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V.

CONVENTIONS AND NOMENCLATURE

Whenever possible, trivial names of prostaglandins have been

used in the text. The systematic names of all C20 prostaglandins

referred to in this Thesis can be deduced from the examples given

below; the nomenclature for other prostaglandins is explained in

the general introduction (Chapter I).

Trivial name

pgei (prostaglandin ex)

11-deoxy-pgei

pge2

pge,

2apgf

pgd2

pgg2

pgh2

pgi 2

Systematic name

11a, 15(S)-Dihydroxy-9-Ketoprost-13
trans-enoic acid.

15(S)-Hydroxy-9-Ketoprost-13 trans-
enoic acid.

11a, l5(S)-Dihydroxy-9-Ketoprosta 5
cis, 13 trans-dienoie acid.

11a, 15(S)-Dihydroxy-9-Ketoprosta 5
cis, 13 trans, 17 cis-trienoic acid.

9a, 11a, 15(S)-Trihydroxyprosta 5 cis,
13 trans-dienoic acid.

9 a, 15(S)-dihydroxy-ll-Ketoprosta 5
cis, 13 trans-enoic acid.

15(S)-Hydroperoxy-9a, lla-peroxido-
prosta 5 cis, 13 trans enoic acid.

15(S)-Hydroxy-9 a, lla-peroxidoprosta
5 cis, 13 trans-dienoic acid.

11a, 15(S)-Dihydroxy-9-deoxy-6, 9 -

epoxy-5Z, 13-trans prostadienoic acid.

In drawings of chemical structures, stereochemistry is not implied

unless specifically indicated; a thickened or dotted line denotes a

substituent located respectively above or below the plane of the paper.

Throughout this Thesis, two different diagrammatic representations

have been used for the structure of PGH2/PGH2 analogues and TXA2.

The more common representation of PGH2 (Fig. A) is equivalent to



that shown in Fig. B. The benefit of the second representation

(Fig. B) is that thromboxane mimics such as 11,9-epoxymethano PGH2

appear to have a structure more similar to that of TXA2 itself.



vii.
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ABSTRACT OF THESIS

Thromboxane A2 (TXA2) is a potent platelet aggregating agent

and constrictor of coronary, vascular, and bronchial smooth muscle.

This Thesis is concerned with the actions on human platelets of 5 endo-

peroxide analogues, EP035, EP037, EP043, EP045 and EP092. These

analogues show competitive receptor blockade of TXA2 action on smooth

muscle: it was of particular interest to determine whether additional

modes of action contributed to their anti-aggregatory effects in

platelets.

The purification of a binding protein from sheep muscle and

the development of a protein binding assay for the measurement of

platelet cAMP levels are described. EP035 increases platelet cAMP

levels markedly; this is thought to be due to a partial agonist effect

on the PGI2 receptor of human platelets. EP092 is the only other

analogue to raise basal cAMP levels. Although this effect is very weak,

it may be sufficient to augment the action of EP092 when high con¬

centrations are used.

The development of a GC-MS assay for the measurement of platelet

TXB2 levels is described. EP043 was found to inhibit the biosynthesis

of TXB2 from arachidonic acid (AA) added exogenously to platelets.

EP092 shows a slight inhibitory effect but at ten-fold higher concentra¬

tions. The inhibition of AA metabolism by EP035 is suggested to result

from its action to increase platelet cAMP levels.

The development of a binding assay for 3H 9,11-epoxymethano

PGH2 to whole platelets is described. Total binding appears to be the

sum of binding to a non-specific saturable site, uptake of the lipo¬

philic ligand and binding to a stereospecific, saturable site. The

specific saturable component of binding can be displaced by TXA2
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CHAPTER I

General Introduction
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Platelet aggregation is perhaps the most important of the

processes which contribute to protection of the vasculature in the

event of injury. When platelets adhere to the damaged endothelium,

they are stimulated to aggregate and secrete the contents of intra¬

cellular granules in a process called the 'releasareaction'. The secreted

materials include coagulation factors, vasoconstrictors and aggregating

agents. These substances promote recruitment of additional platelets

to the primary haemostatic plug. As well as this physiological role,

platelets may play a pathological role in the formation of intravascular

aggregates responsible for various forms of arterial thrombosis.

Collagen lies beneath the endothelial cells that form the innermost

layer of the vessel wall, and contact between platelets and collagen

exposed in areas of damaged vessel may stimulate platelets to adhere

and aggregate. Certainly platelets are deposited and platelet thrombi

form where vessels are experimentally injured (1) or where the endo¬

thelial layer has been experimentally removed (2). Recent results have

suggested that the arachidonic acid (AA) metabolite prostaglandin

12(PGI2/prostacyclin [3,4,5,6]) produced by endothelial cells is

responsible for keeping platelets refractory to aggregatory stimuli.

The enzyme which converts prostaglandin endoperoxides into PGI2-

(prostacyclin synthetase) is most highly concentrated in the intimal

surface and progressively decreases in activity towards the adventitial

surface (7). It can be inhibited by 15-hydroperoxyarachidonic acid

(15-HPAA) or 13-hydroperoxylinoleic acid (13-HPLA), both of which can

abolish virtually all the anti-aggregatory activity of endothelial cells (8).

(The reason that platelets do not aggregate to undamaged endothelium

was previously unexplained, though thought to be connected to the

presence of apyrase in the vessel wall. This enzyme metabolises

adenosine-di-phosphate (ADP), a potent aggregating agent [9,10].)
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Damage to the endothelium will expose platelets to a surface with a

considerably reduced capacity for PGI2 production, allowing platelet

deposition and aggregation to occur. This thrombus formation can be

prevented if PGI2 is infused at the site of injury (11,12,13,14).

However, PGI2 is reported not to circulate in concentrations which

affect platelet function (15,16,17) suggesting that a fall in PGI2

production at the site of injury is not alone sufficient to instigate

platelet aggregation, though it may be a contributory factor.

Perhaps no single agent is responsible for the initiation of

platelet aggregation in vivo. Indeed ADP released from red blood

cells under conditions of altered flow, such as may occur at the site of

injury or when an atheromatous plaque partly obstructs a vessel, can

act as another important stimulus (18). Also, the presence of fibrin

in the thrombus indicates that thrombin is formed at the site of injury.

Thrombin is also a potent aggregating agent.

When stimulated to aggregate, platelets undergo distinct

morphological and biochemical changes. Calcium ions are intimately

involved in the regulation of these changes. The evidence for this is

partly circumstantial, based on comparisons with other cells, and

partly experimental, where the effects of calcium ionophores, chelating

agents and antagonists have been studied. Aggregation of human

platelets in vitro can occur in two phases: primary and secondary

aggregation (19). Primary aggregation is due to the direct interaction

of the aggregating agent with a receptor, thought to be on the platelet

surface (20,21). Secondary aggregation is associated with both the

secretion of dense granule constituents and the activation of a pathway

for conversion of AA to prostaglandins (PGs). The precise way in

which platelets respond depends on the nature of the agent, on its

concentration and on the experimental conditions.
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It is probable that the first step in the activation of platelets by

most agents involves the interaction with a specific receptor on the

platelet surface. Surface receptors for ADP (22), thrombin (23,24,25),

adrenaline (26) and 5-hydroxytryptamine (5HT) (27) have been identified.

Although adrenaline and 5-HT are actively taken up into platelets, this

does not appear to be associated with aggregation (28,29). The first

manifestation of platelet aggregation is a shape change and an increase

in the adhesive properties of the platelet membrane. So far it has not

been possible to associate any of the surface receptors with an activity

that might indicate how platelets do this, but it is probable that a

contractile process is involved (30). Although platelet shape change does

not require the presence of external Ca2+ ions, since it occurs in the

presence of high external concentrations of a chelating agent EDTA (31),

intracellular calcium may be involved. Indeed, shape change induced

by ADP causes an increase in the internal free Ca2+ concentration,

measured spectrophotometrically using the Ca2+-indicator Murexide,

although no l*5Ca2+ is taken up from outside (32). By employing low

concentrations of chlortetracycline as a fluorescent probe for membrane-

bound calcium, a redistribution of Ca2+ away from membrane sites during

shape change was demonstrated (33). It is proposed that the local

increase in calcium ions restricted to the submembranous region initiates

the breakdown of the circumferential ring of microtubules (34) and

cause local activation of the contractile system giving rise to the

pseudopods and spikes observed in the course of shape change. For

this reason it is assumed that the membrane release of Ca2+ ions is

causal rather than a result of shape change.

Platelet shape change can be followed by primary aggregation,

if the platelets are not stimulated sufficiently to release their granule
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constituents. This may require a lower cytosol calcium concentration

than the induction of the release reaction and may involve a different

pool of bound calcium ions (35,36,37). Primary aggregation is followed

by disaggregation, and eventually the platelets regain their discoid

form'(38). Platelets also become refractory to a particular stimulant

(39) suggesting that they have a compensatory mechanism to neutralise

the effects of stimulatory agents. This is consistent with the involve¬

ment of contractile process.

When further stimulated, platelets release stored substances which

act to facilitate aggregation, promote clot formation and to constrict

blood vessels. Platelet dense granules containing ADP, ATP, 5-HT,

anti-plasmin, calcium and inorganic phosphate are released during this

process. Platelet lysosomes containing acid hydrolases and platelet

a granules containing cell growth factor, fibrinogen, 3 thromboglobulin

and platelet factor 4 (anti-heparin factor) are also released, but to a

limited degree (21,40,41). Although these are all secretory mechanisms,

these processes can be distinguished by differences in time course and

metabolic requirement for ATP as well as differential release by certain

aggregating agents (21).

The release reaction is calcium-dependent (42) but, since the

dependency on external calcium is variable, it is thought that internal

stores must be available for mobilisation. A vesicular fraction of

platelet homogenates which actively accumulates Ca2+ has been described

(43,44) and is the most likely source of calcium released at this stage.

It is thought to be analogous to the sarcoplasmic reticulum of muscle and

is called the dense tubular system (45,46). However, other sources

such as mitochondria (47) and a granules (48) have been postulated.
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FIGURE 1.1: A schematic representation of platelet myosin.



6.

The mobilisation of intracellular calcium between cell compartments

is thought to be important because calcium ionophores, which facilitate

the movement of calcium across membranes, can induce the release

reaction (42,49,50,51,52,53) and secretion can be blocked by calcium

antagonists (36). The movement of calcium into the cytoplasm may

exert an effect on the microtubules, which normally lie between the

circumferential edge of platelets, but which during the release reaction

move towards the centre of the cell in a contractile wave (54) involving

Ca2+-activated platelet actomyosin (55,56,57,58).

Platelet myosin (Fig. 1.1) has a molecular weight of 460,000 and

is composed of six polypeptide chains (59). Each of the two heads

contains a binding site for actin as well as enzymatic sites for the

hydrolysis of ATP. Platelet myosin light chain kinase is an enzyme of

83,000 molecular weight and catalyses the transfer of the y-phosphate

of ATP to the 20,000 dalton light chain of the myosin molecule (60).

This phosphorylation of platelet myosin increases its actin-activated

myosin ATPase activity. Dephosphorylation by platelet myosin

phosphatase (61) decreases this activity (62).

A selective increase in the 32P-labelling of polypeptides of molecular

weight 48,000-40,000 and 25,000-19,000 reaches a maximum before

completion of aggregation and is followed by slow dephosphorylation

(55,56,57,58). No increase in phosphorylation is observed when

aggregation without secretion is induced. The smaller protein is thought

to be the myosin light chain and it seems that its phosphorylation is

required before secretion is initiated (58).

During the process of release, the membrane of the dense bodies

fuse with the plasma membrane or with the membrane of the surface-

connected cannalicular system (63) thereby forming an opening through
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which the contents are expelled. Calcium ions play a crucial role

in the fusion of membranes (64) which may partly explain why a rise

in the cytoplasmic Ca2+ concentration will initiate the release reaction.

The secondary wave of aggregation is associated not only with

the release reaction, but with the stimulus-induced release of AA from

endogenous phospholipids and its rapid transformation into prosta¬

glandins and thromboxane A2 (TXA2). Prostaglandins are a family of

cyclopentane fatty acids which are biosynthesised from polyunsaturated

fatty acids. These acids include dihomo-v-linolenic acid (C20: 3w6),

arachidonie acid (C20: 4ui6) and eicosapentaenoic acid (C20: 5w3) which

give rise to the mono, bis and tri-enoic prostaglandins respectively.

AA is the most common PG precursor found in membrane phospholipids

and is metabolised by two types of enzyme:

1. lipoxygenase which catalyses the formation of hydroxy acids and

leukotrienes (65,66,67);

2. prostaglandin endoperoxide synthetase (cyclo-oxygenase) which

catalyses the formation of PGG2. This enzyme is then irreversibly

deactivated, either by radicals formed during the reduction of

PGG2 to PGH2 (68,69,70) or by a hydroperoxy product of the

lipoxygenase pathway (71).

The major metabolites of PGH2 are prostaglandins D2, E2, F2ct

and I2 as well as a non-prostanoid derivative TXA2 (Fig. 1.2).

TXA2 has a strained acetal structure and is very acid labile: under

physiological conditions it has a half-life of about 30 seconds. It is

a potent inducer of platelet aggregation, platelet release reaction and

smooth muscle contraction (72,73) and is the predominant metabolite of

AA in platelets (65,72,74).



9.

The discovery that non-steroidal anti-inflammatory drugs (NSAIDS),

such as aspirin or indomethacin, inhibit cyclo-oxygenase (75,76,77)

has led to the use of these drugs to elucidate the role of PG endo-

peroxides and TXA2 in platelet aggregation. Indomethacin was found

to inhibit the release reaction induced by collagen, ADP, thrombin and

adrenaline, but not PGH2 (78,79,80). This suggested that induction of

the release reaction relied on the release of AA from membrane phospho¬

lipids and its conversion to TXA2. It was further suggested that TXA2

did not itself aggregate platelets but, by inducing the release reaction,

the ADP released would mediate the second wave of aggregation (81,82,

83,84).

The major evidence for an involvement of secreted ADP is the

enzyme-catalysed removal of ADP or antagonism of ADP by frusemide

and both these experimental procedures have been criticised (85,86).

Furthermore it has been demonstrated that low concentrations of the

thromboxane mimic 11,9-epoxymethano PGH2, the natural endoperoxides

and TXA2 can induce aggregation without secretion (87) suggesting

a direct effect. Indeed, this primary aggregation is not affected by the

ADP antagonist 2-n-amylthiro-5AMP, although the second wave is

inhibited (88). AA can also induce aggregation in washed platelets

that have been previously degranulated by repeated thrombin treatment

(83,89) and in platelets with storage pool deficiency (90). It seems

probable that PGH2/TXA2 can aggregate platelets by direct activation,

and only in high concentrations can part of the effect be attributed to

ADP release.

The original suggestion that TXA2 mediated the second wave of

aggregation, regardless of the particular stimulant used, has proved to

be an oversimplification. Two different ways of inducing secretion
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have been demonstrated (21,91,92,93,94). One is dependent on

aggregation and is sensitive to indomethacin. The other is independent

of aggregation, insensitive to indomethacin and shows simultaneous

aggregation and secretion. ADP and adrenaline are thought to be

capable only of inducing aggregation-dependent secretion whereas

thrombin and the calcium ionophore A23187 are capable of inducing

dense granule secretion, independently of aggregation. Since thrombin

and A23187 can aggregate platelets which have been degranulated and

aspirinised, a third pathway distinct from ADP release and TXA2

formation has been postulated. Recently it has been suggested that

l-0-alkyl-2-acetyl-glyceryl-3-phosphorylcholine (platelet activating

factor, PAF) may mediate this third pathway for platelet aggregation

(95,96,97). Platelet aggregation induced by PAF does not require ADP

secretion or thromboxane biosynthesis (98). Indeed, radioactive

acetate is incorporated into PAF when platelets are stimulated by A23187

(99) and platelets desensitised to PAF lose their ability to respond to

thrombin (100). Although TXA2 is not essential for platelet aggregation

its importance particularly in pathological conditions should not be

underestimated.

Since prostaglandins are capable of producing both aggregation

and secretion, their role must somehow be related to that of calcium.

The enzyme phospholipase A2 (PLA2) occupies a strategic position in

the pathway for generation of PG endoperoxides and thromboxanes

since there is little free AA present intracellularly and neither PG

endoperoxides nor their by products are stored in cells (101). Ca2 +
ions are an absolute requirement for PLA2, the enzyme being completely

inactive in the absence of calcium (102,103). This effect of calcium

is mediated through calmodulin, a ubiquitous Ca2+-binding protein (104).
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The release of intracellular Ca2+ by platelet-stimulating agents will

result in activation of PLA2 with the resultant formation of PG endo-

peroxides and TXA2 (105). This suggests that there is a prosta¬

glandin component associated with aggregation, even if the aggregating

agent itself does not specifically stimulate PLA2.

The mechanism by which PG endoperoxides and TXA2 trigger

platelet activation is largely unknown. The most marked action of

these intermediates is to stimulate internal platelet contraction (106)

and the aggregation induced is reported to mimic that of the established

Ca2 + ionophore A23187 (107,108). The inner membrane of the dense

tubular system is rich in phosphatidylcholine and inositol (109,110) as

well as being the site of the PG endoperoxide synthetase system (111,

112,113). It has therefore been proposed that TXA2 acts as a calcium

ionophore to transport calcium directly from the dense tubular system of

platelets to the cytoplasm, to activate the contractile proteins (108,114).

Ionophores are usually molecules with backbones of diverse structures

that contain strategically placed oxygen atoms (115). The backbone is

capable of assuming conformations which focus these oxygen atoms about

a ring into which an ion of suitable size may fit. It has been suggested

that oxygens of two or possibly more prostaglandins could form a

hydrophilic cavity around a dehydrated calcium ion, with the hydrocarbon

backbones affording some degree of protection for the charge (116,117).

TXA2 has been shown to have properties which would allow it to take

calcium from a site within the lipid bilayer to the cytoplasm: it can

transport calcium from a water phase into diethyl ether at physiological

pH (114) and shows a higher affinity for calcium ions in this respect

than for Mg++, K+ or Na+ ions (118). Alternatively, PGs may alter cell

permeability by displacing Ca++ ions from superficial membrane-binding
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sites (119) or by initiating a conformational change in a membrane

protein, thus allowing entry of calcium into the cytoplasm.

The suggestion that TXA2 acts on discrete receptor sites has

been supported by the synthesis of structurally similar analogues

(Fig. 1.3) which have afforded a range of receptor agonists, partial

agonists and antagonists (120-135). The discovery of receptor antag¬

onists has been put forward as a major objection to the proposed action

of TXA2 as an ionophore (136) although it is possible that these

antagonists may interfere at the site where TXA2 first picks up the

calcium, at the site of transport, or at the site of release (137). In

fact these two proposals, that TXA2 acts on discrete receptor sites

and that TXA2 acts as a calcium ionophore, need not be mutually

exclusive.

At present, very little is known about the TXA2 receptor of

platelets. Since platelets aggregate to exogenously added PG endo-

peroxides, TXA2 or thromboxane mimics, it suggests that receptors

for these agonists are present on the surface of the platelet membrane.

However, when AA aggregates platelets, prostaglandin endoperoxides

and TXA2 are formed intracellularly suggesting that intracellular

receptors may also be present.

This situation is further complicated by the uncertainty as to the

true biological activities of the PG endoperoxides. It appears that

TXA2 is largely responsible for AA-induced aggregation of human

platelets:

1. maximal aggregation is observed 40-60 seconds after AA is incubated

with platelets, at a time when the PG endoperoxide concentration

has decreased to low levels after an initial surge, highest at

20 seconds;
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2. this aggregation factor disappears with a half life of 30-40

seconds, similar to that reported for TXA2;

3. the concentrations of endoperoxides detected are 100 times lower

than would be required for the aggregation observed;

4. thromboxane synthetase inhibitors can abolish virtually all the

aggregatory activity of AA (138,139).

However, exogenous PGG2 added to platelets in vitro induces very

rapid aggregation and release within 2 seconds (140). Also, exogenous

PGH2 is degraded in PRP predominantly to PGD2 and PGE2 with less

than 1% conversion to TXA2 (141). The direct action of the endo¬

peroxides suggested by these experiments is further supported by

the finding that thromboxane synthetase inhibitors cannot abolish

the aggregation induced by exogenously added PGG2/H2 (142,143).

The available evidence suggests that although AA induced

aggregation is primarily dependent on TXA2 formation, the direct

action of the endoperoxides might not be evident, in experiments

where AA induced aggregation is blocked by thromboxane synthetase

inhibitors, for two reasons:

1. the endoperoxides are considerably less potent than TXA2 in

inducing aggregation, and the concentration of free endoperoxides

might not be sufficient for aggregation;

2. the direct action of the endoperoxides may be masked by their

rapid transformation into PGD2, a potent inhibitor of platelet

aggregation (144).

Indeed, the finding that PGG2 is approximately three times more potent

than PGH2 as an aggregating agent (145) may be related to the fact
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that PGG2 will be transformed to a lesser extent than PGH2 into

PGD2. It is possible that the primary wave of aggregation, observed

when PGH2 is added exogenously to platelets pretreated with a thromboxane

synthetase inhibitor, is reversed by PGD2 formed from the PGH2 added.

If the effects of PGD„ could be pharmacologically removed the direct

actions of PGG2 and PGH2 on platelet function may become clearer.

It is generally assumed that if the endoperoxides have a direct

action, they induce aggregation by acting on the TXA2 receptor.

Certainly many of the potent thromboxane mimics are endoperoxide-like

in structure (120,122,123,125,128) rather than thromboxane-like. In

addition, endoperoxide-like antagonists (131,134) are capable of

blocking the aggregatory effects of both PGH2 and AA which suggests

that endoperoxide-like antagonists act on the thromboxane receptor.

