, i.e. that it is a parameterised program).
As an example, let us consider the problem of so-called unbounded dependencies.

These include topicalisations and relative clauses.

141

Chapter 5. Unbounded Dependencies 142

5.1 Modularity, Parameterisation, Abstraction

Previously (in Section 3.2) I introduced partial equivalence relations as a way of

talking about the sorts of effects feature-value systems aim at, abstracting away

from the various techniques of implementation they employ. However there may

be cases in which even the level of specificity of equivalence relations is unneces¬

sary. For instance, below we will see a description of topicalisation which assumes

the concepts of sentential intension, and maximal projection, but does not partic¬

ularly rely on there being equivalence classes =Cat and =bar- Now we can write

grammars which do not employ such equivalences (for instance, we might allow
an intension to bear more than one possible category). Then, provided we can

nevertheless identify sentential intensions and maximal projections, the descrip¬
tion of topicalisation ought still to apply. The most general way to say that it
is necessary that sentential intensions and maximal projections be identifiable, is
to presuppose sort or predicate names which pick them out. Then in order to
demonstrate that a particular account refines this description, we should have to

show how it identifies sentential intensions and maximal projections, by defining
the inhabitants of the corresponding sorts or predicates in terms of the particular

syntax of the account in question, and also to show that the general topicalisation

description which is couched in terms of those sorts or predicates then applies to

the particular account.

For instance, suppose that our abstract specification of topicalisation employs
sort names S and XP to refer to sentential intensions and maximal projections, but
that the particular account (say in GPSG) which we wish to show implements this
abstraction instead employs features encoded as partial equivalences _ =cat _ and

_ =bar _? and identifies sentences by their being cat-equal to some known sentential

intension, S say, and maximal projections by their being bar-equal to some known
maximal projection, NP say. Then we would need to show how this account can

furnish us with definitions of the sorts S and XP, to wit: s : S <-> s =Cat S, and

r : XP « r =bar NP- Then we would need to show that, this interface fitting

Chapter 5. Unbounded Dependencies 143

complete, the particular account satisfies the requirements of the abstract one

(expressed in terms of S and XP).

So the general description of topicalisation is intended to codify what is rela¬

tively certain ground. The work of showing that actual accounts, which linguists
work with now, refine this description, is a demonstration that it is a good ab¬
straction of what it means to be an account of topicalisation. Of course working
accounts are not necessarily perfect anyway, and when we discover that an account

does not refine our description, we must try to determine whether the deficiency
is in the particular account, or in our abstraction. Such an abstraction, once es¬

tablished, should make it easier to describe the particular details of construction
used in adding topicalisation, to, say, GPSG, in terms minimally reliant on the
other details of GPSG. As an extreme example, it may even be possible to pro¬

duce a constructive account of topicalisation which assumes no more than does
the general description thereof (though we should not, in general, expect a task
division apposite for the purposes of specification to be equally good for implemen¬

tation). For such a parameterised construction, one should prove that, given any

appropriate model to stand in place of the parameter, that the constructed model
refines the general description. Then such an account of topicalisation could be
added to any "core" grammar which supplies the required notions, to produce a

grammar which is known to implement our abstraction of what topicalisation is.
As above, we may have to "fit" the syntax of the core grammar to that required

by the argument of the parameterised account, for instance (again) by defining
sorts using axioms like s : S <-> s =cat S and r : XP <-> r =bar NP- Of course it
is entirely possible that the resulting grammar will nevertheless suffer clear defi¬
ciencies. Hopefully, this should give us some clues as to deficiencies in our current

abstract topicalisation description.

Chapter 5. Unbounded Dependencies 144

5.2 Unbounded Dependencies

Adequate treatment of so-called unbounded dependency phenomena has been an

important criterion in evaluating linguistic theories for many years. Any recent

general introduction to syntax in linguistics (for instance Radford 1988) should

give an outline of such phenomena. Here we will consider the particular cases of

topicalisation, and wh-relative clauses.

English is sometimes called an SVO language, because the so-called canonical
sentence order is subject-verb-object (John loves Mary). Topicalisation is one way

of varying this order. For instance, in the sentence On the table, I placed a cup,

the topic is the phrase on the table. We might then refer to the remainder of
the sentence as the comment. One way of describing this sentence (though not

necessarily its production) would be to say that the topic seems to have moved out
of its canonical position (in I placed a cup on the table), and ended up instead at

the beginning of the sentence. This process is sometimes referred to as extraction.

Clearly there is some sort of relationship between possible topics and possible
extraction sites. For instance, they share category (in the sense of _ =Cat _): one

cannot have a PP topic corresponding to an NP extraction site (so On the table,
I placed a cup on is forbidden). We say that a dependency exists between them.

A wh-relative clause is a phrase like who smiles, which can be used to modify
a noun phrase such as the man (the man who smiles). The essential observation
is that a wh-relative is like a sentence in which some noun phrase is replaced by
a relative pronoun (such as who), so replacing the man in the man smiles by who

produces who smiles. Examples can become much more complicated: from the

topicalised sentence, the woman in the red shirt, Harry saw Mary walking with we

produce the woman in the red shirt who Harry saw Mary walking with. Again, we

might say that the NP has been (or appears as though it has been) replaced by a

relative pronoun to form the relative clause.

As discussed in Section 3.1, some grammars may not make any external dis¬
tinction between NPs, so that a context well-formed for one NP is well-formed

Chapter 5. Unbounded Dependencies 145

for any other. Such a grammar must ignore issues such as agreement, allowing,
for instance, John smile as a sentence. Thus also it can place no agreement re¬

strictions on an NP being modified by a relative clause, and the "vacated" NP

position of the relative clause, allowing, for instance the man who smile. Many

grammars, however, do take sufficient account of agreement phenomena to disal¬
low John smile, and so we would expect them to similarly account for the sort

of agreement restrictions in the use of relatives which would outlaw examples like
the man who smile. This shows a slightly more sophisticated dependency than
that outlined for on the table. An obvious candidate method for capturing this

dependency is suggested by the above procedural description of extraction. This
would be to say that it must at least be possible to put the topic into the extraction
site to form a sentence, and for topicalisation, this seems sufficient. For relatives,

however, it is not. For instance, we can say he whom I curse dies, but not I curse
he. For relatives, the NP being modified must be allowed to have a different gram¬
matical case to that imposed by the extraction site. The dependency, then, does
not extend to case.

Note also that it is not enough for extraction that a substring be merely a

possible NP. For instance, the jar on the table can act as a noun phrase, as in the

jar on the table is full of salt. So removing the jar on the table from the sentence

he placed the jar on the table would produce a sentence missing a noun phrase, to
wit he placed. However, prepending this by the appropriate relative pronoun does
not produce a candidate for a relative clause: one cannot say Here is the jar on

the table which he placed. The NP string must act like an NP in the sentence in

question. One must be able to parse it as an NP, within the sentence. In short, it
must be a constituent.

Moreover, topicalisation and relativisation (as I shall call the process of mod¬

ifying an NP with a relative clause) are examples of long distance, or unbounded,

dependency, because the extracted item need not be an immediate constituent

of the sentence, but may be a constituent of a constituent, or a constituent of a
constituent of a constituent, and so on to apparently arbitrary depth. We can

Chapter 5. Unbounded Dependencies 146

have not only the man who smiles, but also the woman in the red shirt who Harry
saw Mary walking with.

Many, if not most, grammars (for instance LFG, in Kaplan and Zaenen (1987))
explicitly restrict the class of NPs which can be extracted. For example, we might

say that the NP must not be part of an adjunct (optional modifier): so we may

have the man with the glove on his left hand sang and the glove fell but not the glove
which the man with on his left hand sang fell. A first specification is to say simply
that only constituents may be extracted, without saying that all constituents may

be. Later, as we refine our abstraction, we can say something more about which
kind of intension can be extracted.

There are also examples of unbounded dependencies in which a constituent

appears to have been "extracted" from more than one site. While so-called across-

the-board examples (the cat which John loved and Mary hated) might well be ob¬
tained by further enriching our specification by a treatment of co-ordination, this
cannot be said of examples involving parasitic gaps (the papers which I filed without

reading).

In general, in English, it appears one cannot extract from an item from which
extraction has already occurred. For instance, we can have Mary, I believe John

loves, but not (most people would say) John, Mary, I believe loves.1 Note that
in a topicalised sentence, it is the comment, not the topic, from which further
extraction is disallowed. Thus the preceding description of relatives, which involves
extraction from the topic, does not violate the restriction on double extraction.

1This does not hold in some languages, such as Swedish. There are also a few

examples in English (e.g. the violin on which this sonata is easy to play) involving
another UDC (so-called tough movement, or missing object construction) which appear

to violate the restriction. See for instance Maling and Zaenen (1982).

Chapter 5. Unbounded Dependencies 147

5.3 Equality and Level of Abstraction

We might describe a topicalised sentence by S i—> t ■ s/f, where S stands for sen¬

tences, t is a topic, and s/t stands for the corresponding comments, which are

like sentences with "f-gaps". (Evidence that comments ought to be considered
constituents seems to be limited largely to co-ordination, but as most accounts

assume such constituents, I shall follow suit). However this does not allow for the

possibility that intensions may codify whole trees, as they are usually described
as doing in LFG or GB, in which case we require several "gappy" intensions ac¬

cording to where the topic came from. Nor does it allow the possibility that there

may be different intensions to dominate topicalised or untopicalised sentences. To
allow this, we would need to be able to describe the parallel distribution of the

two types of sentence. We might use some syntax like s = s' to indicate that two
intensions can occur in like places. So we will need to insist, for instance, that

s = s'

—» (((3t.t i—> x ■ s ■ y) V (3f. t' t-> x ■ s' ■ y))

((31 . t i—> x ■ s ■ y) A (3f'. t' i—► x • s' • y) A t = t'))

This might be paraphrased, if s distributes like s', then s or s' can appear

between sisters x and y in a local tree, if and only if both s and s' can appear

between x and y in a local tree, and the trees so created are themselves distri-

butionally equivalent. This is trying to capture a notion of substitution. While
this is certainly a necessary condition on substitution, it is probably not sufficient.
If we want to identify the result of substituting s' for s in some context, we will
need syntax to identify just which t' corresponds to substituting s' for which oc¬

currence of s. This quickly becomes unwieldy (though the axiom above is bad

enough!). It seems to me that this idea of substitutability ought to be captured

by the notion of equality employed in the intensional domain. Even in calculi in
which sentential intensions are marked for topicalisation, the two kinds are rarely

given different distributions. In a system which is not interested in matters such

Chapter 5. Unbounded Dependencies 148

as number agreement, we can safely form a quotient which equates objects which

only differ in this respect. In a system which concerns itself with semantic con¬

siderations, a la Montague (1973), we must maintain semantic distinctions when

considering questions of substitution. I will proceed on the basis that the same

sentential intension which dominates a sentence in canonical order, also dominates

the topicalised version. (This need not make it any more difficult to ban double

extraction, provided that the comment intension is marked in some way). Then a

topicalised sentence must have the same distribution as the untopicalised.

