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Abstract 
 

This thesis describes the development of a system of Data-Oriented Generation 

(DOG) wherein noun-phrases are produced as descriptions of simple visual stimuli. 

This is work towards a broader goal of developing a psycholinguistically realistic 

Data-Oriented theory of Sentence Generation. Technologically, this is timely because, 

after sixteen years of research into Data-Oriented Parsing (DOP; the formalism was 

first proposed by Scha (1990), first implemented by Bod (1992) and has been further 

developed , for example, by Bod, (1998, 2003, 2006b), Bod, Bonnema and Scha 

(1996), Bod and Kaplan (1998) Goodman (2003), Hoogweg (2000), no-one has yet 

produced a system for Data-Oriented Generation. 

 Rather than use a logic-like formalism to encode meaning, the model of 

generation proposed operates by directly coupling linguistic exemplars with 

exemplars in other modalities – vision, in the present case, though, it is hoped that the 

model could be extended into other meaning-providing modalities.  
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Chapter 1 

Introduction1 
This thesis describes the development of a system of Data-Oriented 

Generation (DOG) wherein noun-phrases are produced as descriptions of simple 

visual stimuli. This is work towards a broader goal of developing a 

psycholinguistically realistic Data-Oriented theory of Sentence Generation. 

Technologically, this is timely because, after sixteen years of research into Data-

Oriented Parsing (DOP; the formalism was first proposed by Scha (1990), first 

implemented by Bod (1992) and has been further developed , for example, by Bod, 

(1998, 2003, 2006b), Bod, Bonnema and Scha (1996), Bod and Kaplan (1998) 

Goodman (2003), Hoogweg (2000), no-one has yet produced a system for Data-

Oriented Generation. However, the emphasis of the proposed research is cognitive 

rather than technological, as most DOP research to date has been. The particular 

model under scrutiny, Unmediated Data-Oriented Generation (UDOG), is inspired by 

the question; “Can one have a perceptually grounded linguistic semantics without a 

‘Language of Thought’ (LOT) to intervene between perception and utterance?” Or, 

put more broadly, “What is the input to sentence generation?” As such, the system 

proposed (First mooted in Cochran 2005) operates by means of direct connections 

between concrete exemplars of past experience in visual and linguistic modalities. 

 

Typically, while psycholinguists studying language production have assumed 

the existence of pre-linguistic messages providing the input for language production, 

philosophers have had grave misgivings about this. Typical of this latter trend is 

                                                 
1
 Much of the material in this introduction is adapted from Cochran (2004), a paper submitted for the 

MSc course, Language Production. Please note that although this paper was awarded a mark, I dropped 

out of the degree programme towards which this mark would have counted, prior to completion; 

therefore, this material has not counted, and will not ever count, towards the assessment of any degree 

except in its present form as part of the present submission. 
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Simon Blackburn’s argument (1984, p40-67) that the LOT Hypothesis is a “dog-

legged theory”, insofar as our ability to understand and perform operations with pre-

linguistic messages stands in want of explanation in precisely the same way as our 

ability to understand expressions in language, thus inviting an infinite regress. The 

argument at the heart of all this is Wittgenstein’s (1969) example of understanding the 

meaning of the word “red”, in which it is asserted that, if one supposes the mind to 

contain an image of “red” to provide the word “red” with meaning, it is functionally 

equivalent to having an image of “red” outside the mind to correlate word to meaning, 

say, a labelled card with a red patch painted on it. 

 

When I hear the order "fetch me [a red flower from that meadow]." I draw my 

finger across the chart from the word "red" to a certain square, and I go and 

look for a flower which has the same colour as the square. … [But] consider 

the order "imagine a red patch". You are not tempted in this case to think that 

before obeying you must have imagined a red patch to serve you as a pattern 

for the red patch which you were ordered to imagine.  

Wittgenstein 1969, p3. 

 

In contrast, psycholinguists have, without much discussion, tended to favour 

the assumption of pre-linguistic messages as a way of abstracting their desired object 

of investigation, the complex of systems by which we select the words, inflections, 

syntactic structures, phonemes and suchlike with which our desired meaning is to be 

expressed away from a matter which is murkier, more daunting, and less accessible to 

experimental research, that of how, in the first place, we decide which meanings we 

want to express. Levelt (1989), for instance, divides his “blueprint for the speaker” 

(p.9) first of all into the “Conceptualizer” and the “Formulator”. However, it is 

quickly apparent that while the Formulator is a fairly clearly defined set of linked 

subsystems for handling different layers of the surface structure of linguistic 

expressions, the Conceptualizer, by Levelt’s own admission, is a sort of 

heterogeneous “not-the-liver” category
2
 set up to do everything the Formulator 

doesn’t.  

 

                                                 
2
 I am indebted to Bedford (1997) for this singularly useful expression. It refers to a particular kind of 

fallacious category in cognitive science – one by which the discovery of a genuine category or “organ” 

within cognition is supplemented by the putative discovery of a second category comprising everything 

that the first doesn’t. 



 8 

The sum total of these mental activities will be called conceptualising, and the 

subserving processing system will be called the Conceptualizer (in full awareness 

that this is a reification in need of further explanation – we are, of course, dealing 

with a highly open-ended system involving quite heterogeneous aspects of the 

speaker as an acting person) 

p.9, author’s emphasis. 

 

One finds in Levelt’s further exposition of the Conceptualizer (p70-106) that 

the output of “messages” which it feeds into the Formulator must meet certain criteria 

- they must be “propositional” (in a broad sense) (p.72-96), they must have 

perspective (i.e. carry information about topicality, news value, etc) (p96-100) and 

mood (eg. interrogative, declarative, etc) (p100-103), and be marked for whatever 

supplementary information the grammar of the language in question demands (eg. 

information about evidentiality is optional in English, but mandatory in Karaja (Maia, 

2000)). Levelt laments the absence of a “message grammar”, or any immediate 

prospect of one (p70). At this point, the “message” seems so much like language 

itself, that one or the other must surely be redundant. 

 

The strength of “Language of Thought” based approaches to meaning, and to 

question of the “input to language production” has been largely a consequence of the 

fact that any more holistic alternative seemed simply impossible to model, and 

therefore impossible to consider scientifically. What follows is a pilot for a model 

that, I hope, may give a holistic alternative a chance to be properly scientifically 

evaluated. 
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Chapter 2 

Background 
2.1 Data-Oriented Parsing 

 

The fundamental underlying framework for the present study is that of Data-Oriented 

Parsing, a model of Statistical Natural Language Processing first proposed by Scha 

(1990), and first implemented by Bod (1992). 

 

This summary adapts material from Cochran (2005) and Chen, Cochran, 

Hanafusa, Laskowski, Ludke, and Ntarila
3
 (2005). The simplest manifestation of 

STSG is DOP1, as described in Bod (1998 p12-23 and 40-50), though more 

sophisticated versions exist. The parser uses a large parsed corpus
4
 divided into a 

training corpus and a smaller corpus against which the parser is tested. The parser 

breaks every tree in the training corpus down into all its possible subtrees, according 

to the wellformedness rules below. 

 

1) Every subtree must be of at least depth 1. 

2) Every connection must have a node on either end 

3) Sister relationships must be preserved 

 

                                                 
3
 Note that the latter citation is of work elsewhere assessed for the present qualification. 

4
 Such as the the Penn Treebanks (in English, Chinese, Arabic, etc) or the "Developing a 

Morphologically and Syntactically Annotated Treebank Corpus For Turkish" Project sponsored by the 

METU Informatics Institute & Sabanci University  
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The parser is given test 

corpus strings and builds up new 

parse-trees for these using the 

fragments available to it from the 

training corpus, starting with a 

fragment with an S-node at the top, 

and then, for each nonterminal leaf-

node, working rightwards, 

substituting in additional subtrees, 

the topmost node of which must 

carry the same label as the node to 

be substituted. (see figure 2.1). 

 

In DOP research it is necessary to distinguish between parses and derivations. 

A parse is the tree structure expressed over a string; a derivation is the particular 

sequence of subtree substitutions by which it was constructed. When parsing with 

probabilistic context-free grammars (PCFG’s, see Manning and Schütze (1999, 

pp.381-405); note that a PCFG is equivalent to a DOP grammar in which subtree 

depth has been restricted to 1), there is a one-to-one mapping between parses and 

derivations, because all non-terminal nodes (nodes which have daughters in the 

completed parse and do not contain concrete representations of utterable content – 

words, morphemes, etc) must be substitution sites. In DOP, subtrees can be of any 

depth, and so in any given derivation, any subset of the non-terminal nodes could 

have been substitution sites, while the remainder will not have been. As such, if a 

parse contains N many non-terminal nodes, it will have 2
N
 many derivations. 

 

 For each subtree substitution t, its probability P(t) is calculated as its total 

frequency of occurrence |t| in the training corpus over the summed corpus frequency 

of subtrees with the same root node; 
5
 

 

 

                                                 
5
 Note that although, beside the node-label on the substitution site, the input to be parsed is also a 

constraint on the selection of subtrees for substitutions, these constraints are not factored in to the 

calculation of probabilities. 

N 

V NP 

VP 

NP 

N 

S 

John 

likes 

N V 

NP VP 

NP 

N 

S 

John likes Mary 

VP Mary 

N 
o                      o         = 

Figure 2.1: A derivation of “John likes Mary”. 

“o” is the operator for the tree-substitution 

operation. 
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      (2.1) 

    

 

…where r(t)and r(t') are the node-labels on the root-nodes of subtrees t and t'. 

 

The probability of a derivation is the product of the probabilities of its subtrees 

(note that o is the notation for the substitution operation; thus ntt oo ...1  is the 

sequence of substitutions, which together comprise the derivation); 

 

      (2.2) 

 

And the probability of a parse T is the sum of the probabilities of its possible 

derivations D; 

 

      (2.3) 

 

 The output of the parser is, in theory, the most probable parse. In practice, 

there are issues of computational complexity that prevent this from being calculated 

directly; but these will be addressed in §4.2 below. 

Bod (ibid p.54) reports accuracies of 85% on the ATIS
6
 corpus for DOP1. 

 

2.2 Data Oriented Semantics 

 

Although the present work reports the first model of Data-Oriented 

Generation, it is not the first attempt to incorporate representations of meaning into a 

Data-Oriented model; van den Berg, Bod and Scha (1994) and Bod Bonemma and 

Scha (1996) report two models of Data-Oriented Semantics in which trees from the 

Penn Treebank were extended with predicate logic-like annotations on the non-

terminal nodes. To give two instances of how this may be done, in the toy corpus 

illustrated in figure 2.2.a, expressions like ∃x(MANx & WHISTLESx) are located at 

the root node, and broken down with lambda-abstractions as you work down to the 

                                                 
6
 Air Transport Information System – part of the Penn Treebank. 

{ }
∑
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terminal nodes (van den Berg, Bod and Scha 1994, cited in Bod Bonemma and Scha 

1996), whereas in figure 2.2.b, the expressions above the immediate parents of the 

terminal nodes are replaced with more abstract substitution-schemas (Bod, Bonnema 

and Scha 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Two toy corpora from; Bod, Bonnema and Scha (1996). The authors note that 

constraining DOP to process semantic annotations of the type shown in figure 2.2(b) actually 

improves the parser’s accuracy for syntax, and its overall processing speed. 

 

Logic-based representations of meaning are a relatively cheap way of 

representing semantics in an NLP programme; specifically, they do not in any way 

require models of the diverse cognitive modalities in which the meanings are 

grounded to be build into the model of language. The novel models that I will 

describe in the next chapter, by contract, operate by directly coupling linguistic 

exemplars with exemplars in other modalities – vision, in the present case, though, as 

will be seen, it is hoped that the model could be extended into other meaning-

providing modalities. It is furthermore hoped that models incorporating such direct 

couplings will prove much more powerful, not only in understanding linguistic 

meaning, but more generally the interactions between language and the other 

subsystems of human cognition. 

