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ABSTRACT

The raﬁiative heating problem has been solved analytically,
in first approximation, for a semi-infinite cloud model with trans-
verse fluctuations in extinction, in terms of the parameters:
albedo for a single scattering W, the greenhouse parameter N,
amplitude of the fluctuations a, and the parameter r which is a
measure of the reciprocal optical thickness of the fluctuations.
For r << 1, density fluctuations become radiatiﬁely disconnected (in
the visual) and the solutions of the radiative heating problem tend
to the homogeneous case. For r >> 1 temperature fluctuations are
extinguished. There is a strong coupling between temperature
fluctuations ﬂTdea and mean optical depth Z. Fluctuations with r
such that 1 < r £ 2, the exact value depending on the Z value at
which Tcri is reached, can provide temperature fluctuations which

result in chemical discontinuity in H2 formation and the onset of the

fragmentation process.

The radiative heating problem has been solved with the help of
a numerical (approximated) method for the following models: a) semi-
infinite cloud with transversé fluctuations in extinction. b) finite
cloud with mean optical thickness T and transverse fluctuations in
extinction. The visual radiation field was calculated and the
fluctuation ATdfTﬁ was obtained for the different values of the

basic parameters w, n, r, a and T,

Assuming isobaricity as a first approximation, the chemical
equation for H, formation (in non-equilibrium condition) and the

energy equation were solved numerically like a two boundary-value



problem. The values of the chemical parameter x, the gas tempera-
ture T and the mass density p were obtained explicitly as functions
of time and they were compared with the change in the mean density

produced by the free-fall. The ability of H, formation to act as

2
a direct non-linear amplifier of density inhomogeneities in pre-
stellar clouds depends critically on the initial values of the number
density of particles 0o the temperature T0 and the percentage of
chemical heat input to the gas,€. In particular, if the remainder

of the binding ene%gy of H2 formation is radiatéd by the grains,

H, formation can induce fragmentation in a contracting cloud providing

that T, > 60°K and no2 102cm-3.

A study (in orders of magnitude) of the turbulence as a
mechanism generator of density fluctuations has been done. If the
Kolmogorov spectral law is assumed, subsonic turbulence is enough to
provide any prestellar cloud with the elemental fluctuations which
are effectively amplified by molecule formation in a time shorter

than one free-fall.
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1. INTRODUCTION

Observations support the idea that interstellar clouds consist
mainly of atomic hydrogen, dust and traces of heavy elements, neutral
and ionized and also that they evolve towards denser states and
occasionally cross the Jeans limit and start to contract under their
own self-gravitation. One can say that this last period is rather
well understood, at least in the case of a spherical and initially
homogeneous cloud, and an abundant literature has appeared since
the classical paper of McVittie (1957). See for instance, Hayashi
(1966), Bodenheimer (1968), Larson (1969), Disney (1969), Larson (1977).
However, two fundamental problems remain to be clarified: a. the
onset of the collapse itself* and b. the fragmentation problem, i.e.
why, when and how a prestellar cloud, probably during its gravitational
contraction, splits into independent units, some of them going on to
reach high densities and high opacities (at wavelengths corresponding
to the cooling radiation) and in an adiabatic state dramatically
increase their temperature while evolving toward the proto-stellar

stage.

A qualitative review of the main ideas proposed to explain the
onset of fragmentation of clouds as a first stage in the star forma-

tion process will be presented in Section 2.

There are reasons to believe that the fragmentation process of
prestellar clouds is not a consequence simply of the dynamical

(gravitational) properties and that many of the physical processes

* TFor a recent review on this particular problem, see Woodward, P.R.
(1978).



and fields involved, like turbulence, chemistry, radiation,
magnetic and gravitational fields, probably play their own role,
but because of the mathematical complexity which appears if one
tries to incorporate all of these aspects at the same time, they

have usually been treated separately.

In this thesis an exploration of a possible way by which
turbulence, chemistry, radiation and gravitational fields can
instigate fragmentation will be presented starting with the chemistry

of the I-I2 molecule.

The thermodynamics and in particular the chemistry of inter-—
stellar clouds is extremely complex. The diversity of physico-
chemical processes, Watson (1976) and the number and diversity of
molecules is enormous. Many molecules have been observed in
the last few years, Herbst (1978); but the crucial role the H,
molecule plays in the evolution of any interstellar cloud can be seen

from the following general considerations:

a. The H2 molecule is the most abundant and its formation

alters directly the number density of particles of the gas.

b. The H2 molecule initiates most of the chemical evolution
in any interstellar cloud, Oppenheimer and Dalgarno (1975). Most of the
molecular chemistry, in particular the CO generation, is inoperative

unless sufficient H2 is present, Gerola and Glassold (1978).

c. The presence of H2 (and HD) involves a drastic and

irreversible change in the thermo-dynamic properties of any cloud

because of the change in the cooling agents from atomic to molecular



form. It is likely that this aspect is the most important one as
far_as the fragmentation process is concerned because of the strong
implication on the thermal stability of the cloud. The generation
of a new coolant and the change in the number of particles in
discrete regions through any non-homogeneous cloud could be the key
processes that induce fragmentation: this will be explored in this

thesis.

d. The presence of H, molecules shields regions against the

2
UV field in the region 912 - 1108 2, Solomon (1969), Spitzer (1976),

Federman et al (1979).

Finally, we quote from Spitzer (1976): "In theories of

star formation, condensation of H into H2 as a cloud contracts

seems a very realistic assumption, ..."

In Section 3, the problem to be tackled will be enunciated and
the justification for the two main hypotheses introduced i.e. (a) H2
formation is completely determined by the critical grain tempera-
ture Tcri if the number density of gas particles n > 102r.:m“3 and

gas temperature T = 100°k. (b) Radiative equilibrium between the dust

and the radiation field holds.

In Section 4, an adaptation of the radiative-heating equations
valid in the general case of a multidimensional inhomogeneous medium
will be presented. These equations are solved, in Section 5,
analytically in a first approximation for an inhomogeneous cloud
model, i.e. a semi-infinite cloud with sinusoidal transverse fluctu-
ation in density which are taken as a first and schematic represent-

ation of random inhomogeneities, possibly generated by turbulence.



The importance of the inhomogeneities at scales with optical

thickness T/2 is shown.

In Section 6 an approximate numerical integration of the
visual radiation field in inhomogeneous cloud models is presented
introducing approximations justified by the results of Section 5,
and a further constraint on the scale of inhomogeneities at large

values (>m) is discussed.

In Section 7, the effects due only to H2 formation are calcul-

ated, schematising the H, production as starting in bubbles with

2
radius ~ /4K, K being the mean extinction coefficient. The chemical
parameter x, density p and temperature T of the gas are evaluated
numerically as functions of time and compared with the change in

density produced by a hypothetical free-fall collapse, starting with

the same initial density at which H2 formation is switched on.

All the results are shown in graphs which seems the most direct

way to present them, avoiding lengthy explanations.

The very complex gas—-dynamical aspects have been avaded in
this first exploration with an hypothesis of isobaricity which has
some degree of justification as discussed in Sections 7 and 8. This
is the strongest assumption made, which we hope to remove in a further

treatment of the problem.

The summary and further discussion is presented in Section 8.
In Section 9 some problems of interest which emerged during the
preparation of this thesis have been quoted. It is hoped that they

may be tackled in the future.



Appendix A contains a summary of the fundamental equations and
basic hypotheses which permit one to introduce drastic simplifications
to the formal equations, in particular to the radiative transfer
equation. In this appendix some timescales of interest in this

study are defined too.

Turbulence as a generator of density fluctuations is studied

in orders of magnitude in appendix B.

Appendix C contains a detailed derivation of the Giovanelli
equation which is solved analytically in a first approximation in
Section 5 and from where a first insight into the radiative heating

in inhomogeneous clouds has been obtained.



2. REVIEW OF STELLAR FORMATION THEORIES

The onset of the fragmentation process of prestellar clouds
is only a particular aspect of the vast field of stellar formation.
Therefore, a review of the theories of star formation with emphasis

on the fragmentation problem is helpful.

Kant (1755) speculated that the stars are formed through
gravitational collapse of nebular material thereby raising the
temperature of the cold gas. Laplace (1796) suggested that
cooling would help to initiate the collapse and that rotation might
play an important role in the first stages of star formation. How-
ever, it was not until 1928 when Jeans published his classical paper

that this problem received a quantitative analysis.

Jeans assumed an initially infinite and uniform gas at rest in
which an infinitesimal perturbation was allowed for. He solved the
motion and continuity equations - equations (A=-16) and (A-15) - and

found that the marginal state had a characteristic wavelength
R\ Z
= _ - 2-1
AJ G p (2:1)
o .

where T and po are the unperturbed temperature and density
respectively. Therefore, perturbations with wavelength A > AJ
would grow exponentially while those with A < AJ would be damped.

Although the basic assumption of Jeans was wrong*, nobody

now doubts the certainty of his basic conclusion which is a formal

* An infinite static and uniform state is not a solution of the
system of equations (A-15) and (A-16).



statement that when a mass is high enough, that is when

Y 34, =1 o
M>M = (ﬂ)zT/"pi (2-2)
J
G
where -M_ = Jeans mass, self gravitation dominates over the thermal

J
pressure. In the context of the consistent solutions of the motion

equation the Jeans problem has been reworked by Bonnor (1957) in his
classical paper. Chandrasekhar (1951) generalized Jeans' work to

an infinite turbulent medium and Sasao (1971) went further in the
same way to an isothermal contracting gas sphere. A formal treat-
ment of the Jeans instability has been given by Chandrasekhar (1961)
and a less formal one by Mestel (1965). Recently a further generai—
ization of Jeans' criterion introducing the energy balance condition
has been made by Kegel and Traving (1976). But although Jeans'
criterion may play the main role in determining the initial mass
which may start to collapse, Disney et al. (1969) have showed that
such a criterion may be irrelevant for fragmentation, at least at
scales of galactic prestellar clouds, where this process is only
determined by the strong coupling between the dynamics of collapse

" and atomic properties.

A theory of star formation was put forward by von Weizsacker
(1951) with the aim of explaining in a unified manner the formation
of galaxies, stars, planets and satellites where the turbulence
would provide the necessary hierarcﬁy of density inhomogeneities on
which Jeans' criterion would opérate; According to von Weizsacker,
a cloud of dimensions L and cﬁafacteristic turbulent velocity v

evolves towards a flat non-uniform rotating disk in a time scale

£ m gl (2-3).



where o *5. Angular momentum prevents contraction of the body as

a whole, resulting in a contraction of part of the body towards the
centre. The gravitational energy set free by this contraction pre-
vents the collapse of the rest of the external mass. As a result, a
slowly rotating spheroidal mass develops in the centre which von
WeizsHcker identified with an early stage of evolution of an
elliptical galaxy. The remaining disk acquires enough angular

momentum to escape.

In the context of this theory, the part concerning the star
formation problem was directed towards the explanation of Baade's
(1944) two stellar populations of the Galaxy. The oldest stars
(population II) would have condensed before the cloud had contracted
appreciably and when the turbulence was great. Therefore, these
stars would form spherical systems (globular clusters) and would
present in general the largest peculiar motions. The youngest
stars (population I) would have formed after the decay of the initial
turbulence or in its last phase when the cloud was a flat disk so
they would move in nearly circular orbits in the galactic plane.
Because the timescale for the formation of a cloud of stellar mass
is

2
t = .ﬂg = 5x 106 years (2-4)%

2 being the corresponding scale of turbulent elements, von WeizsHcker
is forced to assume, ad hoc, that no formation of stars is possible
today because the presence of stars inhibits the formation of new

stars. In addition to this particular point, the main criticism to the

* This order of magnitude is obtained by applying the Kolmogorov
spectral law.



von WeizsHcker theory, according to Mestel (1965) is that super-

sonic turbulence has to be invoked and this is unlikely because of

the strong dissipation of energy in shocks. However, although
turbulence by itself is unable to induce the star formation process

as von WeizsHcker suggested, subsonic turbulence, which is likely to be
present in prestellar clouds,Roberts (1969), is probably the most
efficient mechanism to generate inhomogeneities which,assisted by
another mechanism to amplify these inhomogeneities may induce
fragmentation, at least at scales of galactic prestellar clouds.

The most natural of such mechanisms is molecule formation, Oppenheimer
and Dalgarno (1975), Reddish (1978)., Turbulence as an elemental
process in the formation of density inhomogeneities is considered in

appendix B.

Hoyle (1953) following the same general line as von WeizsHcker
proposed that 'gravitational' rather than hydrodynamical turbulence
is the mechanism by which the following observational data are
explained: (a) Galaxies tend to occur in clusters, (b) The masses

of galaxies are in the range 3 x lOgMb -3 10ll

Mo with a tendency
to fall into two groups at the ends of this range. (c) The typical
mass of type II stars is vl Mb’ (d) The ages of these stars are

the same as the age of the galaxy.

Whilst, in the von WeizsHcker theory, fragmentation in general
would be a direct consequence of the non-steady regime caused by

turbulence which is established where the Reynolds number R > ﬁcri’

in Hoyle's scheme, fragmentation would be a consequence of the non-

steady regime established where M > MJ. It seems that from the strong



_.]_O_

analogy, Hoyle called his theory '"gravitational turbulence".

The core of the physical argument invoked by Hoyle is as
follows: when M > MJ, i.e. tff < te’ see appendix A, the cloud has
to contract as a whole due to the action of its own gravity. When
the contraction proceeds and if tc < tff,i.e., the cooling efficiency
is enough that MJ o« T;i p_% decreases, the cloud can break up
and a fragmentation process can continue as long as MJ continues
decreasing. The process must stop when the opacity, for the coolant
radiation, becomes so high that tC z tff; then further increases

1
in density become adiabatic, i.e. T %p , Mj,mpz and the Jeans mass

increases.

Hoyle establishes a hierarchical structure starting with a
primordial spherical condensation of hydrogen of density %10-273 cm-3,
mass > 1.4 x 1010 M and temperature V1.5 x 104 °K, which contracts
by a factor k.u’ and divides into k equal masses. Each fragment under-
goes the same process and it is repeated until the opaque stage is
reached. The fragments of the first generations would be identified
with galaxies and fragments of the nth generation (n *13) with type II
stars, which would have a corresponding mass M =% Mo/kn = 1.5 Mo’
if Mo ¥ 3.6 x 109 Mb and k ® 5. If further fragmentation occurs
masses about 0.3 M@ are easy to obtain. However, according to Hoyle
"a second and radically different case arises, if dust has been
produced in the condensing gas. Dust allows molecules to be formed,
and molecules are able to radiate at low temperatures, in contrast
to hydrogen, which cannﬁt radiate, once the electron and proton

recombines to form atomic hydrogen ...".
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In the context of Hoyle's scheme, according to Hunter (1962,
1964), fragmentation could result as a consequence of the amplification
of non-uniformities, present at the onset of the contraction, due
to the dynamics of the collapse. Such results have been severely

criticised by Layzer (1963a,b, 1964).

