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ABSTRACT

The radiative heating problem has been solved analytically,

in first approximation, for a semi-infinite cloud model with trans¬

verse fluctuations in extinction, in terms of the parameters:

albedo for a single scattering to, the greenhouse parameter H,

amplitude of the fluctuations a, and the parameter r which is a

measure of the reciprocal optical thickness of the fluctuations.

For r << 1, density fluctuations become radiatively disconnected (in

the visual) and the solutions of the radiative heating problem tend

to the homogeneous case. For r » 1 temperature fluctuations are

extinguished. There is a strong coupling between temperature

fluctuations AT^/T^ and mean optical depth Z. Fluctuations with r
such that 1 < r < 2, the exact value depending on the Z value at

which Tcr£ is reached, can provide temperature fluctuations which
result in chemical discontinuity in Ti formation and the onset of the

fragmentation process.

The radiative heating problem has been solved with the help of

a- numerical (approximated) method for the following models: a) semi-

infinite cloud with transverse fluctuations in extinction, b) finite

cloud with mean optical thickness T and transverse fluctuations in
o

extinction. The visual radiation field was calculated and the

fluctuation AT,/T, was obtained for the different values of the
a d

basic parameters 0), n., r, a and Tq.

Assuming isobaricity as a first approximation, the chemical

equation for formation (in non-equilibrium condition) and the

energy equation were solved numerically like a two boundary-value



problem. The values of the chemical parameter x, the gas tempera¬

ture T and the mass density p were obtained explicitly as functions

of time and they were compared with the change in the mean density

produced by the free-fall. The ability of H„ formation to act as

a direct non-linear amplifier of density inhomogeneities in pre-

stellar clouds depends critically on the initial values of the number

density of particles n , the temperature Tq and the percentage of
chemical heat input to the gas, £. In particular, if the remainder

of the binding energy of formation is radiated by the grains,

formation can induce fragmentation in a contracting cloud providing

that T > 60°K and n > 10^ cm ^ .

o o ~

A study (in orders of magnitude) of the turbulence as a

mechanism generator of density fluctuations has been done. If the

Kolmogorov spectral law is assumed, subsonic turbulence is enough to

provide any prestellar cloud with the elemental fluctuations which

are effectively amplified by molecule formation in a time shorter

than one free-fall.
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CHAPTER I



1. INTRODUCTION

Observations support the idea that interstellar clouds consist

mainly of atomic hydrogen, dust and traces of heavy elements, neutral

and ionized and also that they evolve towards denser states and

occasionally cross the Jeans limit and start to contract under their

own self-gravitation. One can say that this last period is rather

well understood, at least in the case of a spherical and initially

homogeneous cloud, and an abundant literature has appeared since

the classical paper of McVittie (1957). See for instance, Hayashi

(1966), Bodenheimer (1968), Larson (1969), Disney (1969), Larson (1977).

However, two fundamental problems remain to be clarified: a. the

onset of the collapse itself* and b. the fragmentation problem, i.e.

why, when and how a prestellar cloud, probably during its gravitational

contraction, splits into independent units, some of them going on to

reach high densities and high opacities (at wavelengths corresponding

to the cooling radiation) and in an adiabatic state dramatically

increase their temperature while evolving toward the proto-stellar

stage.

A qualitative review of the main ideas proposed to explain the

onset of fragmentation of clouds as a first stage in the star forma¬

tion process will be presented in Section 2.

There are reasons to believe that the fragmentation process of

prestellar clouds is not a consequence simply of the dynamical

(gravitational) properties and that many of the physical processes

* For a recent review on this particular problem, see Woodward, P.R.
(1978).
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and fields involved, like turbulence, chemistry, radiation,

magnetic and gravitational fields, probably play their own role,

but because of the mathematical complexity which appears if one

tries to incorporate all of these aspects at the same time, they

have usually been treated separately.

In this thesis an exploration of a possible way by which

turbulence, chemistry, radiation and gravitational fields can

instigate fragmentation will be presented starting with the chemistry

of the H2 molecule.

The thermodynamics and in particular the chemistry of inter¬

stellar clouds is extremely complex. The diversity of physico-

chemical processes, Watson (1976) and the number and diversity of

molecules is enormous. Many molecules have been observed in

the last few years, Herbst (1978); but the crucial role the 1^
molecule plays in the evolution of any interstellar cloud can be seen

from the following general considerations:

a. The molecule is the most abundant and its formation

alters directly the number density of particles of the gas.

b. The molecule initiates most of the chemical evolution

in any interstellar cloud, Oppenheimer and Dalgarno (1975). Most of the

molecular chemistry, in particular the CO generation, is inoperative

unless sufficient is present, Gerola and Glassold (1978).

c. The presence of (and HD) involves a drastic and

irreversible change in the thermo-dynamic properties of any cloud

because of the change in the cooling agents from atomic to molecular
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form. It is likely that this aspect is the most important one as

far as the fragmentation process is concerned because of the strong

implication on the thermal stability of the cloud. The generation

of a new coolant and the change in the number of particles in

discrete regions through any non-homogeneous cloud could be the key

processes that induce fragmentation: this will be explored in this

thesis.

d. The presence of molecules shields regions against the

UV field in the region 912 - 1108 £, Solomon (1969), Spitzer (1976),

Federman et al (1979) .

Finally, we quote from Spitzer (1976) : "In theories of

star formation, condensation of H into as a cloud contracts

seems a very realistic assumption, ..."

In Section 3, the problem to be tackled will be enunciated and

the justification for the two main hypotheses introduced i.e. (a)

formation is completely determined by the critical grain tempera-

2 -3
ture T

^ if the number density of gas particles n > 10 cm and
gas temperature T ~ 100°K. (b) Radiative equilibrium between the dust

and the radiation field holds.

In Section 4, an adaptation of the radiative-heating equations

valid in the general case of a multidimensional inhomogeneous medium

will be presented. These equations are solved, in Section 5,

analytically in a first approximation for an inhomogeneous cloud

model, i.e. a semi-infinite cloud with sinusoidal transverse fluctu¬

ation in density which are taken as a first and schematic represent¬

ation of random inhomogeneities, possibly generated by turbulence.
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The importance of the inhomogeneities at scales with optical

thickness tt/2 is shown.

In Section 6 an approximate numerical integration of the

visual radiation field in inhomogeneous cloud models is presented

introducing approximations justified by the results of Section 5,

and a further constraint on the scale of inhomogeneities at large

values (>tt) is discussed.

In Section 7, the effects due only to H formation are calcul¬

ated, schematising the production as starting in bubbles with

radius ~ tt/4k, k being the mean extinction coefficient. The chemical

parameter x, density p and temperature T of the gas are .evaluated

numerically as functions of time and compared with the change in

density produced by a hypothetical free-fall collapse, starting with

the same initial density at which H„ formation is switched on.

All the results are shown in graphs which seems the most direct

way to present them, avoiding lengthy explanations.

The very complex gas-dynamical aspects have been evaded in

this first exploration with an hypothesis of isobaricity which has

some degree of justification as discussed in Sections 7 and 8. This

is the strongest assumption made, which we hope to remove in a further

treatment of the problem.

The summary and further discussion is presented in Section 8.

In Section 9 some problems of interest which emerged during the

preparation of this thesis have been quoted. It is hoped that they

may be tackled in the future.
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Appendix A contains a summary of the fundamental equations and

basic hypotheses which permit one to introduce drastic simplifications

to the formal equations, in particular to the radiative transfer

equation. In this appendix some timescales of interest in this

study are defined too.

Turbulence as a generator of density fluctuations is studied

in orders of magnitude in appendix B.

Appendix C contains a detailed derivation of the Giovanelli

equation which is solved analytically in a first approximation in

Section 5 and from where a first insight into the radiative heating

in inhomogeneous clouds has been obtained.



- 6 -

2. REVIEW OF STELLAR FORMATION THEORIES

The onset of the fragmentation process of prestellar clouds

is only a particular aspect of the vast field of stellar formation.

Therefore, a review of the theories of star formation with emphasis

on the fragmentation problem is helpful.

Kant (1755) speculated that the stars are formed through

gravitational collapse of nebular material thereby raising the

temperature of the cold gas. Laplace (1796) suggested that

cooling would help to initiate the collapse and that rotation might

play an important role in the first stages of star formation. How¬

ever, it was not until 1928 when Jeans published his classical paper

that this problem received a quantitative analysis.

Jeans assumed an initially infinite and uniform gas at rest in

which an infinitesimal perturbation was allowed for. He solved the

motion and continuity equations - equations (A-16) and (A-15) - and

found that the marginal state had a characteristic wavelength

i

where T and pQ are the unperturbed temperature and density
respectively. Therefore, perturbations with wavelength X > X

*J

would grow exponentially while those with X < X would be damped.
J

Although the basic assumption of Jeans was wrong*, nobody

now doubts the certainty of his basic conclusion which is a formal

* An infinite static and uniform state is not a solution of the

system of equations (A-15) and (A-16).



- 7 -

statement that when a mass is high enough., that is when

M > M_
J

z ii rv.
( — ) T 2p

71R & t3/2 -i (2-2)

G

where -M = Jeans mass, self gravitation dominates over the thermal
J

pressure. In the context of the consistent solutions of the motion

equation the Jeans problem has been reworked by Bonnor (1957) in his

classical paper. Chandrasekhar (1951) generalized Jeans' work to

an infinite turbulent medium and Sasao (1971) went further in the

same way to an isothermal contracting gas sphere. A formal treat¬

ment of the Jeans instability has been given by Chandrasekhar (1961)

and a less formal one by Mestel (1965). Recently a further general¬

ization of Jeans' criterion introducing the energy balance condition

has been made by Kegel and Traving (1976). But although Jeans'

criterion may play the main role in determining the initial mass

which may start to collapse, Disney et al. (1969) have showed that

such a criterion may be irrelevant for fragmentation, at least at

scales of galactic prestellar clouds, where this process is only

determined by the strong coupling between the dynamics of collapse

and atomic properties.

A theory of star formation was put forward by von Weizsacker

(1951) with the aim of explaining in a unified manner the formation

of galaxies, stars, planets and satellites where the turbulence

would provide the necessary hierarchy of density inhomogeneities on

which Jeans' criterion would operate. According to von Weizsacker,

a cloud of dimensions L and characteristic turbulent velocity v

evolves towards a flat non-uniform rotating disk in a time scale

t (2-3)
v
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where a~5. Angular momentum prevents contraction of the body as

a whole, resulting in a contraction of part of the body towards the

centre. The gravitational energy set free by this contraction pre¬

vents the collapse of the rest of the external mass. As a result, a

slowly rotating spheroidal mass develops in the centre which von

Weizs&cker identified with an early stage of evolution of an

elliptical galaxy. The remaining disk acquires enough angular

momentum to escape.

In the context of this theory, the part concerning the star

formation problem was directed towards the explanation of Baade's

(1944) two stellar populations of the Galaxy. The oldest stars

(population II) would have condensed before the cloud had contracted

appreciably and when the turbulence was great. Therefore, these

stars would form spherical systems (globular clusters) and would

present in general the largest peculiar motions. The youngest

stars (population I) would have formed after the decay of the initial

turbulence or in its last phase when the cloud was a flat disk so

they would move in nearly circular orbits in the galactic plane.

Because the timescale for the formation of a cloud of stellar mass

is

<aT 6
t ~ !i ~ 5 x 10 years (2-4)*

I being the corresponding scale of turbulent elements, von WeizsMcker

is forced to assume, ad hoc, that no formation of stars is possible

today because the presence of stars inhibits the formation of new

stars. In addition to this particular point, the main criticism to the

* This order of magnitude is obtained by applying the Kolmogorov
spectral law.
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von WeizsHcker theory, according to Mestel (1965) is that super¬

sonic turbulence has to be invoked and this is unlikely because of

the strong dissipation of energy in shocks. However, although

turbulence by itself is unable to induce the star formation process

as von WeizsMcker suggested, subsonic turbulence, which is likely to be

present in prestellar clouds,Roberts (1969), is probably the most

efficient mechanism to generate inhomogeneities which,assisted by

another mechanism to amplify these inhomogeneities may induce

fragmentation, at least at scales of galactic prestellar clouds.

The most natural of such mechanisms is molecule formation, Oppenheimer

and Dalgarno (1975), Reddish (1978). Turbulence as an elemental

process in the formation of density inhomogeneities is considered in

appendix B.

Hoyle (1953) following the same general line as von Weizs&cker

proposed that "gravitational" rather than hydrodynamical turbulence

is the mechanism by which the following observational data are

explained: (a) Galaxies tend to occur in clusters, (b) The masses

9 11
of galaxies are in the range 3 x 10 - 3 x 10 Mg with a tendency
to fall into two groups at the ends of this range. (c) The typical

mass of type II stars is ^1 M@. (d) The ages of these stars are
the same as the age of the galaxy.

Whilst, in the von WeizsHcker theory, fragmentation in general

would be a direct consequence of the non-steady regime caused by

turbulence which is established where the Reynolds number R > Rcr£>
in Hoyle's scheme, fragmentation would be a consequence of the non-

steady regime established where M > M . It seems that from the strong
J
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analogy, Hoyle called his theory "gravitational turbulence".

The core of the physical argument invoked by Hoyle is as

follows: when M > M„, i.e. t-- < t , see appendix A, the cloud has
J ff e

to contract as a whole due to the action of its own gravity. When

the contraction proceeds and if t < t^,i.e., the cooling efficiency
\ -I

is enough that 11 T p 2 decreases, the cloud can break up

and a fragmentation process can continue as long as M continues

decreasing. The process must stop when the opacity, for the coolant

radiation, becomes so high that t > t ; then further increases
c ££

I
in density become adiabatic, i.e. Tap , M «p2 and the Jeans mass

vJ

increases.

Hoyle establishes a hierarchical structure starting with a

-27 -3
primordial spherical condensation of hydrogen of density ^10 g cm ,

mass > 1.4 x 10^ and temperature M.5 x 10^ °K, which contracts

Vj
by a factor k and divides into k equal masses. Each fragment under¬

goes the same process and it is repeated until the opaque stage is

reached. The fragments of the first generations would be identified
ttl

with galaxies and fragments of the n generation (n ~13) with type II

stars, which would have a corresponding mass M ~ M /kn ~ 1.5 M ,° ©

9
if M ~ 3,6 x 10 M and k ~ 5. If further fragmentation occurs

o o

masses about 0.3 are easy to obtain. However, according to Hoyle

"a second and radically different case arises, if dust has been

produced in the condensing gas. Dust allows molecules to be formed,

and molecules are able to radiate at low temperatures, in contrast

to hydrogen, which cannot radiate, once the electron and proton

recombines to form atomic hydrogen ...".



- 11 -

In the context of Hoyle's scheme, according to Hunter (1962,

1964), fragmentation could result as a consequence of the amplification

of non-uniformities, present at the onset of the contraction, due

to the dynamics of the collapse. Such results have been severely

criticised by Layzer (1963a,b, 1964).

Assuming hierarchical fragmentation, the problem of the last

fragmentation and minimum mass of fragments has been studied by

Smith and Wright (1975), Suchkov and Shchekinov(1976), Low and

Lynden-Bell (1976), Rees (1976) and Smith (1977). In particular,

according to Low and Lynden-Bell, the minimum mass would be
-3 -3

7 x 10 Mq as determined by opacity or 10 if fragmentation
occurs at the hydrogen ionization stage.

Recent numerical calculations, Larson (1977, 1978), Tohline

(1978, 1979) have questioned such a hierarchical scheme. In particular,

according to Larson (1977), the bulk of fragmentation would have to

occur as a one shot process and during the initial collapse of the

cloud. This form of fragmentation would offer the additional

advantage of minimising the Layzer (1963a) objection to fragments

coalescence.

Because the fragmentation process involves an effective

separation of the collapsing fragments, one can see that any process

capable of instigating amplification of density contrast, at early

stages of the cloud contraction, has to be the key in determining

the main characteristic of the whole process, in particular, the

resulting mass function distribution. Jeans' criterion only provides

a necessary but not sufficient condition, to be fulfilled by the

cloud as a whole and by the fragments themselves, to induce fragmentation



- 12 -

in any prestellar cloud. Fragmentation, for instance, is impossible

in an ideal initially uniform cloud although the condition M > M
*J

is fulfilled, Disney et al. (1969).

Ambartsumian (1955, 1960) put forward the idea that the origin

of stars, gas and dust is closely related to the nuclei activity of

galaxies. This theory has still to be developed and it constitutes

a completely different point of departure from the conventional one.

Another star formation theory has been proposed and developed

by Layzer (1954, 1956, 1963a,b, 1964) in which he starts by distin¬

guishing between fragmentation and clustering. The first process,

according to him, is related to local and the second one, to global

properties of the system. He assumes that an isotropic and homo¬

geneous cosmic distribution of mass is similar to a uniform imperfect

gas. In this, if an adiabatic expansion takes place, formation of

liquid droplets arises, and the same would occur on a large scale,

in the gravitating gas.

The main difficulty arising in the Layzer model is the explan¬

ation of the star formation process at scales of galactic clouds

without appealing to hypothesis ad hoc and without invoking other

mechanisms capable of acting at these scales. Layzer put forward

the idea that the birth of 0 stars "would initiate a chain reaction

triggering the gravitational collapse of all surviving prestars

within a certain radius"and therefore, according to him, Baade's

view that "star formation is a contagious disease" would receive a

natural explanation. This idea has been developed recently by

Elmegren and Lada (1977) .
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McCrea (1960) proposed a random accretion theory principally

with the aim of linking the formation of the solar system with the

star formation problem. He suggested that once the original cloud

has collapsed to the dimensions of the solar system, it can be

represented by a set of non-interacting "condensations" or "floccules"

composed mainly of molecular hydrogen with temperature about 50°K
velocities of 1 Km/s and mean paths of the same order as the size

of the present solar system. For successive collisions, some floccules

can reach sufficient mass and they become gravitationally bound.

Although in this theory there is some difficulty with the stability

of the "floccules", it predicts remarkably well the value of the

angular momentum of the Sun which would be 7 x 10^g cm^s ^ differ¬

ing only from the accepted value (2 x 10^g cm^s by a factor 3.5.

Grzedzielski (1966), following the McCrea line, has developed

a theory in which instead of floccules, Shockwaves would be generated

by large velocity differences supposed to be present initially. His

two basic assumptions are: a) The typical scale of chaotic motions

is large, corresponding to velocity cells with masses of the order
9

of 10 M^. b) The kinetic energy of these motions is comparable to
the gravitational potential energy of the pregalaxy. From these

hypotheses he concludes that the pregalaxy may fragment into smaller

objects of the order of 10 and if heavy elements are present

within these subcondensations, a further stage of fragmentation would

be possible, giving rise to masses of the same order as those of

globular clusters.

Recently Woolfson (1979), following the line traced by McCrea
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and Grzedzielski, but invoking the turbulence explicitly, has

attempted to exlain the star formation Drocess in ealactic clusters.

He reoresents the turbulent elements as sas snheres each of mass

Mj(?) and moving at the same speed but in random direction. With
these assumptions, he removes the stability problems of McCrea's

floccules and the inherent difficulties of the fragmentation process.

Although the model offers some interesting attractions, it seems

unable, at least in its present status, to fit the observed mass

function distribution.

Some authors have treated the fragmentation problem specifically

as a random process. Auluck and Kothari (1954, 1965) assumed a

distribution of the form

N(V) ^n (~) exp [~3(~)3] (2-5)
o • o

where N(V) is the number of fragments with volume equal to or

greater than V, Nq is the total number of fragments and the
average volume of a fragment. In the same way Kruszewski (1961)

fits an expression for the initial mass spectrum obtained by Limber
2

(1960) in a mass range from 0.1 M to 10 Mq.

Larson (1973) studied the fragmentation problem as a temporal

random process. Although he found an approximated gaussian function

for the stellar mass spectrum, his results (as he himself pointed out)

do not provide a solution to the problem of the stellar mass spectrum.

One can see that the random approach is rather an elegant way

of hiding the physical mechanisms which, although they can be quite

complex, do determine spatially and temporally the behaviour of any

actual cloud.
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An attractive but not well explored theory that fulfils

Larson's (1977, 1978) requirements, and predicts remarkably well the

Salpeter (1955) initial mass function and other observed properties

of the star formation process, has been outlined by Reddish (1975,

1978). In it, the formation of the hydrogen molecule plays a

crucial role as the initial instigator of the fragmentation process.

Speaking in very general terms, according to Reddish, spatial

density fluctuations of the dust component lead to spatial fluctuat¬

ions of the radiation field (the main source of this field is the

mean star light radiation field) which produce spatial fluctuations

of the dust temperature T^. Because the rate of formation
depends critically on T^, Solomon and Wickramasinghe (1969), here¬
after SW (1969), Lee (1972, 1975), regions appear where the rate of

molecule formation is faster and others where this process is

slower, or does not occur at all. This would produce instabilities

with length scales of the order of one unit of optical depth in

visual extinction by grains and in a time shorter than one free-fall

time.

Because of the connection between some works on and CO

formation and the basic ideas of Reddish a short review of these will

be given, to conclude this section.

With the implicit assumption that < Tcr£ through the whole
cloud, Hollenback et al. (1971) have calculated the number density

of as function of the mean optical thickness and the position into

the cloud for static clouds in chemical equilibrium.