 

 

 

(a) 

(b) 
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2.3 SHRDLU 

 

One of the earliest successes in Artificial Intelligence and Natural Language 

Understanding was Winograd’s (1972) SHRDLU programme. SHRDLU was a 

dialogue system, capable of interacting with a human user (via teletype) with relation 

to an extremely limited simulated microworld, consisting of blocks of different 

colours and shapes which it was capable of manipulating at the request of the user, 

and answering queries about them. The BLOCKS World which SHRDLU inhabited 

had its own basic physics (for instance, other blocks can be stacked on a cube, but not 

on a pyramid), and SHRDLU had an understanding of those physics which was 

capable of influencing its dialogue. SHRDLU was a collection of interacting 

programmes in which explicit procedural knowledge of the BLOCKS world, and the 

syntax and semantics of its 200 word vocabulary, was hand-coded. SHRDLU’s 

proved to be extremely impressive for its time; it could conduct perform inferences 

about blocks, learn vocabulary defined in terms of previous vocabulary, and conduct 

sensible, natural sounding dialogue with reference to its micro-world. Ultimately, 

however, the hand-coding of explicit knowledge proved to be a dead-end approach, as 

it proved to be highly brittle, domain specific and not scaleable. Dreyfus’s (1997) 

classic criticism of SHRDLU (cited in Clark 1991, pp. 25-27) follows argues against 

the hypothesis that microworld based SHRDLU-style AI could ever “scale up” from 

microworlds to anything comparable to the world as experienced by humans; Dreyfus 

draws on an example from and MIT internal memo circulated by Minsky and Papert 

(1970), in which they consider the domains of knowledge from which a child must 

draw to be able to understand the following sentence in conversational context; 

 

Janet: That isn’t a very good ball you have. Give it to me and I’ll give you my 

lollipop. 

 

…We conjecture that, eventually, the required micro-theories can be made 

reasonably compact and easily stated … once we have found an adequate set of 

structural primitives for them. 

(Minsky and Papert 1970, p. 48 & p.50, cited in Dreyfus 1997, p.147) 
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Dreyfus comments that this assumption of Minsky and Papert’s is ultimately 

untenable, because there in fact is no micro-theory for such a conversation separable 

from the rest of human experience and meaning. This, Dreyfus (ibid) casts as a 

general failure of the “micro-worlds paradigm”;  

 

 …it … is likewise misleading to call a set of facts and procedures concerning 

blocks a world when what is really at stake is the understanding of what a 

world is. A set of interrelated facts may constitute a universe, a domain, a 

group, etc., but it does not constitute a world, for a world is an organised body 

of objects, purposes, skills and practices in terms of which human activities 

have meaning … one cannot equate … a program that deals with a “tiny bit of 

the world” with one that deals with a “mini-world”. 

(pp.150-1, author’s emphasis) 

 

Dreyfus’s criticism sticks because of the ways in which our diverse cognitive 

competencies saturate one another, what Clark (1991, p.25) calls the “thickness” of 

our concepts, creating an explosively complex manifold of dependencies between 

different knowledges and modalities of knowledge that simply prohibits their direct 

modelling as explicit declarative knowledge; for a knowledge-representing formalism 

to stand as a “theory of content” that can be applied to worlds in Dreyfus’s sense, it 

must be scaleable and robust. The “atomism” underpinning Winograd, Minsky and 

Papert’s approaches fails that test. 

 

However, in many subfields of AI research, statistical, experience-based 

approaches, have, by comparison, proven to be highly robust and scaleable; for 

example, in Natural Language Processing (Manning and Schütze 1999), Vision 

Science (Kersten 2000) and Robotics (Thrun 2005); A fact which gives considerable 

weight to Brooks’ (Brooks 1997) suggestion that explicit knowledge representations 

are simply the wrong sort of abstraction to be working with when trying to model 

cognition. It is my hope that the method of directly coupling exemplars across 

modalities of cognition provides a direction for an integrated, multimodal approach to 

probabilistic AI and cognitive modelling. 
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2.4 L0 

 

Another precedent worthy of note is the L0 Miniature Language Acquisition task 

proposed in Feldman, Lakoff, Stolcke and Weber (1990). The task was intended to 

integrate three domains of Cognitive Science research; vision, judgement and 

language; to design an algorithm which; 

 

• Could be trained using a corpus of simple images, consisting of 3-4 simple 

geometric figures (circles, triangles, squares, etc) paired with one or more true 

statements about these scenes in some arbitrary natural language  

• Which after training could be presented with novel images and judge whether 

novel statements about these images were true or not. 

• Which would be robust to being tested on many different languages, including 

non-Indo-European languages. 

 

The present project is of a similar kind differs from L0 in a few aspects; firstly, 

the system is trained only on English. This is merely a consequence of limitations of 

time, and should be remedied in due course. Likewise the fact that in the present 

work, the images used are only one dimensional, is merely a consequence of limited 

time; a proposal for a more sophisticated Data-Oriented Picture Parser, capable of 

handling 2D inputs, can be found in Cochran (2006a). However, my own interest lies 

more in the direction of modelling language production, rather than truth-judgements, 

and UDOG work will probably continue in that direction. This is not least because I 

hope to be able to integrate UDOG into Iterated Learning Simulations (Kirby 1999, 

Hurford 2000, Briscoe 2002); a model of social transmission of (linguistic) 

knowledge wherein generations of agents are taught a toy linguistic task, with the first 

generation being trained on a random language, and each subsequent generation being 

trained on the productions of the previous – notably, via a bottleneck, whereby no 

generation is trained on the whole language, but must generalise from their training 

input in order to be able to handle novel stimuli. These models have proved to be of 
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considerable value in explaining various language universals in terms of the dynamics 

of cultural learning. 

 

Feldman, Lakoff, Bailey, Narayanan, Regier and Stolcke (1996) describe a 

candidate system for the “touchstone” of the L0 task, which combines language 

learning using a Probabilistic Context Free Grammar with visual learning using 

Artificial Neural Networks. Notably, their system is highly modular, employing 

heterogeneous architectures for different subtasks. In contrast, the UDOG approach is 

designed around a single, integrated system and a shared Data-Oriented architecture, 

which it is hoped will be able to scale up to integrating further cognitive modalities. 

 

2.5 The Ubiquity of Trees  

 

One notable feature of DOP-research is that the paradigm is not limited to language; 

Bod presents successful DOP models for music, trained on the Essen Folksong 

Collection (2002, 2005) and for equational reasoning in physics, using a corpus 

collected from undergraduate physics students at the University of Amsterdam (2004, 

2005). Coleman and Pierrehumbert (1997) successfully use a DOP-like model to 

predict English-speakers’ judgements of the phonotactic well-formedness of nonsense 

words. Cochran (2005) suggested that DOP might also be applied to motor memory. 

Tu, Chen, Yuille and Zhu (2005) propose that algorithms for parsing language into 

tree-structures may be adapted to vision, and indeed describe a Markov-Chain-based 

algorithm which does just that. In considering the role of trees-structures in cognition, 

it is helpful to set aside the visual “tree” metaphor, and consider them purely as data-

structures; specifically, “trees” constitute nested mappings of higher to lower level 

patterns of information. Given the diversity of cognitive modalities in which the merit 

tree-structural analyses has been shown, Bod’s (2005) characterisation of tree-

structures as ubiquitous to cognition seems to be a sensible working hypothesis for an 

integrative vision of Cognitive Science, but it can’t be the complete picture. The 

“nested mappings” referred to above seem to work well for mapping intra-modal 

relations in cognition, but alone they offer no mechanism for understanding the 

“saturation” of real human cognition with connections and correlation across 

modalities, to which Dreyfus (1997) alludes (see §2.3 above); beyond being a 

hypothesis with regard to language production and linguistic meaning, the model of 
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cross-modal connections between nodes in tree-structures described in the next 

chapter is the first intimation of a broader hypothesis regarding the informational 

basis of the saturatedness of human perception and cognition. 
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Chapter 3 

The Model 
As noted in the introduction above, over the course of 16 years of research into Data-

Oriented approaches language, no-one has yet published a model for Data-Oriented 

Generation; what follows in the current chapter is a description of two pilot-models 

intended as a first attempt at making good that deficit. 

 

3.1 UDOG 

 

The “Unmediated” in Unmediated Data-Oriented Generation signifies the absence of 

a logic-like code or “Language of Thought” to pass messages between subsystems of 

cognition; in the case of the task at hand, language and vision. Rather, what is 

proposed is a set of direct crossmodal couplings between particular exemplars in the 

signifier-providing system (language) and signified-providing system (vision). This is 

illustrated in an extremely simplified form in figure 3.1 
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Figure 3.1: paired parse trees over visual and verbal content, with crossmodal connections. 

Note that some crossmodals are omitted for clarity. The crossmodals are coloured only for 

clarity; the colours do not signify anything. 

 

Note that this illustration is considerably simplified on a number of counts, 

however; the picture-parse tree for a naturalistic two-dimensional image such as the 

one shown would be much more complex, and for clarity only a subset of the cross-

modal links for that pair of trees has been shown. Furthermore, in human cognition, 

the perception of an image like the one shown would not be describable by a surface 

tree alone – rather the perception of the image would be modified by a perception that 

the static image in fact represents a fragment of a time-sequence, that the patterns of 

black pixels on while represent intentional agents, that the squirting is an intentional 

act, and that certain details of the arrangement of pixels in the mouse and tortoise’s 

faces informs us of their affective states. 

 

Two terms of art in the preceding description stand out as being in want of 

further definition; “picture parse” and “crossmodal”. It is worth dwelling on these for 

a moment before proceeding, as they are crucial to the following model.  

 

Mouse squirts tortoise 

S 

NP VP 

V NP N 

N 
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In order to understand what is meant by a picture parse, I refer the reader back 

to my comments in §2.5, on “the ubiquity of trees”, to the effect that the nested 

information-structures represented by trees provide a highly general data-structure in 

cognition, whereby lower-level segmentations of cognitive content may be mapped 

onto higher-level ones; in vision, this comprises the relation of lowest-level feature 

recognition (Hubel and Weisel, 1963, 1965) to the identification of objects and 

assemblies of objects. This nested segmentation of the visual field has proven 

important in the field of computational vision science, where it has been found to be 

indispensable in the field of automated visual analysis; Tu, Chen, Yuille and Zhu 

(2005), for example, present an algorithm which uses Markov Chains to produce 

analyses if images “into their constituent visual patterns … in a spirit similar to 

parsing speech and natural language” (p.113). Von der Heydt (2004) reviews a 

considerable body of evidence for extra-striate areas of the visual cortex performing 

“intermediate processing” operations, which he characterises as “image parsing … 

which appears as a mediator between local feature-representations … and the 

processes of attentional selection and object recognition” (p.1139). However, the level 

of sophistication in modelling vision indicated in figure 3.1 above is simply beyond 

the scope of the present project (though, as noted above in §2.4, see Cochran 2006a 

for a proposal for a Data-Oriented Picture Parser). For the purposes of the present 

model, a rather simpler visual analysis is required; limited to a maximum of three 

layers of nested structure at most are used (as illustrated in figure 3.2 below); between 

the bottom layer of primitive objects (lines, dashes and dots) and the top layer, 

corresponding to the whole image, one mediating layer wherein primitive objects of 

the same type may be grouped into clusters of two or three may be found. A tree-

structure, therefore, seems natural and cognitively plausible to join up these layers of 

nested structure. As a further simplification, the primitive objects in the image will be 

arranged one-dimensionally, so that it can be parsed with a standard DOP1 parser.  

