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Abstract

This work outlines the design and implementation of an algorithm to simulate two-polarisation

bowed string motion, for the purpose of realistic sound synthesis. The algorithm is based

on a physical model of a linear string, coupled with a bow, stopping fingers, and a rigid,

distributed fingerboard. In one polarisation, the normal interaction forces are based on a

nonlinear impact model. In the other polarisation, the tangential forces between the string

and the bow, fingers, and fingerboard are based on a force-velocity friction curve model, also

nonlinear. The linear string model includes accurate time-domain reproduction of frequency-

dependent decay times. The equations of motion for the full system are discretised with an

energy-balanced finite difference scheme, and integrated in the discrete time domain. Control

parameters are dynamically updated, allowing for the simulation of a wide range of bowed string

gestures. The playability range of the proposed algorithm is explored, and example synthesised

gestures are demonstrated.
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Lay Summary

The sound of a musical instrument can be digitally reproduced with various methods. One can

make use of libraries of pre-recorded samples, and combine them together to create new sounds.

Another approach is to synthesise sound from scratch, using algorithms. An increasingly

popular method to design these algorithms is based on producing simulations of the waves

propagating in an instrument when it is played; audio output is then extracted directly from

these simulations, by choosing a “listening spot” on the virtual instrument.

This work employs this so-called physical modelling approach to sound synthesis, and applies

it to the reproduction of bowed string sounds. A detailed mathematical description of the

physical system is presented, including the vibrations of the string, the friction of the bow, and

the left-hand fingers of a musician pinning the string against the neck of the instrument. The

vibrations of the plucked string, in isolation, are also given particular attention.

A numerical method is then employed to convert these equations into an algorithm, in order

to produce simulations. This algorithm can be seen as a virtual instrument; it is driven by

control parameters closely related to those employed by a musician on a real bowed string

instrument (e.g. bow force, left hand finger position. . . ). Simulation results for the bowed

string model are presented at the end of this thesis, in order to demonstrate the potential of

the proposed algorithm for realistic and flexible sound synthesis.
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Table of physical parameters

String physical parameters

The following table contains measured physical parameters on violin, viola, cello, and double

bass strings, taken from the literature. In particular, for the violin, viola, and cello strings,

parameters are extracted from the work of two authors. Pickering [82] performed measurements

on isolated strings; in contrast, Percival [81], estimated physical constants from measurements

on strings mounted on the instrument. For the double bass strings, the data was extracted from

an unpublished report by Guettler [44]1; the strings are assumed to have a solid steel core.

L is the string speaking length, ρL is the linear mass density, r is the string radius, T the

tension, and E Young’s modulus. Parameters are given for each of the four strings of each

instrument, in orchestral tuning.

Instrument String Parameters

ρL (g.m-1) r (mm) T (N) E (GPa)

Violin E5 0.41 0.165 73.0 62.5

(L = 32 cm) A4 0.72 0.30 57.10 19.5

D4 1.61 0.44 56.88 4.56

G3 2.79 0.425 43.90 4.79

Viola A4 0.82 0.18 91.7 81.3

(L = 38 cm) D4 1.26 0.22 62.78 55.3

G3 2.17 0.335 48.15 8.01

C3 4.87 0.36 48.13 18.1

Cello A3 1.66 0.375 153.0 25.0

(L = 69 cm) D3 2.50 0.44 102.6 25.0

G2 6.16 0.605 112.67 8.6

C2 21.2 0.72 172.74 22.4

1Accessed on http://knutsacoustics.com/files/Typical-string-properties.pdf.

xxix
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ρL (g.m-1) r (mm) T (N) E (GPa)

Double bass G2 6.62 0.518 285.53 200

(L = 106 cm) D2 12.04 0.699 291.54 200

A1 22.16 0.95 301.35 200

E1 40.72 1.286 310.65 200

In order to account for the stiffness of wound strings, it is assumed that only the string core

contributes to bending stiffness. The radius of the core is approximated as half of the total

string radius.

Finger, fingerboard, and bow parameters

This table contains the parameter values employed in simulations involving the left-hand finger,

fingerboard, and bow. These values have simply conjectured from trial and error, and have not

been calibrated against experimental measurements; they are given here on an indicative basis.

Object Parameters

K α β M (kg) λ (kg.s-1)

Bow 105 2.0 20.0 0.1 20.0

Finger 103 2.5 50.0 0.02 30.0

Fingerboard 108 1.5 10.0 — —

String damping parameters

The following table contains the optimised values (rounded to the 5th significant digit) of

the damping parameters for the violin A string, cello D string, and double bass A string, as

presented in Chapter 3. Two parameter sets are given for each string: one corresponds to a fit

with the fewest possible terms to ensure at most 1 % error over the frequency range, the other

corresponds to the best possible fit obtained within the bounds of the study (see Figure 3.8).
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M = 4,M ′ = 2 M = 4,M ′ = 3 M = 3,M ′ = 3

aq bq aq bq aq bq

0 2.0360 · 10−4 0 2.3551 · 10−4 0 4.1649 · 10−4

195.16 1.7009 · 10−4 141.95 2.0340 · 10−4 149.35 6.4399 · 10−4

1256.2 4.2716 · 10−4 725.57 4.6739 · 10−4 782.44 1.9072 · 10−3

7262.9 1.1841 · 10−3 3340.6 1.1987 · 10−3

a′q′ b′q′ a′q′ b′q′ a′q′ b′q′

0 2.7807 · 10−7 0 1.1126 · 10−6 0 1.0232 · 10−5

17849 8.8931 · 10−7 48832 2.1316 · 10−4 16358 2.7228 · 10−5

193909 5.7803 · 10−4 87732 7.6782 · 10−5

M = 8,M ′ = 3 M = 8,M ′ = 5 M = 7,M ′ = 8

aq bq aq bq aq bq

0 1.7271 · 10−4 0 1.9454 · 10−4 0 2.9291 · 10−4

61.068 6.2519 · 10−5 50.078 8.2549 · 10−5 44.237 1.9869 · 10−4

184.12 8.0223 · 10−5 138.08 9.7381 · 10−5 114.99 2.4028 · 10−4

469.71 1.2491 · 10−4 314.55 1.4336 · 10−4 243.62 3.6402 · 10−4

1158.4 2.0375 · 10−4 688.42 2.2492 · 10−4 492.89 5.9102 · 10−4

2820.7 3.4127 · 10−4 1487.1 3.6356 · 10−4 982.22 9.6259 · 10−4

6807.3 5.8041 · 10−4 3186.1 5.8998 · 10−4 1939.4 1.3557 · 10−3

16259 9.1082 · 10−4 6757.5 8.4783 · 10−4

a′q′ b′q′ a′q′ b′q′ a′q′ b′q′

0 2.3745 · 10−7 0 9.8734 · 10−7 0 8.7062 · 10−6

27522 9.0451 · 10−7 29025 6.5626 · 10−7 7329.0 4.4485 · 10−6

92137 2.6571 · 10−7 383106 7.2425 · 10−6 13543 1.0756 · 10−5

56083 1.4029 · 10−6 25281 1.4413 · 10−5

121544 2.2910 · 10−6 48776 1.9607 · 10−5

100287 3.1192 · 10−5

222022 2.4261 · 10−5

342343 9.1038 · 10−5
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Chapter 1

Introduction

Sound synthesis techniques for string instruments have evolved, since the mid-20th century, from

abstract synthesis [61] (wavetables, FM synthesis. . . ) towards sampling synthesis, making use

of vast libraries of pre-recorded sounds, and physical models, directly emulating the behaviour

of the instruments. To this day, the most faithful synthesised sound quality is achieved by

sampling techniques; however, their relative inflexibility, together with the potentially very

large storage requirements for sound libraries, form a convincing case for the consideration of

physical models.

Beyond storage concerns, the use of a physical model allows for great flexibility of the input

parameters (typically, the instrument’s geometrical and material properties, together with the

player’s gestural controls), and of the output parameters, usually akin to “listening conditions”,

which can be changed freely and dynamically along a simulation. This is a clear advantage with

respect to synthesis produced with statically recorded samples, particularly for continuously

excited instruments, for which the control parameters are varied throughout the production of

a note, significantly changing the timbre. In this context, physical modelling sound synthesis

has been an active research area, with promising results.

The work presented in this thesis is in line with this physics-based approach to sound

synthesis. Throughout this manuscript, a physical model of a bowed string system is presented,

in two polarisations. A sound synthesis algorithm is derived from the discretisation of the

equations of motion in the space-time domain, taking advantage of the flexibility of control

offered by physical modelling methods. A wide array of gestures can then be simulated, with

only a handful of dynamically updated control parameters. Before diving into the depths of the

numerical model, this introductory section outlines the objectives and structure of the thesis.

1.1 Physics-based synthesis of stringed instruments

Physical modelling synthesis for strings debuted in the 1970s, with the use of time-stepping

methods to discretise and directly solve the 1D wave equation [89, 52, 4]. However, the very

limited computational power available at the time ruled out the simulation of systems at au-

1
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dio sample rates in any reasonable amount of time. The next generation of numerical models

therefore focused on algorithmic simplification, through physically plausible assumptions. Al-

though not designed as a physical modelling algorithm, the Karplus-Strong string synthesis

method [59, 57] was the basis for later generalisation to the digital waveguide (DW) frame-

work [101, 102]; a comprehensive review of these models for string sound synthesis can be

found in [58]. The fast execution of these algorithms, together with the realism of the synthetic

sound output, made them particularly well-suited for bowed string modelling, and they are still,

to this day, widely used for this purpose; see, e.g., [72, 73]. In a DW approach, the forward

and backward travelling wave solutions along a string are modelled using delay lines, offering

a simple and efficient strategy for certain linear time invariant systems. In particular, they are

well suited for systems in one dimension, the behaviour of which is well described by the wave

equation. Another class of physical models relies on the time harmonic solutions of the string

equation [1]. The use of these so-called modal methods has been investigated for the study of

bowed strings; see, e.g., [24]. A more in-depth review of the aforementioned physical modelling

methods will be presented in Section 2.2.1.

Time-stepping methods, and more specifically finite difference methods [107], have regained

appeal in musical sound synthesis (see, e.g., [8]), in part thanks to the accelerating increase in

available computational power throughout the last two decades. A detailed history of the use

of finite difference methods in numerical analysis since the pioneering 1928 paper by Courant et

al. [22] can be found in [109]. String simulation in one dimension has successfully been

implemented with time-stepping methods; see, e.g., [18, 7]. The system of partial differential

equations describing the physical behaviour of the system is taken as a starting point, dispensing

with requiring any assumptions on the form of the solution. This is particularly useful when

nonlinear, time-varying, distributed interactions between the string and its environment are

concerned, and analytical resolution is out of the question. This thesis is concerned with

numerical simulation of the bowed string system; the finite difference method is a befitting

approach to this problem.

1.2 The bow-string interaction

Numerical modelling of the strongly nonlinear friction force at the contact interface between a

string and the layer of rosin coating the hair of a bow is extensively discussed in this thesis. The

bow-string interaction has generated a vast body of literature, starting with the observations

of Helmholtz in the 19th century [115], followed by the theoretical and experimental work of

Raman in 1918 [86]. The simple introducing statement of Raman’s paper would still likely

gather agreement amongst many cited in this manuscript, the present author included, 100

years later:

The vibration of stretched strings excited by bowing and their practical application

in musical instruments of the violin class present many important and fascinating

problems to the mathematician and the physicist.
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A recent review paper by Woodhouse [118] offers a comprehensive history of the published

literature on bowed string mechanics (and indeed, violin acoustics in general). The friction

interaction between the string and the rosin-coated bow hair, in particular, remains an open

problem. Recent work [41] has evaluated the state of the art in bow friction modelling,

using both experimental and simulated results; amongst existing models, further reviewed

in Section 4.2.3.ii, none was found to fit all experimental observations, although qualitative

agreement was found with measurements in some aspects.

A bowing gesture can be described with a handful of dynamically varying parameters. Some

of the most relevant are downwards force, bow velocity, and bow-bridge distance; musicians also

make use of the tilt and angle of the bow with respect to the string in order to introduce nuances

in the timbre of the produced note. Such parameters must be perfectly coordinated at all times

to allow for the creation and sustain of a tone. Schelleng [90], following Raman’s work [86],

was the first to analytically prove that, under a number of simplifying assumptions, only a

relatively narrow area of the bowing parameter space defined by the downwards force, transverse

velocity, and bowing position gave rise to the characteristic stable Helmholtz motion [115] (see

Figure 4.4) desired by most musicians. His work was revised by Schoonderwaldt [93], who

reconsidered Schelleng’s assumptions to include more refined elements of bowed string motion.

The characterisation of this narrow area in the bowing parameter space is tied to the

concept of playability [117], the evaluation of which is a common empirical method used to

validate bowed string physical models [96, 40, 97, 41]. A more playable instrument, physical

or virtual, is generally characterised by the ease of access to the region of the parameter space

yielding a stable note. Naturally, transient quality also constitutes a major part of playability;

Guettler [45] investigated the relation between downwards bow force and bow acceleration,

regarding the quality of initial transients, again under simplifying assumptions; their results

were validated with simulated and experimental data by Woodhouse [119].

After Schelleng’s work, an experimental study by Askenfelt [2, 3] yielded measured values

for bowing control parameters on a violin. They were the first to develop a measuring rig able

to record all playing parameters simultaneously, in a performance situation. More recently,

the dynamic variations of these parameters during many different bowed string gestures were

observed and analysed in great detail [25, 26, 69]. The control signals obtained from such studies

can be mathematically reconstructed [70], or directly used, to be fed as excitation signals into

a physical modelling algorithm such as the one presented in this work.

1.3 Thesis objectives

This thesis is concerned with the design and implementation of a numerical model of the bowed

string system, emphasising the interactions of the string with the player. The main objective

is to design a sound synthesis algorithm capable of realistically reproducing a wide range of

bowed string gestures, controlled by physical parameters usually accessible and familiar to a

musician.

In order to preserve maximal flexibility and versatility in handling control, the physical
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model shall rely on the fewest possible assumptions about the kinematic behaviour of the

system, and instead rely on its dynamic description. The proposed numerical schemes shall be

based upon equations of motion, and provide direct computation of the numerical solution of

those equations, in the time domain, given a set of initial conditions, boundary conditions, and

input control parameters. The algorithm must be stable under any excitation provided through

these control parameters.

The linear behaviour of the isolated string must be reproduced accurately for a particular

set of geometrical and material parameters. In particular, simulation of the free oscillations of

the string shall reflect the frequency dependence of the decay times of the transverse modes of

vibration. Adapting this frequency-domain loss profile to the proposed time-domain model is

not necessarily straightforward; the work presented here shall describe a procedure to simulate

realistic decay times, in a computationally tractable manner.

Many bowed string gestures make use of the compliance of the bow hair, allowing to bounce

the bow against the string to produce short, sharp transients. The model shall be able to

reproduce such behaviour; realistic damped impact modelling shall be employed, relying on a

nonlinear description of the contact force between bow hair and string.

Other gestures are based on the movement of the left hand fingers along the fingerboard.

To the author’s knowledge, modelling of such gestures (vibrato, for instance) has only been

attempted empirically, through filtering of the output sound; see, e.g., [105]. The proposed

model shall include interaction of the string with a dynamic, absorbing fingertip, as well as

a distributed, rigid fingerboard, allowing to play and smoothly transition between different

stopped notes.

Through modelling of the frictional interaction between bow and string, the proposed

algorithm shall simulate all known bowed string vibration regimes, within the expected bowing

parameter ranges. Assessment of the simulated output provided by the algorithm shall rely, in

part, on the evaluation of playability over the control parameter space.

1.4 Thesis outline

This manuscript is organised into four chapters. The next chapter introduces the mathematical

background and notations employed throughout the rest of this thesis. The research contribu-

tions proposed in the present work, summarised in the conclusion, are presented in Chapters 3,

4, and 5.

Chapter 2 lays the foundations of the physical, mathematical, and numerical framework

employed throughout this thesis. The 1D wave equation is first considered, before introducing a

bending stiffness term. The discretisation of this simple string model into an energy-conserving

finite difference scheme is then described, leading to a time-stepping algorithm providing an

approximate numerical solution to the equations of motion.

Chapter 3 describes the time-domain modelling of frequency-dependent damping of the

transverse string vibrations. The loss profile in the frequency-domain is described in terms

of the physical parameters of the string [113]. In the time domain, the string displacement
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is coupled to a number of additional states, resulting in a frequency-dependent impedance,

function of a set of free parameters. After optimising such parameters in order to fit the

string’s theoretical loss profile, the system of partial differential equations is discretised into a

finite difference scheme, following the procedure outlined in Chapter 2. The quality factors of

the string transverse modes are finally measured on simulated results, and compared to their

target value, in order to assess the validity and accuracy of the numerical model.

Chapter 4 introduces nonlinear interaction of the string with a bow, a stopping finger,

and a distributed fingerboard, in a dual-polarisation setting. In one polarisation, a nonlinear

penalty impact model is employed to describe the contact forces between the string and the

three objects. In the other polarisation, string motion is excited by pushing the bow across the

string; the normal forces exerted by the bow, finger, and fingerboard then result in tangential

friction forces. The bow friction characteristic leads to self-sustained oscillations, while the

friction forces exerted in conjunction by the finger and fingerboard maintain the string in place,

allowing the musician to play stopped notes.

Chapter 5 illustrates the use of the algorithm developed throughout the thesis for the

synthesis of bowed string sounds. The available control parameters are the bow downwards

force, transverse force, and position along the string, as well as the finger downwards force

and location; they can all vary over time. The bowing parameter space is explored, in

order to provide an initial evaluation of the playability of the proposed algorithm; graphical

representations of the parameter space are compiled, to serve as a guiding hand for sound

synthesis. Representative simulation examples are finally provided, in order to illustrate the

potential of the bowed string numerical model to reproduce typical gestures, through the

available set of control parameters.
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bridge distance on string timbre,”, in Proc, 7th Congr. Alps Adria Acoust. Assoc. (AAAA

2016), Ljubljana, Slovenia, 2016.



Chapter 2

The linear string: equations of

motion and numerical schemes

This preliminary chapter will introduce the formalism used in this manuscript, through a case

study of the physical modelling and numerical simulation of a lossless isolated linear string.

A selection of physics-based sound synthesis techniques will be reviewed, before focusing in

depth on time-stepping numerical methods, specifically the finite difference (FD) method [107]

which forms the basis of the synthesis work presented in this thesis. The equations of motion

describing the temporal evolution of the string’s transverse displacement will be used as the

starting point for a FD algorithm, allowing to simulate the full system.

Section 2.1 will present the 1D wave equation and the Euler-Bernoulli lossless stiff string

equation; energetic aspects and frequency-domain behaviour will be discussed. Section 2.2 will

introduce the FD framework and notations used throughout the rest of this manuscript, by

presenting numerical schemes for these two simplified cases.

2.1 Time-domain physical modelling of strings

2.1.1 The 1D wave equation

2.1.1.i Equation and general solutions

Consider the transverse displacement w(x, t) of an infinite ideal string (in m), assuming

negligible gravity, defined along spatial coordinate x ∈ R and time t ∈ R⩾0. Let ρ be the

string’s material density (in kg/m3), S the cross-sectional area (in m2), and T the string tension

along its axis (in N)1.

The temporal evolution of w(x, t) can be examined by applying Newton’s 2nd law, in the

transverse direction, to a small element dx of the string (see Figure 2.1), with mass ρSdx and

1A table of measured physical parameters on a variety of violin, viola, cello, and double bass strings is given
on page xxix.

7
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Figure 2.1: Small string element dx under tension.

acceleration a:

ρS dx a = T sin (θ (x+ dx))− T sin (θ (x)) (2.1)

where θ(x) is defined as the angle between the tension vector and the x-axis (see Figure 2.1).

Under the assumption that the string displacement is small enough so that sin (θ (x)) ≈
tan (θ (x)) = ∂w

∂x , Equation (2.1) becomes:

ρSa = T
∂xw (x+ dx)− ∂xw (x)

dx
(2.2)

where ∂n
x ≜ ∂n

∂xn , ∂
n
t ≜ ∂n

∂tn will be the notation adopted for nth order partial differentiation

with respect to time and space in the rest of this manuscript23.

Finally, in the limit dx → 0 such that the string element becomes infinitesimal, the

acceleration of its centre of mass can be written directly as a = ∂2
tw, and the difference on

the RHS of (2.2) becomes a spatial derivative, yielding:

ρS∂2
tw = T∂2

xw ⇔ ∂2
tw = c2∂2

xw , c ≜
√

T

ρS
(2.3)

where c is the wave propagation velocity (in m/s). Equation (2.3) is the 1D wave equation,

and was first derived by Jean le Rond d’Alembert [67] in the mid-18th century, to describe the

evolution of the transverse displacement of a string over time.

Let η ≜ x − ct and γ ≜ x + ct. Substituting ∂t = −c∂η + c∂γ , and ∂x = ∂η + ∂γ , leads to

Equation (2.3) becoming:

∂η∂γw = 0 ⇒ w(x, t) = f−(x− ct︸ ︷︷ ︸
η

) + f+(x+ ct︸ ︷︷ ︸
γ

) (2.4)

2The symbol ≜ signifies “is defined as”.

3The absence of exponent indicates first order partial differentiation, that is ∂x ≜ ∂
∂x

and ∂t ≜ ∂
∂t

.
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This is to say that the general solutions of (2.3) can be written as the sum of two arbitrary,

twice-differentiable functions f− and f+, travelling in opposite directions.

Two initial conditions are required to characterise the full problem, in the form of initial

displacement and velocity distributions over the infinite string. As these conditions are given

in terms of w and its first time derivative at a single point in time t = 0, the problem is said to

be an initial value problem.

2.1.1.ii Preamble: integral calculus

This short section recalls some fundamental rules and properties of integral calculus. Such

properties will be extensively referred to throughout the rest of this manuscript, in the context

of frequency-domain Fourier and Laplace analysis, and time-domain energy calculations. In

particular, the Laplace and Fourier transforms allow transfer from space-time domain to

frequency domain, and as such require integration over time and space. Likewise, the calculation

of energy and power measures requires the evaluation of the respective contributions of various

quantities over their entire spatial domain of definition.

It is useful to introduce the continuous spatial inner product between two arbitrary functions

u(x, t) and v(x, t), defined over a simply connected subset of the real plane (x, t) ∈ Ix × It ≜
[ax, bx]× [at, bt] ⊆ R, as:

⟨u, v⟩Ix ≜
bx∫

ax

u(x, t) v(x, t) dx (2.5)

Note that ax,bx, at, bt ∈ R ∪ {−∞,+∞}. The spatial L2-norm of u(x, t) over Ix is defined as:

∥u∥Ix ≜
√
⟨u, u⟩Ix (2.6)

Integration by parts over Ix and It is defined by:

bx∫
ax

u (∂xv) dx ≜ uv
∣∣∣bx

ax
−

bx∫
ax

(∂xu) v dx , uv
∣∣∣bx

ax
≜ u(bx, t)v(bx, t)− u(ax, t)v(ax, t) (2.7a)

bt∫
at

u (∂tv) dt ≜ uv
∣∣∣bt

at
−

bt∫
at

(∂tu) v dt , uv
∣∣∣bt

at
≜ u(x,bt)v(x,bt)− u(x, at)v(x, at) (2.7b)

where the integral becomes improper and the boundary terms vanish, by convention, if

ax, bx, at, bt = ±∞.

Finally, the Leibniz integral rule allows a partial time derivative to be brought outside a

spatial integral, becoming a total time derivative, if ax and bx are time-independent:

bx∫
ax

∂tu(x, t) dx =
d

dt

bx∫
ax

u(x, t) dx (2.8)
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This simply means that the integral result of u(x, t) over its spatial domain has no x dependence,

when the bounds of such domain do not move over time.

2.1.1.iii Dispersion relation

It is useful to examine the behaviour of the solutions of (2.3) in the frequency domain. As

the system is described by a linear PDE, any general solution w(x, t) can be written as a

linear combination of particular solutions. The principle of Fourier analysis lies in assuming

that these solutions are complex exponentials, each with a different amplitude, frequency, and

phase delay. In the present case, where independent variables are time and space, each of these

complex exponentials can be seen as a propagating sinusoidal wave. The 2D Fourier transform

of w(x, t), denoted as ŵ(β, ω), is defined as:

ŵ(β, ω) ≜ 1

2π

∞∫
−∞

∞∫
−∞

w(x, t)e−j(ωt+βx) dxdt (2.9)

where the temporal frequency ω
2π (Hz) and wavelength 2π

β (m) are respectively related to the

angular frequency ω (rad/s) and the wavenumber β (rad/m). The Fourier transform of ∂tw

follows, using integration by parts:

∂̂tw =
1

2π

∞∫
−∞

∞∫
−∞

∂tw e−j(ωt+βx) dx dt

=
jω

2π

∞∫
−∞

∞∫
−∞

w e−j(ωt+βx) dx dt

= jω ŵ (2.10)

An analogous derivation can be made with the first order spatial derivative, yielding ∂̂xw =

jβ ŵ. Iterating this process yields the general relations between the Fourier transform of w(x, t)

and that of its partial derivatives:

∂̂n
t w = (jω)

n
ŵ (2.11a)

∂̂n
xw = (jβ)

n
ŵ (2.11b)

As a result, taking the Fourier transform of the 1D wave equation (2.3) yields:

− ω2ŵ = −c2β2ŵ ⇒ ω = ±cβ (2.12)

Note that the same result can be obtained by inserting a test solution of the form w(x, t) ≜
ej(ωt+βx) into the wave equation (2.3); this is then equivalent to examining the behaviour of a

single one of the particular wave-like solutions of (2.3). For the sake of brevity, throughout the
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rest of this work, this test solution, or ansatz4, will be employed for frequency-domain analysis

in lieu of a full Fourier transform.

The relation (2.12), linking the temporal and spatial frequencies of a propagating sinusoidal

wave, is referred to as the dispersion relation. Dispersion occurs when the propagation velocity

of a wave depends on its frequency; for instance, a wave packet comprising multiple sinusoidal

components (e.g., a pulse) will spread out when travelling in a dispersive medium, and lose its

initial shape. The velocity of each individual single-frequency component is referred to as the

phase velocity vφ ≜ ω
β , whereas the velocity of the envelope of the wave packet centred around

a particular frequency is known as the group velocity vg ≜ dω
dβ . In the case of the ideal string,

they are given by:

vφ = vg = ±c (2.13)

As vφ does not depend on frequency (and indeed vφ = vg), the ideal string is non-dispersive.

2.1.1.iv Energy analysis

The rate of change of the total energy Hw,s
5 of the infinite string can be obtained by computing

the inner product of the wave equation (2.3) with the string velocity ∂tw over R, yielding:

Ḣw,s = 0 , Hw,s(t) ≜
ρS

2
∥∂tw∥2 +

T

2
∥∂xw∥2 = Hw,s(0) ⩾ 0 (2.14)

where the norm is taken over R, and the dot notation implies total time differentiation. As

Hw,s is constant over time, the system is energy-conserving. The first term of Hw,s is the

kinetic energy of the string, while the second term is the potential energy due to the string

tension. These respective contributions can be independently evaluated at any time, from

knowledge of w(x, t). This capacity, when applied to a discrete time setting, makes for a

particularly useful monitoring tool to ensure that a numerical energy balance is maintained

throughout a simulation, and therefore that numerical results can be trusted, to some extent,

to be representative of the physical system.

It is straightforward to bound the norm of the velocity and gradient of the infinite string,

at all times, in terms of its total initial energy Hw,s(0) (determined by the initial conditions

imposed on the system):

∥∂tw∥ ⩽
√

2Hw,s(0)

ρS
(2.15a) ∥∂xw∥ ⩽

√
2Hw,s(0)

T
(2.15b)

As will be shown throughout Section 2.2, energetic manipulations in discrete time are also a

reliable way to ensure that numerical schemes are stable. Indeed, establishing such bounds

4“A mathematical statement which is assumed to be true for a given problem, for the purpose of solving
or investigating that problem; esp. a hypothesized solution to a mathematical problem.” OED Online. Oxford
University Press, 2017.

5Here, the subscript s indicates “string”. This will facilitate the distinction between the energy contributions
of multiple components introduced later in Chapters 3 and 4.



12 2.1 Time-domain physical modelling of strings

on the velocity and gradient of the string in the discrete domain ensures that the growth of

the numerical solution is limited by a finite positive value, function of the constant numerical

energy. The solution therefore remains within valid energetic bounds, and the scheme is said

to be stable.

The notation Hw,s has been chosen for the total energy of the string; indeed, the given

energetic results, derived here from Newton’s 2nd law, can also be obtained from the Hamiltonian

formalism (see, for example, [60, Chap. 12]). Within that framework, Hw,s is known as the

Hamiltonian of the system. Recent works in physical modelling of strings have made use of

the Hamiltonian framework, through numerical time integration of the Hamilton equations

describing the system [21]; the port-Hamiltonian formalism [114] also makes use of such

framework, and has seen recent applications in physical modelling of acoustic and audio

systems [36]. The ideal string is said to be a time-independent Hamiltonian system, as Hw,s is

constant over time.

2.1.1.v Boundary conditions

The modelling of infinite strings has little practical interest for this work. Strings used in musical

instruments are finite; mathematically, their spatial domain of definition is a simply connected

subset of the real line. The arising problem then requires providing a set of two boundary

conditions, one at either end of the string, in addition to the pair of initial conditions. These

supplementary conditions can be defined in terms of w and/or its spatial derivatives, at two

separate points in the spatial domain; the problem is now said to be a boundary value problem.

Consider now the transverse displacement w(x, t) of a string of length L (m), defined over

x ∈ D ≜ [0, L], and time t ∈ R⩾0. The wave equation (2.3) still stands, and the energy balance

equation becomes:

Ḣw,s = T∂tw∂xw
∣∣∣L
0

(2.16)

where the definition (2.14) now implies that the norm is taken over D. Restricting the problem

to that of an isolated string with perfectly reflecting terminations, conditions must be imposed

such that the boundary terms in (2.16) vanish, so that no energy is transmitted through the

string ends, and the total string energy Hw,s(t) stays constant over time. This can be achieved

with two types of boundary conditions:

w(0, t) = 0 ; w(L, t) = 0 (Dirichlet) (2.17a)

or

∂xw(0, t) = 0 ; ∂xw(L, t) = 0 (Neumann) (2.17b)

The Dirichlet conditions (2.17a) correspond to a string with fixed terminations; the Neumann

conditions (2.17b) represent free terminations. Note that a combination of a Neumann condition

at one end and a Dirichlet condition at the other is also valid.

Physical modelling for string sound synthesis is concerned with configurations found in

stringed instruments, where the strings are normally attached to a bridge or soundboard at one
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end, and generally considered fixed at the other end. In order to first focus this study on the

behaviour of the isolated string, Dirichlet terminations will be employed, later complemented

by further conditions when stiffness is introduced in Section 2.1.2.v.