Assuming hierarchical fragmentation, the problem of the last
fragmentation and minimum mass of fragments has been studied by
Smith and Wright (1975), Suchkov and Shchekinov(1976), Low and
Lynden-Bell (1976), Rees (1976) and Smith (1977). In particular,
according to Low and Lynden-Bell, the minimum mass would be
7% 10—3 Me as determined by opacity or 10-_3 Mb if fragmentation

occurs at the hydrogen ionization stage.

Recent numerical calculations, Larson (1977, 1978), Tohline
(1978, 1979) have questioned such a hierarchical scheme. In particular,
according to Larson (1977), the bulk of fragmentation would have to
occur as a one shot process and during the initial collapse of the
cloud. This form of fragmentation would offer the additional
advantage of minimising the Layzer (1963a) objection to fragments

coalescence,

Because the fragmentation process involves an effective
separation of the collapsing fragments, one can see that any process
capable of instigating amplification of density contrast, at early
stages of the cloud contraction, has to be the key in determining
the main characteristic of the whole process, in particular, the
resulting mass function distribution. Jeans' criterion only provides
a necessary but not sufficient condition, to be fulfilled by the

cloud as a whole and by the fragments themselves, to induce fragmentation
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in any prestellar cloud. Fragmentation, for instance, is impossible
in an ideal initially uniform cloud although the condition M > MJ

is fulfilled, Disney et al. (1969).

Ambartsumian (1955, 1960) put forward the idea that the origin
of stars, gas and dust is closely related to the nuclei activity of
galaxies. This theory has still to be developed and it constitutes

a completely different point of departure from the conventional one.

Another star formation theory has been proposed and developed
by Layzer (1954, 1956, 1963a,b, 1964) in which he starts by distin-

guishing between fragmentation and clustering. The first process,

according to him, is related to local and the second one, to global
properties of the system. He assumes that an isotropic and homo-
geneous cosmic distribution of mass is similar to a uniform imperfect
gas. In this, if an adiabatic expansion takes place, formation of

liquid droplets arises, and the same would occur on a large scale,

in the gravitating gas.

The main difficulty arising in the Layzer model is the explan-
ation of the star formation process at scales of galactic clouds
without appealing to hypothesis ad hoc and without invoking other
mechanisms capable of acting at these scales. Layzer put forward
the idea that the birth of O stars "would initiate a chain reaction
triggering the gravitational collapse of all surviving prestars
within a certain radius"and therefore, according to him, Baade's
view that "star formation is a contagious disease'" would receive a
natural explanation. This idea has been developed recently by

Elmegren and Lada (1977).
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McCrea (1960) proposed a random accretion theory principally
with the aim of linking the formation of the solar system with the
star formation problem. He suggested that once the original cloud
has collapsed to the dimensions of the solar system, it can be
represented by a set of non-interacting 'condensations' or "floccules"
composed mainly of molecular hydrogen with temperature about 50°k
velocities of 1 Km/s and mean paths of the same order as the size
of the present solar system. For successive collisions, some floccules
can reach sufficient mass and they become gravitationally bound.
Although in this theory there is some difficulty with the stability
of the "floccules", it predicts remarkably well the value of the

48

angular momentum of the Sun which would be 7 x 10 g cmzs-l differ-

ing only from the accepted value (2 x 1048g cmzs—l) by a factor 3.5.

Grzedzielski (1966), following the McCrea line, has developed
a theory in which instead of floccules, shockwaves would be generated
by large velocity differences supposed to be present initially. His
two basic assumptions are: a) The typical scale of chaotic motions
is large, corresponding to velocity cells with masses of the order
of 109M0. b) The kinetic energy of these motions is comparable to
the gravitational potential energy of the pregalaxy. From these
hypotheses he concludes that the pregalaxy may fragment into smaller
objects of the order of 108 M@ and if heavy elements are present

within these subcondensations, a further stage of fragmentation would

be possible, giving rise to masses of the same order as those of

globular clusters.

Recently Woolfson (1979), following the line traced by McCrea
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and Grzedzielski, but invoking the turbulence explicitly, has
attempted to exlain the star formation orocess in galactic clusters.
He reoresents the turbulent elements as egas spheres each of mass
MJ(?) and moving at the same speed but in random direction. With
these assumptions, he removes the stability problems of McCrea's
floccules and the inherent difficulties of the fragmentation process.
Although the model offers some interesting attractions, it seems

unable, at least in its present status, to fit the observed mass

function distribution.

Some authors have treated the fragmentation problem specifically
as a random process. Auluck and Kothari (1954, 1965) assumed a
distribution of the form

3 RAY
N(V) v N v | e [“3(\, ] (2-5)

(o]

where N(V) is the number of fragments with volume equal to or
greater than V, No is the total number of fragments and VO the
average volume of a fragment. In the same way Kruszewski (1961)
fits an expression for the initial mass spectrum obtained by Limber

(1960) in a mass range from 0.1 Ma to 102 Ma.

Larson (1973) studied the fragmentation problem as a temporal
random process. Although he found an approximated gaussian function
for the stellar mass spectrum, his results (as he himself pointed out)

do not provide a solution to the problem of the stellar mass spectrum.

One can see that the random approach is rather an elegant way
of hiding the physical mechanisms which, although they can be quite

complex, do determine spatially and temporally the behaviour of any

actual cloud.
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An attractive but not well explored theory that fulfils
Larson's (1977, 1978) requirements, and predicts remarkably well the
Salpeter (1955) initial mass function and other observed properties
of the star formation process, has been outlined by Reddish (1975,
1978). 1In it, the formation of the hydrogen molecule plays a

crucial role as the initial instigator of the fragmentation process.

Speaking in very general terms, according to Reddish, spatial
density fluctuations of the dust component lead to spatial fluctuat-
ions of the radiation field (the main source of this field is the
mean star light radiation field) which produce spatial fluctuations
of the dust temperature Td' Because the rate of H, formation

2
depends critically on Td’ Solomon and Wickramasinghe (1969), here-
after SW (1969), Lee (1972, 1975), regions appear where the rate of
molecule formation is faster and others where this process is
slower, or does not occur at all, This would produce instabilities

with length scales of the order of one unit of optical depth in

visual extinction by grains and in a time shorter than one free-fall

time.

Because of the connection between some works on H2 and CO
formation and the basic ideas of Reddish a short review of these will

be given, to conclude this section.

With the implicit assumption that Td <Tcrithrough the whole
cloud, Hollenback et al. (1971) have calculated the number density
of H, as function of the mean optical thickness T and :the position into

the cloud for static clouds in chemical equilibrium.
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The thermo-dynamical problem of a reacting hydrogen gas, in
particular, the stability of the chemical equilibrium has been
worked out by Yoneyama (1973) and Giaretta (1977), following standard
methods of marginal stability, Chandrasekhar (1961) and with the
assumption that Tqg < Tops through the whole cloud and therefore where

T, does not play a role at all in the control of the rate of H

d 2

formation.

Although Reddish (1978) appealed to an early paper of Schatzman
(1958) who proposed a kind of instability related to the change of
the number of particles in an isothermal gas as a result of

recombination, the two problems are different.

Schatzman considered a slab of ionized hydrogen with radiation
flux incident on both sides and found the margiﬁal states for such
a slab of gas. He concluded that there appears to be a collapse of
the slab (the hydrogen would recombine entirely and it would form a
cool HI cloud) for thickness L > Eéri' However Giaretta (1977) has
proved that there was a mistake in the above paper and no instability
really takes place, at least under the particular conditions assumed

there.

In an early paper, Yoneyama (1973), carried out a generalisation
of the work of Field (1965), introducing the chemical kinetic equation
in addition to the three basic equations of Field. He found that a
new type of instability "the thermo-chemical" one, could appear in
gases where chemical reactions occur. In particular he considered
the hydrogen recombination on grains at high gas temperatures

3

10" < T < 104 °K and the case where hydrogen molecules accreted on

grains.
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Part of Giaretta's work is in essence a further generalisation
of Yoneyama's but he introduces a simplified radiative transfer
equation to take into account the coupling gas-radiation field via
absorption effects only. His analysis is made in a one dimensional
infinite medium. Physically,Giaretta looked for the conditions
under which infinitesimal perturbations on the, initially assumed,
equilibrium state could grow at a rate faster than that of
gravitational perturbations. He assumed that the H2 formation is

controlled by the gas parameters which would control the UV field

too.

As will be seen in the next section, the situation under
consideration in this study is different from that considered by
the above authors. In particular, the dust temperature is the crit-
ical parameter in determining the rate at which H, can form on

2

dust grains.

Several authors have studied other molecules, in particular
CO, as possible generators of thermo-chemical instabilities, Glassgold
and Langer (1976), Oppenheimer (1977), Sabano and Kannari (1978).
However, according to the most accepted scheme for the chemical
evolution of interstellar clouds, the CO production is conditioned

to the presence of H, in appreciable amounts, Oppenheimer and

2

Dalgarno (1975). In particular CO instabilities require an H2
concentration of 50%, Sabano and Kannari (1978). According to
de Jong (1977), such CO instabilities disappear if the quenching of

the CO cooling by radiation trapping is allowed for.
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3. THE PROBLEM

The starting point of Reddish's scenario is a cloud,
initially of pure atomic hydrogen and dust particles, at the verge
of gravitational contraction, in a turbulent (subsonic) state which
provides the mechanism generator of density fluctuations*. The mean
diffuse galactic radiation field is incident on the boundary surface
of the cloud and the 2.7 °K background radiation field is also
present. Initially the particle number density is probably

2 =
n 210" cm 3 and the gas temperature T = lO2 K

Strictly speaking, to follow the exact evolution of the above
dusty cloud one would have to solve in a self-consistent manner
the equations of gas dynamics (dusty gas dynamics) complicated by
the radiative transfer equation taking into account the interaction
of the radiation field with dust and gas (Appendix A). In addition
to the inherent difficulty caused by a non-steady regimen, because
of both the contraction and turbulence, the presence of chemical
reactions completes the set of difficulties, because unfortunately
with the problem enunciated in the above form there is no way to
separate the chemical problem from the gas dynamical one. Fortun-
ately, some assumptions can be introduced without losing the basic
ingredients and some insight into the whole problem can be obtained

with the help of schematic solutions, as will be indicated as

follows.

* This seems to be the state in which HI clouds are left by the

compression of the stationary spiral density wave of the galaxy,
Roberts (1969), Clayton (1978).
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The rate of hydrogen recombination on the grain surface is

given by SW (1969), Spitzer (1978)

dnH
7] -
—-——dt = Y<Ud><vH>ndnH (3-1)

where Ny o5 Dy and n, are the number density per cm3 of H, formed,
2

2

hydrogen atoms and dust particles respectively, < 6d > is the mean

geometrical cross section of a single grain, < Yy > is the mean

velocity of hydrogen atoms and Y the total recombination efficiency
which depends on the sticking probability and the recombination
efficiency, Hollenback and Salpeter (1971) and probably on the sur=-
face contamination with Hz, Marenco et al. (1972). But in the range
of interest T = 102 K and n 2 102, SW (1969) propose the following

schematical representation

0.5 1if Td < Tcri

Y = (3-2)
0.0 if T > T,
d cri

In a less schematic model, however,

2L # o« and the
ST
T
cri
amplitude of the fluctuation around T _., AT/T ., required to
cri cri

produce sensible changes in the rate of H, formation has to leave

a non-zero width which can be estimated with the help of the relations
given by Reddish (1978) but corrected by the fact that when the

length of time which an adsorbed atom spends on a grain, T, is shorter or
of the order of the interval between successive adsorptions of atoms

on a grain t, the recombination coefficient Yy is proportional

to the probability that at least two atoms meet on a grain at the same
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time 1i.e.

2
Y m(l) " exp(2E/kT ) (3-3)
t

E being the adsorption energy of the atoms on the surface.

From equation (3-3) it follows that a fractional change in the

=9

recombination coefficient, due to a change in Td where Td £ Tcr1

would be given by

B = w i | o (3-4)
Y(T ;) kT

Graphite, for instance, according to the experimental results
of Lee (1975) has Tcrf=250K and E/k = 785, therefore a change in
temperature of 1,67 around Tcri would produce a change in the rate
of H, formation of 997. All the substrata studied experimentally by

2

Lee present similar behaviour, in particular the quantity (2E/chri)“1

is practically insensitive to the particular kind of substrata as

can be seen from the experimental values given by this author:

-1
substrate (ZEIchri)
H20 0.015942
CO2 0.016406
Graphite 0.015924

Marenco et al. (1972) have found experimentally that the energy
given to the cold surface by the hydrogen atoms arriving to it is a

function of the surface contamination with HZ' For reasons of
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saturation, they excluded the chemisorption process as a possible
explanation. Then, either of the following possibilities, to
explain the above result, remain: 1) The presence of H2 on the

surface influences the recombination rate. 2) The presence of H2
is only useful to obtain an increased accommodation at the surface

temperature of the formed excited H2 molecules.

Reddish (1975, 1978) assumed that the above first interpretat—

ion is the correct one and modified the recombination rate (3-1) in

the form
dnHZ = ] /fv >> n
- Yo <d>\ w/ "a " "m, (3-5)
dt
with (YonH ) = 1,0, where Yo would contain the dependence of the
2 max

recombination coefficient on the sticking probability (depending on
the gas parameters) and on the recombination efficiency (which depends
sensibly on Td). However, to keep (3-5) consistent, a redefinition
of ¥ would be required and from the pure dimensional standpoint s
would have to be a probability per unit density of particles. How—
ever, the value‘n}= 1 was assumed by Reddish, which indeed invalid-

ated (3-5).

The above error indeed (contrary to the Silk (1978) criticism)
is not crucial for Reddish's scenario of fragmentation, because even
with the classical equation, Spitzer (1978), equation (3-1), the
H2 formation could instigate density amplification in a contracting

cloud, as can be seen throughout the present work.

On the other hand, Silk (1978), took the second possibility to
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explain the Marenco et al. results, however one sees that he is in

no better position than Reddish. More experimental work would have
to be done or a very careful theoretical quanto-mechanic treatment

would be required to decide in this respect.

In a first approximation, if the rate of hydrogen molecule
formation is enhanced by the contamination of the surface with HZ’
assuming that the degree of contamination is simply proportional to

the H2 concentration in the gas, the recombination coefficient

would be of the form
= ' " e
Y= SELY YT Yy ) (3-6

where S is the sticking probability (fraction of atoms incident on
the surface which becomes adsorbed), Y' is the recombination coeffic-
ient(fraction of atoms that recombine instead of evaporating) and

Y" a coefficient proportional to n, - This form for the total
2

recombination coefficient, would give a stronger sharpness to the

boundaries separating regions where Td < Tcri and where H2 formation

can proceed easily, from those where T, > Tcri and the gas remains

d

mainly atomic, and corrections to (3=4) to take into account such

effect would give a steeper dependence near to Tcri'

The H2 molecules can be dissociated by UV photons of the

Lyman and Werner bands, Stecher and Williams (1967), Spitzer (1978).

The disassociation rate can be expressed in the form

dnh
2 = BnH (3-7)

2

dt
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where n}l is the number density of molecules dissociated and B
2

is a function depending on the local value of the UV field in wave-

length range 912 S )\ < 1108 8 and on internal parameters of the H2
molecule; for a free H2 molecule exposed to the mean galactic UV

field, B 10" Y5ec ™", Hollenbuck et al, (971).