- 16 -

The thermo-dynamical problem of a reacting hydrogen gas, in

particular, the stability of the chemical equilibrium has been

worked out by Yoneyama (1973) and Giaretta (1977), following standard

methods of marginal stability, Chandrasekhar (1961) and with the

assumption that through the whole cloud and therefore where

does not play a role at all in the control of the rate of

formation.

Although Reddish (1978) appealed to an early paper of Schatzman

(1958) who proposed a kind of instability related to the change of

the number of particles in an isothermal gas as a result of

recombination, the two problems are different.

Schatzman considered a slab of ionized hydrogen with radiation

flux incident on both sides and found the marginal states for such

a slab of gas. He concluded that there appears to be a collapse of

the slab (the hydrogen would recombine entirely and it would form a

cool HI cloud) for thickness £ > £ .. However Giaretta (1977) has
cri

proved that there was a mistake in the above paper and no instability

really takes place, at least under the particular conditions assumed

there.

In an early paper, Yoneyama (1973), carried out a generalisation

of the work of Field (1965), introducing the chemical kinetic equation

in addition to the three basic equations of Field. He found that a

new type of instability "the thermo-chemical" one, could appear in

gases where chemical reactions occur. In particular he considered

the hydrogen recombination on grains at high gas temperatures
3 41

10 < T < 10 °K and the case where hydrogen molecules accreted on

grains.
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Part of Giaretta's work is in essence a further generalisation

of Yoneyama's but he introduces a simplified radiative transfer

equation to take into account the coupling gas-radiation field via

absorption effects only. His analysis is made in a one dimensional

infinite medium. Physically., Giaretta looked for the conditions

under which infinitesimal perturbations on the, initially assumed,

equilibrium state could grow at a rate faster than that of

gravitational perturbations. He assumed that the H^ formation is
controlled by the gas parameters which would control the UV field

too.

As will be seen in the next section, the situation under

consideration in this study is different from that considered by

the above authors. In particular, the dust temperature is the crit¬

ical parameter in determining the rate at which H^ can form on
dust grains.

Several authors have studied other molecules, in particular

CO, as possible generators of thermo-chemical instabilities, Glassgold

and Langer (1976) , Oppenheimer (1977) , Sabano and Kannari (1978) .

However, according to the most accepted scheme for the chemical

evolution of interstellar clouds, the CO production is conditioned

to the presence of H^ in appreciable amounts, Oppenheimer and
Dalgarno (1975). In particular CO instabilities require an

concentration of 50%, Sabano and Kannari (1978). According to

de Jong (1977), such CO instabilities disappear if the quenching of

the CO cooling by radiation trapping is allowed for.
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3. THE PROBLEM

The starting point of Reddish's scenario is a cloud,

initially of pure atomic hydrogen and dust particles, at the verge

of gravitational contraction, in a turbulent (subsonic) state which
"k

provides the mechanism generator of density fluctuations . The mean

diffuse galactic radiation field is incident on the boundary surface

of the cloud and the 2.7 °K background radiation field is also

present. Initially the particle number density is probably
2-3 2

n > 10 cm and the gas temperature T ~ 10 K.

Strictly speaking, to follow the exact evolution of the above

dusty cloud one would have to solve in a self-consistent manner

the equations of gas dynamics (dusty gas dynamics) complicated by

the radiative transfer equation taking into account the interaction

of the radiation field with dust and gas (Appendix A). In addition

to the inherent difficulty caused by a non-steady regimen, because

of both the contraction and turbulence, the presence of chemical

reactions completes the set of difficulties, because unfortunately

with the problem enunciated in the above form there is no way to

separate the chemical problem from the gas dynamical one. Fortun¬

ately, some assumptions can be introduced without losing the basic

ingredients and some insight into the whole problem can be obtained

with the help of schematic solutions, as will be indicated as

follows.

* This seems to be the state in which HI clouds are left by the
compression of the stationary spiral density wave of the galaxy,
Roberts (1969), Clayton (1978).
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The rate of hydrogen recombination on the grain surface is

given by SW (1969), Spitzer (1978)

^2
= Y < ad > < vH > nd TIh (3-1)

dt

3
where n^ , n^ and nd are the number density per cm of formed,

hydrogen atoms and dust particles respectively, < 5d > is the mean

geometrical cross section of a single grain, < v > is the meanH

velocity of hydrogen atoms and y the total recombination efficiency

which depends on the sticking probability and the recombination

efficiency, Hollenback and Salpeter (1971) and probably on the sur¬

face contamination with H^, Marenco et al. (1972). But in the range
2 2

of interest T ~ 10 K and n > 10 , SW (1969) propose the following

schematical representation

0.5 if T ' < T .

d cri

Y = 4 (3-2)
0.0 if T, > I ,

d cri

In a less schematic model, however,
6y
ST f °° and the

T .

cri

amplitude of the fluctuation around T ., AT/T ., required to
cri cri

produce sensible changes in the rate of formation has to leave

a non-zero width which can be estimated with the help of the relations

given by Reddish (1978) but corrected by the fact that when the

length of time which an adsorbed atom spends on a grain, T, is shorter or

of the order of the interval between successive adsorptions of atoms

on a grain t, the recombination coefficient y is proportional

to the probability that at least two atoms meet on a grain at the same
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time i.e.

Y * i t exp(2E/k.Td ) (3-3)

E being the adsorption energy of the atoms on the surface.

From equation (3-3) it follows that a fractional change in the

recombination coefficient, due to a change in T, where T, x Td d cri

would be given by

Ay

y(T .)
cri

2E
AT.

kT . \ T
cri \ cri

(3-4)

Graphite, for instance, according to the experimental results

of Lee (1975) has Tcr£= 25°K and E/k = 785, therefore a change in
temperature of 1.6% around T ^ would produce a change in the rate
of formation of 99%. All the substrata studied experimentally by

Lee present similar behaviour, in particular the quantity (2E/k Tcrd )
is practically insensitive to the particular kind of substrata as

can be seen from the experimental values given by this author:

-1

substrate (2E/k T . )
cri

-1

h2O

CO.

Graphite

0.015942

0.016406

0.015924

Marenco et al. (1972) have found experimentally that the energy

given to the cold surface by the hydrogen atoms arriving to it is a

function of the surface contamination with For reasons of
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saturation, they excluded the chemisorption process as a possible

explanation. Then, either of the following possibilities, to

explain the above result, remain: 1) The presence of H on the

surface influences the recombination rate. 2) The presence of ^
is only useful to obtain an increased accommodation at the surface

temperature of the formed excited molecules.

Reddish (1975, 1978) assumed that the above first interpretat¬

ion is the correct one and modified the recombination rate (3-1) in

the form

— " Yo <?d)\VH) nd -H V (3-5)
dt

with (y tn ) =1.0, where y would contain the dependence of the
U Elrt O

z max

recombination coefficient on the sticking probability (depending on

the gas parameters) and on the recombination efficiency (which depends

sensibly on T^). However, to keep (3-5) consistent, a redefinition
of would be required and from the pure dimensional standpoint y^
would have to be a probability per unit density of particles. How¬

ever, the value y = 1 was assumed by Reddish, which indeed invalid¬

ated (3-5).

The above error indeed (contrary to the Silk (1978) criticism)

is not crucial for Reddish's scenario of fragmentation, because even

with the classical equation, Spitzer (1978), equation (3-1), the

H^ formation could instigate density amplification in a contracting
cloud, as can be seen throughout the present work.

On the other hand, Silk (1978), took the second possibility to
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explain the Marenco et al. results, however one sees that he is in

no better position than Reddish. More experimental work would have

to be done or a very careful theoretical quanto-mechanic treatment

would be required to decide in this respect.

In a first approximation, if the rate of hydrogen molecule

formation is enhanced by the contamination of the surface with

assuming that the degree of contamination is simply proportional to

the concentration in the gas, the recombination coefficient

would be of the form

y = S(Egas) Y'Cy Y"^) (3-6
where S is the sticking probability (fraction of atoms incident on

the surface which becomes adsorbed), y' is the recombination coeffic¬

ient (fraction of atoms that recombine instead of evaporating) and

y" a coefficient proportional to n^ . This form for the total

recombination coefficient, would give a stronger sharpness to the

boundaries separating regions where and where formation

can proceed easily, from those where > Tcr£ and the gas remains
mainly atomic, and corrections to (3-4) to take into account such

effect would give a steeper dependence near to T^

The molecules can be dissociated by UV photons of the

Lyman and Werner bands, Stecher and Williams (1967), Spitzer (1978).

The disassociation rate can be expressed in the form

dn'

_2_ = Br^ (3-7)
dt 2
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where n' is the number density of molecules dissociated and B
2

is a function depending on the local value of the UV field in wave¬

length range 912 - X - 1108 X and on internal parameters of the

molecule; for a free molecule exposed to the mean galactic UV

field, B 58 10 ^sec \ Hollenbach et al. (1971).

2 2
As shown by SW (1969), in clouds with T ~ 10 , and n > 10

_3
cm , with reaction and destruction rates given by equations (3-1)

and (3-7) respectively, wherever < T ., chemical equilibrium
-3 ~3

would be reached for n^ <.8.10 cm , assuming a normal dust/gas
-12

ratio of n,/n = 10 , i.e. "the dissociating radiation is completelyd

ineffective and may be neglected except for a thin shell, Solomon

(1969). Therefore, in clouds under consideration, the only factor

governing the extent of recombination is the critical grain tempera¬

ture ." Recent and more detailed calculations, Federman et al. (1979)

confirm this conclusion. Therefore this first simplification emerges.

The dust temperature at any point in a cloud is determined

by the local energy balance equation

"d(5 [<?d Qabs> Bv (Id(i.» " <?d<W) Jv «] dV * 4tt E<i> »-8>
} o

where /5^ aS a mean absorption cross section per grain at
frequency V, B^(T^(r)) the Planck function, (r_) the local mean
intensity of the radiation field at frequency V and E(r_) represents

the net amount of energy lost by the non-radiative processes: gas-

6 -3
dust collision and H„ formation. At T < 150K and n < 10 cm the2 ~

transfer of energy by gas-dust collision is negligible in comparison

with the radiation heating, Hayashi and Nakano (1965), and for
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4 -3
n <10 cm the energy by H„formationimput can also be neglected, if the

local radiation field can maintain the dust temperature above about 9°K,

SW (1969). Indeed, this limit was obtained by these authors assuming

that all the binding energy can be absorbed by the grain. However,

according to Hunter and Watson (1978), H^ probably recombines into
high rotational states and new molecules return to the gas in

rotational states J > 7. Therefore, the above temperature would

represent an upper limit and equation (3-8) becomes

- oo co

<vw) jv«dv- W£>>dv <3-9)

i.e. the common radiative heating equation. This is the second

simplification.

From the above discussion one may see that at least in the

o 4 -3
range T < 150K , T, ~ 20 K , n < 10 cm , the H„ formation is

d 2.

controlled by the dust temperature which is determined at each point

in any dusty cloud by the radiative transport controlled mainly by

the dust optics, van de Hulst (1946), Werner and Salpeter (1969),

hereafter WS (1969), Leung (1975), Aiello et al. (1977). Because

a random density distribution is probably a common characteristic in

real interstellar clouds, Zuckerman and Palmer (1974), Zuckerman and

Evans (1974), "tongues" of radiation penetrate into the clouds pro¬

ducing an irregular T^ distribution. This means that patches in the
cloud become cold enough (T,< T .) and H„ formation starts thered cri I

first. One must recognise, just at this stage, that one is dealing with

a multi - dimensional radiative heating problem.
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Despite the intrinsic complexity of the above problem, one

can say with confidence that equation (3-9) remains valid because

the radiative equilibrium between the dust and the radiation field is

fulfilled as can be seen from the following simple argument.

The timescale to re-establish radiative equilibrium between

dust and radiation field is given in a first approximation by the

timescale for diffusion of the photons responsible for the heating

of the grains, through the cloud, i.e.

, ~ R
d T0~ (3-10)

c

where Tq is the mean optical depth to the centre of the cloud of
dimensions R, measured at wavelengths of importance for the heating

of the dust, and c the light speed.

An appropriate upper limit to the above diffusion time would

be given by the diffusion of the visual photons. In this case,

equation (3-10) becomes

2

fcdCI

nd(Qabs 5d)oc L(t) <W.) o

1
2 -1

T0 n (3-11)

If one compares this timescale with the other three timescales

of interest in the present study, i.e., the free-fall time t^^,the
H„ formation time tu , equations (A-21) and (A-36) respectively,

2
and the timescale for turbulence at the scales corresponding to

it
visual optical thickness of tt/2 , t^, given by equation (B-23), one

* The importance of this scale will be shown in Section 5.
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obtains the following relations

— = 2.0 x 10 26 [ — <Q 5 >1 1 T 2 n 2 (3-12)u A ext d oext d o

ff

t
d

= 2.6 x 10~7 <Qext>_1 T2 Tq2 (3-13)
\

"d
_ , _ _-7 J J/3

t.
= 1.9 x 10 ' T2 i~" (3-14)

nd ,„-12 „ - _ , „ m"10„„2
ext

and assuming the mean values —5- ,.10 /Q 2 5 = 7 x 10 cm'' S ext ~ ' d

one obtains

t

tff

d « , „ ,„-5 _ 2 .-J1 x 10 T n 2 (3-15)

td -7 1 2
83 1 x 10 T2T (3-16)

o

\

™ 2 x 10"7 T2 xf/l (3-17)
o

For the situation at hand T » 5, n s: 103 cm3 and T * 102 K
o

—— « 8 x 10 4; — ~ 3 x lo-5 and —— ~ 3 x 10~5 (3-18)
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and therefore the timescale to re-establish radiative equilibrium is

very short compared with any other time of interest and static models

give a good representation of the spatial distribution of the dust

temperature. Note that if Tq < 1, the diffusion timescale given by
equation (3-10) becomes simply t^~ R/c.

With the two basic simplifications introduced in this section

i.e., the production is totally controlled by Tcr£ and radiative
equilibrium between dust and radiation fields holds, the problems to

tackle are: (a) To find the effective scale length at which the dust

temperature fluctuates around (b) To show that regions

T, < T . (and where H„ starts) could become effectively denser andd cri 2

cooler with respect to regions where T^ > Tcr^ and an a time shorter
than one free-fall.

The above two crucial problems in the Reddish scenario for

fragmentation are the aim of this thesis. They will be studied in

first (and schematical) approximation in the next sections.



CHAPTER
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4. THE RADIATIVE HEATING PROBLEM IN INHOMOGENEOUS MEDIA

In this section the basic equations of the radiative heating

problem, valid for the general case of a non-uniform 3-D medium will

be adapted for our particular problem. Although the range of

applicability of such equations is general, limited only by the

restrictions explicitly enunciated, this discussion will be made with

the interstellar dust clouds in mind.

In this study the main interest is focussed on the early stages

of evolution of prestellar clouds when the transition of H^ to H^
has to occur and therefore no internal sources of radiative energy

are expected to be present. Only the diluted stellar mean radiation

field, as that compiled by Watson (1976) is considered incident on

the free surface of the interstellar dust clouds. In addition,

strictly speaking, any interstellar cloud has to be considered embed¬

ded in the 2.7°K background field. The main role of this field is to

prevent the dust temperature falling below 2.7 K at any depth,

WS (1969) , Greenberg (1971).

The radiative transfer equation, (appendix B), can be written in

the form

dlv( s= - %(s) iv(s,n) + jv(a,n) (4-i)
ds

Formal integration of this equation yields

I (s,ft) = I (o,ft) exp ( —x (o,s))+ jv(s,£p exp (-t(s,s')) d s'
(4-2)
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where x^(o,s) is the optical depth from the boundary to the point s
measured along the direction fi, i.e.

tv(O,S) = Kv(s')ds' (4-3)

and x^(s,s') is the optical thickness between the points s and s'
along the direction Q, i.e.

IC (s") ds" (4-4)TV(S,S') =
s

(Chandrasekhar i960)

From equation (4-2) it follows readily that the radiation field

at any point in a cloud can be represented by the sum of two

components: (a) The reduced incident radiation field, i.e. the

incident field reaching any point s in the cloud without having

suffered any absorption or scattering - the first term on the right-hand

side of equation (4-2). This field will be called simply the

attenuated field. (b) The diffuse radiation field, i.e., the field

at any point s in the cloud originated by scattering and emission

processes - the second term on the right-hand side of equation (4-2).

a. Attentuated Field

The mean attentuated radiation field at any point _r in the

cloud is

Jv u - T4tt
!av (r,fi) dft (4-5)

4tt

where I (r_, fi) is the intensity of the attentuated field in the
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particular direction fi, i.e.

Ia^ (r, £2) = I°(l0»fi) exp ( -Tv(o,s)) (4-6)
1°(£q»R) being the intensity at the boundary and T (o,s) the optical

depth from the boundary to the point jr.

It is clear that the explicit value of J (r) depends on the

type of incidence and the geometry involved.

For plane parallel incidence with direction y^ and <j> , the
inwards intensity I (-y,<j>) becomes

i°v (-y,4>) = ^FoV 5(w-yo) 5(4>-<f>0) (4-7)

where y is the cosine of the angle between the outwards normal to

the surface and the direction, d> is the azimuth angle and ttF
— oV

the flux crossing a unit surface normal to the direction of incidence

y , (J) , and the S's are Dirac delta functions, Chandrasekhar (1960).
o o

For plane geometry, from equations (4-5) and (4-7) one obtains

F
J

V ^ = — exP (-ToV (°>s; u0»<l> ) ) (4-8)
4 """ u

b. Diffuse Field

According to equation (4-2) the total intensity Iv(_r»£0 can be
written in the form

Iv(r,fi) = Ivd(r,S7) + Iva(r,fi) (4-9)

where the upper index d denotes "diffuse".
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Substituting equation (4-9) in the radiative transfer equation

(4-1) one obtains

7 <lvd + O = ~Kv(Ivd + O + iv (4"10)ds

If isotropic scattering is assumed, according to equation (A-54) the

emission coefficient is

j = k S = a B + a (J d + J a) (4-11)jv v v v v v v v

With the help of equations (4-3) and (4-4), from equation (4-10) one

obtains the radiative transfer equation for the diffuse field i.e.

d I d
~— " "S1," + Vv" + Vv <4"I2)

ds

where the function S is defined by

KS = aB +aja (4-13)
v v v v v v

Hereafter the upper index d will be dropped, i.e. the radiative trans¬

fer equation for the diffuse field will be simply

d I
— = -K I + a J + KS (4-14)

J v v v v v. vds

Using this equation, Giovanelli (1959, 1963) constructed a

generalization to the Eddington approximation for inhomogeneous

atmospheres.

By writing the general solution of equation (4-14) in the form

o° n

1 = 1 {IP/U) + I [a m cos (mcj)) + bm sin(mt())J p_m(y) (4-15)LI III ^ 11 11 II
n=o m=l
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where Pm(y) and P^(y) are the Legendre polynomials and Legendre
associated functions, I ,am and b™ coefficients depending on

n n n

frequency and position but not of directions (y,<j)), Giovanelli

showed that if only first order effects of y and <J> are taken into
9a^~ 3b^"

account, i.e. I_ = 0 and 2 = 2 = 0, from equations
3x 9y

(4-14) and (4-15) the following equation is obtained

V f—— V J (r)] = 3 [a (r) Jv (r) - K (r) Sy (r) ] (4-16)
Kv(r)

see appendix C.

According to Giovanelli, equation (4-16) leads to results for

3-D non-uniform media of the same degree of validity as those

obtained from the Eddington approximation in the 1-D case. Unno and

Spiegel (1966) have arrived independently at the same equation (4-16)

and they proved formally that their solutions are reasonably accurate

over the whole range of optical thickness.

c. Radiative Heating Problem

As shown in Section 3, the dust temperature in interstellar

dust clouds is controlled in assence by the radiation field through

the heat balance equation (3-9) i.e.

< SdW . Jv(£> dv * <sdW VTd(r» dv <4"17>
o ^ o V

The mean radiation field J(r) at a particular point r^ in any

cloud is determined by the radiative transport into the cloud of the

incident radiation field on the free surface of the cloud. According

to Zimmerman (1964), Krishna Swamy and Wickramasinghe (1968), this
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ield is well represented by a black-body radiation field correspond-
4 o » — 145^

ing to a temperature of about 10 K but diluted by a factor W = 10

The exact value depends in general on the exact location in the galaxy

and generally speaking, on the type of galaxy and stage of evolution.

In this thesis, however, attention is focussed on clouds in our own

galaxy.

If the grains were black-bodies and they were located in the

free space, equation (4-17) would be simply

J = a WT 4 = a T 4 (4-18)
o r o d

T being the dilute radiation field temperature and the Stefan-

Boltzmann constant. If one takes into account the 2.7°K background
4

radiation, the extra term O (2.7) has to be added to the mean
o

radiation field J, i.e.

WT 4 + (2.7)4 = T 4 (4-19)
r d

The Planckian distribution of the radiation field has its

maximum at wavelengths X = const/T and that corresponding to the

grain emission at wavelengths X ,. Butmd

XT = X T
mr r md d

or (4-20)

I
5 i

4
— = 1 + (— ) ] W
X , WT

md r

* Strictly speaking, this field is a good representation of the field
in the vicinity of the Sun. A more sophisticated representation of
this field has been discussed by Werner and Salpeter (1969) and
Greenberg (1971).
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which for the problem of interest would give

mr

md

3.5 x 10
-4

(4-21)

This means that the integrals of equation (4-17) involve two different

spectral regions, towards the visual in the left-hand side and towards

the infrared in the right-hand side. Therefore, it can be split in

the form

(5dQabs} Jv(^)dV =
vx V

2
(a Q ) B (T(r)) dv (4-22)d abs V —

in a first approximation.