This means dispensing with models in which intensions correspond one-to-one

to full parse trees. I will consider how we might make such a move for LFG. I think
GB should be susceptible to the same strategy. The strategy also owes something
to the style of subcategorisation analysis employed in GPSG or HPSG. In the
HPSG of Pollard and Sag (1987), it is not clear what part of a sign is relevant to
distribution. In more recent work in HPSG (Pollard and Sag 1992), it seems clear
that the values of daughters should not be consulted in determining whether their
mother can in turn fulfill the obligations of a daughter in a given construction.
In particular, the encoding of subcategorisation explicitly excludes reference to

the daughter attributes. In LFG, distribution is largely determined by category

label, but then we have the complication that certain trees are excluded by a final

filtering process. We would like to be able to characterise at any node exactly
what information from further down the tree might conceivably cause a tree to

be rejected by this filter. One class of models which allows this has intensions

consisting of an atomic category label, plus a version of f-structure such that
features are marked as being satisfied either internally (in which case they can

only appear at the root of parse trees such that the feature's value is a subtree),
or externally (in which case they can only appear at the root of trees such that the
feature's value is not a subtree). In Figure 5-1 we see a parse tree for a topicalised

sentence, in which grammatical functions are marked with a superscript x if their
values are external. I have simplified somewhat by writing just "Mary" or "John"
for the NP intensions. I have also written in the annotated rules justifying each

step of the parse, but if one ignores the right hand side of these, each node is

Chapter 5. Unbounded Dependencies

S —► NP S

| comp subj =1

NP S—* NP VP

Mary | subJ =11=1

NP VP—>V S
John t=l T comp —[

VP

T=l
says V S

subj*: John
comp27: subj27: Mary

subj: John
comp: subj: Mary

subj: John
comp: subj27: Mary

subj27: John
comp: subj27: Mary

subj27: Mary-]
VP—► V

T=i
subj27: Mary

sang V
subj27: Mary•]

Figure 5—1: Topicalised sentence in LFG: Mary, John says sang

Chapter 5. Unbounded Dependencies 150

decorated by a representation of the corresponding intension: an atomic category

label and an x-marked f-structure. So for example corresponding to the word says

we have the intension

V
subjV John

comp37: subj37: Mary

Here subj is external and so its value (the NP John) does not appear below it in
the parse tree. However for the S intension at the right hand daughter of the root,

subj is not marked external, and so its value (again the NP John) must appear
below it in the tree: in this case, at its left hand daughter. With respect to such

models, we can take it that part of the meaning of the rule

VP V

t=l

NP

T obj =|

is that the obj value will be external at the V node, and internal at the VP node.

So, if an S intension were to have as a realisation John hates (where we assume

hates is strictly transitive) then that S intension must have its obj value marked

external, and so does not stand for a matrix sentence. In standard presentations

of LFG, an S dominating John hates will, because of the procedural definition
of the correspondence between c-structure and f-structure, have obj undefined,

contrary to the lexical requirements of hates. When LFG is augmented with
functional uncertainty (as in Kaplan and Zaenen (1987)), this "procedure" is non-
deterministic. By introducing this marking for externality, we can localise the

correspondence between c-structure and f-structure, and make it declarative: when
a rule says fobj =1, then obj is internal in the mother, and external in the
head daughter. Writing a specification for this somewhat unconventional (in LFG

orthodoxy) class of models ought certainly to be possible, but is also likely to be

tedious, complicated, and not, at this point, especially enlightening. All I have
tried to do here is to convince the reader that by localising the correspondence
between c-structure and f-structure, we can produce an adequate class of models

Chapter 5. Unbounded Dependencies 151

in which intensions need not encode whole trees. Then we can again allow equality
of intensions to encode distributional equivalence, and simply say that the same

intension can dominate a topicalised sentence and its canonical equivalent. Thus
the intension at the root of Mary, John says sang in Figure 5-1 can also stand at

the root of its canonical equivalent, John says Mary sang.

5.4 Topicalisation

Following on the above arguments, I proceed on the basis that the level of ab¬
straction inherent in the equality predicate should give us a sufficient account of
distribution equivalence (replaceability). We need some vocabulary to refer to
sentential intensions, and maximal projections.

(5.1) (Maximal Projections)
XP = sorts XP,Syn

axiom XP C Syn

(5.2) (Sentential intensions)
SENT — sorts S,Syn

axiom S C Syn

We might try to characterise topicalised strings by a predicate top such that

top(rn) —> 3s:S,t: XP, xy: Syn* . s i-»* t • x ■ y A t • x • y h->* w A s i—>* x ■ t ■ y

So if the string w is a topicalised sentence, there must be a sentential intension
s and an intensional string t • x • y, where t is a maximal projection, such that s

licenses w via t-x-y, and such that also s e-►* x - t-y (the corresponding canonical

order). This fails to group x and y together as a comment constituent. A predicate
com which identifies such constituents can replace top.

Vs: S, t: XP, u: Syn. com(u, s, t) —>

3xy: Syn* . s i—►* x • t • y /\ s t • u f\ u h-»* x • y

Chapter 5. Unbounded Dependencies 152

If u is a comment for the sentence s and topic t, then s t • u, and also there
is a parse x • y of u such that s x • t • y. This does not allow more than
one extraction site. It would also be preferable if our definition were to admit

refinement in different directions for different UDCs. In a comment structure, t is

simply left out (replaced by e), but in a wh-relative, it is replaced by a relative

pronoun, such as who or which. The important features of a UDC are

(5.3) the top: the highest local tree at which the dependency occurs. For

topicalisations, this is where the comment is introduced; for wh-relatives,
the relative clause.

(5.4) the middle: both comments and relative clauses parallel the structure of
a sentence.

(5.5) the bottom: within this structure, a particular string (empty, or a relative

pronoun) is substituted for one or more instances of a particular intension
(the topic, or the NP undergoing modification by the relative).

Although the description of UDCs in these terms is clearly influenced by GPSG,
this does not mean that such terms of description cannot be equally applied to

other kinds of grammar, as we shall see. When we come to produce a particular

(parameterised) account, however, it will be natural to choose one which is also

heavily influenced by GPSG.

The use of rules which introduce UDC intensions is sufficient to characterise

the top. From now on I will refer to these special UDC intensions (which stand
for comments or relative clauses) as simply UDCs. For the middle, we need to
be able to express the structure (sentence) to which a UDC corresponds. At the

bottom, we need to know the dependent intension (extraction site), and the string
to substitute in for it.

(5.6) UDS = sorts Udc,Syn

axiom Udc C Syn

(5.7) UDC = enrich UDS+SYN*

Chapter 5. Unbounded Dependencies 153

by opn uhd : Udc —» Syn

opn udep : Udc —> Syn

opn uft : Udc —> Syn*

references: SYN* (2.3)

To every UDC u there corresponds a sentential intension uhd(u) which stands at
the top of the canonical structure which the UDC parallels, as well as a dependent
intension (topic or NP being modified) udep(u). In the UDC parse, one or more

occurrences of udep(u) will be replaced by the foot value uft(u) (e or a relative
pronoun). I aim to say that a realisation of a UDC of s with respect to t (i.e.
u : Udc such that uhd(u) = s and udep(u) = t) consists of a realisation of s with
one or more t altered in a regular fashion. To say that a sentence can be topicalised
with respect to a constituent t is to say that a sentential intension s may dominate
t followed by a comment of s with respect to t. We need to be able to tell when

two strings differ by one or more substitutions. This will be the job of the feet

predicate: feettiW(x,x') should mean that x' is like x except that one or more t

have been replaced by w.

(5.8) (Substitute w for one or more t)
FEET extend SYN*

by pred feet__(_,_) C Syn x Syn* x Syn* x Syn*
axiom feeti)t(,(a; •t ■ y,x • w ■ y)
axiom feettiW(x, x') A feett<w(y, y') —> feettiW(x ■ y, x'

(5.9) PSIG enrich SYN*

by pred _ h->* _ C Syn* x Syn*

(5.10) (Realisation)
UDR enrich UDC + FEET -f PSIG

by axiom Vu: Udc, y: Lex* . u e-** 2/

—> 3x . uhd(u) e->* X A f ee'tudep(u)>uft(u)(a:, y)

Chapter 5. Unbounded Dependencies 154

(5.11) UDX1 = enrich UDC
by axiom-■uhd(tt): Udc

(5.12) (Slash constructions are UDCs)
SLASH = enrich UDC

by sort Slash

axiom Slash C Udc

axiom Vu: Slash. uft(u) = e

(5.13) (Topicalisation)
TOPIC = enrich SENT+XP+UDC+SLASH+GMR

by axiom Vu: Slash . uhd(u): S A udep(it) :XP
—» uhd(u) i—► udep(it) • u

references: SYN* (2.3), UDC (5.7), SENT (5.2), XP (5.1), GMR (2.4)

feett<w(x, x') is satisfied when x' is like x except that one or more t have been

replaced by w. By the first axiom this holds where x and x' differ by one sub¬
stitution. The second axiom extends this to strings differing by more than one

substitution. Thus the axiom of UDR ensures that every lexical realisation of a

UDC u must be like some x such that uhd(u) i—►* x, except that one or more

instances of the dependency udep(u) are replaced by uft(u) (e for topicalisations,
a relative pronoun in wh-relatives). UDX1 forbids double extraction, by insisting
that the intension at the head of any canonical parse paralleling a parse of u in
Udc is not itself in Udc. If a grammatical system has different types of intensions
for different types of UDC, we must be able to distinguish those which take part

in, say, topicalisation, from those which take part in relativisation: this is the

purpose of the sort Slash. The axiom of TOPIC is responsible for introducing
a topic-comment structure: if u is a Slash intension, then uhd(u) is a senten¬
tial intension which can immediately dominate daughters udep(u) (topic) and u

(comment). An account of topicalisation ought to refine UDR + UDX1 + TOPIC.

