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Abstract 

Prediction of corporate bankruptcy (or distress) is one of the major activities in auditing 

firms’ risks and uncertainties. The design of reliable models to predict distress is crucial 

for many decision-making processes. Although a variety of models have been designed to 

predict distress, the relative performance evaluation of competing prediction models 

remains an exercise that is unidimensional in nature. To be more specific, although some 

studies use several performance criteria and their measures to assess the relative 

performance of distress prediction models, the assessment exercise of competing 

prediction models is restricted to their ranking by a single measure of a single criterion at 

a time, which leads to reporting conflicting results. The first essay of this research 

overcomes this methodological issue by proposing an orientation-free super-efficiency 

Data Envelopment Analysis (DEA) model as a multi-criteria assessment framework. 

Furthermore, the study performs an exhaustive comparative analysis of the most popular 

bankruptcy modelling frameworks for UK data. Also, it addresses two important research 

questions; namely, do some modelling frameworks perform better than others by design? 

and to what extent the choice and/or the design of explanatory variables and their nature 

affect the performance of modelling frameworks? Further, using different static and 

dynamic statistical frameworks, this chapter proposes new Failure Prediction Models 

(FPMs). 

However, within a super-efficiency DEA framework, the reference benchmark changes 

from one prediction model evaluation to another one, which in some contexts might be 

viewed as “unfair” benchmarking. The second essay overcomes this issue by proposing a 

Slacks-Based Measure Context-Dependent DEA (SBM-CDEA) framework to evaluate 

the competing Distress Prediction Models (DPMs). Moreover, it performs an exhaustive 

comparative analysis of the most popular corporate distress prediction frameworks under 

both a single criterion and multiple criteria using data of UK firms listed on London Stock 

Exchange (LSE). Further, this chapter proposes new DPMs using different static and 

dynamic statistical frameworks.  
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Another shortcoming of the existing studies on performance evaluation lies in the use of 

static frameworks to compare the performance of DPMs. The third essay overcomes this 

methodological issue by suggesting a dynamic multi-criteria performance assessment 

framework, namely, Malmquist SBM-DEA, which by design, can monitor the 

performance of competing prediction models over time. Further, this study proposes new 

static and dynamic distress prediction models. Also, the study addresses several research 

questions as follows; what is the effect of information on the performance of DPMs? How 

the out-of-sample performance of dynamic DPMs compares to the out-of-sample 

performance of static ones? What is the effect of the length of training sample on the 

performance of static and dynamic models? Which models perform better in forecasting 

distress during the years with Higher Distress Rate (HDR)? 

On feature selection, studies have used different types of information including 

accounting, market, macroeconomic variables and the management efficiency scores as 

predictors. The recently applied techniques to take into account the management 

efficiency of firms are two-stage models. The two-stage DPMs incorporate multiple inputs 

and outputs to estimate the efficiency measure of a corporation relative to the most 

efficient ones, in the first stage, and use the efficiency score as a predictor in the second 

stage. The survey of the literature reveals that most of the existing studies failed to have a 

comprehensive comparison between two-stage DPMs. Moreover, the choice of inputs and 

outputs for DEA models that estimate the efficiency measures of a company has been 

restricted to accounting variables and features of the company. The fourth essay adds to 

the current literature of two-stage DPMs in several respects. First, the study proposes to 

consider the decomposition of Slack-Based Measure (SBM) of efficiency into Pure 

Technical Efficiency (PTE), Scale Efficiency (SE), and Mix Efficiency (ME), to analyse 

how each of these measures individually contributes to developing distress prediction 

models. Second, in addition to the conventional approach of using accounting variables 

as inputs and outputs of DEA models to estimate the measure of management efficiency, 

this study uses market information variables to calculate the measure of the market 

efficiency of companies. Third, this research provides a comprehensive analysis of two-

stage DPMs through applying different DEA models at the first stage – e.g., input-oriented 
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vs. output oriented, radial vs. non-radial, static vs. dynamic, to compute the measures of 

management efficiency and market efficiency of companies; and also using dynamic and 

static classifier frameworks at the second stage to design new distress prediction models.  

 

Keywords:  Bankruptcy Prediction; Corporate Distress Prediction; Performance 

Criteria; Performance Measures; Data Envelopment Analysis; Slacks-Based Measure; 

Context-Dependent Data Envelopment Analysis; Malmquist Index; Corporate Two-

stage Distress Prediction; Efficiency; Malmquist Index 
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Chapter One 

1. Introduction 

1.1 Preamble 

Corporate credit and default risk is an extensive terminology in banking and finance. 

According to the Basel Committee on Banking Supervision (BCBS), default in credit risk 

refers to a failure of a borrower or counterparty to meet its obligations in accordance with 

agreed terms (Basel Committee on Banking Supervision, 2000, p. 1). Corporate credit 

studies have considered different business failure events such as credit default (see, for 

example, Beaver, 1996), bankruptcy (see for example, Hillegeist et al., 2004; Ohlson, 

1980; Shumway, 2001; Wilson and Sharda, 1994) and financial distress (see for example, 

Bandyopadhyay, 2006; Campbell et al., 2008; Tinoco and Wilson, 2013; Li et al., 2014, 

2017).  

Corporate distress prediction has received considerable attention and became a major 

subject of extensive studies after the financial crises in 2007 and the European recession 

in 2009. Financial distress is defined as a situation that a company cannot generate enough 

cash flows to fulfill its contractual obligations (Piesse et al., 2006, p. 478). Remaining in 

this situation for a long time not only could impact adversely on the value of the company 

and the wealth of stockholders but also causes more financial and operational 

inefficiencies, and finally, could lead to bankruptcy. Corporate bankruptcy causes 

significant losses to both business community and the society as a whole - for details about 

the costs of bankruptcy, we refer the reader to Davydenko et al. (2012), Elkamhi et al. 

(2012) and Branch (2002). Therefore, early detection of a company deteriorating 

condition or distress has such economic advantages that motivates both academics and 

practitioners in developing a range of corporate Distress Prediction Models (DPMs).  

Because of considerable increases and an extensive variety of prediction models, a strand 

of the literature has focused on answering the question which of these models perform 

better? The performance of bankruptcy and distress prediction models, as data-fitting 
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based empirical studies, is reliant on different factors such as sampling, features selection, 

modelling, and performance evaluation (Zhou, 2013).  

With respect to the performance evaluation, the comparative studies have been criticized 

because of failure in providing a comprehensive comparison between all types of 

bankruptcy and distress prediction models (Bauer and Agarwal, 2014; Mousavi et al., 

2015). Also, they have used a restricted number of criteria to evaluate the performance of 

competing models. Further, the nature of the performance evaluation of competing models 

remains mono-criterion, as they use a single measure of a single criterion at a time. 

Therefore, under mono-criterion evaluation, the rankings corresponding to different 

criteria are mostly different, which lead to a situation that practitioners cannot make a 

well-informed decision as to which model performs best when taken all criteria into 

account (see, for example, Theodossiou, 1991; Bandyopadhyay, 2006; Tinoco and 

Wilson, 2013). Another shortcoming of the comparative studies is that the multi-period 

performance evaluation of DPMs over time has never been considered.  

With respect to feature selection as one of the main issues in developing bankruptcy and 

distress prediction models, financial ratios (Beaver, 1966, 1968; Altman, 1968; Ohlson, 

1980; Zmijewski, 1984; Taffler, 1984), market-based information (Shumway, 2001; 

Hillegeist et al., 2004; Bharath and Shumway, 2008), macroeconomic indicators (Bellotti 

and Crook, 2007; Nam et al., 2008; Tinoco and Wilson, 2013) and corporate governance 

indicators (Liang et al., 2016; Darrat et al., 2016; Sueyoshi et al., 2010) are the most 

popular features that have been used in the literature. However, there are criticisms about 

the adequate statistical power of these features in developing prediction models.  

Recent studies have incorporated corporate managerial efficiency as a feature in 

developing two-stage DPMs (Xu and Wang, 2009; Psillaki et al., 2010; Yeh et al., 2010; 

Li et al., 2014, 2017). Data Envelopment Analysis (DEA) is the commonly applied 

technique to estimate the managerial efficiency of companies in the first stage. In the 

second stage, the estimated managerial efficiency measure is used as a feature in other 

classifier techniques to estimate the probability of failure.  The main criticism is that only 

the financial items (e.g., total sales, total assets) and the characteristics of companies (e.g., 
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the number of employees) are used to measure the efficiency of companies. Further, there 

is no comparative study that considers alternative estimated measures of company 

efficiency (e.g., managerial and market) using different DEA models (e.g., input oriented 

versus output oriented, Constant Return to Scale (CRS) versus Variable Return to Scale 

(VRS), dynamic versus static DEA models).  

In sum, the aim of this study is to provide a comprehensive comparative analysis of 

alternative statistical bankruptcy and distress prediction models. Further, this study 

proposes new assessment frameworks to compare the relative performance of prediction 

models. Also, beyond proposing a static multi-criteria framework, this research suggests 

a dynamic multi-criteria evaluation framework to analyse the multi-period performance 

of DPMs. Further, this study compares the discriminatory power of different efficiency 

measures of companies and propose new ones.  

1.2 Motivations 

The survey of the literature on bankruptcy and distress prediction revealed several gaps. 

First, although some comparative studies have used several performance criteria and, for 

each criterion, one or several measures to assess the performance of prediction models, 

the assessment is generally restricted to the ranking of models by a single measure of a 

single criterion at a time. Thus, the evaluation of models under multiple criteria remains 

unidimensional in nature, on the one hand, and the “big picture” is not considered in that 

a single or a very limited number of criteria only are used, on the other hand. Taken all 

criteria and their measures into consideration, empirical results of unidimensional 

evaluations indicate that the rankings corresponding to different criteria or measures are 

often different, which lead to uncertainty for a decision maker in choosing the best 

prediction model.  

Second, the existing comparative studies failed to have a comprehensive comparison 

between all types of prediction models; i.e., traditional statistical models, contingent 

claims analysis (CCA) models, and survival analysis (SA) models.  
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Third, the existing performance evaluation of competing prediction models is static in 

nature. In other words, the multi-period performance of competing models over time has 

never been considered in the literature.  

Fourth, taking into account two-stage distress prediction models, no study provides a 

comprehensive comparison between two-stage prediction models; neither considering 

different DEA models at the first stage that are used to estimate company efficiency nor 

using different classifier models at the second stage.  

Fifth, the survey of using DEA in corporate credit risk and failure indicates that the choice 

of input and output for DEA models to estimate efficiency measures of companies is 

restricted to accounting variables; and other useful sources of information such as market 

variables are overlooked.  

Considering the previous literature, the main motivation of this research is to provide 

frameworks for both static and dynamic multi-criteria assessment to compare the 

performance of competing bankruptcy and distress prediction models. Further, inspired 

by the recent trend in failure prediction studies in developing two-stage prediction models, 

it is necessary to have a comparative analysis of two-stage models that use different DEA 

models, under alternative assumptions, e.g. Constant Return to Scale (CRS) or Variable 

Return to Scale (VRS), with different types of inputs and outputs, to estimate efficiency 

measures of companies in the first stage, and to use different classifiers in the second 

stage. 

1.3 Objectives 

Considering the above-mentioned gaps in the literature, this research has the following 

major objectives and aims to achieve; 

1) To provide a comprehensive comparison between the most pioneer and applied 

statistical bankruptcy (Chapter two) and distress prediction models (Chapters three 

and four).  
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2) To propose a cross-sectional multi-criteria framework to compare the performance 

of competing bankruptcy (Chapter two) and distress prediction models (Chapter 

three). 

3) To propose a dynamic multi-criteria framework to compare the performance of 

competing distress prediction models (Chapter four). 

4) To provide a comprehensive comparison of the discriminatory power of different 

DEA efficiency measures (original vs. decomposed DEA scores and market vs. 

management DEA scores) incorporated as features in static and dynamic 

classifiers in the second stage of two-stage DPMs (Chapter five).   

1.4 Contributions 

This research makes several contributions to the current literature. First, it proposes an 

orientation free super-efficiency DEA framework (chapter two) and an orientation free 

slack-based context-dependent (SBM-CDEA) DEA framework (chapter three) – as 

methodological contributions - to assist both academics and practitioners with the 

rankings of a set of competing bankruptcy and distress prediction models under multiple 

criteria.  

Second, this study uses Malmquist DEA as a dynamic framework for evaluating and 

monitoring the relative performance of distress prediction models over time and ranking 

them (chapter four).  

Third, from two points of view, this research is the most comprehensive comparative 

analysis of competing prediction models. On the one hand, it provides a more in-depth 

classification of statistical distress prediction models and performs an exhaustive 

evaluation considering the most popular models of each class. On the other hand, to assist 

with the operationalization of the proposed evaluation frameworks, this study uses the 

most popular performance criteria for prediction models along with an exhaustive list of 

typical performance measures (chapter two, three, four and five). 

Fourth, inspiring by existing two-stage prediction models, this study suggests to apply the 

decomposition of the Non-Radial Technical Efficiency score, i.e., Slack-Based Measure 
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(SBM) of efficiency (Tone, 2001) into Pure Technical Efficiency (PTE), which presents 

the ability to improve the effectiveness by prudently allocating resources and using new 

technology, Scale Efficiency (SE), which indicates capacity to attain better efficiency by 

adjusting to its optimal scale, and Mix Efficiency (ME), which shows capacity to improve 

the effectiveness by managing input- or output-slacks, and analyse how each of these 

measures individually contributes to developing distress prediction models (chapter five).  

Sixth, in addition to the conventional approach of using accounting variables as inputs and 

outputs of DEA models to estimate the measure of management efficiency, this study is 

the first that suggests using market information variables as inputs and outputs of DEA 

models to calculate the measure of the market efficiency of companies that is retained to 

be used as a predictor in a classifier model (chapter five).  

Seventh, this study provides a comprehensive analysis of two-stage distress prediction 

models that apply different DEA models – say, input-oriented vs. output-oriented, radial 

vs. non-radial, static vs. dynamic, to compute the measures of management and market 

efficiency of companies at the first stage of two-stage models and use dynamic and static 

classifier frameworks at the second stage of two-stage models (chapter five).   

1.5 Importance 

The methods and findings of this study are important for a range of academics and 

practitioners who are interested in the field of corporate risk management and credit 

scoring. Further, the results of this research are important for stakeholders because distress 

prediction models protect them from downside effects of failure such as the cost of 

lawyers and court, opportunity cost, higher rate of financing, and more restrictions in 

capital raising.  

To be more specific, bankruptcy and distress prediction models can provide facility to 

creditors (e.g., commercial banks, saving and loan associations) in estimating the 

probability of default and failure of their customers. This research contributes to the 

decision of creditors in allocating funds to customers with lower risk. Further, managers 

of the company could use the findings of this research to select the best early warning 
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system that could take proper action against failure and immune their business. Also, 

financial institutions and investors can employ this study to have a more informative 

evaluation and the decision about their investment. Moreover, job seekers can make 

advantage to choose job positions in companies with economic stability. Further, the 

findings of this research could be applied by auditors as users of prediction models in the 

going-concern evaluation of companies.  

1.6 Research Outline 

This thesis is the combination of four separate projects that are presented in individual 

chapters. Chapters two, three and four focus on multi-criteria performance evaluation of 

bankruptcy and distress prediction models, and chapter five focuses on the two-stage 

distress prediction models.  

Chapter two is about the multi-criteria assessment of bankruptcy prediction model 

(BPMs). It provides a survey on bankruptcy prediction models and a classification of 

applied criteria and measures to assess the performance of competing prediction models. 

Also, this chapter proposes and discusses the slack-based super-efficiency DEA and 

explains how to use this multi-criteria assessment framework to compare the performance 

of bankruptcy prediction models. This chapter ends with a discussion on empirical 

findings and conclusions.  

Chapter three provides a multi-criteria assessment of competing distress prediction 

models (DPMs). It provides a survey on comparative studies related to competing 

statistical distress prediction models. Also, it describes the proposed multi-criteria 

methodology, namely context-dependent DEA that is used to compare the relative 

performance of competing DPMs. Finally, the chapter presents the empirical results and 

discussions.   

Chapter four is about a dynamic multi-criteria assessment of DPMs. It begins with a 

review of advances in DPMs and a survey of comparative studies on DPMs. This chapter 

describes the proposed dynamic multi-criteria framework; namely, an orientation-free 

super-efficiency Malmquist DEA, for the comparison of prediction models. Further, it 
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provides details on the experimental designs and the applied DPMs for comparison. 

Finally, the chapter concludes with empirical results and discusses its findings.  

Chapter five is about the comparative analysis of two-stage DPMs. It provides a detailed 

literature on using DEA in corporate credit risk and failure prediction. Also, it describes 

different DEA models, the decomposed DEA scores and the hybrid two-stage models to 

be assessed in comparative analysis. Finally, the chapter describes the empirical results 

and findings.  

Last but not the least, chapter six concludes this research by providing the summary of 

main findings, and the limitations of this research. It also offers some suggestions for 

future research in this field.  
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Chapter Two 

2. Performance Evaluation of Bankruptcy Prediction Models: An 

Orientation-Free Super Efficiency DEA-based Framework 

 

Abstract: Prediction of corporate failure is one of the major activities in auditing firms’ 

risks and uncertainties. The design of reliable models to predict bankruptcy is crucial for 

many decision-making processes. Although a large number of models have been designed 

to predict bankruptcy, the relative performance evaluation of competing prediction models 

remains an exercise that is unidimensional in nature, which often leads to reporting 

conflicting results. This research overcomes this methodological issue by proposing an 

orientation-free super-efficiency data envelopment analysis model as a multi-criteria 

assessment framework. Furthermore, it performs an exhaustive comparative analysis of 

the most popular bankruptcy modelling frameworks for UK data including new models. 

In addition, this study addresses two important research questions; namely, do some 

modelling frameworks perform better than others by design? and to what extent the choice 

and/or the design of explanatory variables and their nature affect the performance of 

modelling frameworks?, and report on the findings. 

 

Keywords: Bankruptcy Prediction; Performance Criteria; Performance Measures; Data 

Envelopment Analysis; Slacks-Based Measure 
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2.1 Introduction 

Corporate failure often occurs when a firm experiences serious loss and/or becomes 

insolvent with liabilities that are disproportionate to its assets. Corporate failure may result 

from one or a combination of internal and external factors; e.g., managerial errors due to 

insufficient or inappropriate industry experience, risk seeking managers, lack of 

commitment and motivation to lead the company efficiently, refusal or failure to adjust 

managerial and operational structures of the firm to new realities, inefficient or 

inappropriate corporate policies, economic climate, changes in legislation, industry 

decline – see for example Van Gestel et al. (2006). 

Bankruptcy induces substantial costs to the business community such as court costs, 

lawyer costs, lost sales, lost profits, higher costs of credit, inability to issue new securities, 

and lost investment opportunities (e.g., Bris et al., 2006; Davydenko et al, 2012; Elkamhi 

et al., 2012) – for a detailed review on the costs of bankruptcy, the reader is referred to 

Branch (2002). Therefore, the design of reliable models to predict bankruptcy is crucial 

to audit business risks and assist managers to prevent the occurrence of a failure, and assist 

stakeholders to assess and select firms to collaborate with or invest in (e.g., Ahn et al., 

2000, Balcaen and Ooghe, 2006).  

Given the importance of bankruptcy prediction, there is a considerable amount of 

literature focusing on both financial and non-financial information, and proposing new 

bankruptcy prediction models to classify firms as healthy or non-healthy (e.g., Balcaen 

and Ooghe, 2006, Aziz and Dar, 2006, Ravi Kumar and Ravi, 2007). With the increasing 

number of quantitative models available, one of the challenging issues faced by both 

academics and professionals is how to evaluate these competing models and select the 

best one(s).  

The survey of the literature on bankruptcy prediction revealed that although some studies 

tend to use several performance criteria and, for each criterion, one or several measures to 

evaluate the performance of competing prediction models, the assessment exercise is 

generally restricted to the ranking of models by a single measure of a single criterion at a 
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time. For example, Theodossiou (1991) compared the performance of linear probability 

models, logit models, and probit models using an equally weighted average of Type I and 

Type II errors as a measure of correctness of categorical prediction, Brier score (BS) as a 

measure of the quality of the estimates of probabilities of default, and pseudo-R2 as a 

measure of information content and found out that logit models outperform both linear 

probability models and probit models on all measures; however, with respect to pseudo-

R2 and an equally weighted average of Type I and Type II errors, probit models 

outperform linear probability models, but linear probability models outperform probit 

models on BS. Bandyopadhyay (2006) compared the performance of several MDA 

models using Type I errors and Type II errors, and compared the performance of several 

logit models using overall correct classification (OCC), receiver operating characteristic 

(ROC) measure, Pseudo-R2 statistic, and Log-Likelihood statistic (LL) and found out that 

the rankings of models differ with respect to different measures. Tinoco and Wilson 

(2013) compared the performance of several logit models with different categories of 

explanatory variables using ROC, Gini Index, and Kolmogorov-Smirnov statistic (KS) as 

measures of discriminatory power and Hosmer-Lemeshow (HL) statistic as a measure of 

calibration accuracy and found out that the rankings of models differ with respect to 

different criteria and their measures. In sum, the performance evaluation exercise under 

multiple criteria remains unidimensional in nature, on the one hand, and the “big picture” 

is not taken into account in that a single or a very restricted number of criteria only are 

used, on the other hand. The drawback of the commonly used approach for the relative 

performance evaluation of competing bankruptcy prediction models is that the rankings 

corresponding to different criteria or measures are often different, which result in a 

situation where one cannot make an informed decision as to which model performs best 

when taken all criteria and their measures into consideration. This research addresses this 

methodological issue and fills the gap by proposing a data envelopment analysis (DEA)-

based framework for the relative performance of bankruptcy prediction models. 

DEA is a well-known non-parametric mathematical programming-based framework 

designed for the performance evaluation of competing entities, commonly referred to as 

decision-making units (DMUs), which could in practice be production units of a 
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manufacturing plant (e.g., Debnath and Sebastian, 2014, Ahn and Neumann, 2014), 

financial institutions such as banks (e.g., Wang et al., 2014, Zhang et al., 2013, Chortareas 

et al., 2012), insurance companies (e.g., Kader et al., 2014) or mutual funds (e.g., Lozano 

and Gutiérrez, 2008 ), financial instruments such as stocks (e.g., Lim et al., 2014), etc. 

The relative performance of such DMUs is typically assessed under multiple criteria, 

where the measures of these criteria are divided into two categories commonly referred to 

as inputs and outputs, and the most efficient DMUs constitute the so-called efficient 

frontier and represents an empirical standard of excellence. Note that, unlike other multi-

criteria performance evaluation methodologies, DEA benchmarks against the best rather 

than the average behavior. Note also that the DEA terminology is motivated by an analogy 

between DMUs and production systems according to the economic theory of production. 

Since its early days, DEA witnessed many methodological developments as well as a large 

number of applications. In the bankruptcy prediction area, DEA has so far been used either 

to classify firms into healthy and non-healthy categories (e.g., Shetty et al., 2012; 

Premachandra et al., 2009, 2011; Paradi et al., 2004) or to compute aggregate efficiency 

scores to be used within statistical or stochastic modelling and prediction frameworks (e.g., 

Psillaki et al., 2010; Yeh et al., 2010; Xu and Wang, 2009; Li et al., 2014). Unlike these 

uses of DEA in bankruptcy research, this study proposes to use DEA as a performance 

evaluation framework of competing bankruptcy prediction models. 

In sum, the key contribution of this chapter is to propose a multi-criteria performance 

evaluation framework – as a methodological contribution – to assist both academics and 

practitioners with the ranking of a set of competing bankruptcy prediction models under 

multiple criteria. In order to assist with the operationalization of the proposed framework, 

we use the most popular performance criteria for bankruptcy prediction models along with 

an exhaustive list of typical performance measures. In addition, under the proposed 

framework, this study performs an exhaustive comparative analysis of the most popular 

bankruptcy modelling frameworks for UK data; namely, statistical and stochastic models 

including the ones that are designed as part of this research, using the most popular criteria 

along with a relatively large number of measures of these criteria to find out about the 
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robustness of the results to the choice of the performance measures. Last, but not least, we 

address two important research questions; namely, do some modelling frameworks 

perform better than others by design? and to what extent the choice and/or the design of 

explanatory variables and their nature affect the performance of modelling frameworks? 

and report on the findings. The main findings could be summarised as follows. First, the 

proposed multidimensional framework provides a valuable tool to apprehend the true 

nature of the relative performance of bankruptcy prediction models. Second, the 

multidimensional rankings of the best and the worst models do not seem to be too sensitive 

to changes in most combinations of performance metrics. Third, numerical results seem 

to suggest that dynamic models tend to be superior to static ones; thus, some modelling 

frameworks perform better than others by design. Fourth, numerical results seem to 

suggest that the choice and/or the design of explanatory variables and their nature affect 

to varying extents the performance of different modelling frameworks. 

The remainder of this chapter is organised as follows. Section 2.2 provides and classifies 

the literature on bankruptcy prediction models. Section 2.3 presents the proposed multi-

criteria methodology; namely, an orientation-free super-efficiency DEA framework to 

evaluate the relative performance of competing forecasting models of bankruptcy. Section 

2.4 presents and discusses the empirical findings. Finally, section 2.5 concludes the 

chapter. 

2.2 Bankruptcy Prediction Models 

Bankruptcy prediction models can be divided into two main categories; namely, 

accounting-based models and market-based models. Accounting-based models can be 

further divided into three sub-categories; namely, discriminant analysis models, 

regression models for categorical variables and survival analysis models. Note that the 

commonly used market-based models are mainly stochastic models. This chapter focuses 

on the relative performance of accounting-based models, market-based models, and 

hybrids. Hereafter, this study provides a generic framework for implementing these 
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models followed by a brief description of such models along with a discussion of their 

main similarities and differences.  

Generic Framework of Bankruptcy Prediction: Most accounting-based and market-based 

bankruptcy prediction frameworks consist of two main phases. The first phase consists of 

using a quantitative modelling framework to estimate the probability of default. Then, the 

second phase classifies firms into two or more risk groups (e.g., risky vs. non-risky or 

bankrupt vs. non-bankrupt) using one or several cut-off points or thresholds depending on 

whether one classifies firms into two groups or more than two groups. 

2.2.1 Discriminant Analysis Models 

Discriminant Analysis (DA) – first proposed by Fisher (1938), is a collection of 

classification methods which aim at partitioning observations into two or more subsets or 

groups so as to maximise within-group similarity and minimize between-group similarity, 

where “similarity” is measured by some sort of distance between observations (e.g., 

Mahalanobis distance). Univariate DA was first applied to bankruptcy prediction by 

Beaver (1966) and multivariate DA (MDA) was first applied to bankruptcy prediction by 

Altman (1968). A generic MDA model could be summarised as follows: 

 
, Eq. 2-1 

 
where  is commonly referred to as a score or a -score, s are explanatory variables, s 

represent the coefficients of the explanatory variables in the model, and  denotes the 

mapping of  on the set of real numbers - often referred to as a classifier, and could 

be either linear or non-linear. Note that in comparing MDA models to other sub-categories 

of statistical models, one would typically need to estimate the probability of default (PD), 

which is used as an input to many performance measures. This study follows Hillegeist et 

al. (2004) in using a logit transformation: 

 
1

 Eq. 2-2 
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Note that, under the normality assumption, MDA and logit approaches are closely related 

(McFadden, 1976). For a two-group classification problem, the classifier  is often a 

simple function that maps all observations or cases with discriminant or -score values 

above a certain threshold or cut-off point to the first group and all other cases to the second 

group, where the cut-off point – often referred to as the cutting score or the critical z -

score, is the average of groups’ centroids, if group sizes are equal, or their weighted 

average, if group sizes are unequal, where a group centroid refers to the vector of group 

means of the explanatory variables. In the literature on bankruptcy prediction, MDA 

models mainly differ with respect to the choice of the explanatory variables and the form 

of the classifier – see Appendix 2-A, that are part of most comparative analysis exercises 

and the comparative analysis of this research is no exception. 

2.2.2 Regression Models for Categorical Variables 

As compared to discriminant analysis, regression models for categorical variables – also 

known as probability models (e.g., logit, probit) allow someone to overcome some of the 

limitations of the discriminant analysis. For example, within a regression framework for 

discrete response variables, the normality and the homoscedasticity assumptions are 

relaxed, on the one hand, and the knowledge of prior probabilities of belonging to each 

group as well as misclassification costs is not required, on the other hand. The generic 

model for binary variables could be stated as follows: 

 
1

, 											
 Eq. 2-3 

where  denotes the categorical response variable, denotes the vector of explanatory 

variables, 	denotes the vector of coefficients of  in the model, and  is a function – 

commonly referred to as the link function, that maps any real number; e.g., score , 

onto a probability. The choice of  determines the type of probability model. For example, 

the normal probability model – known as probit, assumes that the link function is the 

cumulative standard normal distribution, say ; that is, , . The logistic 
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probability model – known as logit, assumes that the link function is the cumulative 

logistic distribution function, say Λ	; that is,  , Λ , or equivalently: 

 Λ
1

, Eq. 2-4 

Finally, the linear probability model assumes that the link function is linear; that is, 

, , or equivalently: 

 . Eq. 2-5 

In the literature on bankruptcy prediction, logit is the most popular probability model, and 

logit models only differ with respect to the choice of the explanatory variables – see 

Appendix 2-A, that are part of most comparative analysis exercises.  

2.2.3 Survival Analysis Models 

Discriminant analysis models as well as probability models (e.g., linear probability model, 

logit, probit) are cross-sectional models and as such fail to take account of differences in 

firms’ performance or risk profile over time; in sum, the probability of default (PD) 

provided by these static models is time-independent. In order to overcome this issue, one 

could use a dynamic methodology such as survival analysis. Survival Analysis is 

concerned with the analysis of time to events. This chapter is limited to a single event of 

interest; namely, bankruptcy or failure. Two functions are of special interest in survival 

analysis; namely, the survival function and the hazard function. The survival function, say 

, is a function of time and represents the probability that the time of failure is later 

than some specified time ; that is: T>t), where  is a random variable 

describing the time of failure for an observation or firm; in sum, the survival function 

provides survival probabilities or the probabilities of survival past specified times. On the 

other hand, the hazard function, say , is also a function of time and represents the 

failure or hazard rate at time t  conditional on survival until  or later; that is: 
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→ 	

∆ |
∆

, Eq. 2-6 

where  denotes the derivative of the survival function  with respect to time and Δ  

denotes a change in . As far as the bankruptcy prediction application of survival analysis 

is concerned, the aim is to model the relationship between survival time and a set of 

explanatory variables. The most commonly used hazard model for bankruptcy modelling 

and prediction is the discrete-time hazard model proposed by Shumway (2001), where the 

survival and hazard functions are defined as follows: 

 , ; 1 ∑ , , 	 and 	 , ;
, ,

, ;
 Eq. 2-7 

and , ,  denotes the probability mass function of the discrete random variable 

“failure time”  defined as the time when a firm leaves the sample,  is a vector of 

explanatory variables used to predict bankruptcy and  is the vector of parameters of the 

mass function . Shumway estimated this discrete-time hazard model using an estimation 

procedure similar to the one used for estimating the parameters of a multi-period logit 

model – this choice is motivated by a proposition whereby he proves that a multi-period 

logit model is equivalent to a discrete-time hazard model with a hazard function chosen 

as the cumulative distribution function of , : . He compared the performance of the 

discrete-time hazard model to MDA models, logit models, and probit models based on 

OCC and proved its superiority for his dataset. Following the lead of Hillegeist et al. 

(2004), the probability of default at time period  is estimated as follows: 

 
1

	, Eq. 2-8 

where  denotes the unconditional hazard function – commonly referred to as the 

baseline hazard. 
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2.2.4 Black-Scholes-Merton-based Models 

Most bankruptcy prediction models make use of accounting ratios as explanatory 

variables, which leads to a number of issues or criticisms; e.g., accounting statements only 

present a firm’s historical performance and may not be informative in predicting the 

future; the “true” asset values may be very different from the book values, and accounting 

numbers can be manipulated by Management (e.g., Balcaen and Ooghe, 2006, Agarwal 

and Taffler, 2008). In order to overcome these drawbacks, one could make use of market-

based explanatory variables. The rationale behind the use of market-based explanatory 

variables is that, in an efficient market, stock prices will reflect both the information 

contained in the accounting statements and the information contained in the future 

expected cash flows. Furthermore, market variables are unlikely to be influenced by firm’s 

accounting policies. In this sub-section, a category of such models is presented; namely, 

Black-Scholes-Merton (BSM)-based bankruptcy prediction models. Before presenting 

such bankruptcy prediction models, few comments are worthy of consideration. First, in 

practice, stochastic processes are often used to model stock prices behaviour and a specific 

type of stochastic processes; namely, Itô process, has proven to be a valid modelling 

framework for derivatives, where an Itô process refers to a Generalized Wiener process 

with both drift and variance rate being dependent on the underlying stock price and time. 

Second, the basic BSM model is concerned with modelling the price of an option as a 

function of the underlying stock price and time using an Itô process modelling framework. 

Third, under the Itô process modelling framework, the natural logarithms of stock prices 

are normally distributed. Last, but not least, the BSM model could be linked to the 

probability of a firm filing for bankruptcy; to be more specific, based on the observation 

by Merton (1974) that holding the equity of a firm can be viewed as taking a long position 

in a call option, the probability of default (PD) can be viewed as the probability that the 

call option will expire worthless; that is, the value of the firm’s assets ( ) is less than the 

face value of its liabilities at the end of the holding period. Based on the above-mentioned 

observations, McDonald (2002) derived the following expression for the probability of 

default or bankruptcy, : 



 

21 
 

 
ln 0.5

√
	, Eq. 2-9 

where .  denotes the cumulative distribution function of the standard Normal 

distribution,  is the value of the firm’s assets,  is the firm’s expected return,  is the 

firm’s assets volatility,  is the divided rate and is typically proxied by the ratio of 

dividends to the sum of total liabilities and market value of equity,  is the firm’s debt 

and is proxied by its liabilities, and  denotes both time to expiry of option and debt 

maturity and is assumed to be one year. In order to operationalize this BSM-based model 

of bankruptcy prediction, one would need to estimate , , and  as these parameters are 

not directly observable. Hillegeist et al. (2004) first estimate  and  by solving the 

following system of equations: 

 

1

																																																																				
 Eq. 2-10 

where the first equation is referred to as the call option equation, the second equation is 

referred to as the optimal hedge equation,  denotes the market value of common equity 

at the time of estimation,  denotes the annualized standard deviation of daily stock 

returns over 12 months prior to estimation, 	denotes the risk-free interest rate, and  and 

 are computed as follows: 

 
ln 0.5

√
; √  Eq. 2-11 

Then,  is estimated as follows and is restricted to lie between  and 100%: 

 
,

,
 Eq. 2-12 
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where ,  denotes the current value of the firm’s assets and ,  denotes the previous 

year value of the firm’s assets. Alternatively, Bharath and Shumway (2008) estimate  

and  as follows: 

 	;  Eq. 2-13 

Where 0.05 0.25 . As to the firm’s expected return , it is proxied by either the 

risk-free rate  or the previous year stock return restricted to lie between  and 100%. 

The next section describes the proposed DEA framework for assessing the relative 

performance of bankruptcy prediction models based on these modelling frameworks. 

2.3 A Slacks-based DEA Framework for Assessing Bankruptcy Prediction Models 

This chapter proposes a DEA-based framework for assessing the relative performance of 

competing bankruptcy prediction models. Hereafter, the basic concepts and models of 

DEA (see, section 2.3.1) are presented. Then, the way that someone might adapt a DEA 

framework to assess the relative performance of competing bankruptcy prediction models 

is explained (see, section 2.3.2).  

2.3.1 Basic Concepts and Models 

DEA is a mathematical programming-based approach for assessing the relative 

performance of a set of decision-making units (DMUs), where each DMU is viewed as a 

system and is defined by its inputs, its processes, and its outputs. The basic optimization 

problem addressed by DEA may be stated as follows: 

Basic DEA Optimization Problem: Maximise the performance of a given DMU – 

as measured by the ratio of a weighted linear combination of outputs to a weighted 

linear combination of inputs, under the constraints that such ratio is less than or 

equal to one for each DMU and the weights are non-negative.  

The mathematical programming formulation of this basic optimization problem is a 

fractional program which is typically transformed into a linear program using the Charnes-
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Cooper transformation (Charnes and Cooper, 1962) and therefore is easy to solve.  The 

mathematical formulations of the basic DEA input- and output-oriented analyses proposed 

by Charnes, Cooper, and Rhodes (1978) and often referred to as CCR models are presented 

in Table 2.1, where the parameter ,  denotes the amount of input i used by  , the 

parameter ,  denotes the amount of output r produced by , and the decision 

variable   (respectively, ) denotes the weight of input  (respectively, output ).  

Table 2.1: Basic DEA Multiplier Models 

Input-Oriented Output-Oriented 
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Note that DEA models where the decision variables are the weights of input and output 

quantities are said to be stated in a multiplier form. Note also that the optimal value of 

 (respectively, 	 ) indicates the efficiency status of ; to be more 

specific, =1 (respectively,	 1) and slacks =0 means that  is efficient 

in that its weighted sum of outputs is equal to its weighted sum of inputs, and 1 

(respectively,	 1) means that  is inefficient in that it produces less output 

than the input it requires. The set of efficient  is referred to as the efficient frontier 

and represents the empirical standard of excellence. 
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Table 2.2: Basic DEA Envelopment Models 

Input-Oriented Output-Oriented 
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In general, the duals of these multiplier problems – commonly referred to as envelopment 

problems, are typically used in a relative performance evaluation exercise. The 

mathematical formulations of the basic DEA input- and output-oriented envelopment 

problems are presented in Table 2.2, where the variable  is the dual variable associated 

with the fixed output amount constraint in the primal and may be interpreted as the 

technical efficiency ratio of , the variable  is the dual variable associated with the 

technical efficiency ratio of  constraint in the primal and may be interpreted as the 

weight assigned to ’s inputs and outputs in constructing the ideal benchmark of 

, the first set of constraints of, for example, the input-oriented envelopment model 

state that, for each input i , the amount used by ’s “ideal” benchmark; that is, the 

projection of  on the efficient frontier, should at most be equal to the “revised” 

amount used by ; i.e., amount adjusted for the degree of technical efficiency  of 

, and the second set of constraints of, for example, the input-oriented envelopment 

model state that, for each output , the amount produced by ’s “ideal” benchmark; 

that is, the projection of  on the efficient frontier, should be at least as large as the 

amount produced by .  

It is obvious that envelopment models allow for more appealing interpretations. In 

addition, it is not always easy to compute an excess in an input or a shortage in an output 

from the optimal solution of a model expressed in a multiplier form, whether input- or 

output-oriented; however, solving the dual would enable one to determine excesses and 

shortfalls explicitly by the non-zero values of the slack and surplus variables. 
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Last, but not least, DEA models – whether expressed in multiplier form or in envelopment 

form – allow one to identify the reference set or peer group used to benchmark each  

in seeking improvements; for example, the reference set of a specific , say , 

is the set of  with positive dual variables . Note that if the optimal value of , 

say ∗ , (respectively , say ∗ ) is equal to 1 and slacks = 0 , then the  under 

evaluation is efficient; else, ∗ 1 (respectively, 	 ∗ 1 ) indicates that  is 

inefficient and the current level of inputs (respectively, outputs) should be decreased 

(respectively, increased). As the objective is to provide a multidimensional ranking to get 

rid of the inconsistencies of unidimensional rankings, DEA efficiency scores are only 

used. For a detailed discussion of different DEA models and application areas, the reader 

is referred to Seiford (1997), Cooper et al. (2005) and Liu et al. (2013).  

2.3.2 Adaption of DEA framework 

Under the basic DEA model discussed above, a considerable number of  are 

typically classified as efficient with a score of 1.0, which result in impossible differential 

analysis. Super-efficiency DEA introduced by Anderson and Peterson (1993) is a method 

to break the ties between efficient . To demonstrate the application of super-

efficiency DEA in breaking ties between efficient DMUs, we refer to Figure 2-1 showing 

a simple example with five  (A-E) that are described with two inputs and one 

output. To have a two-dimensional illustration, inputs are standardised on output.  

From the Figure 2-1 the  of A, B, C and D are efficient with the assigned efficiency 

score of 1.0. As mentioned in the last section, the combination of efficient  

constructs the efficient frontier. The DEA model compares the inefficient  with 

their reference points on the efficient frontier to indicate how they would have to improve.  
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Figure 2-1: Basic DEA vs. Supper-efficiency DEA model 

  
Basic DEA model Super-efficiency DEA models 

Source: Staat, M., & Hammerschmidt, M. (2005) 

Under both basic and super-efficiency DEA, the results obtained for inefficient  are 

the same. In Figure 2-1, the inefficient DMU, E, is placed closest to C and D; thus, a 

virtual DMU, V, is made as a weighted average of C and D to represent as reference point 

for E; therefore, the efficiency score of E is / 1.  However, under basic DEA 

model, the reference point of an efficient DMU, for example B in Figure 2-1, is itself; 

therefore, the efficiency score of B is / 1.	 Under super-efficiency DEA, on the 

other hand, the degree of super-efficiency of an efficient DMU, for example B, can be 

calculated by extracting that efficient DMU from the efficient frontier and comparing it 

with the new contracted efficient frontier by the remaining efficient . Therefore, as 

it is shown in Figure 2-1, under super-efficiency DEA, the reference point of B is W, which 

is a linear combination of A and C; therefore, the super-efficiency score of B is /

1 (Anderson and Peterson ,1993). 

DEA is a generic framework and as such its implementation for this specific relative 

performance evaluation exercise requires a number of key decisions to be made. First, 

what are the units to be assessed or ? In this chapter, DMUs are thirty competing 

bankruptcy prediction models – see Appendix 2-A for a general description of these 

models. Second, what are the inputs and the outputs? The inputs and outputs are the 

performance measures of the relevant criteria for assessing bankruptcy prediction models. 
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This chapter focuses on the discriminatory power, the calibration accuracy or quality of 

estimates of the probabilities of default, the information content, and the correctness of 

categorical predictions criteria and their measures. In addition, inputs (respectively, 

outputs) are chosen according to the principle of the less (respectively, the more) the 

better; therefore, inputs (respectively, outputs) refer to the performance metrics to be 

minimised (respectively, maximised) – see   Appendix 2-C for a description of 

performance metrics. Note that, unless an application of DEA involves undesirable 

outputs, the principle of the less (respectively, the more) the better is commonly used 

across the literature on DEA applications to select inputs (respectively, output) according 

to the economic theory of production – see for example, Paradi et al., 2004; Yeh et al., 

2010; Li et al., 2014. Third, what is the appropriate DEA formulation to solve? Although 

basic DEA models could be used to classify competing bankruptcy prediction models into 

efficient and non-efficient ones and rank them according to their scores, one cannot 

differentiate between efficient ones as they all receive a score of 1. In many application 

areas, decision makers are interested in obtaining a complete ranking in order to refine 

 evaluation and this research application is no exception. This chapter proposes an 

orientation-free super-efficiency DEA framework; namely, a slacks-based super-

efficiency DEA framework for assessing the relative performance of competing 

bankruptcy prediction models. An orientation-free analysis has been deliberately chosen 

over input-oriented analysis or output-oriented analysis because, in the application of 

evaluating the performance of bankruptcy prediction models, input-oriented and output-

oriented analyses are not relevant. In addition, any type of oriented analysis would be 

inappropriate for the following reasons. First, under the variable returns-to-scale (VRS) 

assumption, which is the case with my data on bankruptcy prediction models, input-

oriented efficiency scores can be different from output-oriented efficiency scores, which 

may lead to different rankings. Second, radial super-efficiency DEA models may be 

infeasible for some efficient decision-making units; therefore, ties would persist in the 

rankings. The reason is that the super-efficiency DEA model was developed under (i) 

constant returns to scale (CRS) condition and (ii) the simultaneous and same proportion 

of change in all inputs (or outputs). Once any of these conditions is violated, it is high 
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likely that infeasibility of the related DEA mode occurs (see, e.g., Seiford and Zhu, 

1998a,b). Third, radial super-efficiency DEA models ignore potential slacks in inputs and 

outputs and thus may over-estimate the efficiency score by ignoring mix efficiency. The 

proposed framework is a three-stage process and could be summarised as follows: 

Stage 1 – Returns-to-scale (RTS) Analysis: Perform RTS analysis to find out whether 

to solve a DEA model under constant returns-to-scale (CRS) conditions, variable returns-

to-scale (VRS) conditions, increased returns-to-scale (IRS) conditions, or decreased 

returns-to-scale (DRS) conditions – see Banker et al. (2004) for details. 

Stage 2 – Classification of DMUs: For each DMU k (k = 1, …, n), solve the following 

slacks-based measure (SBM) model (Tone, 2001): 

 

			 1
1 ,

,
1

1 ,

,
 

. . :		 , , , ; 	∀ 1, … ,  

, , , ; 	∀ 1, … ,  

0, ∀ 1,… , ; , 0, ∀ 1, … , ; , 0, ∀ 1, … ,  

Eq. 2-14 

where  denotes the number of ,  is the number of inputs,  is the number of 

outputs, ,  is the amount of input  used by , ,  is the amount of output  

produced by ,  is the weight assigned to  in constructing its ideal 

benchmark, ,  and ,  are slack variables associated with the first and the second sets 

of constraints, respectively. If the optimal objective function value ∗ 1 and slacks = 0, 

then  is classified as efficient. If	 ∗ 1, then is classified as inefficient. 

Note that model 2-14 above is solved as it is if stage 1 reveals that the CRS conditions 

hold; otherwise, one would have to augment such model with one of the following 

additional constraints depending on whether VRS, IRS, or DRS conditions prevail, 

respectively: 
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 1 ;	 1 ;	 1. Eq. 2-15 

Note that, when model 1 is augmented with one of these constraints, one obtains the BCC 

model proposed by Banker, Charnes, and Cooper (1984). 