However, as yet the possibility that separate endoperoxide receptors

exist cannot be dismissed.

Although pharmacologists have classically identified receptors in

terms of the relative affinities of agonists, antagonists are more useful

for this purpose. Comparison of receptors in different tissues which

are activated by the same agonist, can be made by comparing affinity

constant (Kg) values for a common antagonist. By using a dose-ratio

method no assumption about the relationship between receptor occupancy

and response need be made. At the start of this thesis no antagonists

were available, or referred to in the literature, to aid such a classifica¬

tion. Also, no receptor-specific radiolabeled ligands were available

to enable binding to receptor sites to be studied directly. This thesis

is therefore concerned with the actions of certain novel endoperoxide

analogues on the platelet system. It was hoped that if these compounds

proved to be specific receptor antagonists, they might aid classification

of the thromboxane receptor of platelets.
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FIGURE 1.4: The structure of ICI 79,939.
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FIGURE 1.5: The antagonists are all made from the aldehyde precursor
and have this common structure.
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In 1975, Dr. R.L. Jones and Dr. N.H. Wilson of the Department

of Pharmacology, University of Edinburgh, found that the toxicity of

IC179.939 (Fig. 1.4), a PGF2ct analogue, appeared to be due to its

surprisingly high thromboxane-like activity (127). The 16-p-fluoro-

phenoxy analogue of PGD2 was found to aggregate platelets unlike PGD2

itself which inhibits platelet aggregation (128). It was discovered that

the 9,11-ethano analogue of PGH2 behaves as a partial agonist on

thromboxane-sensitive preparations, whereas other analogues such as

11,9- and 9,11-epoxymethano PGH2 are full agonists. This led to the

development of 9,11-ethano analogues with modified to side chains. One

of these, the 16-p-fluorophenoxy analogue of 9,11-ethano PGH2 -EP011

(128) - is a potent TXA2 mimic, which is lethal to laboratory animals.

Other analogues with N-substituted iminomethyl side chains are,

however, potent competitive antagonists. These antagonists have a

common structure (Fig. 1.5) in which the ring has now been changed

to the bicycloheptane form.

The analogues were screened for antagonist activity on thromboxane-

sensitive preparations including the rabbit aorta, dog saphenous vein,

guinea pig trachea and human platelets. Of the vast number of analogues

prepared, only the actions of five: EP035, EP037, EP043, EP045 and

EP092 were investigated specifically (Fig. 1.6). These analogues all

inhibited platelet aggregation induced by AA and 11,9-epoxymethano

PGH2. Affinity constants for these analogues on the thromboxane-

sensitive tissues mentioned above have been estimated by Dr. R.L. Jones

(Table 1.1), using 11,9-epoxymethano PGH2 as the standard agonist.
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TABLE 1.1: Estimates of the affinity constants for the five analogues
tested (all values x 10 M"1)

RA DSV GT HP

EP035 0.46 13.0 3.7 *

EP037 5.3 3.8 2.5 0.46

EP043 3.4 21.0 20.0 1.20

EP045 2.0 22.0 33.0 0.87

EP092 2.1 93.0 84.0 20.00

RA - Rabbit aorta
DSV - Dog saphenous vein
GT - Guinea pig trachea
HP Human platelets

*The affinity constant cannot be determined as
the dose-response curves in the presence and
absence of EP035 are not parallel. This
analogue is, however, the most active inhibitor.

In the following sections the actions of these analogues on the

cyclic AMP system of platelets, on the metabolism of AA by platelets

and on the binding of a tritiated thromboxane mimic to platelets is

described. These analogues have also been tested for biological

activity in vivo, in rabbits.



CHAPTER II

Stimulation of platelet cAMP levels
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INTRODUCTION

As well as being stimulated to aggregate, platelets also respond

in a negative way to inhibit and even reverse aggregation. Such

inhibitors of aggregation include PGI2, PGD2, PGEx, adenosine and

B adrenergic agonists. Substantial evidence now exists that an

increase in platelet adenosine 31,51-cyclic phosphate (cAMP) levels

plays a role in mediating this inhibition of aggregation (146,147),

although alternative mechanisms have been proposed (148,149,150).

Indeed the available evidence satisfies Sutherland's criteria for the

identification of cAMP as the second messenger of hormonal action (151).

Firstly, it has been shown that PGI2 (146,152), PGD2 (153), PGEx

(146,154,155,156), adenosine (157,158) and isoprenaline (159) can

activate adenyl cyclase both in platelet homogenates and in intact

platelets. Secondly, the increase in platelet cAMP precedes the

inhibition of aggregation (160) and both the inhibitory action on

aggregation and the associated rise in cAMP are greatly potentiated

by phosphodiesterase inhibitors (161). Thirdly, exogenous N6,2 -

O-dibutyryl cyclic AMP can inhibit platelet aggregation (155, 159,

162) and finally, inhibitors of adenyl cyclase such as 21,51-dideoxy-

adenosine (DDA) and 9-(tetrahydro-2-furyl) adenine (SQ 22536) reduce

the inhibitory effect of PGEx (163).

It has been further suggested that aggregation may result from

a fall in platelet cAMP levels (164,165) and that a balance between the

cAMP - inhibiting activity of TXA2 and the cAMP-stimulating activity

of PGI2 could control human platelet aggregation in vivo (166).

However, since considerable aggregation can occur in the presence of

high cAMP levels it seems that a fall in platelet cAMP is not required

for aggregation, although it may have a potentiating effect (167).
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Indeed the only aggregating agent found to inhibit basal adenyl

cyclase levels is ADP (168), the other aggregating agents only

reducing cAMP levels once they have been elevated by PGEi (169,

170). Unlike ADP, A23187, PGH2 and TXA2 have no direct effect

on adenyl cyclase levels of platelet homogenates (154,173). Since PGEi-

stimulated adenyl cyclase activity is inhibited by Ca2+ (171,172), it

is possible that Ca2+ that has been mobilised by aggregating agents

may be responsible for the inhibition observed. It has also been

suggested that aggregating agents can activate a platelet membrane-

bound phosphodiesterase (174) which, along with exposure of platelet

cAMP phosphodiesterase during the release reaction (163), may con¬

tribute to the fall in cAMP levels. Perhaps the most convincing

evidence against bidirectional control by cAMP is the recent finding

that inhibitors of adenyl cyclase are not aggregating agents (163,175).

This makes it unlikely that the basal level of cAMP in platelets exerts

a significant tonic inhibitory effect, which suggests that cAMP has an

undirectional role in the regulation of platelet function.

The observed inhibition of aggregation is most closely related

to the concentration of cAMP about 15 seconds before the point of

inhibition. This is consistent with the action of cAMP involving a

time-consuming phosphorylation of a protein substrate, which can be

dephosphorylated rapidly if the cAMP concentration falls (176). Myosin

light-chain kinase is a substrate for the catalytic unit of a cAMP-

dependent protein kinase (177). This phosphorylation of myosin kinase

decreases its activity and increases its requirement for calmodulin,

and thus Ca2+ (178). The resultant decrease in the relative amount of

phosphorylated myosin (179) will decrease platelet contractile activity,

since unphosphorylated myosin cannot interact with actin (180).
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This may partly explain the inhibition by cAMP of the release reaction

induced by aggregating agents (181,182,183,184). Certainly an

increase in cAMP reduces the phosphorylation of polypeptides of

molecular weight 40000 and 20000, which is associated with the

secretion of dense granules induced by thrombin (185), collagen or

A23187 (55,56,57,58,184). A reduction in this phosphorylation is also

found with inhibitors of the release reaction, such as verapamil and

tetracaine which inhibit Ca2+ movement.

cAMP also increases the phosphorylation of specific polypeptides

of 24000 and 22000 daltons. P24 is found in the fractions containing

highest specific activities of microsomal markers, glucose-6-phosphatase

and cytochrome P-450, and which possess a capacity for ATP-dependent

uptake of Ca2+ ions (186). Uptake of Ca2+ by a similar fraction can

be stimulated by cAMP in the presence of a cAMP-dependent protein

kinase (187) suggesting that phosphorylation of P24 represents part

of the mechanism for activation of a Ca2+ ion pump situated in the

membranes of the dense tubular system (43,44,188,189). It is uncertain

whether the effect of cAMP is to increase Ca2+ binding to the membranes

or to facilitate uptake of Ca2+ into the interior.

It may be possible to explain many of the effects of cAMP in terms

of this stimulation of the active transport of Ca2+ ions out of the cytosol.

Since calcium ions are essential for aggregation, agents which increase

cAMP will inhibit aggregation irrespective of the aggregating agent

used. Although a shift to the right in the dose-response curve for

the aggregating agent can be obtained with low concentrations of such

an inhibitor, with higher concentrations the dose-response curve is

flattened so that irreversible aggregation can no longer be achieved,

and with even higher concentrations the dose-response curve is virtually
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concenfrafion(jug/ml) of 11,9epoxymethano PGHJlog scale)

IBMX (isobutyl methyl xanthine) increases platelet cAMP levels

by inhibiting phosphodiesterase, the enzyme which catalyses
the breakdown of cAMP. Eacn result is the mean of three

observations.

FIGURE 2.1: Inhibition of platelet aggregation by isobutyl methylxanthine.
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abolished (Fig. 2.1). Presumably at this point the platelet calcium

stores are effectively immobilised.

In this section, the effects of analogues EP035, EP037, EP043,

EP045 and EP092 on platelet cAMP levels have been investigated.

The extraction of cAMP from platelet-rich plasma and the development

of a competitive protein-binding assay for the measurement of cAMP

is described. The effect of EP035 in increasing cAMP levels in the

platelet is compared with that of the classical prostaglandin inhibitors,

PGI2, PGD2 and PGEX. The possibility that EP035 acts as a partial

agonist on the prostacyclin receptor of platelets is discussed.

MATERIALS AND METHODS

Preparation of a binding protein for cAMP

Reagents used: all prepared in glass-distilled water unless

otherwise specified.

1. 4 mM Na EDTA adjusted to pH 7 with a few drops 1M NaOH.

2. 1M acetic acid.

3. 1M potassium phosphate buffer pH 7.2.
For 500 ml: 31.3 g dipotassium hydrogen phosphate

9.5 g potassium dihydrogen phosphate
0.4 g sodium EDTA

4. 5 mM phosphate buffer with 2 mM EDTA.
For 100 ml: 6.3 g dipotassium hydrogen phosphate

1.9 g potassium dihydrogen phosphate
7.45 g sodium EDTA

This is diluted to 10 litres with 9.9 litres of distilled water.

5. 0.3 M phosphate buffer.
For 400 ml: 6.4 g dipotassium hydrogen phosphate

3.2 g potassium dihydrogen phosphate
0.3 g sodium EDTA
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6. 0.1 M phosphate buffer.
For 500 ml: 2.7 g dipotassium hydrogen phosphate

1.3 g potassium dihydrogen phosphate
0.4 g sodium EDTA

Preparation for DEAE - cellulose chromatography

A glass column (15 x 4 cm), plugged with glass wool at the

bottom and fitted with a mariotte reservoir, was packed with an

equilibrated slurry of DEAE sephadex (dry weight 14 g) and 5 mM

phosphate buffer pH 7. The mariotte reservoir was then removed and

a Watson and Marlow pump set up to deliver buffer to the head of

the column. The pump speed was set to match a flow of 1.5 ml/min

buffer through the column. The height of the column was 12 cm,

giving a bed volume of 150 ml.

Purification of the binding protein

The method used has been adapted from others previously

described (190,191). All steps were carried out at 0-4°C.

Fresh sheep skeletal muscle (flank) was obtained on ice from

the slaughterhouse. The fat was removed and 500 g of meat was cut

into small pieces, minced and homogenised in three volumes of 4 mM

Na EDTA (pH 7), using a polytron blender. The homogenate was

centrifuged at 2300 rev/min, to bring down the particulate matter,

and the supernatant was further centrifuged at 15000 g for 30 minutes

using the MSE 6 x 100 ml rotar. This required three runs. The

precipitate was discarded and the supernatant adjusted to pH 4.8 by

addition of drops of 1 N acetic acid, stirring constantly. This was

allowed to settle before being centrifuged at 15000 g for a further

30 minutes. The precipitate was again discarded and the supernatant

adjusted to pH 6.8 with 1 M phosphate buffer pH 7.2. Solid
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ammonium sulphate, 33 g/100 ml, was added slowly, stirring con¬

stantly on ice and the solution was left for 30 minutes before being

centrifuged again at 15000 g for 30 minutes. The supernatant was

discarded and the precipitate was dissolved in 8% of the crude extract

volume of 5 mM potassium phosphate buffer pH 7. This was dialysed

against 20 times the volume of buffer for 14 hours, changing the

buffer after 1 and 13 hours. The solution was filtered, then applied

to the DEAE-cellulose column. The column was washed with two bed

volumes of 5 mM phosphate buffer and the entire fraction eluted and

collected in a beaker. The column was then washed with two bed

volumes of 0.1 mM phosphate buffer, followed by two bed volumes

of 0.3 mM phosphate buffer. 10 ml fractions were collected throughout

using the drop-counting head of an LKB Ultrorac fraction collector.

Each fraction was assayed for binding of cAMP. This was done by

substituting 100 ul of the fraction for 100 ul of the binding protein

supplied by the Amersham cAMP assay kit (192). Fig. 2.2 shows the

cAMP binding activity of each fraction. Two peaks of activity were

observed but the separation was not as good as that reported else¬

where (190). Fractions 23-35 were pooled and dialysed against five

buffer changes of 5 mM phosphate buffer. The binding protein was

dispensed into 3 ml ampules which were capped and stored at -40°C.

They were defrosted and diluted as necessary immediately before use.

A dilution curve was obtained by measuring the 3H cAMP bound

(counts per minute, cpm) by increasing dilutions of the binding

protein (Fig. 2.3). A Vio dilution of the protein bound 61.6% of

the total counts. This dilution was chosen for the standard curve

and showed suitable displacement of binding within the 0.3-10 pmol

cAMP range. The protein concentration of this dilution of the binding
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The cpm bound give a measure of the 3H cAMP bound

by the protein.

FIGURE 2.3: Dilution of the cAMP binding protein.
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protein was estimated, using a spectrophotometer, to be 0.13 mg/ml.

This estimation is crude as there will be other proteins present

which do not bind cAMP. The value of 0.021 pmol cAMP/ng protein

which was estimated as the specific activity of this fraction will

therefore be less than the true specific activity of the cAMP binding

protein. Indeed, values of 0.1 (192,193) and 0.3 (190) pmol cAMP/jig

protein have been reported for the specific activity of a similar

binding protein, isolated from bovine muscle.

Determination of the specific activity

The protein concentration of the fraction used was 0.13 mg/ml.

100 nl of this fraction bound - 4900 cpm (3H eAMP). The efficiency

of the scintillant (10.5 g PPO to 1.5 1 toluene + 900 ml 2-ethoxy

ethanol) to count tritium in the scintillation counter used is approxi¬

mately 30%.

100 al of the binding protein binds 4900 x 100 (disintegrations
30 per minute, dpm)

= 4900 x 100 x 1 |iCi
30 2.2 x 105

The specific activity of the 3H cAMP is 5 uCi/180 pmol
i.e. 1 uCi - 36 pmol cAMP.

Therefore 100 nl of the binding
protein binds 4900 x 100 x 36 pmol cAMP

30 x 2.2 x 106
= 0.27 pmol cAMP

100 jil of the binding protein is equivalent to approximately
0.013 mg protein.

Therefore 0.013 mg protein binds 0.27 pmol cAMP.

Specific activity of the protein is 0.021 pmol cAMP/ag protein.
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cAMP assay procedure

The assay is based on competition between unlabelled cAMP and

a fixed quantity of 3H labelled compound for binding to a protein

which has a high specificity and affinity for cAMP. Separation of

protein-bound cAMP from the unbound nucleotide is achieved by

adsorption of the free nucleotide onto coated charcoal, followed by

centrifugation. An aliquot of the supernatant is removed for liquid

scintillation counting; this gives an estimate of the bound 3H cAMP.

The concentration of unlabelled cAMP in the sample is then determined

from a standard curve.

The assay protocol is given in Table 2.1

TABLE 2.1: Assay protocol

-r , j. Volume (ill) of: . .Tube number binding
and description buffer standard unknown 3H cAMP protein

7/2/3 charcoal blank 150 - 50 -

4/5/6 0 pmol cAMP 50 - 50 100

7/8/9 0.3 " 50 - 50 100

70/77/72 0.6 50 - 50 100

73/74/ 75 1.25 " 50 - 50 100

76/77/76 2.5 50 - 50 100

79/20/27 5.0 " 50 - 50 100

22/23/24 10.0 " 50 - 50 100

25/26 total counts 250 - 50 -

27/28 unknowns - 50 50 100

29/etc unknowns - 50 50 100

Assay buffer is 0.05 iVI Tris pH 7.5 containing 4 mM Na EDTA

(EDTA is a phosphodiesterase inhibitor (195) and will prevent the break¬

down of cAMP.) 8-3H adenosine 31,51 -cyclic phosphate (cAMP) ammonium
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salt was obtained from Amersham Radiochemical Centre (specific

activity of 30 Ci/mmol) and diluted 2000-fold in the assay buffer so

that 50 ul is equivalent to 0.9 pmol cAMP (0.025 |iCi). Adenosine

31,51-cyclic phosphate standard was obtained as the free acid from Sigma.

The binding protein was diluted 10-fold with assay buffer containing

0.1% bovine serum albumin (Sigma) which is reported to promote cAMP

binding by protein kinase (194). Tubes 1-3 determine the cpm bound

in the absence of binding protein and the mean value is subtracted

from the cpm counted for the remaining tubes, to give the true cpm

bound to the binding protein. Tubes 4-24 are for determination of

binding over the range of the standard curve, i.e. 0-10 pmol cAMP.

Tubes 25 and 26 give a value for the total counts; two 200|il aliquots

are counted.

The tubes were whirlimixed and left in ice in the cold room for

two hours. At least 15 minutes before the end of the incubation period,

the charcoal adsorbent was prepared by mixing 520 mg Norit GSX

charcoal and 400 mg bovine serum albumin with 20 ml distilled water.

This suspension was stirred constantly on ice, then 100 ul charcoal

adsorbent was added to twelve tubes at a time. After whirlimixing these

were centrifuged for 2 minutes at 12000 g in a refrigerated centrifuge.

A 200 ul sample was withdrawn from each tube, added to 10 ml PPO

scintillant (900 ml 2-ethoxy ethanol, 1.5 litres toluene and 10.5 g PPO)

and counted on a Philips PW 4540 liquid scintillation analyser for 4

minutes. By doing the charcoal precipitation step on only twelve tubes

at a time it ensured that the charcoal was present for a maximum of

6 minutes. During this period the charcoal will bind free cAMP, but

with longer time intervals the charcoal will strip and bind protein-bound
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cAMP. This effect is minimised at 2-4°C and so the charcoal is kept

on ice throughout the experiment.

TABLE 2.2: Displacement of 3H cAMP binding over the range of the
standard curve (0-10 pmol cAMP)

pmol cpm Standard Coefficient Standard Coefficient
cAMP bound error of variation % bound error of variation

0 4872.4 ±60.4 3.5 65.3 ±0.8 3.5

0.3 4468.0 ±120.0 7.6 59.9 ±1.6 7.6

0.6 4164.1 ± 87.9 6.0 55.8 ±1.2 6.0

1.25 3793.0 ± 27.0 2.0 50.8 ±0.4 2.0

2.5 3071.6 ± 57.7 5.3 41.2 ±0.8 5.3

5.0 2003.1 ± 36.4 5.1 26.8 ±0.5 5.1

10 1213.6 ± 35.0 8.1 16.3 ±0.5 8.1

n = 8

With a counting time of 4 minutes the detection limit equal to 2

standard deviations at zero dose is 0.3 pmol cAMP/50 nl sample (see

Table 2.2, Fig. 2.4).

s ci
inter-assay coefficient of variation = * * x 100

mean

for 5.0 pmol cAMP = 10.083% (n = 9)

intra-assay coefficient of variation = 6.09% (n = 66 from 3 different
assays)

= Z (d/x x 100)2

2n

where d = difference between duplicates
x = mean of duplicates
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Cross-reactivity

Competitive protein-binding assays are subject to interference

from substances present in crude biological samples. The substances

most likely to interfere are other nucleotides. The cross-reactivity of

a variety of nucleotides was studied (Fig. 2.5). Of those studied,

cGMP crossreacts 8.9% and cUMP 2.0%. Only cGMP occurs naturally

in platelets and is unlikely to interfere in this assay at the concentrations

of cGMP which have been found in platelets: the basal level of cAMP in

platelets is 15 times greater than that of cGMP (170). Although the role

of cGMP in platelets is uncertain, it is reported that aggregating agents

increase cGMP levels in the platelet (196,197). Since the compounds

tested here all inhibit aggregation, cGMP levels are unlikely to be

affected by these agents. ATP and ADP are nucleotides present in

platelets in high concentrations and these do not crossreact in con¬

centrations up to 3 x 10"5 M, which represent over a 50000-fold excess

over the tritium-labelled cAMP present.

Extraction procedures

CPD, for 100 ml: 0.33 g citric acid
2.63 g sodium citrate
0.22 g monosodium phosphate
2.55 g dextrose

Blood (1 pint) was taken from healthy donors by the Blood

Transfusion Unit and collected into CPD (70 ml CPD/500 ml blood).

Platelet-rich plasma (PRP) was collected after centrifugation at 160 g

for 20 minutes. This PRP was 6-18 hours old when available for use;

all storage and manipulation was at room temperature. Storage for

up to 48 hours is reported to increase slightly the maximum capacity

of the platelet to produce cAMP while basal levels decline gradually



by a maximum of 20% (198). This effect is suggested to result from

a loss of platelet microtubules with time (198) resulting in a loss of the

constraints imposed by microtubules on adenyl cyclase stimulation (199).

