LYING TO THE WEST OF THE PENNINES.

THESIS
presented for the Degree of
DOCTOR OF PHILOSOPHY
in the
University of Edinburgh

by
Mavis A. Butterworth, B.Sc.

JuIy, 1956.

THE DISTRIBUTION OF MICROSPORES IN THE COALFIELDS LYING TOTHE WEST OF THE PENNINES.
By
Mavis A. Butterworth, B.Sc.
Figures 1-12
CONTENTS

1. INTRODUCTION 1
2. HISTORICAL INTRODUCTION 3
3. METHOD OF TREATMENT. 8
1V. CLASSIFICATION OF MICROSPORES 10
V. DISTRIBUTION OF MICROSPORES
(i) Introduction. 16
(ii) The Staffordshire Coalfields
(a) North Staffordshire. 22
(b) Cannock Chase 29
(c) South Staffordshire. 34
(iii) The North Wales Coalfields. 36
(a) The Flintshire Coalfield. 37
(b) The Denbighshire Coalfield. 38
(iv) The Lancashire Coalfield. 42
(v) The Shropshire Coalifields. 49
(a) Coalbrookdele 50
(b) Forest of Myre 51
(vi) The Warwiokshire Coalfield. 53
VI. DISTRIBUTION OF MICROSPORES IN THE BRITISH COALFIELDS. 55
VIL. COMPARISON OF MICROSPORE DISTRIBUTYON IN BRITAIN, EUROPE AND NORTH AMERICA. 60
VL21. COMPARISON OF THE PALAEONTOLOGIGAL AND MICROSPORE SUB-DIVISIONS OF THE UPPER CARBONIFEROUS 66
1x. SUMMARY 72
x. AGKNOMLEDGMENTS 74
x1. BIBLIOGRAPHY 76
xil. EXplamation or figures, 87
xill. APPEMDIX
(a) Sample localitied.. 1
(b) Mierospore percentages. xvii

I. INTRODUCTION:

The present investigation was carried out as part of a survey of the national coal resources of Great Britain undertaken by the Scientific Department (Coal Survey branch) of the National Coal Board. The work and its object were to study the microspore contents of sequences of seams from different areas in order to discover whether there might be any zonal features in the spore assemblages which remain constant when traced laterally within each area or even from one area to another.

In the course of the investigation some 612 samples of seams have been examined from the coalfields of Lancashire, Staffordshire, North Wales, Shropshire and Warwickshire. These coalfields, together with those of Yorkshire, Nottinghamshire, Leicestershire and South Derbyshire lying to the east of the Pennines, comprise the central group of English coalfields. This group was considered by Trueman (1947) to have formed a continuous area of deposition extending from the Craven block southwards to St. George's Land and the Midland land barrier. Fig. 3 is a map of the area covered by the present investigation and on it the sites from which samples have been taken are marked and numbered.

In recent years much detailed stratigraphical and palaeontological work has been done in these coalfields, mainly by officers of H.M. Geological Survey, and as a result the geology of the areas concerned is now known in considerable detail. Valuable datum lines are provided by the marine bands which occur in the modiolaris and similisoulchra non-maxine lamellibranch zones, and the limits of these zones have now been defined in most of the fields.

The National Coal Board's extensive boring programme has made available many seams hitherto unexposed and has provided complete sequences which previously had to be compiled from widely separated colliery workings. Inevitably the distribution of sampling points is uneven, the greatest amount of material being avallable from those areas for which the maximum development is foreseen.

It is hoped that the establishment of microspore successions in these coalfields will be an aid in the elucidation of coal-seam correlation problems, both in borehole sequences, to which this method is particularly applicable on account of the small quantity of coal required for the microspore analyses, and in colliery workings.

Spores, both microspores and megaspores, from the Carboniferous sediments of Scotland were first recognised by Bennie and Kidston (1886) who examined samples collected from a thoroughly representative set of localities and horizons. They isolated the spores by alternately wetting and drying their material, although a maceration technique had been evolved earlier by Schulze (1855) who treated the coal with potassium chlorate and nitric acid (Schulze solution) followed by alkali. Very little was published by Kidston on the nature of the microspores found. Reinsch (1884) had previously described and figured many spores from Russia and Saxony but he interpreted them as belonging to the algae. Although he figured many microspores his descriptions are not valid taxonomically, as in many cases neither the source of his material nor the location of the type specimens is known. The work of these pioneers was not followed up for many years and in the meantime attention was concentrated on the examination of megaspores in thin sections of coal. This technique was developed in America by Thiessen (1924) who described the vertical and lateral variations of megaspore distribution in several seams of the Pennsylvanian series.

He maintained that coals could be correlated by this method, arguing that the presence of certain distinctive spores at particular horizons in a seam was a feature which could be traced laterally and could therefore serve to differentiate one sean from another.

In England thin sections of coal were examined by Slater and his associates at the Sheffield Coal Survey Laboratory and on a basis of megaspore distribution the Arley Seam of Lancashire was correlated with the Better Bed of Yorkshire (Wray, Slater and Eddy, 2930).

The eaxliest systematic study of microspores was made by Potonie (1931) on assemblages from the Aegir and Bismarck seams of the Westphallan B of the Puhr. Further studies of these seams were made by Ibrahim (1932) and Loose (1934) and as a result of these investigations Ibrahim (1933), with Potoniés guidance, devised a binomial system of spore nomenclature which has formed the basis of subsequent classifications. Zerndt $(1934,1937)$ made similar investigations on megaspores which he successfully extracted from coal.

Raistrick and Simpson (1933) and Raistrick alone (1934, 1939) in the same period examined microspores from the seams of Northumberland and Durham. The classification
devised by Raistrick was one in which the spores were divided, on a basis of shape and ornamentation, into 7 groups lettered A - G, each of which was sub-divided numerically, eeg. Al, B3 etc. Raistrick had previously been engaged in pollen analysis of peat and the methods he used for correlating coal seams were a development of the techniques employed in the examination of peat. Samples of a seam were ground and reduced in bulk to mgm, of finely powdered coal representative of the whole seam. This was macerated using the Schulze method. The proportions of the various spore types present were calculated from a count of several hundred spores and were recorded in the form of histograms. The spores were divided into 'common' and 'accessory' types and the individuality of the histograms depended on the differing proportions of the 'common' types $\mathrm{A} 1, \mathrm{~B}, \mathrm{~B}, \mathrm{Cl}, \mathrm{D} 1, \mathrm{D} 3$ and E2. Raistrick maintained that most seams had a characteristic histogram which remained fairly constant when the seam was traced laterally. J. J. Walker (1942), who did a vast amount of work on microspores at the Sheffield Coal Survey Laboratory, the results of which, apart from a description of spores in the pollington bore (Edwards, Walker and Waddles, 1938), were never published, has stated that in fact only three main types of histogram are possible, characterised by a dominance of $A 1, B 1$ or $D 1$
respectively. Since Bl is only rarely the most common type present in a seam, it follows that in most cases there are only two main groups represented by the A and D type diagrams. In his work on the North Staffordshire coalfields Millet (1938 , 1946) showed that Raistrick's A-types are present for the most part only in black durain, a kind of dull coal, so that 'microspore analysis, in this instance, does not lead to any evidence which can be applied for the purposes of correlation beyond what is obvious from naked-eye inspection.'

Maillot went on to investigate the vertical distributions of some of Raistrick's 'accessory' types in a sequence of seams from North Staffordshire. It was found that several of the raver spores, notably Cl, FI, G1 and Millott's type 5, had restricted ranges and were not present in the lower part of the sequence. In Yorkshire, meanwhile, Walker (1942) had noted that Cl was mainly confined to horizons above the Flockton seam and A ? to horizons below that seam.

Successions of seams from the Fife and Central coalfields of Scotland were examined by Knox (1942, 1946). The microspores used were numbered and prefixed by the letter K when they did not readily fit into Raistrick's classification.

The results obtained were substantially similar to those from North Staffordshire and Yorkshire. Investigations on the Limestone Coals of Fife (Knox, 1948) indicate that all of the 'common' spore types of Raistrick, excepting BI, are present in the lower coals but that the 'accessory' types are different.

In 1944 Schopf, Wilson and Bentall in America published a synopsis of Palaezoic spores and the definition of generic groups. In this work a binomial system of spore nomenclature was developed which incorporated all earlier descriptions of spores, including those of Ibrahim, Loose, Raistrick, Millott and Knox, and also spores described from the Carboniferous of America. 400 spore species were allocated among 23 genera. This system was amended by Knox (1950) who sub-divided the two largest genera of Schopf, Wilson and Mental to form four smaller ones.

In 1950 Kosanke published a comprehensive account of the distribution of microspores in the Pennsylvanian of Illinois. The spore classification used was that of Schopf, Wilson and Bentall and five new genera were established.

Accounts of microspore studies which have been given since the present work was begun are discussed in the section of this paper dealing with microspore distribution in Britain, Europe and North America (Section VII, p.60).

III METHOD OF TREATMENT.

Most of the samples examined were taken from the cores of borings and are representative of the full seam thicknesses. In a few cases no whole seam samples were available and use was made of samples representing the marketable parts of the seams, or samples from which inferior or shaley coal had been omitted. Coals from collieries were obtained in the form of pillar-sections, whole seam samples of which were made up from representative portions of the various sub-sections. Material from trial pits on openeast sites was treated in a similar manner. Very occasionally seams were sampled at their outcrops, in which case a narrow channel section of the full seam thickness was taken when possible. Complete lists of the samples examined are recorded in the appendices relating to the various coalfields. (pp. 1 - xvi).

In the preparation of samples for microspore analysis the coal is crushed to pass through a 16 B.S. mesh sieve and a portion of this crushed material is ground so as just to pass through a 36 B.S. mesh sieve.

The maceration technique generally employed is essentially the same as that described by Raistrick (1934).

2gm. of the crushed coal are treated with Schulze solution (potassium chlorate and concentrated nitric acid) for periods varying from 6 to 48 hours and washed by decantation; the oxidised residue is then dissolved by a further 48 hours immersion in potassium hydroxide solution. The strength of the KOH solution appropriate to the purpose depends on the rank of the coal but is normally about 5%. The preparation is completed by repeated washings until the liquid holding spores, plant debris and unaltered coal particlss in suspension is clear.

Since the use of alkali tends to swell the spores slightly, the maceration technique described by Zetsche and Kalin (1932) is used when precise measurements of spores are to be made. In this method 0.2 gm . of coal are treated with 40 ml . fuming nitric acid for about 16 hours and then washed by filtration with successively weaker acid and finally with water. Usually Raistrick's method was used as it was found to be more convenient when dealingwith large batches of samples.

Permanent slides are made by warming a drop of the suspended material with a little glycerine jelly; the cover slips are sealed with gold size, although this does not always prevent their deterioration. For general purposes some

500 to 800 spores are counted and recorded from temporary water mounts. For this initial count the magnification used is 300. Large numbers of spores are subsequently examined and the occurrence of rare spore species recorded. IV. CLASSIFICATION OF MIGROSPORES.

The earliest system of spore nomenclature employed In this country was the numericel one of Raistrick (1934 etc.), modified forms of which were used by both Millott and Knox. At the present time a natural classification of microspores is impossible, as in the majority of cases the organic relationships between spores and parent plants are not known. The earlier generic names given to spores by Potonié (1931) and his associates were founded principally on the shape and ornamentation of the spores. A few of these genera, which are still being used, are Granulatisporites, Punctatisporites, Alatisporites, Reticulatisporites and Laevigatosporites, all of which were described by Ibrahim (1933). The use of ' 0 ' before 'sporites' in the last named genus indicates a monolete dehiscence slit as distinct from the trilete suture of genera whose names have an 'i' before 'sporites'.

The genus Densosporites was proposed by Berry (1937) for certain thick-walled microspores occurring in the Pennington coal of Tennessee; this genus includes most of Raistrick's A-types.

In 1940 Wilson and Coe proposed three new genera Girratriradites, Endosporites and Triquitrites - for spores with equatorial flanges, enveloping bladders and triangular equatorial outlines with thickened apices respectively. Spores belonging to the genus Endosporites were thought to be related to the Cordaitales but recently they have been isolated from lycopod fructipications by Challoner (1953).

These genera, some of them in amended form, were all used by Schopf, Wilson and Bentall (1944) in their classification of Palaeozoic spores. In this system account was taken, where possible, of the known plant - spore affinities and new genera were created accordingly. The genus Calamospora was proposed for large thin-walled microspores known to be in part of Calamarian affinity (Hartung, 1933), and Lycospora for the most common of microspores, Raistrick's Dl types, which are believed to be related to the Lepidodendrales. The genus Raistrickia was proposed for microspores with parallel sided tubercles similar to Raistrick's E3 and E4, some of which have been identified as spores of Senftenbergia plumosa (Radforth, 1938; Remy, 1955) and are thought to be Filicean in origin. Pollen-like grains known from the work of Florin $(1936,1937)$ to be related to Cordaitales and other Palaeozole gymnosperms were placed in the genus Florinites.

This classification of Schopf, Wilson and Bentall was adopted by subsequent Amercian spore workers and also by the British who however subsequently used the modifications auggested by Knox in 1950. The two largest genera in Shope, Wilson and Bentall's classification, Punctatisporites and Granulatisporites, contain microspores with all types of exine ornamentation; they are separated from each other on the basis of their shape - species of Punctatisporites being round and species of Granulatisporites triangular. Knox's researches on the spores of existing lycopods indicate that the mierospores of these plants tend to retain a similar form of ornamentation throughout their development; ornamentation therefore appears to be the most sound basis for classification. Four new genera were described - Spinososporites, Planisporites, Verrucososporites, and Microreticulatisporites which include spores with spinose, smooth, tuberculate and reticulate exospores respectively.

In his account of the Pennsylvanian spores of Illinois Kosanke (1950) recorded many new species and described the genera Cadiospora, Schopiftes and Schulzospora. The first two are both restricted to the highest Coal Measures and Kosanke believes that Cadiospora may be a small megaspore. Schulzospora occurs only in the lower part of the succession; it is of interest that a species of this genus has recently been isolated from

Simplotheca silesiaca, a pteridosperm fructification, from Namur A of Niederschlesien (Remy, 1955). Notes on some of Kosanke's spores together with descriptions of three new species have been published by Butterworth and Williams (1954). In 1954 Potonié and Kremp outlined a new spore classification based entirely on morphographic considerations and incorporating all previous descriptions of spores from the Palaeozoic of Europe (including Russia) and North America. The authors state that this classification has been devised for the use of spore workers engaged in Coal Measure correlations; theoretically it provides genera for all types of spores $11 k e l y$ to be encountered. The probable plant affinities of each genus are given in a useful survey of work on this subject made by Potonie (1954). The details of the new classification are being published currently and only part is at present in print (Potonie and Kremp, 1955) but since it has been accepted on the continent and tentatively in North America (Hoffineister, Staplin and Malloy, 1955) it has been thought advisable here to indicate the synonymy of the varlous spores used in so far as they can be ascertained at the present time.

In the rollowing lists the synonyms are given of the 2 genera and 28 species used in the microspore distribution diagrams (rigs.4-12) and considered to be of stratigraphical value. These 30 types are illustrated in Figs. 1 and $Z_{\text {, }}$

Fig. 1 Fossil Spores.
numbers 1-16 in Fig. I and 17 - 30 in Fig. 2. In the second part of the appendix (p.xvilif et seq.) the percentages of a further 10 genera and 10 species are included; these consist of genera which would be of more practical value if split into a number of species, and also of ubiquitous species.

NAMES USED

Lycospora Schopf, Wilson \& Bentall 1944
(1) Densosporites annulatus (Loose) S.W. \& B.
(2) D. Indignabundus (Loose) S.W. \& B.
(15) D. solarie Balme 1952

Calamospora S.W. \& B.
Spinososporites Knox 1950
S. Sp. (Millott's type 4)
(3) S. spinulistratus (Loose) Knox
Planisporites Knox
Raistrickia S.W. \& B.
(26) R. medusa Williams 1956
(4) Girratriradites striatus Knox
C. sp.
(12) C. tenuis (Loose) S.W.\& B.
(10) C. aligerens Knox.

PROBABLE SYNONYMY
Lycospora S.W. \& B.
Anulatisporites anulatus
(Loose) Potonie \& Kremp 1955.

Cristatisporites indignabundus
(Loose) P. \& K.
?C. solaris (Balme) P. \& K。
Calamospora S.W. \& B.
(Acanthotriletes (Naumova)P.\& K. ? (Lophotriletes (Naumova)P, \& K. (Apiculatisporites. Ibrahim

Anapiculatisporites spinosus (Kosanke) P. \& K. Planisporites kosankei P. \& K. Planisporites (Knox) P. \& K. Raistrickia (S.W. \& Bo) P. \& K. R. medusa W.
?Densosporites striatus (Knox) Densosporites sp.?

Fig. 2 Foasil spores.

NAMES USED
C. saturni. (Ibr.) SoW. \&e B6
(14) Endosporites Wilson and Coe 1940
(5) Schulzospora ovata (Balme)
(20) Endosporites costatus

Florinites S.W. \& B.
(7) F. antiquus Schopf
(11) F. millotti Butterworth \& Williams 1954
(9) Pityosporites westphalensis Williams 1955
Triquitrites Wilson \& Coe
(13) I. sculptilis Balme
(30) T. inusitatus Kosanke 1950

Ahrensisporites P. \& K. 1954
(6) Laevigatosporites (Ibr.) S.W. \& B.
L. minutus (Ibr*)S.W. \& Bo
L. minimus (W. \& C.) S.W. \& B.
(23) L. obscurus Kosanke
(27) I. oculus Williams 2956
(25) L. pseudothiessenii Kosanke
(8) Reticulatisporites
mediareticulatus Ibr.
(16) R. tortuosus Balme
R. facetus (Ibr.)S.W. \& B.

Reticulatisporites (Ibro)
S.W. \& B.

PROBABLE SYNONYMY
C. saturni (Ibr.) S.W. \& B. Endosporites Wilson and Coe Schulzospora ovata (Balme)

?

Florinites S.W. \& Bo
F. antiquus Schopi.
F. millotti B. \& W.
P. westphalensis Williams Priquitrites (W. \& C.) P.\& K. T. sculptilis Balme
T. inusitatus Kosanke

Ahrensisporites P. \& K.
Laevigatosporites Ibr.
Punctatosporites minutus (Ibr.) ?P. minimus (W, \& C.) P. \& K。
?Verrucososporites obscurus
(KOS.) P. \& K.
?Speciososporites oculus
Williams
?Verrucososporites
pseudothiessenii (Kos.) P.\& K. Dictyotriletes bireticulatus
(Ibr.) P. \& K. $\frac{\text { RReticulatasporites tortuosus }}{\text { (Balme) P. \& K. }}$ Reticulatasporites facetus Ibr.

Reticulatisporites (Ibro)
S.W. \& B.

NAMES USED

(17) R. magnus B. \& W.

Verrucososporites
facierugosus (Loose)B.\& W.
Alatisporites pustulatus Tbr.
Reinschospora S.W. \& B.
(18) Microreticulatisporites quaesitus (Kosanke) B.\& W.
(19) M. fenestratus (Kosanke)
B. \& W.
M. parvipunctatus

Williams
M. reticulocingulum (Loose)

Knox

(22) M. sulcatus (Kosanke)
(21) Torispora securis Balme
(24) Cadiospora magna Kosanke
(28) Gravisporites spheerus
(B.\& W.) Bhardwaj 1954
(29) Schopfites dimorphus Kosanke

PROBABLE SYNONYMY

Microreticulatisporites magnus (B. \& W.) P. \& K. V. facierugosus (Loose) B.\& W. Alatisporites pustulatus Ibr. Reinschospora S.W. \& B. Microreticulatisporites quaesitus (Kosanke) B. \& W. M. fenestratus (K.) B. \& W. M. parvipunctatus W.

Dictyotriletes mediareticulatus (Ibr.) P. \& K.
? Converrucososporites sulcatus (Kosanke) P. \& K. Torispora securis Balme

Cadiospora magna Kosanke

Schopfites dimorphus Kosanke
V. DISTRTBUTION OF MTCROSPORES.
(i) Introduction.

A consideration of the microspore assemblages in the geams of the Jpper Carboniferous of the central coslifields of England has indicated that whereas a few spore types, notably species of Iycospora, appear to persist throughout the sequence, others have restricted ranges. A number of types which fall Into the latter category are so rare as to have little practical significance. The occurrence of such types is not discussed in
the present paper but the ranges of some of them are given in the second part of the appendix (p.xvili et seq.). The microspores used in the tables (Figs. 4-12) are considered to be sufficiently distinctive in appearance and common in occurrence to be significant stratigraphically.

Earlier work (Balme and Butterworth, 1952) has shown that the microspores recognised in sequences of seams fall into assemblages; the change from one assemblage to another is not abrupt but tends to take place gradually, odd specimens of the new spores appearing as the earlier forms become less common. In the central coalfields of England Balme and Butterworth (loc. eit.) distinguished three microspore assemblages - $\$ 1$, S2 and S3 - which occurred in zones having as their limits the marine bands in the modiolaris Zone and at the top of the Lower similis-pulchra Zone. Each of these marine horizons was found to be underlain by groups of seams having spore assemblages of a transitional nature.

Microspore studies carried out on more extensive sequences from Staffordshire and North Wales (Butterworth and Millott, 1954) indicated that three more assemblages could be distinguished, one from below $S 1$, named $S O$, and two from above $S 3$, named lower and upper 54 . The 50 assemblage was found in coals of lenisulcata Zone age and the 54 assemblages in the phillipsii and tenuis Zones.

The following account of microspore distribution in coalfields lying to the west of the Pennines embodies the
previous findings; these have in some cases required
modification by reason of evidence resulting from the
examination of additional material.

The microspores most characteristic of each assemblage are shown in the following lists. Seams with assemblages S2, S3 and lower 54 are underlain by groups of seams having assemblages of a transitional nature.
Assemblage SO:- Densosporites annulatus
D. indignabundus

Cirratriradites striatus
Spinososporites spinulistratus
Schulzospora ovata
Assemblage Sl:- As above plus
Laevigatosporites
Sl-S2 transition:- Sl spores plus s2 spores plus Cirratriradites aligerens

Assemblage s2:-
D. annulatus
D. indignabundus
S. spinulistratus

Leevigatosporites
Florinites antiquus
Pitycsporites westphalensis
Reticulatisporites mediareticulatus
Endosporites spp.
R. tortuosus

Cirratriradites tenuis (in part)
Endosporites costatus (in part)
Florinites millotti (in part)
D. solaris (in part)
Assemblage S3:- $\quad \frac{\frac{\text { D. annulatus }}{D_{0} \text { indignabundus }}}{\frac{\frac{\text { S. spinulistratus }}{\text { Lavigatosporites }}}{\text { Fovidquis }}}$

Lower 54 assemblage: -

Laevigatosporites
S. spinulistratus
F. antiquus
P. Westphalensis

Endosporites spp.
R. tortuosus
F. costatus
F. millotti
T. sculptilis
M. sulcatus

Torispora securis Microreticulatisporites quaesitus
M. fenestratus

Upper 54 assemblage: -

Laevigatosporites
S. spinuilstratus (rare)
F. antiquus (rare)
P. Westphalensis

Fndosporites spp.
R. tortuosus
E. costatus
F. millotti
T. securis
M. sulcatus
M. cuaesitus
M. Ienestratus
L. olsscurus
L. pseuiothiessenii

Upper 54 assemblage cont:-

Schopfites dimorphus
Gravisporites sphaerus
Cadiospora magna
Triquitrites inusitatus
Raistrickia medusa
I. oculus

In the following descriptions of microspore

 assemblages in the various coalfields the numbers in brackets after boreholes and other sampling localities refer to the positions marked on the map in Fig. 3 and listed at the end of this section; these numbers are also shown (bracketed) beside the localities which are listed in the first part of the appendix (ppei-xvi). The numbers in brackets after coal horizons refer to the stratigraphical positions indicated in the sections shown on FIgs. $4-12$; these numbers are also given In the first part of the appendix, beside the coal horizons which are there listed under localities. In the sections in Figs. $4-12$ seams of uncertain horizon have been indicated by numbers inserted between those representing known coal horizons. In those coalfields where more detailed work has been carried out on borehole sequences each sample examined has been tentatively assigned to a numbered coal horizon on the accompanying diagram. In general the correlations are those made by H.M. Geological Survey.Fig.3. Map of the West Penning Coalfields

Localities given in Fig. 1.

