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Percussion Synthesis Based on Models
of Nonlinear Shell Vibration

Stefan Bilbao

Abstract—The synthesis of sound based on physical models
of 2-D percussion instruments is problematic and has been
approached only infrequently in the literature. Beyond the com-
putational expense inherent to the simulation of 2-D systems, a
deeper difficulty is in dealing with the strong nonlinearity exhib-
ited by thin structures when struck—this nonlinearity leads to
phenomena which are not captured, even approximately, by a
linear model, and nearly all synthesis work is based on the as-
sumption that the distributed resonating component of a musical
instrument is linear. Perceptually, the effects of the vibration of a
thin structure at high amplitudes can be heard as crashes, pitch
glides, and the slow buildup of high-frequency energy character-
istic of gongs. A large family of instruments may be described,
approximately, as circular thin shells, of approximately spherical
geometry, in which case a tractable PDE description, described
here, is available. Time-domain finite-difference schemes, in
radial coordinates, are a suitable method for synthesis. Stability
conditions, numerical boundary conditions both at the edge and
center, and implementation details are discussed, and simulation
results are presented, highlighting the various perceptual effects
mentioned above.

Index Terms—Cymbals, finite-difference schemes, gongs, mu-
sical acoustics, nonlinear distributed systems, percussion, physical
modeling, sound synthesis.

I. INTRODUCTION

P HYSICAL modeling synthesis techniques have been
applied to a wide variety of instruments, including those

of the string, brass, and woodwind families, as well as the
human voice. Many techniques have evolved—perhaps the
best known are digital waveguides [1] and modal synthesis [2].
Synthesis from models of percussion instruments, however,
has seen somewhat less investigation, which is not surprising,
given that the body of musical acoustics research into such
instruments is relatively small. See [3] and [4] for an overview.
Nevertheless, various synthesis techniques have developed.
The digital waveguide mesh is often used in the case of the
linear vibration of membranes [5]–[8], and plates [9], and
modal synthesis techniques have been applied to both such sys-
tems; related to modal synthesis is a method based on transfer
function methods, and suited to linear problems, known as the
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functional transformation method [10] which has also been
applied to linear 2-D structures, including those exhibiting
a tension-modulation nonlinearity [11]. For 2-D systems,
computational complexity is relatively large—until recently,
real- or near real-time synthesis on desktop hardware has not
been possible, which is perhaps another way of explaining the
relative paucity of work on synthetic percussion.

The issue of computational complexity is, at this point, near to
being resolved, due to the great advances in computing power in
recent years, making a reappraisal of such synthesis techniques
timely. A serious difficulty, though, presents itself in the dis-
tributed nonlinear nature of some such instruments—such be-
havior is of crucial perceptual importance, leading to effects
such as pitch glides, crashes, and the slow buildup of high-fre-
quency energy as heard in, e.g., gongs, and is not adequately
captured by linear approximations, such as those which lead to
typical waveguide and modal formulations. (Nonlinear models
of tension modulation type can capture the first of these effects
but not the others.) A direct time/space domain formulation,
based on a suitable nonlinear plate or shell model is a good
starting point. In the case of irregular geometries, finite-element
methods are ideal, but given that various percussion instruments,
such as cymbals and gongs, are well-described in a simple ra-
dial coordinate system, finite-difference methods are a relatively
simple alternative. Finite-difference schemes for the linear vi-
bration and reverberation of rectangular plates have been ex-
plored by various authors [12]–[14], and the nonlinear case has
been described in [15].