This is not to say that every type of maximal projection need be subject to

extraction, or from every position. These are matters which, for the moment,

Chapter 5. Unbounded Dependencies 155

are allowed to vary from grammar to grammar. As we become more sure of our

ground, we may refine our abstract notion of topicalisation to restrict this freedom.
We could fairly easily, for instance, forbid extraction of finite VPs, if this seems

to be the right thing to do.

While I assume that the same sentential intension which stands at the head of a

canonical parse also dominates a parse of a topicalised version, I do not assume that
there is only one sentential intension: there may be other distinctions they need
to recognise. For instance, there is a class of sentences whose syntactic subjects

appear to act just as place-holders, as in It appears they act as place-holders. One

may wish to have distinct intension(s) for these, because they behave differently
in some respects to other sentences. For instance, one cannot form the relative

clause the thing which appears they act as place-holders. (One may wish to say

that the subject of It appears they act as place holders is really they, but we would
still need some intensional distinction to account for the fact that, under such an

analysis, the subject appears in a non-standard position). But such sentences can

undergo topicalisation: Place-holders, it appears they have been known to act as

— but as relatives, never.

Consider how our abstract specification relates to existing accounts. In a sys¬

tem (such as GPSG) where intensions can be conceived of as quite local structures

(they do not bear the traces of particular daughters), we can implement Slash

using a GPSG-style slash function, u — s/t. It should be fairly clear that, with

appropriate definitions of feet and so on, the GPSG treatment meets the condi¬

tions of FEET+UDCO+SLASH+TOPIC— or at least it is clear that it was intended

to meet such conditions. In order to show this formally we would first need to

produce a complete specification for a GPSG grammar which treats topicalisation.
A more practical way to proceed will be to note that the conditions are certainly

part of the intention behind GPSG, or whatever grammar is being considered,
and then, when the abstract specification has been seen to be acceptable, go on

to produce a formal, parameterised implementation of (say) the basic GPSG tech¬

nique, which will be applicable in extending a broad range of core grammars to

Chapter 5. Unbounded Dependencies 156

cover topicalisation, as well as core GPSG. I intend to give a simple parameterised

implementation in this style shortly.

But first we should consider whether the abstraction covers other accounts

as well. Broadly speaking, constituency treatments seem to fall into two classes:

those, like GPSG or categorial-style treatments, which rely on a relatively limited

type of inheritance to transmit non-local information up the tree; and those, like

LFG, GB or HPSG, in which intensions themselves correspond to whole trees (we
can think of them as equivalence classes thereof), and something like a pointer
into the tree is passed up in some fashion. Put like this, they don't sound so very

different. In the latter kind of treatment, topics are an example of trees in which
a particular syntactic obligation is satisfied externally.

In an LFG system of the sort sketched in Section 5.3, for instance, the require¬
ment that grammatical functions take values within the tree is really just another

property required of matrix sentences, like having a finite verb form, or not having
an overt complementiser, or (in HPSG) having an empty subcat list. In the models
of Section 5.3, an intension u can be a comment (i.e. an object of Udc) if

1. its category label is S,

2. udep(it) is the value in the f-structure at some path comp:comp:- • • comp:/,
where the grammatical function / ^ comp (I simplify somewhat),

3. udep(u) represents the only externally met syntactic obligation of u, and

4. uhd(u) is just like u but has no syntactic obligations marked external.

Then also uhd(u) udep(u) • u in these models. For example, where u is the
intension at the right daughter of the root in Figure 5-1, u has category label S
and the value at comp : subj is the only external obligation at u, udep(u) is the
NP "Mary", and uhd(u) is the root intension.

Chapter 5. Unbounded Dependencies 157

5.5 A Simple Implementation: Topicalisation

The basic idea of slash-categories is very simple. From a "core" category s and
an XP t, we can form a new category s/t. If s can dominate a string in, s/t can
dominate a string w' similar to w in much the way described by feett,e(w,w').
For the purposes of this example, I will assume that if s may dominate some

x ■ r • y, then s/t may dominate x • (r/t) • y, and also that t/t may dominate e. So
I will allow any XP to be extracted once only, from anywhere within any parse.

Of course this implementation undergenerates in not allowing for, say, across-

the-board phenomena, and overgenerates in allowing extraction from too many

sites, but the mere fact of having an implementation may give us some further

insights into the correct abstract notion of topicalisation, and give us some clues
on how to go about getting a better implementation. This will be a parameterised

implementation, which adds a slash-category account to any core grammar which

gives us sentences, maximal projections, and a i—> predicate.

(5.14) TCOR = derive from GMR + SENT + XP
by [Cor i—> Syn, Cor* i—> Syn*]

TSYN extend sort Cor

by sort Syn

axiom Cor C Syn

opn _/_ : Cor x Cor —* Syn

(5.15) TTOP = extend TCOR+TSYN+SYN*
by pred _ i—>• _ C Syn x Syn*

axiom Ys : S,t : XP.s »-»• t • s/t
axiom Van/: Cor* .si-*x-r-y—*s/ti-*x-r/t-y
axiom t/t i—> e

(5.16) TIMP AT":TCOR . X + TTOP

Chapter 5. Unbounded Dependencies 158

references: GMR (2.4), SENT (5.2), XP (5.1), SYN* (2.3)

TCOR describes the type of core grammar the construction requires: we need
to know about sentences, maximal projections, and immediate constituency. We
rename its intensions Cor. In TSYN, Cor becomes a subsort of a new, extended

Syn, which also has new objects of the form r/t, where r and t are old objects

(i.e., in Cor). At this stage, i—> only covers the old intensions: it is the job of
TTOP to extend it to the new ones. The first axiom accounts for topicalisation

by the introduction of a slash term, the second describes how its slash value is

to be passed to one of its daughters, and the third discharges a slash by allowing

any t/t to dominate the empty string. Since every new instance of t—> involves a

/-term (which cannot evaluate to a member of Cor), this extension is hierarchically
consistent. In the second axiom of TTOP, it is important that x and y be limited
to Cor*, otherwise S i—> pp • s/PP would imply that also s/NP i—► PP/NP • s/PP,
which allows a topic to be extracted from a topic, as in Cats, of, John has a fear.

TIMP shows how the preceding specifications may be used to extend any model
of TCOR (i.e. any model which knows about sentences, maximal projections and
immediate constituency) to form a model which also has a (rather simplistic)
account of topicalisation.

Obviously TIMP is not in itself an implementation of UDXl+UDR+TOPIC

(5.11, 5.10, 5.13), but we can establish a one-to-one correspondence between mod¬
els TIMP(A') and a certain class of models of UDX1 + UDR + TOPIC. To do this,
we show how the extra syntax required by UDX1 -f UDR + TOPIC can be de¬
fined in models TIMP(A'). Any syntax in those models which is not required by
UDXl-fUDR+TOPIC could then be derived away, to leave implementations proper.
We know how to get i—►* from i—►. Slash-objects are the terms r/t. Since this is

only an implementation of topicalisation, we may as well suppose Slash-objects
are the only Udc-objects. Put uhd(r/t) = r, udep(r/t) = t and \ift(r/t) — e. The
axioms of UDX1 (5.11), SLASH (5.12) and TOPIC (5.13) are then satisfied.

Of course sometimes this process of demonstrating implementation proves un¬

successful, possibly because of deficiencies in the attempted implementation, or

Chapter 5. Unbounded Dependencies 159

possibly because of a fault in the abstract specification. There is something to be
learned from either. In an earlier attempt, I had not included udep(u) :XP in the
axiom of TOPIC (5.13). This meant that the axiom was insisting that if s:S, then
s i—► t • s/t for any t: but in TIMP, this will only hold when GXP. The abstraction
was asking too much. There is another mismatch above between implementation
and specification, which I previously glossed over. That is that the implementa¬
tion says nothing about Lex*, but the axiom of UDR does. Instead of just models

TIMP(A') for X: TCOR, we must look at models TIMP(<T) where X ranges over

the models specified by

derive from GMR+LEX*+LXN+SENT-fXP by

[Cor i—► Syn,Cor* i—► Syn*]
references: TCOR (5.14), GMR (2.4), LEX* (2.1),

LXN (2.2), SENT (5.2), XP (5.1)

Then the axiom of UDR does follow from the previous definitions.

5.6 Refining the Abstraction

We should now see if there are other features of the implementation which might

usefully be included in the abstract specification. One candidate might be the way

that every parse of s/t in TIMP (5.16) parallels, in lock-step, some parse of s (the
"middle" of 5.4). This is due to the axiom s i—» x-r-y —» s/t i—> x-r/t-y. This does
not appear, on the face of it, to be a property of systems (like LFG) with intensions

presented as trees, where properties (such as coherence and completeness) of full
trees are applied at the final stage. But if we take the view that a comment

(say) is distinguished from other nodes labelled S by its having an externally
filled argument, then we can distinguish verb phrases in the same way, according
to whether they have an externally filled argument (other than subj). Then
this property of having an externally filled argument can again be viewed as a

local property passed between mother and daughter. So the parse of the right

Chapter 5. Unbounded Dependencies 160

S —► NP VP
T subj =IT=1

NP VP—>V
John |=|

says V S

subjx:John
comp* : subj x :Mary

| comp =J.

> NP VP

t subj =|T=I

NP VP—* V

Mary

subj:John
comp: subj :Mary

subjx:John
comp: subj :Mary

subj :Mary

subj x:Mary

sang V
subj1:Mary

Figure 5—2: Canonical parse corresponding to comment parse

daughter in Figure 5-1 parallels in lock-step the parse shown in Figure 5-2, with
at every step a Figure 5-1 node either being equal to the corresponding Figure 5-2

node, or absent entirely, or a UDC of the Figure 5-2 node. (In which case, its
mother must also be a UDC of the Figure 5-2 mother, and the manner of the

correspondence of the mothers, together with the rule which relates mothers and

daughters, determines the manner of correspondence of the daughters. By manner
of correspondence I mean the particular additional external argument present in
a Figure 5-1 node as compared to the corresponding Figure 5-2 node.) Note I

only present this as evidence that we might reasonably consider incorporating this

lock-step property into our abstract specification. I certainly do not mean to imply
that the LFG-style of account could be considered an instance of a slash-function
account in the style of TIMP (5.16). That is clearly not true, as the LFG account
is not functional in the same sense. For any given s and t there can be more

than one "s with a t-gap", depending on which path into s the "extraction site"

Chapter 5. Unbounded Dependencies 161

is associated with. In the example of Section 5.3 it was comp: subj, but it might
have been obj, or comp : comp : obj2, or any one of a host of others. Nor should
it be thought that the lack of this lock-step property in the LFG account would

necessarily have stopped us from including the property in a refined abstraction,

if, for instance, its absence had seemed a clear deficiency of the LFG account. Let

us now consider how this lock-step correspondence might be described as it occurs
in TIMP (5.16).

