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AbstratThis thesis investigates the omputational properties of a lass of substrutural aluli,those loated between the non-assoiative Lambek alulus and the impliational fragmentof intuitionist logi, whih have been used for linguisti desription and parsing. The in-vestigation is set in the ontext of labelled analyti dedution. Parsing in Lambek aluliand labelled approahes to generalised dedution in most substrutural logis have both beenshown to be ostly, and in fat intratable in many ommon appliations. In this thesis wedevelop automated dedution mehanisms designed to keep omplexity of ategorial parsingunder ontrol while preserving the levels of uniformity and overage one �nds in labelleddedutive systems.First, we de�ne the hierarhy of aluli whose omputational treatment is addressed inthe thesis, review the main issues and linguisti motivations behind proof-theoretial featuresof eah alulus and desribe the orrespondene between proofs and semanti interpretationwith respet to lambda terms.Next we introdue the rules and algorithms of a dedutive system based on analytitableaux whih overs the whole hierarhy of ategorial aluli presented. Completeness andtermination results are shown. We then impose syntati onstraints on the aluli andelaborate label uni�ation proedures aimed at limiting the system's omplexity. Alternativeproof-searh strategies are disussed and a tehnique for reovering syntati struture fromtableau derivations is developed.In the last hapters we ompare our system with other methods used in ategorial de-dution, disuss design issues, heuristis and extensions, and link ategorial dedution withtheorem proving in reently developed logis of information ow suh as hannel theory.
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Chapter 1IntrodutionIn this thesis we disuss analyti dedution tehniques for automated theorem proving inategorial logis and its tailoring to perform parsing in ategorial grammars. The disussionis set in the framework of labelled tableaux and is intended as a ontribution to the study ofalgorithmi properties of labelled ategorial systems.This is, to our knowledge, the �rst attempt to apply tableau tehniques to this kind of task.Tableau and labelled dedution have been used in theoretial approahes to substrutural log-is and automated dedution tehniques have previously been employed in ategorial grammarparsing. However, one enounters severe omplexity problems when trying to implement gen-eral labelled systems or develop theorem provers to over the variety of aluli that ategorialgrammar writing seems to demand. The work presented here seeks to provide a feasible ap-pliation for the former and an environment for the implementation of the latter. The thesisis foused on issues whih are spei� to ategorial dedution but whih are also of interestfor theorem proving tasks in the domain of information-oriented logi.A full, general deision proedure is de�ned whih enables us to over a whole hierarhy ofategorial aluli via setting of algebrai onstraints, without having to implement separateprovers for eah alulus. Tehniques whih guarantee tratability in linguistially-relevantategorial subsystems are presented and tested in pratie at the level of implementation.
Introdution 3Comparisons with other approahes to ategorial dedution are made and the requirements ofthis kind of system are disussed. Towards the end of the thesis the issue of eÆient ategorialparsing develops into an aount of type polymorphism within the tableau framework andan analysis of the onnetions between theorem proving in Lambek aluli and more generallogis of information ow.In what follows we overview the history of ategorial grammar, situate the aims of this thesiswith respet to previous researh and desribe its struture to set the sene for later hapters.1.1 A brief historial exursionThis setion is meant as brief overview of the developments in the �eld ategorial grammarand ategorial logis over a period of almost 70 years. The reader is referred to (van Benthem,1986; van Benthem, 1991; Buszkowski, 1986) for more detailed disussions and pointers tothe relevant literature.Categorial grammar (CG for short) is an approah to language desription in whih all synta-ti information is enoded in the lexion. Lexial items are put in orrespondene with logialtypes whose struture essentially determines whih ombinations are lassi�ed as grammatialand whih are ruled out. This approah has its origins in logial semiotis and an be traedbak to Frege and Husserl. The �rst formalisations of ategorial grammar are due to (Aj-dukiewiz, 1935) | whih introdues an algorithm to deide well-formedness of an arbitrarystring in Lesniewiski's system of \semantial types" | and (Bar-Hillel, 1953). We refer tothem as the AB alulus. The symbols involved in these systems reeive interpretations whihare independent of any partiular language and therefore the grammar may be regarded asa form of propositional alulus. Still stronger similarity with the propositional alulus isexhibited by the logi introdued by Lambek (Lambek, 1958) whih extends the dedutiveapparatus of the AB alulus up to a logial system whose presentation resembles that ofintuitionist logi.After these pioneering works ategorial grammars reeived little attention in the formal lin-



Introdution 4guistis ommunity for many years | then dominated by Chomsky's transformational ap-proah. With the advent of Montague's semanti enterprise (Montague, 1974; Dowty, 1988),CG started to attrat more researh (Geah, 1972), experiening a strong revival in the 80'swith the works of Ades and Steedman (Ades and Steedman, 1982; Steedman, 1987), Flynn(Flynn, 1983) Buszkowski and van Benthem (van Benthem, 1986; Buszkowski, 1986) amongothers. Many variants of the original systems were proposed to takle di�erent phenomena.The renewed interest in substrutural logis | i.e logis whih treat formulae a \resoures"and are sensitive to, for instane, the order of premises in a dedutive step | brought aboutby linear logi (Girard, 1987) within theoretial omputer siene added a new impulse tothe stritly logialist branh of CG. Linguisti motivations for aluli situated beyond theoriginal Lambek alulus in dedutive power were pointed out (van Benthem, 1991) and sev-eral versions of Lambek aluli reeived �ner-grained mehanisms for strutural ontrol, suhas the ones proposed by the Edinburgh-based group (Barry and Morrill, 1990). These haveahieved a stage of maturity suh that omprehensive presentations of CG systems overingsubstantial aspets of natural language and their onnetions with logi and type theory arestarting to appear (Morrill, 1994; Carpenter, 1997).These developments situate CG within the �eld of new uni�ed approahes to logi, omputa-tional and ognitive proesses based on a notion of information ow whih enompasses worksin semantis (Barwise, Gabbay, and Hartonas, 1995; Allwein and Dunn, 1993), proof-theory(Gabbay, 1994) and informatis (van Benthem, 1996; Girard, Lafont, and Regnier, 1995).1.2 Aims of this thesisOf the so alled \lexialist" approahes to grammar desription, ategorial grammar seemsto be one whih best enompasses the elements of the paradigm in its purest form:� haraterisation by types at the lexial level� funtor-argument struture� lear and elegant ompositional syntax-semantis interfae

Introdution 5It has also been laimed that CG o�ers the possibility of deoupling the theory of parsing fromthe theory of ompetene. Furthermore, if one narrows the range of ategorial systems downto the family logis started by Lambek (Lambek, 1958; Lambek, 1961) and augmented by thelogis derived from those by means of dedutive extensions towards intuitionist systems onealso ahieves a pure realisation of the paradigm of \parsing as dedution" (Shieber, Shabes,and Pereira, 1994). With only minor additions theorem proving in Lambek logis beomes(equivalent to) parsing in ategorial grammar. In spite of this, although linguisti researhhas seen onsiderable theoretial ativity in the �eld of ategorial grammar1, this researhhas failed to have the impat one would expet from a framework with suh harateristisin the mainstream of omputational linguistis2. We believe one of the reasons for this tobe the disproportionate amount of researh e�ort invested into the logial properties of thesealuli in omparison with the researh into the omplex automated dedution tehniqueswhih these aluli seem to demand. This thesis is the result of our e�orts to takle the latterissue in a systemati manner.There are several systems of CG. The ones in whih we will be mostly interested here arethose developed around the original Lambek alulus and its non-assoiative variants. We willnot deal, for instane, with ombinatory ategorial grammar (CCG) or weaker ombinatorysystems suh as the one introdued by the pioneering works of Ajdukiewiz and Bar-Hillel.All aluli addressed in this thesis share the property of being desribable by Gentzen sequentsystems whih enjoy a ut-elimination property and therefore provide an e�etive method fordeiding grammatiality. A number of aluli an be obtained from the original Lambekalulus by varying the degree to whih the logi is sensitive to order and quantity of strings.From these, other aluli an be obtained by re�ning the onstraints on order and number evenfurther and/or ombining them into more expressive, hybrid frameworks. The CG ommunitydoes not seem to have reahed a onsensus regarding the degree of suh resoure sensitivityneeded in natural language desription or whih hybrid framework would be the most adequatefor the task. There is however an agreement, or at least a ommon working hypothesis, as1In addition to the fat that the ategorial approah has inspired inreasingly more popular theories suhas HPSG, whih present themselves as alternatives to Chomsky's GB framework. Unlike GB, both HPSG andCG treat dependeny in a purely non-transformational way.2We refer mainly to systems whih preserve the ore logial harateristis set forth in (Lambek, 1958) asopposed to systems based on purely ombinatory tehniques.



Introdution 6to the orrespondene between ertain logial (strutural) operations and ertain naturallanguage phenomena. In this thesis we will fous on these ommon logial features ratherthan on a partiular hybrid system.In his reent work on linear logi programming dedution for ategorial logis, Glyn Morrillstates thatAutomated dedution for Lambek Caluli is of interest in its own right but solutionof the parsing problem for ategorial logi allowing signi�ant linguisti overagedemands automated dedution for more than just individual aluli. There is aneed for methods applying to whole lasses of systems in ways whih are prin-ipled and powerful enough to support the further generalisations that grammardevelopment will demand. (Morrill, 1995b)We tend to endorse this view. In fat, the work to be presented in the next hapters is in-tended as a ontribution to this researh programme. An important point not made expliitin the statement above must be emphasized, however. Automated dedution tehniques forCG should aim at eÆieny and manageable omputational omplexity as well as general-ity. EÆieny and generality are two aspets whih normally pose a trade-o� for pratialsystems. In this thesis we will express this trade-o� between overage of a wide range oflogis and tratability in the framework of tableau-based labelled dedution. We will borrowlabelling tehniques developed originally for full (generally intratable) substrutural logis(Gabbay, 1994; D'Agostino and Gabbay, 1994) and adapt them to the spei� ase of linguis-ti desription in CG, showing that a ompromise may be ahieved whih does not impairthe logial features of the Lambek aluli and opens up the possibility for the use of CG ineÆient natural language appliations.The present work will fous on parsing issues mainly from a syntati perspetive. Althoughwe reognise their importane in CG, semanti issues suh as the labelling of derivationsarising from the Curry-Howard isomorphism will only be disussed to the extent that theyhave an impat on proof searh itself | for instane, in the ase of spurious ambiguity (Hepple,1990).

Introdution 7We will onentrate on theorem proving tehniques for the ore strutural features of thelass of a hierarhy of Lambek aluli to be de�ned in hapter 2 aiming at modularity andsalability. Strutural modalities (Morrill et al., 1990; Hepple, 1990; Versmissen, 1994) andhybrid operators (Moortgat and Oehrle, 1993; Hepple, 1995) will not be diretly addressedbut we suggest in hapter 5 that the theorem proving mehanisms developed here for theLambek hierarhy an be straightforwardly extended to deal with them.Finally, we should remark that we will not attempt to provide an aount of any partiularkind of linguisti phenomena. However, unlike most approahes to automated dedution inategorial logis we will keep in mind that our primary appliation domain is natural languageproessing and that the dedutive system to be presented should bene�t from this fat byinorporating domain-spei� knowledge.1.3 Synopsis of haptersThe ore of the thesis is presented in �ve main hapters followed by a onluding summary andappendies ontaining sample ategorial proofs generated by the prototype implementing thetehniques disussed in the main hapters and an analysis of the system's run-time pro�le.In all hapters we have tried to start by giving an informal overview of the issues to betakled before moving on to the more formal presentation. The ontent of the main haptersis arranged as follows:Chapter 2: Mathematial, linguisti and omputational bakgroundsThis hapter introdues the framework of CG in general terms interalating logial and al-gebrai tools with the natural language phenomena whih motivates their introdution. Thebasi type syntax to be used in the following hapters is de�ned here. We then overviewAjdukiewiz/Bar-Hillel's systems, the Lambek alulus and its ut-elimination result. Therefollow a disussion of the role played by struture and resoure sensitivity in the notion ofgrammatiality posited by Lambek aluli, the de�nition of a hierarhy of ategorial aluli



Introdution 8with respet to proof struture and a survey of the algebrai and relational semantis for thealuli along with the Curry-Howard isomorphism. Issues briey mentioned in this hapterinlude polymorphi types and the reognising power of CGs. We lose the hapter by intro-duing the issue of parsing as dedution in Lambek aluli and ommenting on automateddedution approahes to ategorial logis.Chapter 3: Automated Substrutural Dedution for CGHere we desribe our tableau-based approah to ategorial dedution, presenting the generalarhiteture of the parsing model distinguish between two main modules: syntati tableauexpansion and labelling algebra manipulation. We fous on tableau expansion rules and algo-rithms presenting a generalised deision proedure for the family of logis de�ned in hapter 2,and skething soundness ompleteness results.Chapter 4: Syntati Struture and LabellingIn hapter 4 we deal mainly with issues related to the labelling algebra. We introdue thebookkeeping strategies adopted by the system, disuss spurious ambiguity arising from om-binatorial features and point out their relationship with one of the most distintive featuresof the tableau system employed in this thesis: variable introdution in the labelling algebravia tableau branhing rules. Our goal here is to present a study of how the system's eÆienywould hange by varying the division of labour between its two main modules. This is a-ompanied of the presentation of a tehnique to reover syntatial information from prooftrees and time omplexity results.Chapter 5: Redundany in Labelled and non-Labelled CG DedutionIn this hapter we return to the issue of redundany in ategorial proof searh, this time insequent-based and proof-net implementations. We ompare the manifestations of the phe-nomenon in our tableau system with strategies to deal with it in other approahes. The
Introdution 9disussion is set against a bakground of general theorem proving rather than CG-spei�appliations.Chapter 6: Polymorphism and Information FlowWe lose the body of thesis with a more speulative hapter whih addresses two extensionsof the framework: quanti�ation | or the handling of polymorphi types in CG | andtheorem proving in the general information networks of (Barwise, Gabbay, and Hartonas,1994; Barwise, Gabbay, and Hartonas, 1995).



Chapter 2Mathematial, linguisti andomputational bakgroundIn this hapter we introdue the basi formal apparatus and terminology of ategorial gram-mar, desribe its linguisti features and motivations, demonstrate the main mathematialproperties of the formalism and introdue the issue of parsing as theorem proving in CG. Thehapter has the format of a general overview of the main ategorial systems rather than anin-depth analysis of any partiular system. Emphasis has been given to strutural propertieswhereby a hierarhy of aluli enompassing the main logial features to be addressed in theremaining of this thesis is de�ned. Towards the end of the hapter we present an overview ofearly implementations of parsers for Lambek systems, pointing out the main problems to bedealt with in this thesis.2.1 Initial setup: the AB alulusWe mentioned that in ategorial grammar a great deal of syntati information is enodedin the lexion. The (logial) proof theory is thus in harge of determining how lexial itemsombine to build up omplex strutures. In what follows we de�ne the basi mahinery whih
Mathematial, linguisti and omputational bakground 11allows us to enode suh information.Lexial entries (words) are asribed to syntati types1 whih desribe, enode a word'sfuntion. Types an be primitive, suh as \NP", \PP", \AP" et, or built from primi-tive types through binary operators (onnetives) to form omplex types suh as \S=NP"\(NPnS)=NP". We all the number of onnetives in a type the degree of that type andde�ne the set of types in de�nition 2.1.De�nition 2.1 The set of of well-formed types, C, is the losure of the set of primitivetypes P = fA;B;C;N;NP;AP; PP; :::g (with or without subsripts) under the following rules:2.1(i) If X 2 P then X 2 C2.1(ii) If X 2 C and Y 2 C, then (X � Y ) 2 C, where � 2 f=; n �g. We normallyomit the outermost brakets.It should be remarked that in most linguisti appliations of the syntax spei�ed in de�ni-tion 2.1 the symbol \�" does not our in types assigned to lexial entries but only in formulasbuilt from these types. In addition, as noted in (Zielonka, 1981), ourrenes of formulae ofthe form (X � Y )=Z are often limited to intermediary steps of derivations, a fat whih hasbeen exploited by (Cohen, 1967) in the de�nition of a stritly produt-free alulus.The most basi form of ombination of syntati types is funtion appliation. For instane,an NP (a noun phrase suh as John) ould ombine with a type NPnS (an intransitive verbsuh as sleeps), yielding the sentene S: John sleeps. This will be represented by: NP � NPnS` S, where ` stands for syntati entailment, whih will vary aording to the harateristisof the logi being used. Operators on syntati types are alled funtors and the elementsthey ombine with (the elements appearing under the division bars) are alled arguments.The rule below summarises this:1We follow (Lambek, 1988) in alling our formulae \types" as opposed to \ategories" (Moortgat, 1988)in order to avoid onfusion with the usage of the latter in Category Theory (MaLane, 1971). Our usage ofthe term also agrees with reent systematisations in the area of type-logial syntati and semantis analysisof natural language | e.g. (Morrill, 1994), (Carpenter, 1997).



Mathematial, linguisti and omputational bakground 12Appliation : X=Y; Y ` XY; Y nX ` X (2.1)Rule (2.1) plus identity, (2.2) below, suÆe to haraterise the weakest ategorial system; the�rst to be introdued (Ajdukiewiz, 1935; Bar-Hillel, Gayfman, and Shamir, 1960) whih ismotivated by linguisti onsiderations: the alulus aptly named AB.Identity : X ` X (2.2)2.1.1 Extending the basi mahineryAlthough linguistially sound, the system de�ned above is too weak to ope with a variety ofphenomena. In (Luz and Sturt, 1995), we note that muh of the interest in using ategorialgrammars for linguisti researh derives from the possibilities they o�er for haraterisinga exible notion of onstitueny, and also that this has been found partiularly useful inthe development of theories of oordination, and inremental interpretation. Consider thefollowing right node raised sentene (Moortgat, 1988), for example:(e.1) [John resents S=NP ℄ and [Peter envies S=NP ℄ MaryUnder standard lexial type assignments, in whih transitive verbs are assigned the type(NPnS)=NP , (e.1) annot be derived in AB. In order for the sentene to be derivable, a newrule must be used. The assoiativity rule shown in (2.3) plays the required role.Assoiativity : (ZnX)=Y ` Zn(X=Y )Zn(X=Y ) ` (ZnX)=Y (2.3)In a system whih inludes assoiativity, with eah onjunt assigned the type indiated insquare brakets, the sentene of example (e.1) will reeive the derivation shown on the tree
Mathematial, linguisti and omputational bakground 13in (e.2)2.

(e.2)

S(2.1)����������� HHHHHHHHHHHS/NP(2.1)��������� HHHHHHHHHS/NP(2.1)��� HHHNPJohn NPn(S/NP)(2.3)(NPnS)/NPresents
(S/NP)n(S/NP)(2.1)����� HHHHH((S/NP)n(S/NP))/(S/NP)and S/NP(2.1)��� HHHNPPeter NPn(S/NP)(2.3)(NPnS)/NPenvies

NPMary

A alulus whih inludes omposition, (2.4), will allow a funtion to apply to an unsaturatedargument, and it is this property whih allows Ades and Steedman (Ades and Steedman,1982) to treat long distane dependenies, and motivates muh of Steedman's later work oninremental interpretation.Composition : X=Y � Y=Z ` X=ZZnY � Y nX ` ZnX (2.4)Even more drasti examples of non-onstituent oordination an be handled if a rule of2The numbers in brakets whih our on ertain nodes indiate the rules applied to the daughter(s) so asto derive the mother node.



Mathematial, linguisti and omputational bakground 14lifting, (2.5), is added to the above.Lifting : X ` Y=(XnY )X ` (Y=X)nY (2.5)Dowty (Dowty, 1988) uses the ombination of (2.4) and (2.5) to derive (e.3). However, ithas been argued that the power whih gives non-appliative ategorial grammar its notion ofexible onstitueny also has to be onstrained. For example, as Pikering and Barry pointout (Pikering and Barry, 1993), a system whih inludes lifting and omposition will allowungrammatial oordinations suh as (e.4), sine both of the braketed strings an be assignedthe type S/(NPnS).(e.3) John gave Mary a book and Susan a reord.(e.4) *[I believe that John S=(NPnS)℄ and [Mary S=(NPnS)℄ is a geniusThis leads them to propose the Dependeny Categorial Grammar alulus D, whih for-bids lifting through a global onstraint on derivations. The resulting notion of onstitueny(Dependeny Constitueny) is shown to have appliations not only in the desription of o-ordination phenomena, but also in modelling ertain aspets of human sentene proessing,in partiular allowing for a ategorial haraterisation of the notion of head-driven parsing.Milward (Milward, 1995) shows that Composition an result in over-generation, allowingungrammatial sentenes suh as(e.5) *Children [relutantly (NPnS)=(NPnS)℄ [who ame from far away NPnNP ℄ [arrivedNPnS℄.Assuming the types as indiated, the problem is that the relative lause who ame fromfar away an ombine with the intransitive verb arrived through bakward omposition, toderive a new onstituent of type NPnS, whih an then be modi�ed by the prediate adverbrelutantly, through bakward appliation. Problems of over-generation suh as these are part
Mathematial, linguisti and omputational bakground 15of the motivation for Milward's de�nition a ategorial grammar, AACG, whih is equivalentto AB plus assoiativity (Milward, 1995). Ignoring over-generation problems for the timebeing, we add to the set of rules the division shemes (2.6) whih permit an AP suh asrelatedAP=PP toPP=NP MaryNP to reeive an alternative left-branhing analysis by means ofpurely unary rules | i.e. rules in whih the operator \�" does not appear | in addition tofuntion appliation (2.1). (Moortgat, 1988) remarks that this kind of unary analysis mightfavour inremental interpretation. Compare the two left-branhing derivations shown in (e.6).Division(mainfuntor) : X=Y ` (X=Z)=(Y=Z)Y nX ` (ZnY )n(ZnX) (2.6)

(e.6) AP(2.1)���� HHHHAP/NP(2.4)��� HHHAP/PPrelated PP/NPto NPMary
AP(2.1)����� HHHHHAP/NP(2.1)���� HHHH(AP/NP)/(PP/NP)(2.6)AP/PPrelated PP/NPto NPMary

Finally, division an also our on the subordinate funtor as in (2.7) turning it into a higher-order funtor:Division(subordinatefuntor) X=Y ` (Z=X)n(Z=Y )Y nX ` (Y nZ)=(XnZ) (2.7)It is possible to de�ne a hierarhy of logial aluli, eah of whih admits one or more of(2.1){(2.7) as theorems; from the purely appliative alulus AB, of Ajdukiewiz and Bar-



Mathematial, linguisti and omputational bakground 16Hillel, whih supports only (2.1), to the full Lambek alulus L, whih supports all the abovelaws. Caluli apparently intermediate in power between AB and L have been explored (e.g.Dependeny Categorial Grammar (Pikering and Barry, 1993)), as well as stronger aluli.Although (2.1){(2.7) may be regarded as theorems of the L, they do not suÆe to haraterisethe alulus. In fat, it has been shown (Zielonka, 1981) that no extension of (2.1) in theform of a �nite number of anellation shemes is equivalent to L. It is possible, however, tode�ne a Gentzen system whih desribes the alulus.2.2 Gentzen presentation of LRules (2.1){(2.7) desribe inompletely the behaviour of the entailment relation \`". The nextstep is to present a proedure whih will enable us to verify, given an entailment relation,whether or not that relation holds between formulae of the partiular ategorial system beingonsidered. This is done by means of sequents, a devie used by Gentzen in his intuitionistlogial system (Gentzen, 1969). A sequent is a pair (�;�) of �nite, possibly empty, sequenesof types between whih an entailment relation holds | i.e. relations of the form � ` �,where � = [A1; :::; Am℄ and � = [N1; :::; An℄. In L the further requirement that n = 1 isenfored. In a sequent, � is alled the anteedent while � is alled the suedent. We denotesequenes of types by apital Greek letters (� and � non-empty) and use ommas to denotetype juxtaposition. The following sequent rules were proposed in (Lambek, 1958) to desribethe behaviour of \`" in the alulus named after Lambek:�; A ` B(R/)� ` B/A � ` C 	; A;� ` B(L/) 	; A=C;�;� ` BA;� ` B(Rn) � ` AnB � ` C 	; A;� ` B(Ln) 	;�; CnA;� ` B	; A; C;� ` B(L�)	; A � C;� ` B � ` A � ` C(R�) �;� ` A � C� ` A 	; A;� ` C(ut) 	;�;� ` C (Id) A ` A (2.8)
Mathematial, linguisti and omputational bakground 17Semantially, these operators orrespond to the operations of right division (/), left division(n) and multipliation (�) on the subsets of a semigroup M (Lambek, 1988), as shown in(2.9){(2.11). The alulus has been shown to be omplete with respet to this free semigroupinterpretation in (Pentus, 1994b)3 | i.e. if the X ` Y an be derived through the system ofrules (2.8) then the following is the ase with respet to the algebrai struture of (2.9){(2.11):[[X℄℄M v [[Y ℄℄M , and vie-versa. If M is a non-assoiative multipliative system instead of asemigroup, then we obtain the non-assoiative alulus NL.A � B = fx � y 2M jx 2 A ^ y 2 Bg (2.9)C=B = fx 2M j8y2Bx � y 2 Cg (2.10)AnC = fy 2M j8x2Ax � y 2 Cg (2.11)Returning to (2.8), proofs in Gentzen systems an be interpreted \bottom-up" as startingo� with axioms, (Id)s, and onstruting the sequent one wants to prove via �nite numberof appliations of (R/){(CUT) | notie a potential soure of onfusion here: \bottom-up"atually refers to the way the sequents are built rather than the orientation in whih proofsare displayed in Gentzen notation.Perhaps a more pratial way of viewing a derivation is \top-down". Sequent rules areinterpreted top-down as breaking the formulae into progressively smaller ones (i.e. formulaeof smaller degree) until eah leaf ontains either an (Id) sequent or a sequent to whih norules an be applied. Pushing this interpretation into a method of proof by refutation, wean assume the formulae in the anteedent to have positive polarity while suedent typesreeive negative polarity. Connetives \/" and \n" an thus be seen as forms of left andright impliation respetively and \�" as a form of onjuntion. A rule suh as (R/) underthis framework will be then be read top-down as saying: if B=A has negative polarity, thenA is assigned positive polarity and B negative polarity, provided that the struture of �is preserved. (L/) will read: if A=C is positive then either C is negative or A is positive,3Buszkowski (Buszkowski, 1986) gives a ompleteness proof for the produt-free alulus



Mathematial, linguisti and omputational bakground 18with the same proviso as in (R/), and so on. As noted in (Fitting, 1990), if polarities areinterpreted as Boolean values this approah orresponds to generating ounter models of theinitial sequent as in semanti tableaux (notie that (Id) expresses a ontradition in this kindof interpretation). An example of a proof in a Gentzen system is the proof of (2.3), given inexample (e.7).(e.7) C ` C A ` A B ` B(Ln) A;AnB ` B(L/) A; (AnB)=C;C ` B(R/) A; (AnB)=C ` B=C(Rn) (AnB)=C ` An(B=C)Deidability of L was �rst proved in (Lambek, 1958). Sine, apart from (CUT), all rules in(2.8) obey the subformula priniple, i.e. the resulting formulae ontain only subformulae ofthe formulae to whih the rule is applied, it suÆes to show that ut an be eliminated inorder to prove that given a sequent, a �nite number of appliations of the rules terminateswith a positive or negative answer to whether the sequent is a theorem of L or not. Lambek'sresult (theorem 2.1) therefore shows that the set of theorems of L does not derease if (CUT)is eliminated4.Theorem 2.1 (Cut elimination) Any sequent derivable in the system (2.8)g is also deriv-able in the same system without (CUT).Proof. The proof is obtained by de�ning the omplexity of a ut as the sum of the degreesof the formulae and sequenes ourring in it and then showing by indution that any utan be either removed or replaed by a ut of smaller omplexity. Sine uts an never havenegative omplexity we onlude that all ourrenes of (CUT) an be eliminated from anyderivation.4Whether or not this is a sensible thing to do in automated dedution is a di�erent issue whih will bedisussed in some detail in hapter 3.

Mathematial, linguisti and omputational bakground 192.3 Lexial items as logial resouresAnalysis of the system presented in (2.8) shows that lassial theorems of standard logi donot hold in the Lambek alulus. Modus ponens, for example loses its ommutative harater:interpreting n as standard impliation we would be able to derive a sequent suh as (e.8.a)whih does not hold in L. For the same reason (e.8.b) fails in L even though it is derivable instandard propositional logi.(e.8) a. AnB;A ` Bb. (AnB)nC ` Bn(AnC)(e.9) a. A;A;AnB ` Bb. A ` AnA(e.10) An(AnB) ` AnBThis shows that order is relevant in L, a property whih is supposed to reet a harateristiof natural language syntax: namely, the one whih says that we annot to hange the positionsof our words in a sentene and always end up with a grammatial onstrut. Other theorems ofpropositional logi whih are non-theorems in L are (e.9) and (e.10). The former are provablein logis whih allow a sequent to be expanded, where (b) exhibits a form of type raising whihwould enable unrestrited dupliation of lexial items and therefore is not allowed in L. Thelatter would permit arbitrary deletion of words, whih seems to be equally undesirable.2.3.1 Categorial logis as (bi)linear logisIf one ompares Gentzen's system for the impliational fragment of intuitionist logi with thesystem de�ned in (2.8) one realises that the sequent rules of the latter are a subset of the rulesof the former. In fat, (2.8) orresponds to the operational rules of a Gentzen sequent system(Gentzen, 1969). Operational rules are those whih desribe the behaviour of logial operatorswith respet to the entailment relation. What is missing is preisely the so alled strutural



Mathematial, linguisti and omputational bakground 20rules | that is, the shemes whih govern the proof steps required to derive theorems suhas (e.8){(e.10). These rules are shown in (2.12).�; A;B;	 ` C(P) �; B;A;	 ` C �; A;	 ` B(E) �; A;A;	 ` B�; A;A;	 ` B(C) �; A;	 ` B �;	 ` B(M) �; A;	 ` B (2.12)If strutural properties are taken into aount, then lexial items an be viewed as resoureswhih will be \onsumed" during the parsing of the sentene, whih by its turn may beregarded as a proof. This is in total agreement with the paradigm of \parsing as dedution"(Shieber, Shabes, and Pereira, 1994). Furthermore, from this point of view it is fair toregard the Lambek-style ategorial grammar as a preursor of Girard's linear logi (Girard,1987; Girard, Lafont, and Regnier, 1995) with bidiretional impliation, a \bilinear logi" as(Lambek, 1995) alls it5.2.3.2 Linguisti aspets of proof strutureVan Benthem (van Benthem, 1988) and Moortgat (Moortgat, 1988) disuss linguisti mo-tivations to inrease the power of L by adding the strutural transformations Permutation,Contration and Expansion and the logial aspets of doing so. The derived aluli arenamed: LP, LPC, LPE and LPCE. The strutural transformation Permutation, whih removesthe restritions on the linear order of types, allows us to go beyond the purely onatenativederivations of L. This allows us to deal with sentenes exhibiting non-standard onstituentorder. For example, Moortgat suggests using permutation for dealing with heavy NP-shift inexamples similar to the following (Moortgat, 1988):5Exept that Girard appeals to somewhat more mundane motivations than the disovery of universallanguage priniples in his advoay of strutural ontrol in logi. His examples inlude formalisation of om-putational proesses and even igarette vending mahines.

Mathematial, linguisti and omputational bakground 21(e.11) John gave [to his nephew PP ℄ [all the old omi books whih he'd olleted in histroubled adolesene NP ℄.In (e.11), the braketed onstituents an be \rearranged" via permutation so that a derivationis possible that employs the standard type ((NPn S)/PP)/NP for the ditransitive verb gave.In L, while it is possible to speify a type missing an argument on its left or right periphery, itis not possible to speify a type missing an argument \somewhere in the middle", making itimpossible to deal with non-peripheral extration. However, as Morrill et al show, permuta-tion provides the additional power neessary to aount for this phenomenon (Morrill et al.,1990).In addition to permutation, there are also linguisti examples whih motivate ontrationand expansion (Moortgat, 1988; Morrill, 1994) ombined with (P). An example of syntatitransformation whih is aounted for by means of deletion of types (in the sentene) via (C)is gapping, as shown in derivation (e.12)6. Notie that, read top-down, the transformationatually orresponds to dupliation of types in a Gentzen proof | the types whih undergodupliation (ontration, if read bottom-up) and hange position are shown in boldfae in(e.12).
(e.12) NP ` NP V P ` V P NP ` NP S ` S(Ln) NP;NPnS ` S(L/) NP; (NPnS)=V P; V P ` S(L/) NP; ((NPnS)=V P )=NP;NP;V P;` S NP ` NP :::(L/)NP; :::; SnS ` S(L/) NP; ((NPnS)=VP)=NP; NP;VP; (SnS)=S; ((NPnS)=VP)=NP; NP;VP ` S(P) NP; ((NPnS)=VP)=NP; ((NPnS)=VP)=NP; NP;VP;VP;(SnS)=S; NP ` S(C) NP;Jo ((NPnS)=VP)=NP;promised NP;Mary VP;to stop smoking (SnS)=S;and NP;Fred NPSue `SExamples of strutural expansion are provided by the linguisti phenomenon of right disloa-tion (Moortgat, 1988) | see example (e.13) where two NP resoures ould satisfy the same6Part of the branh on the right-hand side of this derivation has been omitted here due to lak of spae. Themissing part is idential to the left-hand side branh exept for the extra appliation of (Ln) whih introduesSnS on the anteedent. For the same reason the two appliations of (C) and (P) are shown as as single steprather than four.



Mathematial, linguisti and omputational bakground 22funtion in the themati struture.
(e.13) NP ` NP AP ` AP NP ` NP S ` S(Ln) NP;NPnS ` S(E) NP; (NPnS); NP ` S(L/) NP; ((NPnS)=AP ); AP;NP ` S(L/) NP;He ((NPnS)=AP )=NP;onsiders NP;them AP;inompetent NPthose andidates who... `SFinally, there is evidene for the relevane of a strutural property whih has not been expli-itly stated in (2.8): assoiativity. As Morrill points out (Morrill, 1994), although assoiativityan be seen as a desirable property in ases where all possible braketings of a sentene on-stitute the spei�ation of its possible prosodi readings (Steedman, 1991), as in (e.14), itsometimes leads to impossible divisions, as shown in Steedman's example (e.15).(e.14) a. (Bill) (thinks John walks).b. (Bill thinks John) (walks).. (Bill thinks) (John walks).(e.15) *Three mathematiians (in ten derive a lemma).The system NL (Lambek, 1961) is a version of L in whih assoiativity is stritly forbidden.Along with the other aluli desribed in this setion NL de�ne a hierarhy of linguistiallymotivated ategorial logis whih an be presented as in table 2.1.2.3.3 Syntati enoding of strutural properties: modal operatorsIn spite of the theoretial signi�ane of the \pure" substrutural hierarhy summarised intable 2.1, it has been widely reognised that a system employing the unrestrited use ofstrutural transformations would be far too powerful for any useful linguisti appliation.Arbitrary word order variation, opying and deletion are not harateristis whih ould be

Mathematial, linguisti and omputational bakground 23NL � NLP � NLPCNLPE � NLPCEAB � \ \ \ \L � LP � LPCLPE � LPCETable 2.1: Hierarhy of Categorial Calulilaimed to hold for any natural language. For this reason, a goal of urrent researh is to buildsystems in whih the resoure freedom of the more powerful aluli an be exploited whenrequired, while the basi resoure sensitivity of L (or NL) is retained in the general ase. In thissetion we briey survey some of the approahes to ahieving this goal. A warning should begiven here: the area is still undergoing intense researh and therefore no omplete agreementhas been reahed whih ould make possible a omprehensive presentation. Good surveyson linguistially motivated aluli are found in (Morrill, 1994) and in (Moortgat, 1994a;Moortgat, 1995). On linear and substrutural logis in general, inluding model-theory, withappliations to other branhes of omputer siene see (Girard, Lafont, and Regnier, 1995)and (van Benthem, 1996).Edinburgh strutural modalitiesThe most straightforward way to reintrodue ontrolled strutural operations is to allowstrutural operators in the syntax. In linear logi the power of intuitionist and lassiallogi is regained by means of \exponentials" (\!" and \?") whih deal with monotoniity,desribed by Girard as the rule whih \opens the door for fake dependenies" and ontration(C), \the �ngernail of in�nity in propositional alulus" (Girard, 1995). A similar approah isadopted in (Morrill et al., 1990; Hepple, 1990), where modal operators, the so-alled Edinburghstrutural modalities, expliitly mark those types whih are permitted to be manipulated byspei� strutural transformations. In Lambek systems whih do not enjoy (P), a furthermodality to allow word order to be ommuted is introdued. For example, onsider theGentzen rules (2.13) desribing a modality 4 whih lienses permutation in L (the symbol



Mathematial, linguisti and omputational bakground 24(�)4 stands for a sequene of formulae, eah of whih preeded by 4).�;4A;B;	 ` C(4p)�; B;4A;	 ` C (�)4 ` A(4r)(�)4 ` 4A �; B;	 ` A(4l)�;4B;	 ` A (2.13)It is demonstrable that the Lambek alulus with the triangle modality enjoys ut-eliminationand is therefore deidable. A semigroup interpretation for the system was �rst proposed in(Hepple, 1990) whih is sound but not omplete (Linoln et al., 1990). Versmissen (Versmis-sen, 1994) proposes relaxing (4r) in (2.13) so as to make the resulting alulus a sound andomplete one with respet to the algebrai semantis.Example (e.16) shows the permutation modality in ation (Morrill, 1994) in a ase of non-peripheral extration. Note that ommutativity is signalled by the relative pronoun ratherthen at the noun (\book") itself.
(e.16)

...(...) NP; (NPnS)=NP;NP; (NPnS)n(NPnS) ` S(4l)NP; (NPnS)=NP;4NP; (NPnS)n(NPnS) ` S(4p)NP; (NPnS)=NP; (NPnS)n(NPnS);4NP ` S(R/) NP; (NPnS)=NP; (NPnS)n(NPnS) ` S=4NP N ` NN ` N(L/) N;NnN ` N(L/) N; (N=N)=(S=4NP); NP; (NPnS)=NP; (NPnS)n(NPnS) ` N NP ` NP(L/) NP=N;the N;book (N=N)=(S=4NP );whih NP;Jo (NPnS)=NP;read (NPnS)n(NPnS)today `NPAs before we indiate the types whih undergo movement aross the proof tree in (e.16) byboldfae.Hybrid and embedding systemsStrutural modalities an help de�ne translations between weaker and stronger systems. Thepreursors of suh translations have been the aforementioned renderings of linear, intuitionistand lassial logis into one another. Embedding logis are ategorial systems in whih dif-
Mathematial, linguisti and omputational bakground 25ferent forms of produt (\�), left residuation (\n") and right residuation oexist (\="), thestronger forms being de�ned from the weaker ones by means of modalities (Hepple, 1994b;Moortgat, 1994b). In this kind of system, the extra power provided by the modalities is fusedinto operators whih enode linguisti phenomena not aptured by the embedded system onits own and made available for grammar spei�ation. It is also possible to de�ne hybridaluli (Hepple, 1994a) by suppressing auxiliary modalities altogether in the �nal system ofembeddings.The disovery that one ould tamper with proof struture to ope with linguisti phenomenaunfortunately (or fortunately, some may say) led to a proliferation of modalities, produt op-erators and impliation lollipops within frameworks for lexial spei�ation. Notwithstandingthe need for strutural exibility whih natural language seems to impose, the introdutionof operators ought to be tamed if a useful (and usable) ategorial arhiteture is to result.Attempts at de�ning \minimalist" frameworks motivated by universal prinipled linguistiassumptions are found in (Kurtonina and Moortgat, 1995) and (Morrill, 1994). The formerdesribes proof and model theory for a lattie of resoure-sensitive logis whih is laimed toenompass the essentials of grammatial desription: linear order, hierarhial grouping (on-stitueny) and dependeny. The latter presents a fuller treatment along the same lines whihinludes Montague-style semantis and draws parallels between the ategorial programme andother linguisti frameworks (Morrill, 1994, pp 250{261).In (Kurtonina and Moortgat, 1995) the properties mentioned above are aptured by twogeneral logial priniples: relaxation of strutural onstraints (e.g. to allow ertain resouresto permute) and ontrol over type instantiation. A ase whih exempli�es the need for liensingstrutural relaxation in the hierarhy of ategorial aluli is given by observing the sentenein example (e.16). Type NP annot be derived in plain L. However, while without theadverb an L{derivation for the onatenation of the remaining types beomes possible, it isstill not possible to derive NP in NL. Kurtomina's and Moortgat's proposal is to enrih thetype language with unary residuated operators whose semantis is de�ned in terms of binary,Kripke-style aessibility relations (see setion 2.3.4) on frames (Do�sen, 1992). This approahenables bidiretional operators to be de�ned whih aount for the asymmetry between headand dependent onstituents.



