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Abstract

Speech synthesis technology plays an important role in many aspects of man–machine inter-
action, particularly in telephony applications. In order to be widely accepted, the synthesised
speech quality should be as human–like as possible. This thesis investigates novel techniques
for the speech signal generation stage in a speech synthesiser, based on concepts from nonlinear
dynamical theory. It focuses on natural–sounding synthesis for voiced speech, coupled with the
ability to generate the sound at the required pitch.

The one–dimensional voiced speech time–domain signals are embedded into an appropriate
higher dimensional space, using Takens’ method of delays. These reconstructed state space
representations have approximately the same dynamical properties as the original speech gen-
erating system and are thus effective models.

A new technique for marking epoch points in voiced speech that operates in the state space
domain is proposed. Using the fact that one revolution of the state space representation is equal
to one pitch period, pitch synchronous points can be found using a Poincaré map. Evidently the
epoch pulses are pitch synchronous and therefore can be marked.

The same state space representation is also used in a locally–linear speech synthesiser. This
models the nonlinear dynamics of the speech signal by a series of local approximations, using
the original signal as a template. The synthesised speech is natural–sounding because, rather
than simply copying the original data, the technique makes use of the local dynamics to create
a new, unique signal trajectory. Pitch modification within this synthesis structure is also invest-
igated, with an attempt made to exploit the Šilnikov–type orbit of voiced speech state space
reconstructions. However, this technique is found to be incompatible with the locally–linear
modelling technique, leaving the pitch modification issue unresolved.

A different modelling strategy, using a radial basis function neural network to model the state
space dynamics, is then considered. This produces a parametric model of the speech sound.
Synthesised speech is obtained by connecting a delayed version of the network output back to
the input via a global feedback loop. The network then synthesises speech in a free–running
manner. Stability of the output is ensured by using regularisation theory when learning the
weights. Complexity is also kept to a minimum because the network centres are fixed on a
data–independent hyper–lattice, so only the linear–in–the–parameters weights need to be learnt
for each vowel realisation. Pitch modification is again investigated, based around the idea of
interpolating the weight vector between different realisations of the same vowel, but at differing
pitch values. However modelling the inter–pitch weight vector variations is very difficult, indic-
ating that further study of pitch modification techniques is required before a complete nonlinear
synthesiser can be implemented.
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Chapter 1
Introduction

This thesis is concerned with the application of nonlinear techniques to the production of syn-

thetic speech within a text–to–speech (TTS) synthesis system. TTS synthesis is the process

whereby an unknown input text is converted into the spoken word, via a series of linguistic

and speech analyses. Systems capable of this are currently in demand in diverse applications,

such as reading machines for the blind, talking machines for people who have lost the use of

their voice, and, increasingly, for access to electronically stored information by telephone (e.g.

remote email reading, automatic airline booking services) [8].

Text–to–speech synthesis is a complex task, with difficulties arising at each stage of the process,

not least with the generation of the synthesised sound. All TTS systems are made up of two

main units. These are a natural language processor (NLP), followed by a speech generation

module [9]. The NLP analyses the text in order to produce a description of the sounds to be

synthesised, as well as the intonation, or prosody, required for each phrase under consideration.

It is then the task of the speech generating unit to produce natural–sounding synthetic speech

from this description. Despite more than four decades of research, even the most up–to–date

systems are not capable of producing speech that sounds completely human, and this lack

of naturalness is one of the reasons preventing the wholesale acceptance of speech synthesis

systems by the general public.

The adaptation of nonlinear techniques has become an increasingly common approach over the

last two decades to signal processing problems which have not been solved in a satisfactory

manner by linear methods. This has included the field of speech processing, with nonlinear

techniques applied to speech coding [10], and neural networks incorporated into speech recog-

nition systems [11]. The use of nonlinear methods in conjunction with speech would appear

justified, since it is generally accepted that there are a number of nonlinear mechanisms present

in the speech production process [12]. Therefore, it is possible that a nonlinear approach will

be better able to model the speech signal than its linear counterpart. This rational has also been

applied to speech synthesis, where it is expected that some form of nonlinear model will be
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able to produce natural–sounding synthetic speech, a goal not achieved by current synthesisers

based on linear techniques.

The aim of this work is to investigate how nonlinear methods may be used in speech synthesis.

In order to evaluate the suitability of a given technique for this task, two objectives must be sat-

isfied. The first is clear from the above: the nonlinear model should generate natural–sounding

synthetic speech. The second is less evident, but equally important: there must be the facility

to impose the required prosody upon the synthesised signal. In practice, it will be seen that

this means the ability to synthesise a signal at the required pitch, and for the required duration.

Pitch is the underlying excitation frequency of the sound, and, along with the duration, is the

most important factor in producing speech with the correct intonation.

The two classes of nonlinear model considered in this thesis reflect different synthesis strategies.

Initially a locally–linear model is examined, which models the dynamics of the speech signal

by a series of local approximations. This was proposed by Banbrook [5], and may be regarded

as an extension of a concatenative synthesis approach, in that the original signal data is used as

a template during synthesis. Although this technique produces very good quality synthesised

speech of any required duration, no satisfactory method to modify the pitch is found.

Focus then shifts to an alternative model, based on the use of a radial basis function (RBF)

neural network [13]. In turn, this can be seen as a form of waveform synthesis, where the

speech waveform is modelled by a set of parameters. In many ways this is a more satisfactory

approach, since it actually produces a parametric model of the speech sound. Again this results

in good quality synthetic speech, with the possibility of generating any required length of signal.

However pitch modification in this method is not resolved either, highlighting this factor as the

weakness of these nonlinear approaches.

The achievements of the work described in this thesis are threefold. Firstly, separate from the

synthesis issues, a novel technique for marking pitch synchronous points in speech has been

developed, which offers a practical demonstration of the usefulness of nonlinear techniques in

speech processing. Secondly, the limits of the locally–linear model for use in speech synthesis

have been explored. Thirdly, a compact RBF structure, capable of synthesising speech sounds

of any required duration in a stable manner, has been developed. This latter contribution will

also be of interest to researchers in fields other than speech processing, since it demonstrates

how the dynamics of many complex systems can be effectively modelled. In summary, the high

2



Introduction

quality of the synthesised speech makes a nonlinear approach desirable, but, without the resol-

ution of the pitch modification problem, the development of a complete nonlinear synthesiser

is still not feasible.

1.1 Thesis layout

The remainder of this chapter describes the layout of the thesis, which is organised into a further

seven chapters.

Chapter 2 starts with a brief discussion of phonetics, to provide a general description of speech

production and the speech signal. It then examines all levels of the text–to–speech process, con-

centrating on the speech signal generation. The three main synthesis approaches are discussed,

and each is shown to have some disadvantages. It is concluded that there is still a requirement

for new, improved, speech synthesis techniques.

In Chapter 3 the background to nonlinear dynamical theory and speech as a nonlinear system is

presented. Previous work on nonlinear aspects of speech, including possible chaotic behaviour,

is discussed. The Lyapunov exponent estimation algorithm, used as an indicator of chaos,

developed by Banbrook et al. is presented, and the chapter concludes with some new work

which may help to explain why the results gained from this algorithm contradict those found

by some other researchers.

In Chapter 4 the work on the use of Poincaré maps for pitch marking is presented. This novel

piece of work uses a standard nonlinear processing technique as a simple and effective way to

mark pitch synchronous points in a speech signal. It is concluded that the algorithm is effective

when applied to simple stationary signals, and gives promising results for real, continuous,

speech.

Chapter 5 deals with synthesis by the locally linear model. The algorithm as developed by

Banbrook is described and its performance is evaluated. It is shown that the technique produces

natural–sounding speech, but that pitch modification as proposed by Banbrook is not realistic.

A possible new method for pitch modification is proposed, based on an examination of pitch

variations in real vowel sounds. This is shown to work in principle, but fails when used in

conjunction with the locally linear model. Therefore, it is concluded that this method is limited

as a speech synthesis technique.
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Chapter 6 begins the discussion of the radial basis function approach to synthesis. Other ex-

isting neural network speech synthesisers are reviewed, and then the RBF structure used for

synthesis is described in detail. It is shown that the lack of stability in the output signal is the

major problem with this technique. Various methods are used to investigate the stability of the

network, and it is concluded that the RBF network model is more nonlinear than the original

speech data, making it extremely sensitive.

In Chapter 7 regularisation theory is introduced to solve the stability problem in the RBF net-

work, allowing stable resynthesis. The results of the RBF synthesis of vowel sounds, compared

to the original speech and a linear prediction synthesiser, are presented. The use of the RBF

synthesiser for pitch modification is then examined. A basic concept involving interpolation

between sets of parameters derived from models at varying pitch levels is proposed. The chapter

concludes with some simple experiments which show this method may be valid, although no

way of effectively implementing it was found.

Finally, in Chapter 8, the main contributions of the thesis are highlighted, and areas for possible

further work are suggested.
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Chapter 2
Background to speech synthesis

2.1 Introduction

Text to speech synthesis is a complex task that aims to convert the written word into naturally–

sounding speech. While working systems that produce intelligible speech have existed since the

1970’s, the final aim of producing a synthesiser that is indistinguishable from a human speaker

has still to be realised. There remain a number of problems at all stages of the process, including

the actual generation of the speech signal itself with the required intonation. Improving this last

stage is the motivation behind this work.

After a brief introduction to phonetics, which aims to define much of the vocabulary required to

describe the various forms of speech sounds that will be encountered in the thesis, this chapter

will concentrate on an overview of text to speech (TTS) synthesis. The various components

required to build a working text to speech synthesiser are discussed in general, and then the

twin tasks of speech signal generation and the imposition of intonation or prosody onto this

signal are discussed in more detail.

2.2 A description of speech

The field of phonetics includes the study of speech production and the acoustics of the speech

signal, and provides a way to effectively describe speech.

2.2.1 Articulatory phonetics

Speech signals are produced by the process of air being expelled from the lungs and travelling

through the vocal tract. The resulting sound pressure wave radiates out from the lips. The

various speech organs are shown in Figure 2.1 and, according to their positioning, a large

variety of sounds can be produced. In order to discuss these sounds unambiguously, they are

categorised into a series of distinct types according to how they are produced.
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Figure 2.1: The speech organs (after [1])

Voicing

The larynx is at the base of the vocal tract and mainly comprises two bands of muscle and tissue

called the vocal cords or folds. All air from the lungs must pass through the vocal folds, and

they can impede its passage to a greater or lesser extent. In terms of speech production, the

vocal folds can operate in three ways:

� vibrating in a pseudo–periodic manner to create voiced sounds. The frequency of this

vibration is called the fundamental frequency, and corresponds to the tone heard by a

listener which is called pitch1;

� not vibrating for unvoiced sounds;

� stopped closed to produce a glottal stop, the glottis being the gap between the vocal

cords;

1These terms are often used interchangeably due to their close correspondence [8].
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Interference in the vocal tract

The different articulatory organs (e.g. tongue, lips, soft–palate) in the vocal tract can be posi-

tioned so as to modulate the flow of air through the tract in different ways.

1. Closure. As well as the glottal stop, the vocal tract may be closed at other places such

as at the lips, or between the tongue and hard palate. If the velum is lowered, then air

can flow out through the nose creating a nasal sound. However, if it is raised (as is more

normal in English), there is no way for the air to escape. Therefore the pressure in the

vocal tract increases, and when the closure is removed the air bursts out creating a plosive

sound.

2. Narrowing. If rather than completely closing the vocal tract, two speech organs are in-

stead brought close together, then the air flow past them becomes turbulent and produces

fricative sounds. The narrowing can occur at any point in the vocal tract.

3. Open. With the speech organs sufficiently open so that no turbulence is produced in the

air flow, vowel sounds are generated. These sounds are always voiced, and it is mainly

the position of the highest part of the tongue that determines the vowel produced. This

leads to a widely used description in which vowels are specified according to which part

of the tongue is highest (front, central, back) and how high it is (close, mid, open).

Phonetic symbols

The International Phonetic Association (IPA) has produced a set of phonetic symbols to define

all of the individual speech sounds (called phonemes) in terms of their place of articulation. For

vowel sounds, the above description of tongue position is used. The IPA vowel chart is shown

in Figure 2.2, and provides an alphabet of all vowel sounds by place of articulation.

2.2.2 Acoustic phonetics

Now it is necessary to consider how the actual speech waveforms themselves can be linked to

the description of sounds explained above, which is based entirely on the mechanics of their

production.

Figure 2.3 shows the time domain and frequency spectrum of the voiced part from the word

7



Background to speech synthesis

Front Central Back

Close

Half-close

Half-open

Open

PSfrag replacements

i

e

�

æ

a

y

%��
�

œ

Œ

�

�

�

�

�

	




�

�

#



�

�

u

o

�

"

Figure 2.2: The IPA vowel chart, showing vowel phonetic symbols according to tongue posi-
tion.

“hart”, corresponding to the vowel / � /. All of the transition from and to the other unvoiced

sounds has been removed. The spectrum, which is limited to 4 kHz, shows a number of peaks

at differing levels. These are due to the pseudo–periodic excitation signal and the subsequent

modulation by the vocal tract. The first peak, at approximately 230 Hz, is at the fundamental

frequency and the other peaks are harmonics of this. There are also areas of higher energy

within the spectrum, corresponding to the resonant frequencies of the vocal tract. These are

called formants, and are labelled incrementally F1, F2, F3, etc. In the frequency range shown,

three formants are visible at approximately 700 Hz, 1300 Hz and 2700 Hz. Formant frequencies

provide a useful method to characterise vowels acoustically, since they depend upon where the

vocal tract is constricted and by how much – i.e. tongue position [14]. There are at least five

formants present in a typical vowel, but in terms of using them for specification, only the first

two or three are required. The most common representation is the two–dimensional formant

chart, in which the first formant (F1) is plotted against the second (F2). Figure 2.4 shows the

position of ten vowels on this representation, using average male values of F1 and F2 (from a

study by Peterson and Barney [2]). Clearly there is considerable similarity between the position

on the formant chart and tongue position as used in the IPA system, thus together giving a useful

system for the specification of vowel sounds.

8



Background to speech synthesis

A
m

pl
itu

de

Time Domain

Time (s)

–0.5

0.2

0

0.050

Frequency (Hz)
0 4000

So
un

d 
pr

es
su

re
 le

ve
l (

dB
/

H
z)

–20

0

20

40

60

80

0 500 1000 1500 2000 2500 3000 3500 4000

Spectrum

Figure 2.3: Time domain and spectrum of the vowel part of the word “hart”.

0

200

400

600

800

1000
5001000150020002500

Fi
rs

t f
or

m
an

t (
H

z)

Second formant (Hz)

PSfrag replacements

i

%

�

æ

�

�

�

#

u

�

Figure 2.4: Formant chart for average male vowel sounds using data from Peterson and
Barney [2].

9



Background to speech synthesis

0 0.5 1 1.5

0

0.15

–0.1

A
m

pl
itu

de

Time (s)

Fe
qu

en
cy

 (
H

z)

Time (s)
0 0.5 1 1.5

0

1000

2000

3000

4000

Figure 2.5: Time domain and spectrogram of the utterance “parsnip soup has been served”.

2.2.3 Nonstationarity

Up until now only single units of speech (phonemes) have been considered. Obviously in

real connected speech, these units will be joined together to produce words and sentences.

The durations of the individual sounds will be short, meaning that normal spoken speech is

highly nonstationary. It consists of many transitions from silence to speech, between different

phonemes, and back to silence. This is clearly seen in Figure 2.5, which shows the time domain

and spectrogram of the utterance “parsnip soup has been served”. A spectrogram is a plot of

time against frequency, with the energy at any particular time–frequency instant given by the

intensity at that point. As well as demonstrating nonstationarity in the signal, the spectrogram is

also useful for observing the formants during the vowel sounds, seen as dark horizontal bands.

2.3 Overview of TTS systems

A text to speech synthesis system must perform the task of converting an input text stream

to speech. This is extremely difficult, especially since the text does not contain all of the

information required for it to be rendered as speech. In particular, intonation – the information

10
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on how to say the words – is inadequately specified [15]. In any system there are two main

stages. The first is a textual and linguistic analysis, which provides a detailed description of

exactly what sounds are required and the intonation, or prosody, to go with them. This is

passed to the second speech generation stage, which produces the actual synthesised speech

signal.

The various methods for speech signal generation, which are the main area of interest in this

thesis, are described in detail in the next section. However, it is useful to first examine in

general terms the higher level processing required to reach the generation stage. Further detail

can be found in existing speech synthesis review articles, such as [16–18]. Figure 2.6 shows a

flowchart of the various stages in a complete TTS synthesis system.

2.3.1 Text preprocessing

The input text is initially segmented into paragraphs, then sentences, then words. Simultan-

eously, any ambiguous structures must be resolved. These will include abbreviations, numbers

and dates. This task becomes more difficult as less restrictions are placed upon the structure of

the input text. A classic “free text” example would be the TTS conversion of an email, which

would require processing of the header to extract the sender’s name and other details, as well

as being able to deal with a huge variety of styles in the message text itself.

2.3.2 Pronunciation

The pronunciation of each word in the text is computed at the next stage. In languages where

words are pronounced exactly as they are written, a simple letter–to–sound rule approach can

be used. Other languages, including English, which can have very different pronunciations

compared to the spelling of words, must use a different method. Some form of dictionary is

useful, but this can not cover all the words in a language in practice. Hence a morphological

analysis is often used to break the word down into its component parts. The pronunciation of

these can then be computed, possibly with the aid of a more limited dictionary.
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Figure 2.6: Overview of the steps in the TTS synthesis process.
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2.3.3 Syntactic analysis

It is now necessary to consider how the words fit together as phrases and sentences, so as to

generate the sentence structure. This will be used to compute the prosody. The first step is

called tagging and involves defining which syntactic category each word belongs to (e.g. noun,

verb, adjective). Then a syntactic parser is used to build up a representation of each sentence

structure. This aims to identify phrases, which phrases are linked, and how they are linked

within a hierarchy [18]. Using this information a decision can be made about the accentuation

to assign to each part of each phrase.

2.3.4 Prosody generation

Prosody concerns variations in pitch, duration and volume which affect the perception of many

features in speech including tempo, rhythm, accentuation and emphasis [19]. Thus at this stage

the interest is not so much what is being said, but more how it is being said. An example of the

need for correct prosody is shown by the phrases “It’s in the box.” and “It’s in the box?”. The

first is a statement, and a human speaker would normally give fairly level emphasis over the

whole phrase. The second is a question, which is often characterised by rising pitch at the end

of the phrase, with perhaps added emphasis on the word “box”. Using the results of the previous

linguistic analysis, the prosody generator computes a pitch contour, segmental durations of the

individual sound units, and changes in volume. Volume changes are easy to impose at a post–

processing stage, and have also been identified as being perceptually the least important part of

prosody [20], so more emphasis is placed on the duration and pitch computations.

Segmental durations

The duration of the individual sound segments is dependent upon a number of factors including

the actual segment in question, whether the syllable of which it is a member is stressed or

accented, and the position of the syllable in the phrase. Various models for segmental duration

have been proposed (see for example [21–23]), using a segmented and labelled database that

has a wide coverage of the unit sounds in a variety of linguistic situations.
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Pitch contour

Pitch changes are not restricted to within single sound segments, but act more as a trend across

a complete phrase. For this reason, a pitch contour that specifies pitch across whole phrases

is used. Generating this contour involves selecting maximum and minimum pitch levels for

the speaker in question and then setting appropriate pitch values according to the pre–defined

accentuation of the phrase. Following this, the F0 contour is produced by interpolating between

these values, with some additional smoothing [17].

2.4 Speech signal generation

Once the information about the speech segments to be synthesised and the prosody model

has been generated, the final stage of the TTS system is to produce the synthesised speech

signal. The main approaches to this task depend on the type of modelling used. This may

be a model of the speech organs themselves (articulatory synthesis), a model derived from the

speech signal (waveform synthesis), or alternatively the use of pre–recorded segments extracted

from a database and joined together (concatenative synthesis).

2.4.1 Articulatory synthesis

Modelling the actual speech organs is an attractive approach, since it can be regarded as being

a model of the fundamental level of speech production. An accurate articulatory model would

allow all types of speech to be synthesised in a natural manner, without having to make many

of the assumptions required by other techniques (such as attempting to separate the source

and vocal tract parts out from one signal). The main steps in an articulatory model are: a

source model for the vocal cord vibration; a saggital function to model the vocal tract in two

dimensions; an area function for the third vocal tract dimension; a lip model to determine the

shape of the lips [24]. These will be interlinked in practice, but are considered separately in the

following.

The vocal fold vibration may be modelled by a two or more mass model, in which the movement

of the vocal cords is simulated by masses coupled by springs, e.g [25, 26]. The coupling factor

is nonlinear in order to take into account known nonlinear stretching properties in the larynx.

An alternative approach simulates the glottal flow with a model based on the Navier–Stokes
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Figure 2.7: The 7 parameters used in Maeda’s vocal tract model, showing possible movement
directions for different sounds.

equations, again resulting in a nonlinear model [27].

Using X–ray data taken during speech production, cross–sections of the vocal tract for different

speech sounds are obtained. These are used to build up statistical models of the vocal tract,

such as that produced by Maeda [28]. Average values for each of the following parameters

are calculated for each phoneme: lip protrusion, lip height, jaw, tongue body, tongue dorsum,

tongue apex, larynx height, as shown in Figure 2.7. To this cross–section, a third dimension

is added to create an area function. The transformation from the cross–section to the area

function is achieved via a look–up table, which is derived from, for example, a cast of the vocal

tract [29].

Lastly a lip model, defining the lip shape and area is included. This ensures that the lip area is

a realistic size for the speech sound being produced, and may also be used in visual synthesis

of lip movement.

It will be evident from the above that realistic articulatory synthesis is an extremely complex

process, and that the data required is not at all easy to collect. As such, it has not to date found

any commercial application and is still more of a research tool, although it may be that this

technique will ultimately provide the best solution to speech synthesis.

15



Background to speech synthesis

2.4.2 Waveform synthesis

Waveform synthesisers derive a model from the speech signal as opposed to the speech organs.

Generally this means attempting to model the resonant frequencies of the vocal tract in terms

of poles in a filter or bank of filters. This is then excited by some source excitation model.

Sometimes zeros are also included in the vocal tract filter to model the effects of the nasal

cavity. This approach is derived from the linear source–filter theory of speech production [30],

which is illustrated in Figure 2.8 for the case of a vowel sound.
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Figure 2.8: The linear source–filter theory of speech production.

In this model, the source is modulated first by the vocal tract resonances, then by the lip radi-

ation model.

Perhaps the simplest form of waveform synthesis is based on linear prediction (LP) [31]. Here

the above model is further simplified by combining the spectral characteristics of source, vocal

tract and lip radiation into one filter. The current synthesised output �
��
 � is found from a linear

combination of previous outputs and the current input [32]:

� ��
 � �
��
����� �

� � ��
��	� ��
 � ��
 � (2.1)

where there are � filter coefficients � � . � ��
 � is the current input sample, which is a Dirac pulse

train for voiced speech, or white noise for unvoiced speech. This model is shown in Figure 2.9.

The resulting quality is extremely poor for voiced speech, sounding very robotic. However,

interestingly, it has been found that this method of generating unvoiced speech using a white

noise source is perceptually almost identical to the original [33].
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Figure 2.9: The linear prediction speech model.

Formant synthesis uses a bank of filters, each of which represents the contribution of one of the

formants. The two basic structures are cascade and parallel, as shown in Figure 2.10.
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(b) Parallel

Figure 2.10: Cascade and parallel realisations of the formant synthesiser.

Both are based on the same underlying theory, but when implemented the cascade design is

better at modelling vowel sounds, whereas the parallel design is superior in the modelling of
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plosives, fricatives and nasals [8]. These synthesisers also include sophisticated glottal pulse

models and some element to represent lip radiation characteristics. The best known formant

synthesiser is the Klatt synthesiser [34], which can be operated in either parallel or cascade

mode and has been exploited commercially as DECTalk. The synthesised speech quality is

considerably greater than that of the LP method, but still lacks naturalness, even when an ad-

vanced voice–source model is used. Thus, while being highly intelligible, formant synthesisers

still tend to sound very robotic [35].

2.4.3 Concatenative synthesis

The idea behind concatenation methods is very simple, and involves joining together pre–

recorded units of speech which are extracted from a database. It must also be possible to

change the prosody of the units, so as to impose the prosody required for the phrase that is

being generated.

The construction of the database is extremely important. It must be possible to cover all the

speech segments required, and these segments must be stored in a compact manner which can

be easily and quickly accessed. Typically, a database for the English language will contain all

of the diphones as well as a selection of longer units [8]. A diphone consists of the transition

from the centre of one phoneme to the centre of another. In English, there are approximately

two thousand diphones, making this a reasonable trade–off between performance and database

size. The use of the shorter phoneme unit is not possible, as it does not contain any transient

information. Use of longer units, such as syllables, is also not possible due to the size of data-

base this would imply [35]. After labelling, which is usually performed semi–automatically,

the database is stored using some form of speech coding, such as linear predictive coding.

Ideally the database will contain more than one example of each diphone, covering different

co–articulation effects which occur at syllable level or higher. In this way a search can be

made for the best diphone among the possible selection to minimise perceptual differences

between neighbouring concatenated elements. A particular diphone is chosen so as to minimise

some criteria, such as the spectral difference between elements, or a unit concatenation penalty

(where the penalty is calculated taking into account human auditory masking properties) [36].

Having selected the most suitable diphones, the correct prosody must be imposed onto the

phrase. This inevitably causes some distortion which must be minimised. The two main tech-
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niques for prosody modification are the pitch–synchronous overlap add algorithm, and the har-

monic techniques based around a sinusoidal model. These are described in detail in the next

section.

The concatenation technique provides the best quality synthesised speech available at the time

of writing. It is used in a large number of commercial systems, including British Telecomm’s

Laureate [37] and the AT&T Next–Gen system [38]. However this technique is limited by its

reliance on a database, and the number of different types of speech example that can be stored in

it. In this respect it does not have, in theory at least, as great a potential as synthesis techniques

that use some form of parametric speech model. Although there is a good degree of naturalness

in the synthesised output, it is still clearly distinguishable from real human speech, and it may

be that more sophisticated parametric models will eventually overtake it.

2.5 Time–scale and pitch modification

As most TTS synthesis systems currently in use generate the speech signal by the concatena-

tion method, techniques for time and pitch scaling of sounds held in a database are extremely

important. Even if the upper tiers of the system are capable of producing a good phonetic de-

scription with accompanying prosody model, the output will still sound very artificial if the

imposition of the prosody model generates audible artifacts, or removes naturalness.

Two main techniques for time–scale and pitch modification in concatenative synthesis can

be identified, each of which operates on the speech signal in a different manner. The pitch

synchronous overlap add (PSOLA) approach is non–parametric as opposed to the harmonic

method, which actually decomposes the signal into explicit source and vocal tract models.

2.5.1 Pitch synchronous overlap add

The PSOLA algorithm and its variants are all based on the principle of overlap–add (OLA) syn-

thesis and the short–time Fourier transform (STFT). Although PSOLA itself does not actually

require the calculation of the STFT, it is still useful to start at this point. Any STFT and OLA

algorithm has three stages: analysis, modification and synthesis [3].
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Analysis

Analysis consists of the calculation of the STFT at successive time locations through the speech

signal. The STFT uses a window at a certain time instant which effectively restricts the Fourier

analysis to the portion inside the window, by setting the rest of the signal to zero. If the window

is of a short enough duration, the remaining signal can be considered stationary. Mathemat-

ically, given the speech signal � ��
 � and defining
� ��
 � as the analysis window, then the � th

short–time analysis signal � �.-�� � � � �"
 � around the time instant
-�� � � � is given by the multiplica-

tion of the signal and window:

� � -�� � � � � 
 � � � ��
 � � � -�� � � � 
 
 � (2.2)

and will have a short-time spectrum

� � - � � � � � 
 � �
��

) �
� �
� ��
 � � � - � � � � 
 
 � ���	� � ��
 
 
 � (2.3)

� ��
 � is a symmetric, finite duration window, centred around
- ��
 .

