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Lay Summary

Quantum Field Theory (QFT) is the theoretical framework through which

we understand the interactions between fundamental particles. QFT’s primary

output are scattering amplitudes which can be thought of, roughly speaking, as

the square root of the probability for a certain state containing some number of

particles carrying particular momenta to have originated from the scattering of

a particular state of incoming particles and associated momenta.

For QFTs in which the strength of interactions between particles is small,

we compute said scattering amplitudes through a perturbative expansion. This

means that, since we are unable to fully determine the scattering amplitudes of

the QFTs commonly found in nature, we approximate by considering increasingly

small corrections to the amplitude which at some point are small enough that they

will not be relevant for present practical purposes and so can be disregarded. We

call the corrections which are of the same size an ‘order’ in the series, with

the actual, as opposed to approximated, amplitude being equal to the sum over

all orders of corrections. This allows us to produce predictions for scattering

experiments, such as the Large Hadron Collider (LHC), that would otherwise be

impossible to obtain.

However, it does however have a drawback. The contributions which we

must compute in the pertubative expansion of scattering amplitudes are often

infinite when particles carry vanishingly small energy. This phenomenon is known

as an infrared (IR) singularity. These infinities, when carefully treated and

combined, cancel when all of the contributions at each individual order in the

series are summed to produce a meaningful physical prediction. This treatment

is non-trivial and has been an area of active research since the conception of

phenomenological QFTs.

The IR singularities of Quantum Chromodynamics (QCD), the QFT which
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describes the interactions between the quarks and gluons which constitute protons

and neutrons, have been computed only up to two orders in the perturbative series

and so in this thesis we take steps towards computing the IR singularities for any

QCD amplitude at the third order in the expansion. We do so through a modern

theoretical tool, known as a web, which allow the computation of the singularities’

coe�cients without having to compute the full third order correction.
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Abstract

Amplitudes in theories with a massless gauge boson su↵er from so-called

infrared divergences where o↵-shell states become asymptotically close to the

mass-shell in loop or phase-space momentum integrals. These singularities have

been shown to cancel intricately order-by-order in the perturbative expansion.

However, in order to obtain meaningful and precise predictions for physical

observables, we must understand and compute such divergences to high orders.

This can be accomplished by calculating webs: weighted sets of Feynman

diagrams which, when exponentiated give the complete infrared singular com-

ponent of the amplitude, known as the soft function. This quantity is formally

equivalent to a vacuum expectation value of a product of Wilson lines. In this

thesis we shall study webs correlating multiple Wilson lines, which di↵ers from

the two line case due to the possibility of non-trivial colour flows. This renders

the soft function matrix valued in the space of colour flows, thus making its

calculation and renormalisation non-trivial. At present, the infrared singularities

of non-abelian, multiparton scattering amplitudes are known only to two loops in

general kinematics, and to three loops in a simplifying kinematic limit. This thesis

will thus form part of a program of work aimed at calculating and understanding

the three-loop singularities in general kinematics and in doing so we aim to gain

all-order insights into the pertubative structure of non-abelian gauge theories.

We first specialise to a subset of webs which we have called Multiple Gluon

Exchange Webs (MGEWs), which contain only those diagrams with direct

exchanges of soft gauge bosons directly between Wilson lines with no intervening

three- or four- boson vertices. Studing their properties allows us to construct a

basis of functions which describes all examples of such webs, and we conjecture

will continue to do so at any order. Furthermore, we find that the basis functions

can be described by a simple, one-dimensional integral over only logarithms. We
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go on to compute several examples providing evidence for the validity of our basis

and demonstrate the utility of the framework we have built by computing a four-

loop web and providing some all-order results for particular classes of MGEW.

We then consider a step beyond MGEWs, that is, webs which contain a single

three-gluon vertex sub-diagram. In particular we study the simplest web in this

class correlating four lines at three loops and attempt to calculate it through the

numerical fitting of a physically motivated ansatz. We show that this web cannot

carry kinematic dependence through conformal invariant cross ratios, which arise

when connected subdiagrams correlate at least four lines. Hence, it is subject

to the same constraints as MGEWs with regards to their symbol alphabet, from

the physical considerations in their lightlike limit and spacelike/timelike analytic

continuation. Like all other known webs satisfying such constraints, we therefore

argue that it can be written in terms of sums of products of MGEW basis

functions. Symmetries inherent to our parameterisation of the cusp angles, Bose

symmetry and transcendental weight further constrain this ansatz, resulting in

forty parameters for which we present preliminary results of a numerical fit.
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Chapter 1

Introduction

Beyond the leading order of the perturbative expansion of gauge theory scattering

amplitudes, o↵-shell degrees of freedom with undetermined momenta (loops)

result in amplitudes which are expressed in terms of divergent Feynman integrals.

Di↵erent regions in the loop momenta phase-space produce these divergences,

requiring di↵erent techniques to resolve meaningful physical observables from the

theory’s amplitudes.

The most famously studied of these divergences arise from infinitely large

momentum transfer in loops and so are named ultraviolet (UV). This issue, first

encountered in QED in the 1930s, was not resolved until the 1940s by Dyson,

Feynman, Schwinger, Tomonaga, et. al. through the process of renormalization.

This procedure makes use of an infinite shift of the ‘bare’ parameters, themselves

infinite, of the langrangian to absorb the divergences of the scattering amplitudes,

leading to finite observables. This makes some intuitive sense given that infinitely

high energy particles are probing infinitely short distances and so are treated

as corrections to the interaction vertices of Feynman graphs. Renormalized

quantum field theories have had tremendous success in recent years, in particular

the Standard Model of particle physics which has proven incredibly accurate in

comparison with collider data.

In theories with massless propagating particles, scattering amplitudes su↵er

from so-called infrared (IR) and collinear divergences where the components of

loop momenta vanish resulting in propagators coming asymptotically close to the

mass shell. To illustrate this, consider the emission of an o↵-shell gauge boson

with momentum k from a massless particle with fixed momentum p as depicted

1



p

k

Figure 1.1: A soft photon emission from a hard external parton in a general
amplitude. This will generate a propagator with singular limits in the momentum
k, D(p+ k), as shown in Eq. (1.1).

in Fig. 1.1. We will find that the amplitude contains a propagator, which in the

limit where the emitted gauge becomes soft1, i.e. kµ ⌧ pµ,

D(p+ k) =
1

(p� k)2
kµ!0����! � 1

2p · k = � 1

2EpEk(1� cos ✓)
. (1.1)

Here, Ep and Ek are the energies carried by the particles with momenta p and

k respectively, and ✓ is the angle between their respective three-momenta. In

the integration over the momentum k, IR singularities will arise where Ek ! 0

and collinear singularities where ✓ ! 0. Note also these singular regions can

overlap where Ek and ✓ vanish simultaneously resulting in higher order poles of

the amplitude. However, if the emitting particle is instead massive then no such

collinear singularities arise, and naturally no overlapping region exists2.

Where the high energies of UV momenta probe short distances, the IR region

corresponds to long distance scales. Thus, the problem invites di↵erent solutions

than the local treatment of renormalization. Fortunately, no further modification

of the mathematical framework of the theory is necessary. The IR singularities

arising from virtual (loop) diagrams cancel with those arising from real emission

diagrams order-by-order in the perturbative series (the famous KLN theorem

[9, 10]) for so-called infrared safe observables [9–11], which are insensitive to

1Often in the literature ‘soft’ and ‘IR’ are used interchangeably. Similarly the high energy
particles of the amplitude are referred to as ‘hard’.

2A more rigorous treatment than this requires the use of Landau equations [4] which give the
necessary conditions for which to find divergences in general Feynman integrals; the Coleman-
Norton physical picture [5] for associating the solutions of the Landau equations to singularities
of the amplitude; and power counting techniques [6, 7]. While these topics will not be covered
in this thesis, there are now a number of excellent reviews covering the classification of these
singular regions, e.g. [8], which lead to the factorization theorem we shall discuss in Sec. 2.2.
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long-distance physics. We can interpret this by considering the definition of

the S-matrix in such theories, which requires a Fock space of free asymptotic

states3. This is inconsistent with the existence of long-distance interactions which

result in degenerate final states with arbitrary numbers of soft bosons, which are

indistinguishable. The KLN theorem states that observables constructed from

sums over all such degenerate states are IR finite to all orders in perturbation

theory, and manifests in Feynman diagrams as precisely this cancellation between

real and virtual soft and collinear singularities. KLN applies in non-abelian

theories and is a generalization of the Bloch-Nordsieck cancellation in abelian

theories [15].

Though IR singularities cancel, it is vital that they are computed and

thoroughly understood for several reasons. For the purposes of phenomenology,

problems arise when attempting to integrate over the phase-spaces of final state

particles. For instance, if we consider again Fig. 1.1 and Eq. (1.1) above but

with the momentum k carrying particle now on-shell, the phase-space integration

over k and p will generate the same singular regions at the level of the cross-

section. In order to achieve meaningful results from such integrals numerically,

one must somehow implement the cancellation of the IR poles encountered in this

phase-space integral with the IR divergences coming from virtual corrections at

each order in the perturbative series. Such subtraction algorithms, are di�cult

to produce for arbitrary processes. In fact, at present an algorithm for generic

processes is only known at Next-to-Leading-Order (NLO) [16–18].

Furthermore, the cancellation between real and virtual IR singularities is

incomplete in that it leaves residual large logarithmic corrections to infrared safe

observables. Schematically this takes the form

1

✏
|{z}

virtual

+ (Q2)✏
Z m2

0

d(k2)

(k2)1+✏

| {z }

real

+ O(✏0) = log

✓

Q2

m2

◆

+O(✏0) , (1.2)

where Q2 represents some hard energy scale, such as one of the Mandelstam

invariants; m is some process dependent phase-space limit, for example a jet

mass, and ✏ = (4 � d)/2 is the dimensional regularization parameter, where d is

3The physical asymptotic states in such theories are actually coherent states with an
indeterminate number of constituent particles [12, 13]. Theories of coherent states have S-
matrices free from IR divergences [14].
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the number of space-time dimensions. Therefore, in kinematic limits where there

is a strong hierarchy between these scales (e.g. Q2 � m2) such logarithms provide

a dominant contribution to the observable. This also threatens the convergence

of the perturbative series where corrections involving powers of ↵s log(Q2/m2) ⇠
O(1) and where there are overlapping soft and collinear singularities there are

even powers of ↵s log
2(Q2/m2) which ruin convergence for log(Q2/m2) ⇠ 1/

p
↵s.

By studying the structure of IR singularities in the amplitude it is possible

to resum these large logarithms, restoring convergence and providing increased

precision for certain collider observable predictions. The e↵ect of this technique

is to collect the large logarithms into an exponential pre-factor multiplying the

fixed order perturbative terms. Given that the exponential function has an infinite

radius of convergence and we are working in the perturbative regime of the gauge

theory, both of these factors are now well behaved allowing correct predictions

of physical observables. The computation of IR and collinear singularities is

therefore vital given that the coe�cients of these logarithms is dictated by the

coe�cient of the virtual pole in Eq. (1.2), and is made possible through the IR

factorisation and exponentiation theorems we shall review in chapter 2. This

technique has found many phenomenological applications, for example in the

study of jet physics [19, 20], top-quark pair production [21] and event shapes

[22–24]. It not only provides increased precision for collider observables, but can

in some cases be the only way to recover the correct functional form of certain

observables from a fixed order calculation. A typical example of this is the thrust

di↵erential cross-section for quark-antiquark production, which is covered along

with a review of the subject in Ref. [25]. For further review see Refs. [8, 26].

From a theoretical perspective, IR singularities are of interest as the Feynman

integrals involved in their computation are simpler than those encountered

in complete amplitudes, though they retain non-trivial dynamical and charge

information. They also exhibit useful and interesting properties such as

universality (Sec. 2.2), factorization (Sec. 2.2), and exponentiation (Sec. 2.3).

Moreover, it is now well known (and will be discussed in Ch. 2) that the IR

and collinear singularities of amplitudes can be mapped to the UV divergences

of correlators of Wilson line operators [3, 27–32] which are of interest in both

gauge and gravity theories [3, 27, 31–41]. In maximally supersymmetric (N = 4)

Yang-Mills it has been found that the iterative structure found in IR singularities
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persists in the finite parts of planar amplitudes [42, 43] and the study of the IR

is also providing insights into the structure of its non-planar amplitudes (see, for

example, Refs. [44–46]). Furthermore, the IR singularities of N = 4 super-Yang-

Mills provide a link between the weak and strong coupling regime [47–55].

In non-abelian theories, such as QCD, there is a fundamental di↵erence

between the case where the amplitude contains only two hard, colour-charged

partons (for example e+e� ! qq) and the case of multiparton scattering in

which three or more hard colour charged partons are present. In the latter,

scattering amplitudes involve non-trivial colour flows leading to a far richer

structure [1, 56–61]. Multiparton scattering amplitudes are therefore vectors in

the space of possible colour configurations which is acted upon by its factorized

soft component as a matrix in this space (see Sec. 2.2 for more details).

In QCD processes involving only two hard partons, the IR divergences have

been calculated up to two-loop order [3] (see also [62]), and very recently to three

loops in Refs. [63, 64] with some partial results at four loops [50, 52]. In N = 4

super-Yang-Mills theory it is known to three loops [49, 51], and partial results

have been recently obtained at four loops [50, 52]. For multiparton amplitudes,

the soft anomalous dimension has been calculated up to two-loop order for both

massless [65, 66] and massive [67–70] Wilson lines (see also [60, 71–76]).

Where we consider only massless hard partons, the two-loop result [65, 66]

turns out to have the same colour-dipole structure as found in the one-loop

correction, motivating an ansatz for the all-order structure of infrared singularities

in massless gauge theories, the dipole formula [77–79]. This structure can be

violated starting at three loops through highly constrained corrections [46, 77–

88], and very recently, results have been presented for the multiparton three-loop

singularities in the limit where the parton masses are taken asymptotically small

[89], confirming the breakdown of the dipole structure. Further evidence of a

discrepancy with the dipole formula has been found at four loops [88].

With massive hard partons, much of this simple structure is lost, as ‘colour

tripole’ corrections are present beginning at two loops [67–69]. The asymptotic

massless limit, where the tripole correction vanishes, involves a subtle cancellation

between di↵erent diagrammatic contributions, which have di↵erent analytic

behaviour in the massive case. At present however, the IR singularities at three

loops for multiparton amplitudes have yet to be computed in general kinematics
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(i.e. away from the asymptotic lightlike limit [89]).

As mentioned above, and as will be discussed in the chapter to follow, IR

singularities in both abelian and non-abelian gauge theories exponentiate. This

exponent is given a diagrammatic interpretation through webs [90–92]: sets of

Feynman diagrams related by exchanging the order of emission along the hard

partons4; weighted by combinatorial factors [56]; and accompanying a so-called

exponentiated colour factor (ECF) corresponding to fully connected colour graphs

[61, 91, 92]. When phrased in this way, the problem of computing singularities

is simplified as the number of diagrams is greatly reduced. Moreover, a number

of physical constraints can be placed on webs [56, 58], providing many useful

checks, and revealing a rich structure of their own. Recent advances have been

made in the calculation of multiparton webs [56, 58, 60, 61], web combinatorics

[56, 59, 61, 93] and their analytic structure [60]. Our goal then in this thesis is

to build upon these results towards a calculation of the three loop multiparton

exponent in general kinematics.

The outline of the thesis is as follows. In Ch. 2 we review the methods we

shall use to study IR singularities and introduce the notation and concepts which

shall appear in the bulk of the thesis. In Ch. 3 we specialize to a particular class

of webs in which the gluons are exchanged directly between hard partons with

no intervening three- or four-gluon-vertices, named multiple gluon exchange webs

(MGEWs) in [60]. We study their all-order properties and conjecture an all-order

basis of functions describing these webs. We go on to compute several examples

providing evidence for the validity of our basis and demonstrate the utility of the

framework we have built by computing a four-loop web and providing some all-

order results for particular classes of MGEW. Following this, in Ch. 4 we consider

the next class of webs in the determination of the three-loop exponent, those

containing a single three-gluon-vertex convoluted with multiple gluon exchanges.

In particular we focus on the simplest of this class, which correlates four hard

partons, and explore means by which it can be computed. We present preliminary

results for a numerical fit of an ansatz, based on MGEW basis functions, which we

argue will describe this web. Throughout we work in dimensional regularization

with d = 4 � 2✏, and will calculate in the Feynman gauge unless otherwise

explicitly stated.

4This definition is specific to the multiparton case, though the technicalities shall be reviewed
in Ch. 2.
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Chapter 2

Review: Infrared Singularities

2.1 Introduction

Given the above motivation, we are now prepared in this chapter to review the

study of IR singularities. This will provide the background and framework for

the discussions to follow. To illustrate the relevant concepts, let us consider a

one-loop contribution to the e+e� QED form factor, see Fig. 2.1,

F (1), µ(Q,m2) =

Z

ddk

(2⇡)d
Numµ⌫⇢(p

1

, p
2

, k) D⌫⇢(k)
⇥

(k + p
1

)2 �m2 + i"
⇤⇥

(p
2

� k)2 �m2 + i"
⇤ , (2.1)

where Q ⌘ p

(p
1

+ p
2

)2 and with the numerator,

Numµ⌫⇢(p
1

, p
2

, k) = �g2 u(p
1

) �⌫ (/p
1

+ /k +m) �µ (/p
2

� /k +m) �⇢ v(p
2

) , (2.2)

where m is the election mass. The soft limit, where we take all components of

the loop momentum kµ ⌧ Q, can be found by taking only the leading term of

this integral as all components kµ vanish. In this limit, the factors of /k in the

numerator are negligible along with any k2 in the denominator. The contribution

to the form factor in the soft limit is therefore

F (1), µ
s (Q,m2) = �g2

Z

ddk

(2⇡)d
D⌫⇢(k)

✓

1

2k · p
1

+ i"

◆✓

1

�2p
2

· k + i"

◆

⇥u(p
1

) �⌫ (/p
1

+m) �µ (/p
2

+m) �⇢v(p
2

) .

(2.3)
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2.1. Introduction

p1

p2

k

Figure 2.1: The one-loop correction to QED form factor

Further simplification can be found by application of the Cli↵ord Algebra for the

Dirac matrices, {�µ, �⌫} = 2gµ⌫ , along with the Dirac equations for fermion and

anti-fermion spinors, u(p
1

)(/p
1

�m) = (/p
2

+m)v(p
2

) = 0, giving

F (1), µ
s (Q,m2) =� g2 [u(p

1

)�µv(p
2

)]

Z

ddk

(2⇡)d



D⌫⇢(k)

⇥
✓

p⌫
1

k · p
1

+ i"

◆✓

p⇢
2

�p
2

· k + i"

◆�

.

(2.4)

A number of interesting observations can be made here. Firstly, we note the

appearance of the tree-level form factor,

F (0), µ(Q,m2) = u(p
1

)�µv(p
2

) , (2.5)

indicating that the e↵ects of the soft photon loop factorize from the finite, hard

part of the interaction. Furthermore, the spinor structure of the amplitude has

factorized from the soft component, along with any sensitivity to the scale of the

hard momenta p
1

and p
2

. This reflects the fact that a soft photon cannot possibly

change the momentum or spin of the hard particles from where it is emitted or

absorbed.

Let us continue the QED example by considering multiple virtual emissions

as shown in Fig. 2.2. When we have n photon loops, the emissions coming from

the electron will contribute the following factors to the soft approximation of the
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2.1. Introduction

p1

p2

Figure 2.2: The n-loop ‘ladder’ diagram

amplitude,

gn
u(p

1

) �⌫1(/p
1

+m)�⌫2(/p
1

+m) . . . �⌫n(/p
1

+m)

2p
1

· k
1

2p
1

· (k
1

+ k
2

) . . . 2p
1

· (k
1

+ . . .+ kn)

= gn
u(p

1

) p⌫1
1

�⌫2(/p
1

+m) . . . �⌫n(/p
1

+m)

p
1

· k
1

2p
1

· (k
1

+ k
2

) . . . 2p
1

· (k
1

+ . . .+ kn)
(2.6)

= gn
u(p

1

) p⌫1
1

p⌫2
1

. . . p⌫n
1

p
1

· k
1

p
1

· (k
1

+ k
2

) . . . p
1

· (k
1

+ . . .+ kn)
,

and similarly from the positron,

(�g)n
�⇢1(/p

2

+m)�⇢2(/p
2

+m) . . . v(p
2

)

2p
2

· k
1

2p
2

· (k
1

+ k
2

) . . . 2p
2

· (k
1

+ . . .+ kn)

= (�g)n
p⇢1
2

p⇢2
2

. . . p⇢n
2

v(p
2

)

p
2

· k
1

p
2

· (k
1

+ k
2

) . . . p
2

· (k
1

+ . . .+ kn)
.

(2.7)

However these give only one of the contributions to the n-loop form factor,

specifically the ladder-like diagram (Fig. 2.2),

F
(n), µ
s,ladder(Q,m2) = (�g2)n F (0), µ(Q,m2)

n
Y

j=1



Z

ddkj
(2⇡)d

�⇢

⇥ p⌫1
1

p⌫2
1

. . . p⌫n
1

p⇢1
2

p⇢2
2

. . . p⇢n
2

(2.8)

⇥ D⌫1⇢1(k1)D⌫2⇢2(k2) . . . D⌫n⇢n(kn)
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2.1. Introduction

⇥ 1

p
1

· k
1

p
1

· (k
1

+ k
2

) . . . p
1

· (k
1

+ . . .+ kn)

⇥ 1

p
2

· k
1

p
2

· (k
1

+ k
2

) . . . p
2

· (k
1

+ . . .+ kn)

�

.

To obtain the remaining (n! � 1) diagrams, we can simply permute the order of

attachments along one of the external particles, making use of the fact that we

can simply relabel the integration variables ki, and so,

F (n), µ
s (Q,m2) = (�g2)n F (0), µ(Q,m2)

n
Y

j=1



Z

ddkj
(2⇡)d

�⇢

⇥ p⌫1
1

p⌫2
1

. . . p⌫n
1

p⇢1
2

p⇢2
2

. . . p⇢n
2

(2.9)

⇥ D⌫1⇢1(k1)D⌫2⇢2(k2) . . . D⌫n⇢n(kn)

⇥ 1

p
1

· k
1

p
1

· (k
1

+ k
2

) . . . p
1

· (k
1

+ . . .+ kn)

⇥
X

⇡

1

p
2

· k⇡(1)p2 · (k⇡(1) + k⇡(2)) . . . p2 · (k⇡(1) + . . .+ k⇡(n))

�

,

where ⇡ are the permutations of the set (1, 2, . . . , n). Here we may make use of

the so-called eikonal identity

X

⇡

1

p · k⇡(1) p · (k⇡(1) + k⇡(2)) . . . p · (k⇡(1) + . . .+ k⇡(n))
=
Y

i

1

p · ki , (2.10)

causing a dramatic simplification of the integrand,

F (n), µ
s (Q,m2) = (�g2)n F (0), µ(Q,m2)

n
Y

j=1



Z

ddkj
(2⇡)d

�⇢

⇥ p⌫1
1

p⌫2
1

. . . p⌫n
1

p⇢1
2

p⇢2
2

. . . p⇢n
2

⇥ D⌫1⇢1(k1)D⌫2⇢2(k2) . . . D⌫n⇢n(kn) (2.11)

⇥ 1

p
1

· k
1

p
1

· (k
1

+ k
2

) . . . p
1

· (k
1

+ . . .+ kn)

⇥
Y

i

1

p
2

· ki

�

.

By summing over permutations of the attachments on the other line, we can

utilize Eq. (2.10) again, but we must account for the over-counting that this will
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2.1. Introduction

introduce. Having already generated all of the diagrams by permuting the soft

photon attachments along one of the external particles, doing so on the other

will introduce an additional instance of each diagram, requiring a compensating

factor of 1/n!. Hence,

F (n), µ
s (Q,m2) = (�g2)n F (0), µ(Q,m2)

1

n!

n
Y

j=1



Z

ddkj
(2⇡)d

�⇢

(2.12)

⇥ p⌫1
1

p⌫2
1

. . . p⌫n
1

p⇢1
2

p⇢2
2

. . . p⇢n
2

⇥ D⌫1⇢1(k1)D⌫2⇢2(k2) . . . D⌫n⇢n(kn)
Y

i

1

p
1

· ki

⇥
X

⇡

1

p
1

· k⇡(1) p1 · (k⇡(1) + k⇡(2)) . . . p
1

· (k⇡(1) + . . .+ k⇡(n))

�

=
1

n!
(g2)n F (0), µ(Q,m2)

⇥
n
Y

i=1



Z

ddki
(2⇡)d

✓

p⌫i
1

p
1

· ki

◆✓ �p⇢i
2

p
2

· ki

◆

D⌫i⇢i(ki)

�

= F (0), µ(Q,m2)
1

n!



g2
Z

ddk

(2⇡)d

✓

p⌫
1

p
1

· k
◆✓ �p⇢

2

p
2

· k
◆

D⌫⇢(k)

�n

,

which permits the same factorized form as seen in Eq. (2.4). Additionally, in

this form we reveal another helpful property of IR singularities; that is, they

exponentiate. If we sum over all numbers of gluon emissions, n from 0 to 1, we

find,

F µ
s (Q,m2) = F (0), µ(Q,m2) exp

✓

g2
Z

ddk

(2⇡)d

✓

p⌫
1

p
1

· k
◆✓ �p⇢

2

p
2

· k
◆

D⌫⇢(k)

◆

. (2.13)

The procedure we have carried out above is an example of what is known as

the eikonal approximation for the amplitude which can be generated from the

eikonal Feynman rules in an abelian theory,

k

p

�! � ig
pµ

p · k = � ig
�µ

� · k , (2.14)
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or similarly in a non-abelian theory,

k

p

�! � igsT
a pµ

p · k = � igsT
a �µ

� · k , (2.15)

where the colour generator T a is in the same representation as the emitting

particle and we have defined the scaleless velocity � = p/⇤, for some arbitrary

scale ⇤, reflecting the scale invariance of the IR contribution to the amplitude.

In terms of these Feynman rules we can rewrite Eq. (2.13),

F µ
s (Q,m2) = F (0), µ(Q,m2)

| {z }

hard

⇥ exp

0

B

B

B

@

1

C

C

C

A

| {z }

soft

, (2.16)

illustrating both the factorization and exponentiation of IR singuarlities.

Through both factorization (Sec. 2.2) and exponentiation (Sec. 2.3), the task

of computing the IR singularities is greatly simplified. Firstly, factorization

permits us to compute the IR singularities without the overburdening compli-

cations of a complete multi-loop amplitude calculation – allowing us to study

higher loop-orders and with greater generality than would otherwise be possible.

Furthermore, exponentiation allows us to compute only a subset of the eikonal

diagrams at each order but in doing so obtain the full IR singular contribution. In

the case above this is particularly dramatic as we are able to give the IR singular

contribution from an infinite set of diagrams by carrying out a simple one-loop

integral.

However, whilst a neat illustration of the concepts we will discuss below, the

above example is hardly the complete picture, primarily because the example

above assumes an abelian theory. In a non-abelian theory such as QCD where

ordering of emissions along particle lines matters, the exponent is not so simple,

though IR singularities in such theories do indeed factorize [80, 94–99] and

exponentiate [90–92]. Moreover, if we consider amplitudes with more than two

hard, colour-charged, external particles then non-trivial colour flows are possible,
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2.2. Factorization

further complicating matters. A final point to note here is that we have not

yet considered the possibility of particles interacting away from the Wilson lines.

In theories such as QCD where gluon self interaction is present, as well as the

possibility of interaction with vacuum fermions in both abelian and non-abelian

theories, such diagrams will contribute to the exponent and so must be taken into

account.

In the rest of this chapter, we shall review these properties, introducing

the concepts and notation which will be required to discuss recent advances in

the computation of IR singularities in non-abelian gauge theories. We begin in

Sec. 2.2 by discussing in greater detail factorization and define the soft function

which shall be the subject of this thesis. In Sec. 2.3 we will provide a brief

overview of non-abelian exponentiation and discuss the form of the soft function

exponent in terms of webs. We then cover the renormalization of the soft function

in Sec. 2.4, introducing the much studied soft anomalous dimension and in this

context frame the remaining chapters of this thesis. Sec. 2.5 explains how to

put into practice these concepts with the computation of the one-loop web and

an example of a two-loop subtracted web before reviewing the framework built

aroundmultiple-polylogarithms which shall be used extensively in Ch. 3 and Ch. 4.

2.2 Factorization

Through the uncertainty principle we see that gluons with vanishing momenta

have infinite Compton wavelength. Thus, it is impossible for such gluons to

resolve the underlying hard interaction from where the high energy partons

originate. This fact permits the study of IR singularities in isolation, as we shall

do throughout this thesis. The concept is formalized through the factorization

theorem developed in Refs. [80, 94–99], the results of which will be described

in this section, and which generalizes the factorization shown explicitly in the

previous section.

We will be focusing on non-abelian gauge theories in which there is a

crucial di↵erence between amplitudes with two and those with several colour

charged, hard, external particles. In the case where there are only two colour-

charged external particles, there is only one possible colour flow. On the other

hand, amplitudes containing more than two coloured external particles permit
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2.2. Factorization

multiple possible colour flows and so the amplitude M{↵i}, where {↵i} are the n

colour indices belonging to arbitrary representations of the gauge group, can be

decomposed onto a basis of colour tensors,

M{↵i} =
N
X

L

(cL){↵i} ML , (2.17)

where N is the number of irreducible representations of the gauge group that can

be constructed with the given particles, and (cL){↵i} is a basis of N independent

colour tensors.

It is known [80, 94–99] that n-external particle, fixed-angle1 scattering

amplitudes factorize such that,

ML(pi/µ,↵s(µ
2), r

S

, r
C

) = SLK

�

�i · �j,↵s(µ
2), r

S

, rC
�

⇥ HK

✓

pi · pj
µ2

,
pi · ni
p

n2

i

,↵s(µ
2)

◆

⇥
Y

i

Ji

✓

(pi·ni)
2

n2
i

,↵s(µ2), r
S

, rC

◆

Ji

✓

(�i·ni)
2

n2
i

,↵s(µ2), r
S

, r
C

◆ ,

(2.18)

where SLK , the soft function, will contain all soft and overlapping soft+collinear

divergences of the amplitude; the jet functions Ji contain the collinear singu-

larities arising from each of the external particles indexed by i, along with

the corresponding soft+collinear region; and the hard function, HK , which is

finite after renormalization of the theory. This alone would over-count the

soft+collinear regions, which are present both in the soft and jet functions, and

so we account for this with the ‘eikonal jets’, Ji. These capture the overlapping

soft+collinear information contained within their corresponding jet function.

Also used in this expression are the renormalization scale, µ, as well as r
S

and

r
C

, the soft and collinear regulators respectively, which shall be discussed in more

detail below. As we can see, such a factorization would capture all of the leading

IR singular regions discussed in Ch. 1. Written in this way we see that the

hard function is a vector in the space of colour flows, the components of which

are mixed by the soft function which itself is a colour space matrix. This is a

1Meaning that the ratios of all kinematic invariants are of order one.
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2.2. Factorization

Representation Initial/Final-state T a

Quark (Fundamental) Initial �ta�↵
Quark (Fundamental) Final ta↵�

Anti-quark (Anti-fundamental) Initial ta↵�
Anti-quark (Anti-fundamental) Final �ta�↵

Gluon (Adjoint) Initial ifcab
Gluon (Adjoint) Final ifcab

Table 2.1: Interpretation of the notation T a in Yang-Mills theory. ta are the
fundamental representation generators and fcab the SU(N) structure constants.

key di↵erence between the two-line case in which the colour flow decomposition,

Eq. (2.17), is trivial, and will have consequences when we later consider non-

abelian exponentiation and renormalization.

In order to formalize the constituents of Eq. (2.18) we must first introduce

the key ingredient of the factorized amplitude; that is, the Wilson line,

��i(b, a) = P exp

✓

igs

Z b

a

ds �i · A(s�i)
◆

. (2.19)

Here gs is the renormalized coupling, �i is the Wilson line’s scaleless velocity and

Aµ(x) = Aa,µ(x)T a is the gauge field with T a a generator of the gauge group in

the representation of the corresponding parton i (see Tab. 2.1 for interpretation

of this notation for the generators in Yang-Mills). The path ordering operator,

P , prescribes ordering of the generators (gluon emissions) along the path of the

Wilson line. Eq. (2.19) can be construed as the gauge phase along the direction

of the hard emitting partons, therefore it contains only the information which

can be resolved by soft gluons emitted from said hard partons, being inherently

scale invariant by re-parametrization of the integral, and scalar therefore lacking

dependence on the parton’s spin.

Eq. (2.18) relies on the fact that by replacing all hard partons of the amplitude

by Wilson lines [27] in the same representation as each parton and in the

direction �i = pi/Q, for some arbitrary scale Q, we will reproduce the eikonal

approximation of the amplitude as outlined in Sec. 2.1. We can consider the

Wilson lines in S as corresponding to the classical trajectories of the n partons,

emanating from a hard interaction vertex at the origin. For now, let us assume

that all of the external hard particles are massless, �2

i = 0, so that collinear
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2.2. Factorization

singularities are present. Using this replacement we can define the soft function

for an n-point amplitude as the vacuum expectation value of a product of n

Wilson lines2,

(cL){↵i} SLK

�

�i · �j,↵s(µ
2), r

S

, rC
�

=
X

{⌘k}

h0|⇥
n
Y

i

��i(0,1)↵k,⌘k

⇤|0i (cK){⌘k},

(2.20)

which will contain all soft and soft+collinear singularities of the amplitude

regularized by a combination of r
S

and r
C

, the soft and collinear regulators

respectively. It is possible to regularize both by dimensional regularization,

though this is not mandatory and in fact it often proves useful to introduce a

separate collinear regulator leaving only the soft singularities in the dimensional

regularization parameter.