	A4/5 Wheatley Lane B.H. Wood End Colliery
	Reedley Colliery
	A $/ 17$ Cockden Bridge B.H.
	A4/13 Mere Clough B. H.
	A2/31 Heskin B.H.
	Welch Whittle Colliery
	A2/43 Hindley Deep B.H.
	A2/92 Tontine B.H.
	Cronton Colliery
	Lea Green Colliery
	A3/4 Farnworth B.H.
	A3/6 Burtonwood B. H .
	A3/10 Newton Park B.H.
	Golborne Colliery
	A2/57 Lowton B.H.
	Moseley Common Colliery
	Al/12 Patricroft B.H.
	Al/l Prestwich Asylum B.H.
	A1/2 Drinkwater Park B. H .
	Bradford Colliery
	Point of Ayr Colliery
	Felin Blwm opencast site
	Hen-Dyfirydd opencast site
	Tre Mostyn opencast site
	Llay Main Colliery
	Gresford Colliery
	A5/1 Whitegate B.H.
	Marchweil
	, Gardden Lodge opencast sit
	A5/6 Pen-y-Llan B.H.
	Trevor
	Dee \& Ceiriog Junction
	Crifinn's Farm o/e site
	Astbury
	Gillow Heath Colliery
	Congleton Edge
	Victoria Colliery
	Chatterley Whitfield Colly.
	Tunstall
	Wilkinson's Marl Pit

1. A4/5 Wheatley Lane B.H.
2. Wood End Colliery
3. Reedley Colliery
4. A4/17 Cockden Bridge B.H.
5. A $4 / 13$ Mere Clough B. .
6. $12 / 31$ Heskin B.H.
7. Welch Whittle Colliery
8. A2/43 Hindley Deep B.H.
9. A2/92 Tontine B.H.
10. Cronton Colliery
11. Lea Green Colliery
12. A3/4 Farnworth B. H.
13. A3/6 Burtonwood B. H_{0}
14. A3/10 Newton Park B. H.
15. Golborne Colliery
16. $\mathrm{A} 2 / 57$ Lowton B. H.
17. Moseley Common Colilery
18. Al/12 Patricroft B.H.
19. Al/1 Prestwich Asylum B.H.
20. A1/2 Drinkwater Park B. H .
21. Bradford Colliery
22. Point of Ayr Colliery
23. Telin Blwm opencast site
24. Hen-Dyfrydd opencast site
25. Tre Mostyn opencast site
26. Llay Main Colliery
27. Gresford Colliery
28. A5/1 Whitegate B. H.
29. Marchweil
30. Gardden Lodge opencast site
31. A5/6 Pen-y-Llan B.H.
32. Trevor
33. Dee \& Ceiriog Junction
34. Criffin's Farm o/e site
35. Astbury
36. Gillow Heath Colliery
37. Congleton Edge
38. Victoria Colliery
39. Chatterley Whitfield Colly.
40. Tunstall
41. Wilkinson's Marl Pit.
42. Norton Colliery
43. Chesterton
44. Hungerford B. H.
45. Silverdale Colliery
46. Etruria
47. Pie Rough B.H.
48. Penkhull
49. Stafford Colliery
50. Adderley Green Colliery
51. Woodhouse Colliery
52. Trentham-Whitmore Road
53. Hem Heath Colliery
54. Florence Colliery
55. Moddershall
56. Holts Barn B.H.
57. Brancotegorse Covert B.H.
58. Devil's Dumble B.H.
59. Springslade Pool B. H.
60. Hawkesyard B.H.
61. Springs Farm B.H.
62. Hayes Wood No. 2 B.H.
63. Brereton Cross B.H.
64. Giddywell B. F.
65. Wimblebury Colliery
66. Calf Heath B. H.
67. Saredon Hill B.H.
68. Moat Farin B.H.
69. Orchard Farm B.H.
70. Shareshill B.H.
71. Lilleshall No. 7A B.H.
72. Madeley No. 1 B.H.
73. Alveley No. 1 B.H.
74. Baggeridge No. 1 B. H.
75. Baggeridge No. 5 B.H.
76. Statfold B.H.
77. Bolehall B.H.
78. Amington Hall B.H.
79. Kingsbury Colliery
80. Ansley Hall Colliery
81. Coventry Colliery
(ii) The Staffordshire Coalfields
(a) North Staffordshire. (Fig.4)

The coalfield of North Staffordshire is considered first because, of all the coalfields examined, it contains the most extensive and complete succession of Upper Carboniferous strata. There is, in fact, an unbroken sequence from the Astbury coal (64) occurring near to the Millstone Grit up to a sean (1) in the Keele Series, high in the tenuis Zone. The structure of the field is well known from the early work of Hind and Stobbs and of Walcot Gibson (1905, 1925) whilst the limits of the non-marine lamellibranch zones have been defined by R. V. Melville (1946). This is the only coalfield west of the Pennines in which an attempt has been made to define the plant zones (Dix, 1931); unfortunately the material examined by her was restricted to the Millstone Grit and Morganian strata so that the limits of the floral zones of the Middle Coal Measures are not known. The most recent structural and general account of the coalfield has been made by F.Wolverson Cope (in Trueman, 1954).

Samples of the seams examined were obtained from collieries, boreholes and outcrops. A seam (64) lying near to the base of the Eumorphoceras Zone of the Millstone Grit was sampled at its outcrop in Limekiln Wood, near Astbury (35).

The Sandrock Mine (First Grit Coal, 62) was also sampled where it outcrops above the Rough Rock near Mow Cop (37). Fragments of the Holcombe Brook Coal (Third Grit Coal, 63) were obtained from the old spoil heaps at Black Cobb (37) as the outcrop is no longer exposed.

Samples of seams from the Productive Measures are mostly from collieries but these have been augmented by two borehole sequences. Details of these samples are given in the first part of the appendix (pp.i-ii.) Several of the coals from the Etruria Marl and Newcastle-under-Lyme Groups were sampled at various marl pits. A thin coal (1) which outcrops in the wood near to Moddershall church (55) and which Gibson (1905, 1925) states may lie in the Keele Group, was also sampled at its outcrop.

Assemblage SO: The lowest seam sampled from the North Staffordshire Coal Measures is the Crabtree (61) which lies below the extensive Gastrioceras listeri Marine Band in the Lower Coal Measures. The microspore assemblage obtained from this coal is poor in the number of types present but is represented by the genera Lycospora, Densosporites, Calamospora, Spinososporites, Planisporites and Triquitrites. Two species considered to be of stratigraphical significance, Cirratriradites striatus and Schulzospora ovata, are also present. The genus

24.

Florinites is represented by a large, often ill-preserved form. This assemblage is found, with slight variations in the proportions of each genus present, in all coals of the Lower Coal Measures.

The Millstone Grit coals contain these spores along with other so far unidentified types. The thin seam outcropping at Astbury was examined with particular interest as it occurs below Kidston's Ploral break (Kidston 1923:

Hester 1931). Although the coal contains a higher number of unidentified species than those from the upper part of the Millstone Grit it contains also most of the spores present in the SO assemblage. Since these are the only coal seams to be examined from the Namurian it has not been possible to make any critical comparisons.

Assemblage Sl:- The next workable coal above the Crabtree ie the King Seam (60) which lies in the communis Zone at the base of the Middle Coal Measures. Its microspore assemblage differs from those of the seams of the lenisuleata Zone in containing the genus Laevigatosporites, a monolete, bean-shaped spore which becomes one of the dominant genera of higher assemblages. The incoming of Laevigatosporites is taken as the base of the SI assemblage. Balme and Butterworth (1952) defined $S 1$ as characterised by the presence of Cirratriradites aligerens and

Schulzospora ovata (Endosporites ovatus) but subsequent work indicated that the former is found no lower in the succession than the spores characterising the overlying S2 assemblage whereas the latter occurs in all of the lower seams including those of the Millstone Grit. Odd specimens of the 52 types, along with Florinites antiquue, first appear in the Little Cannel Row (59) above the King and the seams from between this horizon and that of the Mid-modiolaris Marine Band constitute an S1 - S2 transitional zone. Cirratriradites aligerens is confined to this transition. The King is thus the only seam to have an Sl assemblage; formerly the overlying Little Cannel Row and Silver (58) Mines were included in the group of seams having an SI assemblage but when it was discovered that in other coalfields only the lowest seam of the Middle Coal Measures had such an assemblage a further search was made and occasional 52 spores were found to be present in the Little Cannel Row and Silver Mines. S. ovata and C. striatus are still present in the transition zone and the latter reaches high proportions in the Winpenny Seam (56) and is also very abundant in the Bullhurst (55) and Brickiln (57) Seams.

Assemblage S2:- The species first appearing in the Little Cannel Row become constant members of the 52 assemblage in coals occurring above the Seven Feet Banbury Marine Band; they are

Endosporites spp. (including E. zonalis and E. globiformis)
Reticulatisporites tortuosus and Romediareticulatus. The species Cirratriradites aligerens, C. striatus and Schulzospora ovata are not found in seams from above the marine band.

Cirratriradites tenuis, similar to C. aligerens but smaller and with a relatively narrower flange, is present in the Hard Mine (49) and adjacent seams; it also occurs at higher horizons but on the whole is comparatively rare in this coalfield. Indosporites costatus has not been noted below the Birches (42). In the Bellringer or Stoney Fight Feet Seam (44) at the top of the modiolaris Zone there is a considerable increase in the proportions of Spinososporites spinulistratus which remain at a high level up to the Granville (35). Seams between the Moss (36) and the Gin Mine Marine Band form a transition between those having $\$ 2$ and $S 3$ assemblages. In 1954 Butterworth and Millott drew the lower limit of the S2 - $\$ 3$ transition below the Birchenwood (Granville) Seam which was the lowest horizon at which Triquitrites sculptilis had been found but this species has since been noted in the Moss, and the boundary has been altered accordingly. Cope (in Trueman, 1954, p.233) states that the Moss and Birchenwood may be the same seam.

Assemblage S3:- This assemblage occurs in seams lying above the Gin Mine Marine Band. The characteristic species are Triquitrites sculptilis, Reticulatisporites magnus, Densosporites solaris, Plorinites millotti and Microreticulatisporites sulcatus. Densosporites annulatus, which is common in the durain-rich seams of lower horizons, is comparatively rare. Assemblage Lower S4:- Torispora securis and Microreticulatisporites fenestratus, which with Mo quaesitus characterise this assemblage, are first noted in the Winghay Seam (24) which lies between the two highest marine horizons of the Coal Measures. Densosporites annulatus, D. indignabundus, D. solaris and Reticulatisporites magnus have not been found to occur above the Chalkey Mine (19). The seams from between these two horizons therefore represent a transitional zone. The lower 54 assemblage is present in all seams up to the top of the Black Band Group (8). Several unidentified species have been noted from seams occurring in the Black Band but these have not yet been described; the lack of correlatives to this group of seams in most of the other fields considered has prevented adequate checking of the use of these unidentified species as zonal indices.
Assemblage Upper S4:- There is a marked change in the spore assemblages of seams from the Btruria Marls and higher levels and, although this change was appreciated when the 54 assemblages
were described (B. \& M., 1954), the documentation of species was insufficient to warrant the establishment of a completely separate assemblage. Furthermore no transitional assemblage was noted; this may be due to the lack of coal seams in the higher measures. The general impression that in the upper S4 assemblage the spores are smaller and thinner-walled is in part due to the practical disappearance of the large species Spinososporites spinulistratus and Florinites antiquus, which formed a high proportion of the lower assemblages. There is also a marked increase in the numbers of small monolete spores of the genus Laevigatosporites - Lominutus and L 。minimus become locally more common and I_{0} obscurus, L. pseudothiessenii and L. oculus are present for the first time. The large species of Raistrickia of the lower coals are replaced by the small thin-walled R. medusa and similar types as yet unspecified.

Recent investigations made of samples from the Upper Coal Measures have indicated that Triquitrites sculptilis is not present in seams having an upper 54 assemblage. Re-exomination of the Nowcastle Group coals has confirmed this. The species of Triquitrites which were originally mistaken for T. sculptilis have not yet been identified but probably include T. protensus Kosanke, T. crassus Kosanke and T. spinosus Kosanke.

In addition to the changes already noted three new genera appear in the upper 54 assemblage - Schopfites, Gravisporites and Cadiospora. These are usually rare but sufficiently distinctive to be of use stratigraphically. Schopfites has been found only in seams of Etruria Marl age in North Staffordshire but in other coalfields it occurs in the equivalents of the Newcastle Group.

The highest seam (1) examined from North Staffordshire is that which outcrops at Moddershall (55) and which is presumed to lie in the Keele Group. This coal has an assemblage essentially similar to that present in the seams of the Newcastle Group but it contains in addition several rare spores which have also been noted in a seam in the Brbistock Beds of North Wales. One of these rare spores is thought to be conspecific with Guthörlisporites magnificus which has recently been described by Bhardwaj (1954) from the Stephanian of the Saar. Since this is the only seam to have been sampled from the Keele Group, and since its spore assemblage is very similar to that of seams from the Newcastle Group, no attempt has been made to define a separate assemblage.
(b) Cannock Chase (Fig. 5)

This is the part of the South Staffordshire coalifeld lying to the north of the Bentley faults which extend westwards
from Walsall towards Wolverhampton. An account of the geology of the coalfield (Mitchell and Stubblefield, (1945) plublished by the Geological Survey includes descriptions of the non-marine lamellibranch zones and suggests a standardised nomenclature for the seams of the coalfield which is now largely adhered to. Most of the sequences considered here are from boreholes sunk in the north-eastern and north-western extensions of the exposed coalfield. The boring at Brancotegorse Covert (57) in the north-western area lies only about ten miles south of the nearest North Staffordshire bore (Holts' Barn, 56). A correlation between the two fields has recently been published by the Geological Survey (Calver, Earp and Hoare, 1953). The most extensive sequence was obtained from the area to the west of the exposed coalfield; the lower measures were encountered In the Moat Farm (68) and Calf Heath (66) bores and seams from the Halesowen Beds of the Upper Coal Measures in the Orchard Farm (69) and Shareshill (70) borings.

> With the exception of a sample of the Mealy Greys. (63) from Wimblebury Colliery (0 5) all of the Cannock Chase material has been obtained from borehole cores. Nuch emphasis has been laid on the seams of the Upper similis-pulchra Zone, particularly In the Brereton area to the north-east of the exposed coalfield. The relationships of this group of seams were formerly in doubt
and most of the sequences were examined in an attempt at correlation.

A short account of microspore distribution in the Cannock Chase coalfield was given in a paper on the central coalfields (B. \& Be, 1952). This work was extended by B. \& M. (1954) who recognised all of the spore assemblages excepting so and the lower S4. The absence of the so assemblage is a consequence of the absence of seams in the Lower Coal Measures, while that of the lower S4 assemblage results from the cutting out of strata from below the Halesowen Beds by an unconformity. The following description of the spore assemblages covers the same ground as the 1954 account referred to above but is based on the examination of a greater number of sequences in particular four additional borehole cores from the western part of the field have been investigated.

The Mealy Greys seam (63) at the base of the sequence and the unnamed seam (62) below the Deep (61) each have an 51 assemblage. As Plorinites antiquus and Cirratriradites aligerens are both present in the unnamed seam it might be expected that further searching would yield evidence of an S1 - S2 transition assemblage in this seam. The percentages of C. striatus are outstandingly high in the Deep Mine and to
a lesser extent in the Upper Shallow (56). These horizons, lying towards the middle of the communis Zone, are roughly comparable with those of the Brickiln - Winpenay - Bullhurst seams in North Staffordshire. The Deep Mine in the Calf Heath Bore is peculiar in that it contains no C. striatus but has a high proportion of Densosporites indignabundus which is seldom common in whole seam samples. C. aligerens has not been seen above the Bass Mine (53) and Schulzospora ovata and C. striatus disappear at the horizon of the Stinking Marine Band which is considered to be the correlative of the Seven Foot Banbury marine horizon (Calver, etc., 1954).

The 52 assemblage is found in seams from the Stinking Marine Band up to the Brooch (34). Endosporites costatus and Girratriradites tenuis occur at rather lower levels here than In North Staffordshire. The proportions of Spinososporites spinulistratus increase in the seam (39) below the Benches (38) and reach a maximum in a seam (37) below the Brooch. Above the latter seam occasional specimens occur of the 53 assemblage spores and the transition zone extends up to the seam above the Charles Marine Band, the Wyrley Yard (27), in some samples of which the odd specimen of Retioulatisporites mediareticulatus was noted. This distribution is unusual for the central coalfields; it is perhaps significant that more samples of the

Wyrley Yard have been examined than of seams at equivalent horizons in other coolfields. The occurrence of R. mediaraticulatus above the Charles Marine Band is comparable with the appearance of the same spore above the Cefn Coed Marine Band in South Wales (Williams, in litt.). The assemblage of the Wyrley Yard is characterised by high numbers of Densosporites solaris along with varying percentages of Cirratriradites tenuis and C. sp. - a type intermediate between C. tenuis and C. striatus.

The main seams in the group having an $S 3$ assemblage are the Top and Bottom Robins. Excellent specimens of Reticulatisporites magnus have been recorded from the Bottom Robins (23) and this seam also contains considerable numbers of Densosporites solaris, but not so high a percentage as the Wyrley Yard. The Top Robins (19) has been distinguished from the two underlying seams by the comparative paucity of the types R_{0} magnus and D_{0} solaris and the generally higher percentages of Triquitrites soulptilis and Florinites antiquus in its assemblage.

The 54 assemblage spores are first apparent in the thin seam (18) Iying above the Sylvester's Bridge Marine Band there is no seam of comparable thickness to the Winghay of North Staffordshire at the equivalent horizon in Cannocle Chase.

34.

Densosporites annulatus, D. indignabundus and Do solaris are present above the highest marine band in most of the seams of the group including the Heath Hayes (12) and the Wimblebury Cannel (8). There are one or two seams above the latter horizon which may be said to have a lower $\$ 4$ assemblage and to correspond to the seams above the Chalkey Mine level in North Staffordshire but there are no equivalents In Cannock Chase to the Great Row Measures and the Black Band Group of North Staffordshire owing to the earlier development In Cannock Chase of the Etruria Marl facies.

No coals have been encountered in the Etruria Marl Series of Cannock Chase and the only seams in which an upper S4 assemblage has been found are those of the Halesowen Beds, the equivalent of the Neweastle Group of North Staffordshire. The four Upper Coal Measure seams sampled in the western part of the coalfield all had typical upper 54 assemblages and the two lower ones (3,4) contained the rather rare spore Schopfites dimorphus.
(c) South Staffordshire (Fig. 6)

The part of the South Staffordshire coalfield lying to the south of Walsall and known as the Black Country is largely worked out but it has been possible to examine a sequence of seams from borings sunk on the western crop of the field near
to Baggeridge $(74,75)$. The Productive Coal Measures are less well developed than in the Cannock Chase area and many of the seams combine when traced southwards; thus the Benches, Wyrley Bottom and Old Park of Cannook Chase are represented by the Thick seam (4) in South Staffordshire; the Iard and Bass of Cannock are equivalent to the New Mine $(8-10)$ and the Deep and Shallow Mines equal to the Bottom $(13,24)$ of South Staffordshire, (Mitchell and Stubblefield, 1945). Coal-bearing strata of the Upper similis-pul.chra Zone of Cannock Chase are replaced by barren red rocks of Etruria Marl facies in South Staffordshire.

The Baggeridge sequence is therefore short and with few seams. The lowest seam (16) present, correlative with the Mealy Greys of Cam Jok Chase, has a typical Sl assemblage and the seams between this horizon and that of the Stinking Marine Band form an $S 1$ - 52 transition. The assemblage of the Bottom seam (23,24), like its correlative the Deep of Cannock Chase, is particularly rich in Cirratriradites striatug. Bndosporites costatus occurs here in seams below the marine band suggesting perhaps that this spore appeared at an earlier horizon in the more southerly of the central coalfields then in those to the north.

The 52 assemblage is present in only four seams the Lower Heathen (6) to the Flying Reed (3) inclusive. The latter contains high numbers of Spinososporites spinulistratus. The Brooch (2) contains occasional $\$ 3$ types and constitutes an $52-\$ 3$ transition zone but the seams of the Upper similis-pulchra Zone, which usually have an S3 assemblage, are not represented.

The highest seam examined, from the Halesowen Beds, contained representative spores of the upper $\$ 4$ assemblage although Schopfites dimorohus, Cadiospora magna and Triquitrites inusitatus were not found.
(iii) The North Wales Coalfields.

The sequences in the two parts of this coalfield are considered separately. The most northerly, that of Flintshire, is now largely worked out but the lower part of the succession has been obtained from Point of Ayr (22), the only working colliery, and from neighbouring openeast sites. In the Denbighshire Coalfield to the south seams have been sampled from the base of the measures up to an horizon (1) In the Erbistock Beds. Both coalfields are fully described in the Memoirs of the Geological Survey (Wedd and others, 1923, 1924, 1928) and an account of the non-marine lamellibranch zones has been published by Wood (1937).

The microspore assemblages in the seams of the North Wales coalfields have already been described and published with those of Staffordshire (B. and M., 1954). In Flintshire no additional material has been available but a valuable sequence of seams from the Pen-y-Llan bore (31) in the Denbighshire field has helped to confirm the earlier conclusions which were based on the examination of samples from a fairly wide range of localities.
(a) The Flintshire Coalfield (Fig. 7)

All of the seams available from Point of Ayr Colliery
(22), lying on the Dee Estuary, have been sampled together with two of the lower coals $(8,9)$ which were exposed in trial pits on prospective opencast sites $(23-25)$ to the south-east of the colliery.

The seams examined range from the base of the coal Measures up to the Three Yard seam (1) in the modiolaris Zone. The Little Coal of Picton (9) at the base of the series has an SO assemblage comparable to that of the Crabtree of North Staffordshire. From the Bychton Three-quarters (8) up to the Durbog (3) there is an SL - S2 transition which is consistent with the recently discovered Mid-modiolaris Marine Band in the measures between the Durbog and overlying Two Yard seam (2) at Point of Ayr Colliery, (D.Magraw, H.M.Geological Survey, in litt.).

Cirratriradites striatus is not very common at this locality but reaches a maximum percentage in the Bychton Three-quarters. The Two Yard (2) and Three Yard (1) seams from above the marine band contain typical S2 assemblages.

The Bychton Three-quarters, which has been sampled both at the colliery and in a trial pit at its outcrop (25), occurs at approximately 100 ft . below the Bychton Two Yard (7). In Wood (1937) this seam is shown in the Flintshire succession as the queen and is placed towards the top of the lenisulcata Zone. Wood does not refer to any fossils collected from this horizon and as both of the samples examined in the present Investigation have been found to have an $\$ 1$ - $\$ 2$ transition assemblage it appears likely that this seam is a correlative of the queen or Wall and Bench of Denbighshire which occurs towards the base of the communis Zone.
(b) The Denbighshire Coalfield (Fig. 8)

In Denbighshire the Lower Coal Measures contain towards their base two seams, the Aqueduct (41) and Chwarelau (40), which were sampled at their outerop in Australia Marl Pit, near Trevor (32). These seams both have an SO assemblage. About 200rf. higher in the succession is the queen Series of coals in the communis Zone. These seams occurred in both the Whitegate (28) and Pen-y-Llan (31) bores and have been worked
at several collieries. The Lower queen (39) contains Laevigatosporites and is considered to have an S1 assemblage. There is apparently no workable coal at this horizon in the Flintshire sequence. Florinites antiquus, Cirratriradites aligerens and the 52 types occur in the queen (38) or Wall and Bench, and in the Upper queen (36) or Ruabon Yard, seams, and the S1-S2 transition is considered to extend up to the Red Mine (32) above which the Mid-modiolaris Merine Band has recently been found in Llay Main Colliery (26) workings (Magraw, 1954). Girratriradites striatus is common in the Ruabon Yard and in the overlying Nant seam (35) occurring at more or less similar horizons to the Winpenny of North Staffordshire and the Deep of Cannock which also contain high proportions of this species.

Seams from above the maxine band have an undoubted S2 assemblage. Cirratriradites tenuis and Endosporites costatus are both occasionally present in the Fireclay seam (33) below the Marine Band; this distribution is similar to that of the same species in south staffordshire. The crank seam (23) sampled at Gresford Colliery (27) has a high percentige of c. tenuis; such concentrations of this species are found at various horizons in different coalfields (cf. the Wyrley Yard of Cannock Chase) and are thought to represent some particular
ecological condition. As in the case of the Wyrley Yard, which lies at a considerably higher level, the Crank does not have this characteristic at all sampling points.

The S3 assemblage spores appear in the Smith seam (19) and since the 52 type Reticulatisporites mediareticulatus has not been seen above the Bottom Droughy (18) these two seams are considered to constitute an $S 2-S 3$ transition. The marine band which occurs above the Bottom Droughy is believed to be the equivalent of the Gin Mine Maxine Band of North Staffordshire, (simpson, 1935). These two seams and the succeeding Warras (16) and John o'Gate (17) were sampled at Gardden Lodge Opencast Site (30) - they were faulted out of the Pen-y-Llan boring which otherwise yielded a complete succession. As well as the Warras and John o'Gate the Wynnstay Five Feet (13) and associated seams occurring some 200 ft . higher in the sequence also have an $S 3$ assemblage. In the Bersham Yard (9) group, a further 200 ft. higher, the lower S4 types are present alozg with occasional specimens of Densosporites. It is therefore thought possible that the horizon of the highest marine bands occurs somewhere in the measures separating these two groups of seams.

A coal (8) which outcrops near to the junction of the Rivers Dee and Ceiriog (33) was formerly thought, on account of
its geographical position, to lie in the Ruabon Marl; the seam has a lower 54 assemblage and thus does not compare with that of the Btruria Marl coals of North Staffordshire, also several borings have passed through the Ruabon Marl without yielding any trace of coal. In the Denbighshire diagram, therefore, the position of this seam has been queried.

Good samples have been obtained from the Pen-y-Llan and other recent North Wales bores of coals occurring in the Coed-yr-Allt Group of the Upper Coal Measures. These seams have typical upper 54 assemblages including Schopfites dimorphus, a spore which in North Staffordshire has only been observed from seams of the Etruxia Marl. The occasional presence of a spore similar to Densosporites annulatus in two of the seams was at first thought to be due to contamination but such isolated occurrences have since been noted elsewhere.

A coal (1) from the Erbistock Group outcrops on the banks of the Dee near Marchweil (29) and this yielded an assemblage comparable to that of the seams of the underlying Coed-yr-Allt Group. The Erbistock seam and the one sampled from the Keele Group of North Staffordshire however are the only coals in which the species Guthbrlisporites magnificus has been found

42.