Although it is true that grains are not black-body radiators,

this fact does not invalidate equation (4-22) and one can split the

V-range in two parts: the visual s and infrared p. Defining the

mean absorption coefficients ot and oi f0r each one of the twor s p
k

regions , equation (4-22) takes the very simple form

a J
s s

a B(T)
P

or

( — )
a

a

(4-23)

a being the Stefan-Boltzmann constant. Therefore, T > T, (black-
o b-b

a a
body temperature) if _i > 1 and T < T, , if — < 1, i.e. an absorber

a b-b ol
P P

* Hereafter the notation used in radiative transfer literature on

planetary atmospheres will be employed: sub or upper indices s and p
will denote visual and infrared regions respectively.



- 35 -

exposed at the same radiation field J , can obtain a higher or lower

temperature than that corresponding to a black-body (for which
a a

s s
— = 1) according to the ratio — is greater or less than 1.

P P

Typical grains of the interstellar medium are likely to have large
2 . as

values (> 10 ) of the ratio — , Werner and Salpeter (1969),
P

Greenberg (1971) and Leung (1975).

The temperature of grains in dust clouds can be evaluated in

the same manner by considering the cloud to be grey in the visual

and infrared regions of the spectrum; but in this case the left-

hand side of equation (4-22) also includes the diffuse visual and

infrared radiation fields.

Following Wildt (1966) and Stibbs (1971) works, one defines

the Greenhouse parameter 0 by the relation

K

T1 = — (4-24)
K

P

Because the mean free paths of photons in the visual and

infrared are n^l/ic and ^I/k respectively, the q parameter is a

measure of the relative thickness of the medium at either of the two

fields: visual and infrared. Therefore, this parameter contains

schematically the (other way) very complex dependence on frequency

characteristic of the dust (or gas) optics, Andriesse (1977). It will

be of particular importance in the forthcoming sections.

It is convenient to define a dimensionless function ty(r)
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containing the spatial dependence of the extinction such that

1

or (4-25)

<i = K i|> ( r ) , i = s,p

being a mean value for the extinction. Similar relations can be

given for the absorption and scattering coefficients and a

respectively.

d. Visual Field

In the visual region the emission coefficient j is the

radiation scattered from the attenuated and diffuse radiation fields

and the thermal emission, assumed to be zero in this region. There¬

fore the function S is given by

a

K S —

S S
4TT

I ° (fl) exp (—t (o,s)) df2 (4-26)
s — s

4tt

or

w
S = —

S
4TT

I °(^) exp (-T (o,s)) df2 (4-27)s s

4tt

w being the albedo for single scattering O /K . Therefore, the
s s

equation (4-16) becomes

Y . [~i— V J (r)] = 3 k (r) [X J (r) - u J a(r) ] (4-28)
K (r) s s s s
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where A = 1 - U) is the scattering parameter. This equation in terms

of the function tjj(r) and mean extinction K becomes
— s

V
. [—— V J (r) ] = 3 ic 2 (r) [ AJ (r) - to J a (r)1 (4-29)

ip (r) s s ~ s " s ~

For plane geometry and plane parallel incidence with directions

cos y , (j) and radiance ttF in the visual, from equation (4-8) and
o o

(4-29) one obtains

2
V . f—— V J (r)] = 3k ip(r) [ AJ (r) - w j exp (-T (s; y ,$ ))]— i- . . — s —1 s — s — 4 o oo

iKr)

(4-30)

To(s; being the optical depth of the point r_ along the
incident beam.

e. Infrared Field

The emission coefficient in the infrared j is the sum of the
P

terms: the thermal radiation absorbed and re-emitted, the visual

radiation converted into infrared and the scattered infrared radiation,

assumed to be zero, i.e.

j = k S = a (r) J (r) + a (r) |~J (r) + J a(r)"| (4-31)
p PP P~P— s s s. — J

or in terms of the Greenhouse parameter H defined by (4-24), one

obtains

S = J (r) + Anjj (r) + J a(r)l (4-32)
p p — s — s 1
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Substituting equation (4-32) in (4-16) and with the help of the

definitions (4-25) one obtains the radiative transfer equation in

the infrared

V .[—- V J (r)] = -3 An 1 k 2 i|,(r) [j (r) + J a(r) J
<j,(r) " p ~ s - s - s

(4-33)

which for plane parallel incidence with angles cos ^ y^ and cj)^ and
plane geometry becomes

V . [—— V J (r)] = -3 Xri 1 K 2 \p(r) [j (r) + | exp(-T (s;y »<!>))]
\p (r) P

(4-34)

f. Boundary Conditions

The Giovanelli approximation, see appendix C, is a represent¬

ation of Iv(_r>^) in the form

n
m ,

. , m . ,. „ m
I (r,n) =J (r) + I .ft + V [~I P (y) + V (a cosm(|)+b sinm^P (y) 1V V — —1 — l n n ^ ^,n n n Jn=3 m=l

(4-35)
where

I (r) = —
1 4tt

(—'—) - d (4-36)
4tt

which results from direct integration of equation (4-36) with

xv(£>50 given by (4-35).

For the diffuse field, the boundary condition consistent with
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approximation (.4-35) , according to Wilson (1968) is

J (r ) = — n.l (r )
° /3 1—0

(4-37)

r^ denotes any point on the boundary surface and n is a unit out¬
ward vector.

From equation (4-37) and (C-19) one obtains

n.V J (r ) = -/3 K J (r )
V —o V V -o

(4-38)

This boundary condition (4-38) with the help of equations (4-25)

becomes

n.V J (r ) = -/T k lb (r ) J (r ) (4-39)
—o s —o s —o

in the visual, and

n.V J (r )
— —

p —o
-/3 n 1 k iJj (r ) J (r )

S —o p —<0
(4-40)

in the infrared.

g. Temperature

From equations (4-13), (4-17) and (4-31) it follows that the

integrated Planck function is given by

B (r)
P - Jp(r) + ^[j^r) + J„a(t)]s — s —

(4-41)

and the temperature at any point r will be given by

4T4 (r)
7T

a

B (r)
P "

(4-42)

If one defines the effective temperature of the incident
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radiation field by the relation

O T 4 = TfF (4-43)
o O

the temperature at any point of a particular cloud normalized to

T will be given by
o

T(r) B (r) ,
= ( _EJZ- )*

T F
o

or from equation (4-41)

T(r) = {J (r)+Xq[j (r)+ja(r)] }* (4-44)
— p — s — s —

where the substitutions T(r)/T T(r) and J./F J. have been made.
— o — 11

This notation will be adopted hereafter.

In the particular case of plane geometry and plane parallel

incident radiance TTF, equation (4-44) becomes

T(r) = {j (r) + An[j (r) + 5 exp (-T (s; y , <J) )) ] } 4 (4-45)P b (J O
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5. A CLOUD MODEL. ANALYTICAL SOLUTION

The simplest model that one may propose to schematise a non¬

uniform cloud and gain some insight, by analytical means, into the

general behaviour of the radiative field and in particular the depend¬

ence between the optical thickness of the inhomogeneities and the

temperature fluctuations, is a semi-infinite cloud with a density

distribution of the form

4>(x,z) = 1 + acos£x (5-1)

where a < 1 and £ = 2tt/X^ indicates the wavelength number of the
density fluctuation. The free surface is the plane z = 0, on which

a parallel beam of net flux ttF normal to itself is incident in some

specific direction cos ^"u ,<J> . Later u = l//3~and ch = ir/4 will
o o o o

be taken as two quadrature points to represent the nearly isotropic

mean incident galactic field, see Figure 5-1.

One defines two dimensionless variables X and Z and the parameter

r as follows

X =£x, Z = K.gz , r = £/ks = 2iT/Xd <s (5-2)

Therefore, X will be measured in units of wavelength X^, Z is the
mean optical depth which corresponds to the optical depth in the homo¬

geneous case (a = 0) or the actual optical depth measured at X = tt/2.

The parameter r is a measure of the optical thickness of the fluctuation.

•

From equation (5-2), it is clear that the following simple
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5-1 The cross section of an inhomogeneous
semi-infinite cloud in the plane of the

incident radiation.
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relations hold

3
„ 9 3 — 8 /r nV— = £— , — = K — (5-3)

9x 9X 9z S 9Z

and therefore

where

V K V
-xz s -XZ

2 — 2 2
V = K V-
— xz s — XZ

, —)

(5-4)

-xz
d,x 9.z

and
(5-5)

V - (rl,
-xz ax az

With the help of equations (5-1) to (5-5) the basic equations

(4-30)j (4-34), (4-39) and (4-40) are simplified as follows.

a. Visual Field

With the density distribution (5-1) and in terms of the variables

defined above, equation (4-30) becomes
2 2

8 J . 3 J 9J
2 s s 2 s

(1 + acosX) ( r 2 + 2 ) + r a sin j
3X 3Z 3X

3(1 + a cosX)^ Aj - — exp (—T (x,Z,y ,<j> )) I (5-6)
S

^ O O O j
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where To(X,Z, y , {(> ) is the optical depth of the point (X,Z) along
the direction defined by the angles cos ^y^ and ([j^, Figure 5-1,
which can be evaluated easily as follows; from the definition

x (s >z > y > (j) )o ^o ro

S(x,Z,yo,(|)o)
K(s') d s'

(5-7)

and from the geometry of Figure 5-1, results

x'

i
2 2

x + s' (1 - y ) cos d)*0 Yo
(5-8)

Substituting equations (5-1) and (5-8) in (5-7), integrating this

last equation and changing to the dimensionless variables defined

by (5-2) one obtains

Vx-Z-W = 7 +a
O

f..(Z,y ,<j> ) cosX + f9(Z,y ,(J> ) sinXo o o o
(5-9)

where

ff(Z, yo,<|> ) = sin6Z/yQ6 (a)

f (Z,y ,cj) ) = (cos6 Z - l)/y 62oo o

6 = r(l/yQ^ - 1) cos (j>

(b)

(c)

(5-10)

When 6 0, f, -*• Z/fl and f -»- 0, this occurs when y -> 1 (normall o z o

incidence) and/or (j) -*■ u/2, and/or r 0 (homogeneous case with con¬

stant extinction 1^(1 +a) ). This case will be called the asymptotic
case and will be treated in parallel with the case 6 ^ 0.
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The exponential exp (-T ) can be expanded as a power series

which for a < 1 converges very fast and the error remains small if

enough terms are taken in the expansion. In addition, if any power

of the functions sinX and cos X are expressed by harmonic sums

the exponential becomes

exp (-T (X,Z,y ,<j> )) = exp (- -j- )-|g (Z) + g^(Z) cos X + g2(Z)cos2X +r1/-.

+ h^(Z) sinX + ^2^^ sin 2X + (5-11)

where

go(Z) = i + £_ (f^2 + f^2) + ...
4

g;L(Z) = -af1

g2<z) - 4-

n sl , _ 2 _2 vi + — (f, + f9) +
8

* 2 r 2
fl 2 +

....]

hx(Z) = -a f2 + — (fx2 + f22) + ...J

(a)

(b)

(c)

(d)

(5-12)

h2(Z) . _ £i£2 ♦ (e)

From equation (5-11) it is seen that it is reasonable to look for

solutions of equation (5-6) of the form

J (X,Z) = I J s (Z) cos k X + V HS (Z) sinmX
s . „ k , m

(5-13)
k=0 m=l

Substituting equations (5-12) and (5-13) in (5-6) and equating the

coefficients for the different harmonics of X, a set of simultaneous
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differential equations of the form

b.. J."(Z)
ij J

+ c.. J.(Z) =
ij l

w.s (Z)
1

(a)
*

(5-14)

dik V(z) + e.. H (Z)
xk k

= U.'S(Z)
1

(b)

oii•H 1, ... N

j = o, 1, ... N

k = 0, 1, .. . N

is obtained, where b.., c..
ij

, d., and e.,lk lk
are known coefficients

depending on the parameters r, X and a and W^(Z), th(Z) known functions
of the form

W.S(Z) = w (gQ, gx •••) exp (-Z/liQ) (a)

(5-15)

U.S(Z) = ^(h^jh^j ...) exp (-Z/liQ) (b)

This system of equation together with the corresponding set

obtained from the boundary condition (4-36) can be solved with the

help of an appropriate numerical technique. Analytically, however,

only a small number of harmonics can be retained.^ Fortunately the

terms involving harmonics greater than, or equal to 2, are small

and may be neglected when a < 1 in a first approximation.

* Einstein's sum convention is used.

^ The numerical solutions of the set of equation (5-14) and the possible
generalisation to more realistic (and complex) \p distributions will be
carried out in a further
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Reducing the solutions (5-13) to the form

J (X,Z) = J (Z) + J (Z) cos X + H (Z) sin X
s o l i

(5-16)

the system of equations (5-14) is reduced to

J" (Z)+yJn° (Z) -3(l+|a2)XJ S(z) -O Z 1 z o
ai°2 +

2 a ^1+T"^ J1s(z)

3y , 3 „2
4

(1 +-3-a") go(Z) -9-^a (1 +^_) §1(Z) = WqS (Z) (a)

(5-17)

aJ S (Z)+J1S (Z) - 9a(l+ —)X JS(Z) -of ,o
4

2 9 2 "
r +3(l+|az)X 1 (Z)

^ (1+ —) g (Z) - — (1 + — a2 )g (Z)
4 4 4 4

(Z) (b)

s"
(Z) -

'2 0/1 3 2 "
r + 3(1 + —a )X H-. S (Z) = - — (1+ — a2)h (Z) = U1S(Z) (c)1

4 4 1

where dashes denote derivatives with respect to Z.

The boundary condition (4-36) gives three equations

J s (Z)
o

= /3
Z=0

JoS(o) + 2 J1 (0) (a)

(Z)
= /3 J® (o) + a J s (o)1 o v (b)

Z=0

(5-18)

Hxs (Z)
Z=0

= A Hxs (o) (c)

In this particular case of a semi-infinite cloud, the condition

J(X,Z) exp (-—)-> 0 when Z + oo (5-19)
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Charidraselchar (1960), provides three additional equations. There¬

fore, the system of simultaneous equations (4-17) is completely

determined.

The analytical solution of equations (5-17) is rather cumber¬

some and the procedure is as follows:

If terms with powers of a greater than three are neglected, from

equations (5-17 a,b) one obtains

W, - aW
s" s s _± 2.

J. (Z) = a J 8 (Z) + a. J, (Z) +1 OO 11 < / o1 - a / 2
(5-20)

where

a = 3a(2 - | a2 ) X (1 - a2/2) 1
o

r/-. 2. 2 „
= { (1 - a ) r +3

9a 9
1 +--- (1 - a /2)

— U
} (1 - a2/2) 1

From equations (5-17a) and (5-20) results

J1S(Z) " a2JoS <Z) - a3 JoS (Z) " Vo - a5W6
where

-1 :2 + -| ( 1 - a 2/4) - \ -a^
-1

(5-21)

lWl 3 2. a3A (1 + — a ) - -y aZ Z O

a2 (1 - a112) 1
aa

- (1 - a2/2) 1
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Substituting equation (5-21) in (5-20), after lengthy

calculation one finds a fourth order differential equation for

JqS(Z), i.e.

s(41 s" s
J (Z) + b„ J (Z) + b J (Z) =

o 2 o o o

Po exp (--)) +
o

cosdZ + p2sin6Z exp (- —)
o

(5-22)

where

b = -a a
o o

2 9 a2
r +I(i+±-)X

Si ci

+ -5-1 (9 - a) + 3 Aax (1 + |a2 )

b2 = ao - a1 - 3 X (1 + -|a2 )

3co l+a2/2y2<52
o r

4 (1 - a /2)
1+ 3a2(l-a2/2) 2 3 2

3a (2 -|a )
2 9 A,. 2 ...

r +-j- (1+a /4)

1 + 3 a2 (1 + a4/8>

3(0

P1 "

2 ,3 2a ' ~2{-4 (l-a2/2) ^ y 2 2y V
o o

(—7 - 6 ) - a (1+^- ( 5 - —a, ))
a-h, 1 2 4 .

+ a

3 a2 3 2 2 9 a2
(l+£_) + (2-^aZ)(r + - A( 1+^-) )

- h 4 2 2

3oj

P2
4 6y (1-a /2)I y

o o
j-L(l-fa4) - (62- l)(l-ia2)-2a1(l-ia2)U o

3 9 2

-(|a-l)(l+|aZ) r2+-(l+ —) A - | a"] }
2 4 bJ
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The solution of the differential equation (5-22) is

J S(Z) = J S (Z) + J S (Z) (5-23)
o o horn. o part.

s

Jo (Z) being the solution of the homogeneous equation corres-
g

ponding to equation (5-22) and
part (Z) a particular solution of

equation (5-22).

g
The homogeneous solution J , (Z) becomes

o horn .

J (Z) = c exp(a Z) + c exp(a Z) + c exp(a0Z) + c.exp(a.Z) (5-24)
o hom • J.1ZZ.3.3A-T-

where c^, c^, c^, are arbitrary constants and , a^, a^, the
roots of the characteristic equations corresponding to (5-22), i.e.

i

°1 * {'["b2+ <»22 - 4bo)!]J '

1
1 - 2

-b + (b - 4b )2
Z Z O

1

2 i- 5
a3 " ' {i [_b2 " (b2 ~ 4bo}'J }

a/. = ~{i T-bo " (b02 " 4b )2] }

In order to preserve the condition (5^19), the constants c^ and
must be identically zero. So, equation (5^24) is reduced to

Jo hom (Z) = c2 exp (a2Z) + c^ exp (a^Z) (5-25)
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On the other hand, using the method of undetermined coefficients a

particular solution of (5-22) is found in the form

J (Z)
o part.

cos 6z + d^ sin 6Z exp (- —)
o

(5-26)

where

d = p
o o L P.

+ b

-1

ll ^P1 , 1 S2S 46 , , , 1 r.2(—2 -6 ) ^ + b2(~T~6 } +bo
yo ^o

- P. — ("V'62) + b —

"o V

-1

} A

d2 = {p2 -«2)2 -4{2
L1i U

2 + b2( 2 6 ^ + bo -P ["46 (-

o;

ily 2
o yo

A i "L 266 ) + b2 —

-1

} A

and

A = (^-52) + b-
y y y

o o o

•46 1 ~2. 26
r (~"5 )+ViHo y PoJ

o

The solution (5-25) therefore takes the form

_ ry

(Z) = c2 exP + c4 exP + [do+ ^]_cos^Z + d2sin6Z I exp ( )J PQ

(5-27)

where and c^ are constants to be determined from the boundary
conditions (5--18) .
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Once JQ(Z) is known, J^(Z) is obtained directly from equation
(5-21), i.e.

Jl(z) = &2C2exV ( a2Z^ + ^4c4exP ( a4Z) + [9 + q^cos^Z + q2sin5z exp(-^j-)^ J r>

where (5-28)

La22-3(l+|-a2)X + a a / a :2*fa+V>x-K

a 1 - 3(1 +4a2)X+zaa4 2 o.
/ a

2 9 , a , , |
r + - (1+ x)X - l

q = {
o

1 3 2..,d (— _ 3(1 + ya )X+|a a°Vo2

,, 2,„ 2.2.
3TT(l + a/2Po6 )„ .9_2_ 3_A,_

o (1 + Q 8" OO ^+ -W

(1- a /2)
32 2

qi ^dl
, 1 p-2. 3 2., .

(—j -6 )-3(l+ — a ) A + § a a
l y z 0

o

- d
26

3co Kl-fa4)
zy 4 (1 - a /2)

o

2 ^ a2

f+d2
o

= K (J_- s2) _ 3(1 + |a2 )x + iaa
-^o

3w 2
a (1 - |a )

4 y 6(1
o

U ) I
77)J

Finally, equation (5-17c) may be integrated straightforwardly

and one obtains

H1(Z) = k2 exp (-vz) + £q + ^cos 6 Z + £2 sin 6 zj exp ( ) (5-29)

where k2 is a constant to be evaluated from the boundary conditions
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and v, ^, ^2 are given by

= /r2 + 3(1 + 1 a 2)A

— 2
3w a(l + I a )X

£ = * T

°
4 b 6(v - -iy )u02

3d) a(l + |a2) , 2 0 . ,2
{(v - — )/[(v --p) +62]+ (V + -L )/[(v+-p) +62] }1

4 2y 6 v ^ b " L" V J " yo 1 yo
o o

£2 "

3w (1 + fa )

4 2y v
o

/[(vt-L) + 52 + 52]

In obtaining equation (5-29) condition (5-19) has been used.