2.1.1.vi String modes and eigenfrequencies of the fixed string

Consider solutions of the 1D wave equation (2.3) of the form w(x, t) ≜ W (x)q(t), where W (x)

and q(t) are real-valued functions of space and time, respectively. Introducing this test solution

into (2.3) leads to:

ρSW (x)q̈(t) = T q(t)W ′′(x) ⇒ q̈(t)

q(t)
= c2

W ′′(x)

W (x)
≜ γ2 (2.18)

where γ2 must be a real constant, as the LHS (dependent only on t) must equal the RHS

(dependent only on x), for any x and t. The prime notation implies total spatial differentiation.

Two ordinary differential equations (ODEs) are extracted from (2.18):

q̈(t) = γ2q(t) ⇒ q(t) = q1e
γt + q2e

−γt (2.19a)

W ′′(x) =
γ2

c2
W (x) ⇒ W (x) = A1e

γ
c x +A2e

− γ
c x (2.19b)

where q1, q2 and A1, A2 are complex constants, respectively set by the initial and boundary

conditions. The case γ = 0 is trivial, and of no interest here. The Dirichlet (fixed) boundary

conditions (2.17a) inserted in (2.19b) lead to, for the left boundary:

W (0) = 0 ⇒ W (x) =

2jA1 sin
(

γ′

c x
)
, if γ = jγ′ ∈ jR

2A1 sinh
(
γ
c x
)
, if γ ∈ R

(2.20a)

and for the right boundary:

W (L) = 0 ⇒

sin
(

γ′L
c

)
= 0 , if γ ∈ jR

sinh
(

γL
c

)
= 0 , if γ ∈ R

⇒

γ′
m = mπc

L , m ∈ N , if γ ∈ jR

γ = 0 , if γ ∈ R
(2.20b)

Again, the trivial case γ = 0 is eliminated; hence, γ ∈ jR. The boundary conditions imposed

on the finite string therefore limit the allowed wavenumbers to a quantised set of values,

corresponding to the zero-crossings of sin
(

γ′L
c

)
. The set of solutions for W (x) can now be

written as:

Wm(x) = A sin

(
γ′
m

c
x

)
= A sin (βmx) , βm ≜ mπ

L
, m ∈ N (2.21)
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where A ≜ 2jA1 ∈ R. Each of these solutions is referred to as an eigenmode (or normal mode)

of the system, and corresponds to a temporal solution qm(t), oscillating at an angular frequency

ωm depending on the wavenumber βm:

qm(t) = q1e
jωmt + q2e

−jωmt , ωm ≜ mπc

L
, m ∈ N (2.22)

where q1, q2 ∈ C must be complex conjugates for the string displacement w(x, t) to be real;

their real and imaginary parts are determined by the two initial conditions imposed on the

system. Note that the dispersion relation (2.12) still holds. Furthermore, the frequencies ωm

and wavenumbers βm are linear functions of the positive integer m, and as such they are linearly

spaced; this indicates that the modal frequencies of the ideal string form a harmonic series.

The general solution w(x, t) can now be written as a linear combination of the individual

solutions:

w(x, t) =

∞∑
m=1

qm(t)A sin (βmx) (2.23)

The normal modes Wm(x) of the ideal string form an orthogonal basis of infinite dimension, as

the inner product of any two modes over the domain D verifies:

⟨Wm,Wp⟩D =

0 , m ̸= p

LA2

2 , m = p
(2.24)

Setting A ≜
√

2
L ensures the basis is orthonormal. As seen in Equation (2.23), the general

solution can be interpreted as the superposition of an infinite number of modal shapes, given

by the spatial solutions Wm(x), for each of which every point of the string oscillates, in phase,

at a single frequency ωm; accordingly, they are referred to as time-harmonic solutions.

A class of physical modelling techniques, referred to as modal methods, makes use of

this spatial frequency-domain decomposition. The displacement of a given physical system

is projected onto the modal basis characterising such system, truncated to a finite dimension

(corresponding to a chosen cutoff frequency), allowing to simplify solving for the temporal

component. A brief review of modal methods will be given in Section 2.2.1.i.

2.1.2 The stiff string

2.1.2.i Review of existing models

A lossless linear stiff string can be described equivalently as an ideal string with a non-zero

bending stiffness, or as a thin beam6 under tension. Indeed, stiff string models have their

roots in 1D beam theory. The most general thin beam model, described by Timoshenko’s

theory [111], includes the modelling of shear wave propagation. A simplification is obtained by

neglecting rotational inertia in the Timoshenko model, to arrive at the so-called shear model.

6The thin beam approximation is considered valid for wavelengths greater than the beam thickness [87]; this
typically includes all audible wavelengths relevant in stringed instruments.
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Finally, an approximation of the shear model for large wavelengths yields the Euler-Bernoulli

model, which will be used in the rest of this work, and described in the following subsections.

A detailed review of aspects, advantages, and shortcomings of these respective models has been

made in [50] in the context of transverse beam vibration7, and, more recently, with applications

to stiff strings in musical instrument modelling [33].

2.1.2.ii The Euler-Bernoulli stiff string equation

Consider the infinite string described in Section 2.1.1.i, now with a nonzero bending stiffness

EI0 where E is Young’s modulus for the string material (in Pa) and I0 is the area moment of

inertia for a string of circular cross-section, given by I0 ≜ πr4

4 where r is the string radius (in

m). The PDE describing the temporal evolution of w(x, t) becomes:

ρS∂2
tw = T∂2

xw − EI0∂
4
xw (2.25)

which can also be written more compactly, in terms of a linear partial differential operator L:

Lw = 0 , L ≜ ρS∂2
t − T∂2

x + EI0∂
4
x (2.26)

Note that the travelling wave functions (2.4) are no longer solutions of this stiff string equation.

2.1.2.iii Dispersion relation

As discussed in 2.1.1.iii, inserting a single-frequency wave test solution of the form w(x, t) =

ej(ωt+βx) into Equation (2.25) leads to the following expressions for the dispersion relation,

phase velocity, and group velocity:

ω = ±β
√
c2 + κ2β2 ⇒ vφ = ±

√
c2 + κ2β2 , vg = ± c2 + 2κ2β2√

c2 + κ2β2
(2.27)

where κ2 ≜ EI0
ρS depends only on the material and geometric properties of the string. As vφ is a

function of the wavenumber β, waves of different wavelengths propagate at different velocities;

this phenomenon is known as wave dispersion. This also means that vφ ̸= vg; consequently, the

shape of a wave packet comprised of multiple sinusoidal components will evolve as it propagates.

Figure 2.2 shows the propagation of a pulse along an ideal string (top), and along a stiff string

with low stiffness (middle) and high stiffness (bottom).

Wave dispersion is a phenomenon inherent to stiff strings, and it occurs audibly in a range

of stringed instruments. Indeed, for a finite stiff string, as will be shown in Section 2.1.2.vi,

dispersion leads to a stretching of the modal frequencies with respect to those of the ideal

string; this feature of stiff strings is referred to as inharmonicity. Wave dispersion should be

7The authors in [50] also review the Rayleigh model, which can be derived from a Timoshenko model by
neglecting shear deformation. They find that for a thin beam with a given geometry, shear effects always
preponderate over rotational inertia, and therefore the shear model is a more appropriate simplification of
Timoshenko’s theory.
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Figure 2.2: Snapshots of the propagation of a pulse along an ideal string (top), a stiff string with
low stiffness (middle, E = 1 × 1010Pa), and with high stiffness (bottom, E = 2 × 1011Pa). In the
absence of stiffness, the pulse propagates without changing shape; however, the stiffness term introduces
dispersion, and high frequency components start to lead low frequencies. — Parameters: L = 1 m,
T = 100 N, ρ = 7850 kg/m3, r = 0.5 mm.

distinguished from numerical dispersion, brought about by discretising space and time to design

numerical schemes, which will be discussed in Sections 2.2.4.vi and 2.2.5.vi.

2.1.2.iv Energy analysis

As previously applied to the ideal string, taking the inner product of ∂tw with the stiff string

equation (2.25) over R yields the energy balance equation:

Ḣw,s = 0 , Hw,s(t) ≜
ρS

2
∥∂tw∥2 +

T

2
∥∂xw∥2 +

EI0
2

∥∥∂2
xw
∥∥2 = Hw,s(0) (2.28)

where the norm is taken over R. The third term of Hw,s(t) represents the potential energy

contribution from bending stiffness. Again, the total energy Hw,s(t) = Hw,s(0) of the infinite

stiff string is conserved over time. The norm of the curvature of the stiff string over the infinite

domain is now bounded, in addition to those of its velocity and gradient, in terms of the string’s

initial energy: ∥∥∂2
xw
∥∥ ⩽

√
2Hw,s(0)

EI0
(2.29)

2.1.2.v Boundary conditions

In order to bring this analysis to a relevant physical setting, let w(x, t) henceforth be defined

over the finite interval x ∈ D, defined in 2.1.1.v, and over time t ∈ R⩾0. Boundary terms now



CHAPTER 2. The linear string: equations of motion and numerical schemes 17

appear in the energy balance equation:

Ḣw,s = T∂tw∂xw
∣∣∣L
0
− EI0

(
∂tw∂

3
xw
∣∣∣L
0
− ∂t∂xw∂

2
xw
∣∣∣L
0

)
(2.30)

where Hw,s is defined by (2.28), with the norm taken over D. Two types of fixed boundary

conditions lead to the boundary terms on the RHS of Equation (2.30) vanishing, thus allowing

Hw,s to be conserved over time:

w(0, t) = ∂2
xw(0, t) = 0 ; w(L, t) = ∂2

xw(L, t) = 0 (2.31a)

or

w(0, t) = ∂xw(0, t) = 0 ; w(L, t) = ∂xw(L, t) = 0 (2.31b)

Another type of perfectly reflecting boundary condition for the isolated stiff string is the free

condition; it is however not generally found in stringed instruments8.

The boundary condition described by (2.31a) is known as simply supported (sometimes

referred to as pivoting or hinged), while that in (2.31b) is used to represent a clamped stiff

string. Again, a combination of a simply supported termination at one end and a clamped

termination at the other is also valid. For most stringed instruments, as the effect of the

bending stiffness term is small compared to that of the string tension, the choice of fixed

boundary conditions does not bear a strong influence on the resulting string vibrations; in the

rest of this work, the simply supported conditions (2.31a) are employed at both ends.

2.1.2.vi Stiff string modes and eigenfrequencies under pivoting conditions

Fletcher [37] first derived the modal shapes and eigenfrequencies of the stiff piano string, simply

supported at both ends, modelled with Equation (2.25). As seen in 2.1.1.vi for the ideal string,

this is achieved by examining time-harmonic solutions of the stiff string equation. Modal

analysis assumes steady-state behaviour; the initial conditions determine the amplitude of the

string motion, and bear no influence on the mode shapes and frequencies. Time-harmonic

analysis can therefore be simplified by using a single oscillatory term for the time component,

yielding:

w(x, t) ≜ ejωtW (x) ⇒ ω2W + c2
d2W

dx2
− κ2 d

4W

dx4
= 0 (2.32)

Assuming solutions to (2.32) of the form W (x) = Aejβx, where β ∈ C, and solving for β, leads

to:

ω2 − c2β2 − κ2β4 = 0 ⇒ β = ±

√
∓
√
c4 + 4ω2κ2 − c2

2κ2
(2.33)

8Free terminations do play a role in some percussion instruments, and are indeed characteristic of idiophones.
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Four solutions therefore arise for β, two real and two imaginary:

β = ±β1 , β1 ≜

√√
c4 + 4ω2κ2 − c2

2κ2
∈ R (2.34a)

β = ±jβ2 , β2 ≜

√√
c4 + 4ω2κ2 + c2

2κ2
∈ R (2.34b)

The general solution for the modal shapes of the stiff string can therefore be written as a linear

combination of the four wavenumber solutions:

W (x) = A1e
jβ1x +A2e

−jβ1x +A3e
β2x +A4e

−β2x (2.35)

where A1,2,3,4 ∈ C are constants. Simply supported boundary conditions at both ends yield,

first at x = 0, A2 = −A1 ∈ jR and A4 = −A3 ∈ R; then, at x = L, A3 = A4 = 0. The shape

of the mth mode of the simply supported stiff string is therefore given by:

Wm(x) = A sin(βmx) (2.36)

where A ≜ 2jA1 ∈ R is the corresponding modal amplitude; as for the ideal string, the mode

shapes are normalised if A ≜
√

2
L . The allowed wavenumbers βm ≜ mπ

L follow from the

boundary condition at x = L. The eigenfrequencies fm ≜ ωm

2π are derived from βm ≜ β1 (ωm):

fm =
mc

2L

√
1 +

(κπ
cL

)2
m2 =

m

2L

√
T

ρS
+

EI0π2

ρSL2
m2 , m ∈ N (2.37)

The eigenfrequencies of the stiff string are not equally spaced, leading to inharmonicity. In the

literature, a quantity B ≜
(
κπ
cL

)2
= EI0π

2

TL2 is often referred to as the dimensionless inharmonicity

factor. The tension T required to tune the fundamental frequency of a stiff string must be

adjusted with respect to that required for an ideal string of identical length, radius, and mass.

Table 2.1 gives the required tension values to tune a theoretical violin A string (L = 32 cm) to

440 Hz and a cello D string (L = 69 cm) to 146.8 Hz, in the presence or absence of stiffness, as

well as the theoretical frequencies and deviation from harmonicity of the first 10 modes, using

the physical parameters given on page xxix.

2.2 From equations of motion to synthetic sound

Now that the physical system has been fully described, a range of numerical methods

are available to generate synthetic sound, each with different advantages and drawbacks.

Broadly speaking, a distinction can be made between physical modelling techniques based

on approximating the PDEs describing the system, and those based on approximating their

solutions.



CHAPTER 2. The linear string: equations of motion and numerical schemes 19

Violin A string Cello D string

Non-stiff Stiff ∆p (cents) Non-stiff Stiff ∆p (cents)

B(×10−4) 2.095 1.181

T (N) 57.095 57.083 147.745 147.728

f1 (Hz) 440 440 0 146.8 146.8 0

f2 (Hz) 880 880.27 0.54 293.6 293.65 0.31

f3 (Hz) 1320 1321.11 1.45 440.4 440.61 0.82

f4 (Hz) 1760 1762.76 2.71 587.2 587.72 1.53

f5 (Hz) 2200 2205.52 4.34 734 735.04 2.45

f6 (Hz) 2640 2649.66 6.32 880.8 882.62 3.57

f7 (Hz) 3080 3095.44 8.66 1027.6 1030.51 4.89

f8 (Hz) 3520 3543.14 11.35 1174.4 1178.76 6.42

f9 (Hz) 3960 3993.03 14.38 1321.2 1327.43 8.14

f10 (Hz) 4400 4445.38 17.76 1468 1476.56 10.06

Table 2.1: Tension T , inharmonicity factor B, and modal frequencies fm for the modes of a violin A
string and a cello D string, in the absence or presence of stiffness. The pitch deviation ∆p (cents) is
given for each mode of both strings, between the stiff string and the non-stiff string. — Parameters:
see Violin A string and Cello D string on page xxix.

2.2.1 Review of numerical methods

This section will provide an overview of physical modelling techniques for sound synthesis

of strings, with a focus on three prominent methods. In the spatial frequency domain,

modal decomposition methods [1] make use of the projection of time-dependent variables on

the orthonormal modal basis of the string. In the space-time domain, travelling-wave-based

methods will be reviewed, with particular attention to the digital waveguide framework [101],

popular for computationally efficient sound synthesis. Finally, and still in the space-time

domain, local time-stepping methods applied directly to the PDE system will be outlined;

in particular, the finite difference (FD) method [107] will be introduced as the approach taken

in the remainder of this work.

2.2.1.i Modal decomposition

The modal decomposition method consists of projecting the string displacement w(x, t) onto

the modal basis characterising the system; it is therefore clearly well-suited for linear systems.

The following modal expansion of the string displacement is assumed:

w(x, t) =
∞∑

m=1

qm(t)Wm(x) (2.38)

where Wm(x) is the normalised shape of the mth mode of the stiff string, defined by Equa-

tion (2.36). Inserting (2.38) into the stiff string equation (2.25), and using the orthogonality of
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the modal basis, an independent ODE is obtained for the time-dependent term qm(t) of each

modal component:

q̈m +
(
c2β2

m + κ2β4
m

)
qm = 0 (2.39)

which describes a simple harmonic oscillator, with natural frequency ω2
m = c2β2

m + κ2β4
m; this

echoes the time-harmonic analysis of Section 2.1.2.vi. Whilst the analytical solution for the

modal shapes is known in the simple case shown here, this may not be the case for more complex

systems. Equation (2.39) can now be solved numerically, for instance with a time-stepping

method, for the desired number of modes, and the string displacement can be computed from

(2.38).

Several advantages of the modal decomposition method arise. Firstly, in the unforced

case, the system of temporal ODEs can be discretised in a way which leads to an exact

numerical solution. This is advantageous with respect to locally defined time-stepping methods,

which may exhibit problems such as numerical dispersion; this will be further discussed in

Sections 2.2.4.vi and 2.2.5.vi. Secondly, it is straightforward to introduce fine-tuned frequency-

dependent damping, calibrated against, for instance, experimental decay time measurements,

by introducing a loss term with a different weighting in each of the ODEs (2.39). Direct

frequency-dependent loss modelling in the time domain is a much less straightforward matter,

and will be the subject of Chapter 3.

A computational drawback of the modal decomposition method is that it requires storing

all modal shapes of the system in memory, up to the desired synthesis frequency. It is easy

to see that this may become an issue when dealing with larger systems, or systems with more

than one spatial dimension, for which the modal density can become much larger than that

of a string. Another drawback, perhaps more relevant to this work, with respect to locally

defined methods, arises when dealing with coupled or forced systems. Any external or coupling

force term, applied at a point or over a finite domain, must be projected onto the entirety of

the modal basis, resulting in drastically increased computational costs in the case of nonlinear,

distributed, or time-varying excitations.

2.2.1.ii Travelling-wave-based methods

Travelling-wave synthesis methods are based on the discretisation of backward- and forward-

going solutions of the ideal string equation (recall Equation (2.4)), and make use of digital filters

to model more complex phenomena. Specifically, these methods have been employed, through

a musical acoustics prism, for experimental validation of clarinet, bowed string, and flute

behaviour [74]. They have also been formalised for computationally efficient sound synthesis

applications, into the so-called digital waveguide (DW) framework [103, 104]9.

A digital waveguide consists of a bi-directional digital delay line, each direction respectively

containing the sampled backward- and forward-going wave (see Figure 2.3). Force or velocity

9A passage of [74] appears to foretell the widespread success of DWs for real-time musical applications, and
indeed the rise of physical modelling sound synthesis: “[. . . ] a fast minicomputer could produce results at a
cycle rate in the audible range. The result would perhaps have some novelty: an electronical musical instrument
based on a mathematical model of an acoustic instrument.”
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Figure 2.3: Basic digital waveguide diagram. A bidirectional M -sample delay line contains sampled
versions of the backward- and forward-going waves, as defined in (2.4). A filter at the string termination
can be used to model frequency-dependent phenomena.

waves are typically used, instead of displacement waves. Appropriate lumped digital filters

are used to model wave dispersion, losses, and nonlinear phenomena or interactions. Several

waveguides can be connected into a network, or mesh, through junctions with frequency-

dependent impedance, to model more complex coupled linear systems, or 2D/3D systems.

The computational efficiency of these algorithms allows for real-time applications; the Yamaha

VL1 became, as early as 1994, the first commercially available real-time physical modelling

synthesiser, using digital waveguides.

At its core, a digital waveguide model of a plucked string can be seen as a physical

interpretation of the earlier Karplus-Strong wavetable algorithm [59, 57], where a short burst of

filtered white noise is looped over the duration of a note, and filtered at each loop iteration to

emulate frequency-dependent decay. The frequency content of this initial wavetable corresponds

to the frequency content of the initial excitation (the pluck). Each sample of the wavetable can

be seen, in waveguide terms, as a spatial component of the string displacement which travels

back and forth along the string.

2.2.1.iii Locally defined time-stepping methods

Early attempts at physical modelling of strings made use of another type of time-domain

method [89, 4, 12, 18], the finite difference method [107]. The PDE(s) describing the system are

directly discretised in time and space, and the partial differential operators are approximated

with finite differences, operating on discrete approximations of the dependent string variables,

over a spatial grid and a number of time steps. The state of the system at one point in space

and time only depends on its state at immediately neighbouring points; the FD method is local.

Other local time-stepping methods have been used for string modelling, notably finite element

methods for the simulation of piano strings [16, 17].

The computational costs associated with using the finite difference method at audio sample

rates have impeded attempts at sound synthesis in or near real-time. However, the last decade

has seen a resurgence of these direct methods, as high-performance consumer CPUs have become

widely available. This expansion in computational power has facilitated the development of

simulations for increasingly complex physical systems and phenomena.

Direct numerical integration of the equations of motion requires minimal assumptions on the
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form of the solution. This is a major advantage with respect to the previously discussed modal

and travelling-wave methods; strongly nonlinear systems can be solved, assuming they can be

described with a system of PDEs. This includes geometric nonlinearities, but also distributed,

dynamic nonlinear interactions between coupled systems, permitting the simulation of a wide

variety of excitations and gestures.

Furthermore, local interactions (e.g., lumped excitations, or couplings over a small area) are

treated truly locally, as they only directly affect one or a few points of the whole system. The

associated computational costs are therefore only minimally increased with respect to those of

the isolated system, a significant advantage compared to, e.g., modal methods (see comment

on page 19).

Beyond the computational costs involved with these direct methods, another issue is that

of numerical dispersion. Indeed, the choice of discretisation for the problem can lead to

numerical artefacts with respect to the propagation speed of different frequencies, unrelated

to natural wave dispersion phenomena seen, for instance, in Section 2.1.2.iii. The manifestation

of numerical dispersion in synthetic sound signals can be perceptible; however, one can make

used of alternative, optimised finite difference schemes, in order to minimise these effects.

Numerical dispersion will be further discussed in this work, starting with its first appearance

in Section 2.2.4.vi.

A range of numerical schemes is available to approximate a given set of ODEs or PDEs,

to varying degrees of accuracy. However, within this range, most options will exhibit unstable

behaviour if precautions are not taken. While one can design schemes to be unconditionally

stable, they tend to come with significantly higher computation times. All other schemes must

be accompanied by a stability condition, usually relating time step and grid spacing (for space-

time problems). As will be seen in this Section with the case studies of the ideal string and stiff

string schemes, stability analysis can be performed with frequency-domain analysis (for linear

systems), or directly in the time domain, with numerical energy analysis.

In the presence of strongly nonlinear phenomena in the physical system, energy can be

transferred to high-frequency components. For instance, the collision of a string with a lumped,

stiff object, as will be seen in Chapter 4, can trigger the propagation of a sharp deformation

along the string. An exact representation of this sharp deformation, in the frequency domain,

requires very high frequency components (with short wavelengths), which can lie beyond the

upper frequency limit imposed by the particular discretisation of the string state10. Numerical

artefacts therefore appear in the form of aliasing; components at frequencies larger than

this limit appear to be reflected at the higher end of the spectrum, introducing undesired

components to the synthesised sound. Although aliasing is a known effect in nonlinear numerical

problems, to the knowledge of the present author, no research has been done related to the

modelling of physical systems. However, when acoustics is concerned, damping is generally

large at high frequencies, and accurate modelling of losses should reflect this behaviour,

10In the finite difference framework, this upper frequency limit is generally more restrictive than the Nyquist
frequency given by the chosen audio sample rate; this issue will be explored when treating frequency-domain
behaviour of particular FD schemes, starting in Section 2.2.4.vi.
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effectively attenuating potentially aliased high-frequency components, and significantly reducing

perceptual artefacts.

Before proceeding to the examination of numerical schemes used to solve the stiff string

equation, and later more complex systems, it is necessary to introduce the framework behind

the finite difference method. To this end, the FD operators will be defined in terms of their

effect on discrete approximations in time and/or space of continuous functions. The terms

“time series” and “grid function” will be used to refer to a discrete function of time and space,

respectively. For reference, a comprehensive list of all the FD operators used in this manuscript

is presented on page xxvi.

2.2.2 Time series and temporal FD operators

Let u(t) be an arbitrary, continuous function of time t ∈ R⩾0. Let k be a short time interval, in

s; when audio applications are concerned, k is chosen in relation to the desired audio sampling

rate (k = 1
Fs

). A sampled (or discrete-time) version of u is defined by evaluating u(t) ≈ u(nk),

where n ∈ N0 is a time step index. Temporal FD operators approximate continuous time

differentiation around time t = nk using local evaluations of u, one or several time steps away

from t.

2.2.2.i Time shifting operators

All temporal FD operators can be constructed from the time shifting operators (2.40), the

effects of which are, on u(t)11:

et−u(t) = u(t− k) (2.40a) et+u(t) = u(t+ k) (2.40b)

Figure 2.4 illustrates the action of et± over the value of u(nk). Note that et− is not defined for

the function’s initial value u(0), which must be treated separately by setting initial conditions.

2.2.2.ii Derivation of the finite difference operators

The FD operators are used to approximate the continuous partial differential operators. They

can be derived by truncating the Taylor series expansion of a continuous function, about points

one or more time steps away from t = nk (for temporal FD operators).

This derivation also gives access to an estimate of the accuracy of the individual operators,

in terms of powers of the chosen time step. When dealing with full FD schemes involving

multiple operators, accuracy must be computed for the complete scheme, and will depend on

the relation between operators, and between time and grid spacings.

Let u(t) be infinitely differentiable over R⩾0. The Taylor series expansion of u about

11Note that although the following is derived in continuous time, t will ultimately be limited to take values
that are integer multiples of the time step k.
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Figure 2.4: Action of et− and et+ on the value of u(t) evaluated at time step n (i.e. at t = nk). The
dark red outline denotes the point around which the operator is centred; the orange fill denotes the
points used by the operator.

t± k = (n± 1) k is:

u(t± k) = u(t)± ku̇(t) +
k2

2
ü(t) +O(k3) (2.41)

where O(km) is a function containing the Taylor series terms of order ⩾ m12. Truncating

beyond the first order derivative term of (2.41) leads directly to the first order forward and

backward temporal finite difference operators:

u̇(t) =
u(t+ k)− u(t)

k
+O(k) ⇒ δt+ ≜ et+ − 1

k
=

d

dt
+O(k) (2.42a)

u̇(t) =
u(t)− u(t− k)

k
+O(k) ⇒ δt− ≜ 1− et−

k
=

d

dt
+O(k) (2.42b)

Both δt+ and δt− are first-order accurate (in time) when centred around t. It is however possible

to show that they are second-order accurate when centred around the half time step t± k
2
13.

Another first order difference operator can be derived, centred around t, by subtracting

u(t− k) from u(t+ k):

u̇(t) =
u(t+ k)− u(t− k)

2k
+O(k2) ⇒ δt· ≜

et+ − et−
2k

=
d

dt
+O(k2) (2.43)

The terms containing even-order derivatives cancel out, and the remaining terms are factors of

k2, giving rise to second-order accuracy in time for the difference operator δt·, centred around

t.

12When operating at audio sample rates, the time step k is small; the terms in the Taylor series that are
factors of higher powers of k rapidly become small with increasing m, and hence can be neglected in order to
define the finite difference operators. Naturally, however, for high-frequency oscillations, the truncated high-
order Taylor series terms become larger, since the high-order temporal derivatives of u(t) take larger values.
This is a potential source of inaccuracy, at frequencies closer to the Nyquist limit, in simulation results.

13An mth order accurate operator in time is defined as yielding an approximation to the continuous time
derivative of u(t) to within a factor of the mth power of the time step k. Note that this is to be distinguished from
the order of differentiation approximated by the operator; for instance, as seen here, FD operators approximating
first order differentiation may be derived to a higher order of accuracy.
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It is sometimes useful, for accuracy and/or stability reasons, to employ averaging operators

to approximate identity. Forward and backward temporal averaging operators are derived by

truncating the first order and above terms of (2.41), and adding u(t) to both sides of the

resulting equation:

u(t) =
u(t+ k) + u(t)

2
+O(k) ⇒ µt+ ≜ et+ + 1

2
= 1 +O(k) (2.44a)

u(t) =
u(t− k) + u(t)

2
+O(k) ⇒ µt− ≜ et− + 1

2
= 1 +O(k) (2.44b)

µt+ and µt− are first-order accurate when centred around t. Adding u(t+ k) to u(t− k), now

truncated from the second order terms onwards, yields the second-order accurate averaging

operator, centred around t:

u(t) =
u(t+ k) + u(t− k)

2
+O(k2) ⇒ µt· =

et+ + et−
2

≜ 1 +O(k2) (2.45)

Note that δt· can now be written in terms of δt± and µt±:

δt· ≜ δt±µt∓ (2.46)

Higher order FD operators can also be derived, with the same methods, from combinations

of Taylor expansions truncated at higher orders. For the sake of brevity, it is noted that

second-order accurate operators for approximating higher order derivatives can be written in

terms of the first order operators presented here. The second order temporal partial differential

operator is approximated by the second order temporal FD operator, second-order accurate,

centred around t:

δtt ≜ δt±δt∓ =
d2

dt2
+O(k2) (2.47)

Temporal FD operators can be used to approximate both total and partial temporal derivatives.

The previous derivations can be straightforwardly extended to spatial operators, which will

therefore only be briefly described in the next section.

2.2.2.iii Stencil size

Moving towards a fully discrete setting, the notation un is adopted to designate a time series

defined over a discrete temporal grid, evaluated at time step n ∈ N0, such that un ≜ u(nk).

The operators derived in 2.2.2.ii are directly applied to the time series un; for instance,

µt+u
n ≜ 1

2

(
un+1 + un

)
.

A temporal FD operator applied on a time series at a given time step will involve a number

of neighbouring points; the span of the operator over the time grid is referred to as the stencil of

the operator. Figure 2.5 illustrates the respective stencils of µt±, δt±, µt·, δt·, and δtt, centred

on time step n.
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Figure 2.5: From left to right: stencils of δt− and µt−, δt+ and µt+, δt· and µt·, and δtt, over the
temporal grid, when centred on time step n.

2.2.3 Spatio-temporal grid functions and finite difference operators

Consider now a function of both time and space, u(x, t), defined over x ∈ R and t ∈ R⩾0. Let

h be a small distance, in m, spatial counterpart of the time interval k defined in 2.2.2. The

function u is now sampled in both time and space, such that u(x, t) ≈ u(lh, nk), where l ∈ Z is

a grid point index.

