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Abstract

Current resource policies for mobile phone apps are based on permissions that uncon-

ditionally grant or deny access to a resource like private data, sensors and services. In

reality, the legitimacy of an access may be context-dependent - for example, depend-

ing on how often a resource is accessed and in which situation. This thesis presents

research into providing bounds on the access of JavaScript apps to security and privacy-

relevant resources on mobile devices. The investigated bounds are quantitative and

interaction-dependent: for example, permitting one access each time the user presses

a specified button.

Two novel systems are presented with different approaches to providing these

bounds. The system PhoneWrap injects a quantitative policy into an app and enforces

the bound dynamically during runtime by monitoring the resource consumption and

the user interaction. If the injected bound is exceeded, the resource request is replaced

by a deny action. This way, PhoneWrap restricts the unwanted behaviour while the

expected functionality can be performed. Policies for this system describe the UI el-

ements which trigger the expected resource consumption and the number of resource

units consumed for each interaction. The enforcement of the policies is achieved via

wrapping the critical APIs using JavaScript internal features. The injection of a policy

can be performed automatically. PhoneWrap is the first system using the lightweight

wrapping method to inject policies directly into mobile apps and the first to combine

quantitative policies with interaction-dependencies.

The second system AmorJiSe statically analyses the resource consumption of a

given JavaScript program. This system automatically infers amortised annotations on

top of given JavaScript data types. The amortised annotations symbolise reserved re-

source units stored in the data structures. This way the amount of resource units avail-

able to the app is expressed dependent on the size of the data structures. The resulting

function types of the UI handlers can be used to extract interaction-dependent bounds.

The correctness of these bounds is proven in relation to a resource-aware operational

semantics. AmorJiSe extends the known amortised type paradigm to JavaScript with

its dynamic object structures and applies this paradigm to the novel domain of mobile

resources.

Although, the two systems are based on similar resource models and produce sim-

ilar resource bounds, they use different methods with different properties which are

presented in this dissertation.
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Lay summary

Apps on smartphones request a set of permissions during installation to access the pri-

vate data (Contacts, accounts, emails), the sensors (location, camera, microphone) and

services (phone calls, messages, playing music). During installation the user cannot

know how these resources are used by the program. Abuse of these resources in the

wrong context poses a threat to the users security or privacy

This dissertation aims to provide more information and control how the requested

resources are used. Instead of the permission, which can only grant full access at any

time, the systems presented here provide a bound on how often the resource is used

and connect the use to a specific action of user for example a specific button.

This is achieved by two different methods. The system PhoneWrap alters the be-

haviour of an app in a way that the app cannot use the resource more often than speci-

fied in the bound. This is achieved by granting the app the correct number of one-time-

tickets, which the app has to pay every time it accesses the resource. If the app tries

to use the resource without paying a ticket the access is replaced by a suitable deny

behaviour.

The other system AmorJiSe analyses the app before it is executed and provides

information on how oft and connected to which user interactions the resource is used.

The results of this analysis are mathematically proven for all possible behaviours of

the app.

Although the two systems provide similar results, the methods have different prop-

erties and are therefore suited for different situations.
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tags on remand prisoners.

David Mitchell

xi





Chapter 1

Introduction

1.1 Motivation

Phones and other mobile devices are permanent companions in our modern lives. As

such they are filled with personal information, secrets used for authentication or pay-

ments and their services, such as text messaging, generate additional fees. Smart-

phones are equipped with a variety of sensors, cameras and microphones which could

record every detail of the user’s life. Their huge potential make them a valuable target

for advertisers and malicious software as recognised by security software vendors and

security advisers:

30% of Android apps may expose users to data loss and privacy violations
(Marble Labs Mobile App Threat Report for January 2014)

[...] during the second half of 2015, only 18% of new and updated apps
were benign, 30% were moderate or suspicious, and the remaining 52%
were unwanted or malicious (Webroot "2016 Threat Brief")

[...] recent polls show that 9 in 10 Americans feel they have in some way
lost control of their personal information

(The White House, Office of the Press Secretary, Fact sheet Jan 2015)

Operating system for smartphones have recognised this threat and protect the crit-

ical resource to mitigate the potential damage of malicious apps. The prevalent such

system is Android with around 80% market share. The resource access control in

Android and similar systems is based on permissions. The app requests a set of per-

missions each of which, if granted by the user during installation, grants unrestricted

access to a specific resource. However, there is no fine-grained control on how often

and in which context the app may use a granted resource. A previous study [36] shows

1



2 Chapter 1. Introduction

that 93% of the free apps ask for at least one potentially dangerous permission. Users

often have to guess for which functionality of the app a permission is requested and

accept the risk of the permission being abused. Contrary to the perception that phone

users do not care about the permissions, the following statements show the reaction

when users discover resource access in a context or quantity they did not expect:

The app requests permission to access and record audio without my con-
firmation and to access my camera and take video or pictures without my
confirmation. Why do they need this capability?

(Facebook Community forum)

You say "It’s not that these are randomly turning on and taking pictures
and/or recording convos" but the thing is by giving carte blanche approval
they can.

(Facebook Community forum)

Why would whatsapp access my contexts over 7000 times when I only
opened the app maybe less then 100 times? [...] Deleted that app is what
I did.

(Review of “DTEK by BlackBerry” on Google Play)

For the life of it, I cannot see any rational reason why a ride-sharing app
would require to pry into your browsing history, much less other apps that
you use or are running.

(reddit /r/privacy)

These show that, for some users, more information and control over the resource access

is needed. However, asking the user for every access request breaks the workflow and

is not acceptable for the user.

The missing control can be provided in the form of interaction-dependent bounds

on the resource access. Modern apps are interaction-centric: during launch they only

initialise and display the elements of the user interface. Afterwards, every time the user

interacts with one of those elements, the requested functionality is executed. Therefore,

access to the correct resources in the appropriate amount for each functionality can be

associated to the UI elements. Ideally, the app is not granted the permission to access

a resource unconditionally, but may access the resource a bounded number of times

every time the user activates a specific functionality.

Many security and privacy concerns for mobile systems can be considered as a re-

source problem: messaging, phone calls and other billable services are resources by

themselves and bounds on their usage limit the bills the app generates; location track-

ing accesses the GPS sensors and the data connection and bounds on the access to these
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resources ensure the private location information is only accessed when justified by the

functionality; private data leakage can be limited to the amount the user is comfortable

to provide to a specific app by considering the content (pictures, documents or contact

data) stored on the phone as resource; denial-of-service attacks exceed the capacity

of the attacked resource and bounds can successfully counteract them; buffer over-

flows over-use the resource memory space and a bound on the memory usage makes it

possible to prevent or anticipate potential threats.

To protect the user in all these scenarios, security frameworks are required to pro-

vide more fine-grained bounds on the permitted access.

As programming language for mobile apps, JavaScript is becoming more and more

important. JavaScript has been the dominant language for web applications and, since

many mobile apps perform functionality similar to web applications, it is an obvi-

ous choice for mobile apps. Emerging mobile operating systems like Tizen [38] and

ChromeOS [60] build directly on JavaScript as their primary app programming lan-

guage. For Android and other non-JavaScript operating systems various frameworks,

e.g. Adobe PhoneGap, Sencha Touch or ratchet1, package JavaScript into native apps

to install and execute HTML / JavaScript apps seamlessly. With over 400,000 devel-

opers and over 1 million apps, Adobe PhoneGap [59] is the most popular such frame-

work. It executes the JavaScript code on all major mobile platforms in an instance of

the built-in browser of the operating system. The same JavaScript app can be packaged

for multiple different operating systems this way and apps can even re-use code from

a web page.

On top of the standard JavaScript language features, PhoneGap offers plugins

which access the native capabilities and sensitive resources of the mobile phone. These

plugins are naturally governed by the default access policy of the operating system,

but, as discussed above, permissions are not fine-grained enough to efficiently guard

the resources. If a permission has been granted, the app and the contained third party

code can use all known exploits for JavaScript to abuse the granted resources. The

Microsoft Security Intelligence Report [86] identified JavaScript exploits as “the most

commonly encountered type of exploits with an encounter rate more than four times

as high as the next most common type of exploit.” For this reason methods to provide

more control over the resource usage of such apps are even more important.

Since JavaScript is interpreted during runtime, JavaScript apps include the full

source code of the app. This presents an opportunity to provide those bounds.

1see Section 2.1.4 for more details
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1.2 Problem definition

This thesis considers the following research hypothesis:

By using static analysis or dynamic enforcement it is possible to automatically

impose quantitative bounds on the resource consumption of mobile apps written

in JavaScript which allow the resource access required for the wanted features

while rejecting unreasonable resource usage.

The hypothesis differentiates between two components of the app’s behaviour. Its

wanted functionality are the actions expected or requested by the user. On top of that,

many apps provide unwanted functionality which could be intrusive ads, malware or

additional features not required by the individual user. An indication whether a feature

is wanted or unwanted are the user interactions with the app. By interacting with the

app’s user interface the user activates features and, therefore, implicitly confirms the

legitimacy of the following actions.

Each wanted feature of an app requires different amounts of resources. Some func-

tionalities require one special kind of resource (like sending an SMS) other require

a larger set of different resources. A policy maps each functionality to its required

amount for each resource. The specific values in the policy can depend on the user.

Therefore, users need to be able to specify individual policies to capture their individ-

ual resource requirements.

Apart from picking or creating the correct policies, the restriction should be applied

automatically. This includes, in particular, that the user does not have to understand or

annotated the source code of the app or the restriction. Manipulating the source code

exceeds the capabilities of the average mobile phone user and would therefore restrict

the user base to a small set of experts.

Two principle ways of imposing a bound on an mobile app will be considered: an

app can either be checked against a given policy before installation and rejected in case

it does not comply or an app can be prevented from exceeding the bound during the

execution and stopped or altered if the bound is exceeded.

To capture the various resource scenarios, the resource model in this work uses

abstract resource units. The concrete instantiation of a resource unit depends on the

resource and use case. For example, each file system access might be considered
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one resource unit or, to be more fine-grained, the units might be proportional to the

amount of accessed data. By using this abstraction, the proposed methods are capable

of handling all security issues mentioned above and many more resource problems.

The specification of the bound has to be flexible enough to separate wanted from

unwanted resource behaviour for real-world apps. The bounds may be interaction-

dependent to reflect the interaction-centric design of modern apps. They describe

which user actions trigger resource access and how many units may be consumed in

response to each interaction. When the performed functionality depends on the user’s

input, the bounds have to be data-dependent, for example, depending on the size of an

input.

The quality of a given bound highly depends on the resource, the expected func-

tionality of the app, on the device and the user itself. For example, if on the device

each sent SMS is billed, even small numbers may be unacceptable, especially to pre-

mium rate numbers. On devices with an unlimited message allowance, larger bounds

suffice. Some users might consider a scan through the contacts and a consequent up-

load to the cloud as breach of privacy, others consider occasional scans as acceptable

functionality to find friends using the same app. Company issued devices might have

a different demand on the resource restrictions than private devices. The policy author,

which could, for example, be the end user, device administrator or a security provider,

has to take this whole context into account to describe the reasonable usage.

1.3 Example

As a simple example, consider a fictional Android app Pic-Up which allows to upload

pictures from the external storage of the phone onto a public sharing web page. The app

scans the external storage for pictures and then presents a list with all found pictures to

the user. The user can select one or more of the presented pictures and press “upload”

to queue all selected pictures for upload. As soon as a data connection to the server

becomes available, Pic-Up uploads the queued pictures. This functionality justifies

access to the external storage, which is guarded by the Android permission READ_

EXTERNAL_STORAGE.

The expected resource behaviour of the app includes one access to the external stor-

age during initialisation to scan for uploadable pictures. Furthermore, once the upload

capability becomes available, the app accesses each selected picture once. However,

due to the granted permission READ_EXTERNAL_STORAGE, Pic-Up is able to read all
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Figure 1.1 Example: Pic-Up

(Screenshot taken from Tonido app, as example how Pic-Up’s UI could look like.)

files on the storage at any time including all downloaded files, the documents, the

stored music and video files. Imagine a similar but malicious app Pic-Down which

performs the same functionality but additionally uploads all pictures and private doc-

uments found on the device onto a malicious server. In the app-store both apps look

equal, since they require the same permissions, but Pic-Down potentially leaks the

user’s confidential documents and pictures. This kind of attack is common with An-

droid apps. A survey [80] found that 90% of the most popular apps have a fake app

which adds malicious behaviour like data theft or premium service abuse.

The expected resource access of the app’s advertised functionality can be described

with interaction-dependent bounds. Pick-Up has to access the storage once at the be-

ginning and once for each selected picture. Therefore, if the user in multiple sessions

first marks c1 pictures for upload, then c2 ... and finally ck pictures, the number of

legitimate accesses can be bounded by 1+ c1 + ...+ ck. The malicious behaviour of

Pic-Down exceeds this bound. The bounds can therefore help to differentiate the ex-
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pected behaviour from the potentially malicious one.

1.4 Methods and goal

This thesis presents two approaches to bound the resource usage of JavaScript apps,

the dynamic system PhoneWrap and the static system AmorJiSe. The two systems

provide the bounds with different methods:

1.4.1 PhoneWrap

The dynamic system PhoneWrap inserts a resource monitor into a PhoneGap app pack-

age and mediates access to the guarded resource.

Given an app package, PhoneWrap inserts a script which instruments all critical re-

source APIs at the top of the main HTML file of the app. The instrumentation monitors

the resource consumption and user interaction during runtime and executes an appro-

priate deny behaviour if the resource consumption exceeds the bound specified in the

policy. The isolation of the enforcement script from the application code is achieved

by JavaScript function scopes and, hence, enforced directly by the JavaScript engine.

The modified app is packaged into an Android package and re-signed with a policy

key2. As a result, the modified app can be executed on an unmodified mobile phone.

PhoneWrap can be used either by the end user itself, by the app developer or a third

party and the policy files can be shared by experienced policy providers similar to the

lists currently used for ad-blockers. This way, less experienced smartphone users can

choose a policy which fits their usage scenario of the app and inject it directly into the

downloaded app. PhoneWrap supports the policy author by extracting all necessary

information from the app package and helps to select the UI elements which trigger

the resource accessing functionality via normal interaction with the app. This way, the

policy can be specified without deep knowledge about the implementation details of

the app or PhoneWrap.

PhoneWrap can even be used to insert multiple different policies into an app. As a

result, a resource access is only granted if each policy grants access individually. This

is useful when different parties (e.g. app developer, app distributor, device administra-

tor and device user) have different requirements on the resource behaviour or multiple

resources have to be guarded.

2For a more detailed discussion see Section 4.4
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1.4.2 AmorJiSe

The static system AmorJiSe uses type inference to statically infer bounds on the re-

source usage of given JavaScript source code. AmorJiSe’s analysis can be performed

a-priori, ahead of installing the app so that the user can avoid even partial execution

of unwanted behaviours. It can also be used to compare the resource need of different

apps with similar functionality.

AmorJiSe infers types for all subexpressions of the analysed code including infor-

mation about their resource usage. The resulting types for the input values of a program

imply data-dependent resource bounds and the function type of the input handlers im-

ply interaction-dependent bounds. These bounds are mathematically proven correct in

the sense that the provided resource-aware execution model does not consume more

resources during the evaluation of an analysed expression than specified by the bound.

Rather than defining yet another type system for JavaScript, the types of AmorJiSe

are designed to extend an existing type system. The added resource inference layer

of AmorJiSe itself is designed to be fully automatic and strict: the inference does not

require additional annotations in the JavaScript source code and the results may conser-

vatively over-estimate the behaviour of all possible executions. However, depending

on the underlying type system, the combined system can benefit from additional infor-

mation such as source-code annotations or allow unsound under-approximations under

certain conditions.

AmorJiSe infers the types via reduction to a linear programming problem (LPP)

which can be solved with conventional solvers. The result can also be used as a cer-

tificate or “digital evidence” [11, 107] for the analysis: either the developer or a third

party, for example the distributor of the app, can execute the analysis ahead of time

and supply a certificate consisting of the types and the solution for the LPP together

with the app. During installation, the device can then check the code against the struc-

ture of the provided types and, while doing so, re-create the LPP on the annotations.

The provided solution to the LPP can then be checked efficiently. Since neither the

type inference nor the LPP solver have to be re-executed, the certificate verification is

suitable even for devices with less computing power like smartphones.

1.5 Outline and contributions

The three main contributions presented in this thesis are:
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1. PhoneWrap and its prototype implementation which is, to the best of my knowl-

edge, the first system to combine quantitative and interaction-dependent resource

policies and enforce these policies in JavaScript apps using a runtime wrapper.

2. A detailed investigation of JavaScript typing mechanisms, including a counter

example pointing out a previously unknown flaw in the type checking algorithm

of the type system JST
0 [8] and a proposed fix.

3. AmorJiSe, the first amortised type system for a core of JavaScript. It shows

how sound amortised types can be inferred in the presence of the dynamically

changing object structures of JavaScript.

The remainder of this thesis is structured in the following way:

Chapter 2 introduces JavaScript and the JavaScript mobile app framework Phone-

Gap with the focus on the challenges for analysis. This chapter also provides an

overview of resources accessible to PhoneGap apps and surveys the related work on

resource analysis.

Chapter 3 presents the formal description of the novel interaction-dependent ticket-

based policies as enforced by PhoneWrap including the policy description, policy state

and transitions. Furthermore, it outlines the formal definition of wrapping as an en-

forcement method and proves the soundness of the formal model.

Chapter 4 presents the dynamic system PhoneWrap which enforces quantitative

resource policies by wrapping the resource relevant APIs with a policy wrapper. It

introduces the methods and the different steps of the policification process consisting

of unpacking, analysis, policy creation, policy injection and repackaging of the apps

for installation. To show the feasibility of this approach, the tool is applied to real-

world apps downloaded from the Google Play Store.

Chapter 5 presents the discussion of existing type systems for JavaScript in prepa-

ration for the system AmorJiSe. Different properties of type systems and requirements

for the underlying type system of AmorJiSe are discussed. Based on those proper-

ties the existing type systems are examined and common methods and differences ex-

tracted. The conclusion of this chapter is that the system JST
0 [9] by Anderson et al. is

the best foundation for AmorJiSe.

Chapter 6 introduces AmorJiSe, an amortised extension for a static type system for

JavaScript. The chapter presents the basic type system, its properties and the type in-

ference algorithm. Furthermore a formal resource annotated semantics is given against

which AmorJiSe is evaluated. The system is parameterised by the resource model,
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which makes it possible to reason about different resources. The main result of this

section is the formal proof of soundness for AmorJiSe against the specified operational

semantics.

Chapter 7 discusses the chosen underlying system JST
0 and presents the flaw in

its type checking soundness proof. This flaw is discussed and a full counter example

provided which evaluates to a runtime error but is typed as value. Therefore, the type

checking system cannot have the claimed soundness property. This chapter further-

more shows how an adaptation of the type inference rules can be used to fix the flaw

in the type checking rules.

Finally, Chapter 8 closes the thesis with a conclusion, comparing the two systems,

and final remarks about future work on this topic.



Chapter 2

Background

This chapter discusses the background for the research results presented in this the-

sis. In particular, it presents the language features of the JavaScript language and its

challenges for analysis, the structure of JavaScript apps and the resources accessible

by them. Furthermore, this chapter discusses previous research in the area of the Java-

Script language, its use in the real world, related analysis efforts and mobile resource

policies.

2.1 The JavaScript language

JavaScript was introduced in 1995 by Brendan Eich at Netscape (see [105]) as language

for web applications in browsers. It was first standardised in 1997 as ECMAScript [61].

The language is currently published in version 6 (ES6), but versions 5 (ES5) and 3

(ES3) of the language are still widely used. The current standard consists of over 500

pages of prose. An official reference implementation for JavaScript does not exist.

Instead, each browser implements the standard supporting the majority of the features,

but differing in some details.

The language is imperative and object-oriented with inheritance based on proto-

types instead of classes. It has various built-in libraries, e.g. to interact with the

HTML DOM tree. JavaScript was developed as a scripting language, with the aim

to implement client-side features for web pages quickly. For this reason, JavaScript

executes many expressions, which would result in runtime errors and termination in

other languages. However, the behaviour of such expressions is often surprising for

inexperienced JavaScript developers. With version 5, JavaScript introduced the strict

mode(ES5S) to improve the semantics of JavaScript without breaking the backwards

11
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compatibility of older programs. It can be optionally enabled by including the string

“strict mode” as the first expression in a JavaScript file or function body and disables

the often criticised features causing the scope to be non-static: in strict mode the with

operator is no longer available, eval cannot declare new variables and a few other fea-

tures allowing the program to access the scope directly, like the binding of this to the

global scope object in functions, are more restricted.

The following section presents a summary of JavaScript’s features which pose a

challenge for analysis of JavaScript apps. They illustrate why analysis techniques for

other language cannot be applied directly and, instead, JavaScript analysis is a research

area by itself. The features discussed here apply to version 3 and the normal mode of

versions 5 or later. Differences in the strict mode are mentioned separately.

2.1.1 Language features

2.1.1.1 Prototypal inheritance

The feature that separates JavaScript distinctively from other object-oriented program-

ming languages, such as C or Java, is the inheritance mechanism which JavaScript

handles via prototype chains. Objects are not created from classes which inherit from

each other, but each object instance inherits from another object instance, called its pro-

totype. This prototype can itself have a prototype which results in a prototype chain.

During field lookup, the JavaScript runtime engine scans through this chain to find the

requested field. Assume an expression tries to access the field m of an object o:

{...} {...} {m:42,...} {m:0,...}o=

p1 p2 p3

prototype prototype prototype

First, the object o itself is scanned for the field m and, if found, the stored value is

returned. If the field is not present in the object itself, the search proceeds at the

prototype, until the field is either found or an object without a prototype is reached in

the prototype chain. In the latter case the value undefined is returned.

In the example here, assuming the objects o and p1 do not contain the field m, the

field m is found at the second prototype p2, returning the value o.m=42. The JavaScript

standard only allows to set the prototype link via the prototype property of the con-

structor of an object. However, in all major JavaScript implementations the prototype

can be manipulated directly using the __proto__ property of an object.
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The prototypes are not involved in assignment. In an expression like o.m=44 the

direct field m of the object o is either overwritten or created, independent of the field m

in any of the prototypes. Thus, in this example, the field m is created in the object o,

resulting in the following prototype chain:

{m:44,...} {...} {m:42,...} {m:0,...}o=

p1 p2 p3

prototype prototype prototype

Afterwards the field m of the object p2 is shadowed by o.m and not accessible

directly through o anymore. Only when the field m of the object o is deleted later, the

field m of p2 becomes visible for o again.

2.1.1.2 Non-static scope

The values (or references to the values in the heap) of variables in JavaScript are stored

in a scope chain consisting of scope objects. This chain begins with the global scope

and ends in the most recent scope object which contains the local variables. Each

of the scope objects is handled as a standard JavaScript object including an attached

prototype chain. By default all created scope objects only have the special object

Object.prototype as prototype, but via features like with and direct access to the

scope chain, more complex structures can be created. Injected code could potentially

abuse this to alter the code of an intended harmless program.

When a variable is accessed, JavaScript first searches in the most recent scope

object and its prototype chain. If the variable was not found, the search continues in

the prototype chain of the next more general scope object. Prototype chains of the

scope objects might share objects or even link to other objects included in the scope

chain.

{...} {...} {...}

{...} {...} {...}

{...} {...} {...} {...}

{...} {...}Global scope

Local scope

Scope
Chain

prototype prototype

prototype

prototype prototype

prototype prototype

prototype
prototype
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Every function call adds a freshly created scope object to the scope chain in which

the function is defined. The local variables of the function body are stored in this fresh

scope object and the function body has furthermore access to all variables defined in

the scope of the function definition. In contrast to other popular languages like C or

Java, blocks {...}, including the branches of a conditional statement or the body of

a while loop, do not create a new scope object but are ignored for the bounds of the

scope.

JavaScript programs can manipulate the scope chain directly. By using the with

statement, an expression can add an arbitrary object o as most local scope to the scope

chain. As a result, local variables in the newly defined scope are equivalent to fields

of o. Adding or deleting fields of o also manipulates the available local variables. By

other methods, a JavaScript program can obtain a reference to the global scope object.

Modifications of this object change the global variables equivalently. This behaviour,

called dynamic scope, results in a scope structure depending on the runtime state of

the program. Depending on the current runtime values, a variable x might address

different locations in the scope chain.

Another unintuitive feature of JavaScript are the declarations. Local variables and

function statements declared throughout the scope’s code are moved to the top of the

scope. This behaviour is called hoisting. JavaScript executes the code of a scope

in three passes. In the first two passes only function statements and local variable

declarations are inserted into the fresh scope object. During this phase, declarations

are executed independent of control flow operators. For example, declarations in both

branches of an if statement are executed. The final pass executes the actual code in

this prepared scope with all the local variables already declared.

The interaction between hoisting and JavaScript’s scoping sometimes results in

surprising behaviours. In the example in Figure 2.1, the outer scope defines a variable

x. The call to function f in line 6 creates a new scope objects on the scope chain and

initialises it with the variable declarations in the function body. Therefore, the scope

object for the function body already contains the local variable x before the function

body is executed. The assignment in line 3 assigns the value 2 to the variable x in the

inner scope and the value of the variable x in the outer scope still equals 1 after the

function call.

If a JavaScript file is executed in strict mode, the with operator and similar features

are not available and the program is instead statically scoped: the structure of the scope

is independent of the runtime state, but instead only depends on the position of the
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Figure 2.1 Example Hoisting

1 var x = 1;

2 function f() {

3 x=2;

4 var x; // Executed before the assignment in line 3

5 }

6 f();

7 x; // equals 1

executed expression in the code. This simplifies the situation for analysis.

2.1.1.3 Hidden memory operations

An assignment to an undefined variable creates the assigned variable fresh in the most

global scope object without warning or error. Object extension behaves similarly. If

an expression assigns a value to a new field of an object, this field is silently created in

the given object. This implicit definition poses a challenge to code analysis, since the

set of defined variables or the set of fields of an object is difficult to determine.

In the example in Figure 2.2, line 2 implicitly declares the global variable x by

assignment. Line 3 extends the object stored in x by the field m. After the function call

the field x.m contains the value 3, even though the variable x and the field m were never

declared.

Figure 2.2 Example Implicit Allocations

1 function f() {

2 x = {};

3 x.m = 3;

4 }

5 f();

6 x.m; // equals 3

2.1.1.4 Flexible function definitions

JavaScript offers polymorphic and variadic functions. Polymorphic functions can be

called with parameters of different types, while variadic functions can be called with a

variable number of parameters. If a function is called with fewer parameters than spec-

ified in the function definition, the remaining parameters store the value undefined.
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If the function call provides more parameters than specified in the function definition,

the additional parameters are accessible through the arguments object. In the exam-

ple in Figure 2.3, the function f is defined with exactly 1 parameter but called with

2 parameters in line 1 and without parameters in line 9. When the function is called

without parameters the explicitly defined parameter x is set to undefined as used in

line 3. Line 5 and 7 access the non-specified parameter via the array arguments. This

way, the function can return the input 6 for the call in line 1 without naming it in the

function definition.

Figure 2.3 Example Flexible functions

1 f(5,6); //returns 6

2 function f(x) {

3 if (x==undefined)

4 return 0;

5 if (arguments[1] == undefined)

6 return 1;

7 return arguments[1]

8 };

9 f(); //returns 0

JavaScript functions fulfil three different roles: functions, methods and construc-

tors. The subtle difference is the value of the variable this inside the function body.

Consider Figure 2.4. A method (line 5) is called as a field of an object and the variable

this contains the receiving object. A constructor (line 6) is called with the prepended

new operator and this contains a newly created empty object to be extended by the

constructor body. A regular function call (line 7) is called without additional keywords

and this is bound to the global scope object.

Figure 2.4 Example Functions, Methods, Constructors

1 function f() {

2 return this;

3 }

4 var o = {m:f};

5 o.m(); //returns o

6 new f(); //returns a fresh object {}

7 f(); //returns the global scope object
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2.1.1.5 Dynamic types

During runtime, values in JavaScript have dynamic types associated with them. How-

ever, value updates are not restricted by the type. An integer variable can be updated

with a string or object value, changing its dynamic type. This behaviour may result

in dynamic variable types dependent on the previous control flow. In Figure 2.5 the

local variable y is initialised as object in line 2. Line 3-6 update y either with a string

or an integer depending on the value of x. Therefore, the resulting type of y in line 7

depends on the value of x.

Figure 2.5 Example Dynamic Types

1 function f(x) {

2 var y = {};

3 if (x==3)

4 y = ‘‘String’’;

5 else

6 y = 4;

7 return y;

8 }

2.1.1.6 Coercion

As scripting language, JavaScript is designed to throw as few exceptions as possible.

For this purpose, JavaScript converts many values automatically into the required dy-

namic type. For example, the if statement expects a Boolean as condition but an

integer or even string value as condition will be converted to Boolean by a list of rules.

One extreme example are the operators + and ==. The + operator first converts both

operands to primitive values via the valueOf method. It then executes string concate-

nation if the typeof function identifies at least one of the primitive operands as String.

The other operand is potentially converted to String via the toString method. Other-

wise, both operands are converted to a numeric value and arithmetically added. The ==

operator has 9 separate cases which involve converting Objects and Function to prim-

itive values and Boolean and String values to numeric values. Only in cases where

these extensive coercion protocols fail, mainly when accessing undefined as object

or function, a TypeError is thrown.

Conversions from primitive values to objects produce object wrappers, which con-

tain the original value and can be extended with additional fields. It is worth noting
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that, if a variable gets wrapped in this way, the value of the variable in the scope is

not overwritten with the wrapped object. This can lead to surprising behaviour. Con-

sider, for example, the code in Figure 2.6. Line 1 defines x to be an integer. Line 2

accesses the field a of x. Since integers do not have fields, JavaScript reads the value

of x from the scope, creates an integer object wrapper and assigns to its field a. Since

the result is not assigned back to x, the original variable is still a simple integer. The

second conversion in line 3 creates a new integer object wrapper without a field a and

therefore the return value is undefined. Line 4 converts x.a to a Boolean. Since the

value undefined converts to false, line 5 is not executed.

Figure 2.6 Example implicit Conversion

1 var x = 4;

2 x.a = true;

3 x.a; //equals undefined

4 if (x.a) //undefined converts to false

5 x = 6;

2.1.1.7 Metaprogramming

JavaScript’s eval operator takes a string and executes it as JavaScript code. In practice,

evaluated strings are often constructed dynamically or even received from a remote

server. As eval can parse the whole JavaScript language, its arbitrary effect is difficult

for static analysis. Figure 2.7 shows a program which downloads a string from a remote

server and executes it as JavaScript. The behaviour of this code cannot be determined

before execution. Static analysis has to assume the worst-case. However, previous

research [99] has shown that eval is often used for operations which can be achieved

without the use of eval. For example, JSON data obtained from a server can be parsed

using the JSON library instead. Based on pattern recognition, many use cases for eval

can therefore be translated into analysable code.

2.1.1.8 Computed access

JavaScript provides two different modes to access object fields. The static access o.m

explicitly uses the identifier of the field m. The computed access o[e1] in contrast

allows for the name of the field to be computed by an arbitrary JavaScript expression

e1. The result of the expression is converted to a string and then used as the identifier
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Figure 2.7 Example Arbitrary Code Execution

1 xmlhttp=new XMLHttpRequest()

2 xmlhttp.open("GET","target.com",false);

3 xmlhttp.onreadystatechange = function() {

4 eval(xmlhttp.responseText); //execute received command

5 }

6 xmlhttp.send()

of the field. Usually, during static analysis the exact result of the expression e1 is not

available. Therefore, a sound type system has to make conservative assumptions about

the result of e1 and potentially assume every field of the object has been accessed.

2.1.1.9 Interpretation and extension of the standard

Although JavaScript is standardised by ECMA, implementations of JavaScript inter-

preters are diverse. Some implementations include extra features which are not speci-

fied by the standard. For example, the window variable in most browsers always points

to the global scope object. This feature is not part of the ECMA standard. Another

example is the direct manipulation of the prototype chain via the field __proto__

of an object. On the other hand, implementations lag standardised features or al-

ter their behaviour. At time of writing, according to http://kangax.github.io/

compat-table none of the popular browsers were 100% compatible with the standard

ES5. For example function statements declared in both conditional branches as shown

in figure 2.8 behave differently depending on the browser.

Figure 2.8 Example Differences in JavaScript implementations

1 function f(x) {

2 if (x==3)

3 function g() {return 1;}

4 else

5 function g() {return 2;}

6 g() // might be 1 or 2 depending on the browser

7 }
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2.1.2 Formal JavaScript semantics

Various formalisations of the JavaScript semantics have been proposed covering dif-

ferent aspects of the language.

For the version ES4 of the JavaScript standard (which was never formally released)

a reference implementation in ML covering the whole language was planned [53]. This

implementation covers all ES4 core features including the planned gradual typing.

However, since ES5 and ES6 build upon ES3 rather than ES4, this implementation

cannot be used for real-world code.

A core of ES3 has been formalised as λJS [49]. This work provides a big-step eval-

uation semantic which mainly focuses on the object behaviour of JavaScript including

prototypes. The remainder of the JavaScript language, which λJS does not cover, is

translated into the core language by a desugar function. More details on this work are

given in Section 5.4.5.

Maffeis, Mitchell and Taly [81] aim to formalise the whole standard ES3. This

includes the scope chain built from objects, the proper handling of hoisting, redefini-

tion of JavaScript built-in features and the correct binding for this in functions. The

presented semantics has a modular design to account for differences in JavaScript im-

plementations. Some JavaScript features are omitted, most importantly the switch

and for statements, the Date and Math libraries and regular expression matching.

SES [2] is a semantics presented by Agten et al. describing a subset of ES5S, which

can be handled easier than the whole of ES5S. Taly [111] extends SES to SESlight ,

which covers almost full ES5. The formalised language lacks getter and setter op-

erators, restricts writes and extensions of built-in objects, does not handle prototypes

within the scope chain and requires the JavaScript features executing dynamic code

(eval and computed field access) to specify a set of variables, which the dynamically

executed expression might modify.

Most of ES5 is captured by the semantic JSCert [19] formalised in Coq. From

this formalisation the authors derive the OCaml implementation JSRef which evalu-

ates real-world JavaScript code and is proven sound in relation to JSCert. Via the im-

plementation JSRef, JSCert can be tested against the JavaScript reference tests. This

formalisation only lacks dynamic JavaScript parsing (needed to handle the eval com-

mand) and most of the built-in libraries like Math or regular expressions.

The system KJS [92] models the whole of JavaScript version 5.1 (ES5.1) and a

major part of the libraries for Objects, Functions, Booleans, Errors, Arrays, Strings and
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Numbers. The evaluation of the semantics passes all reference test of the JavaScript

specification. In the absence of a formal specification for JavaScript, this semantics

can be used as a reference implementation.

2.1.3 JavaScript in the real world

Ultimately, research on JavaScript has to be evaluated on code used in the real world.

However, most research makes assumptions about JavaScript code. The validity of

these are evaluated in various studies. This includes checking the differences between

theoretic systems and JavaScript implementations as well as the differences between

benchmarks and real-world JavaScript applications.

Pradel et al. [95] study type coercions in JavaScript code. They instrument all

operations which could lead to coercion and dynamically extract coercions that happen

in a typical run. They find that coercions are widely used and classify most of them

as harmless. Many occur in specific expressions, for example converting the result of

a conditional expression to Boolean or initialising a variable with a default value of a

different type than the actual value. This work also checks for the use of strict and non-

strict equality (=== against ==) and finds that they are used interchangably although in

most cases strict (i.e. without automatic coercion) is sufficient and probably intended.

Richards et al. [101] inspect the traces of benchmarks and popular web pages dur-

ing meaningful use. They find that polymorphic and variadic functions cannot be ne-

glected and programs widely use prototypes, object extensions and dynamic features

like eval and computed object lookup. The comparison between benchmarks and

real-world code shows that the runtime of benchmarks is too short and they do not

use enough eval, polymorphism of constructors and object modifications to represent

real-world programs. JSMeter [96] also compares 11 popular web pages with the V8

benchmarks and selected parts of the SunSpider benchmark collection. They discover

that the considered benchmarks do not test the complex use cases used in the real-world

JavaScript code. Therefore, tests on the benchmarks might be misleading.

Previous work also surveyed the way eval is used in existing code. Richards et

al. [99] find that eval is not solely used for parsing JSON code, but that there are

multiple patterns which it is used for. Jensen et al. [63] go a step further and propose

the Unevalizer framework which replaces eval uses with constant arguments, JSON

or other simple code strings with alternatives using dataflow analysis. Their proof-of-

concept implementation can handle 75% of the eval calls in the experiments. The tool
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Evalorizer [83] has a similar goal, but classifies the different uses of eval dynamically

using execution logs. With this technique the authors are able to replace 97% of the

calls.

Similarly, Park et al. [91] try to rewrite the uses of the with statement. They

discover 7 different patterns for the use of the with command in real-world code and

propose automatic rewriting strategies for all of them. In an evaluation they are able to

rewrite all uses of with except for those mixed with dynamic code execution. These

rewriting techniques can be used to transform real-world JavaScript applications into

analysable code.

For practical JavaScript programming Crockford [25] describes a subset of Java-

Script which should be used since it is free of confusing ambiguities. He discusses

how known programming paradigms can be achieved in JavaScript and how complex

functionality can be programmed without error prone functions like eval. However,

this work is not formalised.

2.1.4 JavaScript for mobile phones

Most current mobile phones have access to a constant Internet connection and many

existing mobile apps provide features similar to web applications. The phones already

provide a JavaScript interpreter as part of their browser. Therefore, JavaScript is an

obvious choice as programming language for mobile apps. New emerging mobile sys-

tems build directly upon JavaScript, for example Samsung’s Tizen OS [38] or Firefox

OS [90] and its derivative H5OS [112]. Apple provides the JavaScriptCore framework

to call JavaScript programs from native code and the Ubuntu phone OS [79] advertises

its HTML/JavaScript SDK.

For all established conventional systems - including Android, iOS, Blackberry

and Windows - various frameworks provide an easy way to develop apps in Java-

Script.Figure 2.10 surveys a selection of the popular such frameworks. An accurate

survey about the available apps and the users of the frameworks in the real world

would require the download of a huge amount of apps directly from the Google Play

Store. Since this is not feasible due to Google’s Terms of Service, Figure 2.10 approx-

imates the number of available apps by the apps showcased on the framework’s web

page and the number of users by the registered users in the development forums. This

approximation should give an overview of the reach of the different frameworks.

This work will focus on PhoneGap, one of the most popular such frameworks, as
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a typical example to create JavaScript apps. A JavaScript app written with PhoneGap

consists of 2 different parts: the platform dependent native part is compiled into the

native language of the operating system and has direct access to the phone’s services

and resources. The JavaScript part implements the user interface and functionality of

the app with access to the platform independent API of the native part.

Figure 2.9 PhoneGap structure

At launch the operating system executes the native part. It creates a browser view

in the respective operating system, initialises the PhoneGap APIs and executes the

HTML/JavaScript part (index.html) within this browser view. PhoneGap developers

have access to the full JavaScript features, including third party libraries like jQuery,

as the app is executed in a standard browser. Additionally, the framework provides a

bridge to access the APIs of the native part: the function exec is available within the

JavaScript part and can call methods of the native part.

This exec bridge is usually used to implement plugins. Each plugin provides a Java

class with the native code to access a specific resource and a JavaScript API mapping

the JavaScript calls to the Java class methods via the exec bridge. A set of core plugins

to access the most common resources is provided by PhoneGap directly and further

functionality like access to various mobile phone sensors is accessible through plugins

maintained by third party developers and listed on the PhoneGap web page.

The back-end of PhoneGap is the Apache Cordova library, which provides the

bridge and essential functionality for the app’s life-cycle. Both PhoneGap and Cordova

are available in Version 5.3.1 via the npm repositories at the time of writing.
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The advantage of PhoneGap apps over pure native code is the portability: the Java-

Script code of the app can be reused and packaged for different platforms by replacing

only the native part of the plugins. The user interface code can be executed and tested

in every browser which makes development and preview easy and the developer has

access to the large set of available JavaScript libraries and frameworks which improve

code development (e.g. jQuery), enhance maintainability (e.g. react) or provide pow-

erful user interfaces (e.g. enyo).

Figure 2.10 JavaScript frameworks for mobile apps

Framework URL Released Apps1 Users2 Functionality

PhoneGap phonegap.com 2009 39003 24,0003 developed the Cordova library

Sencha Touch sencha.com/products/touch 2010 3 534

commercial
model-view-controller paradigm
optimised UI elements
compiles Java code into JavaScript
deploys via PhoneGap

ratchet goratchet.com 2012 3 318
prototyping JavaScript UIs
deploys via different frameworks

Ionic ionicframework.com 2013 1204 4400
commercial
execution in browser
desktop and mobile

tabris.js tabrisjs.com 2014 6 N/A
front-end for Cordova
maps HTML to native UI elements

react native
facebook.github.io
/react-native 2015 90 380

maps HTML to native UI elements
integrates with native code

NativeScript nativescript.org 2015 12 363
open source
compile JavaScript into native

(all numbers as of December 2015)
1as showcased on the page 3stating 400,000 developers and 1 million apps on their web page
2active on the support forum 4stating 875,000 users on their web page

2.2 Resources for mobile devices

JavaScript accesses two principal kinds of resources. One set of resources, the lan-

guage activated resources, is consumed by the operators of the language directly.

Those resources include memory space, processing time and power. The second type

of resources, the API activated resource, is consumed by invocation of APIs, for ex-

ample any of the PhoneGap plugins mentioned in Section 2.2.2. In mobile apps this

category of resources can be further classified as the private data, services (SMS, phone

calls or push notifications) and sensors (camera and microphone, GPS, accelerometer

and gyroscope).

Both language and API activated resources can be abused by attackers. One ob-

vious attack is violation of privacy. The GPS sensor reveals the user’s location and

movement patterns and access to the microphone and camera can potentially record
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confidential information. Overuse of memory, time and power can lead to denial-of-

service attacks, since the resource is not available for other apps. In the smartphone

case this also affects the user’s ability to start and receive phone calls. Notifications

are also targeted by denial-of-service attacks. If an app succeeds to flood the notifica-

tion bar with unimportant notifications, potential security warnings might stay unno-

ticed [20]. This can turn into a social engineering attack, in which the app repeatedly

displays less important confirmations to hide one critical request. By the time of the se-

rious request the user’s attention might have dropped enough to confirm the important

request like an unimportant one. Furthermore, the smartphone can execute billable ser-

vices like SMS and phone-calls. Attackers can send SMS to premium numbers billing

into their bank account and thus cause unexpected bills.

The different kinds of resources result in different challenges to provide bounds on

the usage. The same API activated resource can be consumed by multiple API meth-

ods. To guard an API activated resource, all access methods need to be considered.

On the other hand, analysis of language activated resources needs to take into account

the fine details of the JavaScript semantics, which can even vary between different

JavaScript implementations. Concerning language activated resources, this thesis only

considers memory space, since compared to time and power consumption, memory

consumption is less dependent on the device and subtle differences in the machine

state. State-of-the-art systems [88] in this research area estimate power consumption

of apps with power models with various parameters including the device components

(display type) and settings (brightness).

2.2.1 Classification

Independent of the differentiation between language and API activated resources, re-

sources can also be classified in respect of their consumption behaviour. The following

two questions characterise the consumption behaviour of a resource kind:

• Does an allocation of this resource acquire exactly one unit (unitary) or is it

possible to acquire units of this resource “in bulk”?

• Is it consumed irreversibly (consumables) or can the resource be released again?

All combinations of those two properties results in 4 categories. Each category raises

different analysis questions, depending on how resources in this category are used or

abused.
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count: Every resource usage is unitary and the resource is consumed on usage. For

this resource the consumption is equal to the number of accesses. For example,

the number of HTTP requests sent or the contacts read are both resources in this

category. The analysis question in this context is “How often did the app access

this resource?” and aims to protect e.g. against unreasonable leakage of data.

cumulative: Multiple units per access are possible, acquired units get consumed. An

example is the data traffic or carrier credit used. The analysis answers the ques-

tion “How much of this resource has been consumed in total?”

unique (blocking / non-blocking): Only one unit can be acquired, but the unit can be

released after use. Apps ask (explicitly or implicitly via a library call) for the

access to this resource and ideally free the resource after the resource operation

has been performed. This could be blocking (i.e. only one app can have this

permission at any one moment) or non-blocking (multiple parallel apps allowed).

The user is concerned about the questions “Does the app currently hold this

resource?” and “Did the app ever hold this resource?” Analysis of the first

question protects against monopolies and deadlocks and the second can be used

to infer access to critical data and sections like the password store.

acquire-release: A program can acquire a certain amount of units of this resource and

return parts or all of them after use. The analysis questions are “How many units

were held maximally?” and “How many units have never been returned after

execution?” Examples in this category include the memory space.

2.2.2 Resources in PhoneGap

The strength of PhoneGap apps over JavaScript in a web page is PhoneGap’s infras-

tructure for plugins to access the native resources of the mobile phone. On Android

these plugins are implemented as Java class and provide a JavaScript API to invoke the

Java methods. The central registry for PhoneGap lists 1113 plugins [22nd September

2015] and the npm repository lists 552 [22nd September 2015] for the latest version

of the framework. 18 of them are published as core PhoneGap plugins on the Phone-

Gap webpage [59]. The others have been developed by third party developers. The

following shows how each of the mobile phone resources is accessed in PhoneGap.

Camera The camera is accessed using the PhoneGap plugin

cordova-plugin-camera with its function navigator.camera.getPicture.
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This API activates the camera app of the operating system, inviting the

user to take a picture, which is then returned to the app. Since it does

not take a picture directly, it does not require the permission to access the

camera. The function navigator.device.capture.captureImage imple-

mented in the plugin cordova-plugin-media-capture provides similar

functionality and can additionally capture a video in a similar way via

navigator.device.capture.captureVideo. Even though these APIs do not

access the camera without user interaction, a limit on the times an app is allowed

to call these APIs can prevent the app from flooding the user with requests to

take a picture.

Location The plugin cordova-plugin-geolocation provides two methods to ac-

cess the location: navigator.geolocation.getCurrentPosition queries

the location once, whereas navigator.geolocation.watchPosition returns

the location repeatedly. Instead of PhoneGap’s bridge to Java, the newest im-

plementation on Android directly uses the W3C Geolocation API specification

of the browser view. In older versions of this plugin, the API functions were

called getlocation and addWatch. Any of these APIs require the permissions

android.permission.ACCESS_COARSE_LOCATION or android.permission.

ACCESS_FINE_LOCATION. Location data could also be obtained through the

EXIF data extracted from pictures. Therefore, the method navigator.camera.

getPicture should to be considered for location information, too.

Messaging PhoneGap does not promote an official SMS messaging plugin. Instead,

a range of 3rd party plugins with different APIs are available. In the 8757 apps

available for this evaluation 19 different messaging plugins were found and fur-

ther 5 are listed in the PhoneGap plugin repository. Out of these 24 plugins,

12 are only included in one specific app and not available as source code. The

APIs of the available 12 plugins are summarised in Figure 2.11. All analysed

plugins provide exactly one API function each to send SMS with a specified

text to the specified recipients. Additionally, some plugins provide functions to

check whether the current phone has the capability so send SMS or to receive

messages from the user’s inbox. While reading SMS could be considered as part

of the “private information” resource, the obvious resource for those plugins are

the sent SMS.

Instead of sending messages directly, apps can trigger the user’s chosen messag-
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ing app via intends. In this case the message is send by the messaging app and

the PhoneGap app does not require a permission. There are various third party

plugins with APIs to send messaging intends (some included above) or intends

in general. Since the user has to specifically press the familiar “Send” button,

this method is not as critical for the resource analysis.