Mathematial, linguisti and omputational bakground 26The result of this is that the hierarhy of aluli whih an be reahed from NL or L bymeans of translations and embedding is augmented with DNL, DNLP, DL and DLP, where Dstands for \dependeny". Completeness with respet to the relational semantis, soundness ofembedding and ut-elimination have been proved for these aluli (Kurtonina and Moortgat,1995).2.3.4 Kripke-style frames and model theoryAs seen above, one way to interpret (Lambek, 1988) the impliational and onjuntive op-erators of L (and NL) is as orresponding to right division (./.), left division (.n.) and mul-tipliation (.�.) on the subsets of a semigroup M (non-assoiative multipliative system,respetively). Other ways inlude the use of ategories in ategorial logi (Lambek, 1988;Lambek and Sott, 1988) and the relational semantis suggested by van Benthem (van Ben-them, 1991) and shown to be omplete in (Andreka and Mikulas, 1994). Sine the former hasnot been explored so far in parsing appliations we shall fous on the latter whih has beenemployed in most of the systems mentioned above and an be seen as a generalisation of thesemigroup semantis.The interpretation is based upon a Kripke struture R =< W;R >, where R �W�W�Won whih a valuation funtion v obeying the following onditions is de�ned:v(A � B) = fz j 9x9y : Rzxy ^ x 2 v(A) ^ y 2 v(B)gv(C=B) = fz j 8x8y : (Rxzy ^ y 2 v(B))) x 2 v(C )gv(AnC ) = fz j 8x8y : (Rxyz ^ y 2 v(A))) x 2 v(C )g (2.14)The properties of the onnetives are thus determined by the restritions one imposes onR. Obviously, the weaker the restrition imposed, the weaker the orresponding alulus.An unrestrited R desribes NL, R obeying 8xyzu 2 W : 9t(Rxyt ^ Rtzu) , 9v(Rxyz ^Rxvu) (i.e. assoiativity) haraterises L, if R is ommutative we obtain NLP, and so on.Dependeny{preserving features are expressed by de�ning two aessibility relations on Wrather than one. A frame R0 =< W;R3l ; R3r > suÆes to haraterise the orresponding left-
Mathematial, linguisti and omputational bakground 27headed and right-headed produts if W is interpreted as the set of linguisti resoures andthe aessibility relations are viewed as the ounterparts of omposition operations.Again, these aluli of embedding and translations enjoy ompleteness, soundness and ut-elimination (Kurtonina and Moortgat, 1995).2.3.5 Polymorphi typesSometimes a lexial type may have di�erent funtions and still play similar roles. For instane,onjuntions an be used to oordinate nouns, sentenes, and even non-standard onstituentsas noted above. The main idea behind polymorphism is to apture suh generalisations ingrammar spei�ation. For the oordination ase, the simplest solution appears to be tointrodue quanti�ed variables into the logi. The word and, for example, ould reeive atype suh as (XnX)=X. However, speial worries arise when quanti�ers are allowed into alogi. One of these onerns ompleteness. Emms shows (Emms, 1994) that the polymorphiversion of L interpreted under the ternary frame semantis desribed above is inomplete ifwe allow quanti�ers to range over arbitrary subsets of W .An alternative to simply introduing variables is given in (Morrill, 1994). Morrill de�nesmeet and join operators whih enable one to speify the argument types whih a funtor mayrequire. For example, a polymorphi type for the lexial entry from in (e.17) would be theone given in example (e.18):(e.17) a. a man from Edinburghb. a man walks from Edinburgh.(e.18) ((NnN) ^ ((NPnS)n(NPnS)))=NPHere the operator (.^.) denotes a kind of substrutural disjuntion of types whih an playthe role of the resulting type, hene generalising over the fat that in both ases the funtortakes an NP for omplement. Morrill also de�nes a another operator, (._.), whih is used



Mathematial, linguisti and omputational bakground 28to generalise over types ourring in an argument position. We will disuss polymorphism ingreater detail in hapter 6, where a tableau treatment of the phenomenon is introdued.2.4 Curry-Howard isomorphism: the syntax{semantis inter-faeSo far we have talked about the features of ategorial grammar whih onern syntati de-sription. We have seen that one of its attrative aspets is that it gives us on the one handenough expressivity to speify many properties of natural language in a prinipled way, andmathematial rigour on the other hand. Furthermore, we have seen that strutural trans-formations arising purely from logial, proof-theoreti motivations �nd natural ounterpartsin the syntati struture of natural-language onstruts. The syntax-semantis interfae ofLambek logis is onerned with extending this orrespondene to the semanti level.Sine Montague's (Montague, 1974; D.R. Dowty and Peters, 1981) proposal that naturallanguages should reeive the semanti treatment of formal languages, a great deal of atten-tion has been devoted to speifying translation mehanisms between syntax and a logial(intensional) language whose semantis an be de�ned model-theoretially. In a nutshell,Montague's approah onsisted of de�ning an extension of the simply-typed lambda alulusenompassing higher-order types whih he alled Intensional Logi (IL) and a funtion fromsyntati types to the semanti types of IL. Given a type a, a set of possible denotations oftype a, Da is de�ned { e.g. one-plae prediates are de�ned as funtions from individualsto truth-values, so assuming individuals to have denotation De, the set of objets possiblydenoted by one-plae prediates is represented by D<e;t>. The syntati apparatus borrowedfrom the lambda alulus also inludes the following devies: (a) funtion abstration: �x stands for the funtion whih applied to value v results in the objet denoted by  when x hasvalue v, provided that  2 T1 ! T2 and x ranges over objets of T2; (b) funtion appliation,where (� ) denotes the result of applying � to argument  ; and () substitution: �[x   ℄standing for term � with all ourrenes of variable x replaed by term  . The system is
Mathematial, linguisti and omputational bakground 29de�ned in suh a way that the following properties hold:�x = �y [x y℄ (2.15)where no free x ours in the sope of y in  (�x �) =  [x �℄ (2.16)where no free x ours in the sope of a variable of �.�x( x) =  (2.17)where no free x ours  The original Montague system employs a variant of AB to implement the translation proe-dure. However, an observation well known in the area of funtional programming known asthe Curry-Howard isomorphism opens up the possibility of using Lambek aluli pro�tablyfor the same purpose. The Curry-Howard orrespondene states a one-to-one orrespondenebetween proofs in a natural dedution system for intuitionist logi and lambda terms. AGentzen system that realises the properties of the �-alulus, (2.15){(2.17), will have theform of a sequent alulus for the impliational fragment of intuitionist logi, though theone-to-one orrespondene is lost due to inherent non-determinism in its rules7. Sine theLambek aluli desribed above are impliational fragments of substrutural logis to whihthe orrespondene an be extended their syntax an be niely oupled to a Montague-stylesemanti interpretation. The sequents in (2.18) show how this an be done in L (van Benthem,1986; Moortgat, 1988; Hendriks, 1993).�; A : x ` B : �(R/) � ` B=A : �x� � ` C :  	; A : (� );� ` B : �(L/) 	; A=C : �;�;� ` B : �A : x;� ` B : �(Rn) � ` AnB : �x� � ` C :  	; A : (� );� ` B : �(Ln) 	;�; CnA : �;� ` B : �� ` A : � 	; A : �;� ` C : (ut) 	;�;� ` C :  (Id) A : � ` A : � (2.18)

7As we shall disuss later, in CG parsing based on Gentzen sequents, the loss of the orrespondene givesrise to the problem of spurious ambiguity.



Mathematial, linguisti and omputational bakground 30One the logial relationships between �-terms and the dedutive apparatus whih ontrolsthe syntati types has been established then the semantis of the (natural) language to beparsed an be totally spei�ed in the lexial level. In addition to being based on sound logialpriniples, this tehnique agrees with the CG tradition of lexialism, orresponding to animplementation of type-driven translation, as de�ned in (Klein and Sag, 1985).2.5 Overview of results on reognising powerReognising power has been an issue intensely studied sine the early papers on CG. Alreadyin (Bar-Hillel, Gayfman, and Shamir, 1960) it was shown that the appliative alulus ABis in fat equivalent to a ontext-free language. Chomsky (Chomsky and Miller, 1963) on-jetured that the assoiative Lambek alulus L is also equivalent to ontext-free grammars.The strong equivalene between the non-assoiative alulus NL and the latter was shown byBuszkowski (Buszkowski, 1988). In (Cohen, 1967) it is proved that the generative apaity ofeah AB-grammar is equivalent to that of some L-grammar. Pentus (Pentus, 1993) ompletedCohen's proof showing Chomsky onjeture to be orret and therefore that L and AB areequivalent in weak generative apaity. In (Buszkowski, 1996) a tehnique was developedwhih allows one to transform any L-grammar into an AB-grammar by expanding its origi-nal type assignment. It has also been shown (van Benthem, 1987; Buszkowski, 1988) thatLP reognises all permutation losures of ontext-free languages (whih inludes some non-ontext-free ones). Although it has been onjetured (Buszkowski, 1996) that the onversealso holds, a proof of this onjeture hasn't been presented so far. Finally, (Carpenter, 1995)demonstrates that multimodal CG is Turing-omplete in weak generative power.2.6 Computational issuesDue to the diversity of aluli and operations involved Categorial logis often require sophis-tiated parsing mehanisms. Fine-grained strutural ontrol asks for extra bookkeeping taskswhose implementation is not always trivial. Fortunately, there is a vast olletion of tehniques
Mathematial, linguisti and omputational bakground 31whih have been developed within the area of automated dedution whih an be adaptedto use in CG. In the next setions we introdue the issue of theorem proving and review theappliation of some of its methods to CG parsing. A more detailed treatment of the mostrelevant ones will be given in hapter 5. The emphasis here will be on presenting a generalperspetive on the problems enountered by previous approahes to automated dedution inthe range of Lambek aluli desribed above, thus setting the sene for the introdution ofour own approah in the following hapter.2.6.1 Parsing as theorem-provingIn omputational linguistis, grammar spei�ation often resembles software design. Linguis-ti and psyhologial requirements are analysed and subsequently inorporated into a parserthrough whih the adequay of spei�ation and assumptions is evaluated in pratie. Underthe paradigm of parsing as dedution (Shieber, Shabes, and Pereira, 1994), as the namesuggests, grammatial sentenes are identi�ed with theorems of a logi, and therefore parsingorresponds essentially to theorem proving. The researh programme of ategorial grammarprobably represents the most radial attempt to realise this paradigm.We laim in (Luz, 1996b) that a system for ategorial dedution should in general meet thefollowing requirements:� The framework should to be general enough to aommodate the basi substruturalaluli and allow further extensions� The user should be able to speify and experiment with di�erent theories in a transpar-ent way� The display of the derivations should ideally reet the linguisti strutures being anal-ysed in an intuitive way� The system should be able to aommodate domain-dependent heuristis and meha-nisms whereby linguisti knowledge may have a positive impat on eÆieny



Mathematial, linguisti and omputational bakground 32The last item, in partiular, is an allusion to the fat that although theorem proving isomputationally expensive in general, there is a vast amount of domain-dependent knowledgewhih have been largely studied in the linguisti literature but have either been negleted oronly partially onsidered in most systems for automated CG dedution. These requirementswill be further elaborated in hapters 4 and 5.2.6.2 Tableau, resolution and other methodsMany proof proedures, originally meant for lassial and/or intuitionist logi have been pro-posed: natural dedution, Gentzen's sequents, analyti (Smullyan style) tableaux, et. Amongthese, methods whih onform to the sub-formula priniple8 are partiularly interesting, as faras automation is onerned.9. Most of them, along with proof methods developed spei�allyfor resoure logis, suh as Girard's proof nets (a variant of Bibel's onnetion method), anbe used for ategorial logi.Early implementations of CG parsing relied on ut-free Gentzen sequents implemented viabakward haining mehanisms (Moortgat, 1988). This approah su�ers from several prob-lems. Apart from the fat that it laks generality, sine implementing more powerful aluliwould involve modifying the ode in order to aommodate new strutural rules, the theoremproving strategy presents various soures of ineÆieny. The main ones are: the generate-and-test strategy employed to ope with assoiativity, the non-determinism in the branhingrules (L/) and (Ln), and the ambiguity indued by the fat that di�erent sequenes of rulesmight produe essentially the same proof. To redue the impat of the latter over eÆienyhas been the goal of proof normalisation (K�onig, 1989; Hepple, 1990). However, even innormal-form proofs a ertain degree of non-determinism still remains and the searh spae isusually of onsiderable size, though it ould be mitigated (in ontration and expansion-freealuli at least) by testing branhes for ount invariane (van Benthem, 1988). As we taklestronger logis and inorporate strutural modalities suh problems tend to get muh harder.8The sub-formula priniple says that all formulae to be introdued in a derivation should be sub-formulaeof formulae already in the derivation. The tableau systems of hapter 3 will obey this priniple, as do theut-free sequent alulus.9See (Fitting, 1990) for a survey.

Mathematial, linguisti and omputational bakground 33An improved attempt to deal uniformly with multiple aluli is presented in (Moortgat, 1992).In that paper, the theorem prover employed is based on proof nets, and the haraterisation ofdi�erent aluli is taken are of by labelling the formulae as in Gabbay's Labelled DedutiveSystems (Gabbay, 1994). For substrutural aluli stronger than L, muh of the omplexity(perhaps too muh) is shifted to the label uni�ation proedures. However, as pointed outin (Morrill, 1995a), while proof nets alone are unsuitable for dealing with built-in modalitiesand non-assoiativity, the kind of assoiative uni�ation required by the labelling regime hasexpensive worst ases. A strategy for improving suh proedures by ompiling labels intohigher-order linear logi programming lauses is presented in (Morrill, 1995b) for NL andL. Furthermore, a omprehensive solution to the problem of binding label uni�ation whiharises as we move from sequents to labelled proof nets, has not been presented yet. Moreover,as disussed in (Leslie, 1990), if we onsider that the system is to be used as a parser, asa tool for linguisti study, the proof-net style of derivation does not seem to provide a veryintuitive display of the proofs.As far as we are aware, standard tableau systems have not yet being used in ategorialparsing10. A reason for this may be the fat that Smullyan style tableau systems have beenshown to be inherently ineÆient (D'Agostino and Mondadori, 1994) as the method fails evento simulate truth-tables in polynomial time11. This is beause of the fat that many of theSmullyan tableau expansion rules ause the proof tree to branh, thus inreasing the searhspae (enormously in speial ases suh as pigeon-hole formulae (Cook and Rekhow, 1979)).In addition, keeping trak of the struture of the derivations represents an extra soure ofomplexity, whih in most ategorial parsers (Moortgat, 1992; Morrill, 1995b) is reeted inthe bottlenek of uni�ation algorithms employed for dealing with substrutural impliation.Our approah, as we shall see later, employs a variant of the tableau method whih minimisesthese problems.10Leslie (Leslie, 1990) presents and ompares some ategorial versions of these proedures for the standardLambek alulus L, taking into aount omplexity and proof presentation issues. Although tableau systemsare not disussed in (Leslie, 1990), a lose relative, the ut-free sequent alulus is presented as being the onewhih represents the best ompromise between implementability and display of the proof.11Notie that the same result applies to ut-free Gentzen systems, whih however have been used extensively.



Mathematial, linguisti and omputational bakground 342.7 Summary and further referenesThis hapter has presented a summary and overview of the main issues in the ategorialgrammar programme whih stems from the alulus of syntati types developed by Lambek.We have tried to balane formal presentation with the linguisti analysis whih motivated theintrodution of eah formal devie. In addition, the main theoretial results have been sur-veyed and the omputational problems related to parsing CGs introdued. We shall elaboratefurther on the issues onerned with the latter in the next hapters.From a syntati point of view, aluli L{LPCE and the modal apparatus desribed abovean be onsidered augmentations of the original appliative alulus. However, there arealternatives to the approah on whih we have foused in this hapter. The most popular onesare the enrihment of AB with uni�ation (Zeevat, Klein, and Calder, 1987) or ombinators(Steedman, 1987). These approahes however fall outside the sope of the kind of logi andomputational framework to be proposed in hapter 3, and therefore have not been disussedhere.From a (logial) semanti perspetive we have not disussed (Barwise, Gabbay, and Hartonas,1994), who treat lexial items as \information hannels" within the framework of hanneltheory. This work, although theoretially interesting sine it relates the Lambek alulus andlabelled dedution, an hardly be onsidered \mainstream" ategorial grammar. We havetherefore deided to postpone its disussion to hapter 6.

Chapter 3Automated SubstruturalDedution for CGIn this hapter we desribe a theorem proving framework for ategorial dedution along thelines of the systems disussed in hapter 2. We start by setting up the basi ideas informally,disussing the general approah to proof-searh to be adopted: analyti dedution basedon tableaux. We then move on to a formal presentation of the theorem proving strategy,desribing the main tableau expansion algorithms as well as the algebrai apparatus used toharaterise di�erent aluli. We will �rst give an overview of the system and its di�erentmodules followed by a exposition foused on the syntati module (see �gure 3.1). A detaileddesription of the labelling module, heuristis, and omparisons with other methods will bethe subjet of the following hapters.Completeness and soundness results with respet to the Gentzen sequent presentation of thealuli, adapted from the ones given in (D'Agostino and Gabbay, 1994), are presented anddisussed along with omputational issues of termination and label introdution. Finally, wepoint out the problems of non-termination exhibited by the algorithm given in (D'Agostinoand Gabbay, 1994) and show how to extend their semi-deision proedure into a full deisionproedure for the range of ategorial aluli de�ned in the previous hapter.



Automated Substrutural Dedution for CG 363.1 Overview of the parsing arhitetureAs we have seen in hapter 2, there is a large variety of ategorial aluli whih have been usedin the desription of linguisti phenomena. In order for these aluli to make the transitionfrom theoretial tools into applied parsing mehanisms automated dedution tehniques arerequired | that is, of ourse, if one aepts the Shieber et al paradigm of parsing as dedution.In what follows we desribe a system, whih we will all LLKE1, designed for performingautomated dedution in the range of ategorial aluli within the hierarhy of impliationalfragments of substrutural logis (Do�sen, 1992).
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(complex type) Figure 3.1: LLKE ArhitetureThe general arhiteture of LLKE is shown in �gure 3.1. The main proessing tasks aredivided, in onsonane with the philosophy of labelled systems, between two main modules:� the syntati modulewhih ontrols the operations performed on the proof tree aordingto the syntati (in logial terms) struture of CG types. These operations, essentiallyde�ned via tableau expansion rules, will be desribed in detail in the remaining setions1\KE" after Dagostino's (D'Agostino and Mondadori, 1994) \surgial ut" system for propositional logion whih the general proof-searh mehanism is based, plus an \L" for \labelled", after Gabbay's labelleddedutive systems (Gabbay, 1994) and another \L" to go with CG's vast olletion of \Ls" after (Lambek,1958).

Automated Substrutural Dedution for CG 37of this hapter.� the labelling algebra or semanti module, whih ontrols strutural features of the proofand ultimately determines the target alulus. By varying the settings of this moduleone hanges the notion of grammatiality against whih a given input string will beevaluated. The algebrai module will be partially desribed in this hapter and disussedin greater detail in hapter 4.In addition to these, we still have a omponent whih manages a hash table assoiating(natural language) lexial entries to CG types and a module to ontrol the features of thealgebrai module. The output is delivered by a module whih, given a losed tree (i.e. a graphenoding a suessful proof searh in the target alulus), extrats the relevant linguistiinformation and returns the LLKE equivalent of a parse tree | ignoring the subtrees of theproof tree whih orrespond to lemma generation, failed searhes et. The entral features ofthis output module are detailed in hapters 4 and 5.3.2 Labelled dedution based on tableauxLLKE is based on a theorem proving tehnique originally developed for (lassial) �rst-orderlogi: semanti tableaux (Smullyan, 1968; Fitting, 1990). Tableaux are built aording toreursive rules whih operate on sets of formulae. These rules speify onditions under whihto \expand" the set with new formulae or \mark" the set as losed. A losed set of formulaedoes not undergo further expansion.Tableaux, like model-elimination and resolution provers, are refutation proof systems. Thismeans that, in lassial prediate logi, expanding a tableau orresponds to building a ounter-model for the negation of a formula one wants to prove | i.e. a formalisation of mathematialreasoning by redutio ad absurdum: one tries to show that if a presumably false laim isassumed to be true the assumption leads to a ontradition. Various data strutures may beused to enode ounter-models. The most popular are trees. A ounter model for a formulais then assumed to be a tree struture whose branhes are all losed.



Automated Substrutural Dedution for CG 38The ondition for a branh to be onsidered losed in a standard tableau is that both aformula and its negation our on it. Sine the syntax of the ategorial aluli de�ned inhapter 2 does not allow for negation, we have to appeal to some extrinsi mehanism inorder to be able to express ontradition. Automated dedution systems whih like LLKEappeal to bookkeeping devies, i.e. systems whih use symbols outside the logial languageof their aluli, are alled non-uniform theorem provers (Fitting, 1990). In the non-uniformsystems desribed in (Fitting, 1990), all formulae ourring in a derivation are preeded bysigns: \T" to sign formulae evaluated as \true" and \F" for formulae evaluated as \false".To illustrate the method, suppose one wishes to prove A) A in lassial logi. One startsby assuming that the formula is \false", pre�xing it by F , and tries to �nd a refutation forF : A) A. For this to be the ase in lassial logi both T : A (the anteedent) and F : A(the onsequent) must be the ase. The pair of formula hT : A;F : Ai in the (single) branh ofour proof tree T = fF : A) A; T : A;F : Ag yields a ontradition, hene T may be regardedas a ounter-model for F : A) A.In lassial logi one an interpret T and F respetively as assertion and denial of a propo-sition. Therefore one is able to translate the external symbol F into the logial syntax asnegation, thus obtaining a uniform notation and eliminating the need for signed formulae. InLLKE there is no alternative to the use of signed formulae as proof theoreti devies. How-ever, sine the notion of \truth" in lassial logi is obviously not the same as logial truthin substrutural systems2 these signs should reeive di�erent interpretation. To give them a(neessarily impreise) intuitive interpretation we ould say that \T" and \F" will be used inLLKE to indiate whether or not a ertain string is available for ombination in the tableauto produe a new string.If we had restrited the system to dealing with signed formulae only, we would have ended upwith a proof method for an impliational fragment of standard propositional logi enrihedwith bakwards impliation and onjuntion. However, we have seen that the Lambek alulusdoes not exhibit any of the strutural properties of standard logi, and that di�erent aluli2See disussion on logis of information ow (Barwise, Gabbay, and Hartonas, 1995) in hapter 6 to seehow the notion of truth plays a muh less important role in logis aimed at modelling dynami phenomenasuh as the ones presented in hapter 2.

Automated Substrutural Dedution for CG 39may be obtained allowing di�erent strutural rules. Therefore, we also need a mehanism forkeeping trak of the struture of our proofs. This mehanism is provided by labelling eahformula in the derivation with information tokens. This labelling tehnique, already usedin di�erent CG systems (see hapter 2), has been motivated proof-theoretially in Gabbay'sLDSs (Gabbay, 1994), and semantially in Barwise's Channel Theory (Barwise, Gabbay, andHartonas, 1995). Before we arry on with our desription of LLKE, let's formalise a fewonepts related to the data strutures employed by the system whih have been loosely usedabove.3.2.1 Tree struturesLLKE proofs will be represented as ordered dyadi trees. An unordered tree T is a de�ned by(i) a set of elements whih we will refer to as nodes (we also refer to nodes as being elementsof T ) (ii) a funtion level whih assign to eah node x 2 T a positive integer level(x) and(iii) relation xPy to be read as \x is a predeessor of y" or \y is a suessor of x" obeyingthe following onditions: there is a unique node i (alled the root or origin of T ) suh thatlevel(i) = 1, all other nodes have a unique predeessor, and for any nodes x; y if xPy thenlevel(y) = level(x) + 1. A tree will be represented graphially with the root at the top, so wewill sometimes refer to this node as the topmost node of the tree. A node l is alled a leaf oran end point if it has no suessors. A node with two suessors is alled a branhing node.A dyadi tree is a tree struture in whih eah node has at most 2 suessors. A path is adenumerable sequene of nodes beginning at the root in whih eah node is the predeessorof the next, exept naturally in the ase of the last node of a �nite path. If a node x is thelast node of a path on whih a node y ours we say that y dominates x. In ase x 6= y andy dominates x in T we say that y ours above x in T . A path whose last node is a leaf isalled branh.We speak of a subtree or T 0 referring to a subset of T obeying onditions (i), (ii) and (iii)above. An ordered tree an be generated by equipping an unordered tree with a funtionwhih orders the suessors of eah node in it. In displaying a tree this ordering will bereeted by the position of the node on the page: the �rst suessor will be displayed as the



Automated Substrutural Dedution for CG 40leftmost node et. We will sometimes refer to tree expansion: by this we mean the adjoiningof a node to a leaf of a tree | i.e. y expands tree T into T 0 = T [ fyg if there is a nodex s.t. x is a leaf of T , the predeessor relation is extended so to R0 = R [ fhx; yig, andlevel(y) = level(x) + 1 in T 0.Trees in whih all nodes have a �nite number of suessors are said to be �nitely generated. A�nite tree is a tree whih have an �nite number of nodes. A �nitely generated tree an have anin�nite number of points. An important result on trees from a theorem proving perspetiveis K�onigs lemma whih says that every �nitely generated tree with an in�nite number ofpoints must have at least one in�nite path | see (Fitting, 1990; Smullyan, 1968) for proofsand disussion. We now overview the di�erenes between two non-labelled tableau systems(i.e. systems for standard propositional logi): Smullyan-style tableaux and tableaux whihinorporate a mild form of ut (D'Agostino and Mondadori, 1994). After this we return toour remarks on labels and proof struture.3.2.2 Non-labelled propositional systems: tableaux Vs. \surgial" utAs we have seen, in ategorial grammar one asribes lexial entries (words) to types whihdesribe their funtion. Types an be primitive { e.g. N (noun) { or ompound from primitivesthrough the operators: \/", \n" and \�". Parsing thus (roughly) orresponds to determiningwhether a set of types joined by \�" yields another. The \residuation" operators \n" and\=" an be seen as forms of impliation, while \�" an be regarded as a form of onjuntion.Therefore, both tableau and Gentzen rules for these ategorial onnetives resemble the onesfor lassial onnetives, exept for the strutural devies. If we ignore strutural propertiesfor the moment, we an say that a standard (Smullyan-style) tableau system has two kindsof rules:� an \� rule" whih expands formulae of the form F : A=B (F : BnA) and T : A � Bby adjoining fT : B;F : Ag and fT : B; T : Ag respetively to the branh where thoseformulae our and� a \�" rule whih expands the dual of those formulae | T : A=B et | by adjoining
Automated Substrutural Dedution for CG 41two subtrees to the branh where these �-formulae our. For instane, a � expansionfor a list hT : NP=S; T : Si would generate two branhes: hT : NP=S; T : S; T : Si andhT : NP=S; F : NP; T : Si.The assumption that Smullyan style tableau systems are adequate for automated dedutionin propositional logi has been hallenged reently (D'Agostino, 1992; D'Agostino and Mon-dadori, 1994) on the basis that tableaux, as well as ut-free Gentzen systems, exhibit threeanomalies: 1) they fail to reet the priniple of bivalene (whose ounterpart in Gentzensystems is the ut rule), 2) they are omputationally expensive (not even being able to p-simulate truth-tables!), 3) they don't allow for \nesting" of subproofs (lemmas), thus leavinglittle room for heuristis whih ould mitigate omputational omplexity. In order to addressthese problems, (D'Agostino and Mondadori, 1994) proposes a system where the tableau �(tree branhing) rules are replaed by linear rules plus a single branhing one: a \surgial"ut. In this system, �-formulae do not immediately branh the derivation tree. Instead they\look up" the branh where they our for other formulae with whih they might ombine inorder to yield a third formula whih then gets adjoined to the branh. We will all suh rules\� rules". For instane, a rule for \=" says: for any A;B, if both T : A=B and T : B our ina branh, then expand this branh with fT : Ag. A �-expansion for hT : NP=S; T : Si wouldgenerate a single branh: hT : NP=S; T : S; T : NP i.However, rules � and � alone do not suÆe to generate Hintikka sets (Smullyan, 1968)from arbitrary sets of formulae, and therefore a system restrited to these rules would beinomplete. An extra rule needed, for instane, to deal with those �-formulae to whih no �-rule an be suessfully applied. In order to omplete the system (D'Agostino and Mondadori,1994) proposes adding a form of ut rule to it. With ut, ompletely expanded branhes areahieved by branhing the tree with pairs of the form T:A and F:A { learly an implementationof the priniple of bivalene. Let's all this rule \� rule". If we restrit A to subformulaeourring in the derivation, we guarantee termination. Under this restrition an appliationof a � rule is sometimes alled \surgial ut".Systems whih employ surgial ut an be shown to outperform Smullyan-style tableaux forpropositional aluli in general. They are able to simulate standard tableau proofs (and nat-



Automated Substrutural Dedution for CG 42urally truth tables) in polynomial time while the onverse does not hold (Cook and Rekhow,1979; Haken, 1985; D'Agostino and Mondadori, 1994). This is one of the reasons why wehave hosen to build LLKE as a surgial-ut system. There are other reasons derived fromspei� properties of the labelling regime employed in ategorial logis. The latter will bedisussed in detail in hapter 4.3.2.3 The labelling algebraLabels will at not only as mehanisms for enoding the struture of the proof, from a proof-theoreti perspetive, but will also serve as means to propagate semanti3 information throughthe derivation. A label an be seen as an information token supporting the information on-veyed by the signalled formula that it labels. Tokens may onvey di�erent degrees of infor-mativeness. Therefore we will assume that they are ordered by an anti-symmetri, reexiveand transitive relation \v" so that the expression x v y will assert that \y" is at least as in-formative as \x". In other words: \y veri�es (or supports the ourrene at a ertain positionof) at least as many types as x". We will also assume that this semanti relation, \veri�es",whose meaning will be preisely de�ned below, is losed under dedutibility (i.e if a veri�esA and A ` B then a veri�es B).It is natural to suppose that, as well as syntati types, information tokens an be ombined.We have seen that a type suh as S=NP an ombine with a type NP to produe a third typeS. If we assume that there are semanti tokens x and y verifying respetively S=NP and NP ,how would we represent the token that veri�es S? In order to answer this question we de�ne atoken omposition operation, Æ. One an think of information tokens as being sets (multisets,lists) of types losed under ertain logial operations and of the types they support as elements(members) of those sets (multisets, lists). Following our natural language intuitions, weassume that, a priori, the number and order (position) of syntati types appearing on astring matter with regard to its grammatiality. Therefore we interpret information tokensas lists of types. Aordingly, a minimal information token verifying S in the example above3In the ontext of tableau and labelled dedution in general, we will sometimes use the term \semanti" torefer to strutural properties of proofs as opposed to semantis of natural languages, for instane.
Automated Substrutural Dedution for CG 43will be given by appending list y to list x, whih we notate as x Æ y.As we will see below, the onstraints imposed on Æ will ultimately determine whih infereneswill be liensed for a partiular alulus. For instane:� if we deide to relax our onstraints so that the order in whih the types our ismade irrelevant, then we may allow permutation on the operands, whih orrespondsto property x Æ y v y Æ x with respet to the ordering relation� or we may deide that in ertain ases the number of types ourring on a string isnot relevant and allow ontration as a strutural property of the alulus. In this asestrings suh as the one obtained by onatenating fS=NP;NP;NPg will also yield anS, in spite of the dupliation of an NP . In terms of information ordering we say thaty Æ y v y, et.Let's formalise the notions introdued above through de�nition 3.2. We will use an alge-brai struture, alled Information frame (Gabbay, 1994) whih enompasses the neessarystrutural sensitivity.De�nition 3.2 An Information Frame is a struture L = hP; Æ; 1;vi, where(i) P is a non-empty set of information tokens;(ii) Æ is an order-preserving, binary operation on P whih satis�es ontinuity,i.e., for every direted family fzig, Ffzi Æ xg = Ffzig Æ x and Ffx Æ zig =x Æ Ffzig; and(iii) 1 is an identity element in P.Combinations of types in derivations are aounted for in the labelling algebra by the om-position operator. Now, we need to de�ne an algebrai ounterpart for the deompositionof types joined by the multipliation operator \�". When a formula suh as S=NP �NP isveri�ed by a token x this is beause its omponents were available for ombination, and on-sequently were veri�ed by other tokens. Now, suppose S=NP was veri�ed by a token, say a.What would be the appropriate token for NP , suh that S=NP ombined with NP would be



Automated Substrutural Dedution for CG 44veri�ed by token x? It ertainly ould not be more informative token than x. Moreover, if theexpression S=NP �NP were to stand for the omposition of the (informational) meanings ofits omponents, then the label for NP would have to verify, when ombined with a, at mostas muh information as token x. In order to express this, we de�ne the label for NP as beingthe greatest information token y suh that x is at least as informative as a ombined with y.This token will be represented by x==a. In general, x==y def= Ffz j y Æ z v xg. An analogousoperation, nn, is de�ned to ope with ases in whih it is neessary to �nd the appropriatelabel for the �rst operand by reversing the order of the tokens. Both operators are formsof algebrai division, and we use the double lines to di�erentiate them from syntati CGdivision. Below are some properties of == (with analogous properties holding for nn):y Æ (x==y) v x (3.1) 1 v x==x (3.2)(x==y) Æ z v (x Æ z)==y (3.3) (x==y)==z v x==(y Æ z) (3.4)We now de�ne a language of algebrai expressions whih mimis our type language of de�ni-tion 2.1. Given a set of tokens P = fa; b; ; :::g and V = fx; y; z; :::g, a set of label variables,we de�ne our language of label expressions, L�, as the losure of P [ V under label operatorsÆ; ==; nn. It is sometimes onvenient to distinguish between P�, the set of variable-free labelexpressions, and V� = L� � P�, the set of label expressions ontaining at least one labelvariable.3.3 Derivation treesBoth the (syntati) type language de�ned in the previous hapter and the algebrai struturede�ned above will be employed in LLKE derivations. In fat, eah node of a derivation treewill ontain a sign, a type expression and a label expression. We all the expressions on eahnode Signed Labelled Formulae (SLF for short). De�nition 3.3 provides some extra tools fordealing with the omponents of a derivation.

Automated Substrutural Dedution for CG 45De�nition 3.3 The set of Signed Labelled Formulae (SLF) is the set of expressions of theform `S : Type : L', where S 2 fT; Fg, Type 2 C and L 2 L. We also de�ne the funtionss : SLF ! fT; Fg, t : SLF ! C, and l : SLF ! L� to denote the omponents of a SLF. ASLF X where s(X) = T is sometimes alled a T-formula; likewise, if s(X) = F , then X isalled a F-formulaA derivation, or proof will be a tree struture built aording to ertain syntati rules.These rules will be alled expansion rules, sine their appliation will invariably expand thetree struture. Again, as in the non-labelled version, there are three sorts of expansion rules:those whih expand the tree by generating two formulae from a single one ourring previouslyin the derivation, those whih expand the tree by ombining two formulae into a third onewhih is then added to the tree, and the branhing rule. The �rst kind of rule is a labelledversion of what is alled �-rule in Smullyan-style tableaux (Smullyan, 1968). These rules willbe alled �-rules here as well. The seond and third kinds have no equivalent in standardtableau systems. We will abuse the naming onventions of setion 3.2.2 and refer to theseond kind as �-rules, and to the branhing rule as � rule4.Table 3.1 summarises the expansion rules to be employed by the system. Notie that a; b areinformations tokens, n is a new label (i.e. a label not ourring previously in the derivation)and x is a label variable. A dedution bar spei�es that if the formula(e) appearing aboveit ours (we all these premises) in the tree, then the formula(e) below it (we all theseonlusions) should be added to the tableau. The rules are easily interpreted aording tothe intuitions asribed above to signs, formulae and information tokens. A rule like �(i), forinstane, says that if AnB is not available for ombination and x veri�es suh information,then this is beause there is an A available at some token a but the ombination of a andx (notie that the order is relevant) fails to make B available in the proof tree for furtherombinations. Rule �(i) says that if both types AnB and A are available in a proof thentype B an be made available provided that the token labelling it ontains all informationontained in the tokens whih labelled the former types. Rule � implements a version of thelassial priniple of bivalene: a token x either supports a type or its denial.4Although this rule is a tableau-branhing one, we prefer to all it � rule, instead of �, in order to avoidonfusion with � rules in Smullyan-style tableaux.