As shown by SW (1969), in clouds with T * 102, and n > 102

cm_s, with reaction and destruction rates given by equations (3-1)

and (3-7) respectively, wherever Td < Tcri’ chemical equilibrium

would be reached for 0, 5,8.10-33m-3, assuming a normal dust/gas
2

ratio of nd/n = 10—12

, i.e. "the dissociating radiation is completely
ineffective and may be neglected except for a thin shell, Solomon

(1969) . Therefore, in clouds under consideration, the only factor

governing the extent of recombination is the critical grain tempera-

ture." Recent and more detailed calculations, Federman et al. (1979)

confirm this conclusion. Therefore this first simplification emerges.

The dust temperature at any point in a cloud is determined

by the local energy balance equation

00

1
0y [, Ly, By Ta() - G, Qabgv 5, @] = B a8
(o]

where <:6d(aab;7 is a mean absorption cross section per grain at

frequency v, Bv(Td(Ej) the Planck function, Jv(E) the local mean

intensity of the radiation field at frequency v and E(r) represents

the net amount of energy lost by the non-radiative processes: gas-
3

dust collision and H2 formation. At T < 150K and n < 106cm~ the

transfer of energy by gas—dust collision is negligible in comparison

with the radiation heating, Hayashi and Nakano (1965), and for



= B

n £1oécmn31b£ energy by Hzformationimput can also be neglected, if the
local radiation field can maintain the dust temperature above about 9°k,
SW (1969). 1Indeed, this limit was obtained by these authors assuming
that all the binding energy can be absorbed by the grain. However,
according to Hunter and Watson (1978), H2 probably recombines into

high rotational states and new molecules return to the gas in

rotational states J 2 7. Therefore, the above temperature would

represent an upper limit and equation (3-8) becomes

)

¢
d*abs 9

o

J, @ dv = <6an'°5>\; B, (T4(x) ) dv (3-9)
(o]

i.e. the common radiative heating equation. This is the second

simplification.

From the above discussion one may see that at least in the

%~ 20°K o 104 cm h3, the H?. formation is

controlled by the dust temperature which is determined at each point

range T < 150K, Td
in any dusty cloud by the radiative transport controlled mainly by
the dust optics, van de Hulst (1946), Werner and Salpeter (1969),
hereafter WS (1969), Leung (1975), Aiello et al. (1977). Because

a random density distribution is probably a common characteristic in
real interstellar clouds, Zuckerman and Palmer (1974), Zuckerman and
Evans (1974), "tongues'" of radiation penetrate into the clouds pro-
ducing an irregular Ty distribution. This means that patches in the

cloud become cold enough (Td< Tcri) and H, formation starts there

2

first. One must recognise, just at this stage, that one is dealing with

a multi - dimensional radiative heating problem.
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Despite the intrinsic complexity of the above problem, one
can say with confidence that equation (3-9) remains valid because
the radiative equilibrium between the dust and the radiation field is

fulfilled as can be seen from the following simple argument,

The timescale to re-establish radiative equilibrium between
dust and radiation field is given in a first approximation by the
timescale for diffusion of the photons responsible for the heating

of the grains, through the cloud, i.e.

d o (3-10)

where Tois the mean optical depth to the centre of the cloud of
dimensions R, measured at wavelengths of importance for the heating

of the dust, and c the light speed.

An appropriate upper limit to the above diffusion time would
be given by the diffusion of the visual photons. In this case,

equation (3-10) becomes

2 -

T n =1
E o . d - 2 -1
dﬁn Q. & c 3[(n)<qext0d>o . T 2 (3-11)
d< abs d>0

If one compares this timescale with the other three timescales

of interest in the present study, i.e., the free-fall time t he

g0 "
H2 formation time ty » equations (A-21) and (A-36) respectively,

2
and the timescale for turbulence at the scales corresponding to

* . .
visual optical thickness of m/2 , tt, given by equation (B-23), one

* The importance of this scale will be shown in Section 5.
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obtains the following relations

t _ ny —1
4 - 2.0x10 £5 [-—— g -J (3-12)
£ - ext d
ff
4 -7 -1 .1 2
— - 2.6 x 10 <Qext7 ¥ (3-13)
Ry
! -7 .y b
— = 1.9 x 10 T? To (3-14)
tt
1
nd -10
and assuming the mean values -= (Q 2 & =7 x 10 cm
ext ? d
one obtains
o
= % § g G0 g (3-15)
Leg
t 2
% n ix107! T*—ro (3-16)
tHZ
4 -7 .3 55
— " 2x10 T Ts (3-17)
tt
1
For the situation at hand ¢ =z 5, p =« 103 cm3 and T = 102K
' 0
t » t t
9 +8x10 4;--—“*-33{10"5 sad =% = 3 x 1070 (3-18)
Ceg i t

2 t]_
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and therefore the timescale to re-establish radiative equilibrium is
very short compared with any other time of interest and static models
give a good representation of the spatial distribution of the dust
temperature. Note that if Ty < 1, the diffusion timescale given by

equation (3-10) becomes simply t R/c.

q>
With the two basic simplifications introduced in this section
i.e., the H, production is totally controlled by Tcri and radiative
equilibrium between dust and radiation fields holds, the problems to
tackle are: (a) To find the effective scale length at which the dust
temperature Td fluctuates around Tcri' (b) To show that regions

Td < Tcri (and where H2 starts) could become effectively denser and

cooler with respect to regions where Td > TCri and in a time shorter

than one free-fall.

The above two crucial problems in the Reddish scenario for
fragmentation are the aim of this thesis. They will be studied in

first (and schematical) approximation in the next sections.



CHAPTER 1II
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4, THE RADIATIVE HEATING PROBLEM IN INHOMOGENEOUS MEDIA

In this section the basic equations of the radiative heating
problem, valid for the general case of a non-uniform 3-D medium will
be adapted for our particular problem. Although the range of
applicability of such equations is general, limited only by the
restrictions explicitly enunciated, this discussion will be made with

the interstellar dust clouds in mind.

In this study the main interest is focussed on the early stages
of evolution of prestellar clouds when the transition of H1 to H2
has to occur and therefore no internal sources of radiative energy
are expected to be present. Only the diluted stellar mean radiation
field, as that compiled by Watson (1976) is considered incident on
the free surface of the interstellar dust clouds. In addition,
strictly speaking, any interstellar cloud has to be considered embed-
ded in thé 5 K background field. The main role of this field is to
prevent the dust temperature falling below 2.7°K at any depth,

WS (1969), Greenberg (1971).

The radiative transfer equation, (appendix B), can be written in
the form

dI\) ( 5)&)

ds

= K(8) T, (5,@) + j(s,2) (4-1)

Formal integration of this equation yields

]
L(s,@) = I (0,2 exp (=T (0,s)) + [ iy, (5,2 exp (-1(s,s')ds’
(o]

(4-2)
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where Tv(o,s) is the optical depth from the boundary to the point s
measured along the direction §, 1i.e.

s
TV(O’S) = J Kv(s')d &t (4-3)

o

and Tv(s,s') is the optical thickness between the points s and s'
along the direction @, 1i.e.

Sl
Tv(s,s') = J Kv(s") ds" (4-4)
s

(Chandrasekhar 1960).

From equation (4-2) it follows readily that the radiation field
at any point in a cloud can be represented by the sum of two
components: (a) The reduced incident radiation field, i.e. the
incident field reaching any point s in the cloud without having
suffered any absorption or scattering — the first term on the right-hand
side of equation (4-2). This field will be called simply the
attenuated field. (b) The diffuse radiation field, i.e., the field
at any point s in the cloud originated by scattering and emission

processes - the second term on the right-hand side of equation (4-2).

a, Attentuated Field

The mean attentuated radiation field at any point r in the

cloud 1is
g2 (r) = i 58 Ia (r,2) d4Q (4-5)
Vv — g L e e

4m

a . . . . .
where I (r, Q) is the intensity of the attentuated field in the
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particular direction §, i.e.

Ia\) (r, ) = I\O)(EO,E) exp ( _T\J(O’S)) (4-6)

o ; ; 3
Iv(}'ﬂs_@ being the intensity at the boundary and T\J(O’S) the optical

depth from the boundary to the point r.

It is clear that the explicit value of ..Tau (r) depends on the

type of incidence and the geometry involved.

For plane parallel incidence with direction L and dJo, the

inwards intensity Iov (-u,$) becomes
O = —
I\) -u,9) = TFFO\, ‘5(1-1—110) 5(¢—¢0) (4-7)

where Y is the cosine of the angle between the outwards normal to
the surface and the  direction, ¢ is the azimuth angle and TTFO\J

the flux crossing a unit surface normal to the direction of incidence

s cbo, and the §'s are Dirac delta functions, Chandrasekhar (1960).

For plane geometry, from equations (4-5) and (4-7) one obtains

F
a - _9v i . =
Jo @ = ; exp (=t (0,85 U »¢) ) (4-8)

b. Diffuse Field

According to equation (4-2) the total intensity Iv(g,ﬂ) can be

written in the form
I (r,) = I d(r Q) + I a(f Q) (4-9)
) e bt R Yt Bt v =t

where the upper index d denotes "diffuse",
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Substituting equation (4-9) in the radiative transfer equation

(4=1) one obtains
— (L~ +I7) = =k (I 2 % L2 + 3 (4-10)
vy v

If isotropic scattering is assumed, according to equation (A-54) the
emission coefficient is

. _ d a
By ™ KB, = B, + Gv(Ju + Jy ) o (4-11)

With the help of equations (4-3) and (4-4), from equation (4-10) one

obtains the radiative transfer equation for the diffuse field i.e.

dI d
v

" = =k ly Fogdy FRS, (4-12)

where the function S is defined by
~ _ a - ' -
RSy = B # 0.0 (4-13)

Hereafter the upper index d will be dropped, i.e. the radiative trans-
fer equation for the diffuse field will be simply

dI
v

ds

= -KvIv“+ vau + Kvsv (4-14)

Using this equation, Giovanelli (1959, 1963) constructed a

generalization to the Eddington approximation for inhomogeneous

atmospheres.

By writing the general solution of equation (4-14) in the form

o - n ”
r = nZO{Ian(u) + mzl[?;m cos(mg) + b;n sin(mé) ] Pnﬁ(p) (4-15)
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where Pm(u) and P;m(ﬁ) are the Legendre polynomials and Legendre
associated functions, In,ariIl and b;m coefficients depending on
frequency and position but not of directions (u,$), Giovanelli
showed that if only first order effects of U and ¢ are taken into
Bal Bbl ;
account, i.e. 12 = 0 and 2 = 2 =0, from equations
9x dy
(4-14) and (4-15) the following equation is obtained

v [ va,m] -3lma, @ - x @5, @] (4-16)

K, (D)

see appendix C.

According to Giovanelli, equation (4-16) leads to results for
3-D non-uniform media of the same degree of validity as those
obtained from the Eddington approximation in the 1-D case. Unno and
Spiegel (1966) have arrived independently at the same equation (4-16)
and they proved formally that their solutions are reasonably accurate

over the whole range of optical thickness.

c. Radiative Heating Problem

As shown in Section 3, the dust temperature in interstellar
dust clouds is controlled in assence by the radiation field through

the heat balance equation (3-9) i.e.

I <5anbs> J,(x) dv = J <G4Q > By (T4(x)) dv (4-17)
o] v o vV

The mean radiation field J(r) at a particular point r in any
cloud is determined by the radiative transport into the cloud of the
incident radiation field on the free surface of the cloud. According

to Zimmerman (1964), Krishna Swamy and Wickramasinghe (1968), this
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ield is well represented by a black-body radiation field correspond-

—14%
ing to a temperature of about loétﬁi but diluted by a factor W = 10 15

The exact value depends in general on the exact location in the galaxy
and generally speaking, on the type of galaxy and stage of evolution.

In this thesis, however, attention is focussed on clouds in our own

galaxy.

If the grains were black-bodies and they were located in the

free space, equation (4-17) would be simply

- 4 4 o
£ o= g NE." = @& (4-18)

Tr being the dilute radiation field temperature and o, the Stefan—

Boltzmann constant. If one takes into account the 2.7°K background
5 o 4

radiation, the extra term 00(2.?) has to be added to the mean

radiation field J, i.e.

4 bho_ b N
wr o+ @t o= 1y (4-19)

The Planckian distribution of the radiation field has its

maximum at wavelengths Amr = const/T and that corresponding to the

grain emission at wavelengths lmd' But
kmrTr - kded
or (4-20)
A LT
mr = [.1 " (2.? ) ] W
A WT
md 1

Strictly speaking, this field is a good representation of the field
in the vicinity of the Sun. A more sophisticated representation of

this field has been discussed by Werner and Salpeter (1969) and
Greenberg (1971).
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which for the problem of interest would give

(4-21)

This means that the integrals of equation (4-~17) involve two different
spectral regions, towards the visual in the left-hand side and towards
"the infrared in the right-hand side. Therefore, it can be split in

the form

vl abs Nj .

) vV
J (54Q,,¢) J,(@dv = Jz (64Q,,0 B,(T(X)dv (4-22)

in a first approximation.

Although it is true that grains are not black-body radiators,
this fact does not invalidate equation (4-22) and one can split the
V-range in two parts: the visual s and infrared p. Defining the
mean absorption coefficients o  and Gp for each one of the two

(]

* 3
regions , equation (4-22) takes the very simple form

a J = a_ B(T)
s s P
or (4-23)
o
™ o= (=) =2
g o
o P
, being the Stefan-Boltzmann constant. Therefore, T > Tb—b (black-
o o
body temperature) if EE' >1and T < Tb-b if EE < 1, i.e. an absorber
p P

* Hereafter the notation used in radiative transfer literature on
planetary atmospheres will be employed: sub or upper indices s and p
will denote visual and infrared regions respectively.
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exposed at the same radiation field Js’ can obtain a higher or lower
temperature than that corresponding to a black-body (for which
o3 o

s i i 5. 4
= = 1) according to the ratio 5 is greater or less than 1.

% P

Typical grains of the interstellar medium are likely to have large
o
values (> 102) of the ratio EE , Werner and Salpeter (1969),

P
Greenberg (1971) and Leung (1975).

The temperature of grains in dust clouds can be evaluated in
the same manner by considering the cloud to be grey in the visual
and infrared regions of the spectrum; but in this case the left-
hand side of equation (4-22) also includes the diffuse visual and

infrared radiation fields.

Following Wildt (1966) and Stibbs (1971) works, one defines

the Greenhouse parameter N by the relation

|

(4-24)

st

Because the mean free paths of photons in the visual and
infrared are ml/KS and dllKP respectiﬁely, the n parameter is a
measure of the relative thickness of the medium at either of the two
fields: wvisual and infrared. Therefore, this parameter contains
schematically the (other way) very complex dependence on frequency
characteristic of the dust (or gas) optics, Andriesse (1977). It will

be of particular importance in the forthcoming sections.