The boundary conditions (5-18) give the necessary equations to

evaluate the constants of integration C2, c^ and k^. After some
algebraic calculation one obtains

C2 ~ {
— (d + d ) - 5d +/3(d +d +^aq +|aq )
y o 1 2 o 1 Ho 1 a4B4 -/3(84 + a)

r 1
(q0 + qx) - fiq2 + + qrl+ ad0 + aV a4 " ^ (1 + *a V } /AiL- n —' — —
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C4 ={ 77— (q + q,) - 6q0 +/ 3 ( q + q, + ad + ad. )y o 1 1 o 1 o 1
•

o
a2 - + 2a32)

~ (dQ + d1) - 6d2 + /3(dQ + dl + *aqo + Jaq^ c*232 " /3"(B + a)-Vo
} /A,

A1 = a2~/3(l+5aB2) a4^4 ~ ^^4 + a) - /3(l+5a3^) a2^2 ~ ^ (B2+a)

k2 && - (/3 + -7-) (A + I )L u o 1
o

/ (v + /3)

In the particular case when 6=0, instead of equation (5-22),

one finds

Jo(4)(Z) + b2Jo" (Z) +Vo(Z) = (po + Pl"f P2~_2) exp (~uA)

where (5-30)

3w

P_ = \ {— (1+a2-^|-a4) + (l- |a4)a1-a2(2- |a2) x
4 (1-a /2) h

r2 - !al

P-, =

3a) a2
2 {—~~2 (3+{a2-t ^) -a1(l-la2)-(|a-l)a+|a2)[r2 +

4 (1-a /2) 2 u

^ (1+ —) - iax 1 }
2 4 1 .
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3w

4 4(1 - a /2) y

r 1 3
2

. 2 ^ 8 3 ) + al 1 + |- (5- la2) - a
3 , a N

2(1+-}

+. (2 - |a )

"

2 9A. 2/0 "
r +-2"(1 + a /2)

Following the same procedure as in the case 6 ^ o the solution of

(5-30) becomes

J S(Z) = c^°'exp(a Z) + c, ^°^exp (a ,Z) + [d d^°^ — + ] exp(-Z/y )o 2 2 4 4 L o 1 U 2 y x o~

/-» r*

(5-31)

where c2^°^ an(^ c4*"°^ are constants °f integration which will be
determined from the boundary conditions in the same way that c^ and
c, were calculated; the coefficients d d-.^and d„ are4 o 1 2

given by

d (0)= P
2 2

1 hl
+ + b

Po

-1

(o)
P1 + 4 d2 <_7 + >

y y
o o

1 2
.

—j + y + b4 2 o
y y„o o

-1

(o). 2^7 £ ^ o

po + 2di(-—T + —T-* ~ 2d2 (A + -T>
y_ y_ y„ yo o

1 b2
*_4 + 2 + bo

-y„ y.

-i

o o o o

With the help of equation (5-31) one obtains the corresponding
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solution J^(Z) which becomes

JAZ) e2C2
(o) (0)

exp(a2Z)+ 34c4exp(a Z) -k(o) , _ (o) Z (o)
y~ + q2 '

o

+ a
•1 2 J exp(-

(5-32)
where

A' JaaJ -
3oj

4(1-a/2)
n 3 2(1 ~~2 a

i a ) } a.

,(0) = r/,(0) (o)
l(dx 4d2 ) /pQ -[3X(i+3a2) -iaaj

3w

4 (1-a /2)
— (l-|a2)} a2

q£o) = {d^o)/y 2-d2 2 o 2 3(l+|a2)X- iaa
3 t° &2

n 3 i+ (p__a ) }
4 4(l-a /2)

The constants c Cr.^ ■. _ j ^ a

2 and c ^ ' are calculated rrom the boundary
4

equation (5—18)5 the result

(°) _ r
r» W(00)-di0U »23(^»)+, (o)

o 'l'\ a434 -/3 ( e4 + a)

/ (o) (o)
lqo "ql )/Uo+/3(q (°) +ad (°>) a, -/3(1 + ia%) } / A
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(o) = { a - /3(l+|a30)

(d (o)- d_(o)) /y + /3(d (o)+ iaq(o))
o 1 o o o a2^2 " ^(32 + a) } /A.

Ct„ ~ ✓3(1 + ia3,) «484 /3(B4 + a)

a, - ✓3(1 + | 34) a2^2 /3(32 + a)

s s

Equation (5-16), with (Z), (Z) and H^(Z) given by equations
(5-27), (5-28) and (5-29) respectively, is the solution of Giovanelli's

equation for the diffuse field in a semi-infinite cloud with sinusoidal

transverse density fluctuations.

b. Infrared Field

Once the visual field has been evaluated for the model studied

in this section the infrared field will be calculated solving equation

(4-34) with the density distributions given by (5-1).

Proceeding in the same manner as in the previous sub-section,

equation (4-34) can be written as follows

32JP 32JP
2 9J^ •

(1 + acos X) (r ^ 2 + ^2 ) + r a sinX =

—3ri *X(1 + a cos X)^ [ JS(X,Z) + | exp (~T0(X>Z»1J0»^0) ) 1 (5-33)

If one assumes a solution of equation (5-33) in the same form

as equation (5-13) taking into account only the first harmonics, i.e.

JP(X,Z) = JqP (Z) cos X + (Z) sin X (5-34)
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the equation (5^33) is reduced to the following system of differential

equations

P + la J 1
D 2aJl ar2 J, WoP(Z) (a)

aJ P" + J P - r2Jn = W P(Z)o 1 1 1
(b) (5-35)

H1P - r2H1 u1p(z) (c)

where

wop(z) -3n
2

(1+fa2)(JoS (Z) + |go(z)) + fa (l+^OCJ^CZ) +l8l(Z))

wLp(z) = -3rf1X
2

a . , , s(l+|a2)(J1S(Z) + i&1 (Z)) + 3a(l+^)(Jo° (Z) + ^(Z)

U^CZ) = -3n \ (1+ la2) £ H®(Z) + ihx(z)
where g^CZ), g^(Z), h^(Z) are given by equations (5-12).

From the boundary condition (4-40) the following equations are

obtained

J P (Z)
o I = €L

;Z=o r\

J P(o) + {a J P (o)
o 1

(a)

j/tz)
/3

z=o n
(o) + a J F(o)1 o

(b) (5-36)

HjP (Z) Z-o ~ HlP(o)
n

(c)

Equation (5-36) together with condition (5-'19) applied to the infrared
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field, provide the necessary conditions to determine the solutions

of equations (5-35) .

The solution to the system of equations (5-35) is obtained as

follows: from equation (5-35a) one gets the expression

J P (Z) = -iaJ," (Z) + a r J (Z) + W P(Z)
o 1 1 o

(5-37)

and substituting (5-37) in (5-35b) one obtains a differential

equation for J^P(Z), i.e.

p" 2
Ji -R h - (W^tZ) - aWoP(Z)) / (1 - a2/2) (5-38)

1 - a

with R =

Integrating (5-38) one obtains

J1 ^ = C2exp(-RZ) +S2exp(a2Z) + S4exp(a^Z) + Qq + Q2cos($Z + Q^sinfiZ

exp(- — ) (5-39)

where C2 will be determined later and the coefficients in equation
(5-39) are given by

S„ =
3q 1x

(a22-R2)(l-a2/2)
{- a(l+^-) + 62(1 ) + a U+fa2)

3 a2
+B2 2a<1 + T>
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(

*-£)"7+1

-z

b

-

9

°rt3

77-
o

(

zb+i)I-*-P

c».<z/rB-T><jri/TV'=°b

vb̂eg

(

*+D

z£

'

B+

-b,-1(z/

'»)-

(

*|+1)3+(f/®+DBe
-}——=

-

2JYUc

=s

-09-



- 61 -

B = 2(R-—) a(l + J )(d1-
8y 6

lVd+fa2, q1-a(lt|aXci1- 2 2
8y 6

o

3 2m a s'

"J a (1+X)qi + 26 3a(l+±_)d2 + (l+|a2)(q2- -5- )
4y6

, 3 2. 3 2. a., a.
a +

2 a ^ 2 2 a 4 2 4y 6^
o

Now, substituting the solution (5-39) in equation (5-37) and

integrating, the following expression for J P(Z) is obtained
o

2 A ^J„P(Z) = —j exp(a2Z) + —2 exp(a^Z) + 2 „2
C exp (-RZ)

a. 2(1 - a )

V + V„cos 6Z + V, sin 6 Z
o 2 1 exp (- —) + C

Mo
(5-40)

where is a constant to be evaluated from the boundary conditions

and the coefficients are given by

P2 = (r2- ia22)aS2-3n h (l+|a2) + |a32 (1 + |) }

2 , 2. -1,
p4 = (r " ^a4 )aS4~3rl X (l + |a2)4a62(l+4r)

V =
o ' o

2 2 -!

Id 2{(r2--\-)aQ 3n-lAr(u|a2)(d + ((l+_» ))0d+^-)o
2y 2U 6 z °

o o

}
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/ 1 *2x2(—o + 6 )

( r 2 a( {arQ - —
y 2

o
(At -62)Q2-L y z

o

26
^

y Qi
o

- 3ri 2X (l+|a2)Wl- 2 2

\6
3 a2)+4a(l + ^-)q.

(_L -62) {ar2Q—|
V

f Q2+(-^2- 62) qJ

- 3ri *X (l+|-a2 )d„ +4a (1 + T~") (q9 " — )Z Z * ^
4y6 J

} )

V2 -
*2n2+ 6 )

L-62){ ar2Q2-f (i
o ro

-«2>q2- — Q,^ y 1
o

-3n-lA[(l+|a2) <1 + T > «l ] >
o

+ £ {ar\-§
o

,_L. A„ . 26 "
v 2 2 % 1

o

3n '1A[(l4a2)d2 + |a(l+^)(,2-4-lJ )] }J

Furthermore, integration of equation (5-35c) results in

H][P (Z) = K2exp(-rZ) + L3exp(-vZ) + Lq + I^cosSZ + LsinfiZ exp(-rp )
o

(5-41)
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where is a constant of integration, to be determined, and the

coefficients L become

L - 3n \ ( 1 + i a2 )«+ )°
, 2- -V. ° hV 6(r y 2 ) Ko

o

L- =
3n 1X(l+ la2) 2

i(n i_2 l4yod)6 + U,(r Vo'

(r - —)2 + 62
^o

2(£1 " 4Td )6+ k2(r + ~ >

(r + —)2 + 62
yo

L„ =
3n 1X(1 + fa2) ^(£1 4yQ6)(r yQ)

"

5 M

12 2
(r ——) + 6Z

^o

(J4 4y 6)(r + y ) + 2 £26
o o

(r + —)2 + 62
V

3n ^(1 + ja2) k2
2 2.

(r - v )
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Now, substituting (5-40) and (5-41) in equations (5-36), the

constants C^, and are calculated. The results are as follows

C2 = (M2 - aM^) / (m2 - am^)

A (■m1C2 - Mx)

K2 =
(r + /3/n) Vl3+f (l.'I2>-Slltf<l.'L2tI3)

~

o

where

M = ~ (V + V ) -- 6V + —1 yo ° °2 \ 0

•P P
2 4

_ + __1 + v + v. +
ry CL
2 "y

2<S2+ S4 + «o *V

M„ -- (Q0tQ2)-(a2S2+a4S4 + SQj) + ^ [s2 + S, ♦ Qq ♦ Q

♦ a(-| ♦ + V + V )]
"2 °4

ml - -
2(1- a )

A 2
R+ — (3 - aZ)

20

A 2 - a

m2 = ~R 21
2n 1 ~ a
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In the particular case when 6=0, the integration of equations

(5-35a,b) gives

(o)
J^(Z) = C2 exp(-RZ) +S2exp(a2Z) + S^expCa^Z) + O ^1 y

o

+ Q
(o) Z

2-i

2 2 exp ^~y~^
O

(5-42)

and

, Co) (o)
P,- - 2 . 4J (Z) = exp (a Z) + —x exp(a.Z) +■

O O Z _ Z 4
— C2^0^exp(-RZ)

a. 2(1 - a )

v (o) + v (o) JL + CO Z
■° 1 p0 2 ho2

t Z x - (°)exp(- —) + C4

(5-43)

where

(o) _

6 n

(R2- -^)( l-a2/2)
- {-a(l + -^-a2) (dj°^+ ?) +| 1+^- (1- 6a2)

y 2(R2-—2° C
)

-2a(l +|-a2 )d1(°)+ 1 + — (1- 6a2)O 1 /
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(o) 6n 1x
(R -j) (1 ~ a /2)

{-a(l+Za2)di(°) + * 1 +
3a

(1 - 6a )
(q

(o)
- )
4 ;

2 2

yo (R TI l"a(1+|a2)(d (o)+ +5 (1 + ——(1 - 6a2) )

(o) 6r| 1X

(R2-- 7>U- 72)

{~a(l + 2.a 2) (d (0) + —) +|8 2 16

t 3a , 2.1 + (1 - 6a )
(o)

P2(o)= a(r2-ia 2)S„ - 3rf^2 d-a2/
{a(l4a2 ) "■

2)
2 L

. 3a , 2.
1 + (1 - 6a )

(o)

P (°L a(r2_ ia 2)s ^3rT^X 7 2, M44 7^ 2~—'{ a(l + o-a ) - —-(1 ~ a /2) 8 2

^ 3a2 2l+i£_ (i- 6aZ) } c
(o)

V y 2{ar2(Q 2(7°) (ol -1Wo + 2(^i + 6Q )) _ 311 A (1 +|a2) (d (o)+2d (o)+6d (o)Z O 1 ^

+ta + y))+ |a(lt^)(qjo)+ 2^oJ6q(o)_») } ~ 1 (Q (o)- 8Q (o) )
2 ° 2
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Vl(0> " U 2{ar2(Q,<">♦ 4Q<°>) -3r,'ho 1 2

3 ,i a . , (o) (o) ax
+ 2a(1+~)(qi 2 4 } - f(Qg0 " 2Q^0)+ 3Q^o))

„ (o) 2 , 2 (o) . -1,
V2 = yQ tar Q v 3n X

3 2. , (o) a^ . 3 a\ (o)(l+-a )(d2 +-)+-a(l+-)q2

- - Q (o)2 2

The constants of integration are given by

M (o) - aM (0)
(o)

_ 2 1

m2 - am^
and C.(o) = — (m C (o) -M )4 /T

where

M.

P (o) P (o) r
<°>

= _ (_i_ + _A„ )+ y (V (o)-Vl(o)) + 2L1 o o 1

«2 014 n

p (o) P (o)*2
♦ JL_ + „ \ <o)

-«22 a4 ° °

+ f <S2 + S4 + Q„(0) >

M - («2S2 + a S4)+ f (Q1;1-^1)
o n

S2+ S4 +

p(o) p(o)
a(——2 + —J + ^02vo(0))z Zoo

a2 a4

Equation (5-34), with (Z) , J-^(Z) and H^(Z) given by
equations (5-40), (5-39) and (5-41) respectively, is the solution of

Giovannelli's equation for the infrared field in a semi-infinite

cloud with sinuisoidal transverse density fluctuation.
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c• Temperature

From equation (4-43) the temperature distribution can be

obtained straightforwardly, i.e.

i

t(X,Z) = (jp(X,Z) + An[js(X,Z) + I exp (-tq(X,Z; yQ,<l>0) )] > (5-44)
where j (X,Z) is given by equation (5-16) and j (X,Z) by equation

p s

(5-34). The attenuated field is calculated simply with the help of

equation (5-9).

d. Results and Discussion

With the help of the approximate analytical solutions obtained

in the foregoing sections, an attempt to gain insight into the

physics of the radiative heating problem in non-homogeneous clouds

will be made in this section.

The basic parameters defining the semi-infinite cloud model

are: the amplitude of the density fluctuation a, the albedo for

single scattering 01, the Greenhouse parameter ri and the parameter r

which measures the optical thickness of the density fluctuations.

Each set of values (a, 01, q, r) determines a particular cloud model.

Let us fix a = 0.1 this value is a reasonable one to ensure the rapid

convergence of the power series of exponentials and the introduction

of small errors only. We shall also fix 01 = 0.5 which is a reasonable

mean value for interstellar dust clouds of interest in this study.

With these values we shall consider the behaviour of the radiation

field and the temperature in the inhomogeneous semi-infinite model.
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In the model under consideration, plane parallel incidence

was assumed with polar and azimuthal angles cos ^ and ^ A
better representation for the interstellar radiation field falling

upon interstellar clouds would be isotropic incidence. An appro¬

priate representation of such an incident field would be a plane

parallel field incident with angles y^ = 1//3 and = tt/4 which is
approximately equivalent to integrating the incident isotropic field

with one quadrature point in y (= 1//3) and one in $ (= "f/4).
o o

We consider first the visual field J^. Within the accuracy of
solutions (5-16), calculations between 10 r 10+^ show that

g g
J (Z) exhibits only a very weak dependence on r. J (Z) is shown

o o

g
in Figure 5-2. As expected, (Z) is very similar to the solution

for the homogeneous cloud showing a rapid increase from the boundary

to maximum value at Z ~ 0.4 followed by an exponential decay. Curves

for different values of r are indistinguishable on the scale of

Figure 5-2.

The difference between the radiation field at maximum and

minimum density is a measure of the fluctuation of the radiation

field. This difference has been plotted in Figure 5-3 as a function

of r for several values of Z. It is seen that except for values of

Z close to the boundary, Aj (Z) = J (tt,Z) - J (0,Z) tends very
s s s

quickly to 0 when r is greater than 1.0. When r » 1, the wavelength

of the density fluctuation is small with respect to the mean free

path of the visual photons, and fluctuations of the diffuse field

become negligible. This occurs because visual photons can cross many

inhomogeneities before being extinguished. In this case the photons
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Z

Fig. 5-2 The function JoS(Z) for any value of r
w = 0.5, a = 0.1, = 17/3, ^j^



Fig.5-3ThefluctuationofthevisualradiationfieldAJ(Z)=J(tt,Z)-J(o,Z)asafunctionofr,sss forseveralvaluesofZ.co=0.5,a=0.1,=1//3,cj)=tt/4
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"cannot detect" such inhomogeneities and the solution Jg(X,Z) tends
to the solution of the homogeneous case.

When r << 1, the wavelength of the density fluctuations is

greater than the mean free path of the visual photons, AJg(Z) becomes
independent of r and the solution Js(X,Z) tends to the solution
corresponding to the homogeneous case with density determined by

the X value.

The function AJs(Z) has been plotted in figure 5-4 for r = 0.1,
r = 1.0 and r = 10.0. The strong coupling of Aj^(z) with Z is evident.
Except towards the boundary, Aj^(z) is positive which means that a
maximum density corresponds to a minimum mean intensity, and a

minimum density corresponds to a maximum mean intensity. Towards the

surface, Z £ 0.5 (the exact value depends on r) the above correspond¬

ence is reversed. This is due to the face that near the boundary, the

diffuse field builds up more slowly in regions of low density than in

regions of high density.

Figure 5-4 also shows that each curve presents a maximum near

to Z - 1.5. The exact value at which the maximum is reached depends

on the r value, which means that the fluctuation of the diffuse field

is maximised at this depth. This fact is of particular importance

because, as will be shown below, it is just at depths 1 < Z < 3* that

the visual diffuse field dominates the attenuated and infrared fields.

In Figure 5-5a, the mean infrared field J^CZ) has been plotted
2 3 4

for n = 50, 10 , 10 and 10 . Within the range of accuracy of

* Strictly speaking, the exact value of this depth depends on the
particular to value and increases for higher values of the albedo up
to the asymptotic value corresponding to conservative scattering.
This is the main effect of the albedo on the visual field.



AJS(Z)

Co

Fig.5-4Thefluctuationofthe_visualradiationfieldAJS(Z)=JgCrr,Z) severalvaluesofr.oo=0.5,a=0.1,=1//3,<j>0=
Jg(o,Z)asafunctionofZfor
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solution (5-34), as in the visual case, (Z) presents only a very

weak dependence on r. One notes that for large values of the

Greenhouse parameter q(>50) Jq^(Z) is quasi-constant through the
cloud. The change between the surface and optical depths of

Z > 10 is 2.82% for 0 = 50, 1.41% for 0 = 102, 0.14% for T1 = 103
A T)

and 0.01% for n = 10 . The insensitivity of Jq (Z) to the parti¬
cular value of ri, for h > 50, is clear. These results are expected

on physical grounds, because for such large values of 0 the region

of the cloud where the thermal radiation is generated tends to be

optically thin in the infrared due to the very large mean free path

of the infrared photons with respect to the visual ones. The

opposite occurs when 1 is small (0 £ 1). In this case the mean free

path of the infrared photons is small and they tend to be trapped

into the cloud (Greenhouse effect)*- This explains the steep

increases of Jo^(Z) when one changes q from 10 to 1 as shown in
Figure 5-5b. Such an effect is still more pronounced if one

compares Figures 5-5a and 5-5b with Figure 5-5c where Jq^(Z) has
-2

been plotted for r| = 10

As expected, J ^(Z) presents a similar behaviour to the solution

for the diffuse visual field in conservative clouds.

The fluctuation in the infrared Aj (Z) = J (tt,Z) - J (0,Z)
P P P

2
has been plotted in Figure 5-6a for 0 = 10 . This fluctuation is

less, by more than one order of magnitude, than the fluctuation in

the visual field, see Figure 5-3, and it will have negligible effect

on temperature as will be seen later, for n >> 1. Nevertheless, it

deserves some comments of heuristic value.

* Strictly speaking, this effect occurs for large values of ri too.
But for ri < 1.0 it is magnified by several orders of magnitude.
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Fig- 5-5a The function J^P(Z) for several values of r| but any
value of r.

to = 0.5, a = 0.1, uo = 1//3, <|> = tr/4



 



Fig.5-5cThefunctionJ0P(Z)forseveralvaluesofnbutanyvalueofr.00=
0.5,a=0.1,]i=1//3,<f>=tt/4oo
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An interesting property of AJ^CZ) is that for Z ~ 0.5,
always AJ (Z) < 0, i.e., J (tt,Z) < J (0,Z) and maxima of density

P P P

and mean intensity correspond to each other. This effect, although

it is very small for ri » 1, is a manifestation of the fact that

infrared photons tend to be trapped in regions where the density of

absorbers (and emitters) is larger.