In order to see that Eq. (2.20) does indeed reproduce the soft component of

the amplitude, we can Fourier transform the gauge field in the exponent of the

Wilson lines,

i

Z

dxµAµ(x) =

Z

ddk

(2⇡)d
�µÃµ(k) i

Z

ds ei(s�·k+i")

=

Z

ddk

(2⇡)d
Ãµ(k) �

µ



� ei(s�·k+i")

� · k + i"

�1

0

=

Z

ddk

(2⇡)d
Ãµ(k)

✓

�µ

� · k + i"

◆

(2.21)

which reproduces the eikonal Feynman rule for the emission of a soft gauge field

from a hard particle, Eq. (2.15).

Furthermore we define the jet functions, for example we consider an outgoing

quark with momentum pi,

u(pi) Ji

✓

(pi · ni)2

n2

i

,↵s(µ
2), r

S

, rC

◆

= hpi| (0) �ni(0,�1)|0i , (2.22)

where we have also introduced an auxiliary Wilson line in the direction ni as a

source of virtual gluons. A sensible convention is to choose n2

i 6= 0 to avoid

2We have chosen as a matter of convention to have all Wilson lines incoming to the cusp at
which they meet at the origin.
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2.2. Factorization

spurious collinear poles, however the amplitude must be insensitive to these

auxiliary Wilson lines and therefore any dependence upon ni will cancel between

the jet and eikonal functions. The eikonal jet then can simply be seen as the

eikonal approximation of the jet function,

Ji

✓

(�i · ni)2

n2

i

,↵s(µ
2), r

S

, r
C

◆

= h0|��i(0,�1)⌦ �ni(0,�1)|0i , (2.23)

which, as mentioned above, exists purely to remove the double counting of all

singularities which are not generated by regions of loop phase space purely

collinear to the parton i.

If we were to reverse our condition on the mass of the external particles and so

instead stipulate �2

i 6= 0 for every i, we will no longer have collinear divergences

(following the discussion in Ch. 1). In this case, the jet functions will contain

only soft divergences, implying that all of their singularities can be determined

through their eikonal approximation. Thus, the ratio Ji/Ji is finite to all orders

and so we absorb this finite factor into the hard function. Having fewer singular

regions naturally results in a simpler factorization of the amplitude,

ML = SLK

�

�ij,↵s(µ
2), r

S

�

eHK

✓

pi · pj
µ2

,
pi · ni
p

n2

i

,↵s(µ
2)

◆

, (2.24)

where we have defined the cusp angle,

�ij =
2�i · �j
q

�2

i �
2

j

. (2.25)

Given that in the example above, Sec. 2.1, we chose not to neglect the electron

mass, the factorized form we found in Eq. (2.13) demonstrates precisely the form

of Eq. (2.24), though clearly the abelian analogue in which the soft and hard

functions are scalar, given that the gauge group structure is trivial.

Clearly, it is not the case in QCD that all external particles can be considered

massive. Not only is it possible for hard gluons to emit soft gluons, but also

the light quarks are e↵ectively massless at the energy scales produced in modern

collider experiments. Despite this, the approach we will adopt is to assert that

all �2

i 6= 0. We do this to avoid the UV+collinear mixed region from which the

singularities will ruin the multiplicative renormalizability of the soft function. We
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2.3. Exponentiation and Webs
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Figure 2.3: Diagrammatic exponentiation of the soft function in an abelian theory.
Only ‘connected’ diagrams contribute.

will return to this issue in Sec. 2.4.1 after introducing the renormalization of the

non-null soft function.

To then recover the singularities of physical amplitudes in QCD with massless

(or approximately massless) particles, we can consider the ‘tilt’ o↵ the lightcone,

�2

i , as the collinear regulator, r
C

, and so the collinear poles will be recovered

as logarithmic singularities as �2

i ! 0 in the soft and jet functions as found

in equation (2.18). Moreover, through this strategy we also solve more general

problems, including massive quark production where some �2

i remain non-zero.

2.3 Exponentiation and Webs

Having now factorized the singularities of our amplitude in accordance with

Eqs. (2.18) and (2.24) we will focus on the properties of the soft function, S.

While, naturally, any quantity can be written as the exponential of its logarithm,

we found in the example of Sec. 2.1 that the exponent of the e+e� form-factor

soft-function has a diagrammatic interpretation in terms of the eikonal Feynman

rules, Eq. (2.14); for example the subset of diagrams shown in Fig. 2.3. It

was first discovered that this was the case in the context of abelian theories

in Ref. [100] before being proven to hold in non-abelian theories through what

is known as the non-abelian exponentiation theorem in Refs. [90–92]. This was

recently generalized to the multiparton case [61]. In this section, we shall focus

on diagrammatic exponentiation in non-abelian theories and in doing so will

introduce the key quantities which we shall study throughout the remainder of

the thesis, namely webs.

Let us first restrict ourselves to only two Wilson lines. In the abelian case,

the exponent is composed of only the connected diagrams at each order [90–92],
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2.3. Exponentiation and Webs

SQCD = exp

0

B

B

B

B

B

B

B

B

@

+ + + + . . .

1

C

C

C

C

C

C

C

C

A

Figure 2.4: Diagrammatic exponentiation of the soft function in a non-abelian
theory. Note the appearence of diagrams such as the second which would be
‘disconnected’ in an abelian theory.

known as webs. To be specific, what we mean by connected in this context is

that if we ignore the Wilson lines, the diagram remains one connected piece. All

unconnected diagrams are then reproduced as powers of the connected diagrams

in expansion of exponential, which is fairly simple to see in an abelian theory given

that ordering on the Wilson lines is immaterial. This can be seen by repeating the

application of the eikonal identity to diagrams with bubbles and will exponentiate

in the same manner as before [100]. A↵airs are made more di�cult when we begin

to consider multiple photon attachments to a single fermion loop, though there

exist now several proofs of their exponentiation through more elegant means

[56, 101].

As we have stated, the exponentiation observed in the example of Sec. 2.1

extends to the non-abelian case [90–92]. However, given that in a non-abelian

theory ordering of emissions on the lines must be taken into account, the webs

cannot simply be the connected graphs. In Fig. 2.4 we see the exponent contains

diagrams such as the ‘X’ graph, which in the abelian sense are disconnected. One

important point to note here is that while the diagrams of Fig. 2.4 do correspond

to their respective kinematic factors, they appear with an exponentiated colour

factor (ECF) which would normally belong to the fully connected webs at

the same order. For this reason they are often referred to as the maximally

non-abelian colour factors and this result is referred to as the non-abelian

exponentiation theorem [90–92].

Moreover, if we extend to non-abelian multiparton scattering3 many more

clearly disconnected diagrams appear, for example those shown in Fig. 2.7. The

3In an abelian theory the extension to the multiparton case is trivial. Since ordering on the
lines is irrelevant, the multiline singularities are given by a product of two line soft functions
depending upon each cusp angle in turn.
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2.3. Exponentiation and Webs

Figure 2.5: (1,2,2,1) web and associated exponentiated colour factor represented
by the rightmost diagram.

multiparton extension of the non-abelian exponentiation theorem [61] implies

that ECFs of multiline webs correspond to the colour factors of fully connected

multiline graphs, for example the web and accompanying ECF shown in Fig. 2.5.

The exponent can therefore be written as a sum over diagrams, D, with kinematic

factors F(D) and ECFs eC(D) in terms of multiparton webs, Wi such that

S = exp

✓

X

i

Wi

◆

(2.26)

where we define a web according to [56]

Wi =
X

D2Wi

F(D) eC(D) =
X

D,D02Wi

F(D)R(Wi)

DD0 C(D0) . (2.27)

Here, D and D0 index the diagrams contributing to a web, which di↵er only

by permutation of ordering of emissions on the Wilson lines4, and C(D0) is the

diagrammatic colour factor belonging to diagram D0. The web mixing matrix,

R
(W )

DD0 , is a combinatorial object which determines the precise combination of ECFs

with which a kinematic factor will appear. These matrices can be computed

through the methodology of Ref. [56], and through these studies it has been

proven to satisfy some useful properties [56, 57, 59, 93], the principal of which for

our purposes is idempotence [56, 57]. This means that for any web mixing matrix

R,

RDE =
X

D0

RDD0RD0E , 8D,E . (2.28)

All idempotent matrices are diagonalizable and have eigenvalues 0, 1. Therefore,

4For example, as in diagrams A, B, C, D in Fig. 2.5
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2.4. Renormalization of multiparton webs

R can be seen as a projection operator with only those colour factors which appear

in the exponent corresponding to the eigenvalue 1 eigenvectors. Those colour

factors corresponding to eigenvalue 0 eigenvectors are reproduced by products of

lower order webs in the expansion of the exponential [56].

Using the idempotence property, a web W , connecting L Wilson lines, can be

conveniently expressed as

W =
r
X

j=1

 

X

D

F(D)Y �1

D,j

!  

X

D0

Yj,D0 C(D0)

!

=
r
X

j=1

FW,j c
(L)
j , (2.29)

where r is the rank of R (which is always smaller than its dimension d) and

Y is the diagonalizing matrix, Y RY �1 = diag(�
1

,�
2

, . . . ,�d), with �i = 1

for i  r and �i = 0 otherwise. Thus the first r eigenvectors of R, all

corresponding to unit eigenvalue, determine r linear combinations of colour

factors, c
(L)
j =

P

D0 Yj,D0C(D0), each of which is associated with a particular

linear combination of kinematic integrals FW,j =
P

D F(D)Y �1

D,j formed out of

the diagrams in the web.

2.4 Renormalization of multiparton webs

Returning to the one loop example of Sec. 2.1, after applying the eikonal

approximation, resulting in Eq. (2.4), power counting reveals something which

at first seems surprising. In the UV limit, kµ ! 1, the superficial degree of

divergence, D = d� 4, implies a logarithmic UV divergence despite the fact that

the theory is already renormalized. Consequently we must separately renormalize

the soft function. This arises due to the scale invariance we introduce through the

eikonal approximation, which removes the distinction between UV and IR and

so we must expect there to be some mapping between these UV poles and the

original IR poles of our amplitude. Moreover, we cannot expect the UV region

of the eikonal diagrams to have physical significance of their own given that the

eikonal limit is expressly soft.

To carry out this renormalization, we will make a distinction between

dimensional regularization regularizing the IR singularities, ✏
IR

< 0 and the UV,
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2.4. Renormalization of multiparton webs

✏
UV

> 0 and so allowing us to define a renormalized soft function,

S
ren

(�ij,↵s(µ
2

R), ✏IR, µ) = S(�ij,↵s(µ
2

R), ✏IR, ✏UV

)Z(�ij,↵s(µ
2

R), ✏UV

, µ) , (2.30)

relying on the multiplicative renormalizability of products of non-null Wilson lines

[28–31]. We shall call this cusp renormalization, introducing the renormalization

scale µ.

In pure dimensional regularization however, all scaleless integrals vanish. To

illustrate this, consider the logarithmically divergent, two-dimensional integral
R1
�1 d2k/k2. Clearly this integral does not depend upon the scale of k. If we

were to impose dimensional regularization on this integral yielding
R

ddk/k2, with

d = 2 � ✏ we must expect a result proportional to s�✏(1/✏ +O(✏0)) where s has

the same dimension as k. As no such quantity is present, the only conclusion

can be that the integral vanishes. Also note that �ij, as defined in Eq. (2.25),

is a scaleless quantity resulting in the vanishing of all contributions to the soft

function exponent at all orders. Imposing this on Eq. (2.30) confirms our intuitive

identification of the cusp UV singularities with the IR singularities,

S
ren

(�ij,↵s(µ
2

R), ✏IR, µ) = Z(�ij,↵s(µ
2

R), ✏UV

, µ) , (2.31)

and so through Eq. (2.24), can determine the IR singularities of the non-lightlike

amplitude,

M = Z(�ij,↵s(µ
2

R), ✏UV

, µ) eH
�

pi,↵s(µ
2)
�

, (2.32)

by renormalizing the Wilson line correlator, as has been utilized by multiple

authors [3, 27, 58, 77, 102, 103]. To continue with this analysis we must introduce

further regulation to make a clear separation between the UV and IR, and

to introduce a scale so that contributions to the soft function exponent are

non-vanishing in dimensional regularization. Rewriting Eq. (2.30) with an IR

regulator5 associated with the scale m,

S
ren

(�ij,↵s(µ
2),m) = S(�ij,↵s(µ

2), ✏,m) Z(�ij,↵s(µ
2)) , (2.33)

5In Sec. 2.5 we shall introduce the particular regulation scheme which shall be used
throughout the thesis.
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2.4. Renormalization of multiparton webs

with ✏ > 0 regulating the UV cusp singularities. We now introduce the soft

anomalous dimension, �, through the renormalization group equation,

d

d log µ
Z(�ij,↵s(µ

2), ✏) = �Z(�ij,↵s(µ
2), ✏) �(�ij,↵s(µ

2)) , (2.34)

which depends upon the renormalization scale only through the running coupling

after we choose to identify the two renormalization scales µR = µ. Furthermore,

by inverting Eq. (2.30),

S(�ij,↵s(µ
2

R), ✏IR, ✏UV

) = S
ren

(�ij,↵s(µ
2

R), ✏IR, µ) Z
�1(�ij,↵s(µ

2

R), ✏UV

, µ) (2.35)

and, noting that the unrenormalized soft function does not depend upon the

cusp-renormalization scale, taking a derivative with respect to logµ yields,

0 =
dS

ren

d log µ
Z�1 + S

ren

dZ�1

d log µ
(2.36)

which after rearranging Eq. (2.34),

� = �Z�1

dZ

d log µ
=

dZ�1

d log µ
Z , (2.37)

and substituting into Eq. (2.36) we find,

� = �S�1

ren

dS
ren

d log µ
. (2.38)

An important conclusion that we can draw from Eq. (2.38) is that � is finite in

four dimensions, given that S
ren

is UV finite by definition and because Eq. (2.34)

makes it clear that � cannot depend on the IR regulator. Furthermore, after

the identification of the renormalization scales, � depends on µ only through the

d-dimensional, renormalized coupling and so in its perturbative expansion,

�(�ij,↵s(µ
2)) =

1
X

n=1

↵n
s (µ

2)�(n)(�ij) , (2.39)

the dependence upon µ factorizes. Thus, all of the UV poles of Z (and therefore

IR poles of S
ren

) are generated by the integral over the running coupling in the
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solution of Eq. (2.34),

Z(�ij,↵s(µ
2, ✏), ✏) = exp

✓

� 1

2

1
X

n=1

Z µ2

0

d⇠2

⇠2
↵n
s (⇠

2, ✏)�(n)(�ij)

◆

, (2.40)

where we have made explicit the dependence of the running coupling upon the

dimensional regularization parameter.

Note as well that the ordering on the right-hand side of Eq. (2.34) is important:

both Z and � are matrix valued, and therefore do not commute in general. The

solution of Eq. (2.34) can be written in accordance with Eq. (2.40), as in Ref. [58],

Z (↵s, ✏) = exp

(

↵s
1

2✏
�(1) + ↵2

s

✓

1

4✏
�(2) � b

0

4✏2
�(1)

◆

(2.41)

+ ↵3

s

✓

1

6✏
�(3) +

1

48✏2
⇥

�(1),�(2)

⇤� 1

6✏2
�

b
0

�(2) + b
1

�(1)

�

+
b2
0

6✏3
�(1)

◆

+ ↵4

s

✓

1

8✏
�(4) +

1

48✏2
⇥

�(1),�(3)

⇤� b
0

8✏2
�(3) +

1

8✏2

✓

b2
0

✏
� b

1

◆

�(2)

� 1

8✏2

✓

b3
0

✏2
� 2b

0

b
1

✏
+ b

2

◆

�(1) � b
0

48✏3
⇥

�(1),�(2)

⇤

◆

+O �

↵5

s

�

)

,

where we did not display the dependence on �ij for simplicity, we expanded

the soft anomalous dimension �(↵s) in powers of ↵s, and bn is the nth-order

coe�cient of the �-function. As discussed already extensively in Refs. [58, 60],

the matrix nature of �(n) entails the presence of higher-order poles in the exponent

of Eq. (2.41), involving commutators of lower-order contributions, even in a

conformal theory where �(↵s) = 0. At O(↵n
s ), the genuinely new information

enters in the coe�cient of the single 1/✏ pole, �(n). This can be directly computed

from the unrenormalized webs as follows. First, one may write the unrenormalized

soft function as

S (↵s, ✏) = exp
h

w (↵s, ✏)
i

= exp

" 1
X

n=1

1
X

k=�n

↵n
s ✏

k w(n,k)

#

, (2.42)

where w =
P

i Wi, with webs Wi as defined in Eq. (2.27), and we again omitted

for simplicity the dependence on �ij and on the IR regulator m: the dependence

on m will in any case cancel at the level of the anomalous dimension. Note that,

while the physically relevant matrix Z is a pure counterterm, i.e. it contains
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only poles in ✏, the IR-regularized, unrenormalized correlator S has also non-

singular dependence on ✏, which plays a non-trivial role. Indeed, in the notation of

Eq. (2.42), the first few perturbative coe�cients of the soft anomalous dimensions

can be written as [58]

�(1) = � 2w(1,�1) ,

�(2) = � 4w(2,�1) � 2
⇥

w(1,�1), w(1,0)
⇤

,

�(3) = � 6w(3,�1) +
3

2
b
0

⇥

w(1,�1), w(1,1)
⇤

+ 3
⇥

w(1,0), w(2,�1)

⇤

+ 3
⇥

w(2,0), w(1,�1)

⇤

+
⇥

w(1,0),
⇥

w(1,�1), w(1,0)
⇤⇤� ⇥

w(1,�1),
⇥

w(1,�1), w(1,1)
⇤⇤

,

�(4) = � 8w(4,�1) +
4

3
b2
0

⇥

w(1,2), w(1,�1)

⇤

+ b
0

✓

� 2
⇥

w(2,1), w(1,�1)

⇤

� 8

3

⇥

w(1,1), w(2,�1)

⇤

+
⇥

w(1,1),
⇥

w(1,0), w(1,�1)

⇤⇤

(2.43)

� 2

3

⇥

w(1,0),
⇥

w(1,�1), w(1,1)
⇤⇤

+
4

3

⇥

w(1,�1),
⇥

w(1,�1), w(1,2)
⇤⇤

◆

+
4

3
b
1

⇥

w(1,�1), w(1,1)
⇤

+ 4
⇥

w(1,0), w(3,�1)

⇤

+ 4
⇥

w(3,0), w(1,�1)

⇤

+ 4
⇥

w(2,0), w(2,�1)

⇤

+ 2
⇥

w(1,1),
⇥

w(2,�1), w(1,�1)

⇤⇤

+
8

3

⇥

w(1,�1),
⇥

w(1,1), w(2,�1)

⇤⇤� 4

3

⇥

w(2,0),
⇥

w(1,0), w(1,�1)

⇤⇤

� 4

3

⇥

w(1,0),
⇥

w(2,0), w(1,�1)

⇤⇤

+
4

3

⇥

w(1,�1),
⇥

w(2,1), w(1,�1)

⇤⇤

� 4

3

⇥

w(1,0),
⇥

w(1,0), w(2,�1)

⇤⇤� 1

3

⇥

w(1,�1),
⇥

w(1,�1),
⇥

w(1,0), w(1,1)
⇤⇤⇤

� 1

3

⇥

w(1,�1),
⇥

w(1,0),
⇥

w(1,�1), w(1,1)
⇤⇤⇤

+
⇥

w(1,0),
⇥

w(1,�1),
⇥

w(1,�1), w(1,1)
⇤⇤⇤

+
1

3

⇥

w(1,0),
⇥

w(1,0),
⇥

w(1,0), w(1,�1)

⇤⇤⇤� 1

3

⇥

w(1,�1),
⇥

w(1,�1),
⇥

w(1,�1), w(1,2)
⇤⇤⇤

,

which is su�cient to calculate the soft anomalous dimension up to four-loops.

Notice that the exponent w(↵s, ✏) in Eq. (2.42) is given by a sum of regularized

webs wi. Similarly, all commutator subtraction in Eq. (2.43) can be organized on a

web-by-web basis: one must subtract from each web all appropriate commutators

constructed from subdiagrams of the diagrams comprising the original web. The

contributions to the soft anomalous dimension are then given by the simple

pole of the chosen web, plus all simple-pole contributions from the commutator
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counterterms6. This combination of simple poles was called a subtracted web

in [60]. For example, at the three-loop level subtracted webs have the structure

w(3) = w(3,�1) � 1

2

⇥

w(1,0), w(2,�1)

⇤� 1

2

⇥

w(2,0), w(1,�1)

⇤

(2.44)

�1

6

⇥

w(1,0),
⇥

w(1,�1), w(1,0)
⇤⇤� 1

6

⇥

w(1,�1),
⇥

w(1,1), w(1,�1)

⇤⇤

.

with �-function contributions appearing in webs with UV subdivergences cor-

responding to the renormalization of the strong coupling (e.g. webs containing

bubble subdiagrams). While the separate contributions of non-subtracted webs

and the corresponding commutator counterterms have higher-order UV poles,

making them sensitive to the infrared regulator used to calculate the integrals,

subtracted webs, which directly contribute to the soft anomalous dimension �(n),

are free of these artifacts [60]. A further consequence of this is that the coe�cients

w(n,k) for �n < k < �1 are expressible in terms of commutators of lower order

webs [58]. For example,

w(3,�2)

�

�

�

�

�n=0

=
1

6

⇥

w(2,�1), w(1,�1)

⇤

. (2.45)

Subtracted webs are the direct analogue of the webs appearing in colour-singlet

two-line correlators, as originally defined in [90–92], which individually have just

a single UV pole.

2.4.1 Aside: correlators of lightlike Wilson lines

We shall now briefly discuss the computation of webs with strictly lightlike Wilson

lines (�2

i = 0). One may be tempted, since most scattering at hadron colliders

occurs between gluons and light quarks, to compute the soft function in the

absence of the collinear regulation we have applied above. Indeed, this greatly

simplifies the integrals involved and some recent work in this direction Ref. [53]

has proposed a scheme to compute the lightlike, two-line exponent. However,

in doing so one replaces complexity of the integrand, as found in the collinear

regulated soft function, with conceptual complexity in the computation of the

lightlike soft function. Principally this is caused by the failing of the multiplicative

6Note that the commutators also involve coe�cients of positive powers of ✏ in the lower
order webs. The overall power of ✏ associated with each commutator is, however, ✏

�1.
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2.5. Computing web kinematics

renormalizability of the soft function, Eq. (2.31), due to the mixed UV+collinear

region [36].

Despite this lack of renormalizability, evolution equations can be written for

lightlike correlators [36] and a soft anomalous dimension defined and recent e↵orts

have put forward a potential framework for the determination of the leading poles

[53]. The lightlike soft anomalous dimension has been shown to have a highly

constrained form, leading to the famous dipole formula [77, 79], which may have

violations starting at three loops [82, 89]. However, without the constraints that

renormalizability places on this anomalous dimension, such as those found in

the collinear regulated case [58], it is unclear how one might define a regulator

independent framework for the computation of this anomalous dimension in terms

of webs. This is especially true when we move to multiparton scattering, where the

notion of subtracted webs becomes key to a diagrammatic determination of the

soft anomalous dimension. Without these constraints to rely on, a representation

such as Eq. (2.43) has yet to be found.

In light of these facts, and in spite of the increase in computational di�culty,

it seems that the best way to attempt a computation of the lightlike, multiparton

soft anomalous dimension is best approached through an asymptotic lightlike

limit of the collinear regulated approach we adopt in this thesis. This has been

applied to the two-loop multiparton case [66] and recently also to three loops [89].

2.5 Computing web kinematics

Having reviewed the prescription through which the coe�cients of the soft

anomalous dimension perturbative expansion can be determined by the Laurent

series of the given webs at that order, in this section we go on to review how

such calculations are carried out in practice and the resulting analytic structure.

We shall also highlight some properties of webs that will be useful in the coming

chapters, as well as the mathematical concepts which come into play. We do this

by going through in some detail the computation of two subtracted webs: the

one-loop web, and the (1,2,1) subtracted web. The notation (n
1

, n
2

, . . .) indicates

the number of gluon attachments to each Wilson line (n
1

attachments to the

first, n
2

to the second and so on). Where this is ambiguous, the particular web

in question will be made explicit contextually. This example will allow us to
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2.5. Computing web kinematics

illustrate some of the key results of [60] regarding the general analytic structure

of webs and will demonstrate the particular integral parametrization which we

generalize in Ch. 3 and use again in Ch. 4.

We first consider the one-loop contribution to the soft function, as discussed

in Sec. 2.1, however having first Fourier transformed to configuration space in

which we shall see our problem is more naturally described. Before this, we

must first make explicit the IR regulator which we introduced in Sec. 2.4 when

renormalizing the soft function.

We desire a regulator which will preserve the symmetries of the problem, in

particular the invariance under rescaling of the Wilson line velocities �µ
i ! �µ

i ,

and so will follow [58] by introducing an exponential damping factor to the Wilson

line integrals, Eq. (2.19),

�(m)

�i
= P exp



igµ✏

Z 1

0

d��i · A (��i) e
�im�

p
�2
i �i"

�

, (2.46)

so that one recovers the unregulated Wilson line as m ! 0. With this definition,

the correlator S is finite in d = 4� 2✏, for ✏ > 0: potential collinear divergences

are again regulated by keeping �2

i 6= 0; infrared divergences are regulated by

the exponential cut-o↵ m, and ultraviolet divergences show up as poles in ✏ as

✏! 0+.

As discussed in Ref. [60], the i"-prescription in Eq. (2.46) ensures convergence

at � ! 1. We can see this by noting that �2

i � i" = |�2

i | exp(�i✓) with

✓ > 0. Then for time-like lines ✓ ! 0+ giving �im�
p

�2

i � i" = �im�
p

�2

i (1 �
i"/2), while for space-like lines ✓ ! ⇡ (✓ < ⇡) yielding �im�

p

�2

i � i" =

�im�
p��2

i (�i).

The IR regularized soft function,

S

✓

�ij,↵s(µ
2), ✏,

m

µ

◆

=

⌧

Y

i

�(m)

�i
(0,1)

�

0

, (2.47)

will therefore have corrections described by the following configuration-space
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2.5. Computing web kinematics

Feynman rules (we choose throughout the thesis to work in Feynman gauge):

�i�

�! � igsT
a

Z 1

0

d� �µ
i e

�im�
p

�2
i �i" . . . , (2.48)

xµ y⌫

a b �! Dab
µ⌫(x� y) = �N gµ⌫ �

ab
⇥� (x� y)2 + i"

⇤✏�1

,

(2.49)

where a, b are adjoint colour indices and,

N =
�(1� ✏)

4⇡2�✏
, (2.50)

which is the more natural form in which to express eikonal contributions since

the Wilson lines follow the straight classical trajectories of the hard partons,

thus reducing the emission vertex position integrals to a single dimension. For

example, following [58], the one-loop web Fig. 2.6, where we choose for now to

have all �i space-like for convenience7, is given in configuration-space by

w(1)(�
12

) = (�i)2 4⇡ T a
1

T b
2

Z 1

0

d�
1

d�
2

�µ
1

�⌫
2

Dab
µ⌫(�1�1 � �

2

�
2

)

⇥ e�im
�

�1

p
��2

1+�2

p
��2

2

�

, (2.51)

where summation over the adjoint colour indices is implicit. By rescaling e�i =

�i
p��2

i followed by,

 

e�
1

e�
2

!

�! �

 

x

1� x

!

, � 2 (0,1) , x 2 (0, 1) , (2.52)

7We could similarly have chosen to take the Wilson lines to be timelike, �

2
i > 0 for all i.

Note that in this case the �i" prescription is important for the IR regulator, and it can be
implemented by taking m ! m � i", ending up with the same final result.
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�1

�2

�1

�2

Figure 2.6: The one-loop web, w(1), found in the familiar cusp anomalousdimen-
sion (see e.g. Ref. [3])

for which the Jacobian det[J ] = �, we obtain

w(1)(�
12

) = 2⇡ N T a
1

T a
2

Z 1

0

d� �2✏�1e�m�

Z

1

0

dx �
12

P✏(x, �12) , (2.53)

where we have introduced,

P✏(x, �ij) =
⇥

x2 + (1� x)2 � �ijx(1� x)
⇤✏�1

, (2.54)

which is related to the propagator through the above rescaling, and depending

upon the angle

�ij ⌘ 2�i · �j + i"
p

�2

i � i"
q

�2

j � i"
, (2.55)

which we introduced in Eq. (2.25), though here we have specified how the

kinematic invariants should be analytically continued as described in Ref. [60].

This parametrization of the integrals can be interpreted geometrically by first

inverting Eq. (2.52),

� = e�
1

+ e�
2

, x =
e�
1

e�
1

+ e�
2

, (2.56)

where we can see that � encodes the total distance of the diagram from the cusp
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2.5. Computing web kinematics

so giving the cusp UV divergence at � ! 0 and the IR singularity (regulated by

m) at � ! 1, while x can be interpreted as the tilt of the diagram with x = 0 at
e�
1

= 0, x = 1 at e�
2

= 0 and x = 1/2 at e�
1

= e�
2

. This particular parametrization

will reappear in every web example found throughout this thesis, in particular

it will be generalized to n-loop webs in Ch. 3 and then applied to several three

loop, and four loop examples. In Ch. 4 it will again return in the study of webs

containing three gluon vertices.

Continuing with Eq. (2.53), we can use the integral identities

Z 1

0

d� �p✏�1 e��X = X�p✏ �(p✏) (2.57)

and

Z

1

0

dx P✏(x, �ij) = 2

F
1

✓

1, 1� ✏;
3

2
;
1

2
+
�ij
4

◆

, (2.58)

which comes from the integral representation of the Gaussian hypergeometric

function,

2

F
1

(a, b; c; z) =
�(c)

�(b)�(c� b)

Z

1

0

dt tb�1(1� t)c�b�1(1� tz)�a (2.59)

after t = 4x(1�x), therefore giving the all-order-in-✏ result for the one-loop web:

w(1)(�
12

) = �2⇡ T a
1

T a
2

✓

µ2

m2

◆✏

N�
12 2

F
1

✓

1, 1� ✏;
3

2
;
1

2
+
�
12

4

◆

. (2.60)

Given however that to compute the anomalous dimension coe�cients, �(n),

we need the coe�cients of the Laurent series of the web in the dimensional

regularization parameter, w(n,k), it is far more typical and far more convenient

not to attempt an all-order-in-✏ computation of webs, such as was possible for

w(1). Instead, we write webs in a form such that the coe�cients of their ✏

Laurent expansion can be individually integrated order-by-order. To do so, we

first introduce kinematic variables ↵ij which in terms of �ij are given by,

↵ij =
1�

q

�ij+2

�ij�2

1 +
q

�ij+2

�ij�2

, or �ij = �↵ij � 1

↵ij

, (2.61)
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which were shown in Ref. [60] to more naturally describe the analytic and

asymptotic behaviour of webs, and especially subtracted webs. We rephrase our

integrals in terms of these kinematic variables by defining the functions,

p✏(x,↵ij) = p
0

(x,↵ij)
�

q(x,↵ij)
�✏
, (2.62)

q(x,↵ij) =
�

x2 + (1� x)2 + (↵ij + 1/↵ij)x(1� x)
�

, (2.63)

where

p
0

(x,↵) = �
✓

↵ +
1

↵

◆

1

q(x,↵)
= r(↵)

"

1

x� 1

1�↵

� 1

x+ ↵
1�↵

#

, (2.64)

and we have defined the rational function

r(↵) =
1 + ↵2

1� ↵2

. (2.65)

Written in these terms the one-loop web,

w(1)(�
12

) = T a
1

T a
2

 �(2✏)

Z

1

0

dx p✏(x,↵12

) , (2.66)

where we have introduced

 ⌘ � 1

2⇡1�✏

✓

µ2

m2

◆✏

�(1� ✏) . (2.67)

If we were now to expand Eq. (2.66) our series would be muddied by superfluous

terms proportional to the Euler-Mascheroni constant, �E, and logarithms of ⇡

which as we will soon see must cancel in subtracted webs. A simplification can

be achieved by rescaling8 the renormalization scale

µ2 ! eµ2 = µ2 ⇡e��E . (2.68)

We do this because, knowing that the overall UV pole at l-loops is contained

within �(2l✏) accompanied by a factor of l, and since it is possible to show using

8Note that this clearly di↵ers from the standard modified minimal subtraction scheme where
µ

2
MS

= µ

2
e

�E
/4⇡

32



2.5. Computing web kinematics

the product representations

�(z) =
e��Ez

z

1
Y

k=1

✓

1 +
z

k

◆�1

e
z
k , (2.69)

and

�(1 + z) = e��Ez

r

⇡z

sin(⇡z)

1
Y

k=1

exp

✓

� ⇣(2k + 1)z2k+1

2k + 1

◆

, (2.70)

that
�

e✏�E�(1�✏)�l�(2l✏) is free from �E, then by making this rescaling we replace

 with

e ⌘ � 1

2⇡

✓

eµ2

m2

◆✏

e✏�E �(1� ✏) , (2.71)

and the expansion of our webs will be free from �E and log ⇡. While it may seem

strange that we are able to change the apparent results of our webs through a

change of scheme, recall that from the discussion of Sec. 2.4 we find that �(n)

cannot carry any dependence upon µ and so our choice of scheme will not a↵ect

the subtracted webs and therefore, naturally, the soft anomalous dimension itself.

