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Abstract 

DNA methylation is an epigenetic event which regulates gene expression by 

transcriptional repression and plays an important role in the biological phenomena 

of imprinted genes and X inactivation. On the other hand, the reversal of DNA 

methylation, DNA demethylation, is not as well understood. DNA demethylation 

has been demonstrated to occur as an active process during embryo development, 

tumourigenesis and hormone-induced gene activation, or via a 

replication-dependent passive route. However, the molecular mechanism of active 

DNA demethylation is yet to be determined, and a precise role of DNA 

demethylation in vivo remains obscure. 

Interestingly, bacteriophage T3 has been reported to express 

S-adenosylmethionine hydrolase (SAMase) during the early stage of phage infection. 

In order to overcome the restriction-modification (R-M) system, SAMase destroys 

the modification cofactor S-adenosylmethionine (SAM) and hydrolyses SAM into 

homoserine and methylthioadenosine (MTA). Since SAM is also the major donor of 

the methyl groups incorporated in DNA methylation, this SAM cleaving activity 

may be utilized as a demethylating agent, which helps us to understand the 

mechanism of DNA demethylation. However, the reaction mechanism of T3 

SAMase has not been very well studied. To further elucidate this mechanism, 

experiments were carried out to purify recombinant SAMase and to enable attempts 

to solve the crystal structure of this enzyme. In addition, we aimed to observe effects 

of DNA demethylation in mammalian cells by using this hydrolase activity to 

reduce the cellular level of SAM. SAMase was also chosen to substitute the more 

commonly used demethylating agent, 5-azaC, in order to avoid the highly toxic 

impact on drug-receiving cells. 

Additionally, RNA interference (RNAi), was utilised to explore the impact of 

DNA demethylation. Using small interfering RNA (siRNA), we depleted the mRNA 



of the enzyme responsible for maintenance methylation, DNA methyltransferase 1 

(Dnmtl), and observed a correlation between DNA demethylation and Xist 

expression when the methyl-binding protein MBD2 was removed. Furthermore, the 

oxidative DNA repair has been suggested as a candidate pathway, which involves 

demethylation of the 1-methyladenine and 3-methylcytosirie via a hydroxmethyl 

intermediate. To explore this possible mechanism, we investigated the candidate 

pathway by searching for a putative intermediate of hydroxymethyl cytosine during 

active DNA demethylation in vivo. 
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Introduction 



Chapter 1 

Introduction 

1.1 Overview 

The work presented in this thesis focuses on DNA demethylation. In one line of 

experiments, attempts were made to create a demethylating environment in cells, by 

methods other than the commonly used cytosine analogs such as 5-azacytidine, a 

typical demethylating drug which is known for its toxic effects on cells. Also, we 

looked into DNA demethylation events in vivo with the hope of resolving the 

long-puzzled mystery concerning the mechanism of DNA demethylation. 

1.2 Occurrence of DNA methylation 

DNA methylation is a very well-described modification, which involves transfer of a 

methyl group from S-adenosylmethionrne (SAM), the major methyl donor, to the 5' 

position of cytosine by methyltransferases (Fig. 1.1). In eukaryotes, this modification 

usually resides symmetrically in the context of CpG dinucleotides. However, 

methylation in prokaryotes can occur in a variety of sequence contexts, and is also 

found at the N-6 position of adenine. Additionally, the methyl group can be added 

to unusual sites, such as the 0-6 position of guanine, by DNA damage from 

alkylating agents such as methyl methanesulfonate. 
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Figure 1.1: Occurrence of DNA methylation. (A) DNA in eukaryotes is normally 

methylated on cytosine at the C-5 position. Additionally, methylation occurs at the 

N-6 position of adenine in prokaryotes. The reaction consumes SAM and is carried 

out by methyltransferases. (B) Structure of SAM. The methyl group involved in 

methylation is labeled in red. 
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Although methylation at the 5' position of cytosine is a widespread 

phenomenon ranging from mammals to bacteria, the level and pattern of 

methylation varies along the evolution tree. In prokaryotes, the methylation 

patterns are very strain- and species-specific. In eukaryotes, the lowest level occurs 

in Caenorhabditis elegans, which has no detectable cytosine methylation (Simpson et 

al., 1986). Drosophila melanogaster has a low level of 5-methylcytosine detected in the 

context of CpT, CpA and CpC, instead of the common CpG target in animals 

(Kunert et al., 2003; Lyko et al., 2000). Most invertebrate genomes are predominantly 

nonmethylated, but some are modified at an intermediate level with less than 50% 

methylation (Bird and Taggart, 1980). In the sea urchin, 10-40% of the genome is 

heavily methylated, while the remainder of the genome contains long stretches of 

nonmethylated DNA (Bird et al., 1979). At the other end of the scale, vertebrate 

genomes are globally methylated with 60-90% of CpG dinucleotides containing 

5'-methylcytosine (5-mC; Singer et al., 1979) and the nonmethylated CpG fraction 

constitutes less than 2% of the genome (Cooper et al., 1983). 

1.3 DNA methylation in eukaryotes 

1.3.1 DNA (cytosine-5)-methyltransferases 

Genoinic methylation patterns are established and maintained by DNA 

(cytosine-5)-methyltransferases. When a CpG site that was previously unmethylated 

becomes methylated, this site is said to be methylated de novo. On the other hand, 

when methylation occurs at a hemimethylated site arising from events such as DNA 

replication, the methylation is called maintenance methylation, because it restores 

the symmetrically methylated state of the parental CpG. The reaction mechanism of 
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Figure 1. 2: Mechanisms of DNA methylation (A) catalysed by DNA methyltransferase and (B) inhibited by 5-azacytidine. (A) A thiolate 

residue of DNA methyltransferase attacks the cytosine ring at the C-6 position and opens up the double bond which attracts a methyl 

group from SAM. The proton then transfers from cytosine to Dnmt to allow double bond reformation, which also releases the enzyme. 

(B) When methylation inhibitors, such as 5-azacytidine, are incorporated into DNA, the replacement of C-5 by a nitrogen still allows the 

transfer of methyl residue from SAM to Dnmt but the consequent complex is a very stable complex, which is not in favour to reform the 

double bond. This engages the enzyme on DNA all the time and, therefore, inhibits DNA methylation. 



the methyltransferase activity is depicted in Figure 1.2A. First, the enzyme forms an 

cysteinyl thiolate with SAM at the catalytic site. This thiolate adds covalently to the 

C-6 position of cytosine and follows by the protonation of the N-3 position creating 

the 4,5 enamine, which in turn attacks the methyl group of SAM. Finally, abstraction 

of the C-5 proton allows reformation of the 5,6 double bond and j9-elimination to 

release the enzyme, resulting in methylated cytosine (reviewed in Bestor, 2000b). 

In mammals, the DNA methyltransferase (Dnmt) proteins are divided into three 

families: Dnmtl, Drmt2 and Dnmt3 (Figure 1.3). All the Dnmt proteins, except 

Dnmt3L, are identified via a C-terminal catalytic domain, comprising six highly 

conserved motifs (reviewed in Bestor, 2000a). Dnmtl was the first mammalian Dnmt 

Catalytic Domain 

Dnmtl (1620 aa) 
Cys-rich 

Targeting 

 

Dnmt2 (391 aa) 

 

WIN  III Ill 
Cys-rich 

III 	III 
Cys-rich 

Cys-rich 

Dnmt3a (912 aa) 

Dnmt3b (865 aa) 

Dnmt3L (387 aa) 

Figure 1.3: The general organisation of the five mammalian DNA methyltransf erase 

family members. The catalytic domain resides in the C-terminal of all Dnmts, except 

Dnmt3L. The vertical bars inside the C-terminus correspond to the highly conserved 

motifs found in most DNA methyltransferases. The linker region between the N- and 

C-terminus of Dnmtl is represented by a short thick horizontal line. The Cys—rich 

region of Dnmtl includes three CXXC domains that are related to that of 

methyl-CpG binding protein 1 (MBD1), whereas the Cys-rich region of Dnmt3 

proteins is an ATRX-like PHD domain. The N-terminus of Dnmtl also includes a 

replication targeting sequence that is involved in the targeting of Dnmtl to 

replication foci at S phase. The protein sizes given on the right are the sizes of 

mouse proteins. 
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to be identified, and is the major methyltransferase in somatic tissues (Bestor et al., 

1988). Dnmtl has 5-to-30 fold preference for hemimethylated DNA when compared 

to non-methylated DNA (Bestor, 1992; Li et al., 1992; Yoder et al., 1997a). Dnmtl was 

found to localise in the nucleus to DNA replication foci during S phase, through the 

replication targeting site in the N-terminus, and methylates hemimethylated 

daughter DNA to regenerate the symmetrical methylation status resembling 

parental DNA (Leonhardt et al., 1992). This ability to maintain methylation status 

thus classified Dnmtl as a maintenance methyltransferase. 

Dnmtl also showed little de novo activity in vitro (Bestor, 1992; Yoder et al., 

1997a), though the fact that active Drimtl resides only in the cytoplasm of 

preimplantation embryos and specifically enters the nucleus shortly at the 8-cell 

stage suggests that Dnmtl may play a role during the early developmental stage. 

Interestingly, the early embryonic Dnmtl is actually a truncated variant of Dnmtl, 

named Dnmtlo, which expresses specifically in the oocytes and is soon replaced by 

full-length somatic Dnmtl after implantation (Cardoso and Leonhardt, 1999; 

Mertineit et al., 1998; Ratnam et al., 2002). However, the biological significance of 

this variant trafficking is currently unknown. 

In contrast to Dnmtl, little is known about Dnmt2. The Dnmt2 protein lacks the 

entire N-terminal regulatory region, retaining only the catalytic domain. Although 

Dnmt2 was initially shown to perform no methyltransferase activity in mammals 

(Okano et al., 1998b; Tweedie et al., 1997), a very weak activity (-5% of the activity 

of Dnmtl) of Dnmt2 was recently observed in mouse and human cell lines (Liu et al., 

2003). Also, a Dnmt2-like protein was found in D. melanogaster and has been shown 

to mediate a weak but significant methyltransferase activity targeting CpT or CpA 

instead of the usual CpG context (Kunert et al., 2003; Lyko et al., 2000). However, 
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Dnmt2 appears dispensable for both de novo and maintenance methylation in 

mammals, because Dnmt2-deficient ES cells are normal in growth and morphology 

(Okano et al., 1998b). 

Drui-tt3a and 3b were first identified by a sequence search of the dbEST database 

using bacterial cytosine methyltransferase as the enquiry input (Okano et al., 1998a; 

Yoder and Bestor, 1998). Although conserved in the methylase catalytic domain, 

neither Dnmt3a nor Dnmt3b contains the N-terminal regulatory region found in 

Dnmtl. Instead, the N-termini of Dnmt3 family members all have a cysteine-rich 

ATRX-like PHD domain, which is present in many chromatin-associated proteins. 

On the basis of homology to this ATRX-like domain, Dnmt3L (Dnmt3-like) was 

identified and included in this family. However, Dnmt3L lacks most of the 

C-terminal catalytic domain, which accounts for its lack of methyltransferase 

activity. 

Dnmt3a and 3b are thought to be responsible for de novo DNA methylation, 

which is mainly observed in the postimplantation embryos and the primordial germ 

cells in the midgestation embryos. Both Dnmt3a and Dnmt3b have been shown to 

perform de novo methylation in vivo, but the de novo methylation activity of Dnmt3b 

seemed weaker than that of Dnmt3a (Hsieh, 1999b). Moreover, Dnmt3a- or 

Dnmt3b-deficient mouse ES cells and embryos showed little or no change of the de 

novo methylation pattern in retroviral DNA and major satellite DNA. A significantly 

reduced effect on de novo methylation activity only appeared when Dnmt3a and 

Dnmt3b were both deleted (Okano et al., 1999), suggesting an overlapping function 

of the two de novo methyltransferases. Despite the overlapping function, Dnmt3b 

has a specific role in the methylation of centromeric minor satellite repeats. The 

Dnint3b locus was mapped to chromosome 20q11.2, a locus associated with ICF 
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(immunodeficiency, Lentromeric instability, facial anomalies) syndrome, and several 

Dnmt3b mutations were found in ICF patients (Hansen et al., 1999; Okano et al., 

1999). Thus DNMT3B becomes the first and only DNA methyltransferase identified 

in a human autosomal recessive disorder. 

Furthermore, DNA methyltransf erases are involved in transcriptional 

repression. Dnmtl has been shown to interact with histone deacetylase 1 (HDAC1), 

HDAC2 and other co-repressors (Fuks et al., 2000; Robertson et al., 2000; Rountree et 

al., 2000). Dnmt3a and 3b co-localise with 1-IP1-positive hetereochromatin, and both 

repress transcription via interaction with HDAC activity (Bachman et al., 2001). 

Dnmt3L has also been to act as a transcriptional repressor associated with HDAC1, 

and required HDAC activity for its repression activity (Deplus et al., 2002). This 

shows that the transcriptional repression activity of the Dnmt proteins can be 

independent of the Dnmt enzymatic activity since Dnmt3L lacks a complete 

catalytic domain. 

Interestingly, there are accumulating data revealing interplay between the 

Dnmt family members. First, the N-terminus of Dnmtl was found to interact with 

its C-terminus and can allosterically facilitate its methyltransferase activity (Fatemi 

et al., 2001). Moreover, gene targeting of human DNMT1 alone only reduced global 

methylation to 80%, whereas a double knockout of DNMT1 and DNIVIT3B showed a 

marked decrease of overall genomic methylation to less than 1% in the human 

colorectal carcinoma cancer cell line HCT116 (Rhee et al., 2000; Rhee et al., 2002). 

These observations imply cooperation between Dnmtl and Dnmt3b. Also, Dnmt3a 

was shown to have higher de novo methylation activity following incubation with 

Dnmtl, and therefore provides a link between Dnmtl and Dnmt3a (Fatemi et al., 

2002). Another gene knockout study demonstrated that both Dnmtl and Dnmt3a 
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and/or Dnmt3b were required for methylation of repeat sequences, such as LINE-1, 

in mouse ES cells, although Dnmti alone can perfectly maintain methylation of 

most CpG-poor sequences (Liang et al., 2002). Finally, the DNA 

methyltransferase-like protein, Dnmt3L, has been shown in physical contact with 

other Dnmt3 family members (Hata et al., 2002). However, in an in vitro study, 

DNMT3L only stimulates de novo methylation carried out by DNMT3A, not by 

DNMT3B (Chedin et al., 2002). To date, Dnmt2 has not been shown to interact with 

any other Dnmt family member (Margot et al., 2003). 

1.3.2 The methyl-CpG binding domain (MBD) proteins 

In a search for proteins that can specifically bind to methylated DNA, MeCP1 and 

MeCP2 were first identified, but MeCP1 was shown to be a multisubunit complex 

(Meehan et al., 1989). The MBD domain of MeCP2 was mapped and used to identify 

the MBD protein family, which consists of MBD1-4 and MeCP2 (Figure 1.4; Nan et 

al., 1993). 

Each of the MBD family members except MBD3 can bind to a single 

symmetrically methylated CpG, and localise to highly methylated DNA regions 

such as the major satellite DNA (Hendrich and Bird, 1998; Nan et al., 1993). All 

MBDs, except MBD4, are involved in transcriptional repression. MeCP2, MBD2 and 

MBD3 function as part of transcriptional repression complexes, which include either 

HDAC1 and/or HDAC2 (Nan et al., 1997; Ng et al., 1999). MeCP2 has a 

transcriptional repression domain (TRD) which associates with a corepressor 

complex containing transcriptional repressor Sin3 and a histone deacetylase (Nan et 

al., 1998). MBD2 does not contain a TRD domain but can similarly repress 
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Figure 1.4: Overview of the MBD family members. The main feature of these 

proteins is the methyl-CpG binding domain (MBD) that characterises this protein 

family. Both MeCP2 and Mbdl have a transcription repression domain (TRD) that 

can mediate transcriptional repression. The Cys-rich region of MBD1 (CXXC domain, 

horizontal bars) is shown to bind nonmethylated DNA so Mbdl repression activity 

can work on not only methylated but also nonmethylated promoters. The thymine 

DNA glycosylase (TDG) domain of MBD4 is responsible for the T:G mismatch repair. 

Sizes of the mouse MBD proteins are listed. 

transcription in a deacetylase-dependent manner. Mbd2 is also a component of the 

MeCP1 complex that includes HDAC1, HDAC2, Sin3a and histone binding protein 

RbAp48/46 (Ng et al., 1999). Although MBD3 does not bind •  to methylated DNA 

and contains no TRD motif, MBD3 still performs transcriptional repression as a part 

of a deacetylase complex, the Mi-2/NuRD complex, which has a nucleosome 

remodelling activity (Zhang et al., 1999). On the other hand, MBD1 represses 

transcription through its TRD domain regardless of HDAC activity, and has recently 

been shown to repress both methylated and non-methylated DNA via its MBD 

domain and its CXXC-3 domain, respectively (Jorgensen et al., 2004; Ng et al., 2000). 

However, the precise roles of these proteins in vivo are not yet clear. Mice that 

lack MBD3 show embryonic lethality, despite the fact that MBD3 is the only MBD 

protein that does not bind to methylated DNA (Hendrich et al., 2001). 
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MeCP2-deficient mice are viable until several months after birth and display 

symptoms similar to human Rett Syndrome, a neurological disorder in which many 

MeCP2 mutations have been identified (Guy et al., 2001). Mbd2-null mice are also 

viable without inappropriate activation of endogenous imprinted genes or retroviral 

sequences, but the females exhibit defects in maternal behaviours, such as nurturing 

(Hendrich et al., 2001). The weak phenotypes of the MBD protein-deficient mice 

relative to the Dnmt-deficient mice suggest that the MBD proteins are functionally 

redundant. 

Although MBD4 can bind specifically to methylated DNA, it prefers binding to 

a T:G mismatch both in vivo and in vitro (Hendrich et al., 1999a; Hendrich et al., 

1999b). MBD4 has a helix-hairpin-helix domain similar to that of bacterial DNA 

glycosylase and can initiate base excision repair (BER) by excising thymidine from 

T:G mismatch in the context of CpG dinucleotides. T:G mismatches arise from the 

spontaneous deamination of 5-mC to thymidine and give rise to C:G to T:A 

mutations upon replication. Mbd4 mice have an increased frequency of such 

transition mutations at CpG sites and show an increase in tumourigenesis on a 

tumour-prone background (Millar et al., 2002). Thus, while the other MBD family 

members mediate the biological readout from 5-mC, MBD4 acts to maintain this 

hypermutable base within the genome. 

1.3.3 Roles of DNA methylation 

Since the discovery of 5-methylcytosine, scientists have tried to elucidate the 

biological significance of DNA methylation. Though there is no definitive answer as 

yet, it is generally considered that DNA methylation acts to regulate gene expression, 
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X inactivation, genomic imprinting and mobile elements, via transcriptional 

repression. 

In a heavily methylated mammalian genome, the appearance and location of 

CpG islands provided a base to investigate the role of DNA methylation and 

revealed its role in gene suppression. CpG islands are DNA domains of 

approximately 1kb in length, which have a high CG content and generally lack 

cytosine methylation (Bird, 1987). About 70-80% of total nonmethylated cytosines 

(about 1% bulk genome) are found in CpG islands, which are located at the 5' end of 

all housekeeping genes and many tissue-specific genes. Methylation of the 5' CpG 

islands represses expression of their associated genes, such as imprinted genes and 

genes on the inactive X chromosome (Monk, 2002; reviewed in Verona et al., 2003). 

This suggests a positive but not reciprocal link between DNA methylation and 

transcriptional repression, because CpG island promoters of tissue-specific genes 

(e.g. human alpha-globin and alpha 2(1) collagen, embryonic histone gene) are 

normally unmethylated in both expressing and non-expressing tissues (Bird et al., 

1979; reviewed in Bird, 2002). Gene repression by CpG promoter methylation is also 

seen in cancer cells (reviewed in Jones, 2002). Promoter hypermethylation of tumour 

suppressor genes such as p16 represses their expression and promotes tumour 

proliferation (Gonzalez-Zulueta et al., 1995). In spite of CpG island 

hypermethylation, a general hypomethylation of total genomic DNA is also a 

common feature of tumourigenesis. Methylation changes prior to tumour formation 

suggest that DNA hypomethylation has a causal role in tumourigenesis (Di Croce et 

al., 2002; Eden et al., 2003; Gaudet et al., 2003). In vitro, methylation of plasmid DNA 

prior to introduction into tissue culture cells generally inhibits reporter gene 

expression. Experiments with episomes have shown that methylation of as few as 
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7% of CpG sites can effectively repression gene expression (Hsieh, 1994). 

Introduction of an in vitro-methylated DNA at two genomic sites by Cre-mediated 

genomic targeting resulted in the loss of reporter gene expression, whereas the 

reporter gene was properly expressed when an identical but unmethylated DNA 

was introduced (Schubeler et al., 2000). This methylated construct also brought 

about the localisation of hypoacetylated histone H3 and H4, which is consistent 

with observations that DNA methylation renders active chromatin to 

nuclease-insensitive structure (Kass et al., 1997; Keshet et al., 1986). It has also been 

shown that DNMT1 associates with HDAC1 and forms a complex together with 

tumour-suppressor protein Rb and sequence-specific transcriptional activator E2F1 

(Robertson et al., 2000). The resulting complex repressed transcription from 

E217-responsive promoters and improperly silenced CpG island-associated tumour 

suppressor gene. Apart from the mechanism directly involving Dnmtl, methylated 

DNA may also repress transcription by the impediment of the transcriptional factors 

binding their DNA recognition elements, such as CTCF binding in Igf2/H19 

imprinting control region (Bell and Felsenfeld, 2000; Hark et al., 2000). On the other 

hand, methyl-CpG binding proteins, as discussed earlier, may act indirectly as 

mediators that bind methylated DNA and recruit HDAC to achieve transcriptional 

repression. Collectively, the dominant effect of DNA methylation represses 

transcription through the modulation of the protein environment, surrounding 

control elements, and chromatin structure of the gene. 

Current knowledge concerning the role of DNA methylation in gene imprinting 

has largely come from studies involving gene targeting of DNA methyltransferase 

genes in mice. Imprinting is the phenomenon whereby an allele may have a 

different effect on the offspring depending on the sex of the contributing parent. 
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Dnmtl-null embryos suffered disturbance of gene imprinting and X inactivation, as 

several imprinted genes showed biallelic expression (Lei et al., 1996; Li et al., 1992) 

and transient inactivation of genes on X chromosomes is observed (Panning and 

Jaenisch, 1996). Also, these embryos do not survive beyond embryonic day (E) 9.5, 

which suggests Dnmtl is essential for early development. Disruption of the 

oocyte-specific Dnmtlo, on the other hand, does not lead to complete genome-wide 

demethylation or embryonic lethality. However, mutated homozygous females fail 

to carry heterozygous offspring and some maternally imprinted genes appear 

demethylated, giving biallelic expression, which suggests a role of Dnmtlo in the 

maintenance of gene imprinting (Howell et al., 2001). 

Deletion of the catalytic domain of both Dnmt3a and Dnmt3b disrupted de novo 

methylation in ES cells and embryos (Okano et al., 1999). In comparison to Dnmt3a 

and 3b double knockout, mutation of Dnmt3a alone or Dnmt3b alone had a much 

weaker phenotype. However, neither of these disruptions was as severe as observed 

in Dnmtl null animals. Dnmt3a mice did not die until four weeks after birth, 

whereas Dnmt3V mice developed normally before E9.5 but were not viable at birth. 

Due to abnormal development, Dnmt3a and 3b double knockouts showed abnormal 

morphology from E8.5 and could not survive longer than E11.5 (Okano et al., 1999). 

In the ES cells of these double, but not single, knockout mice, the differentially 

methylated region of Igf2 and the 5' region of Xist did not undergo de novo 

methylation after differentiation in vitro (Okano et al., 1999). In addition, [Dnmt3a , 

Dnmt3b] embryos derived from ovary transplantation lose methylation at the 

differentially methylated regions of imprinted genes such as IgJ2r, Pegi, Peg3 and 

Snrpn (Hata et al., 2002). Male mice lacking Dnmt3L, on the other hand, were viable 

but infertile due to defects in spermatogenesis, while Dnmt3U females could no 
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longer establish maternal imprinting nor produce viable offspring, due to aberrant 

acquisition of genomic methylation during oogenesis (Bourc'his et al., 2001b; Hata et 

al., 2002). These observations all indicate that DNA methylation plays a role in early 

development and in the maintenance and establishment of imprinted genes. 

During early embryogenesis, one of the two X chromosomes in female 

mammalian cells such as human and mouse is inactivated to achieve an equivalent 

dosage from X-linked genes between male and female cells. The association between 

methylation and X inactivation is supported by several observations. The 

methylation inhibitor, 5-azadeoxycytidine (5-azadC), has been used to derepress 

X-linked genes inactivated on inactive X chromosome (Xi; Mohandas et al., 1981), 

and the methylation of CpG island of hypoxanthine phosphoribosyltransferase 

(I-IPRT) gene follows X inactivation by several days (Lock et al., 1987). Also, 

Dnmtl-deficient male embryos are hypomethylated at the 5' end of the Xist (X 

inactive specific transcript) locus, which induces Xist expression and the repression 

of X-linked genes (Beard et al., 1995). CpG islands of X-linked genes are usually 

heavily methylated on the Xi but barely methylated on the active X, whereas the 

promoter of the Xist gene works in the totally opposite way, being methylated on 

active X chromosome and hypomethylated on the Xi (Vasques et al., 2002). However, 

methylation of Xist on the future inactive X does not seem to be essential for the 

initiation of X inactivation since DNA methylation happens several days after X 

inactivation (Lock et al., 1987). This suggests DNA methylation plays a downstream, 

maintenance role in the process of X inactivation. Nonetheless, a study of 

Dnmtl-knockout mice indicated that the zygotic function of Dnmtl may not be 

essential for the establishment of X inactivation in the extraembryonic tissues while 

imprinted genes of the same pool showed aberrant expression (Sado et al., 2000). On 
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the other hand, the embryonic lineages of Dnmtl mutant embryos do not have 

stable X inactivation which consistently suggests DNA methylation may have a 

maintenance role (Sado et al., 2000). Moreover, ICF patients have hypomethylated 

CpG islands on the inactive X, which could explain the instability of silencing on Xi 

(Hansen et al., 2000). Since ICF is caused by DNMT3B mutation, this suggests 

another link between methylation and X inactivation. However, a recent report 

seems to refute this idea because Dnmt3a- and 3b-deficient mice do not show 

abnormal X inactivation. Expression of Xist was not affected in these mice either, 

even though they do show highly demethylated promoter regions of both Xist and 

Hprt (Sado et al., 2004). Still, hypomethylated DNA in Dnmtl mutant embryos and 

embryonic cells result in aberrant Xist expression and subsequent cell death 

(Panning and Jaenisch, 1996). Besides, there is synergistic effect of DNA methylation 

and histone deacetylation on Xist reactivation, because Xist reactivation is observed 

in cells simultaneously treated with the deacetylation inihibitor, Trichostatin A 

(TSA), and the methylation inhibitor, 5-azadC (Csankovszki et al., 2001; Keohane et 

al., 1996). From these lines of evidence, DNA methylation is also important to 

correctly inactivate X chromosome. 

One of the proposed roles of DNA methylation is the suppression of parasitic 

sequences, such as transposable elements and proviral DNA (Yoder et al., 1997b). 

Cytosine methylation inactivates the promoters of most viruses and transposons 

(Harbers et al., 1981; Schmid, 1996). The repression of LINE and SINE 

retrotransposon promoters is disrupted in the human genome when DNA 

methylation is reduced (Liu et al., 1994; Woodcock et al., 1997) and the transcription 

of intracisternal A particle (lAP) elements is massively induced in mouse embryos 

lacking Dnmtl (Walsh et al., 1998). Also, the majority of 5-mC content in the 
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mammalian genome occurs in these parasitic sequences (Bestor et al., 1984; Yoder et 

al., 1997b). Intriguingly, the nonmethylated genomes of D. melanogaster and C. 

elegans do harbor transposons, such as P elements. Besides, mosaic methylation of 

the C. intestinalis genome showed that multiple copies of transposons and most 

interspersed elements were free of methylation, whereas three-quarters of the genes 

were methylated along with some of the short interspersed elements (Simmen et al., 

1999). This suggests that methylation in the invertebrate genome is not targeted to 

silence transposable elements. In mammals, only a small fraction of these elements 

remain active in the heavily methylated genome, which cannot count as a fair base 

for the genome defense theory. It has also been reported that some promoters of 

these elements can be activated without altering DNA methylation (Chu et al., 1998; 

Liu et al., 1995), and several retrotransposons are reportedly nonmethylated in 

mammalian germ cells and early embryos, where protection against transposition is 

thought to be important (reviewed in Bird, 1997). Therefore, the hypothesis that 

transposon silencing by methylation is a part of the genome defense system remains 

debatable. 

1.4 DNA methylation in prokaryotes 

1.4.1 Prokaryotic DNA methylation 

DNA methylation is also widespread among prokaryotes and occurs at adenine and 

at cytosine, giving the possible products of methylation as N6-methyladenine and 

C5-methylcytosine (Figure 1.1). It has been suggested that DNA methylation in 

prokaryotes may play a role in DNA mismatch repair, modulation of gene 

expression and coordinating DNA replication initiation, chromosome partition and 
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cell division (reviewed in Palmer and Marinus, 1994). In the best studied system of 

the bacterium Escherichia coli, cytosine C-5 methylation is carried out by the dcm 

gene and methylates the internal cytosine in the sequence CC(A/T)GG. On the 

other hand, the methylase encoded by the dam gene is in charge of adenine 

methylation in the sequence context of GATC. However, both dcm and dam cells are 

viable with minor defects such as susceptibility to restriction (Kruger et al., 1989; 

Urieli-Shoval et al., 1983). Moreover, the laboratory strain E. coli B is actually dcm 

free by nature (Marinus, 1984). Since there is a lack of phenotypic evidence, the 

biological significance of cytosine methylation in E. coli, therefore, remains 

speculative. 

One important role of DNA methylation in prokaryotes is to protect DNA 

against corresponding restriction endonucleases (reviewed in Dryden et al., 2001). 

Both adenine N6- and cytosine C5-methylation can arise as a result of the 

restriction-modification (R-M) mechanism, which is achieved by the methylase part 

of various R-M enzymes, such as EcoKI. R-M enzymes are divided into several 

classes and each utilises a slightly different pathway to perform host 

restriction-modification defence. Generally speaking, all the R-M enzymes comprise 

an endonuclease activity and a methylase activity, sharing the same specificity for its 

target DNA sequence. The methyltransferase part of an R-M system modifies the 

host DNA, so it cannot be cleaved by the corresponding endonuclease. Upon phage 

invasion, foreign DNA entering the host without carrying specific modification 

markers will be digested by the bacterial endonuclease. In this way, the adenine 

methylation marks self from non-self DNA, thus protecting the bacteria from 

bacteriophage infection (reviewed in Dryden et al., 2001). 
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1.4.2 Phage-bacteria antagonism 

To counteract the bacterial immune system, phages have anti-restriction 

mechanisms that can resist bacterial discrimination, allowing them to successfully 

invade bacteria using three general strategies. Firstly, particular bases in the specific 

sequence recognised by the endonuclease may be methylated by a corresponding 

modification by DNA methyltransferase, rendering phage DNA resistant to 

restriction. Secondly, when the host nuclease specifically requires a modified 

sequence, the absence of methylation in phage genome provides protection from 

bacterial nuclease. Thirdly, they utilise an unusual base to substitute one of the usual 

four throughout the genome. The third strategy provides virtually unlimited 

protection against nucleases. T-even phages such as T2 and T4 take up 

5'-hydroxymethylcytosine (5-HmC) from bacteria, to avoid nucleases that recognize 

unmodified DNA and then modify HmC by glucosylation, which subsequently 

protects phage DNA from nucleases that recognise specific modification. 