Modification

Some suitable modification can now be made, such as a compression or expansion of the fre-

quency axis for pitch scaling. Generally, the spectra
� �.-�� � � � � 
 � are modified to produce a

series of short–time synthesis spectra � � - � ��
 � � 
 � , which are synchronised onto a new set of

synthesis time instants,
- � ��
 � . These synthesis time instants are defined according to the re-

quired pitch and time–scale modifications, and there may be a differing number of synthesis

time instants compared to analysis time instants.

Synthesis

Finally the short–time synthesis spectra are recombined to generate the modified signal �
��
 � .

However, because of the modifications made, it is possible that the inverse STFT of � � - � ��
 � � 
 �
will not exist. What is required is the closest spectrum to � � - � ��
 � � 
 � for which the STFT does

exist. This is found, in the least–squares sense, by the overlap–add method [39], and gives the
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synthesis signal as:

� ��
 � ��� ) ��� ��
 �"
 � - � ��
 � � � ��
 � - � ��
 � �
� ) ��� ��
 � - � ��
 � � (2.4)

where ��� ��
 � 
 � is the Fourier transform of � �.- � ��
 � � 
 � , and
� ��
 � is the synthesis window,

which will have similar properties to
� ��
 � .

2.5.1.1 PSOLA analysis–modification–synthesis

Modifying the pitch implies breaking the signal into some form of source–filter structure, im-

posing changes on the source, and then resynthesising the signal. PSOLA is able to perform

this in a single, computationally efficient step, by implicitly estimating the transfer function of

the filter thanks to the use of pitch synchronous windowing. An in–depth description of the

complete PSOLA algorithm, including a discussion of this, is found in [40].

� The analysis stage decomposes the signal into the short–term analysis signals � � - � � � � � 
 � :

� � -�� � � � � 
 � � � � ��
 � � ��
 � -�� � � � � (2.5)

where
� � ��
 � is the � th analysis window, whose length is equal to twice the local pitch

period. Generally, a symmetric Hanning window is used, and the resulting short–time

signals are also referred to as PSOLA bells [41]. The analysis is pitch synchronous, with

each time instant
- � � � � being set at the glottal closure instant (during voiced speech),

corresponding approximately to the pitch onset time. In unvoiced segments the analysis

time instants are set at a constant rate.

� Modification requires the calculation of the synthesis time instants, and proceeds in two

steps. Time instants are computed according to the required pitch and time–scale modi-

fication, and then each synthesis time instant is associated with one or more time analysis

instants. Following the notation of Moulines [42], the analysis time instants
- � � � � give a

pitch contour function �
�.- � where

� � - � ��� � -�� � � � � -�� � � � � - � -�� � � 
�� � (2.6)

To perform pitch modification, the synthesis time instants must also be positioned pitch

synchronously, and must follow the synthesised pitch contour ��� � - � . Using a recursive
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algorithm, the synthesis pitch marks
- � ��
 � are found so that

- � ��
 
�� � � - � ��
 ��
 � � � - � ��
 � � (2.7)

with � � � - � ��
 � � being approximately � � � times the pitch of the original signal around that

time instant, where
�

is the required pitch modification factor. Time scale modification

operates similarly in order to generate a stream of synthesis time instants, while still

preserving the pitch contour. Finally the mapping between the synthesis and analysis

time instants is calculated by taking a weighted average of the two closest short–time

signals:

� ��
 � 
 � � � � � ��� � � � � � 
 ��
 ��� � � � 
�� �"
 � (2.8)

where ��� is the weighting factor, which gives greater weight to the closest analysis time

instant to the synthesis time instant
- � ��
 � .

� In the final synthesis stage, the synthesised signal is obtained by combining together all of

the short–term synthesised signals on the series of synthesised time instants
- � ��
 � , using

OLA as in Equation 2.4. The synthesis window
� � ��
 � is set equal to that used for the

analysis window around analysis time instant
-�� � � � , where

-�� � � � maps to the synthesis

time instant
- � ��
 �

Figure 2.11 shows graphically how the PSOLA technique performs pitch modification. The

technique is reported to give good quality, natural–sounding synthetic speech for moderate

pitch and time modifications. Slowing down the speech by a large factor (greater than two) does

introduce artifacts due to the repetition of PSOLA bells. Some tonal artifacts (e.g. whistling)

also appear with large pitch scaling, especially for higher pitch voices, such as female speakers

and children.

The above method operates entirely in the time domain, and consequently is known as time–

domain or TD–PSOLA. Several variations are possible. Frequency–domain (FD) PSOLA in-

volves actually calculating the STFT for each analysis window, with modifications carried out

in the frequency domain. In principle this allows better control of the spectral envelope, al-

though it is very much more complex than TD–PSOLA. Another option is to carry out the

modifications on a linear prediction residual, giving LP–PSOLA [40, 43, 44]. Here at each

time instant, a spectral envelope is estimated and this is used to extract the excitation. After
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Figure 2.11: Pitch modification by the PSOLA technique (after [3]).

modification, the output signal is obtained by combining the modified source with the spectral

envelopes, synchronised with the synthesis time instants. Problems often occur in concaten-

ative synthesis when joining and modifying two segments extracted from different words in a

TTS database, resulting in phase, pitch and spectral envelope mismatches. A solution to this

is MBR–PSOLA (Multi–Band Re–synthesis PSOLA) [45] which resynthesises the entire data-

base to a constant pitch. This is performed once off–line, using a modification of the MBE

coder [46], and results in a database better adapted to the use of PSOLA. It should be noted that

all of the PSOLA techniques rely to some extent on the linear source–filter model of speech,

and so will inherit problems found in this model.

2.5.2 Harmonic transformation

McAulay and Quatieri developed a speech generation model that is based on a glottal excitation

signal made up of a sum of sine waves [47]. They then used this model to perform time–scale

and pitch modification [4].

Starting with the assumption made in the linear model of speech that the speech waveform � � - �
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Figure 2.12: The sinusoidal speech model (after [4]).

is the output generated by passing an excitation waveform � �.- � through a linear filter
� � - � , the

excitation is defined as a sum of sine waves of arbitrary amplitudes, frequencies and phases:

� �.- � �
��
� ��� �

� � - ����������� � � - � � (2.9)

where for the
�

th sine wave, the excitation phase � � � - � is the integral of the time–varying

frequency 

� � - � :

� � �.- � �"!$#� 
 � � � � � � 
 �	�
(2.10)

� � � - � is the time–varying amplitude,
� �

is a fixed phase offset and % is the number of sine

waves at time
-
.

The time–varying vocal tract transfer function can also be written in terms of time–varying

amplitude
$ � 
 � - � and phase & � 
 � - � as:

' � 
 � - � � $ � 
 � - � ���	�(� 
 & � 
 � - � � (2.11)

Therefore along each frequency trajectory 

� � - � , the system amplitude and phase are given by$ � � - � � $ � 
 � �.- � � - � and & � � - � � & � 
 � � - � � - � . The speech waveform is generated by passing

� � - � through the vocal tract representation, giving

� � - � �
��
� ���

� � � - �)��������* � �.- � � (2.12)

where
� � � - � � � � � - � $ � �.- � and * � � - � �+� � � - � 
 & � � - � are the amplitude and phase of each

sine–wave component along the frequency trajectory 

� � - � . This is shown in Figure 2.12.
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This model is applied to real speech by blocking the signal into overlapping frames and then

calculating the 1024 point short–time Fourier transform of each frame. Then the excitation

frequencies 

� � #�� are estimated by picking the peaks of the STFT magnitude, where # refers

to the # th frame (the variables are now dependent on # , the frame variable, rather than
-
). The

amplitude and phase,
� � � #�� and * � � #�� , of each sine wave is then given by the amplitude and

phase of the STFT at the estimated peaks.

Synthesis reverses the process, but also includes tracking of the frequency trajectories 

� � #��

from one frame to the next, since these will change. A nearest–neighbour approach which

includes a birth–death process performs this matching, allowing sine waves to come and go in

time. The amplitude and phase components are then interpolated across frame boundaries. The

final result is reported to be perceptually very close to the original for both voiced and unvoiced

speech.

In order to perform time scaling, the system parameters corresponding to the vocal tract artic-

ulators are modified so that they move faster or slower in time, and the excitation parameters

are modified to stretch or compress the frequency trajectories while maintaining the pitch. This

modifies the basic sinusoidal model as shown in Figure 2.12, to that shown in Figure 2.13. �
is the rate of change that is imposed. In this example, the rate change is fixed, but it is also

possible to have time–varying rate change by making � time dependent.
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Figure 2.13: Time–scale modification in the sinusoidal model (after [4]).

Pitch modification operates by a similar principle, with the scaling of the frequency trajectories

in the excitation function. The vocal tract model is unchanged which, as noted by Quatieri

and McAulay, does not take into account changes in the vocal tract spectral characteristics that

may occur in human pitch modification. Figure 2.14 shows the model for pitch modification

with a scaling factor
�

. Again, time–varying pitch modification is possible by making
�

time

dependent.
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Figure 2.14: Pitch modification in the sinusoidal model (after [4]).

Time scaling with a factor of 
���� � � � � , and pitch modification with a factor of 
���� � � � �
is reported to give good results without artifacts. However there is some loss of naturalness

in pitch modification, probably due to the vocal tract parameters being held constant. Some

“tonality” is also reported for large time scaling. The temporal structure of the speech is also

changed in this technique, although later work extended it to include shape invariance by in-

cluding pitch marker information [48]. A number of variations on this basic method have been

proposed, mainly based around incorporating a different, noise–like, model for the unvoiced

components, while continuing to use the harmonic model for voiced speech (e.g. [49–51]). A

limitation of all these techniques is that they use the linear model of speech as a basis.

2.6 Summary

In this chapter a brief overview of articulatory and acoustic phonetics has been presented. This

provides a framework for later discussions of speech production and the speech signal, espe-

cially concentrating on vowel sounds and their characterisation. Following this, the chain of

processes required in a text to speech synthesis system has been examined. The emphasis has

been placed on methods used to generate the speech signal and the techniques for time–scale

and pitch modification, since these are the areas of interest in this work.

Each of the three main synthesis techniques has been shown to have short–comings: the great

complexity of articulatory synthesis; the reliance on linear source–filter modelling in waveform

synthesis; the difficulty in choosing the best segments from a database in concatenative syn-

thesis, and the subsequent problems of imposing prosody without creating artifacts. Current

TTS systems do produce good quality speech, but still do not sound completely natural. Each

stage requires improvement, including the speech signal generation. Therefore, there is still a

need to search for improved synthesis techniques which can generate natural–sounding speech

with the required prosody.
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Chapter 3
Nonlinear dynamics and speech

3.1 Introduction

In this chapter, the concepts of nonlinear systems are introduced, since they will form the

backbone of the work in this thesis. Firstly the theory of dynamical systems is presented to

provide a background for subsequent work. This discussion includes chaos, reconstructing

dynamical systems from a time series, dimension, and the use of Lyapunov exponents, which

indicate if a system is chaotic.

Following this, speech is demonstrated to be a nonlinear process, giving the motivation to

pursue speech processing from this perspective. Modelling speech as a nonlinear dynamical

system is also discussed.

Finally, previous work on measuring the Lyapunov exponents in speech signals is examined.

Results on measuring chaos in speech are still contradictory, and some new work is presented

that may help to explain why this is so.

3.2 Dynamical systems

Dynamical theory provides a framework with which nonlinear deterministic systems can be

examined. Important steps in the analysis are to find the system dimension; reconstruct from

available data a representation of the system; investigate if chaos is present and determine

the predictability of the system. The theory is now well enough established that a number of

excellent tutorial papers [52–55] and books [56–58] exist, which give a thorough background

to the subject. The following will be limited to an attempt to show some basic principles and

examples which will lead on to subsequent work. For further detail, the reader should refer to

the above references.
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3.2.1 Dynamical theory

A dynamical system may be defined, for the continuous time case, by the equation:

�� � � � ��� (3.1)

where � is a vector of length
�
, defining a point in a

�
–dimensional space,

�
is some function

(linear or nonlinear) operating on � , and
�� is the time derivative of � . This system is determ-

inistic, in that it is possible to completely specify its evolution, or flow of trajectories in the�
–dimensional space, given the initial starting conditions.

Alternatively, for discrete time, the dynamical system can be defined as a map:

� ) � � � 
 � � ) � (3.2)

where ��� is again the
�

length vector, at time step



, and 
 is the operator function. Given the

initial state, �
�
, it is possible to calculate the value of �

�
for any

��� 
 .

A simple example of a map is the quadratic map:

� ) � � ��� � � �) (3.3)

where � is a control parameter. Plotting iterations of � ) � � against � ) gives the evolution of the

solution, as seen in Figure 3.1. This type of plot is known as a phase portrait. This example

also provides a stepping stone to defining the number of degrees of freedom of a system. Here

knowledge of the variable � ) completely specifies the system; hence it can be seen that a

quadratic map only has one degree of freedom. Now consider another simple system, that of

a point mass on an ideal spring, i.e. Hooke’s Law. The motion, � � - � , of this continuous time

system is given by

� � - � � � � ��� � 
 - 
 �� �



���	� 
 - (3.4)

where


 �

 �
#


 is the angular frequency of the oscillations, found from the spring constant,
�

, and the mass
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Figure 3.1: Phase portrait for the quadratic map with ����� .

of the particle, # . � � and
�� � are the initial conditions at time

- ��
 . The velocity of the system

is found by differentiating Equation 3.4:

�� � - � � � 
 � � ���	� 
 - 
 �� � ����� 
 - (3.5)

The motion and the velocity completely specify the system, so there are two degrees of freedom.

Plotting � against
�� gives the phase portrait, as shown in Figure 3.2. This plot is also called the

state space of the system, since it can be used to specify the state of the system at any moment

in time.

If the spring was not ideal, then energy would be dissipated from the system through time. This

would lead to a phase portrait of the type shown in Figure 3.3a. When all energy has been

dissipated, the particle will be at rest, corresponding to the origin of the phase portrait. Hence

this system has an attractor at the origin, since any damped (undriven) harmonic oscillator will

converge towards it. This is known as a point attractor. In contrast, the addition of some driving

force will lead to a closed curve, or limit cycle, attractor, as seen in Figure 3.3b. At this point

the no–intersection theorem should be mentioned. This defines that two distinct state space

trajectories cannot intersect, nor can a single trajectory cross itself [57]. This is due to the fact

that the system is deterministic: the location in state space defines the state of the system and

how it will evolve. If two trajectories cross, then this implies two possible system evolutions

from one point, which is impossible for a deterministic system.
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Figure 3.2: Phase portrait for a point mass on an ideal spring. Each ellipse is a state space
trajectory, associated with the amount of energy in the system.

Limit cycle
attractorPoint attractor

PSfrag replacements

����

��

(a) (b)

Figure 3.3: (a) Point and (b) limit cycle (shown in dashed bold) attractors for a harmonic
oscillator.
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3.2.2 Chaos

It is somewhat surprising to find that certain dynamical systems, with system equations not

much more complicated than the previous examples, can exhibit extremely complex behaviour.

Should only one variable be available for observation, then the resulting time series may seem

entirely random; indeed the systems responsible were often written off as random and un-

predictable. The discovery of chaos has changed this view–point dramatically. Consider the

Lorenz equations:

�� � � � � � � �
�� � � ��� 
 � � � � (3.6)
�
� � � � � ���

where � , � and � are adjustable parameters. The system (derived as a model of fluid flow)

consists of three coupled equations. By comparison to Equation 3.1, this can be seen as a

nonlinear dynamical system. It is also autonomous, in that time is not part of the description.

Plotting just one variable, such as � shown in Figure 3.4, would lead to the conclusion of

random behaviour. However, plotting the state space (i.e. � , � and � ), as in Figure 3.5, reveals

a definite structure.

0 1000 2000 3000 4000 5000 6000 7000 8000
PSfrag replacements

� (samples)

Figure 3.4: Time series from the variable � of the Lorenz system.

How can a deterministic dynamical system exhibit such behaviour? The answer lies in the
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Figure 3.5: The Lorenz attractor in 3D state space, with � ��� 	���
 , � ��������� and � � ����
 .

sensitivity to initial conditions [52]. Closer inspection of the Lorenz attractor reveals that the

trajectories in state space remain within a bounded area (the manifold), but never the less di-

verge by twisting and wrapping around each other. Thus two trajectories that are close to each

other at some time
-

will eventually become separated. Therefore, two sets of initial conditions

that are very close together to start with (e.g. to machine precision) will have trajectories very

close together in the manifold, but not identical. They will become separated, hence leading to

differing behaviour of the system. This is what is termed chaos, and attractors with this beha-

viour are often called strange attractors. How quickly the trajectories diverge is important, since

it provides a limit on the short–term predictability of the system. It is important to note that

although infinite prediction of a chaotic system is not possible, short–term prediction should be

possible to some extent. Later, Lyapunov exponents will be shown to give a measure of how

predictable a system is.

As a further example of chaos, a discrete time system is also examined: the Hénon map, de-

scribed by the equations:

� ) � � � � 
 � ) � � � �)
� ) � � � � � ) (3.7)
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Figure 3.6: The Hénon attractor, showing the divergence of trajectories, with ��� �$��� and� ��
���� .

Figure 3.7: Zooming in on the Hénon attractor, showing its fractal nature.

where � and
�

are control parameters. This example is useful, since it clearly demonstrates both

the fractal nature and sensitivity to initial conditions characteristic of strange attractors [58].

Figure 3.6 shows the phase portrait of the Hénon map. It can be seen from this how trajectories

diverge within a strange attractor. The iteration of the map was carried out twice, with the

same initial conditions, but to different machine precisions: firstly using single precision, and

then using double precision. It is clear that even after only 35 iterations there is a significant

divergence of the trajectories. Figure 3.7 shows subsequent zooms into the Hénon attractor. At

each stage of magnification a further set of self–similar lines appear. This will be true, however

many times the attractor is magnified, and is a characteristic of fractals.
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3.2.3 Dimension

In the previous section, although the number of degrees of freedom of a system has been de-

scribed, we have shied away from any mention of dimension. In terms of nonlinear dynamical

systems, there are a number of different dimensions, all of which are important and will now

be defined.

� System dimension refers to the number of variables that are required to describe the sys-

tem dynamics. This is also the complete number of degrees of freedom of the system.

In real world situations, the set of differential equations governing a system will not be

known, and may be extremely large.

� Fractal dimension covers a wide number of measures which are designed to find the

geometric dimension of the attractor. It can take a non–integer value, indicating a strange

attractor and the possible presence of chaos.

� Embedding dimension is the dimension of the Euclidean space into which a one dimen-

sional time series is projected to create a reconstruction of the system attractor.

The calculation of fractal dimension is important, since it is used to estimate the required em-

bedding dimension when performing phase space reconstruction. Consequently it has been

heavily studied, resulting in a range of different techniques to estimate its value. These include

capacity dimension (also called box–counting dimension), correlation dimension and informa-

tion dimension [59, 60].

3.2.4 Embedding

A now classic paper by Takens [61] formalises how the state space of a dynamical system can

be reconstructed from a time series of only one observed variable. This theorem states that

there will be a one to one mapping between the reconstruction and the actual attractor of the

underlying system. If the embedding is carried out in a space of dimension of at least # , where

#�� � � 
�� (3.8)

where
�

is the phase space dimension of the original attractor, then this mapping is guaranteed.

Sauer et al. [62] then extended this to show that
�

can be taken as the fractal dimension of the
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original attractor. This means that so–called invariant properties, such as Lyapunov exponents,

can be calculated from the phase space reconstruction and yet will still correspond to the actual

values of the underlying system attractor. The process of phase space reconstruction from a

single time series is called time delay embedding. It can be better explained by starting with

the case where it is possible to make # simultaneous measurements of the system, �
� - � �

� � � �.- � � �
�
� � ��� � - � � . Here

� ��� ��� � � � � � ��� � � � � � � � � ��� � � (3.9)

The measurement variables � are related to the system variables
�

by the measurement function
� , and they lie in an # –dimensional reconstruction space. With # found from Equation 3.8,

Takens’ theorem tells us that there is a one to one mapping between � and
�

.

Now consider the case where only a single measurement, � �.- � , is available. � � - � must be related

to the full system variables by:

� � - � � � ��� � - � � (3.10)

where
�

is the scalar measurement function, since the measurement only depends on the system.

Now consider the delay coordinate vector, � ��� � - � � [58]:

� ��� �.- � � � � � � - �  � � �
� � � � �.- � #  � � � � � ��� � - �  � � � � �
� � � ��� � - � #  � � � (3.11)

where  is a delay. As long as the system is invertible,
� � - �  � for any

� - �  � is a function

of
� � - � . This allows us to define

� � ��� � - � � � � ��� � - �  � � � �
�
� � � � ��� � - � � � � ��� �.- � #  � � .
Writing �

� - � � � � � - �  � � � �
� � � � - � #  � � , Equation 3.10 becomes:

� � � ��� � (3.12)

where � ��� � � � � � ��� � � �
� � � � � ��� � � . Clearly � is a special case of � in Equation 3.9, and

provides, subject to a few caveats specified by Takens, a one to one mapping between the

embedded reconstruction and the original system attractor.

In practice, forming the reconstructed trajectory matrix is relatively simple, and involves mov-

ing a window of length # through the data to form a series of � vectors. So for the discrete
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time series � )�� � � � � � � � � � � � � �
� � � � � �
� � � , the trajectory matrix
�

is:

� �

�������
�
� � � ' � �
� ��� � � �	� '
� � � � � � ' � � �
� � � � � � � � �	� ' �
� � � � � � ' � � �
� � � � � � � � �	� ' �
...

...


�������

 (3.13)

Singular value decomposition

In real systems, where noise is an issue, the reconstruction produced by time delay embedding

inherits the noise of the time series which will adversely affect the results of any subsequent

analysis. The singular value decomposition (SVD) embedding technique [63] was developed to

resolve this problem. The principle behind it is to partition the state space into two subspaces,

one containing the signal and the other the noise. As a first step, the time delay embedding

matrix
�

is formed with  � � sample and a window length of � . � will be referred to as the

SVD window length and is chosen to be much greater than the supposed required embedding

dimension. The singular value decomposition of
�

is defined by:

� � + � /��
(3.14)

where
�

is diagonal and contains the singular values � � � � � � � � � � �
� � 
 and
+

and
/

are orthogonal and contain the singular vectors associated with
�

. The singular values

are the root mean square projections onto the basis vectors, and the number of non–zero terms

should be equal to the number of active degrees of freedom of the system, although the noise

will generate extra non–zero values. However, if the last elements of
�

are much smaller

than their predecessors, it should be legitimate to discard the final columns, thus reducing the

dimension and removing noise effects [64]. Therefore the reduced trajectory matrix can be

written as:

� � � � /��
(3.15)

where
/ �

only contains the columns of
/

corresponding to the significant values of
�

.
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Mutual information and entropy

To perform a time delay embedding, the delay  between samples must be specified. An op-

timum choice will result in the phase space reconstruction being fully opened out, which will

improve any subsequent analysis. Mutual information has been proposed as a method to choose

 . The mutual information between the measurement � � , drawn from a set
� ��� � ��� , and the

measurement � � , drawn from the set
! ��� � ��� , defines the amount learnt about � � by the meas-

urement of � � . Averaging over all of the measurements gives the average mutual information

between the set of
�

measurements and the set of
!

measurements. Expressed in bits, this is

given by [65]:

����� � ! � � �
���	� 
���
���� � � � � � � ��� ��� � � 
���� � � � � � � �
�� � � � � � � � � � ��� (3.16)

where 
 ��� � � � � � is the joint probability density of measurements
�

and
!

, resulting in values
� and � . 
�� � � � and 
�� � � � are the individual probability densities for the measurements

�
and!

.
� ��� � ! � measures the dependence between the measurements

�
and

!
. Substituting for

�
and

!
with � ��
 � and a delayed version � ��
 
  � gives

���  � � �� � ) � � � � ) � ' � 
 � � ��
 � � � ��
 
  � ��� ��� �
� 
 � � ��
 � � � ��
 
  � �
 � � ��
 � � 
 � � ��
 
  � ��� (3.17)

which gives the mutual information between points separated by  . Fraser and Swinney [66]

suggest that the first minimum of the mutual information vs.  plot should be used to determ-

ine the best value of  for embedding. A justification for this is that the value used should

allow � ��
 � and � ��
 
  � to be independent enough to form a useful delay vector, but not so

independent as to be unrelated.

Mutual information is also used to estimate the entropy of a system, which can be used as

a measure of chaotic behaviour. This involves the calculation of the mutual information at

higher dimensions than the one dimensional case considered above. Following Bernhard and

Kubin [67], the following definitions are made:

� � '� ��
 � � � � ��
 � � � ��
 
  � � � ��
 
 �  � � �
�
� � � ��
 
 � # � � �  � �
�

�
represents the ensemble � ��
 �

�
� � �  � specifies the ensemble of � ��
 
 �  �
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�
� '� denotes the ensemble of vectors �

'� ��
 �

Then, given an # –dimensional vector ensemble generated (via Takens theorem) from one ob-

served output, the mutual information
� � � � #  � � � '� � between the ensemble

� � #  � and the

vector ensemble
� '� is given by:

� � � � #  � � � '� � � �
� � � ' � � ���� 
 � � � #  � � � '� ��� ��� �

� 
 � � � #  � � � '� �
 � � � #  � � 
 � � '� ��� (3.18)

This can be calculated by a recursive algorithm, such as those implemented by Fraser [68] or

Bernhard and Kubin [69].

If # is set high enough, then the mutual information value will saturate, since it has reached

the maximum value of predictable information for the chosen time delay  . Then, using two

different time delays,  � and  � , the entropy rate can be found as:

� � � � � �  � � � � '����� � � � � � �  � � � � '
	��� �
 � �  � (3.19)

where # � is the dimension above saturation. If the entropy rate is greater than zero then the

system from which it was calculated is chaotic, whereas an entropy rate of zero signifies a non–

chaotic system [69]. Additionally, the magnitude of
�

gives an indication of the predictability

of the system. The greater the entropy rate, the greater the information gain per unit time, and

hence the less predictable the system.

3.2.5 Lyapunov exponents

One way of detecting chaos that has been previously indicated is the stretching and folding of

trajectories in state space. Lyapunov exponents provide a quantitative characterisation of this

property and as such are often used as an indicator of the presence or otherwise of chaos. Es-

sentially, across the whole attractor, a positive exponent indicates the divergence of trajectories,

whereas a negative exponent indicates convergence. If both positive and negative exponents are

present then this indicates a strange attractor and chaos.

Calculating the exponents from a time series, when the system equations are not known, is a dif-

ficult process, due mainly to noise and short data lengths. Wolf [70] described a method for find-

ing the largest exponent only. However, Eckmann and Ruelle [55] and Sano and Sawada [71]

38



Nonlinear dynamics and speech

propose methods that can calculate the entire spectrum. The basic principle is to embed the

time series in order to reconstruct the local dynamics, and then consider the average growth of

small perturbations in the trajectories. If small time steps are used, then the linearised evolu-

tion of the perturbations is governed by the Jacobian, which is the linear mapping between the

trajectory tangent vectors. The exponents are then evaluated by averaging over the product of

the Jacobians along the orbit of the state space reconstruction. As such the global Lyapunov

exponents are defined as:

� � � � ���) � �
�

 �	� �� � � � )

�
� � ���

��� �


 � � � � � (3.20)

where �
� � � is the

�
th Jacobian around the

�
–dimensional phase space reconstruction.