In this way we can write the expansion of the one-loop web,

w(1)(�
12

) =� 1

4⇡
T a
1

T a
2

Z

1

0

dx p
0

(x,↵
12

)

⇥
⇢

1

✏
+



log q(x,↵
12

) + log

✓

eµ2

m2

◆�

+O(✏)

�

, (2.72)

from which we integrate the leading pole (found in the familiar cusp anomalous

dimension, see e.g. Ref. [3]),

w(1,�1)(↵
12

) =� 1

4⇡
T a
1

T a
2

Z

1

0

dx p
0

(x,↵
12

)

=� 1

2⇡
T a
1

T a
2

r(↵ij) log(↵
12

) . (2.73)

Although the one-loop anomalous dimension, �(1) from Eq. (2.43), needs only

Eq. (2.73), if we look at the higher order terms, �(n) with n > 1, we see that

the subtraction terms (commutators) depend upon higher-order in ✏ terms in the
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(A) (B)

Figure 2.7: Diagrams contributing to the (1,2,1) web through the combination
given in Eq. (2.74)

expansion of lower-order webs (in the ↵s expansion). Let us now take a look at

an example of a subtracted web, illustrating the process of their calculation, with

the (1,2,1) web [60, 67–70] – Fig. 2.7. From Ref. [56] we find that the (1,2,1) web

is given by the combination,

w
(2)

(1,2,1)

=
1

2

⇣

C(A)� C(B)
⌘⇣

F (2)

(1,2,1)

(A)� F (2)

(1,2,1)

(B)
⌘

(2.74)

from the web mixing matrix,

R(1,2,1) =
1

2

 

1 �1

�1 1

!

. (2.75)

Using the configuration space Feynman rules given above (recalling that the

Wilson lines are path ordered inwards towards the cusp by convention),
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where for convenience we have once again chosen space-like �i. Scaling out the

factors of
p��2

i , �1 = s
1

p

��2

1

, �
2

= s
2

p

��2

2

, ⌧
1

= t
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��2
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��2

3

,
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and then applying Eq. (2.52) to the parameter pairs (�
1

, ⌧
1

) and (�
2

, ⌧
2

),
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1
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, (2.77)
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(1� x)
�⇤

.

In doing so we have almost factorized the scale from the propagators, as in w(1),

though at this point only from the sub-diagrams. Thus the scale integrals are still

convoluted by the Heaviside functions. To completely factorize the scale, and in

doing so obtain the overall UV pole, we can apply once more the transformation

Eq. (2.52),

 

⇠
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⇠
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!

�! �

 

z

1� z

!

, (2.79)

which, after changing scheme to that defined by Eq. (2.68) and performing the �

integral, gives

w
(2)

(1,2,1)

=� ifabcT a
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e2 �(4✏)

⇥
Z
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) �
(1,2,1)

(x, y, ✏) . (2.80)

where we have introduced the web kernel,

�
(1,2,1)
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◆
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✓

y

1� x
� z

1� z

◆�

, (2.81)

in which we have made explicit the dependence upon the dimensional regulariza-

tion parameter since this object will in general contain the UV sub-divergences
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of the web diagrams. This can be evaluated by use of the integral identities,
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and
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which leads us to express

�
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1
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Separating this expression into the individual diagram kernels such that �
(1,2,1)

=

�
(1,2,1),A

/2 � �
(1,2,1),B

/2 we find a further UV pole in both �
(1,2,1),A

and �
(1,2,1),B

caused by the shrinking of the individual sub-diagrams to the cusp. These

combine with the overall UV singularity generated by �(4✏) in Eq. (2.80) to

produce a double pole. However, as explained in [58], the leading singularity

beyond one-loop, w(n,�n), is proportional to the one-loop single pole and �
0

,

the leading coe�cient of the �-function. Since this web does not have any

UV subdivergences which would correspond to the renormalization of ↵s it will

not contribute to terms proportional to �-function coe�cients and therefore

w
(2,�2)

(1,2,1)

= 0. We can confirm this by taking the Laurent expansion of Eq. (2.84).

Rather than directly integrate Eq. (2.80) after substituting the expansion of

Eq. (2.84), it was shown in Ref. [60] that if we expand before carrying out the

final integrations we obtain simplifications at the level of the subtracted web

integrand, the most obvious of which is that we needn’t do work to integrate

terms proportional to log(eµ2/m2) given that we know these must cancel. There

are further, more surprising, simplifications which shall be discussed below.

As we discussed in Sec. 2.4, we construct the contribution of the (1,2,1) web
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to �(2), Eq. (2.43), through subtracted webs of the form

w
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(1,2,1)

= w
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+
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, (2.85)

or more specifically, recalling that w(1) =
P

(i,j) w
(1)(�ij) over each independent

angle �ij between the Wilson lines, we can specify the contribution from the

particular (1,2,1) web shown in Fig. 2.7,

w
(2)

(1,2,1)

(�
12

, �
23

) = w
(2,�1)

(1,2,1)

(�
12

, �
23

) +
1

2

⇥

w(1,�1)(�
12

), w(1,0)(�
23

)
⇤

+
1

2

⇥

w(1,�1)(�
23

), w(1,0)(�
12

)
⇤

, (2.86)

where the one-loop webs, w(1), correspond to the sub-diagrams in the web

w
(2)

(1,2,1)

(�
12

, �
23

). Rather than obtaining expressions for w(1,�1) and w(1,0) directly

from Eq. (2.60), it will benefit us to instead substitute the expansion of Eq. (2.66)

along with the expansion of the web kernel, Eq. (2.84), obtained by using the

result of Ref. [104],

2

F
1

�

4✏, 2✏; 1 + 2✏; z
�

= 1 + 8✏2Li
2

(z) +O(✏3) , (2.87)

into Eq. (2.85) and so

w
(2)

(1,2,1)

=ifabcT a
1

T b
2

T c
3

✓

1

4⇡

◆

2

Z

1

0

dxdy p
0

(x,↵
12

) p
0

(y,↵
23

) G
(1,2,1)

(x, y) , (2.88)

where the subtracted web kernel is

G
(1,2,1)

(x, y) = log

✓

q(x,↵)

x2

◆

� log

✓

q(y,↵
23

)

y2

◆

. (2.89)

The subtracted web, Eq. (2.88), satisfies the condition put on �(n) (see Sec. 2.4),

and therefore w(n), that it be independent of the renormalization scale and the IR

regulator, m. Furthermore, it demonstrates the seemingly general properties of

this particular class of webs uncovered in Ref. [60], chiefly that they factorize into

sums of products of functions of a single angle, and that (in this case trivially)

their integrands contain only logarithms with polylogarithms being completely

absent.

We call webs of the form discussed in this section multiple-gluon-exchange-
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2.6. Webs and polylogarithms

webs (MGEWs), meaning those webs in which gluons are exchanged directly

between Wilson lines without any intervening three- or four-gluon-vertices found

in the diagrams of the last line of Eq. (2.99). MGEWs will be the topic of Ch. 3,

in which we shall further explore and expand upon their conjectured properties.

2.6 Webs and polylogarithms

It is now possible to integrate Eq. (2.88) which naturally falls into so-called

‘d log’ form, meaning that is written as integrals over a linear denominator (see

Eq. (2.64)) multiplying logarithms (in more complicated examples d log form

extends to polylogarithmic integrands also). We refrain from giving its precise

result here, which shall appear in Ch. 3, and instead provide a more general

discussion which will be applicable at higher orders where matters are naturally

less simple and in doing so will introduce the functions and their properties which

shall be applied in the coming chapters.

To see what this means in practice we first consider a class of functions known

as multiple-polylogarithms (MPLs) defined recursively by the iterated integral

[105, 106]

G
�

a
1

, a
2

, . . . , an; z
�

=

Z

1

0

dt

t� a
1

G
�

a
2

, . . . , an; t
�

, (2.90)

with initial condition G(x) = G(; x) = 1 but with the stipulation that G(; 0) = 0

to avoid a spurious end-point singularity (though this makes sense given that
R

0

0

. . . must vanish). The number of iterated integrals used to generate an MPL

from this initial condition is known as its weight, or equivalently the function

G(a
1

, . . . , an; z) has weight n. The weight of a product of MPLs is equal to

the sum of their individual weights. Special values of this very general class of

polylogarithms relates to the more familiar classical polylogarithms, for example

G(0n; x) =
1

n!
logn x , (2.91)

G(an; x) =
1

n!
logn

✓

1� x

a

◆

, (2.92)

G(0n�1

, a; x) = �Lin

✓

x

a

◆

, (2.93)
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2.6. Webs and polylogarithms

where ak is the k-tuple

k
z }| {

(a, a, . . . , a).

One particular property of MPLs which has seen much use in modern

literature (and will be relied upon several times during this thesis) is that, by

virtue of their iterated integral structure, they satisfy the properties of a Hopf

Algebra [107–109]. While we will not be able to discuss this in detail here, it has

been well reviewed in Refs. [109–111]. In essence, this means that there exists

a coproduct [107] which maps a given MPL to a tensor product of lower weight

MPLs. It is su�cient for our purposes to note that the maximal iteration of the

coproduct maps MPLs onto a tensor product of only logarithms which retains a

great deal of information about the original function. This object is known as

the function’s symbol [107, 108, 110, 112, 113], for example we give the symbol of

some classical polylogarithms:

S


1

n!
logn x

�

= x⌦ x⌦ . . .⌦ x
| {z }

n

, (2.94)

S [Lin(x)] = �(1� x)⌦ x⌦ x⌦ . . .⌦ x
| {z }

n�1

, (2.95)

and in general the symbol satisfies the properties:

. . .⌦ (a · b)⌦ . . . = . . .⌦ a⌦ . . .+ . . .⌦ b⌦ . . . , (2.96)

. . .⌦ ⇢n ⌦ . . . = 0 , (2.97)

where ⇢n is an n-th root of unity, i.e. their entries behave as logarithms and

indeed in the language of the coproduct will be found in the literature written as

log a
1

⌦ . . .⌦ log an. However it is a standard convention to suppress the logs in

the context of the symbol map. One further complication to discuss is that the

symbol is defined ‘modulo i⇡’ meaning

. . .⌦ i⇡ ⌦ log ai ⌦ . . . = 0 (2.98)

thus it is insensitive to the logarithmic discontinuity of its entries. Note that we

have included the log notation in Eq. (2.98) only for clarity and will be adopting

the standard symbol notation from here. Working modulo i⇡ is done to avoid

a contradiction in taking the symbol of zeta values; more information can be
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2.6. Webs and polylogarithms

found in Ref. [111]. One of the symbol’s most frequent uses is in finding often

complicated relations between high weight MPLs which becomes simply linear

algebra when mapped into symbols. Further applications of the symbol and more

generally the coproduct technology can be found in the study of the analytic and

di↵erential structure of Feynman integrals [114].

It is now well established that many Feynman integrals can be expressed

in terms of MPLs9 multiplying rational functions of kinematic invariants. For

such integrals, the general procedure for their computation would be to find a

parametrization in which at least one of the integration parameters, t say, is linear

in the denominator and any MPLs in the integrand can be written such that its

arguments are rational functions of t. The symbol map can then be used to find

relations between the MPLs of the integrand, which in general can depend on t

through any of their arguments, and MPLs of the form G(. . . ; t) where t appears

only in the final entry (along with MPLs that do not depend on t at all). It

will then be possible to apply the definition Eq. (2.90) to produce higher weight

MPLs, and the process can be repeated.

This does, however, rely upon a property of the particular examples which

we have considered in this chapter (and many other Feynman integrals), known

as linear reducibility [117]. A given integral is said to be linearly reducible if the

above procedure can be carried out for each parameter integral without non-trivial

changes of variables. However, for our purposes we shall widen this definition to

what would more precisely be called ‘linear reducibility up to di↵eomorphisms,’

meaning that we call a Feynman integral linearly reducible if there exists a

parametrization in which this procedure is possible. The examples that we

are considering in this section, and in the following chapter, naturally fall into

the ‘d log’ form in which linear reducibility is trivially found and so these can

immediately be integrated to MPLs. However, it must be noted that the problem

of showing that a given Feynman integral is linearly reducible, and finding the

appropriate parametrization, is in general unsolved and has been the topic of

recent study [117, 118]. We shall encounter this di�culty again in Ch. 4.

The functions resulting from the integration of subtracted webs also satisfy

9There is evidence to suggest that as one computes deeper into the perturbation series, the
Feynman integrals encountered fall within a more general class of functions, of which MPLs are
a subset. Principally discussed is the ‘sunrise diagram’ which is expressible in terms of elliptic
polylogarithms, e.g. Ref. [115]. These functions are not well understood and are a topic of much
interest (see e.g. Ref. [116]).
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strict constraints [60] on their symbol alphabet10, which when expressed in terms

of the variables ↵ij is simply {↵ij, ⌘ij = ↵ij/1 � ↵2

ij}. We shall revisit all of the

special properties of MGEWs in Ch. 3 of which they shall be the focus.

2.7 Outlook

From this chapter we conclude that IR singularities of amplitudes can be obtained

from subtracted webs which are computed in practice through two separate

calculations. Their colour factors are determined by the specific combination

of diagrammatic colour factors along with the requisite combinatorial coe�cients

obtained using, for example, the replica trick from the work of Refs. [56, 61]. This

is subject to a choice of basis (see Eq. (2.29) and Refs. [56, 57, 61, 93] for more

details) for which we shall use that provided by Ref. [61]. Web kinematic factors

are then given by the combination of diagrammatic eikonal kinematic factors with

the combinatorial factors in the chosen basis. The integrals are then performed as

detailed in Sec. 2.5 by factorizing the ‘scale’ from the propagators, obtaining a web

kernel multiplying an overall UV divergent (✏! 0+) gamma function. The single

pole of the Laurent series of this integral is then combined with the commutators

of the expansions of lower order webs providing the subtracted webs from which

we construct the anomalous dimension in terms of the MPLs into which they

integrate.

At present, the multiparton soft anomalous dimension in general kinematics

is known in a non-abelian theory to only two loops [66], and in the colour

singlet, two-line case to three loops in the recent work of Refs. [50, 52, 63]. In

the asymptotic lightlike limit (�2

i ! 0 or equivalently ↵ij ! 0), a result has

recently been given in Ref. [89] for the full three-loop, multiparton soft anomalous

dimension. Building on the recent work of Refs. [56, 58, 60, 61], our goal in this

thesis is to push towards a determination of the three-loop, multiparton soft

anomalous dimension of non-abelian gauge theories in general kinematics. We

can best understand the task at hand by looking at a diagrammatic sketch of the

10A symbol alphabet gives the allowed entries of the symbol. For example, a symbol alphabet
of {a, b} permits functions whose symbols are a linear combination of a ⌦ a, b ⌦ b, a ⌦ b and
b ⌦ a
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three-loop anomalous dimension,

�(3) ⇠ + + (two and three lines)

| {z }

MGEWs - Ch. 3

+ + (two and three lines)

| {z }

Three gluon vertices - Ch. 4

(2.99)

+ + + (two and three lines)

| {z }

connected - future...

.

The diagrams in Eq. (2.99) should be interpreted as representing the correspond-

ing subtracted webs to which they contribute. Following from this, the layout

of the thesis will be as follows: Ch. 3 will continue the discussion of MGEWs

started in Sec. 2.5, based on our paper of the same name [1] and will compute the

remaining undetermined three-line webs required for �(3) along with more general

results which carry further into the perturbative series; in Ch. 4 we begin a study

of webs containing three gluon vertices (for example, those in the second line

of Eq. (2.99)) and in particular we consider the four line (1,1,1,2) web depicted

above; in Ch. 5 we conclude with a look at the future of web calculations and

consider the work which still remains to be done to determine the three loop soft

anomalous dimension in general kinematics.

This partitioning of the three-loop soft anomalous dimension is made to collect

subtracted webs by di�culty of the requisite integrals, which increases with the

number of three- and four-gluon vertices composing the connected sub-diagrams.

These collections are not, however, gauge invariant alone. After imposing colour
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conservation,

N
X

i=1

T a
i = 0 (2.100)

where N is the number of Wilson lines and T a
i are the generators of SU(Nc) dis-

cussed further in the following chapter, the gauge-invariant anomalous dimension

is formed by the sum over all of the subtracted webs at the desired order in ↵s.

At three loops, this is the sum over all the sum over all four-, three- and two-line

subtracted webs which can be collected by colour factor in the basis of Ref. [61]

as follows,

�(3)

4

= � fadef bce
X

(i,j,k,l)

T a
i T

b
j T

c
kT

d
l F

(3)

4;1

(↵ij,↵ik,↵il,↵jk,↵jl,↵kl)

� fabef cde
X
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T a
i T

b
j T

c
kT

d
l F

(3)

4;2

(↵ij,↵ik,↵il,↵jk,↵jl,↵kl) ,
(2.101)
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i , T
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i }T c

j T
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k F

(3)
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� f caef bde
X
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T a
i {T b

j , T
c
j }T d

k F
(3)

3;2

(↵ij,↵ik,↵jk)

� f cbefade
X

(i,j,k)

T a
i T

b
j {T c

k , T
d
k } F

(3)

3;3

(↵ij,↵ik,↵jk)

+ i
N2

c

2
fabc

X

(i,j,k)

T a
i T

b
j T

c
k F

(3)

3;4

(↵ij,↵ik,↵jk) ,

(2.102)

�(3)

2

= � fabef ecd
X

(i,j)

{T a
i , T

b
i }{T c

j , T
d
j } F

(3)

2;1

(↵ij)

+N2

c

X

(i,j)

T a
i T

a
j F

(3)

2;2

(↵ij) .
(2.103)

From these, we can obtain the three-loop anomalous dimension through

�(n) =
n+1

X

p=2

�(n)
p (2.104)
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where �(n)
p is the contribution from webs correlating p Wilson lines. These are

defined in terms of ordered sums,

X

(i1,...,ip)

(. . .) ⌘
X

1i1<...<ipN

(. . .) , (2.105)

over colour tensors and their corresponding kinematic factor F (n)
p;q

�{↵ij}
�

, where

n is again the loop order, p is the number of Wilson lines in the constituent

webs and q indexes the colour factors, with the sums bounded above by N –

the number of total number of Wilson lines. The kinematic factors depend upon

pC2

= p!/
�

2!(p� 2)!
�

kinematic variables, ↵ij, defined in terms of the cusp angles

in Eq. (2.61). They are composed of subtracted webs in accordance with the

results of [61] with the two-line webs obtained from [64].

For the purpose of clarity, if we restrict to a process with four colour-charged,

hard partons then Eq. (2.100) can be used to replace, for example, T a
4

= �T a
1

�
T a
2

�T a
3

in Eqs. (2.101), (2.102), (2.103). The four-line colour factors from Ref. [61]

will thus mix with the basis of three-line colour factors. Similarly, the three-

line colour factors which contain T a
4

will mix with the two-line colour factors.

Therefore, the gauge invariant pieces are the independent colour factors after

the application of Eq. (2.100) along with their corresponding kinematic factors,

originating from two-, three- and four-line subtracted webs.
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Chapter 3

Multiple Gluon Exchange Webs

3.1 Introduction

In this chapter, which is based on on our paper Ref. [1], we will discuss in

detail the simplest class of webs contributing to multiple Wilson line correlators,

two examples of which we have already encountered in Sec. 2.5. These were

dubbed Multiple Gluon Exchange Webs (MGEWs) in Ref. [60], where some

of their properties were studied, and two non-trivial three-loop examples were

computed. MGEWs can be characterized in general as those webs that arise

when the Wilson line correlator is computed using only the quadratic part of the

quantum Yang-Mills Lagrangian in the path integral. In diagrammatic terms,

they consist of graphs where all gluons attach directly to the Wilson lines, with

no interaction vertices located o↵ the Wilson lines. The graphs generated in

this way are abelian-like, in the sense that they would also appear in QED;

however there is an essential di↵erence between the two cases: in QED the order

of emission from the Wilson lines is immaterial, and one can easily show that

MGEWs collectively reconstruct powers of the one-loop result; indeed, according

to the exponentiation theorem, MGE diagrams are not part of the exponent

in QED. In contrast, in a non-abelian theory the ordering of gluon emission is

crucial, and, as a consequence, MGEWs contribute to the exponent, where they

collectively generate fully connected colour factors.

To recapitulate the discussion of Sec. 2.5, some key features of MGEWs

were uncovered in Ref. [60], based on a general analysis of the structure of

their kinematic integrals, along with some physically motivated considerations
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3.1. Introduction

concerning their analytic properties. Most notably, it was found that subtracted

MGEWs can be expressed as sums of products of functions depending on

individual cusp angles.

The results for the subtracted webs considered in Ref. [60] were expressed

in terms of a highly constrained set of functions, consisting of products of

polylogarithms, each depending on a single ↵ij. The analytic structure of these

functions has been elucidated using the symbol map (see Sec. 2.6): it was

conjectured that the symbols of the functions entering subtracted MGEWs are

built out of the restricted alphabet {↵ij, ⌘ij ⌘ ↵ij/(1 � ↵2

ij)}. This alphabet,

in particular, realises crossing symmetry, which in this case is expressed by the

reflection ↵ij ! �↵ij.

The primary aim of this chapter is to study the all-order structure of MGEWs

in further detail, and to test the conjectures of Ref. [60] in a broader range of

examples. Specifically, the subset of webs computed in Ref. [60], connecting

the maximal number of Wilson lines accessible at two and three loops, yields

integrals which are less entangled than certain MGEWs connecting a smaller

number of lines at the same order; the latter, more entangled ones, are computed

and analysed here in order to confirm the conjectures. With the more complete

understanding of MGEWs we gain here we are able to construct an ansatz for an

all-order basis of functions. These are defined through one-dimensional integrals

of powers of logarithms only. This yields a very restricted set of harmonic

polylogarithms [119] satisfying the alphabet conjecture and other constraints. We

show that this basis is su�cient to express all the subtracted webs we compute

in a compact manner, and we argue that it should be su�cient for MGEWs at

higher orders as well.

The structure of the chapter is as follows. In Sec. 3.2 we discuss the colour

structure of webs using the e↵ective vertex formulation developed in Ref. [61],

and identify a new type of relations between webs comprising di↵erent numbers of

Wilson lines, through a process of collinear reduction. Examples of this procedure

will be given later on in the chapter, where it is used as a check of the results

of specific webs. Then, in Sec. 3.3, we provide a general characterization of

MGEWs: we give an integral representation valid for any web in this class, before

subtraction, in terms of variables with a transparent physical interpretation, and

we review the conjectures proposed in [60]. In Sec. 3.4, we explain how the basis
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3.2. The colour structure of webs and collinear reduction

of functions for MGEWs is constructed, and provide the necessary definitions,

which will be used in what follows to express the results of the various MGEWs we

compute. In the subsequent sections, we provide explicit calculations of MGEWs

to substantiate our arguments; the results are also important as ingredients for

the computation of the soft anomalous dimension at three loops and beyond.

In Sections 3.4.2 and 3.5 we consider three-loop webs connecting two and three

Wilson lines: the two-line case, already studied in [52], is interesting in this

context since it provides an example of maximal entanglement of gluon insertions

at this order. The results of Sect. 3.5 constitute another significant step forward

in constructing the complete three-loop soft anomalous dimension, as well as

providing an interesting comparison with the four line case of Ref. [60]. In Sec. 3.6,

we provide the complete calculation of a four-loop subtracted web, connecting

five Wilson lines. The result is in complete agreement with the conjectured all-

order properties of MGEWs. Finally, in Sec. 3.7, we show that a specific class of

highly symmetric diagrams contributing to n-line webs can be explicitly computed

for any n, obtaining a remarkably simple result that further substantiates our

conjectures. This all-order calculation of kinematic factors further allows us to

prove that a specific colour structure arising from these webs has a vanishing

coe�cient for any n. We discuss our results and conclude in Sec. 3.8, while some

technical details concerning the calculation of the subtracted webs that we have

presented are collected in appendices.

3.2 The colour structure of webs and collinear

reduction

In order to compute the anomalous dimension coe�cients at a given order using

Eq. (2.43), one must classify the independent colour factors that arise, and

then determine the contributions of every web to each colour factor. The first

observation is that contributions to �(n) may involve up to (n+ 1) Wilson lines,

namely

�(n) =
n+1

X

k=2

�(n)
k , (3.1)
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where, for example, �(n)
2

are the coe�cients of the cusp anomalous dimension.

At three-loops, Ref. [60] computed MGEWs contributing to �(3)

4

, while in the

present chapter we will compute those contributing to �(3)

k for k  3. We will

see below that certain contributions of webs that span a non-maximal number of

Wilson lines, k  n+ 1, can be deduced from webs that span a larger number of

lines through a process we name collinear reduction.

As mentioned in Sec. 2.3, an important property of webs is that their colour

factors c
(L)
j correspond to connected graphs [61]. A convenient basis for these

colour factors follows naturally from the e↵ective vertex formalism developed in

Ref. [61], and we will adopt this basis in the present chapter. In this formalism,

V
(l)
K is an e↵ective vertex representing K gluon emissions from a given Wilson

line l, and involving K � 1 nested commutators. In general, V (l)
K contains (K �

1)! independent colour factors CK,j, which are enumerated by the index j. For

example, V
(l)
2

, describing a double emission from Wilson line l, has a unique

colour factor1.

C
2,1 =

⇥

T a, T b
⇤

= ifabcT c , (3.2)

while for V
(l)
3

, describing triple emission from the Wilson line, there are two

independent colour factors involving fully-nested commutators with di↵erent

permutations,

C
3,1 =

⇥⇥

T a, T b
⇤

, T c
⇤

= fabdfdec T e , (3.3)

C
3,2 =

⇥⇥

T a, T c
⇤

, T b
⇤

= facdfdeb T e ; (3.4)

the third permutation is related to the previous two by the Jacobi identity. Note

that the attachment of the e↵ective K-gluon-emission graph to the Wilson line

involves a single generator. As an example of the e↵ective vertex operators in

action, consider again the (1,2,1) web of Sec. 2.5. Here, the only possible colour

factor will come from the combination of e↵ective vertices V (1)

1

· V (2)

2

· V (3)

1

which

from Eq. (3.2) results in T a
1

(ifabcT c
2

) T b
3

= �ifabcT a
1

T b
2

T c
3

matching Eq. (2.80).

Recall that the diagrams we are considering (contributing to MGEWs)

correspond to the emission of individual gluons directly from the Wilson line.

Connected colour factors emerge from linear combinations of these diagrams:

1We use the colour-insertion operator notation [16, 120] by which T

a
i represents a colour

generator on Wilson line i (in the appropriate representation) with adjoint index a.
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each e↵ective vertex V
(l)
K picks antisymmetric combinations of the corresponding

K colour generators on line l, through K � 1 nested commutators. The e↵ective

vertex V
(l)
K also associates with each colour factor CK,j a specificK-fold parameter

integral along the Wilson line, involving Heaviside functions that determine the

order of attachments of the K gluons to the Wilson line. Explicit expressions for

these e↵ective vertex integrals may be found in Ref. [61]. In the following, we will

not make direct use of these integrals. Rather, we will use the fact that they end

up generating linear combinations of Feynman integrals F(D) corresponding to

the various diagrams D in the web: these are precisely the linear combinations

appearing in Eq. (2.29), which are determined by the corresponding web mixing

matrix. For specific webs, we shall use the results for the mixing matrices,

and the corresponding eigenvectors entering Eq. (2.29), which are summarized

in Appendix A of Ref. [61].

For our present purposes the vertex formalism will be useful in fixing the basis

of colour factors c(L)j . We will further see that in this language one may readily

identify relations between webs involving di↵erent numbers of Wilson lines L. As

explained in Ref. [61], connected graphs in the vertex formalism may involve one

or more e↵ective vertices on each Wilson line. When a given line features several

e↵ective vertices, their order is taken to be fully symmetrised, defining

{C
1

C
2

. . . Cn}
+

⌘ 1

n!

X

⇡2Sn

C⇡1 C⇡2 . . . C⇡n . (3.5)

A web is characterised by a fixed number of emissions, nl, from line l. These

nl emissions may be distributed between di↵erent e↵ective emission vertices, and

di↵erent possibilities result in di↵erent web colour factors c
(L)
j . Some examples

are provided by figures 3.8, 3.10 and 3.12 below. It should be noted that further

multiplicity of the web colour factors originates in the fact that each vertex V
(l)
K

has (K� 1)! di↵erent colour factors CK,j (as exemplified by Eq. (3.3) for K = 3).

In general, web colour factors can be written in terms of the e↵ective-vertex colour

factors as

c
(L)
j =

L
Y

l=1

n

C
(l)
K1,j1

C
(l)
K2,j2

. . . C
(l)
Knl ,jnl

o

+

, (3.6)

where the product is an outer product between colour factors on di↵erent lines,

and curly brackets indicate symmetrization, according to Eq. (3.5).
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Our observation is as follows: contributions to the web in Eq. (2.29) in which

a given line l contains vl > 1 e↵ective vertices can be related to webs with a larger

number of Wilson lines, where line l is replaced by vl collinear Wilson lines, each of

which carries one of the vl e↵ective vertices. This conclusion follows from the fact

that there is no ordering between the e↵ective vertices, so the relevant Feynman

integrals over the positions of these vertices all extend along the ray from the

hard interaction to infinity. This is exactly what happens in the situation where

these vertices appear on di↵erent Wilson lines. We note that in colour space the

two situations are distinct, in the sense that the colour generators of vertices that

occur on di↵erent lines carry di↵erent indices, while if they occur on the same line

they must be in the same representation, and they multiply each other; according

to the Feynman rules of Ref. [61], one then takes the symmetrized product as in

Eq. (3.5).

This observation implies that one can make a precise identification between

contributions corresponding to particular colour structures in webs involving

di↵erent numbers of Wilson lines. Let us consider a simple case: consider a

web with L Wilson lines, where two lines l
1

and l
2

feature, respectively, a single

vertex each, V (l1)
K1

and V
(l2)
K2

; consider then the collinear limit, where the velocity

vectors of the two lines coincide; this yields a contribution to the corresponding

web with L� 1 Wilson lines, where the two vertices are placed on the same line,

with the colour factor replacement

CK1,j1 ⌦ CK2,j2 ⌦ . . . �! {CK1,j1 , CK2,j2}
+

⌦ . . . , (3.7)

where the dots stand for the contribution to the colour factor from the rest of

the web, involving L � 2 Wilson lines. If the symmetry factor of the vertex

diagram corresponding to the original graph di↵ers from that of the final graph,

this needs to be taken into account (an example will be given in Sec. 3.5). This

process, which we call collinear reduction, may be generalised to the identification

of multiple lines. As we will see in the following sections, it provides non-trivial

checks of the final results for webs which span less than the maximal number of

lines at a given order. A graphical illustration of this process can be found in

Fig. 3.1.

A corollary to this result is that starting with webs that span the largest

number of Wilson lines at a given order (at three loops these are the ones
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3.3. General structure of MGEW integrals

Figure 3.1: An illustration of collinear reduction from an n-line to an (n � 1)-
line web by identifying the lines labeled i and j. The encircled gluon–Wilson-
line vertices with subscript + indicates that after replacing j ! i in the web
colour factors, the anticommutator of the attachements is to be taken: T

{a,b}
i =

T a
i T

b
i + T b

i T
a
i . The corresponding kinematic factors are determined by replacing

�j ! �i and multiplying by the appropriate symmetry factors.

connecting four legs, which were computed in Ref. [60]), and moving towards

more entangled webs, where the same number of gluons connect fewer Wilson

lines, the kinematic integrals corresponding to many of the colour factors c(L)j in

Eq. (2.29) would already be known in advance. In fact, the only contribution of

a given MGEW with nl attachments to leg l which cannot be deduced from other

MGEWs in which the same number of gluons connects a larger number of Wilson

lines, is the one corresponding to having a single e↵ective vertex, V (l)
nl , on each

line.

In the remainder of this chapter we focus on the calculation of the kinematic

functions for MGEWs, whose study was started in [60]. We begin in the next

section by discussing the general structure of these integrals.

3.3 General structure of MGEW integrals

Multiple gluon exchange webs are the simplest class of webs contributing to

the multi-particle soft anomalous dimension. As mentioned above, despite

the abelian-like appearance of their Feynman graphs, in a non-abelian gauge

theory they contribute to the same colour structures as do fully connected

webs containing the maximal number of gluon self-interactions. Understanding
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3.3. General structure of MGEW integrals

MGEWs is therefore a necessary step to compute the soft anomalous dimension

at high orders; on the other hand, the relative simplicity of MGEWs makes it

possible to tackle multi-loop corrections, shedding light on the general structure

of infrared singularities.

A simple way to characterize MGEWs is the following; they are the webs

obtained when the Wilson line correlator in Eq. (2.47) is evaluated with a path

integral in which the full gauge theory Lagrangian is replaced with its free

counterpart, given by the set of terms that are quadratic in the gauge fields.

One may write

S

✓

�ij,↵s(µ), ✏,
m

µ

◆

�

�

�

�

MGEW

⌘
Z

[DA]�(m)

�1
⌦ �(m)

�2
⌦ . . .⌦ �(m)

�L
exp

n

iS
0

[A]
o

,

(3.8)

where S
0

[A] comprises the classical gauge kinetic term, and the quadratic

contribution to the chosen gauge fixing (we will work in Feynman gauge). Terms

quadratic in matter fields and ghost fields are not included. As a consequence,

�-function contributions are absent in MGEWs, and we are e↵ectively working

in a conformally invariant sector of the theory, as we observed when considering

the double pole in the (1,2,1) web in Sec. 2.5.