2.2.3.i Spatial shifting and finite difference operators

Similarly to the temporal operators, the spatial FD operators are constructed from the

fundamental shifting operators ex− and ex+, the effect of which is, on u(x, t):

ex−u(x, t) = u(x− h, t) (2.48a) ex+u(x, t) = u(x+ h, t) (2.48b)

The spatial first order (total or partial) derivative can be approximated by:

δx− ≜ 1− ex−
h

=
d

dx
+O(h) (2.49a) δx+ ≜ ex+ − 1

h
=

d

dx
+O(h) (2.49b)

δx· ≜
ex+ − ex−

2h
=

d

dx
+O(h2) (2.49c)

Finally, when the stiff string is concerned, second and fourth order spatial operators are needed,

defined by:

δxx ≜ δx±δx∓ (2.50a) δxxxx ≜ δxxδxx (2.50b)

The notation un
l is adopted to designate a grid function defined over a discrete spatio-temporal

grid, evaluated at time step n ∈ N0 and grid point l ∈ Z, such that un
l ≜ u(lh, nk).
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Figure 2.6: From top-left to bottom-right, in reading order: stencils of δx−, δx+, δxx, and δxxxx on
the spatio-temporal grid, when centred on time step n and grid point l.

Accuracy analysis and issues related to partial and total differentiation are analogous to

those evoked in Section 2.2.2.ii for temporal operators. Note that, when dealing with finite

spatial domains, the spatial difference operators may call to grid values outside the domain of

definition; as will be clarified in Sections 2.2.4.ii and 2.2.5.ii, the points located at the edge of

the spatial grid must be treated separately, and in concordance with the system’s boundary

conditions. Figure 2.6 illustrates the spatio-temporal grid upon which 1D schemes are defined,

and shows the stencils of all spatial FD operators used in this work.

2.2.3.ii Mixed time and space derivatives

As temporal and spatial FD operators can each approximate both total and partial differen-

tiation, they can all operate on time-dependent grid functions; it is also straightforward to

extend their use to the approximation of cross-term partial derivatives. For instance, partial

differentiation with respect to time (first order) and space (second order) can be approximated

by:

δt−δxx = ∂t∂
2
x +O(h2) +O(k) (2.51a)

δt·δxx = ∂t∂
2
x +O(h2) +O(k2) (2.51b)
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Figure 2.7: Stencils of the operators δt·δxx (left) and δt−δxx (right) over the space-time discrete grid,
when centred on time step n and grid point l.

The stencils of δt·δxx and δt−δxx are shown on Figure 2.7. Stencils can also be drawn for full

FD schemes, involving multiple operators; examples will be given later on, when presenting the

schemes for the ideal and stiff string equations (see Sections 2.2.4.vii and 2.2.5.vii).

2.2.3.iii Matrix notation

Solving a PDE system with FD methods requires the rearrangement of proposed schemes into

temporal recursion relations, which allow the state of the system at a future time step to be

computed from past states. A distinction must then be made between explicit schemes, which

allow the future state to be computed independently for each grid point, and implicit schemes,

for which the future state of a particular grid point is coupled to that of its neighbours, requiring

the solution of a linear system to update the grid values at each time step. Implicit schemes are

therefore generally more computationally expensive than their explicit counterparts; however, as

will be demonstrated throughout the rest of this study, they can exhibit accuracy and stability

advantages (see, for instance, Section 3.5), and are invaluable when treating nonlinear problems

(see Chapter 4).

It is therefore helpful to introduce matrix notations for the spatial FD operators, allowing

them to operate on state vectors, the elements of which are the values of the grid function at

each grid point within the discrete spatial domain. For a grid function un
l defined over l ∈ Z,

and n ∈ N0, the state vector un at time step n is defined as:

un ≜
[
. . . , un

l−1, u
n
l , u

n
l+1, . . .

]T
(2.52)

where T indicates transposition. Note that the temporal FD operators can be applied directly
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to the state vector un, e.g.:

δt−u
n =

1

k

(
un − un−1

)
(2.53a)

µt·u
n =

1

2

(
un+1 + un−1

)
(2.53b)

Let the bold notation δ, applicable to all spatial FD operators, indicate that they operate

element-wise over entire state vectors un instead of individual grid values un
l . For example, let

the effect on un of the vector equivalents δx− and δxx of the respective local operators δx− and

δxx be:

δx−u
n ≜

[
. . . , δx−u

n
l−1, δx−u

n
l , δx−u

n
l+1, . . .

]T
(2.54a)

δxxu
n ≜

[
. . . , δxxu

n
l−1, δxxu

n
l , δxxu

n
l+1, . . .

]T
(2.54b)

The action of spatial operators on the grid function un
l can now be computed as a matrix-vector

multiplication, with the appropriate general matrix representations:

Dx− ≜ 1

h



. . . 0

. . . 1

−1 1

−1 1

0
. . .

. . .

 (2.55a)

Dx+ ≜ −DT
x− (2.55b)

Dxx ≜ Dx+Dx− (2.55c)

Dxxxx ≜ DxxDxx (2.55d)

These matrix and state vector notations must be adapted when dealing with finite domains

and the description of boundary conditions, as is the case in the rest of this work; this will be

further discussed in Section 2.2.4.ii.

2.2.3.iv Key identities and manipulations

As in the continuous case, it is useful to examine the energy exchanges between internal

components and external contributions of the system. To this end, discrete operations and

manipulations equivalent to those used in the continuous case (see Section 2.1.1.ii) must be

established for grid function.

Consider two arbitrary grid functions un and vn (in vector representation), defined for time

steps n ∈ N0, and over a discrete spatial domain D, containing an arbitrary (finite or infinite)

number of points separated by a fixed grid spacing h. The discrete inner product over D

between un and vn is given by:

⟨un,vn⟩D ≜
∑
l∈D

hun
l v

n
l = hunTvn (2.56)
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The discrete L2-norm of un over D can be written in terms of the magnitude of un:

∥un∥D ≜
√
⟨un,un⟩D =

√
h |un| , |un| ≜

√
unTun (2.57)

Familiar results, which emerge from application of the chain rule in the continuous domain, can

be derived in the discrete domain by expanding temporal FD operators:

(δt·u
n)

T
un =

1

2
δt±

(
unTun∓1

)
(2.58a)

(µt±,·u
n)

T
(δt±,·u

n) =
1

2
δt±,· |un|2 (2.58b)

It is useful to introduce the following bounds:

unTun±1 = |µt±u
n|2 − k2

4
|δt±un|2

⩾ −k2

4
|δt±un|2 (2.58c)

|un + vn| ⩽ |un|+ |vn| (2.58d)

|δx±un| ⩽ 2

h
|un| (2.58e)

|δxxun| ⩽ 2

h
|δx±un|

⩽ 4

h2
|un| (2.58f)

Consider now a finite discrete spatial domain D ≜ [0, . . . , ND], analogous to the continuous

domain D, containing ND + 1 grid points, spaced by h = L
ND

. Let un, vn be defined over

this finite domain D. The discrete operation analogous to integration by parts is summation

by parts (SBP), and can be defined straightforwardly in terms of vector representations of the

spatial operators. At a given time step, omitting the superscript n for clarity, SBP is defined

as:

huT (δx−v) = −h (δx+u)
T
v − u0v−1 + uND+1vND

(2.59a)

= −h (δx+u)
T
v − u0v−1 + uND

vND
(2.59b)

huT (δx+v) = −h (δx−u)
T
v − u−1v0 + uND

vND+1 (2.59c)

= −h (δx−u)
T
v − u0v0 + uND

vND+1 (2.59d)

Using these identities in combination yields:

huT (δxxv) = h (δxxu)
T
v − u0δx−v0 + v0δx−u0 + uND

δx+vND
− vND

δx+uND
(2.59e)

= h (δxxu)
T
v − u0δx−v0 + v0δx+u0 + uND

δx+vND
− vND

δx−uND
(2.59f)

where the notations u and u designate the state vector u truncated of its first and last element,
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respectively:

u ≜ [u1, . . . , uND
]
T

(2.60a)

u ≜ [u0, . . . , uND−1]
T

(2.60b)

The boundary terms found in the continuous integration by parts also arise in the discrete

case. However, the discrete boundary terms shown above make use of grid points outside the

domain of definition; care must be taken in the practical implementation of discrete boundary

conditions in order to deal with this issue.

2.2.4 FD scheme for the 1D wave equation

2.2.4.i Finite difference scheme

Consider the finite ideal string, fixed at both ends, characterised in Section 2.1.1. The dependent

variable w(x, t) is approximated by a discrete grid function wn
l where l ∈ D and n ∈ N0, as

discussed in Sections 2.2.2 and 2.2.3.

A straightforward finite difference scheme for the 1D wave equation (2.3) can be derived

from substitution of the continuous partial differential operators in (2.3) with the FD operators

(2.47) and (2.50a), leading to:

ρSδttw
n
l = Tδxxw

n
l (2.61)

or, in vector notation:

ρSδttw
n = Tδxxw

n (2.62)

where the state vector wn is a finite vector containing ND + 1 elements:

wn ≜
[
wn

0 , . . . , w
n
l , . . . , w

n
ND

]T
(2.63)

2.2.4.ii Energy analysis and boundary conditions

Taking the discrete inner product of δt·w
n
l with Equation (2.61) over D, or, equivalently,

multiplying (2.62) by h (δt·w
n)

T
, yields the numerical energy balance:

δt−H
n
w,s = −T

[
(δt·w

n
0 ) (δx−w

n
0 )−

(
δt·w

n
ND

) (
δx+w

n
ND

)]
(2.64a)

Hn
w,s ≜

ρSh

2
|δt+wn|2 + Th

2
(δx−w

n)
T
δx−w

n+1 (2.64b)

where the numerical energy Hn
w,s corresponds to a discrete approximation of the continuous

Hamiltonian (2.14). Numerical boundary conditions arise immediately, for a string fixed at

both ends, analogous to (2.17a) in the continuous case:

wn
0 = wn

ND
= 0 (2.65)
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Under these conditions, δt·w
n
0 = δt·w

n
ND

= 0, meaning that the numerical boundary terms

vanish. Indeed, while the summation by parts (see Equation 2.59d) calls for the use of points

outside the domain D, the affected expressions are each multiplied by a term that is zero-valued

at every time step; grid values outside the domain of definition therefore have no influence on the

energy balance. Under these particular boundary conditions, the numerical energy is conserved:

δt−H
n
w,s = 0 (2.66)

Note that in the discrete domain, Hn
w,s is not necessarily non-negative; while the kinetic

energy term is always positive, the potential energy term may become negative. This is central

to stability analysis of FD schemes, as will be discussed in Section 2.2.4.iv.

2.2.4.iii Matrix forms

Matrix forms of spatial FD operators can now be defined with the appropriate size, taking the

boundary conditions into account. Seeing as δx−w
n and δxxw

n are respectively needed for

the energy calculation and scheme update, a first definition of the backwards difference matrix

might be written as:

D
(1)
x− ≜ 1

h


−1 1 0

−1 1
. . .

. . .

−1 1

0 −1 1︸ ︷︷ ︸
ND+1




ND ⇒ δx−w

n = D
(1)
x−w

n (2.67)

Now, by the boundary conditions (2.65), the first and last elements of wn will be null at all

times. The first and last columns of D
(1)
x− will always multiply zero, and so a modified matrix

can be defined as such:

D
(2)
x− ≜ 1

h



0 1 0 0

−1 1
...

. . .
. . .

...

−1 1

0 ︸ ︷︷ ︸
ND − 1

0 −1 0


≜ 1

h



0 0

... D
(3)
x−

...

0 ︸ ︷︷ ︸
ND − 1

0




ND (2.68)

⇒ D
(1)
x−w

n = D
(2)
x−w

n = D
(3)
x−w

n

For the sake of computational efficiency, it is worth redefining the state vector wn as its interior

wn, as both its first and last values are known to be zero at all time steps:

wn ≜ [wn
1 , . . . , wND−1]

T
(2.69)
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Similarly, Dx− is redefined as its ND × (ND − 1) interior:

Dx− ≜ D
(3)
x− =

1

h


1 0

−1 1
. . .

. . .

−1 1

0 −1︸ ︷︷ ︸
ND−1




ND (2.70)

For this particular set of boundary conditions, the definitions of Dx+ and Dxx given in (2.55)

still hold, yielding a (ND − 1)× (ND − 1) Laplacian matrix:

Dx+ ≜ −DT
x− =

1

h


−1 1 0

−1
. . .
. . . 1

0 −1 1︸ ︷︷ ︸
ND


ND − 1 (2.71a)

Dxx ≜ Dx+Dx− =
1

h2


−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2︸ ︷︷ ︸
ND−1


ND − 1 (2.71b)

Note that Dxx can directly multiply the truncated state vector wn defined in (2.69).

For any type of fixed boundary conditions, where the first and last elements of the discrete

state vectors are 0 at all times, the truncated vector may be used. In order to simplify notation,

it is useful to define N ≜ ND−1 as the number of elements in such truncated vector, such that:

h =
L

ND
=

L

N + 1
(2.72)

Note that the size of Dxx is consistent with the fixed boundary conditions of Scheme (2.61).

Taking, for example, the boundary point at l = 0:

wn
0 = 0 ⇒ δttw

n
0 = 0 =

T

ρS
δxxw

n
0 (2.73)

The operator δxx yields a zero value when applied to the boundary points; the first and last

rows of Dxx should therefore be zero.

Note that as Dxx = −DT
x−Dx−, computation of the potential energy term in Equa-

tion (2.64b) can be simplified using the property (AB)
T
= BTAT for arbitrary matrices A

and B, eliminating the need for explicit computation of the summation by parts:

h (δt·w
n)

T
Dxxw

n = −h (δt·w
n)

T
DT

x−Dx−w
n
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= −h (δt·Dx−w
n)

T
Dx−w

n

Identity (2.58a) then allows to obtain the energy balance (2.64a).

2.2.4.iv Stability

As discussed in Section 2.2.4.ii, the discrete potential energy may become negative. An intuitive

example of this possibility calls back to the analysis of the continuous string, the main difference

here being that the potential energy term is evaluated as the inner product of two different

states, at two consecutive time steps, rather than the inner product of ∂xw(x, t) with itself, at

one given time.

The non-negativity of the energy function is at the core of energy-based stability analysis

for finite difference schemes. Lyapunov [68] states that the solutions of a system are stable if

there exists a function of the state, referred to as Lyapunov function, that is:

� zero if and only if the state is zero (stable equilibrium),

� positive definite if and only if the state is non-zero,

� and decreasing14 over time.

In the continuous case, setting the state variables to ∥∂tw∥ and ∥∂xw∥ lets the energy func-

tion (2.14) fulfil all three criteria to be a candidate Lyapunov function. As the bounds (2.15b)

on the growth of the state variables demonstrate, the solutions to the continuous system are

stable.

This is not necessarily true for the discrete solutions. The numerical energy Hn
w,s is not a

positive definite function of the discrete state variables, hence violating the second Lyapunov

criterion; therefore, there exist conditions under which the numerical solutions of Scheme (2.61)

are unstable. Finding these conditions, and ensuring that they are never met, such that Hn
w,s ⩾ 0

for all possible states, allows the design of a guaranteed stable scheme.

Identity (2.58c) and inequality (2.58e) allow (2.64b) to be rewritten as:

Hn
w,s =

ρSh

2
|δt+wn|2 + Th

2
|µt+Dx−w

n|2 − Thk2

8
|δt+Dx−w

n|2

⩾ h

(
ρS

2
− Tk2

2h2

)
|δt+wn|2

⩾ 0 iff h2 ⩾ h2
min ≜ Tk2

ρS
= c2k2 (2.74)

Inequality (2.74) is the stability condition for Scheme (2.61). It sets a lower bound hmin for

the grid spacing h, in terms of the time step k and the physical parameters of the string, below

which solutions with frequency components close to the Nyquist limit suffer exponential growth.

14In the non-strict sense; constant or strictly decreasing.
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Figure 2.8: Snapshots of the simulation of the propagation of a pulse with the proposed scheme for
the 1D wave equation, where the grid spacing has been set just under its minimal stable value, such
that hmin

h
= 1.005. — Parameters: L = 1 m, T = 500 N, ρ = 7850 kg/m3, r = 0.5 mm, Fs = 44.1 kHz.

The stability condition can be rewritten in terms of the ratio hmin

h , as:

h ⩾ ck ⇔ hmin

h
=

ck

h
⩽ 1 (2.75)

In practice, the time step k = 1
Fs

is fixed by the sample rate; h is then adjusted to ensure

stability. Note that either L or h must be slightly adjusted so that the string is divided into

an integer number of segments. Throughout the rest of this work, L is adjusted for plots

illustrating the effects of different values of h, while h is adjusted and L kept constant for final

simulation results, so as to preserve input parameters; in both cases, the adjustments are in

the order of a percent. Figure 2.8 illustrates a simulation of the propagation of a pulse with

Scheme (2.61), where the stability condition is not respected (h < hmin).

2.2.4.v Accuracy

The accuracy of a given FD scheme depends on the respective accuracy of the FD operators

involved, as well as the relation between grid spacing and time step imposed by the stability

condition. In the case of Scheme (2.61), the definitions of FD operators δtt and δxx given in

Section 2.2.2.ii lead to:

ρSδtt − Tδxx = ρS∂2
t − T∂2

x +O(k2) +O(h2) (2.76)

The scheme is second-order accurate in space and time.

For ideal string simulations, a fixed grid spacing is used, as close to the stability limit

h = hmin as possible, so as to limit loss of bandwidth (the next section details the relation

between available bandwidth and the value of hmin

h ). For a given choice of hmin

h , the grid

spacing h and time step k are related by hmin

h = ck
h , and the scheme accuracy can be expressed

in terms of h or k only. It can be shown that for hmin

h = 1, meaning that h = ck, Scheme (2.61) is

exact, and its numerical integration yields exact solutions to the 1D wave equation (to machine

accuracy), as will be seen in the next section.
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Figure 2.9: Left: numerical dispersion relation ω(β) for Scheme (2.61) for the 1D wave equation,
in 3 different conditions: hmin

h
= 1 (in solid dark blue; this is in fact the continuous dispersion

relation), hmin
h

= 0.95 (in dashed medium blue), and hmin
h

= 0.7 (in dotted light blue). Note the
significantly lowered cutoff frequencies when operating away from the stability limit; about half of the
total bandwidth is lost for hmin

h
= 0.7. Right: propagation of a pulse simulated with hmin

h
= 0.7;

note that high frequencies are trailing behind the main pulse. — Parameters: L = 1 m, T = 400 N,
ρ = 7850 kg/m3, r = 0.5 mm, Fs = 44.1 kHz.

2.2.4.vi Numerical dispersion

The continuous 1D wave equation is non-dispersive, as seen in Section 2.1.1.ii. A similar analysis

can be performed for the FD scheme. Assume, for the scope of this paragraph, an infinite ideal

string, implying that the grid function wn
l is defined for l ∈ Z.

It was shown in Section 2.1.1.iii that frequency-domain analysis in the continuous domain

could be simplified by inserting an ansatz of the form w(x, t) ≜ ej(ωt+βx) into the PDE. In

the discrete domain, the ansatz naturally takes the form wn
l = ej(ωnk+βlh); insertion into

Scheme (2.61) leads to the discrete dispersion relation:

sin

(
ωk

2

)
= ±hmin

h
sin

(
βh

2

)
⇒ ω = ±2

k
sin−1

(
hmin

h
sin

(
βh

2

))
(2.77)

Immediately, the stability condition found in (2.75) is confirmed to be not only sufficient, but

necessary. Indeed, h < hmin produces arguments beyond the domain of definition of sin−1 near

the extrema of sin
(

βh
2

)
.

At the stability limit, that is when h = hmin, (2.77) reduces to the same relation (2.12)

as in the continuous case, resulting in constant and equal phase and group velocities, and a

non-dispersive scheme; this is consistent with the exact nature of the scheme for h = hmin.
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Figure 2.10: Stencil of the proposed FD scheme for the 1D wave equation. The filled red circle
denotes the location of the updated grid value; as its calculation only depends on values at previous
time steps (i.e., there are no yellow circles on the n+ 1 line), the scheme is explicit.

However, in the general case where h > hmin, ω no longer depends linearly on β, and numerical

dispersion arises. Furthermore, the maximum representable frequency progressively decreases

below the Nyquist limit fNy ≜ Fs

2 = 1
2k , gradually restricting the available bandwidth:∣∣∣∣sin(ωk

2

)∣∣∣∣ < 1 ⇒ ωk

2
<

π

2
⇒ f =

ω

2π
< fNy (2.78)

Figure 2.9 illustrates the numerical dispersion relation for Scheme (2.61), at the stability limit

as well as for hmin

h < 1, where the loss of bandwidth rapidly becomes problematic.

2.2.4.vii Scheme update

A recurrence vector equation is derived from (2.62) by expanding δtt, yielding:

wn+1 =

(
Tk2

ρS
Dxx + 2I

)
wn −wn−1 (2.79)

where I is the N ×N identity matrix. The value of the string displacement at time step n+ 1

depends on its value at the two immediately preceding time steps n and n− 1; the recurrence

relation therefore requires two initial conditions, w0 and w1.

The scheme is explicit, as all grid values can be directly and independently computed

from the known previous states. The stencil corresponding to Scheme (2.61) is illustrated

in Figure 2.10.

The numerical energy Hn
w,s associated with Scheme (2.61) should be conserved over time,

by virtue of (2.66). Figure 2.11 shows the numerical energy exchanges as computed throughout

a simulation run, and the conservation of Hn
w,s to machine accuracy. The grid point values

along the string were initialised with low-pass filtered white noise, so as to emulate a smooth

randomised initial displacement, with zero initial velocity.
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Figure 2.11: Top: total numerical energy Hn
w,s (in dark blue), sum of the kinetic (in light blue)

and potential (in green) energy terms. Bottom: normalised energy variations of Hn
w,s relative to H0

w,s;
due to floating-point rounding errors, Hn

w,s deviates by a few bits either side of H0
w,s as the simulation

progresses. The energy is therefore said to be conserved to machine accuracy. — Parameters: L = 1 m,
T = 100 N, ρ = 7850 kg/m3, r = 0.5 mm, Fs = 44.1 kHz.

The normalised energy variations in bits are calculated as follows:

∆Hn
bit ≜

Hn
w,s −H0

w,s

εnH
(2.80)

where εnH is the floating point resolution of Hn
w,s (in joules per bit), that is the distance between

Hn
w,s and the next largest number (in magnitude) describable in floating point representation.

2.2.5 FD scheme for the stiff string equation

2.2.5.i Finite difference scheme

Consider once more the transverse displacement w(x, t) of a finite stiff string, discretised into a

grid function wn
l . A straightforward FD scheme for the stiff string equation (2.25) is given by:

ρSδttw
n
l = Tδxxw

n
l − EI0δxxxxw

n
l (2.81)

As systems start to incorporate more elements, a more compact expression may be sought, in

terms of a single linear operator L, the FD counterpart to L defined in (2.26):

Lwn
l = 0 , L = ρSδtt − Tδxx + EI0δxxxx (2.82)
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Scheme (2.81) can also be written in vector form, with wn the full state vector (including

boundary points) defined in (2.63):

ρSδttw
n = Tδxxw

n − EI0δxxxxw
n (2.83)

2.2.5.ii Energy analysis and boundary conditions

As applied to the ideal string scheme, multiplying (2.83) by h (δt·w
n)

T
yields the numerical

energy balance:

δt−H
n
w,s = −T

[
(δt·w

n
0 ) (δx−w

n
0 )−

(
δt·w

n
ND

) (
δx+w

n
ND

)]
− EI0

[
(δxxw

n
0 ) (δx−δt·w

n
0 )−

(
δxxw

n
ND

) (
δx+δt·w

n
ND

)
− (δt·w

n
0 ) (δx−δxxw

n
0 ) +

(
δt·w

n
ND

) (
δx+δxxw

n
ND

)]
(2.84a)

Hn
w,s ≜

ρSh

2
|δt+wn|2 + Th

2
(δx−w

n)
T
δx−w

n+1 +
EI0h

2
(δxxw

n)
T
δxxw

n+1 (2.84b)

Note that as previously (see (2.64b)), the sign of Hn
w,s is undetermined. Boundary terms vanish

under simply supported conditions, given by:

wn
0 = wn

ND
= 0 , δxxw

n
0 = δxxw

n
ND

= 0 (2.85)

The energy balance equation is now:

δt−H
n
w,s = 0 (2.86)

The numerical energy is conserved over time.

2.2.5.iii Matrix forms

While δxxw
n
0 = δxxw

n
ND

= 0 was implied by the definition of the fixed ideal string scheme (see

Equation (2.73)), it is explicitly specified for the simply supported stiff string. The resulting

forms of the matrix operators are not affected; the modified matrix operators given in 2.2.4.iii

can therefore be used for the simply supported stiff string scheme.

The state vector wn is again redefined as its interior wn, containing N ≜ ND − 1 elements,

as per (2.69):

wn ≜ [wn
1 , . . . , wN ]

T
(2.69)

The truncated matrices are defined by (2.55a) and (2.71). The scheme update now requires
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another matrix, Dxxxx, defined as:

Dxxxx ≜ DxxDxx =
1

h4



5 −4 1 0

−4 6 −4 1

1 −4 6
. . .

. . .

1
. . .

. . . 1
. . . 6 −4

0 1 −4 5︸ ︷︷ ︸
N




N (2.87)

As withDxx in the ideal string scheme, the size ofDxxxx is consistent with the scheme definition

and boundary conditions. For instance, at the left boundary, Scheme (2.81) and boundary

conditions (2.85) yield:

ρS δttw
n
0︸ ︷︷ ︸

=0

= Tδxxw
n
0︸ ︷︷ ︸

=0

−EI0δxxxxw
n
0 ⇒ δxxxxw

n
0 = 0 (2.88)

The operator δxxxx yields zero at the boundary points, meaning that the first and last rows of

Dxxxx should be zero; this is reflected in the size of the modified matrix in (2.87).

As Dxx is symmetric, Dxxxx can equivalently be defined as Dxxxx = DT
xxDxx. The stiffness

potential energy term in Equation (2.84b) can now be directly computed as:

h (δt·w
n)

T
Dxxxxw

n = h (δt·w
n)

T
DT

xxDxxw
n

= h (δt·Dxxw
n)

T
Dxxw

n (2.89)

As for the tension potential energy term, identity (2.58a) then allows derivation of the full

energy balance (2.84a).

2.2.5.iv Stability

The stability of Scheme (2.81) relies on the non-negativity of the numerical energy Hn
w,s, defined

in (2.84b). As for the ideal string scheme, (2.58) can be used to rewrite Hn
w,s as:

Hn
w,s =

ρSh

2
|δt+wn|2 +

Th

2
|µt+Dx−w

n|2 − Thk2

8
|δt+Dx−w

n|2

+
EI0h

2
|µt+Dxxw

n|2 − EI0hk
2

8
|δt+Dxxw

n|2

⩾ h

(
ρS

2
− Tk2

2h2
− 2EI0k

2

h4

)
|δt+wn|2

⩾ 0 iff
ρS

2
− Tk2

2h2
− 2EI0k

2

h4
⩾ 0 (2.90)
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Figure 2.12: Numerical dispersion relation ω (β) for Scheme (2.81) for the stiff string equation, in 3
different conditions: h = hmin (in solid dark blue, at the stability limit), hmin

h
= 0.95 (in dashed medium

blue), and hmin
h

= 0.7 (in dotted light blue). The solid black curve corresponds to the dispersion relation
in the continuous case. Note that at the stability limit, even though there is no loss of bandwidth,
numerical dispersion still occurs. — Parameters: L = 1 m, T = 400 N, ρ = 7850 kg/m3, r = 0.5 mm,
E = 200 GPa, Fs = 44.1 kHz.

Rewriting (2.90) as a fourth order polynomial in h, in terms of c and κ, leads to:

h4 − c2k2h2 − 4κ2k2 ⩾ 0 ⇒ h ⩾ hmin ≜

√
c2k2 +

√
c4k4 + 16κ2k2

2
(2.91)

which is the stability condition for Scheme (2.81).

2.2.5.v Accuracy

The accuracy of Scheme (2.81) is that of the operator L, defined in (2.82):

L = L+O(k2) +O(h2) (2.92)

The scheme is, again, second-order accurate in space and time. As for the ideal string scheme,

the accuracy can be given in terms of k or h alone, if h is defined in terms of k (as per (2.91)).

2.2.5.vi Numerical dispersion

Section 2.1.2.iii showed that the continuous stiff string equation was inherently dispersive. The

analysis of numerical dispersion for the stiff string scheme follows the same process as that used

for the ideal string scheme (see Section 2.2.4.vi). For this analysis only, assume an infinite stiff

string (l ∈ Z), and a discrete test solution of the form wn
l = ej(ωnk+βlh). Substituting this test
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solution into (2.81) leads to:

sin

(
ωk

2

)
= ±

√
c2k2

h2
+

4κ2k2

h4
sin2

(
βh

2

)
sin

(
βh

2

)

⇒ ω = ±2

k
sin−1

(√
c2k2

h2
+

4κ2k2

h4
sin2

(
βh

2

)
sin

(
βh

2

))
(2.93)

Here, as opposed to the ideal string scheme, numerical dispersion occurs even at the stability

limit, when h = hmin. Figure 2.12 compares the dispersion relations for the continuous model

and the numerical scheme, at the stability limit and below.

2.2.5.vii Scheme update

A two-step recurrence vector equation can be derived from (2.81):

wn+1 =

(
Tk2

ρS
Dxx − EI0k

2

ρS
Dxxxx + 2I

)
wn −wn−1 (2.94)

where I is the N × N identity matrix. Again, this two-step recursion requires two initial

conditions, w0 and w1, and the scheme is explicit. The stencil corresponding to the stiff string

FD scheme (2.81) is shown in Figure 2.13.

Figure 2.14 shows the numerical energy exchanges throughout the simulation of a stiff string

with the proposed scheme, as well as the normalised bit variations of the total energy ∆Hn
bit,

computed as per (2.80).
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Figure 2.14: Top: total numerical energy Hn
w,s (in dark blue), sum of the kinetic energy (in light blue),

potential energy due to tension (in green), and potential energy due to stiffness (in orange). Bottom:
normalised energy variations of Hn

w,s relative to H0
w,s. As in the case of the ideal string, the discrete

energy is conserved to machine accuracy. — Parameters: L = 1 m, T = 100 N, ρ = 7850 kg/m3,
r = 0.5 mm, E = 200 GPa, Fs = 44.1 kHz.

Concluding remarks

A physical and numerical framework has now been established, through a detailed case study of

the ideal string and the stiff string systems. These systems are extremely simplified, and there

indeed exist exact analytical solutions to the equations of motion describing their behaviour,

rendering local time-stepping methods somewhat redundant. However, the same numerical

framework can be used to simulate more complex phenomena, as long as they are describable by

a system of PDEs. The next Chapter will focus on establishing such a time-domain description

for the modelling of frequency-dependent damping in linear strings, thus adding a perceptually

important component to the linear stiff string model presented here.
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Chapter 3

Time-domain modelling of

frequency-dependent damping in

linear strings

The purpose of this chapter is to propose a time-domain representation of existing models for

the physical phenomena causing energy dissipation in linear strings, and which lie at the origin

of the particular frequency-dependent decay profile observable experimentally. A method will be

proposed to obtain frequency-dependent expressions for Q-factors and decay rates with a passive

time-domain system, involving a number of free parameters. An optimisation routine will be

used to fit such parameters so that the resulting loss profile closely matches the theoretical

damping ratios. The quality of the fit will be evaluated at various orders of approximation,

in order to determine the best compromise between computational efficiency and accurate

modelling.