 

Broadly speaking, crossmodals are connections between individual nodes in 

the tree-representations of previously experienced cognitive structures from grounded 

in different cognitive modalities. In the case of the current model, the only modalities 

we are concerned with are vision and language, but in theory the integrated action of 

any grouping of cognitive modalities may be represented and mediated by 

crossmodals, at least provided the information in both modalities is organised under 
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tree-structures. In a sense, they perform a dual function; on the one hand, they 

mediate crude associations between pairs of trees associated in memory (in the case of 

the current models, between the parses of images and their descriptions); that is to 

say, they allow for a record to be kept of what trees were created at the same time, 

allowing cognitive systems (in the case of the present model, language production) to 

exploit statistical patterns and regularities regarding in the co-occurrence of pattern 

across modalities; patterns like “at times when verbal trees containing the morpheme 

‘cat’ are processed or produced, it is more likely than it is at other times that the 

patterns associated with the presence of cats will be found in the visual field”. This of 

course, only requires associations between whole trees, rather than particular nodes; 

thus the other function of crossmodals is to constrain more exactly which subtrees 

may permissibly be linked in a bimodal subtree (the term “bimodal subtree” means, a 

pair of unimodal subtrees joined by crossmodals; the term “unimodal subtree” is used 

to distinguish an ordinary well-formed DOP subtree from a bimodal subtree); the 

exact details of which combinations are permissible – what counts as a well-formed 

bimodal subtree – differs between the two models tested (see §§3.2 and 3.3 below for 

the details), so the function of crossmodals differs between the two models. In 

constructing the templates for the training corpora for the models, three factors 

determined the decisions as to which nodes in associated trees should be connected by 

crossmodals; 

1) If terminal content under verbal node n
w
 (meaning, the set of 

words/morphemes represented by those proper descendent
7
 nodes of n

w
 

that have no daughter nodes) can be used to refer to the terminal content 

under visual node n
v
 (the set of primitive visual objects represented by 

those descendent nodes of n
v
 that have no daughter nodes), then n

w
 and n

v
 

will be connected with a crossmodal. The teal crossmodals shown in figure 

3.2 are of this type. 

2) If verbal terminal node tn
w
 (a terminal node here being a node with no 

daughters, representing a word/morpheme or primitive visual object) can 

be used to refer to visual terminal node tn
v
, then tn

w
 and tn

v
 will be 

connected with a crossmodal. The blue crossmodals shown in figure 3.2 

are of this type. 

                                                 
7
 Note that the term “descendent” is to be distinguished from “proper descendent”; that is to say, the set 

of descendants of node n includes n, whereas the set of proper descendants does not. 
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3) If a verbal terminal node tn
w
 can refer to the part-whole relationship 

between visual node tn
v
 and its proper descendent tn

v’
, then tn

w
 will be 

connected to tn
v
 and tn

v’
 with a crossmodal. The orange crossmodals 

shown in figure 3.2 are of this type. 

 

Figure 3.2: Paired image and description trees, with crossmodal connections; note that some 

crossmodals have been omitted for clarity. Nodes and crossmodals have been coloured for 

clarity only
8
 

                                                 
8
 Some further comments on the parses are warranted here; (next page) 

NP 
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In rough summary, the algorithm stores a corpus of such image/description 

pairings; the images employed are no more than one-dimensional arrangements of 

lines, dashes and dots. These are paired with, and crossmodally linked at multiple 

nodes to, noun phrases describing the images. The bimodal tree-pair shown in figure 

3.2 is an actual example of an entry from the training corpus used in the model. When 

presented with visual stimuli, the algorithm, beginning with a bare Y- node and a bare 

NP-node, generates novel tree-pairs by substituting the visual and verbal parts of 

paired subtrees extracted from the training corpus for random non-terminal leaf-nodes 

in the incomplete derivation, until one or both of the trees has no non-terminal leaf-

nodes. For any one stimulus, multiple derivations will be completed, which are used 

as a Monte-Carlo sample; a Monte-Carlo sample being a random sample drawn from 

an unknown probability distribution, used to estimate the probabilities of the 

distribution; in this case, it is used to approximate the most probable output. 

More formally; 

 

1) On the presentation of a novel visual stimulus, image i, the algorithm generates a 

bare Y node and a bare NP to act as the first non-terminal leaf nodes in the 

derivation (note that Y and NP are the labels on the root-nodes of all image and 

verbal trees respectively in the training corpus. 

2) A non-terminal leaf-node from the image of the derivation, and one or more from 

the verbal side, are selected to be substitution sites. The criteria for node-selection 

differ in the two different versions of the algorithm that were implemented, and so 

these will be detailed below in their respective sections. To clarify, a non-terminal 

leaf node is one which carries a node-label, such as *NP*, *PREP*, etc, (non-

terminal), but has no daughters at the current stage of the derivation, and so can 

serve as a substitution site. 

                                                                                                                                            
1) The parse of “to the left of” in the verbal tree is somewhat non-standard, and requires 

comment; this parse was chosen over the more typical interpretation, that “to the left of” and 

“to the right of” are in fact complex prepositions, because I wanted avoid treating any element 

as idiomatic; I wanted to ensure that the whole tree was treated as compositional and 

decomposable, thereby giving the simulations a harder job in the test stage. (Chapter 5). 

2) “line” and “dot” are immediate daughters of *ROOT* nodes, whereas “left” is not. This is 

because “left” does not take a plural, whereas “line” and “dot” do. 

3) The node-label *NN* refers to a nominal group. 

4) The nodes of the visual tree are labelled *X* and *Y* to distinguish those nodes that are the 

immediate mothers of terminal nodes (*X*) from those which are not (*Y*) 
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3) A random equiprobable
9
 unimodal visual subtree is extracted from the training 

corpus, subject to certain constraints to be enumerated below. To be exact, the 

probability of any token (tv
token

) of  visual subtree tv which meets the set of 

constraints C
visual

 is given by the equation; 

 

{ }
∑

=

visual
Cmeetstvtv

token

tv
tvP

'':

|'|

1
)(

   (5.1) 

 

Where t' is any subtree (type), and |t'| is the number of tokens of that type. The 

constraint-set C
visual

 is simply intended to exclude any substitutions which, 

without seeing any of the rest of the corpus, could be shown to utterly preclude the 

generation of a tree with an arrangement of leaf nodes exactly corresponding to 

the arrangement of elements in the stimulus. Specifically, C comprises the 

following constraints, in relation to a stimulus s, where s is that sub-part of image 

i which occurs between the elements of the image corresponding to the closest 

terminal nodes or peripheries
10

 to the left and right of the substitution site (see 

figure 3.3): 

a) The root-node of t, t(root) must be labelled with the same label as the 

selected substitution site.  

b) The frontier of t, t(frontier) – that is to say, the leaf-nodes, both terminal 

and non-terminal, of t, must contain no terminal nodes not corresponding 

to any element in the stimulus. 

c) t(frontier) must contain no terminal nodes corresponding to elements in the 

stimulus in any order not found in the stimulus. 

d) t(frontier) must contain no subtree containing more leaf-nodes between 

any two terminals or peripheries than there are elements in the stimulus 

between the corresponding positions in the stimulus. 

                                                 
9
 Note that it is tokens of corpus subtrees that are equiprobable, not types; if a particular type is found 

twice in the corpus, it will be twice as probable as one that is only represented once. 
10

 Periphery is here to be taken to mean the black space to the left or right of the leftmost or rightmost 

nodes in the tree respectively 
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e) t(frontier) must contain no subtree containing zero leaf-nodes between any 

two terminals or peripheries if the number of elements in the 

corresponding space in the stimulus is greater than zero.  

 

Figure 3.3: Given image i and partial derivation T, the stimulus by which the generation of the 

next subtree is constrained will equal s; in the case shown here, t and t' violate C(d), while t'' 

violates C(e). 

 

The procedure of on-the-fly subtree generation, or “Subtree Roulette”, allows for 

the use of all subtrees without their needing to be stored and represented 

individually – rather one simply stores the corpus as whole trees; this serves as an 

alternative to Goodman’s (2003) PCFG-reduction method. Using this method, 

derivations are spatially and temporally linear in relation to tree- and corpus-size. 

There is not space here to fully detail the technicalities of this method, but in 

short, each tree-node is annotated with the number of subtrees it heads (given by 

then Stimulus (s) =                                                     and therefore 

      X                X           X          X                 X                 X          X         X 

t =                      Y                                        t' =                  Y 

                   X                  X                  

t'' =                        Y                                  

If Image (i) =  

…are invalid subtrees according to C
visual 

And Partial derivation (T) =
 

   X                    Y                     X                 
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equation 3.2), and each tree is annotated with the number of subtrees it contains 

for each node-label (i.e., if a tree contains two NP-nodes, one with 32 subtrees, the 

other with 4, the total will be listed as 36). Then, if, for example, a subtree headed 

PP is needed for a substitution, all trees containing PP-nodes are assigned a sub-

part of a range of integers from 0-NPP, where NPP is the total number of PP-headed 

subtrees in the corpus, and each tree’s part of the range is proportional to the 

number of PP-headed subtrees in that range. A random number between 0 and NPP 

is rolled, and the tree assigned the part of the range within which the random 

number fell is chosen; if the chosen tree contains two or more PP-nodes, this 

“roulette wheel” procedure is repeated to decide between them. Finally, a top-

down breadth-first traversal of the tree is made, omitting the root-node of the 

subtree, at each node i casting a random number between zero and ti, where ti is 

the number of subtrees headed by node i, and removing all descendants of i if the 

roll come up as zero. In this way, all subtrees headed with PP have a probability of 

1 over NPP. 

4) This visual tree is combined with one random equiprobable unimodal verbal 

subtree tw (or, depending on the version of the algorithm, a set of verbal subtrees 

tw1 … twn) to form a bimodal subtree. The generation of verbal subtrees is subject 

to the following constraints, C
verbal

.  

a) tw must be taken from the same corpus tree-pair as the visual tree already 

selected. 

b) tw must be rooted in nodes bearing the same labels as those selected to be 

substitution sites in step 2 

c) The resulting bimodal subtree must also meet the the criteria for the well-

formedness of bimodal subtrees. These criteria, like the criteria for node-

selection, differ in the two versions of the algorithm, and will be detailed 

below in their respective sections. 

The probability of any verbal unimodal subtree (token) tw
token

 or twi
token

 is given 

by the equation below; 

{ }
∑

=

verbal
Cmeetstwtw

token

tw
twP

'':

|'|

1
)(

   (3.2) 
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5) The bimodal tree is substituted for the nodes at the selected substitution sites, and 

the elements in the image corresponding to terminal nodes on the image side of 

the subtree are marked as having been accounted for by those terminal nodes; this 

is to facilitate the finding of the stimulus s for the next substitution, as specified in 

step 3. 

6) Some nodes in the visual trees exist in slave-master relationships to their 

immediate sister-nodes. Slave nodes cannot be selected as substitution sites, but if 

a master node is a substitution site, then a copy of the subtree substituted will also 

be substituted at each slave, and each non-terminal leaf-node of the copy will aso 

be enslaved to the corresponding node in the original. Similarly, when image 

subtrees are extracted from the corpus, the material underneath any slave-node 

must be identical to the material underneath their master. This is necessary to 

allow groups of repeated elements to be recognised as such, like the pair of dots in 

the image-tree in figure 3.2; this is essential for the algorithm to be able to subitise 

such groups and reliably describe them in numerical terms. For a fuller 

explanation of the job done by this subsystem, see §4.3.3. 

7) If no bimodal subtree can be found, the algorithm “backtracks” by undoing the 

last bimodal subtree substitution; that is to say, all descendant nodes of the last 

successful substitution site will be removed from the tree. Arbitrary constants can 

be set to limit the number of such reversals before the preceding substitution must 

also be undone, or, globally, before a derivation be abandoned outright as a dead-

end. In all test runs conducted for the present study, these constants were set at 

100 and 100,000 respectively. 