Most subsequent work in this area has continued in this vein, with improvements such as better

approximation of the Jacobian [72], and noise–reduction for real world signals [73].

It should be noted that local Lyapunov exponents, which indicate local instabilities around the

phase space structure, as opposed to global behaviour, can also be calculated [74]. These are

discussed further in a later chapter.

3.3 Speech as a nonlinear dynamical system

Speech generation has classically been modelled as a linear system, which provides a conveni-

ent and simple mathematical formulation. However, a number of nonlinear effects are present

in the physical process which limit the effectiveness of the linear model. An improved approach

may be to view speech as a nonlinear dynamical system.

3.3.1 Speech production

Speech production is an extremely complex process. It can be described in basic terms as

follows. Air pressure is generated by the lungs and this pressure wave is modulated as it flows

through the larynx. Essentially, the larynx is made up of two almost symmetric masses known

as the vocal folds which are capable of closing completely together or, as they move apart,

creating a triangular opening called the glottis. During normal respiration and the production

of so–called unvoiced sounds, air passes freely through the glottis. When the vocal folds vibrate
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in a quasi–periodic manner then voiced sounds are produced. The frequency of this excitation

is known as the fundamental frequency. The resulting glottal waveform excites the vocal tract,

which is the region extending from the larynx to the lips. Different configurations of the vocal

tract will result in different modulations of the glottal waveform and thus produce specific

sounds [75].

3.3.2 Nonlinearities in speech

There are known to be a number of nonlinear effects in the speech production process. Firstly,

it has been accepted for some time that the vocal tract and the vocal folds do not function

independently of each other, but that there is in fact some form of coupling between them

when the glottis is open [76]. This can cause significant changes in formant characteristics

between open and closed glottis cycles. [77]. More controversially, Teager and Teager [78]

have claimed (based on physical measurements) that voiced sounds are characterised by highly

complex air flows in the vocal tract involving jets and vortices, rather than well behaved laminar

flow. Turbulent flow of this nature is also accepted to occur during unvoiced speech, where the

generation of sound is due to a constriction at some point in the vocal tract [12]. In addition,

the vocal folds will themselves be responsible for further nonlinear behaviour, since the muscle

and cartilage which comprise the larynx have nonlinear stretching qualities. Such nonlinearities

are routinely included in attempts to model the physical process of vocal fold vibration, which

have focussed on two or more mass models [25, 26, 79], in which the movement of the vocal

folds is modelled by masses connected by springs, with nonlinear coupling. Observations of

the glottal waveform reinforce this evidence, where it has been shown that this waveform can

change shape at different amplitudes [80]. Such a change would not be possible in a strictly

linear system where the waveform shape is unaffected by amplitude changes.

This highly complex process is generally modelled by the linear source–filter speech model [30].

As shown in Figure 3.8, there is a hard switch between voiced and unvoiced sounds. The glot-

tal waveform for voiced sounds is generated from an impulsive periodic signal (often a Dirac

pulse train), with period equal to the pitch period, whereas the generation of unvoiced sounds is

modelled by white noise. These signals are then applied to a slowly time–varying linear filter

whose transfer function represents the contribution of the vocal tract, followed by another filter

to represent the radiation from the lips.

In order to arrive at this simplified model, a number of major assumptions are made. These
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Figure 3.8: Linear source/filter model of speech production.

include assuming that:

� the vocal tract and speech source are uncoupled (thus allowing source–filter separation);

� airflow through the vocal tract is laminar;

� the vocal folds vibrate in an exactly periodic manner during voiced speech production;

� the configuration of the vocal tract will only change slowly;

Taking into account the evidence presented above for the nonlinearities in speech, this model

clearly has drawbacks. The assumptions made imply a loss of information which, although al-

lowing a simple, mathematically tractable, linear model to be found, means that the full speech

signal dynamics can never be properly captured. These inadequacies can be seen in practice

in speech synthesis where, at the waveform generation level, current systems tend to produce

an output signal that lacks naturalness. This is true even of concatenation techniques which

copy and modify actual speech segments, but is even more evident when an attempt is made to

linearly model speech production. This occurs because the linear model has not fully modelled

the speech signal and so cannot reproduce qualities which make the signal appear human–like,

such as pitch variability.
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Figure 3.9: Time delay embedding of the vowel /i/ in 3D space, with  ��
������ msec.

3.3.3 The nonlinear option

If instead of choosing a linear model, the nonlinear option is pursued, then it is not necessary

to make many of the assumptions that are required in the linear case. Speech is modelled as

the output of a autonomous dynamical system, which only has a low number of active degrees

of freedom. By performing a time delay embedding of a stationary vowel sound, this approach

appears justified. Figure 3.9 shows the vowel /i/ embedded in a 3D embedding space.  was set

using the mutual information approach at 0.45 msec. Examining the phase space reconstruction

from all angles in three dimensions shows that there are no crossings of the manifold, implying

a sufficient embedding according to the theory of no intersections. Therefore vowels can be

reconstructed onto some form of attractor in a low dimensional space, and so it is possible to

model them using a nonlinear dynamical approach by:

� � � � � � � � � � (3.21)

where
�

is some nonlinear mapping between a vector of previous samples � � and the next

sample � � � � . This low–dimensionality characteristic is shared by all voiced sounds, but may

not be true for unvoiced sounds, and is discussed further later. By Takens theorem, there will

be a one–to–one mapping between
�

and the underlying nonlinear system. Therefore correctly

modelling
�

implies that the dynamics of speech production have been captured.

3.4 Speech and chaos

In Sections 3.3.1 and 3.3.2, physical evidence to suggest that speech is a nonlinear process in

terms of speech production was presented. This led to a large amount of speculation about
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whether the underlying mechanism of speech has any chaotic properties.

3.4.1 Dynamical analyses of speech

One of the first pieces of work on this subject was by Tishby [81], who constructed a nonlinear

predictor based on dynamical systems. His most important finding in the context of dynamical

analysis was an estimate of the correlation dimension. This was found to be between three and

five for voiced speech, whereas unvoiced gave a higher dimension of between five and eight.

This latter estimate is, however, unreliable due to the insufficient number of samples. It also

seems that the signals analysed were not stationary, which could give misleading results.

Subsequent work does seem to generally back up these findings. Townshend reports a correla-

tion dimension for vowels of 2.9 [82] or 3.3 [10], and both Townshend and Casdagli [83] imple-

ment efficient nonlinear predictors based on modelling the local dynamics. The method used by

Casdagli can also indicate whether a system is high or low dimensional, and he indicates that

speech does appear low dimensional. Again, it would appear that continuous (non–stationary)

voiced speech was used in these analyses. However, McLaughlin and Lowry analyse stationary

vowel sounds with similar aims [84], and find a correlation dimension of three to five. Using the

false nearest neighbours technique [85], they also deduce a required embedding dimension of

seven. Additionally, the largest Lyapunov exponent is calculated (by the Wolf algorithm [70])

to be zero, indicating the absence of chaos.

Work using Fraser’s mutual information algorithm contradicts this result [67, 86]. This tech-

nique, based on information theory, estimates the optimal embedding delay time and also indic-

ates a suitable dimension in which to embed the phase space reconstruction. The results show

that an embedding dimension of three is sufficient, and indicate that the extended vowels are

chaotic through a non–integer value of correlation dimension (between one and two) and the

calculation of a positive entropy rate. This is in agreement with a study by Kumar and Mul-

lick [87], who find both a positive largest Lyapunov exponent and positive entropy, over a large

range of phonemes, including vowels.

Tokuda et al. have an on–going study of Japanese vowels. Their initial work [88, 89] fo-

cussed solely on the Japanese vowel /a/, and led to the tentative conclusion that this vowel does

display chaotic behaviour. They make use of principle component analysis (PCA) to decide

on a suitable embedding dimension, which they found to be three. They claim to have ob-
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served stretching, folding and compression of the state space reconstruction by examination of

Poincaré sections, which would indicate chaos. This is further quantified by their finding of

a positive–zero–negative Lyapunov spectrum. Finally, they calculate the fractal dimension of

speech (using the Lyapunov dimension), which is found to be between two and three. However,

as they indicate, the Lyapunov results should be treated with caution, due to possible diffi-

culties in the calculation. In particular, it would seem that the use of the Sano and Sawada

algorithm [71] may give misleading results on such real world data, as it will be adversely af-

fected by noise. Further work on more vowel sounds [90] using the method of surrogate data

again shows a high degree of nonlinearity, but does not prove chaos is present. They have also

searched for deterministic nonlinear structure in the pitch–to–pitch variations of vowels [91].

This comes to a similar conclusion to the work of Aoki and Ifukube [92], who indicated that

these variations (called jitter) may be fractal.

A separate study of fricatives found these sounds to be higher dimensional, and by calculating

the Lyapunov spectra that chaotic behaviour was present [93]. Interestingly, they used vowels

as a comparison to their results on fricatives, and here the largest Lyapunov exponent was close

to zero, indicating non–chaotic behaviour.

3.4.2 Lyapunov exponent estimation algorithm

The above summary indicates that there is still no complete conclusion to the subject of chaos

within vowel sounds. A recent study in this department by Banbrook [5] attempted to resolve

this issue, by developing a robust algorithm for the calculation of Lyapunov exponents, and

then applying this to a carefully collected database of stationary vowel sounds.

Algorithms capable of calculating the entire Lyapunov spectrum from a time series were de-

veloped in 1985 by both Eckmann and Ruelle [55] and Sano and Sawada [71]. These use an

average of the Jacobians of the local dynamics around the phase space reconstruction, but are

very susceptible to noise. A significant advance was made by Darbyshire and Broomhead [73],

which reduces noise problems by using singular value decomposition. The technique developed

in this department by Banbrook, Ushaw and McLaughlin [94], uses the Darbyshire and Broom-

head method as a basis.
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The algorithm

In this section, the algorithm proposed by Banbrook, Ushaw and McLaughlin is described in

some detail, since it forms the basis of a synthesis technique to be discussed later. A complete

description is to be found in [5].

As with all Lyapunov exponent estimation techniques, the algorithm is complex. To produce

correct results, it relies on the appropriate choice of a number of parameters, which must be de-

termined experimentally. Figure 3.10 shows an overview of the functionality of the algorithm.

As can be seen, the process can be broken down into a number of distinct steps, which are

described below.

1. Embedding The speech signal is embedded into
�
–dimensional state space using SVD

embedding.

2. Choose neighbourhood The practical method to calculate Lyapunov exponents from ex-

perimental data involves constructing a
�
–dimensional hyper–sphere containing a set

number of points in state space, and then observing the evolution of this hyper–sphere.

The hyper–sphere is constructed by finding a sufficient number of points within the loc-

ally linear space around a chosen point, � � , and this forms the neighbourhood vector set
� � . A check is made that points within

� � are not false nearest neighbours, by ensuring

that they evolve along suitable trajectories. Now the neighbourhood matrix
� � can be

formed as

� � �

�������
�

� � � � �

� � � � �

...
��� � � �


�������

 (3.22)

where � ) is the



th entry of
� � . It is necessary to reform this matrix after a number of

steps, � , since the points will become so far separated as to break the assumption of local

linearity. The choice of this parameter, called the number of evolve steps, as well as the

number of points in the hyper–sphere, must be made experimentally.

3. Calculate tangent map If the step between
� � and the evolved neighbourhood matrix,� � � � , is small enough to be considered locally linear, then the eigenvalues of the tangent

map between the two matrices will give the Lyapunov exponents. The tangent map,
* � ,
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defines the linear transformation between
� � and

� � � � :

� �� � � � * � � �� (3.23)

The evolved neighbourhood matrix
� � � � is constructed as per

� � , but the neighbourhood

vector
� � � � contains points � steps on from

� � . Equation 3.23 can be solved for
* � by

writing

� �� � � � � � * �� (3.24)

where
� �� is the pseudo–inverse of

� � , calculated by singular value decomposition (see

Appendix A).

4. Average exponents The tangent map
* � gives a description of the local system dynamics.

In order to calculate the global dynamics, a series of these tangent maps across the whole

phase space structure needs to be combined together. This is achieved using the QR–

factorisation technique, which allows any matrix � to be written as

� ����� (3.25)

where � has orthogonal columns and � is a square upper–right triangular matrix with

positive values on the diagonal. This allows the global Lyapunov exponents to be calcu-

lated as [55]:

� � � � � �) � �
�


)
�
� � � � � � � � � � � � � � � � � (3.26)

where �
�

is the
�

th � matrix, corresponding to the
�

th tangent map, and



is the total

number of tangent maps.

As mentioned above, there are a number of parameters that must be selected in order to obtain

correct results from the algorithm. These are:

� number of points in hyper–sphere, which should be as large as possible without breaking

the assumption of local linearity;

� embedding dimension. This is indicated by other (e.g. correlation dimension) methods,
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Figure 3.10: Overview of the Lyapunov exponent estimation algorithm by Banbrook et al.
(after [5]).
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but must be experimented with;

� size of SVD window, in order to remove any noise present;

� re–initialisation delay. This is a trade–off between a large number of steps which will

show greater change, against the fact that the neighbourhood will become very dispersed

and no longer be locally linear;

� total number of tangent maps, which should be as large as possible, but involve at least

one revolution of the phase space reconstruction;

� number of data points, which also should be large so as to adequately fill the areas of

state space covered by the reconstruction.

The problem of how to select appropriate values is discussed later.

The algorithm has an additional noise–reduction feature. This involves a different formulation

of the
� � matrix, which allows an averaging operation to be performed [94]. Experiments on

noisy Lorenz data show a considerable improvement in the estimation of the positive Lyapunov

exponent using this technique [5].

The data

In normal connected speech, the time that an individual vowel is sustained is typically very

short. For an accurate calculation of the Lyapunov exponents, long data lengths are required,

which means that normal spoken speech is unsuitable. Therefore a database of extended vowel

sounds was collected. This involved words being spoken in ‘consonant–vowel–consonant’

(CVC) format, with the vowel being sustained for approximately two seconds. During this

period both pitch and amplitude were kept as constant as possible.

Fifteen subjects were recorded, ten male and five female. Each subject read sixty utterances,

which consisted of twelve different words each repeated five times. The subjects were requested

to extend the vowel portion of each utterance, which was the only part recorded. The recordings

were made at 22.05 kHz, with 16 bit accuracy. Manual checking was carried out to ensure that

the signals were indeed stationary. Following this, the position of the vowels on a formant chart

was examined, and any ambiguous cases were discarded. Table 3.1 shows the CVC utterances

that were recorded.
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1 heat (/i/) 11 head (/ � /) 21 hut (/ � /) 31 caught (/ � /) 41 hart (/ � /) 51 hot (/� /)
2 hart (/ � /) 12 hot (/� /) 22 heat (/i/) 32 head (/ � /) 42 hut (/ � /) 52 caught (/ � /)
3 hut (/ � /) 13 caught (/ � /) 23 hart (/ � /) 33 hot (/ � /) 43 heat (/i/) 53 head (/� /)
4 heat (/i/) 14 head (/ � /) 24 hut (/ � /) 34 caught (/ � /) 44 hart (/ � /) 54 hot (/� /)
5 hart (/ � /) 15 hot (/� /) 25 heat (/i/) 35 head (/ � /) 45 hut (/ � /) 55 caught (/ � /)
6 hit (/ � /) 16 hat (/æ/) 26 hurt (/ ��� /) 36 hoot (/u/) 46 hood (/ � /) 56 hate (/e � /)
7 hood (/ �
	 /) 17 hate (/e � /) 27 hit (/ � /) 37 hat (/æ/) 47 hurt (/ ��� /) 57 hoot (/u/)
8 hurt (/ ��� /) 18 hoot (/u/) 28 hood (/ � /) 38 hate (/e � /) 48 hit (/ � /) 58 hat (/æ/)
9 hit (/ � /) 19 hat (/æ/) 29 hurt (/ ��� /) 39 hoot (/u/) 49 hood (/ � /) 59 hate (/e � /)
10 hood (/ � /) 20 hate (/e � /) 30 hit (/ � /) 40 hat (/æ/) 50 hurt (/ ��� /) 60 hoot (/u/)

Table 3.1: The CVC utterances recorded, after [7]. The underlined portions indicate the vowel
sounds that form the stationary vowel database (with corresponding IPA phonetic
symbols).
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Figure 3.11: Choosing parameters for Lyapunov algorithm: Exponents for variable SVD win-
dow length (vowel / � /) and variable local embedding dimension (vowel / � /).
Other parameters are ��
�
 neighbours; ��
 vectors in each neighbourhood set;��
�
$
 iterations of � evolve steps each (after [5]). The exponents are expressed in
bits/sample.

Results

The Lyapunov exponents were calculated for two of the subjects in the database over a wide

range of values of the parameters described above in order to arrive at the best estimates for use

in the full analysis. Figure 3.11 shows how the exponents vary for varying SVD window length

and local embedding dimension for the male speaker PB. Here the stability of the results for

SVD window lengths above approximately 40 samples led to the choice of 50 samples for this

parameter. The local embedding dimension was chosen as three, since the first two exponents

show little change for dimensions above this. This analysis was applied to all parameters in

order to arrive at the final set of values. Using these values, the entire database was analysed.

Typical results are presented in Figure 3.12, here for the vowel / % /. These show the Lyapunov
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spectra averaged by speaker and by repetition through the database. The average value in all

cases was found to be one zero and two negative Lyapunov exponents, leading to the conclusion

that the data is not chaotic [5]. This result is unchanged by any increase in local embedding

dimension, which was increased from three through to seven without any other significant ex-

ponents appearing.

3.4.3 Further Lyapunov exponent analysis

The results described above which find that vowels are not chaotic directly contradict the find-

ings from a number of other papers, who maintain that these signals do exhibit chaotic beha-

viour. In a novel, subsequent analysis, the above technique was applied to extended vowels

from a different database1, which has previously been studied using nonlinear analysis tech-

niques based on the mutual information, which measures the entropy rate of the nonlinear

system [67]. This study had found chaotic behaviour in these vowels.

Figure 3.13 shows the results obtained on an example of the vowel /i/ for variable SVD win-

dow length and local embedding dimension, respectively. Identical trends to those found by

Banbrook are observed, indicating that his results are not dependent on a specific database. For

SVD window lengths of above 40 samples, the exponents show little change, indicating stable

results. This is in keeping with the value of 50 samples used in the previous analysis. There is

1Thanks to G. Kubin and H. P. Bernhard of the Vienna University Of Technology, Austria, for allowing us the
use of their database.
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Figure 3.13: Lyapunov exponents (in bits/sample) for the vowel /i/ from the University of Vi-
enna database: variable SVD window length and variable local embedding di-
mension. Other parameters are ����
 neighbours; �$
 vectors in each neighbour-
hood set; ��
�
�
 iterations of � evolve steps each.

also no significant change in the first exponent beyond a local embedding dimension of three,

which again correlates well with the previous results. Applying the logic used by Banbrook [5],

this would lead to the conclusion that the Vienna database does not exhibit any chaotic beha-

viour, since there is no positive exponent found for the parameter set used (SVD window length

of 50; local embedding dimension of 3). However, for shorter SVD window lengths, implying

less noise reduction, a positive exponent is seen. Hence it is important to consider what effect

the process of singular value decomposition may have on the results.

3.4.4 Effects of singular value decomposition

The Lyapunov exponent estimation algorithm as developed by Banbrook et al. relies on the use

of SVD to help reduce noise present on the signal. While it has been demonstrated that this

gives good results on artificial data such as Lorenz [95], some concern has been expressed that

valid parts of the signal may also be removed by this process when applied to speech.2 This

would then alter the values of the Lyapunov exponents that are calculated subsequently, and

so could mask the presence of chaos. In an effort to resolve this issue, some novel work was

carried out to investigate the effects of SVD on voiced speech signal characteristics.

As explained previously (Section 3.2.4), given the singular value decomposition of the embed-

2Private communication with G. Kubin of Vienna University of Technology.
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ding matrix
�

:

� � + � /��
(3.27)

the reduced trajectory matrix corresponding to the
�

most significant values of
�

can be written

as:

� � � � / �
(3.28)

It is this matrix
� � that is used in the subsequent analysis, so it is now necessary to question

whether any important dynamical information has been lost when discarding the other less

significant values. Figure 3.14 shows a comparison of time delay and SVD embedding for the

vowel / � /. Some noise reduction can be seen in the SVD case, resulting in a smoother phase

space reconstruction, but it is very difficult to assess the quality of the signal.

Figure 3.14: Comparison of time delay (  � �

 samples) and SVD embedding ( � � ��


samples) for the vowel / � /.

For this reason, it is necessary to return back to the time domain where speech–specific charac-

teristics, such as pitch and formant structure can be examined.

As can be seen from Equation 3.27, the elements of
�

can be expressed as:

� � � �
�
�
�

�
��� �

� � ��� ��� � � � 
 � � � % � 
 � 
 � � � (3.29)

where % is the data length. In forming
� � , all �

)
,

 � � �

, were discarded, so the SVD
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processed trajectory matrix can be written as:

�� � � �
�
�
�

�
��� �

� � � � � � � � � 
 � � � % � 
 � 
 � �(� (3.30)

Note that the dimensions of
��

are the same as that of
�

and not
� � . Since the time delay  

between subsequent values in
�

is one sample, the SVD processed one dimensional time series
�� can be formed from the column vector

�� � � � 
�� � � % � . It is now possible to carry out a

direct comparison between the original time series � and the SVD processed time series
�� .

Twenty–four signals were extracted from the stationary vowel database collected for the Lya-

punov analysis [5], consisting of two male and two female speakers pronouncing two examples

each of the three cardinal vowels /i/, / � / and /u/. The above SVD process was then applied to

the data to produce a set of SVD processed signals suitable for comparison with the originals.

An SVD window length of � � ��
 samples was used. Across all the signals, it was found that

the time structure was not significantly altered, and that the pitch was unchanged. However,

examining the frequency spectra shows that the higher frequencies do undergo some attenu-

ation. Figure 3.15 shows an example of an original time domain signal and the resulting SVD

processed signal for the vowel /i/ for a male speaker. It is evident that the general structure is

preserved, although some fine detail has been removed. The vertical lines are pitch markers,

indicating the moment of glottal closure, so giving the instantaneous pitch. These are identical

in both signals, indicating that the pitch has not been altered. In Figure 3.16, the attenuation

of the higher frequencies is clearly demonstrated over the three vowels, /i/, / � / and /u/. In this

figure the spectral envelope, rather than the full spectrum, for each example is shown. This is

for reasons of clarity, since it allows the general trend to be easily observed; in contrast a com-

parison of the Fourier spectra is difficult, since it is very cluttered. The spectral envelopes were

calculated by the autocorrelation linear prediction method, using the estimate
��� � 
 � � [96]

to give a model with twenty–six poles. It is immediately apparent that the spectral structure

has been retained, but that it is attenuated, and that this attenuation increases with frequency.

Table 3.2 shows the average attenuation of the first four formants for each of the three vow-

els studied in the database, and demonstrates that the trends seen in Figure 3.16 are consistent

across the whole database.
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Figure 3.15: Comparison of original (top) and SVD processed (bottom) time domain signals
with pitch markers for the vowel /i/ for male speaker MC, showing the preserva-
tion of time and pitch structure.

Vowel F1 Attn F2 Attn F3 Attn F4 Attn

(dB) (dB) (dB) (dB)

i 1.0 14.1 16.5 17.8

� 0.1 15.3 23.4 24.0

u 0.8 12.5 15.9 20.2

Table 3.2: Average attenuation of the formants F1–F4 for the vowels /i/, / � / and /u/ over the

database.

Given that this attenuation of the higher frequencies takes place, it must now be considered

how this could affect any subsequent dynamical analysis, such as the calculation of Lyapunov

exponents. If SVD is not used then noise may remain on the signal, and this may produce

the artifact wherein a positive Lyapunov exponent is found which is in fact zero [73]. The

SVD process has been shown to alleviate this problem, thanks to its noise reduction properties,

for theoretical (e.g. Lorenz) systems [95]. It would appear that it is extremely difficult to

find a middle–ground between these two in real world applications: with a Lyapunov analysis

of speech not using SVD, the system can never be guaranteed to be noise–free. However,

employing SVD does attenuate the higher frequencies, and this may imply the loss of some
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Figure 3.16: Comparison of LP spectra for the vowels /i/, / � / and /u/ for male speaker PB. In
all cases, the upper curve is the spectral envelope of the original signal and the
lower the SVD processed signal.
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important higher frequency information. It is argued that the best currently available Lyapunov

exponent calculation techniques have been used. Neither method can give a definite answer

to whether the largest Lyapunov exponent is zero, or slightly positive, but taking into account

their known limitations, it would seem clear that if voiced speech is at all chaotic, then it is

extremely weakly so.

3.5 Conclusion

This chapter has introduced the field of nonlinear dynamical theory, including the concepts

of chaos and how to measure it. The traditional model of speech production has been shown

to have a number of short–comings and a nonlinear system has been proposed as an alternat-

ive. The problem of whether speech (especially vowel sounds) is chaotic has been examined

through discussion of previous studies, and some new work has been presented which may

help to explain why contradicting results have been found. In terms of speech synthesis, it does

not seem that the presence or otherwise of chaos in speech is particularly relevant. The fact

that speech can be reconstructed on to a low–dimensional attractor implies that a nonlinear dy-

namical system can be built to model the dynamics, and thus produce high quality synthesised

sounds.
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Chapter 4
Poincaré pitch marker

4.1 Introduction

The nonlinear techniques presented up until this point have been mainly concerned with speech

analysis, in order to discover possible chaotic behaviour in vowel sounds. In this chapter nonlin-

ear dynamical theory is turned towards the use of Poincaré sections to mark the glottal closure

instants (GCI) in voiced speech. This new technique demonstrates the practical use of non-

linear methods in solving real speech processing problems, and also provides a stepping stone

towards speech synthesis, since many synthesis systems require these pitch markers in order to

carry out pitch modification.

4.2 Epoch marking

Pitch measurement has been a pervasive issue in speech processing for a number of years,

as knowledge of the pitch finds use in many applications. In particular, instantaneous pitch

detection, also called epoch detection, is very useful in speech synthesis since it provides pitch

markers every period which are used for pitch modification. There are many techniques which

can calculate an average value of pitch, as documented by Hess [97], but epoch detection is a

more demanding task. The principle of epoch marking is seen in Figure 4.1, which shows a

short section of voiced speech, with the GCIs marked, and the instantaneous pitch period,
� �

.

The requirement is to locate the instants in the time domain speech signal at which the glottis

is closed.

A variety of existing methods can be employed to locate the epochs. These include:

� Abrupt change detection [98]. Here two linear prediction models are compared. The first

is a long–term model which aims to model the long time spectral characteristics of the

speech signal. The second is a short–term model which estimates the short time charac-
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GCIGCI GCI

PSfrag replacements

� �

Figure 4.1: The principle of epoch detection, showing a voiced speech segment with epoch
markers and instantaneous pitch,

���
.

teristics. Just after a glottal closure occurs, the short–term model deviates significantly

from the long–term model, thus indicating an epoch.

� Maximum–likelihood epoch detection [99], which assumes that the difference between

the observed speech signal and that generated by an all–pole linear model of speech

production is a Gaussian process. It then searches for the maximum of the conditional

probability density function of this Gaussian process to locate the epoch.

� Dynamic programming [100], in which dynamic programming methods are used to se-

lect waveform maxima from a short–time energy–normalised LP residual. Local cost

functions are based on peak amplitude and quality, and the output is a set of epochs that

globally satisfy the cost constraints over the whole voiced region.

All of these techniques are robust and generally provide good epoch detection. However none

are perfect and errors do sometimes occur, for example in difficult areas of the speech signal

such as voiced fricatives. The novel technique presented in this chapter should not be viewed as

a direct competitor to the methods outlined above. Rather it is an attempt to show the practical

application of ideas from nonlinear dynamical theory to a real speech processing problem.

