
A Theory of Abstraction
Toby Walsh

PhD
University of Edinburgh

1990



i

You who have robbed my heart,
depriving it of everything,
who have demanded my soul in delirium,
dearest, accept my gift ...

Mayakovsky



ii

Declaration

I declare that this thesis has been composed by myself. Although some of
the work described in this thesis is the result of collaboration with Fausto

Giunchiglia, I declare that I have made a substantial contribution to this work.
Whilst is it difficult to identify exactly the individual contributions, much of the
research described in Chapters 3, 4, 6, and 7 is solely my own work.



iii

Acknowledgements

In writing this thesis, I acquired enumerable debts; it's therefore impossible to
mention everyone by name. But you know, I hope, who you are. I will, however,
explicitly thank:

Alan Bundy for giving me the opportunity, providing the very best criticism,
and guiding me to the end.

Fausto Giunchiglia to whom I owe the most. His ideas and enthusiasm brought
this research into being. He is a great teacher, and, just as importantly, a
very fine friend. My life is richer for knowing him.

The DReaMers past, present and future. Alan, Andrew and Andrew, Carole,
Christian, Colin, Dave and Dave, Geraint, Jane, Mandy, Paul, Sean, ...

For providing the enjoyable environment we all work in. And for putting
up with my sartorial excesses.

The Mechanised Reasoners. Alessandro, Alex, Carola, Luciano, Paolo, Peck,
and Lorenza. For putting up with me the rest of the time.

My family for giving me your love and support. Although you are often a long
way away, you are always in my heart.

My friends for making it all worthwhile.



iv

Abstract

Abstraction is the process of mapping one representation of a problem onto
a simpler, more abstract representation; the abstract solution can then used
to guide the search for a solution to the original, more complex problem. By
providing a global control of the search, abstraction can greatly improve our

problem solving ability. Unfortunately, the use of abstraction has in general
lacked sound and theoretical foundations causing many problems. This thesis
therefore proposes a general purpose theory of abstraction. We use this theory
to classify the various types of abstraction, to investigate their formal properties,
to analyse and criticise previous work in abstraction, to find methods for building
abstractions automatically, and to explore how to use abstractions.
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Notation

Sets, functions, and relations
0 the empty set
(x|p(x)} the set of all objects which satisfy p[x)
2a the power set of A

set membership
U,fl set union, and intersection
C subset
x cartesian product, A2 = A x A
f : A B a function, / with domain A and image B
o composition of functions
Xx.t(x) a lambda abstraction
{A,...) an ordered list
~ an equivalence relation
[x] the equivalence class of x with respect to ~
A/~ the quotient set of A with respect to ~

Logic
<p,a, /3,... well formed formulae (wffs)
p(x), q(x),... predicates
T,_L true and false
a,b,... constants
x, y,... object-level variables
X, Y,... meta-level variables
{a/x} substitution of a for x
9,... substitutions
x,... vectors, often the n arguments to a predicate
V, A,—>,•<-> logical connectives
-i logical negation
V, 3 logical quantifiers
E, Ei,... axiomatic formal systems, E = (A, H, A)
A, Al5... languages (usually sets of wffs)
n,fii,... axioms (sets of wffs)
A, Ai,... deductive machineries (sets of inference rules)
C containment (of a language within another,

of a formal system within another, ...)
(A, T, W) a language consisting of an alphabet, and sets of rules

defining the well formed terms, and the well formed formulae
(C,y, T, P) an alphabet consisting of sets of logical symbols,

variables, function symbols, and predicate symbols
TH(E) the theorems of E
NTH(E) the wffs which yield inconsistency in E
He derivable in E
MTo, MTi, ... classes of meta-theoretic statements
s0,5i, ... meta-theoretic statements
A —> B sequent
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a =>• (i rewrite rule

Abstractions

/ : Ei =>■ E2 an abstraction
/, g, h mapping functions
A B S the set of all abstractions

ABSe the set of all abstractions with the same ground space E
o composition of abstractions
<, r< partial orders on abstractions
< , -< strict orders on abstractions
=

, = equivalences of abstractions
tx , x incomparability of abstractions
7 an abstraction schema, 7 : 2Al ABS
f: Ei ^ E2 an analogy

Algebraic theories
T,Ti,... algebraic theories, T = (S,E)
S,Si,... signatures, S = (S,0)
E, Ei,... sets of equations
E,Ei,... the deductive closures of the sets of equations
5, Si, ... sorts of algebraic languages
0, 0i, ... operators (constants and function names) of algebraic languages
o : Si =£> S2 signature morphism
a : Ti => T2 theory morphism
T/a, ... quotient theories

Trees

II,ITi,T,Ti,... formulae trees
6,61,... branches of a tree
hd(b),tl(b) root and tail of a branch
|TI| the depth of IT
||II|| the weight of II
□ subtree relation
C strict subtree relation
C tree subsumption
~ tree isomorphism
A/II) number of occurrences of the wff <p in II

Model theory
1, Ji,... interpretations, I = (0,$,^)
D,D 1,... domains of interpretations
$,$1,... interpretation of function symbols
^1,... interpretation of predicate symbols

Search spaces

c(b,l,t) cost function (time to prove a theorem)
6, b0,... branching rafce of a search space



xii

/, /o» ••• length of proof
t, to, ... time to perform one inference
rn time to prove theorem using n levels of abstraction
r(m, n) time to prove the theorem at the m-th level using levels m to n

do, di, ... time to abstract a wff
u0i Ui, ... time to unabstract a wff

ffoj 9i, ••• size of gaps in abstract proof plans



Chapter 1

Introduction

This Chapter introduces the problem that concerns the rest of this
thesis: what is abstraction ? We motivate why this is an interesting

question, and outline the goals we hope to achieve.

1.1 Abstraction

Much research in AI is directed at tackling the complexity inherent in solving

interesting problems; abstraction is one very general purpose heuristic that can

help to attack this problem. It has been used in many areas of AI: theorem

proving, planning, commonsense reasoning, learning, etc. Indeed its use goes

back to some of the very earliest AI systems like GPS [NS72] and ABSTRIPS
[Sac74].

Abstraction can be thought of as the mapping of one representation of a

problem, the ground representation onto a new but simpler representation, the
abstract representation that can help solve the original problem; the abstract

representation is simpler because the mapping usually throws away details. The
overall aim may be to improve the efficiency of reasoning, or alternatively to

increase the number of derivable facts. For example, learning systems sometimes
construct abstract versions of rules, making them easier to match and allowing
them to fire in new situations. To be of any use, the abstract representation
must be closely related to the ground representation; certain properties of the

ground representation [eg. which rules fire) must be preserved by the mapping.

1
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1.2 An Example

Consider the following fragment of a Prolog program for planning journeys be¬
tween cities:

route(A,A,[]).
route(A,B,[train(A.C)I Rest])

train(A.C),
route(C,B,Rest).

route(A,B,[plane(A,C.Airline)I Rest]):-
plane(A,C,Airline),
route(C,B,Rest).

trainClondon,edinburgh)
train(edinburgh,london)
train(london,paris).
etc.

plane(moscow.milan.al).
plane(london,moscow,ba)
plane(london,milan.ba).
etc.

The program might include a huge database of train and plane connections.
To search this database naively using Prolog's depth-first and left-to-right search

strategy would not be very practical. For example, to travel from Edinburgh to

Milan, the program might suggest a route via Moscow:

[ train(edinburgh,london), plane(london,moscow,ba),

plane(moscow.milan.al) ]

A breadth-first or iterative deepening search would return a more sensible answer

but at great computational cost. A better solution is to abstract the problem
onto a more manageable one.

The first abstraction we could make is to change the "grain size". In¬
stead of planning a route between individual cities, we plan a route between
the different countries. The problem of finding a route from Edinburgh to

Milan becomes the simpler problem of finding a route between Scotland and

Italy. It would be much easier to discover then that there are no direct flights,
and that we need to change planes in England (either at London or Manch¬
ester). We can build a program that represents this abstraction by mapping
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any constant in the database representing a town onto a constant represent¬

ing its country. The language of the abstracted database is considerably less

complex than the original language. Instead of discussing connections from ev¬

ery town in a country, it just has those between countries. Additionally, the
size of the database could be considerably reduced. For example, the facts

plane (london.milan.ba) and plane (london, rome ,ba) can be represented by
just one atomic fact, plane (england, italy ,ba):

route(A,A,[]).
route(A.B,[train(A.C)IRest]):-

train(A.C),
route(C.B,Rest).

route(A,B,[plane(A,C.Airline)I Rest]):-
plane(A,C,Airline),
route(C.B.Rest).

train(england,Scotland)
train(scotland,england)
train(england,franee).
etc.

plane(ussr,italy,al).
plane(england,ussr.ba).
plane(england,italy.ba)
etc.

It is now much easier to find the routing:

[ train(scotland,england), plane(england,italy,ba) ]

Of course, this routing between Scotland and Italy may not be of much use.

It might correspond to a journey that starts in Glasgow, ends in Rome and
leaves us stranded in Manchester with a connecting flight out of Heathrow. An
abstract plan therefore needs to be refined by putting back the details which the
abstraction threw away.

A further abstraction we could make is to ignore the actual routing. That

is, we want to know simply if there is a route between two countries, not how
we travel or where we make connections. A program to achieve this would have
much simpler rules. Since we ignore the routing, we do not need to make any

distinction between journeys using trains and those using planes. We also do
not need an accumulator to record connections.
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route(A,A).
route(A,B)

connect(A,C),
route(C,B).

connect(england,Scotland).
connect(Scotland,england).
connect(england,franee).
etc.

connect(ussr,italy).
connect(england,ussr).
connect(england,italy).
etc.

Again the size of the database can shrink considerable. For example, the
facts plane (england,f ranee ,ba), and train(england,f ranee) can all be rep¬

resented by the one abstract fact connect (england, f ranee).

The purpose of this thesis is to describe and to understand such abstractions
as these.

Unfortunately the use of abstraction in AI has in general lacked sound and the¬
oretical foundations. Plaisted's work [Pla8l] is the one honourable exception
to this criticism. However, this work is not very general since it is limited to

resolution theorem proving and one particular class of abstractions. The lack
of a theoretical foundation to the use of abstraction has led to many problems.

First, the number of different abstractions has grown immensely without a cor¬

responding increase in understanding about the different classes of abstractions
that exist. Second, abstractions have been used without a sufficient understand¬

ing of the reasons why they work, why they don't work, or of the trust we can

place in their answers. It seems, in some cases, more a matter of luck than of

design that they do work. Indeed, large pitfalls await the unwary; for example,

by abstracting away detail, we can throw away just the information that kept the
problem representation from becoming contradictory. Third, there seem almost
as many different ways to use abstractions as there are different abstractions.

1.3 Motivation
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Given a particular abstraction, it is unclear how you decide to use it, or why
it should be used in a particular way. And fourth, abstractions have in general
been constructed by hand. Without a comprehensive theory of abstraction, it
has been impossible to determine automatically what to abstract for a given

problem representation. This has greatly restricted the usefulness of abstraction
as a general purpose problem solving heuristic. To conclude, it seems that a

theoretical understanding of abstraction is long overdue.

1.4 Aims

Our main goal is to develop a general theory of abstraction. This theory
should be both descriptive and prescriptive; we want to be able both to de¬
scribe previous work in abstractions and to suggest new abstractions and uses

of abstraction. Our aims are:

• to classify the various forms of abstraction;

• to investigate the formal properties of abstractions;

• to define operations that can be performed on abstractions, and relations
for comparing them;

• to analyse and criticise past work;

• to explore how to build useful abstractions;

• to study how abstract problem solving can help solve the original problem.

This thesis discusses each of these topics in varying detail; each corresponds to

a separate Chapter.
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1.5 Structure of thesis

The thesis is organised as follows. Chapter 2 presents our basic theory of

abstraction; this theory is developed and investigated throughout the rest of
the thesis. In Chapter 3, we explore some of the consequences of our theory,

identifying various properties possessed by abstractions. Chapter 4 tests the
expressive adequacy of our theory by describing various abstractions that have
been proposed in the past. In Chapter 5, we look at a very common problem
that occurs with many of these abstractions, the introduction of inconsistency.

Chapters 6 and 7 then consider how we might actually use abstraction. In

Chapter 6, we study how to build abstractions automatically for new problems,
and in Chapter 7 we study how an abstract solution can help us find a solution
to the original problem. Finally, we end in Chapter 8 with a summary of the
achievements of this thesis, its limitations and some suggestions for future work.

1.6 Mathematical preliminaries

The rest of this thesis will assume various basic notions concernings sets, relations
and functions.

Sets

A set A is a collection of objects; each object a in the collection is called a

member of the set, written a £ A. The set having no member, it. the set A
for which -> (a £ A) for any object a, is called the empty set, 0. The set of all
objects which satisfy the property p(x) is represented by {x \ p(x)}. A set A is a

subset of another set B, written A C B iff a £ A implies a £ B. By definition,
the empty set is a subset of any set. The union of the sets A and B, A U B is

the set whose members belong either to A or to B. The intersection of the sets

A and B, A D B is the set whose members belong to both A and B. Two sets

are disjoint iff their intersection is the empty set. The power set of A, written
2a is the set of all subsets of A. If the set A has n elements, then its power set,
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2a has 2" elements. The cartesian product of the sets A,B, written Ax B
is the set of all pairs, (a,b) for which a G A and b G B. The cartesian product
can be extended from two sets to any number of sets. By A2 we mean A x A.

Similarly for An where n >2.

Relations

A binary relation R on the sets A and B is the set of pairs, (a, b) G A x B
for which R(a, b) holds. For the sake of brevity, we will normally use relation to
mean binary relation. A relation R is reflexive iff for all x, R(x,x) holds. A
relation R is irreflexive iff for all x, ->R(x,x) (that is, R(x, x) never holds). A
relation R is symmetric iff R(x,y) implies R(y,x). A relation R is transitive
iff R(x,y) and R(y,z) implies R(x, z). And a relation R is antisymmetric iff
R(x,y) and R(y,x) implies x = y.

A relation is a preorder iff it is transitive, and reflexive. A relation is a

weak partial order iff it is transitive, antisymmetric, and reflexive. A relation
is a strict partial order iff it is transitive and irreflexive. A relation is an

equivalence relation iff it is reflexive, symmetric and transitive. If R is an

equivalence relation then the equivalence class of x with respect to R, often
written [x] is the set {y \ R(x,y)} and the quotient set of a set A, written A/R
is the set of all equivalence classes of A.

Functions

A function / : A i—> B is a rule which assigns a member of B to every member
of A. The expression /(a) is used to represent the member of B to which a is
assigned. We will say that / (a) is the application of the function, / to a; we also
use the notation, fa. If / : A i-* B is a function then A is called the domain and
B the image of /. We can extend a function to a mapping on sets in the obvious

way: f(A) = {/(a) | a G A}. The composition of two functions, f : A y-+ B and
g : B i—> C is the function, / o g : A t-* C for which /og(a) = g(f(a)). A function
/ : A i-> B is surjective iff f(A) — B. A function is injective iff a ^ b implies
f{a) 7- f(b). A function is total if it is defined for all its domain, and partial
otherwise. All the functions we will use in this thesis are total unless otherwise
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indicated. A function is computable if it can be computed by a Turing machine,
or equivalently if it is a general recursive function. The lambda abstraction,

Ax.t(x) is the function which on application with a gives the value, t(a). The
rule for rewriting (Ax.t(x))a as t(a) is called beta reduction.

1.7 Summary

This thesis describes a general theory of abstraction. We will use this theory
to investigate the formal properties of abstractions. The purpose of this investi¬

gation is to classify and criticise previous informal work, and to explore how to
build and how to use abstractions. The result is a comprehensive understanding
of abstraction, how it has been used (and misused), and how it should be used.



Chapter 2

A Theory of Abstraction

This Chapter presents the beginnings of a theory of abstraction.
We define abstraction as a mapping between representations of a

problem, illustrating our formal definition by means of an example.
We then consider the desirable properties that should be preserved by
such a mapping.

2.1 Introduction

This thesis adopts the "logicist" approach to Artificial Intelligence advocated by
McCarthy and Hayes [McC77]; we attempt to model reasoning with abstraction
in terms of logical reasoning. Minsky strongly criticises the logicist approach

[Min8l], arguing that it is inflexible, infeasible, and impractical. We shall not
offer any defence to the first two criticisms, except to remark that much research
has been devoted to increasing the flexibility of the logicist approach (eg. cap¬

turing nonmonotonic reasoning [McC80]) and to representing real world knowl¬
edge within a logical framework (eg. capturing commonsense knowledge [Hay79,
Hay85]). This thesis should, however, help to answer Minksy's third criticism -
abstraction can reduce search and make logical reasoning more practical.

Most of the work described in this Chapter first appeared in [GW89a],

9
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2.2 Formal Systems

In the last Chapter, we informally described abstraction as a mapping between

representations of a problem that throws away details but preserves certain de¬
sirable properties. Thus, in presenting a formal theory of abstraction, we begin
by giving a very general method for describing representations of a problem. In
line with our logicist approach, we choose formal systems for this purpose.

Following Kleene [Kle52], a formal system is a formal description of a the¬
ory; this theory may be Peano arithmetic, or the planning world of STRIPS.
In this thesis, we will restrict our attention to axiomatic formal systems.
This is not a significant restriction since we can represent most problems with
axiomatic formal systems. Moreover, most of our analysis could be easily gener¬

alised to formal systems which are not axiomatic. Unless we explicitly state to
the contrary, we will use "formal system" to mean "axiomatic formal system".

Definition 1 (Axiomatic formal system) : An axiomatic for¬
mal system S is a triple (A,Q, A), where A is the Language, O is
the set of axioms and A is the Deductive Machinery of S.

An example of an axiomatic formal system is the theory of groups with axioms
for group identity, inverse and associativity. Usually a language is defined by

giving the alphabet, and (rules for constructing) the set of well formed terms and
the set of well formed formulae. That is, A = (A, T, If). To simplify matters,
we will normally forget about the alphabet and well formed terms and just say
that the language is the set of well formed formulae (wffs from now on). The
alphabet and well formed terms are given implicitly by providing the set of
wffs. The axioms are the basic wffs which are accepted as theorems and from

which, by application of the inference rules, all other theorems are derived. Thus
OCA. The deductive machinery is the set of inference rules which allows new

theorems to be derived from existing ones. We shall not address the problem
of representing inference rules, and such difficult issues as side-conditions and

assumptions. Instead, we will adopt the standard Natural Deduction conventions
and terminology of Prawitz [Pra65].
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For the sake of simplicity, we will usually restrict ourselves to formal systems
in which the axioms and the inference rules are a subset of those of first order

logic. Even with such a restriction, we are able to capture most previous work
in abstraction. Additionally, most of our arguments would remain true if we

dropped this restriction.

2.3 Properties of Formal Systems

We briefly define some basic properties of axiomatic formal systems that will be
used in the rest of the thesis.

One formal system, Ex = (Ax,flx, Ax) is contained within another formal
system, £2 = (A2,n2, A2), written Ex C E2 iff Ax C A2, f2x C fi2 and Ax C A2.
The set of theorems of E, written TH(£) is the minimal set of wffs containing
the axioms and closed under the inference rules. The theorems are the statements

in the language which can be proven to be true. We say that E is syntactically

incomplete if there is a closed wff a with a. £ TH(E) and -ia £ TH(E). We
call it syntactically complete otherwise. Notice that this is not the same as

the idea of completeness, in which every formulae valid in a model is provable.
A formal system, E is absolutely inconsistent iff for any wff a, a £ TH(E)
(note negation need not be part of the language) and inconsistent iff there
exists a, /3 which unify together such that a £ TJT(E) and -1/? £ TH(E). In
classical first order logic, an absolutely inconsistent system is inconsistent, and
vice versa. A formal system, Ex = (Ax,f2x, Ax) is monotonic iff for any formal
system E2 = (Ax,n2, Ax) with flx C 02, a £ 7\ff"(£x) implies a £ 7\H"(£2).

In proof systems, we are interested in those wffs that can proven true. By

comparison, in refutation systems, we are interested in those wffs that can
be proven not to be true; with such systems, we show that certain (sometimes
negated) wffs are inconsistent with the axiom and therefore cannot be true.
Thus we define the set NTH(E) which contains those wffs each of which, if added
to the axioms, makes E absolutely inconsistent. In classical first order systems,
the wffs in NTH(E) are the negation of the theorems. TH(E) and NTH(E)
are obviously related. For instance in classical first order logics, a £ NTH{E)
iff -a £ TH(E); E is inconsistent iff TH{E) = NTH{E) = A, or iff TH{E) n
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NTH(E) ^ 0; outside TH(E) and NTH[E) but inside the language are all
those formulae a such that neither a nor ~^a belongs to TH(£); if a theory
is syntactically complete then no formula is outside the union of TH(£) and

NTH(£). We also define the set NTH'(£) which contains those wffs which, when
added to the axioms, make £ inconsistent.

2.4 A Definition of Abstraction

Formal systems provide a very general method for describing the ground and the
abstract representations of a problem. We can now define abstraction simply as

a mapping between formal systems. Our definition of abstraction has two parts:
the ground and abstract representations of a problem, and a mapping which
relates the two representations. It is not sufficient just to give the two represen¬

tations; we also need some way of relating (the parts of) one representation to

(the parts of) the other.

Definition 2 (Abstraction) : An abstraction is a triple consist¬
ing of the formal systems £1( £2 and a total and computable function

f which maps from the language of Ei into that o/£2.

We will use the notation "/ : £i =>■ £2" to represent an abstraction. This
should be read as syntactic sugar for the triple (£i,£2,/). It should not be
read as a function / from £i to £2; it is simply a pair of formal systems, each

being a representation of a problem and a mapping between them which relates
wffs in one representation to wffs in the other. Following historical convention

[Sac74], we call £i the ground space and £2 the abstract space. In logic
texts, "ground" is usually used to mean that an expression has no free or bound
variables. To avoid confusion, we will always use "ground" to mean belonging to

the representation we abstract, and "variable-free" to describe an expression with
no free or bound variables. The function / is called the mapping function; we

require that this function be total since we want to be able to "translate" any wff
in the ground space into the abstract space. We require that it be computable
because we actually want to be able to use such abstractions. However, most of
our arguments would stand if we dropped this last requirement. We shall use
ABS to stand for the infinite set of possible abstractions, and ABSy to represent
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those with the common ground space, E. Where there is no ambiguity we will

occasionally shorten "/ : Ei =>• E2" simply to

This notion of abstraction is very weak and is more general than those pre¬

viously used. Indeed, it captures many types of mappings which are not usually

thought of as abstractions; we also expect the properties of the ground and ab¬
stract spaces to be related, and the abstract space to be "simpler" than the
ground space. Although we will only consider mappings between axiomatic for¬
mal systems, this definition of abstraction could equally well describe a mapping
between arbitrary formal systems and not just between those that are axiomatic
or logical.

2.5 An Example

We illustrate our definition of abstraction by means of an example. Consider
the propositional abstraction proposed by Plaisted [Pla80] and used in [GW89d]
to plan the unfolding of definitions. We can describe this as an abstraction,

/ : Ei =>• E2 between a first order theory, Ei and a propositional theory, E2. The
mapping function abstracts first order wffs onto propositional wffs by keeping
the connective structure and throwing away quantifiers and arguments. Atomic
wffs are mapped as follows:

f(p(z)) = P

All atomic formulae with the same predicate symbol map onto the same

propositional constant. Thus "a =3et b—+ a Cset b" in the ground language

maps onto u—set —* Qset" in the abstract language where "=set" and "Cset" are

propositional constants of the abstract language. The axioms of E2 are formed

by applying this same mapping function to the axioms of Ei.

This abstraction maps one representation of a problem onto a more abstract

representation of the same problem. The abstract space is simpler than the

ground space; indeed, this abstraction maps an undecidable ground space onto a

decidable abstract space. Additionally, inference is cheaper in the abstract space
than in the ground space since we need not perform full blown unification. This
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abstraction "throws away details" by dropping the quantifiers and the arguments
to formulae. It is useful as certain "desirable properties" are preserved by the

mapping. For instance, the definitions that must be unfolded in the ground

space to prove a theorem are the same as the definitions unfolded in a proof of
the abstract theorem. Thus theorem proving in the abstract space can be used
to plan the unfolding of definitions in the ground space.

Consider, for example, the theorem that if two sets are equal then one is a

subset of the other, "a =set b^a Qset 6". This has a proof in the ground space

which unfolds both the definitions of set equality and subset:

a =set b a =set b «-► Vx.x
Vx.x gqHigi
h £ a h £ b
h £ a-+h £ b

Vx.x £ a—>-x £ 6 a C3et b *-+ Vx.x £ a—>x £ b
a b

a —b *& b

There is a proof of the abstraction of this theorem which unfolds the same

definitions. Note that this abstract proof is shorter than the ground proof:

— set — set ^ (£■*-»€)
£•*-»£

£ —► £ Cset «-»•(£ —► £)
Cset

set *

The abstract proof should be easier to find than the ground proof; it could
therefore be used to plan the unfolding of definitions in the ground space. For
further details about this see [GW89dj. Notice also the similarity between
the structure of the ground and the abstract proofs. We shall return to this

topic in Chapter 7 when we show how to map abstract proofs back onto ground

proofs.



CHAPTER 2. A THEORY OF ABSTRACTION 15

2.6 Preserving Provability

We informally described abstraction as a mapping between representations of a

problem that was useful because it preserved certain "desirable properties". We
now consider what these desirable properties might be.

A central notion in theorem proving is that of provability. We are therefore
interested in how abstractions affect provability. This idea will play a central
role in the rest of the thesis. Preserving provability is actually only a very weak

property to demand of an abstraction; there are other desirable properties which
must also be captured. The main idea underlying the use of abstractions is to

prove the theorem in the abstract space (which, supposedly, should be simpler
than in the ground space) and then to use the structure of the proof in the
abstract space to guide the search for a proof in the ground space. This assumes

that the structure of the abstract proof is "similar" to the structure of the ground

proof; this is discussed in more detail in Chapter 7. Preserving provability is a

necessary but not a sufficient condition for the structure of the abstract proof to
be similar to that of the ground proof. It is, therefore, a very important property
for an abstraction to possess. Indeed, we would claim that, even under the weak

assumption that an abstraction simply preserves provability, we are able to prove

some very powerful results. Our first step towards capturing abstractions that

preserve certain desirable properties is therefore to classify abstractions by the

way they preserve provability:

Definition 3 (T*-abstractions) : An abstraction f : Ej =>• £2 is
said to be a

1. TC-abstraction iff, for any wff, a, a G TH(T, 1) implies and
is implied by f(a) G TH(E2);

2. TD-abstraction iff, for any wff, a, if f(a) G TH{E2) then
a G TH{EO;

3. Tl-abstraction iff, for any wff, a, if a G TH(E1) then f{oc) G

TH{E2).



CHAPTER 2. A THEORY OF ABSTRACTION 16

A.2

TH(Et)Q Q TH(E2)

This is a graphical representation of a TC-abstraction. In this (and the five
following figures) the two boxes represent the sets of wffs belonging to the two
languages. The dashed lines show the behaviour of the abstraction mapping.
NB. In this and future figures, we assume surjcctivity of the mapping.

Figure 2—1: TC-abstractions

"T" stands for "theorem", "C" for "constant", "D" for "decreasing" and "I"
for "increasing". Tl-abstractions have also been called truthful abstractions

[GW89a]. An abstraction is a T*-abstraction iff it is a TC-abstraction, a

TD-abstraction or a Tl-abstraction. A TC-abstraction is both a TI- and a TD-

abstraction.

Theorem 1 : A TC-abstraction is both a TD-abstraction and a TI-

abstraction.

Proof: Immediate from Definition 3. □

A TC-abstraction, / : Ei =>■ E2 maps all the members of TH(Ei) onto mem¬

bers of TH(E2) and these are the only members of TH(E2). This is represented
graphically in figure 2-1. Many examples of TC-abstractions can be found; for

example, any mapping which changes the representation of a problem without

throwing away any information can be described as a TC-abstraction. Reduction
methods in decision theory can be seen as TC-abstractions since we map some

(syntactically defined) class of formulae onto a decidable class of formulae, and
show that a formulae in the original class is provable iff its mapping is.
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wq) q th(E2)

Figure 2—2: TD-abstractions

A TD-abstraction, / : Ei =>■ E2 maps a subset of the members of TH(Ei) onto
TH(E2); this subset generates all the members of TH(E2). This is represented
graphically in figure 2-2. TD-abstractions have been used by Tenenberg [Ten87,
Ten88] and by Wos [WRD65] (for a good reference to this work, see [Bun83]).

A truthful or Tl-abstraction, / : Ei =>• E2 maps all the members of TH(Ei)
onto a subset of TH(E2). This is represented graphically in figure 2-3. In may

ways, Tl-abstractions are dual to TD-abstractions; we explore this duality in

greater detail in Chapter 3. As far as we are aware, the majority of abstrac¬
tions used in the past (eg. those proposed in [Pla80,Pla8l]) are truthful; many
examples of truthful abstractions are given in Chapter 4.

It is not just the theorems of the ground and abstract spaces that are related;
often there is also a great similarity in the shape of a proof of a theorem in the

ground space and of a proof of the abstraction of the theorem in the abstract

space. The steps of the abstract proof can thus be used to guide theorem proving
in the ground space, providing the major "islands" that we need to reach; we

move between these islands by filling in details or by applying the inference rules
thrown away by the abstraction. Truthfulness is a first step to guaranteeing a

correspondence between proof steps in the ground and the abstract spaces.

Not all previously proposed abstractions are truthful or Tl-abstractions.

Why do we argue for the use of Tl-abstractions and not the use of TD- or TC-
abstractions? Tenenberg, for instance, puts forward TD-abstractions (and others
with similar properties) as a way to avoid the problem of abstractions mapping
consistent ground spaces onto inconsistent abstract spaces [Ten87,Ten88].
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TH(E,)Q (O)™(sy

Figure 2—3: Tl-abstractions (Truthful abstractions)

In general, TC-abstractions are too strong and do not give "simpler" proofs.
For example, if / : => E2 is a TC-abstraction, Id is undecidable, and the
inverse of the mapping function is computable then E2 cannot be decidable.
Of course, this does not mean that TC-abstractions are useless. They are very

useful, for instance, in changing the representation of a problem to one with
which we can reason more efficiently.

We would also argue against the use of TD-abstractions which are not TC-
abstractions as completeness is lost; there are theorems of the ground space

whose abstractions are not theorems of the abstract space. If the abstract space
is going to be used to help find a proof in the ground space, we consider com¬

pleteness one property that you do not want to lose. We do not wish to take
a great stand on the issue of completeness versus efficiency. We simply mean

that there is no a priori reason for loosing completeness, and even less reason

for losing it in an uncontrolled fashion.

There are even a few abstractions proposed in the past which do not pre¬

serve provability in any direction. One such example is the abstraction used in

"gazing" [Plu87], a heuristic for planning the unfolding of definitions. Unlike
the abstraction we briefly described in section 2.5, this abstraction gave neither
a complete nor a sound strategy for deciding when to unfold definitions. We
cannot be certain when it will suggest the appropriate definitions to unfold, nor
when it will fail to identify the appropriate definitions to unfold. For this reason,

we would criticise this abstraction (and other abstractions which do not preserve
provability in a precise way) as being too ad hoc.
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2.7 Preserving Deducibility

We have characterised abstractions by the way they preserve provability. A more

general property than provability is deducibility. A deducibility relation is a set
of ordered pairs; the first element of the pair is a set of wffs whilst the second
element is a wff which can be derived from the axioms if we assume that the set

of wffs in the first element are also true. We shall write T hj a to mean that a is
deducible (derivable) in E from the axioms and the set of wffs, T. Provability is a

particular case of deducibility; a wff is a theorem iff it is deducible from the empty
set. Thus, He a is an alternative notation for a £ TH(E). Further discussion
about deducibility relations and their properties can be found in [Avr87,BS84].

Even if this thesis deals with provability, most of the analysis could have
been given for deducibility. A deducibility preserving abstraction will preserve

provability and, subject to the conditions of the following theorem, a provability

preserving abstraction will preserve deducibility.

Theorem 2 : If f : Ei =>■ E2 is a T*-abstraction that preserves im¬

plications (that is, f(a—+f3) = /(a) —► /(/?)), and the deduction theo¬
rem, modus ponens and the compactness theorem hold in both Ei and

E2 then / : Ei => E2 also preserves deducibility.

Proof: We only consider Tl-abstractions. The other proofs are en¬

tirely analogous. If a\,...an (3 then, from the deduction theo¬
rem in Ei, l~Sl Oii-+...an^-/3. Since the abstraction is truthful, bs2
f(ai—y...ain—+/3). But / : Ei =£> E2 is implication preserving. Thus

/(q„)->/(/3). By modus ponens, /(a,),.../(<*„)
/(/?)• □

As provability is a notion that is perhaps more commonly used in theorem

proving than deducibility, we will restrict ourselves in the rest of this thesis to

abstractions which preserve provability. However, subject to the rather weak

hypotheses of the above theorem, everything true of provability preserving ab¬
stractions also holds for deducibility preserving abstractions.
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2.8 Preserving Inconsistency

So far, abstractions have been classified by the relationship between provability
in the ground space and provability in the abstract space. This is appropriate for

proof systems where the deductive machinery of both spaces is used to generate
theorems. In refutation systems, however, the deductive machinery is used to
determine inconsistency. In such situations, abstractions are better classified

by how inconsistency in one formal system is mapped onto inconsistency in
the other formal system. Entirely dual to definition 3, we define the following

inconsistency preserving abstractions:

Definition 4 (NT*-abstractions) ; An abstraction f : £i =>■ E2
is said to be a

1. NTC-Abstraction iff, for any wffa, a G NTH(Ei) iff f(a) G

NTH{E2);
2. NTD-Abstraction iff, for any wffa, if f(a) G NTH{E2) then

a G NTHiEi);
S. NTI-Abstraction iff, for any wff a, if a G NTH[E\) then
f(a)eNTH(E2).

NTI-abstractions have also been called falseful abstractions [GW89a]. An
abstraction is aNT*-abstraction iff it is a NTC-abstraction, a NTD-abstraction
or a NTI-abstraction. It is a TC*-abstraction iff it is a TC-abstraction or

a NTC-abstraction, TD*-abstraction iff it is a TD-abstraction or a NTD-

abstraction, and TI*-abstraction iff it is a Tl-abstraction or a NTI-abstraction.
When an abstraction is known to fall in more than one of the above classes we

will write all of them in the prefix. Thus a "TC/NTC-abstraction" is both
a TC- and a NTC-abstraction. We will also write TH*(E) to mean NTH(E)
or TH(£). Statements made involving names containing "*" should be read by

substituting in all valid ways the same letter uniformly inside the sentence. For
statements like "T*-abstraction" or "NT*-abstraction" this means substituting
the letter "C", "D", or "I", whilst for statements like "TC*-abstraction", "TD*-
abstraction" or "TI*-abstraction" this means substituting either the letter "N"
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Ai

THIS,) Q
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(~) TH(E,)

NTH(E,) Q (^J NTH(E2)

Figure 2—4: NTC-abstractions

or " Thus, the claim that "a TC*-abstraction is a TD*-abstraction" should
be read as "a TC-abstraction is a TD-abstraction" or as "a NTC-abstraction

is a NTD-abstraction". It should not be read as "a TC-abstraction is a NTD-

abstraction" or "a NTC-abstraction is a TD-abstraction".

Everything that has been said about T*-abstractions holds dually for NT*-
abstractions. For instance, we can generalise Theorem 1 to give:

Theorem 3 : A TC*-abstraction is both a TD*-abstraction and a

TI*-abstraction.

Proof: Immediate from Definitions 3 and 4. □

We introduced NT*-abstractions to describe mappings between refutation

systems. In the next section, we will argue that NT*-abstractions play the
same role for mappings between refutation systems as T*-abstractions play for

mappings between proof systems. Finally, an abstraction / : Ei =>• E2 is an

NTI'-abstraction iff, for any wff a, a € NTH'(Ei) implies f(a) € NTH1 (1.12).



CHAPTER 2. A THEORY OF ABSTRACTION 22

A i

TH(E,)Q
A.2

Q TH(E2)
NTH(EOK"Y) (^) NTH(E2)

Figure 2—5: NTD-abstractions

Ai

TH(Ei)Q
NTH(E0 (^)

a2

Q TH(E,)

(O) nth(S!)
Figure 2—6: NTI-abstractions (Falseful abstractions)
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2.9 Refutation Systems

The essential idea behind most refutation systems is that a wff, a: is a theorem
of a formal system, E if adding its negation to the axioms, fi gives inconsistency.
In formulae,

hs a iff {_1^} hs _L

Thus, though we use a refutation system to determine inconsistency, we are

really interested in provability. Our claim that NT*-abstractions play the same

role in refutation systems as T*-abstractions in proof systems would therefore
seem to deserve greater justification. If we are still interested in provability
when using refutation systems then we might also expect to be still interested
in T*-abstractions.

T*-abstractions in Refutation Systems

Everything depends on how the user interacts with the system. In some (if not
all cases), the goal that we wish to prove is input and the system automatically
negates it before adding it to the set of axioms. If this happens in the abstract

space, the negation sign in front of the goal is not abstracted, the system effec¬

tively works on provability, and T*-abstractions are the appropriate abstractions
to use. Before we can formalise this argument, we need to define a very com¬

mon and useful notion, that of a formal system with negation. We will use this
notion to show the assumptions under which a T*-abstraction can be used with
refutation systems.

Definition 5 (System with negation) : E is a formal system
with negation iff there is an unary connective —* such that for any
closed wff a :

1. a is a wff iff is a wff;

2. a e TH{E) iff-ici G NTH{E);

8. e TH{E) iff a E NTH(E).
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From the second condition, it follows that a system with negation is in¬
consistent iff it is absolutely inconsistent. The following theorem identifies the

assumptions under which T*-abstraction$can be used in refutation systems.