TLOCK = extend SigfTSYN] + SYN*

by pred slock_(_,_) C Syn x Syn* X Syn*
axiom slockt(a: ■ r • y,x • (r/t) • y)

TLIMC = enrich TLOCK + GMR

by axiom u = s/t A u x' —*

(s = t A x' = e) V 3x.5 1—► x A slock*(:c, x')

references: GMR (2.4), SYN* (2.3)

The construction of slockt(:r, x') is quite similar to that of FEET. It says x' differs
from x in that an intension r is replaced by r/t. Thus slock describes the ways

in which daughters of a UDC must correspond to daughters in a non-UDC parse,

except for the case t/t e. For any model X of TCOR (5.14), the value at X of

XX :TCOR. X + TTOP + TLOCK

= XX :TCOR.TIMP(A') + TLOCK
references: TCOR (5.14), TTOP (5.15), TIMP (5.16)

is a model of TLIMC. Abstracting from this description to fit in with other strate¬

gies for constructing UDC intensions ought not to be too difficult. There are

several additional generalisations we might also add at this stage. Perhaps the
most obvious is that we ought to allow more than one daughter intension to bear
a ^-dependency, to allow for phenomena like across-the-board or parasitic gaps. A

second is to allow t on the non-UDC side to correspond directly to e, instead of

Chapter 5. Unbounded Dependencies 162

S

John sings e

Figure 5—3: Spurious Topicalisation

insisting on always having it correspond to t/t (and then adding t/t dominating
e). In fact a grammar which doesn't have intensions dominating e has several ad¬

vantages. One is that it is susceptible to left-corner parsing. Another advantage
is that it prevents the sort of spurious topicalisation seen in Figure 5-3.

(5.17) (UD daughter correspondence)
UDD = extend UDC by

pred udd_i_(_, _) C Syn X Syn* X Syn* x Syn*
axiom Vu:Udc. uddudep(u),uft(«)

(a: • udep(u) • y, x • uf t(u) • y)
axiom Vu:Udc. uddUdep(u),uft(u)

{x ■ uhd(u) • y,x ■ u ■ y)
axiom uddt^x,®') A uddt,w(y,y')

-> uddtiU;(a: • y,x' • y')

UDIMC = enrich UDD by
axiom Vu: Udc

3x . uhd(w) •—» x A uddudep(«),uft(u) (®?x)

UDL = enrich UDX1 + UDIMC by

axiom Vu: Udc . u: Lex

-> uhd(u) = udep(«) A uft(«) = u

references: UDX1 (5.11)

Chapter 5. Unbounded Dependencies 163

The first axiom of UDD gives us uddUdep(u),uft(u)(cc,x') for any u when x and x'
differ by one substitution of uft(u) for udep(u). The second does the same for
one substitution of u in place of uhd(u). The third extends this to cover more

than one such difference. Then UDIMC insists that immediate constituents of

a UDC u must differ from immediate constituents of uhd(u) in just this way.

UDIMC+PARSE (2.5) gives us the axiom of UDR (5.10), provided that any UDC u

corresponding to a non-UDC uhd(u) is not a word (element of Lex), but this may

not always be true.

As an example of why we might have a UDC in Lex, in a simple account of
relatives involving, say, which, we might use, in analogy to _/_ in TIMP (5.16), a

constructor wh : Cor x Cor —+ Syn. So we might introduce the relative clause with
a rule like S i—► wh(s, NP). The middle part of the construction would be taken care

of by an axiom like s i—► x • r ■ y —► wh(.s, t) i—> x • wh(r, t) ■ y. When it comes to the
bottom of the construction, we must somehow get from wh(NP,NP) to the lexical
item which. While we could certainly put wh(NP,NP) i—> which, we could just as

reasonably set wh(NP,NP) = which. In that case we will get the axiom of UDR

provided u = uft(u) and uhd(u) = udep(u). Hence every model of PARSE+UDL
is a model of UDR.

This refinement of the abstraction in turn suggests a way we might go about

improving the implementation, which is to use the correspondence udd to define
the behaviour of i—► on slash-categories.

USYN = derive from

reachable enrich UDC by

opn _/_ : Cor x Cor^Udc

axiom Cor C Syn

axiom uhd(s/£) = s

axiom udep(s/t) = t
on {Udc,Syn}

by [Slash i—► Udc]

(5.18) UTOP = extend TCOR+USYN+UDD by

Chapter 5. Unbounded Dependencies 164

pred _ i—► _ C Syn x Syn*

axiom Vs:S,t:XP .s t • s/t
axiom Vx:Cor* .s i—»■ x A s' = s/t A uddtie(x,x')

—> s' i—> x'

references: UDC (5.7), TCOR (5.14), UDD (5.17)

If _/_ were total in USYN, then the axioms given there, with the imposition of

reachability, would make _/_ just the same as if it had been defined using extend
instead of enrich. Thus the degree of definedness of _/_, and values of uft, are the

only slack in USYN, and if we have another specification, say UXOK, which pins this

down, then UXOK+UTOP+SLASH (5.12) can form the basis of implementations
in much the same way as TTOP (5.15) did previously. For instance UANYX,

below, allows any extraction, by making _/_ total, and so UIMP is a parameterised

implementation which allows any XP to be extracted from anywhere within any

sentence, forming a topic, and leaving a comment.

UANYX = sorts Cor,Slash

opn _/_ : Cor x Cor —► Slash

(5.19) UIMP = A*: TCOR. X + SLASH + UANYX + UTOP

5.7 Relativisation

Here are some different forms of relative clause:

1. the woman Mary loves (is here)

2. the picture that hung there (has gone)

3. the shirt the colour of which I hate (is missing)

We might describe the first two by axioms like

Chapter 5. Unbounded Dependencies 165

1. Vu: Slash, s:S,n:NP.uhd(u): VP a s n ■ uhd(u) a udep(u):NP
—> udep(u) i—►* udep(u) • n ■ u

2. Vu: Slash . uhd(u): S' a udep(it): NP —>• udep(u) i—> udep(u) • u

The first axiom is intended to describe an NP like the woman Mary loves by saying
that an intension (np' say) which licenses the woman may also license the woman

Mary loves, via an intension string np' • np • u, where u is a slash intension with

udep(u) = np' and uhd(u) a VP such that np • uhd(u) can form a sentence (for
instance u = VP/np). The idea in the second axiom is that an intension (np say)
which licenses the picture will also also license the picture that hung there, if there
is a slash intension u where udep(u) = np and uhd(u) licenses the complementised
sentence that the picture hung there (perhaps s'/np). This is achieved by setting

udep(u) i—> udep(u) • u (e.g. np np • (s'/np)).

I don't wish to claim that these constitute very general (or even good) descrip¬
tions, but only to argue that accounting for these types of relative clause does not
seem to require any really new machinery. The final type however, the wh-relative,
is a little different. A wh-relative is formed using a relative pronoun, like who or

which, which stands in a place where, in a matrix clause, we might expect to see

an ordinary noun phrase. As noted before, there is a grammatical dependency
between the position in the corresponding canonical construction, occupied in the
relative construction by the relative pronoun, and the noun phrase that the clause
modifies. For instance we can have the woman who loves Mary but not the women

who loves Mary. Moreover, once again, it is possible to intercede a potentially
unlimited amount of material between the NP being modified and the relative

pronoun: the book which irks me, the book the cover of which irks me, the book the
colour of the cover of which irks me, and so on. Thus wh-substitution represents

a new kind of UDC.

(5.20) RELPRO = enrich LXN

by opn wh > Lex

Chapter 5. Unbounded Dependencies 166

(5.21) WH = enrich RELPRO+UDC
by sort Wh

axiom Wh C Udc

axiom Vu:Wh.uft(u) = wh

(5.22) NP = sorts NP,Syn
axiom NP C Syn

WHRELO = enrich WH + AGR + SENT + NP + UDC + LEX* + PSIG

by axiom Vs:S,rc:NP,u:Wh. s i-* uhd(u) • v

A udep(u) :NP A udep(w) =agr n
—► n i—►* n • u ■ v

references: LXN (2.2), UDC (5.7), AGR (3.12), SENT (5.2),
LEX* (2.1), PSIG (5.9)

I make the simplifying assumption that there is only one wh-relative pronoun,

wh:Lex. A new sort of UDC intensions, Wh, is introduced to encode wh-substitution

(so the foot value for such intensions is wh). A wh-relative clause is like a sentence

(possibly topicalised) in the first constituent of which one or more occurrences of
an NP have been replaced by wh. The relative clause can modify an NP, possibly
of different case, but sharing agreement features proper (number, person, and
perhaps others). WHRELO is a first attempt at abstract characterisation of what
a treatment of wh-substitution must offer. If n is an NP intension (perhaps for
the shirt), and u is a wh-intension with udep(u) an NP in (non-case) agreement
with n (perhaps again for the shirt), and v is an intension (say of I hate) such that

uhd(u) • v (where say uhd(u) licenses the colour of the shirt) can form a sentence

(here the topicalised sentence The colour of the shirt, I hate), then WHRELO insists
that from n we must be able to get n ■ u • v (and hence n licenses the relativised
noun phrase the shirt the colour of which I hate).

Some of the sorts of constituent (parse) structures commonly given to relative
clauses (and allowed by WHRELO) are shown in Figure 5-4. WHRELO ensures that

Chapter 5. Unbounded Dependencies 167

he

for whom the bell tolls

of whom I spoke

who sang

man in red who sang

N'

man in red

Figure 5—4: Constituency In A Relative Construction

we get the right realisations in Lex*, but does not insist on grouping together man
and of whom I spoke in the man of whom I spoke. We can say something about
this by having a sort N'. In an X-bar grammar, we would certainly expect this
to consist literally of N' intensions, but in a categorial treatment say, we would

probably interpret it as the same as N. This is because N in a categorial treatment
does the same job as N' in (say) LFG. In LFG if r is in Lex, there is no x such that
r x; in categorial grammar, this need not be the case. Thus LFG cannot use

N to represent both a lexical item and a phrase, but a categorial grammar can.
WHRELO also fails to insist on grouping of whom and I spoke together into the
relative clause of whom I spoke. Thus WHRELO allows the assignment of structures
like Figure 5-5, which most linguists would consider inadequate. The specification

WHREL, following, aims to address some of these deficiencies of WHRELO.