3.3.1 Feynman integral for a MGE diagram

It turns out to be possible to formally carry out a number of steps in the

calculation of Feynman diagrams contributing to MGEWs in complete generality,

as suggested in [60], by generalising the transformation, Eq. (2.52) found in

the examples of Sec. 2.5. In order to do so we need to introduce a precise

characterization of the gluon configuration for a generic MGEW diagram. First,

we introduce an ordering in the set of LWilson lines, l = 1, . . . , L. As an example,

consider the diagram of Fig. 3.2, which is part of a (1,2,3,3,1) web. To further

characterise a specific diagram in the web, we need to identify the order of gluon

attachments to each Wilson line. Referring to Fig. 3.2, we introduce an ordering

in the set of n gluons contributing to the chosen n-loop Feynman diagram in

the following way: we consider each of the Wilson lines in turn according to the

chosen order, moving along each line starting at the far end and reaching the

origin; gluons are assigned the ordering with which they are encountered in this

procedure. A given gluon k is counted only once, as it is first encountered. With
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3.3. General structure of MGEW integrals

Figure 3.2: An example of a multiple gluon exchange diagram connecting five
Wilson lines at five loops; it is part of the (1,2,3,3,1) web. The lines meet
at a local e↵ective vertex representing the hard interaction. For this diagram
⇥D

⇥ {sk, tk}
⇤

= ✓(t
1

> s
2

) ✓(s
3

> t
2

> s
4

) ✓(t
4

> s
5

> t
3

).

this assignment, we say that the k-th gluon is emitted from the Wilson line in

the direction �i(k) at point sk, and is absorbed by the Wilson line in the direction

�f(k) at point tk. Using the coordinate space Feynman gauge gluon propagator,

Eq. (2.49), and expanding the Wilson line operators in Eq. (2.46) in powers of the

coupling, one easily finds that the most general n-gluon MGE Feynman diagram

D, contributing to Eq. (3.8) at n loops, gives the kinematic factor

F (n) (D) =

✓

µ2✏ �(1� ✏)

⇡1�✏

◆n n
Y

k=1

�i(k) · �f(k)
Z 1

0

n
Y

k=1

dsk dtk

⇥ ⇥D

⇥ {sk, tk}
⇤

n
Y

k=1

h

� �

�i(k)sk � �f(k)tk
�

2

i�1+✏

(3.9)

⇥ exp

"

� im
n
X

k=1

⇣

sk
q

�2

i(k) � i"+ tk
q

�2

f(k) � i"
⌘

#

.
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3.3. General structure of MGEW integrals

Clearly the ordering of the attachments of the gluons on each Wilson line is

essential: it is given by the function ⇥D [{sk, tk}], which is a product of Heaviside

functions assigned to each Wilson line, with p � 1 independent ✓ functions on a

line with p gluon attachments2.

Following Ref. [60], and the examples given in Sec. 2.5, we proceed by rescaling

the Wilson line coordinates by defining3

�k = sk
q

��2

i(k) , ⌧k = tk
q

��2

f(k) , (3.10)

and furthermore we make an analogous transformation to Eq. (2.52) by writing

�k = xk�k , ⌧k = (1� xk)�k . (3.11)

In this way, �k is a measure of the overall distance of the k-th gluon from the

origin, whereas xk is an ‘angular’ variable, measuring the degree of collinearity of

the k-th gluon to either the emitting (as xk ! 1) or the absorbing (as xk ! 0)

Wilson lines. In terms of these variables one finds

F (n) (D) =

✓

�µ2✏ �(1� ✏)

2⇡1�✏

◆n

⇥
Z 1

0

n
Y

k=1

d�k �
�1+2✏
k e�m

Pn
k=1 �k (3.12)

⇥
Z

1

0

n
Y

k=1

dxk �k

h

� x2

k � (1� xk)
2 + �k xk(1� xk)

i�1+✏

⇥D

⇥ {xk,�k}
⇤

,

where �k ⌘ �i(k),f(k) is as defined in Eq. (2.55). Note that the distance variables

�k have been scaled out of the propagators. We keep using the symbol ⇥D for

the product of Heaviside functions, although now they are expressed in terms of

the new variables.

To proceed we now extract from the diagram the overall UV singularity arising

from the region where all gluons are emitted and absorbed very close to the origin.

In order to do so, we change variable again expressing the �k’s as

�k = (1� yk�1

)
n
Y

p=k

yp , (3.13)

2Notice that Eq. (3.10) applies also to the case of gluons being emitted and absorbed by the
same Wilson line, corresponding to i(k) = f(k), but we will not compute such webs here.

3We have once again chosen to work with timelike Wilson lines for simplicity. For a discussion
of the analytic continuation see Sec. 2.5.
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3.3. General structure of MGEW integrals

for k = 1, . . . , n, where we define y
0

= 0. Note that with this definition
Pk

i=1

�i =
Qn

p=k yp, and in particular the regulator in Eq. (3.12), which involves the sum of

all the �i, depends only on yn. The Jacobian of this change of variables is given

by J =
Q

k y
k�1

k , so after performing the integral over yn, equivalent to the �

integral from Eq. (2.79), and changing scheme to Eq. (2.68), we find

F (n) (D) = en �(2n✏)

Z

1

0

n
Y

k=1

dxk �k

h

x2

k + (1� xk)
2 � �k xk(1� xk)

i�1+✏

⇥
Z

1

0

n�1

Y

k=1

dyk (1� yk)
�1+2✏ y�1+2k✏

k ⇥D

⇥ {xk, yk}
⇤

= en �(2n✏)

Z

1

0

n
Y

k=1

h

dxk p✏ (xk,↵k)
i

�
(n)
D (xi; ✏) , (3.14)

where we defined the coe�cient e in Eq. (2.71), as well as the function p✏(xk,↵k)

in Eq. (2.62) with �k = �↵k � 1/↵k according to Eq. (2.61). We also give the

n-th order generalisation of the web kernel,

�
(n)
D (xi; ✏) =

Z

1

0

n�1

Y

k=1

dyk (1� yk)
�1+2✏ y�1+2k✏

k ⇥D

⇥ {xk, yk}
⇤

, (3.15)

an example of which is Eq. (2.84) for the (1,2,1) web. The analysis of Ref. [60]

shows4 that �
(n)
D (xi; ✏) has a Laurent expansion in ✏, �

(n)
D =

P

k �
(n,k)
D ✏k,

where each term �
(n,k)
D is a pure transcendental function of uniform weight

n�1+k, containing logarithms and polylogarithms, as well as Heaviside functions

depending on ratios of the variables xi or 1� xi.

3.3.2 Feynman integral for a MGE web

The next observation [60] is that all diagrams D in a given webW have a common

integral structure5 of the form of Eq. (3.14): assuming that in all diagramsD 2 W

4Similar conclusions were reached in Ref. [52], working on two-line MGEWs and using
di↵erent tools.

5It is important to note that in order to combine Feynman integrals corresponding to
individual diagrams, as in Eq. (3.14), into the web Feynman integral, Eq. (3.17) below, one
must use a common set of parameters, so that xk is associated with a given cusp angle �i(k),f(k)

for all diagrams in the web. In practice one therefore selects one diagram D, based on which
one defines the ordering of the gluons, as explained using the example of Fig. 3.2; for any
other diagram in the web, one then uses the assigned order, where gluon k is always exchanged
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3.3. General structure of MGEW integrals

gluon k is exchanged between the same pair of Wilson lines, such diagrams

are only distinguished by the Heaviside functions ⇥D

⇥ {xk, yk}
⇤

representing

the order of gluon attachments to the Wilson lines, hence they only di↵er by

their kernels �(n)
D (xi; ✏). Because a web W is defined as a linear combination

of the contributing diagrams D 2 W , one deduces that the web as a whole

takes a form similar to Eq. (3.14), in the sense that they are both integrals over

factors of p✏(xk,↵k) multiplying hypergeometric kernels. To see this in more

detail, recall that, according to Eq. (2.29), every web can contribute to di↵erent

colour structures c(L)j building up the anomalous dimension, W =
Pr

j=1

F (n)
W,j c

(L)
j ,

where the kinematic functions are specific linear combinations of the integrals

corresponding to individual diagrams in the web,

F (n)
W, j (↵ij, ✏) =

X

D2W

Y �1

D,j F (n)(D) , (3.16)

and where the numerical coe�cients Y �1

D,j are fixed by the web mixing matrix.

One concludes that the contribution of web W to the j-th colour structure is

given by an integral similar to Eq. (3.14),

F (n)
W, j (↵ij, ✏) = en �(2n✏)

Z

1

0

n
Y

k=1

h

dxk p✏ (xk,↵k)
i

�
(n)
W, j (xi; ✏) , (3.17)

with a web kernel given by

�
(n)
W, j (xi; ✏) =

X

D2W

Y �1

D,j �
(n)
D (xi; ✏) . (3.18)

Before proceeding, it is useful to contrast non-abelian MGEWs with their much

simpler abelian counterparts. According to the abelian exponentiation theorem

only connected graphs enter the exponent, so in particular abelian MGEWs

are not part of the exponent. Instead, they are reproduced by expanding

the exponential involving a single exchange between each pair of Wilson lines.

Because in the abelian theory ordering is immaterial, we simply sum all diagrams

with equal weights. This sum must yield a product of the relevant one-loop

between the same pair of Wilson lines.
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integrals. The result can readily be verified from Eq. (3.14): indeed

X

D2W

F (n) (D) = en �(2n✏)

Z

1

0

n
Y

k=1

h

dxk p✏ (xk,↵k)
i

X

D2W

�
(n)
D (xi; ✏)

=
⇣

e�(2✏)
⌘n

Z

1

0

n
Y

k=1

h

dxk p✏ (xk,↵k)
i

, (3.19)

where in the second line we used the fact that the sum of Heaviside functions for

a MGEW gives unity, so that one can use

X

D2W

�
(n)
D (xi; ✏) =

Z

1

0

n�1

Y

k=1

dyk (1� yk)
�1+2✏ y�1+2k✏

k =
(�(2✏))2

�(2n✏)
. (3.20)

As expected, Eq. (3.19) is a product of one-loop integrals associated to the

relevant cusp angles. The unweighted sum in Eq. (3.20) is a constraint on the

web kernels of any non-abelian MGEW, providing a valuable check of explicit

calculations in what follows.

3.3.3 Feynman integral for a MGE subtracted web

An important conclusion of the analysis in Ref. [60] is that the integration over

the angular variables xk in Eq. (3.17) is vastly simplified for subtracted webs. To

this end, each web is expanded in powers of ✏, as

W (↵ij, ✏) = ↵n
s

1
X

k=�n

w(n,k) (↵ij) ✏
k , (3.21)

and then, as discussed with Eq. (3.22) it is combined with the commutators of

the webs composed by its subdiagrams, according to the pattern forming the

anomalous dimension in Eq. (2.43). Then �(n) = �2n
P

i w
(n)
i , the sum over

all such subtracted webs. This step relies on the fact that the commutators

build up the same colour factors and kinematic factors which also take the form

of integrals over p
0

(xi,↵i) multiplying polylogarithmic kernels, as in Eq. (3.17).

The O(↵n, ✏�1) subtracted web can then be written as

w(n) (↵k) =

✓

1

4⇡

◆n r
X

j=1

c
(L)
j F

(n)
W, j

�

↵k

�

. (3.22)
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Using this notation, the subtracted web kinematic function F
(n)
W, j can be written

as

F
(n)
W, j

�

↵i

�

=

Z

1

0

"

n
Y

k=1

dxk p0(xk,↵k)

#

G(n)
W, j

�

xi,↵i

�

=

 

n
Y

k=1

r(↵k)

!

Z

1

0

"

n
Y

k=1

dxk

 

1

xk � 1

1�↵k

� 1

xk +
↵k

1�↵k

!#

G(n)
W, j

�

xi,↵i

�

⌘
 

n
Y

k=1

r(↵k)

!

G
(n)
W, j

�

↵i

�

, (3.23)

where in the first line we introduce the subtracted web kernel6 G(n)
W, j. This function

contains the finite term7 of the web kernel �(n)
W, j (xi; ✏), along with related terms

from the commutators of the relevant subdiagrams; additional contributions

occur due to (multiple) poles of �(n)
W, j (xi; ✏), related to subdivergences, which are

multiplied by appropriate powers of log q (x,↵) from the expansion in Eq. (2.62).

For an example of this the reader is again directed to the (1,2,1) subtracted web

example in Sec. 2.5. In the second expression in Eq. (3.23) we used the partial

fraction form of p
0

introduced in Eq. (2.64), which places the xk integrals in d log

form as described in Sec. 2.6, owing also to the purely multiple-polylogarithmic

content of G(n)
W, j

�

xi,↵i

�

for MGEWs as demonstrated in Refs. [60]. This also fixes

the rational function associated with the web, which is simply a factor of r(↵k),

Eq. (2.65), for each gluon exchange. In the final expression in Eq. (3.23) all the

xk integrals are done, defining the function G
(n)
W, j

�

↵i

�

.

As discussed in Ref. [60], remarkable simplifications occur at the level of

Eq. (3.23). These can most easily be described through the properties of the

subtracted web kernel G(n)
W, j: this function depends on its arguments only through

powers of the logarithms, log(xk), log(1 � xk) and log q(xk,↵k), and through

Heaviside functions involving ratios of the variables xk. As integrals in the second

line of Eq. (3.23) are of a d log form, the resulting function G
(n)
W, j

�

↵i

�

is a pure

function of transcendental weight 2n � 1. Subtracted multi-particle webs thus

share the properties of two-parton webs described in Ref. [52]. It should be

stressed, however, that the route by which one calculates multiparton webs is

6N.B. G

(n)
W, j is distinct from G(n)

W, j , the subtracted web kernel, which is a component of the
integrand of the former.

7Recall that �

(n)
W, j (xi; ✏) enters at O(✏�1) due to the overall factor �(2n✏) in Eq. (3.17).
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substantially di↵erent, due to the combinatorics associated with the non-trivial

colour structure, and to the presence of subdivergences.

We emphasise that the absence of polylogarithms in G(n)
W, j is rather surprising:

recall that polylogarithms of weight n� 1 do occur in the O(✏0) term of the non-

subtracted web kernel �(n)
W, j (xi; ✏) which commonly contain, for example, Gaussian

hypergeometric functions such as 8

2

F
1

�

a✏, b✏; 1 + b✏; z
�

= 1�
1
X

i=2

(�✏)i
i�1

X

k=1

akbi�kG(0i�k,1k; z) . (3.24)

Ref. [60] argued that these polylog cancellations (and the related analytic

properties of G(n)
W, j

�

↵i

�

, which we describe below) are linked with the restoration

of crossing symmetry. The latter is lost at the level of non-subtracted webs, due

to the action of the IR regulator in the presence of UV subdivergences, but it is

recovered for subtracted webs.

The most important consequence of the purely logarithmic nature of the

subtracted web kernel is that the resulting integrated function, G
(n)
W, j

�

↵i

�

, is

a sum of products of polylogarithms, each depending on a single ↵k variable.

Furthermore, these polylogarithms are very specific; their symbol alphabet is

restricted to ↵k and 1� ↵2

k. The goal of the next section is to fully characterize

these functions and obtain an explicit basis for them.

It should be stressed that the properties just described have been conjectured

to be general, but they have not been proven. Specifically, all explicit calculations

in Ref. [60] were of webs whose subtracted kernel is free of Heaviside functions,

in which case the relation between the purely logarithmic nature of the kernel

and the factorization property is obvious. Such a relation is less obvious when

Heaviside functions occur in G(n)
W, j. The number of Heaviside functions appearing

in a given subtracted web kernel depends on the level of entanglement of the web:

webs spanning the maximal number, n + 1, of Wilson lines at n loops are not

entangled (so there is no Heaviside function after performing the yk integrals in

Eq. (3.15)) while those connecting fewer Wilson lines are entangled by up to n�1

Heaviside functions. A central goal of the present chapter is to verify that the

factorization property does indeed hold even for entangled webs.

8
G(a1, . . . , an; z) here is the multiple-polylogarithm defined in Sec. 2.6.
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3.4. A basis of functions for MGEWs

3.4 A basis of functions for MGEWs

3.4.1 Constructing a basis

One of the conclusions of Ref. [60] is that the subtracted webs (1,2,2,1) and

(1,1,1,3), connecting the maximum possible number of Wilson lines at three loops,

can be written in terms of the simple set of integrals

R
0

(↵) =
1

r(↵)

Z

1

0

dx p
0

(x,↵) ,

⌃
2

(↵) =
1

2 r(↵)

Z

1

0

dx p
0

(x,↵) log2
✓

x

1� x

◆

,

U
1

(↵) =
1

r(↵)

Z

1

0

dx p
0

(x,↵) log

✓

q(x,↵)

x2

◆

, (3.25)

U
2

(↵) =
1

4 r(↵)

Z

1

0

dx p
0

(x,↵) log2
✓

q(x,↵)

x2

◆

,

where p
0

(x,↵) is defined in Eq. (2.64) and r(↵) in Eq. (2.65). These integrals have

an integrand consisting only of logarithms, depend upon only a single cusp angle,

and individually satisfy the alphabet constraints outlined above. It is natural to

ask whether one may construct a basis for all MGEWs, given the requirements

of the alphabet and factorization conjectures, and the limited range of elements

entering the subtracted web kernel in Eq. (3.23), namely

log
q(x,↵)

x2

= log

✓

1

x
+ ↵� 1

◆

+ log

✓

1

x
+

1

↵
� 1

◆

(3.26)

and log
⇣

x
1�x

⌘

. A first attempt could be to consider the set of functions

Mk,m(↵) =
1

r(↵)

Z

1

0

dx p
0

(x,↵) logk
✓

q(x,↵)

x2

◆

log2m
✓

x

1� x

◆

, (3.27)

with k and m non-negative integers (note that q(x,↵) is symmetric under x !
1� x, and odd powers of log

⇣

x
1�x

⌘

can be eliminated in terms of ones with even

powers). The functions in Eq. (3.27) have uniform weight 2m + k + 1, and they
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3.4. A basis of functions for MGEWs

satisfy the alphabet conjecture. In terms of these functions one finds

R
0

(↵) = M
0,0(↵) , U

1

(↵) = M
1,0(↵) ,

⌃
2

(↵) =
1

2
M

0,1(↵) , U
2

(↵) =
1

4
M

2,0(↵) .
(3.28)

At least through three loops, the basis of Eq. (3.27) is su�cient to describe

MGEWs that connect the maximum number of Wilson lines at a given loop order.

We now wish to check whether more entangled webs, which connect fewer lines,

and thus may have leftover Heaviside functions in their subtracted web kernel

GW , will belong to the span of this basis. To do this, we shall first consider the

(2,2) web at two loops, and then the (3,3), (1,2,3), and (2,2,2) subtracted webs

at three loops. The relevant combination of e↵ective vertices are, respectively:

V
(1)

2

· V (2)

2

, V (1)

3

· V (2)

3

, V (1)

1

· V (2)

2

· V (3)

3

and V
(1)

2

· V (2)

2

· V (3)

2

.

Let us begin by considering the simplest example, the two-loop, two-line (2,2)

web, which is of course well-known [3, 62]. This web contains two diagrams:

the ladder (II) and the crossed (X) one. It is immediately evident, however,

according to the definition of webs for the colour-singlet case [91, 92], that only

the kinematic integral of the latter, shown in Fig. 3.3, contributes. The web

therefore evaluates to

W
(2)

(2,2) =
h

C(X)� C(II)
i

F(X) =
1

2
[T a

1

, T b
1

] [T b
2

, T a
2

] F(X)

=
Nc

2
T
1

· T
2

F(X) . (3.29)

A derivation of this result using the e↵ective vertex formalism was given in Sec. 3

of Ref. [61], where it was shown that the only contribution arises from a double-

emission vertex V
2

on each of the two Wilson lines, each vertex having a connected

colour structure given by Eq. (3.2). We now proceed to consider the integral

F(X). Specifically we will be interested in the simple pole of this function,

F(X) =
⇣↵s

4⇡

⌘

2



1

✏
F

(2)

(2,2)(↵) +O(✏0)

�

, (3.30)

which depends on a single kinematic variable, ↵
12

⌘ ↵. In the notation

of Eq. (3.9), one has four semi-infinite parameter integrals, two over s
1

and

s
2

along line 1, and two over t
1

and t
2

along line 2, with the restrictions
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3.4. A basis of functions for MGEWs

s1

2t

1t

1

2

s2

1

2

v2

v2

Figure 3.3: The two-loop crossed graph connecting two Wilson lines, and the
corresponding e↵ective vertex graph containing a double emission vertex V

2

on
each of the two lines.

⇥X = ✓(s
1

� s
2

) ✓(t
2

� t
1

). Following the steps leading to Eq. (3.23), we find

F
(2)

(2,2)(↵) =

Z

1

0

dx
1

Z

1

0

dx
2

p
0

(x
1

,↵) p
0

(x
2

,↵)G(2)

(2,2)(x1

, x
2

) , (3.31)

with the kernel

G(2)

(2,2)(x1

, x
2

) = ✓(x
1

� x
2

) log

✓

x
1

1� x
1

1� x
2

x
2

◆

. (3.32)

Using p
0

(1� x,↵) = p
0

(x,↵), we can write the kinematic factor in Eq. (3.31) as

F
(2)

(2,2)(↵) = 2

Z

1

0

dx
1

p
0

(x
1

,↵) log

✓

x
1

1� x
1

◆

Z

1

0

dx
2

p
0

(x
2

,↵) ✓(x
1

� x
2

) . (3.33)

The second integral in Eq. (3.33) does not yield an expression of the form of

Eq. (3.27), so we shall be forced to extend our basis. Let us proceed as follows.

First we define

log q̃(x,↵) ⌘ 1

r(↵)

Z

1

0

dy p
0

(y,↵)✓(x� y)

= log

✓

1

x
+ ↵� 1

◆

� log

✓

1

x
+

1

↵
� 1

◆

. (3.34)
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We may then extend our basis by defining the set of functions

Mk,l,n(↵) =
1

r(↵)

Z

1

0

dx p
0

(x,↵) logk
✓

q(x,↵)

x2

◆

logl
✓

x

1� x

◆

logn q̃(x,↵) .

(3.35)

These functions have uniform weight w = k + l + n + 1, and we will see below

that Mk,l,n(↵) still gives rise to the required alphabet composed of ↵ and ⌘ =

↵/(1 � ↵2). Clearly, these functions are consistent with our constraints. Note

also that log q̃(x,↵) is a natural addition to the previous basis: as shown in

Eq. (3.34), it is precisely the di↵erence of the same two logarithms whose sum is

given by the factor in Eq. (3.26). Notice also that log q̃(x,↵) and r(↵) are odd

under ↵ ! 1/↵, while the full result for every web must be even, because of the

relation between ↵ and �. Therefore if this logarithm appears raised to an odd

power, the symmetry in the corresponding contribution will have to be restored

by some other factor in the result, for example a factor of r(↵), or multiplication

by another function of the basis also odd under the same transformation.

We can now revisit Eq. (3.33), and express the result for the (2,2) web in

terms of the basis in Eq. (3.35), as

w
(2)

(2,2) =

✓

1

4⇡

◆

2

Nc

2
T
1

· T
2

F
(2)

(2,2)(↵) , F
(2)

(2,2)(↵) = 2 r2(↵)M
0,1,1(↵) .

(3.36)

By using the explicit expression for the function M
0,1,1(↵) given in Appendix A.1,

we see that this result agrees with the calculation reported in [3, 62].

Having fixed the basis, we can readily express all previously computed

subtracted webs in terms of the first few basis functions. To begin with, the

functions in Eq. (3.25) can be expressed in terms of Eq. (3.35) as

R
0

(↵) = M
0,0,0(↵) , U

1

(↵) = M
1,0,0(↵) ,

⌃
2

(↵) =
1

2
M

0,2,0(↵) , U
2

(↵) =
1

4
M

2,0,0(↵) .
(3.37)

Further, the (1,2,1) subtracted web computed in Sec. 2.5 and in Refs. [60, 67–

70] can be written as

w
(2,�1)

(1,2,1) = � i fabcT a
i T

b
j T

c
k

✓

1

4⇡

◆

2 1

2
r(↵ij) r(↵jk) (3.38)
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3.4. A basis of functions for MGEWs

Figure 3.4: The (1,2,2,1) web, connecting four Wilson lines at three loops.

⇥
⇣

M
0,0,0(↵ij)M1,0,0(↵jk)�M

0,0,0(↵jk)M1,0,0(↵ij)
⌘

.

Next, the results of the (1,2,2,1) and (1,1,1,3) subtracted webs, computed in

Ref. [60], can be expressed in the new basis as follows. For the (1,2,2,1) web

of Fig. 3.4, whose colour structure in the e↵ective vertex formalism is shown in

Fig. 3.5, we find

w
(3)

(1,2,2,1) (↵12

,↵
23

,↵
34

) = �1

6
fabef ecdT a

1

T b
2

T c
3

T d
4

✓

1

4⇡

◆

3

(3.39)

r(↵
12

) r(↵
23

) r(↵
34

)G
(1,2,2,1) (↵12

,↵
23

,↵
34

) ,

where

G
(1,2,2,1) (↵12

,↵
23

,↵
34

) = � 1

2
M

2,0,0(↵12

)M
0,0,0(↵23

)M
0,0,0(↵34

) (3.40)

� 1

2
M

2,0,0(↵34

)M
0,0,0(↵12

)M
0,0,0(↵23

) +M
2,0,0(↵23

)M
0,0,0(↵12

)M
0,0,0(↵34

)

�M
0,0,0(↵12

)M
1,0,0(↵23

)M
1,0,0(↵34

)�M
0,0,0(↵34

)M
1,0,0(↵12

)M
1,0,0(↵23

)

+ 2M
0,0,0(↵23

)M
1,0,0(↵12

)M
1,0,0(↵34

)� 4M
0,2,0(↵23

)M
0,0,0(↵12

)M
0,0,0(↵34

) .

For the (1,1,1,3) web, whose colour structure is depicted in Fig. 3.6, we find
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3.4. A basis of functions for MGEWs

1 2

v2

34

v2v1

v1

Figure 3.5: The (1,2,2,1) web in the e↵ective vertex formalism.

w
(3)

(1,1,1,3) (↵14

,↵
24

,↵
34

) = �1

6
T a
1

T b
2

T c
3

T d
4

✓

1

4⇡

◆

3

r(↵
14

) r(↵
24

) r(↵
34

)

⇥
h

fadef ebcG
(1,1,1,3) (↵14

,↵
24

,↵
34

) + facef ebd G
(1,1,1,3) (↵24

,↵
14

,↵
34

)
i

,

(3.41)

where

G
(1,1,1,3) (↵14

,↵
24

,↵
34

) =
1

2
M

2,0,0(↵14

)M
0,0,0(↵24

)M
0,0,0(↵34

) (3.42)

+
1

2
M

2,0,0(↵34

)M
0,0,0(↵14

)M
0,0,0(↵24

)� M
2,0,0(↵24

)M
0,0,0(↵14

)M
0,0,0(↵34

)

+M
0,0,0(↵14

)M
1,0,0(↵24

)M
1,0,0(↵34

) + M
0,0,0(↵34

)M
1,0,0(↵14

)M
1,0,0(↵24

)

� 2M
0,0,0(↵24

)M
1,0,0(↵14

)M
1,0,0(↵34

) .

We note that, while the weight of GW is 2n� 1, where W is an n-loop web, these

webs span n + 1 Wilson lines, involving n individual gluons, each depending on

a separate ↵ij. Thus the weight w is partitioned so that each term involves a

function of w � 1 for each of the n gluons. Consequently, we only encounter

functions up to weight w = n. To explore the validity of the basis beyond weight

three we need to either consider more entangled webs spanning fewer lines, where

fewer, but higher weight functions enter, or explore higher loop corrections. In

the following we will do both.

65



3.4. A basis of functions for MGEWs

1 2

34

v3 v1

v1v1

Figure 3.6: E↵ective vertex diagram for the (1,1,1,3) web.

As a first step, we need to generate the basis functions up to weight five (this

will be su�cient for the calculations we present in this chapter). Before doing

so, however, we must note that not all functions Mk,l,n are independent, and we

must discuss the relevant degeneracies. As an example, in the n = 0 case we find

that

Mk,2�+1,0(↵) = �
k
X

r=1

 

k

r

!

2r�1 Mk�r,2�+1+r,0(↵) , (3.43)

so, for n = 0, we can recursively express all the functions with odd values of l,

in terms of those with even values of l. Similarly, we can find relations in the

general case n 6= 0, by considering the symmetry under x $ 1 � x. We verify

that

Mk,l,n(↵) =
1

r(↵)

Z

1

0

dx p
0

(x,↵) (�1)l+n (3.44)

⇥


log

✓

q(x,↵)

x2

◆

+ 2 log

✓

x

1� x

◆�k

⇥


log

✓

x

1� x

◆�l
h

log(q̃(x,↵))� 2 log(↵)
in

.

By expanding the integrand in Eq. (3.44) we obtain then the general relation

Mk,l,n(↵) = (�1)l+n

k
X

r=0

n
X

s=0

 

k

r

! 

n

s

!

2s+r(�1)s logs(↵)Mk�r,l+r,n�s(↵) .

(3.45)
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Once again, we can express Mk,l,n, with l+n odd, in terms of the basis functions

with l + n even, and lower weights. Using these relations it is easy to derive the

set of independent functions up to any desired weight. For example, at weight

two, we have the relation

M
0,0,1(↵) =

1

2
M2

0,0,0(↵) , (3.46)

and at weight three we find

M
1,1,0(↵) = �M

0,2,0(↵) ,

M
1,0,1(↵) = �M

0,1,1(↵) +
1

2
M

0,0,0(↵)M1,0,0(↵) . (3.47)

Using these relations to eliminate redundant entries, we give the basis functions

up to weight five in Table 3.1. The table presents the symbol of each function,

while explicit expressions in terms of classical and harmonic polylogarithms [119]

are given in Appendix A.1. All functions have the required symbol alphabet;

consequently, they can all be expressed in terms of harmonic polylogarithms with

entries 0 and 1. A crucial question at this point is whether further extensions of

our proposed basis will be required at higher orders, when more entangled webs

are present. In the following, we present several examples of webs at three and

four loops, providing evidence that the basis of functions in Eq. (3.35) is indeed

su�cient. We begin by looking at the most entangled three-loop web, the (3,3)

web involving only two Wilson lines.

3.4.2 Testing the basis: a three-loop, two-line web

In the colour singlet channel, the (3,3) web W
(3,3) contributes to the three-loop

cusp anomalous dimension, and it could easily be computed, for example, with

the techniques of Ref. [52]. For open Wilson lines9, the only minor complication

is that two independent colour structures arise, while of course the relevant

kinematic integrals are the same. The diagrams contributing to W
(3,3) are

displayed in Fig. 3.7, and are denoted by (a) and (b) respectively. Using the

9’Open’ here is used to distinguish this from the standard cusp configuration where the lines
are considered closed into a Wilson loop at infinite distance from the cusp. In doing so one
would impose colour conservation and the contributions from all but the most antisymmetic
colour factors would cancel.
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Mk,l,n(↵)
w Name Symbol

1 M
0,0,0 2 (⌦↵)

2 M
1,0,0 �4↵⌦ ⌘

3

M
0,0,2 16↵⌦ ↵⌦ ↵

M
0,1,1 �4↵⌦ ⌘ ⌦ ↵

M
0,2,0 4↵⌦ ↵⌦ ↵

M
2,0,0 16↵⌦ ⌘ ⌦ ⌘

4

M
1,0,2 �32↵⌦ ↵⌦ ↵⌦ ⌘

M
1,1,1 �16↵⌦ ↵⌦ ↵⌦ ↵ + 8↵⌦ ⌘ ⌦ ↵⌦ ⌘ + 8↵⌦ ⌘ ⌦ ⌘ ⌦ ↵

M
1,2,0 �8↵⌦ ↵⌦ ↵⌦ ⌘ � 8↵⌦ ⌘ ⌦ ↵⌦ ↵

M
3,0,0 �96↵⌦ ⌘ ⌦ ⌘ ⌦ ⌘

5

M
0,0,4 768↵⌦ ↵⌦ ↵⌦ ↵⌦ ↵

M
0,1,3 �96↵⌦ ↵⌦ ↵⌦ ⌘ ⌦ ↵� 96↵⌦ ↵⌦ ⌘ ⌦ ↵⌦ ↵� 96↵⌦ ⌘ ⌦ ↵⌦ ↵⌦ ↵

M
0,2,2 96↵⌦ ↵⌦ ↵⌦ ↵⌦ ↵ + 32↵⌦ ⌘ ⌦ ↵⌦ ⌘ ⌦ ↵

M
0,3,1 �24↵⌦ ↵⌦ ↵⌦ ⌘ ⌦ ↵� 24↵⌦ ⌘ ⌦ ↵⌦ ↵⌦ ↵

M
0,4,0 48↵⌦ ↵⌦ ↵⌦ ↵⌦ ↵

M
2,0,2 128↵⌦ ↵⌦ ↵⌦ ⌘ ⌦ ⌘

M
2,1,1

64↵⌦ ↵⌦ ↵⌦ ↵⌦ ⌘ + 32↵⌦ ↵⌦ ⌘ ⌦ ↵⌦ ↵ + 32↵⌦ ⌘ ⌦ ↵⌦ ↵⌦ ↵
�32↵⌦ ⌘ ⌦ ↵⌦ ⌘ ⌦ ⌘ � 32↵⌦ ⌘ ⌦ ⌘ ⌦ ↵⌦ ⌘ � 32↵⌦ ⌘ ⌦ ⌘ ⌦ ⌘ ⌦ ↵

M
2,2,0

32↵⌦ ↵⌦ ↵⌦ ↵⌦ ↵ + 32↵⌦ ↵⌦ ↵⌦ ⌘ ⌦ ⌘ + 32↵⌦ ⌘ ⌦ ↵⌦ ↵⌦ ⌘
+32↵⌦ ⌘ ⌦ ⌘ ⌦ ↵⌦ ↵

M
4,0,0 768↵⌦ ⌘ ⌦ ⌘ ⌦ ⌘ ⌦ ⌘

Table 3.1: Symbols of all the linearly independent functions of the MGEW basis
of Eq. (3.35) up to weight five. We use the shorthand notation ⌘ = ↵/(1� ↵2).
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3.4. A basis of functions for MGEWs

Figure 3.7: The two diagrams contributing to the (3,3) web at the three loop
order. Diagram (a) has a twin under the symmetry swapping the two Wilson
lines; its kinematic integral yields the same function as (a).

procedure outlined in Sec. 3.3, it is straightforward to evaluate the contributions

of the two diagrams to the web. Since these diagrams are irreducible, they each

have just a single UV pole, and we define

Fa =
⇣↵s

4⇡

⌘

3



1

✏
F

(3)

(3,3),a +O(✏0)

�

,

Fb =
⇣↵s

4⇡

⌘

3



1

✏
F

(3)

(3,3),b +O(✏0)

�

. (3.48)

In the absence of subdivergences (in the colour singlet case, each diagram

separately is a ‘web’ in the sense of Refs. [91, 92]), no subtractions are needed. The

entangled nature of the diagrams, which leads to the absence of subdivergences,

also implies, however, that their contributions to the web kernel involve two

Heaviside functions, as we shall see explicitly below.