Theorem 4 : If £i and £2 ore two formal systems with negation

containing just closed wffs then / : £1 £2 is a

• TC-abstraction iff for any a, ->a £ NTH(E1) iff ~<f(ot) £

NTH(E2);
• TD-abstraction iff for any a, if -if (a) £ NTH(E2) then-<a £
NTH (Ei);

• TI-abstract,ion iff for any a, if ->a £ NTH(E1), then -1f(a) £
NTH(E2).

Proof: Immediate from Definitions 3 and 5. □

Thus, provided both the ground and abstract spaces are systems with nega¬

tion and we negate the (abstracted) goal, we can use T*-abstractions with refu¬
tation systems. For instance, with a Tl-abstraction if a is a theorem of the

ground space then the negation of its abstraction, ~lf(o:) will make a refutation
system stop with success (that is, by generating J_).

Claim : T*-abstractions can be used with refutation systems provided
the abstraction maps between systems with negation and the wff added
to the axioms of the abstract space is the negation of the abstraction

of the wff whose negation is added to the axioms of the ground space.

In formulae, instead of adding f(->ot.) to the axioms of the abstract space,
we must add -if (a). When the system does not negate the goal, and f (""'Ct) is
added to the axioms of the abstract space, NT*-abstractions should be used.

NT*-abstractions in Proof Systems

We have established the conditions under which T*-abstractions with refutation

systems. The dual question also arises, namely can NT*-abstractions be used
with proof systems? Theorem 4 holds dually. That is:
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Theorem 5 : If £i and £2 are two formal systems with negation,

containing just closed wffs then f : £1 =4- £2 is a

• NTC-abstraction iff for any a, ~<a E TH(EX) iff ->f(oc) E

• NTD-abstraction iff for any a, t'/->/(a) E TH(E2) then-^a E

TH(E0;
• NTI-abstraction 1///or any a, if->a E TH(E1), then -'f(oc) E

TH(E2).

Proof: Immediate from Definitions 4 and 5. □

The interpretation of this theorem is entirely dual to that of Theorem 4.

Claim : NT*-abstractions can be used in proof systems to prove a

wff, -iq: provided we try to prove the wff, ""/(a) in the abstract space.

Abstractions for Refutation and Proof Systems

Finally, are there abstractions which can be used both with refutation systems

and with proof systems, irrespective of how the goal is negated? To help answer

this question, we define another very common notion, that of an abstraction
which preserves negation. This notion is crucial for abstractions to be used in
both refutation and proof systems.

Definition 6 (Negation preserving abstractions) : Let £i and
£2 be two systems such that a is a wff iff ->a is. An abstraction
f : £1 =>■ £2 is negation preserving iff, for any a, f(-'oc) — -<f(a).

Preserving negation is a very important concept. If an abstraction preserves

negation then the notions of preserving provability and of preserving inconsis¬

tency collapse together. A negation preserving abstraction can thus be used in
both refutation and proof systems.
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Theorem 6 : If Ei and E2 are two formal systems with negation,
containing just closed wffs, and f : £1 =>■ £2 is a negation preserv¬

ing abstraction then f : £1 =£> E2 a T*-abstraction iff it is a NT*-
abstraction.

Proof: We only consider Tl-abstractions and the forward direction
as the other proofs are analogous. Since £1 is a system with nega¬

tion, if a G NTH (Ei) then -net G TH(Ex). But the abstraction is
truthful. Thus /(—>ct:) G TH(E2). As the abstraction is negation pre¬

serving, this implies ~<f(a) G TH(E2). From which it follows that
/(ct) G NTH(E2) and that / : £1 =>• £2 is a NTI-abstraction. □

Theorem 6 demonstrates that preserving negation is the property which links
abstractions for refutation and proof systems, supporting the following claim:

Claim : Negation preserving abstractions can be used in both refuta¬
tion and proof systems.

Preserving negation is not a very restrictive requirement since nearly all the
abstractions used in the past are, in fact, negation preserving.

2.10 Summary

We have defined abstraction as a mapping between formal systems, illustrating
this definition by an example. We have also considered the desirable properties

preserved by such mappings. In particular, for proof systems we have concen¬

trated on how such mappings preserve provability (and, for refutation systems,

inconsistency). Under certain weak restrictions, like the preservation of negation,
provability preserving abstractions also preserve inconsistency and vice versa. In
later Chapters we will show that this framework is very general, and that the

preservation of provability (and inconsistency) is a very useful and powerful way
to characterise abstractions (see, for example, figure 4-1).



Chapter 3

Some Properties

We have defined abstraction as a mapping between formal systems
that preserves certain desirable properties like provability or incon¬
sistency; we now explore some consequences of this definition. In

particular, we define various operations on abstractions and relations
between them. We also consider the internal structure of the map¬

ping, identifying different ways in which the parts of the ground and
abstract spaces are related.

3.1 Introduction

In Chapter 2, we presented the beginnings of a theory of abstraction. We now

explore some of the properties of this theory. Our analysis is along two different
dimensions since we will consider both the internal and the external properties
of abstractions. For the internal properties, we will define various relationships
between the parts of a single abstraction. For the external properties, we will
define various relationships between different abstractions.

We begin the Chapter by considering some of the external properties. We
have defined an abstraction as a mathematical object; that is, as a pair of formal

systems and a mapping function. Thus, it is natural to consider various mathe¬
matical operations, like composition, which can be applied to these objects. The
main purpose of defining such operations is to build new abstractions from old
ones. We also consider various mathematical relations, like a partial ordering,

27
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which are true of these objects. The main purpose of defining these relations is
for comparing one abstraction with another.

We end the Chapter with a section describing some of the internal properties.

Simple relationships often exist between the different parts of an abstraction.

Indeed, in most abstractions proposed in the past, the mapping function and
the pair of formal systems are intimately related. The aim of this last section is
to define precisely this intimacy.

3.2 Some Operations on Abstractions

We begin, in fact, with an important relation. We need some way of identifying
when two abstractions represent the same object; this is simply when every part

of the two triples are equal.

Definition 7 (Equality) .*///: Ei =>• E2 and g : E3 =>• E4 are ab¬
stractions then f : Ei E2 is equal to g : E3 =£> E4 iff f = g, Ei =

E3, and E2 — E4.

Equality of abstractions is an equivalence relation, being reflexive, symmetric
and transitive. If two abstractions are equal then they behave identically. In

particular, they must share the same provability and inconsistency preserving

properties.

One of the most useful operations we can perform on abstractions is that
of composition; this allows us to combine old abstractions together to give new

ones.

Definition 8 (Composition) : If f : Ei =*> E2 and g : E2 =>• E3 are

abstractions then f o g : Ex =>• E3 is their abstraction composition.

Where there is no ambiguity, we will write "/ o gn for "/ o g : Ex => E3". The

composition of two abstractions is itself an abstraction as the composition of
two computable and total mapping functions is itself a computable and total
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function. The composition of two abstractions is at least as "strong" as either of
the individual abstractions, since it throws away the same information as the first
abstraction and the same information as the second. Abstraction composition
can be repeatedly applied, and is associative. Note that the composition of two
abstractions is only defined if the abstract space of the first abstraction is the
same as the ground space of the second. This inability to compose two arbitrary
abstractions can be overcome in one of two ways. We can insist that the same

language and inference rules are used in the abstract space as in the ground space,

and we define abstraction schemata that will work with any set of axioms; we

provide such a generalisation in Chapter 5. Alternatively, we can introduce a

new object for the composition of two incompatible abstractions, namely the
undefined abstraction. Composing anything with the undefined abstraction

gives the undefined abstraction. In both cases, abstraction composition is then
defined everywhere and the set of abstractions, A 8 S with respect to composition
is an associative binary algebra; that is, a semigroup.

Theorem 7 : (ABS, o) is a semigroup

Proof: A semigroup is a set with a binary function which is defined

everywhere and is associative. ABS and the composition operator

form such a structure. □

Note that {ABS, o) is not a monoid, a semigroup with an identity as ABS
has no (mathematical) identity; that is, there is no abstraction, e such that

eof = foe = f. We can, however, define a restricted notion of identity:

Definition 9 (Identity) : An abstraction, f : Ex =>• E2 is called the
identity abstraction of Ex iff Ex = ^2 and the mapping function f
is an identity function.

An identity abstraction maps any formal system onto itself; it is uniquely
determined by the ground space. Having defined an equality, a composition

operator, and an identity abstraction, it is natural to define the inverse of an
abstraction.
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Definition 10 (Inverse) : If f : Ei =>■ E2 and g : E2 =>• £i are ab¬
stractions and / o gf : Ei Si is the identity abstraction of Ei then
g : E2 =>• Ei ts called an inverse o/ / : Ex =>• E2.

The inverse of an abstraction is, by definition, an abstraction. The inverse
of a surjective abstraction, in which the abstract language is the image of the
ground language, is unique.

Definition 11 (Surjectivity) : Let Ei and E2 have the languages
Ai and A2 respectively. An abstraction, f : Ei => E2 is surjective iff
its mapping function is surjective. That is, iff A2 = {/(<£>) | <p G Ai}.

Theorem 8 (Uniqueness of inverse) : If f : Ei => E2 is a sur¬

jective abstraction, and g : E2 =>• Ex and h : E2 =>• Ei are both in¬
verses of f : Ei =>• E2, then g : E2 =>• Ei equals h : E2 =>■ Ei.

Proof: By contradiction. Assume that the two abstractions are

not equal. Their mapping functions, g and h must therefore not be

equal. Thus, from the surjectivity of / : Ex =>■ E2, there must exist

/(v?) such that g{f{<p)) -f- h(f(<p)). Hence / o g(<p) ^ f o h(<p). But
fog and / o h are both identity functions. Thus <p ^ <p. E\

The inverses of an abstraction that is not surjective can only differ in the

mapping of the (irrelevant) abstract formulae which are outside the image of
the ground language. Of course, not all abstractions have inverses. In fact, it is

only possible to invert those abstractions whose mapping functions do not throw

away any information. To be more precise, an abstraction must be injective if it
is to be invertible.

Definition 12 (Injectivity) : An abstraction f : Ei =>• E2 is in¬
jective iff its mapping function is injective. That is, iff if a ^ (3
then f(a) ± /(/?).
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Theorem 9 (Existence of inverse) : An abstraction has an in¬
verse iff it is injective and the inverse of it's mapping function is
computable.

Proof: (=>) Consider the abstractions / : £i =>• E2. Assume that
this has an inverse, g : E2 => £i but that / : £i =>• £2 is not injective.
Then there will exist a,/? such that a ^ f3 but f(a) = f{/3). Thus,
<7(/(a)) = gr(/(/3)). That is a = (3, contradicting a ± (3.

(<£=) Assume that / : £1 =>■ E2 is injective. We define a mapping
function, g : A2 Ai by g(a) = f3 if a = /(/?). The injectivity of
/ : £x => £2 guarantees the uniqueness of /?. If a is outside the im¬

age of Ai under / (le. there is no /? such that a = /(/?)), we define
ff(a) to be any arbitrary formula in Ai. The abstraction, : E2 => Ei
is an inverse of / : £1 =*► E2. □

Since they cannot throw away any information from the language, injective
abstractions do not in general give a simpler abstract theory and are not of much

practical use.

3.3 Properties of these Operations

We have defined abstraction as a mapping between formal systems which pre¬

serves certain desirable properties like provability or inconsistency. Therefore,
for such operations to be useful, we need to know how they affect the preservation
of provability and inconsistency.

The inverse of an abstraction has the inverse provability or inconsistency

preserving property of the original abstraction. In other words a TP-abstraction
inverts to a TD*-abstraction, and vice versa.

Theorem 10 : If f : £1 ==>■ £2 is a surjective TI*-abstraction (TD*-
abstraction) with an inverse g : £2 => £1, then this inverse is a TD*-
abstraction (TI*-abstraction).
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Proof: We consider the case where / : Ex =>• £2 is TI. The other
cases are entirely dual. If <p G Tiif(Ei) then /(<£>) G TH(E2). Now

= P- Thus, g{f{(p)) G TH{Ej) implies f(<p) G Tif(E2).
Since / : £1 =>■ E2 is surjective, /(p) ranges over the whole of the
abstract language, and g : E2 => Ex is a TD-abstraction. □

Identity abstractions are TC*.

Theorem 11 : If f : Ex => Ex is the identity abstraction of Ex then
it is a TC*-abstraction.

Proof: Since f(<p) — <p, f{<p) £ TH{Ex) iff <p G TH(Ex). Thus
/ : Ei =>• Ei is a TC-abstraction. And, by a dual argument, it is also
a NTC-abstraction. □

The composition of two abstractions preserves provability or inconsistency
in the same way as its components. For example, the composition of two TP-
abstractions is itself a TP-abstraction.

Theorem 12 : If f : Ex =>• E2 and g : E2 =>• E3 are TI*-abstractions

(TD*-abstractions) then their composition f o g : Ex => E3 is also a

TI*-abstraction (TD*-abstraction).

Proof: We consider the case of Tl-abstractions. The other cases

are dual. If / : Ex =/> E2 is a Tl-abstraction, and <p G TH{Ex) then
f{<p) G TH{E2). However, g : E2 E3 is also TI. Thus, g(f(<p)) G

THT(E3). Hence, / o ^((p) G TH(Es), and / o g : Ex =>■ E3 is a TI-
abstraction. □

Composing abstractions which preserve provability or inconsistency in differ¬
ent ways gives unpredictable results. For example, composing a Tl-abstraction
with a NTI-abstraction can give an abstraction that is neither a TI- nor a NTI-
abstraction. In general, being a T*-abstraction gives no guarantee that the
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negation of the theorems are mapped in a useful way. Similarly, being a NT*-
abstraction gives, in general, no guarantee that theorems are mapped in a useful
way. In theorem 6, we demonstrated the very weak conditions necessary for T*-
abstractions (NT*-abstractions) to map the negation of theorems (theorems) in
a useful way. If a T*-abstraction preserves negation and is between systems

with negation, then it is also a NT*-abstraction and vice versa. Under these
conditions, T*-abstractions can be safely composed with NT*-abstractions. We
summarise all these results about composing abstractions in the following table.

o TD TC TI NTD NTC NTI

TD TD TD ? ? ? ?

TC TD TC TI ? ? ?

TI ? TI TI ? ? ?

NTD ? ? ? NTD NTD ?

NTC ? ? ? NTD NTC NTI
NTI ? ? ? ? NTI NTI

This table describes the properties of the composition of an abstraction pos¬

sessing the property given by the row heading with an abstraction possessing
the property given by the column heading. Thus, the entry in the second row

and third column indicates that the composition of a TC-abstraction with a TI-
abstraction is another Tl-abstraction. The symbol "?" is used to indicate that
the provability or inconsistency preserving properties of the composition of two
abstractions is not predictable. The table is symmetrical about the principal

diagonal, and dual with respect to the other diagonal. This last fact is a re¬

flection of the duality between T*- and NT*-abstractions, which we define more

formally in Section 3.5. The table has complete symmetry about the horizon¬
tal and vertical axes for negation preserving abstractions between systems with

negation; under such assumptions, a T*-abstraction is also a NT*-abstraction
and vice versa, the table would contain just 8 question marks, and is completely
determined by a single quadrant.
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3.4 Some Relations between Abstractions

We have already described two very useful relations between abstractions. The
first was an equality relation (definition 7); this identifies when two abstractions
represent the same object. The second was a relation between T*-abstractions
and NT*-abstractions; given certain weak conditions, a T*-abstraction is also
a NT*-abstraction and vice versa (theorem 6). This Section and Sections 3.5
to 3.8, identify some further relations that exist between the different types of

provability and inconsistency preserving abstractions.

In general, we deal with syntactically incomplete and consistent theories in
which a g TH(E) does not imply ~^a G TH(£) and vice versa. However, when
both the ground and abstract spaces are syntactically complete, the different
forms of abstractions coincide.

Theorem 13 : If f : Ex =>- £2 is an abstraction between two syn¬

tactically complete systems with negation then f : £1 => £2 is a TI-
abstraction iff it is a NTD-abstraction. Dually, f : £1 =>• £2 is a

NTI-abstraction iff it is a TD-abstraction.

Proof: We consider only TI- and NTD-abstractions and one di¬
rection as the other proofs are dual. Let / : £1 =>• £2 be a TI-
abstraction. From Theorem 4, if ~>f(<p) ^ NTH(E2) then -1 <p 0
NTH(Ei). But, from the syntactical completeness of £1, -up ^
NTH(Ei) iff <p G NTH(Ei). Similarly, from the syntactical com¬
pleteness of £2, i/(p) 0 NTH(E2) iff f(<p) G NTH(E2). Thus
f(<p) G NTH(E2) implies (p G NTH(Ei). Hence / : £j 4- £2 is a

NTD-abstraction. □

Of course, this theorem does not hold if one of the formal systems is syntacti¬

cally incomplete. For example, an NTI-abstraction in which the abstract space,

£2 is syntactically complete and the ground space, £1 is syntactically incomplete
can map the members of TH(£1), and formulae which belong neither to TH(£X)
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nor to NTH(Ei) onto TH(E2). A TD-abstraction, by comparison, can map only
the members of TH(Ei) into TH(E2). For abstractions from syntactically in¬
complete systems, the type of abstraction determines where the formulae which
neither belong to TH(Ei) nor to NTH(Ei) can be mapped. Analogous results
hold for the other types of abstractions.

3.5 A Duality Relation

Often in our proofs we have called upon a duality between T*-abstractions and
NT*-abstractions. Given some theorem about T*-abstractions, there has been a

dual theorem about NT*-abstractions. We capture this fact with the following

duality theorem.

We informally define At T o as the class of meta-theoretic statements about
abstractions which mention only the notions of:

{ equality, o, identity, inverse, TI, TD, TC, NTI, NTD, NTC, T*,
NT*, TI*, TD*, TC*, TH, NTH, TH*, theorem, negation of the¬

orem, syntactic completeness, system with negation, negation pre¬

serving, surjectivity, injectivity }

This set consists of all the notions we have introduced so far which respect the

duality between T*- and NT*-abstractions. For example, the statement, Si that
"A Tl-abstraction between two syntactically complete systems with negation is
NTD" is in At To- However, the statement, s2 that "A TD-abstraction cannot

map into an inconsistent abstract theory" is not in At T o as it mentions the notion
of "inconsistency", and there is not an exact dual to the notion of inconsistency.
Given a statement s in At To, we define the dual to s as the statement formed

by simultaneously applying the substitutions:

{ TI/NTI, TD/NTD, TC/NTC, NTI/TI, NTD/TD, NTC/TC, T*/NT*,
NT*/T*, TH/NTH, NTH/TH, theorem/negation of theorem, nega¬
tion of theorem/theorem }

We call this set the duality substitutions for At To- The dual to a statement
in At To is itself in At To- For example, the dual to Sx is the statement that "A
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NTI-abstraction between two syntactically complete systems with negation is
TD". The following very useful meta-theorem holds.

Meta-theorem 1 (Duality) : If s is a statement from MT0 then
s is a theorem iff the dual to s is a theorem.

Proof:[Informal] The definitions of all the concepts in At To respect
the duality substitution exactly. For example, the dual of the def¬
inition of a TD-abstraction is the definition of a NTD-abstraction.

Thus any proof can be mapped onto a proof of the dual theorem

simply by applying the duality substitutions for Al T0 to the proof.
□

For example, since is a theorem, the dual to Sx is also a theorem. A
NTI-abstraction between two syntactically complete theories with negation is
indeed TD. Having proved a statement in AlTo, we know immediately that its
dual is also true. This can considerably reduce the number and the size of

proofs we need find. This duality theorem is only true for statements in AlTo-
For example, S2, the statement that "A TD-abstraction cannot map into an

inconsistent abstract theory" is true but not in AlTo- If we apply the duality
substitution for At To to S2, we get the statement that "A Tl-abstraction cannot

map into an inconsistent abstract theory". This is false. Indeed, Chapter 5

is devoted solely to the understanding why the duality breaks down for this

statement, and how we can overcome this problem.

3.6 An Ordering Relation

Another very important relation between abstractions is that of an order. We
have called one abstraction "stronger" than another without precisely defining
how we might order abstractions. Such an order would help us describe the

complexity of the abstract spaces. The definitions of T*- and NT*-abstractions
suggest two obvious ways of ordering abstractions: T*-abstractions can be or¬

dered by the number of theorems in the abstract spaces, and NT*-abstractions
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by the number of wffs whose negations are theorems. These orderings will prove
very useful in Chapter 5 when we consider the problem of abstractions which
map into (absolutely) inconsistent spaces; that is, when the number of theorems
of the abstract space is maximal.

The orders we define are only partial orders; given an arbitrary pair of ab¬
stractions it is not always possible to put an order on them. To order two

abstractions, a necessary condition is that they share the same ground space.

However, this is not a sufficient condition as we cannot order all abstractions
with the same ground space. For T*-abstractions, we define the following order:

Definition 13 ( < ) : If f : Ei =>• E2 and g : Ex =>■ E3 are two ab¬
stractions then f <g iff for all wffs <p, if f(<p) £ TH{£2) then g(<p) £
TH{S3). We say that g is stronger than f, or that f is weaker
than g.

g is "stronger" than / in the sense that there are more wffs, a. such that

g(a) £ TH(E3) than wffs, (3 such that /(/?) £ TH[E2). Note that we can order
two abstractions even if they have completely different abstract languages. We
also introduce three derived symbols:

Definition 14 ( = ) : f = g iff f < g and g< f. We say that f is
equivalent to g.

Definition 15 ( < ) : / < g iff f < g and —>(/ = g) ■ We say that g is
strictly stronger than f, or that f is strictly weaker than g.

Definition 16 ( M ) : fwgiff-^[f<g) and-i(g<f). We say that
f is incomparable to g.

" < " is a preorder, being transitive, and reflexive.

Theorem 14 (Preorder) :

1. f< g and g <h implies f < h

2. /</
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Proof: Immediate from Definitions 13 and 14. □

38

" = " is defined by the antisymmetry of " < ". Alternatively, we could have
defined " = " using the following identity:

Theorem 15 : If f : Sj =>• H2 and g : Ei =>• S3 are abstractions then
f = g iff /(<£>) E TH(Ti2) implies and is implied by g(ip) £ TH(£3).

Proof: Immediate from Definitions 13 and 14. □

" = " itself is a normal equivalence relation, being transitive, symmetric and
reflexive.

Theorem 16 (Equivalence relation) :

1. f = <7 and g = h implies f = h

2. f = g implies g = f

3. f = f

Proof: Immediate from Definition 14 and Theorem 14. □

Note that equivalence is a weaker notion than equality of abstractions. Equal¬

ity states that the abstractions share the same .abstract spaces and map wffs

identically (in effect, that the abstractions are the same object). Equivalence
states that the two abstract theories are isomorphic in some sense (wffs which
abstract onto theorems in one abstract theory also abstract onto theorems in the

other). Equality implies equivalence, but not vice versa.

Theorem 17 : f — g implies f = g

Proof: Immediate from Definition 14. □

"
< " is a strict partial order, being transitive and irreflexive.
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Theorem 18 (Strict partial order) :

1. f < g and g <h implies f <h

*• -(/</)

Proof: Immediate from Definitions 15 and 14 and Theorem 14. □

Those abstractions which we cannot order are incomparable.

Theorem 19 (Incomparability relation) : One and only one of
f<g,g<f,f = g a,nd f N g holds.

Proof: Immediate from Definitions 13, 14, 15 and 16. □

We can extend " < " in the conventional way from a preorder to a weak partial

order, "<*" on the equivalence classes of ABS with respect to " = that is,
we can define a weak partial order on ABS/= as follows:

Definition 17 ( <*) : //[/] and[g] belong to the quotient set A3 S/=
then [/]<*[ff] iff f <g

Theorem 20 (Weak partial order) :

7. [/] < *[<7] and [<7] < *[h] implies [/] < *[/i]

& [/] <"[«] <""> [«] < "I/] implies [/] = [a]

[/]<*[/]

Proof: Immediate from Definitions 13, 14 and 17. □
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3.7 Properties of this Ordering

We have argued at length for abstractions which preserve provability. Thus we

are interested in the relationship between this partial order and the preservation
of provability. A very important property is that the provability preserving

properties of an abstraction are inherited by another if we can order them.

Theorem 21 : If f : Ei =>• S2 is a Tl-abstraction (TD-abstraction),
and g : Si => £3 is another abstraction with f <g (g < f) then g is
also TI (TD).

Proof: We give the proof for Tl-abstractions; the proof for TD-
abstractions is entirely dual. If / : Si =>■ E2 is TI then <p G TH[E1)
implies /(<£>) G TH(E2). As f <g, f(<p) G TH{E2) implies g(<p) G

TH(E3). Thus <p G TH(E1) implies g(ip) G Tif(S3). That is,
g : Ei => Es is TI. □

Additionally, any Tl-abstraction is stronger than any TD-abstraction with
the same ground space.

Theorem 22 : If f : =>■ E2 is a Tl-abstraction and g : Ei E3
is a TD-abstraction then g </•

Proof: Since g : Ei =>■ E3 is TD, g(<p) G T^(E3) implies ^ G !rii!(Ei).
But, as / : Ei E2 is TI, £> G TH(Ei) implies /(<£>) G TH(E2).
Thus, &(¥?) G TH(ES) implies /(^) G TH{E2). That is, g<f. □

A simple corollary of this theorem is that g < fi < f where /1 is the identity
abstraction of Ei. Another is that a TC-abstraction is equivalent to the identity
abstraction of its ground space. Thus " <" generates orders with chains of
TD-abstractions on the left, TC-abstractions in the middle, and chains of TI-
abstractions on the right. Given a set of ordered abstractions, if one of the
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abstractions is TI then all stronger abstractions are also TI, and if one of the
abstractions is TD then all weaker abstractions are also TD.

Composition is a very natural way to build such ordered sets of T*-abstractions
as the following result holds.

Theorem 23 :///:£i £2 ls an abstraction and g : £2 =>■ £3 is
a Tl-abstraction (TD-abstraction) then f < f o g (fog </)■

Proof: As usual the proof for TD-abstractions is dual to the proof
for Tl-abstractions. If f(<p) £ TH(E2) and g : £2 =>■ £3 is TI then
g(f(<p)) £ TH{E3). Thus f(<p) £ TH{E2) implies fog(<p) G TH(Z3).
That is, / < / o g. □

These results suggest that " < " is a very natural order on T*-abstractions.
The quotient set ABS/= together with "< *" form a poset; that is, a set plus
a partial ordering. As with any poset, certain subsets can have upper and lower
bounds. For example the subset, A8S%/= in which all abstractions share the
same ground space, £ has an upper bound which is the equivalence class of all
abstractions from £ with absolutely inconsistent abstract spaces. ABSs/= also
has a lower bound which is the equivalence class of all abstractions from £ with
abstract spaces which have no theorems. Note that (AB S/= , < *) does not form
a lattice; that is, a poset in which any two elements have a least upper bound
and a greatest lower bound. However, when we restrict the set of abstractions to
those with the same ground space we get a complete lattice; that is, a lattice
in which every subset has a least upper bound and a greatest lower bound.

Theorem 24 : (AB Se/= , < *) is a complete lattice.

Proof: We use the fact that a poset with a greatest element in which

every (non-empty) subset has a greatest lower bound is a complete
lattice.

We define the abstraction, / : £ => £1 in which the abstract space,

£1 is absolutely inconsistent, and the mapping function is an iden¬

tity function. The equivalence class of this abstraction is the greatest
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element of the set ABSz/=. Consider any subset, A of ifBSs/s.
The set of upper bounds, B of this subset is non-empty as it con¬

tains the equivalence class of / : £ =>■ £1. Consider the abstraction,

g : E =>• E2 with an identity mapping function and with abstract
space given by a £ TH(T,2) iff for all abstractions, h : S => S3 in
the equivalence classes of B, h[a) £ TH(E3). The equivalence class
of g is the greatest lowest bound of B as g{a) £ TH(E2) implies
h(a) £ TH{E3); that is, [<7] < *[h]. It is also the least upper bound
of A. The greatest lower bound exists by an analogous argument.

Every subset of ABSz/= therefore has a least upper bound and a

greatest lower bound, and (ABSz/=, <*} forms a complete lattice.
□

3.8 A Dual Ordering

In the last section, we considered an ordering on the number of theorems of the
abstract space. This gave an ordering suitable for comparing T*-abstractions.
We can also define a dual ordering on the number of wffs whose negations are

theorems of the abstract space. Such an ordering is suitable for comparing NT*-
abstractions.

Definition 18 ( < ) : If f : £1 =>■ E2 and g : Xh =£• E3 are two ab¬
stractions then f <g iff for all wffs <p, if f(<p) £ NTH(E2) then
g{<p)eNTH{£3).

We also define an equivalence, " = a strict order, " -< ", an incomparability

relation, " x" and a weak partial order, identically to those relations
associated with " < The properties of {;<,=, ~<,x :<*} are entirely dual to
those of {<,=,<, ex, <*}. Rather than consider this ordering in any more

detail, we will simply extend the duality theorem (Meta-theorem l) to include
both "<" and u <n. Since the properties of "" are entirely dual to those of
" < ", everything that we have shown for " < " will hold dually for " ■< ".

We informally define MT1 as the class of meta-theoretic statements about
abstractions which mention only those notions found in Af To and the set:
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{<,=,<, tx ,<* < ,=, -< , x , < *, AB S, AB Sz, preorder, strict
partial order, equivalence relation, weak partial order, quotient set,

equivalence class, poset, (complete) lattice, (greatest) lower bound,
(least) upper bound }

For example, the statement, s3 that "(AB Sz/= > <*) is a complete lattice " is
in MTi. The set of sentences in MTo is a subset of those in MTi. Given a

statement 6 in AITi, we define the dual to s as the statement formed by simul¬

taneously applying both the duality substitutions for AlTo and the substitutions:

{</<,=/ = , </^, x/x, <•/:<*, ^/<,s/ = ,^/<,X/M,^7<*}

The dual to a statement in AlTi is itself in AtTi. For example, the dual to

s3 is the statement that "(AB Sz/— , ■< *) is a complete lattice". The following
extended duality theorem holds:

Meta-theorem 2 (Extended duality) : If s is a statement from
MTi then s is a theorem iff the dual to s is a theorem.

Proof:[Informal] The definitions of all the concepts in MTi respect
the duality substitution exactly. For example, the dual of the defini¬
tion of " < " is the definition of Thus any proof can be mapped
onto a proof of the dual theorem simply by applying the duality sub¬
stitutions for AtTi to the proof. □

For example, since s3 is a theorem, the dual to s3 is also a theorem. That is,

(A8Sz/= , ■<*) is indeed a complete lattice. " ■< " thus inherits all the properties
for orderings of NT*-abstractions we have proved of " < " for orderings of T*-
abstractions.

Both these orderings also possess another duality which is orthogonal to this
one. Given a true statement about the ordering of TI*-abstractions there exists
a dual and true statement about the inverted ordering of TD*-abstractions. We

informally define AIT2 as the subset of AIT 1 sentences which discuss just the

ordering of T*- or NT*-abstractions. For example, the statement, 54 that "If

/ : Ei E2 is a Tl-abstraction, and g : Ex => Ei is the identity abstraction of
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Ei then g < /" is in MT2 as both / and g are T*-abstractions. However, the

statement, s2 that "A TD-abstraction cannot map into an inconsistent abstract

theory" is not in .M T2 as it is not about either ordering. Given a statement s in

MT2, we define the inverted dual to s as the statement formed by simultane¬

ously applying the substitutions:

{X<Y/Y<X, X <Y/Y <X, X<Y/Y<X, X<Y/Y<X, TI/TD,
TD/TI, NTI/NTD, NTD/NTI }

We use "AT" and "F" to stand for meta-variables that can be substituted by any

abstraction. "X" and "F" can unify with different abstractions in the different
substitutions. The inverted dual to a statement in MT2 is itself in MT2. For

example, the inverted dual to s4 is the statement that "If / : Ex => E2 is a TD-

abstraction, and g : £x =>■ Ei is the identity abstraction of Ex then / < <7". The

following duality theorem holds:

Meta-theorem 3 (Inverted duality) : If s is a statement from
MT2 then s is a theorem iff the inverted dual to s is a theorem.

Proof: [Informal] The idea is to take a proof about the ordering of
a T*-abstraction (NT*-abstraction), and invert the chain of reason¬
ing within it. For example, the implication for a Tl-abstraction that

<p G TH{Ex) implies f(<p) G TH(E2) can be inverted if we replace
the Tl-abstraction with a TD-abstraction in which f{p) G TH(E2)
implies <p G Ti7(£x). We also need to invert the ordering of abstrac¬
tions. For instance, f < g will become 9<f■ □

For example, since s4 is a theorem, the inverted dual to s4 is also a theorem.
That is, if / : Ei E2 is a TD-abstraction, and g : Ex => £1 is the identity
abstraction of £1 then / < g is indeed true. This inverted duality theorem also

considerably reduces the number and the size of proofs we need to find.

Finally, we note that under very special conditions, the two orders actually
coincide. For a syntactically complete classical theory, E either a G TH{E) or
a G NTH(E); the two orders will therefore collapse together.
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Theorem 25 : If f : £i =>• £2 and g : £1 =>• £3 are abstractions with
syntactically complete classical abstract theories then f <g iff g < /.

Proof: We only consider the forward direction as the reverse direc¬
tion is entirely dual. Since f <g, f(<p) G JVr5(£2) implies g((p) G

NTH(E3). Thus g NTH{E3) implies /(^) £ NTH(Z2). That
is, <7(9?) G Tif(£3) implies /(£>) £ TH[Ti-l). Hence, g<f. □

3.9 Hierarchies of Abstractions

So far we have concentrated on applying abstraction only once. However, the

process of abstracting a problem can easily be iterated to give a hierarchy of
abstractions. Theorem 23 shows that abstraction composition is a very natural

way to generate hierarchies of abstractions of increasing strength. An important
question is whether there is any limit to the size of the hierarchies of abstractions
we can build. How many times can we abstract a problem? Can we get to an

abstract space such that abstracting it again generates the same abstract space

(or more generally, one with the same number of theorems)? In other words,
does abstraction composition have a fixed point? And if we get there, will we
know? There are 3 possible answers. We shall concentrate on Tl-abstractions

though similar observations hold for NTI-abstractions.

In the first case, the abstract space becomes inconsistent. In fact, as we

increase the strength of the abstraction, we monotonically increase the number
of theorems; we eventually reach an upper bound when the set of theorems
coincides with the language. Since testing consistency is in general undecidable,
we may not be able to recognise that we are at this fixed point. Thus, in trying to

generate simpler and simpler abstract spaces, it is actually possible to generate

indefinitely long chains of abstractions. Putting an upper bound on the number
of abstractions we apply is one solution. A better solution perhaps is to require
that there is a point after which all the abstract spaces are decidable. This topic
is discussed in much more detail in Chapter 5.
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In the second case, the abstract space remains consistent but abstracting
it further does not increase the number of theorems. This occurs with most

types of abstraction if we apply them repeatedly enough. In order to decrease

complexity, an abstraction throws away some details; eventually there comes a

point after which there are no more details to throw away. For example, with an

abstraction that maps the names of predicates together, we cannot abstract a

problem beyond a single predicate symbol. The fixed point is different for each
different type of abstraction but we are, however, usually able to recognise when
we are at such a fixed point.

In the third case, we monotonically increase the number of theorems but
never reach inconsistency. That is, we generate an infinite chain of abstractions
and never reach a fixed point.

3.10 Some Properties of Abstractions

Having concentrated on properties that exist between different abstractions, we
now consider some properties possessed by individual abstractions. We have
defined an abstraction as a pair of formal systems and a mapping function.
Often the parts of this definition are closely related. The aim of this section is
to identify different ways in which they are related. The definitions we introduce
here will prove very useful in describing the examples of abstractions presented
in Chapter 4.

The definitions of T*- and NT*-abstractions capture some important rela¬
tions between one part of the formal systems; that is, between the theorems
of the ground and abstract spaces. The properties we introduce here capture
relations between other parts of the formal systems. They divide into three
classes: relations between the ground and abstract languages, relations between
the ground and abstract axioms, and relations between the ground and abstract
inference rules.

Relations between Languages

Often an abstraction will use the same language in the abstract space as in the

ground space. This can allow the same inference engine to be used in the abstract

space as in the ground space, providing a great economy in implementation and
permitting the use of hierarchies of abstractions. An abstraction in which the
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language of the abstract space is a subset of that of the ground space is called
A-invariant.

Definition 19 (A-invariance) : //Ei has language A1? and E2 has
language A2 then an abstraction, f : £1 =r> £2 is called A-invariant
iff A2 C Aj.

Note that A-invariance is, in fact, not necessary for the same inference
engine to be usable in both the abstract and ground spaces. In general, we just
need the language of the abstract space to share the same logical syntax as that
of the ground space. For simplicity, we have taken the language to be the set of
well formed formulae. More commonly a language is given by an alphabet and a

set of rules. For example, a first order language can be given by an alphabet, a
set of recursive rules applied to the alphabet defining the well formed terms, and
a set of recursive rules applied to the alphabet and the well formed terms defining
the well formed formulae. In formulae, A = (A,T ,*W). The alphabet consists
of a set of logical symbols (the connectives and quantifiers), a set of variables,
a set of function symbols, and a set of predicate symbols. In formulae, A —

(£, "V, 7, P). Two languages will share the same logical syntax if they have the
same logical symbols and the same rules for defining well formed terms and well
formed formulae; they can differ in the symbols used for variables, for functions,
and for predicates. Thus, we can capture the notion of an abstraction which

preserves the logical syntax of the language by the following definition:

Definition 20 (Syntax-invariance) : Let Ax = (A\,T\,yi>i), A2 =
(A2, T-i, W2) be two languages, with alphabets A1 = ,Pi),
A2 = (£2, V2, J2, ?£)• An abstraction, f : => E2 is called syntax-
invariant iff £2 Q £1, T2 c r2, and W2 C Wi.