The closely-related bacteriophage T7 and T3 take an entirely different approach 

in addition to the first strategy, which collectively allow them to grow 

interchangeably on a range of E. coli strains. By recruiting gene 0.3 to overcome 

host restriction, they grow unaffected by the DNA restriction system. This early 

gene is also named overcome host restriction (ocr) for its function to overcome host 

restriction. The ocr protein binds to restriction endonucleases and consequently 

block their restriction activity (Kruger et al., 1983). In addition to the ocr function, 

bacteriophage T3 has developed a unique property to strengthen its anti-restriction 

mechanism. Another early enzymatic activity of T3 was first detected in infected E. 

coli B (Gefter et al., 1966). This activity catalyses the hydrolysis of SAM, the methyl 
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donor, into homoserine and methyl-thio-adenosine (MTA; Figure 1.5). The 

breakdown of SAM facilitates R-M enzyme inhibition, because SAM is a cofactor 

required to activate type I R-M enzymes in E.coli B and K strains. Both ocr and the 

SAM cleaving activities are early expressed in T3, and it has been shown that the 

SAM hydrolysis activity and the ocr activity actually reside on the same peptide, 

later named S-adenosylmethionine hydrolase (SAMase, E.C. 3.3.1.2; Hughes et al., 

1987a; Spoerel et al., 1979; Studier and Movva, 1976). However, the ability to 

hydrolyze SAM appears not to be the primary reason for anti-restriction, as a 

mutant that has lost SAMase activity is still capable of overcoming host restriction 

(Studier and Movva, 1976). Also, the impairment of host restriction by SAMase, 

instead of being catalytic, is a stoichiometric mechanism and the interaction between 

SAMase and endonuclease is reversible (Spoerel et al., 1979). This beautifully 

designed dual system has drawn further investigation on SAMase, especially the 

unique property of SAM destruction. 

NH, 

CH 3  

SAM 
:11 2  Cu2 	hydrolase 

CHCOOH 

H 2N 

NH, 

 

CH3 	
fH2OH 

CH 2  
H2 	+ 

CHCOOH 

I 	 NH2 

S-adenosylmethionine 	 Methyl-thio-adenosine 	homoserine 

Figure 1.5: SAM hydrolysis by SAMase. S-adenosylemthionine is cleaved by 

SAMase into homoserine and methyl-thio-adenosine. This is a special reaction only 

found in vivo in bacteriophage T3. Enzyme reaction occurs at the site shown in red. 
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1.5 DNA demethylation 

1.5.1 Demethylation in vivo 

The reversal of DNA methylation is termed DNA demethylation. Two mechanisms 

of DNA demethylation have been observed in vivo. The more common form is 

termed passive DNA demethylation and occurs upon DNA replication. If DNA 

methyltransf erases cannot access methylatable sites on a newly synthesised, 

unmethylated daughter strand, DNA methylation is lost over a number of cell 

divisions. Binding of specific proteins on nascent DNA, such as Spi proteins, in 

postimplantation development and in germinal tissues may protect DNA from 

methylation (Chesnokov and Schmid, 1995; Macleod et al., 1994). Protein association 

specifically required for DNA demethylation of, at least, the first strand during 

replication has been shown (Hsieh, 1999a). This is likely to hinder subsequent de 

novo methylation by Dnmt3a and result in DNA demethylation (Han et al., 2001; 

Hsieh, 1999a; Lin et al., 2000). Since unmethylated sites on hemimethylated 

daughter strands are only possible during replication as a result of the failure in 

maintenance methylation, this demethylation is therefore replication dependent and 

termed passive demethylation. 

DNA demethylation can also proceed in a replication-independent style, 

termed active demethylation. Since the removal of the stably-formed C-C bonding is 

not thermodynamically favourable, this reaction is unlikely to occur without 

enzyme catalysis. Active demethylation has been reported on several occasions, 

either upon cell differentiation or under the control of hormones. For examples, the 

a -crystallin gene was hypomethylated during development of the chicken lens, 

where a large fraction of cells in the lens stopped dividing (Sullivan and Grainger, 
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1987). In the avian vitellogenin gene, three CpG sites underwent demethylation in a 

two-step fashion after the hormonal activation by estradiol, while the fourth site 

became demethylated from a hemimethylated strand after glucocorticoid induction. 

Both sets of CpGs remained demethylated even after cessation of gene transcription 

and their occurrence was independent of replication (Saluz et al., 1986). In L8 

myoblasts, the a -actin gene underwent full demethylation on an unintegrated 

pre-labelled plasmid by the aid of a cis-acting sequence in the upstream regulatory 

region (Paroush et al., 1990). Naïve T cells also showed site-specific demethylation 

in the promoter-enhancer of the interleukin-2 (IL-2) gene. Here, demethylation was 

observed as early as 20 minutes after stimulation at selective sites. Demethylation 

preceded DNA replication which occured hours later, and it remained stably 

demethylated up to nine days after stimulation (Bruniquel and Schwartz, 2003). In 

addition, mouse erythroleukemia cells underwent genome-wide transient 

demethylation in response to the treatment with hexamethylene bisacetamide 

(HIvIBA), when the DNA was not yet replicating in the cell cycle (Razin et al., 1986). 

1.5.2 Demethylation during development 

During development, the process of DNA demethylation was first observed when a 

net loss of methylcytosine was found in early embryos and germ cell lineages 

(Monk et al., 1987). Using methylation-sensitive digestion and hybridization 

techniques, it was observed that DNA from oocytes was undermethylated whereas 

sperm DNA was relatively methylated just before fertilization. However, the sperm 

genome underwent demethylation during cleavage because DNA in blastocyst stage 

has very little methylation. From E6.5 onwards, fetal DNA methylation level 
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increases again (Howlett and Reik, 1991; Rougier et al., 1998). Individual DNA 

sequences, such as Pgk2 gene and satellite DNA, were examined and all displayed 

similar, but slightly different, methylation patterns in gametes (Howlett and Reik, 

1991; Kafri et al., 1992). However, most of the above results point to the direction of 

passive demethylation as a mechanism for these events, which coincided with the 

replication time of embryos, because the cells under examination are either later 

than one-cell stage or tested by using whole cell DNA, in which the differential 

demethylation between two parental genomes was not distinguishable. 

The first striking evidence of a bona fide active demethylation was published in 

2000. Using indirect immunofluorescence staining against 5-methylcytosine, Mayer 

et al. (2000a) demonstrated that a high methylation level was equally maintained 3-6 

hours after fertilization, but only the paternal genome underwent rapid loss of 

5'-methylcytosine within 6-8 hours after fertilization in the one-cell embryo. 

However, the first replication event does not occur until the S phase of the two-cell 

embryo. Besides, the maternal genome only experienced gradual and genome-wide 

demethylation after the two-cell embryo stage, which was in accordance with cell 

division (Mayer et al., 2000a; Rougier et al., 1998). The pattern of maternal 

demethylation is consistent with passive demethylation as a result of lacking 

maintenance methylation in the genome following DNA replication and cell 

division. Bisulfite sequencing of sperm, oocyte and early embryo also revealed 

similar results, showing that highly methylated sperm was rapidly demethylated 

soon after fertilization and the maternal genome either remains methylated, or 

became further de novo methylated after fertilization (Oswald et al., 2000). However, 

the exact timing of remethylation is still unclear. Slightly contradictory to the 

observation made by Mayer et al. (2000a), a later publication showed that the 
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process of paternal demethylation took only 90-120 minutes and was complete 

within 4-5 hours after in vitro fertilization (Santos et al., 2002). In addition, the 

reduction of genome-wide methylation in the whole embryo, except imprinted 

genes, recorded in most literature is complete at the blastocyst stage and 

remethylation begins soon after implantation (Howlett and Reik, 1991; Mayer et al., 

2000a; Monk et al., 1987), whereas a demonstration of demethylation completing at 

morula stage contrasts the above statement (Santos et al., 2002). This publication 

also showed that the first de novo methylation was detected only in the inner cell 

mass of blastocyst, which suggests the re-establishment of methylation patterns 

begins in preimplantation embryos and is lineage-specific. Whichever is the correct 

timing, the active demethylation of the paternal pronucleus in the non-replicating 

embryo is undoubtedly true. 

During mammalian development, another active demethylation event occurs 

when primordial germ cells (PGCs) enter the genital ridge. PGCs are cells derived 

after acquiring genome-wide de novo methylation from E6.5. These cells later 

proliferate and migrate towards the genital ridge between 10.5 and 11.5 day 

postcoitum (dpc) with a high methylation level. From 12.5 dpc, methylation marks 

in PGCs, including those on repetitive sequences, non-imprinted and imprinted 

genes, are all removed. Even the X chromosome, which originally undergoes 

random inactivation, is demethylated while the counterpart in somatic tissues 

retains its methylation status (Hajkova et al., 2002; Howlett and Reik, 1991; Kafri et 

al., 1992; Monk et al., 1987). This wave of demethylation peaks around 13.5 dpc. 

Although some repetitive sequences are not erased completely, the imprinting 

marks and the majority of the DNA obtain an equal epigenetic state prior to the 

differentiation of the definitive male and female germ cells. Once this ground zero is 
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established, de novo methylation is again carried out in germ cells, starting from day 

15.5, and is completed around 18.5 dpc. Interestingly, embryonic germ cells, which 

are derived from PGCs, are able to demethylate foreign, somatic DNA when fused 

with thymic lymphocytes (Beaujean et al., 2004; Hajkova et al., 2002; Lee et al., 2002; 

Tada et al., 1997). This suggests that the demethylation ability is carried in the cell 

itself and, unlike the demethylation in early preimplantation embryos, does not 

require a sense of parental origin. 

The precise role of demethylation in early embryos and of some tissue-specific 

genes is not yet clear. First of all, the genome-wide demethylation of paternal 

pronuclei does not seem to be a prerequisite for mammalian development, because 

it appears common only among mouse, rat, pig, and human but not in species like 

zebrafish, rabbit and sheep, whereas an intermediate level of demethylation is 

observed in the cow (Beaujean et al., 2004; Dean et al., 2001; Macleod et al., 1999). 

Furthermore, both successful and unsuccessful rapid demethylation in one-cell 

embryos has been observed in cloned animals, but the overall reprogramming of 

methylation pattern is aberrant (Bourc'his et al., 2001a; Dean et al., 2001; Lee et al., 

2002). In manipulated embryos, the pronuclei of paternal origin are always 

subjected to active demethylation while those of maternal origin are always 

methylated, regardless of the ploidy of the embryos (Barton et al., 2001; Mayer et al., 

2000b). Polyspermic embryos containing up to four sperm pronuclei underwent full 

demethylation of all male pronuclei (Santos et al., 2002). Interestingly, embryos with 

abnormal demethylation obtained from normal matings actually resemble these 

manipulated embryos (Dean et al., 2001; Shi and Haaf, 2002). These observations 

suggest that asymmetric methylation between the maternal and paternal pronuclei 

of the early embryos is functionally important, perhaps in the epigenetic 
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reprogramming for future somatic development. 

1.5.3 Demethylation driven by external forces 

Prior to the application of gene-targeting technology, drug treatment of cells was the 

only available means of reducing DNA methylation levels in cells. The cytidine 

analogs such as 5-azacytidine (5-azaC) and 5-aza-2'-deoxycytidine (5-azadC) (Figure. 

1.6) are the most widely used and best studied DNA methylation inhibitors. Yet, 

analogs such as 5-6-dihydro-5-azacytidine and 6-azacytidine have little or no effect 

at all (Jones and Taylor, 1980). The mechanism by which these demethylation agents 

function is through their covalent binding to DNA methyltransferases. When the 

normal deoxycytidine residue in DNA is replaced by azacytidine analogs, the 

cysteine thiolate of the enzyme binds to the C-6 of 5-azadC and forms a stable 

covalent bond which no longer allows DNA methyltransferases to break free (Figure. 

1.2B). This irreversible binding of azacytidine traps the DNA methyltransferases, 

decreases the cellular concentration of the enzymes and thus leads to subsequent 

passive demethylation of genomic DNA. Supportive evidence for this mechanism is 

that Dnmtl deficient cells appear more resistant to the toxicity of 

5-azadeoxycytidine treatment than wild-type or heterozygous mutant cells 

(Juttermann et al., 1994). 

5-azaC-induced DNA hypomethylation has an established link with changes 

in gene expression and cellular differentiation. Hprt gene on the inactive X 

chromosome, tyrosine aminotransferase gene in fetal rat liver, adenosine deaminase 

gene in adenosine deaminase-deficient mouse cells are all examples of genes 

reactivated by treatments of 5-azaC analogs (reviewed in Haaf, 1995). There are also 
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Figure 1.6: DNA methylation inhibitors and non-inhibitor analogs. (A) 5-azacytidine. 

(B) 5-azadeoxycytidine. (C) 5-6-dihydro-5-azacytidine (D) 6-azacytidine. 

observations on the induction of endogenous and exogenous viral gene expression 

in the host genome. Injection of 5-azaC into mice results in active trancription of 

previously inactive viral genes (Jaenisch et al., 1985). Besides, 5-azaC treatment of 

undifferentiated cells can induce blood cell differentiation in human and mouse cell 

lines, or liver differentiation in fetal and neonatal rats (Haaf, 1995). Such 

differentiation may result from the activation of several related genes of that 

particular differentiation pathway. Along the same line, tumor suppressor genes, 

like p15 and p13 of acute myeloid leukemia, have also been reported to undergo 

gene activation upon treatment with these drugs (Cameron et al., 1999; Kawano et 

al., 1999). In fact, 5-azaC analogs were originally utilised as potent anticancer agents 

for certain types of tumors such as acute nonlymphoblastic leukemia (Charache et 

al., 1983; Ley et al., 1982). However, they cannot act as a general anticancer drug 

because several carcinogens are actually known to induce hypomethylation. 5-azaC 

actually promotes tumors in rat, mice and human, and cells exposed to 5-aza-C and 

analogs have increased tumor aggressiveness (Haaf, 1995). Moreover, a recent 

publication also shows that Dnmtl-deficient mice have a higher rate of 

tumourigenesis (Eden et al., 2003; Gaudet et al., 2003). 
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It is difficult to say whether demethylation induced by 5-azaC is responsible 

for changes in gene activation and cell differentiation, since other direct effects of 

5-azaC analogs on chromosome stability, replication timing and tumourigenesis 

raise doubts about results obtained from 5-azaC-analog treated cells. Treatments 

with azacytidine analogs are usually at a concentration of io to 10 M. With such 

treatment, cells have shown a temporal shift in the timing of DNA replication 

(reviewed in Haaf, 1995). Constitutive heterochromatin and the inactive X 

chromosome change their late replication time forward to an earlier time-point after 

a pulse treatment with 5-azaC (Haaf and Schmid, 1989; Jablonka et al., 1985). 

Chromosomal instability has also been shown in 5-azaC treated cells. A low dose of 

pulse treatment (0.1-10 t M for a few hours) is sufficient to induce the formation of 

both single-strand and double-strand breaks in DNA, decondensation of 

heterochromatin, dose-dependent increase of sister chromatid exchanges and gene 

amplification (Haaf, 1995; Jones et al., 1982; Jones and Taylor, 1980). The latter two 

changes, sister chromatid exchanges and gene amplification, appear to be heritable 

even in the absence of continuous drug treatment. In addition, strongly increased 

frequency of endoreplication is observed during metaphase (Poot et al., 1990). It is 

not clear if chromosomal decondensation promotes subsequent chromosome 

instability or, conversely, the instability from DNA breaks results in chromosome 

decondensation and consequently brings about translocations, deletions and 

micronuclei formation during the following cell cycles. 

5-azaC and 5-azadC are also cytotoxic to cells as a result of incorporation into 

ribosomal RNA (rRNA) and transfer RNA (tENA), which inhibits the processing 

and methylation, respectively (Haaf, 1995). They also interfere with synthesis and 

methylation of nuclear and cytoplasmic rRNA and receptor activity, which 
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consequently induces disassembly of polyribosomes. 5-azaC modification of rRNA 

and tRNA also blocks protein synthesis. In contrast, 5-azadC exerts its cytotoxicity 

mostly on DNA. Spontaneous degradation of the incorporated analog may result in 

DNA damage. 5-azadC is also a more potent DNA strand breaker and inhibitor of 

chromosome condensation, although it is approximately 5- to 10-fold more effective 

in gene induction (reviewed in Haaf, 1995). 

Other than pharmaceutical methods and gene knockout technology, an 

additional tool for reducing DNA methylation is derived from the phenomenon of 

post-transcriptional gene silencing. When double-stranded RNA (dsRNA) is 

produced after transcription, RNA interference (RNAi) is initiated to knock down 

the expression of specific genes. This mechanism occurs in various organisms, 

ranging from plant, fungi, yeast, Drosophila to mammals and the underlying idea is 

that dsRNA leads to the destruction of nascent mENA (reviewed in Dorsett and 

Tuschl, 2004a). Long double-stranded RNAs and microRNAs (miRNA) are 

produced endogenously in cells and processed by Dicer, a RNA nuclease that 

cleaves long dsRNA into short fragments of 21-28 nucleotides. These short 

double-stranded RNAs are called small interfering RNA (siRNA). siRNA then binds 

to the RNA-induced silencing complex (RISC) and is guided to a complementary 

RNA target. This type of gene silencing is highly specific, even one nucleotide 

difference within the siRNA sequence is able to prevent siRNA targeting. However, 

not all positions of a siRNA contribute equally to the efficiency of target 

recognition (Elbashir et al., 2001a). Mismatches in the center of the siRNA 

duplex are most critical and essentially abolish target RNA cleavage. 

Therefore, selection of the target sequences is a trial-and-error process (reviewed in 

Elbashir et al., 2002). 
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There has been some publication using siRNA targeting Dnmt proteins (Leu et 

al., 2003; Robert et al., 2003). Down-regulation of both Dnmtl and Dnmt3b using 

siRNAs in the ovarian cancer cell line CP70 caused a greater reduction of DNA 

methylation than single siRNA treatment. These siRNA-treated cells also partially 

removed DNA methylation from three inactive promoter CpG islands, TWIST, 

RASSF1A, and HTN-1, and restored the expression of these genes (Leu et al., 2003). 

This finding supports the cooperative relationships between these two enzymes and 

sets an example of siRNA disruption in DNA methylation. Further investigation 

using siRNA certainly is worth the effort. 

1.6 Proposed mechanisms of active demethylation 

Other than the obvious cause of demethylation by inhibition of the maintenance and 

de novo DNA methyltransferases during replication, a major mechanism which can 

explain active demethylation and/or fill in details of passive demethylation is still 

unavailable. The loss of methylation has been suggested to proceed by either 

site-specific DNA binding proteins, by triggering site-specific repair activity by 

site-specific nucleotide replacement, or by direct removal of the methyl group on 

methylcytosine. 

1.6.1 Direct demethylation by a DNA demethylase 

The existence of an enzyme capable of recognising methylcytosine residues and 

removing the methyl group catalytically has been postulated for some time. MBD2b, 

a truncated form of MBD2, has been proposed to be a candidate demethylase 

carrying out DNA demethylation (Bhattacharya et al., 1999). This protein was 
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identified by TBLASTN search for sequences homologous to the MBD domain of 

MeCP2 (Hendrich and Bird, 1998). The resulting cDNA, which encodes a protein 

previously identified as MBD2b (Hendrich and Bird, 1998), was cloned from HeLa 

cells and in vitro translated to test for its putative demethylase activity (Bhattacharya 

et al., 1999). In this paper, the authors found this 40kDa protein was able to perform 

such a task with selectivity for binding to DNA containing symmetrically 

methylated CpG dinucleotides. The same enzyme activity was also detected and 

partially purified from human lung cancer cell line A594, and the reaction did not 

release single nucleotide, phosphorylated base, or phosphate as reaction products, 

which suggested this enzyme was a direct demethylase that transforms 

methylcytosine to cytosine without disrupting the integrity of the DNA substrate 

(Bhattacharya et al., 1999). Subsequent reports claimed this demethylase was a 

processive enzyme that demethylates continuously along one DNA strand 

(Bhattacharya et al., 1999). Also, this demethylase activity was reported to be 

directed by histone acetylation, especially at the promoter region, and was 

responsible for demethylation induced by vaiproic acid (Cervoni et al., 1999). 

However, these demethylase properties appear paradoxical. First, the removal 

of a methyl group from methylcytosine involves the breaking of a C-C bond. 

Thermodynamically, this reaction requires high activation energy and is thus 

chemically unfavourable. To explain this, the authors proposed that participation of 

water molecules might allow the reaction to become thermodynamically competent 

by forming the reaction byproduct of methanol, which involves the breaking of 0-H 

and C-C bonds and the subsequent formation of C-0 and C-H bonds. Although a 

"quick calculation" was made to show such possibility, no further evidence has yet 

been provided to support such property in this demethylase (Detich et al., 2003). In 
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addition, MBD2 in HeLa cells is demonstrated to be associated with histone 

deacetylase (HDAC) in the MeCP1 repressor complex and represses transcription, 

which is relieved by the treatment of deacetylase inhibitor, TSA (Feng and Zhang, 

2001; Ng et al., 1999). This suggests that, totally opposite to the demethylase activity, 

MBD2 acts as a transcriptional repressor after binding to the methylated DNA, 

instead of removing DNA methylation and resulting in transcription activation. 

Besides, attempts to reproduce such activity have not been successful in other 

systems (Boeke et al., 2000; Ng et al., 1999; Wade et al., 1999). Above all, 

MBD2-deficient mice are viable, and the paternal demethylation, which is an 

important active demethylation event in early mouse embryos, progresses normally 

in one-cell Mbd2 mouse embryos (Hendrich et al., 2001; Santos et al., 2002). 

Therefore, MBD2b is not a likely participant in the demethylation reaction. 

1.6.2 Indirect demethylation by base excision repair 

Another possible mechanism of active DNA demethylation is the removal of part or 

the entire methylated nucleotide. This has been reported in Friend mouse 

erythroleukemia cells, where genome-wide demethylation occurs rapidly within 24 

hours after induction by hexamethylene bisacetamide (Razin et al., 1986). 

Replacement of 5-mC by radioactively labelled cytosine is transiently detected by 

radioactively-labelled two-dimension thin layer chromatography (2D-TLC), in 

which the [H3]-cytosine signal correlates with the peak of demethylation. As 

nonreplicating DNA incorporates only [Hi-cytosine, not [H 3]-adenosine, it is likely 

that this replacement occurs at cytosine residues only, instead of a patch of DNA 

(Razin et al., 1986). Later, this excision demethylation activity was reported both in 
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HeLa cell extract and in chicken embryo extract (Jost, 1993; Vairapandi and Duker, 

1993). In HeLa nuclear extract, the decrease of the 5-mC content correlates with the 

stoichiometrical generation of apyrimidinic sites (Vairapandi and Duker, 1993). The 

recovery of thymines as released pyrimidines indicates a base excision pathway 

involving glycosylase, endonuclase and deaniiriase activities followed by repair. In 

chicken, 12-day embryo extract was used to demonstrate an excision-repair activity 

removing methylated base by nicking strictly at methyl CpG sites, regardless of the 

sequence context (Jost, 1993). Although no methylcytosine glycosylase activity was 

detected at that time, such activity and enzyme were later observed and purified 

(Jost et al., 1995). This 5-methylcytosine DNA glycosylase (5-MCDG) activity has a 

preference toward hen-d- and non-methylated DNA, in contrast to the substrate in 

HeLa cells, which prefer fully methylated DNA (Jost, 1993; Vairapandi and Duker, 

1993). Also, the chicken 5-MCDG performs its enzyme activity in combination with 

AP nuclease, and copurifies with mismatch-specific thymine DNA glycosylase 

activity. Furthermore, this activity needs additional RNA complementary to the 

sequence subject for demethylation (Fremont et al., 1997; Jost et al., 1997). RNA has 

been suggested to play an active role as an acceptor of the entire 5-mC nucleotide in 

an in vitro demethylation assay, where demethylase activity in rat L8 myoblsts was 

sensitive to RNase but insensitive to protease K (Weiss et al., 1996). Later attempts to 

repeat this experiment with more rigorous purification and storage conditions 

reevaluated the role of RNA, since RNA sensitivity was no longer detectable when 

DNA degradation was removed by adding unmethylated DNA, storing cells in 

liquid nitrogen and centrifuging at higher speed (Swisher et al., 1998). These moves 

retained substrate DNA in a better state and subsequent digestion with or without 

protease K made no difference in resulted cleavage pattern. The addition of RNase 
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in substrates containing unlabelled unmethylated DNA did not inhibit demethylase 

activity any more, which suggests previously observed ribonuclease sensitivity 

came possibly from the tight binding of the nucleases to the methylated DNA 

substrate (Swisher et al., 1998). However, it does not rule out the possibility of RNA 

involvement. Besides, another paper again argued for RNA participation by 

showing restoration of 5-MCDG activity requires an RNA specifically 

complementary to the methylated strand (Jost et al., 1999). Furthermore, after 

analysis by tandem mass spectrometry, it was found that 5-methylcytosine DNA 

glycosylase activity is present in the chicken homolog of the mammalian G/T 

mismatch DNA glycosylase (Thu et al., 2000b). Both CIT mismatch DNA 

glycosylase and 5-MCDG activities localised in the same region at the C- and 

N-terminus of the enzyme, respectively. Addition of RNA that was complementary 

to the methylated strand greatly reduced G/T mismatch DNA glycosylase activity 

but stimulated 5-MCDG activity. On the other hand, the RNA complementary to 

non-methylated strand did not affect C/T mismatch DNA glycosylase activity, 

whereas the presence of RNA helicase and ATP enhanced 5-MCDG activity 

(Schwarz et al., 2000; Zhu et al., 2000b). Since chicken 5-MCDG is also a CIT 

mismatch DNA glycosylase, another CIT mismatch DNA glycosylase, human 

MBD4, was tested for its demethylation activity and revealed that 5-MCDG activity 

was present in both chicken and human MBD4, although the chicken MBD4 

homolog does not contain a MBD domain (Zhu et al., 2000a). In this publication, this 

human MBD4 has a CIT mismatch DNA glycosylase activity about 30-40 times 

higher than its 5-MCDC activity. Also, the CIT mismatch DNA glycosylase activity 

resided in the N-terminus of the MBD4 while 5-MCDC activity localised in the last 

48 aa of its C terminus. This protein binds to fully, hemi- and non-methylated DNA, 
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but the best substrate for both activities is hemi-methylated DNA. However, unlike 

5-MCDG from chicken embryo that released a whole nucleotide, the activity of 

human MBD4 cleaved only partially on the abasic sugar at the 3' position. Complete 

release of the abasic sugar was only detectable after alkaline hydrolysis. One sharp 

contrast between 5-MCDG and MBD4 is that RNA, which stimulates 5-MCDG, 

inhibited strongly both glycosylase activities in MBD4 (Zhu et al., 2000a). Just like 

the putative demethylase Mbd2b, the results stated above are also controversial, 

because a different laboratory showed mammalian MBD4 does not have any 

methylcytosine DNA glycosylase or endonuclease activity (Hendrich et al., 1999b). 

Instead, mammalian MBD4 efficiently removes thymidine or uracil from 

mismatched CpG sites. This MBD4 also prefers G/T mismatch DNA substrate over 

fully, hemi- or non-methylated DNA, especially hemi-methylated DNA is a rather 

weak binding target compared to fully methylated DNA. In terms of functional 

domain, the G/T mismatch DNA glycosylase activity is found to reside in the 

C-terminus of MBD4, instead of the N-terminus as shown in the Jost lab (Hendrich 

et al., 1999b). In addition, there is also a discrepancy in the enzyme substrate, as the 

Jost lab claimed MBD4 preferred heni-methylated DNA in an AT-rich context 

whereas the Bird lab demonstrated MBD4 had a preference for CG-rich DNA 

substrate (Hendrich et al., 1999b; Thu et al., 2000a). Above all, the substrate 

preference of 5-MCDG in hemimethylated DNA does not explain active 

demethylation since at least one round of replication is needed for the production of 

hemimethylated DNA. 5-MCDG has been reported to participate in active 

genome-wide DNA demethylation during mouse myoblast differentiation. 

Antisense morpholino oligonucleotides targeting 5-MCDG reduced about 80% of 

demethylation, which means residual demethylation was processed directly from 
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symmetrically methylated DNA, maybe by 5-MCDG or different proteins in the 

same complex (Jost et al., 2001). However, such property is not yet demonstrated 

and further evidence is required to verify the role of 5-MCDG in active 

demethylation. Still, we cannot yet discount a possible role of glycosylase in the 

DNA demethylation mechanism, especially given that 5-mC is indeed a hotspot for 

mC-to-T mutations, which may serve as a start point for the excision repair 

pathway. 

1.6.3 A1kB oxidation 

A new candidate mechanism for DNA demethylation is via an oxidative DNA repair 

pathway. Originally identified from E. coli mutants defective in processing 

methylation damage of single-stranded DNA (ssDNA), the AlkB protein was later 

found to catalyse oxidative demethylation of 1-methyladenine and 3-methylcytosine 

(Dinglay et al., 2000; Kondo et al., 1986). From theoretical protein fold prediction, 

A1kB is suggested to be a member of the 2-oxoglutarate-dependent and 

iron-dependent dioxygenase (2-OG-Fe(II)-dioxygenase) family and is highly 

conserved from bacteria to mammals (Aravind and Koonin, 2001). With no 

detectable nuclease, DNA glycosylase or methyltransferase activity, A1kB was later 

demonstrated to repair DNA alkylation damage by coupling oxidative 

decarboxylation of a -ketoglutarate (a -KG) to hydroxylation of the methylated 

bases in DNA (Figure 1.7). This reaction consumes oxygen and releases carbon 

dioxide and succinate to generate hydroxymethyl intermediates. The 

hydroxymethyl group on the nitrogen site of the ring is then spontaneously released 

as formaldehyde, and consequently result in unmodified cytosine 
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Figure 1. 7: Oxidative demethylation by AIkB. AIkB consumes oxygen and uses Fe (II) and a-ketoglutarate (aKG) as reaction cofactors 

to hydroxylate the methyl group on 1 -methyladenine or 3-methylcytosine. Carbon dioxide and succinate are reaction byproducts 

resulted from AIkB catalysis, whereas formaldehyde is spontaneously released from the repulsive bonding between the hydroxymethyl 

group and the nitrogen on the ring (Trewick et al., 2002). 



(Fames et al., 2002; Trewick et al., 2002). This oxidative demethylation generally uses 

ssDNA as substrate, but in some cases, dsDNA and RNA can be a target for the 

reaction, although this is not a general feature among all A1kB homologs. A1kB and 

its human homologs, hABH2 and hABH3, all process oxidative DNA demethylation 

with a preference of hABH2 for dsDNA substrates, and that of AlkB and hABH3 for 

ssDNA as their substrate (Aas et al., 2003; Duncan et al., 2002). Moreover, A1kB and 

hABH3, but not hABH2, are involved in RNA damage repair. On the other hand, 

hABH1 does not exhibit any damage repair ability and does not bind to DNA 

probes in cross-linking studies, regardless of its highly conserved sequence 

compared to other A1kB homologs (Aas et al., 2003; Mishina et al., 2004). Although 

this DNA damage repair pathway only applies to 1-methyladenine and 

3-methylcytosine so far, it does provide another candidate mechanism for 

5-methylcytosine demethylation, if 5-methylcytosine can undergo oxidative 

demethylation through a hydroxymethyl intermediate and release this intermediate 

spontaneously or by another enzymatic reaction. Moreover, it is plausible to take 

advantage of such an enzymatic mechanism to perform a rapid, 

replication-independent demethylation. However, there is yet no evidence showing 

direct demethylation of 5-mC by A1kB and homologs. Further investigation is 

required to test such possibility. 

