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ABSTRACT 

Let (&,+) be a group , Inn(C.) , Aut(G) and End(G) the semi-

groups of all inner automorphisins , autoniorphisins and endoinorphisms 

of C. respectively.These semigroups generate the d.g. near-rings 

I(G) , A(G) and E(G) respectively . This dissertation is mainly 

concerned with the dtailed structure of E( S ) n for n 4 where 

S1  is the symmetric group on n symbols 

It is already known that E(s) = A(s) = I(s) for n > 5 

and some results about the structure of these near-rings have been 

determined ( see J.D.P. Meld.rum [15] ) . In Part two of this diss-

ertation , we determine the precise additive and multiplicative 

structure of these near-rings and list all right , left and two-

sided ideals of E( s) where n ? 5 . Besides we determine all the 

possible monogenic right E(S)-subgroups and left E(S)-subgroups. 

The case n = 4 has not been studied before • In Part three , 

we determine the structure of E(5 4) whose order is 2 35 
 3 . Be-

sides we determine the precise algebraic structure of this near-

ring, by writing'. dOwn 

licatión.nu1.firidits rad.ièál and all its mrima1 right ideals 

In Part four of this dissertation , we present a chapter on 

inverse semigroups of endoinorphisms • Those newly established. 

theorems , concerning the semi-direct decompositions of an arbitrary 

group C associated with idempotent end.omorphisms of an inverse 

semigroup S C End(G) , are expected to be powerful tools in tack-

ling the structure of endomorphism near-rings of an arbitrary group 

which is a direct sum of n copies of isomorphic finite groups 
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INTRODUCTION 

It is a well-known fact that the set of all endoinorphisms of 

an abelian group is a ring with identity . H. Fitting [ 6 3 was the 

first mathematician to investigate near-rings generated by endomor-

phisms in his study of normal endomorphisms of a non-abelian group. 

In 1958 , A. fr'óhlich [7,8,9] laid the foundation stone in the 

study of distributively generated near-rings ( in short , cl.g. near-

rings ) . some years later , J. J. Malone and his students emphasised 

a special class of do g. near-rings , i.eo the end.omorphism near-

rings . Now , in this dissertation , it is our main purpose to inves-

tigate a particular class of endomorphism near-rings , i.e. the endo-

morphism near-rings of the symmetric groups • Here S denotes the 

symmetric group of 'degree n • In 1968 , C • G. Lyons [ 

j] 

gave a 

full description of the structure of the endomorphism near-ring of 

S . There was then a gap until, 1977 when J. D. P. Meidrum [15] 

gave a beautiful result on the structure of morphism near-rings and 

we then know some detailed information about the structure of the 

eridomorphisin near-rings of S where n > 5 • So the only gap that 

remains in this line is the endomorphisin near-ring of 54  . In 

Part three of this dissertation , we ai to give a full description 

I 



of how to build up the, algebraic structure of this monster , the 

end.omorphism near-ring of 54  , denoted by E(S4) . Besides , we 

also study the radical of E(S4)  and all its maximal right ideals 

In Part two we are going to detex,nine the exact algebraic structure 

of the endomorphism near-rings of S3  , denoted. by E(S) , where 

n 5 and the structure of their ideals and E( 3)-subgroups . In 

Part four , we shall give a chapter on inverse semigroups of erido-

morphisms . In this chapter , those newly established, theorems are 

expected to be powerful tools in tackling the unsolved. problem , the 

structure of end.omorphism near-rings of an arbitrary group which is 

a direct sum of n copies of isomorphic groups 

Chapter 1 

Some basicresults and definitions of near-rings 

The concept of near-rings arises very naturally from the study 

of an algebraic system of group mappings with two binary operations 

say addition and multiplication . If we let T(G) = f ; f :G'—,G I 

where C is an arbitrary group ( not necessarily abelian ) and 

define the product f.g of the two mappings f , g in T(G) by 

the rule x( f . g) = (xf) g for all x in C and the sum f + g by 

x( f + g ) = xf + xg for all x in C , then ( T(G) , + , • ) 
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satisfies all the ring axioms except possibly the right distributive 

law and the commutative law of addition • With this motivation , we 

then have the definition of near-ring in the following 

Definition 1 .1 • A near-ring is an algebraic system R with 

two binary operations " + " and " . " such -that 

( a ) ( R , + ) is a not necessarily commutative group with 

identity 0 

( b ) ( R , e ) is a semigroup 

( c ) x(y+z)=çy+xz 	forail x,y,z in R. 

A near-ring ( R , + , • ) is said to be zero-symmetric if 

Ox=O forall x in R. 

Example I. Let T0(() = I f C T(G) ; (o)f = o I • Then 

( T(C.) , + , • ) is a zero-symmetric near-ring 

In the following we are going to give some general definitions 

and basic results of near-rings 

Definition 1.2. Let R be a near-ring . A subset H of R 

is cafled a sub-near-ring of R if it is a subgroup of the additive 

group of R and if it is closed, under multiplication 

As in the case of rings , the intersection of an arbitrary 

number of sub-near-rings of R is a sub-near-ring of R 

Now we turn our attention on d.. g. near-rings • It is a well-

known fact. that á.ì the -end.omorpbins of an additive group G form 



a subset of the transformation near-ring T(G) and are in fact a 

multiplicative semigroup . As might be expected , we are only int-

era sted in the sub-near-rings of T(G) which are generated addit-

ively by the subset 	End.(G.) the set of all the enzlomorphisms of 

C.. 

Before pursuing these sub-near-rings of T(G) in further 

detail , we have 

Definition 1 .3. An element a of an arbitrary near-ring R 

is said to be right distributive if and only if ( r + t )s = ra + 

ta forall r,t in R. 

It is a known fact that an element a of T(G) is right 

distributive if and only if a is an endomorphisin of C. ( see A. 

1hlich [ 7 J ) . Now let End.(C.) denote the multiplicative semi-

group of all the endomorphisms of C. and E(G) the endoinorphism 

near-ring which is additively generated by End(C.) . A routine 

check shows that E(G) is a sub-near-ring of T(G) and E(G) is 

in fact zero-symmetric . This motivates the following definition. 

Definition 1 .4. A near-ring R is said to be distributively 

generated or a d. g. near-ring if R contains a multiplicative 

semigroup S of right distributive elements that generates the 

additive group of R 

Remark : All d.. g. near-rings are zero-symmetric 
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The concepts of ideal of a near-ring and quotient near-ring 

generalize the similar notions for a ring . Since the additive 

group of a near-ring is non-abelian , these concepts will be given 

in terms of normal subgroups 

Definition 1.5. let R be a near-ring and. I a subset of 

R.Then 

( a ) I is called a left ideal of R if I is a normal sub-

group of the additive group R and RI C I 

( b ) I is called a right ideal of R if I is a normal sub-

group of R and ( r + i ) t - rt E I for all r , t £ R, 

ieI 

( c ) I is said to be a two-sided id.eal ( or ideal ) of R if 

I is a right ideal and as well a left ideal 

In the sequel , we simply call a two-sided ideal of R an 

ideal of R • As in the case of rings , the intersection of any 

arbitrary collection of ideals ( right , left ) of' R is again 

an ( a right , a left ) ideal of R • Here we would like to point 

out that if R is a d. g. near-ring , then a right ideal of R is 

simply a normal subgroup of R such that IR C I 

Again it is easy to see that if I is an ideal of R , then 

the quotient group R/1  can be made into a near-ring which is in 

fact a hcnomorphic image of R and R11  is called. ,a quotient 
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near-ring 

Definition 1.6. A mapping 0 of a near-ring R into a near-

ring S is called, a near-ring homomorphism if 

( x + y ) e = xe + yO 

and 
( x.y )o = ( xO)(yO) 	for all x , y C R 

Thus a near-ring homomorphism is a homomorphism of ( R , + ) 

into ( s , + ) that preserves multiplication . If the near-ring 

homomorphism 0 is a one-to-one mapping , then. 0 is called a 

near-ring monomorphism . In the sequel , we use homomorphism in-

stead of near-ring homomorphism ( similarly for isomorphisms and 

monomorphisms ) . Readers should have no confusion in using such 

terminologies 

The near-rings R and S are said to be isomorphic , denoted 

by R S , if 0 is a monomorphisin of R onto S • As in the 

case of rings , we have R0 is a sub-near-ring of S • 

We now turn our attention to the definition of near-ring 

modules 

Definition 1.7. Let ( C. , + ) be a grOup , ( R , + , • ) a 

near-ring . Then C is called an R-'mod.ule or a near-ring module 

over R , denoted by G.R , if there is a homomorphism 

0: (R,+, •) 
	

(T(C.),+,. ). 

Such a homomorphism is called a representation of R 



In general , we write gr for g(rO) where g C G , r E R 

Thus 

g( r1  + r2  ) = gx +2  and g(r
1 r2) = (gr1  ) r 2 

for all r1  , r2  c R , g C G • These equations are sufficient to 

define an R-inod.ule structure • Moreover , if R contains an Men-

tity I and x•1 = x for all x in R , then G is said to be 

unital • Any near-ring can be considered, as a near-ring module over 

itself , denoted by RR , under the right regular representation 

r(tO) = rt • In particular , the near-rings T(G) and E(G) •are 

near-ring modules over themselves • Besides , G can be considered 

as an T(G.)-mod.ule as well as an E(C.)-mod.ule 

A representation is faithful if it is a nionomorphism . Again 

it is a well-known fact that every near-ring has a faithful rep-

resentation 

Definition 1 .8. Let G be an R-module • An R-subgroup of G 

is a subgroup H of G such that HR C H • An R-submod.ule of G 

is a normal subgroup H of G such that ( g + h )r - gr C H for 

all gC,hEH,rcR. 

In general , an R-submod.ule is not necessarily an R-subgroup. 

For if we take R as a z-near--ring , i.e. a near-ring ( R, + , ' ) 

with xy = y for all x , y in R , then any normal subgroup of 

( R , + ) is an R-submodule of RR  but RR  Only has.R;as an R-sub- 
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grOup • If R is a zero-symmetric near-ring then every R-submodule 

does also appear as an R-subgroup 

Definition 1.9. Let G and H be R-inodules • An R-homcmor-

phism 0 : G 	 1,  H is a group homomorphism such that 

(gr)O=(gO)r 	forafl gG , reR. 

Thus the kernels of R-homomorphisms are R-submod.ules and 

every R-subinod.ule is the kernel of a suitable R-homomorphism 

Furthermore , . GO is an R-subgroup of H x  G cer8 	R-isomor- 

phic to GO 

Definition 1.10. Let. R be a near-ring . Then a left It-sub-

group of R is a subgroup S of R such that RS C S • A right 

R-subgroup is an It-subgroup of R 

Now we write a.d.g.  near-ring as ( It , S ) . Here S is a 

multiplicative. semigroup that generates R as an additive group , 

but need not be the semigroup of all distributive elements of It 

Definition 1.11.. A homomorphism B : ( It, s ) 

( E(G) , End.(G) ) that maps S into End(G) is called a d. g. 

near-ring representation • Then we call C an ( It , s )-module 

Thus (R,+) isan (It,S)-mod.uleff (R,S)isa 

d.. g. near-ring under right regular representation 

Definition 1.12. Let X . be a subset of an R-mod.ule. C • The 

annihilator of X in It , denoted. by Ann(x) , is the set 
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r ER; xr=o foralixin 

It is easy to see that nn(X) is always a right ideal • If 

XR C X then .nn( x) is an ideal • From the definitions , we see 

that Ann(C) is the kernel of the representation of R on C 

So we can say that a representation of R on C is faithful if 

andonlyif Ann(G)=[O1 

Definition I .i. ( a  ) Let R be a near-ring . An R-inodule 

C is R-simple if CR / 1 0 1 and C has no non-trivial proper 

R-submodules • ( b  ) R is semi-primitive if R has a faithful 

representation on an R-simple R-mod.ule 

In particular a near-ring R is simple if R has no non-

trivial ideals 

Example 2. Let T0(C) = f E T(C) ; Of = 0 1 . Then 

( T(C) 	, 	+ , 	• is a simple near-ring whenever IGI > 2 	( see 

C. Berman - R. J. Silverman [ 2 ] 	and 	W. Nbauer - W. Fhilipp 

[18] ) 

Some authors have characterized the radical of a near-ring 

( see C. Betsch [ 4  ] and J. C. Beidleman [ I  ] ) • The radical 

here is the analogue of the Jacobson radical of ring theory . Here 

we give the definition of a radical under the restriction of d. g. 

near-rings 

Definition 1 .14. A radical of. a d. g. near-ring R , denoted 

0 



by J(R) , is defined to be the intersection of all the maximal 

right ideals of R 

The next theorem is due to J. C. Beidleman [1 ] 

Theorem 1.15.  If R is a finite 1. g. near-ring with identity 

whose acl.ditive group ( R , + ) is solvable then J(R) is nilpotent 

and the quotient near-ring R/J(R)  is a ring 

By the work given by J. J. Malone and C. G. Lyons 114] , we 

know that E(53) is a finite d. g. near-ring with identity whose 

aiIclitive group ( E(s) , + ) is solvable • Thus 

Z 2 
G Z is trivially a ring and J(E(s3)) 2  = 0 } . In P.rt 

three of this dissertation we shall show that in the case of E(54), 

we also have a quotient near-ring 

E(34)/J(E(s)) 	7,2 .+ z3  + M2(z2) 

where M2(Z2) denotes the ring of 2x2 matrices over- Z and 

J(E(s4)) 3  = 1 0 1 • This provides a new example for Beidleman's 

Theorem 

Definition 1.16. An element e of a near-ring R is called 

an id.empotent element of R if e 2  = e 

As we know from the definitions , Ann(e) is always a right 

ideal of R • We state the next theorem which is due to C. Berman 

and R. J. Silverman 1 3  ] 

Theorem 1.17.  Let R be a near-ring • If e c R such that 
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e 2 = e , then we get a Peirce Decomposition of the near-ring R , 

i.e. 
RAnn(e) +eR 

where 
Ann(e)=r-er;reR 

eR=er; reR 
and 

nn(e)fleR=1 oJ 

But Theorem 1.17 Is too general to be of any real use 

Fortunately we have a more advanced form of the above theorem that 

was given by J. J. Malone and C. G. Lyons [ 14) if we know some-

thing about the generating set of the additive group of the near-

ring 

Theorem 1 .18. Let ( R , s ) be a d. g. near-ring such that 

( R , + ) = gp< S , + > • Then R = Arin(e) + eR where e is an 

idempotent element of R , Ann(e) is the normal subgroup generated 

by I s - es ; s e S , eR is the subgroup generated by I es ; 

sES I and Ann(e)neR=O. 

With the inspiration of Theorem 1,18  , in Part three , we 

study the structure of E( 54) first by e.mining the generating 

set End(s4) of E(s4) which consists of 58 endomorphisms of S4  

If we pick a suitable idempotent element e of End(S 4) , then we 

have a semi-direct decomposition of E(5 4) ,i.e. 

E(S4) = Ann(e) + eE(54) 

where Arin(e) = normal closure of Is - es ; a e End(S4) } 
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eE(S4 ) = gp< es ; a e End.(34) > and Ann(e) fl eE(S4) = 1 0 

Here difficulties arise because of the huge sizes of the two sum-

mands of E(S4 ) . Fortunately , new light was shed on E(S 4) since 

the discovery of a general. structure theorem .for 	morphism near- 

rings that is due to J. D. P. Meidrum [15 ] . This has been done by 

using the connection between the structure of a near-ring and that 

of the group on which it acts faithfully . Meidrum' s Theorem does 

guarantee the existence of a non-trivial ideal N of E( s4) which 

is again a faithful annihilating near-ring and the quotient near-

ring E( 4/N 
 is in fact a subdirect sum of semi-primitive near-

rings . By studying the connections between the properties of the 

nilpotent ideal N and that of the two suxnmarid.s Ann(e) and 

eE(54) of E(S4) respectively , we then obtain the exact algebraic 

structure of N . Thus E(34) is at hand. 
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PART T7O 

THE STRUCTURE OF ENDOMORPHISM NEIR-RINQS E( s) WHERE n5 

The goal of this section Is to investigate some further pro-

perties of the structure of the erid.omorphism near-rings E( s) where 

n5 , S. denotes the symmetric group of degree n , which have been 

studied by J.D.P.Meldrum (15]. Here we would like to quote the ex-

act algebraic structure of E(S) by writing down the precise tables 

of addition and multiplication of E(S). . Then by making use of 

these tables we can figure out the structures of all possible ideals 

and E(S n 	 n )-subgroups of E(S ) 

Chapter 2 

The algebraic structure of E( 

Here and throughout , let S 
n  denote the symmetric group of 

degree n , the subgroup A of S n  the alternating group of degree n 

The following theorem is due to J.D.P.Meldrum [15 ] 

Theorem 2.1. Let n?5 • Then 

I(s)A(s)=E(5) , 

and E(3) has an ideal N such that 

N2=O 

E(S)/N T,(A) e 

N consists of all maps from S -A to A , annihilating A 
nfl 	n 	 n 

13 



Here i(s) , A(S) E(Sn) denote d.g. near-rings generated by 

the multiplicative semigroup of inner automorphisms Inn(S) , auto-

morphisms Aut(S) and end.omorphisms End(S) of Sn  respectively 

Since T0(A) is the set of all maps froinA into itself which 

( n!/2)-1 
leave 0 fixed , the order of T(A) is equal to (n!/2) 	. H.E. 