The fitted parameters will then be used as input for time-domain simulations, computed

with a FD scheme discretising the passive system. Quality factors will finally be measured for

the simulated transverse modes, in order to verify that the resulting loss profile indeed matches

the theoretical model.

Section 3.1 is a brief introduction to the principles of frequency-domain analysis in the

context of transient regimes. In Section 3.2, models for damping processes in linear strings

are reviewed, as found in the literature, and used to derive a general complex impedance as

a function of string parameters. A frequency-domain framework is introduced in Section 3.3,

useful to approximate the theoretical loss model, based on the principles of network synthesis.

Section 3.4 describes the process of fitting the approximated loss profile to the theoretical model;

representative optimisation results are discussed. Section 3.5 features the description of a FD

scheme used to produce time-domain simulations of the optimised system. Finally, results from

these simulations are presented in Section 3.6, assessed on a number of accuracy and efficiency

criteria.

45
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Some aspects of the work presented in this chapter were described in [30].

3.1 Introducing losses into the linear stiff string model

The isolated stiff string model described in Chapter 2.1.2 serves as a starting point for this

study. It is perfectly energy-conserving, as no damping mechanisms are taken into account; it

is thus obviously not applicable to the modelling of real strings, with decay times typically on

the order of a few seconds. Careful reproduction of the frequency-dependent loss profile of the

string’s transverse modes is crucial when targeting high-quality sound synthesis.

Several attempts at modelling arbitrary frequency-dependent dynamic behaviour have been

made in the space-time domain. Of particular interest to musical acoustics is the work

by Chaigne, Lambourg, and Matignon [20, 65] on damped impacted plates, employing a

frequency-domain description similar to that presented in this work. Time-domain modelling

of viscothermal losses in acoustic pipes has also been the subject of a number of studies [49, 51,

110, 9]. Most closely related to the current problem, is a recent publication by Parret-Fréaud

et al. [79], establishing a method to reproduce the behaviour of a given material, directly in the

discrete time domain; results are presented for longitudinal wave propagation along a cantilever

beam. Their proposed approach relies on approximating the frequency-dependent dynamic

modulus1 of the material, measured experimentally, as the transfer function of a digital filter,

itself constructed as a passive network of one-pole filters. Although presented in the context

and framework of linear viscoelasticity theory, the work described in [79] thus shares similar

goals (and indeed, a similar modelling process) to those discussed in this Chapter — the main

difference would be the optimisation of filter coefficients in the discrete time domain, as opposed

to the continuous domain fitting presented here (see Sections 3.3 and 3.4).

When the more specific problem of stiff string damping is concerned, two particular

approaches stand out, both making use of FD schemes similar to those employed in this work.

The first was developed by Ruiz in his 1970 Masters thesis [89], published a year later as a pair

of journal articles [52, 53], and was seen again in the work of Chaigne and Askenfelt [18]. The

second approach was more recently proposed by Bensa et al. [7], and has been employed for

sound synthesis of piano strings [16, 17]. The suitability of these two simplified approaches will

be reviewed in more detail in Section 3.3.4, showing that more refined modelling of damping

processes is necessary.

Preamble: the Laplace transform

In Chapter 2, the analysis of single-frequency wave solutions of the lossless stiff string equation

led to the derivation of dispersion relations, linking the temporal and spatial frequencies of such

waves as they propagate along the string. When damping or forcing is introduced, however, a

1The dynamic modulus of a viscoelastic material is the complex ratio of measured stress to an applied
oscillatory strain; it is a function of frequency.
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crucial point of interest then becomes the transient response of the system, and its dependence

on frequency.

To this end, and throughout the rest of this work, test solutions of the form est+jβx will be

employed, where s = σ+jω is a complex temporal frequency, and β ∈ R is a real wavenumber2.

When σ < 0, this is simply an exponentially damped wave, with decay rate −σ (s-1). The

steady-state, periodic wave test solution is to the Fourier transform what the new test solution,

being a function of a complex frequency s, is to the Laplace transform. This test solution will

be inserted into the PDE system under the assumption that the string is infinite in space and

time, leading to a characteristic polynomial in s and β; this yields not only a dispersion relation,

but also the frequency dependence of the decay rate σ.

For example, inserting the test solution w(x, t) = est+jβx into the lossless stiff string

equation (2.25), and separating the real and imaginary parts of the resulting polynomial, yields:

s2 + c2β2 + κ2β4 = 0 ⇒

σ2 − ω2 + c2β2 + κ2β4 = 0

2σω = 0

⇒

ω2 = c2β2 + κ2β4

σ = 0
(3.1)

The dispersion relation (2.27) is found again, and σ = 0 indicates no damping. It is easy to

see that adding terms to the lossless stiff string PDE (2.25) may result in a non-zero value

of σ, possibly depending on the frequency ω. In particular, and as will be seen later on in

this chapter, terms introducing a dependency on time history of the state variables, in the

form of odd-order temporal derivatives, give rise to a non-zero imaginary part to the dispersion

relation (3.1).

As will be demonstrated throughout the rest of this Chapter, loss will be assumed small

enough that it does not significantly affect the modal frequencies, meaning that the dispersion

relation (3.1) remains approximately valid after the introduction of damping.

3.2 A review of damping mechanisms in linear strings

The basis of this work is the model derived by Cuesta and Valette [23, 113]. They performed

experimental measurements on plucked strings, and found that their results could be well

explained by taking three damping mechanisms into account. The next subsections will recall

the components of their linear string loss model.

3.2.1 Cuesta and Valette’s study

Cuesta and Valette plucked a range of harpsichord strings, and assumed that the oscillations

of each mode decayed exponentially at a frequency-dependent rate −σ(ω). They measured

2On an infinite string, solutions for which β is not real are not of interest for this analysis.
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the 10 dB decay times T10 (s) of the transverse modes of the strings, each fixed at both ends

on a highly rigid bench, so as to impede interaction with any of the string modes. They then

obtained, for each string, the value of the quality factor Q for each of these modes, as a function

of frequency, given by:

Q ≜ −πf

σ
= − ω

2σ
(3.2)

where f is the frequency (Hz) and σ ≜ − log(10)
T10

is the frequency-dependent decay rate (s-1);

σ and ω ≜ 2πf are the real and imaginary parts of the complex frequency s, respectively, as

introduced in Section 3.1.

They proceeded to examine different possible damping mechanisms, the combination

of which would explain the particular shape of the frequency-domain loss profile observed

experimentally. In particular, they found that accounting for the contributions of three

phenomena, in the frequency domain, was sufficient to offer a good fit between theory and

experimental data. Sections 3.2.2 to 3.2.4 briefly review these contributions; a much more

detailed account can be found in Valette and Cuesta’s textbook [113].

The authors of [113] derived a frequency-dependent mechanical resistance per unit length

R(ω) ∈ R associated with each damping mechanism, under the assumption that string motion

was purely periodic, i.e. that the string was forced to oscillate at a fixed frequency ω. The

resulting expression was then assumed to hold true when considering free, lightly damped

oscillations.

The formalism described in [113] introduces real, frequency-dependent quantities in time-

domain equations, perhaps having in mind the modal solutions of the string PDE. It is, however,

worth clarifying the separation between time and frequency domains, and presenting the notion

of frequency-dependent mechanical resistance in terms of a more general frequency-domain

complex impedance.

In a damped system, in the frequency domain, force and velocity are linearly related at

the input by a complex impedance. Thus, introducing damping processes characterised by

an impedance Z(s) ∈ C per unit length into the stiff string model yields the Laplace-domain

equation:

ρSs2 + Tβ2 + EI0β
4 + sZ(s) = 0 (3.3)

where the term sZ(s) therefore has dimensions of force per unit area. Note that the expression

for Z(s) may include terms that are a function of the wavenumber β(s).

Here, as Z(s) characterises loss, it must be predominantly resistive, meaning that its

imaginary part (reactance) must be small with respect to its real part (resistance), or at least

small with respect to the reactance of the lossless system. Furthermore, as mentioned above, the

derivation in [113] relies on the assumption that the expression for Z derived for purely periodic

string motion holds true for lightly damped oscillations, that is Z(s) ≈ Z(jω). Examining the

imaginary part of (3.3) then yields:

2ρSσω + Im (sZ (jω)) = 0 (3.4)
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The modelling of strings for musical instruments (as lightly damped systems) is concerned with

solutions on the s-plane that are very near the imaginary axis (as σ = Re(s) is small). The

imaginary part of the loss term sZ(jω) can therefore be approximated as:

Im (sZ (jω)) = ωRe (Z (jω)) + σIm (Z (jω))︸ ︷︷ ︸
small near the
imaginary axis

≈ ωRe (Z (jω)) (3.5)

The mechanical resistance defined by Valette and Cuesta is therefore simply the real part of

the complex impedance Z, evaluated along the imaginary axis (i.e. for s = jω). The Q-factor

is then extracted from (3.4), as per (3.2):

1

Q
=

−2σ

ω
≈ Re (Z(jω))

ρSω
(3.6)

where, as before, σ may be a function of ω. Note that Q(ω) and Re (Z(jω)) have a reciprocal

relationship. As will be seen in Section 3.2.5, assuming that the loss mechanisms add linearly,

the inverse of the total Q-factor resulting from different damping processes can be computed

as the sum of the inverses of the respective Q-factors characterising such processes.

3.2.2 Air viscosity

The first source of damping arises from the viscous drag exerted by the air onto the vibrating

string. This problem was first described by Stokes [106], in the form of an infinite cylindrical

pendulum oscillating through a viscous fluid. He equated the transverse motion of a cylinder

through a stationary fluid to the flow of a fluid around a fixed cylinder.

Figure 3.1 shows a cross-section of the string, and illustrates the air viscosity phenomenon.

As the string vibrates in one polarisation, it drags along air particles, giving rise to a flow

velocity gradient in the direction orthogonal to the string surface. The air then exerts a viscous

shear force onto the string, resisting its motion; as per Newton’s law of friction, its magnitude is

proportional to the gradient ∂RU of the tangential flow velocity U(R, θ, ω) at the string surface,

as well as to the affected surface area on the string.

The force exerted on a string surface element with surface area dA = rdθdx is local, as

it does not depend on the position x along the string3. The force per unit length dFa (in

N/m) due to air viscosity, acting at a point (r cos θ, r sin θ) of the cross-section of the string

(see Figure 3.1), can therefore be defined directly as:

dFa = µa rdθ ∂RU (3.7)

where µa is the dynamic viscosity of air (in Pa.s).

Examination of the flow velocity profile when a string vibrates through the air at a velocity

3Considering that the string diameter is very small with respect to its length, boundary effects of air viscosity
can be neglected, and the treatment presented here can assume an infinite string. As mentioned in the first
paragraph of this subsection, this is an assumption also made by Stokes in his original study [106].
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Figure 3.1: Diagram (not drawn to scale) of a cross-section of the string, oscillating along the z-axis
at frequency ω, and resulting tangential air flow velocity profile U(R, θ, ω) along the R-axis (in green).
The viscous shear force Fa exerted by the air onto the string (in red) is proportional to the flow velocity
gradient ∂RU at the string surface. Viscous phenomena may be considered to be confined to a thin
boundary layer, the thickness of which depends on the frequency of the string oscillations.

v0 (assuming periodic oscillations, i.e. s ≜ jω) leads to rapidly decaying oscillatory solutions.

Indeed, after a short distance δBL from the string surface, in the order of the characteristic

length of such solutions, the flow velocity gradient becomes virtually zero. This means that

viscous phenomena may be considered as confined to a thin layer of air, referred to as the

viscous boundary layer [5, p. 303], the thickness of which can be derived from the solutions for

the flow velocity. For this particular problem, it is a function of ω, and is defined by [113]:

δBL ≜
√

µa

2ωρa
(3.8)

where ρa is the density of air (kg/m3). In the case of lightly damped oscillations, for which

σ ̸= 0 and σ ≪ ω, the substitution ω → −js yields a complex boundary layer thickness:

ω → −js ⇒ δBL ≜
√

jµa

2ρas

=

√
µa

2ρa |s|2
√
jσ + ω , |s|2 = σ2 + ω2 ≈ ω2

≈
√

µa

2ρaω

√
1 + j

σ

ω

≈
√

µa

2ρaω

(
1 + j

σ

2ω

)
(3.9)
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The imaginary part of δBL can be neglected for lightly damped oscillations, as σ
2ω ≪ 1; the

expression given in (3.8) for periodic motion is assumed to hold true.

In the mid-audio range, for f = 1kHz, δBL = 0.034mm; for most strings used in musical

instruments, the viscous boundary layer thickness is typically small with respect to the string

diameter. In this case, the flow velocity gradient at any point (r cos θ, r sin θ) of the surface of

the string is approximately:

∂RU (r, θ, ω) ≈ U(r, θ, ω)

δBL
=

2v0 cos θ

δBL
(3.10)

where the tangential flow velocity U ≜ 2v0 cos θ at the string surface depends on the string

velocity v0
4 [5, p. 357]. The total force per unit length exerted on the string, in the z-direction,

can now be obtained by integrating dFa,z = dFa cos θ around the circular cross-section of the

string5:

Fa,z = µa

2π∫
θ=0

2v0 cos θ

δBL
cos θ rdθ =

2µarπ

δBL
v0 (3.11)

This expression for Fa,z suggests a viscous force tending towards zero at low frequencies. To

address this issue, and rejoin Stokes’ conclusions [106], one can argue that, at low enough

frequencies, the viscous force approaches its steady-flow value, given by (3.11) where the

boundary layer thickness is equal to the string radius, that is δBL = r. The final expression for

Fa,z is given by the sum of the low- and high-frequency forms:

Fa,z = 2µaπ

(
1 +

r

δBL

)
︸ ︷︷ ︸

≜Za

v0 (3.12)

where Za is a mechanical impedance per unit length; it follows from (3.9) that Re (Za) ≈ Za.

The expression for the Q-factor related to air viscosity damping is finally obtained from (3.6),

combining the expressions given in (3.12) and (3.8):

1

Qa
=

Re (Za(jω))

ρSω

=
2µaπ

ρSω

(
1 +

r

δBL

)
=

2

ρ

(
µa

ωr2
+

√
2µaρa
ωr2

)
(3.13)

The Q-factor Qa increases with ω; the losses due to air viscosity are therefore predominant

at low frequencies. The dependency in
√
ω means that air viscosity damping cannot be well

4Recall that all quantities here, including the string velocity v0, are defined in the frequency domain, and
are in general complex-valued.

5It is straightforward to show, with the same method, that the total force per unit length Fa,y exerted on
the string element in the y-direction is zero.
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represented with integer order partial derivative terms in the time domain. This is a well-known

problem in time-domain modelling of viscothermal losses associated with wave propagation in

tubes [49]; different approaches have been explored to tackle this issue [51, 110, 9], some of

which can be adapted to the present problem, as will be described in Section 3.3.

The behaviour of the air surrounding the string can be fully described by a system of linear

PDEs; indeed, the results above can be directly derived from the Navier-Stokes equations

for incompressible flows. One could, therefore, do away with time-domain approximations of

frequency-domain solutions, and tackle the full coupled problem with time-stepping simulations.

However, doing so would go against the ambition of this work to design numerical schemes

with efficient enough implementations so as to be usable in the context of audio synthesis.

As will be seen in Section 3.7.2, accurate results can be obtained with relatively simple

approximations, making the approach presented here particularly attractive for realistic,

efficient sound synthesis.

3.2.3 Viscoelasticity

The second source of energy dissipation in linear string vibration is linked to the viscoelasticity

of the string material. In the lossless stiff string equation (2.25), the bending stiffness term

comes from evaluating the stress withstood by a string element with length dx subjected to a

bending strain, assuming that the string material obeys Hooke’s elasticity law (that is, stress

is directly proportional to strain).

In reality, however, strings exhibit viscoelastic behaviour; when the material is subjected

to a time-varying strain (such as a deformation due to the propagation of a wave), energy is

dissipated by internal friction at the atomic or molecular level. Linear viscoelasticity theory

generally describes behaviour at macroscopic level, at much larger scales, with constitutive

laws relating stress, strain, and their respective time histories. Different classes of models arise

from the choice of constitutive laws; the reader is referred to [64] for a review of such models,

which are not the focus of this manuscript. It is, however, worth giving a brief overview of the

microscopic phenomenon believed to be the principal cause of viscoelastic damping in metal

strings6 [113].

Internal friction damping in metallic strings arises mainly from the motion of dislocations.

These one-dimensional faults in the crystal structure of the metal are distributed along the

string, more or less densely. Instrument makers can increase the number of dislocations by

hammering the string, or reduce it by heating up the string, thereby slightly melting the metal.

The dislocations are set into forced vibration when the string oscillates. Koehler [54], as

well as Granato and Lücke [43], have conjectured that the motion of each dislocation line can

be described with an elastic 1D wave equation, with viscous damping:

� a continuous “row of atoms” is detached from its neighbouring row, between two fixed

anchor points;

6The following discussion concerns strings made of a material with a crystalline structure; a nylon or gut
string, for instance, will not suffer dislocations.
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� this dislocation line has an effective length, linear mass density, and tension;

� when set into motion, viscous friction between the vibrating dislocation and its surround-

ings causes energy dissipation.

Simpson and Sosin [98] later proposed to incorporate defect dragging along the dislocation line.

Indeed, the Koehler-Granato-Lücke (KGL) theory considers that a newly introduced point-wise

fault along a dislocation simply becomes a new, fixed anchor point, splitting the dislocation line

in two. Simpson and Sosin (SS), however, considered that this defect may not be strong enough

to pin the dislocation line in place, but instead it is dragged along when the dislocation is set

into vibration, causing significantly more damping. Their proposed theory was experimentally

validated [99] by measuring the evolution of the logarithmic decrement ζv on a thin copper

rod, with an increasing number of defects, introduced by electron irradiation. The logarithmic

decrement for underdamped systems is defined as:

ζv ≜ π

Qv
= −2πσ

ω
(3.14)

For a fixed density of dislocations and defects, however, experimental measurements of ζv on

unconstrained rods as a function of the excitation frequency show that, for relatively low forcing

frequencies (i.e., in the quasi-static regime), ζv does not depend on frequency. Considering the

scale of the problem, the quasi-static approximation is valid for frequencies below a cutoff in the

order of 10 kHz; this result can therefore be reliably used for simulations of strings for musical

instruments, sampled at audio frequencies.

In the frequency domain, the characteristic polynomial for the lossless unconstrained bar is

obtained by setting T = 0 in Equation (3.1):

s2 + κ2β4 = 0 ⇒ s = jκβ2 ∈ jR , κ ≜
√

EI0
ρS

(3.15)

Valette and Cuesta [113] then seek to introduce a negative real part in s, to incorporate

losses. They do so by introducing a small imaginary part in Young’s modulus E, possibly

frequency-dependent, such that E → (1 + jη)E where η > 0 is small. This approach takes

its roots in viscoelasticity theory [64, Chap. 3]; the strain experienced by a linear viscoelastic

material subjected to a periodic stress exhibits a short phase lag, leading to the ratio of periodic

stress to strain (equal to Young’s modulus for linear elastic materials) becoming complex. The

resulting complex frequency s leads to the corresponding viscoelastic quality factor Qv,bar for

the unconstrained bar, as per (3.2):

s = jκ
√
1 + jη β2 ≈ jκ

(
1 +

jη

2

)
β2 (3.16a)

⇒ ω ≈ κβ2 , σ ≈ −ηκβ2

2
(3.16b)

⇒ 1

Qv,bar
= η =

ζv
π

= constant (3.16c)
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A frequency-independent logarithmic decrement ζv therefore yields a constant value for η. The

same process can now be employed for the pre-stressed rod, starting with the known dispersion

relation for the lossless stiff string, and noting that for strings used in musical instruments, the

effects of tension largely dominate those of bending stiffness:

s = j
√
c2β2 + κ2β4 = jcβ

√
1 +

EI0
T

β2 (3.17a)

E → (1 + jη)E ⇒ s = jcβ

√
1 + (1 + jη)

EI0
T

β2

≈ jcβ

(
1 + (1 + jη)

EI0
2T

β2

)
(3.17b)

The decay rate σ(ω) = Re(s) and Q-factor Qv follow as:

σ ≈ −ηc
EI0
2T

β3 ⇒ 1

Qv
≈ ηc

EI0β
3

Tω
(3.18)

The frequency dependence of Qv can be recovered from the dispersion relation β(ω), given by

the imaginary part of (3.17b). The real part of the corresponding mechanical impedance per

unit length is given by (3.6):

Re (Zv(jω)) ≈
ηEI0
c

(β (ω))
3

(3.19)

In [113], it is assumed that the tension is large enough that the dispersion relation is that of

the ideal string (ω = cβ), leading to Q−1
v ∝ ω2 and Zv ∝ ω3. The value of the dimensionless

parameter η is undetermined; it depends on the string material, and fitting Qv to experimental

data yields values in the order of 10−3 [98].

3.2.4 Thermoelasticity

The third source of energy dissipation in linear strings is linked to the thermoelasticity of the

string material. The bending strain to which a string element is subjected causes compression

and/or expansion of the string material, leading to temperature variations across the cross-

section, as per the piezocaloric effect [64, pp. 290-291]. Over time, as seen in Figure 3.2, heat

.......

Figure 3.2: Stiff string element sustaining a bending strain. The compressed part (in red) heats up,
the expanded part (in blue) cools down. The large red arrows represent heat conduction from warmer
to cooler areas; the smaller arrows, pointing downwards, represent heat conduction from the string
surface into the air.
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is conducted from the hotter (compressed) part of the string element to the cooler (expanded)

part; mechanical energy from the string motion is converted to heat, which is then irreversibly

diffused within the string material, and eventually into the air. The analysis of thermoelastic

damping in linear strings relies on comparing the rate at which heat is generated (i.e., the

frequency of the string vibrations) with the rate at which it is conducted across the string

diameter.

On the one hand, low frequency (i.e., large wavelength) string vibrations do not involve sharp

deformations of the string. The compression and expansion of the string material therefore

generate very little heat. This small amount of heat is conducted over distances smaller than

the string diameter. The thermal diffusivity of the string material is large, allowing heat to

quickly transfer from compressed to expanded areas. Since the vibration frequency is low,

this transfer is fast enough that a string element has time to reach thermal equilibrium again

before it is bent in the opposite direction. The process can be considered isothermal, and only

minimal mechanical energy is converted to internal energy of the string material (and therefore

dissipated).

On the other hand, high frequency (i.e., small wavelength) oscillations involve greater

compression and expansion, and therefore larger amounts of generated heat. Since the string

material sustains strains changing at much faster rates, the conduction process is too slow to be

able to transfer heat from compressed to expanded areas before the local strains are reversed.

The heat generated by compression is quickly dissipated when the string material is expanded

again, without diffusion having taken place; the process can be considered adiabatic. Again,

only a marginal amount of energy is dissipated.

Thermoelastic damping is therefore critical when heat conduction across the string’s cross-

section happens at similar time scales as the mechanical oscillations. Around such frequencies,

the process is neither isothermal nor adiabatic, meaning that significant amounts of energy are

dissipated through thermal processes. The string cannot reach thermal equilibrium before more

heat is generated by compression of part of the string element, and heat builds up inside the

string. The surplus heat is conducted towards the surface of the string, and dissipated into the

air, assuming a constant room temperature is maintained.

Since thermoelasticity introduces a small correction over a limited frequency range, Valette

and Cuesta chose to approximate the corresponding Q-factor Qt as a constant, to be determined

by fitting measurement data [113]. As will be discussed in the next subsection, this choice

leads to a correction in the mid-frequency range, where neither air viscosity nor viscoelasticity

dominate. The real part of the corresponding mechanical impedance per unit length Zt(jω) is

given by (3.6):

Re (Zt (jω)) =
ρSω

Qt
∝ ω (3.20)

3.2.5 Summary

Three damping mechanisms have been considered, each dissipating energy differently across the

range of vibration frequencies important for musical use: air viscosity, as well as viscoelasticity
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Figure 3.3: Left: impedances (real part) as a function of frequency, as derived in [113], with
contributions from: air viscosity (in green); viscoelasticity (in red); thermoelasticity (in orange); all
three phenomena (in brown). Right: Q-factors as a function of frequency, with contributions from: air
viscosity (in green); viscoelasticity (in red); both air viscosity and viscoelasticity (in orange); all three
phenomena (in brown). — Parameters: see Cello D string on page xxix. The two unknown parameters
were adjusted to Qt = 18, 000, ζv = 0.003 [113].

and thermoelasticity of the string material. Expressions for the real parts of the mechanical

impedances associated with each phenomenon can be derived (or conjectured) as a function of

frequency. Each process brings about a different force, all acting together to oppose the string

velocity; the total equivalent mechanical impedance is the sum of those associated with each

mechanism. This corresponds to a connection of impedances in series, or conversely, a structure

of admittances in parallel. The real part of the total theoretical mechanical impedance per unit

length Zth(jω), and the overall Q-factor Qth, are given by:

Re (Zth) = Re (Za) + Re (Zv) + Re (Zt) (3.21a)

1

Qth
=

1

Qa
+

1

Qv
+

1

Qt
(3.21b)

Figure 3.3 shows the Q-factor and real part of the impedance per unit length associated with

each mechanism, as derived in [113], as well as the total Re (Zth(jω)) and Qth, as a function of

frequency.

It may be worth clarifying how a constant Qt for thermoelasticity can bring about a

correction on the total Qth only when neither of the two other terms dominate. The profile of

Qth where Qt is or isn’t taken into account is illustrated on the right hand side of Figure 3.3,

respectively by the brown and orange curves. The corresponding expressions are respectively

given by:

Q
(a,v)
th ≜ QaQv

Qa +Qv
(3.22a)
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Q
(a,v,t)
th ≜ QaQvQt

QaQv +QaQt +QvQt

=
QaQv

QaQv

Qt
+Qa +Qv

≈ Q
(a,v)
th iff

QaQv

Qt
≪ 1 ⇒ QaQv ≪ Qt (3.22b)

When either Qa or Qv is small, i.e. when losses through air viscosity or viscoelasticity are

large, the total Q-factor is approximately unchanged whether or not Qt is taken into account.

Introducing a large, constant Qt therefore brings about significant changes in the total Qth

in the mid-frequency range, where other damping processes do not have much effect. This is

evident in Figure 3.3, where the brown and orange curves merge on the lower and higher end

of the frequency spectrum.

Various approaches can now be sought to transfer the established frequency-domain loss

profile into the time domain, in order to realise time-stepping simulations. The following

Section 3.3 outlines the methodology and conditions that enable such transfer.

3.3 Frequency-dependent loss in the time domain: frame-

work, principles, and past models

3.3.1 Characteristic equation

Suppose one seeks to introduce energy dissipation into the time-domain stiff string model

presented in Section 2.1.2. In the Laplace domain, this is equivalent to introducing a non-zero

real part to the complex frequency s. This is the starting point for the design of a FD algorithm;

a system of PDEs in time and space is obtained by transferring a proposed characteristic

equation in terms of s and β, designed to introduce frequency-dependent damping, back into

the time domain.

To this end, consider the following characteristic equation, obtained by adding a term to

that of the lossless stiff string (3.1):

ρSs2 + Tβ2 + EI0β
4 + sZχ(s) = 0 (3.23)

where Zχ(s) can be interpreted as a complex impedance, function of the complex temporal

frequency s, and of a set of scalar parameters as elements of a vector χ7,. This Laplace-domain

formulation originates from passive network synthesis theory [62], which seeks to design an

electrical network of passive elements from a given frequency-domain transfer function. Here,

Zχ(s) represents the driving-point impedance (or input impedance) of such networks [62, p. 15].

This approach is particularly relevant when considering the mechanical-electrical analogies.

The dynamics of a mechanical system, as well as those of an electrical network, can be described

7Note that, as mentioned in Section 3.2.1, the expression for Zχ(s) may involve the frequency-dependent
wavenumber β(s).
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with an effort variable (force, voltage) and a flow variable (velocity, current). Each passive

electrical element (resistor, capacitor, inductor) has a lumped mechanical equivalent (damper,

spring, mass). In the system described by (3.23), a passive, one-port mass-spring-damper

network is driven by the force and velocity of each string element; as such, energy is drawn

from the string motion and dissipated into the network, characterised by a given frequency-

dependent input impedance.

It is not guaranteed that an arbitrary form for Zχ will not only yield a definite passive (or

dissipative) system, but also one that is realisable with a finite number of lumped elements

(electrical or mechanical). Network synthesis pioneers [38, 15, 14] have established a set of

conditions on the form of a driving-point impedance, such that the corresponding network

is passive and realisable; Sections 3.3.2 and 3.3.3 review these conditions, to narrow down

candidate functions for Zχ(s).

3.3.2 Condition for passivity

The proposed system must be passive, or dissipative; all solutions for the transverse displace-

ment of the string must decay over time, in the absence of forcing terms. This is to say that

all solutions of Equation (3.23) must satisfy Re(s) = σ ⩽ 0, for all frequencies ω ∈ R⩾0 and

wavenumbers β ∈ R⩾0.

A condition on Zχ such that this is verified is that of positive-realness, first established by

Cauer [15]. An arbitrary impedance Z(s) is positive-real if and only if:Re(s) > 0 ⇒ Re (Z(s)) ⩾ 0 , and

Im(s) = 0 ⇒ Im (Z(s)) = 0
(3.24)

It is straightforward to show that this condition is sufficient to ensure that all solutions of (3.23)

are decaying, by showing that no solutions exist where σ > 0. Dividing (3.23) by s and

examining the real part of the resulting equation yields:

σ

(
ρS +

Tβ2 + EI0β
4

σ2 + ω2

)
︸ ︷︷ ︸

>0

+ Re (Zχ(s))︸ ︷︷ ︸
⩾0 when σ>0,

by (3.24)

= 0 (3.25)

Equation (3.25) has no solutions when σ > 0; the system is therefore passive when Zχ is

positive-real.

3.3.3 Condition for realisability

Brune [14] restricted the definition of positive-real functions to rational functions of s. He

showed that this new condition is both necessary and sufficient to ensure that the proposed

driving-point impedance is realisable with a one-port network of a finite number of ideal

elements, and therefore describable with a system of ordinary differential equations. Indeed,

such a positive-real function of s (as defined by Brune, i.e. the ratio of two polynomials each
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verifying (3.24)) can be written as a continued or partial fraction expansion, allowing to realise

a simplified equivalent circuit8.

Clearly, the input impedance proposed to model stiff string damping does not fit Brune’s

definition of positive-realness, as it is not rational (hence not realisable). For instance, as seen

in Section 3.2.2, the impedance Za linked to air viscosity depends on
√
ω; a direct transfer

to the time domain of the corresponding characteristic equation (3.3) would require fractional

order differentiation in time.