Stage 3 – Break Efficiency Ties: For each efficient DMU k, solve the following slacks-

based super-efficiency DEA model – first proposed by Tone (2002):  
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1 ,
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. . :						 , , , 	; 	∀
;

 

, 	 , , 	; 	∀
,

 

0, ∀ ; , 0, ∀ ; , 0, ∀  

Eq. 2-16 

where ,  (respectively,	 , ) denotes the amount by which input  (respectively, output 

) of the efficient 	  should be increased (respectively, decreased) to reach the 

frontier constructed by the remaining DMUs. Note that model 2 above is solved as it is if 

stage 1 reveals that the CRS conditions hold; otherwise, one would have to impose an 

additional constraint from amongst (2) as outlined in stage 2. Use the super-efficiency 

scores ∗s to rank order the efficient DMUs. 

At this stage, it is worth mentioning that unlike radial (VRS) super-efficiency DEA models 

(e.g., Andersen and Petersen, 1993), slacks-based super-efficiency models are always 

feasible (Du et al., 2010, Tone, 2002). Note that Tone (2002) and Du et al. (2010) slacks-

based super-efficiency models are identical with respect to their constraints in that one 

could be obtained from the other using a simple variable transformation. Note, however, 

that in applications where positive input and output data is a requirement, Du et al. (2010) 

provide a variant of the model solved in stage 3 to accommodate this situation. In the next 

section, the above-described methodology is used to rank order competing bankruptcy 

prediction models and discuss the empirical results obtained using UK data for the period 

of 1989-2006. 



30 
 

2.4 Empirical Investigation 

In this section, we first describe the process of data gathering and sample selection (see 

section 2.4.1). Then, I present the list of models that I used in my comparative analysis 

(see section 2.4.2). Next, I provide the list of criteria and measures that I applied to 

evaluate bankruptcy prediction models (see, section 2.4.3). Finally, I discuss my empirical 

findings on the relative performance evaluation of bankruptcy prediction models under 

both a single criterion and multiple criteria (see, section 2.4.4). 

2.4.1 Data and Sample Selection 

In this chapter, I first considered all UK firms listed on the London Stock Exchange (LSE) 

during an 18 years period from 1989 through 2006 and defined the bankrupt firms using 

the London Share Price Database (LSPD) codes 16 (i.e., firm has receiver appointed or is 

in liquidation), 20 (i.e., firm is in administration or administrative receivership), and 21 

(i.e., firm is cancelled and assumed valueless); the remaining firms are classified as non-

bankrupt. Then, I further reduced such dataset by excluding both financial and utility 

firms, on one hand, and those firms with less than 5 months lag between the reporting date 

and the fiscal year, on the other hand. As a result of using these data reduction rules, the 

final sample consists of 1414 UK listed firms – 211 of which are bankrupt firms and the 

remaining 1203 are non-bankrupt firms. In sum, my sample consists of a total of 12452 

firm-year observations including 2062 observations related to bankrupt firms and 10390 

observations related to non-bankrupt firms.  

Within my sample, the average bankruptcy rate is 1.63% per year – which is higher than 

the 0.67% (respectively, 1.19%) bankruptcy rate of the sample used by Agarwal and 

Taffler (2008) (respectively, Christidis and Gregory, 2010). This higher rate of bankruptcy 

in comparison with other studies is due to the period of study being extended. Note 

however that the actual numbers of observations used to estimate the various models differ 

depending on the availability of data on each explanatory variable. 
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2.4.2 Bankruptcy Models to be Assessed 

In this chapter, I have chosen to assess the relative performance of the most popular 

accounting-based bankruptcy prediction models, market-based bankruptcy prediction 

models, and hybrid models. 

The accounting-based bankruptcy prediction models considered in my comparative 

analysis include the MDA models proposed by Altman (1968), Altman (1983), and Lis 

(1972); the logit model proposed by Ohlson (1980); the probit model proposed by 

Zmijewski (1984); the linear probability model proposed by Theodossiou (1991); along 

with the MDA models proposed by Altman (1968), Altman (1983), and Lis (1972) 

reproduced or implemented in a logit framework. The market-based bankruptcy prediction 

models considered in my comparative analysis include the Black-Scholes-Merton(BSM)-

based models proposed by Bharath and Shumway (2008) and Hillegeist et al. (2004). The 

hybrid models include the survival analysis model proposed by Shumway (2001) and 

estimated as a multi-period logit model. I refer to these models as the “original” models 

and represent them in Figure 2-2 and Figure 2-3 with white shapes, where the shapes differ 

from one modelling framework to another – see legends of Figure 2-2 and Figure 2-3.  

I also include in my comparative analysis three additional categories of models that I refer 

to as original models refitted, reworking models in a logit framework, and new models. 

As the name suggests, original models refitted include the above mentioned models 

refitted with my sample data (i.e., Altman, 1968, Lis, 1972, Altman, 1983, Ohlson, 1980, 

Taffler, 1984, Zmijewski, 1984, Shumway, 2001) and represented in Figure 2-2 and 

Figure 2-3 with dotted shapes, where the shapes differ from one modelling framework to 

another – see legends of Figure 2-2 and Figure 2-3. Reworking models in a logit 

framework refer to original non-logit models implemented or replicated in a logit 

framework with the same original explanatory variables (i.e., Altman, 1968, Altman, 

1983, Lis, 1972, Taffler, 1984, Zmijewski, 1984, Total Liabilities/Total Assets (TLTA) 

Model of  Bemmann, 2005) and represented in Figure 2-2 and Figure 2-3 
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 with grey shapes, where the shapes represent the original modelling frameworks – see, 

legends of Figure 2-2 and Figure 2-3. Last, but not least, the new models’ category consists 

of MDA, Logit, Probit, Linear Probability and Survival Analysis models where the 

explanatory variables are chosen from a list of variables using stepwise procedures. The 

list of variables consists of those accounting-based ratios and market-based variables 

chosen by a repeated use of Factor Analysis to an initial list of 74 accounting ratios and 3 

market-based variables, where factors are selected so that both the absolute values of their 

loadings are greater than 0.5 and their communalities are greater than 0.8, and the stopping 

criterion is either no improvement in the total explained variance or no more variables are 

excluded. Note that Factor Analysis was run using Principal Component Analysis with 

VARIMAX as a factor extraction method. Note also that the list of variables consists of 

the variables that make up the factors. The new models (see, Appendix 2-B) are 

represented in Figure 2-2 and Figure 2-3 with black shapes, where the shapes represent 

the original modelling frameworks – see, legends of Figure 2-2 and Figure 2-3.  

In sum, a total of 30 models are assessed in my comparative analysis – see Appendix 2-A 

and Appendix 2-B for details on the original models and the new ones. Note that all chosen 

models are tested out-of-sample and the training period ranges from 1989 to 2001 

including 1571 failure and 5615 non-failure firm-year observations. In the next sub-

section, I shall assess the relative performance of these models under both a single 

criterion and multiple criteria and their measures using the proposed DEA framework (see, 

section 2.3.2). 

2.4.3 Performance Criteria and Measures 

With respect to performance criteria for evaluating bankruptcy prediction models, the 

focus of this chapter shall be on the most commonly used criteria and their; namely, the 

discriminatory power criterion, the calibration accuracy criterion, the information content 

criterion, and the correctness of categorical predictions criterion measures (Bauer and 

Agarwal, 2014). The discriminatory power criterion refers to the ability of a model to 

discriminate between the good cases and the bad ones, where a case refers to a firm. The 
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calibration accuracy criterion refers to the quality of estimation of the probability of 

default. The information content criterion refers to the extent to which the output of a 

model (e.g., score, PD) carries enough information for bankruptcy prediction. The 

correctness of categorical prediction criterion refers to the ability of a model to produce 

forecasts that are consistent with actuals in that forecasts reveal firms as healthy 

(respectively, non-healthy) when actuals are healthy (respectively, non-healthy).  

In my comparative analysis of models, I use Kolmogorov-Smirnov (KS) Statistic, Area 

under Receivable Operating Characteristic (AUROC) – also known as c-statistic, Gini 

Index, and Information Value (IV) to measure the discriminatory power criterion; I use 

Brier Score (BS) to measure the quality of fit under calibration accuracy criterion; I use 

log-likelihood statistic (LL) and pseudo-coefficient of determination (pseudo-R2) to 

measure the information content under calibration accuracy criterion; and I use Type I 

errors (T1), Type II errors (T2), misclassification rate (MR), sensitivity (Sen), specificity 

(Spe), and overall correct classification (OCC) to measure the correctness of categorical 

prediction criterion – see   Appendix 2-C for descriptions of these measures. 

2.4.4 Performance Evaluation of Bankruptcy Prediction Models 

In my empirical investigation, I first generated the unidimensional rankings of the 30 

models under evaluation (see, Figure 2-2) to highlight the problems with using a 

unidimensional methodology to rank order competing bankruptcy prediction models; that 

is, models are ranked in the ascending (respectively, descending) order of the relevant 

measure of each of the criteria under consideration if the measure is to be minimised 

(respectively, maximised). Indeed, unidimensional or single criterion rankings tend to 

have many ties (e.g., the unidimensional rankings corresponding to Type I errors (T1), 

sensitivity (Sen), and Information value (IV)). In addition, one could clearly see that the 

unidimensional rankings could be different from one performance criterion to another – 

see for example Theodossiou (1991), Bandyopadhyay (2006), and Tinoco and Wilson 

(2013).  
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For my dataset, most unidimensional rankings are different; in fact, the unidimensional 

rankings based on T1 and Sen differ from those based on T2, misclassification rate (MR), 

overall correct classification (OCC) and specificity (Spe), which differ from those based 

on area under ROC curve (AUROC) and Gini index, which also differ from those based 

on Kolmogorov-Smirnov statistic (KS), information value (IV), Brier score (BS), log-

likelihood statistic (LL) or pseudo-coefficient of determination (pseudo-R2). Notice that 

the unidimensional ranking based on IV does not discriminate between the eight worst 

ranked models because the probabilities of default produced by these models are all very 

close to zero and thus belong to the same band in the discrete approximation of the density 

functions of the good cases and the bad ones.  

For my dataset, unidimensional rankings suggest that, for all performance measures 

except IV and BS, the new models outperform both the original models, the original 

models refitted, and the reworked models with the exception of the logit model of 

Shumway (2001). Therefore, the selection of explanatory variables using Factor Analysis 

along with stepwise procedures seems to enhance the performance of models regardless 

of their underlying modelling framework. In addition, the use of a mixture of accounting-

based and market-based information improves bankruptcy prediction. Furthermore, it 

seems that these new models are doing a better job at classifying firms than at producing 

their probabilities of default.  

Also, for most performance measures, notice that in general refitting models seems to 

improve their ranks, which suggests that the nature of information within the training 

sample under consideration along with the period of study do, as expected, tend to affect 

the performance of bankruptcy models – recall that most original models were fitted to 

US data; therefore, when refitted to UK data they tend to do better at predicting bankruptcy 

for UK firms.  

On the other hand, for most performance measures, reworking the original MDA, probit 

and linear probability models with the same explanatory variables in a logit framework 

seems to improve the ranks – with the exception of the MDA models of Lis (1972) and 

Taffler (1984) which were originally fitted to UK data, which suggest that this 
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improvement in the rankings could be due to the change in the training sample, or the 

modelling framework, or both. Also, for most performance measures, when comparing all 

logit framework-based models, the multi-period logit model of Shumway (2001) seems to 

outperform, which suggest as expected that its dynamic nature improves bankruptcy 

prediction.  

Finally, using only market-based data does not seem to provide good enough information 

to classify a firm as risky or not; in fact, BSM-based models do not make the top 5 in 

rankings; however, Hillegeist et al. (2004) model seems to always outperform Bharath 

and Shumway (2008) model. 

At this stage, I would like to remind the reader that unidimensional rankings are not to be 

discarded as they convey valuable information; however, from both practical and 

methodological perspectives, one cannot make an informed decision as to which model 

performs best under multiple criteria. In order to address this issue, one would need a 

single ranking that takes account of multiple criteria, which I provide using the proposed 

DEA framework. 
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Figure 2-2: Unidimensional Rankings of Bankruptcy Prediction Models  
This figure presents the unidimensional rankings of 30 competing bankruptcy models, where models are ranked from best to worst using a single measure of a single criterion at a time. T1 
(type I error), T2 (type II error), MR (misclassification rate), Sen (sensitivity), Spe (specificity) and OCC (overall correct classification) are used as measures of correctness of categorical 
prediction; AUC (area under receiver operating character), Gini coefficient, KS (Kolmogorov-Smirnov) and IV (information value) are used as measures of discriminatory power; BS (brier 
score) is used as measures of calibration accuracy; and log-likelihood (LL) and Pseudo-R2 (R2) are used as measures of information content. Different shapes represent different modelling 
frameworks; namely, multivariate Discriminant Analysis (MDA), Linear Probability (LPA), Logit Analysis (LA), Probit Analysis (PA), Survival Analysis (SA), and Black-Scholes-Merton-
based Model (BSM-based). White, dotted white, grey, and black shapes represent the original models, the original models refitted, the reworked models with the same explanatory variables, 
and the new models, respectively. 

Measure Rank from the Best to Worst 

T1; Sen 

 
T2; MR; OCC; 
Spe  

AUC; Gini  
KS  

IV 

 
BS  
LL  
Pseudo-R2  
1Altman (1968); 2Altman (1983); 3Lis (1972); 4 Taffler (1984); 5Ohlson (1980); 6 Zmijewski (1984); 7 Theodossiou (1995); 8 Shumway (2001); 9 Bharath & Shumway (2008); 
 10 Hilligieski et.al (2004); 11Bemmann (2005); 12New MDA model; 13New LPA model; 14New LA model; 15 New PA model; 16 New SA model 
 = MDA Framework;     = LP Framework; 

 
= LA Framework;  = PA Framework; 

 
= SA Framework;      

 
= BSM-based Framework  
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The multi-criteria rankings of the above mentioned 30 models are provided in Figure 2-3 

for different combinations of measures of the four criteria under consideration, where 

models are ranked in descending order of the corresponding SBM super-efficiency DEA 

scores (see, section 2.3.2). The empirical results reveal that the multidimensional rankings 

differ from the unidimensional ones. In addition, the multidimensional rankings have no 

ties, which suggest that the choice of the SBM super-efficiency DEA framework is an 

effective one in that it helps to get rid of ties between bankruptcy prediction models. 

Furthermore, I have considered several measures of the performance criteria under 

consideration to find out about the robustness of the multidimensional rankings with 

respect to the choice of measures.  

For my dataset and regardless of the combination of performance metrics used, 

multidimensional rankings suggest that some of the new models are always amongst the 

top ranked ones. In addition, the selection of explanatory variables using Factor Analysis 

along with stepwise procedures seems to always improve MDA and survival analysis-

based bankruptcy prediction. Also, with the exception of combinations of metrics 

including T1 and BS or BS and Sen simultaneously, the selection of explanatory variables 

using Factor Analysis along with stepwise procedures seems to always improve the 

performance of linear probability models at predicting bankruptcy. However, the new way 

of selecting explanatory variables does not seem to advantage the logit modelling 

framework or the probit modelling framework – although, for the logit framework, the 

new models do better than the original ones. In addition, in general, the use of a mixture 

of accounting-based and market-based information improves bankruptcy prediction in 

most modelling frameworks.  

Also, for most combinations of performance measures, notice that, with the exception of 

the MDA models of Altman (1968) and Altman (1983) and the logit model of Ohlson 

(1980), refitting models does not seem to improve their ranks – these conclusions are 

different from the ones derived from the analysis of the unidimensional rankings. 

Therefore, under the multi-criteria setting, refitting models is not necessarily a mean for 

improvement. 
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Figure 2-3: SBM Super-Efficiency DEA Scores-based Multidimensional Rankings of Bankruptcy Prediction Models  
This figure presents the multi-criteria rankings of 30 competing bankruptcy models using a DEA ranking framework, where models are ranked from best to worst using DEA scores. A 
multi-criteria ranking is produced for each combination of a variety of metrics of the performance criteria under consideration, where inputs (resp. outputs) are chosen according to the 
principle of the less (resp. more) the better. T1 (type I error), T2 (type II error), MR (misclassification rate), Sen (sensitivity), Spe (specificity) and OCC (overall correct classification) 
are used as measures of correctness of categorical prediction; AUC (area under receiver operating character), Gini coefficient, KS (Kolmogorov-Smirnov) and IV (information value) 
are used as measures of discriminatory power; BS (brier score) is used as measures of calibration accuracy; and log-likelihood (LL) and Pseudo-R2 (R2) are used as measures of 
information content. Different shapes represent different modelling frameworks; namely, multivariate Discriminant Analysis (MDA), Linear Probability (LPA), Logit Analysis (LA), 
Probit Analysis (PA), Survival Analysis (SA), and Black-Scholes-Merton-based Model (BSM-based). White, dotted white, grey, and black shapes represent the original models, the 
original models refitted, the reworked models with the same explanatory variables, and the new models, respectively. 

Inputs Outputs Rank from the Best to Worst 

T1; BS; LL ROC 

BS; LL ROC; Sen 

T2; BS; LL ROC 

MR; BS; LL ROC 

BS; LL ROC; OCC 

BS; LL ROC; Spe 

T1; BS; LL KS 

BS; LL KS; Sen 

T2; BS; LL KS 

MR; BS; LL KS 

BS; LL KS; OCC 

BS; LL KS; Spe 

To be continued … 
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Figure 2.3 continue 

Inputs Outputs Rank from the Best to Worst 

T1; BS ROC; R2 

BS ROC; Sen; R2 

T2; BS ROC; R2 

MR; BS ROC; R2 

BS ROC; OCC; R2 

BS ROC; Spe; R2 

T1; BS KS; R2 

BS KS; Sen; R2 

T2; BS KS; R2 

MR; BS KS; R2 

BS  KS; OCC; R2 

BS  KS; Spe; R2 

1Altman (1968); 2Altman (1983); 3Lis (1972); 4 Taffler (1984);  5Ohlson (1980); 6 Zmijewski (1984); 7 Theodossiou (1995); 8 Shumway (2001); 9 Bharath & Shumway (2004);   
10 Hilligieski et.al (2004); 11Bemmann (2005); 12New MDA model; 13New LPA  model; 14New LA model; 15 New PA  model; 16 New SA  model 

 = MDA Framework;     = LP  Framework;  = LA  Framework;  = PA  Framework;      = SA  Framework;      = BSM-based  Framework;   



40 
 

On the other hand, regardless of the combination of performance metrics, reworking the 

original MDA models with the same explanatory variables in a logit framework seems to 

improve their ranks – except for the MDA model of Taffler (1984). 

As to reworking the original linear probability models with the same explanatory variables 

in a logit framework, it seems that for the most combination of performance metrics the 

ranks have improved. Notice however that reworking the original probit model did not 

lead to any improvement in the multi-criteria rankings. Therefore, under the multi-criteria 

setting, reworking models could be a mean for improvement of some modelling 

frameworks such as MDA models. 

Also, regardless of the combination of performance metrics, when comparing all logit 

framework-based models, the multi-period logit model of Shumway (2001) does not seem 

to perform as well as in the unidimensional case. The refitted logit model of Ohlson (1980) 

however seems to be superior to the remaining logit models followed by the reworked 

probit model of Zmijewski (1984).  

Finally, using only market-based data does not seem to provide good enough information 

to classify a firm as risky or not; in fact, BSM-based models do not make the top 5; 

however, Hillegeist et al. (2004) model seems to always outperform Bharath and 

Shumway (2008) model. This is amongst the very few findings of the unidimensional 

analysis that still hold in the multidimensional case.  

To sum up, note that the conclusions derived from the analysis of the unidimensional 

rankings are not always consistent with their multidimensional counterparts. Therefore, 

multi-criteria rankings help to better apprehend the relative performance of bankruptcy 

prediction models. Notice that the multidimensional rankings of the best and the worst 

models do not seem to be too sensitive to the changes in most combinations of 

performance metrics.  
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However, overall the multi-criteria rankings of the models under consideration tend to be 

sensitive to some extent to the choice of performance measures, which suggest that in 

practice one would have to carefully select these measures to reflect the application 

context and the purpose of use of bankruptcy prediction models; in other words, the choice 

of performance metrics should be “fit for purpose”.  

Last, but not least, my findings suggest the following answers to my research questions. 

First, the survival analysis model tends to be superior followed by linear probability and 

multivariate discriminant analysis models; therefore, some modelling frameworks 

perform better than others by design, as survival analysis models are dynamic and have 

the modelling ability to take on board both accounting-based and market-based 

information. Second, numerical results seem to suggest that the choice and/or the design 

of explanatory variables and their nature affect to varying extents the performance of 

different modelling frameworks. To be more specific, most modelling frameworks 

improved in performance by taking account of a mixture of account-based and market-

based information, where survival analysis, linear probability, and multivariate 

discriminant analysis models benefited the most from the new way of selecting 

explanatory variables. 

2.5 Conclusion 

Prediction of corporate failure is one of the major activities in auditing firms’ risks and 

uncertainties. The design of reliable models to predict bankruptcy is crucial for many 

decision-making processes. Although many models have been designed to predict 

bankruptcy, the relative performance evaluation of competing prediction models remains 

an exercise that is unidimensional in nature, which results in conflicting rankings of 

models from one performance criterion to another. In this research, I proposed an 

orientation-free super-efficiency data envelopment analysis model to overcome this 

methodological issue; in sum, the proposed framework delivers a single ranking based on 

multiple performance criteria. In addition, I performed an exhaustive comparative analysis 

of the most popular six bankruptcy modelling frameworks resulting in 30 prediction 
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models for UK firms including my own models organised into four categories; namely, 

original models, original models refitted, reworking models in a logit framework with the 

same original explanatory variables, and new models. I used four criteria which are 

commonly used in the literature; namely, the discriminatory power, the calibration 

accuracy, the information content, and the correctness of categorical prediction. I have 

considered several measures for each criterion to find out about the robustness of 

multidimensional rankings with respect to different combinations of measures. 

Furthermore, I addressed two important research questions; namely, do some modelling 

frameworks perform better than others by design? and to what extent the choice and/or 

the design of explanatory variables and their nature affect the performance of modelling 

frameworks?  

My main findings may be summarised as follows. First, the proposed multidimensional 

framework provides a valuable tool to apprehend the true nature of the relative 

performance of bankruptcy prediction models. Second, the multidimensional rankings of 

the best and the worst models do not seem to be too sensitive to changes in most 

combinations of performance metrics. Third, numerical results seem to suggest that the 

survival analysis model tends to be superior followed by linear probability and 

multivariate discriminant analysis models; therefore, some modelling frameworks 

perform better than others by design, as survival analysis models are dynamic and have 

the modelling ability to take on board both accounting-based and market-based 

information. Fourth, numerical results seem to suggest that the choice and/or the design 

of explanatory variables and their nature affect to varying extents the performance of 

different modelling frameworks. To be more specific, most modelling frameworks 

improved in performance by taking account of a mixture of account-based and market-

based information, where survival analysis, linear probability, and multivariate 

discriminant analysis models benefited the most from the new way of selecting 

explanatory variables.  

It must be borne in mind that the present chapter has some limitations. Firstly, this chapter 

does not take into account non-statistical bankruptcy prediction models. Also, this study 
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considers only one dynamic modelling framework, i.e. discrete time hazard models. 

Secondly, for this research, I did not have access to non-listed UK companies, and 

therefore, in this study I used listed UK companies. Third, one of the issues related to the 

employed multi-criteria assessment framework in this chapter is that within a super-

efficiency DEA, the reference benchmark changes from one efficient DMU to another one 

(refer to Figure 2-1), which in some contexts might be viewed as “unfair” benchmarking. 

 Future research could incorporate non-statistical frameworks and more variety of 

dynamic prediction models. Also, future research could use data of non-listed UK 

companies as well as the data of other countries. Further, to overcome the issue related to 

possible ‘unfair’ benchmarking of super-efficiency DEA, future research could 

incorporate the context-dependent DEA framework. 
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Appendix 2-A: Statistical Models of Bankruptcy Prediction 

Framework Type Variables  
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Altman (1968) 
 

WCTA = Working capital / Total assets,  
RETA = Retained earnings / Total Assets,  
EBITTA = Earnings before interest and taxes / Total assets, 
METD = Market value of equity / Total debt,  
STA = Sales / Total assets. 

Altman (1983)  
 

WCTA = Working capital / Total assets,  
RETA = Retained earnings / Total assets, 
EBITTA = Earnings before interest and taxes / Total assets, 
BETL = Book value Equity / Total liabilities, 
STA = Sales / Total assets. 

Lis (1972) 
 

WCTA = Working capital / Total assets,  
EBITTA = Earnings before interest and taxes / Total assets, 
METL = Market value of equity / Total liabilities, 
NWTA = Net wealth / Total assets,  

Taffler (1984) 
 

PBTCL = Profit before tax /Current liabilities, 
CLTA = Current liabilities/ Total assets, 
CATL = Current assets/ Total liabilities, 

 NCI = No-credit intervals. 
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Theodossiou WCTA = Working capital / Total assets, 
Linear NITA = Net income / Total assets, 
Model LTDTA = Long term debt / Total assets, 
 TDTA = Total debt / Total assets, 
 RETA = Retained earnings / Total assets. 
Ohlson (1980) TLTA = Total liabilities / Total assets 
Logit Model WCTA = Working capital / Total assets 
 CLCA = Current liabilities / Current assets 
 OENEG = 0 if total liabilities exceed total assets, 1 otherwise 
 NITA = Net income / Total assets 
 FUTL = Funds from operations (operating income minus 

depreciation) / Total liabilities 
 INTWO = 1 if net income has been negative for the last 2 years, 0 

otherwise, 
 CHIN = / | | | | ,  is the net income for the 

last period. The variable is a proxy for the relative change in 
net income. 

 Ohlsonsize = log (Total assets/GNP price-level index) 
Zmijewski 
(1984) 
Probit Model 

NITA  = Net income / Total assets 
TLTA  = Total liabilities / Total assets 
CACL = Current assets / Current liabilities 

Bemmann 
(2005) 
Logit Model 

TLTA =Total Liabilities / Total assets 
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Shumway 
(2001) 
 

NITL =Net income/total liabilities, 
TLTA = Total liabilities/total assets, 
RealSize = Log (the number of outstanding shares multiplied by year- 
 end share price divided by total market value), 
LagExRet = Cumulative annual return in year 1 minus the value- 
 weighted FTSE index return in year 	 1, 
LagSigma = Standard deviation of residuals derived from regressing 

monthly stock return on market return in year 	 1. 
 
 
 
 



 

49 
 

B
S

M
-b

as
ed

 
M

od
el

s 

Hillegeist et al.  
(2004) & 
Bharath and 
Shumway 
(2008) 
 

 = Market value of equity, 
 = Market value of assets, 

 = Continuously compounded expected return on assets, 
 = Continuous dividend rate expressed in terms of , 
 = Face value of debt maturing at time T, 
 = Asset volatility, 
 = Time to debt maturity, considers as 1 year. 
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Appendix 2-B: New Designed Models 
This table presents the explanatory variables and coefficients of the new models in 5 different frameworks; 
multivariate discriminant analysis (MDA), linear probability (LPA), logit analysis (LA), probit analysis (PA) 
and survival analysis (SA). A star and a dragger refer to 1% and 5% significance level, respectively. 

Models 
MDA LPA LA PA SA 

Explanatory Variables 

Intercept 9.709 0.047 * 7.970 * 3.971*  
Working capital / Total assets 2.447 0.041 * 1.522 * 0.817 † 1.216 * 

Net income / Capital -0.003     

Net income / Current assets -0.176     

Net income / Equity 0.004    0.002 † 

Total debt / Equity 0.150     

EBIT / Total assets 1.099     

Total liabilities / Total assets -2.016 - 0.022 *    

Inventory / Working capital 0.148 0.001†    

Inventory / Sales -0.567     

Quick asset / Sales -0.056     

Current liabilities / Inventory 0.002     

Total liabilities / Working capital -0.015     

Net worth / Total assets -0.963    -1.629 * 

Current liabilities / Total assets     -1.615 † 

Real size 0.178 0.004 * 0.311 * 0.147 * 0.261 * 

Lag Ex.Ret. 2.184 0.044 * 1.468 * 0.678 * 1.554 * 

Sigma -6.467 - 0.146 * -2.089 † -1.131†  

Long term debt / Total assets     -2.493* 
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    Appendix 2-C: Performance Measures for Assessing Bankruptcy Prediction Models 

Criteria Measure Formula Definition 
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IV 
∑ ⁄ ⁄ ln

⁄

⁄
  

where  (respectively, ) denotes the number of goods 
(respectively, bads) in band I, ∑  and ∑ . 

The information value (IV) is nothing but the divergence statistic originally 
suggested by Kullback and Leibler (1951) as a measure of the relative 
distance between an empirical probability distribution and a theoretical one. 
The measure provided here is based on a discrete approximation of the 
density functions of the good cases and the bad cases. 

CIER 

 

where . log 1 . log 1  is the 
unconditional entropy of a discrete random variable with say 
two categories; namely, non-default and default; and  
denotes the probability of default. 

In practice, one is also interested in the entropy of the probability of default 
given a specific rating score, say S; that is;  

	| 	 	 	| 	 	| 	 	 | | , 
which is a random variable with an expected value of 

| | | | .  that is known as the 
conditional entropy of the default event (with respect to the rating score S) 
and is upper bounded by the unconditional information entropy of the 
default event; i.e.  pHH S  . Note that the larger the difference between 

 pH  and SH , the more gain of information results from using rating 

scores.  
 

KS statistic 

max | | ,  

where . |  & . |  denote the empirical cumulative 
distribution functions of the samples of good & bad cases, 
respectively. 

The Kolmogorov-Smirnov (KS) statistic measures the distance between the 
empirical cumulative distribution functions of the samples of good cases 
and bad cases. 

AUC 

	
∙

 

where U denotes the Mann-Whitney U statistic,  denotes 
the number of good cases in the sample, and  denotes the 
number of bad cases in the sample 

The receiver operating characteristic (ROC) curve is a plot of the hit rate 
against the false alarm rate for all cut-off points. A good prediction model 
would generate a ROC curve well farther away from the diagonal, which 
suggests that the larger the area under the ROC curve, often referred to as 
AUC or AUROC and measured by a statistic called concordance or c-
statistic, the better the prediction model performance. 
 

Gini 
Coefficient 

2 ∙ 1 
The Gini coefficient, say G, is a measure of the area between the ROC curve 
and the diagonal – also referred to as Somer’s D. 
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Criteria Measure Formula Definition 
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t Log-
likelihood 
statistic 

Formulae are model-dependent and shall not be presented for 
space considerations 

The Log-Likelihood statistic (LL) is a measure of goodness-of-fit and is 
computed as the natural logarithm of the maximum value of the likelihood 
function of a model, where the likelihood function is a function of the 
parameters of the model which are determined so that the model is in 
maximum “agreement” with the data. In my empirical investigation, I 
computed LL values as suggested by Hillegeist et al. (2004). 
 

Pseudo-R2 1
	 	 	 	 	

	 	 	 	
 

 
where  denotes the log-likelihood of a model 

Pseudo-R2 is a measure of the strength of association between the output of 
a logistic regression model and the set of explanatory variables and its range 
lies between 0 and 1, with higher values indicating better logit model with 
intercept and predictors likelihood; i.e., better "agreement" of the selected 
model with the observed data. 
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Sensitivity 

	 |

| |
  

where |  denotes the number of bad cases predicted as bad, 

|  denotes the number of bad cases predicted as good 

Given a specific cut-off score, say , sensitivity ( ) is defined as the 
fraction of the bad cases that would have scores below the cut-off and 
would therefore be rightly rejected; i.e., the proportion of bad cases who 
are predicted as bad. Sensitivity is also referred to as the hit rate. 

Specificity 

	 |

| |
  

where |  denotes the number of good cases predicted as 
good, |  denotes the number of good cases predicted as 
bad 

Given a specific cut-off score, say , specificity ( ) is defined as the 
fraction of the good cases that have scores above the cut-off and would 
therefore be rightly accepted; i.e., the proportion of good cases who are 
predicted as good. 

Type I Error Type I error = 1- Specificity	 Type I error is the proportion of bad cases being misclassified as good 
cases 

Type II Error Type II error = 1- Sensitivity	 Type II error is the proportion of good cases being misclassified as bad 
cases – also referred to as the false alarm rate. 
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Chapter Three 

3. Multi-Criteria Ranking of Corporate Distress Prediction Models: 

An Orientation-Free Context-dependent DEA-based Framework 

 
Abstract: Although many modelling and prediction frameworks for corporate 

bankruptcy and distress have been proposed, the relative performance evaluation of 

prediction models is criticised due to the assessment using a single measure of one 

criterion at a time, which lead to reporting conflicting results. Mousavi et al. (2015) 

proposed an orientation-free super-efficiency data envelopment analysis (DEA) -based 

framework to overcome this methodological issue. However, within a super-efficiency 

DEA framework, the reference benchmark changes from one prediction model 

evaluation to another one, which in some contexts might be viewed as “unfair” 

benchmarking. In this chapter, I overcome this issue by proposing a slacks-based 

context-dependent DEA (SBM-CDEA) framework to evaluate competing distress 

prediction models. Furthermore, using data on UK firms listed on London Stock 

Exchange (LSE), I exercise a comprehensive comparative analysis of the most popular 

corporate distress prediction models under both a mono criterion and multiple criteria 

frameworks considering several performance measures. Also, I propose new models 

using macroeconomic indicators as features.  

 

Keywords: Corporate Distress Prediction; Performance Criteria; Performance 

Measures; Context-Dependent Data Envelopment Analysis; Slacks-Based Measure 
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3.1 Introduction 

Business distress refers to a situation in which a company is unable to continue its 

operations because the revenue generated by the company is not enough to cover its 

expenses. Early detection of a company deteriorating condition or distress has such 

economic benefits, which motivate both academics and practitioners in finance and 

accounting to invest in developing a range of corporate distress prediction models. 

From a statistical point of view, a distress prediction model or DPM is a typical 

classification problem, which uses the selected features; say accounting, market, and 

macroeconomic-based information, to classify the firms into distressed or non-

distressed categories or classes. During the last decades, numerous studies have 

employed different types of techniques from statistics, operational research, and 

artificial intelligence fields to design new DPMs. Initial studies on distress prediction 

use statistical techniques such as univariate discriminant analysis (e.g., Beaver, 1966, 

1968), and multivariate discriminant analysis (e.g., Altman, 1968, 1973, 1983) as 

classification techniques. Later on, conditional probability models such as linear 

probability models (e.g., Meyer and Pifer, 1970; Maddala, 1986), logit models (e.g., 

Martin, 1977; Ohlson, 1980), and probit models (e.g., Zmijewski, 1984) are used to 

predict the probability of distress. The common characteristic of these models, 

however, is that they are time-independent (i.e., static) in nature and as such fail to 

take time-varying features of a firm into account. Dynamic models such as survival 

(hazard) models (e.g., Lane et al., 1986; Crapp and Stevenson, 1987; Luoma and 

Laitinen, 1991; Shumway, 2001; Bharath and Shumway, 2008; Chava and Jarrow, 

2004), and contingent claims models (e.g., Bharath and Shumway, 2008; Hillegeist et 

al., 2004) are the next group of models, which by design could take account of changes 

in the condition of firms over time. Statistical techniques, however, are constrained by 

the potential severity of the underlying assumptions, i.e., linearity, multivariate 

normality, independence among predictor or input variables, and equal within-group 

variance-covariate matrices. The artificial intelligence and mathematical programming 

techniques are alternatives that overcome the methodological restrictions related to 

statistical techniques.  

Considering the massive increase in the number of DPMs, a stream of the literature 

has focused on answering the question: which of these models are superior in 
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performance? According to Zhou (2013), DPMs are data-fitting based empirical 

research consisting of a series of processes including sampling, features selection, 

modelling, and performance evaluation. Obviously, the performance of DPMs is not 

only dependent on the sample selection, modelling techniques and feature selection 

procedures but also reliant on the evaluation process and the chosen performance 

criteria. In practice, several studies have compared the performance of competing 

DPMs taking into account different modelling frameworks – see for example, Bauer 

and Agarwal (2014) , Mousavi et al.(2015) and Wu et al. (2010); alternative sampling 

techniques – see, for example, Neves and Vieira (2006), and Zhou (2013); and various 

features – see, for example, Tinoco and Wilson (2013), Trujillo-Ponce et al. (2014). 

Furthermore, several criteria, including, discriminatory power, calibration accuracy, 

information content and correctness of categorical prediction have been used for the 

performance evaluation of alternative models.  

My survey of the existing studies concerned with the comparison of competing 

statistical DPMs supports Bauer and Agarwal (2014) and Mousavi et al. (2015) 

arguments in addressing two main drawbacks in the related literature. Firstly, most of 

the existing studies failed to have a comprehensive comparison between all types of 

statistical models, i.e. traditional statistical models, contingent claim analysis (CCA) 

models and survival analysis models. Secondly, the existing literature has used a 

restricted number of criteria to evaluate the performance of competing models. 

Thirdly, as mentioned by Mousavi et al. (2015), the nature of the performance 

evaluation of competing DPMs remains mono-criterion, as they use a single measure 

of a single criterion at a time. Therefore, under mono-criterion evaluation, the rankings 

corresponding to different criteria are mostly different, which lead to a situation that 

practitioners cannot make a well-informed decision as to which model performs best 

when taken all criteria into account (see, for example, Theodossiou, 1991; 

Bandyopadhyay, 2006; Tinoco and Wilson, 2013). To overcome this methodological 

drawback, Mousavi et al. (2015) proposed a multi-criteria assessment framework; 

namely, an orientation-free super-efficiency DEA. However, within a super-efficiency 

DEA framework, the reference benchmark may change from one efficient decision-

making unit (DMU) evaluation to another one, which in some contexts might be 

viewed as “unfair” benchmarking (Ouenniche et al., 2014) - for more details about 
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super-efficiency DEA framework and its related issue, the reader is referred to section 

2.3.2. This study overcomes this issue by proposing a slacks-based context-dependent 

DEA (SBM-CDEA) framework (Seiford and Zhu, 2003; Morita et al., 2005; Zhu, 

2014) for evaluating the relative performance of competing DPMs. I assess the 

performance of the proposed SBM-CDEA framework by performing a comparative 

analysis of the most commonly used and cited statistical corporate distress prediction 

modelling frameworks. I organised models into three categories; namely, original 

models, refitted models and new models. Last, but not least, I use different measures 

of four commonly used criteria in the literature; namely, calibration accuracy, 

information content, the correctness of categorical prediction, and discriminatory 

power, to evaluate the relative performance of models. 

The remainder of this chapter is organised as follows. Section 3.2 provides a review 

of comparative studies related to competing statistical models. Section 3.3 explains the 

proposed multi-criteria methodology that used to compare the relative performance of 

competing distress prediction models. Section 3.4 presents the research methodology. 

Then, section 3.4 presents the empirical results and discussions. Finally, section 3.6 

outlines the main conclusions of the chapter.  

3.2 Existing Literature on Comparison of Competing Statistical Models 

Since the existing literature on the comparative performance of distress prediction 

models is substantial, this section provides a review of the studies, which focus on 

comparisons of different types of statistical models; i.e., traditional statistical models, 

contingent claim analysis (CCA) models, and survival analysis (SA) models.  

Panel I of Table 3.1 presents the comparison between traditional statistical models. 

From the introduction of univariate discriminant analysis (UDA) by Beaver (1966) 

through the early years of the 1980s, the multivariate discriminant analysis (MDA) 

was the superior method for predicting corporate failure. From the 1980s until 2001, 

the logit (introduced by Ohlson, 1980) and probit (introduced by Zmijewski, 1984) 

models dominated statistical techniques.  

Panel II of Table 3.1 presents the comparison between traditional statistical models 

and SA model. Shumway (2001) proposed the breakthrough discrete-time hazard 

(DTH) model – using a multi-period logit framework – for distress prediction.  In 
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theory, SA models take advantage of their dynamic structure, and therefore outperform 

traditional statistical models, which are static in nature. However, in practice, the 

results of comparative studies indicate that the type of information that models fed 

with have a significant impact on the performance of models and could overcome the 

design shortcomings of static models (Shumway, 2001); therefore, static models 

should not be discarded entirely.  

Panel III of Table 3.1 presents the comparison between statistical models and CCA 

models. Hilligeist et al. (2004) proposed a Black-Scholes-Merton (BSM) based model 

that outperforms two types of traditional statistical techniques; namely, logit and 

MDA.  

Reisz and Perlich (2007) compared the performance of three CCA models; namely, 

BSM, KMV, and Down-and-Out Call option (DOC) based models. Further, Agarwal 

and Taffler (2008) compared the performance of two types of market-based models; 

namely, Hillegeist et al. (2004) and Bharath and Shumway (2008) and the MDA model 

of Taffler (1984). The comparison results indicate that CCA models outperform 

traditional statistical models under most measures of performance.  

Panel IV of Table 3.1 shows the comparison between CCA and hazard models. 

Campbell et al. (2008) compared the performance of a CCA model; namely, KMV 

(Kealhofer, McQuown and Vasicek) and two types of hazard models; namely, 

Shumway (2001) and Campbell et al. (2008). The results indicate that their suggested 

hazard model outperforms both KMV and Shumway (2001) models.  

Panel V of Table 3.1 presents the comparison between CCA, hazard and traditional 

statistical models. Wu et al. (2010) compared the performance of three frameworks of 

traditional statistical models; namely, MDA model of Altman (1968), logit model of 

Ohlson (1980), probit model of Zmijewski (1984) with DTH model of Shumway 

(2001) and BSM-based model of Hillegeist et al. (2004). Bauer and Agarwal (2004) 

compared the performance of traditional statistical, CCA and DTH models. The results 

of both studies suggest that DTH model outperforms other models. However, there are 

conflicts in the ranking of other models regarding different measures.  
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  Table 3.1: Literature on Comparative Studies of Distress Prediction Models 

Author Models Criteria (Measure) Result 

Panel I: Comparison between traditional statistical models 

Press and Wilson 
(1976) 

LA and MDA models Correctness of categorical prediction (T1 
and T2 errors) 

Two models unlikely will give significantly 
different results.  

Collins and Green 
(1982) 

LPA, MDA, and LA models Correctness of categorical prediction (OCC, 
T1 and T2) 

The models produce identical, uniformly 
results. 

Lo (1986) MDA and LA models Power of models  There are no differences between models.  

Theodossiou (1991) 
 

LPA, LA, and PA models Correctness of categorical prediction (T1 
and T2 errors), Calibration (BS), 
Information content (pseudo-R2) 

logit model outperforms others; CONFLICT in 
the ranking of others on different measures 
 

Lennox (1999) LA, PA, and MDA models Correctness of categorical prediction (T1 
and T2) 

A well-specified non-linear PA and LA are 
superior over DA   

Bandyopadhyay 
(2006) 
 

MDA models and logit models 
 

Correctness of categorical prediction (OCC, 
T1 and T2) 
Discriminatory power (ROC), Information 
content (pseudo-R2, LL) 

CONFLICT in rankings using different criteria 
and measures 
 

Tinoco and Wilson 
(2013) 

logit models taking to account 
different categories of features 

Discriminatory power (ROC, Gini, KS), 
Calibration accuracy (HL) 

CONFLICT in rankings using different criteria 
and measures 

Panel II: Comparison between traditional statistical models and survival analysis models  

Luoma and Laitinen 
(1991) 

Cox-hazard, MDA and LA models Correctness of categorical prediction (T1 
and T2) 

SA model is inferior to MDA and LA models 

Shumway (2001) Discrete-time SA model, MDA, LA 
and PA 

Correctness of categorical prediction 
(OCC) 

SA model, which encompasses both accounting 
and market information (respectively, only 
accounting information) outperforms 
(respectively, underperforms) other statistical 
techniques. 
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Panel III: Comparison between statistical models and contingent claim analysis (CCA) models 

Hilligeist et al. (2004) BSM-based, LA and MDA models Information content (LL and Pseudo-R2) BSM-based model outperforms both original 
and refitting version of LA and MDA models  

Reisz and Perlich 
(2007) 

BSM-based, KMV, DOC and MDA 
models 

Discriminatory power (AUROC)  DOC and MDA outperforms others for 3-, 5- 
and 10-year ahead; MDA outperforms others 
for 1-year ahead distress prediction 

Agarwal and Taffler 
(2008) 

Contingent claim based models 
[HKCL (2004) and BHSH (2008)] 
and MDA model of Taffler (1984) 

Discriminatory power (ROC), 
Information content (pseudo-R2, LL), 
Correctness of categorical prediction 
(EV for different cost of 
misclassification) 

MDA model outperforms HKCL (2004) on 
ROC and pseudo-R2. CONVERSELY, HKCL 
(2004) outperforms BHSH (2008) and MDA 
model on LL.  

Panel IV: Comparison between CCA models and survival analysis models 

Campbell et al. (2008) A new duration dependent SA 
without time-variant baseline, SA 
model [Shumway (2001)] and 
KMV(Kealhofer, McQuown and 
Vasicek) model 

Information content (pseudo-R2, LL)  
 

The suggested new SA model outperforms both 
Shumway (2001) and KMV models.  