The above behaviour of Aj^(Z) is better illustrated in Figure
2

5-6b, where Aj (Z) has been plotted for Z = 3.0 and r| = 50, 10 and
3 . . . . . .

10 . The piling up of infrared photons in denser regions increases

with decreasing ri because for small values of 0 the mean free path

of infrared photons becomes small and hence more infrared photons

are trapped in denser regions. This fact is even more clear in

Figure 5-6c where Aj^(Z) is shown as a function of p for three
different values of Z (1, 3, 5) and r = 1.0. There the values of

Aj (Z) are shown too, for comparison. Aj (Z) > Aj (Z) for rather
s s p

modest values of p (~5). The situation p ~ 1 is of interest

in non -homogeneous media where gases and not grains are responsible

for the radiative transport, e.g. planetary atmospheres and clouds.

For very large values of P the effect of piling up infrared

photons in denser regions decreases as expected, due to the fact that

for large mean free-paths the trapping becomes more and more diffi¬

cult .

The distribution of temperature will now be considered. This aspect

of the radiative heating problem is the main aim of this section.

From equation (5-44) it is seen that the temperature at any



Fig.5-6aThefluctuationoftheinfraredfieldAJ(Z)=J(it,Z)-J(0,Z)asafunctionofrforseveral 2—PPP
valuesofZ.n=10,to=0.5,a=0.1,y=1//3,<j>=tt/4



JL

iiiii

0-1

10

Fig.5-6bThefluctuationoftheinfraredfieldAjp(3)=Jp(Tr,3)-J(0,3)asafunctionofrforseveral valuesofn-a=0.5,a=0.1,y=1//3,d>=tt/4oo



Fig.5-6cThefluctuationoftheinfraredfieldAj^(Z)asafunctionof0forseveralvaluesofZ. r=1.0,u=0.5,a=0.1,y=1//3,<f>=tt/4
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point (X,Z) depends on three terms: the infrared field J^(X,Z),
the visual diffuse field J (X,Z) and the attenuated field

s

i exp (-T (X,Z,y )) but these last two terms enter in equation
o o o

(5-44) multiplied by a factor (1 - w)n. These three terms of equation

(5-44) have been plotted in figures 5-7, for different values of q,

which give an idea of the range of mean depth Z (measured along

X = tt/2) where each field becomes the most important one.

One can say that the grain temperature is practically deter¬

mined by the attenuated field towards the boundary, i.e. 0 - Z ~ 1.1.

at greater depths 1.1 < Z ^ Zq, where 3.0 5 Z^ $ 5 (the exact value
depends on the 0 value), the diffuse field dominates the infrared.

Deep into the cloud, Z > Z^ the temperature is determined by the
infrared field as is expected from simple physical considerations.

Figure 5-8 shows the attenuated and visual diffuse fields times

Aq and the infrared J for X = TT/2, Z = 3 and r = 1,0, as a function
P

of q. At these depths the mean visual field becomes dominant for

rather high values of 0 (~60).

The temperature T(X,Z) at X = tt/2, which is a measure of the

mean temperature, has been plotted in Figure 5-9a for q values, 50.0,
2 3 4.

10 , 10 and 10 . This mean temperature decreases with depth up to

values of Z at which the temperature becomes controlled completely
4

by the infrared field. For the rather extreme value of q = 10 ,

2
this happens at depths of the order of 10. For values of q « 10

the value of T(tt/2,Z) changes by a factor 2.9 between the surface

Z = 0 and the depths Z i 10. This value fits well with that obtained
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T\

Fig. 5-8 The functions At| J (tt/2,3) , An J a (tt/2,3) and J (tt/2,3) ass s p
functions of r|. r = 1.0, oj = 0.5, a = 0.1, y = 1//3, <J> = ir/4
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from formal homogeneous models.

Figure 5-9b shows the temperature T(X,Z) at X = it/2 for
-2

ri = 1.0, 10 . For this last value, as expected, the Greenhouse

effect becomes evident.

Figures 5-10 show the percentage temperature fluctuation as a

function of r at mean optical depths Z = 1.0, 2.0, 3.0, 5.0, where

the diffuse field is dominant over or comparable to the attenuated
2 3 4

or infrared fields, for 0 = 50.0, 10 , 10 and 10 .

As an illustration, in these figures the horizontal line

indicates the percentage of temperature required by equation (3-4)

to separate regions where the rate of H_ formation is given by

equation (3-1) with y = 0.5 from regions where y s: 0.005.

It is expected that small errors are present mainly due to the

somewhat schematic representation to the incident field and to the

fact that the source term for the diffuse field exp (—T (X,Z;y ,(j)^))
in equation (5-6) has been expanded to a power series in order to

solve the system of coupled differential equations. This first

aspect is responsible for the small fluctuations appearing for r > 1.0

as can be seen if one compares Figure 5-10 with Figure 5-3. As

expected, these fluctuations are more exaggerated towards the surface

where the attenuated field gains importance.

One important conclusion to be drawn from Figures 5-10 is that

although there is a strong coupling between temperature fluctuation

and mean optical depth Z, fluctuations with r > 2.0 (the exact value

depends on q) are unable to produce appreciable temperature fluctuations



Fig.5~9aThetemperatureT(ir/2,Z)asafunctionofZforseveralvaluesofr|. r=1.0,io=0.5,a=0.1,yq=1//3,cj)o=it/4
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Fig.5-10aThetemperature,fluctuation[T(tt,Z)-T(0,Z)]/T(tt/2,Z)asafunctionofrforseveralvaluesofZ. r|=50.0,co=0.5,a=0.1,=1//3,cf>q=it/4.Thehorizontallineisthetemperaturefluctuation requiredtoproduceachangeintherateofH2formationof99%ifT(ir/2,Z)=Tcri.
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at any depth > 1.0. In particular, if one borrows from formal homo¬

geneous models, Leung (1975), the mean optical depth 3 for the depth

at which the critical temperature for H2 formation on graphite grains
is reached, fluctuations with r < r^ would be able to produce a change
in the rate of formation of 99%. The value of r^ is very insensi¬
tive to the particular ri value for the range of interest i.e., r] > 50,

as can be seen from the following table extracted from Figures (5-10a

to 5-10d).

n

1.1 50.0

1.3 102

1.4 103
1.4 104

A reasonable average to adopt would be r^ =s 1.3, which would
give a thickness for the "radius" of the cell, where H„ proceeds

without difficulty, of

Vs
,

4 2.6

In this study the interest in models for which r) < 1.0 is

secondary; however, in Figure 5-11 a plot of the temperature fluctu-
-2

ations has been done for n = 10 . It follows from equation (5-44),

in this case, contrary to the case when t| >> 1, that the fluctuations

in the visual fields, diffuse and attenuated, play a negligible role

in determining, directly through equation (5-44), the temperature

fluctuations which are determined in essence by the fluctuations



Fig.5-11Thetemperaturefluctuation[t(tt,Z)-T(0,Z)]/T(tt/2,Z)asafunctionofrforseveralvaluesofZ. -2—
n=10,w=0.5,a=0.1,y=1//3,d>=tt/4 oo
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originated by the infrared field J^(X,Z).

For Z > 1 maxima of density always correspond with maxima of

temperature and the same is true for minima of density and tempera-
•k

ture . The fast decay of the fluctuation for r > 1 is very clear

and smooth because there the fluctuations due to the schematic

representation of the attenuated field have little effect on the

temperature as given by equation (5-44).

* The Greenhouse effect in a non-uniform atmosphere.
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6. INHOMOGENEOUS CLOUD MODELS. APPROXIMATED NUMERICAL SOLUTIONS

This section is dedicated to obtain more insight into the

radiative heating problem in inhomogeneous media with the help of

an approximated numerical method proposed here and which we hope to

improve in the future.

From equation (4-2) it follows that the intensity of the visual

diffuse field at any point s and in the direction cos \i and (j), see

Figure 6-1, is given by

*sm

I (s,y,<j>) =
s js(s") exp (-T(s,s",y, <j> )) ds" (6-1)

J
s

where the emission coefficient j (s") is given by

jg(s") = a(s") [Js(s") + - exp (-to(s", yQ, c|)o)) ] (6-2)

a(s") being the scattering coefficient and the terms in the brackets,

the mean visual diffuse field

J (s") =
4tt

2t\t 1
1

s

o -1

I (s" ,y,cj)) d yd0 (6-3)

and the mean attenuated field at s". T (s", y , <J> ) is the optical
o o o r

distance from surface along path y^, 4>q.

Given an initial approximated form for J^s") equations (6-1)
and (6-3) can be used to provide an iterative sequence for Is(s,y,<j))
and j (s") . Since the density fluctuations are considered small

(a ~ 0.1) a reasonable starting solution for j (s") is that derived
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for the homogeneous clouds. The validity of approach can be tested

by comparing the results with those obtained in the previous sections

by analytical means. Equations (6-1) and (6-3) can be integrated

numerically and can therefore be used to deal with density fluctuations

beyond the scope of analytical methods.

Analogous equations to (6-1) and (6-3) can be written for the

infrared field and a similar iterative procedure adopted. However,

because it is necessary to know Jg(s") at every point in the cloud
in order to perform the integrations and the integration of (6-1)

and (6-3) to obtain Js(s") is itself a lengthy procedure, the
calculation of J (s") requires a realtively large amount of computing

time.

It was seen in the last section that, for the problem in hand,

D » 1, the fluctuation of the visual field Aj is much greater than
s

that of the infrared field AJ , see Figure 5-6c. Furthermore, AJ is
P s

amplified by a very large factor, (1 - oj)H, in the expression defining

the temperature, therefore, the fluctuations in the infrared radiation

field have very small influence on those of temperature. That is, the

infrared field could be well represented by the solution for the homo¬

geneous cloud. Therefore, in this numerical solution the infrared

radiation, J^ts"), will be represented by the solution for the homo¬
geneous cloud.

The solutions for homogeneous clouds can be obtained in a straight¬

forward manner using the well known Eddington approximation to integrate

the radiative transfer equation (4-1). For homogeneous models, the

R.T.E. (4-1) with the help of the two emission coefficients given by
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equations (4-23) and (4-28), can be written in the form

dIs T . rr r J + Jai (6-4)
K ds

s

-I + ^ QJs + JS ]
s

in the visual, and

dI -1 _—P = -n [i-j] +(l-<Jj)£j+Ja| (6-5)
K ds P P S 3 J

s

in the infrared.

In plane geometry equations (6-4) and (6-5) become simply

dl
_

y—- = -I + u fj + Ja] (6-6)
, s L s s JdT

and

dI
1 _

y—P- = n [-1 +j]+(l-aj)fj+Jal (6-7)
dT ^ P P L s s

where dx = k dz = K yds, i.e. for homogeneous solutions, the
s s

optical depth commonly used in the radiative transfer literature is

adopted.

In the Eddington approximation

I. = J. + I.Xy i = p,s (6-8)
l ii

Substituting equation (6-8) in (6-6) and (6-7) and integrating

with y and times y between -1 and +1 the following relations are

obtained
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dT

dT
-3 (1 - to) J + 3 03 J

s s
(6-9)

dj

dT

= -I, (6-10)

dl.

d x

3(1 - to) [js + Jsa] (6-11)

dJ

dx
(6-12)

or

dV

dx
3(1 - 03) J - 3u)J

s s
(6-13)

and

d2J
dx

= -3(1 - oj) n
-l [Js+ vl (6-14)

Equation (6-8) gives the approximated boundary condition at the

surface X = 0 for semi-infinite clouds and at x = 0 and x =x for
o

finite clouds with optical thickness X , i.e.
o

J (0) =
s

J (T )
S o

1 ^s
vT dx

.1
/T~ dx

T = 0

X = X
o

(a)

(b)

(6-15)

and
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Jp(0)

J (T )
P O

0

/r

dJ

dT
T = 0

dJ
~ H_ _JE.

/3 dT

(a)

(b)

(6-16)

T = T

2.1
where has been substituted by — as a better quadrature point

3 /3

associated with the Eddington approximation.

For a semi-infinite homogeneous cloud with attenuated field at

depth x given by

i exp (- — ) (6-17)

integration of (6-13) - (6-14) with boundary condition (6-15a) and

(6-15b) leaves

J = dn exp (-kx) + d exp ( )
s 1 Z u

(6-18)

and

= -3(1- (o)n 1\ —\ exP (~kt) +y 2(s + d ) exp (- -~
l k Uo

where

^+ci
(6-19)

k

dl =

d„ =

/3(1 - to)

3 ' to y 2 / 4(k2 y 2. - 1)
o o

y~3 ,TT -1,

(a)

-3 co y. (1 + - y) / 4(k'y - l)(l + k//3) (b)
/3 °

(6-20)

(c)

-9 (1 — co) (k + /3 n ") d1 + Ay 2 (1- co) (£-+ An X)(i +d7 )

(d)
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For a finite cloud with optical thickness T and attentuated
o

field at depth T given by

(f ~ T)
Jga = i { exp (-p) + exp ( ^ ) j (6-21)Mo o

the result of integrating (6-13) and (6-14) with boundary condition

(6-15b) and (6-16b) becomes

(T — T )
Js = bo{ exp + exP ( £ bl exp 7) + b2 exp ^

o po ^

(6-22)

and

--12 r 2 (T^~T)
J = —3(1—to)n {UQ (bo+5)exp(--~—) + (b0+i)exp(- )

o o

bl b2
+ — exp (-kx) +-j exp (k T) } + C2T + C (6-23)

k k ?

where

b = 1 U / (k - 1/y ) (a)

k (1+exp (-kx )) (1//3 y - 1) exp (-X /y )) - (1//Jy + 1)
___ o_ o o o o

/3~ l + k//3 [l + k//3 exp(k Xq)]- (l~j^-exp(-kXQ)

b = b° Ql/v/3 y-1) exp (- ——) - (1 + l//3y )1 - 1 k//[ b. (c)
1 "l + k/ST 1 + k^

c„ - — { (/3n 1-k) (b1 exp(-kx )-b„) + (/3r| 1+k) (b„exp(kx )-b ) } (d)i
T 1 o 2 2 o 1

o
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C = /3 (l-w)y 2(.h +l)[(/3n 1 + i) + (/3n 1 - -—-) exp (.—— ) ]-3 oo1- y y y-J
o o o

+ ^ (l - to) [(/3n 1 + k) b1 + (/3n 1 - k) b2 + c2 ]
k

(e)

(6-24)

It is easy to see that solutions (6-22) and (6-23) tend to

solutions (6-18) and (6-19) when °°, as expected.

a. Semi-infinite Cloud

The visual field in a semi-infinite cloud, with the same

density distribution as studied in Section 5, will be calculated.

The notation is summarised in Figure 6-1. In addition to the

dimensionless variables X and Z and the parameter r defined by

equation (5-2), the mean optical distance S along the ray s defined

is introduced

Equation (6-1) in terms of the optical distances and the notation

of Figure (6-1) is

by

s K S
s

(6-25)

o

(6-26)



/

/

/

Fig.61Thecrosssectionofaninhomogeneoussemi-infinitecloudintheplaneofthe incidentradiationfor<j>=<J>.
o
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where the optical distances x^ and X are given by

VS"> VI ,<t> ) = (s - S) -p + { sin [x +yo r(1 - y Vcos*
o ro

r(S" - S) (1 - y2) 2cos<|> + (S - S")tt- r(l-y 2)^coscf) ]my o o J
o

- sin [x + (S" - S) r (1 - y2) 5cos <p '] } (6-27)

and

T (X,Z,y,cj>,S") = (S"-S)+ ^T~T (sin ]j:S" (1 - y2) ^cos <f> ]
r (1 - y ) 2cos cf>

-sin[rS(l -y2)2cos <p J } (6-28)

The initial value of J(S") is the solution corresponding to

the homogeneous semi-infinite cloud (6-22).

Equation (6-26) can be integrated numerically along S" for any

couple of points X, Z and any values of the angles y and (p. This is

done approximating the integral (6-26) to the Gauss-Legendre quad¬

rature formula, i.e.

I = I \F(£k) (6-29)
k= 1

where are the weights, F(?k) is the integrand corresponding to
equation (6-26) and £ the pivots which are the zeros of the Legendre

polynomials.
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The same procedure can be used to integrate (6-3) with respect

to y and <f>, with I^CS^y ,4>) given fay (6^-26) at appropriate values y
and d). Because there is a sharp peak in I around y ~ 0.0 for Z < 1.0

s

an appropriate distribution of quadrature points in the y range

-1.0 - y - + 1.0 is necessary to retain a good accuracy in the

integration with y.

If one attempts to iterate formally the equations (6-1) and

(6-3), the computational demands seem severe, but if in the first

entry for J(S"), J(S") is given by the solution for a homogeneous

cloud of the local density at S" rather than that for a homogeneous

cloud of the mean density of the inhomogeneous cloud, the integration

seems to converge very quickly.

After one integration a good agreement with the analytical

solution is found. The worst discrepancy is 20% which occurs near

the surface (Z < 0.4). This discrepancy towards the boundary comes

partially from the boundary condition involved in the Eddington

approximation.

Figures 6-2a and 6-2b are plots of the analytical and numerical

solutions for the temperature fluctuation

[T(7T,Z) - T(o,Z) ]/ T(tt/2,Z) for 0 = 102, Z = 1.0, Z = 2.0 and

Z = 3.0, Z = 5.0 respectively. From there, one can see that

although there are differences, they are tolerable and either of

these approaches can be used to gain semi-quantitative insight into

the radiative heating problem in non-uniform media. The numerical

one is more useful if one attempts to tackle more realistic (and
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therefore more complex) models, where the analytical solution

becomes impossible. These results give a check on the numerical

method and show that it can be extended to more complex models.

Only the "simplest" model of a non-homogeneous cloud has been

worked out in the previous sections, i.e. a semi-infinite cloud with

one transverse fluctuation in density of arbitrary value of r.

However, real clouds are finite and real fluctuations, in our parti¬

cular problem, are generated by turbulence which means that many

values of r occur simultaneously. But small scale fluctuations are

contained in large scale fluctuations which means that the smaller

fluctuations peak towards the maxima of the largest ones. One can

see from the ideal model studied, that large scale fluctuations

(r « 1.0) only determine the mean value of T^. In particular they
define the regions where the critical temperature for the formation

is reached first. On the other hand, fluctuations at scales shorter

than r^ (~ 2.0) are unable to produce the minimum value of At^/T^
required to switch on the chemical discontinuity in the ^ production.
This means that the fluctuations around T^^ capable of disconnecting
regions where proceeds with high efficiency from those where it

proceeds with very low ones are in the range

1.0 ~ r < r = 2.0 (6-30)

The above aspect is readily seen with the help of the following

idealised model:

Let us again consider the semi-infinite cloud already studied

but instead of an extinction of the form

K = K (1 + a cos £x) (6-31a)
s
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two fluctuations overlapped are assumed, i.e.

i<2 = k (1 + a cos £ x + a^ cos£.-^x) (6-31b)

The radiative heating problem can be solved in a first approx¬

imation by using the approximated numerical method with the help of

the following two optical distances: the optical distance between

any two points (x,z) and (x",z") separated by a length s" -

Ka

T(x,z;x",z") = ks" + { sin| £x + £s" sin0cos(j)J - sin £x }
£sin0cosc|)

Ka

+

£^sin0sin(j)
— { sin [^£^x + £^s"sin 0 cos <jT[ - sin£jx }

(6-32)

and the optical depth from the boundary to any point (x", z")

k(z - s"y) Ka
T (x",z") = + o • a i { sin l~£x + s"£sin0cosd)o y £sin0 cos <p . L Y

o o o o

(z-s"y)
+

, £ sin0 coscj) 7 -sinT £x + s"£sin 0 cos d) I
y o oJ J

Ka
+ —— {sin [£xx + s"£^sin 0 cos tj>

£, sin0 cosd)1 o o

z-s"y
^sinO^coscjjJ - sin [j^x + s"£^sin0 cos $ J }

o

(6-33)
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The above two optical distances in terms of the dimensionless

variables X and Z and parameters r = &/k and r^ = ^/k, become

t(XsZ;:x"z") = s" + (sin£ X + S"rsin0cos(})J - sinX
rsin0coscj)

al ( ri
+ ) sin — x+ S"r^sin0cos <j)

r^sin0coscj) t r

ri
- sin — X } (6-34)

and

(z- s'V) a
T (S") = + { sin

o •

u rsxn 0 cos A
*0 o r o

X + r s " sin 0costj)

Z- s"u
+ r sin 0 cos cb - sin X+ r S" sin 0 cos $

0 °J L

r, sin 0 cos d>1 o Yo

{ sin
r1 Z-S"y
— X + S" r, sin0cosd) + r_ sin0 cosd)1 T 1 o To

u r y

r t.
- sm X + S" r^ sin 0cos(j) (6-35)

T(tt,Z) - T(o,Z)
Figure 6-3 shows the fluctuation t(tt/2 Z) ^°r r =

and values of r^ such that 0.1 - r^ < 10.0. Figure 6-4 is the same
as figure 6-3 but for r = 2.0. From there, it is apparent that

fluctuations r^ « 1 have little effect on the fluctuation AT/T
produced by the smallest scale (r =1.0 and 2.0) and they affect mainly

the mean value of T as can be seen in figure 6-5 where T(ir/2,Z) has

been plotted for r^ = 0.1 and r^ = 10.0, for r= 1.0 in figure 6-5a
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and r = 2.0 in figure 6~5b.