The age of the PRP is unlikely to affect the type of responses seen and

similar results were obtained when fresh blood was used.

Two-different extraction, procedures were tested.

Extraction 7: (153)

PRP was incubated at 37°C. Then 10-100 ul PG were added to

1.5 ml PRP and mixed rapidly. This was incubated at 37°C for 30 seconds

before the addition of 375 ul 2 M perchloric acid which quenched the

reaction. After centrifugation at 1000 g for 5 minutes, the supernatant

was decanted and added to 375 ul 2 M potassium bicarbonate (KHC03).

This was cooled in ice to achieve maximum precipitation, before the

supernatant was withdrawn, frozen and freeze dried. The freeze-dried

solid was extracted with 1 ml of ethanol, then centrifuged at 2000 rev/

min for 20 minutes. The supernatant was evaporated to dryness at

55°C under a stream of nitrogen, then redissolved in 150 ul assay buffer.

Duplicate 50 ul samples were assayed.

Extraction 2:

1 ml of PRP was added to a 10 ml silinised test tube and incubated

for 30 seconds at 37°C. Then 10-100 ul PG were added to the PRP

before the incubation and whirlimixed. The reaction was quenched by

the addition of 2 ml ethanol, the tubes were whirlimixed and left to

stand for 5 minutes at room temperature. The supernatant was decanted

after centrifugation at maximum speed on a bench centrifuge. The

precipitate was washed with 1 ml of ethanol/water (2:1), then centri¬

fuged as before. The supernatants were combined and evaporated to



dryness at 55°C under a stream of nitrogen. The residue was

dissolved in 0.5 ml assay buffer and centrifuged at 12000 g for 30

minutes to remove insoluble material. Two 50 jil samples of the super¬

natant were assayed directly, or the supernatant diluted in buffer if

required, then assayed.

Use of SQ 22536: an inhibitor of adenyl cyclase

SQ 22536 (9-(tetrahydro-2-furyl) adenine) is an inhibitor of adenyl

cyclase (175). Although the IC50 value of SQ 22536 has been quoted

as 13 |iM for the inhibition of PGEi-activated adenyl cyclase activity

of a platelet particulate fraction, the inhibitory action showed negative

co-operactivity with increasing concentrations of the inhibitor, so that

concentrations of 100 jiM are required to inhibit adenyl cyclase in

intact platelets (163).

Freshly prepared PRP was used for the experiments, and platelet

aggregation was measured by the method of Born (200). 1 ml PRP was

diluted with Krebs (1 ml) and saline (0.4 ml), and stirred at 37°C for

1 minute before the addition of an aggregating agent (50-100 ul). If

an inhibitor was added to the platelet mixture two minutes before the

aggregating agent it was added within the 0.4 ml volume of saline. This

ensures that the total volume is kept constant and so the calcium con¬

centration is unchanged.

11,9-epoxymethano PGH2 (a gift from UpJohn Company, Kalamazoo)

and ADP (free acid from Sigma, made into sodium salt) were used as

standard aggregating agents. PGE^ E2 and D2 (UpJohn Company,

Kalamazoo) as well as the stable PGI2 analogue ZK36374 (Fig. 2.6)

(Schering AG, Berlin, 201,202,203) were used as standard inhibitors

of aggregation and were always preincubated for 2 minutes before the
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FIGURE 2.6: The structure of the stable PGI2 mimic, ZK 36 374.
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addition of an aggregating agent. 100 |iM SQ22536 (Squibb) was added

at this stage when required.

RESULTS

Of the two extraction procedures tested, the second was very

much better, the mean recovery being 87.3 ±1.36% (n = 16). The

first extraction procedure had a poor recovery (10-20%) and was very

variable. This may in part be due to the fact that the freeze drier

available was not in very good order. Certainly the results of the

actions of the classical prostaglandin inhibitors on cAMP, obtained

using the second extraction procedure, compared very favourably with

those published by Tateson, Moncada and Vane (153), who used the

first extraction procedure. Although many of the compounds were

tested using the first extraction procedure, and the results were

qualitatively similar, all of the following results have been obtained

using the second extraction procedure. Of the five analogues tested,

only EP035 showed a marked effect on platelet cAMP levels (Table 2.3).

The cAMP concentrations are expressed as multiples of the basal level.

The effect of EP035 was compared with that of the classical

prostaglandin inhibitors PGEi, PGD2 and the stable PGI2 analogue

ZK 36374 (Table 2.4, Fig. 2.7).

Although it requires higher concentrations, of EP035 to produce an

increase in cAMP levels, it is within this concentration range that

EP035 inhibits platelet aggregation, presumably part of this inhibition

being attributable to cAMP.

The effect of EP035 could result either from stimulation of adenyl

cyclase or by inhibition of phosphodiesterase, the enzyme which

catalyses the breakdown of cAMP. SQ 22536 is a non-competitive



TABLE2.3:EffectsoftheanaloguestestedonbasalcAMPlevelsinhumanplatelets „ xx-MultiplesofthebasalcAMPlevelinducedby:Concentration Hg/mlEP035EP037EP043EP045EP092 0.51.21+0.111.01+0.050.96±0.091.02±0.130.89+0.07 2.01.97+0.091.03+0.051.31+0.250.73±0.111.10+0.04 5.05.35+0.450.97±0.050.60±0.040.86+0.121.19±0.08 10.011.35+0.630.94±0.080.62+0.030.60±0.111.11+0.08
Valuesrepresentthemeanandstandarderrorof18observations,3donors.
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concentration (jug/ml) (log scale)

Each result is mean and standard error of 18 observations,
3 donors.

FIGURE 2.7: Comparison of the action of EP035 to increase platelet cAMP
levels with ZK 36 374, PGEx and PGD2
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TABLE 2.4: Effects of ZK36374, PGD2 and PGE! to raise cAMP
levels in human platelets

. ,. Inhibitor:
Concentration

ng/ml ZK36374 PGD2 PGEX

1 1.53 + 0.2

10 13.83 + 2.15 0.77 + 0.12

20 1.35 + 0.06

25 23.70 + 1.70

50 33.60 + 1.41 1.97 + 0.18

100 39.78 + 1.51 4.16 + 0.19 2.23 + 0.21

200 3.13 + 0.36

500 10.21 + 0.55 5.42 + 0.79

1000 15.12 + 0.35 7.42 + 1.03

Mean and standard error of 18 observations, 3 donors..

inhibitor of adenyl cyclase and so will reduce the inhibitory action of

a compound only if it raises cAMP levels by stimulating adenyl cyclase.

In the presence of 100 |iM SQ22536, the inhibition by EP035, of

aggregation induced by ADP, is markedly reduced (Fig. 2.8). This

suggests that EP035 stimulates adenyl cyclase to increase cAMP levels

within the platelet. Similarly, PGEX , PGD2 and PGI2 act by stimulation

of adenyl cyclase (163).

When comparing the aggregatory response of ADP in the presence

and absence of an inhibitor, it is important to preincubate the plate¬

lets for the same length of time before the addition of the aggregating

agent. A portion of the ADP response appears to fade over the in¬

cubation period so that a greater degree of inhibition is seen if the

effect of an inhibitor that has been preincubated for 2 minutes is

compared with a control response that has been preincubated for only

1 minute (Table 2.5). This time difference is not important with other

aggregating agents and it is not clear what is responsible for this effect.
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Each result is the mean of 4 observations.

FIGURE 2.8: The effect of the adenyl cyclase inhibitor, SQ 22536,
on the action of EP035 to inhibit platelet aggregation.
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TABLE 2.5: Phenomenon of fade

Concentration Preincubating Size of
of ADP time (min) response

10"6M 0.5 125

1.0 120

2.0 117

3.0 110

4.0 105

Results are the mean of 3 observations.

The response is taken as the height of the
aggregation achieved 100 seconds after incuba¬
tion of the PRP with ADP

The actions of PGI2 and PGEi to raise platelet cAMP levels have

been shown to differ from PGD2 in both species specificity (204,205)

and dose-response characteristics (143,206). This led to the suggestion

that platelets have distinct receptors for PGD2 and PGI2 and that PGEX

acts on the PGI2 receptor. More recently binding studies of tritiated

PGI2, PGEx and PGD2 to whole platelets and platelet fractions have

supported this concept (207,208,209,210,211). If PGEX acts on the

prostacyclin receptor, the dose-response characteristics (Fig. 2.7)

suggest that PGEx is a partial agonist since it is incapable of producing

a maximal increase in cAMP. To investigate this possibility, the dose-

response curve for ZK36374 was determined in the presence and absence

of 1 ug/ml PGEX (Fig. 2.9). The effect of ZK36374 to raise cAMP is

severely depressed in the presence of 1 ug/ml PGEx whereas PGD2

1 ug/ml acts additively with ZK 36374. This does not appear to be a

non-specific effect of PGEx on adenyl cyclase because PGEX has an

additive effect on the dose-response curve for PGD2 (Fig. 2.10). Dose-

response curves for ZK36374 were carried out in the presence of
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Each result is the mean and standard error of

18 observations, 2 donors.

FIGURE 2.9: Comparison of the effect of PGE x (lug/ml) with PGD2
(1 |ig/ml) on the dose-response curve for ZK 36374.
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concentration ot PGD2(ug/ml) (log scale)

Each result is the mean and standard error of 18 observations,

2 donors.

FIGURE 2.10: The dose-response curve for PGD2 in the presence of
PGEi (1 |ig/ml)
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equilibrium dissociation
constant for PGE-j

molar [PGE-]]=

XTTj
slope

=2-77x10"8M

I l I l
0 100 200 300 400

A' (ng/ml)

The method used to determine the affinity constant of PGE x

assumes that PGEi is a partial agonist, acting on the PGI2
platelet receptor.
Each result is the mean and standard error of 9 observations,
1 donor.

lope=0-09

FIGURE 2.12: Determination of the affinity constant of PGEX for the
PGI2 receptor of human platelets.
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10 ng/ml, 50 ng/ml, 100 ng/ml and 200 ng/ml PGEi (Fig. 2.11).

It was hoped to find a concentration of PGEX which would produce a

shift in the dose-response curve which was parallel over a reasonable

portion of the curve so that the affinity constant of PGEX for the PGI2

receptor could be estimated. None of these curves ts ideal for this

purpose, the dose-response curve in the presence of 100 ng/ml PGEX

being the most suitable. These data give a value of 2.77 x 10~8 M

(Fig. 2.12) as the equilibrium dissociation constant (KD) of PGEx.

Values of 3 x 10~9 and 6.6 x 10~9 for Kq have been reported from binding
studies (211,217).

To investigate the possibility that EP035 also acts on the PGI2

receptor, the dose-response curve for ZK36374 was determined in the

presence and absence of 5 ug/ml EP035 (Fig. 2.13). Although a shift

to the right was not observed, the expected additive effect was inhibited.

In contrast, the dose-response curve for PGD2 was additive in the

presence of 5 tig/ml EP035 (Fig. 2.14). This suggests that EP035 also

acts as a partical agonist on the prostacyclin receptor, but has a lower

affinity for the receptor than PGEx.

However, it has been reported that the effect of PGEX to inhibit

the response of PGI2 is not due to a partial agonist action but is due to

desensitisation of the prostacyclin adenyl cyclase receptor (212). The

increase in cAMP in platelets exposed to PGE2 has a characteristic time

course, reaching a peak in 20-30 seconds and declining thereafter.

This is typical of agonist-specific desensitisation which is characterised

by a rapid synthesis of cAMP followed by a decrease in the level of

cAMP, resulting from either a decrease in the rate of cAMP synthesis or

an increase in its rate of degradation. Subsequent stimulation by the

agonist, or by a different agonist active at the same receptor, are
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Each result is the mean and standard error

of 18 observations, 2 donors.

FIGURE 2.13: The dose-response curve for ZK 36374 in the presence
of EP035 (5 ug/ml).
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concentration (ng/ml) of PGD2 (log scale)

Each result is the mean and standard error of
18 observations, 2 donors.

FIGURE 2.14: The dose-response curve for PGD2 in the presence of
EP035 (5 ug/ml).



54.

ineffective. Agonist-specific desensitisation has been studied in

various adenyl cyclase systems and both mechanisms of reducing

cAMP stimulation are thought to involve a time-consuming, protein-

synthesising step (214,215,216). The mechanism operating in platelets

is not known but is unlikely to involve increased degradation of cAMP

as agonist-specific desensitisation is still evident in the presence of

high concentrations of a phosphodiesterase inhibitor (212).

It is not known to what extent the depression of the ZK36374

response observed within 30 seconds of stimulation can be attributed to

desensitisation by PGEX. It is certainly possible that a protein could

be synthesised within 30 seconds to switch off cAMP synthesis. Since

the increase in cAMP induced by EP035 does not show a time course

similar to that induced by PGEX, it is less likely that this partial

agonism could be attributed to agonist-specific desensitisation. Indeed,

the increase in cAMP induced by EP035 increases with time, at least up

to 120 seconds (Fig. 2.15). Moreover, PGI2 is reported to increase

cAMP rapidly for the first 60 seconds, followed by a slow increase which

is maintained for 60 minutes (even in the absence of a phosphodiesterase

inhibitor) and does not show agonist-specific desensitisation (212).

Since complete inhibition of aggregation can be achieved with very

low concentrations of ZK36374 (1 ng/ml), PGD2 (10 ng/ml) and PGEX

(20 ng/ml), only small increases in cAMP must be required to produce

this inhibition. Indeed, PGE2, which is a weak inhibitor of platelet

aggregation (217), can only raise basal levels of cAMP by a maximum of

1.30 ± 0.07 (Table 2.6). In agreement with these results, it is reported

that PGI2 can cause a marked shift in the aggregation induced by AA

when basal levels are raised 1.38 times, and abolish aggregation when

raised 1.96 times (153).
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FIGURE 2.15: Time course of the action of EP035 to increase platelet
cAMP levels.
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TABLE 2.6: Effect of PGE2 on cAMP levels of human platelets

Concentration Multiples of the basal cAMP
Ug/ml level induced by PGE2

0.01 1.00 + 0.06

0.05 1.07 + 0.09

0.10 1.15 + 0.08

0.50 1.20 + 0.09

1.00 1.25 + 0.06

5.00 1.28 + 0.05

10.00 1.30 + 0.07

Mean and standard error of 18 observations,
3 donors.

Although EP035 was the only analogue to cause a marked increase

in cAMP levels (Table 2.3), it is possible that the very slight increase

of basal levels induced by EP092 is sufficient to contribute to its

inhibitory effect. Indeed with high concentrations of EP092, aggrega¬

tion induced by ADP can be inhibited (Fig. 2.16). The effect of

EP035 to raise cAMP levels enables this analogue to inhibit aggregation

induced by ADP or thrombin in the same concentrations as it inhibits

AA and 11,9-epoxymethano PGH2 (Fig. 2.17).

DISCUSSION

The effect of EP035 to increase platelet cAMP levels appears to

result from stimulation of platelet adenyl cyclase. This increase in

cAMP does not show a time course characteristic of PGEx where there

is a rapid peak followed by a fall in cAMP levels. Both PGD2 (212,218)

and PGE i show this time course of response and exhibit the phenomenon

of agonist-specific desensitisation, where subsequent challenge with

the agonist is ineffective. Since the increase in cAMP induced by PGEx



57.

<S)
cz
o
al

This concentration of EP092 is more than ten times higher than
that required to inhibit aggregation induced by 11, 9-epoxymethano
PGH2. Each result is the mean of 4 observations.

FIGURE 2.16: Inhibition of ADP-induced aggregation by EP092 (5 jig/ml).
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FIGURE 2.17: EP035 inhibition of aggregation induced by AA, 11,9-
epoxymethano PGH2, ADP and thrombin.
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reverses after 20-30 seconds, it suggests that synthesis of the protein

suggested to inhibit adenyl cyclase, can occur within this short period

of time. However, stimulation of adenyl cyclase by EP035 shows a

time course more similar to PGI2, as the cAMP levels are still rising

120 seconds after stimulation. This suggests that EP035 does not

switch on synthesis of the inhibitory protein, at least within 120 seconds

of stimulation. The ability of EP035 (5 ug/ml) to suppress the dose-

response curve for stimulation of cAMP by ZK36374, when incubated

simultaneously for 30 seconds, is therefore best explained by a partial

agonist action of EP035. Since EP035 has an additive effect with PGD2,

the effect on ZK36374 cannot be attributed to a non-specific action of

EP035, an adenyl cyclase.

Similarly, PGEX shows an additive effect with PGD2 but depresses

the dose-response curve for ZK36374. It is possible that agonist-

specific desensitisation is responsible for, or contributes to, the partial

agonist action of PGEX. Agonist-specific desensitisation has been

characterised for various adenyl cyclase systems (but not platelets)

and the fall in cAMP levels is thought to arise from either increased

degradation of cAMP, or decreased synthesis of cAMP, both mechanisms

involving a time-consuming, protein-synthesising step (214,215,216).

Since this phenomenon is evident in platelets in the presence of a

phosphodiesterase inhibitor, it is unlikely that increased degradation of

cAMP is responsible (212). The reason why only some agonists show

agonist-specific desensitisation is not known. A possible explanation is

that synthesis of the putative inhibitory protein is switched on only

when a large number of receptors are occupied. Since PGI2 is exception¬

ally active at very low concentrations (1-10 ng/ml) it will only occupy a

fraction of the receptors available. However, neither PGEx nor PGD2



can elicit a maximum increase in cAMP levels which suggests that even

when all the receptors are occupied, the efficacy of these compounds

is still too low to achieve a maximum response. (Since the effect of

PGEx and PGD2 to increase cAMP levels is measured within 30 seconds

of stimulation it is unlikely that a maximal increase in cAMP is masked

by their ability to desensitise their own response.) The ability of

EP035 to increase cAMP is evident with higher concentrations of this

compound (1-10 ug/ml) than required with PGEior PGD2 (0.02-1.0 |ig/ml).

EP035 is particularly insoluble so it is impossible to get sufficiently high

concentrations of EP035 into solution to see if it exhibits agonist-specific

desensitisation when it occupies a larger number of receptors.

PGExcan completely flatten the dose-response curve for ZK36374

in concentrations from 0.2-1.0 ug/ml, but even with concentrations as

low as 10 ng/ml, PGEi inhibits the expected additive effect of PGEx and

ZK36374, and suppresses the maximum response. EP035 does not flatten

the dose-response curve for ZK36374, but in a concentration of 5 ug/ml

the additive effect is severely reduced and the maximum response

depressed. It is suggested that both PGEx and EP035 act on the prosta¬

cyclin receptor of human platelets and are partial agonists. The ability

of PGEi to induce agonist-specific desensitisation may contribute to the

partial agonist effects seen here.

This effect of EP035 reduces its usefulness as a pharmacological

tool because its action as a TXA2 receptor antagonist is no longer

specific. But it opens up an interesting concept of drugs with both

TXA2 antagonist and prostacyclin-like activity. There has been con¬

siderable interest in the development of thromboxane synthetase

inhibitors since the demonstration that the vessel wall can synthesise

prostacyclin from PG endoperoxides released by the platelets (219,220).
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When platelets are pretreated with the thromboxane synthetase inhibitor

imidazole (221) or 9, ll-iminoepoxyprosta-5,13-dienoic acid (222)

endoperoxides are made available for the vessel wall. In fact in the

presence of a thromboxane synthetase inhibitor, AA added to whole blood

in vitro leads to the formation of 6-oxo PGElct suggesting that prosta¬

cyclin has been synthesised by some cell other than platelets (223).

Thromboxane synthetase inhibitors are thought to be potentially useful

anti-thrombotic agents since they not only protect against the noxious

effects of TXA2 but may result in a redirection of synthesis of platelet

PG endoperoxides to prostacyclin. However, in vivo, the vessel wall

could be damaged or partially obstructed by an atheromatous plaque so

that the prostacyclin synthetase enzyme would not be available to utilise

the platelet endoperoxides. Under these conditions EP035, which itself

has antagonist activity against TXA2 as well as prostacyclin-like activity,

would be more useful.



CHAPTER III

Metabolism of AA to TXB, by Human Platelets
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INTRODUCTION

The existence of endoperoxide intermediates in prostaglandin

biosynthesis was postulated after experiments with mixtures of 1602
and 1802 gas which demonstrated that when dihomo-y-linoleic acid was

incubated with sheep vesicular gland microsomes, the oxygen atoms

at C-9 and C-ll of PGEi were derived from the same molecule of 02

(224,225,226). However, it was not until 1973 that two such inter¬

mediates, PGG2 and PGH2 were isolated after short incubations of AA

with these microsomes (145). PGH2 was the more polar compound, and

its structure was established by treatment with stannous chloride or

triphenyl phosphine, resulting in its conversion to PGF2ct. Dehydration
of PGG2 with lead tetraacetate, followed by reduction with triphenyl

phosphine, resulted in the formation of 15-keto-PGF2a, indicating that

a hydroperoxy group was present at C-15 (Fig. 3.1). Both compounds

are unstable in aqueous solution 4-5 minutes at 37°, pH 7.4) and

were shown to induce platelet aggregation, platelet release reaction and

smooth muscle contraction.

The PG endoperoxides are rapidly transformed by most tissues

into other prostaglandins (PGE2, D2, F2a or I2) which usually have

biological activity distinct from the endoperoxides themselves. Platelets,

however, metabolise the AA-derived endoperoxides predominantly to

non-prostanoid derivatives - malanaldehyde (MDA), HHT and TXB2

(65,72,74). TXA2 was later detected, as a short-lived intermediate in

the conversion of PGH2 to TXB2, by trapping experiments where methanol,

ethanol or sodium azide acted as nucleophilic agents (65) (Fig. 3.2).