(5.23) NBAR = sorts N',Syn
axiom N' C Syn

WHREL = enrich WH+AGR+SENT+NP+NBAR+UDC+GMR by
axiom Vn: N', u: Wh . uhd(u): S

A udep(u): NP A udep(u) =agr n

Chapter 5. Unbounded Dependencies 168

Figure 5—5: Inadequate structure allowed by WHRELO

—» n h-> n ■ u V Vie.(n > w —*■ n i—► w • u)
axiom Vu:Wh. uhd(it): S A udep(u) :NP Amhi

—► 3d : Wh, y: Syn* . x = v ■ y

A uhd(tt) i—► uhd(u) • y

references: WH (5.21), AGR (3.12), SENT (5.2), NP (5.22),
UDC (5.7), GMR (2.4)

The disjunction in the first axiom allows for the two possible structures given to

man in red who sang in Figure 5-4. So if u is a wh-intension whose dependent
value udep(u) agrees with some intension n :N' (say of man), and the top of the
canonical parse (uhd(u)) is in S, then the first disjunct allows grammars which

assign the left hand of the structures for man in red who sang in Figure 5-4,

and the second disjunct allows grammars which assign the right hand of the two

structures. Since the first axiom does have a constituent (u) for the relative clause,
the second axiom is needed to ensure that wh-substitution only occurs in the first

part of the sentence. This also loses us the possibility of wh-substitution in non-

initial constituents of embedded sentences, but since most speakers seem to find

examples of this (such as That is the man, my belief that John killed whom, Mary

destroyed) unacceptable (or at least highly questionable), this is perhaps no real
loss.

Chapter 5. Unbounded Dependencies

5.8 Implementation

169

Perhaps we can use the same strategy to add wh-relatives as was used in UTOP

(5.18) to add topicalisation (as suggested on page 163). We could use a constructor

wh(_,_) instead of with a suitable introduction rule. We can imagine apply¬

ing this construction to models produced by UTOP, to get examples like man who

Mary likes in which there is wh-substitution into a topic. A straightforward imple¬
mentation of this strategy will fail to limit wh-substitution to the first constituent
of a sentence (so we might get This is the man Mary loves who), or to prevent
wh-substitution into slash-categories (the woman John, who loves).

This might be thought of as evidence that we ought to construct wh- and

slash-categories simultaneously. We know that we will need slash categories when

constructing wh-categories, in order to get wh-substitution into a topic (man who

Mary likes). But if the whole construction is simultaneous, it will become difficult
to prevent also allowing slash-substitution into a topic, which would allow, say

Cats, of, John has a fear. In GKPS, this is ruled out by making SLASH a head

feature, which in turn is part of the reason for the rather contorted form of the
Head Feature Convention. We can avoid this by making the construction of wh-

categories dependent on (rather than simultaneous with) the construction of slash-

categories. So an implementation might use UIMP (5.19) to first create slash-

intensions, and then add more structure to deal with wh-intensions, something
like:

WIMP = \X: WCOR. UIMP(A') + other subspecifications...

Here we see the advantage of formal modularisation techniques.

This returns us, however, to the problem of ensuring that wh-substitution only
occurs in the first constituent of a relative clause.2 In constructing wh-categories,

2It may be that that this is too restrictive an assumption for dealing with arbitrary

Chapter 5. Unbounded Dependencies 170

we should not use slash-categories (they are only needed in defining i—> on the

wh-categories). This prevents "double extraction", which is enough to ensure that
wh-substitution cannot occur in the comment of a topicalised sentence. In GKPS,

the job is completed by also forbidding wh-substitution into a VP. We can easily do

likewise, though it is worth noting a couple of possible disadvantages. One is that
it is only good for extending grammars in which "NP VP" and "topic comment"
are the only sentence forms — but this has been implicit all along. Another is
that it prevents wh-substitution into embedded VPs, as in That is the tyrant, my

plan to kill whom backfired — but once again, such examples seem to be at the
limits of acceptability.

WTOP = enrich

derive from TOPIC

by [SISyn i > Syn, SISyn* i—> Syn*]

by sort Syn

axiom SISyn C Syn

WCOR = derive from GMR-fSEIMT-fNP+NBAR+AGR+RELPRO

by [Cor h—-> Syn, Cor* i—* Syn*]

WSYN = derive from USYN by [Wh i—* Slash, wh(_,_) i—> (_/_)]

WREL = extend WTOP+WCOR+WSYN-f UDD+WH

by pred _ i—► _ C Syn x Syn*

axiom Vs:S,n:NP,n':N'.n =agr n' —> n' i—> n' • wh(s,n)
axiom Vx: SISyn* . s x A s' = wh(s, t) A uddtiBh(x, x')

x■

wh-phenomena. For instance, echo questions (e.g. You saw who?) may have wh-words
inside a non-initial constituent of a sentence. But for wh-relatives, no such problem
arises.

Chapter 5. Unbounded Dependencies 171

references: TOPIC (5.13), GMR (2.4), SENT (5.2), NP (5.22),
NBAR (5.23), AGR (3.12), RELPRO (5.20)

WCOR+WTOP is supposed to give the requirements of a core grammar to which
WREL adds an account of wh-relatives. The sort name SISyn is used to refer to
the Cor plus the Slash intensions. This is necessary so that we can allow relative
clauses to correspond to topicalised sentences (e.g. who Mary loves corresponds
to John, Mary loves) in the axioms of WREL. WREL uses much the same strategy

as UTOP. The first axiom is the introduction rule: if n' is an N' intension, s is

a sentential intension, and n is an NP agreeing with n', we get n' dominating
n' • wh(s, n), giving us the kind of local tree at the root of the leftmost of the two

analyses given for man in red who sang in Figure 5-4. The second axiom then says

that wh(s,t) may dominate a string x' differing in the way specified in UDD (5.17)
from a string x, consisting of core and slash intensions, such that s i—> r. As with
UIMP (5.19), a specification will be needed to pin down exactly when wh(_,_) is
to be defined. A simple example might be

WXOK = enrich WCOR+WTOP+WSYN

by axiom Dwh(u,t) <->

-i3s : S, r: SISyn, xy: SISyn* . s i—> r • x • v • y

This says that we may substitute into any core or slash intension which cannot

appear as a non-initial constituent of a sentence. The reason for insisting on this
is aimed at ensuring the second condition of WHREL: that we can only substitute
into the first constituent of a sentence. Although this may look a formidable

condition, a typical grammar for English which deals with topicalisation will only
have sentences of the form NP-VP, or topic-comment. We already know comments

cannot be wh-substituted into, so all WXOK then says is that VPs cannot be

substituted into. We can form a simple parameterised implementation designed

to add an account of relatives to an account of topicalisation.

WIMP = AA:WC0R+WT0P. X + WREL + WXOK

Chapter 5. Unbounded Dependencies 172

Of course this can be composed with an implementation of topicalisation, such as

UIMP (5.19), to produce an implementation which adds both topicalisation and
relativisation.

WUIMP = AThWCOR. WIMP(
derive from UIMP(A')
by [SISyn i—> Syn, SISyn* i—> Syn*])

references: UIMP (5.19), TCOR (5.14)

5.9 Coda

The aim of this chapter has been to exemplify the use of stepwise refinement
and modular techniques at both abstract and concrete levels, and their interplay.
Thus we have seen a succession of attempts at abstract characterisation of the

phenomenon of topicalisation, each motivated by deficiencies in its predecessor
discovered by considering its implementation. This was followed by production
of abstract and concrete specifications aimed at the related phenomenon of wh-
relatives. The closeness of these phenomena allowed us to re-use for wh-relatives
some of the specifications used for topicalisation. This sort of re-usability has been
one of the major motivations behind the development of modular techniques.

Chapter 6

Germanic Word Order and

Dependency Grammar

In this chapter I wish to exemplify the use of specification and refinement to talk
about linguistic phenomena across a range of languages. I will consider (a subset

of) dependent clause order in English, Dutch and German. I shall consider what

vocabulary might be needed to describe the three cases, consider some simple

examples of refining grammars, and describe a parameterised construction.

6.1 Dependent Clause Order

A dependent clause is an embedded clause like that Michael saw Harold swim, in I

believe that Michael saw Harold swim. In English, the word order of the material

following that is much the same as it would be in a main clause: Michael saw
Harold swim. In German and Dutch, however, this is not so. For instance, in

Dutch, we would have

dat Michael Harold zag zwemmen

that Michael Harold saw swim

for the dependent clause, but

Michael zag Harold zwemmen

Michael saw Harold swim

173

Chapter 6. Germanic Word Order and Dependency Grammar 174

for the main clause. In these languages, it is often taken that the embedded
order is canonical. For instance, in German one may describe main clause order

by a combination of (main verb) inversion, and topicalisation (as for instance in

Reape 1990). In Chapter 5, we have seen something of how one such process

(topicalisation) may be dealt with by a modular extension (at least for the case

of English). Thus dependent clause order is a reasonable choice for a Germanic
"core" grammar, which may be built up by modular extension to broader coverage.

For the sake of simplicity, I will limit my consideration here to verbs which take
nominal and verbal arguments only (so, for instance, I will not deal with place, as
in place the salt on the table). In English we may indicate constituent structure

by brackets:

(6.1) that [Michaeli sawi [Harold2 swim2]i].

(Here the numerical subscripts are meant to indicate arguments to the verb).
Similarly in German:

(6.2) dass [Michaeh [Harold2 schwimmen2]i sahi].

Dutch is less obviously susceptible to a constituency treatment, because the de¬

pendencies (indicated by the subscripts) cross (Bresnan et al. 1982):

(6.3) dat Michaeli Harold2 zagx zwemmen2.

However the less restrictive notion of dependency can still be useful, at the very

least to provide a descriptive vocabulary.

Chapter 6. Germanic Word Order and Dependency Grammar 175

6.2 Dependency Grammar

From this simple example it might be thought that we could describe the Dutch
case by first saying that zag sub categorises directly for an NP and a VP, instead
for an S, but if we replace zwemmen with the transitive verb kussen (to kiss), we
see this will not help:

dat Michael! Harold2 Maria2 zagt kussen2.