1.7 Project summary 

DNA methylation is an epigenetic event which regulates gene expression by 

transcriptional repression. However, the reversal of DNA methylation, DNA 

demethylation, is not as well understood. As discussed in section 1.6, DNA 
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demethylation has been demonstrated to occur as an active process during embryo 

development, tumourigenesis and hormone-induced gene activation, or via a 

replication-dependent passive route. Nevertheless, the molecular mechanism of 

active DNA demethylation is yet to be determined, and the precise role of DNA 

demethylation in vivo remains obscure. The work presented in the following 

chapters is thus focused to bring about artificial DNA demethylation via various 

approaches and to investigate potential mechanism of DNA demethylation. Initially, 

S-adenosylmethionine hydrolase (SAMase) from bacteriophage T3 was purified in 

both non-recombinant and recombinant forms and protein crystallisation was 

attempted. This part of study was aimed to facilitate the application of SAMase as a 

demethylating agent and may additionally expand our knowledge of the 

SAMase-related phage R-M system. Expression of SAMase and transfection of small 

interference RNA (siRNA) in mammalian cells were utilised to bring about artificial 

DNA demethylation. Cells treated with these applications were used to analyse the 

effects of reduced methylation levels. To exam a candidate mechanism of DNA 

demethylation in vivo, a monoclonal antibody was raised and characterised to target 

5-HmC, a putative reaction intermediate of oxidative demethylation. Further 

analysis in preimplantation embryos was carried out to verify the presence of such 

an intermediate. 
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Chapter 2 

Materials and Methods 

2.1 Standard solutions and reagents 

1M NaH,PO4  pH 7.2 (NaPi): mix 1 M NaH 2PO4  and 1 M Na2HPO4  in a 1:4 ratio. 

Agarose gel loading dye (5x): 0.25% bromophenol blue, 0.25% xylene cyanol, 30% 

glycerol in dH20, stored at 4 °C. 

Alkaline wash buffer for southern blotting: 1.5 M NaCl, 5 M NaOH. 

Blocking buffer: 5% (w/v) non-fat milk powder in TBS-T. 

Buffer A: 10 mM Tris•HC1, pH 7.5,22 mM NH 4C1, 1mM dithiothreitol (DTT), 10% 

(v/v) glycerol 

Coomassie staining solution: 0.1% (w/v) Coomassie Brilliant Blue R250,50% (v/v) 

methanol, 10% (v/v) glacial acetic acid. 

CTAB: 5% (w/v) CTAB in 0.5 M NaCl. 

DEPC-dH20: Add 0.1% (v/v) diethylpyrocarbonate (DEPC) to water, mix and 

incubate at 37 °C overnight. Autoclave before use. 

ECL solution I: 25 mM luminol, 396 a M p-coumaric acid, 100 mm Tris•HC1, pH8.5. 

ECL solution II: 5.6 mM H202, 100 mM Tris•HC1, pH 8.5. 

HBS (2x): 280 mM NaCl, 10 mM KC1, 1.5 mM Na21-1PO4 .2H20, 12 mM glucose, 50 

mM HEPES. pH was adjusted using NaOH to pH 7.05. Sterile filter and store in 

aliquots at -20 °C. 
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Hybridisation buffer: 0.5 M NaPi pH 7.2,7% (v/v) SDS, 12.5 mM EDTA. 

Laemmlj buffer: 60 mM TrisHCl, pH 6.8, 100 mM DTT, 10% (v/v) glycerol. 

Lysis buffer for DNA extraction: 0.05% (w/v) protease K, 1% SDS, 95% (v/v) TE-8 

Neutralisation buffer for Southern blotting: 0.5 M Tris•HC1 pH 7.5, 1.5 M NaC1 

Nickel agarose binding buffer: 300 mM NaCl, 10 mM imidazole, 50 mM 

NaH2PO4 H2O, pH8.0. 

Nickel agarose wash buffer: 300 mM NaCl, 20 mM imidazole, 50 mM 

NaH2PO4•H20, pH8.0. 

Nickel agarose elution buffer: 300 mM NaCl, 250 mM imidazole, 50 mM 

NaH2PO4 H2O, pH8.0. 

Glutathione elution buffer: 10 mM glutathionine in Tris 9.5 buffer or lx PBS. 

PBS (lOx): 10 Tablets of phosphate buffered saline, consisting of 0.2mg KH 2PO4, 

1.15mg Na2HPO4, 8mg NaCl, 0.2 mg KC1, were dissolved in 1 litre of dH 20 to give a 

solution of pH 7.3. The solution was autoclaved and stored at room temperature. 

PBS-T: 0.05% (v/v) Tween-20 in PBS. 

Random priming buffer (lOx): 100 MM  MgC12, 900 mM HEPES, pH 6.6. 

SAMase activity assay buffer (lOx): 50 mM DTT, 1 M Tris•HC1 pH7.5, 100 MM 

EDTA 

SDS-PAGE loading buffer (2x): 6% $ -mercaptoethanol, 6% SDS, 0.6% 

bromophenol blue, 20% glycerol, stored at -20 °C. 

SDS-PAGE resolving gel solution: 8-15% (v/v) 40% 29:1 Acrylamide:bis-acrylamid, 

0.1% (v/v) SDS, 375 mM TrisHCl, pH 8.8, 0.1% (v/v) TEMED, 1% (v/v) APS. 

SDS-PAGE stacking gel solution: 3.9% (v/v) 40% 29:1 Acrylamide:bis-acrylamide, 

0.1% (v/v) SDS, 125 mM Tris•HC1, pH 6.8, 0.1% (v/v) TEMED, 2% (v/v) APS. 

SSC (20x): 3 M NaCl, 0.3 M Na Citrate, pH 7.0. 
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TAE buffer (lOx): 0.4M Tris-acetate, 100 mM EDTA. 

TBS-T: 20 mM Tris, pH 8.0, 100 mM NaCl, 0.05% (v/v) Tween-20. 

TE buffer (lx): 10 mM Tris, 1 mM EDTA, pH 8.0. 

TE-8: 500 mM Tris-HC1, pH 8.0,20 mM EDTA, pH 8.0, 10 mM NaCl. 

Transfer buffer (lOx): 50 mM Tris, 385 mM glycine, 0.1% (v/v) SDS. 

Tris 7.5 buffer: 100 mM Tris pH7.5, 0.5 mM DTT, 0.05% deoxycholate. 

Tris 9.5 buffer: 100mM Tris pH9.5, 0.5 mM DTT, 0.05% deoxycholate. 

Tris-glycine electrophoresis buffer (5x): 125 mM Tris, 1.25M glycine, 1%SDS. 

Wash solution I for southern hybridisation: 0.04 M NaPi pH 7.2, 1% SDS, 2 MM 

EDTA. 

Wash solution II for southern hybridisation: 0.04 M NaPi pH 7.2, 0.1% SDS, 2 MM 

EDTA. 

Wash solution III for southern hybridisation 0.2 M NaPi pH 7.2,4 mM EDTA. 

2.2 Enzymes, antibodies, isotopes and chemicals 

All restriction enzymes, calf intestinal phosphatase (CIP) were purchased from New 

England Biolabs Ltd. T4 DNA ligase was purchased from Roche Molecular 

Biochemicals Ltd. RedHot DNA polymerase and Pfu DNA polymerase were from 

ABgene Inc. and Promega Co., respectively. C 14-SAM and a -P32-ATP were purchased 

from Amersham Bioscience plc. Antibodies used are summarised in Table 2.1. 

Anti-HmC antibody was raised by us, in collaboration with Lawrence Sowers Lab of 

Lomo Linda University, and the antibody unit of Babraham Institute. The 

anti-Dnmtl PATH52 antibody was a kind gift from Dr. Timothy Bestor. Mounting 

agents containing DAFT (4',6' diamidino-2-phenylindole) or propedium iodine 
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were purchased from Vector Laboratories Inc. 

Table 2.1: Antibodies used in this thesis. 

Antibody Reference/ source Working condition 

mouse anti-FLAG M2 Sigma-Aldrich Co. 1:1,000 

mouse anti-ssDNA Alexis Co. 1:100 

mouse anti-5mC Eurogentec Ltd. 1:50 

mouse anti-5mC Oncogene Inc. 1:1,000 

rabbit anti-Dnmtl (PATH52) (Bestor, 1992) 1:10,000 

rabbit anti-MBD1 (M245) Santa Cruz Inc. 1:1,000 

sheep anti-MBD2 (S923) (Ng et al., 1999) 1:2,500 

rat anti-HmC This thesis 1:1-1:10,000 

AMCA conjugated anti-rat IgG 
Vector Labs Inc 1:200 secondary antibody 

Texas Red conjugated anti-mouse 
Vector Labs Inc 1:200 IgG secondary antibody 

anti-mouse IgG 594 secondary Molecular probes 
antibody Inc. 1:1,000 

HRP conjugated anti-mouse IgG Amersham 
secondary antibody Bioscience plc. 1:1,000 

HRP conjugated anti-rat IgG Amersham 
secondary antibody Bioscience plc. 1:1,000 

HRP conjugated anti-sheep IgG Amersham 
secondary antibody Bioscience plc. 1:1,000 

FITC conjugated anti-mouse 1gM Oxford 
secondary antibody Biotechnology Ltd. 1:100 

2.3 Microbiological media and antibiotics 

Ampicillin stock: 10 mg/mi ampicillin in sterile dH2O, filter sterilised and stored at 

-20 °C. 
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Bacterial freezing medium: 0.1M CaC12, 20% glycerol. 

BBL top agar: 10 gIl BBL trypticase, 5 gIl NaCl, 6.5 gIl DIFCO agar. Add dH2O up 

to 1 litre. Autoclave. 

Kanamycin stock: 10 mg/ml kanamycin in sterile dH2O, filter sterilised and stored 

at -20 °C. 

LB agar: LB broth plus 15 gIl OXOID agar. 

LB broth: 10 gIl NaCl, 10 gIl Difco bacto-tryptone, 5 gIl Difco yeast extract. Adjust 

to pH 7.2 with 10M NaOH. Autoclave. 

phage buffer: 10 gIl N;HPO4 (anhydrous), 3 g/l KH2PO4 (anhydrous), 5 g/l NaCl, 

10 ml 0.1M MgSO4, 10 ml 0.01M CaCl2, intl 1% gelatin. Add dH 20 up to 1 litre. 

Autoclave. 

Tetracycline stock: 10 mg/ml tetracycline in 50% ethanol, stored at -20 °C. 

2.4 Plasmids and bacterial strains 

The plasmids and the bacterial strains used are presented in Table 2.2.and Table 2.3, 

respectively. 

Table 2.2: Plasmids used in this thesis. 

Plasmid Reference/ Selectable 
Description source markers 

(Newman Bacterial 	expression 	vector 	for 	native 
pBAD24 and Fuqua, Amp' SAMase, with PlIAlpromoter controlled by 

1999)  arabinose operon. 

pJF118HE 
(Furste et al., 

Amp' Bacterial 	expression 	vector 	for 	native 
1986) SAMase with IPTG-inducible tac promoter. 

Bacterial 	expression 	vector 	for 	fusion 
pGEX-4T-2 Amersham Amp' protein GST-SAMase with IPTG-inducible 

___ tac promoter. 

Continued on next page 
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Table 2.2: Continued. 

Plasrmd Reference! SelecTable 
Description source markers 

Bacterial expression vector for recombinant 
pET30b(+) Novagen Kan' His-SAMase fusion with IPTG-inducible T7 

promoter. 
pTet-OFF Clontech Ampr Regulatory vector expressing tTA protein. 

Bidirectional mammalian expression vector 
pBI-EGFP Clontech Ampr with Pcmv  promoters regulated by the TRE, 

 reciprocal to the dose of deoxycycline. 

Table 2.3: Bacterial strains used in this thesis. 

Strain Genotype Description 

supE44 LI lacLIl 69 (080 
DH5 a lacZzlMl5) hsdR17 recAl for recombinant DNA manipulation 

endAl gyrA96 thi-1 relAl 

BL21(DE3) 
F opmT hsdSB(RB M) gal 
dcm met(DE3) (CmR) for high-level protein expression 

NM494 
genotype pop101, for phage infection, T4 permissive (Raleigh 
LI (hsdS, mcrB) et al., 1988) 

NM654 genotype C600, LI hsdRM for phage infection, T4 sensitive (Loenen et 
al., 1987) 

for phage infection, producing 
W 4975 genotype W3110, galLi unglucosylated DNA (Hattman and 

Fukusawa, 1963b) 

2.5 Manipulation of DNA and cloning procedures 

2.5.1 Synthetic oligonucleotides 

Custom oligos from Sigma-Genosys Ltd. were resuspened in TE buffer to make 

stock solutions of 1 pg/pl and stored at -20 °C. Dilutions of the stock solutions for 

polymerase chain reaction and DNA sequencing were made in TE. The sequences 

and applications of all oligonucleotides used are presented in Table 2.4. 
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Table 2.4: Oliqonucleotides used in this thesis 
Oligo- 

nucleotide 5'->3' Sequence Description 

SAMase Fl TAAGGATCCATGATTTTCAC PCR and sequencing primer for 
SAMase gene 

SAMase Ri TTGAATTCTTATTGTACTTGCC PCR and 	sequencing primer for 
SAMase gene 

ET6H-F ATCCATGGAGATGATTTTCAC PCR 	and 	sequencing 	primer 	for 
SAMase gene 

ET6H-R AGCCGGATCCTTATTGTACTTGCC PCR 	and 	sequencing 	primer 	for 
SAMase gene 

CCGATGGACTACAAGGACGACG PCR primer for the construction of 

EN-SAM ATGACAAGGATCCAAAAAAGAA recombinant SAMase cDNA with 

GAGAAAGGTAATGATTTTCAC FLAG and NLS DNA sequences at the 
N-terminus of SAMase gene 

ATTGCTAGCTTAATGGTGATGGTG PCR primer for the insertion of 	a 
SH-6His 

ATGGTGTTGTACTTGC 6xHis-tag 	DNA 	sequence 	at 	the 
C-terminus of SAMase gene 

k-FLAG AATACGCGTCCACCATGGACTAC PCR primer for the insertion of Kozak 
AAGG consensus 

GFP-F ATGGTGAGCAAGG RT-PCR primers for EGFP in BI-EGFP 
vector GFP-R ATGTGATCGCGCT 

Gapdh p3 TACCCCCAATGTGTCCGTCG 
Real-time PCR primers for Gapdh 

Gapdh p4 CCTGCTTCACCACCTTCTTG 

XIST 7F CAGCAAGCCCACAATTCTGG 
Real-time PCR primers for Xist 

XLST hR GGACTGCCAGCAGCCTATAC 

Dnmt1-3F AAG TGC CCC GAG TGTG 
Real-time PCR primers for Dnmtl 

Dnmtl-3R AGGTGGAGTCGTAGATGG 

sat-for CTGTAGGACGTGGAATATGGC PCR primers for the production of 
major satellite probes (Jorgensen et 

sat-rev CCGTGATTTTCAGTTTTCTCGC al., 2004) 

2.5.2 The polymerase chain reaction 

The polymerase chain reaction (PCR) was used to amplify DNA sequence for 

cloning or analysis. Between 50 ng (plasn-uid) and 200 ng (genomic DNA) of 

template DNA was used for amplification with 0.3 a g of each primer. The reactions 

were performed in reaction buffer for proofreading polymerase Pfu, with 0.2 mM 
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dNTPs, and 1.5 units of polymerase. The cycling conditions used are shown below: 

Cycle Temperature ( °C) Time (min/sec) 
1 94 1mm 
30 94 30sec 

55-65 30sec 

72 15-30sec 
1 72 10mm 

When PCR was used to screen bacterial colonies, RedHot Taq DNA polymerase was 

used in place of Pfu. In this case, 3 mlvi MgCl, was added to the reaction buffer, and 

1 unit of polymerase was used per reaction. The annealing temperature for 

primer-template combination in each reaction was defined empirically. 

2.5.3 Restriction digests 

Restriction digestion was carried out in 10-50 a 1 volume with appropriate reaction 

buffer for the chosen enzyme and, if required, 100 1a g/ml BSA. At least 1 unit of 

enzyme was added per i g of DNA to be digested and the reaction was mixed 

thoroughly before incubation at 37 °C for at least 1 hour. The reaction was stopped 

by heat inactivation, where appropriate. 

2.5.4 Purification of DNA from agarose gels 

DNA bands resolved by agarose gel electrophoresis were visualised using long 

wave UV light. DNA exposure to UV light was kept to a minimum. The required 

DNA band(s) was excised from agarose gel using a clean scalpel. DNA was then 

purified from the agarose slice using the Qiagen Gel Extraction Kit according to the 
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manufacturer's instructions. 

2.5.5 Ligation of DNA fragments 

DNA ligation was performed with T4 DNA ligase (Roche) in supplemented reaction 

buffer. Molar ratios of 1:1, 1:3 and 1:5 (vector:insert) were used to give optimum 

ligation conditions. 50-200 ng of total DNA with 1 unit of ligase was used in each 

reaction. The reaction was incubated at 16 °C overnight. Approximately 1/10th of 

each reaction was used to transform competent E. coli cells. 

2.5.6 Preparation of plasmid DNA 

2.5.6.1 Small scale 

Plasmid DNA was prepared from cultures of various bacterial strains. Cells were 

pelleted from 2 ml of an overnight culture by centrifugation, and then treated with 

the QIAGEN Miniprep Kit according to manufacturer's instructions. Eluted DNA in 

TE buffer were used immediately or stored at -20 °C. 

2.5.6.2 Large scale 

The QIAGEN Maxiprep Kit was used to prepare larger amounts of plasmid, 

according to manufacturer's instructions. DNA was prepared from an appropriate 

volume of culture depending on the copy number of the plasmid. Precipitated DNA 

was resuspened in TE and used immediately or stored at -20 °C. 

2.5.7 DNA sequencing 

The nucleotide sequences of DNA templates were identified by automated 
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sequencing using the ABI Prism BigDye Terminator Cycle Sequencing Ready 

Reaction Kit and an ABI 3100 DNA sequencer. Purified templates, 5-20 ng of PCR 

product or 150-300 ng of plasmid DNA, were mixed with 3.2 pmol of the 

appropriate primer, 4 i1 of BigDye Terminator v3.1 and dH 20 to a final volume of 

10 1a 1 before cycle sequencing using the following conditions: 

Cycle 	Temperature ( °C) 	Time (min/sec) 
1 	96 	 1mm 
25 	96 	 30sec 

50 	 20sec 

60 	 4mm 

Sample purification, electrophoresis and data collection were carried out by the 

ICMB sequencing service. Sequencing data was analysed using Lasergene software. 

2.5.8 Radioactive labelling of oligonucleotides 

DNA probes were random prime-labelled with a -32P-dCTP using Klenow enzyme 

and hexanucleotide mix (Roche). 200ng of total DNA was incubated at 37 °C with 

450 ng random hexanucleotides, 3 1a 1 lOx random priming buffer, 3 ,a 120 mM DTT, 

3 ,a 1 10mM dATP+dTTP-i-dGTP mix, 3 ,a 1 a -32P-dCTP, 2 g  Kienow enzyme and 

dH2O to a final volume of 30 Ia  1. Radioactive-labelled DNA probes were purified 

using PCR purification kit according to manufacturer's instructions. The resulting 

probes were eluted in TE buffer and used immediately. 
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2.6 Bacterial and phage methods 

2.6.1 Bacterial growth condition 

2.6.1.1 Plate culture 

Bacterial cells were streaked onto nutrient agar plates with appropriate antibiotics 

and incubated for at least 16 hours at 37 °C to allow colony formation. 

2.6.1.2 Liquid culture 

Single colonies from freshly streaked agar plates were used to inoculate the cultures, 

which were grown in LB (2-3 ml) containing appropriate antibiotics at 37 °C with 

shaking (220rpm) for 12-16 hours. Large cultures were initiated by inoculation of an 

appropriate volume of LB with cells from a freshly grown overnight culture, split 

into a suitable density and grown till a desired O.D. was reached. 

2.6.2 Preparation of competent cells 

200 ml of LB was inoculated with 1 ml of an overnight culture and grown at 37 °C 

until the culture reached an O.D. ®  of 0.5. The cells were pelleted by centrifugation 

and resuspended in ice-cold 0.1 M MgCl,. Resuspended cells were again pelleted by 

centrifugation and resuspended in ice-cold 0.1 M CaC1 2. After a final centrifugation 

step, the pelleted cells were resuspended in freezing medium, flash frozen in liquid 

nitrogen and stored at -80 "C. 

2.6.3 Bacterial transformation by heat shock 

10 ng of plasmid DNA in a volume of 1-5 ii 1 was mixed with 100 1a 1 competent 
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bacteria on ice for 10-15 minutes, to allow binding of the DNA to the cells. The cells 

were then heat shocked at 42 °C for 45 seconds to transform and put back on ice for 

2 minutes. 900 t 1 of LB medium was added to the cells, which were incubated at 37 

°C for 1 hour before plating on LB plates containing the appropriate antibiotics. 

Plates were inverted and incubated overnight at 37 °C. 

2.6.4 Preparation of T4 phage stocks 

2.6.4.1 Preparation of phage lysates 

Wild type bacteriophage T4 was cultured by infection of E. coli strain N1M494 in LB. 

When the bacterial culture reached 0.5 O.D. W an appropriate amount of wild type 

T4 was added to result in a multiplicity of infection (MOl) of 2. Ten minutes after the 

first infection, the cells were superinfected with the same MOT to induce 

lysis-inhibition. Superinfected bacteria were cultured for another 2.5 hours and 

further lysed with chloroform at room temperature overnight. Pancreatic DNase I, 

at a final concentration of 1 1a 1/ml, was added to the lysed cells and incubated at 

room temperature for 30 minutes. Treated cultures were then collected by 

centrifugation at 4,000 x g for 20 minutes and the phage-containing lysates were 

transferred into a clean bottle and stored at 4 °C. T4 phage with unglucosylated 

hydroxymethylcytidine DNA was grown in the same way, but the infected bacteria 

strain was replaced by E. coli W4975. 

2.6.4.2 Purification of T4 phage by PEG Precipitation 

The volume of the clear phage lysate was measured and poured into a centrifuge 

bottle with a magnetic stirrer. NaCl was slowly added to the lysate to a final 

/ 
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concentration of 0.5 M with constant vigorous stirring. PEG 8000 was then added to 

a final concentration of 10% and the phage solution was stirred for at least an hour. 

After the stirring bar was removed, phage was collected by centrifuging at 4,000 x g 

for 30 minutes. The supernatant was then discarded and the pellet was resuspended 

in phage buffer. Purified phage was stored at 4 °C. 

2.7 DNA methods 

2.7.1 Isolation of phage DNA 

For 1 ml of purified phage stock, 200 t 11 M TrisHC1 pH 8.0, 200 Ia'  0.5 M EDTA, 

380 111 dH2O, and 10 1a 110 mg/ml protease K were added. After an incubation of 

30 minutes at 37 °C, 100 111 of hexadecyl-trimethyl-ammonium bromide (CTAB) was 

added into the phage solution and incubated for another 5 minutes at 65 °C before a 

centrifugation at maximum speed for 10 minutes. The CTAB-DNA pellet was jarred 

loose in 2 ml 1.2 M NaCl, after the supernatant was discarded. The salt solution 

containing CTAB-DNA pellet was then transferred to a new tube and another 2 ml 

of 1.2 M NaCl was added to resuspend the pellet thoroughly, followed by an 

addition of 4 ml 95% ethanol. The precipitating DNA was spooled out with a fused 

Pasteur pipette and rinsed with 70% ethanol before air dry. Extracted DNA was 

dissolved in appropriate amount of dH 2O and stored at 4 °C or -20 °C. 

2.7.2 Genomic DNA extraction from cultured cells 

Cells were cultured in flasks or plates until 100% confluence and resuspended in 2 

ml lysis buffer per 75 cm2  culture area after a rinse with PBS. The suspension was 

transferred to centrifuge tubes. After an overnight incubation at 37 °C, 1/4th volume 
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of saturated NaCl was added to the suspension, mixed and centrifuged at 900 x g for 

30 minutes. The supernatant was then transferred to a clean tube and the genomic 

DNA was recovered using ethanol precipitation. Precipitated DNA was spooled out 

with a Pasteur pipette and resuspended in TE. DNA was treated with 100 a g / ml 

RNase A at 37 °C for at least 3 hours. Genomic DNA was again purified using 

ethanol precipitation and resuspended in TE. 

2.7.3 Southern blotting and hybridisation 

DNA for analysis was separated by 1.2% agarose gel electrophoresis. The gel was 

stained with 4 ,a g/ml ethidium bromide for 30 minutes, destained in dH 2O for 10 

minutes, and photographed alongside a fluorescent ruler. The gel was then 

depurinated in 0.25 M HC1 for 15 minutes with gentle shaking, washed twice in 

alkaline wash buffer for 15 minutes and washed twice in neutralisation buffer for 10 

minutes. Southern transfer was set up as follows: A platform was first prepared on a 

tray filled with 20x SSC transfer buffer, covered with a wick made from 2 sheet of 

Whatman 3MM paper saturated in 20x SSC. The treated gel is then placed on the 

wick platform followed by a sheet of Hybond N+ (Amersham), 3 sheet of Whatman 

3MM paper, a stack of paper towels and finally a glass plate and a weight about 

750g to weigh down the assembled transfer stack. Air bubbles trapped between each 

layers were avoided. The assembly was left overnight. The following morning, the 

membrane was rinsed in 2x SSC and the transferred DNA was crosslinked to the 

membrane by UV crosslinking in a Stratalinker UV crosslinker 1800 (Stratagene) 

using the autocrosslink function at an energy of 120,000 ,a joule. 

Place the membrane in a hybridisation bottle with 15 ml hybridisation buffer to 
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prehybridise at 65 °C for at least 15 minutes. DNA probes were added to the 

hybridisation buffer after prehybridisation and allowed to incubate overnight at 65 

°C. Membranes were then washed once with solution I for 1 hour and solution H for 

another hour. The membrane was briefly dried and wrapped in a transparent wrap 

before exposure in a Phosphorlmage cassette and analysed on a Storm 840 

apparatus. 

2.8 RNA methods 

2.8.1 RNA extraction 

RNA was isolated using Tifi reagent from Sigma-Aldrich Co., following 

manufacture's instructions. RNA pellets were resuspended in an appropriate 

amount of DEPC-treated, RNase-free dFJ2O. RNA samples were stored at -20 °C. 

2.8.2 RNase-free DNase treatment 

Removal of genomic DNA from RNA samples was carried out using DNA-free kit 

from Ambion Inc., according to manufacturer's instructions. For each 2.5 9 g total 

RNA subjected to DNase treatment, 1 a 1 DNase was used in a total reaction volume 

of 25 ,a 1. After DNase treatment, the supernatant containing RNA was transferred to 

a new tube and used immediately. 

2.8.3 Reverse transcription 

Reverse transcription was carried out using M-MLV reverse transcriptase from 

Promega Co. DEPC-dH 2O was added to the DNase treated RNA samples to make 

-54- 



up a volume of 34 ,a 1 and incubated at 65 °C for 5 minutes. Samples were chilled on 

ice for 1 minute. 6 3a 1 of 5 3a M random hexamer primers (Roche), 6 ,a 1 10mM dNTP 

mix, 12 Ia  1 5x reaction buffer, 1 1a 1 RNAsin (Promega) and 1 g  M-MLV reverse 

transcriptase were added to the samples and the reaction was completed in a PCR 

cycler using the following program: 

Cycle 	Temperature ( °C) 	Time (min/sec) 

3 	20 8mm 

25 8mm 

37 30 mm 

1 	70 15 min  

The resulting samples were stored at -20 °C or used immediately for PCR. 

2.9 Protein methods 

2.9.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Polyacrylamide gel electrophoresis under denaturing conditions was used to 

separate polypeptides based on their molecular size. The Bio-Rad vertical 

electrophoresis system (Mini PROTEAN) was used. Resolving gel solution was 

made to the required acrylamide concentration and the mixture was poured into the 

gel plates, leaving room at the top for the stacking gel. dH 2O was layered over the 

solution and it was allowed to polymerise for 30 minutes. Once set, the water was 

removed from the gel surface and stacking gel solution was added and allowed to 

polymerise for 30 minutes. Protein samples were heated to 99 °C for 3-5 minutes in 

SIDS-PAGE loading buffer before loading. Samples were electrophoresed with lx 
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Tris-Glycine electrophoresis buffer at 10-20 V/cm for an appropriate period of time. 

2.9.2 Electrophoretic transfer of protein blotting 

SDS-PAGE gels were rinsed briefly in transfer buffer to remove SDS before transfer. 

The resolved proteins on SDS-PAGE were transferred onto 0.2 ,a m Protran 

nitrocellulose membranes (Schleicher & Schuell) with a Mini Trans Blot cell (Bio-Rad) 

at 200mA for 2 hours at room temperature or with a Trans-Blot SD Semi-Dry 

Transfer Cell (Bio-Rad) at 200 mA for 1 hour. 

2.9.3 Western detection of proteins 

After transfer to nitrocellulose membranes, non-specific protein binding sites were 

blocked by incubation in blocking buffer for at least 1 hour at room temperature or 4 

°C overnight. Primary antibody incubation was carried out for 2 hours at room 

temperature in blocking buffer with appropriate dilution of antibody. Membranes 

were washed 3 times in blocking buffer for 10-15 minutes, before being incubated 

for 1 hour with an appropriate concentration of secondary antibody (conjugated 

with horseradish peroxidase) in blocking buffer. Following the secondary antibody 

incubation, two more washes in blocking buffer and one wash in TBS-T were carried 

out before ECL detection of bound antibody. An equal volume of ECL solution I and 

II were mixed and then incubated with membranes for 1 minute. Membranes were 

wrapped in Saran wrap and exposed to ECL Hyperfilm (Amersham) for an 

appropriate length of time. 
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2.9.4 Protein extraction from bacteria 

Induced bacterial cultures were harvested by centrifugation down bacteria at 5,000 

rpm, 4 °C, for 15 minutes. Wash bacteria pellets twice by resuspending bacteria in 

100mM Tris•HC1 pH 7.5 and centrifuge at 5,000 rpm at 4 °C, for 15 minutes. Bacteria 

were resuspended in appropriate volume of Tris 7.5 buffer containing 1 mg/ml 

lysozme. After an incubation of 30 minutes on ice, bacterial cells were sonicated in 

Sonifier 250 (Branson) with appropriate output power and time depending on the 

volume of resuspended bacteria. 

2.9.5 Whole cell extract from tissue culture cells 

Tissue culture cells were harvested from the surface of the culture plate and 

transferred to an Eppendorf tube. Cells were pelleted by centrifugation at 1300 rpm 

for 5 minutes, washed once in PBS, and then resuspended in Laemmli buffer with 

1/10th volume of 20% SDS. After boiling for 5 minutes on a heat block, cell extracts 

were cooled on ice for 1 minute and briefly centrifuged before use or kept at -20 °C. 

2.9.6 Measurement of protein concentration 

2.9.6.1 Protein concentration measured by Bradford assay 

The Bio-Rad Protein Assay reagent was used to measure protein concentrations. The 

reagent was diluted 1:10 and filtered before use. BSA was used to prepare a 

standard curve each time a protein concentration measurement was made. Protein 

samples were incubated with diluted assay reagent for 5 minutes before the O.D. 595  

measurement of each sample. Protein concentrations were calculated by comparison 

to the BSA standard curve. 
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2.9.6.2 Protein concentration measured by UV detector 

Concentrations of purified protein samples were determined by a UV detector 

scanning through wavelengths from 340 to 240 nm. The buffer solution used to store 

sample proteins was used as a baseline standard in comparison to the diluted 

protein samples. Protein concentrations were calculated by the absorbance of A 

with calibration from the absorbance curve. 

The protein concentrations of whole cell extracts were determined by a UV 

detector measuring O.D. 2  and O.D.2 . The readings of these two wavelengths were 

then applied to the following equation, to give a concentration of mg/mi. C (mg/mi) 

= 1 280-0.76xA260  

2.10 Tissue culture 

Tissue culture cells were grown in the appropriate growth medium, supplemented 

with 10% (v/v) bovine calf serum and 10 units/ml penicillin-streptomycin solution 

(Gibco-BRL), at 37 °C in 5% CO2. lx Trypsin-EDTA solution (Gibco-BRL) was used to 

detach cells from tissue culture flasks for passaging. Cells were frozen in growth 

medium containing 10% (v/v) DMSO and kept in liquid nitrogen for long-term 

storage. Where requested, deacetylation inhibitor, TSA, was added to cells at a final 

concentration of 1 1a g/ml for 18 hours before cell were harvested. 