For open Wilson lines, one finds that the (3,3) web involves two independent

colour structures. Working in the e↵ective colour vertex basis, the result can be

written as

w
(3)

(3,3)(↵) =

✓

1

4⇡

◆

3 1

4



� fabe f ecd
n

T a
i , T

c
i

on

T b
j , T

d
j

o

F
(3)

(V1V2)+(V1V2)+
(↵)
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1

2

v2

v2

v1

v1

1

2

v3

v3

Figure 3.8: The elements of the (3,3) web in the e↵ective vertex formalism. The
diagram on the left hand side, where each Wilson line features a (symmetrized)
pair of V

2

and V
1

vertices, can be obtained from the (1,2,2,1) web of Fig. 3.5 upon
taking collinear limits, as explained in the text.

+N2

c Ti · Tj F
(3)

V3V3
(↵)

�

, (3.49)

where the first term involves the symmetric combination of a single emission

vertex and a double emission vertex on each line, while the second term has

one triple emission vertex per line. These two colour structures are depicted

in Fig. 3.8. The linear combinations of kinematic integrals corresponding to

each colour structure can be easily computed from the corresponding web mixing

matrix [61], and one finds

F
(3)

(V1V2)+(V1V2)+
(↵) = 2F (3)

(3,3),a(↵) + F
(3)

(3,3),b(↵) ,

F
(3)

V3V3
(↵) = F

(3)

(3,3),a(↵) +
3

2
F

(3)

(3,3),b(↵) ,
(3.50)

where F
(3)

(3,3),j(↵) with j = a, b denotes the contributions of the two diagrams in

Fig. 3.7. Following the steps described in Sec. 3.3, we get

F
(3)

(3,3),j(↵) =

Z

1

0

dx

Z

1

0

dy

Z

1

0

dz p
0

(x,↵) p
0

(y,↵) p
0

(z,↵)G(3)

(3,3),j(x, y, z) (3.51)
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with the kernels

G(3)

(3,3), a (x, y, z) = �4

3
log2

✓

x

1� x

1� z

z

◆

✓(z � x) ✓(y � z) ,

G(3)

(3,3), b (x, y, z) = �4

3
log

✓

x

1� x

1� y

y

◆

log

✓

y

1� y

1� z

z

◆

(3.52)

⇥ ✓(y � x) ✓(z � y) .

Using Eqs. (3.51) and (3.52) with the combination F
(3)

(V1V2)+(V1V2)+
(↵) from

Eq. (3.50), yields

F
(3)

(V1V2)+(V1V2)+
(↵) = �2

3
r3(↵)M

0,2,0(↵)M
2

0,0,0(↵) , (3.53)

which is the final answer for this component of the (3,3) web in Eq. (3.49).

According to the general reasoning outlined in Sec. 3.2, we expect this result to

be reproduced by a two-fold collinear reduction process starting with the (1,2,2,1)

web. Specifically, in Fig. 3.5 we must take Wilson line 1 to be collinear to Wilson

line 3, and line 4 to be collinear to line 2. It is clear that in this limit the

diagram degenerates to reproduce the first configuration in Fig. 3.8, provided we

take the symmetrized product of the colour factors of the two vertices on each

line according to Eq. (3.7). Considering Eq. (3.39), taking the limit requires

identifying ↵
12

and ↵
34

with ↵
23

, which we denote in the context of the (3,3) web

as ↵. This yields

w
(1,2,2,1) (↵12

,↵
23

,↵
34

) �!
1||3, 2||4

� 1

6
fabef

e
cd
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(3.54)

⇥
✓

1

4⇡

◆

3

r3(↵)G
(1,2,2,1) (↵,↵,↵) ,

where G
(1,2,2,1)(↵,↵,↵) was defined in Eq. (3.40). It is easy to check that this

collinear reduction result exactly reproduces the first term in Eq. (3.49), with the

kinematic function obtained in Eq. (3.53) through a direct calculation.

Notice that a direct calculation of the (subtracted) web yields in general a

combination of polylogarithms that may not be immediately identified in terms

of our basis functions. In order to express the results in terms of the basis, it is

very useful to construct the symbol of the result, and then use the properties of
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the symbol map [110, 113, 121], and more generally of the coproduct structure

described in Ref. [109]. We emphasise that the use of these algebraic methods to

manipulate polylogarithmic functions is merely an intermediate step, as the final

goal is always to find the result for the subtracted web as an analytic function,

written as a sum of products of basis elements Mk,l,n with numerical rational

coe�cients. In the case of Eq. (3.53), the symbol is very simple

S


1

r3(↵)
F

(3)

(V1V2)+(V1V2)+
(↵)

�

= �640

3
↵⌦ ↵⌦ ↵⌦ ↵⌦ ↵ . (3.55)

Note however that the identification of the result, at function level, in terms of

the basis is not fully determined by the symbol: for example, in addition to the

correct result in Eq. (3.53), M5

0,0,0(↵) also has a symbol proportional to Eq. (3.55).

This illustrates the well known fact that the symbol is not su�cient to control

lower-weight functions multiplied by transcendental constants such as ⇣(n). Such

terms however can be easily recovered using the coproduct technique, along with

a numerical evaluation of the integrals [109, 110].

We can now turn to the more interesting case of the V
3

· V
3

colour structure,

which is novel, in the sense that it cannot be derived from collinear reduction of

less entangled webs. It is not obvious a priori that our proposed basis su�ces for

this kinematic function, since now two integrals over the ‘propagator’ functions

p
0

are cut o↵ by the Heaviside functions appearing in Eq. (3.52). Having two

Heaviside functions, this web is clearly more entangled than the ones considered

so far, thus providing a non-trivial test of the generality of the basis.

It is not di�cult to perform the required integrals, yielding, as expected, a

combination of polylogarithms of uniform weight five. In order to map the result

to our basis, we compute the symbol, which is given by

S


1

r3(↵)
F

(3)

V3V3
(↵)

�

= �64

3



4
⇣

↵⌦ ⌘ ⌦ ⌘ ⌦ ↵⌦ ↵ + ↵⌦ ⌘ ⌦ ↵⌦ ⌘ ⌦ ↵
⌘

�↵⌦ ↵⌦ ↵⌦ ↵⌦ ↵

�

. (3.56)

Expressing the result in our basis is now an algebraic problem. We find that the

Mk,l,n basis is su�cient to express the V
3

·V
3

function, and the resulting expression
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is

F
(3)

V3V3
(↵) = �4

3
r3(↵)



1

4
M2

0,0,0(↵)M2,0,0(↵)� 1

4
M

0,0,0(↵)M
2

1,0,0(↵)

+M
0,0,0(↵)M1,1,1(↵)� M

0,1,1(↵)M1,0,0(↵) +
3

2
M

0,2,2(↵)

�1

4
M2

0,0,0(↵)M0,2,0(↵) +
1

48
M5

0,0,0(↵)

�

. (3.57)

For future reference, let us summarize the results we obtained for MGEWs in

the two-line case, with arbitrary colour exchange at the cusp, at the level of the

anomalous dimension. We find the following contribution from the webs,

↵s �
(1)

2

(↵)
�

�

�
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=
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T
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2
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(↵)

+N2

c T1

· T
2

F
(3)

V3V3
(↵)

�

,

(3.58c)

with the two functions in the three-loop result given in Eqs. (3.53) and (3.57).

The results agree with previous calculations. In particular, at the three-loop level,

the result for the colour singlet projection of the (3,3) web can be read o↵ from

Eq. (28) in Ref. [49]: it is given by the coe�cient of ⇠3 in that expression10. In

order to project our result Eq. (3.49) onto the colour singlet case, we simply need

to substitute T
2

= �T
1

, which guarantees colour conservation at the cusp. The

three-loop result is

↵3

s �
(3)

2

(↵)
�

�

�

(3,3)
=

3

2

⇣↵s

4⇡

⌘

3

N2

c CR



1

2
F

(3)

(V1V2)+(V1V2)+
(↵) + F

(3)

V3V3
(↵)

�

, (3.59)

where CR is the quadratic Casimir eigenvalue of representation R, corresponding

10The calculation in [49] is done for N = 4 Super Yang-Mills theory, with supersymmetric
Wilson lines, but one may extract the Yang-Mills limit by choosing the directions of the scalar
fields in the internal space on the two Wilson lines to be perpendicular to each other, in which
case ⇠ maps to our rational factor r(↵). The highest power of r(↵) is fully determined by
MGEWs, and at three loops by the (3,3) web alone.
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to Ti · Ti. The result is in full agreement with Ref. [49].

3.5 Results for three-loop, three-line webs

In this section, we present the calculation of the three-loop, three-line webs of

Figs. 3.9 and 3.11, and the corresponding contributions to the soft anomalous

dimension. While the calculations are lengthy, they closely follow the steps

described in Sec. 3.3: we can therefore concentrate on the results and on the role

of the basis functions defined in Sec. 3.4 above. The most important intermediate

steps are summarized in two appendices, Appendix A.2 for the (2,2,2) web and

Appendix A.3 for the (1,2,3) web. We choose our conventions so that both webs

connect lines 1, 2 and 3, counting clockwise from top-left in Figs. 3.9 and 3.11.

A suitable basis for the colour factors of all three-loop three-line webs is [61]

c
(3)

1

= {T a
1

, T b
1

}[T b
2

, T c
2

][T a
3

, T c
3

] ,

c
(3)

2

= [T a
1

, T b
1

]{T b
2

, T c
2

}[T a
3

, T c
3

] ,

c
(3)

3

= [T a
1

, T b
1

][T b
2

, T c
2

]{T a
3

, T c
3

} ,
c
(3)

4

= [T a
1

, T b
1

][T b
2

, T c
2

][T a
3

, T c
3

] .

(3.60)

Note that terms with more than one anticommutator cannot occur because they

would correspond to disconnected colour diagrams.

1 2

3A B C D

HGFE

Figure 3.9: The (2,2,2) web connecting three Wilson lines at three-loop order.
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3.5.1 The (2,2,2) web

The (2,2,2) web potentially contributes to all four colour factors in the basis of

Eq. (3.60). As a consequence, one may write the unsubtracted web as

W
(2,2,2) (↵12

,↵
23

,↵
13

) =
4

X

i=1

c
(3)

i F
(2,2,2);i (↵12

,↵
23

,↵
13

, ✏) . (3.61)

The combinations of kinematic factors accompanying each colour factor are

collected in Table 3.2. These form the web kernel, which is then combined with

appropriate commutators, to form the subtracted web. We present the details of

this calculation in appendix A.2, while here we discuss the results.

Using the specified colour basis the subtracted web takes the form

w
(2,2,2) (↵12

,↵
23

,↵
13

) =

✓

1
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◆

3

4

X
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23
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) , (3.62)

where

F
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3

p
0
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(x
2
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3
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)

⇥G
(2,2,2);i (x1

, x
2

, x
3

,↵
12

,↵
23

,↵
13

) . (3.63)

The subtracted web kernels G
(2,2,2);i, defined in Eq. (3.23), will be given below. We

will see that the subtracted web kernels depend on their arguments via powers

of logarithms only, as anticipated in Ref. [60]. This simple structure emerges

through the cancellation of all polylogarithms amongst the various diagrams and

commutators, when the subtracted web kernel is assembled (see for example

Eq. (A.22) and Eqs. (A.27) through (A.29), respectively). This simplification

is responsible for the factorized structure of the final result.

To express the subtracted web kernels in compact form, we define the

logarithmic functions

Lij ⌘ log

✓

q(xi,↵ij)

x2

i

◆

; Ri ⌘ log

✓

xi

1� xi

◆

. (3.64)

In terms of these functions, the subtracted web kernels associated to the first
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Colour Factor Kinematic Feynman Integral F
(2,2,2), i

c
(3)

1

1

12

(�2A� 2B + C � 2D + E � 2F +G+H)

c
(3)

2

1

12

(�2A� 2B � 2C +D + E + F � 2G+H)

c
(3)

3

1

12

(2A+ 2B � C �D + 2E � F �G+ 2H)

c
(3)

4

1

2

(�A+B)

Table 3.2: Kinematic integral associated with each colour factor in the (2,2,2)
web of Fig. 3.9, where A ⌘ F(A) and similarly for B,C, etc.
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(3.65)

As expected from Bose symmetry in Eq. (3.62), the three functions G(3)

(2,2,2), i can

be obtained from each other by permuting the relevant indices; the overall sign

for i = 3 compared to i = 1 and 2 reflects the symmetry properties of the

corresponding colour factors in Eq. (3.60) under cyclic permutations.

In contrast to Eq. (3.65), the contribution of the (2,2,2) web to the fully

antisymmetric colour factor c(3)
4

is found to vanish,

G(3)

(2,2,2), 4 = 0 . (3.66)

One sees explicitly that each subtracted web kernel consists of products of

logarithms involving distinct kinematic invariants, consistent with the basis of

functions defined in Sec. 3.4. It is now straightforward to integrate the results

over the ‘angle’ parameters xi. In line with Eq. (3.22), we denote the integrated

coe�cient of each colour factor (with factors of (4⇡)3 removed) by F
(3)

(2,2,2), i; the

result for the first kinematic factor is then

F
(3)

(2,2,2), 1 (↵12

,↵
23

,↵
13

) =
1

3
r(↵

12

)r(↵
23

)r(↵
13

) ⇥
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+
1

4
M

0,0,0(↵13

)M
1,0,0(↵12

)M
1,0,0(↵23

)

+
1

4
M

0,0,0(↵12

)M
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)M
1,0,0(↵23
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�

.

The second and third kinematic contributions may be obtained via

F
(3)

(2,2,2), 2 (↵12

,↵
23

,↵
13

) = F
(3)

(2,2,2), 1 (↵23

,↵
13

,↵
12

) ,

F
(3)

(2,2,2), 3 (↵12

,↵
23

,↵
13

) = �F
(3)

(2,2,2), 1 (↵13

,↵
12

,↵
23

) , (3.68)

as follows from the symmetry of the web, and the relabelling of the colour factors

in Eq. (3.60). Finally, the fourth kinematic factor vanishes

F
(3)

(2,2,2), 4 = 0 , (3.69)

as is clear from the vanishing of the subtracted web kernel in Eq. (3.66). One may

note that the subtracted kernels G(3)

(2,2,2), i do not contain any Heaviside functions,

despite the fact that individual diagrams (given in Appendix A.2) contain one

for every Wilson line. As a consequence, only a subclass of the basis functions is

relevant: those without any power of log eq(x,↵).

Let us now discuss the collinear reduction process, following Sec. 3.2, in the

context of the (2,2,2) web. We will see that the above results can be derived

from the (1,2,2,1) web of Fig. 3.5. Indeed, upon taking external lines 1 and

4 to be collinear, one ends up with the diagram of Fig. 3.10(a), involving a

symmetric combination of one-gluon vertices on line 1. Applying the collinear

reduction according to Eq. (3.7), the colour factor corresponds to c(3)
1

of Eq. (3.60).
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Eqs. (3.39) and (3.40), with ↵
34

! ↵
13

, then yield
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23
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which indeed agrees with Eq. (3.67). The contributions to the colour factors c(3)
2

Figure 3.10: E↵ective vertex diagrams for the (2,2,2) web. The first three cases,
a, b and c, can be obtained via collinear reduction from the (1,2,2,1) web of
figure 3.5 and its permutations.

and c
(4)

3

arise from permuting external lines in Fig. 3.5, as was done in Eq. (3.68),

so clearly these can also be obtained via collinear reductions of the (1,2,2,1)

web. The only contribution that cannot be generated in this way is the e↵ective

vertex diagram of Fig. 3.10(d), which features a V
2

vertex on all three lines. As

explained in Sec. 3.2, diagrams which feature a single e↵ective vertex on each

line constitute the genuinely new information in a given web, that cannot be

obtained from collinear reductions of webs connecting more external lines. In
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the present case, however, the colour factor of the diagram in Fig. 3.10(d) is the

fully antisymmetric combination c
(3)

4

, and we have seen above that the kinematic

function associated with this colour structure vanishes. The reason for this is

that the kinematic function associated with c
(3)

4

involves only diagrams A and B

in Fig. 3.9, in the antisymmetric combination F(A) � F(B). Diagrams A and

B, which were referred to as Escher staircase diagrams in Ref. [56], are special

for several reasons: they are highly symmetric, they are chirally opposed to each

other, and they are fully irreducible: one cannot shrink any gluon to the origin

without also pulling in the others. Therefore, they have no subdivergences, and

they do not need any commutator counterterms. Thus their UV pole can be

computed in isolation, yielding a regularization-independent result11. Finally, we

shall show below that their kinematic parts are equal, so that the antisymmetric

combination vanishes.

In Sec. 3.7, we will be able to construct the kinematic integrals of the Escher

staircases to all loop orders, and we will prove that a similar cancellation (though

with slightly di↵erent mechanisms for even and odd numbers of gluons) happens

for any number of gluons. More precisely, we will show that, out of n+ 1 colour

structures sampled by the (

n
z }| {

2, 2, . . . , 2) web, the only one which cannot be obtained

from collinear reduction of (1,

n�1

z }| {

2, 2, . . . , 2, 1) webs, which corresponds to a product

of n e↵ective vertices of type V
2

, receives contributions only from the two Escher

staircases which are present for any n, and these contributions cancel, so that the

corresponding kinematic function vanishes. Note however that this discussion

does not imply that staircase diagrams do not enter the exponent at all. Indeed,

as can be seen in Table 3.2, they do contribute to the colour factors c
(3)

i , with

1  i  3.

11The first computation of the staircase diagram A of the (2,2,2) web in Fig. 3.9 was performed
using a cuto↵ regularization in Ref. [52].
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A B C

FED

1 2

3

Figure 3.11: The (1,2,3) web connecting three Wilson lines at three-loop order.

3.5.2 The (1,2,3) web

In this section we focus on the (1,2,3) web of Fig. 3.11. Analogously to the (2,2,2)

web of the previous section, one may write the unsubtracted web as

W
(1,2,3) (↵13

,↵
23

) =
4

X

i=1

c
(3)

i F
(1,2,3), i (↵13

,↵
23

, ✏) . (3.71)

The combinations of kinematic functions of individual diagrams required for each

colour factor are collected in Table 3.3, and the details of the calculation of the

subtracted web may be found in Appendix A.3. Here we quote the results.

Note first that according to Table 3.3 this web, in the present basis, has no

projection on the c
(3)

1

colour factor. We can therefore consider only the three

components c(3)i for i = 2, 3, 4. The subtracted web is given by

w
(1,2,3) (↵13

,↵
23

) =

✓

1

4⇡

◆

3

4

X

i=2

c
(3)

i F
(1,2,3); i (↵13

,↵
23

) , (3.72)
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Colour Factor Kinematic Feynman Integral F
(1,2,3), i

c
(3)

1

0

c
(3)

2

1

12

(2A� B � C �D + 2E � F )

c
(3)

3

� 1

12

(4A+B + C +D � 2E + F )

c
(3)

4

�1

2

(B � C)

Table 3.3: Kinematic Feynman integrals accompanying each connected colour
factor for the (1,2,3) web of Fig. 3.11, where A ⌘ F(A), etc.
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The subtracted kernels are
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where we used the definitions in Eq. (3.64). As a consequence of the presence

of two entangled gluons spanning the cusp between lines 2 and 3, all subtracted

kernels have a leftover Heaviside function; for the first two colour structures, it

has been eliminated using symmetries of the integrand in the variables (x
1

, x
2

, x
3

),

while this cannot be done for the coe�cient of c(3)
4

. This notwithstanding, the

final integration can be performed, and the result can be expressed in terms of

our basis functions. Indeed, given the above subtracted kernels, we find

F
(3)
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As for the (2,2,2) web, and the MGEWs discussed in the previous section, these

results are fully consistent with our expectations: the kinematic functions entering

the anomalous dimension take the form of a sum of products of polylogarithmic

functions of individual cusp angles, consistently with the factorization conjecture

of Ref. [60], and these functions all belong to the basis of Eq. (3.35). The way

this is realised in the case of the (1,2,3) web is non-trivial: this web includes two

cusp angles and these are entangled in individual diagrams due to three Heaviside

functions. We find again that polylogarithms appear in the kernel of individual

diagrams and in the unsubtracted web, but not in the subtracted web kernel.

Furthermore, the only Heaviside function surviving in the subtracted web kernel

G(3)

(1,2,3),4 in Eq. (3.74) relates two of the angular integrations associated with the

same kinematic variable ↵
23

, and therefore is consistent with the factorization

property.

We conclude by discussing the constraints provided by collinear reduction.

As for the (2,2,2) web discussed above, one may obtain certain components

of the (1,2,3) web from collinear reductions of webs connecting four Wilson

lines. Two of the three components of Eq. (3.72) can be obtained this way:

the component associated with the colour factor c(3)
2

corresponds, in the e↵ective

vertex description, to diagram (a) in Fig. 3.12, and can be obtained by collinear

reduction from the (1,1,3,1) web, while the component associated with colour

factor c
(3)

3

corresponds to diagram (b) in Fig. 3.12, and can be obtained by

collinear reduction from the (1,2,2,1) web. The component of c(3)
4

corresponds, in
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turn, to diagram (c); since the latter has a single e↵ective vertex on each line, it

cannot be obtained through collinear reduction.

Let us now examine the two components that can be deduced from four-line

webs. In the case of diagram (a) in Fig. 3.12, one may first permute lines 3 and 4

in the result of the (1,1,1,3) web, so that the line carrying the V
3

vertex will be line

3, matching our conventions for the (1,2,3) web. Following this permutation, we

apply the collinear reduction by identifying line 4 with line 2. To match diagram

(a) in Fig. 3.12 we must also include a symmetry factor12 of 1/2, associated with

the exchange of the two gluons, both propagating between the V
3

vertex on line

3 and the V
1

vertices on line 2: this symmetry factor is absent in the original

(1,1,3,1) web, where the two gluons attach to di↵erent lines. We thus get

w
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(3.76)

where in the last line we kept only the second term, noting that the first vanishes

owing to the contraction of the colour tensors. It is straightforward to check,

using Eq. (3.42), that Eq. (3.76) reproduces the c(3)
2

component of the (1,2,3) web

in Eq. (3.72), with the kinematic function given by Eq. (3.75a).

Finally, consider diagram (b) in Fig. 3.12. This diagram can be obtained from

the collinear reduction of the (1,2,2,1) web of Eq. (3.39) by identifying lines 3 and

1, and then renaming 4 as 1, to match our conventions for the (1,2,3) web. One

finds

w
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) r(↵
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,↵
13

) .

12For a detailed discussion of the Feynman rules in the vertex e↵ective theory, see Ref. [61].
The specific example of the (1,2,3) web was also analysed there, see Eqs. (63) and (64).

83



3.6. A four-loop, five-line web

One may verify, using Eq. (3.40), that this equation exactly reproduces Eq. (3.72),

with the kinematic function given by Eq. (3.75b).

Figure 3.12: The three components of the (1,2,3) web using the e↵ective vertex
formalism. The components described by the two upper diagrams can be obtained
via collinear reduction of: (a) the (1,1,3,1) web; (b) the (1,2,2,1) web. Diagram
(c) shows the connected colour factor that features one vertex on each line and
cannot be determined by collinear reduction.

In this section, we have calculated the three-loop, three-line MGEWs that

are needed for the three-loop soft anomalous dimension. In the remainder of the

chapter, we examine how the methods developed here, and in Ref. [60], can be

applied beyond the three-loop order. We begin by studying a particular four-loop

example in the following section.

3.6 A four-loop, five-line web

The method developed in Ref. [60] and in Sections 2.4-3.4 above allows us to

compute high-order webs in the MGEW class with relatively little e↵ort. It is then
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worthwhile to look for interesting examples beyond three loops: this will provide

non-trivial checks of our conjectures on the analytic structure of subtracted webs,

and on the relevant basis of functions.

In this section, we present a complete calculation of a fully subtracted four-

loop web. As our example, we choose to consider the (1,2,2,2,1) web, connecting

five Wilson lines at four loops, and consisting of the diagrams depicted in

Fig. 3.13. The (1,2,2,2,1) web is particularly interesting because of its simple

colour structure, and because, spanning five legs, it will allow one to determine

certain components of other webs at the same order, spanning a smaller number

of Wilson lines but having more than one e↵ective vertex on at least one line.

Furthermore, the (1,2,2,2,1) web is the third member of the infinite series of

MGEWs (1,2,2,· · · ,2,1), connecting n + 1 lines at n loops. All the webs in this

class have a single colour structure, and the general solution of the corresponding

web mixing matrices for any n have been obtained using combinatorial methods

in [59, 93], while the kinematic functions have been determined in [60] for the

cases n = 2, 3. One may hope that a completely explicit answer for the first three

elements of this collection could provide some insights for an all-order answer.

The pattern of subtractions at the four-loop level is particularly intricate,

as can be seen from Eq. (2.43). For example, in the specific case of the web

(1,2,2,2,1), we need to consider the commutators of the webs (1,2,2,1), (1,2,1)

and (1,1) connecting the five lines. In this section we organize and discuss the

result, while further details are given in Appendix A.4.

The first step in the construction of the subtracted web is the determination

of the colour structure. In the case of the (1,2,2,2,1) web, depicted in Fig. 3.13,

there is only one colour structure, which can be written in terms of ordinary

colour generators as

c
(5)

1

= T a
1

⇥

T a
2

, T b
2

⇤ ⇥

T b
3

, T c
3

⇤⇥

T c
4

, T d
4

⇤

T d
5

. (3.78)

The corresponding combination of integrals can be constructed from the appro-

priate web mixing matrix, which is known [59]. Expressing the result in terms

of the kinematic Feynman integrals of the individual diagrams in Fig. 3.13, one

finds

F (4)

(1,2,2,2,1), 1 (↵ij, ✏) =
1

24

⇥

6
�F (4)(F )� F (4)(A)

�

+ 2
�F (4)(C) + F (4)(D) + F (4)(E)

�
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Figure 3.13: The (1,2,2,2,1) web connecting five Wilson lines at four loops.

�2
�F (4)(B) + F (4)(G) + F (4)(H)

�⇤

. (3.79)

It is convenient to work at the level of the integrand of the diagrams, by

taking directly the combination in Eq. (3.79) of the functions �
(4)

X given in

Appendix A.4. The unsubtracted web is lengthy, and, much like the (1,2,2,1)

web of Ref. [60], contains polylogarithms, so upon integration it does not yield a

factorized function of the cusp angles, but rather a lengthy sum of MPLs involving

di↵erent kinematic variables.

According to the factorization conjecture, we expect that the commutators of

the webs at lower orders will cancel all the correlations between di↵erent cusp

angles, as well as all polylogarithmic functions in the kernel. We find that indeed

the integrand of the subtracted web becomes much simpler, and the integrated

result is factorized as expected. The subtracted web kernel, in terms of the

functions defined in Eq. (3.64), is given by
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By looking at the subtracted web kernel in Eq. (3.80), we immediately note that

the result is already expressed in terms of the functions of the basis in Eq. (3.35).

More precisely, the functions M
3,0,0(↵ij) and M

1,2,0(↵ij) at weight four are the

only new functions appearing at this order. Upon performing the xk integrals,

and in the notations of Eq. (3.23), we find that the contribution of this web to

the anomalous dimension is given by
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As expected, we find a factorized function of uniform transcendental weight w =

7, expressed as a sum of products of our basis functions, each one depending

on a single cusp angle, and satisfying the symbol conjecture. Through various
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collinear limits, this will also yield information on other four-loop webs, involving

less than five Wilson lines, but with more than one e↵ective vertex on a given

line.

3.7 The Escher Staircase and (2, 2, . . . , 2) webs

In this section we will explore the flexibility and the reach of the formalism that

we have developed above by computing a certain class of diagrams contributing

to a specific series of MGEWs to all orders in perturbation theory. The results

of the calculation are not of immediate physical relevance, since we will not be

computing complete webs, much less subtracted webs, to all orders. Nevertheless,

the calculation of these particular diagrams will allow us to prove a general

statement about this series of webs. Moreover, the feasibility of this calculation

suggests that all-order calculations of MGEWs are possible. In addition the

simplicity of the result, which by itself is properly factorized into functions

belonging to our basis, provides further evidence for our conjectures.

Following Ref. [56], we refer to the class of diagrams we will compute as

Escher staircases. An example with n = 6 is displayed in Fig. 3.14. These

diagrams are the most symmetric members of the n-loop (2, 2, . . . , 2) webs: each

such web contains 2n diagrams, two of which are of the form we are studying,

di↵ering by clockwise or counterclockwise orientations. The staircase diagrams

are particularly interesting, not only because of their graphical symmetry,

but also because they do not have subdivergences, so they do not require

commutator counterterms. As a consequence, they should satisfy the alphabet

and factorization conjectures by themselves, and indeed we will find that they

do. Interestingly, we also find that a non-trivial cancellation takes place when the

kinematic factors of staircase diagrams are combined to build up contributions

to the n-loop soft anomalous dimension. Indeed, as verified in Sec. 3.5.1 for the

(2,2,2) web, the two staircases are the only diagrams to contribute to the colour

structure composed of only V
2

e↵ective vertices, denoted by c
(3)

4

in Sec. 3.5.1.

Their contributions to that colour structure however cancel exactly, as noted

in Eq. (3.69). The (2,2,2) staircases of course do contribute to the other three

colour structures, c(3)i , with i = 1, 2, 3. One should keep in mind, however, that

the kinematic functions of those colour structures can be obtained also from
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Figure 3.14: Example of an Escher staircase with six external legs. There are two
staircases at arbitrary order, related by reflection.

collinear reduction of the (1, 2, 2, 1) web. A similar story is played out for the

(2, 2, . . . , 2) web at arbitrary order, and we provide a general argument for this

in what follows.

Turning now to the evaluation of the Escher staircase at n loops, we begin by

noticing that the diagram kernel in Eq. (3.15) can be explicitly written down, for

the staircase, as

�
(n)
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where the i-th Heaviside function guarantees that the absorption point of gluon
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Using the fact that 0 < xi < 1, and 0 < yi < 1, it is easy to realize that the ✓

functions are more naturally expressed by changing variables to ⇠i ⌘ yi/(1� yi),

so that 0 < ⇠i < 1. In this way one gets, for small n, factors of

n = 2 ! ✓



x
2

1� x
1

< ⇠
1

<
1� x

2

x
1

�

✓



(1� x
1

)(1� x
2

)

x
1

x
2

> 1

�

,

n = 3 ! ✓



x
3

1� x
2

< ⇠
2

<
1� x

3

x
1

⇠
1

�

✓



x
2

1� x
1

< ⇠
1

<
(1� x

2

)(1� x
3

)

x
1

x
3

�

⇥ ✓



(1� x
1

)(1� x
2

)(1� x
3

)

x
1

x
2

x
3

> 1

�

,

n = 4 ! ✓



x
4

1� x
3

< ⇠
3

<
(1� x

4

)(1 + ⇠
1

)

x
1

⇠
1

⇠
2

�

⇥ ✓



x
3

1� x
2

< ⇠
2

<
(1� x

3

)(1� x
4

)

x
1

x
4

⇠
1

�

(3.84)

⇥ ✓



x
2

1� x
1

< ⇠
1

<
(1� x

2

)(1� x
3

)(1� x
4

)

x
1

x
3

x
4

�

⇥ ✓



(1� x
1

)(1� x
2

)(1� x
3

)(1� x
4

)

x
1

x
2

x
3

x
4

> 1

�

,

where we used the notation ✓(a < x < b) to denote the product ✓(b�x) ✓(x� a).

Furthermore, the last ✓ function for each n must be present since the variables

xi must also later be integrated in the interval 0 < xi < 1; its meaning is clear:

it distinguishes the ‘clockwise’ staircase diagram from the ‘counterclockwise’ one,

which carries the complementary ✓ function. We define therefore

✓
+

(n) ⌘ ✓
⇣

Sn(xi)� 1
⌘

(3.85)

where

Sn(xi) ⌘
n
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1� xi
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. (3.86)

The n-loop ‘clockwise’ staircase diagram carries a factor of ✓
+

(n), while its

‘counterclockwise’ image carries a factor of ✓�(n) = 1 � ✓
+

(n). Upon further

inspection of Eq. (3.84) one sees also that the ⇠i integrals are all bounded
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from above and from below: since poles in ✏ could only arise from the limits

⇠i ! {0,1}, this implies, as expected, that the staircase graph has only a single

overall UV divergence, given by �(2n✏) in Eq. (3.14), and no subdivergences. It is

not di�cult to work out the generalization to all n of the constraints in Eq. (3.84):

one can then write Eq. (3.82) as

�
(n)
S (xi; ✏) =

Z 1

0

n�1

Y

k=1

d⇠k (1 + ⇠k)
�2(k+1)✏ ⇠�1+2k✏

k ⇥S

⇥ {xk, ⇠k}
⇤

(3.87)

= ✓
+

(n)

Z B1

A1

d⇠
1

⇠
1

Z B2(⇠1)

A2

d⇠
2

⇠
2

. . .