Heatherly [10] proved the following theorem 

Theorem 2.2. For any group (c. , 	, the group (T(G),+) and 

(T0(G),+) are the unrestricted direct sum of id and 	-1 copies 

of (G,+) respectively 

According to this theorem , we have 

T0(A) 	I 	(A , 
2 

In the sequel , we simply make a routine check and give a new 

expression for T0(A) 

Let A = g0 , 9 1 	g2 	 where 

m + I = n !/2 , g = 0 the identity of the alternating group A 

Take e C T0(A) such that 

gie= g1 	if j = i for all g C A 

10 	ifji 

where 1 im 

It is easy to see that e i  T  o n 	j (A ) fl e.T o n (A ) 	for aD. 

and that e i  T  o (An  ) = iin ( A— I) ) and so is a normal 

14 



subgroup of T0(A) for all I , 1 	i4 m 

Here we rewrite 

e i T  o  (A  n  )=1  eIj ;ojm1 

where 
• 	 0 	if ki 

if.k=i 

Then 
Eli + 

'ik  = il 

where 

as can easily be checked. • So e1T0(A) = A as an additive group. 

Furthezinore , for every f C T0(A) , f can be written in the form 

of 

f= a + a +...... ..... + ix 
1 	2 	 m 

where 
a1ce 

1  .T 0 
(Afl) 	for1Eim. 

Hence 
T0(A) = e I  To n  (A ) j e2T(A 	 m ) 	........... 	e T (A ) o n 

Therefore 
T0(A) 	A , + ) 

UL 

Hence we have 

E(s)/N>I( A , + ) 	z2  
m 

From Theorem 2.1 , we can build up the nilpotent idea]. N of 

E(S) as follows 

15 



Let 	A 	 '•••' 

where 	= 	+ (12) 	for o E I rt m 

Then N , the set of all maps from Sn- A to A annihilating A 

can be described in much the 8ame way as T 0(A) was above. 

If we take d E N such that 

gd1 =g1 	if j=m+i 

	

io 	 if jm+i 

for 1im+1 • Then 

d i  T  o n (A ) (\d. j  T o n (A ) = 101 	for all i i 

and 

dT0(A) = N n Ann ( s, - g.+i  ) 

and so is a normal subgroup of N for all i , I r, I < m+i 

Here we rewrite 

dT0(A) =njj ; o j  4 m 

1' or 1 4 14 m+ I , where 

if 	k.i 

• 

Then 

711j + 	= 

where 

as can 	easily be checked • So 

d1T0(A) An 
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as an additive group . Furthennore , for every g E N , g can be 

written in the form of 

C=1 + P2  + P3 +............+ 

where 

Pi  e d.T(A) 	, 	for i 	I 4 mi-i 

Hence 

N = d. 
i o n T (A ) ed2T0(A ) G ........ ®d 1 T(A) 

Therefore 

, + ) 
mi-i 

 101. Multiplication in N is determined, by Theorem 2.1 since N 2  = 

Since <.1 A <3 S and. S /A = Z , E(S) acts on A n 	n 	rtn 	2 

giving T0(A) and on Sn  / A giving a sub-near--ring which is 

isomorphic .to 	• Thus Z 	 gp < 0> where 

>0 

A 	(12) 
(12)Es" -A' ,J(12)=2. S- 	r  

Since Z= gpCZO> c E(S2 ) and. E(s) / N T0(A) ,z2  ., 

we then choose an element a in E(5) such that 

N + a = x +y 

where x e T0(A) , y C gp(O> . Since N contains all maps 

from Sn  - An  to An  , we can find an element p in s(s) which 

annihilates S - A and behaves in a prescribed 	 A n 	n 	 manner on 
fl 

Also we can take an element e in (s) which maps SnAn  to (12) 

and A to 0 • So an arbitrary element of E(S ) can be written n 	 n 
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in the form 

i+/3+a 	or(i,/3,a) 

where ii E N , P e T0(A) annihilates Sn-A , a e 1 o , 0 

Let. lieN  ,a c 1  0,0 I . Thendenote no  the element of 

N which i5 defined by 

a 	
if 	a=o 

	

1 -( 12) + gi + (12) 	 if 	a = 0 

In this way 0 induces an automorphism of ( N , + ) of order two , 

which maps each d.T0(A) into itself 

Thus we have the following lemma 

Lemma 2.3. Let gP<d1T0(A) , 0> denote the group which is 

generated additively by the elements of d..T 0(A) and 0 • Then 

for every ,  i e I 1,2, ......,m+1 J 

gp <dT0(A) , e > = ( s , + ) 

under the correspondence 

17..I. 	gj 	, 	Oi 	—(12) 

Proof : Immediate 

We prove now 

Lemma 2.4. Let ( 77 , j3 , a ) , ( ', 8', a') e E(S ) n 

Then 	
oa 

( 77 	13, a  ) + ( 77, /3', a') = ( i+ 77 	, P +j3', a + a') 

Proof : Let g e Ah • Then 

g( ( 17, /3 , a ) + (ii' ,p' ,a'  ) ) = g( T7 , /3 , a ) + g(17' ,p' ,a' 

18 	-. 



= g( p + P') 

=g(17+17 	 ,a 	a S 
 ) 

Let gES
n 	n -A • Then 

g( ( i , p , a ) + ( ri.', j9', a') ) = 	i , 	., a ) + g( ii 	p 	a') 

S 	 S = gi +ga + gi + ga 

=g17+ga+gi7'-ga+ga +ga' 

=g17+gl7 	+ga+ga S  

= 	ii + i ) + 	a + a S ) 

= 	71 + 
115a, 	

+ ' , a + a ') 

Hence result. 

The corresponding result for products has to be separated into 

two cases, 
in+1 	 m+1 

Lemma 2.5. (d1r. , p , 0 )( is , p', a ) = (dr.I3' ,pp'o). .  

Proof : Let g E A • Then 

mi-I 	 mi-I 

g( (Ici1r1 , p , 0 )( i , p' , a ) ) = (9(yj 	, p 

=(gP)( 77 ,P 	a) 

= gPP' 

m+1 

dr.',p', o 
1=1 	

) ii 

Let gSn 
	n -A • Then 

mi-i 	 mi-i 

g( ( >Id1r1 , p , o)( i , j9', a ) ) = (g( ld.r )) C 77 , p', a ) ii i=I 	 1=1 
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(g 1 r)( i , j9' ,a ) 

where 	. g = 

g1 rj3' 

	

=g( 1 dr/9',/9/9 	o) 

Hence result 
m+1 

	

Here we write an element of N as Id1r 	where r. C T(A) 

as determined above 

m+1 	 m+1 

Lemma 2.6. (I Jl1(1) , p,e )(Ici.r. , /9' , a ) 

m+1 

= 	ci r 	, 	, a ) 
1=1 

Proof : Let g C A . Then 
U 

m+1 	 m+1 

g( ( i :1 "71j(i) 
 ! /9, 6 	d1r1 , j3' ,.a ) ) 

m+1 

= 	d.r. ( .) 1 	, a ) 

Let gCS — A . Then 

= 	for some I , I 4 i E m+1 

ni+1 	 m+1 	- 

, p , e )( 	d.1r1 , /9' , a ) ) 
1=1 

m+1 

= ( g171 ( 1) + (12) )( 	ci r 	, /9' , a ) ii 
1=1 
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m+1 

( 6j(i) + (12) ) ( I dir. , 8' , a ) 
ij 

m+1 

=(dr , 
i i 

1=1 

mj ( i) l  d()1 
'j(i)+l 	m j(j) 1  a 

m+1 

= 	 d.r. . 	, 	a ) , 

Since g 	E.3 -An  and. m+j(i)+1 	n  

g.d. r . . 	gr 
+1 2. ,j( 1 j+1 = i j(i)+i 	m+j(i)+i j(i)+1 r. ( . )1  • 

Hence result 
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Chapter 

The idea]. structure of E(s) 

With the help of the addition and multiplication tables of 

Lemma 2.4 , 2.5 and 2.6 , we now turn to the ideal structure 

of E(S) . From the previous work we have 

E(S) = ( N($ T0(A) ) + 

where 6 has order two and induces an automorphism of order two 

in each of the direct factors of N . Also ( N , + ) 	ia ( 	+ ) 
m+1 

and gp<A , e>= S n 	 n 

Now we use the following notation 
in 

T(A)= 	eT(A) , 0 fl 	 ion 1=1 

m+1 

N =dT0(A) 

and each of the factors are simple non-abelian groups , being 

isomorphic. to A 

Let H be a normal subgroup of E(S) . If an element of the 

form 	( 17 , J3 , 6 ) e H where 6 : A 	) 0 j, S-A 	) 12) 

then by, the properties of the symmetric group S , we deduce 

NCR. 

By using the elementary group property (see W.R.Scott [20] ) , any 
m+1 	 in 

normal subgroup of E d.T0(A) + Z e1T(A) is of the form 
j=1 	 i=1 
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d. 	
1 	) 

0 fl 	 0 fl 
T (A ) + 	e.T (A 	 (i) 

. 

jEJ ' 	 1EI 

where J C 	I , 2 , ...... , m+1 I  and IC I I , 2 ,....., in 

All other normal subgroups of E(Sn)  are of the form 

e.T(A) + N + gp<O> 	 (2) 
id 

Theorem 3 ele All normal subgroups of ( E(S) , + ) as listed 

in (i) and (2) are right ideals and they are all annihilators of 

suitable subsets of Sn 	except for To(An)  N 

Proof : This follows immediately from the multiplication 

tables of Lemma 2.5 and 2.6. 

Here we use the following result which is due to H.E.Heatherly 

[ii :i 

Theorem 3.2. The only left ideals of T o n 	 o n (A ) are oJ and T (A ). 

This enables us to prove the following result 

Theorem 3.3. The following isa complete list of left ideals 

of E(S) : 

, N , N + gp<e> , T0(A) 0 N and :E(Sn) 

Proof : From Lemma 2.5 and 2.6 , and the remarks about normal 

subgroups above , these are left ideals 

Let K be a left ideal of E(S n 	 o n ). Then K ñ T (A ) > 1 o 

forces T o n (A ) C K by Theorein'3.2 • Lemma 2.6 shows that if J 
- 

in (i) is not empty , then K 2 N , since K is a normal subgroup 

of E(S) , and so must be of the form (i) or (2). 
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Finally we need to show that T 0(A) is not a left ideal • To 

do this , we only need to show E(3)T(A) c/ T(A) , Choose two 
m+1 

non-zero elements ( I d.r. , o , o ) , ( o , p , o ) of E(S) 
i1 

and T0(A) respectively . By Lemma 2.5 , we have 

	

m+1 	 m+1 

	

(I 	d i  r 	, o, o)( o,p,o)(I. ci i  rp, o, o) i 	 i 

	

i=1 	 i=1 

which is generally not in T0(A) • Thus T0(A) is not a left ideal 

of E(S) . This suffices to prove the result 

Thus the next theorem is immed.iate 

Theorem 3.4. The complete list of ideals of E(3) is the 

same as the list of left ideals. 

Proof : Since all the left ideals as determined in Theorem 

3.3 are also right ideals , the result follows 

24 



Chapter 4 

The E(S)-subgrOups 

In this chapter we are going to determine the right E(S)-

subgroups and as well the left E(S)-subgroMps of E(S) . Here 

and throughout , let us agree that the term E(S)-subgroups unmod-

if led will always mean right E(S)-subgroupof E(S) . It is a 

well-known fact that all the right ( left  ) ideals In E(S) are 

again ( left ) E(S )-subgroups of E(S). So all the right ( left ) 

ideals as listed in Theorem.1 and 5.5 are ( left  ) E(5) -sub-

groups but this list of right ( left ) ideals does not exhaust all 

the ( left  ) E( s) -subgroups of E( s) 

Before we start our investigation ., we would like to remark 

that all ( left  ) E(S)-subgroups are sub-near-rings of E(S) - 

since for any (left ) right Rsubgroup H of an arbitrary near-

ring R , HR C H => 11HZ... H and RH C H 	HH C H 

As from the definition of . R-zubgroups we immediately know 

that gR is an R-subgroup of R for every g c R • So we need 

to look at xE(s) for every x E E(S) . Since E(S) = 

( N () T0(A) ). + gp <.6> , every element of E( s) can be written 

inthefonnof 	 a) ,whererl C N, 8 e T o  (A  n  ) 

annihilates S - A and a c gp <0> . Without loss of- generality 

we can obtain all the monogenic E(S)-subgroups through the follow- 
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ing seven separate cases : 

( J , o , o )E(s) , ( 0 , p , 0 )E(s) , ( o , o , e )E(Sn) , 

( 77 , o , e )E(s) , ( 11 , P , 0  )E(s) , ( o , P , 6 )E(s) 

and ( 1 , p , e )E(s) 

Here we call an E(S)-subgroup H monogenic if H = E(S) f or some 

C E E(S) 

Now we start our work by first looking at ( i , o , o )E(s). 

Let ? e N , i = d.. a. + d. a + ..........+ d.' a. 	,where 
'l 1 	2 2 	 r 3r 

m+j. 	 1 

others 	)O , 

a. e T (A) such that g 1 a. 	o for each i E 	I , 2 ,...., r 
3. J 	on i 

Now denote C = 	 ' 	' r • Then we can define an 

equivalence relation— on C as follows. 

	

If j.
1 	 S 

, 	

E C where I 
, it 

e 1 I , 2 ,. ...... ..., r 
S 

then j i 	ji  means that 
S 	t. 

= g 1 a. = g. 
1 

where 	g 	C. A 	- 10 	, i C 1 I 	, 	 2 	,. •.., 	in , m+i = n !/2 

The verification that this is an equivalence relation is almost 

trivial • If j c C , then the equivalence class of j is 
I 	 I 
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equal to I x C C ; 	x which is usually expressed as [j. ) 
1 

= C 1  . Here we write C= 3k ' where g1aj = 
t 	 kt gk 

gE A - 
fl 	

0 , 1 g. I . Then there exists a unique positive integer 

p ( 14 p 4 r ) such that 

c=c uc ti ..........uc 

	

1 	2 	 p 

	

where Cfl  C = 0 	if i ; j , i , jE 	I , 2 , ...... .., p 

Now if we pick an element 8 1 E T0(A) such that 

P 1  : g 

> 0 

then 
?7 	: 	g 

I 	m+x 	 gi 

Sn_ 	xeC1 J 	30 

where 	xe C 1  . 	Here it is easy to see that. 

= 77P 1E(s) 	(An  

and is as well an -E(S)-subgroup . A routine check immediately gives 

rise to the following theorem 

Theorem 4.1. With notation as above , liE(s) is an 

subgroup which is group isomorphic to I( An  + ) 
Proof : It is trivial that im(s) is an E(S)-subgrOup . So 

it suffices to show that 7j(S) 	( A , + ) 
p 

Let 77 = d.. a. + d. a. + ........• ........+ d. a. 	be given 
1. 	2 2 	 r 3r 

as above . So i can be rewritten as 

77i9 	+?7p2+............4.?7p 
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where 
Pq  : g1a. 	- 	y g1a. 	 w 

c q P ) 
w 	 w 

others 	 - o 

Then it is easy to see that 

T1PqT•(A)=7?PE(S)(A ,+) on 	q n 	n 

for each q C I I , 2 , ....... ..., P 

Hence i(s) 	( A , + ) 
p 

Remarks : One can easily see that if the order of any one of 

the subsets C ( 1 4 i 4 p ) of C is greater than I ,then ii(s) 

is obviously not normal in E(S) . For if j , k C C. where j,k 

pick j = da' where a' o such that 	 does not commute 

with 	• Then we have 

- 	- + 77 + p ) / o , 

Thue - - + ? + 6 ,t' liE(s) . Again we like to point out that 

if every member of the partition C 1  , C2  ,......., C contains 

a single element then iE(S) would reduce to a special case in 

list (i) of Theorem 5.1 as a right ideal of E(S n ) and is in 

factequalto d lii.T(A)dT(A) ®dT (A ). 
i

0 n 	0 n ..............
r 
 o n 

As in the case of ( o , P , o )E(Sn) , now we pick an element 

18 E  T o n (A ) which annihilates S
n  - A , such that 



= e a 	+ e a +. .......+ e a 
p1 	 's 

where 	1 4 P
l 
 < ... ......... .< P S ra m 	, m+1 = n!/2 and 

e 	: g
Pi 	

9
.111  

others 	 ' 0 

pc1 1, 2,.  ........ m 	.Nowlë.t P= I 
P1 ' 	 p 	J. 8   

Then we can define an equivalence relation - on P . 

' 	

E P 	where 	I , 1 t E 	I , 2 ,....., S 

r 
r  

then .r 
	

means that 

	

g a 	=g a 

1r 1r 	1t 1

t = gi  

where g i  E An - 	0 	I E 	I , 2 ,......., m j , m+I = n!/2 

If p. E P , then the equivalence class of p 1  , denoted by 
1 

[ p. 3 or P1  , is equal to the set I x e P ; p1 	x I where 
I 	 I 

g 	a 	_-ga = g. • So we can write P = 	3 where 

•1 	1 

g a 	=gw ,gw  E Al2  - 0 j, gi  I • Thus there exists a positive 

wt wt 
integer v ( I 4 y rc. s ) such that 

P = P I_.) P '_)...... ......0 P 

	

1 	:..2 	 V 

where Pi  r P. = 4) 	if i 	, 1 , j 	I i , 2 ,.. ... ..., V 

Analogously to the previous work for 71 in N if we choose an 

element P1 E T0(Al2) such that 

FAI 



: 	________ 

A - g1jn 

then 
pp1g x 	 gi 	if xe?1  

S—I 	;xeP1  

Again it is easy to see that 

	

= PP 1E(Sn ) 	C A1  , + 

and is as well an E(s)-subgroup 

Thus we have the following theorem 

Theorem 4.2. With the notation as above , pE(S) is an 

E(S)_subgrOUP which is group isomorphic to 	A , + ) 

Proof : The proof goes much the same way as in Theorem 4.1. 