Movement To access the accelerometer and compass, PhoneGap pro-

vides the plugins cordova-plugin-device-orientation and

cordova-plugin-device-motion. The accelerometer is accessible with-

out permission, while the compass requires the same permissions as the

location. Both plugins provide a method navigator.accelerometer.

getCurrentAcceleration/navigator.compass.getCurrentHeading

to access the sensor once and navigator.accelerometer.

watchAcceleration/navigator.compass.watchHeading to access the

sensor repeatedly.

Notifications The main notification plugin in PhoneGap is

cordova-plugin-dialogs. It does not require additional permissions.

This plugin implements the object navigator.notification with the 3

methods alert, confirm and prompt, which each display an overlay window

with different configuration of buttons. Additionally, it provides the method

beep for audio notifications. JavaScript directly provides similar functionality

with the built-in functions alert, confirm and prompt.

The plugin cordova-plugin-vibration requires the permission android.

permission.VIBRATE to activate the rumble feedback of the device. With

this additional plugin the app might use the methods navigator.vibrate

or navigator.notification.vibrate and navigator.notification.

vibrateWithPattern for tactile feedback.

The notification area in the status bar can be manipulated with the plugin

cordova-plugin-statusbar without further permissions. It implements the

function StatusBar.hide and StatusBar.show to change the visibility of the

system’s status bar.

Contacts The contacts stored on the phone are guarded by the permissions android.

permission.WRITE_CONTACTS and android.permission.READ_CONTACTS.

In PhoneGap they are accessed through the plugin cordova-plugin-contacts,
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which provides the API object navigator.contacts. Its method pickContact

display the system’s “choose a contact” dialog and find can access the contacts

without user interaction. With the function create a new contact object is cre-

ated. Each contact object (freshly created or obtained from the existing database)

has the method save and remove to alter the database permanently.

Audio Much like the plugins to take pictures, the plugin

cordova-plugin-media-capture can use the function navigator.

device.capture.captureAudio to launch the sound recorder of the op-

erating system. In contrast, granted the permissions RECORD_AUDIO the plugin

cordova-plugin-media can directly access the microphone via the function

media.startRecord and media.stopRecord. It can play audio and video files

using the function media.play and change the volume via media.setVolume

with the permission MODIFY_AUDIO_STATE.

Files The plugins cordova-plugin-file and cordova-plugin-file-transfer

operate on the file system. They provide various functions to write and read

files, but are usually restricted to write to the app specific storage. Additionally

the FileSaver object can monitor file changes.

Other private Information The plugin cordova-plugin-battery-status pro-

vides the events lowbattery and chargerconnected to react to the bat-
tery state. The plugin cordova-plugin-device accesses device infor-
mation like the device model, its Universal Unique Identifier and the ver-

sion of the running OS. The plugin cordova-plugin-network-information

allows to inquire the status of the network connection via the method

navigator.connection.type. Furthermore, it provides the events offline

and online to react to changes of this status. The required permissions

android.permission.ACCESS_NETWORK_STATE and android.permission.

ACCESS_WIFI_STATE are requested by the PhoneGap framework already. The

plugin cordova-plugin-globalization provides several methods which re-

turn location-settings like the preferred language, localisation scheme and for-

mats for numbers, dates and currencies without further required permissions.

In general, the plugins included in the PhoneGap plugin database are maintained

by various third party developers and come without any guarantee. However, emerging

databases like the Telerik [24] marketplace collect open-source plugins and verify them
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manually. Their aim is to provide a guidance for developers, but the documentation

resulting from this process also lists all information needed to identify the resource

consuming APIs for each plugin.

2.2.3 Resource policies for mobile devices

2.2.3.1 Policy models for mobile phones

Most current mobile operating systems employ a permission-based policy to guard the

resources. Apps request permissions for each required resource. The user has to grant

all requested permissions to install the app. After this initial request the app can use

the requested feature freely without additional user interaction. Previous research [37]

suggests that users do not understand the implications of the permissions or do not con-

sider the permissions granted during install time carefully enough. Newest versions of

the Android OS have added options to grant or reject single permissions during run-

time. Even with this modification each permission is either denied or granted uncon-

ditionally, independent of the quantity and context in which the resource is accessed.

This information can be the difference between wanted and unwanted behaviour: a

messaging app has to send SMS to the provided numbers, but only one per recipient

and not without user interaction or to premium numbers. A voice recorder should have

access to the microphone, but only after the user pressed the recording button.

Capabilities [76] offer a finer access control model than permissions. A capability

is an unforgeable token that allow access to a resource. These tokens are provided,

for example as parameters to a function, to the parts of the program that legitimately

requires access and can be forwarded to the appropriate subfunctions to delegate ac-

cess. In some capability systems such delegation is restricted by an additional policy.

A capability can grant access to a single file or enable access to a whole set of resource

APIs.

Confirmation-based policies involve the user in the policy decision during runtime.

The user has to approve every resource access separately. This system might fit more

important resources but quickly drains the user’s attention if too many requests have to

be confirmed. If the mental capacity of the user is exhausted, important confirmations

hidden in a set of less important confirmations have a good chance of being overlooked.

Confirmation based policies also have to handle re-requests appropriately since other-

wise the app could simply ask for the permission repeatedly until it is granted. The

option to grant access in a bulk [13] can improve this approach, for example, granting
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the next 10 accesses or all following requests of this app. This offers a pay-off between

fine-grained control over the resource and mental load. Another important addition to

confirmations for resources, as discussed by Ben Poiesz in the Google I/O 2015, are

reasons why the permission is requested. If the app provides such a reason, the user

can make an informed decision whether to grant the request.

The approach taken in this work aims to combine the permissions based approach

with advantages of “in-bulk” confirmations. The aim is to provide for each granted

permission the information how often and in which context it is used. This information

helps to differentiate between intended features and unwanted behaviour.

This is achieved by providing bounds on the consumption of each resource. These

bounds depend on the runtime situation of the app: the bound on the consumption of

a function depends on the size of the input data and the bound for the whole app de-

pends on the user interaction. The resulting bounds can be described as ticket-based

policies: instead of the permission for unrestricted access to a resource, the app re-

ceives a number of tickets. Every time the app requests access to the resource, it has to

“pay” one ticket. For data-dependent bounds, these tickets can be stored inside the data

structures. For example one SMS ticket can be stored with each contact in a recipients

list. For interaction-dependent bounds the tickets can be generated by the interaction

event. Each press to the button “Send” generates a fresh ticket to send exactly one

SMS. This way, the press to the “Send” button acts as implicit confirmation by the

user, embedded into the work-flow of the app without consuming the user’s mental

capacity. These policies are formally introduced in Chapter 3 and implemented by the

systems in Chapter 4 and 6.

2.2.3.2 Policy enforcement systems

Previous studies [34, 72] have shown that users typically do not know what each An-

droid permission implies. Most users have accepted that standard permissions, such

as full Internet access, are requested by almost all apps and do not pay attention to

the permissions requested by an app during installation. The system Kirin [31] defines

rules describing which sets of permissions collude to a potential thread and warns the

user during installation.

The tool Dr. Android and Mr. Hide [66] divides the existing Android permis-

sions into finer sub-permissions and enforces their usage by a dynamic monitor like

PhoneWrap. The enforced policies are more fine-grained than the stock Android poli-

cies, but neither interaction-dependent nor quantitative.
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Jin et al. [68] enforce more fine-grained access control specifically for HTML5

and PhoneGap apps. Their system allows to grant permissions for each iFrame of the

app separately. This way, they can grant access to the UI of the app but restrict views

inserted by third parties, e.g. ads. The policies presented in this thesis are even more

fine-grained, since they can grant or deny access to each button separately.

There are also various systems which enable the user to control the permissions

with more granularity: MockDroid by Bereford et al. [17] allows the user to revoke

permissions to each app during runtime, causing the operating system to report the

resource as unavailable or to return empty data. This is achieved by modifying the An-

droid access control system directly. The system CRéPE by Conti et al. [23] also mod-

ifies Android and allows the user to restrict resources to a specific context based, for

example, on time or GPS location. The system denies all access outside the specified

context. The system PhoneWrap presented here can replace resource access with the

same countermeasures as MockDroid and allows more fine-grained context-dependent

control than CRéPE based on user interactions with the app.

Felt et al. [35] discuss different methods to make the user of an app aware of re-

source consuming actions with the conclusion that the use of warnings and confirma-

tion dialogs should be minimised to reduce the habituation effect. The interaction-

dependent policies discussed in this thesis implement the “Trusted UI” paradigm pre-

sented in this paper. Enck et al. [30] confirm this paradigm as one of the programming

guidelines for smartphone security.

Access Control Gadgets [102] implement resource policies similar to the interac-

tion policies in PhoneWrap. However, the UI elements granting access in their ap-

proach are supplied by the resource APIs and therefore not as flexible. PhoneWrap

policies instead can choose any UI element from the original app making the ap-

plication of PhoneWrap to existing apps easier. Furthermore, their approach needs

to modify the execution environment to capture the events and protect the gadgets.

PhoneWrap achieves this without modifying the execution environment using Java-

Script’s inherent features.

In an evaluation on over 4000 apps, Elish et al. [29] determine that user interaction

is a good metric to distinguish between functionality and suspicious behaviour. They

examine the portion of critical API calls in the tested apps triggered by user interaction

and discover that the pattern is significantly different for malware and benign apps.

The interaction-dependent policies described in the latter chapters of this thesis use

exactly this difference to restrict unwanted behaviour.
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Quantitative resource policies have been applied to Java apps [26, 33, 108]. Since

Java apps are usually compiled, it is more complicated to wrap the resource APIs with

access to the user interface. Especially PhoneWrap lightweight approach to implement

the resource monitor in the target language is not possible here. Therefore, the existing

tools have to make more complicated modifications.

Wrapping methods injected into pure Java apps have also been considered. App-

Guard [15] disassembles an App and inserts inline reference monitors to mediate the

granted permissions with more fine-grained control. Aurasium [118] replaces the libc

library included in the app to mediate resource accesses. AppGuard could potentially

be extended to incorporate user interaction into its policies, but in the current state nei-

ther AppGuard not Aurasium enforce interaction-dependent policies. However, since

PhoneGap apps handle all user interaction in the app layer implemented in JavaScript,

an enforcement of interaction-dependent policies for PhoneGap apps has to be imple-

mented on the JavaScript layer.

Ticket based policies are discussed by Besson et al. [18] and further examined by

Aspinall et al. [13, 14]. The presented system allows to approve a number of resource

accesses in one confirmation dialog. A dynamic enforcement ensures that an action

is only performed if the program is granted sufficient access to all required resources.

The authors then show that under certain conditions the runtime checks used to enforce

the policies can be omitted.

Despite the attempts in [6] to initiate an adaptation of the mobile phone permissions

to web apps, there is only a sparse protection of critical functions in browsers so far.

The PhoneWrap policies can be applied to web pages to guard the browser-specific

resources including the URL bar, which malign scripts should not write into, pop-up

windows and cookies. However, web pages are downloaded fresh every time the user

visits or navigates. That means, the injection of the enforcement has to be performed

for each page load. The browser Opera and its built-in feature UserScripts enables

PhoneWrap to inject the wrapping script automatically into every fresh loaded page

and enforce PhoneWrap policies for web pages.

2.3 Analysis of JavaScript programs

Previous research of program analysis has taken two different principal approaches:

static or dynamic. In static analysis the source code or intermediate representation is

analysed without executing it. The results over-approximate all possible executions
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of the analysed program. This might also include branches which are never executed.

Static analysis is often executed on a device different than the target device of the

program and runtime overhead is not as critical since the device executing the analysis

can be much more powerful than the execution device.

The dynamic approach monitors one specific execution of the program during run-

time. Therefore, the result only describes one branch of the program with more preci-

sion than static analysis. Dynamic analysis omits dead code, but changes the runtime

performance and potentially the behaviour of the app.

The following presents existing systems and their properties. The resource analysis

presented in later chapters builds upon the existing methods and assumptions.

2.3.1 Dynamic analysis

The work on PhoneWrap is inspired by self-protecting JavaScript [94], which intro-

duces the framework to wrap JavaScript objects and enforces state-based policies in

web applications. The work in Chapter 4 extends this work to JavaScript-based mo-

bile phone apps and enforces concrete interaction-dependent policies. Magazinius et

al. improved the original wrapping method in [82] to protect the JavaScript internal

methods against re-definition. The improvements made there apply in the same way to

the system PhoneWrap.

A common approach is to modify of the browser environment to dynamically en-

force security properties of JavaScript applications. ConScript [84] modifies Internet

Explorer 8 and provides a framework to enforce fine-grained policies in web applica-

tions. Example policies include restrictions of the JavaScript capabilities of included

third party scripts or communication monitoring. Different systems [27, 46, 93] en-

force information flow policies by modifying the Firefox browser: jcshaddow [93]

implements separated variable stores for JavaScript scripts from different sources to

minimise leakage between different scripts, Adsentry [27] executes every script in a

different JavaScript engine and Groef et al. [46] multi-execute one script on two levels,

once with private knowledge but no outputs and once with output but without priv-

ileged data. This guarantees that the output does not leak private data. Richards et

al. [100] modify the WebKit engine to annotate JavaScript functions and values with

ownership and enforce fine-grained access rights. All these system rely on the modifi-

cation of the environment and are therefore specific to one exact version of a browser.

PhoneWrap, in contrast, inserts the enforcement into the app package and can be ex-
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ecuted on any system which can execute the original app. In addition, none of the

systems above is capable of enforcing interaction-dependent policies.

Another dynamic approach is to modify the source code of the web page. Ad-

Jail [113] modifies the code on a shadow-server to separate all scripts from the main

page using iframes. To preserve essential operations AdJail allows communication

between scripts specified in a white list. SafeScript [78] rewrites JavaScript code to

isolate different scripts. Barth et al. [16] rewrite JavaScript files on a proxy to replace

insecure function calls with equivalent secure ones. None of the rewriting systems is

able to enforce policies dependent of the user interaction. Furthermore, while rewrit-

ing is similar to the wrapping performed by PhoneWrap, rewriting needs to take extra

care that dynamically injected code is rewritten as well. PhoneWrap’s wrapping instru-

ments the functions defined in the JavaScript environment which automatically affects

all dynamically inserted code and therefore exposes less attack surface than rewriting.

However, all methods used above to rewrite could be used to insert the PhoneWrap

wrapping script into web-pages.

The system BrowserShield [97] can enforce policies similar to PhoneWrap includ-

ing the interaction-dependent policies. However, this system heavily modifies the

browser and is thus not portable to mobile phones or between different platforms.

Modifying the browser view of PhoneGap apps in this way would require root access

to the mobile phone, which many users are not able or willing to activate.

2.3.2 Static analysis

Apart from type systems, which will be discussed in more detail in Chapter 5, there

are various approaches to static analysis for JavaScript.

Gardner et al. [42] present a logic to describe and reason about complex properties

of the whole JavaScript language. The fully formal approach to the whole language

makes automatic inference hard. To simplify the presentation of the logical properties,

they define a number of layers on top of the basic logic to describe more complex

properties.

The system ENCAP [111] by Taly et al. analyses programs written in the subset

SESlight of JavaScript and reports accesses of security relevant resources which circum-

vent the trusted security APIs. The analysis is a context-insensitive, flow-insensitive

points-to analysis. The function eval is handled conservatively by assuming the dy-

namically executed code aliases every variable with every possible value. ENCAP
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derives its results by solving Datalog facts extracted from the program with conven-

tional solvers. ENCAP could find all APIs accessing a critical resource to construct

resource models for AmorJiSe and PhoneWrap. Otherwise, the results of ENCAP are

orthogonal to the bounds provided here, since ENCAP only finds or certifies the ab-

sence of a resource access as opposed to inferring information about how often the

resources are accessed.

RATA [77] is an abstract interpretation system, which aims to increase the per-

formance of Just-in-Time compilers for JavaScript at runtime. RATA uses 3 different

analysis methods: interval analysis to discover bounds on the values of numeric ex-

pressions, kind analysis to discover NaN values and fractional values and variation

analysis to discover relations between different variables. The 3 methods complement

each other to increase precision. The results are abstract values which contain infor-

mation about the range of values possibly stored in the variables and whether they are

compatible with Int32 values. This information is used to optimise the compilation of

the code. The language covered is a core language named JavaScript=. With respect

to resource analysis, the results of RATA are especially interesting for the memory

resource. The range of values for an expression determines the worst-case for their

resource consumption in the memory and can therefore increase the precision of the

requirement estimation.

2.3.3 Hybrid analysis

Some existing systems combine dynamic analysis with static analysis to improve the

results.

Schäfer et al. [104] use an instrumented execution to track information about the

determinacy of expressions. This system tracks the information during one trace gen-

erally enough, to return sound information about all traces. The results can be used

to increase the precision of static analysis, for example, by replacing computed argu-

ments of eval statements by their possible values. This method has been applied to

different versions of the jQuery library and benchmarks of previous research on eval

elimination. Newer versions of jQuery cannot be handled due to its complex use of

event handlers.

Chugh et al. [22] approach the analysis of JavaScript code including dynamically

loaded code. The system infers the behaviour of the available code statically and then

describe properties the dynamic code has to fulfil to guarantee static properties of the
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whole program. The properties of the dynamic code are derived automatically by a

constraints based solution algorithm. The system then inserts dynamic checkers for

the required properties into the code to enforce the static properties. The soundness of

the results are proven formally for a subset of the JavaScript language. The full system

is tested on the JavaScript code of the top 100 web pages.

The static part of the system Gatekeeper [47] uses points to analysis and dataflow

constant propagation to prove the absence of certain attacks like global namespace

polution and cross-site-scripting (XSS). These guarantees are derived by iteration of

Datalog facts. This analysis is proven sound on a subset JavaScript_Safe of JavaScript,

similar to the strict mode of EcmaScript 5. The eval function and other language

constructs not covered by the subset are handled by runtime checks.

Wei et al. [117] propose a hybrid system which executes the code on a set of as-

sumed comprehensible test cases using a modified version of the WebKit JavaScript

engine. Based on the information obtained during these test executions, the static anal-

ysis then derives information about the taint propagation and aims to prevent leakage

of personal data. The result are pairs of sources and sinks between which the critical

data flows. For the dynamic features of JavaScript the system assumes that all possible

values for the dymanic code are encountered during the tests.

Hackett and Guo [51] use static type inference to improve the benefit of Just-in-

Time compilation for JavaScript. The focus of this work lies on the fact that every

JavaScript expression has a polymorphic type since e.g. every object lookup might

return undefined and integer arithmetic might overflow into a double value. They use

dynamic enforcement to guarantee monomorphic types for the static part. A similar

approach could be taken to handle the corner cases in the type system AmorJiSe.

2.4 Resource analysis

Most of the systems covered so far have qualitative properties as goal, like the ab-

sence of errors or threats. The analysis of the resource consumption of JavaScript code

benefits from these results, but requires additional methods to capture the quantita-

tive behaviour of the analysed JavaScript code. The following presents the two most

evolved approaches to resource analysis.
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2.4.0.1 Amortised types

The work initiated by Martin Hofmann in [54] introduces amortised types. The system

AmorJiSe presented in this thesis takes the idea of amortised types and applies it to

mobile resources in JavaScript.

In the amortised paradigm every data structure includes a certain number of re-

served allocated memory units (only the resource memory is considered in the original

work). The paper [54] introduces the type � that symbolised the allowance to allo-

cate one additional cell in the memory. For example, the type � → Int → List(Int)→
List(Int) of the function insert() certifies that insert() requires one ticket, an in-

teger value and a list of integers and returns a list. The provided resource unit has been

used to insert the new value into the provided list.

The expressivity of the system was extended in [55] by replacing the unit � by

annotations representing a list of units. Since the order of the tickets does not matter

the annotation is represented as a numeric value, the list’s length. Those annotations

can be inserted into function types and data types. A number of tickets inside a data

type can be thought of as a portion of the global freelist reserved for operations on this

data structure. In recursive data structures, such a part of the freelist is associated with

every element. A list of type List(Int,2) has the allowance of allocating two additional

memory cell per element in the list. This allows the list to be copied, with the result

type List(Int,1) for the original list and a freshly created list of the type List(Int,0).

The missing ticket in each element has been used to store the new copy. With this kind

of type it is possible to reason about resource usage dependent on the size of the data

structure.

Hofmann defines the typing rules for this system and presents an algorithm to infer

these types automatically. The inference is achieved by first typing the expressions

without resource annotations. Based on this type derivation the algorithm then gathers

constraints on the resource annotations. The constraints form a linear programming

problem (LPP) and can be solved for rational values (i.e. if resource units can be

broken into fractions) or for integer values in special cases, e.g. if the coefficients in

the LPP fulfil certain conditions.

Amortised types have been extended to handle non-destroying use of variables [12]

and class-based programming languages [56]. An inference algorithm for the latter is

presented in [57]. This is achieved by making the typing rules syntax-driven. Thus,

the generation of the constraints is deterministic and can be solved as before. In this
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implementation Hofmann assumes to have sufficient annotations from the user for the

inference of the resource consumption. In particular the user needs to specify the

resource relation were a variable is accessed more than once. For example for the

consecutive function calls f1(x);f2(x) (both using x) the developer needs to declare

how much of the potential of x will be available during the execution of f1, how much

will be available during f2 and how much will be left with the variable x afterwards.

In related research, linear types, based on linear logic [43], are often use to type

values which can only be used once, just like the allowance symbolised by the original

� type can only be used once. However, advanced versions of amortised types allow a

typed value to be read arbitrary often, as long as it is not used in resource consuming

actions.

For example, consider the upload bandwidth as resource. Was the variable x in the

code

Example 2.4.1.

1 var x = {value: "1.jpg", next: null};

2 upload_list(x);

3 show_list(x);

typed with a linear type, its type would be consumed in the function call upload_list

and the following call show_list could not be typed. In amortised types, the call

in line 2 merely consumes the annotation inside the type of x by 1, which limits the

number of calls to the function upload_list but still allows resource independent

calls like show_list.

Other linear type systems have been designed to only type a subset of the values

with linear types and allow other values to be typed with non-linear types [116]. How-

ever, amortised type systems allow one value to be limited for some uses, but unlimited

for others.

2.4.0.2 Cost relations

The cost relation approach [4], labels the cost of every subexpression with a variable

and translates the program into a set of equations over those variables. The solution

algorithm first transforms the equation system to eliminate indirect loops. The cost of

direct loops is then estimated by over-approximating the worst-case for the number of

loop iterations and the worst-case cost for one loop iteration. These values are obtained

by an iterative procedure to obtain loop invariants and a monotonically decreasing
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ranking function for the iterations. The product of those estimations produces a bound

on the cost of the execution of the loop.

In the follow-up paper [5] this idea is refined to reason about the worst-case cost for

each loop iteration separately. This results in tighter approximations. The algorithm

does not claim to be complete in means of transforming the cost relations nor for

finding the ranking functions and invariants. Experimental results show the analysis to

be a good estimate for well known samples like merge-sort or the recursive solution

for the Hanoi riddle.
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Figure 2.11 Messaging plugin APIs
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Chapter 3

Interaction-dependent ticket-based

policies

This chapter introduces interaction-dependent ticket-based policies (ITPs) and shows

how to dynamically enforce them in JavaScript apps via API wrapping, a variation

of inlined reference monitors. ITPs enforce a bound on the resource usage of an app

during runtime by managing resource tickets. Each ticket grants a one-time resource

access. Selected user interactions which are expected to trigger legitimate resource

consumption generate additional tickets to “pay” for the expected resource access.

Due to this mechanism, the resulting bounds depend on the user interaction with the

app. Policy violations trigger the specified deny behaviour which can execute arbitrary

JavaScript code to respond to the resource request and preserve as much functionality

as possible without access to the resource.

Inlined reference monitors have been used before to implement policies for Java-

Script web-apps [94] and Android apps [15]. Quantitative policies [33] and interaction-

dependent policies [102] for mobile apps have been studied separately. This work, to

the best of my knowledge, is the first to combine the different fields and to consider

quantitative interaction-dependent policies for JavaScript apps. The result is the first

system to enforce them in an unmodified execution environment.

3.1 Motivating example

The PhoneGap app TrackMyVisit (myzealit.TMV.apk1) by MYZEAL IT Solutions

shown in Figure 3.1 manages a list of journeys and advertises the following features:

1downloaded from the Google Play Store in Dec 2014, now discontinued
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• While a journey is active the app logs the GPS position of the user.

• When the user presses the “Emergency” button, a message is sent to up to 3

specified contacts.

• With the button “Add Image” the app can take pictures and attach them to the

journey log.

Figure 3.1 TrackMyVisit - UI

For this functionality the app requests, among others, the permissions to access the

messaging service, the camera and the GPS location (Figure 3.2). The unrestricted

access granted by these permissions enables the app to perform a number of attacks:

• The app could track the location of the user at all times.

• The app could take pictures in sensitive situations.

• The app could send private information or impersonate the user via messages

and charge for premium messages.

More fine-grained control is required to allow the functionality but prevent these at-

tacks. A true least-privilege policy for TrackMyVisit would grant access to the GPS

sensor only while a journey is active, would allow exactly 1 camera access for each

time the “Add Image” button is pressed and would permit messages only after the

“Emergency” button has been pressed.
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Figure 3.2 TrackMyVisit - Permissions

To achieve this, the interaction-dependent ticket-based policies (ITPs) manage a

set of tickets which are granted to the app at launch or generated by specific user

interactions. Each ticket allows a one-time access to the critical API. This way, the app

is restricted to access the guarded resource exactly as often as needed to execute the

functionality requested by the user. To enforce ITPs, the resource consuming APIs and

the user interaction need to be monitored. The wrapping method monitors the APIs

by overwriting the original API with an instrumented version which has sole access

to the original API. Each time the application code calls one of the resource accessing

functions, the wrapped API first evaluates and updates the policy and either calls the

original API or executes the deny behaviour. The user interactions are monitored by

listening for the user interaction events.

Figure 3.3 illustrates the effect of the policy described above. These example re-

source traces of the TrackMyVisit app record the button events and the API calls.

Trace (a) conforms with the policy and shows how the button “Take Picture” generates

1 camera ticket to be used by the API function captureImage. The button “Emer-

gency” generates 3 SMS tickets, one of which is consumed by the sendSMS function.

The remaining 2 tickets are cancelled when the event handler for the “Emergency”

event is finished. Finally the buttons “New Visit” and “Close My Visit” enable or dis-

able unconditional access to the GPS sensor by granting ∞ many tickets. Trace (b)

does not conform with the policy since it calls the API getCurrentLocation before

the button “New Visit” started a journey and after “Close My Visit” was pressed. In
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both cases the app does not have a GPS ticket to pay for the access. As a consequence,

the enforced trace (c) replaces the violating requests by the deny action. It does not

restrict the legitimate resource access while the journey is active.

Figure 3.3 Example traces of a ticket-based permissions model

(a) Conforming trace
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(c) Enforced trace
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3.2 Policy model

This section describes the formal model of the interaction-dependent ticket-based poli-

cies (ITPs). Here, each ITP guards one abstract resource. To guard multiple resources,

multiple independent ITPs can be defined or multiple resources can be combined into

one abstract resource. For example, the abstract “notification” resource contains pop-

up dialogs, vibration and audio signals. Each notification ticket can be used to activate

either of the guarded features.

3.2.1 Definition

The following describes the formal concept of ITPs. The policy reacts to API calls f

and user events e ∈ UIEvents = {click(button),mousedown(x,y), ...}. The special

event start ∈ UIEvents indicates the launch of the app.

Definition 3.2.1.

• Let a resource model be a function

RM : API →{0,1}

with RM( f ) = 1 if the function f accesses the guarded resource and RM( f ) = 0

otherwise. Call APIs f with RM( f ) = 1 critical API.

• Let an interaction policy ip be a pair of functions

ipl, ipg : UIEvents →Q≥0
∞

defining the amount of local and global tickets generated for each event.

• Define a full policy as the triple pol = (RM, ip,deny) with the deny behaviour

deny.

The interaction policy ip=(ipl, ipg) describes two different kinds of tickets. Global

tickets ipg can be used at any time after generation, whereas local tickets ipl are gener-

ated for a specific event. They can only be used within the event handlers for the event

they were generated for and unused local tickets are cancelled after the event has been

handled. Both values ipl and ipg are taken from Q≥0
∞ = {x ∈ Q|x ≥ 0}∪ {∞}. The

value ∞ is included to describe unrestricted access equivalently to an Android permis-

sion. With fractional value in Q, the system can describe fractions of a ticket. This
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way the policy can require multiple user interactions per resource access and weight

different user interaction differently. The values are taken from Q rather than R to

capture the nature of the implementation better, which cannot represent arbitrary real

numbers.

The function deny describes the behaviour which is executed in case the app re-

quests resource access without sufficient tickets. The deny behaviour may, for exam-

ple, terminate the application, ignore the resource request, return dummy values, grant

access to the resource based on additional conditions (e.g. a user confirmation) and

even manipulate the number of tickets granted to the app.

Definition 3.2.2. Consider an app P.

1. Consider the following resource events r:

(a) API( f ): call to the API f

(b) E(e): the user triggers the event e ∈ UIEvents

(c) Done(e): all handlers for the event e ∈ UIEvents are completed

Enforced traces can also include the additional resource event

(d) deny: the deny behaviour is executed

2. Define a trace t as the possibly infinite sequence r1,r2, ... of resource events

occurring during an execution of an app P.

Write t · t ′ for the concatenation of two traces t and t ′ and P →∗
t to assert that the

app P produces the trace t.

3. For each trace t = (r1,r2, ...) define the resource count cres as:

cres(r1,r2, ...) = ∑
ri=API( f )

RM( f )

4. For a trace t = t ′ · (E(e), ...,Done(e)), let the event trace t|e be the shortest suffix

E(e), ...,Done(e) of t.

5. Provided a policy pol= (RM, ip,deny), define the ticket count ctic of a finite trace

r1, ...,rk recursively as

ctic(ε) = 0

ctic(t ′ ·API( f )) = ctic(t ′)−RM( f )

ctic(t ′ ·E(e)) = ctic(t ′)+ ipl(e)+ ipg(e)

ctic(t ′ ·Done(e)) = ctic(t ′)+min(0,cres(t|e)− ipl(e))
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with t = t ′ ·Done(e) in the last case. The number of tickets ctic(t ′ ·deny) in the deny case

can be freely set by the deny behaviour.

Since RM( f ) ≥ 0, the infinite sum ∑ri=API( f )RM( f ) for infinite traces is well be-

haved: it is either finite if ∃i > 0∀r j = API( f j) with j ≥ i : RM( f j) = 0 or ∞ otherwise.

The same holds true for the infinite sums in the following sections.

Intuitively, cres tracks the number of used resources while ctic tracks the number

of available tickets. Each API call subtracts the correct amount of tickets while rele-

vant events add new tickets. The term min(0,cres(t|e)− ipl(e)) subtracts unused local

tickets at the end of an event scope.

JavaScript’s “run-to-completion” model guarantees that in any valid trace each

event is completely handled before the next event is considered. Therefore, the trace t|e
is well defined and, except for the leading E(e) and concluding Done(e), contains only

resource events API( f ) and potentially deny events. Note that, since Done(start)

does not occur in any trace, the interaction policy ip(start) = (n,m) is equivalent to

ip(start) = (0,n+m).

Definition 3.2.3.

1. A trace t = r1,r2, ... conforms with the policy pol, written pol 
 t, if there is no

i such that ctic(r1, ...,ri)< 0.

2. An app P conforms with the policy pol, written pol 
 P, if for every trace t with

P →∗
t it holds pol 
 t.

In general, a deny behaviour can freely manipulate the available tickets by setting

the value of ctic(t ·deny) and execute the original critical APIs. Call a deny behaviour

weak, if it does not affect ctic or cres.

Definition 3.2.4. Let a deny behaviour deny be called weak, if

1. it does not affect the number of tickets: ctic(t ′ ·deny) = ctic(t ′)

2. it does not call critical APIs f

Equivalently, a policy pol = (RM, ip,deny) is called weak if deny is weak.

3.2.2 Enforcement

The ITPs are enforced by wrapping all resource consuming APIs and relevant events.

The wrapped functions encapsulate the original API and execute it according to the

policy or call the deny behaviour otherwise.
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Definition 3.2.5. A policy state s = (cl,cg) ∈ R≥0
∞ describes the number of available

local tickets cl and global tickets cg. The policy enforcement assumes that the policy

state cannot be accessed by the original app P.

A policy state transition along the finite trace t is written as (cl,cg)→t (c′l,c
′
g).

This definition allows each of the values cl,cg also to express partial tickets in R.

This way policies can generate partial tickets for each user interaction, weight different

kinds of user interaction differently and require multiple interaction for each resource

access.

Given the policy state, wrapping is defined as:

Definition 3.2.6.

1. For the API f , define the wrapped API wrappol( f ) as the following:

1 if (cl ≥ 1)

2 cl = cl - 1;

3 call f ;

4 else if (cg + cl ≥ 1) //0≤ cl <1

5 cl = 0

6 cg = cg - (1 - cl);

7 call f ;

8 else

9 call deny;

2. Define the wrapped event wrappol(e) as the event e′ which first updates the policy

state (cl,cg) according to ip, executes the original handlers for event e and finally

sets cl = 0.

3. Define the wrapped app wrappol(P) as the app executing P in an environment

where the critical API f has been wrapped as wrappol( f ) and every event e is

handled as wrappol(e).

The wrapping is assumed to be complete:

• Every call to guarded APIs with RM( f ) �= 0 is replaced by its wrapped API

wrappol( f ).

• The app P cannot call a guarded function f otherwise.
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Remark 3.2.7. In the wrapper for an API wrappol( f ) local tickets are consumed pre-

ferred, since their validity period is definitely shorten than the global tickets. This way,

the app has the chance to use the tickets to their full potential. Even if only a partial

local ticket 0 < cl < 1 remains, this partial ticket is consumed first, assuming the re-

maining part to combine a full ticket can be accounted for by the global ticket counter.

For this purpose line 4 checks, whether the sum cg + cl ≥ 1 instead of cg ≥ 1. If this

check is true, line 5 consumes the partial local tickets and line 6 reduces the global

ticket counter by the remaining part.

3.2.3 Properties

Lemma 3.2.8. Given a weak policy pol and a conforming trace pol 
 t, the resource

consumption of t = r1,r2, ... is bounded by

cres(r1,r2, ...)≤ ∑
ri=E(e)

(
ipl(e)+ ipg(e)

)
Proof. It holds cres(ε) = 0 = ctic(ε). Every time cres increases (for some r = API( f ))

ctic decreases. Since deny is weak, only the events (r = E(e)) increase ctic, in total by

∑
ri=E(e)

(
ipl(e)+ ipg(e)

)
.

The claim follows from ctic(t)≥ 0 for the conforming trace t.

Lemma 3.2.9. For a finite trace t, the policy state (0,0)→t (cl,cg) of a weak policy

tracks the available tickets:

ctic(t) = cl + cg

Proof. This can be proven by induction on the length of the trace t. The only interest-

ing case is t = (t ′ ·Done(e)):

• Assume (0,0)→t ′ (c′l,c
′
g) with ctic(t ′) = c′l + c′g.

• Since t = (t ′ ·Done(e)) it holds cl = 0, cg = c′g.

Split t = t ′′ · t|e. Due to JavaScript’s “run-to-completion” model, for every event

E(e) in t ′′ also the accompanying Done(e) event occurs in t ′′. Therefore, (0,0) →t ′′

(0,c′′g) →E(e) (ipl(e),c
′′
g + ipg(e)) →··· (cl,cg). Remember, that t|e only contains API

calls. Due to the definition of wrappol( f ) it holds that cl + cg = ipl(e)+ c′′g + ipg(e)−
cres(t|e)
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If cres(t|e)≥ ipl(e), then c′l = cl = 0 and

min(0,cres(t|e)− ipl(e)) = 0

⇒ctic(t) = ctic(t ′) = c′l + c′g = cl + cg.

Otherwise, if cres(t|e) < ipl(e), then c′l = ipl(e)− cres(t|e) and min(0,cres(t|e)−
ipl(e)) =−(ipl(e)− cres(t|e)). Therefore,

ctic(t) =ctic(t ′)− (ipl(e)− cres(t|e))
=c′g + c′l − (ipl(e)− cres(t|e))
=c′g = cg = cg + cl.

Lemma 3.2.10. A wrapped app conforms with its policy:

wrappol(P)→∗
t ⇒ pol 
 t

Proof. Assume the claim is not true, then choose a finite prefix r1, ...,ri of t with

ctic(r1, ...,ri) ≥ 0 and ctic(r1, ...,ri+1) < 0. Since ri+1 decreases ctic, it must hold

ri+1 = API( f ). By assumption all critical API calls have been replaced by wrappol( f )

which only calls the original f if ctic(r1, ...,ri) = cl + cg ≥ 1. Due to the definition of

ctic that means ctic(r1, ...,ri+1)≥ 1−RM( f ) = 0 which is a contradiction.

For weak policies Lemma 3.2.8 and 3.2.10 provide an interaction-dependent bound

limiting all possible traces of the injected app. For general policies this bound has to be

adjusted to reflect the deny behaviour. Firstly, deny might access the original critical

API directly for which cres does not account. Secondly, deny might generate additional

tickets allowing the application code access to the critical API through the wrapped

API.

Corollary 3.2.11. A wrapped app wrappol(P) accesses the critical APIs less than the

bound provided in Lemma 3.2.8 plus the number of generated tickets and critical API

calls in the deny behaviour.

3.3 Captured policies

ITPs cover a wide range of common policies including the following ones:
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• Deny all: Without the permission for a resource, Android terminates every re-

quest to this resource with a security violation. An ITP emulates this behaviour

by granting 0 tickets to the resource. In contrast to a rejected permission, ITPs

can apply more versatile deny behaviours, which preserve the remaining func-

tionalities of the app.

• confirm each time: Some security policies ask the user to confirm every re-

source access. For example, Google Chrome recommends the setting “Ask when

a site wants to track your location” as policy for the Google location service. An

ITP implements such a policy by asking the user as part of the deny behaviour.

Since the deny function has access to the policy state, it can call the original

function directly when the user confirms access.

• confirm on first use: The iOS system asks for the permission when a resource is

accessed for the first time and then grants the permission until the app is closed.

This way, in comparison to the Android permissions granted during installation,

the user can make a more informed decision. An ITP can describe these policies

by granting ∞ many global tickets in the deny behaviour after the user confirms

access.

• not before interaction: Some resources are especially critical when they are

accessed in the background. An ITP can grant ∞ many global tickets for each

interaction. This grants access only after the first interaction.

• only in interactions: Some resources should never be accessed unless explicitly

requested by the user. If the details of the accessing user interaction cannot be

specified in advance, ITPs can generate ∞ many local tickets for each interaction,

granting access only in event handlers.

3.4 Discussion

This chapter presented the concept of interaction-dependent ticket-based policies en-

forced by wrapping. It was shown that such policies enforce a bound on the resource

usage dependent on the number and kind of the UI events. With these the resource

behaviour of mobile apps can be described precisely enough to allow the functionality,

while blocking potentially malicious behaviour.
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From the resource classification given in Section 2.2.1 ITPs can guard the resources

described as count, since each resource access is counted as 1 consumed unit and they

cannot be released anymore. By relaxing the resource model to RM : API → Q, ITPs

could also cover cumulative, non-blocking unique and acquire-release resources. Here,

APIs f with RM( f )< 0 symbolise functions releasing resources. For blocking unique

resources the policy needs to be further extended with a maximum amount of tickets

the state can hold at any one time. In reality, the count category covers the majority of

API activated resources and for this reason the policy language presented here is kept

simple, sacrificing the expressivity. Further research into different resources might

make it necessary to implement those extensions.

ITPs can guard almost all PhoneGap resource kinds discussed in Section 2.2.2.

For resources like contacts, which require to create an instance first and then call the

APIs as methods of the instance, ITPs can guard the method in the prototype of the

plugin and effectively wrap all instances. Resources accessed based on events like

lowbattery, chargerconnected, online and offline cannot be wrapped, since

the policy model does not track the listeners to those events. Furthermore, for re-

sources accessed by callback-functions like watchAcceleration, watchHeading and

watchPosition ITPs can only restrict how many callbacks are registered, not how of-

ten they are called. Policies restricting the number of callbacks can be enforced by

wrapping , but require a more complex wrapper altering the parameters and return

values of the wrapped function.

The deny behaviours of the ITPs make it possible to define various existing policies

as ITP. This feature makes the PhoneWrap policies equivalent to edit automata [75]

with its ticket counter as a countable infinite state set. However, it is worth noting that

such edit automata can change the behaviour of the app arbitrarily, if the continuation

of the trace depends on the outcome of the replaced API call.

This theoretical model of the wrapping has a few assumptions. Most critical it

assumes, that the application code cannot access the wrapped assets (function handler

and policy state). The implementation PhoneWrap, in the following chapter, uses the

wrapping approach presented in [94]. This work already had to be corrected in [82],

because these assumptions were not provided properly. The main issue was to store an

unmodified copy of all built-in functions used inside the wrapper. Otherwise attacking

code could overwrite the built-in functions and trick the wrapper to execute malicious

code inside the wrapper due to JavaScript’s dynamic scope. However, verifying or

proving the separation of the wrapper from the application code is a field of research
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in itself which could for example include pointer analysis.

Apart from wrapping, there are other methods which achieve a similar result:

Rewriting modifies the JavaScript code to alter its behaviour. This approach has been

used in web-based applications in previous work [78, 16]. The rewriting method also

needs to wrap all code inserted or modified dynamically at runtime which is a often

used feature in JavaScript. In comparison, the wrapping proposed here modifies the

dynamic execution environment by wrapping the original API such that all code in-

serted after the wrapping procedure is already guarded by the policy. This approach

has a lower runtime over-head and provides less attack surface for a potential policy

bypass.

ITPs could also be enforced on a lower level of execution: PhoneGap apps execute

their JavaScript code on top of the framework’s Java code and the operating system.

Instrumenting the framework level would simplify the specification of the critical APIs,

but does not have access to the user interaction, since interaction is handled in the

HTML / JavaScript layer. Additionally, modifying the operating system would not be

as self-contained as the directly wrapping approach inside the app package.

Previous work [84, 27, 93, 46, 113] modified lower-level systems like the browser-

view or the operating system. However, modifying these systems requires root access

to the phone and needs to be re-applied for every update of the system.

ITPs only regulate how often the guarded resource is accessed, not how it is used

after access. After an app has obtained private information it can share this information

freely. To protect the user against private information leakage, orthogonal methods like

flow-analysis are available [93, 27, 46].





Chapter 4

The system PhoneWrap

This chapter presents the system PhoneWrap which injects ITPs into real-world Phone-

Gap apps. To the best of my knowledge, PhoneWrap is the first system to enforce

quantitative interaction-dependent policies in unmodified execution environments.1

The system has been developed with the following core aims:

Ease of Use Users with a basic understanding of the user interface and resource be-

haviour of the guarded app and the concept of ticket-based policies are able to

create PhoneWrap policies. Specifically, PhoneWrap does not assume knowl-

edge of the app’s source code or the enforcement method.

Stand-alone PhoneWrap’s enforcement is contained within the guarded app and exe-

cutes in an unmodified environment. Modifications of the execution environment

require root access to the phone which undermines important security principles

and many users are not able or willing to make this modification.

Real-world Real-world apps consist of the JavaScript code but also include the frame-

work configuration and plugins. PhoneWrap automatically extracts all neces-

sary information from a standard Android app package and after policy injection

repacks the app into a package directly installable on the target phone.

The resulting tool is a proof-of-concept implementation and does not claim to be

resilient against all possible attacks, e.g. through global namespace pollution as shown

in [82].

Unless explicitly stated, this chapter discusses the injection of a policy enforcing

bounds on one resource, for example messaging. If multiple resources have to be

1The results of this chapter with some additions from the previous chapter have been published at

the International Workshop on Innovations in Mobile Privacy and Security (IMPS, 2016) [40].
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guarded, PhoneWrap can be used to insert a separate policy for each resource. This

results in separate policy states and different tickets for each resource.

4.1 Terminology

The system PhoneWrap injects a wrapper script into a PhoneGap app to enforce a

bound on the usage of the guarded resource. The app behaviour consists of expected

functionality and potentially unwanted resource access and is implemented in Java-

Script with access to Java functionality implemented in native code. The injected

wrapper script contains the policy describing how often and in which context the ap-

plication code may access the resource to execute the functionality.

Within the wrapping script PhoneWrap defines the wrapper function and uses it to

dynamically instrument all resource consuming or critical APIs. The bounds enforced

by the policy are described in terms of tickets which each allow one-time access to

the guarded resource. A global ticket can be used at any point during runtime while

local tickets can only be used within the scope of the event by which the ticket was

generated.

The PhoneWrap scripts execute the different steps needed to inject the wrapping

script into the app package.

4.2 Policy specification

The PhoneWrap policies are specified as a JSON / JavaScript object. Each field of

the object represents a policy parameter. A detailed reference of all policy parameters

accepted by PhoneWrap can be found in Appendix B.

PhoneGap app developers are already familiar with JSON / JavaScript and existing

infrastructure and tools (such as editors, code highlighting and structured views) can be

used to transfer policies over the Internet or visualise and modify the policy content.

Policy authors not familiar with JavaScript can specify policies using PhoneWrap’s

HTML form shown in Figure 4.1, which embeds the policy parameters into template

sentences.
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Figure 4.1 Create a policy

4.2.1 Policy parts

Essentially, PhoneWrap policies consist of the 3 parts specified in the ITPs (see Defi-

nition 3.2.1):

Guarded resource
The guarded resources are described by their accessing APIs in three different cate-

gories: the policy parameter guard describes the critical JavaScript APIs, guard_exec

describes the critical Java APIs and guard_require describes the critical plugins.

PhoneWrap needs to guard these three different types of APIs in different ways as

discussed in detail in Section 4.3.1.

Interaction policy
The interaction policy in PhoneWrap is implemented as a finite set BP of button poli-

cies. Each bp ∈ BP is specified via the triple (cond,mperms, local). At runtime each

occurring UI event specifies the event target as the UI element the event was triggered

by. When an event occurs, the parameter cond of each button policy bp is evaluated

against the event target and, if it matches, mperms tickets are created. If the flag local

of bp is true, the generated tickets are marked as local to this event.
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A set BP describes a formal interaction policy ip in the following way:

ipl(e) = ∑
bp∈BP
bp.local

bp.cond(e)

bp.mperms

ipl(start) = 0

ipg(e) = ∑
bp∈BP

¬bp.local
bp.cond(e)

bp.mperms

ipg(start) = m0

where m0 is the number of tickets granted by this PhoneWrap policy at launch. Given

BP= {bp1, ...,bpk} and a trace t = r1,r2, ... (see Definition 3.2.2), the security property

of the ticket-based policy guarantees the bound

cres(t)≤ m0 + ∑
i=1..k

(ci(t)×bpi.mperms)

where

ci(t) = |{e ∈ t | bpi.cond(e)}|

is the number of events in t matching the conditions of policy bpi. This bound guaran-

tees that the number of resources units actually consumed by the trace t, is limited by

the appropriate amount per button click. This bound does not factor in the cancelled

local tickets, but instead assumes they are all used in their respective validity scope.

In the policy specification, the parameter buttons specifies the list BP of button

policies. Each bp is defined as a nested JavaScript object with the field cond, mperms

and local. The condition cond itself is an object. Each field of the cond object

describes a property the event target has to fulfil for this button policy to apply.

Deny behaviour
The deny behaviour in PhoneWrap is defined as a JavaScript function with access to

the policy state. This enables many expressive responses fine-tuned to the guarded

resource, for example, terminating the app, ignoring the resource request, returning

dummy values or interactive with user inquiry.