Automated Substrutural Dedution for CG 46�-rules (i) (ii) (iii)(�1) F : AnB : a F : A=B : a T : A � B : a(�2) T : A : n T : B : n T : A : n(�3) F : B : n Æ a F : A : a Æ n T : B : a==n�-rules (i) (ii) (iii)(�1) T : AnB : a T : AnB : a T : A=B : a(�2) T : A : b F : B : b Æ a F : A : a Æ b(�3) T : B : b Æ a F : A : b F : B : b(iv) (v) (vi)(�1) T : A=B : a F : A �B : a F : A � B : a(�2) T : B : b T : A : b T : B : b(�3) T : A : a Æ b F : B : a==b F : A : annb�-rule(�1) F : A : x j (�2) T : A : xTable 3.1: Tableau expansion rulesWe assume that the SLF at the topmost node is labelled by the identity element of L.Furthermore, we generalise rule �(i) to over the �rst expansion, viz., the deomposition ofT : X ` Y : 1 into T : X : n and F : X : n Æ 1 = n. We all the subformulae introdued bythe �rst round of exhaustive appliations of � rules | see algorithm 3.1 below | to a set offormulae initial (sub)formulae| or initial sub(types). Likewise, we extend the sope of �(iii)to over the onatenation operators (',') whih appear on the anteedent of an entailmentrelation. Thus we de�ne an initial tableau for A1; :::; Ak ` A0 as a tree, T , with the followingstruture: F : A0 : l0T : A1 : l1...T : Ak�1 : lk�1T : Ak : (:::(l0==l1)==:::)==lk�1 (3.5)Given the expansion rules, the de�nition of the main data struture to be manipulated by theparsing algorithm is straightforward: a derivation tree, T , is simply a dyadi tree built froma given set of formulae by applying the rules in a ertain order. The algorithm's termination
Automated Substrutural Dedution for CG 47depends on the notions of ompletion along with (branh and tree) losure. It an be readilyseen on table 3.1 that for a �nite set of formulae, the number of times � rules an be appliedinreasing the number of SLF-s (nodes) in T is �nite. Unbounded appliation of � and �,however, might expand the tree inde�nitely. In order to assure termination some restri-tions must be plaed. We shall disuss them below, after we have de�ned the unrestritedproedures for � and � expansion of the tableau.The �rst step towards building a ounter-model for the denial of a formula to be proved isthe searh for a tree ontaining potential ontraditions, meaning pairs of types pre�xed byT and F respetively. Whether or not a potentially losed tree is a ounter-model for theformula will depend ultimately upon the onstraints on the labelling algebra. The notion oflosure de�ned below is employed by the tableau expansion algorithms.De�nition 3.4 (Branh and Tree Closure) A branh (list of formulae) is losed with respetto the labelling algebra i� it ontains SLFs of the form T : X : x and F : X : y | let's all apair of suh SLFs a losure pair | where x v y, in whih ase the losure pair is said to besuessful. Likewise, a (sub)tree is losed i� it ontains only losed branhes.Now we are ready to de�ne an algorithm for linear expansion of the derivation tree. By linearlyexpanded tableau we mean a set of formulae to whih only � and � rules have been applied.For eÆieny reasons non-branhing rules will be exhaustively applied before we move on toemploying �-rules. Furthermore, sine � rules do not involve searh, it is more onvenientto apply them �rst. We therefore split the linear expansion proedure into algorithm 3.1and algorithm 3.2 as shown below in pseudoode5. Algorithm 3.2 desribes the top level ofexpansion for a branh and may yield, under ertain irumstanes a omplete derivationtree. The output of algorithm 3.1 applied to the initial SLF orresponds to a tableau's initialtree as de�ned in (3.5).5The pseudoode symbols ( and � denote value attribution and omments respetively. As usual, :stands for negation whereas ^ stands for onjuntion as read by, say, a Lisp interpreter. We also use funtionswhose interpretation should be reasonably straightforward: losed(T ) returns boolean \true" if T is a losedbranh aording to de�nition 3.4, (�)�-type(f) test whether f is of a ertain kind aording to table 3.1,head(T ) returns the �rst element of branh T , removing it from T , or simply returns an \empty string" if Tis empty.



Automated Substrutural Dedution for CG 48Algorithm 3.1 (Alpha Expansion) Given T , a LLKE tableau struture, and rules �i,...,�iii,we de�ne the proedure:�-expansion(T )1 do formula ( head(T )2 while non-empty(formula) ^ :losed(T )3 do if �1-type(formula)4 then do �2 ( generate-new-label(�2) � assign new label to �25 �3 ( ombine-labels(�1,�2)� ombine �1 and �2 labels into �36 T ( append(T ,h�2,�3i)� add subformulae to the original list7 do formula ( head(T )8 return TFor notational onveniene we de�ne the set jA0; ::; Anj� as the result of applying algorithm 3.1to a set of SLFs fA0; ::; Ang, and jA0; ::; Anj�� as the result of applying algorithm 3.2 to setfA0; ::; Ang. The omplete LLKE algorithm whih uses the proedure below, algorithm 3.3,will be presented after we have disussed tableau losure from the information frame perspe-tive.Algorithm 3.2 (Algorithm: Linear Expansion) Given T , a LLKE tableau struture, we de-�ne linear exhaustive expansion as follows:linear-expansion(T )1 do T ( �-expansion(T )2 formula ( head(T )3 while non-empty(formula) ^ :losed(T )4 do setaux ( ;5 do if �1-type(formula)6 then do setaux ( searh(T ,�2) � setaux is a set of �2-slf's7 else do if �2-type(formula)8 then do setaux ( searh(T ,�1) � setaux is a set of �1-slf's9 do if setaux 6= ;10 then do �3-set ( ombine-�(formula, setaux)� �3-set results of ombining formula to eah element of setaux11 �3-expansion ( �-expansion(�3-set)12 T ( append(T ,�3-expansion)13 do formula ( head(T )14 return TWe have seen above that the labels are means to propagate information about the formulaethrough the derivation tree. From a semanti viewpoint, the aluli addressed in this thesis are
Automated Substrutural Dedution for CG 49obtained by varying the struture assigned to the set of formulae in the derivation6. Therefore,in order to verify whether a branh is losed for a alulus one has to verify whether theinformation frame satis�es the onstraints whih haraterise the alulus. For instane, thestandard Lambek alulus L does not permit any sort of strutural manipulation of formulaeapart from assoiativity; NL doesn't even allow that; LP allows formulae to hange plaes ina string; LPE allows permutation and expansion; LPC allows permutation and ontration;et. De�nition 3.5 sets the algebrai ounterparts of these properties7.De�nition 3.5 For all x, y, z 2 P, we all an information frame(i) assoiative if x Æ (y Æ z) v (x Æ y) Æ z (3.6)and (x Æ y) Æ z v x Æ (y Æ z) (3.7)(ii) ommutative if x Æ y v y Æ x (3.8)(iii) ontrative if x Æ x v x (3.9)and (iv) expansive if x v x Æ x (3.10)However, it is not immediately obvious that the di�erently onstrained information frames ofde�nition 3.5 suÆe to aount for the strutural rules in (2.12). The most obvious approahwould be to add strutural tableau rules in the same way as strutural sequent rules are addedto Gentzen systems: (P ) = T :A:xÆaÆbÆyT :A:xÆbÆaÆy for permutation, (E) = T :A:xÆaÆyT :A:xÆaÆaÆy for expansion and(C) = T :A:xÆaÆaÆyT :A:xÆaÆy for ontration (assuming L as the basis). Proposition 3.1 guarantees thatno suh strutural tableau rules are needed 8.Proposition 3.1 All suessful losure pairs obtained in trees generated by appliation oftable 3.1 rules plus (some ombination of) tableau strutural rules (P ), (E) and (C) an beobtained from trees generated exlusively from table 3.1 via (some appropriate ombinationof) strutural onstraints (3.6){(3.10).6For instane, resoure sensitive logis suh as linear logi are frequently haraterised in terms of multisetsto keep trak of the \use" of formulae throughout the derivation.7In pratie we will assume that expansive frames are also monotoni in order to preserve the label losureonditions of de�nition 3.4. Purely expansive frames would require losure to be evaluated with respet to theÆ-onatenation of the tokens of all T-formulae.8This fat is responsible for muh of the exibility exhibited by the system, as we will disuss in hapter 4.



Automated Substrutural Dedution for CG 50Proof. We say that a rule R enables (the appliation of) a rule T if one of the followingholds: (i) the onlusion of R is a premise of T (in whih ase we say that R immediatelyenables T , or (ii) there is a rule S suh that the onlusion of R is a premise of S and Senables T . There are two main ases to onsider:Case 1: The onlusion of a strutural rule auses losure (i.e. the onlusion is a SLF ina losure pair). In this ase it is obvious that the premise of the strutural rule also auseslosure under the appropriate strutural onstraint.Case 2: The onlusion of a strutural rule immediately enables an operational rule (ta-ble 3.1) whih auses tableau losure (after a �nite number of steps). Clearly, the only kindof operational rule that an be immediately enabled by the result of a strutural rule is �,partiularly �(ii) and �(iii). The premises of the remaining rules are not sensitive to numberand order of information tokens as an be readily veri�ed by inspetion on table 3.1. Further-more, if the premise of an � rule were the onlusion of a strutural rule, then the onlusionsof the � rule would ontain the same tokens as its premises (plus a newly introdued one)whih obviously an be treated by strutural onstraints. Now, let's suppose the resultingSLF enables a � rule. Again we have two subases:Subase 1: The onlusion of the � rule enabled by a strutural rule, let's all this on-lusion �3, forms a losure pair with some rule in T . Then the formula in T with whih �3loses is of the form �3 = T : f(�3) : l(�3). But the result of applying �1 (the �rst premise ofthe �-enabled rule) to �3 is a formula T : f(�2) : l(�2), whih forms a losure pair with �2.Therefore the strutural rule appliation is redundant in this ase. See the path below for agraphial illustration of this fat with respet to rule (E):...1� T : B : y Assump:...2� T : A=B : a Æ x Æ b Assump:3� F : A : a Æ x Æ x Æ b Æ y Assump:4� T : A=B : a Æ x Æ x Æ b 2; (E)5� F : B : y 4; 3; �(iii)�6� T : A : a Æ x Æ b Æ y 2; 1; �(iv)� (3.11)
Automated Substrutural Dedution for CG 51The subtree enlosed in the box ontains the redundant steps to be eliminated. We appendthe symbol � to denote branh losure. The vertial dots denote (possibly empty) subtreesand the numbers on the right identify the rule whih yielded the SLF on the left. Theseonventions will be used throughout this thesis.Subase 2: Suppose �3 doesn't ause immediate losure as in subase 1 but enables otherrule appliations. Let's assume �3 to math �1 for some rule �. The tableau will then beextended with �2 (where s(�2) = T and l(�2) = a, a being a newly introdued token) and �3(where s(�3) = F and l(�3) = l[a℄, l[a℄ being a token l in whih a ours. Clearly, �2 annotbe in a losure pair with any SLF ourring above it in T , sine its label is new. Neither an�3, sine the token whih labels �2 ours in l(�3). Indution shows that no sequene of �rules an ause losure. Finally, if �3 mathes �2 for some SLF in T , then subases 1 and 2apply reursively.3.4 Label heking and non-terminationHaving established in proposition 3.1 that there is no need to manipulate label struture atthe syntati level (i.e. via expansion rules) we an safely irumsribe losure heking inthe labelling algebra module. Cheking for label losure will depend on the alulus beingused, and onsists basially of reduing information token expressions to a normal form, viaproperties (3.1){(3.4), and then mathing tokens and/or variables that might have been intro-dued by appliations of the �-rule aording to the properties or ombination of properties(De�nition 3.5) that haraterise the alulus onsidered. The preise label heking meh-anism will be detailed in hapter 4. Example (3.1) below shows how linear expansion worksin general:Example 3.1 Let's prove that the string NP � (NPnS)=NP yields a type S=NP in the Lam-bek alulus. So, the expression we want to �nd a ounter-model for is:1� F : NP � (NPnS)=NP `L S=NP .Therefore, the following has to be proved:2� T : NP � (NPnS)=NP : m and 3� F : S=NP : m.



Automated Substrutural Dedution for CG 52We proeed by breaking 2 and 3 down via �(iii), obtaining:4� T : NP : a, 5� T : (NPnS)=NP : m==a, 6� T : NP : b, and 7 � F : S : (m Æ b).Now we start applying �-rules (annotated on the right-hand side of eah line):8� T : NPnS : (m==a) Æ b 5; 6�(i)9� T : S : a Æ ((m==a) Æ b) 4; 9�(i)We have derived a potential inonsisteny between 7 and 9. Turning our attention to theinformation tokens, we verify losure for L as follows:a Æ((m ==a) Æ b) v (a Æ (m ==a)) Æ b by assoiativityv m Æ b by property (3.1)It should be notied that the algorithm in algorithm 3.2 performs \brute fore" �-expansion{ i.e. eah �1 formula is ombined with all �2's in the tableau {. Most potential losuresresulting from suh ombinations will be immediately ruled out by the label heker. We willdisuss this point in hapter 4 along with other features of the algebrai module.Allowing unrestrited bidiretional appliation of � rules { steps 6 and 8 of linear-expansion {might lead to non-termination. Consider for example the in�nite sequene of �-appliations:1� T A=B : x2� T B=C : y3� T C=A : z4� T A : w5� T C : z Æ w; 3; 4; �(i)6� T B : y Æ (z Æ w) 2; 5; �(i)7� T A : x Æ (y Æ (z Æ w)) 1; 6; �(i)8� T C : z Æ (x Æ (y Æ (z Æ w))) 3; 7; �(i)... (3.12)

This fat seems to have been overlooked in (D'Agostino and Gabbay, 1994). They de�ne alinear expansion proedure similar to algorithm 3.2 whih they laim to be able to reogniseevery losed tree in a �nite number of steps, though open ompleted trees an be in�nite.
Automated Substrutural Dedution for CG 53Derivation (3.12) shows that this is not the ase unless extra restritions are added to ruleappliation. A possible solution would be to allow only �1 SLFs to \searh" for �2 SLFs butnot vie-versa (i.e. delete lines 7 and 8 in linear-expansion). This, however, would potentiallyinrease the number of times the branhing rule would have to be applied, thus inreasingthe number of variables to be introdued in the labelling expressions. Sine we want tominimise the number of � expansions (hene variables) in the derivation9, this strategy hasbeen rejeted. Another solution would be to set an upper bound to the degree (number ofonnetives) of the labels admissible for �3 formulae based on the degree of the initial T .This is the alternative adopted in LLKE. For this purpose we de�ne degree of types or labelexpressions as follows:De�nition 3.6 We de�ne degree of types and label expressions (labelexp), dg: C [ L ! NI asfollows: dg(�) = 8>>><>>>: 0 if � is an atomi type or tokendg(�) + dg() + 1 if � is of the form � ? , where? 2 f/,n, �, Æ, ==, nngThe restrition on maximum label degree may be implemented in ombine-� (step 10 oflinear-expansion) whih must then �lter out all �3's whose labels have degree greater thanthe degree of the initial tableau. For all non-ontrative frames no formula an have a labeldegree greater than the degree of the initial tableaux and satisfy the label losure ondition,sine in non-ontrative aluli types annot be re-used | this will be proved in setion4.3.2. For ontrative frames, however, eventual labels of greater degree will be introduedas variables by appliation of � rules. Given the restrition on � rules, it is easy to see thatalgorithm 3.2 terminates when applied to a �nite number of formulae. We will see belowthat this restrition an be arried through to the general LLKE algorithm without loss ofgenerality.Another interesting question regarding expansion by non-branhing rules is: how far we anget by means of linear-expansion alone? The answer to this question requires additions to9The reasons for this will be spelled out in hapters 4 and 5. For the time being let's just say that the morebranhes one has in a derivation the more ostly its manipulation beomes.



Automated Substrutural Dedution for CG 54the labelling apparatus whih won't be made until hapter 4. However, we ould antiipatesome fats by having a look at the following proofs10 derived in L without any appliation ofrule �.Proposition 3.2 (Redution Laws) Let X, Y and Z be types, and L an informationframe. The following properties an be proved via �-free derivations:X=Y � Y ` X andY � Y nX ` X for any L. (3.13)X=Y � Y=Z ` X=Z andZnY � Y nX ` ZnX L assoiative. (3.14)X ` Y=(XnY ) andX ` (Y=X)nY for any L. (3.15)(ZnX)=Y ` Zn(X=Y ) andZn(X=Y ) ` (ZnX)=Y ) L assoiative. (3.16)X=Y ` (X=Z)=(Y=Z) andY nX ` (ZnY )n(ZnX) L assoiative. (3.17)Proof. The proofs are obtained by straightforward appliation of algorithm 3.2. Weillustrate the method by proving (3.13) and (3.14):(3.13) To prove right appliation we start by assuming that it is veri�ed by the identity token1. From this we have: 1� T : X=Y � Y : m, 2� F : X : 1 Æm = m. Then, we apply�(iii) to 1 obtaining 3� T : X=Y : n and 4� T : Y : m==n. The next step is to ombine3 and 4 via �(iv) getting 5� T : X : n Æ (m==n). Now we have a potential losure ausedby 5 and 2. If we apply property (3.1) to the label for 5 we �nd that n Æ (m==n) v m,whih satis�es the losure ondition thus losing the tableau.10See also appendix A.1 for a the full set of redution law proof as generated by the system.

Automated Substrutural Dedution for CG 55(3.14) Let's prove left omposition. As we did above, we start with: 1� T : ZnY � Y nX : mand 2� F : ZnX : 1 Æm. Applying rule �(iii) to line 1 we obtain the following SLFs:3� T : ZnY : a and 4� T : Y nX : m==a.Now, we may apply rule �(i) to 2 and expand the tree with:5� T : Z : b and 6� FX : b Æm.Then, ombining 3 and 5 via �(i) we obtain: 7� T : Y : b Æ a. And �nally, lines 4 and 7an be ombined through the same rule yielding 8 � T : X : (b Æ a) Æ (m==a). The losureondition for 8 and 6 is ahieved as follows:(b Æ a) Æ (m==a) v b Æ (a Æ (m==a)) by assoiativityv b Æm by (3.1) and Æ order-preserving.The remaining proofs an be easily obtained by the same method.Properties (3.13){(3.17) orrespond to Zielonka's axioms for L. If we add identity and inferenerules allowing for reursion of the unary type transitions, then we get an axiomatisation ofthe Lambek alulus. Even though L does not enjoy a �nite design | proved in (Zielonka,1981) | the results above suggest that the alulus �nds a natural haraterisation in LLKEwith assoiative information frames11. In hapter 4 we show the impliations of this fat withrespet to the omplexity of the label heking module and disuss �-free LLKE proofs ingreater detail. We end this setion with another example of LLKE derivation, this time onewhih does use a � rule:Example 3.2 Prove the following: (AnA)nB `L (BnC)nC.1� T (AnA)nB : a2� F (BnC)nC : a3� T BnC : b 2; �i4� F C : a Æ b idem5� F B : a 3; 4; �ii:::11The Division Rule (3.17) an be regarded as L's harateristi theorem, sine it is not derivable on weakeraluli suh as AB, NL, and F.



Automated Substrutural Dedution for CG 56Now we ould apply a speial ase of �ii to 1 and 5, assuming that 5- F B:a is atually5- F B:1Æa. We hoose, however, to use the � rule as follows:.6� T (AnA) : x 1; �7� T B : a Æ x 1; 6; �i8� T C : b Æ (a Æ x) 3; 7; �i� &9� F (AnA) : x 1; �10� T A :  9; �i11� F A : x Æ  idem�Closure is thus ahieved by replaing x with 1 in 7 and 11 in order to solve both losureonstraints, a Æ x v a and x Æ  v , simultaneously.3.4.1 Label upper boundsAfter performing linear expansion, if the tableau is still not losed, one needs to make sure thatall of its SLFs have been suitably expanded. This is done by applying the � rule to subformulaeof SLFs ourring in the tree. However, not all subformulae need to be introdued in orderto generate all relevant models12. De�nition 3.7 below limits � rules to be applied only toertain SLFs. The fat that the restrition on � rules disussed in the previous setion and therestrition imposed below preserve ompleteness as well as yielding a terminating algorithmwill be disussed in the following setions.De�nition 3.7 We say that an SLF � 2 T is ful�lled i�:(i) if s(�) = T and f(�) is of the form AnB, then there is some  2 T s.t.f( ) = A and s( ) = T or f( ) = B and s( ) = F , or(ii) if s(�) = T and f(�) is of the form A=B, then there is some  2 T s.t.f( ) = A and s( ) = F or f( ) = B and s( ) = T , or(iii) if s(�) = F and f(�) is of the form A � B, then there is some  2 T s.t.s( ) = F and f( ) = B or s( ) = F and f( ) = A.Provided that in all ases above  has not been introdued by a �-appliation to an SLF otherthan �. We say that a branh is ompleted if it has been linearly expanded and all its formulae12Relevant models here being onsidered by analogy to Hintikka sets for standard prediate logi (Smullyan,1968). In setion 3.5 we will make these notions more preise.

Automated Substrutural Dedution for CG 57of the kinds desribed in (i), (ii) and (iii) above are ful�lled. A tableau T is ompleted if allits branhes are ompleted.Having set a limit up to whih a tableau an be expanded we are now ready to present thehigher-level expansion algorithm (algorithm 3.3). Notie that the funtion selet-subformula,on line 6, will searh the subtree for a formula whih is non-ful�lled and return either of itssubformulae, aording to de�nition 3.7.Algorithm 3.3 (LLKE-ompletion) The omplete tableau expansion for a LLKE-tree T isgiven by the following proedure:expansion(T )1 do losure-ag ( no2 while :( ompleted(T ) or losure-ag = yes)3 do T ( linear-expansion(T )4 if losed(T )5 then do losure-ag ( yes6 else do subf ( selet-subformula(T )7 if subf � There is at least one non-ful�lled subformula in T8 then do subfT ( assign-label-T(subf)9 subfF ( assign-label-F(subf)10 T 1 ( append(T ,fsubfTg)11 T 2 ( append(T ,fsubfFg)12 if (expansion(T 1) = yes and expansion(T 2) = yes)13 then do losure-ag ( yes14 else do losure-ag ( no15 else do losure-ag ( no16 return losure-agWe lose this setion with an extension to de�nition 3.4. The extra lause aims at identifyinga lass of (sub)trees of minimal depth whih depit proofs (or proof searh). It is spei�ed asfollows:De�nition 3.8 (Minimal Closure) A losed branh is said to be a minimally losed branhif no suessful losure pair in it is derived from a suessful losure pair of greater degree (byappliation of a rule in table 3.1 to the SLFs in the pair). A minimally losed tree is a treewhose branhes are all minimally losed.



Automated Substrutural Dedution for CG 58Minimal losure is de�ned for the sake of omputational eonomy: we want a losed tree tobe found as early as possible. Although at this point we won't be using this notion diretly,its purpose will beome lear when we disuss the labelling mehanism in more detail inhapter 4. For the time being, we just illustrate the de�nition with derivation (3.18): up toline 2 we have a minimally losed tree for (AnA) ` (AnA), though the fully expanded tableauannot be onsidered minimally losing.1� T (AnA) : a2� F (AnA) : a3� T A : b 2; �i4� F A : b Æ a idem5� T A : b Æ a 1; 3; �i� (3.18)

A last remark on proof searh before we takle soundness and ompleteness: although thesearh spae for signed formulae is �nite, the searh spae for the labels is still in�nite.The labels introdued via � rules are in fat universally quanti�ed variables whih must beinstantiated during the label heking phase via uni�ation. This represents no problem if weare dealing with theorems, i.e. trees whih atually lose. However, for ompleted trees withat least one open branh, the task might not terminate.In order to deal with this problem | and bound the uni�ation task at the labelling level,as we will see in hapter 4 | we restrit the domain of label (variable) substitutions to theset of tokens ourring in the derivation. This will be done by analogy to the way parameterinstantiation is dealt with by liberalised quanti�ation rules for �rst-order logi tableaux(Smullyan, 1968; Fitting, 1990), and will be managed by the module responsible for hekinglabel losure onditions. If no � rules are applied, then a ground rewrite system (Dershowitzand Jouannaud, 1990) suÆes for the task. This, however, is not the ase in general. Themehanisms e�etively adopted in order to get around the omplexities of assoiative rewritingare desribed in setion 4.3.2.

Automated Substrutural Dedution for CG 593.5 Soundness and ompletenessA model-theoreti semantis an be de�ned for LLKE (see de�nition 3.9 below) based on theinterpretation of information tokens as strutured databases as suggested in (Gabbay, 1994;D'Agostino and Gabbay, 1994) and mentioned above.De�nition 3.9 A valuation over a given information frame L = hP; Æ; 1;vi is a funtionv : C � P ! fT; Fg whih assigns truth-values to syntati types, suh that for eah type A, vis a ontinuous mapping | i.e. tfv(A; a)ja 2 Sg = v(A;tS) and ufv(A; a)ja 2 Sg = v(A;uS)for all direted sets S. A relation \j=" suh that a j= A an be read as \type A is available atdatabase a" an be de�ned through the following onditions:(i) a j= A i� v(A; a) = T for all types in C(ii) if a j= A and a v b then b j= A(iii) if a j= a and b j= A then a u b j= A, for all types A and all tokens x; y.(iv) if a 6j= a and b 6j= A then a t b 6j= A, for all types A and all tokens x; y.(v) a j= AnB i� b j= A or b Æ a j= B for all tokens b(vi) a j= A=B i� b j= B or a Æ b j= A for all tokens b(vii) a j= A �B i� b j= A and a==b j= B for some token bThe semantis above di�ers for example from the semigroup (Lambek, 1958) and relationalinterpretations (van Benthem, 1991) presented in hapter 2. This is due to the fat that theprimary onern here is not semanti informativeness| i.e. how muh purely model-theoretiobjets (sets and other strutures) tell us about about purely syntati objets (types andproofs) | but overage of a maximum number of logis by \bringing model-theory bak intoproof-theory", to quote a well-known LDS slogan. In fat, the semantis of de�nition 3.9doesn't play any fundamental role in the presentation of the theory, sine as we will see belowompleteness and soundness are proved with respet to sequent presentations. We regard thisto be a limitation of the system rather than an advantage. There is more to the semantis oflabelling than its apparent simpliity leads one to believe. See for instane (Venema, 1996)on tree models for labelled CG for a disussion of these aspets. On the other hand, It isperhaps possible to base LLKE on a relational semantis and vary the notion of theorem-hood



Automated Substrutural Dedution for CG 60by adjusting Kripke-style aessibility relations and then obtain diret ompleteness proofsalong the lines of (Andreka and Mikulas, 1994). This, however, will not be attempted in thisthesis.The orrespondene between the onditions in de�nition 3.9 and the labelling regime spe-i�ed on table 3.1 is evident. Although a model theory so de�ned doesn't yield informativeompleteness proofs, it serves to show (see proposition 3.3 below) that the system whihinorporates the restritions on the size of the labels and on the appliation of � rules (seede�nition 3.7) is omplete with respet to the expansion rules.Proposition 3.3 Every ompleted open branh has a model.Proof. Indutively on the degree of SLFs in an open subtree T by de�ning a valuationfuntion over the information frame so that for all atomi types A: (i) v(A; a) = T if T : A : aours in T and v(A; a) = F otherwise.The results on soundness and ompleteness presented below have been adapted from similartheorems proved in (D'Agostino and Gabbay, 1994) and (Gabbay, 1994). The soundnessresult stems from the interpretation of the labelling algebra as disussed in setion 3.4 andskethed below. Completeness appeals to a notion of non-ritial substitutions of atomilabels on a derivation in order to show that all rules of the sequent CG presentation an bederived through LLKE rules.Proposition 3.4 (Soundness) For all syntati types X; Y , if there is a losed LLKE tree forF : X1; :::; Xn ` Y : 1 (in NL,...LPCE) then there is a sequent derivation for X1; :::; Xn ` Y(in the respetive alulus)Proof. Given an information frame L = hP; Æ; 1;vi, we de�ne P to be a set of types losedunder the (sequent) entailment relation `. We then interpret the label omposition operatoras follows: a Æ b def= fA � BjA 2 a ^B 2 bg. The \identity" token will be interpreted as the setof all theorems in the alulus, i.e. 1 = fAj ` Ag. The partial order on the labelling algebra
Automated Substrutural Dedution for CG 61de�ned by relation v will be regarded as as set inlusion.Now, if we interpret T : A : a as A 2 a and F : A : a as A 62 a, we have that a losed tree forT : X1 : a1; :::; T : Xn : an; F : Y : a1 Æ ::: Æ an implies that Y 2 a1 Æ ::: Æ an. Therefore (in asequent system) we have X1 � ::: �Xn ` Y and onsequently X1; :::; Xn ` Y . This shows thatunder the assumptions above the LLKE rules are sound with respet to sequent rules for thealuli in the substrutural hierarhy.Finally, it is shown that all valid sequents sequents also reeive LLKE derivations | proposi-tion 3.5. Following (D'Agostino and Gabbay, 1994), we denote a substitution of non-ritialatomi labels in T by T [x/y℄ (i.e. T with all ourrenes of y replaed by x). Non-ritiallabels are those not introdued by expansion rules. The fundamental result onerning non-ritial substitutions is given by lemma 3.1Lemma 3.1 Non-ritial substitutions preserve the struture and losure status of the treesonto whih they apply.Given this lemma we set up a bit of notation to be used in the main result (and in similarproofs in the next hapter): ÆÆ is taken to denote the Æ-onatenation of the labels assignedto eah formula in �.Proposition 3.5 (D'Agostino and Gabbay, 1994) For all Gentzen proofs in the substruturalLambek hierarhy there is a orresponding LLKE proof in the respetive algebra L with theappropriate strutural onstraints (2.12)Proof. The proof is arried out by showing that the LLKE entailment relation is losedunder rules (2.8) plus zero or more strutural rules (2.12) aording to the target alulus.The (Id) axiom is trivial. In proving losure under the other rules, the use of � rule is ruial.The tehnique is illustrated here by proving that LLKE is losed under the ontration rule(C) | losure of the system under the remaining rules an be similarly obtained. We at �rstassume �A;A;� `llke B and try to show �A;� `llke B. Our hypothesis implies the existene



Automated Substrutural Dedution for CG 62of a losed tree as follows: 1� T : � : 2� T : A : a3� T : A : b4� T : � : Æ5� F : B : Æ Æ a Æ b Æ ÆÆ Assump:� (3.19)Now by building a tableau for �A;� `llke B we arrive at a losed tree as follows:1� T : � : 2� T : A : a4� T : � : Æ5� F : B : Æ Æ a Æ ÆÆ Assump:���������� HHHHHHHHHH6� F : B : Æ Æ a Æ a Æ ÆÆ rule �T = (3.19)[a=b℄ 7� T : B : Æ Æ a Æ a Æ ÆÆ rule �� (3.20)

The right branh loses beause the losure pair on lines 7 and 5 obeys the losure onstraintÆ Æ a Æ a Æ ÆÆ v Æ Æ a Æ ÆÆ for LPC, i.e. (3.9). The subtree T on the left is losed sine it isa subset of the tree depited in (3.19) with all ourrenes of b replaed by a. and (3.19) islosed (by hypothesis). The lemma 3.1 guarantees that the substitution is allowed.3.6 SummaryWe have presented the general arhiteture of a tableau-based labelled dedutive method forthe ategorial aluli de�ned in hapter 2, motivated the presentation of the algebrai book-keeping devies and the tableau expansion rules from an intuitive point of view, and presentedformal de�nitions for tableau proofs through algorithms whih manipulate expansion rules.The semi-deision proedure of (D'Agostino and Gabbay, 1994) has been bounded at the level
Automated Substrutural Dedution for CG 63of label introdution and a semantis based on the labelling algebra has been de�ned. Finally,soundness and ompleteness have been shown to hold with respet to the sequent systemsof hapter 2. The label heking strategy and the termination results following from it stillremain to be disussed in greater detail . These issues will be addressed in the next hapters.



Chapter 4Syntati struture and labellingIn hapter 3 we presented the basi apparatus to deal with syntati types and indiated themain aspets of the other major module whih is omprised in our approah to CG parsing:the labelling algebra. This hapter details the bookkeeping strategies employed in the modulewith emphasis on the ones designed to maintain omplexity within aeptable bounds. It alsointrodues the disussion of how a lassial problem of (both ombinatorial and sequent-based) ategorial systems, spurious ambiguity, a�ets our tableau-based approah, showingthe existene of a trade-o� between minimal-e�ort label heking and unambiguous proofs.Finally, we desribe the interation between the two main modules of LLKE with a fous onthe labelling algebra and on the mehanisms de�ned for its manipulation, and present timeomplexity results for the system as a whole.4.1 Variable-free derivationsBranh (tableau) losure heking is performed on two formulae of the same form and op-posite signs. Identifying possible losure pairs is omputationally easy: it requires no morethan symbol identity heks. The bottlenek of losure heking is learly situated in thetask of determining whether the losure onditions spei�ed in de�nition 3.4 are met. Labelexpressions onneted by the symbol \v" desribe losure onstraints whih along with the
Syntati struture and labelling 65alulus-spei� properties of de�nition 3.5 an be generalised as rewrite redutions to besolved by the label-heking module. Under this view, variable-free labels produe groundredutions whih yield ground rewrite systems (Dershowitz and Jouannaud, 1990). However,areless variable introdution ombined with naive rewrite tehniques might render the result-ing system intratable or even undeidable. In LP, for example, regarding losure onstraintsas an equational theory modulo assoiativity and ommutativity one would have to performAC-uni�ation of label expressions whih has been proved to be NP-omplete (Kapur andNarendran, 1986). In L, solving onstraints modulo assoiativity is NP-hard (Siekmann, 1989;Baader and Siekmann, 1993), and so on.One possible way of getting around the problem is to redue the number of variables in thetableau. Among all of LLKE rules (see table 3.1), the only rule to introdue variables inlabelling expressions is �. De�nition 3.7 binds label variable introdution to the number ofsub-formulae neessary to ful�ll eah formula in the tableau. Now the question is: how faran we get without having to resort to � rules?Reall that properties (3.13){(3.17), whih orrespond to Zielonka's axioms for L, were provedin hapter 3 by means of stritly �-free derivations1. This fat naturally suggests a lass oftheorems whih an be proved in label-free derivations. Proposition 4.6 shows that in L, ifassoiativity is treated at the level of syntati types then algorithms 3.1 and 3.2 alone aresuÆient for the purpose of generating omplete sets of ful�lled types (see de�nition 3.7) fromany input set.Proposition 4.6 All losed LLKE-trees for L derivable by the appliation of the set of rulesR = f�i; : : : ; �iii; �i; : : : ; �vi; �;Assog an be also derived from R� f�g.Proof. The proof relies on the fat that the Gentzen formulation of the aluli, (R/),. . . ,(L�),an be proved in LLKE by means of �-free derivations. We follow the pattern of proposition 3.5(reall that we denote a substitution of non-ritial atomi labels in T by T [x=y℄ as before.The (Id) axiom is trivial. In order to prove (R/) we suppose �; A ` B and try to show1See also appendix A.1 for a omplete listing of the LLKE proofs.



Syntati struture and labelling 66� ` B=A. By hypothesis tree (4.1) is losed. Notie that in (4.1) ÆÆ is taken to denote theÆ-onatenation of the labels assigned to eah formula in � [ fAg. The rationale behind thelabel for � is the following: assuming that the label expression ÆÆ supports the sequent �; A(let's denote this by ÆÆ j= �; A) and that there is a token, say x, s.t. x j= A, a label expressionsupporting �, taking into aount that A ours to the right of �, should ontain as muhinformation as Sfzjz Æ ÆÆ v xg, i.e., xnnÆÆ.1� T � : xnnÆÆ2� T A : x3� F B : ÆÆ� (4.1)Now, we try to �nd a losed tree for the formula in the suedent:1� T � : Æ2� F B=A : Æ3� T A : x 2; �i4� F B : Æ Æ x idem (4.2)Sine T(4.1) � T(4.2)[xnnÆÆ=Æ℄ and T(4.1) is losed (by hypothesis), so is T(4.2), by thesubstitution lemma. The other rules are proved analogously.A straightforward orollary of proposition 4.6 is that all NL-theorems are provable by variable-free derivations. The same result will not hold for LP and stronger aluli, however. Thereason for this is that � rules (partiularly instanes (ii) and (iii) in table 3.1) ould requirethe labels to be struturally modi�ed before a rule appliation is liensed.In example 4.3, a detailed �-free derivation of an L-theorem is shown:Example 4.3 Let's assume the following type{string orrespondene:NP;John (NPnS)=NP;loves ((S=NP )n(S=NP ))=(S=NP );but NP;Mary (NPnS)=NP;hates NPBill `L S (4.3)Braketing will be ontrolled exlusively in the labelling algebra. Syntati types an thus be
Syntati struture and labelling 67re-braketed or have their braketing simply ignored. After some braket re-shu�ing, we willtry to �nd a ounter-model for the following:F : NP �NPn(S=NP ) � (S=NP )n((S=NP )=(S=NP )) �NP �NPn(S=NP ) �NP `L S: (4.4)Therefore, the following has to be proved:2- T: NP � NPn(S/NP) � S/NPn((S/NP)/(S/NP)) � NP � NPn(S/NP) � NP : mand3- F: S : m.We proeed by breaking 2 down with suessive appliations of �(iii):4- T: NP : a5- T: NPn(S/NP) � S/NPn((S/NP)/(S/NP)) � NP � NPn(S/NP) � NP : m==a6- T: NPnS/NP : b7- T: S/NPn((S/NP)/(S/NP)) � NP � NPn(S/NP) � NP : (m==a)==b8- T: S/NPn((S/NP)/(S/NP)) : 9- T: NP � NPn(S/NP) � NP : ((m==a)==b)==10- T: NP : d11- T: NPn(S/NP) � NP : (((m==a)==b)==)==d12- T: NPn(S/NP) : e13- T: NP : (((m==a)==b)==)==d)==eNow we start applying �-rules (annotated on the right-hand side of eah line) to the formulae above:14- T: S/NP : a Æ b 4, 6, �(i)15- T: S/NP : d Æ e 10, 12, �(i)16- T: (S/NP)/(S/NP) :  Æ (d Æ e)) 8, 15, �(i)17- T: S/NP : (a Æ b) Æ ( Æ (d Æ e)) 14, 16, �(iv)18- T: S : ((a Æ b) Æ ( Æ (d Æ e)) Æ (((((m==a)==b)==)==d)==e))17, 13, �(iv)We have derived a potential inonsisteny between 18 and 3. By heking the token for 18 weverify that (a Æ b) Æ  Æ (d Æ e)) Æ (((m==a)==b)==)==d)==ev (((a Æ b) Æ ) Æ d) Æ e Æ (((m==a)==b)==)==d)==e by assoiativityv ((a Æ b) Æ ) Æ d Æ (((m==a)==b)==)==d) by property (3.1)...v mSo, repeated appliations of property (3.1) and assoiativity to 18 suÆe to satisfy the tableaulosure ondition, whih shows that (4.4) is provable in L.