2.11 Expression of proteins in E. coli 

2.11.1 Construction of plasmids expressing SAMase 

The T3 SAMase gene (NCBI accession No. X04791; Appendix I) was amplified with 
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primer set SAMase Fi/SAMase Ri and primer set pET6H-F/pET6H-R to produce 

cDNA, which includes either Bami-lI/EcoRI or NcoI/BamHI cloning sites, and 

subsequently cloned into appropriate vectors to give plasmid construct producing 

proteins with correct reading frames. A summary of the cloning strategy and 

recombinant plasmids is in Table 2.5. 

Table 2.5: Plasmid constructions for bacterial expressions. 

plasmid 
name 

original 
vector 

primers used for cDNA 
amplification 

(Forward/ Reverse)  
insertion sites (5'/3')  

pJF-SH pJF118HE SAMase Fi/SAMase Ri BamI-lI/EcoRI 

pBAD-SH pBAD24 SAMase Fi/SAMase Ri BaniHI/EcoRE 

pGEX-SH pGEX-4T-2 SAMase Fi/SAMase Ri Banil-lI/EcoRl 

pET-SH pET30b (+) ET6H-F/ET6H-R NcoI/BamHI 

2.11.2 Induction of protein expression in bacteria 

Bacteria of appropriate strains were transformed with desired plasmids. An 

overnight culture was diluted 1:100 into 500 ml LB containing the appropriate 

antibiotics in a large flask and grown to an O.D. of 0.5 before induction with IPTG 

of various concentrations for various lengths of time according to the conditions 

tested. However, induction of plasmids containing araBAD promoter (pBAD24 

based constructs) was carried out by adding 0.2% arabinose rather than IPTG and 

induced for four hours. 

2.12 Expression of protein in mammalian cells 

2.12.1 Construction of plasmids expressing SAMase 

The Tet-Off Expression System (Clontech) in combination with the bidirectional 
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expression vector pBI-EGFP (Clontech) was used to express tagged SAMase in 

human or mouse cells under the control of deoxycycline. The phage SAMase cDNA 

was amplified with primer set, FN-SAM and SH-6His, to produce cDNA flanked by 

an N-terminal FLAG-NLS DNA sequence and a C-terminal 6xHis tag sequence. The 

recombinant cDNA was then modified by k-FLAG primer to insert a Kozak 

consensus upstream of the start codon ATG included the FLAG sequence. The 

resulting cDNA was cloned into the bidirectional vector pBI-EGFP at the MluI/NheI 

sites. A schematic illustration of this construct is shown in Figure 4.2. 

2.12.2 Transfection of mammalian cells 

Cells for transfection were freshly plated and allowed to grow to 70% confluence 

over 16-24 hours. HeLa cells were transfected using Lipofectamine (Invitrogen) 

according to the manufacturer's instructions. A total of 1-2 LI g plasmid DNA was 

used to transfect a 35mm well. Human embryonic kidney cells, HEK293, were 

transfected using a calcium phosphate-mediated transfection method according to 

the Maniatis manual (Sambrook et al., 1989). For each well, 102.67 1a 1 of 40 ,a g/ml 

DNA in 0.1x TE pH 8.0 was mixed with 14.47 1a 1 of 2M CaC1 2  and 116.67 1a 1 2x HBS. 

The mixture was incubated at room temperature for 30 minutes before adding 

dropwise into the medium over cells. Cells were washed in PBS, 20 hours after 

transfection and harvested 48 hours after transfection. 

2.13 Purification of native and recombinant protein 

2.13.1 Native SAMase purification 

This method is adapted from the purification of SAMase A, published in Spoerel 
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and Herrlich (1979). For every 100 ml of crude cell supernatant, 10 ml of saturating 

polymin P (prepared by Mr. Laurie Cooper) was added and incubated for 20 min at 

4 °C to allow the formation of polymin-binding precipitate. The precipitate was 

removed by centrifugation at 12,000 x g for 20 mm. Ammonium sulfate at 80% 

saturation was then added to the non-absorbing supernatant containing SAMase, in 

order to remove any residual soluble polymin P. After one wash of the pellet with 

80% ammonium sulfate, the precipitate was isolated and dissolved in 10 ml of buffer 

A containing 35% glycerol. The dissolved protein solution was dialysed against 

buffer A and applied to a 40 ml-DEAE cellulose column (Whatman DE-52). The 

flow-through (about 10 ml) from the column was collected and subjected to an 

S-adenosylhomocysteine (SAH) affinity column. The DEAE column was washed 

with 50 ml buffer A and eluted with 0.15-0.2 M NH 4C1 in a total volume of 10 ml. 

The flow-through was applied to a 10-ml SAH affinity column (prepared by Mr. 

Laurie Cooper), washed with 16 ml of 2 M NH 4C1 in buffer A. SAMase was eluted in 

10 mM adenosine, 2 M NH4C1 in buffer A with a total volume of 12 ml collected in 

12 fractions (1 ml per fraction). 

2.13.2 His-tagged protein purification 

Proteins containing a 6xHis tag were produced in F. coli strain BL21 (DE3) and 

purified by nickel agarose chromatography. Bacterial cultures expressing the protein 

were pelleted by centrifugation at 5000 rpm for 15 minutes, washed once in TE 

buffer, and lysed in 5 ml nickel agarose binding buffer by incubation with lysozyme 

(1mg/mi) for 30 minutes on ice. After sonication for 5 minutes on ice, cell debris 

was pelleted by centrifugation at 12,500 rpm for 30min at 4 °C. Ni-NTA superfiow 
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beads (Qiagen) were washed three times in PBS and then added to the clear 

supernatant from the lysed cells. Bacterial cell lysates were incubated with the nickel 

agarose beads on a roller at 4 °C for at least 1 hour to allow binding of His-tagged 

proteins to the resin. After binding, the lysate was transferred to a Bio-Rad 

Econo-Pac Chromatography Column and the flow-through was collected. The 

column was washed four times with wash buffer of 10-time bed volume. His-tagged 

protein was eluted in four elution buffer of 1 bed volume. 

2.13.3 GST affinity purification 

2.13.3.1 Equilibration of Glutathione Sepharose 4B beads 

Glutathione Sepharose 4B (Amersham) was used to purify GST fusion protein. For 

each ml bed volume of Sepharose gel needed, 1.33 ml of 75% Sepharose slurry was 

transferred to a Falcon tube, after gently mixing the slurry. The gel was then 

centrifuged at 500 x g for 5 minutes before the storage buffer was discarded. 

Following a wash in 10 bed volume of cold lx PBS or Tris 9.5 buffer, the gel was 

equilibrated with 1 bed volume of the corresponding wash buffer. The equilibrated 

column was stored at 4 °C. 

2.13.3.2 Preparation of GST fusion protein from cell lysate 

GST fusion proteins were produced in E. coli strain BL21 (DE3). Bacterial cultures 

expressing the proteins of interest were pelleted by centrifugation at 5000 rpm for 15 

minutes, washed twice, and lysed by sonification in 50mM Tris•Cl pH 7.5. After a 

centrifugation at 12500 rpm, at 4 °C for 30 minutes, the supernatant was discarded, 

whereas the cell debris containing inclusion bodies was subjected to protein 
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refolding protocols and was later used in the glutathione sepharose purification 

procedure. 

2.13.3.3 Preparation of GST fusion protein from inclusion bodies 

Inclusion bodies containing GST fusion proteins were pelleted by centrifugation of 

the cell lysate at 12500 rpm, 4 °C for 30 minutes. The resultant pellet was dissolved 

in an equal volume of 8M urea at 4 °C overnight and placed on a roller to denature 

proteins for refolding. After urea denaturation, the solution was centrifuged at 

12500 rpm, at4 °C, for 15 minutes and the clear supernatant was transferred to a 

beaker containing 4x or 9x supernatant volume of Tris 9.5 buffer with a stir bar 

stirring constantly. The refolded protein solution was then centrifuged at maximum 

speed at 4C for 15 minutes to remove any remaining insoluble fraction. The soluble 

protein was then transferred to a tube containing equilibrated glutathione 

sepharose. 

2.13.3.4 Thrombin cleavage of GST fusion protein 

GST fusion protein was cleaved from the GST tag by Thrombin digestion. Protease 

Thrombin (Amersham) was dissolved to obtain a concentration of 1 U/pl and 

added to the fusion protein sample for a treatment of 10 U/mg fusion protein 

(approximate). The incubation was performed at 4 "C or room temperature for four 

hours before analysis on SDS-PAGE gels or applied to purification procedure. 

2.13.3.5 Purification of GST fusion proteins 

The soluble protein applied to the equilibrated sepharose was incubated in batch at 

4 "C for an hour. In batch purification, the mixture was centrifuged at 500 x g for 5 
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minutes followed by the removal of supernatant. The gel was washed thrice with 10 

bed volume of wash buffer, each centrifuged at 500 x g for 5 minutes and transferred 

to a new tube for further analysis. The protein was eluted thrice with 1 bed volume 

equilibration buffer containing 100 mM reduced glutathione (Amersham). For 

column purification, the protein-sepharose mixture was transferred to a Bio-Rad 

Econo-Pac Chromatography Column after incubation. The purification was 

performed in the same protocol, but each fraction was collected by draining the 

column instead of centrifugation. 

2.14 Protein concentration 

Eluates containing purified fusion proteins were combined and transferred to 

Centriprep or Centricon centrifugal filter devices (Millipore), depending on the total 

volume of purified protein solution. The centrifugal filter devices were then 

cetrifugated at 3000 x g for Centriprep or 7500 x g  for Centricon until the solution 

volume was reduced to minimum. When the protein solution reached a final 

concentration of at least 5 mg/ml, the concentrated protein was then transferred to a 

dialysis tube with clips sealing each end. Dialysis was performed in a total of three 

litres of Tris 7.5 buffer overnight with changes of buffer every 4-8 hours. 

2.15 Protein Crystallisation 

The Hanging Drop Vapour Diffusion method was used to perform crystallisation. 

Cover slips of 22mm in diameter (BDH; VWR International) were first siliconised by 

placing cover slips in a vacuum device with dichiorodimethylsilane (Sigma) for 2 

hours at room temperature. Purified protein samples with a concentration higher 
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than 5mg/mi were used in crystallisation. Precipitants were prepared from 15-40% 

(NH4)2SO4  and 5-30% PEG 8000 at pH 4.6, 6.5, 7.5, 9.0, or purchased from Hampton 

Research. 24-well plates (VDX) were used to set up hanging drop crystallisation by 

adding 1 ml of the precipitant to a well and carefully pipetting 1.5 a 1 of protein 

sample next to an equal volume of the precipitant reagent on the cover slip. The 

cover slip was carefully inverted and placed over the well with grease around the 

well rim to seal the cover slip onto the well. After assembly, the crystallisation 

apparatus was kept at 4 °C or 17 °C in a stable environment to avoid vibration. 

Careful examination of the drops under a microscope was carried out immediately 

after setting up the screen and once everyday for the first week, then once a week 

there after. 

2.16 SAMase activity assay 

A method adapted from Hughes et a! (Hughes et al., 1987a) was used to determine 

the enzyme activity according to the production of the radioactive cleavage product, 

MTA, in an enzymatic reaction. Appropriate volumes of bacterial protein extracts 

was added to a total reaction volume of 20 1a 1 containing lOx assay buffer and 3.2 

a 1 of 60 mCi/mmol S-adenosyl--[methyl- 14C]methionine (Amersham). After an 

incubation of 30 minutes at 37 °C, the assay tubes were placed in a bath of dry ice 

and acetone for 10 seconds to stop the reaction. The reaction solution was quickly 

thawed and 5 a 1 of the reaction was spotted onto a cellulose sheet (Merck). The 

reaction products were then separated by thin layer chromatography in a close 

chamber with a separation solvent comprising 1-butanol:acetone:HOAc:H 20 = 

7:7:2:4 (v/v/v/v). When the solvent front was about 5 cm from the top edge of the 

-65- 



sheet, the sheet was taken from the chamber and dried briefly before exposure to a 

radiosensitive film overnight and detection on a Phosphorlmager, Storm 840 

apparatus. 

2.17 Real-time PCR 

20 It 1 of the cDNA product resulted from reverse transcription was diluted in d1i 2O 

at a 1-in-5 ratio to give a final volume of 100 i 1. For each real-time PCR reaction, 7.5 

u 1 of the diluted cDNA sample was mixed with 2 g 1 of appropriate primers (3.2 

pmol/ It 1), 12.5 iil of iQ SYBR Green Supermix (Bio-Rad) and 3 1u 1 dH2O. Reactions 

were set up in 96 well PCR plates and sealed with Optical Adhesive Covers 

(Applied Biosystems). Covers were carefully handled without touching the surface, 

to avoid interference of fluorescent reading in a real-time PCR machine. The sealed 

plate was placed in the iCycler iQ Multicolor Real-Time PCR Detection System 

(Bio-Rad) programmed as follow: 

Cycle 	Temperature ( °C) 	Time (min/sec) 

1 	 95 	 1mm 

45 	 95 	 30 sec 

60 	 30 sec 

72 	 15 sec 

1 	 35 	 2mm 

120 	35 	 10 min  

The fluorescent reading was monitored at the annealing stage (60 °C) when SYBR 

green fluorescent dye was incorporated into the DNA product. Measurements of 

mRNA levels were recorded by iCycler program (Bio-Rad) as threshold cycles (Ct). 

Ct was the cycle number recorded when the system began to detect the increase in 

S. 



the fluorescent signal resulting from the exponential growth of PCR product. Ct 

values were analysed by the comparative Ct method, which first normalises the 

expression of sample input with an amount of internal control and then compares 

the differences between normalised samples amounts (ABI-7700 User Bulletin #2; 

reviewed in Livak and Schniittgen, 2001). When normalised to an endogenous 

reference gene and relative to a calibrator, the expression rate of a target was given 

by 2"c ', where A A Ct was derived as follow: 

From the amplification of target gene X and reference gene i in target sample a and 

control sample b, Ct values of each PCR product were recorded as Ct, Ct 1,, Ct,, 

and CtIb,  respectively. 

In sample a, the normalised Ct of gene X, 

in reference to gene I, is A Cta  = Ct - Ct1Xa 

in sample b, the normalised Ct of gene X, 

in reference to gene I, is A Ctb  = Ct (b  - CtIb . 

Using sample b as a control Ct of gene X, 

the relative Ct of gene X in sample a is A A Ct = A Ct a  - Ct,. 

For each sample, the average, standard deviation, and standard error of mean for 

relative expression levels were calculated from quadruplicated PCR reactions and 

the result was plotted using Microsoft Excel software. 

2.18 Detection of base modification in DNA 

DNA for analysis was denatured by boiling for 5 minutes and blotted on Optitran 

nitrocellulose membrane (Schleicher & Schuell) using a Bio-Dot SF Microfiltration 
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Apparatus (Bio-rad) under vacuum. The apparatus were first cleaned with a large 

amount of water and ethanol wash to eliminate DNA contamination. Three layers of 

Bio-Dot SF filter paper was placed on the gasket support plate followed by a 

membrane of appropriate size, before screwing the gasket and sample template 

tightly in position. Appropriate amounts of samples were applied in each slot and 

bound to the membrane by vacuum. When all liquid had been filtered through the 

paper, the apparatus was dissembled and the DNA was crosslinked to the 

membrane by LTV crosslinking in a Stratalinker UV crosslinker (Stratagene) using 

autocrosslink function at an energy of 120,000 pjoule. 

The detection of bases was detected in the same manner as western detection of 

proteins but using appropriate anti-base antibodies as primary antibodies. The 

membrane crosslinked with DNA was blocked by incubation in blocking buffer for 

at least 1 hour at room temperature or at 4 °C overnight. Primary antibody 

incubation was carried out in blocking buffer with an appropriate dilution at room 

temperature for 2 hours. The membranes was washed three times in blocking buffer 

for 10-15 minutes, before being incubated for 1 hour with an appropriate 

concentration of secondary antibody (conjugated with horseradish peroxidase) in 

blocking buffer. Following the secondary antibody incubation, two washes in 

blocking buffer and one wash in TBS-T were carried out before ECL detection of 

bound antibody. An equal volume of ECL solution I and II were mixed and then 

incubated with membranes for 1 minute. Membranes were wrapped in Saran wrap 

and exposed to ECL Hyperfilm (Amersham) for an appropriate length of time. 
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2.19 Immunocytochemistry 

2.19.1 Immunocytochemistry of cultured cells 

Cells for immunofluorescence analysis were grown on 22 x 22 mm cover slips in 

6-well plates. After a wash in PBS, cells were fixed in 4% paraformaldehyde for 20 

minutes at room temperature. Cells were washed twice in PBS and permeablised 

using 0.2% Triton-X in PBS for 10 minutes at room temperature. Prior to antibody 

staining, cells were washed twice in PBS and incubated in 3% BSA in PBS for 45 

minutes at room temperature to block non-specific antibody binding. Antibodies 

were diluted in 3%BSA in PBS. Primary antibody incubations were carried out on 

parafilm by placing cover slips upside-down on antibody solutions for 1 hour at 

room temperature. Cells were washed 3 times in PBS for 2-3 minutes each. Cover 

slips were then placed upside-down and incubated with appropriate secondary 

antibodies on parafilm for one hour at room temperature but covered in dark to 

avoid light emission. After the second incubation, cells were washed 3 times in PBS 

for 2-3 minutes each and dried briefly before the cover slips were mounted onto 

slides using Vector Shield Mounting Medium with DAPI (Vector Labs). Slides were 

sealed with nail varnish and stored at 4 °C. 

2.19.2 Immunocytochemistry of embryos 

Animal protocols leading to the harvesting of embryos were performed by Dr. Jim 

Selfridge. After washing in M2 medium, mouse embryos were incubated in M16 

medium at 37 °C, CO  incubator for 4 hours before fixing in 2% paraformaldehyde at 

room temperature for 20 minutes. Fixed embryos were permeabilised with 0.5% 

Triton-X in PBS-T followed by DNA denaturation in 4 N HC1 at 37 °C for 30 minutes. 
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After washing in PBS-T for 30 minutes at room temperature, embryos were then 

blocked in 1% BSA in PBS-T for 1 hour at room temperature. Antibodies were 

diluted in 1% PBS-T and spurt for 10 minutes at 14,000 rpm before use. Incubations 

of primary antibodies were carried out at 37 °C for 1 hour. Before secondary 

antibody incubations, the embryos were washed in PBS-T for 30 minutes at room 

temperature. Secondary incubations were carried out at room temperature for 1 

hour in the dark. Before fixing embryos on slides, another wash in PBS-T was 

performed for 30 minutes at room temperature. Embryos were mounted onto slides 

using Vectashield Mounting Medium with propedium iodine (Vector Labs). Slides 

were sealed with nail varnish and kept at 4 "C. 

2.19.3 Microscopy 

Slides were examined under appropriate magnifications using Zeiss Axioskop 2 

microscope coupling with IPLab imaging program or Olympus 1X70 coupling with 

Delta Vision Spectris Restoration Microscope system. 

2.20 siRNA transfection 

Double-stranded siRNAs targeting Dnmtl were designed following the online 

siRNA user guide (http://www.rockefeller.edu/labheads/tuschl/sima.htn-d;  

Elbashir et al., 2001b) and synthesised by the QIAGEN custom siRNA service. 

Sequences chosen for targeting are listed in Table 2.6. Male mouse tail fibroblasts 

subjected to siRNA treatment were seeded at 50% confluence and grown for 16-24 

hours in alpha MEM medium supplemented with 10% calf bovine serum and 10 

units/ml penicillin-streptomycin solution. The next day, cells were transfected with 
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siRNA(s) at an appropriate concentration, using Oligofectamine Reagent (Invitrogen) 

following manufacturer's instructions. Cells were passaged 48 hours afterwards and 

further transfected once before being harvested for analysis. 

2.21 Codon usage analysis 

The codon usage table for human and bacteriophage T3 (Appendix H) was acquired 

from the Codon Usage Database (www.kazusa.or.jp/codon/;  Nakamura et al., 2000). 

Codon usage analysis was carried out using European Molecular Biology Open 

Software Suite (EMBOSS; Rice et al., 2000) on an internet platform maintained by 

Centre for Computational Research, the State University of New York 

(http: / /bioinformatics.ccr.buffalo.edu  /biotool /EMBOSS/Nucleic /codon.html). For 

both analyses (cai for CAT and chips for Nc), the input sequence was the coding 

region of the T3 SAMase gene (Appendix I) and the codon usage Table was selected 

as "Ehuman.cut." 

Table 2.6: Oligonucleotide sequences for siRNAs used in this thesis. 

siRNA Targeting sequence (5'-3') Description 

D1-4 AAGTCGGACAGTGACACCCTT targeting exon 4 
D1-18 AATCAGTGGTGGCTCAGTGGCTT targeting exon 18 

D1-22 AAGTGCAAGGCGTGCAAAGAT targeting exon 22 

D1-33 AACTTCGTGTCCTACAGACGC targeting exon 33 
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Chapter 3 

Studies of a bacteriophage protein: 

SAMase expression in bacteria 

3.1 Introduction 

The unique SAM-cleaving property of SAMase has inspired various attempts to 

reduce DNA methylation levels in cells. In order to facilitate the later application of 

SAMase as a demethylating agent, it may be helpful to gain a good understanding 

of the enzymatic activity and mechanism of SAMase. However, little is known about 

SAMase, especially in the context of the phage antirestriction system. Therefore, in 

addition to the application of SAMase in mammalian cells, purification of SAMase is 

first carried out to facilitate the potential use of SAMase. 

After the discovery of the SAM cleaving activity, two forms of SAMase have 

been purified (Spoerel and Herrlich, 1979). One is recorded as SAMase A, with a size 

of 17 kDa; the other is called SAMase B, which is a complex of SAIvIase A plus a 

bacterial host protein of 49 kDa. In addition to the major 17 kDa peptide, SAMase 

also has a minor form of 20 kDa. However, both the 20-kDa SAMase peptide and the 

SAMase B complex appear to be suboptimal products resulting from phage infection 

at the stationary phase. As the biological function of interest is actually carried out 

by SAMase A, hereafter SAMase is termed to represent SAMase A. Hughes et al. 
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(1987b) used the 0.3 gene of bacteriophage T7 as a template to map the gene 

encoding the SAMase activity from T3. They isolated a gene fragment 600-bp long, 

including the T3SH gene of 459 bp and adjacent sequences containing RNA 

polymerase binding sites. Using protein and DNA databases including GenBank, 

dbEST and SwissProt to perform BLAST searches, no sequence currently shows any 

degree of similarity to T3 SAMase or its encoding gene. 

Biochemical analysis has shown that the enzyme SAMase uniquely hydrolyses 

SAM to methyl-thio-adenosine (MTA) and homoserine with a KM  for SAM being 0.2 

mM and an optimal reaction pH at 7.0 (Gefter et al., 1966). SAMase tolerates ionic 

conditions up to 2.5 M salt but is inactivated at temperatures above 40 °C. SAMase 

functions at a rate proportional to the substrate concentration when the SAM 

concentration is below 5x10 4M. The enzyme activity is inhibited by Mn, Cu, 

p-chloromercuribenzoate, but is unaffected by Mg or EDTA. Reagents that can 

modify cysteine residues in proteins were also found to inactivate SAMase activity. 

In contrast, the presence of sulthydryl groups enhances SAMase activity (Gefter et 

al., 1966; Spoerel and Herrlich, 1979). Apart from the information presented above, 

little is known about the mechanism of SAMase activity, nor have there been 

significant studies of SAMase under physiological conditions, even though it has 

been more than 30 years since the first demonstration of this function. 

In bacteriophage T7, the ocr protein has shown to exhibit similar antirestriction 

function and gene location as T3 SAMase. Comparisons between T3 SAMase and T7 

ocr proteins have revealed that there is no sequence homology in their nucleotide 

and amino acid sequences (Hughes et al., 1987b), neither is there any report of a 

similar enzyme inhibitory mechanism. The determined structure of T7 ocr has 

shown that the highly acidic ocr protein mimics B-form DNA (Atanasiu et al., 2001; 
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Walkinshaw et al., 2002). With the disguise as DNA, T7 ocr forms a strong affinity 

between ocr and type I R-M enzymes and consequently out-competes DNA binding 

of the R-M enzymes (Atanasiu et al., 2002). Moreover, the interaction between ocr 

and type I R-M enzymes involves the entire surface of ocr and leads to the R-M 

enzyme being fully wrapped around ocr (Atanasiu et al., 2002). This explains why 

ocr can defend against all known type I R-M enzymes, regardless of the particular 

recognition sequence by the R-M enzyme. Conversely, it has been reported that 

SAMase does not bind to DNA to inhibit endonuclease activity. Instead, SAMase 

inhibits EcoK consumption of ATP after the endonuclease binding to DNA (Spoerel 

et al., 1979). Furthermore, the putative p1 of SAMase is about 10, which is very basic 

compared to that of the ocr protein. 

It is thus very interesting to know how SAMase overcomes restriction activity 

and how the SAM cleaving activity works, when a similar function is carried out by 

the T7 ocr protein which has a very different isoelectric point. It is also very useful 

for the further application of SAM depleting activity in regulating methylation 

levels. To explore the mechanism and properties of SAMase activities, we first 

aimed to acquire homogeneous protein for further structural and enzymatic 

analyses. 

3.2 Expression of SAMase in bacteria 

In order to find an optimal expression system for SAMase, the SAMase gene was 

cloned into various vectors. pJF118HE and pBAD24 vectors both allow native 

protein expression (Furste et al., 1986; Guzman et al., 1995), whereas pGEX-4T-2 and 

pET-30b(+) produce recombinant proteins with a fusion tag of GST or 6xHis, 
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respectively. All four vectors are under control of inducible promoters which only 

express the protein of interest when the appropriate inducer is present. pJF118HE, 

pGEX-4T-2 and pET-30b(+) are induced by IPTG, while pBAD24 is induced by the 

addition of arabinose. Detailed properties of each vector in use are listed in Table 2.2. 

The T3 SAMase cDNA was first amplified from phage genome and engineered to 

obtain recombinant constructs expressing native SAMase or fusion SAMase with 

either an N-terminal GST tag or an N-terminal 6xHis tag, as described in Section 

2.11.1 and Table 2.5. The resulting constructs were accordingly named pJF-SH, 

pBAD-SH, pGEX-SH and pET-SH. Isolated plasmids were individually transformed 

into the bacterial strain BL21(DE3). Protein expression in BL21(DE3) was induced by 

either 1 mM IPTG, for pJF-SH, pGEX-SH and pET-SH expression, or 0.02% 

arabinose, for pBAD-SH expression. After induction, harvested cells were lysed by 

sonication and fractioned as supernatant and pellet by centrifugation. 

The presence of the target protein was examined on SDS-PAGE gels of 

appropriate percentage, as shown in Figure 3.1. Expression of SAMase in the native 

form was not clear from either cell supernatant or cell pellet by Coomassie blue 

staining of the gels (Fig. 3.1A). Expression of His-tagged SAMase from pET-SH 

expression was also unclear as shown in Figure 3.113. A protein size of about 17 kDa 

was expected for both native SAMase and His-tagged SAMase, but no recognizable 

band was observed at this size. The uninduced samples were indistinguishable from 

the induced fractions. There was no visible difference between fractions from 

SAMase constructs and empty vectors either. On the other hand, the protein 

expression pattern was altered following the expression of GST-SAMase from 

pGEX-SH plasmid. Unmodified blank vector clearly expressed GST protein in the 

induced cell supernatant, with a band at the expected size of approximately 26 
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Figure 3.1: SAMase protein expression was analysed by SDS-PAGE. Native protein 

expression using pBAD-SH and pJF-SH vectors (A) were examined on 15% 

SDS-PAGE gels. Fusion proteins expressed from pET-SH (B) and pGEX-SH (C) 

vectors were examined on 15% and 12% SDS-PAGE gels, respectively. An equal 

volume of protein samples was loaded and gels were stained with Coomassie 

brilliant blue for visualization. M represents protein marker with sizes labelled on the 

left-hand side. + and - indicate cell culture grown with and without expression 

inducer, respectively. Unmodified vectors, pBAD, pJF, pET30b, and pGEX were also 

tested to compare protein expression patterns of SAMase expressing and 

non-expressing cells. Expected sizes of native SAMase or fusion proteins are 

indicated by the arrows. 
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kDa (Figure 3.1C, lane 1 and 2). However, recombinant plasmid subjected to IPTG 

induction did not result in a GST fusion protein in the cell supernatant at the 

expected size of about 43 kDa. Instead, a GST fusion protein was seen in the cell 

pellet. This analysis showed that GST-SAMase was overexpressed and present in the 

cell pellet in the form of inclusion bodies (Figure 3.1C, lane 9). 

Inability to observe protein bands on SDS-PAGE gels does not prove absence of 

protein expression. To analyse if SAMase protein was expressed at a low level on 

SDS-PAGE gels, enzyme activity assays were carried out, since an antibody against 

SAMase is not available for sensitive methods such as western blot. Moreover, it is 

important to express functionally active enzymes. To analyse SAMase activity, 

which causes hydrolysis of SAM into homoserine and MTA, cell extracts potentially 

containing SAMase were incubated with a radioactively-labelled substrate of 

14C-SAM. The enzyme activity was verified by the presence of radioactive MTA, 

after its separation from the rest of the reaction system by thin-layer 

chromatography (TLC). According to previous data, MTA had a relative mobility (R) 

of -0.68 in the separation solvent, while the uncleaved substrate, SAM, hardly 

migrated and had an Rf  of 0.08 in the same system (Hughes et al., 1987a). All cell 

supernatants used in the SDS-PAGE analyses were examined along with the cell 

pellet obtained from pGEX-SH induction, which contained highly-expressed protein 

in the inclusion body. The assay result is shown in Figure 3.2, where negative 

controls (Ctrl; lane 1 in Fig. 3.2A, 2B and 2C), induced (+) and uninduced (-) samples 

containing empty vectors (Fig. 3.2A, lanes 2, 3, 6 and 7; Fig. 3.2B, lanes 4 and 5; Fig. 

3.2C, lanes 2, 3, 6 and 7) gave no product spot of 4C-MTA. To the contrary, bacteria 

transformed with recombinant plasmids all exhibited SAMase activity in the 

induced cell fractions (Fig. 3.2A, lanes 4 and 8; Fig. 3.2B, lane 2; Fig. 3.2C, lanes 4 
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Figure 3.2: Presence of SAMase was determined by enzyme activity assays. Cells 

transformed with empty vectors and SAMase-expressing constructs pJF-SH and 

pBAD-SH (A), pET-SH (B), and pGEX-SH (C) were grown with (+) and without (-) 

the induction of SAMase expression. The supernatants from each expression 

construct and the resuspended pellet of pGEX-transformed cells were tested for the 

SAM cleaving activity using radioactively-labelled 14C-SAM incubating with 2 p1 

protein sample. Each reaction (5 p1) was spotted onto a cellulose sheet and 

analysed by TLC. The migration of reaction substrate (SAM) and product (MTA) is 

indicated by arrows. Control reactions, Ctrl, without addition of protein are shown in 

lane 1. 
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and 8). Although the total radioactivity observed in Figure 3.2A, lanes 2 and 4 were 

lower than loadings in other lanes, it is sufficient to see the difference between active 

and non-active lanes. On the other hand, radioactive MTA was also detected in the 

incubations containing uninduced pJF-SH and pGEX-SH supernatants (Fig. 3.2A, 

lane 9 and Fig. 3.2C, lane 5). This may result from a leaky tac promoter, as SAMase 

expression was not observed in the tightly-controlled pBAD-SH under uninduced 

condition (Fig. 3.2A, lane 5). The SAM cleaving activity of SAMase was also 

demonstrated in the cell pellet of inclusion bodies, which contained the 

GST-SAMase fusion protein (Fig. 3.2C, lane 9), suggesting the overexpression of 

GST-SAMase was achieved in an active form. Although this protein was assayed in 

the insoluble form, the composition of enzyme activity buffer may have affected the 

protein conformation and assisted the performance of the enzyme activity. This 

suggests that it is possible to use this abundant protein as a source for the 

acquisition of homogeneous active protein. 