Panel V: Comparison between CCA, survival analysis and traditional statistical models 

Wu et al. (2010) MDA [Altman (1968)], Logit 
model [Ohlson (1980)], probit 
model [Zmijewski (1984)] hazard 
model [Shumway (2001)] and 
BSM- model [HKCL (2004)]  
 

Information content (pseudo-R2, LL)  
Correctness of categorical prediction 
(OCC), Discriminatory power (ROC) 

Shumway outperforms others on LL and 
Pseudo-R2. Logit model performs better that 
others on OCC. 
CONFLICT in rankings  

Bauer and Agarwal 
(2014) 

Traditional model, contingent claim 
based model and hazard model 

Discriminatory power (ROC), 
Information content (LL, R2) and 
Correctness of categorical prediction 
(OCC, T1, T2) 

Hazard model outperforms others; CONFLICT 
in ranking of others on different measures 
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3.3 A Slacks-based CDEA Framework for Assessing Corporate Distress 

Predictions 

In this chapter, I propose an orientation-free non-radial (slacks-based measure) 

context-dependent DEA (SBM-CDEA) framework for evaluating the relative 

performance of competing corporate DPMs.  Hereafter, I first present the SBM-CDEA 

framework. Then, I discuss how one might adapt it to evaluate the relative performance 

of competing corporate DPMs. 

Data envelopment analysis (DEA), proposed by Charnes, Cooper and Rhodes (1978), 

is a linear programming technique to assess the relative efficiency of a set of similar 

decision making units (DMUs), where each DMU is considered as a system, which 

uses multiple inputs to produce a number of outputs. The decision variables of these 

linear programming models are the weights allocated to inputs and outputs, and these 

models are referred to as multiplier models. The objective function value of the chosen 

DEA model – commonly referred to as a DEA score, allows one to classify a DMU as 

being efficient or not depending on whether its DEA score is equal to 1 or not, 

respectively. In DEA terminology, the set of efficient DMUs is referred to as the 

efficient frontier and represents the empirical standard of excellence against which 

benchmarking is done. Solutions to DEA models allow one to identify the reference 

set or peer group to use for benchmarking each DMU in seeking improvements. For 

detailed presentations of different DEA models, the reader is referred to Cooper et al. 

(2006).  

Following the pioneering study by Mousavi et al. (2015) in using non-radial (slacks-

based measure), orientation-free super-efficiency DEA to evaluate the performance of 

bankruptcy prediction models, I propose the non-radial (slacks-based measure), 

orientation-free context dependent DEA framework as a device for multi-criteria 

ranking of DPMs. I use an orientation-free evaluation because I intend to assess DPMs 

and thus the choice between input-oriented or output-oriented analysis is irrelevant. 

Further, input-oriented and output-oriented DEA studies may result in different scores 

and rankings of DMUs. On the other hand, I use a non-radial framework because the 

radial DEA models may be infeasible for some DMUs, which could result in having 

ties in rankings. The reason is that the super-efficiency DEA model was developed 
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under (i) constant returns to scale (CRS) condition and (ii) the simultaneous and same 

proportion of change in all inputs (or outputs). Once any of these conditions is violated, 

it is high likely that infeasibility of the related DEA mode occurs (see, e.g., Seiford 

and Zhu, 1998a,b). As a result, we do not have a value associated with infeasibility to 

represent the super-efficiency, and the use of super-efficiency DEA is restricted. 

Furthermore, radial DEA models do not take account of possible excesses and 

shortfalls; namely, slacks, in inputs and outputs, respectively, which could result in 

over-estimating the efficiency scores due to ignoring mix efficiency. Finally, the 

reason to use context-dependent rather than super-efficiency scores to rank DMUs is 

that within the latter one, the scores are used to rank order the efficient DMUs; 

however, the efficient DMUs have different reference sets, which in some contexts 

could be considered as “unfair” benchmarking. On the other hand, within CDEA, a set 

of DMUs can be divided into different levels of efficient frontiers (evaluation context), 

and the attractiveness measure or the progress measure are used to rank those efficient 

DMUs belonging to the same specific evaluation context; that is, having the same level 

of efficiency or score. The proposed SBM-CDEA framework is summarised in the 

following stages: 

Stage 1 – Returns-to-scale (RTS) Analysis: Perform RTS analysis to find out which 

type of RTS to include in DEA models; that is, constant-returns-to-scale (CRS), 

increasing returns-to-scale (IRS), decreasing return-to-scale (DRS), or variable 

returns-to-scale (VRS) – see Banker, Cooper, Thrall and Zhu (2004) for details. Note 

that depending on whether VRS, IRS or DRS conditions prevail, one must add 

∑ 1∈ ,∑ 1∈ 	or ∑ 1∈ , respectively, as an additional constraint to 

the linear programming (LP) models 1, 2 and 3 below.  

Stage 2 – Classification of DMUs: Use the following algorithm to identify several 

levels of efficiency or several efficient frontiers (evaluation contexts), say : 

• Step 1: Set the performance level counter, say , equal to 1. Let J

, 1, … ,  be the set of all  DMUs at efficiency level	 . Evaluate the 

entire set of DMUs, , by solving the relevant DEA model to construct the -level 

efficient frontier, say , where ∈ 	 	 1 .		 

• Step 2: Drop the current efficient DMUs; that is, , from the next DEA 
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analysis run; that is, , and increase the counter  by 1. 

• Step 3: Evaluate the “globally inefficient” set of DMUs identified in the 

previous step; this is, ,	by solving the relevant DEA model and set the 1-

level efficiency frontier to .	 

• Step 4: If ∅, then stop; otherwise, set 1	and go to step 2.  

where the relevant DEA model to determine the level efficiency frontier is 

the slacks-based measure (SBM) model of Tone (2001): 

 						 1 ∑ ,

,
1 ∑ ,

,
 

. 	. :						∑ , ,∈ , ; ∀  

              ∑ , ,∈ , ; ∀  

              0; ∀ ∈ ; , 0, ∀ ; , 0, ∀  

Eq. 3-1 

where the , 	 1, … ,  and , 	 1, … ,  are the  input and the  output 

of 	 1, … , , respectively,  is the weight allocated to  in 

constructing its ideal benchmark, , ∈ 	and , ∈ 	denote the slacks of the first 

and second constrains; that is, input excesses and output shortfalls, and  is the SBM 

efficiency score of  with respect to evaluation context . In the case that the 

optimal value of 1, then  is part of -level efficient frontier; otherwise 

 is inefficient and will be evaluated in future DEA runs. Obviously, DMUs are 

partitioned into  efficient frontiers, which indicate different performance levels. One 

could rank order DMUs considering the 1st-level efficient frontier DMUs as best and 

the -level efficient frontier DMUs as worst, however, ties exist between DMUs on 

the same level efficient frontier and the next stage is designed to break those ties. 

Stage 3 – Breaking of Efficiency Ties: Perform the following steps to break the ties 

between DMUs in the same level efficient frontier: 

• Step 1: solve the LP (2) for all DMUs obtained at performance level  , say 

∈ 	, where 2, 3, … , 	, to compute relative progress scores, , with 

reference to the best evaluation context, , and rank DMUs on efficient frontier  

based on the calculated scores:  

thL
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 	 1 ∑ ,

,
1 ∑ ,

,
  

. . :				∑ , , , ; ∀ 	∈   

           ∑ , , , ; ∀ 	∈   

           0; ∀ ∈ ; , 0, ∀ ; , 0, ∀   

Eq. 3-2 

where ,  (respectively, 	 , ) indicates the amount by which input  (respectively, 

output ) of should be decreased (respectively, increased) to reach the 

evaluation context 	(see, Figure 3.1).  

• Step 2: solve the LP (3) for all DMUs obtained at the best efficient frontier	 ; 

that is, ∈ , to compute relative attractiveness scores, , with reference to 

the second-best evaluation context, , and rank DMUs on the best efficient frontier 

, based on the calculated scores (see, Figure 3.1). 

 		 1 ∑ ,

,
1 ∑ ,

,
  

. . :								∑ , , , ; 	∀ 	∈   

∑ , , , ; 	∀ 	∈   

0; ∀ ∈ ; , 0, ∀ ; , 0, ∀    

Eq. 3-3 

where ,  (respectively, 	 , ) indicates the amount by which input  (respectively, 

output ) of ∈  should be increased (respectively, decreased) to reach to 

evaluation context  (see, Figure 3.1). 

In the next section, I shall use the above-described methodology to rank order 

competing corporate distress prediction models and discuss the empirical results 

obtained using UK data on firms listed on the London Stock Exchange (LSE) for the 

period 2008-2014. In this chapter, DMUs are thirty competing corporate distress 

prediction models – see Appendix 3-A for a general description of these models. The 

inputs and outputs are the performance measures of the relevant criteria for assessing 

corporate prediction models. This study considers discriminatory power, calibration 

accuracy, information content, and correctness of categorical predictions criteria and 

their measures. Further, inputs (respectively, outputs) are selected based on the rule of 
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the less (respectively, the more), the better; therefore, inputs (respectively, outputs) 

refer to the performance measures to be minimised (respectively, maximised).  

Figure 3-1: Context Dependent DEA 

 

3.4 Empirical Investigation 

This section provides the details of my research methodology, where I compare the 

performance of competing DPMs using both mono-criterion and multi-criteria 

performance evaluation frameworks. Hereafter, I provide the details on my dataset (see, 

section 3.4.1), features selection (see, section 3.4.2), model evaluation criteria and 

measures (see, section 3.4.3), and distress prediction models (see, section 3.4.4).  

3.4.1 Data  

I took the following steps to select my dataset. First, I considered all non-financial and 

non-utility UK companies listed on the London Stock Exchange (LSE) at any time 

during an 8-year period from 2007 through 2014. Second, I excluded the firms which 

are listed less than two years in LSE, as historical information is the requirement for 

some modelling frameworks. Third, I excluded the firms with missing values for the 

main accounting information (e.g., sales, total assets) and market information (e.g., 

price), which are essential items for calculating many financial ratios (Lyandres and 

Zhdanov, 2013).  

I replaced the remaining missing values with the recently observed ones for each firm 

(Zhou, 2013; Shumway, 2001). Fourth, for each variable, I winsorised the outliers by 

replacing the values higher (respectively, lower) than 99th (respectively, 1st) 

percentile with that 99th (respectively, 1st) percentile value (Shumway, 2001). 

1
st
 Level 

Efficient 
Frontier, 

2nd Level 
Efficient 
Frontier, 

 

3rd Level 
Efficient 

Frontier,  
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Table 3.2: Sample Sizes 

Samples Year Healthy Distressed Total Distress rate 

T
raining 

sam
ple  

(2007 - 2010)  

2007 1,826 81 1,907 4.25% 

2008 1,704 106 1,810 5.86% 

2009 1,456 165 1,621 10.18% 

2010 1,409 61 1,470 4.15% 

 Total 6,395 413 6,808 6.07% 

H
old out 

sam
ple  

(2011-2014) 

2011 1,354 27 1,381 1.96% 
2012 1,255 69 1,324 5.21% 
2013 1,143 101 1,244 8.12% 
2014 1,120 66 1,186 5.56% 

 Total 4,872 263 5,135 5.12% 
Total   11,267 676 11,943 5.66% 

With respect to the classification of firms into distressed and non-distressed, I followed 

the definition of Pindado et al. (2008) where a company is classified as distressed if it 

experiences both of the following conditions for two consecutive years: (1) its earnings 

before interest, taxes, depreciation and amortization (EBITDA) is lower than its 

interest expenses, and (2) it shows negative growth in market value. To be more 

specific, the distress variable, say	 , equals 1 for financially distressed companies and 

equals 0 otherwise. In sum, my dataset consists of 2,096 firms and 11,943 firm-year 

observations. Among the total number of observations, 676 firm-year observations are 

classified as distressed, which result in the average distress rate of 5.66 percent per 

year. The models are developed using training sample period ranging from 2007 to 

2010 and tested using holdout sample period ranging from 2011 to 2014. Table 3.2 

presents my sample sizes. 

3.4.2 Feature Selection 

To select proper features for prediction models, I applied the following steps. First, I 

reviewed the literature to select the most commonly used features in other studies (e.g., 

Hebb, 2016; du Jardin, 2015; Zhou, 2015, 2013; Ravi Kumar and Ravi, 2007), where 

I end up with 83 accounting-based ratios and seven market-based items. Second, I used 

t-tests to choose features which show a significant difference between the means of 

two groups of distressed and healthy firms (Shin and Lee, 2002; Huang et al., 2004; 

Shin et al., 2005). Third, for further reduction of features, I applied factor analysis, and 

principal component analysis with VARIMAX technique (Chen, 2011, Mousavi et al., 
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2015). To be more specific, I used factors analysis to select the variables that both the 

absolute values of their loadings and communities are greater than 0.5 and 0.8, 

respectively. Finally, 34 variables, which presented high factor loadings and high 

communality values, were retained as input features into a stepwise procedure in each 

statistical framework.  

3.4.3 Corporate Distress Models to be Assessed 

In this chapter, I compare the performance of the most cited statistical, probability and 

stochastic models in the literature on distress prediction. To be more specific, I 

consider the MDA models proposed by Altman (1968), Altman (1983), Lis (1972), 

and Taffler (1984); the logit model proposed by Ohlson (1980); the probit model 

proposed by Zmijewski (1984); and the linear probability model proposed by 

Theodossiou (1991); the contingent claim analysis models proposed by Bharath and 

Shumway (2008), Hillegeist et al. (2004) and Jackson and Wood (2013); and the 

survival analysis model proposed by Shumway (2001).  

I also included in my comparative analysis two additional categories of models that I 

refer to as refitted original models and new models. In the case of refitted models, I 

keep the explanatory variables of each original model and refit them with my new 

dataset. On the other hand, in the case of new models, I develop new distress prediction 

models using different static and dynamic frameworks and fit them with my new 

dataset. The static frameworks used to develop new models are MDA, logit, probit and 

linear probability analysis. The dynamic frameworks used to develop new models are 

duration-independent with (or without) time-independent baseline hazard rate, and 

different duration-dependent models, which contain a variety of time-varying baseline 

hazard rates.  

Note that depending on the existence and specification of baseline hazard rate in 

dynamic or duration models, one could classify them into two subcategories; namely, 

duration-independent and duration-dependent frameworks (Nam et al., 2008). The 

duration independent models could be classified into duration-independent with time-

independent baseline (DIWTIB) and duration independent without baseline (DIWOB). 

The difference between these two types of models is that the former one contains a 

constant baseline hazard rate, while the latter one does not contain baseline hazard rate 
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(e.g., Shumway, 2001). On the other hand, the duration-dependent framework contains 

a time-dependent baseline hazard rate, as mentioned in Beck et al. (1998), who use 

time dummies to proxy the baseline hazard rate.  

Table 3.3: List of Financial Ratios 

Category Ratio or item Category Ratio or item 

Profitability 
(9)  

Net income to total liabilities 
EBIT to total assets 
Return on assets  
Operating income after depreciation to 
total assets 
Retained earnings to total assets 
Expected return on assets 
Total liabilities exceed total assets 
Changes in net income in two 
consecutive years  
Negative net income for last two years 

Liquidity (9) Current asset turnover 
Current assets to total liabilities 
Current liabilities to current 
assets 
Inventory to current assets 
Inventory turnover 
Inventory to total assets 
Profit before tax to current 
liabilities 
Quick asset to total assets 
Quick asset to inventory  

Asset 
utilisation 
(2) 

Asset turnover ratio 
Quick assets to sales 

Solvency (3) Current liabilities to liabilities 
Equity to capital 
Long term and current 
liabilities to total assets 

Cash flow 
(2) 

Operating cash flow to liabilities 
Funds Provided by Operations to 
Total Liabilities 
 

Market 
information 
(5) 

Lag of excess return 
Lag sigma 
Ln (price)  
Real size 
Failure rate in last year 

Mixed (2)  GDP Sales 
Interest	rate	 Income		 

Firm 
characteristics 
(2) 

Ln(age) 
Log (total assets to GNP price 
level index) 

Since the use of time dummies as an indirect proxy for the baseline rate is less efficient, 

I follow Nam et al. (2008) and Gupta et al. (2015) in using time-varying features to 

proxy the time-dependent baseline rate. Therefore, taking into account the duration 

dependent (DD) framework, the models differ based on the type of baseline hazard 

rates, i.e., ln (age), 1/ln(age), last year probability of distress (LPD), and volatility of 

exchange rate (VEX) – see Appendix 3-A for more details on models. 

Table 3.3 and Table 3.4 present the list of features used to develop new models, and 

the new models, respectively. In sum, 30 models are assessed in my comparative 

analysis. Note that all chosen models are tested out-of-sample and the training period 

ranges from 2007 to 2010 including 413 distressed and 6,395 non-distressed firm-year 

observations. 
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Table 3.4: New Designed Models 
The table presents the features and coefficients of the new models, namely MDA (20), LPA (21), LA (22), PA (23), DIWOB (24), DIWTIB_ln(age) (25), DD_ln(age) (26), DD_VEX (27),  

DD_LPD (28), DDWTIB_1/ln(age) (29), DD_1/ln(age) (30). *** and ** refer to 1% and 5% significance level, respectively.  

Models  Model 20
 

 Model 21 
 

Model 22  
 

Model 23  
 

Model 24  
 

Model 25 
 

  Model 26  
 

Model 27  
 

Model 28  
 

Model 29*  
 

Model 30  
 

Explanatory variables 

Intercept 17.11 1.18*** 0.62 -0.54*** 0.77 0.22+ln(age)i 0.22 1.78 0.74 0.77+1/ln(age)i 2.68 

INTWO 1.86 0.09*** 1.59*** 0.78*** 1.53*** 1.62*** 1.62*** 1.53*** 1.53*** 1.53*** 1.60*** 

Lag of excess return -4.67 -0.22*** -3.36*** -1.84*** -3.31*** -3.77*** -3.77*** -3.35*** -3.34*** -3.31*** -3.95*** 

Current Assets to Total Liabilities -16.69 -0.79***          

Current Liabilities to Liabilities 21.19 1.03***          

Net worth over total liabilities   -1.38*** -0.55*** -1.47*** -2.02*** -2.02*** -1.54*** -1.53*** -1.47*** -1.97*** 

Retained Earnings to Total Assets -12.98 -0.74***  
 

Equity to Capital -10.87 -0.54***          
CHIN  0.48 0.02***          
Real size -1.81 -0.14*** -2.78*** -1.49*** -1.97*** -1.89*** -1.89*** -1.90*** -1.91*** -1.97*** -1.93*** 

Asset Turnover Ratio -5.97 -0.29*** -14.82*** -8.61*** -14.16*** -20.54*** -20.54*** -13.99*** -14.03*** -14.16*** -20.69*** 

Inventory Turnover 5.14 0.25*** 3.34*** 1.77*** 3.34*** 3.30*** 3.30*** 3.31*** 3.30*** 3.34*** 3.21*** 

Interest rate × Net Income   -12.47***  -12.58*** -15.78*** -15.78*** -13.19*** -13.15*** -12.58*** -16.66*** 

log (price) 0.14 0.007*** 0.11*** 0.05***        
GDP × Sales 1.44 0.05***          
Ohlson size  -1.26    

       
1/ln (age)      

  
       -6.17*** 

Last period distress rate (LPD)      
  

 1.9864   

Volatility of exchange rate (VEX)      
  -0.2981    

ln (age)      2.52*** 2.52***     
* Note that in models 25 and 29, the ln(age) and 1/ln(age) of firm  is added to intercept as the baseline hazard rate.  
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In the next section, I shall assess the relative performance of these models under both 

a single criterion and multiple criteria and their measures using the proposed DEA 

framework (see section 3.5.2). 

3.4.4 Performance Criteria and Measures 

The objective of this study is to evaluate the relative performance of distress prediction 

models using UK data. For this, I follow Mousavi et al. (2015) to assess the 

performance of different models under four commonly used criteria; namely the 

discriminatory power, the calibration accuracy, the information content, and the 

correctness of categorical prediction. On the discriminatory power criterion, I use 

Receivable Operating Characteristic (ROC), Kolmogorov-Smirnov (KS) statistics, 

Gini Index (GI), and Information Value (IV) to measure how much a model is capable 

of discriminating between the distressed firms and the healthy ones. On the calibration 

accuracy criterion, I use Brier Score (BS) to measure how much a model is qualified 

in estimating the probability of distress (PD). On the information content criterion, I 

follow Agarwal and Taffler (2008) and use a log-likelihood statistic (LL) and pseudo-

R2 to measure the extent to which the output of a model (e.g., PD, scores) carries 

enough information for prediction. Finally, with respect to the correctness of 

categorical prediction criterion, I use Type I errors (T1), Type II errors (T2), 

misclassification rate (MR), sensitivity (Sen), specificity (Spe), and overall correct 

classification (OCC) to measure how often a model can predict distressed firms 

(respectively, healthy firms) as distressed (respectively, healthy) ones.  

3.5 Empirical Results 

In this section, I organise the analyses into the mono-criterion analysis (see section 

3.5.1) and multi-criteria analysis (see section 3.5.2) and summarise main findings. The 

original models, refitted original models, and new models are presented in Figure 3-2, 

Figure 3-3, and Figure 3-4 with white, grey, and black shapes, respectively, and static 

and dynamic models with a circle and non-circle shapes, respectively – see legends of 

Figure 3-2, Figure 3-3, and Figure 3-4. 

3.5.1 Mono-Criterion Analysis 

Figure 3-2 presents the mono-criterion (unidimensional) rankings of the 30 models 

using several measures under four commonly used criteria. For my dataset, mono-
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criterion rankings results could be summarised as follows. First, regarding the 

performance of all competing models in my study, the new developed models 

outperform original models and refitted models. This finding suggests that the change 

in trend of information during time, as someone would expect, tend to affect the 

performance of corporate distress prediction models; therefore, out-dated original 

models or refitted original models with new dataset do not seem to be as efficient as 

new models with respect to most of the performance measures. The only exceptions 

are original models 1, 2 and 6 (Altman, 1968; Lis, 1972; and Ohlson, 1990, 

respectively), which perform amongst the best regarding T1 and Sen as performance 

measures.  

Second, relating to the comparison of new dynamic models and new static models in 

my study, for most of the performance measures, the new dynamic models outperform 

static ones. To be more specific, on most performance measures – see, for example, 

T1, Sen, AUC, Gini and KS, new dynamic models 27 and 28 (DD_VEX and DD_LPD, 

respectively) are superior to other models. However, considering the performance 

measures KS, IV, and BS, new static models 21 and 23 (New LPA and New PA, 

respectively) are amongst the best performers. In general, the density of new dynamic 

models amongst the top-ranking performers is an indicator of their superiority.  

Third, contingent claim analysis (CCA) models (models 16, 17 and 18) are not 

amongst the best performers. The only exception is model 17 (Hillegeist et al., 2004), 

which is ranked second under T2, MR, OCC, and Spe; however, model 18 (Bharath 

and Shumway, 2008) seems to outperform other CCA models for most performance 

measures. Fourth, regarding the performance of the original MDA models refitted (i.e., 

models 9, 10, 11 and 12), for most performance measures, models 9 and 11 (Altman, 

1968 and Altman, 1983, respectively) outperform others. Also, amongst the refitted 

regression models (i.e., models 13, 14 and 15), for most performance measures, the 

logit model 14 (refitted Ohlson, 1990) outperforms others.  

In general, considering refitted models, the logit model 14 (Ohlson, 1990) and MDA 

model 10 (Altman, 1968) outperform other refitted models, for most performance 

measures. Last, but not least, regarding the out-of-sample performance of the original 

models, static models 6, 2 and 1 (Ohlson, 1990; Lis, 1972 and Altman, 1968, 
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respectively) seem to outperform other original models including the dynamic model 

8 (Shumway, 2001). This result suggests that the static models mentioned above have 

more stability over time. Note that the results of stability index confirm this finding – 

see, for example, stability index in Figure 3-2.  

Much like typical outcomes in the existing literature, the rankings under mono-

criterion are facing two main issues. Firstly, the rankings of models are different not 

only for measures under different criteria – see, for example, T1 under correctness of 

categorical prediction criterion and ROC under discriminatory power criterion, but 

also for measures under the same criterion; see, for example, OCC and MR under 

correctness of categorical prediction criterion or KS and ROC under discriminatory 

power criterion – as it is the case in Theodossiou (1991), Bandyopadhyay (2006), and 

Tinoco and Wilson (2013). Secondly, the models’ rankings tend to have ties 

corresponding to some measures – see, for example, measures of T1 and Sen. 

Consequently, practitioners cannot make an informed decision about the best distress 

prediction model. To overcome these issues, I propose a multi-criteria ranking 

framework, namely SBM-CDEA, which not only provides a single ranking using 

multiple criteria at the same time but also breaks the possible ties in the ranking of 

competing models.   

3.5.2 Multi-Criteria Analysis 

Figure 3.4 presents the multi-criteria (multidimensional) rankings of the mentioned 30 

models using SBM-CDEA. Further, Table 3.5 provides the efficient frontiers obtained 

with SBM-CDEA. Also, following Mousavi et al. (2015), I provide the rankings of 

models using SBM-super efficiency DEA, see, Figure 3.3, to compare the performance 

of two multi-criteria assessment frameworks.  

In my empirical investigation, RTS analysis revealed that VRS conditions hold and 

therefore an additional constraint (i.e.,∑ 1∈ ) needs to be added to linear 

programming models 1, 2 and 3. In addition, for my dataset, multi-criteria rankings 

under SBM-super efficiency DEA and SBM-CDEA show considerable consistency in 

the rankings of top five models, for most of combinations of measures; however, they 

do not provide a general consistency in the rankings of all models.  
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Furthermore, under SBM-CDEA, the results could be summarised as follows. First, on 

the performance of all competing models in my study, the new developed models 

outperform the original models and the original models refitted. Contrary to the mono-

criterion ranking, multi-criteria ranking indicates the superiority of dynamic models, 

for all combinations of performance measures.  

Second, on the performance of dynamic and static models in my study, for most of the 

combinations of measures, the dynamic models outperform static ones. To be more 

accurate, regardless of the combinations of measures, the dynamic models 25, 30 

(DIWTIB_ln (age) and DD_1/ln (age), respectively) followed by models 24 and 27 

(DIWOB and DD_VEX, respectively) are always amongst the top five best 

performers. The exceptional performance of the dynamic models seems to suggest that 

taking account of the time-varying nature of predictors pays off. However, for all 

combinations of measures, static models 21 and 23 (new LPA and new PA, 

respectively) are superior to other models.  

Third, with respect to CCA models – which are systematically amongst the worst 

ranked models, model 17 (Hillegeist et al., 2004) outperforms model 18 (Bharath and 

Shumway, 2008) and model 19 (Jackson and Wood, 2013), for combinations of 

measures, which include T1 and OCC; conversely, model 18 outperforms, for 

combinations of measures, which include T2.  

Fourth, amongst the original MDA models refitted (i.e., models 9, 10, 11 and 12), for 

most of the combinations of measures, model 9 (refitted Altman, 1968) outperforms 

others. Further, amongst the refitted regression models (i.e., models 13, 14 and 15), 

for most performance measures, model 14 (refitted Ohlson, 1990) outperforms others. 

Further, the logit model 14 seems to be the best performer amongst all refitted models. 

Finally, considering the performance of original models, the static models 6, 2 and 1 

(Ohlson, 1990; Lis, 1972 and Altman, 1968, respectively) followed by the dynamic 

model 8 (Shumway, 2001) are amongst the best performers.  

The empirical findings reveal that the multi-criteria rankings differ from the mono-

criterion ones. Further, the multi-criteria rankings have no ties as compared to the 

mono-criterion ones, which suggests that the choice of the SBM-CDEA framework is 

an effective one to overcome ties in the ranking of corporate distress prediction 
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models. Furthermore, I have considered several combinations of measures of the 

performance criteria under consideration to find out about the robustness of the multi-

criteria rankings on the choice of measures. 

3.6 Conclusion 

Prediction of corporate distress and bankruptcy is one of the most crucial inputs to 

decisions making processes related to financing and investing actives. During recent 

decades, academics and practitioners have developed a large number of distress 

prediction models, which raise the question that “which of these models performs 

better in predicting distress?” To answer this question, the unidimensional ranking of 

competing prediction models has been the dominant approach; however, it results in 

conflicting rankings of models once someone shifts from one performance criteria to 

another. Mousavi et al. (2015) proposed a multi-criteria evaluation framework; 

namely, an orientation free super-efficiency DEA-based framework, to evaluate the 

performance of different bankruptcy prediction models, which provides a single 

ranking based on multiple performance criteria; such a framework faces one main 

issue, which is referred to as “fair benchmarking” that was overcome in this chapter. 

This study proposes an orientation-free slack-based context dependent DEA 

framework to overcome the methodological issues of both super-efficiency DEA-

based and unidimensional ranking. Furthermore, I performed an exhaustive 

comparative analysis of the most popular distress modelling frameworks resulting in 

30 prediction models including new models organised into three categories; namely, 

original models, original models refitted, and new models. I used several measures 

under four commonly used criteria, which are often employed in the literature to 

compare the performance of prediction models using a UK dataset on firms listed on 

the London Stock Exchange.  

The major conclusions could be summarised as follows. First, although the rankings 

of distress prediction models under orientation-free SBM-super efficiency and 

orientation-free SBM-CDEA are very similar, the latter one, however, does not suffer 

from the changes of reference benchmark from one DMU or prediction model to 

another. Second, the numerical results reveal that amongst the duration models, which 

are always superior in performance, duration dependent models DD_VEX and 
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DD_1/ln(age) that use volatility of exchange rate (VEX) and 1/ln(age) as time-varying 

baseline, respectively, followed by duration independent without baseline (DIWOB) 

tend to be superior. Third, numerical results seem to suggest that amongst the static 

models, LPA and PA models outperform others. Last, but not least, my empirical 

results suggest that developing new models using the most recent accounting, market, 

and macroeconomic information enhances the performance of distress prediction 

models.  

This research has some limitations.  First, because of time constraint, this study focuses 

on statistical distress prediction models. Second, because of limited access to data, in 

this research I have focused on listed UK companies. Third, due to time constraint, in 

this study I focused on financial distress and the main failure event. Future studies 

could take into account non-statistical prediction models. Also, future research could 

choose other failure events such as bankruptcy, debt restructure, etc. Further, using 

data from different countries, the extent to which these models are globalized could be 

tested.  

Chapter 2 and 3 are restricted to static multi-criteria assessment frameworks. The next 

chapter employs dynamic multi-criteria assessment to evaluate the performance of 

models over time.  
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 Figure 3-2: Mono-Criterion Rankings of Corporate Distress Prediction Models 
This table presents the mono-criterion rankings of 30 competing corporate distress prediction models, where models are ranked from best to worst using a single measure of a 
single criterion at a time. T1 (type I error), T2 (type II error), MR (misclassification rate), Sen (sensitivity), Spe (specificity) and OCC (overall correct classification) are used as 
measures of correctness of categorical prediction; AUC (area under receiver operating character), Gini coefficient, KS (Kolmogorov Smirnov) and IV (information value) are 
used as measures of discriminatory power; BS (Brier score) is used as a measure of calibration accuracy; and log-likelihood (LL) and Pseudo-R2 (R2) are used as measures of 
information content. Circle shapes represent static models, namely Multivariate Discriminant Analysis (MDA), Linear Probability (LPA), Logit Analysis (LA), and Probit 
Analysis (PA). Non-circle shapes represent dynamic models, namely duration models, and Contingent Claim Analysis (CCA) models. White, grey, and black coloured shapes 
represent the original models, the original models refitted, and the new models, respectively. 

Measure Rank from the Best to Worst 

T1; Sen 

 
T2; MR; OCC; Spe  
AUC; Gini 

KS 

IV  
BS  
LL, Pseudo-R2  
Stability index  
1,9 Altman (1968); 2,10 Lis (1972); 3,11 Altman (1983); 4,12 Taffler (1984); 5,13 Theodossiou (1991); 6,14 Ohlson (1990); 7,15 Zmijewski (1984); 8,16 Shumway (2001); 
17 Hillegeist et al. (2004); 18 Bharath and Shumway (2008); 19 Jackson and Wood (2013); 20 New MDA; 21 New LPA; 22 New LA; 23 New PA; 24 DIWOB;   
25 DIWTIB_ln(age); 26 DD_ln(age); 27 DD_VEX; 28 DD_LPD; 29 DIWTIB_1/ln(age); 30 DD_1/ln(age) 
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Figure 3-3: SBM-Super Efficiency DEA-based Multi-Criteria Rankings of Corporate Distress Prediction Models 
This table presents the multi-criteria rankings of 30 competing corporate distress models using a DEA ranking framework, where models are ranked from best to worst using 
SBM-super efficiency scores. A multi-criteria ranking is produced for each combination of a variety of metrics of the performance criteria under consideration, where inputs 
(resp. outputs) are chosen according to the principle of the less (resp. more) the better. T1 (type I error), T2 (type II error), MR (misclassification rate), Sen (sensitivity), Spe 
(specificity) and OCC (overall correct classification) are used as measures of correctness of categorical prediction; ROC (area under receiver operating character), Gini coefficient, 
KS (Kolmogorov Smirnov) and IV (information value) are used as measures of discriminatory power; BS (Brier score) is used as a measure of calibration accuracy; and log-
likelihood (LL) and Pseudo-R2 (R2) are used as measures of information content. Circle shapes represent static models, namely Multivariate Discriminant Analysis (MDA), 
Linear Probability (LPA), Logit Analysis (LA), and Probit Analysis (PA). Non-circle shapes represent dynamic models, namely duration models, and Contingent Claim Analysis 
(CCA) models. White, grey, and black coloured shapes represent the original models, the original models refitted, and the new models, respectively. 

Inputs Outputs Rank from the Best to Worst 

T1; BS; LL ROC 
 

T2; BS; LL ROC 
 

BS; LL ROC; OCC 
 

T1; BS; LL KS  

T2; BS; LL KS 
 

T1; BS ROC; R2  

T2; BS ROC; R2  

BS ROC; OCC; R2 
 

T1; BS KS; R2  

T2; BS KS; R2 
 

1,9 Altman (1968); 2,10 Lis (1972); 3,11 Altman (1983); 4,12 Taffler (1984); 5,13 Theodossiou (1991); 6,14 Ohlson (1990); 7,15 Zmijewski (1984); 8,16 Shumway (2001); 
17 Hillegeist et al. (2004); 18 Bharath and Shumway (2008); 19 Jackson and Wood (2013); 20 New MDA; 21 New LPA; 22 New LA; 23 New PA; 24 DIWOB;   
25 DIWTIB_ln(age); 26 DD_ln(age); 27 DD_VEX; 28 DD_LPD; 29 DIWTIB_1/ln(age); 30 DD_1/ln(age) 
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Figure 3-4: SBM-Context Dependent DEA-based Multi-Criteria Rankings of Corporate Distress Prediction Models 
This table presents the multi-criteria rankings of 30 competing corporate distress models using a DEA ranking framework, where models are ranked from best to worst using 
SBM-CDEA scores. A multi-criteria ranking is produced for each combination of a variety of metrics of the performance criteria under consideration, where inputs (resp. outputs) 
are chosen according to the principle of the less (resp. more) the better. T1 (type I error), T2 (type II error), MR (misclassification rate), Sen (sensitivity), Spe (specificity) and 
OCC (overall correct classification) are used as measures of correctness of categorical prediction; ROC (area under receiver operating character), Gini coefficient, KS 
(Kolmogorov Smirnov) and IV (information value) are used as measures of discriminatory power; BS (Brier score) is used as a measure of calibration accuracy; and log-
likelihood (LL) and Pseudo-R2 (R2) are used as measures of information content. Circle and non-circle shapes indicate static and dynamic frameworks, respectively. Black, grey 
and white shapes represent new models, BSM-based models, and original models refitted, respectively.  

Inputs Outputs Rank from the Best to Worst 

T1; BS; LL ROC 
 

T2; BS; LL ROC 
 

BS; LL ROC; OCC 
 

T1; BS; LL KS 
 

T2; BS; LL KS 
 

T1; BS ROC; R2 
 

T2; BS ROC; R2 
 

BS ROC; OCC; R2 
 

T1; BS KS; R2 
 

T2; BS KS; R2 
 

1,9 Altman (1968); 2,10 Lis (1972); 3,11 Altman (1983); 4,12 Taffler (1984); 5,13 Theodossiou (1991); 6,14 Ohlson (1990); 7,15 Zmijewski (1984); 8,16 Shumway (2001); 
17 Hillegeist et al. (2004); 18 Bharath and Shumway (2008); 19 Jackson and Wood (2013); 20 New MDA; 21 New LPA; 22 New LA; 23 New PA; 24 DIWOB;   
25 DIWTIB_ln(age); 26 DD_ln(age); 27 DD_VEX; 28 DD_LPD; 29 DIWTIB_1/ln(age); 30 DD_1/ln(age) 
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Table 3.5: Efficient Frontiers with Different Performance Levels 
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E1 {25,30,27,23} 
{21,30,28,27

,25,24,23} 
{21,30,28,27

,25,24,23} 
{21,30,27,25

,23} 
{23,30,25,24

,21} 
{21,30,27,

25,23} 

{21,30,28,
27,25,24,

23} 

{21,23,24,2
5,27,28, 

30} 

{21,23,25,
27,30} 

{21,23,24,
25,30} 

E2 {26,28,29} {26,22,29,17} 
  

{26,22,29,1
7} 

{26,28,29} 
{28,26,27,29

,17} 
{26,28,29} 

{26,22,29,
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{26,22,29,1
7} 

{26,28,29} 
{17,26,27,

28,29} 

E3 
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{20,14} {20,14} 

{22,20,24,14
,1,6} 

{22,14} 
{22,20,24,
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E5 {11,8,18} 
{2,9,10,11,8,

15,6,18} 
{9,11,2,8,10,

15,6,18} 
{11,8,18,} {16,10} 

{18,8,11,1
7, 19,3} 

{19,3,1, 
13} 

{18,8,6,9,1
1,10,15,2} 

{18,8,11} {10,16} 

E6 {3,19,17} {1,3,13,9} {1,3,13,19} {3,7,19} 
{11,9,2,8,15,

6,18} 
{15,13,12,

4} 
{5,12,4} {19,3,1,13} {17,19,3} 

{2,6,8,9,11
,15,18} 

E7 {13,15,12,4} {5,12,4} {5,12,4} {15,13,12,4} {1,3,13,19} {5,7} {7} {5,12,4} 
{15,13,12, 

4} 
{1,3,13, 

19} 
E8 {5,7} {7} {7} {5,7} {7}   {7} {5,7} {4,5,12} 
E9          {7} 
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    Appendix 3-A: Statistical Models of Corporate Distress Prediction 

Framework Model Explanation 
Multiple discriminant 
analysis (MDA) 

Altman (1968) 
	1.2	 	 	1.4	 	 	3.3	 	 	0.6	 	

	0.999	  
WCTA: Working capital / Total Assets; RETA: Retained Earnings / Total 
Assets; EBITTA: Earnings before interest and taxes / Total assets; 
METL: Market value of equity / Total Liabilities; STA: Sales / Total 
assets 

Assuming there are  groups, the generic form of DA model for the 
group  could be shown as follows; 
 

   

where  is the discriminant features ,  is the discriminant 
coefficients of group  for discriminant feature ,  represents the 
score of group , and  is the linear or non-linear classifier that maps 
the scores, say  onto a set of real numbers. To compare DA models 
to other statistical models, I need to estimate the probability of failure, 
which is used as an input for estimating many measures of 
performance. For this, I follow Hillegeist et al. (2004) in using a logit 
link to calculate the probability of failure for companies; 

1
 

Multiple discriminant 
analysis (MDA) 

Altman (1983) 
0.717	 0.847	 3.107	 0.42	

	0.998	  
WCTA: Working capital / Total Assets; RETA: Retained Earnings / Total 
Assets; EBITTA: Earnings before interest and taxes / Total assets; 
BVETL: Book value of equity / Total Liabilities; STA: Sales / Total 
assets 

Multiple discriminant 
analysis (MDA) 

Lis (1972) 
0.063	 0.092	 	0.057	 0.0014	  

: Working capital/ Total assets; : Earnings before interest 
and taxes/ Total assets; : Market value of equity /Total liabilities; 

: Net wealth / Total assets 
Multiple discriminant 
analysis (MDA) 

Taffler (1984) 
	3.2 	2.5	 	 	12.18	 	 	0.029	 	 	10.68	  
: Current liabilities/ Total assets; : Profit before tax/ Current 

liabilities; : Number of credit intervals as (quick assets - current 
liabilities) / ((sales - PBT - depreciation)/365); : Current assets / 
Total liabilities 

Linear probability 
model (LPA) 

Theodossiou (1991) 
0.075 0.51	 0.21	 0.449	

0.663	 	– 	0.446	  
: Working capital/Total assets; = Total debt/Total assets; 

: Net income/Total assets; = Retained earnings/ Total assets; 
= Long term debt/Total assets 

The generic linear probability model (LPA) is a particular case of OLS 
regression and results in an estimate of probability of distress, the 
formula for which is as follows; 

 

Logit analysis (LA) Ohlson (1980) 

	
1

	 	1.32	 	1.43	 	 	6.03	 	

	2.37	 	– 	0.407	 	– 	1.83	 	
	0.0757	
	0.285	 	– 	1.72	 	– 	0.521  

The generic model for binary variables could be stated as follows: 

 
1

, 				
  

where  denotes the binary response variable, 	denotes the vector of 
features,  denotes the vector of coefficients of  in the model, and 
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: Working capital/Total assets; : Total liabilities/ Total 
assets; : Net income/ Total assets;  = log (Total assets/GNP 
price-level index); : Funds from operations (operating income 
minus depreciation) / Total liabilities;  : Current liabilities/ Current 
assets; = 1 if net income has been negative for the last 2 years, 0 
otherwise;  = 0 if total liabilities exceed total assets, 1 otherwise; 

/ | | | |  , where  is the net income 
for the last period. The variable is thus a proxy for the relative change in 
net income. 

.  is a link function that maps the scores of , onto a probability. 
In practice, depending on the choice of link function, the type of 
probability model is determined. For example, the logit model 
(respectively, probit model) assumes that the link function is the 
cumulative logistic distribution, say  (respectively, cumulative 
standard normal distribution, say	 ) function.  
 

Probit analysis (PA) Zmijewski (1984) 
log	 Pt/ 1 Pt 	4.336	 	5.769	 	

	4.513	 	– 	0.004	 	 
 : Net income/ Total assets; : total liabilities/ Total assets; 
: Current assets/ Current liabilities 

Contingent claim 
analysis (CAA): Black-
Scholes-Merton (BSM) 
Based Models 

Hillegeist et al. (2004), Bharath and Shumway (2008) 
 

.

√
  

 
. :	the	cumulative	normal	distribution	function, :the value of the 

company’s assets; : total liabilities; :	the expected return of the firm;  
 : volatility of the company’s asset;	 	is the divided rate; which is 

estimated by the ratio of dividends to the sum of   and  (market value 
of common equity);  is time to maturity for both of call option and 
liabilities.  
 

The probability of failure is extracted as the probability that call option 
expires worthless at the end of maturity data - i.e. the value of the 
company's assets ( ) be less than the face value of its debt liabilites 
( ) at the end of the holding period [ 	 	 ]. 
In Hillegeist et al. (2004),  and	  are estimated by solving the 
systems of equations; i.e. the call option equation (1) and the optimal 
hedge equation (2). 

1 				 1

																																																																			 2
 

where  is the market value of common equity at the time of 
estimation,  is the annualized standard deviation of daily stock 
returns over 12 months prior to estimation, 	is the risk-free interest 
rate, and 	and  are calculated as follows; 

.

√
; √  

Where ,  is the value of the company’s assets in year  and ,  is 
the value of the company’s assets in year	 1.  
 
Bharath and Shumway (2008) proposed a naïve approach to estimate  
and  as follows;  

	;  
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Where 	 0.05 0.25 . Further, the firm’s expected return  is 
peroxided by the risk-free rate,  or the stock return of previous year 
restricted to be between  and 100%. 

Contingent claim 
analysis (CAA):  Down-
and-Out Call (DOC) 
Barrier Option Model 

Jackson and Wood (2013) 
 

1
2

√

	 	
1
2

√
 

A naïve DOC barrier option as an extension of BSM model, which 
assumes that debt holder's position in the firm is like holding a 
portfolio of risk-free debt and a DOC option with a strike price (or 
Barrier) equal to total liabilities (L). The model rests on the 
assumptions of no dividends, zero rebate, costless failure proceedings, 
and set return on asset equal to risk-free rate. 

Discrete time hazard 
model  
(Duration dependent 
hazard model)   

Shumway (2001) 
	 , / 1 ,

13.303	 	1.983	 	 	3.593	 	
	0.467	 . 	 	1.809	 	
	5.791	  

: Net income /Total assets; : Total liabilities / Total assets; 
: Relative size; : Lag of excess return (  

Shumway proposed a discrete time hazard model using an estimation 
procedure like the one used for estimating the parameters of a multi-
period logit model. 

, 1 , ,
exp ,

1 exp ,
 

where ,  represent the individual hazard rate of firm  at time , 

,  is the vector of covariates of each firm 	at time . 
Shumway employed a constant time invariant term, say 	 , as 
proxy of baseline rate. 

Duration-independent 
hazard model 

, . , .  

, 1
1

1 , .
 

where,  is the time-varying baseline hazard function related, which 
could be relate to firm, e.g. ln(age) or related to macroeconomic 
variables, e.g. foreign exchange rate.  

Duration-dependent 
hazard model 

, . , .  

, 1
1

1 , .
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Chapter Four 

4. Dynamic Ranking of Corporate Distress Prediction Models 

 

Abstract: The design of reliable models to predict corporate distress is crucial as the 

likelihood of filing for bankruptcy increases with the level and persistence of distress. 