8) Steps 2 to 7 are repeated until either one or both of the trees is complete (i.e., has 

no non-terminal leaf-nodes), or, as specified in step 7, the derivation is abandoned. 

If the derivation is successful, the resulting verbal tree is stored (whether complete 

or not) as part of the Monte-Carlo sample. 

9) Steps 1 to 8 are repeated until N many trees were accumulated in the Monte Carlo 

sample. In all test runs conducted for the present study, N was set at 500. 

10) Because the verbal strings contain more elements (words/morphemes) than the 

visual images employed, the trees by which they are parsed contain far more 

nodes, and therefore more potential substitution sites. Therefore, the great 

majority of derivations will result in incomplete verbal trees. For this reason, it is 

not the most frequent verbal output that is selected from the Monte Carlo sample, 
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but the graph-theoretic unification of the largest unifiable subset of the sample. 

Because of the high prevalence of incomplete verbal trees in the output from 

derivations, instead of simply polling the Monte-Carlo set for the most frequent 

output, an algorithm, the details of which not relevant here, was used to find the 

largest unifiable subset of the trees in the sample. Two trees are taken to be 

unifiable if there is at least one possible (not necessarily complete) tree of which 

both trees are co-racinous
11

 legal subtrees according to the unimodal 

wellformedness criteria of DOP1. The unification of the two trees, then, is the 

smallest tree that meets this description, if any tree can. Two unifiable trees and 

their unification are shown in figure 3.3. The system’s output, then, is the 

unification of the largest unifiable subset of the sample. 

 

Figure 3.4; two unifiable trees (a, b) and their unification, (c); the working assumption here is 

that, although the trees output by UDOG are incomplete, they will tend, if the algorithm is 

working, to be fragments of correct outputs; therefore unifying them allows complete (or at 

least, closer to complete) trees to be made. If fragments of correct trees are indeed the most 

frequent output, the largest unifiable set should unify into a correct complete output. 

 

As noted above, two versions of the criteria for substitution-site selection and bimodal 

subtree wellformedness were tested; one in which the statistical regularities of the 

training data alone were trusted to do the job of solving the “binding problem”, and 

another in which the problem was addressed directly by restrictions placed on the 

selection and wellformedness criteria. The former, I shall refer to as “Naïve UDOG”, 

and the latter as “Binding UDOG”. The problem of binding may be stated as simply 

being the problem of ensuring that subtrees are placed in such a manner as to ensure 

that their proper places according to their semantic relationship; for instance, if full 

                                                 
11

 Subtrees t
1
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1
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2
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sentences were being generated, part of this problem would be to ensure that the 

subject and object NP’s are placed in the subject and object positions respectively. 

 

3.2 Naïve UDOG 

 

In the naïve version of UDOG, exactly one substitution site are picked at random 

from the non-terminal leaf-nodes of each tree. A bimodal subtree is well-formed iff; 

 

1) Both of the component unimodal subtrees are well-formed by the normal 

standards of DOP1. 

2) Both unimodal subtrees should originate from the same tree-pair. 

3) The verbal subtree should contain only nodes which either; 

a) Have no crossmodal connections at all, or 

b) Have crossmodal connections, at least one of which is to a node in the visual 

subtree. 

 

It is worth seeing how this plays out in practice with a toy example. Consider 

the follow example of a corpus tree-pair P: 

 

Figure 3.5; a toy tree-pair; here, all crossmodals are shown 

 

Let us suppose that the following unimodal subtree tv is taken from the visual 

tree; 

 this and  that 

PRN 

NP 

NP 

NP CONJ 

PRN 

X 

Y 

X 
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Figure 3.6; a subtree (tv) of the visual tree in fig. 3.5 

 

This would leave one node of the verbal tree in violation of (3); 

 

 

Figure 3.7; One node in the verbal tree cannot occur in a verbal subtree in a valid bimodal 

subtree with tv 

 

Any subtree tw of the remainder of the verbal tree may validly be combined 

with tv to form a bimodal subtree; below are some examples; 

 this and  that 
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NP 

NP 
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Y 
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Figure 3.8; A non-exhaustive set of verbal trees tw that may validly be combined with tv 

 

 

3.3 Binding UDOG 

  

In Binding-UDOG, exactly one substitution site on the image tree is chosen at 

random, but then if this substitution site is crossmodally connected to any of the 

potential substitution sites on the verbal tree, it can in theory substitute subtrees at all 

of these sites, because a Binding-UDOG bimodal subtree can have one or more verbal 

subtrees. The wellformedness criteria are as follows; 

 

1) All of the component unimodal subtrees are well-formed by the normal standards 

of DOP1. 

2) All unimodal subtrees should originate from the same tree-pair P. 

3) Each verbal subtree should contain only nodes which either; 

a) Have no crossmodal connections at all, or 

and  that 
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b) Have crossmodal connections, at least one of which is to a node in the visual 

subtree. 

4) The root node of each verbal subtree should be crossmodally connected to the root 

node of the visual subtree. 

5) No root node of a verbal subtree can be an ancestor of descendant of the root node 

of  any other; that is to say, if nodes n1 and n2 are in an ancestor-descendant 

relationship in the verbal tree W of the originating corpus tree-pair, they cannot 

both be selected to be the head-nodes of subtrees in the same bimodal subtree. 

6) The set of verbal subtrees in a well-formed bimodal subtree cannot be a proper 

subset of the set of verbal subtrees in any other well-formed subtree. 

7) For each node-label L represented x many times in the set of possible substitution 

sites, there should be no more than x many verbal subtrees in the bimodal subtree 

with root-nodes labelled L. 

 

The algorithm exhaustively checks all possible subsets of the set of nodes in 

the verbal tree connected to the root node of the visual subtree for validity, according 

to the standards of (5), (6) and (7). A subset is chosen at random, at a probability 

modelled by the equation 5.3 below; 
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∑
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-Where S and Si are sets of nodes, V is the set of valid sets of nodes according 

to criteria (5), (6) and (7) above, and subtreesnodex is the total number of subtrees 

rooted in nodex. The total number of subtrees of any node node can be found using 

equation 5.4; 
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For each node n in the chosen set, a subtree t for which n = root(t) is chosen at 

a probability modelled by equation 5.5 below; 

 

)(

1
)(

roottsubtrees
tP =        (5.5) 

 

If it is either not possible find a substitution site, or a bimodal subtree, that 

meets the above criteria, the system backs off to the criteria of naïve UDOG. 

 

The purpose of the additional conditions is to alter the character of 

substitutions in binding UDOG, from individual substitutions of subtrees for non-

terminal leaf-nodes, to the substitution of a whole complex of crossmodally root-

connected subtrees for a complex of crossmodally connected non-terminal leaf-nodes, 

thereby preserving ordering relations across substitutions. 

 

This whole process is rather complicated, so it is worth drawing out with 

examples. Let us first consider substitution-site selection; consider the figure 3.9 

below as an example of a partial derivation D: 

 

Figure 3.9; Partial derivation; all crossmodals shown 

 

The parser selects randomly from X1, X2 and X3. Which of the non-terminal 

leaf nodes of the partial verbal tree D
verbal

 are available as substitution sites depends 

on which non-terminal leaf-node of D
visual

 is selected; if it is X1, A and B are 

available as substitution sites; if X2, it is B, C and D; if it is X3, X3 is not connected 

crossmodally to any available node, so the algorithm backs off to the rules and 

constraints of Naïve UDOG and selects exactly one of A, B, C or D at random. Now, 

D B 

NP 

A C 
X1 

Y 

X3 X2 
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let us suppose that  it selects X2, and selects the subtree headed by the X2' node of 

visual tree P
visual

 of  paired tree P shown in figure 3.10 below:
12

  

 

Figure 3.7; Paired trees P: for simplicity we will say that the set of crossmodals shown is 

exhaustive. Nodes and connection with emphasis represent the selected visual subtree tv. 

 

Recall that the available substitution sites are labelled B, C and D. This means 

that all the nodes crossmodally connected to X2 can potentially head verbal subtrees 

in bimodal subtree tb. However, not all of them are mutually compatible. B' and B'' 

cannot both be used, because there is only one substitution site labelled B waiting to 

be filled. C' and D' cannot both be used because they are in a ancestor-descendent 

relationship; we have four possible sets to be selected from; {B', C'}, {B', D'}, {B'', 

C'} and {B'', D'}. Now let us work out the numbers of subtrees: 

 

subtreesE = (0 + 1) =  1 

subtreesE' = (0 + 1) =  1 

subtreesE'' = (0 + 1) = 1 

subtreesD' = (0 + 1) = 1 

subtreesB' = (subtreesE + 1)(subtreesE' + 1) = 4 

subtreesB'' = (0 + 1) = 1 

subtreesC' = (subtreesE'' + 1)(subtreesD' + 1) = 4 

subtreesNP' = (subtreesB' + 1) (subtreesB'' + 1)(subtreesC' + 1) = 50 

                                                 
12

 Note that, as the mother of a terminal node, X2' only has one possible subtree. Also note that the 

primes used here do not denote a difference of node-label, and are only used to distinguish same-

labelled nodes in D and P. 

 blah blah  blah 
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Table 3.1; totals of subtrees headed by nodes in P
verbal. 

 

Therefore; 

subtrees{B', C'} = (4 + 4) =  8 

subtrees{B', D'} = (4 + 1) =  5 

subtrees{B'', C'} = (1 + 4) = 5 

subtrees{B'', D'} = (1 + 1) = 2 

 TOTAL = 20 

Table 3.1; totals of subtrees in valid sets. 

Thus; 

P({B', C'}) = 
=

20

8
 

0.4 

P({B', D'}) = 
=

20

5
 

0.25 

P({B'', C'}) = 
=

20

5
 

0.25 

P({B'', D'}) = 
=

20

2
 

0.1 

Table 3.1; probabilities of subtrees in valid sets. 

 

Let us suppose that {B', D'} is selected. D' only has one possible subtree, tw1: 

 

Figure 3.11: tw1 

 

B' has 4 possible subtrees; 

 blah 

D' 
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Figure 3.12: subtrees headed with B'. 

 

Now let us suppose that the third of these is selected as tw2, at a probability of 

0.25 (all four subtrees are have the same probability) This gives us the following 

bimodal subtree tb; 

 

Figure 3.13; Bimodal subtree tb. 

 

Finally, tb is substituted into P (P ○ tb = P')
13

: 

                                                 
13

 Recall that ○ is the substitution operator 
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Figure 3.14; Bimodal substitution operation.  

 

D B 

NP 

A C 
X1 

Y 

X3 X2 

B' 

-de- 

E' E 
 blah 

D' 

X2 

= 

D B 

NP 

A C 
X1 

Y 

X3 X2 

-de- 

E E 
 blah 



 38 

Chapter 4 

Understanding 

the Models 
Before going any further, some comment should be given regarding the 

rationale of the models; in particular, it is necessary, in the design of any 

computational model of a natural system, to distinguish scrupulously between those 

features that are intended to approximate the supposed real features of the system 

modelled, and those that merely constitute technological fixes of technological 

problems. This is a thorny problem, not only because it is necessary to open up thorny 

issues in the epistemology of modelling and simulation, but also because some of the 

specific issues involved cut across the spectrum of Data-Oriented research. I will first 

introduce in outline some of the relevant general issues of epistemology and method 

in modelling, before outlining how that has cashed out in practice, in Data-Oriented 

research generally, and in the current work in particular. 