4.3 Application of Poincaré map

A Poincaré map is often used in the analysis of dynamical systems. It replaces the flow of an

–th order continuous system with an

��
 � � � –th order discrete time map [101]. Considering

a three dimensional attractor, as shown in Figure 4.2, a Poincaré section slices through the

flow of trajectories and the resulting crossings form the Poincaré map. In the example shown,
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Figure 4.2: An example of a Poincaré section, producing a (one–sided) Poincaré map.

the Poincaré section only cuts through the flow once, so that there are only crossings in one

direction (from
� � to

� �
). This results in a one–sided map, whereas if the section cuts the

flow in both directions a two–sided map is produced.

Re–examining the phase space reconstructions of voiced speech discussed in Chapter 3, it is

evident that these three dimensional structures can also be reduced to two dimensional maps.1

Additionally, these reconstructions are pitch–synchronous, in that one revolution of the phase

space reconstruction is equivalent to one pitch period. Clearly this fact can be exploited to mark

points in time separated by multiples of the pitch period using the Poincaré section. This has

previously been used for cyclostationary analysis and synchronisation [102]; here it is examined

for use in epoch marking.

4.4 New epoch–marking algorithm

The algorithm uses the principle outlined above to mark successive epochs. The basic pro-

cessing steps required for a waveform of % points are as follows:

1. Define the marker ������� as the position in the time domain signal of a known GCI.

2. Perform an SVD embedding on the signal to generate the phase space reconstruction in

3D state space.

1Strictly these phase space reconstructions are discrete time maps and not continuous flows. However it is
possible to construct a flow vector between points and use this for the Poincaré section calculation.
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3. Calculate the flow vector,
�

, at the marked point � � ��� on the reconstruction.

4. Detect crossings of the Poincaré section,
�

, at this point in state space by sign changes

of the scalar product between
�

and the vector � �
� �

����� for all � � � � % points.

5. Points on
�

which are within the same part of the manifold as � ����� are the epochs.

When dealing with real speech signals there are a number of practical issues to contend with.

Because speech is nonstationary, the input signal must be treated on a frame–by–frame basis,

within which the speech is assumed stationary. Finding the correct intersection points on the

Poincaré section is also a difficult task due to the complicated structure of the phase space

reconstruction. Because of this, additional measures are used to help locate the epoch points.

The flow chart shown in Figure 4.3 illustrates the entire process.

Display epochs and
pitch contour

Set chosen point for this frame
= last epoch from previous frame

Read next frame with
50% overlap

More
data?

Find all intersections with
Poincare section for frame

Calculate Poincare section at
chosen point for frame

No

Yes

by autocorrelation

Choose set of epochs from amoung set
of intersections using distance/windowing

location of first epoch

Calculate initial average pitch

Read initial frame and

measure, updating av. pitch at each step

Figure 4.3: Schematic of the epoch marking algorithm.

The input waveform is assumed to be a voiced sound (a voiced/unvoiced detector would be

required to pre–process the signal in order to remove unwanted unvoiced sounds in practice),

and is blocked into overlapping frames with a 50% overlap between adjacent frames. A frame

length of 35 msec is used, since voiced speech is often assumed to be approximately stationary

for 30 to 45 msec.

60
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4.4.1 Initialisation

The average pitch is used as an extra indicator of which points should be selected as GCIs, as

will be explained subsequently. In order to achieve this, an accurate estimate of the average

pitch is required. This is initially provided by the autocorrelation method [97]. A 30 msec

window forward from ��� ��� is firstly low–pass filtered and then centre–clipped to emphasise

the periodic peaks. The autocorrelation function is then calculated, and the maximum peak

within the permissible range of values (corresponding to a pitch value of between 50 Hz and

500 Hz) is picked to give the average pitch period
� �

.

4.4.2 Nonlinear processing

Each frame is embedded into 3D state space using an SVD window length of 50 samples, these

parameters being chosen from the previous Lyapunov analysis. Using SVD embedding is an

advantage in this case, since it removes any noise, making the reconstructed manifold smoother.

This in turn means that the points on the Poincaré map will be easier to process. Conversely,

the loss of any higher frequency information is not important for pitch detection. Assuming

that the location of � � ��� , the very first epoch in the waveform, is known, a Poincaré section
�

is positioned normally to this point in state space and all of the � points, � � � � � ( � � 
 � � ),

that traverse
�

are detected. In practice, these points can be found by looking for sign changes

in
' � � � :

' � � � ��� ��� � � � � �
�����
��� � � � � % (4.1)

where
�

is the approximated flow vector at � ����� , �
�

is the
�

–th reconstruction vector in the

frame of length % and ��� �
	 � is the scalar product between � and
	

. � � will contain all of

the epochs, since they are pitch synchronous with � � ��� , but other arbitrary points will also be

present, dependent upon the shape and complexity of the phase space reconstruction.

Figure 4.4 shows a snapshot of the algorithm during processing on the constant pitch, station-

ary vowel / � / spoken by a female speaker. The epochs are marked as calculated on the time

domain waveform. The left–hand–most epoch is that which was used as � � ��� . The phase

space reconstruction shows how the Poincaré section, which intersects the flow at this point,

crosses through several other parts of the manifold. This is seen more clearly on the two–sided

Poincaré map. In this case the phase space structure is relatively simple resulting in four sets of
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Time domain waveform

Poincare map

State space reconstruction

Chosen
GCI

Epochs

Arrows mark

Other
intersects

intersects

point
Chosen

Figure 4.4: Snapshot of processing of the stationary vowel / � /, showing a frame of the signal
with the calculated epoch markers (top); the two–sided Poincaré map of intersec-
tions with the phase space reconstruction (bottom left); the phase space recon-
struction with intersects indicated (bottom right).

intersection points.

4.4.3 Distance measure

The next step is to choose the correct points from � � . To do this, a distance measure,
� � is

employed, which locates the points closest to � � ��� in state space. This distance measure tracks

an intersect point � � � � � as it moves around one revolution of the phase space reconstruction,

and finds the average distance in state space of that point from the corresponding movement of
�
� ��� :

� � � �
&
� �
�

�
� � �

��� � � � ��� � ��� � � � � � � � ��� ��� (4.2)

where
� � � � 	 � is the Euclidean distance between points � and

	
in 3D state space, and � �� � � � � � & � is � � & –th of a revolution around the phase space reconstruction (in samples) at the
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local point, with local pitch period
���

seconds at a sampling rate of
� �

.
&

is typically 8 or 10 to

give a good coverage of the phase space structure. In Figure 4.4, the four sets of intersect points

can be easily separated by this technique, and the epochs correspond to the points enclosed

within the circle on the Poincaré map, since they are within the same part of the reconstruction

manifold as � � ��� . These are then marked onto the time domain waveform.

4.4.4 Windowing

In the above example, the incorrect points in � � are well separated from the actual epoch

points, and the state space distance measure can easily distinguish them. However, due to

the complexity of the reconstruction for certain voiced sounds, other parts of the reconstructed

manifold containing intersections with
�

will also pass close to � � ��� in some cases. To prevent

these points accidentally being chosen, a speech–specific windowing measure similar to that in

[103] is used. Figure 4.5 shows how this operates. The average pitch period
� �

is calculated

at the initialisation stage using the autocorrelation method as described previously, and is then

updated as each new epoch is marked. A search is then performed in a window between 
���	 � �

and ��� � � � onwards from the previously marked epoch for the closest point in � � to �
� ��� in

state space, since the pitch is not expected to vary by more than � 40% within a voiced section

[97]. The new point found is marked as an epoch and the process continues through the frame.

Once a frame has been processed, the last epoch marked is taken as � � ��� for the next frame,

and so on through the data.

4.5 Experiments on voiced speech

4.5.1 Data set

Four different data sets were used to test the performance of the algorithm, giving varying

degrees of realistic speech and hence difficulty.

1. Edinburgh constant pitch extended vowel sounds. This data set, consisting of 8 vowels

spoken by four speakers, was extracted from the database collected for the Lyapunov ex-

ponent experiments [5]. It provides the simplest test, since the utterances are stationary,

although in some cases the phase space structure is still relatively complex. Laryngo-
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Figure 4.5: Speech specific window to select epochs.

graph data is also available for comparative purposes.2

2. BT Labs rising pitch vowel sounds.3 A set of 9 vowels spoken by one male speaker. The

actual vowel remains constant, but the pitch varies, increasing by approximately 100 Hz

over the approximately 300 msec duration of the utterance. Laryngograph data was not

available in this case.

3. Keele University pitch extraction database [104]. This database provides speech and

laryngograph data from 15 speakers reading phonetically balanced sentences. From this

several examples of continuous voiced speech were manually extracted.

4. BT Labs continuous speech. 2 phrases, spoken by 4 speakers, were processed manually

to extract a data set of continuous voiced speech. Laryngograph data was also available.

In all cases the sampling rate used was 22.05 kHz so as to adequately fill the state space recon-

struction. The Edinburgh database was recorded at this rate; the other signals were up–sampled,

the BT data originally being at 12 kHz and the Keele signals at 20 kHz. All the signals have 16

bit resolution.

2A Laryngograph is a device attached to the throat that measures the impedance across the larynx, and hence
gives precise GCI information.

3Thanks to A. Lowry of BT Labs for providing this data.
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4.5.2 Results

4.5.2.1 Stationary vowels

The algorithm was found to correctly mark all of the stationary vowels considered. This is a

relatively easy exercise, since the phase space structure does not change from frame to frame.

The combination of the two measures (state space average Euclidean distance and time domain

windowing) provides a robust performance.

At this point it is worthwhile discussing a problem that arises when using the Poincaré sec-

tion technique with sampled data. Initially, even with the use of the distance and windowing

measures, a loss of synchronisation occurred during the marking of the extended vowels, mani-

festing itself as a forward shift at each epoch. This was unexpected, since the vowel sounds

were known to be stationary. The reason was found to be due to the calculation of the scalar

product when finding the Poincaré section. Referring to Figure 4.6, the scalar product detects

a sign change between �
�

and �
� � � , due to the crossing of

�
. Then, by default, the algorithm

enters �
� � � into � � and it would be chosen as an epoch. If, as in the figure, �

� � � is further away

from
�

than �
�

then a forward shift will occur, creating an accumulative error. The solution, as

used in all results reported here, is to select the point closest to the Poincaré section.

●

●

●
PSfrag replacements

�

� � � �

� �

�

�
� ���

Figure 4.6: Loss of synchronisation caused by a forward shift around the phase space recon-

struction at each epoch.
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Figure 4.7: Results for the rising pitch vowel /u/. From top to bottom: the signal; the epochs as
calculated by the Poincaré algorithm; the epochs as calculated by the dynamic pro-
gramming approach; the pitch contour (Hz) resulting from the Poincaré algorithm.

4.5.2.2 Rising pitch vowels

As a next step, the simple non–stationary case of rising pitch vowels was considered. Figure 4.7

shows the results of the algorithm compared to those produced by a dynamic programming–

based approach [100]4 for the vowel /u/, pronounced by a male speaker. The left–hand–most

epoch was marked as � � ��� . It can be seen that the performance of the new algorithm is similar

to that of this established approach, demonstrating that the frame–by–frame operation allows

changes in the phase space structure to be tracked, caused in this case by the changes in pitch.

The algorithm was found to perform correctly for all 9 vowels in the data set.

4.5.2.3 Continuous voiced speech

Finally the algorithm was tested with various voiced segments from the Keele University and

BT Labs data sets. Figure 4.8 shows the algorithm’s performance on a voiced section taken

from the phrase “a traveller came along wrapped in a warm cloak”, spoken by a female speaker.

There is considerable change in the signal, and hence in the phase space structure, in this

example, yet the epochs are still mostly well located when compared against the laryngograph

signal. In Figure 4.9, which is a voiced section from the phrase “see if it’s raining” spoken by a

male speaker, the epochs are well located for the first part of the signal, but some slight loss of

4Available commercially as Entropic Research Laboratory’s ESPS epoch function.
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Figure 4.8: Results for the voiced section of “came along” from the Keele database for a fe-
male speaker. From top to bottom: the signal; the epochs as calculated by the
algorithm; the laryngograph signal; the pitch contour (Hz) resulting from the al-
gorithm.

synchronisation can be seen in the latter part.

Although the performance of the algorithm on continuous voiced speech is generally good,

more severe problems have been encountered with some of the other signals tested, resulting in

serious glitches or even a complete loss of synchronisation. This is usually caused by the state

space reconstruction being very complicated, thus making the selection of the correct intersect

points difficult. In general, the more complicated state space structures occur at low pitch values

where there are many oscillations within one pitch period, and also with voiced fricatives which

tend to fill the state space.

4.5.3 Discussion

It is clear that a major drawback to this algorithm is the need to know the location of the first

epoch. Due to the nature of the technique, it is only possible to mark points which are pitch

synchronous; it cannot be deduced a priori if a data point is a glottal closure instant, but once

one is known all subsequent epochs in that voiced section can, in theory, be located.

This aside, the technique appears useful. It works very well on the simple cases of station-

ary vowels and rising pitch vowels, accurately marking all the epochs. Application to real

speech signals has met with moderate success. The algorithm is often able to track consid-
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Figure 4.9: Results for the voiced section of “raining” from the BT Labs database for a male
speaker. From top to bottom: the signal; the epochs as calculated by the algorithm;
the processed laryngograph signal; the pitch contour (Hz) resulting from the al-
gorithm.

erable changes in the phase space structure, caused by changes in vowel sound and/or pitch,

however should an error occur it is unable to recover. Complicated phase space structures, such

as the voiced fricative shown in Figure 4.10, are the most common cause of failure, due to the

difficulty in correctly aligning the Poincaré section. Once an error has occurred, all of the

points forward from the error point will be incorrectly marked. This is again due to the fact that

the epoch pulses are not specifically being located, only points which are pitch synchronous.

Therefore when an error occurs, causing a loss of synchronisation, it propagates through the

remainder of the signal.

A
m
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itu

de

Time (s)

0

0.1

–0.1
0 0.05

Figure 4.10: An example of the voiced fricative /� /, showing the time domain (left) and complex
state space structure (right). SVD embedding is used in the state space recon-
struction.
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4.6 Conclusion

In this chapter the potential for using nonlinear techniques, in the form of a Poincaré map, to

solve the problem of epoch marking in voiced speech has been demonstrated. Again it should

be emphasised that the algorithm presented here is not to be seen as a direct competitor to the

existing methods that have been described. It does however show that nonlinear techniques can

be applied in other areas beyond analysis, and also provides a useful insight into working in the

state space domain.

Further work is required to address the problem of identifying the first epoch point. As such,

the algorithm is currently only capable of marking pitch–synchronous points. Additionally,

improvements are needed so that the algorithm is better able to cope with sudden changes in

phase space structure, so as to avoid loss of synchronisation. Taking these two short–comings

into account, the algorithm does perform well on simple vowels and gives promising results

when applied to real continuous voiced sounds.
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Chapter 5
Synthesis by locally linear model

5.1 Introduction

Now the main objective of this work can be examined: the use of nonlinear dynamical theory

for the synthesis of voiced speech. There are several key objectives. Firstly the technique used

must generate natural–sounding speech. This means capturing the full dynamics of the speech

signal, including the natural variability. However, this alone is not sufficient. It must also be

possible to impose prosody on the synthesised signal, which mainly concerns the ability to

change the duration and pitch of the sound.

Following from the previous work on estimating the Lyapunov exponents of vowel sounds, the

use of the local dynamics is an obvious choice for synthesising speech. A method using this

locally linear model that has been implemented is described, and then its performance accord-

ing to the above aims is discussed. Difficulties with pitch modification are shown to be the

major short–coming of this technique, and a possible method for performing pitch modification

in state space is presented, motivated by an examination of the variations of the state space

reconstructions for naturally varying pitch vowel sounds. This is shown to work in principle,

but fails when used in conjunction with the locally linear model.

5.2 Locally linear synthesis model

The locally linear model of attractor dynamics in state space has been shown previously to be

useful for the estimation of Lyapunov exponents for vowel sounds. This involved the formation

of small local neighbourhoods which are then allowed to evolve around the phase space recon-

struction. The function that linearly maps between evolved neighbourhoods is called a tangent

map, and this has also been applied to the synthesis of extended vowel sounds. In principle, any

voiced sound that can be reconstructed on a low–dimensional attractor can be synthesised by

this technique. The synthesis of unvoiced sounds will not be discussed because, as previously
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mentioned, there is no perceptual difference between real unvoiced sounds and those generated

by a linear prediction model [33].

5.2.1 Local dynamics for synthesis

Given the previous results that voiced speech is a nonlinear, low–dimensional system with

low sensitivity to initial conditions, Banbrook [5] implemented a nonlinear synthesiser based

on the local dynamics of the state space reconstruction. Following the same principle as the

Lyapunov exponent analysis, a local neighbourhood is formed about the point on the phase

space reconstruction nearest to the synthesis start point. The synthesis start point is chosen to

be within the reconstruction manifold, but not on the existing data. Also, time delay rather than

SVD embedding is used. As shown in Figure 5.1, the neighbourhood matrix is evolved one time

step, and this is used to estimate the tangent map,
* � . This dynamics estimate is applied to the

synthesised start point to produce the next synthesised point and the process is then repeated.

Using this method, any duration of synthesised speech can be generated. As long as the chosen
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Figure 5.1: Locally linear synthesis (after [6]).

synthesised start point is not on the existing stored dataset, then the synthesised trajectory will

be unique and will be dependent only on the initial starting point and the local dynamics around

the attractor. The result of this is to produce a speech waveform that has no repetition in it, and
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contains much of the natural variability of real speech. This is particularly noticeable when

synthesising extended vowel sounds. Currently, using up–to–date concatenation techniques,

extended vowels sound buzzy and unnatural. This is because the waveform has to be repeated

in order to produce the longer sound. Techniques such as inverting the phase of the signal are

employed in an attempt to reduce this effect, but this does not entirely remove it. In contrast,

the nonlinear synthesiser does not perform a copying operation and so does not suffer from this

problem [6].

5.2.2 Analysis of synthesised vowel sounds

To quantify the performance of the nonlinear synthesiser, several measures can be made. A

natural–sounding vowel must contain some variability, since when this is not included the gen-

erated speech sounds extremely robotic. Additionally, the whole spectrum must be well repro-

duced. If the higher frequencies are not adequately modelled, then this will also reduce the

naturalness of the synthesised sound. This latter effect is particularly evident when considering

wideband (7 kHz bandwidth) and above, which is necessary for high quality synthesis.

Using the vowels /i/, / � / and /u/ from the Edinburgh extended vowel database as templates,

with examples from four speakers (two male, two female), a set of synthesised speech wave-

forms was generated. The parameters used were 20 vectors in the neighbourhood matrix, 2000

data points from the original data in the phase space reconstruction, synthesising 500 msec of

speech. The synthesis start point was calculated as a 1% shift away from the first original data

vector. This ensures that the synthesised trajectory is not on the original data trajectory, but still

remains within the manifold.

Jitter

Jitter is the variation in length of individual pitch periods. For normal, healthy speech it should

be between 0.1 and 1% of the average fundamental frequency for sustained vowels [105]. Ob-

viously the higher the sampling rate used, the greater the accuracy of the jitter measurement.

In the experiments reported here, the original data sampling rate of 22.05 kHz is used. More

complex algorithms, involving resampling to higher rates and then evaluating the quality of

the interpolation, do exist (e.g. [106]), but a simpler measure is sufficient to give a general

indication of the jitter present in the original and synthesised waveforms. This involves finding
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Data type MC PB CA KH Average
(male) (male) (female) (female)

Synthesis jitter (%) 0.451 0.520 1.14 0.727 0.710
Original jitter (%) 0.690 0.686 0.685 0.906 0.742

Synthesis shimmer (%) 4.94 3.22 2.44 3.40 3.50
Original shimmer (%) 4.21 4.60 7.06 4.81 5.17

Table 5.1: Percentage jitter and shimmer in original and synthesised waveforms, averaged over
the vowels /i/, / � / and /u/ for each speaker, and as an average over the database.

the epoch locations1 over a 500 msec window of speech data, then calculating the average pitch

period and the individual deviations from this.

The average variation, expressed as a percentage of the average pitch period length, is shown

in Table 5.1 for the original and synthesised data for each speaker. This shows that the amount

of jitter in the synthesised waveforms is comparable to that present in the originals. However,

examining the actual cycle–to–cycle variations as a time series, as shown in Figure 5.2, reveals

a trend not seen in the percentage statistics. The period length variations of the original do

not follow any obvious pattern, but the variations in the synthesised data period lengths have

a definite periodic structure. In this example, for the vowel / � /, speaker KH, the period length

variation repeats itself every 17 pitch cycles. A similar periodic structure was found in all of the

other synthesised vowels, with repetition rates of between 2 and 22 cycles. Further study would

be necessary to determine the cause of this repetition in the synthesised waveform. However

it does seem certain, at least for the shorter repetition rates, that this will detract from the

naturalness of the generated sound.

Shimmer

Shimmer is defined as the variations in energy of each pitch cycle. It is calculated by finding

the variations during each cycle from the average power, over the analysis window (using the

epoch markers found during the jitter analysis). These are then expressed as a percentage of the

average power. Using the same 500 msec segments as in the jitter measurements, the shimmer

for the three vowels over the four speakers was found. The results, averaged by speaker, are

also shown in Table 5.1. As seen for the case of the jitter, the average values of the synthesised

data compare well with the original. Figure 5.3 shows the power per cycle variations for the

vowel /i/, speaker MC, as a time series. Again it is evident that the original data variations

1Using Entropic Research Laboratory’s ESPS epoch function.
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Figure 5.2: Comparison of period length variations between the original data and the locally
linear synthesiser results, for the vowel / � / pronounced by a female speaker. The
original data contour has been shifted upwards by �

 samples to allow for easier
comparison.

have no obvious structure, whereas the synthesised data variations are definitely periodic. The

repetition rate is the same as found in the jitter analysis, and is again present in all vowels

examined.

Spectral characteristics

Figure 5.4 shows wide–band spectrograms of original and synthesised speech for the vowel /u/,

speaker PB. It can be seen that the spectral characteristics of the original have been well cap-

tured by the synthesiser, including the higher frequencies. Correctly modelling all frequencies

will make a significant impact on the naturalness of the synthesised speech, in a similar way to

the improvement found in speech coding when moving from telephone band (4 kHz) to wide-

band (7 kHz). In this respect, the locally linear synthesiser gives excellent results. The reason

it is able to do this is due to the local technique, which is able to follow very fine variations

in the attractor dynamics. Further spectrogram examples of different vowels and speakers are

presented in Appendix B, all showing good spectral modelling.

The jitter, shimmer and spectrogram results as a whole show that this nonlinear technique does

appear to synthesise vowel sounds in a reasonably natural manner, with the frequencies well

modelled across the whole range. Jitter and shimmer are still present in the synthesised sig-

nal, but some naturalness will be lost because of the periodic structure imposed upon them.
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Obviously this can not be a complete substitute for the subjective test of actually listening to

the generated sound. However, in limited informal tests, listeners found that the synthesised

waveforms were reasonably natural–sounding.2

5.2.3 Pitch and phoneme modification

Given that a synthesiser can produce natural–sounding vowels, it is also necessary to be able

to alter the pitch, duration and volume so that prosody can be imposed onto the synthesised

phrase. Duration modification is inherently built into the nonlinear synthesiser architecture,

and any required waveform length can be synthesised. Volume is comparatively easy to im-

pose, and can be done by a post–processing stage. Pitch modification is more difficult, since it

required altering the fundamental frequency of the waveform without affecting the other spec-

tral characteristics.

The method proposed by Banbrook for pitch modification is tied to the technique for moving

from one vowel phoneme to another [6]. As an example of this phoneme modification, con-

sider moving from /i/ to / � /, as shown in the formant chart of phase space reconstructions in

Figure 5.5.

F2-F1

F1

PSfrag replacements

/i/

/u/

/ � /

/ � /

/ " /

/ � // � /

/ � /

Figure 5.5: Formant chart of phase space reconstructions (after [5]).

2Example audio files are provided on CD, as described in Appendix D.
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Jumping straight from one phoneme to another causes a discontinuity and audible artifacts, but

this can be eliminated by defining a series of intermediate steps from

� � � � � � ��� ��� � 
 � � (5.1)

where
�

is the set of points on the intermediate reconstruction that is a fraction � of the Euc-

lidean distance between corresponding points on the main phase space reconstructions � and
�

.

� is incremented gradually in order to avoid discontinuities. Moving more than one position in

the formant chart is achieved by stepping via the other reconstructions, using the same principle

as outlined above.

In order to locate corresponding points on the phase space reconstructions so that this linear

interpolation can be performed, the period cycle of each reconstruction, and hence the pitch,

must be held constant. This is achieved by normalising each pitch period to exactly the same

number of points, using waveform interpolation and resampling.

Pitch modification is approached in exactly the same manner. The original waveform is res-

ampled to produce phase space reconstructions that contain the required number of samples per

pitch period. Intermediate reconstructions can then be generated between these. Obviously it is

not possible to locate exact “corresponding points” between the reconstructions, as the number

of points per cycle changes gradually with each one. However, as long as the step size between

the phase space reconstructions is never too great, there should not be any discontinuities.

5.3 Pitch variations

The method proposed by Banbrook, as described above, is clearly somewhat ad–hoc. Forcing

the waveforms to have exactly equal pitch periods removes natural pitch jitter, although this

requirement should only be necessary at transitions and can be relaxed when generating con-

stant sounds. Putting this aside, the actual method used to vary the pitch is also unrealistic.

Resampling the waveform to include more or less points into each pitch period is not the same

as changing the fundamental frequency, because it does not actually change the shape of the

waveform. Banbrook does note that it would be possible to use other existing pitch modific-

ation techniques (e.g. PSOLA) to operate on the original time domain signal to produce a set

of time domain signals at different pitch values, and then generate a series of phase space re-

constructions from these. However this appears excessively complex, still requires the use of
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Figure 5.6: Variations of the phase space reconstructions over changing pitch for the rising–
pitch vowel / � /. Each frame holds one pitch period, with at the top the phase space
reconstruction and at the bottom the time domain signal. The local pitch for each
frame is marked in Hz.

linear interpolation between the different reconstructions, and would combine the problems of

the two techniques.

5.3.1 Natural pitch variations

Figure 5.6 shows the vowel / " / as a series of snapshots. Each snapshot contains the time domain

waveform and time delay embedding reconstruction for one pitch period, with the fundamental

frequency rising from 106 Hz to 133 Hz. The time axis is variable, so that each frame contains

exactly one period, defined by the position of the GCIs. The time delay  was calculated from

the mutual information3 over the whole waveform, and was set at 9 samples. This vowel is one

of the nine in the BT Labs rising pitch database, as described in Section 4.5.1.

Examination of this clearly shows that the time domain waveform changes shape with pitch. It

is also evident that the changes in the shape of the phase space reconstructions do not follow a

linear pattern, even over the small range of fundamental frequency shown here. Instead changes

such as the the number and size of inner spirals can be observed. Therefore the use of linear

interpolation between reconstructions at different pitches is unlikely to be realistic. If pitch

3Thanks to C. Unsworth for providing the mutual information software.
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Figure 5.7: Variations of the phase space reconstructions over changing pitch for the rising–
pitch vowel /æ/, as in Figure 5.6.  is set at 10 samples, as calculated by the mutual
information over the whole waveform.

modification is to be performed in the state space domain, which is desirable given the nature

of the synthesis technique, then an alternative method will be required to give realistic results.

In the above example, the vowel phase space structure is relatively simple, although this is not

the case for all other vowels. Figure 5.7 shows an example of the vowel /æ/, with the pitch

varying between 114 Hz and 135 Hz. In this series of snapshots, the phase space structures are

more complicated and the variations between the structures are considerably less evident. This

is true of many of the vowels examined from the rising pitch database, and presents us with

a problem when searching for a solution to state space–based pitch modification. Essentially,

any algorithm which is to be able to modify the pitch in a realistic manner must be capable of

reproducing the phase space variations observed in real pitch–varying speech.