Syntati struture and labelling 684.1.1 Branhing via � rule and spurious ambiguityA ommon problem in early, sequent-based proof systems for ategorial logis was the so-alled phenomenon of spurious ambiguity. Reall that in hapter 2 we mentioned that oneof the attrative features of Lambek systems is their lear syntax-semantis interfae | i.e.proofs an be assigned �-terms whih keep trak of the \meaning" of the derivations |through the Curry-Howard isomorphism whereby di�erent ategorial aluli orrespond todi�erent fragments of the lambda alulus (van Benthem, 1991; van Benthem, 1996). From aproessing point of view, the ideal situation would be to have one and only one derivation foreah semanti term in all ases, i.e. guarantee that the isomorphism holds as it does in theoriginal natural dedution setting (Prawitz, 1965). Unfortunately, this is often not the aseof sequent-based proof systems (Hepple, 1990). Derivations (4.5) and (4.6) (Hendriks, 1993)show two distint syntati derivations whih have the same semantis.C : x ` C : x C : u ` C : u(L/) C=C : u0; C : x ` C : (u0x) C : z ` C : z(L/) C=C : z0; C=C : u0; C : x ` C : (z0(u0x)) (4.5)C : x ` C : x C : u ` C : u C : z ` C : z(L/) C=C : z0; C : u ` C : (z0u)(L/) C=C : z0; C=C : u0; C : x ` C : (z0(u0x)) (4.6)In Gentzen{Lambek systems, this is due to the degree of freedom enjoyed by the prover withrespet to hoosing whih rule to apply at a given point, and in the hoie of the ative typeon eah dedutive step. The derivations above illustrate non-determinism of the latter kind.Proof normalisation (K�onig, 1989; Hepple, 1990; Hendriks, 1993) is a tehnique whih hasbeen developed to deal with spurious ambiguity in substrutural proof systems. Also, proofnets are known not to su�er from the problem (Roorda, 1991).Perhaps of a more pratial onern than the loss of the one-to-one map between proofs andtheir semantis is the amount of extra, omputationally expensive work whih must be donein some ases. As Eisner (Eisner, 1996) points out, the omposition (3.14) rule | both in
Syntati struture and labelling 69Lambek systems and Combinatory Categorial Grammar (CCG) (Steedman, 1990) | auseseven simple sentenes to have many ambiguous parses. In CCG, assoiative \hains" of theforms: A=B;B=C;C (4.7)and A=B=C;C=D;D=EnF=G;G=H (4.8)give rise to spurious ambiguity. For example, in order to derive the two readings in ex-amples (e.19) and (e.20) one has to go through 252 di�erent ombinations (Eisner, 1996).In CCG, spurious ambiguity reets the generality of the appliation rules whih allow foressentially equivalent funtion appliations to be repeatedly performed.(e.19) (the galoot in the orner) that I said Mary pretends to like(e.20) (the galoot) in the orner that I said Mary pretends to likeSimilarly, it is lear that in LLKE if we eliminate � rules in favour of syntati assoiativity(as in proposition 4.6), �-rule non-determinism gives rise to a large number of alternativederivations. The reader may hek this by deriving NP,(NPnS)/NP,NP`S, re-braketing, andproving the sequent NP,NPn(S/NP),NP`S. The same, however, does not our in the originalsystem, sine assoiativity there is on�ned to the labelling algebra2. and therefore has noe�et on the number of syntati derivations for any given reading. Eliminating � poses atrade-o� between label uni�ation and exhaustive � tableau expansions: on the one hand wedo not want to unleash the full power of uni�ation, and on the other hand we want to avoidthe pitfalls of ombinatorial explosion. Notie, for instane, that although all label expressionsin example (4.3) are variable-free, the potential eÆieny gains in terms of label-heking areovershadowed by the presene of a very large number of extra � rule instanes (omitted inthe example for the sake of spae). Obviously, some of these extra instanes lead nowhere.2Inidentally, hains of type (4.7) whih yield multiple derivations in CCG ause no problem to LLKE, evenif assoiativity is permitted at the level of syntati types.



Syntati struture and labelling 70Others, however, give rise to more alternative derivations for (4.3) than one would like tohave.The other side of this oin is that while the label algebra enodes the logial struture ofthe derivation, there's no obvious reason why one should assume that a losed tableau mustalways provide enough information to build a semanti interpretation of the sentene. In thenext setion we formalise and prove a positive answer to this question before takling the labelheking mehanisms. We leave the task of providing a more detailed aount of spuriousambiguity in Lambek systems (as opposed to CCG) to hapter 5, where other proof systemswill be disussed and ompared with LLKE.4.2 Reovering the syntati struture of a typeLLKE derivation trees an be seen from a logial point of view as depiting a systematisearh for ounter-models of an assumption whih one wishes to refute. However, from a CGparsing perspetive one expets the display of the proof to say something about the syntaxof the item being parsed, in the sense disussed in (Leslie, 1990). The topology of our prooftrees does not seem to provide this kind of information.The syntati types whose struture we want to reover will be either basi types (NP; Set) or types built out of basi types with operators '/' and 'n'. This restrition will be morerigorously spei�ed in BNF | see (4.20) for SlTypes { in setion 4.3.2. However, for thetime being we will just assume that we are dealing with entailment of the kind de�ned below,unless stated otherwise:Xa ` Xs; where type Xs ontains no '�' operators: (4.9)In order to be able to draw the syntati struture of a type as a tree or to assign a se-manti interpretation to a type, typially a sentene type, one needs to be able to reoverfrom the tableau all information ontributed by eah onjoined type on the anteedent (the
Syntati struture and labelling 71initial T-formula). The question then arises: where in the proof-tree should we look for suhinformation? Sine we are dealing with a labelled dedutive system, it seems natural that thebest plaes to start are the spots where labels are heked, i.e. the losing pairs.Two similar strategies ould be employed within LLKE to onstrut semanti (lambda) termsfor syntati types as in (Morrill, 1994), for instane. One ould assign lambda terms to eahlexial item and then either (a) speify the semanti outome of eah � and � rule dynamially,or (b) assign lambda terms with eah initial label (i.e. labels introdued by initial formulae)and derive the semanti interpretation from the a losing pair of a losed branh via (2.15){(2.17). However, from the tableau onstrution rules and algorithms, it is not immediatelyapparent that all tableaux should enjoy the property of ontaining label onstraints from whihone will always be able to derive a relevant syntati tree (with respet to the target type).This property ertainly does not hold for all subtrees: not all satis�able label onstraints inall subtrees say something semantially useful about the relationship between lexial items inthe sentene being parsed.For instane, onsider that the losing pair on the right-hand branh in example 3.2, page 54,lines 10 and 11, arries very little strutural information about the type being proved, viz.(BnC)nC. Now, ompare the T-formula of this pair with the T-formula on line 18 of ex-ample 4.3. In the latter, the label expression ontains exatly one sub-token for eah initialsub-formula in the tableau, thus \reovering" their semanti ontribution. Before we proeed,let's de�ne formally what we mean by reoverability as follows:De�nition 4.10 (Reoverability) Given a losed tableau for A01; :::; A0m ` A00:T = 8>>>>>>>>>>><>>>>>>>>>>>:

A0A01...A0k 9>>>=>>>; = jA0j��

 JJAn>m� (4.10)where f(A0) = A00 is the initial F-formula, and jA0j�� = fA0; A01 :::A0kg the result of applying



Syntati struture and labelling 72algorithm 3.1 to T 0 = A0, we say that SLF An reovers the syntati struture of type A00 i�the following onditions hold:s(An) = T (4.11)l(An) v l(A0i), where A0i 2 jA0j�� and s(A0i) = F (4.12)Now, in the light of de�nition 4.10, our original question an be restated as the question ofwhether we are always able to �nd a losing math for the type on the left-hand side of theentailment relation (or a type derived from it via � rule) in all losed tableaux. In order togive this a positive answer we �rst show the following:Lemma 4.2 Given a minimally losed tableau T for A01; :::; A0m ` A00, subtrees T0; :::; Tn �T , and an initial F-formula A00, there is at least one �nite subtree T i�jA00j�� whih ontainsexlusively T-formulae.Proof. Let T be a losed tableau for A01; :::; A0m ` A00, T0 = fA0; :::; Amg be an initialtableau | see (3.5) for the de�nition of initial tableau| and distinguish a T 00 � T0 ontainingthe initial T-formulae of T0. The idea is to extend T 00 via rules in table 3.1 so that the resultingsubtree is minimally losed and ontains no F-formulae. Inspetion of table 3.1 shows thatthe rules whih extend T0 by adding F-formulae to it are: �(i), �(ii), �(ii), �(iii) and �. Wedivide the proof into two main ases: �-free extension and branhing extension.Case 1, �-free extension: By de�nition, all appliations of � rules are exhausted in T0 andall instanes of � and � rules are exhausted in jA00j��. Now, suppose we an apply �(ii) toa pair of SLFs in T0 [ jA00j��, say X and Y , where X mathes �(ii)1 and Y mathes �(ii)2 ,and obtain a minimally losed branh. It's easy to see that X 2 T 00 and Y 2 jA00j� � jA00j��.Therefore, Y must have been introdued by an appliation of �(i) to a SLF in T0, say Z. But,by de�nition of �(ii) and �(i) we have: s(X) = T , s(Z) = F , f(Z) = f(X) and l(X) = l(Z),thus ontraditing our assumption that the branh is minimally losed. Analogous reasoningapplies to �(iii).Case 2, branhing extension: Extending a tableau T i via � rule we obtain two branhes:T i0 = T i [ fXg and T i00 = T i [ fY g, where s(X) = T , s(Y ) = F , f(X) = f(Y ), and
Syntati struture and labelling 73l(X) = l(Y ) = n. Ignoring the subtree dominated by Y , we try to extend T i0 by applying �rules. If X mathes formulae �1 or �2 in rule �(i) or in rule �(iv), then learly a T-formularesults. If X mathes �1 in either �(ii) or �(iii), then in order for a F-formula to result theremust be a Z in T i s.t. s(Z) = F and l(Z) = n Æm (�(ii)) or l(Z) = m Æ n (�(iii)) for somelabel m ourring in T i. Sine n is a newly introdued token, no F-formula results from X.Indutively, the desendants of X fall under either ase 1 or ase 2.Based on this result, we an now guarantee that a SLF in the tableau will always provideone with enough information to reover the information ontributed by eah lexial item (i.e.eah initial formula) to the struture parsed.Proposition 4.7 For any losed tableau T for � ` A0, there is at least one SLF A0i whihreovers the struture of A0.Proof. Two main ases: (1) A0 is an atomi type and (2) dg(A0) > 0. In ase (1), bylemma 4.2 there is a branh ontaining only T-formulae hene in this branh A0 is one ofthe formulae in the losure pair. By the tableau losure onditions (de�nition 3.4), the otherelement of the losure pair is an Ai s.t. s(Ai) = T and l(Ai) v l(A0). Therefore Ai reoversthe struture of A0. In ase (2), if the tree loses as a result of expanding A0, i.e. the losurepair is in jA0j��, then reoverability is trivial. Otherwise, again lemma 4.2 and de�nition 3.4guarantee that a suitable losing formula is found.A �nal remark on reoverability should be made. It is easy to see that, in non-ontrativealuli, whenever the type on the right-hand side of the entailment is atomi, its losingformula is totally (and only) labelled with struturally relevant tokens. On the other hand,if that type is not atomi then the labels eventually introdued in its �-expansion must beremoved from the labelexp in the losing T-formula in order to reover the preise syntatistruture. The reader an verify the latter by proving NP � (NPnS)=NP ` S=NP (seeappendix setion A.3 for the LLKE proof). A more omplex proof tree an be seen inexample 4.4.Example 4.4 A derivation tree for (4.3) with no re-braketing allowed at the syntatial level



Syntati struture and labelling 74is shown below. Notie that nodes not diretly related to the losing pairs have been removed.The omplete derivation tree an be seen in appendix A. The �rst �-expansion step produethe following open tableau:
T0 = 8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

1: F : S : l02: T : NP : l33: T : ((NPnS)=NP ) : l44: T : (((S=NP )n(S=NP ))=(S=NP )) : l55: T : NP : l66: T : ((NPnS)=NP ) : l77: T : NP : (((((l0==l3)==l4)==l5)==l6)==l7)���������� HHHHHHHHHH8: F : (S=NP ) : v8 4; �9: T : NP : l910: F : S : (v8 Æ l9) 8; �ii11: T : (NPnS) : (l7 Æ l9) 6; 9; �iv12: T : S : (l6 Æ (l7 Æ l9)) 5; 11; �i�(10; 12)
13: T : (S=NP ) : v8 4; �14: T : ((S=NP )n(S=NP )) : (l5 Æ v8) 4; 13; �iv���� HHHH...



 JJJJ ...



 JJJJThe right branh however still ontains an unful�lled formula (line 14), whih allows us toontinue the proof by applying the � rule to the SLF on line 14....13: T : (S=NP ) : v8 4; �14: T : ((S=NP )n(S=NP )) : (l5 Æ v8) 4; 13; �iv���������� HHHHHHHHHH15: F : (S=NP ) : v10 14; �16: T : NP : l1117: F : S : (v10 Æ l11) 16; �ii18: T : NPnS : (l4 Æ l11) 3; 16; �iv19: T : S : (l3 Æ (l4 Æ l11)) 16; 2; �i�(17; 19)

20: T : (S=NP ) : v10 14; �21: T : (S=NP ) : (v10 Æ (l5 Æ v8)) 14; 20; �i22: T : S : ((v10 Æ (l5 Æ v8)) Æ(((((l0==l3)==l4)==l5)==l6)==l7)) 21; 7; �iv�(1; 22)

Syntati struture and labelling 75The losure pairs of the tableau above are underlined and the pairs of numbers at the bottomindiate the lines where the losing SLFs are. The resulting onstraints are satis�ed with thesubstitution mapping & = fv8 7! (l6 Æ l7); v10 7! (l3 Æ l4)g. and a few of appliations of (3.6){(3.7) on the set of onstraints:((v10 Æ (l5 Æ v8)) Æ (((((l0==l3)==l4)==l5)==l6)==l7)) v l0 (4.13)((l3 Æ l4) Æ l11) v (v10 Æ l11) (4.14)(l6 Æ (l7 Æ l9)) v (v8 Æ l9) (4.15)Extrating strutural information from the relevant SLF in example 4.4 now amounts toinstantiating and analysing its label on the left-hand side of (4.13). The label expression,preserving the original braketing, yields the graph shown in (e.21).((l3 Æ l4) Æ (l5 Æ (l6 Æ l7))) Æ (((((l0==l3)==l4)==l5)==l6)==l7)S���������� HHHHHHHHHH(l3 Æ l4) Æ (l5 Æ (l6 Æ l7))(S=NP )�������� HHHHHHHH(e.21) l3 Æ l4(S=NP )��� HHHl3NP l4((NPnS)=NP ) l5 Æ (l6 Æ l7)(S=NP )n(S=NP )������ HHHHHHl5(((S=NP )n(S=NP ))=(S=NP )) l6 Æ l7(S=NP )��� HHHl6NP l7((NPnS)=NP )
(((((l0==l3)==l4)==l5)==l6)==l7)NP

The reoverability results and notions introdued in this setion are relevant to the extentthat they provide an e�etive way of extrating lexial information from a proof tree. This



Syntati struture and labelling 76guarantees that even though rule � has no intuitive linguisti or semanti ounterpart3 itsappliation does not result in loss or irreparable sattering of type-semantial information ina LLKE proof.4.3 A loser look at label hekingThe disussion in setion 4.1.1 suggests that it is not neessarily a good idea to do awaywith branhing (hene variable introdution) altogether. We mentioned that solving losureonstraints in a tableau an be regarded as solving systems of equations modulo some set ofequalities (Baader and Siekmann, 1993) { e.g. assoiativity in L, assoiativity and ommu-tativity in LP et. Left unheked, however, suh systems tend to beome omputationallyintratable (see (Siekmann, 1989) for a survey and omplexity results). Fortunately, thereare partiular fats about the lass of logis with whih we are dealing whih make them notquite as hard as one would expet. We explore some of these fats in setion 4.3.2. First, weborrow a few tools from uni�ation theory in order to de�ne the problem more preisely.4.3.1 Word problems and uni�ationLet's start by reasting our label expressions in the framework of uni�ation theory (Baaderand Siekmann, 1993) and term rewriting (Kirhner, 1994). The �rst step is to rede�ne thelabel algebra of de�nition 3.2 as a languageT (
; V ) (4.16)where V is a ountable set of variables and 
 = fÆ; ==; nn 0; 1; :::; ng is a signature | the�rst part of whih is a set of �xed binary funtions whereas the seond is a �nite set of 0-aryfuntions, i.e. onstants i.3Notie that the � rules an be seen as forms of lambda abstration and � as funtion appliation.
Syntati struture and labelling 77One way to approah label heking in T (
; V ) is to regard ertain properties of the algebra| e.g. (3.1){(3.4) plus (3.6){(3.8) for LP | as a set of equations, and losure onstraintsas word problems to be solved, as in (Knuth and Bendix, 1983). This involves basially thefollowing steps: (a) an ordering relation is de�ned on the labelexps, also alled words, (b) theterms of the word problem to be solved are progressively redued until they get redued tothe same word (in whih ase the losure onstraint is satis�ed) or fail to onverge. A partialorder an be de�ned by assigning weights to eah onstant, variable and funtion symbolswhih make up the words. Provided that all words are well-ordered by the ordering relationso de�ned, one an orientate the equations as redutions so that the left-hand side will alwaysbe rewritten as a \smaller" word | i.e. the right-hand side labelexp.Although the sheme above suÆes in aluli suh as NL and L, we soon run into troubleas we target more powerful aluli. For instane, the ommutative property of LP annotbe oriented into a terminating rewrite rule, as noted in (Peterson and Stikel, 1981). Analternative to this is to treat the problemati properties separately so as to get around non-termination. This is the solution adopted in our system for label heking (to be presentedin the setion below) as well as in uni�ation theory in general. In uni�ation theory thestrategy most ommonly adopted is to regard subsets of the properties in de�nition 3.5 assets of identities E, s.t. E � T (
; V ) � T (
; V ), and then de�ne an equational theory =Eso that it yields the (E-free) quotient algebra T (
; V )= =E . It is then with respet to thisalgebra that equational onstraints are to be solved. For example, reinterpreting (3.6) and(3.7) as equalities making up a set A, we get T (
; V )==A , the A(ssoiativity)-free algebraindued by A, whih haraterises label heking in alulus L. When E = ; the equationaltheory haraterises NL.Our losure onstraints, whih have the form X v Y , are regarded in this framework as(in)equations to be solved in theory T (
; V )==E . In ases where onstraints ontain vari-ables, these equations beome uni�ation problems (Baader and Siekmann, 1993). The mainingredients of the reipe to solve uni�ation problems are substitution mappings de�ned as& : V ! T (
; V ) suh that fx 2 V j x& 6= xg is �nite. In LLKE, the onstraints to solve takethe form of systems: � = fX1 v Y1; :::; Xn v Yng (4.17)



Syntati struture and labelling 78We all a substitution & a uni�er or solution of the systemmoduloE if the following E-equalitieshold: X1& =E Y1&; :::; Xn& =E Yn&. Thus, label heking in NL an be desribed as an;-uni�ation problem, in L as A-uni�ation, in LP as AC-uni�ation and so on. Further-more, the type of uni�ation to be performed on the labelling algebra an be lassi�ed asE-uni�ation with onstants (Siekmann, 1989), sine the terms may ontain free onstantsymbols in addition to the symbols in the theory's signature4. A system of the form (4.17)where & = ; and Xi are variables ourring nowhere else in � is said to be in solved form.Putting a system in solved form amounts to �nding the most general uni�er for the system.For eÆieny reasons we will always be interested in �nding a minimal omplete set of uni�ersfor a system � in a theory E, denoted �UE(�). A set of uni�ers is said to be omplete if itssubstitutions suÆe to generate all uni�ers of the system by instantiation. A omplete setof uni�ers is minimal if no substitutions in it an be obtained by instantiation of any othersubstitution in the set.Algorithms for general E-uni�ation have a wide range of appliations in theorem proving,logi and funtional programming et and so have been extensively studied over the lastdeades. A summary of omplexity results for the most relevant E-theories is reported anddisussed in (Kapur and Narendran, 1986; Siekmann, 1989; Baader and Siekmann, 1993).Table 4.1, whih is based on (Siekmann, 1989), shows the omplexity of the deision problemfor some uni�ation theories with onstants relating the types of uni�ation to the ategorialaluli whose label-heking they haraterise.Categorial alulus Uni�ation type Cardinality of �UE(�) ComplexityNL ; � 1 linearL A(ssoiative) 1 NP-hardNLP C(ommutative) > 1 NP-ompleteNLPC IdemLP AC > 1 NP-ompleteLPC IdemTable 4.1: Summary of omplexity results for generalised label heking4E-uni�ation with onstants is an intermediary lass between elementary E-uni�ation, whih deals withonstant-free terms, and general E-uni�ation, whih deals with funtion symbols of arbitrary arity.
Syntati struture and labelling 79Notie that, although losure heking for the non-assoiative Lambek alulus is omputa-tionally tratable on a generalised uni�ation setting, tratability is soon lost when struturalrules are added to the alulus. However, in ategorial parsing spei�ally, the piture doesnot need to be as dramati as these omplexity results may lead us to believe. In the followingsetion we will explore domain spei� fats whih will improve this prospet.4.3.2 Alternative label-heking strategiesAlthough uni�ation theory provides an adequate framework for desribing our label-hekingproblem, standard rewrite tehniques in their full generality are muh too powerful and ostlyfor the task if the domain is restrited to CG parsing. The best way to go about keepingomplexity under ontrol then might be to explore fats spei� to the ategorial domain. Inthe following setions we desribe two kinds of tehniques used to that e�et: pre-proessingof label onstraints and bounded uni�ation. The former is inspired by van Benthem's resultson ount invariane (van Benthem, 1986) whih has been used in pratie to prune the searhspae in sequent-based systems (Moortgat, 1988). The latter is a new strategy introduedin (Luz, 1997) and an be ombined with the former to make up the whole label-hekingmodule.We start with de�ning our target types by further onstraining the syntax spei�ed by def-inition 2.1. The syntati types e�etively used in the aluli overed by LLKE will beharaterised in terms of the following BNFs:Type ::= hBasTypei j hSlTypei � hSlTypei (4.18)BasType ::= S j NP j N j ::: (4.19)SlType ::= hBasTypei j hSlTypei=hSlTypei j (4.20)hSlTypeinhSlTypeiMoreover, the expressions dealt with by the parser an be presented as lauses of the form:FXa ` Xs : 1; where Xs is a SlType: (4.21)



Syntati struture and labelling 80This restrition, a re�nement of (4.9), guarantees that no == or nn appears on the right hand sideof satis�able label onstraints in �-free derivations, as an be readily veri�ed by inspetion ontable 3.1. We will refer to the restrition imposed on the aluli by attempting to prove onlylauses of the form (4.21) as syntati restrition (SR). The alulus obtained by replaingthe produt operators in L types de�ned aording to (4.18) is known in the literature as theprodut-free Lambek alulus (Cohen, 1967). We will sometimes refer to the other aluli inthe hierarhy on table (2.1) when they obey SR as produt-free Lambek aluli. Most theoremproving tehniques developed for CG parsing have been implemented in produt-free aluli(Hepple, 1990). One should also note that restrition (4.9) whih has suÆed so far in assuringreoverability of syntati struture in LLKE doesn't immediately yield produt-free systems.The reason for this is simple: produt-onneted types an still our on the right-hand sideof the entailment symbol at intermediary steps of a (Gentzen-style) derivation even if Xs isprodut-free.4.3.3 Pre-proessing of label onstraintsThe devies to be introdued in this setion bene�t from restrition (4.21) in order to proesslabel onstraints prior to mathing and uni�ation at relatively low omputational ost. Inhapter 3, we generalised the notion of degree to over label expressions in addition to syntatitypes with de�nition 3.6, page 52. Now similarly, based on property (3.1) and its right-residualounterpart, we introdue the notion of degree of anellation of labelexps.De�nition 4.11 Degree of Canellation, d: L ! NI is de�ned as follows:

d(�) = 8>>>>>>>>>>>><>>>>>>>>>>>>:
0 if � is an atomi type.d(�) + d()� 1 if � is of the form � ? , where? 2 f==,nngd(�) + d() + 1 if � is of the form � Æ d(�) if � is of the form � ? 1 or 1 ? �, and? 2 f==,nn,Æg

Syntati struture and labelling 81Now, among other things we want to formalise our laim, stated in setion 3.4, that restriting� rules to generate SLFs whose labels have degree no greater than a ertain upper-bound doesnot restrit the lass of theorems that an be proved via linear expansion. In order to do thiswe �rst prove the following:Lemma 4.3 (Canellation test) The following restritions hold for any satis�able labelonstraint X v Y , where X and Y are ground terms: (i) d(X) = d(Y), for all non-expansive, non-ontrative aluli; (ii) d(X) � d(Y ), for all non-ontrative aluli.Proof. By restrition (4.21) and rules on table 3.1 no operator other than \Æ" an our inY . Therefore, property (3.1), assoiativity | i.e. (3.7) (3.6) { and ommutativity (3.8) arethe only ones whih an be e�etively applied in aluli laking strutural rules (E) and (C)5.Expansive aluli also admit (3.10). Indution then shows that properties (3.1), (3.6), (3.7)and (3.8) preserve (i), while (3.10) preserves restrition (ii).This fat has been used in our implementation of LLKE to deide most label losure testsstraightforwardly: in many ases it suÆes to test the label formula with respet to degreerestritions instead of applying potentially more wasteful rewrites. We mentioned that our de-gree of anellation lemma is related to the ount invariane property (van Benthem, 1986). Inorder to prove a ount invariane theorem for the sequent version of L (and LP), van Benthemde�nes a ount funtion whih ompares two types, returning zero if the two are identialprimitive types, one if they are di�erent basi types, and inrementing or derementing aounter depending on whether the types are multipliations or divisions respetively. Countinvariane then says that for (the Gentzen formulations of) L, LP and their non-assoiativeounterparts, all ounts of primitive types in the sequent with respet to the anteedentformula must equal the orresponding ounts with respet to the onsequent. Testing forount invariane has been used in generate-and-test implementations of sequents for atego-rial (Moortgat, 1988) grammars as a way to evaluate the searh spae of some nodes beforeatually exploring it. The test ould also be used in LLKE as follows:5See (2.12).



Syntati struture and labelling 82De�nition 4.12 (Count):8>>>>>>>>><>>>>>>>>>: t(X;X) = 1 if X is an atomi token.t(X; Y ) = 0 if X, Y are atomi tokens and X 6= Y.t(X; Y==Z) = t(X; Y )� t(X;Z)t(X;ZnnY ) = t(X; Y )� t(X;Z)t(X; Y Æ Z) = t(X; Y ) + t(X;Z)Proposition 4.8 (Count invariane) For all labelexps X; Y of non-ontrative frames,and all atomi sub-tokens X1; :::; Xn, of X, if X vY then t(Xi; X) � t(Xi; Y ), i = 1; :::; n.Count invariane tests are more e�etive than anellation test in foreseeing unsatis�ability ofonstraints in the label searh spae. In fat, Pentus (Pentus, 1994a) suggests a proof methodfor L based almost exlusively on invariane properties. However, ount invariane algorithmsare less eÆient than anellation heking. Notie that the latter an be performed inlinear time on the degree of the input formula by simply \attening out" the labelexp andsubtrating the number of \Æ" from the number of \nn" and \==" found in the resulting string(identity elements being ignored). Count invariane, on the other hand, requires eah distintatomi token to be tested against X and Y eah down to its atomi tokens. Therefore, even ift(Xi; Y ) an be alulated in linear time, the overall omplexity of ount invariane is O(n2)on the number of atomi tokens in the onstraint6. Sine labelled tableau systems typiallyrequire a large number of losure tests to be performed, the analysis above suggests that inLLKE one pro�ts more from testing degree of anellation than ount invariane | whihobviously doesn't prelude one from using ount invariane to hek the initial entailment.We now establish a limit to the size of labelexps thus binding an otherwise in�nite searhspae | see derivation (3.12) for an example. Proposition 4.9 states that we do not missout any theorem of non-ontrative aluli by setting the sum of the degrees of anteedentand onsequent of the formula that we want to prove as the upper bound for the size of thelabelexps introdued via linear expansion.6This estimate is based on the assumption (whih we haven't veri�ed) that ount invariane an be per-formed in O(n). If a naive \divide and onquer" strategy is adopted, then the the heking algorithm beomeseven less eÆient, i.e. t = O(n2 lg n).

Syntati struture and labelling 83Proposition 4.9 For all non-ontrative aluli, if the linear expansion of an initial formulaFXa ` Xs : 1, where Xs is a SlType (see (4.18)), results in a losed tableau T with losurepair h�; �i, where s(�) = T and s(�) = F , then max(dg(l(�)); dg(l(�))) does not exeedmax(dg(Xa); dg(Xs)).Proof. First, show that there is no  in T s.t. max(dg(Xa); dg(Xs)) < dg( ). This is doneby indution on � and � rules (see �g 3.1), notiing that:dg(f(�2)) = dg(f(�3)) < dg(f(�1)); for �i, ..., �iii: (4.22)and likewise: dg(f(�3)) < dg(f(�1)); for �i, ..., �vi: (4.23)Now, looking at rules �i, ..., �iii, �i, ..., �vi we see that the degree of the labels to beintrodued never exeeds the degree of the formula(e) on whih any of these rules is applied.Furthermore, �i, ..., �iii are the only rules to introdue new information tokens. The aboveplus lemma 4.3 omplete the proof.A �nal remark on label bounds: although proposition 4.9 does not hold for ontrative aluli,it is onvenient to set an upper bound for the size of labelexps (i.e. a limit to the appliationof � rules) in these aluli anyway, letting variables aount for ontration (via � rule).4.3.4 Canellation onstraintsIn the previous setion we desribed the pre-proessing of label onstraints by testing ountinvariane and label-degree upper bounds. Now we move on to present the omplete mathingand uni�ation strategies for NL, ..., LPCE. The basi idea is to treat strutural propertiesof information frames in two phases: (a) handling of assoiativity by enoding labelexps intospeial data strutures, and (b) progressive redution and heking (mathing and uni�a-tion) of these strutures aording to the properties allowed: permutation, ontration andexpansion.



Syntati struture and labelling 84In phase (a), labelexps are onverted into what we all anonsts. Eah anonst is om-posed of pairs of substrutures alled +strut and -strut, eah of whih is built as lists ofstaks so as to keep trak of the relative positions of multipliative tokens | those onnetedby \Æ" | with respet to division substrings (or subtrees) within labelexps.The way by whih the resulting strutures are interpreted by the label heking algorithmdepends on the target alulus: they are treated as lists for NL and L, and as multisets (bags)for ommutative, expansive and/or ontrative aluli). Similarly, the anonst onstrutionalgorithm varies aording to whether the target alulus is assoiative or non-assoiative.The former just requires attening the labelexp and moving a pointer from left to right overthe string, looking for atomi tokens; one one is found the pointer is shifted rightwards untilit hits a onnetive or the end of the string. The token is then pushed either onto a stakin +strut or in -strut depending on the relation between previous and next onnetives.Let's assume for the sake of the argument that there exists a \null" onnetive � in additionto Æ and ==, and that � denotes the beginning or the end of a labelexp. Given an informationtoken, say t, a \next" onnetive n (the �rst one to the right of t) and a \previous" onnetivep (the one immediately to the left of t), there are four main ases:� if n = Æ and (p = � or p = Æ) then we push t into a stak in +strut.� if n = � and p = Æ then we push t into a stak in +strut.� if n = == or (p = == and n = �) then we push t into a stak in -strut.� if p = == and n = Æ then we push t into a stak in -strut, start new staks in -strutand +strut and apply the ases above to the labelexp to the right of n.Similar ases an be derived for nn. The anellation strutures will partition labelexp intostaks of labels to be anelled. For non-assoiative aluli the only di�erene is that thealgorithm searhes through a tree rather than a string. Both onstrution algorithms an beperformed in linear time.Flattening of words is a tehnique often employed in term rewriting systems for eÆienyreasons. In (Kirhner, 1994, hapter 4) the tehnique is used to transform strutured terms
Syntati struture and labelling 85into pairs omposed of funtion symbols and multiset of onstants and/or variables whihare then taken as the inputs of the AC-uni�ation algorithm. A somewhat more elaboratedrepresentation of attened terms ompatible with the Knuth{Bendix proedure is presented in(Christian, 1989). The tehnique we present in this hapter to redue labelexps to anonststakes advantage of the anellation properties of the labelling and therefore may be seen asan instane of attening as desribed in (Kirhner, 1994).In (4.24) we see an example of labelexp and its orresponding anonst in an assoiativelogi. The labelexp is treated as a string: order-relevant information is preserved but theoriginal tree struture is lost. Notie that the number of staks in +struts and -strutsis determined by the number of division onnetives in the labelexp so as to preserve order-relevant information.