3.3 Purification of soluble SAMase 

Although SAMase was not expressed in visible amounts from both pJF-SH and 

pBAD-SH constructs, the presence of SAMase in the supernatants of induced cells 

was confirmed by the enzyme activity assays. Hence, it may be possible to obtain 

homogeneous SAMase from a large volume of the soluble fractions using 

appropriate purification procedures. With soluble native SAMase, a 

previously-published method could be employed to purify SAMase via its affinity 

for S-adenosylhomocysteine (SAH), a competitive inhibitor of SAMase (Spoerel and 

Herrlich, 1979). For soluble His-tag SAMase, commercial nickel agarose affinity 
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chromatography (Ni-NTA) can be used to separate the target protein from the rest of 

cell extract using the affinitive binding of 6xHis tags to nickle ligands. The same 

principle applies to the purification of GST-SAMase, which can be purified using 

glutathione sepharose beads. 

3.3.1 Purification of native SAMase protein 

A protocol for purification of SAMase has been described in Spoerel and Herrlich 

(1979). In their work, two slightly different approaches were applied to purify two 

forms of SAMase, which arose from different infection conditions. Since direct 

transfection of bacteriophage T3 was bypassed to produce only the 17 kDa SAMase, 

the method utilised in this study focused on the purification of the so-called 

SAMase A, which was obtained from bacterial transformation of plasmid pBAD-SH. 

A summary of the purification procedure is depicted in Figure 33A. According to 

Spoerel and Herrlich, cell lysates were subjected to polymin P anion-exchange resin. 

This cleaning-up stage uses the cationic polymer to remove DNA from cell extracts 

while the basic protein of SAMase remains in solution. Proteins bound to polymin P 

formed precipitates and were removed from the solution by centrifugation. To 

remove residual polymin P. soluble non-absorbing proteins were precipitated by 

80% ammonium sulfate, and the precipitate was isolated and dissolved in buffer A 

containing 35% glycerol, in order to prevent protein precipitation. After dialysis 

against buffer A, the dissolved protein was applied to a DEAE-cellulose column. 

SAMase in the flow-through from the DEAE column was subsequently purified by 

affinity chromatography to immobilised SAH. After the non-specific binding protein 

was washed off, homogeneous SAMase was eluted using a buffer containing 
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adenosine by competition between SAH and adenosine for SAMase binding. 

Because SAMase is not highly expressed in the bacterial culture, as 

demonstrated in Figure 3.1A, a rather large culture will be required to purify a large 

quantity of protein. To test the efficiency and feasibility of the purification approach 

using a SAH affinity column, a culture of 1 litre bacteria, transformed with plasmid 

pBAD-SH, was grown for a pilot experiment and suggested that this method was 

not efficient, as shown in Figure 33B and 33C. The resulting protein in the fractions 

after DEAE cellulose and the SAH affinity chromatography was analysed on 15% 

SDS-PAGE and showed that the majority of the ammonium sulfate-dissolved 

protein was recovered in the flow-through fraction (Fig. 33B, lane 1). The result of 

the enzyme activity assay shown in Figure 33C shows that SAMase activity was 

present in the flow-through (Fig. 33C, lane 1), which is consistent with the result 

described in Spoerel and Herrlich (1979). A low activity of SAMase was also found 

in the eluate (Fig. 33C, lane 2). This is contradictory to the finding by Spoerel and 

Herrlich that no further SAMase activity was eluted from the column. Nonetheless, 

active SAMase was recovered mainly in the flow-through from the DEAE column. 

When the flow-through was applied to the SAH affinity column, most of the protein 

either did not bind to the column or appeared in the wash fraction (Fig. 33B, lane 4), 

but surprisingly this wash fraction contained most of the enzyme activity (Fig. 33C, 

lane 4). Although some SAMase activity was detected in the eluates from SAH 

affinity chromatography (Fig. 33C, lanes 5-9), no protein was detectable by 

SDS-PAGE analysis (Fig. 33B, lanes 5-9). 

This result shows that SAH affinity chromatography is not an ideal method for 

the purification of large quantities of SAMase. 
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Figure 3.3: Purification of SAMase using SAH affinity column. (A) Purification flowchart of native SAMase purification. Details of the 

methodology are described in the materials and methods and in the text. (B) An equal volume of protein samples from the flow-throw 

(1), wash (W), and eluate (2) from the DEAE column and samples from the flow-through (3), wash (4), and eluates (5-9) from the SAH 

affinity column was analysed on 15% SDS-PAGE gels. Marker (M) sizes are labelled on the left and SAMase is indicated by the 

arrows. (C) Samples analysed in (B) were tested for the presence of SAMase in the activity assay. Migration of reaction substrate 

(SAM) and product (MTA) are as indicated. Control reaction without addition of protein is in lane Ctrl. The volume of protein analysed 

was in or000rtion to the volume of each fraction. 



3.3.2 Purification of His-tag SAMase 

In order to purify His-tag SAMase, a one-litre culture of bacteria expressing this 

fusion protein was inoculated, induced, and harvested. The cell supernatant was 

obtained from the lysed bacteria and the protein was purified by nickel agarose 

affinity chromatography, making use of the 6xHis tag at the N-terminus of SAMase. 

The SDS-PAGE analysis in Figure 3.4 shows a typical purification experiment of 

His-SAMase on nickel agarose. After a one-hour incubation which allowed protein 

binding to the nickel-agarose beads, the majority of the protein from the cell 

supernatant was found in the flow-through fraction (Fig. 34A, lane F). As shown in 

Figure 3.4A, lanes wl-w4, additional non-binding protein was washed off from the 

agarose beads in the wash buffer. However, the purification is not satisfactory as 

proteins of various sizes were seen in the four elution fractions but no band was 

observed at the position of 17 kDa, where His-SAMase would appear (Fig. 3.4A, 

lanes el-e4). The presence of His-SAMase was further examined using the enzyme 

activity assay. Figure 3.413 shows that His-SAMase was present and active in cell 

supernatant and the flow-throw fraction after affinity binding (Fig. 3.413, lane S and 

F). Although the radioactive spots had migrated differently, which may be due to 

the increasing concentration of imidazole in the buffer, the proteins obtained in the 

wash and eluation fractions did not include active His-SAMase. Combining these 

two results, we draw the conclusion that His-tag SAMase is not suitable for 

purification using nickel-affinity chromatography. The fusion tag of SAMase did not 

bind to the nickel ligand as expected, and the active fusion SAMase was found in 

the flow-throw fraction. This may due to an unexpected protein conformation which 

wrapped the 6xHis tag within SAMase structure. It is also possible that the 6xHis 
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Figure 3.4: Purification of His-tag SAMase using nickel affinity chromatography. (A) 

Protein fractions from cell supernatant (S), flow-through (F), washes (Wi -w4) and 

eluates (el-e4) were analyzed on a 15% SIDS-PAGE gel. Marker (M) sizes are 

labelled on the left and GST-SAMase is indicated by the arrow. (B) Protein fractions 

shown in (A) were tested for the enzyme activity. The change in the appearance of 

SAM spots in washes and eluates may result from the increasing use of imidazole. 

Reactions without (Ctrl) additional protein and with cell supernatant expressing (+) 

and not expressing (-) active SAMase were used as controls. Reaction substrate 

(SAM) and product (MTA) are as indicated. The volume of protein analysed was in 

proportion to the volume of each fraction, except that only half of the volume in 

proportion to wash fractions were used. 
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tag was no longer covalently attached to SAMase during fusion protein production, 

although further investigation is required to decide the reasons. 

3.3.3 Purification of GST-SAMase 

As the purifications of native SAMase and His-tagged SAMase were unsuccessful, 

purification of GST-SAMase using glutathione affinity chromatography was then 

tested. However, the majority of GST-SAMase was expressed in inclusion bodies, as 

shown in Figure 3.1C. This insoluble protein in the cell pellet therefore needed to be 

recovered in the soluble fraction before this rich source of protein could be utilised 

in any further analysis. 

3.3.3.1 Optimisation of GST-SAMase Expression 

To achieve a maximum yield of soluble protein, recovery of the insoluble protein 

from inclusion bodies is essential, but optimisation of the expression conditions can 

increase the protein availability. As this protein is expressed only after IPTG 

induction, the most important factors affecting protein expression are the induction 

period and the inducer concentration. 

As shown in Figure 3.5, changes in these two factors greatly varied the expression of 

GST-SAMase. Although it was still not possible to identify GST-SAMase expression 

in cell supernatants, the amount of total protein increased with time at each inducer 

concentration (Fig. 3.5, lanes 2-10). The same applied to cell pellets, where three 

hours of induction produced the largest amount of GST-SAMase (Fig. 3.5, lanes 

11-19). Changes in inducer concentration did not make a difference in cell 

supernatants, but it clearly changed the yield within the inclusion bodies. When 
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Figure 3.5: Optimisation of GST-SAMase expression. GST-SAMase expression was 

optimised by changing the length of induction time (0.5-3 hours) and the 

concentration of inducer (0.2-2 mM). Cell supernatant and pellet collected from each 

condition were separated and analysed in an equal volume on 12% SDS-PAGE gels. 

Marker (M) sizes are labeled on the left and arrows indicate where GST-SAMase 

appears. U represents cell fractions without induction. 

expression was induced for 0.5 hour and 1.5 hours, 2 mM of inducer IPTG gave the 

highest amount of the protein, compared to expression induced by 0.2 and 0.5 mM 

IPTG (Fig. 3.5 lanes 11, 12, 15, 16 compared to lane 18 and 19). However, 2 mM of 

IPTG no longer gave the highest protein production when the incubation extended 

to 3 hours (Fig. 3.5 lane 20). Instead, pellets from 0.2 and 0.5 mM IPTG contained 

more GST-SAMase (Fig. 3.5 lane 14 and 17). This may be due to the toxicity from 

prolonged high expression at 2n -LM IPTG. As a whole, the milder and longer 

induction, 0.5mM IPTG for 3 hours (Fig 3.5 lane 17), produced the most 

GST-SAMase and was used for the subsequent GST-SAMase expression. 

3.3.3.2 Recovery of soluble GST-SAMase 

Production of insoluble protein in the form of inclusion bodies may result from the 

overexpression of a toxic protein. Host cells form incorrectly folded, insoluble 

protein and deposit the protein in inclusion bodies to alleviate the toxicity of an 
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exogenous protein. Although insoluble protein is not useful in the practice of 

enzymology, it is advantageous for purification because most host proteins are 

already separated from the target protein. To recover protein in its soluble form, the 

protein needs to be dissolved in a denaturant, such as 8M urea or 6M 

HC1-Guanidine. Protein can gradually refold in the correct conformation during 

removal of the denaturant, which provides an appropriate environment consisting 

of reducing agents such as dithiothreitol (DTT'). Furthermore, altering the ionic 

strength of the solution, using salt, detergent and a suitable pH can optimise protein 

solubilisation. However, this simple solubilisation of the protein may be 

meaningless, if the protein recovered is in an inactive state. 

To obtain active protein, the refolding conditions for denatured GST-SAMase, 

obtained by dissolving insoluble GST-SAMase in 8M urea, was optimised. The 

denatured protein was subjected to refolding by dilution. A dilution of urea will 

quickly change the denaturing condition to a composition suitable for refolding. 

Although refolding generally prefers gentle changes to allow formation of correct 

disulfide bonds and tertiary conformation, a direct dilution is favourable for its 

time-efficiency and its avoidance of less favourable structure formation. Since 

detergent, salt, reducing agents and pH are all possible factors that facilitate protein 

refolding, refolding systems were chosen to test the following elements in a 

DTT-based solution: 0.1 % (v/v) deoxycholate, 0.1 % (v/v) Triton X-100, 5mM NaCl, 

5 % (v/v) glycerol at four pH values ranging from pH 6.5-9.5. In combination, this 

gives a total of 48 different refolding conditions to test at two different dilutions, 5 

fold and 10 fold, which both reduce urea concentration to an ineffective level. All 96 

combinations of dilutions were performed and each reaction was centrifuged to 

separate soluble and the remaining insoluble fractions. The resulting soluble and 
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insoluble fractions were analysed on SDS-PAGE gels, and successful solubilisation 

was detected by transfer of GST-SAMase from the insoluble to the soluble fraction. 

Two examples of dilution experiments showing the highest level of refolded soluble 

fractions are displayed in Figure 3.6A and 3.6B. From these two PAGE gels, it is 

evident that the amount of recombinant protein gradually increased in the soluble 

fractions (Fig. 3.6A and 3.6B, lanes 1-4) as the pH increased, whereas the 

GST-SAMase band in the corresponding insoluble fractions gradually disappeared 

(Fig.3.6A and 3.6B, lanes 5-8). The addition of glycerol did not affect the protein 

solubility as the amount of soluble protein was approximately the same, when 

comparing the two fractions in lane 4 of Figure 3.6A and lane 4 of Figure 3.6B, which 

contained most soluble proteins. Neither salt nor the detergent Triton X-100 had any 

effect on refolding efficiency (data not shown). After examination of all dilution 

conditions, the system for futher refinement was chosen to include DTT, 

deoxycholate and high pH. 

A more detailed optimisation of deoxycholate concentration and pH was 

carried out. Deoxycholate concentrations of 0.01, 0.05 and 0.1% (v/v) were tested at 

PH 8.5 or pH 9.5. At pH 9.5, all three deoxycholate concentrations gave very high 

level of protein refolding with slightly less protein in 0.01% deoxycholate solution 

(Fig. 3.6C, lane 4-6), but at pH 8.5 only 0.1% deoxycholate showed a high amount of 

the soluble protein (Fig. 3.6C, lane 3) and most of the protein remained in the 

insoluble form at 0.01% deoxycholate (Fig. 3.6C, lane 7). When comparing pH, a 

high pH of 9.5 retained more protein in the soluble form at the same level of 

deoxycholate (Fig. 3.6C, lanes 1 and 4, lanes 2 and 5, lanes 3 and 6). This analysis 

suggested an optimal refolding condition at a high pH and a high deoxycholate 

concentration. 
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Figure 3.6: Optimisation of conditions for the recovery of insoluble protein. Refolded 

protein solutions were divided into soluble and insoluble fractions by centrifugation. 

The starting materials of cell supernatant (S) and pellet (P) were also examined. An 

equal volume of samples was analyzed on 12% SOS-PAGE gels. Marker (M) sizes 

are labelled on the right and arrow indicates GST-SAMase. (A) Protein refolding was 

performed in 0.1% deoxycholate at pH 6.5 (lanes 1 and 5), 7.5 (lanes 2 and 6), 8.5 

(lanes 3 and 7), or 9.5 (lanes 4 and 8). (B) Protein refolding was performed in 0.1% 

deoxycholate with 5% glycerol at pH 6.5 (lanes 1 and 5), 7.5 (lanes 2 and 6), 8.5 

(lanes 3 and 7), or 9.5 (lanes 4 and 8). (C) Refolding conditions were also tested by 

changing the percentage of deoxycholate (%DOC). Concentration of 0.01% (lanes 1, 

4, 7, 10), 0.05% (lanes 2, 5, 8, 11) and 0.1% (lanes 3, 6, 9, 12) deoxycholate were 

tested under pH 8.5 (lanes 1-3 and 7-9) or pH 9.5 (lanes 3-6 and 10-12). (0) 

Refolded protein from the soluble fraction of (C) was tested for its enzyme activity. A 

reaction without additional protein was used as a control (Ctrl). Reaction substrate 

(SAM) and product (MTA) are as indicated. 
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Following the recovery of soluble GST-SAMase, the enzyme activity of each 

soluble fraction was examined. The protein in the soluble fractions showed good 

activity at all refolding conditions, except for the condition using 0.1% deoxycholate 

at pH 9.5 which showed slightly less activity (Fig. 3.613). This minor reduction of 

activity may result from the strong detergent and high pH which may interfere with 

the enzyme activity by changing composition of the reaction buffer. From the results 

of the refolding experiments and the enzyme activity assay, a solution system 

containing 0.05% deoxycholate and 5 mM DTT at pH 9.5 was utilised to refold 

denatured protein. It is also worth noticing that protein recovered from the inclusion 

bodies had reached more than 80% purity, as seen in lanes 4-6 of Figure 3.6C. This 

confirms the merit of inclusion bodies in protein purification. 

The presence and activity of the fusion protein was shown in enzymatic assays, 

and we further used mass spectrometry to provide confirmation of the target 

protein by virtue of its molecular weight. The predicted weight of GST-SAMase is 

43327.07 Da. As shown in Figure 3.7, a peak at the size of 43,623.89 Da representing 

the fusion GST-SAMase, while the sizes of other peaks matched the proteins seen by 

SDS-PAGE of the analysed fraction (Figure 3.6C, lane 5). From this analysis, the 

identity of GST-SAMase was confirmed and further purification to isolate 

GST-SAMase from the contaminating proteins was carried out. It is worth noting 

that the difference between the predicted and the empirical weight of SAMase may 

result from post-translational modifications or detergent adducts in the protein 

solution. To define the modifications on SAMase, proteolytic treatments such as 

trypsin digestions may be carried out to produce smaller peptides, which allow a 

refined resolution of mass spectrometry and provide a precise identification of the 

molecular weight of SAMase. 
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Figure 3.7: Soluble protein recovered from inclusion bodies was analysed by mass 

spectrometry. The peak of GST-SAMase has a size of 43,623 Da, which is very 

close to the predicted size of 43,327 Da. Other peaks represent proteins that match 

the pattern shown in Figure 3.6C lane 5. 

3.3.3.3 Purification of soluble GST-SAMase 

Purification of proteins containing a GST tag was achieved by application of 

glutathione sepharose. Glutathione conjugated-sepharose beads allow proteins 

containing the GST motif to bind glutathione residues and separate protein from 

non-GST proteins. After removing non-specific proteins, GST fusion protein can be 

released from the solid glutathione support by the reduced glutathione which 

competes for GST binding. A test of the purification method given by the 

manufacturer of the sepharose was carried out in a PBS-based neutral (pH 7.3) 
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system. As seen in Figure 3.8 lane 4, GST-SAMase was successfully purified using 

elution buffer of 100 mM reduced glutathione in PBS. However, this protein is more 

stable in a high pH environment; therefore, purification using Tris 9.5 buffer which 

contains 0.5 mM DTT, 100 mM EDTA at pH 9.5 was also tested by replacing all the 

PBS during the process. Although the manufacturer suggests carrying out the 

procedure below pH 8.4, the purified product (Fig. 3.8, lane 7) demonstrates that 

GST-SAMase can be purified at a high pH 9.5 which gives higher yield than using 

buffers based on PBS. In order to obtain a maximal amount of GST-SAMase, the 

following purification was thus performed at pH 9.5. 

Size 	M 
(kDa) 

66.7 - 

42 7  _ 

PBS 	 Tris9.5 
w 	e 	f 	w 	e M 

4- 

27.0 

1 	2 	3 	4 	5 	6 	7 

Figure 3.8: Soluble GST-SAMase after refolding was purified by affinity 

chromatography under two different conditions, either PBS or Iris 9.5 buffers. 

Samples (10 l) of input (I; lane 1), flow-through (f; lanes 2 and 5), wash (w; lanes 3 

and 6) and elution (e; lanes 4 and 7) were analysed on a 12% SDS-PAGE gel. 

Marker (M) sizes are labelled on the left and the arrow indicates GST-SAMase. 
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3.4 Optimisation 

3.4.1 GST tag Cleavage 

When a protein is tagged, it is preferable to remove the tag in order to analyse the 

target protein in its native form. The built-in thrombin cleavage site in the pGEX-SH 

construct allows cleavage between GST and SAMase by incubating the fusion 

protein in the presence of the protease, thrombin. Although an overnight digestion 

is recommended by the manufacturer, a four-hour incubation of thrombin at either 

room temperature or 4 °C was carried out. The result of cleavage reaction was 

analysed on a 12% SDS-PAGE gel. After four hours at room temperature, free GST 

protein was detectable but no fusion protein or native SAMase was detected (Fig. 

3.9, lane RT), whereas at 4 °C free GST tag and native SAMase were both detected 

after four hours of incubation (Fig. 3.9, lane 4°). Although residual GST-SAMase 

fusion remained after cleavage, suggesting that the digestion was not complete, the 

presence of the SAMase band shows that the low reaction temperature favoured the 

stability of SAMase. The cleaved products were used to isolate SAMase from other 

components. However, SAMase which no longer bound to the column did not 

appear in the flow-through (Fig. 3.9, F) or wash (Fig. 3.9, W), whereas GST and 

GST-SAMase fusion protein were both eluated in the elution buffer as expected (Fig. 

3.9, E). A very small amount of SAMase was actually present in the eluate too. 

However, the majority of native SAMase seemed to be degraded during the final 

purification process, which may be due to a higher instability following the removal 

of GST. Besides, the purification is not efficient since SAMase was found in the 

eluate. 

The 26kDa GST tag is larger than the 17kDa native SAMase, which makes 
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Figure 3.9: Thrombin cleavage of GST-SAMase fusion. Refolded GST-SAMase (I) 

was incubate with thrombin protease at either room temperature (AT) or 4 °C (40 ) 

and analysed on a 12% gel. The reaction performed at 4 °C was applied to the 

glutathione affinity sepharose. The flow-through (F), wash (W), and elution (E) 

fractions was analyzed on a 12% SIDS-PAGE gel. Marker (M) sizes are labeled on 

the left and the reaction substrate, GST-SAMase, and the products, GST and 

SAMase, are indicated on the right. 

SAMase a minor component of the GST fusion. Nonetheless, the GST tag does not 

seem to interfere with SAMase activity, as shown by the activity assays. Therefore, 

GST-SAMase fusion remained uncleaved in the subsequent analysis in order to 

maintain the maximal stability of the enzyme. 

3.4.2 Purification for crystallisation 

The purification shown in Figure 3.8 was carried out in batch of 0.1 ml bed volume, 

which purified the fusion protein to 90% homogeneity. However, a large proportion 

of GST-SAMase was not bound to the glutathione beads. This may result from an 

insufficient binding capacity of the gel since a very large amount of input 

GST-SAMase was applied. Another problem of the pilot purification was that a 
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small amount of impurity was still detectable on the PAGE gel. This may be solved 

by increased washes. For the optimised purification experiment, the gel volume was 

increased to 5 ml and the soluble protein was incubated with the gel at 4 °C for two 

hours in batch, followed by an extensive washing on a column before elution of the 

protein. An analysis of the protein fractions is shown in Figure 3.10A. This time, 

very little GST-SAMase flowed through the column (Fig. 3.10A, lane 2). However, a 

large amount of GST-SAMase was washed off the column (Fig. 3.10A, lane 6), which 

suggests that the input protein quantity is too large even for a 5-mi bed volume of 

glutathione sepharose. However, the GST-SAMase protein in the elution fraction 1 

and 2 was very pure (Fig. 3.10A, lanes 3-5). The protein was in a large volume with a 

low concentration of 0.5 mg/ml, measured by Bradford assay. In order to obtain a 

highly concentrated pure protein sample, all three fractions of eluates were pooled 

(Figure 3.10A, lane 8) and concentrated using an ultracentrifugation device. In this 

instance, a low cut-off size of 3 kDa was used to prevent the loss of the 43 kDa 

protein while the buffer components could be filtered through. The resulting filtrate 

(Fig. 3.10A, lane 9) and the concentrated fractions after 30 minutes and two hours 

(Fig. 3.10A, lanes 10 and 11) of centrifugation were analysed on a 12% SDS-PAGE 

gel and tested for the enzyme activity (Fig. 3.10B), which demonstrated that the 

fusion protein retained good activity even after concentration. A small amount of 

protein contaminants were present in the final concentrated fraction, but 

GST-SAMase was estimated reaching more than 95% homogeneity (Fig. 3.10A, lane 

11). Before an accurate measurement of protein concentration, the concentrated 

fraction was dialysed against Tris 7.5 buffer which contains 0.05 mM DTT at pH 7.5. 

The resulting concentrated pure protein was ready for crystallisation. 
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Figure 3.10: (A) The procedure for GST-SAMase purification was optimised by intensive washing (lane 1-7) and the resulting eluate of 

GST-SAMase was concentrated by ultracentrifugation (lane 8-11). After the soluble protein input (I, lane 1) was applied to the affinity 

column and the flow-through (F, lane 2) was collected, the beads were washed in 3 bed volumes of wash buffer (Wi and W2, lane 6 

and 7) followed by three elution in one bed volume of elution buffer (El, E2 and E3, lane 3-5). All three eluates (E, lane 8) were pooled 

and transferred to an ultracentrifugation device with a cut-off of 3kDa. During centrifugation, filtered buffer was collected (F', lane 9) 

and the concentrated fraction was tested when the volume was reduced to 1 ml (C', lane 10) and 300pl (C, lane 11), respectively. All 

protein fractions were analysed on 12% SDS-PAGE gel with protein size marker (M) labelled on the left. Arrows indicate the position of 

GST-SAMase on the gel. (B) Filtrate (F) and protein fractions before (E), during (C') and after (C) concentration were tested for the 

activity of SAMase. Reaction substrate (SAM) and product (MTA) are indicated. Incubation without enzyme is used as a negative 

control (Ctrl) for the reaction. The samples were analysed in volumes proportional to the fraction volumes. 
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3.5 SAMase Crystallisation 

Proteins are induced to crystallise by creating solvent conditions that result in a 

supersaturated protein solution which leads to protein aggregation. A protein 

concentration higher than 5 mg/ml favours this process. Although protein 

concentrations in the range of 2-30 mg/nil have been used, a pure protein solution 

of more than 5 mg/mi was aimed at in this study and obtained by the purification 

and concentration procedure described above. Highly concentrated homogeneous 

protein is exposed to environments which maximise the degree of supersaturation. 

Precipitants, such as ammonium sulfate and polyethylene glycol (PEG), are used to 

achieve the supersaturated state by changing the ionic strength of the solution, 

drawing the solution from the protein, and reducing the protein solubility while 

increasing supersaturation near the protein. In addition, commonly used methods 

allow a gradual decrease in the solution volume, so the supersaturation state still 

persists when the protein is removed from solution to form crystals. The "hanging 

drop" method is one such application (Figure 3.11), in which a small drop of the 

protein sample is "hung" from a glass cover slip over a pool of precipitant. The drop 

slowly evaporates to equilibrate with the pool below. In this case, the chamber must 

be sealed and the sample must contain some of the precipitant. 

For aggregation of protein molecules to occur in an orderly repetitive fashion, 

the protein crystals should grow slowly. Trials to screen for the best crystal-forming 

condition are usually carried out before the time-consuming process of a large 

crystal formation. The "hanging drop" method is not ideal for growing large 

crystals due to the low protein amount in a "drop." However, it is ideal for 
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Figure 3.11: "Hanging drop" method for crystallization screen (Modified from Scopes, 

1993). 

screening since it is very easy to set up a multi-well tray where each well contains 

one type of test precipitant solution (Figure 3.11). For these reasons, trials with the 

concentrated homogeneous GST-SAMase was first set up in various precipitant 

compositions, including 10-60% of saturated ammonium sulfate and 2.5-15% of PEG 

4000 (diluted from 50% solution) at pH 4.6-9, in addition to using a Hampton crystal 

screening kit that provides 50 precipitant solutions. To include precipitant in the 

sample drop, 1.5 jii of the protein sample was added to 1.5 j2 1 of the precipitant 

solution with as little mixing as possible. Once the sample was dropped on the cover 

slip, the cover slip was placed up-side-down over a well containing 1 ml of the 

corresponding precipitant and sealed with grease. Each trial was observed under 

microscope immediately after assembly. Amorphous random precipitates of the 

protein sample were seen right at this point, which was a strong indication of an 

unsuccessful crystallization. Observations were carried out daily for the first week 
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after trial set-up, continued weekly for the following four weeks, and once every 

month afterwards for another 3 months. Protein samples of various concentrations 

ranging from 3 mg/mi to 7.5mg/mi were tested in screening trials. Unfortunately, 

no evidence of crystal growth was found, which was most likely due to the rapid 

precipitation of protein. 

3.6 Discussion 

In this work, we followed the path of protein purification towards protein 

crystallisation. Successful expression of SAMase in both native form and as fusion 

proteins allowed us to purify SAMase for further analysis. It has been reported that 

depletion of SAM disturbs various biological functions, such as cell division defects 

(Newman et al., 1998) and a moderate effect on bacterial cell growth and 

morphology has been observed (Posnick and Samson, 1999). Under the conditions 

used in our study, we also observed that the presence of SAMase has a mild toxic 

effect on bacterial cell growth. Uninduced cells and cells expressing only the fusion 

tags grew about twice as fast as cells expressing SAMase and fusion SAMase (data 

not shown). This toxicity does not completely hamper cell growth or protein 

production. 

Following SAMase expression, attempts to purify native SAMase were not 

successful. Both native SAMase and His-SAMase were not successfully purified 

using published protocols. As most protein was recovered in the flow-through or 

wash fractions, it is likely that the affinity binding of SAMase is impaired, rather 

than the stability of SAMase itself. To solve this problem, further analysis needs to 

be carried out using different purification conditions, i.e. denaturing His-tag protein 
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to verify the tag conformation in relation to SAMase. In the case of native SAMase 

purification, although there were minor activities observed in the eluates, a vast 

amount of input protein yielded only a minimal enzyme activity. The activity 

observed in eluates (in a loading of 10 t 1 for SDS-PAGE) came solely from SAMase 

and the amount of protein in each fraction is just below the 0.1 p g limit for 

visualisation by eye. A starting volume of 100 litres is required to obtain a protein 

concentration of 1 mg/ml, which is clearly an inefficient and impractical process. 

We do not have a control protein sample that can be used to find out whether the 

failure of purification comes from defects of the SAH affinity column or is due to 

another aspect of the overall procedure, especially as this method was published 

more than 20 years ago and materials may have changed since. Another factor that 

may cause changes in purification efficiency is that we used a plasmid-based 

expression system rather than a virus infection. This may result in different 

modifications of the expressed protein and hence alter the biochemical properties 

for purification. However, further work is required to determine the precise reasons. 

The alternative choice of GST-fused SAMase allowed us to obtain purified 

protein after the recovery of GST-SAMase from inclusion bodies. Insoluble proteins 

were refolded in a simple dilution system containing deoxycholate, DTT and Tris 

buffer at a high pH. The refolded soluble protein retained SAMase activity which 

showed that the protein was refolded into a proper conformation. Nonetheless, after 

the cleavage of GST from GST-SAMase, degradation of native SAMase was 

observed during the purification of SAMase from the GST tags. This may be due to 

the instability of the SAMase protein itself or to unfavourable conditions required 

for thrombin cleavage. Although native SAMase has been expressed and purified, 

the actual turnover of SAMase is not yet determined and further analysis is required 
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to design the optimal purification system for native protein conformation and 

maintenance of an active protein source. 

Protein crystallisation was carried out using the GST fusion protein due to its 

increased protein stability, but the tag is likely to be the cause of the premature 

precipitation of the pure GST-SAMase. The structure of GST from blood fluke, 

Schistosoma japonicum, has been solved (McTigue 1995) and preliminary X-ray 

diffraction results from crystals of GST fusion proteins has been reported (Kuge et 

al., 1997). Therefore, it would be possible to solve the crystal structure using the GST 

structure and molecular replacement methods. However, the crystallographic 

analysis of GST fusions has only been demonstrated in fusions with small peptides 

of 5-42 amino acids (reviewed in Zhan 2001). In fact, it has long been thought that 

crystallisation of fusion proteins with large affinity tags is hindered by 

conformational heterogeneity induced by the fusion tag, making it less conducive to 

forming a well-ordered, diffracting structure (reviewed in Smyth et al., 2003). 