5.3.2 Pitch variations in LP synthesised vowels

In an effort to simplify the problem, vowels generated by a linear prediction synthesiser were

examined. The purpose of this exercise, which appears counter–intuitive when dealing with

nonlinear synthesis, is to start with a simpler waveform, which can also be generated at any

required fundamental frequency. If an analysis of this simple waveform leads to the develop-

ment of a suitable algorithm for pitch modification, then this is a step towards implementing an
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algorithm for real speech signals.

Figure 5.8 shows the time domain waveforms and corresponding 2D projections of the 3D

phase space structures for the linear prediction synthesised vowel /u/. The LP coefficients were

calculated using the constant pitch /u/ vowel sound of the male speaker PB, taken from the

Edinburgh 1996 database. The LP filter was then excited by a Dirac pulse train of appropriate

period. This generated the stationary synthesised vowels shown, with fundamental frequencies

of 70 Hz, 100 Hz, 130 Hz and 160 Hz. These values of pitch would be typical for a male

speaker.

70 Hz 100 Hz

130 Hz 160 Hz

Figure 5.8: LP synthesised vowel /u/ at pitch values of & 
 Hz, �

�
 Hz, �
��
 Hz and ��
�
 Hz.
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All of these phase space reconstructions are characterised by a trajectory rising steeply out from

a centre point, which then returns towards this point in a series of downwards spirals. This

equates to the excitation by the glottal pulse, followed by a slow decay of the waveform until

the next impulse. At lower fundamental frequencies, corresponding to longer pitch periods, the

number of spirals is greater, since there is a greater delay between epoch pulses. It is possible

to divide each of the phase space reconstructions into two parts. The outer part consists of

the outward pulse and the wide initial inward spiral, and is almost constant across all four

structures. The inner part consists of the tight inner spirals close to the centre point, and it is

here that the variation between structures due to the pitch change can be observed. The number

of inner spirals appears to be due solely to the length of the pitch period. This topological

description, although applied to LP synthesised vowels, also has some similarities with the real

speech signals shown previously. By a careful examination of both Figure 5.6 and Figure 5.7,

a form of outward trajectory followed by inwards spiralling can be seen.

Examining the LP phase space reconstructions from a nonlinear dynamical theory viewpoint,

it would appear that there is a fixed point around which the trajectories evolve. Fixed points

may take a number of forms. In Chapter 3, point and limit cycle attractors were presented. A

more complex form is a saddle point, which has trajectories approaching the fixed point close

to the in–set (stable manifold) and diverging away near the out–set (unstable manifold). Index 1

saddle points have an in–set that is a surface, and an out–set that is a curve, whereas the opposite

is true of index 2 saddle points. Spiral saddle points have trajectories spiralling around the fixed

point near the surface, towards or away from the saddle, for index 1 and index 2 respectively.

Figure 5.9 shows an example of an index 1 spiral saddle point. Looking at the inner part of

the LP phase space reconstruction, particularly at low pitches, an index 1 spiral saddle point

appears to be a good description.

A homoclinic trajectory occurs when a trajectory on the unstable manifold joins another on

the stable manifold, and thus forms a single trajectory connecting the saddle to itself [101].

For spiral saddle points, this type of trajectory is also called a Šilnikov orbit, after Šilnikov’s

Theorem [107], as shown in Figure 5.10.

Trajectories that come near the saddle point will approach the saddle close to the stable manifold

and then be forced away from it near the unstable manifold. However, as they are pushed away

by the out–set, they will be re–captured by the in–set and pulled back in towards the saddle

point. This description captures very closely the behaviour seen in all parts of the LP vowel
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Trajectories spiral
towards fixed point

Trajectories forced away
from fixed point

3D state
space In-set

Out-set

Figure 5.9: A spiral saddle point (index 1), with trajectories spiralling towards the fixed point
near a surface and diverging away along a curve.

Figure 5.10: A Šilnikov-type orbit for an index 1 spiral saddle point.
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state space reconstructions. The similarity between vowel phase space reconstructions and

Šilnikov orbits has also been noted by Tokuda et al. [89], in their nonlinear analysis of the

Japanese vowel /a/.

5.4 Attempted application of controlling chaos ideas

This analysis inspires a possible alternative approach to pitch modification, which operates

entirely in the state space domain. It is based on concepts from the controlling chaos literature,

and involves perturbing the trajectory of the speech signal in state space in order to affect a

change in its orbit.

Examining once again the phase space reconstructions for different pitches of the vowel sound

as produced by a linear prediction synthesiser (Figure 5.8), it appears that almost all of the in-

formation about the higher pitch sounds is contained in the lowest pitch vowel reconstruction.

The effect of decreasing pitch, i.e. increasing pitch period, is an increase in the number of spir-

als in towards the centre of the reconstruction, while the remainder of the phase space structure

is approximately constant. Therefore it should be possible to modify the lowest pitch phase

space reconstruction in some way, so that a higher pitch version can be produced. This may not

be entirely realistic for real vowel sounds, but an algorithm capable of pitch modification of LP

synthesised sounds would provide a stepping–stone to pitch modification of real voiced speech.

5.4.1 Controlling chaos

In the field of nonlinear dynamics, there has been a large amount of interest in the possibility

of controlling systems which exhibit chaotic behaviour, so as to improve their performance.

The basic principle is to locate low–period unstable periodic orbits within the attractor, which

mainly comprises a large number of uncontrolled chaotic orbits. Then, using small perturba-

tions of some control parameter, the system is moved and stabilised onto one of the low–period

orbits, which is chosen so that performance is optimised. This was first proposed by Ott et

al. [108], and then further refined, allowing the technique to be used with time delay embed-

ding, by Dressler and Nitsche [109].
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5.4.2 Principle of pitch modification by small changes

Some of the concepts of this technique can be applied to the low–pitch vowel phase space

reconstruction in order to modify the fundamental frequency. Assuming that the phase space

reconstruction does have a Šilnikov–type orbit, with an index 1 saddle point at the centre, then

the trajectory spirals in towards the fixed point near the stable manifold (which is a plane),

before being ejected out close to the unstable manifold. The process then repeats with the re–

injection back towards the fixed point. The idea is to perturb the trajectory when it is close to

the saddle point. Moving the trajectory closer to the plane of the stable manifold will cause it

to spend longer in the region of the fixed point, thus increasing the pitch period and decreasing

the pitch. Conversely, moving the trajectory away from the stable manifold, in the direction of

the unstable manifold, will cause a faster ejection and therefore higher pitch.

An algorithm capable of perturbing the speech trajectories as described would need to perform

the following operations:

� Embed the time series in 3D state space.

� Locate the fixed point. The centre of the phase space reconstruction will be close to the

index 1 saddle point, where the two–dimensional stable manifold intersects with the one–

dimensional unstable manifold. In practice, it will not be possible to locate the saddle

point exactly, only the closest data point to it.

� Find the direction of the stable and unstable manifolds. The stable manifold is expected

to be a plane and the unstable manifold a curve.

� Perturb the trajectory. Figure 5.11 shows the trajectory approaching the saddle point and

entering a sphere of radius � . At the point of entry, it is a distance
�

away from the stable

manifold in the direction of the unstable manifold, whose magnitude is � . By perturbing

the trajectory towards the stable manifold (i.e. decreasing
�
), the trajectory will spend

longer near the fixed point, whereas moving the trajectory away from the manifold (an

increase in
�
) will cause a faster ejection.

� Calculate the relationship between the size of the perturbation and the change in pitch,

so that arbitrary pitch modifications can be made.

84



Synthesis by locally linear model

Trajectory of
speech signal

Stable manifold

Hyper-shere,
radius

Unstable manifold

PSfrag replacements

�

�
�

Figure 5.11: Principle of perturbing trajectory to modify pitch.

5.4.3 Period modification in a Šilnikov flow

Before attempting to apply the above algorithm to the LP speech signal, modifying the period

of a system which is completely specified, via a set of equations, will be examined. Consider

the three coupled differential equations:

�� ��� � � � ��� � � � 
 � ��
� � � �

(5.2)

These define a Šilnikov flow in the region around the fixed point, although they do not model

the re–injection that is characteristic of a homoclinic orbit. The system can be seen to have

a fixed point at
� 
 � 
 � 
 � , since the time derivatives go to zero at this point. Performing an

eigenanalysis, the eigenvalues are found to be at

� � � �

� � � � ��� � 
 �

The eigenvalue
� � � � has a corresponding eigenvector of

� 
 � 
 � � � , and the eigenvectors of

the complex conjugate eigenvalues are both in the � – � plane. If � is negative and � is positive,

then this defines an index 1 spiral saddle. Trajectories will spiral in towards the fixed point near

the � – � stable manifold and then will be ejected out near the � unstable manifold.

Choosing the values � � � 
�� � , � � �$��
 and � � 
���
 � , the equations were iterated using

the fourth order Runge–Kutta method [110], with a step size of 0.1. In order to simulate a
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Figure 5.12: Šilnikov orbit with re–injection from Equation 5.2: (a) 3D state space and (b) �
against time.

homoclinic orbit, the trajectory was reset back to its start point after it had been ejected out

along the unstable manifold a considerable distance from the fixed point (the threshold was set

at �
� 
���� ). The resulting state space plot is shown in Figure 5.12(a). Plotting the variable

� against time, as seen in Figure 5.12(b), results in a periodic waveform. The re–injection to

complete the orbit is clearly seen. Evidently this is not very realistic, but this is not relevant as

it is only the inward spiral followed by ejection that is of interest. In these terms, Equation 5.2

with re–injection generates a realistic homoclinic orbit.

Now the principle of perturbing the trajectory is applied. To reiterate, moving the trajectory

towards the stable manifold should cause an increase in the period, whereas moving away from

the stable manifold (in the direction of the unstable eigenvector) will decrease the period. When

the trajectory enters a sphere of radius � during the Runge–Kutta iteration, it is then modified. In

the experiments presented here, � was set at 0.1, which is approximately 1% of the spiral radius

in the � – � plane. In order to find the relationship between the period length and the modification

factor, the distance from the stable manifold in the direction of the unstable manifold,
�
, and the

corresponding period length,



, were recorded over a range of values. Plotting



against � ��� �
results in a straight line, as seen in Figure 5.13. Therefore the period length



can be expressed

as:


 � � �	� � 
 � (5.3)
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Figure 5.13: Log relationship between period length and distance from stable manifold.

where � and � are constants, which are easily calculated from simultaneous equations. Denoting

the distance from the stable manifold as the trajectory enters the sphere before modification as
� �

, then the multiplier,
&

, required to change the period length to

 �

samples is:

& � � ��������

� � (5.4)

Upon entering the sphere, the position vector
� � � � � � � is modified to

� � � � �"& � � , causing a move

towards or away from the stable manifold in the direction of the unstable eigenvector.

The original orbit has a period length of 836 samples. In the following examples, the period

is modified by 0.6 (

 � � ��
�� samples) and 1.4 (


 � � ��� & 
 samples). � and � are calculated

as -124.99 and 375.92 respectively. The values of
&

are then found as 14.5 and 0.069. The

resulting modified waveforms are shown in Figure 5.14. Figure 5.15 shows a magnified view

of the state space plot around the fixed point demonstrating the modification taking place, for

the case of period modification by a factor of 1.4.

This demonstrates the validity of the trajectory perturbation approach. A Šilnikov–type orbit,

which has a periodic time domain structure quite reminiscent of a vowel, has been modified,

allowing both extension and shortening of the period length. In theory, it should be possible to

extend the period length by any required factor by moving close to the stable manifold. The

limit on period length shortening, on the other hand, is governed by the size of the sphere, since

no modification occurs until the trajectory has entered it.
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Figure 5.14: Period modification of the Šilnikov orbit by a factor of (a) 
���	 and (b) �$��� .
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Figure 5.15: Zoom in on the fixed point, showing a comparison of the original and the modified
trajectories.
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5.4.4 Application to LP speech

Performing trajectory modifications when the system model is derived from a dataset, rather

than a set of equations, will evidently be a more complex task. The stages of the algorithm

outlined in Section 5.4.2 and the problems found are now discussed for the LP synthesised

vowel /u/.

Embedding

The LP data first has a small amount of Gaussian white noise added, to give a signal–to–noise

ratio of 20 dB. This adds some variation to the signal, thus making the manifold more than a

single trajectory wide. The formation of local neighbourhoods can then be made by selecting

near points from adjacent trajectories. The data is then embedded in three dimensions using

time delay embedding with  set at 12 samples, equal to the first minimum of the mutual

information.

Fixed point location

Because of the asymptotic nature of the fixed point, the closer the trajectory comes to it, the

greater the amount of time that will be spent in the region around it. Therefore, for sampled

data, the Euclidean distance between subsequent samples will decrease as the trajectory moves

towards the fixed point. The data sample which has the minimum distance between adjacent

samples will be the closest data point to the fixed point. This is then used as the best known

position of the fixed point, ��� , in subsequent calculations.

Direction of manifolds

An index 1 saddle point has a two–dimensional stable manifold and a one–dimensional unstable

manifold. The approximate directions of these manifolds are found by an eigenanalysis of the

data trajectory about the fixed point. To do this, a tangent map, similar to that discussed in

Section 3.4.2, can be formed. Taking ��� , the closest data point to the fixed point, as the centre,

a neighbourhood matrix is constructed from the
$

points within a hyper–sphere around � � .

The neighbourhood matrix is then evolved forward � samples and recalculated. The tangent

map then defines the linear transformation between the two local neighbourhood matrices. Its

eigenvalues and eigenvectors are found by SVD. Figure 5.16 shows the eigenvectors found
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Figure 5.16: Eigenvectors around the saddle point for the LP vowel /u/.

by this method for the LP vowel /u/. The saddle point is marked and the three eigenvectors

are shown. The largest eigenvector corresponds to the unstable manifold, and the two smaller

eigenvectors are in the plane of the stable manifold. The parameters used in this analysis were

25 local neighbours, with an evolve length of 10 samples.

Perturbing trajectory

It is now possible to consider perturbing the trajectory, as shown in Figure 5.11, by moving the

trajectory either towards or away from the stable manifold in the direction of the unstable man-

ifold, as it enters the sphere of radius � . However, an insurmountable problem is immediately

encountered. Perturbing the trajectory implies moving it away from its existing course (defined

by the locally linear tangent map calculated at each synthesis step) and into some other area of

state space. This part of state space will not contain any data, and hence is not covered by the

locally linear model. Therefore perturbing the trajectory moves it into a region of state space

that is completely unmodelled, as shown in Figure 5.17. There is no information available to

indicate how it should continue to evolve (contrary to the previous example with the set of

equations that defined all points in state space), and so continuing the synthesis process after

perturbing the trajectory is impossible.

This means that pitch modification by perturbing the trajectory and locally linear synthesis are

not compatible, and leaves the problem of realistic pitch modification unresolved.
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Figure 5.17: Stylised diagram of state space around the saddle point, showing two sets of data
trajectories. Perturbing trajectory implies moving into an area of state space not
covered by the locally linear model.

5.5 Conclusion

This chapter has considered the use of a locally linear model for nonlinear synthesis as im-

plemented by Banbrook [5], which is based on ideas drawn from the Lyapunov exponent es-

timation algorithm. The technique has been shown to be capable of synthesising good quality

speech with an 11 kHz bandwidth, although some reservations have been expressed about the

periodic nature of the jitter and shimmer that the algorithm creates. However, this should be

taken in the context of synthesis by the linear model of speech, which generally does not include

any jitter or shimmer.

The method proposed by Banbrook to modify pitch has been shown to be unrealistic, since

it does not take into account changes in the shape of the waveform with changes in pitch.

Analysing pitch variations in real vowels, and then the simplified case of linear prediction

synthesised vowels, led to the idea of modelling the phase space reconstructions as Šilnikov

orbits. Then, taking the principle of perturbing state space trajectories by small changes from

the controlling chaos literature, an algorithm for changing the period length of a Šilnikov orbit

has been proposed. This was shown to be viable for period length modifications in a simple

system modelled by a set of coupled differential equations, but failed when applied to speech

data due to the type of modelling used. In essence, the locally linear model by definition can

only model the small areas containing data. Perturbing the trajectory implies moving away
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from the data, and hence outside the model. For this technique to work, a model of the whole

of state space (or at least a complete model near the fixed point) is required.

Therefore, in summary, the locally linear synthesis model is limited in its application because

of the inability to realistically modify pitch. Another factor that must be considered is its

complexity. For every new synthesised point, it is necessary to calculate the neighbourhood

and evolved neighbourhood matrices, and then calculate the tangent map between the two.

Additionally, being an extension of a concatenation technique, the original data, from which

the phase space reconstructions are made, must be stored. However, the technique would be

useful as an add–on in a concatenative synthesiser when extended vowel sounds are required,

as it can synthesise these sounds well for any required duration. It would then be necessary to

use a technique such as PSOLA to impose the required pitch contour.
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Chapter 6
Synthesis by global model

6.1 Introduction

In this chapter a global parametric model for speech synthesis is introduced.1 It is based on

a radial basis function neural network with a feedback loop, which operates as a free–running

nonlinear oscillator to produce synthesised vowel sounds. After appropriate training, the net-

work is expected to model the dynamics of the generating system, and as such should be capable

of reproducing the natural variability of the original signal.

In the first part of the chapter some basic background on RBFs is presented. The idea of a

global feedback loop in a neural network for speech synthesis has been used previously by

several researchers, and their work is reviewed in the following section. The remainder of the

chapter is devoted to the efforts made to implement a stable RBF synthesiser. The parameters

of the network are examined in turn, in order to estimate suitable values for the resynthesis

model, with performance measured in terms of mean square error (MSE). Next, resynthesis is

attempted, but with little success. Some of the resynthesised waveforms have no characteristics

of the original at all, indicating that the network has failed to learn the dynamics of the vowel

sound completely. However a number of signals are similar to the original input training data,

but with large spikes on the waveform. The cause of these spikes is investigated, and it is found

that the function approximated by the network is more nonlinear than the original data, making

it sensitive to small differences present in the feedback loop.

6.2 Radial basis functions

A radial basis function neural network is composed of three layers, made up of an input layer of

source nodes, a nonlinear hidden layer and an output layer giving the network response. It can

be used for interpolation and approximation, since it finds a surface in multi–dimensional space

1The term global is used in the sense “not locally–linear”.
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Figure 6.1: Schematic of a RBF network.

that is the closest fit to the input training data [13]. The closest fit will be measured by a statistic,

such as the mean square error. The hidden layer performs a nonlinear transformation mapping

the input space to a new space [111], in which the problem can be better solved. The output

is the result of linearly combining the hidden space, multiplying each hidden layer output by a

weight whose value is determined during the training process.

The general equation of an RBF network with an input vector � and a single output is

� � � ��
 � � �
��
� ��� � �

� ��� � ��� � � � (6.1)

where there are � hidden units, each of which is weighted by � � . A schematic showing the

general RBF network structure for an input vector of length # is presented in Figure 6.1. The

hidden units,
� �	� � �
� � � � , are radially symmetric functions about the point

� � , called a centre,

in the hidden space, with
� � � being the Euclidean vector norm [112]. There are a number

of possible choices for the radial basis function, such as multi–quadratic, cubic, or thin–plate

spline, but the most common is the Gaussian [113]:

� � � � � ��� ��� � � �� � ��
 (6.2)

� � is the bandwidth of the function and controls the spread of each centre. The actual choice of

nonlinearity does not appear to be crucial to the performance of the network [111, 114], and the

use of a Gaussian function provides some useful mathematical properties which are described

later. Therefore Gaussian centres are used in all of the RBF networks studied in this thesis.
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There are two distinct strategies for training the network. The most common approach divides

the problem into two steps. Firstly the centre positions and bandwidths are fixed using an

unsupervised approach, not dependent on the network output. Then the weights are trained in a

supervised manner so as to minimise an error function. The centres may be fixed in number and

positioned according to the input data, either as a random subset of the input data points, or by

the use of a clustering algorithm such as K–means [115]. Alternatively they can be fixed on a

hyper–lattice structure which uniformly samples the state space and is data independent [116].

If the number of centres is not fixed, then the orthogonal least squares method can be used,

which chooses centres one at a time until an adequate network has been formed [111]. The

second approach is entirely supervised, with the centre positions and widths included with the

weights in the error function. However minimising this global error function then becomes a

nonlinear optimisation problem, which will be computationally intense, and the error function

may have local minima [113]. Hence only the first approach is followed in this study.

The rationale behind the choice of RBFs, as opposed to other nonlinear models, is motivated

by several factors. Papers by Broomhead and Lowe [117] and Moody and Darken [118] exten-

ded the use of RBFs from exact interpolation to the more general problem of approximation.

Subsequent work by Park and Sandberg [119] proved that RBFs can have universal approxim-

ation capabilities. This makes RBFs appealing for modelling the dynamics of voiced speech.

However, other neural network (NN) structures also have good approximation abilities, for ex-

ample the multi–layer perceptron (MLP) [113]. The advantage of the RBF network over other

NN architectures is the ease of training: with the centre positions fixed, training the weights is a

linear in the parameters problem and so can be solved by least squares techniques. The amount

of training data required is also less. Additionally, as will be discussed subsequently, if the

centre positions are fixed on a data independent hyper–lattice, then the complexity is further

reduced, and the constant structure may offer possibilities for pitch modification in the state

space domain. This is not possible with the MLP because the hidden layer activation functions

are not localised in the hidden space.

6.3 Other nonlinear synthesisers

Work carried out by Kubin and Birgmeier is the only other reported attempt made to use a RBF

network approach to speech synthesis. They propose the use of a nonlinear oscillator, with no
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external input and global feedback in order to perform the mapping

� ��
 � ��� � � ��
�� � � � (6.3)

where � ��
 � � � is the delay vector with non–unit delays, and � is the nonlinear mapping

function [120].

The initial approach taken ([121, 122]) used a Kalman–based RBF network, which has all of

the network parameters trained by the extended Kalman filter algorithm. The only parameter

that must be specified is the number of centres to use. This gives good prediction results, but

there are many problems with resynthesis. In particular, they report that extensive manual fine–

tuning of the parameters such as dimension, embedding delay and number and initial positions

of the centres are required. Even with this tuning, synthesis of some sounds with complicated

phase space reconstructions does not work [120].

In order to overcome this problem, Kubin resorted to a technique that uses all of the data points

in the training data frame as centres [120]. Although this gives correct resynthesis, even allow-

ing the resynthesis of continuous speech using a frame–adaptive approach, it is unsatisfactory

due to the very large number of varying parameters, and cannot be seen as actually learning the

dynamics of the speech generating system.

In a related piece of work, Kubin and Kleijn implemented a time–scale modification algorithm,

which can be applied to continuous speech [123]. This again uses a frame–adaptive approach,

but is based on a nearest–neighbours lookup table, rather than a RBF network. Again this is

a very computationally costly approach, not dissimilar to the locally linear model described in

Chapter 5.

Following their dynamical analysis of the Japanese vowel /a/, Tokuda et al. constructed a feed–

forward neural network to perform synthesis. Their structure has three layers, with five neurons

in the input layer, forty neurons in the hidden layer, and one in the output layer. The time delay

in the input delay vector is set at  � � . The excitation function of the hidden nodes is of the

form

� ��� � � � � �
� � 
 � � � �

and the weights are learnt by back propagation. Using global feedback, they report successful
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resynthesis of the Japanese vowel /a/. The signal is noisy, but preserves natural human speech

qualities. No further results in terms of speech quality or resynthesis of other vowels are given.

From this limited information, it would seem that this technique is successful, although the

resulting speech may not be of a high quality. In addition, the use of back propagation makes

the learning process more complex than a standard RBF technique.

Recently an alternative neural network approach has been proposed by Narashimhan et al. This

involves separating the voiced source from the vocal tract contribution, and then creating a

nonlinear dynamical model of the source [124]. This is achieved by first inverse filtering the

speech signal using a LP model to obtain the LP residue. Next the residue waveform is low–pass

filtered at 1 kHz, then normalised to give a unit amplitude envelope. This processed signal is

used as the training data in a time delay neural network with global feedback. The NN structure

reported is extremely complex, consisting of a 30 tap delay line input and two hidden layers

of 15 and 10 sigmoid activation functions. The network is then trained using back propagation

through time, requiring 200 passes through the 1500 samples of input data. Finally, the NN

model is used in free–running synthesis mode to recreate the voiced source. This is applied

to a LP filter in order to synthesise speech. Although the complexity seems excessive, and the

idea of linearly separating the excitation from the vocal tract contribution before then applying

a nonlinear technique is questionable, the interest of this study is their results on pitch jitter.

They show that the NN model successfully preserves the jitter of the original excitation signal,

indicating that dynamic modelling can correctly model the natural variations present in speech.

6.4 Free–running RBF for synthesis

Because of its good approximation capabilities, ease of training (compared to other NNs), and

the possibilities for pitch modification (as described in Chapter 7), a RBF network was chosen

as the architecture to use for nonlinear modelling of the voiced speech sounds. Following from

the work of Kubin et al., a nonlinear oscillator structure is used, as shown in Figure 6.2.

The RBF network is used to approximate the underlying nonlinear dynamics of a particular

stationary voiced sound, by training it to perform the prediction

� � � � � � � � � � (6.4)

where � � � � � � � � � � � ' � � � �
� � � � � � � � � � � ' � � is a vector of previous inputs spaced by some delay
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Figure 6.2: RBF network with global feedback for free–running synthesis.

 samples, and
�

is a nonlinear mapping function. Considering the problem from a nonlinear

dynamical theory perspective, this can be viewed as a time delay embedding of the speech

signal into an # –dimensional state space to produce a state space reconstruction of the original�
–dimensional system attractor. It is therefore logical to choose  as the first minimum of the

mutual information function. The other parameters that must be chosen are the bandwidth, the

number and position of the centres, the embedding dimension, and the length of training data

to be used. With these set, the determination of the weights is linear in the parameters and may

be solved by standard matrix inversion techniques.

Once the weights have been determined, the network can be switched from training to synthesis

mode: the input signal is removed and the delayed network output is fed back into the delay

line to form a free–running RBF network, allowing any duration of signal to be synthesised.

If the dynamics have been correctly learnt, then the synthesised signal should have the same

invariant properties (e.g. Lyapunov exponents) as the original training data.

It is not obvious how the network parameters can be jointly optimally chosen. Birgmeier’s

extended Kalman filter method was an attempt at joint optimisation, but it was not found to

be successful when applied to synthesis. The approach adopted in this work is to consider

each parameter separately, holding the others constant, and assess the network performance.

However, in assessing the performance a difficulty arises. The ideal criteria would be “at this

parameter value synthesis will work”, but it is not feasible to check this, since another of the

parameters may be incorrect and this will give incorrect synthesis results. Additionally, it is

difficult to quantify how well the synthesis has been performed, so it is not possible to tell
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whether we are approaching or moving away from a good result. In fact, the only criteria

actually available is the mean square error for forward prediction. Generally, the one step

ahead prediction MSE will be measured, but it should be noted that this can only optimise the

predictor, not indicate whether resynthesis will be correct.

Three types of centre positioning strategy were considered. Having specified the number of

centres to use, they are:

1. Data subset. Centres are picked as points from around the state space reconstruction.

They are chosen pseudo–randomly, so as to give an approximately uniform spacing of

centres about the state space reconstruction.

2. K–means. Using the adaptive K–means clustering algorithm [115], the state space em-

bedding vectors are partitioned into � regions (corresponding to the number of centres)

and then the best vector to represent each region is chosen as a centre.

3. Hyper–lattice. An alternative, data independent approach is to spread the centres uni-

formly over an # –dimensional hyper–lattice. This can be viewed as a uniform sampling

of the state space, and considerably reduces the complexity of the system since the same

centre positions are used regardless of the topological structure of the state space recon-

struction.