The present paper is concerned with the extension of such
techniques to the case of curved shells, and thus to modeling
of instruments such as cymbals and gongs, though there is an
emphasis on general techniques here rather than of modeling
of a specific instrument. A model of nonlinear shell vibration
is presented in Section II, followed by a suitable finite-differ-
ence scheme in Section III, accompanied by a discussion of
stability conditions, numerical boundary and center conditions,
input and output, and implementation details. Simulation results
are presented in Section IV. Sound examples are available on the
author’s website at http://ccrma.stanford.edu/~bilbao/soundex/
shell/

Some of the material here will soon appear in a very abbrevi-
ated form in [16]; the present paper contains a much expanded
treatment of implementation details, computational complexity,
numerical dispersion, and bandlimiting, and simulation results.

II. SPHERICAL SHELL VIBRATION

Percussion instruments, such as cymbals and gongs are thin,
curved metallic structures. As such, they may be described as
shells. In the case of a general such structure, there is a very
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Fig. 1. Spherical cap, of radius of curvature�s, thickness� , and outer radius
�.

large variety of models available—see, e.g., [17]. If the structure
is very thin, and the curvature is not extreme, and, furthermore,
the shell is approximately a spherical cap, then tractable models
suitable for sound synthesis applications are available. One such
model, used in studies of such instruments [18] is similar to the
following:

s
(1a)

s
(1b)

Here, is the transverse displacement of the shell, as a function
of radius , angle , and time , and is an auxiliary function,
sometimes referred to as the Airy stress function. is material
density, is the thickness of the shell, is Young’s modulus,
and and are loss parameters (the second of which gives
rise to frequency-dependent loss, and which is not modeled in
[18]). The parameter is defined as ,
and is also dependent on , Poisson’s ratio for the material.
is the radius of curvature of the shell. The system is assumed
defined over , , . See Fig. 1. The
subscript refers to partial time differentiation.

The operator is the Laplacian, defined, in radial coordi-
nates, for a given function , as

(2)

where subscripts and refer to partial differentiation with re-
spect to and , respectively. The operator , a double appli-
cation of the Laplacian operator, is often referred to as a bihar-
monic operator or bi-Laplacian.

The nonlinear operator is defined, in terms of two
functions and , as

(3)

The term , where and represents an
excitation due to a force assumed to act on the shell
according to a fixed spatial distribution . could
result from coupling to a model of a striking element such as
a mallet, or, in the simplest case, may be specified as a given
control signal. is normally sharply peaked.

In the limit of low curvature (i.e., as s becomes large), and
under lossless conditions, system (1) reduces to the von Kármán
system [19], [20], describing nonlinear vibration of a thin flat
plate; at low vibration amplitudes (i.e., when the terms involving
the operator become negligible), the system decouples, re-
sulting in the usual linear equation of vibration of a thin plate
[21].

A. Scaled Form

As a prelude to developing a synthesis algorithm, it is useful
to non-dimensionalize the dependent and spatial variables of the
system, through the introduction of the variables ,

, , where

(4)

leading, after removal of primes, to the system

(5a)

(5b)

where the two parameters and are defined as

The shell is now defined over the unit disc, . is
defined as .

The parameter scales roughly with pitch (though the
spectrum of sounds produced from a shell model is necessarily
strongly inharmonic), and, for musical systems, often lies
in a range between 10 and 150. summarizes the effects of
curvature, and normally takes on values between 0 (i.e., when
the shell is flat), and approximately 100. The spectral effect of
curvature will be examined in Section IV-B.

B. Decay Time

Decay time is frequency-dependent in this model, and can be
shown to be (under linear conditions, and in the limit of high
frequencies) approximately

(6)

where is the 60-dB decay time of a component of fre-
quency . The model of loss as presented here is an ad hoc
one, which captures the essential feature of increased damping
at high frequencies, and has the virtue of simplicity, but more
elaborate models are available [22]. Frequency-dependent loss
is more important in the nonlinear case than in the linear case, as
effects such as pitch glides and crashes are strongly influenced
by damping rates—see Sections IV-C and IV-D.