This definition is limited to theories with languages like that of first order

logic which can be described by an alphabet and rules for defining the well
formed terms and well formed formulae. It would not, however, be too difficult
to generalise this definition to languages with a different type of logical syntax
(eg. some of the languages of modal and temporal logic).
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An important class of syntax-invariant abstractions is those whose mapping
functions abstract only the theory; such abstractions leave the logical syntax
of formulae unchanged, mapping just the atomic wffs. We call these theory
abstractions.

Definition 21 (Theory abstraction) : An abstraction f : £i =>• £2
is a theory abstraction iff for any wffs a and (3,

/(a® 0) = f(a) »/(/?)

for all the logical connectives, ® (with the analogous condition for
unary and n-ary connectives) and

f(^x.a) = ®x.f(a)

for all the quantifiers, <».

For example, a theory abstraction would map the ground wff "Vx.p(x) V
-1p(x)" onto the abstract wff "Vx./(p(x)) V -i/(p(x))". Again this definition is
limited to theories with languages like that of first order logic which have logical
connectives and quantifiers. It would not, however, be too difficult to generalise
this definition to languages with a different type of logical syntax. Note that
both syntax-invariant and theory abstractions overload the use of the logical

symbols; the same connective and quantifier symbols are used in the ground and
the abstract languages. This is usually a reflection of the similar meanings given
to these symbols in the ground and abstract spaces. Note also that a theory
abstraction can drop variables. For example, if "/(p)" does not mention "x"
then "Vx./(p)" is equivalent to "/(p)". It can also drop conjuncts and disjuncts.
For example, if "/(?)" maps onto "_L" then "/(Pv ?)" is equivalent to "/(p)".
The idea behind theory abstractions is that most useful abstractions abstract
the theory but preserve the logic. In general, the logic is well behaved and it
is the theory that needs to be simplified. Indeed, you should only change the

logical structure of a wffwith great care as the consistency of a logic is often very

finely balanced and even the smallest change can prove catastrophic. Chapter
5 explores this delicate balance in more detail. As theory abstractions preserve

the logical structure of formulae, they are often use the same inference rules in
both the ground and the abstract spaces; we capture this property in Definition
23.
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Relations between Axioms

Often the axioms of the abstract space are related to the axioms of the ground

space. Sometimes the axioms are just mapped in the same way as the language.
The following definition characterises such a situation.

Definition 22 (A/f2-invariance) : Let Hi = (Ai,Qi,Ai), £2 =

(A2, A2) be two formal systems. An abstraction, / : £i =r- £2 is
A/fMnvariant iff fl2 = /(fii).

A/f2-invariant abstractions are useful when we do not want to distinguish
between wffs and axioms. They are especially common when the axioms of the

ground space are not known in advance. Tl-abstractions are frequently A/fi-
invariant since this is a simple way of guaranteeing that the abstraction of the
axioms of the ground space remain (as they must) theorems of the abstract
space.

Relations between Inference Rules

For reasons of simplicity and economy, an abstraction often uses the same infer¬
ence rules in the abstract space as in the ground space. This is characterised by
the following definition.

Definition 23 (A-invariance) : Let Ex = (Ai,f2i,Ai), and £2 =

(A2,n2, A2) be two formal systems. An abstraction, f : £x => £2 is
A-invariant iff A2 C Ai.

If an abstraction is not A-invariant then we call it A-variant. A-invariant

abstractions use the same inference engine in both the ground and the abstract

spaces. As well as providing considerable economy in implementation, this sim¬

plifies the problem ofmapping abstract proofs back onto ground proofs since the
abstract proof will often resemble (parts of) the ground proof; we will return to
this topic in Chapter 7. Notice that A2 C Ax may hold even if the languages,

Ai and A2 are different provided that they have the same logical syntax; that

is, provided the abstraction is syntax-invariant. The variables used in defining
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the inference rules are meta-variables and usually only commit us to a particu¬
lar logical syntax for our object language. A-invariance is frequently associated
with syntax-invariance as the latter guarantees that the logical syntax is pre¬

served whilst the former guarantees that the logical semantics are in some way

preserved.

Not all abstractions are A-invariant since we sometimes want to change the
inference rules. Occasionally an abstraction will map the inference rules in the
same way as the language.

Definition 24 (A/A-invariance) : LetEi = (Ax, fix, Ai) and E2 =
(A2,25 A2) be two formal systems. An abstraction f : Ex =>• E2 is

A/A-invariant iff

A _ •••> f{an) | al s- a
A2 — { 77 \ e A1//(<*«+1) «n+l

"/(a;)" should be read as applying / to the wff substituted for ocj when the
inference rule is applied. As stated earlier, we will ignore the difficult problem
of providing a uniform and general representation for inference rules by simply

adopting the notation used by Prawitz [Pra65]. Unless it is explicitly stated to
the contrary, we assume that the side conditions associated with the application
of an inference rule remain true in the abstract space if they are true in the ground

space. Additionally, we shall assume that the same assumptions are discharged
in the abstract space as in the ground space. A/A-invariant abstractions provide
a direct connection between the rules applied in the abstract space and those
in the ground space. This can make the problem of mapping an abstract proof
back onto a ground proof easier.

An abstraction can possess several of these properties. One common combi¬
nation is when both the axioms and the inference rules are mapped in the same

way as the language. We call such abstractions E-invariant.

Definition 25 (E-invariance) : An abstraction, f : Ex =>• E2 is E-
invariant iff it is A/U-invariant and A/A-invariant.



CHAPTER 3. SOME PROPERTIES 51

In [Sim88,Sim89] veridicality, a notion very similar to E-invariance for state
space search, was claimed to be fundamental for an abstraction to make any sense

at all. This seems a difficult statement to justify since we may want to allow
the abstraction of the conclusion of an inference rule to be deducible in several

steps from the abstraction of the hypotheses. E-invariance requires that the
abstraction of the conclusion is an immediate consequence of the abstraction of
the hypotheses.

We have explored some of the consequences of our theory of abstraction. We
have considered both properties between different abstractions, and properties
of an individual abstraction. For the former, we have defined various operations
on abstractions, and relations between them. For the latter, we have defined
various relations between the different parts of the abstraction mapping. The

concepts introduced here will prove very useful in later Chapters for describing

abstractions, and for understanding how and why abstraction works.

3.11 Summary



Chapter 4

Examples of Abstractions

In this Chapter, we will describe some important and, in some cases,

famous examples of abstraction. Each is described formally using
our theory of abstraction. In each example, we observe many of the
properties defined in the last Chapter. We end by identifying sev¬

eral connections between what initially appeared to be very dissimilar
abstractions.

4.1 Introduction

The examples of abstraction described in this Chapter are taken from many ar¬

eas: planning, theorem proving, commonsense reasoning, formal methods, etc.

In most cases, the original description of the abstraction was informal; to fit
these examples into our framework we have therefore performed a reconstruction

which, we hope, is faithful to the original description. We view this reconstruc¬

tion as one of the most important contributions of our theory of abstraction.

Indeed, our understanding and definition of abstraction has been strongly influ¬
enced by these examples.

This Chapter has many goals. First, we hope it will convince the reader that
our framework is very powerful and can capture most previous and, at first sight,

Many of the examples in this Chapter are also described in [GW89a], [GW90a] and
[GW90b],

52
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unrelated work in abstraction. Second, it provides a unified view of work from

many different areas which was carried out with a great variety of goals. Third,
it supports our claim that work in automating reasoning can often be fruitfully
characterised in terms of the provability relation. Finally, as we believe that
the sample of abstractions described here is representative of abstractions as a

whole, it highlights the simple properties, like truthfulness, possessed by most
abstractions used in past.

The structure of this Chapter is as follows. We begin by describing some

historically important examples of abstraction. The remaining examples are

divided into four classes: propositional abstractions (in which the abstract space
is propositional), domain abstractions (in which constants from the domain are

mapped together), predicate abstractions (in which the names of predicates are

mapped together) and finally some abstractions used in formal methods (eg.
hardware and software verification). We conclude with a brief summary of the
properties of each of the examples.

4.2 Historical examples

Example 1 (ABSTRIPS):

One of the very first and arguably one of the most famous AI systems to

use abstraction was ABSTRIPS [Sac74]. This system operated in a STRIPS
planning domain in which operators are applied to states of the world, generating
new states. ABSTRIPS built abstract plans in a hierarchy of abstract spaces

by ignoring certain preconditions to operators; to refine these abstract plans
into ground plans, further operators might need to be applied to satisfy the
abstracted preconditions.

To put this into a theorem proving context, we follow Green [Gre69] and
adopt a situation calculus. We chose this formalism because it is simple and

sufficiently descriptive for our purposes; we do not, however, wish to defend
its weaknesses (for example, its difficulty in solving the Frame Problem). The
abstraction used in ABSTRIPS can be formalised as a A/O-invariant abstraction,
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Lab : Ei =>■ E2 which maps between the situation calculi, Ei and E2. These
calculi have first order languages, frame, operator and theory axioms and natural
deduction rules of inference. Operators are wffs of the form:

Vs. (\ Pi{s) -+q(f{s))
1<<<n

Pi is a precondition, s is a state of the world, / is some action, and q describes
the new state of the world, f(s). Preconditions are thrown away according to
their criticality; this is a measure of how difficult the precondition is to satisfy.
The mapping function at the A;-th level of abstraction is defined as follows:

1. fAB(a) = a: if a is an atomic formula.

2. = -ifAB(a)',

3. /ab(<* A /?) = /AB(<*) A /ABQS);

4- /ab(<* V /?) = fAB(a) V /ab(/?);

5. fAB{Vx.a) = \/x.fAB(a)]

6. fAB(3x.a) = 3x.fAB{a);

7. /ab{oc —► /?) = fAB(a) —> fAB(/3), provided "a —> /?" is not an operator;

8- Jab(Ai<,<„ Pi(-s) -+ r) = Aiecrit(k) Pi{s) for anY operator, where i E
crit(k) if the criticality of p,- is greater than k.

For example, consider an operator for an agent y to climb onto an object z at

location x:

at{z, x, s) A climbable{y, z, s)—>at(z, x, climb(y, z, s))

This might abstract to an operator in which we check that the object z is at

location x but we do not check whether the agent y can actually climb it:

at(z, x, s)^at(z, x, climb(y, z, s))

If we view the abstracted preconditions as having been mapped onto true, T
then fAB : Ei E2 is a theory abstraction. It is also a TI/NTI-abstraction.
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Theorem 26 ; The abstraction used in ABSTRIPS, fab : Ei =>• E2
is a TI/NTI-abstraction.

Proof: Since fab : Ex =>■ E2 is a negation preserving mapping be¬
tween systems with negation, we merely have to prove that it is a

Tl-abstraction. We do this by showing that given a deduction TIi

ending in <p, you can build a deduction tree II2 ending in /ab{<P)
discharging the abstraction of the same assumptions. The proof uses
induction on the depth of ITx; that is the length of the longest branch.

For proofs of depth 1, fab is applied to the single wff in fix; this

generates a valid proof in n2.
Assume that we have shown it for trees up to depth n. We use

/ab(n) to represent the tree in S2 constructed from a tree, II in
Si of depth n or less. We show that it is true for all deductions

of depth n + 1 irrespective of the rule application used to construct

the tree of depth n + 1 from tree(s) of depth n (or less). Any rule
application that is not modus ponens involving an operator translates
unmodified. For instance, an or introduction on <p in III becomes an

or introduction on /ab(9>) in If2. For an operator application, the
following transformation is performed:

By the induction hypothesis, and the fact that Aiecrit(k) Pi follows
from Ai<t<nP« by a (possibly empty) sequence of applications of and
elimination, this is a valid deduction tree which discharges the (ab¬
straction of the) same assumptions as the tree in Ej. □

Note that the abstract proof we have constructed is actually larger than the

ground proof. The purpose of abstraction is not to find such larger proofs; we

hope that there are also going to be smaller proofs. These smaller proofs will not
try to satisfy p{ for i 0 crit(k). However, there is no guarantee that there will be

n

Al<t'<n Pi Al<i<nPi —* 9
9

Ai'gcrt'fffc) Pi Atger»'t(fc^ Pi * 9
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a smaller proof than the one exhibited; we will always be able to devise an obtuse

theory in which to prove p,- for i E crit(k) we have to prove pt- for i crit(k).
This problem would be eliminated if ABSTRIPS had abstracted both left and

righthand sides of operators. Under such circumstances, p,- for i (jL crit(k) would
not even appear in the abstract language.

An abstract proof should be useful in helping us build a ground proof since it

provides the "skeleton" for a ground proof. We will need to add to this skeleton
the proofs of preconditions which have been abstracted away. We formalise this
idea in Chapter 7 when we describe how the structure of abstract proofs can be
used to guide theorem proving in the ground space. Unfortunately, there is no

guarantee that we can construct a ground proof which uses the same operators
as an abstract proof since adding new operators may undo the effects of old ones.

ABSTRIPS works because operators are usually independent; we can therefore
solve the preconditions separately. Actually, ABSTRIPS is a little more clever
than this; the use of criticalities and multiple levels of abstraction allow for some

operator dependence to occur as it restricts the order in which preconditions
have to be satisfied. For an abstraction like ABSTRIPS to be useful, the area of
the region TH(E2) ~ fAB{TH{E1)), that is those abstract theorems which don't
map back to ground theorems, needs to be small in comparison to fab{TH (E1)),
those abstract theorems which do.

To summarise:

ABSTRIPS
Ground space: situation calculus
Abstract space: situation calculus

Provability preserving: TI/NTI
Negation preserving: yes

Theory abstraction: yes
A/H-invariance: yes
A-invariance: yes
Reference: [Sac74]

Example 2 (GPS):

Another very early use of abstraction was in the planning method of GPS

[NS72]. As with ABSTRIPS, this abstraction guided a state space search. After



CHAPTER 4. EXAMPLES OF ABSTRACTIONS 57

the objects and operators for a problem have been abstracted, the entire de¬
ductive machinery of GPS is used to solve the abstract problem; the abstract
solution is then used to construct a plan to guide the solution of the original prob¬
lem. We will just consider one of the abstractions, fGps : Ei =r> E2 suggested for

propositional logic problems in [NS72]. This abstraction is S-invariant; that
is, the language, axioms and deductive machinery of the abstract space are the

images of the language, axioms and deductive machinery of the ground space

with respect to the mapping function. The ground space, Ei is the propositional
calculus of Principia Mathematica [WR25]. The abstract space, S2 is a formal
system in which the wffs are (nested pairs of) propositional sentence letters. To
construct the abstract space, the same mapping is applied to the wffs, the axioms
and the premises and consequences of the inference rules of the ground space. If

a, /3 are two formulae in the ground language then:

!• /GPS(O=V/?) = /GPS(O:A/?) = /gps(O= ~»/?) = (/GPS(«)> Igps (/?));

2. /gpsC-1") = fGPs{oi)\

3. /gps(«) = & if ol is a propositional sentence letter.

For example, pV (-1q —> p) maps to (p, (q,p)). This is a Tl-abstraction:

Theorem 27 : /gps : Ex =>■ S2 is a Tl-abstraction.

Proof: By induction on the depth of the proof. We just take a proof
tree ITi of <p and apply fGPS to every wff in the tree. This constructs

a proof tree of /gps(^). □

Note that fGps '■ Si => E2 is not a TD-abstraction. For example, (p,p) £

TH{E2) but p A ->p TH{Ei).
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GPS

Ground space:
Abstract space:
Provability preserving:
Negation preserving:
Theory abstraction:
A/f2-invariance:
A-invariance:
Reference:

propositional calculus, £1
/gps(^I)
TI
no

no

yes
no

[NS72]

Example 3 (Plaisted's weak and ordinary abstractions):

Closest in spirit to our work is that of Plaisted [Pla80,Pla8l]; he defines three
classes of abstractions that preserve inconsistency. This work is less general than
ours as Plaisted restricts his attention just to mappings between refutation sys¬

tems that use resolution. Additionally, his classes of abstraction fail to capture

all inconsistency preserving mappings between systems that use resolution. We
would also claim that our definition of abstraction is more natural since it cap¬

tures more accurately the properties for which it was defined.

Plaisted's first two classes of abstraction, weak and ordinary abstractions

map a set of clauses onto a simpler set of clauses. These abstractions are A/fi-
invariant NTI-abstractions (remember we are mapping between refutation sys¬

tems). However, not all A/H-invariant NTI-abstractions are weak or ordinary.
The advantage of Plaisted's stronger definitions of weak and ordinary abstrac¬
tion over our definition of NTI-abstractions is that his abstractions are always

guaranteed to map into simpler theories. Or, to be more precise, for every theo¬
rem there is an abstract refutation proof that is no deeper than any of its ground

proofs.

With ordinary abstraction, the same mapping function is used to abstract
the wffs and the axioms of the ground space onto those of the abstract space.
This function maps a clause in the ground language onto a set of clauses in the
abstract language subject to the following conditions:

b) if as is a resolvent of and a2 in Hi, and /?3 £ f(a3) then there exist
02 £ /(a2) and @1 C f(cti) such that a resolvent of 0i and /?2 subsumes /?3

a) /(I) = {X};

in E2;
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c) if ai subsumes ct2 in Ei, and /?2 £ f[ai) then there exists (3i G f(ai) such
that /?i subsumes /?2 in E2.

Weak abstractions are defined identically to ordinary abstractions except

condition b) is weakened to the property that if ct3 is a resolvent of ccj and a2

in Ei, and /?3 G f(oc3) then there exist /?2 G /(ct2) and /?x G f(a1) such that (3i
subsumes (3S, or /?2 subsumes /?3, or a resolvent of /?x and /?2 subsumes /?3 in E2.

Trivially, all ordinary abstractions are weak, but not all weak abstractions are

ordinary. Both ordinary and weak abstractions are NTI-abstractions, but, as we

said above, not all NTI-abstractions are weak or ordinary.

Theorem 28 : Weak and ordinary abstractions are NTI!

Proof: A simple corollary to theorem 2.4 on page 268 of [Pla80]
is that, if / : Ei => E2 is a weak or ordinary abstraction, and _L is
derivable from H U {<p} then /(_L) or something that subsumes it
is derivable from /(f2) U As /(-L) = {-L}, this means that
_L is derivable from /(H) U {/(<p)}. That is, <p G NTH(Ei) implies
f{<p) 6 iVTif(E2). In other words, / : Ex => E2 is a NTI-abstraction.
□

Theorem 29 .* There exist NTI-abstractions between resolution sys¬

tems that are not weak or ordinary abstractions.

Proof: We can find NTI-abstractions that fail every one of the con¬

ditions in the definition of weak and ordinary abstractions.
Condition a) is failed by the NTI-abstraction for which for every

Y>, f{<p) ={<PV J-}.
The problem with condition b) is that we may also need to resolve

with an axiom of the theory. Consider, for instance, the abstraction
defined by /(pV^) = {pVr} and /(<£>) = {^} otherwise. If Ex contains
the axioms -1q, and ->r then / is NTI'. In particular, p V q resolves
with -1p in Ei to give q. However, no clause in the abstraction of

p V <7, or -1p (or their resolvent) subsumes the clause q found in the
abstraction of q. We therefore fail condition b).



CHAPTER 4. EXAMPLES OF ABSTRACTIONS 60

For condition c), consider the abstraction defined by f(p V q) —

{r,p V q} and f(<p) = <p otherwise. Now / is NTI1 However, / fails
condition c) of the definition of weak and ordinary abstractions as

p subsumes p V q but no clause in the abstraction of p subsumes r
which is in f(p V?). □

The definition of weak and ordinary abstractions could be extended to over¬

come the first counter-example by replacing condition a) with the more general
requirement that there exists <p G /(J-) such that <p G NTI^[E2). However, this
still leaves useful NTI-abstractions that fail conditions b) and c). The purpose

of condition c) is to guarantee that the composition of two abstractions remains
an abstraction (see the proof of theorem 2.3 on page 54 of [Pla8l]). This condi¬
tion seems rather unnatural, especially as it is unnecessary with our definition of

abstraction; not only does composing two of our abstractions give a well defined

abstraction, but the composition of two TI*-abstractions (TD*-abstractions) is
itself a TI*-abstraction (TD*-abstraction).

Even if we restrict ourselves to A/H-invariant abstractions between resolution
systems, weak and ordinary abstractions are not as general as NTI-abstractions.
For example, the ABSTRIPS abstraction described earlier in this section is a

NTI-abstraction but is not a weak or an ordinary abstraction. Indeed, any

purely syntactic definition of abstraction (like Plaisted's definitions of weak and
ordinary abstractions) will inevitably fail to capture the complete class of NTI-
abstractions as this, in general, requires performing an arbitrary amount of the¬
orem proving.

Plaisted's weak and ordinary abstractions do have one advantage. The proof
of theorem 2.4 on page 268 of [Pla80] shows how, given a proof of a theorem in the
ground space, we can construct a proof of the abstract theorem; Plaisted notes

that this abstract proof is no deeper than the original ground proof. Ordinary
and weak abstractions are therefore guaranteed to map us into simpler abstract

spaces. The cost of this guarantee is that ordinary or weak abstractions fail to

capture the whole class of NTI-abstractions; this seems a high price to pay as

we intuitively expect NTI-abstractions that are not also NTC-abstractions to

map onto simpler spaces. Indeed there are many NTI-abstractions which are
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not weak or ordinary, but which build simpler abstract spaces; the abstraction
used in ABSTRIPS is one such example.

We end by observing that not all weak or ordinary abstractions are negation

preserving. For example, the abstraction given on page 266 of [Pla80] which
changes the sign of a set of literals is not negation preserving (and is thus not
a theory abstraction); if f(~^p) = p then ~>f(p) — and /(-ip) ^ ~<f(p). Of
course, this mapping is logically equivalent to a negation preserving abstraction.
We might therefore be tempted to weaken the definition of negation preservation
to the property that /(^p) ~>f(p). The disadvantage with such a change is
that this would, in general, make determining the preservation of negation unde-
cidable. It also seems rather unnecessary as every other example of abstraction
Plaisted gives in this paper is negation preserving. The preservation of negation
is very important as it is closely related to the (in)consistency of our abstract
space. We will explore this topic in more detail in Chapter 5.

Example 4 (Plaisted's generalisation abstraction):

Plaisted's third and final class of abstractions usefgeneralisation functions

[Pla86]. Ordinary and weak abstractions abstract the language and axioms of
a theory but keep the deductive machinery the same, what we have called A-
invariant abstractions and what Plaisted calls input abstractions. Abstrac¬
tions using generalisation functions keep the language and axioms the same but
abstract the resolution rule of inference; after every resolution, a generalisation

operation is performed on the resolvent. For example, we could replace all terms
of depth n or greater by new variables. We thereby construct a proof which is
more general than one we could find in the ground space. This abstract proof
is guaranteed to be no longer than one of the ground proofs and can be used

Weak/Ordinary abstractions
Ground space:
Abstract space:
Provability preserving:
Negation preserving:
Theory abstraction:
A/n-invariance:
A-invariance:
Reference:

clauses &: resolution
clauses & resolution
NTI'
sometimes
sometimes

yes

yes

[Pla80]



CHAPTER 4. EXAMPLES OF ABSTRACTIONS 62

to aid the search for a ground proof as it has a similar structure. Though the
abstract proof can be shorter than the ground proof, the cost of inference in the
abstract space is more expensive than that in the ground space. In general we
have to perform both full-blown resolution and generalisation; this extra cost

could outweigh the advantage of having a shorter proof.

An abstraction using a generalisation function maps a first order calculus

using resolution onto another first order calculus with the same axioms but with
a "generalised resolution" rule of inference. The identity function is used to

map wffs between the two formal systems. Generalised resolution is resolution
followed by application of a generalisation function, g to the resolvent; this gen¬

eralisation function maps a wff, <p onto a set of (more general) wffs that have p
as instances. In other words:

g{ip) C {o: | <p = aO}

Note that the generalisation function can map a wff onto the empty set, {} which
is interpreted as _L. If g(p) = {<p}, the identity generalisation, then Ex will be
identical to E2, and the abstraction is TC/NTC. Generalisation abstractions are

nti:

Theorem 30 : If f : Ex =£• E2 is a generalisation abstraction for
which for any <p, g(<p) ^ {} then f : Ei =£► E2 is a NTI-'abstraction.

Proof: A simple corollary to theorem 1 on page 368 of [Pla86] is
that if there is a proof of _L from fix U {p} in Ei then there is a

proof of <?(-L) from fix U {p} in E2. Since ff(-L) = _L for all generali¬
sation functions, this means that / : Ex =*► E2 is a NTI-abstraction.

Theorem 1 of [Pla86] also guarantees that the abstract proof is no

longer than the ground proof and has the same shape. □

As generalising a theorem can produce a non-theorem, generalisation ab¬
stractions are not usually TD*-abstractions. For example, if we have the gener¬

alisation function that replaces all terms by free variables, and the set of axioms,
= {p? "'P V 9(a),-ip V-19(6)} then _L € TH(E2) but JL 0 TH(Ex). We can
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come up with (extreme) examples that are TD*-abstractions. Consider, for in¬
stance an abstraction with a ground space which contains p as an axiom and for
which g(<p) = {} if <p — ->p and {<p} otherwise. This abstraction is TC/NTC as

the generalisation function merely replaces a wff that is false with {}, which is
itself interpreted as _L.

Generalisation abstractions
Ground space: clauses &: resolution
Abstract space: clauses Sz generalised resolution
Provability preserving: NTT
Negation preserving: yes

Theory abstraction: yes

A/f2-invariance: yes
A-invariance: no

Reference: [Pla86]

Example 5 (Gazing):

Gazing is a heuristic for controlling the unfolding of definitions and lemmas
in theorem proving. It has been used in a natural deduction theorem prover

[Plu87], in a connection method theorem prover [War87], and within a proof
development system (as a tactic to the Oyster system [Sim89]).

At the heart of gazing is the common currency model; to prove a theorem
in a complex theory of definitions and lemmas we need to find a common language
of concepts between our hypotheses and conclusion. For example, to construct

a proof of the sequent,

(l get b ^ CL Cset b

we need to find a common currency between the concepts of set equality, "=sef"
and subset, "Cse("; we can achieve this by unfolding the definition of "=sef",

a —set b <-> (Vx.x £ a <-> x £ b)

and that of "Cse<",
a Caet b (Vx.z G a—>x £ b)

to give a common currency of set membership, "£"; having unfolded these defi¬

nitions, the proof can be completed by logical inference alone. Gazing constructs
a plan of definitions to unfold and lemmas to apply by considering a hierarchy
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of abstraction spaces: the predicate space and the function/polarity space. Al¬
though we will just consider the predicate space, a similar analysis could be
made of the function/polarity space.

The abstraction, fgaze : Ei =>• S2 used in the predicate space can be seen as a

mapping from a first order sequent calculus onto a propositional sequent calculus.
Definitions and lemmas in both ground and abstract spaces are represented by
a set of directed rewrite rules; the direction on these rewrite rules ensure that

concepts are only ever expanded into more primitive concepts. The languages
of both spaces consists of sequents of the form A —> B, the wffs in the set A
are implicitly conjoined whilst those in B are implicitly disjoined. The mapping
function abstracts the sequent A —> B onto the abstract sequent fgaze{A) =>
fgaze{B) where:

1* fgaze{A) UaGA fgaze{a)'i

2. fgaze{ot-VP) = fgaze(ctA/3) = fgaze{oi^/3) = fgaze{ot <">/?)= fgaze{ot) U fgaze[PY,

3- fgaze(^X.Ocj fgaze (Bx.ft) fgazei,-1^) fgaze{&) i

4. fgaze(p{x)) = {p}.

For example, the sequent,

—set ^} ='>

abstracts onto,

{—set} —^ {Cgg^y

The ground and abstract spaces contain a set of rewrite rules of the form a => /?;
each of these represents a definition or important lemma. The rewrite rules of
the abstract space can be obtained by abstracting the left and righthand side
of the rewrite rules of the ground space in the same way as the sequents. For

example, the rewrite rules,

a =set b => (Vx.a: G a «-* x E b)

a Cset b =>• (Vx.x E a—>x E b)
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abstract onto,

~aet ^ £

C3et =>" £

We can prove the abstract sequent, {=set} => {Cset} by using these two ab¬
stract rules to rewrite the abstract sequent onto the tautology,

{e} => {£}

This suggests applying (the unabstraction of) these rewrite rules in the ground
space. Indeed, with some additional logical manipulation this is sufficient to

prove the sequent,

{a =3et 6} => {a Cset b}

Unfortunately, this heuristic is neither sound (it will sometime suggest applying
the wrong rewrite rules) nor complete (it will not always suggest the appropriate
rewrite rule). That is, fgaze : Si =>• S2 is not a TI-, nor a TD-abstraction. Since
negation is not part of the abstract language, we do not need to consider whether
it is a NTI- or NTD-abstraction.

Theorem 31 : fgaze : Si => S2 is not a T*-abstraction

Proof: By example.

As {} => {p, ~'p} is provable in Si but {} => {p} is not prov¬
able in S2, it is not a TI- or TC-abstraction.

Since (3x.p(x)} => (Vx.p(x)} is not provable in Ex but {p} =>
{p} is provable in S2, it is not a TD-abstraction.

□

As a consequence, we cannot be certain when gazing will suggest the ap¬

propriate definitions to unfold, and when it will fail to identify the appropriate
definitions to unfold. This use of an abstraction therefore seems rather ad hoc.
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Gazing
Ground space:
Abstract space:
Provability preserving:
Negation preserving:
Theory abstraction:
A/H-invariance:
A-invariance:
Reference:

first order sequent calculus
propositional sequent calculus
no

no

no

yes

yes

[Plu87]

4.3 Propositional abstractions

An abstraction is propositional iff the abstract space is propositional. Propo¬
sitional abstractions are very important as their abstract spaces are decidable.

Example 6 (Connection methods):

Connection methods have been proposed in various forms as an efficient way
to perform theorem proving [Kow75,Cha79]. Common to these proposals is a

connection graph which represents possible resolutions between complementary
literals. The approaches differ in how they search this graph; most, however, can
be treated as propositional abstractions. Chang [Cha79], for instance, describes
an approach in which the connection graph is searched for a resolution plan, a
list of possible resolutions from which we can derive _L; this plan is then executed

by finding a unifier that simultaneously makes all the appropriate literals in the

plan complementary. The expensive cost of unification is thus delayed until
we have a complete plan. This approach can eliminate many redundancies of
conventional resolution (eg. simple reorderings of the resolutions) and allows all
the strategies developed for resolution (like linear, set of support ...) to be used.
Indeed, the fact that we can use conventional resolution strategies is a trivial
observation once we have described this example;as the abstract space, in which
we construct the resolution plan} merely uses a restricted form of propositional
resolution.

We formalise this example as a A/fi-invariant theory abstraction which maps

from a first order calculus using resolution to a propositional calculus using
"restricted" resolution. The abstraction preserves the logical structure of wffs
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and axioms, mapping the atomic formulae as follows:

f(p(s)) - p

All atomic formulae with the same predicate symbol map onto the same propo-

sitional constant.

The restriction on resolution in the abstract space is that the abstract wffs

f(aV/3) and f(a' V are only allowed to resolve together in E2 if /? resolves
with -1/?' in (allowing for renaming of any common variables); this prevents
us drawing up plans in which literals could never be made complementary. For

example, /(p(a)) and f(~<p{b)) are not allowed to unify in the abstract space

even though they abstract to p and -ip respectively. The resolution plan may

not be of any use as no consistent set of substitutions for the variables need exist.
The links in a connection graph are just a means of pre-compiling the allowed
resolutions. It also allows inference in E2 to be performed independently of Ej.

Consider, for example, the problem in [Cha79] where we wish to show that
the following set of clauses is unsatisfiable:

{ -ip(x) V p(s(z)),p(a),-.p(0(0(a))) }

We will give below an abstract proof and show how this maps onto a ground

proof. To do this, we need to find suitable unifications for every step suggested

by the abstract proof.

-1p V p P -■p(s) v p(g(x)) p(a)
p -1p V p ^ p(ff(a)) -•p(y) Vp(ff(y))
p -.p P(9{9{a))) -P( <?(<?( a)))
_L ±

Note that the ground and abstract proofs have identical shapes. In attempt¬

ing to find a ground proof, Chang does not use an abstract proof itself. Instead,
he builds a resolution plan which gives, in reverse order, the literals we will

attempt to resolve together in the ground proof; this involves choosing how to
unabstract each wff from the abstract proof. Using Chang's notation [Cha79],
one of the resolution plans that can be generated from the abstract proof is:

(p(ff(y)),^p(ff(ff(a)))) (p(ff(x)),^p(y)) (-•p(x),p(a))
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Each pair of wffs represents a resolution; reading from right to left, we get a
three step plan: first, to resolve ~>p(x) from -ip(x) V p(g(x)) with p(a), then to
resolve the resolvent of this, p(gr(a:)) with ->p(y) from ~>p(y) Vp(j(y)), and finally
to resolve the resolvent of this, p(g(y)) with -tp(gr(gf(a))). The substitution,
{a/x,g(a)/y} unifies all the literals in this plan, giving a valid ground proof.
Chang's resolution plans are very similar to the abstract proof plans we will
introduce in Chapter 7.

Note that the abstract proof is not the shortest we can find; having deduced

p, there is a redundant step where we resolve with ->p V p to deduce p again;
this extra resolution is needed so that the unifications in the ground space can

succeed. In the proof that this abstraction is truthful, we show that for every

ground proof there is an abstract proof which contains the same resolutions.
Abstract proofs are therefore useful as plans for ground proofs - given an abstract

proof, we build a ground proof by trying to find a unifier that makes all the

appropriate literals complementary.

Theorem 32 : The abstraction used by Chang's connection method
is a TI/NTI-abstraction.

Proof: By mapping a proof fix of <p in Ex onto a proof n2 of f(<p)
in E2. We simply apply / to every wff in IIx. Note that (p might be

_L, and /(_L) = _L. □

The abstract proof we construct is "simpler" than the ground proof as it
contains the same resolutions as the ground proof but without any unification.

A significant problem with many Tl-abstractions, this one included, is that

they can map a consistent theory onto an inconsistent theory. This is explored
in more detail in Chapter 5. The restriction on resolution in the abstract space

prevents many mappings from giving an inconsistent abstract space. For exam¬

ple, the axioms, {p(a),->p(6)} do not map onto an inconsistent abstract space as

f(p(a)) and -<f(p(b)) are not allowed to resolve together; however, there still ex¬
ists less trivial but consistent sets of axioms which give an inconsistent abstract

space (eg. {p(x) V q(x),->p(a),->q(b)}).
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Connection methods
Ground space:
Abstract space:
Provability preserving:
Negation preserving:
Theory abstraction:
A/f2-invariance:
A-invariance:
Reference:

clauses & resolution
clauses &; restricted resolution

TI/NTI
yes

yes

yes
no

[<WI]

Example 7 (Propositional decider):

A different propositional abstraction is used in [GG88] to implement a decider
for a fragment of first order logic; this abstraction is used to determine whether
a first order wff is provable using only the propositional connective inference
rules. We define it as a A/O-invariant abstraction, / : £i =r> £2 between a first
order calculus, £1 with a complete deductive machinery and a propositional
calculus with a complete propositional decider, £2. Though this abstraction
can be thought of as A—invariant (that is, the abstract space just uses the
propositional inference rules of the ground space), we will often use an efficient
propositional decision procedure in the abstract space; this decision procedure
can be based on a completely different notion of inference than that used in the

ground space. The mapping function used to abstract wffs and the axioms is
defined by:

1. f(a) = Pi, where a is any atomic formula; occurrences of identical atomic
formulae are rewritten as occurrences of the same propositional constant

Pi; occurrences of different atomic formulae are rewritten differently.

2. f[3x.a) = Pj where a is any formula; occurrences of identical existentially
quantified formulae or of existentially quantified formulae which differ only
in the name of their bounded variables are rewritten as occurrences of the

same propositional constant Pj\

3. f(\/y.a) = Pi where a is any formula; occurrences of identical universally
quantified formulae or of universally quantified formulae which differ only
in the name of their bound variables are rewritten as occurrences of the

same propositional constant Pk;
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4. /(a A /?) = /(a) A /(/?);

70

5. f(a v/?) = /(a)V /(/?);

6. /(—iq:) = ->/(a);

7. /(«-+/?) = /(«)-+/(/*);

8. /(a <-► /?) = /(a) <-» /(/?).

This is a TD/NTD-abstraction.

Theorem 33 : TVie abstraction used by the propositional decider,

f : Ei => E2 a TD/NTD-abstraction.