TXA2 was considerably more active as an inducer of platelet aggregation

and release than the parent endoperoxides.
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SnCl2 = stannous chloride
PbCOAc)^ = lead tetra acetate

FIGURE 3.1: Determination of the structure of the PG endoperoxides
PGG2 and PGH2
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txb2
1 X=CHgO
2 X=C2H50
3 X=N3

FIGURE 3.2: Determination of the structure of TXA
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The discovery of PG endoperoxides and TXA2 as intermediates

responsible for AA induced aggregation of human platelets resolved a

previous dilemma that aspirin-like drugs, known to inhibit PG bio¬

synthesis from AA (75,76,77), could inhibit the second wave of

aggregation yet neither PGF2ct nor PGE2 (the previously known AA-

derived prostaglandins formed by platelets in small amounts) showed

significant proaggregatory activity. Furthermore, previously un-

characterised biological principles, labile aggregation stimulating

substance (LASS) and rabbit aorta contracting substance (RCS) were

found to be biologically indistinguishable from PGH2 and TXA2 (with

residual PGG2/H2) respectively (227,228,229). The two-step synthesis

of thromboxanes from arachidonic acid is catalysed by a microsomal

enzyme complex. This complex sediments between 12000 and 100000 g

and consists mainly of the dense tubular fraction of platelets (111,112,

113). This microsomal complex can be fractionated by DEAE cellulose

chromatography after treatment with Triton X-100 (112,230) to separate

the PG endoperoxide synthetase (cyclo-oxygenase) from the thromboxane

synthetase. Studies of the kinetics of both enzymes suggest that PG

endoperoxide formation is the rate-limiting step in the biosynthesis of

TXA2 from AA (231).

Stoichiometrically, TXA2 can be regarded as a rearrangement of

PGH2 and so thromboxane synthetase is often called an isomerase.

However, kinetic analysis suggests that this is not the case (232) and

a dismutase reaction has been proposed, in which one molecule of both

TXA2 and HHT (12L-hydroxy-5,8,10-heptadecatrienoic acid) are produced

simultaneously from two molecules of PGH2. This may explain earlier

observations that TXB2 and HHT are produced in approximately equal

amounts from AA (233,234) and that inhibition of TXB2 formation also

inhibits the production of HHT (235,236).
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Isolated enzyme preparations of thromboxane synthetase have

been used extensively in the search for specific enzyme inhibitors.

Determination of TXA2 itself is hampered by its short half-life but can

be achieved by biological assay using tissues which are highly sensitive

to TXA2 such as rabbit aorta, dog saphenous vein, in cascade with tissues

which are sensitive to other prostaglandins such as rat stomach strip.

Quantitation can be attempted by measuring the response induced by

TXA2 in units equivalent to responses induced by a stable thromboxane

mimic. Validation that the response is due to TXA2 relies on the decay

of the biological activity with a half-life of 30-40 seconds at 37°C and

inhibition of biosynthesis by both cyclo-oxygenase and thromboxane

synthetase inhibitors (237).

It has become increasingly common to measure TXA2 formation by

assaying its stable metabolite TXB2. This has a disadvantage in that

other metabolic pathways of TXA2 may exist, although there is no

evidence for this at present. Several different types of assays for

TXB2 have been developed including radio-immuno assay (RIA) and

gas liquid chromatography-mass spectrometry (GLC-MS) (238,239,240,

74). Another approach has been to trap TXA2 with methanol (72) and

assay the stable product mano-o-methyl TXB2 (241).

Several inhibitors of thromboxane synthetase have been reported

(Table 3.1). In general, these fall into two categories: imidazole

derivatives and PG endoperoxide analogues. As can be seen from Table

3.1 overleaf, a number of compounds which are structurally similar to

the PG endoperoxides inhibit thromboxane synthetase. This is not

always a specific action of the compound since 9,11-azo PGH2 and

9,11-epoxymethano PGH2 are thromboxane mimics (253), 9,11-azo-prosta

5,13-dienoic acid is a partial agonist (254) and 9,ll-azo-13 oxa-15-
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TABLE 3.1: IC50 values (uM) quoted for inhibitors of microsomal
preparations of thromboxane synthetase

Compound
Ref.
No.

IC 50 quoted for
microsomal
enzyme (aM)

Imidazole 242 1500

1-methyl imidazole 242 1000

Butyl imidazole 243 9.8

Butyl imidazole 139 40

Hexyl imidazole 243 7.6
t

Actyl imidazole 243 53

Carboxyl hexyl imidazole 243 0.5

Carboxy heptylimidazole 243 0.14

Carboxy actyl imidazole 243 0.22

UK-37,248-01
(4-( 2-[ IH-imidazol- l-Yl]ethoxybenzoic
acid)

244 0.003

Dipyridamole 245 0.39

L-8027

(2-isopropyl-3-nicotinyl indole)
246 10

N-0164
(sodium p-benzyl-4-[ l-oxo-2-(4-chloro-
benzyl)-3-phenyl propyl)phenyl phosphate

247 24

Burimamide 248 25

9,11-azo ; 13-oxa-15 hydroxy prostanoic
acid

249 1

9,11-azo PGH2 250 2

9,11-epoxymethano PGH2 250 20

9,11-iminoepoxy prosta-5,13-dienoic
acid

251

9,11-azo prosta-5,13-dienoic acid 252

12-L-hydroperoxy 5,8,10,14-eicoscitetra-
enoic acid

112

Pinane TXA2 135 50
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hydroxyprostanoic acid and pinana TXA2 are antagonists (249,135)

at the PGH2/TXA2 receptor.

Many of these compounds appear considerably more active as

thromboxane synthetase inhibitors when isolated enzyme preparations

are used than they are when whole platelets are used. This has led to

the development of much more water-soluble compounds. However,

even with UK-37,248-01, relatively high concentrations (about 10~SM)

are required for a 50% reduction in thromboxane synthesis, in contrast

to the potent activity, ICS0 = 3 x 10~9M, in a microsomal system.

In this section the effect of analogues EP035, EP037, EP043,

EP045 and EP092 on the production of TXB2 from AA added exogenously

to platelets was investigated. This test cannot discriminate between an

inhibitory action on cyclo-oxygenase and one on thromboxane synthetase,

as is possible when using microsomal enzyme preparations. But by using

whole platelets it is possible to determine whether an inhibitory action

on TXA2 production will contribute to the inhibition of aggregation

induced by arachidonic acid, in the concentrations in which these

compounds are effective in platelet-rich plasma. The extraction of TXB2

from platelet-rich plasma and the development of a quantitative assay

for the measurement of TXB2 by GLC-MS are described. EP035 and

EP043 both inhibit TXB2 synthesis from AA. Their effects are compared

with other inhibitors and the possibility that EP035 mediates this effect

through a rise in cAMP levels is discussed.
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MATERIALS AND METHODS

Principles of gas liquid chromatography (GLC)-mass spectrometry (MS)

Chromatography is used as a way of separating particular entities.

With GLC, where a gas is the mobile phase and a non-volatile liquid

the stationary phase, components can be separated on the basis of two

criteria: temperature (and thus volatility) and polarity . The tem¬

perature of the column will determine the retention time of the compounds

within the column, the more volatile components being eluted first. The

packing of the column is non-polar so that the more polar components

are not retained; the non-polar components partition into the packing.

Samples must be derivatised to make them both volatile and thermally

stable. Here the carboxylic acid group of TXB2 is made less polar by

conversion to the methylester, the hydroxyl groups are protected by

forming the trimethylsilyl (TMS) ether and the aldehyde group is

stabilised by conversion to an oxime. Helium is used as the carrier gas

to introduce the effluent from the GLC column into the mass spectrometer.

Ionisation of the sample molecules occurs by bombardment with

electrons generated from a tungsten filament and accelerated by a trap

electrode. Once ionised the fragments are accelerated into a mass

analyser where the fragments pass through a magnetic field, the ion

path bending according to the molecular weight.

Qualitative analysis

To obtain a complete mass spectrum, the magnetic field is continually

raised while a constant number of sample molecules are entering the ion

source. This causes ions of increasing mass to focus on the electron

multiplier where the abundance of each ion is measured. The mass

spectrum is similar to a finger print as it is characteristic of the original

molecule.
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Quantitative analysis (multiple ion detection, MID)

To assay samples quantitatively using the GLC-MS it is usual to

monitor major ions formed when the molecule splits. The instrument

must be focussed for a given time on each ion monitored. This is

done by repeatedly switching the accelerating voltage to bring each

ion in turn into focus on the detector. Identification of a compound

relies on the detection of one or more representative ions appearing at

the appropriate retention times. The more ions that are monitored, the

more conclusive is the identification, but unfortunately at the same

time the sensitivity of detection is reduced as the time allowed for each

ion to be focussed on the detector is much shorter. The total number

monitored must therefore be kept to a minimum.

The response of the sample is measured relative to an internal

standard. This is frequently a deuterated analogue which when added

in excess has the advantage of acting as a carrier to reduce extraction

losses and adsorptive loss of the sample in gas chromatography.

Octadeuterated TXB2 has been used previously for this purpose (65).

Since the sample and standard are chemically identical they are not

distinguishable until final detection by the mass spectrometer where the

deuterated standard will peak with the same retention time as the

sample but will be several mass units heavier. The ratio of protium

peak height to deuterium peak height is determined over the range of

a standard curve and the concentration of TXB2 in the sample is

determined from the ratio of protium to deuterium in the sample.

Unfortunately, no deuterated TXB2 was available so a suitable analogue

of TXB2 was used instead to act as an internal standard.

The GLC-MS data reported in this section were obtained by using

a Pye Unicam 204 gas chromatograph coupled to a VG micromass 70-70F



71.

207 281 355 429

iL i i

0 100 200 300" sfe ^3 60CT

This mass spectrum gives the GC-MS background peaks.
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FIGURE 3.3: Mass' spectrum of column bleed peaks.
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mass spectrometer. The gas chromatograph details are as follows.

The gas chromatograph was equipped with a spiral column (either 1.5 m

x 4 mm or 3 m x 4 mm) packed with 3% OVI in 100-120 mesh Supelcopart

(Supelco, Inc.). The temperature of the column was fixed between

250-270°, the separator temperature was 250°, the ion source tem¬

perature 250°, the basic accelerating voltage 4 kV and the electron

energy 22 or 70 eV. Helium was used as the carrier gas with a flow

rate of 30 ml/min.

Derivatisation of TXB2 is required to improve its chromatographic

behaviour and to provide a suitable ion in the mass spectrum for

detection and assay by GLC-MS. The ion must not coincide with a

column bleed peak (Fig. 3.3), but should be reasonably close in mass

to minimise the loss in sensitivity which occurs as the voltage is

switched from the column bleed peak to the ion, throughout the assay.

The column bleed peak is used as a reference to provide accurate

switching between monitored peaks.

Preparation of TXB2, Me, BuOX, TMS

10 ug TXB2 standard (Upjohn Co., Kalamazoo) in ethyiacetate

were dispensed into an eppendorf tube and blown dry. Diazomethane

was generated from diazald (N-methyl-N-nitroso-p-toluene-sulphonamide,

Aldrich), ethanol and potassium hydroxide (KOH), and displaced with

ether vapour saturated nitrogen into a tube containing cold diethyl

ether (Fig. 3.4). The standard was taken up in a few drops of methanol

(Rathburn Chemicals), 0.3-0.4 ml diazomethane added, and left for

5 minutes before being blown dry on a heating block and dessicated.

Butoxyamine hydrochloride, 3-5 drops (5 mg/ml in pyridine) were

then added. This was heated at 60°C for 90 minutes as a fast oximation

procedure . The pyridine was blown off using a heating block and
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MASS SPECTRUM of TXB2Me,BuQx,TMS.
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MASS SPECTRUM of TXB7Et<Bu0x,TMS.
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the standard vacuum dessicated. The standard was taken up in 20 |il

BSTFA (sigma-NiO-bisCtrimethylsilyUtrifluoroacetamide) and incubated

at 60°C for 15 minutes. 5 ul of this TXB2 methyl ester, butyloxime,

TMS ether was injected in BSTFA into the GLC-MS and run total

ion to obtain a mass spectrum of the ions formed as the molecule splits

(Fig. 3.5).

The m/e = 301 ion is the base peak, i.e. the most abundant ion

formed. Although it is usual to use the deuterated form of the molecule

to act as both internal standard and carrier, since no deuterated TXB2

was available, the ethyl ester of TXB2 was tested as a suitable internal

standard. TXB2 ethyl ester, butyloxime, TMS ether was prepared as

for the methyl ester, replacing diazomethane with diazoethane and

increasing the reaction period to 15 minutes. Diazoethane was prepared

from N-nitrosoethylurethane (fluka) and ethanolic KOH (saturated),

rather than aqueous KOH, was used. The mass spectrum of TXB2

ethylester, butyloxime, TMS ether is given in Fig. 3.6.

The m/e = 301 ion is the base peak for both methyl and ethyl

esters and appears to have the same relative abundance in both. The

two spectra can be distinguished by the ions which retain the a chain

as these ions will be 14 mass units heavier for the ethyl ester. Since

the major ions are formed in similar amounts it suggests that the

different ester group has not affected the way in which the molecule

fragments so that the ions are formed in the same proportions.

The m/e = 301 ion was chosen as a suitable ion to monitor since it

is formed in large amounts, being the base peak, and is suitably close

in mass to the 281 column bleed. Both of these factors help to increase

the sensitivity of the assay. The m/e = 301 ion peaks will be separated

by virtue of the longer retention time of the ethyl ester. The fact that
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MASS SPECTRUM of 11 Deoxy PGE1 MfiBuOxJMS.
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the 301 ion is not a major ion formed by the more classical prosta¬

glandins, coupled with the characteristic retention pattern of the 301

ion, will improve the specificity of this assay. Although the ethyl

ester can be used as a suitable internal standard, it has the disadvantage

that it cannot act as a carrier as it is added during the final stage of

derivatisation and so can only compensate for losses during the GLC-MS

procedure.

A methyl ester was chosen as a second internal standard as this

ensured that any problems encountered during methylation would be

detected. 11-deoxy PGE-l was selected for this purpose as the mass

spectrum of 11-deoxy PGEX methyl ester, butyloxime, TMS ether showed

the m/e = 280 ion to be the base peak (Fig. 3.7). Again this ion is

close in mass to the 281 column bleed. The m/e = 280 ion could be formed

by loss of the u> chain (-71) and the a chain (-144) or by the loss of the

butyloxime (-73) and the a chain (-142). Since the m/e = 280 ion is also

the base peak of 11-deoxy PGE1? Me, Meox, TMS it must be achieved by

loss of the oxime (here -31) and the a chain (-142).

Since it is of lower molecular weight than TXB2, 11-deoxy PGEX

runs with a comparatively short retention time.

MID assay

Amounts of TXB2, 0 ng, 10 ng, 20 ng, 40 ng, 60 ng and 80 ng

were dispensed into eppendorf tubes. 40 ng 11-deoxy PGEX were added

to each tube. The tubes were methylated twice using diazomethane, as

before. Once dry, 40 ng TXB2 ethyl ester standard were added to each

tube and the tubes were dessicated. The standards were oximated over¬

night at room temperature then taken to dryness on a heating block and

dessicated. 20 |il BSTFA were added to each tube, the tubes were

incubated at 60° for 15 minutes and 5 ul samples were used for injection.
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gam of 50 on the 301 ion and 100 on the 280 ion

301(Me)

FIGURE 3.8: Typical GC-MS traces for the TXB2 standard curve
(0-20 ng).
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This gives a standard curve of 0-20 ng TXB2, and the samples were

diluted to fall within this range.

The GLC-MS was set up for multiple ion detection (MID). The

program used is given in Table 3.2.

TABLE 3.2: GLC-MS program for detection of TXB2 by MID

Channel Ion Exact mass (g) MID voltage

1 280 280.20965 9.8000

2 281 281.05169 9.7706

3 301 301.2019 9.1170

The instrument was tuned into the 281 column bleed, and

electronically locked on, to facilitate its use as a reference peak.

The machine was focussed on each MID voltage for 0.1 seconds in

turn, the MID voltage regulating the accelerating voltage. Each

standard was run and the ratio of peak heights of the 301 (Me)/301

(Et) and of 301 (Me)/280 ions determined. Typical traces are shown

in Fig. 3.8, along with the standard curve which these ratios produce.

The mean of the estimates from the two ratios was taken as the TXB2

content of the sample.

Fig. 3.9 and Table 3.3 show the variation of 20 standard

curves, performed on different days. The variation observed was

sufficiently great to make it necessary to use a standard curve at the

start of each assay.
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The variation is sufficient that a standard curve was always performed
at the start of each assay.

5 10 15
concentration (ng) TXB2

FIGURE 3.9: Variation of 20 standard curves, performed on different days.
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TABLE 3.3: Variation of 20 standard curves performed on different
days

ng of TXB2
injected 301 (Me)/301 (Et) 301 (Me)/280 (Me)

0 0.04 + 0.01 0.04 + 0.01

2.5 0.32 + 0.04 0.37 + 0.06

5.0 0.58 + 0.08 0.83 + 0.11

10.0 1.07 + 0.13 1.54 + 0.20

15.0 1.77 + 0.15 2.07 + 0.19

20.0 2.17 + 0.21 3.07 + 0.29

Preparation of arachidonic acid

Arachidonic acid (Sigma), grade 1, about 99% pure, was made into

a stock solution of 50 mg/ml in methanol (Rathburn Chemicals). As a

check of purity, samples were spotted onto a 5 cm silica gel plate and

run in hexane : ether (50 : 50) containing 0.5% glacial acetic acid. The

plate was removed from this solution, sprayed with phosphomolibdic

acid solution and heated at 100-120°C for 15 minutes until the full colour

developed. In both batches, the AA ran as one spot which was taken

as being sufficiently pure. 3 ml aliquots of AA (10 mg/ml) were ampouled

and stored at -40°C until use.

Extraction of TXB, from platelet-rich plasma

Fresh platelet-rich plasma (PRP) was prepared as before (see

Chapter 2) and incubated in a waterbath at 37°C. 2.5 ml of PRP were

incubated for 3 minutes at 37°C with 75 ng/ml palmitic acid, then

100 ug/ml AA was added to the PRP and allowed to act for 30 seconds

before the reaction was quenched by the addition of 500 ul 2M HCL.

This resulted in a pH of about 3. The sample was extracted twice with

ethyl acetate (Rathburn Chemicals) and the ethyl acetate taken to dryness
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using a rotary evaporator. The remaining samples were processed to

this stage, each being extracted immediately after the reaction. Drugs

to be tested were added at the same time as the palmitic acid, allowing

3 minutes for incubation, n-butyl imidazole (a gift from Wellcome

Research Laboratory, Beckenham, Kent) was used as a standard throm¬

boxane synthetase inhibitor.

Each sample was taken up in 2.5 ml absolute alcohol and transferred

to a stoppered test tube. The pear-shaped flasks were washed out

with 2.5 ml distilled water which was added to the alcohol. 5 ml of

benzene (BDH Chemicals - analar quality) was added to each tube.

This gives an ethanol : water : benzene (1 : 1:2) partition. The tubes

were mixed, then spun in a bench centrifuge to ensure a clear separation

between the two layers. The upper benzene layer was removed, using

a pasteur pipette, and discarded. The ethanol layers were transferred

back to the original pear-shaped flasks and the test tubes washed out

with a further 2.5 ml ethanol. This was added to the ethanol in the

pear-shaped flasks, to bring it up to 67% ethanol, and then taken to

dryness using a rotary evaporator.

Each sample was taken up in 2 ml methanol and aliquots of 2-fold

and 4-fold dilutions were derivatised as for the standards and assayed

on the GLC-MS. The efficiency of extraction was determined by the

addition of 0.125 uCi 3H TXB2 (New England Nuclear - TXB2 [5,6,8,9,

11,12,14,15-3H(N)] 150 ci/mmol) to the PRP before extraction and an

aliquot of the sample (in methanol) was added to 10 ml PPO scintillant

and counted for 4 minutes.
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RESULTS

Palmitic acid (75 ng/ml) was incubated for 3 minutes with the

PRP, before the addition of AA. It was hoped that the palmitic acid

would saturate the plasma protein-binding sites. This is important for

two reasons. Firstly, arachidonic acid binds strongly to albumin in the

plasma (255,256) so that if the binding sites were saturated, more of

the AA added exogenously would be available for transformation into

TXA2 by cyclo-oxygenase. Secondly, it has recently been shown that

PGH2 and TXA2 themselves bind strongly to plasma proteins, and it is

this action which serves to prolong the half-life of TXA2 in plasma, as

compared with aqueous solutions (257,258,259). The latter effect was

minimised by using a short incubation time of 30 seconds (260) but

would also be reduced if the binding sites were saturated with palmitic

acid. This is particularly important when measuring the hydrolysis

product TXB2, as representative of TXA2, because protein-bound TXA2

will not be measured.

Basal levels of TXB2 in PRP were low (2.62 ± 0.89 ng TXB2/ml

PRP, n = 10). However, when the PRP was stimulated with 100 ug/ml

AA there was a surge of TXB2 produced. The amount of TXB2 produced

within 30 seconds is dependent on the donor used, but the yield was

increased when the PRP had been preincubated with palmitic acid, for

example from 238.8 ±8.2 ng TXB2 to 406.8 ±26.0 ng TXB2. This effect

can be partly attributed to the increase in extraction efficiency from

44.3 ± 2.90% to 66.7 ± 0.95% when preincubated with palmitic acid. When

corrected for extraction efficiency, the yield of TXB2 increases from

539.2 ± 18.4 to 601.6 ± 38.8 ng. This difference probably results from

the increase in AA available for biosynthesis once the plasma proteins

saturated with palmitic acid. The action of palmitic acid to increase the
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extraction efficiency is partly due to a carrier action. Palmitic acid

added after the reaction, before extraction, increases the extraction

efficiency from 44.3 ± 2.9% to 64.9 ± 1.9%, whereas palmitic acid

present throughout the reaction only increases the efficiency slightly

to 66.7 ± 0.95%.