(a Æ (b Æ (==b)) Æ ((d Æ e)==d))) anonst0BBBBB� ba d+strut 1CCCCCA0BBBBB� b de-strut 1CCCCCA (4.24)One anonsts have been generated, the phase (b) involving mathing and (possibly) uni�-ation starts. The strutures resulting from labelexps on the right and left-hand side of theonstraints are progressively redued until they either math or fail to, at a point where nofurther redutions are possible. anonst redution in L onsists simply of popping elementso� the ith stak in +strut if they math (or unify with) elements of the ith stak in -strut,for all staks in +strut. For example: (4.24) gets redued to (4.25).0BB� a .+strut 1CCA0BB�  e-strut 1CCA (4.25)A +strut will invariably ontain the same number of lists (or sets, or multi-sets, depending



Syntati struture and labelling 86on the alulus) as its -strut ounterpart. We refer to a +strut is the omplement of a-strut (and vie-versa) if they have been generated from the same labelexp. Analogously, werefer to the ith element of a +strut as the omplement of the ith element of its omplement,and vie-versa. Where label variables are present, they get instantiated with as many elementsof the omplement as neessary for the mathing to sueed on the next position. Globalinstantiation lists are built and kept for one branh, say the left branh, and used in variableinstantiation when right-branh onstraints are heked. The basi label heking mehanism(for NL and L) is given in algorithm 4.4. Dealing with non-assoiative aluli di�ers mainlyin the anonst building proedure. Instead of reading atomi terms linearly o� a string, weread them o� a tree struture before pushing them into the appropriate +strut or -strut.After the anonsts have been built, label heking an be performed by algorithm 4.4 exatlyas in L.Algorithm 4.4 (Label Cheking) Given labelexps X and Y , where X is the labelof a T-formula and Y labels an F-formula, and the anellation onstraints, pairsh+strutl; -strutli and h+strutr; -strutri, for X and Y respetively, we de�ne:label-hek(X; Y )1 do < +strutl; -strutl > ( build-anonst(X)2 < +strutr; -strutr > ( build-anonst(Y )3 while +strutl � redue eah of the sublists4 do listp ( pop(+strutl)5 listm ( pop(-strutl)6 redlistl ( append(redlist,redue(listp,listm))� redue2 sets a global list of bindings as a side-e�et7 while +strutr � do the same for the anonst of the labelxp on the right-hand side8 do listp ( pop(+strutr)9 listm ( pop(-strutr)10 redlistr ( append(redlist,redue(listp,listm))11 do result ( math(redlistl,redlistm)12 return resultStrutural rules other than assoiativity are dealt with at redution time, therefore requiringmodi�ations in algorithm 4.4. Commutative logis are treated by simply allowing elementsextrated from +strut to searh through -strut for their mathes and/or uni�ers. Con-
Syntati struture and labelling 87trative frames allow deletion of repeated ourrenes if neessary, on the resulting anonsts.Finally, expansive label heking uses marking of tokens instead of deletion; tokens whih havebeen marked as used in a previous step an be reused as many times as neessary.The use of anonsts also seems to provide a fairly general and straightforward way oftreating strutural modalities: in a system based on L enrihed with a ommutative modality,for example, tokens introdued by types marked by ommutative operators would be free tomove within +struts and -struts while the remaining tokens would obey the onstraintsdesribed above.4.4 Termination and Computational ComplexityThere are two interdependent modules in LLKE whose termination ought to be guaranteedin order to assure termination for the system as a whole. These are: the tableau onstrutionmodule | whih expands the set of syntati types | and the label-heking module |whih is in harge of deiding whether a given set of losure pairs meet the requirements fora given proof tree to be onsidered losed aording to the target alulus. In this hapter wehave veri�ed the fat | �rst mentioned in hapter 3, derivation (3.12) | that terminationin both modules depends on the upper bound one sets to label introdution.In the syntati module, de�nition 3.7, page 55, in onjuntion with the bounding of admissi-ble labelexps within the set of words whose size does not exeed a ertain degree, as expressedin proposition 4.9, 81,suÆes to guarantee that after a �nite number of steps all appliablerules of table 3.1 have been applied so as to produe a proof-tree in whih either all formulaeare ful�lled or all branhes are losed.Termination in label-heking of anonsts is easily veri�ed by noting that: (a) the anonstbuilding funtion is not essentially reursive (although we have presented if in a reursive formfor the sake of larity), (b) eah iteration in the label-heking algorithm 4.4 redues the inputonstraints. These fats hold true for labelling algebras haraterised by various struturalproperties. In what follows we analyse other aspets of the interation between the two main



Syntati struture and labelling 88modules.4.4.1 Dynami ahing of variable bindingsA straightforward, however both naive and ostly approah to label heking would be toperform full tableau expansion up to the point where all formulae in it are ful�lled andonly then start the searh for losing pairs, solving label onstraints as a uni�ation problemdesribed by an equational system suh as (4.17). This approah is ostly beause it would notonly require all syntati expansions to be performed regardless of whether a branh losesbefore all formulae in it are ful�lled or not, but also beause typially many di�erent setsof losure pairs would have to be heked until eventually either a satis�able one would bedisovered or all possibilities exhausted. The strategy is naive beause both tableau expansionand label-heking an be performed onurrently without any loss of generality.In a word, in order to guarantee that the sound inremental variable instantiation and labelheking are performed all one has to do is to expand �rst all the left-hand branhes introduedby appliations of � rules, i.e. the ones whih introdue F-formulae. Given a set of losureonstraints to be fed to algorithm 4.4 one wishes them to be ordered so that the onstraintswith the least number of uninstantiated variables get proessed �rst. This is meant to ensurethat the set of substitutions (bindings) returned by the algorithm at eah step is the mostgeneral. For instane, if (4.13) in example 4.4 gets tested before (4.14) variable v10 might endup being assigned the value ((((l3 Æ l4) Æ l5) Æ l6) Æ l7) thereby ausing the tableau not to loseas intended.Let v(l) be the set of variables ourring in a label or label losure onstraint l and de�ne arelation 4 on the set of losure onstraints as follows: for all losure onstraints ; d 4 d if 8>>><>>>: var() � var(d)orvar() \ var(d) = ; and jvar()j < jvar(d)j (4.26)
Syntati struture and labelling 89It's easy to see that 4 de�nes a partial order on the set of label onstraints and that if labelonstraints are solved in the order imposed by 4, then variable instantiation will go from themost general to the least general binding. Now, given the ordering of formulae yielded bythe � rule, if we perform a depth-�rst searh on a LLKE-tree for losure onstraints, the listresulting from this searh is partially ordered by 4:Proposition 4.10 Let dfirst(T ) = h1; :::; ni be a list of losure onstraints resulting froma depth-�rst searh on T . For all i; j>i 2 dfirst(T ), either i 4 l or ikj.Proof. Table 3.1 shows that � appliations always start subtrees with initial F-formulaeon the left-hand branh. In derivations obeying the reoverability onstraints stated in se-tion 4.2, the F-formula in losing pairs on left-hand subtrees will always ontain a label whihis either a newly introdued variable or a newly introdued label variable onjoined withnewly introdued label onstants (see the proofs of lemma 4.2 and proposition 4.7).The pratial signi�ane of proposition 4.10 is that it guarantees that one an always heklabel losure on LLKE-trees as soon as one enounters a losure pair. The ability to do so isfundamental not only as far as it allows a tableau to be losed as soon as a minimal set ofsatis�able label onstraints is found for a valid sequent but also as far as the omplexity ofthe entire system is onerned. This is so even in ases where an open tableau results.4.4.2 Time omplexityLet m be the number of SLFs in a tableau T . We will assume the size of the input to thesyntati module to be given by the sum of the degrees of eah type in T :n = Xm2T dg(f(m)) (4.27)With the input measured as above, and ignoring label-heking for the time being (i.e. deid-ing label-heking in time O(1) by assuming that no losure onstraint is satis�able), it an be



Syntati struture and labelling 90shown that the algorithm for �-free branh expansion is O(n2) (D'Agostino and Mondadori,1994). We all LLKE derivations where label-heking is ignored label-free LLKE expansions.Moreover, a ompleted tree | i.e. one whih all types are ful�lled (de�nition 3.7) | an beobtained from a given set of SLFs in polynomial time:Proposition 4.11 Any label-free LLKE expansion with a �xed number of �-appliations, sayk, an be performed in polynomial time.Proof. First notie that all linear rules in table 3.1 (i.e. �i,...,�iii and �i,...,�vi) obey thesubformula property and that the number of distint subformulae of the initial tableau isat most n. Therefore, algorithm 3.2 an be performed in time O(n2). Now, a tree with ndistint subformulae where the � rule has been applied at most k times (a �xed onstant) oneah branh will exhibit at most 2k � 1 branhing points in total, or a maximum of 2k+1 � 1subtrees, that is n2k�1 possible arrangements of �-appliations. Sine k is a onstant andlinear expansion of eah subtree is O(n2), a polynomial upper bound of O(n2k+1) is ahieved.If the entire system is onsidered, label omplexity has to be added on top of this omplexityresult. There are essentially three proedures involved in label-heking, as seen above: (a)anellation test, (b) anonst generation, and () anonst hek. These are performed noton all SLFs in T but only on losure pairs. Sine we set a limit to the size of labelexps to bea funtion of the size of the input types, we an safely assume the input to the label hekingalgorithms to be of size n as above.We have seen that items (a) and (b) of the labelling module are linear on the size of the input.Item (3), anonst hek, involves reduing the +struts against -struts on both sides ofthe losure onstraint and then mathing the results. Assuming eah +strut and -strutto ontain n=2 atomi tokens, redution in total will be O(n2=2). Given the restritionsdisussed above, even in the worst (and somewhat unrealisti) ase of every new formulaintrodued in T forming a losure pair with every other formula in T the overall omplexitywill still be in O(n2k+1+6), for a �xed number of nested �-appliations k.

Syntati struture and labelling 914.5 Summary and DisussionLabelling in substrutural logis is expensive in general. However, as we argue in (Luz, 1996a),due to its partiular harateristis CG parsing appears to present an appliation of labellingwhih is feasible and an be eÆient. This hapter has presented and disussed strategies totame the target ategorial aluli into natural, omputationally tratable fragments. Inter-estingly enough, the omplexity results obtained through suh tehniques are reminisent ofthose for normally ahieved for ontext-free and mildly ontext-sensitive grammars (O(n3)and O(n9), respetivelly).On the parsing front, we have showed how to reover the syntati struture of a type beingparsed from an LLKE proof-tree so as to omply (at least partially) with the requirementson display of proofs disussed in (Leslie, 1990). We have also introdued the issue of spuriousambiguity, mainly from the perspetive of (Eisner, 1996)7, into the question of how to treatlabel onstraints showing that any e�orts to minimise variable introdution in the labellingalgebra by eliminating the branhing rule will neessarily have the unfortunate e�et of givingrise to spurious LLKE-proofs.
7Spurious ambiguity from a Gentzen sequent perspetive as in (Hepple, 1990) will be treated in hapter 5



Chapter 5Redundany in Labelled andnon-Labelled CG DedutionThis hapter presents, disusses and ompares di�erent proof strategies aimed at improvingeÆieny of some CG dedution systems. In addition to LLKE, the presentation overs proofnormalisation, parts of natural dedution and proof-nets. It fous on proof struture andtherefore starts with an analysis of sequent aluli.It is widely reognised that ut-free sequent systems tend to be highly redundant whih ausesineÆieny in implemented systems. This problem, whih appears disguised in sequent al-uli as multiple proofs for equivalent sequents (Hepple, 1990), gets inherited even by ut-freesystems in whih non-determinism is redued suh as standard tableaux (Boolos, 1984). Inthe ase of automated dedution in substrutural logis in general, and ategorial grammarsin partiular, extra bookkeeping mehanisms are often needed whih tend to aentuate om-plexity problems. The tehniques to ope with these extra bookkeeping tasks in stritlyut-free ontexts are well represented in proof-nets (Roorda, 1991), labelled systems (Moort-gat, 1992) and ombinations of both (Morrill, 1995b). In this hapter we will disuss some ofthese systems (and the assumptions behind them) in the light of what has been presented inprevious hapters and make the ase for the use of a tableau system with ontrolled ut suhas LLKE in automated CG dedution.

Redundany in Labelled and non-Labelled CG Dedution 935.1 CG sequents revisitedGentzen's sequent alulus is normally regarded as the arhetypal proof system in proof-theory. There are numerous reasons for this. First of all, having been introdued as theresult of a ritiism of lassial logi and its hidden assumptions, the alulus permits a �ne-grained study of proof struture by distinguishing between operational and strutural rules,as seen in hapter 3 and disussed in (Girard, 1987; Do�sen, 1992) among others. Perhapsmore importantly from the perspetive of this thesis is the fat that the alulus failitates thedetailed study of algorithmi aspets of dedution | reall the relation between the Hauptsatz(Gentzen, 1969) (i.e. ut-elimination1) and the determinism of omputation2.In fat, many proof systems originated from ut-elimination both for lassial logi (Fitting,1990) and \resoure" logis (Girard, Lafont, and Regnier, 1995). Cut elimination, however,auses logial distortions in the dedutive apparatus3 whih may have negative onsequeneson eÆieny. However, sine sequent aluli are natural proof-theoreti devies (in the senseexplained above) and given that they enjoy deidability provided that the ut rule an beeliminated, it seems also natural to take these aluli to be the starting points of automatedCG dedution. In fat, the �rst theorem provers for L (Moortgat, 1988; K�onig, 1989; Hepple,1990) relied heavily on priniples derived diretly from Gentzen's rules. The Prolog mathingengine and database searh mehanisms provided to these pioneer systems an eonomial| from a notational point of view | and straightforward way of enoding the dedutiveapparatus. Moreover, proof searh in sequent systems involves hoie, i.e. there are points atwhih the prover is given two or more alternatives as to what rule to apply and whih type inthe sequent to apply a rule to | the latter being alled the ative type. Again, it turns outthat baktraking in logi programs is niely suited to the purpose of aounting for this formof non-determinism through a generate-and-test setting.The problem however arises that the extensive searh regime enfored by the baktraking en-gine on sequent proofs not only produes all \relevant derivations" but also a (potentially very1Whih also orresponds to normalisation in �-alulus (Girard, 1995).2Girard: \A sequent alulus without ut-elimination is like a ar without engine" (Girard, 1995).3(D'Agostino and Mondadori, 1994) argues that if ut is eliminated there is no rule in the system expressingthe priniple of bivalene.



Redundany in Labelled and non-Labelled CG Dedution 94large) number of other proof trees whih have essentially the same semantis, thus renderingthe whole system highly ineÆient, even for fragments of the aluli suh as the produt-freefragment. The notion of relevant derivation here is assumed to be haraterised with respetto the Curry-Howard orrespondene4 stated in hapter 2. In addition to redundant proofs,the non-determinism of sequent formulations tend to give rise under a baktraking regimeto a onsiderable number of partial proofs in the problem spae. Smullyan-style tableaux, onthe other hand, an be seen as dedution systems in whih this inherent non-determinism iseliminated from the rules altogether. In a CG ontext, however, tableaux are not sensitiveenough to apture proof struture, requiring therefore labelling or some other sort of externalbookkeeping devie to do the job. In what follows we disuss strategies for getting around re-dundany in sequent aluli and labelling in Smullyan-style tableaux, relating omputationalfeatures of both to LLKE.5.2 The problem of proof redundany revisitedProof redundany, whih in CG sequent aluli gives rise to what has been named (in a CCGontext) the spurious ambiguity problem (Pareshi and Steedman, 1987), was �rst addressedin a Gentzen proof-theoreti sequent setting in (Hepple and Morrill, 1989) and (K�onig, 1989).Subsequent attempts to takle the problem inlude Moortgat's (Moortgat, 1990b), Hepple's(Hepple, 1990) and Hendriks' (Hendriks, 1993). Of those, Hepple's is probably the mostrigorous and omprehensive.5.2.1 Proof normalisation by derivation onstraintsThe basi step towards normalisation in (K�onig, 1989) is the partitioning of the set of se-quent proofs into equivalene lasses. One these are de�ned, one proof of eah equivalenelass is piked out to represent the normal proof. In order to de�ne these lasses, sequentproofs are mapped onto syntax trees built in aordane to the following (Curry-Howard)4I.e proofs yielding the same lambda-terms (or lambda terms whose normal forms oinide, via Churh-Rosser property).

Redundany in Labelled and non-Labelled CG Dedution 95orrespondene: (L=) and (Ln) orrespond to funtion appliation whereas (R=) and (Rn)orrespond to funtion abstration. The rules stated in (5.1) show the intended orrespon-dene in terms of \annotated types". This is essentially the system (2.18), already seen inhapter 2, exept that appliation of a funtion tf to argument expression ta is denoted hereby tf [ta℄ and abstration of a term, say (b=a), over another term t is represented by `(b=a)'(t).This somewhat less perspiuous notation is meant to enode information (i) about the \root"ategory itself and (ii) about the order of the arguments. One suh information has beenenoded one is able to show that it is possible to onstrut a syntax tree for every proof treeand then reverse the proess deriving a unique proof tree from every syntax tree, respetivelythe \syntax-tree onstrution" and \proof reonstrution" algorithms in (K�onig, 1989). Sinestruturally equivalent proofs are mapped into the same syntax trees, proof reonstrutionguarantees that all proofs of an equivalene lass get mapped onto a single proof.

(R=) �; A ` B : t� ` B=A :`(b=a)'(t) (L/) � ` C : ta 	; A : tf [ta℄;� ` B : t	; A=C : tf ;�;� ` B : t(Rn) A;� ` B : t� ` AnB :`(anb)'(t) (Ln) � ` C : ta 	; A : tf [ta℄;� ` B : t	;�; CnA :;� ` B : t (5.1)Syntax-tree onstrution and proof reonstrution per se do not play any role in the parsingalgorithm. They are just the proof-theoretial devies used in a onstrutive proof of theexistene of equivalene lasses aross sequent derivations from whih a normal proof anbe seleted. The parsing algorithm works essentially by imposing restritions | derivednaturally from the proof reonstrution algorithm | on the appliation of sequent rules.K�onig alls these restritions nesting onstraints: (i) preferene on the hoie of an ativetype | i.e. the omplex type to be deomposed in a top-down appliation of a sequent rulein (5.1) | is always given to a sueedent type; (ii) when a non-atomi ative type oursin the anteedent its subtypes must be immediately deomposed in the next steps of thederivation; (iii) a funtor type in the anteedent annot be hosen as an ative type unless itshead is idential to the type in the sequent.



Redundany in Labelled and non-Labelled CG Dedution 96The original system is translated into a \natural dedution"5 system in (K�onig, 1991). Thisis possibly motivated by the \unsafeness" and high omplexity of the extended sequent sys-tem (5.1). In fat, it is shown in (Hepple, 1990) that not only does the ombination of syntaxtree and proof reonstrution tehniques fail to produe normal proofs in some ases6 butalso the parsing method derived from the nesting onstraints is still not restritive enoughto prevent the ourrene of redundant derivations. The new system is shown in (5.2), insequent notation. It still uses partial trees for semanti reonstrution, though their role issigni�antly downplayed. Normal proofs are ahieved by means of two main onstraints. Oneis an adaptation to L of Prawitz' normal form (Prawitz, 1965), a ut-elimination theoremin disguise. The other is a restrition on the interation between the axiom sheme, (AX),and the elimination rules, (/E) and (n-E): non-atomi types oupying argument positions inelimination rules are not allowed to instantiate axiom shemes.(AX)A ` A�; A ` B(/I) � ` B=A � ` A 	 ` B=A(/E) 	;� ` BA;� ` B(nI) � ` AnB � ` B 	 ` BnA(nE) �;	 ` A (5.2)

The sheme is general enough to aommodate di�erent parsing strategies. Bottom-up, top-down, shift-redue and hart parsing methods are disussed in onnetion with the basinatural dedution presentation of L. The omplexity results for these in produt-free alu-lus of (5.2) are still quite disouraging: the hart-parser is O(n!). However, if the parser5At this point some terminologial lari�ation is neessary. It should be notied that, although the systemdesribed above is said to be a system of natural dedution in (K�onig, 1989), it is in fat a Gentzen-stylesequent system rather than the method known by that name in the theorem-proving literature (Fitting, 1990).In the former, the term \natural dedution" refers to dedutive methods where the operators of a logi aretreated expliitly by the dedution rules, as opposed to Hilbert-style systems where dedution is performedby losing a set of axioms under inferene rules. LLKE, standard tableaux, proof nets and even resolution,mistakenly identi�ed in the paper as an example of a Hilbert system, are all \natural dedution" aordingto this point of view. In the latter the use of the term is generally restrited to systems similar to the onedesribed in (Prawitz, 1965).6That is, although proof reonstrution assigns unique readings to struturally idential syntax trees, notall syntax trees yield \reonstruted" proofs. This is the ase of the derivation for SnNP=NP ` SnNP=NP ,for example.

Redundany in Labelled and non-Labelled CG Dedution 97is onstrained so as to allow no more than two-fold phrase extration a polynomial timeupper-bound an be ahieved. The system appears to have developed towards formulationswhih diverge from the original philosophy of Lambek aluli, inorporating feature-strutureuni�ation tehniques similar to those used in uni�ation ategorial grammar (Calder, Klein,and Zeevat, 1988), its desendants (K�onig, 1995) borrowing onsiderably from other lexialformalisms suh as HPSG.The tehniques used by K�onig to deal with proof representation in the onstrution of equiv-alene lasses exhibit similarities with the labelling disipline adopted in LLKE. The moti-vations behind eah bookkeeping system, however, are di�erent. While K�onig's goal is toahieve unambiguous proofs by relating the struture of proof trees (i.e. those whose nodesare sequents) and syntax trees (i.e. those whose nodes are either lexial types or plae-holdersfor arguments of lexial types), LLKE aims at deoupling the rules governing the behaviourof funtion appliation and the \semantis" (in the restrited algebrai sense de�ned in hap-ter 3) of these rules so as to enable maximal generality in the haraterisation of di�erentaluli. Not surprisingly, there are parallels between the syntax-tree onstrution algorithmand our reoverability result (Proposition 4.7). However, LLKE seems to stand on more solidlogial priniples than the parsing mehanisms developed in (K�onig, 1989). It is pointed outin (Hepple, 1990, pp 187{189) that the parsing method fails to reet the asymmetry betweenthe simplest proof of (NPnS)=NP ` (NPnS)=NP (by instantiation of the axiom sheme)and its proof by full deomposition (\unfolding") of the types, bloked in K�onig's system.Now, ompare this fat with the LLKE derivation in (e.22).

(e.22) T : (NPnS)=NP : aF : (NPnS)=NP : aT : NP : bF : NPnS : a Æ bT : NPnS : a Æ bT : S : F : NP :  Æ (a Æ b)T : NP :  Æ (a Æ b)



Redundany in Labelled and non-Labelled CG Dedution 98Although the full derivation (e.22) does not haraterise a minimally losed tree (de�ni-tion 3.8), the exhaustive appliation of LLKE's � and � rules permit full type deompositionto be performed.5.2.2 Normalisation via partial exeutionThe tehniques proposed in (Moortgat, 1990b) to deal with spurious ambiguity are akin tothose desribed above. The main di�erene is that, in the former, type derivations whihmight yield redundany are, so to speak, \pre-ompiled" into speial dedution rules. Thus,a type suh as the top formula of (e.22) in this method must be fully unfolded by repeatedappliations of (/L) and/or (Ln) before the proper theorem proving task starts. A possibleway to do this is by postulating the existene of sequenes of types around the formula to beunfolded, onstraining it to play the role of ative type in a (Ln) or (/L) dedution step. Theappropriate steps are performed until the type has been totally analysed, and then the leavesmathing the axiom sheme are pruned away along with intermediary nodes to generate whatMoortgat alls derived rules | hene the allusion to pre-ompilation. Likewise, ases wherehigher order types must be unfolded may require (R/) and (Rn) to be used in the partialdedution phase. In fat, the pre-ompilation steps amount to de�ning a partial ordering onthe appliation of the original sequent rules.A ommon ritiism to this method is that proofs performed by the system whih resultsfrom the derived rules fail to give a uniform and meaningful aount of the logial strutureof the types involved (Hepple, 1990), therefore ontraditing the main motivation for using aGentzen-style system in the �rst plae. In addition, the methods developed in (K�onig, 1989)and (Moortgat, 1990b) require onsiderable, extra-logial bookkeeping whih doesn't seemtotally justi�ed in some ases7. Although no mention is made of how to perform eÆientdedution in augmented substrutural aluli and their linguistially properties in either ap-proah, none of them seems to enompass the meta-theoreti ingredients needed to takle thisquestion. A more prinipled meta-theoretial approah is given in (Hepple, 1990).7E.g. (Hepple, 1990) argues that Moortgat's pre-ompilation phase an be dismissed.

Redundany in Labelled and non-Labelled CG Dedution 995.2.3 Construtive and redutive normal formsAs in (K�onig, 1989), in (Hepple, 1990) we �nd the development of two di�erent systems ofnormal forms: one based upon properties de�ned indutively on the struture of proofs, andone based on a system of redutions, tehnially a rewrite system whih operates on derivationpatterns8. The former, whih Hepple alls onstrutive method, underlies the parsing algo-rithm whereas the latter provides the apparatus neessary to prove the method's ompletenessand is alled proof redution.Although diretly related, K�onig's and Hepple's approahes appear to have followed oppositediretions on roughly the same path in order to attain proof normalisation: while K�onigderived her parsing method from a meta-theoretial observation | the observation that proofsan be grouped into equivalene lasses from whih one is able to \reonstrut" normal proofs,Hepple starts o� with a proof-theoretial notion grounded on linguisti priniples of CG(Flynn, 1983), \headedness", to arrive at meta-theoretial properties by means of a systemof rewrite rules.Sine the ultimate aim of proof normalisation is to eliminate semantially (in terms of theCurry-Howard orrespondene) redundant proofs, the notion of a \proof head" was intro-dued in (Hepple, 1990) as the formal onstrut whih seeks to express in purely syntati |i.e. derivational, or onstrutive | terms the relation between the lambda semantis of thesueedent of a (produt-free) L-entailment relation (the \meaning" of the proof) and typesin the anteedent, down to the axiom leaves. On the semanti side the head of a proof is de-�ned as the type in the anteedent whih is labelled by the lambda term having widest sopeover the lambda term in the sueedent. Sine this ondition is not veri�ed for all proofs,some proofs are doomed to be \headless". It also turns out to be the ase that for all headedproofs the anteedent of the proof's main branh axiom is always a subtype of the proof'shead. It is interesting to ompare this fat with our reoverability results (lemma 4.2 andproposition 4.7) to see LLKE dedution as an algorithm performing a sort of normalisationin a system where the ut rule has not been ompletely eliminated.8We use the terms proof/derivation pattern to refer to subtrees onsisting of 1 or more suessive appliationsof sequent rules in a sequent proof.



Redundany in Labelled and non-Labelled CG Dedution 100Syntatially, Hepple de�nes an algorithm whih maps ut-free proofs into subtypes of typesourring in them. The algorithm keeps trak of the position of the head in the anteedentsequent by taking the axiom sheme as the base ase (the head of an axiom instane is theentailment's anteedent, thus its position is 1) and reursively assigning a rank to subproofsending with eah of the sequent rules: (R/), (L/), (Rn) and (Ln). These essentially ountthe number of types whih get added in next to the head of a subproof in the anteedentas subproofs are ombined. Let's all subproofs above the dedution bar hild subproofs andthe ones below the dedution bar mother (sub)proof. For (R/) if the head ount, say m, ofthe hild subproof equals the number of types in the sequent on the left of the ative type'ssubtype plus 1, then the head ount for the whole proof, say n, is zero; otherwise n = m. For(Rn) if m = 0 then n = 0, otherwise n = m � 1. For (L/), if the ount m of the right-handside subproof is greater than the number of types on the left of the ative type's subtype inthe same subproof plus one, then the ount n for the whole proof is m plus the number oftypes in the anteedent of the left-hand hild subproof; otherwise n = m. Analogously, in aproof ending in (Ln), if m is greater than the number of types to the left of the ative subtypeon the right-hand hild subproof, then n is m plus the number of types in the anteedent ofthe left-hand hild subproof; otherwise n = m. Example (e.23) shows the algorithm in ationto determine the head of a proof (ompare the result with the labels for eah type). Thenumbers on the right-hand side show the head ount for the mother subproof (n) and theount for the relevant hild (m).(e.23) C : h ` C : h B : f ` B : f A : ghf ` A : ghf(Ln) B : f;BnA : gh ` A : ghf(L/) B : f;BnA=C : g; C : h ` A : ghf(/R) B : f;BnA=C : g ` A=C : �h:ghf m = 1; n = 2m = 2; n = 2m = 2; n = 2Normal proofs are de�ned onstrutively with respet to two main properties: headedness,as desribed above, and the ourrene of right inferenes on the main hild subproof. Thebase ase in the de�nition of a a onstrutive normal form (CNF) is again the axiom sheme:it has no hildren and obviously does not ontain any ourrene of right inferenes. A proofending in (L/) or (Ln) whose left-hand hild is in CNF and whose right-hand hild is headed
Redundany in Labelled and non-Labelled CG Dedution 101by a subtype of the rule's ative type exhibit no right inferene on the main branh. Allrules ontaining no right inferenes on the main hild are in CNF. Finally, all (R/) and (Rn)subproofs whose hildren are in CNF are also in CNF.This de�nition of CNF is implemented as a ut-free sequent through the following proof-theoreti re�nements: (i) the original entailment relation is deomposed into relations `1 and`2 and (ii) the type whih is required to be the head of any proof of a sequent is enlosed in aspeial onatenation operator, \+", a new rule is added whih handles transitions betweenthe two types of derivability relation. The resulting system of (Hepple, 1990) is shown in(5.3), below. �+ A+ � `2 B(2/1) �; A;� `1 B � `1 B � + A+� `2 C(L/) � + A=B +�;� `2 C �; B `1 A(R/) � `1 A=B(Ax)e+ A+ e `2 A � `1 B � + A+� `2 C(Ln) �;�+BnA++� `2 C A;� `1 B(Rn) � `1 AnB (5.3)This proof normalisation system is expeted to meet the following requirements: (i) everyproof should have a normal form and (ii) a proof in normal form is equivalent to the proofwhih it normalises. In order to do this (Hepple, 1990) introdues a seond system in whihproperties (i) and (ii) are more easily proved and then shows that this seond system isequivalent to the onstrutive one.Firstly, a set of eighteen redutions (rewrite rules) is de�ned in whih the redexes are proofpatterns not in normal form. Then the set is shown to exhibit the property of strong nor-malisation | i.e. given a proof pattern X, either X is irreduible or it an be reduedin a �nite number of steps to a pattern Y whih doesn't math the redex of any rewriterules. Standard term rewriting tehniques are used in this proof (Dershowitz and Jouannaud,1990). An arithmeti interpretation whih maps proof patterns (redexes and ontrata) intonon-negative integers (sores) is provided. It is then shown that, under that arithmeti in-terpretation, for eah rule the sore of the redex is always greater than the sore of theontratum. Sine no negative sores exist, every sequene of redutions must neessarily be



Redundany in Labelled and non-Labelled CG Dedution 102�nite. Strong normalisation orresponds to requirement (i).It is proved that the redution system meets requirement (ii) by showing that it obeys strongonuene | whih is demonstrably equivalent to exhibiting the Churh{Rosser property(Kirhner, 1994) | in addition to exhibiting strong normalisation. The Churh{Rosser prop-erty says that if a term P redues to terms A and B in a �nite number of steps, then termsA and B an both be redued to a term T . Now, it is easy to see that this property togetherwith strong normalisation imply the existene of a unique normal form for any proof: if Aand B are both in normal form, being therefore irreduible, then we must have that A � B.Simple ase analysis and indution on the struture of proofs suÆe to show that the systemof redutions yields exatly the same normal proofs as the onstrutive system.5.2.4 LLKE labelled formulae and normal formsWe have seen that spurious ambiguity is a problem that arises in CCG due to the generalityof the forward and bakward omposition rules (Eisner, 1996) and in Gentzen presentationsof Lambek aluli due to the level of non-determinism found in standard sequent rules. Now,sine non-determinism in LLKE gets redued to the hoie of whih subformula of unful�lledtypes to use in augmenting the tableau, it is diÆult to situate proof normalisation in theontext of the system. Firstly, spurious ambiguity is a pratial onern only as far as it hasa negative impat on a system's performane. In fat, this is the ase for most ombinatorialsystems whih work on a searh regime of extensive enumeration of subproofs, as is the aseof most rewrite-based parsing tehniques for CCG and non-normalised sequent methods. Ina logial framework this fat an be seen as the manifestation of the adverse side-e�ets ofut-elimination (Boolos, 1984), the prie one generally has to pay for deidability. Completeelimination of ut deprives the proof theory of an expliit statement of the lassial prinipleof bivalene, whereby either an assertion or its denial holds in a theory. In algorithmi terms,ut-elimination amounts to bloking subproof reuse. In other words, the use of lemmas isforbidden in ut-free aluli. LLKE reinstates the priniple of bivalene through the � rule9.9If a proof-tree is regarded as a model for a formula, then the � rule an be seen as generating two sub-models: one in whih the assertion of the � formula holds and other in whih its denial is the ase.
Redundany in Labelled and non-Labelled CG Dedution 103Even if the analyti restrition is obeyed and � rules have to be applied to subtypes ourringin the proof tree, a ertain degree of reasoning by lemmas is still allowed. In addition, tableauxin general and LLKE in partiular an be seen semantially as model elimination systems.This fat ombined with the presene of analyti ut guarantees that generating all relevantLLKE-models is not as ostly as generating all relevant proof patterns in sequent systems |reall that the omplexity results in setion 4.4.2 are obtained under the assumption that thetableau is fully expanded. Therefore, eÆieny does not appear to be the relevant riterionwhen assessing the onsequenes of proof redundany in LLKE and similar systems.We have already seen in setion 4.1.1 that by allowing type-level re-braketing we introduein LLKE some spurious ambiguity of the kind disussed in (Eisner, 1996). This observation,whih led to our rejetion of the strategy of dealing with assoiativity at the syntati level,in hapter 4, whereby the � rule ould be made redundant, reveals the ontrast desribedabove. Rules �(i){�(iv) may be regarded in pratie as forms of funtion appliation. If theyare allowed to operate aross braket boundaries at the level of syntati types, then thepurely ombinatorial searh regime of algorithm 3.2 allied to the assoiativity property of thelabelling algebra ends up produing redundant derivations.In setion 5.2.1, we pointed out the resemblanes between the (partial-tree) labelling tehniqueof (K�onig, 1989) and tehniques for reovery of syntati struture in LLKE. In fat, it appearsthat the labelling algebra of the latter, without type re-braketing, enodes all redundantderivations whih would have been generated if the tableau rules allowed full branhing of�1-type formulae, as in onventional tableau systems, or type re-braketing, as in the �-freeversion of LLKE. If this is the ase, then LLKE an be regarded as a normal-form system.This point is probably worth further analysis. However, sine we have deided to fous LLKEon syntati types and the e�et of proof redundany in the system's performane is quitedistint from the impat of spurious ambiguity on sequent based approahes, we leave thiskind of omparison to future researh.The proessing of an example from (Hendriks, 1993) by LLKE is shown below in orderto illustrate the non-ourrene of redundant derivations in the system and antiipate thestarting points for further researh in this area. Under a standard sequent alulus, the



Redundany in Labelled and non-Labelled CG Dedution 104parsing of the sentene of example (e.24) reeives six derivations whih are equivalent to onlytwo distint semanti readings10.(e.24) Someone loves everyone.A minimally losing LLKE proof-tree for (e.24) is with the following lexeme{type orrespon-dene: \someone" = S=(NnS), \loves" = (NnS)=N , \everyone" = (S=N)nS, is shown ine.25.
(e.25)

1: F : S=(NnS) � (NnS)=N � (S=N)nS ` S : 12: T : S=(NnS) : a :::3: T : (NnS)=N : b :::4: T : (S=N)nS : (i==a)==b :::5 F : S : i 1; �iii��������� HHHHHHHHH6: F : S=N : x 4; �7: T : N :  :::8: F : S : x Æ  6; �ii9: T : NnS : b Æ  3; 7; �iv10: T : S : a Æ (b Æ ) 2; 9; �iv�
11: T : S=N : x 4; �12: T : S : x Æ ((i==a)==b) 11; 4; �i�

The proof-tree above loses with substitution & = fx 7! (a Æ b)g. Now, let's assume the as-signment of lambda terms to eah lexial entry in the anteedent | line 1 of example (e.25)| to be as shown in (e.26).(e.26) f\someone00 := �P9xP (x); \loves00 := loves; \everyone00 := �P8yP (y)gThe losure ondition in the branh that reovers the struture of the sentene \Someone10The \tagged" sequent system of (Hendriks, 1993), whih is demonstrably equivalent to Hepple's onstru-tive alulus, sueeds in eliminating the spurious derivations.

Redundany in Labelled and non-Labelled CG Dedution 105loves everyone" derives from lines 5 and 7. It is: x Æ ((i==a)==b) v i. It an be easily veri�edthat, even though (e.25) does not depit a fully-expanded tableau (sine the type in line 3is not ful�lled on the right-hand branh), no other satis�able losure onditions would bederived if we had applied the � to the unful�lled formula. Applying substitution mapping &to the losure onstraint we obtain the solutions shown in (e.27) and (e.28). Notie that theproperties of the labelling algebra (see hapter 3) whih liense eah step are written on theright of eah line.(e.27) x Æ ((i==a)==b) v (a Æ b) Æ ((i==a)==b) &v (a Æ (b Æ ((i==a)==b) (3.6)v (a Æ (i==a) (3.1)v i (3.1) (e.28) ::: v (a Æ b) Æ ((i==a)==b) &v (a Æ b) Æ (i==(a Æ b)) (3.4)v i (3.1)Under a type{semantis assignment similar to (e.26) (Hendriks, 1993) arrives at two di�erentreadings for (e.24): 9x8y:loves(y)(x) and 8y9x:loves(y)(x). In LLKE, if one interprets the� rules as funtion appliation and � rules as lambda abstration one sees that the alterna-tive rewritings of the losure onditions, (e.27) and (e.28), suggest di�erent appliation andabstration shemes. These are granted by the two possible rebraketings labels expressionsin (e.27) and (e.28) after variable instantiation. Another example along the same lines isgiven in appendix A, setion A.4. There, however, the label expressions of derivation (e.49)are satis�ed under a substitution & = fx 7! b Æ ((i==a)==b)g in whih the label variable alreadyenodes one of the appliations | namely the appliation of expression ((i==a)==b) to token b| whih therefore rules out a seond (and ambiguous) reading.A full aount of ompositional semantis within LLKE would require an additional labellingsheme to be built on top of the existing system. This has not been attempted here. It isnot lear how the other aluli of the substrutural CG hierarhy of table 2.1 would behaveunder assignment of lambda terms. The issue of labelled dedution in ategorial aluli asa whole poses ompliated questions as to the proper foundations of the logial operationsinvolved (Venema, 1996; MaCaull, 1997). Devising an adequate semantis to aount forthe the operational aspets of LLKE derivations appears to be a worthwhile task for furtherresearh in this ontext.



Redundany in Labelled and non-Labelled CG Dedution 1065.2.5 Further remarks on proof normalisationProof normalisation was motivated by the need to develop eÆient parsing algorithms for alogial grammar whose most perspiuous formal presentation is perhaps done by means ofGentzen sequents. Sequent aluli, however useful in the theoretial analysis of dedution, arenot well-suited for automati dedution, as shown, for instane by reent researh in linearlogi and proof nets (Girard, Lafont, and Regnier, 1995). From the point of view of analysingproperties of proofs regarded as objets, the researh on proof normalisation presents interest-ing and original ontributions. Also, from a semanti perspetive, the tehniques developed inthe works ited above provide evidene that the Curry-Howard isomorphism, a entral featureof Lambek aluli with respet to (natural language) semanti interpretation, neither yieldsnor is a result of redundany. Rather, redundany is a harateristi of the nondeterminis-ti presentation of the logi whih an be urbed either by mapping proofs into equivalenelasses, i.e. by performing proof normalisation, or by making nondeterminism { \parallelism"in the linear-logi parlane { expliit by means of graphs.However, although it is the ase that for a sequent alulus to be useful in parsing one mustmake sure that all and only normal derivations are produed, in pratie it appears that thereis no absolute need to \normalise" sequent proofs simply beause there is no absolute needto use sequents. Many proof methods intrinsially more eÆient than sequent aluli arewell known in the theorem proving literature (Fitting, 1990), inluding resolution, tableaux,natural dedution and the variant of Bibel's onnetion method (Bibel, 1981) known as proof-nets (Girard, 1987). With Gabbay's work in labelled dedutive systems (Gabbay, 1994),most of these systems an be extended to handle resoure sensitivity. CG parsing seems tohave followed this trend in substrutural theorem provers in general, exept where a hoiewas made to abandon the priniples of the original Caluli in favour of more implementablevariants 11.11Another exeption to the widespread use of labelling tehniques is found in (Moortgat, 1994b) where itis show how the searh regime devised in (Hepple, 1990) an be enfored by translation into an augmentedlanguage whih inludes modalities. Through the use of modalities an axiomatisation an be given whih meetsHepple's requirements of non-redundany and safeness. However, e�etive automated dedution proedures forthe axiomatisation are not developed in the paper. A generate-and-test approah similar to the one adoptedin (Moortgat, 1988) for an axiomatisation along the lines of (Zielonka, 1981) tends to su�er from the sameeÆieny problems.

Redundany in Labelled and non-Labelled CG Dedution 107A last omment, again with respet to the theoretial aspets of proof normalisation. Thetehniques used in (Hepple, 1990) and (Hendriks, 1993) provide a high level of abstration overproofs12. It is however diÆult to see how those tehniques ould \sale up" to over otherlogis. An even more abstrat framework seems to be required to ful�ll this purpose. Perhapsoinidentally, ategorial proof-theory (Lambek and Sott, 1988), whih originated from atotally independent line of researh, ategory theory (MaLane, 1971), may o�er the requiredapparatus. Some work along these lines has been done in (Lambek, 1988) and (MaLane,1982), but in general this �eld of investigation remains largely unexplored.5.3 Branhing in model-elimination systems and labellingSemanti tableaux13 may be regarded as model-theoreti developments of Gentzen sequentsystems (Fitting, 1990). The idea whih underlies the system is simple: the formula to beproved is negated and then a systemati searh for ounter-models for the negated formula isperformed. The method is provably sound and omplete with respet to standard (Boolean)interpretation for lassial logi: in any �nished systemati tableau, every open branh issimultaneously (�rst order) satis�able (Smullyan, 1968). As in LLKE, tableaux get extendedby means of rules aording to the subformula priniple. Smullyan distinguishes two mainkinds of rules (for the propositional ase), whih he alls respetively � and �. Tableau rulesfor an impliational onnetive \/" are shown in (5.4) | the same signing onventions adoptedin table 3.1 are adopted here. Analogous rules an be de�ned for the lassial versions of \n"and \�". Rule �: �1 F : A=B�2 T : B�3 F : A Rule �: �1 T : A=B�2 F : B j �3 T : A (5.4)12Reall for instane that one of the normal form systems presented in (Hepple, 1990) onsists basially ofrewriting on derivation trees.13We sometimes refer to a standard (Smullyan-style) tableau simply as \tableaux" as opposed to non-standard tableaux suh as LLKE.