We could try to push the strategy even further, and say for instance that zag

subcategorises for a verb v plus other intensions x such that S <1 v + x. But
it will be much simpler if we simply say that zag subcategorises for a verb, in
this case kussen, which in turn subcategorises for a subject Harold and an object
Maria. Then we might describe the Dutch order (in part) by saying that a verb
v which is argument to some r must succeed r, but other arguments to r precede
it. Having eliminated the S and VP level intensions, we may as well eliminate
NP as well, simply saying that zwem (for example) subcategorises for a noun, and
that a proper noun (such as Harold) need take no arguments, but a (singular)
common noun (like man) subcategorises for a determiner (say een) which must

come immediately to its left.

Thus we eliminate all phrasal intensions, and are left just with lexical en¬

tries. In a dependency grammar (see for instance Matthews 1981), we say that
Michael and zwemmen (or rather the lexical entries — intensions — correspond¬

ing to the particular occurrences of those words) are dependents of zag, and zag

is head to Michael and zwemmen} Every intension is thus associated with a par¬

ticular collection (multiset) of dependent intensions. (In dependency grammar it

*My terminology here is perhaps somewhat non-standard, in that I refer to the fully

grounded intensions which stand for words as lexical entries, rather than some under-

specified entities which must be filled in before use. In examples like IENT below, such

underspecified entities will instead correspond to constructor functions.

Chapter 6. Germanic Word Order and Dependency Grammar 176

zag

Michael Harold zag zwemmenMichael zwemmen

Harold
/

Figure 6—1: A dependency tree

is usual to describe adjuncts — like quickly in Harold swam quickly — as well as

subcategorised-for arguments as dependents.) Since each dependent intension has
its own associated multiset of dependents, any intension can be seen as the root of
a tree, with its dependents forming the daughters, as in Figure 6-1. On the left,
the dependencies are drawn in a familiar tree form, with mothers (heads) at the
top of branches, and daughters (dependents) at the bottom. On the right, we see

the conventional representation used in dependency grammar, called a dependency

diagram, with arrows running from head to dependent. If s appears immediately
under r in the tree on the left, it is a dependent. If it appears somewhere under

r, it is called a subordinate of r. Subordinacy is the reflexive, transitive closure of

dependency. (We could use the term proper subordinacy to refer to closure under

transitivity alone — so r is not properly subordinate to r.) Write r > s to mean

s is subordinate to r.

Dependency is the same sort of relation which exists between a head daughter
and its sisters in HPSG (the sisters depend on the head), except that instead of

having separate intensions for a head daughter and mother, the intension asso¬

ciated with the head must itself, in some fashion, license some realisation(s) as

string(s) of words. The existence of dependents already associates with any entry

a particular multiset of words, namely the words for which its subordinates are

entries; the collection formed from the word associated with the entry, plus the

words associated with its dependents, plus the words associated with their depen¬

dents, and so on. For instance, consider the sentence Michael saw Harold swim. In
a dependency grammar, this would be licensed by a lexical entry for the word saw.

This entry would have as dependents entries for Michael and swim. The entry for

Chapter 6. Germanic Word Order and Dependency Grammar 177

Michael has no dependents; that for swim has as a dependent an entry for Harold

(which also has no dependents). Thus such an entry for saw is associated with
the multiset of words {saw, Michael, swim, Harold}. Every realisation for such an

entry must be a linearisation of this multiset. A description of realisation can

thus be completed by specifying a precedence relation on intensions, much as in
Section 3.4, except that the relation will be used in ordering, not just "sister"

intensions, but clauses as a whole.

(Multisets over Ent)
MENT = derive from MIX

by [Ent i—> Syn, MEnt i—► MSyn, Ent* i—> Syn*]

(6.4) (Dependents)
DEP = enrich MENT by

sort Lex

opn lex : Ent —> Lex

opn deps : Ent —> MEnt

(6.5) (Subordinacy)
SUBORD= extend DEP by

pred _ _ C Ent X Ent

axiom r r

axiom deps(r) = t + x —* r t
axiom r>sAs><-^r>l

(6.6) DLEX* = extend DEP by

opn lex : Ent* —> Lex*

axiom lex(e) = e

axiom lex(x • y) — lex(x) • 1ex{y)

(6.7) (Realising Multiset)
MREAL = extend DEP by

Chapter 6. Germanic Word Order and Dependency Grammar 178

opn mdep : MEnt —> MEnt

axiom Vr:Ent. mdep(r) = r + mdep(deps(r))
axiom mdep(O) = 0

axiom mdep(a: + y) = mdep(x) + mdep(?/)

DLP — derive from LPOK by [Ent i—»Syn,Ent*i—> Syn*]

(6.8) (Dependency Realisations)
DREAL = extend DLEX* + MREAL + DLP by

pred rlsn C Ent x Lex*

axiom mdep(r) = |x| A lpok(ar) —> rlsn(r, lex(a:))

references: MIX (3.33), LPOK (3.24)

Ent is an intensional domain of lexical entries. MENT gives us multisets of entries,

MEnt, using the construction MIX. 0 is the empty multiset, _ + _ is multiset union

(where objects r of Ent are identified with singleton multisets {r}), and |_| projects
strings over Ent (called Ent*) onto multisets. DEP associates with every entry r,
the particular word lex(r) for which it stands, and its multiset of dependent

entries, deps(r). SUBORD uses this to define subordinacy, by reflexive transitive
closure. In DLEX*, the correspondence between an entry and a word given by

lex is extended to map a string of entries to a string of words. By collecting r,

plus its dependents, plus their dependents, and so on, MREAL defines the realising
multiset of entries, mdep(r). Every realising string of entries x for r must have

|x| = mdep(r). In DREAL we define a realisation of r to be any string of words

corresponding to some x which satisfies both |a;| = mdep(r) and lpok(a:). The

parameterised construction

DGMR = XX: (DEP + DLP). + DREAL

will add realisations to a model describing dependency and linear precedence.

Chapter 6. Germanic Word Order and Dependency Grammar

6.3 Implementation

179

In this section we will see how DREAL may be refined in different directions to pro¬

duce grammar fragments for the three languages under consideration, beginning
with English.

EWDS = extend 0 by

opns michael,harold, swim, saw ► Lex

IENT = extend 0 by

sorts Noun,Verb,Ent

axiom Noun, Verb C Ent

opns michaelx, haroldi > Noun

opn swimi : Noun —> Verb

opn sawj : Noun x Noun —> Verb

opn saw2 : Noun X Verb —» Verb

IDEPS = extend MENT + IENT by

opn deps : Ent —> MEnt

axiom deps(michaeli) = deps(haroldi) = 0
axiom deps^wim^n)) = n

axiom deps(saw!(n,n')) = n -f n'
axiom deps(saw2(n, u)) = n + v

ISUBJ = extend IENT by

opns subj : Verb^>Noun

axiom subj (swim1(ra)) = n

axiom subj(sawi(n, n')) = n

axiom subj (saw2(n, v)) — n

Chapter 6. Germanic Word Order and Dependency Grammar 180

ELEX = extend EWDS + IENT by

opn lex : Ent —>• Lex

axiom lex(michael1) = michael
axiom lex(harold1) = harold

axiom lex(swima(n)) = swim
axiom lex(saw\(n,n')) = saw

axiom lex(saw2(n, w)) = saw

EWDS gives the words for this fragment. IENT uses operations to construct the
needed intensions. So for instance Noun will contain the intensions michael! and

haroldi, and there will be different intensions swin^(michael!) and swimi(haroldi)
corresponding (as we see in ID EPS) to the different values for the dependent noun.
We will also need to be able to distinguish the subject noun from any others: this
is taken care of in ISUBJ. ELEX takes care of associating a particular (English)
lexical item with every intension. IDEPS+ELEX specifies, up to isomorphism, the
model of DEP which has

(6.9) [Lex] = {michael, harold, swim, saw}
[Ent] = [Noun] U [Verb]

[Noun] = {michaeli,harold\}
[lex](michaeli) — michael, [deps](mfc/iae/i) = 0
[lex](haroldi) — harold, [deps](haroMi) = 0

[Verb] contains swimi(n) and saw\(n,n') for each n,n' G [Noun],
plus, recursively, saw2{n,v) for each n G [Noun],u G [Verb]

[lexl(smmi(n)) = swim, [deps](suu'mi(n)) = {n}, all n G [Noun],

[lex](5aici(n, n')) — saw, [deps](sau;i(n, n')) = {n,n'}, all n,n' G [Noun],
[lex](sau;2(ft, u)) = saw, [deps](saw2(«, u)) =

each n G [Noun],u G [Verb],

Thus IDEPS+ELEX+MREAL identifies, up to isomorphism, the model which has
in addition

[:mdep\(michael-i) = {michaeli}, [mdep](haro/di) = {harold^},

Chapter 6. Germanic Word Order and Dependency Grammar 181

[mdep](suhmi(n)) = {smm1(n),ra}, each n G [Noun],

[mdep](sa'W1(n, n')) = {sawi(n,n'),n,n'}, each n,n' G [Noun],

[mdep](sau;2(«, v)) — {saw2(n,v),n} U [mdep](u),
each n G [Noun],u G [Verb].

We now proceed to specify linear precedence.

DLPBIN = derive from LPBIN by [Ent i—► Syn,Ent* i—> Syn*]

EPREC = enrich IDEPS-f ISUBJ + SUBORD + DLPBIN by
axiom -ilpok(r • s) *-*■

(3v: Verb, n: Noun, t: Ent, x:MEnt.

deps(t) = v + n + x A (v r) A (n ^s> 5))
V (3u: Verb, n: Noun. n = subj (u) A (n s)

A (u > r) A -1 (n r))
V (5: Verb A (s > r) A s / r A -i(subj(5)>r))

The axiom used in EPREC to give linear precedence is rather stronger than is

really needed in this simple example, the idea being that conditions of this form
will also do the job in more complicated examples (though then more disjuncts
would be needed as well). The first disjunct says that where both a noun and a

verb occur as direct dependents of some intension, the noun and all its dependents
come before the verb and all of its dependents. The second says that the subject
of a verb, and all its successive dependents, must precede the verb, and all its

(other) successive dependents. The last disjunct says that eventual dependents of
the verb which are not eventual dependents of the subject must follow the verb.2

2In order to allow a verb phrase argument to a verb v (perhaps promise), we could

give v a verb as its only dependent. The subject of v would be stipulated to be the same

as that of the dependent verb, but not a direct dependent.