Proof: Since / : £1 =$■ E2 is a negation preserving abstraction be¬
tween systems with negation, we just need to show that it is a TD-
abstraction. It does not affect what we can prove to assume that Ei
has the standard natural deduction rules of [Pra65] whilst E2 just
has the propositional rules. For any proof in E2l a proof can be built
in Ex which performs the same sequence of inference rules. No com¬

plications arise from the different names of bound variables as we

can always prove the equivalence of formulae which differ only in the
names of the bound variables. □

Note that this is not a Tl-abstraction; for example, "Vx.p(x) V -1p(x)" is
provable in the ground space but its abstraction is not provable in the abstract

space. Since it is a TD-abstraction, abstract theorems always correspond to

ground theorems. This is rather unusual - most abstractions used in the past

are Tl-abstractions and abstract theorems may or may not correspond to ground
theorems.
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Propositional decider
Ground space:
Abstract space:
Provability preserving:
Negation preserving:
Theory abstraction:
A/O-invariance:
A-invariance:
Reference:

first order calculus

propositional calculus
TD/NTD
yes
no

yes

yes

[GG88]

Example 8 (Variable-free abstractions):

An interesting class of propositional abstractions introduced by Plaisted

[Pla80] is the class he called "ground abstractions". To avoid overloading the
word "ground", we will call them variable-free abstractions.

stances. It can be described as a A/fi-invariant abstraction from a ground space

of first order clauses and a complete first order inference engine (Plaisted uses

resolution, but the choice is arbitrary) to an abstract space of variable free clauses
and a propositional inference engine; this propositional inference engine should
treat instances of atomic formulae as propositions. Although strictly speaking
the abstract space is not propositional, its inference engine is. As in the previ¬
ous example, this abstraction can be thought of as A—invariant even though,
for efficiency, we may use different inference rules for propositional reasoning
in the abstract space. The mapping function abstracts clauses in the ground

space onto (implicitly conjoined) sets of their instances. We could extend this
abstraction to full first order languages if the mapping function first skolem-
ized formulae; Chapter 15 of [Bun83] presents a longer discussion on skolemizing
formulae, including those not in prenex normal form.

Consider, for example, the maximum function defined by:

A variable-free abstraction maps wffs onto their variable-free in-

max(0, x) = x max(y, 0) = y

max(s(x), s(y)) = s(max(x, y))

The clause:

{max(x, y) > x}
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might be abstracted onto the infininite set of clauses,

{{max(0,0) >0} , {max(s(0),s(0)) > 5(0)} , ...}
The proof of these clauses could be used to guide the proof of the original clause;
such a use of abstraction is intimately linked to the idea of generalisation. The

theorem, {max(x, y) > x} is simply a generalisation of the theorem, {max(0,0) >
0} and the theorem, {max(s(0),6(0)) > 5(0)}. This use of abstraction can also
be seen as theorem proving guided by example; the proofs of {max(0,0) > 0}
and (max(s(0),s(0)) > 5(0)} can be used as outlines for the base and step cases

of an inductive proof of {max(x, y) > x}. Interestingly, the use of examples
in theorem proving was another avenue of research followed by Plaisted [Pla84].
Other work in this area can be found in [Ble83], [Gel59], [Hen75] and [Rei73]. As
this example might suggest, a variable-free abstraction is a NTI-abstraction.

Theorem 34 : A variable-free abstraction is a NTI-abstraction.

Proof: A variable-free abstraction satisfies all the requirements nec¬

essary to be one of Plaisted's ordinary abstractions. Since such ab¬
stractions are NTIj a variable-free abstraction is also NTI.' □

Herbrand's theorem is just a special case of a variable-free abstraction where
the instances range over the whole Herbrand universe [Her67]. It translates to the
statement that / : £i =>■ £2 is a NTC-abstraction for these instances; this result
in turn provides the theoretical justification for the resolution proof procedure.

Variable-free abstractions
Ground space: first order clauses and resolution
Abstract space: variable-free clauses and resolution

Provability preserving: NTI"

Negation preserving: yes

Theory abstraction: yes

A/fi-invariance: yes
A-invariance: yes
Reference: [Pla80]
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4.4 Domain abstractions

Domain abstractions are abstractions which map the domain (that is, the con¬

stants) of the ground space.

Example 9 (Granularity):

Hobbs has suggested a theory of granularity in which a complex theory is
abstracted onto a simpler, more coarse-grained theory with a smaller domain

[Hob85]. For example, the real world of continuous time and positions could be
mapped onto a (micro)world of discrete time and positions. Granularity can be
formalised as a A/fl-invariant theory abstraction, fgran '■ Si => £2- The ground
and abstract spaces are first order calculi. Different constants in the ground

space are mapped onto (not necessarily different) constants in the abstract space
according to an indistinguishability relation, This is defined by the
second-order axiom:

Vx, y. x ~ y «-»• Vp G -R. p(x) *-* p(y)

where R is the subset of the predicates of the ground space determined too be
relevant to the situation at hand. Hobbs does not say much about determining
which predicates are relevant, except that it is a very hard problem. Like Hobbs,
we have only defined indistinguishability for unary predicates; it could, however,

easily be generalised to n-ary predicates. The mapping function keeps the same

logical structure of wffs but abstracts any constant onto its equivalence class.
That is,

fgran(p(a)) = J>([o])

where a is a constant symbol and [a] is the constant in the abstract language
representing the equivalence class of the constant a with respect to the indistin¬

guishability relation;

[x] = {y : x ~ y}

All variables are left unchanged. That is,

/(p(x)) = p(x)

The mapping extends to n-ary predicates in the obvious way. This abstraction
is TI/NTI.
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Theorem 35 ; A granularity abstraction is a TI/NTI-abstraction.

Proof: We can map a proof tree fix of onto a proof tree n2
of fgranijp) merely by applying / to every wff in the proof tree.
fgran : Ex =>• E2 is therefore a Tl-abstraction. As it is a negation
preserving mapping between systems of negation, it is also a NTI-
abstraction. □

Like many other Tl-abstractions, this abstraction can map a consistent ground

space onto an inconsistent abstract space. For example, if the constants a and
b are considered "indistinguishable" and [a] represents the equivalence class of
a and b, then a consistent ground space with equality and the theorem that

' (a = b) maps onto an inconsistent abstract space containing the theorem,
-■([a] = [a]). The consistency of the abstract space is, however, guaranteed for a
suitable indistinguishability relation.

Theorem 36 : If the abstraction, fgran : Ex => E2 defines indistin¬
guishability with respect to all the predicates of the ground language,
and Ex is consistent then E2 is also consistent.

Proof: By contradiction. Assume that a consistent ground space,

Ex maps onto an inconsistent abstract space, E2. That is, we can

find a proof tree, II2 of _L. We show how you can construct a valid

proof tree, ITx of ± in Ex, contradicting the assumption that Ex is
consistent. For every equivalence class, [a] we pick one member of
that class, b; to every wff, <p in fl2 we apply the substitutions {6/ [a]}.
This will generate a proof tree, ITi whose assumptions will either be
axioms of Ex or will be derivable from them using the indistinguisha¬

bility relation and substitution of equivalences. If indistinguishability
were not defined over all predicates, this last step would not always
be possible. □

If indistinguishability is defined over all predicates, fgran ' Ex => E2 must pre¬
serve consistency. To avoid inconsistency, we might therefore decide that all
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predicates are relevant to the situation at hand. Unfortunately this gives a TC-
abstraction. As we argued in Chapter 2, TC-abstractions are too strong since

they do not throw away any information. We end with the observation that

fgran is just an example of one of the abstractions proposed by Plaisted [Pla80]
in which function symbols (including constants or O-ary functions) are renamed
in a systematic, but not necessarily 1-to-l way.

Granularity
Ground space: first order calculus
Abstract space: first order calculus

Provability preserving: TI/NTI
Negation preserving: yes

Theory abstraction: yes
A/ fl-invariance: yes
A-invariance: yes
Reference: [Hob85]

Example 10 (Imielinski I):

Abstraction has been proposed by Imielinski [Imi87] as a basis for approx¬
imate methods of reasoning in first order logic. He argues that, though such

approximate methods can return answers that are not always correct, their er¬

rors should be characterisable. As an example, Imielinski considers two domain

abstractions; the first is a Tl-abstraction (and thus provides an over-estimate of
the correct answers) whilst the second is a TD-abstraction (and thus provides
an under-estimate of the correct answers).

Like Hobbs' theory of granularity (see the last example), Imielinski's abstrac¬
tions are based upon an equivalence relation between objects in the domain.
Imielinski gives the equivalence relation two different interpretations, each of
which leads to a different abstraction. One interpretation, which he calls the
"second-order interpretation", views the equivalence classes as the names of ob¬

jects in the abstract domain; this gives rise to a Tl-abstraction in which a prop¬

erty holds of an abstract object iff the property holds for one or more members
of the equivalence class.

We can formalise this second-order interpretation as a A/f2-invariant theory
abstraction, / : Ei =>• £2. Imielinski considers simple non-deductive databases
in which the languages of the ground and abstract spaces are restricted to closed
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formulae containing only the 3 quantifier, and A, V connectives; this is sufficient
to express queries to a (non-deductive) database of positive axioms. No problems
would, however, arise in moving to a full first-order language. The mapping
function is the same as in the granularity abstraction. That is:

where a is any constant symbol, [a] is the equivalence class of the constant a
with respect to an indistinguishability relation, ~, and:

where x is any variable. The mapping extends to n-ary predicates in the obvious

way. See [Hob85] and [Imi87] for some examples of indistinguishability relations.
This abstraction is truthful.

Theorem 37 : Imielinski's first abstraction is a Tl-abstraction.

Proof: We can map a proof tree TIi of ip onto a proof tree IT2 of

/(<£>) merely by applying / to evenjwff in the proof tree. □

This abstraction over-estimates answers; that is, the abstract space will sug¬

gest certain wffs are true which are, in fact, false in the ground space. Though
this abstraction is not always sound, it is complete; that is, the abstract space
returns all the theorems of the ground space. Since the ground and abstract

languages lack negation, there is no possibility of mapping into an inconsistent
abstract space. If, however, we use a closed world assumption to deduce negative
information from the database, we would have to worry about the consistency
of the abstract space.

f(p(a)) = p([o])

f(p(x)) = p(x)

Imielinski I
Ground space:
Abstract space:
Provability preserving:
Negation preserving:
Theory abstraction:
A/O-invariance:
A-invariance:
Reference:

n/a
yes

yes

yes

non-deductive database
non-deductive database
TI

[Imi87]
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Example 11 (Imielinski II):

Imielinski's second domain abstraction [Imi87] is a TD-abstraction. This
under-estimates answers to the database; that is, the abstract space will suggest
certain wffs are false which are, in fact, true in the ground space. Though such
an abstraction is not complete, it is always sound; all the abstract theorems it
returns are guaranteed to be theorems of the ground space. Imielinski derives
this abstraction by giving a very different interpretation to the equivalence re¬

lation, what he calls the "first-order interpretation". Under this interpretation,

properties true of an object in the ground space hold in the abstract space for
some unidentified member of the (possibly larger) equivalence class of the object.

We can formalise this as a A/fi-invariant abstraction, g : Ei =>■ E3 from the
same ground space, Ei as in the previous example (that is, a non-deductive
database whose language consists of closed formulae containing only the 3 quan¬

tifier, and A, V connectives) to another first order theory whose language consists
of closed disjunctive normal formulae containing only the 3 quantifier, and A, V

connectives. The language of the abstract space differs in two significant ways
from the language of the abstract space in the previous example; first, its do¬
main is the same as that of ground language (and is not the equivalence classes);
second, it contains a new unary predicate for each equivalence class, [a] true for
every member, x of the equivalence class; we will use "[a](x)" to represent this
predicate.

The mapping function first transforms all wffs of the ground language into

disjunctive normal form. Then for each disjunct <p:

a) if ip contains the constant a it is replaced by an existentially quantified vari¬
able restricted to members of a's equivalence class. That is, tp is rewritten
to 3x . [o](x) A p{x/a}. The idea is to replace each named constant by
an arbitrary member of its equivalence class. The domain of the abstract

space is thus no smaller than that of the ground space; however, the prop¬

erties true in the ground space of an object a are merely true in the abstract

space of some object in the equivalence class of a ;

b) if (p contains multiple occurrences of an existentially quantified variable, each
occurrence is replaced by a new existentially quantified variable. The oc-



CHAPTER 4. EXAMPLES OF ABSTRACTIONS 78

currences of an existentially quantified variable can thereby represent dif¬
ferent members of an equivalence class.

For example, 3x . p(a, x) A p(b, x) is mapped to:

3x, u,w . [a](u) A p(u, x) A [&](w) A p{w,x)

by step a), and then to:

3u,v,w,y . [a](u) A p(u,v) A [&](u;) A p{w,y)

by step b).

Since this mapping changes the logical structure of wffs, it is not, strictly
speaking, a theory abstraction. However, as this change is only a normal form¬

ing, we shall be rather loose and call it a theory abstraction. As with the

preservation of negation, extending the definition of theory abstraction to in¬
clude any abstraction logically equivalent to a theory abstraction is undesirable
as, in general, such an extension is undecidable. Imielinski suggests a slightly
more complex mapping if we know the selectivity of the equivalence relation;
that is, if we know the sizes of the equivalence classes. In such circumstances,
we need not throw away quite so much information. Such a modification could,

however, make reasoning much more expensive. As Imielinski himself points

out, it is often computationally better to be ignorant about the selectivity of the

equivalence relation. With or without his modification, this is a TD-abstraction.

Theorem 38 : Imielinski's second abstraction, g : Ei =>• E3 is a TD-
abstraction.

Proof: This is shown in Lemma 5 on page 1001 of [Imi87]. Al¬
ternatively we can prove that the axioms of E3 follow from a set

of axioms logically equivalent to the axioms of Ej. We first trans¬

form each axiom of Ei into (the equivalent) disjunctive normal form.
Then for each disjunct <p, if p contains the constant a, we replace

ip by the equivalent formula, 3x . [a](x) A p{x/a} A x = a. If <p

contains multiple occurrences of an existentially quantified variable,
we replace each occurrence by a new existentially quantified variable,
and add the equality condition that these new existentially quantified
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variables are equal. The resulting axioms are logically equivalent to
those of Ei. The axioms of E3 are just the result of dropping from
these clauses all the equality conditions added for the constants and

existentially quantified variables. By monotonicity, the axioms of E3
follow from the axioms of Ei, and g : Ex =>• E3 is a TD-abstraction.
□

Note that the language of the abstract space is more complex than the lan¬

guage of the ground space, and that the axioms of the abstract space are more

complicated than the axioms of the ground space. It therefore seems doubtful
that theorems will be much easier to solve in the abstract space than in the

ground space. The only saving is that instead of having to show a property true

for a, we merely have to find it true for some member of [a] and one of these
proofs could be easier to find.

Imielinski II
Ground space: non-deductive database
Abstract space: non-deductive database

Provability preserving: TD

Negation preserving: n/a
Theory abstraction: "yes"
A/fi-invariance: yes
A-invariance: yes
Reference: [Imi87]

4.5 Predicate abstractions

Predicate abstractions collapse several predicate symbols in the ground space

onto a single predicate symbol in the abstract space.

Example 12 (Predicate mappings):

Tenenberg [Ten87] defines a predicate mapping as a A/fl-invariant theory
abstraction between resolution systems with a mapping function defined by:

f(p(z)) = g{x)
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for all p G Rq. Rq is the set of all the predicate symbols which map onto q\ by
definition, Rq D Rs — 0 for q ^ s. Predicate mappings are Tl-abstractions; since
they are negation preserving, they are also NTI-abstractions. Of course, any
such mapping that is 1-1 is a TC/NTC-abstraction.

Theorem 39 ; A predicate mapping, f : Ex =>• E2 is a TI/NTI-
abstraction.

Proof: By showing that, given a resolution proof fix of <p, you can

build a resolution proof of f(<p). The proof proceeds by induction on

the depth of Tlx. We just take the proof fix and apply / to every wff
in it. □

Note that predicate mappings are not, in general, TD. For example, if /(p(x)) =
f[q(x)) — r(x) then r(x) V ->r(x) € TH(E2) but p(x) V ~>q[x) 0 TH{Ex). As with
other Tl-abstractions, predicate mappings can map a consistent ground space

onto an inconsistent abstract space. For example, the consistent set of axioms,

(p(x),-i?(x)} maps onto an inconsistent abstract space with the above mapping
function.

Predicate mappings
Ground space: clauses & resolution
Abstract space: clauses &; resolution

Provability preserving: TI/NTI
Negation preserving: yes

Theory abstraction: yes

A/f2-invariance: yes
A-invariance: yes
Reference: [Ten87]

Example 13 (Restricted predicate mappings):

To overcome the problem of inconsistent abstract spaces, Tenenberg has sug¬

gested [Ten87] the class of restricted predicate mappings; such abstractions
are guaranteed to map a consistent ground space onto a consistent abstract

space. Unfortunately, imposing the "restriction" involves an arbitrary amount

of theorem proving in the ground space and loses truthfulness.
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We define a restricted predicate mapping as a theory abstraction between
first order calculi using resolution. The same mapping function as with the

(unrestricted) predicate mapping is used to map wffs from the ground space onto
wffs in the abstract space. The "restriction" on the mapping is that not every
axiom of the ground space is kept in the abstract space; that is, the abstraction
is not A/H-invariant. The idea is that we don't want to keep those axioms that
introduce inconsistency; the axioms of the abstract space are given by <7(0x)
where fix is the set of axioms of the ground space, Ex, and:

ff(fli) = {f{<P) | £ Hi and (<p is a positive clause or

Va.f(a) = f(<p)^aeTH(E1))}

Trivially, ff(fli) C /(fix). Unfortunately, determining which axioms to keep in
the abstract space requires an arbitrary amount of theorem proving in the ground

space; the purpose of this theorem proving is to guarantee that consistency is

preserved.

Theorem 40 : If f : Ex =>• E2 is a restricted predicate mapping and

Ex is consistent then E2 is also.

Proof: On page 1013 of [Ten87], Tenenberg demonstrates how, given
a model for the axioms of Ex you can construct a model for the axioms
of E2. Since a set of clauses is consistent iff it is satisfiable (that is,
has a model), this proves that if Ex is consistent then E2 is as well. □

As a simple corollary to this theorem, Tenenberg shows that for every wff

provable in the abstract space, some wff in the ground space that abstracts onto

it is also provable.

Theorem 41 : If f : Ex =>■ E2 is a restricted predicate mapping and

/3 £ THifEz) then there exists a wff a such that f(a) = /? and a £

TH{Ex).

This is not the same as being a TD-abstraction; indeed, some restricted pred¬
icate mappings are not TD-abstractions. Consider, for instance, the restricted
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predicate mapping with /(p(x)) = f(q(x)) = r(x) and p(x) as the only axiom of
the ground space. Now, f(q(x)) G TH{E2) but q{x) 0 TH(E1). By comparison,
with a TD-abstraction, any wff in Ex that maps onto an abstract theorem in E2
is provable in Ex.

The definition of restricted predicate mappings can be strengthened slightly
so that they are all TD-abstractions. We merely have to remove the condition in
the definition of the fir(r2x) that allows positive clauses regardless of whether their
unabstractions are provable. That is, the axioms of the abstract space should
be given by h{fix) where f2x is the set of axiomtof the ground space Ex and:

Mni) = if{v>) I <P e Hi and Va . f(a) = f(<p)-» a G TH{Ex)}

We shall call this a very restricted predicate mapping; unlike a restricted predicate

mappings, a very restricted predicate mapping is TD.

Theorem 42 : A very restricted predicate mapping is a TD/NTD-
abstraction.

Proof: Since the mapping is negation preserving, we merely need to
show that it is a TD-abstraction. Given a proof tree IT2 in E2 that
ends in f[<p) we show how you can construct a proof tree rtx in Ex
that ends in <p. Note that <p is not necessarily _L. The proof proceeds

by induction on the depth, n of II2.
For the base case, n — 1 and f(<p) is an axiom of E2. From the

definition of /i(flx), <p is either an axiom of Ex or ip G TH(Ex).
For the step case, assume we have shown it for all proof trees up

to depth m. Consider a proof tree II2 of depth m+1 that ends in f(<p)
and in which f(<p) is the resolvent of c \/ q\... Vqn and c'V ->q[... V
That is, /(<£>) = (c V c')6 where 6 is a most general unifier and for
1 < i < n and 1 < j < m, we have qiO = q'-Q. Let have a predicate

symbol r. Then, as they are complementary literals, q'j must have
the same predicate symbol. Construct the wffs p,- and p'j which map
to qi and q'j and which both have the same predicate symbol s G Rr-
If there is a choice of predicate symbols, s (that is, if Rr has more

than one element), pick the alphabetically smallest one. Now, p,- and
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-ip'j will resolve together with unifier 0 since the mapping function is
transparent to substitutions. Pick the wffs d and d! which map to c

and c' such that <p = (d V d')9. Again, if there is a choice, pick the
alphabetically smallest. By the induction hypothesis, we can prove

d V Pi... V pn and d' V V -ip'm. Finally, note that d V px... V pn

and d' V -ip[... V ~ip'm will successful resolve together with unifier, 6
to give <p. □

A major problem with (very) restricted predicate mappings is that, they are

not, in general, truthful; they therefore lose completeness. There are usually
wffs which are provable in the ground space whose abstractions are not provable
in the abstract space; abstract theorem proving therefore rejects these wffs as

theorems of the ground space. Another major problem with restricted predicate

mappings is that determining which axioms to include in the abstract space is, in

general, undecidable. One solution suggested in [Ten87] is to weaken the deriv-
ability condition in the definition of ff(fli) or h(Cli) (namely, that a G TH{Ei))
to a condition of derivability within certain resources. This conservative ap¬

proach would construct an abstract space weaker than it theoretically needs
to be to preserve consistency (that is, an abstract space with fewer theorems
than is strictly necessary). For example, Tenenberg proposes a class of pred¬
icate abstractions, called weak abstraction mappings [Ten88] in which the
abstraction of an axiom is included in the abstract space iff certain clauses that

map onto the abstract wff are also axioms of the ground space; this is, of course,
trivial to compute. Weak predicate mappings satisfy a property similar to TD-

abstractions; if we can prove a clause in the abstract space then some (but not
all) clauses that map onto this will be provable in the ground space (corollary
5.3, page 101 of [Ten88]). Such abstractions therefore also lose completeness.

Restricted predicate mappings
Ground space:
Abstract space:
Provability preserving:
Negation preserving:
Theory abstraction:
A/ fl-invariance:
A-invariance:
Reference:

yes

yes

yes

yes

clauses & resolution
clauses &: resolution

TD/NTD

[Ten87]
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4.6 Formal methods

Abstractions have so far been characterised by how they globally preserve prov¬

ability or inconsistency. Often, however, we are only interested in how abstrac¬
tions preserve provability or inconsistency with respect to some subset of the
language. To capture such an idea, we can introduce the notion of a mapping

being a T*-abstraction (or NT*-abstraction) with respect to some subset of the
language. For example, we will say that an abstraction, / : Hi =>• E2 is TI with

respect to T iff, for any wff <p G T, <p E TH(Si) implies f(<p) E 2\ff(E2). We
will need this new notation in the next example.

Example 14 (Hardware verification):

Abstraction has been proposed as a tool for tackling the size and complexity
of proofs needed for hardware verification [Mel87]. There are several compet¬
ing approaches to hardware verification based upon a variety of logics: higher-
order logic [Gor86], type theory [Bas89], Boyer and Moore's Computational Logic
[Hun89], ... etc. For the purpose of this example, we will adopt the higher-order
approach advocated by Mike Gordon's HOL group [CGM87],

The behaviour of a hardware device can be represented by a specification

predicate, syec(ext). This predicate describes the values of the external ports,
ext of the device; to model time-dependent behaviour, ext can be a function of
time. Although a function from inputs to outputs is usually just as adequate as

a predicate, a predicate can give greater expressivity; for example, devices with
unstable signals may have no functional interpretation.

Consider an AND-gate:

inl

in2
AND out

The behaviour of this gate can be described by the axiom:

spec(inl,in2,out) out = and(inl,in2)
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where and is a function of type bool X bool —> bool, bool = {True, False}, and:

and[True,True) = True

and[True, False) = False

and[False,True) = False

and[False, False) = False

A specification predicate describes how we want the device to behave. The
actual implementation of the device is described by an implementation predi¬

cate, imv{int. ext) where int and ext are the internal and external signals. The
implementation predicate describes the components of the device, and their in¬

terconnections; often this is given by a conjunction of predicates, each specifying
a different component, with shared variables for the connections. For example,
the AND-gate described by spec[inl,in2, out) could actually be implemented by
a NOR-gate with NOT-gates on its inputs:

NOT
inl \

NOR out

in2

1/
N
/

NOT

This can be described by the implementation axiom:

imp[inl,in2,intl,int2,out) <-► not(inl,intl) A not[in2, int2) A

nor(int1, int2, out)

where not and nor are two predicates describing NOT-gates and NOR-gates

respectively; that is,

not[in, out) *-*■ (in = True A out = False) V

[in = False A out — True)

nor[in\,in2,out) <-> [out = True «-> ml = False A in2 — False) V

[out = False <-» in 1 = True V in2 — True)
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The task of the hardware verifier is to prove that the implementation gives
the desired behaviour. The specification of the device's behaviour ignores irrele¬
vant details that concern the actual implementation; the specification predicate
can therefore be seen as an abstraction of the implementation predicate that

ignores how the device is actually implemented. Indeed, the behaviour of a de¬
vice is often described at various levels of abstraction; by ignoring the internal

structure, prohibited states, and the nature of the signals, we can give increas¬

ingly abstract descriptions of a device's behaviour. The relationship between

implementation and (abstract) specification can therefore be described as an ab¬
straction, / : Ei =>■ £2 from a higher order theory, Ei which includes a predicate,

imp(x) which describes the implementation of the device to another higher or¬

der theory, E2 which includes a predicate, spec{y) which specifies its (abstract)
behaviour.

The abstraction's mapping function links the signals which satisfy, imp(x)
and spec(yj; that is,

f(imp(x)) = spec(y)

where y is some function of xr, note that x does not necessarily equal y. For

example, x may be in terms of signal values, like {low, high, floating} whilst
y is in terms of booleans or high-level data types like n-bit words. The exact

relationship between x and y will depend on the particular abstraction.

Melham describes the implementation and the (abstract) specification in the
same theory; for the sake of clarity, we would advocate two theories as this keeps

separate the two very different levels of description. Melham gives four classes
of abstraction commonly used in hardware verification: structural abstraction,
behavioural abstraction, data abstraction, and temporal abstraction. For each

class, he gives a correctness relation; each of these correctness relations can be
seen as a Tl-abstraction with respect to some subset of the language.

Melham's first class of abstractions is the class of structural abstractions;
these suppress information about a device's internal structure. For such abstrac¬

tions, the mapping function is given by:

f (Bint.imy( int. ext)) = f [imy(int. ext)) — syec(ext)

where mf are the internal signals whose value we can ignore, and ext are the
external signals whose values we are interested in. This is an example of an ab-
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straction which both renames and throws away arguments to predicates. Melham
calls a structural abstraction correct iff it is provable that 3int.imp(int, ext) E

TH(Ei) is equivalent to spec (ext) E TH^E?).

Theorem 43 : The correctness relation for structural abstractions
is equivalent to being a TC-abstraction with respect to the set of
wffs {3int.imp(int. ext)\.

Proof: Immediate from the definition of correctness. □

This equivalence justifies why we are allowed to ignore the internal signals.

Melham's second class of abstractions is the class of behavioural abstrac¬

tions; these leave unspecified the behaviour of a device for illegal states. For
such abstractions, the mapping function satisfies:

f(imp(x)) = spec{x.)

The behaviour of the device is, however, only partially specified; that is, it is

only constrained for a subset of the possible situations, the allowed situations.
Outside this set, the specification predicate can be satisfied by signal values that
would be disallowed by a more complete specification. For instance, we could
define the behaviour of a device for the expected input signal values but not
for prohibited or incorrect input signal values. The abstract space thus imposes
weaker constraints on the signal values than the ground space.

Consider, for example, a simple register:

NOT NOT



CHAPTER 4. EXAMPLES OF ABSTRACTIONS 88

The implementation predicate for this circuit is given by:

imp(inl,in2,reg) 3intl,int2 . nor[inl, intl, int2) A not(int2, intl) A

nor(in2,int2,reg) A not(reg,int2)

The inputs, ml and in2 are usually kept False. If ml is made True then reg

takes and stores the value, True. However, if in2 is made True then reg takes
and stores the value, False. Since this circuit contains feedback loops, we might
decide to add Undefined to {True, False} as an allowed signal and to augment
the descriptions of nor and not accordingly. This will allow for the circuit to be

put in an undefined, possibly oscillating, state.

The behaviour of this circuit can be described by two predicates, store and
stable. The wff, store(inl,in2,t,val) means that the value, val is stored in the
register, reg at time t by the input signals, ml and in2. That is:

store{inl,in2,t,val) <->■ (ml(t) = True A val — True) V

(m2(f) = True A val = False)

The term, stable(sig,tl,t2,val) means that the signal, sig has the stable value,
val, from time, tl to time, t2. That is:

stable{sig,tl,t2,val) *-> Vt . tl < t < t2 —* sig(t) = val

An abstract specification of the register's behaviour is then:

spec{inl,in2,reg) <-» \/tl,val . store[inl,in2,tl,val) —>

Vi2 . stable(inl,tl,t2,False) A

stable[in2,t\,t2, False) —>

stable(reg, tl,t2, val)

This specification predicate only defines the behaviour of the register for well
behaved inputs; that is, one of ml or in2 must always be False. It does not

specify the behaviour of the device when ml = in2 = True since the hypotheses
are false, and the specification is vacuously satisfied for any value of reg-, that is,

reg can take the values True, False or Undefined. The implementation predicate,
however, gives a precise value for reg in this situation, Undefined. For this reason,
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our specification of the register's behaviour can be seen as an abstraction of the

description of its implementation.

Melham calls such a behavioural abstraction correct iff it is provable that

imp(x) <G TH(Ei) implies spec(x) G TH(E2). Whatever signals satisfy imp(x),
also satisfy spec(x). However, there may also be signals for which spec[x) is true
but imp(x) is false; the implication does not therefore reverse. This is the case

with the register.

Theorem 44 : The correctness relation for behavioural abstractions
is equivalent to being TI with respect to the set, {imp(x)}.

Proof: Immediate from the definition of correctness. □

Melham's third class of abstractions is the class of data abstractions; these
abstractions allow the behaviour of a device to be specified in terms of different
data types. For example, we might want to specify the behaviour of an 8-bit
adder in terms of two 8-bit inputs and one 8-bit output instead of 16 boolean

inputs and 8 boolean outputs. To formalise such abstractions, we provide a

function, g that abstracts between the data types. For example, we can define a

function for mapping eight boolean values onto an 8-bit word by:

g(xx8) = (xu...,x8)

The mapping function for a data abstraction satisfies:

f(imp{x)) = spec(g o x)

where gox is g applied to the signal values x in some predefined way. Consider,
for example, a 25 place predicate which describes the implementation of an 8-bit
adder with carry:

imp{xi,..., x8, j/i,..., 2/8) «i, •••) ^8, c)

This would abstract onto the 4 place predicate:

spec[x,y_, z, c)

where x, y, and z are 8-bit words, and c is a carry bit,
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Such a data abstraction is correct iff it is provable that imp(x) £ TH(Ei)
implies spec{g ox) £ TH(E2)- It is not an equivalence as the abstraction of the
data types may ignore some irrelevant values (like floating signals).

Theorem 45 : The correctness relation for data abstractions is

equivalent to being TI with respect to the set, {imp(x)}.

Proof: Immediate from the definition of correctness. □

Melham's final class of abstractions is the class of temporal abstractions;
these allow the behaviour of a device to be viewed over time at different "grain
sizes". For example, we might want to specify the behaviour of a device in
terms of its behaviour at each (high-level) instruction cycle instead of at each
(low-level) clock cycle. To formalise such abstractions, we provide a function, h
that maps the discrete points of low-level time onto discrete points in high-level
times. For example, for an instruction cycle of n clock cycles and points in time

represented by the natural numbers, we might define

h(t) — t\n

where | denotes integer division. We impose one condition on h; that is, it must
be an increasing function:

Vti,t2 . ti > t2 —i" h(ti) > h(t2)

The mapping function is given by:

f[imp{x)) = spec[h 0 x)

where h 0 x is the result of applying h to the low-level time signals in x. This is
a granularity abstraction which renames constants (representing points in time)
in a systematic way. A temporal abstraction is correct iff it is provable that h
is increasing and imp(x) £ TH{Ei) implies spec(h 0 x) £ TH(E2).

Theorem 46 ; The correctness relation for temporal abstractions is

equivalent to the property that h is increasing and the abstraction is
TI with respect to the set, {imp(i)}.
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Proof: Immediate from the definition of correctness. □

Although this analysis of the abstractions used in hardware verification has
not brought great new insights, it is nevertheless useful. In particular, we note

that the sort of mappings that are performed on the syntax of a representation

(renaming constants, dropping arguments, ...) are exactly those operations that
we also observed with other abstractions used in theorem proving, planning, and
commonsense reasoning. The main conclusion we draw from this is that (the
syntax of) a representation can only be abstracted in a limited number of ways.
We return to this topic in Chapter 6 when we identify the very limited number
of ways you can build abstractions.

Hardware verification
Ground space: higher order logic
Abstract space: higher order logic
Provability preserving: TI

Negation preserving: sometimes

Theory abstraction: sometimes

A/fl-invariance: sometimes
A-invariance: yes
Reference: [Mel87]

Example 15 (Software verification, and synthesis):

Abstraction has also been proposed as a technique for reducing the com¬

plexity of formal methods used in the verification, and synthesis of computer

programs. Our notion of T*-abstractions seems very useful for describing these
sorts of abstractions. There are several competing approaches to the verification
and synthesis of computer programs based upon a variety of logics: sequent cal¬
culus [MW80], Martin Lof type theory [CAB*86,BvHHS90], set theory [Spi87],
many-sorted algebra [BG80], rewrite rules [BD77], ... etc. For the purpose of
this example, we will consider the algebraic approach used in CLEAR [BD77] in
which a (functional) program is modelled by an algebraic theory: that is, by
a set of equations.

Definition 26 (Algebraic theory) : An algebraic theory, T is
a pair, (S,E) where S is the signature and E a set of equations.
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The signature defines the (sorted) language of T; it is a pair, (S, 0) where S
is a set of sorts, and 0 is a set of operators (constants and function names)
together with their sorts. The set of equations define the axioms of the theory;
ti = t2 is an equation of the algebraic theory, T=(S,E) written ti = t2 & E
iff it is in the set E, or it follows from this set using the rules of reflexivity,
transitivity, symmetry of equality, and substitution. For example, consider an
algebraic theory for part of Peano arithmetic. Its signature is defined by:

Peano

Sorts: boot, nat
Operators: True : bool, False : bool

0 : nat

s : nat —> nat

<: nat x nat —> bool

The equations of this theory would include:

0 < n = True

s(m) < s(n) — m < n

etc.

An axiomatic formal system can be used to describe such an algebraic the¬

ory; the language defines the signature, the axioms give the set of equations
and the rules of inference are reflexivity, transitivity, symmetry of equality and
substitution.

To tackle the problems of building the complex theories necessary to describe
real computer programs, Burstall, Goguen [BG77] and Sannella [San82] have
suggested various operations for combining together small and comprehensible
theories to make larger and well structured theories; for example, we can com¬

bine together two theories, enrich a theory with new operators and equations, or
derive a simpler, abstract theory from a more complex theory by ignoring unnec¬

essary details. To describe such operations, they introduce the idea of a theory

morphism, a mapping from one theory to another; this is defined in turn in
terms of a signature morphism, a mapping from one signature to another. A

theory morphism is a truthful or Tl-abstraction.



CHAPTER 4. EXAMPLES OF ABSTRACTIONS 93

Definition 27 (Signature morphism) : A signature morphism,
o : Si => S2 is a pair (f,g) where Si is the signature {SX,0X), S2 is
the signature (S2) O2), f '• Sx n► S2, g : 0X >->• O2, and g preserves arity
and sorts.

By preserving arity and sorts we mean that if oj E Oi is of sort:

Sl X ...Sm > Sjn,-)-! X ...Sn

then g(u) must be of sort:

f(si) x -► f(sm+i) x .../(sn)

A signature morphism specifies an arity and sort preserving mapping on the

language of an algebraic theory; given a formulae of the theory, it tells us how to

map this onto a formulae of another algebraic theory - essentially we just have
to apply g to all the function names and constant symbols. Signature morphisms
are extended to mappings of equations in the obvious way; that is, o[tx = <2)
equals c(tx) —

Definition 28 (Theory morphism) : A theory morphism, writ¬
ten o : T\ =r" T2 is a signature morphism o : S\ S2 where T\ is the

theory (Si,Ei), T2 is the theory and if tx — t2 E Ex then

o(tx = ^2) £ E2•

A theory morphism, cr : Tx => T2 can be described by a A/f2-invariant abstrac¬
tion, / : Ei => E2 where Ei describes the algebraic theory Tx and E2 describes
the algebraic theory T2. The signature morphism, a : Sx => S2 defines a mapping
function on the language, in which f(tx = t2) equals c[tx = t2).

Theorem 47 ; If f : Ei =>■ E2 is the abstraction representing the

theory morphism, o : Tx =>■ T2 then f : Ex =X E2 is a TI-abstraction.

Proof: As cr : Tx =>■ T2 is a theory morphism, if tx = t2 G Ex then

a[tx = t2) G E2. That is, if tx — t2 E TH(Ex) then f(tx = t2) E

TH{E2). □
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As with any Tl-abstraction, we have to consider the problem of inconsistent
abstract spaces. Consider a boolean theory with signature:

Bool
Sorts: bool

Operators: True : bool, False : bool
-1 : bool —► bool
A : bool x bool —* bool
V : bool X bool —* bool

The equations of this theory will include:

p V -ip = True

p A -ip = False

The theory morphism that maps A, and V onto a new operator, ®, will lead to
an absolutely inconsistent abstract space, in which pe-ip = True, pe-ip = False,
False = True, and every other equation we can write down is true. Note that
if "®" is interpreted as the pair constructor, this mapping is very similar to the
abstraction proposed for propositional logic in GPS.

This is perhaps not such a surprising result; if we use theory morphisms to
build new (and sometimes) bigger theories, we will occasionally introduce incon¬
sistency. Burstall and Goguen suggest [BG77] that programs might be viewed
as theory morphisms from one theory, the specification to another theory, the
machine which consists of the primitive operators and sorts of a programming

language. They are thereby saved from problem of inconsistent abstract spaces
as the abstract theory of the machine is given and is, we presume, consistent.
Note that this is in the opposite direction to Melham's abstractions for hardware
verification when we map from the implementation to the behavioural specifica¬
tion.