Here we just want to point out that 

P+PI2 ............... ppv 

where 

ga 	 )- ga 	if x C 	1tv 

others 

Thus PPT0(A) 	pptE ( 	An + ) 

foreach 	te 	1 ,2,...........,v 	. 

Hence J9E(S) ' 	( A , + ) 
V 

Remarks : If the order of any one of the subsets Pi-  - 

( i < i 4 v ) of P is greater than I , then PE(S) is no 
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longer a normal subgroup of .  E(S) . For if 	k , j e P k / j ) 

then pick 	w = eka Where 	a' / o 	such that 	gea' kk does not 

commute with gfl . Then vie have 

Thus 	- (3 - w + (3 + ci' 	1E(s) 	. 	On the other hand. , if 	1P.1 = I 

for each 	5. C 1 	1, 2 ,. ........., v 	then 	PE(S) = e 	T(A) j 
p 1  

e 	T0(A) 	............ ®e 	T0(A) 	and is in fact a right 
11 2 s 

id.eal.of 	E(s) as in list (i) of Theorem 3.1. 

Let a c gp < 6> = I a , 01 where 

e : A 

	

S-A 	 )-X. 
n n 

Here - x C S - A and x 2 • Without loss of generality we can 

fix x = ( i 2 ) . Thus the following theorem is immediate 

Theorem 4.3. Let a = 6 • Then a E(S) is an E(S)-subgroup 

which is group isomorphic to ( s , + ) . Moreover aE(S) = 

j e x 	n 	 x 	n ; x C S 	where 0 sends A to zero , Sn 	n - A 	to x. 

In fact aE(S) is a sub-near-ring of E(S) with addition and 

multiplication given as follows 

e +e =6 
x y x+y 

66 =0 	 if xcA' xy 	 n 
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ey 	
if 	x11 A. 

Proof : It suffices to show that aE( s) Z ( Sn  + ) and 

the rest is immediate from definitions . Since aN = 6 ; xe A J X 	fl 

	

( A , + ) where e : A 	 0 , S. - A 	 ) x , 

gp('a, aN>= 16; xESI ''  (S ,+).But gp<a ,aN> 

aE(S) • Hence result 

As a consequence of Theorems 4.2 and 4.3 , the following theorem 

is immediate 

Theorem 4.4. Let fi and 0 be the maps described in Theorem5 

4.2 and 4.3 • Then ( o , p , e )E(s) is an E(S)-subgroup which 

is group isomorphic to 	( An  # + ) + ( s , + ) 

Proof : It is only a routine check by applying Theorem 4.2 

and 4.3. Since E(s) = ( NT0 (A) ) + gp< 8  ) = T0(A) + N + 

gp<6>, by using the left distributive property we have 

( o , p , e )E(s n ) = ( o , 	, e )( T0(A) + N + g.p<e >) 

	

= ( o , P , e )T0(A) + ( o , 	, 6 )N + ( o , p , e )gp<e > . 

A routine check shows 

( 
0,  fi , e )rc= ( 

0, o , 6 )N 

	

o , p , e )T0(A) = (. 0 , p , o )T0(A) 	A , + ) 

by Theorem 4.2 , and 

( 
0  1 18 , 0 )gp<0> = 9p< 6 > 

From Theorem 4.3 , we have shown that 
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(o, o,e)N+gp<6= gp<O, 	
n' 

Thus 	(o,p,e)E(s)= 

(o,,o)T(A)+(o,o,O)N+gp(O> 

and is group isomorphic to 	II ( A , + ) 	+. ( Sn  , + ) 

Hence re8Ult 

Without loss of generality , now let i and 	be the maps 

that have been described as in the previous theorems. Then the 

map ( 17 , 	, o ) can be written in the form of 

77 	
jI 	

+ d. a . 	 d. . a . 3 + e 
Il  

+ P 	d.a. 	
2 	

+...........+ 	
r r 	i 

a 
111 

+ 
 

•....••.s+ e 	a 	• I1 	11 

Here let W = 	1.11 9  j ,2 	 r' i ' 	'.."..." 

As we can realize immediately from Theorem4.1 and 4.2 , the maps 

ij and P both send elements of S n 	n 	n 	n - A and A to A re sp- 

ectively . So it is easy to see that there are equivalence classes 

in C and P that give the same image by the action of maps 11 

and j8 . Say , if there are ic 	 equivalence classes in 

C and P giving the same images under the action of the maps 77 

and 3 , then we can induce an equivalence relation on W by 

having p + v - IC equivalence classes • Here we can guarantee 

that each equivalence class in W gives rise to a distinct image 

in A by the action of i. + p . Note that 
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p,vEp+v-iCm+1 	where m+1=n!/2. 

Then we have the next theorem limnediately 

Theorem 4.5. Let ( 17 , 	o ) e E(S n ) as given above 

Then ( 1 , p , o )E(Sn)  is an E(S n )-subgroup which is group 

isomorphic to 	Ia (A , 
p+VK 

Proof : The proof is immediate by applying Theorem54.1 and 

4.2 and the remarks above 

Remarks : If I Cil = I for each i e I I , 2 ,........, P 

I P 
t 

 I = I for each t c i I , 2 ,.. ... ...., v j and no equivalence 

class in C and P gives the same image in A by the actions of 

maps 17 and 8 , then ( ci  , p , o )E(s) is in fact a right 

ideal as in list ( i) of Theorem 5.1 which is equal to 

dT0(A) +1 eT0(A) 

Without loss of generality , now we pick an element (17, 04) 

E E(S) where 17 , B are the maps described in Theorew4.1 

and 4.5 respectively . According to the multiplication table in 

Lemma 2.6 , we have 

(77,0, e)(o, o, e)=(o,o, e) , 

(77,0, e) (o , p, o) =( 0,0 , o) vpcT(A) 

Here we write 

m+1 	 m+1, 

and 	
77' 	d1r. 

i=1 	 i=1 
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where r. C T (A ) , then i 	on 
m+1 

	

( i),o,e)(i)' 	
1 

,o,o)=(d.r . 	,o,o). 

i=1 

Since E(5) 	( NT0(A) ) + gpo > , 

( ii , o , ê )E(s) = ( i7 , o , e )( N + T0 ( A ) + gp< e >) 

= ( 7 , o , e )i + ( i , 0,9 )T0(A) + ( i , o , e )gp <a> 

Therefore 

( i , o , e )E(s) = ( i' , o , a )N + 

	

Before proceeding 	any further , we pause for a while to 

examine the structure of the map ( q , o , a ) . Since 17 is 

the map that sends elements of distinct equivalence classes to 

distinct non-zero elements of A , 77 can be rewritten as 

follows : let C= 1 	; j C C.  

i 	: 	 g1  
I 

	

• 	 S 

	

• 	 • 

	

• 	 S 

	

• 	 • 

	

• 	 S 

others 	> o 

	

where g1  C A - 1 0 	I U 4 p and gi gi  
U 	 U 	 A 

w A . Now we denote 

(s -A n 	n 	p+I 
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where C = U C. . Then ( i , o , 6 ) is the map that sends 

A 	 -* 0 n 

) g+ (12) = m+l+i1 

(12) = 
	+1 +i2 

• 	 . 
• 	 . 
• 	 S 

• 	 . 
• 	 . 
• 	 • 

•. g + ( 12) = 
p 

) 0 + ( i 2) = 

where 	 e S - A 	, I 	I&I p and n n 

+1+1' 
g 111 	 ' Fm+l +i  are all distinct. 

Hence 

( 7 , o , e )N 	( An , + ) 
p+1 

Since gp<O> = 	, 0 } where 6 : S - A - 	 n n 

A n 	
) 0 and gp<O> 	(z2 ,+), 

n =-( o , a, e ) + ( n S 	o , 	ê ) +( o, 0,6) 

=-( Q, o, e)+( no 020) 

= 	(77,0, 
0 e) 

So 0 is the map that sends 

) (i2) + gi 

c2 	 ) (12 	
12 

• 	 S 
• 	 S 

T.1 



• 	 . 
• 	 . 
• 

- (is) + g1  
p 

(is) + o 

where (12) + g 	,.. 	..., (ia) + .g1  , (12) e S - A.  

and they are all distinct • Then we have 

ON= 	A , + ) 
P+l 

So it is easy to see that 

(17,0, e)N+gp<e> ' ( l(A, +) )+( Z2 , +) 
.p+1 

Thus the next theorem is immediate 

Theorem 4.6. Let ( i , o , 8 ) E E(S) where r , 8 are 

are the maps described in Theorem 4.1 and 4.3 respectively • Then 

( i , o , 0 )E(s) is an E(S)-subgroup and is group isomorphic 

to (I(A, +))+(z2 , +) 
p+1 

grô, tAp of order two 

where ( Z2  , + ) is a cyclic 

Remark ; In the above theorem , by u.ing Lemma 2.3 , we know 

that the cyclic group ( z 2  , + ) acts on every single factor 

(An t +) of I(A, +) giving (s S +) 
p+1 

Now we prove 

Theorem 4,7. Let ( 77 , p , 0 ) cE(S) where 77 , 	, 0 

are those maps described in Theorem54.1 , 4.2 and 4.3 resp9ctively. 
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Then ( 17 , 	, 0 )E(s) is an E(S)-subgroup which is group 

isomorphic to 	I An + ) + 	pi ( A , + )) + ( z 2  

Proof : Since ( i , P , 0 )E(s) = 

( 17 , p , 0 )( T(A) + N + gp< 0> ) 

( 77,p 9  0 )T(A)+(77,P9 0)N+(7,f3 9  0)gp<0> 

A little calculation shows 

(17 , 
p , o.)r 

0 fl 	 0 fl 
) (A ) = ( o , 	, o )T (A . ' 

( 
i, p, 0)N( 11,  o, 0)N 	and 

( 77,, e)< e>< 0>.. 

Therefore 
( 17 , P , o )E(s) 

o, fi, o)T(A) +( 77, o, 0)N+gp<0> 

Thus the proof is immediate by applying Theorem54.2 and 4.6. 

Up to now we have finished all the monogenic E(S)-aubgrOups 

of E(S) . The next step is going to be to determine the left 

E(S)-sUbgroups of E(S) which do not appear as left idea]sof 

E(S) 

From Theorem 43 we know that OE(s) = e ; x C 3 n I where 

0 x 	n 
: A 	 n 	n o , S - A 	-- x with addition and multipli- 

cation given as follows 

o +o =0 
x y x+y 

00 =0 xy 

=0 
- 	y 

forall x,yeS 
n 

if x C A 

if x 	A:• 

(A) 
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So oE(s) is an E(s)subgrouP and as well a sub-near-ring of 

E(S) which is group isomorphic to ( s , + ) via 8 _____ 

Now , let P = 6E(S) . A little calculation shows that 

E(S)PcP. 

For if ( i , /3 , a ) E E(s) , 6 e P , then ( i , /3 , a )e 

is the map that sends 

g c A1  

g e S - A —*( gr+ga)6=o 	if a=o 

if a=O 

i.e. (i,j3,a)6 x 
=0 	if 	a=o 

=6 x 	if a=e 	
}(B) 

for all 
(

77 , /3 , a ) E E(S) 

Thus E(S)P CP and P is a left E(S)_subgroup 

Now we want to examine how do the additive subgroups of (p,+) 

behave under the action of E(s) on the left . Since ( P , + ) 

( S , + ) via 6 ) x , we then have a one-to-one corr-

espond.ence between subgroups of ( F, + ) and subgroups of 

(S n  , + ) . 

Thus the next theorem is immediate • 

Theorem 4.8. With the notation as above , let P be the set 

that consists of all subgroups of ( P , + ) and T the set of 

all subgroups of ( Sn + ) . Then there exists a one-to-one 
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correspondence between F and T . Moreover every member in F 

is a sub-near-ring of E(S) and is again a left E(S)-subgroup 

of E(S) 

Proof : The proof of the first part is trivial by the remarks 

given above • From the addition and multiplication tables of ( A ) 

and ( B ) , we have the rest 

Definition 4.9. An E(S)-subgroup which is also a left E(s)-

subgroup is called an invariant E(S)-subgroup of E(S) 

Thus P is an invariant E(S)-subgroup . Analogously to the 

restriction of S  to A , if we take Q = 0 E P ; x C A n 	n 	 n 

then ( Q , + , . ) is obviously a sub-near-ring of E(S) and 

is group isomorphic to A . Besides Q is also an invariant 

E(S)-subgraup . For if we choose a particular element ii c N such 

that 
11; A 

where g C A - 0 J , then 

liE(s) = 77T0(A) ' ( A 	+ ) 

In fact liE(S) Q , so is again an E(S)_subgrouP ( by Theorem 

4.1 ) • Hence Q is an invariant E(S)-subgroup 
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PART THREE 

THE ENDOMORPHISM NEAR-RING- OF S4  

Let End(S4) denote the multiplicative semigroup of all the 

endomorphisms of the symmetric group 34  and E(S4) the endomor-

phism near-ring which is generated additively by the elements of 

End(S4) ( not necessarily the whole of End(S 4) ) . As in Theorem 

1.18 , we know that by picking a suitable idempotent element e 

which lies in End(S4) , we. can obtain a structure theorem for E(34) 

through the Peirce Decomposition which was proved. by G. Berman and 

R. J. Silverman [ 

In Chapters, we determine the endomorphisms of S4  , and the 

multiplicative structure of' End.( s4) . With the help of this multi-

plication table , in Chapter 6 , we then have a complete déscrip-

tion of how to build up E(S4)  by having a semi-direct sum of sub-

near-rings of E(S4) . Besides we also determine the size of E(34) 

which is equal to 2 3 	In Chapter 7 we give an exact algebra- 

ic structure of E(S4) by writing down the precise tables of 

addition and multiplication . In Chapter 8 , we deal with the 

concept of the near-ring radical of E(s4) . Thus the structure 

of all maximal right ideals is an immediate consequence once the 

radical is 'known. 
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Chapter 5 

The generating set End(s 4) 

Here and throughout we shall write the symmetric group S 4  

ad.d.itively . Though we already know a lot about the group struct-

ure of 54  , we still need to give a full description of how to 

determine a complete list of normal subgroups of S4  and all the 

endomorphisms of S4  . It is because up to now , there still exists 

no formal text or paper giving such a record • The main concept in 

finding a complete list of normal subgroups of 34  15 based on an 

application of the following theorems which can usually be found 

in arty standard text of elementary group theory ( e • go see W. R. 

Scott [20) ) 

Theorem 5.1. The non-empty 	rui C of the group G is 

a normal subgroup if and only if it is the union of complete 

conjugacy classes of the elements of G .Y including the identity 

Theorem 5.2. Two permutations are conjugate if and only if 

they have the same type of cycle pattern 

Here we write o 	as the identity element of 	S4  and 

54  = 	o , (12) 	, (is) 	, 	 (14) 	, 	 (23) , 	 (24) 	, (34) , (123) 	, 	(132) 

(124) , (142) , (134) , (143) , (234) , (24-3) , (1234) 

(1432) , (1243) , (1342) , (1324) , (1423), (12)+(34) 

(13)+(24) , (14)+(23) I 
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According to Theorem 5.2 , there are five different conjugacy 

classes , say 

Table 5A 

C 1 	o J , 	(is) , (is) , ( 14) , (23) , (24) , (s4) 

c3  = 	( is) , ( 132) , (i) , (142) , (134) , (143) , ( s) , ( 2s) J, 

= 	(12)+(s4) , ( is)+() , ( 14)+(25) 

C5  = 	(134) , ( is) , (i-s) , ( 134) , (1324) , ( is) 

Thus the following theorem is immediate 

Theorem 5.3. The following is a complete list of normal sub-

groups of the symmetric group S4  : 

1 0 } 	V4 	, A4  , S4  

Proof : By the application of Lagrange a Theorem , we know 

that the only possible subgroups of S 4  which have to be formed 

by the union of any arbitrary set of conjugacy classes shown in 

Table 5A , are 

5 
C 1  , C 1  U C4  , C1  U C3  U C4  and U Ci 

1=1 

Here we denote 	0 J = C 1  , V4 = 
	

U C4  , A4  = C 1  U C3  U C4  

5 
and S4  = U C. . Thus the proof foflows immediately from Theorem 

i=1 

5.1. Hence result 

In the following we are going to determine all the endoinor-

phisms of 54  by studying all the quotient groups of 54  • From 
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Theorem 5.3 , we have only four quotient groups of 3 4  , namely 

s4/ 34  34  / 1 o , S4  / A S4  / V4  . Now we study the 

four cases separately 

In the first place , since 34  / S4 .1 o j , we then have 

a zero map , denoted. by 0 , which sends the whole S4  to the 

identity element of 	S4  , i.e. 	0 : S4  .) S4 	via 

gO=o .VgE S4  

It is clear enough that there will be no confusion in using the 

same symbol for the identity element of S 4  and the zero endom-

orphisin of •S4  

In the second, place , we have S4  / 1 ° I = 34  . Therefore 

we need to determine all- the automorphisms of S 4  . Before we pro-

ceed any further , we pause for a while to give a well-known rea-

ult ( that can be found in W. R. Scott [20 ) ) in the f oil-

owing 

Theorem 5.4. Let Aut( s ) denote the automorphism group of 

the symmetric group 3n  for all n where n is a positive integer. 