Chapter 6. Germanic Word Order and Dependency Grammar 182

EL EX + EPREC specifies, up to isomorphism, a single model of dependency
and precedence for this tiny fragment of English, and DGMR(ELEX + EPREC) is
an implementation giving realisations such as

rlsn(saw2(harold1, saw1(michael1, haroldi)),
harold • saw • michael • saw • harold).

Let us now turn to an example in German.

GLEX = derive from ELEX

by [schwimmen i—> swim, sah i—► saw]

GPREC = enrich IDEPS + SUBORD + DLPBIN by

axiom -Tpok(r • s) «->

(3u:Verb,n:Noun,f :Ent,x:MEnt.

deps(f) = u + n + xA(u^>r)A(n^> s))
V (r: Verb ,r>sAr^s)

The fact that we are able to use for German, and later Dutch, the same intensional

system IDEPS used for English, is partly a reflection of the closeness of the lan¬

guages (though of course it also has a lot to do with the triviality of the example).
However we need a different precedence relation, and of course the actual words
are different. The first disjunct of the axiom of GPREC is the same as for EPREC.
The second says that a verb succeeds all its dependents. GLEX + GPREC specifies,

up to isomorphism, a single model of dependency and precedence for this fragment
of German, and DGMR(GLEX + GPREC) is an implementation giving realisations
such as

rlsn(saw2(haroldi, swimi(michaeli)),harold ■ michael • schwimmen • sah).

Now for the Dutch case.

NLEX = derive from ELEX

by [zwemmen i—» swim, zag i—> saw]

Chapter 6. Germanic Word Order and Dependency Grammar 183

NPREC - enrich IDEPS + ISUBJ + SUBORD + DLPBIN by

axiom ->lpok(r • 5) <->•

(3u:Verb, n:Noun,t: Ent, a::MEnt.

deps(t) — w + n + a;A(u^>r)A(n^> 5))
V (3u: Verb, n: Noun. n = sub j (v) A (n s)

A (v r) A -1 (n >• r))
V (3a: :MEnt. r :Verb A deps(s) = r + x)

The first two disjuncts of the axiom are the same as for EPREC. The last says that

dependent verbs follow their head. NLEX + NPREC specifies, up to isomorphism,
a single model of dependency and precedence for this fragment of Dutch, and

DGMR(NLEX + NPREC) is an implementation giving realisations such as

rlsn(saw2(harold1, swim1(michaeli)),harold • michael • zag • zwemmen).

We might produce a more heavily parameterised construction which abstracts over
these examples:

(A simple Germanic core dependency treatment)
GMNC = XX: DLPBIN. DGMR(A' + ELEX)

The model specified by DGMR(ELEX+EPREC) is also specified by GMNC(EPREC).
The model specified by DGMR(GLEX + GPREC) can also be specified by a simple

relabelling in GMNC(GPREC):

derive from GMNC(GPREC) by [schwimmen 1—> swim, sah 1—» saw].

The model specified by DGMR(NLEX+NPREC) can be specified by relabelling in

GMNC(NPREC):

derive from GMNC(NPREC) by [zwemmen 1—> swim,zag 1—> saw]

Chapter 6. Germanic Word Order and Dependency Grammar 184

6.4 Dependency Constituents

What allows us to assign constituent structures in (6.1) and (6.2), is the fact that
in English and German (at least in these fragments), all words subordinate to any

particular word must appear contiguously. We can express this by insisting that
treatments of English and German must refine the following specification:

(Adjacency Condition)
ADJCND = enrich SUBORD + DLP by

axiom lpok(ie -r-x-s-y-t-z)Ar^>t—>r^>s
axiom lpok(iy -t-x-s-y-r-z)Ar^>t^r^$>s

This just says that, in an LP-acceptable sequence, if t is subordinate to r, and
s occurs between them, then s must also be subordinate to r. For any grammar

refining ADJCND, we can make a definition of dependency constituents as follows:

DCIN = extend sorts Lex,Ent by

sort Syn

opn phr : Ent —> Syn

axiom Lex, Ent C Syn

MPHR = extend DCIN + MENT + MSYN by

opn phr : MEnt —► MSyn

axiom phr(O) = 0

axiom phr(r + y) = phr(r) + phr(y)

DCIMD = extend DEP + MPHR by

pred _ <] _ C Syn X MSyn

axiom phr(r) < r + phr(deps(r))
axiom r <] lex(r)

Chapter 6. Germanic Word Order and Dependency Grammar 185

DCIN admits models in which every object of Syn is either a word (comes from

Lex), a lexical entry (comes from Ent), or is the phrasal projection of a lexical entry
(is of the form phr(r), for r in Ent). In MPHR, phr is extended to map multisets of
lexical entries to the corresponding multisets of projections. In DCIMD we define a

notion of dominance in which a projection dominates the multiset consisting of the
lexical head, plus the projections of its dependents. The lexical head, of course,
dominates the corresponding lexical item (i.e. word). Producing an extension of
linear precedence to projections in the general case is possible but messy. Instead
I give a definition which works when precedence on Ent only depends on which

pairs are allowed.

DCLP = enrich DLPBIN + LPBIN + DCIN + SYN* by

axiom VsDEnt. lpok(.s • t) <-> lpok(s • phr(Q)
<-> lpok(phr(s) • t) <->• lpok(phr(s) • phr(t))

WEQV = enrich DCIMD+DCLP+DREAL+IDLP by
axiom Vr: Ent, x: Lex* . rlsn(r, x) *-> r i—► x

references: LPBIN (3.28), SYN* (2.3), IDLP (3.34)

DCLP ensures that the extension of lpok from Ent* to Syn* allows pairs of pro¬

jections wherever the corresponding pair of lexical entries was allowed. If, for
some implementation G, G C DEP + DLPBIN + ADJCND (as, for instance, with
the above implementations ELEX -f- EPREC and GLEX + GPREC of English and

German), then G+DCIM D+DCLP+DREAL+IDLP C WEQV: that is, the construc¬

tion of DCIMD + DCLP gives the same realisations as the dependency treatment.
But if G 2 ADJCND (as with the Dutch implementation NLEX + NPREC), then
G + DCIMD + DCLP + DREAL + IDLP g WEQV, and the construction of DCIMD
and DCLP does not produce an account of the same data. For instance, in Dutch
we would end up incorrectly allowing the string Michael zag Harold zwemmen.

Chapter 6. Germanic Word Order and Dependency Grammar 186

6.5 Coda

The purpose of this chapter has been to exemplify the use of abstract specifica¬
tions in a cross-linguistic application. We have produced a simple parameterised
construction which need only be supplied a description of precedence to give (very
simplistic) treatments for dependent clause order in English, Dutch, or German.
Such treatments ought then to be susceptible to modular extension in order to
extend coverage, say to main clauses. The treatment of topicalisation presented in

Chapter 5 requires a notion of constituency. For the English and German cases, a

notion of constituency does arise naturally out of the preceding dependency treat¬

ments, which would allow UIMP (5.19) to apply to them with little extra effort.

Any imposition of constituency on the Dutch, however, is liable to be somewhat

unsatisfactory. Of course, the basis of UIMP (5.19) in constituency is a reflection
of the fact that it was from that starting point that the deliberations of Chapter 5

began. This suggests that reconsidering the construction in terms of dependency
could be fruitful.

Chapter 7

Conclusions

The aim of this thesis has been to explore the use of various ideas taken from

algebraic software specification in describing systems of models for human language

(grammar). The most important of these ideas are loose specification and stepwise
refinement, and modularisation and parameterisation.

In Chapter 1 I set out the background of the use of specifications in software

engineering, and suggested some possible benefits one might obtain from the use

of such disciplines in the description of grammar. I gave an introduction to lan¬

guage ASL and the algebraic concepts underlying it. Chapter 2 was devoted to the
basics of models and specifications for constituent-style grammar. In Chapter 3 I
moved on to consider how a richer intensional domain can be used to deal with

matters such as agreement. I sketched how the model systems of PATR-II, LFG,
GPSG and HPSG might be described by specifications in ordinary first order logic.

Chapter 4 dealt with expanding our specification language to allow specifications
written in different logics to be compared and combined. Chapter 5 contains the
most detailed examples employing the range of techniques under consideration.
I addressed the problem of topicalisation by developing a series of loose speci¬
fications which aim to capture the abstract idea of what it means to deal with

topicalisation. This succession was informed by the experience of developing at

each stage a parameterised implementation, capable of extending a core treatment

by adding machinery to deal with topicalisation. The development of similar spec¬
ifications to deal with wh-relative clauses was made much easier by the re-use of

187

Chapter 7. Conclusions 188

modules developed when dealing with the related phenomenon of topicalisation.
In Chapter 6 I considered how loose specification and parameterisation may be

employed in developing a cross-linguistic treatment for some phenomenon — in

this case, dependent clause order in English, German and Dutch. This involved

specification of a grammar in the dependency tradition.

I believe that the central ideas under investigation — loose specification, step¬
wise refinement, modularisation, parameterisation — are appropriate to the lin¬

guistic domain, and capture informal ideas about methodology embodied, for in¬

stance, in the Principles and Parameters paradigm. I believe the use of precisely
defined models is important in any science, and that ASL-style specifications allow
us to avoid some of the pitfalls involved in such definitions, by giving us book¬

keeping methods for breaking the task down into manageable chunks, in such a

way that the independent pieces can be fitted together in different ways as our

specification of a system evolves.

In retrospect, however, the choice of specification language used (ASL) may

not have been ideal. A higher-level language may have been more appropriate
in producing less cluttered specifications, although I am not very sure exactly
what choice would have been more appropriate at the time. One possibility now is

"Extended Prolog", as in Read and Kazmierczak (1992), a wide spectrum language
aimed at the programming language of Sannella and Wallen (1987).

There is a fair bit of technical detail to be absorbed before one can read these

specifications, and it takes some time and effort before they become sufficiently
familiar to be really useful. While I feel that the introduction of a formal language
for communicating these sort of ideas in important, it seems likely that some com¬

promise is needed, perhaps involving a more specialised, high-level specification

language, and a simplified presentation of those technical details actually required
in using the specifications. One avenue toward a more specialised language might
be the development of a better feature-value institution. Some consideration needs
to be given to the relationship between the sort of presentation of feature-value

logic in Section 4.3, and the employment of a calculus of minimal-model genera-

Chapter 7. Conclusions 189

tion. Another (challenging) direction would be to consider what classes of models
could be employed in an institution where GB-style models were to be initial.

Appendix A

Bibliography

Backus, J. (1978) Can Programming be liberated from the von Neumann Style?
Communications of the ACM 21, 613-641.