This irrational representation is also encountered in the modelling of viscothermal wave

propagation in tubes, and can be dealt with in various ways; see, for example, [49, 51, 110, 9].

In particular, the approach used in [110, 9] is to propose an expression for the impedance as

a continued or partial fraction expansion, corresponding to a canonical ladder structure of the

Cauer or Foster types [15, 38], and to optimise the characteristics of each network component

to yield the best fit to the theoretical impedance profile. This strategy has yielded accurate

results for the particular problem of lossy wave propagation in brass instrument modelling, with

minimal computational cost; the rest of this Chapter will demonstrate that this method can be

successfully adapted for the string problem.

3.3.4 Existing models

Two earlier models were described in Section 3.1. The first, introduced by Ruiz [89], defines

the system as:

Zχ(s) = b1 − b3s
2 , b1, b3 ⩾ 0 (3.26a)

⇒ ρSs2 + Tβ2 + EI0β
4 + b1s− b3s

3 = 0 (3.26b)

⇒ ρS∂2
tw = T∂2

xw − EI0∂
4
xw − b1∂tw + b3∂

3
tw (3.26c)

In this case, Zχ(s) is not a positive-real function of s; and indeed, expanding s = σ + jω

in (3.26b) and examining the imaginary part of the result yields a quadratic in σ, one of the

roots of which is strictly positive for all frequencies. This means that there exist exponentially

growing solutions for w(x, t); the proposed system is not guaranteed passive.

The second approach, described by Bensa et al. [7], yields the following system:

Zχ(s) = b0 + β2(s)b′0 , b0, b
′
0 ⩾ 0 (3.27a)

⇒ ρSs2 + Tβ2 + EI0β
4 + b0s+ b′0sβ

2 = 0 (3.27b)

⇒ ρS∂2
tw = T∂2

xw − EI0∂
4
xw − b0∂tw + b′0∂t∂

2
xw (3.27c)

where Zχ(s) is now positive-real. The imaginary part of (3.27b) yields a single, negative solution

8The reader is referred to [48] for a detailed review of network synthesis methods developed in the first half
of the 20th century.
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σ =
−Zχ

2ρS , where the expression for β2 can be recovered from the real part of (3.27b):

ρS
(
σ2 − ω2

)
+ b0σ + (T + b′0σ)β

2 + EI0β
4 = 0 (3.28)

Assuming losses are small, the dispersion relation reduces to that derived for the lossless stiff

string (3.1):

σ2 ≪ 1 , b0σ ≪ 1 , b′0σ ≪ 1

⇒ − ρSω2 + Tβ2 + EI0β
4 ≈ 0

⇒ β (ω) ≈

√√
c4 + 4κ2ω2 − c2

2κ2
(3.29)

This is simply to say that losses are considered small enough that they do not introduce any

further inharmonicity. Since all solutions for w(x, t) are decaying, this model is guaranteed

passive.

Although this model does yield frequency-dependent decay times, it is clearly not sufficient

for accurate modelling, since the dependency of Zχ on s (through β) does not correspond to

that of Zth.

3.3.5 Approximating the impedance with Foster structures

Consider the following form for Zχ(s), extrapolated from the Bensa model [7] presented in

Section 3.3.4:

Zχ(s) ≜ Γ(s) + β2Ξ(s) (3.30)

where Γ(s) and Ξ(s) are defined as corresponding to the driving-point impedance9 of a canonical

Foster structure of the second type [38], as illustrated in Figure 3.4:

Γ(s) ≜
M∑
q=1

bqs

s+ aq
≜

M∑
q=1

Γq(s) , Ξ(s) ≜
M ′∑
q′=1

b′q′s

s+ a′q′
≜

M ′∑
q′=1

Ξq′(s) , bq, aq, b
′
q′ , a

′
q′ > 0

(3.31)

where the notation Γq is set to designate the qth term of the sum in Γ, likewise for Ξq′ . The

coefficients a1, a
′
1 can be made zero to introduce a frequency-independent term. The forms

given in (3.31) lead to the following characteristic Laplace polynomial:

ρSs2 + Tβ2 + EI0β
4 + s

M∑
q=1

bqs

s+ aq
+ sβ2

M ′∑
q′=1

b′q′s

s+ a′q′
= 0 (3.32)

The corresponding time-domain system of PDEs is given by:

9Note that, because of the factor β2, Ξ(s) has dimensions of impedance per unit area.
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b1
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b2
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b2/a2

....

b3

..

b3/a3

....

bM

..

bM/aM

..

Figure 3.4: One-port Foster structure of the second type, corresponding to the driving point
impedance Γ(s) given in (3.31), with a1 = 0. The symbol .. represents a resistance, while ..

is an inductance.

Lw = −
M∑
q=1

bq∂tγq +

M ′∑
q′=1

b′q∂t∂
2
xξq (3.33a)

∂tγq = ∂tw − aqγq , q = 1, ...,M (3.33b)

∂tξq′ = ∂tw − a′q′ξq′ , q′ = 1, ...,M ′ (3.33c)

where the linear differential operator L is defined in (2.26), and each γq(x, t) and ξq′(x, t) is

defined over the same spatio-temporal domain as w(x, t).

As it stands, this model seeks to approximate the total losses with Γ and Ξ, by optimising

the set of free parameters bq, aq, b
′
q′ , a

′
q′ to best fit the reference loss profile. The free parameters

are the elements of the vector χ, defined as:

χ ≜ [b1, ..., bM , a1, ..., aM , b′1, ..., b
′
M ′ , a′1, ..., a

′
M ′ ]

T
(3.34)

Figure 3.5 displays the real part of an arbitrary term Γq(jω) (left) and β2Ξq′(jω) (right), taken

along the imaginary axis. Neither of their profiles can correspond, in isolation, to that of the

real part of Zth(jω), shown in Figure 3.3; a close fit to the theoretical model will hence require

employing a number of these terms, in smaller or larger quantity, depending on the required fit

quality.

3.4 Optimising the approximations

An expression for an approximated impedance Zχ(s) was proposed in Section 3.3.5 (see (3.30)),

as a function of the collection of free parameters given by the elements of χ, defined in (3.34).

There are (at least) two equivalent ways to approach the optimisation problem. The real

part of the impedance Zχ can be fitted directly to that of the theoretical impedance Zth, along

the imaginary axis (s = jω). Indeed, Re (Zχ(jω)) has a closed-form expression, given by a sum

of functions of the free parameters, mostly uncoupled from each other.

Another approach arises from the fact that, as previously discussed, the modelling of strings

10See comment at the end of Section 3.1; the validity of using the lossless dispersion relation will be
demonstrated in Section 3.4.2.iii.
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Figure 3.5: Real part of Γq(jω) (left, in red) and β2Ξq′(jω) (right, in blue), as a function of frequency,
for a range of aq, bq, a

′
q′ , b

′
q′ values. The dispersion relation β(ω) is that of a lossless string10. —

Parameters: see Cello D string on page xxix. The free parameters are logarithmically spaced, taking
values within the following ranges: bq = 10−5—10−2, aq = 50—104, b′q′ = 10−5—10−3, and a′

q′ = 500—

2 × 105. For reference, each aq-bq pair is indicated on the left plot, by a dot on each corresponding
curve; note that bq plays the role of a gain factor, while aq can be interpreted as a cutoff frequency.

for musical instruments is concerned with solutions on the s-plane that are very near the

imaginary axis (as σ = Re(s) is small). The characteristic equation (3.32) is a (M +M ′ + 2)th

degree polynomial in s, and, as per (3.25), all its roots are on the left half-plane. Only one

of them is of interest, for which the real part σ ≪ 1; as will be seen in Section 3.4.2, this

assumption allows to neglect high-order terms in σ, and to find a closed-form solution for the

decay rate. This solution can finally be used to fit Qχ to the theoretical decay profile Qth.

As will be seen in the next paragraph, both approaches lead to the same optimisation

problem.

3.4.1 Fitting to the impedance Zth

The real part of the approximated impedance Zχ is taken along the imaginary axis, by

substituting s = jω into (3.30):

Zχ(jω) =
M∑
q=1

jωbq(aq − jω)

a2q + ω2
+ β2

M ′∑
q′=1

jωb′q′(a
′
q′ − jω)

a′q′
2 + ω2

⇒ Re (Zχ(jω)) = ω2
M∑
q=1

bq
a2q + ω2

+ ω2β2
M ′∑
q′=1

b′q′

a′q′
2 + ω2

(3.35)

where β(ω) can be derived from the real part of the characteristic polynomial (3.32); assuming

losses are small, as will be shown in Section 3.4.2.iii, the expression for the dispersion relation
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β (ω) reduces to that of the lossless stiff string, meaning that losses do not affect the modal

frequencies and wavenumbers.

Expression (3.35) can be fit against the theoretical profile given by (3.21a), and illustrated

in Figure 3.3.

3.4.2 Fitting to the decay rate σth

3.4.2.i General expression for σ(ω)

The imaginary part of the characteristic polynomial (3.32) is given by:

2ρSσ +
M∑
q=1

bq
(
σ2 + σaq + ω2

)
(σ + aq)

2
+ ω2

+ β2
M ′∑
q′=1

b′q′
(
σ2 + σa′q′ + ω2

)
(σ + a′q′)

2 + ω2
= 0 (3.36)

where (3.5) was used. This is a (M+M ′+1)th degree polynomial in σ, with as many roots in the

complex plane. A root finding algorithm can be used to directly obtain all the roots of (3.36), in

terms of ω; however, the lack of a closed-form solution leads to a difficult optimisation problem

with regards to a fit of σ(ω) to the theoretical loss profile σth(ω). A closed-form approximation

to σ(ω) can still be derived, guided by previous assumptions.

3.4.2.ii Approximation of σ(ω) for lightly damped strings

As touched upon in the introduction of this Section 3.4, a number of assumptions are made

in the context of lightly damped strings, all related to the relative magnitude of σ and ω. As

previously discussed, the positive-real impedance Zχ(s) leads to solutions for s lying on the

left half-s-plane; in particular, those that lie near the real axis will be of interest, for which

Re(s) ≪ Im(s). This is to say that the quality factors Q = −ω
2σ of the string transverse modes

are large.

Additionally, the positive coefficients aq, q = 1, ...,M and a′q′ , q
′ = 1, ...,M ′ correspond to

the pole locations for Γ and Ξ; they have dimensions of frequency. The following first-order

approximations can therefore be made, leading to a simple closed-form solution for the small

negative root of (3.36):

− σ

aq
≪ 1 ⇒

(σ + aq)
2
= a2q

(
σ
aq

+ 1
)2

≈ a2q

σ2 + σaq + ω2 = a2q

(
σ2

a2
q
+ ω2

a2
q
+ σ

aq

)
≈ ω2

q = 1, ...,M

− σ

a′q′
≪ 1 ⇒


(
σ + a′q′

)2
= a′q′

2

(
σ
a′
q′

+ 1

)2

≈ a′q′
2

σ2 + σa′q′ + ω2 = a′q′
2

(
σ2

a′
q′

2 + ω2

a′
q′

2 + σ
a′
q′

)
≈ ω2

q′ = 1, ...,M ′

⇒ σ(ω) ≈ − 1

2ρS

ω2
M∑
q=1

bq
a2q + ω2

+ β2ω2
M ′∑
q′=1

b′q′

a′q′
2 + ω2

 (3.37)

The expression inside the brackets is indeed exactly Re (Zχ(jω)).
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3.4.2.iii Dispersion relation

The approximations made in Section 3.4.2.ii are of use for determining the dispersion relation

between the wavenumber β and the frequency ω, for the proposed system. The real part of the

characteristic polynomial (3.32) yields:

ρS
(
σ2 − ω2

)
+ Tβ2 + EI0β

4 +Re (sZχ(s)) = 0 (3.38)

where the real part of the impedance term sZχ(s) is given by:

Re (sZχ(s)) =
M∑
q=1

bq
aq
(
σ2 − ω2

)
+ σ

(
σ2 + ω2

)
(σ + aq)

2
+ ω2︸ ︷︷ ︸

Re(sΓ(s))

+β2
M ′∑
q′=1

b′q′
a′q′
(
σ2 − ω2

)
+ σ

(
σ2 + ω2

)(
σ + a′q′

)2
+ ω2︸ ︷︷ ︸

Re(sΞ(s))

(3.39)

The approximations derived above for small losses allow to simplify (3.39) to:

Re (sZχ(s)) ≈
M∑
q=1

bq (σ − aq)
ω2

a2q + ω2︸ ︷︷ ︸
∈[0,1]

+β2
M ′∑
q′=1

b′q′
(
σ − a′q′

) ω2

a′2q′ + ω2︸ ︷︷ ︸
∈[0,1]

(3.40)

Each term inside the sum therefore has, at most, a magnitude in the order of bqaq (or b′q′a
′
q′).

As discussed in 3.4.2.ii11, aq, a
′
q′ are distributed across the frequency spectrum, with values

hence ranging in the order of 102—105. The parameters bq, b
′
q′ can be interpreted as gain

factors; in the case where losses are small, their values range in the order of 10−5—10−2. The

products bqaq and b′q′a
′
q′ therefore take values typically in the order of unity.

An expression for the wavenumber βχ(ω) is derived, as in the lossless case, by solving (3.38)

as a quadratic in β2, neglecting the σ terms of degree 2 and above:

β2
χ(ω) ≈

√
(T +Re (sΞ (s)))

2
+ 4EI0 (ρSω2 − Re (sΓ (s)))− (T +Re (sΞ (s)))

2EI0
(3.41)

For strings used in musical instruments, the tension T takes values in the order of 102; this

means that the Re (sΞ (s)) term, in the order of 1 (as discussed above), only brings about a

relatively small correction to the tension term in the dispersion relation.

The bending stiffness term, on the other hand, may become dominated by Re (sΓ (s)) at

low frequencies, when ρSω2 is small. However, fortunately, the inharmonicity brought about by

this stiffness term only manifests itself significantly on the high end of the frequency spectrum;

as seen in the study of the lossless stiff string (see Section 2.1.2.iii), the tension term dominates

at low frequencies.

The expression for βχ(ω) for the lossy system is therefore only slightly different from β(ω) in

the lossless case. To better illustrate this point, Figure 3.6 shows the dispersion relations given

11This is easily verified with preliminary computations.
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Figure 3.6: Top: dispersion relation β(ω), as per (2.27) (in black) and (3.41) (in green), with

parameters as indicated in the text. Bottom: error ∆β ≜
∣∣∣β−βχ

β

∣∣∣, in percent. The corrections

brought by Zχ to the dispersion relation are minimal; the simplified relation (2.27) is a satisfactory
approximation to β(ω). — Parameters: see Cello D string on page xxix.

respectively by (3.41) (for σ = 0) and (2.27), plotted on the same (ω, β)-plane. The values of

the parameters χ are chosen conservatively, in order to illustrate a worst case scenario. There

are M = 8 terms in Γ(s), M ′ = 8 terms in Ξ(s); each aq, a
′
q′ takes exponentially spaced values

from 102—105; and finally, each bqaq and b′q′a
′
q′ product takes values exponentially ranging

from 0.5 to 5. As expected, for this conservative estimate, the error ∆β ≜
∣∣∣β−βχ

β

∣∣∣ does not

exceed a few percent; the lossless dispersion relation (2.27) may be used.

3.4.3 Validity of the approximations

The validity of the approximated expression (3.37) can be verified by comparing it to the actual

root σroot of (3.36), obtained with a root finding algorithm, for typical string parameters, with a

set of parameters χ inferred from preliminary computations. Figure 3.7 shows the superimposed

plots of the true root and its approximation, as a function of frequency, for a cello D string.

The relative error between the two values is given by:

∆σ ≜
∣∣∣∣σroot − σ

σroot

∣∣∣∣ (3.42)

Figure 3.7 shows that the root and the first order approximation are extremely close to one

another over the frequency range of interest, differing at most by 0.1% at low frequencies. The

closed form (3.37) is therefore considered a very reliable approximation, and can safely be used
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for optimisation. As a sum of relatively simple and mostly decoupled terms, (3.37) is well-suited

to gradient-based optimisation methods.

3.4.4 Optimisation

The set of parameters χ is optimised so that Qχ(ω,χ) best fits the theoretical Q-factor

profile Qth(ω), over Nω exponentially spaced frequency bins, ranging from fmin = 10Hz to

fmax = 20kHz; for the results presented here, Nω = 500. An optimisation routine seeks to

minimise the least-squares cost function E(χ), defined as:

E(χ) ≜
Nω∑
i=1

(
Qχ (ωi,χ)−Qth (ωi)

Qth (ωi)

)2

(3.43)

A combination of gradient descent and Newton’s method is employed for optimal convergence,

in the form of the Levenberg-Marquardt algorithm. Initial guesses are randomised around

10−4—10−2 for each bq, b
′
q′ , and across the frequency range for each aq, a

′
q′ (see Figure 3.5).

For a given string, Zχ(s) is defined with M and M ′ ranging from 1 to 8, and a1, a
′
1 = 0.

The resulting cost function, given by (3.43), is minimised, for each possible combination of Γ

and Ξ terms. Evidently, in general, increasing the number of terms in either Γ or Ξ yields a

closer fit; but every additional term will require the simulation of a supplementary state in the

time domain, and therefore lead to an incremental increase in computational cost and memory

requirements. The aim here, which will be further addressed in Section 3.6, is therefore to get

the best possible fit, with the fewest possible terms in Zχ.

It is of interest to present optimisation results for three strings exhibiting different loss

profiles: a violin A string, a cello D string, and a double bass A string. Figure 3.8 presents two

versions of the fitted Qχ(ω) and Re (Zχ(jω)) for each string, with the corresponding relative
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error ∆Q, defined as:

∆Q ≜
∣∣∣∣Qχ −Qth

Qth

∣∣∣∣ (3.44)

The impedance plot, on the RHS of each subfigure, also includes each individual Γq and β2Ξq′

term in the expression for Re (Zχ(jω)). For each string, two optimisation results are shown

next to one another:

� The first case shows Zχ chosen with the least number of terms yielding a fit deemed

acceptable. The arbitrary criterion for acceptability is set such that the relative error ∆Q

does not exceed 1% over the whole frequency range.

� The second case shows the closest fit obtained for Zχ, over all the possible combinations

of Γ and Ξ terms.

The first thing to note is that, beyond a certain number of terms, the optimisation algorithm

seems to find a better minimum for E (χ) by discarding surplus terms. This is why the best

fit obtained in this test (RHS figure for each string) does not correspond to that obtained with

M = 8 and M ′ = 8. Beyond a certain number of terms, the solver likely gets trapped in a

good local minimum; perhaps more optimal initial guesses would result in a more accurate

fit. However, each additional branch of Zχ resulting in increased computational cost, it is

not deemed necessary to seek a fit with error smaller than 0.01%. Section 3.6 will provide an

analysis of the time-domain simulated results as a function of the fit quality.

The violin string has a maximum Q-factor around 4 kHz; that of the double bass A string

peaks around 250 Hz. One can expect that the best fit may be achieved with a different

proportion of Γ and Ξ terms for the two different strings; and indeed, this is confirmed by

observing the fitting results. The violin string requires all 8 addends of Γ(s)12, but only 3 terms

for Ξ(s), while the double bass string requires all 8 terms of Ξ but only 7 terms for Γ. This is

simply due to the two-part nature of the impedance curve; it is straightforward to see that the

relative proportion of Γ and Ξ terms required to obtain the best possible fit is directly related

to the location of the inflexion point of the impedance curve within the frequency range.

These qualitative observations help to inform the choice of parameter space and initial

guesses for the optimisation algorithm, for a given string with known loss profile. Once the set

of free parameters χ has been determined, the time-domain system of PDEs can be solved with

the help of carefully designed FD schemes, as will be presented in the next Section 3.5.

12The fit could likely have improved further by adding more terms to Γ; the limit of 8 terms was chosen
arbitrarily, in order to somewhat balance the quality of the fit with the eventual computational cost.
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3.5 Space-time domain system

3.5.1 The infinite string

Recall the time-domain system of PDEs describing the linear stiff string with damping, given

in Section 3.3.5:

Lw = −
M∑
q=1

bq∂tγq +

M ′∑
q′=1

b′q′∂t∂
2
xξq′ (3.33a)

∂tγq = ∂tw − aqγq , q = 1, ...,M (3.33b)

∂tξq′ = ∂tw − a′q′ξq′ , q′ = 1, ...,M ′ (3.33c)

For the sake of compactness, System (3.33) can be written in matrix-vector form, as follows:

Lu = 0 (3.46)

where u is a column vector, with 1 +M +M ′ elements, defined by:

u ≜
[

w γ1 · · · γM ξ1 · · · ξM ′

]T
(3.47)

The elements of the matrix L are partial linear differential operators:

L ≜



L · · · bq∂t · · · · · · −b′q′∂t∂
2
x · · ·

...
. . . 0

bq∂t −bq (∂t + aq) 0M×M ′

... 0
. . .

...
. . . 0

−b′q′∂t∂
2
x 0M ′×M b′q′∂

2
x (∂t + aq)

... 0
. . .



}
1
M


M ′

(3.48)

where L is defined in (2.26). Note that this symmetrical form is obtained after differentiating

Equation (3.33c) twice with respect to x and inverting its sign; the benefit of doing this is

apparent when computing the energy balance equation for the system.

For now, let the string be unbounded, defined over x ∈ R and t ∈ R⩾0. The energy balance



70 3.5 Space-time domain system

is retrieved by left-multiplying (3.46) by (∂tu)
T
and integrating over x ∈ R, leading to:∫

R

(∂tu)
T
Lu dx = 0

⇒ Ḣw = −Qw (3.49)

Hw ≜ Hw,s +Hw,γ +Hw,ξ Qw ≜ Qw,γ +Qw,ξ

where Hw,s is defined by (2.28), and two new energy terms appear, in terms of all the γq(x, t)

and ξq′(x, t):

Hw,γ(t) ≜
1

2

M∑
q=1

bqaq ∥γq∥2 ⩾ 0 (3.50a)

Hw,ξ(t) ≜
1

2

M ′∑
q′=1

b′q′a
′
q′ ∥∂xξq′∥

2 ⩾ 0 (3.50b)

where the norm is defined over the real line, that is ∥·∥ = ∥·∥R. The RHS of the energy balance

equation (3.49) accounts for the power dissipated by the damping processes:

Qw,γ(t) ≜
M∑
q=1

bq ∥∂tγq∥2 ⩾ 0 (3.51a)

Qw,ξ(t) ≜
M ′∑
q′=1

b′q′
∥∥∂t∂xξ′q′∥∥2 ⩾ 0 (3.51b)

All the power terms are positive, hence −Qw(t) is negative; by (3.49), the total energy Hw(t)

is decreasing over time.

3.5.2 Boundary conditions

Bounding the string to a finite spatial domain such that x ∈ D = [0, L] (as defined in

Section 2.1.1.v) introduces boundary terms in the energy balance. As for the lossless string,

the expressions for energy and power terms are mostly unchanged, save for the redefinition of

the norm over D from that over R, that is ∥·∥ = ∥·∥D (see Section 2.1.1.v). The energy balance

becomes:

Ḣw = −Qw +Bw (3.52)

where the boundary terms Bw(t) are given by:

Bw ≜ T ∂tw ∂xw
∣∣∣L
0
− EI0

(
∂tw ∂3

xw
∣∣∣L
0
− ∂t∂xw ∂2

xw
∣∣∣L
0

)
+

M ′∑
q′=1

b′q′∂tw ∂t∂xξq′
∣∣∣L
0

(3.53)
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The simply supported boundary conditions (2.31a) still allow all the boundary terms to vanish,

yielding Bw(t) = 0; no further boundary conditions are required on any of the states γq and

ξq′ .

3.6 Time-domain simulations

3.6.1 An interleaved FD scheme

The dependent variables w(x, t), γq(x, t), and ξq′(x, t) are all discretised into grid functions,

with a fixed time step k and grid spacing h; each of the new states γq(x, t) and ξq′(x, t) is

discretised onto the same spatial grid as w(x, t) (see Section 2.2), over a given finite or infinite

spatial domain. Moreover, let the new discrete states be defined at time step n − 1/2, n ∈ N,
that is half a time step away from wn. This half-step shift between the temporal grids of both

discrete state variables characterises the proposed FD scheme as time-interleaved.

Consider the following implicit finite difference scheme, in term of the state vectors wn,

γ
n−1/2
q , ξ

n−1/2
q′ thus defined (with arbitrary dimension):

ρSδttw
n = Tδxxw

n − EI0δxxxxw
n −

M∑
q=1

bqδt+γ
n−1/2
q +

M ′∑
q′=1

b′q′δt+δxxξ
n−1/2
q′ (3.54a)

δt+γ
n−1/2
q = δt·w

n − aqµt+γ
n−1/2
q , q = 1, ...,M (3.54b)

δt+ξ
n−1/2
q′ = δt·w

n − a′q′µt+ξ
n−1/2
q′ , q′ = 1, ...,M ′ (3.54c)

The time averaging operator µt+ in (3.54b) and (3.54c) is used to approximate identity, in order

to ensure the stability of the scheme, as will be demonstrated in Section 3.6.3.

3.6.2 Boundary conditions and matrix form

When restricting the problem to a finite spatial domain D, it was shown in Section 3.5.2 that in

the continuous case, there is no requirement to impose further boundary conditions on any state

γq or ξq′ to obtain the final energy balance equation. Indeed, all the new boundary terms arising

for the lossy string can be written as the product of two terms evaluated at the boundaries,

one of which is already made to vanish by the conditions imposed on w(x, t).

In the case of a discrete finite domain D, with ND+1 grid points, it is immediately apparent,

by inspection of (3.54), that the boundary terms brought about by the summation by parts

required to obtain a numerical energy balance will vanish with the discrete boundary conditions

given by (2.85).

Furthermore, by (3.54b) and (3.54c), under simply supported conditions, the value of each

state γ
n−1/2
q,l and ξ

n−1/2
q′,l at boundary points l = 0 and l = ND will decay monotonically over

time from its initial value. Indeed, for instance, expanding the operators in (3.54b) at the left
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boundary point l = 0 yields, for any state γ
n−1/2
q,l :

δt+γ
n−1/2
q,0 = −aqµt+γ

n−1/2
q,0 ⇒ γ

n+1/2
q,0 =

2− aqk

2 + aqk
γ
n−1/2
q,0 ⇒

∣∣∣γn+1/2
q,0

∣∣∣ < ∣∣∣γn−1/2
q,0

∣∣∣
(3.55)

Initialising boundary grid values to zero for all states is enough to ensure that the first and last

elements of each γ
n−1/2
q and ξ

n−1/2
q′ remain zero at all times.

The FD scheme (3.54) can therefore be written directly in matrix-vector form, in terms of

a discrete state vector un, with (1 + M + M ′)N elements13, accounting for the full state of

the system at the current time step. This vector is the discrete counterpart of u, and contains

the truncated state vector wn, defined by (2.69), as well as the truncated γ
n−1/2
q and ξ

n−1/2
q′

14,

defined as:

γn−1/2
q ≜

[
γ
n−1/2
q,1 , γ

n−1/2
q,2 , ..., γ

n−1/2
q,N

]T
, q = 1, ...,M (3.56a)

ξ
n−1/2
q′ ≜

[
ξ
n−1/2
q′,1 , ξ

n−1/2
q′,2 , ..., ξ

n−1/2
q′,N

]T
, q′ = 1, ...,M ′ (3.56b)

The vector un is thus defined following the structure of the continuous vector u, given by (3.47):

un ≜
[

wnT γ
n−1/2
1

T
· · · γ

n−1/2
M

T
ξ
n−1/2
1

T
· · · ξ

n−1/2
M ′

T
]T

(3.57)

A finite difference scheme for System (3.46) may thus take the form:

Lun = 0 (3.58)

where the (1+M+M ′)N×(1+M+M ′)N square matrix L is a discretisation of the continuous L

13Recall, from Section 2.2.4.iii, that N ≜ ND − 1 is defined as the number of elements in the state vector wn

truncated from its first and last elements.

14The temporal FD operators employed on the γ
n−1/2
q and ξ

n−1/2
q′ grid functions only span two time steps.

The unknown system state at a future time step is defined as un+1, and is comprised of wn+1, γ
n+1/2
q , and

ξ
n+1/2
q′ , all computed simultaneously.
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defined in (3.48), where the partial derivatives are substituted for appropriate FD operators15:

L ≜



L · · · bqIδt+ · · · · · · −b′q′Dxxδt+ · · ·

...
. . . 0

bqIδt· −bqI (δt+ + aqµt+) 0MN×M ′N

... 0
. . .

...
. . . 0

−b′q′Dxxδt· 0M ′N×MN b′q′Dxx

(
δt+ + a′q′µt+

)
... 0

. . .



}
N
MN


M ′N

(3.59)

where L is that defined by (2.82), where the spatial operators are written in matrix form:

L ≜ ρSIδtt − TDxx + EI0Dxxxx (3.60)

and, as before, I is the N ×N identity matrix.

3.6.3 Energy analysis and stability condition

Let a discrete velocity vector vn be defined as:

vn ≜
[

δt·w
nT δt+γ

n−1/2
1

T
· · · δt+γ

n−1/2
M

T
δt+ξ

n−1/2
1

T
· · · δt+ξ

n−1/2
M ′

T
]T

(3.61)

Pre-multiplying Equation (3.58) by (hvn)
T
yields the following discrete power balance16:

δt−H
n
w = −Qn

w (3.62)

Hn
w ≜ Hn

w,s +Hn
w,γ +Hn

w,ξ Qn
w ≜ Qn

w,γ +Qn
w,ξ

where Hn
w,s is the energy function characterising the lossless stiff string, defined by (2.84b). The

remaining terms are defined as:

Hn
w,γ ≜ h

2

M∑
q=1

bqaq

∣∣∣γn+1/2
q

∣∣∣2 ⩾ 0 (3.63a)

15Spatial FD operators are written in matrix form, using the forms derived in Section 2.2.4.iii and 2.2.5.iii
for simply supported boundary conditions.

16Note that, e.g., δt+γ
n−1/2
q = δt−γ

n+1/2
q .
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Hn
w,ξ ≜ h

2

M ′∑
q′=1

b′q′a
′
q′

∣∣∣Dx−ξ
n+1/2
q′

∣∣∣2 ⩾ 0 (3.63b)

Qn
w,γ ≜ h

M∑
q=1

bq

∣∣∣δt+γn−1/2
q

∣∣∣2 ⩾ 0 (3.63c)

Qn
w,ξ ≜ h

M ′∑
q′=1

b′q′
∣∣∣δt+Dx−ξ

n−1/2
q′

∣∣∣2 ⩾ 0 (3.63d)

Since, by definition, Hn
w,γ ,H

n
w,ξ ⩾ 0, the total energy Hn

w is positive under the same conditions

as for the lossless case; the stability condition for Scheme (3.54) is the same as that of the

lossless string, given by (2.91).

As −Qn
w ⩽ 0, the discrete energy is decreasing over time.