The effect of the analogues on the control production of TXB2

from AA is shown in Table 3.4 overleaf. EP037 and EP045 do not appear

to inhibit thromboxane biosynthesis by whole platelets. EP092 may have

a slight inhibitory effect in concentrations above 2.5 ug/ml (Fig. 3.10).

EP043 and EP035 both inhibit thromboxane biosynthesis. Inhibition by

EP043 is comparable with that induced by the thromboxane synthetase

inhibitor butyl imidazole (Fig. 3.11). The possibility that the action of

EP035 is related to the increase in cAMP was investigated by comparing

the effect of EP035 with that of PGD2 and ZK36374 (Fig. 3.12), both of

which raise cAMP levels but are not reported to have a direct inhibitory

effect on either cyclo-oxygenase or thromboxane synthetase. The

effects of butyl imidazole, PGD2 and ZK36374 on thromboxane production

are given in Table 3.5.



TABLE3.4:EffectofEP035,EP037,EP043,EP045andEP092ontheproductionofTXB230secondsafter theadditionof100pg/mlAAtoPRP
Concentration%controlproductionofTXB2by: (pg/ml)EP035EP037EP043EP045EP092 0

100.00
+

5.50

100.00
+

7.60

100.00
+

5.03

100.00
+

5.10

100.00
+

6.30

0.1

74.75

+

3.70

0.2

120.30
+

3.90

0.5

67.23

+

3.43

79.10

+

4.50

101.06
+

4.10

102.50
+

7.20

1.0

61.70

+

2.30

100.00
+

7.40

38.57

+

1.79

92.70

+

5.60

111.31
+

7.10

2.0

36.80

+

2.13

2.5

96.35

+

6.84

5.0

48.70

+

2.99

97.90

+

7.50

109.15
+

8.40

78.09

+

3.10

10.0

99.40

+

9.60

104.70
+

4.10

20.0

26.90

+

2.60

(Valuesrepresentthemeanandstandarderrorof16observations,2donors)
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FIGURE 3.10: The effect of EP037, EP045 and EP092 on TXB2
production from AA added exogenously to platelets.
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production from AA added exogenously to platelets.
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FIGURE 3.12: Inhibition by EP035, PGD2 and ZK 36374 of TXB2
production from AA added exogenously to platelets.



90.

TABLE 3.5: Effect of butyl imidazole, PGD2 and ZK36374 on the
production of TXB2 30 seconds after the addition of
100 (ig/ml AA to PRP

% control production of TXB2 by:
Concentration Butyl imidazole PGD2 ZK36374

(jig/ml)
0 100.00 + 5.2 100.00 + 4.8
0.1 69.40 + 4.5
0.2 50.40 + 3.1
0.5 54.70 + 5.4
1.0 66.20 + 2.4 52.10 1.7
5.0 55.05 + 3.4
10.0 52.10 + 3.0
20.0 40.70 + 4.3

(ng/ml)
1 67.50 + 11.2

10 69.85 + 5.3
50 59.52 + 8.7

100 58.30 + 5.6

Values represent the mean and standard error
of 16 observations, 2 donors.

DISCUSSION

Whenever TXB2 levels are measured, there is a problem as to how

closely these levels reflect TXA2 production. Since the basal levels of

TXB2 are very low, these have been neglected, so that the surge of

TXB2 measured must reflect the rapid biosynthesis of TXA2 from AA.

It is reported that the concentration of TXA2 formed from AA reaches

a maximum within 30 seconds and thereafter declines to zero by 2 minutes

(232).

The concentration of TXB2, however, continues to increase for

2 minutes, the increase after 30 seconds being concomitant with the

decrease in the concentration of TXA2.
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The factor responsible for limiting the synthesis of TXA2 is as

yet unknown. Certainly it is not substrate depletion as less than

10% of the substrate is utilised (232,138). It has been suggested

that cyclo-oxygenase may be deactived by free radicals (70), possibly

hydroxyl radicals generated during the reduction of PGG2 to PGH2 (71).

Similarly thromboxane synthetase may be inhibited by 12L-hydroperoxy-

5,8,10,14-eicosa tetraenoic acid (HPETE), which is an intermediate in

the lipoxygenase pathway (112). However, the importance of such

mechanisms in platelet-rich plasma, rather than cell-free systems using

microsomal enzyme fragments, is not certain.

Here, TXB2 synthesised during the first 30 seconds of incubation

with AA has been measured. A reduction in the level of TXB2 measured

has been taken to mean that the biosynthesis of TXA2 from AA has been

inhibited. It is, however, possible that such a reduction could result

from interference in the rate of production of TXA2 so that less TXB2

was formed within 30 seconds.

The capacity of platelets from different individuals to synthesise

TXB2 from AA varied considerably, from 308.6 ng to 814.2 ng/ml PRP.

This may partly result from the variation in age group and sex of the

blood donors, but may also reflect differences in plasma protein binding.

It is not known how seriously the protein binding of TXA2 will interfere

with this assay, even after palmitic acid saturation. Where the level

of TXB2 measured exceeds the control value, it is possible that by

limiting the extent of platelet aggregation, through an antagonist action

rather than an effect on TXB2 synthesis, more TXB2 is produced from

the AA added.

The GLC-MS assay is fairly convenient for routine use but is too

time consuming to handle a large number of samples at once (each sample
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gain of 20 on 280 ion and 10 on 301 ion
301 (Me) 301 (Me)

FIGURE 3.13: GC-MS traces of TXB2 samples extracted from platelet
rich plasma.
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has a retention time of about 15 minutes) in the way that is possible

with radioimmunoassay (RIA). However, the GLC-MS assay has the

advantage that the material measured can be conclusively identified as

TXB2. Initial RIA procedures for TXB2 suffered from fairly high cross

reactivities with PGD2, which is not only synthesised by platelets but

can result from isomerisation of PGH2 in the presence of serum albumin

(261). In fact, background interference in this assay was reasonably

low. Fig. 3.13 allows comparison of sample traces with standards

(Fig. 3.8). TXB2 standard was stored in ethyl acetate because when

stored in methanol for long periods of time, some of the TXB2 dehydrated

(Fig. 3.14). This dehydrated TXB2 produced an interfering 301 peak

which ran with a slightly shorter retention time than that of TXB2 itself.

Dehydration did not occur when the TXB2 was stored in ethyl acetate.

The analogues EP037 and EP045 did not inhibit the biosynthesis of

TXA2 by platelets. EP092 has a slight inhibitory action in concentrations

above 2.5 |jg/ml. This effect of EP092 is evident with much higher

concentrations than required for this antagonist action: 0.2 |ig/ml

EP092 will shift the dose response curve for 11, 9-epoxymethano PGH2

10-fold. However, EP043 shows marked inhibition of thromboxane bio¬

synthesis in concentrations in which this analogue is active as an

inhibitor of AA-induced platelet aggregation. This may explain why

EP043 is as effective as an inhibitor of AA as 11,9-epoxymethano PGH2

induced aggregation (1 |ig/ml EP043 shifts both AA and 11,9-em PGH2

with a dose ratio of 3.23), whereas most of the analogues tested inhibit

11, 9-epoxymethano PGH2 to a greater extent than AA. (1.6 ng/ml

EP045 shifts 11,9-em PGH2 a dose ratio of 3 and AA with a dose ratio of

1.94.) It is likely that this is a direct action of EP043, although whether

this is due to inhibition of cyclo-oxygenase, or thromboxane synthetase,

or both, cannot be determined from this experiment.
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FIGURE 3.14: Dehydration of TXB2 when stored in. methanol.

COOH

OH
dehydrated in MeOH

COOH

derivatised—> MefBuOx,TMS.
V

GC- MS fragmentation

TMSO'
base peak 301 ion

OTMS

COOMe
436 ion

OTMS

OTMS
COOMe

no 526 ion was formed

OTMS

GC-MS fragmentation of TXB2Me, BuOx, TMS yields both 301 and 436
ions in the ratio of 19 : 1. However, the ratio of 301 : 436 ions in the inter¬
fering peak running before TXB2 is 8 : 1 showing a significant increase in
the amount of 436 ion present. Furthermore there is no evidence of any
ions of molecular weight greater than 436.
It is likely that some of the TXB2 stock has dehydrated when stored in
methanol. The loss of the hydroxyl would explain the absence of the
526 ion and the prodominance of the 436 ion. The lower molecular weight
of the dehydrated TXB2 would also explain the shorter retention time of
the interfering peak.
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EP035 also inhibits the synthesis of TXB2 by platelets. It has

been reported that agents which increase cAMP levels in platelets,

either directly or by inhibiting phosphodiesterase, inhibit both platelet

aggregation and internal contraction induced by AA released from

platelet phospholipids (262,263,264,265). This effect of cAMP can be

partly attributed to inhibition of phospholipase A2 but an additional

action of cAMP to inhibit the biosynthesis of TXA2 from AA has been

proposed (264,265), although it is still controversial (262,263). Since

AA is added exogenously in this experiment, the inhibition of phospho¬

lipase A2 by cAMP is not important. The finding that PGD2 and ZK36374

both inhibit TXB2 synthesis suggests that an increase in cAMP levels

will inhibit metabolism of AA; this is proposed to result from inhibition

of cyclo-oxygenase (265). The effect of EP035 is probably a result of

its action to stimulate adenyl cyclase, rather than a direct effect.

It is interesting that no compound completely inhibited the metabolism

of AA to TXB2. In fact, in most instances the inhibitory effect plateaued

at about 50-60% inhibition of synthesis. Experiments where high con¬

centrations of thromboxane synthetase inhibitors have been used should

perhaps be cautiously interpreted, as TXA2 synthesis may not be

abolished. It is thus advisable to measure the degree of inhibition of

TXA2 synthesis obtained with a given concentration of TXA2 synthetase

inhibitor.



CHAPTER IV

AA Induced Death in Rabbits
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INTRODUCTION

Countries of the western world have an especially high incidence

of thrombosis, thought to reflect the unwise dietary habits and stress¬

ful way of life. Originally, interest centred around the dietary intake

of fats, in particular the ratio of saturated to polyunsaturated fats.

This led to the finding that corn oil, which is the major ingredient of

margarine, and is composed predominantly of unsaturated fatty acids,

does not cause coronary thrombosis when fed to rats whereas butterfat

and lard, composed of saturated long-chain fatty acids, do (266a).

Furthermore, infusion of long-chain saturated fatty acids into dogs

causes extensive thrombosis and death (266b, 26.7) which does not occur

when unsaturated fatty acids or short-chain saturated fatty acids are

given.

Dietary studies in animals and man have shown that over a period

of 3-6 weeks on a diet which is rich in unsaturated or saturated fatty

acids, the dietary fatty acids are reflected in the platelet phospholipid

fatty acids. Since the nature of the fatty acids incorporated into the

platelet phospholipids will influence the relative amounts of the various

fatty acids released when the platelets are stimulated, this in turn will

determine the nature and amounts of the biologically active substances

formed as metabolites of these acids (268). Of the most common long-

chain saturated fatty acids, interest focussed on arachidonic acid as

mediator of these noxious effects. AA is a potent aggregating agent,

both in vitro and in vivo, and is rapidly incorporated into platelet

phospholipids and metabolised into TXA2 when released. The levels of

AA in human platelets can be raised by the ingestion of ethylarachidonale,

and these platelets are hypersensitive to aggregating agents (269).
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Unlike arachidonic acid, dihomo-y-linolenic (DLL) acid and eicosa-

pentaenoic acid (EPA) are not aggregating agents but inhibitors of

the second wave of aggregation (270). Although ordinarily DLL and EPA

are present in small amounts compared with AA, dietary supplementation

of these anti-thrombotic acids increases the relative amounts present in

platelet phospholipids. Oral administration of DLL leads to its rapid

incorporation into platelet phospholipids (271,272,273) which is reported

to inhibit platelet aggregation in the rat (263)(but not the rabbit (264))

induced by ADP or collagen. Similarly human platelet aggregation is

reduced by the ingestion of DLL (274,275).

This effect was originally attributed to the conversion of DLL to

PGEX which is a potent inhibitor of platelet aggregation and itself

protects against experimental thrombosis in the rabbit, when given

intravenously (276). In addition, the intermediate PGH! has been shown

to block platelet aggregation by raising cAMP levels (277,278) although

it has been suggested that non-enzymatic formation of PGE3 or PGDX

(from PGH) may be responsible for this effect (279). The assumption

that PGEX is responsible for the protective effect of DLL no longer seems

justifiable since it has been demonstrated that ll*C DLL is metabolised

by platelets to llfC 12 hydroxyheptadecadienoic acid (HHD) (279),

14C PGE-l being undetectable. HHD results from the conversion of PGH!

by thromboxane synthetase (280), and the formation of TXAx is so low

(281) that it has not been detected by some workers (282). It appears

that the protective effect of DLL results from its action as a competing

substrate, DLL being released from the phospholipids in place of AA,

and metabolised to HHD, rather than the potent aggregating agent TXA2.

EPA cannot aggregate platelets. Although both PGH3 and TXA3

are formed, they are reported to inhibit platelet aggregation by stimulating
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platelet adenyl cyclase (278). However, recent experiments suggest

that the formation of PGD3 and PGE3 by platelets (283) masks the true

aggregatory action of TXA3, as this is weak compared with TXA2 (284).

The additional conversion of EPA to PGI3 (278,283,285,286) which has

similar properties and potency to prostacyclin itself (287) suggests that

EPA could offer dietary protection against thrombosis (288). This has

been linked to the low incidence of myocardial infarction and increased

bleeding time in Greenland Eskimos whose diet is high in EPA and low

in AA, resulting in equal levels of AA and EPA in the platelet phospho¬

lipids .

Myocardial ischemia is thought to be related to abnormalities of

platelet function (289,290) where increased in-vivo aggregation (283)

may partly occlude coronary arteries, severely reducing blood flow.

This will result in decreased oxygen supply while the oxygen demand

is unaltered. Both myocardial ischemia and vasospasm are implicated

in cases of stroke, angina pectoris, myocardial infarction and sudden

death. The potent vasospastic constriction of arteries and aggregation

of platelets by TXA2, along with the significance attributed to AA in

the dietary studies, suggest a role for TXA2 in the pathogenesis of these

diseases.

Certainly a stable analogue of TXA2, carbocyclic thromboxane A2

(CTA2) has been shown to induce severe coronary vasoconstriction

and coronary vasospasm which leads to sudden death in rabbits within

10 minutes (292). Similarly, experimental stroke and heart attack

induced by TXA2 is prevented by the thromboxane antagonist EG626.

Although experimental models where a bolus of TXA2 is added exogen-

ously are rather extreme, myocardial ischemia is associated with

dramatically increased TXB2 concentrations (293) and when induced by
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ligation of the coronary artery, myocardial ischemia was prevented by

the TXA2 antagonist, pinane TXA2 (294). Similarly, aspirin inhibits

the early myocardial release of TXB2 and the associated ventricular

ectopic activity following acute coronary occlusion in dogs (295).

Patients with arterial thrombosis, deep vein thrombosis or recurrent

venous thrombosis show an increased production of PG endoperoxides

by their platelets in vitro (296). Such an increase is also reported in

patients who have survived myocardial infarction (297) and this is

associated with an increase in the sensitivity of the platelets to the

thromboxane mimic 11,9-epoxymethano PGH2. A similar increase in

sensitivity to this mimic was found in platelets from patients with angina

pectoris (298) and increased TXA2 production in pacing-induced angina

(299). Although these patient studies are still limited, they do suggest

a correlation between platelet hyperactivity and thrombo-embolic episodes.

Several animal models, which produce an experimental condition

similar to thrombosis, have been described. Basically, these involve the

measurement of the formation of intravascular thrombi. This can be

achieved indirectly by continuously measuring platelet count which will

fall in response to intravascular aggregation and adhesion. A continuous

recording of platelet count can be obtained by passing blood from the

carotid artery directly through an autocounter (300). Direct measure¬

ment of platelet aggregates can be achieved by allowing a thrombus to

develop, on a thread inserted into an extracorporeal shunt (301) or on

a strip of collagen tissue superfused by the blood (302). Here the

weight of the thrombus determines the degree and rate of thrombus

formation. Alternatively, thrombus formation can be studied micro¬

scopically as in the microcirculation of the hamster cheek pouch (303) or

by trapping the thrombi onto a porous disc through which single platelets
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and other blood components can pass (296). In these experiments

thrombus formation can be induced by aggregating agents (300), a

mild electrical current (303,305,306) or by contact with a pro-aggregatory

surface (302,304,307). However, since no drugs are available which

reliably prevent either arterial or venous thrombosis, the relevance

of these animal models in assessing potential anti-thrombotic agents

cannot be established. The major difficulty is the choice of aggregatory

stimulus because the actual stimulus for thrombus formation in vivo is,

as yet, unknown.

AA given intravenously to rabbits produces acute pulmonary

thrombosis leading to sudden death within 2-5 minutes (308). Since

fatty acids closely related to AA do not produce this phenomenon (308,

309) and AA-induced death is inhibited by aspirin (308,310,311), it is

unlikely that a non-specific detergent action of AA is responsible (312).

Indeed it is probable that TXA2 is responsible for the pathophysiologic

events leading to sudden death, as is suggested for the acute thrombo¬

cytopenia and fall in blood pressure observed with lower doses of AA

(313). In this section the effects on AA-induced death of intravenous

infusions of EP035, EP037, EP045 and EP092 to rabbits have been studied.

EP035, EP045 and EP092 protect against death when given 2 minutes

before the dose of AA. This protective effect is lost in 15 minutes.

EP037 affords minimal protection; indeed, a weak agonist action is

evident with the doses given. The lethal effects of AA are suggested to

be due to its conversion to TXA2, as both the thromboxane synthetase

inhibitor UK-37,248-01 and the thromboxane antagonists EP035, EP043

and EP092 afford protection.
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MATERIALS AND METHODS

Preparation of drugs

Arachidonic acid was purified as mentioned in Chapter III.

Initially a 0.9% saline solution of AA was made from a stock solution of

10 mg/ml AA in ethanol. The saline solution of 1 mg/ml AA contained

10% ethanol and required two drops of molar NaOH to form a true

solution. Infusions of saline containing 10% ethanol and NaOH as well

as oleic acid containing 10% ethanol and NaOH were performed as

controls. In later experiments a titration procedure was used to allow

AA to go into solution in saline without any ethanol. The sodium salt

of AA was made by adding 10% more molar NaOH than is required for

complete neutralisation of AA. The ethanol was removed by evaporation

under a N2 jet, then the residue dissolved in 0.9% saline and the

solution warmed to 40°C for a few minutes.

The analogues were prepared as sodium salts and dissolved in

0.9% saline as above. Indomethacin (Merck, Sharp and Dohme) was

dissolved by sonication at room temperature in 0.05M sodium hydroxide

potassium phosphate buffer (pH 8). A buffer control was performed.

UK-37,248-01 was dissolved in saline; although this compound is very

water soluble it precipitates out of solution at neutral pH.

Experimental procedure

Adult male rabbits, weighing between 2-3 kg where possible, were

anaesthetised with 6 ml/kg of a 25.%.urethane solution. The trachea was

cannulated. The carotid artery was cannulated with a polythene

catheter filled with 0.9% saline and 100 u/ml heparin. This was attached

to a transducer for the recording of arterial blood pressure. Calibration

of the blood pressure was achieved using a mercury manometer. The

ear vein was used for the intravenous infusion of drugs; the butterfly
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needle which was used for infusion of the anaesthetic was kept patent

by flushing with a 10 u/ml solution of heparin.

In some experiments a small coil was attached to the skin of the

animal's chest and connected to a force transducer. This gave a crude

measure of respiration.

The animal was left for one hour after surgery. Drugs to be

tested were infused intravenously (i.v.) 2 or 15 minutes before the

infusion of AA. Indomethacin was the only drug to be given intra

peritoneally (i.p.) and was allowed to act for 1 hour before the addition

of AA.

RESULTS

0.3 mg/kg AA infused i.v. for 1 minute caused severe respiratory

distress and a precipitous fall in blood pressure characterised by a

reduction in pulse pressure; death occurred within 2 minutes in 40%

of the animals. With 1 mgYkg AA similar effects were seen but the

mortality rose to 75% (Table 4.1).