Although many corporate failure and distress prediction models exist in the literature, the 

relative performance evaluation of competing prediction models remains an exercise that 

is mono-criterion in nature, which leads to conflicting rankings of models. This 

methodological issue has been addressed by Mousavi et al. (2015) by proposing a static 

multi-criteria assessment framework based on data envelopment analysis (DEA). In this 

research, I propose a dynamic DEA framework to assess and monitor the relative 

performance of an exhaustive range of distress prediction models and rank them 

accordingly. Also, I address several research questions including, what is the effect of 

information on the performance of distress prediction models? How the out-of-sample 

performance of dynamic distress prediction models compare to the out-of-sample 

performance of static? What is the effect of the length of training sample on the 

performance of models? Which models perform better in forecasting distress over the 

years with high distress rate (HDR)? 

Keywords: Corporate Distress Prediction; Bankruptcy; Performance Criteria; 

Performance Measures; Data Envelopment Analysis; Malmquist Index 
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4.1 Introduction 

Predicting bankruptcy or corporate failure before it happens has such economic benefits 

for a range of stakeholders (e.g., managers, investors, auditors, regulators) that many 

prediction models have been designed. In practice, managers could use distress prediction 

models (DPMs) as early warning systems to take proper preventive actions against 

bankruptcy. From a conceptual point of view, failure and distress predictions are 

classification problems, which use several features – often extracted from accounting, 

market, or macroeconomic information – to classify firms into one out of two or more risk 

categories. During the last decades, numerous studies have employed different types of 

prediction models or methods from fields such as probability and statistics, operational 

research, and artificial intelligence – for a detailed classification of distress prediction 

models, the reader is referred to Aziz and Dar (2006), Bellovary et al. (2007) and Abdou 

and Pointon (2011). 

With the increasing number of prediction models, a strand of the literature has focused on 

assessing the performance of these models and identifying the factors that drive 

performance such as modelling frameworks, features selection, estimation methods, 

sampling, and performance criteria and their measures (e.g., Zhou, 2013; Mousavi et al., 

2015). As demonstrated by Mousavi et al. (2015), the performance of prediction models 

is not only dependent on the nature of the modelling frameworks and the type of features, 

but also is related to the performance evaluation process and the underlying performance 

assessment method (i.e., mono-criterion methods, multi-criteria methods) and the 

performance criteria and measures. In fact, recent comparative studies have assessed the 

performance of competing failure prediction models grounded into different modelling 

frameworks (e.g., Wu et al., 2010; Fedorova et al., 2013; Bauer and Agarwal, 2014; 

Mousavi et al., 2015) and using alternative sampling techniques (e.g., Gilbert et al., 1990; 

Neves and Vieira, 2006; Zhou, 2013), various features (e.g., Tinoco and Wilson, 2013; 

Trujillo-Ponce et al., 2014; Mousavi et al., 2015), different feature selection procedures 

(Tsai, 2009; Unler and Murat, 2010) and a range of performance criteria (e.g., 

discriminatory power, calibration accuracy, information content, correctness of 
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categorical prediction) and their measures along with different performance evaluation 

methodologies (Mousavi et al., 2015). 

The survey of the literature on comparative studies of failure prediction models revealed 

a variety of shortcomings that prevent practitioners from a proper ranking of models. As 

pointed out by Bauer and Agarwal (2014), the literature on comparative studies suffers 

from two main drawbacks. First, most of the existing studies failed to have a 

comprehensive comparison between all types of prediction models; i.e., traditional 

statistical models, contingent claims analysis (CCA) models, and survival analysis (SA) 

models. Second, the existing literature has used a restricted number of criteria to evaluate 

the performance of competing models. To have a more comprehensive comparative 

assessment, Bauer and Agarwal (2014) evaluated the performance of Taffler (1983), 

Bharath and Shumway (2008) and Shumway (2001) as representative of the traditional 

statistical models, CCA models, and SA models, respectively. Further, they used three 

types of criteria; namely, discriminatory power, information content, and correctness of 

categorical prediction to compare the performance of these models. On the other hand, 

Mousavi et al. (2015) emphasised a methodological shortcoming in comparative studies 

arguing that although some studies consider multiple criteria and related measures to 

compare competing models, the nature of the comparison exercise remains mono-

criterion, as they use a single measure of a single criterion at a time. The drawback of this 

mono-criterion approach is that the rankings corresponding to different criteria are often 

different (e.g., Bandyopadhyay, 2006; Theodossiou, 1991; Tinoco and Wilson, 2013), 

which result in a situation where one cannot make an informed decision as to which model 

performs best when taken all criteria into consideration. To overcome this methodological 

drawback, Mousavi et al. (2015) proposed a multi-criteria assessment framework; namely, 

an orientation-free super-efficiency data envelopment analysis framework. Finally, 

Zavgren (1983) argued that most of the traditional failure and distress prediction models 

are based on the assumption that the relationship between the dependent variable (e.g., the 

probability of failure) and all independent variables (e.g., accounting and market 

information) is stable over time. Empirical studies, however, indicate that this stability is 

highly arguable (e.g. Jardin and Severin, 2012; Charitou et al., 2004) and that the 
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performance of models is sensitive to changes in macroeconomic conditions (Menash, 

1984; Platt et al., 1994). For example, the logit model of Ohlson (1980) performs better 

in the mid- to the late 1980s, whereas the SA model of Shumway (2001) outperforms other 

models in the 2000s. The changes in patterns of accounting- and market-based information 

during time suggest that prediction models need to be re-estimated frequently to 

encompass the most recent patterns of information (Grice and Ingram, 2001). In this 

research, I argue that another shortcoming of the existing literature lies in the use of static 

performance evaluation frameworks to compare prediction models, and I propose a 

dynamic multi-criteria performance assessment framework. An additional feature of a 

dynamic framework is its ability, by design, to monitor the performance of models. 

Recent studies have substituted financial distress for corporate failure in the 

implementation of failure prediction models (e.g., Tinoco and Wilson, 2013; Geng et al., 

2015; Wanke et al., 2015; Laitinen and Suvas, 2016). Financial distress refers to the 

inability of a company to pay its financial obligations as they mature (Beaver, 1966). 

Obviously, the financial situation of a distressed company differs from a healthy one 

suggesting that, while a company moves toward deterioration, its financial features shift 

towards the characteristics of failed firms. This movement towards failure is a process that 

could take several time periods (e.g., years) and manifest itself through a variety of signals, 

which could prevent failure if predicted with a reasonable level of accuracy. In this 

research, in addition to proposing new models to predict distress or detect its signals, I 

propose a dynamic multi-criteria framework for assessing and monitoring the performance 

of distress prediction models, which, as a by-product, allows someone to detect signals of 

distress. To the best of my knowledge, no previous research proposed a dynamic 

framework for the performance evaluation and monitoring of prediction models. In 

practice, such a framework for the early detection of signs of distress is both necessary 

and beneficial.  

In this chapter, I contribute to the academic literature in several respects. First, following 

the lead of Xu and Ouenniche (2012) and Mousavi et al. (2015) who proposed static multi-

criteria frameworks for assessing the relative performance of prediction models of 
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continuous and discrete variables respectively, I propose a new dynamic multi-criteria 

framework for evaluating and monitoring the relative performance of prediction models 

over time and ranking them. Second, I consider a more in-depth classification of statistical 

distress prediction models and perform an exhaustive evaluation considering the most 

popular models of each class. In sum, I assess the performance of univariate discriminant 

analysis (UDA), multivariate discriminant analysis (MDA), linear probability analysis 

(LPA), probit analysis (PA) and logit analysis (LA) models as traditional techniques; 

Black-Scholes-Merton (BSM)-based models, naïve BSM-based models, and naïve down-

and-out call (DOC) barrier option models as contingent claims analysis (CCA) models; 

and duration independent and duration dependent survival analysis (SA) models. To best 

of my knowledge, this study is the first to propose the Cox model with time-varying 

variables using UK data for distress prediction, or equivalently estimating distress 

probabilities. To date, this study provides the most comprehensive empirical comparative 

analysis of statistical, probabilistic and stochastic distress prediction models. Third, I 

provide answers to several important research questions using a rolling horizon sampling 

framework and a multi-period performance evaluation and monitoring framework; 

namely, what is the effect of information on the performance of distress models? How the 

out-of-sample performance of dynamic distress prediction models compare to the out-of-

sample performance of static ones with respect to sample type and sample period length? 

What is the effect of the length of training sample on the performance of models? Which 

models perform better in forecasting distress over the years with high distress rate (HDR)?  

The rest of the chapter unfolds as follows. Section 4.2 reviews the literature on advances 

in and comparative studies on distress prediction models. Section 4.3 describes the 

proposed dynamic multi-criteria framework; namely, an orientation-free super-efficiency 

Malmquist DEA, for the comparison of prediction models. Section 4.4 provides details on 

my experimental design including data, sample selection, and the variety of distress 

prediction models compared as part of this study. Section 4.5 summarises my empirical 

results and discusses my findings. Finally, section 4.6 concludes the chapter.  
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4.2 Comparative Studies on Distress Prediction Models 

In this section, a concise account of advances in distress prediction modelling (see section 

4.2.1) along with a detailed survey of comparative studies (see section 4.2.2) are provided 

4.2.1 Advances in Distress Prediction Models  

Failure and distress prediction models could be divided into several categories depending 

on the choice of the classification criteria. In this chapter, I focus on a variety of models 

except for the artificial intelligence and mathematical programming ones. In sum, I 

consider the first generation of models; namely, discriminant analysis (DA) models (e.g. 

Beaver, 1966, 1968; Deakin, 1972; Blum, 1974; Altman et al., 1977; Altman, 1968), the 

second generation of models; namely, probability models such as linear probability (LPA) 

models (e.g. Meyer and Pifer, 1970), logit analysis (LA) models (e.g., Martin, 1977; 

Ohlson, 1980), and probit analysis (PA) models (e.g., Zmijewski, 1984), and the third 

generation of models; namely, survival analysis (SA) models (e.g., Lane et al., 1986; 

Crapp and Stevenson, 1987; Luoma and Laitinen, 1991; Shumway, 2001) and contingent 

claims analysis (CCA) models (e.g., Hillegeist et al., 2004; Bharath and Shumway, 2008). 

Beaver (1966,1968) is the pioneering study which proposed a univariate discriminant 

analysis model fed with financial ratios information to predict failure. However, the first 

multivariate study was undertaken by Altman (1968) who estimated a score, commonly 

referred to as a “Z-score,” as a proxy of the financial situation of a company using 

multivariate discriminant analysis (MDA). The later studies frequently have employed the 

suggested MDA technique (e.g., Deakin, 1972; Blum, 1974; Altman et al., 1977; Altman, 

1983). The majority of subsequent studies have applied the second generation models; 

that is, linear probability models (e.g., Meyer and Pifer, 1970), logit models (e.g., Martin, 

1977; Ohlson, 1980), and probit models (e.g., Zmijewski, 1984). This first and second 

generation of models could be viewed as empirical models in that they are driven by 

practical considerations such as an accurate prediction of the risk class or an exact estimate 

of the probability of belonging to a risk class; in sum, the choice of the explanatory 

variables is driven by the predictive performance of the models. These models and their 
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application in some previous studies are not without limitations. In fact, some of the 

assumptions underlying the modelling frameworks may not be reasonably satisfied for 

some datasets, on the one hand, and earliest studies restricted the type of information to 

accounting-based one, on the other hand. Also, these models are static in nature and 

therefore fail to adequately account for changes over time in the profiles of companies. 

The third generation of models; namely, survival analysis (SA) models and contingent 

claims analysis (CCA) models overcome some of these issues. In fact, the underlying 

modelling frameworks of both SA models and CCA models are dynamic by design. In 

addition, most previous studies made use of additional sources of information to enhance 

the performance of these models; namely, market-based information (e.g., Hillegeist et 

al., 2004; Bharath and Shumway, 2008) and macroeconomic information (e.g., Tinoco 

and Wilson, 2013; Kim and Partington, 2014; Charalambakis and Garrett, 2016), although 

one might argue that the approximation process of unobservable variables (e.g., volatility, 

expected return, and market value of assets) is not free of potential measurement errors 

(Aktug, 2014). To be more specific, SA models are used to estimate time-varying 

probabilities of failure. Despite the application of SA models in failure prediction dates 

back to the mid-1980s (e.g., Lane et al., 1986; Crapp and Stevenson, 1987; Luoma and 

Laitinen, 1991), Shumway (2001) was the pioneering study which made its use popular 

by providing an attractive estimation methodology based on an equivalence between 

multi-period logit models and a discrete-time hazard model. Thereafter, the suggested 

discrete-time hazard model – also referred to as a discrete-time logit model – was 

frequently used in later studies (e.g., Chav and Jarrow, 2004; Wu et al, 2010, Tinoco and 

Wilson, 2013; Bauer and Agarwal, 2014; Mousavi et al., 2015) to estimate the coefficients 

of time-varying accounting and market-based covariates of SA models. Unlike, the first-

generation models, the second-generation models and SA models, which are empirical 

models, CCA models – also referred to as Black-Scholes-Merton (BSM)-based models – 

are theoretically grounded. In fact, these models are based on option-pricing theory, as set 

out in Black and Scholes (1973) and Merton (1974) whereby the equity holders’ position 

in a firm is assumed to be the long position in a call option. Therefore, as suggested by 

McDonald (2002), the probability of failure could be interpreted as the likelihood that the 
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value of firm’s assets will be less than the face value of company’s liabilities at maturity; 

i.e., the call option expires worthless. These models make use of market-based information 

by incorporating company stock returns and their volatility in estimating the probability 

of failure (Hillegeist et al., 2004; Bharath and Shumway, 2008). Like any modelling 

framework, CCA models are not without their limitations. For example, CCA models 

implicitly assume that the liabilities of the firm have the same maturities, which in practice 

is a limitation (Saunders and Allen, 2002). 

4.2.2 Comparative Studies of Distress Prediction Models 

This section provides a survey of the studies, which focus on the comparison of different 

types of failure or distress prediction models; namely, the first generation of models, the 

second generation of models, and the third generation of models. My survey focus is on 

models and performance criteria and their measures, which have been applied to the 

existing literature on the evaluation of competing prediction models.  

Comparison between first and second generation models: Before the breakthrough model 

of Shumway (2001), the first and second generations of models were the common 

techniques in classification. Since the implementation of DA in failure prediction by 

Beaver (1966) and Altman (1968) to the early 1980s,  MDA was the superior method for 

predicting corporate failure. In fact, ease of use and interpretation were the main reasons 

for the popularity of DA. However, the validity of these models depends on the extent to 

which the underlying assumptions (i.e., multivariate normality, equal groups’ variance-

covariate matrices) hold in a dataset. From the 1980s to 2001, LA models (introduced by 

Ohlson, 1980) and PA models (introduced by Zmijewski, 1984) became the common 

techniques. Even though probability models are more attractive from a practical 

perspective in that the underlying assumptions are less restrictive, most comparative 

studies have indicated that the prediction powers of LA models and PA models are like 

those of DA models (e.g., Press and Wilson, 1978; Collins and Green, 1982; Lo, 1986). 

A notable exception is Lennox (1999) who suggested that well-specified probit and logit 

models outperform DA models. 
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Comparison between first and second-generation models and survival analysis models: 

From a conceptual perspective, SA models are superior to discriminant analysis models 

and probability models, because of their dynamic nature. However, empirical results 

across several comparative studies seem to report mixed findings. From an empirical 

perspective, the features of a modelling framework design that are not being adequately 

supported or exploited by the dataset under consideration nullify its conceptual advantage. 

In sum, the choice combination of a modelling framework and the features to feed into it 

has a more significant role in enhancing or downgrading prediction performance. 

For example, Luoma and Laitinen (1991) compared the performance of a semiparametric 

Cox hazard model with a DA model and an LA model – all models fed with accounting 

based information – considering type I and type II errors as measures of correctness of 

categorical prediction. The results suggested that the proposed SA model was inferior to 

both DA and LA models regarding type I and type II errors. Further, their research was 

limited to the number of criteria, since they only used correctness of categorical 

prediction.  

Shumway (2001) proposed a discrete-time SA model – using a multi-period logit 

estimation technique – for failure prediction and compared its performance with the 

performance of DA, LA, and PA using overall correct classification rate (OCC) as a 

measure of correctness of categorical prediction. The results indicate that an SA model 

which encompasses both accounting and market information (respectively, only 

accounting information) outperforms (respectively, underperforms) DA, LA and PA 

models. However, on the choice of performance criteria and their measures, this study is 

also restricted to the correctness of categorical prediction as a criterion and overall 

accuracy – also known as overall correct classification rate – as its measure.  

Comparison between first and second generation models and contingent claims models; 

Hilligeist et al. (2004) compared the performance of a BSM-based model with two types 

of representative models of the first and second generation of models; namely, MDA 

(Altman, 1968) and LA models (Ohlson, 1980), respectively. They used Log-Likelihood 

and Pseudo-R2 as measures of information content to evaluate the performance of these 
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models. The results suggested that the BSM-based model outperforms both the original 

and the refitted versions of Altman (1968) and Ohlson (1980) models on information 

content. Furthermore, they found out that the original Altman (1968) with coefficients 

estimated with a small dataset from decades earlier outperformed the refitted one with 

updated coefficients using recent data suggesting that refitting models with more recent 

data not necessarily improve performance. However, this study is restricted to one 

criterion; i.e., information content, for comparing the performance of models.  

Reisz and Perlich (2007) compared the performance of three contingent claims models; 

namely, a BSM model, a KMV model developed by KMV Corporation in 1993 and then 

acquired by Moody's Corporation in 2002, and a Down-and-Out Call option (DOC) 

model, with the MDA model of Altman (1968). Recall that the KMV model – also referred 

to as the Expected Default Frequency (EDF) model – is actually a four-step procedure 

based on Merton’s framework, which determines a default point, estimates asset value and 

volatility, calculates distance to default (DD), and converts DD into EDF. They use ROC 

as a measure of discriminatory power and Log-Likelihood as a measure of information 

content. They found out that the DOC model outperforms the other types of contingent 

claims models as well as MDA for 3-, 5- and 10-year ahead failure prediction. 

Unexpectedly, Altman (1968) outperforms all contingent claims models for 1-year ahead 

failure prediction. Although this study encompassed two types of criteria; i.e., 

discriminatory power and information content, the comparison is somehow incomplete as 

the log-likelihood cannot be computed for Altman’s model. 

Agarwal and Taffler (2008) compared the performance of two types of BSM models; 

namely, Hillegeist et al. (2004) and Bharath and Shumway (2008), with the MDA model 

of Taffler (1983) with respect to ROC as a measure of discriminatory power, Log-

likelihood and Pseudo-R2 as measures of information content, and return on assets (ROA) 

and return on risk-weighted assets (RORWA) as measures of economic value, given 

different costs of misclassification. The empirical results showed that the MDA model 

outperforms Hillegeist et al. (2004) significantly on ROC as a measure of discriminatory 

power. Meanwhile, MDA model does not outperform Bharath and Shumway (2008) 
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significantly on ROC. On the other hand, considering Log-likelihood as a measure of 

information content, Hillegeist et al. (2004) perform significantly better than Bharath and 

Shumway (2008) and MDA model, respectively. However, Pseudo-R2 was higher for 

Taffler (1983) compared to BSM models, which suggests that these two information 

content measures carry different elements of information. Furthermore, considering 

differences in misclassification costs, they analysed the economic benefit of applying 

Bharath and Shumway (2008) or Taffler (1983) as classifiers using the approach proposed 

by Blochlinger and Leippold (2006). The results suggest that the MDA model of Taffler 

(1983) outperforms BSM-based models. It is worth mentioning that with respect to the 

number of criteria, this study was innovative in its era since three criteria; namely, the 

correctness of categorical prediction, discriminatory power, and information content, were 

used for evaluating models. 

Comparison between contingent claims models and survival analysis models: Campbell 

et al. (2008) proposed a duration-dependent SA model and evaluated its performance with 

the performances of a KMV model and the duration-independent SA model of Shumway 

(2001) using log-likelihood and Pseudo-R2 as measures of information content. The results 

indicate that their SA model outperforms both the SA model of Shumway (2001) and the 

KMV model. However, this study fails to incorporate more criteria for comparing the 

performance of models. 

Comparison between first, second and third generations of models: Wu et al. (2010) 

compared the performance of the MDA model of Altman (1968), the LA model of Ohlson 

(1980), the PA model of Zmijewski (1984), the duration-independent SA model of 

Shumway (2001) and the BSM model of Hillegeist et al. (2004). The results indicate that 

considering Log-likelihood and Pseudo-R2 as measures of information content, the 

discrete time SA model of Shumway outperforms LA, PA, BSM and MDA models, 

respectively. Unexpectedly, taking to account overall correct classification rate as a 

measure of correctness of categorical prediction, Ohlson’s model of LA outperforms 

MDA, PA, BSM, and SA models, respectively, under a rolling window implementation. 

For ROC as a measure of discriminatory power, the authors failed to take account of BSM 
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model, the result suggests that the duration-independent SA model of Shumway performs 

better than LA, MDA, and PA, respectively. Regarding the number of criteria, this study 

puts comparison into effect with three types of criteria; namely, the correctness of 

categorical prediction, discriminatory power, and information content. 

4.3 A Multi-Period Framework for Assessing Distress Prediction Models: 

Orientation-free Super-Efficiency Malmquist DEA 

Malmquist productivity index (MPI) is a multi-criteria assessment framework for 

performing performance comparisons of DMUs over time. Fare et al. (1992, 1994) 

employed DEA to extend the original MPI proposed by Malmquist (1953) and constructed 

the DEA-based Malmquist productivity index as the product of two components, one 

measuring the efficiency change (EC) of DMU with respect to the efficiency possibilities 

defined by the frontier in each period (also referred to as caching-up to the frontier), and 

the other measuring the efficient frontier-shift (EFS) between the two time periods  and 

1 (also referred to as change in the technical efficiency evaluation).  

Let  denote the th input and  denote the th output for , both at period . 

Figure 4-1 shows the change of efficiency of  from point  (with respect to efficient 

frontier at period ) to point  (with respect to efficient frontier at period 1) assuming 

to have one input and one output. The efficiency change,  component in Figure 4-1, is 

measured by the following formula: 

 EC
Efficiency	of	DMU 	with	respect	to	the	period	 1		
Efficiency	of	DMU 	with	respect	to	the	period	

 Eq. 4-1 

 

Let Δ ,  denote the efficiency score of DMU with  input and  output at 

period  (say, , ) relative to frontier  in Figure 4-1. Replacing  and  

with  and 1, respectively, the  effect (say, ) can be presented as: 

 
:					

Δ , 	
Δ ,

 
Eq. 4-2 
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Thus, 1 shows an improvement in relative efficiency from period  to 1, while 

1	and 	 1 shows stability and deterioration in relative efficiency, respectively.   

 
Figure 4-1: Efficiency Change and Efficient Frontier-Shift 

 

Also, Figure 4-1 indicates that the reference point of ,  moved from C on the frontier 

of period  to D on the frontier of period 1. Therefore, the efficient frontier-shift (EFS) 

effect at ,  is equivalent to: 

 

Efficiency	of	 x , y 	with	respect	of	the	period	t	frontier	
Efficiency	of	 x , y 	with	respect	of	the	period	t 1	frontier

	 

Eq. 4-3 

Similarly, the  effect at ,  is equivalent to: 

 

Efficiency	of	 x , y with	respect	of	the	period	t	frontier	

Efficiency	of	 x , y with	respect	of	the	period	t 1	frontier
 

Eq. 4-4 

The EFS component is measured by the geometric mean of EFS effect at ,  (say, 

	and EFS effect at ,  (say, ; 
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  Eq. 4-5 

Using my notation, the EFS effect can be expressed as: 

 
:						

Δ ,
Δ ,

Δ ,
Δ ,

/

 
Eq. 4-6 

Therefore, the Malmquist Productivity Index (MPI) can be written as;  

  Eq. 4-7 

Using my notation, the MPI can be presented as: 

 :									

Δ , 	
Δ ,

Δ ,
Δ ,

Δ ,
Δ ,

/

 

Eq. 4-8 

MPI could be rearranged as; 

 Δ ,
Δ ,

Δ ,
Δ ,

/

 
Eq. 4-9 

This explanation of MPI could be interpreted as the geometric mean of efficiency change 

measured by period  and 1	 technology, respectively. 1  shows an 

improvement in the total factor productivity of  from period  to 1  , while 

1	and 	 1  shows stability and deterioration in total factor productivity, 

respectively.   

Comment 1: Caves et al. (1982) introduced a distance function, Δ . , to measure 

technical efficiency in the basic CCR model (Charnes et al., 1978). Though, in the non-

parametric framework, instead of using a distance function, DEA models are 

implemented. For example, Fare et al. (1994) used input (or output) oriented radial DEA 

to measure the MPI. However, the radial model faces a lack of attention to slacks, which 
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could be overcome using non-radial (slacks-based measure) oriented (or orientation-free) 

DEA model (Tone, 2001, 2002).  

In this study, I use the non-radial (slacks-based measure) orientation-free super- efficiency 

DEA (Tone, 2001, 2002) Malmquist index to evaluate the performance of competing 

distress prediction models. The reason to choose an orientation-free evaluation is that the 

aim is to evaluate distress prediction models, and thus, the choice between input-oriented 

or output-oriented analysis is irrelevant. In other words, I do not have any priority with 

respect to minimising inputs at the same level of outputs (input oriented) or maximising 

outputs at the same level of inputs (output oriented). Further, my study is under the 

assumption of the variable return to scale (VRS), where input-oriented and output-oriented 

analysis may result in different scores and rankings of DMUs. On the other hand, the 

reason to choose non-radial framework is that radial super-efficiency DEA models may 

be infeasible for some DMUs; therefore, ties would stay in rankings. The reason is that 

the super-efficiency DEA model was developed under (i) constant returns to scale (CRS) 

condition and (ii) the simultaneous and same proportion of change in all inputs (or 

outputs). Once any of these conditions is violated, it is high likely that infeasibility of the 

related DEA mode occurs (see, e.g., Seiford and Zhu, 1998a,b). Moreover, radial DEA 

models overlook possible slacks in inputs and outputs, and therefore, would possibly over-

estimate the efficiency scores by ignoring mix efficiency. 

Further, basic DEA techniques cannot distinguish between efficient DMUs (here, distress 

prediction models) because all their scores are equal to 1 (Anderson and Peterson, 1993). 

Therefore, I choose super-efficiency DEA framework, as I am interested in acquiring a 

complete ranking of distress prediction models. It should be acknowledged that within a 

super-efficiency DEA framework, the reference benchmark changes from one prediction 

model evaluation to another one, which in some contexts might be viewed as “unfair” 

benchmarking. However, super-efficiency DEA is a valuable method in distinguishing 

DMUs, that has been employed in many recent studies (Li et al, 2017; Huang et al, 2015; 

Mousavi et al, 2015).  

Considering the production possibility set  defined by Cooper et al. (2006) as  
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 , | , , 1 1, 0 ,   Eq. 4-10 

SBM-DEA (Tone, 2001) measures the efficiency of DMU , 	 1,2  with 

respect to the benchmark set , 1,2  using the following linear programing 

(LP): 

 

Δ , min
, ,

1
1 ∑

1
1∑

 

subject	to					 , 
                                                    	, 
                                                    1 1, 
                                                    0, 0, 0. 

Eq. 4-11 

where Δ ,  is the efficiency score of ,  relative to frontier ; 

, … , ∈  and , … , ∈  are matrices of inputs and 

outputs at the period , respectively; 0	 and 0  are the vectors of input 

surpluses and output shortages in	 , respectively, and are named slacks;  is a row vector 

with all items equal to one, and  is a nonnegative vector in . 

Equivalently;  

                                            Δ , min
, ,

∑

∑
 

                         subject	to			 ∑ 		 1, … , , 

                                        ∑ 		 1, … , 	, 

                                   1 1,… , , 1 1, … , ,    
                                    1 1, 

0. 

Eq. 4-12 

where and  are 1  and 1 , respectively.  

Referring to equation 4-9, one can use equation 4-12 to estimate Δ , , 

Δ , , Δ ,  and	Δ ,  as four required terms for calculating 

MPI.  
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Comment 2: The main objective of this study is to estimate the relative efficiency of 

 in each period. However, the estimated Malmquist productive index, say, 

, , indicates the change of efficiency score between period  and 1, and should 

be modified for my purpose. Further, according to Pastor and Lovell (2005), the 

contemporaneous MPI is not circular, its adjacent period components can give conflicting 

signals, and it is sensitive to LP infeasibility.  

The adjacent reference index, proposed by Fare et al. (1992), suggests multiplying 

,  by Δ , , which results in the relative efficiency of  at period 1 

compared to period . However, the main drawback of this index is that it cannot estimate 

the relative efficiency score of non-adjacent periods, e.g., period  and 2 or 1 and 

3.   

To overcome this drawback, Berg et al. (1992) used a fixed reference index, which 

compares and refers the relative efficiencies of all periods (say, 	 2  to the first 

period (say, 1). Therefore, it is possible that the efficiency scores of the periods later 

than the first one are more than 1 since the technology develops over time. Although, fixed 

reference index acquires the circularity property with a base period dependence, it remains 

sensitive to LP infeasibility.  

Figure 4-2: Global Frontier 
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More recently, Pastor and Lovell (2005) suggested a global MPI, which its components 

are circular, provides single measures of productivity change, and is not susceptible to LP 

infeasibility. Further, in situation where efficient frontiers of multiple periods cross each 

other, the global index can be measured by the best practices in all periods.  

As Figure 4-2 presents, the relative efficiency of  can be measured in terms of either 

the frontier of period 1 (consists of four DMUs of 1,2,3,4 and 5) or the frontier of period 

2 (consist of four DMUs of 6,7,8,9 and 10).  An alternative is the global frontier, which is 

the combination of the best DMUs in the history, i.e. five DMUs of 6,7,3,4 and 5.  

It is argued that if the length of observation period is long enough, the current DMUs 

would be covered by the best historical DMUs, probably themselves. Thus, the relative 

efficiency to the global frontier could be considered as an absolute efficiency with the 

scores less than or equal to 1 (Pastor and Lovell, 2005). 

4.4 Empirical Investigation 

In this section, the details of the empirical investigation are provided, where the 

performance of both existing and new distress prediction models using both mono- and 

multi-criteria performance evaluation frameworks are compared. In the remainder of this 

section, the details on the dataset (see section 4.4.1), features selection (see section 4.4.2), 

sampling and fitting choices (see section 4.4.3), and distress prediction models (see 

section 4.4.4) used in this study are provided.  

4.4.1 Data  

The dataset used in my empirical analysis is chosen as follows. First, I considered all non-

financial and non-utility UK companies listed on the London Stock Exchange (LSE) at 

any time during a 25-year period from 1990 through 2014. Second, since only post-listing 

information is used as input to my prediction models and these models have minimum 

historical data requirements, I excluded companies that have been listed for less than two 

years. In all databases, there are several companies with missing data. My dataset is no 

exception. Excluding those companies with missing data is a source of potential error in 
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evaluating prediction models (Zmijewski, 1984; Platt and Platt, 2012). Therefore, to 

minimise any bias related to this aspect, I only excluded those companies with missing 

values for the main accounting book items (e.g., sales, total assets) and market information 

(e.g., price) which are required for computing many accounting and market-based ratios 

(Lyandres and Zhdanov, 2013). The remaining companies with missing values were dealt 

with by replacing the missing values for each company by its most recently observed ones 

(Zhou et al., 2012). As to outlier values amongst the observed variables, these variables 

are winsorized; that is, the values lower (respectively, greater) than the 1st (respectively, 

99th) percentile of each variable are sit equal to that value (Shumway, 2001). 

With respect to the definition of distress, I considered the proposed definition by Pindado 

et al. (2008). A binary variable, say  that equals 1 for financially distressed companies 

and 0 otherwise, represents the distress definition.   

A company is considered financially distressed if it meets both following conditions: (1) 

its earnings before interest, taxes, depreciation and amortization (EBITDA) is lower than 

its interest expenses for two consecutive years, and (2) the company experience negative 

growth in market value for two consecutive years. In sum, my dataset consists of 3,389 

companies and 36,984 company-year observations.  

Among the total number of observation, there are 1,414 company-year observations 

classified as distressed resulting in a distress rate average of 3.82% per year. Details on 

the number of healthy and distress firms in the dataset and the proportion of distress rate 

in samples are provided in Table 4.1 and Table 4.2, respectively.  

Table 4.1: Basic Sample Statistics 
This table presents the total number of distressed companies versus healthy ones 
for the period of 1990 and 2014.   

Observation (1990-2014) # % 
Distressed company-year observations (  1414 3.82% 
Healthy company-year observations 35,570 96.18% 

Total company-year Observation 36,984 100% 
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Table 4.2: The Proportion of Distress Firms (  in Training and Holdout Samples 
This table presents the yearly proportion of distress in my training and hold-out samples. The percentage 
of distress is presented based on the definition of distress (  and three different length of training period. 

Hold out 
sample 

3-year training 
sample  

5-year training 
sample 

10-year training 
sample 

Year D % Years D % Years D % Years D % 

2000 1.60% 1997-1999 2.32% 1995-1999 1.79% 1990-1999 2.04% 

2001 1.39% 1998-2000 2.32% 1996-2000 1.96% 1991-2000 2.11% 

2002 6.22% 1999-2001 2.15% 1997-2001 1.99% 1992-2001 1.97% 

2003 11.78% 2000-2002 3.04% 1998-2002 2.89% 1993-2002 2.23% 

2004 3.21% 2001-2003 6.42% 1999-2003 4.82% 1994-2003 3.09% 

2005 2.00% 2002-2004 6.97% 2000-2004 4.77% 1995-2004 3.29% 

2006 3.06% 2003-2005 5.37% 2001-2005 4.76% 1996-2005 3.38% 

2007 4.25% 2004-2006 2.75% 2002-2006 4.99% 1997-2006 3.54% 

2008 5.86% 2005-2007 3.13% 2003-2007 4.62% 1998-2007 3.81% 

2009 10.18% 2006-2008 4.37% 2004-2008 3.69% 1999-2008 4.21% 

2010 4.15% 2007-2009 6.59% 2005-2009 4.94% 2000-2009 4.86% 

2011 1.96% 2008-2010 6.77% 2006-2010 5.41% 2001-2010 5.10% 

2012 5.21% 2009-2011 5.66% 2007-2011 5.37% 2002-2011 5.18% 

2013 8.12% 2010-2012 3.76% 2008-2012 5.63% 2003-2012 5.09% 

2014 5.56% 2011-2013 4.99% 2009-2013 6.01% 2004-2013 4.71% 

Figure 4-3 displays the market value of LSE as measured by the FTSE-all index, the 

average of financial distress (Dist_Rate) and bankruptcy rate (Bktcy_Rate) during 25 

years from 1990 through 2014. This graphical snapshot indicates that the percentage of 

bankrupt and distress companies expressed in percentage terms and the performance of 

the UK stock market are, as one would expect, inversely moving together in a consistent 

fashion, which suggests that the use of market information would in principle enhance 

distress prediction accuracy. 

 Figure 4-3: Financial Distress Rate and Market Value of LSE Trend
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4.4.2 Feature Selection 

There is a variety of strategies and methods for identifying the most effective group of 

features to feed failure prediction models with (Balcaen and Ooghe, 2006). Feature 

selection strategies could be theoretically grounded, empirically grounded, or both – see, 

for example, Laitinen and Suvara (2016). On the other hand, feature selection methods 

could be objective or subjective. Objective feature selection methods could be statistical 

(e.g., Tsai, 2009; Zhou et al., 2012) or non-statistical (e.g. Pacheco, 2007, 2009; Unler, 

2010), but adopt a common approach; that is, optimising an effectiveness criterion. 

Whereas subjective feature selection methods make often use of a subjective decision rule 

including reviewing the literature and selecting the most commonly used features (e.g., 

Hebb, 2016; du Jardin, 2015; Zhou, 2014, 2013; Ravi Kumar and Ravi, 2007). In this 

research, I used a statistical objective feature selection method.  

To be more specific, I reduced my very large initial set of accounting-based ratios (i.e., 83 

accounting-based ratios) using factor analysis, where factors are selected so that both the 

absolute values of their loadings are greater than 0.5 and their communities are greater 

than 0.8, and the stopping criterion is either no improvement in the total explained 

variance or no more variables are excluded. This factor analysis was run using principal 

component analysis with VARIMAX as a factor extraction method (Chen, 2011, Mousavi 

et al., 2015). 

Finally, 31 accounting-based ratios with high factor loadings and high communality 

values, 5 frequent used market-based information and 2 mixed ratios (interaction effect of 

macroeconomic indicators and accounting-based information) were retrained as input 

features into a stepwise procedure in each statistical framework. Table 4.3 represents the 

final features selected for my analysis. Please note that I fed the newly developed models 

with six different combinations of financial accounting (FA), Market variables (MV) and 

Macroeconomic indicators (MI); namely, FA, MV, FAMV, FAMI, FAMVMI, and 

MVMI. Also, note that for a better model fit, I considered the interaction effect of 

Macroeconomic indicators on financial accounting items on distress prediction models.  
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4.4.3 Sample Selection   

Following the lead of Mousavi et al. (2015), I test the performance of distress prediction 

models out-of-sample; however, in this chapter out-of-sample testing is implemented 

within a rolling horizon framework. The aim here is to find out how robust is the out-of-

sample performance of dynamic distress prediction models relative to static ones with 

respect to sample period length. In my empirical investigation, I considered three sample 

period lengths; namely, 3, 5, and 10 years. In sum, I used firm-year observations from 

year 1 to year  ( 3,5,10) as a training sample to fit models; that is, estimate 

their coefficient. Then, I used the fitted models to predict distress in year	 1.  

Table 4.3: List of Financial Ratios 

Category Ratio or item Category Ratio or item 
Liquidity (13) Current assets to total assets 

Cash and equivalent to current 
liabilities 
Current assets to current liabilities 
Sales to inventory 
Current assets to sales 
Quick assets to current liabilities 
Current assets to total liabilities 
Quick assets to inventory 
Quick assets to assets 
Inventory to assets 
Inventory to current assets 
Net fixed assets to total assets 
Current liabilities to total assets 

Solvency (7) Liabilities to sales 
Long-term and current liabilities to assets 
Equity to capital 
Book value of equity to total liabilities 
Net worth to total debt 
Shareholders capital to total capital 
ABD=|1- (fixed assets to equity) | 

Market 
information (5) 

Lag of excess return 
Lag sigma 
Ln (price)  
Real size 
Failure rate in last year 

Cash flow (3) Operating cash flow to liabilities 
Cash and equivalent to sales 
Funds provided by operations to total 
liabilities 
 

Asset 
utilisation (2) 

Working capital to sales 
Quick assets to sales 

Profitability 
(4)  

Net income to capital 
Net income to long-term funding 
Net worth to total liabilities 
ROI	  average payment period 

Mixed (2)  GDP Sales 
Interest	rate	 Income		 

Firm 
characteristics 
(2) 

Ln(age) 
Log (total assets to GNP price level 
index) 

For the sake of comparing the predictive ability of different models for different sample 

period lengths, I am concerned with predicting distress from 2000 onwards; that is, 

1999 to 2013. Therefore, I used 45 different training samples for developing models. The 

reader is referred to Figure 4-4 for a graphical representation of this process. Also, the 
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details about the proportion of distressed firms for 45 training samples and 15 holdout 

samples are presented in Table 4-2. 

Figure 4-4: Rolling Window Periodic Sampling 

 

4.4.4 Distress Prediction Models for Comparative Study 

In this research, I develop a variety of distress prediction models in different static and 

dynamic frameworks. To be more specific, I use MDA, logit, probit and linear probability 

as static frameworks; Bharath and Shumway (2008) (BhSh_2008), Hillegeist et al. (2004) 

(HKCL_2004) and Jackson and Wood (2013) (JW_2013) as contingent claim analysis 

(CCA) frameworks; and discrete time hazard model (Shumway, 2001) and Cox hazard 

model (Kim and Partington, 2014) as the most recent and frequent cited dynamic or 

duration frameworks. Regarding discrete time hazard model, I followed Nam et al. (2008) 

in classifying dynamic models into two subcategories; namely, duration-independent and 

duration-dependent models. Based on containing a constant (time-independent) baseline 

hazard rate, the duration-independent models could be further classified into two 

subcategories, namely duration-independent with time-independent baseline (DIWTIB) 

and duration independent without baseline (DIWOB). The corresponding DIWTIB, which 

use ln(age) and 1/ln(age) as time-independent baseline rates are named DIWTIB_ln(age) 

and DIWTIB_1/ln(age), respectively. On the other hand, based on the type of time-

dependent baseline hazard rate, a variety of duration-dependent (DD) models could be 

developed. Beck et al. (1998) used time dummies to proxy the baseline hazard rate. Since 

the use of time dummies as an indirect proxy for the baseline rate is less efficient, I follow 



110 
 

Nam et al. (2008) and Gupta et al. (2015) in using time-varying features to proxy the time-

dependent baseline rate. For this, I use ln (age), 1/ln(age), last year probability of distress 

(LPD), and volatility of exchange rate (VEX) as alternative features to proxy baseline 

hazard rates in duration-dependent models. Therefore, the duration dependent (DD) 

models in my analysis are named, DDWTD_ln(age), DDWTD_1/ln(age), DDWTD_LPD 

and DDWTD_VEX. Further, Considering Cox hazard model, I followed Kim and 

Partington (2014) in estimating the time-dependent baseline rate using the historical 

information of the firm. I refer to this model as duration dependent with firm’s specific 

baseline rate (DDWFSB). Considering 15 static and dynamic frameworks, 45 training 

samples, and 6 combinations of features, I ended up with 3,375 new developed models. 

Table 4-4 presents the new models fed with 3-year training sample from 2011 to 2013 

using FAMVMI as features. See Appendix 4-A for more details on models.  

4.5 Performance Evaluation of Distress Prediction Models 

In this section, firstly, the criteria and measures employed to evaluate the performance of 

models are explained (see section 4.5.1). Then, the mono-criteria evaluation of prediction 

models (see section 0) is provided. Finally, the suggested multi-criteria evaluation 

approach to evaluate the performance of models is implemented (see section 4.5.3).  

4.5.1 Criteria and Measures for Performance Evaluation 

In this chapter, I have focused on the most frequently used criteria and their measures for 

performance evaluation of prediction models. The first criterion is the discriminatory 

power, which is defined as the power of a prediction model to discriminate between the 

healthy firms and the unhealthy firms. In the comparative evaluation, I use Hand measure 

(H) (Hand and Anagnostopoulos, 2014), Kolmogorov-Smirnov (KS), Area under 

Receivable Operating Characterise (AUROC), Gini index (GI) and Information Value 

(IV) to measure this criterion. The second criterion is the calibration accuracy, which is 

defined as the quality of estimation of the probability of failure (or distress). I use Brier 

Score (BS) to measure this criterion. 
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Table 4.4: New Developed Models Fed with 3-year Training Samples Using FAMVMI 
The table presents the features and coefficients of the new models, namely MDA (1), LPA (2), LA (3), PA (4), DIWOB (5), DIWTIB_ln(age) (6), DIWTIB_1/ln(age) (7), DDWTD_ln(age) (8),   
DDWTD_VEX (9), DDWTD_LPD (10), DDWTD_1/ln(age) (11) and DDWFSB (12). *** and ** refer to 1% and 5% significance level, respectively. 

Models  
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6* Model 7* Model 8 Model 9 Model 10  Model 11 Model 12 

Explanatory variables 

Intercept -2.94 0.073 -3.44 -3.24 -1.53 
-1.53 

+  

-1.53  

+1/  
-1.9749 -0.2996 -2.171 -0.591  

Current Assets to Total Liabilities -0.002 -0.0001*           

Net income to long term funding -0.014 -0.0006***          0.0022 

Current Assets to Sales -.0002 -0.0001***           

Total liabilities to Total Assets 0.066 0.0028***          -0.0079 

Cash and equivalent to Sales 0.006 0.0002***          0.0003 

Inventory to Assets            -0.9997 

Equity to Sales -0.0003 -0.0001***           

Lag of Excess Return -1.289 -0.059*** -0.832*** -0.9322*** -0.987*** -0.987*** -0.987*** -1.001*** -1.041*** -1.033*** -1.016*** -0.985*** 

Lag of Sigma  2.865 0.117***           

Ln (price) -3.842 -0.015*** -0.281*** -0.211*** -0.217*** -0.217*** -0.217*** -0.218*** -0.209*** -0.213*** -0.214*** -0.226*** 

Equity to Capital  0.003 0.045 0.0204         

Current Liabilities to Total Assets  0.0067 0.038 0.032         

Real size   -0.2562*** -0.1524**        -0.111 

Ohlson size      -0.197*** -0.197*** -0.197*** -0.201*** -0.193*** -0.193*** -0.207***  

Interest rate × Net Income -0.0001 3.23 -0.0006*** -0.00006*** -0.00007*** -0.00007*** -0.00007*** -0.00007*** -0.00006*** -0.00006*** -0.00007*** -0.00004*** 

GDP × Sales -0.0001 -3.34 -0.0004*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** 

Ln (age)        0.185     

1/ ln (age)           -2.124***  

Volatility of Exchange Rate (VEX)         -0.711***    

Last year distress rate           15.319***   

* Note that in models 25 and 29, the ln(age) and 1/ln(age) of firm  is added to intercept as the baseline hazard rate.   
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The third criterion is the information content which is defined as the extent to which the 

outcome of a prediction model (e.g. score or probability of failure) carries enough 

information for failure (or distress) prediction. I employ log-likelihood statistic (LL) and 

Pseudo-coefficient of determination (Pseudo-R2) to measure this criterion.  The last 

criterion is the correctness of categorical prediction, which is defined as the capability of 

the failure (or distress) model to correctly classify firms into healthy or non-healthy 

categories considering the optimal cut-off point. I use Type I errors (T1), Type II errors 

(T2), misclassification rate (MR), sensitivity (Sen), specificity (Spe), and overall correct 

classification (OCC) to measure this criterion. – See, Appendix 2-C for the descriptions 

of these measures. 