Policy state
During runtime PhoneWrap implements the policy state (cl,cg) of the ITPs via two

counters mperms_local and mperms_global. The initial value of mperms_global is

set by the policy parameter mperms.
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4.2.2 Example policy

An example policy for the “TrackMyVisit” app is given in Figure 4.2. This policy

guards the APIs to send messages specified via the parameters guard, guard_require

and guard_exec. At app launch 1 ticket to access either of these APIs is granted.

The interaction policy button in this example only contains one button policy.

This button policy generates 3 (mperms) local tickets for each click on an element with

the “src” property ending in images/emergency_icon2.png (cond). The parameter

match of the button policy determines how the values in cond are compared to the

properties of the event target. Its value “end” in this policy describes that any but-

ton with an icon path ending in “images/emergency_icon2.png” activates this button

policy. This accounts for the prefix of the absolute icon path during runtime. Possi-

ble values for the parameter cond include “exact”, “different”, “ends”, “begins” and

“contains” which each compare the properties of the occurring event with the property

values specified in the policy in the self-explanatory way. More experienced policy

authors can also use the matching method “regex” to specify the properties of the

policy-activated UI elements as a JavaScript regular expression. The deny behaviour

in this policy simply ignores the resource access and displays the message “Policy:

Denied” instead.

Figure 4.2 Example policy

1 policy = {
2 mperms : 1,
3 buttons : [
4 {
5 cond: {
6 src:"images/emergency_icon2.png"
7 },
8 mperms:3,
9 match:"ends",

10 local: true
11 }
12 ],
13 guard: ["smsplugin.send"],
14 guard_exec: ["SmsPlugin.SEND_SMS"],
15 guard_require: ["cordova/plugin/smssendingplugin.send"],
16 deny: function(){alert("Policy: Denied")}
17 }

4.2.3 Extensions

To capture the resource behaviour of real-world apps better, PhoneWrap offers a few

features in addition to the core features of an ITP. The policy state has the switches
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allowAll and blockAll which enable or disable all access regardless of the available

tickets. The corresponding ITP would set ctic = ∞ or ctic = −∞. The starting state of

these switches can be specified in the allowAll and blockAll parameters in the policy

and every button policy can assign a new value to those parameters. A PhoneWrap

policy can also flag a button policy as checkbox or confirm which changes the way

the policy grants tickets for events on those elements. Section 4.3.2.1 discusses in

which situations these policy behaviours are needed.

4.3 Policy enforcement

Inspired by the method proposed in [94], PhoneWrap provides the wrapper script

which contains the policy and the code to wrap the necessary functions. PhoneWrap

inserts this script into the header of the main HTML file and wraps the relevant assets

at multiple stages during the life-cycle of the app. The overall layout of the script is as

follows:

1 function wrapper () { //all locals inside this body are protected

2 // Define policy object

3 // wrap API functions

4 // wrap input elements

5 // wrap auxiliary functions

6 };

7 wrapper();

The whole policy is implemented inside a function body. When this function is

called, JavaScript creates a new scope object for the function body in which PhoneWrap

stores the policy state and the original resource consuming APIs as local variables. The

JavaScript scope ensures that local variables cannot be accessed from outside the func-

tion body and consequently isolates the policy from the application code. The wrapper

script all together contains ~500 LOC which does not influence the package size sig-

nificantly.

The last step, wrapping the auxiliary functions, includes listening for freshly in-

serted JavaScript scripts into the DOM tree of the app. New scripts might contain new

APIs which have to be wrapped, before the app uses them. For this reason, PhoneWrap

wraps all available critical API functions each time a new script is inserted. This en-

sures all critical APIs are wrapped at all times. Since it is not trivial to check whether

a function is already wrapped, PhoneWrap wraps all available function each time the



4.3. Policy enforcement 63

wrapping is called. Should a function be wrapped multiple times, PhoneWrap takes

care, that only one ticket is consumed, independent of the number of wrapping layers.

4.3.1 Wrapping API functions

Inside the wrapper script PhoneWrap copies all critical APIs into local variables and

then overwrites the public references by a wrapped version. This includs the APIs

specified by the policy and further administrative functions to guard the integrity of the

policy. The function exec_guard (Figure 4.3), included in the wrapping script, wraps

a function appropriately corresponding to wrappol of the ITPs. As input it expects a

function call consisting of the name of the function and the actual parameter values.

When called, it evaluates the policy state and either executes the deny behaviour or the

original function call. During the wrapping procedure the references to all specified

APIs are overwritten with their wrapped versions in the JavaScript execution environ-

ment.

Inside the wrapper, the policy state is checked and modified in the following order:

1. if blockAll is true → deny access

2. if allowAll is true → allow access

3. if at least one local ticket is available → allow access and subtract one local

ticket

4. if at least one ticket is available (global + local) → allow access, delete all frac-

tional local tickets and global tickets to add up to 1 full ticket

5. otherwise → deny

This policy enforcement is applied to 3 different kinds of APIs:

Java APIs As discussed in Section 2.1.4, PhoneGap plugins are implemented as Java

classes. Via the PhoneGap bridge function exec JavaScript code can call the

Java API directly. For example,

cordova.exec(..., ”SmsPlugin”,”SEND_SMS”,parameters)

calls the method SEND_SMS of the plugin class SmsPlugin with the provided

parameters. PhoneWrap instruments the function exec to appropriately en-

force the policy should exec be called with a Java API as specified in the param-

eter guard_exec of the policy.
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Figure 4.3 Wrapping function

1 var exec_guarded = function(f,f_this ,f_arguments) {
2 var allowed_global = (policy.mperms_global + policy.

mperms_local > 0);
3 var allowed_local = (policy.mperms_local > 0);
4 var perms_pre;
5 if (!policy.blockAll) {
6 if (policy.allowAll) {
7 var back = f.apply(f_this ,f_arguments);
8 return back;
9 }

10 if (allowed_local) {
11 perms_pre = policy.mperms_local;
12 var back = f.apply(f_this ,f_arguments);
13 policy.mperms_local = perms_pre -1; //only ever decrease by

1, even if wrapped by this policy multiple times
14 return back;
15 }
16 if (allowed_global) {
17 perms_pre = policy.mperms_global+policy.mperms_local;
18 var back = f.apply(f_this ,f_arguments);
19 policy.mperms_local = 0;
20 policy.mperms_global = perms_pre -1; //only ever decrease

by 1, even if wrapped by this policy multiple times
21 return back;
22 }
23 }
24 return policy.deny(f_this ,f_arguments);
25 }

JavaScript APIs Most plugins provide a JavaScript interface internally calls the Java

API using the exec function. For example, smsplugin.send calls the Java API

above. Recent versions of PhoneGap initialise these JavaScript interfaces during

the start-up phase. Since this initialisation is performed before the wrapping of

exec, they need to be wrapped individually.

PhoneWrap instruments all JavaScript functions specified in the guard parame-

ter of the policy.

Plugins A fresh copy of the JavaScript API of a plugin can be requested using the

require function. For example, JavaScript code obtains the API for the SMS

plugin by calling require(“cordova/plugin/smssendingplugin”). This is

most commonly used in early versions of the PhoneGap framework which do

not initialise the JavaScript APIs automatically. PhoneWrap instruments the

require function to automatically wrap the critical functions specified in the

policy parameter guard_require before the API is forwarded to the application

code.

JavaScript’s inheritance is based on a prototype chain, which defines the parent

object for each individual object. Before any function is wrapped, PhoneWrap fol-



4.3. Policy enforcement 65

lows the prototype chain and wraps the critical function in the most general object to

guarantee wrapping everywhere in the relevant object hierarchy.

When the wrapping script is executed all available APIs are wrapped immediately.

After the initial wrapping, PhoneWrap listens for further critical APIs to become avail-

able and (re-)wraps all APIs defined in the policy accordingly:

• PhoneWrap listens for the event deviceready sent by PhoneGap once all li-

braries are initialised and wraps all available APIs. To receive this event in older

versions of the framework, PhoneWrap re-registers the handler after the Phone-

Gap library has been loaded.

• PhoneWrap registers as an HTML MutationObserver to discover additional scripts

loaded into the app. Every time a new script is loaded into the DOM tree,

PhoneWrap executes the wrapping to cover all APIs defined in this script. This

includes scripts included in the original DOM tree and dynamically inserted

script.

Since all critical APIs are wrapped at multiple points of the app’s execution and

PhoneWrap wraps the APIs on different layers (Java API/JavaScript API/Plugin), the

APIs might be wrapped with multiple layers of wrapper. Depending on the implemen-

tation of the particular plugin, the API function might be wrapped once through the

Java API, and once (either through the plugin or JavaScript API) per included script in

the app’s DOM tree. A usual app contains it’s main script, the cordova library file and

several auxiliary or advertisements script. PhoneWrap, however, only consumes one

ticket per call, independent of the number of wrappers.

4.3.2 Interaction dependencies

The novel advantage of PhoneWrap are the interaction-dependencies. PhoneWrap lis-

tens for user events via the standard HTML event queue and generates tickets for each

event according to the policy. In the HTML event standard each event is first sent to all

of the parents of the target node, starting at the root node of the DOM tree. PhoneWrap

utilises this and attaches an event handler to the root to receive all events.

For each event, the PhoneWrap event handler merges the effects of all matching

button policies before the accumulated effect is applied to the policy state. The lo-

cal and global tickets generated in each matching button policy are simply summed

up. The switches blockAll and allowAll are handled in a conservative way: If no
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matching button policy assigns a new value to allowAll then the values in the policy

stay unchanged. If the newly assigned values are either all true or all false, then

this new values is assigned to the policy state. If some matching button policies assign

true and other assign false, then false is accepted as new value in the policy state,

as this is the fail-safe behaviour. The parameter blockAll has the dual behaviour and

accepts true in case true and false is assigned for the same event.

As discussed earlier independent resource policies have a different policy state.

Therefore, if one policy allows a limited amount of tickets and another policy allows

all access by setting allowAll, then access is still limited by the first policy.

Local tickets have to be revoked after all handlers for the specific event have been

executed. The PhoneWrap event handler inserts a callback method into the HTML

message queue by calling setTimeout with 0 seconds. Once all handlers for this

event have been executed, JavaScript fetches the next element in the message queue

and executes PhoneWrap’s callback which sets the number of local tickets to 0.

The JavaScript function dispatchEvent can be used to generate an artificial event.

A malicious app could use it to simulate user interaction and generate an arbitrary

amount of tickets without real user interaction. To guarantee that tickets are only gen-

erated for real user interaction, PhoneWrap also wraps dispatchEvent. The wrapped

version first disables ticket generation, then generates the artificial event and re-enables

tickets after the event has been processed. The only other JavaScript API manipulating

event handlers is removeEventListener which deletes all the event handlers for one

DOM node. Even though the app could remove the PhoneWrap event handlers us-

ing this function, this would only generate fewer tickets, because button policies only

generate tickets, and prevent the functionality of the app. The security of the policy

enforcement is not threatened. In particular, the JavaScript code cannot extract the

PhoneWrap event handler and call it without user interaction.

4.3.2.1 Special input elements

Motivated by real world apps, the button policies have been extended by two behaviour

patterns which go beyond the formal specification of ITPs.

Some real world examples like “TrackMyVisit” make the user aware of the re-

source consumption by displaying a confirmation dialog. Pressing the “Emergency”

button first brings up a confirmation dialog and the message is only sent if the user

presses “Ok”. Since confirmation dialogs are not part of the DOM tree, PhoneWrap

does not receive events for the dialogs. To incorporate dialogs into policies, PhoneWrap
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instruments the dialog APIs and wraps the callback functions of each dialog. If a button

policy specifies a list of captions in the confirm parameter, PhoneWrap only reserves

the specified number of tickets for such an event, rather than granting them. If in the

subsequent dialog a button with one of the specified captions is pressed, the reserved

tickets are granted. If the user presses a dialog button not specified in the confirm

list, PhoneWrap deletes all reserved tickets. In this case, PhoneWrap can implement

flow-sensitive policies.

Other apps consume resources dependent on a user selection, for example, send

messages to each contact the user has marked in a list of checkboxes (see Section

4.5.3.8 for a real-world example). In this case, the consumption depends on the number

of selections. In PhoneWrap’s button policies, a UI element can be identified as a

checkbox which instructs PhoneWrap to grant tickets when the box is checked and

revoke the tickets when the check is removed.

4.3.3 Properties

To show that PhoneWrap enforces ITPs, the assumptions for the policy enforcement

need to be verified. Due to the lack of a formal execution model of JavaScript apps,

they are justified informally:
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Claim 4.3.1. The application code cannot change the state of the policy.

JavaScript’s scope protects the local variables of the policy function, including the

policy state, against access from outside the policy function.

Claim 4.3.2. All calls to the original function f are replaced by the wrapped version

wrappol( f ).

The reference f to the critical function is overwritten by the wrapped version in the

JavaScript environment. Every time the application code calls f , the wrapped version

is called instead. The PhoneWrap script is inserted at the top of the header of the main

HTML file. Therefore, it is executed before any other script and overwrites all API ref-

erences specified in the policy before the application code can store a local copy of the

original reference. APIs made available after the PhoneWrap script has been executed

are either discovered using the deviceready function or by the MutationObserver.

In both cases PhoneWrap registers the listener before any other listener is registered.

This ensures that PhoneWrap’s listener is executed before any other handler and that

the wrapping is executed before the application code can access the unwrapped API.

Claim 4.3.3. The application code cannot access the original API directly.

The original references are protected like the policy state. Due to JavaScript’s

dynamic scoping all calls to the original function are rerouted to the wrapped API, even

for internal calls in JavaScript libraries. Note, however, that only the APIs specified

in the policy are guarded. PhoneWrap must assume that all critical APIs are specified

there.

Claim 4.3.4. Tickets are only generated by the specified user interaction.

The only PhoneWrap method (apart form potentially the deny behaviour) which

increases the ticket count is the event handler. According to the HTML standard,

the only way to execute an event handler without user interaction is the function

dispatchEvent which is wrapped by PhoneWrap so it cannot generate tickets.

Furthermore, the PhoneWrap script is executed first and registers the first listener

at the root node. Each event is first passed to the root node and the JavaScript standard

specifies that event handlers are executed in the order of registration. Therefore, the

tickets for an event are generated before the application code potentially uses the tickets

for the functionality triggered by the event.
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Corollary 4.3.5. PhoneWrap implements an ITP and therefore enforces the bound

specified in Section 4.2 on the resource usage of the wrapped app.

PhoneWrap can inject multiple wrapper scripts into the same app if either the user

wants to guard multiple different resources or multiple parties (developer, distributor,

device admin, user, ...) have different policies for the same resource. In this situation,

multiple wrapper scripts are inserted into the DOM tree, each with it’s own policy

definition and policy scope. In case a critical API with multiple separate wrappers is

called, the original API is called only, if all policies allow access individually.

Since each wrapper is executed in its own function scope, the different wrappers

cannot access each others’ policy state. Due to this fact, the final decision whether to

execute the original API is independent of the order in which the policies are injected

into the app. In this way PhoneWrap, is modular. However, different injection orders

might result in different deny behaviour. If an outer policy is violated the resource

call is replaced by its deny behaviour. Since this might not call the wrapped function,

deeper nested policies are not evaluated and their deny behaviour is not activated.

4.4 Policy injection

The injection process consists of the following steps:

Resources UIesourc

unpack packextract injectcreate

Policy

The tool chain2 of PhoneWrap supports each of the 5 steps:

1. The script m10_unpack unpacks an app package downloaded directly from the

Google Play Store to access the JavaScript code.

2. The package analysis tool m20_analyse_apk extracts all necessary information

for the policy creation from the configuration files. This includes the accessed

resources (via the PhoneGap plugins and permissions) and the elements of the

user interface which might perform the resource consuming functionality.

3. Users not familiar with JavaScript can write the policy using PhoneWrap’s HTML

2Source code has been made available: github.com/DFranzen/PhoneWrap
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form m25_createPolicy.html shown in Figure 4.1. It provides the available

choices for each parameter and embeds the policy into full English sentences.

4. The script m30_policify automatically inserts the wrapper script and a pro-

vided policy into the main HTML folder and links it into the main DOM tree of

the app.

5. Finally, with m90_pack_install the app is packaged back into a standard An-

droid app package. Since PhoneWrap altered the source code, this new package

has to be re-signed after injection to be installed on an Android phone.

The only step that requires human action is the policy creation. The policy author

has to specify the guarded APIs and specify the UI elements for the button policies.

PhoneWrap assists with all tasks of this process. The analysis script m20_analyse_apk

compiles a list of plugins and permissions included in the app. For the app “Track-

MyVisit” from Section 3.1 this list contains the plugin org.apache.cordova.plugin.

SmsSendingPlugin. PhoneWrap does not infer the critical APIs for each plugin auto-

matically, but a table of critical APIs for the most common plugins is provided with the

PhoneWrap source code. In the example, the identified plugin provides the JavaScript

API smsplugin.send and the Java API SmsPlugin.SEND_SMS.

Figure 4.4 TMV - Policy Creation

(a) Instrumentation (b) Policy Verification

To choose the correct properties for the button policies, PhoneWrap instruments
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the original app to display the properties of each button during normal interaction (see

Figure 4.4a). To check the correctness of the button policies, the same instrumentation

can display each affected button in a red frame (see Figure 4.4b). Thanks to these

features, a PhoneWrap policy can be created for an app without knowledge of the

app’s source code or implementation details of the enforcement method.

Android app packages are signed by the developer of the app and this signature is

validated by Android during installation to preclude modification of the app by third

parties. Since PhoneWrap modifies the code the signature by the original developer is

invalidated. While packaging the injected app into an Android package, PhoneWrap

re-signs the app with the key of the policy injector. Assuming the original signature is

verified, the new signature vouches for the fact that the original signature was not vio-

lated before injection and that the policy was inserted. Instead of trusting the developer

of the app, now the trust lies with the user injecting the PhoneWrap policy as well as

their trust in the original developer. Sometimes, functionalities for interaction between

different apps depend on the signatures of the two apps. Therefore, it is advised to

re-sign apps that were signed with the same original key with the same policy key.

An automated script mall executes all scripts mentioned above in the correct order

to directly insert a given policy into the package downloaded from the app store.

4.5 Evaluation

The evaluation of PhoneWrap on real apps aims to answer the following questions:

1. Does PhoneWrap restrict the wrapped app’s resource consumption to the speci-

fied bounds?

2. Is the runtime overhead of the enforcement acceptable?

3. Is the policy specification fine-grained enough to describe the benign resource

behaviour of real-world apps?

4. Can the appropriate policy for an app be identified with the provided tools?

4.5.1 Enforcement tests

To evaluate question 1, the app in Figure 4.5 is crafted to circumvent PhoneWrap’s

enforcement. The critical resource in this experiment is the vibration feature, since the



72 Chapter 4. The system PhoneWrap

Figure 4.5 Experimental App

1 policy = {

2 mperms:0,

3 buttons:[

4 {

5 cond: {

6 id: "USE"

7 },

8 mperms: 1,

9 match: "exact",

10 }

11 ],

12 guard: ["navigator.vibrate"],

13 guard_exec: ["Vibration.vibrate"],

14 deny: function(){alert("Policy:Denied")}

15 }

effect of resource access is noticeable immediately and the corresponding plugin offers

a JavaScript API as well as a Java API.

The UI of this app consists of 4 buttons each trying to access the resource in a

different way. The first button (green) calls the JavaScript API and serves as the control

test to ensure legitimate resource access is not prohibited by the injected policy. The

second button (yellow) uses the same method and represents standard non legitimate

access. The third button (orange) calls the Java API via the exec function and the

bottom button (red) sends an artificial click event to the green button. Each button

also changes the colour of the panel at the bottom (black in Figure 4.5) to simulate the

resource independent functionality. Furthermore, to represent resource access without

user-interaction, the app calls the vibration API scheduled every 30s.

The policy in Figure 4.5 guards the vibration APIs and grants 1 ticket for each click

on the green button (identified by its id “USE”). After policy injection, the vibration

of the yellow, orange and red buttons and the scheduled vibration are successfully

prohibited. The behaviour of the colour of the bottom panel is not affected by the

policy, showing that resource independent functionality is preserved. The behaviour of

the green button is unchanged which shows that the bounds are enforced as specified.

For a second experiment with the same app, the green button was greyed out (using

CSS classes) for the first 30s after launch. Messaging apps, for example, often grey

out the “Send” button before the user has entered the message text or recipient. The
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policy was amended to only generate tickets for green buttons. As expected, vibration

was denied during the initial greyed-out period but allowed after the button colour is

changed to green. This shows that PhoneWrap reacts correctly to changes in the UI.

To evaluate question 2, the runtime overhead of the enforcement, the APIs to start

and pause audio playback were chosen as the resource. They can be called in quick

succession and do not require user interaction. Therefore, they are suitable for auto-

mated tests. The app for this evaluation contains of only one button which starts and

pauses the playback of an audio file 1000 times as quickly as possible. As a result the

app returns the measured times for these 2000 API calls. This app was then injected

with a policy guarding the JavaScript APIs of the audio plugin and allows 2000 tickets

per button click.

Figure 4.6 Running times, 2000 API calls each

(a) JavaScript APIs

Test Original app Injected app

1 4598 ms 4823 ms

2 4500 ms 4540 ms

3 4527 ms 4719 ms

4 4599 ms 4558 ms

5 4616 ms 4883 ms

ø 4568 ms 4704 ms

(b) Java APIs via exec

Test Original app Injected app

1 5072 ms 5131 ms

2 5151 ms 5227 ms

3 5057 ms 5117 ms

4 5035 ms 5411 ms

5 5130 ms 5182 ms

ø 5089 ms 5213 ms

To eliminate noise, the app was executed 5 times with the resulting times in Figure

4.6a. The overall overhead amounts to 136ms on average. This corresponds to a 3%

runtime overhead of API calls or less than 1ms per API call.

The results of the same test with direct calls to the Java APIs via the exec bridge

are shown in Figure 4.6b. The overall overhead of 124ms is similar to the test with

JavaScript API calls. The longer runtimes in this test probably originate from the fact

that this test had to manage the parameters for the API calls manually and did so less

efficiently than the plugin code. Due to the longer overall time, the overhead reduced

to 2.4%. This also shows that other implementation details have a higher impact on

the overall runtime than PhoneWrap’s enforcement.

Apart from the instrumentation enforcing the policy, PhoneWrap also adds time to

the launch of the app to initialise the enforcement. The initialisation for the audio API

in JavaScript and Java took between 8 and 20ms. The interaction policies added about

3ms to the handling of each button event. In summary, the overhead of the enforcement
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method during these test does not significantly influence the performance of the app.

4.5.2 Real-world apps

To answer questions 3 and 4, PhoneWrap was tested on a set of real-world apps down-

loaded directly from the Google Play Store. In total, 8757 apps used for the evaluation

in [67] were available for download during November and December 2014.

Figure 4.7 Categories of SMS apps

# apps PhoneGap version

a 5400 ≥2.0
PhoneWrap applicable

b 1443 <2.0

c 1914 N/A Configuration file not as expected

total 8757

The analysis script could identify (see Figure 4.7) and parse the PhoneGap config-

uration file in 6843 (a + b, 78%) of these apps. The necessary information about the

used resources and the main source files could be extracted making policy creation and

injection possible. The 1443 apps in category b are written with PhoneGap prior to

version 2.0. Since the structure of these configuration files differs significantly from

the current version, PhoneWrap had to be slightly adapted for these apps. It now recog-

nises these versions automatically. The inspection of a small sample of the remaining

1914 apps (c) showed that they either use very early versions of the PhoneGap library,

where the plugin structure was not fixed yet, or include the PhoneGap library with-

out using the PhoneGap framework. In the first case the PhoneWrap wrapping script

can probably be used to guard the critical resource in a majority of the apps, but the

resource accessing APIs have to be identified in the code manually.

4.5.2.1 Real world evaluation setup

In this evaluation, the messaging service was chosen as resource, since it is used in

real-world apps with immediate and quantifiable effects on the privacy and assets (al-

lowance, phone bill) of the user. Apps accessing the messaging service can easily be

identified by filtering for the permission SEND_SMS. Concerning the implementation,

PhoneGap does not provide an official plugin to access the messaging service. Instead,

multiple different third party plugins are available. This way, PhoneWrap is exposed
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to different plugin implementation techniques during this experiment. The candidate

apps chosen from the set of 6843 PhoneGap apps were evaluated on the test device

(Motorola Moto G, Android 5.0.2) by applying the following steps:

1. Manually explore the UI of the app, monitor sent messages in the log and note

the triggering user interaction sequences.

2. Instrument the app to identify the properties describing these interaction se-

quences.

3. Create a policy generating the exact amount of tickets needed to perform the

expected behaviour for each legitimate interaction.

4. Inject this policy into the original package and manually evaluate the behaviour

of the modified app.

The wrapper script used in this evaluation is amended to provide feedback about

the correctness of the policy enforcement: pop-up messages report every change of the

policy state as seen in Figure 4.8 and the deny behaviour replaces the resource request

by the pop-up message “Denied”. This way, each state change of the policy can be

verified against the model of ticket-based policies.

Figure 4.8 Policy status output
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4.5.2.2 Messaging in PhoneGap

Out of the 6843 eligible apps only 59 apps request the permission to send SMS. The

Android permission model prohibits all remaining apps to send SMS. The 59 apps split

into categories as shown in Figure 4.9. The apps in category a could not be examined,

Figure 4.9 Categories of apps with access to messaging service

Category #Apps Description Policy

a 16
not testable
(non-Latin alphabet or account required)

b 16 no message plugin recognised retract permission

c 13 no messages sent during UI experiments deny-all policy

d 4 send messages via intent deny-all policy

e 10 candidates individual policy

total 59

because their user interface is in non-Latin letters or they require an account which

could not be easily created. The behaviour of apps in this category is not known and,

hence, no policy could be created. A normal user of these apps could, however, de-

scribe the behaviour and create policies accordingly. Apps in category b do not include

a recognisable SMS plugin. They are either over-privileged or use a nontransparent

third party SMS plugin. The PhoneWrap tools can be used to unpack the app, remove

the SMS permission from the Android Manifest and repack the app. Since PhoneWrap

cannot guard the resource accesses individually, quantitative or interaction-dependent

policies cannot be fitted. Category c contains apps which did not send any messages

during the manual examination. Assuming the UI was examined sufficiently, the apps

should be fitted with a deny-all policy. In contrast to category b, the resource con-

suming APIs are known and the PhoneWrap deny-all policy described on page 52 can

be inserted. This way, PhoneWrap can define a more flexible counter-action should

the guarded API be accessed. The redaction of the permission used for category b

always terminates the app with a security violation. Category d contains 4 apps which

contain a messaging plugin, but all discovered messages were sent through intents to

the Android messaging app instead. This method requires the user to explicitly press

the “Send” button in the familiar messaging UI and the app itself does not require the

SMS sending permission. Thus, the apps in this category are certainly over-privileged

and PhoneWrap can deny all access as in category c to prevent additional resource

consumption in the background. This leaves 10 apps which actually use PhoneGap to
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send SMS and can be fitted with a meaningful quantitative policy.

In the categories a, c, d and e, 19 different message sending plugins were iden-

tified (see Figure 2.11 for details). For 12 of them the full source code is available

from which the resource consuming JavaScript and Java APIs were identified. For the

remaining 7 the JavaScript source code can be extracted from the app package and

the used part of the Java API can be reverse engineered. The Java part might contain

further API functions only accessible via exec, but such hidden APIs were not found

in any of the plugins with available source code. This increases the confidence that the

APIs for unknown plugins can be extracted from the app itself. Nevertheless, to defend

against hidden Java APIs, PhoneWrap could instead employ a white-list and deny all

unknown Java APIs. The 5 different SMS plugins included in the set of candidates

(category e) are all available in full source code.

4.5.2.3 Evaluation results

PhoneWrap was successfully applied to all 10 candidates. Figures 4.10 and 4.11 show

the functionalities and injected policies for each app. The expected behaviour was

easily identified by using the app for a few minutes. After policy injection, the allowed

behaviour was performed identically to the original app. The displayed state changes

show that the tickets are managed as specified in the policy.

Within the 10 apps, PhoneWrap was able to demonstrate most of its features: the

app Servicehours (10) demonstrates the need for the checkbox policy and several apps

(6-9) justify the confirm policies. In TrackMyVisit (9) the local tickets are necessary

to tighten the resource consumption bound. On the other hand, the policy for Service-

hours (10) needs non-local tickets, since the ticket generation and ticket consumption

are triggered by different events. The other apps (1-8) use all granted tickets immedi-

ately and, therefore, local and global tickets are equivalent. The policies below grant

local tickets as the fail-safe method.

The apps Tidegarden (5) and MAF (7) send charged premium messages. Before

such a message is sent, Android warns the user in a confirmation dialog (see Figure

4.13 right). This dialog is outside the scope of PhoneWrap, since PhoneWrap enforces

its policy on the application level. As a consequence, the system dialog is displayed

when the PhoneWrap policy grants the message and a ticket is used even if the user

cancels the Android dialog. If the PhoneWrap policy denies the message, the dialog is

suppressed as part of the API call.

In the app Glassmester (8), PhoneWrap was able to prohibit unwanted resource
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consumption. This app displays a confirmation dialog before the message is sent.

However, the message is sent even if the user presses the “Cancel” button! The in-

jected PhoneWrap policy grants the message only if the “OK” button is pressed. Thus,

PhoneWrap isolates a bug in a real world app.

Figure 4.10 App functionality

App no App functionality Resource consuming interaction

1
Manage the Insurance
(Read policy, Get a quote, Report Accident) Contacts → Text → SEND TEXT

2 Remote control appliances on a boat via SMS <Any device button> → <Any command button> → Send

3 Remote control cameras via SMS <Any device button> → <Any command button> → Send

4 Remote control devices via SMS <Any device button> → <Any command button> → Send

5 Display prayer texts for each day Tacka (cover) → Ge med SMS (Donate via SMS)

6 Remote control devices via SMS <Any envelope button> → Send

7 Inform about and support MAF Kjop flybensin (buy jetfuel) → <Any stage> → Gi (Donate) → Ok

8 Order and manage glass reparations Befaring (Inspection) → SMS → Ok

9 Create journey logs
Emergency OR
New Visit → Emergency

10 Business Search and Information Access Gear → INVITE FRIENDS → Envelope

Figure 4.11 Apps and their Policies

App (version, versionCode) Button Condition Tickets Policy features

1 com.GPAInsurance.myinsurance.apk(1.0, 2) Caption: “Send Text” 1

2 nu.fdp.Boatsteward.apk(1.5, 6) id: “btnSendTheMessage” 1

3 nu.fdp.optimaxx_gsm.apk(2.6, 26) id: “btnSendTheMessage” 1

4 nu.fdp.Sms_RC.apk(4.1, 19) Caption: “Send” 1

5 se.fjellandermedia.tidegarden.apk(3.1, 310)
Caption: “Ge med SMS”
id: “donateSMS” 1

6 nu.fdp.Sms_RC_Mini.apk(1.7, 8) src: (ends with) “/pict/send.png” 1 confirm: “Send”

7 no.idium.apps.maf.apk(1.0.1, 68) id: “stage_Gi” 1 confirm: “Ok”

8 no.idium.apps.apk(1.0, 52) class: “sms_small” 1 confirm: “OK”

9 myzealit.TMV.apk(2.2, 22) src: (ends with) “emergency_icon.png” 3 (local) confirm: “Yes”

10 com.ServiceHours.ServiceHours.apk(1.3.3, 8) name: “contactnumber” 1 (global) checkbox

4.5.3 Policies added to the real world apps

4.5.3.1 GPA Insurance

The app GPA Insurance (1) shows the easiest resource behaviour: the user can contact

the issuing company via SMS triggered by a button. After clicking on the speech-

bubble button in the “Contacts” menu, the app provides a “SEND TEXT” screen. The

user can enter the content of a message and send it via the red “SEND TEXT” button.

The PhoneWrap instrumentation reveals that the caption “Send Text” can be used to
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Figure 4.12 GPA Insurance

1 policy = {
2 mperms : 0,
3 buttons : [
4 {
5 cond: { value:"Send Text" },
6 mperms:1,
7 match: "exact",
8 }
9 ],

10 guard: [
11 "window.plugins.sms.send",
12 "SmsPlugin.prototype.send"
13 ],
14 guard_exec: [ "SmsPlugin.SendSMS" ],
15 deny: function(){alert("Policy: Denied")}
16 }

specify the activating button. The policy generates one local ticket for each click on

this button.

4.5.3.2 Tidegarden

The Swedish app “Tidegarden” (5) allows the user to send a message donation via the

button “Tacka” (“cover”). The user can select the organisation they want to donate to

and by clicking on “Ge med SMS” (Donate via SMS) a premium SMS for the specified

amount is sent. The policy generates 1 ticket for the button with the id “donateSMS”

and the caption “Ge med SMS”.
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Figure 4.13 Tidegarden

1 policy = {
2 mperms : 0,
3 buttons : [
4 {
5 cond: {
6 value: "Ge med SMS",
7 id: "donateSMS"
8 },
9 mperms:1,

10 match: "exact",
11 }
12 ],
13 guard: [ "smsExport.sendMessage" ],
14 guard_exec: [ "Sms.sendMessage" ],
15 deny: function(){alert("Policy: Denied")}
16 }

4.5.3.3 Boatsteward, Optimaxx, Sms RC

The app Boatsteward (2) allows the user to specify a remote for boat appliances with

message receiving capabilities. Via the setup menu the user can specify the phone

numbers of up to 10 devices and 6 command texts per device. When the user selects a

device and a command the sending button appears which sends the specified command

to the device’s phone number. The send button does not have a caption but can be

identified by its id “btnSendTheMessage”:

The inspection of the HTML document of this app reveals that it uses JavaScript

to insert the PhoneGap framework script dynamically to make the code cross-platform

compatible. Since PhoneWrap listens for dynamically injected scripts via the Muta-

tionObserver standard, it can wrap the APIs as soon as the library is loaded.
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Figure 4.14 SMS Remote apps

1 policy = {
2 mperms : 0,
3 buttons : [
4 {
5 cond: { id:"butSendTheMessage" },
6 mperms:1,
7 match: "exact",
8 local: true
9 }

10 ],
11 guard: [ "smsplugin.send" ],
12 guard_exec: [ "SmsPlugin.SEND_SMS" ],
13 deny: function(){alert("Policy: Denied")}
14 }

The app Optimaxx GSM (3) uses the same code with a slightly redesigned user

interface. The policy for Boatsteward can be reused directly for Optimaxx. For the app

Sms RC (4) the policy has to be slightly modified to describe the button by its caption

“Send” instead.

4.5.3.4 Sms RC Mini

App 6 is a completely revised version of the apps 2-4. It uses the same SMS plugin

but displays a separate envelope button to send the message for each task. The buttons

can be uniformly described by their icon path ending in “/pict/send.png”.

This app inserts the whole DOM tree dynamically except for the bare skeleton.

Since PhoneWrap’s listeners are registered at the DOM root, it can be attached to the

initial DOM tree, therefore detecting all added notes automatically. Additionally, the
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Figure 4.15 Sms RC Mini

1 policy = {
2 mperms : 0,
3 buttons : [
4 {
5 cond: { src:"/pict/send.png" },
6 mperms:1,
7 match: "ends",
8 confirm: ["Send"],
9 local: true

10 }
11 ],
12 guard: [ "smsplugin.send" ],
13 guard_exec: [ "SmsPlugin.SEND_SMS" ],
14 deny: function(){alert("Policy: Denied")}
15 }

app also uses a confirmation dialog before the message is sent. Here, the confirm

feature of PhoneWrap is used to only allow tickets when the user clicks the confirming

“Send” button

4.5.3.5 MAF

The app MAF Norge (7) is the Norwegian app of the charity Mission Aviation Fellow-

ship which provide air support for remote areas in need all over the world. The app

sends premium SMS in the Menu “Kjop Flybensin” (Buy jet fuel) for each click on

“Gi”(give) to donate for their missions. The resource consuming button can be identi-

fied by its id “stage_Gi”. Again, the user needs to confirm the message by clicking the

“Ok” button in the subsequent dialog.
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Figure 4.16 Missions Aviation Fellowship

1 policy = {
2 mperms : 0,
3 buttons : [
4 {
5 cond: { id:"stage_Gi" },
6 mperms:1,
7 match:"exact",
8 confirm: ["Ok"],
9 local: true

10 }
11 ],
12 guard_require: [ "cordova/plugin/sms.send" ],
13 guard_exec: [ "SmsPlugin.SendSMS" ],
14 deny: function(){alert("Policy: Denied")}
15 }

4.5.3.6 TrackMyVisit

The functionality of the app TrackMyVisit (9) has already been discussed in Section

3.1. After the user clicks the “Emergency” button on the main screen and confirms

with “Yes” the app sends a message to up to 3 specified contacts. The emergency

button can easily be identified by its icon ending in “images/emergency_icon.png”. A

second emergency button exists in the trip specific menu with the icon “images/emer-

gency_icon2.png”.

This app is an example where multiple tickets are generated per button click, in

this case, 3. It also illustrates the need for the local parameter. The app is granted

3 tickets, but depending on the setup, might not send all 3 messages. The remaining

tickets could then be used for hidden or unwanted behaviour in the background at a

later stage. To prevent that, PhoneWrap revokes the remaining local tickets after all
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Figure 4.17 TrackMyVisit

1 policy = {
2 mperms : 0,
3 buttons : [
4 {
5 cond: { src:"images/emergency_icon.png" },
6 mperms:3,
7 match:"ends",
8 confirm: ["Yes"],
9 local: true

10 },
11 {
12 cond: { src:"images/emergency_icon2.png" },
13 mperms:3,
14 match:"ends",
15 confirm: ["Yes"],
16 local: true
17 }
18 ],
19 guard: [ "smsplugin.send" ],
20 guard_exec: [ "SmsPlugin.SEND_SMS" ],
21 guard_require: [ "cordova/plugin/smssendingplugin.send"

],
22 deny: function(){alert("Policy: Denied")}
23 }

handlers for this event have been executed.

4.5.3.7 Glassmester

The Norwegian app Glassmester (8) allows a customer to send an SMS to the cus-

tomer service crew via the button sequence “Befaring” and “SMS”. The app shows a

confirmation dialog “Sende SMS?” (Send SMS?), where the user can select “Ok” or

“Avbryt” (Cancel). However, if the user selects cancel, the message is sent anyway.

This contradicts the expected behaviour. PhoneWrap restricts the app by specifying

the button with the class “sms_small” to generate tickets only when confirmed with

“Ok” in the following dialog. Through the injection of the policy the faulty behaviour

could be corrected.

4.5.3.8 Servicehours

The app Servicehours (10) can be recommended to friends via SMS by clicking on

the gear button in the top left corner and then selecting “Invite Friends”. The app

presents the user with a list of all contacts stored on the phone which the user can

select individually using provided checkboxes. With the checkbox policy, PhoneWrap

only allows the app to send one messages per selected friend. The policy identifies the

checkboxes by their property name which is set to contactnumber.
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Figure 4.18 Glassmester

1 policy = {
2 mperms : 0,
3 buttons : [
4 {
5 cond: { class:"sms_small" },
6 mperms:1,
7 match:"exact",
8 confirm: ["Ok"],
9 local: true

10 }
11 ],
12 guard_require: [ "cordova/plugin/sms.send" ],
13 guard_exec: [ "SmsPlugin.SendSMS" ],
14 deny: function(){alert("Policy: Denied")}
15 }

This app demonstrates the necessity for the checkbox feature of PhoneWrap. It also

illustrates the need for global tickets: the click on the checkbox generates the tickets,

but the event handler of the envelope button uses them. The tickets have to stay valid

until the second button is pressed, which is after the event handler for the checkbox

has already finished.

4.6 Discussion

The system PhoneWrap injects quantitative policies into real world PhoneGap apps to

limit their resource consumption. To enforce those policies during runtime, PhoneWrap

wraps the resource consuming APIs and monitors how often they are called. If the app

exceeds the stated bound, a deny behaviour is executed instead of the resource access.
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Figure 4.19 Servicehours

1 policy = {
2 mperms : 0,
3 buttons : [
4 {
5 cond: { name:"contactnumber" },
6 mperms:1,
7 match:"exact",
8 checkbox: true
9 }

10 ],
11 guard: [ "smsplugin.send" ],
12 guard_exec: [ "SmsPlugin.SEND_SMS" ],
13 guard_require: [ "cordova/plugin/smssendingplugin.send"

],
14 deny: function(){alert("Policy: Denied")}
15 }

Additionally, PhoneWrap listens for events on specific UI elements and allows the

resource access required by the triggered functionality. The system extracts all infor-

mation needed to write the fine-grained policies and can insert the policy into standard

app packages automatically. In tests with real apps PhoneWrap successfully injected

appropriate policies into 10 selected apps restricting the messaging behaviour. In one

case PhoneWrap was able to prevent the app from sending unexpected messages. From

the whole example set of ~8000 apps, PhoneWrap can extract all needed information

to create and inject a policy into 78% of the examined apps.

Some additional checks need to be implemented to make the wrapping impene-

trable: PhoneWrap, as presented here, trusts the integrity of the PhoneGap library.

An altered PhoneGap library could provide additional APIs to access native resources

which are not guarded by PhoneWrap. By checking the library included in the app
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against all known versions, for example by comparing their hashes, PhoneWrap can

make sure all provided APIs are guarded. The same is true for the PhoneGap plugins.

PhoneWrap needs to make sure that the Java classes packaged in the PhoneGap app

are genuinely implementing the expected API and not more. With a whitelist of known

plugin versions PhoneWrap can, for example, warn during policy injection if unknown

plugins are included. The required data is easily obtained from the plugins’ GitHub

repositories.

In PhoneWrap’s current version it is also not difficult for an app to discover that it

has been injected with a policy: the toString function and others return different val-

ues for the original method and the wrapped method as shown in Figure 4.20. Since

Figure 4.20 Before and After Policy Injection

(a) Without Policy

> navigator.notification.alert.toString():

1 function (message ,completeCallback , title , buttonLabel)

2 {

3 var_title = (title || "Alert");

4 var_buttonLabel = (buttonLabel || "OK");

5 exec(completeCallback ,null, "Notification", "alert", [message ,_title ,

_buttonLabel]);

6 }

(b) With Policy

> navigator.notification.alert.toString():

1 function() {

2 return exec_guarded(orig ,this,arguments);

3 }

the original function cannot be extracted from this output, this fact does not compro-

mise the security of the system, although it might give an attacker the opportunity to

replace the resource by an equivalent one (e.g. by using a network service instead of

SMS to send out private data). It is possible to wrap the toString functions and other

methods to behave equivalently on original APIs and wrapped APIs. However, finding

and overwriting all such functions is tedious work and does not obviously add to the

security of the system.

A final modification to make PhoneWrap more usable is to integrate the informa-

tion about the APIs for each resource shown in Section 2.2.2 into the analysis script.

This way, PhoneWrap could recommend which resources and APIs should be guarded

based on the included plugins and permissions.

The injection of PhoneWrap is specific to Android. However, the wrapping script
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is not. Created policies will be enforced for all PhoneGap apps independent of the

operating system. With policies adapted to browser specific resource and injected by

existing browser plugins like UserScripts for Opera PhoneWrap could enforce ITPs

also for web applications on desktops.

Taking inspiration from the frameworks like PhoneGap, the Electron framework by

GitHub [44] provides a similar paradigm for Desktop computers. It packages HTML

and JavaScript code into native applications which execute the JavaScript code in a

platform built-in browser view. The plugins for this framework are provided similarly

to PhoneGap. With a few adjustments the PhoneWrap enforcement script could be

applied to such applications to guard the desktop specific resources of programs written

with the Electron framework.



Chapter 5

Type systems for JavaScript

JavaScript presents some unique challenges for static analysis as discussed in Chapter

2.1. Nevertheless, there have been approaches to capture its behaviour with type sys-

tems. This chapter presents an overview of these systems and discusses their methods,

their properties and individual advantages.

The aim of the discussion here is to survey common methods used in typing Java-

Script and to identify a suitable system to be augmented with amortised annotations by

the system AmorJiSe in Chapter 6.

5.1 Taxonomy of type systems

The results of a type system are expressed by the type judgement. For languages with

strong updates, like JavaScript, it can be written in the following form:

Γ 
 e : t|Γ′.

Here, e is the analysed expression; Γ is the type context which assigns types to the free

variables occurring in e; t is the type assigned to e and Γ′ is the new context reflecting

all changes to the types of the variables made during the evaluation of e.

Depending on the type system, the type judgement can have different properties.

The following sections illustrates some of these properties which are important for

resource analysis. The code in Figure 5.1 is used as an example throughout this section.

89
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Figure 5.1 Example program

1 function f(x) {

2 var o = {};

3 o.a = "hello";

4 if (x > 3) {

5 o.b = x;

6 }

7 o.a = o.a + " world";

8 return o;

9 }

5.1.1 Type expressivity

Types can be used to validate different aspects of JavaScript programs including ab-

sence of runtime errors [9], absence of restricted dataflow [49] or inclusion in a subset

of the JavaScript language [28]. The shape of the resulting types depends on the aspect

a system was designed to analyse. For example, λJS [49] proposes a single type JS

expressing that the given expression is conform with a statically safe JavaScript sub-

set. The types in JST
0 [9] are more expressive and describe the structure of values. The

latter is referred to as data types in the following. In the setting of session types [110]

a type even describes the interaction between multiple systems.

Data types for JavaScript are constructed from simple types (Bool, Int, String...)

and types for objects and functions. JavaScript objects map field names to values and

object types mirror this by mapping all known field names to their field’s type. Objects

are often notated as row types [field1 : t1, ...,fieldm : tm] indicating that an object contains

the fields field1, ...,fieldn and the value of the field fieldi has the type ti. In practice, an

object type only mentions a subset of the actually available fields of an object, since

a type has to over-approximate all possible traces through a program. Function types

O×tx → tret describe the structure of the function parameters tx and the return value tret.

The type O describes the structure of the implicit parameter this used in JavaScript to

access to object o in an object method o.m().
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Example data types for the code in Figure 5.1 can be provided as

f :[ ]×Int→ [a : String]

x :Int lines 2-8

o :[ ] line 2

[a : String] lines 3,7-8

[a : String,b : Int] line 5

The function type for f expects an empty object for the this parameter and an

integer for the parameter x. The function returns an object with at least the String

valued field a. The variable x has type Int throughout the whole program and o is an

object with the string field a set in line 3 and additionally the integer field b in line 5.

5.1.2 Soundness

A type system is considered sound if the property obtained as result of the analysis is

guaranteed for all possible executions of the analysed code. Structural soundness for

a data type system holds, if for all results Γ 
 e : t|Γ′ the type t describes the structure

of all possible values of e. The type [a : String,b : Int] for o in line 5 of Figure 5.1

is sound, because for any trace reaching this line, the object o contains at least the

String valued field a and the Int valued field b.

Even though some of the type systems discussed below do not have structural

soundness as their primary goal, they all provide this property.

Soundness of a system is usually demonstrated either by a formal proof or by the

evaluation of benchmarks. Formally proven sound systems provide some form of for-

mal semantics modelling the evaluation of the considered JavaScript subset. They

show that all possible values of any expression according to this model are correctly

described by the resulting type. To expand the guarantees made by the type system

onto real-world code, only the correspondence between the formal semantics and the

real-world language needs to be validated. Instead, other systems demonstrate sound-

ness by applying the system to a set of examples. The system is claimed sound if the

result of the analysis holds true for all examples. While testing-based evaluation is able

to validate systems which rely on relations between values too complicated to handle

with a formal proof, it only provides a guarantee of soundness for the tested cases and

the tested implementation.
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In contrast to sound type systems, some type systems are designed to estimate the

type unsoundly under certain conditions. In Figure 5.1, if the condition (x>3) is true in

most cases, the analysis can estimate it to be true for all practical cases and, as a result,

assume that the field b always exists. Such a type system is not sound as there exist

traces through the function body returning values for which the structure demonstrated

in the type does not apply. If sound analysis cannot get satisfying results, unsound

methods are a way to provide a result which is true for most practical cases.