Theory morphisms can describe the construction of theories in a structured

way. For example, if we add equations or extend the language of a theory,

Ti to give a new theory, T2 the relationship between the two theories can be
described by a theory morphism, o : T\ => T2. Note that T2 is, in these case, a

more elaborate theory than T^. We can also build new theories that abstract
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away irrelevant details, and are therefore less complex; theory morphisms can

be used to describe such mappings in a very interesting way.

Consider a signature morphism from one language to a less abstract one.
For example, consider a signature, S for a theory of the 26 lexically ordered
characters:

Char
Sorts: bool, char
Operators: True : bool, False : bool

A : char, B : char, ..., Z : char
char x char bool

The operator u<n is meant to be a total ordering on the sort char. We can

define a signature morphism from Char onto Peano, the signature of Peano
arithmetic by the pair, (/, g) where:

f(bool) — bool f(char) — nat

g[True) — True g{False) = False =<

g{A) = 0 g(B) = s(0) etc.

If we use T to represent the theory of Peano arithmetic, and E to represent

the equations of T, then this signature morphism defines an abstract theory, the

quotient theory, T/<r with a signature S and equations:

= {e|cr(e) G E}

For example, since 0 < s(0)) = True, and 0 < s(s(0)) = True are equations
ol T, A < B = True, and A < C = True are equations of T/o. The rela¬
tionship between the ground theory T and the abstract quotient theory T/a
can be described by the theory morphism a : T/a => T which maps from the
abstract quotient theory T/o to the ground theory T. Note that this is using
a Tl-abstraction in the opposite way to usual. It neatly avoids the problem of
inconsistent abstract spaces since if T is consistent then Tfo is guaranteed to be
also. Indeed, this mapping is a TC-abstraction and therefore throws away no

information.

Theorem 48 : If f : Si =>• £2 is the abstraction representing the

theory morphism a : T/o =>■ T from Peano to Char then f : Si =>■ £2
is a TC-abstraction.

We (rather confusingly) call the theory morphism V : T/<r =► T" even though a is
the signature morphism from T to T/a; this follows Burstall and Goguen's terminology.
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Proof: By the definition of the quotient theory, ti = t<i G E/a iff
o(t\ — ^2) £ E. That is, t\ = £ TH[E\) iff /(ti — t^) C THiE^)-
□

Note that the ground space can be larger than the abstract. Indeed it can
even have more theorems. The abstract quotient theory is isomorphic to a

sufitheory of the ground space. Any equation in the ground space outside the

image of the abstract space's signature will not be related to an equation of the
abstract space. For example, no equation of the theory of lexically ordered char¬
acters maps onto the equation 42 < s(42) = True of Peano arithmetic (where
"42" is syntactic sugar for the term s(s(...0...)) which has 42 applications of the
operator, s applied to 0).

Theory morphisms
Ground space: algebraic theory
Abstract space: algebraic theory
Provability preserving: TI

Negation preserving: sometimes

Theory abstraction: sometimes

A/f2-invariance: sometimes

A-invariance: yes
Reference: [BG77]

4.7 Summary

The properties of these abstractions are summarised in fig. 4-1. We will make
some general remarks about this table. We believe that this is a representa¬

tive sample of abstractions and that our observations will therefore be true of
abstractions in general.

First, all the examples (except gazing) preserve provability in one way or

another; almost all are, in fact, TP-abstractions. This supports our emphasis
on provability and inconsistency preserving abstractions, and most especially on

TP-abstractions. Second, the majority of these examples are negation preserving
and theory abstractions. Abstraction is mostly used to control combinatorial
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explosion in the theory not the logic. Indeed, we would argue that you should
only change the logical structure of wffs with great care. A logic is, in general,

very finely balanced - the slightest changes can bring the whole formal structure

crashing down. Third, almost all the abstractions are A-invariant; that is, they
use the same deductive machinery in the ground and the abstract spaces. This
makes implementation very economical; it also allows us to use hierarchies of
abstractions. Fourth, nearly all abstractions are A/f2-invariant. This guarantees
that the abstraction of any axiom of the ground space is itself a theorem of the
abstract space. Finally, most of the (theory) abstractions can be characterised by
whether they map the terms or the predicate names. Since theory abstractions
can only map the atomic formulae, this is perhaps not so surprising.
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ABSTRACTION
T*/NT*-
abs

negation
pres

theory
abs

A-
invar

A/n-
invar

maps

Pred/
Term

ABSTRIPS TI/NTI V V V V N
GPS TI X X X V N
Weak NTI' ? ? V V ?

Ordinary NTI' ? ? V V ?

Generalisation NTI' V V X V T

Gazing neither X X V V T
Connection methods TI/NTI V V X V T

Propositional Decider TD/NTD V X V V N
Variable-free NTI' V V V V T

Granularity TI/NTI V V V V T
Imielinski I TI n/a V V V T
Imielinski II TD n/a V V V T
Predicate TI/NTI V V V V P
Restricted predicate TD/NTD V V V V P
Hardware verification TI ? ? V ? ?

Theory morphism TI ? ? V ? ?

Figure 4—1: A summary of the properties of these examples

Notes:

1. In the column headings, "negation pres" stands for negation preserving,
"theory abs" for theory abstraction, "invar" for invariance, and "maps
Pred / Term" for maps the predicate names or the terms.

2. In the table entries, uy/" means that this abstraction has this property,
"x" that this abstraction does not have this property, "?" that abstraction
can have this property (but does not necessarily have to), "n/a" that this
property is not relevant for this abstraction, "P" that this abstraction maps

just the predicate names, "T' that this abstraction maps just the terms,
and "N" if neither is true.

3. Restricted predicate abstractions satisfy a property very close to that of
TD-abstractions. It is only very restricted predicate abstractions that are
actually TD.



Chapter 5

Abstraction and Inconsistency

In this Chapter we explore how abstraction affects consistency. We
identify the problem of inconsistent abstract spaces, where ab¬
stractions map consistent ground spaces onto inconsistent abstract

spaces. We demonstrate the inevitability of this problem and con¬

sider ways to avoid it.

5.1 Introduction

We informally defined abstraction as ua mapping between representations of a

problem which preserves certain desirable properties". Since we have represented

problems with formal systems, we have concentrated on how abstractions pre¬

serve one very important property of formal systems, that of provability. An¬
other very important property of formal systems is consistency. Indeed, we

have already defined classes of abstractions which preserve inconsistency (NT*-
abstractions). Our motivation, however, was to describe mappings between refu¬
tation systems; in Chapter 2, we demonstrated that inconsistency preserving ab¬
stractions between refutation systems play the same role as provability preserving
abstractions between proof systems. We have yet to consider how provability

preserving abstractions affect consistency.

The main part of this Chapter appears in [GW89c].

99
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Various people have observed that a consistent ground space can sometimes

map onto an inconsistent abstract space [Nil80,Pla80,Ten87]. This problem was

first identified by Nilsson [Nil80] for ABSTRIPS abstractions. Tenenberg [Ten87]
identified the same problem for predicate abstractions, misleadingly calling it the
"false proof problem". Plaisted [Pla8l] introduced the term false proof to de¬
scribe abstract proofs which do not correspond to any ground proof. False proofs
have nothing directly to do with the inconsistency of the abstract space; false

proofs can occur even when the abstract space is consistent. To avoid further

confusion, we shall use the term, "the problem of inconsistent abstract

spaces" to describe when a consistent ground space is mapped onto an incon¬
sistent abstract space. The aim of this Chapter is to understand what causes
this problem, how prevalent it is, and how we can avoid it.

5.2 The Problem

It is perhaps not too surprising that abstraction can lead to inconsistency. Ab¬
straction is about throwing away information. In order to build an abstract

space simpler than the ground space, we need to forget some irrelevant details;
we keep around just those details that are judged important. The problem is
that these irrelevant looking details may be exactly what is preserving the theory
from inconsistency; this makes these details rather relevant.

The problem occurs with many types of abstractions. For example, it can
occur with ABSTRIPS abstractions. Nilsson demonstrates (figure 8.13 on page

353 of [Nil80]) an abstract space in which the contradictory facts ON(A,C)
and ON(C, A) both hold. As a second example, Tenenberg (page 1012 of
[Ten87]) shows how a predicate abstraction can give an inconsistent abstract
space. Tenenberg works in a refutation system so his problem is not an incon¬
sistent abstract space (which a refutation system seeks when trying to prove an

abstracted goal) but that the abstraction of the axioms without the negated goal
is inconsistent. In such a situation, any abstracted goal can be proven.

Is the inconsistency of the abstract space really so bad? The answer is not

immediately obvious. For instance, Nilsson states (page 352 of [Nil80]) that "...
A contradictory state description may result, but this causes no problems. ...".
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Tenenberg (page 39 of [Ten88]) argues to the contrary, "... once such a situation
is reached, there are no constraints on the future choice of actions. ...". Part
of the problem is that testing consistency is not, in general, decidable. We

may therefore simply decide not to worry about the consistency of the abstract

space. Even if the abstract space is inconsistent, the structure of an abstract

proof can still be used to guide theorem proving in the ground space since many

branches of the abstract proof will not call upon the inconsistency. Additionally,
if we exploit only a little information from the abstract space, the chances of

using inconsistent information are slight. This is true in Nilsson's example: the
inconsistent abstract space is not abstracted further and extensive reasoning is
not performed in the inconsistent abstract space.

From a theoretical point of view, an inconsistent abstract space is undesir¬
able. Inconsistency is something we usually try to avoid if at all possible. More

importantly, it is a symptom of a deeper problem that calls into the question
the value of the abstraction. To be of practical use, we want an abstraction to

collapse together objects with similar properties; an abstraction which collapses

together wildly dissimilar objects is of dubious value. An inconsistent abstract

space tells us that the abstraction has actually mapped together objects which
have contradictory properties. This suggests that our abstraction is fundamen¬

tally misguided.

From a practical point of view, an inconsistent abstract space can lead to

inefficiency. Abstract proofs which call upon the inconsistency of the abstract

space will not help the search for ground proofs. Of course, if the proof of
the inconsistency of the abstract space is very complex, this might not be a

very significant problem. Additionally, even if the abstract space is consistent,
we have to cope with abstract proofs which do not help the search for ground

proofs. For example, with an abstraction, / : =>• E2 which is TI but not TC,
there will be abstract proofs will do not correspond to any ground proof (what
Plaisted called "false proofs"). The inconsistency of the abstract space just
enlarges the problem of false proofs since every abstract wff is a theorem; the
area of TH{E2) — f(TH(Ei) grows to fill the whole of A2 — f(TH[Ei).

One final consideration is that knowing the consistency of the abstract space
can help to reduce search significantly. Consider, for example, a Tl-abstraction.
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If the abstract space is consistent then any abstract wff whose negation is prov¬

able cannot be a theorem of the abstract space. Since the abstraction is truthful,

any ground wff which abstracts onto this formula cannot therefore be a theorem
of the ground space. Thus, we can prune from the ground search space any wff
which abstracts onto a formula which is not provable in the abstract space. Since
theorem proving should be easier in the abstract space, this might save us a lot
of effort. In an inconsistent abstract space, there are no wffs which cannot be

proved; there is therefore no possibility for pruning goals from the ground search

space.

Our first task in tackling the problem of inconsistent abstract spaces is to

explore its prevalence. In particular, we want to see if the problem occurs with all

types of provability preserving abstractions, or alternatively if it is an inevitable
risk of using only certain types of abstractions.

5.3 TD*-abstractions and Inconsistency

Implicit in most work in abstraction is the assumption that the ground space

is consistent. Under this assumption, TD*-abstractions always give consistent
abstract spaces.

Theorem 49 : If Ex is consistent, E2 is a system with negation and

f : Ex =$> E2 is a TD*-abstraction then E2 is consistent.

Proof: By contradiction. Assume that E2 is inconsistent. Let A2 be
the language of E2. Since E2 is a system with negation, TH(E2) = A2.
Hence, for any wff <p, f(<p) £ TH(E2). Since / : Ei =» E2 is TD, it
follows that for any wff <p, <p G TH{Ei). This contradicts the as¬

sumption that Ex is consistent. The proof for NTD-abstractions is
dual. □

As a TC*-abstraction is also a TD*-abstraction, a simple corollary is that
a TC*-abstraction also maps a consistent ground space onto a consistent ab¬
stract space. Thus, a simple solution to the problem of inconsistent abstract
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spaces is to use only TD*- or TC*-abstractions. However, as we argued before,
TC*-abstractions are too strong; they do not allow us to throw away enough in¬
formation. TD*-abstractions, on the other hand, lose us completeness since not

all the theorems of the ground space are mapped onto theorems of the abstract

space; theorem proving in the abstract space will not therefore help us find all
the theorems of the ground space.

5.4 TI*-abstractions and Inconsistency

Unlike TD*-abstractions, TI*-abstraction do not always preserve the consistency
of the ground space. Several examples of TI*-abstractions with inconsistent
abstract spaces can be found in Chapter 4. For instance, we demonstrated
how both Hobbs' granularity and Tenenberg's predicate abstraction can map a

consistent ground space onto an inconsistent abstract space. For the ABSTRIPS

abstraction, consider a mapping which drops the second precondition of the two

operators "ax A a2 —> as" and "ax A a± —* -ia3", where ax is a theorem, and

a2 and a4 are not both theorems. Examples of TI*-abstractions which preserve

consistency can be trivially found [eg. the identity abstraction).

The fact that TI*-abstractions can give inconsistent abstract spaces is a major
blow. Note that the real problem is not the inconsistency of the abstract space,
rather its absolute inconsistency; this distinction is rarely pointed out as in most

cases the two concepts collapse. When working with a fixed ground space [eg.
set theory and first order logic) one solution would be to build abstractions which
are proved a priori to construct a consistent abstract space. Often, however, the
axioms are not fixed in advance [eg. in logic programming, knowledge based
systems, etc.). In such situations, a solution would be to find conditions which
guarantee that, whatever the axioms, the abstraction maps a consistent ground

space onto a consistent abstract space. Unfortunately, this demand turns out to
be unsatisfiable. Indeed, we make the following (and very damaging) claim:

Claim ; For every negation preserving TI*-abstraction between sys¬

tems with negation that is not also a TC*-abstraction, there exists
a consistent ground space which maps onto an inconsistent abstract

space.
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To justify this statement, we first need to introduce some notation for de¬
scribing abstractions in which the axioms are not fixed in advance; this is the

purpose of the next section.

5.5 Abstraction Schemata

In many cases, abstractions are defined so that they will work with any choice
of axioms. Usually, the languages and deductive machineries of the ground
and abstract space are fixed, and some means of constructing the axioms of the
abstract space are provided given axioms for the ground space. Often, the axioms
of the abstract space are generated by simply applying a mapping to the axioms
of the ground space. For example, with Plaisted's abstractions, the languages
are fixed (first order clauses), the deductive machineries are fixed (resolution),
and the axioms of the abstract space are generated by applying the abstraction's

mapping function to the axioms of the ground space. We can describe such a

situation with an abstraction schema; this is a lambda abstraction (in the A-
calculus sense) which, when given a set of axioms for the ground space, returns
an abstraction from the given ground space to some new abstract space.

Definition 29 (Abstraction schema) .* An abstraction schema,
is the sextuple (Ax, A2, Ax, A2, / : Ax A2,g : Ax >->• A2). It defines a

function 7 : 2Al i-+ ABS given by the lambda abstraction:

Ax. f : Ex(x) =*» E2(x)

where

Ex(x) = (Ax,x, Ai)

E2(x) = {A2,{g{<p)\<p e x}, A2)

The abstraction formed by application of a set of axioms to an abstraction

schema, 7 and beta-reduction is called an instantiation of 7. We say that
an abstraction schema has property P iff all its instantiations have property
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P. For example, an abstraction schema is truthful iff all its instantiations are

truthful abstractions. Abstraction composition, and equality can be extended to

abstraction schemata in the obvious way. An abstraction schema will be A/fl-
invariant iff / = g. Note that not all abstraction schemata will have f = g. For

example, an abstraction schema which describes Tenenberg's restricted predicate
abstractions uses different functions for mapping the language and the axioms

of the ground space.

5.6 The Inevitability of Inconsistency

As we claimed earlier, inconsistent abstract spaces are inevitable whenever we
use TI*-abstractions. To be more precise, under certain weak conditions, every
TP-abstraction schema has an instantiation which maps a consistent ground

space onto an inconsistent abstract space.

Theorem 50 : Let J be an abstraction schema, all of whose in¬
stantiations are negation preserving Tl-abstractions between systems

with negation which contain just closed formulae. Let one instan¬
tiation be not TC, have a consistent ground space and monotonic
abstract space. Then there exists an instantiation of J, f : E'x =>■ E2
for which E'x is consistent but E2 is inconsistent.

Proof: Let / : Ex =>• E2 be an instantiation of 7 which is not TC.

There exists a wff, p such that f(<p) E TiJ(E2) but <p 0 Tif(Ei).
Construct E'x from Ex by adding -«p to the axioms of Ex. Con¬
sider the instantiation of 7 with this ground space, / : E'x =>• E2.
Now E'x is consistent as Ex is a system with negation, <p £ TH{Ex)
and hence -ip ^ NTH(T,i). Since -«p is an axiom of E'l5 -up £

TH{E'j). As all the instantiations of 7 are TI, f(~><p) £ TH{E2).
Note that we do not call upon the mapping of the axioms g ex¬

plicitly; we just depend on it implicitly by demanding that all the
instantiations of 7 are TI. Because all the instantiations of 7 are also

negation preserving, ~^f{<p) G TJEZ"(E2). However, f(p) £ TH(E2) as

E2 is a monotonic extension of E2. Thus a wff and its negation are

both derivable in E2. In other words, E2 is inconsistent. □
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Most abstraction schemata used in the past (eg. Plaisted's) satisfy the hy¬
potheses of this theorem; their instantiations are all negation preserving TI-

abstractions, and (at least) one instantiation is not a TC-abstraction. This
second condition is important as it guarantees that abstraction makes the prob¬
lem solving easier. With TC-abstractions, the theorems of the abstract space

are exactly the abstraction of the theorems of the ground space; the abstract
space is not therefore any "simpler" than the ground space. We can give a very

similar result for NTI-abstractions since, by theorem 6, any negation preserving
NTI-abstraction between systems with negation is also a Tl-abstraction.

Theorem 50 demonstrates the inevitability of inconsistent abstract spaces for
a very large and common class of abstractions. In order to avoid inconsistent ab¬
stract spaces, we might therefore decide against using this class of abstractions;

Tenenberg advocates such a change in [Ten87]. He proposes a class of abstrac¬
tions which are not TP-abstractions but which are guaranteed to generate con¬

sistent abstract spaces. As argued earlier, the problem with such abstractions

(and all abstractions which are not TP-abstractions) is that completeness is
lost; there are theorems of the ground space which are not theorems of the ab¬
stract space. When the abstract space is going to be used to help find a proof in
the ground space, completeness is very desirable and should only be sacrificed

reluctantly.

Theorem 50 demands that all instantiations of an abstraction schema be

Tl-abstractions; this might seem rather restrictive, even though the majority of
abstraction schemata used in the past satisfy this property. This demand can be
weakened if we link how the wffs and axioms of the ground and abstract spaces
are mapped. To be more precise, for A/H-invariant abstraction schemata we

merely need to find one instantiation that is TI but not TC.

Theorem 51 : Let J be a negation preserving A/0-invariant ab¬
straction schema, between systems with negation and just closed for¬

mulae, that has one instantiation with a monotonic abstract space

which is TI but not TC. Then there exists an instantiation of J,
f : E^ =>• E2 for which E'x is consistent but E'2 is inconsistent.

Proof: Since / : Ei =>■ E2 is TI but not TC, there exists a wff, p such
that f(p) £ TH(E2) but ip 0 TH(Ei). Construct E'x from Ei by
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adding -><p to the axioms of Ei. Consider the instantiation of J with

this ground space, / : E'x => E'2. Now E'x is consistent as Ei is a sys¬

tem with negation, <p TH(Ei) and hence ~"p NTH(Ei). Since all
the instantiations of T are A/Q-invariant, g{~"p) = As -i<p is
an axiom of E^, f{~«p) is an axiom of E'2. That is, f{-xp) G TH(E2).
As all the instantiations are also negation preserving, G TH(E'2).
However, f(<p) G TH(E2) as E2 is a monotonic extension of E2. Thus
a wff and its negation are both derivable in E2. In other words, E2
is inconsistent. □

It was exactly this link between the mapping on the language and that on
the axioms which Tenenberg sought to break in defining his class of restricted

predicate abstractions. By mapping the axioms differently to the language, he
was able to avoid introducing inconsistency into the abstract space. The high

price he paid for this was the loss of truthfulness.

We end this section by noting that the stronger the abstraction, the greater
the chance of generating an inconsistent abstract space. A stronger abstraction
will add more theorems to the abstract space, increasing the chance that the

negation of one of these theorems will also be provable, and thereby increasing
the chance that the abstract space will be inconsistent. This confirms the intu¬
ition that the more details we throw away, the greater the risk of generating an

inconsistent abstract space.

5.7 A Solution

One solution to the problem of inconsistent abstract spaces is to use an ordered

hierarchy of abstractions. We defined an order, " < " on abstractions by the
number of theorems in their abstract spaces. Since the number of theorems of
an inconsistent abstract space is maximal, it is not surprising that this order can
also be used to tackle the problem of inconsistent abstract spaces. The solution
calls upon the following fact: a totally ordered set of abstractions has all those
with consistent abstract spaces on the left, and those with inconsistent abstract

spaces on the right. To be more precise, if an abstract space is consistent then
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all weaker abstractions map onto consistent abstract spaces, whilst if an abstract
space is inconsistent then all stronger abstractions map onto inconsistent abstract
spaces.

Theorem 52 : If f : Ei =>• £2 and g : £x =>• £3 are two abstractions
such that g< f, and E2 and £3 are systems with negation then if E2
is consistent, £3 is also consistent. Equivalently, if £3 is inconsistent
then £2 is also inconsistent.

Proof: As g< f, then g(ip) G TH(E3) implies f(ip) G TH(E2). As¬
sume that £2 is consistent but that £3 is inconsistent. There will exist
a wff, a for which f(a) 0 TH(E2). But gr(o:) G TH(E3) as all wffs are
provable in an absolutely inconsistent theory. Thus, f(a) ^ TH(Y,2)
and g(a) G Tff(£3). But this contradicts g(<p) G ThT(£3) implying
/(<£>) G ThT(£2) for all <p. Hence, if £2 is consistent then £3 cannot
be inconsistent. And if £3 is inconsistent then E2 cannot be consis¬

tent. □

This suggests a solution to the problem of inconsistent abstract spaces; we
use an ordered chain of Tl-abstractions, the strongest of which gives a decid-
able abstract space. If this abstract space is consistent then all the intermediate
abstract spaces back to the ground space will be also. Thus we can work back

through the chain of abstractions safe in the knowledge that all the intermediate

(and possibly undecidable) abstract spaces are consistent. Of course, we can't es¬
cape undecidability so this trick is inevitably cautious; there will be cases where
the strongest abstract space is inconsistent but the intermediate abstract spaces
are consistent. The following Prolog program illustrates this solution; it con¬

structs an ordered set of Tl-abstractions that are guaranteed to give consistent
abstract spaces:
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consistent-abs(Sigma.SetOfAbs):-
generate(Sigma,SetOfAbs) ,

strongest(SetOfAbs,F),
abstract(Sigma,F,AbsSigma),
consistent(AbsSigma).

generate (Sigma, SetOfAbs) returns an ordered set of abstractions, SetOfAbs
of the formal system, Sigma; the strongest abstraction in SetOfAbs should
map Sigma into a theory in which consistency is decidable (eg. preposi¬
tional logic);

strongest (SetOfAbs ,F) returns the strongest abstraction, F in the ordered set
of abstractions, SetOfAbs;

abstract (Sigma, F, AbsSigma) maps the formal system, Sigma onto the ab¬
stract formal system, AbsSigma according to the abstraction mapping, F;

consistent (AbsSigma) tests the consistency of AbsSigma.

Ideally, we want generate/2 to construct the ordered sets of abstractions in
an "intelligent" way. For example, by identifying the cause of inconsistency
in an abstract space, we might be able to suggest ways of subtly altering the
abstraction so that it does not introduce inconsistency.

We have implemented this program using an interface to Otter [McC88], a

fast, state-of-the-art resolution theorem prover to test consistency of the abstract

space. The complete program is listed in Appendix A. Currently, the program

generates all possible predicate abstractions of a theory. It would not be diffi¬
cult to make it generate other types of abstractions (eg. domain abstractions).
A more challenging problem would be to determine which predicate symbols
are worth collapsing together instead of naively considering all possibilities; this
would require representing and reasoning with lots of domain and problem de¬

pendent knowledge.
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5.8 Results

We have run our program on several different theories. For example, we have ap¬

plied it to the theory of containers in [Ten87]. This theory was used by Tenenberg
to explore the problem of inconsistent abstract spaces generated by predicate ab¬
stractions. The axioms are as follows:

bottle(x)—+madeofglass(x) bottle{x)^graspable{x)
glass (x)—+madeofglass (x) glass (x)—+graspable(x)
glass[x)^open{x) box(x)^graspable(x)
bottle(x)—^~'glass(x) glass(x)—y-^bottle(x)
bottle(x)—>-<box(x) glass{x)—>-^box(x)
box(x)^>-iglass(x) box{x)^^bottle{x)
bottle(x)^milkb{x) V wineb(x) open(x) A graspable[x)^pourable{x)
graspable{x)—±movable{x) madeofglass(x)^>breakable(x)
bottle(x) V glass(x) V box(x) open(a)

Our program was able to suggest all possible predicate abstractions of this

theory that preserve consistency. For example, although graspable and movable
can be safely collapsed together, collapsing box, glass and box together (onto a

generic container) introduces inconsistency.

As a second example, we consider a classic challenge problem from the the¬
orem proving literature, Schubert's steamroller [Coh85]. The axioms are as fol¬
lows:

wolf(wolfy) wolf(x)—+animal (x)
fox(foxy) fox(x)—>animal(x)
bird(tweety) bird(x)—>animal (x)
snail (slimey) snail(x) -^animal (x)
cat(crawly) cat(x)-+animal(x)
grain(stalky) gram(x)->plant (x)
fox(x) A wolf[y)—>smaller(x, y) bird(x) A fox(y)^smaller(x,y)
snail(x) A bird(y)—^smaller(x, y) cat{x) A bird(y)-+smaller(x, y)
3y.snail(x)—>plant(y) A likes(x, y) 3y.cat(x)^plant(y) A likes(x, y)
bird(x) A cat(y)-+likes(x,y) wolf(x) A fox{y)^^likes[x,y)
bird(x) A snail{y)-+-ilikes{x,y) wolf(x) A grain(y)—>-ilikes(x,y)
animal(x) A piant (y) A animal (vu) A smaller(w,x) A piant (z) A
likes[w,z)^likes(x,y) V likes{x,w)

Our program demonstrated that there is hardly any way for Schubert's steam¬
roller to be abstracted without introducing inconsistency. For example, plant
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and grain can be safely abstracted together but cat and snail cannot. Although
caterpillars and snails are animals with very similar properties, birds like to eat

caterpillars but not snails. This suggests that Schubert's steamroller contains
little redundancy, and is one reason why it is so difficult to prove.

5.9 Related Work

Tenenberg [Ten87,Ten88] presents two solutions to the problem of inconsistent
abstract spaces for predicate abstractions. The first solution uses restricted

predicate mappings; this class of abstractions keeps in the abstract space only
those axioms from the ground space that do not distinguish between predicates
which are mapped together. Unfortunately determining indistinguishability is,
in general, undecidable requiring an arbitrary amount of theorem proving in the

ground space. Additionally, this gives an abstraction which is not truthful; since
the abstract space has fewer axioms than the ground space (we don't map all
of them), the abstract space has fewer theorems than the ground space and we

lose truthfulness. Tenenberg's second solution [Ten88] overcomes the objection
to undecidability. In this proposal, axioms are kept in the abstract space pro¬

vided they can be trivially shown not to distinguish in the ground space between

predicates which are mapped together; thus, instead of performing an arbitrary
amount of theorem proving in the ground space to determine indistinguishabil¬

ity, we insist that it is an immediate consequence of the axioms. Whilst being

decidable, this solution is again not truthful.

Tenenberg [Ten88] also proposes a solution to the problem of inconsistent
abstract spaces for ABSTRIPS abstractions. This solution restricts the assign¬
ments of criticalities so that inconsistency cannot be introduced. If the ground

space includes inequality, this solution is of little use as it tends to give only one

criticality to all preconditions. Tenenberg proposes two modifications to over¬

come this problem. Unfortunately the first restricts the operators we can use

whilst the second is not decidable for first order theories.
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5.10 Summary
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We have argued at length for abstractions which preserve provability; this Chap¬
ter has considered how such abstractions affect consistency. We identified the

problem of inconsistent abstract spaces, where an abstraction maps a consistent

ground space onto an inconsistent abstract space. We demonstrated that this

problem occurs with nearly all TP-abstractions, but not with TD*-abstractions.
We then suggested a method to avoid inconsistent abstract spaces; this method
uses the partial order on abstractions introduced in Chapter 3, and is both de-
cidable and truthful. We compared this solution with other solutions proposed
in the past; all of these other solutions either introduce some undecidable test

or change the abstraction so that is no longer truthful. Of course, our solution
is inevitably cautious; it will reject chains of abstractions in which the most
abstract space is inconsistent but less abstract spaces are consistent.



Chapter 6

Building Abstractions

This Chapter explores how to build abstractions automatically. We

first identify the limited number of ways you can usefully abstract a
new problem domain. We then concentrate on one of these ways, the
abstraction used in ABSTRIPS. We suggest a method for building
ABSTRIPS abstractions automatically, motivated by various desir¬
able properties such a method should possess. We end by testing our

method both empirically and theoretically.

6.1 Introduction

Although abstraction is a frequently used technique for controlling search, there
has been surprisingly little work on building abstractions. In most cases, the ab¬
straction is fixed in advance, irrespective of the domain or the particular problem
to solve. The need to be able to construct abstractions tuned to new domains

and problems was first recognised in ABSTRIPS [Sac74], where there was a

semi-automatic method for building abstractions. For reasons of efficiency, we
will not want to use the same abstraction for all domains or problems, especially
if we are trying to avoid inconsistent abstract spaces. Building abstractions au¬

tomatically is therefore of great interest to anyone wishing to use abstractions
on real problems.

The contents of this Chapter appear in [BGW90].

113
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Unfortunately, very domain-specific knowledge is needed to determine what
can be usefully abstracted together. Abstractions should collapse together ob¬

jects in meaningful ways; for example, it is unlikely that a domain abstraction
which maps the constants, "tt" and "tweety" onto the same abstract constant
is going to be of much use. Similarly, a predicate abstraction which maps the

predicates, "transcendental(x)n and "bird(x)n onto the same abstract predicate
will probably not be of much practical value. This does not mean, however, that
we can give no general results about building abstractions automatically.

To complicate matters, we also want to be able to build abstractions that

preserve provability and it is difficult to predict in advance how an abstraction
will affect the rather global property of provability. Ideally we want to discover
some local properties of a mapping we can test which guarantees that it preserves

provability or inconsistency. Plaisted's definition of abstraction [Pla8l] provides
such properties for NTI-abstractions between resolution systems. However, we
do not want to restrict ourselves just to clausal languages, resolution systems

and NTI-abstractions.

We can separate our results into two classes: those that build provability

preserving abstractions which are A-variant abstractions (in which we change
the deductive machinery between the ground and the abstract spaces), and
those that construct provability preserving abstractions which are A-invariant

(in which the same deductive machinery is used in both the ground and the
abstract spaces). Most of the results we give are for the second class. Since the
same inference engine can be used in ground and abstract spaces, A-invariant ab¬
stractions tend to be more common. A-variant abstractions, on the other hand,
often require a new inference engine to be built for theorem proving in the ab¬
stract space; this greatly restricts their usefulness. One exception is E-invariant
abstractions in which the inference engine of the ground space can simply have
its inference rules replaced by their abstractions.
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6.2 Building E-invariant Abstractions

A E-invariant abstraction is one in which the language, axioms and inference
rules are all abstracted using the same mapping function. All E-invariant ab¬
stractions are truthful.

Theorem 53 : If f : Ex =>■ E2 is a E-invariant abstraction then it
is a TI-abstraction.

Proof: We can map a proof tree IIx of <p onto a proof tree n2 of

f(<p) merely by applying / to every wff in the proof tree. □

This is, of course, not the only way to build truthful abstractions. Indeed,
there are many truthful abstractions that are not E-invariant. For example,

any abstraction which involves a change in the way we axiomatise the problem
domain is not E-invariant. E-invariance fails to capture all truthful abstractions
because the abstraction of an axiom of the ground space only needs to be a

theorem of the abstract space (and not an axiom), and the abstraction of an
inference rule of the ground space only needs to be a derived rule in the abstract

space (and not an inference rule). To include these more powerful tests would not
really help us construct truthful abstractions as they require arbitrary theorem

proving in the abstract space. Indeed, we would make the following claim.

Claim : Any purely ' local " definition of abstraction (like E-invariance
or Plaisted's definition) will inevitably fail to capture the complete
class of truthful abstractions.
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6.3 Building A-invariant Abstractions

Often (for example [Pla8l]) we inherit one fixed language and inference engine
for both the ground and the abstract spaces. We therefore want to build A-
invariant abstractions. Such abstractions make it much easier to use hierarchies

of abstractions. Unfortunately, there are not many general results for construct¬

ing truthful A-invariant abstractions since any results are very dependent on the

particular set of inference rules. However, we can consider the rather general
case of A-invariant abstractions between first order systems. Plaisted proves

(theorem 2.1 in [Pla8l]) some local properties that are sufficient (but not nec¬

essary) to construct an abstraction between two clausal languages so that is
NTI. We can generalise this result to find some local conditions on a A-invariant
abstraction between first order systems that makes an abstraction TI/NTI.

As we noted in Chapter 4, most abstractions used in the past are theory

abstractions; that is, mappings which abstract the theory not the logic. In

general, the logic is well behaved and it is the theory that needs to be simplified.

Indeed, you should only change the logical structure of a wff with great care

as (the consistency of) a logic is often very finely balanced; even the smallest
change to the logic can prove catastrophic. There is another good reason for

using theory abstractions; if the abstraction is to be truthful then it needs to

preserve the meaning of the connective introduction and elimination rules. For

example, since we can derive p A q from p and q, we need to be able to derive

f(pAq) from f{p) and f(q). A theory abstraction will guarantee that deductions
using the connective introduction and elimination rules remain valid deductions
in the abstract space.

The majority of abstractions used in the past are also A/f2-invariant; that
is, mappings in which the language and the axioms are mapped identically. For
an abstraction to be truthful, the abstraction of the axioms of the ground space

must also be theorems of the abstract space. This is easily achieved by making
the abstraction A/fi-invariant. This is especially useful when the axioms of the
ground space are, as is often the case, not fixed in advance.



CHAPTER 6. BUILDING ABSTRACTIONS 117

We have therefore reduced the problem of constructing a truthful A-invariant
abstraction to the much easier problem of deciding on a suitable mapping of
atomic formulae for a A/H-invariant theory abstraction to be truthful. The
question now becomes, can we come up with a syntactic test on such a mapping
which guarantees that such an abstraction is truthful? As argued before, it is

impossible for us to find a test that captures the whole class of truthful abstrac¬
tions. However, it is possible to come up with a test that captures a very large
subclass. Indeed, the test captures most of the abstractions listed in Chapter 4.

Theorem 54 : If f : Ex =*► E2 is a A/fi-invariant theory abstrac¬
tion, Ei and E2 are complete first order formal systems, and the

mapping function preserves the names of all the occurrences of free
and bound variables (or drops them), and preserves substitution in-
stances (that is, f{p[a\) = f(p[x]){f(a)/x}) then f : Ex =>■ E2 is a

TI/NTI-abstraction.

Proof: Since / : Ex E2 is a theory abstraction it is negation pre¬

serving. Thus it is sufficient to prove that / : Ei =$► E2 is a TI-
abstraction. We show how given a proof tree, nx of <p in Ei we
can construct a proof tree n2 of f(p) in E2. The argument proceeds
by induction on the depth of the proof tree nx.

For the base case, let nx = <p. Now tp must be an axiom. But, as

/ : Ex => E2 is A/H-invariant, /(<£>) is also an axiom.
For the step case, assume that we can show it for all proof trees

up to depth n, and prove it is true of all proof trees, n( of depth
n + 1. We consider the last inference in the proof tree, nj. If it is a

connective introduction or elimination, a universal elimination or an

existential introduction then we apply the same rule at the bottom
of the proof tree we construct in E2. For a reductio ad absurdum,
the preservation of substitution instances guarantees that /(_L) — X.
We can therefore apply an application of reductio ad absurdum at

the bottom of E2. If it is a universal introduction or a existential

elimination then the same rule can also be applied in E2 since the
conditions on applying the rule (that the assumptions do not mention

By the substitution {f(a)/x}, we mean that the mapping function can (if wanted)
abstract constants of the domain in some uniform way.
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the free variable being universally quantified etc) still hold as variable
names are preserved. 1=1

Actually, we can drop the requirement on preserving the name of bound
variables provided we are careful to avoid any naming clashes. If we restrict
ourselves to abstraction mappings between clausal languages, theorem 54 is very
similar to theorem 2.1 in [Pla8l]; with Plaisted's abstractions, our extra condi¬
tion on the name of variables is redundant since all wffs are already skolemised
and no variable naming problems can arise. Note that preserving variable names

and substitution instances does not capture all truthful theory abstractions. For

example, the theory abstraction that maps p(a) onto T, and p(x) onto p{x) is
truthful if p(a) is a theorem of the ground space; however, this mapping does
not preserve substitution instances.