4.5.2 Mono-criterion Performance Evaluation of Distress Prediction Models 

In order to answer the first question about the effect of information on the performance of 

distress models, I employ different combinations of information such as financial 

accounting (FA), financial accounting and market variables (FAMV), financial 

accounting and macroeconomic indicators (FAMI), financial accounting, market variables 

and macroeconomic indicators (FAMVMI), market variables (MV), and market variables 

and macroeconomic indicators (MVMI) to fed models.  

When the availability of information is limited to accounting information (e.g., situations, 

where firms under evaluation are not listed on stock exchanges and macroeconomic 

information is not available or not reliable), the empirical results demonstrate that 

accounting information on its own can predict distressed firms. As one would expect, 

additional information enhances the ability of all models, whether static or dynamic, to 

discriminate between firms. 

In fact, regardless of the selected performance criterion (i.e., Discriminatory Power, 

Correctness of Categorical Prediction, Calibration Accuracy) and its measures, empirical 

results demonstrate that most static and dynamic models perform better when fed with 

information beyond accounting ones – see, for example, Figure 4-5, and this enhancement 

in performance is statistically significant as demonstrated by a substantially large number 
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of one-tailed t-tests of hypotheses involving all combinations of 15 modelling 

frameworks, 6 categories of information, and 15 measures of 3 performance criteria, 

where the Null hypothesis  is: Average performance of modelling framework  fed 

with information category  	 Average performance of modelling framework  fed 

with information category  – see Appendix 4-A for an illustrative example of the typical 

outcome of these hypothesis tests. In addition, market information (e.g., (log) stock prices, 

(log) excess returns, volatility of stock returns (unsystematic risk), firm size as proxied by 

log (number of outstanding shares × year end share price / total market value), its market 

value, or market value of assets to total liabilities) on its own informs models better than 

accounting information on its own. However, market and macroeconomic information 

combined slightly enhance the performance of distress prediction models whether static 

or dynamic. Furthermore, the feature selection procedure and empirical results suggest 

that the choice of how a specific piece of information is modelled affects its relevance in 

adding value to a prediction model. In fact, for example, with respect to the market 

information category, log (price) is a better modelling choice compared to the price itself 

and excess return is generally better than log (price).  

Figure 4-5: Measures of Discriminatory Power (ROC, H, Gini, KS, IV) of New Models 
Designed in Different Static and Dynamic Frameworks and Fed with 3-Year Information 

 

In regard to the second question, which considers the out-of-sample performance of 

dynamic distress prediction models compare to the out-of-sample performance of static 

ones on sample period length, empirical evidence suggests that the out-of-sample 
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implementation of static models within a rolling horizon framework overcomes the priori 

limitation of their static nature. In fact, under several combinations of categories of 

information (e.g., FAMV, FAMVMI, MV), the performance of static models is 

comparable to the performance of the dynamic ones across all measures of all criteria. 

This finding suggests that static models are not to be discarded and explains why static 

models are popular amongst practitioners – see, for example, Figure 4-5, Figure 4-7, 

Figure 4-9, and Figure 4-10. Also, the performance of four static models is consistent 

across different combinations of information categories for all measures of all criteria 

except for information value (IV) and Type I error – see, for example, Figure 4-6 and 

Figure 4-9. With respect to ROC, H, Gini, and KS, as measures of discriminatory power, 

LA and PA models fed with 3-year MVMI information outperform other static models. 

For example, the ROC for PA and LA is 0.8486 and 0.8484, respectively. However, 

considering IV as a measure of discriminatory power, LPA models fed with 3-year MV 

and MVMI seem to deliver the best performance, i.e., 0.711 whereas PA fed with 3-year 

FA is the worst performer. However, when static modelling frameworks are fed with both 

financial accounting and macroeconomic information, there is a clear difference in 

discriminatory power which suggests that macroeconomic information enhances the 

performance of LA and PA for discriminatory power measures– see, for example, Figure 

4-6, and Appendix 4-D.  

Figure 4-6: Measures of Discriminatory Power (ROC, H, Gini, KS, IV) of New Static Models 
Designed in Different Frameworks 
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Figure 4-7: ROC of New Models Designed in Different Static and Dynamic Frameworks Fed 
with 3-year Information 

 

Considering static models and with respect to T1 error, as a measure of correctness of 

categorical prediction criterion, MDA and LPA models seem to deliver the best 

performance, whereas PA is the worst performer. Also, PA performance suggests that this 

modelling framework is good at properly classifying healthy firms (i.e., it has the smallest 

T2 error), but relatively speaking, it poorly classifies the distressed ones (i.e., it has the 

largest Type I error) – see, for example, Figure 4-8. Amongst all new static models, MDA 

and LPA models fed with 10-year MV information have the lowest T2 error, 16.45% - 

see, Figure 4-13 and Appendix 4-C.  

Figure 4-8: Measures of Correctness of Categorical Prediction of New Static Models Designed 
in Different Frameworks
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Figure 4-9: Correctness of Categorical Prediction of New Models Designed in Different Static 
and Dynamic Frameworks 

 

With respect to Pseudo-R2 and Log Likelihood, as measures of information content, LA 

and PA outperform other static models when fed with accounting and macroeconomic 

information – see, for example, Figure 4-10, however, MDA stands out as the best model 

when MVMI information is used. On the other hand, with respect to measures of 

calibration accuracy, such as Brier score, LPA outperforms other static models when fed 

with market information - see, for example, Figure 4-11. 

Much like static models, empirical results suggest that dynamic models perform better 

when fed with information beyond accounting one; in fact, the performance of dynamic 

models across most measures of the three criteria under consideration is not only further 

enhanced when market information is taken on board, but it is consistent across all 

combinations of categories of information that include market variables – see, for 

example, Figure 4-5.  

With respect to OCC, T2 and MR, as measures of correctness of categorical prediction, 

DDWTDB_1/ln(age) and DDWTDB_ln(age) (baseline is ignored or equal to 1, and 

1/ln(age) and ln(age) are explanatory variables) are the best and second best performers, 

followed by DIWTIB_1/ln(age) and DIWTIB_ln(age) (1/ln(age) and ln(age) are baselines 

or intercepts) as average performers, and DDWFSB and DDWTDB_LPE being the worst 

ones – see, for example, Figure 4-9. Note however that, with respect to T1, 

DDWTDB_LPE is the best performer or amongst the best performers regardless of the 
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information categories considered. On the other hand, DDWFSB and DDWTDB_VEX 

are, as expected, being the worst for any combination of information categories that 

includes market information; however, when market information is not considered, 

DDWFSB’s performance improves while DDWTDB_VEX’s performance remains weak 

– see Figure 4-9. Considering CCA models, under OCC, T2 and MR, BSM_HKCL_2004 

outperforms BSM_BhSh_2008 and DOC_JW_2013. Also, under T1 error, BhSh_2008 

performs better than other CCA models.  

With respect to ROC, H, Gini and KS, as measures of discriminatory power, 

DDWTDB_1/ln(age) fed with FAMVMI and MVMI are the best performers amongst 

dynamic models, whereas DIWTIB-ln(age) and DDWFSB are the worst performers – see 

Figure 4-5. The findings suggest that majority of dynamic modes that fed with FA perform 

weakly on discriminatory power. Also, dynamic models perform better when fed with 

information beyond accounting ones. Note that the performance of CCA models is the 

worst between all dynamic models. The performance of BSM_BhSh_2008 is better than 

other CCA models considering all measures of discriminatory power. 

Regarding the information content, as measured by Pseudo-R2 and Log likelihood, 

DIWTIB_ln(age) (respectively, DDWFSB) outperform (respectively, underperform) 

other dynamic models. Findings suggest that using market variable information enhances 

the performance of models on information content– see, for example, Figure 4-10. Also, 

considering CCA models, BSM_HKCL_2004 outperforms BSM_BhSh_2008 and 

DOC_JW_2013. 

With respect to the calibration accuracy, under its BS measure, the performance of 

DIWTIB_1/ln(age) (respectively, DIWTIB_ln(age)) models fed with market variables 

outperform (respectively, underperform) other dynamic models - see, for example, Figure 

4-11.  
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Figure 4-10: Log-likelihood and Pseudo-R2 of New Dynamic and Static Models Fed  
with Different Type of Information 

 

However, feeding dynamic frameworks with information beyond accounting one 

enhances their calibration accuracy, which suggests that macroeconomic and market 

information improve the performance of models. Moreover, considering CCA models, the 

calibration accuracy of BSM_BhSh_2008 is the best.   

With respect to both static and dynamic models, under the correctness of categorical 

prediction criterion, the performance profiles of both static and dynamic models are 

consistent across different combinations of information categories, however they deliver 

different performances on different performance measures except for T2 and MR for 

which both static and dynamic models deliver the same average performance figures – see 

Figure 4-9 and Appendix 4-C. This latter empirical finding is explained by the fact that 

MR is a weighted combination of T1 and T2 errors and healthy firms count for most firms 

in my sample. However, although T1 and OCC are consistent in the way they drive 

performance, they deliver different figures as expected. One notable behaviour in 

performance is that of PA fed with all combinations of information being the best 

performer amongst all static and dynamic models with respect to T2 error, MR, and OCC; 

whereas its performance is consistently the worst under T1 errors, on the one hand, and 

DDWFSB fed with all combinations of information being the worst performer across T2 

error, MR, and OCC; whereas the best performer under T1 error, on the other hand.  
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Figure 4-11: Brier Score of New Dynamic and Static Models Fed with Different Type of 
Information 

 

Under the discriminatory power criterion, the performance profiles of both static and 

dynamic models are also consistent across different combinations of information 

categories – see, Figure 4-5 and Appendix 4-D. Furthermore, their performance is similar 

for all measures of discriminatory power except for information value (IV). 

DDWTDB_1/ln(age) fed with MVMI is the best performer between all dynamic and static 

models. Also, taking to account MVMI in addition to FA enhance the performance of PA 

model to become the best amongst static models. 

As to the calibration accuracy criterion, under measures of both information content and 

quality of fit, the dynamic model DIWTIB_ln(age) fed with FAMVMI and MVMI has the 

highest Pseudo-R2, the lowest Log Likelihood, and the lowest Brier score; therefore, it 

outperforms all other models whether static or dynamic – see for example; Figure 4-10, 

Figure 4-11 and Appendix 4-E. However, market information boosts LPA models 

performance to become the best amongst static models. In sum, although accounting, 

market and macroeconomic information are correlated to varying degrees over time, the 

market information proved to be the most informative prediction-wise.  

To conclude the comparative analysis of static and dynamic models, I would like to stress 

out that, in general, static modelling frameworks are as good performers as dynamic ones 

when implemented under a dynamic scheme. This conclusion suggests that in case of 
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dynamic frameworks, the design of models along with the type of information they are 

fed with requiring more attention from the academic community to perform to the standard 

it is expected, on the one hand, and to become a real contender for practitioners, on the 

other hand. 

The third research question is about the effect of the length of training sample on the 

performance of models. Under the discriminatory power criterion, a comparison of models 

under different lengths of the training sample revealed that their empirical performance 

when market information is taken account of is not significantly affected, except for 

DDWFSB.  In fact, the performance of DDWFSB deteriorates with a longer time window 

of the training sample – see, Figure 4-12. This result could be linked to the efficient market 

hypothesis which claims that existing stock prices contain and reflect all relevant 

information. Therefore, taking to account market information, a short length of training 

sample is enough to predict failure. However, when market information is not considered, 

the performance of models depends on to varying extents on the length of the training 

sample and thus their historical information needs might become lower or higher; e.g., 

dynamic models fed with 5-year training sample tend to outperform 3-year and 10-year 

models.  

Under the discriminatory power measures, both static and dynamic models that use 5-year 

training sample outperform the models that use 3-year and 10-year training samples, 

respectively. This difference of performance is more significant for dynamic models – see, 

Figure 4-12.  

Under the correctness of categorical prediction criterion, a longer time window of the 

training sample improves the performance of both static and dynamic models under T1 – 

see, Figure 4-13. However, under T2, MR, and OCC, a shorter time window of the training 

sample improves the performance of both static and dynamic models – see, Figure 4-14. 

In sum, under T1, both static and dynamic modelling frameworks require more historical 

information than what is required under T2, MR and OCC for a good performance.  
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Figure 4-12: ROC of New Models Fed with Different Length and Type of Information 

 

 
Figure 4-13: T1 Error of New Models Fed with Different Length and Type of Information 

 

Under the information content criterion and its measures; namely, Pseudo-R2 and Log 

likelihood, most dynamic models fed with 5-year training sample outperform 3-year and 

10-year trained models, respectively. Also, most of static models fed with 3-year training 

sample outperform 5-year and 10-year models, respectively– see, for example, Figure 4-

15. 

.  
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Figure 4-14: T2 Error of New Models Fed with Different Length and Type of Information 

 

 
Figure 4-15: Pseudo-R2 of New Models Fed with Different Length and Type of Information 

 

Under Brier score, as a calibration accuracy measure, the dynamic models fed with 5-year 

training sample perform better in average than those models fed with 3-year and 10-year 

training samples. Also, in average, the static models fed with 3-year information 

outperform those static models that are fed with 5-year and 10-year training samples. 

However, when static and dynamic models are fed with market information, a shorter time 

window of the training sample improves their performance – see, Figure 4-16.  
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As suggested by the unidimensional ranking of distress prediction models, considering 

different performance criteria and measures, there are considerable conflicts and ties in 

the ranking of models. Therefore, considering multiple criteria, one cannot make an 

informed decision as to which model performs best. Although I insist that unidimensional 

rankings are not to be discarded, I would like to propose a dynamic multi-criteria 

assessment, which provides a single ranking under multiple criteria.  

Figure 4-16:  Brier Score of New Models Fed with Different Length and Type of Information 

 

4.5.3 Multi-criteria Performance Evaluation of Distress Prediction Models 

In this study, I developed 216 new models using 12 forecasting frameworks (i.e., MDA, 

LPA, LA, PA, DDWFSB, DDWTDB_ln(age), DDWTDB_1/ln(age), DDWTDB_LPE, 

DDWTDB_VEX, DDWOTIB, DDWTIB_ln(age), and DDWTIB_1/ln(age)) that are fed 

with 6 groups of information (i.e., FA, FAMI, FAMV, FAMVMI, MV, and MVMI) using 

3 different training periods (i.e., 3, 5 and 10-year training samples). Also, I used 3 

contingent claims analysis models (i.e., BSM_HKCL_2004, BSM_BhSh_2008 and 

DOC_JW_2013) to find out the probability of distress of firms. As mentioned above, the 

advantage of the multi-criteria framework is that it facilitates taking multiple performance 

criteria into account, which results in a comprehensive performance evaluation. Also, 

someone can present and monitor the performance of models over time. Depending on the 
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preference of practitioners, alternative measures could be selected for each criterion. Here, 

I present the results of two rounds of multi-criteria evaluation.  

4.5.3.1 Round one - Inputs T1, BS and outputs Pseudo-R2, ROC 

In the first round of multi-criteria assessment using Malmquist DEA, I used T1 error (a 

measure of correctness of categorical prediction) and Brier score (a measure of the quality 

of fit) as inputs, and Pseudo-R2 (a measure of information content) and ROC (a measure 

of discriminatory power) as outputs. Table 4.5 presents the ranking of the best 20 and the 

worst 10 models out of 216 new models. For easier comparison, I rank the overall 

efficiency of models during a 15-year period using a total rank score. The results suggest 

that models developed in dynamic frameworks and fed with FAMV and FAMVMI 

features outperform other models. Also, models developed in static frameworks and fed 

with FA and FAMI features are amongst the worst performers. To save space, I only 

present the multi-criteria performance evaluation of models fed with FAMVMI, since 

models developed using all data available present better performance.  

Table 4.6 provides the rankings of models based on the estimated efficiency scores using 

multi-criteria framework during period 2000 to 2014. With respect to the performance of 

models fed with 3-year training sample, DDWTDB_1/ln(age) outperforms other models, 

following by DDWTDB_ln(age) and DIWTIB_ln(age) which are the second and third 

best performers. In regards to the models fed with either 5 or 10-year training samples, 

DDWFSB, DDWTDB_1/ln(age), and DDWTDB_ln(age) are the best performers.  

More, comparing all models fed with 3, 5 and 10-year training sample, dynamic models 

perform better than static models. DDWFSB fed with 5-year information has the best 

performance over the 15-year period, following by other duration dependent models that 

use ln(age) or 1/ln(age) as baseline rate. In addition, amongst the static models, LA 

outperforms others. 
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Table 4.5: The Yearly Rank of Top 20 Models Using Multi-Criteria Evaluation Framework 

Framework Feature 
Training 
Period 

Type 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Point 
Overall 

rank 
Panel A: The best 20 models 

DDWFSB MVMI 10 Dynamic 15 15 38 5 17 9 41 39 2 7 11 4 5 2 6 216 1 

DDWFSB FAMVMI 5 Dynamic 8 6 25 29 34 12 6 3 30 6 51 1 6 27 1 245 2 

DDWTDB-1/ln(age) FAMVMI 3 Dynamic 2 45 55 40 37 2 4 9 13 12 35 10 10 5 23 302 3 

DDWTDB-1/ln(age) FAMVMI 10 Dynamic 32 4 7 12 1 5 29 14 23 20 32 24 22 21 68 314 4 

DDWTDB-1/ln(age) FAMVMI 5 Dynamic 11 1 12 23 24 1 26 15 6 18 34 39 21 45 43 319 5 

DDWFSB FAMVMI 10 Dynamic 14 142 20 1 16 8 35 60 5 9 9 3 3 4 5 334 6 

DDWTDB-ln(age) FAMVMI 3 Dynamic 12 51 58 48 45 4 5 19 18 13 44 19 13 6 29 384 7 

DDWTDB-1/ln(age) MVMI 10 Dynamic 33 27 8 15 18 18 27 17 38 24 36 53 20 26 66 426 8 

DDWTDB-1/ln(age) MVMI 3 Dynamic 7 24 55 40 43 13 9 23 27 17 60 62 25 7 16 428 9 

DDWTDB-1/ln(age) MVMI 5 Dynamic 20 13 24 31 31 28 43 13 9 21 41 59 29 41 35 438 10 

DDWTDB-ln(age) FAMVMI 10 Dynamic 34 33 10 17 6 16 38 25 28 27 37 40 35 28 71 445 11 

DIWTIB-ln(age) FAMVMI 3 Dynamic 3 62 42 33 66 6 8 10 16 16 52 58 16 14 49 451 12 

DDWTDB-VEX FAMVMI 3 Dynamic 25 59 39 42 79 22 1 48 26 26 13 23 12 16 32 463 13 

DDWTDB-ln(age) FAMVMI 5 Dynamic 16 36 14 24 30 17 44 18 7 22 42 64 30 65 45 474 14 

DDWTDB-LPE FAMVMI 3 Dynamic 30 53 79 105 8 38 25 41 39 11 12 12 17 9 14 493 15 

DDWTDB-LPE FAMVMI 10 Dynamic 45 54 19 13 2 27 54 40 25 31 20 17 61 32 60 500 16 

DDWTDB-ln(age) MVMI 10 Dynamic 26 34 11 19 25 21 30 29 47 29 39 67 27 31 79 514 17 

DDWTDB-VEX MVMI 10 Dynamic 51 37 4 14 28 47 56 4 32 38 1 35 51 56 78 532 18 

DDWFSB MV 5 Dynamic 37 10 13 70 21 15 14 45 93 23 111 6 4 79 4 545 19 
DDWTDB-LPE FAMVMI 5 Dynamic 1 23 27 67 5 31 78 42 17 44 2 31 60 75 44 547 20 

To save the space other models are not presented 
Panel B: the worst 10 models 

LPA FAMI 10 Static 203 190 194 213 200 204 201 199 196 200 206 201 207 207 206 3027 206 

PA FA 10 Static 216 198 190 203 193 201 215 204 209 196 210 204 199 201 202 3041 207 

DIWOTIB FA 10 Dynamic 210 202 200 187 197 207 202 210 206 203 208 207 200 204 203 3046 208 

MDA FA 5 Static 195 188 196 206 204 209 204 202 202 214 200 214 214 209 210 3067 209 

LA FA 10 Static 215 211 200 211 205 200 214 208 200 201 209 202 197 196 203 3072 210 

LPA FA 5 Static 196 191 195 207 207 208 205 201 201 214 201 215 213 210 211 3075 211 

DIWTIB-1/ln(age) FA 10 Dynamic 213 210 205 190 201 210 210 214 214 207 212 210 208 208 207 3119 212 

LPA FA 10 Static 212 199 203 216 209 212 213 207 210 212 214 212 212 212 213 3156 213 

MDA FA 10 Static 211 207 204 215 208 211 212 206 211 211 213 211 211 213 213 3157 214 

DIWTIB-ln(age) FA 3 Dynamic 214 213 212 204 211 213 209 212 212 206 211 213 216 214 215 3175 215 

DIWTIB-ln(age) FA 10 Dynamic 208 214 207 189 210 214 216 215 216 216 216 216 215 216 216 3184 216 
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Table 4.6: 1st Round of Multi-Criteria Ranking of Models Fed with FAMVMI Information 
Panel A 

Models Training 
Period 

Framework 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 
Total 
Rank 

DDWFSB 5 Dynamic 5 1 14 14 13 9 4 1 17 1 19 1 2 12 1 1 
DDWTDB_1/ln(age) 3 Dynamic 1 15 25 17 14 1 2 3 7 4 11 3 4 2 7 2 
DDWFSB 10 Dynamic 9 36 13 1 7 8 14 24 1 2 2 2 1 1 2 3 
DDWTDB_1/ln(age) 5 Dynamic 7 1 6 9 8 1 12 7 2 7 10 20 11 20 13 4 
DDWTDB_1/ln(age) 10 Dynamic 15 1 4 3 1 5 13 6 13 8 9 14 12 10 23 5 
DDWTDB_ln(age) 3 Dynamic 8 17 26 21 18 4 3 9 10 5 15 11 6 3 9 6 
DDWTDB_ln(age) 10 Dynamic 16 10 5 6 5 10 16 11 16 12 12 21 16 13 24 7 
DDWTDB_ln(age) 5 Dynamic 10 12 7 10 11 11 19 8 3 9 14 27 14 23 15 7 
DIWTIB_ln(age) 3 Dynamic 1 25 21 16 25 6 6 4 8 6 20 25 8 6 19 9 
DDWTDB_LPE 3 Dynamic 14 19 29 29 6 23 11 17 21 3 3 5 9 5 3 10 
DDWTDB_VEX 3 Dynamic 12 23 20 18 28 13 1 22 15 11 4 13 5 7 10 11 
DDWTDB_LPE 10 Dynamic 20 20 12 4 1 16 20 16 14 13 5 9 26 15 22 12 
DIWTIB_ln(age) 5 Dynamic 6 8 3 12 20 1 17 5 5 10 26 31 18 31 26 13 
DIWTIB_ln(age) 10 Dynamic 16 1 1 2 10 7 9 10 20 17 28 29 15 21 34 14 
DDWTDB_VEX 10 Dynamic 21 13 2 5 9 18 23 2 12 15 25 8 24 19 27 15 
DDWTDB_LPE 5 Dynamic 1 7 16 24 4 17 30 18 9 16 1 16 25 26 14 16 
LA 10 Static 19 18 10 7 16 25 18 15 19 19 6 7 19 17 28 17 
DIWOTIB 10 Dynamic 22 16 11 8 12 20 21 21 22 18 8 6 21 16 25 18 
DDWFSB 3 Dynamic 1 27 22 34 1 12 5 36 33 20 36 4 3 14 5 19 
LA 5 Static 23 14 17 20 21 21 22 14 4 21 13 15 20 24 12 20 
DIWOTIB 3 Dynamic 11 24 28 26 29 24 10 19 24 23 17 10 7 4 8 21 
DDWTDB_VEX 5 Dynamic 27 21 8 15 17 14 28 12 11 14 18 17 22 30 16 22 
LA 3 Static 13 22 24 23 23 19 7 13 26 22 27 28 13 9 4 23 
DIWOTIB 5 Dynamic 28 6 15 13 22 15 29 20 6 24 16 18 23 27 17 24 
DIWTIB_1/ln(age) 10 Dynamic 26 11 9 11 19 28 27 23 23 25 7 12 27 22 29 25 
DIWTIB_1/ln(age) 3 Dynamic 18 26 30 27 36 30 15 28 29 27 21 23 10 8 6 26 
PA 3 Static 24 31 27 28 26 22 8 25 31 32 31 30 17 11 11 27 
DIWTIB_1/ln(age) 5 Dynamic 30 9 19 19 30 26 32 27 18 26 24 26 29 29 20 28 
PA 10 Static 25 30 18 22 15 29 24 26 27 28 22 19 28 25 30 29 
PA 5 Static 29 29 23 25 24 27 31 29 25 31 23 22 30 28 18 30 
LPA 10 Static 36 5 31 30 27 34 35 30 32 29 30 24 35 32 33 31 
LPA 3 Static 33 32 33 33 34 31 26 34 35 35 34 35 31 18 21 32 
LPA 5 Static 34 28 35 32 31 33 33 32 30 33 29 33 32 34 32 33 
MDA 10 Static 35 34 32 31 32 35 34 31 34 30 32 32 36 35 35 34 
MDA 3 Static 32 33 34 35 35 32 25 35 36 36 35 36 33 33 31 35 
MDA 5 Static 31 35 36 36 33 36 36 33 28 34 33 34 34 36 36 36 
                                      

 Panel B          2003 2009 2013   
        

T
ra

in
in

g 
P

er
io

d 

  All Dynamic Static z All Dynamic Static z All Dynamic Static z   
        3 26 24 30 1.52 19 12 31 2.37** 10 6 18 2.37**   
        5 19 15 28 2.54** 19 13 30 2.37** 27 25 31 1.35   
        10 11 5 23 2.38** 18 14 27 2.54** 19 15 27 2.20**   
         11.82** 17.80*** 1.5   0.98 0.86 3.23   15.03*** 14.59*** 3.23     
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Regarding the third research question that investigates the effect of the length of training 

sample on the performance of model, numerical results in Figure 4-6 indicate that the 

dynamic model developed with 3-year training sample outperform the 5-year and 10-year 

dynamic model in the same framework. Contrary to the dynamic models, most of the static 

models fed with 10-year training information perform better than the 5-year and 3-year 

trained models in the same framework. The reason is that dynamic models by nature are 

capable to incorporate time-varying covariates, and therefore adopt to the changes in 

economic and firm operational environment. This characteristic could be a drawback for 

dynamic models, since taking into account a long period training sample could be 

misleading because of changes in economic environment and financial ratios patterns. On 

the other hand, static models are not capable to incorporate time-varying covariates, and 

as such employing more firm-year observations as training sample would improve their 

performance.  

With regards to the fourth research question, which considers the performance of models 

in predicting distress during financial crises, I took into account the rankings of models in 

2003, 2009 and 2013, say high distress rate (HDR) years, since the distress rates in these 

years are higher than other years because of financial crises in the years before – see, 

Figure 4-3.  The panel B of Table 4-6 compares the average performance rankings of all 

dynamic and static prediction models during HDR years. The results suggest that first, 

based on -statistics of Wilcoxon rank-sum test, in average, the dynamic models 

outperform the static ones in predicting distress during HDR years. Second, numerical 

results indicate that in 2003, the 10-year trained distress models outperform 5- and 3-year 

trained models, respectively. Also, in 2013, the 3-year trained distress models outperform 

5, and 10-year trained models. However, in 2009, the average ranking of models with 

different length of training sample is almost the same. The results of -statistics of 

Kruskal-Wallis test indicate that there are significant (respectively, no significant) 

differences between the performance of dynamic (respectively, static) models fed with 3,5 

or 10-year information in HDR years of 2003 and 2013. However, in 2009, there is no 

significant difference between the performance of 3,5 or 10-year trained models. 
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4.5.3.2 Round two – Inputs T2, BS and Outputs Pseudo-R2, ROC 

In the second round of multi-criteria assessment using Malmquist, I used T2 error (as a 

measure of correctness of categorical prediction) and Brier score (as a measure of the 

quality of fit) as inputs, and Pseudo-R2 (as a measure of information content) and ROC 

(as a measure of discriminatory power) as outputs.  

Table 4-7 presents the rankings of models based on the estimated efficiency scores using 

multi-criteria framework during period 2000 to 2014. Opposite of the last round of multi-

criteria assessment where the static models underperform dynamic ones, the second round 

of assessment indicates that PA outperforms other models. Regarding the third research 

question that investigate the effect of length of training samples on the performance of 

models, the PA models with all length of training sample outperform other models. 

However, the dynamic model of DDWTDB_1/ln(age) is ranked second followed by 

DDWTDB_ln(age) with respect to all length of training samples. Regarding all models 

fed with FAMVMI, the static model of PA fed with 5,3 and 10-year information 

outperform other models over a 15-year period. DDWTDB_1/ln(age) fed with 3,5-year 

training sample is the second-best performer, see, Table 4-7. Further, most of dynamic 

models developed with 3-year training sample outperform the 5-year and 10-year dynamic 

model in the same framework.  

As regards the fourth research question that considers the performance of models in 

predicting distress during HDR years, panel B of Table 4-7 compares the average 

performance rankings of all dynamic and static prediction models in HDR years. The 

average ranking of models suggests that the dynamic models have a lower average ranking 

that indicates a better performance in compare to the static models during HDR years. 

However, -statistics of Wilcoxon rank-sum test does not show a significant difference 

between the rankings of static and dynamic models during HDR years.  
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Table 4.7: 2nd Round of Multi-Criteria Ranking of Models Fed with FAMVMI Information	
Panel A 

Models 
Training 
Period 

Framework 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 
Total 
Rank 

PA 5 Static 6 1 3 4 2 1 4 3 3 2 1 1 3 2 1 1 
PA 3 Static 1 7 1 2 4 4 5 2 1 1 3 3 1 1 2 2 
PA 10 Static 1 1 2 3 3 5 3 4 2 3 2 2 2 3 3 3 
DDWTDB_1/ln(age) 3 Dynamic 5 16 21 16 13 1 1 6 4 4 5 6 5 6 5 4 
DDWTDB_1/ln(age) 5 Dynamic 15 10 8 9 7 1 16 5 5 7 8 20 13 15 9 5 
DDWTDB_ln(age) 3 Dynamic 9 24 23 13 17 7 2 8 6 5 10 13 7 8 7 6 
DDWTDB_1/ln(age) 10 Dynamic 11 1 6 7 5 12 13 11 10 8 13 18 14 13 19 7 
DIWTIB_ln(age) 3 Dynamic 1 8 20 25 20 8 6 10 7 6 19 24 8 12 17 8 
DDWTDB_ln(age) 5 Dynamic 18 13 10 14 9 6 18 9 8 10 12 25 16 18 15 9 
DDWTDB_ln(age) 10 Dynamic 13 9 7 11 6 13 17 13 12 11 15 23 15 16 22 10 
DIWTIB_ln(age) 10 Dynamic 13 1 5 8 8 10 10 12 11 12 23 27 20 25 31 11 
DIWTIB_ln(age) 5 Dynamic 8 1 4 12 12 9 12 7 9 13 25 28 23 31 30 12 
DDWTDB_VEX 3 Dynamic 7 22 27 20 31 18 8 16 25 14 24 4 4 5 4 13 
DDWFSB 3 Dynamic 1 29 26 5 1 11 7 1 32 28 4 22 18 28 21 14 
DIWOTIB 3 Dynamic 12 23 25 26 29 17 15 20 23 9 6 7 9 10 8 15 
DDWTDB_VEX 5 Dynamic 24 18 19 10 15 20 29 27 14 21 9 5 12 4 12 15 
LA 3 Static 17 19 22 27 11 14 11 14 21 17 21 26 10 7 6 17 
LA 5 Static 22 17 12 18 10 16 25 21 15 15 7 11 21 24 11 18 
DDWTDB_LPE 3 Dynamic 10 28 24 1 33 21 14 18 24 25 27 12 6 11 16 19 
LA 10 Static 16 11 18 17 19 25 19 15 17 18 18 16 26 17 24 20 
DIWOTIB 10 Dynamic 21 15 11 19 16 22 23 17 18 20 14 14 27 21 23 21 
DDWTDB_LPE 5 Dynamic 28 21 13 6 32 15 24 22 13 22 28 9 17 19 14 22 
DDWTDB_VEX 10 Dynamic 20 12 17 15 14 24 22 25 22 23 29 8 24 14 20 23 
DDWTDB_LPE 10 Dynamic 23 14 9 23 28 19 20 19 20 24 22 10 19 20 25 24 
DIWOTIB 5 Dynamic 25 20 14 24 18 23 31 24 16 19 11 15 22 22 13 25 
DIWTIB_1/ln(age) 3 Dynamic 19 27 28 28 34 28 21 23 27 16 16 17 11 9 10 26 
DIWTIB_1/ln(age) 5 Dynamic 27 26 15 22 30 27 32 28 19 27 17 21 28 26 18 27 
DIWTIB_1/ln(age) 10 Dynamic 26 25 16 21 22 26 30 26 26 26 20 19 29 27 26 28 
LPA 10 Static 36 6 31 29 25 31 34 29 30 29 32 30 34 30 33 29 
DDWFSB 5 Dynamic 29 31 29 35 35 36 9 35 31 30 35 29 25 34 29 30 
LPA 3 Static 31 35 30 32 24 29 27 33 34 35 30 35 30 23 27 31 
LPA 5 Static 33 32 34 31 21 35 35 30 28 32 26 32 32 29 28 32 
MDA 10 Static 34 30 33 30 26 34 33 31 33 31 33 31 35 32 34 33 
MDA 3 Static 30 36 32 34 23 30 26 34 35 36 34 36 31 33 32 34 
MDA 5 Static 32 34 35 33 27 33 36 32 29 33 31 33 33 35 35 35 
DDWFSB 10 Dynamic 35 33 36 36 36 32 28 36 36 34 36 34 36 36 36 36 
                                      

 Panel B   2003 2007 2013   

        

T
ra

in
in

g 

P
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d 

  All Dynamic Static z All Dynamic Static z All Dynamic Static z   
        3 19 16.75 24 1.36 16 13 22.25 1.02 13 11 16 0.17   
        5 18.18 16.50 23 0.51 20 19 22.33 0.51 21 21 22 0.51   
        10 18.25 18 20 0.34 19 20 20 0.17 20 22 21 0.17   
        			   0.06 0.10 0.73   0.78 2.20 0.26   5.37* 7.28** 0.50     
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Also, considering panel A of Table 4-7, most of the dynamic models outperform static 

ones in predicting distress. The only exception is PA models trained with 3,5 and 10-year 

information, which outperform other dynamic models.  

Also, the numerical results indicate that there are no differences between the performance 

of static models fed with 3,5 or 10-year information in HDR years. Further, the numerical 

results of dynamic models suggest that during HDR years, the 3-year trained distress 

models outperform 5 and 10-year trained models. However, the  statistics of Kruskal-

Wallis test indicate that there are no significant differences between the performance of 

3,5 or 10-year trained dynamic models in 2003 and 2009.  

4.6 Conclusion  

Prediction of corporate distress is crucial for many stakeholders and decision makers in 

finance and investment. Although many models have been designed to predict bankruptcy 

and distress, the relative performance evaluation of competing distress models remains an 

exercise that (1) is unidimensional in nature, which results in conflicting rankings of 

models from one performance criterion to another, and (2) is static in practice and, 

therefore, ignore monitoring the performance of models over time. In this study, I 

proposed a dynamic framework based on an orientation-free super-efficiency Malmquist 

DEA index, which provides a single ranking based on multiple performance criteria. This 

dynamic framework makes it possible for practitioners and academics to use one measure 

under each criterion to evaluate the performance of distress prediction models.  In 

addition, I performed a comprehensive comparative analysis of the most cited static and 

dynamic distress prediction models. For this, I used several measures under four 

commonly employed criteria (i.e., the discriminatory power, the information content, the 

calibration accuracy, and the correctness of categorical prediction) in the literature. 

Furthermore, I addressed the following important questions: what is the effect of 

information on the performance of distress models? How does the out-of-sample 

performance of dynamic distress prediction model compare to the out-of-sample 

performance of static ones?  



 

131 
 

What is the effect of the length of training sample on the performance of models? Which 

models perform better in forecasting distress during the years with higher distress rate 

(HDR)? 

My main findings suggest that firstly, the proposed multi-criteria dynamic framework 

provides a useful tool in evaluating the relative performance of distress prediction models 

over time. Secondly, in defiance of the unidimensional ranking, the multidimensional 

ranking of models provides more consistent results. However, regarding the inconsistency 

between rankings of models with respect to T1 and T2 errors (i.e. PA model), multi-

criteria rankings of models using each of these two measures would also present 

inconsistency. Third, with respect to the main research questions, the empirical results 

suggest that most static and dynamic models perform better when fed with information 

beyond accounting ones. Also, dynamic models, specifically DDWTDB_1/ln(age) and 

DDWTDB_ln(age) are always amongst the best distress prediction models and show 

consistency in multi-criteria ranking using different combinations of measures.  Further, 

regarding the effect of length of training sample on the performance of models, most of 

dynamic frameworks show that the model with 3-year training period in a framework 

outperforms the models with longer training periods (e.g., 5-year or 10-year) in that 

framework. However, the static models do not show straightforward trend with respect to 

the effect of length of training sample on their performance. Also, the empirical results 

suggest that, in average, dynamic models outperform static ones during the years with 

HDR. 

One of the limitations of this research is space constraint and as such I restricted this study 

to financial distress as an event. Further, same as chapters 2 and 3, this chapter is restricted 

with respect to data, i.e. listed companies in LSE, and type of models, i.e. statistical 

models. Future research could incorporate other definitions of failure such as bankruptcy, 

debt restructuring, etc. Moreover, future studies could analyse the extent to which failure 

prediction models are generalised by taking into account the data from other countries.  

Chapters 2,3 and 4 are mutual with respect to developing and analysing one-stage failure 

prediction models. The recent trend in the literature has focused on developing two-stage 
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models where the management efficiency of firms is estimated in the first stage and 

retained as a feature in developing models in the second stage. Next chapter is allocated 

to this model developing technique.  
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Appendix 4-A: The P-value of t-tests to Compare the Average Performance of Models Using ROC as a Measure of Discriminatory Power 
This table presents the p-value of t-tests to compare the performance of models using ROC. Because of the lack of space, I show some models. The Null hypothesis (  is: 
Average performance of modelling framework  fed with information category  	Average performance of modelling framework  fed with information category . 
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DDWFSB_FA   0.007 0.973 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
DDWFSB_FAL1MI     1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
DDWFSB_FAMI       0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
DDWFSB_FAMV         0.145 0.000 0.000 0.000 0.000 0.000 0.000 0.915 0.885 0.000 0.000 0.000 0.000 0.000 
DDWFSB_FAMVL1MI           0.000 0.000 0.000 0.000 0.000 0.000 0.942 0.929 0.000 0.000 0.000 0.000 0.000 
DDWFSB_FAMVMI             0.001 0.000 0.711 0.004 0.002 1.000 1.000 0.667 0.009 0.006 0.627 0.001 
DDWFSB_MV               0.034 0.999 0.978 0.690 1.000 1.000 0.997 0.845 0.663 0.999 0.386 
DDWFSB_MVL1MI                 0.999 0.997 0.978 1.000 1.000 0.999 0.946 0.857 1.000 0.780 
DDWFSB_MVMI                   0.001 0.001 1.000 1.000 0.465 0.007 0.005 0.344 0.001 
DDWTDB_1/ln(age)_FA                     0.036 1.000 1.000 0.995 0.534 0.323 0.998 0.032 
DDWTDB_1/ln(age)_FAL1MI                       1.000 1.000 0.997 0.795 0.583 0.999 0.233 
DDWTDB_1/ln(age)_FAMI                         0.359 0.000 0.000 0.000 0.000 0.000 
DDWTDB_1/ln(age)_FAMV                           0.000 0.000 0.000 0.000 0.000 
DDWTDB_1/ln(age)_FAMVL1MI                             0.002 0.002 0.422 0.001 
DDWTDB_1/ln(age)_FAMVMI                               0.071 0.994 0.066 
DDWTDB_1/ln(age)_MV                                 0.996 0.233 
DDWTDB_1/ln(age)_MVL1MI                                   0.000 
DDWTDB_1/ln(age)_MVMI                                     
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    Appendix 4-B: Models Explanation 

Framework Explanation 
Multiple discriminant analysis 
(MDA) 
 

Assuming there are  groups, the generic form of DA model for the group  could be shown as follows; 

  Eq. 4-13 

where  is the discriminant features ,  is the discriminant coefficients of group  for discriminant feature ,  represents the 
score of group , and  is the linear or non-linear classifier that maps the scores, say  onto a set of real numbers. To compare 
DA models to other statistical models, I need to estimate the probability of failure, which is used as an input for estimating many 
measures of performance. For this, I follow Hillegeist et al. (2004) in using a logit link to calculate the probability of failure for 
companies; 

 
1

 Eq. 4-14 
 

Linear probability model (LPA) The generic linear probability model (LPA) is a special case of OLS regression and results in an estimate of probability of distress, 
the formula for which is as follows; 

  Eq. 4-15 

 

Logit analysis (LA) The generic model for binary variables could be stated as follows: 

 
1

, 				
 Eq. 4-16 

where  denotes the binary response variable, 	denotes the vector of features,  denotes the vector of coefficients of  in the 
model, and .  is a link function that maps the scores of , onto a probability. In practice, depending on choice of link function, 
the type of probability model is determined. For example, the logit model (respectively, probit model) assumes that the link 
function is the cumulative logistic distribution, say  (respectively, cumulative standard normal distribution, say	 ) function.  

Probit analysis (PA) 

Contingent claim analysis 
(CAA): Black-Scholes-Merton 
(BSM) Based Models 

Hillegeist et al. (2004), Bharath and Shumway (2008) 

 
ln 0.5

√
  Eq. 4-17 
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. :	the	cumulative	normal	distribution	function, :the value of the company’s assets; : total liabilities; :	the expected 
return of the firm;   : volatility of the company’s asset;	 	is the divided rate; which is estimated by the ratio of dividends to the 
sum of   and  (market value of common equity);  is time to maturity for both of call option and liabilities.  
The probability of failure is extracted as the probability that call option expires worthless at the end of maturity data - i.e. the value 
of the company's assets ( ) be less than the face value of its debt liabilites ( ) at the end of the holding period [ 	 	 ]. 
In Hillegeist et al. (2004),  and	  are estimated by solving the systems of equations; i.e. the call option equation (4.18.1) and 
the optimal hedge equation (4.18.2). 

 

1 				 4.18.1

																																																																			 4.18.2
 Eq. 4-18 

 
where  is the market value of common equity at the time of estimation,  is the annualised standard deviation of daily stock 
returns over 12 months prior to estimation, 	is the risk-free interest rate, and 	and  are calculated as follows; 
 .

√
; √  

Eq. 4-19 

Where ,  is the value of the company’s assets in year  and ,  is the value of the company’s assets in year	 1.  
 
Bharath and Shumway (2008) proposed a naïve approach to estimate  and  as follows;  

 	;  Eq. 4-20 

Where	 0.05 0.25 . Further, the firm’s expected return  is proxied by the risk-free rate,  or the stock return of previous 
year restricted to be between  and 100%. 

Contingent claim analysis 
(CAA):  Down-and-Out Call 
(DOC) Barrier Option Model 

A naïve DOC barrier option as an extension of BSM model, which assumes that debt holder's position in the firm is like holding 
a portfolio of risk-free debt and a DOC option with a strike price (or Barrier) equal to total liabilities (L). The model rests on the 
assumptions of no dividends, zero rebate, costless failure proceedings, and set return on asset equal to risk-free rate. (Jackson and 
Wood, 2013) 
 1

2

√

	 	
1
2

√
 

Eq. 4-21 
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 1
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√

	 	
1
2

√
 

Eq. 4-22 

 

Discrete time hazard 
framework: Duration-dependent 
hazard model (DD)  
 
 

Shumway (2001) proposed a discrete time hazard model using an estimation procedure like the one used for estimating the 
parameters of a multi-period (dynamic) logit model. 
 

, 1 , ,
e ,

1 e ,
 

Eq. 4-23  

where ,  represent the individual hazard rate of firm  at time , ,  is the vector of covariates of each firm 	at time .  
is the time-variant baseline hazard function related, which could be relate to firm, e.g. ln(age) or related to macroeconomic 
variables, e.g. volatility of exchange rate (Nam et al, 2011). Shumway employed a constant time variant term; say 	 , as 
proxy of baseline rate.  
General notation of duration-dependent hazard model could be presented as follows: 

 , . , .  Eq. 4-24  

 , 1
1

1 , .
 

 
Eq. 4-25  

 

Discrete time hazard 
framework: Duration-
independent model with time-
invariant baseline (DIWTIB) 
& Duration-independent model 
without baseline hazard rate 
(DIWOB) 

Duration independent hazard model uses the multi-period logit framework to estimate the coefficients of the features. However, 
conversely to duration dependent (DD) models, the baseline hazard rate is invariant to time. The time-invariant baseline hazard 
rate could be represented by firm related features, e.g. ln(age), 1/ln(age) or macroeconomic features, e.g., volatility of exchange 
rate.  
General notation of duration-independent hazard model could be presented as follows: 
 , . , .  Eq. 4-26 

 , 1
1

1 , .
 Eq. 4-27 

Conversely to the last two categories of discrete time hazard model, DIWOB does not use any baseline hazard rate.  
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Cox hazard framework The cox hazard model with time-varying (TV) covariates could be presented as equation 4-28; 
 , . , .  Eq. 4-28 

 However, a partial likelihood function on the training sample is used to estimate the coefficients  ; 
 

	
∑

∑ ∑∈

 
Eq. 4-29 

where  is the firm in the event of distress, 	is the firm in the risk set at time , and   is the number of features. This equation 
estimates  without requiring to consider the baseline hazard rate (Hosmer and Lemesho, 1999, Section 7.3). However, to use 
the developed model for estimation of distress probabilities, the baseline hazard rate is required. I follow Chen et al. (2005) in 
estimating the integrated baseline hazard function with time-varying covariates base on Anderson (1992) as follow: 
 

∑ exp .∈

 
Eq. 4-30 

Where  is a dummy variable for whether the firm 	faces the distress, i.e. 0 for survivors and 1 for distressed;  is the distress 
time for the th firm;  is the vector of estimated coefficients; and  is the distress time for the th firm. Using Equations (4-29) 
and (4-30), I estimate the probability of distress for individual firms in Equation (4-28).  
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Appendix 4-C: Measures of Correctness of Categorical Prediction 
The table presents the average measures of correctness of categorical prediction for all dynamic and static frameworks. The best performers are 
shown in block cells where darker represents better performance. The average performance of each group is bolded.  