Z Bn�1(⇠1,⇠2,...,⇠n�2)

An�1

d⇠n�1

⇠n�1

+ O (✏) .

Importantly, the resulting integral is explicitly of a ‘d log’ form, in agreement

with the considerations of Refs. [52, 60]. The remaining di�culty is that (also

as expected) the integrals are nested and not completely factorized. One can

however work out explicitly the limits of integration, generalizing Eq. (3.84).

One finds

Ak =
xk+1

1� xk

, Bk (⇠1, . . . ⇠k�1

) =

Qn
j=k+1

(1� xj)
Qn+1

j=k+2

xj

Qk�2

j=1

(1 + ⇠j)
Qk�1

j=1

⇠j
, (3.88)

where we define xn+1

= x
1

, and all products running over empty sets of integers

are set equal to one. The final integration is now trivial, and one finds the

remarkably simple result

�
(n)
S (xi; 0) =

1

(n� 1)!
✓
+

(n)

✓

log
h

Sn(xi)
i

◆n�1

. (3.89)

The result is Bose symmetric and completely factorized, and, when integrated to

give the kinematic function F (n)(S) of Eq. (3.14), manifestly expressible in terms

of our basis functions.

Note now that by sending xi $ 1� xi in Eq. (3.89), the result has the same

form, but with a factor (�1)n�1 from the power of the logarithm, and ✓
+

replaced

by ✓�. Denoting the clockwise and anticlockwise staircase diagrams by S
+

and

S� respectively, one thus finds

F(S
+

) = (�1)n�1F(S�) . (3.90)
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This leads to the cancellation observed at three loops (n = 3) in Sec. 3.5.1: the

two staircase diagrams have identical kinematic factors, which however combine

to form the coe�cient of the colour structure c
(4)

3

with the same weight and

opposite signs. Since the other diagrams in the (2,2,2) web do not contribute to

c
(4)

3

, the corresponding coe�cient vanishes. We now demonstrate that a similar

argument applies in an arbitrary (2, 2, . . . , 2) web.

Let us define a colour basis for n-loop webs connecting n lines, generalising

the three-loop basis of Eq. (3.60). The requirement in constructing this basis is

that it should allow one to express all the colour components of the (2,2,. . .,2)

web. The dimension of this basis is13 n+ 1, and its elements have a transparent

interpretation (see Fig. 3.10 for the three-loop case) upon considering the

(2,2,. . .,2) web in the e↵ective vertex formalism of Ref. [61]: c
(n)
i (1  i  n) is

the colour factor one obtains upon having two V
1

vertices on line i, corresponding

to an anticommutator of colour generators, and a V
2

vertex, corresponding to a

commutator, on all the other lines, yielding

c
(n)
i = [T a1

1

, T a2
1

] [T a2
2

, T a3
2

] . . . {T ai
i , T

ai+1

i } . . . ⇥T an�1
n�1

, T an
n�1

⇤

[T an
n , T a1

n ] . (3.91)

Finally, the (n + 1)-th basis element is the fully antisymmetric colour factor

corresponding to a V
2

vertex on each of the lines,

c
(n)
n+1

= [T a1
1

, T a2
1

] [T a2
2

, T a3
2

] . . .
⇥

T
an�1
n�1

, T an
n�1

⇤

[T an
n , T a1

n ] . (3.92)

It is this latter component of the (2, 2, . . . , 2) web that will receive a contribution

from the kinematic integrals of the staircase diagrams only, which will ultimately

turn out to vanish. First, one notes that the fact that staircase diagrams are

irreducible means that the web mixing matrix has the generic form

0

B

B

B

B

B

B

B

@

1 0 . . .

0 1 . . .

0 0 . . .
...

... . . .

0 0 . . .

1

C

C

C

C

C

C

C

A

,

13This is the rank of the mixing matrix of the (2,2,. . .,2) web, as proved in Theorem 8.2 of
Ref. [59].
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3.7. The Escher Staircase and (2, 2, . . . , 2) webs

where the first two columns arise from the staircase diagrams. This form follows

from the replica trick analysis of Ref. [56], which dictates that the exponentiated

colour factor of diagram D receives no contributions from diagrams D0 which are

more reducible (less irreducible) than D. From the above form, it then follows

that any such mixing matrix has right-eigenvectors14 of the form

⇣

a b 0 0 . . . 0
⌘

, (3.93)

for arbitrary a and b. Two special cases are a = ±b = 1, corresponding to the

symmetric and antisymmetric combinations of S
+

and S�. These combinations

are special in that they have definite parity under a “flipping transformation” that

interchanges all pairs of gluons on all lines simultaneously. Such a transformation

exchanges S
+

! S�, and so the symmetric (anti-symmetric) combination has

flipping parity + (�) respectively. The contribution from the entire web must be

invariant under this transformation, as it maps the total web to itself. Given that

the basis of colour factors in Eqs. (3.91) and (3.92) is linearly independent, each

separate colour factor multiplied by the corresponding kinematic function must

also be invariant under the flipping transformation. The basis we have chosen is

particularly convenient in this regard, as each colour factor has a definite flipping

parity: (�1)n�1 for c(n)i (1  i  n) and (�1)n for the fully antisymmetric colour

factor c
(n)
n+1

. One then finds that the contribution to the latter colour factor

contains the combination

c
(n)
n+1

[F(S
+

)� F(S�) + . . .] ,

for odd n, and

c
(n)
n+1

[F(S
+

) + F(S�) + . . .] ,

for even n, where the ellipsis in each case denotes possible contributions from

non-staircase diagrams. In fact, such contributions are not present, which can be

seen as follows. At the n-loop order, there are n + 1 colour factors, n of which

have parity (�1)n�1, and only one of which has parity (�1)n. It follows that of

the (n+ 1) right eigenvectors with eigenvalue 1, n must correspond to kinematic

functions with flipping parity (�1)n�1, and only one to parity (�1)n. Since we

14Right eigenvectors of the mixing matrix correspond to Y

�1
D,j in Eq. (2.29), dictating the

linear combination of integrals associated with a given connected colour factor cj .
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know that the eigenvector of Eq. (3.93) with a = (�1)nb has parity (�1)n, this

must be the only possibility, and there can be no other contributions. Having

established Eq. (3.90) above, this completes the proof that the contribution to

the fully antisymmetric colour factor from the (2, 2, . . . , 2) web vanishes.

Returning to consider the (2,2,. . . 2) n-th order web as a whole, we now

see that all of its non-vanishing components belong to the colour structures in

Eq. (3.91), where one of the lines features an anticommutator of two V
1

emission

vertices. This means that it may be determined from the corresponding n-loop

n+ 1 line (1,2,2,. . . 2,1) web through collinear reduction, just as the (2,2,2) web

was obtained from the (1,2,2,1) web in Eq. (3.39). Specifically, at four-loops we

essentially have the result for the (2,2,2,2) web based on the calculation of the

(1,2,2,2,1) web in Sec. 3.6.

In this section, we have shown that is possible to calculate a particular type

of web diagram to all orders in perturbation theory. As seen from the explicit

calculations of other webs, the computations for diagrams with subdivergences are

considerably more intricate, and further technical developments will be needed

before a complete calculation of an all-order class of subtracted webs can be

completed. The present example however testifies to the underlying simplicity of

the structure of MGEWs, and suggests that the problem of computing this class

of webs might at some point be completely solved.

3.8 Conclusion

In this chapter, based on Ref. [1], we have extended the programme of

Refs. [56, 58, 60, 61], which established a diagrammatic approach for studying

IR singularities in QCD scattering amplitudes (see also [122, 123]). We have

done this by computing the UV singularities of products of semi-infinite Wilson

lines in terms of webs. In the multi-line case, webs are sets of diagrams,

each closed under the group of gluon permutations on the Wilson lines, whose

contribution to the exponent of the Wilson line correlator consists of a sum

of terms, each involving a fully connected colour factor multiplying a linear

combination of Feynman integrals of diagrams belonging to the set. As explained

in detail in Refs. [58, 60, 61], and reviewed in Sec. 2.4, each web contains UV

subdivergences in general, which must be removed by appropriate counterterms
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involving commutators of subdiagrams. This makes the case of multi-leg

scattering qualitatively di↵erent to the familiar case of a Wilson loop; we call the

combination of an unrenormalised web and its counterterms a subtracted web.

Specifically, we have focused on the contribution to the soft anomalous

dimension from diagrams consisting of multiple gluon exchanges between the

Wilson lines. These Multiple Gluon Exchange Webs (MGEWs) are the simplest

diagrams at any given order; however, they also contain the highest number of

UV subdivergences. Thus, the web language, coupled with a suitable IR regulator

for calculating individual diagrams, is extremely useful in order to cleanly isolate

their contribution to the soft anomalous dimension.

MGEWs connecting four Wilson lines at three-loop order were already

considered in Ref. [60], which also analysed the analytic structure of MGEWs

in general. It was conjectured that: (i) the contributions of MGEWs to the

soft anomalous dimension take the form of sums of products of polylogarithmic

functions, each involving a single cusp angle; (ii) the symbol alphabet of these

functions consists of {↵ij,↵/(1� ↵2

ij)}, where ↵ij is defined in Eq. (2.61) related

to the cusp angle at which the Wilson lines i and j meet.

We provided significant additional evidence supporting these conjectures.

Moreover, we took a step forward in understanding MGEWs by constructing

a basis of functions, motivated by the alphabet conjecture as well as specific

calculations, that we conjecture can be used to express MGEWs connecting any

number of Wilson lines at arbitrary order in perturbation theory. The basis

Mk,l,n(↵), is defined in Eq. (3.35) as a single parameter integral over the gluon

emission angle. The integrand consists of a product of three types of logarithms

(depending on the gluon emission angle and the corresponding cusp angle) raised

to non-negative integer powers k, l and n, respectively. The basis functions are

consistent with the alphabet conjecture, and they are conveniently characterised

by their symbols; these are listed in Table 3.1 up to weight five. The functions may

also be explicitly evaluated in terms of Harmonic polylogarithms with indices 0

and 1: all independent functions up to weight five are listed in Appendix A.1. The

three logarithms appearing in the integrands of Mk,l,n(↵) have been identified in

two-loop calculations of the (2,2) and (1,2,1) webs, where functions up to weight

three appear, that is Mk,l,n(↵) with k + n + l  2. The basis passed all tests

at three loops, where basis elements up to weight five appear, corresponding to
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k + n + l  4. These tests include the four-line webs of Ref. [60], namely the

(1,2,2,1) and (1,1,1,3) webs, the three-line webs of Sec. 3.5 above, namely the

(2,2,2) and (1,2,3) webs, as well as the two-line (3,3) web of Sec. 3.4.2. Further

tests are provided by the five-line four-loop (1,2,2,2,1) web computed in Sec. 3.6,

and by the all order analysis of the Escher Staircase diagrams and the (2,2,. . .,2)

webs in Sec. 3.7. Note however that the above statements are valid only in the

Feynman gauge given that even the sum MGEWs over all MGEWs at a given

order is not gauge invariant. Thus we can expect that there exist gauges mixing

contributions from MGEWs and fully connected diagrams which we do not expect

to be completely described by these basis functions alone.

We also discovered a procedure for deriving collinear reduction relations

between webs connecting di↵erent numbers of Wilson lines. These relations,

which we briefly summarize below, are discussed in more detail in Sec. 3.2,

and then illustrated in several examples throughout the chapter. The idea is

formulated using the e↵ective vertex language of Ref. [61], which provides a

convenient colour basis for webs. In this language, the emission of K gluons

from a Wilson line, associated with a tree-graph colour factor (a fully nested

commutator) is described by an e↵ective vertex VK . Considering a given web,

di↵erent components may be described as connected graphs made out of such

vertices, as shown for example in Figs. 3.8, 3.10 and 3.12. These graphs may

in general feature one or more e↵ective vertices on a given line. However, when

multiple vertices appear on a line, they are not ordered: the integrals range over

the entire Wilson line independently of each other, and in the colour factor one

takes the symmetric combination of all possible orderings. As a consequence, the

calculation of such a graph maps directly into the calculation of a graph where

the Wilson line that features several vertices is replaced by a set of collinear

lines, each featuring only one of these vertices. The upshot is that starting with

a web that features a single e↵ective vertex on each line, one may deduce various

components of webs connecting fewer Wilson lines, but featuring more than one

vertex on some of the lines. Collinear reduction provides stringent checks of the

two- and three-line webs we have computed: it allowed us to determine one of

the two components of the (3,3) web in Eq. (3.54), and the entire (2,2,2) web

in Eq. (3.70), from the (1,2,2,1) web, as well as two of the three components of

the (1,2,3) web in Eqs. (3.77) and (3.76), using, respectively, the (1,2,2,1) and
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(1,1,3,1) webs. We note that the only colour component that cannot be deduced

by collinear reduction for the (1,2,3) web is the one corresponding to the fully

antisymmetric colour factor c
(3)

4

in Eq. (3.60). Given that the same diagrams

enter both the components that can be deduced by collinear reduction and those

that cannot, webs connecting less than the maximal number of lines at a given

order are strongly constrained, providing us with high confidence in the results

presented above.

As an additional check on the basis of functions we propose, as well as to

illustrate the power and general applicability of the web language, we have also

calculated the (1,2,2,2,1) four-loop web, and the Escher Staircase diagrams to

arbitrary order in perturbation theory. The latter enter the (2,2,. . . ,2) web,

and are especially simple because they do not contain UV subdivergences.

Furthermore, we were able to show that the component corresponding to the

fully antisymmetric colour factor of the (2,2,. . . ,2) web vanishes. This was proven

using the fact that this colour structure is associated exclusively with the Escher

Staircase diagrams, and these two diagrams are related by a parity transformation

as in Eq. (3.90). The conclusion is rather striking: the entire contribution of the

(2,2,. . . ,2) web family to the exponent can be deduced from the corresponding

(1,2,2,. . . ,2,1) webs through collinear reduction. Specifically, at four loops, the

result for the (2,2,2,2) web can be directly read o↵ the results of Sec. 3.6 for the

(1,2,2,2,1) web.

The analysis and explicit calculations which we have performed promote our

understanding of an entire class of contributions to the renormalisation of Wilson

line correlators. The progress achieved in understanding the analytic properties of

the result [60], and the specific class of functions by which they may be expressed,

is a step towards translating the entire calculation of an arbitrary MGEW into

a combinatorial problem: given the factorization conjecture and the basis of

functions, along with the expected transcendental weight, one may write down

an ansatz for the answer where only rational numerical coe�cients need to be

fixed. This, along with the progress already made on webs [56, 58, 61] and their

combinatorics [57, 59, 93] may facilitate all-order calculations in the future.

The results presented in this chapter also constitute a further step forward in

assembling all necessary ingredients for the soft anomalous dimension of massive

partons at three-loop order. In order to complete this programme, one needs to
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include MGEWs in which gluons can be emitted and absorbed from the same

Wilson line. Furthermore, one needs to include diagrams containing a single

three-gluon vertex o↵ the Wilson lines, which shall be the topic of the next

chapter, and the fully connected graphs – appearing on the last line of Eq. (2.99).
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Chapter 4

Webs Containing Three-Gluon

Vertices

Having studied MGEWs in depth in the previous chapter, and having developed

a general procedure for their computation, we will turn our attention to the next

class of webs in the three-loop soft anomalous dimension. This class consists of

webs whose diagrams contain a single three-gluon vertex subgraph connecting

directly to (three or fewer) Wilson lines – such as those in Figs. 4.1 and 4.2.

Specifically, in this chapter we shall aim to compute the (1,1,1,2) web, Fig. 4.2,

which contains a three-gluon vertex between three lines, convoluted with a single

gluon exchange with a fourth line which is the simplest of the three-loop examples

in this class. This chapter is based on work which shall form part of a planned

publication, Ref. [2].

At present, the only multi-line web containing a three-gluon vertex that has

been computed in general kinematics is the two-loop, three-line diagram [68],

Fig. 4.1. In this case, the integrand is seemingly complex (in comparison with

the two-loop MGEWs),

w
(2)

3g

(↵
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Figure 4.1: Two-loop diagram which gives the web w
(2)

3g

, three-gluon vertex
between three Wilson lines.

where the colour factor is

c(2) = ifabcT a
1

T b
2

T c
3

, (4.2)

and where the configuration space three-gluon vertex rule is

1

gs
�µ0⌫0⇢0(x1

, x
2

, x
3

) = �i



gµ0⌫0

✓

@

@(x⇢0

1

� z⇢0)
� @

@(x⇢0

2

� z⇢0)

◆

+g⌫0⇢0

✓

@

@(xµ0

2

� zµ0)
� @

@(xµ0

3

� zµ0)

◆

(4.3)

+gµ0⇢0

✓

@

@(x⌫0
3

� z⌫0)
� @

@(x⌫0
1

� z⌫0)

◆�

.

However, it belies a remarkably simple solution in terms of MGEW basis

functions, Eq. (3.35),
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We wish to extend our knowledge further into the class of single three-gluon
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Figure 4.2: Diagrams contributing to the (1,1,1,2) web through the combination
given in Eq. (4.5)

vertex containing webs and in doing so, not only be able to move a step closer to

the three-loop soft anomalous dimension, but also to reveal general properties of

these subtracted webs which can be used to aid in future calculations.

In particular, it will be interesting to see whether the dramatic simplification

seen in w
(2,�1)

3g

carries into the rest of the class and if they can be expressed in terms

of the MGEW basis functions. If this is the case, then one expects that Eq. (4.1),

the (1,1,1,2), and related webs must be expressible through some parametrization

which makes this simplicity manifest. Finding such a representation may lead to a

procedure for their calculation in a manner similar to the treatment of MGEWs

above in Ch. 3, and would likely be beneficial to our study of the far more

di�cult, fully connected webs – for example the last line in Eq. (2.99). To make

such advances we need further data regarding the solution of this intermediary

class.

The layout of this chapter is as follows. In Sec. 4.1 we study the kinematic

factor of the (1,1,1,2) subtracted web and discuss the methodologies available with

which it may be computed. We consider the possibility of a direct integration

through the methodology outlined in Sec. 2.6, though we find that a feasible

choice is to obtain a least-squares fit of a physically constrained ansatz which we

justify will be composed of sums of products of MGEW basis functions. This is

attempted using data obtained by numerically integrating the (1,1,1,2) integrals.

As an illustrative example, and a benchmark, in Sec. 4.2 we generate such an
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ansatz for the two-loop three-gluon vertex diagram, Eq. (4.1), and achieve a

fit which reproduces Eq. (4.4). In Sec. 4.3 we return to the integrals obtained in

Sec. 4.1 and an ansatz is produced and constrained with the requisite symmetries.

We then make an attempt at numerically fixing the ansatz parameters.

4.1 Studying the (1,1,1,2) subtracted web

To begin, we shall construct the subtracted web and study its integrand. From

[61] we see that the (1,1,1,2) web contains only a single colour factor,

w
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where F (3)

(1,1,1,2); A

and F (3)

(1,1,1,2); B

are the kinematic factors corresponding to

diagrams A and B respectively from Fig. 4.2. Choosing again to work with

space-like Wilson lines1, the overall kinematic factor for the web,
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The factor 1/gs in Eq. (4.6) accounts for the corresponding factor in Eq. (4.3) and

is necessary as we have factorized the strong coupling from the web coe�cients,

w(n,k), according to Eq. (2.42). As was the case of the MGEWs in Sec. 2.5 and

Sec. 3.3.1, it will benefit us to make the change of variables si ! �i/
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t
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1See Sec. 2.5 for further discussion.

102



4.1. Studying the (1,1,1,2) subtracted web

where �, � 2 (0,1), a 2 (0, 1) and
P
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Once again we can interpret the ⇢! 0 limit geometrically as both sub-diagrams

simultaneously shrinking to the cusp, resulting in an overall UV pole in ✏ ! 0+.

Conversely, ⇢! 1 is the IR limit, regularized by the exponential regulator with

scale m. Carrying out the ⇢ integral therefore yields,
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where we have also had to scale zµ ! �bzµ, and

b�µ
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. (4.10)

Noticing that,

@

@(xµ
i � zµ)

⇥� �

xi � z
�

2

⇤✏�1

=
@

@xµ
i

⇥� �

xi � z
�

2

⇤✏�1

(4.11)

we can rewrite the kinematic factor,
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We note here that though we have factored out the overall UV divergence

corresponding to the shrinking of all sub-diagrams to the cusp in Eq. (4.12), there

remains a further sub-divergence resulting from the UV limit of the innermost

sub-diagrams of Fig. 4.2. This will manifest as a double pole after carrying out

the divergent b integral, which itself can be interpreted as the relative distance of

the sub-diagrams to the cusp.

Considering in isolation the bz integral,
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shifting bz ! bz + x
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and introducing the dual-space momenta,
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we find that this is nothing other than a scalar triangle, Fig. 4.3. In this case

with three external masses and no internal masses,

T (d, ⌫
1

, ⌫
2

, ⌫
3

; p2i ) = e✏�E
Z
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i⇡d/2
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3
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�⌫2�� z2

�⌫3 .

(4.16)

Such scalar integrals have been studied extensively [124–126], and have been

solved in d dimensions and for suitable powers of the propagators to all orders in

the dimensional regularization parameter [124], in terms of Appell hypergeometric

functions of the type F
4

(see Appendix B for a brief review of this result). In the

case of Eq. (4.14) where we are in 4� 2✏ dimensions with all propagators raised

to the power 1� ✏, we find a special case of the result in which the F
4

functions
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Figure 4.3: Scalar triangle with three external masses

reduce to simpler Gaussian hypergeometric functions allowing us to write,
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(1� x)(1� y)
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/p2
3

= � y

(1� x)(1� y)
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We shall soon make use of this result in determining the appropriate methodology

to be applied in completing the integration of the subtracted (1,1,1,2) web, as

well as for numerical checks.

Returning now to Eq. (4.12), we can substitute Eq. (4.16), along with the

Gaussian hypergeometric function integral representations, Eqs. (2.82) and (2.83),
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to produce
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We are now prepared to obtain the Laurent expansion for the web written in

terms of a two-dimensional parameter integral over derivatives of the scalar

triangle. Given that the scalar triangle is finite in four dimensions we can write

its expansion,
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and so the Laurent series expansion of F (3)
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will be given by the integral,
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The coe�cient of the single pole, w
(3,�1)

(1,1,1,2)

will form the primary part of the

subtracted (1,1,1,2) web (defined according to Eq. (2.44)),
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with w
(2)

3g as defined in Eq. (4.1) and w(1), the one-loop diagram as reviewed in

Sec. 2.5. Diagrammatically, the subtracted web, Eq. (4.23), can be represented
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where the superscript bracketed numbers beside diagrams indicate the relevant

coe�cient in their Laurent expansion. We can again identify the d-dimensional

position integral for the three-gluon vertex in the two-loop diagram by substitut-

ing Eq. (4.16) into Eq. (4.1),
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+O(✏) .

A check of our web Laurent expansion, Eq. (4.22), is provided by the double pole,

w(3,�2), which can be written as a commutator of lower order webs [58]. Precisely

that is,
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It is simple to show from the SU(N) colour algebra that,
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where c(2)(ijk) and c(1)(ij) are the colour factors of the w
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3g

web, Eq. (4.2), and

one-loop web, Eq. (2.60), respectively. Consequently, by taking the coe�cient of

the ✏�1 pole in Eq. (2.73) and Eq. (4.25) into Eq. (4.26) we obtain,
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matching exactly the leading singular term in Eq. (4.22). With this check in

hand, we now substitute the relevant coe�cients in Eqs. (2.60), (4.22), (4.25)

and (4.27) into Eq. (4.23), leading to the (1,1,1,2) subtracted web,
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Here, we have written the a integral in a manner which makes clear its solution

in terms of MGEW basis functions (Eq. (3.35)),
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which we separate into the two integrals,
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so that
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We can apply consistency checks to Eq. (4.31) by taking into account physical

constraints on the anomalous dimension coe�cients, �(n), and accordingly on

w(n). Given that �(n) must be independent of the renormalization scale, eµ,

the log(eµ2/m2) term in Eq. (4.22) must cancel with corresponding terms from

the commutators in Eq. (4.23) (see Sec. 2.4 and Ref. [58]). This mirrors the

dependence upon the scale m from the exponential regulator which, since it

regulates the IR, should not appear in the renormalization factor and thus must

not be present in subtracted webs. Indeed, both of these properties are apparent

in Eq. (4.31). As a further check, the appearance of ↵
14

through MGEW basis

functions in the subtracted web required a non-trivial combination of subtraction

commutator terms and the web coe�cient.

The former of these integrals, Eq. (4.32), has already been computed as part

of w(2,�1)
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Eq. (4.33), however, remains to be integrated. Firstly, let us consider the

most direct approach, that is to attempt to write the integrand in d log form such

that its representation in terms of generalized polylogarithms is made explicit,

as outlined in Sec. 2.6. One possible order of integration is to substitute the

corresponding terms in the ✏ expansion of Eq. (4.17) for T (0) and T (1) (see

Appendix B for more details) leaving only the integrals over x
1

, x
2

and x
3

, though

constrained by the delta function. Despite the fact that such a low dimensional

integral leaves us tantalizingly close, this route has thus far failed to yield a result.

This is due to the complexity of the arguments of the resulting polylogarithms in

the integrand, the dependence on x
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, x
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arising through the non-rational variables
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where � denotes the Källen function,

�(a, b, c) = a2 + b2 + c2 � 2ab� 2ac� 2bc . (4.38)

The precise results in terms of polylogarithms for T (0) and T (1) can be found in

Appendix B.

Solving the scalar triangles first is only one of several possible orders of

integration. A more amenable representation comes from writing the scalar

triangle as a Feynman parameter integral,
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At present, while we expect that the t
1

integral is almost certainly expressible

in terms of MPLs, it seems that Eq. (4.41) is not directly linearly reducible and

we have been unable thus far to find a parametrization which allows its direct

integration through the methodology outlined in Sec. 2.6. Moreover, we have

attempted to extend the work of Ref. [70] in which a class of so-called conformal

gauges is derived which exploit the particular constraints on gluon polarization in

eikonal diagrams to eliminate diagrams containing three- or four-gluon-vertices

connecting directly to Wilson lines. This leads to a particularly substantial

simplification at two loops in the computation of Eq. (4.1) since �(2)

3

contains only

this web and the (1,2,1). w(2,�1)

3g

can then be recovered as the di↵erence between

�(2)

3

in the two gauges and, as it turns out, w(2,�1)

3g

then appears as simply a new

term in the conformal gauge subtraction terms for the (1,2,1) MGEW. However we

were unable, despite significant e↵ort, to recover the (1,1,1,2) from a calculation

in this gauge at three loops. The additional complication comes from the fully

connected double three-gluon vertex diagram2 which remains undetermined in

the (far simpler) Feynman gauge and does not vanish in the conformal gauges.

This leads us to instead consider alternative numerical methods. Fortunately,

when written in the form of Eq. (4.34), we see that the dependence upon ↵
14

factorizes such that remaining integrals depend upon only the three angles ↵
23

,

↵
24

, ↵
34

. Therefore, t
1

cannot depend on kinematics through more complicated

variables, such as conformal invariant cross-ratios,

⇢ijkl =
�i · �j�k · �l
�i · �k�j · �l , (4.42)

or, in other words, there are no new multiparton thresholds in this web and so we

can apply the same physical constraints as were applied to MGEWs in Ref. [60],

2The first diagram in the last line of Eq. (2.99).
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4.2. Fitting the two-loop web

and further explored in Ch. 3, which heavily restrict the symbol alphabet. As

was the case in MGEWs, as well as w
(2,�1)

3g

, where it is possible to impose the

symbol alphabet constraints, webs have been expressible as sums of products of

the basis functions, Eq. (3.35), and the rational factor r(↵ij) = (1+↵2

ij)/(1�↵2

ij).

This is in contrast to the fully connected webs at three loops, the double three-

gluon vertex and four-gluon-vertex diagrams (see the last line of Eq. (2.99)), which

should be expected to carry kinematic dependence both through ↵ij and ⇢ijkl, as

observed in their lightlike limit [89]. This gives further thresholds in limits of

⇢ijkl implying an enriched symbol alphabet. Hence, we cannot expect such webs

to be expressible in terms of the MGEW basis functions alone.

Our approach then is as follows: we shall use the above arguments to produce

an ansatz for t
1

in terms of the basis functions, Eq. (3.35), constrain this ansatz

with the physical symmetries of the diagrams and then, by numerically evaluating

the integrals of Eq. (4.41) at random values of the angles ↵ij, we should be able

to obtain a numerical least-squares fit for the ansatz parameters to this data.

4.2 Fitting the two-loop web

As a check of the methodology which we shall soon apply to the t
1

integral, and

as an illustration, we begin by building and fitting an ansatz for t
0

, Eq. (4.40)

obtaining Eq. (4.36). From the same considerations as applied to the (1,1,1,2)

discussion above, t
0

will carry kinematic dependence only through ↵ij, not

through conformal invariant cross-ratios. It also must carry the full weight of

the w
(2)

3g

and so will be of uniform weight three.

Additionally, we must determine where the rational factors r(↵ij) can appear.

For this we turn to the ↵ij ! 1/↵ij symmetry which the web must possess given

the relation �ij = �↵ij � 1/↵ij. Under this transformation from Eq. (3.35) we

find,

Mk,l,n(1/↵) = � 1

r(↵)

Z

1

0

dx p
0

(x,↵)



logk
✓

q(x,↵)

x2

◆

logl
✓

x

1� x

◆

⇥ �� log eq(x,↵)
�n
�

= (�1)n+1Mk,l,n(↵) , (4.43)
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4.2. Fitting the two-loop web

and so basis functions with an even power of log
�

eq(x,↵)
�

must appear with

another odd function. This can be either another odd basis function or a factor

of r(↵). All possible weight-three products of basis functions, and the requisite

factors of r(↵ij), are given in Tab. 4.1. We thus find a twenty-five parameter

ansatz for t
0

,

t
0

= �
1

M
0,1,1(↵23

) + �
2

M
2,0,0(↵23

)r(↵
23

) + �
3

M3

0,0,0(↵23

)r(↵
23

)

+ �
4

M
0,0,0(↵23

)M
1,0,0(↵23

) + �
5

M
0,1,1(↵24

) + �
6

M
2,0,0(↵24

)r(↵
24

)

+ �
7

M3

0,0,0(↵24

)r(↵
24

) + �
8

M
0,0,0(↵24

)M
1,0,0(↵24

) + �
9

M
0,1,1(↵34

)

+ �
10

M
2,0,0(↵34

)r(↵
34

) + �
11

M3

0,0,0(↵34

)r(↵
34

) + �
12

M
0,0,0(↵34

)M
1,0,0(↵34

)

+ �
13

M2

0,0,0(↵23

)M
0,0,0(↵24

)r(↵
24

) + �
14

M
1,0,0(↵23

)r(↵
23

)M
0,0,0(↵24

)r(↵
24

)

+ �
15

M2

0,0,0(↵23

)M
0,0,0(↵34

)r(↵
34

) + �
16

M
1,0,0(↵23

)r(↵
23

)M
0,0,0(↵34

)r(↵
34

)

+ �
17

M2

0,0,0(↵24

)M
0,0,0(↵34

)r(↵
34

) + �
18

M
1,0,0(↵24

)r(↵
24

)M
0,0,0(↵34

)r(↵
34

)

+ �
19

M
0,0,0(↵23

)r(↵
23

)M2

0,0,0(↵24

) + �
20

M
0,0,0(↵23

)r(↵
23

)M
1,0,0(↵24

)r(↵
24

)

+ �
21

M
0,0,0(↵23

)r(↵
23

)M2

0,0,0(↵34

) + �
22

M
0,0,0(↵23

)r(↵
23

)M
1,0,0(↵34

)r(↵
34

)

+ �
23

M
0,0,0(↵24

)r(↵
24

)M2

0,0,0(↵34

) + �
24

M
0,0,0(↵24

)r(↵
24

)M
1,0,0(↵34

)r(↵
34

)

+ �
25

M
0,0,0(↵23

)r(↵
23

)M
0,0,0(↵24

)r(↵
24

)M
0,0,0(↵34

)r(↵
34

)

(4.44)

for which we can now attempt to find a numerical fit of the parameters �i. Of

course, this ansatz could be constrained further by imposing the antisymmetry

under exchanging any two of the external lines inherent to the three-gluon vertex

rule, Eq. (4.13). Doing so reduces Eq. (4.44) to a two parameter, completely

antisymmetric ansatz,

t
0

= ⇢
1



r(↵
23

)r(↵
24

)
�

M
0,0,0(↵23

)M
1,0,0(↵24

)�M
1,0,0(↵23

)M
0,0,0(↵24

)
�

+ r(↵
23

)r(↵
34

)
��M

0,0,0(↵23

)M
1,0,0(↵34

) +M
1,0,0(↵23

)M
0,0,0(↵34

)
�

+ r(↵
24

)r(↵
34

)
��M

1,0,0(↵24

)M
0,0,0(↵34

) +M
0,0,0(↵24

)M
1,0,0(↵34

)
�

�

+ ⇢
2



r(↵
23

)M
0,0,0(↵23

)
�

M2

0,0,0(↵34

)�M2

0,0,0(↵24

)
�

(4.45)

+ r(↵
24

)M
0,0,0(↵24

)
�

M2

0,0,0(↵23

)�M2

0,0,0(↵34

)
�
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4.2. Fitting the two-loop web

+ r(↵
34

)M
0,0,0(↵34

)
�

M2

0,0,0(↵24

)�M2

0,0,0(↵23

)
�

�

.