5.1.3 Coverage

The full JavaScript language has many constructs and features, including built-in li-

braries like Math, Set or Regex and strongly connected libraries the DOM API which

provides the interaction between HTML and JavaScript. Most formal systems only

consider a core of the full language in a similar manner as originally proposed for Al-

gol by Reynolds [98]. Features not included in this core language are either translated,

handled by a practical implementation without formal proof or left for future work.

Translation is achieved by a desugar function, which maps non-covered features to

semantically equivalent expressions in the covered language. However, the replaced

expression is not guaranteed to be resource equivalent. In the example in Figure 5.1,

the nested field lookup line 7 can be desugared into the two lines

7a var tmp = o.a;

7b o.a = tmp + "world";

This translation is semantically equivalent, however, requires the temporary variable

tmp using additional memory space.

Since the desugaring method replaces an expression e by a semantically equivalent

expression desugar(e) the type judgement Γ 
 desugar(e) : t|Γ′ implies Γ 
 e : t|Γ′′

with a Γ′′ corresponding to Γ′ in some way for most type systems. Therefore, data

types obtained from a desugaring type system can usually be used equivalently to the

results of a type system covering the feature directly. However, resource analysis itself

can only use resource equivalent desugaring.

Figure 5.5 compares the JavaScript features covered by the existing systems. Desug-

aring methods are not considered here, since most of them can be adapted between

systems.
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5.1.4 Checking versus inference

Type systems can be designed for two different modes of operation. In the type asser-

tion Γ 
 e : t|Γ′, the expression e is given in both cases. For type checking the type t

and the type context Γ (and sometimes even Γ′) are provided and the purpose of the

type system is to validate whether the statement Γ 
 e : t|Γ′ holds. Statically typed

languages like C or Java provide types as part of the syntax of the program. For these

languages, type checking is sufficient. A type checking systems for an untyped lan-

guage like JavaScript requires extra annotation work by the user to provide those types.

For the code in Figure 5.1, a valid type checking question would be: “In the context

Γ = {x �→ Int}, does the object returned by the function body always include the field

a?” This assertion is formally written as Γ 
 body : [a : String]|Γ′. Since the typing

provided above can be type checked, the answer is “Yes”.

On the other hand, the type inference problem is to find a t and Γ′ (sometimes also

Γ) such that the statement Γ 
 e : t|Γ′ holds for the given expression e. Since type

inference is provided with less information, it is more complex than type checking.

With less effort for the user of the system, inference is preferable where possible.

Initiated by Mitchell [87] and further developed by Aiken and Wimmers [3], many type

inference systems reduce the inference problem to a constraint solving problem. For

example, in the JavaScript type inference system JST
0 [9] the constraints are variations

of subtyping constraints like t < [a : (Int,•)] which expresses that the type variable t

has at least the read-write-able field a of type Int.

Between type checking and type inference there are various levels of systems which

require some annotations to infer the remaining information and infer the remaining

information. Some systems require, for example, the headers of all functions to be

annotated [21] while the type of all other expressions can be inferred automatically.

A special form of mixed checking and inference is gradual typing [109, 106].

It statically infers an incomplete typing from annotations and simple structural con-

straints. Types which cannot be inferred statically are then dynamically checked during

runtime.

5.1.5 Precision

In general, there are multiple possible types for almost all non-trivial expressions. For

example, the empty object [ ] is sound as the type for any object expression, since it

assumes nothing about the fields of the object. However, with the type o : [ ] for o in
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line 6 of Figure 5.1, the expression o.a + “ world” in line 7 cannot be typed, since

the type [ ] does not allow access to the field a. Therefore, a type system should aim to

provide as many sound details as possible.

Formally, consider a type t more precise than t ′ if the two sets

T = {v|v : t}

T ′ = {v|v : t ′}

of all values typed with t or t ′ are in the subset relation:

T ⊂ T ′.

Since this defines only a partial order, multiple most precise types might exist for any

expression e, but in the cases of the systems below, all considered expressions had a

unique most precise type.

5.2 Common techniques in JavaScript type systems

The different existing type systems for JavaScript have different goals and use different

methods to achieve them. Several common methods are used by multiple system. This

section summarises these common methods to present the established state of the art.

5.2.1 Object types

The important data structure in JavaScript are objects. Object types are usually repre-

sented as row types

[field1 : t1, ...,fieldm : tm]

resembling the object calculus by Abadi and Cardelli [1]. Row types consist of a list of

field names with their associated types. For example, the type [a : Int,b : String,c : [ ]]

describes an object which has the integer field a, the string field b and the field c which

is itself typed as object. To describe nested objects, two methods are common. The

first explicitly describes the type of the nested objects like the field c in this example.

In this case, recursive object types are modelled by an explicit recursive operator: a

recursive list with an integer head and a tail list can be typed as

tlist = μα.[head : Int,tail : α].
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The recursive operator μα describes that every α contained in the type stands itself

for the type tlist . The type tlist is equivalent to its unfolded type [head : Int,tail :

μα.[head : Int,tail : α]].
Another approach represents the types of nested objects by abstract references l.

These references are than mapped to types by the abstract heap or typing heap X . For

example, the abstract location llist could be mapped to

X(llist) = [head : Int,tail : llist ].

With the reflexive inclusion of llist this type describes the same list type as tlist . During

runtime, each abstract location l may describe multiple concrete heap locations.

The abstract heap simplifies the handling of aliasing. Consider the example in

Figure 5.2. Both variables x and y are lists and they are aliased in line 2. In the

Figure 5.2 Aliasing example

1 var x = {head:4};

2 var y = x;

explicit approach where both variables are typed as Γ(y) = Γ(x) = [head : Int] the

types are independent of each other and any change of x has to be reflected in the type

of y manually. In the abstract location approach they are both typed with the same

abstract location Γ(y) = Γ(x) = l with the value X(l) = [head : Int] in the abstract

heap. A change of the type of x changes the abstract heap X(l) which automatically

changes the type of y.

One weakness of row types is the fact that each field of the object has to be men-

tioned explicitly. However, JavaScript allows to access arbitrary fields of an object by

dynamically computed strings. The expression

var end = “il”;x[“ta” + end]

accesses the field x[tail] even though tail is not mentioned explicitly. If end de-

pends on user input, the value of “ta” + end is unavailable before execution and

cannot be considered in static analysis. In order to overcome this weakness, some

systems include a δ-field (similar to the template field [103]) in their row types:

[head : Int,tail : llist ,δ : [ ]]

This expresses that all fields not mentioned explicitly can be typed as [ ]. Since the

δ-field potentially describes a set of very different fields it has to over-approximate and
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is less precise than the explicitly mentioned fields. Guha et al. [48] take this idea one

step further by allowing patterns in the object field names to describe multiple fields

with each entrance.

5.2.2 Singleton and summary types

JavaScript’s strong updates also pose a significant challenge to type systems. With a

strong update the type of a variable can be changed, simply by assigning a different

value. This means each assignment can potentially change the type structure of the

assigned location. In JavaScript strong updates are common, since assignment to a

fresh field o.m of the object value o implicitly extends the type of o to contain the field

m. Static type analysis typically describes multiple concrete values by the same type

variable. Consequently, a strong update cannot update the type without generating false

information for other values. Consider the example in Figure 5.3, which constructs an

array of objects in a loop.

Figure 5.3 Loop example

1 var i=0;

2 var x;

3 while (i<5)

4 x[i] = {};

5 x[4].a = 3;

After the loop in line 5, the objects x[0] to x[4] are typically typed with the same

type variable, since they were created by the same expression. Therefore, strongly

updating the type of x[4] to contain the new field a with value 3 changes the type of

all those objects. This situation can be handled by a system involving singleton and

summary types [64, 52]. A summary type describes multiple values at the same time

and cannot be strongly updated. In contrast, a value can be typed with a singleton

type which describes only this specific value and allows strong updates. When the

singleton property of a type cannot be guaranteed anymore, e.g. when the variable

is used as parameter to a function or the constructor used for this variable is invoked

again, the singleton type has to be converted into a summary type. In this example, the

type for x[4] is modelled by the singleton type [ ] to allow the strong update in line 5.

The types for x[0] to x[3] are described by one summary type tarray = [].

Singleton types and summary types can refer to each other. For example a singleton

object can refer to a summary type as a field type. In the example above, replacing the
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last line by x[4].last = x[3], the type of x[4] would be a singleton type of the form

t4 = [last : tarray] which includes the summary type tarray.

The singleton / summary paradigm supports in particular the initialisation pattern:

it is a common assumption in analysis systems for JavaScript that the structure of

objects is mostly changed using extensions and deletions, directly after the creation of

the object, thought of as an initialisation phase. Afterwards, the structure of the object

can be assumed fixed. Therefore, an object can be typed with a singleton type until

the initialisation is completed and then be joined into the appropriate summary type.

However, this pattern was evaluated [101] on a set of benchmarks with the conclusion

that the initialisation phase is not easily identifiable in real-world JavaScript code.

5.2.3 Function types

The ECMA standard [61] stores a function value as JavaScript object with the prop-

erty __proto__ set to the special build-in object Function.prototype. Apart from

this property, the function object contains a few more internal properties to store the

function’s code, it’s expected parameters and scope. After a function f has been de-

fined, an expression like f.m=4 can extend the function object with additional fields as

any other object. This feature is, for example, used to present the API of the popular

jQuery library in a concise way.

Some type systems for JavaScript imitate this specification by typing functions

with object types. Other systems define separate function types to simplify the analysis

of function executions. This simplification, however, cannot type fields of functions

directly. In this case, the function object has to be desugared into a pure function and

an associated object which stores the extended fields.

Inside JavaScript function bodies, the variable this refers to the receiver of the

function call. The receiver of an object method o.m() is the owning object o, the re-

ceiver for calls as constructor new f() is a new empty object and for normal function

invocations f() the current global scope object acts as the receiver. The variable this

storing the receiver is an implicit parameter and the function type has to reflect its ex-

pected type. Most systems explicitly state the expected receiver type O in the function

type as O× tx → tret.

Since the behaviour of a function call differs depending on whether it is called as a

method, constructor or simple function, some systems choose to differentiate between

the three different kinds of function calls in the syntax or in the types. For exam-
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ple, Zhao [120] restricts the names of constructors to start with a capital letter, while

methods and simple functions start with a lower-case letter. Function in real-world

JavaScript code can be used in either role.

5.3 Typed JavaScript derivatives

The survey of type systems below only considers type systems for pure JavaScript. In

addition, there are a few derivations of the JavaScript Language which include types.

TypeScript [85] developed by Microsoft adds types to a language based on JavaScript.

It extends the syntax of the language by adding type annotations into function defini-

tions and other statements and provides additional features like classes and class inter-

faces which are compiled into common JavaScript programming patterns. TypeScript

in Version 1.8 can even emit code in ECMAScript 6 strict mode. During compila-

tion TypeScript checks all available (provided and easily inferable) types and issues

warnings for type mismatches. The resulting typing is not complete, meaning it al-

lows untyped values as long as they are not violating other type constraints. All type

information is eliminated during compilation to create compatible JavaScript code.

Google’s alternative, AtScript [45], is a system extending TypeScript, besides other

features, with generated runtime type assertions which dynamically check the types of

typed values during runtime where static checking is not possible. Like TypeScript,

the resulting types are not complete and its goals value flexibility and usefulness over

soundness. In 2015 AtScript was announced defunct and some features merged into

TypeScript.

GoriallaScript [32] is another extension of JavaScript, which checks available type

information during compilation into JavaScript. It restricts the polymorphic operators

like the + operator to type-safe behaviour. In addition to the basic JavaScript types

GorillaScript allows to define finite types by arrays containing all possible values of

the new type. A value can then be dynamically checked during runtime against the

defined types, similar to the typeof operator in JavaScript

The language asm.js [89] is a subset of JavaScript which, when compiled by so

called ahead-of-time compilers, provides guarantees for the runtime values, can elimi-

nate JavaScript’s dynamic type checks and optimises the memory behaviour. The goal

is to imitate behaviour of compiled languages as C and improve the performance of

JavaScript programs.
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5.4 A survey of type systems for JavaScript

This section discusses the details of existing type systems. The abstract evaluation

systems TAJS [64] and JSAI [69] are also considered, since their abstract domain is

reasonably close to the structure of object types. Other systems (e.g. separation logic)

can provide similar information as output, but the translation into the desired type

structure would require a considerable amount of work. Those systems are instead

mentioned in Chapter 2.3.2.

The results of the survey are summarised in Figures 5.4 and 5.5. Figure 5.4a shows

which systems built upon each other considering reuse of semantics, type syntax or

implementation. The properties which are interesting for extending a system with

AmorJiSe are summarised in Figure 5.4b and Figure 5.5 summarises the subset of the

syntax covered by the systems directly.

The optimal candidate to build AmorJiSe upon is a formally proven, sound system

for type inference with an implementation.

The three candidates fulfilling all requirements are JST
0 , its extension by Zhao and

RAC. RAC analyses a lambda calculus with JavaScript-similar object behaviour. JST
0

instead analyses JavaScript directly and specifically represent object extensions in a

simple and controllable way. Since object extension might require additional heap re-

sources, this explicit presentation is beneficial during resource analysis. Consequently,

the amortised system AmorJiSe is built closely resembling JST
0 . The TeJaS system has

a similar notation and properties. However the soundness of such a modular systems

is an open problem. A proven instance of this system could also be used as underlying

system. The analysis of implicit type checks, as performed by Kashyap [71], does not

interfere with AmorJiSe’s analysis and could be used to increase the precision of the

chosen underlying system further.

The following sections discuss the details of the existing systems. For each, it will

briefly describe the methods, the covered part of the language, the soundness result,

the required annotations and the state of the implementation.

5.4.1 Type system by Thiemann (’05)

The first attempt at a type system [114] by Thieman presents a static type system for

a core of JavaScript with the goal to highlight potentially unintended type coercion.

Typed programs are guaranteed to be free from calls to non-function values, arithmetic

operations applied to non-numeric values, reading from non-existing variables and ac-



100 Chapter 5. Type systems for JavaScript

Figure 5.4 Existing type systems for JavaScript

•

Thieman ’05 JST
0

Zhao ’10

RAC TAJS λJS

λS DJS TeJaS

JuS JSAI

Kashyap ’13

(a) Relationships

Soundness
proof

Checking /

inference Coverage Implementation

Thiemann ’05
[114]

pen & paper

proof omitted checking core not available

JST
0

[9, 7, 8]

pen & paper

incorrect inference core used in evaluation

Zhao ’10 [120, 119] pen & paper inference core tested on small programs

RAC [52, 115] pen & paper inference core source available

TAJS
[10, 64, 65] sketched inference full

source available
tested on benchmarks

λJS
[49] sketched checking desugar

source available
tested on benchmarks

λS [50] pen & paper checking desugar source available

DJS
[21] not provided partial inference desugar

source available
tested on benchmarks

TeJaS
[74]

Pot. unsound
pen & paper

checking (general)

inference (Instances)
desugar

source available
tested on

real-world code

JuS
[41] not provided partial inference core

source available
tested on benchmarks

JSAI
[69] not provided inference desugar/full

source available
tested on benchmarks

Kashyap ’13
[71] ref. JSAI inference ref. JSAI

source available
tested on benchmarks

and real-world code

(b) Properties

cessed fields of null values.

The object types are row types with δ-fields. Additionally, the object types can

express wrappers around simple types like integers or strings. This way, the result of

the expression x=4;x.m=5 can be typed as Ob ject(Int)[m : Int] to describe a wrapper

object around an integer which has been extended with the field m. Function types

are handled using a dedicated type Function(this : τ;ρ → τ′). The parameters ρ are

modelled as a row type which allows for variadicity. To increase the precision, sum

types Int+[] describe values which are either Int or an object.

The formal JavaScript subset is given as small-step operational semantics. It con-

siders functions including the handling of constructors and methods, but omits function
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Figure 5.5 Candidates for underlying system - JavaScript Syntax coverage
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statements in favour of function expressions and requires local variables to be defined

at the beginning of the function body. The object operations are modelled including ob-

ject literals and read, write and extend operations for objects in the form of computed

access e1[e2]. Static access e1.m is not handled, but instead identified as equivalent

to the computed access e1[”m”]. Considering statements, the core language includes

while-loops and if clauses.

The main result of [114] is the type soundness which is proven via reduction and

progress. The implementation for the type checking algorithm was stated to be on the

way, but to the best of my knowledge, has not been published. The author has since

contributed to other type systems considered below [52, 65, 64, 115]. Type inference

is not considered in this system.

This system handles many important features of the JavaScript language and em-

ploys a promising method to express simple types coerced into objects, which is unique

to this system. The formally proven soundness makes this system interesting to extend,

but as underlying system for AmorJiSe the missing inference would lessen the advan-

tage of the automatic inference of the amortised annotations.

5.4.2 JST
0

Anderson and Drossopoulou developed the system JST
0 [8, 9]. Its goal is to prove the

absence of runtime errors for typed expressions.

JST
0 uses recursive row types for objects and adds the markers ◦/• to the type of

each field. The marker definite • describes that this field is guaranteed to exist in this

object with the given type, whereas the potential marker ◦ asserts that the field will

have the given type if it gets added to the object in the future. Hence, potential fields

can be written to but not read. Using those markers, JST
0 is able to express a controlled

subset of strong updates.

The language covered includes only the variable x in addition to this and allows

read operations and weak updates for variables (except for strong object extensions).

The authors claim that additional variables can be simulated, but the simulation is not

as straight forward as claimed (see the remark in Section 7.1.6). Furthermore, JST
0 sup-

ports objects with read, write and implicit extension operations, function expressions,

calls to functions, object methods and constructors and a conditional expression. Other

features like loops, local variable definitions, function statements and object literals are

omitted. The formal definition of this language is given as big-step operational seman-
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tics.

The proof for the type soundness is given, but is unfortunately not correct, as shown

in Chapter 7 along with a fix. A type inference algorithm is provided and partly proven

sound in relation to a big-step operational semantics. The inference is realised by

generating subtyping constraints. From the transitive closure of those subtyping con-

straints the solution can be extracted efficiently. The implementation of the inference

algorithm extends the formal core language with a few more features of JavaScript

without a formal soundness proof. As evaluation the implementation was successfully

tested on a few crafted example programs.

With a formally proven soundness theorem (given the proposed fix) and inference

this system is a good candidate as underlying system for AmorJiSe. The controlled

handling of strong updates provides exactly the right information needed for the object

model. For this reason, AmorJiSe in the following chapter is modelled after JST
0 .

5.4.2.1 Type system by Zhao (’10)

In two papers [119, 120], Zhao presents a system, which builds upon JST
0 . The purpose

of this system is to infer the structure of objects. In comparison to JST
0 , this system can

also track which object fields are removed using JavaScript’s delete operator.

In addition to the ◦/• mechanics of JST
0 this system uses singleton / summary

object types. The added set of strings M in the function type (O,M), t → t ′ describes

the fields that are added to the type O during the execution of the function body. This

increases the precision of the object types in comparison to JST
0 . In the follow-up

paper [120] object types are instead represented as t/C where t is a type variable and

C is a set of constraints on the type variables. The list type could for example be

described as

tlist/{tlist(head)≤ String, tlist(tail)≤ tlist}

where tlist is a type variable. The constraint sets C are simplified and checked for con-

sistency after each modification to decrease the size and complexity. For each function

call the system freshly instantiates the type variables in function types to handle the

functions polymorphically without analysing the function body multiple times. Only

mutually recursive functions have to be analysed strictly monomorphically.

The formal language of Zhao covers slightly less than JST
0 . Nested expressions are

replaced by assignments to local variables and the syntax of constructors is artificially

differentiated from object methods. Normal function calls are excluded in favour of
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method calls. The language allows for the definition of local variables without hoisting.

The inference algorithm and the soundness proof are analogue to JST
0 . Since this

work only considers the type inference algorithm it avoids the flaw in the type checking

of JST
0 . A prototype implementation is available.

Some extensions made in this system can be used to extend JST
0 as the underlying

system for AmorJiSe. However, the types derived by this system are not explicit but

rather expressed as type variables with constraints. To validate a property of a type, the

authors add the property to the constraint set of the type variable and verify the con-

sistency of the constraints set. This method is not efficient in the context of AmorJiSe,

since the system often has to read the type of a field from an object.

5.4.3 RAC

The system RAC [115, 52] stands for Recency-Aware Calculus and is defined by Thie-

mann and Heidegger. RAC is a type system for a lambda calculus with objects which

guarantees that a typed expression will not result in a runtime error.

The recency types implement the singleton / summary type paradigm in the way

that the most recent object created by a constructor expression is always typed as a

singleton type. Object types use abstract locations in a typing heap, which is split into a

singleton heap and a summary heap. The static analysis assumes the code contains the

explicit demotion operator � to merge a singleton type into the corresponding summery

type before the same constructor is used again. If, for example, a new object is created

using the new operator at the code location l1

1 let f=λx.(newl1) in

2 f(42)

then the singleton type stored at the abstract singleton location l1 has to be explicitly

demoted and merged into the summary type at this location before the function f is

called.

1 let f=λx.(newl1) in

2 �l1; f(42)

In a pre-processing step the system automatically injects all needed demotion operators

into the code.

Function types

f : (Σ, t) L→ (Σ′, t ′)
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track the side-effects on the types of the outside scope. Σ documents the requirements

on the singleton heap of the call side and Σ′ summarises the effects on the single-

ton heap after execution of f. The set L specifies which abstract locations need to

be demoted before the call. In the above example f is typed as ([ ],Int)
{l1}→ ([l1 �→

[ ]],ob j(@l1)) to force demotion of the singleton location l1 before execution and to

ensure this location is typed as empty object after execution. This function does not

have requirements on the call-site singleton heap.

The similarities of the analysed call-by-value lambda calculus to JavaScript arise

from the inclusion of first-class functions, prototypal inheritance and objects with read,

write operations and the explicit extension of objects. Computed read and write op-

erations e1[e2] are not handled. In contrast to JavaScript, RAC relies on let bindings

instead of variable assignments, does not analyse nested expressions and does not have

constructor functions. Instead, it uses an universal object constructor new equivalently

to the empty object literal {} in JavaScript. A transformation of the missing features is

not provided. The language is defined by small-step operational semantic rules, which

also uses an explicit singleton and summary heap to reflect the split in the type heap.

Each singleton type location is mapped to exactly one concrete singleton heap loca-

tion, while summary type locations are mapped to a set of concrete locations in the

summary heap.

The soundness of the type system is formally proven in the technical report. A type

inference algorithm and an implementation is provided based on constraints on upper

and lower type bounds.

As underlying type system for AmorJiSe, the language considered in this system

is too far from JavaScript. However, the recency paradigm as implemented here could

increase the precision of the system JST
0 .

5.4.4 TAJS

The system TAJS by Thiemann, Andreasen, Møller, Jensen [64, 65, 62, 10] presents

an abstract interpretation based system which infers the structure of runtime values for

JavaScript.

TAJS builds a control flow graph consisting of nodes for each subexpression and

edges for control flow between the expressions. TAJS, furthermore, defines abstract

states which over-approximate the runtime state at each node in the graph. To describe

the state modification of each node, transition functions are defined describing the rela-
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tion between the abstract state before and after execution for each JavaScript construct.

The analysis computes the fixpoint of all transition function across the graph.

Functions are handled context sensitively by computing a fixpoint of the function

body separately for each function call. TAJS is further extended with determinacy

analysis [10], such that the values of constant expressions are propagated through the

graph. This information is used to decide on loop unrolling and thus increase precision.

TAJS introduces a method called unevalize to analyse dynamic code execution

by JavaScript’s eval and similar. It takes common programming patterns using eval

and translates them into equivalent code using for example the method JSON.parse

which deserialises an JavaScript object from code without side-effects.

The required transition functions are presented for all commands of the bytecode

language used in real-world interpreters and includes handling of functions, variables

and objects including read, possibly extending write and delete operations. As state-

ments, TAJS considers function invocation, including constructor calls, if-clauses and

error handling. In addition, the transition functions are provided for a collection of

built-in functions like the browser specific functions and the DOM API.

In earlier versions of TAJS the authors argue informally that the reachable state

space is limited enough to guarantee termination of the fixpoint iteration. The eval-

uation of a prototype implementation of TAJS returns sound results in a manageable

execution time. In the later version the fixpoint computation is restricted to 1000 itera-

tions. If the fixpoint is not reached by this point, the current abstract state is used as an

potentially unsound approximation of the fixpoint. Unfortunately, additional sound-

ness bugs in connection with the handling of try-catch-finally clauses were found

in TAJS [69] which are attributed to the lack of formal specification of the handled

language.

The large language covered by this system makes it interesting as underlying sys-

tem, especially the unevalize translation. Functions are analysed in a context-sensitive

way, including variadicity and polymorphism, and the DOM library is vital to analyse

mobile apps. However, the only informal soundness argumentation and the potentially

unsound approximation are a disadvantage. Using this system as the underlying sys-

tem for AmorJiSe would also mean that AmorJiSe has to analyse the same intermediate

representation, which makes it more difficult to recognise the API calls.
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5.4.5 λJS

The system λJS by Guha, Saftoiu and Krishnamurthi [49] defines big-step semantic

rules for a core JavaScript. An example type system certifies the absence of commu-

nication via the function XMLHttpRequest. While this type system does not describe

the necessary information about the data structure of values, the semantics of λJS is the

basis for multiple other systems.

The core system’s features are chosen to cover full JavaScript language via a desugar

function. It includes the object operations for read, write, extend and delete. Proto-

types and errors are handled and a simplified model of the scope chain is included. The

formal language handles references, but in contrast to JavaScript they are created and

dereferenced using explicit operators. λJS includes simple function expressions, which

are used to desugar function statements, object methods and constructors as function

objects similar to the ECMA standard. Considering statements, λJS includes while

loops, if clauses and break with labels. All other language constructs are trans-

lated into the core calculus. The authors claim to even desugar the non-static scope

behaviour into the lexically scoped core language by making the lookup procedure ex-

plicit. Unfortunately, the translation increases the size of expressions by an average

factor of 200.

The semantics itself is proven sound with the result that well-formed expressions

do not get stuck but evaluate either to a value or to an error. The completeness of the

desugar process is evaluated by translating a set of real-world benchmarks into the core

language and the implementation is available for download.

In conclusion, the language λJS is suitable for AmorJiSe, even though the resource

effect of the desugar method would impose additional work. However, this work does

not provide a suitable type system.

5.4.5.1 λS

The calculus λS [50] by Guha, Saftoiu and Krishnamurthi translates JavaScript into a

core language inspired by λJS. The type system defined on this core language certifies

the absence of runtime errors.

λS employs so called tags which resemble dynamic types. During runtime, the tag

of a value can be validated using a tagcheck which results in a tagerr if the tag

does not apply to the value. The analysis uses a flow analysis to insert non-failing

tagchecks into the source code. This additional information obtained by these checks



108 Chapter 5. Type systems for JavaScript

can than be used to infer precise types for the code. The system analyses each function

body in isolation to make the system scalable. This method comes with the loss of

inter-procedural precision. The types incorporate reference types and abstract heaps to

handle aliasing and strong updates correctly even through function calls. Types can be

combined into union types to increase the precision and coverage. The function types

ignore the receiver this and handle method and constructor invocations with receiver

by desugaring.

The core language λS includes function expressions and function calls, references

with an explicit reference and dereference operator, if clauses and the break statement

with labels. The translation from JavaScript into the core language is not provided in

the paper but the implementation is available.

The core system is formally proven correct via progress and preservation. The

location of tagchecks can be inferred automatically, but the inference of the types is

not considered. An implementation based on a monotone framework [73] is provided

and example programs have been analysed within a few seconds.

Since λS is proven sound, especially its reference types could be used in an data

type system underlying AmorJiSe. However, type inference is missing and the covered

language is less than covered in the system by Thiemann (’05).

5.4.5.2 DJS

The system DJS [21] introduced by Chugh, Herman and Jhala presents dependent

refinement types for JavaScript. The authors adjust their system D to JavaScript to

obtain the language D!. On this language the type system DJS is defined.

The main characteristics of DJS is the refinement notation. A type {v | p(v)} is

defined as the set of all values v satisfying the property p. Syntactic sugar is provided

to express simple types like String or Int, but more expressive types can be specified,

for example, the type falsy combining all values which evaluate to false when coerced

to Boolean. The property p can depend on other values in the current abstract heap

which makes this notation powerful.

In order to track prototype relations without state explosion, the heap is modelled

as a shallow and a deep heap. The shallow heap stores precise information about the

prototype chains of crucial types. Less crucial types can be estimated in the deep heap

which only summarises all fields contained in the prototype chain without storing the

whole chain itself. This keeps the complexity of long prototype chains manageable.

DJS also uses singleton / summary types to handle strong updates. Summary types can
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be thawed and frozen to allow temporary modifications of their structure. Functions

are modelled with a dedicated function type and aliasing is handled by reference types.

The considered core language D! is based on λJS and includes prototypes, strong

updates, higher-order functions, arrays, Boolean operations, but prohibits implicit co-

ercion. A purely syntactical desugar process is provided which translates the uncov-

ered language features into D!. DJS is even able to analyse some common patterns

using eval by translating them into controllable JavaScript features such as the JSON

library.

A type checking algorithm generates subtyping relations from given types and uses

an SMT solver to validate them. The type checking is only proven sound by reference

to the soundness proof for System D. Types for local expressions can mostly be in-

ferred, but type annotations for function types are required including types for the

accessed part of the scope chain. The annotation overhead on example programs con-

stitutes about 70%. The provided implementation, which was used for experiments, is

based on the parser for λJS.

The advantage of this system as underlying system for AmorJiSe is the handling of

the scope chain. The needed annotations and missing formal soundness proof make it

less useful for this purpose.

5.4.5.3 TeJaS

Lerner et al. present the system TeJaS [74]. Rather than a type system on its own,

it is a framework to implement type systems for JavaScript. It is distilled from the

similarities between various other specialised systems and the semantics is adapted

from λJS. The focus of the framework lies on the modularity: Different parts can be

implemented independently and combined to construct different systems.

The authors identify the 7 essential parts of a type system: type and kind syntax,

environments, kind checker, type checker, subtyping, decorator (weaving types into

expressions) and the desugar method. TeJaS provides a default implementation for

each part which can be extended or redefined by each type system instance. The de-

fault types include basic types like Int, String (modelled as regular expressions),

objects (abstract references into a typing heap with prototypes), functions (modelled

as objects) as well as unions and intersections of these basic types. Like JST
0 , this sys-

tem defines a state for each object field, but TeJaS is more expressive than JST
0 . Apart

from the definite ! (equivalent to • in JST
0 ) and potential ? (equivalent to ◦ in JST

0 ),

the value Absent expresses that the field is definitely not present in the object directly,
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^ expresses that the field is present somewhere in the prototype chain and the value

Hidden prevents access completely.

The type system in TeJaS is defined relative to λJS. Therefore, it covers the same

language with objects, including prototypes, function expressions, error handling and

the limited control flow operations, including if clauses and labelled break state-

ments.

With regards to the soundness of the base system, the authors argue that the sound-

ness proof of the basic system with the default implementations should be equivalently

to the systems it was distilled from. However, they admit that the soundness of the

modular system, even when assuming soundness of all modules, is an open problem.

Instead, they mention the use even of potentially unsound modules as opportunity to

capture the dynamic features of JavaScript better. The paper discusses several exam-

ple type systems implemented with the framework which have been proven sound in

previous work.

Type inference for the system in general is proven undecidable. But in the dis-

cussed instances inference is possible in reasonable time. Type checking uses all pro-

vided annotations bidirectionally to benefit from the combined power of inference and

type checking. Syntactic sugar for the annotations is presented to represent common

programming patterns concisely and a dynamic companion analysis estimates type

annotations to reduce the annotation work. An implementation of the framework is

provided along with the implemented instances of type systems using the framework.

This system uses a similar object extension modelling as JST
0 , but additionally mod-

els prototype links. A custom type system instantiated from TeJaS sounds promising

as more expressive underlying type system than JST
0 . However, the soundness theorem

would need to be proven formally.

5.4.6 JuS

Gardner, Naudziuniene and Smith introduce the symbolic execution system JuS (Java-

Script under scrutiny) [41]. It propagates logic formulas through abstract states. The

system aims to produce corner cases of the program which invalidate a specified prop-

erty.

The program logic used in JuS is adopted from the separation logic introduced by

Gardner et al. [42]. The logic statements cluster information into so called StoreLet

which roughly describes a part of the scope chain with the information about the vari-
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ables and fields which are definitely not defined in the scope, maybe defined or defi-

nitely assigned a specific value. Nested and recursive objects are stored as references

to handle aliasing correctly. The StoreLet abstraction contains information about the

object structure and can be translated into object types with little effort.

The language covered contains String, numeric and Boolean constants, object lit-

erals, read and write access to objects and simple functions which can be called as

constructors or methods. Function statements are not defined. Concerning statements,

JuS includes the if clause, while loops and the with block.

JuS aims for soundness and the results are meant as a guarantee of the proven

property. However, the soundness theorem is not formally specified and neither is

a proof. The system uses a mix between checking and inference to infer as much

information as possible, but loop invariants need to be inserted as annotations in any

case. An implementation is provided online as part of the JSCert project.

JuS presents an interesting extension of the scope handling, which AmorJiSe could

take advantage of. However, to be used with AmorJiSe directly, the needed annotations

and the missing formal soundness theorem are a disadvantage.

5.4.7 JSAI

Kashyap et al. present the system JSAI [69, 70] which aims to provide a formal frame-

work to implement static analysis for real-world JavaScript code. The focus of JSAI

is on configurability: the abstract domain for values is implemented as module which

can be swapped easily and the merge operator to combine several concrete states into

one abstract state can be defined separately. This enables JSAI to implement a range

of sensitivities like context-sensitivity, flow-sensitivity, object-sensitivity and their k-

bounded finite versions. In total, the papers evaluate 56 different strategies for sensi-

tivity themselves.

The static analysis is based on an abstract interpretation state machine, which com-

bines different methods for the different parts of the abstract state. They employ type-

analysis, pointer analysis, string analysis, constant propagation and control-flow anal-

ysis in a manner that each analysis can benefit from the result of the other. The used

object types consists of 2 row types. The first row stores ordinary object fields while the

second row tracks the types of class-specific fields, for example, the length property

of arrays and the local scope object of functions. This way, JSAI can analyse ambiva-

lent operations of objects modelling more complex classes with more precision.
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The language covered by JSAI is an intermediate language called notJS which is

not designed as a pure core language but implements more complex features directly.

The execution of notJS is implemented and checked against benchmarks compara-

ble to evaluations of other real-world JavaScript implementations. The intermediate

language includes basic values as well as objects with field read, write, extend and

deletion, function expressions, calls and constructors as well as while and for loops,

conditionals and jump to model further control-flow. Error-handling is also included.

Functions and arrays are handled as objects in correlation to the JavaScript standard.

In an effort to transfer their results to real-world JavaScript, the authors present a trans-

lation from JavaScript into nonJS.

The whole system is modelled formally and annotations in the code are not re-

quired. However, neither the soundness property nor the proof are provided in the

paper. The same is true for the translation from JavaScript into notJS. The implemen-

tation and further material is available.

As underlying system for AmorJiSe, JSAI has many advantages. It handles real-

world JavaScript with many different analysis methods and handles more language

constructs directly. Like in the case of TeJaS, a custom instance of this system with

a formal model would be a good candidate to increase the precision and coverage of

AmorJiSe. The resource equivalence of the translation between JavaScript and notJS

has to be proven separately.

5.4.7.1 Type system by Kashyap et al. (’13)

Kashyap et al. use JSAI to implement a refinement based system [71] to increase

precision of static analyses using the information obtained from type checks contained

in the JavaScript syntax.

In addition to obvious type checks using the JavaScript operator typeof, this work

identifies several implicit type checks in JavaScript programs. An accessed object

is neither null nor undefined, only functions can be called and a value which is

converted by JavaScript has to be primitive (neither object nor function).

The types used in this system are primitive types (num,bool,str,null,undefined), ob-

ject types and function-objects. Those basic types can be combined as union types.

The type null∪ObjTypes, for example, specifies values which are either null or an

object. From explicit and implicit checks contained in a program, the system derives

conditions on the type variables. For example, isPrim(t) describes that t is one of

the primitive types and the constraint typeof(t)=”function” specifies the type t as a
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function type.

The abstract states of this system are kept very simple with the purpose of demon-

strating the power of the implicit constraints rather than a complicated type system. As

such it rather meant as an addition to an already existing type system than a type sys-

tem by itself. The covered language is not specified explicitly but the examples include

operations on objects including read, write, extend and delete, if clauses, higher-order

functions as methods and simple functions. Like JSAI, this extension does not handle

eval and similar dynamic JavaScript features.

The authors claim soundness for the system and argue informally that all necessary

conditions are fulfilled. The formal soundness proof or the formal soundness theorem

are not included. The implementation uses the JSAI framework to infer the abstract

values without code annotations and has been used on standard benchmark suits, real-

world applications from open-source projects and machine generated code.

The presented method in this system is meant as an addition to an existing type

system. It could also be added to increase the precision of the AmorJiSe system. To be

considered as an underlying type system itself, the considered language and soundness

would have to be specified formally.





Chapter 6

The system AmorJiSe

This chapter introduces the system AmorJiSe which extends types for JavaScript with

amortised annotations. While the original types describe the structure of the values,

the amortised annotations describe resource units reserved to be used in computations

with the typed values. AmorJiSe automatically infers those annotations and this way

describes the maximal resource consumption of the typed expression.1

The following sections show the basic techniques of amortised systems and present

AmorJiSe with its types, its properties, an inference algorithm and the annotated se-

mantics for JavaScript which models the resource consumption of JavaScript expres-

sions. The analysed language covers the subset of JavaScript which manipulates ob-

jects and is later extended with the handling of function expressions.

The main result of this chapter is the proof of soundness for the amortised type sys-

tem. It guarantees that the resource consumption of the analysed expression, according

to the annotated evaluation, is less than the derived bound.

6.1 Terminology

AmorJiSe is a type system which derives a bound on the maximal resource usage of

the analysed code. The language constructs and critical APIs of an expression are

assumed to consume resource units according to the resource model. Each resource

access is accounted for from the number of available resource units.

AmorJiSe requires data types for each expression as input, which describe the

structure of the evaluated value of the typed expression. The derived amortised an-

1A preliminary version of this system has been published at the International Symposium for Sym-

bolic Computation in Software Science (SCSS, 2014) [39].
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notations inside the amortised types symbolise a number of reserved resource units.

Reserved units are already accounted for in the overall resource consumption, but they

can be used in a later stage to call a resource consuming API. Units reserved in a typed

value are associated with this value. Amortised annotations in the function type and

the types of the parameters of functions describe the resource units required to execute

the function.

Within the following definitions and discussions all amortised annotations are dis-

played in blue to differentiate them from the underlying type system and its judge-

ments.

6.2 Overview

Amortised analysis tracks the number of resource units used or reserved during execu-

tion of a statement or expression. Each resource access needs to be accounted for either

from the supply of globally available resource units or from the resources previously

reserved. Reserved resource units are similar to the tickets in the PhoneWrap system,

but can be stored alongside the data structures of values to describe data-dependent

resource bounds.

To describe the global resource requirement of an expression, the amortised type

judgement states the number of resource units globally available before and after the

evaluation of an expression. The judgement

Γ,n 
 e : t|Γ′,n′

states that in the context Γ the expression e can be executed with n available resource

units and after execution n′ resource units remain available. For example, if an expres-

sion e consumes 2 resource units and is executed with n = 5 available resource units,

after the evaluation n′ = 3 resource units remain available.

With these annotations in the type judgement the system can express constant

bounds. As discussed previously, this does not cover the behaviour of modern Java-

Script apps as the resource consumption generally highly depends on the size of vari-

ables and inputs. The power of amortised types comes from the injection of amortised

annotations into recursive data types. Each amortised type t+ = (t,n) is a pair of a data

type t and a number of reserved resource units n stored with a value of this type. In

recursive types, like the list type tlist = μα.[head : (Int,n1),tail : (α,n2)], the anno-

tations n1 and n2 state the number of reserved resource units for each element in the



6.2. Overview 117

recursive structure. This results in a total number of reserved units dependent on the

size of the data structure. For example, a list of type tlist with length 4

(1,n1) (•,n2) (2,n1) (•,n2) (3,n1) (•,n2) (4,n1) (null,n2)

stores 4 · (n1 +n2) reserved resource units in total. By using such a type as the param-

eter for a function, AmorJiSe can describe the resource consumption of the function

dependent on the size of the input without using dependent types. After inferring types

for all functions of a program, similar bounds can be derived from the result as en-

forced by the dynamic analysis PhoneWrap.

During type checking Γ,n 
 e : t|Γ′,n′ the typing context Γ stores annotated types

for all variables. Therefore, the total number of resource units available to an expres-

sion e is the number of globally available resource units n in addition to the sum of all

reserved resource units stored in the variable types in Γ. This total number of resource

units available is called the potential of the typing state (Γ,n). Since the amortised an-

notations in recursive types describe the number of units per element, the total potential

also depends on the values of the variables during runtime. Even though those runtime

values are not available during analysis, the soundness property of amortised analy-

sis ensures that during analysis the potential is correctly decreased for each resource

access and never increased, independent of the actual runtime value.

The basic information used by AmorJiSe to determine the resource consumption

of an expression is provided by the resource model, which describes the resource con-

sumption of language constructs and API functions. The resource consumption of

each language construct, e.g. of each function calls or each object extensions, are each

modelled by a constant. The resource behaviour of the API functions are described by

their function type in the initial typing context Γ0. This way, referring to Chapter 2.2,

AmorJiSe can analyse API activated and language activated resources.

So far, amortised types have mostly been studied for functional languages. Java-

Script is an imperative language and its side effects present an extra challenge to amor-

tised types. In order to provide an overview of the challenges faced while implement-

ing amortised types for JavaScript, consider the uploaded pictures as resource in the

fictitious app “ Pick-Up” with the following code examples. The API function UPLOAD

serves as an example for a resource consuming function.
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Example 6.2.1.

1 function upload_list(list) {

2 if (list != null) {

3 UPLOAD(list.value);

4 upload_list(list.next);

5 }

6 return 0;

7 }

The function upload_list takes a linked list of pictures as input and uploads each

picture individually. Since upload_list is recursively called for each element in the

list, the resource consumption of the original call depends on the length of the input

list. Assume the underlying data type for the parameter list is the type

tlist : μα[value : String,next : α].

It describes that the linked list is implemented as an object with the fields value stor-

ing the location of the picture as string and next which recursively stores the list’s

continuation of the same list type. According to this, AmorJiSe derives an amortised

type

t+list : μα.[value : (String,1/1),next : (α,0/0)].

The amortised annotations R/W determine that R resource units are reserved for a

field. The second annotation W indicates how many resource units a value has to

provide to be assigned to this field. Here, the field value stores 1 resource unit and

each value assigned to value has to provide 1 resource unit. The full type for the

function upload_list

t+upload_list : μα.[]×μα.[value : (String,1/1),next : (α,0/0)],0 → Int,0

contains the types tlist and Int as types for the parameter and the result. The addi-

tional implicit parameter this is typed as empty object with μα.[], since upload_list

is not called as method. The annotation 0 on the parameter side state that the function

does not require any constant number of reserved resource units to be called and the

annotation on the result side states that no reserved resource units are returned by the

function call.

The reserved resource units provided to upload_list via its parameter list are

consumed by the function body. Therefore, a function call to upload_list has to

update the amortised types of the parameters at the call site.
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Example 6.2.2.

1 var x = {value: "1.jpg", next: null};

2 upload_list(x)

Assume the variable x has a type

tx = μα.[value : (String,2/2),next : (α,0/0)]

before line 2. After line 2 it is reduced to

t ′x = μα.[value : (String,1/2),next : (α,0/0)],

so that the reserved resource units consumed by the function cannot be reused. Due to

the remaining annotation (1/2), the remaining list has enough reserved resource units

to call upload_list or a similar function once more.

AmorJiSe manages this reduction of the annotations by a sharing relation

t ↪→ t ′ ⊕ t ′′.

This constraint splits the type t into two structurally equivalent types, where the re-

served resource units previously contained in t are now distributed between the two

types t ′ and t ′′. Therefore, an invariant of this relation is that the potential Σv : t of an

arbitrary typed value v is equal to the sum of the potentials Σv : t ′+Σv : t ′′. After the

split, the type t ′ is used to perform the computation, in this case the function call, while

the type t ′′ is stored back into the context Γ for future use of the variable x.

Aliasing poses additional challenges:

Example 6.2.3.

1 var x = {value: "a.jpg", next: null};

2 var y = x;

3 x.next ={value: "b.jpg", next: null};

4 upload_list(y)

The variables x and y in this example are both objects with the data type μα.[value :

String,next : α]. Line 2 aliases the variables x and y resulting in the following mem-

ory layout:

a.jpg • b.jpg null
x
y



120 Chapter 6. The system AmorJiSe

Line 1 and 3 of this example populate the list through x, but line 4 accesses the

list via the alias y. The amortised type system has to make sure that the resource units

reserved by the amortised annotations are

1. stored in the data structure while writing to x,

2. accessible through y,

3. after the consumption not accessible through x anymore.

For this reason, the second annotation N, called the capacity, tracks the sum of resource

units associated with all aliases of the stored value. When writing to a value, enough

resource units need to be provided to satisfy all units associated with the aliases. For

example, the type for the field value of x in line 1 is value:(String,1/1). Accord-

ing to the annotation /1, each assignment to value, e.g. in line 1, requires 1 resource

unit. This accounts for the resource unit reserved with the element “a.jpg” according

to the annotation 1/. In the assignment in line 2 the associated resource unit is trans-

ferred to y, once again using the sharing relation, to make it available for the resource

consumption in line 4. This results in the following types:

x �→μα[value : (String,0/1),next : (α,0/0)]

y �→μα[value : (String,1/1),next : (α,0/0)]

The annotation 1/1 in the type for y ensure that the resource units can be used via

y but not through x with the annotation 0/1. However, assigning to x still requires 1

resource unit to be provided. Accordingly, line 3 consumes 1 resource unit to cover the

resource unit associated with the alias y. This results in the following memory layout

and associated resource units:

a.jpg • b.jpg null

x

y

0/1 0/1

1/11/1

These annotations allow y to be used as the parameter for upload_list in line 4. The

call consumes the reserved resource units associated with y and reduces the type to

y �→μα[value : (String,0/1),next : (α,0/0)]



6.2. Overview 121

The analysis has to ensure that for a set of aliases {x,y,...} with the annotations

(nx/Nx),(ny/Ny), ... each capacity is bigger than the sum of resource units stored with

all potential aliases: (
∑

i=x,y,...

ni

)
≤ Nx,

(
∑

i=x,y,...

ni

)
≤ Ny, ...

One extreme case of aliases are loops in a data structure. They present a difficult

problem for amortised systems. Take, for example, a recursive list represented as

above as μα.[value : (String,1/1),next : (α,0/0)]. The type of the field value

has 1 reserved resource unit associated with it, which means the total number of units

contained in the list is equal to its length. The expression list.next=list assigns

the head of the list as the successor of the head and creates a loop. If the loop contains

a positive number of reserved resource units, the loop now stores an infinite amount

of resources in total. The typing rules prohibit this case automatically by indirectly

requiring that the remaining amortised annotations nested within the potential loop are

all 0. This way, code producing a loop can be typed, but they cannot carry reserved

resource units in the recursive part of the type.