It is convenient to define a dimensionless function Y(r)
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containing the spatial dependence of the extinction such that

% 7 ( Qextad)i Ed L

or (4-25)

K, = Kiw(z), i = s,p

Ei being a mean value for the extinction. Similar relations can be
given for the absorption and scattering coefficients o, and o5

respectively.

d. Visual Field

In the visual region the emission coefficient js is the
radiation scattered from the attenuated and diffuse radiation fields
and the thermal emission, assumed to be zero in this region. There-

fore the function S is given by

o
Kk 8 = == [ I° (Q) exp (-1 _(o0,s)) dQ (4-26)
s s i s s
4
or
2 w o
S = — [ I "() exp (-T (o,s)) df2 (4-27)
s s — s
4m
4
W being the albedo for single scattering OS/KS. Therefore, the

equation (4-16) becomes

1 . G
v. v = - a 4-28
v [Ksm VI (@] 3k, @ [ 3 () -6 3@ ] e
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where A = 1 - w is the scattering parameter. This equation in terms

of the function Y(r) and mean extinction Es becomes

V. [Lvsi@w]= 382w @-53° @] 429
w(i) B s — s s

For plane geometry and plane parallel incidence with directions

cos‘_1 U ¢O and radiance TF in the visual, from equation (4-8) and

(4-29) one obtains

2
v -[;(*%EJS(E_)] = 3k, v@ (W @ -8 7 exp (-1 (s3 560 ]
T

(4-30)

To(s; uo,¢0) being the optical depth of the point r along the

incident beam.

e. Infrared Field

The emission coefficient in the infrared j is the sum of the
terms: the thermal radiation absorbed and re-emitted, the visual

radiation converted into infrared and the scattered infrared radiation,

assumed to be zero, i.e.

iy =8 = @I @ e @I @I D] (-3

or in terms of the Greenhouse parameter N defined by (4-24), one

obtains

gp - 3@ _*-"“E’s(i) + 3 2] (4-32)
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Substituting equation (4-32) in (4~16) and with the help of the
definitions (4-~25) one obtains the radiative transfer equation in
the infrared

]_...

vo @] = 3T RS v@ [0 @ + 9w ]

¥ysl—=1
¥(x)

(4-33)

which for plane parallel incidence with angles cos_l L and ¢0 and

plane geometry becomes

1

§ o [ Y3 @] = -3An”

v ESZ v(x) [JS(E) + % eXp(-To(s;uo,dJo))]
v(r)

(4-34)

f. Boundary Conditions

The Giovanelli approximation, see'appendix C, is a represent=-

ation of I,,(r,?) in the form

co iyl
m . m
I\) (o) = .J\) (r) + 31 2+ n£3 [InPn(u) + mzl (an"-rl cosm o+ bn sinm ¢>)Pn ¢1)) ]
(4-35)

where

§ Gy e I,(.®) 240 (4-36)

which results from direct integration of equation (4-36) with

Iv(z)@) given by (4-35).

For the diffuse field, the boundary condition consistent with



approximation (4-35), according to Wilson (1968) is

5(_1;0) -

1
= ) (4-37)
¥ V3

I, denotes any point on the boundary surface and n is a unit out-

ward vector.

From equation (4-37) and (C-19) one obtains

) = -3 Ky Jv(Eo) (4-38)

This boundary condition (4-38) with the help of equations (4-25)

becomes

nVYJ () = Bk y() I () (4-39)
in the visual, and

BYI ) = AN RV E)I @) (4-40)

in the infrared.

g. Temperature
From equations (4-13), (4-17) and (4-31) it follows that the
integrated Planck function is given by

@ - 3o+ W@ +ilto] (4-61)

and the temperature at any point r will be given by

e = L B () . (4-42)

ag
o

If one defines the effective temperature of the incident



radiation field by the relation

o T = TF (4-43)

the temperature at any point of a particular cloud normalized to

T, will be given by

T(x) B (r)

i
r:;

T F
o

or from equation (4-41)

|1}

T(x) {Jp(g) +An [Js(g) + Jsa(g)] }é (4-44)

where the substitutions T(r)/T_ - T(xr) and Ji/F > J. have been made.

This notation will be adopted hereafter.

In the particular case of plane geometry and plane parallel

incident radiance TF, equation (4-44) becomes

T = (3@ + M@+ bexp (5w, 000) 11 (4-45)



5. A CLOUD MODEL. ANALYTICAL SOLUTION

The simplest model that one may propose to schematise a non-
uniform cloud and gain some insight, by analytical means, into the
general behaviour of the radiative field and in particular the depend-
ence between the optical thickness of the inhomogeneities and the
temperature fluctuations, is a semi-infinite cloud with a density

distribution of the form

V(x,z) 1+ acosix (5-1)

where a < 1 and £

2W/Ad indicates the wavelength number of the
density fluctuation. The free surface is the plane z = 0, on which
a parallel beam of net flux mF normal to itself is incident in some
— y . -1 .
specific direction cos uo,¢o. Later H, = 1/V/3 and ¢0 = w/4 will
be taken as two quadrature points to represent the nearly isotropic

mean incident galactic field, see Figure 5-1.

One defines two dimensionless variables X and Z and the parameter

r as follows

X #0%, ¥ = K@z r = Lficg = 2m/x, K

d s (5-2)

Therefore, X will be measured in units of wavelength ld’ Z is the
mean optical depth which corresponds to the optical depth in the homo-
geneous case (a = 0) or the actual optical depth measured at X = 7/2.

The parameter r is a measure of the optical thickness of the fluctuation.

From equation (5-2), it is clear that the following simple
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Ttk

To(X,2, Ho}Po)

Fig. 5-1 The cross section of an inhomogeneous
semi-infinite cloud in the plane of the

incident radiation.
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relations hold

B o i ~ B = 5 A (5-3)
3% 3% 3z b a7
and therefore
Exz - KS EXZ
(5-4)
2 _ — 2 2
E XZ - s E XZ
where
9 9
B2 = ( - _)
o C9x 0.z
Sf- = (r ..'é._ 3 _.a._. )
xZ 3X 9z

With the help of equations (5-1) to (5-5) the basic equations

(4-30), (4-34), (4-39) and (4-40) are simplified as follows.

a. Visual Field

With the density distribution (5-1) and in terms of the variables

defined above, equation (4-30) becomes

32J : 82J 8J

2 5 5 e’ e sing
1+ acosX) (r + r a sin =
: oK Y/ X ax

5

3(1 + acosx)3 [AJ -

~ le|

exp ('To(xsz ,UD,¢O))] (5"6)
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where ‘ro('}{,z, g cbo) is the optical depth of the point (X,Z) along
the direction defined by the angles cos_lpo and by Figure 5-1,

which can be evaluated easily as follows; from the definition

S(x’z’uo’(bo)

To(s’z’ Ho? (bo) - o K(s')ds' (5-7)

and from the geometry of Figure 5-1, results

[

X + s

5 3
(1 - i ) cos o,

(5-8)

& 1

z s’y

Substituting equations (5-1) and (5-8) in (5-7), integrating this
last equation and changing to the dimensionless variables defined
by (5-2) one obtains

TO(X.Z,uo,dJO) -2 +a [fl(z’“o’d’o) cosX + fz(Z,uo,dJO) sin X] (5-9)

UD

where
fl(z’ IJD.¢0) = sind Z/uoﬁ (a)
fz(Z,uo,q’Jo) = (cos$Z~- 1) /]_105 (b) (5-10)
2 3
§ = r(lfuo - 1) cos ¢0 (c)

When & =+ O, f1 +'z/uo and f2 + 0, this occurs when My + 1 (normal
incidence) and/or ¢o + m/2, and/or r - 0 (homogeneous case with con-

stant extinction Es(l+ a) ). This case will be called the asymptotic

case and will be treated in parallel with the case § # 0.
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The exponential exp (-TO) can be expanded as a power series
which for a < 1 converges very fast and the error remains small if
enough terms are taken in the expansion. In addition, if any power
of the functions sinX and cos X are expressed by harmonic sums

the exponential becomes

exp (—TO(X,Z,uo,cbo)) = exp (- uio) go(Z) + gl(Z) cos X + gZ(Z)CDSZX + ...
+ hl(Z) sin X + hZ(Z) 8in 2X + sauene } (5-11)
where
(Z) =1 + -35 (f 2 + f 2 +
Eo ) T 3 1 g # ¥ wma (a)
t2) w = 1+§-2—(f2+f2)+ ] (b)
&1 bz g T 2
2 -
_ a 2 2 1
gz(Z) = T [f]. £ f2 t oeuen i (c)
(5-12)
h (2) = -af [1+a—2(f2+f2)+ ] ()
1 2 8 1 2 et
3.2 I
hz(Z) = 7;— flf2 T (e)

From equation (5-11) it is seen that it 'is reasonable to look for

solutions of equation (5-6) of the form

oo

=]
J(X,2) = ) J5(2Z)coskX + ) H® (2)sinmX (5-13)
s = k m
k=0 m=1

Substituting equations (5-12) and (5-13) in (5-6) and equating the

coefficients for the different harmonics of X, a set of simultaneous
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differential equations of the form

n = s 7
bij Jj (z) + cij Ji(z) wi (_) (a) -
(5-14)
S .
" = v -
d'k Hk (z) =+ i Hk(Z) Ui (zZ) (b)
i = 0y 1y swe N
j = 0,1, ... N
kK = 0y % sen N

is obtained, where b.., c.., d., and e, are known coefficients
1] 1] ik ik
depending on the parameters r, Aand a and wi(z), Ui(Z) known functions

of the form

[}

wiS(Z) W (g, 8 --+) exp (Z/u) (a)
(5-15)

UiS(Z) = U(h ,hys -o2)  exp (-Z/u) (b)

This system of equation together with the corresponding set
obtained from the boundary condition (4—36) can be solved with the
help of an appropriate numerical technique. Analytically, however,
only a small number of harmonics can be retained.% Fortunately the
terms involving harmonics greater than, or equal to 2, are small

and may be neglected when a < 1 in a first approximation. -

*¥ Einstein's sum convention 1is used.

# The numerical solutions of the set of equation (5-14) and the possible
generalisation to more realistic (and complex) Y distributions will be
carried out in a further
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Reducing the solutions (5-13) to the form
3 (%.2) = 1 5@ + .]15 (Z) cos X + Hls(z) sin X (5-16)

the system of equations (5-14) is reduced to

m " 2
JOS (2)+-§—J15 (Z)-3(1+%a2)AJOS(Z)-l}r2+—ga(1+%)'{‘.lls(z)
3w (1 3.2 9w a’ _ s
= i +5a") go(z)-—é—a (1+=) g, (@) = W_(2) (a)
4
(5-17)

n 2
&%S(@+Jl @)—%ﬂ1+zle(Zy—E2+Nl+9a)q s

P |
=B @-2 a2y @ - e ()
4 4 4 4
1" (z) - [3:2+3(1+ a )A} Sy = - 2 (1+§a2)h @) =U0.52) ()
1 4 4 4 !

where dashes denote derivatives with respect to Z.

The boundary condition (4-36) gives three equations

~ a

s! _ ) - .8 i
O ENORIE: (o)J (a)
Jls"(z) = ‘/3"-‘]15 (o) + aJ;’ (o) j| (b) . (5-18)
Z=0
us' @)| = /THS (o) (c)
1 70 1

In this particular case of a semi-infinite cloud, the condition

J(X,2) exp (- ﬁi) > 0 when Z » o (5-19)
o
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Chandrasekhar (1960), provides three additional equations. There-

fore, the system of simultaneous equations (4-17) is completely

determined.

The analytical solution of equations (5-17) is rather cumber-

some and the procedure is as follows:

If terms with powers of a greater than three are neglected, from

equations (5-17 a,b) one obtains

W, = aW
gt s s ...}...._._._.Q
J.” (Z) =a_ J (Z) +a, J. (2) + (5-20)
1 o o 11 2
T o= 2
where
a = 3a(2 - i oo AL = a2t2) T
2, 2 3a2 2 2 -1
a, = {(L=a)r +3|}+—-—(1—a/2) :\}(1-31"2)
J_'" ;
From equations (5-17a) and (5-20) results
s s" s
= - - = o1
J,(@) = ayd " (2) - agd (@) -aW -aW (5-21)
where
~-1
- 2 2
a, = alE'+-g(1—a/4)—%.al_‘
- 3.2 a
a, = a, [3?\ (1+Ea)—2ao:\
2 -1
a, = 2, (1 -2a"/2
g8g = 2 (1-4%n7L

2
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Substituting equation (5-21) in (5-20), after lengthy

calculation one finds a fourth order differential equation for

JOS(Z), i.e.
505(4) () + szOS "2y + b, JOS (z) =

o, exp (-ﬂz;)) + Lpl cossZ + pzsinazj exp (- %O) (5-22)
where

2 aa
- a[r2+2(1+a—))\] + 2L (9-2) +30a, (1+3a2)
o] 2 4 2

o'
n

3 2
=L — — —
b 2aa_ a; 37\(1+2a )

_ 2. 2.2
3w 1+a“/2u "6
o m 2 {al{:l+3a2(1—a2/2):|—3a2(2-%32)[ 2+ﬂ‘(1+ fé):l
° 4 @a-a"/2

g 5 ‘:l+3a2 (1+a4/85| }

2
u('.‘l
30 az {-2+%a2 1 1 ; (s 3
p = + ( )-a 11"—" "'—”a
Ly a-a?y b w2 2 %s? [ 02 :l
4 2 2
+ al [; (1+E..)+(2--31a2)(r2+ -9~A(1+a_) y: | %
4 4 2 2
3w 32 { ) 3 1 )
p, = (1—— )—(6-—(1-&)-23 -ia
1% Su (1-a2/2) 2 8 W

a® 1,
-(—»a-l)(1+- ) r +-(1+ &A= i aJ
2 4
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The solution of the differential equation (5-22) is

o B 58 s
= + -
J0 (2) Jo hom.(z) Jo part. (z) (5-23)
Joshom (Z) being the solution of the homogeneous equation corres-

ponding to equation (5-22) and JOS

SabE (Z) a particular solution of

equation (5-22).

. ]
The homogeneous solution .}0

hom . (Z) becomes

s
Jg By (Z) = ¢ exp(ctlz) +c

1 exp(azz) + c3&xp(or,32) + c4&xp (OLQZ) (5-24)

2

where 1> Cys Cgs €, are arbitrary constants and Qs Oy, Oy O the

roots of the characteristic equations corresponding to (5-22), i.e.

a = [, ¢ ) - w)] &
ay = {3, + (b = 453t ] )
a; = U, - ®," - 4b°)ﬂ )
@, =~ [-b, = (b)" - 4bo)é] i

In order to preserve the condition (5-19), the constants ¢ and
c, must be identically zero. So, equation (5-24) is reduced to

I, hom. (z) = c, exp (GZZ) * ¢, exp (OLQZ) (5-25)
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On the other hand, using the method of undetermined coefficients a

particular solution of (5-22) is found in the form

= : - L _
J0 —_ (2) Ldo + cl1 cos 87 + d2 sin 52} exp ( “0) (5-26)
where
b 1

g omip el % 2 £
o o) u 4 u2 o

(o] [a)

1 22 48 1 2 A4S 1 -2 26 1
dl‘{plE 5 =82 = 2% 4 b 2—5)+b0]-p2(w(7-5)+b2—]}ﬂ

S T My ST M,

1 22 46 12 ' 4 .1 2 26 1
d, = {p, [(—= =-87) - + b, ( =87)+b | =p,|— (—=6) +b,— [} A
2 2 Y2 23 a| P13 ) 2

W u M, 0w By

o

and

The solution (5-25) therefore takes the form

. = i b
JO(Z) = ¢, exp (OtZZ) + ¢, exXp (0542) +I:do+ dlcoséz + dzsméz_] exp \-—ﬁ;)

(5-27)
where c, and ¢, are constants to be determined from the boundary

conditions (5-18).
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Once JO(Z) is known, Jl(Z) is obtained directly from equation

(5-21), 1i.e.