From figures 6-5 one can see that the value of T(tt/2,Z) for

r^ = 0.1 is lower than the value of T(tt/2,z) for r^ = 10.0 as

expected, because in the former case k fluctuates rather around

the mean value k(1 + a) and when r^ = 10.0, k fluctuates around
the mean value k, i.e. in a first approximation one can assume that

when r^<< 1 the smallest fluctuations occur embedded in a cloud
with different mean density.

On the other hand, density fluctuations with r^ » 1.0 are
unable to affect appreciably the temperature fluctuations corres¬

ponding at larger scales and therefore the strongest temperature

fluctuations around a determined mean value, in the case of interest,

T = Tcr-> are expected to occur at scales given by the relation
(6-30).

b. Finite Cloud with Mean Optical Thickness ZS. Q

The approximated numerical procedure can be extended to the case

of plane-parallel models with finite mean optical thickness ZQ to get

a solution to the radiative heating problem for non-homogeneous clouds.

As a first value for the mean intensity of the visual radiation

field the solution of the radiative transfer equation in the Eddington

approximation in a homogeneous cloud, equation (6-22) is taken. The

remaining calculation follows the same course as the semi-infinite case,

but in addition to the optical depth given by equation (6-27) and

which will be denoted by Tq , see Figure 6-6, the optical depth from
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the boundary denoted by Tq is introduced, i.e.

to (s») =

z - (z-s"y)
o

+

a

{ sin X + rS " sinecos <J>
rsin9 cosd>

o o

Z - ( Z- S" y)
o

r sin0 cos d) -sin X+ r S" sin0coscl) } (6-36)
o o

The results are shown graphically in figures 6-7a,b,c,d for

Z = 1.0, 5.0, 10.0 and 20.0, and not much more information is
o

obtained about the quantity of interest, i.e. the fluctuation

[t(tt,z) - T(o,z)J[ / T(tt/2,Z), than is obtained from the analytical
solution for a semi-infinite cloud. But the results reinforce the

conclusions of Sections 5 and 6, in the sense that they are not

affected in essence because of the finite nature of the cloud.

For Zq = 1.0, the temperature fluctuations are due mainly to
the attenuated field and the sharp decay is shifted towards slightly

higher values of r. At the centre, for instance, the strong decay

occurs for r ~ 4.0, i.e. for a fluctuation of thickness —— = tt/4 .

The insensibility of the fluctuations for values of r < 1.0 is

apparent too. Therefore,an inhomogeneous slab of mean thickness

Z =1.0 behaves as homogeneous for r < 1.0 in the sense that the

temperature at any point corresponds to the temperature of the homo¬

geneous case with the local value of the density.

o

The much more interesting cases in this study are those in which

Z^ = 5.0 and 10.0. If in a first approximation, one considers typical
prestellar clouds to be inhomogeneous slabs with thickness of the above



r

Fig.6-7aThetemperaturefluctuation[t(tt,z)-T(tt/2,z)]/T(tt/2,z)asafunctionofrfordifferentvaluesofZ meanopticalthicknessZ=l.o.rj=102,u=0.5,a=0.1,u=1//3,d>=tt/4oOO
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orders, fluctuations of dust temperature are to be expected at any

depth Z. However a strong coupling with Z is evident as can be seen

from figure 6-8a,b where the temperature fluctuation has been plotted

as a function of Z for the extreme values of r, r = 0.1 and r = 10,

and r = 1.0. In particular, it is evident that the strongest effects

of inhomogeneities (on the dust temperature) occur towards depths of

the order of Z ~ 2.5, a conclusion already drawn from the approximated

analytical solution of the semi-infinite model.
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CHAPTER III
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7. LOCAL DENSITY AMPLIFICATIONS DUE TO H2 FORMATION

The first difficult point that one finds when one tries

to follow the evolution of a prestellar cloud is the determin¬

ation of the cloud conditions at time t = 0, i.e., from which

stage of cloud evolution one has to start. One easily sees the

necessity of going back in time so that one becomes involved with

the problem of galactic evolution and even with the cosmological

one, because the way by which prestellar clouds come into being is

the main factor that determines initial conditions. No attempt will

be made here to go into the whole evolutionary track of prestellar

coulds. Instead, as it was pointed out at the beginning of Section 3,

a cloud such as that proposed by Roberts (1969) will be considered,

and the time t = 0 will be the time at which the atomic cloud has

reached the verge of gravitational collapse due to the compression

produced by the spiral density wave, i.e. M ~ M and gas temperature
J

2 2-3
and density of the order of T ~ 10 K and n > 10 cm , respectively.

4
Typical masses are of the order of M * 10 M .

o

According to Roberts, subsonic turbulence is present in the

clouds at the onset of gravitational contraction. Therefore turbul¬

ence provides the mechanism generator of fluctuations in the physical

parameters characterising the state of the cloud, in particular,

spatial fluctuations in density, see appendix B. It is probably

unrealistic to work these kind of problems assuming pure statistical

fluctuations which are swept out by the turbulent ones, Sasao (1973).

Formally to follow the evolution of the above prestellar clouds,
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one would have to establish correlations for pressure, density and

temperature of the gas and temperature of the dust, taking into

account the gravitational contraction. However, because in the

range of values of the temperature and density of the gas and dust

temperature, the ^ formation is controlled by as discussed in
Section 3, this complex situation can be schematised, in first

approximation, as follows.

The mean density of the cloud, at least at the early stage of

the contraction, is determined by the background contraction of

the cloud as a whole. The shortest limit for this process is the

free-fall which is determined by the equation

I i£ = [24G P ] 2{ [ 1 - ( ^ )* ] }3 (7-1)
pdt ° P P

o

see appendix A, where P is the mean density at any time t and Pq is
the mean density at time t = 0, i.e. when the contraction starts.

Turbulence provides density fluctuations superimposed on the

mean value p, with a certain spectrum ranging from the size of the

cloud to the threshold imposed by viscosity, see appendix B.

According to the relation (6-30), density fluctuations with
■ ^

optical thickness k/2 < ir/2 are unable to produce appreciable
K

fluctuation AT,/T . and fluctuations with X, — > TT mainly determined cri d
2

the regions where T, reaches the value T . first and H_ formationd cri 2

starts there. Therefore, in a first approximation, one can consider

the formation occurring discontinuously in cells of linear

* Hereafter the subindex s in is dropped.
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dimensions \J2 ~ it/2k and towards regions where T, = T . (probablyd d cri

towards the centre of the cloud and towards the peaks of fluctuations

at scales a^/2 > tt/ k) .

With the gas-dynamical problem crudely schematised as above,

the crucial point in the Reddish scenario for fragmentation would be,

whether or not the formation can produce an amplification of the

density greater than that produced by the contraction of the cloud

as a whole and in a time shorter than one free-fall time.

In order to clarify the above aspect we will compare in this

section the change p(t) with the change in p and T produced by
K

formation in cells of dimensions — ~ tt/2, assuming that at t = 0,

the reaction starts simultaneously with the gravitational contraction.

In addition, because of the tendency towards pressure equili¬

brium, the condition of isobaricity will be introduced in this first

approximation. This point is better understood with the help of the

following simple ideal laboratory model:

Let us consider an atomic gas of HI and traces of heavy elements

confined in a pipe by a piston. At t < 0, the gas is maintained at

a certain temperature if the heating rate is equal to the cooling rate,

A = T. On the other hand, the temperature T'^ of the walls of the
pipe is maintained greater than the critical temperature to forma¬

tion. At t = 0, < Tcr£ and the reaction 2HI + (walls)-*- H + (x)
starts. In a first approximation one can set P = P (external)

gas o

and because both the number density of particles changes and a new

coolant (the H2) appears, the gas is thermally destabilised regardless
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of the nature of F and A.

It is not necessary to assume that the piston is at rest at

t < 0, it could be oscillating around some equilibrium position if

the nature of the equilibrium F = A is stable for such oscillations,

in this case one would have P = P . Such a motion would give a
gas o

schematical representation to the initially reversible fluctuations

in P, T and P due to turbulence.

One must recognise that although the isobaric condition is

not very realistic, mainly because the effect of both reduction of

the number of particles and the presence of the new coolant is to

produce a reduction in pressure with respect to the gravitational

force, resulting in an inwards motion, it permits one to gain some

insight into the effects of formation, without entering into the

difficult gas-dynamical problem appearing if one removes this condition
A

for a contracting, reacting and turbulent dusty medium . Additional

discussion "a posteriori"of this awkward but simplifying hypo¬

thesis of isobaricity will be covered later.

a. Basic Equations and their Solution

In this first attempt, despite the chemical reaction the state

equation is

P = - (1 + x) pT (7-2)
2

where P, p and T are pressure, mass density and temperature of the

gas, R the gas constant and x = is the chemical parameter

indicating the advance of the reaction, n^ and n are the number
density of atomic hydrogen and total number of atoms respectively.

* where the reaction rate is controlled by the radiative field
through the dust temperature.
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In addition to equation (7-2), the chemical and energy equations

are introduced, see appendix A, i.e.

dx / 3k v 5 . ■ d . 2 / ~j o \
— = ~Y < Oj > ( —j )2 ( — ) T2 px (7-3)
dt mjj n

and

P — = r-A+-^H (7-4)
dt p dt

u being the internal energy per unit mass given by

u(x, p ,T) = —— RT + exNoX (7-5)

where £ is the fraction of the binding energy y( = 4.477 e.v.) going

to heat the gas and Nq the Avogadro number.

In order to evaluate only the effects of the formation in a

cell of dimensions X^/2 = tt/2k, the gas will be considered at t < 0
with A - F = 0, which adjust the gas temperature at some value to

(~10^ °K ) an<i at t > 0, A ~ F = ' Therefore, from equations
2

(7-4) and (7-5) one obtains the relation

^ p(5 + x) ^ + p(-T +£XN )— = A +£ ^ (7-6)
4 dt 4 ° dt H2 p dt

Physically, equation (7-6) means that only the compressional

heating — — and the net cooling (or heating) due to H„ molecules,
p dt

« dx •

i.e. Att - epxN — are under consideration.iri ^ O Q L
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Equations (7-2), (7-3) and (7-6) provide the necessary

relations to find x, p and T as functions of t with initial

conditons

x(o) = 1.0, p(o) = pQ and T(o) = Tq (7-7)

Defining the dimensionless density p , temperature T and

time t by the equations

P(t)
P(t) =

p (a)
o

T(t) = -T-^- (b) (7-8)
T

o

cff
(c)

where is the free-fall time given by

tff = [-2S-] (7-9)
Pq

see appendix A, from equations (7-2), (7-3) and (7-6) one obtains

the following relations

— = - 0 p x (a)
dt

^- = 0 { c —— —— g (f)exp (-a /T)o O , . _ m 0dt 1 + £ 7 + 3x T

Y„ ^l~2
+ ( -A- - _£) } (b) (7-9)

1 + x T 7 + 3x
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— = 0 { -c g(T) exp (-a /T)
o O - r _ « Odt 1 +? 7 + 3x

+ (3 + X2. ) x^/gP } (c)
T 7 + 3x

where

i n.
3k 5 d I

-c- <-> v -a f
n>H

= y<a> ( —£- ) ( — ) T 2 p t (a)

10.0 t _

c ff /l-\
o (b)

RT 9
o o

a = 512/T (c)
o o

y = e4xNo (d) (7-10)
o

RT
o

e°
1 (e)
i2T2 p (1+ 19x)

3 = —(f)
n T 2

o o

and g(T) is a correction factor in the cooling function of the

molecule greater than 1.0 when T >150°K due to excitation of rotational

levels greater than J = 2, Hattori et al (1969).
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The system of equations (7-9) with initial conditions (7-7)

has been solved numerically like a two boundary value problem using

Merson's method and Newton iteration, Haselgrove (1961), Mayers

(1962).

b. Discussion of the Results

The solutions of the system of equations (7-9) are plotted in

figures (7-1) to (7-16), for different values of: the fraction of

the binding energy going as a heat input to the gas £, the dust-gas

number ratio n,/n, and different values of the initial temperature T
d o

-3
and number density n^cm . In some of these plots, the change in the
background mean density p(t) due to the gravitational contraction, corres¬

ponding to the same initial density n^ is shown. This function p^(t) was

calculated using either the numerical solution to equation (7-1) or

the analytical one, i.e.

p(t) = pQsec6 g (a)
(7-11)

i
8TTGP 2

g + 5 sin 2 3 = t [ J (b)
3

see appendix A.

Runs were done for a mean dust cross-section <0 > = 7.1 x 10 ^
d

?
cm , SW (1969), Greenberg (1979), and for different values of the

following parameters: fraction of the binding energy going to heat the

gas £ and dust to gas ratio n^/n. The range of variation of these
parameters and the initial values of gas temperature Tq and gas
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particle density is shown in table 7-1,

Table 7-1

0.00 < e < 0.04 *

10'12 < ^ < 10"11
n

x(o)

T

1.0

120, 100, 80, 60 K

2 2 2 / _ 3
10 , 10 , 5 x 10 , 10 cm

Generally speaking, from the numerical solutions one sees that

the capacity of the H„ formation as direct amplifier of density inhomo-

geneities depends sensitively on: the fraction of chemical heating E,

the initial mean density and temperature of the gas at the onset of

contraction.

If the molecule is formed in highly excited rotational levels^
and the remainder of the binding energy is radiated by the grains E = 0,

i.e. no heat input to the gas occurs, the corresponding solutions of

equations (7-9) are those plotted in figures (7-1) to (7-8) .

-12 -3
For n^/n = 10 cm the following results emerge: For

2 -3
n = 10 cm , effective density amplification by H„ formation would

o I

* Upper limit calculated by Hunter and Watson (1978) .

f The timescale for spontaneous radiative decay from these levels to
the ground one is of the order of lO^s, which is three orders of
magnitude smaller than the timescales under consideration and there¬
fore the H2 cooling function adopted in equation (7-9) is correct in
first approximation.
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require a rather high initial gas temperature, probably > 80°K.
For example, for Tq = 120°K, figure 7-lb, the amplification produced
by formation would be a factor ^2.0 at the time t = 0.4 t^.

Here, it is necessary to emphasise that the factors of density

amplification obtained in this section would underestimate the true

values* because the free-fall time is the shortest limit to the

gravitational contraction and clouds do not start to collapse free

of pressure. In addition, the density amplification by formation

is coupled with that produced by the contraction of the cloud as a

whole. This non-trivial and strongly non-linear coupling will be

explored in future research.

. . . 3-3
The situation looks much more favourable m the case n = 10 cm ,

o

figures (7-2a) and (7—2b). For T^ > 60°K the effect of the new
coolant becomes important and an effective enhancement in density

occurs.

An interesting aspect to note is that the temperature exhibits

a maximum at a time depending on the initial values T and n . This
o o

is because at the start of the reaction there is not enough to

cool effectively. This maximum scarcely appears at T^ = 120°K (for
3 -3

nQ = 10 cm ), figure (7-2b). At this initial temperature the
enhancement of density always appears very strong.

... . 3-3
At initial density nQ = 5.0 x 10 cm , figures (7-3a) and 7-3b),

the effects due only to the change of number of particles are already

* Assuming that the uncomfortable hypothesis of isobaricity has some
real sense at least as first approximation.
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x &T

1

0

3

density

2

1

0 05. f
Fig. 7-la The functions x(t), T(t), p(t) and p(t) for Tq = 60°K,

nQ = lO^cm xq = 1.0, e = 0.00 and n^/n = 10
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/[
/
I
I
I
I
I-
I P

0 0-5

Fig. 7-lb The functions x(t), T(t) and p(t) for T = 1.2 x 10 K,
2-3 ° -12

n =10 cm ,x = 1.0, £ = 0.00 and n,/n = 10
o o d
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Fig. 7-2a As Fig. 7-la for n = 10 cm
o

density

2
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Fig. 7-2b As Fig. 7-lb for nQ
3 -3

= 10 cm .
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Fig. 7-3a As Fig. 7-la for no = 5 x lO^cm
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Fig. 7-3b As Fig 7-lb for nQ = 5 x 10"^cm
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Fig. 7-4a As Fig. 7-la for nQ = lO^cm
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Fig. 7-4b As Fig. 7-lb for nQ = lO^cm ^.
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appreciable, as can be seen from figure (7-3a), where the cooling

effects of the 1^ are ineffective because the gas temperature is
too low (60°K).

It has been found that the H„ molecule is unable to cool the

gas below about 60°K, the exact temperature depending on n, as is

expected from simple physical considerations.

The results for the rather high initial density value of
4-3

n^ = 10 cm have been plotted in figures (7-4a) and (7-4b) . The
behaviour of x, p and T are qualitatively the same as the case

3 -3
n = 5.0 x 10 cm , but the effects of H„ formation are shifted

o 2

towards earlier epochs of the contraction. In particular the atomic

hydrogen is exhausted at

t < 0.4 t .

The case —— = 10 ^ has been plotted in figures (7-5) to (7-8)
n

Effective enhancement in density due to formation appears at

times < 0.1 t^, for the whole range of initial density and tempera¬
ture of the gas given in table 7-1. This case could be of particular

interest if the clouds reach the verge of gravitational contraction

with an irregular dust distribution caused by any of the mechanisms

capable of decoupling dust and gas in the interstellar medium, see

for instance Harrison (1978) and Flannery and Krook (1978) .

The solutions of equations (7-10) are not altered in essence

kT
if X£ 5 o , i.e. Y < 2 and therefore

2 0

•^ > 0 at t = 0.
dt
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x&T

1

0

density
2

1

0 0-5 ?
Fig. 7-5a The functions x(t), T(t), p(t) and p(t) for T = 60 K,

2 -3 °-11
n =10 cm , x = 1.0, e = 0.00 and n,/n = 10

o o d
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x&T
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0
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density
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0 0-5 |
^ o

Fig. 7-5b The functions x(t), T(t), p(t) and p(t) for T = 1.2 x 10 °K ,

2 -3 -1?
n = 10 cm , x = 1.0, £ = 0.00, n^/n - 10
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Fig.7-6aThefunctionsx(t),T(t)andp(t)forTq
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2

t

60°K,nQ=103cm3,xq=1.0,£=0.00andnd/n=10_11.



7-6bThefunctionsx(t),T(t)andp(t)forT /-11'
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X&T

Fig. 7-7b The functions x(t), T(t) , p(t) and p(t) for T = 1.2 x 102 °K3 ™*3 o i-| '
n0 = 10 cm , X = 1.0, e = 0.00 and n /n = 10 .
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This condition means physically that the chemical heat input to the

gas is less than the thermal energy per particle. For example, for

T ~ 102 °K , e £ 1.0 x 10~3.
o

Unfortunately Hunter and Watson (1978) neglected the most prob¬

able mechanism by which the remainder of the binding energy is

dissipated, SW (1969), in finding the limit for £. Therefore, this

limit has to be taken strictly as an upper limit. However runs were

done for £ = 0.04 and they are shown in figures (7-9) to (7-12) for
1 Q

n^/n = 10 and figures (7-13) to (7-16) for n^/n = 10

In all the above cases an initial heating and expansion appear

-12
followed by a rebound. For = 10 the whole process occurs in

times of the order of 0.5 t and no effective enhancement in density
.... 3 3

occurs for initial densities nQ < 10 . For n^ > 5 x 10 , the heating
expansion and rebound occur at shorter times « 0.3 t^ but effective
enhancement in density due to H^ formation would require temperatures
higher than 60°K.

*—11
For — = 10 , effective density amplification occurs for the

n

range of density under consideration providing that T^ > 60. For temp¬
eratures of the order of Tq £ 60 (the exact value depends on density)
the enhancement in density tends to be quenched, this is because at

the start of the reaction there are not enough molecules to cool, and

the heat input becomes more important than the reduction in the number

of particles. The strong peak that the temperature curve presents

when T = 60°K is the manifestation of the above effect. The most
o

conspicuous example of this behaviour is apparent from figure (7-16a)
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where T reaches its maximum at the time when ~ 3/5 of the hydrogen

has reacted, which occurs at t = 0.05
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0 0-5 t
,o.

Fig. 7-9a The functions x(t) , T(t), p(t) and p(t) for T = 60 K,
2-3 °-12

n =10 cm ,x =1.0, £ = 0.04 and n,/n = 10
o o d
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x&T
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0

density

2

1

0 0-5
o

Fig. 7-9b The functions x(t) , T(t), p(t) and p(t) for T = 1.2 x 10 °K,
2 -3 °-12

n =10 cm , x = 1.0, £ = 0.04 and nd/n = 10
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3 -3
Fig. 7-10a As Fig. 7-9a for nQ = 10 cm .
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Fig. 7-l0b As Fig. 7-9b for 11 = 103cm 3.
o



Fig. 7-lla As Fig. 7-9a for nQ = 5 x lO^cm ^.
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0 0-5

Fig. 7-llb As Fig. 7-9b for nQ = 5 x lO^cm
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4 -3
Fig. 7-12a As Fig. 7-9a for n = 10 cm

o
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Fig. 7-12b As Fig. 7-9b for n = lO^cm 3.
o
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Fig. 7-13a The functions x(t), T(t), p(t) and p(t) for T = 60 K,
2-3 ° n

n = 10 cm , x = 1.0, £ = 0.04 and n,/n = 10 .U O Q
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0 0-5

Fig. 7-13b The functions x(t) , T(t), p(t) and p(t)-for T = 1.2 x 102 °K,
2 -3 °_i i

n = 10 cm , x = 1.0, e = 0.04 and n /n = 10 .
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Fig. 7-14a As Fig. 7-13a for 11 = lO^cm
o
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0 0-2

r\

7-14b The functions x(t), T(t) and p(t) for T = 1.2 x 10 °K,
3 _3 0 —11

n =10 cm , x = 1.0, £ = 0.04 and n,/n = 10
o o d



- 169 -

x&T density
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1

3 -3
Fig. 7-15a As Fig. 7-13a for = 5 x 10 cm
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Fig. 7-15b As Fig. 7-14b for 11 = 5 x l03cm 3.
o
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4 -3
Fig. 7-16a As Fig. 7-13a for no = 10 cm
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0 0-2 T

Fig. 7-16b As Fig. 7-14b for n = lO^cm
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8. SUMMARY AND DISCUSSION

This attempt to explore the fragmentation process out¬

lined by Reddish (1975, 1978), has been made taking as a working

hypothesis a dusty atomic cloud starting gravitational contraction

with gas number density n^ > lO^cm gas temperature Tq ~ 10^°K
and a mean optical thickness for grain extinction X > 1. The main

point is to see if,under the above conditions,^ formation could act
as an amplifier of density inhomogeneities which are probably gener¬

ated by subsonic turbulence.