The example considered so far used objects equivalent to classes in other program-

ming languages with a static set of fields. JavaScript, however, can manipulate the

set of fields dynamically during runtime. Assignment to an unassigned field extends

an object to contain this new field. Together with aliasing, this poses an additional

challenge:

Example 6.2.4.

1 var x = {next:null};

2 var y = x;

3 y.value = "a.jpg";

4 x.next = {value:"b.jpg",next:null};

5 upload_list(y)

In comparison to Example 6.2.3, here the value field is added to the list object via

y. Since upload_list is called with the parameter y in line 5, y must by typed with

at least the annotation 1/1. This information is needed during the assignment to x in

line 4 to account for the reserved resource unit stored with the path y.next.value.

However, the simple type

t0 = μα.[next : (α,0/0)]
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does not capture any information about value and the type

t0 = μα.[value : (String,1/1),next : (α,0/0)]

wrongly claims that the field value is already assigned. Following the approach in

JST
0 [9], AmorJiSe marks existing fields in object types with the marker • as definite

and adds potential fields with the marker ◦. Definite (•) fields are guaranteed part of

the value and can therefore be written to and read. Potential (◦) fields, in contrast,

might be added to the object later. Consequently, they can be written, but not read.

Inserting these markers yields the type

t = μα.[value : ((String,1/1),◦),next : ((α,0/0),•)]

for x in line 1. It states that the value stored at x can be extended by a field value with

the annotation 1/1. Like the annotation in Example 6.2.3 this potential annotation 1/1

is split in line 2 to reflect that the potentially associated resource unit can only be used

via the alias y. This way, AmorJiSe manages controlled object extensions.

Finally, the evaluation relation has to be resource-aware to proof the bounds result-

ing from the amortised annotations. in AmorJiSe it looks as follows:

e,H,χ n−→
n′
→e′,H ′,χ′.

It describes that in the heap H and scope χ the expression e can be evaluated with n

provided resource units and after execution n′ resource units are still available.

In summary, AmorJiSe takes existing data types and inserts amortised annotations

into the following 4 different locations.

1. AmorJiSe extends each type with numeric annotations:

t+ := (t,n/N).

The first annotation n describes how many resource units are reserved with a

value typed with t+ and N describes how many units have to be reserved when

writing to a value typed as t+ to cover the resources reserved with aliases.

2. It annotates the evaluation relation with 2 numbers:

e,H,χ n−→
n′
→e′,H ′,χ′.

The first annotation n describes how many resource units the execution of the

expression e to e′ requires. The second annotation n′ asserts that n′ of those units

will be returned and can be reused after this execution. However, during the

evaluation of e, these returned units might have been used temporarily.
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3. It annotates the typing relation similar to the evaluation relation:

Γ,n 
 e : t|Γ′,n′.

This certifies that in the context Γ with n resource units the expression e evaluates

to a value of type t with the resulting context Γ′ and n′ units which can be reused

after the execution. Additional annotations are embedded into the types in the

contexts Γ and Γ′ as described above.

4. It annotates each function type:

O× t,n → t ′,n′.

The annotations assert that each call to the function requires n resource units and

n′ resource units become free after the function execution has finished. Addi-

tionally, the parameter types O, t and t ′ include annotations as described above.

AmorJiSe infers minimal values for all annotations contained in the types and the

typing judgement. To achieve this, it assumes that data types for the analysed code

are provided. Into those data types AmorJiSe inserts annotation variables to promote

them to amortised types and then infers a set of linear constraints of the form ∑
i=1..k

ni ≤
∑

i=1..k′
n′i over the annotation variables. The solution for this constraint system results in

a valid amortised typing and final resource bounds for the execution of the code can be

extracted from them.

6.3 The AmorJiSe system

The following section formally presents the type system AmorJiSe with all needed

notations and properties. The main result is the type soundness: the resource bounds

derived from the resulting types limit the resource usage of the formal evaluation of

the typed expression. An inference algorithm to automatically obtain the amortised

annotations for a given typing is also presented below.

6.3.1 Basic Definitions

Let there be a set Addresses of valid addresses ι, a set VarNames of valid variable

names var and a set FieldNames of valid names m for object fields. Furthermore, let

there be a set Types of all possible types which, in the following discussion, will be
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instantiated differently for the underlying type system and for AmorJiSe. To prevent

ambiguity, assume N= {0,1,2, ...}.

Definition 6.3.1. The set Values contains the following kinds of valid values:

Bool ={true,false}
Int ={−21023, ...,21023}∪{NaN}

Fun ={function f (var){e} | f ∈ VarNames,e is an expression}
Obj ={� m1 : v1, ...,mk : vk �| k ∈ N,m1..k ∈ FieldNames,v1..k ∈ Values}

Values =Bool∪ Int∪Addresses∪Fun

Definition 6.3.2. The object value o =� m1 : v1, ...,mk : vk �∈ Obj represents a map,

mapping each field name m ∈ FieldNames to a value v ∈ Values:

o(m) =

⎧⎨
⎩vi if m = mi

Udf otherwise

Definition 6.3.3.

1. A heap H is a map Addresses → Obj∪{Udf} mapping each heap address to

a value or the special value Udf which indicates that an address has not been

assigned yet.

2. A scope χ is a map VarNames → Values∪{Udf} mapping each variable name

to its current value.

3. A pair (χ,H) is called a runtime state

4. A context Γ is a map VarNames → Types∪{None} mapping each variable name

to its current type or None if its type is unknown.

Definition 6.3.4.
For a map M and a value v the standard operators are defined as follows:

1. M(m) returns the value mapped from m by M

2. M[m �→ v] defines a map M′ resembling M except for the the value M′(m):

M(m′)′ =

⎧⎨
⎩v if m′ = m

M(m′) otherwise

3. v[α/v′] replaces all unbound occurrences of α in v by v′.
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6.3.2 Data types

AmorJiSe builds upon existing data types for JavaScript. Candidates for the underlying

system have been discussed in the previous chapter. AmorJiSe assumes that the under-

lying system describes the data structures of the analysed expressions. In particular, for

an expression e consider all evaluations He′ ,χe′ ,e′ � H ′
e′ ,χ

′
e′ ,ve′ of subexpressions e′

which occur in the derivation of the evaluation H,χ,e � H ′,χ′,v. AmorJiSe assumes

the underlying system provides

• a type te′ for each such e′ (including e itself)

• contexts Γe′ ,Γ′
e′ providing types for the variables occurring in each runtime state

(χe′ ,He′) and (χ′
e′ ,H

′
e′)

such that Γe′ 
 e′ : te′ : Γ′
e′ .

Definition 6.3.5. Let there be a set ObjectTypes of object types O with the following

properties.

1. An object type O maps each m ∈ FieldNames to a pair (t, ft) of a type t and a

field state ft ∈ {◦,•}. An object type O mapping the field names m1, ...,mk (and

all other m to (Udf ,◦)) is in the following represented as

μα.[m1 : (t1,ψ1), ...,mk : (tk,ψk)]

with k ∈ N,m1..k ∈ FieldNames, t1..k ∈ Types∪{α}

2. For each object type O

(a) the operator Dom(O) returns all fields m mapped by O to a pair other than

(Udf ,◦)
(b) the read operator O(m) returns the pair (ti[α/O],ψi) with m = mi

The μα operator in front of the object type enables the specification of recursive

object types, which introduces infinite types into the data type system. Each field in

an object type O is marked via its field state ψ as either • or ◦. The field state has the

following intuition. A field which is marked as • has been assigned and can therefore

be read or written. If a field O(m) is marked as ◦, the object O does not contain the

field m but can be extended by this field in the future. Therefore, the field m can only

be written. If the underlying system does not include the markers ◦/•, this information
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can usually be inferred from the existing fields by marking all present fields in an object

type as • and all remaining accessed fields as ◦.

The object types of AmorJiSe do not use any δ field (see Section 5.2.1) in the

row types themselves, but the object field lookup O(m) could easily be extended to

internally map unknown fields to a δ-field.

Definition 6.3.6. Let there be a set FunctionTypes of function types G, represented as

O× tx → tret with

1. the object type O for the receiver this

2. the type tx for the parameter x

3. the type tret for the value returned by the function body

Definition 6.3.7. For the underlying type system, the set Types - in the following called

data types - is defined as follows

Types = {Int,Bool}∪ObjectTypes∪FunctionTypes

As primitive types, the rules presented here only consider Int and Bool, but adding

further terminal types does not pose an additional challenge.

The precision of the data types influences the results of AmorJiSe. Consider for

example heap space as a resource in the following example

1 o={value:42};

2 o.value=1;

Line 2 only overwrites the value field of the object o. Therefore, line 2 does not

allocate any heap space. Its actual resource consumption is 0. The object o prior to the

overwrite operation can be typed with either of the data types

t◦ = [value : (Int,◦)]
t• = [value : (Int,•)].

In any case the writing operation (line 2) makes the field value definite in the resulting

type for o:

t ′ = [value : (Int,•)]
. However, with the type t◦ no guarantee is given that the field is present in the object

o before line 2. Assigning to value might be an object extension which consumes an
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additional heap cell. Therefore, AmorJiSe has to assume a resource consumption of 1

unit, which is a correct but imprecise bound for the resource consumption. In contrast,

the type t• guarantees that the field value is already present in o and AmorJiSe can

infer that no additional resources are consumed. The more precise data type t• leads to

a more precise description of the resource consumption of this example.

6.3.3 JavaScript Syntax

Figure 6.1 shows the subset of JavaScript covered by AmorJiSe. It constitutes a core

language focused on the object behaviour of JavaScript which differentiates JavaScript

from other languages. For simplicity, this core language only contains integer and

Boolean constants, but additional primitive constants can be defined analogously. Con-

cerning functions, AmorJiSe only considers non-nested function statements. Function

expressions and nested function statements can be handled similarly. All functions

can be called as constructor, function or method as usual in JavaScript. As variables,

AmorJiSe only considers this and the parameter x. However, the type context and

scope defined later are powerful enough to also represent the JavaScript variable def-

inition using the varkeyword. As control structures, only the conditional expression

e1?et : e f is considered. The if-statement can be handled equivalently. Loops are

discussed as an extension later in Section 6.7 and 6.8.

6.3.4 Resource model

The resource model in AmorJiSe describes how the analysed resource is accessed.

The model consists of two parts, outlining the resource costs for API activated and

language activated resources (see Section 2.2) separately. The API activated resources

are modelled by defining the resource consumption of the APIs in the initial context.

They are specified using the standard function types, which will be presented in more

detail below. Using this part of the model, each resource model defined for PhoneWrap

can be directly translated into a AmorJiSe model. For example, the resource model

describing the message service given by

1 guard : ["smsplugin.send"]

can be described by setting

Γ0(smsplugin.send) = (((O× tx,1 → tret,0),0/0),•)
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Figure 6.1 Syntax

P ::=F∗;e (Program)

F ::=functionf(x){e} (FuncDecl)

e ::= (Expression)

var (variables)

f (function identifier)

new f(e) (constructor call)

e;e (sequence)

e.m(e) (member call)

e.m (member read)

f(e) (function call)

lhs = e (assignment)

e?e : e (conditional)

null (null)

n,true,false (value literal)

var ::=this,x (variables)

lhs ::=x|e.m (LeftHandSide)

in the initial context Γ0 with the appropriate types O, tx, tret for the parameters and

return value. It describes the resource consumption behaviour with the annotations 1

and 0 as well as the fact that it is available to be called (•) and does not carry any

resources (0/0).

Language activated resources in the model are specified via the consumption con-

stants:

Definition 6.3.8. • For each language construct r let there be a consumption con-

stants cr describing the resource consumption of one execution of r. For exam-

ple, the constant c(VARW) describes the resource usage of a write operation to a

variable.

• For the field write operation let there be two consumption resources c(MEMW)(true)

and c(MEMW)( f alse) describing the resource consumption of a write operation to

a pre-existing field (true) or of a write operation to a new field ( f alse) of an

object. Assume c(MEMW)( f alse)≥ c(MEMW)(true) for these constants.

Every syntax construct in the language has been given a separate consumption con-

stant. This is the most precise resource model one can achieve on the syntactic level.
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Constants for constructs which are not important for a particular resource model can

be set to 0.

The constant c(MEMW) describing the resource consumption of a field write to an

object has a special role: in JavaScript a write operation to an object field could either

be an overwrite operation or an object extension. These two operations cannot be dis-

tinguished syntactically, but might consume different resources, e.g., heap space. For

this reason, there exists one constant c(MEMW)(true) which is used when the assigned

field was available before the assignment and a second constant c(MEMW)( f alse) which

is used otherwise. For the soundness proof later, the assumption c(MEMW)( f alse) ≥
c(MEMW)(true) is required. The assumption is reasonable, since over-writing an ex-

isting field usually is at most as expensive as creating a new field by writing to a

non-existing field.

These constants are used in the typing rules for AmorJiSe as well as in the anno-

tated operational semantics.

Example 6.3.9. For the usual resource models most of the constants cr are set to 0.

For example, to define a resource model where each newly created field of an object

consumes one resource unit, the constants are set as cmemW ( f alse) = 1 and cr = 0 for

all other constants r.

6.3.5 Operational semantics

An expression e, composed from the provided syntax, can be evaluated as stated by the

evaluation relation

e,H,χ n−→
n′
→v,H ′,χ′

which reduces e to a value v from the set Values∪{Udf}. The evaluation relation states

that in the heap H and scope χ the expression e is evaluated to the value v resulting

in the new heap H ′ and the new scope χ′. Furthermore, it specifies that the evaluation

can be performed with n available resource units, of which n′ are returned after the

execution to be reused. The annotation n′ can be used to specify the behaviour of

reusable resource kinds like open file handles or memory space.

6.3.5.1 Evaluation rules

The semantics of the core language is defined via the big step evaluation rules in Figure

6.2. In addition, the resource model assumes the evaluation relation f ,H,χ n−→
n′
→v,H ′,χ′
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provides appropriate function values v for all function names f defined in the resource

model as Γ( f ) = (((O× tx,n → tret,n′),n f /Nf ),•).
Note that in these rules the consumption constant is always added to the resource

requirements of the rule. Therefore the resource units are always required before the

whole expression is evaluated. In some cases, tighter bounds could be computed

by allowing the resource units required to be generated by the evaluation of a sub-

expression. For example, in the rule (S-VARW) the assignment is executed after the

right-hand-side expression e is evaluated. Therefore, the evaluation of e could gener-

ate the resource requirements by its annotation n′e. An alternative version of this rule,

respecting this, is:

e,H,χ ne−−−−−−→
n′e+c(VARW)

→v,H ′,χ1

χ′ = χ1[var �→ v]

var = e,H,χ ne−−→
n′e
→v,H ′,χ′

(S-VARW-ALT)

All evaluations computed with the original rule S-val are also valid computations

with this alternative rule. However, the alternative rule could in some cases evaluate

an expression var = e with less required resource units, if n′e ≥ ne. The consistent

placement of the constants in the requirement of the full expression, as chosen in the

rules in Figure 6.2, simplifies the soundness proof while generating correct bounds for

real world JavaScript behaviour.

The rules use the resource addition operator (n,n′) = (n1,n′1) � (n2,n′2) to compute

the resource behaviour of the sequential execution of two expressions e1;e2. It is de-

fined in the following way:

Definition 6.3.10. Given annotation pairs (n1,n′1) and (n2,n′2) define the resource ad-

dition operators (n,n′) = (n1,n′1) � (n2,n′2) as follows:

n =

⎧⎨
⎩n1 if n′1 ≥ n2

n1 −n′1 +n2 if n′1 < n2

n′ = n− (n1 −n′1 +n2 −n′2)

Figure 6.3 illustrates examples for the two cases of this definition. In the first case

e1 returns more resource units n′1 then e2 requires n2. Therefore, e2 is executed with the

resources returned by e1 and the concatenation e1;e2 can be executed with n1 provided

resource units. In the second case (n′1 < n2) the expression e2 requires more resource



6.3. The AmorJiSe system 131

Figure 6.2 Big-step operational semantics

c ∈ Int∪Bool

c,H,χ
c(VAL)−−−−→

0
→c,H,χ

(S-VAL)

var,H,χ
c(VARR)−−−−→

0
→χ(var),H,χ

(S-VARR)

e,H,χ ne−−→
n′e
→v,H ′,χ1

χ′ = χ1[var �→ v]

var = e,H,χ
ne+c(VARW)−−−−−−−→

n′e
→v,H ′,χ′

(S-VARW)

e,H,χ ne−−→
n′e
→ι,H ′,χ′

e.m,H,χ
ne+c(MEMR)−−−−−−−→

n′e
→H ′(ι)(m),H ′,χ′

(S-MEMR)

e1,H,χ n1−−→
n′1
→ι,H1,χ1

e2,H1,χ1
n2−−→
n′2
→v,H2,χ′

H ′ = H2[ι �→ H2(ι)[m �→ v]]

(n�,n′�) = (n1,n′1) � (n2,n′2)

e1.m = e2,H,χ
n�+c(MEMW)(m∈Dom(H2(ι)))−−−−−−−−−−−−−−−−→

n′�
→v,H ′,χ′

(S-MEMW)

eb,H,χ n1−−→
n′1
→true,H1,χ1

et ,H1,χ1
n2−−→
n′2
→v,H ′,χ′

(n�,n′�) = (n1,n′1) � (n2,n′2)

eb?et : e f ,H,χ
n�+c(COND)−−−−−−−→

n′�
→v,H ′,χ′

(S-CONDTRUE)

e1,H,χ n1−−→
n′1
→ f alse,H1,χ1

e3,H1,χ1
n2−−→
n′2
→v,H ′,χ′

(n�,n′�) = (n1,n′1) � (n2,n′2)

e1?e2 : e3,H,χ
n�+c(COND)−−−−−−−→

n′�
→v,H ′,χ′

(S-CONDFALSE)

e1,H,χ n1−−→
n′1
→v1,H1,χ1

e2,H1,χ1
n2−−→
n′2
→v2,H ′,χ′

(n�,n′�) = (n1,n′1) � (n2,n′2)

e1;e2,H,χ
n�+c(SEQ)−−−−−−→

n′�
→v2,H ′,χ′

(S-SEQ)
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Figure 6.3 (n,n′) = (n1,n′1) � (n2,n′2)

n1 n′1

n2

n′2 n n′

(a) n′1 > n2

n1

n′1

n2

n′2 n

n′

(b) n′1 < n2

units than e1 returns. Therefore n2 −n′1 resource units are required in addition to the

n1 units required by the first expression.

All annotations n,n′ in the evaluation rules are implicitly assumed to be non-

negative. The addition operator n,n′ = (n1,n′1) � (n2,n′2) respects this invariant:

Lemma 6.3.11. Assume n1,n′1,n2,n′2 ≥ 0 and (n,n′) = (n1,n′1) � (n2,n′2). Then it holds

n,n′ ≥ 0

Proof. According to the definition of the resource addition there are two different

cases:

Case n′1 ≥ n2: In this case it holds n = n1 ≥ 0 directly. For n′ consider:

n′ = n−n1 +n′1 −n2 +n′2
= n1 −n1 +n′1 −n2 +n′2
= n′1 −n2 +n′2
≥ n2 −n2 +n′2
= n′2 ≥ 0

Case n′1 ≤ n2: In this case n and n′ can be computed as

n = n1 −n′1 +n2

≥ n1 −n2 +n2

= n1 ≥ 0

n′ = (n1 −n′1 +n2)−n1 +n′1 −n2 +n′2
= n′2 ≥ 0
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Figure 6.4 Types syntax

t ::= O | G | Int | Bool | α | None (pre-type)

t+ ::= (t,n/N) (full type)

O ::= μα.M | M (object)

M ::= [(m : tm)∗] (memberlist)

tm ::= (t+,ψ) (membertype)

ψ ::= • | ◦ (Field state)

G ::= O+× t+,n → t+,n (functions)

where n,N ∈ N≥0 and m ranges over strings

Lemma 6.3.12. Given an evaluation e,H,χ n−→
n′
→v,H ′,χ′ the annotations n,n′ are unique.

Proof. The proof is an induction on the length of the derivation of e,H,χ n−→
n′
→v,H ′,χ′.

The derivation is of length 1 if e is constant (S-VAL) or a variable (S-VARR). In both

cases, the annotations are uniquely determined as (c(VAL),0) or (c(VARR),0). In all

other cases, the induction hypothesis applies to all subexpressions. Either the final

annotation for e is directly determined by the annotation of one of its subexpressions

or is calculated from multiple subexpression annotations via the � operator which is

deterministic. This proves the claim.

6.3.6 Types

6.3.6.1 Definition

Figure 6.4 defines the syntax of AmorJiSe’s types and, therefore, the set Types for

AmorJiSe. A full type t+ consists of a pre-type t and an amortised annotation n/N. A

pre-type t is either a basic type (here only Int or Bool, but extendable, for example, to

String), an annotated object O or an annotated function G. Furthermore, AmorJiSe

considers the types None to indicate a type which should not be accessed and α to

represent recursion in object types.

Object types O = μα.M consist of a recursive binder μα and a row type M. Each

free occurrence of α within the row type M is a placeholder for the whole type O. The
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row type M is represented as a list of fields with their full types and markers ◦/•. Field

lookup always unfolds a recursive object type before returning the field-type:

Definition 6.3.13. Given an object type O and a field m define the lookup operator

O(m) as

O(m) =

⎧⎨
⎩(t+[α/O], ft) if O = μα.[...,m : (t+, ft), ...]

((None,0/0),◦) otherwise

Function types G consist of a full object type O+ = (O,n/N) describing the type of

the expected receiver value this, and full types t+ for the parameter x and the return

value. Furthermore, the function type describes the resource requirement n for the

function and the resource units returned by the function n′.
Intuitively, the only difference between the amortised types of AmorJiSe and the

data types of the underlying system are the amortised annotations n/N. They consist of

two parts with the following intuitive meaning: Reading from a value with annotation

n/N can retrieve up to n reserved resource units and writing to it consumes N units

to account for the units which can be read from this value later through all available

aliases.

To speak about the different parts of a type (t,n/N) the projections extract the

pre-type t, the units n and the capacity N.

Definition 6.3.14.

�(t,nt/Nt)�
t =t

�(t,nt/Nt)�
n =nt

�(t,nt/Nt)�
N =Nt

In general, to avoid notational clutter, identify marked types (t,ψ) with the con-

tained full type t within all the defined relations and notations. In particular, for the

projection identify

�(t+,ψ)�t =�t+�t

�(t+,ψ)�n =�t+�n

�(t+,ψ)�N =�t+�N

and for typed values identify

v : (t+,ψ) = v : t+
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During type inference, AmorJiSe converts the data types into amortised types by

inserting annotation variables into all necessary places. The following notations use

the operator T (e) to obtain the data type of the expression e with injected annotation

variables.

Definition 6.3.15. Given an expression e and its data type t let T (e) be defined as

T (e) = �t�+ with

�Int�+ = (Int,n1/n2)

�Bool�+ = (Bool,n1/n2)

�α�+ = (α,n1/n2)

�μα.[m1 : (t1,ψ1), ...,mk : (tk,ψk)]�
+ = μα.[m1 : (�t1�+,ψ1), ...,mk : (�tk�+,ψk)]

�O× tx → t ′�+ = �O�+× �tx�+,n1 → �t ′�+,n2

In each case the inserted annotation variables ni are assumed to be fresh variables.

In some rules a type-lookup via T (·) has to be specified by more than the expres-

sion e. For example, while reading the type for a variable x from the context Γ, three

different types are available for the variable x: the type of x in the context before the

variable is read, the type of x in Γ after the variable is read and the type of the resulting

value Γ(x) used for the subsequent computation. To differentiate between those three

types, the typing rules use the notation T (e,1),T (e,2),T (e,3), which each produce

an annotated type �t�+ for a valid type t for the expression e with distinct annotation

variables. The specific semantics of each annotated type will be clear from the typ-

ing rule. As in the example, the three types T (e,1),T (e,2),T (e,3) might be based

on the same data type in the underlying system. Reading x might result in the types

T (x,1) = (Int,n1/N1), T (x,2) = (Int,n2/N2) and T (x,3) = (Int,n3/N3) all based

on the underlying type tx = Int. However, the annotations are different. In this case,

the data type T (e), here Int, is copied three times and different annotations inserted

into each copy.

6.3.6.2 Typing context

Definition 6.3.16. Extending Definition 6.3.3 a type context Γ in AmorJiSe is a map

VarNames → (Types∪{None})×{◦,•}, which maps variable names var to a full type

t+ and a marker ψ.
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Variables in JavaScript can be declared with the var statement. JavaScript parses

each scope block of the code in two passes. The first pass executes only var statements

and injects the declared variables into a fresh scope frame. The second pass executes

the whole block in this initialised scope frame, which means all declared variables can

be assigned. If a declared variable is read before a value is assigned, JavaScript returns

the value undefined which might potentially lead to unexpected behaviour.

The AmorJiSe context Γ mimics this behaviour and allows to store uninitialised

variables marked as potential with ◦. Once a variable marked with ◦ has been assigned,

AmorJiSe changes the mark to • and records that this variable can be read. This has

the additional advantage that contexts can be treated equivalent to object types just as

JavaScript scope frames are treated as an ordinary object by the ECMA standard [61,

Section 9.2]. This way, it is very easy to extend AmorJiSe with JavaScript’s var key-

word and the with statement, which inserts an arbitrary object into the scope chain.

6.3.6.3 Type judgement

The main judgement of AmorJiSe is

Γ,n 
 e : T (e)|Γ′,n′

with n,n′ ∈ N≥0. It expresses that in the typing context Γ given n resource units the

expression e is given the full type T (e), the context after the evaluation of e is Γ′ and

n′ resource units are available after the evaluation.

Intuitively, the validity of Γ,n 
 e : T (e)|Γ′,n′ directly implies all judgements of

the form Γ,n+ k 
 e : T (e)|Γ′,n′+ k for k ∈N. If an expression can be evaluated with

n resource units, additional resource units k are simply ignored by the expression. This

claim can be formally proven via induction on the typing rules provided in Figure 6.5.

This proof is omitted here since it does not add to the desired properties of the system.

Note that the opposite with k ∈ −N might not be true, even if n,n′ > 0, as the

expression might need some resource units temporarily and free them afterwards.

Consider, for example, the resource of open file handles. An expression could open

one file, write data into it and then close the file properly. This expression would

need one resource unit to be executed and would return this resource unit after the

execution. Therefore, Γ,1 
 e : T (e)|Γ′,1 holds true for this expression e, but not

Γ,0 
 e : T (e)|Γ′,0.
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6.3.6.4 Full types versus pre-types

The type T (e) in the judgement above is a full type of the form (t,ne/Ne) instead of the

simple pre-type t. In the typing judgement with this full type Γ,n 
 e : (t,ne/Ne))|Γ′,n′

the annotation ne is redundant since Γ,n 
 e : (t,0/N))|Γ′,n′+ne expresses the same

number of available resource units. However, the annotation Ne is necessary: if e

evaluates to a reference into the heap, every following assignment to this reference

needs to provide enough resource units to satisfy the resource units retrievable through

the aliases of this heap location.

For example, in the expression e :y.value=”a.jpg” (see Example 6.2.4) the subex-

pression e′ :y.value evaluates to a reference into the heap. The type for e′ is returned

by the type judgement as (Int,0/1) which determines that the assignment consumes

one resource to cover the resource units stored in the type of the variable y. For this

reason, the return type in the typing judgement is a full type rather than a pre-type.

For consistency and conciseness of the presentation of the typing rules, AmorJiSe

also represents the function types O+× t+,n → t+n′ with full types O+, t+.

6.3.6.5 Paths

Typed object values represent infinite trees which can be traversed along paths con-

taining field names:

Definition 6.3.17.

1. For a full type t0 let a type path be a finite sequence m1,m2, ...,mk such that

mi ∈ Dom(�ti−1�
t) and �ti−1�

t(mi) = (ti,ψi) for all i = 1,2, ...,k. Furthermore,

extend the type lookup to t(p) = (tk,ψk) and define P (t) as the set of all valid

paths for the type t.

2. For a typed value v0 : t0 a heap path is a finite sequence of field names m1,m2, ...,mk

such that

mi ∈ Dom(H(vi−1))∩Dom(�ti−1�
t)

�ti−1�
t(mi) = (ti,ψi) for i = 1,2, ...,k

vi = H(vi−1)(mi) for i = 1,2, ...,k.

Let the notation v(p) = vk be the extension of the object value lookup operator

and PH(v : t) the set of all heap paths for the typed value v : t in the heap H.
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3. Let the notations x.m1. · · · .mk or this.m1. · · · .mk describe the paths m1, ...,mk

starting at the values χ(x) or χ(this) and v.m1.m2. · · · .mk describe a path start-

ing at the result v of the last computation.

4. Given a Heap H, and the typed value v : t resulting from the last computation,

the lookup for paths extends the existing maps Γ,χ in the intuitive way:

Γt(”v”) = (t,•)
Γt(p.m) = �tp�

t(m) where Γt(p) = (tp,ψp)

χH,v(”v”) = v

χH,v(p.m) = H(χH,v(p))(m)

If the values for H and v : t are unambiguous, the map Γt is abbreviated as Γ and

χH,v is abbreviated as χ.

Definition 6.3.18. Given a path p, an heap H and a typed value v : t;

1. The set of continuing paths is defined as

Reach(p) = {p′|p is a prefix of p′ and χH,v(p) �= Udf}

2. The set of aliasing paths is defined as

Alias(p) = {p′|χH,v(p) = ι = χH,v(p′)}

Lemma 6.3.19. For two path p′ ∈ Alias(p) it holds Reach(p) = Reach(p′).

Proof. The fact p′ ∈ Alias(p) implies χ(p′) = ι = χ(p). The definition of χH,v implies

that χ(p′,m1, ...,mk) = χ(p,m1, ...,mk) and, in particular, χ(p′,m1, ...,mk) �= Udf iff

χ(p,m1, ...,mk) �= Udf .

6.3.6.6 Annotation constraints

The typing rules derive a set of constraints on the annotations n and N. The basic

constraints are linear constraints of the form

n1 + ...+nk ≤ n′1 + ...+n′k′ + c.
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Additionally, AmorJiSe uses higher level constraints as presented in the following sec-

tions. They are used as a concise way to compare the nested annotations inside the

compared types with each other. Each of these higher level constraints can be trans-

lated into a set of linear constraints containing one annotation from each compared

type.

In general these types (e.g. in the case of recursive object types or functions) are

infinite trees, where each node includes an annotation. The trees are, however, finitely

represented using the recursion operator μ and, therefore, only include finitely many

different annotations. Thus, the size of the resulting set of linear constraints resulting

from a higher level constraint is bounded by the number of possible combinations of

these annotations. Each of these sets is, therefore, finite.

Algorithmically a higher level constraint is translated by traversing the infinite trees

while adding the correct linear constraint for each visited note in the tree. If the same

set of notes is compared a second time the traversal of this branch of the tree is termi-

nated, since all following notes have already been compared as well.

Sharing
If an operation creates a new alias for a value, AmorJiSe needs to make sure the

reserved resource units are shared between the new aliases. The sharing relation

t1 ↪→ t2 ⊕ t3. This relation is of particular need when reading variable types from the

context. After the read, the variable is still available in the context, but the value re-

turned by the expression also accesses the same data structure. Therefore, the sum of

all resource units stored in the context before the read has to be split into the context

type after the read plus the type of the return value.

The sharing relation has the form t1 ↪→ t2 ⊕ t3 and requires that the tree types t1, t2
and t3 have the same set P of type paths. A given sharing relation is translated into the

set of constraints:

C (t1 ↪→ t2 ⊕ t3) =
⋃

p∈P
{�t1(p)�n = �t2(p)�n + �t3(p)�n,�t1(p)�N = �t2(p)�N = �t3(p)�N}

Structured annotation constraints
AmorJiSe introduces the four structured constraints

t n≤n t ′, t n≤N t ′, t N≤n t ′ and t N≤N t ′.
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For given η,η′ ∈ {n,N} the constraint t η≤η′ t ′ asserts that the annotation �t�η and all

nested η annotations in t are less than the corresponding η′ annotations in t ′. For exam-

ple, while writing to the memory, AmorJiSe must ensure that all nested n annotations

in the type t ′ for the new value suffice for the capacity N in the type t of the overwritten

memory location. This is expressed as t N≤n t ′. A given constrain t η≤η′ t ′ translates

into the following linear constraints:

C (t η≤η′ t ′) =
⋃

p∈P (t ′)
{�t(p)�η ≤ �t ′(p)�η′}

The following constraints are defined analogously:

• t η≥η′ t ′ generates the same constraints as t ′ η′≤η t.

• t η=η′ t ′ generates the same constraints as t η≤η′ t ′ and t η≥η′ t ′.

• The relation t ≤ t ′ generates the constraints as t n≥n t ′ and t N=N t ′. This ensures

that at least as many resources can be read from the subtype as from the super-

type and the resources written to the supertype suffice to satisfy the subtypes

requirements.

• Equally, t = t ′ produces all constraints which are produced by t ≤ t ′ and t ′ ≤ t.

• Contexts are equivalent to object types and therefore the same constraints can

be defined. Specifically, for contexts Γ,Γ1,Γ2 the constraint Γ η=η ↓ (Γ1,Γ2)

generates the constraints Γ η≤η Γ1 and Γ η≤η Γ2. The constraint Γ η=η ↑ (Γ1,Γ2)

is defined equivalently with ≥.

Empty types
In the rules for writing to objects the constraint t0 is required, which sets all the n

annotations in the type t to 0. This means this type does not contain any reserved

resource units. It can be translated into the following set of linear constraints:

C (t0) =
⋃

p∈P (t)

{�t(p)�n = 0}
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6.3.6.7 Typing rules

The typing rules are presented in Figure 6.5. Given a candidate for a full typing, these

rules can be used to verify the constraints for the given annotations. For type inference

purposes, they can generate linear constraints on the annotations from known data

types. A solution for these constraints then constructs a valid full typing.

The constraints in the rules (T-MEMW•) deserve a little extra thought. The rule

deals with the assignment to object fields e1.m = e2 and has to handle a complex set of

aliases, as shown in the following heap illustration:
.
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e1.m = e2

Before the assignment, e1 and e2 each have a set of aliases. After the assignment,

e1.m is also an alias of e2. This imposes the following constraints on the amortised

annotations after the assignment:

• The succeeding code might read the value of e2 through the field m of any alias

of e1. Therefore, the type T (e2) for the expression e2 must provide enough

reserved resource units to cover the resource units reserved for all those aliases.

This yields the constraint T (e2) n≥N tm.

• The code might modify the value of e2 through any alias of e2. Therefore, the

capacity N of all aliases of e2 has to include the reserved resource units of the

aliases of e1. This is expressed as T (e2) N≥N tm.

• Writing to the aliases of e1 needs to provide enough resource units to cover the

reserved units in all aliases of e2. This is expressed by tm N≥N T (e2).
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Figure 6.5 Typing rules

T (c) = (tc,0/0)

Γ,n+N + c(VAL) 
 c : (T (c),N/N)|Γ,n
(T-VAL) c ∈ Z∪{true,false}

Γ(var) = (T (var,1),•)
Γ′ = Γ[var �→ (T (var,2),•)]

T (var,1) ↪→ T (var,2)⊕T (var,3)

Γ,n+ c(VARR) 
 var : T (var,3)|Γ′,n
(T-VARR)

Γ,n 
 e : T (e,1)|Γ1,n′

Γ1(x) = (T (var),ψvar)

Γ′ = Γ1[var �→ (T (var),•)]
T (e,1) ↪→ T (e,2)⊕T (var = e)

T (e,2)≤ T (var)

Γ,n+ c(VARW) 
 var = e : T (var = e)|Γ′,n′
(T-VARW)

Γ,n 
 e : T (e)|Γ′,n′

T (e)(m) = (T (e.m),•)
Γ,n+ c(MEMR) 
 e.m : T (e.m)|Γ′,n′

(T-MEMR)

Γ,n 
 e : T (e)|Γ2,n′

Γ2(var) = (T (var,1),•)
(var = e′) is not a subexpr. of e

T (var,1)(m) = (tm,ψm)

Γ′ = Γ2[var �→ (T (var,2),•)]
T (var,2)(m) = (t ′m,•)

t ′m = tm
T (var,2) = T (var,1)

T (var.m = e)0 T (var.m = e) N=N T (e)

T (e) N=N tm, tm N=N t ′m
T (e) n=N T (e)

Γ,n+ c(MEMW)(ψm = •)+ c(VARR) 
 var.m = e : T (var.m = e)|Γ′,n′

(T-MEMW◦)

Γ,n 
 e1 : T (e1)|Γ1,n′

Γ1,n′ 
 e2 : T (e2)|Γ′,n′′

−
T (e1)(m) = (tm,•)

−
−
−
−

T (e1.m = e2)
0

T (e2) N=N tm
T (e2) n=N T (e2)

Γ,n+ c(VARW)(true) 
 e1.m = e2 : T (e1.m = e2)|Γ′,n′′

(T-MEMW•)

Γ,n 
 eb : T (eb)|Γ1,n′

Γ1,n′ 
 et : T (et)|Γt ,nt

Γ1,n′ 
 e f : T (e f )|Γ f ,n f

T (et)≤ T (eb?et : e f ) T (e f )≤ T (eb?et : e f )

Γ′
N=N ↑ (Γ f ,Γt) Γ′

n=n ↓ (Γt ,Γ f )

n′′ = min(nt ,n f )

Γ,n+ c(COND) 
 eb?et : e f : T (eb?et : e f )|Γ′,n′′
(T-COND)

Γ,n 
 e1 : T (e1)|Γ1,n′

Γ1,n′ 
 e2 : T (e2)|Γ′,n′′

T (e1;e2) = T (e2)

Γ,n+ c(SEQ) 
 e1;e2 : T (e1;e2)|Γ′,n′′
(T-SEQ)
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The rule (T-MEMW◦) combines the last two constraints to T (e2) N=N tm. Further-

more, these constraints result in the following chain:

T (e2) n≤N T (e2) N=N tm N≤n T (e2)

which can only be true if T (e2) n=N T (e2) N=N tm. In turn, this means all reserved

resource units in the type T (e2) are now only available through the aliases of e1. There-

fore, the value returned by the expression e1.m = e2 cannot contain any reserved re-

source units anymore, which is expressed by T (e1.m = e2)
0.

The equivalent consideration leads to the constraints in (T-MEMW◦) in addition to

the constraints for the update of the type for the field m.

6.4 Properties

The following section discusses the formal properties of AmorJiSe with the goal of

proving the soundness theorem. Objects are of the greatest interest, as they represent

the recursive data structures and are unique to JavaScript. Without loss of generality,

the following definitions assume that for a typed object {m1 : v1, ...,mk : vk,mk+1 :

vk+1, ...} : μα.[m1 : (t1,ψ1), ...,mk : (tk,ψk),m′
1 : (t ′1,◦), ...] the shared fields m1, ...,mk

are mentioned in the same order in the value and the type. With the additional disjunct

fields {mi+1, ...}∩ {m′
1, ...} = {}, the value contains fields mk+1, ... not described by

the type and the type mentions fields m′
1, ... marked as ◦, which are not contained in

the value.

6.4.1 Definitions

The upcoming soundness statement for AmorJiSe (Theorem 6.4.10) intuitively states

that, for every expression e, the resources reserved for the expression via the inferred

types are enough to execute e. Formally this number of available resource units is

defined as potential. It depends on the annotations inside the types and the structure of

the typed value.

Definition 6.4.1. 1. Given a typed value v : t in the heap H, the total resource po-

tential ΣHv : t is defined as:

ΣHv : t = ∑
p∈PH(v:t)

�t(p)�n
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2. In extension, the potential of a whole environment (Γ,H,χ) is defined as:

ΣHχ : Γ = ∑
x∈Dom(Γ)∩Dom(χ)

ΣHχ(x) : Γ(x)

The analysis discusses two different kinds of states: pre-states (H,χ,Γ,n) are the

inputs for the typing/evaluation relation and post-states (H,χ,Γ,n,v : t) are the output

of the relations. The potential of either of those is defined as the sum of the potential

of its parts:

N (H,χ,Γ,n) = ΣHχ : Γ+n

N (H,χ,Γ,n,v : t) = ΣHχ : Γ+n+ΣHv : t

Lemma 6.4.2. Due to the definition and the domain N for the annotations n, the po-

tential ΣHv : t is always non-negative. This property extends to ΣHχ : Γ, N (H,χ,Γ,n)
and N (H,χ,Γ,n,v : t).

Definition 6.4.3. 1. A type t is called sufficient for the set of types {t1, ..., tk}, if for

all type paths p ∈ P (t) it holds: �t(p)�N ≥ ∑
i=1...k

�ti(p)�n.

2. Given a state H,χ,Γ, potentially a typed value v : t and a heap path p call the

type Γ(p) sufficient, if Γ(p) is sufficient for the set of all alias types {Γ(p′)|p′ ∈
Alias(p)}. This is written as Γ,H,χ 
 Γ(p)�.

3. Furthermore, the context Γ is called sufficient for H,χ and potentially v : t, if for

all heap paths p the type Γ(p) is sufficient. This is denoted as Γ,H,χ 
 Γ�

Intuitively, the capacity of a sufficient type is at least as big as the sum of all re-

served units in the alias types. Therefore, it fulfils the desired property of the capacity

N.

Lemma 6.4.4. If Γ(p) is sufficient, then for every p′ ∈ Reach(p) the type Γ(p′) is also

sufficient.

Proof. This follows from Definition 6.4.3, since the set P (Γ(p′)) is only a sub-set of

P (Γ(p)).

Remark 6.4.5. There are two things to notice about this notation:

1. If two paths p and p′ are aliased, the fact that Γ is sufficient requires both paths

p and p′ to be sufficient.
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2. The notion of sufficient does not depend on the field state of the fields in the

object types. As shown in example 6.2.4 (page 121), if an object is extended

via one alias all other aliases need be be up-to-date with the capacity of this

new field. Since AmorJiSe does not track all possible aliases of all values, the

information about the capacity needs to be synchronised between the aliases

during alias creation. This is achieved via the capacity of potential (◦) fields

which in turn is taken into consideration for the definition of sufficient.

To remain sufficient while creating new aliases it is important that the splitting

relation does indeed split the potential between the two output types:

Lemma 6.4.6. For full types t, t1, t2 and a value v in a given heap H, if t ↪→ t1⊕ t2 then

ΣHv : t = ΣHv : t1 +ΣHv : t2.

Proof. Remember that the sharing relation requires P (t) = P (t1) = P (t2). The same

relation between the heap paths PH(v : t) = PH(v : t1) = PH(v : t2) follows from the

definition of heap paths (Definition 6.3.17).

ΣHv : t = ∑
p∈PH(v:t)

�t(p)�n

sharing
= ∑

p∈PH(v:t)
(�t1(p)�n + �t2(p)�n)

= ∑
p∈PH(v:t)

�t1(p)�n + ∑
p∈PH(v:t)

�t2(p)�n

= ∑
p∈PH(v:t1)

�t1(p)�n + ∑
p∈PH(v:t2)

�t2(p)�n

= ΣHv : t1 +ΣHv : t2

6.4.2 Heap loops

One interesting case is the potential of loops in data-structures in the heap. If an object

value o stored at a heap address ι has a reference to ι directly as the value of one of

its members or indirectly through multiple members, this heap contains a loop. If such

a loop is typed with an annotated recursive object type O, there exists infinite many

heap paths for the object o. The potential of this value sums up over all those paths and

sums up the annotations contained in O infinitely often. If one of these annotations is

positive, the potential becomes infinite itself.
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If the heap loop is provided as the input heap configuration, the analysis correctly

infers values for all annotations in O and the following soundness result states that

the resource requirement is the potential of the input values. If one of the annotations

contained in the type of the loop is positive this potential is infinite. The result is

therefore trivial: “The expression executes with at most infinite resource units”. In the

other case, all annotations inside the type of the loop are 0, the potential of the loop is

0 itself and irrelevant for the resource consumption.

The situation is more complicated if a heap loop gets created during runtime. For

example, if an object is assigned its own heap address as one of the fields. The follow-

ing lemma guarantees that such loops typed with a sufficient type have a potential of 0

under certain conditions, which will be fulfilled in the proof later.

Lemma 6.4.7. Assume a state H,χ,Γ and an address ι with H(ι) �= Udf . Let the

address v = ι as value be typed with the sufficient type t with t N=n t and let there be

a non trivial path pι ∈ PH(v) with χH(pι) = ι. Then, for any path p ∈ Reach(ι) and

any p′ ∈ Alias(p) it holds �Γ(p′)�n = 0. This implies ∑
p′∈Alias(ι)

�Γ(p′, p′′)�n = 0 and

ΣHv : t = 0.

ΣHv : t = 0 and ∑
p′∈Alias(ι)

�Γ(p′, p′′)�n = 0 for any concatenated path p′, p′′.

Proof. Choose a path p ∈ Reach(ι). By the assumptions, the concatenated path p1 =

pι, p is an alias to p itself p ∈ Alias(p1).

The definition of “t is sufficient” (Definition 6.4.3) requires

�t(p1)�
N ≥ ∑

p′∈Alias(p1)

�t(p′)�n.

Due to t n=N t it holds �t(p1)�
N = �t(p1)�

n and due to p1 ∈ Alias(p1), �t(p1)�
n can be

subtracted from both sides of this relation, resulting in

0 ≥ ∑
p′∈Alias(p1)−p1

�t(p′)�n.

Since all �t(p′)�n ≥ 0 this is equivalent with �t(p′)�n = 0 for all p′ ∈ Alias(p1)− p1.

The same construction can be repeated for p2 = pι · p1, proving �t(p1)�
n = 0.

The other two claims follow, since the claimed terms are composed of summands

of the form �t(p′)�n = 0.
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6.4.3 Soundness

The soundness of AmorJiSe relates the evaluation and the typing relation. To prove

soundness, AmorJiSe assumes the soundness of the underlying system, which ex-

presses that the type of a typed object v : O describe the object value v correctly. This

is expressed by the agreement relation:

Definition 6.4.8. Given a state H,χ,Γ, a value v agrees with its type t, written as

H,χ,Γ 
 v : t, if for all paths p from v:

• t(p) = Int ⇒ χH(v) ∈ Int

• t(p) = Bool ⇒ v(p) ∈ Bool

• t(p) = μα.[m1 : (t1,ψ1), ...,mk : (tk,ψk)]⇒∀i = 1...k

ψi = •⇒ mi ∈ Dom(H(v(p)))

Furthermore, in a given heap H a stack χ agrees with the context Γ, written as H,χ,Γ
,

if for all variables var ∈ Dom(Γ)

Γ(var) = (t,•)⇒ var ∈ Dom(χ)∧H,χ,Γ 
 χ(var) : Γ(var)

Γ(var) = (t,◦)∧ var ∈ Dom(χ)⇒ H,χ,Γ 
 χ(var) : Γ(var)

Theorem 6.4.9. (Assumption) Given an expression e, which can be typed and evalu-

ated in a matching heap H, stack χ and context Γ

e,H,χ nS−−→
n′S
→v,H ′,χ′

Γ,nT 
e : t|Γ′,n′T
H,χ,Γ 


Then the value v can be typed as t

H,χ,Γ 
v : t

and the post-state agrees

H ′,χ′,Γ′ 
.
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In the soundness theorem for AmorJiSe this is extended by the properties of the

annotations:

Theorem 6.4.10. Given an expression e, which can be typed and evaluated in a match-

ing heap H, stack χ and a sufficient context Γ

e,H,χ nS−−→
n′S
→v,H ′,χ′

Γ,nT 
e : t|Γ′,n′T
H,χ,Γ 

H,χ,Γ 
Γ�

the following holds:

The potential in the pre-state N (H,χ,Γ,nT ) is enough to execute e:

N (H,χ,Γ,nT )≥ nS.