(iv) The Iancashire Coalfield.

The compilation of a representative sequence for the Lancashire coalfield has presented certain difficulties as compared with other fields. The seam nomenclature varies considerably when traced laterally and the correlations are not always known with cestainty. This is due mainly to the extensive faulting of the area and to the relative thinness and irregularity of some seams when compared with those of the Midlands.

The Geological Survey Memoirs on the Wigan, Manchester and Rossendale Anticline districts (Jones etc., 1938, Tonks etc., 1931, Wright etc., 1927) give descriptions of the various parts of the coalfield and the non-marine lamellibranch zones defined and sub-zoned by Wright (Manchester Memoir). Hickling (1927) has published a detailed list of shaft sections from localities extending across the field. In addition to the works listed above constant use has been made of the reports on boreholes by officers of H.M. Geological Survey; in the majority of cases the correlations inferred in these reports have been adhered to: the two occasions on which the naming of seams has been altered are indicated below.

Borehole material has been used whenever possible in order to ensure the correct naming of seams. In a previous
account of mierospores in the Lancashire coalfield (B. and B., 1952) the sequence examined was extremely piecemeal and consisted of samples from widely separated collieries. The deep boreholes used in the present work extend across the southern limit of the coalfield and include seams from the Upper Coal Measures down to the base of the modiolaris Zone. The lower part of the sequence has been collected from a number of shallow bores and from colliery workings. Samples from the Middle Coal Measures of Burnley are excluded as they have not been correlated with the sequence in the main part of the field. Unfortunately the number of samples available from seams of the communis Zone is restricted; more work is necessary before these can be correlated throughout the coalfield.

In Lancashire nine or ten seams occur in the lenisulcata Zone or Lower Coal Measures and many of these have been worked in the Burnley Coalfield and in drift mines on the slopes of the Pennines. Most of the Burnley samples are of too high rank to give satisfactory microspore separations but recent bores (9) sunk in the Rainford area near St. Helens yielded samples of Lower Coal Measure seams of relatively low rank which gave very good separations. These seams all have an sO assemblage.

No seams have been examined, in other coalfields of the central group, from horizons between that of the Gastrioceras Iisteri Marine Band (the Crabtree of North Staffordshire, the Lower Mountain (58) of Lancashire) and the base of the Middle Coal Measures at which level spores of the genus Laevigatosporites first appear. As the base of the Middle Coal Measures is an horizon of doubtful stratigraphical value and is not associated with any marine incursion it was thought that the examination of coals from strata towards the top of the Lower Coal Measures might indicate that this genus comes in at a slightly lower horizon, perhaps In association with Tonge's Marine Band. In the present investigation samples have been examined of the Cemetry (54) and Pasture (53) mines which lie between Tonge's Marine Band and the Arley Mine (52) at the base of the Middle Coal Measures; no species of Laevigatosporites was found in these samples and so the appearance of the Sl assemblage at the base of the Middle Coal Measures, also the base of the communis Zone, is confirmed. The Arley Mine is the only seam from Lancashire to have an S1 assemblage and the seams from between this horizon and the Sutton Manor (Midmodiolaris Zone) Marine Band constitute an S1 - S2 transition. Girratriradites striatus has not been found in great numbers in any of the seams considered; it is common
in the Padiham Bleven Feet in the Burnley area and in the Reform of Poynton, lying to the north and south respectively of the main part of the coalfield, but unfortunately these seams have not been correlated.

The nomenclature of the seams between the Sutton Manor and Dukinfield Marine Bands varies; the synonyms occurring in the sample lists given in the appendix (pp.x-xiii) may be identified by referring to the numbers which are reproduced beside each coal horizon on the diagram (Fig.9). Thus the Pemberton Five Feet (35) and Bickershaw Seven Feet (36) are known as the Higher and Lower Florida seams in the western part of the field and as the Black and White Mines in the east. The Stone Delph (23), Binn (24), Grombouke (26), Brassey (28) and Rams (30) are called the Top Ince Yard (23), Ince Deep Yard (24), Ince Four Feet (26), Ince Seven Feet and Ince Furnace (30) respectively in the Wigan area. Radley (17), New Jet Amber (19) and Pottery (20) are names usually restricted to the Manchester coalfield; coals occurring at comparable horizons in other parts of the field are generally of no practical significance and are therefore not named. As a result of the detailed examination of apore distribution in seam sub-sections the Crombouke and Brassey (Shuttle and 'Crombouke' of the Prestwich bores) have been
re-correlated in the $\mathrm{A} 1 / 18 \mathrm{~B} . \mathrm{H}_{0}$ and at Bradford Colliery (21), (B. and M_{0}, in the press). The amended correlation has been used in the construction of the diagram (Fig.9). The appendix nomenclature is, however, that of Poole and Whiteman (1954) whose correlation of other coal horizons in the Manchester coalfield is accepted and used here. The correlation of seams occurring at similar horizons in the St. Helen's part of the coalfield has also been slightly altered. The naming of the seams in the appendix (pp.x-xiii) is that of Trotter (1952) whilst the horizon numbering represents the amended correlation. The alterations concern the Crombouke and Earthy Delf seams in the Burtonwood bore (13), otherwise the correlations given by Trotter have been adhered to.

The S3 assemblage spores first appear at about the level of the Pottery (20). Reticulatisporites mediareticulatus is very rare above the Binn (24) but has been found in the seam (16) immediately underlying the Dukinfield Marine Band. A queried R. mediareticulatus was noted in the Parker Mine (15) above the marine band; this would be comparable to the distribution of the same spore in Cannock Chase where it is very occasionally found in the Wyrley Yard at an approximately equivalent horizon.

The only workable coal to have an $S 3$ assemblage is the Worsley Four Feet (10). The top of the zone containing this assemblage cannot be clearly defined as no coals have been sampled from between the Prestwich Top and Lower Sankey Marine Bands which are the two highest marine horizons in the Coal Measures.

The next seams/in the succession, known as the Bradford Series, contain $\$ 4$ assemblage spores. These seams (3-6) heve been correlated with those of the Black Band Group in North Staffordshire (Kidston, 1905) on account of the similarity of their respective floras. The seams of the Bradford Group of Lancashire have spore assemblages similar to those of the Black Band Series but an unexpected occurrence in the Lancashire field is the presence of Densosporites solaris so high in the succession. A further peculiarity is that D. solaris occurs only in samples from Bradford Colliery (21) and not in those from the Prestwich bores $(19,20)$ situated a few miles to the north-west. Since the presence of the 54 type Torispora securis precludes any suggestion of miscorrelation it can be inferred that the plant producing D. solaris persisted in the Bradford area after it had become rare or extinct in the surrounding and more southerly districts. It is of interest that the Bradford Colliery sequence is very
rich in coal of dominantly Densosporites-rich durain. Cronton Colliery (20) in the St. Helen's area and Point of Ayr in Flintshire are others similarly rich in dull coal. Furthermore the Bradford Upper Furnace seam (30), occurring towards the base of the Lower similis-pulchra Zone, has on assemblage complicated by the presence of large numbers of Cirratriradites tenuis and examination of the seam by sub-sections (B. and Mo, in the press) related this spore to certain dull bands of coal which could not be traced laterally to seams in adjacent collieries.

In other coalifelds considered there are few Densosporites types above the horizon at which the lower 54 spores appear, i.e. et the top of the एpper simi.lis-pulchra Zone. North Staffordshire and Lancashire are the only two coalfields of the central group which have a typieal Coal Measure facies in this part of the Upper Coal Measures; in the Midlands the same horizons are represented by beds of تtruria Marl facies. In North Staffordshire the base of the lower St assemblage was drawn at the Chalkey Mine level before the coals of the Bradford Series of Lancashire were investigated and the fact that this series has an 53 - 54 transition assemblage does not necesserily indicate that it is of greater age than the Chalkey Mine; it is rather an indication that
the limit drawn at that level between the 53 - 54 tranaition and the lower 54 assemblage is not entirely reliable, depending as it does on a group of spores known to be 'facies fossils'.

The seams $(1,2)$ from the tenuis Zone were obtained from a boring (12) in the south-western part of the coalfield and these have typical upper 84 assemblages. Schopfites dimorphus is confined to a seam (2) in the Lower Group of the Upper Coal Measures (Trotter, 1952). The spores in these coals were somewhat difficult to separate and were found not to be so plentiful as in the equivalent coals in the Midland Coalfields.

(v) The Shropshire Coalfields.

Of the three Shropshire coalfields, Shrewsbury, Coalbrookdale and Forest of Wyre, only the two latter are now being worked. Borehole sequences have been examined from Lilleshall (71) and Madeley (72) in Coalbrookdale, and from Alveley (73) in Forest of Wyre. In both areas the sequence is interrupted by the Symon unconformity with the Productive Measures below and the Coalport or Highley Beds of the Upper Coal Measures above. A short account of the geology of these coalfields is given by Mitchell in Trueman (1954).

(a) Coalbrookdale (Fig.10)

The borings at Lilleshall and Madeley each cover the whole sequence of seams but the coals are thinner and often missing at Lilleshall in the northern part of the field. The correlation adopted between the two bores is that given by the Geological Survey (in borehole reports).

Generally the lowest seam found in Coalbrookdale is the Lancashire Ladies (28) but in the Madeley No. 1 bore (72) a $2 f t$. 7in. seam (29) was encountered 43 ft , below that horizon. The assemblage of this unknown seam (29) has been queried as SO; it has, in addition to the usual so types, occasional specimens of Reticulatisporites mediareticulatus and Endosporites spp. which generally occur in the $S 1-\$ 2$ transition assemblage. It is likely that if the sample were contaminated there would also be odd specimens of Laevigatosporites, which is usually common in seams containing the other two species, but this is not the case.

The Lancashire Ladies seam has a typical Sl assemblage with species of Laevigatosporites and with no se types. The S1 - S2 transition extends from the Lower Big Flint seam (26) up to the Stinking Mine (18) below the Pennystone Marine Band. Cirratriradites striatus is particularly comon in the Best, Randle and clod (combined) seam (24). C. aligerens, a type characteristic of the S1 - S2 assemblage, is rare.

The 52 assemblage is found in seams up to the Blackstone Marine Band at which horizon the 53 types first appear. The $\$ 3$ assemblage proper is not present as the Chance Pennystone Marine Band and succeeding measures (not shown in Fig.10) are cut out by the Symon unconformity in the sequences examined.

Four seams (1-4) from the Coalport Beds have upper S4 assemblages comparable with those of the Neweastle and Halesowen Beds of Staffordshire. Schopfites dimorphus is present in the two higher seams (1,2).
(b) Forest of Wyre (Fig.11)

The sequence in this coalfield is divided into the Highley and Kinlet Beds lying respectively above and below the Symon unconformity. The Alveley bore (73) went down to three seams below the Stinking Marine Band which is the equivalent of the Pennystone Marine Band of Coalbrookdale and of the Mid-modiolaris band elsewhere. The three lowest seams (19-21) have an S1 - S2 transition assemblage but Cirratriradites a.igerens and C. striatus were not seen. C. tenuis and Endosporites costatus are both present in the lowest seam examined (21) which distribution is comparable to that of the same species in South Staffordshire.

The only named seam in the succession is the Highley Brooch (10) which marks the top of the zone having an $\$ 2$ assemblage; Reticulatisporites mediareticulatus is present In the next two seams above $(8,9)$ and these seams constitute an $52-53$ transition.

The identity of the marine band occurring some 120 ft. above the Highley Brooch is not certain and the evidence of the spores is not very helpful; the seams concerned are only a few inches thick and it would be rash to draw conclusions from their spore assemblages. The seam (7) below the marine band does not contain Reticulatisporites mediareticulatus and the seam (6) above has a fairly high percentage of Triquitrites sculptilis; these facts suggest a higher level than the Charles Marine Band of Cannock Chase. In Lancashire, on the other hand, R. mediareticulatus is frequently missing from the seams below the equivalent Dukinfield Marine Band. It is unfortunate that the seams associated with the Chance Pennystone Marine Band of Coalbrookdale are not available for comparison, for until they are no definite comparison is possible.

The seams sampled from the Highley Beds (1-4) have upper $\$ 4$ assemblages. Schopfites dimorphus is confined to the two lower seams $(3,4)$ but Laevigatosporites obscurus and Gravisporites sphaerus were not observed.

(vi) The Warwickshire Coalfield (Fig.12)

The geology of the Warwickshire coalifeld has been described in detail by Mitchell and Stubblefield (1942); a shorter account is given by Mitchell in Trueman (1954).

Practically the whole of the exposed part of the coalfield consists of Upper Coal Measures but no seams have been sampled from strata higher than the similis-pulchra zone. The longest sequence is that from the Amington Hall bore (78) in the north of the area where seams from above the Nuneaton Marine Band to below the Stanhope (33) were obtained. As in South Staffordshire there is a thinning of the measures when traced southwards and the coals of the lower part of the similis-pulchra Zone combine to form the Warwickshire Thick coal ($5-16$), parts of which were examined from Kingsbury (79) and Coventry (81) Collieries. All of the seams from the Two Yard (5) down to the Seven Feet (21) were sampled at Ansley Hall drift mine (80) in the eastern part of the coalfield. The Bolehall (77) and Statfold (76) bores in the northern part of the area provided seams from the Lower Coal Measures and Millstone Grit respectively.

The two seams $(36,37)$ from Statfold and those from below the Stanhope coal in the Amington Hall bore all have an SO assemblage. The Stanhope (33) and Stumpy (32) seams each
contain Laevigatosporites and Florinites antiquus) the presence of Cirratriradites aligerens in the Stumpy suggests that further search might show evidence of an $S 1$ - 52 transition but until this is found both seams are placed in a zone having an S1 assemblage.

The Bench (31) is the first important seam in Warwickshire and it is the lewest horizon at which the $\$ 2$ types have been noted. This coal and the lower leaf of the overlying Double $(29,30)$ like seams from similar horizons in North Weles and Staffordshire, are remarkable for their high numbers of Cirratriraditis striatus. Seams between this level and the Seven Feet Marine Band all have an S1 - S2 transition assemblage. C. tenuis and Zndosporites costatus are both present in some seans from below the marine band as in other of the more southerly fields examined.

The SL assemblage group is largely composed of seams rich in Densosporites which combine to form the Warwiekshire Thick (5-16). Comparative studies of the component seams (Two Yard, Bare, Ryder, Bll and Nine Feet) from the localities listed above have tended to confirm the view of the officers of the Coal Survey Laboratory, Birmingham, that the High Main seam (18) joins the Nine Feet ($14-16$) to form part of the Thick coal. As in South Staffordshire an increase in the proportions of Spinososporites spinulistratus in the lower similis-pulchra

Zone is obscured by the high numbers of Densosporites present.
Very occasional specimens of the $\$ 3$ types occur in the thin seam (2) below the Nuneaton Marine Band and the only seam to be sampled from above this horizon contains an S3 assemblage also.

V1. DISTRTBUTION OF MICROSPORES IN THE BRITISH COALFIELDS The succession of microspore assemblages in the coalfields lying to the west of the Pennines has been outlined in the previous section. The changes from one microspore assemblage to another correspond broadily to the changes taking place in the non-marine lamellibranch succession. The lowest assemblage, $S O$, has been found in coals of the lenisulcata Zone and in the Millstone Grit coals of North Staffordshire which, however, have not been investigated in detail. The 51 assemblage is generally confined to the lowest seam of the communis Zone; most coals between this horizon and the Mid-modiolaris Marine Band contain occasional specimens of the S2 assemblage spores and so constitute an S1 - S2 transition zone. The 52 assemblage is present in seams from between the Mid-modiolaris Marine Band and the marine band at the top of the Lower similis-pulchra Zone. The $\$ 3$ assemblage types appear at slightly varying levels in the seams below the top of the Lower similis-pulchra Zone and the assemblage is present from that
level up to the marine band occurring at the base of the phillipai1 Zone. Lower 54 assemblage types are present in the coal immediately below this marine band, which is the highest one in the Coal Measure succession. An S3-S4 transition occurs from the marine band up to the Chalkey Mine level of North Staffordshire; this latter horizon is that at which Dix $(1931,1933)$ placed the base of the Staffordian floral division. The upper 54 assemblage has been found in all coals of tenuis Zone age and also in seams which occur in the Etruria Marl of North Staffordshire.

Slight variations have been found in the ranges of certain spores; Endosporites costatus and Cirratriradites tenuis generally appear at about the top of the modiolaris Zone in the northern fields but in the Midlands they are frequently present In seams below the Mid-modiolaris Marine Band; Reticulatisporites mediareticulatus is rare in the higher part of the Lower similis-pulchra Zone in Lancashire but in the Midlands it has occasionally been found in a seam at the base of the Upper similis-pulchra Zone.

It is possible to compare the microspore distributions given with those found by workers in other British Coalfields. Knox (1942,1946) has described mierospore assemblages from the Productive Coal Measures of the Fife and Central Coalfields of

Scotland. The presence is noted of Cirratriradites aligerens (A7) and Schulzospora ovata (6 K) in coals of the pseudorobusta Zone (part of the communis Zone) and in the lower part of the modiolaris Zone. The types Endosporites spp. (Cl), Reticulatisporites mediareticulatus (F2) and R. tortuosus (G1) are first recorded from coals immediately below the base of the modiolaris Zone. It seems probable, therefore, that the assemblages $S 1$ and $S 2$, with a transition zone, are present in the Scottish Productive Goal Measures. In a publication on the Limestone Coals of Fife (1948) Knox draws attention to the absence of spores of the genus Laevigatosporites (B1) from the Lower Carboniferous seams and to the presence in them of Schulzospora ovata (6K). The distribution of the same types In the lowest seams of the coalfields surveyed in the present investigations is in accordance with these results.

The microfloral successions in the South Wales, Forest of Dean, Bristol and Somerset, and Kent coalfields have been studied by R.W.Williams who has recorded the distributions of many spore species including most of those oited in the present work (in litt.).

The seams below the Amman Marine Band in South Wales 1.e. the Mid-modiolaris Zone Marine Band, have an assemblage with Laevigatosporites, Florinites antiquus, Cirratriradites striatus, and C. aligerens, similar to the S1 - S2 transition;

Bndosporites globiformis (included in Endosporites spp. in the present work) and Reticulatisporites tortuosus do not however appear below the marine band. C. tenuis and F. millotti occur in the seam immediately above the marine band - in the west Pennines coalfields C. tenuis appears sometimes below and sometimes above the marine band and Fomillotti is confined to the s2 - S3 transition and higher horizons.

The 53 types Reticulatisporites magnus, Triquitrites sculptilis and Densosporites solaris come in above the Cefn Coed Marine Band, i.e, that at the top of the Lower similis-pulchra Zone, as compared with their appearance below that horizon in the central coalfields, whereas R. mediareticulatus is present up to an horizon between the Ceinn Coed and Cwm Gorse (top of the Upper similis-pulchra Zone) Marine Bands and, in one, instance, up to the latter marine horizon. This occurrence of R. mediareticulatus at comparatively high horizons in South Wales is perhaps a continuation of the trend noted in the central coalfields.

Of the 54 assemblage types, which appear immediately below the top of the phillipsif Zone in the central coalfields, Microreticulatisporites fenestratus occurs in the seam below the lower of the Cwm Gorse Marine Bands i.e. at a slightly lower horizon, and Torispora securis in a seam at the base of the
phillipsii Zone i.e. at a rather higher level. M. quaesitus, in contrast to its appearance at the top of the Upper similis-pulchra Zone in the Midland coalfields, is present below the base of that zone in South Wales, but the M. quaesitus used in the present work is allied to $M_{\text {o }}$ fenestratus whereas the M. quaesitus of Williams is probably derived from Reticulatisporites of, tortuosus. (See B. and W., 2954).

Densosporites and Reticulatisporites magnus disappear a short distance above the base of the phillipsii Zone in South Wales, as in the central English coalfields, and, as in North Wales, Staffordshire and Shropshire, species of the genus Densosporites are occasionally present in coals of tenuis Zone age. There is no occurrence of D_{0} solaris in the upper part of the phillipsii Zone in South Wales to compare with that in the Bradford Series of Lancashire; there are, however, few coals in this part of the South Wales succession.

The higher coals in South Wales contain typical upper S4 assemblage spores but Cadiospora magna is apparently not present and Florinites antiquus and Spinososporites spinulistratus are more common in these coals than in those of comparable age in the central fields.

The distribution of microspores then is broadly comparable in the two areas; the differences tend to affect the
positions of the transition zones rather than of the assemblages themselves. There does not seem to be any pattern in the variations - some species occur earlier in South Wales (Florinites millotti and perhaps Microreticulatisporites quaesitus) whereas others appear at a later stage (Reticulatisporites tortuosus, Bindosporites globiformis and the 53 types).

In the south of England most of the sequences of coals on which microspore work has been carried out are of tenuis Zone age and younger, whereas in the central coalfields little has been done on coals of this age and, consequently detailed comparisons are not possible. It is interesting to note, however, that the species characterising the Newcastle Halesown Beds of the Midlands are also present in the equivalent tenuis Zone coals in strata of different facies in the south.
VII. COMPARISON OF MICROSPORE DISTRIBUTION IN BRITAIN, BUROPE AND NORTH AMBRIGA.

Until recent years comparison of microspore

distributions in Great Britain, Europe and North America was difficult on account of the numerous local divisions of the Upper Carboniferous strata and of the various classifications used for the microspores themselves. The publication of Schopf, Wilson and Bentall's synopsis of Palaeozoic spores in 1944 and the subsequent adoption of a modified form of the
nomenclature in this country (Knox, 1950) facilitated comparison with the North American microfloras. Jongmans' (1952) division of the Coal Measures into Westphalian A-E and the definition of the zones in both Europe and North America has enabled broad comparisons of the ranges of spores to be made.

The most detailed record of microspore distribution in the United States is given by Kosanke in his account of the Pennsylvanian spores of Illinois (1950). The limits of Westphalian A given in this paper are at variance with those given at Heerlen (Cross and Schemel, 1951) but if the latter correlation is taken there is a considerable similarity among the ranges of several genera in Britain and America. Kosanke deals with four groups of measures - Caseyville, Tradewater, Carbondale and McLeansborough - which Cross and Schemel correlate broady with the Weetphalian A, B, C, and Westphalian D and Stephenian respectively. This sequence therefore corresponds with our Lower, Middle and Upper Coal Measures and with higher parts of the sequence which are unrepresented in Britain. The two main features of distribution in this country - the appearance of Laevigatosporites in Westphalian A and the virtual disappearance of Densosporites just above the base of Westphalian C-are paralled in Illinois. Other points of similarity are the absence of Schulzospora above Westphalian A,
the restriction of Schopfites, Cadiospora and Laevigatosporites obscurus to higher parts of the sequence and the appearance of Florinites antiquus towards the top of Westphalian A. Raistrickia rubida, the occurrence of which is not noted separately in the appendix tables but which is present in the Black Band Group of North Staffordshire and in the Bradford Series of Lancashire, is also restricted to Westphalian C in Illinois. There are several differences in the distribution of species: Microreticulatisporites fenestratus, M, quaesitus and M_{0} sulcatus all occur in Westphalian B in Illinois whereas they usually appear in Westphalian C in the British Coal Measures; Cirratriradites difformis, perhaps conspecific with C. aligerens, is found only in the lower part of Westphalian B of Illinois in contrast to its occurrence in the British Westphalian A.

Cross and Schemel (loc, cit.) compare the ranges of Laevigatosporites, Lycospora and Densosporites in the Western Interior, Eastern Interior and Appalachian basins of North America. In each distriet Leevigatosporites, although present In the Mississippian (Lower Carboniferous) becomes extremely rare in the Namurian and lower Westphalian A and becomes common only towards the top of Westphalian A. Densosporites disappears at a uniform level above the base of Westphalian C. There are
no coals sufficiently high in the sequence in Britain to make comparison possible with the upper limits of Lycospora and Laevigatosporites which occur in the highest Westphalian and Stephanian respectively of North America.

Recently a more comprehensive description of Palaeozoic spore genera in America has been given by Hoffmeister, Staplin and Malloy (1955) who have adogted, with modifications, the spore classification of Potonie and Kremp (1955). In this work the approximate distribution of 44 microspore genera are given for the whole of the American Carboniferous; there is also a useful summary of pre-Carboniferous spore occurrences with reference to the Devonian of Russia, Spitzbergen and America. Berry (1937) found Laevigatosporites in the Pennington Seam of Tennessee (Mississippian) but this is the only noted occurrence of the genus below the Pennsylvanian. In the tables appended to the paper (H., S, and M, loc. eit.) the lower limit of the genus Laevigatosporites is given as lower Westphalian. The upper limit of Densosporites is the same as that given elsewhere but it has a queried and isolated occurrence in the Stephanian. The scope of the work is too broad for detailed comparisons to be made within the Westphalian but in addition to the similarities in the distribution of Leevigatosporites and Densosporites it is noted that Schulzospora is restricted to the

Mississippian and Lower Pennsylvanian; this genus has also been recorded from the Lower Carboniferous of Russian (Luber and Waltz, 1938).