C. Edge and Center Conditions

In many percussion configurations, the edge of the shell at
is free to vibrate; free boundary conditions in radial coor-
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Fig. 2. (a) Radial grid, of radial grid spacing � , and angular spacing � , and
(b) stencils of the operators � (top) and � (bottom), where at a given oper-
ating point, indicated by a cross, values at the points indicated by black circles
are required.

dinates [18] are similar to those used in the case of flat circular
plates [23]. For the variable , the conditions are

(7a)

(7b)

and there is thus an explicit dependence on Poisson’s ratio,
which must be included in a simulation as an extra global pa-
rameter in addition to and as defined above. (Note also that

is defined in terms of .) In the remainder of this paper, it will
be assumed to be equal to 0.3, the value for steel, and values for
other materials are not extremely different. For the Airy stress
function, a simple boundary condition is

(8)

which may be shown to be equivalent to other forms of the free
boundary condition which appear in the literature [18] (notice
that only higher derivatives of appear in system (5), and there
is thus some flexibility in setting boundary conditions [16]).

In some instruments, such as gongs, the boundary condition
is perhaps better modeled as clamped, or simply supported [4],
due to the presence of a heavy rim—this poses no new difficul-
ties, numerically, as termination using such conditions is sim-
pler than using the above free conditions.

If the shell center is unconstrained, then no further conditions
are necessary. If, however, the shell is attached to a supporting
structure at its center, then clearly a fixed condition of some form
is required near . A simple (and perhaps not extremely
realistic) assumption is that the shell is clamped over a circle of
radius , i.e.,

at (9)

This is a good approximation in the case of, e.g., a high-hat
cymbal. Other center conditions are possible—for instance, one
might employ a pivoting condition in the case of, e.g., a ride
cymbal. See Section V for more comments on this subject.

III. TIME-DOMAIN METHODS

A. Grid Functions and Difference Operators in Radial
Coordinates

For a continuous problem defined over a circle of radius 1,
such as the scaled system (5), a grid function approximates
a continuous function , at times , for ,
and at locations and , for , and

. Here is a time step (and s is
the sample rate, typically chosen a priori as an audio rate such
as 32, 44.1, or 48 kHz) and and are grid spacings in the
radial and angular directions respectively. The grid spacings are
chosen here such that and for some
integers and . At the central grid point, at , the
grid function is assumed uniquely defined, and the value at this
location is written as . See Fig. 2(a).

Forward and backward unit shifts in the time direction, and
in the coordinate directions and may be defined as

There are some restrictions on the use of these operators due
to the choice of coordinate system, namely that the backward
radial shift operator may only be applied at grid locations

(i.e., not at the center grid point), and that the shifts in the
angular direction must be taken modulo , i.e.,

.
Basic difference operators may be defined in terms of these

shifts. For any coordinate

where , and are forward, backward, and centered
approximations to a first derivative, and where is an ap-
proximation to a second derivative. and are forward
and backward averaging operators, respectively.

An approximation to the Laplacian , as defined in (2)
may be defined, at grid points with , as

An approximation to the Laplacian at the central grid point with
(necessary in this context if the shell is unconstrained at

the center) is [24]:

The biharmonic operator may be approximated, at grid
points with , through a double application of this , i.e.,
through the use of the operator . At grid points
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with , and at the central grid point , special forms are
again necessary:

Slightly different formulations have appeared in the literature
[12].

The other important differential operator in (5) is the bilinear
operator . An approximation , applied to two grid func-
tions and , at grid points with is

(10)

A special form is again necessary if an approximation to is
required at the central grid point :

(11)

where and .
The approximations , and are second-order accurate

in and .

B. An Implicit Scheme

Given the above set of basic difference operators, a large
number of schemes for the shell system (5) is possible. Here
is a particularly simple family:

(12a)

(12b)

This family is implicit, and depends on the free parameter ,
which may be used in order to compensate for effects of numer-
ical dispersion—see Section IV-A. The input function is now
a time series, i.e., , and is a specified grid
function—see Section III-E for more on particular choices of
these functions.