Typical traces are shown in Fig. 4.1. Oleic acid and ethanol

controls are also shown. When respiration was measured, it was found

to increase markedly after the infusion of AA, for example from 216-240

breaths/minute. These respiratory effects precede the fall in blood

pressure very slightly (Fig. 4.2).
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blood pressure blood pressure

1mg/kgAA
(Imini.v. infusion)

FIGURE 4.1: Control responses to AA, oleic acid and saline/methanol
on rabbit blood pressure.
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FIGURE 4.2: The effects of an intravenous infusion of AA on both
rabbit blood pressure and respiration rate.
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TABLE 4.1: Mortality in rabbits infused with two concentrations
of AA

Concentration
of AA (mg/kg)

Weight of
rabbit (kg) Death Survival Mortality

2.40
2.36
2.30

+

+

+

0.3
3.00
2.04
4.00

+

+

+
3/'8

2.48
2.68 +

+

3.80
2.98
2.30

+

+

2.40
2.30
3.00

+

+

+

1.0

2.48
4.00
2.80

2.15
3.27
2.92

+

+

+

+

+

+

13
'
17

3.00
2.60
2.40

+

+

+

2.20
2.40

+

+

The results of infusion of the analogues 2 minutes before the

addition of AA are given in Table 4.2. EP037 (5 mg/kg) did not

protect against AA-induced death. Indeed, in this concentration it

showed marked agonist activity causing a fall in blood pressure and

considerable respiratory distress. An infusion of 10 mg/kg EP037 was

lethal (Fig. 4.3). EP035, EP045 and EP092 protect against AA-induced

death, in concentrations of 1-5 mg/kg. This protective effect is lost



TABLE4.2:SurvivalofrabbitspretreatedwithEP035,EP037,EP045andEP092twominutesbeforean infusionofAA(1mg/kg)
Weightof rabbit(kg)

Analogue

Concentrationof analogue(mg/kg)
Concentration

ofAA(mg/kg)
Death

Survival

%survival

2.20

EP035

0.5

1.0

+

-

2.43

0.5

1.0

+

33.3

2.15

0.5

1.0

+

2.25

EP035

5.0

1.0

+

2.20

5.0

1.0

+

100

2.10

5.0

1.0

+

2.30

EP037

5.0

1.0

+

2.20

5.0

1.0

+

33.3

2.04

5.0

1.0

+

2.26

EP037

10.0

0

+

>0

2.14

EP045

0.5

1.0

+

2.46

0.5

1.0

+

33.3

2.70

0.5

1.0

+

2.20

EP045

1.0

1.0

+

2.40

1.0

1.0

+

100

2.30

1.0

1.0

+

2.39

EP045

5.0

1.0

+

2.40

5.0

1.0

+

100

2.54

5.0

1.0

+

2.70

EP092

0.5

1.0

+

2.65

0.5

1.0

+

33.3

2.44

0.5

1.0

+

2.63

EP092

2.0

1.0

+

3.45

2.0

1.0

+

100

2.54

2.0

1.0

+
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blood pressure
mmHq
125

01
5mg/kg EP037 1mg/kgAA
(2 min.i.v. infusion) (1 min. i.v. infusion)

mmHg
100r-

o1-

10mg/kg EP0B7
animal died before the 2 min. i.v. infusion was complete

FIGURE 4.3: The agonist action of EP037 when infused intravenously
into rabbits (5-10 mg/kg).
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blood pressure

mmHg
100i—

0 5mg/kg EP045
(2min. i.v. infusion)

1mg/kg AA
(1min. i.v. infusion)

mmHg
125i—

25'—
1mg/kg EP 0A5
(1 min. i.v. infusion)

1mg/kg AA
(1 miniv. infusion)

mmHg
125r

25

05mg/kg EP045 1mg/kgAA
(1 min. i.v. infusion) (1 min. i.v infusion)

FIGURE 4.4: Protection against AA-induced death in rabbit with
various concentrations of EP045.
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with doses of less than 1 mg/kg and is also lost if AA is infused

15 minutes rather than 2 minutes after infusion of the analogue. Typical

traces are shown in Fig. 4.4. Although both 1 mg/kg and 5 mg/kg

EP045 afford 100% protection against AA-induced death, the traces show

that distress to the animal is mudh more severe with the lower dose of

EP045. The fall in blood pressure observed, when protected against

AA-induced death, is similar to that obtained following intravenous

injection of PGE2 or I2 (Fig. 4.5) as there is no diminution in pulse

pressure.

Both the cyclo-oxygenase inhibitor indomethacin (0.042-0.125 mg/

kg i.p.) and the thromboxane synthetase inhibitor UK-37,248-01

(2 mg/kg i.v.) protect against the lethal effects of AA. This effect

of indomethacin is lost when the dose is lowered to 0.0125 mg/kg

(Table 4.3).

TABLE 4.3: Protective effects of indomethacin and UK-37,248-10 against
AA-induced death

Weight Concentration Concentration
of rabbit of inhibitor of AA
(kg) Inhibitor (mg/kg) (mg/kg) Death Survival

2.30 indomethacin 0.125 1.0 +

2.08 0.125 1.0 +

2.30 0.125 2.0 +

2.18 indomethacin 0.042 1.0 +

2.00 0.042 1.0 +

2.09 0.042 2.0 +

2.70 indomethacin 0.0125 1.0 +

2.15 UK-37,248-01 2.0 1.0 +

2.20 2.0 1.0 +

2.35 2.0 1.0 +
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blood pressure
mmHg
12Sr-

25
1jjg PGI2

drugs were given as bolus injections

2ug PGI2 ^ug PGI2 5jjg PGI2

FIGURE 4.5: The effects of intravenous injections of PGE2 and
PGI2 on rabbit blood pressure.



111.

DISCUSSION

Although experimental evidence suggests that increased sensitivity

to the AA metabolite TXA2 may contribute to the platelet hyperactivity

and vasospasm which are evident in pathological conditions such as

thrombosis or sudden death, it does not indicate that AA is the causal

factor responsible for intravascular platelet aggregation. The experi¬

mental model of AA-induced death in rabbits is not intended to mimic

the pathological condition of sudden death. Since AA constitutes only

2.5% of the non-esterified fatty acid pool in the blood stream (314), if

AA acts as a trigger in vivo, it is probable that another agent will

stimulate its release from endogenous phospholipid stores where AA is

abundant (315).

Since the analogues tested are thromboxane antagonists, they will

be useful anti-thrombotic agents only if AA and thus TXA2 play a

prominant role. However, it is not known which experimental model, if

any, most closely resembles the pathological condition of thrombosis,

so it was thought that AA-induced death was a good test for in-vivo

activity of these analogues. If the analogues protect against such an

extreme situation where AA swamps the system, they will probably be

useful agents if excessive TXA2 production is causally related to thrombosis.

EP035, EP045 and EP092 (1-5 mg/kg) all exhibited in-vivo activity

and protected against AA-induced death. This action was short lived

as it was lost within 15 minutes of the infusion, suggesting rapid

metabolism of these compounds in the body. Unfortunately, there was

not sufficient EP043 to use in these experiments. Using this rabbit

model, EP037 appears to be a weak partial agonist. In concentrations

of 5-10 mg/kg EP037 exhibited an agonist action (a marked fall in blood

pressure and respiratory distress), the higher proving lethal. Indeed,
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Dr. R.L. Jones has found that on sensitive preparations of the rabbit

aorta EP037 can elicit a very weak contractile effect. This is no more

than 5% of the maximum response.

The discovery that both thromboxane antagonists and the

thromboxane synthetase inhibitor UK-37,248-01 protect against the

lethal effects of AA, support the suggestion that the metabolism of AA

to TXA2 is required for this activity. EP035, EP045 and EP092 will

antagonise both the vasoconstrictor and aggregatory actions of TXA2.

However, the vasospastic action alone of TXA2 may be sufficient to

induce sudden death as the potent vasoconstrictor carbocyclic TXA2

can induce sudden death in rabbits even although it inhibits rather than

aggregates platelets (292). Indeed strips of the rabbit intrapulmonary

artery have been found to rapidly metabolise exogenous AA to TXA2,

which contracts the tissue (316). Previously it was thought that

vascular tissues metabolised AA almost exclusively to prostacyclin and

that platelets were responsible for the metabolism of AA to TXA2. The

additional action of TXA2 to aggregate platelets probably accounts for

the rapidity of its effects; death being induced within 2 minutes, rather

than 10 minutes when vasoconstriction alone is responsible.

The protective effects of EP035, EP045 and EP092 are particularly

encouraging as rabbit platelets are less sensitive to those antagonists

than human platelets (Fig. 4.6). Originally, rats were used in this

model but they proved to be relatively insensitive to the lethal effects

of AA, requiring at least 5 mg/kg AA compared to 1 mg/kg with the rabbit.

The resistance of rats to AA induced mortality has recently been related

to the failure of rats to produce large amounts of TXA2 in response to

AA infusion (316).
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The Binding of 3H 9,11-epoxymethano PGH.,
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INTRODUCTION

The first successful proposal for a general theory of drug action

was made by Clark, that stimulant drugs occupied specific receptors

and that the response depended on the proportion of receptors occupied

(317,318). Receptors were postulated to be specific molecular sites or

structures in (or on) an effector cell, with which molecules of a specific

agonist must react in order to elicit the characteristic response of the

cell to the agonist. The Langmuir isotherm relationship developed for

the adsorption of gases on metals was found to apply to many enzyme

concentration velocity curves and Clark extended this mass law relation¬

ship to the action of drugs.

Subsequently, Gaddum extended this approach to the action of

antagonists which he supposed to fill a receptor site without activating

it (319). The parallel shift to the right in the log dose-response curve

for an agonist, produced by an antagonist, was explained by competition

between the antagonist and agonist, the agonist being able to physically

displace the antagonist from the receptors. However, experimental

evidence suggested that the antagonist was not being displaced and

even when 90-99% of the receptors were occupied, a maximum response

could be elicited if sufficient agonist was added. This led to the concept

of spare receptors and the suggestion that an agonist need occupy a

small fraction of the receptors to produce a maximum response (320).

In competitive antagonism, agonist and antagonist presented simultaneously

in solution are now thought to compete for receptors to the exclusion of

the other; the response determined by the concentration of the two

drugs and their relative affinity constants.

Since mass law equations applied to drug antagonism refer to

events on receptors rather than observable responses, it is necessary
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to postulate some relationship between receptor activation and response.

Usually the limited assumption has been made that an agonist must

occupy the same number of receptors in the presence or absence of an

antagonist to produce a given response. This useful assumption has

led to the use of the dose-ratio (the ratio of the concentrations of

agonist in the presence and absence of antagonist to produce a given

response) to estimate the affinity constant (Kg) of an antagonist for

a particular receptor.

Kg values help the classification of drugs according to the

receptors on which they act. If the use of different agonists give the

same Kg value for a particular antagonist on a given tissue, it is strong

provisional evidence that the agonists act on a common receptor. This

is a consequence of the mass law and applies whatever the affinity or

efficacy of the agonist. Also, comparison of receptors in different

tissues which are activated by the same agonist can be made by comparing

Kg values for a common antagonist.

Although methods have been described to measure the affinity

constant of an agonist (321), it is customary to use equipotent molar

ratios as a measure of the effectiveness of different agonists at a given

receptor. This is a much more useful concept as the response of an

agonist is dependent on both the affinity and the efficacy of a drug,

where efficacy is a measure of the effectiveness of the drug-receptor

complex (322). (Antagonists are thought to have zero efficacy.)

The equipotent molar ratio is used to compare the relative potencies of

different agonists at a given receptor site. It is the ratio of the con¬

centration of one agonist compared to another agonist, required to

produce the same response. These equipotent molar ratios can be used

alongside antagonist Kg values in the classification of receptors.
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It is only relatively recently that the existence of drug receptors

could be demonstrated directly, rather than deduced from pharmacological

experiments. This advance was a result of the development of receptor-

specific, radio-labelled ligands which have enabled binding to receptor

sites to be studied directly. The general approach has been to study

the physiochemical interaction between the radio-labelled ligand and the

plasma membrane either in the intact cell or in an isolated membrane

preparation. However, a number of basic criteria must be fulfilled before

this binding can be said to represent selective binding to the receptor

in question. These are:

1. specificity: concentrations of drugs which are pharmacologically

effective at this particular receptor should displace the saturable

component of binding, while pharmacologically effective concentra¬

tions of drugs acting at different receptors should be ineffective.

Known steric and structure-activity relationships should be complied

with, and the receptor should have a high affinity for the radio-

labelled ligand consistent with the sensitivity of the tissue to the

ligand.

2. saturability: a component of the binding should saturate with

increasing concentration of the radio-labelled ligand, since the

number of receptors is finite.

3. distribution: the saturable component of the specific receptor

binding should be restricted to those tissues which are known to

show the appropriate pharmacological response.
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Although binding studies of 3H PGI2, 3H PGEX and 3H PGD2

to both whole platelets and to platelet membrane preparations have

been reported (207-211), there have been no reports of tritiated

PGH2 or TXA2 binding studies. As TXA2 is very acid labile, having

a half-life of about 30 seconds, a number of stable compounds have

been developed (120-130) which mimic the biological actions of TXA2,

perhaps by interaction with a common, receptor.

To provide further information on this matter, a radio-labelled

thromboxane mimic, 3H 9,11-epoxymethano PGH2 was prepared, and its

binding to whole platelets studied (323). Although it would be more

desirable to study the binding of 3H TXA2 itself, classical binding

studies would be hampered by its instability. In this section the

preparation of this radio-labelled ligand and the development of a

binding assay for whole platelets is described. The difficulties in inter¬

preting binding data, Scatchard analysis and displacement experiments

are discussed. Possible ways of improving these binding studies to

make the results more meaningful are proposed.

MATERIALS AND METHODS

Preparation of 3H 9,11-epoxymethano PGH2 (by Dr. R.L. Jones
and N.H. Wilson)

15-oxo-9,11-epoxymethano PGH2 was prepared from natural

PGA2 (324) by tosylation and base cyclisation (Fig. 5.1) and supplied

to Amersham Radiochemical Centre for reduction with tritiated sodium

borohydride (NaBHO. This is achieved by first taking up the compound

in 3-4 ml ethanol then cooling to -20°C. Excess solid 3H NaBH^ (1 Ci

at } 20 Ci/mmol) is added and the reaction mixture left for 30 minutes

at -20°C followed by 30 minutes at room temperature. 50 ml of distilled

water are added and the pH taken to 4 with dilute hydrochloric acid,
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Zone I is 15(R) 3H 9,11-epoxymethano PGH2
Zone II is 15(S) " " "

FIGURE 5.2: Radio TLC of 3H 9,11-epoxymethano PGH2
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before partitioning twice with 50 ml of diethyl ether. This is evaporated

to dryness and the residue vacuum dessicated. The residue was

stored in methanol at -20°C by Amersham and 25 m Ci batches of the

crude product sent when required.

The crude 3H 9,11-epoxymethano PGH2 was separated into the

15(R) and 15(S) forms by liquid-gel partition chromatography. A N1114-

20% LH20 Lipidex column (70 ml) was used and eluted with 100/100/5

hexane/dichloroethane/ethanol containing 0.1% acetic acid. Fractions

25, 26, 27 (4 ml) inclusive were pooled as zone I and fractions 34, 35,

36, 37 inclusive as zone II. The small peak in fractions 21/22 could be

13,14 dihydro material or some residual 15-oxo-9,11-epoxymethano PGH2

(Fig. 5.2).

Analysis by radio TLC showed that zones I and II ran as two

distinct peaks, zone II running coincident with 15(S) 9,11-epoxymethano

PGH2. Testing of zone II on the rabbit aorta showed contractile

activity similar to 11, 9-epoxymethano PGH2. On the dog saphenous

vein, zone II showed activity equivalent to 16 ng/ml 9,11-epoxymethano

PGH2. This value gave an estimate of 13.9 Ci/mmole for the specific

activity of 15(S) 3H 9,11-epoxymethano PGH2 (zone II). The value

agreed with that determined by GLC-MS analysis, where the methyl

ester, TMS ether of zones I and II were prepared and 200 ng samples

injected and full mass spectra obtained to allow estimations of the

tritium/protium content (Table 5.1, Fig. 5.3).
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TABLE 5.1: Estimation of the specific activities of both 15(S) and
15(R) 3H 9,11-epoxymethano PGH2 by GLC-MS

Fragment
ion Assignment

Protium / tritium
intensities

tritium

protium + tritium
ratio

15(R)
zone I

365/367
275/277
199/201

M-71
M-71-90
w chain

10.8/14.2
11.3/15.0
19.6/12.3

sum= 41.7/41.5 0.445

15(S)
zone II

365/367
275/277
199/201

M-71
M-71-90
oj chain

13.2/18.8
16.4/21.6
32.9/22.2

sum= 62.5/62.6 0.500

15(S)
again

365/367
275/277
199/201

M-71
M-71-90
a) chain

17.6/23.5
19.0/24.0
42.6/29.5

sum= 79.2/77.0 0.493

mean = 0.496

Amersham reduction allows a maximum specific activity of 28.9 Ci/m atom.

.'. specific activity of 15(R) = 28.9 x 0.445 = 12.9 Ci/mmole
specific activity of 15(S) = 28.9 x 0.496 = 14.3 Ci/mmole.

Binding studies

Reagents used:

1. CPD - for 100 ml - 0.33 g citric acid
2.63 g sodium citrate
0.22 g monosodium phosphate
2.55 g dextrose

2. platelet medium - for 10 litres - 81.82 g sodium chloride
3.73 g potassium chloride
9.01 g glucose
12.08 g citric acid
5.88 g sodium citrate

adjusted to pH 7.5 with 2 M Tris (121.14 g Tris/500 ml).
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Method:

100 ml of blood was withdrawn from the antecubital vein of

healthy volunteers into 14 ml CPD and centrifugea at 160 g for 20

minutes. The platelet-rich plasma was collected and treated with

indomethacin (10~5M) to inhibit TXA2 production, and PGEx (1.7 x

lO^M) to prevent aggregation by the thromboxane mimics. The PRP

was further centrifuged at 1600 g for 10 minutes and the resulting pellet

suspended in platelet medium to give a final platelet count in the region

of 5 x 10s platelets/ml.

A stock solution of 500 ng7ml : 4 aCi/ml 3H 9,11-epoxymethano

PGH2 15(S) was prepared in methanol and appropriate amounts dispensed

into Eppendorf tubes and blown dry. 1 ml of platelet suspension was

added to each tube, six tubes at a time, the tubes whirlimixed then

incubated at room temperature for a given period of time. Incubation

was terminated by centrifugation in an eppendorf centrifuge at 15000 g

for two minutes. The supernatant was removed rapidly and added to

scintillant (10.5 g PPO to 1.5 1 toluene and 900 ml 2-ethoxy ethanol)

to be counted later. Any remaining supernatant was cleaned from the

pellet with a cotton bud. The pellet was digested with hyamine hydroxide

(1M) (Fisons) by incubation at 50°C for 5 minutes. A few drops of 2M

hydrochloric acid were added to each tube and the pellet was transferred

to scintillant. The acid serves to neutralise the strong alkali (hyamine

hydroxide) and prevents chemiluminescence interfering with the liquid

scintillation counting.

Both supernatant and pellet samples were counted for 10 minutes.

In displacement experiments prostaglandins and analogues were added

in saline simultaneously with the platelet suspension at the start of the

incubation.
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Determination of platelet count

Reagents used:

Solution A - for 100 ml - 1 g sodium citrate
0.002 g mercuric chloride
0.2 g brilliant cresyl blue
warmed to 45°C.

Solution B - for 100 ml - 20 g urea

Method:

Platelet count was determined by the cresyl blue dye method.

Equal volumes of solutions A and B were mixed and filtered. 50 ul

platelet-rich plasma was added to 1 ml of the dye mixture, and samples

were taken up by a glass capillary and used to fill both counting

chambers of a haemocytometer. This was left to sediment for 15 minutes

inside a petri dish containing moist filter paper. Each counting chamber

was marked with squares and the number of platelets in 5 squares,

usually four corner and one middle, were counted. The mean value of

the number of platelets estimated from the 2 counting chambers was

multiplied by lO1* and taken as the number of platelets per ul of platelet

rich plasma.

Liquid scintillation counting

Both supernatant and pellet samples were added to 10 ml PPO

scintillant and counted for 10 minutes using a Philips PW4540 liquid

scintillation analyser. This gave a value of counts per minute (cpm)

for each sample. Sample cpm were corrected to disintegrations per

minute (dpm) by correcting for the amount of quenching in the sample.

Biological samples frequently exhibit chemical and colour quenching

where the maximum photon yield for a given radioactive source is not

achieved due to sample inhomogenity, adverse energy transfer and
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non-transparency of the liquid scintillator to the photon emitted.

Correction for quenchingis achieved by determination of the efficiency

of counting for each sample. Efficiency is defined as the ratio of the

observed cpm to the true dpm.

To determine the efficiency of counting the scintillation counter

machine constants were first determined by constructing a quench

curve where a calibrated tritium standard, 3H hexadecane, was used

to provide a known number of dpm, and the cpm were determined at

different levels of quenching, where chloroform (CHCL3) was used as

the quenching agent (Table 5.2).

TABLE 5.2: Quench curve protocol

Ul Chloroform DPM
Vial No. added added

1 -

2/3/4 - 85300

5/6/7 20 "

8/9/10 50 "

11/12/13 100 "

14/15/16 200 "

17/18/19 500 "

20/21/22 1000 "

The quench curve is plotted by measuring efficiency of counting,

cPm/dpm (y axis) against ratio (x axis). Either sample channel's

ratio or external standard ratio was used. The quench curve is

described by the equation y = k0 + kxx + K2x2 where K0, Kx and K2

are constants. Typical quench curves and the values of K0, K x and K2

for these are given in Fig. 5.4. These constants are used to determine

the efficiency of counting in each sample so that the dpm could be

calculated.
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Kq =44-344
Ki =-41-327
K2 =0-754

J l I
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5.4: Typical quench curves for tritium where chloroform is used
as the quenching agent.
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RESULTS

The tritiated thromboxane mimic was found to have a specific

activity of 13.9 Ci/mmol. Due to the limited number of specific binding

sites usually present it is desirable to work with a ligand of as high

specific activity as possible. The method used here to prepare 3H

9,11-epoxymethano PGH2 from natural PGA2 has the disadvantage that

only one tritium can be incorporated into each molecule of 9,11-epoxy¬

methano PGH2: the more tritium atoms present in each molecule, the

greater the specific activity of the ligand. Although tritium labelling

always affords ligands of low specific activity compared to those con¬

taining radioactive iodine (125I), the labelled product is usually

indistinguishable biologically from the unlabelled, whereas biological

activity is often reduced with mono+-k>dinate4, and lost altogether with

di-iodinated compounds.

To test for binding of 3H 9,11-epoxymethano PGH2 to platelets,

it was decided to look initially for binding to whole platelets. Particulate

preparations have the advantage that they enable bound and free ligand

to be separated, both quickly and easily, by centrifugation. Separation

is begun while the binding reaction is at equilibrium and it is essential

to use a separation technique which minimises the dissociation of the

receptor-ligand complexes, particularly if this dissociation is rapid.