- o 8 0182 | eten itz
Jl(Z) Bzczexp ( 22) + Bacaexp ( 0‘.42) +[q0+ q,cos Z+q251n ] exp( u0)

where (5-28)

™
I

2
9 3 2 2

™
L}

4 [4 '3(1+—a)k+£aa]/aE¢ +—(1+-——))~-1a1:l

2 2¢2
g $

_ 1 32241 g MHEZUNT) L 9 8 3
qo—{.Ldo(agz_3(l+2a))\+zaa;+_gw _ (14 8,9, 323)}3.

(1- a%/2)
; - 3 4
; 3w $(l-%a )
1 2 3 2 28 8
c4={c1[(~-———f3)—3(1+~—a )?\+1aajl—d—-— } a
Iy 2 2 * %% 2110 4 ~E5 ) 2

o

3, (1-—33)}

1 2 3 .2
d —-+d[(———6)-—3(1+—- M+ 1-
{ “2 22 28 % 4 uG(l-a)

o

Finally, equation (5-17c) may be integrated straightforwardly

and one obtains

Hl(Z) = kz exp (-vz) + [ 'Q'o + ,Q,lcos SZ+ 22 sin ) Z] exp (— ]—JZ—'-;) (5-29)

where k2 is a constant to be evaluated from the boundary conditions
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and v, ¥, £, %, are given by

[¢] 1% 72
v =/r2+3(1+3—a2_)7\
3w a(l + $a” )
R —_—
o 2 1
4 UO(S(V -u—“z—)
(o]
3B all+iad) : : 25 ; | T
g, == {(v- =) [(v=-) +87]+ (v+=)/[(v+=) +8 11
4 2ubv u L L Yo
o o
W (1+3a%) oy 2 c B oy 1 )
2, = v?-—5) ,[(V+_) 267 J[v-—) + 6% ]
m u
4 Zuov “o o] o

In obtaining equation (5-29) condition (5-19) has been used.

The boundary conditions (5-18) give the necessary equations to

evaluate the constants of integration Cys €y and k2. After some
algebraic calculation one obtains

c, = —-1~(d +d,) - 8d, +v/3(d +d +la +laqj a,B, -/3(B -!-a)] -
2 - g e L 2 R il S R 4

ol 2

1

1 = o : )
ﬁ: (q0+ql) ~ 6q2+ \/3(q_0+ q=l+ ad0+ad1)J I}a- V3 (1+ la E‘!*)_I } /f‘_\l
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1 —
&y = {Lﬂ (q,+4q,) -84, +/3(q +q + ad +ad1):|[a2~/3(1 + 5a32)] -

1 )
i G 40 = 88 +/3G0, 24y +hag,  daa | oy - /58,0 0| 1

A, =I:a2*/'3—(l+%al32):1 [“484 ~V3(8, + a)] - [% - /5(1+%a84)] |j0f,282 - /?(32+a)J

i -
k2 = [§£2 - (/3 + ﬁ;ﬁ(io + Rl)J / (v + V/3).

In .the particular case when 6§ = o, instead of equation (5-22),

one finds
(4) z 72 z
JD (Z) + b2 JO (Z) +b0 JO(Z) . (po+p1T + pz—z) exp (..u_)
; 0 u o
o
where (5-30)
3w 1 1 2 15 4 3 4 ) 2
Po = > {—?:-(1+a -—-a )+(1-§a )al—a (2-32a%) x
4 (1-a7/2) W
- 2
2 9)\. a IR |
|:I:' * E‘"(l'{'T) Zal—’| ]'
3 2
7 .2 5 & 2 3
p, = S — (=5 (+fa’-fa"-a (-la)-Ga-Da+gal) [x% +

4 (1-a/2) 2y

2
%“ (l+a_) - *al} }
2 b4
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= 2
3 a
ey

_ 3w 2 2
Ba = = 5 {—%(1—%34)+a1|:1+%— (5—%a2)}—a2
4 4(1-2a"/2)  w

o

¥ (2= %«32) [rz +%’é(1 + a2/2):[l }

Following the same procedure as in the case§ # o the solution of

(5-30) becomes

z

u02

JOS(Z) = cz(o) exp(CtZZ) +c (0) exp (o 42) + [do(°)+ dgo) 112_0 + déo) ] exp(—Z/Uo)

4

(5-31)
(o)

0 . e . .
where c (0) and c, are constants of integration which will be

2
determined from the boundary conditions in the same way that c, and

2
c, were calculated; the coefficients do(oz dlco)and dz(D) —

4
given by

b b b =
(o)_ |- 2 . 6 2 1) 2
do B 1pr_)-l-2(:11(.”"17-'“_-2_) 2d2(_7+-+ 2)_ i ;T 2+bo

uO IJ0 IJD pO o o

With the help of equation (5-31) one obtains the corresponding
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solution Jl(Z) which becomes

s (o) 2
J. (Z) = B,c (0) Z
l( 2 ) exp(U- Z)+ Bc exp(aaz) + [q§0)+ ql(o)u_,q.qéo)%]exp(--ﬁz—)
o u o
)
(5-32)
where
g\9= {(d(o)‘zd(:)* 2, % 2 4 [3A(1 +3aD)- faa_]- i [(1 w g
0 o 0 ol 2 0 4(1_a2‘1,2) 2
i %34)}} 82
(o) 0 2
(O) I (0) 2 3w a
q " = {(d; 7 -4dy) ) p * [ 5 Ry
1 1 2 3N1+=2a")-jaa (1-5a")} a
2% 7Ty ¥y 0 22
(©)_ .(0), 2_ I 2
9, = 1dy g d2|_3(1+-%az);\_%aa ]+ a2 (l-%a4) }oa,.
= o 4 4(1-a"/2)
The constants CZ(D) and c4(0) are calculated from the boundary

equation (5-18); the Tesult jq
(o) _ I_‘d(o)__d(o 5
c2 { ( o 1 ))flllo+/§(d(0°)+ éaqéo)):l [0‘.434_/5( 84"'&)_4]

‘ (o)
)!u *V3(q () (O)Al -V3(1+ | ]} A
(q o )__ %4 taa %,) b B
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cz.(o) e L(qo(c})‘ ql(O)) ! o B '/3_(qo(0)+ ad(OO)):H:OLZ - 3ax %382)J -

P PR CRYTEN | EW R ORI I

ljaa - 31+5 8, [%32 - /3(8, + a) ]

Equation (5-16), with Jos (2), JlS (Z2) and Hl(Z) given by equations
(5-27), (5-28) and (5-29) respectively, is the solution of Giovanelli's
equation for the diffuse field in a semi-infinite cloud with sinusoidal

transverse density fluctuations.

b. Infrared Field

Once the visual field has been evaluated for the model studied
in this section the infrared field will be calculated solving equation
(4-34) with the density distributions given by (5-1).

Proceeding in the same manner as in the previous sub-section,

equation (4-34) can be written as follows

3 s25®  a%s® 3P
(L+acos X) (r 8X2+ 322) + r asinX 9% =

—Sn_ll(l + acos X)3 [JS(X,Z) + }exp (-—TO(X,Z,UO,¢0) ) ] (5-33)

If one assumes a solution of equation (5-33) in the same form

as equation (5-13) taking into account only the first harmonics, i.e.

P(x,2) = 3P (2) cosx + HP (2) sinXx (5=34)
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the equation (5-33) is reduced to the following system of differential

equations

"

P

+ 1la
JO zaJ

o 1
p" _ 2
Hl r H1

where

P
w P (2)

1}

P
W, " (2)

n

ulpcm

pn

-3n

2 s qp P
" 2 B p
SE My = W, (@)
= 2
u,P@)

a

—

2305 (L + 12D [Hls(z) + },hl(z)}

(a)

(b) (5-35)

(c)

-1 32 s ¢ 3 a2 s
-3n J\[(l+§a YIS @) + g () + Fa A+FI WP @) +igl(z)§‘

2
1’\P1+232 )@@ + fg (2) +3a(1+5) (IS (@) + g (@) ]

where go(z), gl(Z), hl(z) are given by equations (5-12).

From the boundary condition (4-40) the following equations are

obtained

p' ”
Jg (z2)

pl
I @

pl
H, (2)

[Jop(o) + %ale Uﬂ‘

[le(o) + a Jop(o) -

(a)

(b) (5-36)

(c)

Equation (5-36) together with condition (5-19) applied to the infrared
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field, provide the necessary conditions to determine the solutions
of equations (5-35).

The solution to the system of equations (5-35) is obtained as

follows: from equation (5-35a) one gets the expression

JOP"(z) = -a3" () + St 3,@ + ¥ P@ (5-37)

and substituting (5-37) in (5-35b) one obtains a differential

equation for le(z), i.e.

3P - 8?5 = wP@ - awP@) [ a- &b (5-38)

with R =

Integrating (5-38) one obtains

P _ L !
Jl (z) = Czexp( RZ) + Szexp(c;,zZ) + saexp(%z) +|:Qo + chosaz + lemﬁz :|

exp (- f;- ) (5-39)

where C, will be determined later and the coefficients in equation

(5-39) are given by

3n a2 9 2 3 2
§. = — {-la(l+=>) + B, (1+=a )1 c +a.\:(1 +=a’)
2 (C¢22—R2) (1-a2/2) 4 2 4 | 2 2

M| W

2
|48, a(1+%)}}
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Bnhlk

[ 2 9 2} c [ 3.2
S = {-13a@+a“/4) +B,(1+ -a”) +al(l+7a")
4 (%z Pty L BAETE 4 g8

2
+B4 %a(l +%—) :I }

-1
3n A 2 2 -
5. 2 1 a a 2
_ — a"|d +;(1+ )]—Cl 1+= (5-2a%)|}
%= ®*-1m Ha-a"/2) [" 2y %67 °[ 4 ,
3n~la B, B,
_ { + }
UTra-a42 @-1Bs’ @ 1? s’
- 2 2 2
B, = izai_a(l +ET)(d1——3—2-—2 ) + (1+%a2)q1—a(1 +%a2)(d1___"=‘.2_.§)
2 ' 8u "6 8u "6

3 2 a ’ | a 9 2
s = + L + o 210 =5
52 (14-! )q1 2(3a(l ! )d2 (1 ra ) (q2 ATES )

2 a
3. 2 ¥ 2 a 2. = 1
~BLAG R gy pa U M s ﬂ b

<L W S 3 5 &
e 7 2 B gk
R(1-a"/2) (iR-1/u )%+ R+ /)™ + 8

Q2‘=
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1 g% o 9 3 8% a2
B, - Z(R"u—)[a(“z)(dl % —ty ot Kb a)q1 a(1+f Xdy~ —5—5)
o 8u ¢ 8u 6§
O (0]
2 42
w21 4B 5 g | 408|901 +2 P4, +(1+9a ) (a, B §
2 2% 4 "

2
3_2 3.2 a a .-

Now, substituting the solution (5-39) in equation (5-37) and

integrating, the following expression for Jop(z) is obtained

P 2]

J P(z) - i exp(0,Z) + . exp(a,Z) + Y exp (-RZ)
o 2 2 2 4 2 T2
0L2 Of.4 - 2(1-a")

: Z
+ l:VO + Vzcos (¥4 +V131nGZ] exp (—--I-J*-‘) + C (5-40)

(0]

4

where C4 is a constant to be evaluated from the boundary conditions

and the coefficients are given by

- 2
2 -1 3 a i
B, = (rz—gaz )as, = 3n A-(1+2a )+ aB,y S ON,
2
P& = (rz-éaaz)aSA—Sn__lﬁ\ (1 +§-a2) +3 aB (ssa )]

2

; 2
B a 3 a
V =1 (r L - ))+---a (1+——)‘:|]-
o 0 { 2 110252 295 4

o

3. 2
5 )aQo_ 3n—1;\l'(1+§a )(d0+ %(1+2
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_ _ 28 2 a 1 2 28
“ 5k u{arqz"f[( 7 0% o ]
o} H o

2+ o

2
N 3,.2)d, _a 3
3]’] )\[(l+2 1 ‘8"“—2'(-5-2*)"' a(l“l' 4)q1 ]]_ +
(0]

28 1 2
(_2' -6){arQ1 2[‘-10 2+(H_2-6)Q1]

2 i
_3n A{(l-'- a )d + = a(l'{'{‘ )(qz——_)]})
4us

-1 3 2 a
an A(32) (4 o 7.2 * g2 Yy | B
o

2 ) 2 28
"‘]:j_i{“ Ql'%[(;l_z“a)qz __§Q1J
(0]

2 2 I i
2 Bl [(1+-_ )d,+2 a(1+2)(q2-m )] 3

Furthermore, inpegration of equation (5-35¢) results in

P " - o .
H,"(2) = Kyexp(-rZ) + Ljexp(-vz) + [LD+L260862+L151n62] exp(—]—J-?i )

o

(5-41)
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where K2 is a constant of integration, to be determined, and the

coefficients L become

3n”1x "

_ 2 a
Chlren LS o e
@ LT Yo
(o]

% 1o -8 1 21
3n 17\(1-!-%3.2){2(2’1 g5 8 20, (r — )

2

# 1.2
(x ===} + &
Ho

1
-4(e, - 21—1—3—5 B+ e, (r + =)
o] (o]
+ }
(r + L)2 + 62

]JD

L,

a 1
36 i+ 3ad) “1‘@ po-1) -t
v { (8] 8]

r Yxi2 2
(r ﬂ_—) + &

o

(0 By |k
uo

1 41.106 2 }

(r + ;LJZ + 6
Ho

2

o A .2

L, = g
2 2
3 (x =V)
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Now, substituting (5-40) and (5-41) in equations (5-36), the

C, and K, are calculated. The results are as follows

constants C2’ 4 2

02 = (M2 - aMl) / (m2 - aml)
n
c, = — (mC,-M).
4 /3 172 1.
;| -
1 ; V3
K= |_vL +— (L + L,)-0L, +— (L +L +L):l
2 ( +/3/n) M, o 2 1 " mYe "2 73
where
P P 154 P
M=—]-'-—(V +V2)——-g——4-(‘)“6’1-!-ﬁ —%+—%+v +V, +
1 uo R n az a& 2 2

. :
7(52+S4+Q0+Q2)]

1 )
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In the particular case when § = o, the integration of equations

(5-35a,b) gives

p _ (o)
Jl (Z2) = CZ exp(-RZ) + Szexp(OtzZ) + Saexp(a{*Z) +[ Qo( °)+ QI(O) ui
(o]
2
+ Q2(°) %1 exp (%) (5-42)
Uo [)
and
P (o) P (o)
P » 4
J.7(2) 2 exp(,2) + F exp(e,2) PSS . S C2(0) exp (-RZ)
o, 4 2(1—32)
(©) . o (0) Z , (o) '22] '
+|'v +V — +V = (= 2 (0)
Vs 1 ) 2 uoz exp uo) +C,
(5-43)
where
(o) 6n ! :
Qoo = ) nl A {-a(1 +%a2) (d0(0)+ H +§[1+§.a_ (1- 632) _I
®* - L) (1-2%/2) : ]
U
(o]
. 1 [2 7 2o, C0)rh . “3a 5
55 1 -2a(l+=a" )d +1+ — (1-6 -J
w?®% -2 g 4 LNE
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The constants of integration are given by
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Equation (5-34), with J

@y 0

p(Z) and Hlp(z) given by

equations (5-40), (5-39) and (5-41) respectively, is the solution of

Giovannelli's equation for the infrared field in a semi-infinite

cloud with sinuisoidal transverse density fluctuation.
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[ Temperature

From equation (4-43) the temperature distribution can be

obtained straightforwardly, i.e.