As written, the scheme above, when applied at grid points
with , or requires access to values at virtual
grid points with and , which are outside
the domain of definition of the scheme; values at such points
may be set through boundary conditions—see the next section.
This scheme, as it is implicit, requires linear system solutions at
each time step—see Section III-G.

C. Numerical Boundary Conditions

There are many choices of numerical edge conditions corre-
sponding to (7); here is one choice

Such conditions allow the scheme (12) to be updated in terms
of values over the interior of the unit circle.

Conditions corresponding to (8) for are

(13)

and thus values of the grid function at need not be
stored in implementation.

If the shell is assumed clamped near the center, over a circle
of small radius, then simple boundary conditions corresponding
to (9) are

(14)

and, as above, values of the grid functions at the center and first
ring of grid points need not be stored in implementation.

D. Numerical Stability Conditions

Sufficient numerical stability conditions for scheme (12) are
difficult to obtain. Necessary conditions, obtained by examining
the behavior of the scheme under linear conditions, may be
shown to be

Free (15a)

Clamped (15b)

when , which is the case of most interest with regard
to the maximization of output bandwidth—see Section IV-A.
Either of the relations above implies, for a given choice of the
time step , a range of allowable values for the grid spacings

and . In practice, it is easiest to work with the quantities
and the radial grid aspect ratio . For a given choice
of , the above relations may be written explicitly as

which is a Courant–Friedrichs–Lewy type lower bound [25] on
the grid spacing. It is always a good idea to choose as close to
this bound as possible [16], though must normally be chosen
slightly away from this bound due to grid truncation effects (i.e.,

, for some integer ). Once has been chosen, the
number of grid points in the angular direction may be chosen
as . A good range of choices of the aspect
ratio is between 2 and 5.

Necessary conditions such as the above may be shown to
be sufficient in the fully nonlinear case, at least in the case of
plates, when a slightly different form of the discrete operator
is used—see [26]. The same is presumably true in the present
case, though an altered form of complicates implementation
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Fig. 3. Excitation functions � , of the form given in (16). (a) With parameters
� � ����, � � � ms, and � � ����� s, and (b) with parameters
� � ����, � � � ms, and � � ����� s.

somewhat. For this reason, it is perhaps best to stick with the
simple scheme as given here. As a rule of thumb, numerical in-
stability begins to manifest itself when vibration amplitudes ap-
proach the limit of validity of this particular shell model (i.e.,
when the vibration amplitudes, in dimensional form, are several
times the shell thickness).

E. Excitation Functions

Excitation of percussion instruments is generally carried out
through a striking mechanism (such as a mallet). In a complete
physical model, the mallet should be modelled separately, and
its interaction with the shell system will give rise to the term
involving in (5). Given, though, that interaction times are ex-
tremely short (on the order of between 1 and 20 ms), a useful
synthesis shortcut is to simply specify as a given function;
here is one parameterized set:

otherwise.
(16)

Here, is the maximum of the excitation, which is of du-
ration , and occurs at time . See Fig. 3. In general,
when related to a function which results from coupling
to a mallet model, increases, and decreases as strike
strength increases.

For the spatial distribution, given the grid is usually quite
coarse, it is probably sufficient to make use of an impulse-like
grid function of the form

where is a Kronecker delta function, selecting the lo-
cation , , corresponding to a spatial location

, . It is not difficult to extend this definition to
a distribution of finite width—see [16].