 

4.1 Approximation and representation in simulation; the useful fiction of 

the substrate neutrality of algorithms 

 

With any novel development in scientific technique, new methodological and 

epistemological questions and challenges are sure to follow; and no new development 

in the past fifty years has had so been so pervasive across all disciplines of science as 

the development of computational simulation. Rohrlich (1991, cited in Hartmann 
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1996) characterises simulations (specifically discussing those used in physics) as “a 

qualitatively new and different methodology … that … lies somewhere intermediate 

between traditional theoretical physical science and its empirical methods of 

experimentation and observation” As such, a new literature in the Philosophy of 

Science has arisen to evaluate the methodological limitations and epistemic potentials 

of computational simulation. Hartman (1996) draws out the relationship between 

simulations and dynamic theoretical/mathematical models; under his understanding, 

such models comprise the mathematical characterisation of “a set of assumptions 

about some system” (p.4, citing Redhead 1980), and; 

 

 “a simulation results when the equations of the underlying dynamic model are 

solved. This model is designed to imitate the time-evolution of a real system. To 

put it another way, a simulation imitates one process by another process. In this 

definition, the term ‘process’ refers solely to some object or system whose state 

changes in time.” 

(ibid. p.5) 

 

The crucial tacit assumption here is that of the substrate neutrality of algorithms. In 

the ideal case, the model should describe the algorithm instantiated by both the 

simulation, where the particular implementation, in some particular programming 

language, on some particular computer, serves as the substrate, and the natural 

phenomenon, in some other substrate. However, it is important to realise that such 

substrate-neutrality is in fact a mathematical fiction; just as geometry defines lines 

and points as one- and zero-dimensional objects with zero area and volume, though no 

such objects exist in the real world, the Second Law of Thermodynamics requires that 

no algorithmic process in nature can continue indefinitely, without its causal 

processes eventually being interrupted or perturbed by the causal processes of its 

substrate
14

. It is simply that if, say, the behaviour of an algorithm running on a 

computer is changed by a bug in the implementation, or a block of memory being 

destabilised by the machine overheating, one says “that’s not the algorithm.” An 

algorithm is an axiomatically defined mathematical entity which, by fiat, allows us to 

                                                 
14

 This of course should not be taken as a denial of the great utility of algorithmic thinking, any more 

than it should be taken as a denial of the obvious usefulness of geometry. 
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parse the totality of a natural (or computational) phenomenon into “algorithm” and 

“substrate”. 

A good example here is the debate between Dennett (1995) and Gould (Gould 

and Lewontin 1979, Gould 1997) regarding adaptationism, and in particular Gould 

and Lewontin’s (1979) hypothesis that non-adaptations, such as historical accident, 

the recycling of obsolete systems towards new functions, and especially “spandrels”, 

structural by-products of adaptive changes, capable of being subsequently co-opted to 

adaptive functions.(Gould and Lewontin 1979). Dennett, against this, claims that 

“either spandrels are not ubiquitous after all, or they are the normal basis for 

adaptations, and hence no abridgement at all of pervasive adaptation” (Dennett 1995, 

p.268). What this disagreement boils down to, I would contend, is a difference in the 

way the parties involved parse the phenomenon into algorithm and substrate; Dennett 

chooses to isolate only adaptation by transmission of mutation with selection as 

“algorithm”, and the residue is “substrate”. Gould regards non-adaptations as 

sufficiently important to the final state as to warrant their co-option from “substrate” 

to “algorithm”. In this light, given that in either case the algorithm remains a 

mathematical fiction, the disagreement must be recast as one about what constitutes 

the optimal scientific strategy, rather than the correct scientific finding. 

The relationship between the simulation and the natural phenomenon becomes 

further attenuated by the fact that it is not always feasible to implement the algorithm 

given by the theoretical model exactly as stated. Constraints of computational 

tractability, for instance, can steer a simulation away from the idealised form of its 

model. Krohs (2006) gives a nice example of Field and Noyes’ (1974) model of the 

Belousov-Zhabotinsky (BZ) chemical oscillator. Krohs notes that while the BZ 

reaction itself takes place in continuous time, the equations of Field and Noyes’ model 

can only be (tractably) solved in discrete time-steps, generating an error which can be 

reduced by increasing the number of time steps, up to the limit case where the number 

of steps is infinite and the error is zero. However, the floating point arithmetic 

employed by computers creates a rounding error with every time step, so that beyond 

a certain point the reduction in discretization error caused by an increase in temporal 

resolution is outweighed by the increase in rounding error. Similarly, the feasible 

implementation of Data-Oriented models falls somewhat short of the idealised 

“textbook” form of DOP, as will be shown below. 
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4.2 Approximation and idealisation in Data-Oriented research 

 

Now, recall my thumbnail sketch of DOP1 in §2.1. This “textbook DOP” is in fact an 

idealisation from any real computational implementation of the algorithm. There are 

three principal areas in which real DOP implementations must exercise technological 

fixes in order to approximate the “ideal” version; any DOP implementation must have 

some way of dealing with the space complexity of representing the set of all well-

formed subtrees, which is as we shall see below exponential in relation to string 

length, and the time complexity of the task of finding the most probable parse, which 

is exponential in relation to corpus size.  

Also, more worryingly, despite being capable of representing dependencies of 

indefinite distance, provided they are represented in the training corpus, DOP in its 

ideal form is also only an approximation to human linguistic performance, since DOP 

grammars are limited to Context-Free-ness, and cannot reliably represent the (weak) 

Context-Dependence of natural language. As we shall see below, there are both 

theoretically significant and (merely) technological fixes to this problem 

 

  4.2.1 Storing subtrees 

 

To see that the complexity of storing all subtrees is spatially exponential in relation to 

string-length, consider the subset of subtrees, for any given tree, rooted in the root 

node of the overall tree, in which there are either no non-terminal leaf nodes (i.e, the 

subtree and the tree are identical), or the only non-terminal leaf nodes are those 

which, in the whole tree, are the immediate mothers of terminal nodes. Each unit of 

the string, then, corresponds to a two-valued parameter of the subtree; it may either be 

deleted, leaving its mother-node as a non-terminal leaf-node, or it may be retained. 

These parameters are orthogonal to each other, so if there are N many units in the 

string, there will be 2
N
 possible subtrees of the specified type. Since this is a proper 

subset of the total set of legal subtrees, it follows that the size of the complete set of 

legal subtrees will also be exponential in relation to string-length. 

 

The first DOP implementations solved this problem simply by either limiting string-

length (Bod, pers com), or taking a random sample of the possible subtrees, thereby 
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approximating the ideal form of the algorithm, with some success. Goodman (2003) 

removed the need to store all subtrees by developing a method known as “PCFG-

reduction” (probabilistic context-free grammar), in which one generates a PCFG  in 

which (binarized) DOP subtrees are constructed “on the fly” during derivation. Each 

CFG rule is expanded into eight PCFG rules, which differ according to whether each 

of the nodes (mother, left daughter, right daughter) is accessible to the substitutions 

entailed in constructing a subtree or in combining subtrees. The probabilities of the 

rules are modulated to ensure that the aggregated probability of a reconstructed 

subtree is the same as the probability of the same subtree in DOP. I will not expand 

here on the technical details, as I use my own alternative (albeit similar) solution to 

this problem in implementing UDOG. 

 

4.2.2 Finding the most probable parse 

 

The problem of finding the Most Probable Parse (MPP) presents an even more serious 

challenge. To quote Bod (1998, p43); 

 

A sentence may have exponentially many parse trees and any such 

tree may have exponentially many derivations Therefore, in order to find the 

most probable parse of a sentence, it is not efficient to compare the 

probabilities of the parses by exhaustively unpacking the chart Even for 

determining the probability of one parse, it is not efficient to add the 

probabilities of all derivations of that parse. 

 

Sima’an (1996) has proven that no polynomial-time algorithm can 

deterministically find the most probable parse. Numerous approaches have been 

employed to approximate the MPP. Often, this is achieved by using heuristic to 

exclude classes of subtrees (Sima’an 1999, Way 1999). However, Bod (2003b) has 

demonstrated that any limitation on the range of allowable trees results in a loss of 

accuracy; thus the method of choice remains the simplest; Monte-Carlo sampling, 

wherein an arbitrarily large sample of random parses is taken, and the most frequent 

is selected as the system’s “best guess” at the most probable parse, with a chance of 

error that can be made arbitrarily small (Bod 1998, p.45). 
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4.2.3 Context-Dependence 

 

The problem of consistently dealing with context dependencies is of a somewhat 

different character than the problems above, in that context-freeness is “built in” to 

even the idealised form of DOP; any DOP subtree t may be (with information loss) be 

rewritten as context-free rewrite rules, of the form root(t) → frontier(t), as 

demonstrated in figure 4.1; 

 

 

Figure 4.1: A DOP subtree rewritten as a context-free rewrite rule 

 

Because DOP uses all corpus subtrees of any depth, any long-distance 

dependency can be modelled if it is present in the training corpus. However, it cannot 

generalise over such dependencies Several solutions in which the ideal form of DOP 

is changed in theoretically significant ways; using either Lexical-Functional Grammar 

annotations (Bod and Kaplan 1998) or Tree-Insertion (Hoogweg 2000); these methods 

are not our concern here. What I wish to note here is that another way around the 

problem exists, which I count as a “technological fix” rather than a theoretical 

development; that is, the problem may be ignored. Human language is only weakly 

Context-Dependent, and only a small number of natural language utterances in any 

given corpus will contain long-distance dependencies. Moreover, if since DOP can 

model long-distance dependencies that are present in its training data, if the subtrees 

containing such dependencies are in Zipfian (Zipf 1949) distribution across the 

training and test corpora, most such dependencies encountered in the test data will be 

present in the training data also. A recent trend in DOP research has been towards 

models that accord increasingly greater importance to simplicity, which is to say, 

shortness of derivation (i.e. using fewest subtrees) rather than likelihood. Bod (2003a) 

VP 

V 

Give 

NP NP 

DET N 

   a chance 

VP → Give NP a chance 
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describes SL-DOP (Simplicity-Likelihood), in which the simplest parse is selected 

from the n likeliest; for the optimal value of n, at n = 12, SL-DOP attained a state-of-

the-art F-score
15

 of 90.7%. This has since been bettered by Bod (2005), using DOP
+
, 

which simply selects the simplest parse and uses likelihood only as a tiebreaker when 

there is more than one simplest parse, with an F-score of 91.1%.. I attribute the 

success of these simplicity-oriented DOPs to the following two causes; 

 

1) Bod (2003b) notes that although very large subtrees tend to be rare and 

therefore have low probability, they nevertheless are very important to 

approximating the MPP, because they account for more of the completed tree, 

thereby reducing the number of substitutions in derivations, thus requiring 

fewer subtree-probabilities to be multiplied together. Therefore simplicity and 

likelihood will often yield the same result. 

2) Larger subtrees can capture longer-distance dependencies. By favouring larger 

subtrees SL-DOP and DOP
+
 capitalise better upon the long-distance 

dependencies present in the training data. 

 

4.2.4 Model-DOP, Simulation-DOP, Real-DOP? 

 

With the preceding remarks in mind, what are we to make of our hypothesis that DOP 

of some sort if broadly the correct hypothesis regarding how language is processed by 

human brains? What is the relationship between DOP in its ideal, “textbook” form 

(Model-DOP, to borrow Kroh’s distinction), its implementation in silico (Simulation-

DOP) and its hypothesised implementation in vivo (Real-DOP)? Unfortunately, the 

empirical work (here meaning laboratory experimentation on human subjects, rather 

than computational simulation) to test the validity of the claim that the human brain 

indeed implements DOP-like processes, let alone investigate what the 

implementational details of those processes is, has yet to be done. Indeed, most 

investigators, as in §1 noted above, are more interested in DOP for its potential as a 

technology, rather than as a model of human cognition. It is therefore unclear exactly 

                                                 
15

 The F-score is the standard measure of accuracy in parsing and other Natural Language Processing 

tasks; it is the harmonic mean of precission (percentage of elements in the output correct) and recall 

(percentage of elements in the correct parse found in output); for the equation for calculating the 

harmonic mean, see Chapter 6, footnote 18. 
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what epistemic (as opposed to merely pedagogic) work Model-DOP actually does. 