Spores present in the Namurian and Westphalian A of the Westoberschlesischen and Mahrisch-Ostrau regions of Germany have been described by Horst (1955) who uses the Potonié and Kremp system of nomenclature. In the Westoberschlesisohen district, where the Hruschauer and Porubaer Beds of Namurian A and the Muldengruppe of Westphalian A are represented, the main point of interest is the presence of Laevigatosporites spo and Dictyotriletes bireticulatus (Reticulatisporites mediareticulatus) in the Westphalian A and the top of the Namurian A whereas each of these appears towards the top of Westphalian A in Britain. A species of Schulzospora was found by Horst to be confined to the Namurian. In the Mahrisch-Ostrau region the Sattelgruppe (Namurian B) occurs between Namurian A and Westphalian A and here D. bireticulatus is rare and Laevigatosporites absent. This distribution of Laevigatosporites thus corresponds to that given by Schemel and Cross (loc, cit.) for North America; the presence of the genus in the Mississippian however is not confirmed by Hoffmeister, Staplin and Melloy.

Comparative studies of mierospore distribution in the Ruhr and Saar coalfields have recently been carried out by Bhardwaj and Kremp (1955). This supplements the stratigraphical date in the paper outlining the spore classification devised by Potonié and Kremp (1954) in which the approximate limits for each genus are given. Much recent information is missing from these tables which include data from Europe, America and Russia, but there is a certain similarity in the generic distributions already discussed.

Kremp, in Bhardwad and Kremp (1955), has divided the Westphalian B of the Ruhr into six zones and the Westphalian C Into two, using only species of Lycospora, Densosporites and Anulatisporites. Comparisons in Britain are impossible until similar species are identified here.

Bhardway (loc. eit.) has divided the upper part of the Westphalian and the Stephanian of the Saar into four zones the Densosporites (Westphalian C), Torispora (Westphalian D), Tricuitrites (Stephanian A and B) and Lycospora (Stephanian C) Zones. If the Westphalian $C-D$ boundary is taken according to Guthbrl, as alternatively shown in Bhardwaj's diagram, then the limit between the Densosporites - Torispora Zones occurs below the base of Westphalian D, which is more comparable with the distribution of these genera in the British Coal Measures.

Bhardwaj shows no overlap between his zones, whereas in Britein there is a considerable group of seams containing both Donsosporites and Toriapora (53 - 54 transition). The Torispora zone contains Microreticulatisporites fenestratus, M. quaesitus and Triquitrites sculptilis which compares with the lower 54 assemblage.

Bhardwad has proposed that the junetion of his Densosporites and Zorisnora Zones be taken into consideration in the definition of the Westphalian C - Westphalian D boundary. In Britain however, as indicated above, there is a conaiderable thiokness of strate in which both genera are present, and, unfortunately, the range of Densogporites varies (of. the Black Band Series of North Staffordshire and the Bradford Group of Lancashire.)

V111. GOMPARISOK OF THE PALASONTOLOGICAL AND MICROSPORE SUB-DIVISIONS OF THE UPPER CARBOMIFEROUS.

Marine bands serve as the most constant and valuable marker horiaons in the Coal Measures of Great Britain. The oecurrence of the marine bands affects both the plent and non-marine fauna distributions; in all published zoning schemes of the Upper Carboniferous, with the exception of that of Kidston (2894), some at least of the dividing lines have been drawn at marine horizons.

Although the marine bands at the middle of the modiolaris Zone, at the top of the Lower similis-pulchra Zone and at the base of the phillipsii Zone are all associated with the incoming of spore assemblages (S2, S3 and lower 54 respectively), there is no sharp break in the spore sequence; on each occasion the incoming species are present considerably in advance of the marine band and at the two higher horizons the types characterising the underlying assemblages persist above the marine level. This conforms with Jongmans' (1952) statement that the species representing the Westphalian A flora of north-western Europe are never found above the Catherina Niveau (mid-modiolaris) Marine Band whereas similar suites of plants are frequently found above and below the relatively more important Aegir Marine Band (the top of the Lower similis-oulchra Zone) which separates Westphalian B and Westphalian C on the continent.

The earlieat sub-division of the Coal Measures of Great Britain was made by Kidston (1894) on the basis of plant distribution. Although this system was discredited by reason of the mis-naming of the Productive Coal Measures of Scotland as Lanarkian and of the transferance of the higher divisions from the type area of North Staffordshire; where they were said to have a lithological basis, to South Wales, it still remains
a broadly serviceable zoning scheme in the central coalfields of England. The Radstockian strata are not considered here, but the Lanarkian, Yorkian and Staffordian are represented by the microspore assemblages $S O, S 1-3$ and 54 (the base of the Staffordian in North Staffordshire was altered from the Bassey to the Chalkey Mine by Dix, 1931). Generally the limits of these three divisions of Kidston are defined by the incoming of Laevigatosporites at the base of the Yorkian and by the practical disappearance of Densosporites at the base of the staffordian.

North Staffordshire is the only coalfield of the group considered here which is discussed in Dix ${ }^{1}$ s work on the sequence of Upper Carboniferous floras (1933). Apart from the base of the Millstone Grit (Flora A) her description is confined to strata of the Upper Coal Measures: Flora G is present from the Chalkey Mine up to the top of the Black Band Group (corresponding with the lower 54 assemblage): material from the Etruria Marl is limited but the overlying Newcastle-under-Lyme Beds are considered to have a Flora H (corresponding to the upper 54 assemblage). The lower floras can only be distinguished by comparison with those of South Wales where the full sequence was described. The base of Flora F, presumably present in the measures below the Chalkey Mine in North

Staffordshire, is drawn at an horizon somewhat lower than the top of the Lower similis-pulchra Zone i.e. perhaps at the base of the $\mathrm{S} 2-\mathrm{S} 3$ transition. Flora \mathbb{E} extends down to an horizon towards the top of the modiolaris zone which is not of particular significance in the microspore sequence. The lower limit of Flora D occurs in the communis Zone, in the S1-S2 transition, and Flora C includes the lower part of the communis Zone, all of the lenisulcata Zone and the top of the Millstone Grit. Thus Dix's floras do not coincide markedly with the microspore assemblages. If Flora C is taken as SO, Flora D as Sl, Flora E as $S 2$ and Flora F as $S 3$ it can be seen that the spore assemblages generally appear in advance of the floras. However, as it has been shown that the spore assemblages of South Wales are slightly different from those of the central coalfields it is perhaps inappropriate to make such comparisons.

Jongmans' floral division of the Coal Measures into Westphalian $A=D$ has been accepted by the lllième Congress of Carboniferous Stratigraphy at Heerlen (1951). According to Trueman (1946) Westphalian A extends from the base of the measures up to the Mid-modiolaris Marine Band; Westphalian B from that horizon to the marine band at the top of the Lower similis-pulchra Zone and Westphalian C from there to an horizon
rather lower than the base of the tenuis Zone. As was indicated in connection with the marine bands, the junctions coincide
of the Westphalian $A-B$ and $C-D / w i$ th those of the spore assemblages $S 1-S 2$ and $S 2-S 3$. Jongmans (1952) notes that 'the Westphalian B begins where the typical forms of A no longer persist' i.e. at the lower marine horizon, and this applies also to the $S 1$ - S2 assemblages. Westphalian D coincides with the zone containing seams with an upper 54 assemblage excepting where coals of Etruria Marl age have been sampled, in which case the upper 54 limit has to be drawn at a lower level then that of Westphalian D.

It is interesting to find that the limits of the mierospore assemblages, as defined in the present work, can be arrived at by combining the limits of Kidston's Lanarkian, Yorkian and Staffordian divisions and of Jongmans' Westphalian A, B, C and D.

The limits of the microspore assemblages have already been defined in terms of the non-marine lamellibranch succession (section $V \mathcal{I}, \mathrm{p} .55$). Briefly, assemblage SO coincides with the lenisulcata Zone; S1 and the SL - S2 transition with the communis Zone and the lower part of the modiolaris Zone; $S 2$ and the $52-S 3$ transition with the upper part of the modiolaris Zone and the Lower similis-pulchra Zone;

S3 with the Upper similis-pulchra Zone; the S3-S4 transition and the lower 54 assemblage with the phillipsii Zone and upper S4 with the tenuis Zone (plus the Etruria Marl of North Staffordshire).

The similarity in the distributions of microspores and non-marine lamelibranchs is largely due to the fact that both are affected by periodic marine incursions; thus, during the non-marine interphases edaphic conditions became favourable to both plants and non-marine lamellibranchs and they are brought into an apparent relationship with one another.

It is recognised that the zones containing the spore assemblages are, as Trueman (1946) has remarked coneerning the non-marine lamellibsanch zones, dependant mainly on the entry of new forms and the disappearance of earlier groups. They are not primarily based on evolutionary changes occurring within the genera. It is for this reason that attention has been restricted in the course of the present work to easily distinguishable types. Further detailed examination of microspore assemblages may enable a more precise definition of zones to be drawn on the basis of the distribution of as yet undescribed species; before this can be done, however, it will be necessary to define the groups of spores which are associated
with the various facies of the Coal Measures swamps and to distinguish between spores whose presence is dependant on ecological conditions and those due to evolutionary changes.

1X. SUMMARY.

1. The distributions of fifty microspores have been examined in sequences of seams from the Coal Measures of Staffordshire, North Wales, Lancashire, Shropshire and Warwickshire.
2. Six spore assemblages have been described and named SO, S1, S2, S3, lower S4 and upper S4.
3. The stratigraphical limits, in terms of non-marine lamellibranch zones, of the assemblages are as follows :so - in coals of the lenisucata Zone.

S1 - in coals from the base of the communis Zone to the Mid-modiolaris Zone Marine Band.

S2 - In coals from the Mid-moliolaris Marine Band to the top of the lower part of the similis-pulchra Zone.

S3 - in coals of the upper part of the similis-pulchra Zone.

Lower 54 - in coals of the phillipsii Zone.
Upper S4 - in coals of the tenuis zone and in coals occurring in the Etruria Marl Group of North Staffordshire.

Three of the microspore zones are underlain by groups of seams having assemblages of a transitional nature :the Sl-S2 transition occurs in seams below the Mid-modiolaris Marine Band, in most cases only the lowest seam of the communis Zone having an S1 assemblage; the $52-S 3$ transition occurs in seams just below the marine band marking the top of the Lower similis-pulchra Zone; the $53-54$ transition is present in the seam below the marine band at the base of the phillipsii Zone and in North Staffordshire, where this part of the sequence is most complete, extends to the Chalkey Mine where Dix has placed the base of the Staffordian. In Lancashire the transition assemblage is also present in some of the coals of the Bradford Series which occur in the upper part of the phillipsil zone. 5. The microspore distributions have been compared with those described from the coalfields of Scotland, South Wales, Southern England, North America and Germany. A broad similarity among these distributions has been noted.

Comparisons have been drawn between microspore distributions in the Coal Measures and the distributions of plants and non-marine lamellibranchs.
X. ACKNOWLEDGMENTS .

This research was carried out under the supervision of Dr. E. M. Knox for whose generous assistance and encouragement the author is very grateful. Thanks are also due to Professor A. Holmes, F.R.S., and to Dr. A. M. Cockburn of the Grant Institute of Geology for their help.

The work described forms part of the survey of
National Coal Resources carried out by the Coal Survey organisation of the National Coal Board. Acknowledgment is made of the permission granted to reproduce the borehole logs given in the first part of the appendix. In the event of publication formal approval would be required from the National Coal Board to include these details. Thanks are due to Dr. J. O'N. Millott, Coal Survey Officer, Chester, for the guidance and help given in that part of the work relating to Lancashire, North Wales and North Staffordshire, and to Mr. E. Bradburn and Mr. K. G. Cope, Coal. Survey Officer and Deputy Coal Survey Officer, of the Birmingham Coal Survey Laboratory for their assistance and co-operation in the work on the Midland coalfields. The author is grateful for helpful discussions with Mr. R. W. Williams and Mr. A. H. V. Smith of the Microscopy Section, Coal Survey Laboratory, Sheffield, and for the guidance afforded to her by their predecessor, Mr. B. E. Balme. Special thanks are due to Mr. R. W. Williams for

75.

permission to compare the present work with his unpublished data on the distribution of microspores in the coalfields of South Wales and the south of England.

Tlnally, acicnowledgment is made of the use of numerous publications and reports by officers of H.M. Geological Survey.
XI. BIBLIOGRAPHY.

BALME, B.E., 2952, 'On some spore specimens from British Upper Carboniferous coals,' Geol.Mag., 89, 175.

BALME, B.E. \& BUTTERWORTH, M.A., 1952, "The strati ${ }^{\text {g }}$ graphical significance of certein fossil spores in the central group of British coalfields', Trans.Inst.Min.Eng., 211, Pt.11, 3.

BENNIE, J. \& KIDSTON, R., 1886, 'On the occurrence of spores in the Carboniferous formation of Scotland', Proc.Roy. Phys.Soc. Edin. . 2, 82.

BERRY, W., 1937, 'Spores from the Pennington Coal, Rhea County, Tennessee', Am.Mid.Nat. . 18, No.1, 155.
BHARDWAJ, D.C., 1954, 'Einige neue Sporengattungen des Saarkarbons', Neues Jb.Geol. Pal Hontol.Mb. No. 11
, \& KPEMP, G., 1955, 'Die Sporen fuhrung der Velener Schichten des Ruhrkarbons', Geol.Jb., 21, 51. BUTTERWORTH, M.A. \& MILLOTT, J.ON., 1954, 'Microspore distribution in the seams of the North Staffordshire, Cannock Chase and North Wales coalfields', Trans. Inst.MAn. تng., 114, Pt.6, 501. , \& \qquad , (in the press), 'The Lancashire coalfields. The correlation by microspores of certain seams at Bradford and Wheatsheaf Collieries and in the Prestwich Boreholes', Ibid.

BUTTERWORTH, M.A. \& WILLIAMS, R.W., 1954, 'Descriptions of nine species of small spores from the British Coal Measures', Ann.Mag.Nat.Hist., Ser.12, 2,753 CALVER, M.A., EARP, J.R. \& HOARE, R.H., 1953, 'Correlation of the North and South Staffordshire Productive Coal Measures', Summary of Progress, Geol.Surv.Gt.Brit.,34. CHALLONER, W. G., 1953, 'A new species of Lepidostrobus containing unusual spores', Geol.Mage, 90, 97.

CROSS, A.T. \& SCHEMEL, M.P., 1951, 'Representative microfossil
floras of some Appalachian coals', Extrait du Compte Rendu, lllième Congres de Stratigraphie et de geologie du Carbonifiere, Heerlen, 1951.

DIJKSTRA, S.J., 1955, 'La correlation des reines de charbon par les megaspores', Publ.Ass. Etud.Paleont.Bruxelles, No. 21, Hors Serie.

DIX, E., 1931, 'Flora of the upper portion of the Coal Measures of
North Staffordshire', Q.J.G.S., 87, 160.
_, 1933, 'The sequence of floras in the Upper Carboniferous with special reference to South Wales', Trans.Roy. Soc.Edin., 57, Pt.111(No.33), 789.

EDWARDS, W., WALKER, J.J. \& WANDLESS, A.M., 1938, 'A new interpretation of the Pollington boring, Yorkshire, Trans. Inst. Min.Eng., 25, Pt.2, 147.

FLORIN, R., 1936, 'On the structure of the pollen grains in the Cordaitales', Svensk. bot.tidsk., 30, No. 3, 624. 1937, 'On the morphology of the pollen grains of some Palaeozoic Pteridosperms', Ibid., 31, No.3, 305. GIBSON, W. \& others, 1905, 'The geology of the North Staffordshire Coalfields', Memoir Geol.Surv.Gt.Brit., H.M.S.O. \% others, 1925, 'Geology of the country around Stoke-on-Trent', Ibid. 1925.

HARTUNG, W., 1933, 'Die Sporenverh ${ }^{\text {HI }}$ tnisse der Calamariaceen', Inst. PalHobot.u.Petrog. der Brennsteine Arb., 3 No. 3, 95.

HESTER, S.W., 1931, 'The Millstone Grit succession in North Staffordshire', Summ, of Prog., Geol.Surv, Gt.Brit., $1931,34$.

HICKLING, G., 1927, 'Sections of strata of the Coal Measures of Lancashire', Andrew Reid, Newcastle, 1927. HOFFMEISTER, F., STAPLIN, L. \& MALLOY, R.E., 1955, 'Geologic range of Palaeozoic plant spores in North America', Micropalaeontology, 1 No.1, 9.

HORST, U., 1955, 'Die Sporae dispersae des Namurs von Westoberschlesischen und Mahrisch-Ostrau. Stratigraphischer vergleich der beiden Gebiete an Hand der Sporen-diagnose', Pulaontographiea, 98 B.

IBRAHIM, A.C., 1931, 'Beschreibung von Sporenformen aus Fl8z Agis r^{\prime}, in Potonié, R., 1931.
, 1933, 'Sporenformen des Agirhorizonts des Ruhrreviers', Dissertation, Berlin. Konrad Trilsch, Wurzburg, 2933.

JONES, R.C.B. \& others, 1938, 'Wigan District', Mem.Geol.Surv. Gt.Brit. H.M.S.O.

JONGMANS, W.T., 1952, 'Some problems on Carboniferous stratigraphy', lllième Congr.Stratr.Carbonif. Heerlen.1951, C.R.1, 295.

KIDSTON, R., 2894, 'On the various divisions of the British Carboniferous rocks as determined by their fossil flors', Proc.Roy.Phys.Soc. , 123, 183. , 1905, 'On the division and correlation of the upper portion of the Coal Measures with special reference to the Midland Counties of England', Q.J.G.S., 61, 308.

1923-25,' Fossil plants of the Carboniferous of Great Rritain', Mem.Geol.Surv.Gt.Brit., H.M.S.O.

KNOX, E.M., 1938, "The spores of the Pteridophyta with observations on the microspores in coals of Carboniferous age, Trans.Bot.Soc.Edin., 32, Pt. 111.

KNOX, E.M., 1939, The spores of Bryophyta compared with those of Carboniferous age?, Ibid., 32, Pt.2V.
, 1942, 'Mierospores in some coals of the Productive Coal Measures in Tifet, Trans.InstoMinoEngo, 101, Pt. 1. 1946. 'Microspores in the Productive Coal Measures of the Central Coalfield of Scotland', Ibid., 105, Pt.211.

- 1948, 'Microspores in coals of the Limestone Group in Scotland', Tbid., 107, Pt. 111. 2948, 'Spore development in the Archegoniates'. Trans.Bot.Soc.EAin., 35, Pt.1.

1949, 'Microspores and their biological significance', Tbid., 35, Pt. 21.
, 1950, "The spores of Lycopodium, Phylloglossum,
Selaginella and Isoetes and their value in the study of miorofossils of Palaeozoie age', Ibid., 35, Pt.111.

KOSANKE, R., 1950, 'Penneylvanian spores of Illinois and their use in correlation', I13inoie State Geol.Surv.. Bul2. 74.

LOOSE, F., 1934, 'Sporenformen aus den F18z Bismarek des Ruhrgobietes', Inst.Pallobot.u.Potrog.d.Brennsteine Arb. . 4, No. 3, 127.

LUBER, A.A. \& WALTZ, I.E., 1938, "Classification and stratigraphic value of spores of some Carboniferous coal deposits In the U.S.S.R.', Russia, Central Geol.Prosp.Inst. Trans. \&ase. 105.

MAGRAW, D., 1954, 'Note on a marine band occurring above the Red Mine at Llay Main Colliery', Summ, of Prog. for 1953, Geol.Surv.Gt.Brit., 41.

MBLVILLE, R.V., 1946, 'The non-marine lamellibranchs of the North Staffordshire Coalfield', Ann.Mag.Nat.Hist., 13. 289.

MILLOTY, J. ${ }^{\prime}$ N., 1938, 'The microspores of the coal seams of North Staffordshire, Pt.1 - The Millstone Grit Ten Feet coals, Trans.Inst.Min.Eng., 26, 317. , 2946, 'The microspores in the coal seams of North Staffordshire, Pt. 11 - the seams of the Cheadle coalfield', Ibid., 105, 91.

MITCHELL, G.H., STUBBLEFTELD, C.J. \& GROOKALL, R., 1942, 'The geology of the Warwickshire coalfield', Geol.Surv. Gt.Brit., Wartime Pamphlet No. 25.

MITCHELL, G.H., 1945, The geology of the northern part of the South Staffordshire coalfield (Cannock Chase region, with palaeontology by C.J.Stubblefield)', Ibid.,No. 43.

MOORE, L.R., 1945, 'On the spores of some Carboniferous plants', Q.J.G.S., 102, 251.

POOLE, E.G. \& WHITEMAN, A.J., 1954, 'Exploratory boreholes in the Prestwich area of the south-east Lancashire coalfield', Trans.Inst.Min.Eng., 114, Pt.4, 291.

POTONIE, R., 1931, 'Sporenformen aus den Fl甘zen Agir und Bismarck des Ruhrgebietes', Neues Jahr., 67, Abt. B, 438.
, 2954, 'Stellung der pallozoischen Sporengattungen im nattirlichen System', Palaßnt. Zeit, 28, 103. \& KREMP, Go, 1954, 'Die Gattungen die pallozoischen Sporae dispersae und ihre Stratigraphie', Geol.Jb., $69,111$.
\& \qquad , 1955. 'Die Sporae dispersae des Ruhrkarbons, ihre Morphographie und Stratigraphie mit Ausblicken auf Arten andere Gebiete und Zeit abschnitte', PHlaontographica B.

RADFORTH, W.N., 1938, 'An analysis and comparison of the structural features of Dactylotheca plumosa and Senftenbergia ophiodermatica, GBppert sp.', Trans.Roy.Soc.Edin.,59.

RAISTRICK, A. \& SIMPSON, J., 1933, 'The microspores of some Northumberland coals and their use in the correlation of soal seams', Trans.Inst.Min.Eng., 85, Pt.4, 225. RAISTRICK, A., 1934, 'The correlation of coals by mierospore content. Pt.1 - the seams of Northumberland', Ibid., 88, Pt.3, 142. , 1939, 'The correlation of coal seams by microspore content, Pt. 11 - The Trencherbone Seam, Lancashire and the Busty Seam, Durham', Ibid., 97, 425.

REINSCH, P.F., 1884, 'Micro-Palaeophytologia formationis Carboniferae, Vol.1, Continens Triletes et Stelidean,' Erlangae, Germania, Thomas Krische. REMY, W., 1954, 'Monosaccate Pteridospermenpollen aus dem Karbon und Perm sowie eine allgemeine Betrachtung der palaozoischen Pollen mit Luftsack', PalHont Zeit, 28, 140.
\qquad 1955, 'Untersuchungen von kohlig erhaltenen fertilen und sterilen Sphenophyllen und Formen unsicherer systematischer Stellung', Abhandlungen der deutschen Akademie der Wissenschaften zu Berlin, 1955, No. 1. REMY, R. \& REMY, W., 1955, 'Mitteilungen \#ber Sporen, die aus inkohlten Fruktifikationen von echten Farnen des Karbon gewonnen wurden', Ibid., No. 1.

\qquad , 1955, 'Simplotheca silesiaca n.gen. et sF.', Tbid, No. 2.

REMY, W., 2955, 'Tinige Grundzilige der Entwicklung von Pflanzen mit Pteridospermen Markmalen in Laufe der Erdgeschichte', Ibid, No. 2.

SCHOPF, J.M., WILSON, L.R. \& BENTALL, R., 1944, 'An annotated synopsis of Palaeozoic fossil spores and the definition of generie groups', Illinois state Geol. Surv, Report of Investig. 91.

SCHULZE, F., 1855, 'Uber da Vorkomeen wohlerhaltener Zellulose in Braunkohle and Steinkohle', Berlin K.Akad.Wiss. Berlin, 676.

SIMPSON, H.H., 1935, 'Notes on a marine band in the Denbighshire coalfield', Geol.Mag. , 72, 165.

THIESSEN, R. \& WILSON, F.E., 1924, 'Correlation of coal beds of the Allegheny Formation of Western Pennsylvania and Eastern Ohio', Coal Mining Investigations, Carnegie Inst., Tech. Bull. 10.

TOMKS, I.H. \& others, 1931, The geology of Manchester and the southeast Lancashire Coalfield', Mem.Geol.Surv. Gt. Brit., H.M.S.O.

TROTRER, F.M. , 1952, 'Exploratory boring in south-west Lancashire', Trans.Inst.Min. Eng., 112, 268. TRUEMAN, A. स., 1933, 'A suggested correlation of the coalfields of England and Wales' Proc.S.Wales Inst. Eng. . 49, 63. - 1946, 'Stratigraphical problems in the Coal Measures of Europe and North America', Q.J.G.S., 102, xix. , 1947, 'Stratigraphical problems in the coalfields of Great Britain', Ibid., 103, Pt. 2, xxv. , 1954, 'Coalfields of Great Britain, London, Edward Arnold, 1954.

WALKER, J.J., 1942, 'The restricted time ranges of two types of fossil microspore in the Coal Measures of Yorkshire and Nottinghamshire', D.S.I.R. Coal Survey Report.

WEDD, C.B. \& others, 1923, 'The geology of Liverpool with Wirral and part of the Flintshire coalfield', Mem.Geol. Surv.Gt.Brit., H.M.S.O.

WEDD, C.B. \& KING, W.B.R., 1924, The geology of the country around Flint, Hawarden and Caergwrle', Ibid. WEDD, C.B. \& others, 1928, The geology of the country around Wrexhan', Ibid.

WILIIAMS, R.W., 2955, 'P4tyosporites westphalensis, sp.nov., an abietinious type pollen grain from the Coal Measures of Britain', Ann.Mag.Nat.Hist., Ser.12, 8, 465.

WILSON, L.R. \& COE, E.A., 1940, 'Descriptions of some unassigned plant microfossils from the Des Moines Series of Iowa', Am.Mid.Nate, 23, No.1, 182.