F. Output

From the point of view of musical acoustics, the radiation
characteristics of a percussion instrument depend on geometry
in a complex manner [4]. The rigorous generation of output,
from a time domain scheme such as (12), would require a sum
over paths from all points on the surface of the resonator to the
listening point, perhaps incorporating effects of the enclosure
(i.e., the room) itself. For synthesis, however, once the effects
of radiation losses have been incorporated into the model, it is

Fig. 4. Sparsity patterns for the matrix representations of the discrete Laplacian
� and bi-Laplacian operator� , under a free center condition.

much simpler to simply read output velocity from a single point
on the surface of the resonator, or, in the present context, from
a value computed on the grid at a given location, i.e.,

(17)

where and are grid indices, and where is a simple
backward difference. Though there are subtle spectral effects as-
sociated with the choice of output location, generally, the choice
of an output location near the shell edge leads to an emphasis on
high frequencies. For synthesis purposes, it is probably simplest
to adjust this, if desired, using rudimentary filtering applied at a
supplementary step to the output signal .

One of the interesting features of time-domain methods is that
multiple outputs may be generated essentially at no extra cost,
as the entire state is directly observable at each time step (this
is not true, e.g., of modal methods, which require a separate ex-
pansion at each output location). As such, as a crude means of
spatializing sound output, one could draw separate audio chan-
nels from distinct locations, which could even be moving, sim-
ilarly to the case of scanned synthesis [27], and thus requiring
some form of interpolation. For more on this, see [16].

G. Implementation Details

In implementation, it is useful to rewrite an implicit scheme
such as (12) in a vector-matrix update form. A given grid func-
tion may be rewritten as a vector , by stacking consecu-
tive concentric rings, as

(If the center point is clamped, then the center value of the
grid function and those at the first ring may be neglected.) The
operators and are linear, and thus may be written, in
terms of their operation on grid functions, as matrix multiplica-
tions and , once the boundary conditions described in
Section III-C have been incorporated—note that the exact forms
and sizes of these matrices will depend on the type of boundary
and center condition. Such forms are particularly sparse—see
Fig. 4, showing sparsity patterns for these matrices under free
center and boundary conditions.

Scheme (12) then takes the form

(18a)

(18b)
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where

and where indicates an identity matrix of the appropriate size.
Note that the instances of and above are not all iden-
tical, as boundary conditions are distinct depending on whether
the operator is applied to or . is the excitation distribution

rewritten similarly in vector form.
Given that values of the grid function have been computed

through time step , then two linear system solutions are re-
quired in order to perform an update: first, (18b) may be solved
for , after an evaluation of the nonlinear term .
Given , the nonlinear term in (18a) may be evaluated, and
a linear system solved in order to yield , after which the
cycle is repeated.

Computation time is determined by the shell parameters and
, the sample rate, and the scheme free parameter . Given that

the grid spacings are bounded by a stability condition such as
(15), which should be satisfied as close to equality as possible,
it is then possible to estimate the total number of grid points

as

Thus, the grid size increases with the square root of the sample
rate, is decreased as curvature increases, and increases as the
parameter approaches 1/4 (optimal values of , with respect
to numerical dispersion are close to 1/4). Typical values of ,
for shell-like systems in musical acoustics, and at a typical audio
sample rate such as 44.1 kHz, lie in the range between
and , and are thus not extremely large.

The main computational costs, then, in an implementation of
scheme (12) can be seen to be, from the update form (18), linear
system solutions involving the matrices and , which are
of size . It is important to note that because the various
difference operators are extremely sparse in matrix form (see
Fig. 4), with nonzero entries, such solutions may be per-
formed in operations (using, e.g., an iterative method).
Various specialized linear system solution techniques may be
used—for block-banded matrices, the Thomas algorithm [28]
is often employed. Given that the matrices also exhibit a good
deal of structure, then methods based on block Toeplitz inver-
sion, perhaps employing the fast Fourier transform (FFT) are
also a possibility. Notice that even though this is a nonlinear
system, only linear system solutions involving constant matrices
(i.e., and ) are required; thus if one were to use standard
iterative methods [25], there is the possibility of performing pre-
conditioning and factorization operations before run-time.