6.4.1 Bandwidth

For the data subset and K–means case, a heuristic measure for the bandwidth is [13]:

� �
�

� � � (6.5)

where � is the number of centres and
�

is the maximum distance between the chosen centres.

This is meant to ensure that the Gaussian functions are neither too peaky nor too flat. To verify

this measure for voiced speech signals, the bandwidth was varied over the range 0.01 to 1.5

for 12 different signals (the vowels /i/, / � /, /u/, for the female speakers CA, KH and the male

speakers MC and PB). The MSE for one step ahead prediction on an unseen validation set for

each case was then obtained.2 The results of this experiment are shown in Figure 6.3. There is

2All MSE values reported in this thesis are relative to the input data normalised to an absolute maximum amp-
litude of one, rather than the more conventional normalised MSE which refers to unit variance input data. This
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Figure 6.3: Effect on MSE of varying bandwidth for �

$
 centres chosen as a subset of the
training data. The other parameters were a training length of ��
�
�
 , embedding
dimension of � , and embedding delay set at first minimum of mutual information
function.

some variation in the results between different signals, but a good general choice for � � would

be around 0.2. The maximum distance bandwidth measure only corresponds to the minimum

MSE for two signals (MC /i/ and KH /u/), giving values in the range 
���
�� � � � � 
���
�	 .
Therefore in general, best MSE performance is gained using a fixed bandwidth of around 0.2.

Bandwidth selection for the hyper–lattice was made in a similar way, by training the network

weights over the data base and measuring the validation MSE. The results of the experiment,

with the bandwidth varied between 0.05 and 1.5 are seen in Figure 6.4. A value of above 0.6

appears to be suitable, since the curves all flatten out around this point.

6.4.2 Centre location strategy

The validation MSE for the three centre location techniques (data subset, K–means, hyper-

lattice) was calculated over the data base. The results, averaged by speaker and using the above

bandwidth results, are shown in Figure 6.5. The techniques all give very similar perform-

ance. Averaged over the whole database, the K–means (at -32.55 dB) and subset method (at

-32.59 dB) are slightly superior to the hyper–lattice (at -32.09 dB). Given the much greater com-

change is necessary because of the constant size hyper–lattice.
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plexity of the K–means technique, it was decided to only use the data subset and hyper–lattice

methods.

6.4.3 Dimension

Previous results for the correlation dimension of vowels have given values of between two

and three [5, 67, 82, 89]. Takens’ theorem therefore advises an embedding dimension of seven.

However, it has already been seen in earlier chapters that the vowel state space reconstructions

are fully unfolded (i.e. no crossings) in three dimensions, indicating that this is an adequate

value. An experiment was performed to examine the effect of changing the embedding di-

mension over the data base. The results, averaged by vowel, are shown in Figure 6.6, for
� � # ��� � .

These results do not provide a definite answer to the embedding question, but the use of three

dimensions does not seem unreasonable from a MSE point of view. Therefore in the following

experiments a value of # ��� is used.
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Figure 6.7: Effect of varying the number of centres on MSE for (a) speaker MC and (b) speaker
KH. The parameters in the experiment were an embedding dimension of � , a train-
ing length of ��
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�
 , with centres chosen as a subset of the training data and band-
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6.4.4 Number of centres

A good choice of the number of centres to use in the network is extremely important. An

insufficient number of centres will not adequately model the data, but choosing too many will

result in over–fitting and a loss of generalisation [113]. To check for over–fitting, a standard

method is to train the network with an increasing number of centres and examine how the MSE

on an unseen validation data set changes. While an increasing number of centres will give a

closer and closer approximation to the training data, there will come a point when the network

starts to lose its generalisation properties, and the validation MSE will increase.

This principle was applied to the vowel database, as seen in Figure 6.7. This shows evidence of

over–fitting in speakers MC and KH, particularly clearly in the examples MC /u/, KH / � / and

KH /u/. Similar results were found for the two other speakers, showing that a good choice for

the number of centres is between 50 and 150.

6.4.5 Lattice size

The hyper–lattice approach is data independent, but the actual size of the lattice in comparison

to the size of the data state space reconstruction may be important. In all of the experiments,

the data is normalised to have a maximum absolute amplitude of one. The width of an edge of
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the hyper–lattice will then define approximately where the centres will be located with respect

to the state space data vectors. Using a 3D hyper–lattice with 64 centres, the width of the lattice

was varied from 0.5 to 3.0. The results of this experiment are shown in Figure 6.8, averaged

by speaker, and show that lattice size does not effect MSE performance. Therefore a lattice

size of 1.0, corresponding to a lower “corner” at
� � 
���� � �
� � � � 
���� � is chosen, since this gives a

hyper–lattice that is comparable in size to the data state space reconstruction.

6.4.6 Training length

The length of training data presented to the network is also very important, since the aim is

to learn the dynamics of the underlying system, including the natural inter–pitch variability

(i.e. jitter and shimmer). This means that a large length of data, and hence number of pitch

periods, is advantageous. However, long training lengths imply long learning times which

are undesirable. Training the network for different lengths, varying between 200 samples and

10000 samples does not resolve this from a MSE point of view. Figure 6.9 shows the results

for speakers PB and CA. The results for speakers MC and KH are equally unclear, but it does

seem reasonable to use a length of approximately 1000 to 2000 samples. This will include 10
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Figure 6.9: Effect of varying the training length on MSE for (a) speaker PB and (b) speaker CA.
The parameters in the experiment were an embedding dimension of � , 	 � centres
chosen as a subset of the training data and a bandwidth of 
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to 20 pitch periods, but does not lead to excessive training times.

6.4.7 Resynthesis

From this analysis, an initial set of parameters with which to attempt resynthesis were chosen.

The parameters were set at the following values:

Bandwidth = 0.8 for hyper–lattice, 0.2 for data subset; Dimension = 3; Number of centres = 64;

Hyper–lattice size = 1.0; Training length = 1000;

For each vowel in the database, the weights were learnt, with the centres either on the 3D

hyper–lattice, or chosen as a subset of the training data. The global feedback loop was then

put in place to allow free–running synthesis. The synthesis results were extremely variable.

In a few cases, successful resynthesis was achieved. Other results gave varying degrees of

success, from constant (sometimes zero) outputs, through periodic cycles not resembling the

original speech signal and noise–like signals, to extremely large spikes at irregular intervals on

otherwise correct waveforms. The data subset method correctly resynthesised the signals PB

/i/, MC / � / and KH /u/. The hyper–lattice method correctly resynthesised PB /i/, MC /u/ and CA

/u/. In all cases, success or failure was judged by visual inspection of the synthesised waveform

over 5000 samples.
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6.5 Stability issues

The initial synthesis results are disappointing, since it is unclear how the parameters of the RBF

network can be chosen in any satisfactory manner. Birgmeier [122] reports similar difficulties,

and also notes that manually experimenting with different parameter values can improve the

resynthesis. This was also found to be the case with our network. Changes in embedding

dimension, bandwidth and training length were found to allow successful resynthesis for a

number of signals where it had previously failed. However it should be noted that increasing

embedding dimension does not automatically result in improved synthesis. It was also found

that very small changes in the parameters could make the difference between success and failure

of the synthesis. An example of this is the vowel / � /, speaker MC. Using the hyper–lattice

method, a change of 200 samples in the training length from 1800 to 2000 is enough to allow

correct resynthesis, as seen in Figure 6.10 (note that a training length of 1000 also fails). The

example at a training length of 1800 has a large number of spikes on an otherwise correct

waveform, but moving to the 2000 training length example these disappear.

The fact that these small changes can make such an impact on the resynthesis implies that

the RBF network must be very sensitive. Two possible reasons for this sensitivity and the

subsequent difficulties with resynthesis may be i) poor numerical stability of the weights or

ii) problems with the actual approximated mapping function
�

.
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6.5.1 Analysis of weights

Condition number

With the centre positions fixed, either on the hyper–lattice or chosen from the training data,

the weights are determined by minimising a sum of squares error function,
� � � �� � , over the %

samples of training data:

�(� � �� � � �
�

��
� ���
� �� � � � ��� � (6.6)

where
�� � is the network approximation of the actual speech signal � � . Incorporating Equa-

tion 6.1 into the above and differentiating with respect to the weights, then setting the derivative

equal to zero gives the least-squares problem [113]. This can be written in matrix form as

� ��� � ��� � � ��� � (6.7)

where
�

is an % x � matrix of the outputs of the centres (with � centres in total); � is the target

vector of length % , made up of the training data; and � is the � length vector of weights.

Setting * � � � �
, then the weights are found as

� � �"*�� � � � (6.8)

where * � is the pseudo–inverse of * . SVD (as described in Appendix A) is used in this cal-

culation to ensure good numerical stability, even though * is not actually singular. Thus the

numerical properties of the matrix * will influence the solution found for the weights. Examin-

ing the condition number of this matrix (defined as the ratio of the largest singular value to

the smallest) may provide some information as to why certain parameter sets give correct re-

synthesis, whereas others do not. The training data length appears to have a significant impact

on correct synthesis, so it was decided to repeat the varying training length experiment while

recording the condition number of * . All the other network parameters were held constant as

previously described.

The condition number results are shown in Figure 6.11, with examples for the hyper–lattice for

speakers MC and CA, and for the data subset for speakers PB and KH. In each case the training

length was incremented in steps of 200, from 200 samples to 10000 samples. The condition

number against training length result is plotted as a continuous curve. Superimposed onto each
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Figure 6.11: Condition number against training length, calculated at ��
�
 sample intervals
(continuous curves), with correct resynthesis results superimposed (points).

curve is a set of points which indicate successful synthesis at a particular training length.

It can be seen that the condition number in the hyper–lattice case is significantly greater than

in the data subset case. However this does not appear to have any bearing on whether cor-

rect resynthesis is obtained or not. In all cases the condition number is large, indicating ill–

conditioning, but some examples with very high condition number still give good resynthesis

(e.g. hyper–lattice, speaker CA, vowel /u/).

It is noted that Equation 6.7 may be solved in two other ways. It can be re–written as
� � � � � ,

thus requiring the pseudo–inverse of the % x � matrix
�

to be found. This is considerably

more computationally complex than the pseudo–inverse calculation of the � x � matrix * , but
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the numerical results are not significantly different. Alternatively, the matrix inversion can be

avoided by using the Householder transformation to reduce the full matrix to an upper triangular

one [125]. The weights are then found by back substitution. However this does not improve the

synthesis results either, and so is not considered further.

Magnitude of weights

An alternative source of error may be the actual size of the weights once calculated. Numerical

problems in the network calculation may occur if the weights are very large [126]. Therefore

the average of the weight vector was calculated for each training data length, again varying

from 200 samples to 10000 samples in steps of 200. These average weight variation results are

shown in Figure 6.12, with correct resynthesis points also marked. Examples are shown for

speakers PB, KH using the hyper–lattice, and speakers MC, CA using the data subset. Once

again the results are counter–intuitive, with correct resynthesis occurring for cases with large

weight values, and failing at some of the lower values. Once again the hyper–lattice results are

several magnitudes greater than the data subset values, but this does not appear to effect which

signals are correctly resynthesised.

Similar results are also obtained when plotting the magnitude of the largest single weight at

each training length, indicating that the resynthesis problem is not caused by a large ‘stray’

weight value.

6.5.2 Analysis of mapping function

After the network has been trained, it will operate according to the mapping function
��
, which

is an approximation to the underlying speech system function
�

. Another possible source of in-

stability is the stability of this approximated function. When the free–running synthesis output

is either constant, a limit–cycle, or noise, it can be assumed that the training has failed entirely

to teach the network the dynamics of the underlying system. However, the majority of erro-

neous outputs are spikes on otherwise correct waveforms, as shown previously in Figure 6.10.

Here the system dynamics have been correctly learnt to some extent, and it is possible that

instabilities in parts of the mapping function are responsible for the unstable waveform seen at

the network output.

Therefore it is of interest to examine the properties of the approximated function
��
. One way
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Figure 6.12: Average weight magnitude against training length, calculated at ��
�
 sample
intervals (continuous curves), with correct resynthesis results superimposed
(points).
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to do this is to consider the local Lyapunov exponents of
��
. Lyapunov exponents are generally

calculated in the form of a global average over a whole system in order to assess the presence

of chaos, as described in Chapter 3. However, it is also possible to look at local Lyapunov

exponents at individual time steps, which allows local instabilities to be gauged. In contrast to

the Lyapunov exponent calculations performed in Chapter 3, which used the speech time series,

the equations of the approximated mapping function in terms of the RBF network parameters

can be written down, and therefore the local exponents can be calculated analytically at each

step.

In order to formulate the problem, it is assumed that the predictor is sufficiently well trained so

that the following approximation can be made:

� � � 
�� � � �� � � � � � � � �
� � � � � � (6.9)

i.e. it is a perfect predictor. The Lyapunov exponents are found from the Jacobian of the map

along the orbit in state space, so the state space mapping must be considered:

� � � 
�� � � 
 � � � � � � (6.10)

If the orbit is perturbed by some small amount
� � � � � , then the linearised evolution of the

perturbations is governed by the Jacobian of the map 
 � � � � � � [74]:

� � � � 
�� � � ����� � � � � � � � � ��� (6.11)

where
��� � � � � � � ��� 
 � ��� � � � is the Jacobian. When finding the global, average Lyapunov ex-

ponents, a series of Jacobians are multiplied together to average over the whole orbit. However

the local exponents are found from a smaller number of Jacobians. Here the stability at each

time step is required, so just one Jacobian matrix is used. The local Lyapunov exponents are

then the logarithms of the eigenvalues of the matrix [74]:

� ��� � ��� ����� � ��� � � � �	 (6.12)
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Referring to Equation 6.10, �
� � 
�� � can be written as

� � � 
�� � �
���
�
� � � � 
�� �
� � � � 
�� �
� � � � 
�� �

����
� �

���
�
� � � 
  �
� � � �

� � � �  �

����
� (6.13)

and

� � � � �
���
�
� � � � �
� � � � �
� � � � �

����
� �

���
�

� � � �
� � � �  �
� � � � �  �

����
� (6.14)

Thus 
 can be written as

� � � � 
�� � � �� � � � � � �
� � � � 
�� � � � � � � �
� � � � 
�� � � � � � � �

(6.15)

Considering the first element of the first row of the Jacobian, � 
 � � � � � :
� 
 �
� � �

� � � � � � 
�� �
� � � (6.16)

� � �� � � � � � �
� � � (6.17)

� �

� � �
�� � � � � ���	� � � � � � � � � � � � � � � �� (6.18)

� � ��� � � � � � � � � � ��� � � ����� � � � � � � � � � ��� � � � � (6.19)

Similarly, the other elements of the first row are found as

� 
 �
� � �

� � ��� � � � � � � � � �  � �	� � � � ���	� � � � � � � � � �
� � � � � (6.20)

and

� 
 �

� � �
� � ��� � � � � � � � � � �  � ��� � � ����� � � � � � � � � � ��� � � � � (6.21)

Since the second and third rows are simply time delays of the first, the partial derivatives are
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Figure 6.13: Local Lyapunov exponents for speaker MC, vowel / � /, for a training length of��
�
$
 samples, using the original signal samples in the Jacobian calculation. The
exponents are expressed in bits/sample.

easily found as

� 
 �
� � �

� � � � 
 �
� � � ��
 � � 
 �

� � �
��
 (6.22)

and

� 
 �

� � �
��
 � � 
 �

� � � ��� � � 
 �

� � �
��
 (6.23)

Therefore the Jacobian is found as

����� ��� �
���
�
� 
 � � � � � � 
 � � � � � � 
 � � � � �

� 
 


 � 


����
� (6.24)

The eigenvalues of Equation 6.12 can be found by SVD. They will all be positive, since��� � ��� ����� � ��� � � is real and symmetric, and can thus be scaled according to the � � � power.

The local Lyapunov exponents for time step � are then found from the logarithms of the eigen-

values.

As an example, the local Lyapunov exponents from the network for speaker MC, vowel / � /,

training length 2000 (synthesised signal shown in Figure 6.10(b)) are presented in Figure 6.13.

The partial derivatives in Equations 6.19 to 6.21 were evaluated using the original speech data

signal, not the feedback network output. The results show a positive–zero–negative set of expo-
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nents across the whole portion analysed. Although a positive exponent in the global exponents

would indicate the presence of chaos, this interpretation should not necessarily be applied here.

Rather, the local exponents provide a measure of the local sensitivity of the network to changes

in the input. The network trained with the same vowel, but with 1800 samples of training data,

has been shown to suffer instabilities. Therefore to further study this problem, the largest Lya-

punov exponent for both cases was examined in detail. Figure 6.14 shows four largest local

Lyapunov exponent curves over the first 50 samples of data, for both the 1800 and 2000 sample

training lengths, using both the original speech data and also the network feedback signal in the

calculation of the partial derivatives.

Both the original signal and feedback signal in the 2000 sample training length case settle onto

a stable (non–identical) pattern, whereas the differences between the two 1800 sample training

length cases are more marked. The slight glitches at around 12 and 20 samples present in the

original signal exponents are amplified when the feedback signal is used. Because
��

is trained

using only the signal data, which occupies a compact manifold, the behaviour of trajectories

outside this manifold is not well defined. Hence, once the trajectory leaves the manifold, the

network will output erroneous data until some factor brings the trajectory back into the grasp

of the model. Since the RBF network uses kernels with Gaussian responses, where the ker-

nel output decreases with increasing distance from the centre, then stray trajectories will be

pulled back towards the centres. This, coupled with the fact that the network may have greater
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sensitivity to small changes in conditions, may explain why the large spikes occur and how the

trajectory then temporarily returns to the correct orbit. It is conjectured that a slight increase in

the positive local Lyapunov exponent at certain points on the orbit, coupled with the fact that

the predictor is not perfect and therefore feeds back samples slightly different from the original

signal, is sufficient to push the trajectory outside the manifold and cause unstable behaviour.

Similar results to those presented for MC, / � / are found across the whole database, with an in-

creased positive exponent for networks which output signals with spikes compared to those that

perform resynthesis correctly. This was further investigated by measuring the global Lyapunov

exponents from the synthetic time signals, using the Lyapunov exponent estimation algorithm

as implemented by Banbrook et al. [6] (see Chapter 3 for further explanation). Results from all

of the correctly synthesised signals for each vowel example were averaged and then compared

to the result from the original speech signal. A comparison of the largest global Lyapunov

exponent,
� �

, between the original and synthesised data is shown in Figure 6.15. The para-

meters for the experiment were: SVD window length of 50, embedding dimension of 3, 2000

iterations of 5 evolve steps each, 11000 samples, 20 vectors in the neighbourhood matrix. With

the exception of speaker CA, vowel /i/, the averaged largest Lyapunov exponent is greater for

the synthesised data compared to the original signal. Additionally, excepting CA, /i/ and/u/,

the synthesised data has
� � � 
 where as the original data has

� � ��
 . The results from this

algorithm must be treated with caution, as has been mentioned in Chapter 3. However the com-
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parison between original and resynthesised signal results clearly shows that the RBF network

causes a significant increase in nonlinearity.

6.6 Conclusion

In this chapter a neural network model for speech synthesis using radial basis functions has

been introduced. Having considered the basic theory of RBFs, as well as other neural network

approaches to speech synthesis, the main focus has been on attempts to resynthesise speech in

a stable manner.

A thorough analysis of the various parameters used in the RBF network has been carried out,

from which an appropriate set of values was deduced. The network was then trained on the

database of twelve signals using these parameters and the results of free–running synthesis

observed. It was found that a number of the signals were not correctly synthesised. A number of

different types of erroneous output were observed, the most common being a correct waveform

with numerous large spikes present on it. While the other problem signals are most likely a

failure of the network to approximate the dynamics of the underlying speech system, this type

of problem would appear to be a form of instability.

Numerical instability in either the inversion of the covariance matrix by SVD, or the size of

the weights, was considered. Although the weight values are large, and the covariance matrix

is somewhat ill–conditioned, no firm evidence was found to link either of these to incorrect

resynthesis.

The stability of the mapping function was then considered. Equations for the calculation of

the local Lyapunov exponents directly from the network equations were formulated, and these

showed greater sensitivity in the networks which produced unstable results. Subsequent cal-

culation of the global Lyapunov exponents showed a positive largest Lyapunov exponent for

the resynthesised signals, compared to a negative largest exponent in all but one case for the

original signals. It is therefore concluded that the mapping function
��

is more nonlinear than

the original speech generating system (and may even be chaotic), and as such will be sensitive

to small changes, such as those generated by the feedback loop.
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Chapter 7
Regularisation and pitch modification

7.1 Introduction

In Chapter 6 an RBF model was presented that, from a theoretical perspective, appears useful

for vowel synthesis. However it was demonstrated to give poor synthesis performance for the

majority of speech signals applied to it. In this chapter those problems are solved by applying

a technique known as regularisation during the learning of the weights. This is shown to allow

the stable resynthesis of all twelve vowels from the Edinburgh constant–pitch database, and

additionally to model another complex system, the Lorenz system of equations.

Results are presented for the RBF synthesised speech, with comparisons made to the original

speech signal and to the synthetic signal generated by a linear prediction synthesiser. These

include jitter and shimmer measurements which demonstrate that the RBF network is capable

of modelling the natural variability found in speech.

In the final part of the chapter, the pitch modification issue is examined, and a possible technique

based on the interpolation of the weights vector is proposed. A special database was collected

for this purpose, and the analysis of this for pitch modification is described.

7.2 Application of regularisation

The results from Chapter 6 imply that a large number of the mapping functions learnt by the

network suffer from some form of instability. This may be due to a lack of smoothness in

the function, in which case regularisation theory is the ideal solution. Regularisation theory

was first applied to RBFs by Poggio and Girosi [127] and essentially means applying some

smoothing factor to the approximated function
��
. More concretely, regularisation can be seen

to change the ill–posed problem of learning a smooth mapping function from data examples

into a well–posed one. Approximating the mapping function is ill–posed because the data does

not contain the information required to uniquely reconstruct the mapping in regions where the
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data is unavailable [127]. Regularisation theory applies some prior knowledge, or constraints,

to the mapping function to make a well–posed problem [128]. Mathematically, a new cost

function can be defined as

��� �� � � �(� � �� � 
 � � � � �� � � �
�

��
� � �
� �� � � � ��� � 
 �

�
� � % �� � �

(7.1)

where
� � � �� � is the sum of squares error as previously defined in Equation 6.6,

� � � �� � is the

regularising term and
�

is the real, positive regularisation parameter. The regularising term

contains the differential operator
%

, which contains prior information about the form of the

solution and whose purpose is to stabilise the map
��

by making it smooth and continuous [13].� � � is the � � norm on the function space
% ��

. Minimising
��� �� � leads to the associated Euler–

Lagrange equation:

%�� % �� � ��� � �
�

��
� ���

�
� � � �� � ����� � � � � � � � (7.2)

where
% �

is the adjoint of
%

. Using the Green’s function,
� � � � � � � , which satisfies

% � % � � � � � � � � � � � � � � � (7.3)

then Equation 7.2 can be written as

�� � �
�

��
� ���

�
� � � �� � ��� � � � � � � � � (7.4)

Here the points � � are the centres of the Green’s functions. Setting

� � � �
�
� � � � �� � ��� � � ��� � � � � � � � % (7.5)

allows Equation 7.4 to be resolved as

� � 
 ��� ��� � � (7.6)

where
�

is the % x % identity matrix, � is the length N weights vector, and
�

is the % x %
Green’s matrix. If

%
is chosen appropriately, and is invariant under both rotations and transla-
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tions, then the Green’s function
� � � � � � � becomes [13]:

� � � � � � � � ���	� � � � � � � � � �
� � � 
 (7.7)

which can be recognised as being a Gaussian radial basis function. Thus the regularised solution

becomes

�� � ��� �
��
� ���

� � ���	��� � � � � � � � �
� � � 
 (7.8)

with the centres � � located at the data points. This solution is only of limited interest, since it is

necessary to use all of the training data as centres. However, it can be extended to the approx-

imate regularised solution, where there are fewer centres than training data and the centres do

not have to be a subset of the training data, by redefining the mapping function as

� � �
��
� � �

��� � �	� � �
� � � � (7.9)

where
� � are the centres of the Green’s functions. This leads to a new cost function

��� � � � �
��
� � �

�� � � � ��
� � � � �

� ��� � � � � � � � 

 � 
 � � % � � � � (7.10)

Minimising this gives the result [13]

� � ��� 
 � � � � � � � � � (7.11)

where
�

is the % x � Green’s matrix, equivalent to the % x � radial basis kernel output matrix
�

, and
� �

is a symmetric � x � matrix composed of elements
� � � � � � � � � :

� � � � � � � � � � ���	� � � � � � �
� � � �
� � � 
 (7.12)

Equation 7.11 is then solved by SVD to find the least–squares solution for the weights vector � .

When
� ��
 there is no regularisation, and as

�
is increased so greater smoothness is imposed

onto
� � .
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Figure 7.1: Principle of cross–validation to find
�

. While decreasing
�

leads to ever closer
approximations to the training data, the minimum in the validation error curve
indicates the best value for generalisation.

7.2.1 Cross–validation

Choosing an appropriate value for
�

is generally solved by cross-validation [113]. After choos-

ing all the other network parameters, these are held constant and
�

is varied. For each value

of
�

, the MSE on an unseen validation set is calculated. The MSE curve should have a min-

imum indicating the best value of
�

for generalisation, as shown in Figure 7.1. Again it is noted

that this MSE measurement may not be the optimum way to choose parameters for successful

resynthesis.

7.2.2 Learning complex systems

The regularised RBF technique has recently been applied by Haykin and Principe to modelling

the invariant properties of chaotic systems, such as the Lorenz equations [128]. Their network

has an input delay made up of unit delays, of length
���  , where

���
is the dimension and  

is the embedding delay. When modelling the Lorenz system,
���

is chosen as 5 and  as 4.

This leads to an effective embedding dimension of 20. The network, using 400 centres chosen

as a subset of the training data, is then trained with the Lorenz data which has noise added to

give a signal–to–noise ratio (SNR) of 25 dB. By this method the Lorenz system is successfully

modelled, with the Lyapunov exponents found as 2.566, -0.628 and -15.03 nats/sec, compared

to 1.570, -0.031 and -22.31 nats/sec in the original signal (before noise was added).

A similar experiment was performed with the RBF network as described in Chapter 6, but with

the weights learnt using the regularisation technique. The Lorenz equations (see Section 3.2.2)
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capable of learning complex dynamical systems.

were iterated by the 4th order Runge–Kutta method, and the time series from the variable �
was recorded as training data. A step size of 0.01 was used, with the Lorenz parameters set at

� � �
	 , � � �!
 and � � � . It was found that a dimension of 3, coupled with the use of 125

centres and 1000 samples of training data, was sufficient to learn the dynamics of the system.

Both the data subset and the hyper–lattice method gave good results, with  � ��� samples. It

was not found to be necessary to add noise to the training data.

Figure 7.2 shows the original Lorenz signal, and the signal synthesised by the RBF network

using the data subset method. The synthesised signal follows the original closely for an initial

period, then diverges. However the form of the signal is clearly that of the Lorenz system

(verified by examining the state space reconstruction), showing that the dynamics have been

correctly learnt. This is confirmed by examining the Lyapunov exponents of the signals. Using

the algorithm of Banbrook et al., the Lyapunov exponents were calculated to be 1.161, -0.259

and -24.55 nats/sec for the original, 1.524, -0.523 and -17.52 nats/sec for the data subset, and

1.787, -0.523 and -18.05 nats/sec for the hyper–lattice. This demonstrates that the RBF network

is capable of learning complex and, in this case, even chaotic systems.