1
T(X,2) = {3 (X,2) + [T (X,2) + bexp (-7 (X, Z51,,6.) ) ] ) (5-44)

where JP(X,Z) is given by equation (5-16) and JS(X,Z) by equation
(5-34). The attenuated field is calculated simply with the help of

equation (5-9).

d. Results and Discussion

With the help of the approximate analytical solutions obtained
in the foregoing sections, an attempt to gain insight into the
physics of the radiative heating problem in non-homogeneous clouds

will be made in this section.

The basic parameters defining the semi-infinite cloud model
are: the amplitude of the density fluctuation a, the albedo for
single scattering G} the Greenhouse parameter N and the parameter r
which measures the optical thickness of the density fluctuations.
Each set of values (a, W, N, r) determines a particular cloud model,
Let us fix a = 0.1 thisvalue is a reasonable one to ensure the rapid
convergence of the power series of exponentials and the introduction
of small errors only. We shall also fix W = 0.5 which is a reasonable
mean value for interstellar dust clouds of interest in this study.
With these values we shall consider the behaviour of the radiation

field and the temperature in the inhomogeneous semi-infinite model.
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In the model under consideration, plane parallel incidence
was assumed with polar and azimuthal angles cosnlﬁo and g A
better representation for the interstellar radiation field falling
upon interstellar clouds would be isotropic incidence. An appro-
priate representation of such an incident field would be a plane
parallel field incident with angles g = 1/v3 and ¢0 = /4 which is
approximately equivalent to integrating the incident isotropic field

with one quadrature point in HO (= 1/V/3) and one in ¢0 (= m/4).

We consider first the visual field JS. Within the accuracy of
solutions (5-16), calculations between 10_35 r 5_10+4 show that
JOS(Z) exhibits only a very weak dependence on r. JOS(Z) is shown
in Figure 5-2. As expected, JOS(Z) is very similar to the solution
for the homogeneous cloud showing a rapid increase from the boundary
to maximum value at Z ¥ 0.4 followed by an exponential decay. Curves
for different values of r are indisting;ishable on the scale of

Figure 5-2.

The difference between the radiation field at maximum and
minimum density is a measure of the fluctuation of the radiation
field. This difference has been plotte& in Figure 5-3 as a function
of r for several values of Z. It is seen that except for values of
Z close to the boundary, &JS(Z) = JS(W,Z) - JS(O,Z) tends very
quickly to O when r is greater than 1.0. When r >> 1, the wavelength
of the density fluctuation is small with respect to the mean free
path of the visual photons, and fluctuations of the diffuse field
become negligible. This occurs because visual photons can cross many

inhomogeneities before being extinguished. In this case the photons
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Fig. 5-2 .The function J 52) for any value of y,

o
w=0.5 a=0.1, u =1/3, ¢

o =4
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"cannot detect" such inhomogeneities and the solution JS(X,Z) tends

to the solution of the homogeneous case.

When r << 1, the wavelength of the density fluctuations is
greater than the mean free path of the visual photons, AJS(Z) becomes
independent of r and the solution JS(X,Z) tends to the solution
corresponding to the homogeneous case with density determined by

the X value.

The function AJS(Z) has been plotted in figure 5-4 for r = 0.1,

r = 1.0 and'r = 10.0. The strong coupling of ﬂJS(Z) with Z is evident.
Except towards the boundary, ﬂJS(Z) is positive which means that a
maximum density corresponds to a minimum mean intensity, and a

minimum density corresponds to a maximum mean intensity. Towards the
surface, Z £ 0.5 (the exact value depends on r) the above correspond-
ence is reversed. This is due to the face that near the boundary, the

diffuse field builds up more slowly in regions of low density than in

regions of high density.

Figure 5-4 also shows that each curve presents a maximum near
to Z = 1.5. The exact value at which the maximum is reached depends
on the r value, which means that the fluctuation of the diffuse field
is maximised at this depth. This fact is of particular importance
because, as will be shown below, it is just at depths 1 < Z < 3% that

the visual diffuse field dominates the attenuated and infrared fields.

In Figure 5-5a, the mean infrared field Jop(z) has been plotted

for n = 50, 102, 103 and 104. Within the range of accuracy of

* Strictly speaking, the exact value of this depth depends on the
particular W value and increases for higher values of the albedo up
to the asymptotic value corresponding to conservative scattering.
This is the main effect of the albedo on the visual field.
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solution (5-34), as in the visual case, Jop(z) presents only a very
weak dependénce on r. Oné notes tﬁat for large values of the
Greenhouse parameter n(>50) JOP(Z) is quasi-constant through the
cloud. The change between the surface and optical depths of

Z 210 is 2.82% for N= 50, 1.41% for N = 102, 0.14% for n = 103

and 0.01% for n = 104. The insensitivity of Jop(z) to the parti-
cular value of n, for n 2 50, is clear. These results are expected
on physical grounds, because for such large values of N the region
of the cloud where the thermal radiation is generated tends to be
optically thin in the infrared due to the very large mean free path
of the infrared photons with respect to the visual ones. The
opposite occurs when N is small (N $ 1). 1In this case the mean free

path of the infrared photons is small and they tend to be trapped

into the cloud (Greenhouse effect)®. This explains the steep
increases of JOP(Z) when one changes 1 from 102 to 1 as shown in
Figure 5-5b. Such an effect is still more pronounced if one
compares Figures 5-5a and 5f?b with Figure 5-5c where JOP(Z) has

been plotted for n = 10-2.

As expected, JOP(Z) presents a similar behaviour to the solution

for the diffuse visual field in conservative clouds.

The fluctuation in the infrared QJP(Z) = Jp(ﬂ,z) - Jp(O,Z)
has been plotted in Figure 5-6a for n = 102. This fluctuation is
less, by more than one order of magnitude, than the fluctuation in
the visual field, see Figure 5-3, and it will have negligible effect

on temperature as will be seen later, for n >> 1. Nevertheless, it

deserves some comments of heuristic value.

* Strictly speaking, this effect occurs for large values of N too.
But for n < 1.0 it is magnified by several orders of magnitude.
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Fig. 5-5a The function Jop(Z) for several values of n but any

value of r.

E'_" 0.5, a-= 0.1, 1-10 = 1/1/3, ¢0 = m/4
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An interesting property of AJP(Z) 8 that £6r Z 2 0.5,
alvays QJP(Z) <0, i.e., JP(H,Z) < Jp(O,Z) and maxima of density
and mean intensity correspond to each other. This effect, although
it is very small for n > 1, is a manifestation of the fact that
infrared photons tend to be trapped in regions where the density of

absorbers (and emitters) is larger.

The above behaviour of &Jp(z) is better illustrated in Figure
5-6b, where ﬂJp(Z) has been plotted for Z = 3.0 and n = 50, 102 and
103. The piling up of infrared photons in denser regions increases
with decreasing n because for small values of N the mean free path
of infrared photons becomes small and hence more infrared photons
are trapped in denser regions. This fact is even more clear in
.Figure 5-6c¢ where &JP(Z) is shown as a function of n for three
different values of Z (1, 3, 5) and r = 1.0. There the values of
ﬂJS(Z) are shown too, for comparison. ﬁJS(Z) > ﬂJp(Z) for rather
modest values of n (¥5). The situation n £1 is of interest

in non -homogeneous media where gases and not grains are responsible

for the radiative transport, e.g. planetary atmospheres and clouds.

For very large values of N the effect of piling up infrared
photons in denser regions decreases as expected, due to the fact that

for large mean free-paths the trapping becomes more and more diffi-

cult.

The distribution of temperature will now be considered. This aspect

of the radiative heating problem is the main aim of this section.

From equation (5-44) it is seen that the temperature at any
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point (X,Z) depends on three terms: the infrared field JP(X,Z),

the visual diffuse field JS(X,Z) and the attenuated field

i exp (—fo(X,Z,ﬁo,¢o)) but these last two terms enter in equation
(5-44) multiplied by a factor (1 - w)N. These three terms of equation
(5-44) have been plotted in figures 5-7, for different values of n,
which give an idea of the range of mean depth Z (measured along

X = m/2) where each field becomes the most important one.

One can say that the grain temperature is practically deter-
mined by the attenuated field towards the boundary, i.e. O 2% 1,1,
at greater depths 1.1 < Z £ Zp, where 3.0 < Zy < 5(the exact value

depends on the N value), the diffuse field dominates the infrared.

Deep into the cloud, Z > Z_ the temperature is determined by the

D

‘infrared field as is expected from simple physical considerations.

Figure 5-8 shows the attenuated and visual diffuse fields times
‘An and the infrared Jp for X =7/2, Z =3 and r = 1,0, as a function
of n. At these depths the mean visual field becomes dominant for

rather high values of N (*60).

The temperature T(X,Z) at X = /2, which is a measure of the
mean temperature, has been plotted in Figure 5-9a for n values, 50.0,
102, 103 and 104. This mean temperature decreases with depth up to
values of Z at which the temperature becomes controlled completely
by the infrared field. For the rather extreme value of n = 104,
this happens at depths of the order of 10. For values of n = 10
the value of T(m/2,Z) changes by a factor 2.9 between the surface

Z = 0 and the depths Z Z 10. This value fits well with that obtained
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' functions of n. r =1.0, ®w=0.5, a=0.1, u_ =1/V3, ¢ =mu/4
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from formal homogeneous models.

Figure 5-9b shows the temperature T(X,Z) at X = 7/2 for
n = 1.0, 10 2. For this last value, as expected, the Greenhouse

effect becomes evident.

Figures 5-10 show the percentage temperature fluctuation as a
function of r at mean optical depths Z = 1.0, 2.0, 3.0, 5.0, where
the diffuse field is dominant over or comparable to the attenuated

or infrared fields, for N = 50.0, 102, 103 and 104.

As an illustration, in these figures the horizontal line
indicates the percentage of temperature required by equation (3-4)
to separate regions where the rate of HZ formation is given by

equation (3-1) with y = 0.5 from regions where y = 0.005.

It is expected that small errors are present mainly due to the
somewhat schematic representation to the incident field and to the
fact that the source term for the diffuse field exp (~TO(X,Z;HO,¢O))
in equation (5-6) has been expanded to a power series in order to
solve the system of coupled differential equations. This first
aspect is responsible for tﬁe small fluctuations appearing for r > 1.0
as can be seen if one compares Figure 5-10 with Figure 5-3. As
expected, these fluctuations are more exaggerated towards the surface

where the attenuated field gains importance.

One important conclusion to be drawn from Figures 5-10 is that
although there is a strong coupling between temperature fluctuation
and mean optical depth Z, fluctuations with r > 2,0 (the exact value

depends on 1) are unable to produce appreciable temperature fluctuations
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at any depth > 1.0. 1In particular, if one borrows from formal homo-
geneous models, Leung (1975), the mean optical depth 3 for the depth
at which the critical temperaturé for H2 formation on graphite grains
is reached, fluctuations with r < r. would be able to produce a change
in the rate of H2 formation of 99%. The value of r. is very insensi-

tive to the particular n value for the range of interest i.e., n 2> 50,

as can be seen from the following table extracted from Figures (5-10a

to 5-10d).
rc n
1.1 50.0
1.3 102
1.4 10°
1.4 10*

A reasonable average to adopt would be r, = 1.3, which would

give a thickness for the "radius" of the cell, where H, proceeds

without difficulty, of

In this study the interest in models for which n < 1.0 is
secondary; however, in Figure 5-11 a plot of the temperature fluctu-
ations has been done for n = 10—2. It follows from equation (5-44),
in this case, contrary to the case when N >> 1, that the fluctuations
in the visual fields, diffuse and attenuated, play a negligible role

in determining, directly through equation (5-44), the temperature

fluctuations which are determined in essence by the fluctuations
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originated by the infrared field Jp(X,Z).

For Z > 1 maxima of density always cofréépond with maxima of
temperature and the same is true for minima of density and tempera-
ture*. The fast decay of the fluctuation for r > 1 is very clear
and smooth because there the fluctuations due to the schematic
representation of the attenuated field have little effect on the

temperature as given by equation (5-44).

* The Greenhouse effect in a non-uniform atmosphere.
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6. INHOMOGENEOUS CLOUD MODELS. APPROXIMATED NUMERICAL SOLUTIONS

This section is dedicated to obtain more insight into the
radiative heating problem in inhomogeneous media with the help of
an approximated numerical method proposed here and which we hope to

improve in the future.

From equation (4-2) it follows that the intensity of the visual

diffuse field at any point s and in the direction cosulu and ¢, see

Figure 6-1, is given by
sm
Is(s,u,¢) = I js(s") exp (-T(s,s",u,¢)) ds" (6-1)
s
where the emission coefficient js(s") is given by
s " = n " E i " .
i = o(s" [J (s + L e (s s 0 ) ] (6-2)

o(s") being the scattering coefficient and the terms in the brackets,

the mean visual diffuse field

2me 1
I (s = f I_(s",1,4) dudd (6-3)
TI' o
o -1

and the mean attenuated field at s'". To(s”,lJo,d)O ) is the optical

distance from surface along path uo, ¢o.

Given an initial approximated form for Js(s") equations (6-1)
and (6-3) can be used to provide an iterative sequence for Is(s,ﬂ,¢)
and js(s"). Since the density fluctuations are considered small

(a = 0.1) a reasonable starting solution for js(s") is that derived
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for the homogeneous clouds. The validity of approach can be tested

by comparing thé results with tﬁose obtained in the previous sections
by analytical means: Eqﬁations (6-1) énd (6-3) cén be integrated
numerically and can therefore be used to deal with density fluctuations

beyond the scope of analytical methods.

Analogous equations to (6-1) and (6-3) can be written for the
infrared field and a similar iterative procedure adopted. However,
because it is necessary to know Js(s") at every point in the cloud
in order to perform the integrations and the integration of (6-1)
and (6-3) to obtain Js(s") is itself a lengthy procedure, the
calculation of Jp(s") requires a realtively large amount of computing

time.