3.6.4 Scheme update

Scheme (3.58) may be rearranged into an implicit recurrence:

L+un+1 = L0un + L−un−1 (3.64)

where the matrices L+, L0, and L− are obtained by expanding the temporal FD operators

in (3.59), directly leading to:

L+ ≜



ρS
k2 I · · · bq

k I · · · · · · −b′
q′

k Dxx · · ·

...
. . . 0

bq
2k I − bq

2k (2 + aqk)I 0MN×M ′N

... 0
. . .

...
. . . 0

− b′
q′

2k Dxx 0M ′N×MN
b′
q′

2k (2 + a′q′k)Dxx

... 0
. . .


(3.65a)
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L0 ≜



2ρS
k2 I+ TDxx − EI0Dxxxx · · · bq

k I · · · · · · −b′
q′

k Dxx · · ·

. . . 0

0MN×N − bq
2k (2− aqk)I 0MN×M ′N

0
. . .

. . . 0

0M ′N×N 0M ′N×MN
b′
q′

2k (2− a′q′k)Dxx

0
. . .


(3.65b)

L− ≜



−ρS
k2 I

...

bq
2k I

... 0((1+M+M ′)N)×((M+M ′)N)

...

− b′
q′

2k Dxx

...



(3.65c)

The update given by (3.64) therefore takes the form of a sparse linear system, which may be

solved efficiently without resorting to compute the inverse of the matrix L+. Through block

Gaussian elimination, System (3.64) may also easily be rearranged such that wn+1 is computed

semi-explicitly, in terms of un and un−1. The resulting update equation for wn+1 is given by:

Awn+1 =

[
B · · ·

(
1− 2−aq

2+aq

)
bq
k I · · · · · · −

(
1− 2−a′

q′

2+a′
q′

)
b′q
k Dxx · · ·

]
un +Cwn−1

(3.66)

where A, B, and C are the N ×N matrices given by:

A ≜ ρS

k2
I+

M∑
q=1

bq
k(2 + aqk)

I−
M ′∑
q′=1

b′q′

k(2 + a′q′k)
Dxx (3.67a)

B ≜ 2ρS

k2
I+ TDxx − EI0Dxxxx (3.67b)
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C ≜ A− 2ρS

k2
I (3.67c)

This form will be particularly relevant in Chapter 4, and indeed essential to resolve the scheme

update when nonlinear bowing excitation is introduced in the model.

3.7 Simulation results and analysis

3.7.1 Reproduction of the theoretical Q-factors

It was seen in Section 3.4 that the number of terms in both Γ(s) and Ξ(s) could be chosen to

yield a better fit of the Q-factor to its theoretical value Qth. Evidently, each new term added

in either Γ or Ξ requires solving for a new state γn
q or ξnq′ in the time domain. It is therefore

in one’s best interest to evaluate the sensitivity of the simulation results to the quality of the

Q-factor fit.

It is not straightforward to quantify how the number of terms in the continuous-domain

impedance function will play a role in the simulated frequency-domain loss profile in the different

schemes. In order to test this, time-domain simulations of the violin A string, cello D string,

and double bass A string presented in Section 3.4 are performed with the scheme presented in

Section 3.6. For each of the three strings, 10 simulations are performed for both M,M ′ pairs

corresponding to the optimisation results presented in Figure 3.8. Each of the 10 simulations

for all six cases is initiated with a different, randomised initial displacement, and zero initial

velocity. In each case, the temporal evolution of modal amplitudes is extracted from the time-

domain signals, using an FFT algorithm with a sliding temporal window. The measured peak

amplitudes are then plotted against logarithmic time, for all 10 waveforms. The decay rate and

Q-factor of a given transverse mode are finally computed by performing a linear regression on

the corresponding modal decay curve, each comprised of the collected data points from all 10

simulations.

Figure 3.9 presents the Q-factors measured on simulated waveforms, with the method

outlined above, for each string, with both the (M,M ′) pair yielding a Q-factor fit with 1%

error over the frequency range, and the (M,M ′) pair yielding the closest possible fit. The

measured Q-factors are displayed on top of the theoretical profile Qth, given by Cuesta and

Valette’s model [113].

At first glance, the simulated results seem to closely align to the desired output, most

importantly without noticeable difference between a large or small number of γ
n+1/2
q and ξ

n+1/2
q

states. Figure 3.10 shows three snapshots of a normalised time-domain output waveform for

each string, with randomised initial conditions, read out as the displacement of the string near

its termination. Each frame respectively starts at t = 0 s, t = 1 s, and t = 2 s; in each plot, the

two superimposed curves correspond to the simulated outputs with fewer or more states. In

each case, even after two seconds, the waveforms are almost indistinguishable from one another,

indicating that a larger number of terms in the impedance does not seem to have a significant

bearing on accuracy.
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Figure 3.9: Top: Q-factors computed from time-domain simulations, for the violin A string (left), the
cello D string (middle), and the double bass A string (right) presented in Section 3.4, superimposed
with the theoretical loss profile Qth (in grey). The orange crosses correspond to simulations performed

with the minimal number of γ
n+1/2
q , ξ

n+1/2

q′ yielding an acceptable fit (see Figure 3.8, left figures).
The green circles correspond to simulations performed with the best fit obtained for each string (see

Figure 3.8, right figures). Bottom: error ∆Q ≜
∣∣∣Qth−Qχ

Qth

∣∣∣, in percent. — Parameters: see page xxix;

Fs = 44.1 kHz.

To gain a more concrete understanding of the computational cost of using more or fewer

states, Table 3.1 summarises the times required to compute 1 second of output in MATLAB,

averaged over the 10 simulations performed for each case. Depending on the string, with

the implementation described in Section 3.6.4, employing fewer states yields a computational

speedup in the order of 30 to 40 %.

The lower plots in Figure 3.9 illustrate the relative error ∆Q ≜
∣∣∣Qth−Q

Qth

∣∣∣, in percent, between

the Q-factors measured on simulations and the corresponding theoretical value. The plots seems

to confirm, at least for the cello and double bass strings, that seeking a Q-factor fit in the
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Figure 3.10: Normalised time-domain output waveform computed for a violin A string (top), a cello
D string (middle), and a double bass A string (bottom). Three time frames are presented for each
string, starting respectively at initial time (left), 1 second later (middle), and 2 seconds later (right).
Each plot contains two waveforms, each corresponding to fewer or more impedance terms, colour-coded
as in Figure 3.9. — Parameters: see page xxix; Fs = 44.1 kHz.

continuous frequency domain with less than 1% error over the frequency range does not achieve

significantly better (or even different) results in the time-domain simulations.

The error ∆Q is larger, however, for modal frequencies above a few kHz; in particular, for

the violin string, ∆Q seems to approach 10% at the high end of the spectrum. Figure 3.11

provides a closer look at the Q-factor profile obtained for the violin string (see Figure 3.9, top

left). At high frequencies, the simulated Q-factors are systematically overestimated, regardless

of the number of γn
q and ξnq′ terms used. This indicates that the issue is not related to the

quality of the optimisation results; rather, it may have to do with the discretisation process.

Note that the drift becomes increasingly prominent with increasing frequency; it is likely fair

to assume that it would have shown on the double bass string plot, had the transverse modes

with frequency larger than 5 kHz had a large enough decay time to be reliably measured.

A clue as to the cause of this drift, and perhaps a starting point for future work, may be

found if the reader recalls the discrepancy, touched upon in Chapter 2, between the continuous

and discrete dispersion relations for the lossless stiff string. It was shown in Section 2.2.5.vi

that the discretisation of the continuous space-time domain PDEs into the chosen FD scheme
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Violin A Cello D Bass A

Fewer terms 1.49 s 4.24 s 9.68 s

Most terms 2.58 s 6.19 s 14.36 s

Speedup 42.2 % 31.5 % 32.6 %

Table 3.1: Computation times for 1 second of output (Fs = 44.1 kHz) in MATLAB, each averaged
over 10 simulation runs, with different randomised initial conditions. Substantial speedup is achieved
by employing fewer damping terms. — Parameters: see page xxix.
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Figure 3.11: Q-factors measured on simulations of a violin A string: detail.

inevitably brought about numerical dispersion, meaning that higher discrete modal frequencies

drifted further away from their continuous values. The observed high-frequency drift in Q-

factor values may very well arise from a similar issue. Indeed, the optimisation was performed

in the continuous frequency domain, assuming that the behaviour of the impedance, function

of ω and β along the imaginary axis, would hold after the discretisation of time and space;

this is not necessarily accurate. Improving the accuracy of the simulated results may require
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Figure 3.12: Top: total energy En for the cello D string (in black), sum of the stored energy Hn
w (in

orange) and the cumulated dissipated powers k
∑n

p=1 Q
p
w,γ (in pink) and k

∑n
p=1 Q

p
w,ξ (in light blue).

Bottom: normalised energy variations of En relative to H0
w. — Parameters: see Cello D string on

page xxix; Fs = 44.1 kHz, M = 4, M ′ = 3. The corresponding loss profile can be seen in Figure 3.9,
top centre plot.

refinement of the optimisation process in order to take the so-called warping of spatial and

temporal frequencies into account.

3.7.2 Discrete power balance and invariant quantity

Recall the discrete power balance (3.62) derived for the proposed FD scheme (3.54):

δt−H
n
w = −Qn

w (3.62)

In Chapter 2, the absence of damping meant that Qn
w = 0, and thus the numerical energy

Hn
w = H0

w was conserved over time. This was readily verifiable by checking that the variations

of Hn
w did not exceed machine accuracy during the course of a simulation (see Sections 2.2.4.vii

and 2.2.5.vii).

With a numerical energy Hn
w now varying over time, a new invariant quantity En, with

dimensions of energy, may be defined as:

En ≜ Hn
w + k

n∑
p=1

Qp
w = H0

w (3.68)
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The relative variations of En are given by:

∆En ≜ En −H0
w

H0
w

(3.69)

Figure 3.12 illustrates the power balance during a simulation of a cello D string, with randomised

initial displacement (see Section 2.2.4.vii). Note that the form of En makes it difficult to

compute accurately in finite precision; despite variations in the order of floating point accuracy

(∆En ∼ 10−12), indicating that simulations produce the expected results, a trend is visible, as

the cumulated power seems to be systematically overestimated. A bitwise plot like those seen

in Chapter 2 (see Figures 2.11 and 2.14) would not be particularly telling here.

Concluding remarks

A method for reproducing frequency-dependent decay times in time-domain simulations of

transverse stiff string vibration has been established. The analysis of simulation results shows

good agreement with theoretical loss profiles, as established by Valette and Cuesta [113].

It is important to note that the proposed method is relatively independent of the charac-

teristics of the physical model used to represent damping processes. The optimisation of the

time-domain damping parameters, as demonstrated in Section 3.4, could well be done with

respect to a different theoretical model than that proposed in [113], or indeed directly with

respect to experimental measurements.

A solution has been proposed for the time-domain simulation of linear stiff strings with

realistic decay times, which is a perceptually important feature of the synthesised sound.

The results shown in this Chapter were obtained by initialising string displacements with a

randomised shape; this is evidently not a realistic setting, and the question of string excitation

logically arises as the next problem to tackle. The incorporation of excitation mechanisms into

the framework described in Chapters 2 and 3 will be the subject of Chapter 4.
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Chapter 4

Playing the string: a

two-polarisation bowed, stopped

string model

4.1 Interacting with a string

Chapter 3 describes a physical model for the transverse motion of a linear stiff string, including

frequency-dependent loss fitted to a theoretical profile, in order to closely match measurements

on real strings. A FD scheme is introduced to simulate the physical system, allowing to

reproduce the behaviour of a freely vibrating string, in one polarisation.

A wide variety of sounds can be produced with the same string, depending on how it

is excited, and how it interacts with its environment. In particular, this work is concerned

with bowing excitation, and seeks to design an algorithm capable of synthesising bowed string

gestures; in order to achieve this, the interaction of a string with the left hand of the player

and the fingerboard of the instrument must be included.

As will be shown in Section 4.2, these interactions are typically nonlinear; when dealing with

a bow or stopping fingers, they are also localised, centred around a potentially time-varying

location. The framework described in Chapters 2 and 3 for time-domain numerical modelling

is well-suited for these types of interaction. Indeed, on one hand, a FD scheme is an immediate

discretisation of the equations of motion, and the algorithm derived from the scheme directly

generates an approximate numerical solution. If a scheme can be designed to appropriately

discretise a given system of PDEs describing a physical model, provided such scheme is stable,

then nonlinear interactions are generally not an issue, local or distributed, at fixed or time-

varying locations, since computing the numerical output does not require knowledge of the form

of the analytical solutions to the PDE system. Recent work on bowed string simulation using

a travelling-wave-based method [73] exemplifies this advantage; as discussed in the article, this

method is well-suited for steady-state simulations (e.g., for systematic experimental validation),

83
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but quickly encounters limitations when considering simulation of transient behaviour (e.g., with

a moving bowing point), and therefore has restricted applications for sound synthesis. Another

approach [72] resorts to using a FD scheme to resolve the nonlinear bow friction force at the

contact points, and travelling-wave solutions elsewhere.

On the other hand, with a space-time FD scheme, a given point of the discrete system

state is only coupled to other points in its vicinity (recall the discussion on stencil size in

Section 2.2, notably Figures 2.10 and 2.13). This means that local interactions in the continuous

domain can also be treated locally in the discrete domain, and therefore only lead to a marginal

increase in computational cost with respect to simulating the isolated system. This is an

advantage over, e.g., modal methods [1], for which a pointwise force must be projected onto

the entire modal basis in order to compute a solution. Recent work has been concerned with

modelling pointwise collision and friction interactions between a two-polarisation string and

a unilateral obstacle, including extensive experimental validation [56]. Modelling distributed

collisions between string and bridge on tanpura-like instruments has also been attempted with

modal decomposition methods [13], where the distributed bridge is discretised in space, in order

to derive an expression for the contact force between the string and each point of the bridge,

for each string mode.

In this Chapter, Section 4.2 will present a model for a string vibrating linearly in two

polarisations, excited by a bow, and stopped between left-hand fingers and a fingerboard; these

interactions will be described in terms of nonlinear forces. The description of the physical model

will be followed by that of an energy-balanced finite difference scheme in Section 4.3. Details

of the implementation of simulations based upon this scheme will be discussed in Section 4.3.5,

related in particular to the nonlinear nature of the coupling between the string and the bow,

fingers, and fingerboard. Finally, Section 4.4 will present a selection of simulation results.

Some aspects of the model discussed in this Chapter have been described in [27, 28, 29],

where nonlinear forces were applied to a simpler model of the isolated string. Simulation data

obtained with the bowed string model presented here was used in [78].

4.2 Model description

4.2.1 A two-polarisation model

For the purposes of this work, a dual-polarisation string model yields the ability to simulate

impact and contact interactions between the string and any external objects in one direction,

which translate directly into tangential friction forces in the other direction. This is a simplified,

yet intuitive way to include not only a bow that is able to naturally bounce, but also dynamic

left hand fingers stopping the string against a fingerboard, while absorbing some of the string

vibrations.

Looking ahead, the model presented here could fairly straightforwardly be connected to

a model of a full instrument. The coupling of the two polarisations at the bridge boundary,

through a model of the coupled bridge-body system, could be achieved with this model as
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Figure 4.1: String displacement in two polarisations. The displacement y(x, t) in the horizontal
polarisation is parallel to the plane formed by the bow and the string; the displacement w(x, t), in the
vertical polarisation, is orthogonal to this plane.

a starting point. While the incorporation of the bridge and wooden cavity is undoubtedly

crucial to the realism of synthetic sound, and would constitute worthwhile further research, it

is beyond the scope of this work. The majority of existing models of the string-bridge-body

coupled system in the literature adopt a frequency-domain impedance approach related to that

presented in [71].

The proposed model is based on the isolated linear string model presented in Chapter 3. The

string displacement in the vertical (or normal) polarisation is denoted by w(x, t), while y(x, t)

is the string displacement in the horizontal (or tangential) polarisation. Both are defined, as in

the previous Chapters, for abscissa x ∈ D = [0, L] and time t ∈ R⩾0. Figure 4.1 illustrates what

this manuscript refers to as the vertical and horizontal polarisations of string motion, labelled

as described here; for clearer visualisation, they are shown as if the string was mounted onto a

violin.

The temporal evolution of the displacement of the isolated string in each polarisation is

governed by a system of PDEs, as described in Section 3.5. For the sake of compactness, such

system can be written in matrix-vector form, allowing to henceforth focus on the nonlinear

forces exciting the string.

For each polarisation, System (3.33a) can be written as:

Lu(w) = 0 (4.1a) Lu(y) = 0 (4.1b)

where the zero vector 0 has 1 + M + M ′ elements. u(w) and u(y) are column vectors, with
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1 +M +M ′ elements, defined by:

u(w) ≜
[

w γ1,(w) · · · γM,(w) ξ1,(w) · · · ξM ′,(w)

]T
(4.2a)

u(y) ≜
[

y γ1,(y) · · · γM,(y) ξ1,(y) · · · ξM ′,(y)

]T
(4.2b)

where each w(x, t), y(x, t) is coupled to M+M ′ states, respectively γq,(w)(x, t), ξq′,(w)(x, t) and

γq,(y)(x, t), ξq′,(y)(x, t). The matrix L is that defined by (3.48). Note that the string is assumed

to have the same physical properties in both polarisations, hence the matrix L is the same in

both Systems (4.1a) and (4.1b).

This compact notation, introduced in Section 3.5.1, allows to treat the linear system (the

string) separately from the potentially nonlinear excitation. When an external force F (x, t) per

unit length (or force density) is applied onto the string, with vertical component F(w)(x, t) and

horizontal component F(y)(x, t), System (4.1) becomes:

Lu(w) =

 F(w)(x, t)

0M,1

0M ′,1

 (4.3a) Lu(y) =

 F(y)(x, t)

0M,1

0M ′,1

 (4.3b)

The total energy balance is the sum of energy balances for both polarisations, each found

through the same process as for the linear system (see Equation (3.49)):∫
D

((
∂tu(w)

)T
Lu(w) +

(
∂tu(y)

)T
Lu(y)

)
dx =

∫
D

(
(∂tw)F(w) + (∂ty)F(y)

)
dx

⇒ Ḣw + Ḣy = −Pw − Py + PF (4.4)

where PF ≜
∫
D

(
(∂tw)F(w) + (∂ty)F(y)

)
dx is the power supplied to the string through external

excitation.

The next two Sections 4.2.2 and 4.2.3 will describe the forces involved in a bowed and

stopped string model, in both polarisations. A full description includes models of a bow, left

hand fingers, and a distributed fingerboard.

4.2.2 Vertical polarisation

The vertical polarisation of transverse string motion refers to string motion confined to the

direction perpendicular to the bowing plane (see Figure 4.1). In this direction, the forces

applied onto the string can be approached with a collision model.

4.2.2.i The collision interaction

The collision model used in this work was formalised in 1975 by Hunt and Crossley [55], who

introduced a new law governing the mechanics of nonlinear damped impacts. The undamped

power-law model was adopted by the musical acoustics community as a means to describe
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lumped collisions, in particular hammer-string collisions in the piano [12, 18, 16], and mallet-

membrane impacts in drums [88, 19, 112]. A similar model to that of Hunt and Crossley, with

hysteretic damping, was used by Stulov [108] for the modelling of the interaction between the

piano hammer felt and the piano string, with good concordance with experimental results. A

numerical time-domain framework for this particular model has recently been developed [11, 21],

which has been proven to give rise to stable schemes.

This type of contact interaction is chosen for modelling two aspects of bowed string playing.

First and foremost, a bow having the ability to naturally bounce is a necessary feature for a

wide range of the musician’s gestural palette, including gestures such as spiccato or ricochet

bowing. Introducing a collision mechanism in the bow model itself allows for this bouncing to

occur under realistic playing parameters. A model with one degree of freedom (1-DOF) for bow

dynamics in the vertical polarisation is proposed here, in order to allow for compliance of the

bow hair. The natural frequency of a bouncing bow varies between 6 and 30 Hz, depending on

whether the string is bowed closer to the tip or the frog of the bow [46]; this can be tuned by

changing the stiffness and mass parameters of the 1-DOF bow model. It is worth noting that

a full model of the dynamics of the bow hair has purposely been excluded from this work; as

the primary aim is sound synthesis, it is found here that a dynamic, nonlinear, albeit lumped

bow is a satisfying compromise between computational cost and gestural versatility. Detailed

studies of bow hair dynamics may be found in the literature; see, for instance, [84, 42].

The second key aspect of the contact interaction lies in the capture of the string between

a left hand finger and the fingerboard. The use of the damped impact law allows for realistic

simulation of the fingertip reacting against the tension of the string, while significantly absorbing

its vibrations. The distributed fingerboard acts as a continuous barrier for fingers to slide along,

allowing for glissando and vibrato gestures on the fly. Finally, the built-in impact model allows

to simulate the rattling of the string against the fingerboard [10, 32], used, for instance, in

jazz double bass playing; this is also an important aspect of sound production in tanpura-like

instruments, and slap/pop gestures in electric bass guitar playing.

4.2.2.ii Finger and bow

In the vertical polarisation, the bow and finger models are essentialy the same—that is, a

lumped, flexible body pushing down on the string with a set external force1. The distinction

lies in the values of the parameters which define the collision force. For instance, the stiffness

properties characterising the bow hair may be different from those of the fingertip, and the

latter should exhibit much higher damping than the former.

Let fF(t), fB(t) be the downwards forces respectively exerted by a fingertip and the bow

hair onto the string. Let JF(x, t), JB(x, t) denote continuous distributions, defined over x ∈ D,

representing the location of these forces along the string; in the case of pointwise forces, JF and

JB are defined as Dirac delta functions of x, centred at the location of the contact point. Note

1See the discussion in Section 4.2.2.i about the 1-DOF bow model.
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that JF and JB may be time-varying; this is a requirement to model the bow or fingers moving

along the string while a note is played.

The PDE system describing string motion in the vertical polarisation, including downwards

forces2 exerted by the bow and finger, can be written as:

Lu(w) =

 −JFfF − JBfB

0M×1

0M ′×1

 (4.5)

The Hunt and Crossley model [55] describes the collision forces fF(t) and fB(t) as nonlinear

functions of a variable ∆, referred to in [55] as the deformation or approach, corresponding to

the distance by which the colliding object (here, the fingertip and the bow hair, respectively)

deforms from its resting shape. Figure 4.2 provides a visual interpretation of the finger and

bow deformation variables, ∆F(t) and ∆B(t), respectively defined as:

∆F(t) ≜
∫
D

JF(x, t)w(x, t) dx− wF(t) (4.6a)

∆B(t) ≜
∫
D

JB(x, t)w(x, t) dx− wB(t) (4.6b)

where wF(t), wB(t) are the respective vertical positions of the finger and bow above the string.

The expression for the forces fF and fB as a function of ∆F(t) and ∆B(t) is given by:

fF(∆F) ≜
Φ̇F

∆̇F

+ ∆̇FΨF (4.7a)

fB(∆B) ≜
Φ̇B

∆̇B

+ ∆̇BΨB (4.7b)

where ΦF(∆F), ΦB(∆B) are nonlinear potentials, related to the stored collision energy, and

ΨF(∆F), ΨB(∆B) are nonlinear damping terms, with dimensions of mechanical resistance.

They are defined as:

ΦF(∆F) ≜
KF

αF + 1
[∆F]

αF+1
+ (4.8a)

ΨF(∆F) ≜ KFβF [∆F]
αF

+ (4.8b)

ΦB(∆B) ≜
KB

αB + 1
[∆B]

αB+1
+ (4.9a)

ΨB(∆B) ≜ KBβB [∆B]
αB

+ (4.9b)

where [·]+ means max(·, 0). The parameters KF and KB, strictly positive, define the respective

stiffnesses of the fingertip and bow hair; αF and αB are power law exponents, both larger than

2Note that the adopted sign convention indicates that downwards forces are negative.
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Figure 4.2: Visualisation of the deformation variables ∆F and ∆B. Top: ∆F(t) represents the distance
by which the fingertip deforms upon contact with the string surface. Bottom: ∆B(t) can be interpreted
as the deformation of the flexible bow hair against the string3.

1, characterising the nonlinearity of the impact interaction. The damping factors βF and βB

are positive.

Finally, the temporal evolution of the vertical positions of the finger (wF(t)) and bow (wB(t))

is governed by a pair of ordinary differential equations:

mFẅF = fF + fextF,(w) (4.10a)

mBẅB = fB + fextB,(w) (4.10b)

where mF, mB are the finger and bow masses, respectively, and fextF,(w)(t), fextB,(w)(t) are

the time-varying external forces applied vertically onto the finger and bow (by the player).

These forces are the input streams through which the player supplies energy to the string;

3Note that the proposed model implies a single degree of freedom for bow hair flexibility in the vertical
polarisation. The model does not presently include wave propagation in the bow hair; the strand represented
here is simply a visual aid.
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in the numerical implementation, these will be the control signals. Instead of applying a force

directly to the string, incorporating a dynamic bow and finger model allows to simulate observed

behaviours (bouncing, damping. . . ) as a result of certain inputs on a physical model, rather

than through manual ad-hoc implementation.

4.2.2.iii Fingerboard

The fingerboard is modelled as a distributed barrier underneath the string. Let FN(x, t) denote

the contact force density between the fingerboard and the string (in N/m)4. Incorporating the

fingerboard model into System (4.5) yields:

Lu(w) =

 FN − JFfF − JBfB

0M,1

0M ′,1

 (4.11)

The force density FN is a nonlinear function of the fingerboard deformation ∆N(x, t), defined

over the spatial domain D:

∆N(x, t) ≜ ε(x)− w(x, t) (4.12)

where ε(x) is the position of the fingerboard with respect to the string’s resting position

(coinciding with the x-axis). A diagram summarising the forces at play in the vertical

polarisation can be seen in Figure 4.3.

As for the finger and bow, the expression for the fingerboard force density FN as a function

of ∆N(x, t) is derived from the Hunt and Crossley model, which is now used as a smooth

approximation to a rigid collision:

FN(x, t) ≜ ∂tΦN

∂t∆N

+ (∂t∆N)ΨN (4.13)

The potential density ΦN(∆N) and mechanical resistance per unit length ΨN(∆N) are given

by:

ΦN(∆N) ≜ KN

αN + 1
[∆N]

αN+1
+ (4.14a)

ΨN(∆N) ≜ KNβN [∆N]
αN

+ (4.14b)

where αN > 1, and the stiffness parameter KN > 0 is chosen to be very large so as to approach

an ideally rigid collision. Such a choice ensures that the deformation ∆N remains very small,

as it should for fingerboard-like structures [10].

4Note that the index ·N indicates “neck”, in order to avoid confusion between fingers and fingerboard.
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Figure 4.3: Diagram summarising the forces applied onto the string by the finger, bow, and
fingerboard, in the vertical polarisation.

4.2.3 Horizontal polarisation

4.2.3.i The friction model

When the string is set into motion in the horizontal polarisation, the vertical contact forces

described in Section 4.2.2 give rise to corresponding tangential friction forces.

A classic dry friction model is employed to compute tangential friction force:

F↔ ≜
[
F↕
]
+
φ (4.15)

where the tangential force F↔ (in N) in the horizontal polarisation is directly proportional to

the normal contact force F↕ applied in the vertical polarisation. The ratio φ of tangential to

normal force is a dimensionless friction coefficient, which is not necessarily constant; as will be

seen in Section 4.2.3.ii, it may depend on a state variable. In the bowed string system presented

here, neither the bow, fingers, nor fingerboard are considered adhesive, therefore friction only

arises for positive normal forces.

It is important to note that, in this particular system, the vertical and horizontal polarisa-

tions are coupled through the modulation of the tangential friction force by the normal force,

at the contact points between the string and the external objects. In the present model, there

is no other form of polarisation coupling.

The next two Sections 4.2.3.ii and 4.2.3.iii will describe the incorporation of frictional forces

in the horizontal polarisation. As the nature of the friction interaction for the rosin-coated bow
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hair is rather different from that characterising the fingers and fingerboard, they will be treated

separately.

4.2.3.ii Bow

The primary instance of friction in the system, which constitutes the core mechanism of bowed

string excitation, is the interaction between the bow hair, coated with rosin, and the surface

of the string. This interaction is at the source of the sound production mechanism in bowed

string instruments. The motion of a bowed string in normal playing conditions is referred to

as Helmholtz motion [115], and has been the subject of many studies (see, e.g., [90, 93]). One

period of transverse bowed string oscillations in the Helmholtz regime consists of a sticking

phase, during which the bow sticks to the string at the contact point, and a shorter slipping

phase, when the string slides against the bow. At any time, the string is approximately divided

into two straight segments, connected at the Helmholtz corner; the trajectory of this corner is

lens-shaped. Figure 4.4 illustrates one so-called stick-slip cycle during Helmholtz motion.

The friction force between string and bow can be incorporated into the PDE describing

string motion in the horizontal polarisation, as follows:

Lu(y) =

 −JB [fB]+ φB

0M,1

0M ′,1

 (4.16)

where JB(x, t) is the same spatial distribution described in Section 4.2.2.ii, used to place the

bow at a given location along the string. The force fB(t) is the contact force between the bow

hair and the string, in the vertical polarisation, defined by (4.7b). Note the minus sign in the

friction term, reflecting the opposition of the sliding friction force to the motion of the string.

The dimensionless friction coefficient φB (vrel,B) depends on the relative velocity vrel,B(t)

between the bow hair and the string, which is defined as:

vrel,B(t) ≜
d

dt

∫
D

JB(x, t)y(x, t)dx− ẏB(t) (4.17)

where yB(t) is the transverse displacement of the bow. The friction coefficient φB(vrel,B) is

defined as:
|φB| ⩽ 1.2 if vrel,B = 0 (static)

φB ≜ sign (vrel,B)

(
0.4e

−|vrel,B|
0.01 + 0.45e

−|vrel,B|
0.1 + 0.35

)
if vrel,B ̸= 0 (kinetic)

(4.18)

The graph of φB against vrel,B constitutes a so-called friction curve. This particular model was

derived by Smith et al. [100], who measured the ratio of normal load to resulting friction force

experienced by a mass sliding steadily against a rosin-coated conveyor belt. It is fair to say that

this model is flawed, as bowed string motion does not involve a steady sliding regime. Indeed,
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Figure 4.4: Description of a stick-slip cycle in the Helmholtz regime. The bow (in red) is moving
upwards. A solid green circle indicates that the bow is sticking to the string; a dashed circle indicates
slipping in the direction of the black arrow. The green arrows indicate the travel direction of the
Helmholtz corner. As indicated by the grey arrow, the figures should be read clockwise.

the authors of [100] found that the temperature variations of the rosin layer during a stick-slip

cycle played an important role in the frictional force exerted onto the string. This friction curve

model is, however, a commonly used approximation, and the study of this particular interaction

is not the subject of this manuscript. The reader is invited to consult a recent publication by

Galluzzo et al. [41], which offers an in-depth assessment of the state of the art for bow friction

models, including friction curve and temperature-dependent models, based on experimental and

simulated results. Furthermore, considerations of computational cost must be kept in mind;

while such a nonlinear friction curve may already be fairly costly to incorporate into a model,

it nonetheless constitutes somewhat of a trade-off between computational simplification and

physical realism. A model taking into account viscothermal effects in the rosin layer coating

the bow hair would require significantly more advanced implementations, in order to keep track

of heat exchanges in the system. Bowed string simulation results will be discussed extensively
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Figure 4.5: Friction curve φB (vrel,B) for the bow, from [100].

in Chapter 5, including an exploration of the available control parameter space; it will be seen

that the friction curve model is able to produce results consistent with previous studies.