However, the (1,1,1,2) web, and thus the t
1

integral, has fewer constraints from

such physical symmetries, and is of higher weight, leading to a greater number of

allowed ansatz terms. We therefore choose to fit Eq. (4.44), the larger ansatz for

t
0

, providing a better benchmark for the techniques we shall apply to t
1

in the

next section.

The algorithms we have chosen to achieve this are available withinMathematica

[127], namely NIntegrate for numerically evaluating t
0

over a random set of

cusp angles, and NMinimize for finding a least-squares fit to this data for the

ansatz parameters. For t
0

and t
1

, the parameter controlling the termination of

the numerical integration is NIntegrate’s MaxErrorIncreases which indicates

the number of iterations of the integration algorithm in which the global error

increases after the region contributing the most to the global error is bisected

[128]. These data will be used to generate a chi-squared to be minimized with

respect to the ansatz parameters using NMinimize.

The results of the fit for the parameters �i of Eq. (4.44) can be found in full

in Appendix C. Fig. 4.4 shows typical examples of these plots when a stable fit is

obtained. Here, the horizontal axes indicate the size of the dataset used for the

least-squares fit and, as we would expect, we find that with increasing number

of data we have an increasingly accurate approximation for the parameters,

matching Eq. (4.4). In order to obtain an error estimate, we take the maximum

of the di↵erences between the values obtained for the integral at di↵erent values

f
1

(↵
1

) f
2

(↵
2

) f
3

(↵
3

)

M
0,1,1 (↵1

) • •
M

2,0,0 (↵1

) r (↵
1

) • •
M3

0,0,0 (↵1

) r (↵
1

) • •
M

1,0,0(↵1

)M
0,0,0(↵1

) • •
M2

0,0,0 (↵1

) M
0,0,0 (↵2

) r (↵
2

) •
M

1,0,0 (↵1

) r (↵
1

) M
0,0,0 (↵2

) r (↵
2

) •
M

0,0,0 (↵1

) r (↵
1

) M
0,0,0 (↵2

) r (↵
2

) M
0,0,0 (↵3

) r (↵
3

)

Table 4.1: Building ansatz terms for t
0

. All products of basis functions at weight
three with factors of r(↵) necessary to ensure ↵ ! 1/↵ symmetry. A ‘•’ indicates
no contribution from functions of additional angles.
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Figure 4.4: Parameter fits for the t
0

ansatz. Horizontal axis indicates size
of dataset in units of (number of points)/5. Vertical axis indicates fit value
for corresponding parameter. The value of MaxErrorIncreases (MEI) used in
integrating the data is indicated.

of MaxErrorIncreases, which is used to weight the fitting3. In this way, we find

the parameters as given in Tab. 4.2, with a chi-squared per degree of freedom

for the fit of 0.2 for MaxErrorIncreases set at 12000. We also see from Fig. 4.4

that increasing MaxErrorIncreases produces a more stable fit therefore giving

us a handle on the numerical inaccuracies. Hence we can conclude, given our

argument that t
1

can be expressed in terms of the MGEW basis functions, that

we should be able to obtain a fit for an ansatz in precisely the same manner as

was possible above.

3This estimate for the errors ranges from ⇠ 10�3 to ⇠ 10�7 in both t0 and t1
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4.2. Fitting the two-loop web

Parameter Fit value Actual Value

�
1

0.00243317 0
�
2

0.000348412 0
�
3

0.0000506619 0
�
4

�0.0000677252 0
�
5

�0.00714523 0
�
6

�0.00144551 0
�
7

0.0000414581 0
�
8

0.000304069 0
�
9

0.00419044 0
�
10

0.00129946 0
�
11

�0.000103559 0
�
12

�0.0000427786 0
�
13

0.250014 1/4
�
14

0.0000334599 0
�
15

�0.249766 -1/4
�
16

0.000428478 0
�
17

0.249952 1/4
�
18

�0.0000788383 0
�
19

�0.24995 -1/4
�
20

0.000104371 0
�
21

0.249761 1/4
�
22

�0.000436145 0
�
23

�0.24982 -1/4
�
24

0.000357652 0
�
25

6.5024760773516825⇥ 10�6 0

Table 4.2: Fit parameters from ansatz, Eq. (4.44), for t
0

, Eq. (4.4), obtained
using a least-squares fit with 200 points of numerical data obtained with
MaxErrorIncreases set at 12000. Gives a chi-squared per degree of freedom
of 0.2. Actual values obtained from direct calculation, Eq. (4.4).
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Table 4.3: Weight four terms for t
1

ansatz. A ‘•’ indicates no contribution from
functions of additional angles.

4.3 Fitting the three-loop (1,1,1,2) integral

Let us now build an ansatz for t
1

, conjecturing that it will be described by basis

functions and r(↵ij). Knowing that the web will be of uniform weight five and

that t
1

appears along with a factor of M
0,0,0(↵14

), itself weight one, then t
1

must

carry uniform weight four. Hence, the ansatz will be a linear combination of the

products of basis functions in Tab. 4.3, including the factors of r(↵ij) required to

ensure ↵ij ! 1/↵ij symmetry. Furthermore, we may constrain the ansatz with the

antisymmetry of the three-gluon vertex operator, Eq. (4.13), under exchanging

any two external lines. Unlike the two-loop three-gluon vertex however, in this

case we have antisymmetry only under exchanging lines two and three due to the

additional single gluon exchange between lines one and four, which breaks the

further antisymmetry found in w
(2)

3g

.

Tabs. 4.4, 4.5 and 4.6 give the combinations of these weight four terms which
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satisfy the symmetry constraints outlined above, and are separated by the number

of rational factors r(↵ij) with which they appear. Given that the only constraint

which we have under exchange of external lines is 2 $ 3, corresponding to the

replacement ↵
24

$ ↵
34

while ↵
23

remains unchanged, we build the terms by listing

all possible functions in which ↵
23

can appear in the first column. The second

column contains the antisymmetric combination of basis functions depending on

the remaining two angles. This results in a forty parameter ansatz which is

written in full in Appendix D.

f(↵
23

) g(↵
24

,↵
34

)

• �

M2

0,0,0(a24)�M2

0,0,0(a34)
��

M2

0,0,0(a24) +M2

0,0,0(a34)
�

• M
0,0,0(a24)M0,2,0(a24)�M

0,0,0(a34)M0,2,0(a34)
• M

0,0,0(a24)M2,0,0(a24)�M
0,0,0(a34)M2,0,0(a34)

• M4

0,0,0(a24)�M4

0,0,0(a34)
• M2

1,0,0(a24)�M2

1,0,0(a34)
• M

1,1,1(a24)�M
1,1,1(a34)

M2

0,0,0(a23) M2

0,0,0(a24)�M2

0,0,0(a34)

Table 4.4: t
1

ansatz terms with no rational factor r(↵ij). A ‘•’ indicates no
contribution from functions of additional angles.

f(↵
23

) g(↵
24

,↵
34

)

• �

M
0,0,0(a24)M3

0,0,0(a34)�M3

0,0,0(a24)M0,0,0(a34)
�

r(a
24

)r(a
34

)
• (M

0,0,0(a24)M0,2,0(a34)�M
0,0,0(a34)M0,2,0(a24))r(a24)r(a34)

• (M
0,0,0(a24)M2,0,0(a34)�M

0,0,0(a34)M2,0,0(a24))r(a24)r(a34)
M

0,0,0(a23)r(a23)
�

M2

0,0,0(a24) +M2

0,0,0(a34)
�

(M
0,0,0(a24)r(a24)�M

0,0,0(a34)r(a34))
M

0,0,0(a23)r(a23)
�

M2

0,0,0(a24)�M2

0,0,0(a34)
�

(M
0,0,0(a24)r(a24) +M

0,0,0(a34)r(a34))
M

0,0,0(a23)r(a23) M
0,0,0(a24)M2

0,0,0(a34)r(a24)�M2

0,0,0(a24)M0,0,0(a34)r(a34)
M

0,0,0(a23)r(a23) M3

0,0,0(a24)r(a24)�M3

0,0,0(a34)r(a34)
M

0,0,0(a23)r(a23) M
0,2,0(a24)r(a24)�M

0,2,0(a34)r(a34)
M

0,0,0(a23)r(a23) M
2,0,0(a24)r(a24)�M

2,0,0(a34)r(a34)
M

0,0,0(a23)3r(a23) M
0,0,0(a24)r(a24)�M

0,0,0(a34)r(a34)
M

0,2,0(a23)r(a23) M
0,0,0(a24)r(a24)�M

0,0,0(a34)r(a34)
M

2,0,0(a23)r(a23) M
0,0,0(a24)r(a24)�M

0,0,0(a34)r(a34)
M

1,0,0(a23)r(a23) M
1,0,0(a24)r(a24)�M

1,0,0(a34)r(a34)

M
0,0,0(a23)r(a23) (M

0,0,0(a34)M1,0,0(a24)�M
0,0,0(a24)M1,0,0(a34))r(a24)r(a34)

Table 4.5: t
1

ansatz terms with two and three rational factors r(↵ij). A ‘•’
indicates no contribution from functions of additional angles.

118



4.3. Fitting the three-loop (1,1,1,2) integral
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4.3. Fitting the three-loop (1,1,1,2) integral

A fit is obtained using the methodology outlined in Sec. 4.2, that is, using

NMinimize to minimize the chi-squared with respect to the ansatz parameters,

�i, obtained from numerical data which is provided by applying NIntegrate to

t
1

, Eq. (4.33). In this case we shall again use Nintegrate’s ‘GlobalAdaptive’

strategy and ‘MultiDimensionalRule’ integration rule at various values of

MaxErrorIncreases. An error estimate is obtained by taking the maximum

of the di↵erences between the result of this integration at the di↵ering values of

MaxErrorIncreases.

The sample plots in Fig. 4.5, show the fit values for their respective parameters

on the vertical axis, and the size of the data set on the horizontal axis. Unlike

the corresponding plots for t
0

, Fig. 4.4, we see here an unstable fit for t
1

. The

values of the parameters change drastically as the number of data increases rather

than settling to a rational value. We can see similar behaviour in the t
0

fitting,

Fig. 4.4, using data obtained with the lower values of MaxErrorIncreases. Also,

if we eliminate a parameter which is approximately zero according to the fit shown

in Tab. 4.7, we expect that the remaining parameters will shift slightly towards

their actual rational values and the chi-squared will decrease. However, if we do

so for �
39

we obtain the fit in Tab. 4.8 which bears no resemblance to Tab. 4.7.

Furthermore, rather than falling, the already extremely large chi-squared per

degree of freedom rises from 9.67 ⇥ 107 to 1.44 ⇥ 108. In the conclusions below

we shall discuss possible causes for the issues above and work ongoing to obtain

a result for the (1,1,1,2) subtracted web.
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4.3. Fitting the three-loop (1,1,1,2) integral
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Figure 4.5: Example of t
1

parameter fits. Horizontal axis indicates size of
dataset. Vertical axis indicates fit value for corresponding parameter. The value
of MaxErrorIncreases (MEI) used in integrating the data is indicated.
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4.3. Fitting the three-loop (1,1,1,2) integral

Parameter Fit value

�
1

�0.112113
�
2

�0.0986314
�
3

0.0275748
�
4

�0.0426735
�
5

�0.136046
�
6

�0.0286221
�
7

�0.109038
�
8

�0.0177893
�
9

0.0926251
�
10

�0.129871
�
11

0.0617089
�
12

�0.265696
�
13

�0.0330709
�
14

�0.0939348
�
15

�0.112931
�
16

�0.136939
�
17

�0.198864
�
18

0.0367732
�
19

�0.00354897
�
20

0.059384

Parameter Fit value

�
21

�0.0576135
�
22

0.018717
�
23

�0.0566518
�
24

�0.287824
�
25

0.026475
�
26

0.0373178
�
27

0.128883
�
28

�0.0753646
�
29

�0.105511
�
30

�0.0319839
�
31

0.00778212
�
32

�0.115078
�
33

0.0656556
�
34

�0.0329081
�
35

�0.0752321
�
36

�0.176888
�
37

0.0742235
�
38

�0.0153439
�
39

0.000257854
�
40

�0.127847

Table 4.7: Fit parameters from ansatz, Eq. (D.1), for t
1

, Eq. (4.41), obtained
using a least-squares fit with 350 points of numerical data obtained with
MaxErrorIncreases set at 12000. Gives a very high chi-squared per degree of
freedom of 9.67⇥ 107.
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4.3. Fitting the three-loop (1,1,1,2) integral

Parameter Fit value

�
1

�0.170715
�
2

0.0295372
�
3

�0.185356
�
4

0.0338624
�
5

�0.176151
�
6

�0.0681446
�
7

�0.107208
�
8

�0.207936
�
9

0.00978535
�
10

�0.0682999
�
11

0.0812123
�
12

�0.0836554
�
13

�0.0979989
�
14

�0.250069
�
15

0.0798778
�
16

�0.102344
�
17

�0.188995
�
18

�0.13967
�
19

�0.020149
�
20

�0.0356646

Parameter Fit value

�
21

�0.141209
�
22

�0.18176
�
23

0.0222813
�
24

�0.166805
�
25

�0.0998812
�
26

0.0934013
�
27

0.00991889
�
28

�0.260759
�
29

�0.0108505
�
30

�0.108596
�
31

�0.255557
�
32

0.056411
�
33

�0.0524971
�
34

�0.0414136
�
35

0.0359645
�
36

�0.117621
�
37

�0.00595601
�
38

�0.0695166
�
40

0.0153481

Table 4.8: Fit parameters from ansatz, Eq. (D.1) with �
39

! 0. This is
obtained using a least-squares fit with 350 points of numerical data obtained
with MaxErrorIncreases set at 12000. Gives a very high chi-squared per degree
of freedom of 1.44⇥ 108. Note that the values di↵er substantially from Tab. 4.7
indicating instability of the fit.
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4.4. Conclusions

4.4 Conclusions

We have begun a study of webs containing a single three-gluon vertex with the

simplest diagram of this class, namely the (1,1,1,2) web, Fig. 4.2. While we are as

yet unable to find a solution to the required integrals, we have identified several

attractive directions to pursue which will hopefully in the near future lead to a

determination of this web in general kinematics. We find that the (1,1,1,2) web

can be written as a linear combination of the integrals t
0

, Eq. (4.40), and t
1

,

Eq. (4.41). t
0

is known from the computation of the two-loop, three-line, three-

gluon vertex web, Eq. (4.4), while t
1

, which involves integrating over the external

momenta of a three mass triangle at order ✏, remains to be determined.

We adopted several approaches towards the computation of this integral, both

analytic and numeric. A direct analytic integration remains elusive as it is not

clear if the integrals are linearly reducible and we have thus far been unable to find

a parametrization in which it satisfies this property. Moreover, considerable e↵ort

was directed towards extending the application of so-called conformal gauges [70]

to three loops, given their success in greatly simplifying the calculation of w(2)

3g

.

We found no means by which to recover the Feynman gauge (1,1,1,2) result from

the calculation of �(3) in this gauge without computing the far more di�cult,

fully connected, double three-gluon vertex diagram which remains unknown in

general kinematics, even in the Feynman gauge.

We propose instead to numerically fit this integral to an ansatz. Given that,

as shown above, dependence upon the kinematic variable ↵
14

factorizes and so

t
1

is a function of the remaining three variables ↵
23

, ↵
24

and ↵
34

, then it cannot

depend on more complicated kinematic variables such as conformal invariant

cross-ratios. Therefore it is subject to the symbol alphabet constraints [60], as

were the MGEWs of Ch. 3, and so we argue that it is likely expressible in terms

of the MGEW basis functions, Eq. (3.35), and the rational function r(↵) = (1 +

↵2)/(1�↵2). This allows us to write a forty parameter ansatz, Eq. (D.1), found in

Appendix D, which is constrained with the available physical (anti-) symmetries.

Before moving on to the three-loop (1,1,1,2), we began by building an

ansatz for t
0

, from the two-loop w
(2)

3g

, composed of all possible weight three

products of basis functions, with factors of r(↵) present where necessary to

give the requisite ↵ ! 1/↵ symmetry. This provided a twenty-five parameter

ansatz, Eq. (4.44). Eq. (4.40) was then numerically evaluated at random
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4.4. Conclusions

values of ↵
23

, ↵
24

and ↵
34

to provide numerical data with which to fit the

ansatz parameters. This was accomplished using Mathematica’s NIntegrate

function with the ‘GlobalAdaptive’ strategy and ‘MultidimensionalRule’

integration rule. The termination of the integration algorithm is controlled by

the MaxErrorIncreases parameter4, which we demonstrated gives control over

the numerical errors. An estimate for the integration error was obtained by

taking the maximum of the di↵erence between the integration results at various

values of MaxErrorIncreases. A fit was obtained using the NMinimize function

to minimize the chi-squared of this ansatz and data with respect to the ansatz

parameters, resulting in Tab. 4.2 in good agreement with Eq. (4.36).

At present, work is ongoing to find a fit for the forty parameters of the

ansatz for t
1

. The lack of convergence we see in Sec. 4.3 could be caused by

a combination of the size of our very large, forty dimensional, parameter space

with insu�ciently precise numerics (as stated above, at present we are only able

to obtain an accuracy of between ⇠ 10�3 and ⇠ 10�7 in both t
0

and t
1

). If

this is the case then, even through we may have an ansatz which will correctly

fit the function for suitable values of �i, the minimization algorithm may not

be able to discern the global minimum from the multitude of local minima in

the chi-squared as a function of these parameters. Another explanation could be

that our ansatz is simply not large enough to describe the function. A possible

extension would be to allow rational factors of the form rn(↵ij) for n > 1, or even

to allow additional rational factors such as ↵/(1 � ↵2) which have been known

to occur in computation of the cusp [64], however it is not clear if such functions

arise in �(n)
i for i = n in the former case and i > 2 in the latter. We must now

improve the precision of the numerical integration in order to either confirm the

ansatz above and determine the rational parameters, or to be able to fit an even

larger set of parameters for an expanded ansatz.

Work is currently on-going in this direction: we hope to improve the precision

of the numerical integrals by studying the integrand to see if numerical inaccu-

racies are being generated by large cancelling terms or integrable singularities,

particularly at the boundaries of the integration region as can often be the

case with Feynman parameter type integrals. Furthermore, we are investigating

physical constraints which can be imposed on the ansatz parameters, for example

4See above for a definition.
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4.4. Conclusions

the limit where all of the Wilson lines are taken lightlike (�2

i ! 0), which may

be obtained through the Mellin-Barnes asymptotics applied in Ref. [89]. We are

also considering other packages to handle the numerical integration and fitting to

see if better performance can be obtained.

Moreover, we are continuing to pursue an analytic computation of t
1

by

making use of modern tools being developed for the evaluation of multiloop

Feynman integrals. For example, we are working towards an application of

the compatibility graph method of Ref. [117] – which is implemented in the

package HyperInt [129] for Maple – to test linear reducibility of the integral or

to search for parametrizations in which it satisfies this property. Beyond this, the

application of integration by parts reduction [130] and the di↵erential equation

methods [131–136] have garnered much interest in the recent literature and have

generated success in several recent multiloop calculations. It is possible that such

approaches may yet yield results in the webs containing single three-gluon vertices

and beyond.
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Chapter 5

Conclusions and Outlook

In this thesis we have studied infrared singularities in gauge theories, focussing

particularly on multiparton amplitudes in non-abelian theories such as QCD. We

have discussed the factorization of the soft singularities from the hard and jet

components of amplitudes [80, 94–99], and their mapping to the UV divergences

of Wilson lines correlators [3, 27–32]. We have also seen that the logarithm of

such correlators is described by the soft anomalous dimension matrix which has

a diagrammatic interpretation in terms of subtracted webs [56, 58, 61, 90–92].

Throughout we have stressed the distinction between the IR singularities of two-

parton and multiparton amplitudes, the latter of which has a far richer structure

[56, 58–61, 93], though is commensurately more di�cult to compute.

Presently, the IR singularities of non-abelian theories in the multiparton case

are known only to two loops in general kinematics [67–69], and recently this was

advanced to three loops in the lightlike limit where all of the Wilson lines are

taken asymptotically close to the lightcone. With only two Wilson lines, results

have been obtained at three loops [63, 64] and some preliminary analysis exists at

four loops [50, 52]. Our goal then in this thesis was to push toward a calculation

of the three-loop soft anomalous dimension matrix, building upon contemporary

progress in understanding and computing multiparton webs [56, 58–61, 93]. The

webs contributing to the three-loop soft anomalous dimension can be broken into

three classes, given in order of the computational di�culty they present: the

multiple gluon exchange webs (MGEWs), webs containing single three-gluon-

vertex subgraphs, and fully connected webs.

In Ch. 3 we built upon the work of Ref. [60] in which the structure of MGEWs
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was studied. MGEWs are defined as those webs containing only gluon exchanges

directly between Wilson lines with no intervening three- or four-gluon-vertices,

or fermion/gluon/ghost bubble insertions. These are the simplest of webs given

that they e↵ectively exist in a conformally invariant sector of the theory [58], and

naturally permit a factorized structure which lends itself to integration procedure

outlined in Sec. 2.6. Owing to this, their form appears highly constrained: their

subtracted web kernels are conjectured to be free from anything other than

logarithms, and they can be written as sums of products of functions depending

upon only a single cusp angle each. These functions are themselves strongly

constrained by physical considerations and have an incredibly simple symbol

alphabet [60]. We were able to take this remarkable simplification further by

demonstrating that the MGEWs we have computed thus far can be written in

terms of a simple basis of functions, described by a single dimensional integral over

only logarithms, and depending on a single angle. We conjectured that this basis

will describe MGEWs to all orders, and provided evidence for this and the other

aforementioned conjectures, by computing the remaining three-loop MGEWs and

even a four-loop example. We went on to demonstrate the utility of the framework

we have built around this class of webs by providing some all-order results for

particular web families. Moreover, we discovered a new relation between webs

correlating di↵erent numbers of Wilson lines in the form of a collinear reduction.

Identifying two lines in an n line web, we demonstrate, reproduces a particular

colour and corresponding kinematic factor for a specific n� 1 line web.

Ch. 4 focussed on multiparton webs containing a single three-gluon-vertex,

a class in which only a single example [68] has so far been obtained away from

the lightlike limit, that is the three-gluon-vertex web between three lines, w(2)

3g

.

This example is only at two loops and exhibits a significant simplification in

comparison to what one might expect considering its integrand. Clearly, more

data is required regarding webs of this class to see if such simplifications continue,

and if some general procedure for their computation can be constructed, as was

achieved for MGEWs [1, 60]. The next in this class is the (1,1,1,2) web in which

the two-loop subdiagram is convoluted with a single gluon exchange with a fourth

line. We began by constructing the (1,1,1,2) subtracted web and studying its

integrand in detail. We found that it can be expressed as a two dimensional

parameter integral over a one-loop, three mass triangle with no internal masses,
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and that the dependence upon the angle correlated by the single gluon exchange

can be factorized. The remaining integral therefore cannot depend on kinematic

invariants through conformal invariant cross ratios and so we argue will be subject

to the same constraints as were applied to MGEWs in Ref. [60]. This provides the

same symbol alphabet and factorization constraints and led us to conjecture that

the (1,1,1,2) web can also be expressed in terms of the MGEW basis functions

we found in Ch. 3. We investigated several approaches for a direct analytic

evaluation of the integrals, and a generalization of the method found in Ref. [70]

involving specialised gauge transformations to obtain the two loop three-gluon-

vertex web, neither of which yielded a result. We instead, for the reasons outlined

above, generated an ansatz for the (1,1,1,2) in terms of MGEW basis functions

and attempted to find a numerical least-squares fit for its forty parameters. This

work is still ongoing and so we presented results for a successful test fit of w(2)

3g

from an ansatz of MGEW basis functions, and preliminary results for a fit of the

(1,1,1,2), demonstrating the need for higher precision numerical evaluations of

the integrals which we are currently in progress.

To conclude, the three-loop soft anomalous dimension in general kinematics

remains undetermined with the major barrier being the fully connected graphs.

We have made progress in understanding the intermediary class webs consisting

of lower order connected subgraphs convoluted with MGEW-like single gluon

exchanges, however these integrals also remain problematic beyond the simplest

of examples, or simplifying kinematic limits. In fact, even at two loops the

computation of the three-gluon-vertex web, w
(2)

3g

, is laborious without relying

on specialised gauges such as the conformal gauges described in Ref. [70]. These

gauges, unfortunately, appear to lose their utility at three loops where, again, the

fully connected diagrams remain uncomputed. However, in recent years there

has been a wealth of new tools and techniques developed collaboratively by the

amplitudes and mathematics communities, e.g. Refs. [109, 110, 117, 129–137].

These have significantly driven forward our ability to compute and understand

Feynman integrals, and the space of functions onto which they map. We are

confident that these developments, along with data regarding the properties of

webs such as the (1,1,1,2), will shed light onto the remaining challenges at three

loops and beyond. As we continue to better understand the structure of webs

and the functions involved in such calculations, more and more classes of webs
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will become computationally procedural. In achieving this we shall be able not

only to compute IR singularities deeper within the perturbative series, but also

will continue to provide insights into the structure of gauge theory amplitudes

and the physical processes to which they pertain.
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Appendix A

Multiple Gluon Exchange Webs

A.1 Basis Functions

In this appendix we list the explicit expressions for the basis functions defined

in Eq. (3.35), in terms of polylogarithms and harmonic polylogarithms, up to

transcendental weight five. Harmonic polylogarithms are defined as in [119].

• Weight one.

M
0,0,0(↵) = 2 log(↵) . (A.1)

• Weight two.

M
1,0,0(↵) = 2Li

2

(↵2) + 4 log(↵) log
�

1� ↵2

�� 2 log2(↵)� 2 ⇣(2). (A.2)

• Weight three.

M
0,0,2(↵) =

8

3
log3(↵) , (A.3)

M
0,1,1(↵) = 2Li

3

(↵2)� 2 log(↵)



Li
2

(↵2) +
log2(↵)

3
+ ⇣(2)

�

� 2 ⇣(3) ,

(A.4)

M
0,2,0(↵) =

2

3
log3(↵) + 4 ⇣(2) log(↵) , (A.5)
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A.1. Basis Functions
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• Weight four.

M
3,0,0(↵) = 12



Li
4

(↵2)� 4 Li
4

�

1� ↵2

�

�

� 24S
2,2(↵

2)

� 24 log
�

1� ↵2

�

Li
3

(↵2)� 24 log2
�

1� ↵2

�

log2(↵)

+ 16 log
�

1� ↵2

�

log3(↵)� 4 log4(↵)

� 24 ⇣(2) log(↵) log



↵

(1� ↵2)2

�

+ 24 ⇣(3) log
⇥

↵
�

1� ↵2

�⇤� 6 ⇣(4) ,

(A.7)

M
1,2,0(↵) = 4Li

4

(↵2)� 4 log(↵) Li
3

(↵2) + 2 log2(↵) Li
2

(↵2)

+
4

3
log3(↵) log

�

1� ↵2

�� 2

3
log4(↵)

+ ⇣(2)
h

8 log(↵) log
�

1� ↵2

�

+ 4Li
2

(↵2)� 6 log2(↵)
i

+ 4 ⇣(3) log(↵)� 14 ⇣(4) ,

(A.8)

M
1,0,2(↵) = 4Li

4

(↵2)� 8 log(↵) Li
3

(↵2) + 8 log2(↵) Li
2

(↵2)

+
16

3
log3(↵) log

�

1� ↵2

�� 4

3
log4(↵)� 4 ⇣(4) ,

(A.9)

M
1,1,1(↵) = � 4 Li

4

(↵2) + 4S
2,2(↵

2) + 2 log
h

↵
�

1� ↵2

�

2

i

Li
3

(↵2)

+ 4 log(↵) Li
3

�

1� ↵2

�

� 4

3
log(↵)2 log

�

1� ↵2

�



log(↵)� 3 log
�

1� ↵2

�

�

� 8 ⇣(2) log(↵) log(1� ↵2)� 2 ⇣(3) log
h

↵
�

1� ↵2

�

2

i

+ 3 ⇣(4) .

(A.10)

132



A.1. Basis Functions

• Weight five
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A.1. Basis Functions
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A.2. Calculation of the (2,2,2) web
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A.2 Calculation of the (2,2,2) web

In this appendix, we provide more details regarding the calculation of the (2,2,2)

web, the results of which are presented in Sec. 3.5.1.

A.2.1 Unsubtracted web

The general method for calculating a given web diagram has been presented in

Sec. 3.3. Here we present the kernels, defined in Eq. (3.14) and Eq. (3.15), for

each diagram appearing in the (2,2,2) web. To simplify our notations slightly, we

relabel the variables used in Sec. 3.5.1 as {x
1

, x
2

, x
3

} ! {x, y, z}. Applying the

relevant definitions to the kinematic factor of diagrams A and B in Fig. 3.9 one

finds,

�
(3)

A (x, y, z; ✏) = �
(3)

B (x, y, z; ✏) =
1

4
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where we used Eqs. (2.71) and (2.62). Note that it is necessary to use the

symmetry of the function to remove the factor,

✓
+

(n = 3) = ✓
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. (A.21)

The other diagrams in Fig. 3.9 have subdivergences, therefore the kernels have

to be computed including higher orders in their ✏ expansion. For example, from

diagram C one finds

�
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A.2. Calculation of the (2,2,2) web

+ O(✏3)

�

. (A.22)

The remaining web kernel contributions can then be found by permuting the

variables x, y and z in the integrand, with the results

�
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From these functions one can compute the unsubtracted web,
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using Eq. (3.16) and taking the specific coe�cients Y �1

X,j given in Table 3.2. One

finds
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(A.25)

A.2.2 Subtracted web

As explained in Sec. 2.4, the anomalous dimension is obtained from subtracted

webs. Thus the single pole of Eq. (A.25) must be combined with suitable

subtraction terms, consisting of commutators of lower-order webs, as prescribed

in Eq. (2.44). Recall that simplifications occur [60] when this subtraction is

performed under the integral over variables (x, y, z) corresponding to the gluon

emission angles. In particular, the symbol alphabet and factorization constraints

which allow us to use the basis of functions introduced in Sec. 3.4 only apply to
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the subtracted web. Consider then the integrand of Eq. (2.44),
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where we defined G
0,i as the contribution proportional to c

(3)

i from the unsub-

tracted web, obtained by expanding the integrand of Eq. (A.25); �Gk,i, in turn,

are the contributions from the commutators of lower order webs to this colour

factor, where k runs over the relevant commutator terms in Eq. (2.44) (note that

�Gk,i include the numerical factors appearing there). We recall that each of these

contributions to G
(2,2,2),i depends on x, y and z as well as on q(x,↵
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23

)

and q(z,↵
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). Using the lower-order web results collected in Ref. [60], the
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The contributions to the coe�cient of the colour factor c(3)
2

are
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Finally, the contributions to the coe�cient of the colour factor c(3)
3

are found to

be
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A.3. Calculation of the (1,2,3) web

There are no commutator counterterms contributing to the fully antisymmetric

colour factor c(3)
4

, as there are no colour factors of lower order webs that commute

to produce the desired structure. This is consistent with the fact that the

kinematic function associated with c
(3)

4

involves only staircase diagrams, which

are irreducible, and as such do not contain subdivergences.

Combining all terms, using appropriate dilogarithm identities, and the

symmetry of p
0

(x,↵) under x $ 1 � x, and finally using the definition given

in Eq. (3.35), one finds the results presented in Eqs. (3.67) and (3.69). As a

check of these results, one may verify that the O(✏�2) pole of the (2,2,2,) web

vanishes, according to the web consistency relation discussed in Ref. [58],
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. (A.30)

As a further check, the sum of all web diagrams must give a product of one-loop

graphs, in accordance with Eq. (3.19). We have explicitly confirmed that both of

these criteria are satisfied.

A.3 Calculation of the (1,2,3) web

The calculation of the (1,2,3) web, shown in Fig. 3.11, proceeds similarly to the

(2,2,2) case considered in the previous Appendix.

A.3.1 Unsubtracted web

Using the method of Sec. 3.3, the result for the contribution to the web kernel

�
(3)

(1,2,3) from diagram A is

�
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Carrying out a similar exercise for the other diagrams of the (1,2,3) web gives the

results
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These expressions must of course be expanded in powers of ✏, up to O (✏0).

Notice that there is a di↵erence with respect to the (2,2,2) web, in that Heaviside

functions survive in the integrand. This can ultimately be traced to the fact that

the (1,2,3) web contains a crossed-gluon pair spanning a single cusp angle, and a

Heaviside function is needed in order to implement the crossing condition. From

Eq. (A.32), the unsubtracted web

W
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X
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c
(3)

j F (3)

(1,2,3),j (A.33)
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is obtained through Eq. (3.16) by taking the specific coe�cients Y �1

X,j given in

table 3.3, as
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(A.34)

where we recall that the contribution to the i = 1 colour component vanishes. In

the following we compote the (1,2,3) subtracted web for i = 2, 3 and 4.

A.3.2 Subtracted web

As for the (2,2,2) web, it is useful to collect results for the subtraction terms

separated according to the colour factor they contribute to. We once again split

the subtracted web kernel into contributions from the unsubtracted web, G
0,i

originating in the expansion of the integrand in Eq. (A.34), and the commutators

of lower order webs, �Gj,i, so that the coe�cient of the colour factors c(3)i can be

written as
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We recall that each of these contributions to G
(1,2,3),i depends on x, y and z as

well as on q(x,↵
23

), q(y,↵
23

) and q(z,↵
13

). We will see that after cancellations

only logarithmic dependence on these arguments will survive. The results of the

commutators with the colour factors c(3)i with i = 2 and 3 are
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Finally, there are contributions to the fully antisymmetric colour factor c(3)
4

, given

by
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This colour factor had no commutator contributions in the (2,2,2) case, as

discussed above. In this case they can be generated due to the fact that one

of the lower order webs contains a crossed gluon pair. Combining, as prescribed

by Eq. (2.44), the non-subtracted web and the commutator counterterms, one

finds again that the integrated results can be expressed using the basis functions

of Eq. (3.35), and they are given in Eq. (3.75). Finally, as for the (2,2,2) web, we

have verified the cancellation of the double pole, and also the abelian sum rule

given in Eq. (3.19).