WOOD, A., 1937, The non-marine lamellibranchs of the North Wales coalfield', Q.J.G.S., 23, 1.

WRAY, D.A., SLATER; L. \& EDDY, GoE., 1930, TThe correlation of the Arley Mine of Lancashire with the Better Bed of Yorkshire', Summ.Prof.Geol.Surv.Gt.Brit., 1930, Pt.11, 1.

WRIGHT, W.B. \& others, 1927, The geology of the Rossendale Anticline', Mem.Geol.Surv.Gt.Brit., H.M.S.O. ZERNDT, J., 1934, 'Les Megaspores du bassin Houiller Polonois', I. Acad. Pol. des Sci. et des Lett., Trav.Geol., No. 1. , 1937. 'Les Megaspores du bassin Nouiller Polonais', 11. Ibid., No. 3. , 1938, 'Die Eignung von Megasporen als Leitfossilien', 1lième Congres de Stratigraphie Carbonifiere, Heerlen, 1935, C.R.3, 1711.

ZETSCHE, F. \& KALIN, O., 1932, 'Untersuchungen uber die Membran der Sporen und Pollen', Helv.Chim.Acta., 15, 412.
XII. EXPLANATION OF FIGURES.

Fig. 1. Fossil microspores. Magnification $\times 500$. Facing page 14 . 1. Densosporites annulatus (Loose) S.,W. \& B.
2. D. indignabundus (Loose) S.,W. \& B.
3. Spinososporites spinulistratus (Loose) Knox.
4. Cirratriradites striatus Knox.
5. Schulzospora ovata (Balme)
6. Laevigatosporites desmoinensis (Wilson \& Coe) S.,W. \& B.
7. Florinites antiquus Schopf.
8. Reticulatisporites mediareticulatus Ibrahim.
9. Pityosporites westphalensis Williams.
10. Cirratriradites aligerens Knox.
11. Florinites millotti Butterworth \& Williams
12. Girratriradites tenuis (Loose) S.,W. \& B.
13. Triquitrites sculptilis Balme.
14. Endosporites globiformis (Ibr.) S.,W. \& B.
15. Densosporites solaris Balme
16. Reticulatisporites tortuosus Balme.

Fig. 2. Fossil microspores. Magnification $\times 500$. Facing page 15 .
17. Retioulatisporites magnus Butterworth \& Williams
-18. Microreticulatisporites quaesitus (Kosanke) B.\& W.
19. M. fenestratus (Kosanke) B. \& W.
20. Endosporites costatus Belme

Fig. 2 Continued..
21. Torispora securis Balme
22. Microreticulatisporites sulcatus (Kosanke)
23. Laevigatosporites obscurus Kosanke.
2h. Cadiospora magnus Kosanke
25. Laevigatosporites pseudothiessenii Kosanke
26. Raistrickia medusa Williams
27. Laevigatosporites oculus Williams
28. Gravisporites sphaerus (B.\& W.) Bhardwaj.
29. Schopfites dimorphus Kosanke
30. Triquitrites inusitatus Kosanke

Fig. 3. Map of coalfields lying to the west of the Pennines showing sampling localities. Facing page 21.
Fig. 4. Microspore distribution in the coalfield of North Staffordshire. End of paper.

Fig. 5. Microspore distribution in the coalfield of Cannock Chase. End of paper.

Fig. 6. Microspore distribution in the coalfield of South Staffordshire. End of paper.

Fig. 7. Microspore distribution in the coalfield of Flintshire (North Wales). End of paper.

Fig. 8. Microspore distribution in the coalfield of Denbighshire (North Wales) End of paper.

Fig. 9. Microspore distribution in the coalfield of Laneashire.

Fid of paper.
Fig.10. Microspore distribution in the coalfield of Coalbrookdale (Shropshire)

End of paper.
Fig.il. Microspore distribution in the coalfield of Forest of Wyre (Shropshire) End of paper.
Fig.12. Microspore distribution in the coalfield of Warwickshire End of paper.
(a) Sample localities.

NORTH STAFFORDSHIRE

Name
of
Seam
$729^{\prime \prime} 3^{\prime \prime}$
$1003^{\prime \prime} 10^{\prime \prime}$
$1067^{\circ} 0^{\prime \prime}$
Red Shagg
$1097^{\circ} 6^{\prime \prime}$
Red Mine
$1264^{\circ} 0^{\prime \prime}$
Hoo Cannel
Bassey
$1298^{\circ} 6^{\prime \prime}$
$1322^{\prime} 0^{\prime \prime}$
$1395^{\circ} 0^{\prime \prime}$
$1450^{\prime} 0^{\prime \prime}$
Peacoek
Spencroft Tops
$1503^{\circ} 0^{\prime \prime}$
$1564^{\prime} 0^{\prime \prime}$
$1824^{\circ} 6^{\prime \prime}$
$1873^{\circ} 6^{\prime \prime}$
$2016^{\circ} 0^{\prime \prime}$
Winghay
2343^{\prime} on $^{\prime \prime}$ Rowhurst
$2355^{\circ} 0^{\prime \prime}$
2438' 6" Burnwood
2455 0" Twist
$3038^{\circ} 0^{\prime \prime}$ Granville
3152' O" Four Feet
3162. $0^{\prime \prime}$ Two "

3233' 6" Five "
$3313^{\circ} 6^{\prime \prime}$ Ragman
$3367^{\circ} 0^{\prime \prime}$
$3496^{\circ} 0^{\prime \prime}$
$3607^{\prime} 6^{11}$
$3624^{\prime} 6^{\prime \prime}$
$3733^{\circ} 0^{\prime \prime}$ Bowling Alley
$3740^{\prime} 0^{\prime \prime}$ Holly Lane
3861' O" Hard Mine
$3955^{\prime} 0^{\prime \prime} \quad 7$ Ft. Benbury
$1516^{\prime} 11^{\prime \prime}$
$1521^{\prime \prime} 0^{\prime \prime}$
1538'10" Chalkey
1681'11" Bay
1711' $6^{\prime \prime}$ Winghay
$1742^{\prime} 0^{\prime \prime}$
$1789^{\circ} 10^{\prime \prime}$
$1800^{\prime \prime} 9^{\prime \prime}$

		Colliery, Borehole or Opencast Site	Name of Seam
661	1	Moddershall Churchyard (outcrop) (55)	? Keele Group
316	2	Downing's Marl Pit, Etruria ${ }^{\prime}$ (46)	Newcastle Group
317	3	Trentham-Whitmore Rd. $\quad 1$ (52)	"
319	4	Marl Pit nr.Penkhull $\quad 1$	"
320	5	Downing's Marl Pit Chestertan ${ }^{\text {" }}$ (43)	Etruria Marl
367	6	Hungerford $\mathrm{B}_{6} \mathrm{H} .(44)$ (4) $988^{\circ} \mathrm{O}^{\prime \prime}$	"
323	8	Marl Pit nr.Tunstall (outerop) (40)	n ${ }^{\text {n }}$
344	18	Silverdale Colliery (45)	Sheath
345	19	\#	Chalkey
346	21	Wilkinson's Marl Pit (outerop) (41)	Bungilow
347	22	" \quad "	Unnamed 20' below
376	34	Stafford Colliery (49)	TwLst
649	36	Hem Heath Colliery (53)	Moss
378	39	Florence Colliery (54)	Yard
324	41	Stafford Colliery (49)	Hams
325	42	"	31rches
326	44	Chatterley Whitfield Colliery (39)	Bellringer
334	50	Adderley Green Colliery (50)	New
332	51	" "	Little
382	53	Chatterley Whitfield Colliery (39)	Cockshead
337	54	Norton Colliery (42)	Whitehurst
335	55	" ${ }^{\prime \prime}$	Bullhurst
381	56	Victoria " (38)	Winpenny
389	57	Gillow Heath Colliery (36)	Brickiln
390	58	"	Silver
391	59	" ${ }^{\prime \prime}$	Little Cannel Row
392	60	" ${ }^{\prime \prime}$	King
393	61	Woodhouse Colliery (51)	Crabtree
394	62	Congleton Edge (outcrop) (37)	Sandrock Mine
448	63	" ${ }^{\text {" }}$	Holcombe Brook
446	64	Limekiln Wood " (35)	Astbury Coal

SOUTH STAFFORDSHIRE

1432	1	Baggeridge	No. 1 B. H.	(74)
1339	2	"	"	
1433	14	"	"	
1434	15	"	"	
732	3	Baggeridge	No. 5 B. H.	(75)
733	4			
734	5	"	"	
735	6	"	"	
736	7	"	"	
737	8	"	"	
738	9	"	"	
739	10	"	"	
740	11	"	"	
741	12	"	"	

$2034^{\prime} 10 / 2^{\prime \prime}$ Halesowen Beds $2128^{\prime \prime} 7^{\prime \prime}$ Brooch 2410'11" 2423' 3" Mealy Greys 2190'10" Flying Reed 2288' 4/2/" Thick 2302' $3^{\prime \prime}$ Upper Heathen 2315' 6" Lower " 2338' $1^{\prime \prime}$ Stinking 2367'10" New 2376" $1^{\prime \prime}$ " $2379^{\prime} 6^{\prime \prime} \quad$ " 2387' $8^{\prime \prime}$ $2406^{\prime \prime} 10^{\prime \prime}$

> Colliery,
> Borehole
> or
> Opencast site

742	13
743	14
744	15
745	16

Baggeridge	No.
"	"
"	B.H. (75)
"	"
	"

[^0]Name
of
Seam

NORTH WALES (FLINTSHIRE)

153	1	Point of Ayr Colliery
154	2	" ${ }^{\prime \prime}$
155	3	"
156	4	" ${ }^{\prime \prime}$
157	5	" 1
158	6	17
533/4	7	" ${ }^{\prime \prime}$
535	8	11
666	8	Tre Mostyn o/c (25)
692	9	Felin Blwm o/c (23)
676	9	Hen Dyffryd o/c (24)

NORTH WALES (DENBIGHSHIRE)

704	3	A5/6 Pen-y-Ilan B.H. (31)	366 ${ }^{17 / 211}$	
725	4	" ${ }^{\text {" }}$	$580^{\prime} 5 \%^{\prime \prime \prime}$	
726	5	" 1	$604^{\prime \prime} 1^{\prime \prime}$	
858	6	"	$802^{\prime \prime} 3^{\prime \prime}$	
727	7	11	$855^{\circ} 1^{\prime \prime}$	
852	9	" 11	$1766^{\circ} 0^{\prime \prime}$	
853	10	\% ${ }^{\text {n }}$	$1794^{\circ} 11 / 2^{\prime \prime}$	
854	11	" 11	$1878{ }^{\prime \prime} 11 /{ }^{\prime \prime}$	
855	12	"	2101' $41 / 2^{11}$	
859	13	*	$2165^{\prime} 6^{\prime \prime}$	
856	14	" 11	$2197^{\prime \prime} 5^{\prime \prime}$	
857	15	" ${ }^{\prime \prime}$	2221' $5^{\prime \prime}$	
860	20	" ${ }^{\prime \prime}$	2531' $4^{\prime \prime}$)	Powell and
861	21	" ${ }^{\text {n }}$	$\left.2538^{\prime \prime} 1^{\prime \prime \prime}\right)$	Drowsell
862	24	"	$2658^{\prime} 6^{\prime \prime}$	Two Id.\& ?Crank
864	25	"1 ${ }^{\prime \prime}$	$2724^{\prime} 11^{\prime \prime}$	Quaker
865	30	" "18	$2803^{\prime} 0^{\prime \prime}$	Main, Pin \& Crowr
866	31	"	$2864^{\prime \prime} 9^{\prime \prime}$	Ruabon Crank

86832
$893 \quad 33$
88934
$891 \quad 37$
89238
$399 \quad 2$
4009
40110
501.22
$402 \quad 23$
$403 \quad 25$
$404 \quad 27$
$\begin{array}{ll}405 & 29 \\ 406 & 32\end{array}$
407/10 33
$411 \quad 34$
41235
41336
$546 \quad 13$
$545 \quad 16$
608
164
548
549
290
551
180
169
552
553
554
555
556
175
557
559
566
609
497
694
596

wres jo esra of पұded
2909' 0" Unnamed 2931'10") Half Yard, $2942^{\prime \prime} 8^{\prime \prime}$) Benches \& Firecle $3016^{\prime} 4^{\prime \prime}$ Nant \& Lr. Yard $3078^{\prime} 6^{\prime \prime}$ Wall and Bench $232^{\circ} 0^{\prime \prime}$ $1397^{\prime} 0^{\prime \prime}$ Bersham Yard. $1430^{\circ} 0^{\prime \prime}$ $2031^{\prime \prime} 0^{\prime \prime}$ Two Yard 2056' 6" Crank 2082" 6" Quaker
2204' 6" Main
2279 ${ }^{\circ} 0^{\prime \prime}$ Crown $2335^{\circ} 0^{\prime \prime}$
$2359^{\prime \prime} 0^{\prime \prime}$ Fireclay
$2416^{\prime} 0^{\prime \prime}$ Stone
2456' $6^{\prime \prime}$ Nant
2514' on R Ruabon Tard $^{\prime \prime}$ Wynnstay 5ft.
Warras
John of Gate Bottom Droughy
Syith
Drowsell
Smith
Powell
Two Yard
Crank
Quaker
Black Bed
Main
Pin
Crown
Fireclay
Stone
Ruabon Yard
Wall and Bench Lower Queen

Lwyn-onn Mill, Marchweil(outcrop) (29) Criffin's Farm 0/C (34)
Dee \& Ceirog Junction (outorop) (33)

		Colliery, Borehole or Opencast Site		
1361	15	A2/57 Lowton B.H. (16)	1944' 7 "	Parker
1362	22	"	$2395^{\prime \prime} 9^{\prime \prime}$	Park Yard
1363	23	" "	$2417{ }^{\prime \prime}{ }^{\prime \prime}$	Top Ince Yard
1364)	24	" "	2438' 311	Bot. " "
1365)	24	" "	$2442^{\prime \prime} 8^{\prime \prime}$	Ince Deep Yard
1366	2.6	" "	2495' $2^{\prime \prime}$	Ince 4 ft .
1367	30	" "	$2637^{\prime \prime}{ }^{\prime \prime}$	Rams
1368	35	" " ${ }^{\prime \prime}$	$2762^{\prime \prime}{ }^{\prime \prime}$	Pemberton 5 ft .
1369	36	" "	$2794^{\prime \prime} 4^{\prime \prime}$	Bickershaw 7'
1370	937	" "	$2856^{\circ} 5^{\prime \prime}$	
2371	42	" " ${ }^{\prime \prime}$	$3010^{\prime} 10^{\prime \prime}$	Wigan 4 ft .
1372	45	"	$3102^{\prime \prime} 0^{\prime \prime}$	Peacock
1307	4	Al/12 Patricroft B.H. (18)	$1075{ }^{\prime \prime}{ }^{\prime \prime}$	
1308	5	" Patril	$1110^{\prime \prime}{ }^{\prime \prime}$	
1310	20	" ${ }^{\prime \prime}$	1861* $1^{\prime \prime}$	Worsleg 4 ft
1311	11	" "	1884' ${ }^{\prime \prime}$	
1312	19	" "	$2454^{\prime \prime} 6^{\prime \prime}$	
1313	20	" "	2461' ${ }^{\prime \prime}$	
1314	24	" "	$2616^{\prime \prime} 3^{\prime \prime}$	Binn
1315	26	" "	2677'11"	Crombouke
1316	27	" "	$2696^{\prime \prime}{ }^{\prime \prime}$	
1317	28	" "	2707 ${ }^{11}$	Brassey
1318	30	" "	$2859^{\prime \prime} 4^{\prime \prime}$	Rams
1319	31	"	2863' ${ }^{\prime \prime}$	Little Rams
1075	3	A1/2 Drinkwater Park B.H.(20)	481. $0^{\prime \prime}$	Bradford 48 ft .
1076	4	" "	$641^{1 / 8}$	" Yard
1077	5	" ${ }^{\prime \prime}$	$681{ }^{\prime \prime}$	New
1078	10	" "	$1671^{\prime} 0^{\prime \prime}$	Worsley 4 ft .
1080	11	" "	$1684^{\prime} 2^{\prime \prime}$	
1057	19	" "	2342' $9^{\prime \prime}$	
1056	20	" "	$2350^{\prime \prime} 7^{\prime \prime}$	
1055	21	" "	2391' ${ }^{\prime \prime}$	
1058	23	" "	$2456^{\circ} 0^{\prime \prime}$	Stone Delph
871	24	" "	$2536{ }^{\prime \prime}{ }^{\prime \prime}$	Binn
872	26	" "	$2637{ }^{\prime \prime}{ }^{\prime \prime}$	Shuttle
873	28	" " ${ }^{\prime \prime}$	$2647^{\prime \prime} 3^{\prime \prime}$	Crombouke
874	30	" " " ${ }^{\prime \prime}$	$2779^{\circ} 1^{\prime \prime}$	Rams
288	?	Al/1 Prestwich Asylum B.H.(19)	$284^{\circ} 2^{\prime \prime}$	
289	8	" ${ }^{\prime \prime}$	$308{ }^{\prime \prime} 6^{\prime \prime}$	
244	9	" "	$419^{\prime} 1^{\prime \prime}$	
294	10	" "	$572^{\prime \prime} 10^{\prime \prime}$	Worsley $4 f t$.
295	12	" "	$601^{\prime \prime} 7^{\prime \prime}$	

$x+1$

LANCASHTRE	Continued ..					
	Colliery, Borehole or Opencast Site				\bigcirc	Name of Seam
					ロッ	
$245 \quad 13$	A1/1	Prestwich	Asylum	B. H. (19)	6271 ${ }^{\prime \prime}$	Parker
$246 \quad 14$						
29615		,	"		$756^{\prime} 10^{\prime \prime}$	
105916		"	"		$932^{\prime} 10^{\prime \prime}$	
104818		"	"		1314: ${ }^{\prime \prime}$	
104720		"	"		$1350{ }^{\prime \prime}{ }^{\prime \prime}$	
104621		"	"		$1390^{\prime \prime} 4^{\prime \prime}$	Ashclough
1050		"	"		$1408{ }^{\prime \prime}$	
104923		"	"		$1464{ }^{\prime \prime} 6^{\prime \prime}$	Stone Delph
87524		"	"		1529'11"	Binn
87625		"	"		$1550{ }^{\prime \prime}$	
87726		"	"		$1622^{\prime \prime}{ }^{\prime \prime}$	Shuttle
87928		"	"		$1636{ }^{\prime \prime} 10^{\prime \prime}$	Crombouke
88030		"	"		1831' $9^{\prime \prime}$	Rams
$1060 \quad 35$		"	"		$2005^{\prime} 0^{\prime \prime}$	Windmill
1062)		"	11		$2250 \cdot 11{ }^{\prime \prime}$	White
1063) 36		"	"		2276: ${ }^{\prime \prime}$	
1064) 36		"	"		$2294{ }^{\prime \prime}$	
1065)		"	"		$2341^{\prime \prime} 7^{\prime \prime}$	Black
1066 ?38		"	"		$2483{ }^{\circ} 0^{\prime \prime}$	
1067/9 40		"	"		$2568{ }^{\prime \prime} 0^{\prime \prime}$	Doe
$1070 \quad 41$		"	"		$2583^{\prime} 3^{\prime \prime}$	Three-quarters
107142		"	"		$2704^{\prime \prime}{ }^{\prime \prime}$	Vietoria
107244		"	"		$2855^{\prime \prime}{ }^{\prime \prime}$	Trencherbone
107345		"	"		$2884^{\prime} 10^{\prime \prime}$	Dyehouse
107446		"	"		$30531{ }^{\prime \prime}$	Cannel
133652	A2/31	Heskin B	.H. (6)		$586^{\prime \prime} 10^{\prime \prime}$	Arley
41760		"	"		$2075{ }^{\prime \prime}{ }^{\prime \prime}$	Six Inch
148058	A2/92	Tontine	B. H. (9)		643 ! ${ }^{\prime \prime}$	Lower Mountain
148159		"	"		$670{ }^{\prime \prime}$	Rambler
$1510 \quad 61$					1005'11"	Sandrock
1476 ? ${ }^{18}$	A4/13	Mere Clov	ugh B.H.		$45^{\prime} 9^{\prime \prime}$	China
1477 ? 49		"	"		$80^{\prime} 0^{\prime \prime}$	Crackers
1478 ? 51		"	"		$246{ }^{\prime \prime} 8^{\prime \prime}$	Dandy
150654	A $4 / 17$	Cockden	Bridge	B.H. (4)	428' $5^{\prime \prime}$	Cemetry
150755		"	"		$615^{\prime}{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$	Cannel
151156		"	"		$632{ }^{\prime \prime}$	Upper Mountain
150958		"	"		$737^{\circ} 6^{\prime \prime}$	Union
1380	Cront	n Collie	ry (10)			Wigan Four Ft.
138144		"	\%			Trencherbone
1379 49		"	"			Haigh Yard
1378		"	"			Rushly Park

xiii

LAMCASHIRE Continued ..

Maceration
Number
Number on Fig. 9

Colliery
Borehole
or
Opencast site

1340	1	Alveley	No. 1 B.H. (73)
1341	2	"	"
1342	3	"	"
1343	4	"	"
1344	5	"	"
1345	6	"	"
1346	7	"	"
1347	8	"	"
1348	9	"	"
1349	10	"10	"
1350	11	"	${ }^{\prime \prime}$
1351	12	"	"
1352	13	"	"
1353	14	"	"
1354	15	"	"
1355	16	"	"
1356	17	"	11
1357	18	"	${ }^{\prime \prime}$
1358	19	"	"
1359	20	"	"
1360	21	"	"

WARWICKSHIRE

746	1	Amington	Hall B.H. (78)
747	2	"	"
748	3	"	"
749	4	"	"
750	14	"	"
751	15	"	"
752	17	"	"
753	18	"	"
754	19	"	"
755	20	"	"
756	21	"	"
757	22	"	"
758	23	"	"
759	24	"	"
760	26	"	"
761	27	"	"
762	28	"	"

1318^{\prime}	$6^{\prime \prime}$	
1384^{\prime}	$6^{\prime \prime}$	
1414^{\prime}	$6^{\prime \prime}$	
1436^{\prime}	$0^{\prime \prime}$	
1455^{\prime}	$\left.0^{\prime \prime}\right)$	Nine Feet
1460^{\prime}	$\left.6^{\prime \prime}\right)$	
1476^{\prime}	$2^{\prime \prime}$	
1521^{\prime}	$4^{\prime \prime}$	High Main
1542^{\prime}	$9^{\prime \prime}$	Smithy
$1607^{\prime} 8^{\prime \prime}$	Seven Ft.Thin	
1614^{\prime}	$4^{\prime \prime}$	Seven Feet
1632^{\prime}	$\left.3^{\prime \prime}\right)$	
1635^{\prime}	$6^{\prime \prime \prime}$	Trencher Series
1637^{\prime}	$\left.8^{\prime \prime}\right)$	
1673^{\prime}	$6^{\prime \prime}$	Yard of Tamworth
1710^{\prime}	$\left.3^{\prime \prime}\right)$	Deep Rider
$\left.1715^{\prime} 10^{\prime \prime}\right)$		

WARWICKSHIRE Continued.

		Colliery, Borehole or Opencast Site		Name of Seam
763	29	Amington Hall B.H. (78)	$\left.1724^{\prime \prime} 6^{\prime \prime}\right)$	Double
764	30	-	1731', 1")	
765	31	" "	1778 ${ }^{\prime \prime}{ }^{\prime \prime}$	Sench
766	32	" "	$1830^{\circ} 6^{\prime \prime}$	$?$ Stumpy
767	33	" "	$1866^{\prime} 10^{\prime \prime}$	Stanhope
768	34	"	$1988^{\circ} 0^{\prime \prime}$	
769	35	"	1992 ${ }^{\prime \prime}$	
1305	5	Ansley Hall Drift (80)		Two Yard
1304	6	" "		
1303	$?$	" ")	Ryder
1302	8	" ")	
1301	12	" "		
1424	16	" "		High Main
1300	18	" "		High Main
1299	19	" " "		
1298	20	" "		Seven Ft. Thi
1297	21			
1466	7	Kingsbury Collilery (79))	Ryder
1467	8	" ")	Nat
1468	9	" "		
1469	10	" "		211
1470	11	" "		
1471	14	"		Nine Feet
1472	15	" "		
1473 817	18	Coventry Colliery (81)		$\begin{aligned} & \text { High Main } \\ & \text { Two Yard } \end{aligned}$
817 818	5 6			Bare
819	13	" "		Ryder and Ell
820	16	" "		Nine Feet
1265		Bolehall B.H. (77)	c. 1015	
1266	20	"	c. $10325^{\prime \prime}$	Seven $\mathrm{Ft.Thin}$
1180	21	"	$1032{ }^{\text {1/ }}$	Trencher
1181	25	"	$1046^{\prime \prime}{ }^{\prime \prime}$	Yard
1182	26	"	$1075^{\circ} 3^{\prime \prime}$	Bench
1267	31	"	$1115^{\prime} 10^{\prime \prime}$	Bench
1268	32	"	$1168^{\prime} 0^{\prime \prime}$	Stumpy
1269	33	$\stackrel{\text { " }}{\text { stateld B.H. }}$ (76)	1198 $8^{\circ}{ }^{\circ} 0^{\prime \prime \prime}$	
1029	36 37	$\underset{\mathrm{n}}{\text { Statfold B.H. }}$ (76)	$926^{\prime} 6^{\prime \prime}$	
1030	37		926	

(b) Microspore percentages.