If n > 3 and n 6 ( n may be infinite ) , then Aut(S) S 

It is a well-known fact that the group of all inner automor-

phisms of S , denoted by Inn(S) , is a normal subgroup of Aut(S) 

which is isomorphic to S • This together with Theorem 5.4 

forces 
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Inn(s4) = Aut(34) 

Thus we have 24 automorphisins of 54  which are in fao•t the 

inner automorphisms of 54  . They are 

	

: S4 	) 54 	where x E S4  

definedby gp=gX=_x+g+x 	geS4 

In the third. place , since 54  / A4  = 	where Z2
is the 

cyclic group of order two , we then know that there are only nine s.zch 

endomorphisins of 34  . It is because there are only nine subgroups 

of S4  which are of order two . They are 

where y e 	(12 ) , ( is) , ( 14) , (23) , (24) , (4) , (12)+(4) 

(1)+(24) , (14)+() 

Thus we have 

	

4) y 	4 :A 	 >0 

S4 -A4  

where yeS4 	, IYI=2 

In the fourth place , we have 54  / V4  = S,3  . Now we first 

need to find all the possible subgroups of 3 4  which are isomor-

phic to S . Before we proceed ary further , we shall prove the 

following preliminary lemma 

Lemma 5.5. Let H. = g e 54 	ig = i where i E 
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Then the Hsare  subgroups of 54  which are isomorphic to  13 

Besides these are the only four such subgroups of S4  

Proof : . The first part of the proof is immediate from element- 

	

ary group theory • Now we 	show that those H s are the only 

four such subgroups 

Supposing that H is. a subgroup of 34  such that H S5  

forall iE1 ,2,3,41 
3. 

Therefore H must contain elements of order two and three 

Now we can choose two distinct elements p , y of H such that 

2 , 	' = 3 and. p , y do not lie in the same H. • Other- 

wise gp<p,y>= H. forsOmeiE1,2,3, 4 1.ThU5it 
1 

can be easily checked that the order of the sum p + y ( or y + p ) 

is 4 or an element of order 3 not .,. y • This contradicts the assump- 

	

tion oni H • Hence result • 	. 	 .. . 

Having obtained Lemma. 5.5 , we can exhaust all the rest of 

the endomorphisms of 34  in tha following steps 

Since S4  can be written in the form of a semi-direct sum 

of V4  and S1 2,3,4 1 where 
S12,3,41 

 denotes the.aymmetric  group 

on integers 2 , 3 , 4 , we then write 

	

54 / v4 = 	V4  + x ; x € E2,3,4 

Thus we have the following diagram : 

S4 	 H. 

iP 	 ZP 
Hi 
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where ç1i is the ericloinorphisin of S4 , p e Aut(H) for all i , 
3. 

3 , 4 1. 

	

Since H. = S Vi, 1i4 and Aut(33 ) 	S3  by Theorem 
3. 	3

5.4 , Aut(H.) = Inn(H.) . It is easy to áee that each 	ip 

is again an eridomorphisin of 34  since the composition of two 

endomorphisins is an ericloniorphism . Thus we have 24 end.omorphisins 

in this case 

Without loss of generality , we define 

: S4  

via 
gç 1  = x 

where g E V4  + x 	x E 

0 1  is an endoinorphisni of 34  as can be easily checked • From 

elementary group theory we know that 

H1  =H. 

for some x E 34  , 	, j C I I , 2 , 3 , 4 J since every H. 
3. 

is a stabilizer of the subset I i I of 1 I , 2 , 3 , 4 . Thus 

every ipip can be uniquely written in the form ç& 1 p 	where p. 

e Inn(S4) , x c S4  . Here we denote 0 p = 

	

lx 	x 

Thus 

: 34 
	

3. 54 	where xES4  

= 0X 	if g E V4  + U 2  U E S 
12,3,,41 

47 



Note : oo =opo =o 1 	since 	gç 0  = ( gcb1  )p0  = - 0 + gçt + 0 

gol  

In the following , we use the symbol c',1  instead of 00 

Hence we have proved the following theorem 

Theorem 5.6. Let End(S4) be the set that consists of all 

the end.omorphisms of S4  . Then 

End(S4) = 1 0 0 Y Y  I Ox '  Px ; x , y 
e 54 , 	= 2 

where 

0 : 34 	 S 	via gO = 0 	V g C  S4  

	

S4 	54 	
ViS. A4(9 = 0 	( 3 - A4  )YY  = 

where yES4 	, II= 2 , 

	

: 54 	) 54 	via 	gç', = 

where gEV4 +w 	weS 	XES4 	and 

p x 	4 
: S 	 4 	where XES

4 	
via 

gp=gX 	VgeS4 

Having obtained Theorem 5.6 , we now prove 

Theorem 57. With the above notation , End(S4) is a multi-

plicative semigroup . Besides we have the following multiplication 

table : 

Table 5B 

( i ) 0,8 = 80 = 0 	V fi E EM(S4) 

(2) y:(q  =0 	if xEA4 



 

i 

(5) 
xy  

( 7 ) 	çp P0 

(9) 	çbp xy =0 x+y 

if x/A4  

(4), 

(6) 

(8) 

(i o) 	PXOY = cl( 
x ) +y 

Proof : Here it suffices to show the multiplication table 

from ( 2 ) to  ( iO ) 

If gEA4  ,then 

= o' 

=0 

If g IA4 , then 

t 0 	if 	xeA4  

if x?A4 

	

Hence result . çp(p = o 	if x A 
xy 	 4 

	

(o 	ifx d A 
I 4 

v ge34  

-. 

=- ( x +y ) + g +( x+y ) 

. =gpx+y 

Hence 
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( 4  ) V g E S4  , g = v + s where v e V4 	s c 

then 
= ' + since ox= 1px 

= ( vçir + 	xy 

= ( o + 	xy 

= ( - x + + 

=(—(xç&1 ) ++() )' 

=-y-(xqs1 )+s+(xr1 )+y 

= - ( x0 1  +.y ) + s + ( x01  +y ) 

+ y 

= ( V + S 

+y 	.• 	 - 

Hence OX0 	0
+ yS 

If gEA4  ,then 

	

f'XP 	°P = 0 

If gA4  ,then 

	

g coP 	xp = 	= 

Hence
]C0 =(P xy 

If 9EA4  ,then 

gPc0 = ( gY) 

=0 	since gYEA4  
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If 	
CIA4 

then 

- (y) + x + (y) 

= { X if yeA4  

I  — X+X+XX if y/A4  

Hence 	p(p =c' 

(7) 	If 	gEA4 	,then 

If 	CT'A4 	,then 

CcOXY = 

tp
. 

Hence 	Cpxoy = 

( 8 ) 	v g  e s4' , 	g v + s 	where 	v E V4 	s C S 2;3,4 } 

If 	g e A4  then 	s e A 2,,4 1 	. 	 So 	x  e A4 	for 

evexr 	x 	in 	S4  . 	If g I A 4 	then 	s e S 12,3,41 - 

so 	eX  , A4 	for every x in 	34  . Then 

= 	+ s 

=s9P 0 	 if geA 

Hence 	çlrC,o 	S 

(9 	1pxpy = 	= 	 = 	 •• 
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( 10 ) 	V g E 34 	= V + s where v e V4 	s e S 2,4j 

Then 

=( - x + v + s + x )1P 

= ( -(xir) + o + a 
+ 

- (xçlr1 )p + sy + (x01 )p 

= — y—xçü1 +y—y+s+y—y+xçli1 +y 

= - 	+y ) + a + ( xg&1  +y ) 

= 8p 

= ( V + S 

= 

Hence pb =b 
xy 	xb 

Froiii Table 5B , we *ould like to point out the following facts 

which are 5mportant for later use ; 

if. YES4-A4 	IYH 

= 
0
1  and 	Ox =  0, Px V 	x E S4  

With the help of Theorems 5.6 and 5.7 , we now turn to the 

structure of E( $4) in the next chapter 
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Chapter 6 

The Structure of E(S4 ) 

As in Theorem 1.18 , if we choose a suitable iclempotent element 

e of E(S4) , we would have a semi-direct decoxuposftion'.of E(S 4) 

into the two summands Ann(e) and eE(S4) . Now we choose c1s as 

our idempotent element . Thus the following theorem is immediate 

Theorem 6.1. Let 	E End(S4) . Then 

E(S4) = Ann(fr1 ) + 0 1E(S4 ) 

where 

Ann(01) = normal closure of r - cl' 1r for all r e End(S4) 

01E(S4) = group generated by 01r for all r c End(S4 ) 

and 
&nn(ç) flcl'1E(S4) = 	o}. 

Moreover Ann(ç&) =gp< - a + ( I 
- cl'. )p + a ;a E E(34 ) , XES 1  > 

and. 

Proof : 	The first part of the proof is an immediate consequence 

of Theorem 1.18 	• From the multiplication table (5B) of E(S4 ) 

we have 

	

o - 	= 0 	,- 1y = 

- 	= 0' 	- 	(i P. 

and 	0 	0 	
=' 	i x 	cl' 	' 01 	= OX 

for all ( 	r, ç& 	p E End(5 ) , x , y e S4 	y = 2 . 

Hence result 
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In the following , first let us turn our attention to Ann(i 1 ) 

and determine all the possible maps . Since S 4  can be decomposed 

into a semi-direct sum of summands V and S , so for all 
4 	12,3,41 

g C S4  , g can be written uniquely as v + s where v E V4  , a 

As we shall see 	 acts on g = V + 8 

gives v and the elements of Ann(ç 1 ) are those that can be 

written as a sum of conjugates of (1-clr1 )p (xeS4) by the elements 

of E(34 ) . so (1-01)p  has the same effect on v+s as it does on 

v . Since every map in Arin(g) is of the form 

: ( - a. + ( I 
- 	

) P  + a. 

where x c S4  , a. e E(S4) , we then have 

(v+s)(-a.+(1-ç.)p+a.) 

- (v+s)a1 + (v+s)(1-i)p + (v+s)a 1  ) 

= 	( - (v+s)a + vp + (v+s)a. ) 

( V4 

Thus Arin() consists of maps of E(S4) which send S4  

into V4  

It is a well-known fact that the set I p ; x c S4  I acting 

on V4  gives the whole ring of endomorphisins of V 4  , denoted by 

R(V4) , which is isomorphic to M2(z2) , the ring of 2x2 mat-

rices over Z 	 • Thus R(V4) consists of 16 elements • A 

routine calculation shows that 
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0 

R(V 4 ) = gp< 0 -0 )(1+p 	)f, 0-0 1 )(1+p 	)/ 

	

1 	(12) 	 (13) 

0 -0 )(1+p 	),> 

	

1 	(23) 

which is a sub-near-ring of E(S4) and is contained in 

Since S 4 = V4 	2,5,4j + S 	, g E S4 
 can be. written in the forxn 

	

of v+s where v e V 4  , s e S 	• Thus 

	

1-ç 	 1+p 

	

1 	 x 
v+s 	 -3-V 

since (v+s)(1-ç1r) = (v+) - (Vo l 
 + sçir) = (v+s)-(o+s) = v 

Therefore 

	

(1 -i1r 1 )(1.+p) 	: o + 
	2,3,4I 	

-4 0 

	

V. + I2,5,41 	 )V + V  

where v c V4 I0. , X E 

So 

	

(1-cir1)(1+p 
(12) ) 
	: 	 0 + S 	 . 	) 0 

((12)+(4)) + s1 2,3,4 } 	 0 -  

((15)+(24)) + SI2,5,41 	 (i)+(sz) 

((14)+(23)) + 
	I2 13,4} 

0-01 )(1+p 	) 	 0 + 	I2,3 3,41 	 ) (13) 

((12)+(54)) + I2,5,41 
	 (1s)+(4) 

((15)+(24))+ 12,,3..41 

((14)+(25)) + s1 2,5,4 1 

(23) 
 ) : 	o + S 1215,4 1 

((12)+(34)) + 
	I2,5,41 

((15)+(24)) + s1 ,3,4 1 

((14)+(23)) + S 2,5,4  
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Here we denote a = (12)+(34) , b = (13)+(24) , c= (14)+(2) , 

we then have 2a = 2b = 2c = 0 and a+b = b+a = c . Since each 

of the above functions send.s 0 + S 
L 2,3,4k to 

0 , each function 

' 

can then be represented bya 5-tuple: the first co-ordinate being 

the image of a + S , the second the image of b + S 
L 2 , , 4 $ 	 ' ' 

and the third the image of c+ S 	• Thus (1 -ç& ) (i +p 	) = 1 	(12) 

( o , a ., a ) , 0-01 	(13) 
)(1.+p 	) = ( b , o , b ) and 

0 -ct )(1+p 	) 	( ( 23) 	
c , c , o ) . Hence 

1  

gp< (1_1pi )( 1+p)f ;,x c 1 (12) 	(15) 	(23) 1 

= gp< ( 0 , X P X ) I ( x , o , x ) , ( x , x , o ) > 

= 1 ( o , o , o ) , ( a , b , c ) , ( a , c , b ) , (b,a,c) , 

( b , c , a) , ( c , a, b ) , ( c , b , a) , ( o , a, a), 

( o , b , b ) , ( o , c , c ) , ( a , o , a ) , ( b , 0 , b ), 

( c,o,c),(a,a,o),(b,b,o),(c,c,o)>. 

Hence we obtain the following theorem 

The orem 6 • 2. The action of the endomorphism nearring E ( s4 ) - 

restricted. to V4  gives a ring of order 16 which is in fact the 

ring of all endomorphisms of V4  , denoted. by R(V4) , and is 

isomorphic to M2(Z2 ) 

Remark : By what we have already shown in Theorem 6.2 , R(V 4 ) 

can be expressed in the following two versions for future use , i.e. 

R(V4) = gp< (1-c1r1)(1+p));,xeR12),(13),(25)1 > (6.2,A) 
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= gp<(1+p)p;,x e (12),(13),(2)j > 	 (6.2,B) 

Notice that here we are abusing notation . Readers should make sure 

that (6.2,A) consists of those maps which act on the whole group 

34  while (6.2,B) consists of those maps that act on V 4  only I 

Now we pause f or a while and turn our attention to the struct-

ure of the sub-near-ring 0 1E(S4) . Since we have already shown 

that çb1E(S4) contains a generating set 	(p ,. çb ; x,yES4 , 42 } 

we can examine 01 E(S4) through the following steps 

In the first place let us look at the elements 4, where xES4)  

11. Since 

	

(9x  +( y : 9A4 	 '-0 

	

gA4 	 X+y 

therefore we have 

(2x+& ci
+ 
	• 	 - 

Thus elements where 	x e 34 	and I x 	= 2 	generate 	additively 

a sub-near-ring of E(s4) - of order 24 , i.e. 

; 	x34  
, IXI= 2 >=cq ; 	xc34  J 

which is obviously contained in i1 E(S4) 	and is group isomorphic 

to ( s4  , + ) . secondly , if we examine those elements of the 

f orm jU where x c 34  , we immediately gain the idea that 

x C 34 , has the same effect on v+s as it does on s • Since 

S4  = V4  + S 241 , ç(î is the map that sends  
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W. sp g 	v+s 	r(v+s)clr 	(v+s)çfr1 p 	((v&1)+(&1)) x 	x 

where v E V4  , a E S 	 • SO by restricting the elements
12.3.41 

of 	I 'I'x 	; 	x 
e

'12,3,41 	
to S 2,3,4  we know that 	cux 	is 

simply an inner automorphisin of S ( 	 s 	) . This shows 

that- I ip 	x e S 	I generates a sub-near-ring of E(S4 ) 

which is isomorphic to the endomorphism near-ring E(3) that -has 

éen given by J. J. Malone and C.G. Lyons [14]  .Hence we have 

enough to say that K(S4)  acts on S4/ 	to give a sub-near- 
I 	4- 

ring of E(S4) which is isomorphic to E(S) . Thus we have proved 

the following theorem 

Theorem 6.. The action of E(S4) on the quotient group 

34 ' 	gives a sub-near-ring of E(S4) which is isomorphic to 
I  4 

E(33 ) 

Before we proceed any further , we give some definitions and 

general results in group theory 

Definition 6.4. -A group C is said to be a su'bdirect prod.-

uct of groups C.. if C is a subgroup of the direct product [I G. 
 3. 

and for all elements g. 
J 
 e C. , there exists at least one element 

g E C. which has g  as its j th component 

Thus the following lemma is immediate. 

Lemma 6.5. If C. is a subd.irect product of H + K where H , 

KaregroupsandH+OCG(O+KCG)then C=H+K. 
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Definition 6.6. An R-module G has an R-series 

C. 	G11>C2f> .............. 1.>Gr r = IO 	 (i) 

if it satisfies the following conditions 

(a) Cj<RCjl 	Vi, 1Eir 

r 

( b ) Cr - 	o J 	.0 ( G . 	- C. ) 
1 

Here the symbol H <JR  C. denotes that H is an R-submodule of 

C. . Such a series of length r is said to be of type r . The series 

is said to be invariant if , in addition , G1.< k(  L C f or all i e 

1 , 2 , 3 , ......, r 

Definition 6.7. A near-ring is called an annihilating near-

ring if there exists an R-module C with an R-series as in ( i ) 

such that 	 C. 	for all i E I I , 2 ,....., r 	• 

The following two theorems are due to J. D. P. Meldruxn [15 ) 

Theorem 6.8. 	Let R 	be a near-ring and 	C an R-module with 

an R-series of type 	n which is annihilated by 	R . Then R"  Ann(C). 

Theorem 6.9. Let R be a near-ring with a faithful represent-

ation on an R-module Cr . Then there exists an ideal N of R 

which is a faithful annihilating near-ring and R,,. is a subd.irect 

product of semi-primitive near-rings 

It is easy to see that the symmetric group 34  is an E(34 ) -

module having an E(S4)-series 'IokjV4<zs4  of type 2 . Thus 

the following lemma is immediate 



Lemma 6.10. Let N = 1 0 E E(S4) ; e : v4 -0 , s4-v4 ------ v41. 