The potential is reduced by at least as much as the execution of e consumed resource

units:

N (H,χ,Γ,nT )−N (H ′,χ′,Γ′,nT ,v : t)≥ nS −n′S

and the context Γ′ is sufficient for the heap H ′ as well as t for the value v.

H ′,χ′,Γ′ 
Γ′�

H ′,χ′,Γ′ 
v : t�.

Proof. This claim is proven by induction on the length of the derivation of the eval-

uation relation e,H,χ nS−−→
n′S
→v,H ′,χ′. Since all rules of both the evaluation relation and

the type checking relation are syntax-driven, the induction step distinguishes one case

for each evaluation rule. In each case, the handled evaluation rule matches exactly one

typing rule, except for the rule (T-MEMW). In this exception the proof is performed in

the two sub-cases for the typing rules (T-MEMW◦) and (T-MEMW•).

Case (S-VAL): In this basic case it holds nS = c(VAL),n′S = 0 as well as nt =

n+N + c(VAL),n′t = n. That directly results in

N (H,χ,Γ,nT )≥ c(VAL) = nS

and
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N (H,χ,Γ,nT ) = ΣHχ : Γ+(n+N + c(VAL))

= ΣHχ : Γ+n+ c(VAL) +ΣHc : (T (c),N/N)

= N (H,χ,Γ,n′T ,c : (T (c),N/N))+ c(VAL)

implies

N (H,χ,Γ,nT )−N (H,χ,Γ,n′T ,c : (T (c),N/N)) = c(VAL) = nS −n′S

The resulting environment H,χ,Γ is sufficient due to the precondition. The only

path reachable from the path ”v” is ”v” and since the value c is not stored in the heap

H, it does not have any other aliasing paths. Therefore, H,χ,Γ 
 v : t� follows from

�Γ(”v”)�n = N ≤ N = �Γ(”v”)�N .

Case (S-VARR): In this case there are 2 cases for var ∈ {x,this}. Without loss

of generality, the following assumes var = x. The rules in this case provide the values

nS = c(VARR),n′S = 0 and nT = n+ c(VARR) ≥ c(VARR). The claim

N (H,χ,Γ,nT )≥ nT ≥ c(VARR) = nS

holds immediately. Due to Lemma 6.4.6 and T (x,1) ↪→ T (x,2)⊕T (x,3), it holds

ΣHχ(x) : T (x,1) = ΣHχ(x) : T (x,2)+ΣHχ(x) : T (x,3)

This implies

ΣHχ : Γ = ΣHχ(this) : Γ(this)+ΣHχ(x) : Γ(x)

= ΣHχ(this) : Γ′(this)+ΣHχ(x) : T (x,1)

= ΣHχ(this) : Γ′(this)+ΣHχ(x) : T (x,1)

= ΣHχ(this) : Γ′(this)+ΣHχ(x) : T (x,2)+ΣHχ(x) : T (x,3)

= ΣHχ(this) : Γ′(this)+ΣHχ(x) : Γ′(x)+ΣHχ(x) : T (x,3)

= ΣHχ : Γ′+ΣHχ(x) : T (x,3)

and leads to

N (H,χ,Γ,nT )−N (H,χ,Γ′,n′T ,χ(x) : T (x,3))

=N (H,χ,Γ,nT )−ΣHχ : Γ′ −n′T −ΣHχ(x) : T (x,3)

=N (H,χ,Γ,nT )−ΣHχ : Γ−n′T
=ΣHχ : Γ+nT −ΣHχ : Γ−n′T
=c(VARR) = nS −n′S
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It remains to show the sufficiencies. By the precondition H,χ,Γ 
 Γ� all paths

are sufficient in the previous environment. In the new environment the type Γ′(x)
was changed from T (x,1) to T (x,2). Since they are related via the sharing relation,

T (x,1) and T (x,2) have the same structure and are equal in all nested capacities N.

Now consider a path p in the new environment H,χ,Γ′ which does not start with v.

Therefore, p exists in the old environment H,χ,Γ and its set of alias paths in this

environment is P = {p′|H(p′) = H(p)}. This set splits into

Px = {x.p′|H(x.p′) = H(p)} and

Pthis = {this.p′|H(this.p′) = H(p)}.

Since v is a new alias of x, in the new environment H,χ,Γ′ the path p has the new

set of alias paths P′ = P∪{v.p′|x.p′ ∈ Px}. For each x.p′ ∈ P′ by the definition of the

sharing relation it holds �Γ(x.p′)�n = �Γ′(x.p′)�n + �Γ′(v.p′)�n which results in:

�Γ′(p)�N = �Γ(p)�N

≥ ∑
p′∈P

�Γ(p′)�n

= ∑
p′∈Pthis

�Γ(p′)�n + ∑
x.p′∈Px

�Γ(x.p′)�n

= ∑
p′∈Pthis

�Γ′(p′)�n + ∑
x.p′∈Px

�Γ′(x.p′)�n + ∑
x.p′∈Px

�Γ′(v.p′)�n

= ∑
p′∈Px

�Γ′(p′)�n

This constitutes the sufficiency of Γ(p) and H,χ,Γ′ 
Γ′� as a whole. Since �Γ′(v.p)�N =

�Γ′(x.p)�N the sufficiency H,χ,Γ′ 
 v : t� is equivalent.

Case (S-VARW): Without loss of generality, this case considers var = x. The

induction hypothesis on the subexpression e yields

N (H,χ,Γ,n) ≥ ne (6.1)

N (H,χ,Γ,n)−N (H ′,χ1,Γ1,n′,v : T (e,1)) ≥ ne −n′e (6.2)

which results in

N (H,χ,Γ,nT ) =N (H,χ,Γ,n+ c(VARW))

6.1≥ne + c(VARW)

=nS.
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Furthermore, the sharing relation T (e,1) ↪→ T (e,2)⊕T (x= e) implies

ΣHv : T (e,1) = ΣHv : T (e,2)+ΣHv : T (x= e) (6.3)

and by the subtyping T (e,2)≤ T (x) it holds

ΣH ′v : T (e,2)≥ ΣH ′v : T (x) (6.4)

This combines to

N (H,χ,Γ,nT )−N (H ′,χ′,Γ′,n′T ,v : T (x= e))

=N (H,χ,Γ,n+ c(VARW))−N (H ′,χ′,Γ′,n′,v : T (x= e))

=N (H,χ,Γ,n)+ c(VARW)−ΣH ′χ′ : Γ′ −ΣH ′v : T (x= e)−n′

=N (H,χ,Γ,n)+ c(VARW)−ΣH ′χ′(this) : Γ′(this)−ΣH ′χ′(x) : Γ′(x)

−ΣH ′v : T (x= e)−n′

=N (H,χ,Γ,n)+ c(VARW)−ΣH ′χ1(this) : Γ1(this)−ΣH ′v : T (x)

−ΣH ′v : T (x= e)−n′

6.4≥N (H,χ,Γ,n)+ c(VARW)−ΣH ′χ1(this) : Γ1(this)−ΣH ′v : T (e,2)

−ΣH ′v : T (x= e)−n′

6.3
=N (H,χ,Γ,n)+ c(VARW)−ΣH ′χ1(this) : Γ1(this)−ΣH ′v : T (e,1)−n′

≥N (H,χ,Γ,n)+ c(VARW)−ΣH ′χ1 : Γ1 −ΣH ′v : T (e,1)−n′

≥N (H,χ,Γ,n)+ c(VARW)−N (H ′,χ1,Γ1,n′,v : T (e,1))
6.2≥nS −n′S

The induction hypothesis guarantees that all types in the old state H ′,χ1,Γ1,v :

T (e,1) are sufficient. Now consider a path p in the new state H ′,χ′,Γ′,v : T (x = e).

In general, Alias(p) contains a number of paths v.m1. · · · .mk in the new state. For each

such path it also contains the path x.m1. · · · .mk in the new state. All other alias paths

are as in the old state with the same type and value. The path v.m1. · · · .mk is also a valid

path in the old state. By the sharing relation, it is clear that the potential of v.m1. · · · .mk

in the old state is the same as the summed up potential of the paths v.m1. · · · .mk and

x.m1. · · · .mk in the new state.

Now consider two cases: Either the value of the path p was equal in the old state,

then the sum of potential of all aliases is the same in old and new state (with the
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split of the potential of all paths v. · · · ), or the value of the path p has changed by

the assignment. Then p is clearly of the form x.m1. · · · .mk, since no other path was

changed. In that case, due to the assignment, the path p has the same alias paths as

v.m1. · · · .mk and due to T (e,2)≤ T (x) also the same capacity. Since v.m1. · · · .mk has

already been established as sufficient, p has to be sufficient, too.

Case (S-MEMR): The induction hypothesis in this case yields:

N (H,χ,Γ,n)≥ ne

N (H,χ,Γ,n)−N (H ′,χ′,Γ′,n′, ι : T (e))≥ ne −n′e

Furthermore, with the auxiliary type (te.m,•) = T (e)(m), by the definition of the

potential it holds

N (H ′,χ′,Γ′,n′, ι : T (e)) =N (H ′,χ′,Γ′,n′,H ′(ι) : T (e)))

≥N (H ′,χ′,Γ′,n′,H ′(ι)(m) : te.m)

This yields the claimed inequalities:

N (H,χ,Γ,nT + c(MEMR))

=N (H,χ,Γ,nT )+ c(MEMR)

IH≥ne + c(MEMR) = nS

N (H,χ,Γ,nT )−N (H ′,χ′,Γ′,n′T ,H
′(ι)(m) : T (e.m))

=N (H,χ,Γ,n+ c(MEMR))−N (H ′,χ′,Γ′,n′,H ′(ι)(m) : te.m)

=N (H,χ,Γ,n)+ c(MEMR)−N (H ′,χ′,Γ′,n′,H ′(ι)(m) : te.m)

≥N (H,χ,Γ,n)+ c(MEMR)−N (H ′,χ′,Γ′,n′, ι : T (e))
IH≥ne + c(MEMR)−n′e = nS −n′S

The sufficiency H ′,χ′,Γ′ 
 Γ′� is given by the induction hypothesis and H ′,χ′,Γ′ 

H ′(ι)(m) : T (e)(m)� follows from H ′,χ′,Γ′ 
 ι : T (e)� since the paths from v =

H ′(ι)(m) are equivalent to the subset Reach(v.m) of the paths from ι : T (e).

Case (S-SEQ): In this case the induction hypothesis applies directly to the sub-

expression e1. One result of this hypothesis is H1,χ1,Γ1 
 Γ1� and thus the induction

hypothesis applies for e2. Therefore, H ′,χ′,Γ′ 
 Γ′� and H ′,χ′,Γ′ 
 v2 : T (e2)� fol-
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lows by induction immediately and the following inequalities can be assumed:

N (H,χ,Γ,n) ≥n1

N (H,χ,Γ,n)−N (H1,χ1,Γ1,n′,v1 : T (e1)) ≥n1 −n′1
N (H1,χ1,Γ1,n′) ≥n2

N (H1,χ1,Γ1,n′)−N (H ′,χ′,Γ′,n′′,v2 : T (e2)) ≥n2 −n′2

For n� there are the following 2 cases:

Case n′1 ≥ n2: It holds n� = n1 and from the induction hypothesis it follows N (H,χ,Γ,n)≥
n1 = n�.

Case n′1 < n2: It holds n� = n1 − n′1 + n2. Furthermore, due to the definition of

potential, the potential of v1 : T (e1) is non-negative. From that it follows:

N (H,χ,Γ,n)

=N (H,χ,Γ,n)−N (H1,χ1,Γ1,n′)+N (H1,χ1,Γ1,n′)

≥N (H,χ,Γ,n)−N (H1,χ1,Γ1,n′,v1 : T (e1))+N (H1,χ1,Γ1,n′)

≥n1 −n′1 +n2 = n�

In both cases ΣHv1 : T (e1)≥ 0 and therefore

N (H,χ,Γ,nT )

=N (H,χ,Γ,n)+ c(SEQ)

≥n�+ c(SEQ) = ns

N (H,χ,Γ,nT )−N (H ′,χ′,Γ′,n′T ,v2 : T (e1;e2))

=N (H,χ,Γ,n)+ c(SEQ)−N (H ′,χ′,Γ′,n′′,v2 : T (e2))

≥N (H,χ,Γ,n)+ c(SEQ)−ΣHv1 : T (e1)−N (H ′,χ′,Γ′,n′′,v2 : T (e2))

=N (H,χ,Γ,n)+ c(SEQ)−N (H1,χ1,Γ1,n′,v1 : T (e1))

+N (H1,χ1,Γ1,n′)−N (H ′,χ′,Γ′,n′′,v2 : T (e2))

IV≥n1 −n′1 +n2 −n′2 + c(SEQ)

=n�−n′�+ c(SEQ) = nS −n′S

Case (S-CONDTRUE): By the induction hypothesis, H ′,χ′,Γ′ is sufficient. There-
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fore, the induction hypothesis applies to et resulting in the following bounds:

N (H,χ,Γ,n) ≥n′

N (H,χ,Γ,n)−N (H1,χ1,Γ1,n′,true : T (eb)) ≥n1 −n′1
N (H1,χ1,Γ1,n′) ≥n2

N (H1,χ1,Γ1,n′)−N (H ′,χ′,Γt ,nt ,v : T (et)) ≥n2 −n′2

As ΣHtrue : T (eb) = 0 it holds that

N (H1,χ1,Γ1,n′,true : T (eb)) = N (H1,χ1,Γ1,n′).

With those preconditions the same derivation as in the case S-SEQ derives

N (H,χ,Γ,n) ≥n�

N (H,χ,Γ,n)−N (H ′,χ′,Γt ,nt ,v : T (et)) ≥n�−n′�

It holds n′ ≤ nt as it is computed as n′ = min(nt ,n f ). From Γ′
n=n ↓ (Γt ,Γ f ) follows

ΣH ′χ′ : Γ′ ≤ ΣH ′χ′ : Γt and from T (et)≤ T (eb?et : e f ) follows ΣH ′v : T (eb?et : e f )≤
ΣH ′v : T (et). Combining this yields

N (H ′,χ′,Γ′,n′,v : T (eb?et : e f ))

=ΣH ′χ′ : Γ′+ΣH ′v : T (eb?et : e f )+n′

≤ΣH ′χ′ : Γt +ΣH ′v : T (et)+nt

=N (H ′,χ′,Γt ,nt ,v : T (et))

Therefore,

N (H,χ,Γ,nT )−N (H ′,χ′,Γ′,nT ,v : T (eb?et : e f ))

=N (H,χ,Γ,n+ c(COND))−N (H ′,χ′,Γ′,n′,v : T (eb?et : e f ))

≥N (H,χ,Γ,n)+ c(COND)−N (H ′,χ′,Γt ,nt ,v : T (et))

≥n�+ c(COND)−n� = nS −n′S

The induction hypothesis also ensures that H ′,χ′,Γt are sufficient. Due to the require-

ments Γ′
N=N ↑ (Γ f ,Γt) and Γ′

n= n ↓ (Γt ,Γ f ) this immediately proves �Γt(p)�n ≥
�Γ′(p)�n and �Γt(p)�N ≤ �Γ′(p)�N for every path p. Hence, H ′,χ′,Γ′ 
 Γ′� holds.

Equivalently, H ′,χ′,Γ′ 
 v : T (eb?et : e f )� follows from the sufficiency H ′,χ′,Γt 
:

v : T (et) in the induction hypothesis and T (et)≤ eb?et : e f .
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Case (S-CONDFALSE): is analogous to (S-CONDTRUE)

Case (S-MEMW◦): Without loss of generality this case assumes var = x.

Since e1 = x, the rule (S-MEMW) can be simplified to:

x,H,χ
c(VARR)−−−−−→

0
→χ(x)︸︷︷︸

=ι

,H,χ

e,H,χ n2−−→
n′2
→v,H2,χ′

H ′ = H2[ι �→ H2(ι)[m �→ v]]

x.m = e,H,χ
n2+c(VARR)+c(MEMW)(m∈Dom(H2(ι)))−−−−−−−−−−−−−−−−−−−−−−→

n′2
→v,H ′,χ′

(S-MEMW◦)

Furthermore, since the rule (T-MEMW) requires that (x= e′) is not a subexpression

of e it holds that χ(x) = χ′(x).

In this case the induction hypothesis on e states:

N (H,χ,Γ,n) ≥n2 (6.5)

N (H,χ,Γ,n)−N (H2,χ′,Γ2,n′,v : T (e)) ≥n2 −n′2 (6.6)

The typing rule states

Γ2(x) = (T (x,1),•) and

T (x,1)(m) = (tm,ψm)

The agreement H2,χ′,Γ2 
 follows from the soundness of the underlying system im-

plies

H2,χ′,Γ2 
 H2(ι) : T (x,1). (6.7)

Now assume ψm = •, then 6.7 implies that m ∈ Dom(H2(ι)) and

c(MEMW)(ψm = •) = c(MEMW)(true) = c(MEMW)(m ∈ Dom(H2(ι))) (6.8)

In the opposite case ψm = ◦ the definition (6.3.8) of the constants c(MEMW) implies

c(MEMW)(ψm = •) = c(MEMW)(false)≥ c(MEMW)(m ∈ Dom(H2(ι))). (6.9)

Combining 6.8 and 6.9 yields in any case

c(MEMW)(ψm = •)≥ c(MEMW)(m ∈ Dom(H2(ι))). (6.10)
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Now the first claimed inequality follows directly:

N (H,χ,Γ,nT )

=N (H,χ,Γ,n)+ c(MEMW)(ψm = •)+ c(VARR)

6.10≥ N (H,χ,Γ,n)+ c(MEMW)(m ∈ Dom(H2(ι)))+ c(VARR)

6.5≥n2 + c(MEMW)(m ∈ Dom(H2(ι)))+ c(VARR)

=nS

For the second inequality, the preconditions

Γ2(var) = (T (var,1),•)
Γ′ = Γ2[var �→ (T (var,2),•)]

T (var,1) = T (var,2)

imply that the contexts Γ2 and Γ′ have the same type paths and for each such path p it

holds

Γ2(p) = Γ′(p) (6.11)

Now consider the heap paths I =
⋃

p∈Alias(ι)
Reach(p) in H ′. Since H ′ and H2 only

differ in ι, all other paths p ∈ Ī in H ′ also exist in H2 and it holds

∀p ∈ Ī : χ′
H2
(p) = χ′

H ′(p) (6.12)

All paths in H2 which have been changed in comparison to H ′ are aliases of

paths from v. So consider a path p = v.m1. · · · .mk in H2. If there is no prefix p′ =
v.m1. · · · .mk′ of p with χ′

H2
(v.m1. · · · .mk′) = ι, then from

χ′
H2
(v) = χ′

H ′(x.m) (6.13)

H2(ι′) = H ′(ι′)∀ι′ �= ι (6.14)

by the induction on the length of p

χ′
H2
(v.m1. · · · .mi,mi+1) =H2(χ′

H2
(v.m1. · · · .mi))[mi+1]

IH
=H2(χ′

H ′(x.m.m1. · · · .mi))[mi+1]

6.14
= H ′(χ′

H ′(x.m.m1. · · · .mi))[mi+1]

=χ′
H ′(x.m.m1. · · · .mi.mi+1)
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it follows

χ′
H2
(v.m1. · · · .mk) = χ′

H ′(x.m.m1. · · · .mk) (6.15)

In the typing context it holds

�Γ2(v.m1. · · · .mk)�
n =�T (e)(m1, ...,mk)�

n

=�T (e)(m1, ...,mk)�
N

=�tm(m1, ...,mk)�
N

=�t ′m(m1, ...,mk)�
N

=�T (x,2)(m,m1, ...,mk)�
N

Since Γ′(x) = T (x,2), the sufficiency of Γ′ (shown below) implies that this capacity

�T (x,2)(m,m1, ...,mk)�
N is bigger than the sum of the annotations in all alias paths

Alias(x.m.m1. · · · .mk). The set {p′,m,m1, ...,mk|p′ ∈ Alias(x) = Alias(ι)} is certainly

a subset of this alias set:

�Γ2(v.m1. · · · .mk)�
n = �T (x,2)(m,m1, ...,mk)�

N (6.16)

≥ ∑
p′∈Alias(ι)

�Γ′(p′)(m,m1, ...,mk)�
n (6.17)

If otherwise there is a prefix v.m1. · · · .mk′ of p with χ′
H2
(v.m1. · · · .mk′) = ι, then the

preconditions of Lemma 6.4.7 are provided for the address ι resulting in

�Γ2(v.m1. · · · .mk)�
n ≥ 0

Lem 6.4.7
= ∑

p′∈Alias(ι)
�Γ′(p′)(m,m1, ...,mk)�

n (6.18)

From 6.17 and 6.18 this inequality holds true for all paths p of the form v.m1. · · · .mk

in H2. Summing up over all paths m1, ...,mk ∈ Reach(ι) with line 6.15 this results in

∑
m1,...,mk

�Γ2(v.m1. · · · .mk)�
n ≥ ∑

m1,...,mk

∑
p′∈Alias(ι)

�Γ′(p′)(m,m1, ...,mk)�
n

⇔ ∑
p∈Reach(v)

�Γ2(p)�n ≥ ∑
p∈Reach(ι)

∑
p′∈Alias(ι)

�Γ′(p′)(m,m1, ....,mk)�
n

⇔ΣH2
v : T (e) ≥∑

p∈I
�Γ′(p)�n (6.19)

With this, consider the potential

N (H ′,χ′,Γ′,n′,x.m : T (x.m = e))
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=ΣH ′χ′ : Γ′+n′+ΣH ′x.m : T (x.m = e)

T (x.m = e)0 implies ΣH ′x.m : T (x.m = e) = 0

=ΣH ′χ′ : Γ′+n′

=∑
p
�Γ′(p)�n +n′

Split according to I

=∑
p∈Ī

�Γ′(p)�n + ∑
p∈I
�Γ′(p)�n +n′

Γ′ is equivalent to Γ2 regarding annotations

6.19≤ ∑
p∈Ī

�Γ2(p)�n +ΣH2
v : T (e)+n′

≤ ∑
p in H2

�Γ2(p)�n +ΣH2
v : T (e)+n′

=N (H2,χ′,Γ2,n′,v : T (e)) (6.20)

Now the claimed inequality can be derived from the inequality for the subexpres-

sions:

N (H,χ,Γ,nT )−N (H ′,χ′,Γ′,n′T ,v : T (x.m = e))

=N (H,χ,Γ,n)+ c(MEMW)(ψm = •)+ c(VARR)−N (H ′,χ′,Γ′,n′,v : T (x.m = e))
6.20≥ N (H,χ,Γ,n)+ c(MEMW)(ψm = •)+ c(VARR)−N (H2,χ′,Γ2,n′,v : T (e))
6.6≥n2 + c(MEMW)(ψm = •)+ c(VARR)−n′2 = nS −n′S

The sufficiency H ′,χ′,Γ′ 
 v : T (var.m = e)� is equivalent to H ′,χ′,Γ′ 
 v : tm�
due to T (var.m = e) N=N T (e) N=N tm. Since Γ′(x.m) = tm and χ′

H ′(x.m) = v this is

contained in H ′,χ′,Γ′ 
�.

It remains to show the sufficiency H ′,χ′,Γ′ 
 �. Since H ′ and H2 only differ in

ι.m, all paths which do not have an alias path passing though ι.m are sufficient by the

induction hypothesis on e. Furthermore, assume a path p has an alias passing through

ι.m but does not pass through ι.m itself. In this case, in H2 the path p has a non-trivial

prefix being an alias to v and forms a loop in the heap. From Lemma 6.4.7 it follows

that �Γ2(p)�n = 0. The same argument prohibits annotated loops within v: if a pair of
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paths v.p,v.p′ are aliases, i.e. χ′
H2
(v.p) = χ′

H2
(v.p′), then

�Γ2(v.p)�n =�Γ2(v.p)�N

≥ ∑
p′∈Alias(v.p)

�Γ2(v.p′)�n

≥�Γ2(v.p)�n + �Γ2(v.p′)�n

This implies �Γ2(v.p)�n = 0 and �Γ2(v.p′)�n = 0.

Now assume a path p with an alias through ι.m in H ′:

∑
p′∈AliasH′(p)

�Γ′(p′)�n = ∑
p′∈AliasH′(p)

�Γ2(p′)�n

= ∑
p′ ∈ AliasH ′(p)
p′ through ι.m

�Γ2(p′)�n

Every such path p′ can be written as p1 · p2 with χ′
H ′(p1) = H ′(ι).m and p1 is the

shortest such path (i.e. no prefix of p1 also visits H ′(ι).m). The remaining path p2 is a

path in v. All positively annotated paths in v have no aliases. Therefore, all important

paths in this sum must have the same path p2.

= ∑
p1∈AliasH′(ι.m)

�Γ2(p1)(p2)�
n

All these paths p′ ∈ Alias(ι.m) also exist equally in H2

= ∑
p1∈AliasH2

(ι.m)

�Γ2(p1)(p2)�
n

Choose one such p1. Since p1 is sufficient:

≤�Γ2(p1)(p2)�
N

≤�Γ′(p1)(p2)�
N

≤�Γ′(p1)�
N

=�Γ′(p)�N

The last equality holds, since in the rules aliases are only created by the sharing re-

lation, which requires each alias to have the same capacities. The capacities are not

changed later on.

This is exactly the definition of "p is sufficient" for all p that were not already

sufficient from H2.
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Case S-memW•: The same argumentation as in the case S-SEQ leads to bounds:

N (H,χ,Γ,n) ≥n1

N (H,χ,Γ,n)−N (H1,χ1,Γ1,n′, ι : T (e1)) ≥n1 −n′1
N (H1,χ1,Γ1,n′) ≥n2

N (H1,χ1,Γ1,n′)−N (H2,χ′,Γ′,n′′,v : T (e2)) ≥n2 −n′2
N (H,χ,Γ,n) ≥n�

N (H,χ,Γ,n)−N (H2,χ′,Γ′,n′′,v : T (e2)) ≥n�−n′� (6.21)

The same argumentation as in the case S-MEMW◦ applies and directly implies the

first claimed inequality

N (H,χ,Γ,nT )≥ nS

The equivalent split of the set of heap paths into I, Ī and I′ results in

N (H ′,χ′,Γ′,n′,v : T (e1.m = e2))

≤N (H2,χ′,Γ′,n′,v : T (e2)) (6.22)

which results in the second claimed inequality:

N (H,χ,Γ,nT )−N (H ′,χ′,Γ′,n′T ,v : T (e1.m = e2))

=N (H,χ,Γ,n)+ c(MEMW)(true)−N (H ′,χ′,Γ′,n′,v : T (e1.m = e2))

6.22≥ N (H,χ,Γ,n)+ c(MEMW)(true)−N (H2,χ′,Γ′,n′,v : T (e2))

6.21≥ n�+ c(MEMW)(m ∈ Dom(H2(ι)))−n′� = nS −n′S

With the same preconditions as in the case S-MEMW◦ the sufficiency is equivalent.

6.5 Type inference

The type inference algorithm infers the amortised types by performing the following

steps.

1. The data types are computed by the underlying system. Depending on the un-

derlying system this step might require additional code annotations.
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2. The data types are promoted to amortised types by recursively injecting an-

notation variables. Where the typing rules use multiple copies of a data type

T (e,1),T (e,2)... this data type needs to be copied.

3. The typing rules of AmorJiSe are applied and the resulting constraints on the re-

source annotation variables are collected into a set of linear constraints. This

also includes the implicit constraints n ≥ 0 for every annotation variable n.

Since the structures of the data types are known, all higher level constraints

(t n≤N t, t ↪→ t ⊕ t, ...) can be translated into linear constraints.

4. The resulting set of constraints is solved as a Linear Programming Problem

(LPP) with conventional solvers.

5. The bounds on the resource consumption of the whole program are extracted

from the inferred annotation values of the initial context and the type of the

functions.

The type lookup T (·) used in inference, in addition to inserting annotation vari-

ables into the data types of the underlying system, also ensures that all contained

types are unrolled on the highest level. For example, the list data type μα.[value :

(Int,•),next : (α,•)] is expanded into

μβ.[value : ((Int,n1/N1),•),next : ((

μα.[value : ((Int,n3/N3),•),next : ((α,n4/N4),•)]
,n2/N2),•)]

Type unrolling does not change the soundness of a type. The different annotation

variables for the head n1/N1,n2/N2 and the recursive end n3/N3,n4,N4 enable an ex-

pression to use the reserved resource units in the head without effecting all fields in the

recursive structure. This way more programs are typeable.

The inference procedure is comparable to the type inference presented in previous

work on amortised type systems [58] by Hofmann et al. The method proposed in this

work infers the amortised annotations for a class-based object-oriented programming

language similar to Java called RAJA. The big difference between the RAJA inference

and AmorJiSe is the object type representation. While AmorJiSe uses one individual

object expression for each object value, RAJA types multiple expressions with the

same class. To differentiate between different resource properties of values types with
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the same class, Hofmann et al. have to introduce views which assign a specific set of

annotations to a value typed with a class.

Comparing the procedure, the RAJA inference can skip the first step, since the data

types are supplied as part of language’s syntax. The second step is solved implicitly,

by defining the � operator. It returns the appropriate resource annotations for each

class-view combination and its fields. Since the annotation variables are represented

implicitly using this operator, they are not injected into the types. RAJA then gen-

erates constraints equivalent to the third step of AmorJiSe, including the higher level

constraints (see Section 6.3.6.6) on infinite trees. They are, however, complicated due

to the view notation. These constraints are solved similarly converted into arithmetic

inequalities and solved by conventional LPP solving methods.

6.5.1 Annotation domain

Each annotation is interpreted as the amount of reserved resource units stored with a

typed value. Intuitively, the annotations are therefore thought to be integers. However,

Integer Linear Programming Problems (ILPP) are NP-hard, whereas a real-valued so-

lution to the existing Linear Programming Problem can be computed in polynomial

time. To profit from the better complexity, AmorJiSe allows annotation values in R.

In the resource model this has the following interpretation. A resource unit can

be split into arbitrary pieces and each piece stored in different data structures during

execution. To access the resource a full unit is recombined from the pieces available in

the data structures at the point of access and used to pay for the access. Even though

the unit is potentially split and transported via different data structures only full units

are used to legitimate resource access. Since the soundness only states that the sum of

resource units stored in the values is bigger than the number of resource accesses, this

method is sound independent of the splitting of the units. Also note that the solution

found with the LPP algorithm is always smaller than the solution found by an ILPP

algorithm, since the minimal ILPP solution also is a solution for the LPP algorithm.

On the other hand smaller LPP solutions might exists which contain non-integers.

A second consideration is the inclusion of ∞ as annotation. If one of the annotations

in the data-structures in the initial typing context needs to be infinite in the minimal

solution for the LPP, then the resulting overall resource bound is infinite as well. This

situation is equivalent to the solver not being able to compute a finite bound. Therefore,

allowing infinity as value for the annotations contained in the value types does not add
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expressivity.

On the other hand, it is possible to allow infinity as annotation in a function type. If

an input handler function (assuming it is not otherwise called) is typed with an infinite

annotations as requirement, the overall bound is finite, but the interaction-dependent

part of the bound is infinite as soon as the associated input event occurred at least once.

Therefore, allowing annotations inside the function types to be ∞ results in certain

situations in an improvement of the precision of the bound: the bound expresses which

user interactions make the consumption potentially infinite and provides a finite bound

for the cast these interactions do not occur. This, however, depends on the ability of

the used LPP solver to derive ∞ as value for the variables, which are not contained in

the objective function.

6.5.2 Deriving bounds

Given the result Γ,n 
 e : t|Γ′,n′ the bound on the resource consumption of the expres-

sion e consists of 3 parts:

1. The annotations n,n′ describe the constant resource consumption.

2. The potential ∑H χ : Γ describes the data-dependent resource consumption, if e

is executed with the inputs stored in H,χ.

3. The function types in Γ′ describe the interaction-dependent resource consump-

tion: If for example e registers a function f as handler for the event click and

Γ′( f ) = (((O× t,n → t ′,n′),n f /Nf ),ψ f ) then each click event has a resource

consumption of (n,n′).

6.6 Extensions

The core language and type system discussed so far is not very expressive. This section

increases the flexibility of the annotations and adds rules for functions.

6.6.1 Exchange rule

The system shown above tracks the resource consumption of a typed expression via

the annotations n,n′ of the typing judgement. Additionally it uses the annotations in-

jected into the types to express resource units dependent on the size of data structures.
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However, in the rules presented above the two different kinds of annotations are sep-

arate. The type judgement annotations “pay” for resource accesses but the amortised

annotations cannot be transferred into the type judgement. This separation simplifies

the proof of Theorem 6.4.10. The following rule allows to swap resource units from

the amortised annotations into the typing judgement annotations and therefore makes

the reserved resource units usable.

Γ,n 
 e : (t,nt/Nt)|Γ′,n′

0 ≤ r ≤ nt

Γ,n 
 e : (t,nt − r/Nt)|Γ′,n′+ r
(T-SWAP)

Theorem 6.6.1. The rule (T-SWAP) preserves Theorem 6.4.10

Proof. The proof extends the induction step of 6.4.10

Case (T-SWAP): For the potential it holds:

N (H ′,χ′,Γ′,n′,v : (t,nt/Nt)) = N (H ′,χ′,Γ′,n′+ r,v : (t,nt − r/Nt))

The required inequalities follow directly from the induction hypothesis. For the suffi-

ciency of Γ′, consider a path p in the state H,χ,Γ,v : (t,nt/Nt). Due to the induction

hypothesis it is sufficient, which means �Γ(t,nt/Nt)(p)�N ≥ ∑
p′∈Alias(p)

�Γ(t,nt/Nt)(p′)�n.

The only difference between Γ(t,nt/Nt)(·) and Γ(t,nt−r/Nt)(·) is the annotation of the

path v. If v �∈ Alias(p), then

�Γ(t,nt−r/Nt)(p)�N

=�Γ(t,nt/Nt)(p)�N

IH≥ ∑
p′∈Alias(p)

�Γ(t,nt/Nt)(p′)�n

= ∑
p′∈Alias(p)

�Γ(t,nt−r/Nt)(p′)�n

Otherwise, if v ∈ Alias(p)

�Γ(t,nt−r/Nt)(p)�N

=�Γ(t,nt/Nt)(p)�N

IH≥ ∑
p′∈Alias(p)

�Γ(t,nt/Nt)(p′)�n

= ∑
p′∈Alias(p)

�Γ(t,nt−r/Nt)(p′)�n + r

r>0≥ ∑
p′∈Alias(p)

�Γ(t,nt−r/Nt)(p′)�n
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Since this is true for arbitrary p, this constitutes to H ′,χ′,Γ′ 
 Γ′�.

The sufficiency of v in H,χ,Γ,v : (t,nt/Nt) is provided by the induction hypothesis

and provides the sufficiency of any path p ∈ Reach(v) in H,χ,Γ,v : (t,nt − r/Nt) as

above except for the path v:

�Γ(t,nt−r/Nt)(v)�
N

=�Γ(t,nt/Nt)(v)�
N

≥ ∑
p′∈Alias(v)

�Γ(t,nt/Nt)(p′)�n − r

≥ ∑
p′∈Alias(v)−{v}

�Γ(t,nt/Nt)(p′)�n + �Γ(t,nt/Nt)(v)�
n − r

≥ ∑
p′∈Alias(v)−{v}

�Γ(t,nt−r/Nt−r)(p′)�n + �Γ(t,nt−r/Nt−r)(v)�
n

= ∑
p′∈Alias(v)

�Γ(t,nt−r/Nt−r)(p′)�n

The difference between the rule (T-SWAP) and the other rules of AmorJiSe is that

(T-SWAP) is not syntax directed, but makes the rule application non-deterministic in

two ways: The derivation has to guess when the rule (T-SWAP) is applied and the value

of the parameter r for each application. This non-determinacy makes type checking

without provided type derivation more difficult. The complexity of type inference,

however, does not increase significantly. Applying the new rule twice can be collapsed

into one application by adding the r values of the two applications. Therefore, type

inference applies the rule (T-SWAP) exactly once after the application of every other

rule. This results in one extra variable (the parameter r) and two additional linear

constraints for each applied syntax-driven rule. In the worst case this doubles the size

of the LPP.

The same result could be achieved by incorporating the rule (T-SWAP) into each of

the rules provided above. However, this would blow up the representation of the rules.

6.6.2 Functions

As functions do not interfere with the object structures of the types in AmorJiSe, they

have been omitted from the core system described above and are added in the fol-

lowing. This extension handles non-nested, potentially recursive, first order functions.
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Method calls can be handled similarly as shown in Section 6.7.1. The syntax of a pro-

gram with functions consists of a list of function definitions and a main expression e

as before.

P ::=F∗;e (Program)

F ::=function f (x){e} (FuncDecl)

Function values are noted as v = function f (x)e f , where f is the function name, x the

function argument and e f the function body expression. Similar to the restriction to

one variable x in the JavaScript syntax above, function definition here are restricted to

one argument named x for simplicity reasons.

In JavaScript function statements are interpreted in a first pass: before an expres-

sion is evaluated, its source code is scanned for functions and the function definition for

each function is added to the scope. This makes it possible to define mutually recursive

functions. AmorJiSe assumes that the function declarations precede the main expres-

sion e. This automatically enforces this first pass behaviour. A program not in this

shape can be translated without change in behaviour by reordering the source code.

Furthermore, AmorJiSe restricts functions to non-nested function declarations. This

ensures that all functions are executed in the same scope and simplifies the presenta-

tion and the soundness proof significantly. Programs with nested function declarations

can be flattened by encoding the scope of each local variable into the variable name.

6.6.2.1 Typing rules

Figure 6.6 and 6.7 introduce the rules to handle functions in AmorJiSe: the rules (S-

PROGRAM) / (T-PROGRAM) handle function statements and the rules (S-FUNX) / (T-

FUNX) handle function calls.

During evaluation, the definition of the functions is stored in the scope χ, such that

the rule (T-FUNX) can lookup the function body. The typing rules equivalently store

the type for function f as Γ( f ). Although this adds to Dom(χ) and Dom(Γ) this does not

invalidate the proof of Theorem 6.4.10. Since the added values are only functions, they

only add trivial paths and since they are always typed with the amortised annotation

0/0, they can be ignored for the computation of the potential.

During the analysis of a function definition, the bodies of the functions are analysed

in the context Γi, which only contains the types of the functions (from ΓF ) and the
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Figure 6.6 Evaluation rules - Functions

Fi = function fi(x){ei}
χF = χ[ fi �→ Fi ∀i = 1..k]

e,H,χF
ne−−→
n′e
→v,H ′,χ′

F1, ...,Fk;e,H,χ
ne+k·c(FUND)−−−−−−−−→

n′e
→v,H ′,χ′

(S-PROGRAM)

e,H,χ n1−−→
n′1
→ve,H1,χ1

χ( f ) = function(x){e f }
χ f = { fi �→ χ1( fi)∀functions fi,x �→ ve,this �→ {}}

e f ,H1,χ f
n2−−→
n′2
→v,H ′,χ′

(n�,n′�) = (n1,n′1) � (n2,n′2)

f (e),H,χ
n�+c(FUNX)−−−−−−−→

n′�
→v,H ′,χ1

(S-FUNX)

parameters for this specific function. Therefore, the typing context, the function body

is typed in, does not depend on the calling context, which simplifies the soundness

proof for the function call.

The existing type relations extend for function types in the intuitive way. The

constraints G1 η≤η′ G2 produce for function types G = O× tx,n → tret,n′ the linear

constraints n1 = n2 and n′1 = n′2 as well as all constraints generated by tx1 η=η′ tx2,

O η=η′ O and tret1 η=η′ tret2. The sharing relation G1 ↪→ G2⊕G3 also produces equality

constraints for all three involved types and the potential is defined as ΣHv : G = 0.

6.6.2.2 Soundness

For the soundness statement, first the agreement relation has to be extended.

Definition 6.6.2. Given a state H,χ,Γ, a value v agrees with its type t written as

H,χ,Γ 
 v : t, if - in addition to the requirements in Definition 6.4.8 - for every path p

with t(p) = O× tx,n f → tret,n′f provided

• Γ f = [x �→ tx,this �→ O]

• any χ,H with H,χ,Γ 


• any vret,H ′,χ′,nS,n′S with H,χ,e nS−−→
n′S
→H ′,χ′,vret

it holds that
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Figure 6.7 Typing rules - Functions

Fi = function fi(x)ei

ΓF = Γ[ fi �→ (T ( fi),•)∀i = 1..k]

T ( fi) = ((Oi × ti,ni → t ′i ,n
′
i),0/0)

Γi = ΓF [x �→ ti,this �→ Oi]

Γi,ni 
 ei : T (ei)|Γ′
i,n

′
i

Γ1,n 
 e : T (e)|Γ′,n′

Γ,n+ k · c(FUND) 
 F1; ...;Fk;e : T (e)|Γ′,n′
(T-PROGRAM)

Γ,n 
 e : T (e)|Γ1,ne

Γ1( f ) = O× tx,n f → tret,n′f
O does not contain • fields

O0 T (e)≤ tx T (e) N=N tx

tret ≤ T ( f (e))

ne ≥ n f n′ = ne −n f +n′f

Γ,n+ c(FUNX) 
 f (e) : T ( f (e))|Γ1,n′
(T-FUNX)

• H ′,χ′,Γ 
 vret : tret

• n f ≥ nS

• n f −n′f ≥ nS −n′S

Theorem 6.6.3. The rules (T-PROGRAM), (T-FUNX), (S-PROGRAM) and (S-FUNX)

preserve Theorem 6.4.10 with the additional invariant:

For every function f with

χ( f ) = function f (x){e}
Γ( f ) = O× tx,n f → tret,n′f

the body e can be typed as:

Γ f ,n f 
 e : tret|Γ′,n′f

with Γ f = { fi �→ Γ( fi),x �→ tx,this �→ O}

Proof. This proof extends the induction step of Theorem 6.4.10. The assumption (The-

orem 6.4.9) applies with the amended agreement relation. Since the rules of the orig-

inal proof do not effect the functions stored in Γ or χ, they trivially fulfil the new

invariant.
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Case (S-PROGRAM): Due to the preconditions of the soundness theorem it is

given that Γ is sufficient for H,χ. This relation obviously extends to Γ1 and H,χ1, since

each Gi is sufficient with the annotation 0/0 and no aliases nor fields. The potential

inequality can be proven using the induction hypothesis:

N (H,χ,Γ,n+ k · c(FUND))

=N (H,χ1,Γ1,n)+ k · c(FUND)

≥nS + k · c(FUND)

N (H,χ,Γ,n+ k · c(FUND))−N (H ′,χ′,Γ′,v : te,n′)

=N (H,χ1,Γ1,n)−N (H ′,χ′,Γ′,v : te,n′)+ k · c(FUND)

≥nS −n′S + k · c(FUND)

The sufficiency of Γ′ for H ′,χ′ follows directly from the induction hypothesis.

Furthermore, note that rule (T-PROGRAM) explicitly requires the function invariant

to be true for each function in the resulting environment H ′,χ′,Γ′.
Case (S-FUNX):
Due to the induction hypothesis on e the following holds:

N (H,χ,Γ,n) ≥n1 (6.23)

N (H,χ,Γ,n)+N (H1,χ1,Γ1,ne,ve : T (e)) ≥n1 +n′1 (6.24)

From the soundness of the underlying system it follows that ve agrees with T (e).

Since O0 and T (e) ≤ tx it is clear that the values χ f (x) = ve and χ f (this) = {} agree

with the types O and tx. Construct the context Γ f = { fi �→ Γ( f ),x �→ tx, this �→ O}
which fulfils the agreement relation H1,χ f ,Γ f 
. From the function invariant it follows

that Γ f ,n f 
 e f : tret|Γ′
f ,n

′
f and by the induction hypothesis it follows

N (H1,χ f ,Γ f ,n f )≥ n2 (6.25)

To prove the needed properties about the types Γ1(x) and Γ1(this) in the resulting

heap H ′ they are carried through the execution of the function body. For this reason,

with fresh variables this0 and x0 construct the following extended states:

Γ+ = Γ f [xo �→ Γ1(x),thiso �→ Γ1(this)]

Γ′
+ = Γ′

f [xo �→ Γ1(x),thiso �→ Γ1(this)]

χ+ = χ f [xo �→ χ1(x),thiso �→ χ1(this)]

χ′
+ = χ′[xo �→ χ1(x),thiso �→ χ1(this)]
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which fulfil the agreement relation H1,χ+,Γ+ 
 due to H1,χ f ,Γ f 
 and H1,χ1,Γ1 
.

Since the expression e f does not access the variables xo,thiso it is clear that

Γ+,n f 
 e f : tret|Γ′
+,n

′
f

e f ,H1,χ+
n2−−→
n′2
→v,H ′,χ′

+

are equivalent to the evaluation in Γ f ,χ f . With these typing relations and the evaluation

of e f the induction hypothesis results in

N (H1,χ+,Γ+,n f )≥ n2 (6.26)

N (H1,χ+,Γ+,n f )−N (H ′,χ′
+,Γ

′
+,n

′
f ,v : tret)≥ n2 −n′2 (6.27)

By construction, the relationship between the original state and the extended state is

the following:

ΣH1
χ+ : Γ+ = ΣH1

χ f : Γ f +ΣH1
χ1 : Γ1 (6.28)

ΣH ′χ′
+ : Γ′

+ = ΣH ′χ′ : Γ′
f +ΣH ′χ1 : Γ1 (6.29)

Since χ f (this) = {} it is clear that ΣH1
χ f (this) : Γ f (this) = 0 and therefore

ΣH1
χ f : Γ f = ΣH1

ve : tx
T (e)≤tx≤ ΣH1

ve : T (e). So

ΣH1
χ f : Γ f −ΣH1

ve : T (e)≤ 0 (6.30)

From this and the constraint

ne ≥ n f (6.31)

in the typing rule it follows:

N (H1,χ1,Γ1,ne,ve : T (e)) (6.32)

=ΣH1
χ1 : Γ1+ne +ΣH1

ve : T (e) (6.33)

6.31,6.30

≥ ΣH1
χ1 : Γ1 +n f +ΣH1

χ f : Γ f (6.34)

≥n f +ΣH1
χ f : Γ f = N (H1,χ f ,Γ f ,n f ) (6.35)

The typing rule has the constraint

n′ = ne −n f +n′f (6.36)
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Now the inequalities can be shown. The first inequality is shown in cases again: If

n′1 ≥ n2 then n� = n1 and it holds

N (H,χ,Γ,n+ c(FUNX))

6.23≥ n1 + c(FUNX)

=n�+ c(FUNX) = nS

In the other case n′1 ≤ n2 it holds n� = n1 −n′1 +n2:

N (H,χ,Γ,n+ c(FUNX))

6.32≥ N (H,χ,Γ,n+ c(FUNX))−N (H1,χ1,Γ1,ne,ve : T (e))+N (H1,χ f ,Γ f ,n f )

6.25,6.24

≥ n1 −n′1 +n2 + c(FUNX)

=n�+ c(FUNX) = nS

The second inequality can be proven as follows:

N (H,χ,Γ,n+ c(FUNX))−N (H ′,χ1,Γ1,n′,v : tret)

=N (H,χ,Γ,n+ c(FUNX))−ΣH ′χ1 : Γ1 −n′ −ΣH ′v : tret

≥N (H,χ,Γ,n+ c(FUNX))−ΣH ′χ1 : Γ1 −n′ −ΣH ′v : tret −ΣH ′χ′ : Γ′
f

6.36
= N (H,χ,Γ,n+ c(FUNX))−ΣH ′χ1 : Γ1 −ne +n f −n′f −ΣH ′v : tret −ΣH ′χ′ : Γ′

f

6.30≥ N (H,χ,Γ,n+ c(FUNX))−ΣH ′χ1 : Γ1 −ne +n f −n′f −ΣH ′v : tret −ΣH ′χ′ : Γ′
f

−ΣH1
ve : T (e)+ΣH1

χ f : Γ f

=N (H,χ,Γ,n+ c(FUNX))−ΣH ′χ1 : Γ1 −ne +n f −n′f −ΣH ′v : tret −ΣH ′χ′ : Γ′
f

−ΣH1
ve : T (e)+ΣH1

χ f : Γ f −ΣH1
χ1 : Γ1 +ΣH1

χ1 : Γ1

6.28,6.29
= N (H,χ,Γ,n+ c(FUNX))−ΣH1

χ1 : Γ1 −ne +n f −n′f −ΣH ′v : tret −ΣH ′χ′
+ : Γ′

+

−ΣH1
ve : T (e)+ΣH1

χ+ : Γ+

=N (H,χ,Γ,n+ c(FUNX))−N (H1,χ1,Γ1,ne,ve : T (e))

+N (H1,χ+,Γ+,n f )−N (H ′,χ′
+,Γ

′
+,n

′
f ,v : tret)

6.24,6.27

≥ n1 + c(FUNX)−n′1 +n2 −n′2 = n�+ c(FUNX)−n′�

The claimed inequalities follow directly from tx ≤ T ( f (e)) and the implied ΣH ′v :

T ( f (e))≤ ΣH ′v : tx.