It was seen in the last section that, for the problem in hand,
n >> 1, the fluctuation of the visual field &JS is much greater than
that of the infrared field ﬁJp, see Figure 5-6c. Furthermore, AJS is
amplified by a very large factor, (1 - w)N, in the expression defining
the temperature, therefore, the fluctuations in the infrared radiation
field have very small influence on those of temperature. That is, the
infrared field could be well represented by the solution for the homo-
geneous cloud. Therefore, in this numerical solution the infrared
radiation, Jp(s"), will be represented by the solution for the homo-

geneous cloud.

The solutions for homogeneous clouds can be obtained in a straight-
forward manner using the well known Eddington approximation to integrate
the radiative transfer equation (4-1). For homogeneous models, the

R.T.E. (4-1) with the help of the two emission coefficients given by



=101 =

equations (4-23) and (4-28), can be written in the form

dI : _a
S -1 +5[Js+']s] (6-4)

s
K ds
s
in the visual, and

dI '
o -1 _ _ = a _
~——13K . n [Ip Jp] + (-0 [ J o+ I | (6-5)
]

in the infrared.

In plane geometry equations (6-4) and (6-5) become simply

dI
s = ; = a -
p—2 = 1[5, 49,7] -5
and
dI -1 _ 4
u—E = o[- +3 ]+ @-w [J,+3 7] (6-7)
at P P & =
where dT = stz = Ksﬁds, i.e. for homogeneous solutions, the

optical depth commonly used in the radiative transfer literature is

adopted.
In the Eddington approximation

3 LTI i
¥ = J,+ I i = p,s (6-8)

Substituting equation (6-8) in (6-6) and (6-7) and integrating
with ﬁ and times ﬁ between -1 and +1 the following relations are

obtained
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S
dI1 — — _a
= =31 -wJ +3wyJ (6-9)
s s
dt
dJS .
PP = —Il (6_10)
dt
ar.P
1 E - a
= 3l - w) [J + J ] (6-11)
s s
dT
dJ -1
—L = -prF (6-12)
dt
or
d2JS B g
5 - (L -~w) J_ -3wJd (6-13)
s s
dt
and
d2J — a"
_BZ = =3(1 - w)n J . J j (6-14)
dt 2 ™

Equation (6-8) gives the approximated boundary condition at the
surface T =

0 for semi-infinite clouds and at T

0 and T =T for
finite clouds with optical thickness T i.e.

dJ
30 = }_ 2 &)
& W |pep (6-15)
dJ
s o 3 dt (b)
T= TO

and
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dJ
3,0 = LIS
dJ
Thr) = =A. 3
/3 dt s

where has been substituted by L

V3

associated with the Eddington approximation.

(a)

(b)

(6-16)

as a better quadrature point

For a semi-infinite homogeneous cloud with attenuated field at

depth T given by

el

iy
J = exp (- —)
s U,

(6-17)

.integration of (6-13) - (6-14) with boundary condition (6-15a) and

(6-15b) leaves

g = d1 exp (k1) + dz exp (- ﬁi-) (6-18)
and
— -1 dl 2 T
Jp = =3(1- w)n ;2- exp (-kT) +,u° (4 +d2) exp (- 11-;) +Cl
(6-19)
where
k = /31 - (a)
a, = Bup, @+ Ly ek t-nars o
/3
(6-20)
a4, =35’ /6au’ - D) ()
£ wVB 0 oy By e B Bk i i
1 = 2 w) n )d; U W, - n i td,

(d)
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For a finite cloud with optical thickness To and attentuated

field at depth T given by

(t_=-1)

J = } {exp cﬁl) + exp (- ) } (6-21)

(o] o

the result of integrating (6-13) and (6-14) with boundary condition

(6-15b) and (6-16b) becomes

T (Tg T k k
I, = bo{ exp (- -u:)+exp (- : )+ blexp (-7[-)+ bzexp ($)
(6-22)
and
o (t -1)
3, = -31-%)n 1{u°2(b0+£>exp(—~§;—> # 1 %(b_+1) exp(- )
b1 b2
+ F exp (=kT) +;2~ exp (kT) } + CZ'L‘ + C3 (6-23)
where
b, = 18/ &=l (a)
L ko (1+exp (K1) (1//3 u_-1) exp (=T_/u )) - (1/Y3u_+1) o
¢ © = 1-k/V3 k
VI 1+k//3 [1+K/V/3exp(k TO)]— /73 (1- 75 exp (kT )
T
b =0 [A//3u-D) exp (- 52 - (1+1//3u)] - Lokl b, ()
N 0 1+k/V3
¢, = 2 { (/3! 0 (byexp(-kr )=, ) + (/Fn”L 40 (bpexp(ir )-b;) } (@)

k™ T
o
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11 = t
+2-) + (/3 mr)expt.—h—‘l)_]

o} o (o]

¢, = A-wu_*@_+ b [(/n

+i§(1-E)BM§f1+k)bl-+(ﬁh'1—k)bz +c, ] (e)

(6-24)

It is easy to see that solutions (6-22) and (6-23) tend to

solutions (6-18) and (6-19) when T, @, as expected,

= i Semi-infinite Cloud

The visuai field in a semi-infinite cloud, with the same
density distribution as studied in Section 5, will be calculated.
The notation is summarised in Figure 6-1. In addition to the
dimensionless variables X and Z and the parameter r defined by
equation (5-2), the mean optical distance S along the ray s defined

by

S = K._s (6-25)
is introduced

Equation (6-1) in terms of the optical distances and the notation
of Figure (6-1) is

Sm

Is(x,z;ij,q;) =W Ltp(s"){Js(s") +~E-exp —'ro(s",uo,dJo)[} exp -T(X,Z,H,0, s")lds"

(6-26)
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where the optical distances TO and T are given by

a

u g =
T (S", U ,0)=¢(s -8) — + T { sin LX +
2 g » Ho r(l- U02)2c05¢L

r(s" - 5) (1- 12 Tcos + i S")uL L uoz) tcos ¢ ]

i
= sinx+ (¥ =8) e A-1Dlcost ] I (6-27)
and
T (X,Z,1,0,5") = (5" -8) + 2 — {sin[rs" 1 -~i2tcasp ]
r(l-u")%cos¢
- sin [es@ 4D %cos ¢ ] } (6-28)

The initial value of J(S") is the solution corresponding to

the homogeneous semi-infinite cloud (6-22).

Equation (6-26) can be integrated numerically along S" for any
couple of points X,Z and any values of the angles U and ¢. This is
done approximating the integral (6-26) to the Gauss-Legendre quad-

rature formula, i.e.
n

I = ) F (§,) (6-29)
L

where Ak are the weights, F(Ek) is the integrand corresponding to

equation (6-26) and Ek the pivots which are the zeros of the Legendre

polynomials.
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The same procedure can be used to integrate (6-3) with respect
to ﬁ and ¢, with IS(S,ﬁ,¢) given by (6+26) at appropriate values ﬂ
and ¢. Because théré is a sharp péak in Is around ﬁ % 0.0 for Z £ 1.0
an appropriate distribution of quadrature points in the ﬂ range
-1.0Su <+ 1.0 is necessary to retain a good accuracy in the

integration with U.

If one attempts to iterate formally the equations (6-1) and
(6-3), the computational demands seem severe, but if in the first
entry for J(8"), J(8") is given by the solution for a homogeneous
cloud of the local density at S" rather than that for a homogeneous
cloud of the mean density of the inhomogeneous cloud, the integration

seems to converge very quickly.

After one integration a good agreement with the analytical
solution is found. The worst discrepancy is 207 which occurs near
the surface (Z < 0.4). This discrepancy towards the boundary comes
partially from the boundary condition involved in the Eddington

approximation.

Figures 6-2a and 6-2b are plots of the analytical and numerical

solutions for the temperature fluctuation

[T(m,2z) - T(0,2) ]/ T(W/2,2Z) for n = 02, 2z % 1.0, Z =50 and

Z =3.0, Z = 5.0 respectively. From there, one can see that
although there are differences, they are tolerable and either of
these approaches can be used to gain semi-quantitative insight into
the radiative heating problem-in nén—uniform media. The numerical

one is more useful if one attempts to tackle more realistic (and



00 o 4 -
7/ = ¢CA/T =M T°0=2 ‘G'0=m ¢ 0T =U *0°z = 2z PUB O'T = 7z I0J I JO SuoIlduUNJ

se (z'z/Wi/ wmnova - (z°L)1 ] uotien3onyy wn:umumaﬁmumm:u I03J SuoTIInos [edTIsumMu pue [edTiATeUR By BZ-9 'S1J
d
Ol L 10
SEE: BT G SR T _ T _ 1 1 T 1 _ I 1
- ¥ ¥ =
n
-%-e——%—2 i
X $ H H ﬁ_. 3 0
L H !
L ' — O—.X
5 I g el m-
: 1 H * X :
B __ ojDolRWNUX 1 . ol
N 2 4 ponAipuD X 1=2 3 [z L
. | Z01L-(Z1]1
N 8 — 40l
. (O _ L ! _ R T S ! I | 4




- 110 -

‘0'G = z Pue 0°¢ = Z 103 BZ-9 °*3T3 SY qz-9 °81d

3 10

§=Z

o|DOIJBUWNU*
e |DDI}AIDUDX

€

Z

H , ;
R . -,

(ZZ/u)L
X HZ'0)L-(Z'u)L
101




=111 =

therefore more complex) models, where the analytical solution
becomes impossible. These results give a check on the numerical

method and show that it can be extended to more complex models.

Only the "simplest" model of a non-homogeneous cloud has been
worked out in the previous sections, i.e. a semi-infinite cloud with
one transverse fluctuation in density of arbitrary value of r.
However, real clouds are finite and real fluctuations, in our parti-
cular problem, are generated by turbulence which means that many
values of r occur simultaneously. But small scale fluctuations are
contained in large scale fluctuations which means that the smaller
fluctuations peak towards the maxima of the largest ones. One can
see from the ideai model studied, that large scale fluctuations
(r << 1.0) only determine the mean value of Ty In particular they
define the regions where the critical temperature for the H2 formation
is reached first. On the other hand, fluctuations at scales éhorter
than r, (= 2.0) are unable to produce the minimum value of ﬂTd/T&
required to switch on the chemical discontinuity in the H2 production.
This means that the fluctuations around Tcri capable of disconnecting
regions where H2 proceeds with high efficiency from those where it

proceeds with very low ones are in the range

1.0 r < r = 2.0 (6-30)

The above aspect is readily seen with the help of the following
idealised model:

Let us again consider the semi-infinite cloud already studied
but instead of an extinction of the form

Kg =¥ (1L + acos 2x) (6-31a)
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two fluctuations overlapped are assumed, i.e.

K, = kK (l+ acosix +a

) cosE.IX) (6-31b)

1

The radiative heating problem can be solved in a first approx-—
imation by using the approximated numerical method with the help of
the following two optical distances: the optical distance between
any two points (x,z) and (x",z") separated by a length s" -

Ka
T(x,25x",2") = ks" + ——{ sin[_f,x + gs" sin@cosd)] - sin 2x }
2sinbcosg

Ka
+ ——*Fl——-{sin[21x+£

RlsinﬁsindJ

ls"sine cosfﬂ - sinfx }

(6-32)

and the optical depth from the boundary to any point (x", 2") =

}?.(z - s"u) Ka
5 TR Ly . "o o2
TO(X :2'") u b BB s 6 { sin [R,x + s'"¢sinBcos¢
) o o'o
(z=s"u)
+ u 2 smeocosdyo] ~ 5111[ 2x + s"2sin B cos ¢ ]
%,
+ —————— {sin [Rlx + s"RlsinS cos ¢
f_sinB cosé
i | o o
Z_S"
ienort - : L o 5 2o
+ - ilsnleocosqjoj sin [Rlx + s 2_151n8 cos ¢ ] }
o

(6-33)
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The above two optical distances in terms of the dimensionless

variables X and Z and parameters r = %/k and r, = 21/}2, become

i, 2;x"'2") = g # = {sin[ X*—S"rsinecos¢]— sinX
rsinfcosd
g 1 g
+ ————~+———-{sin — xd-S“rlsinSCos¢ - sin — X} (6-34)
rlsinecosqg i .-
and
(z= s"w) a
TO(S") - + { sin[ X + rg'" sin6Bcos¢
My rsin 6 ocos ¢0
z_ S"]J
G sinsocos ¢o] =3in [.X+ rs" sin® cos® :I }
Ho
a; r Z- 8"y
+ {sin[-—— X+ Q'rl_sinscos¢ e rlsineocos¢9}
rlslneocos ¢0 r uo
i
- sin[-—n X + S"rl sin@gcosg ] } (6-35)
r
T(m,Z2) - T(0,2)
Figure 6-3 shows the fluctuation T(n/2,2) for r = 1.0
and values of Ty such that 0.1 =2 ry S 10,0 Figure 6-4 is the same

as figure 6-3 but for r = 2.0. From there, it is apparent that
fluctuations r, << 1 have little effect on the fluctuation AT/T
produced by the smallest scale (r = 1.0 and 2.0) and they affect mainly
the mean value of T as can be seen in figure 6-5 where T(w/2,Z) has

been plotted for by R 0.1 and r = 10.0, for r= 1.0 in figure 6-5a
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and r = 2.0 in figure 6-5b.

From figures 6-5 one can see that the value of T(7W/2,Z) for

= 0.1 is lower than the value of T(m/2,Z) for r, = 10.0 as

k 1

1

expected, because in the former case k fluctuates rather around

the mean value k(1 + a) and when r, = 10.0, k fluctuates around

the mean value K, i.e. in a first approximation one can assume that

when r1<< 1 the smallest fluctuations occur embedded in a cloud

with different mean density.

On the other hand, density fluctuations with r, >> 1.0 are

unable to affect appreciably the temperature fluctuations corres—
ponding at larger scales and therefore the strongest temperature
fluctuations around a determined mean value, in the case of interest,
T =T ., are expected to occur at scales given by the relation

Ccri

(6-30) .

b. Finite Cloud with Mean Optical Thickness ZO

The approximated numerical procedure can be extended to the case
of plane-parallel models with finite mean optical thickness Z, to get

a solution to the radiative heating problem for non-homogeneous clouds.

As a first value for the mean intensity of the visual radiation
field the solution of the radiative transfer equation in the Eddington
approximation in a homogeneous cloud, equation (6-22) is taken. The
remaining calculation follows the same course as the semi—infinite case,
but in addition to the optical depth T, given by equation (6-27) and

o+
which will be denoted by T, » see Figure 6-6, the optical depth from
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the boundary £, denoted by T;_ is introduced, 1i.e.

Z - (z-8") a

TO_(S") =2 + - { sin [X+~rS"sinacos¢
My rsmeocosd)D
z = (z=8"W)
+ —_—r sineocos d)o - sin |:X + rS" sinecos¢] }  (6-36)
u
(8]

The results are shown graphically in figures 6-7a,b,c,d for
'%)= 1.0, 5.0, 10.0 and 20.0, and not much more information is
obtained about the quantity of interest, i.e. the fluctuation
Er(n,z) - T(o,z)] / T(w/2,Z), than is obtained from the analytical
solution for a semi-infinite cloud. But the results reinforce the
‘conclusions of Sections 5 and 6, in the sense that they are not

affected in essence because of the finite nature of the cloud.