Moreover, fusion proteins containing multiple domains are usually too large for 

NMR studies. Despite this, efforts to improve large fusion protein crystallisation are 

constantly made. A recent breakthrough has been reported using maltose binding 

,protein (MBP) fused with a 50-residue fragment of the MATa1 protein from S. 

cerevisiae (Ke and Wolberger, 2003). Comparison between this result and that of 

previous fusion proteins suggests that the linker between the tag and the target 

protein may be important. The precise nature of the optimal linker remains to be 

determined (Smyth et al., 2003). Despite the concerns about using the fusion protein 

for structural analysis, further biophysical analysis using concentrated 

homogeneous fusion protein can provide information regarding the enzyme activity 

and mechanism. For example, using purified protein in isothermal titration 
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calorimeter (FTC), the accurate binding constants, reaction stoichiometry, Gibbs free 

energy change and enthalpy change can be determined. These results in 

combination with kinetic studies of the enzyme activity can facilitate the application 

of SAMase in vitro and in vivo. 
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Chapter 4 

Artificial DNA demethylation 

4.1 Foreword 

The conventional laboratory method to reduce DNA methylation is to apply 

5-azacytidine (5-azaC) analogs to cultured cells, but 5-azaC analogs have a history of 

cytotoxicity that results in side effects which includes DNA breakage and 

chromosomal instability, as described in section 1.5.3. An alternative demethylating 

agent which avoids the 5-azaC associated cytotoxicity would be potentially useful in 

elucidating the effects of DNA demethylation, especially if the alternate can bring in 

long-term modulation of DNA demethylation. With this aim, we intended to take 

advantage of the SAM depleting property of SAMase in order to reduce SAM level 

in mammalian cells. Moreover, the application of siRNA may also provide a means 

of DNA demethylation via reductions in Dnmtl, the major enzyme for the 

maintenance of DNA methylation. 

4.2 DNA demethylation by SAM depletion 

4.2.1 Introduction 

So far, SAMase is the only known enzyme that can carry out enzymatic SAM 
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hydrolysis to reduce the level of methylation substrate, SAM, and hence DNA 

methylation. Some applications of SAMase have been reported utilising this 

property of the bacteriophage T3 protein. An early report of SAMase expression in 

the methylation-positive F. coli strain JM103 showed that a high level of SAMase 

was tolerated in the cells (Hughes et al., 1987a). The only noticable phenotype was a 

tendency of cells to be elongated and occasionally filamentous, which might arise 

from defects in cell devision. In these SAMase-expressing cells, DNA methylation 

was down-regulated and led to about 77% inhibition of polyamine synthesis, which 

demonstrated the feasibility of disrupting SAM-mediated metabolism in living 

organisms. Later, a few inducible systems were produced to create a SAM-deprived 

cellular environment. For example, induced expression of SAMase resulted in the 

reduction of SAM level and consequently the level of DNA methylation in dam cells, 

where potential negative effects would be tolerated (Collier et al., 1994a). SAMase 

has also been used in the investigation of oxidative DNA damage, because SAM has 

been suggested to act as a weak alkylating agent in vivo. However, there is no 

obvious contribution of SAM to spontaneous C-to-T mutation rates, when the SAM 

level was reduced in SAMase expressing cells (Collier et al., 1994b; Posnick and 

Samson, 1999). In addition, SAMase was taken into practice in the delayed ripening 

of tomatoes (Good et al., 1994). In the methionine recycling pathway, SAM is 

converted to aminocyclopropane-1-carboxylic acid and subsequently oxidized to 

ethylene. Transgenic tomato plants expressing SAMase showed a reduction of SAM 

and, thereby, ethylene, which in turn delayed the ripening of the tomato fruit. As a 

whole, these applications gave a good indication that SAMase can mediate 

alteration of DNA methylation. No application of SAMase in mammalian systems in 

vivo has been reported yet. However, using SAMase to reduce the level of SAM may 
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provide a useful means in the understanding of effects on DNA demethylation in 

mammalian cells. 

4.2.2 Protein expression strategy 

When a bacteriophage gene is intended for expression in mammalian cells, the first 

question to consider is the synonymous codon usage for the host and recipient 

organisms. Within the synonymous codons encoding one particular amino acid, 

each organism has developed usage preferences for a restricted set of codons, the 

reasons for which are not yet fully understood. Nevertheless, divergence of codon 

usage bias correlates with evolutionary distance: the "lower" the organism is, the 

higher the codon usage bias may be (reviewed in Akashi, 2001). This suggests that 

the codon usage in human is likely to be less biased than the codon usage in 

bacteriophage T3. Therefore, human codons can translate more required codons for 

the expression of the bacteriophage T3 gene in human cells. 

To confirm whether mammalian codon usage supports SAMase expression, the 

human codon usage table was first examined to verify if any codon is not at all used. 

The frequencies of each codon used in the human genome (Appendix II) were 

acquired from the Codon Usage Database (Nakamura et al., 2000), based on the 

DNA sequence information from GenBank. No codon of zero frequency was 

observed in human genome, suggesting that all codons used in the bacteriophage T3 

gene can be translated in the human genome. 

Next, statistical measurements were carried out to evaluate the likelihood of 

SAMase expression in human cells. Several methods have been proposed to 

evaluate the use of the different synonymous codons (reviewed in Comeron and 
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Aguade, 1998). The two methods utilised in this study were codon adaptation index 

(CAI; Sharp and Li, 1987) and the effective number of codon usage (Nc; Wright, 

1990). CAI estimates the degree of adaptation by the synonymous codons of the 

gene of interest to the optimal usage in the recipient genome, where values of 1.0 

indicate a maximum fit and lower values indicate that the gene contains less 

preferred codons. Nc represents the effective number of codons used in a gene or 

genome. An Nc value of 20 indicates the use of only one synonymous codon for 

each amino acid and a Nc of 61 means a completely uniform use of the different 

synonymous codons. When referring to a heterologous experimental system, both 

methods may also provide an approximate indication for the likely success of the 

expression of a foreign gene. Using bioinformatical programs from the European 

Molecular Biology Open Software Suite (EMBOSS; Rice et al., 2000), a resulting Nc 

number of 47 and a CAI number of 0.6 was obtained from the input of T3 SAMase 

gene sequence in the human codon usage table. This Nc number suggested that the 

T3 SAMase gene utilised a set of codons that may not be highly biased in the context 

of human genome. Similarly, the CAI number indicated that the T3 SAMase gene is 

adequate, but not optimal, for the expression in human cells. These two numbers 

consistently suggest a likelihood of SAMase expression. Furthermore, successful in 

vitro translation from T3 SAMase rnRNA has been reported in a cell-free mammalian 

system using rabbit ribosomes (Anderson et al., 1976), suggesting the T3 mRNA 

without eukaryotic stabilising signals, such as 5' capping, could be translated by 

mammalian ribosomes. Having considered this information, T3 SAMase expression 

was carried out using the native T3 DNA sequence. 

Due to the potential toxicity of SAMase, an inducible system was chosen to 

regulate protein expression. For this, the bidirectional expression vector pBI-EGFP 
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was used in combination with a regulatory plasnild, pTet-OFF. In cells transfected 

with pTet-OFF plasmid, the regulatory protein tTA is expressed to bind to the 

Tetracycline Response Element (TRE), when a TRE containing plasmid, such as 

pBI-EGFP, is cotransfected. The TRE responds to the tTA regulatory protein and 

allows protein expression to persist unless the regulatory system is differentially 

turned off according to the dose of the system inhibitor, such as tetracycline analogs. 

Additionally, the pBI-EGFP expresses bidirectionally from two human 

cytomegalovirus (CMV) promoters flanking the central TRE in reverse orientations. 

Simultaneous regulation of the two promoters by the central TRE allows 

synchronised expression of the downstream genes. In pBI-EGFP vector, one of the 

CMV promoters has a downstream EGFP (enhanced green fluorescent protein) gene, 

whereas the other promoter has downstream sites for the insertion of the gene of 

interest. Thus, one can monitor the transfection efficiency and the expression levels 

of the target protein in relation to the expression of EGFP. 

Additional features were introduced to facilitate protein expression and to 

enable direct detection of SAMase expression. The resulting construct, named 

kFNSH, is depicted in Figure 4.1. Firstly, a sequence upstream of the coding region 

was converted to a Kozak consensus in order to increase translation initiation 

efficiency. A part of Kozak consensus (5'-CCACC-3') was inserted to locate the 

adenine at the -3 position from the translation start site (+1). The presence of 

adenine has been shown to be the most important mark for translation initiation 

(Kozak, 1999). Following the initiation methionine, an octapeptide FLAG epitope 

was introduced to permit detection of the FLAG-SAMase fusion protein by 

immunoblotting or immunocytochemistry. A nuclear localisation signal (NLS) was 
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Figure 4.1: Schematic description of the expression construct, kFNSH. The plasmid 

was designed to include sequences that facilitate protein expression and 

identification of the fusion SAMase in mammalian cells. Purposes and details of 

these insertions are stated in the text or in section 2.5.1 and 2.12.1. Vertical lines 

indicate polyA signals. The regulatory element IRE, CMV promoters, the SAMase 

gene, and the EGFP gene are shown as indicated. The Kozak sequence is shown in 

black; the FLAG tag is hatched; the NLS is shown in dots and the 6xHis tag is 

shown shaded in grey. The diagram is not drawn to scale. 

then engineered into the construct at the N-terminal of the SAMase gene. The NLS 

serves to direct the SAMase fusion protein into the nucleus, in order to reduce the 

pool of SAM used by DNA methyltransferases. In addition, a 6xHis motif was 

attached to the C-terminus of SAMase in order to carry out protein purification, if 

desired. DNA sequences of all features and the construction of the recombinant 

plasmid are described in Table 2.4 and Section 2.12.1. 

4.2.3 SAMase expression in mammalian cells 

To examine SAMase expression in mammalian cells, the Tet-Off system was first 

utilised without drug addition. The expression plasmid kFNSH and the regulatory 

plasmid plet-Off were co-transfected into a human embryonic kidney cell line, 

HEK293, using the calcium phosphate precipitation method. Transfected HEK293 

cells were grown for 48 hours before harvest. A whole-cell extract was prepared and 

subjected to immunoblotting with mouse anti-FLAG antibody. As shown in Figure 
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Figure 4.2: Analysis of FLAG-SAMase expression in human HEK293 cells. (A) Western blot analysis of the FLAG-SAMase expression. 

Protein extracts were prepared from cells with (+) or without (-) transfection. Plasmids used for transfections were pBl-EGFP (Vector), 

kFNSH, or FLAG-Mbdl (FLAG-Ml). Total protein (40 pg) was loaded in each lane and the protein was separated on a 15% 

SDS-PAGE gel. Arrows indicate positions of the expected proteins on the blot. The primary antibody was anti-FLAG M2 and the 

secondary was HRP-conjugated anti mouse lgG. FLAG-Mbdi transfection was used as a positive control. (B) Expression of SAMase 

was examined by immunofluorescence. SAMase expression in cells transfected with empty vector or kFNSH was detected with 

anti-FLAG (red) antibody. DNA (blue) was counterstained with DAPI, whereas EGFP (green) automatically emits for detection. All 

images were taken under i OOx magnifications. (Continued on next page.) 



4.2A, SAMase expression was not detected in cells transfected with the kFNSH 

plasmid, which looked the same as negative controls using protein extracts from 

non-transfected cells and cells transfected with an empty pBI-EGFP vector. However, 

cells transfected with a FLAG-Mbdl expression construct (Jorgensen et al., 2004) 

showed positive expression of the FLAG-Mbdl protein which has a size of 83 kDa. 

This provided a positive control for the transfection method and western blotting. 

To confirm that the negative result was not due to the absence of kFNSH 

plasmid in the transfected cells, an immunofluorescence experiment was carried out 

using F1EK293 cells transfected with the empty pBI-EGFP vector (Fig. 4.2B, top 

panel) or kFNSH (Fig. 4.2B, bottom panel). Successful transfection of both plasmids 

was readily detectable by the green signals from EGFP in cells. The presence of 

EGFP stained with DAPI suggested the transfection of target plasmids was 

successful and the regulatory system functioned to express EGFP in cells. However, 

cells positively transfected with kFNSH expressed exclusively EGFP. Signals from 

FLAG-SAMase were not observed in the nucleus of EGFP expressing cells, 

suggesting that the protein of interest was not expressed at a detectable level. 

The EGFP expression showed that the plasmid was transfected and functional, 

the level of SAMase mRNA was thus examined to verify if transcription was 

Figure 4.2: (Continued). (C) RT-PCR analysis of SAMase transcription. Cells with 

(+) or without (-) transfection of pBl-EGFP (Vector) or kFNSH plasmids were 

harvested for RNA extraction. After reverse transcription, the resulting cDNA was 

subjected to PCR using primer sets for SAMase gene, EGFP gene and Gapdh. 

Positive PCR control for the SAMase gene and the EGFP gene is plasmid 

kFNSH. Negative control for PCR used H 20 to replace sample cDNA. Negative 

control for RI reaction (-RT) is shown in the additional panel of kFNSH 

transfection, which is in comparison to the PCR product of normal reverse 

transcpription (+RT). Lane M represents marker. Arrows indicate PCR products for 

the SAMase qene, the EGFP qene and Gapdh. 
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performed. Using RT-PCR, the transcript of the SAMase gene was detected (Fig. 

4.2C). A weak band of amplified SAMase cDNA was seen only in cells transfected 

with kFNSH, but not in cells transfected with pBI-EGFP or non-transfected cells. 

Meanwhile, EGFP cDNA was evident in cells transfected with pBI-EGFP vector and 

kFNSH, whereas the internal control of Gapdh was amplified in all cells. Since the 

RT-PCR does not amplify across any intronic region, a negative RT reaction was 

performed to distinguish RT-PCR product from DNA contamination. The blank lane 

(-RT) shown in the right panel of Figure 4.2C confirmed that the PCR product from 

cells transfected with kFNSH was not amplified from plasmid or integrated SAMase 

DNA. These experiments suggested that the SAMase gene was transcribed but not 

at a high level, despite its strong CMV promoter. 

From the result of immunoblotting, immunocytochemistry, and RT-PCR, the 

expression of SAMase protein using the native T3 DNA sequence was not readily 

observed, although the SAMase gene was transcribed in cells. These results partially 

suggested that the protein is not readily produced in an in vivo system using a 

human cell line. However, more experiments are required to reach a comprehensive 

solution for the expression of SAMase in mammalian cells. Further investigation 

will be discussed in section 4.4.1. 

4.3 DNA demethylation by Dnmtl mRNA 

depletion 

4.3.1 Introduction 

Another approach to investigate the effect of DNA demethylation is to tackle Dnmtl, 

the major enzyme performing maintenance DNA methylation. The mechanism of 
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RNA interference drives short double-stranded RNA (dsRNA) to the target 

transcript which results in its destruction. Using small interfering RNA (siRNA) 

targeting the Dnmtl mRNA, short dsRNA may serve to bring about DNA 

demethylation by decreasing the level of Dnmtl mENA. As discussed in section 

1.5.3, siRNA targeting of DNMT1 has been described and a profound 

down-regulation of DNMT1 by at least 80% was observed in human cell lines (Leu 

et al., 2003; Robert et al., 2003). The application of siRNA mediated down-regulation 

of Dnmtl has not yet been reported in mouse cells. 

To study the effect of DNA demethylation using Dnmtl siRNA, the expression 

of the Xist gene was chosen as a readout following such treatment. As discussed in 

section 1.3.3, DNA methylation has an important role in the regulation of X 

chromosome dosage compensation. Although the mechanism of X inactivation is 

not yet fully understood, it has been shown to be initiated by the product of the Xist 

gene (reviewed in Cohen and Lee, 2002). Furthermore, DNA methylation in the 

promoter of Xist is required for the silencing of Xist expression (Beard et al., 1995; 

Norris et al., 1994; Panning and Jaenisch, 1996). The Xist gene was shown to be 

heavily methylated at the CpG island in the promoter region of the non-expressing 

allele in female cells and in non-expressing male cells, but unmethylated at the 

expressed allele of the inactive X in female cells (Allaman-Pillet et al., 1998; 

McDonald et al., 1998). Thus, the level of DNA demethylation may be reflected by 

the level of Xist expression. In addition, the binding of a methylated 

DNA-dependent protein to the methylated Xist promoter has been implicated in the 

regulation of Xist transcription (Himtriss et al., 1997). Recently, the methyl CpG 

binding protein, Mbd2, has been shown to influence Xist expression (Barr and Bird, 

unpublished observations). In male Mbd2' mouse fibroblasts, the expression level of 
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the Xist gene is elevated by 3-fold in comparison to wildtype male cells, whereas the 

absence of Mbdl, MeCP2 or Kaiso does not affect Xist expression. The additional 

treatment of cells with TSA, a histone deacetylase inhibitor, strongly enhanced the 

effect of Xist derepression in Mbd2 cells, in comparison to the wild type. These 

observations further extend the role of DNA methylation in X inactivation, via 

Mbd2 mediated transcriptional repression. However, it is not clear whether any 

other methylation-dependent factor is also involved in the repression of the Xist 

gene. Therefore, Xist expression was additionally examined in male Mbd2' mouse 

cells in order to see an effect of DNA demethylation and from which we may reveal 

if any other protein candidates is involved in the maintenance of Xist repression via 

DNA methylation. 

4.3.2 DnmtTI siRNA down-regulates Dnmtl expression 

Three siRNAs, D1-18, D1-22, and D1-33, were designed to target Dnmtl mRNA at 

exon 18, 22, and 33, respectively (Fig. 4.3, upper panel). In order to evaluate the effects 

of these siRNAs on the depletion of DnmtTl mENA, quantitative RT-PCR was carried 

out. The relative expression level was calculated following the comparative 

threshold cycle (Ct) method described in section 2.16. The cells were exposed to 

siRNA for 96 hours. This treatment period was chosen to allow turnover of existing 

Dnmtl protein and sufficient removal of the established DNA methylation via cell 

replication. After total RNA extraction, successful production of reverse-transcribed 

cDNA was confirmed by PCR, using primers which amplify across intronic regions 

of genomic DNA in order to distinguish amplicons of mRNA from that of genomic 

DNA. As shown in the middle panel of Figure 4.3, bands of 124 bp and 99 bp were 
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Figure 4.3: Analysis of siRNA mediated silencing of Dnmtl expression in wildtype 

male mouse fibroblasts. Upper panel: Schematic outline of the Dnmtl mRNA with 

the positions of PCR primers, and siRNAs, D1-18, D1-22, and D1-33. The position 

of primer set 3F/3R is indicated by arrows. The positions of siRNAs are indicated by 

thick lines. Vertical bars indicate the locations of the catalytic motifs. Middle panel: 

Gel images of RT-PCR products. Untreated wildtype mouse cells were harvested for 

RNA extraction and reverse transcription. The resulting cDNA was subjected to PCR 

using primers for Dnmtl or Gapdh. The expected PCR product is 124 bp for Dnmtl 

cDNA (left) and 99bp for Gapdh (right), as indicated by arrows. Lower panel: 
Quantitative analysis of Dnmtl expression level using real-time PCR. Three siRNAs, 

D1-18, D1-22 and D1-33, were individually tested for their silencing effect at 40 nM 

for 96 hours. The combined treatment of D1-22 and D1-33 was also examined at 40 

nM final concentration for 96 hours. Plus and minus signs indicate cells receiving (+) 

or not receiving (-) the assigned siRNA. The level of Dnmtl mRNA in untreated cells 

was set to 100%. All samples were examined in quadruplicates and normalised 

against Gapdh before comparison to the untreated sample. Error bars represent the 

standard error of the mean. 
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the only amplicons that resulted from the reverse-transcribed Dnmtl mRNA and 

Gapdh mRNA, respectively. No primer dimers or cross-intronic DNA products were 

observed from the result of RT-PCR, demonstrating the PCR specifically amplifies 

the target cDNA only and the recorded fluorescent signals in the quantitative 

analysis will faithfully reflect the expression of the target gene. The transcript level 

of Gapdh was used as an internal control and the silencing effects of Dnmtl siRNAs 

were presented as expression relative to the Dnmtl mRNA of untreated samples. 

As shown in the lower panel of Figure 4.3, cells treated with D1-18 siRNA only 

result in a 10% reduction of the Dnmtl mENA, whereas the treatment of D1-22 or 

D1-33 siRNA each reduced Dnmtl to 50% and 40% of the control level. Furthermore, 

the effect of siRNAs used in combination was tested. Although enhanced silencing 

using a pool of siRNAs has not been clearly shown, this is often implied by the long 

dsRNA-based silencing systems that give multiple siRNAs after cellular cleavage, 

such as observed in plants and D. melanogaster (reviewed in Dorsett and Tuschl, 

2004b). Combining the two more effective siRNAs, D1-22 and D1-33 resulted in 

depletion of Dnmtl mRNA by 70%, compared to the untreated control. Although the 

level of Dnmtl down regulation varies between individual experiments, the mixture 

of D1-22 and D1-33 siRNAs is always the most effective of all four siRNAs treatment 

and gives a 60-70% depletion of the Dnmtl mRNA. Therefore, the following 

experiments focused on the silencing effect using siRNA mixtures of D1-22 and 

D1-33. 

4.3.3 Regulation of Dnmtl expression and its effects 

4.3.3.1 Effects of Dnmtl siRNA and TSA on DnmtTI expression in 
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Mbd2 cells 

In order to confirm that the observed effect of mRNA depletion was not cell 

line-specific, the most efficient treatment of siRNAs was applied to both wildtype 

and MbdZ' male cells. The use of Mbd2 male cells is also advantageous for the 

examination of potential methylation-dependent factors other than Mbd2 involved 

in the repression of the Xist gene. The treatment was carried out in triplicate, in 

order to use one sample each for the examination of the corresponding mRNA, 

protein and DNA methylation levels. As shown in Figure 4.4, Dnmtl expression was 

down-regulated in both cell types after siRNA treatments. In this experiment, a 

reduction of Dnmtl mRNA to about 40% of the control cells was observed in the 

siRNA-treated wildtype cells. Surprisingly, a low level (35%) of Dnmtl mRNA in 

untreated Mbd2 null cells was observed, suggesting that the expression of Dnmtl 

may be cell-line dependent. Following siRNA treatment, Dnmtl expression in 

Mbd2-null cells reached an even lower level, but this was only a 0.7-fold 

down-regulation in comparison to the untreated Mbd2 male cells. This result 

showed that a depletion effect by siRNA was generally observed, although there 

may be a cell line-specific efficiency of the siRNA treatment as shown by the 60% 

and 30% depletion of Dnmtl mENA in wildtype and Mbd2-null cells, respectively. 

However, the reduced depletion efficiency may result from a lower tolerance to a 

low Dnmtl level that selectively retains cells with a less efficient treatment. 

As Xist expression will be examined for the effect of DNA demethylation, the 

synergistic effect of DNA methylation and histone deacetylation on Xist repression 

has drawn attention to see if there is also a synergistic effect of Dnmtl siRNA and 

TSA on Xist expression (Csankovszki et al., 2001; Keohane et al., 1998; Panning and 

Jaenisch, 1996). Both Mbd2 and Mbd2" cell lines were first examined for their 
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Figure 4.4: Quantitative real-time PCR analysis of the effects of Dnmtl siRNAs and 

TSA in wildtype (Mbd2; blue) and Mbd2 (pink) male mouse cells. Both mouse 

cell lines were treated with (+) or without (-) siRNAs and/or ISA. Cells were 

transfected with mixture of D1-22 and D1-33 at 40 nM final concentration for 96 

hours. TSA was added to a final of 1 pg/mI for 18 hours before being harvested for 

RNA extraction and reverse transcription. The resulting cDNA was subjected to 

real-time PCR. The relative level of Dnmtl mRNA was normalised against Gapdh 

before comparison to untreated wildtype cells. The data represents a quadruplicated 

measurement of one sample. Error bars represent the standard error of the mean. 
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Dnmtl expression after treatment with TSA, as shown in Figure 4.4. The level of 

Dnmtl mRNA was upregulated by 1.5-to-2 fold in TSA-treated wildtype and Mbd2 

null cells in comparison to the non-TSA treated cells. This is consistent with 

previous reports showing that the promoter activity of the Dnmtl gene increased 

approximately 2-fold after TSA treatment (Kishikawa et al., 2002). When cells were 

double-treated with TSA and siRNAs, both cell lines showed an intermediate Dnmtl 

expression between the down-regulation by siRNA and the upregulation by TSA. 

This result suggests that the siRNA efficiently down-regulated Dnmtl mENA before 

treatment of TSA. However, when Dnmtl mRNA synthesis is stimulated by TSA, the 

strength of the siRNA treatment is not sufficient to maintain an efficient depletion 

and results in an intermediate level of Dnmtl mRNA. Due to this cancelling-out 

effect between siRNA and TSA treatments on the expression of Dnmtl, the double 

treatment of TSA and siRNA may not genuinely represent a synergism of DNA 

methylation and histone deacetylation on Xist expression. 

4.3.3.2 Reduction of Dnmtl expression leads to Dnmtl depletion 

Having demonstrated a decrease in Dnmtl mRNA levels, depletion of the protein 

product was subsequently examined by Western blotting using the antibody 

PATH52 which recognises mouse Dnmtl (Bestor, 1992; Li et al., 1992). To assign the 

position of Diimtl, protein extracts from DnmtV' and Dnmt1 cells were first 

analysed. As shown in Figure 4.5, the Dnmtl band was present at the 190 kDa 

position in Dnmt1 cells but absent in the extract of Dnmt1 cells. Using protein 

extracts from one of the triplicate experiments, the reduction of Drimtl protein in 

the siRNA-treated cells was clearly visible (Fig. 4.5, lanes 1 and 2, 3 and 4, 5 and 6, 7 

and 8). In addition, it was evident that the endogenous level of Dnmtl protein in 
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Figure 4.5: Western blot analysis to detect reduction in the Dnmtl protein level. 

Whole cell extracts were prepared from cells receiving the designated treatments. 

Plus and minus signs indicate the presence or absence of siRNA and/or TSA. Total 

protein (40 pg) was loaded in each lane and separated on 8% SIDS-PAGE gels for 

immunolot analysis with mouse Dnmtl, Mbdl, Mbd2 antibodies. Arrows indicate the 

positions of each protein on the blots. Protein extracts from DnmtV' and Dnmtlnln  

cell lines were used as positive and negative control for Dnmtl protein. Mbdl 

protein level is used as a loading control. Wildtype and Mbd2 null cells were 

distinguished by the appearance of anti-Mbd2 reactive bands. 
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Mbd2 cells was lower than in the wildtype cells. The lowest protein level observed 

in siRNA-treated Mbd2 cells (Fig. 4.5, lane 6) was also in agreement with the lowest 

mRNA level shown in Figure 4.4. In TSA-treated cells (Fig. 4.5, lanes 3 and 7), the 

level of Dnmtl protein was similar to the level observed in untreated wild type and 

higher than the level seen in MbdZ' cells. This suggests that the TSA-induced 

upregulation of Dnmtl transcription may increase the cellular Dnmtl protein level 

but not exceed a certain amount, even when the Dnmtl mRNA level had increased 

to around 1.5-fold of the control. From this experiment, it is confirmed that the 

knockdown of Dnmtl mRNA did lead to decreases in Dnmtl protein level. 

Nevertheless, it is also clear that Dnmtl was only reduced and not completely 

absent, by comparison to the negative control from DnmtlnM  cells. 

4.3.3.3 Reduction of DnmtTI and DNA demethylation 

One may argue that the remaining Dnmtl protein is sufficient to maintain DNA 

methylation. To investigate the effect of the reduced Dnmtl expression on DNA 

methylation, Southern blotting was carried out to analyse the methylation status of 

the major satellite DNA sequences as a general indicator. DNA acquired from the 

third triplicate of treated cells was digested with the methylation-sensitive enzyme 

Tail, which restricts at ACGT sites. The resulting blot probed with a major satellite 

sequence is shown in Figure 4.6 and suggests that DNA from neither Mbd2 nor 

Mbd2 cell lines with any treatment underwent extensive genome-wide 

demethylation. All DNA samples exhibited a digestion pattern like the methylated 

control DNA from Dnmt1" cells, but distinct from that of the non-methylated 

genomic DNA obtained from Dnmtnl cells. However, the methylation level of 

satellite DNA can only reflect extensive changes in genomic DNA methylation. 
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Figure 4.6: Southern blot of genomic DNA from cells with various levels of Dnmtl 

mRNA. DNA was obtained from cells receiving the same treatments used in figure 

4.4. Plus and minus signs indicate the presence or absence of siRNA and/or ISA. 

Tail digested genomic DNA was blotted and probed with the major satellite repeat 

sequence. Tail cleaves at the sequence ACGT and is blocked by CpG methylation. 

DNA from the untreated wildtype cells was used as undigested control. Methylated 

and nonrnethylated controls were DNA from Dnmt1" and Dnmt1" cell lines, 

respectively. 
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Analysis of the total DNA methylation level should be carried out to obtain a precise 

measure of DNA demethylation. Bisulfite sequencing of specific regions of a gene, 

such as the CpG island of the Xist promoter, would assist in gaining an insight into 

significant local changes in DNA methylation. Further siRNA depletion is also 

required to lower DNA methylation level significantly. 

4.3.3.4 Effects of Dnmtl down-regulation on Xist expression 

Although the effect of Dnmtl depletion did not cause an intense change in global 

DNA methylation, it could be sufficient to affect Xist expression in the wildtype cells. 

Moreover, Dnmtl has been reported to associate with HDACs and may act as a 

transcriptional repressor (Fuks et al., 2000; Robertson et al., 2000; Rountree et al., 

2000). Therefore, the reduction in the protein level may cause derepression of the 

Xist gene. The same cDNA used to examine the Dnmtl transcript level presented in 

Figure 4.4 was used to measure the level of Xist mRNA. The PCR primer set 7/11 

was used for the amplification of Xist. Shown in Figure 4.7 are the changes in the 

transcription level of Xist. In wildtype male mouse fibroblasts (Fig. 4.7, blue 

columns), treatment with Dnmtl siRNA resulted in an increase of Xist transcription 

by 2-to-3 fold when the level of Dnmtl was reduced to 40% (Fig. 4.4). This suggests 

that a 60% down-regulation of Dnmtl mRNA may have affected DNA methylation, 

although not at a genome-wide scale. Alternatively, the reduction of Dnmtl protein 

level may have alleviated the repression of the Xist gene. It is worth noting that the 

level of Xist expression in treated wildtype cells was upregulated from 2-to-5 fold in 

two repeated experiments. This pattern supports the upregulation of the Xist gene 

as a reproducible observation. 

Subsequently, Xist expression in Mbd2 cells was examined to see whether a 
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Figure 4.7: Quantitative PCR analysis of the effects of Dnmtl siRNAs and TSA 

treatments on the transcription of the Xist gene. Wildtype and Mbd2 male mouse 

cells were treated with (-) or without (+) siRNAs. D1-22 and D1-33 siRNAs were 

transfected at a final of 40 nM for 96 hours before being harvested for RNA 

extraction and reverse transcription. The resulting cDNA samples were first tested 

for the level of Dnmtl mRNA (Fig. 4.4) and then for the Xist gene expression. 

Relative Xist expression was normalised against Gapdh before comparison to the 

level of Xist in untreated wildtype cells, which is set to 1. The levels of Xist 

expression in wildtype cells (Mbd2; blue) and Mbd2-null cells (Mbd2; pink) are 

representative of a quadruplicated measurement resulting from one sample. Error 

bars represent the standard error of the mean. 
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30% down-regulation of Dnmtl mRNA and the consequent reduction in the protein 

level have caused changes in Xist expression. The absence of Mbd2 has been 

previously shown to derepress Xist expression (Barr and Bird, unpublished 

observations), and further upregulation of Xist expression would imply that some 

other protein mediates repression via DNA methylation or that Dnmtl itself is 

involved in Xist repression. The effect of Mbd2 on Xist expression was analysed and 

shown in Figure 4.7. This figure also shows the data for Xist expression in wildtype 

cells in order to compare differences with and without Mbd2. In Mbd2 cells (Fig. 