Figure 4.5 illustrates the friction curve φB (vrel,B); the vertical section at vrel,B = 0

corresponds to the sticking phase, while the rest of the curve, defined by (4.18), yields a kinetic

friction coefficient for |vrel,B| > 0.

Finally, as the bow is pushed across the string, the equation governing the temporal evolution

of yB(t) is given by:

mBÿB = −λBẏB + [fB]+ φB + fextB,(y) (4.19)

λB ⩾ 0 is a coefficient quantifying the linear energy dissipation into the bow in the horizontal

polarisation. The corresponding linear damping is negligible compared to the losses brought

about by friction, when the string is in contact with the bow. Indeed, the purpose of this linear

term is mainly practicality in the numerical simulations; when the bow is lifted up from the

string at the end of a note, it may drift far away from the origin if not stopped, yielding large

numbers which may be detrimental to computational accuracy of the numerical energy balance.

fextB,(y)(t) is the force applied tangentially onto the bow by the player, in order to establish

the desired bow velocity. The use of a shear force as a control parameter sets this work slightly

apart from most existing bowed string studies, including all those cited so far, which impose a

bow velocity vB(t) as a control signal; here, the resultant force applied by the player onto the

bow is employed, leading to a variable bow velocity ẏB(t). The consequences on the playability

of a sound synthesis tool using this model as an engine will be discussed in Chapter 5.
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Figure 4.6: Coulomb step friction curve φN,F (vrel,N,F) for the finger and fingerboard.

4.2.3.iii Fingerboard and fingers

The tangential friction force exerted by the finger and fingerboard may be incorporated in

System (4.16), as follows:

Lu(y) =

 − [FN]+ φN − JF [fF]+ φF − JB [fB]+ φB

0M×1

0M ′×1

 (4.20)

where JF(x, t) is the distribution described in Section 4.2.2.i to place the finger along the

string; fF(t) is the normal contact force between finger and string, defined by (4.7a); FN(x, t)

is the normal force exerted by the fingerboard, defined by (4.13); φF (vrel,F) and φN (vrel,N)

are dimensionless friction coefficients. Note that, as for the vertical polarisation, the tangential

finger force is lumped, while the force exerted by the fingerboard is distributed along the string’s

length.

To a crude approximation, the function of the fingers and fingerboard is to capture the string

to reduce its speaking length. To the author’s knowledge, there does not exist experimental

data against which to calibrate a velocity-dependent friction curve for the fingertips or the

fingerboard. In the absence of such data, a Coulomb-like friction characteristic may be assumed,

as illustrated in Figure 4.6, where the friction coefficient is constant for all sliding velocities. In

most playing situations, static friction pins the string in place between the fingerboard and the

fingertip; however, this simple model enables the string to slip under the finger if the left hand

grip is too loose. The Coulomb characteristic for the finger and fingerboard is defined as:|φF (vrel,F)| ⩽ µF if vrel,F = 0 (static)

φF (vrel,F) ≜ µF sign (vrel,F) if vrel,F ̸= 0 (kinetic)
(4.21a)
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|φN (vrel,N)| ⩽ µN if vrel,N = 0 (static)

φN (vrel,N) ≜ µN sign (vrel,N) if vrel,N ̸= 0 (kinetic)
(4.21b)

where µF, µN > 0 are the friction coefficients characterising the finger and fingerboard,

respectively. The relative velocities vrel,F(t) and vrel,N(x, t) of the finger and fingerboard with

respect to the string are respectively defined as:

vrel,F(t) ≜
d

dt

∫
D

JF(x, t)y(x, t)dx− ẏF(t) (4.22a)

vrel,N(x, t) ≜ ∂ty(x, t) (4.22b)

The position of the fingertip in the horizontal polarisation is denoted by yF(t); it is hypothesised

that the fingertip oscillates about the third knuckle, while simultaneously damping the

vibrations of the string in the bowing plane. The behaviour of yF(t) can therefore be modelled

with a simple ODE:

mFÿF = −KFyF − λFẏF + [fF]+ φF (4.23)

where KF ⩾ 0 is a spring constant, characterising the restoring force exerted by the fingertip in

reaction to being displaced by the moving string, and λF ⩾ 0 is a damping coefficient. When

the fingertip is concerned, the choice of a more elaborate contact model such as that used in

the vertical polarisation seems excessive. Impacts are dominant in the vertical polarisation,

and the modelling of collisions is important for accurate simulation of transients, e.g., when

hammering the string with the left hand fingers in legato playing. Conversely, it is clear that

collisions only have an auxiliary effect in the tangential polarisation.

A summary of the forces exerted onto the string in the horizontal polarisation is illustrated

in Figure 4.7.

4.2.4 Energy analysis

Since the two polarisations of string motion are not intrinsically coupled in the proposed model,

an energy balance can be derived separately for each polarisation. As will be seen in Section 4.3,

this separation indeed follows the numerical implementation; contact forces are computed first

in the vertical polarisation, then supplied as known parameters into the second polarisation

system.

4.2.4.i Vertical polarisation

As described in Section 4.2.1 for the linear case, the energy balance for the vertical polarisation

is derived by left-multiplying System (4.11) by
(
∂tu(w)

)T
, and integrating the result over D,

yielding:

Ḣw = −Qw + Pw (4.24)

where Hw(t) is the stored energy in the vertical polarisation, Qw(t) is the power dissipated

through damping processes, and Pw(t) is the power supplied to excite the system.
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..

x

.

y(x, t)

.

w(x, t)

.

x

.

y

.

JF

.

JB

.

[fB]+ φB

.

[FN]+ φN

.

[fF]+ φF

Figure 4.7: Diagram summarising the forces applied onto the string by the finger, bow, and
fingerboard, in the horizontal polarisation. The tangential friction forces arise from the normal contact
forces described in Section 4.2.2.

The energy Hw(t) is defined as:

Hw ≜ Hw,s +Hw,γ +Hw,ξ +Hw,N +Hw,F +Hw,B (4.25a)

Hw,N ≜
∫
D

ΦNdx ⩾ 0 (4.25b)

Hw,F ≜ ΦF +
mF

2
ẇ2

F ⩾ 0 (4.25c)

Hw,B ≜ ΦB +
mB

2
ẇ2

B ⩾ 0 (4.25d)

where Hw,s(t) is the energy of the lossless stiff string, defined by (2.28); Hw,γ(t), Hw,ξ(t) are the

energy terms related to the linear loss model presented in Chapter 3, and are defined by (3.49).

The new terms Hw,N(t), Hw,F(t), Hw,B(t) constitute the energy stored during the collision

with the neck, finger, and bow, as well as the kinetic energies of the finger and bow. The total

energy Hw(t) is positive.

The power Qw(t) dissipated within the string and through collision with the fingerboard,

finger, and bow, is defined as:

Qw ≜ Qw,γ +Qw,ξ +QΨ,N +QΨ,F +QΨ,B (4.26a)

QΨ,N ≜
∫
D

(∂t∆N)
2
ΨN dx ⩾ 0 (4.26b)
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QΨ,F ≜ ∆̇2
FΨF ⩾ 0 (4.26c)

QΨ,B ≜ ∆̇2
BΨB ⩾ 0 (4.26d)

where Qw,γ , Qw,ξ are defined in (3.51). Since Qw(t) ⩾ 0, in the absence of external excitation,

the energy Hw(t) of the system decreases.

The power Pw(t) supplied to the system is defined as:

Pw ≜ Pw,F + Pw,B (4.27a)

Pw,F ≜ ẇFfextF,(w) + fF

∫
D

w ∂tJF dx (4.27b)

Pw,B ≜ ẇBfextB,(w) + fB

∫
D

w ∂tJB dx (4.27c)

Note that the second term in (4.27b) and (4.27c) accounts for the energy supplied to the system

by changing the position of the bow or finger along the string.

4.2.4.ii Horizontal polarisation

For the horizontal polarisation, left-multiplying System (4.20) by
(
∂tu(y)

)T
, and integrating

the resulting equation over D, leads to the energy balance:

Ḣy = −Qy + Py (4.28)

where Hy(t) is the stored energy in the horizontal polarisation, Qy(t) is the power dissipated

by linear damping and friction, and Py(t) is the supplied power.

The energy Hy(t) is defined as:

Hy ≜ Hy,s +Hy,γ +Hy,ξ +Hy,F +Hy,B (4.29a)

Hy,F ≜ mF

2
ẏ2F +

KF

2
y2F ⩾ 0 (4.29b)

Hy,B ≜ mB

2
ẏ2B ⩾ 0 (4.29c)

where Hy,s(t), Hy,γ(t), Hy,ξ(t) have the same respective expressions as Hw,s(t) (defined

by (2.28)), Hw,γ(t), and Hw,ξ(t) (both defined by (3.49)), with the appropriate substitutions

of w by y. The energy Hy(t) in the second polarisation is positive.

The dissipated power Qy(t) is defined as:

Qy ≜ Qy,γ +Qy,ξ +Qφ,N +Qφ,F +Qφ,B +Qy,F +Qy,B (4.30a)

Qφ,N ≜
∫
D

vrel,N[FN]+φN dx (4.30b)

Qφ,F ≜ vrel,F[fF]+φF (4.30c)
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Qφ,B ≜ vrel,B[fB]+φB (4.30d)

Qy,F ≜ λFẏ
2
F (4.30e)

Qy,B ≜ λBẏ
2
B (4.30f)

Note that, for the system to be dissipative in the absence of external excitation, Qy(t) must be

positive. This condition is satisfied if:

vrel,N · φN(vrel,N) ⩾ 0

vrel,F · φF(vrel,F) ⩾ 0

vrel,B · φB(vrel,B) ⩾ 0 (4.31)

This is to say that the friction curves must lie in the top-right and bottom-left quarter-planes

of the (vrel, φ(vrel)) plane; all three φN, φF, and φB comply.

The power supplied through external excitation is defined as:

Py ≜ Py,F + Py,B (4.32a)

Py,F ≜ [fF]+φF

∫
D

y ∂tJF dx (4.32b)

Py,B ≜ [fB]+φB

∫
D

y ∂tJB dx+ ẏBfextB,(y) (4.32c)

4.2.4.iii Global power balance

The total power balance of the full system, including both polarisations, is obtained by

summing (4.24) and (4.28):

Ḣ = −Q+ P (4.33)

H ≜ Hw +Hy Q ≜ Qw +Qy P ≜ Pw + Py

A power balance equation of the same type as (4.33) generally forms the basis for another

class of modelling methods, mentioned in Chapter 2 (see Section 2.1.1.iv), based on so-

called port-Hamiltonian systems [114]. The discretisation of such systems has recently been

successfully implemented for time-domain physical modelling of acoustic and electroacoustic

systems [34, 35].

4.3 Finite difference scheme

The continuous-time system presented in Section 4.2 describes a physical model of a two-

polarisation linear string, nonlinearly coupled to a bow, left-hand fingers, and a fingerboard.

Sections 4.3.1—4.3.3 will describe the finite difference scheme arising from the discretisation
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of the PDE system, based on the same principles and framework as that used in Chapters 2

and 3.

The PDE system now includes nonlinear elements; the scheme update can no longer be

computed as the solution of a linear system. Section 4.3.5 will focus on the resolution of the

discrete nonlinear system, in each polarisation, required to perform each iteration of the scheme.

4.3.1 Localising interactions in the discrete spatial domain

The interaction of the string with the finger and bow is localised onto a small interval (or, in the

lumped case, a single point) of the spatial domain of definition D of w(x, t) and y(x, t). In the

continuous system, such localisation is achieved through the normalised distributions JF(x, t)

and JB(x, t).

These distributions may be approximated by the grid functions jnF and jnB (in vector

notation), defined over the same discrete spatial domain D as are wn and yn, at coinciding

time step n ∈ N, and normalised by the grid spacing h.

In the discrete spatial domain, centring the bow and finger forces at a specific point requires

careful consideration. If the desired location at which to apply a force lies between two grid

points, one must resort to interpolation; hence, a pointwise distribution in the continuous

domain will only result in a pointwise distribution in the discrete domain if the location

xF, xB ∈ D of the finger or bow is rounded to that of the nearest grid point (that is, using

0th order interpolation). This obviously leads to inaccuracies in simulations; for instance, on

a fretless stringed instrument, the location of the stopping finger determines the pitch of a

note, and an inaccurate approximation will lead to mistunings. Furthermore, a great deal of

the expressivity in bowed string instrument playing comes from the continuous variations of

playing parameters, directed by the musician. Such parameters include the bow-bridge distance,

varied to affect timbre, and the location of the left hand fingers during vibrato and glissando

gestures. When they are time-varying, truncating the locations of applied forces to the nearest

grid point would undoubtedly lead to audible grid effects.

A better approach makes use of Lagrange interpolation polynomials. The effect of a lumped

excitation is spread over a number of grid points, with different weightings depending on the

relative location of the excitation between two grid points [8, pp. 101—103]. For mth order

interpolation, the resulting discrete distributions jnF and jnB contain m consecutive non-zero

elements, centred around the desired position of the excitation.

Recall that, for a pointwise (Dirac delta) distribution JF(x, t) ≜ δ(x − xF, t) defining the

location of a finger along the string in the continuous domain:∫
D

JF(x, t)w(x, t) dx = w(xF, t) (4.34)

In the same manner, left-multiplyingwn by h (jnF)
T
will yield anmth order interpolated estimate
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of the string displacement at the finger location:

h (jnB)
T
wn =

l0+m∑
l=l0

clw
n
l

≈ w(xF, t) (4.35)

where the cl, l ∈ [l0, ..., l0 + m] are the mth order Lagrange basis polynomials, evaluated at

x = xF, between data points l0, ..., l0 +m. jnB is hence defined as:

jnB ≜ 1

h

[
· · · 0 cl0 cl0+1 · · · cl0+m 0 · · ·

]T
(4.36)

The magnitude of jnB is thus bounded by 1
h
5.

4.3.2 Vertical polarisation

Let un
(w) be defined as the discrete counterpart of u(w), as per (3.57):

un
(w) ≜

[
wnT γ

n−1/2
1,(w)

T
· · · γ

n−1/2
M,(w)

T
ξ
n−1/2
1,(w)

T
· · · ξ

n−1/2
M ′,(w)

T
]T

(4.37)

The continuous PDE system (4.11) describing the behaviour of a linear string in contact with

a fingerboard, a finger, and a bow, may be discretised with the following FD scheme:

Lun
(w) =


µt·J

n
(w)f

n
(w)

0M×1

0M ′×1

 (4.38)

where Jn
(w) is a N × (N + 2) distribution matrix6, defined as:

Jn
(w) ≜

 1
hI −jnF −jnB

 (4.39)

and fn(w) is a (N + 2) × 1 column vector, containing the discrete contact forces exerted by the

fingerboard, finger, and bow, onto the string:

fn(w) ≜
[

(hfnN)
T

fn
F fn

B

]T
(4.40)

5It is easy to show that
∣∣jn
B

∣∣ = 1
h

if and only if xB lies exactly on a grid point.

6Recall that N is the number of elements in the truncated state vector wn.
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The N elements of the vector fnN each approximate the fingerboard force density FN(x, t), as

defined in Section 4.2.2.iii, at x = lh; the time series fn
F , f

n
B respectively approximate fF(t) and

fB(t), the finger and bow forces, as defined in Section 4.2.2.ii.

Note the use of the centred averaging operator µt· in (4.38); as will be seen in Section 4.3.4,

this is necessary to derive the appropriate discrete energy balance for this scheme, ultimately

yielding the stability condition.

Given the definitions of the nonlinear collision forces given in Section 4.2.2, the force vector

fn(w) can be directly written as:

fn(w) ≜ diag (h)

(
δt·Φ

n

δt·∆n
+ (δt·∆

n)⊙Ψn

)
(4.41)

where the vector h ≜ [... h ...|1|1]T has N + 2 elements. Here, the division is element-wise,

and the notation ⊙ indicates the element-wise product of two matrices of equal size. The force

vector fn(w) is written as a function of a vector deformation ∆n, defined as:

∆n ≜



∆n
N

∆n
F

∆n
B


(4.42a)

∆n
N ≜ ε−wn (4.42b)

∆n
F ≜ hjnF

Twn − wn
F (4.42c)

∆n
B ≜ hjnB

Twn − wn
B (4.42d)

where the elements of the vector ε are εl ≜ ε(lh), with ε(x) the position of the fingerboard

with respect to the string at rest, as presented in Section 4.2.2.iii. The time series wn
F and wn

B

approximate the respective vertical positions of the finger and bow.

Φn (∆n) and Ψn (∆n) are now vector functions of ∆n:

Φn (∆n) ≜ K

α+ 1
⊙ [∆n]

α+1
+ (4.43a)

Ψn (∆n) ≜ K ⊙ β ⊙ [∆n]
α
+ (4.43b)

(4.43c)

where the exponentiation operation is also element-wise, and the nonlinearity parameters K,

α, and β are themselves in vector form:



CHAPTER 4. Playing the string: a two-polarisation bowed, stopped string model 103

K ≜



...

KN

...

KF

KB


(4.44a) α ≜



...

αN

...

αF

αB


(4.44b) β ≜



...

βN

...

βF

βB


(4.44c)

Finally, the ODEs (4.10) governing the temporal evolution of the vertical displacements of the

finger and bow may be discretised as:

MFBδttw
n
FB = fnFB,(w) + fnextFB,(w) (4.45)

where the 2 × 2 matrix MFB, and the 2 × 1 vectors wn
FB, f

n
FB,(w), and fnextFB,(w) are defined

as:

MFB ≜

mF 0

0 mB

 (4.46a)

wn
FB ≜

 wn
F

wn
B

 (4.46b)

fnFB,(w) ≜

 fn
F

fn
B

 (4.46c)

fnextFB,(w) ≜

 fn
extF,(w)

fn
extB,(w)

 (4.46d)

4.3.3 Horizontal polarisation

Let un
(y) the discrete state vector in the horizontal polarisation, defined as:

un
(y) ≜

[
ynT γ

n−1/2
1,(y)

T
· · · γ

n−1/2
M,(y)

T
ξ
n−1/2
1,(y)

T
· · · ξ

n−1/2
M ′,(y)

T
]T

(4.47)

In the horizontal polarisation, consider the following FD scheme as a discretisation of Sys-

tem (4.20):

Lun
(y) =


−µt·J

n
(y)f

n
(y)

0M×1

0M ′×1

 (4.48)
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where the distribution matrix Jn
(y) is defined as:

Jn
(y) ≜

 1
hI jnF jnB

 (4.49)

The (N + 2)× 1 force vector fn(y) is defined as:

fn(y) ≜
[
fn(w)

]
+
⊙



φN

(
vn
rel,N

)

φF

(
vnrel,F

)
φB

(
vnrel,B

)


(4.50a)

vn
rel,N ≜ δt·y

n (4.50b)

vnrel,F ≜ hδt·

(
jnF

Tyn
)
− δt·y

n
F (4.50c)

vnrel,B ≜ hδt·

(
jnB

Tyn
)
− δt·y

n
B (4.50d)

where the friction curves φN, φF, and φB are those defined in (4.21) and (4.18). The time

series ynF and ynB approximate the respective horizontal displacements of the finger and bow.

One can define a vector relative velocity:

vn
rel ≜

[ (
vn
rel,N

)T
vnrel,F vnrel,B

]T
(4.51)

The ODEs (4.23) and (4.19) may be discretised as:

MFBδtty
n
FB = −KFBµt·y

n
FB − λFBδt·y

n
FB + fnFB,(y) + fnextFB,(y) (4.52)

where MFB is the mass matrix defined by (4.46a), and the remaining vectors and matrices are

defined as:

yn
FB ≜

 ynF

ynB

 (4.53a)

KFB ≜

KF 0

0 0

 (4.53b) λFB ≜

 λF 0

0 λB

 (4.53c)

fnFB,(y) ≜
[
fnFB,(w)

]
+
⊙

 φF(v
n
rel,F)

φB(v
n
rel,B)

 (4.53d)
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fnextFB,(y) ≜

 0

fn
extB,(y)

 (4.53e)

As will be seen in Section 4.3.4.ii, the centred averaging operator µt· in (4.52) is used as a means

to avoid restricting the stability limit of the FD scheme any further.

4.3.4 Energy and stability analysis

4.3.4.i Vertical polarisation

Left-multiplying Equation (4.38) by
(
hδt·u

n
(w)

)T
, and using (4.41), (4.42), and (4.45), yields

the following discrete power balance for the vertical polarisation:

δt−H
n
w = Pn

w −Qn
w (4.54)

where Hn
w is the discrete energy, while Qn

w and Pn
w are the power respectively dissipated from

and supplied to the discrete system at time step n. The energy Hn
w is defined as:

Hn
w ≜ Hn

w,s +Hn
w,γ +Hn

w,ξ +Hn
w,Φ +Hn

w,FB (4.55a)

Hn
w,Φ ≜ hTµt+Φ

n (4.55b)

Hn
w,FB ≜ 1

2
(MFBδt+w

n
FB)

T
δt+w

n
FB (4.55c)

The energy terms relating to the string, Hn
w,s, H

n
w,γ , and Hn

w,ξ, are the same as defined in (2.84b),

(3.63a) and (3.63b). The term Hn
w,Φ is the energy stored during collision of the string with the

fingerboard, finger and bow. Finally, Hn
w,FB is the kinetic energy of the bow and the finger.

The power Qn
w ⩾ 0 dissipated by damping processes is defined by:

Qn
w ≜ Qn

w,γ +Qn
w,ξ +Qn

w,Ψ (4.56a)

Qn
w,Ψ ≜ (h⊙ δt·∆

n)
T
((δt·∆

n)⊙Ψn) (4.56b)

The power Qn
w,γ , Q

n
w,ξ dissipated by mechanisms specific to the linear string is the same as

defined in (3.63c) and (3.63d). The power dissipated during nonlinear collision is Qn
w,Ψ.

The power Pn
w supplied by external excitation is given by:

Pn
w ≜ (δt·w

n
FB)

T
fnextFB,(w) − h

(
(µt·w

n)
T
(
δt·J

n
(w)

))
fn(w) (4.57)

4.3.4.ii Horizontal polarisation

The numerical power balance for the horizontal polarisation is obtained by left-multiplying

Equation (4.48) by
(
hδt·u

n
(y)

)T
:

δt−H
n
y = Pn

y −Qn
y (4.58)
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where the numerical energy Hn
y is given by:

Hn
y ≜ Hn

y,s +Hn
y,γ +Hn

y,ξ +Hn
y,FB (4.59a)

Hn
y,FB ≜ 1

2
(MFBδt+y

n
FB)

T
δt+y

n
FB +

1

2
µt+ ((KFBy

n
FB)y

n
FB) (4.59b)

and Hn
y,s, H

n
y,γ , and Hn

y,ξ take the same form as those defined by (2.84b), (3.63a), and (3.63b),

with the appropriate substitutions of w,wn by y,yn.

Qn
y is the power dissipated by friction and damping, defined by:

Qn
y ≜ Qn

y,γ +Qn
y,ξ +Qn

y,φ +Qn
y,FB (4.60a)

Qn
y,φ ≜ (h⊙ vn

rel)
T
fn(y) (4.60b)

Qn
y,FB ≜ (λFBδt·y

n
FB)

T
δt·y

n
FB (4.60c)

The power quantities Qn
y,γ , Q

n
y,ξ take the same form as (3.63c) and (3.63d), once again with

the appropriate substitutions.

The power Pn
y supplied from external excitation is given by:

Pn
y ≜ (δt·y

n
FB)

T
fnextFB,(y) + h

(
(µt·y

n)
T
(
δt·J

n
(y)

))
fn(y) (4.61)

4.3.4.iii Global power balance and invariant quantity

The total numerical energy Hn of the system is balanced by:

δt−H
n = Pn −Qn (4.62a)

Hn ≜ Hn
y +Hn

w (4.62b) Pn ≜ Pn
y + Pn

w (4.62c) Qn ≜ Qn
y +Qn

w (4.62d)

An invariant quantity En may be defined for the full system, as was done in Section 3.7.2 (see

Equation (3.68)), this time also including the cumulated supplied power:

En ≜ Hn + k
n∑

p=1

(Qp − Pp) (4.63)

As will be seen in Section 4.4, examining the temporal evolution of the separate contributions

of each component of (4.63) provides a practical visualisation of the power exchanges between

the various parts of the system.

4.3.4.iv Stability condition

The stability of the proposed FD scheme now reduces to the condition of non-negativity of

Hn. For the vertical polarisation, as Φn ⩾ 0 by construction, it is straightforward to see from

Equation (4.55b) that Hn
w,Φ ⩾ 0. The quantity Hn

w,FB, corresponding to the combined kinetic

energies of the finger and bow in the vertical polarisation, is also unconditionally positive;
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the introduction of collision forces hence does not have an effect on numerical stability. In

the horizontal polarisation, the kinetic and potential energies of the finger and bow, given by

Hn
y,FB, are also positive.

This implies that the total discrete energy Hn for the scheme given by (4.38) and (4.48) is

positive under the same stability condition as that derived for the isolated string, and given

by (2.91).

4.3.5 Scheme update: vertical polarisation

As the horizontal friction forces depend on the normal contact forces, the vertical polarisation

is updated first. The resulting normal forces are then supplied to the horizontal polarisation

system, which is subsequently updated.

The scheme update for the vertical polarisation takes the form of a nonlinear system. Firstly,

the update for the string state is obtained from (4.38), considering (3.66):

Awn+1 =

≜Bu︷ ︸︸ ︷[
B · · ·

(
1− 2−aq

2+aq

)
bq
k I · · · · · · −

(
1− 2−a′

q′

2+a′
q′

)
b′q
k Dxx · · ·

]
un
(w)

+Cwn−1 + µt·J
n
(w)f

n
(w) (4.64)

where A, B, and C are defined in (3.67). The update for γ
n+1/2
q,(w) and ξ

n+1/2
q′,(w) is then computed

from (3.64), as for the unforced case.

The update equation for the bow and finger displacements are obtained after expanding the

FD operators in Equation (4.45):

wn+1
FB = 2wn

FB −wn−1
FB + k2M−1

FB

(
fnFB,(w) + fnextFB,(w)

)
(4.65)

The nonlinearity of the contact forces fn(w) does not allow for a direct resolution of the system

given by Equations (4.64) and (4.65). It is useful to rewrite such system in terms of an unknown

vector rn ≜ ∆n+1 −∆n−1. To do so requires left-multiplying (4.64) by −
(
hJn+1

(w)

)T
A−1, and

using (4.65) to rearrange the result, yielding the following nonlinear system:

Λn
1,(w)r

n +Λn
2,(w)f

n
Φ (rn) + ζn

(w) = 0 (4.66)

where the matrices Λn
1,(w), Λ

n
2,(w) and the vectors fnΦ, ζ

n
(w) are given by:

Λn
2,(w) ≜

(
hJn+1

(w)

)T
A−1µt·J

n
(w) + k2Minv (4.67a)

Λn
1,(w) ≜ IN+2 +

1

2k
Λn

2,(w) diag (Ψ
n) (4.67b)

fnΦ ≜ δt·Φ
n

δt·∆n
=

Φ
(
rn +∆n−1

)
−Φ

(
∆n−1

)
rn

(4.67c)

ζn
(w) ≜

[
01×N

∣∣∣ 2
(
wn

FB −wn−1
FB

)T
+ k2

(
M−1

FBf
n
extFB,(w)

)T]T
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+ h

((
Jn+1
(w)

)T
A−1

(
Buu

n
(w) +Cwn−1

)
−
(
Jn−1
(w)

)T
wn−1

)
(4.67d)

where Minv is a (N + 2)× (N + 2) matrix with M−1
FB at its bottom right corner, and all zeros

elsewhere.

System (4.66) is solved for rn with an iterative nonlinear system solver. Care must be taken

with computing fnΦ when values of the elements of rn tend towards zero. In this case, fnΦ reduces

to the derivative of Φ with respect to ∆, evaluated at ∆n−1; the analytical expression for this

derivative can be used instead. Once the contact forces are found, the system state is updated

with (4.64) and (4.65).

4.3.6 Scheme update: horizontal polarisation

4.3.6.i Nonlinear system

The update equation for the string, bow, and finger states in the horizontal polarisation is

derived in the same manner as in the vertical direction. For the string state, (3.66) is used

(with the appropriate variable name substitutions) in conjunction with (4.48), yielding a similar

update to (4.64):

Ayn+1 = Buu
n
(y) +Cyn−1 − µt·J

n
(y)f

n
(y) (4.68)

Recall the definition of fn(y) given in (4.50a); the normal contact forces fn(w), computed in the

vertical polarisation update, are now inserted into (4.68) as known parameters, modulating

the amplitude of the tangential friction forces. The update for γ
n+1/2
q,(y) and ξ

n+1/2
q′,(y) is computed

from (3.64).

The bow and finger updates are directly obtained from Equation (4.52):

AFBy
n+1
FB = BFBy

n
FB +Cn−1

FB yn−1
FB + k2

(
fnFB,(y) + fnextFB,(y)

)
(4.69)

where the matrices AFB, BFB, and CFB are 2× 2 diagonal matrices, defined as:

AFB ≜ MFB +
k2

2
KFB +

k

2
λFB (4.70a)

BFB ≜ 2MFB (4.70b)

CFB ≜ −MFB − k2

2
KFB +

k

2
λFB (4.70c)

The horizontal polarisation update is nonlinear and implicit. As was done for the vertical

direction, Equations (4.68) and (4.69) can be rewritten as a nonlinear system in terms of the

vector vn
rel. Pre-multiplying (4.68) by

(
hJn+1

(y)

)T
A−1, and rearranging with (4.69), leads to the

following system:

vn
rel +Λn

(y)f
n
(y) + ζn

(y) = 0 (4.71)
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where the matrix Λn
(y) and the vector ζn

(y) are defined as:

Λn
(y) ≜

1

2k

((
hJn+1

(y)

)T
A−1µt·J

n
(y) + k2Ainv

)
(4.72a)

ζn
(y) ≜

h

2k

((
Jn−1
(y)

)T
yn−1 −

(
Jn+1
(y)

)T
A−1

(
Buu

n
(y) +Cyn−1

))
+

[
01×N

∣∣∣ (ζn
FB,(y)

)T]T
(4.72b)

ζn
FB,(y) ≜

1

2k

(
A−1

FB

(
BFBy

n
FB +CFBy

n−1
FB + k2fnextFB,(y)

)
− yn−1

FB

)
(4.72c)

where Ainv is a (N + 2) × (N + 2) matrix with A−1
FB in the bottom right corner and zeros

elsewhere.