 T1 T2 MR OCC 

Models 3-year 5-year 10-year 3-year 5-year 10-year 3-year 5-year 10-year 3-year 5-year 10-year 

FA Information 0.48 0.41 0.43 0.37 0.35 0.41 0.38 0.35 0.41 0.62 0.65 0.59 

DDWFSB 0.371 0.081 0.0183 0.512 0.797 0.892 0.506 0.761 0.848 0.494 0.239 0.152 

DDWTDB-ln(age) 0.43 0.352 0.422 0.38 0.307 0.361 0.383 0.31 0.364 0.617 0.69 0.636 

DDWTDB-1/ln(age) 0.437 0.347 0.457 0.368 0.308 0.362 0.373 0.311 0.367 0.627 0.689 0.633 

DDWTDB-LPE 0.28 0.321 0.353 0.602 0.422 0.482 0.592 0.426 0.477 0.408 0.574 0.523 

DDWTDB-VEX 0.567 0.381 0.378 0.371 0.331 0.477 0.384 0.334 0.467 0.616 0.666 0.533 

DIWOTIB 0.415 0.331 0.4 0.354 0.334 0.371 0.359 0.334 0.372 0.641 0.666 0.628 

DIWTIB-ln(age) 0.455 0.411 0.533 0.484 0.307 0.414 0.484 0.312 0.42 0.516 0.688 0.58 

DIWTIB-1/ln(age) 0.405 0.32 0.348 0.409 0.358 0.444 0.409 0.357 0.438 0.591 0.643 0.562 

MDA 0.473 0.478 0.443 0.338 0.359 0.39 0.346 0.367 0.394 0.654 0.633 0.606 

LPA 0.506 0.48 0.443 0.337 0.358 0.39 0.346 0.367 0.394 0.654 0.633 0.606 

LA 0.485 0.468 0.426 0.312 0.304 0.338 0.321 0.313 0.342 0.679 0.687 0.658 

PA 0.972 0.972 0.981 0.0085 0.007 0.0047 0.0567 0.0553 0.0533 0.9433 0.9447 0.9467 

FAMI Information 0.43 0.37 0.39 0.3 0.32 0.32 0.31 0.33 0.32 0.69 0.67 0.68 

DDWFSB 0.389 0.081 0.0193 0.362 0.701 0.78 0.363 0.668 0.742 0.637 0.332 0.258 

DDWTDB-ln(age) 0.328 0.308 0.397 0.285 0.293 0.254 0.289 0.294 0.262 0.711 0.706 0.738 

DDWTDB-1/ln(age) 0.352 0.309 0.441 0.272 0.279 0.234 0.277 0.281 0.244 0.723 0.719 0.756 

DDWTDB-LPE 0.209 0.296 0.287 0.462 0.384 0.354 0.457 0.388 0.351 0.543 0.612 0.649 

DDWTDB-VEX 0.486 0.379 0.346 0.295 0.29 0.335 0.309 0.296 0.334 0.691 0.704 0.666 

DIWOTIB 0.524 0.297 0.332 0.378 0.31 0.269 0.38 0.31 0.272 0.62 0.69 0.728 

DIWTIB-ln(age) 0.361 0.356 0.454 0.321 0.29 0.267 0.324 0.294 0.276 0.676 0.706 0.724 

DIWTIB-1/ln(age) 0.288 0.282 0.324 0.335 0.329 0.318 0.333 0.328 0.319 0.667 0.672 0.681 

MDA 0.454 0.407 0.392 0.326 0.359 0.358 0.334 0.364 0.359 0.666 0.636 0.641 

LPA 0.464 0.421 0.397 0.317 0.337 0.364 0.326 0.343 0.364 0.674 0.657 0.636 

LA 0.322 0.316 0.325 0.278 0.275 0.271 0.28 0.277 0.275 0.72 0.723 0.725 

PA 0.955 0.964 0.983 0.0137 0.0124 0.0079 0.0608 0.06 0.0564 0.9392 0.94 0.9436 
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FAMV Information 0.29 0.25 0.23 0.26 0.29 0.32 0.26 0.29 0.31 0.74 0.71 0.69 

DDWFSB 0.35 0.0445 0.028 0.392 0.776 0.816 0.392 0.739 0.775 0.608 0.261 0.225 

DDWTDB-ln(age) 0.257 0.214 0.203 0.24 0.259 0.281 0.241 0.259 0.277 0.759 0.741 0.723 

DDWTDB-1/ln(age) 0.243 0.22 0.204 0.241 0.248 0.271 0.241 0.248 0.268 0.759 0.752 0.732 

DDWTDB-LPE 0.226 0.208 0.173 0.344 0.337 0.346 0.341 0.334 0.338 0.659 0.666 0.662 

DDWTDB-VEX 0.271 0.244 0.184 0.308 0.253 0.304 0.306 0.255 0.298 0.694 0.745 0.702 

DIWOTIB 0.235 0.196 0.194 0.257 0.269 0.292 0.256 0.267 0.287 0.744 0.733 0.713 

DIWTIB-ln(age) 0.273 0.242 0.272 0.27 0.249 0.263 0.27 0.25 0.263 0.73 0.75 0.737 

DIWTIB-1/ln(age) 0.25 0.224 0.184 0.256 0.263 0.309 0.255 0.261 0.302 0.745 0.739 0.698 

MDA 0.208 0.194 0.181 0.259 0.263 0.282 0.256 0.26 0.277 0.744 0.74 0.723 

LPA 0.217 0.2 0.174 0.257 0.263 0.282 0.255 0.259 0.277 0.745 0.741 0.723 

LA 0.215 0.212 0.182 0.258 0.263 0.296 0.255 0.261 0.29 0.745 0.739 0.71 

PA 0.759 0.758 0.728 0.047 0.049 0.056 0.083 0.084 0.089 0.917 0.916 0.911 

FAMVMI Information 0.27 0.24 0.23 0.24 0.27 0.29 0.24 0.27 0.28 0.76 0.73 0.72 

DDWFSB 0.351 0.0464 0.03 0.333 0.65 0.709 0.336 0.621 0.674 0.664 0.379 0.326 

DDWTDB-ln(age) 0.218 0.204 0.22 0.225 0.241 0.245 0.225 0.24 0.244 0.775 0.76 0.756 

DDWTDB-1/ln(age) 0.215 0.209 0.215 0.217 0.236 0.239 0.218 0.235 0.239 0.782 0.765 0.761 

DDWTDB-LPE 0.214 0.196 0.18 0.316 0.313 0.309 0.315 0.312 0.303 0.685 0.688 0.697 

DDWTDB-VEX 0.232 0.249 0.196 0.281 0.237 0.274 0.279 0.239 0.271 0.721 0.761 0.729 

DIWOTIB 0.223 0.202 0.199 0.232 0.253 0.256 0.232 0.251 0.254 0.768 0.749 0.746 

DIWTIB-ln(age) 0.233 0.234 0.264 0.232 0.242 0.242 0.231 0.242 0.244 0.769 0.758 0.756 

DIWTIB-1/ln(age) 0.221 0.2 0.18 0.244 0.26 0.279 0.243 0.258 0.274 0.757 0.742 0.726 

MDA 0.218 0.21 0.184 0.259 0.271 0.285 0.256 0.268 0.28 0.744 0.732 0.72 

LPA 0.216 0.204 0.168 0.259 0.267 0.288 0.256 0.264 0.283 0.744 0.736 0.717 

LA 0.207 0.21 0.201 0.236 0.241 0.26 0.235 0.24 0.258 0.765 0.76 0.742 

PA 0.749 0.75 0.74 0.046 0.048 0.0501 0.082 0.083 0.0845 0.918 0.917 0.9155 

MV Information 0.32 0.29 0.27 0.27 0.3 0.31 0.27 0.3 0.31 0.73 0.7 0.69 

DDWFSB 0.335 0.0365 0.0195 0.397 0.778 0.822 0.396 0.742 0.781 0.604 0.258 0.219 

DDWTDB-ln(age) 0.226 0.229 0.199 0.254 0.266 0.29 0.252 0.264 0.286 0.748 0.736 0.714 

DDWTDB-1/ln(age) 0.231 0.225 0.212 0.251 0.27 0.271 0.251 0.268 0.267 0.749 0.732 0.733 
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DDWTDB-LPE 0.222 0.224 0.186 0.35 0.344 0.346 0.347 0.342 0.338 0.653 0.658 0.662 

DDWTDB-VEX 0.271 0.27 0.186 0.295 0.256 0.31 0.294 0.258 0.303 0.706 0.742 0.697 

DIWOTIB 0.228 0.218 0.195 0.261 0.273 0.297 0.26 0.271 0.291 0.74 0.729 0.709 

DIWTIB-ln(age) 0.269 0.264 0.277 0.271 0.272 0.263 0.27 0.271 0.264 0.73 0.729 0.736 

DIWTIB-1/ln(age) 0.242 0.225 0.188 0.256 0.276 0.31 0.255 0.274 0.303 0.745 0.726 0.697 

MDA 0.213 0.196 0.165 0.264 0.282 0.297 0.261 0.278 0.29 0.739 0.722 0.71 

LPA 0.215 0.192 0.165 0.262 0.282 0.297 0.259 0.278 0.29 0.741 0.722 0.71 

LA 0.23 0.22 0.194 0.259 0.272 0.298 0.257 0.27 0.292 0.743 0.73 0.708 

PA 0.776 0.775 0.747 0.045 0.046 0.054 0.082 0.0821 0.088 0.918 0.9179 0.912 

BSM_HKCL04 0.522 0.521 0.521 0.194 0.194 0.193 0.209 0.209 0.208 0.791 0.791 0.792 

BSM_BhSh08 0.355 0.352 0.35 0.287 0.304 0.29 0.287 0.305 0.292 0.713 0.695 0.708 

DOC_JW13 0.398 0.398 0.409 0.371 0.374 0.355 0.37 0.373 0.356 0.63 0.627 0.644 

MVMI Information 0.27 0.25 0.23 0.25 0.28 0.3 0.25 0.28 0.29 0.75 0.72 0.71 

DDWFSB 0.327 0.069 0.021 0.327 0.681 0.702 0.33 0.648 0.668 0.67 0.352 0.332 

DDWTDB-ln(age) 0.219 0.217 0.219 0.229 0.239 0.25 0.229 0.239 0.249 0.771 0.761 0.751 

DDWTDB-1/ln(age) 0.211 0.209 0.22 0.228 0.234 0.24 0.227 0.234 0.239 0.773 0.766 0.761 

DDWTDB-LPE 0.21 0.212 0.169 0.322 0.317 0.322 0.321 0.316 0.315 0.679 0.684 0.685 

DDWTDB-VEX 0.256 0.26 0.181 0.275 0.233 0.322 0.275 0.236 0.315 0.725 0.764 0.685 

DIWOTIB 0.2032 0.202 0.19 0.242 0.255 0.27 0.241 0.253 0.266 0.759 0.747 0.734 

DIWTIB-ln(age) 0.219 0.248 0.254 0.247 0.245 0.245 0.245 0.245 0.245 0.755 0.755 0.755 

DIWTIB-1/ln(age) 0.1995 0.199 0.184 0.253 0.265 0.284 0.25 0.262 0.279 0.75 0.738 0.721 

MDA 0.207 0.198 0.172 0.268 0.283 0.295 0.265 0.279 0.289 0.735 0.721 0.711 

LPA 0.2023 0.196 0.179 0.27 0.285 0.292 0.267 0.28 0.287 0.733 0.72 0.713 

LA 0.206 0.202 0.191 0.24 0.255 0.269 0.239 0.253 0.265 0.761 0.747 0.735 

PA 0.765 0.751 0.739 0.044 0.047 0.051 0.0808 0.083 0.085 0.9192 0.917 0.915 

Total 0.34 0.3 0.29 0.28 0.3 0.32 0.28 0.3 0.32 0.72 0.7 0.68 
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Appendix 4-D: Measures of Discriminatory Power 
The table presents the average measures of discriminatory power for all dynamic and static frameworks. The best performers are shown in block cells where darker represents 
better performance. The average performance of each group is bolded.  

  ROC H Gini KS IV 

Models 3-year 5-year 10-year 3-year 5-year 10-year 3-year 5-year 10-year 3-year 5-year 10-year 3-year 5-year 10-year 

FA Information 0.62 0.68 0.63 0.12 0.16 0.11 0.25 0.37 0.24 0.27 0.33 0.26 0.142 0.241 0.115 

DDWFSB 0.664 0.604 0.579 0.158 0.12 0.074 0.327 0.208 0.052 0.305 0.252 0.245 0.196 0.155 0.1149 

DDWTDB-ln(age) 0.624 0.736 0.642 0.113 0.197 0.122 0.248 0.472 0.285 0.257 0.392 0.274 0.128 0.312 0.1099 

DDWTDB-1/ln(age) 0.632 0.741 0.629 0.089 0.178 0.107 0.264 0.481 0.258 0.261 0.402 0.245 0.144 0.330 0.1046 

DDWTDB-LPE 0.642 0.727 0.648 0.142 0.182 0.126 0.283 0.454 0.296 0.297 0.385 0.281 0.159 0.311 0.1236 

DDWTDB-VEX 0.643 0.727 0.648 0.144 0.182 0.127 0.287 0.454 0.296 0.3 0.385 0.283 0.128 0.302 0.0955 

DIWOTIB 0.642 0.727 0.647 0.142 0.182 0.126 0.283 0.453 0.294 0.296 0.386 0.283 0.131 0.329 0.0988 

DIWTIB-ln(age) 0.558 0.702 0.564 0.054 0.156 0.05 0.115 0.404 0.083 0.177 0.335 0.179 0.131 0.296 0.143 

DIWTIB-1/ln(age) 0.623 0.717 0.621 0.099 0.169 0.092 0.246 0.434 0.242 0.253 0.375 0.247 0.140 0.310 0.1297 

MDA 0.621 0.62 0.625 0.109 0.114 0.102 0.241 0.241 0.25 0.251 0.251 0.232 0.159 0.139 0.1144 

LPA 0.598 0.62 0.625 0.096 0.114 0.102 0.196 0.241 0.25 0.233 0.251 0.232 0.128 0.145 0.1369 

LA 0.622 0.638 0.65 0.128 0.143 0.137 0.243 0.276 0.301 0.285 0.299 0.297 0.138 0.125 0.0964 

PA 0.624 0.644 0.656 0.129 0.13 0.136 0.248 0.287 0.311 0.285 0.281 0.294 0.126 0.139 0.1095 

FAMI Information 0.74 0.75 0.73 0.22 0.22 0.2 0.47 0.49 0.47 0.41 0.42 0.4 0.250 0.331 0.22 

DDWFSB 0.781 0.692 0.655 0.298 0.19 0.144 0.561 0.383 0.309 0.478 0.358 0.338 0.346 0.198 0.1251 

DDWTDB-ln(age) 0.767 0.777 0.755 0.244 0.241 0.224 0.535 0.554 0.509 0.448 0.455 0.431 0.256 0.408 0.2381 

DDWTDB-1/ln(age) 0.769 0.781 0.755 0.213 0.228 0.216 0.538 0.563 0.51 0.447 0.462 0.43 0.267 0.425 0.2465 

DDWTDB-LPE 0.768 0.768 0.762 0.244 0.23 0.235 0.537 0.536 0.525 0.452 0.448 0.445 0.300 0.429 0.2372 

DDWTDB-VEX 0.77 0.767 0.761 0.245 0.23 0.234 0.539 0.535 0.522 0.455 0.449 0.442 0.254 0.443 0.2796 

DIWOTIB 0.665 0.767 0.761 0.161 0.23 0.234 0.33 0.534 0.522 0.324 0.448 0.443 0.131 0.425 0.241 

DIWTIB-ln(age) 0.725 0.755 0.714 0.188 0.214 0.17 0.451 0.511 0.429 0.401 0.427 0.38 0.382 0.480 0.3818 

DIWTIB-1/ln(age) 0.745 0.756 0.739 0.208 0.216 0.2 0.49 0.513 0.478 0.433 0.441 0.418 0.328 0.415 0.291 

MDA 0.638 0.661 0.686 0.133 0.14 0.149 0.276 0.322 0.372 0.285 0.292 0.309 0.154 0.133 0.1231 

LPA 0.642 0.67 0.679 0.135 0.149 0.145 0.285 0.339 0.357 0.283 0.299 0.302 0.149 0.142 0.1698 

LA 0.778 0.774 0.765 0.258 0.257 0.239 0.555 0.547 0.529 0.472 0.463 0.454 0.223 0.233 0.1577 

PA 0.778 0.775 0.765 0.257 0.257 0.237 0.555 0.549 0.529 0.477 0.468 0.451 0.214 0.237 0.151 

FAMV Information 0.82 0.82 0.81 0.35 0.35 0.33 0.64 0.64 0.62 0.55 0.55 0.53 0.562 0.536 0.521 
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DDWFSB 0.778 0.702 0.641 0.334 0.241 0.134 0.556 0.404 0.275 0.513 0.381 0.277 0.506 0.361 0.2002 

DDWTDB-ln(age) 0.826 0.839 0.829 0.355 0.367 0.351 0.651 0.677 0.657 0.558 0.574 0.557 0.586 0.512 0.5045 

DDWTDB-1/ln(age) 0.83 0.843 0.833 0.335 0.355 0.341 0.659 0.686 0.665 0.561 0.58 0.566 0.567 0.537 0.5044 

DDWTDB-LPE 0.823 0.834 0.828 0.351 0.359 0.349 0.646 0.668 0.656 0.552 0.571 0.558 0.589 0.560 0.5724 

DDWTDB-VEX 0.823 0.834 0.827 0.352 0.358 0.346 0.646 0.667 0.654 0.554 0.569 0.553 0.585 0.534 0.5496 

DIWOTIB 0.823 0.834 0.827 0.351 0.358 0.347 0.646 0.668 0.654 0.554 0.568 0.554 0.564 0.546 0.5381 

DIWTIB-ln(age) 0.806 0.823 0.811 0.314 0.338 0.317 0.611 0.646 0.623 0.516 0.54 0.526 0.658 0.7356 0.6856 

DIWTIB-1/ln(age) 0.817 0.827 0.822 0.335 0.345 0.335 0.634 0.655 0.644 0.537 0.56 0.547 0.623 0.610 0.6147 

MDA 0.831 0.835 0.833 0.361 0.366 0.357 0.661 0.671 0.666 0.575 0.585 0.577 0.379 0.390 0.3542 

LPA 0.827 0.835 0.832 0.355 0.366 0.356 0.654 0.67 0.664 0.569 0.582 0.575 0.576 0.610 0.6238 

LA 0.83 0.832 0.827 0.357 0.362 0.348 0.659 0.663 0.655 0.561 0.566 0.558 0.551 0.539 0.5562 

PA 0.83 0.833 0.829 0.357 0.36 0.352 0.66 0.665 0.658 0.561 0.566 0.564 0.558 0.498 0.5431 

FAMVMI Information 0.84 0.84 0.83 0.38 0.37 0.35 0.68 0.67 0.65 0.59 0.58 0.57 0.614 0.579 0.537 

DDWFSB 0.804 0.751 0.702 0.366 0.28 0.181 0.608 0.501 0.405 0.543 0.432 0.375 0.562 0.404 0.1842 

DDWTDB-ln(age) 0.8536 0.85 0.843 0.3997 0.3954 0.3807 0.7072 0.700 0.686 0.6109 0.597 0.5941 0.596 0.584 0.4979 

DDWTDB-1/ln(age) 0.8578 0.8541 0.8471 0.384 0.385 0.366 0.7156 0.7082 0.6941 0.6188 0.6044 0.5999 0.616 0.592 0.5202 

DDWTDB-LPE 0.847 0.846 0.841 0.388 0.3902 0.371 0.695 0.693 0.683 0.599 0.595 0.584 0.681 0.600 0.5721 

DDWTDB-VEX 0.847 0.846 0.839 0.387 0.388 0.365 0.695 0.691 0.678 0.6 0.594 0.579 0.635 0.581 0.5748 

DIWOTIB 0.847 0.846 0.84 0.386 0.389 0.368 0.695 0.692 0.68 0.598 0.595 0.582 0.618 0.598 0.5581 

DIWTIB-ln(age) 0.843 0.836 0.83 0.382 0.37 0.353 0.686 0.672 0.66 0.595 0.576 0.566 0.8386 0.81813 0.78155 

DIWTIB-1/ln(age) 0.841 0.84 0.835 0.371 0.37 0.358 0.681 0.679 0.669 0.588 0.581 0.574 0.721 0.700 0.638 

MDA 0.828 0.831 0.832 0.36 0.358 0.356 0.657 0.662 0.664 0.58 0.579 0.58 0.389 0.373 0.3654 

LPA 0.831 0.835 0.83 0.361 0.366 0.353 0.662 0.669 0.66 0.579 0.587 0.577 0.559 0.546 0.6617 

LA 0.848 0.848 0.84 0.394 0.389 0.367 0.697 0.697 0.681 0.605 0.595 0.583 0.567 0.567 0.5414 

PA 0.848 0.848 0.843 0.394 0.388 0.3733 0.697 0.696 0.685 0.605 0.594 0.589 0.588 0.582 0.5428 

MV Information 0.79 0.79 0.78 0.31 0.3 0.3 0.59 0.58 0.57 0.51 0.5 0.49 0.539 0.510 0.473 

DDWFSB 0.777 0.698 0.636 0.325 0.239 0.137 0.554 0.397 0.264 0.508 0.374 0.267 0.578 0.358 0.2092 

DDWTDB-ln(age) 0.831 0.83 0.83 0.351 0.351 0.35 0.662 0.661 0.659 0.554 0.552 0.551 0.591 0.564 0.5435 

DDWTDB-1/ln(age) 0.834 0.834 0.833 0.332 0.336 0.342 0.669 0.668 0.667 0.56 0.562 0.559 0.613 0.570 0.5251 

DDWTDB-LPE 0.828 0.828 0.829 0.349 0.349 0.349 0.656 0.655 0.657 0.556 0.552 0.555 0.660 0.626 0.5996 

DDWTDB-VEX 0.828 0.827 0.828 0.349 0.348 0.348 0.656 0.654 0.655 0.555 0.551 0.552 0.630 0.620 0.5729 

DIWOTIB 0.828 0.828 0.828 0.349 0.348 0.349 0.656 0.655 0.656 0.556 0.55 0.553 0.631 0.615 0.5621 
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DIWTIB-ln(age) 0.809 0.808 0.812 0.308 0.309 0.316 0.618 0.616 0.624 0.517 0.519 0.527 0.660 0.669 0.677 

DIWTIB-1/ln(age) 0.822 0.822 0.823 0.336 0.336 0.339 0.644 0.644 0.646 0.547 0.545 0.546 0.656 0.661 0.6027 

MDA 0.833 0.832 0.83 0.357 0.356 0.348 0.665 0.664 0.66 0.574 0.575 0.568 0.509 0.467 0.3869 

LPA 0.832 0.832 0.83 0.355 0.356 0.348 0.664 0.663 0.66 0.571 0.575 0.568 0.711 0.686 0.68915 

LA 0.828 0.828 0.828 0.349 0.349 0.349 0.656 0.655 0.657 0.557 0.554 0.553 0.624 0.607 0.5664 

PA 0.828 0.828 0.828 0.349 0.349 0.35 0.656 0.655 0.657 0.557 0.554 0.554 0.624 0.607 0.5699 

BSM_HKCL04 0.65 0.65 0.65 0.147 0.147 0.147 0.301 0.301 0.301 0.299 0.299 0.299 0.073 0.073 0.0732 

BSM_BhSh08 0.723 0.723 0.723 0.228 0.228 0.228 0.446 0.446 0.446 0.408 0.408 0.408 0.335 0.335 0.3348 

DOC_JW13 0.649 0.649 0.649 0.134 0.134 0.134 0.298 0.298 0.298 0.287 0.287 0.287 0.184 0.184 0.1844 

MVMI Information 0.84 0.83 0.83 0.38 0.36 0.35 0.68 0.67 0.65 0.59 0.57 0.56 0.671 0.624 0.558 

DDWFSB 0.813 0.729 0.702 0.375 0.246 0.187 0.625 0.458 0.405 0.557 0.423 0.374 0.641 0.370 0.2013 

DDWTDB-ln(age) 0.853 0.8509 0.8441 0.4005 0.3938 0.3781 0.706 0.7019 0.6883 0.61 0.6035 0.591 0.655 0.606 0.5306 

DDWTDB-1/ln(age) 0.8569 0.8549 0.8481 0.379 0.378 0.366 0.7139 0.7099 0.6963 0.618 0.6085 0.6002 0.648 0.623 0.5211 

DDWTDB-LPE 0.848 0.846 0.842 0.39 0.383 0.372 0.697 0.693 0.683 0.602 0.593 0.586 0.671 0.661 0.6079 

DDWTDB-VEX 0.848 0.846 0.841 0.389 0.382 0.368 0.697 0.692 0.681 0.603 0.591 0.583 0.666 0.631 0.596 

DIWOTIB 0.848 0.846 0.841 0.388 0.383 0.368 0.696 0.692 0.682 0.601 0.591 0.584 0.667 0.642 0.5813 

DIWTIB-ln(age) 0.838 0.835 0.831 0.362 0.356 0.351 0.677 0.67 0.663 0.586 0.573 0.57 0.8093 0.81452 0.78404 

DIWTIB-1/ln(age) 0.842 0.84 0.835 0.373 0.369 0.357 0.683 0.679 0.67 0.589 0.582 0.571 0.704 0.722 0.6392 

MDA 0.83 0.827 0.83 0.353 0.347 0.347 0.659 0.654 0.659 0.574 0.571 0.569 0.510 0.448 0.397 

LPA 0.832 0.831 0.829 0.356 0.355 0.345 0.664 0.661 0.657 0.576 0.576 0.569 0.711 0.690 0.6809 

LA 0.848 0.846 0.841 0.388 0.383 0.368 0.696 0.692 0.682 0.6 0.593 0.584 0.671 0.642 0.5767 

PA 0.849 0.846 0.841 0.39 0.382 0.368 0.697 0.692 0.682 0.601 0.592 0.582 0.693 0.642 0.5798 

Total 0.78 0.78 0.77 0.29 0.29 0.27 0.55 0.57 0.54 0.49 0.49 0.47 0.466 0.472 0.407 
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Appendix 4-E: Information Content and Quality of Fit under Calibration Accuracy 
The table presents the average measures of calibration accuracy for all dynamic and static frameworks. The best 
performers are shown in block cells where darker represents better performance. The average performance of each 
group is bolded.  

  LL R2 BS 

Models 3-year 5-year 10-year 3-year 5-year 10-year 3-year 5-year 10-year 

FA Information 570 555 570 0.004 0.013 0.004 0.0461 0.046 0.046 

DDWFSB 566 572 572 0.006 0.003 0.003 0.046 0.0462 0.0462 

DDWTDB-ln(age) 569 544 568 0.004 0.02 0.005 0.04616 0.0453 0.046 

DDWTDB-1/ln(age) 569 542 568 0.004 0.021 0.005 0.04616 0.0452 0.046 

DDWTDB-LPE 568 544 568 0.005 0.02 0.005 0.04608 0.0454 0.046 

DDWTDB-VEX 569 546 569 0.004 0.019 0.005 0.04612 0.0455 0.0461 

DIWOTIB 570 546 569 0.004 0.019 0.005 0.04615 0.0454 0.0461 

DIWTIB-ln(age) 573 540 570 0.002 0.022 0.004 0.04625 0.0451 0.046 

DIWTIB-1/ln(age) 570 549 569 0.004 0.017 0.005 0.04613 0.0456 0.0461 

MDA 571 572 573 0.003 0.002 0.002 0.04611 0.0462 0.0462 

LPA 571 570 571 0.003 0.003 0.003 0.04615 0.0462 0.0462 

LA 571 569 573 0.003 0.005 0.002 0.0461 0.046 0.0463 

PA 571 570 573 0.003 0.004 0.002 0.04611 0.0461 0.0463 

FAMI Information 555 548 558 0.014 0.02 0.01 0.0455 0.045 0.046 

DDWFSB 542 560 570 0.022 0.01 0.004 0.04491 0.0457 0.0461 

DDWTDB-ln(age) 552 538 555 0.016 0.024 0.013 0.04535 0.0451 0.0457 

DDWTDB-1/ln(age) 549 536 554 0.018 0.025 0.014 0.04521 0.045 0.0457 

DDWTDB-LPE 549 538 554 0.018 0.025 0.014 0.04531 0.0452 0.0458 

DDWTDB-VEX 553 540 555 0.015 0.023 0.014 0.04537 0.0453 0.0458 

DIWOTIB 569 540 556 0.004 0.023 0.013 0.04608 0.0453 0.0458 

DIWTIB-ln(age) 535 522 539 0.027 0.033 0.023 0.04503 0.0446 0.0451 

DIWTIB-1/ln(age) 552 543 555 0.016 0.021 0.014 0.04544 0.0454 0.0458 

MDA 571 571 572 0.003 0.003 0.002 0.04611 0.0462 0.0462 

LPA 569 568 568 0.005 0.005 0.005 0.04611 0.0462 0.0461 

LA 556 557 560 0.014 0.013 0.011 0.0457 0.0458 0.0456 

PA 560 557 560 0.011 0.013 0.011 0.04578 0.0457 0.0456 

FAMV Information 524 525 530 0.033 0.032 0.029 0.0447 0.045 0.045 

DDWFSB 528 542 564 0.03 0.022 0.007 0.04466 0.045 0.0459 

DDWTDB-ln(age) 524 525 531 0.033 0.032 0.028 0.0447 0.0447 0.0451 

DDWTDB-1/ln(age) 522 523 529 0.034 0.033 0.03 0.04457 0.0446 0.045 

DDWTDB-LPE 522 525 528 0.035 0.033 0.031 0.04469 0.0448 0.0451 

DDWTDB-VEX 526 529 531 0.032 0.03 0.029 0.04488 0.0451 0.0452 

DIWOTIB 527 529 533 0.031 0.03 0.028 0.04496 0.0451 0.0453 

DIWTIB-ln(age) 501 490.2 499 0.047 0.0533 0.048 0.043554 0.0432 0.0435 

DIWTIB-1/ln(age) 527 528 531 0.032 0.03 0.029 0.04501 0.0451 0.0452 

MDA 545 544 545 0.02 0.021 0.02 0.04532 0.0454 0.0454 

LPA 508 509 503 0.044 0.043 0.047 0.04392 0.0441 0.044 

LA 528 530 532 0.031 0.03 0.028 0.04494 0.0451 0.0452 

PA 528 531 532 0.031 0.028 0.028 0.04492 0.0452 0.0452 
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FAMVMI Information 517 521 525 0.038 0.035 0.032 0.0444 0.045 0.045 

DDWFSB 521 534 561 0.035 0.027 0.009 0.04424 0.0446 0.0457 

DDWTDB-ln(age) 517 522 526 0.038 0.035 0.032 0.04424 0.0447 0.045 

DDWTDB-1/ln(age) 514 519 524 0.04 0.036 0.033 0.04407 0.0445 0.0449 

DDWTDB-LPE 516 521 523 0.039 0.036 0.034 0.04437 0.0447 0.0449 

DDWTDB-VEX 518 526 526 0.037 0.032 0.032 0.04453 0.0449 0.0451 

DIWOTIB 522 525 528 0.035 0.033 0.031 0.04466 0.0449 0.0452 

DIWTIB-ln(age) 477.2 480.8 487 0.0619 0.0592 0.0554 0.042666 0.04289 0.04313 

DIWTIB-1/ln(age) 521 523 526 0.036 0.034 0.033 0.04473 0.0449 0.0451 

MDA 545 544 544 0.02 0.02 0.021 0.04534 0.0454 0.0454 

LPA 511 510 506 0.042 0.042 0.045 0.04411 0.0442 0.0441 

LA 522 527 528 0.035 0.032 0.031 0.04464 0.0449 0.0451 

PA 522 527 528 0.035 0.032 0.031 0.04463 0.0449 0.0451 

MV Information 530 532 535 0.029 0.028 0.026 0.0449 0.045 0.045 

DDWFSB 525 542 564 0.032 0.022 0.008 0.04459 0.045 0.0459 

DDWTDB-ln(age) 525 526 530 0.033 0.032 0.029 0.04485 0.045 0.0451 

DDWTDB-1/ln(age) 523 525 528 0.034 0.033 0.03 0.04477 0.0449 0.045 

DDWTDB-LPE 523 525 527 0.034 0.033 0.031 0.0448 0.0449 0.045 

DDWTDB-VEX 525 528 530 0.033 0.031 0.03 0.04494 0.0451 0.0451 

DIWOTIB 528 529 531 0.031 0.03 0.029 0.04504 0.0451 0.0451 

DIWTIB-ln(age) 500 499 499 0.047 0.048 0.048 0.04359 0.0436 0.04353 

DIWTIB-1/ln(age) 528 528 530 0.031 0.031 0.03 0.04509 0.0451 0.0451 

MDA 537 538 541 0.025 0.025 0.023 0.04511 0.0451 0.0451 

LPA 494 495 497 0.052 0.052 0.0507 0.04366 0.0437 0.0437 

LA 528 529 531 0.031 0.03 0.029 0.04505 0.0451 0.0451 

PA 528 529 531 0.031 0.03 0.029 0.04505 0.0451 0.0451 

BSM_HKCL04 573 573 573 0.002 0.002 0.002 0.04616 0.0462 0.0462 

BSM_BhSh08 543 543 543 0.021 0.021 0.021 0.04482 0.0448 0.0448 

DOC_JW13 570 570 570 0.004 0.004 0.004 0.04615 0.0461 0.0461 

MVMI Information 515 519 523 0.039 0.037 0.034 0.0444 0.045 0.045 

DDWFSB 513 538 560 0.041 0.025 0.01 0.04392 0.0445 0.0457 

DDWTDB-ln(age) 518 520 525 0.038 0.036 0.033 0.04441 0.0446 0.0448 

DDWTDB-1/ln(age) 515 518 522 0.039 0.037 0.034 0.04424 0.0445 0.0447 

DDWTDB-LPE 516 519 522 0.039 0.037 0.035 0.04446 0.0446 0.0448 

DDWTDB-VEX 518 522 522 0.038 0.035 0.035 0.04457 0.0448 0.0448 

DIWOTIB 522 523 526 0.036 0.035 0.032 0.04469 0.0448 0.045 

DIWTIB-ln(age) 481.6 482.4 487 0.0594 0.0582 0.0553 0.042927 0.04303 0.04313 

DIWTIB-1/ln(age) 521 522 525 0.036 0.035 0.033 0.04478 0.0449 0.045 

MDA 538 540 540 0.025 0.023 0.023 0.04521 0.0453 0.0451 

LPA 493.7 495 497 0.0526 0.052 0.051 0.04364 0.0437 0.0437 

LA 521 523 526 0.036 0.035 0.032 0.04469 0.0448 0.045 

PA 521 523 526 0.036 0.035 0.032 0.0447 0.0448 0.045 

Total 535 533 540 0.026 0.027 0.023 0.045 0.045 0.045 
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Chapter Five 

5 A Comparative Analysis of Two-Stage Distress Prediction Models 

 

Abstract: On feature selection, in addition to different types of information, i.e., 

accounting, market and macroeconomic variables, two-stage distress prediction 

studies used management performance to distinguish distress companies from those 

healthy ones. DEA is the programming algorithm that is used to estimate the cross-

sectional and dynamic efficiency of companies. In addition to the conventional 

approach of considering management efficiency, this study uses the market efficiency 

as a measure of company efficiency. Also, it proposes the decomposition of Slack-

Based Measure (SBM)  into Pure Technical Efficiency (PTE), Scale Efficiency (SE) 

and Mix Efficiency (ME), and analyses how each of these measures contributes 

individually in developing distress prediction models. Further, this study provides a 

comprehensive comparison between static and dynamic two-stage distress prediction 

models that apply different types of DEA models to compute alternative DEA scores 

and two different efficiency measures. The results indicate that the measure of market 

efficiency is not superior to the managerial efficiency of a company, yet, it improves 

the performance of distress prediction models on some criteria. Moreover, feeding 

prediction models by decomposed efficiency measures enhances the performance of 

prediction models.  

 

Keywords: Corporate Two-stage Distress Prediction; Efficiency; Data Envelopment 

Analysis; Malmquist Index 
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5.1 Introduction  

Financial distress refers to a situation where a firm’s cash flows are not enough to 

fulfill its contractual payments (Piesse et al., 2006, p. 478). Financially distressed 

companies face detrimental situations, which could adversely affect the value of the 

company, the welfare of stockholders and creditors, and finally, lead to bankruptcy. 

Corporate bankruptcy triggers significant losses to both business community and the 

society as a whole - for details about the costs of bankruptcy, the reader is referred to 

Davydenko et al. (2012), Elkamhi et al. (2012) and Branch (2002). Therefore, 

corporate distress prediction has received considerable attention and became a major 

subject of extensive research in the literature, especially after worldwide financial 

crises in 2007 and European recession in 2009.  

Distress prediction models (DPMs) aim to use broadly recognised sources and 

indicators of financial distress such as difficulties in operating and financing activities, 

and poor performance in management and leadership of the company in developing an 

early warning system to take a proper action against bankruptcy and immune the firm 

(Altman et al., 2016; Bauer and Agarwal, 2014; Bauweraerts, 2016; Laitinen and 

Suvas, 2016; Liang et al., 2016; Wu et al., 2010; Yeh et al., 2010).    

The related literature on corporate bankruptcy and distress prediction use different 

techniques from a variety of fields such as statistics and probability, artificial 

intelligence, and operations research to design new prediction models. Initial studies 

on failure prediction use statistical techniques such as univariate discriminant analysis 

(e.g., Beaver, 1966, 1968), and multivariate discriminant analysis (e.g., Altman, 1968, 

1973, 1983) as classification techniques. Later on, conditional probability models such 

as linear probability analysis (e.g., Meyer and Pifer, 1970; Maddala, 1986), logit 

analysis (e.g., Martin, 1977; Ohlson, 1980) and probit analysis (e.g., Zmijewski, 1984) 

are used to predict the probability of distress. The common characteristic of these 

models, however, is that they are static in nature since they only account for a single-

period data of studied firms. Dynamic models such as survival analysis (e.g., Lane et 

al., 1986; Crapp and Stevenson, 1987; Luoma and Laitinen, 1991; Shumway, 2001; 

Bharath and Shumway, 2008; Chava and Jarrow, 2004) and contingent claims analysis 

(CCA) (e.g., Bharath and Shumway, 2008; Hillegeist et al., 2004) are the next 
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generation of models which could accommodate changes in the profile of firms over 

time. Statistical models, however, are restricted to the changes in underlying 

assumptions, i.e., linearity, multivariate normality, independence among predictor or 

input variables, and equal within-group variance-covariate matrices. 

The less vulnerable techniques to the underlying statistical assumptions are the ones 

from the field of artificially intelligent expert systems (AIES) such as recursively 

partitioned decision trees (e.g., Frydman et al., 1985), case-based reasoning models 

(e.g., Li and Sun, 2009, 2011), neural networks (e.g., Kim and Kang, 2010; du Jardin 

and Séverin, 2012), rough set theory (e.g., McKee and Lensberg, 2002; Yeh et al., 

2010), genetic programming (e.g., Back et al., 1996; Alfaro-Cid et al., 2007; Etemadi 

et al., 2009), as well as ones from field of operations research (OR), such as multi-

criteria decision making analysis (MCDA) (e.g., Zopounidis and Doumpos, 2002) and 

data envelopment analysis (DEA) (e.g., Sueyoshi and Goto, 2009; Sueyoshi et al., 

2010; Li et al., 2014) – for a detailed classification of failure prediction models, the 

reader is referred to Balcaen and Ooghe (2006), Aziz and Dar (2006), Bellovary et al. 

(2007), Baharammirzaee (2010), Abdou and Pointon (2011), and Chen et al. (2016).   

According to Zhou (2013), bankruptcy and distress prediction models are data-fitting 

based empirical research containing four steps of sampling, features selection, 

modelling, and performance evaluation. Several studies have compared the 

performance of competing DPMs considering different sampling approaches – e.g., 

Neves and Vieira (2006), and Zhou (2013); alternative modelling frameworks – e.g., 

Wu et al. (2010), Bauer and Agarwal (2014), and Mousavi et al. (2015); various 

features – e.g., Tinoco and Wilson (2013), and Trujillo-Ponce et al. (2014); and 

different performance evaluation approach – e.g., Mousavi et al. (2015).  

On feature selection, studies have used various types of information including 

accounting, market and macroeconomic variables in developing bankruptcy and 

distress prediction models. However, it is commonly acknowledged that one of the 

main reasons for corporate distress is the poor performance of management (Seballos 

et al., 1990; Gestel et al., 2006; Yeh et al., 2010). Recent studies have included the 

relative efficiency of the business operations as a capable reflection of the management 

efficiency of a company in the bankruptcy and distress prediction models (Xu and 



156 
 

Wang, 2009; Yeh et al., 2010; Li et al., 2014). The management efficiency refers to 

the company’s ratio of weighted outputs (e.g., sales, profit, and net income) to 

weighted inputs (e.g., equity, asset, and employees) with regards to the performance 

of other companies.  

A direct estimation of the company efficiency (i.e., technical, operating and 

productivity efficiency) using financial statements is difficult. One of the widely 

applied techniques is data envelopment analysis (DEA), which could incorporate 

multiple inputs and outputs to estimate the efficiency measure of a corporation relative 

to the most efficient ones (see next section). In this chapter, I develop two-stage 

distress prediction models through using different DEA techniques to compute various 

measures of company efficiency in the first stage and using the computed company 

efficiency measure as an input explanatory variable of the classifier model at the 

second stage.  

My survey of the literature reveals that, to the best of my knowledge, no study provides 

a comprehensive comparison between two-stage distress prediction models; neither 

considering different DEA models that are used to estimate company efficiency nor 

using different classifier models at the second stage. Further, my survey indicates that 

the choice of input and output to estimate company efficiency measures using DEA 

models is restricted to accounting variables rather than market variables (see, Table 

5.1). 

This study adds to the current literature of two-stage distress prediction models in 

several respects. First, considering the pioneer of Li et al. (2014) in analysing the 

contribution of different DEA measures in predicting financial distress, I propose to 

study the decomposition of the Non-Radial Technical Efficiency score, i.e., Slack-

Based Measure (SBM) of efficiency (Tone, 2001) into Pure Technical Efficiency 

(PTE), which presents the ability to improve the effectiveness by prudently allocating 

resources and using new technology, Scale Efficiency (SE), which indicates capacity 

to attain better efficiency by adjusting to its optimal scale, and Mix Efficiency (ME), 

which shows capacity to improve the effectiveness by managing input- or output-

slacks, and analyse how each of these measures individually contributes to developing 

distress prediction models.  
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Second, in addition to the conventional approach of using accounting variables and 

firm’s characteristics as inputs and outputs of DEA models to estimate the measure of 

management efficiency, this study is the first to use market information variables to 

calculate the measure of the market efficiency of companies as a predictor in a two-

stage prediction model. Third, this study provides a comprehensive analysis of two-

stage distress prediction models that apply different DEA models – say, input-oriented 

vs. output-oriented, radial vs. non-radial, static vs. dynamic, to compute the measures 

of management efficiency and market efficiency of companies at the first stage of two-

stage models and use dynamic and static classifier frameworks at the second stage of 

two-stage models.   

The remainder of the chapter is organised as follows. Section 5.2 reviews the literature 

background of DEA in distress prediction. Section 5.3 describes details on my 

experimental design including data, sampling, and hybrid two-stage models of distress 

prediction to be assessed and the proposed evaluation technique. Section 5.4 describes 

the empirical results and the findings. Finally, section 5.5 provides the conclusion of 

the chapter.   

5.2 Literature review 

DEA is a non-parametric technique which is introduced to measure the relative 

efficiency of a group of decision-making units (DMUs), e.g. firms, hospitals, products, 

prediction models, cities, and others, based on their respective inputs and outputs 

(Charnes et al., 1978). DEA has been one of the most successfully used techniques in 

the research activities related to performance evaluation of banking and other financial 

institutions – for a comprehensive survey on DEA in banking; the reader is referred to 

Emrouznejad and Yang (2017), Paradi and Zhu (2013) and Fethi and Pasiouras (2010). 