Now it remains to show that the final state is sufficient: The induction hypothesis

applies to e and implies that Γ1 is sufficient for H1. Now, the sufficiency has to be

extended to the state the function body is executed in. Since the functions f1, ..., fk
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of the analysed program cannot be overwritten, we know that the obtained type O×
txn f → tret,n′f still fits the function body e. Under this circumstance, the function

invariant established that in the context Γ f = ΓP[x �→ tx,this �→ O] the function body

e f can be typed as tret. This context Γ f is sufficient for the state H1,χ f : this only has

to be shown for the paths x,this. The sufficiency for the remaining paths then follows

from Lemma 6.4.4. For the path x the value ve and type tx is known and tx is sufficient

since T (e) is sufficient due to the induction hypothesis on e and T (e) ≤ tx. From the

requirement “O contains no • fields”, it follows that the object type O agrees with the

empty object value {}. The only valid heap path for {} is this. Due to O0, this type

O is trivially sufficient for this value. O might still contain additional ◦ fields, which

are assigned to in the function body.

Altogether this shows that Γ f is sufficient for χ f ,H1. The induction hypothesis

is applicable on e f and the state H1,χ f ,Γ f . Now choose new variables xouter and

thisouter, which are not accessed in e f and the extended state (H1, χ̄ f , Γ̄ f ) defined

with

χ̄ f = χ f [xouter �→ χ1(x),thisouter �→ χ1(this)] and

Γ̄ f = Γ f [xouter �→ Γ1(x),thisouter �→ Γ1(this)]

Since e f does not access thisouter nor xouter the results from the preconditions can

be extended to

e f ,H1, χ̄ f
n2−−→
n′2
→v,H ′, χ̄′

Γ̄ f ,n f 
 e f : tret|Γ̄′
f ,n

′
f

where

χ̄′ = χ′[xouter �→ χ1(x),thisouter �→ χ1(this)] and

Γ̄′
f = Γ′

f [xouter �→ Γ1(x),thisouter �→ Γ1(this)]

This establishes, by the induction hypothesis on e f , that in the state H ′,χ1 the types

Γ1(x) and Γ1(this) are still sufficient for the paths x and this. Therefore, Γ1 is

sufficient for the state H ′,χ1 as required.

The sufficiency H ′,χ′,Γ′ 
 v : tx� follows from the induction hypothesis on e f and

extends to H ′,χ′,Γ′ 
 v : T ( f (e))� due to tx ≤ T ( f (e)).

Remark 6.6.4. Variance of the capacity
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The proof case (T-MEMW◦) requires that all aliases of a type have the same ca-

pabilities. This restricts the typing rules in several cases: the rule (T-SWAP) cannot

reduce the capacity of the resulting type (i.e. (t,nt − r/Nt − r)) even though the sum of

resource units stored with t has clearly been reduced and the rule (T-FUNX) requires

T (e) N=N tx, instead of the expected T (e) N≤N tx.

The additional restrictions on the capacities means that in certain cases the capac-

ities and maybe even the reserved resource units included in types need to be over-

approximated to allow a value to be passed as an argument or assigned to variable.

Via a chain of related types, this could increase the capacities of multiple types. The

ultimately leads to a bigger than necessary bound in the result. Therefore, a proof for

the case (T-MEMW◦) without the requirement on the capacities could make the bounds

more precise.

6.6.2.3 Differences to JavaScript

The difference between JavaScript handling and the function execution rule (S-FUNX)

is that simple functions in JavaScript are called with the this variable set to the global

scope object. Since AmorJiSe does not deal with scope interactions, this is set to be

the empty object instead.

The decision not to concentrate on the handling of the scope in JavaScript is a

real restriction, but is necessary to keep the rule manageable: In JavaScript functions

usually have access to all variables defined in their own function scope (including

the parameters), in addition to all variables accessible in the outer scope in which

the function was defined in. To allow access to the outer scope in AmorJiSe would

mean that the consumption of the function on the outer scope has to be monitored. To

understand the difficulty of this consider the following example program.

1 function f1(x) {

2 var y = 5;

3 return function f2(x) {

4 CONSUME(y);

5 };

6 }

7 var f=f1(42);

8 f(43);

In this example, assume the function CONSUME requires a first parameter with the

type (Int,1/1). The function f1 defines the variable y and then returns the function
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f2. Since f2 is defined inside the scope of f1, it has access to the variable y and can

use it as the parameter for CONSUME. In line 7, f1 is called and returns a pointer to the

newly created function f2. This new pointer is stored in the local variable f. When f

is called later, it uses a resource unit stored with the variable y. At that time, y is not

in scope anymore and AmorJiSe cannot reduce the annotations in the type of y.

Handling scopes in AmorJiSe is a challenge orthogonal to the main focus of Amor-

JiSe on the object structure of JavaScript. JavaScript functions have access to the scope

of the defining context. With the previously discussed method of abstract locations for

object types, the abstract location of the defining scope could simply be included in the

function type and its type validated during the analysis of each function call. An easier

approach is to set all annotations in the outer scope to 0 using the constraint t0 in the

rule (T-PROGRAM). This way the function body has access to the values of the outer

scope without access to the reserved resource units stored in the types.

6.7 Implementation

The type inference algorithm discussed in Section 6.5 has been implemented2 in Haskell

using ghc in version 7.10.4. The implementation performs the following steps:

1. Parse the JavaScript code using the library Language.JavaScript.Parser (Ver-

sion 0.5.14.7).

2. Infer the underlying types according to a re-implementation of the type system

JST
0 by Anderson.

3. Apply the AmorJiSe typing rules and collect the annotation constraints.

4. Solve the resulting linear programming problem using the Gnu Linear Program-

ming Kit with its Haskell interface glpk-hs (Version: 0.3.5)

The objective function of the constructed LPP has to describe the potential of the

initial environment. However, the LPP is constructed without knowledge of the run-

time environment H,χ and without knowledge of the interaction sequence at runtime.

For this reason, instead of the potential ΣHv : t, the implementation uses a type po-

tential ΣΓt, defined recursively as the sum of all annotations n occurring in the type t.

2Source code and instructions to run the system has been made available: github.com/DFranzen/
AmorJiSe, a the docker image dfranzen/amorjise is available on hub.docker.com
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Using this, for a type judgement Γ,n 
 P : t|Γ′,n′ the LPP minimises

n+2∗ ∑
f∈P

ΣΓ′Γ′( f ).

In addition to the constantly required resource units, this minimises the resource units

required by each function f defined in the program P to account for the interaction

during runtime. Here, the potential cost of a function is weighted by a factor of 2

in comparison to the constant resource requirement n. This way, if there is a choice

between the constant or interaction-dependent requirement, the constant requirement

is preferred. This, however, does not effect the soundness of the bound, but is merely

a heuristic to improve the quality of the resulting bound. Other objective functions

might take different annotations into account and put different weights on the different

annotations.

6.7.1 Extensions

The language analysed by the implementation is more expressive than the formal core

handled by the theory above. At the highest level, the implementation handles expres-

sions separate from statements and introduces statement types. Expressions are typed

with the type provided above, while statements can be typed as none or Return(t)

where t is an expression type to indicate that this statement returns a value of this type.

The typing rules for the discussed expression (including (T-SWAP) and function

calls) are implemented as shown above. Additionally, the implementation extends the

analysis of expressions with the following typing rules without formal proof:

The basic values of the analysed language have been extended by string and object

literals via the rule (T-STRINGLIT) and (T-OBJLIT).

Γ,n+N + cstrD 
 ”...” : (String,N/N)|Γ,n
(T-STRINGLIT)

Γ,n 
 (e1, ...,ek) : (t1, ..., tk)|Γ′,n′

ti ≤ T (e)(mi)

∀m �∈ {m1, ...,mk}T (e)(m) n≤N T (e)(m)

�T (e)�n = N = �T (e)�N

Γ,n+ cob jD + k · cmemW +N 
 {m1 : e1, ...,mk : ek}︸ ︷︷ ︸
=e

: T (e)|Γ′,n′
(T-OBJLIT)

The function handling has been extended to higher order functions, by allowing

the called expression in e(·) to be an arbitrary expression e f rather than just a function
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name f . Additionally, the rule (FUNX) can type function calls with multiple parame-

ters:

Γ,n 
 e f : (T (e f ),0/0)|Γ1,ne

T (e f ) = O× (t1, ..., tk),n f → tret,n′f
Γ1,ne 
 (e1, ...,ek) : (T (e1), ...,T (ek))|Γ2,n2

O0 (T (e1), ...,T (ek))≤ (t1, ..., tk)

tret ≤ T (e f (e1, ...,ek))

n f ≤ n2 n′ = n2 −n f +n′f
Γ,n+ c f unX 
 e f (e1, ...,ek) : T (e f (e1, ...,ek))|Γ2,n′

(T-FUNX)

This rule does not analyse polymorphic functions or variadicity. Instead, it restricts the

function call to the exact number of parameters mentioned in the function definition.

In addition to normal function calls, the implementation includes specialised rules

for method call:

Γ,n 
 e : (T (e),0/0)|Γ1,ne

T (e)[m] = ((O× (t1, ..., tk),n f → tret,n′f ,0/0),•)
Γ1,ne 
 (e1, ...,ek) : (T (e1), ...,T (ek))|Γ2,n2

T (e)≤ O (T (e1), ...,T (ek))≤ (t1, ..., tk)

tret ≤ T (e.m(e1, ...,ek))

n f ≤ n2 n′ = n2 −n f +n′f
Γ,n+ c f unX 
 e.m(e1, ...,ek) : T (e.m(e1, ...,ek))|Γ2,n′

(T-MEMX)

The constructor call is handled just like a function call, since the receiver O of a

function call is initialised without • fields. That means the constructor can be called

with an empty object as this. During runtime the value {} for this is provided by

JavaScript.

Γ,n 
 e f (e) : t|Γ′,n′

Γ,n+ cnew 
 newe f (e) : t|Γ′,n′
(T-NEWX)

The only difference of this rule to actual JavaScript behaviour is that in constructor

calls which do not explicitly return a value, the value of this is returned. The rule

(T-NEWX) does not capture this.

The syntax used for the functions here does not differentiate between the different

kinds of function calls in JavaScript and allows the same function to be used in different

roles throughout the code.
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As last addition to the expression set, the implementation handles various operators

in a rudimentary way. Standard arithmetic and logical operators require the operands

to be of type Int or Bool and the (overloaded) plus operator requires both operands to

be of equal data type.

The implementation also adds separate statement types T+ = (T,n/N). Only two

kinds of statement pre-type T are considered: none or Return(t) for any expression

type t. The subtyping for those types is defined by the two rules

Return(t)≤none

t ≤ t ′ ⇒ Return(t)≤ Return(t ′)

Subtyping for full statement types T+ is equivalent to expression types and the same

holds true for the other type relations and constraints.

For the formal notation write the typing judgement for statements as Γ,n � s :

T |Γ′,n′. The implementation corresponds to typing rules as follows. Again they as-

sume that the underlying system provides sound data-types for all parts of the analysed

statement and only infer the constraints on the annotation variables. The implementa-

tion of the underlying system uses similar techniques to the expression typing to infer

the types of the statements.

Any expression can also be typed as statements with the empty statement type:

Γ,n 
 e : t|Γ′,n′

Γ,n � e : none|Γ′,n′
(T-STMT)

The return statement is typed with a return type containing the expression type of

the returned expression.

Γ,n 
 e : t|Γ′,n′

Γ,n � return e : Return(t)|Γ′,n′
(T-RETURN)

Equivalent to the rule for the conditional operator e1?e2 : e3, the implementation

includes a rule for the if statement.

Γ,n 
 eb : T (eb)|Γ1,n′

Γ1,n′ � st : T (st)|Γt ,nt

Γ1,n′ � s f : T (s f )|Γ f ,n f

T (st)≤ T (if...) T (s f )≤ T (if...)

Γ′
N=N ↑ (Γ f ,Γt) Γ′

n=n ↓ (Γt ,Γ f )

n′′ = min(nt ,n f )

Γ,n+ c(COND) � if(eb){st} else {s f } : T (if(eb){st} else {s f })|Γ′,n′′
(T-IF)
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Statement concatenation is typed with the following rule:

Γ,n � s1 : T (s1)|Γ1,n′

Γ1,n′ � s2 : T (s2)|Γ2,n′′

T (s1)≤ T (s1;s2) T (s2)≤ T (s1;s2)

Γ,n+ c(SEQ) � s1;s2 : T (s2)|Γ′,n′′
(T-STMTSEQ)

The rule (T-PROGRAM) handling function definitions is split in the implementa-

tion. The rule (T-FUNSTMT) analyses function statements and (T-FUNEXPR) handles

function expressions. The difference is mainly the mandatory function name in the

function statement and the function type of the returned function value of the function

expression.

T ( f ) = ((O× (t1, ..., tk),n f → tret,n′f ),0/0)

Γ f = Γ[ f �→ (T ( f ),•),this �→ O,(x1, ...,xk) �→ (t1, ..., tk)]

Γ f ,n f � e : T (e)|Γ1,n′f

tret =

⎧⎨
⎩none if T (e) = none

t if T (e) = return(t)

Γ,n+ c(FUND) 
 function[ f ](x1, ...,xk){e} : T ( f )|Γ′,n
(T-FUNEXPR)

T ( f ) = ((O× (t1, ..., tk),n f → tret,n′f ),0/0)

Γ f = Γ[ f �→ (T ( f ),•),this �→ O,(x1, ...,xk) �→ (t1, ..., tk)]

Γ f ,n f � e : T (e)|Γ1,n′f

tret =

⎧⎨
⎩none if T (e) = none

t if T (e) = return(t)

Γ,n+ c(FUND) � function f (x1, ...,xk){e} : none|Γ′,n
(T-FUNSTMT)

The type of the function body has been adopted to return values marked with the

return keyword instead of the last computed value. Another improvement is the abil-

ity to type nested functions. However, the scope chain has not been addressed. Nested

function bodies can only access the variables defined within their own scope.

Finally, the analysed language is extended by the var keyword, which creates a new

variable in the given context. To analyse these, the implementation emulates the three

pass parsing of the JavaScript standard. In the first two passes over the source code

only the initial typing context Γ0 is populated with declared variables and functions

using the rules (T-FUNSTMT) similar to (T-FUNEXPR) and the rule (T-VARD). This

behaviour is equivalent to the runtime scope population in JavaScript. The third pass
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actually analyses the given statement in this initial heap. Since the var keyword of a

variable declaration var x= e has already been analysed, in this third pass the variable

declaration is treated as assignment x= e instead. The semantics of the implementation

requires variables to be declared in the scope they are used in and terminates with

a warning, if an undeclared variable is assigned or read. The three pass procedure

is repeated before every function body is analysed to discover variables local to its

function scope.

The implementation uses equivalent rules to expand the type inference for the un-

derlying type system JST
0 . To convert the rules, the annotations are deleted and appro-

priate subtyping relations are inserted.

The layout of the analysis code is modular, such that a new rule can be added by

supplying three functions. The first function receives an expression or statement as

input and returns true, if the implemented rule applies; the second function breaks the

expression into the relevant parts while the third function receives these parts and a

typing environment and returns the type and the resulting changes to the environment.

In this way new rules can be added easily.

6.7.2 Evaluation

The implementation has been tested on example code to verify the correct implemen-

tation of each rule.3 Additionally, consider a simpler version of the Example 6.2.1:

1 function upload_list(list) {

2 UPLOAD(list.value);

3 upload_list(list.next)

4 }

For this example the resource model has been created to reflect the resource consump-

tion of the API function UPLOAD:

1 "UPLOAD":(<(μ.({}) ,0/0) ,((Int ,0/0))×(Int ,0/0) ,0>,0/0)•,

With this type in the initial context, the analysis

1 ti_string "function upload_list(list) { UPLOAD(list.value);

upload_list(list.next)}"

outputs the result

1 ...

3The test cases are part of the published implementation and can be run via the command ti_test
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2 T(function upload_list)

3 (<(μβ_11.({}) ,0/0)×((μβ_13.({"value":(Int ,0/0)•,"next":(μβ_16.({"
value":(Int ,0/0)•,"next":(β_16 ,1/1)•,}) ,1/1)•,}) ,0/1)),1->(
NONE ,0/0) ,0>,0/0)

4 whole program: 0 -> (NONE ,0/0) ,0

It reveals that the parameter type for the function upload_list is an unfolding of

the expected type

μα.[value : ((Int,0/0),•),next : ((α,1/1),•)].

The annotations (1/1) show that one resource unit is required for each element in the

list. For this example the LPP contained 146 linear constraints.

In general, the size of the generated LPP is difficult to estimate. Each applied

rule generates a small number of linear or higher level constraints. However each

higher level constraint is translated into a number of linear constraints potentially cubic

in the size of the compared types. The relation between the size of the source code

and the size of the resulting types is not clear. The rules for the if statement and

the conditional operator (e_bool?e_true:e_false) compare whole typing contexts

which results in linear constraints for all types in the typing context. This adds another

unknown parameter to the size of the LPP.

Before this implementation can be applied to real world code, further constructs

of the JavaScript language have to be added. To evaluate which constructs are most

often missing, the parser and case-distinction was applied to the source code from the

available 8000 PhoneGap apps. The test reported the loops and the array syntax used

in most applications, but not analysed by AmorJiSe. Loops can be handled with a rule

like the following:

Γ,n 
 e : T (e1)|Γ1,n1

Γ1,n1 � e2 : T (e2)|Γ2,n2

Γ2 ≤ Γ
n2 ≥ n

T (e2)≤ T (while (e1){e2})
Γ,n+ cwhile � while (e1){e2} : T (while (e1){e2})|Γ1,n1

(T-WHILE)

The analysis of Arrays could be handled similar to objects. The array type only needs a

way to represent an arbitrary number of elements. For this, the δ field could potentially

be adopted for amortised annotations.



6.8. Discussion 181

During the conducted evaluation, a missing case in the JavaScript parser library

was found and reported. It is fixed in the newest version.

6.8 Discussion

This chapter presented the formal type system AmorJiSe, which can be used to infer

a bound on the resource consumption of JavaScript code. The system covers a core

of JavaScript which is focused on the JavaScript specific object behaviour. The object

types incorporate markers to allow controlled strong updates of object values by ex-

tension. For this core language, AmorJiSe automatically infers amortised annotations

for provided data types. With those annotations, a bound for the resource behaviour

can be inferred for the given JavaScript code, which can be data-dependent on the size

of the input data and interaction dependent on the number of triggered events. Further-

more, the system has been implemented and extended in Haskell and applied to small

examples.

AmorJiSe is formally proven sound in the sense that no execution can exceed the

resulting bound on the resource usage. However, the soundness proof for AmorJiSe as-

sumes the soundness of the provided data types. The combined system is only as sound

as the underlying system. One might consider an unsound system with AmorJiSe to

enhance the applicability and precision by sacrificing soundness in corner cases.

With the presented method, AmorJiSe can analyse API activated resources and

language activated resources. The examples only used memory space as language

activated resources, but with a more detailed resource model other such resources,

like time or power consumption, can also be (over-)approximated with more detailed

resource models. With respect to the resource classification in Section 2.2.1, AmorJiSe

can analyse all four resource classes count, cumulative, unique and acquire-release.

Even the uniqueness property of blocking resources can be modelled by adding the

constraint n ≤ 1 to the LPP for all annotations n in the typing judgement. However,

with this adaption, no restriction can be posed on other apps. Therefore, blocking

resources cannot be handled. Otherwise, AmorJiSe is only missing a method to handle

resources which are defined via custom events like lowbattery or online.

The derived bounds can certainly be made more precise. Especially the rules (T-

MEMW) and (T-VARW) overwrite values without considering the reserved resource

units associated with the overwritten value. Instead, they could be extracted and re-

stored into the globally available resource pool.
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In some cases making the bounds more precise is more difficult. For example in

a binary search trough a tree, the analysis would have to assume about one resource

unit in each node of the tree. To reduce this number to the more precise resource unit

per level of the tree, the analysis would have to be able to read resource units from

other branches of the tree, which might not be possible in general. Similarly, amor-

tised analysis can only use its full potential with recursive data-structures. Recursive

functions which reduce an index parameter instead of the size of its data structure can-

not be analysed with a non-zero resource consumption. Similar functions have been

analysed in previous work by representing the decreasing numeric parameter as list of

the appropriate length. This translation is, however, complicated and not equivalent in

time and memory space. However, within those restrictions amortised analysis has the

advantage that it circumvents dependent types and can therefore be efficiently inferred.

The version of AmorJiSe published as [39] did not use the heap-dependent def-

inition of the potential Σ, yet. This, unfortunately, made the system unsound. This

flaw has been corrected in the version presented here with the inclusion of the capacity

annotations N.

The system is not yet usable on real world JavaScript apps. The language analysed

needs to be extended with some more language constructs of JavaScript. Strongly

related to the object analysis performed in AmorJiSe is the prototypal inheritance of

JavaScript, which has not been included in the covered language. Prototypes make

the object lookup highly dependent on the actual runtime state. Therefore, abstract

types, which over-approximate all possible runtime states, become more complicated

for prototypal inheritance. Prototypes have been handled by more complicated object

lookup functions in previous research. While I expect that these results can be adapted

to the inference of AmorJiSe, it would make the object lookup more ambiguous and

consequently decrease precision of the types and bounds.

Concerning functions, the theoretic core of AmorJiSe restricts the functions to use

exactly one variable with the identifier x. The implementation already relaxes this

and allows functions to have an arbitrary amount of variables with arbitrary identifiers

and even local variables. Still missing are nested function scopes and other scope

manipulating language features. The type context is already equivalent to an object

type. Therefore, scope objects in JavaScript can be typed using object types. The

appropriate scope object type would then be embedded into each function type. This

method naturally adds aliasing for the scope objects as a challenge. This challenge

could be solved equivalent to the object aliasing proposed in this chapter by using the
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sharing relation. This would dedicate a certain amount of resource units of the defining

scope to be used exclusively inside the function scope. These blocked resource units

might result in a less precise bound. Otherwise, the scope aliasing can be solved by

indirect type pointers into an typing heap. This would, however, be a major alteration

of the system.

Another part of JavaScript which is not included in AmorJiSe are labelled jumps

using break and error handling. It does not interfere with the resource consumption

heavily. Therefore, adaptations of the conventional methods are expected to suffice.

A rudimentary rule to handle while loops has been presented above. All other

loops (for, for each, until) can be handled in a similar way. However, the bounds

obtained from this handling are not very precise and would benefit from other known

loop analysis techniques like loop unrolling and constant propagation. Especially in

the case of for loops, shape analysis and other information about how often the loop

is executed is vital for more precise bounds. Arrays are also left out of the analysed

language. They could be modelled as objects with a δ field to describe arbitrary many

of the indexed fields.

The challenge of dynamically executed JavaScript code using the eval function

and others has not been addressed in this system. However, recent work as shown

earlier suggests that most dynamic code in modern apps can be rewritten to static code.

Those solutions are orthogonal to the type system presented here and could be added.

The implementation could benefit from a better description of the resource bounds.

As it stands now the output only contains the typing judgement for the analysed ex-

pression. The types of the variables in the initial and final typing context can also be

displayed optionally. From this output the bounds can be derived as described in Sec-

tion 6.5.2. An explicit data dependent and interaction dependent bound is not provided

by the system.

Lastly, in order to analyse real world JavaScript code AmorJiSe needs to handle

additional libraries on top of JavaScript. Most notable is the DOM library which lets

JavaScript interact with the current state of the HTML tree. Some parts of the DOM

library have been handled in the example code for the evaluation by adding types of

the relevant functions to the resource model. With the same method, the remaining

parts of the DOM library and other libraries could be added to the analysed language.

This avoids the blowup in complexity of adding the JavaScript code of the included

libraries to the analysed code base.





Chapter 7

On the soundness of JST
0

The following chapter discusses a flaw in the soundness theorem (Theorem 1 in [9])

of the system JST
0 . First this chapter will present an expression and a specially crafted

state which invalidates one of the steps in the proof for the addressed theorem and

formally show the validity of all needed preconditions for this counter example. The

second part of the chapter shows that this crafted stated is actually reachable by pro-

viding a program which first generates this state from the empty state and then uses the

flaw to produce a run-time error, even though the program can be typed as Int. This

contradicts the type soundness of JST
0 directly.

In [9] the author admits that the soundness proof of the type inference is not fully

sound. Conjecture 3 in [9] states that the result computed from the closed constraints

set is a correct solution to the constraints, but the proof attempt provided in the ap-

pendix is based, as noted by the author, on two unproven conjectures. The flaw pre-

sented here effects, instead, the soundness result for the type checking rules, which

was, to the best of my knowledge, not known to be unsound so far. Upon contacting

the authors, they failed to provide a correction to the handling of the counter example

provided below.

A second flaw was discovered in the Theorem addressing the relation between type

checking and type inference (Theorem 2 in [9]). In addition to presenting a counter

example for this theorem, the last part of this chapter shows how the flawed inference

rule for type checking can be corrected imitating the corresponding type inference rule.

This addresses both presented issues. The modified typing rule is presented together

with a proof for the flawed step in the soundness proof for type checking.

This chapter references definitions, theorems and proofs from the most recent pub-

lication of JST
0 [9]. The numbering of the theorems has been adapted to fit the format

185
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of this document, but the original numbers are provided with the theorem statements

for reference. However, the same counter examples also apply to the corresponding

theorems in [8], presented in ECOOP.

7.1 Error in the soundness proof

The main theorem for the type soundness of JST
0 is repeated as Theorem 7.1.1 below.

The theorem uses the relations for typing 
 (Figure 7.3), evaluation � (Figure 7.4),

agreement �,� (Figure 7.2) and extension � (Definition 7.1.6). For the full set of rules

for evaluation and type checking, including those rules not interesting for the following

examples, consult [9].

Theorem 7.1.1 ([9, Theorem 1,p. 64]). Type Soundness of JST
0 .

Given

P :well-formed program

t ′ :Type

e,w :Expression

Γ,Γ′ :Environments

T :Store typings

H,H ′ :Heaps

χ,χ′ :Stacks
with the preconditions

P,Γ 
 e : t ′|Γ′

P,Γ,T 
 H,χ�
e,H,χ � w,H ′,χ′

there exists some T ’ with

P,Γ′,T ′ 
 H ′,χ′ �
T ′ � T

and either

{
w = v with

P,H ′,T ′ 
 v� t ′

}
or w = nullPntrExc

Apart from the agreement of the derived type and value P,H ′,T ′ 
 v� t ′, the theo-

rem also claims the agreement of the heap typing with the heap P,Γ′,T ′ 
 H ′,χ′ � as

an invariant of the type derivation.

The proof for this theorem explicitly constructs the new heap typing T ′ from T .

The proof distinguishes cases on the basis of the evaluation rule applicable to e. The
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rule (S-MEMASS) evaluates assignments to object members e1.m = e2 with expres-

sions e1,e2 and in particular assignments of the special form var.m = e2. The induction

step of the proof for the expression case var.m = e2 uses the induction assumption to

derive the existence of a new heap typing T ′′ after the evaluation of e2. From T ′′ the

required heap typing T ′ is derived in line (26) as

Now let:

T ′ = T ′′[ι �→ T ′′[m �→ (t,•)]]. (26)

Here ι is the heap location of the variable var and t is the type derived for the

expression e2. To establish the extension relation T ′ � T required by the theorem,

line (27) claims

From (26) and the definition of � [see Def. 7.1.8] we get:

T ′ � T ′′ (27)

which is not actually the case as will be shown in the following.

7.1.1 Counter example

This first counter example invalidates the agreement claim P,Γ′,T ′ 
 H ′,χ′ � for the

explicitly constructed heap typing T ′. It consists of the expression

e := x.val=3

and the crafted state CE:

χCE : {x �→ ιx,

this �→ ιt}
HCE : {ιx �→� next : ιn �,

ιn �→� next : null�,

ιt �→��}

ΓCE : {x �→ O◦,

this �→ []}
TCE : {ιx �→ O◦,

ιn �→ O◦,

ιt �→ [ ]}

The types have been abbreviated for readability:

O◦ :=μα[val : (Int,◦),next : (α,•)]
O• :=μα[val : (Int,•),next : (α,•)]
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Figure 7.1 Type Relations

t ≡ t ′

(t,ψ)≡ (t ′,ψ)
(≡ MEMBER)

∀m : M(m)≡ M′(m)

μα.M ≡ μα.M′
(≡ REORDER)

∃t ′′ t ′′[α/t]≡ t t ′′[α/t ′]≡ t ′

t ≡ t ′
(≡ FIX)

μα.M ≡ μα′.M[α/α′]
(≡ αCONV)

t ≡ t
(≡ REFLEX)

μα.M ≡ M[α/μα.M]
(≡ UNFOLD)

(a) Congruence

ψ′ = •⇒ ψ = •
ψ ≤ ψ′

(≤ ANO)

t ≡ t ′ ψ ≤ ψ′

(t,ψ)≤ (t ′,ψ′)
(≤ MEM)

∀m ∈ Dom(O′) : O(m)≤ O′(m)

O ≤ O′
(≤ OBJ)

t ≡ t ′

t ≤ t ′
(≤ CONG)

t ≤ t ′ t ′ ≤ t ′′

t ≤ t ′′
(≤ TRANS)

(b) Subtypes

Intuitively in the presented heap x contains a recursive linked list with two ele-

ments.

x • null

The list is able to store integer values in the field val as the type O◦ suggests with

val : (Int,◦), but there are no values stored so far. In the expression x.val=3, a value

is added to the head of the list.

x 3 • null

Throughout this example, the variable this can be ignored, but its type and value

is provided for formality.

7.1.2 Types for the counter example

The types of the fields of an object type can be read via the field lookup:

Definition 7.1.2 ([9, p. 48]). Field lookup
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For a bound type O = μα.M with M = [m1 : (t1,ψ1), ...,mk : (tk,ψk)]
field lookup is defined as

O(m) =M[α/O](m)

M(m) =

{
(ti,ψi) if m = mi for some i
Udf otherwise

where M[α/O] is the standard non-recursive replacing of α by O in M.

The first step is to show that the two types O• and O◦ are not comparable via

the relations congruence ≡ (Figure 7.1a), subtype ≤ (Figure 7.1b) and extension �
(Definition 7.1.6). For this it is useful to have additional properties of the relation ≡:

Proposition 7.1.3. Properties of ≡

1. The relation ≡ is symmetric: given t1 ≡ t2 it holds that t2 ≡ t1.

2. The relation ≡ is transitive: given t1 ≡ t2 and t2 ≡ t3 it holds that t1 ≡ t3.

Proof. 1. Consider the rule (≡FIX) with t ′′ = t = t1 and t ′ = t2

t1 ≡ t2
(SUBSTITUTE)

t1[αnew/t2]≡ t2

(≡ REFLEX)t1 ≡ t1
(SUBSTITUTE)

t1[αnew/t1]≡ t1
(≡ FIX)t2 ≡ t1

2. Choose an α not contained in t2. With this choice it holds t2[α/t1] = t2[α/t3] = t2.

The fact t2 ≡ t3 is one of the requirements and the previous proof derives t2 ≡ t1
from t1 ≡ t2. The claim then follows from

t2[α/t1](= t2)≡ t1 t2[α/t3](= t2)≡ t3
(≡FIX)t1 ≡ t3

These proof trees will be abbreviated as the rules (≡ SYM) and (≡ TRANS) in the

following.

Now for the relation between O• and O◦, the first relation to consider is ≡, since ≤
and � both depend on ≡.

Proposition 7.1.4.
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1. For two object types O,O′, if

μα.[m1 : (tm1,ψm1), ...,mk : (tmk,ψmk)]︸ ︷︷ ︸
O

≡ μα.[m′
1 : (t ′m1′ ,ψ

′
m1′), ...,m

′
k′ : (t ′mk′ ,ψ

′
mk′)]︸ ︷︷ ︸

O′

then {m1, ...,mk}= {m′
1, ...,m

′
k′} and ψmi = ψ′

mi for all 1 ≤ i ≤ k.

2. O• �≡ O◦

Proof. 1. This statement can be proven via Induction on the derivation of the ≡
relation (see Figure 7.1).

Case (≡ REORDER): The preconditions of (≡ REORDER), are that all member

types O(m) are congruent. As a direct consequence, the sets {m1, ...,mk} and

{m′
1, ...,m

′
k′} have to be equal, otherwise only one of O(m) and O′(m) would be

Udf which is only congruent to Udf . The two members can either be congruent

by the rule (≡ MEMBER) or (≡ FIX).

• According to the rule (≡ MEMBER), two member types (t,ψ) can only be

congruent if the states (ψ ∈ {•,◦}) are identical. Therefore the states ψm

have to be equal in both object types.

• If the rule (≡ FIX) was applied to deduce that the member types are con-

gruent, then the derivation of t ′′[α/O] ≡ O and t ′′[α/O′] ≡ O′ are shorter

than the derivation of O ≡ O′ and the induction hypothesis can be applied.

Since the substitutions [α/O′] and [α/O] do not change the state ψ of the

members, transitivity can be applied to get the equality of the states in O

and O′.

Case (≡ FIX): The rule (≡ FIX) has t ≡ t ′′[α/t] and t ′ ≡ t ′′[α/t ′] as precondition.

The induction hypothesis applies to those relations and the substitutions [α/t]

and [α/t ′] do not change the set of members {m′′
1, ...,m

′′
k′′} or the involved ψ′′

mi.

From this fact it follows that {m1, ...,mk} = {m′′
1, ...,m

′′
k′′} = {m′

1, ...,m
′
k′} and

ψmi = ψ′′
mi = ψ′

mi as claimed.

Case (≡ αCONV): The set of fields {m1, ...,mk} and the states ψm1, ...,ψmk are

trivially identical in the types μα.M and μα′.M[α/α′].

Case (≡ UNFOLD): The set of fields {m1, ...,mk} and the states ψm1, ...,ψmk are

trivially identical in the types μα.M and M[α/μα.M].
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2. Since for O• and O◦ it holds ψval = • �= ◦ = ψ′
val , this statement is a direct

consequence of the previous proof by contradiction.

The object types are not subtypes either.

Proposition 7.1.5.

1. For two object types in a subtyping relation O≤O′ and each field m with O(m)=

(tm,ψm) and O′(m) = (t ′m,ψ′
m) the actual types tm and t ′m are congruent.

2. O◦ �≤ O• and O• �≤ O◦

Proof. 1. This statement can be shown by induction on the derivation for O ≤ O′

(see Figure 7.1):

Case (≤ OBJ):: This rule requires the subtyping relation for the types of each

field m. By the subtyping rule (≤ MEM), two member types (tm,ψ), (t ′m,ψ′) are

only subtypes if the actual types tm and t ′m are congruent.

Case (≤ CONG):: The requirement of this rule is t ≡ t ′ which obviously requires

each field to be congruent by the definition of ≡.

Case (≤ TRANS):: This rule requires the existence of an additional type O′′

with O ≤ O′′ and O′′ ≤ O′. By the induction hypothesis, all field types of O are

congruent to the field types in O′′. Equally, by the induction hypothesis O′′ has

equivalent field types to O′. The claim follows directly by the transitivity of ≡
as proven in Proposition 7.1.3.

2. Follows from the previous proof by contradiction since the types of field next

are by the definition of field lookup (Definition 7.1.2).

O◦(next) = (α[α/O◦],•)
= (O◦,•)

O•(next) = (α[α/O•],•)
= (O•,•)

and Proposition 7.1.4 established that O• �≡ O◦.

Finally, consider the extension relation �:
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Definition 7.1.6 ([9, Definition 2, p. 57]). Extension

O• � O◦ iff for all m:

• O◦(m) = Udf ⇔ O•(m) = Udf

• O◦(m) �= Udf ⇒ O•(m)≤ O◦(m)

Proposition 7.1.7.
O• �� O◦ and O◦ �� O•.

Proof. Using the definition of the field lookup for the field m = next again, the second

condition requires (O•,•) ≤ (O◦,•), which is not true as already discussed above.

Therefore O• �� O◦. The argument works equivalently for O◦ �� O•.

This concludes the discussion of the relation between O◦ and O• with the result

that the two types are not related via the given relations.

7.1.3 Preconditions of the counter example

In order to show that the expression x.val=3 in the given state HCE ,χCE ,ΓCE ,TCE is

a counter example for Theorem 7.1.1, the following presents derivations of all precon-

ditions of Theorem 7.1.1.

7.1.3.1 Agreement

The agreement relation asserts that the types in the context ΓCE and the heap typing

TCE are adequate types for the values stored in the stack χCE and the heap HCE . The

definition of this relation ΓCE ,TCE 
 HCE ,χCE � is repeated in Figure 7.2. The rules

are syntax directed and therefore there is only one possible derivation for each such

statement.

In the given situation the rule (A-WLFHEAPSTACK) applies and reduces the agree-

ment to the following preconditions:

• Dom(TCE) = {ιx, ιt , ιn}= Dom(HCE) �

• HCE ,TCE 
 χCE(x)�ΓCE(x)

(≡ REFLEX)
O◦ ≡ O◦

(≤ CONG)
O◦ ≤ O◦

(A-WEAKADDR)
TCE 
 ιx ≺ O◦

(≡ REFLEX)
O◦ ≡ O◦

(≤ CONG)
O◦ ≤ O◦

(A-WEAKADDR)
TCE 
 ιn ≺ O◦

(A-STRONGADDR)
HCE ,TCE 
 ιx �μα.[val : (Int,◦),next : (α,•)]

�
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Figure 7.2 Definition: Agreement

P,T 
 n ≺ Int
(A-WEAKINT)

P,T 
 null≺ null
(A-WEAKNULL)

P( f ) = function f (x) : G′{. . .}
G ≡ G′

P,T 
 f ≺ G
(A-WEAKFUNC)

T (ι)≤ O

P,T 
 ι ≺ O
(A-WEAKADDR)

P,T 
 ι ≺ O

H(ι) =� m1 : v1, ...,mp : vp �
∀m : O(m) = (t,•)⇒∃i ∈ 1...p : m = mi ∧P,T 
 vi ≺ t

∀i ∈ 1...p : O(mi) = (t,◦)⇒ P,T 
 vi ≺ t

P,H,T 
 ι�O
(A-STRONGADDR)

Dom(T ) = Dom(H)

∀ι : T (ι) = O ⇒ P,H,T 
 ι�O

P,H,T 
 χ(this)�Γ(this)
P,H,T 
 χ(x)�Γ(x)

P,Γ,T 
 H,χ�
(A-WLFHEAPSTACK)

• HCE ,TCE 
 χCE(this)�ΓCE(this)

(≡ REFLEX)
[ ]≡ [ ]

(≤ CONG)
[ ]≤ [ ]

(A-WEAKADDR)
TCE 
 ιt ≺ [ ]

(A-STRONGADDR)
HCE ,TCE 
 ιt � [ ]

�

• ∀ι′ ∈ Dom(TCE) with TCE(ι′) = O′ : HCE ,TCE 
 ι′ �O′

The cases for ι′ = ιt and ι′ = ιx have already been handled. That leaves ιn

(≡ REFLEX)
O◦ ≡ O◦

(≤ CONG)
O◦ ≤ O◦

(A-WEAKADDR)
TCE 
 ιn ≺ O◦

(A-WEAKNULL)
TCE 
 null≺ O◦

(A-STRONGADDR)
HCE ,TCE 
 ιn �μα.[val : (Int,◦),next : (α,•)]

�

7.1.3.2 Typing

The typing relation P,Γ 
 e : t ′|Γ′ asserts that in the context Γ the expression (here

e =x.val=3) can be typed with the type t ′ (here t ′ = Int). The relation is defined via
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Figure 7.3 Definition: Type checking

P,Γ 
 n : Int
(T-CONST)

P,Γ 
 this : Γ(this)
P,Γ 
 x : Γ(x)

(T-VAR)

P,Γ 
 e1 : O|Γ′

P,Γ′ 
 e2 : t|Γ′′

O(m) = (t ′′,•)
t ≤ t ′′

P,Γ 
 e1.m = e2 : t|Γ′′
(T-ASSIGNUPD)

P,Γ 
 e2 : t|Γ′

var=e′ is not a subexpression of e2

Γ′(var) = O

O(m) = (t ′′,ψ)
t ≤ t ′′

Γ′′ = Γ′[var �→ O[m �→ (t ′′,•)]]
P,Γ 
 var.m = e2 : t|Γ′′

(T-ASSIGNADD)

P,Γ 
 e : t|Γ′

P( f ) = function f (x) : G{. . .}
t ≤ G(x)

G(this) has no • fields

P,Γ 
 new f (e) : G(ret)|Γ′

P,Γ 
 f (e) : G(ret)|Γ′

(T-CALL)

P,Γ 
 e1 : t|Γ′

P,Γ 
 e2 : t ′|Γ′′

P,Γ 
 e1;e2 : t ′|Γ′′
(T-SEQ)

inference rules. The rules needed for this example are summarised in Figure 7.3

According to those rules, the example x.val=3 can be typed as Int

(T-CONST)

ΓCE 
 3 : Int|Γ′
CE

x=e’ is not a sub-expression of 3

Γ′
CE(x) = O◦

O◦(val) = (Int,◦)
Int≤ Int

Γ′′
CE = Γ′

CE [x �→ Γ′
CE(x)[val �→ (Int,•)]]

(T-ASSIGNADD)

ΓCE 
 x.val=3 : Int|Γ′′
CE

7.1.3.3 Evaluation

The big-step evaluation relation e,H,χ � w,H ′,χ′ asserts that in the environment H,χ
the expression e can be evaluated to the value w. The evaluation is defined using the

inference rules repeated in Figure 7.4.

According to those rules, the expression x.val=3 can be evaluated to the value 3

which agrees with the behaviour of real world JavaScript engines and the typing as

Int.
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Figure 7.4 Definition: Evaluation

x,H,χ � χ(x),H,χ
(S-VAR)

n,H,χ � n,H,χ
(S-VAL)

e,H,χ � ι,H ′,χ′

e.m,H,χ � H ′(ι)(m),H ′,χ′
(S-MEMSEL)

e1,H,χ � ι,H1,χ1

e2,H1,χ1 � v,H2,χ′

H ′ = H2[ι �→ H2(ι)[m �→ v]]

e1.m = e2,H,χ � v,H ′,χ′
(S-MEMASS)

e,H,χ � v′,H1,χ′

P( f ) = function f (x){e′}
e′,H1,{this �→ null,x �→ v′}� v,H ′,χ′′

f (e),H,χ � v,H ′,χ′

(S-FUNCCALL)

e,H,χ � v′,H1,χ′

P( f ) = function f (x){e′}
ι is new in H1 and H2 = H1[ι �→��]

e′,H2,{this �→ ι,x �→ v′}� v,H ′,χ′′

new f (e),H,χ � ι,H ′,χ′
(S-NEW)

e1,H,χ � v′,H1,χ1

e2,H1,χ1 � v,H ′,χ′

e1;e2,H,χ � v,H ′,χ′
(S-SEQ)

e,H,χ � ι,H ′,χ′

H ′(ι)(m) = Udf

e.m,H,χ � stuckErr,H ′,χ′
(S-NOMEM)

(S-VAR)
x,HCE ,χCE � ιx,HCE,1,χCE,1

(S-VAL)

3,HCE,1,χCE,1 � 3,HCE,2,χ′
CE

H ′
CE = HCE,2[ιx �→ HCE,2(ιx)[var �→ 3]]

(S-MEMASS)

x.val=3,HCE ,χCE � 3,H ′
CE ,χ

′
CE

7.1.3.4 Post-state

The given derivation in the provided starting state χCE ,HCE ,ΓCE ,TCE results in the

following intermediate and post-states:

χ′
CE =χCE,1 = χCE

HCE,1 =HCE,2 = HCE

Γ′
CE =ΓCE

H ′
CE = {ιx �→� next : ιn,val : 3�

ιn �→� next : null�,

ιt �→��},
Γ′′

CE = {x �→ μα.[val : (Int,•),next : (α,•)],
this �→ [ ]}

The proof of the soundness for the case of e uses the soundness of the typing

P,ΓCE 
 3 : Int|Γ′
CE as induction hypothesis. Due to this induction hypothesis, there

exists a new heap typing T ′′
CE , for which the agreement P,Γ′

CE ,T ′′
CE 
 HCE,2,χ′

CE �
holds. Since the expression 3 does not change the state, i.e. HCE,2 = HCE ,χ′

CE =

χCE ,Γ′
CE = ΓCE , the heap typing T ′′

CE in the induction hypothesis is chosen to be T ′′
CE =

TCE .
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This concludes the discussion of the preconditions for the counter example. Since

they all hold true for the state and expression of the counter example, Theorem 1 [9] is

applicable.

7.1.4 Wrong conclusion

The two important lines in the proof for the Theorem 7.1.1 are:

Now let:

T ′ = T ′′[ι �→ T ′′(ι)[m �→ (t,•)]] (26)

From (26) and the definition of � we get:

T ′ � T ′′ (27)

Applied to the counter example CE this specialises to:

T ′
CE = T ′′

CE [ιx �→ T ′′
CE(ιx)[var �→ (Int,•)]]

and the result is the following concrete heap typing:

T ′
CE = {ιx �→ μα.[val : (Int,•),next : (α,•)]

ιn �→ μα.[val : (Int,◦),next : (α,•)]
ιt �→ [ ]}

The relation � in line (27) is the extension of � for heap typings which is defined as:

Definition 7.1.8 ([9, Definition 2,p. 61]). We say that T ′ extends T ′′ denoted by T ′ �
T ′′ iff,

• Dom(T ′′)⊆ Dom(T ′) and

• T ′′(ι) = O ⇒ T ′(ι)� O (for all addresses ι)

In particular, it requires O• = T ′(ιx)� T ′′(ιx) = O◦ which was shown incorrect in

Proposition 7.1.7. Therefore, line (27) is not correct and the claim

T ′ � T

in the results of Theorem 7.1.1 is not correct in CE for the constructed T ′. In addition

the agreement

P,Γ′,T ′ 
 H ′,χ′ �
also claimed by the theorem is invalid as it would require O◦ ≤ O•:
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(≡ REFLEX)
O• ≡ O•

(≤ EQUIV)
O• ≤ O•

(A-WEAKADDR)

T ′
CE 
 ιx ≺ O•

(A-WEAKINT)

T ′
CE 
 3 ≺ Int

�

O◦ ≤ O•
(A-WEAKADDR)

T ′
CE 
 ιn ≺ O•

(A-STRONGADDR)

H ′
CE ,T ′

CE 
 ιx �μα.[val : (Int,•),next : (α,•)]

For this simple counter example, a different (less expressive) T ′ could be con-

structed which validates the agreement. However, the following section addresses that

the example CE can be exploited to invalidate Theorem 7.1.1 independent of the choice

of T ′.