Then S4  is an N-iodu1e , N is an annihilating near-ring of the 

N-series to <jV4 <jS4  and N2  = 1 o 

Proof : The proof is immediate from Definition 6.7 and Theorem 

6.8 

Since V4  is abelian and S 	 is 
f 

isomorphic to S3  , so by 

Theorem 6.2 and 6.3 	E(S ) acts on V giving .R(v ) and on 54AT 
'4 

giving E(33) . We then have the next theorem 

Theorem 6.11. With the notation as above , we have 

E(S4)1N C E(S3) + M2(z2 ) -'- 

and N2  = 0 

Here C means " is a subd.irect product of " 

Proof : It is immediate from Lemma 6.10  , Theorem 6. 9  and. the 

remarks above 

Corollary 6.12. As in Theorem 6.11 , we in fact have 

E(S4)1 - - E(53) +M2 (Z2 ) 

Proof : By what we have stated in Lemma 6.5 , it sui'fices to 

show that either E(S3 ) + 0 cE(s4)1, or 0 + M2(z2)CE(s4), N 

Since M2(z2) ' R(V4) ç..E(s4) , we only need. to show there 

exists elements of E(34) which generate R(V4) • By what we have 

proved above. , those elements of the form 	(1 - 	x e s4  ) in 

E(S4) do generate R(V4) . Again the map (1-ç1r) p ( x E S4  ) 

does send. S4  into V4  • This shows 0 + R(V4) CE(S4),4 



Hence result 

Now we need the structure of N • The following lemmas do give 

some description of N but not necessarily the whole of N . 

Lemma 6.13. Let 0 1E(S4) = gp< 	; x ,y E S4 , I Y I = 2 >. 

Then there exists a map Oe 01E(S4) such that 

0 : V4 +x 

54 -(V4 +x) 

where x C S1 2,3,4 } 	x/ 0 and zi  e V4 	 0 

Proof : Without loss of generality , if we take 

(1+1)(1+p 	)(p 	+i) 1 	 (13) 	(23) 

where I denotes the identity element of E(S4) , a little calcu-

lation shows that 0 does send V4  + (234) to (14)+(23) and the 

rest 54 - ( V4  + (234) ) to zero . Again if we take 

P = ç& 

 

0 +1+1)(p 	+p 	)(p 	+i) I 	 (12) 	(34) 	(23) 

then 

P . V4  + (23) 	 . (14)+(23) 

s4 —(v4 +(23) ). 	o 

Hence result 

From lemma 6.13 , a problem arises whether it is possible :Or 

not that there are maps in E(S4) which send. V4  to zero and two 

distinct elements of one coset of V4  into distinct elements in 

V4  . Unfortunately , the answer is yes • For if we take 

P = 	( 1-1)p 	(1-ç 1 )2jc A1fl() 
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then f or each g = v+s e S 4 	 4 where v E V , S E Sc 

we have 
(v+s)=vPeV4  

Since -1 .iP+i : v_ 	v ( - 1 +/3+1) = -v+v+v = Vs 

= -(v+z)+vP+(v+s) = -s+vfi+s 

therefore -p-i +13+1 : v 	 ) 0 

v+s 	 -vP-s+v13+s 

In particular if we take v 1 13 = 0 , v213 = V2  where V 1 P V2  E V4  

and V 1  , V 2  are distinct , then 

( v 1 + s 	- p- i + p + i ) = 

( v2  + s)( - p - i + p + i ) = - v2  - s + v2  + 

where - v2  - s + v2  + s in general does not equal to zero • Here 

we would like to give an example by taking P = ( I-çfr )(p 	+p 	), 1 	(23) 	(132) 

= (12)+(34) , v2  = (1)+(24) and s = (23) 

Then we have 

(v1  + s)(. - p - i + p + I ) = o 

( v + a )( - p - i + [3 + I ) =(14)+(23) 

Thus we have proved, the following lemma 

lemma 6.14. In E(S4 ) , there are maps which send V4  to 

zero and two distinct elements of one coset of V4  (iT4)- to two 

distinct elements in V4  

Theorem 6.15. let x c E(S4) • Then x = y + z where y E 

, z e 01E(s4) • If x e N (the same notation as in Lemma 

6.10) then y , z E N 
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Proof : As we know -from Theorem 6.1 , every element x e 

E(54) , x can be written as a unique sum in the fonn of x = y+z 

where y c Arm(ç) and z c ip 1 E(s4) . If x E N then V4x = 0 

Therefore 
v(y+z)=o 	V vcV4  

This implies vy + vz = o . But vz = o v v e V4  ( since 

maps V4  to zero and hence so does 01E(S4) ) . Therefore 

vy=o 	V veil4  

This implies 
y E Ann(v4) rnn(ç1i) 	N nArin(çli1 ) 

since we have shown that Ann(/i) maps S4  into V4  

Therefore 
yeN 

Since z = - y + x _______ E N . Hence result 

Corollary 6.16. The nilpotent idea]. N of E(S4)  is 

- a-semi-direct sum of the two intersections Ain(ç&) fl N and. 

q 1 E(S4) ñN , i.e. N=Ann(çü1 ) ("iN + fr1E(S4) ñN 

Proof : It is immediate from Theorem 6.15 

Now our main work is going to be to determine the structure 

of these two interàections 	Ann() n N and 	çli1E(S4) n N 

Since 	ç(i1E(S4) 	is a sub-near--ring of 	E(S4 ) 	which is gener- 

ated additively by those endomorphisms of  the form 

where 	x 	, 	y e S4 , 	I x = 2 	, and. , c are being cont- 

•ructed by using the nOrmal subgroups A4  and V4  of 	54  as their 



kernels respectively , these do guarantee that all the maps in 

the sub-near-ring ç 1 E(S4) send V4  to zero • Thus , from this 

remark and Lemma 6 • 1 , we have the next theorem immediately 

Theorem 6.17. Let 	ip 1E(S4) and N 	be as described in Theorem 

6.1 'and Lemma 6.10 respectively . Then 01E(S4 ) ñ N 	is a sub-near- 

ring of E(S4) which consists of the maps that send V4  to zero 

and the coset V4  + x where x e S 2,3,4  - 0 	into an element 

of V4  . Moreover the size of this sub-near-ring is equal to 45 

i.e. tc1E(S4)r  N = 

Proof : From Lemma 6 • I , we know that V x e S 	- 0 
, ) 

there exists map 0 x 	 x such that 0 sends V4  + x to a non-zero 

element of V4  and the rest to zero • So it is easy to see that 

0 E(S4) 	( V4  + ), V x e S1 2,3,4  - o } . Thus 

1E(s4) nN( 0E(s4) ) 

where x E 	 - 1 0 1 • Hence result 

We have already shown that Ann(Ol = gp< -a+( i - 	; 

ae E(S4 ) , x e S4  > • Since (1-01 )p ( x E S4  ) acts on V4  

does , SO the maps of the fonn -a+( i - ) p+a ( x e S4  

a e E(S4) ) which send v E V4  to Vp are in fact not equal 

to zero in general . So any element y that lies in An.n(ç) which 

also lies in N must consist of the swn of at least two elements 



of the form -a+(1-4c1 )p+a where a c E(S4) , x e S4  . To 

determine the intersection Ann() fl N , we need to find all the 

maps that lie in Ann(ç) and send. V4  to the identity . Before 

we proceed any further , let us first exanine the action of the 

map -a+(i-c1ii)p+a 	more closely . Here we have 

v( -a+( I - ) p+a ) = -(va) +vp+ (va) 	where v e V4  

= vpx  

as va V4  and V4  is abelian , and 

(v+s)( _a+(I_ç&i)p+a ) = _(v+s)a+vp+(v+s)a 

where V c V 4 , s C Sc 

Cenerally speaking (v+s)a does not commute with elements of 

V4  ; it does not unless (v+s)a C V4  . But we have enough to say 

that (v+s)a can be split as a semi-direct sum v + 5a where 

V4 	s C
S12,3,41 	

i.e. ( v + s )a= Va  + S 	 . It 

is obvious that any element a CE(S4) that acts on S4,,, 	15 

V4  

simply a map that sends V4  + s to V4  + sa • Therefore 

s =v+sa 	 where v#EV a 	 4 

This shows that 

(v+)( -a+(l_i)p+a ) = -sa + vp + sa 

for all a C E(S4) , x C S4  

With this powerful tool , the whole picture of the intersect-

ion N flAnn( 1 ) is at hand . Since for any element g C 54  , 



g can be written as g = v + s where v E V4 	S E S2,3,41 . 

so any element a c S6 
L2,3s4$ 

 can also be written as a = 0 + 5 

where 0 E V 4 , a E S6 	• Therefore it is easy to see that 

those maps in Axm(ç) of the form 

_a+(1_b 1 )p+a_P+(1_c1J 1 )p+)8  where 	x c S4  , 	a , fi € E(S4) 

that send. 	V4 	
to zero , also send. S 

L2,3,4$ 
to zero • For if 

8 C S 12,3,4  

= (o+s)(_a+(1- 1 )p+a_i9+(1_cb1 )p+P ) 

= -( sa)+op  +( sa)-( 	s) 

=0 

So far we have shown that elements of the form 

_a+(1_qJi )p+a-P+(1-c1f1 )p+fl 	( x c S4  , a , fi e E(S4 ) ) 

send. V4  to zero and S4  - V4  to V4  . Again from the previous 

remark , we know that all these maps do send the representatives 

of the cosets of V4  to zero • Now the remaining problem is how 

do the rest of the elements in each coset , i.e. V4  + x , x e 

S- 
, 

j 	o , other than the repre sentatives behave • In the 

following we give some routine steps in finding certain basic ele- 

menta of 	.Ann(ç) fl N which generate a sub-near-ring of Arm(g&1 ) 

that contains elements of 	N • 	Here let 

8 = ( -p 	+. (a+ ,+,144+77+e) + p 	+ 0  + p 
(234) 	 (234) 	

•1 where 



p = -p 	+(i -qi )p 	+p 	-p 
(1324) 	1 	(13) 	(1324) 	(14) 

	

(13) 	(14) 

	

)P •*41 	)p 	+p 
1 	(12) 	(14) 

a = -p 	+(i-gfr )p 	+p 	+ (i-cb 1 )p 
(12) 	1 	(34) 	(12) 

p = -p 	+(-1+a+y+1)+p 
(14) 	 (14) 

Y = 	+(i 	)p 	+p 	+(1-ç& 
(23) 	1 	(12) 	(23) 	1 

)p
(12) 

w = -i+(i- 	
(12) 

)p 	+1+(1-c )p 
1 	 1 	(12) 

- 	+ 	++P 	+( -1 +a+y+1 )1 
(1324) L (12) 	(12) 	J 	(1324) 

77 = -p 	+ [Tp 	+
1
8+p 	+(- t +a+y+1)

J 
 +p 

(14) 	L (12) 	(12) 	 (14) 

Thus 0 is the map that send.s 

	

v4 +(23)= 	0• + () 

((12)+(4))+() 

s4 -(v4 +(23) ) 

Hence 0 E n(fr) fl N • For details of the map 0 , see 

Appendix A 

Here and throughout , we write 

	

V4 +x 	) 0 

w 

y 

z 

(6A) 

to denote the cOrrespondence as follows : 
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0 

((12)+(4)) + x 

((1)+(24)) + x _________ 

((14)+(23)) + x 

In particular V4  + x 	NO , represents the correspondence 

that sends the whole coset V4  + x to a 

Thus the next lemma is iinmediate 

Lemma 6.18. Let Oc Axm() flN be as described above 

Then 	OE(S4) M2(z2 ) where 	M2(Z2 ) is the ring of 	2g2 matr- 

ices over 	Z 	 and is in fact a right ideal of 	E(S4) 

Proof : Since 0 is the map that sends 

v4 +(23) 

(13)+(24) 

(i4)+() - 

(12)+(34) 

s4 —(v4 +() ) 	)o 

so 
0 ; V4  +(—__ 	

(12)+(34) 

OP(3) 	

I (1)+(24) 
1 (14) +( ) 
- s4—  ( v4  + () ) 	 0  

Hence OE(S ) = Op 	E(S ) . By Theorem6.2 , Op 	E(S ) 4 	(243) 	4 	 (243) 	4 

M2(z2 ) . Thus we have proved the first part of the theorem 

GE(S4 ) Is a right ideal of E(S4)  since GE(s4) = N 

Ann( s4 —(v4 +() ) )AAnn(1) 

Hence result 



Analogously we can do the same thing to the other cosets V 4+x 

where x C S 	
, X 

= 2 • Now the only remaining problem 

is whether we can do the same job to the cosets V4  + x for fxkr3 , 

x e 3 E2,3241 or not . Fortunately , the, answer is yes • In the 

following we give routine steps in finding such an element • Now let 

a = (1-dr )p 	-p 	)p 1 	(134) 	(142) 	1 	(134) 	(142) 

Then 
a : V4  

v +(2) 	0 4 	

\f(1+24) 
(1)+(24) 

0 

v +(24) 	0 

\\1

(12)+(34)

(12)+(34)  

, 	v+(34) 

(i4)+() 

(l4)+(23) 

, 

	 v4+(2M) 	0 

(i3)+(24) 

(14)+(2) 

(l2)+(4) 

v4+(24) 
12)+(4) 

For details of map a , see Appendix A 

Lemma 6.18 gaurantees that there exists a map a in N fl 

.Ar1n(g) 	such that map a' sends cosets V4  + (23) , V4  + (24) 

and V4  + (34) to the same images as map a does , sending the 

rest of the elements in S4  to zero • So we have the map 

S 
a + a 	. 	V4  + (234) 	

I(13)+(24) 

1(i4)+() 1 
1(12)+(34) 
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V4  + (243) 	

[(12)+(34) 

I (13)+(24) 6B) 

(14)+(23) 

- ((y4+(234)) u (v4+(243))) 

Now if we take 

(234) 	 p (234) 

where a , w , p , 	, 	, and a+a' are the same as in (6A) 

and (6B) respectively , then p is the map that send.s 

v + ( 4) #0 

) (12)+(34) 

+ (2) 	

1(14)+(23) 

I (i4)+(2) 
10. 

- ((V4  +(234 	v4+(243))) 	) 0 

Remark : The map p can easily be checked by using the 

result of (6B) and that of .the Appendix A 

Again if we take q1  = a + . w + p where a , w , p are the 

same as in (6A) . Then 

q 	 01  : V4  + (34) 	

J(12)+(34) 

(13)+(24) 

1(14)+(23) 

4 
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I 

•: V4  + (234) 	 10

I(12)+() 

1 (14)+(23) 
1(13)+(24) 

V4  + () 

i (i4)+(2) 

1(13) +( 24) 

v4tv4+(23))u(v4+(24)) 	 1 

For details of q1  , see Appendix A 

Lemma 6.18 again guarantees that there exists a map q 2  in 

Ann() flN such that q + q 2  sends S4-((V4+(234))L(V4+(243))) 

to zero and the cosets V4  + (234) , V4  + (243) to the same 

images as q does • Here we call this map q • Since Ann(ç )n N 

is a right ideal of E(S4 	234) 
), qp 	en(fr

1 
 )rN where 

(  

p 
(234) 	 4 

E E(S ) • Now we denote 

q = ( a + a' ) + q3p 

where ( a + a' ) , q3  are the same as given above 

Thus 

( 234) 0 q : V4  + 	

(13)+(24) 

1(13)+(24) 

(0 V4  + (243) 	

J(14)+() 

i4)+(23) 

LO 

S4  ((V4+(234))v4+(243))) 	*0 
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Hence 

p + q : v4 +(24) 	 o 

(i2)+(4) 

(14)+(23) 

1(13)+(24) 

s4 - ( v4  + (234) ) -____--------*o 

By what we have just shown and together with Lexnina6.18 , the 

following theorem is immediate 

Theorem 6.19. Let Arin(çfr) ñ N = y e Arm(ç) ; V4y = o 

Then there exists a map 0 in 	 fl N such that 0 sends 

V4  + x into V4  for each x e S 24  - o1 , sending  the 

representative x to zero , and S 4  ( V4  + x ) to zero • More- 

over 6E(S4) is a right ideal of E(54) and is in fact isomorphic 

to M2(z 2) . Thus we also have Ann(ç) n N 	M2(Z2 ) 
V 	

5 

Proof : It is an immediate consequence of Lemma 6.18 and. the 

remarks above 

From the last statement of Theorem 6. 19  , we know that the 

size of the right ideal Arin(ç1 1 ) n N is 410 • As we have already 

shown in Theorem 6.17, the size of qi 1 E(S4) ñ N is 45 • Thus the 

size of N is at hand. • Since the nilpotent ideal N of E(S 4), 

known by Corollary 6.16 , is a semi-direct øum of 

çlr 1 E(34) flN , we then have 

V V - 	 N 	( ç&1 E(54)flN ) + > M2 (Z2) • 

5 
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And the size of. N is equal to 415 

Again from Corollarr 6.12 , we have 

E(S4) "N 
	E(S3)QM2(Z2) 

Thus 

E(S4) = 	 ( = 927,712,935,936 ) 

Since E(S3 ) 1= 54 ( see J. J. Malone and C. C. Iyons [ 14]  ) , 

I M2(z2)l=16 	and INj=4 15 
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Chapter 7 

The algebraic structure of E(S4 ) 

In this chapter , our ma:in goal is to determine the exact 

structure of E(S4) by putting down its precise tables of addition 

and multiplication 

Let A denote the set of all inner automorphisms of the sym-

metric, group S 2,3,4 	. Then gp< A > = gp< p ; x E 'S f234 1 > 

is a near-ring which is isomorphic to E(S3) . Now if we let •  G= 

'< PX  ; x c S 	 > , then 01 G is again isomorphic to E(S 3 ) 

and is in fact a sub-near-ring of E(3 4) . hence 01 & CE(S4) 

We have already shown that M2(Z2) R(V) and R(V4) is a sub-

near-ring of E(S4). . Thus R(V4) E(s4) . According to Coroll-

ary 6.12 , we have 

E(54)1 	E(S) jM2(Z2 ) 

Then by the application of the theory of group extension , E(S 4) 

can be immediately written in the form of 

N+R(V4)+çtr1 C. 