Recall for a moment the moral of the discussion of the Dennett/Gould debate in §4.1; 

that rather than being a type of process that one may find in the world, an algorithm is 

a mathematical/axiomatic specification whereby processes in the world may be parsed 

into “substrate” and “algorithm”. Here is it important to recognise that science is 

principally a strategic activity; by which I mean that epistemic and methodological 

decision-making in science is governed principally by the desire to be able to do more 

science.
16

 The idealisations made in algorithm-thinking allow us to generalise 

explanations over diverse phenomena, and it would be desirable if we were able to 

claim that Model-DOP is the core of the algorithmic specification that allows us to 

generalise explanations of the behaviour of Simulation-DOP to explanations of human 

linguistic behaviour; however, at best, this can only be part of the story. Because, as 

shown above, the parsing of the processes is a strategic move rather than an 

ontological commitment, different, even perhaps non-complementary, algorithmic 

specifications afford different generalisations that may themselves may prove to be 

complementary. We are therefore justified in asking whether alternative 

algorithm/substrate parses may afford novel generalisations; and in particular, 

whether some of the “technological fixes” present in Simulation-DOP are in fact also 

implemented in some form in Real-DOP. Bod (1998, p.49) notes, in a section on 

“Cognitive aspects of Monte Carlo disambiguation”, “It is unlikely that people 

disambiguate sentences by sampling derivations, keeping track of the error probability 

of the most frequently resulting parse.” However, in response to this, there are certain 

features of standard Model-DOP that we may wish to demote from algorithm to 

implementation; that is, the tacit assumption, with regard to the processing 

architecture, that exemplars are stored passively in memory and the recombination of 

subtrees into derivations and aggregation of derivations yielding the same trees takes 

place serially under a central processing system using a “worktable” of working 

memory. But an alternative story may be told wherein the neural representations of 

exemplars and the connections between them are themselves active computational 

units, and the brain computes multiple derivations in parallel as activation cascades 

                                                 
16

 Fully backing up this position would require a dissertation longer that the present one. Some of the 

claims are argued for in Cochran 2006b. Note that I this is not meant as any sort of cynical insinuation 

against scientists’ commitment to truth; rather, I hold that even the working definitions by which “what 

it is for a scientific claim to be true” is determined are themselves the product of strategic 

considerations. 
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through the interconnected neural representations of trees; in this case, the “seriality” 

feature of Simulation-DOP would be demoted to a implementational detail, whereas 

Monte-Carlo sampling would lose its status as a technological “fix” for approximating 

MPP, and become co-opted to the algorithm proper. What I am proposing here is not 

the construction of a new Simulation-DOP
17

, but rather a revised of Model-DOP 

whereby the relation if Simulation-DOP to Real-DOP may be reconsidered. Similarly, 

if such a parallelised DOP were to comprise a network in which the tree-nodes and 

connections were mirrored in the physical network, but supplemented with 

supernodes corresponding to node-labels (see figure 4.2 for a toy example of such a 

hypothetical model), Goodman’s (2003) PCFG-reduction method could be taken to 

model the probability of an actvation at node n being passed locally, to mother(n) or 

daughters(n), or via the “node-label” supernode to which n is connected, to some 

other node in some other 

 exemplar connected to the same supernode. In this way elements of PCFG-reduction 

(and elements of the Subtree Roulette method outlined in chapter 3; after all, the 

                                                 
17

 Which is not to say that I don’t have active-memory parallel derivation DOP simulations earmarked 

as a potential future project. 

Figure 4.2; An idealised toy example of a parallelised active-memory DOP 
parser; on receiving an activation, each node computes the probability of 
passing activation on to its mother, its daughters, or, via a supernode, to any 
other tree-node with the same node-label. In the figure, nodes and connections 
are shaded red to illustrate the passing of activation on receipt of the stimulus 
“You like pies”. With a larger corpus, such a model could generate multiple 
derivations in parallel 
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exemplars would, in this picture, be stored as whole trees) may be promoted from 

being implementational fixes to a computational problem, to being features of the 

algorithm – of Model-DOP. It is with this in mind that I now wish to turn to the 

question of how Simulation-UDOG may be parsed into algorithm and 

implementation. 

 

4.3 Reconsidering the present models 

 

Three aspects of the UDOG systems outlined in Chapter 3 are particularly in need of 

comment here; the postprocessing of the partial trees outputted by the generation 

process, wherein the largest unifiable subset of the output is determined and the 

unification of those trees given as the final output; the uses made of the crossmodal 

connections between the paired trees; and the master-slave system used in the visual 

parses.. 

 

  4.3.1 Unification 

 

The unification system must quite straightforwardly be admitted to be a technological 

fix for a shortcoming of both Naïve and Binding UDOG; it was my hope that in 

redefining the wellformedness rules for bimodal subtrees, so that a valid bimodal 

subtree may draw more than one unimodal verbal subtree from the training corpus 

tree-pair from which it is sourced, binding UDOG would mostly produce whole 

outputs in both modalities; this proved not to be the case, and the unification system 

was developed simply as a stand-in for the development of further versions of UDOG 

which I hope will eventually produce complete outputs, and therefore no longer need 

to unify outputs. The Unification process is itself cognitively implausible, not least 

because it is in fact a variation on the “maximum clique” problem in graph theory, 

which is known to be NP-complete (Karp 1972, Zuckerman 1993, Wikipedia 

contributors 2006). The maximal clique problem, given a graph in which only a 

subset of the possible pairs of vertices are connected by edges,  is the problem of 

finding the largest subgraph in which all vertices are connected by edges to all other 

vertices in the subgraph. If the output trees in the Monte Carlo set are each treated as 

one vertex, and edges are drawn between all only those pairs of output trees that are 

unifiable, it should be clear that this subtask of finding the maximum unifiable set is 
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equivalent to the Maximum Clique problem, and therefore the whole task of finding 

the largest unifiable subset is also NP-complete. A brute force algorithm was used to 

solve the problem, but the result was that the size of the Monte Carlo sample was 

severely restricted. Given the rapidity with which language users can compose novel 

sentences, it seems implausible that they should have to solve an NP-complete 

problem every time they try to do so.  

 

  4.3.2 Crossmodals 

 

The role of the crossmodals is somewhat less clear-cut. It is open to two principal 

interpretations; the first is that they are merely needed as an heuristic tool for 

excluding unlikely subtrees from the verbal derivation, and that this is in fact only 

needed because of the smallness of the training corpus; given a much larger body of 

data, and a much larger preferably also a much larger Monte-Carlo sample, the 

statistical correlation of visual and verbal subtrees in the training data would be 

enough to do the required work, and crossmodals would be unnecessary. The second 

is that crossmodals are in fact essential to guarantee the binding of syntactic/semantic 

relations. The Naïve and Binding versions of UDOG may be said to represent the first 

and second interpretations respectively. In this case, I would contend that the 

strategically optimal interpretation of the Simulation-UDOGs – regarding whether 

crossmodals ought to be included in Model-UDOG at all – cannot be prejudged a 

priori. As will be seen in the next chapter, the tests performed on Naïve and Binding 

UDOG were designed to help point towards a resolution of this ambiguity. 

 

  4.3.3 Master and slave nodes 

 

As noted in §3.1, some nodes in the visual parses exist in master-slave relationships to 

their immediate sisters; a the set of subtrees under a slave-node will always be exactly 

the same as the set of subtrees under its master-node, as illustrated in figure 4.4. The 

purpose of this is to ensure that a group of identical objects in the visual input - say, 

three adjacent dots - will be preferentially parsed so that their lowest common 

ancestor-node will have three immediate daughters, two of which are slaves of the 

other; the point being that such a set of nodes could only be used to parse a group of 

three identical objects, and will be crossmodally connected to verbal subtrees 



 49 

containing the syntactic apparatus necessary for saying “three *N* -s”; the sort of 

bimodal subtree in question is illustrated in figure 4.3 below; 

 

 

Figure 4.3; a bimodal subtree used in parsing and describing groups of three identical objects 

 

 

Figure 4.4; substitution at a master node. 

 

Is this to be taken as part of Model-UDOG or not? The position here is slightly 

more complicated than in the previous cases, What must be made clear here is that the 

decision to use the visual modality as the source of meanings for the present models 

was purely pragmatic, and should not in any way be taken to imply a “picture theory” 

of meaning (Wittgenstein 1974); the particular form of the stimuli, of lines and dots, 

was chosen in order to allow for very simple, one-dimensional, concrete stimuli, and 

for the concepts required for their description to require no deeper analysis of the 

visual input than a surface parse. It was necessary to allow identical visual objects to 

      X 

master 

Y 

     X 

slave 

     X 

slave 

X 
= 

      X 

master 

Y 

     X 

slave 

     X 

slave 

      X 

master 

Y 

     X 

slave 

     X 

slave 

NP 

NUM 

N 

ROOT 

three -s 

PL 

NN 



 50 

occur in (subitizable) groups, crossmodally linked to descriptions containing numeral 

terms, because otherwise it would not have been possible to generate a large enough 

set of diverse possible stimuli to train and test the systems on. However, this required 

a slight violation of the original premise, of sticking only to surface parses in the 

visual modality for meaning. However, the present models are to be seen as pilots for 

more sophisticated versions, capable of combining meanings from diverse cognitive 

modalities. The slave-master system was implemented to get the very little amount of 

numerical cognition required for present purposes, whilst avoiding the need to 

integrate into the model a full system of Data-Oriented Arithmetic/Numeration as a 

third cognitive modality, desirable though that may be in the long run. Probably for 

present considerations, it should be regarded as a technological fix – a piece of the 

implementation, rather than the algorithm proper. But it remains an unanswered 

question, if, at a later stage Data-Oriented Arithmetic/Numeration were to be 

modelled, how much would vision and language be implicated? Would something 

like the slave-master system have to be re-incorporated into surface visual processing 

as part of that model? That is as yet unknown. 
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Chapter 5 

The Tests 
 

Two sets of tests were conducted on both UDOG systems; a general test of their 

abilities to describe novel stimuli, and a “wug” test specifically geared to test their 

ability to generalize syntactic patterns over novel vocabulary items. The form of the 

tests is detailed below, and the results are given in the following chapter. 

 

 5.1 General 

 

For the general test, a 120-item corpus was automatically generated using a java script 

named “CorpusMonkey”; the CorpusMonkey was loaded with four basic visual 

objects and their names, detailed in table 5.1 below. 

 

Name Form 

“dot” 1 pixel 

“dash” Line of 3 pixels 

“short line” Line of 5 pixels 

“long line” Line of 10 pixels 

Table 5.1; basic objects used in the general test. 

 

The CorpusMonkey then generated all 120 possibilities for images consisting 

of either one group of one, two or three identical objects, paired with a description of 

the form “X”, “two X-s” or “three X-s”; or two such groups, provided each group is 

comprised of different types of basic object, paired with descriptions of either the 

form “X to the left of Y”, or “Y to the right of X”. Which form of description was 
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employed was selected at random, with equal probabilities. For examples of real 

CorpusMonkey generated tree-pairs used in tests, see figure 3.2 above, or figures 5.1 

and 5.2 below; 

 

Figure 5.1 A CorpusMonkey generated tree-pair; all crossmodals are shown. 

 

Figure 5.2 A very simple CorpusMonkey generated tree-pair; all crossmodals are shown. 