IV. SIMULATION RESULTS

The results of using scheme (12) are as expected (see Fig. 5),
showing snapshots of the time evolution of the displacement of
shell when subject to a localized initial distribution. In audio

Fig. 5. Snapshots of the time evolution of the state of a spherical shell, ac-
cording to scheme (12), at times as indicated. The shell has parameters � � �

and � � ��, is under a center clamped boundary condition, and is initialized
with a localized displacement. The sample rate is 40 kHz.

TABLE I
MODAL FREQUENCIES, IN Hz, FOR A CIRCULAR PLATE, WITH � � ��

AND � � ���, UNDER FREE EDGE AND CENTER CONDITIONS. EXACT

VALUES, VALUES COMPUTED BY SCHEME (12), RUNNING AT 44.1 kHz, WITH

� � �, AND VALUES COMPUTED WITH � � �����	 ARE GIVEN, WITH

ZERO-FREQUENCY (RIGID BODY) AND DEGENERATE MODES IGNORED

applications, however, most interesting features are best exhib-
ited using spectral plots and spectrograms. In the following sec-
tion, all spectra are obtained through the DFT of the output
signal , written as , and shown as magnitude plots in
dB. Spectrograms are obtained by using the short-time Fourier
transform, using a window size of 1024 points, and an overlap of
128 points, and using Hanning windows. They are also plotted
in dB.

A. Numerical Dispersion, Bandwidth, and Tuning

Schemes in radial coordinates are naturally much more dis-
persive than schemes in Cartesian coordinates, due to variations
in the spacings between points on the grid—there are two side-
effects of numerical dispersion which are of great importance in
sound synthesis applications: modal detuning, and bandwidth
limitation. The free scheme parameter allows a convenient
means of reducing both such effects. (It is important to note that
regardless of the value of , scheme (12) is consistent with the
underlying shell system—so in the limit of a high sample rate,
and when the scheme is stable, computed values will tend to-
wards those of the model system, for any .)

Consider first a comparison between computed modal fre-
quencies for scheme (12), with , and for a nonzero value
of , as shown in Table I, for a flat circular plate with .
For , deviations on the order of approximately a semi-
tone are apparent beyond the fifth partial. For , the
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Fig. 6. Output spectra �� ����, in dB, for scheme (12), for a shell with� � ���,
� � �, and under free center conditions, under low-amplitude vibration (i.e.,
linear) conditions. At left, the tuning parameter � � �, and at right, � � ����	.
The sample rate is 32 kHz. Note the significantly wider bandwidth in the case of
the parameterized scheme, where � has been adjusted to maximize bandwidth,
and minimize numerical dispersion.

computed frequencies suffer much less of a degradation in accu-
racy. In general, such detuning will decrease as the sample rate
is raised. As mentioned previously, the best results are obtained
when a stability condition such as (15) are satisfied as close to
equality as possible.

Related to this detuning is the much more severe problem of
global reduction in bandwidth for a poorly designed scheme, as
shown in the case of the scheme with , in Fig. 6(a)—this
is a common occurrence in schemes defined over nonuniform
grids (such as in the present case of radial coordinates) [16]. As
such, the results are not satisfactory, perceptually, and further-
more, in the nonlinear case, effects which rely on large audio
bandwidth, such as crashes, will be strongly curtailed. The
benefits of parameterized schemes, in mainstream applications,
are often viewed in terms of computational efficiency—a larger
time step may be chosen for a given grid spacing. In audio
applications, however, the time step is fixed, and the benefit
is rather in terms of greater allowed bandwidth (and much
reduced numerical dispersion as discussed above), as shown in
Fig. 6(b).

In general, in scheme (12), a good choice of the tuning pa-
rameter is at a value slightly less than 1/4, or at the edge of
the region for which the scheme is conditionally stable in the
linear case. See, e.g., [12]. As is always the case in time do-
main methods for time-dependent problems, the greatest output
bandwidth is obtained when the grid spacings are chosen to sat-
isfy a CFL-type stability condition (in this case, (15)) as close
to equality as possible. On the other hand, for near 1/4, the op-
timal grid spacings and , from the stability conditions (15),
are smaller, and there is thus an increase in computational cost.
This increase in cost may be interpreted in terms of the number
of degrees of freedom required to adequately represent the so-
lution to (5) at a given sample rate, which is too small when an
explicit scheme is employed [16].