For ZO = 1.0, the temperature fluctuations are due mainly to
the attenuated field and the sharp decay is shifted towards slightly
higher values of r. At the centre, for instance, the strong decay

ALK
occurs for r ® 4.0, i.e. for a fluctuation of thickness — = m/4,

2
The insensibility of the fluctuations for values of r < 1.0 is
apparent too. Therefore,an inhomogeneous slab of mean thickness
ZO = 1.0 behaves as homogeneous for r < 1.0 in the sense that the

temperature at any point corresponds to the temperature of the homo-

geneous case with the local value of the density.

The much more interesting cases in this study are those in which
zo = 5.0 and 10.0. If in a first approximation, one considers typical

prestellar clouds to be inhomogeneous slabs with thickness of the above
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orders, fluctuations of dust temperature are to be expected at any
depth Z. However a strong coupling with Z is evident as can be seen
from figure 6-8a,b where the témperature fluctuation has been plotted
as a function of Z for tﬁe extréme values of r, r = 0.1 and r = 10,
and r = 1.0. In particular, it is evident that the strongest effects
of inhomogeneities (on the dust temperafure) occur towards depths of
the order of Z = 2.5, a conclusion already drawn from the approximated

analytical solution of the semi-infinite model.
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7. LOCAL DENSITY AMPLIFICATIONS DUE TO H2 FORMATION

The first difficult point that one finds when one tries
to follow the evolution of a prestellar cloud is the determin-
ation of the cloud conditions at time t = 0, i.e., from which
stage of cloud evolution one has to start. One easily sees the
necessity of going back in time so that one becomes involved with
the problem of galactic evolution and even with the cosmological
one, because the way by which prestellar clouds come into being is
the main factor that determines initial conditions. No attempt will
be made here to go into the whole evolutionary track of prestellar
coulds. Instead, as it was pointed out at the beginning of Section 3,
a cloud such as that proposed by Roberts (1969) will be considered,
and the time t = O will be the time at which the atomic cloud has
reached the verge of gravitational collapse due to the compression
produced by the spiral density wave, i.e. M x IvlJ and gas temperature

and density of the order of T = 102K and n 2 102cm_3, respectively.

Typical masses are of the order of M = 104 M.

According to Roberts, subsonic turbulence is present in the
clouds at the onset of gravitational contraction. Therefore turbul-
ence provides the mechanism generator of fluctuations in the physical
parameters characterising the state of the cloud, in particular,
spatial fluctuations in density, see appendix B. It is probably
unrealistic to work these kind of problems assuming pure statistical

fluctuations which are swept out by the turbulent ones, Sasao (1973).

Formally to follow the evolution of the above prestellar clouds,
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one would have to establish correlations for pressure, density and
temperature of the gas and temperature of the dust, taking into
account the gravitational contraction. However, because in the
range of values of the temperature and density of the gas and dust
temperature, the H2 formation is controlled by Td as discussed in
Section 3, this complex situation can be schemaéised, in first

approximation, as follows.

The mean density of the cloud, at least at the early stage of
the contraction, is determined by the background contraction of
the cloud as a whole. The shortest limit for this process is the

free-fall which is determined by the equation

— - P |
14de =[24cpoj{—~*[1—(ro)u]}} (7-1)
5 dt 0 o

see appendix A, where P is the mean density at any time t and B; is

the mean density at time t = 0, i.e. when the contraction starts.

Turbulence provides density fluctuations superimposed on the
mean value p, with a certain spectrum ranging from the size of the

cloud to the threshold imposed by viscosity, see appendix B.

According to the relation (6-30), density fluctuations with

optical thickness MAg K/2 < HKZ*are unable to produce appreciable
fluctuation ﬂTd/Tcri and fluctuations with kd Esan mainly determine
2

reaches the wvalue Tcri first and H, formation

the regions where T 2

d

starts there. Therefore, in a first approximation, one can consider

the H2 formation occurring discontinuously in cells of linear

% Hereafter the subindex s in E; is dropped.
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dimensions ld/2 ~ T/2K and towards regions where Tﬁ = Tcri (probably
towards the centre of the cloud and towards the peaks of fluctuations

at scales ld/Z > m/ K).

With the gas—dynamical problem crudely schematised as above,
the crucial point in the Reddish scenario for fragmentation would be,

whether or not the H, formation can produce an amplification of the

2
density greater than that produced by the contraction of the cloud

as a whole and in a time shorter than one free-fall time.

In order to clarify the above aspect we will compare in this

section the change p(t) with the change in p and T produced by H2

; ; . . K .
formation in cells of dimensions kd 7 = m/2, assuming that at t = 0,

the reaction starts simultaneously with the gravitational contraction.

In addition, because of the tendency towards pressure equili-
brium, the condition of isobaricity will be introduced in this first
approximation. This point is better understood with the help of the

following simple ideal laboratory model:

Let us consider an atomic gas of HI and traces of heavy elements
confined in a pipe by a piston. At t < O, the gas is maintained at
a certain temperature if the heating rate is equal to the cooling rate,
A =T. On the other hand, the temperature T'd of the walls of the

pipe is maintained greater than the critical temperature to H2 forma-

tion. At t =0, T! <

d Tcri and the reaction 2HI + (walls)~ H2 + (%)

starts. In a first approximation one can set Pgas = P0 (external)
and because both the number density of particles changes and a new

coolant (the HZ) appears, the gas is thermally destabilised regardless
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of the nature of I' and A.

It is not necessary to assume that the piston is at rest at
t < 0, it could be oscillating around some equilibrium position if
the nature of the equilibrium I' = A is stable for such oscillations,
in this case one would have féas = Po' Such a motion would give a
schematical representation to the initially reversible fluctuations

in P, T and P due to turbulence.

One mustlrecognise that although the isobaric condition is
not very realistic, mainly because the effect of both reduction of
the number of particles and the presence of the new coolant is to
produce a reduction in pressure with respect to the gravitational
force, resulting in an inwards motion, it permits one to gain some
insight into the effects of H2 formation, without entering into the
difficult gas—dynamical problem appearing if one removes this condition
for a contracting, reacting and turbulent dusty medium*. Additional
discussion "a posteriori"of.this awkward but simplifying hypo-

thesis of isobaricity will be covered later.

a. Basic Equations and their Solution

In this first attempt, despite the chemical reaction the state

equation is

P = Raa+xpT (7-2)
2

where P, P and T are pressure, mass density and temperature of the
gas, R the gas constant and x = nH/n is the chemical parameter
indicating the advance of the reaction, n, and n are the number

density of atomic hydrogen and total number of atoms respectively.

* where the reaction rate is controlled by the radiative field
through the dust temperature.
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In addition to equation (7-2), the chemical and energy equations

are introduced, see appendix A, ji.e.

5 I .
e 2L SLE SR L (7-3)
dt my n
and
oMo pope 288 (7-4)
dt p dt

u being the internal energy per unit mass given by

5+ x
4

ll(X, p ’T) = RT + EXNOX (?—5)

where € is the fraction of the binding energy y( = 4.477 e.v.) going

to heat the gas and NO the Avogadro number.

In order to evaluate only the effects of the H2 formation in a

cell of dimensions Ad/Z = 7/2K, the gas will be considered at t < O

with A = T = 0, which adjust the gas temperature at some value to

(:102 °% )and at t > 0, A-T= AH . Therefore, from equations
o 2

(7-4) and (7-5) one obtains the relation

s oBrrem)ZE=p 220 (7-6)
dt 4 o

RoGs+x) H
dt 2 pdt

4

Physically, equation (7-6) means that only the compressional
heating g and the net cooling (or heating) due to I-I2 molecules,

p dt

i.e. A - EPXN % are under considerationm.
H, o dt
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Equations (7-2), (7-3) and (7-6) provide the necessary
relations to find x, p and T as functions of t with initial

conditons

x(o) = 1.0, p(o) = 0, and T(o) = T0 (7-7)

Defining the dimensionless density p , temperature T and

time £ by the equations

. p(t)

p(t) = 0 (a)
0

Fey = Z(8) (b) (7-8)
T
(8]

¥ o _t (c)

Ces

where Tff is the free-fall time given by

1
Ir o *
t = |'_ (7-9)
5 3?.Gp0 ]

see appendix A, from equations (7-2), (7-3) and (7-6) one obtains

the following relations

EE{... = -f T% 51{ (a)
dt 2
G 6 {ec L 22X 50 o i@exp (- /T)
at ©14g 7+3x T
| Vo, idn®
#f e w 25-B0D . oy () (-9
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d_T = 8{ -C 1 1_x (T) exp (_u- /T)
at © %914 74+3x ©
~"/x~
F3+toy EP 3 (c)
T 7 +3x
where
1 n
d 1
0 o i Bk 57 2
y T Mg A U TS R B S
B 10.0 t
B _ff (b)
RT ©
[o o]
o, = 512/T, (c)
L e XNo (d) (7-10)
RT
(8]
B
g - o (e)
T2 5 (1+19)
B, = — (£)
n T z
0O O

and g(%) is a correction factor in the cooling function of the H2

molecule greater than 1.0 when T >150°K due to excitation of rotational

levels greater than J = 2, Hattori et al (1969).
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The system of equations (7-9) with initial comditions (7-7)
has been solved numerically like a two boundary value problem using
Merson's method and Newton iteration, Haselgrove (1961), Mayers

(1962).

b. Discussion of the Results

The solutions of the system of equations (7-9) are plotted in
figures (7-1) to (7-16), for different values of: the fraction of
the binding energy going as a heat input to the gas €, the dust-gas
number ratio nd/n, and different values of the initial temperature T0
and number density nocm_ . In some of these plots, the change in the
background mean density p(t) due to the gravitational contraction, corres-
ponding to the same initial density n is shown. This function p(t) was

calculated using either the numerical solution to equation (7-1) or

the analytical one, i.e.

p(t) = Essec6 R ) (a)
(7-11)
|
gmgp  ?
B + 4 sin2B = t[ ° ] (b)
see appendix A.
Runs were done for a mean dust cross—section <Ud> = 7.1 x 10_10

cmz, SW (1969), Greenberg (1979), and for different values of the
following parameters: fraction of the binding energy going to heat the
gas € and dust to gas ratio nd/n. The range of variation of these

parameters and the initial values of gas temperature To and gas
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particle density n is shown in table 7-1.

Table 7-1

0.00 < € < 0.04 *

n
0712 24
n
x(0) = 1.0
T = 120, 100, 80, 60 °K
-3
n = 102, 103, 5x 103, 104 cm

Generally speaking, from the numerical solutions one sees that
the capacity of the H2 formation as direct amplifier of density inhomo-
geneities depends sensitively on: the fraction of chemical heating €,
the initial mean density and temperature of the gas at the onset of

contraction.

If the H2 molecule is formed in highly excited rotational levels
and the remainder of the binding energy is radiated by the grainse= O,
i.e. no heat input to the gas occurs, the corresponding solutions of

equations (7-9) are those plotted in figures (7-1) to (7-8).

For nd!n = 10_12«':rn-3 the following results emerge: For

n = 102cm73, effective density amplification by H, formation would

* Upper limit calculated by Hunter and Watson (1978).

# The timescale for spontaneous radiative decay from these levels to
the ground one is of the order of 10 Os, which is three orders of
magnitude smaller than the timescales under consideration and there-
fore the H, cooling function adoptéd in equation (7-9) is correct in
first approximation.
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require a rather high initial gas temperature, probably To > 80%K.
For example, for TO = 1200K, figure 7-1b, the amplification produced

by H, formation would be a factor n2.0 at the time t = 0.4 g

Here, it is necessary to emphasise that the factors of density
amplification obtained in this section would underestimate the true
values® because the free-fall time is the shortest limit to the
gravitational contraction and clouds do not start to collapse free
of pressure. In addition, the density amplification by H, formation
is coupled with that produced by the contraction of the cloud as a
whole. This non-trivial and strongly non-linear coupling will be

explored in future research.

3

The situation looks much more favourable in the case B, = 10 cm
figures (7-2a) and (7-2b). For T0 > 60°K the effect of the new
coolant becomes important and an effective enhancement in density

occurs.

An interesting aspect to note is that the temperature exhibits
a maximum at a time depending on the initial values To and n_ . This
is because at the start of the HZ reaction there is not enough H2 to

cool effectively. This maximum scarcely appears at To = 120%K (for

n, = 103cm73), figure (7-2b). At this initial temperature the

enhancement of density always appears very strong,

At initial density n,. = 5.0 x 103cm_3, figures (7-3a) and 7-3b),

the effects due only to the change of number of particles are already

* Assuming that the uncomfortable hypothesis of isobaricity has some
real sense at least as first approximation.
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appreciable, as can be seen from figure (7-3a), where the cooling
effects of the H2 are ineffective because the gas temperature is

too low (600K).

It has been found that the H2 molecule is unable to cool the

gas below about 600K, the exact temperature depending on n, as is

expected from simple physical considerations.

The results for the rather high initial density value of

n. = 1(3!4{::[1_3 have been plotted in figures (7-4a) and (7-4b). The

behaviour of x, P and T are qualitatively the same as the case

B & 5.0 x 1033m_3, but the effects of H2 formation are shifted

towards earlier epochs of the contraction. In particular the atomic

hydrogen is exhausted at

< 0. "

t < 0.4 tff
n

The case — =1
n

Effective enhancement in density due to H2 formation appears at

0_11 has been plotted in figures (7-5) to (7-8)

times < 0.1 tees for the whole range of initial density and tempera-
ture of the gas given in table 7-1. This case could be of particular
interest if the clouds reach the verge of gravitational contraction
with an irregular dust distribution caused by any of the mechanisms
capable of ‘decoupling dust and gas in the interstellar medium, see

for instance Harrison (1978) and Flannery and Krook (1978).

The solutions of equations (7-10) are not altered in essence

kTo o ¥y % 2 and therefore

2

if xe <

at t = 0.

& |8
v
o
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This condition means physically that the chemical heat input to the

gas is less than the thermal energy per particle. For example, for
3

?_ )
T~ 10 % e d10x b

Unfortunately Hunter and Watson (1978) neglected the most prob-
able mechanism by which the remainder of the binding energy is
dissipated, SW (1969), in finding the limit for €. Therefore, this
limit has to be taken strictly as an upper limit. However runs were
done for € = 0.04 and they are shown in figures (7-9) to (7-12) for

nd/n = 10_12 and figures (7-13) to (7-16) for ndfn = 10 11,

In all the above cases an initial heating and expansion appear

followed by a rebound. For nd/n = 10_12 the whole process occurs in

times of the order of 0.5 tff and no effective enhancement in density

occurs for initial densities n, RS 103. For n 2/ 5% 103, the heating

~ ~

expansion and rebound occur at shorter times =~ 0.3 tee but effective

enhancement in density due to H2 formation would require temperatures

higher than 60°K.

n
For - 10
Tom
range of density under consideration providing that T0 > 60. For temp-

_11, effective density amplification occurs for the

eratures of the order of T = 60 (the exact value depends on density)
the enhancement in density tends to be quenched, this is because at
the start of the reaction there are not enough molecules to cool, and
the heat input become