 

 Both images and descriptions were generated with annotations for tree-

structure, node labels and crossmodals from templates programmed into the 

CorpusMonkey. These were divided into six random subdivisions, and the test was 

performed in six stages, in each stage using a different subdivision for test data (from 

which only the unanalysed, unannotated images were presented) and the remainder 
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were presented as training data. In the way, the models were tested on the entire 

dataset, all as unseen data. The purpose of this test was to assess the models’ general 

performance on unseen data. 

 

 5.2 Wugs 

 

A second batch of tests was run using an additional basic vocabulary item; the “wug”, 

which was simply a seven-pixel line. Here, the training data comprised all six 

subsections of the main test data, plus twelve identical exemplars of the form shown 

in figure 5.3 below. The new word and object, “wug”, was only present in the training 

data in these twelve exemplars. 

 

Figure 5.1; additional exemplar used in “wug” test. Note that the set of crossmodals shown 

here is complete. 

 

The test data comprised 72 stimuli in which all the possible arrangements of 

groups of one, two or three wugs placed to the left or right of one, two or three dots, 

dashes, short lines or long lines. As with the general test, the test stimuli comprised 

only the unanalysed image, with no tree-structure or annotation. The purpose of the 

test was to see whether the models could generalise the syntactic patterns of the 

standard training data to the novel vocabulary item. 
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Chapter 6 

Results 
 6.1 Measures 

 

In both tests the output for each stimulus of both models was manually scored 

according to four measures. The measures used are tabulated in table 6.1. All 

measures were taken as percentages; 

 

Measure Description 

Object (O) Judged on the identification of the correct type or types of basic 

object are named. Because, in some outputs, the number of types 

named did not match with the number of types present in the 

stimulus, this was judged as an F1-score; that is to say, as the 

harmonic mean
18

 of precision (the proportion of correct elements 

in the output) and recall (the proportion of elements in the input 

correctly named in the output). If an element was correctly named 

more than once, only the first instance was counted. Half points 

were awarded where; 

a. A dot, dash or wug preceded by “long”, “short” or 

“ADJ”. 

b. A long or short line was named with the correct 

adjective but “NN”, “N” or “ADJ” instead of “line”, or 

with “ADJ line”, or “line” with no adjective. 

                                                 

18
 The harmonic mean or x and y is given by the equation 

yx

xy
M

+
=

2
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Number (N) Judged according to whether the named objects were correctly 

numbered. Again, this was expressed as an F1-score. 

Relation (R) If the image contained only group of same-type basic objects, or a 

single basic object, full marks on this measure were awarded for 

naming only one object type, and no “to the left of” or “to the 

right of” term, and zero marks are awarded otherwise. If two types 

of basic object are present in the stimulus, full marks are awarded 

if the only two types are named and the left/right relationship 

between them is correctly described. Partial marks are given if a 

correct relationship description is present but more than two 

tokens of object-group namings are present, because in this case 

the system has in such a case had extra chances to get it right. 

Grammaticality 

(G) 

A purely subjective measure of grammaticality and intelligibility. 

Table 6.1; basic objects used in the general test. 

 

An overall score was then given as the average of all four measures, with 

equal weight given to all. Where the Monte-Carlo sample was tied between more than 

one but fewer than twenty-one largest unifiable subsets, the average of all tied outputs 

was taken. Where more than twenty unified subsets were tied, a sample of twenty was 

taken and averaged. 

To give the reader more of a feel for the measures taken, I will present two 

real examples of how scores were computed; 

 

Example 1 

Scores; 

Input = ■■■■■■■■■■     ■     ■ 

Output = three line to the dot of two long dot  

Object Input contains two object groups; a long line and dots. Long 

line is partially named, as “line”, and so scores half marks. 

Dots, in “the dot”, are correctly named. Third named group, 

“two long dots” is spurious. Precision is 1.5 out of 3 = 50%, 

recall is 1.5 out of 2 = 75%, harmonic mean = 60% 

Number Long line is erroneously numbered, dots group is erroneously 

numbered in second named group, “the dot”, but correctly in 
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third, “three long dots”. Precision is 1 out of 3 = 33.33%, recall 

is 1 out of 2 = 50%, harmonic mean = 40% 

Relation No relation is named. 0% 

Grammaticality Phrase makes no sense. 0% 

Overall Average score = 25% 

Table 6.2; scoring for a poor output; real example taken from general test output. 

 

Example 2 

Scores; 

Input =  

■■■■■■■■■■    ■■■■■■■■■■   ■■■■■   ■■■■■    ■■■■■ 

Output = three short lines to the right of two long line 

Object Short and long lines correctly identified, no spurious outputs 

100% for both precision and recall, harmonic mean = 100% 

Number Short and long lines correctly numbered, no spurious outputs 

100% for both precision and recall, harmonic mean = 100% 

Relation Relation correctly identified. 100% 

Grammaticality Phrase is perfectly intelligible and overall well-formed; 10% 

penalty for missed plural. 90% 

Overall Average score = 97.5% 

Table 6.3; scoring for a good output; real example taken from general test output. 

 

6.2 General 

 

The results of the general test on both systems are summarised in table 6.2 below. 

 

 Object Number Relation Grammaticality Overall 

Naïve 54.48% 33.88% 22.70% 28.42% 36.62% 

Binding 76.51% 71.70% 53.99% 57.60% 68.52% 

Table 6.4; Performances of the naïve and binding UDOG systems on the general test. 

 

Eyeballing the data, the overwhelming impression is that the binding system 

far outperforms the naïve system on all measures; overall, the binding performance is 

almost double the naïve, and on individual measures the binding system more than 

doubles the naïve score on all counts except Object, where it is still approximately 
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40% better. It is notable that Object is the only metric for the most part not dependent 

on word-ordering considerations. It is also of interest that, in comparing the three non-

subjective scoring criteria (Object, Number and Relation), for both systems, the 

easiest, Object, was that which depended on the shortest-distance syntactic/semantic 

relations (between noun and adjective within an NN group, if any syntactic relation 

was present at all), and the hardest was that which depended on the longest-distance 

syntactic/semantic relationship, spanning the whole noun phrase. A 2x4 mixed-design 

ANOVA was conducted to test the significance of the differences in table 6.2. 

 

 F Significance. at p 

System 67.71 <0.001 

System * Scoring Criterion 11.31 <0.001 

Scoring Criterion 93.79 <0.001 

Table 6.5; 2x4 mixed design ANOVA 

 

The differences between the two systems, four scoring criteria, and their 

interaction, were all found to be highly significant at p <0.001. This finding was 

investigated in more detail, comparing the individual scoring criteria (within systems) 

using pairwise t-tests (table 6.3) and the systems performance on each scoring 

criterion individually using independent samples t-tests (table 6.4). 

 

 t Significance. at p 

Object – Number 5.92 <0.001 

Object – Relation 10.88 <0.001 

Object – Grammaticality 9.15 <0.001 

Number – Relation 6.31 <0.001 

Number - Grammaticality 5.10 <0.001 

Naïve 

 

Relation - Grammaticality -2.62 0.01 

Object – Number -5.14 <0.001 

Object – Relation 6.51 <0.001 

Object – Grammaticality 5.45 <0.001 

Number – Relation 9.07 <0.001 

Binding 

 

 

 

binding Number - Grammaticality 8.84 <0.001 
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(cont’d) Relation - Grammaticality -1.31 0.193 

Table 6.6; Pairwise t-tests for significance of difference between types of measure 

 

 t Significance. at p 

Object 7.143 <0.001 

Number 11.124 <0.001 

Relation 5.656 <0.001 

Grammaticality 5.489 <0.001 

Table 6.7; Independent samples t-tests, for significance of difference between systems 

 

All differences between types of measure proved highly significant, at 

p<0.001, except for between Relation and Grammaticality, which remains significant 

at p<0.05 for Naïve UDOG, and does not attain significance for Binding UDOG. All 

these results were double checked using non-parametric tests (Friedman tests for the 

pairwise t-tests, a Kruskal-Wallis test for the independent samples t-test). 

 

 6.3 Wugs 

 

The results of the Wug test on both systems are summarised in table 6.5 below 

 Object Number Relation Grammaticality Overall 

Naïve 50.65% 29.31% 8.01% 14.54% 25.62% 

Binding 79.45% 94.62% 69.06% 66.00% 77.28% 

Table 6.8; Results from the Wugs test 

 

Eyeballing the data, the difference between the two systems seems to be even 

more marked, most notably in Relation, where Naïve UDOG performs at a fraction of 

its score on the general test, whereas Binding UDOG has actually improved. Indeed, 

the pattern is found across the board, that Naïve UDOG becomes less accurate faced 

with a vocabulary item for which it has no context, whereas Binding UDOG performs 

better than in the general test. 

Theoretically speaking, what is of greatest interest here is effect of the “wug” 

condition on performance, as compared to the general test (or, here, the “no-wug” 

condition), in relation to the Relation score, since the binding of elements into correct 

semantic relations was quire explicitly what the binding system was formulated to do, 
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and to the Overall score. A 72-item random sample was taken at random from the 

general test dataset, so that 2x2 mixed ANOVAs could be performed, between 

“system” and “wugs/no-wugs”, for the Relation score (table 6.6), and the Overall 

score (table 6.7). 

 

 F Significance. at p 

System  237.861 <0.001 

System * Wugs 6.422 0.12 

Wugs 0.483 0.488 

Table 6.9; 2x2 mixed design ANOVA on Overall scores 

 

 F Significance. at p 

System 124.054 <0.001 

System * Wugs 0.194 0.047 

Wugs 93.79 0.66 

Table 6.10; 2x2 mixed design ANOVA on Relation scores 

 

No main effect, in either case, was found for Wugs; which is unsurprising 

given that the difference between wugs and no-wugs in the two systems pull in 

opposite directions. In both cases, significant interaction effects were found for 

System and Wugs, at p<0.05, and highly significant results were found for System, at 

p<0.001. The effect of the Wugs condition was investigated in greater detail using 

independent t-tests (table 6.8) 

 t Significance. at p 

Naïve 3.446 0.01 Relation 

Binding -2.217 0.028 

Naïve 3.15 0.002 Overall 

Binding 168.395 0.027 

Table 6.11; independent t-tests on the effect of the “wugs” condition on relation scores and 

overall scores for both models. 

 

In all cases, the effect of the Wugs parameter is found to be significant at 

p<0.05. It is no surprise that the naïve version suffered in the wug test; it relies wholly 

on the contexts given in exemplars to bind syntactic elements within semantic 
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relations, which it was expressly denied in the wug test. The surprising result is that 

that the improvement in performance in Binding-UDOG also proved significant. The 

implications of this and all the above results will be discussed in the next chapter. 
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Chapter 7 

Implications 
The simulations described in the preceding chapter amount to a limited test of a pilot 

for a larger programme of research. In cognitive science, for any genuine empirical 

conclusions to be drawn from a computational model, it will not suffice that the 

model score well on a quantitative test, or even successfully predict findings already 

present in the experimental literature; it must make new predictions, that must then be 

confirmed by new experiments. As yet, UDOG has not attained the level of 

sophistication necessary to make empirical predictions, and so it would be premature 

to draw out conclusions regarding human cognition from the present results. 

However, Binding-UDOG at least must be accounted a success, and a successful pilot 

study justifies and suggests directions for future research. 

 

7.1 Generation 

 

First of all, Binding-UDOG shows, for the first time, that the Data-Oriented approach 

can be applied to generation tasks, and that a Data-Oriented model can integrate more 

than one cognitive modality. However, the system is in its infancy, and it is of greater 

practical import to draw implications for future work out of the details of the 

successes and the shortcomings of both models. 

 

Recall from §4.3 the question left open regarding the boundaries of the 

algorithm in relation to the implementation; the role of the crossmodals in the model. 