B. Shell Curvature and Mode Locations

Remaining with the assumption of linear behavior, it is useful
to examine the effect of curvature on the resulting output spec-
trum. The modal frequencies depend strongly on this curva-
ture—in general, the frequencies of asymmetric modes without
nodal circles vary only slightly with curvature, whereas the fre-
quencies of all other modes exhibit a sharp increase [18] (see
Fig. 7), which illustrates this shifting with increased values of

Fig. 7. Output magnitude spectra, �� ����, in dB, for the shell model (5) under
free center conditions, using scheme (12), running at 44.1 kHz, for � � 
�, and
for increasing values of the curvature parameter � � � (top), � � �� (middle),
and � � �� (bottom). Modal frequencies corresponding to asymmetric modes
without nodal circles are indicated by dotted lines. Such modes are little affected
by a change in curvature, unlike the remaining modes, which experience a strong
upward shift in frequency with increased curvature.

the curvature parameter , for a fixed value of , the stiffness pa-
rameter. Perceptually, increased curvature leads to an increased
density of modes in the mid range of the audio spectrum, and a
resulting dissonance, characteristic of cymbal-like sounds.

C. Pitch Glides

Perhaps the simplest example of nonlinear behavior in the
shell model (5) is the pitch glide, a common feature across many
percussive instruments. The modeling of pitch glides, for syn-
thesis, has been approached in the case of strings and mem-
branes through a variety of methods [11], [29], [30]. Usually the
pitch glide is downward, from the moment of impact excitation,
reflecting stiffening behavior of the medium at higher vibration
amplitudes (though upward pitch glides are also possible [4]).
See Fig. 8.

Clearly, loss plays a much greater role, perceptually, in the
nonlinear case—not only is the global decay profile determined
by the loss parameters, but the precise trajectory of the glide
itself. Pitch glides are most easily heard when the parameter
is relatively high (i.e., for high-pitched structures). For lower
values of , the pitch glide effect is subsumed by a dominant
crash effect—see the next section.

D. Crashes

Crashes are one of the primary results of the use of a
nonlinear model, and the effects on synthetic output are dra-
matic—there is a slow build-up of high-frequency energy
in the period following a strike (often over several hundred
milliseconds, or longer), and the individual harmonics undergo
bifurcations, leading to a noise-like sound output. See Fig. 9,
which illustrates this effect, for excitations of increasing inten-
sity. Beyond the dependence of the output on the strength of
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Fig. 8. Spectrograms of sound output from scheme (12), running at 32 kHz,
illustrating pitch glide phenomena. Here, the shell has � � ���, � � �, and
loss parameters � � ���� and � � �����, corresponding roughly to a 60-dB
decay time of 3 s, and a clamped center condition. The excitation, of the form
(16), is applied at time � � �, is of duration � � � ms, and is of strength
� as given above. Generally, the pitch glide effect becomes greater under
stronger excitations.

Fig. 9. Spectrograms of sound output from scheme (12), running at 32 kHz, for
a shell with � � �� and � � �, under a clamped center condition. An excitation
function of the form given in (16) is applied at time � � �, and over a duration
of � � �� ms, at a location at � � ���. The strength � of the excitation
is as indicated above. In the final plot, the gradual increase in high frequency
energy over 200–300 ms is easily visible.

the exitation, there is an additional complex dependence on the
location of the excitation, as well as on the duration.