7.2.3 Stable vowel synthesis

The issue of vowel sound synthesis can now be reconsidered. Some of the previous synthesis

results, without regularisation, bore no resemblance at all to the original speech signal. It is
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Figure 7.3: Cross–validation for the vowels /i/, / � /, /u/ for (a) speaker PB using hyper–lattice
and (b) speaker CA using data subset method.

therefore unlikely that simply applying regularisation will solve this problem. Considering that

Haykin [128] uses a very high embedding dimension to achieve good results, it appears worth-

while increasing the embedding dimension in the network to be at least in line with Takens’

theorem. Hence the embedding dimension was increased from 3 to 7. Re–running the experi-

ments for the bandwidth, number of centres and training length parameters shows only minor

differences to the 3D case in terms of MSE results. Taking these into account, the network

parameters for resynthesis were adjusted to:

Bandwidth = 0.8 for hyper–lattice, 0.5 for data subset; Dimension = 7; Number of centres =

128 (i.e. ��� ); Hyper–lattice size = 1.0; Training length = 1000.

Selecting the regularisation parameter

The next step is to select an appropriate value for
�

. Using the cross–validation technique,
�

was varied between 9 and 1x �

 ��� , and the MSE on an unseen validation set for each signal in

the database was recorded. This gave curves of the expected form, as shown in Figure 7.3. This

shows examples of the cross–validation for speaker PB using the hyper–lattice, and speaker CA

using the data subset method. All of the curves show a minimum for
�

, which was the value

selected for use in the resynthesis. With the regularisation parameter chosen by this method,

the 7D resynthesis gave correct results for all of the signals except KH /i/ and KH /u/ when

using the data subset method of centre selection. However, only two signals (CA /i/ and MC
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/i/) were correctly resynthesised by the hyper–lattice method.

It was found that
�

needed to be increased significantly to ensure correct resynthesis for all

the signals when the hyper–lattice was used. The actual value required was determined exper-

imentally, but once found all of the vowels in the database were correctly synthesised for both

centre selection methods.

Trade–offs

Achieving stable resynthesis inevitably comes at some cost. By forcing smoothness onto the

approximated function there is the risk that some of the finer detail of the state space recon-

struction will be lost. Examining the signal CA /i/, which was one of only three signals to

be successfully resynthesised at an embedding dimension of seven without regularisation, it is

possible to observe the effects of increasing the size of the regularisation parameter. Figure 7.4

shows the changes in the time domain signal as
�

is increased from zero to � � �

 ��� . The fine

details of the original signal (equating to high frequency information) are gradually smoothed

away as the regularisation parameter is increased. Therefore, for best results,
�

should be set at

the smallest possible value that allows stable resynthesis.

7.2.4 Normalised RBFs

At this point it is appropriate to mention normalised RBFs. In this type of RBF network, the

weights are trained without any regularisation, and the kernel function is redefined as a softmax

function where the sum of all the kernel outputs is one [113]:

� � � �	� � � ��� � � � � ���	� � � � � � ��� � � � � � � �
�
� ����� ���	� � � � � � �
� � � � � � � � (7.13)

This has been shown to lead to improved approximation capabilities [116], and can in itself be

seen as a form of regularisation since the normalised kernels provide a smooth output over the

whole hidden space (similar to an MLP sigmoid activation function). However it was found

that, although comparable resynthesis results to the regularised network were obtained using

the data subset centre selection method, this method did not allow any correct resynthesis when

the hyper–lattice method was used. For this reason, normalised RBFs are not discussed further.
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Figure 7.4: Effect of changes in the regularisation parameter on the time domain signal of the
vowel /i/, speaker CA.
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7.3 Analysis of synthesised vowel sounds

The performance of the regularised RBF network as a nonlinear speech synthesiser is now

measured, in a similar way to the examination of the locally linear synthesiser in Chapter 5. In

addition to comparing the output of the nonlinear synthesiser to the original speech signal, the

synthetic speech from a traditional linear prediction synthesiser is also considered. In this case,

the LP filter coefficients were found from the original vowel sound (analogous to the training

stage of the RBF network). The estimate
��� � 
�� � [96] was used to set the number of filter taps

to 26. Then, using the source–filter model, the LP filter was excited by a Dirac pulse train to

produce the desired length LP synthesised signal. The distance between Dirac pulses was set to

be equal to the average pitch period of the original signal. In this way, the three vowel sounds

for each of the four speakers in the database were synthesised.

7.3.1 Temporal and spectral characteristics

Figure 7.5 shows the time domain waveforms for the original signal, the LP synthesised sig-

nal and the two RBF synthesised signals, for the vowel /u/, speaker MC. Figure 7.6 shows the

corresponding frequency domain plots of the signals, and the spectrograms are shown in Fig-

ure 7.7. In these examples, the regularisation parameter
�

was set at 0.01 for the hyper–lattice,

and 0.005 for the data subset.

These figures clearly demonstrate the different modelling strategies between the LP and RBF

approaches. In the linear prediction case, the technique attempts to model the spectral features

of the original, which is done by assuming that the excitation signal can be separated out.

Hence the reasonable match seen in the spectrum (although the high frequencies have been

over–emphasised), but the lack of resemblance in the time domain. The RBF techniques, on

the other hand, attempt to model the complete underlying dynamical system. Thus the RBF

synthesised signals resemble the original in the time domain, since it is from this that the state

space reconstruction is formed. Both RBF networks successfully capture many of the original

signal characteristics, although the spectral plots show that the higher frequencies have not been

well modelled by this method. This is because the networks have missed some of the very fine

variations of the original time domain waveform, which may be due to the imposition of the

regularisation parameter
�

.

Further spectrogram examples for different vowels and speakers are presented in Appendix B.
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Figure 7.5: Time domain examples of the vowel /u/, speaker MC. Top row: original signal
(left) and linear prediction synthesised signal (right); Bottom row: RBF network
synthesised signal, hyper–lattice (left) and data subset (right).

The size of
�

is seen to influence the quality of the signal at high frequencies. Limited in-

formal listening tests indicated that listeners generally preferred the RBF synthesised wave-

forms against the LP synthesis results. Although the poor high frequency modelling is very

evident, listeners found that a synthetic signal with some natural variability was preferable to

the LP signal, which has no variability.1

Comparison of centre positioning strategies

The choice of either data subset or hyper–lattice centre strategies does not greatly effect the

quality of the synthesised speech in terms of time domain and spectral characteristics. In gen-

eral, the method which requires the smallest amount of regularisation will give superior results

since less detail is smoothed out, but this is very signal dependent. The average performance

over the database between the two techniques is approximately equivalent.

1Example audio files are provided on CD, as described in Appendix D.
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Figure 7.6: Spectrums for examples of the vowel /u/, corresponding to the signals in Figure 7.5.
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nals in Figure 7.5.
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Data type MC PB CA KH Average
(male) (male) (female) (female)

Hyper–lattice jitter (%) 0.470 0.459 1.14 0.717 0.697
Data subset jitter (%) 0.482 0.394 0.663 0.546 0.521

Original jitter (%) 0.690 0.686 0.685 0.906 0.742
Hyper–lattice shimmer (%) 1.00 0.352 1.33 1.00 0.922
Data subset shimmer (%) 0.694 0.344 7.65 0.699 2.34

Original shimmer (%) 4.21 4.60 7.06 4.81 5.17

Table 7.1: Percentage jitter and shimmer in original and synthesised waveforms (hyper–lattice
and data subset), averaged over the vowels /i/, / � / and /u/ for each speaker, and as
an average over the database.

7.3.2 Jitter and shimmer

Jitter and shimmer measurements were made on all of the RBF synthesised waveforms in the

same manner as in Chapter 5, using epoch detection over a 500 msec window of data. For

jitter measurements in sustained vowels, an expected value is a 0.1 to 1% variation around

the average fundamental frequency. Table 7.1 shows the results of the average pitch length

variation, expressed as a percentage of the average pitch period length. Results for both the

hyper–lattice and data subset techniques are presented, along side the jitter measurements of

the original speech data. The hyper–lattice synthesised waveforms contain more jitter than the

data subset signals, and both values are reasonable compared to the original. Additionally,

the cycle–to–cycle variation time series do not have a periodic structure, which is the opposite

to the results found from the locally linear synthesis model. Instead the time series follow a

seemingly random pattern in a similar way to the original, as shown by the example vowel /i/

in Figure 7.8.2

Shimmer results (the variations in energy each pitch cycle) for the original and synthesised

waveforms are also displayed in Table 7.1. It can be seen that in general there is considerably

less shimmer on the synthesised waveforms as compared to the original, which will detract from

the quality of the synthetic speech. However there is again no evidence of periodicity in the

power–per–cycle variations when they are plotted as a time series, as seen in Figure 7.9 which

is an example for the vowel / � /. This is an improvement over the locally linear synthesiser,

which had periodic structures present in all of the synthesised shimmer time series.

2Recent research suggests that these cycle–to–cycle variations may actually be fractal in nature [92].
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7.3.3 Lyapunov exponents

The previous results suggest that the RBF network has successfully captured the dynamics of

the original speech signal. Although the higher frequencies are not well represented, the low

frequencies and time domain signal are well modelled in the synthetic waveforms. Additionally,

the natural variability of the original signals is preserved. As another measure of how well the

dynamics have been learnt, the dynamical invariants of the system are examined using the

global Lyapunov exponents.

Figure 7.10 shows a comparison of Lyapunov exponents between the original signal and the

average RBF network performance (i.e. averaged hyper–lattice and data subset exponents).

These results show that the signals produced by the network do not have exactly the same

dynamical properties as the original speech signal. However, they are very similar in having

an almost–zero, negative, negative spectrum, suggesting that many of the original dynamics

are preserved. Also the values are closer to those of the original exponents, compared to the

unregularised results presented in Chapter 6. Therefore the regularised solution can be seen to

provide a more robust and closer approximation to the original system than an unregularised

network (although the improved approximation will also be due to the increased number of

centres when moving from 3D to 7D).

7.4 Pitch Modification

Now that a synthesis model capable of producing natural–sounding speech in a stable manner

has been implemented, the next step is to consider pitch modification. Ideally, it would be pos-

sible to be able to specify an exact pitch value at which the network will synthesise a particular

vowel, even if the training data used to teach the network was at a different pitch. Unfortu-

nately, in common with the locally linear synthesiser, pitch is not separated out by the RBF

technique. This is the paradox of the nonlinear techniques presented in this thesis: by not mak-

ing the assumptions used in the linear source–filter model, the implicit ability to control pitch is

lost. However, pitch information is never–the–less present in the network, and therefore some

suitable technique must be employed to exploit this information.
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7.4.1 Principle

The method considered here is based on interpolation in the weight vector space. The basic

principle is as follows:

1. Extract examples of the same vowel, but at different pitch values, from a speech database.

2. Model each example with the regularised RBF network, using the hyper–lattice method

of centre selection.

3. The only parameters in the free–running synthesis network that are different for differ-

ent input examples are the � weights, since the centres are fixed on the hyper–lattice.

Therefore each vowel example is characterised by a � length vector � .

4. Each weight vector will be a point in a � –dimensional space. An analysis must then be

performed to search for the relationship that links these vectors.

5. Finally, to obtain the vowel at the desired pitch, some form of interpolation in the weight

vector space would be used. This would interpolate between existing vector points in
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CVC word IPA symbol
hart / � /
heat /i/
hood /u/
hurt / � /
hat /a/

head / � /
hot / " /

Table 7.2: CVC utterances with corresponding IPA symbols as recorded for pitch analysis.

order to estimate a new set of weights for the network. Running the network with the

new weight vector would produce the vowel at the required pitch value.

The use of the hyper–lattice structure is the key to this technique, since all other centre selection

strategies assign centres according to the input data. Thus the centre positions change with each

input example and there is no obvious way to examine the differences between networks. The

hyper–lattice structure can resynthesise data with the same quality as the data subset method,

but also allows each input signal to be modelled solely by the network weights.

7.4.2 Database

To investigate the interpolation method, a special database of vowel sounds at different pitch

values is required. The use of a standard continuous speech database could be envisaged,

which would be searched to locate all examples of certain vowels. It is likely that in this way

a selection of different pitch levels for each vowel type could be found. However searching

a database in this manner is complex, and the resulting vowel examples may suffer from co–

articulation effects as well as being of rather short duration. Instead a more controlled database

was assembled.3 This consists of three speakers (AG, DA, ME) pronouncing six CVC words,

corresponding to six different vowels. The vowel portion of each word was extended by the

speaker. Table 7.2 shows the CVC words pronounced and the corresponding IPA symbol for

the extended vowel. Each word was repeated several times for each of the five pitch levels,

defined as normal, highest, medium high, lowest and medium low. The sound pressure wave

was recorded with a sampling rate of 22.05 kHz using 16 bit pulse code modulation (PCM).

Additionally, the laryngograph signal was recorded, also at 22.05 kHz, 16 bits PCM.

3Thanks to Mike Edgington of BT Labs for collecting this data set.
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Resynthesis of the vowels was then attempted, using the 7D regularised network. The results

of this resynthesis were extremely variable, showing that the RBF network, despite the use

of regularisation, is still not able to learn some signals. In particular, very little success was

achieved for speakers DA and ME. Both these speakers are male with low average fundamental

frequencies. This means that the state space reconstructions of these vowels, especially the low

pitch level examples, will be very complex. More success was achieved with the male speaker

AG, who has a higher average fundamental frequency. It was possible to correctly resynthesise

examples at all pitch levels for the vowels /i/ and /u/, although problems were encountered with

other vowels. The /i/ and /u/ have simpler state space reconstructions compared to the other

vowels in the database, indicating why they are easier to resynthesise.

The reasons behind the poor synthesis results are not completely clear. However there are two

definite contributing factors. Firstly, the state space reconstructions are more complex than

those of the Edinburgh 1996 constant pitch database. This is because the speakers have low

average fundamental frequencies, and a number of the examples are pronounced at “low” and

“medium low” pitch levels. Secondly, the requirement for the speakers to pronounce extended

vowels at pitch levels other than their normal voice pitch level appears to have resulted in

nonstationary vowel waveforms in a number of cases. The speakers indicated that pronouncing

sustained sounds at low and high pitch levels was difficult, and this is reflected in the poor

stationarity of the speech waveforms. These two factors make for a difficult approximation task

for the RBF network, and may explain at least in part the poor results seen.

7.4.3 Analysis of pitch variations

For the examples where the network correctly synthesises the vowel sound at the five different

pitch levels, an analysis of the weights can be carried out. The following concentrates on the

examples from speaker AG, vowel /u/. Here there are 24 examples, with the pitch varying from

102 Hz to 210 Hz.

This gives 24 points in the � –dimensional space. However, since �����
� � , analysing this data

is not easy. As a first step, the norm of each vector,
� � � � , is calculated and plotted against pitch,

as seen in Figure 7.11. This does not show any obvious correlations that might be expected,

such as the magnitude of the weight vectors for similar pitch values being close in size. Next

the variance of each weight within the weight vectors was calculated over the 24 examples. The

plot of weight size variance against weight number is presented in Figure 7.12. It was hoped
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Figure 7.11: Vector norm for each weight vector, plotted as a function of the network synthesis
signal pitch. Note that the lines joining each vector norm are for clarity and do
not imply a linear relationship connecting the points.

that a small number of weights within each vector might have significantly greater variations

than the remainder, indicating these parameters to be controlling factors and allowing some

form of data reduction. Setting an arbitrary threshold of a variance of 0.2, the seven weight

taps with variances above this were selected and used in a new vector norm against pitch plot,

this time in a 7 dimensional reduced weight vector space. However this plot is not significantly

different from Figure 7.11, and does not provide any further information.

Finally, even though the previous analyses indicate that the relationship, if any, between the

weight vectors is nonlinear, linear interpolation between weight vectors was attempted. Such

an experiment might indicate if interpolating in the � –dimensional weight space is at all useful.

Selecting � � � �

, the weights for the 133 Hz pitch network, and � �
�

�

, the weights for the 173 Hz

pitch network, linear interpolation was performed as:

��� � � � � � 
 � � � �
�

� � � � � � � (7.14)

where
�

is a scaling factor between 0 and 1. The interpolated weights, ��� , were then used in the

RBF network for free–running synthesis. Resynthesis with the weights obtained by setting
� �


���� resulted in a speech–like waveform with a pitch of 166 Hz. The synthesised time domain

waveforms for the 133 Hz and 173 Hz examples, as well as the interpolated 166 Hz signal,

are shown in Figure 7.13. A comparison of LP spectral envelopes is presented in Figure 7.14.

It can be seen that both the interpolated time domain waveform and its spectral envelope
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are similar in form to the originals. Other values of
�

from 0.1 to 0.9 gave results in the range

158 Hz to 170 Hz, and all of the waveforms were found to be stable and to resemble the original

speech signals in form. This demonstrates that the points along
� � �

�
� � � � � � � in the weight

vector space are themselves valid network weight vectors.

7.5 Conclusion

In this chapter regularisation theory has been applied to the RBF network in order to generate

stable resynthesised speech. Using this technique all of the 12 example signals from the 1996

Edinburgh constant pitch database were correctly synthesised. The high frequency components

were found to be poorly modelled, but the network does learn the speech dynamics sufficiently

to capture the natural inter–pitch variability. Further, it was demonstrated that the regularised

RBF network is capable of learning the dynamics of the chaotic Lorenz system.

Using the data–independent hyper–lattice method of centre selection, a technique for pitch

modification using interpolation in the weight vector space was proposed. A special database

of vowels at varying pitch levels was collected for this purpose. However it was found that

a number of the signals in the database could not be correctly synthesised, despite the use of

regularisation. This is thought to be due to the state space reconstruction complexity and non–

stationarity of the signals. Having analysed a set of network weights from successful synthesis
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Figure 7.14: LP spectral envelopes for the 133 Hz and 173 Hz resynthesis examples, compared
to the 166 Hz interpolated example. The frequency range is limited to 4 kHz for
clarity.

networks, no obvious method to interpolate between weight vectors was found. The limited

experiments with linear interpolation do however indicate this to be a promising area for further

investigation.
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Chapter 8
Summary and conclusions

The primary aim of the work described in this thesis is to develop nonlinear techniques for

voiced speech synthesis, which allow natural–sounding synthesis coupled with the ability to

modify pitch. Two nonlinear models have been investigated from this perspective and new

results have been presented concerning both natural–sounding speech signal generation and

nonlinear pitch modification techniques. In this chapter the main conclusions of the work are

presented, and some suggestions for future work are proposed.

8.1 Achievements of the work

A large volume of work has been devoted to justifying the use of nonlinear modelling tech-

niques for use in speech processing, but some of the results are still contradictory. In particular,

the presence of chaos in vowel sounds is still a matter of debate [5, 67, 89]. The main contri-

bution of Chapter 3 is an examination of the results from the Lyapunov exponent estimation

algorithm implemented by Banbrook et al. [94]. It is shown that similar values for the Lya-

punov exponents are obtained from another database than the one used by Banbrook et al., and

the effect of SVD on the results is considered. The conclusion from this analysis is that without

SVD processing the exponents may be influenced by noise on the signal, but equally use of

SVD may filter out parts of the signal that would otherwise give a positive exponent. However,

from the point of view of constructing a nonlinear synthesis model, the fact that the voiced

speech signal can be reconstructed on a low–dimensional attractor is the important factor, and

the presence or otherwise of a small amount of chaos is not particularly relevant.

This low–dimensional state space reconstruction is exploited in Chapter 4 in a technique to

mark epoch points in voiced speech. This work shows how dynamical theory can be applied

in areas beyond analysis, in this case through the use of a Poincaré map. The novel algorithm

operates by slicing through the state space reconstruction of a frame of voiced speech with a

Poincaré section. All of the points in the resulting Poincaré map from the same part of the
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manifold will be pitch synchronous. Hence positioning a Poincaré section at the location of

one of the epoch points in the frame will yield the positions of all the others. The major draw-

back of the algorithm is that no method of locating the first epoch in the state space domain

was found. Thus, as a stand–alone technique, the algorithm is only capable of marking pitch

synchronous points. This aside, results on voiced speech show that the algorithm gives reas-

onable results, although further work is required to improve robustness, particularly when the

state space reconstruction structure is complex.

In Chapter 5 the locally linear model for nonlinear synthesis as implemented by Banbrook [5]

is considered. The vowel sounds generated by this technique are analysed in detail, since

the quality of the synthetic speech is not clear from [5]. It is found that the temporal and

spectral characteristics of the synthetic signals are excellent. However analysis of the inter–

pitch variations shows that the algorithm modifies the jitter and shimmer by imposing a periodic

structure onto the variations. Thus, although the average amount of jitter and shimmer is similar

to the original, their characteristics are altered. A novel analysis of the state space structure

of pitch changes in real and linear prediction synthesised vowel sounds was then carried out,

in order to find a realistic method to modify pitch in the state space domain. Modelling the

state space reconstructions as Šilnikov orbits, an algorithm for pitch modification by perturbing

state space trajectories was proposed. This was shown to be viable when used in a simple

system modelled by a set of differential equations, but was found to be incompatible with the

locally linear modelling technique. Therefore, although good quality synthetic speech can be

generated, the issue of realistic pitch modification is not resolved.

A parametric model is intuitively more appealing than the essentially concatenative approach

used in the locally linear model. The RBF network with global feedback is such a model, and

was first used in speech synthesis by Birgmeier [121]. His network, although trained in a dif-

ferent manner, displayed the same problems as the network described in Chapter 6. Despite an

in–depth analysis of all of the network parameters, the output signal was found to be incorrect

for the majority of training signals presented to the network. In an effort to discover the reason

for the poor performance, the numerical stability of the learning process was examined. Even

though the kernel output matrix, which must be inverted to learn the weights, is some–what ill–

conditioned, and the magnitude of the weights is also large, these factors could not be linked to

the incorrect resynthesis. Next, equations for the local Lyapunov exponents of the RBF network

were derived, and these indicated that networks which produce unstable results show greater
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sensitivity. Calculation of the global Lyapunov exponents from correctly synthesised signals

showed that the network output has a larger first Lyapunov exponent compared to the original,

indicating that the network increases the nonlinearity in the signal.

The main contribution of Chapter 7 is to solve the RBF stability problem by the application of

regularisation. Combined with the hyper–lattice structure for centre positioning, this produces

a compact model that can regenerate the dynamics of complex systems in a stable manner.

As well as learning the constant pitch vowel sounds, the Lorenz system of equations is also

modelled. This may be of interest to researchers in fields other than speech processing, since

it indicates that signals other than speech, which can be reconstructed on low–dimensional

attractors, can be learnt. Another interesting result is that the network preserves the jitter of the

original speech signal. This, coupled with Lyapunov exponent results of the same order as the

originals, confirms that the dynamics of the speech signals have been well modelled. However

pitch modification again proves to be a sticking point. Results on the linear interpolation of

the weight vectors in the weight vector space show that an interpolation technique may be

appropriate, but finding the relationship which would allow the weight vector for a specific

pitch to be found is not resolved.

8.2 Future work

The contributions made by this study have shown that nonlinear techniques offer the potential

for high quality synthesis, including modelling of the natural variability of the speech signal.

However applying these techniques is difficult, and in particular the problem of pitch modific-

ation is unresolved. Hence there are a number of areas where further investigation would be

worthwhile.

Firstly, the RBF network warrants further study for both signal generation and pitch modific-

ation. To achieve a higher quality synthesised signal, better modelling of the high frequencies

and shimmer is needed. This requires an improved understanding of how the network learns

the dynamics of the signals, and why better modelling is achieved in certain vowels. It has

been stressed throughout this thesis that a speech synthesiser must also be able to generate

sounds at any required pitch, so the pitch modification issue must be addressed. The fact that

sounds can be modelled by a single set of weights makes performing the pitch modification

using this weight vector an attractive option, but it is not clear how to proceed beyond the linear
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interpolation results already presented.

Examining other RBF structures may provide some solutions, at least in terms of improved

modelling. For example a recurrent network could be implemented. This type of network has

an internal memory structure and so may give improved performance, since more past inform-

ation is stored [13]. Better high frequency approximation might be obtained by adopting some

form of sub–band approach, perhaps with different nonlinear models for different frequency

ranges [129]. Another option would be to combine a linear filter with the RBF network [130].

Given the success of linear prediction within the speech processing field, there is evidently a

linear element to the speech signal and this may be better approximated by a linear filter. All

of these options could be combined with a change in the choice of kernel function. Gaussian

functions have been used throughout this thesis, but no study has yet been made on the effect

of kernel type on resynthesis in speech. A kernel function with a less localised response could

be expected to give different results.

The Poincaré pitch marking algorithm is also worthy of further investigation. If a robust tech-

nique for locating an initial epoch point can be found, then the algorithm becomes a viable

epoch detector. Additionally it would be interesting to carry out a direct comparison with other

epoch detection methods, to examine whether the state space representation can be used to

correctly locate epochs in types of speech signals where other detectors fail.

Finally it would be interesting to turn the network to other applications. One possibility would

be as part of a speech recognition system (see e.g. [131] for a review of speech recognition).

Here the RBF structure may be able to perform the tasks of front–end feature extractor and

low–level classifier simultaneously. A simple recognition system can be envisaged where each

class (which could be of phones, diphones, etc) can be characterised by a set of weights. This

would be possible through the use of the data–independent hyper–lattice structure. Then, given

an input frame of speech, it would be possible to use the sum of the error residual from the RBF

network over the frame to decide which class the input speech belongs to.
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Appendix A
Calculation of the matrix

pseudo–inverse

The pseudo–inverse of a matrix, due to Moore and Penrose [132], is useful when the exact in-

verse of the matrix does not exist. Given the matrix � , the pseudo–inverse � � has the following

properties if � is full rank:

� � � � �
� � ���� �

where
�

is the identity matrix.

� � is calculated from the SVD of � :

� � + � / �

and is defined as

� � � / � � + �

where
� � is the inverse of the diagonal matrix

�
, obtained by replacing each non–zero ele-

ment by its reciprocal.
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Appendix B
Spectrograms

This appendix presents further spectrogram results for the extended vowel synthesis, by the

locally linear synthesis (Chapter 5) and regularised RBF network (Chapter 7) techniques.

B.1 Locally linear

The spectrograms show that the locally linear technique is capable of capturing the spectral

characteristics of the original across the whole range of frequencies, up to 11 kHz. An example

for each speaker in the database is presented.
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Figure B.1: Wide–band spectrograms of original (left) and synthesised (right) speech, for the

vowel /i/, male speaker MC.
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Spectrograms
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Figure B.2: Wide–band spectrograms of original (left) and synthesised (right) speech, for the
vowel / � /, male speaker PB.
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Figure B.3: Wide–band spectrograms of original (left) and synthesised (right) speech, for the
vowel /u/, female speaker KH.