Redundany in Labelled and non-Labelled CG Dedution 108The rules in (5.4) an be seen from a syntati point of view as reipes for building Hintikka (ordownward saturated) sets out of a initial set of lassial propositional formulae, if interpretedalgorithmially as follows: given a set T of formulae, if �1 2 T then add �2 and �3 to T ; if�1 2 T then add �2 or �3 to T . Although totally adequate for theorem proving in lassiallogi, these rules fail to provide the neessary level of granularity to deal with substruturalaluli. The reason for this is that tableaux are simply sequent systems of whih one hasremoved the sequents that provided the ontextual surroundings for the ative formulae. Tosee this, just read \upside-down" rules (R/0) and (L/0) in (5.5), removing the Greek lettersand the derivability relation, \`".�; T : A ` F : B(R/0) F : B=A � ` F : B 	; T : A;� ` F : C(L/0) 	; T : A=B;�;� ` F : C (5.5)The loss of ontextual information in tableaux with respet to sequent systems is not anissue when tableaux are applied to lassial logi. Classial dedution is monotoni and notsensitive to order or \quantity" of premises (in the sense that premises may be used as manytimes as one wants or not used at all). Lambek aluli, as we have seen, are non-monotoniand exhibit varied degrees of resoure sensitivity. Therefore, to use tableaux in ategorialdedution one has to be able to keep trak of whih types got used, how many times, andwhere in the derivation. One again one ould all Gabbay's labelling tehniques (Gabbay,1994; D'Agostino and Gabbay, 1994) into play. Let L� = hP; Æ; 1;vi be a labelling algebrade�ned as in de�nition 3.2. We an now rede�ne the rules in (5.4) as (5.6), where fa; bg � P,b does not label any type ourring above it in the tableau and x is a label variable rangingover elements of L�.
Rule �: �1 F : A=B : a�2 T : B : b�3 F : A : a Æ b Rule �: �1 T : A=B : a�2 F : B : x j �3 T : A : a Æ x (5.6)

Redundany in Labelled and non-Labelled CG Dedution 109Rule � is the same as the orresponding LLKE rule. Rule �, whih has no orrespondentin LLKE, an be easily interpreted in model-theoreti terms: given that a type A=B isinterpreted as having truth-value \T" in a database \a" (possible-world, multiset et), thenin order for it to be valid in model L� there must be a database \x" suh that either thesubtype B does not hold in \x", or subtype \A" must hold in database \a" augmented with\x". The other operators of L an reeive analogous treatment and the onstraints on thelabelling algebra whih enable us to haraterise di�erent ategorial aluli an remain thesame as the ones de�ned in hapter 3.5.3.1 Uni�ation bottleneks in automati labelled dedutionIf by means of straightforward type deomposition built on top of a labelling disipline stan-dard tableaux an be adapted to handle exatly the same lass of aluli handled by LLKE,then why do we bother to introdue rules whih perform searh on the tableau (the � rules)in addition to a ut rule, whih sequent meta-theory goes into so muh trouble to proveredundant?The answer is simply that the extra bookkeeping abilities gained via labelling don't ome forfree. In fat, most of the omputation in labelled systems tend to be loated in the label-heking modules | see appendix B for a typial exeution pro�le of LLKE: notie that theost of handling of linear (� and �) and � expansion is almost negligible if ompared withthe ost of losure heking. In systems where many branhing rules are allowed suh asstandard tableaux, a large number of variables tend to be introdued, whih often ompli-ates the heking of label onstraints | Not to mention the fat, disussed in (D'Agostinoand Mondadori, 1994) that tableaux for propositional logi are inherently less eÆient thansystems whih inorporate some sort of with analyti ut with respet to p-simulation (Cookand Rekhow, 1979). Even worse, arbitrary variable introdution fores one to solve all la-bel expressions at the end of a full tableau expansion, whih in some ases pushes the labeldeision problem into intratability (see table 4.1) or even undeidability. In other words,it is not possible in standard tableaux to keep a ahe of intermediary variable bindings asdesribed in setion 4.4.1. Example (e.29) shows this.
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(e.29)
0: F : A=B �B=C � C ` A : 1 Assumption1: T : A=B : a :::2: T : B=C : b :::3: T : C : (i==a)==b :::4: F : A : i 0; ������������ HHHHHHHHHH5: F : B : x 1; ������� HHHHHH6: F : C : y 2; �� 7: T : B : y Æ b 2; �� 8: T : A : a Æ x 1; ��

Notie that a depth-�rst reading of the derivation tree does not impose an ordering on its setof losure onstraints. The tableau loses with the substitution shown in (e.30).(e.30) & = fy 7! ((i==a)==b); x 7! (b Æ ((i==a)==b))gHowever, sine h(y Æ b); xi < h(((i==a)==b); yi (reall partial ordering on losure pairs de�nedsetion 4.4.1, (4.26)) | eah pair is omposed respetively by the labelexps in lines 7, 5, 6 and3 | label uni�ation annot be performed \on the y", as the depth-�rst expansion of theproof tree is done14. Rather, uni�ation has to wait until all expressions are made available,at step 8. Although we annot rule out the existene of a non-trivial searh regime whihimposed the desired ordering on the losure onstraints so as to allow label heking to beperformed dynamially, we �nd it very unlikely.Tableaux were originally designed to take advantage of ertain aspets of lassial logi whihallow sequent dedution to be simpli�ed. They do not provide the most adequate base for14Note that a depth-�rst searh on the proof tree will �nd the following: hh(yÆb); xi; h(((i==a)==b); yi; h(aÆx); iii.The losure onstraint derived from lines 7 and 5 annot be added before the one in lines 6 and 3 beausewhen variable x of line 5 is read there isn't enough information to ompute its losing math (i.e. line 7 isn'tyet available).

Redundany in Labelled and non-Labelled CG Dedution 111labelled dedution. Similarly, there seems to be little point in labelling sequent aluli forpurposes of allowing generalised substrutural dedution, sine the rules already enompasselements whih failitate a very abstrat level of resoure ontrol through separate struturalrules | though labelling by lambda expressions has been fruitfully used in the analysis ofmeaning. There is, however, a system based on type deomposition similar to that performedin tableaux whih has reeived a great deal of attention in CG theorem proving: proof nets.We disuss this kind of system in the following setion.5.3.2 Proof nets and higher-order linear logi programmingOriginally developed for linear logi (Girard, 1987), proof nets are meant to provide a morefaithful representation of the \parallelism" of omputation, whih aording to Girard andothers has been unduly hidden by the sequential struture of Gentzen-style dedution. Inorder to allow the mentioned parallelism to be enoded and at the same time ontrol resoure(formula) usage with respet to quantity and position, ertain onditions on the onnetion ofterminal nodes in the resulting graph | similar to those used in Bibel's \onnetion method"of theorem proving (Bibel, 1981) | are imposed.To see (briey) how proof nets work for the impliational fragment of linear logi, assumeour set of operators to be C = f
;�Æ ;?g | where 
 stands for multipliative onjuntion,�Æ for linear impliation and ? is a form of negation | and let a denumerable set of atomiformulae fA;B; :::g losed under C be the set of formulae of the fragment. In sequent terms,the operational rules desribing 
 and �Æ are the same as their ounterparts in system (2.8):(R�), (L�), (R/) and (L/) respetively. The operational rules for ? are as stated in (5.7).Notie that the latter, whih govern the polarity (negative or positive) of a formula as itmoves from one side of the turnstyle to the other, desribe expliitly the reasoning underlyingthe signed version of the sequent rules in (5.5) and hene tableau expansion rules suh as(5.4). � ` A;�(L?)�; A? ` � �; A ` �(R?)� ` A?;� (5.7)



Redundany in Labelled and non-Labelled CG Dedution 112In addition to these operational rules, the impliational fragment of linear logi needs rightand left versions of the permutation rule, (P), of (2.12). Proof-net onstrution in (Girard,1987) is performed in two steps: (i) negation rules are used to move all formulae to one sideof the turnstyle, where they are put in a negation normal form and (ii) rules (F) and (T) of(5.8) are used to \unfold" all formulae down to their atomi subformulae.A B?(F) (A�ÆB)? A? B(T) A�ÆB (5.8)After a omplete proof net is built, the next phase whih onsists of linking up the atomiformulae at the graph's leaves has to be performed. Additionally, in order to represent validderivations proof nets are required to obey graph onditions whih reet the substruturalharateristis of the logi15 and a \long trip ondition", neessary to ensure that the rightpartitioning is ahieved | i.e. that only atomi formulae meant to be in the same sequentsubproofs as initial sequent axioms get onneted. Example (e.31) shows a simple proof netfor A ` (A�ÆB)�ÆB.
(e.31) A? A B?(F) (A�ÆB)? B(T) (A�ÆB)�ÆBRoorda shows how to adapt proof nets to handle ategorial aluli in (Roorda, 1991). Theproof-net onstrution rules, shown in (5.9), are de�ned aording to the same rationale behindthe rules above. However, sine the syntax of ategorial logis exludes negation operators, amehanism to express the full propositional truth-funtionally must be introdued. We oulduse signs \T" and \F" as done so far. Instead we prefer to adhere to the proof-net traditionand use supersripts \+" and \�" to the same e�et. Notie that all rules in (5.9) ause newsubtrees to be adjoined the derivation tree.15E.g. Links onneting the graph's leaves annot ross, eah leaf node must be onneted to at most oneother leaf of opposite polarity, et.

Redundany in Labelled and non-Labelled CG Dedution 113B+ A�B=A+ A� B+AnB+ A+ B�B=A� B� A+AnB� (5.9)An example of appliation of the rules above is given in (e.32), for the derivation of thelifting theorem: A ` B=(AnB). Morrill (Morrill, 1995a) remarks that if the only restritionon proof-net onnetions were that their links must not ross, then it would be possible toprove invalid entailments suh as the non-theorem: B=(AnB) ` A (\lowering").

(e.32) A+ A� B+(AnB)+ B�B=(AnB)�In (Roorda, 1991; Hendriks, 1993), derivation of non-theorems of the form of the aforemen-tioned \lowering rule", among others, is prevented by onditions enoded on the lambdaterms whih label eah node. It is pointed out in (Hendriks, 1993) that the long trip on-dition alone does not stop spurious ambiguity from plaguing proof net systems, from whihHendriks seems to infer the need for these systems to undergo some sort of normalisationsimilar to that developed for sequent aluli.We do not agree, however, that strutural ambiguity in proof nets should be plaed at the samelevel as spurious ambiguity in sequent aluli | at least as far as CG parsing is onerned| unless it impairs eÆieny. This does not seem to take plae in the systems desribedso far. A perhaps more relevant onern is raised in (Morrill, 1995a) with respet to themethod's overage. Morrill laims that although the proof-net theoremhood onditions suÆeto haraterise aluli suh as L and LP, they are still not general enough. Caluli suh asNL or \hybrid" systems like the ones desribed in (Hepple, 1995; Moortgat and Oehrle, 1993)�nd no obvious haraterisation in terms of graph topology onditions alone. Therefore, anextra level of strutural ontrol is alled for. One again, labelling tehniques seem to providea onvenient answer.



Redundany in Labelled and non-Labelled CG Dedution 114Morrill's proof netsIn (Morrill, 1995a) and (Morrill, 1995b), two systems of labelled dedution are introdued.Whether or not they should be alled proof-net systems is debatable. First of all, in spite ofthe fat that they keep the basi skeleton of the unfolding rules (5.9) the topologial onditionswhih distinguish among proof nets those whih represent genuine proofs play a signi�antlyless important role. These onditions serve only to reover the order-relevant informationlost by expanding �-type formulae (in Smullyan's terminology) into two separate branhes,instead of simply appending their subformulae to the branh being expanded. In view ofthis, the breed of \proof nets" desribed in Morrill's papers, along with those developed in(Moortgat, 1992; Moortgat, 1990a), might as well be regarded as a labelled variety of standardtableaux as desribed above.It should be remarked, however, that the parallel drawn above refers mainly to the labellingrules for eah method. We shall open a parenthesis here to disuss this. At the propositional(type) level, the redundany exhibited by Smullyan tableaux, whih in standard propositionallogi is the very reason why tableaux annot p-simulate (Cook and Rekhow, 1979) truthtables, gets eliminated if every formula auses a new pair of branhes to be adjoined to theproof tree as in (5.9). In tableau systems, a list of formulae introdued by �-rules mustbe expanded as many times as the number of subtrees ourring below it whih ends upausing ertain proof trees to have a number of non-terminal nodes in O(k!), where k is thenumber of distint ourrenes of propositional letters (atomi types) | see (Haken, 1985) forexamples of tautologies whose proofs have exponential upper bounds and (D'Agostino, 1992;D'Agostino and Mondadori, 1994) for a omprehensive disussion of redundany in tableausystems.Fortunately, both proof nets and LLKE proofs have muh lower upper bounds with respet tothe size of their proof trees. The fat that standard tableaux exhibit an anomalous degree oftopologial redundany while proof nets don't an be explained in terms of data strutures.Consider a tableau proof tree suh as (e.29). If we read eah subtree as a set, as suggested in(Smullyan, 1968), then the data struture representing this tree looks like this (from left toright):

Redundany in Labelled and non-Labelled CG Dedution 115(e.33) T = h fT : A=B : a; T : B=C : b; T : C : (i==a)==b; F : A : i; F : B : x; F : C : yg;fT : A=B : a; T : B=C : b; T : C : (i==a)==b; F : A : i; F : B : x; T : B : y Æ bg;fT : A=B : a; T : B=C : b; T : C : (i==a)==b; F : A : i; T : A : a Æ xgiNotie that the intersetion of sets in example (e.33) yields a fairly large set. The ommonelements will have to be expanded into eah subtree at eah expansion step. Therefore,the more branhing we have, the more redundany is introdued. In proof nets, sine allrules introdue branhing, the data is \parallelised". A fully expanded proof net for theassumption of example (e.29), under the same data struture, will have at most 1 elementin the intersetion of all sets of formulae. In LLKE, topologial redundany is redued (ifnot totally eliminated) by the fat that the system has a single branhing rule whih anbe applied only after appliation to the other rules have been exhausted (D'Agostino andMondadori, 1994).Returning to Morrill's proof nets, the �rst system | disussed in (Morrill, 1995b) | uses alabelling algebra whih an be easily interpreted as the omplete lattie L� used in setion 5.3to do the bookkeeping in standard tableaux16. Given L�, the system's expansion rules anbe stated as in (5.10), where b is a new label token and x a new label variable ranging overinformation tokens.B+ : (a Æ x) A� : x1. B=A+ : a A� : x B+ : (x Æ a)2. AnB+ : aA+ : b B� : (a Æ b)3. B=A� : a B� : (b Æ a) A+ : b4. AnB� : a (5.10)Following Smullyan's onventions (see rules (5.4), setion 5.3), we shall refer to the typesbelow the dedution bar in 1 and 2 as �-types and to the ones in rules 3 and 4 as �-types. Forinstane, notie that under the labelling regime de�ned in (5.10) our proof of lifting, (e.32),yields the following onstraints: a v x (for the pair of leaves A+ and A� onneted by theleftmost link) and x Æ b v a Æ b (pair B+; B�). These onstraints are trivially satis�able under16The symbol \+" is used in (Morrill, 1995a) to denote the omposition operator \Æ".



Redundany in Labelled and non-Labelled CG Dedution 116the substitution & = fx 7! ag.The leaf onnetion ondition still has to be enfored in this labelled version of (5.9). However,sine nearly all strutural ontrol is transfered on to the labelling algebra, that onstraint inpratie amounts to heking for losure pairs, as in LLKE or standard tableaux. Straight-forward inspetion of labelling (5.10) and negation rules (5.7) | the latter having all typesX? replaed by X� and all types X replaed by X+ | shows that in a typial produt-freeategorial proof for X1; :::; Xm ` Y , the number of label variables to be introdued is O(n),where n =Pmi=1 dg(Xi) is the sum of the degrees of the formulae in the anteedent: assumeeah Xi to have the form (:::(Xi1=Xi2)=:::=Xir) | i.e. a �-type with left-assoiative brak-eting | and reason indutively notiing that the unfoldings for eah Xij introdue a newvariable plus a new �-type with the same struture as Xi and so on. This represents a largenumber of variables to be instantiated in a potentially large number of semigroup (groupoidet) equations to be solved only at the end of the unfolding phase. The reason for this isthe same as the reason why variable instantiation annot be performed dynamially in thetableaux disussed in setion 5.3.1: the lak of an unfolding algorithm apable of orderinglabel onstraints appropriately as soon as they are introdued. The label-heking problemin this kind of method tends therefore to reside in the intratable domain of A-uni�ation(AC-uni�ation et), as desribed above.The seond system of (Morrill, 1995a) addresses this problem by adding a mehanism for om-pilation of label onstraints into higher-order logi programming lauses (Hodas and Miller,1994). The objetive here is not to redue the number of variables or to perform dynamionstraint solving but to re-organise them into lauses so that uni�ation gets restritedto one-way mathing whih is then implemented via SLD resolution tehniques (Siekmann,1989). The starting point is a semanti analysis based on the labelling algebra, similar to thesemantis presented in hapter 3. Conditions (5.11) de�ne a validity relation diretly derivedfrom the groupoid interpretation of L | see (2.11) and (2.10) in hapter 2.a j= A=B i� 8x(x j= A) a Æ x j= B)a j= AnB i� 8x(x j= A) x Æ a j= B) (5.11)
Redundany in Labelled and non-Labelled CG Dedution 117Now, if we review rules (5.10) in the light of the type interpretation above we onlude thatthe new tokens (\b") introdued by rules (5.10.3) and (5.10.4) are in fat Skolem onstantswhile the label variables (\x") in (5.10.1) and (5.10.2) orrespond to �rst-order metavariables.It turns out that labelled proof-net rules an be reordered so as to reet the impliationsof (5.11) thus yielding expressions in (higher-order) logi programming lausal form. Sinethe resulting impliation is sensitive to the ourrene of tokens, it must be haraterised aslinear impliation, as shown in (5.12).B+ : (a Æ x) Æ� A� : x1. B=A+ : a B+ : (x Æ a) Æ� A� : x2. AnB+ : aB� : (a Æ b) Æ� A+ : b3. B=A� : a B� : (b Æ a) Æ� A+ : b4. AnB� : a (5.12)Now, instead of heking for planar onnetions or \long trip onditions" one only has tounfold the type ompletely, onatenate the impliations at the terminal nodes of the resultinggraph, onvert the resulting expression into \unurried" form| i.e. onvert its subexpressionsof the form (:::(X+ Æ� Y �1 ) Æ� :::) Æ� Y �n into lauses X+ Æ� Y �1 
 :::
 Y �n | and solve it byassuming the leftmost impliations to be a goal and the remaining subexpressions to be anagenda, in a logi programming database. Now, let an agenda be a 
-onatenation of goals,a goal either an atomi type or a lause of the form X+ Æ� Y �1 
 :::
 Y �n , and the programdatabase � a multiset of lauses17. The linear logi programming theorem proving may thenbe de�ned by axiom A ` A plus the following sequent rules:� ` B1 
 ::: 
Bn
 C1 
 ::: 
 Cm(Rs) �; A Æ� B1 
 ::: 
Bn ` A
 C1 
 ::: 
 Cm �; B ` A � ` C1 
 ::: 
 Cm(Dt)�;� ` (A Æ�B)
 C1 
 ::: 
Cm (5.13)In (5.13), rule (Rs) represents a step of SLD-resolution and (Dt) a version of the dedution17The de�nition of goal here is what haraterises the system as higher-order logi programming, as opposedto lassial logi programming where goals an only be atomi formulae or prediates. The identi�ation ofdatabases with a multisets is added to omply with this feature.



Redundany in Labelled and non-Labelled CG Dedution 118theorem whih permits proof by searh of subgoals. Example (e.34) shows a logi program-ming proof net for lifting.
(e.34) A+ : a B� : (a Æ b) Æ� B� : (x Æ b) Æ� A+ : x(AnB)+ : bB=(AnB)� : aExample (e.35) depits a linear logi programming veri�ation of the theoremhood onditionsof (e.34), translated from the notation used in (Morrill, 1995a) bak into the sequent notationfor the sake of larity.

(e.35) a ` a(Rs) a; ((x Æ b) Æ� x)[x 7! a℄ ` a Æ b ; ` ;(Dt) a; ; ` (a Æ b) Æ� ((x Æ b) Æ� x)The ruial step in (e.35) is the appliation of of substitution fx 7! ag to the label of thetopmost B�, whih guarantees that the axiom sheme gets the orret instantiation. Morrill-style proof nets use the polarity signing system of standard proof nets only to ontrol whihrule to apply at eah level of unfolding. There is no need whatsoever to onnet nodes ofopposite polarity or to perform graph searh of any sort. The system has been adapted in(Morrill, 1995b) to work with relational frames (van Benthem, 1991) rather than groupoidmodels. This appears to have no signi�ant inuene on the overall harateristis of themethod.We have seen above that a problem of redundany arises when two distint treatments ofsubstrutural dedution, proof nets and labelled dedutive systems, are arelessly ombined:in addition to having to onnet nodes of opposite polarities aording to the topologialonstraints that haraterise eah alulus, one still has to solve systems of label equationswhih tend to reside in intratable uni�ation lasses. Morrill's parsing methods have themerit of orreting this distortion by providing a uniform method of ompilation of labelexpressions into higher-order logi programming lauses. However, by limiting theoremhood
Redundany in Labelled and non-Labelled CG Dedution 119onditions to label lauses one loses what is arguably the most attrative feature of proofnets, i.e. the possibility of using algorithms derived from graph theory in theorem proving.The system that results may without loss of generality be haraterised as a modi�ed formof tableaux. We have seen that Morrill's proposal improves on eÆieny with respet to Ro-orda/Moortgat's proof nets (Moortgat, 1990a; Roorda, 1991) in that it limits the uni�ationtask to ases where one term is always ground. This ertainly failitates implementation butdoes not eliminate the need to perform full type deomposition (unfolding) before the nextstage, label heking, is initiated, thus restriting the system's omputational possibilities toa serial proessing model.5.4 Further issues: Salability, modularity, heuristisMost works on automated CG dedution mention generality (overage over a wide rangeof substrutural aluli) and eÆieny as the main requirements to be met by CG theoremprovers. In view of the issues disussed in this hapter these requirements an be stated ina more spei� way. First of all, high generality is of very little use if the overall omplexityof the system is hopelessly intratable. A more reasonable approah seems to be to startwith a less expensive system | reall, for instane, that the �rst attempts to takle eÆienyissues in Lambek aluli (Hepple, 1990; K�onig, 1989) foused on produt-free subsets | andbuild on top of it extensions ompatible with the eÆieny-boosting tehniques developed forthe initial alulus. We all a CG system's ability to inorporate new harateristis whihinrease the expressivity of (or the range of language phenomena addressed by) its alulussalability. We ould probably distinguish two di�erent approahes to salability:1. One in whih the expressivity of the system is inreased via stritly logial featureswithin a well-de�ned lass of logis for whih Gentzen presentations exist and assoiatedalgebrai or model-theoreti semantis an be de�ned (i.e. those ranging from NL toLPCE as shown in table 2.1), and2. a more implementation-oriented formulation in whih types of a non-monadi nature |for instane, those approahes inorporating feature-struture systems | are added to



Redundany in Labelled and non-Labelled CG Dedution 120a base Lambek alulus.The latter is best represented by systems along the lines of K�onig's LexGram (K�onig, 1995),whih has its roots in an attempt to solve proof-theoreti shortomings of L's sequent ap-paratus (K�onig, 1991). The former enompasses more ambitious systematisations of earlywork on the Lambek hierarhy of strutural aluli, suh as strutural modalities (Hepple,1990; Morrill et al., 1990; Versmissen, 1994) and bidiretional division operators, guided by\minimalist" priniples of linear order, onstitueny and dependeny. These inlude the lat-tie of dependeny aluli in (Kurtonina and Moortgat, 1995), Morrill's type logial grammar(Morrill, 1994) and hybrid ategorial logis of (Hepple, 1995). The strategies developed forLLKE are aimed at automating dedution in systems of this (former) kind.After the initial work in proof normalisation, little has been done on tehniques to improvesequent dedution whih preserve salability. Rather, sequent dedution seems to have beenlimited to meta-theoretial work while e�etive theorem proving devies have been soughtelsewhere | witness this the researh on proof nets (Roorda, 1991; Moortgat, 1992; Morrill,1995a). We have seen, however, that standard proof nets alone are insuÆient to overall aspets of substrutural dedution required by CG. Labelling has been used to enhanegenerality (Moortgat, 1992) but it introdues redundany along with eÆieny problems ofits own, failing therefore to meet our salability riteria. The situation improves in (Morrill,1995a; Morrill, 1995b) with the assoiation of the labelling regime with a strategy for label-heking in a linear logi programming framework. Although the method is shown to berelatively eÆient for NL and L, no indiation is given of how the system would behave undermore powerful aluli. The algebrai omponent obviously supports extensions, as it doesin LLKE. Further researh seems to be needed in the logi programming side, however. InLLKE, uniform strategies are employed aross di�erent aluli, whih we believe provide abetter answer to the salability requirement.Also related to this generality requirement, we an distinguish a method's ability to dealwith di�erent aspets of dedution (e.g. logial rules vs. algebrai onstraints) more or lessindependently, in modules, in suh a way that developments in one module an be easilyinorporated to the system as a whole. We all this modularity. For instane, it is hard to see
Redundany in Labelled and non-Labelled CG Dedution 121how proof normalisation systems ould be modularised. On the other hand, Morrill's proofnets present good modularity beause independent improvements on the logi programmingmodule tend to a�et the system's performane immediately. LLKE also exhibits a highdegree of modularity. In addition, the more uniform balane between the work load for eahmodule ahieved in LLKE, along with the fat that omputations performed on separatebranhes of LLKE an be treated dynamially by the labelling module, makes the algorithmamenable to parallelisation | whih as we have seen doesn't our in labelled proof nets,sine their searh regime e�etively ollapses into a tableau-like searh regime. A parallelversion of algorithm 3.3 ould, for instane, expand left and right branhes simultaneously,with label losure tests on the left branh being prioritised (sine as shown in setion 4.4.1a depth �rst searh on a LLKE tree yields an ordering of label expressions from the mostto the least general, with respet to variable instantiation). This appears to be a promisingdiretion for future researh.Finally, a entral issue in automated dedution whih seems to have been almost negleted bymost researh in CG18: a system's ability to inorporate domain-dependent heuristis. Thesituation seems even more paradoxial if one onsiders that what would be alled heuris-tis in standard theorem provers is, in CG parsing, nothing but linguisti knowledge suh asword-order, dependeny, et19. Theorem provers with analyti ut provide plenty of roomfor heuristis (D'Agostino and Mondadori, 1994). LLKE's � rules onsist essentially of typessearhing on a string for other spei� types with whih they an \ombine". It's easy to seethat order-relevant knowledge, for instane, an be easily added to the linear expansion algo-rithm. Similar freedom is enjoyed by parsing systems based on natural dedution (Prawitz,1965) suh as the ones in (K�onig, 1991; K�onig, 1995). In the latter, that exibility is ex-ploited by re-arranging the logial algorithm in di�erent natural-language parsing shemessuh as bottom-up, top-down, shift-redue, and hart parsing. LLKE enables the same sortof tabulation tehniques to be used in a framework whih preserves the logialist approah tolinguisti desription and parsing envisaged in (Morrill, 1994; Hepple, 1995; Kurtonina and18With the possible exeption of (K�onig, 1991) whih later developed into a pratial tool for grammarspei�ation.19One ould speulate whether it is evidene against the \parsing as dedution" paradigm that a substantialpart of the phenomenon whih it seeks to model should be enoded as heuristis. We believe however that thisis not a problem with the paradigm but a matter to be settled by (proof/language) engineering tehniques.



Redundany in Labelled and non-Labelled CG Dedution 122Moortgat, 1995). Again, the work presented here is merely a �rst step in this diretion.A last point worth mentioning onerns the display of proofs. Most approahes disussed inthe last two hapters impliitly assume that theorem proving in CG should reet the linguististruture of the types being parsed. Proof-normalisation an be regarded as an e�ort to reduethe output of a sequent system to derivations whih ontribute \useful" information, pruningaway the ones whih display redundant strutures. In proof net systems lambda enoding isemployed in keeping trak of the relevant semanti information, the proof graph itself being oflittle importane. Likewise, the topology of LLKE trees is quite uninformative in this respet,though the reoverability results of hapter 4 show that the appropriate information an beextrated from it.5.5 SummaryIn this hapter we have reviewed strategies for improving eÆieny in automated CG dedu-tion, starting with proof normalisation in sequent systems, overing natural dedution andarriving at proof nets.From the perspetive of sequent aluli the analysis developed in this hapter foused on proofstruture rather than semanti labelling. Although no strategy for labelling derivation stepswith lambda expressions has been developed here for LLKE, a funtional interpretation ofits algebrai label expressions yield results whih tend to agree with those obtained in proofnormalisation. It would be interesting to equip LLKE with a lambda semantis mehanismto investigate suh onvergene is veri�ed.In the seond half of the hapter, the labelled proof net framework is reast in terms oflabelling in a standard tableau system. A few shortomings of branhing systems with respetto variable introdution and label-heking are pointed out. Finally, parallels between thestrategies presented in hapters 3 and 4 of this thesis and the ones used by the systemsmentioned above are drawn and a set of requirements for CG automated dedution systemsis skethed.

Chapter 6Further issues: Polymorphism andInformation FlowIn this hapter we address two extensions of the framework presented so far: quanti�ation |or the handling of polymorphi types in CG | and the more speulative matter of theoremproving in information networks of (Barwise, Gabbay, and Hartonas, 1994; Barwise, Gabbay,and Hartonas, 1995).The �rst of these extensions onerns pratial issues in omputational linguistis and parsing.Some kind of treatment of polymorphism seems to be neessary if a system implementing alexialised formalism is to provide the adequate level of generality for grammar spei�ation.The tableau rules to be de�ned below address this problem by borrowing a few tools fromabstrat quanti�ation theory (Smullyan, 1969). This is to be regarded as a �rst step towardsa more omprehensive treatment within analyti dedution rather than �nished work.In the remaining of the hapter, we shift the fous towards automated reasoning in arti�ialintelligene. We disuss Barwise and oworkers' formalisation of a non-lassial logi whihwe believe an be supported by analyti tableau dedutive mehanisms. We point out on-netions with issues in planning and agent-oriented theories. The basi idea is to disussthe omputational properties of theorem proving in a restrited information network setting



Further issues: Polymorphism and Information Flow 124within the LLKE system. In order to do this, we briey outline the language of types pro-posed in (Barwise, Gabbay, and Hartonas, 1995) to lassify sites and information hannels intheir logi of information ow, and then desribe CG parsing as an operationalisation of afragment of this language. Finally, we show how a anonial model of information-orientedlogis an be diretly haraterised in LLKE.6.1 Polymorphi typesWementioned in hapter 2 that one way to deal with lexial items whih have di�erent thoughanalogous funtions | see for instane the prepositional phrases of setion 2.3.5 whih anplay either adnominal or adverbial roles, and oordinator types whih an oordinate di�erentonstituents | is to generalise over a limited number of funtions whih linguisti analysisindiates as being the ones suh lexial items are likely to play | e.g. (Morrill, 1994, hapter6). This approah works by augmenting the language of CG with onnetives to expressthe ollapsing of a �nite number of elements into a single type. A more general approahis adopted in (Emms, 1994) with the introdution of quanti�ers into the logial language.The former approah requires addition of new dedution rules and more detailed, omplexspei�ations of lexial types by the user in order to keep the logi within propositional limitswhile dealing with the generalisations. The latter, on the other hand allows for a greater degreeof underspei�ation but seems to provide muh more generality than grammar spei�ationrequires, easily leading to inompleteness on the logial side.The approah desribed below an be seen as a moderate alternative to full quanti�ation.It is aimed at automation, in keeping with the spirit of the previous hapters of this thesis.Polymorphi types will be assumed to be always under the sope of a universal quanti�erwhih will be allowed to range over a well-de�ned set of values: the variable-free types of thelanguage in de�nition 2.1. We present an extension of LLKE | whih we all LLKEv | todeal with the augmented logis. The resulting system, unlike the original LLKE of hapter 3,does not provide an e�etive method for deiding theoremhood in all ases, sine variableswill range over a denumerably in�nite set of types | reall lifting (2.5) and division (2.6)
Further issues: Polymorphism and Information Flow 125(2.7) to have an idea of where in�nity shows up in Lambek aluli | whih may yield in�nite(open) branhes. However, the proedure is mathematially well de�ned (Fitting, 1990)and an be onstrained into termination in (we expet) reasonable ways | see, for instane,the S�on�nkel-Bernays lass of quanti�ed formulae whih has been used in (Johnson, 1991).From a linguisti viewpoint, working with unonstrained domains of quanti�ation may alsolead to overgeneration | i.e. a polymorphi type assuming anomalous funtions due toinappropriate variable instantiation | a problem whih is avoided in Morrill's propositionalapproah. In the following setions we disuss some linguisti examples of polymorphismpresented in (Morrill, 1994) and their treatment in LLKEv.6.1.1 Foreword on quanti�ationLet's start by enrihing our language of syntati types with variables and a (restrited) formof quanti�ation. In order to do so we extend the set of well-formed types, C (de�nition 2.1),to a set Cv as shown in de�nition 6.13. Unlike �rst-order languages, the syntax de�ned belowdoes not provide expliitly for universal or existential quanti�ation. Rather, all variablesappearing in a produt-free type will be assumed to be under the sope of a universal quan-ti�er. A form of existential quanti�ation will take plae where the sign of the SLF in whiha type variable ours is \F" | meaning \it is not the ase that for all types" et. Giventhe restrition imposed by (4.21), suh existentially quanti�ed types must appear only on theright-hand side of a sequent. Therefore both universal statements | those where a universalquanti�er has sope over the whole expression | and existential quanti�ation are unlikelyto play any major role in grammar spei�ation.However, the language of de�nition 6.13 is expressive enough to allow some general propertiesof grammars to be enuniated | e.g. that a given string (or a string of a given struture inase it ontains polymorphi types) yields a type of a ertain struture, where the \ertainstruture" is left underspei�ed through polymorphism | see examples (e.36)-(e.38). Thestatus of suh systems is not lear in polymorphi CGs. Although we will not pursue thisdiretion of researh here, we will disuss the status of universal statements in the metatheoryof CG in setion 6.1.2.