Bresnan, J., ed. (1982) The Mental Representation of Grammatical Relations.
Cambridge, Mass.: MIT Press.

Bresnan, J., R. M. Kaplan, S. Peters and A. Zaenen (1982) Cross-serial dependen¬
cies in Dutch. Linguistic Inquiry 13, 613-635.

Chomsky, N. (1981) Lectures on Government and Binding. Dordrecht: Foris Pub¬
lications.

Chomsky, N. (1986) Knowledge of Language: Its Nature, Origin and Use. New
York: Praeger.

Colmerauer, A., H. Kanoui, R. Pasero and P. Roussel (1973) Un systeme de com¬

munication homme-machine en fran^ais. Rapport. Groupe d'Intelligence Ar-

tificielle, Universite d'Aix-Marseille II.

Ehrig, H. and B. Mahr (1985) Fundamentals of Algebraic Specification I: Equations
and Initial Semantics. Berlin: Springer-Verlag.

Gazdar, G., E. Klein, G. Pullum and I. Sag (1985) Generalized Phrase Structure
Grammar. London: Basil Blackwell.

190

Appendix A. Bibliography 191

Goguen, J. A. (1987) One, None, a Hundred Thousand Specification Languages.

Report CSLI-87-96, Centre for the Study of Language and Information, Stan¬

ford, Ca.

Goguen, J. A. and R. M. Burstall (1985) Institutions: Abstract Model Theory for

Computer Science. Report CSLI-85-30, Centre for the Study of Language
and Information, Stanford, Ca.

Goguen, J. A. and R. M. Burstall (1986) A Study in the Foundations of Program¬

ming Methodology: Specifications, Institutions, Charters and Parchments.

Report ECS-LFCS-86-10, Laboratory for the Foundations of Computer Sci¬

ence, Department of Computer Science, University of Edinburgh.

Goguen, J. A. and J. Meseguer (1987a) Order-Sorted Algebra Solves the

Constructor-Selector, Multiple Representation and Coercion Problems. Re¬

port CSLI-87-92, Centre for the Study of Language and Information, Stan¬

ford, Ca.

Goguen, J. A. and J. Meseguer (1987b) Order-Sorted Algebra I: Partial and Over¬
loaded Operators, Errors and Inheritance. Technical Report. Computer Sci¬

ence Laboratory, SRI International, Menlo Park, Ca.

Goguen, J. A., J. W. Thatcher and E. G. Wagner (1978) An Initial Algebra

Approach to the Specification Correctness and Implementation of Abstract
Data Types. In R. Yeh, ed., Current Trends in Programming Methodology,
Vol. 4: Data Structuring, pp. 80-149. Englewood Cliffs, N.J.: Prentice-Hall.

Goguen, J. A., J. W. Thatcher, E. G. Wagner and J. B. Wright (1975) Abstract
Data Types as Initial Algebras and the Correctness of Data Representations.
In Proceedings of the Conference on Computer Graphics, Pattern Recogni¬

tion, and Data Structures, pp. 89-93, Beverly Hills, Ca.

Gries, D. (1981) The Science of Programming. Berlin: Springer-Verlag.

Hopkin, D. and B. Moss (1976) Automata. London: Macmillan.

Appendix A. Bibliography 192

JackendofF, R. S. (1977) X-Bar Syntax: A Study of Phrase Structure. Cambridge,
Mass.: MIT Press.

Janssen, T. M. V. (1983) Foundations and Applications of Montague Grammar.
Ph.D. thesis, Mathematisch Centrum, Universiteit van Amsterdam.

Kaplan, R. and A. Zaenen (1987) Long-distance Dependencies, Constituent Struc¬
ture and Functional Uncertainty. Unpublished ms.

Kowalski, R. (1974) Predicate logic as a Programming Language. In Proceedings
of the IFIP, pp. 569-574, Amsterdam.

Kowalski, R. (1979) Algorithm = Logic + Control. Communications of the
ACM 22, 424-436.

Lambek, J. (1958) The mathematics of sentence structure. American Mathematical
Monthly 65, 154-170.

Lloyd, J. W. (1984) Foundations of Logic Programming. Berlin: Springer-Verlag.

Maling, J. M. and A. Zaenen (1982) A phrase structure account of Scandinavian
extraction phenomena. In P. Jacobson and G. K. Pullum, eds., The Nature

of Syntactic Representation, pp. 229-282. Dordrecht: D. Reidel.

Martin-Lof, P. (1982) Constructive Mathematics and Computer Programming.
In Logic, Methodology and Philosophy of Science, Vol. 6: Proceedings of the
Sixth International Congress of Logic, Methodology and Philosophy of Sci¬

ence, pp. 153-175. Amsterdam: North Holland.

Matthews, P. H. (1981) Syntax. Cambridge: Cambridge University Press.

Montague, R. (1970) Universal grammar. Theoria 36, 373-398. Reprinted in R.
H. Thomason, ed., Formal Philosophy: Selected Papers ofRichard Montague,

pp. 222-246. New Haven, Conn.: Yale University Press, 1974.

Montague, R. (1973) The proper treatment of quantification in ordinary English.
In J. Hintikka, J. M. E. Moravcsik and P. Suppes, eds., Approaches to Natural

Language. Dordrecht: D. Reidel. Reprinted in R. H. Thomason, ed., Formal

Appendix A. Bibliography 193

Philosophy: Selected Papers of Richard Montague, pp. 247-270. New Haven,
Conn.: Yale University Press, 1974.

Paxton, B. (1992) The Implementation of a Modular Prolog System Based on

Standard ML Modules. 4th Year Project Report. Departments of Artificial

Intelligence and Computer Science, University of Edinburgh.

Pereira, F. C. N. and S. M. Shieber (1984) The Semantics of Grammar Formalisms
Seen as Computer Languages. In Proceedings of the 10th International Con¬

ference on Computational Linguistics and the 22nd Annual Meeting of the
Association for Computational Linguistics, pp. 123-129, Stanford University,

Stanford, Ca.

Pierce, B. C. (1990) A Taste of Category Theory for Computer Scientists. Technical

Report CMU-CS-90-113R, Computer Science Department, Carnegie Mellon

University, Pittsburgh.

Pollard, C. and I. A. Sag (1987) Information-Based Syntax and Semantics, Vol. 1:
Fundamentals. Stanford, Ca.: Centre for the Study of Language and Infor¬
mation.

Pollard, C. and I. A. Sag (1992) Information-Based Syntax and Semantics, Vol. 2:

Topics in Binding and Control. Stanford, Ca.: Centre for the Study of Lan¬

guage and Information. To appear.

Radford, A. (1988) Transformational Grammar: A First Course. Cambridge: Cam¬

bridge University Press.

Read, M. and E. Kazmierczak (1992) Formal program development in modular

Prolog: a case study. In Proceedings of a Workshop on Logic Program Syn¬
thesis and Transformation. Berlin: Springer-Verlag. To appear.

Reape, M. (1990) A Theory of Word Order and Discontinuous Constituency in
West Continental Germanic. In E. Engdahl and M. Reape, eds., Parametric
Variation in Germanic and Romance: Preliminary Investigations, pp. 25-39.

Edinburgh: Centre for Cognitive Science. Report Rl.l.A of DYANA, Esprit
Basic Research Action 3175.

Appendix A. Bibliography 194

Reape, M. and E. Engdahl (1990) Parametric Variation as a Research Strategy. In
E. Engdahl and M. Reape, eds., Parametric Variation in Germanic and Ro¬
mance: Preliminary Investigations, pp. 1-7. Edinburgh: Centre for Cognitive
Science. Report Rl.l.A of DYANA, Esprit Basic Research Action 3175.

Rizzi, L. (1982) Issues in Italian Syntax. Dordrecht: Foris Publications.

Robinson, J. A. (1965) A Machine-oriented Logic Based on the Resolution Prin¬

ciple. Journal of the ACM 12, 23-41.

Rogers, H. (1967) Theory ofRecursive Functions and Effective Computability. New
York: McGraw Hill.

Sannella, D. (1986) Formal Specification of ML Programs. Report ECS-LFCS-

86-15, Laboratory for the Foundations of Computer Science, Department of

Computer Science, University of Edinburgh.

Sannella, D. (1989) Formal program development in Extended ML for the working

programmer. Report ECS-LFCS-89-102, Laboratory for the Foundations of

Computer Science, Department of Computer Science, University of Edin¬

burgh.

Sannella, D. and A. Tarlecki (1985) Specifications in an Arbitrary Institution.

Report CSR-184-85, Department of Computer Science, University of Edin¬

burgh.

Sannella, D. and A. Tarlecki (1986) Extended ML: an institution-independent
framework for formal program development. Report ECS-LFCS-86-16, Lab¬

oratory for the Foundations of Computer Science, Department of Computer

Science, University of Edinburgh.

Sannella, D. and A. Tarlecki (1987) Some thoughts on algebraic specification. Re¬

port ECS-LFCS-87-21, Laboratory for the Foundations of Computer Science,

Department of Computer Science, University of Edinburgh.

Appendix A. Bibliography 195

Sannella, D. and A. Tarlecki (1988) Toward Formal Development of Programs from
Algebraic Specifications: Implementations Revisited. Acta Informatica 25,

233-281.

Sannella, D. and A. Tarlecki (1992) Toward Formal Development of Programs from
Algebraic Specifications: Model-Theoretic Foundations. Report ECS-LFCS-

92-204, Laboratory for the Foundations of Computer Science, Department
of Computer Science, University of Edinburgh.

Sannella, D. and L. A. Wallen (1987) A Calculus for the Construction of Modu¬
lar Prolog Programs. In IEEE 4th Symposium on Logic Programming, San
Francisco.

Sannella, D. and M. Wirsing (1983) A kernel language for algebraic specification
and implementation. Report CSR-131-83, Department of Computer Science,

University of Edinburgh.

Sells, P. (1985) Lectures on Contemporary Syntactic Theories. Stanford, Ca.: Cen¬
tre for the Study of Language and Information.

Shieber, S. M. (1986) An Introduction to Unification-based Approaches to Gram¬
mar. Stanford, Ca.: Centre for the Study of Language and Information.

Stoy, J. E. (1977) Denotational Semantics: The Scott-Strachey Approach to Pro¬

gramming Language Theory. Cambridge, Mass.: MIT Press.

Tarlecki, A. (1984) Quasi-Varieties in Abstract Algebraic Institutions. Report
CSR-173-84, Department of Computer Science, University of Edinburgh.