A fundamental parameter involved in the whole process is the

critical temperature of the dust for formation. Unfortunately,

laboratory determinations exist only for a few substrata of interest.

Graphite for instance has T . = 25°K.
cri

It is very interesting to note that determinations of the aver¬

age grain temperature throughout the galaxy by measurements of the

lOOy galactic background give T^ = 24°K, Andriesse (1974), and in
other galaxies 20 ~ T^ ~ 40, Hillel (1973) .

From formal spherical and homogeneous models of IDC, WS (1969)

and Leung (1975), the optical depth xcr£, at which T^ = Tcr£>
changes over a rather small range, 1 $ Tcr£ ~ 3 according to Leung
(1975), 3 <;t . < 7 according to WS (1969), and T . tends to the

cri cri

lower limit when X increases. But X . has a very complicated
o cri

dependence on the total optical depth. These numbers, although cal¬

culated for homogeneous models are taken as indicators of the mean

values expected in non-homogeneous models.

* These values receive a natural explanation in the context of the
Reddish theory because they would be a consequence of the "thermo¬
static effect", on the whole galactic star formation process, generated
by the interaction between radiation field and dust which would control
the formation (and the whole chemistry depending on this molecule)
via T,.

a
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Another curious aspect to note is that for clouds where

graphite determines the mean properties of the dust component, the

locus of the surface T = T . occurs at optical depths 1 ~ T . ~ 7
cri crx

where has a very strong dependence on the visual diffuse field
K

and the effects of inhomogeneities are strong at scales * tt/2.

To have a rough idea of how formation progresses through the

cloud when it contracts, let us consider for example a spherical and

homogeneous cloud of graphite of radius R(t) at time t. Let tc(t) be
the linear radius of the "core" where T, < T ., T (t) its corres-d — crx c

ponding mean optical depth and tQ(t) the mean optical depth to the
centre. If at t = o,

T . (o) = t (o) and R(o) = R , (8-1)
crx o o

then at t > o, one has approximately

r .(t)

Tcri(t) " To(t) H1" — 3 (8-2)Cri °
R(t)

and

R 2
T„(t) - To<o> [—2-] . (8-3)

Therefore

r -(t) T .(t) , .
cri

= 1- E^1] (8-4)
R(t) T (o) R

o o
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From Leung (1975) solutions for homogeneous models, it is

reasonable to take:

x (o) « T . (o) s; 3.0 (8-5)
o cri

and when

T (t) * 10.0, T .(t) ~ 1.5
o cri

Therefore, when the cloud has contracted by a factor s 0.55, i.e.
T*

R. ( t) cr^
« 0.55, which occurs during a time t » 0.79 t-_, « 0.73.

R R
o

This means that the radius of the "core" T, = T . has grown fromd cri

0.00 to r . = 0.73R and formation has progressed from the
cri 2

centre towards the edges.

It is expected that the surface r(t) = r is rather an

irregular and distorted surface due to the inhomogeneities, instead

of a spherical and smooth one as it was assumed in the above guess

from homogeneous models.

Although the radiative heating problem was solved in very

simple inhomogeneous cloud models and in approximate form, two facts

were established: (a) only inhomogeneities with optical thickness

given by the relation (6-30), i.e., A^ K/2 s: tt/2, are expected to
generate strong T^ fluctuations around some mean value, in parti¬
cular around (b) Inhomogeneous clouds with mean optical

thickness T such that 1 < T <5 tend to be much more sensitive to
o o

T. fluctuations towards the centre and those with T >5 towards
d o

optical depths of the order of 2.
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The formation problem was worked out, in a first approximation,

as a discontinuity generated by the surface = T •, i.e., ft formation

can occur inside bubbles where T,< T .. The effects of H„d cri 2

formation in these bubbles were compared with the change in the

mean density which would be produced by the fastest form of contraction

i.e. free-fall. Strictly speaking gravitational constraction and

formation are coupled with each other. However, the approximation

adopted permits the determination to a first approximation

of the conditions under which H„ formation could be important for

inducing density amplification.

Although the isobaric condition is not absolutely correct, it

has some degree of validity as can be seen from the following simple

considerations:
I

The timescale for a sound wave to travel across a region of

dimensions A,/4 = tt/4.K (radius of the cells whereT < T ,) isd d cri

t = ~ (8-6)
s

4k c

where

" " •= Sd ' "d <8-7)

and c the sound speed given by

c - (yRT)^

On the other hand, the timescale for formation is

tR = Y_1<ad>_1(3RTr (-)"1 n"1 (8-9)
2 n
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see appendix A. Therefore,

t.

H2 8<Qext> Y J
» £*£_ ( I ) 2 (8-10)

t it 3
s

~

x /5/9 for an HI gas
where ( — )5 = {

3 /7/15 for an H2 gas (8-11)

Because the ratio t /t only depends on the gas parameters
2 S

through the specific heat ratio of the gas, it can be taken with

confidence.

With the average number<Qext> ~ 2, Wickramasinghe (1973),
Greenberg (1979), and with the mean value of y between a gas of

pure HI and one of pure H^, one has

\
—— ~ 3.6 (8-12)
t

s

That is, the pressure in the bubble with T, < T . has time to equalised cri

to the external value while the H2 reaction proceeds.

The validity of the isobaric condition in the non-steady

regime generated by gravitational contraction is difficult to

envisage although on physical grounds it is expected that such a

condition provides rather a lower limit for the density enhancement

due to H^ formation because of the strong non-linear coupling between
both processes and the accelerated increase of the background mean

density due to the contraction of the cloud as a whole. This aspect
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can only be estimated quantitatively with the help of a self-

consistent treatment of the formal multi-dimensional gas dynamic

problem enunciated at the beginning of Section 3.

Subsonic turbulence has been invoked as generator of inhomo¬

geneities, particularly density inhomogeneities, but while these

fluctuations generated by turbulence are reversible, the production

of the (and of molecules depending on this, mainly CO) introduce

irreversibility in turbulent elements at scales ^t/2 = tt/2k and

at the early stages of the contraction.

Formal studies of the turbulent generation of density fluctu¬

ations in a contracting medium, Sasao (1973) have shown that the

amplification of density inhomogeneities resulting only from the

turbulence-contraction coupling requires the presence of initially

very strong turbulence and effective amplification could only occur

at advanced stages of the collapse, t > 0.9 t^.

Xd
It can be argued that, if at length scales — -tt/2k the time

2
scale characteristic of turbulence t is much shorter than the time

fcl
necessary to allow appreciable to form and their effects dominate

the very turbulent ones, inhomogeneities could not survive long

enough to permit production to control the situation.

With the assumption of isobaricity (P = const.), a quantitative

criterion to adopt to determine when H2 formation effects dominate over

the turbulent ones would be that the change in density due to the

formation has to be greater than the density fluctuation produced by



- 179 -

turbulence, i.e.,

> <^>turb. <8"13)
D 2 D

It seems that this criterion is not very far away from the formal

one in a non-isobaric model, because to a first approximation

( —— ) % ( — ) for either of the above two different mechanisms

and therefore, formation would dominate over the turbulence if

(i£) > ( — )
P _ P turb. (8-14)

2

For ( yy- ) ~ 0.1 for instance, from the numerical solutions of
p turb.

Section 7 one can see that a rather wide and sufficient condition to

ensure that (8-13) is valid, is

tt1 * \ (8-15)

That this is the case, can be seen from the following simple

considerations:

From the Kolmogorov spectral law, appendix B, the timescale

characteristic of inhomogeneities at scales ^^/2 s; tt/2i< is

- X-
0 < y~l , d 2/it ~ a < v > ( — )

fci ° ° 2

C TTVs <3RT>2<Qext V ( —) n"Z/3 (8-16)
n
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I
where I is the linear dimension of the cloud and <v> « < 3 RT > 2

o o

in a first approximation. Therefore the ratio t /t is given by
2 tl

t /t ~ 2/3 u'VjJ<Q >3T-'/3 (8-17)
t^ ext o

which is rather insensitive to the product <Q > T . For Q - 2r ext o ext

and T -3-10, one obtains
o

t„ ft * 0.3 (8-18)
2 li

i.e. turbulent elements at scales ~ 7t/2k survive long enough to

permit formation in quantities such that molecule formation

dominates turbulent effects.

Another point deserving some discussion is the adopted form of

the function A - F. As mentioned in Section 7, interest was

focussed only on the direct effects produced by the formation of R^
molecules on grains, and for that, only a gas of pure HI was con¬

sidered. In a more realistic model however, traces of heavy elements

have to be allowed for, mainly C, 0, Fe and Si and probably some ions

of them, concentrations of which depend critically on the detailed

radiative transport at ionizing wavelengths. In the density range of
2

interest, n £ 10 the neutral species probably dominate the atomic

cooling. If one goes into this more realistic model, one has to

consider all the chemistry depending on ^ presence, mainly the CO
chemistry because of the effectiveness of CO as a coolant. In

addition, the agents producing the heating function T have to be

considered. It is likely that this last aspect is the most puzzling

one due to the uncertainty in T, Spitzer (1978).
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It is likely that given the power of cooling of the CO molecule,

the presence of this new molecule enhances the effects produced by

The CO molecule is probably responsible for cooling the gas from

about 60°K to 5 - 10°K, temperatures observed in dense molecular

clouds. The situation is not as simple as it appears at first glance,

and further research, in multi-dimensional and non-homogeneous models,

on this particular aspect is required.

Several approximations have been introduced into this study and

the problem has been highly schematized in order to go a little further

than the very order of magnitude. However, the results show that if

HI clouds reach the verge of their gravitational contraction in a

2 -3
subsonic turbulent state, with gas number density n > 10 cm and

gas temperature T s; 10^ °K, their fragmentation would be a consequence

of the following chain of processes:

i - subsonic turbulence provides initial density fluctuations

with scales of length ranging between the size of the cloud and the

threshold imposed by viscosity.

ii - the radiation field imposes a constraint on the spectral

range of density fluctuations able to be amplified effectively in

times shorter than the contraction time of the cloud as a whole. This

constraint is given by the scale length over which fluctuations of

the dust temperature occur around the critical value for H^ formation
i.e. 1 < r < 2 where r is the reciprocal of distance measured in units

of optical depth.

iii - H^ formation initiates an irreversible process of density
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amplification at the above scales and provides the contracting cloud

with an initial pattern of fragmentation. The mass range of fragments

is then given by

m / / to"58 <n a > s \~3 ~2 / 77 n3— ~ 4.4x10 < Q O/ — ) n ( — )Xext d
M n r

©

2 4-3
where 1 < r < 2 and 10 < n < 10 cm

For standard values of galactic clouds the above mass range

would be

-3 M 2
5.9 x 10 < — < 4.8x10 .

M
o
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9. FURTHER RESEARCH

A. Short Term

a. With simple density distributions and with the help of the

Fourier technique, obtain a set of coupled differential

equations from the Giovanelli equation and solve them

numerically.

b. Consider other geometries: spherical and cylindrical but

allowing for inhomogeneities.

c. A self-consistent numerical solution of the Giovanelli

equation applying iterative numerical procedure, Varga (1963),

Forsythe and Wasow (1960).

d. Look for a simple way to couple the density amplification

due to H£ formation with the gravitational contraction.

e. Re-work Section 7, introducing a more realistic A - T

function taking into account traces of heavy elements. At

the same time introduce the CO chemistry with a simplified

treatment of the gas-radiation field interaction.

f. Look for a way to solve in self-consistent form the radiative

heating problem taking into account dust and gas simultaneously.

In particular, determine whether or not with T^ > T, the instability
suspected by Silk (1978) appears. The paper of Petrosian and

Dana (1975) could serve as a guide.

g. Examine in detail how an atomic cloud compressed by the spiral

density wave enters the collapse state. Paper guide:

Biermann et al (1972) .
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h. Look for a quantum mechanical argument to decide which

interpretation of the Marenco1s experiment (1972) is the

correct one.

i. Find the real upper limit of the binding energy of

going as heat input into the gas.

B. Long Term

a. Solution of the radiative heating problem in multi¬

dimensional and non-uniform clouds using Monte-Carlo

techniques. House and Avery (1969), Bernes (1979).

b. The same as problem a_ but using the Markov chain method,

Esposito and House (1978).

c. The same as problem a_ using the generalised Feautrier's

(1964) method, Cannon (1970), Cannon and Rees (1971),

Mihalas et al (1978).

d. Solve the problem of radiative smoothing, Spiegel (1957),

Le Guet (1972), Delache and Froeschle (1972), Anderson

(1973), in a non-homogeneous medium.

e. Calculate the effective cooling rate of the cloud fragmented

in places of ~ 1, Low-Lynden-Bell (1976), integrating

numerically the equation of Giovanelli (1957).

f. Does the entropy balance equation give information on the

fragmentation process? Groot and Mazur (1962), Nicolis (1979).

g. Repeat the Hollenback et al (1971) calculations for H

formation but solving in self-consistent way the radiative
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transfer problem following the Petrosian and Dana (1975)

paper.

h. Realise the three observational tests suggested by Reddish

(1977).

i. Following the paper of Woolfson (1979), repeat the calcul¬

ation introducing molecular cooling and molecular physics

in general instead of atomic cooling and atomic physics.

j. Try to apply the stochastic theory of Chandrasekhar (1943)

to the physics of IM. In particular to the grain formation

process and to the thermodynamics of the dust clouds.

k. Re-work the Schatzmann's (1958, 1979) problem but in 2-D.

In particular, look for the possibility of work in the same

general way as the Benard problem, Chandrasekhar (1961) .

1. Generalise the 3-D hydrodynamic code of Tohline (1978) to

take into account radiative transfer and the chemistry of the

and CO molecule.

m. Re-work the Sasao (1973) paper taking into account the

thermodynamics. If this is possible, in a second step,

introduce the chemistry and the radiative transport.
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APPENDIX A

BASIC EQUATIONS GOVERNING A HETEROGENEOUS FLUID -

a. Conservation of Mass

A fluid constituted by n components among which r chemical

reactions are possible obeys the following relations, De Groot and

Mazur (1961)

6Pk 3 r *
~ " < V*a> + (A-l>

a J

r = number of reactions

k = 1, n

where = m^ n^ is the density of the k-component of mass per
particle m^ and number density n v is the a-th component of the
velocity of this k-component, stoichiometric coefficient

with which k appears in the chemical reaction j. > 0 if the

component k appears in the second, V . < 0 when it appears in the
kj

first member of the reaction equation. V, . J. is the mass of k-
kj j

ttl
component generated per unit volume and time in the j reaction.

Equation (A-l) is a balance for each k-component between the local

change (left-hand side term) and the flow (first right-hand side term)

plus the net production or source term (second right-hand term).

Because there is no creation of mass in the system,
n

I V J = 0 (A-2)
k=l J

* With Greek letters, Einstein's sum convention will be used.



- 194 -

Therefore,

9p 3

3t 3- a
- ( pv ) - continuity equation.-

x
a

where

n

P = ^ \ \
k=l k

1 n
v = — y

a i Pv vi ~ "barycentric velocity"p R*~ -L K Rot

Defining the "diffusion flow" of substance k by

Jta ■ pk ( Tto " Va '

and the mass fraction c^ by

n

ck = Pk/P » I ck
k=l

equation (A-l) becomes

dt 3xa

Evidently

n

I jL. = o



- 195 -

b. Motion Equation

dva 8 - v
p = PBa + ^ Vka (A"9)

dt 8x„ Pa k k ka
p

where P are the Cartesian components of the stress tensor of the medium.
3a

~ ~ -k
It is often assumed that P = P . F are Cartesian components

Otp p06 K-Ct

of the force by unit mass exerted on the k-component. Equation (A-9)

is a generalisation of Newton's second law allowing for forces

involving short range interaction between particles of the system

(first right-hand side term) plus external forces on the system and

long-range interaction forces between particles of the system (second

right-hand side term).

/ ,

Defining a momentum flux tensor as the part of the momentum

flux not due to the direct transfer of momentum with mass of moving

fluid, i.e. related with short range interaction, by

a
0 = -P 6 . + a' _ (A-10)a3 a3 a3

where P is the ordinary pressure and a'„ is the viscosity stress-

tensor, equation (A-9) becomes

— <Pva> " " 7" ( pVs " 0aB > + J, Pk Fka <A"U>
3t 3xB k"1

or in a more familiar form

* This is valid in a first approximation for diluted systems
constituted by spherical molecules.
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dv £ n
= vAv + ( - + dv ) V ( V .v) + I P F (A-ll')3 ' _ L ^k^_k

dt p k=l

where H is the coefficient of dynamic viscosity, V = n/p the

coefficient of kinematic viscosity and £ the coefficient of viscosity.

c. Energy Equation

If u is the internal energy per unit mass and

n
?

u = u + 7 5 c_ (v, - v ) (A-12)
, L, 2 k ka a' v /k=l

the energy equation becomes

. r - A + t — + I j F (A-13)
dt p dt ap 9x„ k=l k k

p

where T and A are the heating and cooling rate per unit volume. This

equation can be generalised further to take into account the thermal

conduction, Landau and Lifchitz (1959), De Groot and Mazur (1961).

For a fluid with self-gravitation as the unique long-range force

and with negligible viscosity and diffusion, the basic equations given

in a), b) and c) take the simple form:

Mass conservation

8PV r
= -div (Pkvk) + J Vkj J. (A-14)8t j=l

— = -div (pv) (A-15)
3t
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Motion equation

civ

p — = - VP - Vcj)

(A-16)
dt

V <|> = 4 tt G p

Energy equation

r - a - p
d̂t p dt (A-17)

This last equation simply enunciates that for any element of unit

volume the net heat input per unit time (left-hand side term in

(A-17) is equal to the change of internal energy per unit time

(first term on the right-hand side) plus the work done by the element

per unit time (second term on the right-hand side) . If the element

does work (gives energy), — — < 0 and the compressional heating
p dt

— — <0. If work is done on the element, — — > 0 and for
p dt p dt

compressional heating — -^2- > 0.
p dt

d. Dynamical and Thermal Timescales. The Jeans Limit.

Equation (A-16) provides two dynamical timescales, the free-fall

time t and the expansion timescale t^, and the Jeans limit, in a
first approximation.

If in equation (A-16) the pressure term is made smaller than the

gravitation one, i.e. | V P | « p | V cj) |, the equation of motion
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becomes

dv

p — = - p V <j> (A-18)
dt

which in the case of a uniform sphere of initial configuration

p(o) = p and r(o) = R , becomes
o o

,2 . G p R 3d r
_

_ 4tt o .o

dt2 3 r2 (A-19)

The integration of equation (A-19) with the additional condition

( — ) = 0 is straightforward and it gives
dt

t=0

8 + | sin 2 8 =
8 ^ G P / . rjr\\

j- o j t (A-20)

2
where r/R = cos 8> Hunter (1963). Therefore, the time at which

o

any shell reaches the centre, called free-fall time t is

i
Q TT —-

t.f = ( —) Pn 2 (A-21)ff 32G °

On the other hand, if in equation (A-16), the pressure force

dominates the gravitational one, i.e. | V P | » p | V(j) |, this equation

reduces to

-V P (A-22)
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from which the characteristic time t for free expansion is

defined by

R

t = — (A-23)
e

c„

where R is the characteristic initial dimension of the cloud and c„
o b

the speed of sound, which for an ideal gas of molecular weight y is

cs = (Y — )* (A-24)

where y = c^/c^, the ratio of specific heats. With

R = ( -M )/}
O ( . ' (A-25)4 TT p

where M is the mass of the cloud, the dynamical timescale for free-

expansion is

VT -

tg = (3M/4ttp) / (y— )2 (A-26)
y

Equation (A-16) admits a static solution if

VP = - pV<J> (A-27)

which in orders of magnitude gives

M = ( — )* (~)/Z ^/2P 2 (A-28)
J

4tt Gy

which in a first approximation defines the Jeans limit. For a formal
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definition of this limit see Section 2 of the text. Condition

(A-28) is equivalent to the statement that in equilibrium t = t,.,.
e ff

Strictly speaking, M = M is not a condition of quasi-hydrostatic
J

equilibrium because in general clouds are open thermodynamical

systems, i.e. they are heating or cooling, adiabatic motions can

start if y < 4/3 or chemical reactions in non equilibrium can appear.