Further issues: Polymorphism and Information Flow 126De�nition 6.13 Let P = fA;B;C;N;NP;AP; PP; :::g, as in de�nition 2.1, and de�ne aset Pv = P [ fx; y; z; :::g (with or without subsripts), our augmented set of basi types. Theextended type language Cv is the losure of Pv under operators Op = f=; n; �g.Our next step is to de�ne a more onise way of talking about substitutions, this time notof label variables as in hapter 4 but of variables ranging over syntati types. Let 'xArepresent the result of substituting A for x in ' aording to the indutive de�nition 6.14.We shall assume here that the (universally quanti�ed) variables of Cv range over the set ofvariable-free types C. Furthermore, we assume that quanti�er sope does not extend arossprodut operator (\�") boundaries. For instane, a polymorphi type \(x=x)nx � x=x" maybe equivalently written as \(y=y)ny � x=x". Clause (iv) of de�nition 6.14 is meant to dealwith variable replaement under these sope assumptions. The idea behind the substitutionoperation in proof searh is simple. In proving entailments between sequenes of types (i.e.sequents) one assumes the type in the anteedent to be a T -type, the type in the sueedentto be an F -type and tries to �nd appropriate substitutions so that the tree built from theseassumptions loses under the label losure onditions de�ned in hapter 3, showing thereforethe unsatis�ability of the assumption. Informally, the model we have in mind is one in whihtype variables get mapped into variable-free types whih then are interpreted against ourinformation tokens of de�nition 3.2.De�nition 6.14 A substitution 'xA results in the following:(i) 'xA = ' if ' is an atomi onstant, 'xA = A if ' is an atomi variable.(ii) ['=�℄xA = 'xA=�xA(iii) ['n�℄xA = 'xAn�xA(iv) [' � �℄xA = 'xA � � if x ours in ',' � �xA otherwise.If we assume that in grammatial spei�ation no universally quanti�ed statements are made,as far as the semantis of quanti�ation is onerned we shall be mostly interested in satis-�ability (with respet to a universe of disourse antiipated to be the the set of well-formed,variable-free types) rather than validity (in the sense of �rst-order validity). One the re-
Further issues: Polymorphism and Information Flow 127plaements are made, LLKE-validity with respet to the information frames L an be testedthrough algorithm 3.3, for the variable-free ase. The semanti basis of these notions is statedin the following setion.It should be remarked, however, that the assumption above | viz. that quanti�ation shouldbe irumsribed to produt-free types in grammar spei�ation | is not an empirial fatbut rather a working hypothesis whih follows the pratie adopted in some Lambek sys-tems. There are ategorial approahes to grammar spei�ation de�ned in terms of priniples(statements about all possible on�gurations) as well as partiular instantiation of types andinferene rules (Moens et al., 1989; Calder, Klein, and Zeevat, 1988). By irumsribing thesope of our impliit quanti�ers as above (and by keeping them impliit instead of express-ing them in the language of types) we hoose to stipulate that grammatial priniples areimpliitly determined by properties of the entailment relation for eah system. These arederived, as we have seen, from ertain strutural features of dedution in general, and of-ten get imported into the grammar spei�ation language in the form of modalities (Morrill,1994) and hybrid type onstrutors (Moortgat and Oehrle, 1993; Hepple, 1995). At the levelof the tableau expansion rules, however, it should be a straightforward exerise to alter thededutive mahinery to ope with the spei�ation of universal priniples.6.1.2 Valuations and universal statementsIn standard �rst-order logi one normally distinguishes between onstants and parameterswhen de�ning an interpretation funtion, or valuation, for the formulae. Constants are thesyntati ounterparts of the semanti elements in a universe of disourse, U . First-ordervariables range over suh elements. Parameters are symbols used to instantiate variableswith hypothetial individuals (whih might turn out to have orrespondents in the universeof disourse suh that the formula in whih they our is satis�ed with respet to that uni-verse under a given interpretation). This distintion is probably meant to reet the kindof reasoning performed by a mathematiian who in the ourse of a proof, having alreadyshown that a ertain property P holds for some individuals x, says \let a be suh an x" andarries on with P (a) as part of his assumptions, to be on�rmed or rejeted later. This newly



Further issues: Polymorphism and Information Flow 128introdued symbol, ommitted to prediate P , is what is alled a parameter in (Smullyan,1968).A valuation is initially de�ned on the set of parameter-free, losed formulae | i.e. thoseontaining no free variables. A universally quanti�ed formula is true under a valuation i� allinstanes of its prediates in U are true under a Boolean (propositional) valuation. Similarly,an existentially quanti�ed formula is true under a valuation i� at least one element of theuniverse of disourse makes the sentene true under a Boolean valuation. One ould alsode�ne an interpretation funtion by speifying n-plae relations in U into whih the language'sn-plae relations would be mapped. This interpretation funtion may then be extended in thefollowing way: all parameters ourring in a sentene are replaed by onstants in U and theresulting (losed, parameter-free) sentene is evaluated as usual. An interpretation funtionso de�ned would be equivalent to a valuation for quanti�ed formulae (Fitting, 1990). If aset of sentenes with parameters is suh that its parameters an be renamed in suh a waythat there is a substitution (of onstants for parameters) whih makes eah sentene in theresulting set \true" (under a given interpretation, in a given universe), then we say that thisset of formulae is simultaneously satis�able.Our approah to quanti�ation as a way to deal with polymorphism in CGs requires onlya fairly simpli�ed treatment. First of all, the the type syntax does not involve the use ofdistint prediates as in �rst-order logi. All atomi types may be assumed, so to speak, tobe arguments of a hidden unary prediate \ours" whih indiates the ourrene of a stringin positions and number to be spei�ed through logial operators aording to the struturalproperties of the target alulus.As we mentioned before, a polymorphi type is to be interpreted as being under the sope ofa universal quanti�er, and universally quanti�ed variables do not seem to play any relevantrole in grammar spei�ation. Universal quanti�ation does, however, play a relevant rolein the metatheory of CG. We shall have a brief exursion into this issue before proeedingwith grammatial polymorphism proper. Let's, for the time being, forget the onventionson variables and quanti�ation in polymorphi types introdued above and onsider the hy-pothesis of yet again augmenting our language of types Cv with a syntati ounterpart for
Further issues: Polymorphism and Information Flow 129\`", say \)" (e.g. via appliation of a dedution theorem), and the usual quanti�ers \9" and\8". Examples of universal statements in this augmented language are shown in (e.36){(e.38).These rules, or \inferene shemes" appear frequently in the CG literature | see for instanethe introdutory hapters in (Moortgat, 1988; van Benthem, 1991) and hapter 2 of this the-sis. The universal quanti�ers, however, are taken for granted in most textbooks and left out,hene the presumed interpretation of these rules as \templates" whih get instantiated in thededutive proess.(e.36) 8xy[x=y � y) x℄ (appliation)(e.37) 8xy[x) (y=x)ny℄ (lifting)(e.38) 8xyz[x=y) (x=z)=(y=z)℄ (division, main funtor)In fat, it is now lear that our LLKE-proof of proposition 3.2 is stritly speaking a proof ofinstanes of the so alled \redution laws" rather than a proof of the laws themselves. Thereason why the proof an be generalised to all instanes is that we are allowed to reasonwith parameters, in the sense explained above. LLKE proofs are proofs by ontradition: thenegation of the formula to be proved is assumed to be the ase and a ontradition is soughtwhih arises from this assumption. Therefore, in proving (e.36) for example we assume thatthere are values of x and y for whih (x=y � y ) x) is false. Then we say: \let X and Y besuh values" and ontinue with the proof, as shown in hapter 3.It should be remarked that most ategorial aluli already provide for a restrited formof polymorphism within propositional logi. To see this onsider the lifting and divisionrules of hapter 2 | respetively (2.5) and (2.6), (2.7). The former an be seen as gen-eralisations over expressions of the form :::y=Xny::: and the latter over types of the form(X=z1=:::=zn)=(Y=z1=:::=zn), where n � 0, and similarly for \n". In addition to this inherentgeneralising ability, we want to provide our aluli with what (Moortgat, 1988) alls \basitype polymorphism". This is the type of polymorphism exhibited by the word \and", forinstane, whih an oordinate onstituents of di�erent form, suh as sentenes, verb phrases,and noun phrases.



Further issues: Polymorphism and Information Flow 130At this point we lose the parenthesis on universal statements and take for granted the kind ofgeneralisation disussed in the last paragraph to return to our restrited syntax of universallyquanti�ed types on�ned within produt boundaries. We start by speifying the notion of sat-is�ability within our labelled dedutive system through de�nition 6.15. It should be remarkedthat a level of indiretion is introdued with this de�nition of satis�ability: reall that LLKEis shown to be sound and omplete in hapter 3 with respet to a Gentzen presentation ratherthan a semigroup (groupoid, relational et) semantis. Likewise, quanti�ers in LLKEv willnot be evaluated diretly with respet to an algebrai struture | our information frames,whih are in fat mere bookkeeping devies | but with respet to a universe of disourseomposed by the types in C.De�nition 6.15 Let L be the labelling algebra (information frame) of de�nition 3.2, and leta be an information token in L. We say that for a type ' 2 Cv:(i) a j= ' i� for eah x ourring in ' and eah type A 2 C a j= 'xASine we have stipulated that no wide-sope universal statements are allowed in the logi,this notion of satis�ability will suÆe for our purposes. Given a sequent ontaining variableson the left-hand side of the turnstyle, we will be interested in �nding types whih instantiatethese variables in suh a way that the entailment holds in the given model (or database, to usethe LDS parlane). This di�ers from the approah adopted in (Emms, 1990), for instane.We won't disuss this approah in detail here, but it appears that (Emms, 1990) aimed atexpressing rather more general properties than the ones to whih its quanti�ational logiis applied in the paper. These further motivations are more learly spelled out in (Emms,1994), where a full treatment of quanti�ation is presented along with a string semantis.The linguisti drive behind the treatment desribed in the former paper, however, an bedealt with if the types are assumed to be quanti�ed as above. The notion of satis�abilityfor quanti�ed formulae in (Emms, 1994) is tied diretly to the (semigroup) semantis againstwhih the satis�ability of a variable-free type is interpreted. Emms' semanti formulationof polymorphism has the advantage of being more uniform than the one in de�nition 6.15.Our approah introdues an extra level of analysis (from polymorphi types to quanti�er-freetypes and from quanti�er-free types to algebrai models) whih amounts to a somewhat less
Further issues: Polymorphism and Information Flow 131elegant formalisation. From a pratial point of view, however, this loss of elegane pays o�by enabling us to de�ne a straightforward proof searh mehanism based on standard tableauand resolution tehniques. We address these tehniques in the next setion.6.1.3 Tableau rules for polymorphi typesPolymorphi types will be signed and labelled aording to the rules de�ned in hapter 3.Tableau expansion rules �, � and � in table 3.1 will be extended to over polymorphi typesin the obvious way: type variables are treated as atomi types. We distinguish between twogroups of signed polymorphi types: F -signed polymorphi types and T -signed polymorphitypes. We refer to the former as universal types, or -types, and to the latter as existentialtypes, or Æ-types. By restrition (4.21) and our assumptions about existential quanti�ation,Æ-types only our in a LLKE proof if the orresponding polymorphi type ours on theright-hand side of a sequent. Although we see little use for this kind of sequent in linguistidesription (see disussion above), rules for -types will be given below. The same rulesmay be used if one deides to extend the syntax to allow expliit universal and existentialquanti�ation as in (Emms, 1994). Shemes (6.1) and (6.2) show how to extend a LLKEtree from a node where a polymorphi type ours. Type X is assumed to be a type in Cvontaining at least one type variable x.(1) F : X : a(2) F : XxA : a where A is any type in C (6.1)(Æ1) T : X : a(Æ2) T : XxA : a where A 2 C has not been derived fromtypes added in previous steps that use rule Æ (6.2)The proviso on (6.2) orresponds to the liberalisation of the \D rule" in Smullyan-styletableaux (Fitting, 1990) whereby the onstraint on A being a new parameter in the derivationis relaxed for omputational purposes. Reall that, stritly speaking, existential rules shouldintrodue new parameters so as to avoid onit with parameters ommitted to prediates



Further issues: Polymorphism and Information Flow 132under the sope of quanti�ers to whih a  or Æ rule has been previously applied. A learexplanation of this kind of onit in �rst-order logi is given in (Smullyan, 1968, pp54{55).Smullyan's explanation an be paraphrased as follows. Suppose that two prediates \P" and\Q" apply to distint existentially quanti�ed variables in the ourse of a proof. It is perfetlylegitimate to take a parameter, say \a", and assume \P (a)". However, one \a" has beenommitted to representing an individual with property \P", we are no longer allowed to pred-iate \Q" of \a", for then we would be assuming that there is an individual \a" with bothproperties \P" and \Q", whih is stronger than what is asserted. Sine no distint prediatesare used in quanti�ed Lambek aluli it would appear that one ould eliminate this proviso,ollapsing  and Æ rules into the same general substitution sheme. We have hosen not to doso in the interest of soundness. The distintion between the two rules explains, for instane,why polymorphi types must be universally rather than existentially quanti�ed. Consider thetwo di�erent instantiations of the oordinator \and" (type (xnx)=x) in example (e.39) andthe ones in example (e.40). If we assume polymorphi types to be existential and observethe proviso of rule (6.2), then (e.39) will be derivable but (e.40) will be ruled out (beauseone the �rst \NP" gets introdued as a Æ-parameter the introdution of a seond \NP" toinstantiate the other \and" will be bloked).(e.39) John and Mary went out and Paul stayed in.(e.40) John and Mary stayed in while Bill and Paul went out.In piking out the types to be introdued via  and Æ rules we will give preferene to (i)subtypes ourring previously on the derivation1 and to (ii) types resulting from the losure ofthe former under Op, in asending order of degrees. These hoies have a heuristi harater.Although rule (6.1) will in fat allow any parameter to be hosen, it's easy to see that hoosingsubtypes whih our previously in the derivation tends to produe shorter proofs. However,stritly speaking there's no way to guarantee the algorithm's termination in ases where theinitial formula is a non-theorem. Some limit, on the maximum degree of type instanes forexample, must be imposed in order for the proedure to be of pratial use.1In the Æ ase, those whih have not been introdued by Æ rules nor have been been derived from types sointrodued by means of � or � rules.

Further issues: Polymorphism and Information Flow 133With the rules for universal and existential quanti�ation a generalised summary of all LLKEvrules is shown in table 6.1. The optimal order of rule appliation for eah branh is: �rst�, then � and �nally  (and Æ) rules. Examples of LLKEv derivations | (e.41), (e.43) and(e.42) | are shown in the next setion.� sheme � sheme � sheme  sheme Æ sheme�1�2�3 �1�2�3 �1 j �2 12 Æ1Æ2Table 6.1: Generalised LLKE RulesThe ompleteness result of hapter 3 with respet to the sequent presentation of NL{LPCE anbe extended to aommodate the new rules if standard parameter instantiation (Emms, 1994)is assumed to be the Gentzen ounterpart of  and � sine the labelling for the instantiatedtypes remains the same.6.1.4 Propositional Vs. prediational polymorphism: disussionPolymorphism an be arried out in di�erent ways: we mentioned the variety of struturalpolymorphism exhibited by L, the extensions to the propositional apparatus used in (Morrill,1994), and presented a more general implementation of polymorphi behaviour through theuse of variables2. Polymorphi types have reeived some attention sine the early days ofCG. Lambek's pioneering paper (Lambek, 1958) suggests that types implementing negationand oordination should undergo generalisation, resulting in the forms \x=x" and \(xnx)=x"respetively. As remarked in (Moortgat, 1988), negation an be struturally generalised ifits lexial ounterpart is assigned type \S=S": this original form obviously works when theargument is a sentene, and the form yielded by main-funtor division, \(S=NP )=(S=NP )",works for verb-phrase negation in LP. However, types with struture \(xnx)=x" annot be2We should remark that the prediational system presented above does not orrespond to the prediationalsystem of (Morrill, 1994). Morrill's quanti�ation sheme aims at providing a uni�ation-based feature systemfor CG, building it on top of the propositional system, whih already provides for polymorphism throughadditional onnetives | \^" for funtor polymorphism and \_" for argument polymorphism | as well asintrinsi properties of Lambek aluli (see setion 6.1.2).



Further issues: Polymorphism and Information Flow 134generalised by means of type raising or division. The prediational approah seems to handlethe oordination ase satisfatorily. Consider example (e.41), a LLKEv derivation for thesentene in (e.39) where the oordinators reeive di�erent instantiations.

(e.41)
0� F : N � (xnx)=x �N �NnS � (xnx)=x � S ` S : 1 Assump.1� TN � (xnx)=x �N �NnS � (xnx)=x � S : i3� F : S : i 0; �3� T : N : a4� T : (xnx)=x : b5� T : N : 6� T : NnS : d7� (xnx)=x : e8� T : S : ((((i==a)==b)==)==d)==e 1; �9� T : (NnN)=N : b 4; 10� T : NnN : b Æ  9; 5; �11� T : N : a Æ (b Æ ) 3; 10; �12� T : S : (a Æ (b Æ )) Æ d 11; 6; �13� T : (SnS)=S : e 7; 14� T : SnS : e Æ (((((i==a)==b)==)==d)==e) 13; 8; �15� T : S : ((a Æ (b Æ )) Æ d)(e Æ ((((i==a)==b)==)==d)==e) 12; 14; ��This adequay under di�erent ontexts exhibited by the treatment of oordination via im-pliitly quanti�ed type variables is due to the fat that the CG approah to oordination ingeneral permits non-standard onstituents to be derived (Ades and Steedman, 1982). Thatexible notion of onstitueny gets inherited by the quanti�ed aluli in ases where variablesour in an argument position of a polymorphi funtor. A problem arises, however, wherea variable-free type oupies the argument position of a funtor whih yields a polymorphitype | e.g. type xnx=N whih generalises over the adverbial and adnominal roles of lexialitem \from".In (Morrill, 1994), suh ases are dealt with by speifying a set of types whih an ourabove the division operator | for the word \from" in partiular these types are: CNnCNfor the adnominal funtion and (NnS)n(NnS) for the adverbial one. This list is onnetedby a form of (order insensitive) onjuntion whih has the e�et of making either subtypeavailable for further ombination, whih results in a omplex type with the following stru-ture: ((NnS)n(NnS)) ^ (CNnCN)=N . Symmetrially, if the hoie appears in the argumentposition, then the types get onneted by a form of disjuntion, _, meaning that either type

Further issues: Polymorphism and Information Flow 135is being sought. Unlike this propositional approah, LLKEv polymorphism is less seletive.It allows any type to instantiate type variables yielded in funtor position. Example (e.42)shows a derivation where \from" plays an adnominal role.

(e.42) 0� F : NJohn � NnSwalks � (xnx)=Nfrom � NEdinburgh ` S : 1 Assump.1� T : N �NnS � (xnx)=N �N : i3� F : S : i 0; �3� T : N : a4� T : NnS : b5� T : (xnx)=N : 6� T : N : ((i==a)==b)== 1; �7� T : xnx :  Æ ((i==a)==b)== 5; 6; �8� T : S : a Æ b 3; 4; �9� T : (NnS)n(NnS) :  Æ ((i==a)==b)== 7; 10� T : NnS : b Æ ( Æ ((i==a)==b)==) 4; 9; �11� T : S : a Æ (b Æ ( Æ ((i==a)==b))==) 3; 10; ��The label losure onditions in this ase are satis�ed even in NL, sine assoiativity is notrequired in order to solve the label expression yielded by the labels of lines 3 and 11. Asshown in example e.43, one is also able to derive a sentene where \from" plays an adverbialrole within NL.
(e.43) 0� F : CNa man � (xnx)=Nfrom � NEdinburgh ` CN : 1 Assump.1� T : CN � (xnx)=N �N : i3� F : CN : i 0; �3� T : CN : a4� T : (xnx)=N : b5� T : N : (i==a)==b) 1; �7� T : xnx : b Æ ((i==a)==b) 4; 5; �8� T : CNnCN : b Æ ((i==a)==b) 7; 10� T : S : a Æ (b Æ ((i==a)==b)) 8:9; ��Now, suppose we deide to hange the instantiation of \xnx" in (e.42), line 9, from type\(NnS)n(NnS)" to \SnS", as shown in (e.44). The former is learly a transformation of thelatter under main-funtor division. Therefore, not surprisingly a type \S" an be derived inL (whih allows assoiativity and hene main-funtor division) under substitution [xnx℄xS.



Further issues: Polymorphism and Information Flow 136(e.44) 0� F : NJohn � NnSwalks � (xnx)=Nfrom � NEdinburgh ` S : 1 Assump:...7� T : xnx :  Æ ((i==a)==b)== 5; 6; �8� T : S : a Æ b 3; 4; �9� T : SnS :  Æ ((i==a)==b)== 7; 10� T : S : (a Æ b) Æ ( Æ ((i==a)==b)==) 8; 9; ��This extra level of generality in L | and possibly also in NL | has the unfortunate e�etof allowing anomalous derivations. The problem is not partiularly ritial in (e.44) if oneaepts Steedman's views on exible onstitueny, for instane. However, ases suh as theL-derivability of example (e.45) seem to pose real problems for LLKEv.(e.45) *the from Edinburgh man.Although it provides an elegant formalisation of polymorphism in oordinator types, theprediational approah laks mehanisms to blok ungrammatial derivations where funtorpolymorphism has to be enoded. The introdution of devies suh as sort restritions onthe domain of quanti�ation | see (Moens et al., 1989) for a treatment of this in uni�ationategorial grammar | may eliminate the problem. However, these seem to require teh-niques beyond what an be ahieved by straightforward extensions to the tableau dedutiveapparatus. Again, formal elegane might have to be sari�ed.6.2 What does CG parsing tell us about automated dedutionin information networks?We onlude this hapter with a modest disussion of yet another possible extension of LLKE,this time towards an area of appliation outside the sope of CG parsing: automated dedu-tion in the so alled logis of information ow. The notion of information ow has gainedinreasing attention from logiians, logially-minded linguists and theoretial omputer sien-tists working in areas where, due to the dynami nature of the subjet, the traditional notion
Further issues: Polymorphism and Information Flow 137of logial truth might not be the most adequate. In fat, sine the appearane of the �rstworks on \multi-valued" logis (Kleene, 1952) up to reent researh on arti�ial intelligene(AI), basi assumptions of lassial logi, inluding the priniples of exluded middle and biva-lene, as well as strutural properties suh as monotoniity, have been onstantly hallenged.Amongst the many examples of this trend we �nd AI's non-monotoni and multi-valued logis(Ginsberg, 1988) Girard's linear logi (Girard, 1987), Barwise and Perry's situation seman-tis (Barwise and Perry, 1983), and more reently, hannel theory (Barwise, Gabbay, andHartonas, 1995).Although a number of tehniques have been developed within AI to deal with automatedmodal and multi-valued reasoning | inluding tableaux (Fitting, 1983) and algebrai (\bi-lattie") approahes (Ginsberg, 1988) | there haven't been, to my knowledge, any attemptsto implement provers for logis along the lines of the ones presented in (Barwise, Gabbay,and Hartonas, 1995). We will refer to these logis, where the basi models are assumed tobe (partially spei�ed, possibly self-referential) situations and onstraints on the inferenesallowed from one situation to another, as logis of information ow, or simply LIFs. It hasbeen suggested (Barwise, Gabbay, and Hartonas, 1994) that the strutures handled by theLambek alulus orrespond to paradigmati LIF strutures. We will suggest below that thease of parsing in ategorial grammars may be taken as a paradigmati ase for automatedtheorem proving in LIFs.6.2.1 Logis of information ow in Arti�ial IntelligeneIn (Luz, 1995) we presented the issue of representing speeh-ats by means plan-based for-malisms (Allen and Perrault, 1980) as being an example of an AI appliation whose ontology3su�ers from a lak of uniformity due to the fat that important notions suh as time andation reeive only operational spei�ations. Speeh-at representation in dialogue systemsis normally based on a theory where speeh ats are de�ned in terms of their onstituentpropositional attitudes: belief, intention, knowledge et. These notions have reeived onsid-3De�ned as: \an expliit formal spei�ation of how to represent the objets, onepts and other entitiesthat are assumed to exist in some area of interest and the relationships that hold among them." (Howe, 1997).



Further issues: Polymorphism and Information Flow 138erable attention within the �eld of possible-worlds semantis with varying degrees of suess(Hintikka, 1969). Propositional attitudes alone, however, annot aount for the dynamiaspets of dialogues suh as inferenes about the speaker's intentions, ommuniative goals,et. In order to handle these, a planning formalism is usually employed whih operates on aknowledge base omprised by fats and attitudes | i.e. \snapshots" of possible worlds.From a theoretial point of view, the inorporation of planning algorithms, a hoie whihmight be regarded as a pratial design deision, brings about some distortions. The mostevident of them is that intentions are not required to be onsistent. Sine ations and plansreside outside the logial ontology, temporal mehanisms are assumed to operate impliitly,and the passing of time is somehow expressed as updates on the knowledge-base due to theations performed along with a plan searh. In this setting, it is reasonable to say that anagent an intend both \P" and \:P" beause the ontraditory formulae may turn out tobe the ase in di�erent situations, i.e. at di�erent snapshots. However, if the passing oftime is expliitly enoded as part of the ontology | let's say, if the logi was provided witha temporal operator 3, orresponding to \eventually" (at some point in time) | then theapparently inonsistent intentions would be translated into something like: intent(A;3P )and intend(A;3:P ), thus removing the inonsisteny.There are works | suh as the inuential (Cohen and Levesque, 1990) | whih expliitlyaount for temporal and a number of other indexial aspets. Works along these linestend to be regarded as frameworks for design of situated agent systems and veri�ationvia model-heking, rather than systems for intention/goal inferene. Even in veri�ationframeworks, however, the lak of mehanisms to play the funtional roles played by plansin \pratially-minded" intention reognition systems produes some odd onsequenes. Theanalysis of (Cohen and Levesque, 1990)'s attempt to apture Bratman's onept of �lter ofadmissibility helps to illustrate this point. \Filter of admissibility" is an expression oined byBratman to designate the fat that intentions onstrain future-direted ations and attitudes\�ltering out" ations and plans inompatible with an agent's urrent intentions. Formula 6.3is laimed in (Cohen and Levesque, 1990) to be the property of their (model) theory whihis supposed to implement this �lter. Cohen and Levesque's model ombines a �rst-order,quanti�ed epistemi logi (KD45) with Hoare's dynami logi to de�ne intentional operators
Further issues: Polymorphism and Information Flow 139(\intention", \goal" et) by onstraining the epistemi aessibility relations. The operatorsan be read informally as follows: \done(x; a)" stands for \agent x performs ation a", \2�"stands for \� is always the ase", \;" is the dynami logi operator for ation omposition, andthe propositional attitude operator \bel(lieve)" reeive the standard (KD45) interpretationin a possible-world model while \intend" is de�ned via belief and goal aessibility relations.j= 8x[intend(x; b) ^2bel(x; (done(x; a)) 2:done(x; b)))) :intend(x; a; b)℄ (6.3)It is lear that (6.3) is asserting some sort of �lter. However, the property only applies withrespet to a partiular intention \a". There is nothing to guarantee that the agent does nothave other intentions whose ahievement is eventually prevented by some ation the agentmight perform in order to ahieve a goal overed by an instane of (6.3). An example ofsituation in whih this happens an be found in (Bratman, 1991): agent \x" has the intention(\b") of ying to San Franiso on Sunday evening. As part of a partial plan, this intentionposes the problem for further deliberation: How an \x" get from the hotel to the airport?One solution might be (\a") take the limousine to the airport. Now, suppose this solution isnot admissible beause, say, x is also planning (\") to meet a friend in the afternoon and thelimousine leaves in the morning. If we apply (6.3) to this example, we will see that a is notruled out, unless of ourse the intention onsidered is viewed as a onjuntion of intentions\b" and \". In any ase, there seems to be muh ontextual information esaping throughthe �lter. If the �lter were to be improved in the same framework, the most straightforwardoption would be to introdue an extra level of quanti�ation over intentions, whih annot bedone without adding onsiderable ompliations into an already ompliated model.Barwise and Perry's situation semantis (Barwise and Perry, 1983) appeared as an attemptto aount for those indexial aspets of knowledge representation whih have been negletedby many possible-world approahes. The failure of most AI theories of language and ationis often blamed on suh aspets. The theory initially takled semanti phenomena in naturallanguage, being later generalised through the (more syntati) notions of hannels and in-formation ow (Barwise, Gabbay, and Hartonas, 1995). The state of the art in this hanneltheory seems to be one in whih semanti intuitions derived from Barwise's (and other peo-



Further issues: Polymorphism and Information Flow 140ple's) work on Situation Theory have been integrated into a omplex and expressive system,of whih there are several versions around | see for instane (Cavedon, 1995) for a reentattempt overing default reasoning in natural language. On the one hand suh omplexity al-lows a wide range of phenomena to be dealt with (at least oneptually). On the other hand,the lak of a omprehensive strategy for omputational treatment of the theory as well asthe \semi-formal" status of some versions seem to have prevented the theory from beomingmore widespread in the AI ommunity even though its development was originally motivatedby problems brought about by AI researh. Consider for example the use of modal logi insome agent theories nowadays4: although most of them reognise the need to aount forphenomena suh as indexiality, whih is not adequately handled in possible worlds, there isstill a preferene for modal logi, perhaps paradoxially, beause it is more limited than LIFs.This state of a�airs would probably hange if more usable LIFs were identi�ed along with thetheir properties with respet to automation.6.2.2 LIFs in the LLKE frameworkThe perspetive presented in (Barwise, Gabbay, and Hartonas, 1995) is that several reasoningproesses an be desribed as networks in whih logi \ows" through onstraints that lassifyhannels onneting information sites. In order to formalise this, the algebrai struture ofde�nition 6.16 is used.De�nition 6.16 An Information Network is a 4-tuple N = hS;C; ; Æi, where S = fs; t; :::gis a set of information sites, C = fa; b; :::g is a set of hannels between sites,  is a relationon S � C � S and Æ a binary operation on C representing hannel omposition. In addition,it is required that for all hannels a and b: 8s; t[s aÆb t i� 9r(s a r ^ r b t)℄The algebra provides a framework upon whih several systems an be represented. In thepartiular ase of the AI modelling of intentions skethed above, of interest is the fat thatsemanti intuitions derived from hannel theory and realised in N ould be used to model4See (Wooldridge and Jennings, 1995) for a survey.

Further issues: Polymorphism and Information Flow 141dedutive planning along the lines of the approah desribed in (Bibel, 1997). For instane,an ation may be regarded as a hannel \" onneting a situation or site \s1" (the state ofthe knowledge base before the ation is performed) to a site \s1" (the state of the knowledgebase after the ation is performed). If planning is modelled as a dedutive proess (with asemanti ounterpart), then the problems of ontologial uniformity exhibited by plan-basedmodels of speeh ats tend to be minimised.Before we sketh a formalisation of dedutive planning within this information theoreti frame-work, let's desribe the language de�ned in (Barwise, Gabbay, and Hartonas, 1995) to talkabout omplex relationships between hannels and sites. The language onsists of a setof basi types ranging over sites, say � = fA;A0; :::; An; B; :::g, a set of types ranging overhannels, say � = fC;C0; :::; Dng and omplex types. Complex types are built as shown inde�nition 6.17.De�nition 6.17 The set of types LIF is the smallest set satisfying the following ondi-tions:(i) if A 2 � [ � then A 2 LIF(ii) if A 2 � and C 2 �, then (A # C) 2 LIF(iii) if A;B 2 � then (A! B) 2 LIF(iv) if A 2 � and C 2 �, then (A C) 2 LIF(v) if C;D 2 � then (C ÆD) 2 LIFOperators \#" and \Æ" suggest forms of non-ommutative onjuntion, while the arrows re-semble impliation operators. Their strit interpretation, however, must be given with respetto N . We will not give a formal de�nition of validity here | the reader is referred to (Barwise,Gabbay, and Hartonas, 1995) for a preise formulation | but the intuitive interpretation ofsentenes built aording to de�nition 6.17 an be phrased as follows:� (A # C) is evaluated as an information site: the site onneted to A by means of ahannel C� (A! B) is evaluated as a hannel onneting A to B



Further issues: Polymorphism and Information Flow 142� (A C) is evaluated as a site onneted to A via C� (C ÆD) is the syntati ounterpart of the hannel omposition operator (the di�erentuses are made lear by the ontext)As an example of how speeh-at modelling using the LIF just outlined we use the shemepresented in (Barwise, Gabbay, and Hartonas, 1995) for enoding knowledge bases and a-tions in a planning domain. The approah onsists of identifying �rst-order sentenes withtypes over sites and hannels. The former represent states of the knowledge base, while thelatter orrespond to ation operators (also written as �rst-order prediates). In a proposi-tional attitude setting, basi ation (hannel) types ould be, for instane: inform(a; b; p),request(a; b; Inform(b; a; q)) et. Situation (site) types ould be, for example: believe(a; p),know(a; p) et. Complex types suh as the ones shown below ould then be omposed fromthese primitive prediates(e.46) :know(a; p)! know(a; p)To represent the transition from a state where \agent a doesn't know that p" to a state where\agent a knows that p". A type suh as (e.47) ould stand for any ation that hanges theknowledge state of the agent followed by a speeh at. The type in (e.48), on the other hand,ould represent the post-ondition of an informative at, and so on.(e.47) (:know(a; p)! know(a; p)) Æ inform(a; b; p)(e.48) believe(a; p) inform(b; a; p)To see the onnetions between this LIF and the apparatus used in LLKE onsider thefollowing5:5Further evidene of the onnetion between LIFs and Lambek aluli is presented in (Barwise, Gabbay, andHartonas, 1995). It points out that van Benthem's relational semantis for L an be built as an informationnetwork if sites and hannels are taken to be ordered pairs in a relation R and de�ne ha; bi Æ hb; i = ha; ialong with an identity element as in remark 1. In this information network we then have ha; bi hb;i ha; i i�ha; bi; hb; i 2 R, where R is transitive

Further issues: Polymorphism and Information Flow 143Remark 1 An information frame L = hP; Æ; u;vi (de�nition 3.2) yields an information net-work N = hS;C; ; Æi (de�nition 6.16) in a anonial way. Just let P = S = C and de�nea unary hannel u whih onnets a site to itself so that  Æ u = u Æ  = . Now stipulatea v b def= a a b. It is routine to verify that the struture de�ned in this way satis�es de�ni-tion 6.16, in partiular the two ases of mathing the requirement on hannel omposition: ifa aÆu b then there is a site, namely b, s. t. a a b b u b (by de�nition of u) and onversely ifthere is a site b s.t. the latter holds then a aÆu b. The same reasoning applies to the permutedase.Now, if we assume that CG types orrespond to a LIF's type and that the semanti strutureunderlying CG is an information network suh as N , then we get a framework for the alulimentioned above by making S = C be a set of tokens supporting CG types, and  thesemanti ounterpart for type omposition. We an then assume that ,! and Æ orrespondrespetively to / n and �, obtaining the CG syntax. From this perspetive, many of thetheorem proving tehniques developed in the previous setions an be imported to deal with(at least fragments) of LIFs. The fragments left out of this haraterisation inlude thesystem based on a two-sorted language in whih the distintion between sites and hannels issyntatially expressed, and the rather more omplex elaborations in the domain of in�nitarylogi. It would be interesting to explore these �elds in onnetion with the appliationsdesribed above. However, this would require a framework muh more omplex than theformulation of LLKE presented in this thesis.6.3 Summary and onlusionsIn this hapter we presented the (modest) beginnings of two (ambitious) extensions to LLKE:the treatment of quanti�ation, whih has rami�ations into the CG researh on polymor-phism and polymorphi types, and theorem proving in Barwise's logis of information ow.Polymorphism was treated by allowing a restrited modality of universal quanti�ation intothe type language. Tableau rules were provided whih generalised over universal and exis-tential quanti�ation, though the latter does not seem to play any relevant role in grammar



Further issues: Polymorphism and Information Flow 144spei�ation. We then disussed non-prediational implementations of polymorphism andpointed out the fat that even if universal quanti�ation is bound within produt limits thelogi tends to overgenerate in ases of funtor polymorphism. The restrition on quanti�-ation is kept, however, sine it appears to be in line with the eonomy we had pursued inLLKE. Suh pursuit got somewhat negleted in the seond part of the hapter, where weintrodued the parallel between parsing in CG and theorem proving in logis of informationow.The hoie of CG parsing as a paradigmati ase for LIF theorem proving seems interestingdue to the following fators: (1) the Lambek Calulus, the logi on whih most CGs arebased, orresponds to a anonial form of information network (as pointed out in (Barwise,Gabbay, and Hartonas, 1995)); (2) As well LIFs, ategorial grammars (under the perspetiveof \parsing as dedution") require very general theorem provers to ope with the varietyof aluli, and (3) omplexity problems whih arise from keeping trak of proof struturesare likely to appear (in analogous forms) in strategies for automating LIFs. Furthermore,the experiene obtained by the better onsolidated researh in the former may give us someinsight into what strategies to use when dealing with appliations requiring more omplexnetworks and on assessing the feasibility of de�ning and implementing them.Finally, we should remark that other approahes to automated dedution in logis of infor-mation ow building on the onnetions between these logis and Lambek aluli are startingto appear. An interesting tableau-based system whih represents semanti relations diretlyin the tree expansion rules has been presented in (MaCaull, 1997). As noted in (Venema,1996), \labelling an introdue as many problems as it solves". We have seen some suhproblems from the omplexity perspetive in the previous hapters. In addition to these, wehave started to see in this hapter that the \semantis" of LDS dedution de�ned in terms ofhapter 3's information frames is not entirely lear. Perhaps labelled dedution ould bene�tfrom the more semantial approah brought about by the work in LIFs.

Chapter 7ConlusionsIn this thesis we have presented an aount of omputational properties of parsing in Lambekaluli based on a version of analyti dedution. The work presented here was intended as a�rst step towards bridging the gap between ategorial grammar parsing (as dedution) andautomated theorem proving. Therefore we regard the main ontributions of this thesis asonerning these two �elds of researh in equal proportion.From the point of view of labelled automated dedution in resoure-sensitive logis it is worthmentioning the following:� The semi-deision proedure for the labelled tableau of (D'Agostino and Gabbay, 1994)has been extended into a full deision proedure for a range of (impliational fragmentsof) substrutural aluli whereas the original soundness and ompleteness results havebeen preserved.� The impat of ut-elimination on eÆieny (in the proposed tableau system) has beenassessed from the perspetive of redundant proof patterns (i.e. spurious ambiguity) andwith respet to the label-heking module | reall (setion 3.2.2) that LLKE is basedon a tableau system whih reinstates the ut rule as an e�etive tool for proof searh(D'Agostino and Mondadori, 1994).



Conlusions 146� An algorithm tailored to perform label (i.e. tableau losure) heking in Lambek alulihas been desribed whih is aimed at avoiding the omplexity pitfalls of assoiative andommutative uni�ation.� A natural way to integrate the label uni�ation proedure with the general tableauproof-searh regime has been presented so that label variables an be ahed dynamiallywhih enables branh losure testing to be performed as the tableau is expanded, makingfull tableau expansion unneessary in most ases.� Extensions of the system into the �eld of prediate logi and logis of information owhave been presented whih are motivated by the possibility of doing label-hekingonurrently with syntati proof-searh. One of the main obstales to the automationof labelled dedutive systems is the high omputational osts assoiated with uni�ationin the labelling algebra. By emphasizing the onnetion between Lambek aluli andlogis of information ow we sought to suggest that general automated dedution haslessons to learn from ategorial parsing as well as the other way around.From the perspetive of ategorial grammar parsing, the following ontributions should bepointed out:� An approah to natural language parsing has been presented whih builds on a stritlydedutive method. This is to our knowledge the �rst appliation of tableau theoremproving to ategorial grammar� A strategy for reovering grammatial information (both lexial and ombinatorial)from the graph whih enodes the proof searh has been developed� Complexity results for the tableau system reminisent of those for ontext-free andmildly ontext-sensitive grammars have been ahieved for the lass of Lambek aluliin the substrutural hierarhy� Comparisons between the parsing mehanisms presented in this thesis and other dedu-tive systems for ategorial grammars suh as those based on proof-nets, sequent systemsand natural dedution have been presented

Conlusions 147� A modest extension of the system to deal with polymorphi types by adding tableauexpansion rules to deal with restrited universal quanti�ation has been presented. Thelimitations of this kind of approah to type polymorphism with respet to linguistidesription have been disussedThe analysis of the theoretial issues mentioned above has been aompanied by substantialimplementation e�ort in Lisp 1 to validate pratially the tehniques desribed in this thesis.Muh work remains to be done both in our approah to ategorial grammar parsing and inthe vast area of automated dedution for logis of information ow in general. Among thesewe ould mention: the speialisation of the tehniques developed here towards hybrid logisand substrutural modalities, a �ner grained aount of polymorphism, a deeper investigationof how CG's syntax-semantis interfae (Curry-Howard isomorphism) an be implemented inLLKE, the study of how linguisti knowledge ould be inorporated to the theorem provingmehanisms to improve eÆieny, and the de�nition of information aluli of pratial interest(e.g. in arti�ial intelligene appliations) whih fall within the lass of logis overed by thegeneral dedutive tehniques developed in this thesis. This thesis will have ahieved its goalsif it managed to onvine the reader that further researh along these lines in the dedutiveframework presented here is a task worth pursuing.

1The LLKE prototype is available upon request to S.F.Luz�ed.a.uk. It runs on Lisp interpreters whihomply with (Steele, 1990). The system has been mainly tested in Allegro Common Lisp  but it should alsorun in CMU Lisp and Gnu Common Lisp.