4.7, pink columns), Xist expression was at least 8 fold higher than untreated 

wildtype cells. This is consistent with the previous finding that the absence of Mbd2 

alone resulted in increased Xist transcription (Barr and Bird, unpublished 

observation). The treatment with Dnmtl siRNA in the Mbd2 cells did not further 

elevate Xist expression regardless of the lower level of Dnmtl expression. However, 

it is difficult to conclude whether this was due to the limited reduction in the levels 

of Dnmtl mENA and Dnmtl protein between siRNA receiving and non-treated 

Mbd2 cells. Moreover, both Dnmtl mRNA and protein levels in untreated and 

siRNA-treated Mbd2' cells (Fig. 4.4 and Fig. 4.5, lane 6) were already low in 

comparison to untreated wildtype cells. Alternatively, this observation may result 

from the absence of Mbd2, if this protein acts as the sole interpreter of DNA 

methylation for Xist expression. Further down-regulation in the DNA methylation 

level needs to be demonstrated before reaching a comprehensive conclusion on the 

effect of DNA methylation on Xist repression. The synergistic effect of DNA 

demethylation and histone acetylation was not examined due to the contradictory 

effect of TSA and siRNA on the regulation of Dnmtl expression, as shown in Figure 

4.4. 
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Figure 4.8: The silencing effects of various siRNAs on Dnmtl levels in wildtype male 

mouse fibroblasts. Upper panel: Schematic representation of the Dnmtl gene 

structure and the positions of PCR primers, and siRNAs, D1-4, D1-22, and D1-33. 

The position of the primer set 3F/3R is indicated by arrows. The positions of siRNAs 

are indicated by thick lines. Vertical bars indicate the locations of the catalytic motifs. 

Lower panel: Quantitative analysis of Dnmtl mRNA levels using real-time PCR. The 

siRNA D14 was tested for its silencing effects at a final concentration of 40 nM (light 

purple) and 80 nM (dark purple). The siRNAs D1-22 and D1-33 were re-examined at 

40 nM and further tested at 80 nM. Combinations of siRNAs were also examined at 

the final concentration of 40 nM. Plus and minus signs indicate the type of 5iRNA(s) 

present or absent in the treatment. The relative levels of Dnmtl mRNA were 

normalised against that of Gapdh before comparing to the Dnmtl expression of the 

untreated cells (blue). 
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4.3.4 Optimisation of Dnmtl down-regulation 

Meanwhile, attempts to further reduce DNA methylation were made by increasing 

the efficiency of the siRNA treatment. The siRNA D1-4 was designed to target exon 

4 of Dnmtl and analysed for its efficiency on Dnmtl "knock-down" (Fig. 4.8, upper 

panel). As shown in the lower panel of Figure 4.8, treatment with Dnmtl siRNA D1-4 

alone at 40 nM or 80 nM resulted in a decrease at around 60 and 70%, respectively. 

Dnmtl siRNA D1-22 and D1-33 were also tested at the higher concentration (80 nM) 

which caused a better silencing effect, although the effect was not as good as the 

equivalent treatments using siRNA D1-4. Combinations of siRNA D1-4 with either 

D1-22 or D1-33 lowered Dnmtl expression by another 5-10%. The optimal effect of 

Dnmtl siRNA was observed when combining all three siRNAs. The resulting Dnmtl 

mENA level was reduced to as little as 3% of the wildtype expression level which 

may be sufficient to induce a demethylated environment in cells. However, due to 

limited time, further analysis of the effect of reduced Dnmtl mRNA levels on the 

subsequent DNA demethylation and Mbd2-mediated Xist derepression will need to 

be carried out in the future. 

4.4 Discussion 

The data presented in this chapter included two different approaches that were 

aimed to modulate the level of DNA methylation without the use of 5-azaC, a 

cytotoxic demethylating agent. Although neither investigation system has yet lead 

to conclusive findings, further investigation based on the encouraging results will be 

extended. 
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4.4.1 DNA demethylation by the application of SAMase 

As mentioned earlier, the preliminary calculation of codon usage has suggested that 

the T3 SAMase gene can be expressed in mammalian cells and the exogenous RNA 

from bacteriophage T3 had been translated in a cell-free mammalian system 

(Anderson et al., 1976). This information suggested that T3 RNA stayed stable in 

mammalian cells before being translated by mammalian ribosome. However, the 

result presented here using the T3 DNA sequence showed that T3 SAMase protein is 

not readily detected in mammalian cells. 

Several explanations for the failure to detect the FLAG-SAMase protein are 

conceivable. One possibility is that the amount of T3 SAMase produced in vivo is 

low and therefore cannot be visualised with the immunological detection methods 

used in this study. It may thus be necessary to carry out enzyme activity assays 

similar to the one utilised in chapter 3, in order to show that the protein is expressed. 

In case low translation efficiency is the problem, rarely used codons can be 

substituted by silent mutations to the native DNA sequence, in order to reflect the 

intended host codon usage and enhance the translation efficiency. In addition, 

instability of SAMase in a mammalian environment may be a reason of the failure in 

SAMase detection. To evaluate this, the degradation of SAMase should be examined 

by measuring the turnover of the previously purified SAMase under physiological 

conditions. 

The amount of SAMase mRNA detected in RT-PCR was very low in 

comparison to the amount of EGFP mRNA. This suggests SAMase mRNA may be 

unstable or not highly transcribed in a mammalian system. Further investigations 

on the transcript stabilising factors, such as poly(A) signals, 5'-capping and RNA 
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structures are required. In addition, changing expression system such as GST or 

EGFP fusion using the optimal codon may help to alleviate an unfavourable 

transcription and translation. By the incorporation of large tags, SAMase may be 

stabilised during expression without losing its enzyme activity, as shown in the 

bacterial expression described in the previous chapter. 

Ultimately, the undetectable expression of SAMase may result from the toxicity 

of SAM depletion, which will be discussed in chapter 6. 

4.4.2 DNA demethylation by the application of s1RNA 

targeting Dnmtl 

Using siRNA targeting Dnmtl, the level of Dnmtl transcripts has been successfully 

modulated to levels ranging from 5-95% down-regulation. This allows us to carry 

out further analysis of the differential effects of varying Dnmtl levels. According to 

a study on the stability of Dnmtl protein in vivo, Dnmtl degradation starts between 

10-24 hours after inhibition of protein synthesis and less than 15% of Dnmtl was 

observed 28 hours after inhibition (Ding and Chaillet, 2002). A comprehensive DNA 

demethylation should therefore occur after treatment with siRNA for 96 hours, as 

the Dnmt level is almost depleted for 2-3 rounds of replication allowing passive 

demethylation to occur. Although a genome-wide demethylation was not clearly 

demonstrated using Southern blot analysis of the major satellite DNA, the 

upregulation of Xist expression has indirectly suggested an effect of DNA 

demethylation. However, further investigation using bisulfite sequencing is 

required to clearly demonstrate the change in the methylation at Xist promoter. 

Using TLC or high-performance liquid chromatography (HPLC) after 
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methylation-sensitive digestion, a precise measurement of genomic mC content will 

also allow a better understanding of the level of genome-wide DNA demethylation 

(Cedar et al., 1979; Ramsahoye, 2002). 

The correlation between the three factors of Dnmtl mENA, Dnmtl protein and 

DNA methylation has never been fully clarified; neither is the corresponding timing 

of changes of these factors in vivo fully understood. Applying siRNA to achieve 

various degrees of down-regulation may help to correlate the Dnmtl mRNA levels 

with the subsequent protein level (and/or Dnmtl activity) and the consequent DNA 

methylation level. From the low expression of Dnmtl mRNA in Mbd2 cells, cell-line 

variations in the expressions of Dnintl should also be examined. It has been shown 

that Dnmtl expression varies among different tissues and developmental stages 

(Ding and Chaillet, 2002; La Salle et al., 2004; Robertson et al., 1999). In addition, the 

genomic DNA methylation in the Mbd2 cells was largely maintained (Fig. 4.6) and 

the bisulfite sequencing of the CpG island of the Xist promoter in these cells showed 

that DNA methylation was not disturbed at that region (Barr and Bird, unpublished 

observations). These results suggest that the low level of Dnmtl expression is not 

likely to be a direct effect due to the absence of Mbd2 and does not affect the level of 

DNA methylation. To elucidate the critical Dnmtl expression level that will result in 

a demethylated genome, assorted cell lines are required to be examined for their 

endogenous Dnmtl mRNA levels and consequent enzyme activity and DNA 

methylation. Utilising the resulting correlations, we may further define the severity 

of DNA demethylation by screening the spectrum of gene expression. This may also 

help to separate the toxic effect of 5-azaC from the actual effects of DNA 

demethylation, by examining cells that are demethylated to the same levels by 

either Dnmtl siRNA or 5-azaC. 
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Dnmtl and Dnmt3b has been shown to cooperatively maintain DNA 

methylation (Leu et al., 2003; Rhee et al., 2002). Although these reports are different 

from the DNA hypomethylation commonly observed in Dnmtl null cells (Chan et 

al., 2001; Lei et al., 1996; Li et al., 1992), the growing evidence for Dnmt cooperation, 

as mentioned in section 1.3, suggests a more versatile regulation of the maintenance 

of DNA methylation. This may provide another explanation for the remaining DNA 

methylation shown in this study. Therefore, further analysis may need to include 

other cooperative factors, such as Dnmt3b, to ensure that DNA demethylation is 

appropriately achieved. 

With respect to the siRNA treatment, a previous publication showed that the 

amount of mRNA depletion increased in direct correlation to the oligomer 

concentration (Robert et al., 2003). A similar dose-dependent effect was observed in 

this study, as a higher concentration of 80 nM reduced the mENA level more than 

treatment with 40 nM siRNA. However, a combination of siRNAs gives the optimal 

silencing effect in comparison to treatments with single-siRNA even at the same 

concentration. This observation may constitute supportive evidence for an enhanced 

silencing effect by multiple siRNAs. 

A cell-line specific efficiency of siRNA silencing is also suggested by the 

siRNA-treated wildtype and Mbd2' cells. Cell-specific factors of siRNA treatments 

are not well understood. Inherent differences in transfection efficiency between 

different cell lines may influence RNAi efficiency (Walters and Jelinek, 2002). A 

difference in the concentration of the molecular components involved in silencing 

might also contribute to the siRNA efficiency between cell lines (Harborth et al., 2001; 

Harborth et al., 2003). Thus, the efficiency of the Dnmtl siRNA should be further 

monitored in other cell lines to verify such an effect. Another reason for the less 
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efficient depletion of Dnmtl mRNA may also result from cells being intolerant to 

highly depleted Dnmtl mRNA. The Mbd2" cells have a low endogenous Dnmtl 

expression and may be more sensitive to highly down-regulated Dnmtl 

mRNA/DNA methylation than wildtype cells. This should be resolved by the 

examination of siRNA efficiency using other Mbd2 cell lines. 

Concerning the preliminary result of Xist derepression in Mbd2-null cells, the 

role of Mbd2 was confirmed from the significantly increased Xist expression in the 

absence of Mbd2. However, the level of DNA methylation needs to be further 

reduced in the Mbd2-null cells and a comparable reduction of Dnmtl protein in 

these two cell lines may be required, in order to elucidate the question whether 

other potential DNA methylation-dependent factors are involved in Xist repression. 

In addition, it is important to note that the double treatment of TSA and siRNA may 

not genuinely reflect the synergism of DNA methylation and histone deacetylation 

on Xist expression, due to the opposing effect of s1RNA and TSA treatments on the 

expression of Dnmtl. To further study the synergistic regulation of DNA 

methylation and histone deacetylation on Xist expression, the double treatment of 

siRNA with TSA should be avoided. 
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Chapter 5 

Demethylation in vivo: studies of DNA 

demethylation in preimplantation 

mouse embryos 

5.1 Introduction 

In the light of the recently described oxidative demethylation pathway, as discussed 

in section 1.6.3, we were interested to see whether such a mechanism plays a role in 

the active demethylation of 5-methylcytosine (5-mC). If this does happen, a 

hydroxymethyl intermediate, 5-hydroxmethylcytosine (5-HmC), may be detectable 

along with reaction byproducts, such as succinate and formaldehyde (Fig. 5.1). 

However, the oxidative demethylation pathway has only been verified for 

1-methyladenine and 3-methylcytosine DNA damage. There is no report of such a 

mechanism in demethylation of 5-mC in any organism studied so far. Thus, the 

natural generation of 5-HmC from 5-mC in vivo is still open to question. 

Synthetically, 5-HmC has been processed from 5-mC in a few occasions. In 

solution, 5-mC can be converted to 5-HmC by reactions involving hydroxyl radicals, 

gamma and UV irradiation, which are considered as common causes of DNA 

damage (Castro et al., 1996; Privat and Sowers, 1996; Tardy-Planechaud et al., 1997). 

Naturally occurring HmC has been reported in calf thymus DNA, and the brain 
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Figure 5.1: Hypothetical oxidative demethylation of 5-methylcytosine. If oxidative demethylation of 5mC would take place in vivo, the 

formation of a hydroxmethyl intermediate, i.e. HmC, and reaction byproducts, i.e. G0 2, succinate, and formaldehyde should occur 

after the consumption of oxygen and a-ketoglutarate (a-KG) by an oxidative repair enzyme using Fe (II) as a cofactor. However, there 

is as yet no evidence of such a reaction. Reactions within the dashed box is a brief model following the AIkB demethylation pathway 

(see Figure 1.7; Trewick et al., 2002). Side chains involved in the hypothetical demethylation are shown in red. 



DNA of rat, mouse, and frog (Penn et al., 1972; Penn, 1976; Steinberg et al., 1992). 

However, there is a lack of further investigation on the usage of HmC in these 

animals. A hydroxymethylcytosine DNA glycosylase activity has also been reported 

in calf thymus extract (Cannon et al., 1988; Cannon-Carlson et al., 1989), but the 

cleavage of oligonucleotides containing HmC was not observed in extracts from 

human fibroblast (Rusmintratip and Sowers, 2000). 

The only confirmed occurrence of 5-HmC in nature, is found in T-even 

bacteriophage. As mentioned in section 1.4.2, bacteriophage T2, T4, and T6 utilise an 

unusual base to counteract bacterial host restriction. There are slight variations in 

base source and antirestriction system components among these phages. Taking the 

best-studied bacteriophage T4 as an example, the source of the unusual base is the 

bacterial host (reviewed in Carlson et al., 1994). Host cytosine monophosphate 

(CMP) is first hydroxymethylated to produce 5-hydroxymethylcytidine precursors 

of HmCMP. After phosphorylation of HmCMF, HmCTP is synthesised in the host 

and incorporated into T4 genome via DNA replication. Finally, 5-HmCTP residues 

are glucosylated by a phage enzyme that transfers glucose from uridine 

diphosphoglucose (UDPG) provided by the bacterial host. Single-stranded DNA, 

free HmC and cytidine-DNA do not act as glucosylase acceptors. This reaction 

specifically incorporates HmC in double-stranded DNA and results in glucosylated 

HmC DNA (Glu-HmC DNA). However, host or phage defects do lead to failures in 

glucosylation. For example, mutations in the E. coli galU gene, which encodes UDPG 

pyrophosphorylase, prevent glucosylation because the reaction substrate, UDPG, is 

not synthesised. Mutations of the two phage glucosyltransferases, agt and ,9gt, 

inactivate glucose transfer from UDPG to DNA. In these circumstances, T4 DNA 

containing unglucosylated HmC (HmC DNA) is targeted for degradation by the 
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host Mcr (modified Lytosine restriction, also termed Rgl for restricts giucoseless 

phage) system. 

There is little evidence for presence of the reaction intermediate and by-product 

of a presumptive oxidative demethylation in mammals. Nonetheless, the presence 

of FImC in bacteriophage T4 and the ample evidence of HmC appearance both in 

vivo and in vitro do not allow us to rule out the possible incorporation of HmC into 

mammalian DNA during oxidative demethylation. DNA demethylation has been 

reported previously in various cells or developmental stages, as described in section 

1.6. However, it is preferable to study in a system with bona fide active 

demethylation, such as preimplantation embryos, to minimise potential confusions 

while verifying occurrence of active demethylation from passive demethylation. In 

one-cell embryos, it is not easy to monitor changes in the formation of formaldehyde 

and succinate using limited sample size and number, whereas the presence of 

5-HmC can be easily detected within any DNA samples under examination, since 

5-HmC is not a common compound in nucleic acids. Therefore, we chose to start out 

monitoring the presence of 5-HmC to see if such a hydroxymethyl intermediate 

appears in embryos undergoing active demethylation. 

Immunocytochemistry has been successfully applied in the preimplantation 

embryos for the detection of a rapid loss of the paternally inherited methylation 

using an anti-mC antibody (Mayer et al., 2000a). In order to detect 5-HmC in the 

same fashion (Mayer et al., 2000a; Santos et al., 2002), an antibody specific to the 

antigen 5-HmC is required along with materials to test the antibody specificity, such 

as unglucosylated HmC containing DNA from bacteriophage T4. 
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5.2 Synthesis of HmC containing DNA 

In order to carry out DNA slot blot analysis for antibody specificity, HmC DNA 

used for positive signals was synthesised from E. coli strain W4597, a 

UDPG-deficient bacterial strain, infected by bacteriophage T4 (Hattman and 

Fukusawa, 1963a). When wild type bateriophage T4 infects W4597 in minimal 

medium, newly synthesised phage DNA is left unglucosylated because glucose 

transfer is inhibited by the UDPG deficiency of the host. Packaging of HmC DNA 

produces "mutant" T4 containing unglucosylated HmC residues, instead of the 

wildtype T4 which has Glu-HmC DNA. Here, "mutant" T4 does not refer to any 

gene mutation or amino acid mutation, but indicates a contrast to the wildtype 

Glu-HmC containing T4. Extraction of HmC DNA from "mutant" T4 allows us to 

test the specificity of the anti-HmC antibody in DNA slot blot assays. 

The production of HmC DNA and Glu-HmC DNA has to be clearly 

distinguished between sources. For this purpose, a plaque assay and enzyme 

restriction digestions were carried out. The plaque assay was performed by mixing 

bacteria with phage in top agar. When a single phage particle encounters a 

permissive bacterium, the phage infects and later lyses the bacterial cell with the 

concomitant release of newly formed phage particles. Bacterial cells resume growth 

until phage reaches lysogenic phase, lyses bacterial cells and releases more phage. 

The progeny phage again infects neighbouring bacteria, repeats lytic cycles, which 

results in a growing zone full of liberated phage, and eventually becomes visible to 

the naked eyes as a transparent "plaque." If the phage is absent or killed by the 

bacterial defence systems, the bacteria will grow to stationary phase forming a 

smooth opaque layer or "lawn." Accordingly, when T4 containing unglucosylated 
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HmC DNA grows in the presence of Mcr positive bacteria, such as the bacterial 

strain NM654, the "mutant" phage will be degraded by the host restriction system 

and is not able to form plaques of progeny phage. On the other hand, the "mutant" 

phage can survive and form plaques in the presence of Mcr negative bacterial strain 

NM494, which does not perform Mcr restriction. 

The plaque assay was performed to distinguish HmC and Glu-HmC DNA. 

Starting with an equivalent amount, phage was diluted in a 100-fold series by 

volume and dropped on top agars containing bacterial hosts. As shown in Figure 

5.2A, bacteriophage containing either glucosylated (wildtype) or unglycosylated 

(mutant) DNA infected the bacterial host N1v1494, and formed plaques in dilutions 

as low as 10. This shows that both phages proliferate to an equal extent in a 

restriction-free environment. On the Mcr positive strain N1v1654, wildtype phage no 

longer proliferated as well as on the plate seeded with NM494 (Fig. 5.2A). Instead, 

100-fold more phage was required to form a clear plaque. Meanwhile, the growth 

condition was even more stringent for the mutant phage to grow on NM494, where 

the phage required 10,000-fold more units of phage to form a mutant phage plaque 

in a restriction-positive plate. In this assay, the change in plaque-forming efficiency 

demonstrates that phage containing the normal modification is indeed more viable 

when encountering host restriction systems. Due to a lack of glucosylated HmC 

DNA, mutant phage is sensitive to the host Mcr restriction and proliferates less well 

than wild type. 

Differences in Glu-HmC DNA and FImC DNA can also be observed using 

modification-sensitive restriction enzymes (Kutter et al., 1994). Phage DNA was 

extracted from the phage stock, used in Figure 5.2A, and digested with a selection of 
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Figure 5.2: Glu-HmC DNA was distinguished from HmC DNA by phage plaque 

assay (A) and enzyme restriction digestions (B). (A) In the phage plaque assay, the 

difference between wildtype phage containing Glu-HmC DNA and mutant phage 

containing non-glucosylated HmC DNA were verified by bacterial Mcr restriction. 

Phages of the same titre (10 PFU/mI) were diluted in a 100-fold series (as 

designated above). An equal volume (lOpI) of the diluted phages was dropped onto 

agar plates seeded with bacteria strains NM494 (left panel) or NM654 (right panel). 

(B) Glu-HmC DNA from wildtype phage (w) and HmC DNA from mutant phage (m) 

was examined by enzyme restriction. Enzymes used for each DNA digestion are 

specified on top. The control digestion was incubated without enzyme (-). DNA size 

marker is labelled on the left. 10 pg of total DNA was loaded in each lane. 
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enzymes. As seen in Figure 5.2B, control digestion without enzymes, or using Hind 

ffi digestion at AAGCTF site or EcoR V digestion at GATATC sequence, illustrated 

some characters of the DNA. Uncleaved DNA in the control without enzymes 

demonstrated the integrity of the input DNA, whereas the unrestricted bulk DNA 

retrieved after Hind Ill digestion confirmed that the cytosines in T4 DNA were 

modified because Hind ifi digestion is blocked by all kinds of modification to 

cytosine. The digestion pattern of EcoR V, on the other hand, verified that the 

extracted DNA was genuine T4 DNA, which was digested regardless of types of 

base modification. However, the digestion patterns of Glu-HmC and HmC DNA 

varied after incubation with EcoR I or Xba I. Glucosylation of HmC DNA blocks 

EcoR I and Xba I digestion at GAATTC and TCTAGA sequences, respectively. The 

incubation with EcoR I or Xba I resulted in undigested bulk Glu-HmC DNA running 

at the top of the gel, while digested fragments from HmC DNA were observed after 

restrictions with EcoR I or Xba I. In addition, the resulting patterns of DNA digested 

by EcoR V, EcoR I, and Xba I, matched that of T4 DNA in previously published data 

(Kutter et al., 1994). At this stage, a protocol was successfully established to isolate 

unglucosylated HmC DNA that is distinct from the wildtype glucosylated DNA and 

to use in DNA slot blotting tests. 

5.3 Synthesis of monoclonal anti-HmC antibodies 

The production of a monoclonal antibody is outlined in Figure 53A and the 

underlying principle of the immuno assays for antibody selection is illustrated in 

Figure 53B. Synthesis of the monoclonal anti-HmC antibody was in collaboration 

with the Sowers lab, Lomo Linda University, and the monoclonal antibody unit of 
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Figure 5.3: Methodology of antibody production and selection. (A) A general 

procedure for monoclonal antibody production. In the production of antibody 

recognizing a DNA base, nucleotide-protein conjugates are first synthesised by 

linking 3' and 4' carbon of the base with a lysine residue of a protein carrier, such as 

BSA. The resulting conjugate is injected into animals as the immunogen to induce 

an immune reaction. Selection of animals with a positive response is followed by 

fusing immunised spleen cells with myeloma cells. Hybridomas are selected by 

growing in selection medium such as HAT medium, and single hybridoma clones are 

isolated and subcultured to secrete only one antibody molecule, directed against a 

single epitope on the targeted antigen. (B) The principle of indirect immunoassays. 

First, the antigen is coated onto a solid base by molecule adsorption of the support 

material, such as an optical plate. The antibody under examination is then applied to 

form immune complexes with the antigen. Subsequent addition of an 

enzyme-coupled immunoglobin is used as a detection intermediate after binding to 

the antibody. Finally, when mixed with appropriate substrates, the linked enzyme 

reveals the antigen-antibody interaction by yielding a product that can be visualized 

and/or measured by optical means. (Modified from Brown and Ling, 1988; Catty and 

Raykundalia, 1988) 

-140- 



Babraham Institute. The imnumogens of HmC-BSA and HmC-KLH conjugates were 

synthesised in Lomo Linda University by Ms. Victoria Valinluck. The following 

immunisation by the two immunogens was done in three rats each. Indirect 

enzyme-linked inimunosorbent assay (ELISA) using optical readout was performed 

to select rats with positive immune response and as a primary screen for positive 

clones after the production of hydridoma fusions and subsequent cloning. The 

animal injection and clone isolation through ELISA analysis was carried out in the 

Babraham Institute by Ms. Amanda Hutchings. Following, the second stage of 

antibody selection involving DNA slot blot analysis was performed by myself as a 

means of confirming the antibody specificity. 

After selection by ELISA, positive clones of the monoclonal anti-HmC antibody 

were further tested for the specificity by DNA slot blots. To demonstrate the 

specificity between cytosine and its derivatives of Glu-HmC, HmC, and mC, DNA 

containing Glu-HmC and HmC was prepared and tested as described in section 

2.6.4 and above, whereas nonmethylated cytosine DNA was obtained from dcm 

mutant phage A., and DNA containing 5-methylcytosine was prepared by SssI 

methylation of the nonmethylated A. DNA as described in section 2.5.9. In the 

examination of primary clones (Fig. 5.4A), both clones 33 and 118 gave a signal for 

HmC DNA only, whereas clone 131 recognised all DNA samples. Clone 117 did not 

recognise DNA with any type of cytosine. Diluted incubation (1:100) of all clones, 

except clone 117, was also tested to see if the cross reaction of clone 131 will be 

reduced. However, no signal was detected with diluted incubation, suggesting that 

the antibody needs to be applied at a high undiluted concentration. 

Subclones from clones 63, 118 and 131 were isolated, and supernatants from 

clones 63-3, 118-5 and 131-10 all showed good reactivity to HmC and low 
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Figure 5.4: Further analysis of the specificity for 5-HmC by DNA slot blotting. (A) Denatured DNA (200 ng) from nonmethylated 

bacteriophageA (-, i), methylated bacteriophageA (m, ii), glucosylated bacteriophage T4 DNA (Glu, iii), and unglucosylated 

bacteriophage T4 DNA (Hm, iv) was immobilised on nitrocellulose membranes. These membranes were incubated with each 

anti-HmC antibody at the specified working dilution. (B) Antibody subclones 63-3, 118-5, 131-10, were tested with denatured DNA 

(200 ng) from nonmethylated bacteriophageA (-, i), methylated bacteriophageA (m, ii), glucosylated HmC T4 DNA (Hm, iii), and 

unglucosylated HmC T4 DNA (Glu, iv). Denatured DNA was immobilised on nitrocellulose membranes and incubated with antibodies 

before (1-3) and after (4-7) a 10-fold concentration by ultracentrifugation. Most blots were incubated with undiluted antibodies (1-6), 

except for the concentrated clone 63-3, which was also incubated at a 1:100 dilution (7). The blot incubated with an anti-mC antibody 

(purchased from Oncogene) was used as a positive control signal for the blot procedure. 



background (Fig. 5.413, blots 1-3). Subsequently, the volume of each antibody 

supernatant was reduced 10-fold by ultracentrifugation, in turn to increase antibody 

concentration. However, concentrated antibodies of clone 63-3 and 118-5 gave high 

background that interfered with HmC signal reading (Fig. 5.4 B, blots 4 and 5). 

Although the 100-fold dilution of the concentrated clone 63-3 did result in a reduced 

background, the HmC signal was also weaker when used in undiluted incubation 

and the reduced background still interferes with HmC signal (Fig. 5.4B, blot 7). It is 

also worth noticing that the 100-fold dilution of concentrated 63-3 is equivalent to a 

10-fold dilution from the original supernatant, but the resulting background is 

stronger than the undiluted, unconcentrated antibody (Fig. 5.4B, blot 1). Among the 

concentrated antibodies, clone 131-10 gave an HmC-specific signal and low 

background (Fig. 5.413, blot 6), although the original clone 131 showed non-specific 

binding to all cytosine modifications. As a whole, concentration of the antibodies 

does not enhance HmC signal recognition. In contrast, concentration increased 

background signals, which may result from the simultaneous concentration of 

non-specific binding proteins. 

In summary, using both ELISA and slot blot analysis, we screened two 

positively-immunised rats out of six injected animals and obtained 10 positive 

hybridoma clones after selection by growing in HAT (hypoxanthine, aminotpterin, 

and thymidine) containing medium. Subcloning of these 10 clones resulted in 21 

sublones, from which we selected a final three positive clones named clone 63-3, 

clone 118-5 and, clone 131-10, to use as the principle antibody sources in this study. 

Clone 131-10 is preferred for its high specificity and low background. 
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5.4 Characterisation of monoclonal anti-HmC 

antibodies 

Due to the genome sizes and nucleotide compositions of different organisms, the 

occurrence of C, mC or HmC varies in the genome of bacteriophage ?L, 

SssI-methylated ?L or T4. This may cause a signal bias in previous analysis as the 

amount of DNA used was determined by weight. To address this concern, a more 

precise measure of the specificity of the anti-HmC antibodies was tested based on 

the molarity of each modified base. In bacteriophage L a cytosine base occurs once 

every two base pairs in a genome size of 48502 bp. There are 3112 potential Sss 

1-methylatable CpG sites in the 2L genome, resulting in one 5-mC base in every eight 

base pairs. As for 5-HmC, the average ratio of A•T:G•HmC in bacteriophage T4 is 

2.1:1 (Greenberg et al., 1994). Therefore, the 5-HmC base occurs at a frequency of one 

in every three pairs in the 168-kb genome of non-glucosylated T4. Using this 

information, we calculated for the total DNA weight containing 1 pmole base of 

interest (C, mC or HmC) present in a particular genome according to the following 

equation: 

(g) =--- x 650 	(1) 

where w is the weight of X mol base of interest and p is the frequency of one 

target base occurring in 1 molecule of the DNA. 

The equation is derived from the knowledge that (i) In X. mole of total DNA a, 

the molarity of base present is X, and X = X a  X p x N, where N is the DNA size in 

base pairs; (ii) The weight of Xa  mole total DNA is w (g) = X  X 650 x N. The 

frequency for C, mC and HmC is 1/2, 1/8  and 1/3, respectively; therefore, for each 

pmole of C, 1.3 ng non-methylated ? DNA is required; for each pmole of mC, 5.2 ng 



SssI methylated 2. DNA is required; for each pmole of HmC, 1.95 ng 

non-glucosylated T4 DNA is required. 

The result of antibody specificity analysed according to molarity of bases is 

shown in Figure 5.5. When clone 131-10 was tested on a membrane with 

immobilised HmC, mC and C DNA, the antibody readily recognised as little as 1 

pmole HmC and the signal increased with the molarity up to 0.5 nmole (Fig. 5.5, 

lane a). As a control, a membrane containing the same DNA samples was incubated 

with the anti-mC antibody acquired from Eurogentec. A specific signal for mC was 

evident with sample containing more than 50 pmole mC (Fig. 5.5, lane e) and not in 

HmC and C-containing DNA (Fig 5.5, lanes d and f). This shows that the anti-HmC 

antibody is at least 50 times more sensitive to HmC than the anti-mC antibody to 

mC. However, signals from anti-HmC antibody 131-10 appeared clearly in slots 

with more than 500 pmole mC (Fig. 5.5, lane b), whereas no signal was detected 

with any of the non-methylated ?L DNA which contained only C (Fig. 5.5, lane c). 

This suggests that anti-HmC antibody clone 131-10 is about 100-times more 

sensitive to HmC than to mC and this clone recognises HmC more than 1500-fold 

better than unmodified C. Similar observations were seen in the incubations with 

antibody clone 63-3 (Fig. 5.5, lane g-i) or clone 118-5 (Fig. 5.5, lane j-l). However, 

using the same antibody dilution and procedure, clone 63-3 only recognised HmC 

input of more than 10 pmole (Fig. 5.5, lane g) and clone 118-5 required more than 50 

pmole HmC residues (Fig. 5.5, lane J) for the detection of a weak signal. Meanwhile, 

the non-specific binding to mC was equivalent for these two antibody clones, both 

seen when more than 500 pmoles was applied (lanes h and k). This shows that clone 

63-3 and 118-5 are not as sensitive and specific to HmC as clone 131-10. Therefore, 

clone 131-10 is the most sensitive antibody against HmC available to us. 
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Figure 5.5: The specificity of anti-HmC antibodies tested verses antigen base molarity. Denatured DNA containing unglucosylated 

bacteriophage T4 DNA (HmC; a, d, g, j), Sssl-methylated bacteriophage A DNA (mc; b, e, h, k) or nonmethylated bacteriophage A 

DNA (C; c, f, i, I) was blotted on nitrocellulose membranes in increasing base molarities, ranging from 1-1500 pmol (designated on 

the left). Antibody clone 131-10 (lanes a-c), anti-mC antibody from Eurogentec (lanes d-f) and two other anti-HmC antibody clones 

63-3 (lanes g-i) and 118-5 (lanes j-l) were tested in independent incubations. 