Here we denote R(v4) as the ring of 2x2 matrices which 

acts on 	V4  like 	R(V4 ) and is zero on S4  - V4 	. 	Then 

R(v4 ) R(V4) 

By (6.2,A),R(V4) sends S4  into V4  , since' R(V4) CAnn(fr1 ) 
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So given x E R(V4) , we can choose 

gx gn for all 

then R(v4)=t(x+n);xeR 

V4  and anninilatea S4  - V4  

Since N 	R(V4) + çtr 1E(s4) 

5 

n EN such that 
x 

gES4 -V4  

(v4) } acts like M2(z2) on 

fl N , we then have 

N + R(V4) = N + R(v4) 

Thus E(S4) can be rewritten in the fonn 

N + R(v4) + çir1c. 

In the sequel we write an arbitrary element in E(S4) as 

('i, y, p) or 	i+y+ 

whe re 77 EN, ycR(V4 ) ,C  01 G, andthemap -/3
+ y +  

as 

Before we proceed any further with the structure of E(S4) , 

we first take a look at the following le nmas 

Lemma 7.1. Every element in rt(v4) commutes additively with 

each element in N ,i.e. Tj + y = y + ij V77EN, yER(V4) 

Proof : V g e S4  , y c R(v4) , T7EN 

g( 17 + y ) = gIl + gy 

= gy + 977 
	since gy ,977  eV4  

= g( y + 77 ) . 

Hence result 

lemma 7.2. Let N•0 1 C = 	; 71 e N , 	 . hen 

Nçtr 1 G = 	0 
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+ y )' = (v+s)( i + y )i '  = ( (v+s) + (v+s)y )17 '  

where v e V4 I  B E 2,5,4J 

If s = 0 , then 

g( 11 + y )q'= ( o + vy )i' = o 	( since vy e v4) 

If s1o,then 

i + y )' = ( (v+s)i + o )' = ( v+s)(irn') = o 

Since N2  = 0 	, 7rn '=0 the zero map 

Thus ( i+y)i'=o 

From the above lemmas , we have enough to 'put down the precise 

additive and multiplicative tables for the structure of E( s4) in 

the following theorem 

Theorem7.5. Let E(S4)=(i,y,/9) ; 1r7eN,ye 

R(v4) , /3 e G 	Then for any two elements ( 17 , y 

(77',y',/3')EE(54) ,wehave 

C 17 , y , p ) + ( ' , y' , p' ) = ( 	, y+y p+p' ) 

and ( 11 , y , p )( ii '  , y' , /3 '  ) = ( (17+fi)(17'+y') , yy' , /3/3' ) 

Proof : Given any ( 77 , y , /3 ) , ( i '  , y' , /3 '  ) € E(S4) , 

we have 

( i , y , P ) + ( i '  , y' , /3 '  ) = C n + y + P ) + ( 11'+ y'+ /3') 

-P 

-P 
( by Lemma 7.1 and 7.(a) ) 	= 77 +i '  + y + y' + /3 + 8' 

= ( 11+11 '  , y+y'  
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In the following we write an element gE54  as v+s where 

v e V4 	s E S 2,34 	. Since ( 11 	Y P )( 71'., y' 

( i+y+p)i'+( 77+y+p)y'+(  i+y+p)p' ,we consider 

the three summands separately as follows ; 

(ii) If s=o,then 

ii + y + p )P' = ( o + vy + o )P' 

o ( since vy e V4  , (vy)' = o ) 

=v(j3j3') 

If s o ,then 

(v+s)( i + y + p )p' = ( (v+s)ii + o + sfl )/3' 

= (sf3)j3 	(since (v+s)ii e V4 	sj3 E 

= (v+s)(Pj3') •. 

Hence (i+y+P)P'=PP' 

( 2 ) If s=o,then 

ii + y + p.)" = ( o + vy + o )y '  

= v(yy') 

= v((i+P)y '  + yy ' ) 

Since v( ii + p )y' = 0 

If so,then 

(v+)( rj + y + P )y '  = ( (v+s)?? + o + (v+s)p )y '  

= (v+s)( ( r + P )y' ) 

Since 	(v+s)(yy") = o • Hence ( 77 + y + p ) y' = (i+p)y'+yy' 
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( 3 ) If s = 0 then 

(v+)( 77+y+P)'i'=( o+vy+o)ii 

= 	i + p )iy 

If so, then 

(v+s)( ii + y + P )i = ( ( v+s)17 + 0 + (vi-s)P )i '  

Hence 	( i' + y + P )i' = ( i + P ) 

Thus 

( 77 , y , p )( 17', y' , p '  ) = (+p)' + (i+p)y' +yy' +/33 

= (17+fi)(17'+y') + YY' + 13P' 

= ( (i+p)(i'+y') , yy',pp' ) 

Remark: ( 17+P)y'=( i+p)y'- Py'E N since 	y'=O 

( by Lemma 7.3(b) ) 
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Chapter 8 

The radical and maxiinal right ideals of E(S4) 

We ahall be getting more familiar with the structure of E(54 ) 

by studying its radical . From now on , we use J to denote the 

radical of E( s4 ) . In the following we look at the radical J in 

two different aspects . Before we start our investigation , we give 

the following definition 

Definition 8.1. A variety of groups is the class of all groups 

that satisfies a given set of laws or words 

Example : The variety of abelian groups is the class of all 

groups that satisfies the law [ x , y ] = - x - y + x + y =o 

let V be a variety of groups and ( R , S ) a do g. near-

ring . Then we define the variety of d.o go near-rings by ( R , s) 

e V if ( a , + ) e V • Note that there will be no confusion in 

using the same symbol f or a variety of groups and a variety of d.o 

g. near-rings 

The next theorem is due to J. D • P. Meldrum 16 ] 

Theorem 8.2. let ( RS ) be a do go near-ring with a 

faithful representation on the ( R , s )-module G • Let G e V , 

a variety of groups • Then ( R , S ) e V 

Thus the next Limma is immediate 
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Lemma 8.5. The ad.dJ.tive group ( E(S4) , + ) of the d. g. 

near-ring E(54) is solvable 

Proof : It follows immediately from Theorem 8.2 since ( S , 

is solvable 

Now we have enough to say that E(34) is a finite 1. g. near-

ring with identity whose additive group ( E(S 4) , + ) is solvable 

Then , by Theorem 1.15 , the radical 3 of E(S4) is nilpotent 

and the quotient near-ring E( S4)IJ  is a ring . This doe a provide 

us with a rough idea of what the radical 3 is • But this is not 

the end ! One can get the exact algebraic structure of the quot- 

ient near-ring E( 34), 	by applying the powerful structure theorem 

of Theorem 6.9 and the remarks in Chapter 6 

Since the symmetric group S4  has a ma]d.mal E(S4)-series 

o } -zJ V4  <3A4 < S4 

of type S , the next theorem follows in the same way as Corollaxr 

6.12 

Theorem 84. Let 3 be the radical of E(S 4) . Then E(S4) 

has 3 as its nilpotent ideal such that 

35 = 

z2  ®z5 ®M2(z2 ) 

Proof : Since the symmetric group S4  is an E( S4)-mod.ule 
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and has a maxima]. E(34)-series 1 ° J <1V4< A4<1S of type 

3 , E(S4) acting on S4111 	 A41,v , V4  gives rise to the 

images 	of E(54) which are isomorphic to the rings Z 2  

Z3  and M2(Z2) respectively . Thus the proof follows immediately from 

[14] .,Theorein 6.9 and the remarks in Chapter 6 • Hence result 

Since 3 is the sum of all the nilpotent ideals of E(S4) , 

we then have 

N C J 
	

(8A) 

Here we pause for a while to give some definitions and pre-

].ixninary theorems 

Definition 85. Let C be an R-inod.ule 

( a ) C is called of type 0 if and only if CR 1  1 0 

C is monogenic and has only the trivial R-ubmod.ules 

0 } and C 

( b ) c is called of type I if and only if CR/ 0 

C. isof type 0 and gR=0 1 or gR=G forall 

g eG 

( c ) C. is called of type 2 if and only if CR 	0 1 and 

C has only the trivial R-subgroups 1 0 1 and C. 

Remark : If R has an identity it is immediate that type I and 

type 2 modules coincide 

In the following we are going to define three radicals for a 
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near-ring R 

Definition 8.6. Let R be a near-ring 7  I E 1 0 , I , 2 

31(R) := n ( .Ann(G) ; C is an R-inodule of type i ) 

is called, the I - radical of R • Here the symbol := means 

is defined to be 

Here we denote N(R) to be the sum of all nilpotent ideals 

of R • Then 

N(R) 4 J0(R) 

The first of these inequalities can be proved in a straightforward 

way ; the other two inequalities are obvious from the definitions. 

The next theorem is due to J. D. P. Heidrum and C. C. Iyons 

[17] 

- 	 Theorem 8.7 • Let C be a finite group , ( R , S ) have., a 

faithful d. g. representation 0 on C. such that S0) Inn(C.) 

Then 

J2(R) = J 0(R) = N(R) 

The foflowing the orein can be found in G. Pilz' s book [19] 

Theorem 8.8. Let R be a zero-symmetric near-ring • If R = 

where I 	is a d,irect summirnd of R, thenIx  
AEA 

32(R) = 
AcA 

With the help of Theorem 8.7 and 8.8 , we then prove 

Theorem 8.9. Let J be the radical of E(54) • Then 
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J 
"N 

- = J(M2(z2)) ®J(E(s)) 

where 	J(M2(z2)) is the raclica]. of M2(z2 ) and 	J(E(S3 )) 	is the 

radica]. of 	E(S) . 	Moreover 

J = N + J( ç r 1 c) 

Proof : From Corollary 6.12 , we have 

M2(z2) E(S) 

By Theorem 8.7 and 8.8 , the radical of M2(Z2) ® E(S) , denoted. 

by ( M2(Z2) (E(S) ) , is equal to J(M2(z2)) J(E(s)) ,i.e. 

J(M2(z2) GE(s)) = J(M2(z2)) ®J(E(s)) 

Since N C J ( 8A.) , we then have 

J(s(54)/N)= J/N 

Hence 

IN 	J(M2(z2)) ®J(E(s)) 

It is a well-known fact that M 2(Z2) is a semi-simple ring , 

O J(M2(z2 )) = 0 • Thus 

J = N + 

since E(S) 	i1 c.cE(s4) , J(M2(z2)) = o 1 and N CE(S4) 

Hence we have completed the proof 

In the sequel we are going to determine the algebraic struct- 

tire of 	J(ç 1  G) . 	By the result of J.. 3. Malone and 	C • G. Lyons 

[14 ] , we know that 

J(E(s)) = gp< 0'> ®gp< '> , 



where 
0' : (12) I 	 (123) 

(13) 	 o (12) 

s3  — 	(12) , ( is) I 	0 

and 
: 	(12) ' 	 (i) 

(23) 	 (i2) 

Since E(S3 ) 	, a routine calculation shows that 

J(OI G ) = gp< 0> ® gp< > 

where 
o : v4 +(23) 	 (234) 

V4  + (24) 	 (i.) 

54  t(v4+(23))t.-(v4+(24))J 

: v4 +() 

+ (34) 	 (24) 

54  t(v4+(23))-.(v4+(34))I 

Thus J(E(33 )) Z J(çfr 1 G.) •urid.er the correspon1ence 

0' 	 0 	, 	/' 

Hence we have proved, the following theorem 

Theorem 8.10. With the notation as above , we have 

gp< 0>gp<> ) 

and 

IJI=230 52  

woof : The woof 0f the first part of the theorem is ied.inte 
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from Theorem 8.9 and the remarks above • The second part follows 

sinceNt=415 aflIgP<e>=gP<>f=3 

Analogously to what' we have done in Theorem 6.2 , here we let 

R(v4) = gp< ( o , x•., x ) , ( x, o , x ) , (.x , x , o ) > where 

x -' is one of 'a=( 12) +( 34) , b=( I 3) +( 24) , 'c=( 1,4) +( 23 ).Since each 

map in R(v4) sends S4-V4  to zero , each map can then be rep-

resented by a 3-thple : the first co-ordinate being the image 

of a , the second the image of b and the third the image of c 

Again it is a well-known fact that there are only thi'ee maximal 

right ideals of R(V4) • They are 

I =1(x,x, 0 );xev4  

12=1(0, x, x) ; x€v4 1 
MMI 

13=I(x1 0 2 x);xev41 . 	 (8B) 

Thus we have the following lemma 

Lenitna '8.11. - The above (8B) is a complete list of maximal 

right ideals of R(v4 ) 

Before we deal with the maximal right ideals of E(S4) , we 

need to give a new exact algebraic structure of E(S4) in terms 

of its radical and sub-near-rings . According to Theorem 864 , we 

have 

E(34),, 	
z2Gz3®M2(z2) 

Since M2(z2 ) it(v4) CE(S4) , we only need to determine two 



sub-near-rings.of E(S4) which are group isomorphic to ( Z 2  , + ) 

and ( z , + ) respectively . From Theorem 5.7 End(S4) = I qy  

Ox ' x , 0 ; X y E S4 , y = 2 	, without loss of gener- 

ality if we choose 
(12) 

 e End(S4) , then 

gp< 
'(12) > = 	o 	

(12 ) 
	5- E(S4) 

and  

gp< 9(12) > 	( z2  , + ) 

Also we can choose 4i c s(s) such that in E(S4)/J 

gp< 0 + J > ( z , + ) 

since 	E(S4)/J 	Z + Z + M2(z2 ) 

- 	Thus we have proved the following theorem. 

Theorem 8.12. With the notation as above , we have 

E(S4) = J + gp< 	> + gp<S5 > + R(v4) 

Thus we have 

Theorem 8. 1. The following is a complete list of maximal 

right ideals of E(S4) : 

J• + gp< (12)> 
+ it(v4 ) 	, 	J +. gp< /i  > + R(v4) 

and J + gp<
4'(12) > + 6P< 

0> + I. 
3. 

where I. are the maximal right id.ealcof. R(v4 ) , i E I I , 2 ,5J. 

Moreover the factors of E(S4) by these maximal rightideals: of.  

E(S4) as listed above are simply the E(54)-inod.ules which are 

isomorphic to Z , Z2  and V4  ( three times ) respectively 
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Proof : It is immediate from Lemma 8.11  , Theorem 8 • 12 and 

the remarks above 

Comments 

Now we know the basic structure of the end.omorphism near-rings 

of the symmetric groups • But the following questions are stifl of 

great interest 

( i ) Besides those monogenic E(S)-zubgroupsof E(S) , where 

n ? 5 , as shown in Chapter 4 , how do the rest behave 7 

( 2 ) In the case of E(54) , what does the complete list of 

left , right ideals and E(S4)-subgroups look like 7 

It is hoped that with the help of lemma 2.4 , 2.5 , 2.6 

and Theorem 7.5., we can solve these interesting problems in the 

near future. 



PART FOUR 

INVERSE SEMIGROUPS OF ENDOMORPHISMS 

Here we present a chapter on inverse semigroups of eridomorphisms. 

Those newly developed theorems in this chapter are expected to be 

powerful tools in tackling the structure of -the endomorphism near—rings 

of an arbitrary group which is the direct sum of groups G , I d-n 

where G ' G 	and. C. is finite 

Chapter 9 

Some theorems on inverse seinigroups of endomorphisms 

Before we proceed any further , we are going to give some 

general definitions and basic results of semigroups. 

Definition 9.1. An element a of a semigroup S is called 

regular if there exists an element x in S such that axe. = a 

( note that x is far from unique ) . A semigroup S is called 

regular if every element of S is regular 

Definition 9.2. Two elements a and b of a semigroup S 

are said to be inverses of each other if aba = a and bab = b 

If an element a of a semigroup S has an inverse in S , 

then a is evidently regular . The converse ( Lemma 9.3 ) was due 

toG.Thierrin 121 1 . Thus a regular semigroup is one in which every 
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every element has at least one inverse 

Lemma 9.. If a is a regular element of S , say axa = a 

with x in S , then a has at least one inverse in S , in par-

ticular xax 

Definition 9.4. By an inverse semigroup we mean a semigroup 

in which every element has a unique inverse 

The next theorem can be found, in any standard text of semi-

group theory 

Theorem 9.5. The following two conditions on a semigroup S 

are equivalent : 

.S is regular and any two idempotent elements of S com-

mute with each other ; 

( 2 ) s is an inverse semigroup 

Now we prove 

Theorem 9.6. Let G be a group , 0 be an idempotent 

end.ornorphism of G • Then C is a semi-direct sum of .KerO and 

LiO , where 

KerO = g - gO ; g e C } , ImO = CO 

and 

KerO fl ImO = o 

Proof : For every g e C , g can be uniquely written as 

g=( g - gO) +gO where g -gOeKerO and gOEIrnO -CO 

It is trivial that KerO <jC and IjnO C . Suppose g e C , then 
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g can be written in the form 

g = k + h = k' + h' 

forsome k,k'EKerO , h,h'elinO.Then 

- k'+ k = h'+ ( - h ) E KerO fl IinO 

Let x e KerO fl ImO then x c KerO and x e ImO, i.e. xO = 0 

and there exists y e C. such that x = yO . Therefore 

0 =x0=(yO)0=y02 =yO=x 

since e is an idempotent endomorphism . So we have 

KerOflImO= o 

So -  k'i -k=o and h'+(-h)=o implies k=k'and. h=h'. 