7.1.5 Full counter example

The previous section showed the wrong conclusion in the proof of the soundness the-

orem. This flaw results in a situation with inconsistent heap typing Γ′′,T ′ �
 H ′,χ′ �.

This section extends the counter example above to a full JavaScript program which

is typed as Int but correctly returns a run-time error w = stuckError. This clearly

contradicts the claim of type soundness. Since the type inference soundness has the

additional precondition of an empty starting heap, this full counter example also shows

that the crafted state HCE ,χCE ,ΓCE can be constructed from the empty state. Note that

the empty state trivially satisfies the preconditions of Theorem 7.1.1. The full code of

the counter example is as follows:

1 function element(x){

2 this.next=null;

3 this

4 }

5 function break(x){

6 x.next= new element(42);

7 x.val=5;

8 x.next.val

9 }

10 break(new element(42))

The following sections present the formal derivation of the evaluation and typing

relation.

7.1.5.1 Evaluation

The evaluation to stuckErr is proven in 3 parts. The first part evaluates the element

function; the second evaluates the break function; finally those two function deriva-
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tions are put together to form a derivation for the main function call

break(new element(42)).

element
The expression new element(42) is needed twice in this example. The following

is the evaluation of this expression parameterised by H,χ, ι. It uses the following

modified states:

χe ={this �→ ι,x �→ 42}
H2 =H[ι �→��]

H ′ =H[ι �→� next �→ null�]

The function element is defined via

P(element) = function element(x){this.next=null;this}

and therefore its evaluation can be derived as:

χe(this) = ι
(S-VAR)

this,H2,χe � ι,H2,χe

(S-VAL)
null,H2,χe � null,H2,χe

H ′ = H2[ι �→ H2(ι)[next= null]]
(S-MEMASS)

this.next=null,H2,χe � null,H ′,χe

χe(this) = ι
(S-VAL)

this,H ′,χe � ι,H ′,χe
(S-SEQ)

this.next=null;this,H2,χe � ι,H ′,χe

(S-VAL)
42,H,χ �→ 42,H,χ

ι is new in H and H2 = H[ι �→��]

.

.

.

this.next=null;this,H2,χe � ι,H ′,χe
(S-NEW)

new element(42),H,χ � ι,H ′,χ

break
The body of the function break consists of 3 statements. Each statement modifies the

heap and therefore 4 different heap states are necessary.

Hb0 = {ιx �→� next : null�} χb0 = {x �→ ιx, this �→ null}
Hb1 = {ιx �→� next : null�, ιn �→� next : null�}
Hb2 = {ιx �→� next : ιn �, ιn �→� next : null�}
Hb3 = {ιx �→� next : ιn,val : 5 �, ιn �→� next : null�}

With those states, the 3 statements can be evaluated separately as follows:

χb0(x) = ιx
(S-VAR)

x,Hb0,χb0 � ιx,Hb0,χb0

.

.

.

new element(42),Hb0,χb0 � ιn,Hb1,χb0

Hb2 = Hb1[ιx �→ Hb1(ιx)[next �→ ιn]
(S-MEMASS)

x.next=new element(42),hb0,χb0 � ιn,Hb2,χb0
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χb0(x) = ιx
(S-VAR)

x,Hb2,χb0 � ιx,Hb2,χb0

(S-VAL)
5,Hb2,χb0 � 5,Hb2,χb0 Hb3 = Hb2[ιx �→ Hb2[val �→ 5]]

(S-MEMASS)
x.val=5,Hb2,χb0 � 5,Hb3,χb0

χb0(x) = ιx
(S-VAL)

x,Hb3,χb0 � ιx,Hb3,χb0 Hb3(ιx)(next) = ιn
(S-MEMSEL)

x.next.val,Hb3,χb0 � stuckErr,Hb3,χb0 Hb3(ιn)(val) = Ud f
(S-NOMEMBER)

x.next.val,Hb3,χb0 � stuckErr,Hb3,χb0

In summary, the evaluation of the whole function body of break evaluates in the

following way:

e1,hb0,χb0 � ιn,Hb2,χb0

e2,Hb2,χb0 � 5,Hb3,χb0 e3,Hb3,χb0 � stuckErr,Hb3,χb0
(S-SEQ)

x.val=5;x.next.val,Hb2,χb0 � stuckErr,Hb3,χb0
(S-SEQ)

x.next=new element(42);x.val=5;x.next.val,Hb0,χb0 � stuckErr,Hb3,χb0

main
In order to evaluate the main expression of this example, 3 different heaps are neces-

sary. The stack is not changed throughout the whole evaluation:

H0 = {} χ0 = {x �→ 2,this �→ null}
H1 = {ιx �→� next : null�}
H2 = {ιx �→� next : ιn,val : 5�, ιn �→� next : null�}

With these states the evaluation can be derived as

...
(S-NEW)

new element(42),H0,χ0 � ιx,H1,χ0

P(break) = function break(x){eb}

...
(S-SEQ)

eb,H1,χ0 � stuckErr,H2,χ0
(S-FUNCCALL)

break(new element(42)),H0,χ0 � stuckErr,H2,χ0

Therefore, the evaluation results in stuckErr. In real world JavaScript, accessing

an undefined field of an object results in the return value undefined. This value is not

what the developer expects when accessing x.next.val and the system JST
0 aims to

find values which are different than expected. This is the reason, why JST
0 correctly

returns stuckError in this case.

7.1.5.2 Type checking

The type check for the whole example requires the following object types which co-

incide with the 4 steps to prepare the exploited object: creation of an empty object,
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assignment to next, folding into a recursive type, assignment to val

Oxe =[val : (Int,◦),next : (OL◦,◦)]
Ox◦ =[val : (Int,◦),next : (OL◦,•)]

OL◦ = μα.[val : (Int,◦),next : (α,•)]
OL• = μα.[val : (Int,•),next : (α,•)]

The proof requires the property Ox◦ ≤ OL◦ for which the reflexivity of the subtyping

relation is useful:

(≡ REFLEX)t ≡ t
(≤ CONG)

t ≤ t
OL◦ can be expressed as OL◦ = μα.M with M = [val : (Int,◦),next : (α,•)].

Therefore, (≡ UNFOLD) is applicable in

(≡ UNFOLD)
OL◦ ≡ Ox◦

(≡ SYM)
Ox◦ ≡ OL◦

(≤ CONG)
Ox◦ ≤ OL◦

since M[α/OL◦] = [val : (Int,◦),next : (OL◦,•)] = Ox◦
In order to check the type of the whole program, first the types for the functions in

P need to be validated:

element : Ge = Oxe,Int→ Ox◦

break : Gb = [],OL◦ → Int

element
Two new contexts are necessary to type the body of the function element. The first

represents the typing at the beginning of the function body where this is an empty

object. In the second, this has been expanded with the field next.

Γe0 = {x �→ Int,this �→ Oxe}
Γe1 = {x �→ Int,this �→ Ox◦}

In those contexts the body of element can be typed as Ge(ret) = Ox◦:

(T-CONST)
P,Γe0 
 null : OL◦|Γe0

this=e’ is no subexpression of null

Γe0(this) = Oxe

Oxe(next) = (OL◦,◦)
OL◦ ≤ OL◦

Γe1 = Γe0[this �→ Ox◦[next �→ (OL◦,•)]]
(T-ASSIGNADD)

P,Γe0 
 this.next=null : OL◦|Γe1

Γe1(this) = Ox◦
(T-VAR)

P,Γe1 
 this : Ox◦|Γe1
(T-SEQ)

P,Γe0 
 this.next=null;this : Ox◦|Γe1
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This verifies the function type Ge for the function element.

break
Two new contexts are used to type the function body break. The first is the entrance

context for this body and in the second the object x has been extended by the field val:

Γb0 ={x �→ OL◦,this �→ [ ]}
Γb1 ={x �→ OL•,this �→ [ ]}

The typing derivations for the three statements in this function body are presented

separately:

Γb0(x) = OL◦
(T-VAR)

Γb0 
 x : OL◦|Γb0

Ox◦ ≤ OL◦
OL◦(next) = (α,•)[OL◦/α] = (OL◦,•)

(T-CONST)
Γb0 
 42 : Int|Γb0

Int≤ Int

P(element) = function element(x) : Ge{...}

Ge(this) has no • fields
(T-CALL)

Γb0 
 new element(42) : Ox◦|Γb0
(T-ASSIGNEUPD)

Γb0 
 x.next=new element(42) : Ox◦|Γb0

(T-CONST)
Γb0 
 5 : Int|Γb0

Int≤ Int

x=e’ is no subexpression of 5

Γb0(x) = OL◦
OL◦(val) = (Int,◦)

Γb1 = Γb0[x �→ OL◦[val �→ (Int,•)]]
(T-ASSIGNADD)

Γb0 
 x.val=5 : Int|Γb1

Γb1(x) = OL•
(T-VAR)

Γb1 
 x : OL•|Γb1 OL•(next) = (α,•)[OL•/α] = (OL•,α)
(T-MEMACC)

Γb1 
 x.next : OL•|Γb1 OL•(val) = (Int,•)
(T-MEMACC)

Γb1 
 x.next.val : Int|Γb1

Due to the rule (T-SEQ), the whole function body can be typed as Int which verifies

the function type Gb for the function break.

Finally, the main expression break(new element(42)) can be typed as Int.

(T-CONST)
Γ 
 42 : Int|Γ

Int≤ (Int= Γ(x))
Ge(this) has no • fields

P(element)= function element(x):Ge{...}
(T-CALL)

Γ 
 new element(42) : Ox◦|Γ

Ox◦ ≤ OL◦
Gb(this) has no • fields

P(break)= function break(x):Gb{...}
(T-CALL)

Γ 
 break(new element(42)) : Int|Γ

This shows that the code of the counter example is types as Int.

In summary, this section presented a full JavaScript program which can be evalu-

ated to a stuckError starting in the empty state, but is typed as Int in JST
0 . In contrast

to the first small counter example, this is independent of the choice of T ′ and therefore

shows the type checking rules of JST
0 unsound.
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7.1.6 Other weaknesses in JST
0

In [9] Chapter 3.2, the author remarks that multiple parameters can be modelled as

fields in one parameter object. This translation is equivalent for the semantics. How-

ever, the type system allows object types to be extended with additional fields. The

types of the members of object types always have to stay congruent, which requires

the structure to remain unchanged throughout the execution. So, if a function is imple-

mented with multiple parameters, each parameter has a separate object type and can

be dynamically extended by assigning a value to a potential field. Using the parameter

block object, the block itself can be extended but each parameter must keep its struc-

ture and can therefore not be extended. This weakness is not significant since it should

not be difficult to extend the type system to handle functions with multiple parameters

by other means.

7.2 Fixing soundness

The type inference algorithm in [9] is defined separately from the type checking rules.

Theorem 7.2.1 then connects type checking with type inference by proving that the

result of the type inference algorithm also satisfies the type checking relation:

Theorem 7.2.1 ([9, p. 96]). Checking inferred types

For program a P, expression e, pre-environment γ, solution S, if:

γ 
 e : �|γ′|C
S 
C

S,P 
 e

P= T (P,S)

Γ = Γgen(γ,S)

Γ′ = Γgen(γ′,S)

then there exists t such that:

P,Γ 
 e : t|Γ′

t ≤ S(���)

In order to understand the parts of this theorem, it is necessary to understand the la-

bels added by the type inference. During the inference, different states of the variables
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are treated with different types. Take, for example, the expression x.m=4 which adds

the field m to the variable m. In this case the type for x before and after the expression

has to be reasoned about differently. To distinguish the different states of the variables

the type inference adds unique identifiers as labels to variables. In the example, the

type of x before the assignment x.m=4 might be stored in the type variable xl . After-

wards a new label l′ is used with the type variable xl′ . With this in mind, the theorem

speaks about the following constructs:

• The pre-environment γ is a mapping from each variable name to its current label.

This identifies the type-variable to be used for this variable in the current typing

environment.

• � is the labeled expression corresponding to e, where each occurrence of each

variables has been labeled.

• The solution S maps labeled type-variables to full types.

• The function Γgen(γ,S) uses the solution S to complete the pre-environment γ
into an environment {this �→ S(this_γ(this)),x �→ S(x_γ(x))}.

• The function T (P,S) adds the function-types to the function definitions in the

program P according to the solution S to obtain the types program P.

The preconditions (see [9] for formal definitions) intuitively assert the following:

• γ 
 e : �|γ′|C: In the pre-environment the expression e can be labeled as � and

produce the new pre-environment γ′ and the constraints C during execution.

• S 
C: The solution S solves all the constraints in C.

• S,P 
 e: All functions occurring in e are defined in P and typed consistent with

the solution S.

The main claim of the theorem is that the expression e can be type checked with a

subtype of the result of the type inference algorithm.
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7.2.1 Relation between type checking and type inference

The proof for this theorem contains a similar fault as in the type checking soundness

theorem: Consider again the expression x.val=3 in the solution

S : x_1 �→ μα.[val : (Int,◦),next : (α,•)]
x_2 �→ [val : (Int,•),next : (μα.[val : (Int,◦),next : (α,•)],•)]

The labels 1,2 here are the labels for the variable x before and after the evaluation of

x.val=3. The type for x_1 has a state ◦ for the field val before the expression. After

the execution the state in the new type x2 has changed to • and the field next has been

unfolded.

For this state the proof derives the facts:

S(�x_1�)(val) = (t ′′,ψ) with t ′′ = Int (73)

S(�x_2�)(val) = (t ′′′,•) with t ′′′ = Int (75)

∀m′ �= val : S(�x_2�)(m′)≡ S(�x_1�)(m′) (77)

S(�x_2�)(val)≤ S(�x_1�)(val) (78)

t ′′ ≡ t ′′′ (80)

In the considered example, all these facts are true:

• (77): The only other candidate for m′ is m′ = next and

S(�x_1�)(next) = α[α/S(�x_1�)]

= μα.[val : (Int,◦),next : (α,•)]
= S(�x_2�)(next)

• (78): S(�x_2�)(val) = (Int,•)≤ (Int,◦) = S(�x_1�)(m) with m = val

• (80): t ′′ = t ′′′ = Int and therefore trivially t ′′ ≡ t ′′′

Line (91) then states:

From (77),(78),(73) and (80) we get:

S(�var_l′�) = S(�var_l�)[m �→ (t ′′,•)] (91)



7.2. Fixing soundness 205

which applied to the considered example amounts to

S(�x_2�) = S(�x_1�)[val �→ (Int,•)]

with the following values obtained from the solution S

S(�x_2�) = [val : (Int,•),next : (μα.[val : (Int,◦),next : (α,•)],•)]
S(�x_1�)[val �→ (Int,•)] = μα.[val : (Int,•),next : (α,•)]

The two types are obviously not equal. In the proof congruence would suffice, but

since the types of the field next are not congruent (see Proposition 7.1.4), congruence

does not hold, either:

S(�var_2�)(next) = μα.[val : (Int,◦),next : (α,•)]
S(�var_1�)[val �→ (Int,•)](next) = α[α/S(�var_1�)[val �→ (Int,•)]]

= μα.[val : (Int,•),next : (α,•)]

As a result, the proof of correspondence between type inference and type checking

is broken as well. Fortunately, those two faults seem to cancel each other out and

therefore the broken rule (T-ASSIGNADD) can be fixed imitating the inference rule

(CG-ASSIGNADD).

7.2.2 Corrected inference rule

The corresponding type inference rule to the type checking rule (T-ASSIGNADD) is

(CG-ASSIGNADD)

γ 
 e : �|Γ′′|C′

γ′′(var) = l

l′ �∈ γ′′(lab)

γ′ = γ′′[var �→ l′, lab �→ (γ′′(lab)∪{l′})]
var = e′ is not a subexpression of e2

C = {�var_l�≤ [m : (�var_l.m�,◦)],
�var_l′�≤ [m : (�var_l′.m�,•)],

�var_l′��m �var_l�,

���≤ �var_l′.m�,
���≤ �var_l′.m = ��}

γ 
 var.m = e : var_l′.m = �|γ′|C∪C′
(CG-ASSIGNADD)
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The main difference to (T-ASSIGNADD) is that the rule (CG-ASSIGNADD) uses the

constraint �var_l′��m �var_l� to specify the fields of the extended object. In contrast,

(T-ASSIGNADD) declares the new type directly using Γ′′ = Γ′[var �→ O[m �→ (t ′′,•)]]
and therefore simply copies all remaining fields m′ �= m which causes the erroneous

result. The constraint approach can be directly ported to the type checking rule. Define

the constraint �m as abbreviation of the following set of subtyping and congruence

relations:

∀m′ �= m : O′(m′)≡ O(m′)
O′(m)≤ O(m)

O′ �m O
(�m OBJ)

With this definition, the broken rule (T-ASSIGNADD) can be modified to

P,Γ 
 e2 : t|Γ′

var=e′is not a subexpression of e2

Γ′(var) = O

O(m) = (t ′′,ψ)
t ≤ t ′′

O′ �m O

Γ′′ = Γ′[var �→ O′]

P,Γ 
 var.m = e2 : t|Γ′′
(T-ASSIGNADD*)

The proof of soundness can be corrected in a similar way. Instead of constructing

the new heap typing T ′ by assignment, it can be constructed as

T ′ = T ′′[ι �→ O′] with O′ �m O

Such a type O′ can always be constructed: if the type O is recursive and therefore of

the form μα.M, then unfold one step to make the type not recursive on the outer most

level M[α/μα.M]. After that the state of m can be modified to • if necessary since

modifying the fields of this new object does not interfere with the deeper structure of

the object.

For this new construction of T ′, the fact T ′ � T ′′ in the soundness proof (line (27),

p.66) now holds:
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Lemma 7.2.2 ([9, (27)p. 66]). Extension soundness

Given

T ′′[ι] = O

T ′ = T ′′[ι �→ O′] with O′ �m O

it holds that

T ′ � T ′′.

Proof. By the definition of T ′ it is clear that ι ∈ Dom(T ′). The precondition ensures

ι ∈ Dom(T ′′). All other addresses are not changed in T ′ in comparison to T ′′ and

therefore Dom(T ′) = Dom(T ′′). Since only ι has been changed, all that remains to be

shown is that T ′(ι)� T ′′(ι), which reduces to O′ � O.

By Definition of �m it holds

O′(m)≤ O(m)

∀m′ �= m.O′(m′)≡ O(m′)

Since the 3 relations Udf ≡ t, Udf ≤ t and t ≤ Udf are only true for t = Udf , it is

obvious that O(m) = Udf ⇔ O′(m) = Udf . For m O′(m)≤ O(m) is given by O′ �m O.

For every other m′ �=m, the relation O′(m′)≡O(m′) holds due to O′�m O. That induces

O′(m′) ≤ O(m′) by the rule (≤ CONG). Together this proves O′(m′′) ≤ O(m′′) for all

m′′ ∈ Dom(O) and therefore O′ � O , which concludes the proof.
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Conclusion

8.1 Summery

In this thesis I documented the results of my research into quantitative bounds on the

resource consumption of apps written in JavaScript. The presented research imposes

bounds restricting the app to a finite number of resource accesses instead of granting

unrestricted access. To capture the resource behaviour of modern apps, the bounds

depend on the size of data structures and on the way and extend the user interacts

with the user interface of the app. With these properties a policy can differentiate

legitimate functionality from unreasonable resource usage. The current access control

for resources on mobile phones based on permissions is not fine-grained enough to

make this distinction.

As a side-effect, the interaction dependent bounds intuitively describe the func-

tionality of the app. For example, with a button policy allowing one send message per

click on the button “Send” a user can assume the app has a messaging feature. Poli-

cies for multiple resources can quickly establish a comprehensive image of the feature

set of the app. This interaction-centric description of the functionality of an app can

amend or replace the free form description provided by the developer in the Google

Play Store.

Based on previous research, I have developed two different systems to produce

such bounds with different properties.

The dynamic system PhoneWrap presented in Chapter 4 enforces given bounds

during runtime. This is achieved by inserting a wrapping script at the top of the app’s

HTML file, which overwrites all resource consuming APIs with an instrumented ver-

sion. The instrumented APIs first check the given policy and, if the allowed resource

209
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access is exceeded, a deny behaviour is executed instead of the requested API. The

bounds enforced by PhoneWrap are described in terms of tickets, which each grant

one-time access to the resource. The policy describes how many tickets the function-

ality triggered by each UI element requires and generates exactly the specified amount

for each user interaction with each link, button, checkbox or dialog. This way, the

enforced bounds on the resource consumption are interaction and context dependent.

PhoneWrap can insert given policies automatically into PhoneGap apps for Android

downloaded from the Google Play store. The injected app can be executed on an un-

modified Android device and is limited by the resource bound specified in the policy.

PhoneWrap can be used by experienced device users to insert individualised resource

bounds. Alternatively, third party policy authors can publish the modified app pack-

age or the policy file such that users can use PhoneWrap and insert the wanted policy

themselves.

Via the runtime enforcement PhoneWrap only considers the resource usage of the

executed path and the actually consumed resources. The policy can alter the behaviour

of the app, if the bound is exceeded. This way it can restrict potentially malicious

apps to execute the wanted functionality without allowing access to the resource for

unwanted part of the app. A malicious app might still abuse the granted tickets. How-

ever, in that case the missing functionality is an indicator for the abuse and the damage

is limited by the tickets. Another advantage of the runtime monitoring is that dynamic

features of JavaScript, like the eval function are guarded by the policy as any other

code. The system has been successfully verified on a set of real world Android apps

and was able to correct the resource behaviour in one case.

The injection scripts of PhoneWrap are Android specific, but the written policies

are platform independent for all PhoneGap apps and the wrapper script enforces a

given policy in any JavaScript environment.

The system AmorJiSe statically derives bounds on the resource behaviour of the

given JavaScript code. The types and typing rules of AmorJiSe are formally specified

in Chapter 6 and the correctness of the resulting bounds is proven mathematically in

relation to the formalised evaluation rules. Thus, the resulting bounds hold without

the need to trust a third party implementation. As static type system AmorJiSe is able

to analyse programs before execution and over-approximates all possible runtime ex-

ecutions of the original code. This changes neither the behaviour nor the performance

of the code. During analysis the inference of the resource annotations is reduced to a

Linear Programming Problem, which can be solved by conventional solvers in polyno-
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mial time. Given the full resulting types, the correspondence to the analysed code and

the correctness of the annotations can be checked without solving the full LPP. There-

fore, the types qualify as digital evidence. They can be generated by a third party and

checked even on a smaller device like a phone without the need to trust the evidence

creator .

The types of AmorJiSe build upon existing data types which describe the data

structure of the values. Depending on the choice of this underlying system the type

inference can have different properties. However, the annotations added to the data

types are in any case inferred without the need to read or edit the analysed code. I have

discussed different candidates for the underlying type system in Chapter 5 and used

JST
0 for an implementation. While working with the system JST

0 , I identified faults in

the soundness proof of its type checking and in the connection between type checking

and type inference. In Chapter 7 I discussed a counter examples in details and proposed

a solution fixing both errors. With the corrected rules, I have proven the correctness of

the faulty proof steps in the original proof.

The core of JavaScript AmorJiSe analyses is platform independent. Therefore,

AmorJiSe is not restricted to Android or mobile apps in general.

The two systems PhoneWrap and AmorJiSe provide similar bounds. The reserved

resource units within AmorJiSe types are in many ways equivalent to the tickets granted

in PhoneWrap policies. The API policies specified for PhoneWrap can be directly

translated into API types in the initial typing context for AmorJiSe. The tickets granted

initially in PhoneWrap correspond to the constant resource usage in the typing judge-

ment of AmorJiSe and the bounds specified in PhoneWrap’s interaction dependent

policies can be extracted from the function types of the event handlers in the typing

context resulting from AmorJiSe.

Due to their different properties, each system is preferable in different situation.

AmorJiSe can be used before installation to verify the absence of malicious behaviour

or compare the resource requirements of different apps. PhoneWrap, on the other hand,

can be used to suppress potentially included malicious behaviour or disable parts of the

functionality of the app.

8.2 Further work

There is a number of ways in which the presented systems could be extended.

The dependence of the bounds on user interaction events is motivated by use cases.
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However, there is nothing special about user event and the systems could easily be

extended to additional events like lowbattery, online or time. This leads to a new

set of possible policies. With PhoneWrap an app could be restricted not to use the data-

connection when the battery is low, only to send messages when Internet messaging is

not available or to access the location at most once per hour.

Another area of research would be the combination of the two systems. The re-

sults of the two different systems could be used to enhance each other in different

ways. First of all the individual results can be used to reduce the disadvantages of the

other system: The bounds inferred by AmorJiSe are mathematically guaranteed. If

AmorJiSe is able to proof a bound requested in the PhoneWrap policy the enforcement

code of PhoneWrap can be omitted and the runtime overhead reduced. The other way

round, AmorJiSe should be able to type an app injected with the PhoneWrap system to

produce a mathematical proof of a bound reasonably close to the requested bound.

Ideally the two methods should be integrated, such that AmorJiSe analyses an app

with a target bound. If this bound cannot be achieved statically in certain places, for

example, for the eval function, it inserts dynamic enforcement code and type checks

the enforced code. With the partial static information about the resource consumption,

the dynamically enforced bounds can be chosen to suit the bound inference. This

hybrid resource analysis would provide mathematically proven bounds with runtime

enforcement only where necessary.
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PhoneWrap code

1 (function() {

2 var original = {};

3 var policy;

4 var handlers = null; // list of handlers attached to deviceready

5 var expecting_deviceready = true;

6

7

8 // initialize policy ---------------------

9 policy = {}

10 //----------------------------------------

11

12 // var policy_creation = true;

13 //Default values

14 if (typeof policy.blockAll === "undefined") policy.blockAll = false;

// if true no accesses are granted no matter what the tickets say.

15 if (typeof policy.allowAll === "undefined") policy.allowAll = false; //

if true all accesses are granted no matter what the tickets say (unless

blockAll)

16 if (typeof policy.generate === "undefined") policy.generate = true; //

used internally: if false does not generate any new tickets

17 if (!policy.mperms) policy.mperms = 0;

18 if (!policy.buttons) policy.buttons = [];

19 if (!policy.deny) policy.deny = function()

{};

20 if (!policy.guard) policy.guard = [];

21 if (!policy.guard_exec) policy.guard_exec = [];

22 if (!policy.guard_require) policy.guard_require = [];

23

24 policy.mperms_local = 0;

25 policy.mperms_global = policy.mperms;

26 delete policy.mperms;

27

28 var deviceReadyFired = false; //log if device ready was fired and don’t fire

it again.

29

30

31 original.addEventListener = document.addEventListener;
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32 original.dispatchEvent = document.dispatchEvent;

33

34 //ToBE stored

35 // hasOwnProperty , typeof?, alert , apply?, call?, length , split , indexof ,

hasAttribute , getAttribute , match , toString?, toNummeric

36

37 var exec_guarded = function(f,f_this ,f_arguments) {

38 var allowed_global = (policy.mperms_global > 0);

39 var allowed_local = (policy.mperms_local > 0);

40 var perms_pre;

41 if (!policy.blockAll) {

42 if (policy.allowAll) {

43 var back = f.apply(f_this ,f_arguments);

44 //alert("original function executed");

45 return back;

46 }

47 if (allowed_local) {

48 perms_pre = policy.mperms_local;

49 var back = f.apply(f_this ,f_arguments);

50 policy.mperms_local = perms_pre -1; //only ever decrease by 1, even if wrapped

by this policy multiple times

51 return back;

52 }

53 if (allowed_global) {

54 perms_pre = policy.mperms_global;

55 var back = f.apply(f_this ,f_arguments);

56 policy.mperms_global = perms_pre -1; //only ever decrease by 1, even if

wrapped by this policy multiple times

57 return back;

58 }

59 }

60 return policy.deny(f_this ,f_arguments);

61 }

62

63 var guard_API=function(orig) {

64 return function() {

65 return exec_guarded(orig ,this,arguments);

66 }

67 }

68 var guard_exec = function(clas ,meth) {

69 var ce;

70 if ((typeof Cordova !== ’undefined’) && (’exec’ in Cordova) ) {

71 ce = Cordova.exec;

72 }

73 if ((typeof cordova !== ’undefined’) && (’exec’ in cordova) ) {

74 ce = cordova.exec;

75 }

76 if ((typeof PhoneGap !== ’undefined’) && (’exec’ in PhoneGap) ) {

77 ce = PhoneGap.exec;

78 }

79 if (typeof ce === ’undefined’) {

80 //alert(’exec not found ’);

81 return;
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82 }

83 //alert ("wrapping " + clas + ", " + meth);

84

85 wrapped_exec = function() {

86 if ( ( arguments[2] == clas) && (arguments[3] == meth) ) {

87 return exec_guarded(ce,this,arguments);

88 } else {

89 return ce.apply(this,arguments);

90 }

91 };

92 if (typeof Cordova !== ’undefined’) Cordova.exec = wrapped_exec;

93 if (typeof cordova !== ’undefined’) cordova.exec = wrapped_exec;

94 if (typeof PhoneGap !== ’undefined’) PhoneGap.exec = wrapped_exec;

95 };

96

97 var guard_require = function(plugin ,meth) {

98 if (typeof cordova === ’undefined’) return;

99 if (typeof cordova.require === ’undefined’) return;

100

101 var orig_req = cordova.require;

102

103 cordova.require = function() {

104 var api_obj = orig_req.apply(this,arguments);

105 if (arguments[0] === plugin) {

106 if (typeof api_obj[meth] === ’undefined’) {

107 alert(meth + " not found in plugin " + plugin);

108 } else {

109 //find exact location:

110 var iter = api_obj;

111 while (!iter.hasOwnProperty(meth)) iter = iter.__proto__

112 iter[meth] = guard_API(iter[meth]);

113 }

114 }

115 return api_obj;

116 }

117 }

118

119 var wrap_APIs = function() {

120 for (var i=0;i<policy.guard.length;i++) {

121 var iter = window;

122 var last = window;

123 var path = policy.guard[i].split(".");

124 var found = true

125 for (var j=0;j<path.length;j++) {

126 if (path[j] in iter) {

127 last = iter;

128 iter = iter[path[j]];

129 } else {

130 found = false;

131 break;

132 }

133 }

134 if (found) {
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135 //alert("wrapping " + path);

136 last[path[j-1]] = guard_API(iter);

137 } else {

138 //alert(’not found ’ + path);

139 }

140 }

141 if (typeof navigator !== ’undefined’) {

142 if (typeof navigator.notification !== ’undefined’) {

143 if (typeof navigator.notification.confirm !== ’undefined’) {

144 // alert("wrapping dialog")

145 navigator.notification.confirm = guard_dialog(navigator.notification.

confirm);

146 } //else alert("confirm not found");

147 } //else alert("notification not found");

148 } //else alert("navigator not found")

149 }

150 var wrap_exec = function() {

151 for (var i=0;i<policy.guard_exec.length;i++) {

152 var cm = policy.guard_exec[i].split(".");

153 guard_exec(cm[0],cm[1]);

154 }

155 }

156

157 var wrap_require = function() {

158 // alert("Wrapping require apis");

159 for (var i=0;i<policy.guard_require.length;i++) {

160 var cm = policy.guard_require[i].split(".");

161 guard_require(cm[0],cm[1]);

162 }

163 }

164

165 wrap_exec();

166 wrap_APIs();

167 wrap_require();

168

169 original.addEventListener.call(document ,

170 ’deviceready’,

171 function() {

172 // alert("deviceready received");

173 deviceReadyFired = true;

174 //Do the wrapping: ----------------------------------------

175 wrap_APIs();

176 wrap_exec();

177 wrap_require();

178 // -------------------------------------------------------

179

180 expecting_deviceready = false;

181 // call hold back handlers

182 var h = handlers;

183 while (h!== null) {

184 h.args[1].apply(h.this,arguments);

185 h=h.next;

186 }
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187 //call hold back handlers by the cordova ’addEventListener’

188 h = document.addEventListener.getHandlers();

189 while (h !== null) {

190 try {

191 h.args[1].apply(h.this,arguments);

192 }

193 finally {

194 h=h.next;

195 }

196 }

197 }, true

198 );

199

200 var policy_mark;

201 // listen whether additional libraries are inserted

202 var observer=new MutationObserver(function (mutations) {

203 for (var i=0;i<mutations.length;i++) {

204 if (!mutations.hasOwnProperty(i)) continue;

205 var mutation = mutations[i];

206 if (mutation.type === "childList") {

207 if (!mutation.addedNodes) continue;

208 for (var j=0;j<mutation.addedNodes.length;j++) {

209 if (!mutation.addedNodes.hasOwnProperty(j)) continue;

210 var node = mutation.addedNodes[j];

211 if (typeof node.tagName === "undefined") continue;

212 if (node.tagName.toLowerCase() == "script") {

213 //alert("script added: " + node.getAttribute("src"));

214 wrap_APIs();

215 wrap_exec();

216 wrap_require();

217 //duplicate deviceready event to make sure it arives even in old versions of

Phonegap

218 document.addEventListener("deviceready",function() {if (!deviceReadyFired){

deviceReadyFired = true; document.dispatchEvent(new Event(’deviceready’)

);}});

219 } else if (policy_mark) {

220 var pol = eval_policy(node);

221 if ( policy_active(pol) ){

222 node.style.borderStyle = "solid";

223 node.style.borderColor = "red";

224 node.style.borderWidth = "5px";

225 }

226 }

227 }

228 } else if (mutation.type === "attributes") {

229 var node = mutation.target;

230

231 var pol = eval_policy(node);

232 if (policy_active(pol)) {

233 node.style.borderStyle = "solid";

234 node.style.borderColor = "red";

235 node.style.borderWidth = "5px";

236 }
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237 }

238 }

239 });

240 var config = {subtree: true, childList: true};

241 if (policy_mark) config.attributes=true;

242 observer.observe(document ,config);

243

244 //Wrap confirmation dialogs

245 var guard_dialog=function(orig) {

246 return function() {

247 //save button lables

248 var buttonlables = [ "OK","Cancel"];

249 if (arguments.hasOwnProperty(3)) {

250 buttonlables = arguments [3];

251 if (typeof buttonlables == ’string’) {

252 buttonlables = buttonlables.split(’,’); //old version took buttons as

comma sep list

253 }

254 }

255

256 var orig_callback = arguments [1];

257 var new_callback = function(buttonIndex) {

258 //Go through all the possible confirmable tickets

259 var buttonText = buttonlables[buttonIndex -1];

260 // alert(buttonText);

261 for (var i=0; i<policy.confirmable.length; i++) {

262 if (!policy.confirmable.hasOwnProperty(i)) continue;

263 var cable = policy.confirmable[i];

264 if (cable.buttons.indexOf(buttonText) > -1) {

265 if (cable.local) {

266 policy.mperms_local += cable.mperms;

267 alert("Policy granted locally: " + policy.mperms_local);

268 } else {

269 policy.mperms_global += cable.mperms;

270 alert("Policy granted globally: " + policy.mperms_global);

271 }

272 }

273 }

274 //Delete all confirmables (They had their chance)

275 policy.confirmable = [];

276 //Execute original Callback

277 orig_callback.apply(this,arguments);

278 }

279

280 //Execute original dialog

281 arguments[1] = new_callback;

282 return orig.apply(this,arguments);

283 }

284 }

285

286

287

288 //Wrap inputs --------------------------------------------------
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289 var iter = document;

290 while (iter.__proto__.addEventListener) {iter = iter.__proto__;}

291

292 //wrap dispatchEvent

293 iter.dispatchEvent = function() {

294 var ret;

295 var is_click = (arguments [0].type === "click");

296 if (is_click) {

297 var old = policy.generate;

298 policy.generate = false;

299 }

300 ret = original.dispatchEvent.apply(this,arguments)

301 if (is_click) {

302 policy.generate = old;

303 }

304 };

305

306 /* expected return: Object containing

307 - mperms_local : the number of local tickets to be granted

308 - mperms_global: the number of global tickets to be granted

309 - confirm: list of confirmable tickets. Each element in the list is an

object with the following properties:

310 - buttons: list of captions of buttons , that confirm this ticket

311 - mperms: number of tickets that can be confirmed

312 - local: BOOLEAN specifying whether these tickets will be local or global

313 - (optional) allowAll: new value for the allowAll parameter of the policy

314 - (optional) blockAll: new value for the blockAll parameter of the policy

315 */

316 var eval_policy = function(target) {

317 var pol = {mperms_local:0,mperms_global:0,confirm :[]};

318 for (var i=0;i<policy.buttons.length;i++) {

319 var applies = true;

320 var button = policy.buttons[i];

321 if (typeof button.cond === "undefined") button.cond = [];

322 for (var crit in button.cond) {

323 if (!target.hasAttribute(crit)) {

324 applies = false;

325 break;

326 }

327 var tcrit = target.getAttribute(crit);

328 var pcrit = button.cond[crit];

329 if (typeof button.match !== "string")

330 button.match = "exact";

331 switch (button.match) {

332 case "exact":

333 if (tcrit !== pcrit)

334 applies = false;

335 break;

336 case "different":

337 if (tcrit === pcrit)

338 applies = false

339 break;

340 case "contains":
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341 if (tcrit.indexOf(pcrit) === -1 )

342 applies = false;

343 break;

344 case "regex":

345 if (! tcrit.match(pcrit) )

346 applies = false;

347 break;

348 case "begins":

349 if (tcrit.indexOf(pcrit) !== 0 )

350 applies = false;

351 break;

352 case "ends":

353 if (tcrit.indexOf(pcrit , tcrit.length - pcrit.length) === -1)

354 applies = false;

355 break;

356 default:

357 applies = false;

358 }

359 }

360

361 if (applies) {

362 var b_mperms = button.mperms;

363 // update allowAll and blockAll if neccessary:

364 if (typeof button.allowAll !== ’undefined’) {

365 if (typeof pol.allowAll === ’undefined’) {

366 pol.allowAll = button.allowAll;

367 } else {

368 pol.allowAll = pol.allowAll && button.allowAll;

369 }

370 }

371 if (typeof button.blockAll !== ’undefined’) {

372 if (typeof pol.blockAll === ’undefined’) {

373 pol.blockAll = button.blockAll;

374 } else {

375 pol.blockAll = pol.blockAll || button.blockAll;

376 }

377 }

378 // correct b_mperms depending on type of target

379 if (button.checkbox) { //defined and trueish

380 if (typeof target.checked === ’undefined’) b_mperms = 0; // target is not

what the policy asked for

381 else if (!target.checked) b_mperms = -b_mperms; // target

has been unchecked -> retract tickets

382 }

383 // add tickets to the correct pile in pol

384 if (button.hasOwnProperty("confirm")) {

385 //If the mperms need to be confirmed , save the condition and number

386 var cable = {buttons:button.confirm ,mperms:b_mperms}; // new confirmable

387 if (typeof button.local !== "undefined") cable.local = button.local;

388 pol.confirm.push(cable);

389 } else {

390 if (!policy.generate) continue;

391 if (button.local) //defined and trueish
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392 pol.mperms_local += b_mperms;

393 else

394 pol.mperms_global += b_mperms;

395 }

396 }

397 }

398 return pol;

399 };

400

401 var policy_active= function(pol) {

402 if (pol.mperms_local !== 0) return true;

403 if (pol.mperms_global !== 0) return true;

404 if (typeof pol.allowAll !== "undefined") return true;

405 if (typeof pol.blockAll !== "undefined") return true;

406 if (typeof pol.confirm !== "undefined")

407 if (pol.confirm.length > 0) return true;

408 return false;

409 }

410

411 var policy_creation;

412 var exec_policy= function(target) {

413 if (policy_creation) alert("pressed \n" + htmlElement2string(target));

414

415 var pol = eval_policy(target);

416 var granted = false;

417

418 policy.mperms_global += pol.mperms_global;

419 policy.mperms_local += pol.mperms_local;

420 if ( (pol.mperms_local !== 0) || (pol.mperms_global !== 0) ) alert("Policy

granted: total (" + policy.mperms_global + "," + policy.mperms_local + ")");

421 window.setTimeout(function() {policy.mperms_local = 0},0);

422

423 if (typeof pol.allowAll !== "undefined") {

424 policy.allowAll = pol.allowAll;

425 alert("Policy activated: allowAll =" + policy.allowAll);

426 }

427

428 //store confirmable tickets

429 if (pol.confirm.length > 0) {

430 alert("Policy awaits confirmation");

431 policy.confirmable = pol.confirm;

432 }

433 }

434

435 //listen for all click events at the root of DOM

436 original.addEventListener.call(document ,’click’,function(event){exec_policy(

event.target)},true);

437

438 //Auxiliary functions for policy creation

439 function htmlElement2string(h) {

440 var attrs = h.attributes;

441 if (attrs.length == 0) return "";

442 var str = attrs[0].nodeName + ":" + attrs[0].nodeValue;
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443 for (var i = 1;i<attrs.length;i++) {

444 if (!attrs.hasOwnProperty(i)) continue;

445 str = str + "\n" + attrs[i].nodeName + ":" + attrs[i].nodeValue;

446 }

447 return str;

448 }

449 })();



Appendix B

PhoneWrap policy specification

• mperms: Specifies the number of tickets the application is granted at launch. If

this value is not specified in the policy, the default value is 0.

• allowAll: a Boolean specifying whether to allow access to the resource inde-

pendent of the remaining tickets. If this parameter is set to true, no tickets are

consumed and access is granted to all requests. If it is false, the normal ticket

policy is in place. Since it can be set on button press, this can specify default

policies as specified on page 52. The default value of this parameter is false.

• blockAll: a Boolean specifying whether to block access to the resource inde-

pendent of the remaining tickets. If this parameter is set to true, all access is

blocked and no tickets are consumed. If it is false, the normal ticket policy is in

place. If both allowAll and blockAll are set, all access is blocked as this is the

fail-safe behaviour. The default value of this parameter is false.

• buttons: Contains the specification for the interaction dependent policy. The

value of this field is a list (JSON array) of button policies. Each button spec-

ification is again an object with the following fields. If no button policies are

given, the empty list is assumed for buttons, which results in an interaction

independent policy.

– cond: a list of key-value pairs specified as a JSON object. A DOM element,

which owns all of the specified attributes with the matching values will be

effected by this button policy and generate the specified number of tickets

for every click event. The default for this parameter is the empty set of

conditions, which means every element will generate tickets on click.

223
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– mperms: the number of tickets granted for each click event on the applica-

ble DOM element

– match: a string that specifies how the values stored in cond are compared

with the value of the DOM elements. Possible values are:

∗ “exact”: The two values need to be equal.

∗ “different”: Tickets are generated if the element’s value does not equal

the value specified in the policy.

∗ “contains”: Tickets are generated if the element’s value contains the

value specified in the policy as substring.

∗ “begins”: Tickets are generated if the element’s value starts with the

policy’s value.

∗ “ends”: Tickets are generated if the element’s value ends with the

value specified in the policy.

∗ “regex”: The string specified in the policy is interpreted as a Java-

Script regular expression and tickets are generated if the element’s

value matches this regular expression.

The default value for match is “exact”.

– checkbox: Boolean which specifies whether this DOM element is to be

treated as a checkbox. Checkboxes generate tickets, when they get checked,

but deduct the same amount of tickets, when they get unchecked.

– confirm: contains a list of strings. The tickets generated by this button

policy are only granted, if the user afterwards confirms the action with a

click on a button with one of the specified strings as caption in a confir-

mation dialog. If this parameter is not specified tickets are granted without

confirmation.

– allowAll: a Boolean which specifies if after the click on the applicable

buttons all accesses to the resource should be allowed. If set, the value of

this parameter is copied into the allowAll parameter of the policy after this

button has been pressed.

– blockAll: a Boolean which specifies if after the click on the applicable

buttons all accesses to the resource should be blocked. If set, the value of

this parameter is copied into the blockAll parameter of the policy after this

button has been pressed.
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– local: a Boolean which specifies the expiration of the tickets generated by

applicable buttons. If set to true, the tickets are deleted after all handlers of

this button have been executed. If set to false, the tickets generated by this

button can be used at any point after the button press.

• guard: a list of APIs to be included in this policy. Each call to the specified

functions will be reflected by a decrease of the counter. Each API function to

be guarded is specified as string. The usual JavaScript “.” notation to access

object fields is used. If this parameter is omitted, no APIs will be effected by

this policy. More details on this follow in Section 4.3.1.

• guard_exec: a list of calls to exec that will be governed by this policy. Each

call to exec with these parameters will be reflected in the policy state by a de-

crease of the ticket counter. Each element in the list is represented as string and

specifies the governed class and method separated by “.”. For example the pa-

rameter “SMSPlugin.send” specifies to guard the method send of the Java class

SMSPlugin. If this parameter is omitted, calls to exec are not filtered by this

policy.

• guard_require: a list of calls to the require function, which should be guarded

by this policy. Each element in the list is represented as string and specifies the

plugin and method of the plugin separated by “.”. For example the parameter

“cordova/SMSPlugin.send” instructs PhoneWrap to guard the send method of

the plugin cordova/SMSPlugin. If this parameter is omitted, no calls to the

require function will be filtered by this policy.

• deny: a function to be executed if a resource request is denied. The default

behaviour is to ignore the function call to the guarded function without further

effects. The policy object is accessible inside the deny function body. Therefore,

the behaviour can change the policy by for example setting blockAll to true

to deny all future requests.





Notations

Abstract heap X, 95

Aliasing paths Alias(p), 138

App P, 48

Capacity N, 120

Complete wrapping , 50

Conform (app) pol 
 P, 49

Conform (trace) pol 
 t, 49

Continuing paths Reach(p), 138

Data type lookup T (e), 135

Data types Types = {Int,Bool}∪ObjectTypes∪FunctionTypes, 126

Empty constant t0, 140

Evaluation relation e,H,χ n−→
n′
→e′,H ′,χ′, 129

Field state marker •:Definite, ◦:Potential, 122

Full policy pol = (RM, ip,deny), 47

Full type t+ = (t,n/N), 133

Function data type O× tx → tret, 126

Heap H, 124

Heap path x.m1.m2. · · · .mk, this.m1.m2. · · · .mk, v.m1.m2. · · · .mk, 138

Interaction policy ip = (ipl, ipg) : UIEvents →Q≥0
∞ ×UIEvents →Q≥0

∞ , 47

Object lookup O(m), 134

Object type O, 125

Object type domain Dom(O), 125
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Path lookup Γt(·), χH,v(·), 138

Policy state s = (cl,cp) ∈Q≥0
∞ , 50

Policy state transition (cl,cg)→t (c′l,c
′
g), 50

Potential ΣHv : t, ΣHχ : Γ, 143

Potential of states N (H,χ,Γ,n), N (H,χ,Γ,n,v : t), 144

Projection (t,n/N)t ,(t,n/N)n,(t,n/N)N , 134

Resource addition (n,n′) = (n1,n′1) � (n2,n′2), 130

Resource count cres(t), 48

Resource events r ∈ {API( f ),E(e),Done(e)}, 48

Resource model (APIs) RM : API →{0,1}, 47

Resource model (language) cr, 128

Scope χ, 124

Sharing relation t1 ↪→ t2 ⊕ t3, 139

Structured annotation constraints t n≤n t ′, 139

Sufficient , 144

Ticket count ctic(t), 49

Trace t = r1,r2, ..., 48

Trace concatenation t · t ′, 48

Trace production P →∗
t , 48

Type path m1,m2, ...,mk, 137

Typing Context Γ, 124

Typing context Γ, 135

Typing context lookup Γ(x), 124

Typing context modification Γ[x �→ t], 124

User events UIEvents = {start,click(button),mousedown(x,y), ...}, 47

Weak policy , 49

Wrapped API wrappol( f ), 50

Wrapped app wrappol(P), 50

Wrapped event wrappol(e), 50
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