The numbers along the tops of the tables refer to the maceration numbers given in the first part of the appendix.

```
SPORE TYPES
```

Lycospora spp.
Densosporites annulatus
Densosporites ai
D. indignabu
D. solaris
Calamospora spp.
Spinososporites spp
Spinososporites spp.
S. sp. (Millott's type 4)
$\frac{\text { S. sp. (Millott's }}{\text { S. spinulistratus }}$
Raistrickia spp.
$\frac{\text { R. medusa }}{\text { Cirratriradites striatus }}$
C. sp.
C. aligerens
C. saturni
Endosporites spp.
Schulzospora ovata
Florinites spp.
T. antiquus
Pityosporites westphalensis
Priquitrites spp.
T. sculptilis
T. inusitatus
Ahrensisporites spp.
Laevigatosporites spp.
L minutus
. minimus
L. obscurus
L. oculus
$\frac{\text { L. pseudothiessenii }}{\text { Reticulatisporites mediareticulatus }}$
R. tortuosus
R. facetus
R. spp.
. magnus
Verrucososporites facierugosus
Alatisporites pustulatus
Reinschospora spp.
Microreticulatisporites quaesitus
fenestratus
M. parvipunctatus
M. reticulocingulum
. sulcatus
Porispora securis
rorispora securis
Gravisporites sphaerus
Gravisporites sphaer
Schopfites 0.1

K48	K42	K50	$\underline{K} 5$	K56	X59	K61	494	495	496	488	489	490	491	492	364	363	362	361	360	359	358	357	356
36.0	47.5	36.8	51.1	66.1	59.0	60.3	78.0	44.5	56.5	60.0	40.6	41.0	46.9	53.1	72.0	58.8	74.4	65.1	40.9	55.0	52.8	61.5	25.9
17.0	3.6	32.8	10.4	5.9	2.8	9.5							0.5							55.0	0.2	0.1	25.9
3.3	5.6	1.0		0.5	0.6	1.4										.					.	0.1	
											1.3									1.4	0.2		13.8
0.6	5.6 2.6	1.3	2.6	1.9 0.9	5.2 0.6	3.5 1.2	3.7 1.2	19.0 0.8	8.3 9.2	11.6	12.7 12.9	19.9 5.4	19.2 4.5	11.8	6.8	4.3	2.2	5.9 0.8	6.9	2.3	9.8	5.6	13.8
0.4	0.2	*	0.2	0.1		0.2				8.1	. 9	.		9.1	1.7	1.2	1.1	0.8	1.0	2.3 0.6	0.7	1.0	. 2
1.2	3.6	2.5	0.8	1.3	1.5	2.0	2.0	8.3	4.7	1.1	2.1	12.3	1.2	7.1	1.0	3.2	4.8	0.4	5.5	2.3	1.1	6.9	
1.6	0.8	1.0	0.8	0.6	1.4	0.3	1.3	1.9	1.7	0.7	2.3	1.3	1.4	0.9	0.6	0.4	0.6	0.3	1.1	1.3	2.1	1.3	1.7 1.0
0.4	0.4	0.7	1.0	0.6	0.3	1.1	0.5		0.2	1.3	0.1		0.8		0.7	0.2	0.3	0.2	0.4	0.2	0.9	0.4	0.4

Lycospora spp.
Densosporites annulatus D. Indignabundus D. solaris Spinososporites spp.

- sp. (Millott's type 4) - spinulistratus
aistrickia spp. . medusa
irratriradites striatus
- tp .
- allgerens
- saturni
ndosporites spp,
ndosporites costatus
horinites spp.
orinites s
- antiquus
ityosporites westphalensis
riquitrites spp.
- sculptilis

Inusitatus
evigatosporites spp
minutus
minimus
obscurus
oculus
ficulatisporites mediareticulatus
tortuosus
fecetus
sp0.
magnus
rrweososporites facierugosus
Aatisporites pustulatus
inschospora spp.
eroreticulatisporites quaesitus fenestratus
parvipunctatus
reticulocingulum
sulcatus
Crispora securis
Glavisporites sphaerus Shopfites dimorphus Remainder

SPORE TYPES

SPORE TYPES

 Spinososporites spp.
S. sp. (Millott's type 4) S. Spinulistratus Planiaporites spp. 2. medusa $\frac{\text { irratriradites striatus }}{\text { Cira }}$ c. sp.

```
. aligerens
```

. saturni
ndosporites spp.
schulzospora ovata
Indosporites costatus
lorinites spp.
P. antiquus
Pityosporites westphalensis
Iriquitrites spp.
c. Sculptilis
C. inusitatus
Ahrensisporites spp.
Laevigatosporites spp.
4. minutus
4. minimus
4. obscuru
L. pseudothiessenii.
Reticulatisporites mediareticulatus
R. tortuosus

- facetus

2. facetr
R. spp.
Verrucososporites facierugosus
1latisporites pustulatus
reinschospora spp.

Vicroreticulatisporites quaesitus 1. Penestratus - parvipunctatus - reticulocingulum 1. sulcatus

Corispora securis Cadiospora magna Gravisporites sphaerus chopfites dimorphus Remainder nainder

$$
\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}
6.4 & 10.0 & 14.2 & 16.7 & 18.0 & 15.4 & 11.1 & 8.8 & 4.3 & 14.8 & 9.6 & 1.8 & 20.2 & 11.9 & 23.2 & 8.6 & 18.0 & 11.6 & 14.2 & 14.5 & 11.1 & 8.7 & 9.1 & 5.5 \\
2.7 & 1.7 & 4.3 & 5.0 & 2.4 & 7.7 & 8.3 & 9.8 & 8.5 & 0.7 & 0.3 & 0.1 & . & 0.5 & & 9.2 & 0.4 & 0.4 & 1.4 & 1.0 & 0.3 & & 2.3
\end{array}
$$

$$
\begin{array}{rrrllllllllllllllllll}
12.5 & 14.0 & 0.1 & 2.5 & 0.3 & & 0.8 & 0.2 & 0.6 & 0.5 & 0.1 & & 1.3 & 0.2 & 3.9 & 0.9 & 0.8 & 6.2 & 4.6 & 0.8 & 0.4 \\
3.4 & 1.0 & 2.5 & 2.5 & 2.5 & 4.0 & 2.2 & 0.2 & 0.2 & 0.5 & 1.0 & 0.1 & 0.6 & 1.5 & 0.1 & 3.6 & 0.3 & 0.1 & 0.5 & 0.2 & 3.6 \\
0.5 & 0.5 & 0.5 & 0.4 & 0.7 & & 0.3 & 0.2 & 0.2 & 1.6 & 0.1 & & 1.1 & 1.9 & 0.3 & 1.3 & 1.3 & 1.3 & 1.0 & 1.2 & 1.3 \\
0.3 & 1.2 & 1.3 & 0.9 & 1.2 & 0.9
\end{array}
$$

$$
\begin{gathered}
0.3 \\
* \\
0.3
\end{gathered}
$$

$$
0.3
$$

.

$$
\begin{array}{ll}
0.4 & 0.9 \\
1.1 & 1.2
\end{array}
$$

$$
\begin{array}{lllllllllllllllll}
1.2 & 2.7 & 2.0 & 0.2 & 0.8 & 2.4 & 9.3 & 2.0 & 0.7 & 0.7 & 4.1 & 0.1 & 0.4 & 0.1 & 0.1 & 1.0 & 0.4 \\
0.2 & & 0.7 & 5.1 & 2.5 & 4.0 & & & & & & & & 0.1 & & & \\
0.6 & 0.3 & 1.2 & 0.8 & & 0.3 & & 0.4 & & & & 0.4 & 0.5 & & 0.2 & 0.3 & 0.1
\end{array}
$$

$$
0.3
$$

$$
\begin{array}{ccccccccccccccccc}
5.4 & 0.6 & 0.3 & 1.2 & 0.8 & & 0.3 & & 0.4 & & & 0.4 & 0.5 & & 0.2 & 0.3 & 0 \\
& 1.3 & 0.1 & 13.9 & 0.8 & 31.5 & & & & 0.4 & 0.5 & & 0.1 & 0.1 & 0.1 & 0.7 & 1.8 \\
& & & & & & 0.2 & & * & & & & & & & & \\
& & 0.1 & & & & 8.3 & 1.3 & 3.6 & & 0.1 & 0.1 & & 0.4 & & 0.3 &
\end{array}
$$

$$
0.3
$$

$$
0.1 \quad 0.2 \quad 0 .
$$

$$
\begin{array}{ccc}
1.5 & 1.3 & 1.5 \\
7.1 & 4.5 & 4.4 \\
& * & 0.2
\end{array}
$$

$$
1.3
$$

0.2	1.0	0.8		1.5
0.2		0.1		.5
.	1.0	0.1		0.3
		0.4	0.2	0.4

0.40 .4
$0.2 \quad 0.2$
0.1
0.7
0.4
0.2

SPORE TYPES
 Densosporites ann
D. solaris
$\frac{\text { Calamospora spp. }}{\text { Spinososporites }}$
$\frac{\text { Spinososporites sp. }}{\text { S. sp. (Millott's type 4) }}$ $\frac{\text { S. Sp. }}{\text { Spinulistratus }}$
Plaistrickita sppe.
Raistriuki
Cirratriradites striatus
$\frac{\text { C. } 5 p \cdot}{\text { C. tenuis }}$
C. aligerens
C. saturni

Schulzospora ovata
Endosporites costatus
Florinites spp.
$\frac{\text { F. antiquus }}{\text { F. millotti }}$
$\frac{\text { F. millotit }}{\text { Pityosporites }}$ westphalensis
Triquitrites spp.
$\frac{\text { T. sculptilis }}{\text { T. inusitatus }}$
Ahrensisporites spp.
Laevigatosporites spp.
L. Minutus
L. obscurus

L. pseudothiessenil R. tortuosus
R. facetus
R. spp.

Verrucososporites facierugosus Alatisporites pustulatus Reinschospora spp-
Microreticulatisporites quaesitus . Ienestratus
M. parvipunctatus
M. reticulocingulum M. sulcatus

Torispora securis Cadiospora magna Gravisporites sphaerus Schopfites dimorphus

828	829	830	831	832	833	834	835	836	1411	1412	1413	$\underline{1414}$	1415	1416	1417	1418	1419	1420	1421	1422	1458	1459	991
49.8	36.8	35.4	20.3	32.5	25.8	48.4	53.2	76.0	59.1	76.8	4.2	74.1	8.0	50.8	43.0	11.6	64.0	33.7	1.7	90.0	39.2	68.0	56.
						0.6	0.1				87.4	4.6	75.5	0.3	16.4	63.2	*	12.2	88.0		6.4		
						0.3	0.3	0.1	0.7	0.1	0.5	0.4	1.7		5.1	2.4	1.9	12.8	1.9	0.7	11.0	*	
					*	2.9	2.0	0.7															
7.4	9.2	21.3	12.8	15.8	41.4	18.1	20.4	9.6	6.4	7.8	2.8	3.9	5.3	21.7	6.0	2.9	8.3	9.9	2.1	3.8	13.2	11.2	3.1
9.4	4.6	3.6	3.6	1.7	0.9	0.8	0.7	0.4	2.7	1.5	0.5	0.4	0.8	1.0	0.9	1.7	1.0	1.8	0.2	1.1	1.8	5.4	1.1
	0.1	*			*	0.3				0.1	0.1			0.3		0.1					*		
4.4	0.4	4.4	0.8	32.7	6.7	2.3	2.1	0.5	4.4	1.8	0.1	0.7	0.1	0.3	-	0.4		2.9	0.1	*		7.3	23.5
3.1	3.7	3.5	5.5	2.2	1.5	2.5	2.1	0.8	1.0	0.4	0.8	0.9	0.8	0.4	0.9	1.0	0.3	0.5	1.3		8.5	3.9	1.4
0.2	0.9	0.6	0.2	0.5	0.7	0.3	0.4	0.2	1.9	1.3	0.1	1.2	0.3	2.0		0.5	6.7	5.4	0.8	1.1	5.0	2.1	.
						$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	0.8		5.5	0.1	0.1	0.7	$\begin{aligned} & 0.8 \\ & 0.3 \end{aligned}$	0.2	1.8	0.2	1.0	2.9	0.1 0.6		0.7	0.6	
1.2	0.3	0.2	0.2	*	0.1	0.3		*		0.5		0.2					0.3 0.6	0.5 0.5	0.6	0.1			
2.1	2.7		0.8	1.9	0.1	1.3	0.9	4.6	0.6	0.6	0.1	4.7		*	1.8	3.4	0.6	0.5	*				1.3
0.2	0.6	0.6	2.6		0.4	0.5	0.9	0.1	0.3	0.1													
0.9	0.6		2.0	1.5	0.6	0.7			0.2		0.1	0.2								*			1.3
3.9	0.4	6.3	18.0	$\begin{aligned} & 1.9 \\ & 0.1 \end{aligned}$	4.1	4.1	2.0	0.5	0.4	0.1		2.4				*							1.6
					0.1							0.2				*	*						
0.7 1.9	0.7 8.4	0.2 0.3	0.3		0.6	0.1	0.1				0.4					0.4	2.5		0.6		0.7		
1.9	8.4	0.3	2.3	0.3	*	1.2	1.0	*															0.9
11.0	25.5 4.6	20.2	29.3 3.8	5.8	14.0	11.3	12.3	6.4	15.6	6.6	2.7	5.4	6.3	22.3	24.1	10.4	12.8	14.6	1.9	3.2	11.0	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	8.1
3.0		2.5																					$0 .$
0.4		0.2		1.0	1.7	1.2	0.3	0.1	0.4	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	0.1			0.2	*	*	*		0.1		1.4		
				0.1	0.4	0.1	0.1																
		0.7			0.8	0.3	0.1		0.6	0.2			0.1	0.2				0.2					
				0.3	0.1	0.7	*			*						0.1							

Lycospora spp.
Calamospora spp.
Spinososporites spp.
Spinososporites sppe
S. sp. (Millott's type 4)
S. sp. (Millott's
S. spinulistratus
Planisporites spp
Raistrickis
$\frac{\text { R. medusa }}{\text { Rirratriradites striatus }}$
C. spo
C. aligerens
$\frac{\text { C. aligerens }}{\text { C. saturni }}$
$\frac{\text { Endosporites spp. }}{\text { Schulzospora ovata }}$
Schulzospora ovata
lorinites spp.
F. antiquus
Pityosporites westphalensis
Triquitrites spp.
T. sculptilis
. inusitatus
Ahrensisporites spp.
Laevigatosporites spp.
L. minutus
. minimus
L. obscurus
L. oculus
R. pseudothiessenii
Reticulatisporites mediareticulatus
R. tortuosus
R. tortuosus
R. facetus
R. sppo
Verrucososporites facierugosus
Alatisporites pust
Reinschospora spp.
Microreticulati
$\frac{M_{0}}{M_{0}}$ parvipunctatus
M. reticuloc
M. sulcatus
Carispora securis
Gadiospora magna
Gravisporites sphaery
Remainder

SPORE TXPES

Eycospora spp.

 Densosporites annulatus D. indisnab Calamospora spp. Spinososporites spm. $\frac{\text { Spinosospapites spye }}{\text { S. 3p. (Millotet's type 4) }}$ So spinuilstratus planisporites spp. Raistrickkia splo $\frac{R \text { - medusa }}{\text { Cirratrire }}$crratriradites striatus C. tenuis C. aliserens $\frac{\text { C. saturni }}{\frac{\text { Pidosporites spipe }}{\text { Schulzospora ovats }}}$ $\frac{\text { Schulzospora ovata }}{\text { Endosporites costatua }}$ Florinites sppo $\frac{F_{0} \cdot \text { antiquus }}{F_{0} \cdot \text { millotti }}$
pityosporites westphalenale
$\frac{\text { Triquitiritas sippo }}{\text { seulptilis }}$
$\frac{\text { P. sculptilis }}{\text { C. inusitatus }}$

Laevigratosporites sppo Lo. Minutus

 Io minizus T. oculus Lo pseudothiessenili Reticulatisporites mediareticulatus R. tortuosus - sperR. magnus Matisporites pustulatus Reinschospora spp.
Hicroreticulatisporites quaesitus

- fenestratus
M. parvipunctatus
$\frac{10 \text {. reticuloc }}{\text { M. sulcatus }}$
Morispora securia Cadiosmora mama Gravisporites sphaerus Schonfites dimorphus
 0.5

SPORE TXPES

Lycospora spp-
Densosporites annulatus
D. indignabundus
D. solaris
$\frac{\text { Spinososporites spp. }}{}$
$\frac{\text { Spinososporites spp. }}{\text { S. sp. (Millott's type 4) }}$
$\frac{\text { S. sp. (Millott's }}{\text { S. spinulistratus }}$
$\frac{\text { S. spinulistratus }}{\text { Planisporites spp. }}$
Raistrickia spp.
R. medusa
R. medusa
$\frac{C_{0} \text { sp. }}{\text { C. tenuis }}$
$\frac{\frac{\text { c. tenuis }}{\text { C. aligerens }}}{\text { C. saturni }}$
Endosporites spep.
$\frac{\text { Schulzospora ovata }}{\text { Endosporites costatus }}$
$\frac{\text { Endosporites costa }}{\text { Florinites spp. }}$
$\frac{\text { Plorinites spp }}{\text { F. antiquus }}$
F. antiquus
F. millotti
Pityosporites weste
$\frac{\text { Triquitrites spp }}{\text { T. sculptilis }}$
T. sculptilis
Ahrensisporites spp.
Ahrensisporites spp.
Laevigatosporites sppe
L. minutus
Lo minimus
L. oculus
Reticulatisporites mediareticulatus
R. tortuosus
$\frac{R_{0} \text {. tortuosu }}{\text { R. facetus }}$
R. spp.
Verrucososporites facierugosus
Alatisporites pustulatus
Reinschospora spp.
Microreticulatisporites quaesitus
M. fenestratus
M. parvipunctatus
M. reticulocingulum
M. sulcatus
Torispora securis
Cadiospora magna
Gravisporites sphaeru
dimorphus

SPORE TYPES

Lycaspora spp.
Densosporites annulatus
D. indignabundus
$\frac{\text { D. solaris }}{\text { Calamospora spp. }}$
$\frac{\text { Calamospora spp. }}{\text { Spinososporites spp. }}$
$\frac{\text { Spinososporites spp }}{\text { S. sp. (Millott's type 4) }}$
S. spinulistratus
Planisporites spp.
R. medusa
$\frac{\text { R. medusa }}{\text { Cirratriradites striatus }}$

C. Sp.
 C. aligerens
 C. saturni

Endosporites spp.
Schulzospora ovata
Endosporites costatus
$\frac{\text { Florinites sppe }}{\text { F. antituups }}$
F. antiquus
$\frac{\text { P. millottites }}{\text { Pityosporites westphalensis }}$
$\frac{\text { Pityosporites west }}{\text { Priquitrites spp. }}$
T. sculptilis

- inusitatus
$\frac{\text { Ahrensisporites sppo }}{\text { Laevigatosporites spp. }}$
L. minutus
L. minimus
L. obscurus
L. oculus
$\frac{\text { Reticulatisporites mediareticulatus }}{}$
R. tortuosus
R. facetus
R_{0} spp.
R_{0} magnus
Verrucososporites facierugosus
$\frac{\text { Alatisporites pustulatus }}{\text { Reinschospors }}$
Reinschospora spp.
icroreticulatisporites quaesitus
M. fenestratus
M. parvipunctatus
Mo reticulocingulur
M. sulcatus
Torispora securis
Cadiospora magna
Gravisporites sphaerus
Schopfites dimornhus
Schopfites dimorphus
Schoprites

SPORE TYPES
Lycospora spp. Densosporites annulatus D. indignabundus D. solaris

Calamospora spp. Spinososporites spp. S. Sp. (Millott's type 4) $\frac{\text { S. spinulistratus }}{\text { Planisporites spp }}$ planisporites spp Raistrickia spp
R. medusa C. Sp.
C. tenuis
C. aligerans
C. saturni

Findosporites spp. Schulzospora ovata
Endosporites costatus
Florinites spp.
F. antiquus

Pityosporites spp
Priquitrites spp.
T. sculptilis
T. inusitatus

Ahrensisporites spp.
Laevigatosporites spp.
L. minutus
L. minimus
L. oculus
L. pseudothiessenil

Reticulatisporites mediareticulatus R. tortuosus
R. facetus
R. spp.
R. magnus

Alatisporites pustulatus
Alatisporites pustulatus
Microreticulatisporites quaesitus M. fenestratus
M. parvipunctatus
M. reticulocingulu 1. sulcatue

Torispora securis diospora marna Gravisporites sphaerus Schopfites dimorphus Remainder

 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}4.0 & 5.5 & 2.3 & 2.0 & 5.4 & 7.8 & 9.9 & 5.0 & 15.8 & 6.5 & 13.8 & 9.8 & 15.7 & 2.2 & 6.1 & 5.5 & 5.5 & 14.1 & 12.1 & 20.5 & 5.0 & 10.9 & 7.5 & 16.1 \\ 4.1 & 3.7 & 0.2 & 0.8 & 3.1 & 1.6 & 2.3 & 0.9 & 0.2 & 2.5 & 5.1 & 2.2 & 2.9 & 2.3 & 2.6 & 3.0 & 0.2 & 3.8 & 0.8 & 4.4 & 3.7 & 2.0 & 3.9 & 3.2\end{array}$
 $\begin{array}{lllllllllllllllllllllll}1.4 & 0.7 & 0.2 & 0.7 & 1.0 & 1.6 & 2.3 & 1.9 & 1.3 & 0.7 & 7.0 & 1.5 & 1.6 & 1.6 & 2.1 & 2.7 & 3.2 & 1.5 & 0.5 & 2.0 & 2.9 & 1.3 & 2.9 \\ & 0.1 & 0.3 & 0.2 & 0.3 & 0.2 & 0.2 & * & 0.2 & 0.2 & 0.7 & 2.5 & 0.4 & 0.3 & 0.4 & 0.6 & 0.2 & 0.5 & 0.4 & 1.3 & 0.2 & & 0.2\end{array}$

$$
\begin{aligned}
& 1.7 \\
& 0.2
\end{aligned}
$$

$$
4.1
$$

| | 0.3 | 0.2 | 1.2 | 0.9 | 0.2 | 0.3 | 1.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 3.0$

$$
0.3
$$

0.5
3.0

$$
\begin{array}{ccc}
0.2 & 0.6 & 0.2 \\
0.3 & & 0.2 \\
0.5 & 0.9 & 0.2 \\
. & 0.5 & *
\end{array}
$$

0.6
0.1
0.30 .2
0.10 .20.
*

```
SPORE TYPES
```

Lycospora spp.
Densosporites an
D. indignabundus
$\frac{\text { Densosporites ann }}{\text { D. indignabundus }}$
$\frac{D_{0} \text {. indignab }}{\text { D. solaris }}$
$\frac{\text { Calamospora spp. }}{\text { Spinososporittes spp. }}$
Spinososporites spp.
$\frac{\text { S. sp. (Millott's t }}{\text { S. spinulistratus }}$
S. spinulistratus
$\frac{\text { Planisporites spp }}{\text { Raistrickia spp. }}$
$\frac{\text { Raistrickia spp. }}{\frac{\text { R. medusa }}{\text { Cirratriradites striatus }}}$
Cirratrira
C. $5 p$.
C. tenuis
c. tenuis
c. saturni
Endosporites spp.
Schulzospora ovata
Endosporites costatus
Florinites sppo
F. antiquus
F. millotti
Priquitrites spp.
T. sculptilis
T. inusitatus
$\frac{\text { Arensisporites sppo }}{\text { Laevigatosporites spp. }}$
Laevigatosporites sop.
L. minutus
L. minimus
$\frac{\text { L. obscurus }}{\text { L. oculus }}$
Reticulatisporites mediareticulatus
R. tortuosus
R. facet
Verrucososporites facierugosus
Alatisporites pustulatus
Reinschospora spp.
$\frac{\text { Microreticulatisporites }}{\text { M. fenestratus }}$
$\frac{M_{0} \text { fenestratus }}{M_{0} \text { parvipunctatus }}$
$M_{\text {. parvipunctatus }}^{M_{\text {. }}}$ reticulocinguIum
M. sulcatus
Torispora securis
Gravisporites sphaerus
$\frac{\text { Gravisporites sphaerus }}{\text { Schopfites dimorphus }}$

SPORE TYPES

 Densosporites annulatus D. indignabundus $\frac{\text { D. Solaris }}{\text { Colamospora spp }}$ Spinososporites spp. S. sp. (Millott's type 4) S. spinulistratus $\frac{\text { planisporites spp }}{\text { Raistrickia spp. }}$ R. medusa
$\frac{\text { Cirratriradites striatus }}{\text { C. sp. }}$ C. sp.
C. tenuis $\frac{\text { C. tenuis }}{\text { C. aligerens }}$ $\frac{\frac{\text { C. aligerens }}{\text { C. saturni }}}{\frac{\text { Endosporites spp. }}{}}$ Schulzospora ovata Fndosporites costatus Florinites spp F. antiquus Pityosporites westphalensis Triquitrites spp. T. sculptilis $\frac{\text { Ahrensisporites spp- }}{\text { Laevigatosporites spp. }}$ $\frac{\text { Laevigatosposites spp. }}{\text { L. minutus }}$
$\frac{\text { L. minimus }}{\text { L. obscurus }}$
L. oculus
L. pseudothiessenii
Reticulatisporites mediareticulatus
Ro tortuosus
R. facetus R. facetus R_{0} spp.
Verrucososporites facierugosus Alatisporites pustulatus Reinschospora spp. $\frac{\text { Reinschospora spp. }}{\text { Microreticulatisporites quaesitus }}$ M. Penestratus M. parvipunctatus M. reticulocingulum M. sulcatus Torispora securis Cadiosprara magna Gravisporites sphaerus Schopfites dimorphus Remainder
ner