So, we have found a useful syntactic condition on the mapping that guar¬

antees truthfulness. The question now becomes what sort of mappings preserve

substitution instances and preserve (or drop) variables? A systematic character¬
isation can be given from the recursive definition of atomic formulae:

1. abstractions where we map the terms. These can be further subdivided
into:

• domain abstractions where we map the constants together;

• function abstractions where we map the function names together,
or reduce their arity (by throwing away some or all of their argu¬

ments) ;

2. abstractions where we map the predicates. These can be further subdi¬
vided into:

• predicate abstractions where we map the predicate names to¬

gether;
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• propositional abstractions where we reduce their arity (by throw¬
ing away some or all of their arguments);

• ABSTRIPS abstractions where we map the whole atomic formula

onto T or _L.

This classification describes all theory abstractions that can be decomposed
into mappings on the individual parts of the atomic formulae. All these different

types of abstractions can be found in the literature. Most, in fact, can be found in
the work of Plaisted [Pla80,Pla8l]. Both Hobbs [Hob85] and Imielinski [Imi87]
have proposed domain abstractions. Plaisted [Pla80,Pla8l] has used function
abstractions on some interesting problems and Tenenberg [Ten87] has looked at

predicate abstractions in some detail.

This section has identified the five major types of abstraction. Each maps

a different part of the atomic formula or alternatively the whole atomic for¬
mula. This is a very important result; a major step in building abstractions

automatically is to discover the different ways we can abstract a new domain. It
will depend on the problem, and the choice of representation exactly what it is
worthwhile mapping together. The next section considers this problem in detail
for ABSTRIPS abstractions.

Once we have built up a collection of abstractions, we can use the various

operations on abstractions to construct yet more abstractions. In particular, we
can use the fact that the composition of two T*-abstractions (NT*-) is itself
a T*-abstraction (NT*-), and that the inverse of a TP-abstraction is a TD*-
abstraction (and vice versa). Finally, to construct NT*-abstractions, we can

call upon the fact that a T*-abstraction that is negation preserving is also a

NT*-abstraction (and vice versa).
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6.4 Building ABSTRIPS Abstractions

One very important class of theory abstractions is the class of ABSTRIPS ab¬
stractions in which we map some of the atomic formulae onto true, T. AB¬
STRIPS [Sac73] used such abstractions to simplify its Strips-like planning do¬
main. In this section, we will propose a method to build such abstractions auto¬

matically which improves upon the semi-automatic method used in ABSTRIPS.

The problem domain is determined by a set of operators. As in Chapter 4,
we assume each has a set of preconditions, and a conclusion or effect given by
an implication in a situation calculus. Note that this is not the representation
used in ABSTRIPS; the situation calculus is, however, simple and sufficiently

descriptive for our purposes. For example, Green [Gre69] describes an operator
for a monkey moving an object z from location xl to location x2 given an initial
state of the world s with the following axiom:

at(z,xl,s) A movable(z) A empty(x2,s) —> at(z,x2,move(monkey, z,x2, s))

ABSTRIPS built a hierarchy of abstractions by mapping preconditions onto

true, T, according to their criticality; this is a measure of how difficult on

average it is to achieve the precondition. Those preconditions which it is im¬

possible to change are given the highest criticality. Those preconditions which
it is very hard to change are given the next highest criticality. And those pre¬

conditions which it is very easy to change are given the lowest criticality. This
notion of criticality is, in fact, very general and need not be restricted just to

preconditions. For instance, when using a hierarchy of domain abstractions, we
can define the criticality of a constant; this would be a measure of the impor¬
tance of the constant in the given domain and an indicator of when it should be
abstracted. As in ABSTRIPS, we want the criticality of a precondition to be

independent of its arguments; that is, it should be a measure of how difficult on

average it is to achieve a precondition. To this end, we ignore the arguments to
the preconditions. Thus "at(robot, workstation)" is assigned the same critical¬
ity as "at(robot, photocopier)". If necessary, however, we could assign different
criticalities to preconditions with the same predicate name.
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6.5 Calculating Criticalities

We envisage an iterative process in which we assign the preconditions some de¬
fault starting value and then by a series of iterations calculate their criticality.
We shall represent by C(Ops,p,n) the criticality of the predicate p at the ra-th
iteration given a set of operators Ops. Note that, unlike ABSTRIPS, we assign a

criticality to every predicate, irrespective ofwhether it appears as a precondition
to an operator or not. We will not be particularly interested in the absolute val¬
ues C{Ops, p, n) returns, just their relative ordering. We will motivate our choice
of a criticality assignment function by identifying some desirable properties it
should possess.

The first desirable property is that the assignment function should converge
to an unique answer.

Property 1 Convergence

Jim C(Ops,p,n) = ap

Second, we would like the assignment function to be fair. Initially, we have
no information to distinguish between the different predicates. The assignment
function should not therefore discriminate between them. Every predicate should
be given a uniform starting value, ao.

Property 2 Fairness

C(Ops,p, 0) = a0

Third, we want the function to be monotonic. Given a set of operators,
if we add another operator with conclusion p then as p is easier to satisfy (we
have another way of proving it) the criticality of p should go down or, at least,
stay the same. And if we add a precondition, q to an operator with conclusion

p then as p is more difficult to satisfy (we have to prove another precondition)
the criticality of p should go up or, at least, stay the same.
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Property 3 Monotonicity

C(Ops U {q -> p},p,n) < C(Ops,p,n)

C(Ops U {(g Ar) -» p},p, n) > C(Ops U {r -> p},p,n)

Finally, we want the criticality assignment function to respect impossibility.
If we have no operators with conclusion p then p will be impossible to change.
Thus, it should be assigned the maximum criticality, amax. We will assume here
that there is a constant maximum criticality; it would be easy to generalise this
to a different maximum for each iteration.

Property 4 Impossibility

C(Ops,r, m) - amax

if Ops contains no operator with conclusion, r and m > 0.

There are other desirable properties, like selectivity (the assignment func¬
tion should return a range of values), which are less precise in their definition
and whose truth may depend very precisely upon the given operators. This is

also, by no means, an exhaustive list of properties that a criticality assignment
function should possess. For example, we might also want the function to be

inexpensive; that is, we might want the function to be cheap to calculate.

Nevertheless, we would argue that these all the properties on this list are nec¬

essary. This list of properties does not specify an unique criticality assignment
function. For example, the uniform criticality assignment function (for which
\/Ops, p,n. C(Ops,p,n) — a0 ) satisfies all four of the defined properties, and is
very inexpensive to calculate. It is, however, not of much real use.
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6.6 A Solution

In this section, we propose a criticality assignment function that satisfies all the

properties defined in the last section; it also appears to work well empirically.
This function is based upon interpreting C(Ops,p,n) as the difficulty of finding
a proof of p of up to depth n.

C(Ops,p,n) is defined recursively as a function of the difficulty of finding a

proof of up to depth n — 1 plus the difficulty of finding a proof of exactly depth n,

which we represent by D(Ops,p,n). We combine these difficulties by analogy to
the calculation of parallel resistance. With two resistors in parallel, the current
can go through either the first resistor or the second, thereby reducing the total
resistance. Similarly, we can find either a proof of up to depth n — 1, or we can

find a proof of exactly depth n. Thus the difficulty of finding a proof of up to

depth n is the parallel sum of the difficulties of finding a proof of up to depth
n — 1 and of finding a proof of exactly depth n; this gives us equation (6.2). The
starting values for the calculation of criticalities are given by equation (6.1); this
equation guarantees the fairness of our solution.

C(Ops,p, 0) = a0
1

+
C(Ops,p,n) C(Ops, p, n — 1) D(Ops,p,n)

(6.1)

(6.2)

This still leaves us to decide how to calculate D(Ops,p,n), the difficulty of
finding a proof of exactly depth n. This is also defined recursively. The boundary
conditions are easy. D(Ops,p, 0) is the difficulty of finding a proof of depth 0;
this must equal C(Ops,p, 0) (equation (6.3)). The other boundary condition is
when no operator has p as a conclusion. Since it will be impossible to change
such a predicate, we set this difficulty to oo (equation (6.4)); these predicates
are often type predicates which specify fixed properties of objects in the domain
like urobot(x)" or "movable(y)". Equation (6.4) ensures that the impossibility
property holds.
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The step equations for D[Ops,p,n) are more complicated. The difficulty
of finding a proof of p of exactly depth n, that is D(Ops,p,n) is the parallel
sum of the difficulties of finding a proof of depth n that ends with an operator
with p as conclusion (equation (6.5)). D(Ops,q —> p, n) represents the diffi¬
culty of finding a proof of p of depth n that ends with the application of the

operator, q —► p. Note that q itself might be a conjunction of preconditions,

A<7,-. Finally the difficulty of finding a proof of p of depth n that ends with the
operator Ag,- —> p, that is D(Ops,Aqi —> p, n) is at least as difficult as finding
a proof of depth n — 1 of the most difficult precondition to that operator, that
is m&x{D(Ops, qi, n — 1)} (equation (6.6)). Here, we have made the simplifying
assumption that the difficulty is dominated by the most difficult precondition;
a more thorough analysis would also consider the difficulties of proving the less
difficult preconditions. However, such a calculation could be very expensive;

taking the maximum should give a good lower bound.

D(Ops,p, 0) = a0 (6.3)

D(Ops,r,m) = oo (6-4)
1

^ 1
D{Ops, p, n) g-,Peops D{Ops, q -► p,n) 6-5

D(Ops, Aqi —+ p,n) = max{Z?(Ops, qi, n — 1)} (6.6)

where Ops contains no operator with r as conclusion, and m > 0

There are many other criticality assignment functions we could consider.
The quality of the criticality assignments will always depend on the amount of

computation we are prepared to perform. We propose this function as it seems
a good example. It satisfies all the theoretical properties, is easy to compute,

and behaves well on real problems. It is not, however, the only or indeed the

optimal criticality assignment function.
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6.7 Some Worked Examples

We have compared this method for calculating criticalities with the original
method used in ABSTRIPS. We will consider two problems: McCarthy's fa¬
mous Monkey and Bananas problem [Gre69] and the robot operators used in
ABSTRIPS [Sac74].

For McCarthy's Monkey and Bananas problem, we use the operators given in

[Gre69]; these operators are listed in Appendix B. The results are summarised
below; note that we have divided every entry by a0.

C /a0 n — 0 1 2 3 oo

at 1.00 0.25 0.25 0.25 0.25

has 1.00 0.50 0.33 0.25 0.25

reachable 1.00 0.50 0.33 0.33 0.33

on 1.00 0.50 0.50 0.50 0.50
movable 1.00 1.00 1.00 1.00 1.00

empty 1.00 1.00 1.00 1.00 1.00

climbable 1.00 1.00 1.00 1.00 1.00

The criticality assignment function converges to an answer rapidly. Indeed,

by the third iteration it reaches its final values. The relative order of criticalities
is almost identical to that assigned by the original semi-automatic method used
in ABSTRIPS. The only difference is that the method used in ABSTRIPS assigns
"at" (where objects are at) a lower criticality than "has" (what the robot has).
With our criticality assignment function, the criticality of "at" falls faster than
that of "has" as we iterate n. However, they both end up with the same final

criticality.

For the ABSTRIPS robot operators, we assume as in ABSTRIPS that the
effects of an operator are dominated by one clause, the primary addition; other

consequences of the operator are ignored for planning purposes. In this way,

trivial side-effects to the operators are not given greater importance than they
deserve. We can therefore model each operator as a set of preconditions implying

just one conclusion. It would, however, be possible to extend our criticality

assignment method to operators with multiple conclusions. The operators are

listed in Appendix B. Our results are summarised in the following table.
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C /a0 n = 0 1 2 oo

nextto 1.00 0.20 0.20 0.20

inroom 1.00 0.33 0.33 0.33

at 1.00 0.33 0.33 0.33

status 1.00 0.33 0.33 0.33

type 1.00 1.00 1.00 1.00

connects 1.00 1.00 1.00 1.00

pushable 1.00 1.00 1.00 1.00

locinroom 1.00 1.00 1.00 1.00

Again the criticality assignment function converges rapidly to an answer, and
the relative order of criticalities is almost identical to the relative order used in

ABSTRIPS. The only difference is that in ABSTRIPS the "status" of the door

(open or closed) was assigned a lower criticality than "mroom" (the objects in
the room). The reason for this is that, since we ignore the arguments to the
predicates, there appear to be two operators for achieving "mroom". In fact,
one is for the robot to go through a door and the other is for an object to be

pushed through a door. This makes "mroom" appear easier to satisfy than it

actually is. If we calculated the criticalities with just one operator for going

through doors, then "mroom" would be given a higher criticality than "status".

6.8 Properties of this Solution

In the last section, we demonstrated that our criticality assignment function
seems to behave well empirically. It also possesses all the theoretical properties
defined in Section 6.5. First, it is a fair assignment function.

Theorem 55 : C(Ops, p,n) is fair.

Proof: By equation (6.1). □

To show that it is convergent, we show that it is finitely bounded and mono-

tonic with respect to n.

Theorem 56 : C(Ops,p,n) < C(Ops,p,n — 1)
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Proof: From equation (6.2) and the fact that D(Ops, p,n) is pos¬

itive? c(Ops,p n) increases monotonically with n. Thus, C(Ops,p,n)
decreases monotonically with n. □

Theorem 57 : C(Ops,p,n) E [0, a0]

Proof: By Theorem 56, C(Ops,p,n) decreases monotonically with
n. By equation (6.1), C(Ops, p,n) starts at a0. It is also bounded
below by 0. Hence, C(Ops,p,n) E [0, ao]. □

Theorem 58 : C{Ops, p,n) is convergent.

Proof: Any monotonic bounded sequence is convergent. □

In fact, this assignment function possesses an even stronger convergence prop¬

erty; if all the criticality assignments stay constant for one iteration, they will
not change any further. Thus, we can stop calculating criticalities once they
have remained constant for one iteration.

Theorem 59 : If for some n, and all predicates p, C(Ops, p,n) =
C(Ops, p, n — 1) then C(Ops, p, m) = C(Ops, p, n) for m> n.

Proof: From equation (6.2), D(Ops,p,n) = oo for all predicates, p.
By induction on m, from equations (6.6) and (6.5), D(Ops, p, m) = oo

for m > n. Thus by induction again on m and equation (6.2),
C(Ops, p,m) — C(Ops,p,n) = ap for m > n. □

This criticality assignment function is monotonic with respect to the oper¬

ators and the preconditions; adding an operator decreases the criticality of the

conclusion, and adding a precondition increases the criticality of the conclusion.

Theorem 60 : C[Ops U {<7 —>• p},p, n) < C(Ops,p,n)
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Proof: If q —► p 6 Ops then OpsU{q —■► p} = Ops and C(OpsU{<7 —>

p},p,n) = C(Ops,p,n). Otherwise, by equation (6.5), Di0psu(q^P},P}n)
__ y- 1 i 1 Rut 1 _ 1

D(Ops,q—*p,n) D(OpsU{q-*p},q—*p,n) ' D(Ops,p,n) " D(Ops,q-+p,n)
and D{Ops U {q p}, q -* p, n) is positive. Hence, z?(0p,u{^_>p)>P[W) >
D(Ops p n) • Using induction on n and equation (6.1) for the base case
and equation (6.2) for the step case, c(0pjU{i_>p>iP>w) > C{Op*,p,n) • That
is, C(Ops U {q —> p},p, n) < C(Ops, p, n). □

Theorem 61 :

C(Ops U {q A r —► p}, p, n) > max{C(Ops U {q —> p},p, n),

C(Ops U {r —> p},p, re)}

Proof: By induction on n. The base case follows trivially from (6.1).
The step case uses equation (6.2) and the fact that D{Ops U {g A r —►

p},p, n) > max{D(Ops U {q —* p},p,n), D(Ops U {r —■> p},p, n)}.
This last fact follows from the lemma that D(OpsU{qAr —► p}, s, n) >
max{H(Ops U {q —» p},s,n), D(Ops U {r —> p},s,n)} where s is
any predicate or operator. This lemma is itself proven using in¬
duction on n. The base case follows trivially from equation (6.3).
For the step case, we do a case analysis. If s is a predicate then
from equation (6.5) and the induction hypothesis, j>(opaU{g* r_,p). s n) <
min{C(Op8u{^p),a,n)> n(Opau{r—>p),s,n)}- That is D{{OpS U {q A r ->
p},a,») > max{Z)(Ops U {<7 —► p}, s, n), D(Ops U {r -> p},a,w)}. If,
on the other hand, s is an operator then from equation (6.6) and the
induction hypothesis D[OpsU{qAr —► p},s,re) > ma,x{D(OpsU{q —»

P>,5,n), D{Ops U {r —> p},s, re)}. □

Finally, we note that this criticality assignment function respects impossibility.

Theorem 62 : C(Ops,p,n) respects impossibility.

Proof: If Ops contains no operator with r as a conclusion then by
equation (6.4), D(Ops,r,m) = 00 for m > 0. Thus, by equation
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(6.2) and induction on m, C(Ops,r,m) — C(Ops,r, 0) = ao. Note
that from theorem 57, ao is the maximum criticality assigned to any

predicate. □

6.9 Related Work

ABSTRIPS had a semi-automatic method for calculating criticalities [Sac74].
This method needed to be given a partial order on the preconditions which
was used to determine an order in which to examine the preconditions. Those

preconditions which cannot be changed by any operators are given the highest

criticality (c/. the impossibility property). Each remaining precondition in the
partial order is considered in turn; if a short plan can be found to achieve it

assuming all the previous preconditions are considered true, then it is assigned a

criticality equal to its rank in the partial order. If not, it is assigned a criticality

greater than the highest rank in the partial order. The slight difference in the
order of criticality assignments between this method and ours actually seems

more a criticism of the need to supply a partial order with which to examine
the preconditions; a different partial order often produces different criticality

assignments.

Tenenberg [Ten88] has also explored various methods for building ABSTRIPS
like abstractions. He proposes that predicates should be given the same criti¬

cality if they appear together in a static axiom (an axiom that does not change
between situations). This effectively partitions the theory into independent sub-
theories. Unfortunately such a partitioning is usually not very selective. For

example, a theory with inequality will usually give only one partition or critical¬

ity assignment. Tenenberg suggests a solution to this problem which constrains
the use of inequality in the axioms. However, the operators of the domain must
also satisfy the usability condition; that is, the preconditions to (the ground
instantiation of) every operator must hold in some legal situation. For many
operators, this will not be true. For example, an operator for stacking blocks
can never stack a table onto a block; this operator does not therefore satisfy
the usability condition. Tenenberg proposes a way round this problem which
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essentially prohibits type preconditions from being abstracted at any level of
abstraction (c/. the impossibility property). Unfortunately, this solution is not
decidable for first-order theories.

Knoblock [Kno89] has also suggested a method for calculating criticalities
automatically. He uses the operators of a domain to build a directed graph; the
vertices of this graph represent the literals, whilst the edges represent constraints
on their criticalities. A directed edge from one literal to another indicates that
the first literal must have a criticality equal to or greater than the second lit¬
eral. His algorithm places directed edges between all effects of an operator, and
between the effects and the preconditions of an operator. Unfortunately, these
constraints usually only specify a partial order on the criticality assignments. A
total order is generated by topologically sorting the graph in some arbitrary way.
A further criticism is that this method gives no preference for literals which can

be satisfied with short plans over those that require long plans. Both ABSTRIPS
and our method favoured those literals which had short plans.

6.10 Summary

We have considered the problem of building abstractions automatically. We first
identified the different ways you can abstract a new problem domain. Under
some very weak assumptions [eg. we want to abstract the theory and not the
logic), we showed that there are only five major classes of abstractions. We
then focussed on one of these classes, the abstraction used in ABSTRIPS. We
described various desirable properties that should be possessed by a method
for building such abstractions automatically. We used this list of properties to

motivate our choice of a method for building ABSTRIPS abstractions automat¬

ically. We then demonstrated the worth of this solution both theoretically and

empirically. Finally, we compared our method to other methods for building
ABSTRIPS abstractions.



Chapter 7

Using Abstractions

This Chapter explores how an abstract proof can be "mapped back"
onto a ground proof. We introduce a notion called, tree subsump-

tion, for describing the relationship between the structure of ground
and abstract proof trees. Tree subsumption is a monotonicity property
on the structure of proof trees. This structural relationship suggests

a general purpose procedure for mapping an abstract proof tree back
onto a ground proof tree. We end by using this procedure to explore
how abstraction reduces search.

7.1 Introduction

We have argued at length for abstractions which preserve provability. How¬

ever, this is only a very weak property to demand; we also want abstractions to

preserve the structure of proofs. Abstract proofs can then be used to guide a

theorem prover in finding ground proofs. In this Chapter, we will define a notion
of similarity between the structure of proofs called tree subsumption. This is
a monotonicity property: for any node in the abstract proof tree there must be a

corresponding node in the ground proof tree. The idea is that the ground proof
tree can be obtained by adding (possibly zero) nodes to an "unabstraction" of

The work described in this Chapter first appeared in [GW89b],

131
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the abstract proof tree. No abstract nodes need to be thrown away. The ab¬
stract proof provides the major "islands" we need to get between in constructing
a ground proof, and thereby helps to reduce search.

7.2 Trees

We begin with some notions for describing proof trees.

Definition 30 (Formulae tree) :

• any wff, <p is a formulae tree;

• if <p is a wff and IIi, ...IT„ for n > 1 are formulae trees then

ni...nn
<p

is also a formulae tree.

These are the only rules for generating formulae trees. In both rules,

ip is the root formula, and the top most formulae are the leaf for¬
mulae.

Often directed acyclic graphs are used in presentations of the theory of trees;

we, however, have chosen a more graphical notation as this emphasizes the struc¬

ture of the trees. For the sake of brevity we will write "tree" to mean "formulae
tree". The tree, ITi is equal to the tree, IT2, written Tlx = IT2 iff ITi and n2 are

constructed using the same sequence of rules and formulae. A branch of a tree

is a sequence of wffs ending at a leaf, each wff being directly above the previous;
the last wff in a branch is always a leaf wff. The length of a branch is the
number of wffs in the branch. The depth of a tree II, written |IT|, is the length
of the longest branch in the tree. hd(b) is the first wff of a branch b, whilst tl[b)
is the branch formed by removing hd(b) from the branch 6; tl(b) is undefined for
branches one wff long. hd(b) is the root wff of the tree if the length of b is the
same as the depth of the tree. A sub-branch of b is either b or, provided tl{b)
is defined, a sub-branch of tl{b). A wff a is below another wff (5 in a tree II iff a
occurs earlier than /? in some branch of II. A branch contains another branch
if it mentions the same wffs (and possibly more) in the same order.
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Definition 31 (Contains) : bi contains 62 iff there exists some

sub-branch, b of b\ for which

• hd{b) = hdfbf), and
• if tl(bf) is defined then tl(b) exists and contains tl{bf).

The contains relation is a weak partial order on branches being transitive,

antisymmetric, and reflexive. >/(^,IT) is the number of occurrences of the wff ip
in the proof tree II. The weight of a tree IT, written ||II||, is the number of wffs
in the tree. That is, ||II|| = //(^bll).

The definitions so far have described any arbitrary formulae tree. Our interest
is mainly in those formulae trees which represent proofs or, more generally,
deductions. A deduction tree is a tree in which every wff is derived from the
wffs directly above it by the valid application of an inference rule. A proof tree
is a deduction tree in which the leaf formulae are either discharged assumptions
or axioms. II is a proof tree in E if every wff in the tree is from the language
of E, every deduction uses an inference rule from the deductive machinery of

E, and every undischarged leaf node is an axiom of E. If necessary, we can

augment the description of a deduction tree by the name of the inference rule
used at each step. If / : Ex => E2 is an abstraction and II is a tree containing
wffs from the language of Ex then the abstraction of II, written /(II), is the
tree constructed by applying the mapping function of the abstraction to every

wff in II. The abstraction of a proof tree in Ex need not be a proof tree in E2.

7.3 Subtrees

One very important relationship between trees is the subtree relation.

Definition 32 (Subtree) ; IIx is a subtree o/IT2, written IIx E II2
iff

• II2 = IIx, or

<P

and there exists i, 1 < i < n such that Tlx E I\.
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If IIi is a subtree of II2 then we will also say that II2 is a supertree of III.
Note that the leaves of a subtree must also be leaves of the supertree. A subtree

cannot have leaves that come from the middle of the supertree. As an example
of the subtree relation, consider the following proof tree:

bottle(a) bottle(x)—*pushable{x)
pushable(a)

This tree is a subtree of the following proof tree:

bottle(a) bottle(x)—>pushable(x) bottle(a) bottle(x)—>liftable(x)
pushable(a) liftable(a)

pushable(a) A liftable(a)

The subtree relation is reflexive; that is, any tree is a subtree of itself. As in
the last example, a subtree can be smaller than the supertree. In such circum¬

stances, it is a strict subtree.

Definition 33 (Strict subtree) : IIi is a strict subtree of n2,
written ITi C II2 iff IIi C n2 and ITi n2

7.4 Properties of Subtrees

If III is a subtree of II2 then the depth of IIi must be less than or equal to that of

n2. Similarly, the weight of III is less than or equal to that of n2. Additionally,
formulae which occur in III must also occur at least as frequently in n2. The
subtree relation also preserves the structure of proofs; wffs appear in the same

order in IIi as in IT2 and branches that appear in IIi also appear in II2. The
subtree relation is therefore a monotonicity property on the depth of formulae

trees, their weight, the formulae occurrences, the ordering of formulae and the
branches.

Theorem 63 (Monotonicity) : If nx C n2 then

1. |nx| < |n2|
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*■ Pill < ||n2||
3. for any wff<p, M[<p, Hi) < A/(v?,n2)

4- if a. is below f3 in ITi then a is below /3 in Il2

5. if b is a branch of IIi then b is also a branch of II2

Proof: All five properties can be proven by induction on the depth
of III. The base and step cases follow immediately from the defini¬
tions. Note that parts 1, 2 and 4 are simple corollaries of parts 5, 3
and 5 respectively. □

The subtree relation is a weak partial order on trees, being transitive, anti¬

symmetric, and reflexive.

Theorem 64 (Weak partial order) :

1. IIi Q n2 and n2 C II3 implies ITi Q II3

2. Ill E n2 and II2 C III implies ITi = II2

s. nicni

Proof: All these properties can be proven by induction on the depth
of IIi. The base and step cases follow immediately from the defini¬
tions. □

The strict subtree relation is a strict monotonicity property. That is, if
IIi C n2 then the depth of IIi is strictly less than that of II2, the weight of IIi is

strictly less than that of II2, at least one formulae must occur less frequently in

IIi than in IT2, and at least one branch occurs in II2 that does not occur in III.

Theorem 65 (Strict monotonicity) : If IIi C II2 then

1. |iii| < |n2|
*• piii < pin
3. there exists a wff, <p for which N{(p,Ui) < .A/(<£>,II2)
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4. there exists a branch, b of Hi which is not a branch ofH\

Proof: From Definition 33, the root wff, a of n2 does not occur in nx.
Hence |XX11 < 1+ |n21, 11XTi11 < 1 —(— 11H211, and .V (a, nx) 1-t- .A/ (o:, n2).
Finally, the longest branch of n2 cannot be a branch of Hi since Hi
has strictly less depth than n2. □

The strict subtree relation is a strict partial order, being transitive and ir-
reflexive.

Theorem 66 (Strict partial order) :

1. ni c n2 and n2 c n3 implies nx c n3

2. -(nitini)

Proof: From Definition 33 and Theorem 64, Hi C n3. By consid¬

ering |Hx| and |H3|, nx 7^ n3. Thus nx C n3. From Definition 33,

-i(nx IZ nx) immediately follows. □

7.5 Tree Subsumption

To describe the relationship between ground and abstract proof trees, we have

argued for a monotonicity property on the structure of trees. Although the
subtree relation is such a monotonicity property, it is too strong to describe

many of the relationships that exist between the structure of ground and abstract

proof trees. Often, a ground proof tree can be obtained by adding wffs (or, more
strictly, trees) anywhere to an "unabstraction" of the abstract proof tree. With
the subtree relation, wffs (or trees) can only be added beneath the root formula
of the subtree. We will therefore define a new monotonicity property on trees,

called tree subsumption, that is weaker than the subtree relation but that is

closely related.

The essential idea is that the abstract proof tree, n2 can be obtained by delet¬

ing formula occurrences from anywhere in the abstraction of the ground proof
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tree, /(IIi). Or, equivalently, the ground proof tree can be obtained by adding
formula occurrences to a tree that maps onto the abstract proof tree. In such

circumstance, we will say that II2 subsumes /(Hi), or in symbols n2 C /(ITi).
Formally:

Definition 34 (Tree subsumption) : ITx C II2 iff

By distinct, we mean that if is a subtree of T^- then i — j. There is a
close similarity between tree subsumption and the subtree relation, reflected in
a similarity between their recursive definitions. There are, however, two main
differences between the two relations. With tree subsumption, wffs anywhere
in the subsuming tree can be skipped, and the ordering of subtrees is ignored.
With the subtree relation, only wffs in the supertree beneath the subtree are

skipped, and the ordering of the subtrees is fixed.

A slightly more general notion of tree subsumption is where we demand not
that all the wffs in one tree appear in the other tree but that all the wffs in one

tree subsume in the logical sense wffs in the other; this generalisation is needed
to capture the relationship between ground and abstract proofs that occurs with
Plaisted's abstractions [Pla8l].

Tree subsumption seems to be a very common relationship between the struc¬

ture of abstract and ground proof trees. For example, the abstract proof in
Section 2.5 subsumes the abstraction of the ground proof given earlier in that
section. As a second example, consider the predicate abstraction that maps both

"liftable(x)" and "pushable(x)n onto "movable(x)" but leaves all other predicates
unchanged. And consider the following ground proof:

bottle(a) bottle(x)—+pushable(x) bottle(a) bottle(x)—>liftable(x)

• IIi — <p and <p occurs in IT2;

and <p is the root formula of a subtree, T of II2 and for every i,
1 < i < n there exists a strict and distinct subtree of T, TJ- such
that r,- C rj.

pushable(a) liftable{a)
pushable(a) A liftable(a)
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The abstraction of this proof is subsumed by the following abstract proof:

bottle(a) bottle(x)—>movable(x)
movable(a)

movable{a) A movable(a)

Note that this abstract proof is not a subtree of the abstraction of the ground

proof.

7.6 Properties of Tree Subsumption

If IIi subsumes n2 then IIi can be built by chopping wffs out of II2. The depth
of Ili must therefore be less than or equal to that of IT2 - Similarly, the weight
of III must be less than or equal to that of II2. Additionally, formulae which
occur in IIx must also occur at least as frequently in n2. Tree subsumption
also preserves the structure of proofs. Wffs appear in the same order in III as

in n2 and branches that appear in ITi also appear (possibly containing extra

formulae) in n2; that is, every branch of IIi is contained in a branch of II2. Tree
subsumption is therefore a monotonicity property on the depth of formulae

trees, their weight, the formulae occurrences, the ordering of formulae and the
branches.

Theorem 67 (Monotonicity) : If Ili C n2 then

i- |nx| < |n21

l|n2|| < ||n21|

3. for any wfftp, >/(^,IIi) < N{(p, n2)

4- if a is below f3 in nx then a is below (3 in n2

5. if bi is a branch of Hi then there exists a branch b2 of H2 which
contains b\.
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Proof:

1. This is a corollary of the monotonicity property on branches.
Alternatively we can use induction on the depth of ITi.

For the base case, let nx = p. |ITi| = 1. By Definition 34,
there exists a subtree of n2 with <p as root formula . Therefore

III21 > 1. Hence |Hi| < |H21.
For the step case, assume it is true for all trees of depth m.

Consider a tree, Hi = ri'^r" of depth m+ 1. At least one of the
subtrees, T,- must be of depth m. That is, |Hx| = |I\| + 1. By
Definition 34, there exists a strict and distinct subtree of n2, Tj-
such that r,- C rj-. As is a strict subtree of n2, |rj-| + 1 < |H2|.
From the induction hypothesis, |r,| < |rj-|. Hence, |r,| + 1 <

|n2|. Thus, |Hi| < |n2|.

2. This is a corollary of the monotonicity property on formulae
occurrences. Alternatively we can use induction on the depth
of ni.

For the base case, let nx = p. ||Hx|| = 1. By Definition 34,
there exists a subtree of n2 with tp as root formula . Therefore

||H21| > 1. Hence ||Hx|| < ||H2|f.
For the step case, assume it is true for all trees up to depth
m. Consider a tree, Hi = r''" r" of depth m + 1. Now ||ITx|| =
1 + E£=i ||r,-||. By Definition 34, for every i, 1 < i < n, there
exists a strict and distinct subtree of n2, TJ such that T,- C TJ-.
As the subtrees are strict and distinct, 1 + 2"=i ||r)|| < ||H21|.
But by the induction hypothesis, ||r,-|| < ||r|-||. Hence, 1 +

E,n=1 ||r,|| < ||n2||. That is, pill < ||n2||.

3. We only need consider wffs in Hi. The proof uses induction on

the depth of nx.

For the base case, let nx = <p. N(<p,Hi) — 1. By Definition
34, there exists a subtree of n2 with p as root formula . Thus,

>/(^,n2) > 1. Therefore >/(9?,ni) < ^/(^,n2).
For the step case, assume it is true for all trees up to depth
m. Consider a tree, nx of depth m + 1. Consider any wff, <p in
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III. Consider the lowest occurrence of <p. Let this be the root

formula of the subtree, ri,^r" . .A/(<£>,IIi) = 1 + .A/(<£>, r,).
By Definition 34, there exists a subtree, T of IT2 with (p as

root formula , and for which for every i, there exist strict and
distinct subtrees, such that T,- C r). As the subtrees are strict
and distinct, 1 + S"=i N(p, TJ) < N(<p,Tl2) By the induction
hypothesis, M(ip,Ti) < A/(9c, TJ-). Thus, 1 + X)"=1 N(<p, T.) <
M{(p,n2). That is, >/(v5,rii) < a/n2)-

4. This is a corollary of the monotonicity property on branches.

Alternatively we can use induction on the depth of ITi.

For the base case, let IIi = (p. As there are no branches of length
more than 1, there are no wffs below <p in III. The theorem is
therefore vacuously satisfied.

For the step case, assume it is true for all trees up to depth
m. Consider a tree, IIi = ri'^ r" of depth m + 1. Consider any
wffs, a and /? for which a is below (3 in IIx. If a ^ <p then

by Definition 34 and the induction hypothesis, a is below (3 in
some subtree of II2. That is, a is below (3 in n2. II a. — p then,

by Definition 34, a is the root formula of a subtree of II2. Let /3

appear in the subtree, T,-. By Definition 34, T,- subsumes some

strict and distinct subtree of II2. Thus, (3 will appear in this
subtree of II2, and a is below (3 in II2.

5. Let Ii; be the subtree of IIi with least weight which has b\ as

a branch; if there is a choice, consider the leftmost. As ITx C II2
and TIJ is a subtree of Hi, it follows that 11^ CII2. The proof
now uses induction on the depth of n^.
For the base case, let 11^ = The only branch of 11^ is {<p).
By Definition 34, there exists a subtree of II2 with <p as root

formula . Thus, there exists a branch of IT2 which contains {<p).
For the step case, assume it is true for all trees up to depth m.

Consider a tree, = r''^r" of depth m+1. As is the subtree
of least weight that has bi as a branch, hd(bi) will be tp, and
tl[bi) will be a branch of one of the subtrees, T,-. If it is a branch
of more than one of the subtrees, we pick the leftmost. From
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Definition 34, there exists a strict subtree of 112, TJ such that
r, C rj. By the induction hypothesis, there exists some branch
of r; which contains tl(bi). If we extend this branch down to
the root of n2 then, from Definition 34, <p must also appear in
this branch before tl(bi). This branch therefore contains 6X.

□

Tree subsumption is a weaker property than the subtree relation. If Tlx is a

subtree of n2 then IT! subsumes II2. However, if nx subsumes n2 then nx need
not be a subtree of n2.

Theorem 68 : If nx □ n2 then nx C n2.

Proof: By induction on the depth of nx. Both the base and the step

cases follow trivially from Definitions 32 and 34. □

The definition of tree subsumption was constructed by weakening the subtree
relation as far as is possible without losing the important property of monotonic-

ity. Indeed, we conjecture that:

Conjecture : Tree subsumption is as weak a relation on trees as is

possible whilst still being monotonic.

There seems to be no part of the definition of tree subsumption which can be
weakened without losing monotonicity. For example, dropping the strictness

requirement on subtrees loses monotonicity on the depth, whilst dropping the
distinctness requirement loses monotonicity on the weight (but not the depth).

Tree subsumption is a preorder on trees being transitive, and reflexive. Unlike
the subtree relation, tree subsumption is not antisymmetric; this is because tree

subsumption ignores the ordering of the subtrees.

Theorem 69 (Preorder) :

i. nx c n2 and, n2 c n3 implies nx c n3
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2. nicnx

Proof:

1. By induction on the depth of ITi.

For the base case, let Tlx = p. From Definition 34, n2 (and
hence IT3) contain p. Thus IIx Q TT3.
For the step case, assume it is true for all trees, ITi up to depth
m. Consider a tree, ITj = of depth m+1. From Definition

34, p is the root formula of a subtree, T of n2 and for every t,
1 < i < n, there exists a strict and distinct subtree of T, TJ such
that T,- C rj. As n2 C TI3 and T is a subtree of II2, T C II3. Thus,
p is the root formula of a subtree, T' of II3, and for every i,
1 < % < n, there exists a strict and distinct subtree of T', T"
such that r( C T". But r< is of depth m or less. Hence, by the
induction hypothesis, T,- C T". Thus Hi C n3.