Hence G is a semi-direct sum of KerO and ImO 

If a , b are elements of an inverse semigroup S , we can 

define a partial order relation 	on the elements of S by 

a b if there exists, an idempotent element e in S such that 

a = eb • In particular , if both elements e and f are idempo-

tents of S , then we have 

e f if and only if ef = e 

Here , let e, f be two id.empotent elements of an inverse 

semigrOup S which is contained, in the set of all endomorphisms 

of C , denoted by End.(C.) . So to each pair of id.empotent elements 

e , f of C. , there corresponds a semi-direct decomposition 

C. = K + He  and C. = Kf  + Hf  respectively . Here and throughout 
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we denote K = Ker(e) ( kernel of e ) , Kf  = Ker(f) He = Iin(e)= 

Ge ,Hf =Im(f)=Gf 

In the following.., we are going to prove some results about 

the structure. of ( 

Theorem 9.7. Let e , f be any two idempotent elements of 

an inverse semigroup S which is contained, in End(G.) . Then we 

have 

e.f ifand.onlyif G =K e 	e +H =Kf 
 +H with K CK 

f 	fe 

and H CH e —  f 

Proof : Assume e E f holds . That is ef = e 

By Theorem 9.6 , it is trivial that we have the following semi-

direct decomposition 

G = K +H =Kf + Hf  e 	.e 

where 	K=gEG;ge=O} ' e Ge 	KflHe =EO , 

Kf =eG;gf=o1 , H..=Gf and KfflHf=tOl. 	or 

every g E Kf  we have (g)f = 0 • Since 

(g)e = g(ef) = g(fe) = (gf)e = (o)e = o 

( f or e f < 	> e = ef = fe since any two id.empotents of 

an inverse semigroup commute ) this implies g c icer( e) = K e  

Hence KCK f —  e 

Analogously , we have 

V g c H = Ge 	3 g' c G such that g =( g)e • Since 



g = (g')e = g'(ef) = (g'e)f = (g)f 

this implies g e Cf = Hf  . Hence H Clif  

Conversely , let e , f be any two idempotent elements of an 

inverse semigroup S • Assume C = + He 	Xf  + Hf 	and Kf c•Ke 

holds • 	Then 	V g E C , we have g - gf e Kf 	since 

(g-gf)f=gf-gf2 =gf-gf=o 

Thisimplies 	g-gf EK for ICf CK 

Therefore ( g-gf )e = o 

i.e, ge -gfe=o 

i.e. ge = gfe = gef for all 	g 	in 	C' 

Hence e = ef , i.e. e ( f 

Here we present an example to show that equality does not 

hold, in general 

Example 1. Let 	C = C1  x C 2  x •. .......x 

e : 	( g1 , g2  ,........, gfl  ) 	( g1  , I ,......, I ) 

and, 	f : (gi , 	92  '...'gn 	( 	' c2 	I ,.., i) 

It is obvious that e 2  = e •and. f2  = f . Also ef = fe = e. 

Then I  e , f I forms an inverse semigroup under the composition 

of mappings 
f 

C Semi-lattice ) 

e 
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Ke  = I ( I 	g2  , g ,......, g ) ; g. e Gi , 2 s. i 4 n 

	

. ,i) 	; 	g 1 cC 1 	, 

Kf  = 	( I , I , 	, 	,.., g ) ; g e Gi , 	i 	n 

and 

Hf =I(g 1 ,g2 ,1I,.....,I) 	g1 e 1  

So we have 

KCK 	arid H C H fe 	 ef 

In general , we can restrict the condition e 4 f stated 

in Theorem 9.7 to e < f and the set inclusion c to C , than 

we have the, following corollary 

Corollary 9.8. The hypotheses are the same as for Theorem 9.7. 

Then 
e < f ifandonlyif G=K +H =K +H with K CK e 	e 	f 	f 	f 	e 

14  
and 	HCH.. ef 

Proof : Theorem 97 shows e E f -->K C K 	He CHf 

If e < f than f.,< e is false , hence so is Ke  CKf 2  Hf  C 

H • Hence K C K and H C H • 
e 	 f 	e 	e 	f 

Conversely , if K C K , H C H 	than K C K and f 	e 	e 	f 	e—f 

Hf  C He  are false 	) f e false • Hence e < f 

If we examine Theorem 9.7 closely , we can observe that the 

normal subgroup Ke  can be further decomposed into a semi-direct 

sum of Kf  and KCH 

That is 
K=Kf +(KAHf ) • 	 . 
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For Kf  c Ke 	Kf  K< G 	> Kf Ke 

	

KflHCK 	,KC%H 	 'KflH 	K, 
e 	f—e 	e 	f 	 ' e 	f 	e 

Kf  n ( Ke fl Hf  ) = ( Kf  n Ke  ) n Hf  = Kf  1) Hf - 0 

Here it is easy to see that Kf  + ( Ke fl Hf  ) c Ke 	Now we need. 

toshow K CK +(K flH ). VxEK 

	

e—f 	e 	f 	 e 

x- xf ) + xr E Kf  + ( Ke n Hf  ) 

Since (x-ff)f=- 2 fxfo 	)x -XfEKf  

and (xf)e=x(fe)=x(ef)=xe=0 	>XfEKe• ButxfEHf. 

This implies xf e K ( Hf  . Hence Ke  C K. + ( Ke fl Hf  ) 

Analogously , the subgroup Hf  again can further be decomp- 

osed into a semi-direct sum of H and. K ñ H • That is e 	e 

H=H+(Kn.H). f 	e 	e 	f 

Here we can rewrite the semi-direct decomposition of the group 

G in Theorem 9.7 as 

(=Kf +(KflHf )+H 	 (i) 

Moreover , if e. C S ( an inverse semigroup which is cont-

ained. in End(G.) ) with e. 2 = e. 
1 

for all i e I , 2 ,..., n 

and e. 
1 	1 

e.+1 where i = 1 , 2 , 	,........., n — I 	then we 

obtain two chains as follows 

	

KC K 	C . .................... s. C K 

	

e —e 	- 	 - e 
n 	n-i 

HC H 	C ....................•.. C H e —e - 	 - e 
1 	2 	 fl 
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where 	K = K 	+ ( K ( H 	) 	and 
1 	1+1 	1 	1+1 

H 	=H + ( K flH 	) e . 	e. 	e. 	e. 
1 1+1 	1. 	 1 	+1 

for all I C 	I , 2 , 3,............., n - 1 

By using ( I ) and induction on n , we have established. 

Theorem 9.9. It S be an inverse semigroup which is con-

tained. in End(G) and e e S with e. 2  = e. and e 1  

where I = I , 2 ,......, n - 1 • Then G has a semi-direct 

d.e composition 
n-i 

	

=K +(K 	i-ui 	)+H e 	• 	e 	e . 	e 
fl 1=1 	n-i 	n-1+1 	I 

If e , f are id.empotent elements in an inverse semigroup 

S C End(C.) , then ef = fe • It is a well-know fact that we have 

the following small semi-lattice 

e 	 f 

ef e 

ef 

From Theorem 9.7 , we certainly have K , Kf  C Kef and 

Hef ç He , Hf  • Unfortunately , we cannot get any nice relation 

among the kernels Ke 	K and the :images He 	Hf  • For 

=Kf +(K f flHf )+H f  



or = Ke  + ( Kef  n H ) + 

where 
K =Kf + ( K fl Hf  ) = Ke  + ( K fl H ) 

Hf = ( Kef A Hf  ) + Hef 
and 

He ' ( K fl He  ) + Hefef 

From the above decomposition , it is obvious that we cannot 

:iinpose any condition on K e , Kf He 

Here we shall consistently write E for the set of idempotent 

elements of the inverse semigroup S which is contained in End.( c). 

It is a subsemigroup of S , for if e , f e E then (ef) 2  = ef 

So ef is again an idempotent element and therefore belongs to E. 

Indeed it is a commutative semigroup of idempotents and so it forms 

a lower semilattice . It is a known fact that .E is also an inverse 

semigroup 

Let J be a finite index set . Suppose e i e E with I E 3 

then the product of any given m terms of e 1  c E with I e J is 

the meet of the products of the ( m - i ) terms out of the pre-

vious given m terms of e. in E • That Is to say if we have 

any product 

e e e........... 12 	 m 

then 

e e.............e.e. 	e. 	•......e 	e e 	........e 12 	 M. 	12 	m 

for all I • In the following , we thus build up a 1-Jasse diagram 

for n given idempotent elements e 1  , e2 ,•..•...., e in B 
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• . 	• e 
n 

....e e • ...... .... e 	e 3 	2n 	 n-in 

e e e n-2 n-i n 

e e e e 	e e e e....... .................•.... e 	e 	e 	e 1 2 3 4 	1 2 3 5 	 n-3 n-2 n-i n 
, 	 I 

I 	 / 
/ 

/ 
I 	/ 	

I 

e 1 e 2...e_1 	 ........ ....e 2e3e4......e 

e e e .....e 123 . n 

It is obvious that the elements in the Hasse diagram may not 

all be distinct . Hence we have at most n! distinct semi-direct 

decompositions of the given group G • Without loss of generality , 



we only consider the following semi-direct decomposition of the 

group C. by using the particular chain 

e 
1 
 2.... 
 n 

e 	 .e 	
e 1 2 

e .....e n-I 
	

........ 	
e 1 2
ee3 
	

e
1 2 
e Ee 

By applying the same argument as given for .  Theorem 9.9, we have 

KCK 	CK 	C ....... ...CK 	CK 
e 1  - e 4e - e 4 e 9e3  - 	 - n-I - n 

I 	
B e

:i.  . 	Be. 

HCH 	.......... 
fl 	- 	

-1 H 	Cli Cli 
 - e 1 e 2e3  - 	e 1 e 2  - e 1  

	

lie, 	Be. 

	

3. 	 1 
1=1 	i=1 

where 	K=K in +(x flH ) rn-I m rn-I 
lie, lie. lie. lie. 

1 
1=1 

. 	1 
11 

. 	1 
1=1 

3. 
1=1 

and 	H 	=H +(K flH ) in-I in in rn—i 
lie. lie. lie. lie. 

3. 
1=1 

. 	1 
1=1 

• 	1 1=1 
• 	1 
1=1 

for 	in c 	2 , 3 ,............., ii 	• 	So by the same argument as 

in The oreri 9.9 , we can decompose the group C. 	as follows : 
n 

G=K e +(K in 
flH 

rn-i 
)+H n 

I m=2 e. 	lie. lIe 1=1 1 	• 	1 
1=1 	 i=I 

3. 

Hence we have established. 

Theorem 9.10. Let E be the set of id.einpotent elements of 

the inverse semigroup S C End(G) . If there are n distinct 

id.empotent elements in E , then we have at most n! distinct 

semi-direct decompositions of the given group C. associated with 

id.empotents of 5 



In the sequel we are going to prove some very nice properties 

of certain kernels of end.omorphins that are contained in an inverse 

aemigroup . Let S be an inverse semigroup that is contained, in 

End,(G) . From the definition of an inverse semigroup , if a E S 

then there exists a unique element ( inverse ) b e S such that 

aba = a and bab = b . Again it is a well-known fact that ab and 

ba are idempotent elements of S 

Here we denote byK. , Kb Kab and. Kba ' the kernels of 

a , b , ab and ba respectively . Now we claim 

K = K 
a 	ab 

For if g c Ka  then we have ga = 0 • Since 

g(ab) = (ga)b = ob = o 

then 

gcK 
ab 

that is 
KCK 
a 	ab 

Again we have 

K CK =K 
ab— aba a 

since aba = a • Hence K = K 

	

a 	ab 

Analogously , we have 

Therefore 

'bba 

So we have proved. 
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Theorem 9.11 • If a is an element of an inverse semigroup 

S çEnd.((;) with aba = a and bab = b ( where b is a unique 

inverse of a ) then 

K =K 	and. 
a 	ab 

The next corollary is immediate from Lemma 9.3 and Theorem 9,11. 

Corollary 9.12. let a be a regular element of the semigroup 

S CEnd(G) . Then there exists an element b in S such that 

aba = a and bab = b ( b is far from unique ) ; we have 

K =K
'S'S a  and  a 	ab 

Theorem 9.15. Let e , f c End.(G.) , e 2 = e , f 2 =f.Then 

ef=e 	 >HCHf  

Proof : Assume ef = e holds • Then 

V y c He  3 x E G such that xe = y • Therefore 

y = xe = x(ef) = (xe)f = yf C Hf  

Since e e End.(G) —> y C G • Hence He  c Hf 

Conversely if He  CHf  , then 

V x e G , x(ef) = (xe)f = (zf)f 

Since Xe e He  C Hf 	, 3 Z C G such that zf = Xe 

Therefore 	x( 	2 ef) = zf = zf = Xe , aitice f 
2
= f 

Hence ef=e 

2 	2 Theorem 9.14. Let e , f C End.(C.) , e = e , f = f 

Then 	fe = e ( 	K C K f —  e 
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Proof : Assume fe = e holds • Then 

VXEKf  , xe=x(fe) 	 (since fe=e) 

= (xf)e 

=oe 	 (since xcKf xfo) 

=0 	 (since eeEnd(G),oe=o). 

This implies x cK• Hence K C K 
e 	 f— e 

Conversely if Kf  C Ke 	then 

V g e C , we have g - gf C Kf  . Since 

(g-gf)f=g-gf2 =-gf=o 

Since Kf CK 	, (g-gf)e=o 

Therefore 
ge -gfe=o 

Thus we have 

ge=gfe 	VgeC. 

Hence fe=e 

Thus we have the riext corollary 

Corollary 9.15. Let e , f c End(C) , e2 = e , f2  = f 

Then K CK and H C 	>ef=fe=e . f—e 	e— Hf 

The following example shows that in general the converse of 

Corollary 9.15 does not hold if we only have ef = fe 

Example 2 • Let C1  be an arbitrary group where i C I I , 2 

3 , 4 9 5 1 and C=C 1 xC2 xC3 xC4 xC5  agroup 	direct 

sum in the usual sense • Define 

e,f: C 	 via 
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e : (g1 ,g2,g,g4,g5 ) i 	' (g1 , 1, i, 1,g5 ) 

f : (g1,g2,g,g4,g5) F 	 1 92  1294 , i) 

It is obvious that e 2  = e , f2  = f , e , f c End.(G.) . Again 

we have 

ef = fe : (g 11 g2,g,g4,g5) i 	• >(g1 , 1, 1 31 1 1  i) 

But we have 

Ke  = I ( 1,g2,g,g4 , i) ; gi  C Gi  , 2 4 I 4 4 

= 	C i, i,g, i,g5) ; g1  4E G, 	I = 

H = I (g , i, i, i,g) ; g.1  c G1  . , I = 1 , 5 1 e 	1 
an 

Hf  = I (91 ,g2, 1,g4, 1) ; g.1  e G 1  . , i = I , 2 , 4 1 

Thus we cannot impose any relation among the kernels Ke j, Kf  

and the images He  I Hf  even- when we have - ef = fe 
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APPENDIX A 

In the sequel. , we shall give details of how to determine 

the map 0 given in Lemma 6.18 . Throughout the rest , we write 

V4 +X 

to denote the correspondence as follows : 

	

O+x 	 >0 

	

((12)+(34)) + x 	> w 

	

((13)+(24)) + x 	> y 

	

((14)+()) + x 	 30 Z 

	

In particular V4 	+ x 	- 	, represents the correspond- 

ence that sends the whole coset V4  + x to 0 . Furthermore we 

write 	V4(1-cbj)p 
= 

((13) +(24))x 

((14) +(23))X 

S 
= ( 23 )X 

(24)X 

(34) 

( 234 )X 

( 243 )X 

(1). Let p = -p 	+( 1 -çlr ) p 	+p 	-p 	+( 1 - ) p 	+p 

	

(1324) 	 1 	(13) 	(1324) 	(14) (13) 	(14) 
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Since v' (1-01 )p
(13) 

= ( 13)+((12)+(34))+(13) = (14)+(23) 

(13)+((13)+(24))+(13) = (13)+(24) 

(13)+((14)+(23))+(13) (12)+(34) 

Sf2,3,4P(,324)= (1423)+(23)+(1324) = (24) 

	

(24) 	= (14) 

	

(34) 	= (12) 

	

(234) 	= (142) 

	

(243) 	= (124) 

s f 	= ( 14)+(23)+(14) 2 , 3, 4  
 

(24) 

(34) 

(234) 

(24) 

(23) 

 

 

(123) 

(132) , we then have 

(24)+((14)+(23))+(24) + (23)+((14)+(23))+(23) = (13)+(24) 

(13)+(24) 	 (13)+(24) 	= (14)+(23) 

(12)+(34) 	 (12)+(34) 	= (12)+(34) 

(14)+((14)+(23))+(14) + (12)+((14)+(23))+(12) = (12)+(34) 

(13)+(24) 	 (13)+(24) 	= (13)+(24) 

(12)+(34) 	 (12)+(34) 	= (1)+(23) 

(12)+((14)+(23))+(1-2) + (13)+((14)+(23))+(13) = (14)+(23) 