153	$\underline{154}$	155	156	157	158	533/4	535	666	692	676	704	725	726	858	727	852	853	854	855	859	856	857	860
13.0	39.4	24.1	30.7	20.3	68.8	74.0	42.7	64.5	81.2	79.0	32.4	39.4	45.9	34.4	61.9	62.2	44.8	30.2	15.7	34.7	49.0	79.1	$\frac{86.6}{}$
56.2	14.6	15.8	35.0	50.0		2.8	26.3	0.2	6.0														66.6 0.9
0.9	0.8	1.3	0.4	1.0			7.5									*		0.5					0.2
5.5	9.7	10.4	18.6	14.2	6.9	17.1	9.4	10.5	3.0	10.8	29.9	20.2	21.3	20.3	6.4	11.9			0.2	0.3	28.1		
2.2	2.5	1.5	2.7	2.5	11.3	0.6	0.9	1.7	0.2	1.9	3.1	2.3	5.5	20.3	11.9	11.9	5.2	23.2 9.6	16.7	21.2	28.1	9.3	9.2
0.1		0.5		0.1		0.1									11.9	2.9	5.3	9.6	4.5	2.5	0.2	0.6	0.6
0.3	1.9	4.8	0.7	1.0	0.4	0.8	2.6	0.9	5.4	2.1	2.9	0.5	0.4	0.5	0.2	2.7	7.1	1.2	4.7	1.2	2.4		0.2 2.8
0.8	1.0	1.8	1.5	0.7	1.9	0.9	1.9	0.2	0.4	1.3	0.3	0.7	1.0	0.8	0.2	2.2	4.6	1.5	9.3	1.2	2.4 0.4	0.3 1.7	2.8 0.6
1.3	1.7	2.8	1.2	1.6	1.7	0.9	0.4	1.1	2.6	2.8	0.7	1.7	0.6	,	0.9	0.2	1.2	1.2	1.3	2.2 0.4	0.4 0.7	1.7 0.6	0.6 1.5
0.3	0.1	0.2		1.1		0.9	$\begin{aligned} & 1.0 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.2 \end{aligned}$	0.4	1.3		0.6 0.2	-										0.4
		*	1.3	1.0	3.5	0.2																	
*	1.6	0.1			0.2		*	0.6			*	0.2	0.2	*			0.2	1.2	2.9	*	*		0.2
		0.5 0.2		-1	*	0.1		0.2 0.2	0.4	0.1	12.1	1.4		5.2	0.2	1.1		0.5	1.6	3.1	0.2	0.3	
												0.5	0.6	0.7					0.8	*			*
0.3	1.1	0.7	0.7	0.6	0.5	0.2	*	0;6			0.5	0.2	0.2	1.1		0.6	0.4	1.2	7.4	0.8	0.3	*	0.2
											1.1	1.8		0.7	0.2	0.2	2.5	1.8	9.5 1.9	9.0 0.4	0.3	0.9	0.6
*			*						0.4		6	8.0										*	
																1.8	0.4	3.1	0.2	*	0.2	*	
17.3	23.0	32.8	5.6	4.1	2.3	2.0	1.9	16.6															
0.7	1.1	0.5	1.6	1.6							0.7	4.3	5.3	2.0	5.5	0.6		1.8	4.5		15.2		11.2 3.3
					2.0						0.6	5.5	6.5	5.9	6.2	0.4				1.0			0.7
											*			1.4	0.3								
0.4	0.7	1.3					*	0.6			0.7	*		1.1	0.2								
	0.3	0.5											0.4	0.3	0.2	1.1	1.0	3.1	2.3	3.7	3.0	*	0.4
	*	0.1			0.2			0.6								0.2				0.4			
																		0.4	4.9	0.3		*	0.2

0.6	1.1	0.6				
1.3	2.8	1.2	$\quad * \quad$	1.1	0.2	0.4
:---	:---	:---				
1.3	0.2	1.8				

SPORE TYPES

$\frac{\text { Lycospora sppo }}{\text { Densosporites an }}$ $\frac{\text { Densosporites annu }}{\text { De indignabunius }}$
D. solaris
D. solaria
$\frac{\text { Calamospora spp. }}{\text { Spinososporites spp }}$
$\frac{\text { Spinososporites spp. }}{\text { S. Sp. (Millott's trje 4) }}$
S. spinulistratus
$\frac{\text { Ranisporites spp }}{\text { Raistrickia spp. }}$
Romedusa
Re medusa Cimpatriradites atriatus
C. Sp.

$\frac{\text { c. alizerens }}{\text { C. saturni }}$
Endosporites spip.
$\frac{\text { Schulzospora ovata }}{\text { Endosporites costatu }}$
Endosporites costatus
Mlorinites sppo
T. antiquus
P. millotti

Triquitrites 30po
T. sculptilis

Ahrensisporites app.
Ahrensiaporites spz.
Laeviratosporites spp.
$\frac{\text { L. minutus }}{\text { L. mininus }}$
L. obscurus
$\frac{\text { L. oculus }}{\text { L. pseucothiessenii }}$
Reticulatisporites mediareticulatus $\frac{g_{0} \text { tortuosus }}{\text { R. facetus }}$
R. racetu
R. magnus
verrucosoaporites fecierugosus
Aletisporites pustulatus
Reinschospora sppa
Microreticulatisporites quaesitus M. fenestratus
$\frac{\text { M. parvipunctatus }}{\text { M. reticulocingulum }}$
M. sulcatus
corispora securis
Gravisporites sphaerus
Schopifites dimorphus
Remainder

861	862	864	865	866	858	893	889	892	392	392	400	401	501	402	403	$4{ }^{4}$	405	406	407/10	411	412	433	546
46.4	69.6	60.1	52.4	68.4	60.9	38.8	58.8	62.0	63.9	34.4	78.8	73.1	74.9	62.7	46.6	42.5	65.0	54.0	70.1	85.3	72.7	71.0	26.9
16.0	0.9.	2.3.	3.4	0.7	,	26.2		8.7	4.4		0.2	0.2	0.2	6.2	2.5	9.4	1.1	1.2	7.2	0.5	4.2	12.4	
1.4.		0.8.	0.5	0.5		0.2		0.9	0.2				0.7	2.9	1.6	2.2	0.3	0.7		0.7		0.2	
16.2	11.0.	15.7.	20.2	15.2	14.8	14.9	13.0	9.4	15.4	12.6	4.8	6.4	8.3	5.2	23.6	13.6	8.2	10.6	6.1	5.9	5.0	6.0	0.2 18.4
0.8	2.0	1.0	0.8.	0.2	3.0	0.6	4.5	0.2	0.4	21.4	1.6	1.0	0.2	0.2	1.6	0.7	0.2	0.9	0.1	0.5	0.2	0.4	8.1
0.2.	-		0.2	-	*				0.6		*			0.2	,	0.2				0.2		,	0.2
3.4	3.5.	3.7	2.2	1.2	2.0	0.6	4.8	1.5	5.3	*	*	1.0	3.7	4.2	3.0	2.2	3.2	1.7	2.3	0.4	2.1	0.8	$7 \cdot 5$
0.8.	0.9.	0.6.	0.5.	0.1.	2.3	0.6	3.4	1.7	0.9	2.3	0.3	2.0	0.7	1.3	0.7	1.1	0.7	2.1	0.3	0.7	0.9	0.5	4.5
0.6.	0.9	0:6.	1.0	1.5	2.4	2.4	2.6	2.8			0.5	0.6	-	0.4	1.3	1.4	0.6	1.5	1.0	0.4	1.4	0.8	0.3
			0.6		-	7.6 0.8		7.0	1.8 0.2										0.5		7.4	2.3	
1.0	0.5	2.3	0.6	1.0	-				0.2		-	0.2	0.4	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.6 \end{aligned}$	4.6	2.2	0.7	0.5				
*	0.4	0.2	*		*	*	1.0	*	0.2	0.3	*	*	0.3	0.2	0.4	-		0.2	\%	1.2	0.2	0.2	
0.8	*	2.7	0.6	0.1	-	*	0.4	0.2	0.2	6.6	0.8	3.6	0.7	0.2	0.7	0.6	0.2	0.5	-	0.2		。	0.5 2.2
					-	-	0.9	.	0.2									0.4	-			-	
$\stackrel{*}{*}$	*		-			\cdots				-			0.2			*		*	-				
0.2 0.6	0.2 1.3	0.2 1.1	0.2 1.2	0.2	0.6	0.3 1.0	1.0 0.2	0.4	0.2 0.2	0.2	1.8	1.0	0.8	1.5	3.0	0.2 1.7	0.2	2.0	0.2	0.8 0.2	0.2	$\stackrel{*}{*} 0.2$	$\begin{array}{r} 0.5 \\ 15.2 \end{array}$
								0.4		0.1	*	2.0	0.8	1.5	3.0		0.2	2.0	0.2				
0.6	*		0.4	0.1		*	0.4	0.2		3.4	0.2	0.2	-	0.2	*	0.2	0.2	0.5	-				
										2.3	0.2	2.0											0.5

SPORE TYPES

Lycospora spp. Densosporites annulatus

NORTH WALES (DENBIGHSHIRE)
$\frac{\text { D. solaris }}{\text { Calamospora spp. }}$
Spinososporites spp.
S. Sp. (Millott's type 4)
$\frac{\text { S. spinulistratus }}{\text { Planisporites spp. }}$
Planisporites spp.
Raistrickia spp.
$\frac{\text { R. medusa }}{\text { Cirratriradites striatu }}$ $\frac{\text { C. } 5 p .}{\text { C. tenuis }}$

C. tenuis

C. saturni

Enchosporites spp.
Schulzospora ovata
Florinites spp.

545	608	164	548	549	290	551	180	169	552	553	554	555	556	175	557	559	566	609	497	694	596	485	486
38.6	51.4	30.7	16.3	62.7	70.2	38.5	60.9	28.6	55.0	38.2	47.0	82.8	52.2	69.0	66.6	62.3	73.1	53.3	55.4	74.9	47.4	66.6	83.5
	0.2	0.2	0.4	0.3	0.5	0.8	0.9	2.1	1.9	3.4	10.5	0.7	0.9	2.8	0.6	4.4	8.9	7.4				25.2	3.7
		0.2				0.2	0.2	0.6	0.6	1.3	1.5			2.0		0.4		1.2					
0.2	0.2	*				0.6																	
13.1	15.5	15.8	31.8	11.4	7.5	12.1	3.9	9.3	10.2	13.7	11.4	4.7	11.9	8.8	9.5	8.1	3.5	11.3	11.6	10.7	22.3	3.9	3.6
11.7	8.4	11.6	18.2	0.5	3.5	14.0	5.7	6.0	3.2	6.8	1.2	2.5	2.5	2.2	4.8	5.0	1.7	5.4	3.5	3.7	2.8	0.4	1.5
0.1		0.2					0.2		0.3		0.2					0.2							
0.8	1.6	3.0	3.3	4.2	2.9	8.4	5.4	4.9	2.6	15.6	0.8	0.7	1.7	2.6	2.9	0.4	1.8	7.4	*	0.5		1.0	2.3
1.6	3.3	4.1	5.8	0.9	1.1	2.7	1.7	2.0	1.9	0.8	0.4	0.6	2.5	2.0	2.3	0.4	0.4	4.6	0.4	0.2	3.4	0.6	2.5
0.6	3.1	0.3	2.7	1.8		1.4	1.3	1.7	0.8	0.8	1.2	0.4	2.5	1.4	1.5	2.4	0.6	2.0	0.2		1.1	2.1	1.8
														0.3		10.6	2.2	0.6	0.2	0.1		。	
			0.6	0.7		0.8	0.7	4.7	2.1	2.6	4.4		1.9					1.5					
		1.7					0.2	10.6	*				1.9										
0.1		0.6	0.2	0.2		1.9	0.2	1.7						*	0.8	*	*	0.2	*				
2.4	1.0	0.9	0.4	0.2	0.4	1.5	0.2	0.5	0.9	0.2	0.4	2.0	2.2	-					3.2	1.2	2.9		
1.1	0.4	0.3	0.4		*		0.2							-	0.5	*	*		0.2		*		

F. antiquus
pityosporites westphalensis
$\frac{\text { Triquitrites spp. }}{\text { T. sculptilis }}$
T. sculptilis

Ahrensisporites spp.
Laevigatosporites spp.
L. minutus
L. minimus

Lo oculus
Le pseudothiessenii
Reticulatisporites modiaroticulatus
$\frac{R_{0} \text {. tortuosus }}{R_{0} \text { facetus }}$
R. sppe

Rerrucososporites facierugosus
Verrucososporites facieru
Rlatisporites pustu
Microreticulatisporites quaesitus M. fenestratus
M. Parvipunctatus
M. reticulocingulum M. sulcatus

Torispora securis
Cadiospora magna
Gravisporites sphaeru
Remainder
$\begin{array}{lll}0.7 & 0.8 & 0.8\end{array}$
$0.2 \quad 0.4$
0.9
$0.2 \quad 0.4$

1.4		0.2				0.4	0.2	0.3	0.2	
0.2	0.2	1.9	0.4	1.0	0.2	0.2	0.4			0.2
.0 .2				0.4	0.2	0.2	0.4			
0.1										

0.8
0.6 * 0.2
$\begin{array}{lll}* & 0.2 & 0.2\end{array}$
0.3
$\begin{array}{llll}0.2 & 0.2 & 9.8\end{array}$
$0.21 .7 \quad 0.3$
$0.2 \quad 0.2 \quad 1.7 \quad 0.3$

11.6	8.9	0.6 15.4	11.4	10.3	10.9	11.3	0.2 10.3	22.4	17.9	23.7	18.1	5.0	19.5	9.4	9.7	4.8	5.9	2.6	5	2.7	1.7
3.2		0.3					1.8		0.2	13.?			19.5				5.9		3.8	2.7	1.7
1.8	1.9	0.2	2.5	1.2	2.0	1.5	2.2	1.7	0.3	1.5	0.4	-	0.2			0.2	0.3	1.1	16.0	1.7	3.5

0.1
$0.2 \quad 0.2 \quad 0.2$

SPORE TYPES

Lycospora spp.

 Densosporites annulatusD. Indignabundus
D. solaris
Calamospora spp.
Spinososporites spp.
S. Sp. (Millott's type 4)
S. spinulistratus $\frac{\text { Rlanisporites spp }}{\text { Raistrickia spp. }}$
R. medusa C. Sp-
C. aligerens
c. saturni

Endosporites spp.
Schulzospora ovata
Endosporites costatus
Florinites spp.
F. antiquus

Pityosporites westphalensis
Triquitrites sppo
T. sculptilis

Ahrensisporites spp.
Ahrensisporites sppa
Laevigatosp

L. minimus

L. obulus

I. pseudothiessenii

Reticulatisporites mediareticulatus R. tortuosus
R. facetus
R. sope

Verrucososporites facierugosus
Alatisporites pustulatus
Reinschospora sppo.
Microreticulatisporites quaesitus $\frac{M_{0} \text { fenestratus }}{M_{0} \text { parvipunctatus }}$
$\frac{M_{0} \text { parvipunctatus }}{M_{0} \text { reticulocingulu }}$
$\frac{\text { M. reticuloc }}{\text { M. sulcatus }}$
Torispora securis
Cadiospora magna
Gravisporites sphaerus
Schopfites dimorphus
Remainder

$$
\begin{aligned}
& \begin{array}{lll}
63.9 & 68.1 & 52.7 & 47.8 & 72.0 & 39.6 & 53.5 & 70.4 & 63.0 & 59.9 & 51.6 & 62.4 & 68.4 & 60.5 & 66.6 & 71.4 & 75.3 & 72.0 & 65.5 & 31.0 & 67.6 & 83.0 & 76.1 & 81.2
\end{array}
\end{aligned}
$$


```
3PORE TTPES
Lycospora spp.
```



```
Calamospora spp.
Spinososporites spp.
So spinulistratus
planisporites spm.
Raketrickia spp.
Ro medusa
CirFatrirradites striatus
C. spo
C. alijerens
C. saturni
Encosporites smp.
Schulzospora ovata
Mndosporites costatus
Florinites sppa
R. antiqupzs
F. millotti
pityomporites westphalensis
Triquitrites spm
F. sculptilis
Ahrensisporites spy.
Mhrensisporites spyo
Laevigatosporites spp
T. Minutus
L.. minjimus
L.o gculus
L. pseucothiessenil
Reticulatisporites mediareticulatus
R. tortuosus
R. fncetus
R. spp:
R. #iagnus
Verrucososporites facierugosue
Alatisporites pustulatue
Roinschospora spp.
Microreticulatisporites quaesitus
M. Renestratus
%. parvipunctatus
M. reticulocingulum
M_ sulcatus
Torisyora securle
Gadiosmora magna
Gravisporites sphaerus
Remaincer
```


$0.2 \quad 1$.
$0.5 \quad 0.3$ 0.2 0.20 .3

$$
2.2
$$

$\begin{array}{lllllllllll}1.2 & 3.7 & 2.3 & 0.7 & \cdots & & 1.0 & 1.2 & 2.6 & 1.2 & 2.0\end{array}$

$$
0.1
$$

$\begin{array}{llllllllll}1.2 & 0.4 & 0.2 & 0.2 & 0.2 & 0.3 & 0.1 & 0.7 & 0.7 & 0.3 \\ 0.9 & 0.5 & 2.2 & 0.5 & 0.5\end{array}$
0.1
$\begin{array}{llll}0.5 & 0.7 & 0.5 & 0.2 \\ 0.8 & 0.8 & 2.1 & 1.1\end{array}$
$\begin{array}{lllll}0.1 & & & & \\ 0.1 & 0.2 & 0.3 & 0.4 & 0.3 \\ 2.9 & . & 2.4 & 6.4 & 3.2\end{array}$
a0
$\begin{array}{llllllllllll}0.9 & 0.5 & 2.8 & 0.3 & * & 0.3 & 0.1 & 0.7 & 0.7 & & 0.5 & 0.5 \\ & & & & & & 0.4 & & 4.6 & 2.0 & 3.2 & 0.7 \\ & & 0.4 & & 0.3 & & 0 & & 0.9 & 0.1 & 0.2 & 0.2\end{array}$
$\begin{array}{ll}0.3 & 0.4 \\ 2.4 & 6.4 \\ : & \end{array}$
$\begin{array}{ll}0.4 & 0.3 \\ 6.4 & 3.2\end{array}$
$\begin{array}{llllll} & \left.\begin{array}{lllll}0.9 & 0.1 & 0.2 & 0.2 & \\ 0.3 & * & & 0.2 & 0.2 \\ 0.2 & & & & 0.2\end{array}\right)\end{array}$
0.3
0.1
0.1
0.6
$\begin{array}{ll}0.1 & \\ 0.5 & 0.5 \\ & 0.3\end{array}$
$\begin{array}{ll}.5 & 0.3 \\ .3 & 1.8\end{array}$
1.2
$\begin{array}{lllllllllllllllllllllllllllll}3.7 & 7.6 & 9.9 & 8.1 & 2.9 & 4.7 & 3.4 & 5.9 & 16.0 & 6.8 & 6.8 & 6.3 & 12.0 & 3.5 & 8.9 & 12.4 & 21.1\end{array}$
$\begin{array}{lll}5.1 & 9.5 & 6.5 \\ 0.7 & 0.1 & 3.2 \\ 0.5 & 0.4 & 1.4\end{array}$
$5.7 \quad 18.1$
18.1
$6.8 \quad 10$.

SPORE TXPES

Lycospora spp. Densosporites annulatus D. indignabundus
D. solarid

Spinospora spp.
Spinososporites spp
S. sp. (Millott's type 4)
pianisporites spp.
$\frac{\text { Planisporites spp }}{\text { Raistrickia spp. }}$
R. medusa

Cirratriradites striatus
C. sp.
C. aligerens
C. saturní

Endosporites spp.
Schulzospora ovata
Endosporites costatus
Florinites spp.
F. antiquus
F. millotti

Pityosporites westphalensis
rriquitrites spp.
T. sculptilis
T. inusitatus

Arensisporites spp.
aevigatosporites spp.
L. minimus

. minimus

L. obscurus
L. oculus

Reticulatisporites mediareticulatus
R. tortuosus
R. facetus
$\frac{R_{0}}{} \mathrm{R}_{0}$ spagnus
Verrucososporites facierugosus
Alatisporites pustulatus
Reinschospora spp.
Microreticulatisporites quaesitus
M. fenestratus
M. parvipunctatus
$\frac{M_{0} \text { reticulo }}{M_{\text {. }} \text { sulcatus }}$
Torispora securis
Cadiospora securis
Gravisporites sphaerus
Schopfites itionaerus
Remainder dimorphus
Remainder
$\frac{879}{38.3} \frac{880}{1060} \frac{1062}{1063} \frac{1064}{1065} \frac{1066}{66} \frac{1067 / 9}{1070} \frac{1071}{6} \quad \frac{1072}{1073} \quad 1074 \quad 1336$ $\begin{array}{rrrrrrrrrrrrrrrrrr}38.3 & 41.2 & 56.1 & 74.1 & 91.4 & 62.1 & 63.4 & 62.4 & 66.0 & 75.0 & 62.5 & 60.8 & 67.1 & 75.1 & 87.1 \\ 39.9 & 4.2 & 1.0 & 0.8 & & 5.8 & & 0.3 & 0.3 & & 0.9 & 1.1 & * & & 0.2 \\ 0.9 & 2.6 & 0.3 & & & 1.0 & 0.3 & & 0 & & & & 0.7 & & & 0.1 & 0.2\end{array}$ $\begin{array}{rrrrrrr}90.5 & 49.5 & 79.0 & 83.9 & 74.8 & 84.0 & 82 . \\ 3.1 & 40.5 & 10.1 & 3.7 & 7.8 & 4.9 & \end{array}$ 86.9 $0.7 \quad 19.7$ $\begin{array}{rrrrrrrrrrrrrr}4.3 & 12.9 & 11.6 & 8.4 & 5.7 & 9.5 & 5.8 & 13.4 & 8.0 & 7.9 & 12.9 & 13.1 & 12.1 & 15.6 \\ 1.3 & 3.3 & 5.4 & 1.0 & 0.5 & 1.6 & 0.6 & 3.3 & 1.2 & 3.6 & 3.4 & 0.3 & 0.8 & 0.6 \\ 3.4 & 0.2 & 4.0 & 2.5 & 5.6 & 0.2 & 1.3 & & & 17.8 & 4.9 & 15.0 & 6.2 & 6.0 \\ 0.7 & 1.0 & 1.1 & 2.1 & 0.5 & 0.6 & & 1.4 & 6.5 & 1.0 & 1.6\end{array}$

$$
\begin{aligned}
& 4.9 \\
& 1.2
\end{aligned}
$$ $\begin{array}{llllllllllllll}0.7 & 1.0 & 1.1 & 2.1 & 0.5 & 0.6 & & 1.4 & 1.3 & 1.3 & 0.7 & 1.3 & 1.2 & 0.6 \\ 0.1 & 0.8 & 2.5 & 1.9 & 0.1 & 1.0 & 0.3 & 0.6 & 1.8 & 0.2 & 4.8 & 1.6 & 1.0 & 1.0 \\ 0.3 & 1.7\end{array}$

$0.3 \quad \begin{array}{cc} & 0.2\end{array}$

$$
\begin{array}{lllllll}
0.5 & 6.4 & 5.5 & 4.5 & 6.9 & 3.3 & 7.5 \\
0.3 & 0.1 & 0.2 & & 0.2 & 2.4 & 3.1
\end{array}
$$

$$
\begin{array}{llllllll}
1.3 & 0.7 & 1.3 & 1.5 & 2.3 & 1.6 & 1.5 & 2.0
\end{array}
$$

0.1
$\begin{array}{lll}0.2 & 0.7 & 0.2\end{array}$
0.3

| 0.1 | 0.4 | 0.8 | 1.1 | 0.4 | | 0.6 | 0.8 | 0.1 | 0.6 | 0.6 | 0.7 | 0.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.6

$$
\begin{array}{lllllllllllll}
0.4 & 0.8 & 1.1 & 0.4 & . & & 0.6 & 0.8 & 0.1 & 0.6 & 0.7 & 0.3 & 0.6 \\
0.3 & 3.1 & 3.4 & & 0.1 & 1.4 & 1.3 & 0.6 & 1.0 & 0.2 & 1.3 & 1.2 & 0.6
\end{array}
$$

$$
0.5
$$

$\begin{array}{lllll}0.3 & 0.3 & 0.1 & 0.1 & 0.2\end{array}$
$0.3 \quad 0.1 \quad 0.1$
0.2 .
0.2
$\begin{array}{lllllllllllllllll}6.7 & 18.9 & 7.8 & 2.4 & 0.7 & 12.0 & 4.5 & 8.9 & 3.8 & 2.7 & 8.0 & 9.1 & 8.2 & 4.0 & 2.6\end{array}$
0.3
0.1
0.1

SPORE TYPES

ensosporites annulatus D. indignabundus D. solaris Calamospora sipp. $\frac{\text { Spinososporites spp. }}{\text { Se sp. (Millott's tvpe 4) }}$ $\frac{\text { S. sp. (Millot's type 4) }}{\text { S. spinulistratus }}$ S. spinulistratus Planisporites spp. $\frac{\text { Raistricki }}{\text { R. medusa }}$

```
Cimratriradites striatus
```