From this quantitative assay, a non-specific binding of the anti-HmC antibodies is 

revealed. However, instead of being proportional to the HmC sensitivity, the 

appearance of non-specific mC signals all arose strongly from 500 pmoles or more 

(Fig. 5.5, lane b, h, k). This may be a consequence of the large amount of DNA used, 

due to the relatively low frequency of mC in SssI-methylated ?L DNA. The 500 

pmole-mC sample contained a total DNA input of 2.6 a g, which was 2.7-fold more 

than HmC-containing DNA and four-fold more than C-containing ?.. DNA used for 

the same base molarity. 

To further characterise the anti-HmC antibody specificity, a base competition 

assay was carried out by avoiding excessive DNA amounts that may cause antibody 

cross-reaction. DNA samples of 50-500 ng were tested, in which the upper limit 

corresponds to the DNA input given signals seen at 100 pmoles mC. In this assay, 

denatured DNA antigens were incubated with the anti-HmC antibody and free 

bases as competitors. If the antibody is able to bind to the competing bases, the 

	

Base competitor 	50 ng DNA 	 500 ng DNA 
mCC THmC 1 	2 	3 	4 	5 	6 

blotX + I 	I 	I 
blotY 	+ 	+ 

blot 	 + 

Figure 5.6: The specificity of anti-HmC antibody to 5-HmC tested by base 

competition. Denatured DNA of 50 ng or 500 ng in weight was extracted from 

nonmethylated bacteriophage A (lanes 1 and 4), Sssl-methylated bacteriophage A 

(lanes 2 and 5), or unglucosylated bacteriophage T4 DNA (lanes 3 and 6), and 

immobilized on nitrocellulose membranes. These membranes were incubated with 

monoclonal anti-HmC antibody clone 131. (Blot X) Antibody incubation with 0.2 mM 

5-methylcytidine (mC). (Blot Y) Antibody incubation with 0.1 mM of cytidine (C) and 

0.1 mM thymidine (T). (Blot Z) Antibody incubation with 0.2 mM HmC. Blot Y is used 

as control incubation without the potential cross-reacting base, mC. 
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detectable signal of HmC DNA will be competed out, whereas HmC signal remains 

on blots where additional bases cannot compete with HmC DNA for antibody 

binding. It is important to use excess amount of competitor bases, so a signal is a 

genuine reflection of the antibody specificity. This assay allows us to find out the 

individual specificity of each competitor base added to the incubation. 

The blots resulting from antibody clone 131-10 with competitions of 

5-methylcytidine (mC), cytidine (C) and thymidine (T), or 5-hydroxymethylcytidine 

(HmC) are shown in Figure 5.6. When using 50 ng total DNA, 10-50 fmole of 

modified base was present in each slot. Inclusion of mC (Fig. 5.6, blot X), C and T 

(Fig. 5.6, blot Y), or HmC (Fig. 5.6, blot Z) in between 8-40 fold excess did not affect 

anti-HmC antibody in response to DNA containing cytosine (lane 1) or 

methylcytosine (lane 2) since this antibody does not recognise C or mC under these 

conditions. The reactivity of the antibody to HmC was not affected by the addition 

of mC, C and T, where slots of the hydroxymethylated genome gave clear signals 

(Fig. 5.6, slots 3-X and 3-Y, respectively). However, when 400 pmole of HmC was 

added, the signal for DNA containing HmC disappeared (Fig. 5.6, slot 3-Z). This 

shows that the anti-HmC antibody binding to the immobilised HmC DNA was 

specifically competed out by the addition of HmC base only When a total of 500 ng 

DNA was used to reduce the magnitude of competition by 10-fold, incubation in the 

presence of HmC again reduced the activity, which resulted in only a weak HmC 

band (Fig. 5.6, slot 6-Z) compared to the strong HmC bands evident in the presence 

of mC, C, and T competitors (Fig. 5.6, slots 6-X and 6-Y, respectively). Although 400 

pmole of competitor HmC was not able to entirely compete out the HmC signal 

from 500 ng immobilised DNA, the reduced signal still indicates that free HmC 

competes with immobilised HmC for binding, whereas the competition was not 

- 148- 



relevant in the non-reactive DNA containing methylcytosine or cytosine (lanes 4 and 

5, respectively). 

From the results of antibody selection, quantitative assay and base competition 

assay, it is clear that the anti-HmC antibody recognises HmC specifically at a level of 

less than 500 ng total T4 DNA, which represents about 250 pmoles HmC, and has a 

detection limit as little as 1 pmole HmC according to the range tested in this study. 

There are about 3x10 9  bp in a haploid mouse cell (Hogan et al., 1994), which is 

equivalent to 10 fmole total bases and may suggest that the detection limit of 100 

pmole for the anti-HmC antibody is not sensitive enough to detect the presence of 

HmC. However, anti-mC antibody has been applied in preimplantation embryos 

and resulted in clear mC signal when the detection limite was assayed to be 

—50pmol in ELISA. As our anti-HmC antibody is more sensitive than the anti-mC 

antibody, and the less sensitive anti-mC antibody has shown successful detection of 

mC, anti-HmC antibody was used in immunofluoresence as a measure of HmC 

presence in the early mouse embryos regardless of the inadequet detection limit 

determined from DNA blotting. Nevertheless, further characterisation of this 

anti-HmC antibody should be carried out under physiological conditions. 

5.5 HmC in preimplantation mouse embryos 

To perform embryonic staining in the search of an HmC intermediate during the 

period of active demethylation, embryos at preimplantation stages were collected by 

Dr. Jim Selfridge within 5-9 hours after the expected time of fertilisation. The 

staining procedure was adopted from Santos et al. (2002), which involves 

denaturation of embryonic DNA by HC1 treatment, followed by indirect 
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immunostaining with antibodies targeting different bases. Denaturation of DNA 

opens up double helix and helps base exposure to antibodies. Three different 

dilutions of anti-HmC antibody were examined in groups each including more than 

10 fertilised embryos and the experiment was performed in duplicate. Low dilutions 

of antibody are not used here as initial analysis showed strong background signals 

(data not shown). The resulting images of indirect immunofluoresence are presented 

in Figure 5.7. Anti single-stranded DNA (ssDNA) antibody was used to facilitate the 

detection of embryonic DNA after denaturation. The green staining of ssDNA 

antibody showed that both pronuclei (p and m) and the polar body (PB) were 

present in the preimplantation embryos, in which haploid oocytes were successfully 

fertilized by the haploid sperm (Figure 5.7, A, E, I and M). Sizes of the pronuclei and 

the relative positions between each pronucleus and the polar body allow us to 

identify the parental origins of the pronuclei. The female pronucleus (m) is the 

smaller of the two and often lies closer to the polar body than the paternal 

pronucleus (p). The identity of the maternal pronucleus was confirmed by virtue of 

its highly methylated genome which resulted in clear staining by the anti-mC 

antibodies, whereas mC signal in the paternal pronucleus was weak or not 

detectable under the same conditions (Fig. 5.7, B, F, J and N). These two sets of 

staining demonstrated that the embryos had undergone proper fertilisation. 

Furthermore, the sperm DNA had entered the oocyte and was undergoing 

demethylation, while the maternal DNA methylation was retained. However, when 

analysing for HmC in the actively demethylating paternal pronucleus, no signal was 

observed regardless of the anti-HmC antibody working dilution (Fig. 5.7, C, K and 

0). A strong signal of HmC was detected in a few of the embryos (four out of a total 
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Figure 5.7: Distribution of cytosine methylation and hydroxymethylation in 

preimplantation mouse embryos. Embryonic DNA was first denatured to form 

sing le-straned DNA to expose DNA bases. Indirect immunofluoresence of the target 

base was resolved by triple-staining using anti-ssDNA (green; A, E, I, M), anti-mC 

(red; B, F, J, N) and anti-HmC (blue; C, G, K, 0) antibodeis and merged in D, H, L, P. 

One-cell embryos were stained with anti-HmC antibody at dilutions of 1:1000 (A-D), 

1:10,000 (E-H and I-L), or 1:100,000 (M-P). The working dilution was fixed for all 

anti-mC (1:50) and anti-ssDNA (1:100) staining as controls. The total number of 

fertilised oOcytes scored was: A-D= 18; E-L= 17; M-P= 15. However, the number of 

fertilised oocytes showing profile as E-H was 4, whereas that of l-L was 13. The 

brackets indicate embryos numbers as observed over total. Components in the 

embryos are labelled as follow: (p) paternal pronucleus; (m) maternal pronucleus; 

(PB) polar body. All images were taken under 20x magnifications. Scale bar 

represents 20 pm. 

-151 - 



17 of embryos) stained with anti-HmC antibody at the dilution of 1 in 10,000 (Fig. 

5.7, G), but this was an atypical result in comparison (Fig. 5.7, K). More importantly, 

the HmC signal was found in the maternal pronucleus, where no active or passive 

demethylation is thought to happen. Therefore, the signal is more likely to be a 

non-specific binding of the antibody to mC. To conclude, HmC is not observed in 

the embryos undergoing active demethylation. 

5.6 Discussion 

As described in section 5.1, the presence of HmC residues in actively demethylating 

cells may provide a supportive line of evidence for an oxidative demethylation 

mechanism involving proteins with functions similar to the dioxygenase A1kB. 

Using immunostaining of HmC, early mouse embryos were examined for the 

presence of candidate intermediate, HmC. 

From the result of embryonic staining, there is no evidence for the presence of 

HmC in the expected compartment of the embryo, where the paternal pronucleus 

undergoes active demethylation. One explanation is that the samples are taken 

wrongly. In this study, embryos were collected at a period covering the time of 

active demethylation, which had been reported to occur within 6-8 hours after 

fertilisation (Mayer et al., 2000a). The resulting staining of 5-mC shown in Figure 5.7 

is also consistent with the reported pattern of ongoing active demethylation. When 

further examined my result in the system defined by in vitro fertilisation (IVF) 

system, a similar conclusion is drawn. In Santos et al. (2002), early mouse embryos 

taken between 3-10 hours after IVF were sorted into six stages according to the 

positional association between the two pronuclei. The most dramatic reduction of 
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mC staining occurs at 4-6 hours post fertilisation, when the maternal and the 

paternal pronuclei were 10-25 1a m apart. Active demethylation reached completion 

just before syngamy, which was around 8 hours post fertilisation. Following this 

classification, some of the embryos used in this study appeared to fall out of the 

time window for active demethylation. As shown in Figure 5.7 A and E, these two 

embryos were at a stage close to the completion of active demethylation and may 

provide a reason of the undetectable HmC signals as the intermediate would be 

long removed. Nonetheless, about three quarters of the embryos collected were 

within the period of rapid active demethylation, and no HmC signal was observed 

in these embryos either, such as the example shown in Figure 5.7, I. In addition to 

the analysis of collected embryos presented here, in vitro fertilised oocytes were also 

examined in collaboration with Dr. Fatima Santos of the Babraham Institute. These 

embryos were harvested 2.5 and 5 hours post fertilisation and the result was also 

negative. Therefore, it is convincing that HmC intermediate is not detected using 

this method at the time point of our examination. 

However, the accuracy of the detection method may not be satisfactory given 

the half life of the HmC intermediate may be extremely short during active 

demethylation. The incorporation of HmC in the DNA of bacteriophage T4 suggests 

that HmC is a stable base in vivo. In terms of chemical stability, the hydroxymethyl 

group of HmC forms a C-C bond with the C-5 of cytosine, instead of the less stable 

N-C bond which is in the case of 1-HmA and 3-HmC and causes a weaker binding 

of the hydroxymethyl group. Therefore, release of the hydroxymethyl group from 

the C-S position of cytosine is not likely to occur without a catalysing enzyme. 

Nevertheless, enzyme candidates such as a hydroxymethyl glycosylase has been 

suggested to carry out the removal of HmC (Cannon et al., 1988; Cannon-Carlson et 
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al., 1989). Therefore, we cannot yet rule out the possibility that HmC is a very 

short-term intermediate during the rapid process of active demethylation and this 

may be the reason we can not detect it. 

Moreover, it is worth trying to confirm the antibody specificity under 

physiological conditions, using methods such as injection of the HmC-containing 

DNA in cells. The observation of HmC signals in the maternal pronucleus raised the 

alarm that the antibody has a varying specificity in vivo, although this signal was not 

observed in the majority of the embryos. As a diploid mouse cell contains 10 fmol 

bases in total, non-specific signals of the anti-HmC antibody should not arise when 

the expected antigen is within the upper limit of 100-fmol specificity. Therefore, 

further evaluation of the antibody efficiency should be carried out. Following a 

better understanding of this antibody in vivo, we may apply the anti-HmC antibody 

on early mouse embryos containing introduced HmC DNA to monitor HmC DNA 

metabolism. This may also provide information on the ability of the early embryos 

removing hydroxymethyl groups from modified cytosine residues. 

In the context of oxidative demethylation, hydroxymethyluracil (HmU) and 

thymine glycol (Tg) can also be candidates for demethylation intermediates, because 

it has been shown that mC has a higher susceptibility to oxidation compared to 

thymine in vitro (Burdzy et al., 2002). Oxidation of mC generates HmC or 

5-formylcytosine, while an mC oxidation coupled with deaniination generates 

thymine glycol or HmU (Burdzy et al., 2002). Interestingly, the repair enzymes 

human TDG and MBD4 have been reported to remove thymine glycol in vitro in 

glycosylase assays using thymine glycol-incorporated oligonucleotides, although 

the activity is only half of what was observed for the removal of thymine (Yoon et al., 

2003). A HmU DNA glycosylase activity has been reported in murine, hamster and 
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human cell lines and has been argued to be limited to higher eukaryotic organisms 

that have mC (Boorstein et al., 1987; Holistein et al., 1984). More strikingly, an 

unexpected high excision rate for HmU in human HeLa cell extracts has been 

reported (3 x 10 9  u mol oligo/ u g protein/mm), although the estimated rate of 

spontaneous conversion of mC:G to HmU:G base pair is only once per 2,000 years 

and the appearance of a HmU:G base pair does not disturb the overall DNA 

conformation (Carbonnaux et al., 1990; Rusmintratip and Sowers, 2000). Further 

characterisation of the mispaired HmU repair activity has shown that the activity is 

distinct from previously reported glycosylases including TDG and uracil 

glycosylase activities, and the partially purified activity is highly selective for the 

5-hydroxymethyl group (Baker et al., 2002). Therefore, other oxidative DNA damage 

products, especially HmU, may be considered as alternative candidates for the 

intermediates of active DNA demethylation. 

For the purpose of immunostaining, we produced a highly sensitive anti-HmC 

antibody with a detection limit to fmole levels. This provides a useful tool to 

approach HmC nucleotides from a different angle. Applying the antibody to DNA 

from various sources, we may be able to identify HmC in various organisms and 

tissues and thus gain further insights into the role of HmC. Also, this may help to 

further investigate the related HmC DNA glycosylase activity (Cannon et al., 1988; 

Cannon-Carlson et al., 1989; Penn et al., 1972; Penn, 1976). However, calibrations of 

the antibody specificity such as signal intensities against antibody concentration 

and/or antigen concentration should be carried out before further applications. 
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Discussion 



Chapter 6 

Discussion 

The data presented in this thesis address the role and mechanism of DNA 

demethylation from various perspectives. From an in vitro point of view, SAMase 

was studied in the context of its function on SAM depletion, while the unique 

activity of SAM cleaving was utilised in vivo to test its potential application as a 

demethylating agent. An alternative approach to achieve demethylation using 

siRNA was adopted and used successfully to reduce the Dnmtl transcript to various 

extents. Finally, a hypothetical pathway for active DNA demethylation in vivo was 

examined, and the observed result indicated that a candidate intermediate, 

5-hydroxymethylcytidine, was undetectable during the period of active DNA 

demethylation. 

The in vitro SAMase studies were designed to increase the understanding of 

SAMase structure and function, in order to facilitate the later in vivo application to 

reduce levels of DNA methylation. Functional SAMase without fusion tags has been 

expressed successfully, although further optimisation of the purification procedure 

will be required before extending this study. The successful expression of the 

GST-SAMase fusion protein has allowed us to obtain large amounts of 

homogeneous SAMase and has in turn permitted crystallisation trials. However, the 
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fusion tag may be refractory to the protein crystallisation, and as yet, no crystal has 

been observed in the precipitants tested to date. Adjustments of the components of 

the protein storage buffer are required to obtain optimal conditions for the 

production of stable native protein after GST tag cleavage. For example, using Mg 

may provide a suitable ionic strength for the enzyme storage without abolishing it 

activity; the use of glycerol may also help to stabilise the protein. Additionally, it 

may be worth trying to purify native protein following conventional methods and 

to use the resultant protein for crystallisation and for further studies on the kinetic 

behaviour of SAMase. This analysis may shed light on the potential application of 

SAMase in mammalian systems. 

From the preliminary expression of the native SAMase DNA sequence, it is not 

clear whether SAMase expression in mammalian systems is feasible. Substitution of 

codons that are highly biased in prokaryotic systems may greatly improve the 

expression in mammals, but the potentially detrimental effect of SAM depletion 

should always be kept in mind. As mentioned in section 4.1, the degradation of 

SAM did not appear lethal in some bacteria; nevertheless, the observed low 

expression levels of native SAMase using pBAD-SH and pJF-SH constructs had 

implied a toxicity of the SAMase activity. Also, the growth rate of cells expressing 

SAMase was slower than that of non-expressing cells. The low transcription level of 

SAMase in human cells also suggests such a possibility (Fig. 43C). Hence, GST 

fusion of SAMase could be used to investigate if the protein has an undesired toxic 

effect, while attempts at SAMase expression are made in mammalian systems. In 

addition, the normal function of SAMase is to counteract the host bacterial 

restriction-modification cleavage system. Using GST-SAMase to explore the 

mechanism of T3 antirestriction may also increase our understanding about the 
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roles of DNA methylation in prokaryotes, and in turn this may bring about 

advances towards the application of SAMase in eukaryotic systems. 

More importantly, SAM acts as the methylation donor for various methylation 

reactions. SAM is involved in various metabolic pathways such as folate and 

vitamin B12 metabolism. In addition to DNA methylation, RNA methylation plays 

an important role in the maturation and stabilisation of RNA synthesis (Smith and 

Steitz, 1997). Protein methylation is a post-translational modification that occurs 

during mechanisms such as the stress response, cell growth control and signal 

transduction (Aletta et al., 1998). More specifically, growing evidence has shown 

that methylation of histones plays an important role in the regulation of gene 

activity. Various arginine and lysine sites on the tails of histones H3 and H4 can be 

methylated to different degrees resulting in different regulatory consequences 

(Ahmad and Henikoff, 2002; Fahrner and Baylin, 2003; reviewed in Zhang and 

Reinberg, 2001). For example, histone H3 lysine 9 methylation is associated with 

gene silencing; whereas histone H3 lysine 4 tri-methylation is a marker for active 

transcription. Consequently, SAM depletion may simultaneously affect gene 

regulation both by the level of histone methylation and the level of DNA 

methylation. Although SAMase can be applied to a wide range of cells, the resulting 

system is not likely to be useful for the examination of the exclusive effect of DNA 

methylation, since SAMase also contributes to the demethylation of histones. 

In comparison, siRNA targeting Dnmtl can act more specifically to bring about 

DNA demethylation. Application of Dnmtl siRNA in cells has successfully 

down-regulated the level of Dnmtl expression. However, precise measurements of 

the level of DNA demethylation will be important in its correlation with the 

silencing effect of Dnmtl siRNA. Although gene silencing using siRNA may have a 
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cell-line specific efficiency, further examination of specific siRNA treatment in 

different cell lines is required to determine the critical conditions at which reduced 

Dnmtl expression leads to DNA demethylation. As a whole, with the observation of 

a general Dnmtl down-regulation in siRNA-treated cells, siRNA has achieved the 

purpose of decreasing Dnmtl protein expression and may therefore be an easier and 

more practical means to bring about DNA demethylation. 

Considering the role of DNA methylation in the control of Xist expression, 

Mbd2 has been previously shown to be a mediator protein that represses Xist 

expression through DNA methylation (Barr and Bird, unpublished observation). 

Whether other factors are involved in Xist repression in a similar manner could be 

demonstrated using the most efficient Dnmtl siRNA mixture. If other 

methylation-dependent factors are involved, DNA hypomethylation resulting from 

Dnmtl siRNA treatment would further elevate the level of Xist derepression in the 

absence of Mbd2. On the contrary, Xist expression will remain at the same level in 

Mbd2 deficient cells, when Mbd2 is the sole interpreter of DNA methylation for Xist 

expression. Interestingly, preliminary results from bisulfite sequencing using 

Dnmt1 and Dnmt1 cells show that three CpG sites in the promoter region of the 

Xist gene are demethylated in more than 75% of the Dnmtl null clones, whereas 

other nearby CpG sites remain methylated in most clones (data now shown). These 

three demethylated CpG sites may be the prime candidates involved in the control 

of Xist repression and deserve closer examination of their association with 

methylation dependent regulatory proteins such as Mbd2. 

In the study of active DNA demethylation in vivo, a hydroxmethylated 

intermediate, 5-HmC, was hypothesised to be the early demethylation product of a 

putative demethylase belonging to the cx-ketoglutarate-Fe 2 -dependent dioxygenases 
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family. The hypothesis led us to search for DNA containing the 5-HmC base as an 

indicator that a such demethylation mechanism is present in vivo, prior to 

identifying any actual demethylase enzymes. Although 5-HmC containing DNA 

was not observed in embryos undergoing active DNA demethylation, we cannot yet 

discount the possibility that it is a short half-life intermediate, nor could we 

discount the candidate mechanism utilising the aforementioned iron-dependent 

dioxygenase. However, it is also important to consider a coupled enzyme that 

releases a less formidable side chain from the pyrimidine ring, while searching for 

an intermediate containing a potential leaving group like the hydroxymethyl 

structure. The hydroxyl group will pull electrons away from the neighbouring 

carbon. This in turn causes a less stable bond between the carbon on the 

hydroxymethyl side chain and the ring carbon in comparison to the bonding 

between a methyl group and the ring carbon. Nevertheless, a hydroxymethyl group 

on the carbon-5 position of the cytosine ring is still more stable than one such 

moiety on the 3' of nitrogen, as the nitrogen is electrophilic. Therefore, it is likely 

that enzymes such as an aldolase (E.C. 4.1.2) are involved in bringing about the 

breakage of the C-C bond. Enzymes of this family can perform the reverse of aldol 

condensation and are mostly prokaryotic enzymes. Similar mammalian enzymes, 

such as aldolase A (E.C.4.1.2.13), have been detected in muscle tissues and are 

involved in the breakdown of sugars to generate energy in cells (DiMauro and 

Bruno, 1998). Nevertheless, a mammalian enzyme that catalyses a carbon-carbon 

bond cleavage precisely between a hydroxyalkyl group and a ring structure still 

awaits discovery, together with the obscure identity of a demethylase. Alternatively, 

other candidate intermediates of active DNA demethylation may be considered. For 

example, oxidative DNA damage products, especially hydroxylmethyluracil (HmU), 
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are compounds with a potential transition from mC and may be repaired by a 

correspondent glycosylase (Rusmintratip and Sowers, 2000). HmU has been shown 

to have an unexpected high excision rate and an HmU DNA glycosylase activity has 

been reported to remove HmU (Rusmintratip and Sowers, 2000). 

The mechanism of active demethylation in 5-mC has been largely considered as 

an enzymatic reaction, which has included potential catalysts such as the direct 

demethylase (Bhattacharya et al., 1999), glycosylase (Jost, 1993; Vairapandi and 

Duker, 1993) and, more recently, dioxygenase (Falnes et al., 2002; Trewick et al., 

2002). The involvement of ribonucleic acids has also been proposed to be a 

substitute moiety in deoxyribonucleic acids during demethylation, although the 

evidence was never strong (Fremont et al., 1997; Saluz et al., 1986; Swisher et al., 

1998; Weiss et al., 1996). Interestingly, a recent report demonstrated DNA 

demethylation may be directed by non-coding RNA (Imamura et al., 2004). The CpG 

island of the differentially methylated region (T-DMR) of sphingosine kinase-1 gene, 

Sphkl, underwent demethylation after the expression of Sphkl antisense transcript, 

Khpsl, whereas two non-CpG cytosines surprisingly became methylated at the 

same time. However, more information is required to identify details such as 

whether the demethylation drives active transcription and whether or not the 

proposed mechanism is a primary cause of the demethylation. The idea of an RNA 

molecule being instrumental in the occurrence of DNA demethylation is 

controversial, bearing in mind the proposed mechanism of gene silencing via RNA 

interference at either transcriptional or post-transcriptional level (reviewed in 

Meister and Tuschl, 2004; Paszkowski and Whitham, 2001). Further investigation 

will hopefully shed light on whether RNA can indeed bring about DNA 

demethylation. 
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Regarding a model system exhibiting active DNA demethylation, it has been 

suggested that sperm DNA decondensation and protamine-histone exchange prior 

to pronucleus formation may provide a good opportunity for demethylation in the 

paternal pronucleus (Barton et al., 2001). Nonetheless, a recent study using 

interspecies intracytoplasmic sperm injection demonstrated that murine oocytes 

have significantly higher demethylating activity than those of the sheep or bovine 

oocytes, regardless of sperm species origin (Beaujean et al., 2004). On the other hand, 

mouse sperm injected into ovine oocytes, which do not normally demethylate, 

underwent significant demethylation. This study suggests that there is 

species-specificity in the performance of active DNA demethylation and that the 

composition of oocyte and sperm may both contribute to the demethylation activity. 

Hence, future studies may not focus only on the formation and changes in the 

paternal pronucleus, but also in the maternal domain. 

In addition, systems described in section 1.5.1, such as myoblast and 

erythroleukemia cells, were not chosen as a platform during the hunt for an active 

demethylase, due to a limited numbers of demethylating sites that may not be 

detectable using immunocytochemistry. However, these cells may be useful when 

using detection methods involving specific demethylated sites, such as the CpG 

sites in the promoter-enhancer of the interleukin-2 (112) gene (Brurtiquel and 

Schwartz, 2003). The ease of growing a large number of cultured cells can 

compensate for the limited number of demethylation sites and the accurate timing 

of stimulating differentiation will allow a better monitoring of the removal of the 

methyl group. 

In summary, the work presented in this thesis constitutes an investigation of 

DNA demethylation and has achieved preliminary successes in the acquisition of 
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homogeneous SAMase protein, siRNA silencing of Dnmtl expression and the 

production of a new antibody against HmC residues in DNA. Although the ultimate 

aim of identifying a potential mammalian demethylase was not achieved, further 

application of these new tools may shed light on the mechanism and role of DNA 

demethylation. 
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Appendix 



Appendix I: 

T3 SAMase gene 

1 ATG AlT TTC ACT AM GAG CCI GCG CAC GTC ITC TAT GTA CTG Gil 45 

M 	I 	F 	IKE 	P 	A 	H 	V 	F 	'(V 	L 	V 

46 ICC GCT TTC CGT TCT MC CTC TGC GAT GAG GTG MT ATG AGC AGA 90 

S A 	FR S 	N 	LCD 	E 	I 	NM SR 

91 GAG CGC CAC ATG GTA AGC ACT TTA CGT GCC GCA CCG GGT CU TAT 135 

H H H M V S I L H A A 	 P C L 

136 GGG TCC Gil GAG TGA ACC GAT HG ACC GGG TGC TAT CGT GAG GGA 180 

G S V 	E 	S 	I 	D 	L 	T 	Q C Y A H 	A 

181 ATC TCA AGC GCA CGA ACT GAG GM MA ACT Gil GGT GTA GGG TGC 225 

S 	A 	- 	ED 	K 	C 	V 	F 	v 	H 	V 

226 MG GAG AM GGG GAG GCA GIG MT Gil GGA GGG GTA GGI TGT MT 270 

K H K A 0 A L 	N V A HP A C N 

271 GAG TGG GAG GM GAT TGG GTA GTG GTA TAG AM TCA GAG ACT GAG 315 

EW 	E 	DC 	V 	L 	'(K 	SOT 	H 

316 ACG GCT GGT GTG GTG TAG GCT AM GGT AIG GAG GGG TAT MG GGT 360 

I 	A 	C 	P 	1 	1 	A 	K 	 H 	C 	K 	A 

361 GM CGT GIG GCG GGT AGT HG GM GAG Gil CGT AM GGC GCA GGG 405 

E AL PG SF0 E VP K GAP 

406 CTG GM GGC TGC HG ACT AU GAT GAG HG GGT CGC CGC TGG CM 450 

LOG 	C 	FT 	I 	D 	E 	F 	CAR 	W 	0 

451 GTA GM TM 459 

V 0 

Figure A. 1: Alignment of the bacteriophage T3 SAMase gene (black) and protein 

(red) sequences. This DNA sequence was utilised in the construction of SAMase 

expressing plasmids and the Codon Usage analysis. 
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Appendix II: 

Codon Usage Table 

Table A. 1 :Codon usages utilised in bacteriophage 13 and human 

Amino 
acids Codon 

Usage in Amino 
acids Codon Usage in 

'1 
T3 I human T3 I human 

Gly GGG 12% 25% Trp TGG 100% 100% 
Gly GGA 14% 25% Stop TGA 24% 49% 
Gly GGT 50% 16% Cys TGT 46% 45% 
Gly GGC 23% 34% Cys TGC 54% 55% 
Glu GAG 60% 58% Stop TAG 6% 23% 
Glu GAA 40% 42% Stop TAA 70% 28% 
Asp GAT 40% 46% Tyr TAT 37% 44% 
Asp GAC 60% 54% Tyr TAC 63% 56% 
Val GTG 29% 47% Leu TTG 14% 13% 
Val GTA 23% 12% Leu 1TA 11% 7% 
Val GTT 29% 18% Phe TTT 29% 46% 
Val GTC 19% 24% Phe TTC 71% 54% 
Ala GCG 21% 11% Ser TCG 8% 6% 
Ala GCA 21% 23% Ser TCA 15% 15% 
Ala GCT 42% 26% Ser TCT 27% 18% 
Ala GCC 16% 40% Ser TCC 21% 22% 
Arg AGG 4% 21% Arg CGG 4% 21% 
Arg AGA 8% 21% Arg CGA 11% 11% 
Ser AGT 12% 15% Arg CGT 42% 8% 
Ser AGC 16% 24% Arg CGC 31% 19% 
Lys AAG 67% 57% Gin CAG 60% 74% 
Lys AAA 33% 43% Gin CAA 40% 26% 
Asn AAT 25% 47% His CAT 28% 42% 
Asn AAC 75% 53% His CAC 72% 58% 
Met ATG 100% 100% Leu CTG 35% 40% 
Ile ATA 9% 16% Leu CTA 9% 7% 
Ile ATT 46% 36% Leu CIT 15% 13% 
Ile ATC 45% 48% Leu CTC 16% 20% 
Thr ACG 16% 12% Pro CCG 40% 12% 
Thr ACA 14% 28% Pro CCA 20% 27% 
Thr ACT 33% 24% Pro CCT 34% 28% 
Thr ACC 36% 36% Pro CCC 6% 33% 
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IOU 

111111 liii 
ii 	Arg  

100- 

Leu 	 LysIlMet Ph 	Pio 	 Tu: 	IITtplI'Tyr 	Val 

Figure A.2: Codon usage comparison between human and bacteriophage 13. The codon usages in the bacteriophage T3 (red) and 

human (black) genomes were calculated by the percentage of one codon appearing in the synonymous codons, as shown in Table A. 1. 

Values of each codon frequency were presented on top of the columns. Codons and the consequent amino acid are specified at the 

bottom. 