It was remarked that we may simply wish to regard the crossmodals as a technological 

fix for a problem of data-sparsity; that it may be that with a richer dataset, DOG 

would be able to solve the problem of syntactic binding (of ensuring that elements, 
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such as noun phrases, within a sentence or phrase are bound into the position 

corresponding to their semantic role) on the strength of the statistical regularities of 

the training data alone. On the other hand, it may be that we wish to treat them as a 

central feature of the algorithm proper – that DOG in fact cannot adequately model 

compositional language without the level of coupling between signifying and 

signified exemplars found in UDOG, wherein substitution operations are of 

complexes of crossmodally connected root-nodes at crossmodally connected 

complexes of leaf-nodes, rather than of single substitutions of roots and leaves. It 

should by now be clear from the vastly superior performance of Binding compared to 

Naïve UDOG that the latter is the correct answer. The Wug-Test, in particular, was 

especially designed to probe the two systems’ ability to handle this problem; that 

Naïve-UDOG performed significantly worse, while Binding-UDOG in fact performed 

significantly better, serves for as clear an indication as could be hoped for that the 

overall difference in their performance is substantially accounted for by Naïve-

UDOG’s inability to handle binding. However, it remains to be seem whether a Naïve 

approach might be adequate for modelling interactions between non-linguistic 

cognitive modalities. 

 

Although Binding-UDOG’s scores are eminently satisfying for a first pass at a 

novel algorithm, there is much room for improvement, as a such, it would be useful to 

examine in detail they system’s most common major error, shown in table 7.1 below: 

 

 

Scores; 

Input = 

■■■■■■■■■■     ■■■■■■■■■■     ■■■■■■■■■■     ■■■ 

Output = three lines to the dash of three lines 

Object “Dash” and correctly identified, “long lines” partially 

identified as “lines”, plus one spurious output. 1.5 out of 3 = 

50% for precision and 1.5 out of 2 = 75% for recall; harmonic 

mean = 60% 

Number Both non-spurious elements correctly numbered. 2 out of 3 = 

66.67% for precision and 2 out of 2 = 100% for recall, 

harmonic mean = 80% 

Relation No relation identified. 0% 
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Grammaticality Makes no sense. 0% 

Overall Average score = 35% 

Table 7.1; An example of the most common error of Binding-UDOG; taken from General Test 

run. 

 

This type of error, of the form “Concrete-NP(X)
19

 to the Concrete-NP(Y) of 

Concrete-NP(X)”, accounts for over 90% of those outputs made by Binding-UDOG 

on the General Test which scored less than 50% overall. It cannot be dismissed as an 

artefact of the unification process, whereby no derivations contain two instances of 

Concrete-NP(X), but the unification process combines trees with the Concrete-NP(X) 

in either leftmost of rightmost position and an incomplete branch on the other side to 

make trees with Concrete-NP(X) on both sides; 11 derivations were found in the 500 

that generated the above output with an NP containing “line” in both positions, as in 

the following example; 

 

*DET* long line to *DET* *N* of a long line 

 

It is worth noting that, given the form of trees generated by the CorpusMonkey 

script, in any bimodal tree where two groups of objects are in a left-of/right-of 

relation, as in figure 3.2, one of the visual tree nodes (directly above one of the groups 

of same-type objects or the other will be crossmodally linked to three of the five 

nodes in the verbal tree labelled “NP”. Figure 7.1 shows the same tree-pair as figure 

3.2, but with a different set of crossmodals shown. 

                                                 
19

 That is to say, an NP of the form DET/NUM (ADJ) dot/dash/line (PL). 
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Figure 7.1: Tree-Pair taken from the General Test Treebank, with an incomplete set of 

crossmodals shown. 

 

Note that the NP nodes over “the left” and “the left of two dots” cannot both 

form head-nodes of verbal subtrees in a single bimodal subtree according to the 

wellformedness criteria  stipulated for Binding UDOG in §3.3 (criterion 5, 

specifically), whereas either can co-occur with the NP node over “a short line” as 

head-nodes of verbal subtrees in a bimodal subtree, as in figure 7.1: 

NP 

NP 

PP 

NN DET 

DET PREP NP N 

ADJ     N 

PREP NP 

PP NP 

NUM NN 

N 

ROOT 

A 

Y 

X 

X Y 

X 

short to line the left of two dot -s 

PL 

ROOT 
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Figure 7.2: A legal bimodal subtree of Binding-UDOG of the tree-pair in figure 7.1, with two 

verbal subtrees headed with NP nodes. 

 

Note that where Binding-UDOG produces a bimodal subtree like that in figure 

7.2, it has no way to determine which of the two NP-labelled substitution sites should 

receive which verbal subtree, and must select randomly. One possible solution to this 

problem would be to attach labels to crossmodals, so that those that correspond to 

concrete reference relations (in figure 7.2, the purple crossmodal) and those that relate 

to part-whole relations (the red crossmodal) are distinguished, guaranteeing that a 

verbal subtree the root of which is joined to the root of the visual subtree by a 

concrete crossmodal can only be substituted at a substitution site joined to the visual 

substitution site by a crossmodal of the same kind. 

 

7.2 Object-naming in the one-word stage  

 

One outcome of the tests performed on the two UDOG systems was that Binding 

UDOG would actually perform better on the Wug Test than on the General Test; I had 

NP 

NN DET 

DET N 
ADJ     N 

NP 

A 

X 

line 

left 

ROOT 
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instead expected that it would either show no significant effect, or that its 

performance would be decremented, either to the same degree as the Naïve system, 

indicating that crossmodals should be seen as a technological fix for sparse data, or to 

a significantly less degree, indicating that crossmodals should be seen as an essential 

feature of the algorithm. However, it is easy to figure out just how the Wug condition 

helped Binding UDOG along. One common type of error is illustrated in a real 

example taken from Binding-UDOG’s performance on the General Test, in table 7.2 

below; 

 

 

Scores; 

Input =  ■■■■■     ■     ■      ■ 

Output = a dot *PL* to the right *PREP* a short line to the 

line of two *NN*  

Object “Dot” and “short line” correctly identified, plus two spurious 

outputs 2 out of 4 = 50% for precision and 2 out of 2 = 100% 

for recall, harmonic mean = 66.67% 

Number One short correctly numbered, three dots not correctly 

numbered. 1 out of 4 = 25% for precision and 1 out of 2 = 50% 

for recall, harmonic mean = 33.33% 

Relation Relation correctly identified; score halved, however, because 

the output contains two potential loci for relation terms. 50% 

Grammaticality First half is more or less sensible and grammatical, second half 

is gibberish; 10% penalties plural marker ad preposition in first 

half left unrealised. 30% 

Overall Average score = 45% 

Table 7.2; real example of common error from the output of Binding-UDOG on the General 

Test 

 

What has happened here is that structure for the relation expression has been 

imported into the output from two separate sources; one coming with material 

contributing to the description of the single short line, the other coming with the what 

I presume to be an abortive attempt at describing two or the three dots; in both cases, 

the object-and-number describing material came bound up with relation-describing 

material, and these together caused a confused and ill-formed output. In the Wug Test, 

the description of the wug cannot come with such extraneous material, since the only 
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exemplars associating the word “wug” with images of wugs contain nothing more 

than a single wug, described as “a wug” (see figure 5.1). 

 

This suggests an interesting hypothesis regarding First Language Acquisition, 

to be followed up if further work on UDOG proves successful. Binding UDOG 

benefits notably from having access to isolated examples or words paired with their 

referents. Bates, Bretherton and Snyder (1988) outline a “two-strand” theory of 

individual differences in First Language Acquisition, wherein two main learning 

strategies employed by infant language learners; “Strand two” is characterised by 

slow vocabulary growth and a tendency towards holophrases in which multi-word 

utterances are used as unanalysed wholes, but of greater interest here is “Strand one”. 

Below is Bates et al’s (ibid.) full tabulation of the key features of “Strand one” 

semantic learning; 

 

• High proportion of nounsin first 50 words 

• Single words in early speech 

• Imitates object names 

• Greater variety within lexical categories 

• Meaningful elements only 

• High adjective use 

• Context-flexible use of names 

• Rapid vocabulary growth 

Bates et al, ibid. 

 

If some mechanism like Binding UDOG does indeed form the basis of human 

linguistic production, might it be that the comparatively rapid vocabulary learning of 

“Strand one” learners, and their ability to use names context-flexibly, owes to their 

creation of exemplars of a noun linked to its referent, isolated from context, just like 

the “wug” exemplars in the Wug Test in §§5.2 and 6.3, which are then available to the 

child as part of her exemplar-base. This suggests a direction for the empirical testing 

of the UDOG model against human subjects. 
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7.3 Crossmodals, network structure and access consciousness 

 

One major direction for future UDOG research will be to expand the model to 

encompass multiple cognitive modalities, so that a single linguistic output can bind 

together meanings drawn from a diversity of modalities which approximates the 

“saturatedness” of real human language use in naturalistic conditions. I wish to, rather 

speculatively, draw out one possible consequence if such developments of the model 

were to prove successful. 

 

 Block (1995) distinguishes two understandings of consciousness; “Access-

Consciousness” (A-Consciousness), characterised as the availability of cognitive 

content for report, reasoning and the control of behaviour, and “Phenomenal 

Consciousness” (P-Consciousness); the qualitative “what-it’s-like” of experience, 

which may well be, as Chalmers (1996) postulates, beyond the reach of scientific 

investigation altogether, or else is, as Dennett (1991) holds, strictly reducible to A-

Consciousness. Disavowing any consideration of the reducibility or otherwise of P-

Consciousness, it may be that “saturated” UDOG models of the type suggested above 

may offer a the basis of a novel theory of A-Consciousness, and the role played 

therein by language, or rather, by particular exemplars in the language modality. 

 

One of the most interesting developments in Graph Theory in the last decade, 

with applications in as diverse fields as Physics, Urban Planning, Genetics, 

Neuroscience and Sociology, is the theory of Small World Networks (Watts and 

Strogatz 1998). A Small World Network is a random graph in which the considerable 

majority of nodes have only local connections (which in network terms, means only 

having connections where, if x is connected to y and y is connected to z, there is a high 

probability that x will also be connected to z), but there exist a small number of 

“supernodes” that have very many of non-local connections. The consequence of this 

network structure is that it is possible to go from any node in the network to any other 

in a small number of moves. This of course is not the first time that an application of 

Small World Networks to cognition and consciousness has been thought of; see 

Roxin, Reicke and Solla (2004), for example. What I do wish to offer as novel is the 

suggestion of a network specifically of exemplars, connected intramodally at potential 

substitution sites, but also crossmodally. Doubtless crossmodal connections also exist 
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between non-linguistic exemplars (between vision and motor control for instance), but 

what is unique to human consciousness is the role played by linguistic exemplars as 

supernodes, giving us a more integrated form of A-Consciousness than any other 

species. What I am proposing here is not a psycholinguistics-style boxes-and-arrows 

diagram with the “language box” in the middle, but rather a decentralised network in 

which concrete exemplars across all modalities of cognition are joined up, mostly by 

local connections, but with a population of supernodes which join up exemplars from 

many modalities, and the majority of these supernodes happen to be linguistic 

exemplars. 
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Chapter 8 

Conclusions 
The achievement of the model itself is small, but what it has shown to be possible – 

generation and multimodal integration under a Data-Oriented framework, represent 

considerable advances for Data-Oriented approaches to Cognitive Science and 

Artificial Intelligence. On the webpage for the his new Cognitive Systems research 

group at the University of St. Andrews
20

, Bod (2006a) proposes the goal of the new 

group to be “to develop one system that unifies different modalities” (author’s 

emphasis); certainly the models of language, music and reasoning in Bod (2005) show 

that unimodal DOP models can be used to unify cognitive modalities under a single 

formalism; but the programme of multimodal Data-Oriented research that the present 

work warrants, if successful, offers a way to integrate different modalities within a 

single model. 

                                                 
20

 Which I will be joining in September 2006.  
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