Here separation was achieved by centrifugation in an eppendorf

centrifuge at 15000 g for 2 minutes. The supernatant was removed

rapidly with a pasteur pipette and any remaining supernatant was

cleared from the pellet with a cotton bud. This allowed the bound and

free ligand to be completely separated within 3-4 minutes, as a maximum

of 6 samples were processed at any one time. Although centrifugation

procedures have the disadvantage of less efficient washing of the
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particulate pellet, as compared to filtration techniques, they have the

advantage that a much more rapid separation can be achieved.

Incubation of the washed platelet suspension with a fixed con-

concentration of 3H 9,11-epoxymethano PGH2 (0.07 |iM) for increasing

lengths of time indicated considerable binding of 9,11-epoxymethano

PGH2 by platelets. The amount of 3H 9,11-epoxymethano PGH2 bound

plateaued within one minute and remained approximately at this level

for 6-8 minutes after the start of the incubation, when the level began

to fall slightly (Fig. 5.5). This binding could be rapidly displaced by

an excess of non-radioactive 9,11-epoxymethano PGH2 (11.42 |iM).

The number of specific binding sites and the affinity of the ligand

for these binding sites can be determined by incubating various con¬

centrations of the ligand with a fixed number of platelets. The con¬

centration of the ligand can be increased either by increasing the

amount of radioligand added and so increasing the number of cpm added

or by adding a fixed amount of radioactivity and increasing amounts of

unlabelled ligand, which effectively increases the ligand concentration

by diluting the specific activity of the radioligand (325). In the

preliminary Scatchard analysis, experiments were performed using the

first of these two methods.

The simplest condition occurs when one molecule of the ligand

binds to one receptor site, the binding sites being identical and non-

interacting, and the ligand is present in excess so that its free con¬

centration does not change significantly during the course of the binding

reaction.
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Each result is the mean and standard error of 10 observations.

FIGURE 5.5: Time course of binding1 of 3H 9,11-epoxymethano PGH2
to whole platelets.
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+ C ^ Ct,-. where C„ = molar concentration
of ligand occupied
sites

Cg = concentration of
free sites

Cg = concentration of
free ligand

CBL

CB x CL
The association constant K =

Let C°g = total concentration of binding sites

then K =
CBL

(C°B ~ CBL^CL

CBL
K (C°B - CBL> = —

L

CBL

C°BKCL n
CBL

1 +kcl

The Scatchard plot of /Cg (y axis) against Cgg (x axis) is
a straight line if K is a constant (326). The equilibrium dissociation

constant (Kg) is estimated as the negative reciprocal of the slope (K)
Cbt,

of the line of best fit. The intercept on the x axis (where /Cl
is zero) gives C0g the number of binding sites. The Scatchard plot

gives a value for both the equilibrium dissociation constant of the ligand

and the number of ligand binding sites. The same binding curve would

be obtained if there were more than one binding site per receptor

provided that the sites are non-interacting.

The Scatchard plot for a system with two classes of distinct

binding sites is described by the equation:

(CBL)t = <cVi Kl°L + <CV2 KZ°L
1+kl cg 1+k2cl

The plot is now curvilinear rather than linear, and the two asymptotes

can be used to derive the dissociation constants for both binding sites

as well as the number of both classes of binding sites.
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Since the amount of fresh human blood available was restricted

due to the limited number of donors, binding of 3H 9,11-epoxymethano

PGH2 to fresh platelets was compared to binding to platelets obtained

from the Blood Transfusion Unit, Royal Infirmary of Edinburgh, which

were a maximum of 24 hours old. 3H 9,11-epoxymethano PGH2 in

concentrations of 0.86-7.14 nM, was incubated with 1 ml of the platelet

suspension for 4 minutes at room temperature. Table 5.3 gives the dpm

bound, for both types of platelets, over this concentration range.

TABLE 5.3: The binding of 3H 9,11-epoxymethano PGH2 to both
fresh and 24-hour platelets

Concentration of 9,11-epoxymethano PGH2 (nM)
0.86 1.72 3.57 7.14

of fresh "platelets"11 1824 ± 247 2631 * 213 3998 1 169 6173 1 100

b°unc[ 1 ml 5235 ± 616 7259 ± 536 10669 ± 885 14106 ± 812of 24-hr platelets

These values represent the mean and standard error of 18 values,
3 donors.

Although considerably more 3H 9,11-epoxymethano PGH2 was bound by

the 24-hour platelets this will reflect the higher platelet count (mean

of 5.4 x 108 platelets/ml compared to 2.62 x 108 platelets/ml) rather than

a greater capacity to bind 9,11-epoxymethano PGH2. Since the binding

of 9,11-epoxymethano PGH2 followed a similar pattern with both types

of platelets (Fig. 5.6), 24-hour platelets have been used throughout this

study so that sufficient platelets were available to study binding over

a much wider range of concentrations.

For Scatchard analysis of this binding, increasing concentrations

of 3H 9,11-epoxymethano PGH2, ranging from 0.86 to 23.14 nM, were
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0 2 4 6 8 10
concentration of 9,11-epoxymethano PGH2 (nM)

Each result is the mean and standard error of 18 observations,
2 donors.

FIGURE 5.6: Comparison of binding of 3H 9,11-epoxymethano PGH2 to
fresh and 24-hr platelets.
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incubated for 4 minutes at room temperature with 1 ml of the platelet

suspension. The dpm bound were converted into moles of 3H 9,11-

epoxymethano PGH2 bound (specific activity of 13.9 Ci/mmole is

equivalent to 13.9 x 2.2 x 106 dpm/n mole, i.e. 30,600,000 dpm/n mole)

and divided by the platelet count to obtain the number of f moles bound/

108 platelets. The values of 9,11-epoxymethano PGH2 bound over this

concentration range are given in Table 5.4.

Ideally, radioligand binding studies should be performed so that

at equilibrium less than 10% of the added radioligand is bound to the

tissue (327). A loss of up to 10% of the added radioligand concentration

will not significantly affect the estimation of binding constants if it is

assumed that the added radioligand concentration is equal to the actual

free concentration at equilibrium. The free concentration of 9,11-

epoxymethano PGH2 was in fact measured and was very close to that

added. Indeed, in some cases (over) correction for quenching gave a .

final value slightly greater than the concentration added. Comparison

of the dpm bound to the dpm added, over this concentration range,

showed that 5.8- 10.6% of the total counts were bound. A Scatchard

plot of bound/free versus bound is shown in Fig. 5.7. Free is taken as

the concentration of 9,11-epoxymethano PGH2 added. Scatchard analysis

yielded a hyperbolic plot indicating two types of binding. The higher

affinity site has an equilibrium dissociation constant of 1.82 nM and a

capacity of 570 sites per platelet. The lower affinity binding was non¬

saturable and was thought to reflect linear concentration of the lipo¬

philic ligand in the platelet.

These results were expressed in the form of a Michaelis-Menten

plot (bound against free) to check if the binding curve could be

explained as the sum of a hyperbola (binding to a limited number of



TABLE5.4:Scatchardanalysisoftheconcentration-dependentbindingof3H15(S)9,11-epoxymethanoPGH2bindingtowholehumanplatelets Concentrationsof3H15(S)9,11-epoxymethanoPG1I2added(nM) 0.861.702.503.577.1410.7114.2919.2823.14
PPH31-4843-9354•2064-5785-37120.20142.40199.40280.80
(fphdelets)±3'70±3'24±4'22±5'35±4'94±8'00±7"80±3°«°° Bound/36.6425.8421.6818.0911.9011.209.9610.3312.10 free(added)+4.30+1.90+1.70+1.50+0.70+0.74+0.03+0.55±1.30 Thesevaluesrepresentthemeanandstandarderrorsof24results,6donors.
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sites) and a linear component (Fig. 5.8). If the point (23.14, 280.8)

is omitted, the other points fit this explanation. The plot of Cgg
(y axis) against (x axis) is described by the Michaelis Menten

equation:

CBL
C°BCL
K +CTD L

where Cgg is the molar concentration of ligand occupied sites, C°g
the total number of binding sites, Cg the concentration of free ligand

and Kg the equilibrium dissociation constant. This equation can be

rearranged to give:

C°BCL
KD " ~ ~ CL

BL

C °D
when /Cgg is two, i.e. when half the total number of binding
sites are occupied, Kg is equal to Cg, the concentration of ligand

required to occupy 50% of the binding sites. The equilibrium dissocia¬

tion constant (Kg) estimated from this hyperbola is 1.7 nM.
However, it is not necessarily correct to ignore the last point

(23.14, 280.8). When one or more points appear atypical, perhaps

due to error in experimental technique or measurement, methods have

been described to give these points little credance when analysing

Scatchard data so that the values estimated for the number of binding

sites and the dissociation constant will not be greatly affected by

these points (328, 329). This appears to be a slightly misleading

practice in cases where these atypical values represent a 'real effect',

as will be shown later for 9,11-epoxymethano PGH2. Certainly, it did

not seem justifiable to ignore this point as this concentration of 9,11-
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experimental points (0-86,31-48) (17,4393) (25,54-2) (3-57,6457)

points expected for linear uptake only (0-86,9-03 ) (1-7,17-85) (2-5,26-25) (3-57,37-48)

FIGURE 5.9: Michaelis-Menten plot of binding of 3H 15(S) 9,11-
epoxymethano PGH2 to whole platelets, when the effect
of linear uptake of the ligand is subtracted.
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epoxymethano PGH2 produced a marked increase in binding in each of

the six individuals tested. Furthermore, the dissociation constant of

1.7 nM measured from the Michaelis-Menten plot is fairly close to that

estimated from Scatchard analysis, 1.82 nM. However, if the effect

of linear uptake is subtracted from the points of the hyperbola, the

equilibrium dissociation constant is estimated as 0.32 nM (Fig. 5.9).

Further investigations were then performed in which the binding

of 3H (15S) 9,11-epoxymethano PGH2 was studied over a much greater

concentration range (0.86-607 nM). The higher concentrations were

achieved by diluting the specific activity of the radioligand with cold

9,11-epoxymethano PGH2. Each concentration was tested in the presence

and absence of excess cold 9,11-epoxymethano PGH2 (11.4 uM). Since

only specific binding should be displacable, it was hoped that subtraction

of the values obtained for binding in presence of excess 'cold' from

total binding would give a value for specific binding (Table 5.5).

Michaelis-Menten plots of this data are shown in Fig. 5.10. The specific

binding curve is complex revealing a small saturable component at low

concentrations and an S-shaped saturable component at higher con¬

centrations which represented by far the major component of binding.

This finding emphasises the importance of analysing data over a wide

concentration range. With Scatchard analysis it is advisable to obtain

plots with points which came very close to crossing both the y and the

x axes, so that the graph can easily be extrapolated to cross both axes.

There is considerable non-displacable binding: this ranges from

51.5% at low concentrations to 84.6% at high concentrations, and will

considerably reduce the accuracy with which displacable binding can

be determined. Non-specific binding has proved to be high in opiate

binding studies (330). This is partly due to physical solution of the



TABLE5.5:A
Bindingof3H
9,11-epoxymethanoPGH2towholehumanplatelets Concentrationof3H9,11-epoxymethanoPGH2added(nM)

0.861.7
2.53.577.1410.7114.2919.2823.1460.7
151.75

303.5

607.0

Bound(fmoles/ 108platelets)
22.831.1 ±1.5+1.8
39.460.990.5113.4156.1207.8272.5455.3 ±2.0±4.3±5.7±4.6±5.4±11.7±16.8±16.8
985.7 ±15.1

1460.9 ±41.9

2777.1 ±125.0

B

Bindinginthepresenceof11.4mM9,11-epoxymethanoPGH2
Bound(fmoles/ 108platelets)
11.716.3 ±1.8±2.7
23.235.352.673.392.4128.8153.6280.6 ±3.0±3.1±6.2±5.2±3.8±9.9±5.0±10.3
571.6 ±48.5

1Q36.5 ±41.9

2350.8 ±103.7

CEstimatednon-displacablebinding
Bound(fmoles/11.014.826.225.637.940.263.779.1118.9174.7414.1424.5426.3 10®platelets) Theseresultsarethemeanandstandarderrorsof12-18results,3-4donors
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Each result is the mean and standard error of 12-18 observations,
3-4 donors.

FIGURE 5.10: Michaelis-menten plot of binding of 3H 15(S) 9,11-
epoxymethano PGH2 to whole platelets over a greater
concentration range. Displacable binding has been
estimated as the portion of total binding displacable
by excess cold 15(S) 9,11-epoxymethano PGH2 (11.4 uM).
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3H 15(R)-9,11-epoxymethano PGH2 to whole platelets.
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Each result is the mean and standard of 24 observations,
6 donors.

(B)
FIGURE 5.11: (B) concentration-dependent binding of

3H 15(S)-9,11-epoxymethano PGH2 binding to whole
platelets.
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(A)

FIGURE 5.12: Comparison of Michaelis-menten plots of the binding of15(R) with 15(S) 3H 9,11-epoxymethano PGH2 to whole
platelets.

(A) - concentration-dependent binding of3H 15(R) 9,11-epoxymethano PGH2 to whole platelets.
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OJ
QJ

concentration of free 9,11-epoxymethano PGH2 (nM)

(B)

FIGURE 5.12: (B) - concentration-dependent binding of 3H 15(S)
9,11-epoxymethano PGH2 to whole platelets.



lipophilic opiate molecules in the lipid membranes but is also due to

a non-specific saturable binding associated with the ionic interaction

between the protonated nitrogen of the opiate and ionic groups on the

membrane. This latter type of binding is exhibited by both (+) and

(-) configurations of the opiate and is unrelated to the strongly

stereospecific binding of the (-) opiate to the receptor.

The binding of the 15(R) configuration of 3H 9,11-epoxymethano

PGH2 to platelets was studied. Concentrations of 15(R) 3H 9,11-expoxy-

methano PGH2 ranging from 0.86- 23.14 nM were incubated for 4 minutes

at room temperature with 1 ml of the platelet suspension (Table 5.6).

Fig. 5.11 shows a comparison of the Scatchard plots obtained for the

15(R) and 15(S) forms of 3H 9,11-epoxymethano PGH2. Fig. 5.12 shows

a comparison of the Michaelis-Menten plots.

The data clearly suggests that in low concentrations (0.86 - 20 nM)

both 15(R) and 15(S) bind non-specifically to. a limited number of

binding sites, presumably on the surface of the platelet membrane.

The specific receptor-binding of 15(S) does not become apparent until

slightly higher concentrations are used (>20 nM). Indeed, it is at

these concentrations that 9,11-epoxymethano PGH2 is active as an

aggregating agent. If both the non-specific saturable binding and non¬

saturable lipophilic binding are subtracted from the total binding, an

estimate of the stereospecific receptor binding should be achieved. The

Michaelis-Menten plot of this binding is shown in Fig. 5.13 from this

plot the dissociation constant can be estimated at 65 nM and the number

of binding sites as 2400 per platelet. Both of these estimates are very

approximate.

Displacement studies were carried out using a fixed concentration

of 3H 15(S) 9,11-epoxymethano PGH2 (71 nM) which was incubated



TABLE5.6:Scatchardanalysisoftheconcentration-dependentbindingof3H15(R)9,11-epoxymethano PGH2bindingtowholehumanplatelets Concentrationof3H15(R)9,11-epoxymethanoPGH2added(nM)
0.861.703.577.1410.7114.2919.2823.14

Calculatedbound

53.61 +7.76

73.15 +5.81

127.90 +7.26

157.76 +10.94

9,11-epoxymethanoPGH2
(fmoles/108platelets)

166.83 +11.05

193.72 +9.94

167.15 +18.80

193.28 +7.96

Bound/

62.34

43.03

35.80

22.09

15.57

13.55

8.67

8.35

free(added)

+9.02

+3.40

+2.03

+1.53

+1.03

+0.69

+0.97

+0.34

Thesevaluesrepresentthemeanandstandarderrorsof24results,6donors.
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subtracting the saturable component of binding evident
with both 15(R) and 15(S) 3H 9,11-epoxymethano PGH2
from total displacable binding observed for 15(S) 9,11-
epoxymethano PGH2.
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TABLE 5.7: Displacement of 3H 15(S) 9,11-epoxymethano PGH2
binding to whole platelets, by analogues with thromboxane-
like activity

Analogue
Concentration

(UM) % Bound

9,11-epoxymethano PGH2

11,9-epoxymethano PGH2

9,11-azo PGH2

9,11-ethano PGH2

EP011

ICI 79,939

0.071 97.2 + 3.7
0.142 84.9 + 4.3
0.284 66.6 + 3.5
0.710 62.5 + 4.2

0.142 93.9 + 4.0
0.284 81.8 + 4.6
1.42 57.1 + 4.4
2.84 57.3 + 2.3

0.287 100.0 + 5.9
0.718 84.4 + 5.6
1.436 72.5 + 4.2
3.59 62.0 + 3.8
7.18 46.2 + 6.2

0.143 105.7 + 9.6
0.286 89.2 + 9.4
0.714 61.0 + 5.7
1.43 56.3 + 5.0
2.86 48.0 + 4.6

0.249 101.5 + 6.6
0.623 91.3 + 6.3
1.247 73.6 + 4.8
2.494 67.3 + 4.2
12.469 65.7 + 3.0

0.119 93.0 + 4.6
0.237 82.6 + 4.9
0.594 61.8 + 3.9
2.375 52.5 + 4.2

Results are given as the mean and standard error of 12-18
observations, 3 donors.
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FIGURE 5.14: Displacement of 3H 15(S) 9,11-epoxymethano PGH2
(71 nM) bound to whole platelets by analogues with
thromboxane-like activity.
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TABLE 5.8: Displacement of 3H 15(S) 9,11-epoxymethano PGH2
binding to whole platelets, by analogues with thromboxane-
antagonist activity

Analogue
Concentration

(UM) % Bond

EP035

EP037

EP043

EP045

EP092

pinane TXA2

2.31 94.7 + 4.1
5.775 83.6 + 6.2
11.55 58.2 + 3.4
17.325 50.8 + 3.9

2.674 100.0 + 5.0
13.369 81.8 + 3.3
20.053 63.0 + 3.2
40.107 62.1 + 2.6

0.267 94.7 + 5.7
0.534 86.9 + 3.2
1.068 75.9 + 3.3
2.67 73.1 + 4.8
14.35 60.0 + 3.2

0.133 100.0 + 8.3
0.267 87.1 + 6.1
0.534 73.1 + 5.5
1.335 54.4 + 4.2
2.670 53.1 + 1.5

0.062 100.0 + 8.7
0.248 74.9 + 3.7
0.496 59.2 + 4.1
1.240 53.5 + 3.1
2.480 39.2 + 3.6

0.61 107.5 + 9.1
1.575 77.6 + 6.7
3.05 46.4 + 4.9
15.25 42.2 + 3.4

Results are given as the mean and standard error of 12-18
observations, 3 donors.
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TABLE 5.9: Displacement of 3H 15(S) 9,11-epoxymethano PGH2
binding to whole platelets, by natural prostaglandins
thought to act on receptors distinct from the TXA2
receptor

Concentration
•Prostaglandin (uM) % Bound

PGF2 a

pge2

pgd2

pge,

1.374 99.0 + 3.3
2.747 114.6 + 5.9
13.736 101.7 + 2.7
27.472 99.2 + 2.4

0.276 103.2 + 4.2
0.552 116.1 + 6.0
1.381 119.0 + 14.0
2.762 99.5 + 5.5
13.812 110.3 + 6.6

0.276 95.2 + 5.1
0.552 98.4 + 5.9
1.381 84.2 + 6.0
2.762 86.6 + 8.1
13.812 81.1 + 6.8

0.275 98.3 + 4.4
0.549 107.7 + 5.8
1.374 87.9 + 6.0
2.747 91.5 + 5.8
13.746 86.7 + 6.1

Results are given as the mean and standard error of 12-18
observations, 3 donors.
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simultaneously with the displacing agent and 1 ml of platelet suspension

at room temperature for 6 minutes. Unfortunately due to the high non¬

specific binding only about 50% of the total binding is actually dis-

placable. The results of these displacement studies form three groups:

thromboxane mimics (Table 5.7, Fig. 5.14), thromboxane antagonists

(Table 5.8, Fig. 5.15) and other prostaglandins (Table 5.9, Fig. 5.16).

DISCUSSION

When platelets are incubated with 3H 15CS) 9,11-epoxymethano

PGH2, the bound radioactivity appears to be a measure of three types

of binding:

1. the non-saturable uptake of the lipophilic ligand into the platelet

membrane;

2. the non-specific saturable binding, possibly to ionic groups on the

membrane;

3. the stereospecific, saturable binding to the receptor.

Both the 15(R) and 15(S) conformations of 3H 9,11-epoxymethano PGH2

bind in very low concentrations (0.86-23.14 nM) to a saturable binding

site on the platelet membrane. The 15(S) form shows a dissociation

constant of 1.82 nM and the 15(R) 2.86 nM for this site and give

estimates of 570 and 1296 sites per platelet respectively. The nature

of this interaction is not known but may involve electrostatic attraction

between the carboxylate ion of 9,11-epoxymethano PGH2 and a charged

nitrogen species. Both 15(R) and 15(S) forms of the ligand will be

taken up into the lipophilic membranes of the platelet. This effect is

non-saturable and will not be displaced by excess 'cold' 9,11-epoxymethano

PGH2. Uptake of the lipophilic ligand can be estimated by measuring the
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binding of 3H 15(S) 9,11-epoxymethano PGH2 in the presence of excess

cold. If this is subtracted from the total binding it gives a measure of

the displacable component of binding and if the non-specific saturable

component is also subtracted, the resultant binding gives a measure of

the stereospecific receptor binding. Analysis of the data suggests that

3H 15(S) 9,11-epoxymethano PGH2 binds with a dissociation constant of

65 nM to a limited number of sites, estimated at 2400 per platelet.