Because of the spontaneous generation of high-frequency en-
ergy, the model of frequency-dependent loss included in (5)
again plays an important role in the nonlinear case. The cascade
of high-frequency energy is increasingly attenuated at high fre-
quencies (see the expression for the frequency-dependent decay
time given in (6)), having a great impact on the re-
sulting amplitude envelope—see Fig. 10. A good model of fre-
quency-dependent loss is also extremely important for numer-
ical reasons—if it is not present, aliasing phenomena can be ob-
served as energy approaches the Nyquist frequency.

E. Gestures

As an example of a crude musical use of this algorithm, con-
sider a striking gesture, consisting of a series of equally-spaced
impulses, corresponding to a percussive “roll,” as illustrated
at top in Fig. 11. The application of such an excitation to a

Fig. 10. Top, variation in the time envelope of sound output � from (12),
and its spectrogram, under the conditions as given in the third panel of Fig. 9
above. The loss parameters are � � ��	� and � � ������.

Fig. 11. Top: a simple excitation gesture, made up of individual pulses of the
form given in (16), with � � �� , and � � 	 ms, spaced apart by 0.2
s. Middle: sound output � from scheme (12), running at 32 kHz, for a shell
with � � ��, and � � 	�, and under center-clamped conditions, under the
application of the excitation at top, and bottom, its spectrogram. The general
effect is of a pitched sound, with an underlying noise component.

linear model of a shell would lead, by superposition, to a repet-
itive pattern; when applied to a nonlinear model, however, ex-
tremely irregular variations in the output envelope result, and
there is a gradual increase in the noise component, as illustrated
in the middle and bottom panels of Fig. 11. This sound example,
among others, is available at the Web location noted at the end
of the Introduction.

V. CONCLUSION

The scheme (12), characterized by very few parameters, and
subjected to very simple excitations, is capable of generating a
rich variety of sounds very much characteristic of percussion
instruments; the key to this interesting behavior is the strong
nonlinearity present in the model. Time-domain methods such
as finite-difference schemes are an excellent means of cap-
turing this behavior, which has not been attempted to date using
other synthesis techniques. Computational cost is high, but not
extreme—all of the examples presented in this article were
generated in Matlab, using standard laptops and workstations,
with computation times on the order of between 1 s and 160 s
per second of audio output, depending on the choice of model
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parameters and the audio sample rate. Computation times
would be obviously much faster in a C implementation. Though
some work at the level of algorithm design is necessary in order
to obtain an algorithm which produces acceptable audio results
(namely in order to reduce effects of numerical dispersion,
which are particularly problematic for schemes defined in radial
geometries), the runtime loop consists of a pair of linear system
solutions, and matrix multiplications.

The model presented here is very basic—there are many
opportunities for improvement. The model of the supporting
system is very crude; a clamped center condition is a first
approximation, but only that—a pivoting condition could also
be desirable under some conditions, in which case effects of
gravity will intervene, leading to a slow pendulum-like motion
of a struck shell. In the case of cymbals, it may be necessary
to model interaction between the shell and a support structure
of finite dimensions (such as a ring-shaped damper), perhaps
allowing for distributed collisions. In the case of gongs, though
there is not a central support, the structure as a whole is
necessarily suspended by ropes or wires, and thus pointwise
tension is applied at the boundary, and the effects of gravity will
again become evident. Though structures used as percussion
instruments are often lightly curved and of relatively uniform
thickness, most real instruments (such as gongs with a raised
central dome, or cymbals of thickness which tapers towards
an edge) do exhibit some such variation, in which case a more
general model of shell vibration may be necessary [17]. Finally,
the model of loss as presented here is qualitatively correct (as
loss effects generally become stronger at high frequencies), and
leads to as relatively simple implementation, but more refined
modeling, perhaps along the lines of work carried out in the
case of plates [22], may be desirable. Other extensions might
involve the coupling to a mallet model [31], which is relatively
straightforward, and perhaps the addition of other connected
elements such as, in the case of cymbals, sizzles, which are
rattling elements affixed to the shell near its rim.
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