(13)+(24) 	 (13)+(24) 	= (12)+(34) 

(12)+(34) 	 (12)+(34) 	= (13)+(24) 

(124)+((14)+(23))+(142) + (132)+((14)+(23))+(123) = o 

(13)+(24) 	 (1)+(24) 	= o 

(12)+(34) 	 (1)+(34) 	= o 

(142)+((14)+(23))+(124) + (123)+((14)+(23))+(132) = o 

(13)+(24) 	 (13)+(24) 	= o 

(12)+(34) 	 (12)+(34) 	= o 

Thus 1; V4  

V4  + (24) 

v4 +(243) 	)O 
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: v4 +(23) 	 0 

i()( 4 ) 

1(14) +( 23) 

1( 1  2)+(34) 

V4  +(24) 

I)() 

	

1 (13)+(24) 	- 

1(14)+(23) 

v4 +(34). 	 0 

I (14)+(23) 

1(12)+(34) 

1(13)+(24) 

(2)Let = - c 1 +(1- b1 )p 	 )p 

	

+VJ1 - o+(1-c1I 1 	+9' 

	

(12) 	(14) 

Since 	V 1  (i-j
1 
 )p 	= (12) + ((12)+(34)) + (12) = (12)+(34) 4 	(12) 

	

(13)+(24) 	= (14)+(23) 

	

(14)+(23) 	= (13)+(24) , 

 

 

(34) 

(234) - 

(24) 

2,3,4}(14) = (14) 
(14) 

(14) 

0 
' we then have 

+ (14)+((12)+(4))+(14) = o 

(14)+(23) 	 V 	(14)+(23) 	= o 

(13)+(24) 	 (13)+(24) 	= o 

(24)+((12)+(34))+(24) + (14)+((12)+(34))+(14) = (12)+(34) 

(14)+(23) 	 (14)+(23) 	= (13)+(24) 

(13)+(24) 	 (13)+(24) 	= (14)+(23) 

(34)+((12)+(34))+(34) + (14)+((12)+(34))+(14) = (14)+(23) 

(14)+(23) 	 (14)+(23) 

(13)+(24) VV 	 (13)+(24) 	= (13)+(24) 



(243)+((12)+(34))+(234) + 0+((12)+(34))+o = (14)+(23) 

(14)+(23) 	 (14)+(23) 	= (13)+(24) 

(13)+(24) 	 (13)+(24) 	= (12)+(34) 

(234)+((12)+(34))+(243) + 0+((12)+(34))+o = (1) ~( 4 ) 

(14)+() 	 (14)+(23) 	= (12)+(34) 

(13)+(24) 	 (13)+(24) 	= (14)+(23) 

Thus 	0: V4  

v4 +(24) 

(i 2)+(34) 

(13)+(24) 

(14)+(23) 

V4  + (234) 	 9-1 

(14) +( 23) 

(13)+(24) 

(12)+(34) 

v4 +(23)- 

v4 +(M) 	 >0 

(14)+(23) 

(12)+(34) 

(13)+(24), 

v4  + (2) 

I( 13)+(24) 

f 12+4 

k 14)+(23). 

(:5). 4+ 	: V4  

V4  + () 

0 

0 

(13)+(24) 

(14) +( 23) 

(12) +( 34) 

v4 +(24) 	 )0 

v4 +(34) 

, + (234) 	 0

t(14)+(23) 

(13)+(24) 

(12)+(34) 

V4 . + (243) 	
1

0 

(13)+(24) 
(12)+(1) 
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-p 	+ 	 1)p 	+ p 	+ (1-c 1 )p 

	

(12) 	 (•34) 	(12) 	 (34) 

Since 	v' (i-çir )p 	= (34) + ((12)+(34)) + (34) = (12)+(34) 1 	(34) 

(1s)+(24) 	 = (14)+(s) 

(14)+(23) 	= (13)+(24) 

S(2,5,4 P(12)  = ( 12)+(25)+(12) 

(24) 

(54) 

(234) 

(24s) 

(15) 

(14) 

(54) 

(154) 

(143) , we then have 

+ ((12)+(34)) = ( is)+() 
(14)+(23) 	 (14)+(25) = (15)+(24) 

(13)+(24) 	 (15)+(24) = o 

(14)+((12)+(54))+(14) + ((12)+(34)) = 

(14)+(23) 	 (14)+(23) = 0 

(13)+(24) 	 (15)+(24) = (14)+(23) 

(34)+((12)+(34))+(54) + ((12)+(34)) = 0 

(14)+(23) 	 (14)+(23) = ( i)+(s) 

(15)+(24) 	 (15)+(24) = (12)+(54) 

(143)+((12)+(54))+(154) +((12)+(34)) = (13)+(24) 

(14)+(23) 	 (14)+(23) = (12)+(54) 

(15)+(24) 	 (13)+(24) = (14)+(23) 

(154)+((12)+(34))+(145) +((12)(34)) = (14)+(23) 

(14)+(25) 	 (14)+(3) = (1s)+(24) 

(13)+(24) 	+ (1)+(24) = (1)+(s4) 

Thus a.: 	V4 	 >0 

v4+(25) 	 0 

J (15)+24)  
I (15)+(24) 

1.0 



S 

a : v4 +(24) 

I(i4)+(o) 

1(14)+(23) 

V4  + (34) 	
i 

1 (12) +( 34) 

1(12)+(34) 

V4  + (234) 

1 (1 2)+(34) 

1(14) +( 23) 

v4  + (2) 

I(14)+(23) 

1 (13) +( 24) 

1(12)+(34) 

(1-ç& 	 (1- 1  (5). Let 	= -
p 	+ 	)p 	+ p 	+ 	) p

I (12) 	(23) 	 (12) 

10 	( by(2)  ). 1 	(12) 
Sce (i -p )p 	: V4 	

(12)+(34) 

I(14)+(23) 

L(13)+(24) , 

and 	S2,3,4P(23) = (23)+(23)+(23) 

(24) 

(34) 

(2) 

(2) 

 

(34) 

 

(243) 

(234) , we then have 

(23)+((12)+(34))+(23) + ((12)+(34)) = (14)+(23) 

(14)+(23) 	 (14)+(23) =ó 

(13)+(24) 	 (13)+(24) = (14)+(23) 

(34)+((12)+(34))+(34) + ((12)+(34)) = o 

(14)+(23) 	 (14)+(23): = (12)+(M) 

(13)+(24) 	 (13)+(24) -- (12)+(M) 
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(24)+((12)+(34))+(24) + ((12)+(34)) = (13)+(24) 

(14)+(23) 	 (14)+(23) = (13)+(24) 

(13)+(24) 	 (13)+(24) = 0 

(234)+((12)+(34))+(243) .+ ((12)+(34)) = (13)+(24) 

(14)+(25) 	 (14)+(23) = (12)+(34) 

(13)+(24) 	 (1)+(4) = (14)+(23) 

(243)+((12)+(34))+(234) + ((12)+(34)) = (14)+(23) 

(14)+(23) 	 (14)+(23) = (13)+(24) 

(13)+(24) 	 (13)+(24) = (12)+(34) 

Thus 	y : V4 	 >0 

v4 +(23) 	 0 

(i4)+(23) 

(14) 23) 

V4  + (i) 	 0  

L12+34 

V4  +(4) 

(1 ) +( 24) 

[0 

+ (234) 

(12) +( 34) 

k 14)+(23 

+ (2) 

J(14) +( 23) 

1( 13 )+( 24 ) 	 - 

k12)+(34) . 
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a + y 	: 	V4  

v4 +(23) 

1(12)+(4) 

i(1)+(24) 

[(14) 23) 

v4 +(24) 

1 (14)+(23) 

1 (1 2)+(34) 

V4  +(4) 	
If 

1(14)+(23) 

1( 1  2)+(34) 

V4  + (234) 

v4  + (24) __--------o 

—1+cz+y+1 : 	V4 	o 

_V4 + 

 

I (i 2)+(34) 

(14)+(23) 

V4  + () 	

(12)+(34) 1 (i4)+() 

(13)+(24) 

V4  + () 	

(14)+(23) 

(13)+(24) 

(i2)+(34) 
•'T + ( 4) V4 	

1 v4  + (2) 	 0  
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(8) Let 	p=—p 	+(—.i + a + y + 1 ) + p 	. 	Since 
(14) 

Sj'2,3,4 P(14)  () 

 

 

(i) 

(8ee (i) ) 	(132) and 

(23)+(13)+(24)+(23) = (12)+(34) 

(12)+(34) 	= (13)+(24) 

(14)+(23) 	= (14)+(23) 

(12)+(12)+(34)+(12) = (12)+(34) 

(14)+(23) = (1)+(4) 

(13)+(24) = (14)+(2) 

(13)+14)+(23)+(13) = (12)+(34) 

(13)+(24) = (13)+(24) 

(12)+(34) = (14)+() 

i : V4 	 >0 

V4  + (23) 

- 	1() 
V4 + 

+ ( 

v4 +(234) 

v4 +(245) 	 0 

(9) 	Let 	co = - I + (1—çlc 1 )p 	+ I + ( 1 c 1 )P 
(12) 

Since 0-0  )p 	: v4 	 —f 0 
1 (12) 	

(12)+(34) 
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(i4)+(23) 

(13)+(24) 

(23)+(12)+(34)+(23)+(12)+(34) = (14)+(23) 

(14)+(23) 	(14)+(3) = o 

(13)+(24) 	(13)+(24) =(14)+(25) 

(24)+(12)+(34)+(24)+(12)+(34) = (13)+(24) 

(14)+(23) 	(14)+(23) = (13)+(24) 

(13)+(24) 	(13)+(24) = 0 

(34)+(12)+(34)+(34)+(12)+(34) = 0 

(14)+() 	(14)+(23) = (12)+(34) 

(13)+(24) 	(13)+(4) 	(1)+(34) 

(2)+(12)+(34)+(234)+(12)+(34) = (1)+(3) 

(14)+(23) 	(14)+(23) 

(13)+(24) 	(13)+(24) = (12)+(34) 

(234)+(12)+(34)+(243)+(12)+(34) = (13)+(24) 

(14)+(23) 	(14)+(23) = 

(13)+(24) 	(13)+(24) = (14)+(23) 

ci ; V4 	 >0 

V4 + 

1(14) +( 23) 

v4 .+ (4) 	 0 

(i3)+(24) 

(13)+(24) 

0 

v4 +(34) 	 0 

. I 0 

(i 2)+(34) 

L(12)+(34) 

and 
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v4 +(234) 	 )0 

(14)+(23) 

(13) +( 24) 

(12)+(34) 

V4  + (243) 

(13)+(24) 

(i 2)+(34) 

(14)+(23) 

(10). We have already shown 6 in (i) 

—p 	+P+p 	: V4  
(12) 	 (12) 

v4 +(23) 

(13)+(24)  (12) +( 34) 

(14) +( 23) 

V4  + (24) 	

1  
V4  +(34) 

v4 .+(234) 

- 	v4 +(243) 

Since 	(23)p 	(13) , (24)p 	= (14) , (34)p 	=(34) and 
(12) 	 (12) 	 (12) 

(13)+(13)+(24)+(13) = 

(14)+(23) 	= (12)+(34) 

(12)+(34) 	= (14)+(23) 

(14)+(12)+(34)+(14) = (13)+(24) 

(13)+(24) 	= (12)+(34) 

(14)+(23) 	=(14)+(23) 

= •(i3)+(24) 

(12)+(34) 	= (12)+(34) 

(13)+(24) 	= (14)+(23) 
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(ii). See (7) and (1 0) . We have 

- P(12) + P + P(2) + ( - i + a + y + I ) : 

V4  

v4+(23) 	- 

v4 +(24) 

(i4)+() 

(13)+(24) 

(12)+(34) 

v4+(M) 	 - 10 

(i 2)+(M) 

(14) +( 23) 

(13)+(24) 

V4  () 

v4 +(24) 

let 	= - . p 	1-p 	++p 	+(i+y+i)+p 
(1324) \ (12) 	 (12) 	J 	(1324) 

: V4  

	

v4  + (23) 	 7-0 

v4 +(24) 

(i4)+() 

(12)+(34) 

(1)+(24) 

	

v4 +(4) 	 , 

(12)+(34) 

(13) +( 24) 

(i4)+() 

v4+(2134) -
0. 

v4 +(243) 
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Since 	(24)p 	= (14) , (34)p 	= (12) and 
(1324) 	 (1324) 

(14)+(14)+()+(14) 

(13)+(24) 	= (12)+(34) 

(12)+(34) 	= (13)+(24) 

(12)+(12)+(34)+(12) = (12)+(34) 

(14)+() 	= (13)+(24) 

(13)+(24) 	= (14)+() 

(12). It 	77 = -p 	+ (_ 	+ p + p 	+ (_1+a+Y+1)) + p 
(14) 	 (12) 	 (12) 	 (14) 

77 	: 	V4  
/ 

+ (23) 

v4+(24) 	 10 

(i)+(4) 

(14) +( 23) 

(12)+(34) 

V4 

+ 

(12)+(34) 

- 	 1(13)+(24) 

v4 +(234) 	 ->0 

v4 +(243) 	 o 

Since 	(24)p 	= (12) , 	(34)p 	= (13) and 	( by (11) ) 
(14) 	 (14) 

(12)+(14)+(23)+(12) = (13)+(24) 

(13)+(24) = (14)+(23) 

(12)+(34) 

(13)+(12)+(34)+(13) = (14)+() 

(14)+(23) 	= ~ 12 ~ +~ 34 ~
(13)+(24) 	= 13+24 
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By (2) , (ii) ansi (12) , we have 

+i1+: V4  

v4 +(23) 	 .0 

v4 +(24) 

v4 +(34) 	 •0 

I(12)+() 

t (13)+(24) 

1(14)+(23) 

V4 + 
(234) 1 0 

 

(13)+(24) 

1 (1 2)+(34) 

V4  + (24) 	 0 

l(13)+(24) 

1(12)+(34) 

1( 1  4) +( 23) 

By (4) , (8) and (9) , we have 

y a+w+p:.V4 	 O   

V4  + () 	 0  

7 v4 +(24) 	 0   

V4  + (34) 	 0

i(12)+(34) 

 

V4  

+ 	

0 

 

1(14)+(23)  
(13)+(24)  

V4  + (243) 	 10 

t(1423)  (13)+(24)  
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By (13) and (14) , we have 

a+w+p++i+ 	V4 	 .> 0 

v4 +(23) 

v4 +(24) 

v4 +(34) 

v4 +(234) 	 > 0  

(i 3) +( 24) 

(i 2)+(34) 

1(14)+( 2,3) 

V4  + () 
	

0 

(14)+(23) 

(13) +( 24) 

(12)+(34) 

By (15) , we have 

-p 	+ .( a+,+p.,4+ij+) + p 
(234) 	 (234) 

V4  

v4 +(23). 

v4 +(24) 	 >0 

V + (4) >0 

+ (234). 	

l(14)+(23) 

j(13)+(24) 

1(1 2)+(34) 

v4 
 + (243) j(13)+(24) 

I(i 2)+(34) 

k 14+ 

Since (234)p 
(234) = (

234) , (243 
(243) 

)p 	= ( 243) and 
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(24)+(13)+(24)+(234 ) = (14)+(23) 

(12)+(34) 	= (13)+(24) 

(14)+(23) 	 (12)+(34) 

(234)+(14)+(23)+(243) = (13)+(24) 

(13)+(24) 	 (12)+(34) 

(12)+(34) 	 (14)+(23) 

By (16) and (3) , we have 

o = -p 
(234) 

+ ( a+w+p4+77+) + p ( 234) 
 + + P 

V4  + (23) 

(14)+(.23 

(12)+(34) 

S4  - ( v4  + (23) ) 	 > o 

Let a = (1 -01 )p 	- P(142) + (1-01 )P 	p 

Since v' (i-&1 
(134) 

)p 	= (143)+(12)+(34)+(134) 	(14)+(23) 
4  

(13)+(24) 	= (12)+(34) 

(14)+(23) 	= (13)+(24) 

Sf2,3,4P(142) = (124)+(23)+(142) 

(24) 

(34) 

(234) 

(24i) 

(i 3) 

(12) 

(23) 

(132) 

(123) 

and 	(14)+(23)+(13)+(14)+(23)+(13) = (13)+(24) 

(12)+(34) 	(12)+(54) 	= (13)+(24) 

(13)+(24) 	(13)+(24) 	= o 

(14)+(23)+(12)+(14)+(23)+(12) = (12)+(34) 

(12)+(34) 	(12)+(34) 	= o 

(13)+(24) 	(13)+(24) 	= (12)+(34) 
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(14)+(23)+(23)+(14)+(23)+(23) = o 

(12)+(34) 	(12)+(34) 	= (14)+(23) 

(13)+(24) 	(13)+(24) 	= (14)+(23) 

= (13)+(24) 

(12)+(34) 	(12)+(34) 	= (14)+(23) 

(13)+(24) 	(13)+(24) 	= (12)+(34) 

(14)+(23)+(132)+(14)+(23)+(123) = (12)+(34) 

(.12)+(34) 	(12)+(34) 	= (13)+(24) 

(13)+(24) 	(13)+(24) 	= (14)+(23) , 

we then have 

a : V4 	 0 

v4 +(23) 

(13)+(24) 10 
v4 +(24) 

1(12)+(34) 

2)+(34) 

v4 +(34) 

Io 
(14)+(23) 

14) +( 23) 

v4 +(234) 

1(13)4( 24) 

(14)+(23) 

(i 2)+(34) 

V4  + (4) 

\ 2)+() 
(13)+(24) 

. 
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