The rational association between the company’s efficiency (as a proxy of management 

efficiency) and the probability of distress is commonly recognised in recent distress 

prediction studies (Seballos et al., 1990; Gestel et al., 2006; Yeh et al., 2010). 
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Table 5.1: The Inputs and Outputs of DEA Models where DEA Score Used as a Predictor 

Reference First stage DEA model Second stage model Inputs of DMUs Outputs of DMUs 

Barr et al. (1994) CCR-IO Probit  (1) Full-time equivalent employees,  
(2) Salary expenses, (3) Premises and 
fixed assets, (4) Other noninterest 
expenses, (5) Total interest expense, 
(6) Purchased funds 

(1) Core deposit, (2) Earning 
assets, 
(3) Total interest income 

Barr and Siems 
(1997) 

BCC-IO Probit  (1) Full-time equivalent employees,  
(2) Salary expenses, (3) Premises and 
fixed assets, (4) Other noninterest 
expenses, (5) Total interest expense, 
(6) Purchased funds 

(1) Core deposit (2) Earning assets  
(3) Total interest income 

Xu and Wang (2009) CCR-IO Logit, MDA, SVM (1) Total assets, (2) Total liabilities,  
(3) Cost of sales 

(1) Income from sales 

Psillaki et al. (2010) DD-VRS-OO Logistic regression (1) Capital stock, (2) Labor (1) Value-added 

Sueyoshi et al. 
(2010) 

RAM-DEA Tobit regression (1) Cost of goods sold, (2) the total 
number of employees, (3) the book 
value of plant and equipment 

(1) Total revenue  

Yeh et al. (2010) CCR-OO RTS-SVM (1) R&D expense, (2) R&D designers,  
(3) number of patents and trademarks 

(1) Gross profit, (2) market share 

Li et al. (2014) SBM-VRS-IO  
SBM-CRS-IO 

Logistic regression (1) Number of employees, (2) share 
capital, (3) total cost, (4) total assets, 
(5) total liabilities 

(1) Total sales, (2) total profit,  
(3) cash accrued 

Li et al. (2017) Malmquist SBM-VRS-IO 
Malmquist Super-SBM-VRS-IO 

Multi-logit regression (1) Number of employees, (2) share 
capital, (3) total cost, (4) total assets, 
(5) total liabilities 

(1) Total sales, (2) total profit,  
(3) cash accrued 
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More relevant to this research, distress prediction studies applied DEA in two different 

ways. First, DEA is used as a classifier to discriminate between distress and healthy 

groups (e.g., Cielen et al., 2004; Paradi et al., 2004; Sueyoshi, 2006; Premachandra et 

al., 2011; Ouenniche and Tone, 2017). Second, in the hybrid two-stage prediction 

models, DEA is used to measure the relative efficiency of companies at the first stage.  

Then, the estimated DEA efficiency score is used as an input explanatory variable of 

the model at the second stage (e.g., Xu and Wang, 2009; Sueyoshi et al., 2010; Psillaki 

et al., 2010; Yeh et al., 2010; Li et al., 2014, 2017). The next two sections provide a 

concise review of the application of DEA in distress prediction as a classifier (see 

section 5.2.1) and as a predictor (see section 5.2.2). Table 5.2 provides a brief 

explanation of these studies in the literature.  

5.2.1 DEA as a Classifier 

Compared with the conventional statistical models, DEA as a non-parametric classifier 

has some methodological advantages. For example, DEA is a distribution-free 

framework and does not require specifying the distribution of features. Also, DEA 

relaxes the assumption of equality of variance-covariance matrices among all groups. 

Further, it does not incorporate a priori probabilities to account for the relative 

occurrence of observations in different populations and does not require a priori 

specification of a functional form for the input-output correspondences (Paradi et al., 

2004; Premachandra et al., 2009).   

The application of DEA score as a classifier in the literature has been twofold; first, 

some studies used DEA score to discriminate between two groups of Goods (e.g. 

bankrupt) and Bads (e.g. non-bankrupt) using a cut-off point or statistical test (Simak, 

1997; Pille and Paradi, 2002; Paradi et al., 2004; Cielen et al., 2004; Tsai et al., 2009; 

Shetty et al., 2012),and second, some studies used DEA score as dependent variable 

while other features of the firm as independent variables to establish the extent to 

which DEA results coincide with those of regression analysis, discriminant analysis, 

etc (Bowlin, 2004; Emel et al., 2003; Min and Lee, 2008) (see Table 5.2, for more 

details). 
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Table 5.2: DEA application in Distress Prediction 

Reference 
DEA 
incorporated as 

Assumed 
technology 

Main objectives 

Barr et al. (1993) Benchmark CCR-IO To apply DEA as a tool to quantify a bank’s managerial efficiency for predicting bankruptcy.  

Barr et al. (1994) Efficiency score 
as predictor 

CCR-IO To apply DEA as a tool to quantify a bank’s managerial efficiency as a predictor in developing 
bankruptcy prediction model. 

Simak (1997) Classifier BCC-IO To apply DEA as a classifier for predicting corporate distress.  

Barr and Siems (1997) Efficiency score 
as predictor 

BCC-IO To apply DEA as a tool to measure management efficiency as a predictor in a logistic regression 
model.  

Sueyoshi (2001) Classifier DEA-DA To propose a new type of DEA-Discriminant Analysis (DA), or “Extended DEA-DA,” that can 
overcome some methodological shortcomings of its original formulation (Sueyoshi, 1999).  The 
new extended framework is used as a classifier. 

Pille and Paradi (2002) Classifier  BCC-IO 
 

To examine the effectiveness of various DEA scores computed using different inputs and outputs 
in detecting financial weakness of individual Credit Unions in Ontario, in the years before failure. 

Emel et al. (2003) Benchmark CCR-IO To apply DEA as a tool to measure creditability scores represent the dependent variable in a 
regression model with six independent variables (financial ratios) 

Cielen et al. (2004) Classifier  CCR-OO To apply DEA as a classifier for predicting corporate distress and compare the prediction 
performance with two other bankruptcy prediction models (i.e. Linear programming and a rule 
induction (C5.0)). 

Paradi et al. (2004) Classifier  BCC-IO To propose the concept of worse practice DEA in combination with a layering technique as a new 
classifier approach.  

Sueyoshi (2004) Classifier  DEA-DA To apply DEA in a new proposed DEA-DA approach to suggest a new type of mixed integer 
programming formulation that estimates weights of a linear discrimination function by minimizing 
the total number of misclassified observations.   

Bowlin (2004) Benchmark BCC-IO To apply DEA in assessing the financial stability of CRAF participants. 

Sueyoshi (2006) Classifier  DEA-DA To apply DEA in two DEA-DA approaches (i.e., Standard MIP & Two-stage MIP models) as 
classifiers and compare it with the prediction performance of six other bankruptcy prediction 
models (i.e. Logit, Probit, Fisher’s linear DA, Smith’s quadratic DA, Neural network & Decision 
tree) 

Min and Lee (2008) Benchmark CCR-IO To apply DEA to measure efficiency scores represent a dependent variable in two types of 
econometric model (i.e. regression analysis and discriminant analysis) to predict bankruptcy.  
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Reference 
DEA 
incorporated as 

Assumed 
technology 

Main objectives 

Premachandra et al. 
(2009) 

Classifier  Additive-DEA To apply DEA (additive model) as a classifier for assessing corporate failures compared to the 
Logistic technique.  

Sueyoshi and Goto 
(2009a) 

Classifier  DEA-DA  To apply DEA in a DEA-DA approach as a classifier and compare the prediction performance with 
Altman’s Z-score (1968) model. Also, DEA-DA is applied to see whether R&D expenditure is 
effective on the financial performance of firms.  

Sueyoshi and Goto 
(2009b) 

Classifier  DEA-DA To apply DEA in a DEA-DA approach in combination with PCA to reduce the computation burden 
and then alter DEA-DA weights to address both the sample imbalance problem and the location 
problem.  

Tsai et al. (2009) Classifier  DEA-DA To apply DEA in combination with DA (DEA-DA) (Sueyoshi et al., 2004) as a classifier and 
compare the accuracy with another type of bankruptcy models.  

Xu and Wang (2009) Efficiency score 
as predictor 

CCR-IO To apply DEA to measure efficiency as a predictor in three main failure prediction models, i.e. 
MDA, Logit and SVM and compare the predictive performance of models.  

Sueyoshi et al. (2010) Benchmark RAM-DEA To apply RAM (Range Adjusted Measure; Cooper et al., 1999; Aida et al., 1998) as a DEA model 
to measure efficiency scores of firms, which are then represented as the dependent variable in a 
Tobit-regression model to investigate if the reform of the corporate governance influences the 
performance of companies.  

Psillaki et al. (2010) Efficiency score 
as predictor 

DD-VRS-OO To apply DEA as a tool to measure a productive inefficiency - the distance from the industry’s best 
practice frontier- as a predictor in developing bankruptcy prediction model. 

Yeh et al. (2010) Efficiency score 
as predictor 

CCR-OO To apply DEA to measure efficiency as a predictor in a new model namely RTS-SVM.  

Premachandra et al. 
(2011) 

Classifier Additive-DEA To propose an approach based on the additive super-efficiency DEA to overcome drawbacks of the 
proposed model by Premachandra et al. (2009). 

Mukhopadhyay et al. 
(2012) 

Classifier CCR-IO To apply DEA in combination with (Multilayer Perception) MLP in two sequential stages to predict 
bankruptcy and compare the prediction performance of an MLP model. 

Shetty et al. (2012) Classifier BCC-NO To propose an orientation-free, not-radial directional distance DEA model to measure worst relative 
efficiency within the range of zero to one. 

Khalili and Makvandi 
(2013) 

Classifier Additive-DEA To apply DEA as a classifier to predict the bankruptcy probability of firms and compare the 
prediction performance with three other bankruptcy prediction models i.e. Logit, Probit, and MDA.  
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Reference 
DEA 
incorporated as 

Assumed 
technology 

Main objectives 

Li et al. (2014) Efficiency score 
as predictor 

SBM-VRS-IO  
SBM-CRS-IO 

To propose a new application of DEA in bankruptcy prediction through assuming VRS and 
decomposing Technical Efficiency (TE) into Pure Technical Efficiency (PTE) and Scale Efficiency 
(SE). 

Avkiran and Cai (2014) Classifier Super-SBM-
CRS-NO 

To apply super efficiency SBM-CRS-NO DEA model (Tone,2002) as a classifier to explore 
whether an ex-post sample of financially distressed bank holding companies from the USA can be 
identified as inefficient using pre-global financial crises data.  

Paradi et al. (2014) Classifier SBM-CRS-IO To apply DEA to fix appropriate cut-off points to classify healthy and non-healthy firms.  

Li et al. (2017) Efficiency score 
as predictor 

Malmquist 
SBM-VRS-IO  

To extend the cross-sectional DEA models to time- varying Malmquist DEA. 
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Barr et al. (1993) used DEA under CCR (Charnes, Cooper and Rhods, 1978) condition 

to measure the management efficiency of  US banks. They found that the gap in the 

efficiency score between non-failed and failed banks is both significant and increasing 

as the failure date approaches.  

Pille and Paradi (2002) developed four input-oriented DEA models (with different 

combinations of inputs and outputs) under BCC (Banker, Charnes, and Cooper) (1984) 

to predict financial failure of Credit Unions. The performance of DEA efficiency 

scores was statistically compared with a government modified “Z-score” model and 

“equity to asset” ratio. Overall, inconsistent with Barr et al. (1993), they found that 

failure unions, especially at one year before the failure time, have lower scores than 

healthy ones.  

Paradi et al. (2004) proposed the worse practice DEA analysis under BCC _ aimed at 

finding the companies that are efficient at being bad_ in combination with a layering 

technique rather a fixed cut-off point to classify manufacturing firms into bankrupt and 

non-bankrupt. Also, they employed a different combination of inputs (the drivers of 

bad performance like current liabilities, interest expense, and bad debt) and outputs 

(the drivers of good performance like total asset, sales, profit) to find out the best set 

of inputs/outputs. The result suggested that combining three layers of the best of the 

worst practice improves the classification accuracy of identifying bankrupt and non-

bankrupt firms up to 100 and 67 percent, respectively.   

Cielen et al. (2004) applied DEA under CCR for bankruptcy prediction in comparison 

with a linear programming model (minimised sum of deviations (MSD)) and a rule 

induction (C5.0) model. They suggested using financial ratios with a positive 

correlation as inputs and those with a negative correlation as outputs. Regarding 

prediction accuracy, the result indicated that DEA outperforms both C5.0 and MSD 

models. However, the main methodological issue is that CCR cannot deal with 

negative values of financial ratios.  

Bowlin (2004) analysed cross-sectional and longitudinal differences in DEA scores 

under BCC, over a 10-year period, 1988 -1997, to compare the financial stability of 

different groups of firms, using the presented statistical approach by Banker (1993).  
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Emel et al. (2003) and Min and Lee (2008) applied an input-oriented CCR-DEA to 

measure financial performance, namely, creditability scores, which then used to 

classify firms with scores equal to one and less than one as companies with a good and 

relatively worse financial performance, respectively. To validate the discriminatory 

power of DEA, they used DEA score as the dependent variable and financial ratios as 

independent variables in regression and discriminant analysis. The results suggested 

that DEA is a valid method for estimating the creditworthiness of companies.  

Premachandra et al. (2009) employed the additive DEA model of Charnes et al. (1982) 

for bankruptcy prediction to take advantage of its specific features. First, the additive 

DEA allows for negative values of inputs and outputs (namely, translation invariance 

property). Second, in contrast to radial models (CCR and BCC), which require 

examination of both a DEA efficiency score and slacks to estimate the efficiency of a 

DMU, the additive model requires the consideration of slacks only. Third, while the 

radial DEA model based on an input-oriented or an output-oriented measurement 

results in different efficiency scores, the additive model includes both input and output 

slacks in the efficiency analysis. The comparison of the additive DEA model with 

Logistic regression (LR) indicates that the DEA model (respectively LR) outperforms 

(respectively underperforms) in predicting non-bankrupt (respectively bankrupt) 

firms. 

However, additive DEA has some drawbacks. First, the additive DEA and 

conventional DEA select reverse order of input and output variables, which lead to 

different results (Shetty et al., 2012). Second, the additive model does not provide an 

efficiency score in-between [0, 1]. In other words, although the estimated measure can 

discriminate bankrupt and non-bankrupt firms, it fails to evaluate the depth of 

bankruptcy (Premachandra et al., 2011; Shetty et al., 2012).   

To overcome the above drawbacks, Premachandra et al. (2011) applied super-efficient 

additive DEA model (Du et al., 2010) to develop a discriminant index based upon two 

frontiers, namely failure and success. Switching input-output classification identifies 

these two frontiers. Therefore, for determining failure (respectively success) frontier, 

the smaller (respectively larger) values in the financial ratios are considered as input 

(respectively output), and the larger (respectively lower) values in those ratios are 

considered as output (respectively input). The result indicates that the super-efficiency 
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DEA model is relatively weaker in predicting failure firms compared to non-failure 

companies. However, the discriminant index based on two frontiers improves this 

weakness by giving the practitioners the option to choose different accuracy level of 

failure, non-failure, and total prediction.  

Also, to overcome the shortcomings of the application of the additive DEA by 

Premachandra et al. (2009) in bankruptcy prediction, Shetty et al. (2012) proposed a 

modified efficiency measure using orientation-free non-radial directional distance 

formulation of DEA.  In contrary to the additive DEA, this approach measures the 

worst relative efficiency within the range of zero to one. Further, in contrary to the 

conventional DEA methods, this method identifies the worst performers and locates 

an inefficient frontier.  

Sueyoshi (1999) proposed a new type of discriminant analysis, namely “DEA-

Discriminant Analysis (DEA-DA)” that incorporates the methodological advantages 

of DEA (for example, nonparametric and distribution-free features) into the 

discriminant analysis. This two-stage approach is designed to identify the existence of 

an overlap between the two groups at the first stage and to determine a group 

classification function for new observation samples at the second stage. Sueyoshi 

(2001) proposed the “extended DEA-DA” approach, which has two important 

features; 1) it can deal with negative values, and 2) it can estimate the weights of a DA 

function by minimising the total distance of misclassified observations. However, the 

drawback of the “extended DEA-DA” model is that it does not reduce the number of 

misclassified observations (as explained in accuracy performance evaluation), but the 

total distance of misclassified observations. To overcome this methodological issue, 

Sueyoshi (2004) proposed a mixed integer programming (MIP) version of DEA-DA 

to estimate the weights of the linear discrimination function by minimising the total 

number of misclassified observation. Furthermore, Sueyoshi (2006) compared the 

performance of two advanced versions of DEA-DA classifiers, namely standard MIP 

and two-stage MIP models with six other bankruptcy prediction models; logit, probit, 

Fisher’s linear DA, Smith’s quadratic DA, neural network and decision tree. Tsai et 

al. (2009) also used the MIP version of DEA-DA (Sueyoshi et al. 2004) as a predictor 

of loan default and compared its accuracy with DA, LR and NN models. The result 

suggests that DEA-DA and NN have the better-classifying capability.   
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Further, in a proposed two-stage model, Sueyoshi et al. (2010) applied RAM (range-

adjusted measure: Cooper et al., 1999; Aida et al., 1998) as a DEA model to measure 

the operational efficiency scores of Japanese companies, in the first step. In the second 

step, the efficiency score is used as the dependent variable in a Tobit regression to 

investigate if the corporate governance variables influence the operational efficiency 

of firms.  

Mukhopadhyay et al. (2012) proposed a combination of DEA and Multi-Layer 

Perceptron (MLP) to predict failure. For this, at the first step, they used super 

efficiency negative DEA to identify the worst performers amongst the non-failed firms 

(i.e. companies with an efficiency score more than 1). The recognised worst non-failed 

firms in combination with failed firms are labeled as failed group and then used to train 

the MLP at the second step. The developed MLP then used for failure prediction. The 

proposed technique, therefore, recognises firms that have a high likelihood of facing 

failure along with those that have filed for bankruptcy. 

Avkiran and Cai (2014) applied a super-SBM DEA model (Tone, 2001, 2002) as a 

forward-looking approach to predict the distressed bank holding companies. Results 

suggested that DEA could identify distressed banks up to 2 years ahead.  

More recently, Ouenniche and Tone (2017) applied BCC and SBM DEA models to 

estimate efficiency scores of LSE listed companies and proposed a customized k-

Nearest Neighbour (K-NN) algorithm to determine an optimum DEA score-based cut-

off point, which then is used to classify firms into bankrupt and non-bankrupt ones.  

5.2.2 DEA Score as a Predictor 

In the recent trend of DEA application in distress prediction, the use of DEA efficiency 

score as a feature in developing models is becoming more prevalent. In the earliest 

study, Barr and Siems (1997) used DEA under CCR condition to measure the 

managerial efficiency of US banks at the first stage and then applied the efficiency 

score as a predictor in a probit model at the second stage. Their findings suggest that 

removing management efficiency variable from the full model decreases the model’s 

fit and classification accuracy.  
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Xu and Wang (2009) used DEA under BCC condition to estimate the efficiency score 

of Chinese firms at the first step. The second step compares the prediction accuracy of 

three failure prediction models, namely, SVM, MDA and logistic regression, with and 

without DEA efficiency. The results indicate that using efficiency score improves the 

performance of prediction models effectively.  

Yeh et al. (2010) applied DEA under CCR condition to measure the efficiency of 

Taiwanese information and electronic manufacturing firms. The estimated DEA 

efficiency score and a list of frequently used financial ratios are employed as inputs of 

the second stage, namely rough set theory (RTS), to select the most significant 

features. Finally, the selected features from RTS are used as inputs of support vector 

machines (SVM) to predict business failures.  

Psillaki et al. (2010) proposed a two-stage model of credit risk prediction. In the first 

stage, they applied DEA under BCC to estimate the directional distance function, 

which is used to determine the efficiency scores of a sample of French manufacturing 

firms. The firm efficiency score measures the company’s distance from the industry’s 

best practice frontier. In the second stage, they used logistic regression to evaluate the 

effect of company’s efficiency in predicting failure over and above that explained by 

financial features. 

Li et al. (2014) proposed a new application of DEA in bankruptcy prediction through 

using SBM-VRS to estimate Technical Efficiency (TE) and decomposing TE into Pure 

Technical Efficiency (PTE) and Scale Efficiency (SE) for a sample of Chinese 

companies, at the first stage. In the second stage, these efficiency measures along with 

other financial ratios are used in a Logistic analysis regression to predict the 

probability of failure. Further, they allowed the impact of a variety of efficiency scores 

across all industries on the probability of failure through introducing an interaction 

term into the model.  

Most of the applications of DEA in corporate failure and distress prediction used cross-

sectional or static DEA models that fail to consider the changes in efficiency over time. 

The only exception, to the best of my knowledge, is Li et al. (2017) that applied time-

varying Malmquist DEA to estimate dynamic efficiency scores and conduct them in a 

dynamic prediction model. Further, most of the studies used DEA under constant 
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returns-to-scale (CRS) condition (see for example, Paradi et al., 2004; Xu and Wang, 

2009; Yeh et al., 2010; Avkiran and Cai, 2014; Mukhopadhyay et al., 2012) rather than 

VRS condition (see for example, Psillaki et al., 2010; Li et al., 2014). Also, on DEA 

orientation, three studies (Cielen et al., 2004; Psillaki et al., 2010; Yeh et al., 2010) are 

output oriented, though the majority are input oriented. Finally, while a large number 

of studies have estimated the DEA efficiency scores of firms using financial 

accounting variables (e.g. total assets, total liabilities, total sales, employees, cash 

flow, etc.), as far as I am aware only one (Avkiran and Cai, 2014) has estimated 

efficiency using market variables (e.g., market capitalisation, annual stock return, 

liquid asset,etc.) as inputs and outputs of DEA models.  

5.3 Research Methodology 

This section provides the details of my research methodology, where I compare the 

performance of two-stage distress prediction models. For this, I provide the details on 

my dataset (see section 5.3.1), the static and dynamic DEA models used in the first 

stage of two-stage DPMs (see section 5.3.2), and the static and dynamic models 

specification in the second stage of two-stage DPMs (see section 5.3.3).  

5.3.1 Data  

I took the following steps to select my dataset. First, I considered all non-financial and 

non-utility UK companies listed on the London Stock Exchange (LSE) at any time 

during an 8-year period from 2007 through 2014 - Financial and utility companies are 

excluded because they are regulated. Second, I excluded the firms which are listed less 

than two years in LSE as historical information is a requirement for some modelling 

frameworks. Third, I excluded the firms with missing values for the principal 

accounting items (e.g., sales, total assets) and market information (e.g., price), which 

are necessary elements for calculating many financial ratios (Lyandres and Zhdanov, 

2013). I replaced the remaining missing values with the recently observed ones for 

each firm (Zhou et al., 2012). Fourth, I winsorized the outlier values through replacing 

the values higher (respectively, lower) than 99th (respectively, 1st) percentile of each 

variable with that 99th (respectively, 1st) percentile value (Shumway, 2001).  
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Regarding the classification of firms into distress and non-distress, I followed the 

proposed definition of financial distress by Pindado et al. (2008), where a company is 

classified as distressed if it experiences both of the following conditions for two 

consecutive years. First, the company’s earnings before interest, taxes, depreciation 

and amortization (EBITDA) is lower than its interest expenses, and second, the 

company shows negative growth in market value. To be more specific, the distress 

variable, say , equals 1 for financially distressed companies and equals 0 otherwise. 

In sum, my dataset consists of 2,096 firms and 11,943 firm-year observations. Among 

the total number of observations, there are 676 firm-year observations classified as 

distressed resulting in a distress rate average of 5.66 percent per year. The models are 

developed using training sample period ranges from 2007 to 2011, and tested using 

holdout sample period ranges from 2012 to 2014. Table 5.3 presents the sample sizes. 

Table 5.3: Sample Sizes 

Samples Year Healthy Distressed Total Distress rate 

T
raining sam

ple 
(2007 - 2011) 

2007 1,826 81 1,907 4.25% 

2008 1,704 106 1,810 5.86% 

2009 1,456 165 1,621 10.18% 

2010 1,409 61 1,470 4.15% 

2011 1,354 27 1,381 1.96% 

 Total 7,749 440 8,189 5.27% 

T
raining 

sam
ple 

(2012-2014) 

2012 1,255 69 1,324 5.21% 

2013 1,143 101 1,244 8.12% 

2014 1,120 66 1,186 5.56% 

 Total 3,518 236 3,754 6.29% 

Total  11,267 676 11,943 5.66% 

5.3.2 Stage One: Estimating Efficiency Measures Using DEA Models 

In this section, I explain cross-sectional (static) DEA models (see section 5.3.2.1), and 

Malmquist DEA model (see section 5.3.2.2) applied in the first stage of two-stage 

DPMs. Then, I describe the choice of inputs and outputs for DEA models (see section 

5.3.2.3).  

5.3.2.1 Static DEA Models 

Several types of DEA models can be used depending on the conditions of the problem. 

Further, types of DEA model can be identified based on scale and orientation of the 
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model. In this study, to compute the cross-sectional efficiency measures of companies, 

I apply CCR (Charnes, Cooper, Rhodes, 1978), BCC (Banker, Charnes, and Cooper, 

1984), and Slack-Based Measure (SBM) (Tone, 2001) DEA models considering both 

input-oriented (IO) and output-oriented (OO) analyses – See Table 5.4 and Table 5.5 

for details about DEA models. Also, I apply SBM-DEA model under assumptions of 

constant returns-to-scale (CRS) and variable returns-to-scale (VRS), separately.  

Table 5.4: CCR and BCC Models 

Formulation Description 
 

 
Objective. This is Technical Efficiency (TE) score in CCR model 
and Pure Technical Efficiency (PTE) score in BCC model. The 
objective is to minimise the efficiency score 	 in the input-
oriented version of the model and to maximise the efficiency score 

 in the output-oriented version of model.  
∑ , . , ; 	∀   (1) For each input 	 1, … , , the amount used by ’s ideal 

benchmark; i.e., its projection on the efficient frontier 
(∑ , , should be at most be equal to the amount used by 

 whether revised (i.e., amount of input  adjusted for the 
degree of technical efficiency of ) or not depending on 
whether the model is input-oriented (1) or output-oriented (2).  
 

or 
∑ , , ; 	∀         (2) 

∑ , , ; 	∀        (1) For each output 	 1, … , , the amount used by ’s ideal 
benchmark; i.e., its projection on the efficient frontier 
(∑ , , should be at least as large as the amount produced 
by  whether revised (i.e., amount of output  adjusted for 
the degree of technical efficiency of ) or not depending on 
whether the model is output-oriented (2) or input-oriented (1).  
 

Or 
∑ , . , ; 	∀   (2) 

∑ 1   BCC model requires that the technology is convex. 
CCR model does not need this restriction. 

0;	∀  Non-negativity requirements  

Source: Ouenniche and Tone (2017) 

Note that the CCR and BCC scores are called the (global) technical efficiency (TE) 

and the (local) pure technical efficiency (PTE), respectively. The BCC model 

estimates the efficiency of DMUs when returns-to-scale (RTS) is not necessarily 

constant, i.e., it takes account of scale effect and postulates that convex combinations 

of the observed DMUs from the production possibility set (William W. Cooper et al., 

2006, p. 153).  If a DMU has full BCC efficiency but a low CCR efficiency, then it is 

operating locally efficient but not globally efficient because of the scale size of the 

DMU. Considering these concepts and denoting CCR and BCC as  ∗  and ∗ , 

respectively, the scale efficiency (SE) is defined as  (Charnes et al., 1978) 
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∗

∗ 				 Eq. 5-1 

Therefore, the technical efficiency could be decomposed as 

 	  Eq. 5-2 

The advantage of this decomposition is that it determines the sources of inefficiency, 

i.e., whether it is due to inefficient operation (PTE) or due to detrimental conditions 

displayed by the scale efficiency (SE) or by both.  

Table 5.5: SBM Model 

Formulation Description 

1
1 ,

,
 

Objective. That is, input-oriented SBM measure 

1

1 1 ∑ ,

,

	 Objective. That is, output-oriented SBM measure 

 ∑ , , , ; 	∀  For each input 	 1, … , ,  the amount used by  
“ideal” benchmark; i.e., its projection on the efficient frontier, 
should be at most equal to the amount used by ; that is; 
∑ , , ;	∀  
 

 ∑ , , , ; 	∀  For each output 	 1, … , ,	 the amount produced by 
′  “ideal” benchmark; i.e., its projection on the efficient 

frontier, should be at least as large as the amount produced by 
;  

that is ∑ , , ; 	∀  
 

∑ 1   BCC model requires that the technology is convex. 
CCR model does not need this restriction. 

0;	∀ ; , ; 	∀ ;	 , ; 	∀  Non-negativity requirement  

Source: Ouenniche and Tone (2017) 

Moreover, radial DEA models, i.e., CCR and BCC, overlook possible slacks in inputs 

and outputs, and therefore, would possibly over-estimate the efficiency scores by 

ignoring mix efficiency. The SBM model is a non-radial model that considers slacks 

in inputs and outputs. Note that the equality of optimal input-oriented (respectively, 

output-oriented) SBM measure, i.e.,  ∗  (respectively, ∗ ), and optimal input-

oriented (respectively, output-oriented) CCR measure , i.e., ∗  (respectively, 

∗ ) holds, i.e., ∗ ∗ , if the input-oriented (respectively, output-oriented) 

CCR model has zero input-slacks (respectively, output-slacks) for every optimal 

solution. In other words, the strict inequality, i.e., ∗ ∗  (respectively, ∗

∗ ) holds if and only if the CCR measure indicates an input (respectively, 
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output) mix inefficiency. Considering these concepts, the input and output “mix 

efficiency” (ME) are defined by Cooper et al.(2006, p. 154) 

 
∗

∗ 				and 		
∗

∗        Eq. 5-3 

Considering the equation 5-1 (the decomposition of TE), the non-radial input- or 

output- oriented technical efficiency (SBM) could be decomposed into mixed 

efficiency (ME), pure technical efficiency (PTE) and scale efficiency (SE) as: 

  Eq. 5-4 

In this study, I use CCR-IO, CCR-OO, BCC-IO, BCC-OO, SBM-CRS-IO, SBM-CRS-

OO, SBM-VRS-IO and SBM-VRS-OO models to measure the cross-sectional 

managerial efficiency and market efficiency of companies. Also, I decompose SBM 

measure of each company into ME, PTE and SE, and incorporate them in developing 

distress prediction models in the second stage.  

5.3.2.2 Dynamic DEA Model 

To estimate the efficiency measures of companies over time, I use Malmquist DEA 

productivity index (Fare et al., 1992, 1994). Malmquist productivity index (MPI) is a 

multi-criteria assessment framework for comparing the performance of DMUs over 

time. Fare et al. (1992, 1994) used DEA to extend the original Malmquist Index 

proposed by Malmquist (1953) and constructed the DEA-based Malmquist 

productivity index as the product of two components; (1) caching-up to the frontier, 

which refers to the efficiency change (EC) of DMU with respect to the efficiency 

possibilities defined by the frontier in each period, and (2) efficient frontier-shift 

(EFS), which refers to the shift of efficient frontier between the two time periods  and 

1 (see, Table 5.6 for details about Malmquist productivity index).  



 

173 
 

Table 5.6: Malmquist DEA Model  

Formulation Description 

	  

   Equivalently,  
, 	

,
  

 

The efficiency change (EC) component; 
  Referring to Figure 5.1,  ⁄  and ⁄   represent the efficiency of 

 at period 1  , say Δ , 	 	and at period  ,  Δ , , 
respectively.  
Also,  denote the th input and  denote the th output for , both at 
period . Figure 5-1shows the change of efficiency of  from point  (with 
respect to efficient frontier at period ) to point  (with respect to efficient frontier 
at period 1). 
Thus, 1 shows an improvement in the relative efficiency from period  to 

1, while 1	and 1 shows stability and deterioration in the relative 
efficiency, respectively.   

 /  
 

     and   	  

 

Equivalently, 
,

,

,

,

/
 

The efficiency frontier-shift (EFS) component is the product of the Geometric 
mean of  and ; 
Referring to Figure 5.1,  ⁄  and ⁄  ratios denote the efficiency of 

 at period  with respect to period  frontier, say Δ ,  and period 
1 frontier, say Δ , ,  respectively.  

Also, ⁄  and ⁄  ratios represent the efficiency of  at period 
1  with respect to period  frontier, say Δ ,  and period 1 

frontier, say Δ , .  

 
 

 Equivalently, 

 
, 	

,

,

,

,

,

/
  

 

The Malmquist Productivity Index (MPI) is the product of the efficiency change 
(EC) and the efficiency frontier-shift (EFS).  
This explanation of MPI could be interpreted as the geometric mean of efficiency 
change measured by period  and 1	 technology, respectively. 1 
shows an improvement in the total factor productivity of  from period  to -

1 , while 1	and 	 1 shows stability and deterioration in total 
factor productivity, respectively.  
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Figure 5-1: Efficiency Change and Efficient Frontier-Shift 

 

Figure 5-2: Global Frontier 
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Caves et al. (1982) introduced a distance function, Δ . , to measure technical 

efficiency in the basic CCR model (Charnes et al., 1978). Though, in the non-

parametric framework, instead of using a distance function, DEA models are 

implemented. For example, Fare et al. (1994) used input (or output) oriented radial 

DEA to measure the MPI. However, the radial model faces a lack of attention to slack 

that could be overcome using Slacks-based non-radial oriented (or orientation-free) 

DEA model (Tone, 2001, 2002).  Along with measuring cross-sectional DEA scores 

(section 5.3.2.1), I incorporate CCR-IO, CCR-OO, BCC-IO, BCC-OO, SBM-CRS-

IO, SBM-CRS-OO, SBM-VRS-IO and SBM-VRS-OO models to measure the MPI. 

Also, I decompose SBM measure of each company into ME, PTE and SE, and 

incorporate them in developing dynamic distress prediction models in the second 

stage.  

Global Malmquist Productivity Index  

The primary objective of this study is to estimate the relative efficiency of  

(companies) in each period. However, the estimated Malmquist productive index 

(MPI), say, , , indicates the change of efficiency score between period  and 

1, and should be modified for my purpose. Further, referring to Pastor and Lovell 

(2005), the contemporaneous MPI is not circular, its adjacent period components can 

give conflicting signals, and it is sensitive to LP infeasibility.  

The adjacent reference index, proposed by Fare et al. (1982), suggests multiplying 

,  by Δ , , which results in the relative efficiency of  at period 

1 compared to period . However, the main drawback of this index is that it cannot 

estimate the relative efficiency score of non-adjacent periods, e.g., period  and 2 

or 1  and 3 . To overcome this drawback, Berg et al., (1992) used a fixed 

reference index, which compares and refers the relative efficiencies of all periods (say, 

	 2  to the first period (say, 1). Therefore, it is possible that the efficiency 

scores of the periods later than the first one are more than 1 since the technology 

develops over time. Although, fixed reference index acquires the circularity property 

with a base period dependence, it remains sensitive to LP infeasibility. More recently, 

Pastor and Lovell (2005) suggested a global MPI, which its components are circular, 

it provides a single measure of productivity change, and it is not susceptible to LP 
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infeasibility. Further, in a situation, where efficient frontiers of multiple periods cross 

each other, the global index can be measured by the best practices in all periods. As 

Figure 5.2 presents, the relative efficiency of  can be measured in terms of either 

the frontier of period 1 (consists of four DMUs of 1,2,3,4 and 5) or the frontier of 

period 2 (consist of four DMUs of 6,7,8,9 and 10).  An alternative is the global frontier, 

which is the combination of the best DMUs in the history, i.e. five DMUs of 6,7,3,4 

and 5.  

It is argued that if the length of observation period is long enough, the current DMUs 

would be covered by the best historical DMUs, probably themselves. Thus, the relative 

efficiency to the global frontier could be considered as an absolute efficiency with the 

scores less than or equal to 1 (Pastor and Lovell, 2005). 

5.3.2.3 Choice of Inputs and Outputs for the First Stage 

To select suitable inputs and outputs for DEA models, I considered the following 

issues. First, the survey on the application of DEA in bankruptcy and distress 

prediction indicates that there is no approved procedure for the choice of inputs and 

outputs of DEA – see Table 5.1 above. In practice, different DEA applications use 

different inputs and outputs, which is one of the drawbacks of DEA application 

(Premachandra et al., 2009). However, the choice of inputs and outputs should be 

related to the competitive environment (Oral and Yolanda, 1990). 

Second, regarding most of two-stage prediction models, since financial ratios are used 

as features in the second stage, the monetary items of financial statements are used as 

inputs and outputs of DEA models in the first stage (Li et al., 2014, see, for example, 

2017; Psillaki et al., 2010; Xu and Wang, 2009). Third, to the best of my knowledge, 

two-stage studies only used accounting items as inputs and outputs of DEA models to 

compute managerial efficiency of companies (see, Table 5.8 for details). Fourth, to 

deal with negative values in inputs and outputs of DEA, the following popular 

approaches have been proposed: The Range Directional Measure introduced by 

Portela et al., 2004), the Modified Slack-Based Measure introduced by Sharp et al., 

2006, the Semi-Oriented Radial Measure introduced by Emrouznejad et al., 2010 and 

Variant of Radial Measure introduced by Cheng et al., 2013.  
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In this study, for estimating management efficiency, I selected three inputs (Total 

Liabilities, Total Shareholders’ Equity and Number of Employees) and one output 

(Total Sales). Also, for estimating market efficiency, I selected one input (Lag of return 

volatility) and two outputs (Lag of excess return and Market Value). 

To estimate efficiency measures using different DEA models, I employed MaxDEA 

that deals with negative values in inputs (such as shareholders’ equity) and outputs 

(such as lag of excess return) using the variant radial measure approach (Cheng et al., 

2013). Table 5.7 represents the descriptive statistics of inputs and outputs.    

Table 5.7: Descriptive Statistics of Inputs and Outputs of DEA Models 
This table presents the descriptive statistics of inputs and outputs of DEA models. The numbers of Total 
liabilities, Shareholder’s equity, sales and market value are in thousand USD.  

     
Total 

liabilities 
Shareholders' 

Equity 
Employees Sales 

Lag 
(Sigma) 

Lag 
(Excess 
Return) 

Market 
Value 

H
ea

lth
y 

(N
=

11
27

6)
 

mean 435881.2 287003.7 4762 595548.9 0.157 -0.108 531480.5 
sd 1501620.8 916985.6 22305 1897213.1 0.114 0.613 1755247.6 

skewness 5.0 4.8 14 4.6 1.672 -0.408 5.0 

kurtosis 28.5 26.2 282 24.8 6.266 4.469 29.1 

min 59.0 -23630.0 3 0.0 0.014 -1.967 590.0 

max 9476000.0 5592000.0 537784 11368000.0 0.601 1.580 11453960.0 
         

D
is

tr
es

s 
(N

=
67

6)
 mean 45302.9 39396.6 472 26386.4 0.220 -0.706 24442.7 

sd 279600.1 206334.7 1444 136668.1 0.129 0.604 98950.0 

skewness 12.5 12.7 6 13.3 0.867 -0.010 12.8 

kurtosis 187.4 205.3 52 217.1 3.739 3.614 190.6 

min 59.0 -23630.0 2 0.0 0.014 -1.967 590.0 

max 5049200.0 3905187.0 18457 2595600.0 0.601 1.580 1597430.0 
         

T
ot

al
 (

N
=

11
94

3)
 mean 413773.6 272988.6 4519 563333.1 0.160 -0.142 502781.0 

sd 1462801.9 893836.9 21690 1847707.0 0.116 0.628 1709028.0 

skewness 5.1 4.9 15 4.8 1.603 -0.395 5.2 

kurtosis 30.2 27.8 298 26.4 5.947 4.235 30.8 

min 59.0 -23630.0 2 0.0 0.014 -1.967 590.0 

max 9476000.0 5592000.0 537784 11368000.0 0.601 1.580 11453960.0 

5.3.3 Stage Two: Developing Distress Prediction Model 

In this stage, I fed logistic regression with static DEA scores and selected features to 

develop static DPMs. Also, I fed multi-period logistic regression with dynamic DEA 

scores and selected features to develop dynamic DPMs. 

5.3.3.1 Static Logit Model 

Since the seminal work of Ohlson (1980), the logit analysis has become a frequently 

used static model in the distress and bankruptcy prediction (see, for example, Martin, 

1977; Ohlson, 1980; Back et al., 1996; Duda et al., 2010). In the field of financial 
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distress prediction, the dependent variable is a binary variable, takes on two values, 

zero or one. The generic model for binary variables could be stated as follows: 

 
1|

, 										
 Eq. 5-5 

where  denotes the binary response variable, 	denotes the vector of covariates, 

	denotes the vector of coefficients of covariates in the model, and .  is a link 

function that maps the scores of , onto a probability. In practice, depending on 

choice of link function, the type of probability model is determined. As for the logit 

regression model, the link function is the cumulative logistic distribution function, say 

. 

 ,  Eq. 5-6 

which is between zero and one for all real numbers . For my analysis, I specified 

logistic regression to be 

  Eq. 5-7 

where  denotes the probability of facing distress for company ;  denotes the static 

efficiency score  for company ;  denotes a parameter for the static efficiency score 

 to be estimated;  denotes the feature  for company , and  is a parameter for 

feature 	to be estimated.  

5.3.3.2 Dynamic Discrete-Time Hazard Model 

Shumway (2001) proposed a discrete time hazard model using an estimation procedure 

similar to the one used for determining the parameters of a multi-period (dynamic) 

logit model. Many studies have applied this approach for computing the probability of 

a hazard occurrence (see, for example, Cheng et al., 2010; Shumway, 2001; Nam et 

al., 2008; El Kalak and Hudson, 2016). General notation of discrete time hazard model 

could be presented as follows: 

 , 1 , ,
e ,

1 e ,
. , .  Eq. 5-8 

where ,  represent the individual hazard rate of firm  at time , ,  is the 

vector of covariates of each firm 	at time ;  denotes the vector of coefficients;  is 
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the time-variant baseline hazard function related, which could be relate to firm, e.g. 

ln(age) or related to macroeconomic variables, e.g. volatility of exchange rate (Nam et 

al., 2011). Shumway (2001) used a constant time variant term; say 	 , as proxy 

of baseline rate. For my analysis, I modified the discrete-time hazard model to be 

 ,   Eq. 5-9 

where ,  denotes the probability of facing distress for company  at time ;	  

denotes the baseline hazard function;   denotes the dynamic efficiency score  for 

company  at time ;  denotes the feature   for company  at time ;  is the 

coefficient of the baseline hazard rate to be estimated;  is a parameter for the 

dynamic efficiency score  at time  to be estimated; and  is a parameter for feature 

	at time  to be estimated.  

5.3.3.3 Choice of Features for the Second Stage 

To select suitable features for prediction models, I applied the following steps. First, I 

reviewed the literature to select the most commonly used features in other studies (e.g., 

Hebb, 2016; du Jardin, 2015; Zhou, 2014, 2013; Ravi Kumar and Ravi, 2007), 

including 83 accounting-based ratios and 7 market-based information. Second, I used 

t-test method to choose features which show a significant difference between two 

group’s means (Shin and Lee, 2002; Huang et al., 2004; Shin et al., 2005).  

Third, for further reduction of features, I applied factor analysis, and principal 

component analysis with VARIMAX technique (Chen, 2011, Mousavi et al., 2015). 

To be more specific, I used factors analysis to select the variables that both the absolute 

values of their loadings and communities are greater than 0.5 and 0.8, respectively. 

Fourth, 34 variables which presented high factor loadings and high communality 

values, were retained as input features into the stepwise procedure in the second stage 

of two-stage distress prediction models (see, Table 5.8), where a stepwise procedure 

for each framework is used to select the most significant features. 
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Table 5.8: List of Financial Ratios 
Category Ratio or item Category Ratio or item 

Profitability 
(9)  

Net income to total liabilities 
EBIT to total assets 
Return on assets  
Operating income after depreciation 
to total assets 
Retained earnings to total assets 
Expected return on assets 
Total Liabilities Exceed Total Assets 
Changes in net income in two 
consecutive years  
Negative net income for last two 
years 

Liquidity (9) Current asset turnover 
Current assets to total liabilities 
Current liabilities to current assets 
Inventory to current assets 
Inventory turnover 
Inventory to total assets 
Profit before tax to current liabilities 
Quick asset to total assets 
Quick asset to inventory  

Asset 
utilization (2) 

Asset turnover ratio 
Quick assets to sales 

Solvency (3) Current Liabilities to Liabilities 
Equity to capital 
Long term and current 
liabilities to total assets 

Cash flow (2) Operating cash flow to liabilities 
Funds Provided by Operations to 
Total Liabilities 
 

Market 
information (5) 

Lag of excess return 
Lag of sigma 1 
Ln (price)  
Real size 
Failure rate in last year 

Mixed (2)  GDP Sales 
Interest	rate	 Income		 

Firm 
characteristics 
(2) 

Ln (age) 
Log (total assets to GNP price level 
index) 

5.3.3.4 Choice of Efficiency Scores for the Second Stage  

Table 5.9 presents the descriptive statistics of static and dynamic managerial efficiency 

measures for two groups of distress and healthy companies. The result of F-test 

suggests that in most cases, input-oriented DEA scores discriminate better between 

two groups of distress and healthy firms. Therefore, I select input oriented managerial 

efficiency measures, i.e., CCR-IO, BCC-IO, SBM-CRS-IO and SBM-VRS-IO, and 

use equations 5-1 and 5-3 to compute SE-IO and ME-IO for the second stage. Table 

5.10 shows the descriptive statistics of static and dynamic market efficiency measures 

for two groups of distress and healthy companies. The result of F-test indicates that in 

most cases output-oriented DEA models discriminate better between two groups of 

distress and healthy firms. Then, I chose output oriented market efficiency measures, 

i.e., CCR-OO, BCC-OO, SBM-CRS-OO, SBM-VRS-OO, SE-OO and ME-OO for the 

second stage.  I retain the selected static and dynamic scores and relate them to the 

probability of distress using equations 5-4 and 5-6, respectively. 