C. $5 p$.
C. tenuis
$\frac{\text { C. saturni }}{\text { Endosporites spp. }}$
Schulzospora ovata
Endosporites costatus
Florinites spp.
$\frac{F_{0} \text { antiquus }}{F_{0} \text { millotti }}$
Pityosporites westphalensis
Triquitrites spp.
To sculptilis
$\frac{\text { T. inusitatus }}{\text { Ahrensisporites spp. }}$
Ahrensisporites spp.
L. minutus
L. minimus
L. obscuru
L. oculus
$\frac{\text { L. pseudothiessenii }}{\text { Reticulatisporites mediareticulatus }}$

R_{0} facetus
R. magnus
rrucososporites facierugosus
Alatisporites pustulatus
Reinschospora spp.
Microreticulatisporites quaesitus
M. fenestratus
M. Parvipunctatus
M_{0} reticulocingulum
M. sulcatus
orispora securis
adiospora magna
Gravisporites sphaerus
Schopfites dimorphus
Remainder
 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrr}75.2 & 81.0 & 64.9 & 32.4 & 83.6 & 74.5 & 43.4 & 70.2 & 71.2 & 59.0 & 64.7 & 89.0 & 87.1 & 90.5 & 71.2 & 83.8 & 42.3 & 92.3 & 88.4 \\ 15.2 & 7.0 & 1.3 & 5.0 & 0.1 & 2.2 & 11.0 & & 0.1 & 0.2 & 0.5 & 0.4 & 0.9 & & 0.2 & 1.8 & 41.8 & 1.2 & 4.7\end{array}$ $\begin{array}{lllllllllllllllllllll}15.2 & 7.0 & 1.3 & 5.0 & 0.1 & 2.2 & 11.0 & & 0.1 & 0.2 & 0.5 & 0.4 & 0.9 & 0.2 & 1.8 & 41.8 & 1.2 & 4.7 \\ & 0.4 & 2.3 & 4.7 & & 0.3 & 4.6 & 0.7 & 0.6 & & 0.1 & 0.2 & & 0.2 & 0.7 & & 0.1 & \end{array}$

4.7	5.9	11.0	15.1	7.5	11.4	6.8	6.4	8.9	13.5	15.9	1.8	3.5	2.5	9.2	6.0	11.5	2.2	2.7
0.8		1.0	1.?	1.8	0.6	5.0	0.8	1.3	0.5	3.2	0.6	1.1	3.8	5.3	1.8	0.1	1.2	1.2
			0.2		0.2				0.2					0.4			7	0

$$
\begin{array}{rrr}
* & 7.7 & * \\
19.6 & 25.0 & 12.9 \\
0.4 & 2.8 & 1.2
\end{array}
$$

$$
\begin{array}{rrrr}
& 7.7 & 0.1 \\
.9 .6 & 25.0 & 12.9 & 19.6 \\
0.4 & 2.8 & 1.2 & 1.1 \\
& 0.2 & & 0.1
\end{array}
$$

$$
\begin{array}{llll}
& 0.2 & & 0.1 \\
1.3 & 5.7 & 6.6 & 2.6 \\
2.2 & 2.7 & 1.4 & 4.3
\end{array}
$$ $\begin{array}{lllllllllllll}0.8 & 0.3 & 1.2 & 3.0 & 1.4 & 0.6 & 2.7 & 1.3 & 1.7 & 1.0 & 1.3 & 0.7 & 0.7 \\ 2.7 & 0.8 & 0.8 & 5.0 & 3.0 & 1.2 & 3.7 & 2.6 & 5.0 & 1.0 & 0.3 & 2.3 & 3.4 \\ 0.4 & 1.8\end{array}$

$$
\begin{array}{lll}
2.2 & 2.7 & 1.4
\end{array}
$$

$$
\begin{array}{ll}
2.2 & 2.7 \\
0.3 & 0.8
\end{array}
$$

$$
0.5
$$

$$
\begin{array}{lllllll}
0.2 & 0.3 & 0.2 & & 0.7 & 1.8 & 0.1
\end{array} 0.11
$$

$$
\begin{array}{lllllllll}
0.7 & 1.8 & 0.1 & 0.1 & 0.6 & * & 0.3 & 0.4 & 0.1 \\
0.6 & 0.5 & & 0.1 & 0.2 & & 0.4 & 0.7 &
\end{array}
$$

0.1

0.2	0.9	0.1	0.3
1.5	2.4	2.5	0.8

	$*$	$*$	0.1
0.2	0.8	1.3	0.4
1.2	6.1	0.8	6.7
	$*$	$*$	0.1
0.2	0.1	$*$	
0.5	0.3	1.1	2.8

$\begin{array}{rrrrr}5.9 & 18.3 & 5.3 & 10.5 & 14.0 \\ 0.3 & 3 & 2.4 & \end{array}$ $\begin{array}{lll}1.5 & 0.7 & 0.8\end{array}$
$\begin{array}{llll}0.6 & 1.0 & 0.5 & 1.3\end{array}$ $\begin{array}{llll}0.6 & 1.0 & 0.5 & 1 \\ 0.2 & 0.1 & 0.3 & 0.1\end{array}$ 0.1
0.3 0.3

* 0.1
- 0.2

LAUCASBIRS Continued ..

2109	21110	$\underline{1152}$	216	1054	870	887	888	446	386	1152	1486	1508
51.3	67.0	61.2	57.8	47.5	51.3	70.1	20.3	47.3	56.3	51.8	95. 1	86.7
	0.3		0.1	0.7	0.3	0.2	47.1	0.1	0.3	1.6		3.3
			0.1	3.0	0.1		1.1	0.5	0.8	1.6		1.0
28.9	13.1	5.7	7.4	6.9	34.4	7.5	3.1	16.9	12.7	12.3	2.4	4.0
0.2	1.0	0.6	1.3	3.7	3.2	3.2	3.0	1.5	5.9	5.0	0.1	0.5
				0.1	0.1		0.2	0.1		0.2		
0.1	2.6	16.6	19.4	36.3	6.4	6.2	5.9	9.1	7.3	2.6		0.3
0.7	2.6	1.5	0.5	0.5	2.5	2.0	3.3	2.2	3.3	1.3	0.9	0.8
0.4	2.6	1.7	1.3	2.3	0.4	0.9	1.0	0.5	2.4	2.1	0.6	2.0
0.4	0.2		*	0.8		0.2		0.8	0.6	0.6		$\begin{aligned} & 0.5 \\ & 0.3 \end{aligned}$
					-		0.2	1.0				
0.1		0.5	0.4	0.1	0.1	0.6	0.3	0.4	0.3	0.6		
0.9	2.2	2.5	1.2	1.0	0.5	2.0	0.2	+	1.0	0.6		
	0.1	*	0.2		-	0.2						
0.8	0.6	0.5	0.1	0.3	0.6	0.6	0.2	0.1	0.4	0.5	0.5	0.2
0.8	2.0	0.9	1.3	2.6	2.3	2.4	0.6	1.3	1.6	3.1	0.1	0.2
0.1						0.2			0.3			
0.1		*			0.6		0.3		0.2			
13.9	5.9	6.4	2.4	21.9	25.9	4.2	10.1	16.2		16.8	0.1	2.0
				2.1	0.9	3.5	3.1		2.3	0.6		
0.5	3.4	0.7	3.2	0.4	0.1		1.3 0.3	1.9	*	0.2		
	0.3	0.3	0.3	0.2								
*					0.1		*					
							0.2					
							0.2					

Leeviratosporites sppo	13.9	5.9	6.4	7.4	21.9	25.9	4.2	10.1	16.2	5.1	16.8	0.1	2.0
L. Minutus													
E. minimue					2.1	0.9	1.5	3.1		2.3	0.6		
7. obscurus													
Lo. oculus													
I. pseudothiessenit													
Reticulatisporites mediaroticulatus						0.1		2.3	1.9	*	0.2		
R. tortuosus	0.5	3.4	0.7	3.2	0.4	0.3		0.3					
R. Incetus	*	0.1	0.3	0.3	0.1								
R. 3ppe					0.6	0.1		*					
R. masmus	*												
Verrucososporites fecierusposus								-					
Alatisporites puatulatus								0.2					
Reinschospora sppo								0.2					
Microreticulatispoxites cuaesitus													

SHIOPSHIES (COMLBROOKDALE)

282	283	284	285	286	287	788	789	290
46.4	56.7	63.1	52.5	57.2	48.4	59.8	24.0	65.6
				0.4	7.4	0.3	58.2	
				*	0.3	0.3	0.7	
$9 \cdot ?$	5.9	10.2	3.6	12.4	9.0	9.8	4.8	15.2
17.1	21.7	9.2	22.1	2.6	3.0	1.4	0.9	0.9
	0.1	0.4		7.1	6.6	5.4	2.5	5.3
0.3	0.8	1.1	0.8	1.1	2.6	2.9	0.8	2.0
0.2	0.3	0.2		1.0	0.5	1.1	0.2	1.5
				0.7	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	0.6	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	0.1
*		-		0.2	0.2	0.3	0.4	*
5.4	0.5	2.8	1.1 .4	0.7	2.1	1.3	2.6	0.6
0.2	-			0.2		*		
\bullet	0.3	0.4	-	0.4	0.8		0.2	0.1
	*	0.4		2.2	2.6	3.5	0.4	
0.4	2.1	2.4	3.1		0.2	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$		
2.9	2.0	2.2	2.3	8.7	10.9	10.5	5.5	7.5
17.8	9.2	8.2	4.9	2.9	1.0	0.2		3.0

$\frac{\text { P. inusita us }}{\text { Shrensisporites sppo }}$

$$
\begin{array}{rrrrrrrr}
2.9 & 2.0 & 2.2 & 2.3 & 8.7 & 10.9 & 10.5 & 5.5 \\
17.8 & 9.2 & 8.2 & 4.9 & 7.5 & 22 . \\
& & 0.2 & & & 1.0 & 0.3 & 0.2
\end{array}
$$

$$
\begin{array}{llllll}
* & 0.3 & 0.5 & 1.6 & 0.6 & 0.8 \\
& 0.1 & 0.4 & 0.2 & 0.5 & \\
0.1
\end{array}
$$

$$
0.2: 0.20 .3
$$

0.2

- Penestratus
M. parvipunctatus
. sulcatus
Torispora securis
$\frac{\text { Cadsospora masna }}{\text { Gravisporites sphaeru }}$
Gravisporites sphaerus
schopfites dismornine
Remainder

| 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0.2
$0.7 \quad 0.8 \quad 0.2$

SPORE TXPES

$\frac{\text { Iycospora spepe }}{\text { Densonporites annulatus }}$

58.6	54.9	59.6	59.4	22.1	22.8	68.4	60.5	66.4	34.8	57.8	42.7	72.1	54.5	76.8	20.2	54.6	76.9	14.8	53.2	69.9	34.5	25.9	41.8
6.6	2.1	1.4	2.3	0.2	45.8	1.2	0.8	1.2	5.2	16.9	25.7	3.7	10.8		0.2	4.6	0.1	62.2	5.7	0.3	9.3	9.9	7.3
0.9	0.8	2.3			3.1	0.4	0.9	1.2	9.8			2.2			0.2	1.4	0.1	0.9	1.4	0.5	2.5	6.5	5.4
															0.2	0.5							
9.2	34.5	16.3	15.9	8.2	7.3	14.?	17.2	14.3	11.1	13.0	17.5	6.3	28.3	9.4	36.0	10.1	5.0	5.6	11.4	10.9	16.0	8.4	11.0
0.7	2.0	4.1	2.3	5.4	0.3	2.8	2.3	0.4	0.5	0.4	5.0		2.9	2.2	0.8		0.2	1.1	2.5	1.5	3.4	0.4	1.4
-	*		0.3					0.2	0.5	0.2	0.2		0.4		*.	-	0.3			0.3			
0.9	0.3	1.6	2.7	0.3	1.9	0.7	4.1	3.7	3.0	1.0	0.2	1.5	0.2	0.3	0.2	2.5	3.3	1.0	1.9	0.5	6.2	1.6	4.0
2.3	0.5	2.1	2.1	1.3	0.6	0.6	1.2	1.4	2.0	0.4	1.6	0.4	2.1	0.1	0.4	1.8	1.2	2.1	1.0	2.1	1.0	1.1	1.9
0.9	1.1	0.5	0.1	0.5	0.9	0.4	0.8	1.0	1.2	0.8	1.0	0.2	2.2	0.1	1.3	0.5	1.2	0.8	2.6	2.2	1.6	0.6	3.5
						*	0.2		24.4	5.0	1.7	3.6	5.9									1.0	1.6
1.1	4.6	0.3	0.9	0.3		1.8	0.6	2.3			0.7	0.5	1.6		22.6	0.4	0.1	0.1	2.5	2.7	1.1	2.0	7.6
0.2															0.3	0.1					0.3		
						:	0.5	0.5															
0.2 2.0	0.3	0.2	0.7 3.4	0.3 1.3	0.2	*	0.2	0.2					0.2	1.6	*	0.4 0.8	0.7 0.5	0.1 1.0	1.0 0.3	0.3 0.3	0.6	0.6 0.3	0.1
				0.2	*	*		*			0.1	*	0.2									0.2	0.1
															0.7	0.1				0.5	0.3	0.3	
0.3	0.3		0.6	0.3		0.2	0.2	0.2	0.5			0.5	0.5	0.5	0.2	0.1	0.1		0.3			0.3	0.3
2.6	2.5	0.6	3.3	1.3	0.6	-	0.3	0.2							0.3	2.5	2.0	0.4	1.4	1.2	2.5	1.1	0.1
		*																					
	0.1	0.2		0.2		0.4			0.5		*		0.2	2.1	-							0.5	0.3

Lycospora spe.
Densosporites annulatus Densosporites an D. solaris Calamospora spp. Spinososporites spp. S. sp. (Millot's type 4) S. spinulistratus
planisporites spp.
Raistrickia spe.
Cirratrixadites striatus
C. Sp.
c. tenuis
C. aligerens
C. saturni
shdosporites spp.
Schulzospora ovata
Florinites spp.
F. antiquus
F. antiquus

Pityosporites westphalensis
Triquitrites spp.

T. sculptilis

$\frac{\text { P. inusitatus }}{\text { Ahrensisporites spp. }}$

Ahrensisporites spp:

L. minutus

L. minimus

L. obscurus

$\frac{\text { L. oculus }}{\text { L. pseudothiessenii }}$
Reticulatisporites mediareticulatus R. tortuosu
R. spp.
R. magnus

Alatisporites pustulatus
Reinschospora spp.
icroreticulatisporites quaesitus . fenestratus M. parvipunctatus $\frac{M_{0} \text {. parvipunctatus }}{M_{0} \text { reticulocinguium }}$ - sulcatus

Torispora securis
Cadiospore magna
Gravisporites sphaerus
Schopfites dimorphus
Remainder
0.2
SPORE TYPES

Densosporites annulatus
$\frac{\text { D. indignabundus }}{\text { D. solaris }}$
$\frac{\text { D. solaris }}{\text { Calaniospora spp. }}$
$\frac{\text { Spinososporites spp. }}{\text { Sit }}$

$\frac{\text { So spinulistratus }}{\text { Pianisporites spo }}$
$\frac{\text { Planisporites spp }}{\text { Raistrickia sppo }}$
R. medusa
Cirratriradites striatus
C. $\frac{\text { So }}{\text { C. }}$
C. aligerens
$\frac{\text { C. Saturni }}{\text { Endosporites spp. }}$
$\frac{\text { Schulzospora ovata }}{\text { Endosporites costatus }}$
$\frac{\text { Endosporites cos }}{\text { Florinites spp. }}$
$\frac{\bar{F}_{0} \text { antiquus }}{\text { F. millot }}$
$\frac{\text { P. millotti }}{\text { Pityosporites westphalensis }}$
$\frac{\text { Pityosporites west }}{\text { Triquitrites spp. }}$
$\frac{\text { Triquitrites spi }}{\text { T. sculptilis }}$
T. inusitatus
Ahrensisporites spp.
$\frac{\text { Laevigatosp }}{\text { L. minutus }}$
$\frac{\text { L. minimus }}{\text { L. obscurus }}$
$\frac{L_{0} \text { obscurus }}{L_{0} \text { oculus }}$
$\frac{\text { L. oculus }}{\text { L. pseudothiessenii }}$
$\frac{\text { L. pseudothiessenii }}{\text { Reticulatisporites mediareticulatus }}$
Ro tortuosus
$\frac{\frac{R_{0}}{R_{0} \text { tortuosus }}}{R_{0} \text { facetus }}$
$\frac{R_{0} \text { Pacetus }}{R_{0} \text { spp. }}$
$\frac{R_{0} \text { magnus }}{\text { Rerrucososporites facierugosus }}$
Verrucososporites facierus
$\frac{\text { Alatisporites pustu }}{\text { Reinschospora sppo. }}$
$\frac{\text { Reinschospora spp. }}{\text { Microreticulatisporites quaesitus }}$
Microreticulati
M. parvipunctatus
$\frac{\text { M. parvipunctatus }}{\text { M. reticulocingulum }}$
M. sulcatus
Torispora securis
$\frac{\text { Cadiospora magna }}{\text { Gravisporites sphaerus }}$
Schopfites dimorphus

SPORE TYPES	1305	1304	1303	1302	1301	1424	1300	1299	1298	1297	1466	1467	1468	1469	1470	1471	1472	1473	817	818	819	820
Lycospora spp.	16.3	2.8	3.8	69.3	32.4	6.7	54.9	27.8	17.8	3.2	70.6	44.7	57.8	6.2	0.9	4.8	18.9	55.2	15.2	13.2	28.3	45.6
Densosporites annulatus	62.4	75.9	87.1	0.3	20.1	73.4	8.3		0.2	65.1	2.3	7.6	2.8	58.9	85.5	67.8	43.5	2.4	62.0	35.7	40.6	12.9
D. indignabundus	0.2	0.2	.		2.1	0.7	2.3	0.2			0.1	0.2		2.1	0.9	1.8	1.9	0.3	0.2	8.6	0.3	2.2
D. solaris																						
Calamospora spp.	4.6	6.4	3.2	8.2	8.3	3.8	8.7	29.7	27.0	$7 \cdot 2$	5.7	$9 \cdot 7$	14.4	3.9	2.8	4.5	$9 \cdot 9$	14.4	5.5	8.7	9.6	12.9 0.7
	1.0	0.6	0.5	1.7	0.6	0.3	1.6	4.4	8.0	1.3	0.1	1.0	0.9	0.2	0.3	1.2	0.5	1.0	1.8	0.2 0.3	0.7	0.7 0.1
$\frac{\text { S. Sp. (Millott's type 4) }}{\text { S. spinulistratus }}$	0.2	0.8	0.7	0.6	* 0.5	0.4	2.7	0.2 3.0	0.2			0.2	0.9	0.7		0.1 1.7	0.1 0.9	3.5	0.3 0.5	0.3 1.6	0.4	0.1 1.9
Planisporites spp.	1.3	0.2	0.7	2.1	1.0	0.4	0.2	0.5	3.1	1.5	1.3	0.2	2.6	0.6	1.3	0.7	0.4	1.0	1.8	1.8	1.2	0.7
Raistrickia spp.	0.7		0.4	1.6	2.8	0.5	2.4	3.8	4.0	1.5	0.7	0.4	2.5	0.4	0.6	0.6	2.8	2.4	0.8	1.0	0.3	0.9
R. medusa																						
Cirratriradites striatus	0.2			0.9	8.9	0.9	1.8	2.0		0.2 0.2	5.6	13.3	2.8	18.3	2.5	6.5	4.2	1.2	2.1	2.0	0.3	1.0
C. tenuis		0.3	*						0.4		0.1					0.3						
C. aligerens																						
C. saturni	0.2						0.7								0.3		0.1	1.4	0.2	0.4 0.7		0.1 0.7
Sndosporites spp.	0.3		0.1	0.1	0.2	0.7	1.0	0.4		0.2	0.1	1.5	2.1	0.4		0.5		2.5			0.4	
Schulzospora ovata				0.1		*	0.1	1.8	0.2 0.2									0.8				
Endosporites costatus	0.4			0.1	0.3		0.1	1.0	3.1			0.2	0.5		0.2	0.1	0.5	0.3			0.4	0.1
F. antiquus	0.5			0.4	0.9	*	0.7	3.8	4.8	1.1	0.1	0.7	0.9	0.4	0.2	0.5	1.2	2.6	0.5	0.9		0.7
F. millotti																						
Pityosporites westphalensis			*			0.2			0.7	0.2			0.3					0.5	0.3			
Triquitrites spp-		0.2		0.1	0.9		0.1	0.2						0.4	0.3		0.6		0.3			
T. sculptilis T. inusitatus																						
Ahrensisporites spp.					*				*													
Laevigatosporites spp.	10.4	12.6	3.5	14.1	20.8	11.9	13.9	20.0	30.1	16.9	13.2	20.1	10.9	7.3	3.8	8.3	14.5	10.0	5.7	22.6	5.1	19.3
L. minutus																			0.2	0.3		
L. obscurus																						
L. oculus																						
Le pseudothiessenii Reticulatisporites mediareticulatus	0.8			0.3	*	*	0.4	0.2	*	*		0.2	0.3		0.1	0.3			$2 \cdot 3$	1.1	0.4	*
R. tortuosus											0.1		0.3					0.9			0.3	
$\mathrm{R}_{\text {. facetus }}$														0.2				0.2	0.2			0.1
R. spp.				0.1	-	0.1	0.1		0.2					0.2				0.2				
Verrucososporites facierugosus					*																	
Alatisporites pustulatus						*			-	0.2							0.1					0.1
Reinschospora spp.																						
Microreticulatisporites quaesitus																						
M. fenestratus																						
$\frac{\text { M. parvipunctatus }}{\text { M. reticulocingulum }}$										0.2					*		0.1					
M. sulcatus																						
Torispora securis																						
Cadiospora magna																						
Gravisporites sphaerus																						
Schopfites dimorphus	0.5				0.2					0.4					0.3	0.3	0.4	0.4	0.2	0.4	0.7	

1265	1266	1180	1181	1182	1267	1268	1269	1029	1030
32.0	54.2	10.8	47.0	15.6	83.9	80.9	57.8	53.2	81.4
48.0	21.4	71.0	3.7	26.0	0.2	2.2	2.0	24.8	1.1
0.5	1.3	0.3	4.4	18.2	1.1		3.1	6.4	
6.0	10.7	2.8	16.2	15.8	6.7	5.6	9.0	9.5	4.9
0.3	0.5	0.7	1.1	1.7	0.7	0.7	0.3	0.3	0.8
			0.2			*			
0.5	0.8	1.6	3.4	1.2	1.8	2.8	8.5	0.8	6.3
0.2	0.4	0.5	1.7	1.2	0.2	0.3	1.4	1.5	1.0
0.5	1.0	0.3	1.3	2.2	0.7	0.5	4.0	1.4	2.6
0.5	0.2	0.7	0.3	1.1		0.9	7.3	0.5	0.7
2.1	0.6		0.8	2.1		1.7	0.3		
0.2			*						
		0.2					0.3		
*	0.2	*	*	0.1			0.3		
-	*	*	0.2	0.1	0.9	0.6	0.3		0.3
	0.8	0.3	0.2		0.2	0.2	0.3	0.1	0.3
*	0.5	1.0							
*		*	0.2	0.1			0.3	1.4	0.6

Dycospora spp.
$\frac{\text { D. indignabundus }}{\text { D. solaris }}$
D. solaris
$\frac{\text { Spinososporites spp. }}{\text { S. sp. (Millott's type } 4 \text {) }}$
S. Sp. (Millott's type 4)
S. spinulistratus
Planisporites spp
Raistrickia spp.
R. medusa
$\frac{\text { R. medusa }}{\text { Cirratriradites striatus }}$
C. spo
c. tenuis
C. aligeren
C. saturni
Endosporites spp.
Sndosporites spp.
Schulzospora ovata
indosporites costatus
Florinites spp.
F. antiquus
Pityosporites westphalensis
Triquitrites spp.
T. sculptilis
Ahrensisporites spp.
Laevigatosporites spp.
Laevigatosporites spp.
L. minutus
L. obscurus
L. oculus
L. oculus
Reticulatisporites mediareticulatus
R. tortuosus
R. facetus
$0.3 \quad 0.3 \quad 1.4$
$\begin{array}{llllllll}8.5 & 7.1 & 7.3 & 17.0 & 14.6 & 3.4 & 3.6 & 4.0\end{array}$
R. Sppo

		0.5 0.2
0.2		
0	0.2	

-

Verrucososporites facierugosus
Alatisprosites pustulatus
Alatisprites pustul
* * 0.2 *
Reinschospora spp
0.2
Mcroreticulatisporites quaesitus
M. fenestratus
M. parvipunctatus
M. reticuloc
Torispora securis
Torispora securis
Cadiospora magna
Schopfites dimorphus
Schopfites dimorphus
Remainder

FIG. 7. MICROSPORE DISTRIBUTION IN THE FLINTSHIRE COALFIELD

FIG. IO. MICROSPORE DISTRIBUTION IN THE SHROPSHIRE (COALBROOKDALE) COALFIELD

FIG. II. MICROSPORE DISTRIBUTION IN THE SHROPSHIRE (FOREST OF WYRE) COALFIELD

[^0]: Depth to base of seam
 (in case of borehole)