Appendix ASample LLKE proofsA.1 Charateristi Theorems of LThe following is a printout of the proofs of L-properties (2.1){(2.7) by LLKE. The trae showstypes in Lisp array notation and the �nal proof tree is printed as a Lisp struutre. The symbolsused are: '!' for 'n', '/' for '=', '�' for '�', '<-' for '==' and 'O' for 'Æ'. A trae is shown only forthe �rst proof. The proof-tree ontaining the expanded SLFs as well as the losure pair (inthe slot named \CONSTRAINT") is printed for the remaining proofs. The example was runin Allegro CL and the exeution took 1,300 mse CPU time on a SUNW,SPARCstation-20(SunOS 5.5.1).LK(3): (load "L-theorems.lsp"); Loading ./L-theorems.lsp**** Proving right appliation #(#(X / Y) � Y) |- X*** 22 Jul 1997 19:32:12: 3 starting to build a proof tree for: ***F X : L0 =>T #(#(X / Y) � Y) : L0 =>** Alpha-Reduing:T #(#(X / Y) � Y) : L0 =>Expanding tree with:T #(X / Y) : L1 => And: T Y : (L0 <- L1) =>** Sigma-ombining:T #(X / Y) : L1 => With: T Y : (L0 <- L1) =>And expanding tableu with:T X : (L1 O (L0 <- L1)) =>** Potential losure betweenT X : (L1 O (L0 <- L1)) => and F X : L0 =>## Inspeting Potential losure between(L1 O (L0 <- L1)) and L0

Sample LLKE proofs 149## Fully redued terms satisfy:((L0) NIL) <= ((L0) NIL)** Mathing Satisfied in L*** Linear Expansion ended. Starting b-exp ***** 22 Jul 1997 19:32:13: Final tableau has no open branhes at level 3. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA X :LABEL L0 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(#(X / Y) � Y) :LABEL L0 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(X / Y) :LABEL L1 :LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL (L0 <- L1) :LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL (L1 O (L0 <- L1)):LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA X :LABEL (L1 O (L0 <- L1)):LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL L0 :LEXICON "")))**** Proving left appliation #( Y � #(Y ! X)) |- X*** 22 Jul 1997 19:32:13: 3 starting to build a proof tree for: ***F X : L2 =>T #(Y � #(Y ! X)) : L2 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:13: Final tableau has no open branhes at level 3. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA X :LABEL L2 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Y � #(Y ! X)) :LABEL L2 :LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL L3 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Y ! X) :LABEL (L2 <- L3):LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL (L3 O (L2 <- L3)):LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA X :LABEL (L3 O (L2 <- L3)):LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL L2 :LEXICON "")))**** Proving right omposition: #( #(X / Y) � #(Y / Z)) |- #(X / Z)*** 22 Jul 1997 19:32:13: 5 starting to build a proof tree for: ***F #(X / Z) : L4 =>T #(#(X / Y) � #(Y / Z)) : L4 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:13: Final tableau has no open branhes at level 5. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(X / Z) :LABEL L4 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(#(X / Y) � #(Y / Z)) :LABEL L4:LEXICON "")#S(SLF :SIGNAL T :FORMULA Z :LABEL L5 :LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL (L4 O L5) :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(X / Y) :LABEL L6 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Y / Z) :LABEL (L4 <- L6):LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL ((L4 <- L6) O L5):LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL (L6 O ((L4 <- L6) O L5)):LEXICON ""))



Sample LLKE proofs 150:LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA X :LABEL (L6 O ((L4 <- L6) O L5)):LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL (L4 O L5) :LEXICON"")))**** Proving left omposition: #( #(Z ! Y) � #(Y ! X)) |- #(Z ! X)*** 22 Jul 1997 19:32:13: 5 starting to build a proof tree for: ***F #(Z ! X) : L7 =>T #(#(Z ! Y) � #(Y ! X)) : L7 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:13: Final tableau has no open branhes at level 5. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(Z ! X) :LABEL L7 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(#(Z ! Y) � #(Y ! X)) :LABEL L7:LEXICON "")#S(SLF :SIGNAL T :FORMULA Z :LABEL L8 :LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL (L8 O L7) :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Z ! Y) :LABEL L9 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Y ! X) :LABEL (L7 <- L9):LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL (L8 O L9) :LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL ((L8 O L9) O (L7 <- L9)):LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA X :LABEL ((L8 O L9) O (L7 <- L9)):LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL (L8 O L7) :LEXICON "")))**** Proving right type-raising: X |- #(Y / #(X ! Y))*** 22 Jul 1997 19:32:13: 3 starting to build a proof tree for: ***F #(Y / #(X ! Y)) : L10 =>T X : L10 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:13: Final tableau has no open branhes at level 3. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(Y / #(X ! Y)) :LABEL L10 :LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL L10 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(X ! Y) :LABEL L11 :LEXICON "")#S(SLF :SIGNAL F :FORMULA Y :LABEL (L10 O L11) :LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL (L10 O L11) :LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA Y :LABEL (L10 O L11) :LEXICON "")#S(SLF :SIGNAL F :FORMULA Y :LABEL (L10 O L11) :LEXICON "")))**** Proving left type-raising: X |- #(#(Y / X) ! Y)*** 22 Jul 1997 19:32:13: 3 starting to build a proof tree for: ***F #(#(Y / X) ! Y) : L12 =>T X : L12 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:13: Final tableau has no open branhes at level 3. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(#(Y / X) ! Y) :LABEL L12 :LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL L12 :LEXICON "")

Sample LLKE proofs 151#S(SLF :SIGNAL T :FORMULA #(Y / X) :LABEL L13 :LEXICON "")#S(SLF :SIGNAL F :FORMULA Y :LABEL (L13 O L12) :LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL (L13 O L12) :LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA Y :LABEL (L13 O L12) :LEXICON "")#S(SLF :SIGNAL F :FORMULA Y :LABEL (L13 O L12) :LEXICON"")))**** Proving right division (main funtor): #(X / Y) |- #(#(X / Z) / #(Y / Z))*** 22 Jul 1997 19:32:13: 5 starting to build a proof tree for: ***F #(#(X / Z) / #(Y / Z)) : L14 =>T #(X / Y) : L14 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:14: Final tableau has no open branhes at level 5. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(#(X / Z) / #(Y / Z)) :LABEL L14:LEXICON "")#S(SLF :SIGNAL T :FORMULA #(X / Y) :LABEL L14 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Y / Z) :LABEL L15 :LEXICON "")#S(SLF :SIGNAL T :FORMULA Z :LABEL L16 :LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL ((L14 O L15) O L16):LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL (L15 O L16) :LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL (L14 O (L15 O L16)):LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA X :LABEL (L14 O (L15 O L16)):LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL ((L14 O L15) O L16):LEXICON "")))**** Proving left division (main funtor): #(Y ! X) |- #(#(Z ! Y) ! #(Z ! X))*** 22 Jul 1997 19:32:14: 5 starting to build a proof tree for: ***F #(#(Z ! Y) ! #(Z ! X)) : L17 =>T #(Y ! X) : L17 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:14: Final tableau has no open branhes at level 5. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(#(Z ! Y) ! #(Z ! X)) :LABEL L17:LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Y ! X) :LABEL L17 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Z ! Y) :LABEL L18 :LEXICON "")#S(SLF :SIGNAL T :FORMULA Z :LABEL L19 :LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL (L19 O (L18 O L17)):LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL (L19 O L18) :LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL ((L19 O L18) O L17):LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA X :LABEL ((L19 O L18) O L17):LEXICON "")#S(SLF :SIGNAL F :FORMULA X :LABEL (L19 O (L18 O L17)):LEXICON "")))



Sample LLKE proofs 152**** Proving right division (sub-funtor): #(X / Y) |- #(#(Z / X) ! #(Z / Y))*** 22 Jul 1997 19:32:14: 5 starting to build a proof tree for: ***F #(#(Z / X) ! #(Z / Y)) : L20 =>T #(X / Y) : L20 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:14: Final tableau has no open branhes at level 5. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(#(Z / X) ! #(Z / Y)) :LABEL L20:LEXICON "")#S(SLF :SIGNAL T :FORMULA #(X / Y) :LABEL L20 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Z / X) :LABEL L21 :LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL L22 :LEXICON "")#S(SLF :SIGNAL F :FORMULA Z :LABEL ((L21 O L20) O L22):LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL (L20 O L22) :LEXICON "")#S(SLF :SIGNAL T :FORMULA Z :LABEL (L21 O (L20 O L22)):LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA Z :LABEL (L21 O (L20 O L22)):LEXICON "")#S(SLF :SIGNAL F :FORMULA Z :LABEL ((L21 O L20) O L22):LEXICON "")))**** Proving left division (sub-funtor): #(Y ! X) |- #(#(Y ! Z) / #(X ! Z))*** 22 Jul 1997 19:32:14: 5 starting to build a proof tree for: ***F #(#(Y ! Z) / #(X ! Z)) : L23 =>T #(Y ! X) : L23 =>** Mathing Satisfied in L*** 22 Jul 1997 19:32:14: Final tableau has no open branhes at level 5. ***#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(#(Y ! Z) / #(X ! Z)) :LABEL L23:LEXICON "")#S(SLF :SIGNAL T :FORMULA #(Y ! X) :LABEL L23 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(X ! Z) :LABEL L24 :LEXICON "")#S(SLF :SIGNAL T :FORMULA Y :LABEL L25 :LEXICON "")#S(SLF :SIGNAL F :FORMULA Z :LABEL (L25 O (L23 O L24)):LEXICON "")#S(SLF :SIGNAL T :FORMULA X :LABEL (L25 O L23) :LEXICON "")#S(SLF :SIGNAL T :FORMULA Z :LABEL ((L25 O L23) O L24):LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT(#S(SLF :SIGNAL T :FORMULA Z :LABEL ((L25 O L23) O L24):LEXICON "")#S(SLF :SIGNAL F :FORMULA Z :LABEL (L25 O (L23 O L24)):LEXICON ""))); pu time (non-g) 1,210 mse user, 40 mse system; pu time (g) 90 mse user, 70 mse system; pu time (total) 1,300 mse user, 110 mse system; real time 1,545 mse; spae alloation:; 34,654 ons ells, 26 symbols, 139,624 other bytesT

Sample LLKE proofs 153A.2 Complex LLKE derivation with multiple branhesA derivation tree for (4.3) with no re-braketing allowed at the syntatial level:F : S : l0T : NP : l3T : ((NPnS)=NP ) : l4T : (((S=NP )n(S=NP ))=(S=NP )) : l5T : NP : l6T : ((NPnS)=NP ) : l7T : NP : (((((l0==l3)==l4)==l5)==l6)==l7)T : (NPnS) : (l7 Æ (((((l0==l3)==l4)==l5)==l6)==l7))T : S : (l6 Æ (l7 Æ (((((l0==l3)==l4)==l5)==l6)==l7)))T : S : ((((((l0==l3)==l4)==l5)==l6)==l7) Æ (l7 Æ (((((l0==l3)==l4)==l5)==l6)==l7)))����������� HHHHHHHHHHHF : (S=NP ) : v8T : NP : l9F : S : (v8 Æ l9)T : (NPnS) : (l4 Æ l9)T : (NPnS) : (l7 Æ l9)T : S : (l9 Æ (l7 Æ (((((l0==l3)==l4)==l5)==l6)==l7)))T : S : (l3 Æ (l4 Æ l9))T : S : ((((((l0==l3)==l4)==l5)==l6)==l7) Æ (l4 Æ l9))T : S : (l9 Æ (l4 Æ l9))T : S : (l6 Æ (l7 Æ l9))T : S : ((((((l0==l3)==l4)==l5)==l6)==l7) Æ (l7 Æ l9))T : S : (l9 Æ (l7 Æ l9))�
T : (S=NP ) : v8T : S : (v8 Æ l3)T : S : (v8 Æ l6)T : S : (v8 Æ (((((l0==l3)==l4)==l5)==l6)==l7))T : ((S=NP )n(S=NP )) : (l5 Æ v8)T : (S=NP ) : (v8 Æ (l5 Æ v8))T : S : ((v8 Æ (l5 Æ v8)) Æ l6)T : S : ((v8 Æ (l5 Æ v8)) Æ (((((l0==l3)==l4)==l5)==l6)==l7))������ HHHHHHF : (S=NP ) : v10T : NP : l11F : S : (v10 Æ l11)T : NPnS : (l4 Æ l11)T : S : (l3 Æ (l4 Æ l11))� T : (S=NP ) : v10T : (S=NP ) : (v10 Æ (l5 Æ v8))T : S : ((v10 Æ (l5 Æ v8)) Æ(((((l0==l3)==l4)==l5)==l6)==l7))�The label onstraints (read o� the tree in a depth-�rst fashion) are as follows:((v10 Æ (l5 Æ v8)) Æ (((((l0==l3)==l4)==l5)==l6)==l7)) v l0 (A.1)



Sample LLKE proofs 154((l3 Æ l4) Æ l11) v (v10 Æ l11) (A.2)(l6 Æ (l7 Æ l9)) v (v8 Æ l9) (A.3)They are satis�ed with substitution mapping below plus assoiativity:& = fv8 7! (l6 Æ l7); v10 7! (l3 Æ l4)g (A.4)A.3 Reovering a non-atomi sueedentThe derivation below shows an example of losure pair whih reovers the syntati strutureof a non-atomi type, a verb phrase. The entailent to be proved is as follows:NP � (NPnS)=NP ` S=NP (A.5)Notie that the labels introdued in the linear expansion of the sueedent (i.e. jS=NP j��)must be removed from reovering formula's labelexp | in the example, L31 from the on-straint on :LEFTBR |. After the removal has been done, label variable (?L32) instantiated,and anonst redution performed, the resulting label, (l30 Æ (l29==l30)), ontains the relevantingredients of the proof the target type.LK> (parser '(john loves) '#(S / NP))*** 23 Jul 1997 21:25:23: starting to build a proof tree for: ***F #(S / NP) : L29 =>T NP : L30 => JOHNT #(#(NP ! S) / NP) : (L29 <- L30) => LOVES*** Linear Expansion ended. Starting b-exp **** Finished B-expansion with:NP from #(NP ! S)** Mathing Satisfied in L*** 23 Jul 1997 21:25:27: Final tableau has no openbranhes at level 5:#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA #(S / NP) :LABEL L29 :LEXICON "")#S(SLF :SIGNAL T :FORMULA NP :LABEL L30 :LEXICON JOHN)#S(SLF :SIGNAL T :FORMULA #(#(NP ! S) / NP) :LABEL (L29 <- L30):LEXICON LOVES)#S(SLF :SIGNAL T :FORMULA NP :LABEL L31 :LEXICON "")#S(SLF :SIGNAL F :FORMULA S :LABEL (L29 O L31) :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(NP ! S) :LABEL ((L29 <- L30) O L30):LEXICON "")):LEFTBR

Sample LLKE proofs 155#S(TABLEAU :ROOT(#S(SLF :SIGNAL T :FORMULA NP :LABEL ?L_32 :LEXICON "")#S(SLF :SIGNAL T :FORMULA #(NP ! S):LABEL ((L29 <- L30) O ?L_32) :LEXICON "")#S(SLF :SIGNAL T :FORMULA S:LABEL (?L_32 O ((L29 <- L30) O L30)) :LEXICON "")#S(SLF :SIGNAL T :FORMULA S:LABEL (L30 O ((L29 <- L30) O ?L_32)) :LEXICON "")#S(SLF :SIGNAL T :FORMULA S:LABEL (?L_32 O ((L29 <- L30) O ?L_32)):LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT ( #S(SLF :SIGNAL T :FORMULA S:LABEL (L30 O ((L29 <- L30) O L31)):LEXICON "")#S(SLF :SIGNAL F:FORMULA S:LABEL (L29 O L31):LEXICON "") ):RIGHTBR#S(TABLEAU :ROOT(#S(SLF :SIGNAL F :FORMULA NP :LABEL ?L_32 :LEXICON "")):LEFTBR NIL :RIGHTBR NIL:CONSTRAINT (#S(SLF :SIGNAL T:FORMULA NP:LABEL L31 :LEXICON JOHN)#S(SLF :SIGNAL F:FORMULA NP:LABEL ?L_32 :LEXICON "")):CONSTRAINT NIL)



Sample LLKE proofs 156A.4 LLKE and proof redundanyThe L-theorem X=(Y=Z) � Y=W �W=Z ` X reeives 2 semantially equivalent derivationsin a non-normal form theorem prover based on sequents. In the system of (Hepple, 1990)this redundany is eliminated through proof normalisation. The LLKE-derivation (e.49)below shows how reasoning by lemmas is used to produe a short (and unique) proof for thetheorem.
(e.49)

0: F : X=(Y=Z) � Y=W �W=Z ` X : 11: T : X=(Y=Z) : a :::2: T : Y=W : b :::3: T :W=Z : (i==a)==b :::4: F : X : i 1; �iii��������� HHHHHHHHH5: F : Y=Z : x 1; �6: T : Z :  :::7: F : Y : x Æ  5; �ii8: T :W : ((i==a)==b) Æ  3; 6; �iv9: T : Y : b Æ (((i==a)==b) Æ ) 2; 8; �iv�
10: T : Y=Z : x 1; �11: T : X : a Æ x 1; 10; �iv�

The losing pairs are found in the following lines: 7 and 9, on the righ-hand branh, and 4and 11, on the branh whih reovers the struture of X. The substitution mapping whihguarantees losure is given by & = fx 7! b Æ ((i==a)==b)g, and the onstraints for both branhesare solved by straightforward assoiativity plus property (3.1).

Appendix BLLKE Time pro�leFigure B.1 shows the typial exeution time pro�le of an LLKE proof. All losure heks werefored to fail so that a fully expanded tableau would be generated, illustrating a worst asesituation.
Figure B.1: LLKE exeution pro�leInput/output funtions, as well as low-level funtions whose ontribution is onsidered in-



LLKE Time pro�le 158signi�ant in the total pro�le data sample1, details and nested alls have been omitted for thesake of spae. Notie that label-heking, i.e. LK::DETECT-INCONSISTECY ontributes most ofthe exeution time in linear expansion, while sysntati expansion itself (LK::SIGMA12-LIST,LK::SIGMA21-LIST, LK::COMBINE-SIGMA-1-2-LIST) takes a relatively small share of thetotal pro�le data sample.The graph was reated using the Allegro Common Lisp pro�ling tool.

1I.e. those whose ratio of the sum of the funtion and all of its allees, reursively and the total datareorded in the whole pro�le sample is less than 0:002.

Referenes 159ReferenesAdes, A. and M. Steedman. 1982. On the order of words. Linguistis and Philosphy, 4:517{558.Ajdukiewiz, K. 1935. Die syntaktishe Konnexit�at. Studia Philosophia, 1(1{27). (Transla-tion in S. MCall (ed) Polish Logi 1920-1939 Oxford).Allen, James and Raymond Perrault. 1980. Analyzing intention in utteranes. Arti�ialIntelligene, 15:143{178.Allwein, Gerard and Jon M. Dunn. 1993. Kripke models for linear logi. Journal of SymboliLogi, 58(2):514{545.Andreka, H. and S. Mikulas. 1994. Lambek alulus and its relational semantis: omplete-ness and inompleteness. Journal of Logi, Language and Information, 3(1):1{37.Assoiation for Computational Linguistis. 1995. 7th Conferene of the European Chapter ofthe ACL, Dublin, Ireland, Marh. Morgan Kaufmann.Baader, F. and J.H. Siekmann. 1993. Uni�ation theory. In D.M. Gabbay, C.J. Hogger, andJ.A. Robinson, editors, Handbook of Logi in Arti�ial Intelligene and Logi Programming.Oxford University Press, Oxford, UK.Bar-Hillel. 1953. A quasi-arithmetial notation for syntati desription. Language, 29:47{58.Bar-Hillel, Y, C Gayfman, and E Shamir. 1960. On ategorial and phrase struture grammars.Bulletin of the Researh Counil of Israel, 9F:1{16.Barry, Guy and Glyn Morrill, editors. 1990. Studies in Categorial Grammar, volume 5 ofEdinburgh Working Papers in Cognitive Siene. Centre for Cognitive Siene, University ofEdinburgh.Barwise, J., D. Gabbay, and C. Hartonas. 1994. Information ow and the lambek alulus.In J. Seligman and D. Westerstahl, editors, Logi, Language and Computation: The 1994Moraga Proeedings. CSLI, Stanford, CA.Barwise, J., D. Gabbay, and C. Hartonas. 1995. On the logi of information ow. Journal ofthe Interest Group in Pure and Applied Logi (IGPL), 3(1):7{50.Barwise, Jon and John Perry. 1983. Situations and attitudes. MIT Press, Cambridge, MA.Bibel, Wolfgang. 1981. On matries with onnetions. Journal of the Assoiation for Com-puting Mahinery, 28:633{645.Bibel, Wolfgang. 1997. Let's Plan It Dedutively. In Proeedings of the 15th InternationalJoint Conferene on Arti�ial Intelligene, volume 2, pages 1549{1562. Morgan KaufmannPublishers, In., August 23{29.Boolos, George S. 1984. Don't eliminate ut. Journal of Philosophial Logi, 13:373{378.Bratman, Mihael E. 1991. Planning and the stability of intention. Tehnial Report CSLI-91-159, CSLI.



Referenes 160Buszkowski, Wojieh. 1986. Completeness results for Lambek syntati alulus. Zeitshriftfur mathematishe Logik und Grundlagen der Mathematik, 32:13{28.Buszkowski, Wojieh. 1988. Generative power of ategorial grammars. In Rihard Oehrleet al., editor, Categorial Grammars and Natural Language Strutures. Reidel, pages 69{94.Buszkowski, Wojieh. 1996. Extending Lambek grammars to basi ategorial grammars.Journal of Logi, Language and Information, 5:279{295.Calder, Jonathan, Ewan Klein, and Henk Zeevat. 1988. Uni�ation ategorial grammar: Aonise, extendable grammar for natural language proessing. In Proeedings of COLING'88, Budapest.Carpenter, Bob. 1995. The Turing-ompleteness of ategorial grammars. Manusipt availableat http://madu�.andrew.mu.edu/g/.Carpenter, Bob. 1997. Letures on Type-Logial Semantis. MIT Press.Cavedon, Laurene. 1995. A Channel Theoreti Approah to Conditional Reasoning. Ph.D.thesis, University of Edinburgh, Centre for Cognitive Siene.Chomsky, Noam and George A. Miller. 1963. Introdution to the formal analysis of naturallanguage. In Handbook of mathematial psyhology. Wiley, New York, pages 269{322.Christian, Jim. 1989. Fast Knuth-Bendix ompletion. In Proeedings of the Conferene onRewriting Tehniques and Appliations, page April, Chapel Hill, North Carolina.Cohen, J M. 1967. The equivalene of two onepts of ategorial grammar. Information andControl, 10:475{484.Cohen, P. and H. Levesque. 1990. Intention is hoie with ommitment. Arti�ial Intelligene,42:213{261.Cook, S. A. and R Rekhow. 1979. The relative eÆieny of propositional proof systems.Journal of Symboli Logi, pages 36{50.D'Agostino, Marello. 1992. Are tableaux an improvement on truth-tables? Journal ofLogi, Language and Information, 1:225{252.D'Agostino, Marello and Dov Gabbay. 1994. A generalization of analyti dedution vialabelled dedutive systems I: Basi substrutural logis. Journal of Automated Reasoning.D'Agostino, Marello and Maro Mondadori. 1994. The taming of the ut: Classial refuta-tions with analyti ut. Journal of Logi and Computation, 4:285{319.Dershowitz, Nahum and Jean-Pierre Jouannaud. 1990. Rewrite systems. In Handbook oftheoretial omputer siene, volume Vol.B Formal models and semantis. The MIT Press:Cambridge, MA, hapter 6, pages 245{320.Do�sen, Kosta. 1992. A brief survey of frames for the Lambek alulus. Zeitshrift furmathematishe Logik und Grundlagen der Mathematik, 38:179{187.

Referenes 161Dowty, David. 1988. Type raising, funtional omposition, and non-onstituent onjun-tion. In Deirdre Wheeler Rihard T. Oehrle, Emmon Bah, editor, Categorial Grammars andNatural Language Strutures. Reidel Publishing Co, Dordreht, pages 153{197.D.R. Dowty, R.E. Wall and S. Peters. 1981. Introdution to Montague Semantis. D. Reidel,Dordreht, Holland.Eisner, Jason. 1996. EÆient normal-form parsing for ombinatory ategorial grammar. InProeedings of ACL (34th Meeting of the Assoiation for Computational Linguistis), SantaCruz. mp-lg/9605038.Emms, Martin. 1990. Polymorphi quanti�ers. In Barry and Morrill (Barry and Morrill,1990), pages 65|111.Emms, Martin. 1994. Completeness results for polymorphi Lambek alullus. In Moortgat(Moortgat, 1994a).Fitting, Melvin. 1983. Proof methods for modal and intuitionisti logis. D. Reidel, DordrehtLanaster.Fitting, Melvin. 1990. First-order Logi and Automati Theorem Proving. Texts and Mono-graphs in Computer Siene. Springer-Verlag, New York.Flynn, Mihael. 1983. A ategorial theory of struture building. In Geo�rey K PullumGerald Gazdar, Ewan Klein, editor, Order, Conord and Constitueny. Foris Publiations,pages 138{174.Gabbay, Dov M. 1994. LDS { Labelled Dedutive Systems, volume 1 | foundations. Teh-nial Report MPI-I-94-223, Max-Plank-Institut f�ur Informatik, Saarbr�uken, Germany.Geah, P. 1972. A program for syntax. In G. Harman D. Davidson, editor, Semantis ofNatural Language. Reidel, Dordreht, pages 483{497.Gentzen, Gerhard. 1969. Investigations into logial dedutions. In M.E. Szabo, editor, TheColleted Papers of Gerhard Gentzen, Studies in logi and the foundations of mathematis.North-Holland Pub. Co., pages 68{131.Ginsberg, Matthew L. 1988. Multivalued logis: a uniform approah to reasoning in arti�ialintelligene. Computational Intelligene, 4:265{316.Girard, Jean-Yves. 1987. Linear logi. Theoretial Computer Siene, 50:1{102.Girard, Jean-Yves. 1995. Linear logi: its syntax and semantis. In Advanes in linear logi(Girard, Lafont, and Regnier, 1995), pages 1{42.Girard, Jean-Yves, Ives Lafont, and L Regnier. 1995. London Mathematial Soiety, LetureNote Series. Cambridge University Press.Haken, A. 1985. The intratability of resolution. Theoretial Computer Siene, 39:297{308.Hendriks, Herman. 1993. Lambek semantis. In Hans Lei�, editor, Categorial Parsing andNormalisation, Dyana Deliverable R1.1.A.



Referenes 162Hepple, Mark. 1990. The grammar and proessing of order and dependeny. Ph.D. thesis,University of Edinburgh, CCS.Hepple, Mark. 1994a. Comments on multimodal systems. In Moortgat (Moortgat, 1994a).Hepple, Mark. 1994b. Labelled dedution and disontinuous onstitueny. In M. Abrusi,C. Casadio, and M. Moortgat, editors, 1st Rome Workshop on Linear Logi and LambekCalulus, Rome. OTS/Dyana.Hepple, Mark. 1995. Hybrid ategorial logis. Journal of the Interest Group in Pure andApplied Logi (IGPL), 3(2):343{355. Speial Issue on Dedution and Language.Hepple, Mark and Glyn Morrill. 1989. Parsing and derivational equivalene. In Proeedingsof the 4th Conferene of the EACL, pages 10{18, Manhester, UK.Hintikka, Jaakko. 1969. Knowledge and Belief; an introdution to the logi of the two notions.Cornell University Press, New York.Hodas, Joshua and Dale Miller. 1994. Logi programming in a fragment of intuitionistilinear logi. Information and Computation, 110(2):327{365.Howe, Denis. 1997. Free on-line ditionary of omputing. http://wombat.do.i.a.uk/foldo/.Johnson, Mark. 1991. Features and formulae. Computational Linguistis, 17(2):131{151.Kapur, D and P Narendran. 1986. NP-ompletenes of the set uni�ation and mathingproblems. In J Siekmann, editor, Proeedings of 8th Conferene on Automated Dedution,volume 230 of Leture Notes in Computer Siene. Springer-Verlag.Kirhner, Claude. 1994. Rewriting, Solving. Proving. ESSLLI, European Summer Shool inLogi, Language and Information, Copenhagen Business Shool, August.Kleene, S C. 1952. Introdution to metamathematis, volume 1 of Bibliothea mathematia: aseries of monographs on pure and applied mathematis. North-Holland Pub. o., Groningen.Klein, E. and I Sag. 1985. Type-driven translation. Linguistis and Philosophy, 8:163{202.Knuth, Donald E. and P. B. Bendix. 1983. Simple word problems in universal algebras. InJ. Siekmann and G. Wrightson, editors, Classial Papers in Computational Logi. Springer-Verlag, New York, pages 342{376.K�onig, E. 1989. Parsing as natural dedution. In Proeedings of the 27th Annual Meeting ofthe ACL, pages 272{279, Vanouver.K�onig, E. 1991. Parsing ategorial grammar. In Dyana - Dynami Interpretation of NaturalLanguage, volume R1.2.C. ESPRIT, January.K�onig, E. 1995. Lexgram - a pratial ategorial grammar formalism. In Proeedings ofCLNLP95, Edinburgh. (16 pp.) mp-lg/9504014.Kurtonina, Natasha and Mihael Moortgat. 1995. Strutural ontrol. In Moortgat (Moortgat,1995).

Referenes 163Lambek, Joahim. 1958. The mathematis of sentene struture. Amerian MathematialMonthly, 65:154{170.Lambek, Joahim. 1961. On the alulus of syntati types. In Proeedings of the Symposiain Applied Mathematis, volume XII, pages 166{178, Providene, Rhode Island. AmerianMathematis Soiety.Lambek, Joahim. 1988. Categorial and ategorial grammars. In Rihard Oehrle et al., edi-tor, Categorial Grammars and Natural Language Strutures. D. Reidel Publishing Company:Dordreht, The Netherlands, pages 297{317.Lambek, Joahim. 1995. Bilinear logi. In Advanes in linear logi (Girard, Lafont, andRegnier, 1995), pages 43{59.Lambek, Joahim and P. J. Sott. 1988. Introdution to higher order ategorial logi, vol-ume 7 of Cambridge studies in advaned mathematis. Cambridge University Press, Cam-bridge. ISBN 0521356539.Leslie, Neil. 1990. Contrasting styles of ategorial derivations. In Barry and Morrill (Barryand Morrill, 1990), pages 113{126.Linoln, Patrik, John Mithel, Andre Sedrov, and Natarajan Shankar. 1990. Deisionproblems in propositional linear logi. In Proeedings of the IEEE Symposium on Foundationsof Computer Siene, pages 662{672.Luz, Saturnino F. 1995. Reasoning about intentions: theoretial and pratial issues. In 2ndWorkshop on Automated Reasoning at AISB'95, pages 31{34, SheÆeld, UK.Luz, Saturnino F. 1996a. Automated dedution and labelling: Case studies in ategoriallogis. Journal of the Interest Group in Pure and Applied Logi (IGPL), 4(3):508{510. Con-ferene report: 3rd WoLLIC, Salvador, Brazil.Luz, Saturnino F. 1996b. Grammar spei�ation in ategorial logis and theorem proving.In M. MRobbie and J.K. Slaney, editors, Proeedings of 13th Conferene on AutomatedDedution, volume 1104 of Leture Notes in Computer Siene, pages 703{717. Springer-Verlag.Luz, Saturnino F. 1997. Using tableaux to automate the lambek and other ategorial aluli.Aepted for publiation in journal Information and Computation, Aademi Press.Luz, Saturnino F. and Patrik Sturt. 1995. A labelled dedutive theorem proving environ-ment for ategorial grammar. In Proeedings of the IV International Workshop on ParsingTehnologies, pages 152{161, Prague, Czeh Republi, September. ACL/SIGPARSE.MaCaull, Wendy. 1997. Relational tableaux for tree models, language models and informa-tion networks. Preprint, August.MaLane, Saunders. 1971. Categories for the working mathematiian. Springer-Verlag, NewYork.MaLane, Saunders. 1982. Why ommutative diagrams oinide with equivalent proofs.Contemporary Mathematis, 13:387{401.



Referenes 164Milward, David. 1995. Inremental interpretation of ategorial grammar. In 7th Confereneof the European Chapter of the ACL (Assoiation for Computational Linguistis, 1995), pages119{126.Moens, Mar, Jo Calder, Ewan Klein, Mark Reape, and Henk Zeevat. 1989. Expressinggeneralizations in uni�ation-based formalisms. In Proeedings of the 4th. Conferene of theEuropean Chapter of the Assoiation for Computational Linguistis, pages 174{181, Manh-ester, England. Assoiation for Computational Linguistis.Montague, Rihard. 1974. The proper treatment of quanti�ation of quanti�ation in or-dinary English. In R. Thomason, editor, Formal Philosophy: seleted papers of RihardMontague. Yale University Press, New Haven.Moortgat, Mihael. 1988. Categorial Investigations. Foris Publiations, Dordreht.Moortgat, Mihael. 1990a. Categorial logis: a omputational perspetive. In ComputerSiene in the Netherlands, Amsterdam.Moortgat, Mihael. 1990b. Unambiguous proof representations for the lambek alulus. InMartin Stokhof and Leen Torenvliet, editors, Seventh Amsterdam Colloquium, pages 389{401,Amsterdam. Institute for Language, Logi and Information.Moortgat, Mihael. 1992. Labelled dedutive systems for ategorial theorem proving. Teh-nial Report OTS-WP-CL-92-003, OTS, Utreht, NL.Moortgat, Mihael, editor. 1994a. Lambek Calulus: Multimodal and Polymorphi Exten-sions, Dyana Deliverable R1.1.B.Moortgat, Mihael. 1994b. Residuation in mixed Lambek systems. In Logis of StruturedResoures (Moortgat, 1994a).Moortgat, Mihael, editor. 1995. Logis of Strutured Resoures, Dyana Deliverable R1.1.C.Moortgat, Mihael and R Oehrle. 1993. Logial parameters and linguisti variation. 5thESSLLI - University of Lisbon, August.Morrill, Glyn. 1994. Type logial grammar. Kluwer Aademi Publishers: Boston, MA.Morrill, Glyn. 1995a. Clausal proofs and disontinuity. Journal of the Interest Group in Pureand Applied Logi (IGPL), 3(2):403{427. Speial Issue on Dedution and Language.Morrill, Glyn. 1995b. Higher-order logi programming of ategorial dedution. In Proeedingsof the 7th EACL (Assoiation for Computational Linguistis, 1995), pages 133{140.Morrill, Glyn, Neil Leslie, Mark Hepple, and Guy Barry. 1990. Categorial dedutions andstrutural operations. In Barry and Morrill (Barry and Morrill, 1990), pages 1 { 21.Pareshi, R. and M. Steedman. 1987. A lazy-way to hart-parse with ategorial grammars.In Proeedings of the 25th Meeting of the ACL, pages 81{88, Stanford.Pentus, Mati. 1993. Lambek grammars are ontext free. In Robert L. Constable, editor,Proeedings of the 8th Annual IEEE Symposium on Logi in Computer Siene, pages 371{373, Montreal, Canada, June. IEEE Computer Soiety Press.

Referenes 165Pentus, Mati. 1994a. The onjoinability relation in Lambek alulus and linear logi. Journalof Logi, Language and Information, 3(2):121{140, April.Pentus, Mati. 1994b. Language ompleteness of the lambek alulus. In Proeedings of the9th Annual IEEE Symposium on Logi in Computer siene, Paris, July. IEEE.Peterson, Gerald and Mark Stikel. 1981. Complete sets of redutions for some equationaltheories. Journal of the Assoiation for Computing Mahinery, 28(2):233{264, April.Pikering, Martin and Guy Barry. 1993. Dependeny ategorial grammar and oordination.Linguistis, 31(5):855{902.Prawitz, D. 1965. Natural Dedution. A Proof-Theoretial Study. Almvist and Wiksell,Stokholm.Roorda, D. 1991. Resoure Logis: Proof-theoretial Investigations. Ph.D. thesis, Universityof Amsterdam.Shieber, S., Y. Shabes, and F. Pereira. 1994. Priniples and implementation of dedutiveparsing. Tehnial Report TR-11-94, Center for Researh in Computing Tehnology, HarwardUniversity.Siekmann, J�org. 1989. Uni�ation theory. Journal of Symboli Computation, 7:207{274.Smullyan, Raymond M. 1968. First-Order Logi, volume 43 of Ergebnisse der Mathematikund ihrer Grenzgebiete. Springer-Verlag, Berlin.Smullyan, Raymond M. 1969. Abstrat quanti�ation theory. In Conferene on Intuitionismand Proof Theory, North Holland.Steedman, Mark. 1987. Combinatory grammars and parasiti gaps. Natural Language andLinguisti Theory, 13:207{263.Steedman, Mark. 1990. Gapping as onstituent oordination. Linguistis and Philosophy,13:207{264.Steedman, Mark. 1991. Struture and Intonation. Language, 68(2):260{296.Steele, Guy L. 1990. Common LISP : the language. Digital Press, Bedford, Mass., 2nd.edition.van Benthem, Johan. 1986. Categorial grammar. In Essays in Logial Semantis. D. ReidelPublishing Company: Dordreht, The Netherlands, hapter 7, pages 123{150.van Benthem, Johan. 1987. Semanti type hange and syntati reognition. In Cherhia,Partee, and Turner, editors, Categories, Types and Semantis. Reidel, Dordreht.van Benthem, Johan. 1988. Categorial grammar and type-theory. Journal of PhilosophialLogi, 19:115{168.van Benthem, Johan. 1991. Language in Ation: Categories, Lambdas and Dynami Logis.North Holland, Amsterdam.



Referenes 166van Benthem, Johan. 1996. Exploring Logial Dyamis. Studies in Logi, Language andInformation. CSLI, Stanford, USA.Venema, Yde. 1996. Tree models and (labeled) ategorial grammar. Journal of Logi,Language and Information, 5:253{277.Versmissen, Koen. 1994. Grammar omposition: modes, models, modalities. OTS Disserta-tion Series. Researh Institute for Language and Speeh, Utreht, Holland.Wooldridge, M. and N. R. Jennings. 1995. Agent theories, arhitetures, and languages:A survey. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Ar-hitetures, and Languages (LNAI Volume 890), pages 1{39. Springer-Verlag: Heidelberg,Germany, January.Zeevat, H., E. Klein, and J. Calder. 1987. Uni�ation ategorial grammar. In CategorialGrammar, Uni�ation Grammar and Parsing, volume 1 of Edinburgh Working Papers inCognitive Siene. Centre for Cognitive Siene, University of Edinburgh.Zielonka, Wojieh. 1981. Axiomatizability of Ajdukiewiz-Lambek alulus by means ofanellation shemes. Zeitshrift fur mathematishe Logik und Grundlagen der Mathematik,pages 215{224.