A.4 Calculation of the (1,2,2,2,1) web

A.4.1 Unsubtracted web

In this appendix we write the integrand �(4)

X for each diagram X of the (1,2,2,2,1)

unsubtracted web. We begin by noting that the diagrams of Fig. 3.13 are pairwise

related by a symmetry under permutations mapping a clockwise orientation into

an anticlockwise one, thus swapping lines 1 $ 5 along with 2 $ 4. Because of

this symmetry argument, we need to report only four out of the eight diagram

kernels, while the remaining ones can be obtained through
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where X and X 0 are any two diagrams related to each other by the symmetry.

In order to express the results in compact form, it is useful to define the function
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which arises in the expansion of integrals of the form
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as well as the integral

I
3

(a, b) =

Z a

0

d⇣

⇣



Li
2

�� b(1 + ⇣)
�� Li

2

(�b)

�

=

Z b

0

d⇣

⇣
Li

2

✓

�b
⇣

1 + ⇣

◆

= log(1 + b) Li
2

(�a)�G

✓

0,�1,�1 + b

b
; a

◆

, (A.41)

where G(a
1

, . . . , an; z) is the generalised polylogarithm defined by the iterated

integral [109]
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with G(z) = 1 and ai, z 2 C. Using these definitions, the results for the first four

diagrams in Fig. 3.13 are given by
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where, as above, these expressions must be expanded to order O (✏0). The

remaining four diagrams can be obtained using symmetry, as
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A.4.2 Subtracted web

The subtracted (1,2,2,2,1) web involves a sum of commutators of lower-order

webs, comprising subdiagrams of the original unsubtracted web, and given in

Eq. (2.43). The relevant webs are the (1,1) one-loop web, which is needed toO(✏2)

and can be taken from Ref. [60], the (1,2,1) two-loop web, which is needed to O(✏),

and the (1,2,2,1) three-loop web, which is needed to O(✏0). The commutators of

these webs have precisely the same colour structure c
(4)

1

as the non-subtracted

(1,2,2,2,1) three-loop web. In order to complete the calculation, we list here the

kernels for the (1,2,2,1) and the (1,2,1) webs, in a form which is appropriate to

be expanded to the relevant order.
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where the diagrams are labelled as in Fig. 3.4. The expansions of the kinematic

integrands �(3)

X up to O(✏) can be obtained from
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Again, we observe that diagram B and diagram C are related by the exchange of

the gluon labels. We obtain diagram C by means of the relation

�
(3)

C (x
1

, x
2

, x
3

; ✏) = �
(3)

B (x
3

, 1� x
2

, x
1

; ✏) . (A.52)

We finally need the integrand of the non-subtracted two-loop (1,2,1) web. It is

given by

�
(2)

(1,2,1)(x1
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2

) =
1
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x
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◆
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◆

� L
3

✓
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2

x
1

◆�

. (A.53)

Note that, as in all other cases we examined, both the unsubtracted webs and

the lower-order webs entering Eq. (2.43) are not factorised integrals, because the

functions I
3

, L
3

and the other polylogarithms entering the web depend on ratios

of di↵erent integration variables xi. All such functions, however, cancel in the

sum in Eq. (2.43), and the resulting expression for the integrand is factorised, as

reported in the text, Eq. (3.80).
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Appendix B

Triangle Integrals

In [124], the authors study a class of scalar triangles with three external masses

and no internal masses, in d dimensions and with general 1 powers of the

propagators, ⌫
1

, ⌫
2

, ⌫
3

> 0,

T (d, ⌫
1

, ⌫
2

, ⌫
3

; p2i ) = e�E✏
Z

ddz

i⇡d/2

1
�� z2

�⌫1�� (z � p
1

)2
�⌫2�� (z + p

3

)2
�⌫3 ,

(B.1)

where the definition of the momenta can be inferred from figure B.1, with
P

i pi =

0.

p2

p1

p3

k

k + p1

k � p3

Figure B.1: Scalar triangle with three external masses, massless propagators
propagators to power of 1� ✏.

They show that they can be written as a one dim integral over a hypergeo-

1This is naturally restricted to ⌫1, ⌫2, ⌫3 < 0 since if at least one of ⌫i < 0 then the integral
reduces to bubbles.
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metric function,

T (d, ⌫
1

, ⌫
2

, ⌫
3

; p2i ) = e�E✏
�(⌫ � d/2)�(n/2� ⌫
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(B.2)

where ⌫ = ⌫
1

+ ⌫
2

+ ⌫
3

, and then by expressing the hypergeometric function

through its Mellin-Barnes representation,

2

F
1

(a, b; c; z) =
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1

2⇡i

Z i1

�i1
ds(�z)s

�(�s)�(a+ s)�(b+ s)
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, (B.3)

they are able to use the fact that
2

F
1

is an analytical function to close the contour

to the right and so write the integral as a sum over the poles of the gamma

functions. Using the relation between
2

F
1

and the Appell F
4

hypergeometric

functions,

F
4
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where the Pochhammer symbol,

(↵)j =
�(↵ + j)

�(↵)
, (B.5)

to perform this sum, they can conclude that,
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In special cases these functions reduce to simpler
2

F
1

hypergeometric functions

through the following identities,
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combined with the symmetry properties under exchange of indices,
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For convenience, we have expressed these functions in terms of the variables
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in which � denotes the Källen function,

�(a, b, c) = a2 + b2 + c2 � 2ab� 2ac� 2bc . (B.17)
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Appendix C

t0 fitting details

Here we include the results of the NMinimize fit for the t
0

(↵
23

,↵
24

,↵
34

) ansatz,

Eq. (4.44), for each parameter in turn. The size of the dataset used in fitting is

given on the horizontal axis and the parameters value on the vertical. The size of

dataset is varied in order to show convergence of the fit towards stable, rational

values.
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Figure C.1: Parameter fits for the t
0

ansatz. Horizontal axis indicates size
of dataset in units of (number of points)/5. Vertical axis indicates fit value
for corresponding parameter. The value of MaxErrorIncreases (MEI) used in
integrating the data to fit is indicated.
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Appendix D

t1 fitting details

The plots below give on their vertical axis the least-squares fit values for

their respective parameter �i from the t
1
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The size of the dataset used in the NMinimize least-squares fitting is given on

the horizontal axis and is varied in order to see if convergence of the fit towards

stable, rational values is achieved.

158



●

● ●
●
● ● ● ● ● ●

●

●

●
●
●

●

●

● ●
●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

■

■ ■
■
■ ■ ■ ■ ■ ■

■

■

■
■
■

■ ■

■ ■
■
■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■

◆

◆◆◆
◆◆◆◆◆◆

◆◆

◆
◆
◆
◆
◆

◆◆
◆
◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆

▲

▲ ▲ ▲
▲ ▲ ▲ ▲ ▲ ▲

▲

▲

▲ ▲

▲

▲ ▲

▲ ▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.20

-0.15

-0.10

-0.05

λ1

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

● ●
● ●

● ● ● ●

●

●

●

●
● ●

●

● ● ● ●
●
● ● ● ● ● ●

●

● ● ● ●
● ● ●

■

■
■
■ ■

■ ■ ■ ■

■

■
■

■
■
■

■

■
■ ■

■

■ ■
■ ■ ■ ■ ■

■

■ ■ ■ ■
■ ■

■

◆

◆
◆
◆◆

◆◆◆◆

◆

◆◆

◆◆◆

◆

◆

◆◆◆
◆◆◆◆

◆
◆◆

◆

◆◆◆◆
◆◆◆

▲

▲

▲

▲ ▲
▲ ▲ ▲ ▲

▲

▲ ▲

▲

▲

▲

▲ ▲

▲ ▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲
▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.15

-0.10

-0.05

λ2

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

● ●
● ● ● ●

●

●

●

●
●
●

●

●

● ● ●
● ● ● ● ● ● ●

●

● ● ● ●

● ● ●

■

■
■

■ ■
■ ■ ■ ■

■

■

■

■
■ ■

■

■

■ ■
■

■
■ ■ ■ ■

■ ■

■

■ ■ ■ ■

■ ■ ■

◆

◆
◆
◆
◆
◆◆◆◆

◆

◆

◆

◆◆
◆
◆

◆

◆◆
◆
◆◆◆◆

◆
◆◆

◆

◆◆◆◆

◆◆◆

▲

▲ ▲
▲
▲
▲ ▲ ▲ ▲

▲

▲
▲

▲

▲

▲
▲ ▲

▲ ▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.05

0.05

0.10

0.15

λ3

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

●

●

●

● ● ●

●

●
● ● ●

●

●

●
● ● ● ●

● ● ● ●
● ●

●

● ● ● ●
● ● ●

■

■

■

■

■

■

■ ■ ■

■

■
■
■ ■

■

■
■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■
■ ■ ■

◆

◆

◆

◆

◆

◆◆◆◆

◆

◆◆
◆◆

◆

◆
◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆
◆◆◆

▲

▲

▲

▲

▲

▲ ▲ ▲ ▲

▲

▲
▲

▲
▲
▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲
▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.08

-0.06

-0.04

-0.02

λ4

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●
● ● ● ●

● ● ●

●

●
●

● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ●

■

■
■ ■ ■ ■

■ ■ ■

■

■
■

■ ■ ■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ■ ■ ■

■ ■ ■

◆

◆
◆◆◆

◆◆◆◆

◆

◆
◆

◆◆◆

◆
◆
◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆
◆◆◆

▲

▲
▲ ▲ ▲

▲ ▲ ▲ ▲

▲

▲
▲

▲ ▲
▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.20

-0.15

-0.10

-0.05

λ5

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000 ●

●

● ●

●

●
● ● ●

●

●
●

● ● ●

●
●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ●

■

■

■ ■

■

■
■ ■ ■

■

■
■

■ ■ ■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■

■ ■ ■

◆

◆

◆◆

◆◆◆◆◆

◆

◆
◆

◆◆◆

◆
◆

◆◆◆◆◆◆◆◆◆◆

◆

◆◆◆◆

◆◆◆

▲

▲

▲ ▲

▲
▲ ▲ ▲ ▲

▲
▲
▲

▲ ▲ ▲

▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

λ6

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●
●

● ● ●

●
● ● ●

●
●
●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ●■

■

■ ■ ■

■
■ ■ ■

■

■
■

■ ■
■

■

■

■ ■ ■
■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■ ■ ■ ■◆

◆

◆◆◆

◆◆◆◆
◆
◆◆

◆◆◆

◆

◆

◆◆◆
◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆▲
▲

▲
▲ ▲

▲ ▲ ▲ ▲
▲
▲

▲

▲
▲

▲

▲ ▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.20

-0.15

-0.10

-0.05

λ7

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

● ● ●
●

●

● ● ●

● ●

●

● ●
●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

■

■
■ ■

■

■

■ ■ ■

■ ■

■

■ ■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ■ ■ ■ ■

■ ■ ■

◆

◆◆◆
◆

◆◆◆◆

◆◆

◆
◆
◆
◆◆

◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆

◆◆◆

▲

▲
▲ ▲

▲

▲ ▲ ▲ ▲

▲
▲

▲
▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲ ▲

▲ ▲ ▲50. 100. 150. 200. 250. 300. 350.

-0.20

-0.15

-0.10

-0.05

λ8

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

159



●

●

●

● ●

●

●
●

●

●

●
●

● ●

●

●

●

● ●

●
●

● ● ● ● ● ●

●

● ● ● ●

● ● ●

■

■

■

■ ■

■

■
■

■

■

■
■

■ ■

■ ■ ■

■ ■

■ ■
■ ■ ■ ■ ■ ■

■

■ ■ ■ ■

■ ■ ■
◆

◆

◆

◆
◆◆

◆◆◆

◆

◆
◆

◆◆

◆
◆◆

◆◆

◆◆
◆◆◆◆◆◆

◆

◆◆◆◆

◆◆◆
▲

▲

▲

▲
▲ ▲

▲ ▲ ▲

▲

▲
▲

▲ ▲

▲
▲
▲ ▲ ▲

▲
▲
▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.
0.09

0.10

0.11

0.12

0.13

0.14

0.15

λ9

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

● ●

● ● ● ● ●

●
●

● ●

●

●

●

● ● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

■

■

■

■ ■

■ ■ ■ ■ ■

■
■

■ ■

■

■ ■

■ ■ ■ ■ ■ ■ ■ ■
■ ■

■

■ ■ ■ ■ ■ ■ ■

◆

◆

◆

◆◆
◆◆◆◆◆

◆◆

◆◆
◆
◆
◆

◆◆◆◆◆◆◆◆
◆◆

◆

◆◆◆◆◆◆◆

▲

▲

▲

▲ ▲

▲ ▲ ▲ ▲ ▲

▲
▲

▲ ▲

▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.20

-0.15

-0.10

-0.05

0.05

λ10

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

●

●
●

● ● ●

●
●

●

● ●
●

●

●

● ●
● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ●

■

■

■

■

■
■

■ ■ ■

■

■
■

■ ■
■

■

■

■ ■
■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■

■ ■ ■

◆

◆

◆

◆
◆
◆◆◆◆

◆
◆
◆

◆◆
◆◆

◆

◆◆
◆◆◆◆◆◆

◆◆

◆

◆◆◆◆
◆◆◆

▲

▲

▲

▲

▲ ▲ ▲ ▲ ▲

▲

▲ ▲

▲ ▲
▲
▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

0.02

0.04

0.06

0.08

0.10

0.12

λ11

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

●
●

●

●
●
●

●

●

●

● ●
●

● ●

● ●
● ● ● ● ● ●

● ●
●

● ● ● ● ● ● ●

■

■

■

■
■

■

■
■
■

■

■

■

■ ■
■

■

■

■ ■ ■ ■ ■ ■ ■ ■
■ ■

■

■ ■ ■ ■ ■ ■ ■

◆

◆

◆

◆
◆

◆
◆◆◆

◆

◆
◆

◆◆◆

◆
◆

◆◆◆◆◆◆◆◆

◆◆
◆

◆◆◆◆◆◆◆

▲

▲

▲

▲
▲

▲ ▲
▲ ▲

▲

▲

▲

▲ ▲

▲

▲

▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲

▲ ▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.26

-0.24

-0.22

-0.20

λ12

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●
● ●

●
● ● ●

●

●
●

● ●
●

●

●

● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ●

■

■

■
■ ■

■
■ ■ ■

■

■
■

■ ■
■

■
■

■ ■ ■
■ ■ ■ ■ ■

■ ■

■ ■ ■ ■ ■ ■ ■ ■

◆

◆

◆
◆◆

◆◆◆◆

◆

◆
◆

◆◆
◆

◆
◆

◆◆◆◆◆◆◆◆
◆◆

◆◆◆◆◆◆◆◆

▲

▲

▲
▲ ▲

▲ ▲ ▲ ▲

▲

▲

▲

▲ ▲

▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.05

0.05

λ13

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000 ●

●
● ●

● ●
● ● ●

● ●

●
● ● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ●
● ● ●

■

■
■ ■

■ ■
■ ■ ■

■
■

■
■ ■ ■

■

■

■ ■ ■
■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■
■ ■ ■

◆

◆
◆◆◆

◆◆◆◆

◆◆
◆
◆◆◆

◆

◆

◆◆◆
◆◆◆◆◆◆◆

◆

◆◆◆◆
◆◆◆

▲

▲

▲ ▲ ▲
▲ ▲ ▲ ▲

▲
▲ ▲

▲
▲

▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲
▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.20

-0.15

-0.10

-0.05

0.05

λ14

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

● ● ● ●

● ● ●

●

●

●

● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ●
■

■

■ ■ ■ ■

■ ■ ■

■

■

■

■ ■
■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■

■ ■ ■◆

◆

◆◆◆

◆◆◆◆

◆

◆

◆

◆◆
◆

◆
◆

◆◆◆◆◆◆◆◆◆◆

◆

◆◆◆◆

◆◆◆▲

▲

▲ ▲ ▲

▲ ▲ ▲ ▲

▲

▲
▲

▲ ▲
▲

▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.05

λ15

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000
●
●

●

● ●
●
● ● ●

●

●

●

●
●
●

●

●
● ● ●

● ● ● ● ● ●
●

●

● ● ● ●
● ● ●

■

■

■

■ ■
■
■ ■ ■

■

■

■

■
■
■

■

■ ■ ■
■

■
■
■
■ ■

■ ■

■

■ ■ ■ ■
■ ■

■

◆

◆

◆

◆◆
◆◆◆◆

◆

◆

◆

◆
◆
◆

◆

◆
◆◆

◆

◆◆
◆◆

◆

◆◆

◆

◆◆◆◆
◆◆◆

▲

▲

▲

▲ ▲ ▲ ▲ ▲ ▲

▲

▲

▲

▲

▲

▲ ▲ ▲

▲ ▲ ▲
▲
▲ ▲

▲ ▲ ▲
▲

▲

▲ ▲ ▲ ▲
▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.15

-0.10

-0.05

λ16

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

160



●

●
●
●

●

● ● ● ●

●

● ●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

■

■
■
■

■

■ ■ ■ ■

■

■ ■

■ ■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ■ ■ ■ ■

■ ■ ■

◆

◆◆◆

◆

◆◆◆◆

◆

◆◆

◆◆
◆

◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆

◆◆◆

▲

▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲

▲ ▲

▲ ▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲ ▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.25

-0.20

-0.15

-0.10

-0.05

λ17

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

● ●
● ●

● ● ●

●

● ●

● ● ●
●

●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

■

■

■ ■
■ ■

■ ■ ■

■

■ ■

■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■ ■ ■ ■◆

◆

◆◆
◆

◆◆◆◆

◆

◆◆

◆◆◆◆
◆

◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆▲

▲

▲ ▲
▲

▲ ▲ ▲ ▲

▲

▲
▲

▲ ▲ ▲ ▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.05

0.05

0.10
λ18

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●
● ●

● ● ● ●
●

●
●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ●

■

■

■
■ ■

■ ■ ■ ■
■

■
■

■ ■ ■

■
■

■ ■
■
■ ■ ■ ■ ■

■ ■

■ ■ ■ ■ ■
■ ■ ■

◆

◆

◆
◆◆

◆◆◆◆
◆
◆◆

◆◆◆

◆
◆

◆◆
◆◆◆◆◆◆

◆◆

◆◆◆◆◆
◆◆◆

▲

▲

▲
▲ ▲

▲ ▲ ▲ ▲ ▲

▲ ▲

▲ ▲

▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲ ▲
▲ ▲ ▲50. 100. 150. 200. 250. 300. 350.

-0.15

-0.10

-0.05

0.05

0.10

0.15
λ19

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●
● ● ●

● ● ● ●

● ●

●

●
●
●

●

● ● ●
●
● ● ● ● ●

●
●
● ● ● ● ● ● ●

■

■
■ ■

■

■ ■ ■ ■

■
■

■

■
■

■

■

■

■ ■
■

■ ■
■
■ ■

■
■ ■

■ ■ ■ ■ ■ ■
■

◆

◆◆◆◆
◆◆◆◆

◆◆◆

◆
◆
◆

◆

◆

◆◆
◆
◆◆

◆◆
◆

◆◆
◆
◆◆◆◆◆◆◆

▲

▲ ▲
▲ ▲

▲ ▲ ▲ ▲

▲
▲ ▲

▲

▲

▲

▲ ▲ ▲
▲ ▲ ▲

▲ ▲ ▲
▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.05

0.05

0.10

λ20

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

● ●

● ●
●
● ● ● ● ●

● ●

●

● ● ● ● ● ● ●

■

■

■

■

■

■ ■ ■ ■

■

■

■

■ ■

■

■

■

■ ■
■
■ ■ ■ ■ ■

■ ■

■

■ ■ ■ ■ ■ ■
■

◆

◆

◆

◆

◆

◆
◆◆◆

◆

◆

◆

◆◆

◆

◆◆

◆◆
◆
◆◆◆◆◆

◆◆

◆

◆◆◆◆◆◆◆

▲

▲ ▲

▲

▲

▲
▲ ▲ ▲

▲

▲
▲

▲
▲

▲

▲ ▲

▲ ▲
▲
▲ ▲ ▲ ▲ ▲

▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.08

-0.06

-0.04

-0.02

λ21

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

● ● ●
●
● ● ●

●

●

●

●

●

●

● ●
● ●

● ● ● ● ●
●

●

● ● ● ●
● ● ●

■

■

■ ■ ■
■
■ ■ ■

■

■

■

■

■

■

■

■ ■

■

■
■
■
■ ■

■
■

■

■ ■ ■ ■
■ ■ ■

◆

◆

◆◆
◆
◆◆◆◆

◆

◆

◆◆
◆
◆

◆

◆

◆◆

◆
◆◆

◆◆

◆

◆◆

◆

◆◆◆◆
◆◆◆

▲

▲

▲
▲
▲
▲ ▲ ▲ ▲

▲

▲

▲
▲

▲

▲

▲ ▲ ▲ ▲ ▲ ▲
▲ ▲

▲
▲

▲

▲ ▲ ▲ ▲
▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.06

-0.04

-0.02

0.02

0.04

0.06

λ22

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●
●

●
●

● ● ●

●
●

●

●
●

●

●

●

● ●
●
●
● ● ● ● ●

●

●
● ● ● ● ● ● ●

■

■

■
■

■
■

■ ■ ■

■ ■

■

■
■ ■

■

■
■ ■

■

■
■
■
■ ■

■ ■

■
■ ■ ■ ■ ■ ■

■

◆

◆

◆
◆

◆

◆◆◆◆

◆◆
◆
◆
◆

◆

◆

◆
◆◆◆

◆◆◆◆
◆

◆◆

◆
◆◆◆◆◆◆◆

▲

▲

▲

▲

▲

▲ ▲ ▲ ▲

▲
▲

▲

▲

▲

▲
▲

▲

▲ ▲
▲
▲ ▲ ▲

▲ ▲ ▲
▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.08

-0.06

-0.04

-0.02

λ23

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

● ●
● ●

● ● ●

●

●

●

● ●
●

●

●

● ●
● ● ● ● ● ●

● ●

●

● ● ● ● ● ● ●

■

■
■ ■

■ ■

■ ■ ■

■

■

■

■ ■
■
■ ■

■ ■
■ ■ ■ ■ ■ ■

■ ■

■

■ ■ ■ ■ ■ ■ ■

◆

◆
◆◆

◆
◆◆◆◆

◆

◆

◆

◆◆◆◆
◆

◆◆
◆◆◆◆◆◆◆◆

◆

◆◆◆◆◆◆◆

▲

▲
▲ ▲

▲
▲ ▲ ▲ ▲

▲

▲

▲

▲ ▲
▲

▲ ▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲

▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.34

-0.32

-0.30

-0.28

-0.26

λ24

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

161



●

● ●

● ●

●
● ● ●

●

●
●

● ●
●

● ●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ●■

■
■

■ ■

■
■ ■ ■

■

■
■

■ ■
■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■

■ ■ ■◆

◆◆

◆◆

◆◆◆◆

◆

◆
◆

◆◆
◆

◆
◆

◆◆◆◆◆◆◆◆◆◆

◆
◆◆◆◆

◆◆◆▲

▲
▲

▲ ▲

▲ ▲ ▲ ▲

▲

▲
▲

▲ ▲ ▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.05

0.05
λ25

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

●
●

● ● ● ●

●
●

●

● ●

●

●

●

● ●
● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

■

■

■

■
■

■ ■ ■ ■

■ ■
■

■ ■

■

■ ■

■ ■
■ ■ ■ ■ ■ ■

■ ■

■
■ ■ ■ ■ ■ ■ ■

◆

◆

◆

◆
◆
◆◆◆◆

◆◆
◆

◆◆
◆

◆
◆

◆◆
◆◆◆◆◆◆

◆◆

◆
◆◆◆◆◆◆◆

▲

▲

▲

▲
▲

▲ ▲ ▲ ▲

▲
▲
▲

▲ ▲

▲

▲ ▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.05

0.05

0.10
λ26

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

● ●
●

● ● ●

●
●

●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ●

● ● ●

■

■

■

■ ■
■

■ ■ ■

■ ■

■

■ ■ ■

■
■

■ ■
■

■ ■ ■ ■ ■ ■ ■
■

■ ■ ■ ■

■ ■ ■

◆

◆

◆

◆◆
◆◆◆◆

◆◆
◆

◆◆◆

◆
◆
◆◆◆◆◆◆◆◆◆◆

◆
◆◆◆◆

◆◆◆

▲

▲

▲
▲ ▲

▲ ▲ ▲ ▲

▲
▲
▲

▲ ▲ ▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲
▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

0.02

0.04

0.06

0.08

0.10

0.12

0.14

λ27

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●
●
●

●
● ● ●

●
●
●

● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ●

■

■

■
■
■

■
■ ■ ■

■
■
■

■ ■
■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■

■ ■ ■

◆

◆
◆
◆
◆

◆◆◆◆

◆
◆◆

◆◆
◆

◆
◆

◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆

◆◆◆

▲

▲

▲
▲
▲

▲ ▲ ▲ ▲

▲
▲

▲

▲ ▲
▲

▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

λ28

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

●

●

●
● ● ●

●

●
●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ●
■

■

■

■

■

■
■ ■ ■

■

■
■

■ ■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■

■ ■ ■
◆

◆

◆

◆
◆

◆◆◆◆

◆

◆◆

◆◆
◆

◆

◆

◆◆◆◆◆◆◆◆
◆◆

◆
◆◆◆◆

◆◆◆
▲

▲

▲

▲
▲

▲ ▲ ▲ ▲

▲

▲ ▲

▲ ▲

▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

λ29

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000 ●

●

●

● ●

● ● ● ●

●
●

●

●
●
●

●

●

● ●

●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

■

■

■

■ ■

■ ■ ■ ■

■
■

■

■
■

■ ■ ■

■ ■
■

■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■

◆

◆

◆
◆
◆

◆◆◆◆

◆◆

◆

◆

◆
◆◆

◆

◆◆
◆
◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆
▲

▲

▲
▲
▲

▲ ▲ ▲ ▲

▲ ▲

▲

▲ ▲

▲

▲ ▲

▲ ▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
50. 100. 150. 200. 250. 300. 350.

-0.10

-0.05

0.05

λ30

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●
●

●

● ●

●

● ● ●

●

● ●

● ● ●

●

●

● ● ●
● ● ● ● ● ● ●

●

● ● ● ●

● ● ●

■ ■

■

■ ■

■

■ ■ ■

■

■ ■

■ ■
■

■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■

■ ■ ■ ■

■ ■ ■

◆◆

◆

◆◆

◆◆◆◆

◆

◆◆

◆◆◆
◆

◆

◆◆◆◆◆◆◆◆◆◆
◆

◆◆◆◆

◆◆◆

▲ ▲

▲

▲ ▲

▲ ▲ ▲ ▲

▲

▲
▲

▲ ▲

▲

▲
▲

▲ ▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.02

0.02

0.04

0.06

0.08
λ31

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●
●
●

●
● ● ●

●

●

●

● ● ●

●

● ● ●
● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ●

■

■

■
■
■

■
■ ■ ■

■

■

■

■ ■ ■

■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■

■ ■ ■

◆

◆

◆
◆
◆

◆◆◆◆

◆

◆
◆

◆◆◆

◆◆

◆◆
◆◆◆◆◆◆◆◆

◆
◆◆◆◆◆◆◆

▲

▲

▲
▲
▲

▲ ▲ ▲ ▲

▲

▲

▲

▲ ▲

▲

▲ ▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.25

-0.20

-0.15

-0.10

-0.05

λ32

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

162



● ●

●
●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ●

■ ■

■
■

■

■

■ ■ ■

■

■

■

■ ■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■
■ ■

■

■ ■ ■ ■

■ ■ ■

◆◆

◆◆
◆

◆◆◆◆

◆

◆

◆
◆◆

◆

◆◆

◆◆◆◆◆◆◆◆
◆◆

◆

◆◆◆◆
◆◆◆

▲ ▲

▲ ▲
▲

▲ ▲ ▲ ▲

▲

▲

▲
▲ ▲

▲

▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

0.05

0.10

λ33

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

● ●

●
●
● ● ● ●

●

●
●
● ● ● ● ●

● ●
● ● ● ● ● ● ● ●

●

● ● ● ●
● ● ●

■

■ ■

■
■
■ ■ ■ ■

■

■
■
■ ■ ■ ■ ■

■ ■

■
■ ■ ■ ■ ■

■ ■

■

■ ■ ■ ■
■ ■ ■

◆

◆◆
◆
◆
◆◆◆◆

◆

◆◆
◆◆◆◆◆

◆◆
◆
◆◆◆◆◆

◆◆

◆

◆◆◆◆
◆◆◆

▲

▲
▲
▲
▲
▲ ▲ ▲ ▲

▲

▲
▲
▲ ▲

▲
▲ ▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲
▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.10

-0.05

0.05

λ34

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●
●
● ●

●

●
● ● ●

●

● ● ● ●
●

●

●
● ●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

■
■
■ ■

■

■
■ ■ ■

■

■ ■
■ ■

■
■ ■

■ ■

■
■ ■ ■ ■ ■ ■ ■

■ ■ ■ ■ ■ ■ ■ ■

◆
◆◆◆

◆
◆◆◆◆

◆

◆
◆
◆◆

◆◆
◆◆◆

◆
◆◆◆◆◆

◆◆

◆◆◆◆◆◆◆◆

▲
▲ ▲ ▲

▲
▲ ▲ ▲ ▲

▲

▲ ▲
▲ ▲

▲

▲ ▲

▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.20

-0.15

-0.10

-0.05

λ35

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000
●
●

●
●
● ●

● ● ● ●

●
●

● ● ●

●

●
● ●

● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ●■
■

■
■
■ ■

■ ■ ■ ■

■ ■

■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■

■ ■ ■◆◆
◆
◆◆

◆◆◆◆◆

◆◆

◆◆◆◆
◆

◆◆
◆◆◆◆◆◆◆◆

◆

◆◆◆◆

◆◆◆▲ ▲
▲
▲ ▲

▲ ▲ ▲ ▲ ▲

▲
▲

▲ ▲

▲

▲ ▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.25

-0.20

-0.15

-0.10

-0.05

λ36

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●
●

● ●

● ● ● ●
●

●

●

● ●
●

●
●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ●
● ● ●

■

■
■

■ ■

■ ■ ■ ■
■

■

■

■ ■

■ ■ ■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■

■ ■ ■ ■
■ ■ ■

◆

◆
◆

◆◆
◆◆◆◆

◆

◆

◆

◆◆
◆
◆◆

◆◆◆◆◆◆◆◆◆◆
◆
◆◆◆◆

◆◆◆

▲

▲
▲

▲ ▲
▲ ▲ ▲ ▲

▲ ▲ ▲

▲ ▲

▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲
▲ ▲ ▲ ▲

▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

0.05

0.10

0.15

λ37

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●
●

● ●
● ● ●

●

● ●

● ●
●

●

●

● ●

●
● ● ● ● ● ● ●

●

● ● ● ●

● ● ●

■

■

■
■

■ ■
■ ■ ■

■

■ ■

■ ■

■
■
■

■ ■

■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■

■ ■ ■

◆

◆

◆
◆
◆◆◆◆◆

◆

◆
◆
◆◆

◆◆
◆

◆◆
◆◆◆◆◆◆◆◆

◆

◆◆◆◆

◆◆◆

▲

▲

▲
▲
▲ ▲ ▲ ▲ ▲

▲

▲
▲
▲ ▲

▲
▲ ▲

▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲
50. 100. 150. 200. 250. 300. 350.

-0.06

-0.04

-0.02

0.02

0.04

0.06
λ38

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●

●

●

● ● ●
● ● ●

●

●
●

●
●

●
●

● ●

●

●
● ● ● ● ● ●

●

● ● ● ●

● ● ●

■

■

■

■ ■ ■
■ ■ ■

■ ■
■

■
■

■

■

■

■ ■
■ ■ ■ ■ ■ ■

■ ■

■

■ ■ ■ ■

■ ■ ■

◆

◆

◆

◆◆

◆◆◆◆

◆
◆
◆

◆◆

◆◆

◆

◆◆
◆◆◆◆◆◆

◆◆

◆

◆◆◆◆

◆◆◆

▲

▲

▲

▲ ▲

▲ ▲ ▲ ▲

▲

▲

▲

▲ ▲

▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲ ▲ ▲
50. 100. 150. 200. 250. 300. 350.

-0.06

-0.04

-0.02

0.02

0.04

λ39

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

●
●

● ●
●

●
● ● ●

●

●

●

●
●

●

●

● ●
●
● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

■
■

■ ■
■

■
■ ■ ■

■

■

■

■
■

■

■

■ ■
■ ■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■ ■ ■ ■

◆
◆

◆◆
◆

◆◆◆◆

◆

◆
◆
◆◆

◆

◆

◆
◆◆

◆◆◆◆◆◆◆◆

◆
◆◆◆◆◆◆◆

▲
▲

▲ ▲
▲

▲ ▲ ▲ ▲

▲

▲
▲
▲ ▲

▲

▲ ▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

50. 100. 150. 200. 250. 300. 350.

-0.25

-0.20

-0.15

-0.10

-0.05

λ40

● MEI 6000

■ MEI 8000

◆ MEI 10000

▲ MEI 12000

Figure D.1: Parameter fits for the t
0

ansatz. Horizontal axis indicates size
of dataset in units of (number of points)/5. Vertical axis indicates fit value
for corresponding parameter. The value of MaxErrorIncreases (MEI) used in
integrating the data to fit is indicated.
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