The binding of 3H 15(S) 9,11-epoxymethano PGH2 to whole platelets

is both stereospecific and saturable, and the receptor has a high affinity

for the radioligand. Furthermore, the saturable component of binding

can be displaced by thromboxane mimics and antagonists but not by

PGF2a, PGD2, PGE2 or PGEx (in concentrations up to 14 |iM) which are

thought to act on PGF2a, PGD2, PGE2, PGE2/I2 receptors respectively.

Indeed, the PGF2ct analogue ICI 79,939, which has been shown to have

thromboxane-like activity, can displace the saturable component of

binding whereas PGF2C[ itself cannot. Those compounds capable of

producing irreversible platelet aggregation show high affinity for the

saturable binding site and 9,11-ethano PGH2, which produces only

reversible aggregation and antagonises the action of 11,9-epoxymethano

PGH2 consistent with its proposed partial agonist action, shows a

particularly high affinity for the binding site. A comparison of dis¬

placement of 3H 9,11-epoxymethano PGH2 binding by these agonists and

their aggregatory actions on human platelets are shown in Fig. 5.17.

The affinity constant of an antagonist can be estimated from the

concentration of the antagonist required to displace 50% of the saturable

binding;
XB50

K _ =
D 1 *cL



157.

ompound Structure
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FIGURE 5.17: A comparison of displacement of 3H 9,11-epoxymethano
PGH, binding and aggregatory actions on human platelets.
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where is the equilibrium dissociation constant of the antagonist;

XB50 *s concenfration required to displace 50% of the binding;
is the concentration of the radioligand.

Table 5.10 shows a comparison of the affinity constant (■'■/Kq) of the
antagonists estimated from the displacement studies compared to those

estimated by Dr. R.L. Jones from the shift of the Log dose-response curve

to the aggregating agent 11,9-epoxymethano PGH2. The same order of

potency is seen for the affinity constants measured by these two methods.

The results of these displacement studies are consistent with the

stereospecific saturable component of binding reflecting binding to the

thromboxane receptor since only the drugs which are pharmacologically

effective at this receptor are capable of displacing this component of

binding. Furthermore, both agonists and antagonists show displacement

of binding in the concentration range in which they are effective as

inducers or inhibitors of platelet aggregation.

The variation in the maximum amount of displacable binding reflects

the degree of non-saturable binding. This varies from donor to donor

and as these results are the mean of only three donors, the variation is

considerable. In retrospect it may have been better to standardise each dis¬

placement experiment by including a control concentration of cold 9,11-

epoxymethano PGH2 which would displace all the saturable binding.

This could have been taken as 100% displacement for the particular

platelets tested, and the displacement observed for the analogues

measured with respect to this control.

The non-saturable binding is particularly high owing to the lipo¬

philic nature of 9,11-epoxymethano PGH2, which has a partition coeffic¬

ient of 19 between CHC13 and H20 (pH 7.4) compared to 0.0091 for a

water soluble compound, PGF2ct. To minimise the non-saturable uptake



TABLE5.10:Estimatesoftheaffinityconstants(x106M)oftheanaloguesfrombothdisplacement andaggregationexperiments
Analogue

Concentration requiredfor50% displacement(mM)
Equilibrium dissociation constant(106M)
Affinityconstant (displacement experiments)

Affinityconstant (aggregation experiments)*

EP037

16.0

15.0

0.067

0.46

EP043

1.0

0.99

1.01

1.2

EP045

0.51

0.53

1.88

o«i

EP092

0.25

0.24

4.16

20.0

PinaneTXA2

2.0

1.9

0.526

0.42

*Theagonistusedinthesedeterminationsis11,9-not9,11-epoxymethanoPGH2.
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of the ligand it may have been better to use a less lipophilic radio¬

ligand. ICI 79,939 (Fig. 1.4) is very much more water soluble but

will also bind to PGF2areceptors with a high affinity. Although it is

not likely that platelets contain PGF2a receptors, as PGF2C( has little

effect on platelet function, if the binding assay is extended to study

the thromboxane receptor of vascular tissue, then the PGF2a analogue

would no longer be useful as PGF2ct is a potent vasoconstrictor. A

binding assay using platelet homogenates may serve to limit some of

the complications introduced by uptake but may provide an additional

problem as the enzyme thromboxane synthetase is present in the

microsomal fraction. Since 9,11-epoxymethano PGH2 is reported to

inhibit thromboxane synthetase (250), this radioligand would no longer

be useful as the enzyme would represent another binding site.

Further information could be gained about this binding site if

radioligands with structures more akin to thromboxane A2 rather than

the endoperoxides could be prepared. This is a difficult area of

chemistry particularly since the radioligand would have to be

enantiomerically pure and most synthetic routes yield racemic mixtures.

However, if additional radioligands, preferably more water soluble,

can be prepared they would aid classification of this binding site.

If the binding assay can be improved by using membrane fragments

from osmotically-lysed human platelets this would have the additional

benefit that PGEX would no longer be required to inhibit aggregation.

(Although the concentration of PGEi added to inhibit aggregation is

very low and unlikely to have any effect on 9,11-epoxymethano PGH2

binding.) Also, a filtration method would be required to separate

bound and free which would minimise the contamination of the pellet

with the supernatant. This is always higher when centrifugation methods
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are used as higher levels of unbound radioligand are trapped in the

pellet water space.

Although these binding studies require considerable improvement,

as a preliminary investigation they are quite promising. Hopefully,

the development of more radioligands and an improved binding assay

will allow the thromboxane receptors of both human platelets and blood

vessels to be characterised.



CHAPTER VI

DISCUSSION
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TXA2 has potent biological actions including the stimulation

of platelet aggregation, bronchoconstriction and contraction of

pulmonary, coronary and systemic vascular smooth muscle. A number

of stable compounds have been developed to inhibit the actions of

TXA2, either by inhibition of its synthesis (112,135,139,242-252) or

by antagonism of its action at the receptor level (131-135). Analogues

which mimic the actions of TXA2 have also been developed (120-130),

as TXA2 itself is very unstable, having a half life of 30 seconds at

physiologic pH.

However, very few of these analogues have been found to have

a specific action at only one of these sites. Of the more commonly used

analogues,

1. 9,11-epoxymethano PGH2 is a full agonist on human platelets,

a partial agonist on smooth muscle preparations and an inhibitor

of thromboxane synthetase (120,250); (its isomer 11,9-epoxy-

methano PGH2 appears to be a specific thromboxane agonist on

all preparations tested (121,331));

2. pinane TXA2 is an antagonist on platelets, a partial agonist on

smooth muscle and also inhibits thromboxane synthetase (135);

3. carbocyclic TXA2 is an antagonist on platelets, an agonist on

smooth muscle and an inhibitor of thromboxane synthetase (130,

292).

In the search for a specific TXA2 receptor antagonist, Dr. R.L.

Jones and Dr. N.H. Wilson, of the Department of Pharmacology,

University of Edinburgh, have prepared a number of analogues of

9,11-ethano PGH2 (itself a partial agonist) with modified u) side chains.
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Many of these analogues were found to have TXA2 antagonist activity

on both platelets and isolated smooth muscle preparations. The

affinity constants of these antagonists were calculated according to

the Schild equation:

log (DR - 1) = log [B] + log (Kg) where DR = dose ratio;
[B] = molar concentration

of antagonist;

Kg = affinity constant of
antagonist.

In each case a linear plot was obtained with a slope not significantly

different from unity. This suggests a competitive type of antagonism.

The molar concentration of antagonist giving a (DR - 1) value of 20

was used to calculate the affinity constant. Using the dog saphenous

vein and guinea pig trachea as thromboxane sensitive tissues, similar

affinity constants were found for the five analogues, EP035, EP037,

EP043, EP045 and EP092 studied throughout this thesis. However, the

affinity constants estimated from experiments using the rabbit aorta of

human platelets were considerably lower. This is not true for EP037

which shows similar potency on all three vascular preparations, but only

a tenth of this activity on human platelets (see Chapter I, Table 1.1).

The response of the vascular tissue to the standard agonist used,

11,9-epoxymethano PGH2, is a sustained contraction. This is likely to

be the direct result of receptor occupation. However, platelet aggrega¬

tion is a much more complex process. With primary aggregation, the

extent of aggregation may depend directly on the degree of activation

of the external platelet receptors, but with secondary aggregation the

response is amplified by the effects of ADP liberated during the release

reaction and the AA metabolites PGG27H2 and TXA2 synthesised during
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the second wave of aggregation. The autocatalytie nature of the

platelet response creates an additional problem in that it is difficult

to determine when equilibrium receptor occupancy has been reached.

Indeed it is possible that complete aggregation occurs well before

equilibrium occupancy is attained. The response is usually chosen

rather arbitrarily as the degree of aggregation achieved 100 seconds

after addition of the aggregating agent. With the smooth muscle

preparations cumulative dose response curves to 11,9-epoxymethano

PGH2 were obtained, and equilibrium was assumed to be reached once

the contraction observed with a given concentration of agonist had

plateaued.

It seemed possible that the differences observed in the affinity

constants of the antagonists determined from platelet aggregation might

reflect the difficulty in establishing equilibrium and determining the

extent of aggregation attributable to receptor occupancy by the agonist,

rather than suggesting the existence of two different classes of

thromboxane receptor. Furthermore, an additional effect of the

antagonist on platelet function could alter the estimate for the affinity

constant. With EP043, the affinity constant determined may be affected

by its inhibitory action on the synthesis of TXA2 from AA, which by

decreasing the potentiating effect of TXA2 on the second wave of

aggregation, will increase the degree of inhibition compared with that

attributable to receptor antagonism alone. Indeed, an affinity constant

for thromboxane receptor blockade by EP035 cannot be determined because

the dose-response curve for 11,9-epoxymethano PGH2 is not parallel to

the control, owing to a considerable inhibitory contribution from the

increase in cAMP levels produced by EP035.
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However, the differential activities of some analogues on smooth

muscle and human platelets also suggested that the thromboxane

receptor of platelets could indeed be different from that of vascular

tissue:

1. EP011 is a full agonist on both smooth muscle and human platelets

but 15-oxo-EP0ll has no effect on human platelets although it is

a full agonist on smooth muscle (332).

2. CTA2 is a full agonist on smooth muscle yet antagonises platelet

aggregation induced by AA or 11,9-epoxymethano PGH2 (292).

3. PTA2 is a partial agonist on smooth muscle preparations but an

antagonist on human platelets (333).

4. The sodium salt of rac-9,11 : 11,12-dideoxa-9,11 : 11,12-diepithio-

thromboxane A2 will contract the rat aortic strip but has no

effect on human platelet aggregation (334).

An alternative explanation for these differential activities is that

they result from a difference in the number of spare receptors; if the

number of spare receptors was restricted in platelets compared with

smooth muscle, a weak agonist/partial agonist action on smooth muscle

could conceivably be changed into an antagonist action on human

platelets. Although such an argument could hold for a compound-like

PTA2, it is difficult to believe that the potent contractile action of CTA2

could be transformed into an antagonist action simply through a reduction

in the number of receptors available.

It seemed that radioligand binding studies might enable the

affinity constants of these antagonists to be determined directly.

A binding assay for the tritiated thromboxane mimic, 3H 9,11-epoxymethano
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PGH2, using whole platelets was developed and the affinity constants

determined from displacement experiments (see Chapter V, Table 5.10).

Although the affinity constant estimates are still considerably less

potent than those determined from smooth muscle preparations, the

order of potency is much more similar to that of the antagonists on

smooth muscle, than the order of potency determined from platelet

aggregation affinity constants (Table 6.1). These results are not

sufficient to determine whether there are 2 distinct classes of thromboxane

receptors, but they indicate that this approach is worth pursuing.

TABLE 6.1: Comparison of the order of potency of the affinity constants
for the antagonists, with respect to EP092, on the various
preparations tested

Ratio of
affinity constants RA DSV GPT HP (disp) HP (agg)

EP092 : EP045 5.05 4.22 2.54 2.21 22.90

EP092 : EP043 6.18 4.43 4.20 4.12 16.67

EP092 : EP037 3.77 24.48 33.20 62.10 43.40

EP092 : EP035 45.65 7.15 22.70 31.00 -

RA - rabbit aorta; DSV - dog saphenous vein; GPT - guinea pig trachea
HP (disp) - human platelets - estimates determined from displacement

experiments with 9,11-epoxymethano PGH2 as agonist.
HP (agg) - human platelets - estimates determined from aggregation

experiments with 11,9-epoxymethano PGH2 as agonist.

Binding studies enable the affinity constant to be determined

directly without complication from the unknown relationship between

receptor occupancy and response. This may be particularly important

where the compared responses are not only very different in character

but one system is proteinacious (PRP) and the other an isotonic,

protein-free bathing solution. The additional actions of EP043 and

EP035 may not interfere with the determination of the affinity constant

from binding experiments to as great an extent since the platelets are
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treated with indomethacin (10~SM), to inhibit TXA2 production and

PGEi (1.7 x 10-8M) to prevent aggregation by the thromboxane mimics.

The increase in cAMP levels induced by PGEi did not appear to affect

binding of the tritiated thromboxane mimic.

Binding of 3H 15(S) 9,11-epoxymethano PGH2 to whole platelets

appeared to be the result of three types of binding:

1. the non-saturable uptake of the lipophilic ligand into the platelet

membranes;

2. the non-specific saturable binding, possibly to ionic groups on

the membrane;

3. the stereospecific saturable binding of the ligand to the receptor.

It has been suggested that prostaglandins are taken up into cells

only when specific uptake mechanisms exist (335), so that uptake of the

lipophilic ligand will not be into the platelet cytoplasm but a result

of physical solution of the lipophilic molecules in the lipid areas of

platelet membranes. If this is the case, it suggests that the binding

sites measured in this assay represent receptor sites on the platelet

surface. Since only one class of stereospecific binding site was evident

it would seem that only one type of receptor exists, rather than distinct

receptors for the PG endoperoxides and for TXA2. It has previously

been suggested that all bisenoic prostaglandins act on a common receptor,

present on the platelet surface membrane, and that TXA2 acts on a

distinct intracellular receptor (336). Unfortunately, there was no TXA2

uncontaminated with PGH2 to test for displacement of 3H 9,11-epoxymethano

PGH2 to this site. However, since the thromboxane mimics and both the

endoperoxide-like antagonists as well as PTA2 (which is thromboxane-like
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in structure), all displace binding, it is probable that they act on a

common site, possibly on the surface of the platelet membrane.

Exogenously added AA is rapidly taken up by platelets where it

is metabolised into PGH2/TXA2. It has been presumed that internal

receptors exist where TXA2 will bind to initiate platelet aggregation,

contraction and release (336, 21), the PGH2 and TXA2 liberated from

the platelets during this process can then promote further aggregation

by acting on the surface receptors of neighbouring platelets. From

these binding experiments no information can be gained about the

distribution of thromboxane receptors in human platelets. However,

binding studies to platelet homogenates should reveal the existence,

either of an additional class of binding site (with a different affinity

for the radioligand), or of considerably more receptor sites, if indeed

there are receptors inaccessible to the radioligand during binding

studies to whole platelets. 3H 9,11-epoxymethano PGH2 would not be

useful for this purpose as it will also bind to the enzyme thromboxane

synthetase, which it inhibits. The development of a binding assay to

platelet homogenates and the preparation of additional radioligands,

preferably more akin to TXA2 in structure, could be of considerable

assistance in the further characterisation of the thromboxane receptor(s)

of platelets. Similar binding studies to smooth muscle preparations should

help to clarify the position as to whether or not the receptor is distinct

from that of platelets.

The suggestion that specific uptake mechanisms are required to

allow prostaglandins to enter cells, raises the question of how these

antagonists inhibit AA-induced aggregation? If TXA2 produced within

the platelet acts on intracellular receptors it seems probable that these

receptors are accessible to the exogenously applied antagonist. Although
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cyclo-oxygenase and thromboxane synthetase have been termed micro¬

somal enzymes, this name may be slightly misleading as the microsomal

fraction of platelets contains two-thirds of all the platelet particulate

protein and most of the plasma membrane (337). The location of the

platelet enzymes which metabolise AA still remains to be elucidated,

and although the dense tubular system has been postulated (111-113)

it has also been suggested that the enzyme is on the cell surface (338).

It is conceivable that metabolism of AA occurs at the inner surface of

the platelet membrane where internal receptors for TXA2 exist. Such

sites may be accessible to the antagonist through the lipidic platelet

membrane. However, since these endoperoxide-like antagonists are

exceptionally lipophilic, it is possible that they are able to enter cells

more easily than the classical, more water-soluble prostaglandins.

Another possibility is that TXA2 mediates aggregation by acting

on the platelet surface receptor but acts intracellularly, perhaps by its

proposed ionophoretic action, to mediate platelet contraction and release.

Indeed EDTA (0.01M) can prevent aggregation induced by both PGG2

and A23187 but not the internal contraction or secretion induced by

these agents (108). It has also been reported that aggregation induced

by both TXA2 and A23187 is mediated by membrane proteins (339).

The movement of anionic PG endoperoxides and TXA2 from their membrane

site of synthesis into the platelet cytosol will be accompanied by suitable

cations to maintain electroneutrality (114). It is therefore plausible

that TXA2 will mediate aggregation through a membrane receptor site

but will transport calcium from the lipid membrane site of synthesis

into the aqueous cytosol to stimulate platelet contraction and the

induction of the release reaction. Although thromboxane antagonists

have been shown to inhibit aggregation induced by AA and thromboxane
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mimics, their effect on platelet contraction and release has not as

yet been studied, but is clearly a crucial experiment. If thromboxane

antagonists only block the direct aggregatory action of TXA2, it may

explain why agents which raise cAMP levels are more effective inhibitors

of aggregation, as these agents also suppress contraction and release

by their Ca2+-chelating action.

The possible dissociation of the aggregatory effects of TXA2

from the contractile and release-inducing effects may be an important

consideration in experiments designed to determine the relative importance

of PGH2 and TXA2 in mediating AA-induced aggregation. It was

previously suggested (Chapter I) that a possible explanation for the

fact that PGH2 itself only induces primary aggregation is that its rapid

conversion into PGD2 may result in the inhibition of its own aggregatory

effect. Another explanation is that although PGH2 has a direct

aggregatory action its metabolism into TXA2 is required for platelet

contraction and release. In fact PGG2, 11,9-epoxymethano PGH2 and

9,11-epoxymethano PGH2 have all been shown to have ionophoretic

properties, with a 3-4 fold preference for Ca2+ over Mg2+ (117) and

all three compounds are capable of inducing rapid and irreversible

aggregation even in the presence of high concentrations of a thromboxane

synthetase inhibitor. It is possible that the effectiveness of novel

prostaglandin analogues will depend both on their affinity and efficacy

for the thromboxane receptor, and their ionophoretic properties.

Increased platelet sensitivity to TXA2 has been demonstrated both

in survivors of myocardial infarction (297) and in patients with angina

pectoris (298). Sensitivity to thromboxane action may be altered in two

ways:
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1. a change in receptor affinity and./or density;

2. a change in the stimulus-response coupling mechanism.

Binding studies may help to distinguish which of these is responsible

for the increased sensitivity. If indeed increased sensitivity to TXA2

is responsible for, or contributes to, thrombotic episodes, thromboxane

antagonists may be of use in the inhibition of the action of TXA2 in

vivo. EP035, EP045 and EP092,but not EP037, were found to protect

against AA-induced death in rabbits, thought to result from acute

pulmonary thrombosis. This is particularly encouraging as the infusion

of AA and resulting surge of TXA2 produced may represent a more

severe stimulus than would occur in the pathological situation, and

rabbit platelets are not as sensitive as human platelets to the thromboxane

antagonists tested.

Additional actions of these analogues, other than TXA2 antagonism,

may increase their usefulness as thrombotic agents:

1. an action to increase cAMP levels within the platelet, as was found

for EP035, will maintain the platelets refractory to aggregation

regardless of the particular agent responsible for the inhibition

of platelet aggregation in vivo;

2. an action to inhibit thromboxane synthetase, as may be the case

for EP043 (an action on cyclo-oxygenase cannot be excluded),

may enable platelet endoperoxides to act as substrate for the

prostacyclin synthetase enzyme of the vessel wall, resulting in

a localised increase in prostacyclin levels which would serve to

decrease the reactivity of the platelets (as in action 1) and reverse

any platelet aggregates formed.



At the same time, the TXA2 antagonist action would protect against

the potent vasospastic and aggregatory actions of TXA2

However, as pharmacological tools, specific receptor antagonists

are more useful. Of the five analogues tested, only EP035 shows a

marked effect on adenyl cyclase which it stimulates perhaps by activa¬

tion of the PGI2 receptor of platelets. EP043 has an w side chain most

similar to that of EP035 (diphenyl substitution) yet does not appear to

increase cAMP levels. This suggests that EP043 does not activate

prostacyclin receptors but it has not been tested for antagonist activity.

EP043 does, however, show an additional action to inhibit the bio¬

synthesis of TXA2 from AA. EP092 at high concentrations (5-10 ug/ml)

showed a slight effect to raise platelet cAMP levels. Although this

effect was weak it was thought to be sufficient to affect platelet function.

Also, in these concentrations EP092 inhibited the biosynthesis of TXB2

from AA. These concentrations are about 10 times that required for

antagonist activity.

EP037 and EP045 do not appear to have either of these additional

actions on platelet function. However, since EP037 proved lethal to

rabbits when infused intravenously in high concentrations (5-10 mg/kg),

it seems that EP037 is in fact a weak partial agonist rather than a full

antagonist. In conclusion, of the five analogues tested only EP045

appeared to specifically antagonise the effects of TXA2 on human

platelets, over a wide range of concentrations. However, in the con¬

centrations in which they are effective as antagonists of 11,9-epoxy-

methano PGH2 induced aggregation both EP045 and EP092 appear to be

relatively specific.
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