Finally, equation (A-17) provides a timescale for the thermal

process. If the cooling (or heating) process is considered as an

isochoric one, in a first approximation, equation (A-17) becomes

p — = T - A (A-29)
dt

and the cooling time would be

tc = (3 k p T/2y ) / ( A-r ) (A-30)

if A > F . This timescale is simply the characteristic time during

which the cloud reaches the thermal equilibrium. If T > A a change

of signs occurs in equation (A-30) and a heating time t^ would be
defined.

e. The Chemistry of the

In the particular case of a hydrogen gas reacting on dust part¬

icles, equation (A-14) is greatly simplified as follows.

Equation (A-14) can be written involving the particle density

rather than the mass density in the form

9n,
—- + V . (n, v. ) = Z. (A-31)
3t - k "k k
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where Z is the generation rate of particles of type k and k = 1 for
K-

atomic hydrogen and 2 for molecular. Defining the parameter x by

nix
— (A-32)

where n = n^ + 2n^ is the density number of atoms, the following
z "k

equation for x can be obtained from equation (A-31)

— = — (dissociation rate) - — (recombination rate) (A-33)
dt n n

or according to equations (3-1) and (3-7)

— = B — — -y< a,> < v > ( — ) nx (A-34)
dt 2 d H n

or according to Section 3, simply

, n,
— = -y <8 ,> < v > ( — ) n x (A-35)
dt d H n

From equation (A-35) one can define straightforwardly a timescale for

formation as the e-fold time for x

./-1 s"1 < nd N-1 "I / i

tR = Y d H — n (A-36)
2 n

i.e., t would be the e-fold time for consuming the atomic hydrogen.
2

Another quantity of particular interest, involved with the chemistry

* To obtain (A-33) it has been assumed that the velocities for both
components are the same and equal to the average one.
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of a reacting hydrogen gas, is the internal energy per unit mass u.

If n^ and n^ are the particle densities of the two components
of a mixture of two gases with molecular masses m^ and m^, the
internal energy per unit of mass is

kT
-n

l
Vl + n2m2

n„(e1 + e1 ) + n2(e2 + e2 ) (A-37)

Herzberg (1950), where is the internal energy per particle contain¬

ing the translational plus the energy associated with internal degrees

of freedom (rot., vibr., . . .)

kT
e. = —~ (A-38)

y. -1
i

«o
# # o

Y. = c /c is the ratio of the specific heats,and e. the zero point
i v • y. ir l

energy per particle of class i.

Equation (A-37) in terms of the x parameter defined by equation

(A-32) becomes

e °
u = [—— + -5—5 1 R T + X N x + —- (A-39)

Yx" 1 2(y2-l) ° 2mx

R being the gas constant, the Avogadro number and X the dissociation
o o

energy 2 ~ C2 '

From equation (A-39) one finds that the change in internal energy

with time in a reacting mixture of hydrogen is

du
_ 5 + x dT + RT dx + ^ _dx

dt 4 dt 4 dt ° dt (A-40)
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f. Radiative Transfer Equation

Formally the radiative transport through any medium capable of

absorbing, scattering and emitting radiation is governed by the

equation

£.Vlv (rAt) = ev(r,t) [ 1 + ^-3
c 3t 2hv

- av (r,t) Iv (r,fi,t)

dv'
2

T\;» [ 1 +-^-o
4ir v 2hv

0CO
2

c

V
° j

t} Iv(i'^t) ^1 + 2hv'3 ^
4TT

(A-41)

Pomraning (1973), where the following notation is used:

I (r,fi,t) = specific radiation intensity of frequency V, at the

spatial point _r, in the direction defined by the unit

vector £7 and at the time t.

£ (r,t) = rate of energy emission due to spontaneous processes

df2 = element of solid angle in the direction fi.

a* (r,t) = macroscopic absorption coefficient.

T

O = differential scattering coefficient, i.e. the

probability of a photon being scattered from
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V' to V contained in dv and from to ft contained in

dft, in travelling a distance ds is given by

probability = a' t) dv d ds. (A-42)

The boundary condition corresponding to (A-41) becomes

Iv(£.S'^'t) = l0(£_s» V,fi,t) for n. 0, < 0 (A-43)

where I°(t: , V,_fi, t) is a known function, r is the-vector of any
O O

point on the boundary surface S and n is an outward normal unit

vector at any point r . This boundary condition enunciates that the
b

specific intensity at all points on the boundary surface S and in

the incoming direction is known. Further, the surface S is a non-

re-entrant surface, i.e., any photon leaving the volume limited by S

re-enters it through S.

The temporal boundary condition provides another well defined

function I^O^j^jO) .

If the assumption of local thermodynamic equilibrium - LTE -

is introduced, i.e., the matter at point _r and time t is considered

in thermodynamic equilibrium, regardless of the presence and nature

of the radiation field, the RTE takes the simpler form

1 ^Iv(r,fi,t)
St -- V

2
dv'

o •

dft' a . ...(r.fi'.g.t) I , (r,J2',t) [l + -£-=■ I (r,ft,t)]
4tt V' V 2hV V
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■°° r 2
dV dfi'a t) Iv(r,fi,t) Ql+——3 IviM'»t)J

o } 4TT 2h.v'

(A-44)

where B (t, t) is the local Planck function and (r,t) is the

absorption coefficient taking into account the stimulated emission,

i.e.

av(r,t) = a'v(r,t) Ql - exp(-hv/kT) (A-45)

If the assumption of LTE is removed, the RTE (A-44) continues

to be valid but in such case B^(_r,t) is not the Planck function.

A drastic simplification appears in the RTE (A-44) in the case

of coherent scattering. Then the differential scattering coefficient

a , (r, fi'.fi,t) contains a 6(v- V') function and the non-linearv'-n> — — —

terms in I on the right-hand side of equation (A-44) cancel one

another and the RTE (A-44) is reduced to the form

1 3lv(l,^,t)
c 8t

-a (r,t) Ql (r,fi,t) - dfi' p(£2* .fi) Iv(r,fi' ,t)] (A-46)'

4TT

where O (r_, t) is the macroscopic scattering coefficient defined by

G (r,t) = —
V -

4*
dv'

4tt
dfi'a , (r,fi.fi' ,t)

v->v —
(A-47)

i.e., G^(r^,t)ds is the probability that a photon is scattered in
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travelling a distance ds. p(fi'.fi) is the angular phase function

normalised such that

4it
dfi' p(fl'.n) = 1 (A-48)

4tt

In the non-time dependent case, equation (A-46) simply becomes

^•ZIV (L'Q) = %(£.) Bv (£.) - [av (£.) + av(£.)J Iv(l.»^)

+ a (r)
v —

dfl'

4TT 4 ir
p(ft'.0) I (r,n') (A-49)

or using the definition of directional derivative along Q

dl (r,fl)
= a (r) B (r) - [a (r) + a^Cr) ~[ I (r ,tt)

ds

+ a (r)
v-

dfl'

4tt 4tt
p(n'.n) iv(r,n') (A-50)

Usually an extinction coefficient K (r) and a source function S
v — v

defined by

K (r) = a (r) + a (r)
v — v — v —

(A-51)

and

sv =
a ,(r)v

Kv(I>
B +

av(r> dfl'

Kv (£.) ^ <^',T
P(n',n) iv(r,n') (A-52)
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are introduced. Therefore, the RTE (A-50) becomes

dl

ds

■ -Vb.-V —K X + j
V V J V

j being the total emission coefficient K^S^.

For isotropic scattering p(f2/.fi) = 1 and

Sv(r} = -2— Bv(r) + Jv(r)
K (r)

V — KV(^

J^(_r) being the mean intensity defined by

V*> =
4tt

d«' I (£,«')
4rr
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APPENDIX B

TURBULENCE AS A MECHANISM GENERATOR OF DENSITY FLUCTUATION

The problem of generating density fluctuations in a medium

where the hydrodynamical equations are valid has been treated by

many authors, von WeizsMcker (1951), Chandrasekhar (1951a,b),

Gamow (1952), Ozernoi and Chernin (1968, 1969), Nariai (1970, 1971),

Tomita (1971, 1972), Sasao (1973). For a recent review see, for

instance, Frisch et al (1978). In general, from these works it is

clear that density fluctuations must occur as a consequence of

turbulent motions. In particular, it is possible, through the hydro-

dynamical equations, to establish a link between the spectrum of

turbulence and that of the density fluctuation.

Simple theoretical considerations suggest that turbulence is

present at the early stages of contraction of prestellar clouds.

Simplifying the motion equation (A-ll') to the form

8v VP
— + (v.V)v = - — + vAv — V cf)
3t p ~ (B-l)

It can be shown that the hydrodynamical regimen is turbulent providing

that the damping motion (second term in the right-hand side of equation

(B-l) is small compared with the transfer of motion (second left-hand

term in equation (B-l), Landau and Lifchitz (1959). This fact is usually
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indicated by defining the Reynolds number

r _ transfer of motion _ v£
_ _ — (,b-2;

damping of motion V

where v is the variation of gas velocity at scales of dimension £.

Therefore, turbulence appears if R > R where R . is a certain
cri cri

critical value >10, Kaplan and Pikelner (1970). From the definition

of viscosity one has

J1_
P

<A> .
„

ri s; n k T
<v>

(B-3)

where <A> and <v> are the mean free-path and mean velocity of the

gas particles respectively, and

< x> = -JL_
n <0> (B-4)

<0> being a mean cross-section for collisions between gas particles.

Therefore

i i

, ~ 1 , kN 2 T2V ~ (—) —
<0> 3y n (B-5)

and

r = vl <a> ( —) —,
k T2 (B-6)
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Taking v ~ 7 x 10~*cm and I 5 pc, Spitzer (1978), the Reynolds
23 2 -17

numbers for typical HI clouds (n ~ 10~10 cm , T % 10 K, <a>~8.8xl0

cm^) and molecular clouds (n ~ 10 cm T s 10K , <a>= 6.6x10 ^cm^)
become

4
R s 2 x 10 for HI clouds

9
R s; 5 x 10 for molecular clouds.

This indicates that in both the atomic and molecular clouds the hydro-

dynamic regimen is turbulent.

Three aspects of turbulence are of particular importance' in

this study: turbulence as a mechanism generator of density inhomo-

geneities, their spectral distribution and the timescales character¬

istic of such inhomogeneities. The exploration of these aspects will

be done in order of magnitude as follows.

Neglecting gravity, the equation (B-l) becomes

3v VP
— + (v.v)v = -ZL + vAv
3t p (B—7)

On the other hand, from the equation of continuity one has

3p
— = - V(pv) = pV.v - v.Vp
3t ~ _ ~ ■ (B-8)

Writing the turbulent velocity v as

v = v + v (B-9)
p s
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where v is the velocity of vertical motions and v the velocity ofs P

potential motions, in orders of magnitude, equations (B-7) and

(B-8) become

— + — -c2 &
t £ p£ (B-10)

5p
^ _p J. _ v 5p (B-ll)

t £ £

where c is the sound speed, and t is the characteristic timescale

associated with turbulent motion at length scales £, defined by

t z - (B-12)
c

v

From equations (B-ll) and (B-12) one obtains

6P
„ _P (B-13)

P v

and from equation (B-10) results

v
_E

v

(* >z (B-14)

For subsonic motions v « v and from equation (B-9) one obtains
p s

v =» v , which means that
s

^ _E (B-15)
P
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and

2
v v

P s

(B-16)2
v c

s

Therefore, density fluctuations are generated by the p motions

which in turn are generated at the expense of the vortical motions

i.e. they are a consequence of the hydrodynamic non-linearity

as Ozernoi and Chernin (1968, 1969) pointed out.

Once it has been shown how turbulence generates density

fluctuations, and how these two phenomena are linked, it is necessary

to look at the spectral distribution.

From either the dimensional analysis or considering the

transfer of energy from larger to smaller scales, it is possible to

establish the well-known Kolmogorov spectral law, i.e.

von Weizacker (1951), Landau and Lifchitz (1959) . The relevance of

this spectral distribution in interstellar clouds has been emphasised

by von Horner (1951), Herschberg (1964), Kaplan and Pikelner (1970),

Larson (1979). In addition, the studies of Liszt (1973), Liszt et

al (1974), Zuckerman and Palmer (1974) and Zuckerman and Evans (1974),

confirm the presence of turbulence in molecular clouds.

Equations (B-15) and (B-16) provide the fundamental relations

between turbulence and density fluctuations. In particular, one can

consider the range of density inhomogeneities between £q, the

>/3
(B-17)v ^ £
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dimensions of the cloud, and the minimum scale £ determined by
m

the gas viscosity. According to Heisenberg (1947), the smallest

scales correspond to a turbulent viscosity r) such that
£

n£ * ion (b-18)

From the definition of turbulent viscosity p and assuming
X/

the Kolmogorov spectral law one finds

4/
TI ^P£v^p£'3 (B-19)

X/

From (B-18) and (B-19) one obtains the order of magnitude of

the shortest wavelength scale of spatial density fluctuation £^
which might occur due to turbulent motions, i.e.

£m « [10 —— ] ' (B-20)u*
n<a>

This length scale for typical values of HI and molecular clouds

becomes

£ = 2 x 10^ cm « 10 4 £ for HI clouds
m o

13 ~~ 6
£ ~ 3 x 10 cm ~ 2 x 10 £ for molecular clouds

m o

£^ being the length scale for the size of the cloud.

The characteristic timescale for turbulence and therefore for

density fluctuations at scales £ such that £ < £ < £ can be foundJ
m — — o
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from (B-12) and (B-17); it becomes

'h
o 2/3

t * — i (B-21)
v

o

being the order of magnitude corresponding to the variation of

velocity at scales comparable to the cloud size, Landau and Lifchitz

(1959).

A timescale of particular interest in this study is the time-

scale corresponding to fluctuations with optical thickness in grain

extinction of the order of tt/2. If in a first approximation, it is

supposed that the conventional view holds; i.e. that dust and gas

are tied together by either of the two mechanisms: a) gas-dust

collisions, or b) coupling of the dust to the weak galactic mag¬

netic field (~10 ^ ) frozen in the gas, then the length scale

corresponding to the optical thickness Tt/2 is

h - 4
2 k

k being the mean grain extinction, given by

- nd
K = < Q - 5, > ( — )next d

n (B-22)

-10 2
where <cr,> is the mean grain cross-section (~7 x 10 cm ), and

d

nd
— the dust gas number ratio. Therefore, the timescale of the
n

turbulence at this scale becomes

t ^o * (B-23)
tl v ~ nd 2/3 z/3

° <Qextad> } n
n
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APPENDIX C

Derivation of Giovanelli's Equation

The Giovanelli procedure is as follows: one starts writing

the radiative transfer equation in the form (4-10), i.e.

dl
= — K I +CJJ +KS (C—1)

j V V V V V Vd s

In Cartesian coordinates, the derivative of the left-hand side is

simply

dl^ 9x 9l^ 9y 9l^ 9z 9l^ (C-2)
d s 9s 9x 9s 9y 9s 9z

but

—— = sinBcos^; —— = sin0 sin<j) ; —— - cos 0 (C 3)
9s 0s 9s

and therefore equation (C-l) becomes

9l 91 91
sin0cos 4> + sin0sin<t> + cosB = -K^I^+ + KV^V (C-4)

9 x 9y 9z

A general representation of I is given by

I = f [ I P (y) + T fam cos (mm) + bm sin(m(j)) ] P (y) (C-5)
V „unn L n T n r •' nV

n=0 " " m=l
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Substituting equation (C-5)in (C—4) and integrating with

between 0 to 2ir one obtains

sin'

2tt °°

cos d)— V I P (y)d<f> +t l n n
o 9x n=0

sm

2tt . oo n

cos <f> — y y [am cos m;cj) + b m sin m t()J P^ (y) d <J) +
o 9x n=0 m=l

sm

2tt . oo

sincj) — y I p (y)dcj) +
o 9y n=l n n

sm i

2tt 9 oo n

sine})— y y |_ a^cosmtj) + b™ sin-nKjjJp^1 (y) d <j> +
o 9y n=0 m=l

cos

r2ir . °°

"♦r ! V.» +
o dz n=0

|-2tt °° n
cos 0 dtj> — y y [] a m cos m<j) + b^" sin mcj)~] P^ (y)'o 9z n=0 m=l

—K

2tt
I deb + 2ira J + 2ttk S (C-6)

v t v v v v

The first left-hand term of equation (C-6) is

r2ir
smt cos y InPn (y) ] d<J> = 0

9x n=l
(C-7a)

because the integrand in brackets does not depend on <j>.
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The second term on the left-hand side of (C-6) is

sin 1

2tt oo n

cos (J) A I I [ an cosm (p + bn sinmO] p™ (y) d <J>
3X n=0 m=l

oo n

= sin6 — { £ [ Pm (y) f a™ costjicos mcj)d<j) + b
9x n=0 m=l n n o

2tt 2tt

cos'f'sinm^ d^

3 11
n sin 0 — £ a P (|i)

9x n=0 n n (C-7b)

The last equality in equation (C-7b) readily follows from the

orthogonality of the trigonometric functions, i.e.

2tt 0, m ^ 1
cos m (j) cos (pd (p =

o ir, m = 1

2tt

sinm <l>cos $d (p = 0 for all m.

o

Similarly to equation (c-7a), the third term on the left-hand

side of equation (C-6) becomes zero. The fourth term is

sin i

2tt
g 00 n

sin (j)— £ I E a oosmcj) + b sinmcj)] P (y) d<f)
o 9y n=0 m=l

3 00 n _ J-2tt r2ir
= sin0— (J £ P m (y) £a 111 sincficos m<J) d(j) + b^ sint{)sinm(j) d<j) 'j

9y n=0 m=l n n 'o ■'o

it sin0— 7 b ^ P ^ (y)
^ L n n9y n=0

(C-7c)
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The last equality follows from the fact that

2tt
0 m t4 1

sinmtj) sin(j> d(j) = { and
o tt m = 1

2tt

sincj) cos m <j)d(J) = 0 for all m.

The fifth term on the left-hand side of equation (C—6) is

cos
2tfd <j) — y IP (y) = 2ttcos0— J IP (y)

„ n n L n n ^
3z n=0 9z n-o

o

(C-7d)

and the sixth one is evidently 0.

Substituting equations (C-7) in equation (C—6) one obtains

31 oo 3a1 3b1
y I ( —) p (y) + i sine I ( — + — ) p1 (y)

n=0 3z nso 3x 3y "l

= -K y I p (y) + a J + K s
v t1 n n v v v v

(C-8)

Multiplying equation (C-8) by P (V) and integrating from -1 to +1

one obtains

00 31 ,1 °° 3a1 b1 ,1
1 (-£) yPn(y)Pffi(y) dy + I (— + — )

n=0 3z 'n=l 3x 3y -1
(l-yVp* (y)Pm(y)dy

-k iV L
n=0J-1

+ <Vv v
P (y)dy + k S p (y)dy (C-9)

^ m v vj ^ m
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For m = 0, equation (C—9) becomes

00 31

1 n
n=0 3z J -1

yP (y)P (y)dy + I (-
3a"

n=l 3x

3b

3y -1
\ (l -y" ) p^ (y)P„(y) dy

= —K I
n=0 -1

inpn<y) P0 (P) 2a J + 2k
v v v

(c 10)

From the orthogonality of the Legendre polynomials and associated

Legendre functions, i.e.

1 2 .

P (y)P (y)dy = 6
-1 R z 2£ + 1

-1
Pk <*> ^ (£ + m)! 6

2+1 (£-m)I
k£

and using the well known recurrence relations, it follows that

°o 31 rl

I ( — )
n=0 3Z -l

yPn (y) dy
3 3 z

(C-lla)

I (
n=l 3x

3a 3b
n , n

3y -1
(1 -y2 )P* (y)dy =

3b;
2 dal
— (—— + —

3 3x 3y
(C-llb)

v

,1

n=0

I P (y)dy
. n n

2 k J
v v

(C-llc)

because

j-2tt 1J = — dcf) dy I
4tt ■'o ■'-1

= I (C-lld)
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Therefore, equation (C—9) becomes

1 1
1 3I1 l 3ai 3bl1 tiC—1 +— ) ' "Vv + KS (C-12)
3 3z 3 3x 3y

Similarly for m = 1, the terms of equation (C-9) become

°° 31
n

n=0 3z -1

? 31 4 3l?
yP (y) P (y)dy = +

n 1
(C-13a)

3 3z 15 3z

3a1 3b1
—£ + _J1I (

n=l 3x 3y

2 I i 2 ^a2 ^^2
Ki -y )2 p (y)P-, (y) dy = £ + ——)

-1 n I 5 3x 3y (C-14b)

K IV L
I P (y) P (y) dy = - k I.

n n 1

and one obtains

3J
V 2 3b2 3

+ - —- + - (
3a,. 3br

3z 5 3z 3x 3y
-) =

- K I,
V 1

(C-15)

and with the approximation

1 1
3I_ 3a„ 3a„

2 2 2

3z 3x 3z

equation (C-15) becomes

9JV
3z

-K I, (C-16)
V 1
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By symmetry

3Jv 1 3JV ,1-

-Kva1 ; = —Kvb1
3x 3y

Therefore, if the vector I_ is defined by

l_l = (a! > hi » xi )

then from equations (C-12) and (C-17) it follows that

— V.I, - ~a J + < Sv
o — —1 v V V

and

h -
Kv

from where the Giovanelli equation is obtained, i.e.

V. [ —-— V J (r) ] - 3 [a. <r> J (r) - %(r) s <r>]
Kv<r>