                                                 
1 The explanation about Lag of Sigma and Lag of excess return is provided in Table 2-A.  
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Table 5.9: Descriptive Statistics of Managerial Efficiency Scores 

    Static                   Dynamic                
  CCR (TE) BCC (PTE) SE SBM-CRS ME SBM-VRS CCR (TE) BCC (PTE) SE SBM-CRS ME SBM-VRS 

    IO & OO IO OO IO OO IO OO IO IO OO IO & OO IO OO IO OO IO OO IO IO OO 

H
ea

lt
h

y 
   

 
(N

=
11

27
6)

 

mean 0.13 0.55 0.21 0.35 0.70 0.10 0.13 0.76 0.39 0.21 0.08 0.48 0.14 0.30 0.71 0.06 0.08 0.79 0.34 0.14 
sd 0.15 0.29 0.24 0.34 0.26 0.13 0.15 0.11 0.22 0.24 0.09 0.31 0.20 0.32 0.28 0.08 0.09 0.09 0.22 0.20 

skewness 2.75 0.10 1.90 0.64 -0.91 3.63 2.75 0.03 0.78 1.90 4.67 0.26 2.83 0.92 -0.77 5.74 4.67 -0.28 0.70 2.83 
kurtosis 13.52 1.70 6.32 1.91 2.89 21.63 13.52 2.30 3.22 6.32 36.81 1.67 11.42 2.47 2.41 55.39 36.81 3.36 2.88 11.42 

min 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.40 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.43 0.01 0.00 
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

                      

D
is

tr
es

s 
   

   
  

(N
=

67
6)

 

mean 0.05 0.74 0.09 0.10 0.70 0.04 0.05 0.73 0.52 0.09 0.03 0.71 0.05 0.07 0.72 0.02 0.03 0.78 0.50 0.05 
sd 0.09 0.24 0.18 0.18 0.29 0.07 0.09 0.11 0.21 0.18 0.04 0.25 0.08 0.15 0.27 0.03 0.04 0.09 0.20 0.08 

skewness 5.33 -1.01 3.91 3.01 -0.92 7.03 5.33 0.18 0.04 3.91 3.01 -0.91 6.22 3.63 -1.00 2.58 3.01 -0.15 -0.14 6.22 
kurtosis 46.58 3.03 18.97 12.35 2.67 79.64 46.58 2.38 2.78 18.97 15.57 2.81 58.32 17.96 2.92 12.35 15.57 3.04 2.71 58.32 

min 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.42 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.45 0.02 0.00 
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.31 1.00 1.00 1.00 1.00 0.24 0.31 0.99 1.00 1.00 

                   

T
ot

al
   

   
   

 
(N

=
11

94
3)

 

mean 0.12 0.56 0.20 0.34 0.70 0.10 0.12 0.76 0.39 0.20 0.07 0.50 0.14 0.29 0.71 0.06 0.07 0.79 0.35 0.14 
sd 0.15 0.29 0.24 0.34 0.26 0.13 0.15 0.11 0.22 0.24 0.09 0.31 0.20 0.32 0.28 0.08 0.09 0.09 0.22 0.20 

skewness 2.80 0.04 1.95 0.70 -0.91 3.68 2.80 0.04 0.73 1.95 4.71 0.20 2.90 0.98 -0.79 5.79 4.71 -0.27 0.63 2.90 
kurtosis 13.91 1.68 6.53 2.00 2.88 22.28 13.91 2.30 3.09 6.53 37.70 1.63 11.95 2.61 2.44 56.89 37.70 3.34 2.76 11.95 

min 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.40 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.43 0.01 0.00 
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 F-test 182.67 312.23 157.30 363.37 0.02 159.71 182.67 34.21 237.73 157.30 156.07 370.11 150.50 335.84 2.44 148.50 156.07 13.86 325.24 150.72 
  p-value 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 
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Table 5.10: Descriptive Statistics of Market Efficiency Scores 

    Static                   Dynamic                 
  CCR (TE) BCC (PTE) SE SBM-CRS ME SBM-VRS CCR (TE) BCC (PTE) SE SBM-CRS ME SBM-VRS 

    IO & OO IO OO IO OO IO OO OO IO OO IO & OO IO OO IO OO IO OO OO IO OO 

H
ea

lt
hy

 
(N

=
11

27
6)

 

mean 0.14 0.20 0.60 0.73 0.21 0.14 0.03 0.11 0.20 0.07 0.16 0.17 0.98 0.97 0.16 0.16 0.02 0.08 0.17 0.06 
sd 0.17 0.21 0.21 0.26 0.18 0.17 0.10 0.21 0.21 0.18 0.15 0.16 0.01 0.13 0.16 0.15 0.07 0.19 0.16 0.16 

skewness 2.73 2.08 -0.46 -0.99 2.16 2.73 6.08 2.60 2.08 3.59 3.20 3.04 -0.33 -6.42 3.20 3.20 6.16 3.49 3.04 3.91 
kurtosis 11.92 7.56 3.27 3.13 9.01 11.92 46.10 9.15 7.56 16.01 15.47 14.02 4.03 43.32 15.50 15.47 51.09 15.10 14.02 18.95 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.97 0.06 0.02 0.02 0.00 0.00 0.02 0.00 
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

                      

D
is

tr
es

s 
   

 
(N

=
67

6)
 

mean 0.08 0.12 0.39 0.58 0.15 0.08 0.00 0.06 0.12 0.01 0.12 0.13 0.98 0.98 0.13 0.12 0.00 0.01 0.13 0.00 
sd 0.16 0.18 0.21 0.28 0.18 0.16 0.03 0.17 0.18 0.06 0.18 0.19 0.01 0.07 0.18 0.18 0.00 0.02 0.19 0.01 

skewness 3.71 3.49 0.48 -0.39 3.13 3.71 25.10 3.79 3.49 13.24 3.49 3.42 0.07 -12.05 3.49 3.49 11.93 12.07 3.42 11.89 
kurtosis 16.70 15.09 3.51 2.25 13.07 16.70 643.51 17.23 15.09 193.18 14.83 14.32 3.28 150.26 14.82 14.83 171.65 172.19 14.32 172.22 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.97 0.09 0.02 0.02 0.00 0.00 0.02 0.00 
max 0.98 1.00 1.00 1.00 1.00 0.98 0.66 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.05 0.33 1.00 0.23 

                      

T
ot

al
   

   
(N

=
11

94
3)

 

mean 0.14 0.19 0.59 0.72 0.20 0.14 0.03 0.11 0.19 0.07 0.16 0.16 0.98 0.97 0.16 0.16 0.02 0.08 0.16 0.06 
sd 0.17 0.21 0.22 0.26 0.18 0.17 0.09 0.21 0.21 0.18 0.16 0.16 0.01 0.12 0.16 0.16 0.07 0.19 0.16 0.15 

skewness 2.75 2.13 -0.42 -0.94 2.20 2.75 6.25 2.64 2.13 3.70 3.21 3.05 -0.31 -6.56 3.21 3.21 6.35 3.61 3.05 4.04 
kurtosis 11.99 7.74 3.11 3.03 9.12 11.99 48.64 9.40 7.74 16.93 15.36 13.96 3.83 45.18 15.39 15.36 54.08 16.04 13.96 20.11 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.97 0.06 0.02 0.02 0.00 0.00 0.02 0.00 
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 F-test 83.43 94.02 618.33 217.48 57.11 83.43 44.30 35.92 94.02 85.72 27.66 34.15 610.93 2.66 26.99 27.66 52.74 98.67 34.15 89.45 
  p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 
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5.4 Empirical Results 

The objective of this study is to evaluate the relative performance of two-stage distress 

prediction models using UK data. Section 5.4.1provides the assessment of models 

using the conventional unidimensional-ranking framework. Section 5.4.2 assesses the 

models using a multi-criteria evaluation framework.  

5.4.1 Unidimensional Ranking of Distress Prediction Models 

For unidimensional ranking of different models, I use commonly applied performance 

criteria in the literature; i.e., the discriminatory power, the calibration accuracy, the 

information content, and the correctness of categorical prediction. Regarding the 

discriminatory power criterion that measures how much a prediction model is capable 

of discriminating between distressed firms and healthy ones, I use Receivable 

Operating Characteristic (ROC), Kolmogorov-Smirnov (KS) statistics, Gini Index 

(GI), and Information Value (IV) as measures. Regarding the calibration accuracy 

criterion that measures how much a model is qualified in estimating the probability of 

distress (PD), I use Brier Score (BS) as measure. Regarding the information content 

criterion that measures the extent to which the output of a model (e.g., PD, scores) 

carries enough information for prediction, I follow Agarwal and Taffler (2008) and 

use a log-likelihood statistic (LL) and pseudo-R2 as measures. Finally, with respect to 

the correctness of categorical prediction criterion that measures how often a model can 

predict distressed firms (respectively, healthy firms) as distressed (respectively, 

healthy) ones, I use Type I errors (T1), Type II errors (T2), misclassification rate (MR), 

sensitivity (Sen), specificity (Spe), and overall correct classification (OCC) as 

measures (for more details about performance criteria and measures, the reader is 

referred to Mousavi et al. (2015)). Table 5.11, Table 5.12, Table 5.13 and Table 5.14 

present the estimated distress prediction models. The  tests indicate that all 34 

models explain significant amount of variation in the probability of distress. Tables 

5.11 and 5.12 present the estimated static models using stepwise procedure in a logit 

framework using managerial efficiency scores and market efficiency scores, 

respectively. 
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Table 5.11: Static Model Results Using Managerial Efficiency Scores of Companies 
This table presents the static models using managerial efficiency scores developed in a logit framework. Model 1 does not contain any measure of efficiency. Models 
2, 3 and 4 use TE (CCR), PTE (BCC) and SE to develop prediction models. Model 5 uses decomposed measures of TE (i.e., BCC and SE) to develop prediction 
model. Models 6 and 7 use SBM-CRS and ME-CRS efficiency scores to develop models. Model 8 uses the decomposed measures of SBM-CRS (i.e., BCC-CRS, 
SE-CRS and ME-CRS). Model 9 uses SBM-VRS to develop prediction model. *** and ** refer to 1% and 5% significance level, respectively. 

Covariates Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

Intercept -1.333*** -1.291*** -2.022*** 6.598*** -1.723*** -1.291*** -0.848* -1.449** -1.722*** 
Retained Earnings to Total Assets       -6.488***           
Negative Net Income for Last Two Years 1.783*** 1.709*** 1.738*** 1.608*** 1.649*** 1.703*** 1.772*** 1.647*** 1.775*** 
Lag of Excess Return -3.603*** -3.560*** -3.608*** -3.479*** -3.583*** -3.553*** -3.576*** -3.570*** -3.618*** 
Log (Total asset to GNP index) -1.537*** -0.992* -0.782   -0.2956 -0.946* -1.500*** -0.3213 -1.061* 
Real Size -2.43*** -2.648*** -2.488*** -3.074*** -2.618*** -2.663*** -2.483*** -2.641*** -2.454*** 
Current liabilities over Current assets       -5.924*           
log (price) 0.103*** 0.104*** 0.103*** 0.100*** 0.1013*** 0.103*** 0.103*** 0.101*** 0.1049*** 
Inventory Turnover       2.399***           
IR × NI       -12.891***           
CCR-IO    -1.8769**               
BCC-IO      0.6936**   0.3923     0.3747   
SE-IO         -0.6797** -0.9955***     -0.965***   
SBM-CRS-IO            -2.626***       
ME-CRS-IO              -0.647 -0.3424   
SBM-VRS-IO                  0.495 
Number of observations 8189 8189 8189 8189 8189 8189 8189 8189 8189 
Log likelihood 2629 2621 2624 2594 2615 2620 2626 2614 2627 
Prob.  0 0 0 0 0 0 0 0 0 
Pseudo R2 0.2720 0.2745 0.2735 0.2834 0.2767 0.2751 0.2728 0.2770 0.2725 

 

  



 

185 
 

Table 5.12: Static Model Results Using Market Efficiency Scores of Companies 
This table presents the static models using market efficiency scores developed in a logit framework. Models 10,11 and 12 use TE (CCR), PTE (BCC) 
and SE to develop prediction models. Model 13 uses decomposed measures of TE (i.e., BCC and SE) to develop prediction model. Models 14 and 15 
use SBM-CRS and ME-CRS efficiency scores to develop models. Model 16 uses the decomposed measures of SBM-CRS (i.e., BCC-CRS, SE-CRS 
and ME-CRS). Model 17 uses SBM-VRS to develop prediction model. *** and ** refer to 1% and 5% significance level, respectively. 

Covariates Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 

Intercept 1.006* 1.369** 1.054* -1.323*** -1.327*** 1.109* -1.105*** -1.351*** 
Asset Turnover Ratio -12.376*** -12.583*** -12.322***     -13.043***     
Quick Assets to Inventory 3.391*** 3.336*** 3.396***     3.524***     
Negative Net Income for Last Two Years 1.618*** 1.631*** 1.62*** 1.758*** 1.776*** 1.636*** 1.758*** 1.776*** 
Lag of Excess Return -3.300***   -3.419*** -0.457 -3.566*** -3.775*** -1.1058 -3.544*** 
Sigma    -0.5805**             
Log (Total asset to GNP index) -1.599*** -1.575*** -1.592*** -1.580*** -1.522*** -1.308*** -1.349*** -1.519*** 
Real Size -2.935*** -3.086*** -2.887*** -2.491*** -2.448*** -3.169*** -2.766*** -2.367*** 
log (price) 0.107*** 0.109*** 0.1084*** 0.108*** 0.102*** 0.105*** 0.107*** 0.102*** 
IR × NI -15.366*** -15.876*** -15.338***     -14.765***     
CCR-OO  -0.914**               
BCC-OO    -3.375**   -2.940**     -2.563**   
SE-OO       -0.648* -0.3576     -0.1245   
SBM-CRS-OO          -2.596       
ME-CRS-OO            -0.120*** -1.193***   
SBM-VRS-OO                -1.615 
Number of observations 8189 8189 8189 8189 8189 8189 8189 8189 
Log likelihood 2596 2588 2597 2620 2626 2575 2599 2626 
Prob.	  0 0 0 0 0 0 0 0 
Pseudo R2 0.2828 0.2854 0.2824 0.2748 0.2731 0.2896 0.2816 0.2730 
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Also, Tables 5.13 and 5.14 indicate the estimated dynamic models using stepwise 

procedure in a multi-period logit framework using managerial efficiency scores and 

market efficiency scores, respectively.  Retained earnings to total assets, negative net 

income for last two years, lag of excess return, log (total asset to GNP index), real size, 

current liabilities over current assets, log (price) and inventory turnover are amongst 

the selected variables using stepwise procedure. 

Table 5.15 presents the performance measures of 34 developed distress prediction 

models. The results could be summarised as follows. First, considering the 

performance of models without efficiency measures, i.e., the one-stage static model 1 

and the one-stage dynamic model 18, and models fed with efficiency measures, i.e., 

two-stage models, the results suggest that incorporating efficiency measures improve 

the performance of models.  

Second, comparing the performance of dynamic models with static models in my 

study, for most of the performance measures, the dynamic models outperform static 

ones. To be more specific, on most performance measures – see, for example, T1, 

ROC, Gini, KS, IV, CIER, BS, LL and R2 the two-stage dynamic models are superior 

to static ones. However, considering T2, MR and OCC as performance measures of 

correctness of categorical prediction, static models 16, 11 and 10 are amongst the best 

performers. In general, the density of dynamic models amongst the top-ranking 

performers suggests their superiority in performance.  The superiority of dynamic to 

static models could be related to their competence in incorporating time-varying 

features of the firms.  This finding indicates that taking to account the multi-period 

performance of companies over time as an explanatory variable in a dynamic 

framework is an appropriate technique to improve the performance of prediction 

models.  

Third, considering the performance of two-stage models with different types of 

company efficiency measures, i.e., market efficiency and managerial efficiency, for 

most of the performance measures, the models with management efficiency 

outperform the models with market efficiency. The reason is that, as the F-tests in 

Table 5.9 and Table 5.10 indicate, the discriminatory power of the management 

efficiency scores are more than market efficiency measures. 
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Table 5.13: Dynamic Model Results Using Managerial Efficiency Scores of Companies 
This table presents the dynamic models using managerial efficiency scores developed in a multi-period logit framework. Model 18 does not contain any measure of 
efficiency. Models 19,20 and 21 use TE (CCR), PTE (BCC) and SE to develop prediction models. Model 22 uses decomposed measures of TE (i.e., BCC and SE) to 
develop prediction model. Models 23 and 24 use SBM-CRS and ME-CRS efficiency scores to develop models. Model 25 uses the decomposed measures of SBM-
CRS (i.e., BCC-CRS, SE-CRS and ME-CRS). Model 26 uses SBM-VRS to develop prediction model. *** and ** refer to 1% and 5% significance level, respectively. 

Covariates Model 18 Model 19 Model 20 Model 21 Model 22 Model 23 Model 24 Model 25 Model 26 

Intercept 0.604*** 0.554* -0.063 -0.416 0.1052 -0.03315 0.9161 0.6454 0.5362 
Asset Turnover Ratio -18.169*** -11.175** -16.189***   -10.725**   -17.654*** -9.931** -17.81*** 
Negative Net Income for Last Two Years 1.636*** 1.604*** 1.613*** 1.608*** 1.564*** 1.626*** 1.635*** 1.562*** 1.636*** 
Lag of Excess Return -3.843*** -3.851*** -3.864*** -3.816*** -3.926*** -3.625*** -3.847*** -3.930*** -3.847*** 
Log (Total asset to GNP index) -2.119*** -1.774*** -1.568**   -1.254**   -2.120*** -1.300** -2.054*** 
Real Size -1.954*** -1.951*** -1.955*** -2.314*** -1.828*** -2.930*** -1.947*** -1.817*** -1.946*** 
Inventory Turnover 2.821*** 2.746*** 2.735*** 1.992*** 2.526*** 2.511*** 2.774*** 2.464*** 2.794*** 
IR × NI -17.992*** -18.185*** -16.189*** -14.64*** -16.603*** -16.07*** -17.921*** -16.656*** -17.878*** 
Log (Age) 2.231*** 2.307*** 2.277*** 2.364*** 2.463*** 2.248*** 2.242*** 2.488*** 2.225*** 
CCR-IO     -3.517*               
BCC-IO      0.470   0.075     0.00968   
SE-IO         -2.539*** -1.549***     -1.618***   
SBM-CRS-IO           -11.264***       
ME-CRS-IO               -0.4247 -0.6247   
SBM-VRS-IO                 0.0639 
Number of observations 8189 8189 8189 8189 8189 8189 8189 8189 8189 
Log likelihood 2565 2561 2563 2564 2552 2571 2564 2553 2565 
Prob.  0 0 0 0 0 0 0 0 0 
Pseudo R2 0.2927 0.2938 0.2934 0.2931 0.2969 0.2908 0.2929 0.2966 0.2927 
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Table 5.14: Dynamic Model Results Using Market Efficiency Scores of Companies 
This table presents the dynamic models using market efficiency scores developed in a multi-period logit framework. Models 27,28 and 29 use TE 
(CCR), PTE (BCC) and SE to develop prediction models. Model 30 uses decomposed measures of TE (i.e., BCC and SE) to develop prediction 
model. Models 31 and 32 use SBM-CRS and ME-CRS efficiency scores to develop models. Model 33 uses the decomposed measures of SBM-CRS 
(i.e., BCC-CRS, SE-CRS and ME-CRS). Model 34 uses SBM-VRS to develop prediction model. *** and ** refer to 1% and 5% significance level, 
respectively. 
Covariates Model 27 Model 28 Model 29 Model 30 Model 31 Model 32 Model 33 Model 34 

Intercept 0.620 23.572*** 0.619* -14.355 0.685 0.644 -85.840 0.79*** 
Asset Turnover Ratio -18.19*** -18.195***   -18.194*** -17.976***   -17.961*** -18.131*** 
Negative Net Income for Last Two Years 1.633*** 1.633*** 1.633*** 1.633*** 1.601*** 1.710*** 1.609*** 1.577*** 
Lag of Excess Return -3.8141*** -3.007*** -3.814*** -4.3461 -3.711*** -3.794*** -6.855 -3.720*** 
Log (Total asset to GNP index) -2.130*** -2.127*** -2.130*** -2.130*** -2.070*** -2.283*** -2.015*** -2.333*** 
Real Size -1.9671*** -1.961*** -1.966*** -1.968*** -1.221**   -0.546   
Inventory Turnover 2.807***   2.807*** 2.813*** 2.791***   2.828*** 2.783*** 
Change in Net income in two years   2.805***           0.285 
IR × NI -18.028*** -18.021*** -18.01*** -18.014*** -20.044*** -22.099*** -21.777*** -23.134*** 
Log (Age) 2.235*** 2.235*** 2.235*** 2.235*** 2.303*** 2.042*** 2.331***   
CCR-OO  -0.129               
BCC-OO    -23.775   -15.509     -89.708   
SE-OO       -0.127 -0.188     -0.260   
SBM-CRS-OO          -118.14***       
ME-CRS-OO            -28.958*** -28.201***   
SBM-VRS-OO                -45.112*** 
Number of observations 8189 8189 8189 8189 8189 8189 8189 8189 
Log likelihood 2565 2564 2565 2547 2551 2571 2565 2545 
Prob.  0 0 0 0 0 0 0 0 
Pseudo R2 0.2928 0.2929 0.2928 0.2983 0.2972 0.2906 0.2927 0.2989 
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Table 5.15: Unidimensional Ranking of Distress Prediction Models 
 The bold figures represent the best one in each static or dynamic framework. The grey cells represent the top-three best models.  

    
Correctness of categorical 

prediction 
Discriminatory Power 

Calibration 
Accuracy 

Information 
Content 

Model DEA Score Efficiency Score Framework Type I  Type II MR OCC AUROC Gini KS IV CIER HL BS LL R2 
Model 01 NA NA Static 0.314 0.202 0.209 0.791 0.8351 0.670 0.578 0.505 -0.395 128.78 0.05696 1587 4.56% 
Model 02 CCR_IO Managerial Static 0.275 0.199 0.204 0.796 0.8421 0.684 0.573 0.551 -0.387 119.85 0.05679 1576 4.84% 
Model 03 BCC_IO Managerial Static 0.305 0.203 0.209 0.791 0.8354 0.671 0.583 0.547 -0.385 148.20 0.05690 1584 4.64% 
Model 04 SE_IO Managerial Static 0.258 0.209 0.212 0.788 0.8466 0.693 0.593 0.366 -0.387 140.09 0.05678 1584 4.65% 
Model 05 BCC_IO & SE_IO Managerial Static 0.280 0.201 0.206 0.794 0.8440 0.688 0.591 0.570 -0.359 128.45 0.05666 1568 5.06% 
Model 06 SBM_CRS_IO Managerial Static 0.271 0.198 0.203 0.797 0.8426 0.685 0.574 0.562 -0.377 120.72 0.05674 1574 4.91% 
Model 07 ME-IO Managerial Static 0.267 0.208 0.212 0.788 0.8381 0.676 0.578 0.544 -0.401 132.62 0.05683 1581 4.72% 
Model 08 BCC_IO & SE_IO & ME_IO Managerial Static 0.263 0.212 0.215 0.785 0.8453 0.691 0.589 0.582 -0.378 126.70 0.05660 1564 5.08% 
Model 09 SBM_VRS_IO Managerial Static 0.271 0.211 0.215 0.785 0.8341 0.668 0.579 0.524 -0.401 137.45 0.05699 1590 4.50% 
Model 10 CCR_OO Market Static 0.301 0.193 0.200 0.800 0.8407 0.681 0.580 0.513 -0.382 136.62 0.05715 1599 4.28% 
Model 11 BCC_OO Market Static 0.335 0.184 0.194 0.806 0.8373 0.675 0.558 0.468 -0.391 134.82 0.05725 1601 4.21% 
Model 12 SE_OO Market Static 0.271 0.205 0.209 0.791 0.8414 0.683 0.583 0.533 -0.385 135.43 0.05714 1597 4.31% 
Model 13 BCC_IO & SE_IO Market Static 0.318 0.203 0.210 0.790 0.8326 0.665 0.570 0.452 -0.403 127.54 0.05691 1593 4.43% 
Model 14 SBM_CRS_IO Market Static 0.309 0.202 0.209 0.791 0.8354 0.671 0.577 0.528 -0.413 127.74 0.05694 1586 4.60% 
Model 15 ME_OO Market Static 0.258 0.204 0.208 0.792 0.8425 0.685 0.592 0.560 -0.387 137.82 0.05709 1586 4.60% 
Model 16 BCC_OO & SE_OO & ME_OO Market Static 0.347 0.183 0.194 0.806 0.8334 0.667 0.577 0.464 -0.402 120.17 0.05683 1588 4.56% 
Model 17 SBM_VRS_OO Market Static 0.292 0.210 0.215 0.785 0.8348 0.670 0.574 0.533 -0.413 128.60 0.05691 1585 4.63% 
Model 18 NA NA Dynamic 0.288 0.199 0.205 0.795 0.8431 0.686 0.585 0.562 -0.366 155.22 0.05688 1586 4.60% 
Model 19 CCR_IO Managerial Dynamic 0.220 0.220 0.220 0.780 0.8453 0.691 0.578 0.606 -0.370 155.10 0.05679 1581 4.72% 
Model 20 BCC_IO Managerial Dynamic 0.233 0.221 0.221 0.779 0.8434 0.687 0.593 0.551 -0.357 159.50 0.05683 1583 4.67% 
Model 21 SE_IO Managerial Dynamic 0.212 0.216 0.216 0.784 0.8509 0.702 0.597 0.659 -0.362 135.95 0.05652 1559 5.27% 
Model 22 BCC_IO & SE_IO Managerial Dynamic 0.242 0.205 0.208 0.792 0.8485 0.697 0.589 0.622 -0.341 158.36 0.05674 1574 4.91% 
Model 23 SBM_CRS_IO Managerial Dynamic 0.225 0.215 0.216 0.784 0.8481 0.696 0.593 0.629 -0.345 137.54 0.05668 1572 4.96% 
Model 24 ME_IO Managerial Dynamic 0.263 0.211 0.215 0.785 0.8433 0.687 0.584 0.546 -0.382 165.21 0.05692 1588 4.56% 
Model 25 BCC_IO & SE_IO & ME_IO Managerial Dynamic 0.199 0.228 0.226 0.774 0.8513 0.703 0.586 0.650 -0.342 170.26 0.05667 1567 5.09% 
Model 26 SMB_VRS_IO Managerial Dynamic 0.263 0.211 0.214 0.786 0.8429 0.686 0.584 0.552 -0.356 159.44 0.05687 1586 4.60% 
Model 27 CCR_OO Market Dynamic 0.267 0.208 0.212 0.788 0.8431 0.686 0.587 0.551 -0.373 159.70 0.05687 1587 4.58% 
Model 28 BCC_OO Market Dynamic 0.267 0.209 0.213 0.787 0.8432 0.686 0.586 0.551 -0.361 156.81 0.05687 1587 4.58% 
Model 29 SE_OO Market Dynamic 0.267 0.208 0.212 0.788 0.8431 0.686 0.587 0.551 -0.373 160.29 0.05687 1587 4.58% 
Model 30 BCC_OO & SE_OO Market Dynamic 0.267 0.209 0.212 0.788 0.8363 0.673 0.572 0.570 -0.371 136.24 0.05656 1573 4.92% 
Model 31 SBM_CRS_OO Market Dynamic 0.229 0.218 0.218 0.782 0.8388 0.678 0.568 0.591 -0.373 133.51 0.05668 1578 4.80% 
Model 32 ME_OO Market Dynamic 0.301 0.208 0.213 0.787 0.8296 0.659 0.579 0.543 -0.408 124.97 0.05635 1565 5.13% 
Model 33 BCC_OO & SE_OO & ME_OO Market Dynamic 0.267 0.208 0.212 0.788 0.8431 0.686 0.587 0.553 -0.363 160.29 0.05687 1587 4.58% 
Model 34 SBM_VRS_OO Market Dynamic 0.254 0.217 0.219 0.781 0.8334 0.667 0.567 0.590 -0.402 131.24 0.05648 1574 4.89% 
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However, the findings suggest that taking to account T2, MR and OCC as measures of 

correctness of categorical prediction and BS as a measure of calibration accuracy, the 

models with market efficiency score outperform others.  

Fourth, on the type of DEA scores that models are fed with, i.e., decomposed DEA 

scores and original DEA scores, the following findings are notable. On static models, 

models 8,5 and 4 that use decomposed managerial DEA scores, i.e., PTE, SE and ME, 

outperform the models that use original DEA scores, i.e., TE and SBM, considering 

most of the performance criteria. Also, model 16 that use decomposed market DEA 

scores, i.e., PTE, SE and ME outperform all models on T2, MR, and OCC. On dynamic 

models, models with decomposed managerial DEA scores, i.e., models 25, 22 and 21 

are superior regarding most of the performance criteria. Further, model 32 with market 

ME score is the superior performer considering BS, LL, R2, T2, MR, and OCC. This 

finding suggests that using decomposed efficiency DEA scores improve the 

performance of prediction models. These results are consistent with Li et al. (Li et al., 

2014, 2017) that suggest models with decomposed measures are superior.  

5.4.2 Multi-criteria Ranking of Distress Prediction Models 

For multi-criteria evaluation of DPMs, I followed Mousavi et al. (2015) in using super 

efficiency orientation-free SBM-DEA framework.  I exercise two rounds of evaluation 

using four different measures. In the first round, I use T1 error (as the measure under 

correctness of categorical prediction), BS (as the measure of calibration accuracy) as 

inputs and ROC (as the measure of discriminatory power) and R2 (as the measure of 

information content) as outputs of DEA model. Also, in the second round, I replace T1 

with T2 error as the measure of correctness of categorical prediction.  

From Table 5.16 the following results of multi-criteria assessment of DPMs are 

noteworthy. First, comparing the performance of models without efficiency measures 

with models fed with efficiency measures as predictor, the numerical results indicate 

that using efficiency measures improve the performance of models.  

Second, comparing the performance of dynamic models with static models in my study, 

taking to account T1 error (Panel A of Table 5.16) as the measure of correctness of 

categorical prediction, the numerical results show that the dynamic models outperform 

static ones. However, in respect to T2 error (Panel B of Table 5.16) the results suggest 

that the static models are compatible with dynamic ones.  
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Third, comparing the performance of two-stage models with different types of 

company efficiency measures, i.e., market efficiency and managerial efficiency, under 

the choice of T1 error as the measure of correctness of categorical prediction (Panel A 

of Table 5.16), the results suggest that the model 21with managerial efficiency is the 

best model; though, the model 32 that uses market efficiency is the third in ranking.  

However, choosing T2 error (Panel B of Table 5.16), models 16, 31 and 11that employ 

market efficiency are among top five models. This result is consistent with 

unidimensional ranking of models that suggest models with market efficiency scores 

outperform others under T2, MR and OCC as measures of correctness of categorical 

prediction. These results could be linked to the efficient market hypothesis theory that 

claims in an efficient market the price of shares contains all available information, i.e. 

past, present and insider, about the company.  

Fourth, considering the type of DEA scores that models are fed with, i.e., decomposed 

DEA scores and original DEA scores, the following findings are notable. In the panel 

A (respectively, the panel B) of multi-criteria assessment, the dynamic model 25 that 

uses decomposed dynamic managerial DEA score, i.e., PTE, SE and ME (respectively, 

the static model 16 that uses decomposed static market DEA score, i.e., PTE, SE and 

ME) are the best performers. Also, model 32 with market ME score is one of the best 

performers in both Panel A and Panel B of multi-criteria assessment. These results are 

consistent with unidimensional assessment and suggest that the models with 

decomposed measures are superior in performance. In practice, the decomposition of 

efficiency scores and employing them in the models control more effective variables 

on failure and therefore would improve the performance of failure prediction models.
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Table 5.16: Multi-Criteria Performance Evaluation of Distress Prediction Models 
Panel A: Super Efficiency Orientation-free SBM DEA  Panel B: Super Efficiency Orientation-free SBM DEA  
Input: T1, BS & Output: ROC, R2 Input: T2, BS & Output: ROC, R2 

Model DEA Score Efficiency Score Framework Score Rank Model DEA Score Efficiency Score Framework Score Rank 
Model 25 BCC_IO & SE_IO & ME_IO Managerial Dynamic 1.032 1 Model 16 BCC_OO & SE_OO & ME_OO Market Static 1.023 1 
Model 21 SE_IO Managerial Dynamic 1.018 2 Model 21 SE_IO Managerial Dynamic 1.022 2 
Model 32 ME_OO Market Dynamic 1.001 3 Model 05 BCC_IO & SE_IO Managerial Static 1.010 3 
Model 23 SBM_CRS_IO Managerial Dynamic 0.929 4 Model 32 ME_OO Market Dynamic 1.003 4 
Model 34 SBM_VRS_OO Market Dynamic 0.920 5 Model 11 BCC_OO Market Static 1.002 5 
Model 19 CCR_IO Managerial Dynamic 0.912 6 Model 22 BCC_IO & SE_IO Managerial Dynamic 1.001 6 
Model 31 SBM_CRS_OO Market Dynamic 0.901 7 Model 25 BCC_IO & SE_IO & ME_IO Managerial Dynamic 1.000 7 
Model 22 BCC_IO & SE_IO Managerial Dynamic 0.893 8 Model 06 SBM_CRS_IO Managerial Static 0.994 8 
Model 20 BCC_IO Managerial Dynamic 0.882 9 Model 02 CCR_IO Managerial Static 0.982 9 
Model 08 BCC_IO & SE_IO & ME_IO Managerial Static 0.878 10 Model 08 BCC_IO & SE_IO & ME_IO Managerial Static 0.981 10 
Model 30 BCC_OO & SE_OO Market Dynamic 0.857 11 Model 30 BCC_OO & SE_OO Market Dynamic 0.969 11 
Model 05 BCC_IO & SE_IO Managerial Static 0.850 12 Model 23 SBM_CRS_IO Managerial Dynamic 0.964 12 
Model 06 SBM_CRS_IO Managerial Static 0.847 13 Model 18 NA NA Dynamic 0.960 13 
Model 04 SE_IO Managerial Static 0.842 14 Model 10 CCR_OO Market Static 0.957 14 
Model 02 CCR_IO Managerial Static 0.834 15 Model 34 SBM_VRS_OO Market Dynamic 0.951 15 
Model 15 ME_OO Market Static 0.833 16 Model 03 BCC_IO Managerial Static 0.946 16 
Model 07 ME-IO Managerial Static 0.832 17 Model 04 SE_IO Managerial Static 0.944 17 
Model 26 SMB_VRS_IO Managerial Dynamic 0.828 18 Model 07 ME-IO Managerial Static 0.943 18 
Model 24 ME_IO Managerial Dynamic 0.824 19 Model 14 SBM_CRS_IO Market Static 0.942 19 
Model 28 BCC_OO Market Dynamic 0.822 20 Model 15 ME_OO Market Static 0.939 20 
Model 33 BCC_OO & SE_OO & ME_OO Market Dynamic 0.821 21 Model 01 NA NA Static 0.938 21 
Model 27 CCR_OO Market Dynamic 0.820 22 Model 31 SBM_CRS_OO Market Dynamic 0.933 22 
Model 29 SE_OO Market Dynamic 0.819 23 Model 33 BCC_OO & SE_OO & ME_OO Market Dynamic 0.932 23 
Model 09 SBM_VRS_IO Managerial Static 0.804 24 Model 27 CCR_OO Market Dynamic 0.931 24 
Model 18 NA NA Dynamic 0.797 25 Model 29 SE_OO Market Dynamic 0.930 25 
Model 17 SBM_VRS_OO Market Static 0.791 26 Model 28 BCC_OO Market Dynamic 0.929 26 
Model 12 SE_OO Market Static 0.787 27 Model 17 SBM_VRS_OO Market Static 0.928 27 
Model 03 BCC_IO Managerial Static 0.779 28 Model 26 SMB_VRS_IO Managerial Dynamic 0.927 28 
Model 14 SBM_CRS_IO Market Static 0.771 29 Model 19 CCR_IO Managerial Dynamic 0.924 29 
Model 01 NA NA Static 0.763 30 Model 24 ME_IO Managerial Dynamic 0.922 30 
Model 10 CCR_OO Market Static 0.751 31 Model 13 BCC_IO & SE_IO Market Static 0.921 31 
Model 13 BCC_IO & SE_IO Market Static 0.747 32 Model 20 BCC_IO Managerial Dynamic 0.915 32 
Model 16 BCC_OO & SE_OO & ME_OO Market Static 0.734 33 Model 09 SBM_VRS_IO Managerial Static 0.911 33 
Model 11 BCC_OO Market Static 0.712 34 Model 12 SE_OO Market Static 0.905 34 
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5.5 Conclusion 

The application of DEA in credit scoring and distress prediction has extended recently. 

This study has a comparative analysis between various static and dynamic two-stage 

distress prediction models to compare the contribution of different efficiency scores in 

estimating the probability of distress. This study estimates the efficiency of companies 

regarding market (using market information as input and output) and managerial 

(using accounting information as input and output) perspective. It uses CCR, BCC and 

SBM DEA models to estimate cross-sectional efficiency measures and Malmquist-

DEA models to estimate dynamic efficiency measures. Also, it decomposes overall 

static and dynamic SBM efficiency scores into PTE, SE and ME scores, and overall 

static and dynamic TE efficiency score into PTE and SE scores and integrate them 

with accounting, market, and macroeconomic ratios to develop distress prediction 

models.  

The results suggest that incorporating managerial efficiency measures have more 

contribution in predicting distress. The lower contribution of market efficiency 

measures of firms rather than managerial efficiency is because of choices of inputs and 

outputs of DEA models. However, market efficiency measures, especially using ME 

score, are valuable information in predicting distress. Also, the findings indicate that 

incorporating dynamic scores in a dynamic framework is the best approach to improve 

the accuracy of distress prediction models. This is because dynamic models by design 

could take account of changes in the condition of firms over time. 

Moreover, the results show that decomposition of TE (respectively, SBM efficiency 

scores) into PTE and SE (respectively, PTE, SE and ME) improves the performance 

of prediction models. This is because incorporating decomposed measures of 

efficiency in the model would control more effective variables on the distress. 

The main limitations of this research are time and space constraints and as such this 

study is restricted to specific DEA models in the first stage. Future studies could 

incorporate more DEA models to evaluate the managerial and market efficiency of 

firms.  Further, because of the same constraints, this study is focused on Logit and 

multi-period Logit analysis models in the second stage. Future studies could apply 

more statistical and non-statistical prediction models.  
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Chapter Six 

6 Conclusion 

6.1 Summary of Findings and Conclusion 

The performance evaluation of competing failure prediction models is the common 

concern of both academics and practitioners in the field of corporate credit risk. The 

conventional performance evaluation exercise of failure prediction models has been 

an exercise that is unidimensional in nature, in one hand, and static, on the other hand. 

Consequently, conflicting rankings from one performance criteria to another are 

frequently stated in other comparative studies. Also, a single or a very restricted 

number of criteria are only applied, and therefore the “big picture” is not considered.   

The first project (chapter two) contributes to the methodology by proposing an 

orientation-free super-efficiency DEA model to overcome this methodological issue. 

Also, the study performed a comprehensive comparative analysis of the most popular 

six bankruptcy modelling frameworks organised into four categories; namely, original 

models, original models refitted, reworking models in a logit framework with the same 

original explanatory variables, and new models. The research used four performance 

criteria, which are used in the literature; namely, the discriminatory power, the 

calibration accuracy, the information content, and the correctness of categorical 

prediction. The study has taken to account several measures for each criterion to find 

out about the robustness of multidimensional rankings on different combinations of 

measures. The empirical findings suggested that first, the multidimensional framework 

provides a valuable tool to delivers a single ranking based on multiple performance 

criteria. Second, in contrary to the unidimensional rankings, the multidimensional 

rankings of the best and the worst models are not too sensitive to the changes in most 

combinations of performance measures. Third, empirical results suggest that the 

survival analysis model tends to be superior followed by linear probability and 

multivariate discriminant analysis models; therefore, some modelling frameworks 

perform better than others by design, as survival analysis models are dynamic and have 

the modelling ability to take on board both accosting-based and market-based 

information. It is worth mentioning that also in theory the dynamic models outperform 
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the static ones because they are able to take into account the time-varying features of 

firms. Fourth, numerical results seem to suggest that the choice and/or the design of 

explanatory variables and their nature affect to varying extents the performance of 

different modelling frameworks. To be more specific, most modelling frameworks 

improved in performance by taking account of a mixture of account-based and market-

based information, where survival analysis, linear probability, and multivariate 

discriminant analysis models benefited the most from the new way of selecting 

explanatory variables. These empirical results support the theory of efficient market 

hypothesis, which suggest that in an efficient market a firm’s stock price carries all 

available information about a firm, i.e. past, current and insider information.  

Though, within the super-efficiency DEA framework, the reference benchmark 

changes from one prediction model evaluation to another one, which in some contexts 

might be viewed as “unfair” benchmarking. Therefore, the second project (chapter 

three) overcomes this issue by using a slacks-based context-dependent DEA 

framework to assess the performance of competing distress prediction models. The 

numerical results suggest that first, the rankings of DPMs under orientation-free SBM-

super efficiency and orientation-free SBM-CDEA are very similar, the latter one, 

however, does not suffer from the changes of reference benchmark from one prediction 

models to another. Second, the results reveal that amongst the dynamic models, which 

are always superior in performance, DD_VEX and DD_1/ln(age) that use the volatility 

of exchange rate (VEX) and 1/ln(age) as a time-varying baseline, respectively, 

followed by DIWOB tend to be superior. These results suggest that incorporating 

macroeconomic indicators and firm’s characteristics as the proxy of baseline rate in 

developing dynamic prediction models improved the performance of models. Third, 

empirical results suggest that amongst the static models, LPA and PA models are 

superior to others. In theory, under Logit analysis framework the restricted underlying 

assumptions of Discriminant analysis are relaxed, which has led to better results in 

many empirical studies. Finally, developing new models using the most recent 

accounting, market and macroeconomic information improves the performance of 

DPMs. In fact, economic cycle lead to changes in the trend of financial ratios overtime. 

Therefore, developing new models using the most recent information would improve 

the performance of models.  
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The third project (chapter four) contributed to the literature in several ways. First this 

chapter proposed a multi-period performance evaluation framework based on an 

orientation-free super-efficiency Malmquist DEA index that provides a single ranking 

based on multiple performance criteria over time. Second, this study performed an 

exhaustive comparative analysis of the most cited static and dynamic distress 

prediction models. Same as last two projects, this study used several measures under 

four commonly applied performance criteria (i.e., the discriminatory power, the 

information content, the calibration accuracy, and the correctness of categorical 

prediction) in the literature. Third, this project considered the effect of information, 

sample type and sample period length on the performance of static and dynamic DPMs 

during the years with higher distress rate (HDR). The findings suggest that the 

proposed multi-criteria dynamic framework is a useful tool in evaluating the relative 

performance of DPMs over time and provides more consistent results. Also, the 

empirical findings support the last two projects’ results that most static and dynamic 

models perform better when fed with market information. Also, dynamic models, 

specifically DDWTDB_1/ln(age) and DDWTDB_ln(age) are always amongst the best 

DPMs under different combinations of measures.  

The last project (chapter five) focused on the recent trend in the application of DEA in 

credit scoring and distress prediction. This project contributed to the literature by 

providing a comparative analysis between static and dynamic two-stage DPMs, and 

analysing the discriminatory power of different DEA efficiency scores as a predictor 

in DPMs. For this, it estimated the efficiency of companies on market (using market 

information as input and output) and managerial (using accounting information as 

input and output) perspective. It used CCR, BCC and SBM DEA models to estimate 

cross-sectional efficiency measures and Malmquist-DEA models to estimate dynamic 

efficiency measures. Also, it proposed to decompose overall static, and dynamic SBM 

scores into PTE, SE and ME scores, and overall static and dynamic TE score into PTE 

and SE scores and integrate them with accounting, market, and macroeconomic ratios 

to develop distress prediction models. The numerical results suggest that managerial 

efficiency measures have more discriminatory power in predicting distress. However, 

market efficiency measures provide valuable information in predicting distress, 

especially using ME score as a predictor in models. These findings verify the 
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significant relationship between the firm’s managerial efficiency and the probability 

of distress. Further, the results suggest that market efficiency of firms, which is 

estimated using market information of firms as inputs and outputs of DEA models, is 

a valuable feature in developing distress prediction models.  

Also, the empirical results indicate that incorporating dynamic scores in a dynamic 

framework is the best approach to improve the accuracy of DPMs. This is because the 

dynamic models are capable to incorporate time-varying features of a firm. Further, 

the findings indicate that decomposition of TE (respectively, SBM efficiency scores) 

into PTE and SE (respectively, PTE, SE and ME) enhances the prediction accuracy of 

models. This is because through decomposition of scores, more features of firm’s 

efficiency scores are taken into account. 

6.2 Research Limitations 

Same as other research this study has faced several limitations. Time has been one of 

the main limitations of this study. Reviewing the literature, collecting and organising 

dataset, understanding different types of models, programming in different statistical 

packages for estimating models, performance efficiency scores and efficiency 

measures, analysing and writing up results have been time-consuming processes. 

Therefore, I restricted this study to statistical failure prediction models. Further, this 

research is limited to the listed UK companies in LSE since I had no access to the 

information of non-listed UK companies. 

6.3 Future Research  

The focus of this study has been on statistical failure prediction models. Future studies 

could apply the proposed multi-criteria performance evaluation frameworks to assess 

the performance of non-parametric bankruptcy and distress prediction models such as 

artificial intelligence, neural network, and operations research. Also, this study used 

the sample of listed companies in London Stock Exchange (LSE). The future studies 

could apply the proposed failure prediction models and evaluation frameworks to other 

countries. The last but not the least, the two-stage distress prediction models could be 

extended to other DEA models in the first stage and other classifiers in the second 

stage. Also, other combinations of inputs and outputs could be used in DEA models. 
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The future studies could compare the performance of models with different 

combinations of inputs and outputs for DEA models.   
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