2. Trivially by induction on the depth of Hi using Definition 34.

□

7.7 Tree Isomorphism

Tree subsumption is closely related to (but weaker than) the conventional notion
of the subtree relation. It is also related to (but weaker than) the conventional
notion of tree isomorphism. Tree isomorphism is a much stronger relation
than both the subtree relation and tree subsumption. Two trees are isomorphic
iff they are equal up to reordering of their subtrees.

Definition 35 (Tree isomorphism) : Hi ~ n2 iff
• nx = n2 = p, or

n1 =^^ and n, = Eiir£k
p p

and for every i, 1 < i < n there exists a unique j such that
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Tree isomorphism is, however, a weaker relation than equality between trees;
trees that are equal must be isomorphic, but trees that are isomorphic need not

be equal.

Theorem 70 : If IIi = TT2 then ITi TT2.

Proof: Immediate from Definition 35. □

Sometimes an abstract proof tree will be isomorphic to the abstraction of a

ground proof tree. Consider, for example the predicate abstraction of Section 7.5
which maps "pushable(x)" onto umovable(x)n. Consider the following ground
proof:

bottle(a) bottle(x)—*pushable(x)
pushable(a) -*pushable(x)

I

The abstraction of this proof tree is isomorphic to the following abstract proof
tree:

bottle(x)—>movable(x) bottle(a)
->movable(x) movable{a)

I

Note that the abstraction of the ground proof tree does not equal the abstract

proof tree as the ordering of the subtrees is different. Note also that the abstract

proof tree subsumes the abstraction of the ground proof tree. Indeed, in the
next section, we will prove that tree isomorphism implies tree subsumption.
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7.8 Properties of Tree Isomorphism

When two trees subsume each other, they are isomorphic. And when two tress

are isomorphic, they subsume each other.

Theorem 71 ; IT^ ~ n2 iff Tlx C n2 and II2 C Hx.

Proof:

(=>) By induction on the depth of ITx. The base case is trivial.
For the step case, assume it is true for all trees, ITx up to depth m.

Consider a tree, ITx = ri'^r" of depth m + 1. Let II2 = Ty'aTn. From
definition 35, for every i there exists a unique j such that T,- ~ Ty.
By the induction hypothesis, T,- C T'-. From definition 34, IIx C n2.

By symmetry, II2 C fix.

(<S=) By induction on the depth of Tlx.
For the base case, let Tlx = <p. From Definition 34, II2 must also

be <p. Thus Tlx — II2.
For the step case, assume it is true for all trees, ITx up to depth

m. Consider a tree, Tlx = r''ct r" of depth m+ 1. Let II2 = ri'^rp. By
Theorem 67, |II2| < m + 1 and |II2| > m + 1. That is, |II2| = m + 1.
Assume a ^ (3. From Definition 34, there exists some strict subtree,

rt- of ITx such that n2 C T,-. Thus |II2| < |r,|. But, |r,| < m. Hence
|n2| < m. This contradicts |H21 = m + 1. Therefore a must equal /?.

As nx C n2, for every t, 1 < i < n there exists a strict and distinct
subtree of n2 such that T,- subsumes it. Define g[i) so that this is
a subtree of Now r.-Cr^. By Theorem 67, ||r,|| < ||r^tj||.
Define the equivalence class [i] = {j\g(j) = Let fj, = {<7(&')|1 <
i ^ n}, and r be the number of equivalence classes, [z] with more than
one member in them. ||Hx|| = 1+£"=1 ||r,-|| and ||H21| = H-£,r=1 ||r{||.
By simple arithmetic, ||H21| > 1+Sie/i ||r(-||. Because the subtrees are

distinct, Eigjrjll >r + E,n=i ||r,-||. Thus, ||n2|| > i + r + E,n=i ||r<||.
That is, ||n2|| > r+ ||nx||. But, by Theorem 67, ||Hx|| = ||H21|. Hence,
r (the number of equivalence classes with more than one member) is
zero. Therefore for every i, there exists a unique j, namely g(i), such
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that T ,• C Ty. By symmetry, for every i, there also exists a unique j
such that rj-CTy. By the induction hypothesis, T,- ~ Ty. Thus, by
Definition 35, ITx ~II2.

□

This is a very pleasing result; it demonstrates that our definition of tree

subsumption is closely related to the conventional notion of tree isomorphism.
It also adds weight to the following claim.

Claim : Tree subsumption is a very natural relationship between the
structure of trees.

Trees that are isomorphic have the same depth, the same weight, the same

formulae occurrences, the same ordering of formulae and the same branches.

Indeed, they can only differ in the left to right ordering of their subtrees. Tree

subsumption is, we recall, a monotonicity property on the depth, the weight,
the formulae occurrences, the ordering of formulae and the branches. Similarly,
tree isomorphism is an equivalence on the depth, the weight, the formulae occur¬

rences, the ordering of formulae and the branches of trees. We conjectured that
tree subsumption is as weak a relation on trees as is possible whilst still being
monotonic. Similarly, tree isomorphism is, we conjecture, as weak a relation on

trees as is possible whilst still being an equivalence on the depth, the weight, the
formulae occurrences, the ordering of formulae and the branches.

Theorem 72 : If n1~n2 then

i. |nx| = |n2

2. HIT i

3. for any wff <p, >/(^,IIi) = M(<p, II2)

4. a is below (3 in IIj iff a is below (3 in II2

5. b is a branch of ITj iff b is a branch of II2.

Proof: By Theorem 71, IIi C II2 and IT2 C ITi. Therefore, by Theo¬
rem 67:
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1. |ITi| < |Il21 and |Il21 < |ITi|. Hence |Hi| = |H21-
2. ||ni|| < ||n2|| and j|H21| < ||ITi||- Hence ||Hi|| = ||H21|-
3. >/(ip,ni) < >/(^,n2) and N((p, n2) < >/(<£), ni). Hence >/Hi) =

n2).

4. a is below /3 in nx implies a is below /? in n2 Similarly, a. is
below /? in n2 implies a is below /? in nx.

5. 6 is a branch of nx implies 6 is a branch of n2. Similarly, b is a

branch of n2 implies b is a branch of nx.

Tree isomorphism is, in fact, an equivalence relation on trees being transitive,

symmetric and reflexive.

Theorem 73 (Equivalence relation) :

i. nx ~ n2 and n2 ~ n3 implies nx ~ n3;

s. nx ~ n2 implies n2 ~ Hx/

s. n^ni.

Proof: Immediate from Theorems 71, and 69. □

7.9 Proof preserving abstractions

We can use the concept of tree subsumption to define a very general class of

abstractions; abstractions in this class preserve the structure of proofs between
the ground and the abstract space.

Definition 36 (Pi-abstraction) : An abstraction f : Ex => E2 is
said to be a Pi-abstraction iff, for any proof, nx of <p in Ex, there
exists a proof, n2 of f(<p) in E2 with n2 C mi)-
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"P" stands for proof, and "I" for increasing. It is the number of proofs in the
abstract space and not their weight, depth, formulae occurrences or branches
that are increasing. By preserving the structure of proofs, a Pi-abstraction also

preserves provability; that is, it is a Tl-abstraction.

Theorem 74 : If f : Si =>• E2 is a PI-abstraction then it is a TI-
abstraction.

Proof: Immediate from Definitions 36 and 3. □

The reverse is not true; not all Tl-abstractions are Pi-abstractions. TI-
abstractions in which we radically alter the deductive machinery are unlikely to
be Pi-abstractions. There are, of course, many other ways for two proof trees
to be similar. However, for nearly all abstractions of which we are aware, tree

subsumption describes the relationship that exists between ground and abstract

proof trees. For example, all the substitution preserving theory abstractions
identified in Chapter 6 are Pi-abstractions. Additionally, Plaisted's abstractions

[Pla81] are a subclass of Pi-abstractions.

7.10 Mapping Back

With Pi-abstractions, there is a simple relationship between the structure of

ground and abstract proof trees. This relationship can be used to guide a theorem

prover. The intuitive idea is that of jumping between islands. The abstract

proof tree provides the major steps we need to get between. Finding a ground
proof tree consists of filling in the gaps between the wffs in the abstract proof
tree. A Pi-abstraction thereby saves us time by dividing-and-conquering the
search. To make this idea more concrete, we define the notion of an abstract

proof plan.

Definition 37 (Abstract proof plan) : If f : =>• £2 is an ab¬
straction, and n2 is a proof tree in E2 then a tree Hi is an abstract

proof plan of Jl2 'if n2C/(nx).
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Note that an abstract proof plan is not necessarily a valid proof tree since
we may need to fill in gaps to make it one. Indeed it may not even correspond
to a valid theorem as the mapping back can sometimes fail. A refinement of
an abstract proof plan is any tree that is subsumed by the abstract proof plan
but is not isomorphic to it. A refinement is a tree formed by inserting wffs (or,
more strictly, trees) into the abstract proof plan.

Definition 38 (Refinement) : If Hi is an abstract proof plan then
a tree n2 is a refinement of Hi iff Hi C n2.

By definition, a refinement is itself an abstract proof plan. A minimal
abstract proof plan is an abstract proof plan whose abstraction is isomorphic
to the abstract proof. Minimal abstract proof plans are unique (up to tree

isomorphism) iff the mapping function is 1-to-l.

Definition 39 (Minimal abstract proof plan) : If f : =>• £2
is an abstraction, and II2 is a proof in £2 then a tree TIi is aminimal
abstract proof plan of 1I2 iffH^ ~/(ITi).

To prove a ground theorem given an abstract proof, we construct minimal
abstract proof plans, and then try to refine them. How we divide our time
between these two tasks will depend on many factors: the theorem we are trying
to prove, the abstraction we are using, the theorem prover we are using for

refining abstract proof plans, etc. The following PROLOG program describes
the general outline of a mapping back procedure.

mapback(Phi.Sigma.F,AbsProof,Proof):-
plan(AbsProof,F.Plan),
refine(Plan,Sigma.Phi,F,Proof),
valid(Proof,Phi.Sigma).
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plan(AbsProof,F.Plan) builds a minimal abstract proof plan, Plan from the
abstract proof, AbsProof where F is the abstraction (that is, plan/3 builds
the islands).

refine (Plan, Sigma ,Phi ,F, Proof) refines the abstract proof plan Plan return¬

ing the tree Proof (that is, refine/4 fills in the gaps).

valid (Proof ,Phi .Sigma) checks whether Proof is a valid proof ofPhi in Sigma.

This mapping back proof procedure can even be used with abstractions which
are not Pi-abstractions. For example, it could be used with Tenenberg's re¬

stricted predicate abstraction. Note also that this procedure allows us to use

hierarchies of abstractions; we simply find the abstract proofs by another call to

mapback/5.

We have implemented such a mapping back proof procedure. The full pro¬

gram is listed in Appendix A. A simple depth-first iterative deepening resolution
theorem prover is used to refine the gaps between the steps in abstract proof

plans. For horn clause problems, the prover uses LUSH resolution [Bun83]. For
non-horn problems the input restriction is weakened to ancestor resolution; this

guarantees completeness. For reasons we explain in the next section, the theo¬
rem prover uses a sorted unification algorithm. More details about the mapping
back procedure are given in the next three sections.

We have tested our program with a variety of abstractions and abstract

proofs. Indeed, all the examples presented in the next three sections were au¬

tomatically mapped back to ground proofs using this program. Each of the

examples is taken from the literature, and is chosen to illustrate a different as¬

pect of mapping back. The fact that we can capture these very different exam¬

ples of mapping back within the one uniform framework reinforces our previous
claim that tree subsumption is a very natural relationship between the structure

of ground and abstract proof trees.
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7.11 An Example

This example is taken from [Ten87]. The axioms of this example describe the
properties of various containers. Tenenberg proposes a predicate abstraction
which collapses together objects with similar properties. For example, "box(x)",
"bottle(x)" and uglass(x)n all map onto the generic "container(x)n. We shall
strengthen Tenenberg's abstraction so that similar properties are also collapsed
together. For example, "liftable[x)" and "pushable(x)n will both map onto

Kmovable(x)n.

Consider the ground theorem that a bottle, a is both liftable and pushable.
That is, "liftable(a) A pushable(a)". This theorem maps onto the abstract the¬
orem that a container, a is movable. Strictly speaking the goal is "movable(a) A

movable(a)"". As each of the abstract conjuncts is the same, both halves of
the ground proof - that is the proof that "liftable{a)" and the proof that
Upushable(a)" - can be found by mapping back in different ways the following
abstract proof tree.

container (a) container (x)^movable(x)
movable{a)

Up to tree isomorphism, this abstract proof tree gives 3x3x2x2 (or 36)
minimal abstract proof plans. Unfortunately, many of these minimal abstract

proof plans cannot be mapped back successfully to a proof of either "h'/ta6/e(a)"
or "pushable(a)". Therefore, rather than construct all these minimal abstract
proof plans explicitly, we construct one schema which represents all of them up

to tree isomorphism. This construction uses second order sorted meta-variables.

These meta-variables allow us to represent any wff in the ground language that
abstracts onto a given abstract wff and thereby to delay the choice in how to
unabstract a wff. For example, UX : container (a)", where X is a second or¬

der sorted meta-variable, represents a predicate with an unknown name of sort
container and with an argument a. That is, a predicate which abstracts onto
"container (a)". The sorts of the meta-language are the equivalence classes of
objects which are mapped together by the abstraction. Thus, the container
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sort ranges over the predicate names box, bottle, and glass. Our mapping back

procedure constructs the following schema for the minimal abstract proof plans.

Y : container(a) Z \ container(x) —> W : movable{x)
X : movable(a)

Up to tree isomorphism, this represents all the possible minimal abstract
proof plans. This schema can be refined in two different ways to give proofs of

uliftable(a)n and of "pushable(a)n. Putting these subproofs together with a final
and introduction, we get the following ground proof tree.

bottle(a) bottle(x)—ypushable(x) bottle(a) bottle[x)-J>liftable{x)
pushable(a) liftable(a)

pushable(a) A liftable(a)

7.12 Middle-out reasoning

Our mapping back procedure allows us to do a type of middle-out reasoning

[BSH90]. Instead of starting at the axioms and applying the inference rules until
we reach some goal (forward reasoning), or starting at the goal and generating
subgoals until we reach the axioms (backward reasoning), we identify some key
steps in the proof and fill in the gaps between them. We thereby construct the

proof from the middle-out. Middle-out reasoning introduces two major problems
not present in forward or backward reasoning: identifying the key steps in the

proof and controlling a possibly complicated middle-out search. Abstract proofs
are one solution to the first problem and meta-variables are a partial solution
to the second problem. Meta-variables allow us to delay making a choice as

to which of the many wffs in the ground language abstract onto a given wff in
the abstract language. Inference in other branches of the ground proof tree and
consultation of the database of ground axioms will allow us to make a more

informed choice at a later stage.

In Chapter 6, we identified five main classes of theory abstractions. Each
class will require the use of a different type of meta-variables and a different
unification algorithm. We will briefly consider each class in turn.
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1. mappings on predicates:

• predicate abstractions will, as we have seen, require second order
meta-variables with a (flat) sorted unification algorithm. For exam¬
ple, if "rat(a)" and uirrat(a)" both map onto "raum(a)" then we can

represent the unabstraction of "num(a)n by "1(a)" where "X" is
a second order sorted meta-variable which ranges over {rat, irrat...}.
The sorts of the meta-language are the equivalence classes of predicate
names that abstract together.

• propositional abstractions will require first order meta-variables with
an unsorted unification algorithm. For example, the unabstraction of
the propositional sentence letter, "num" is "num(X)" where "X" is
a first order unsorted meta-variable.

• ABSTRIPS abstractions, where we map whole predicates onto T
or _L, will not in general require any meta-variables as the minimal
abstract proof plan is usually unique up to tree isomorphism. We

usually know from the context what atomic formula mapped onto T
or _L.

2. mappings on the terms:

• domain abstractions, where we map constants together, will require
first-order meta-variables with a (flat) sorted unification algorithm.
For example, if 1,3,5,... map onto odd then we can represent the
unabstraction of num(odd) by num{X) where X is a first-order meta¬
variable which ranges over {1,3, 5,...}.

• function abstractions can either reduce the arity of functions or

map their names together; the second subclass will require second-
order meta-variables with a (flat) sorted unification algorithm, whilst
the first will merely need first-order meta-variables with unsorted uni¬
fication.

These results are summarised in the following table:
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abstraction meta-variables unification
ABSTRIPS

propositional
domain

predicate
function

none n/a
first-order unsorted
first-order sorted

second-order sorted
first-order unsorted

second-order sorted

This table might seem to suggest a "missing abstraction". That is, the class
of abstraction that require second-order unsorted meta-variables. Actually, this
class is just a special case of predicate abstractions where all the predicate names

in the ground space map onto the same predicate name in the abstract space.
Note that the sorts are "flat" since there is no subsort structure. This sort¬

ing of meta-variables is very important as some of our search can be compiled
into the unification algorithm. Indeed, in Section 7.15, we will propose a trick

whereby all search in mapping back can be moved into the unification algorithm.

Although monadic second-order unification is decidable [HO80], polyadic second-
order unification has recently been shown to undecidable [Gol79]. This is not
a problem for our mapping back procedure since it needs only a very restricted
and decidable form of second-order matching.

Some recent work on inductive theorem proving has also suggested a similar
use of meta-variables for middle-out reasoning [BSH90]. In this work, certain
eureka steps at the beginning of the proof (for example, the choice of induction
scheme or existential witness) can be postponed till later on in the proof. We
complete the middle of the proof first and then see what steps we should have
made at the beginning of the proof for the middle to go through; our choice is
more informed and thus more likely to succeed. To do this, meta-variables are

used to "simulate" with as little commitment as possible the opening steps of
the proof. For example, we can simulate an existential introduction by replacing
an existentially quantified variable with a meta-variable. The meta-variables
become instantiated by unification later on in such a way that the beginning
of the proof is guaranteed to go through. This is very similar to the use of
meta-variables for representing abstract proof plan schemata.
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7.13 A Second Example

Our next example illustrates that, even if an abstraction maps an undecidable

theory onto a decidable one, it may not reduce search. This failure does, however,
suggest ways in which abstraction can reduce search. The example uses the
function abstraction described in [Pla8l]; this abstraction maps every term onto
its top-level function symbol, leaving variables and predicate names unchanged.
By deleting all the arguments to function symbols, this maps an undecidable

ground space onto a decidable abstract space whose Herbrand universe is just a

(finite) set of constants. This abstraction is also a Pi-abstraction. The axioms
for the problem are also taken from [Pla8l]:

in(john, boy)
in(x, boy)—>in(x, human)
hp(x, m, y)^in(skl(n, m, z, y, x),y) V hp(x, t(m, n), z)
hp(x,m, y) A hp(skl(n, m, z, y, x),n, z)—*hp(x, t(m, n),z)
in(x, hand)—*hp(x, 5, /ingers)
in(x, human) —>hp(x, 2, arm)
in(x, arm)—*hp(x, 1, hand)

The predicate and function symbols are interpreted as follows: in(x, y) means
x is a member of type y, hp(x,m,y) means x has m parts of type y, t(m,n)
means m times n, and skl(n,m, z,y, x) is a skolem function representing an

object, w which is a member of type y but which does not have n parts of

type z. The theorem we wish to prove is the statement that John has two

hands; that is, "hp(john,t(2,1), hand)". This maps onto the abstract theorem,
"hp(john,t,hand)". Plaisted gives an abstract proof of this theorem using an¬

cestor resolution which maps back immediately to a ground proof (page 80 of
[Pla8l]). That is, one of the minimal abstract proof plans is itself a valid proof.
Or equivalently, the abstraction of the ground proof is isomorphic to the abstract

proof.

Although the abstract space is decidable, finding this abstract proof and

mapping it back onto a ground proof is not much easier than finding the ground

proof without abstraction. Indeed, the branching rate of the abstract search
space is actually larger than that of the ground space; any resolution possible in
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the ground space is also possible in the abstract. Additionally, we would have to
search in the abstract space to the same depth as in the ground space. Thus the
size of the abstract search space is actually larger than the size of the ground
search space. The only saving is that the cost of unification is cheaper in the
abstract space than the ground space.

7.14 Reducing Search

Abstraction can, of course, considerably reduce search. It can decrease both
the branching rate and the depth to which we have to search. The depth of
search is reduced if we find abstract proofs that need to be refined. That is,
if the minimal abstract proof plans are not valid proofs. The branching rate is
reduced by choosing an abstraction that maps a ground axiom onto an abstract
axiom which is logically redundant. An axiom is redundant if, for example,
it logically follows from the other axioms, or is a tautology (a wff which is
theorem of propositional logic). Deleting redundant axioms will, by definition,
not affect what can be proved. However, the structure of proofs might not be

preserved. This problem was first noticed by Plaisted [Pla8l] as his mapping
back strategies were incomplete if tautologies were deleted; this problem occurs

with many other Pi-abstractions.

We can always transform an abstract proof containing redundant axioms
to an abstract proof which does not contain redundant axioms. However, this
transformation can change the shape of the proof tree so radically that it cannot
be used for mapping back. The pathological example is when we are trying to

prove an axiom of the ground space which maps onto a redundant axiom in the
abstract space. We must keep this redundant axiom in the abstract space if we
are to be sure of finding the one step abstract proof than maps back to a ground

proof.
W>

One solution is^keep some but not all of the redundant axioms. Consider,
for example, a clausal language. We will say that a clause is a simple tautology
iff it is of the form a V -ict. The following theorem shows that axioms which

map onto simple tautologies can be deleted without affecting the completeness
of mapping back.
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Definition 40 (Natural) : A proofH is a natural proof iff it con¬
tains no axioms which are simple tautologies.

Theorem 75 : If ITi is a LUSH resolution proof of <p, then there
exists a natural resolution proof Hi of ip with IT2 C ITi.

Proof: By induction on the number of resolutions against axioms
that are simple tautologies. Let IT have m such resolutions. We show
how to construct a proof which has fewer than m such resolutions.
Consider the highest such resolution in Tlx. Let this be a resolution
between /? and the tautological axiom a V -ia with the resolvent /?'.
/?' will simply be some reordering and substitution instance of f3. To
construct a proof with fewer than m such resolutions, we perform the

following transformation:

By repeatedly performing this transformation, we construct a

proof tree, IT2 which contains no resolutions against axioms that are

simple tautologies. Since n2 is constructed from TTi simply by re¬

moving some of the wffs in the proof tree, IT2 C ITi. □

Note that the natural proof is smaller than the original proof. We can there¬
fore refine an abstract proof plan corresponding to a natural abstract proof sim¬

ply by adding wffs to it. Deleting simple tautologies, therefore, does not affect
the completeness of mapping back. A slight variant of this solution is to show
that we can remove remove most of the inferences involving tautological axioms.
For instance, we can remove any resolution against a literal which has both a

positive and a negative occurrence.

Ti
=> PiP' 1 r2

r2
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7.15 A Third Example

This example illustrates both reductions in the branching rate and the depth
of the abstract search space. It also demonstrates the use of hierarchies of
abstractions. We use the axiomatisation of the Tower of Hanoi with four disks

given in [Pla80]. The predicate, "d(x,y,z,w,s)n represents the fact that in
situation s, the smallest disk is on peg x, the second smallest disk is on peg y,

the third smallest on z, and the largest on w. Plaisted proposed a sequence of

propositional abstractions which discard the situation argument, s and (in order
of size) the position of each of the disks. Each abstraction throws away one more

argument to the predicate, ud(x, y,z,w,s)n than the last. These abstractions are

all Pi-abstractions. Some of the axioms map onto duplicates, and others map

onto simple tautologies. In the ground space, there are 25 axioms. If we remove

duplicates and simple tautologies, the abstract spaces have 25, 20, 13, and 7
axioms respectively.

We start in situation so with all the disks on peg 1; that is, with "d(1,1,1,1, so)".
We want to prove that we can move all the disks onto peg 2; that is, we can get

to a state, s in which "d(2,2,2,2, s)". We will ignore the mapping back from
the weakest abstract space (in which we consider all the disks but ignore the
situation argument) and the ground space as this mapping back is immediate,
requiring no new proof steps, and therefore rather uninteresting. The other ab¬
stract proofs halve in size with each successive abstraction. In the most abstract

proof, we just move the largest disk from peg 1 to peg 2:

d(l) d(l)->d(2)
d{2)

To refine this proof, we need to add two resolutions, which store the second

largest disk on peg 3 whilst we move the largest disk. Both the extra steps

represent deductions which abstract onto loops. In general, we refine a proof
by adding in deductions which map onto loops. The issue of loops and axioms
which map onto tautologies are intimately related. The minimal abstract proof
plan schema which represents all possible minimal abstract proof plans is:
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d(X,l) d(Y,l)->d(Z,2)
d(W,2)

This can be refined to a proof in the next strongest level of abstraction:

d(l, 1) <f(l, i)—>d(3, x)
d{3,1) d(3,lj—><i(3,2)
d{3, 2) d(3,x)—*d(2, x)
"5(272)

X has been unified with 1 or 3, Y" and Z with 3 and and W with 3 or 2. The
choices depend on the exact strategy we use to refine the minimal abstract proof

plan schema.

An interesting extension of our use of meta-variables is to let meta-variables
in the abstract proof plan stand for arbitrary parts of the proof. We can then

represent all possible refinements of an abstract proof plan with just one tree.

Consider, as an example, the following schema:

U

[d(X,l)] d(Y,l)^d(Z,2)
V

[d(W, 2)]

where is a meta-variable representing a tree that has d(X, 1) as root
formula , and [4^,2)] a meta_variable representing a tree that has d(W, 2) as
root formula . This schema represents all possible refinements of the original
minimal abstract proof plans. Refining such a schema simply becomes a search
for a suitable instantiation for the meta-variables. In this case, U needs to unify
with the tree:

d(l,l) d(l,a:)—>d(3,x)
~d[371)

V with the tree:

d(3,2) d(3,x)—>d{2, x)
WJ)
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X with 3, Y with 3, Z with 3, and W with 2. All the work in mapping back

(that is building the proof plans and refining them) can, by this trick, be shifted
to the meta-variables.

The proof at the second strongest level of abstraction can itself be mapped
back a level to a proof which moves just the three largest disks. Again, the
refinements we add are deductions in the ground space which map onto loops
in the abstract space. In mapping proofs back, we can exploit this fact by only

searching for refinements that map onto loops.

<*(1,1,1) <*(l,x, J/)-><*(2, x, y)
<*(2,1,1) 4(2,1, x)—>4(2,3, x)
<*(2,3,1) 4(2,x,y)->4(3,x,y)
<*(3,3,1) 4(3,3,l)->4(3,3,2)
<*(3,3,2) 4(3, x, y)—>4(1, x, y)
<*(1,3,2) 4(1,3,x)—>4(1,2,x)
<*(1,2,2) d{l,x,y)^d(2,x,y)
<*(2,2,2)

Finally, we can map this abstract proof back a level to a proof of depth 16
which moves all four disks in the appropriate way.

d(1,1,1,1) 4(1, x y,z)->4(3,x,y, z)
<*(3,1,1,1) 4(3,1 x,y)-»4(3,2,x,y)
<*(3,2,1,1) 4(3, x y, 2)—>4(2, x, y, z)
<*(2,2,1,1) 4(2,2 1, x)—>4(2,2,3, x)
<*(2,2,3,1) 4(2,i y,z)-+d(l,x,y,z)
<*(1,2,3,1) 4(1,2 x, y)->4(1, 3, x, y)
<*(1,3,3,1) 4(1, i y, ^)—>4(3, x, y, z)
4(3,3,3,1) 4(3,3 3,1)—+4(3, 3,3,2)
<*(3,3,3,2) 4(3, x y, 2)—>4(2, x, y, z)
<*(2,3,3,2) 4(2,3 x,y)->4(2,l,x,y)
<*(2,1,3,2) 4(2, x y,z)-^d(l,x,y,z)
<*(1,1,3,2) 4(1,1 3, x)—+4(1,1,2, x)
4(1,1,2,2) 4(1, x y,z)~>d(3,x,y, z)
<*(3,1,2,2) 4(3,1 x,y)->4(3,2,x,y)
<*(3,2,2,2) 4(3, x y, z)->4(2, x,y, *)
<*(2,2,2,2)
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7.16 Related Work

Closest in spirit to this work is that of Plaisted [Pla81,Pla86]. He gives various
mapping back strategies for abstractions between resolution systems. Our work

generalises Plaisted even ifwe restrict ourselves just to mappings between resolu¬
tion systems. For instance, all of Plaisted's abstractions are Pi-abstractions be¬
tween resolution systems but not all Pi-abstractions between resolution systems

can be captured by Plaisted's work; the ABSTRIPS abstraction is an example
of one type of abstraction that Plaisted's framework fails to capture.

Plaisted defines a shape correspondence between ground and abstract

proof trees (page 63 of [Pla8l]) which requires that the abstract proof be of the
same depth as the ground proof. This shape correspondence, written "Hi —*j n2",
is related to but weaker than the notion of tree subsumption. Indeed, if we gen¬

eralise tree subsumption to the relation, " C *" that every wff in one tree logically
subsumes a wff in the other tree, shape correspondence implies tree subsumption.

Theorem 76 ; If Hi —►/n2 then nxC*/(n2) and |Hi| = |H21.

Proof: The fact that nx C */(n2) follows immediately from the def¬
inition of shape correspondence. The fact that the depths are also

equal is proven on page 61 of [Pla8l]. □

Tree subsumption does not, however, imply shape correspondence; if nx C n2
then ni -»/ n2 may or may not hold. Even if we add the extra and necessary

condition that the two trees have the same depth, tree subsumption still does not

imply shape correspondence. Tree subsumption is therefore more general than
Plaisted's shape correspondence. As a consequence, Plaisted can only map back
abstract proofs onto ground proofs of the same depth. The ground proofs he
constructs can be larger than the corresponding abstract proofs since an abstract
wff can map back onto two or more wffs in the ground proof, each wff having a

separate derivation. Since Plaisted must search the abstract space to the same

depth as search in the ground space, his use of abstraction will suffer similar
combinatorial explosion to search in ground space alone.
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Plaisted also tackles the problem of mapping back for his generalisation ab¬
stractions [Pla86]. He considers two strategies for mapping back. His first (algo¬
rithm A on page 369 of [Pla86]) maps an abstract proof back onto a ground proof
which has a substitution instance that is isomorphic to the abstract proof; this
abstract proof may contain loops. Plaisted's second strategy (algorithm B on

page 374 of [Pla86]) ignores the shape of the abstract proof altogether; it does,
however, make use of the instances of the input clauses used in the abstract

proof.

Tenenberg considers the problem of mapping back for his restricted predicate
abstractions. With this class of abstractions, abstract proofs always map back
but not necessarily to the theorem you are trying to prove (theorem 5.3, p. 97 of
[Ten88]). In fact, the abstract proof trees subsume the abstraction of the ground
proof trees; mapping back just consists of a bounded search through the abstract

proof plans, what Tenenberg calls the "specialisations" till a ground proof is
discovered. This search does not require any further theorem proving between
the proof steps. The ground proof can, however, be larger than the abstract

proof as several subtrees of the ground proof may map onto the same subtree
of the abstract proof. Tenenberg's mapping back procedure is incomplete since
not all ground theorems will have abstract proofs. Additionally, it only applies
to a very specialised class of abstractions.

Finally, in [GW89d] we used a propositional abstraction to determine which
definitions to unfold in a proof. However, we did not exploit most of the infor¬
mation in the structure of the abstract proof, only the sequence of definitions
that were unfolded.

7.17 Summary

We have considered how an abstract proof can be "mapped back" onto a proof
of a ground theorem. We introduced the notion of tree subsumption, a very

general relationship between the structure of ground and abstract proof trees.
Tree subsumption is a monotonicity property on the structure of proof trees.
This suggested a general purpose procedure for mapping back an abstract proof
tree onto a ground proof tree. We have used this procedure to explore how
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abstraction reduces search. The breadth of our search space is reduced by ab¬
stractions which map axioms onto duplicates and tautologies. The depth of our
search space is reduced by abstractions which map deductions in ground proofs
onto loops in abstract proofs.



Chapter 8

Conclusions

We summarise the main achievements of this thesis, and discuss its

originality. We then identify some of its limitations and suggest areas

for future research.

8.1 Achievements

The main achievement of this thesis is a general theory of abstraction. Al¬

though quite simple and elegant, this theory is capable of describing the proper¬

ties of a large number of abstractions used in the past. Our motivation, however,
is not purely descriptive; we have also explored the theory itself in some depth.
We have classified the various types of abstractions, and investigated their formal

properties. Additionally, we have described operations which can be performed
on abstractions, and relations which compare them; these operations and rela¬
tions form the beginnings of an algebra of abstractions. Finally, we have used our

theory to explore how you should actually use abstraction; we have studied how
to build abstractions automatically, and how to use abstraction to aid problem

solving. To test our ideas in this last area, we have implemented a program for

mapping abstract proofs back onto ground proofs.

163
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8.2 Originality

The theory of abstraction we have proposed is more general than any of those
proposed before. Plaisted's theory [Pla8l] is arguably the most general rival the¬
ory. However, Plaisted's theory is restricted to abstractions between refutation

systems that use resolution; our theory can describe abstractions between both

proof and refutation systems, including some abstractions between resolution
based refutation systems for which Plaisted's theory proves inadequate.

We have used our theory of abstraction as the basis for a uniform analysis of
abstractions used in the past. This has identified many new connections between
abstractions. For example, we have shown that Hobb's theory of granularity
is merely an example of one of Plaisted's domain abstractions. We have also
discovered that most abstractions fit into one of five classes; each of these classes
abstracts a different part of the syntax of the language. This classification of
abstractions into a simple taxonomy has helped us greatly in understanding
what abstraction actually is.

We have also used our theory of abstraction prescriptively. For example, it

naturally suggests methods for building abstractions and for mapping abstract

proofs back onto ground proofs. We have implemented a program to perform
such a mapping back; this is the first step towards a general purpose shell for
abstract theorem proving. Results from this implementation have fed back to

the theory, helping us to understand why abstraction works.

Finally, the theory itself has yielded some new and important results. For

example, we have discovered the pervasive existence of inconsistent abstract

spaces. It had occasionally been noticed that a particular abstract space was

inconsistent. We are the first to prove that this is an inevitable consequence of

using certain very common classes of abstraction.
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8.3 Future Work

Although our theory is quite mature and seems able to describe everything we

have demanded of it, there are many areas for future work. For example, we
would like to develop further our program for mapping back, and to use it with
new types of abstractions. As well as this experimental work, we can identify
three other major topics for future research. The first topic concerns extensions
to the theory; though the groundwork is clearly laid out, there are many areas

which could be further developed and many new areas awaiting exploration.
Section 8.4 identifies one of these new areas, the semantics of abstraction. The
second topic for future research is the computational analysis of abstraction.
Since one of the purposes of abstraction is to aid problem solving, it would be

very interesting to develop a computational model of the benefits of abstraction.
This model should complement our theoretical analysis ofmapping back. Section
8.5 describes how we might begin such a computational analysis. The third and
final topic for future research concerns how our theory relates to other areas of
AI. For example, abstraction and analogy are often closely related. Does our

theory have anything to say about analogy? And can we learn anything about
abstraction from these related areas? Section 8.6 explores some possible answers

to these questions.

As mentioned above, we will use the next three sections to speculate about
three areas for future research.

8.4 The Semantics of Abstraction

Our analysis of this theory of abstraction has been almost entirely proof the¬

oretic; this is because we want to use abstraction to help us find proofs. It

would, however, be very interesting to consider the model theory and, thus, the
semantics of abstraction. We have argued that abstractions should be meaning¬

ful, and that they should only collapse objects together that are related. Model

theory should provide us with one method for describing more precisely what
this means.
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Actually, the whole of Chapter 5 was devoted to considering the model the¬
oretic consequences of abstraction. As a formal system is inconsistent if it is
unsatisfiable (has no models), the problem of inconsistent abstract spaces is also
the problem of abstract spaces with no models. Since we have argued for con¬

sistent abstract spaces, this is perhaps not very helpful. We are more interested
in analysing the relationship between the models of the ground space and those
of the abstract space. We can, however, sketch how we might perform such an

analysis. Tenenberg [Ten88] has provided such an analysis, but only for his very
special class of restricted predicate abstractions.

For the sake of brevity, consider first order systems in which the connectives
and quantifiers are given their usual meaning. An interpretation J of a wff <p

without free variables can be defined in the usual way; that is, a triple (D, $,\&)
where V is a non-empty set of objects called the domain of the interpretation, $

assigns every ra-ary function of <p to a function from Vn to V (in particular O-ary
functions, or constants are assigned to elements of P), and ^ assigns every n-ary
predicate of <p to a function from Dn to True or False. The truth value of a wff
is determined by applying these assignments and giving the logical connectives
and quantifiers their usual meaning (eg. aA/3 is True iff a and /3 are both True).

An interpretation is a model of a wff <p if it assigns <p the truth value True.
This notion can be extended to a set of wffs (eg. the axioms of a theory) by
renaming apart variables and considering their conjunction. A wff is unsatis¬
fiable if none of its interpretations are models. We will say that I models a

formal system E iff I is a model of the axioms of E.

Given an abstraction / : Ei =>• E2 and two models, Ji and I2 of Ej and E2,
what can we say about the relationship between the models? We have the

following picture:
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Since the axioms of a formal system determine which interpretations are

models of the formal system, we can simplify matters by restricting ourselves to

A/fi-invariant abstractions.

As h and I2 give the logical connectives and quantifiers the same mean¬

ing, our abstraction should preserve the semantics of £1 and £2. Thus we will
further restrict ourselves to theory abstractions which abstract atomic wffs and
not logical structure. In Chapter 6, we identified five major classes of theory
abstractions; each class will give a different relationship between the models of
its ground and abstract spaces.