Fr
eq

ue
nc

y 
(H

z)

Time (s)

Original

0

2000

4000

6000

8000

104

0 0.1 0.2

Fr
eq

ue
nc

y 
(H

z)

Time (s)

Locally linear synthesis

0

2000

4000

6000

8000

104

0 0.1 0.2

Figure B.4: Wide–band spectrograms of original (left) and synthesised (right) speech, for the
vowel / � /, female speaker CA.
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Spectrograms

B.2 Radial basis function network

These spectrograms compare the performance of the regularised RBF network against the ori-

ginal signal and the results from an LP synthesiser. Both the hyper–lattice and the data subset

methods of centre selection are included. The value of the regularisation parameter in also

given. It can be clearly seen that the RBF network does not model the higher frequencies ad-

equately, whereas the LP model tends to over–emphasise them. However, at lower frequencies

the RBF model performs well.
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Figure B.5: Wide–band spectrograms for the vowel /i/, male speaker MC. Top row: original

signal (left) and linear prediction synthesised signal (right); Bottom row: RBF

network synthesised signal, hyper–lattice,
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�� (left) and data subset,
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�� (right).
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Figure B.6: Wide–band spectrograms for the vowel /u/, male speaker PB. Top row: original
signal (left) and linear prediction synthesised signal (right); Bottom row: RBF
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Figure B.7: Wide–band spectrograms for the vowel / � /, female speaker KH. Top row: original
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RBF: Data subset
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Figure B.8: Wide–band spectrograms for the vowel /i/, female speaker CA. Top row: original
signal (left) and linear prediction synthesised signal (right); Bottom row: RBF
network synthesised signal, hyper–lattice,
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Appendix C
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marked by � are reproduced in this appendix.
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A NONLINEAR ALGORITHM FOR EPOCH MARKING IN
SPEECH SIGNALS USING POINCARÉ MAPS

Iain Mann and Steve McLaughlin
Dept. of Electrical Engineering, University of Edinburgh,
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Edinburgh. EH9 3JL. UK

Tel: +44 131 6505655; fax: +44 131 6506554
e-mail: inm@ee.ed.ac.uk, sml@ee.ed.ac.uk

ABSTRACT

A novel nonlinear epoch marking algorithm is proposed for
use with voiced speech signals. Epoch detection is useful
for speech coding, synthesis and recognition purposes, as
it provides both the moment of glottal closure and the in-
stantaneous pitch. Our technique functions entirely in state
space, by operating on a three dimensional reconstruction of
the speech signal which is formed by embedding. By using
the fact that one revolution of this reconstructed attractor is
equal to one pitch period, we are able to find points which are
pitch synchronous by the use of a Poincaré section. Evidently
the epoch pulses are pitch synchronous and therefore can be
marked. Results using real speech signals are presented to
illustrate the performance of the technique.

1 INTRODUCTION

In this paper we describe a novel nonlinear epoch mark-
ing algorithm for use with voiced speech. The algorithm
makes use of nonlinear dynamical theory by reconstructing
the system in state space and then using Poincaré sections to
mark pitch synchronous points in the speech signal (i.e. the
epochs).

Epoch detection has been a pervasive issue in speech pro-
cessing for many years, since knowledge about the instantan-
eous pitch or moment of glottal closure is extremely import-
ant in speech coding, synthesis and recognition. A number
of algorithms for epoch determination exist, most of which
operate on the time domain speech signal. Various measures
are employed to locate the epoch pulses, such as maximum–
likelihood detection [1], discontinuities in the LPC resid-
ual [2], similarity models [3] and dynamic programming [4].

The new algorithm reported here should not be taken as
a competitor to these existing techniques. Rather, it is a
demonstration of the practical possibilities that nonlinear sig-
nal processing has to offer in the field of speech processing.
Speech has been recognised as being a nonlinear process for
a number of years [5], but this offers little advantage if we
are unable to exploit this new knowledge. Researchers have
already shown the possibilities available for speech coding
(e.g. [6]); here we propose another direction to pursue. We

This work was supported by an EPSRC CASE award with BT Labs,
Martlesham. SML also acknowledges the support of the Royal Society.

will firstly review state space reconstruction and the theory of
Poincaré sections. Next the algorithm is presented, followed
by some results of epoch marking on real speech signals. We
conclude with a discussion of the problems and possibilities
found with this new technique.

2 STATE SPACE AND THE POINCARÉ SECTION

In nonlinear processing a � –dimensional system can be re-
constructed in an � –dimensional state space from a single
dimension time series by a process called embedding.
Takens’ theorem states that ���������
	 for an adequate
reconstruction [7], although in practice it is often possible to
reduce � . Time delay embedding involves forming a state
space trajectory matrix � by passing a window of length �
through the time series � :

��

����
�
��� ����� ����� �������! #" � ��  �$�% #& ��� "'�����(�$�% )&*�����! #" ��� "��+,�$� + & ��� "'�����(�$� + &*�����! #" ��� "
...

...

-/...
0 (1)

where 132 is a delay time chosen so as to optimally open up
the attractor. An alternative is singular value decomposition
(SVD) embedding [8], which may be more attractive in real
systems where noise is an issue. This technique partitions
the state space into two subspaces, one containing the signal
and the other the noise. The singular value decomposition of� is given by: ��
5476�8:9 (2)

where 6 is diagonal, containing the singular values ; �:<;  < ; +=<>�?���@< ;BA �! �DC (E being the SVD window
length) and 4 and 8 are orthogonal and contain the asso-
ciated singular vectors. A reduced trajectory matrix can be
formed by: �GF�
H�G8:2 (3)

where 8 2 only contains the columns of 8 corresponding to
the significant values of 6 . This process reduces the di-
mension and removes noise effects [9], leaving a low dimen-
sional, noise–free, attractor reconstruction.

It has been found that vowel sounds are low dimensional,
and can be modelled in a 3 dimensional state space [10]. Fig-
ure 1 shows an example of time delay and SVD embedding of
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the vowel /i/ in 3D state space, illustratingthe smoothing cap-
abilities of the SVD process. A time delay of 10 samples or
SVD window length of 50 samples has been found to be ad-
equate to ensure that the attractor is opened up at a sampling
rate of 22kHz. This reconstruction is pitch synchronous in

(a) (b)

Figure 1: (a) Time delay ( ����� ���
samples) and (b) SVD

(�	��
 � samples) embedding for the vowel /i/. ��
������ kHz
in the original signal.

that one revolution of the attractor is equivalent to one pitch
period. Clearly this fact can be exploited to mark points in
time separated by multiples of the pitch period. The key to
this in practice is the use of a Poincaré map. A Poincaré map
replaces the flow of an � –th order continuous system with an� ��� ���

–th order discrete time system [11]. Thus in the case
of voiced speech, the 3 dimensional attractor is replaced by a
2 dimensional cross–section. Figure 2 shows this principle,
where the hyper–plane � cuts the flow, � , of the attractor
normally at a chosen point. Crossings in one direction only
(e.g. from ��� to ��� ) result in a one–sided map, whereas the
entire set of crossings produces a two–sided map.

+

.
.

.

Σ

Σ
Σ

-

h

Figure 2: An example of a (one–sided) Poincaré map, show-
ing the hyper–plane � cutting the flow � normally.

3 THE NEW EPOCH–MARKING ALGORITHM

Our algorithm uses the principle outlined above to mark suc-
cessive epochs. To cope with the inherent non-stationarity
of the speech signal, it operates on a frame–by–frame
basis. Given that the input waveform is a voiced sound (no
voiced/unvoiced decision module is included in the proto-
type), frames of length � samples are read and processed,
with a 50% overlap between adjacent frames. In our experi-
ments we have used a frame length of 35msecs ( ���! � � at
22kHz), since speech is often assumed to be stationary for 30
to 45msec. Each frame is then embedded into 3D state space

using an SVD window length of 50 samples. Assuming that
the location of the very first epoch in the waveform is known,
and denoting that point as "$#&%('*) , a Poincaré section � is po-
sitioned normally to this point and all the points + %(,&-&./.
(
�10 "32�� ) that traverse � are found. + %(,&-&./. will con-

tain all of the epochs, since they are pitch synchronous with" #4%$' ) , but other arbitrary points will also be present, de-
pendent upon the shape and complexity of the attractor.

To chose the correct points from +5%$,&-4.6. , we employ a
distance measure, 798;:=< , which locates the points closest to" #4%$' ) in state space. This distance measure tracks an inter-
sect point " %(,&-4.6. as it moves around one revolution of the
attractor, and finds the average distance in state space of that
point from the corresponding movement of " #4%$' ) :

798 : <>� �? , �&@A B C$D�EGF "$H #4%$' ) �JI
BLK M "$H %$,&-4.6. �NI

BOKOP
(4)

where Q �SR MUT � is the Euclidean distance between points
R

andT in 3D state space, and V�� �OW D � 
UX ?�� is
� X ? –th of a revolu-

tion around the attractor (in samples) at the local point, with
local pitch period

W D seconds.
?

is typically 8 or 10.
These points should be those within the same part of the

attractor manifold as " #4%$' ) , and hence will be the epoch
points. However, due to the complexity of the attractor for
certain voiced sounds, other parts of the attractor containing
intersections with � may also pass close to " #4%$' ) . To pre-
vent these points accidentally being chosen we use a speech–
specific windowing measure similar to that used in [12].
The average pitch period 7 W D < is initially calculated using
the autocorrelation method with centre clipping over at least
30msec of the frame, and is then updated as each new epoch
is marked. We then search in a window between

�ZY [ 7 W D < and��Y \ 7 W D < onwards from the previously marked epoch for the
closest point to "N#4%$'*) in state space, since the pitch is not
expected to vary by more than ] \6��^ within a voiced sec-
tion [13]. The new point found is marked as an epoch and
the process continues through the frame. Once a frame has
been processed, the last epoch marked is taken as " #4%$' ) for
the next frame, and so on through the data. The flow chart
shown in Figure 3 illustrates this process.

4 RESULTS

Initially the algorithm was tested using constant pitch vow-
els from our own database, which also includes laryngograph
data for comparative purposes. Further tests where made us-
ing a series of rising pitch vowels provided by BT Labs1,
and then signals from the Keele University Pitch Extraction
Database [14], which provides speech and laryngograph data
from 15 speakers reading phonetically balanced sentences.
In all cases the sampling rate used was 22kHz so as to ad-
equately fill the state space reconstruction (our database was
recorded at 22kHz; the other signals were up–sampled, the
BT vowels originally being at 12kHz and the Keele signals
at 20kHz). All the signals have 16 bit resolution.

1Thanks to A. Lowry for providing this data.
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Figure 3: Schematic of the epoch marking algorithm.

Figure 4 shows a snapshot of the algorithm during pro-
cessing on the constant pitch, stationary vowel /a/ spoken
by a female speaker. The epochs are marked as calculated
on the time domain waveform. The left–hand–most epoch
is that which was used as ��������� . The attractor reconstruc-
tion shows how the Poincaré section, which intersects the
flow at this point, crosses through several other parts of the
manifold. This is seen more clearly on the 2–sided Poincaré
map. In this case the attractor structure is relatively simple
resulting in four sets of intersection points, all of which are
well separated making classification of the points easy. The
points corresponding to the epochs are those enclosed within
the circle.

Time domain waveform

Poincare map

State space reconstruction

Chosen
GCI

Epochs

Arrows mark

Other
intersects

intersects

point
Chosen

Figure 4: Snapshot of processing of the stationary vowel
/a/, showing a frame of the signal with the calculated epoch
markers (top); the two–sided Poincaré map of intersections
with the attractor (bottom left); the attractor reconstruction
with intersects indicated (bottom right).

The algorithm was found to correctly mark all of the sta-
tionary vowels considered.

As a next step we considered a simple non–stationary case,
that of rising pitch vowels. Figure 5 shows the results of
our algorithm compared to those produced by a dynamic
programming–based approach [4]2 for the vowel /u/, pro-
nounced by a male speaker. Again the left–hand–most epoch
is that which was marked as �������	� . It can be seen that the
performance of our new algorithm is equal to that of this es-
tablished approach, demonstrating that the frame–by–frame
operation allows us to track changes in the attractor structure,
caused in this case by the changes in pitch.

Figure 5: Results for the rising pitch vowel /u/. From top
to bottom: the signal; the epochs as calculated by our al-
gorithm; the epochs as calculated by the dynamic program-
ming approach; the pitch contour (Hz) resulting from our
algorithm.

Finally we tested the algorithm with various voiced seg-
ments from the Keele University database. Figure 6 shows
the algorithm’s performance on a section of the phrase “the
northwind and the sun were disputing”, spoken by a male
speaker. There is a considerable change in the signal, and
hence in the attractor structure, in this example, yet the
epochs are still mostly well located when compared against
the laryngograph signal. However problems have been en-
countered with other signals tested, usually caused by the
state space reconstruction being very complicated, thus mak-
ing the selection of the correct intersect points difficult. In
general, the more complicated state space structures occur at
low pitch values (many oscillations within one pitch period)
and with voiced sounds where fricative noise also occurs
(which tend to fill the state space).

5 DISCUSSION

Clearly a major drawback to this algorithm is the need to
know the location of the first epoch. Due to the nature of the
technique, it is only possible to mark points which are pitch
synchronous; we cannot tell a priori if a data point is a glottal
closure instant, but once one is known all subsequent epochs
in that voiced section can, in theory, be found. Unfortunately
the attractor’s geometric structure does not provide any in-
formation about the epoch locations either, so at present this
problem is unresolved.

2Available commercially as Entropic Research Laboratory’s ESPS epoch
function.
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Figure 6: Results for the voiced section of “sun were” from
the Keele database. From top to bottom: the signal; the
epochs as calculated by our algorithm; the laryngograph sig-
nal; the pitch contour (Hz) resulting from our algorithm.

This aside, the technique appears useful. It works very
well on the simple cases of stationary vowels and rising pitch
vowels, accurately marking all the epochs. When applied to
real speech signals we have met with moderate success. The
algorithm is often able to track quite considerable changes
in the attractor structure, caused by changes in vowel sound
and/or pitch, but should an error occur (usually caused by
a misalignment of the Poincaré section, often when the at-
tractor structure is very complicated) it is unable to recover
leading to incorrect marking at all points forward from the er-
ror point. This is again due to the fact that we are not actually
locating the epoch pulses specifically, only points which are
pitch synchronous. Therefore when an error occurs, caus-
ing a loss of synchronisation, it propagates through the re-
mainder of the signal. Further work will need to address this
problem, as well as improving the algorithm so it is better
able to cope with sudden changes in attractor structure.

6 CONCLUSIONS

We have shown how nonlinear signal processing theory can
be applied to the practical problem of epoch marking. The
proposed algorithm, which operates in state space using a
Poincaré section to mark pitch synchronous points, has been
shown to perform very well on simple vowel sounds and to
give promising results on real voiced speech signals. There-
fore this novel technique demonstrates the potential of non-
linear theory in speech processing.
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ABSTRACT

The problem of stable vowel sound synthesis using a non-
linear free-running recurrent radial basis function (RBF)
neural network is addressed. Voiced speech production is
modelled as the output of a nonlinear dynamical system,
rather than the conventional linear source–filter approach,
which, given the nonlinear nature of speech, is expected
to produce more natural–sounding synthetic speech. Our
RBF network has the centre positions fixed on a hyper–
lattice, so only the linear–in–the–parameters weights need
to be learnt for each vowel realisation. This leads to
greatly reduced complexity without degrading perform-
ance. The proposed structure, in which regularisation the-
ory is used in learning the weights, is demonstrated to be
stable when functioning in recurrent mode with no ex-
ternal input, correctly producing the desired vowel sound.

1 INTRODUCTION

In this paper we describe a neural network approach to
the synthesis of voiced speech sounds. Our new technique
uses a recurrent radial basis function with only a relatively
small number of varying parameters and, once trained, is
able to function as a stable nonlinear oscillator with no
external input.

Nonlinear techniques, generally in the form of neural
networks, have been applied to speech synthesis previ-
ously by several researchers. The interest in using a non-
linear method, as opposed to conventional linear ones,
stems from the fact that speech has been demonstrated to
be a nonlinear process [1]. Therefore a nonlinear tech-
nique should be better able to model the signal.

An RBF network for generating vowel sounds was pro-
posed in [2]. It uses an extended Kalman filter approach
to learn the weights, with centres that are chosen as a
subset of the input data. This structure, although some-
times able to resynthesise the desired sound, is generally
very unstable. Further work [3] solved this problem by
blocking the input signal into frames and using all of the
data within each frame as centres. This method is able
to resynthesise on a frame–by–frame basis, but is unsatis-
factory due to the very large number of varying paramet-

This work was supported by an EPSRC CASE award with BT
Labs, Martlesham. SML also acknowledges the support of the Royal
Society.

ers and the fact that it is not free–running synthesis per
se. A different approach, using multi–layer perceptrons
(MLP’s), rather than RBF’s, is taken in [4]. Only the Ja-
panese vowel /a/ is examined, but it appears that stable
resynthesis is achieved. However the learning process in
MLP’s is difficult and costly, and there will be a large
number of nonlinear parameters varying between different
vowel realisations. At the same time, work on modelling
radar back scatter from the sea has produced free–running
RBF synthesis structures [5] which make use of regular-
isation theory to ensure stability. However it is not clear
if this technique uses all of the training data as centres.
Our new method draws on this application of regularisa-
tion theory to produce a stable free–running synthesiser of
vowel sounds. It also uses only a small number of centres,
whose positions are fixed, thus greatly reducing complex-
ity.

We first present the structure of the recurrent RBF net-
work and describe its operation. We then consider is-
sues relating to the stability of the network, and show
how regularisation theory allows us to create a completely
stable structure. Following this some results of synthes-
ised speech are presented, and we conclude with a discus-
sion of the problems and possibilities found with our new
technique.

2 RADIAL BASIS FUNCTION NETWORK

The radial basis function network is used to approxim-
ate the underlying nonlinear system producing a particu-
lar stationary voiced sound. Specifically, it is trained to
perform the prediction

���������
	���
���� (1)

where 
 � ����� ��� ��� ������� ��������� � � ��� �"! ���#����� � is a vector of
previous inputs spaced by some delay $ samples, and 	 is
a nonlinear mapping function. Considering the problem
from a nonlinear dynamical theory perspective, we can
view this as a time delay embedding of the one dimen-
sional speech signal into an % –dimensional state space,
producing an attractor reconstruction of the underlying&

–dimensional system. Takens theorem states that %(') &+*-,
for an adequate embedding [6], although in prac-

tise it is often possible to reduce % . Appropriate choice
of the non–trivial delay $ opens up this reconstruction. It
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has been shown that vowels are low dimensional, having a
dimension of around three [7], and that a value of ��� ���
samples is suitable for a sampling rate of 22.05 kHz [8].
In our RBF, ���	� taps are used, which is sufficient to
give good results. The general structure is shown in Fig-
ure 1, for both training and synthesis modes of operation.
The centres are spread uniformly over an � –dimensional
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Figure 1: Recurrent RBF network structure.

hyper–lattice, rather than being chosen as a subset of the
input data as is more usually the case. The network output
(using 
 Gaussian centres) is given by���
���� � ��� ��������� 
 ����� (2)

where the output of each centre is

� 
 � � �"!$#&%('*)"+ 
 '-, � ).0/21 3 (3)

,54 being the position of the 6 –th centre on the hyper–
lattice, and all the centres having a bandwidth

/ 1
(determ-

ined experimentally). Each 6 –th centre output is multi-
plied by a weight � 4 . With the centre positions known,
the determination of the weights is linear in the para-
meters and may be solved by standard matrix inversion
techniques, subject to some stability issues which are dis-
cussed in the following section.

Once the weights have been determined, we can switch
from training to synthesis mode: the input signal is re-
moved and the delayed network output is fed back into
the delay line to form a free–running recurrent RBF net-
work, allowing any duration of signal to be synthesised.
Since the centre positions are fixed on the hyper–lattice
identically for all signals, this means that there are only 

varying parameters in our system (i.e. the elements of 7 ).
This greatly reduces the complexity of the system without
reducing performance. Figure 2 shows a comparison of
mean square prediction error for a regularised RBF net-
work trained with centres on a hyper–lattice and for one
where the centres are chosen as a subset of the training
data, over a database of four speakers (two male and two
female). Very similar performance is observed for both
methods, although in all cases our method gives on aver-
age approximately 1 dB better performance, clearly justi-
fying the use of the hyper–lattice.

-40
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Figure 2: MSE comparison of centre positioning
strategies for 4 speakers, averaged over the 3 vowels
/ i/, /a/ and /u/. The RBF network was trained with 800
samples, using 64 centres (either on a 6–dimensional
hyper–lattice, or as a subset of the training data). The
one–step–ahead MSE was then calculated on an unseen
800 sample validation set.

3 STABILITY ISSUES

In this section we will consider how the training tech-
nique for learning the weights must be modified in order
to achieve stable resynthesis. Conventionally the weights
are determined to minimise a sum of squares error func-
tion, 8:9�; �<�= , over > samples of training data:

8 9 ; �<�= � �.@? � �� 
 ��� ; �� 
 ' � 
 = 1 (4)

where
�� 
 is the network approximation of the actual

speech signal � 
 . Incorporating Equation 2 into the above
and differentiating with respect to the weights, then set-
ting the derivative equal to zero gives the least-squares
problem [9]. This can be written in matrix form as

;BA:CDA = 7ECF�GA:C + (5)

where A is an > x 
 matrix of the outputs of the centres;+ is the target vector of length > ; and 7 is the 
 length
vector of weights. This is normally solved by finding the
pseudo–inverse by singular value decomposition.

However, our experiments have shown that if the
weights are determined in this manner it is not possible
to guarantee stable resynthesis when the RBF network is
operated in the free–running recurrent mode. In fact it
is generally the case that the output is erroneous, with a
correct output found only at certain training lengths for
certain input signals. More over it does not seem pos-
sible to predict which signals will produce a correct out-
put and which will not. Very similar observations are
made by Birgmeier [2,10]. Types of erroneous output en-
countered include periodic limit cycles not resembling the
original speech signal; constant (sometimes zero) output;
extremely large spikes at irregular intervals on otherwise
correct waveforms. We note here that these observations
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hold true irrespective of centre positioning(i.e. as a subset
of the training data or as a hyper–lattice), bandwidth and
variations of other network parameters.

This problem can be solved by the application of reg-
ularisation theory, first described as applied to RBF’s
in [11]. In essence this means the application of some
smoothing factor to the approximated function �� . Math-
ematically, we define a new cost function��� ������	��
�� �����
�������� ���������
�� �����
��� ����� ����! (6)

where
��
"� ���� is the sum of squares error defined previ-

ously,
�#��� ���� is the regularising term and

�
is the real,

positive regularisation parameter. A full derivation is bey-
ond the scope of this paper (see the chapter on regularisa-
tion theory in [12]), but given the appropriate choice of
the differential operator

�
, it is possible to write the solu-

tion for the weights for the specific case of all training data
being used as centres ( $ �	% ) as& �'�)(*
��,+-�/.10/2

(7)

where
+

is the
%

x
%

identity matrix and
(

is an
%

x $
matrix of Green’s functions, which is equal to the

%
x $

matrix 3 .
This solution is only of limited interest, since we have

to use all of the training data as centres, but it can be
extended to the approximate regularised solution, where$'4 % and the centres are not necessarily on the training
data. In this case we obtain& �*�)(�5�(6
7��(98:�/.10!(�512

(8)

where
(98

is a symmetric $ x $ matrix composed of ele-
ments ; �=<�>/?@<-AB� :
; �=<�>/?@<-AB�C��D-EGFIHKJ �!< > J < A ��ML  N ?PORQ�SUT)V 4�$ J7�

(9)
When

�W�XO
there is no regularisation, and as

�
is in-

creased so greater smoothness is imposed onto �� . Our
results have shown that by using this method, stable real-
istic resynthesis is possible for all the signals in our data-
base.

4 VOWEL RESYNTHESIS

In order to test the ability of our RBF structure to synthes-
ise vowels in a stable and realistic manner, we examined
its performance on our specially recorded database of sta-
tionary vowels. From the 16 speakers in the database, we
randomly chose two male and two female speakers. Their
utterances of the three cardinal vowels /i/, /a/ and /u/ form
the basis of our test. All signals were sampled at 22.05
kHz and have 16 bit resolution. The RBF network was
trained using 800 samples of the original waveform, be-
fore being set into free–run synthesis mode to generate the
desired length signal. The 6–dimensional hyper–lattice
used has 64 centres, corresponding to a centre at each

‘corner’ of the hyper–lattice. The value of the regular-
isation parameter,

�
, was set at � O .10 . In all cases we were

able to synthesise stable, speech–like waveforms. As an
assessment of the quality of these synthesised waveforms,
they were compared against the signal generated by the
classic linear prediction synthesiser. In this case, the lin-
ear prediction (LP) filter coefficients were found from the
original vowel sound (analogous to the training stage of
the RBF network). Using the estimate

�=YC
�
7Z[�
[13], we

calculated a model with 26 poles. Then, using the source–
filter model, the linear prediction filter was excited by a
dirac pulse train to produce the desired length LP synthes-
ised signal. The distance between dirac pulses was set to
be equal to the pitch period of the original signal. Fig-
ure 3 shows the time domain signals generated by the two
techniques for an example of the vowel /u/ (speaker mc).
The original vowel sound is also included for comparative
purposes. Figure 4 shows the corresponding frequency
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Figure 3: Time domain examples of the vowel /u/ (speaker
mc). From top to bottom: original signal; linear predic-
tion synthesised signal; RBF network synthesised signal.

domain plots of the three signals. For the sake of clarity
the spectral envelope (calculated via the LP coefficients),
rather than the full Fourier spectrum, is shown.

5 DISCUSSION

Figures 3 and 4 clearly demonstrate the different model-
ling strategies between the LP and RBF approaches. In the
linear prediction case, the technique attempts to model the
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Figure 4: Spectral envelopes for examples of the vowel
/u/, corresponding to the signals in Figure 3.

spectral features of the original, which is done by assum-
ing that the excitation signal can be separated out. Hence
the reasonable match seen in the spectral envelope (al-
though the high frequencies have been over–emphasised),
but the lack of resemblance in the time domain. The RBF
network, on the other hand, attempts to model the com-
plete underlying dynamical system (Equation 1). Thus
the RBF synthesised signal resembles the original in the
time domain: the RBF network has successfully captured
many of the original signal characteristics. However the
spectral plots show that the higher frequencies have not
been well modelled by this method. This is because the
RBF network has missed some of the very fine variations
of the original time domain waveform, due to the imposi-
tion of the regularisation parameter � . This, as described
previously, adds smoothness to the approximated function��

to ensure stability. When listening to the signals in an
informal listening test, most listeners preferred the RBF
generated vowel against the LP synthesis result. The RBF
signal was generally thought to be perceptually closer to
the original in terms of naturalness, although it was still
noticeably different.

6 CONCLUSION

We have presented a recurrent radial basis function net-
work for vowel synthesis. By applying regularisation the-
ory we can ensure the stability of the network, which has
previously been found to be a problem with this tech-
nique. In addition, through the use of a hyper–lattice,
the centre positions can be fixed in state space, thus re-
ducing the number of varying parameters to the set of
linear weights. This structure has been compared to the
well–known source–filter linear model, with an example
of the vowel /u/ presented. Our technique produces a more
accurate version of the time–domain waveform, but does
not adequately model the higher frequencies. This is due
to the use of regularisation: by forcing the approximated
function to be smooth to give stability, we implicitly re-
move some higher frequency information. However the
vowel generated by the RBF network is more natural–
sounding than the LP synthesised sound, justifying the use
of a nonlinear method.
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Appendix D
CD

This appendix describes the contents of the CD which accompanies the thesis. It is divided into

two sections, one containing audio files and the other example source code. The files are also

accessible via an html page on the CD called index.html.

D.1 Audio examples

In the Audio/ directory, a set of example synthesised vowel sounds, with the original speech

for comparison, is provided. Both SUN and Microsoft formats are given. The file name labels

are used to indicate speaker, vowel and type of signal (type of synthesis / original).

Files are labelled as ss v ttt.ext where:

� ss is the speaker’s initials: mc = MC (male), pb = PB (male), ca = CA (female), kh = KH

(female).
� v is the vowel: i = /i/, a = / � /, u = /u/.
� ttt is the speech type: org = original, lls = locally linear synthesis, lpc = linear

prediction synthesis, lat = RBF synthesis with hyper–lattice, sub = RBF synthesis

with data subset.
� ext is the file type: au = SUN Sparc format, wav = Microsoft format.

D.2 Source code

The Source/ directory contains source code for the Poincaré pitch marker as described in

Chapter 4 and the RBF synthesiser described in Chapters 6 and 7. The Poincaré pitch marker

uses the xview graphical user interface and, as such, can only be used without modification on

UNIX systems which support this. No user interface is required for the RBF software, although

it should be noted that it has only been tested on UNIX systems with a SUN operating system.

Reference should be made to the readme.txt file on the CD for further details on compiling

and running the software.
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