Consider, for example, the class of domain abstractions. Let / : £i => £2
be a domain abstraction between two theories with equality. Let be the

equivalence relation defining those constants which are mapped together (»e.
a ~ b iff a and b are mapped onto the same abstract constant, [a]). There
is a simple relationship between the two models Ji = and I2 =

(P2, $2, ^2) of Si and £2. For example, if Ii and I2 are the standard models of
the equality axioms:

$i(a) = $1 (b) implies ^2 ([«]) = $2([&])

This is exactly the relationship we would expect; constants which stand for
identical objects should map onto abstract constants that stand for identical
abstract objects. The other classes of theory abstractions will give other types
of relationship between their models.

Finding the link between models is not the only way we can complete the
picture. A relationship between models can induce an abstraction. We might
also have the following picture:
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For example, consider h as a model of the theory of lists and I2 as a model
of the theory of sets. I\ gives the functions append, list and nil, and the predi¬
cates member and equal their usual interpretation whilst J2 gives the functions

U, fl, set (a unary function with x G set(y) iff x — y), 0 and the predicates
G and = their usual interpretation. We can see a close similarity between the

interpretation of append and that of U, of list and that of set, nil and that of

0, member and that of G, and equal and that of =. This naturally suggests an

abstraction from the theory of lists to the theory of sets whose mapping function
abstracts member onto G, nil onto 0 etc. For example, 3x .member {x, list (nil))
would abstract onto 3x . x G set{0). This is a Tl-abstraction as it introduces new

theorems into the abstract space. For instance, U is commutative and idempo-
tent but append is neither. Note that this abstraction throws away details; the

ordering of members of a list is important but that of elements of a set is not.

8.5 The Cost of Abstraction

One of the main purposes of abstraction is to aid problem solving. It would
therefore be very interesting to consider the computational benefits of using
abstraction. The procedure for mapping back described in Chapter 7 naturally

suggests a simple computational model for calculating the benefits of using a

hierarchy of abstractions. This model considers four factors:

1. the time to abstract the problem;

2. the time spent theorem proving in the most abstract space finding an

abstract proof;

3. the time to build the abstract proof plans;

4. the time spent theorem proving whilst trying to refine these abstract proof

plans.

To compute the cost of theorem proving (items 2 and 4), we will consider
just three parameters: the branching rate b, the length of proof I and the time t

to perform one inference. We will also assume some complete search procedure
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like breadth first search. Since we must explore b + 62 + ... + b1'1 = V

nodes, we can define a cost function for the time to find a proof:

c{b,l,t) = J2bit = -rzjih1'1 ~ !)*
«=1 0 1

Although we have assumed a constant branching rate and thus a search expo¬

nential in the length of the proof, similar qualitative results would be obtained
for a variable branching rate (eg. a super-exponential search) or indeed any other
cost function provided its boundary conditions and derivatives were similarly be¬
haved. To consider the costs of inference in the different spaces, we will index

b, I, and t with the number of the level (using "0" for the ground space). For
example, t0 represents the time to perform one inference in the ground space,

whilst &2 gives the branching rate in the second level of abstraction.

We will use r„ to represent the time to prove a theorem using n levels of
abstraction. To compute this time, we introduce r(m,n), the time to prove the
theorem at the m-th level using the levels m to n. Clearly, rn = r(0, n). We can

define r(m, n) recursively on m. Because of the way we map back, the recursion
"runs backwards" from m — n to m — 0 having its base case at r(n,n). The
base case is simply the time to prove the theorem in the most abstract space;
that is, c(bn,ln,tn). The step case gives the time to prove the theorem in the
m-th space in terms of the time to abstract the wff (represented by am), the
time to prove the theorem in the m + 1-th space (that is r(m + 1, n)), the time
to build the abstract proof plan (that is, the time to unabstract the lm+i wffs of
the abstract proof, lm+ium), and the time to refine this plan.

The time to refine the abstract proof plan depends on the size of each of the

(lm+i — 1) gaps in the plan; using the method of Lagrange multipliers, we can

show that r(m,n) is minimised for any convex cost function if the abstract proof
plan has steps that need an equal amount of refining. We will therefore assume

that the size of each of the (/m+i — 1) gaps in the abstract proof plan at the
m-th level of abstraction is a constant, gm where (gm — l)(/m+i — 1) = lm — 1.
The time to refine the abstract proof plan is therefore (/m+i — 1 )c(bm, gm,tm).
Note that we assume a constant time to abstract and unabstract wffs (am and
um respectively). We also ignore mapping failures, abstract proofs which cannot
be mapped back. In this sense, our model is optimistic; it computes the best
possible savings an abstraction can provide. Thus, we define r(m,n) as follows:
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t[yI)Ti) — c(6n, /n, tn)

t(w) — clyri ~i~ t [itl "i- lj —1~ im-\-\'u/riri h" (^wi+1 mi ffmj ^m)

We can now compare the time to prove a theorem without abstraction, r0

against the time with one level of abstraction, rx:

• t0 — c(b0, Z0, t0) as required;

• rx = ao + c(6x, Zx, fx) + Zxux + (Zx — l)c(Z>o> ffo, Zo)

rx consists of essentially two competing cost functions: the cost of proving the
abstract theorem and the cost of refining the gaps. As we increase the strength
of the abstraction, Zx decreases and the cost of proving the abstract theorem

decreases; at the same time, go and the cost of refining the gaps increases. The
result is that rx is convex. At jj- = 1, rx is bigger than r0. As the strength
of the abstraction is increased rx decreases since the term in r(Z>x, Zx, Zx) drops
off exponentially. Eventually the term in r{b0,go,to)i which has been quietly
growing exponentially, takes over and rx starts to increase again. By the time
= 0, rx is again bigger than r0. The exact behaviour of rx is plotted in figure

8-1.

The various partial derivatives of rn offer interesting information about the
benefits of abstraction. In particular:

• by considering we can prove that the greatest benefits arise when the
levels are evenly spaced;

• by considering 1^, we can prove there is an optimum strength for the most
abstract space, neither too strong (when refining the abstract proof plan
is too difficult) nor too weak (when proving the abstract theorem is too

difficult);

• by considering 4^-, we can also prove that if the spacing between abstrac¬
tion levels is fixed, then there is an optimum number of abstraction levels.
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ii /i0

Figure 8—1: The time taken to prove a theorem using one level of abstraction,
rx plotted against the length of the abstract proof, lx with l0 fixed.



CHAPTER 8. CONCLUSIONS 172

Although this model may appear to be well developed mathematically, it is
still much too early to be certain of its value; this will be determined solely by the

quality of its predictions. We must therefore compare the model against empir¬
ical observation. Only then can we properly justify the simplifying assumptions
we have made. Such an analysis might, for example, suggest that we cannot

ignore (as we have done) mapping failures.

8.6 A Theory of Analogy

Abstraction is related to many other areas of AI, like analogy. Both abstraction
and analogy are general purpose heuristics used in problem solving. Although we

do not go as far as Polya in claiming that "... Analogy pervades all our thinking
..." (page 37 of [Pol45]), we would agree that analogy forms an important part
of reasoning. Since analogy and abstraction are closely related, any sufficiently

general theory of abstraction should identify the connections and the differences
between the two.

There are many competing and sometimes complex approaches to the use of

analogy in AI. Owen [Owe87], for example, proposes an approach in which:

we find a proof to a base problem which analogical matches the tar¬

get problem we wish to solve; this proof is used to construct a plan
to guide the search for a proof to the target problem.

This is very similar (dare I say, "analogous"?) to our proposal for the use of
abstraction:

we find a proof to an abstract problem which is the abstraction of
the ground problem we wish to solve; this proof is used to construct

a plan to guide the search for a proof to the ground problem.

However, there are significant differences between the two approaches. Per¬

haps the most major difference is that the target and base representations of an

analogy are more weakly connected than the ground and base representations
of an abstraction. For example, "x * y = 1" and ux/y = 1" in a base represen¬

tation might be considered analogous to both "x + y — 0" and "x — y = 0" in
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the target. Thus, an analogy connects the target and base representations by
a many-to-many relation between the two languages and not, as in abstraction,
by a many-to-one function; this many-to-many relation captures the concept of

analogy match that is central to most analogy systems.

To describe an analogy, we therefore need to give (at least) the target and the
base representations and the relation between them. As before, we can use formal

systems as a very general method for describing the different representations. A
tentative definition of analogy is therefore:

Definition 41 (Analogy) : An analogy, written f : Ex ^ E2 is
a triple consisting of the formal systems Ex, E2 and an analogy

relation, f(£>i,<£>2) between the formulae <p\ of the language of Ei
and tpz of the language of E2.

Strictly speaking the analogy relation is a meta-relation in some meta-theory
which can name wffs from both the target and base languages, so we should

perhaps use f([i£>x], |V2I) where |V2] represent the encoding in the meta¬

language of the base and target formulae, ipi and <p2- Often the languages of

Ex and E2 will be identical and the analogy relation is an equivalence relation

being reflexive, symmetrical, and transitive. The transitivity requirement is quite

strong and perhaps the first to be dropped; although ipi may be analogous to

<p2, and <p2 to <P3, a large difference can exist between <px and <p3. For example,
"x + y = 0" might be analogous to "x * y = 1", and "x * y = 1" to "xv = 1" but
we might not want "x -f y = 0" to be analogous to "x" = 1".

We can now start to see the relationship between analogy and abstraction;
the class of abstractions, ABS is a subset of the class of analogies. And one

of the major differences between analogy and abstraction is that an analogy is
a relation between formal systems whilst an abstraction is a mapping between
formal systems.

Theorem 77 : An abstraction f : Ex =>- E2 is an analogy f : Ex ^ E2

for which I{<pl,ip2) f{<Pi) = £>2-

Proof: Immediate from Definitions 2 and 41. □
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This notion of analogy, like our notion of abstraction, is very weak and more

general than many of those previously used. In particular, we have only specified
how statements in the target system are related to those in the base system. Since
we want to use analogy to guide our problem solving, we will also want to know
how the problems we can solve in one system are related to those we can solve
in the other. As with abstraction, we could further characterise analogies by the

relationships between the theorems and the proofs of the two formal systems,
and use these relationships to help map target proofs back onto base proofs.

An alternative, but in many ways equivalent definition of analogy is that
the target and base systems have a common abstraction. That is, we define an

analogy between Ei and E2 by two abstractions, g : Ei =>• E3 and h : E2 => E3.
This is equivalent to our previous definition, f: Ex ^ E2 if:

*-> g(<p\) = h{<p2)

Gaines and Shaw suggest such an approach in [GS82], although they use map¬

pings between categories and not mappings between formal systems. One pos¬

sible criticism of this approach is that the system, E3 that relates Ei to E2 may

be rather artificial and not correspond to anything meaningful.

We have suggested how we might start to construct a theory of analogy,
and how this theory might relate to our theory of abstraction. These are only
tentative proposals since many problems still remain to be solved. Perhaps one

of the largest problems is how we capture the concept of closeness of analogy; as
some analogies are better than others, we want to be able to express how good
a particular match is. This would go some way to overcoming the transitivity

problem we identified earlier.

8.7 Summary

We have developed a general theory of abstraction. This has provided a com¬

prehensive understanding of what abstraction is, and how it works. There are,

however, many ways in which this theory could be further developed.
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Appendix A

Prolog Code

consistent-abs

I
0/
/•

7. consistent-abs/2
0/
/O

°/„ This Prolog program finds a hierarchy of abstractions which are
% guaranteed to have consistent abstract spaces. It has the mode
7. consistent(+Sigma,-SetOfAbs). The user needs to supply the
% following two predicates:
0//o

% axioms(Sigma,Axioms) .

7. modes +Sigma, -Axioms
% -Sigma, +Axioms

I
7c predicates(Sigma,Names) .

7c modes +Sigma, -Names
7.
%
%

7c operator definitions for logical connectives

1 o ►d /"N 900,xfx,[<=>])
: -op( 800,xfx,[=>]).

1 o ►d 700,xfy,[&] ).
: -op( 700,xfy,[v]).
: ~op( 600, fx,[-]).

returns a list of axioms for Sigma;
returns a formal system with axioms
given by Axioms. The user can choose
any data structure they like for
Sigma that unifies with a variable.
A list of axioms is probably the
simplest

returns an ordered list of the

names of predicates in Sigma

181
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°/, consistent-abs/2 returns a hierarchy of abstractions,
°/» SetOfAbs of the ground space Sigma all of which have
% consistent abstract spaces.

consistent-abs(Sigma,SetOfAbs):-
generate(Sigma,SetOfAbs),
strongest(SetOfAbs,F),
abstract(Sigma,F,AbsSigma),
consistent(AbsSigma).

% generate/2 returns a hierarchy of abstractions of Sigma
% with the strongest abstraction propositional (and therefore
% decidable).

generate(Sigma,[prop(Abs),Abs])
generate(Depth),
generate(Sigma,Possibles.Depth),
member(Abs.Possibles).

I generate/1 returns numbers of increasing size starting at 1.

generate(1).
generate(N):-

generate(M),
N is M+l.

% generate/3 returns the set of all possible predicate abstractions
I which divide the language of Sigma into N equivalence classes.
% A predicate abstraction is represented by a list whose elements
°/« are lists of equivalence classes

generate(Sigma,PredAbs, N) : -

predicates(Sigma,Names),
setof(Abs,split(Names,N,Abs),PredAbs).

% split/3 divides a list into N ordered lists

split(List,1,[List]).
split(List,N,Ans):-

N>1,
M is N-l,
split(List,M,PartialAns),
split(PartialAns,Ans).

1 split/2 divides a list into 2 ordered lists

split(Last.Next):-
append(Front,[Split|Back].Last),
permute(Split,Permuted),
append([OneElementI Tail],[Another I Rest].Permuted),
sort([OneElement,Another],[OneElement,Another]),
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append(Front,[[OneElementI Tail],[Another IRest]I Back].Next),
sort(Next,Next),
sorted(Next).

% permute/2 returns all possible permutations of a list

permute ([], [] ) .

permute(List, [First|Permute])
select(First, List, Rest),
permute(Rest, Permute).

% select/3 removes one element from a list

select(Element, [Element I Rest], Rest),
select(Element, [Head|Tail], [Head|Rest])

select(Element, Tail, Rest).

% append/2 joins two lists together

append([],List,List).
append([HeadI Tail].List,[Head|Rest] ):-

append(Tail,List,Rest).

°/0 sorted/1 checks whether a list is a sorted list of sorted lists

sorted( [] ) .

sorted([Head I Tail]):-
sort(Head,Head),
sorted(Tail).

% strongest/2 returns the strongest abstraction in a hierarchy

strongest([Abstraction!_].Abstraction).

1 abstract/3 maps Sigma onto AbsSigma using the abstraction F

abstract(Sigma,F,AbsSigma):-
axioms(Sigma,Axioms) ,

map(F,Axioms,AbsAxioms),
axioms(AbsSigma,AbsAxioms).

% map/3 applies the mapping function to the axioms

map(_F, [],[]).
map(F,[Wff|Rest],[AbsWffIAbsRest] ):-

apply-abs(F,Wff,AbsWff),
map(prop(PredAbs).Rest.AbsRest).

1 apply-abs/3 applies the abstraction's mapping function to a wff

apply-abs(prop(Pred),forall(_X,P),Q):-
apply-abs(prop(Pred),P.Q).
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apply-absCprop(Pred),exists(_X,P), Q):-
apply-abs(prop(Pred), P.Q).

apply-abs(prop(Pred),P <=> Q.R <=> S):-
apply-abs(prop(Pred),P,R),
apply-abs(prop(Pred). Q.S).

apply-abs(prop(Pred),P => Q.R => S):-
apply-abs(prop(Pred),P,R),
apply-abs(prop(Pred),Q,S) .

apply-abs(prop(Pred),P v G),R v S) : -
apply-abs(prop(Pred),P,R),
apply-abs(prop(Pred), Q.S).

apply-abs(prop(Pred),P & Q.R & S):-
apply-abs(prop(Pred),P,R),
apply-abs(prop(Pred),Q.S) .

apply-abs(prop(Pred),-P,-Q) : -
apply-abs(prop(Pred), P.Q).

apply-abs(prop(Pred),P.Q):-
literal(P),
P=..[Name.Arg],
scan(Pred,Name.EquivClass),
construct(EquivClass.AbsName) ,

Q=AbsName.

% scan/2 searches a list of lists returning any list that
% contains the element Name

scan([EquivClass|_].Name.EquivClass) :-
member(Name,EquivClass).

scan([Front I Rest],Name.EquivClass) : -
\+(member(Name.Front)),
scan(Rest,Name.EquivClass) .

1 construct/2 is a "dirty" (alias meta-logical) predicate
% for building a name for an equivalence class. It compounds
% together the names of the individual members of the
% equivalence class.

construct(EquivClass,Name):-
ascii_list(EquivClass,Ascii),
name(Name,Ascii).

I ascii_list/2 returns a list of the ascii codes of all the

°/» names in a list

ascii_list( [] , [] ) .

ascii_list([Head|Tail],Ans):-
name(Head,AsciiList) ,

ascii_list(Tail,Rest),
append(AsciiList,Rest,Ans).

% consistent/1 checks whether AbsSigma is consistent by calling
% Otter, a fast resolution theorem prover. It prepares a file
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7. temp.in for running Otter. Output is directed to a file called
7. temp.out. Otter is rather verbose in its output; temp.out will
% contain the word PROOF iff a proof of [], or inconsistency
% is found.

consistent(AbsSigma) :-
prepare-file(AbsSigma),
unix(shell('otter < temp.in >& temp.out')).
\+unix(shell('grep PROOF temp.out > /dev/null')).

% prepare-file/1 prepares an input file, temp.in for Otter

prepare-file(AbsSigma):-
open('temp.in'.write.Stream),
write-header(Stream),
write-axioms(Stream.AbsSigma),
write-footer(Stream).
close(Stream).

% write-header/1 outputs the header of an input file for Otter.
7. It selects binary resolution, with factoring and the set of
70 support search strategy

write-header(Stream):-
write(Stream,'set(binary_res) . ') ,

nl(Stream),
write(Stream,'set(factor). ') ,

nl(Stream).nl(Stream),
write(Stream,'list(sos). '),
nl(Stream).

7. write-axioms/2 outputs the axioms of AbsSigma to Stream

write-axioms(Stream,AbsSigma):-
axiom(AbsSigma,Axioms) ,

write-list(Stream,Axioms).

7. write-list/2 outputs a list of wffs to Stream

write-list(_,[]).
write-list(Stream,[HeadlRest]):-

write-clause(Stream,Head),
write-list(Stream.Rest) .

7. write-clause/2 outputs a clause to Stream

write-clause(Stream,P & Q):-
write-clause(Stream,P) ,

write-clause(Stream,Q).
write-clause(Stream,Clause):-

\+(Clause = (_P & _Q)),
write-disjlinet(Stream,Clause) ,
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write-disjunct(Stream,P v Q) : -
write-disjunct(Stream,P),
write(Stream,' I '),
write-disjunct(Stream.Q).

write-disjunct(Stream,Literal):-
\+(Literal = (_P v _Q)),
print(Stream.Literal).

°/0 write-footer/1 outputs the footer to an input file for Otter

write-footer(Stream):-
write(Stream,'end_of_list.'),
nl(Stream),nl(Stream).

mapback/5

This Prolog program maps an abstract proof back onto a ground
proof. It has the mode, mapback(+Phi,+Sigma,+F,+AbsProof,-Proof).
The user needs to supply the following predicates:

abstraction(F,Type)
mode +F, +Type F is an abstraction of type Type;

mapback

this can be "predicate", "domain",
"operator" or "function".

horn(Sigma)
mode +Sigma Sigma is a Horn clause theory

axiom(Sigma,Axiom)
modes +Sigma, +Axiom

+Sigma, -Axiom
Axiom is an axiom of Sigma

abstract(+F,+Term,-AbsTerm)
modes +F, +Term, +AbsTerm F is either predicate, domain or

+F, +Term, -AbsTerm function. Term is a predicate name,
constant name or function name.

AbsTerm is the abstraction of Term.
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% operator definitions for logical connectives

:-op(500,yfx,[:]).
:-op(500,xf,[-] ).
:-op(300,yfx,[of]).

% mapback/5 maps an abstract proof back onto a ground proof. The
% abstract and ground proofs use LUSH resolution (with the ancestor
restriction dropped for non-Horn clause problems) . Proofs are

7. represented as lists of binary resolutions and factorings. Each
70 binary resolution is represented by the term, resolve (Phi ,Rho) .

7. Each factoring is represented by the term, factor(Phi). Formulae
% are clauses represented by lists of atomic literals. Sorts to
% terms are represented by Term:Sort. This notational trick allows
7. Prolog unification to do a limited form of sorted unification.
7o Arguments to sorted terms are represented by structures of the
7. form "Name of ArgList". For example, "p of (f of [x])" represents
7. "p(f(x))". This notational trick allows Prolog unification to
7o do a very limited form of higher order unification.

mapback(Phi,Sigma,F,AbsProof.Proof):-
plan(AbsProof,F,Plan),
refine(Plan,Sigma,Phi,F,Proof),
valid(Proof,Phi,Sigma).

7. plan/3 turns an abstract proof into a minimal abstract proof plan
7. (or more accurately, a meta-level schema for all possible plans)

plan( [] ,_F, [] ) .

plan([factor(AbsWff)|AbsProof],F,[factor(Wff)|Plan]):-
unabstract(F,AbsWff,Wff),
plan(AbsProof,F,Plan).

plan([resolve(AbsPhi,AbsRho)IAbsProof],F,[resolve(Phi,Rho)I Plan]):-
unabstract(F,AbsPhi,Phi),
unabstract(F,AbsRho,Rho),
plan(AbsProof,F,Plan).

7« unabstract/3 maps an abstract wff onto a meta-level term
% representing all of its possible unabstractions

unabstract (_,[],[]).
unabstract(F,[AbsLit|AbsRest],[Lit|Rest]):-

unabstractatom(F,AbsLit,Lit),
unabstract(F,AbsRest.Rest).

% unabstractatom/3 maps an abstract atomic literal onto a
% meta-level term representing all of its possible unabstractions

unabstractatom(F,-AbsLit,-Lit):-!,
unabstractlit(F,AbsLit,Lit) .

unabstractatom(F,AbsLit,Lit) : -

unabstractlit(F,AbsLit,Lit).
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°/0 unabstractlit/3 maps an abstract positive literal onto a
% meta-level term representing all of its possible unabstractions

unabstractlit(F,P,P of .Args):-
abstractionCF,propositional).

unabstractlit(F,Pred,_P:Sort of Args):-
abstraction(F,predicate),
Pred=..[Sort|AbsArgs] ,

unabstractargs(F,AbsArgs,Args).
unabstractlit(F,Pred,Name of Args):-

\+abstraction(F,propositional),
\+abstraction(F,predicate),
Pred=..[Name|AbsArgs],
unabstractargs(F,AbsArgs,Args).

I unabstractargs/3 maps a list of abstract arguments to a literal
% onto a list representing all of its possible unabstractions

unabstractargs(_F, [],[]).
unabstractargs(F,[Var|AbsArgs],[Var:_Sort|Args]):-

abstractionCF,function),
variable(Var),
unabstractargs(F,AbsArgs,Args).

unabstractargs(F,[Function|AbsArgs],[.Function of Arg:Sort|Args]):-
abstractionCF,function),
\+variable(Function),
Function3..[Sort|Rest],
unabstractargs(F,Rest,Arg),
unabstractargs(F,AbsArgs,Args).

unabstractargs(F,[Var|AbsArgs] ,[Var:.Sort IArgs] )
abstractionCF,domain),
variable(Var),
unabstractargs(F,AbsArgs,Args).

unabstractargs(F,[FunctionlAbsArgs],[Name of Arg:.Sort|Args]):-
abstractionCF,domain),
Function3..[Name,ArglI Rest],
unabstractargs(F,[Argl|Rest],Arg),
unabstractargs(F,AbsArgs,Args).

unabstractargs(F,[Constant IAbsArgs],[_:Constant|Args]):-
abstractionCF,domain),
constant(Constant),
unabstractargs(F,AbsArgs,Args).

unabstractargs(F,[VarIAbsArgs],[Var:.SortIArgs]):-
abstractionCF,operator),
variable(Var),
unabstractargs(F,AbsArgs,Args).

unabstractargs(F,[FunIAbsArgs],[Fun of .Arg:.Sort|Args]):-
abstractionCF,operator),
\+variable(Fun),
unabstractargs(F,AbsArgs,Args).

unabstractargs(F,[ArglI Rest],[Argl|Rest] ):-
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\+abstraction(Fpoperator),
\+abstraction(F,domain),
\+abstraction(F,function).

% variable/1 checks whether a term is a variable

variable(Var):-
var(Var).

% constant/1 checks whether a term is a constant. Any O-ary term
% which is not a variable is assumed to be a constant.

constant(Constant)
\+variable(Constant),
Constant=..[_Name].

I refine/5 tries to refine an abstract proof plan into a
I ground proof

refine(Plan,Sigma,Phi,F,Proof):-
generate(SortProof.Plan),
sort(F,Phi.SortPhi),
apply(Plan,Sigma,SortPhi,F,[SortPhi].SortProof),
desort(SortProof.Proof).

% generate/2 returns a list of uninstantiated variables that
% is at least as long as its second argument

generate(Listl,List2):-
generate(Listl),
aslong(List2,Listl).

1 generate/1 returns a list of uninstantiated variables

generate([]).
generate([_I Rest]):-

generate(Rest).

1 aslong/2 checks whether its first argument is a longer
% list than its second argument

aslong( [],_).
aslong([_|Listl],[_IList2]):-

aslong(Listl,List2).

% apply/6 tries to apply an abstract proof plan. That is, it tries
I to find instantiations for the meta-level terms representing the
% unabstractions so that the binary resolutions and factorings go
I through. The 5th argument is an accumulator of derived clauses;
% this is only used for non-Horn theories when we perform ancestor
% resolution.
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apply([],_Sigma,_Phi,_F,_SoFar,[]).
apply([resolve(Phi,Rho)|Plan],Sigma,Phi,F,SoFar,

[resolve(Phi,Rho)|Proof]):-
axiom(Sigma,UnsortRho),
sort(F,UnsortRho,SortRho),
Rho = SortRho,

binary_resolve(Phi,Rho.Resolvent),
apply(Plan.Sigma,Resolvent,F,[Resolvent|SoFar].Proof).

apply([resolve(Phi,Rho)|Plan],Sigma,Phi,F,SoFar,
[resolve(Phi,Rho)|Proof]):-
\+horn(Sigma),
\+(\+member(Rho,SoFar)),
binary_resolve(Phi,Rho.Resolvent),
apply(Plan,Sigma,Resolvent,F,[Resolvent ISoFar].Proof).

apply([factor(Phi)|Plan].Sigma,Phi,F,SoFar,[factor(Phi)|Proof]):-
factor(Phi.Factor),
apply(Plan,Sigma,Factor,F,[Factor|SoFar].Proof).

apply(Plan,Sigma,Phi,F,SoFar,[resolve(Phi,Rho)I Proof]):-
aslong(Plan,Proof),
axiom(Sigma,UnsortedRho),
sort(F.UnsortedRho,SortRho),
SortRho=Rho,

binary_resolve(Phi,Rho.Resolvent),
apply(Plan,Sigma,Resolvent,F,[Resolvent ISoFar] .Proof).

apply(Plan,Sigma,Phi,F,SoFar,[factor(Phi)IProof]):-
aslong(Plan,Proof),
factor(Phi.Factor),
apply(Plan,Sigma,Factor,F,[Factor|SoFar].Proof).

apply(Plan,Sigma,Phi,F.SoFar,[resolve(Phi,Rho)IProof]):-
\+horn(Sigma),
aslong(Plan,Proof),
member(Rho,SoFar),
binary_resolve(Phi,Rho,Resolvent),
apply(Plan,Sigma,Resolvent,F,[Resolvent|SoFar].Proof).

% binary_resolve/3 binary resolves two clauses together; we perform
I copy_term before doing this so that shared variables elsewhere in
I the proof are not instantiated. Note also that (in complementary/2)
% we call unify/2, a true unification algorithm with occurs check.

binary_resolve(Clausel,Clause2.Resolvent):-
copy_term(Clausel, [LiteralI Literals]),
copy_term(Clause2.Clause),
remove(Comp,Clause.OneOff),
complementary(Literal,Comp),
append(0ne0ff.Literals.Resolvent).

% factor/2 factors a clause; we call copy_term before doing this so
I that shared variables elsewhere in the proof are not instantiated.
% Note also that we call unify/2, a true unification algorithm with
% occurs check.
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factor(Clause,Factor):-
copy_term(Clause,[LitlI Factor]),
member(Lit2,Factor),
unify(Litl,Lit2).

% complementary/2 checks whether two literals are complementary

complementary(Litl,-Lit2):-
unify(Litl,Lit2).

complementary(-Litl,Lit2)
unify(Litl,Lit2).

% sort/3 maps a formulae onto a sorted formulae; the sorts are
% determined by the abstraction F

sort(_F,[],[]).
sort(F,[Literal|Rest],[SortLiteralISortRest]):-

sortatomic(F,Literal,SortLiteral),
sort(F,Rest.SortRest).

I sortatomic/3 maps an atomic formulae onto a sorted formulae;
% the sorts are determined by the abstraction F

sortatomic(F,-Lit,-SortLit):-!,
sortliteral(F.Lit.SortLit).

sortatomic(F,Lit.SortLit):-
sortliteral(F,Lit,SortLit).

% sortliteral/3 maps a positive literal onto a sorted literal

sortliteral(F,Wff.Pred of Args):-
abstraction(F.propositional),
Wff=..[PredlArgs].

sortliteral(F,Wff,Pred:Sort of SortArgs):-
abstraction(F,predicate).
Wff=..[PredlArgs],
abstract(F,Pred,Sort),
sortargs(F,Args,SortArgs).

sortliteral(F,Wff,Pred of SortArgs)
\+abstraction(F,propositional),
\+abstraction(F,predicate),
Wff=..[PredlArgs],
sortargs(F,Args,SortArgs).

% sortargs/3 maps a list of arguments to a literal onto a
% a list of sorted arguments

sortargs (_F, [],[]).
sortargs(F,[VarlArgs],[Var:_Sort|SortArgs] ):-

abstraction(F,domain),
variable(Var),
sortargs(F,Args,SortArgs).
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sortargs(F,[FunctionlArgs] ,[Name of Sort:_ISortArgs]):-
abstraction(F,domain),
Function3..[Name.ArglI Rest],
sortargs(F,[Argl|Rest],Sort),
sortargs(F,Args,SortArgs).

sortargs(F,[Constant IArgs] ,[Constant:Sort|SortArgs] ):-
abstraction(F,domain),
constant(Constant),
abstract(F,Constant,Sort),
sortargs(F,Args.SortArgs).

sortargs(F,[Var|Args],[Var:_SortISortArgs] ):-
abstraction(F,function),
variable(Var),
sortargs(F,Args,SortArgs).

sortargs(F,[FunctionlArgs],[Name of Arg:Sort ISortArgs]):-
abstraction(F,function),
Function3..[Name|UnsortArg],
abstract(F,Name.Sort),
sortargs(F.UnsortArg,Arg),
sortargs(F,Args,SortArgs).

sortargs(F,[Var|Args],[Var:_Sort|SortArgs]):-
abstraction(F,operator),
variable(Var),
sortargs(F,Args,SortArgs).

sortargs(F,[FunctionlArgs],[Name of Arg:_SortISortArgs]):-
abstraction(F,operator),
Function3..[Name|UnsortArg],
sortargs(F.UnsortArg,Arg),
sortargs(F,Args,SortArgs).

sortargs(_F,Args,Args):-
\+abstraction(F,domain),
\+abstraction(F,function),
\+abstraction(F,operator).

% desort/2 strips sorts off a proof

desort( [] , [] ) .

desort([resolve(SortPhi.SortRho)ISortProof],
[resolve(Phi,Rho)|Proof]):-
desortwff(SortPhi,Phi),
desortwff(SortRho.Rho),
desort(SortProof.Proof).

desort([factor(SortPhi)ISortProof],[factor(Phi)|Proof]):-
desortwff(SortPhi,Phi),
desort(SortProof.Proof).

7. desortwff/2 strips sorts off a formulae

desortwf f ([],[]).
desortwff([SortAtomlSortWff],[Atom|Wff]):-

desortatom(SortAtom,Atom),
desortwff(SortWff,Wff).



APPENDIX A. PROLOG CODE 193

% desortatom/2 strips sorts off an atomic formulae

desortatom(-SortAtom,-Atom)
desortlit(SortAtom,Atom),!.

desortatom(SortAtom,Atom)
desortlit(SortAtom.Atom).

% desortatom/2 strips sorts off a positive literal

desortlit(P:_Sort of SortX,Lit)
desortargs(SortX,X),
Lit=..[PIX].!.

desortlit(P of SortX.Lit):-
desortargs(SortX,X),
Lit=..[P|X].

% desortargs/3 strips sorts off a list of arguments to a literal

desortargs ([],[]): - !.
desortargs([Var|SortArgs],[Var|Args] ):-

variable(Var),
desortargs(SortArgs,Args),!.

desortargs([Var:_SortISortArgs],[VarIArgs]):-
variable(Var),
desortargs(SortArgs,Args),!.

desortargs([F of SortX:_SortISortArgs],[Function|Args]):-
desortargs(SortX,X),
Function3..[FIX],
desortargs(SortArgs,Args),!.

desortargs([F of SortXISortArgs],[Function|Args]):-
desortargs(SortX,X),
Function3..[FIX],
desortargs(SortArgs,Args),!.

desortargs([Constant:_Sort|SortArgs],[Constant|Args] ):-
desortargs(SortArgs,Args),!.

desortargs([Constant|SortArgs],[Constant|Args]):-
desortargs(SortArgs,Args).

% valid/2 checks whether a proof is valid

valid(Proof,Phi,Sigma):-
resolve(Phi,Sigma,[Phi].Proof).

% prove/3 finds a proof using iterative deepening search. This
°/0 is not used by mapback/5 but is usefully for finding abstract
1 proofs to map back

prove(Phi,Sigma,Proof):-
generate(Proof),
resolve(Phi,Sigma,[Phi].Proof)
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% resolve/4 finds a resolution proof. The 3rd argument is an
% accumulator used to store derived formulae for ancestor resolution.

resolve([],_Sigma,_SoFar,[] ).
resolve(Phi,Sigma,SoFar,[factor(Phi)|Proof]):-

factor(Phi.Factor),
resolve(Factor,Sigma,[Factor ISoFar].Proof).

resolve(Phi.Sigma,SoFar,[resolve(Phi,Rho)I Proof]):-
axiom(Sigma.Rho),
binary_resolve(Phi,Rho.Resolvent),
resolve(Resolvent,Sigma,[Resolvent ISoFar].Proof).

resolve(Phi,Sigma,SoFar,[resolve(Phi,Rho)|Proof]):-
\+horn(Sigma),
member(Rho.SoFar),
copy_term(Rho.NewRho),
binary_resolve(Phi.NewRho.Resolvent),
resolve(Resolvent,Sigma,[Resolvent ISoFar].Proof).

% append/3 joins two lists together

append([],List,List).
append([Head I Tail].List,[Head|Rest] ) :-

append(Tail,List,Rest) .

% member/2 checks whether an element is a member of a list

member(Head,[Headl_List] ).
member(Head,[_I List] ):-

member(Head,List).

°/0 remove/3 removes an element from a list

remove(Head,[HeadlTail].Tail).
remove(Member,[HeadlTail],[HeadlRest] ):-

remove(Member,Tail.Rest).
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Appendix B

Operators

Monkey and Bananas

at[z, xl, s) A movable(z) A empty[x2, s) —> at{monkey, x2,move(monkey, z, x2, s))
af(z, xl,s)A movable(z) A empty(x2, s) —> af(z, x2,move(monkey, z, x2, s))
ai(,z, x, s) A climbable[y, z, s) —> ai(,z, x, climb(y, z, s))
al(0, x, s) A climbable(y, z, s) —► on(y, z, climb(y, z, s))
at(box,under — bananas, s) A on[monkey,box,s) —> reachable{monkey, bananas, s)
reachable(z, x, s) —> has{z, x, reach(z, x, s))

ABSTRIPS robot operators

type(b, object) A 3r.inroom(6, r) A inroom(robot,r)—+nextto(robot, b)
type{d, door) A 3rl, r2.inroom(robot, r 1) A connects{d, r\,r2)—+nextto(robot, d)
Br.inroom(robot, r) A locinroom{x, y, r)-+at(robot, x, y)
type(c, object) A pushable{b) A nextto[robot,b) A 3r.mroom(&, r)A

inroom(c, r) A inroom(robot, r)—>nextto(b, c)
pushable(b) A type(d,door) A nextto{robot,b) A 3rl, r2.inroom{robot, rl)A

inroom(£>,rl) A connects(d,rl,r2)-+nextto(b,d)
pushable{b) A nextto{robot, b) A 3r.t'nroom(ro&ol, r) A inroom(b, r)A

locinroom{x, y, r)—*at(b, x, y)
type(d, door) A type(rl, room) A status(d, open) A 3r2.inroom(ro6oi, r2)A

connects(d, r1, r2)—+inroom(robot, rl)
pushable[b) A type(d, door) A type{rl, room) A status(d, open)A

nextto[b,d) A nextto[robot,b) A 3r2.inroom(6, r2) A inroom(robot,r2)A
connects(d, rl, r2)-^inroom(b, rl)

type(d, door) A status(d, closed) A nextto[robot, d)-+status{d, open)
type(d, door) A status(d, open) A nextto{robot, d)^status(d, closed)
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