Conversely to the vertical contact forces, the nonlinear friction characteristics are not smooth

(see Figures 4.5 and 4.6). Incidentally, a direct attempt to solve System (4.71) with an iterative

method will rarely be successful. The next Section 4.3.6.ii will describe the method employed to

compute the friction forces and update the state variables in the horizontal polarisation, drawing

in particular from known aspects of the friction curve model for the bow-string interaction.

4.3.6.ii Resolution: Friedlander’s construction

Consider the last equation of System (4.71), in terms of the relative velocity vnrel,B between the

bow and the string:

vnrel,B + σn
N [fnN]+ φN + σn

F [fn
F ]+ φF + σn

B [fn
B]+ φB + ζnB = 0 (4.73)

where ζnB is the last element of ζn
(y), and the vector σn

N and scalars σn
F and σn

B are defined as:

σn
N ≜ 1

2k

(
hjn+1

B

)T
A−1 (4.74a)

σn
F ≜ 1

2k

(
hjn+1

B

)T
A−1µt·j

n
F (4.74b)

σn
B ≜ 1

2k

(
hjn+1

B

)T
A−1µt·j

n
B (4.74c)

In any standard bowed string playing situation, it is safe to assume that the bowing point is

located some distance away from the stopping fingers. In this case, the locations of the non-zero

values in the vectors jnF and jnB likely do not overlap7; in other words, jnF and jnB are orthogonal.

Recall the form of the matrix A, defined in Section 3.6.4:

A ≜
(
ρS

k2
+

M∑
q=1

bq
k(2 + aqk)

)
︸ ︷︷ ︸

≜A(I)

I−
M ′∑
q′=1

b′q′

k(2 + a′q′k)︸ ︷︷ ︸
≜A(xx)

Dxx (4.75)

7Recall, from Section 4.3.1, that the discrete distributions jn
F

and jn
B

approximate a continuous Dirac delta

function. If mth order interpolation is employed, they contain only m contiguous non-zero values, located around
the contact point.
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Figure 4.8: Magnitude of σn
F relative to that of σn

B, as a function of distance between the bow and
finger contact points, for a simulated cello D string. The magnitude of σn

F decays exponentially with
increasing distance. The friction force exerted by a finger a few centimetres away from the bowing
point is negligible in the calculation of the bow friction force. — Parameters: see Cello D string on
page xxix; Fs = 44.1 kHz.

A is a symmetric Toeplitz tridiagonal matrix, due to the presence of the discrete Laplacian

matrix Dxx (defined in (2.71b)). For a typical string, the coefficient A(xx) is small relative to

A(I); A is therefore diagonally dominant, and indeed the off-diagonal entries of A, all negative,

are typically several orders of magnitude smaller (in absolute value) than its diagonal entries.

This means that, while A−1 will be a full matrix, the magnitude of its entries will decay

along a column away from the diagonal, at an exponential rate [77]. It is therefore fair to assume

that σn
F, defined by (4.74b), will be very small in practice. To illustrate this, Figure 4.8 shows

the relative magnitude |σn
F/σn

B| of the finger force weighting with respect to that of the bow

force, as a function of distance between bowing point and finger location. The parameters are

those of a cello D string, where the grid spacing h was chosen as close as possible to the stability

limit, with sample rate Fs = 44.1 kHz. This graph demonstrates that, for most realistic playing

situations, where the stopping fingers are more than a few centimetres away from the bowing

point, the finger friction force term in (4.73) is completely negligible in the computation of the

bow friction force at a given time step.

The same can be said about the friction force exerted by the fingerboard onto the string. One

can safely assume that the non-zero values of [fnN]+ will not coincide with the non-zero values

of jnB; in other words, the string is not bowed at a point where it is touching the fingerboard.

In this case, the same argument can be made on the relative magnitude of σn
N [fnN]+ compared

to that of σn
B [fn

B]+.

Under these assumptions, the update equation (4.73) for the bow friction force and relative
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Figure 4.9: Friedlander’s graphical construction to solve for the bow relative velocity. The solutions
for vnrel,B lie at the intersections of the friction curve φB (in black) and the straight line ηB; three
cases are illustrated, with a different intercept value. In case (a), in blue, the solution is given by
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multiple solutions to Equation (4.76); this ambiguity is resolved by choosing the solution on the same
branch of φB as the previous time step. (i) corresponds to the sticking phase; (ii) corresponds to the
slipping phase; (iii) is physically unstable, and not seen in bowed string motion [75].

velocity reduces to a scalar, nonlinear ODE:

vnrel,B + σn
B [fn

B]+ φB + ζnB = 0 (4.76)

The solutions of Equation (4.76) can be represented graphically, as the intersections of the

friction curve φB

(
vnrel,B

)
with a straight line with negative slope, defined by:

ηB
(
vnrel,B

)
≜ − 1

σn
B

[
fn
B

]
+

(
vnrel,B + ζnB

)
(4.77)

This graphical representation is referred to as Friedlander’s construction [39], and illustrated in

Figure 4.9 for positive values of vnrel,B
8. A solution on the vertical part of the curve corresponds

to the sticking state (vnrel,B = 0); otherwise, the string is slipping against the bow (
∣∣∣vnrel,B∣∣∣ > 0).

As Figure 4.9 shows (case (c)), one must beware of the possibility of multiple solutions. With

8The problem is origin-symmetric; the same analysis can be performed for negative relative velocities.
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this force-velocity curve model, this possibility is seemingly brought about by the particular FD

discretisation chosen for the bowed string equations. However, it does resemble Friedlander’s

so-called ambiguity, which he derived in [39] from travelling-wave solutions of the continuous

1D wave equation.

It is straightforward to see that if the slope of ηB is negative enough, then (4.76) has a

unique solution. This condition is formulated as:

− 1

σn
B

[
fn
B

]
+

⩽ min (φ′
B) (4.78)

where min (φ′
B) is the minimum (i.e. largest negative) value of the gradient of the friction

curve. For this particular model, as per (4.18), it is equal to the slope of φB at vnrel,B = 09, and

its value is -44.5. Given the definition of σn
B, given by (4.74c), the condition under which the

solution is unique depends on the string physical parameters (through A−1), the time step k,

the grid spacing h, and most importantly on the normal force [fn
B]+ exerted by the bow.

When this condition is not met, and ηB intersects φB in three places, the method to resolve

Equation (4.76) was discussed by McIntyre et al. [75]. They showed that the “correct” solution

is the one that preserves the current regime, sticking (Figure 4.9, (i)) or slipping (Figure 4.9,

(ii)), for the longest time, and that the “middle” solution (Figure 4.9, (iii)) was always physically

unstable, and never seen in practice. This gives rise to hysteretic behaviour: the relative velocity

jumps back and forth between the two branches of φB at different points depending on whether

the transition is from stick to slip, or the other way around. This manifests as a lengthening

of the stick/slip cycles, and therefore a flattening of the pitch. This effect has later been found

to be due to the naturally hysteretic viscothermal behaviour of the melting rosin, which is

somewhat approximated by this hysteresis rule on the simpler friction curve model [100].

The slope of ηB depends directly on the normal bow force; a larger value of [fn
B]+ means less

steep a slope, and in turn a more pronounced hysteresis loop. For the proposed system, the pitch

flattening effect therefore results from excessive downwards bow force; this indeed corresponds

to musicians’ experience in real bowed string playing. For a given string, an expression for

the maximal bow force beyond which pitch flattening can occur may be derived. As will be

demonstrated in Appendix A, for an ideal bowed string (i.e. without bending stiffness or

damping), the analytical expression derived by Friedlander for this maximal bow force is found

to be the same as that obtained with a FD scheme analogous to that presented here, at the

stability limit. This is an encouraging indicator of the validity of using a physical hysteresis rule

such as that used by McIntyre et al. to resolve this seemingly numerical ambiguity, albeit not

a definitive proof that the expression for the maximal bow force will be the same, in practice,

for different choices of discretisation.

Once Equation (4.76) has been solved for vnrel,B, and the friction coefficient φB has been

computed, they can be substituted into System (4.71). The system is finally solved for the bow

and finger relative velocities, allowing the discrete state to be updated, with (4.68) and (4.69).

9Approaching the discontinuity from the positive or negative vnrel,B axis; otherwise, the slope is infinite.
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4.4 Simulation results

Through the proposed control parameter space, the bowed string model presented here allows

the reproduction of a wide range of bowed string gestures. A more complete review of the

musical sound synthesis capabilities of the algorithm described in this Chapter will be presented

in Chapter 5.

Before moving on to “playing” the virtual string, however, it is useful to ensure that the

algorithm derived from the FD scheme proposed in Section 4.3 functions as expected. As was

discussed in Chapters 2 and 3, the numerical power balance provides insight on the energetic

contributions of each subsystem (string, bow, finger, fingerboard, in each polarisation), as well

as the power exchanges between them. A global energy variable En was defined by (4.63) for

the bowed string system, which should remain conserved throughout a simulation.

Figure 4.10 presents the evolution of the energy and cumulated power for each subsystem, in

both polarisations, during a 2-second simulation of a cello D string, initially at rest. One finger

then pushes the string down onto the fingerboard, in order to stop it. The bow is then lowered

onto the string. After a short time, the bow is pushed across the string, in the horizontal

direction, exciting periodic motion.

While the string is bowed, all control parameters are made to continuously vary over time,

in order to demonstrate global energy conservation in the most general case. The finger slides

down the string towards a higher position and downwards force, simulating a glissando; the bow

downwards and transverse force are continuously increased, while the bowing point is brought

closer to the bridge. The bow is finally lifted away from the string, and the string oscillations

between the stopping finger and the bridge boundary are left to decay. The middle row of

plots in Figure 4.10 displays the external forces applied onto the bow and finger, in the vertical

polarisation (fn
ext,F,(w) in blue, fn

ext,B,(w) in red, LHS) and in the horizontal direction (fn
ext,B,(y)

in red, RHS). The bottom plots are the same for both polarisations; they display the respective

positions xn
F and xn

B of the finger and bow with respect to the nut boundary of the string, in

cm.

As a visualisation aid, the energy balance plots of Figure 4.10 (top row) are reproduced, for

each polarisation, in Figures 4.11 and 4.12, and are each accompanied by simulation snapshots

at relevant timestamps (indicated with the numbered grey markers on each plot).

Since the system starts at rest, the total initial energy H0 is zero, and computing the relative

variations of En as done in (3.69) becomes an issue. Instead, in this case, recall the definition

of En given by (4.63):

En ≜ Hn + k
n∑

p=1

(Qp − Pp) = 0 (4.63)

As the power is balanced separately for each polarisation (see Section 4.3.4), the equation may

be split as follows:

Hn
w = −k

n∑
p=1

(Qp
w − Pp

w) (4.79a)
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Hn
u = −k

n∑
p=1

(Qp
u − Pp

u) (4.79b)

(4.79c)

One can define a dimensionless invariant for each polarisation, given as the ratio of energy to

cumulated power:

Rn
w ≜


1 if Hn

w = 0

− Hn
w

k
∑n

p=1 (Q
p
w − Pp

w)
otherwise

(4.80a)

Rn
u ≜


1 if Hn

u = 0

− Hn
u

k
∑n

p=1 (Q
p
u − Pp

u)
otherwise

(4.80b)

The variations of Rn
w and Rn

u away from 1 should then be independent from the absolute

magnitudes of the energy and cumulated power. In practice, to avoid dividing by very small

numbers, the condition under which Rn
w and Rn

u are set to 1 may depend on a threshold value.

Figure 4.13 displays the values of Rn
w − 1 and Rn

u − 1 over time; the total numerical energy

(including cumulated power) is indeed conserved, to the 9th significant digit.

Concluding remarks

The isolated string model presented in Chapter 3 has now been completed with the addition

of nonlinear excitation mechanisms, through coupling with a bow, a stopping finger, and a

distributed fingerboard. A nonlinear power-balanced FD scheme was proposed for the full

system, used to numerically solve the equations of motion in both polarisations; the scheme

was shown to be stable under the same condition as the scheme used for the isolated string.

At each time step, the order of the full scheme update is as follows:

1. The linear update is computed for the string state grid functions wn+1 and yn+1 in each

polarisation, using Equation (3.66).

2. The nonlinear system (4.66) is solved in the vertical polarisation with an iterative method,

in order to obtain the values of the normal contact forces between the string and the

fingerboard, finger, and bow.

3. The normal forces are substituted into the nonlinear system (4.71) for the horizontal

polarisation.

4. Equation (4.76) is solved first for the bow friction force, using Friedlander’s construction,

and a nonlinear iterative method if the bow-string system is in the slipping phase. The

result is substituted into the rest of System (4.71).

5. System (4.71) is solved for the fingerboard and finger friction forces.
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6. The full nonlinear update is computed for wn+1 with Equation (4.64), and for yn+1 with

Equation (4.68).

7. The states γ
n+1/2
q,(w) , ξ

n+1/2
q′,(w), γ

n+1/2
q,(y) , and ξ

n+1/2
q′,(y) are updated with (3.64), in each polarisation.

8. The displacements wn+1
FB , yn+1

FB of the finger and bow are updated in both polarisations,

with (4.65) and (4.69).

The output of the algorithm depends on the external force and position control signals for

the bow and finger. The focus of the next Chapter 5 will centre on these control signals. It

will be shown that all bowed string vibration regimes and many bowed string gestures can be

reproduced with the proposed model, by simply using different combinations of time profiles

and patterns for the control signals.
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Figure 4.10: Top row: energy balance plots for a 2-second simulation of a bowed cello D string, with
a stopping finger pressing the string against the fingerboard. The vertical polarisation is shown on the
left, the horizontal polarisation on the right. For each polarisation, the energy and cumulated power is
shown for the string (in green), the bow (in red), the finger (in blue), and the fingerboard (in orange);
the total energy and cumulated power is drawn in black (note that, for the horizontal polarisation, the
black curve is masked by the blue curve). Middle row: on the same time scale, force control signals for
the bow (in red) and the finger (in blue), in each polarisation. Bottom row: locations xB, xF of the
bow and finger (same for both polarisations). — Sample rate: Fs = 44.1 kHz.
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(in black) remains constant.

(b) t = t1: the finger is pushed down onto the
string.

(c) t = t2: the string is stopped between finger
and fingerboard, the bow is pushed down onto the
string.

(d) t = t3: the bow is pushed down onto and
across the string with increasing force, and is
brought closer to the bridge termination; the finger
moves down the fingerboard, also with increasing
force.

(e) t = t4: the bow is lifted up from the string.

Figure 4.11: Energy transfers in the vertical polarisation during a 2-second simulation (top), with
visualisations of the system state (not to scale) at different timestamps. The shadow of the string
displacement in the vertical polarisation is displayed in grey, at the back of the graph.
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Figure 4.12: Energy transfers in the horizontal polarisation during a 2-second simulation (top),
with visualisations of the system state (not to scale) at different timestamps. The shadow of the
string displacement in the horizontal polarisation is displayed in grey, at the bottom of the graph; the
fingerboard is transparent. Timestamps are the same as that shown for the vertical polarisation in
Figure 4.11.
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Chapter 5

Control and gesture-based sound

synthesis

In Chapter 4, a numerical model of a two-polarisation bowed string was presented, including

stopping fingers and a fingerboard. Given a set of time-varying control parameters, the

algorithm can be used to simulate a musician’s gesture. The computed output can then be

read out at one or more locations along the string1 in order to generate synthetic sound.

The problem explored in the present Chapter is that of user control2. A numerical

model based on the behaviour of real instruments should exhibit both musically desirable and

undesirable responses to user input, as seen in the physical objects they imitate. This means

that, although the sound synthesis possibilities from such an algorithm are vast, the musically

useful region may only be a small subset of the control parameter space, the dimensions and

location of which are not trivial to determine.

The first part of this Chapter (Section 5.1) seeks to address some of these issues, with a

systematic exploration of the bowing parameter space made available by the proposed bowing

model. This analysis hinges on the concept of playability, a description of which will be given

in Section 5.1.1. After describing the principal vibration regimes observed in a bowed string,

a graphical representation of the parameter space will be proposed in Section 5.1.2, closely

related to those present in the literature, and adapted for the proposed model of the bow-string

system. Section 5.1.3 will describe the method employed to generate and analyse numerical

data from simulations. The results of this analysis will be presented in 5.1.4, and their usability

in guiding sound synthesis will be discussed in Section 5.1.5.

The second part of this Chapter (Section 5.2), informed by the results of 5.1, will then give

1Recall that the model presented throughout this work assumes an isolated string, with perfectly reflecting
boundary conditions, uncoupled to any bridge/body structure; computational output must therefore be read
out on the string itself.

2Note that, here, “control” is meant in a computational sense; the user interface problem is a wholly different
topic.
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an overview of the capability of this algorithm to simulate bowed string gestures. A summary of

the user control streams will be presented, and simple gesture examples will be demonstrated.

The work presented in Section 5.1 has been described in [31]. Note that the results

were obtained before the development of the frequency-dependent damping model presented

in Chapter 3. The loss model employed for the playability study in the present chapter is

described in [7], and is summarised by Equation (3.27). The other aspects of the model are

identical to those presented in this manuscript, namely the nonlinear interactions with the bow,

finger, and fingerboard in two polarisations. Indeed, all derivations exposed in Chapter 4 still

stand with the former loss model; the only discrepancies lie in the linear part of Systems (4.11)

and (4.20), and are therefore all encapsulated in the Lu(w) and Lu(y) terms.

An overview of the gestural control attainable with the same model was described in [29].

Sound and video examples, compiled directly from simulated data, are available online3.

5.1 Control parameter space and playability of the virtual

bowed string

Section 5.1 focuses on the problem of bow control within the available parameter space defined

by the numerical model proposed in Chapter 4. Throughout this Section, the fingerboard and

finger models will be omitted, reducing the study to that of open bowed strings.

5.1.1 The concept of playability of a bowed string instrument

Bowed string playing is characterised by the high sensitivity of the tonal quality of a produced

note to small variations of playing parameters. While this grants remarkable expressive control

to an experienced player, the requirement for such fine execution presents the novice musician

with significant challenges.

The ease with which a stable note (i.e. in the Helmholtz regime) can be produced on a bowed

string instrument is often referred to as the playability of the instrument [117]. Playability

can be quantified by the breadth of the bowing parameter space that gives rise to Helmholtz

motion [115] in the bowed string (see Figure 4.4).

Many studies have investigated the playability of bowed strings, both experimentally and

on virtual strings; see, for instance, [94, 85, 96, 95, 97, 117]. Three control parameters have

most frequently been used: the downwards bow force, transverse bow velocity, and bow-bridge

distance. Schelleng [90] was the first to formulate analytical limits for the minimum and

maximum downwards bow force, for given values of the two other parameters, outwith which

Helmholtz motion is unattainable. He introduced a well-known graphical representation of

the playable region in the bowing parameter space, now commonly referred to as a “Schelleng

diagram”; the original figure in [90] is reproduced in Figure 5.1. Schelleng’s analysis was then

3https://charlottedesvages.com/companion/appl-sci-16/

https://charlottedesvages.com/companion/appl-sci-16/


CHAPTER 5. Control and gesture-based sound synthesis 123

BOWED STRING AND PLAYER 

FIG. 6. Spectrum of a very flexible and a very 
stiff string; inharmonicity of the latter com- 
parable with that of a violin gut G string. 
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In obtaining Fig. 6, the string, mounted on a mono- 
chord, was bowed continuously by machine, the same 
device described and used by Saunders? In order to 
measure the relative forces exerted on the bridge, all 
that is necessary is to move the magnet to an antinode 
of the harmonic in question, since velocity at an anti- 
node is proportional to force at the end of the string. 
The midpoint of the string serves for all odd orders. A 
simple commercial sound analyzer was used. 

The disappearance of the nth harmonic when the 
bow approaches a point an nth submultiple of string 
length away from the bridge, i.e., a node of the nth 
partial, must cause some change in timbre, but its 
musical importance as a means of intentional musical 
expression is doubtful. At best, this subtle effect, 
superposed on the more complex spectrum of the 
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with exactness at a nodal point, a distance from the 
bridge that changes with fingered length of the string. 
With the violin, tolerance to mislocation would be less 
than a few millimeters. This point one nth of string 
length away from the bridge is of course a forbidden 
position for the bow when a "harmonic" is fingered by 
a light touch at some other node since it is then a point 
of zero motion for all desired components of vibration. 
Best positions are of course much closer to the bridge. 

E. Graphical Representation for 
Sustained Tones 

Owing to the many resonances in the instrument, 
the player on even a fine instrument must adapt bowing 
technique to variations both in minimum bow force and 
acoustical response. Raman found that minimum bow 
force can be increased by a factor of the order of two 
as the fundamental frequency is swept through the air 
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constant bow velocity for sustained tones. 
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branch suggests effect of curvature in 
Fig. 5. 
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Figure 5.1: Schelleng diagram, reproduced from [90], showing the minimal and maximal downwards
bow forces delimiting the Helmholtz playable region, as a function of the bow-bridge distance, for a
given bow velocity.

revised by Schoonderwaldt et al. [93] who found, through extensive analysis of experimental

measurements, no clear relation between minimum bow force and bow velocity.

Schelleng’s diagram is the standard tool for playability analysis of bowed strings, in the

steady state regime. It is a two-dimensional logarithmic plot of the theoretical minimal and

maximal bow force limits versus bow-bridge distance, for a given bow velocity. Each of these

limits forms a straight line in this logarithmic parameter space, delimiting a triangular area

within which Helmholtz motion is achievable. Beyond these limits, other vibration regimes

arise, such as:

� Raucous motion, when the downwards bow force is high for a given transverse bow velocity

and bow-bridge distance, preventing the string from detaching from the bow at the end

of the sticking phase4, hence giving rise to a rough, noisy sound.

� Multiple slipping, when the downwards bow force is too low for a given transverse bow

velocity and bow-bridge distance, preventing the bow from sticking to the string for the

full duration of the nominal sticking phase. Multiple slipping is often characterised by

strong harmonics in the produced note, as the string slips several times per nominal

period.

� Anomalous low frequencies (ALF), beyond the maximal downwards bow force limit, when

the Helmholtz corner is reflected once or more between the bow and nut before triggering

the slipping phase, resulting in oscillations below the fundamental frequency of the string.

The frequency of these oscillations depends on the distance between the nut (or stopping

finger) and the bow. There do exist so-called secondary waves (ripples), reflecting between

the bow and the bridge; these ripples could also yield another type of ALF, with a shorter

period lengthening, correlated to the bow-bridge distance [91].

4See Section 4.2.3.ii for a description of the stick/slip cycle.
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Figure 5.2: Bow control for the present model is characterised by the magnitude
∣∣∣f⃗extB∣∣∣ and angle θ

of an external resultant force vector applied onto the bow.

� S-motion, observed for high downwards bow forces and bow-bridge distances, charac-

terised by high-amplitude ripples [66].

A Schelleng diagram can be replicated from experimental and simulated data, in order to test

a particular bowed string model. In this case, a large number of measurements must be taken,

spanning the available parameter space. This is evidently much easier to do with simulations

than it is with an experimental rig, having the advantage of perfect repeatability, and the ability

to run a very large number of simulations at virtually no cost.

5.1.2 The force-force control parameters

In addition to the bow position xB along the string, made static during each simulation in

this study, the available dynamic control parameters are the forces exerted onto the bow by

the player in the two polarisations, fn
extB,(w) and fn

extB,(y). The former directly determines the

steady-state normal bow force, often referred to as “bowing pressure” by musicians. The latter

dictates the transverse bow velocity, depending on the bow hair’s friction characteristics.

Consequently, a bow force vector f⃗extB may be defined, the orthogonal components of which

are given by the vertical and horizontal components of the bow force; Figure 5.2 illustrates

such a vector. This description emphasises the role of the player in providing control through

application of a force onto the bow, from which the string and bow dynamics eventually arise.

The main difference between the control of classic bowed string models, and the model

presented here, is the transverse bow control. In the horizontal polarisation, at least, the

conventional control parameter is an imposed transverse bow velocity. The present model,

however, uses a time series describing the force applied to the bow, in the transverse direction.

A parameter exploration study will therefore seek the regions of the parameter space giving rise

to a given bowed string vibration regime, not along force-velocity axes, but along force-force

axes; at a given bowing position, the entire parameter space can be described in terms of the

magnitude and angle of the bow force vector f⃗extB.

Clearly, the availability of three control parameters implies to make a choice if a 2D
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Figure 5.3: An example playability-force diagram. Each marker on the left plot represents one
simulation, performed with one combination of transverse and normal bow force. Each simulation was
examined 1.8 s after initial application of the horizontal bow force, and categorised into one of four
playing regimes (excluding constant sticking and constant slipping). Typical string displacement and
associated relative velocity waveforms are shown for each of the four detected regimes. The diagonal
black and blue lines on the diagram respectively mark the estimated minimum and maximum bow force
angles, between which Helmholtz motion is reliably obtained in the simulation, regardless of bow force
magnitude. — Parameters: see Cello D string on page xxix. — Figure reproduced from [31].

representation is sought. In his study of steady-state bowed string oscillations, Schelleng [90]

chose a particular representation of the parameter space and bow force limits, as a function

of the bow-bridge distance, for a given bow velocity. However, as noted in his original work,

one could also plot the vertical bow force as a function of the bow velocity, for a given bow-

bridge distance. A possible layout for visualising the parameter space in the present framework

immediately arises: the bow force vector can be represented in a playability diagram, with its

transverse component fextB,(y) on the horizontal axis, and fextB,(w) on the vertical axis. The

origin of the graph (chosen to lie at the top right of the axes) then corresponds to the origin of

f⃗extB (i.e. application of zero force). An example of such a “playability-force diagram” is shown

in Figure 5.3. The apex of the bow force vector is then expected to navigate a two-dimensional

valley in the bow force parameter space, within which steady Helmholtz motion is attainable.

5.1.3 Exploring the parameter space: a numerical experiment

A large number of simulations were computed on a cello D string, using the algorithm described

in Section 4.35. 10 data sets were obtained, for 10 static bow positions xB, all chosen as integer

ratios xint
B of the string length, for xint

B values ranging from 5 to 14, so that the bow was

positioned at a fraction 1/xint
B of the string length away from the bridge termination.

For each of the 10 positions, the downwards bow force fextB,(w) was incrementally varied

5Recall that, for this study, the linear part of the string model employed a simpler representation of damping
processes.
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from 0.02 to 3 N, in 0.02 N steps (150 different force values), and the transverse bow force

fextB,(y) was varied between 0.05 and 6 N, in 0.05 N steps (120 different values), amounting

to 18,000 simulations for each bow position. Each simulation lasted for 3 seconds, with the

downwards bow force applied at t = 0, and the transverse bow force stepped up to its target

value at t = 1 s. This delay was implemented so that any initial string oscillations, caused by

the application of the downwards bow force, had time to settle. As this study was focused on the

steady-state regime, the resulting output waveforms were analysed from 1.8 s after application

of the transverse bow force, i.e. well after the end of the initial transient phase.

The automatic classification of bowed string playing regimes is described in [31]; a brief

outline of the methodology is given here. It should be disclosed that this particular aspect of

the study was led by the co-author of [31].

The classification routine is based upon analysis of the relative velocity signal vnrel,B,

computed from the simulations. The approach uses autocorrelation to identify periodicity,

and is largely inspired by a methodology employed in the literature for similar studies [116],

with one notable difference. Rather than applying an autocorrelation analysis directly to vnrel,B,

a peak-finding algorithm is first applied to the signal to identify times of maximal slip velocity.

The timing and amplitude of these peaks are then used to create the signal vnrel,B,q, a quantised

version of vnrel,B consisting of zeros everywhere except at moments of maximum slip velocity,

where vnrel,B,q takes the value of such velocity.

Autocorrelation analysis is then applied to vnrel,B,q, producing an autocorrelation function

that is itself of a quantised nature. Analysis of the location, spacing, and spread of the

autocorrelation peaks leads to a set of relatively simple rules, allowing classification of each

simulated waveform into one of six categories:

� constant slipping, where the bow slides smoothly over the string, with no clear stick/slip

cycle;

� constant sticking, where the transverse bow force is too small to keep the bow moving,

the bow stops and remains permanently stuck to the string;

� Helmholtz motion;

� multiple slipping;

� anomalous low frequencies (ALF);

� raucous motion.

The detection of S-motion was not included in this study.

5.1.4 Results

This Section summarises the key observations made on the playability diagrams compiled with

simulation output data.
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5.1.4.i Bow force vector range and areas of interest

The playability-force diagrams mostly appear divided into approximately triangular regions.

Observation of sampled data on either side of the limits between the various regions suggests that

the classification algorithm is robust. The following observations are common to all generated

diagrams (i.e., for all bowing positions).

� The Helmholtz-playable region (Figure 5.3, in green) is circumscribed by two limits. The

lower separation segregates the Helmholtz region from the raucous region (in red). In this

representation of the parameter space, it is almost linear; it therefore corresponds to a

particular angle of the bow force vector.

� Above the Helmholtz region, the transition into the multiple slipping region is generally

less distinct, especially for very high and very low bow force vector magnitudes (i.e., close

to, or far away from, the origin). This suggests a more ambiguous transition between

Helmholtz motion and multiple slipping at low downwards forces.

� Within the raucous region, one or more wedge-shaped ALF areas (in yellow) are visible.

The clearly defined (and seemingly linear) maximum downwards bow force limit, within the

analysis framework used here, suggests a possible definition of the lower limit of the playable

space in terms of only the angle of the bow force vector, and independent of its magnitude.

With the aim of clarifying the playability of the proposed algorithm as a sound synthesis tool,

a “soft” upper bound of the Helmholtz region can similarly be drawn from the origin, bounding

an angle range where Helmholtz motion is reliably achieved regardless of bow force magnitude,

and excluding all occurrences of multiple slipping. Figure 5.3 shows these upper (in black) and

lower (in blue) limits, in dashed lines.

5.1.4.ii Evolution of the playable range with bow position

Figure 5.4 presents all 10 playability-force diagrams for fractional bow-bridge distances from 1
5

to 1
14 of the length of the string. All regions of the diagram seem to rotate counter-clockwise

around the origin as the bow gets closer to the bridge. Both lower and upper downwards force

limits shift towards higher values.

The raucous/ALF section narrows, as the multiple slipping area expands, confirming the

need for higher downwards forces to trigger Helmholtz motion as the bow-bridge distance

decreases.

The lower downwards bow force limit, separating multiple slipping and Helmholtz regimes,

appears to become increasingly linear as the string is bowed nearer the bridge. Within the

multiple slipping region, various “pockets” of Helmholtz motion seem to appear, change shape,

and generally rotate anti-clockwise with decreasing bow-bridge distance.

To get a better sense of how playability might evolve as the string is bowed closer to the

bridge, and to relate the results to a more conventional Schelleng analysis, two quantities

are plotted against bow position. Figure 5.5 shows the evolution of the relative area of each
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Figure 5.4: Playability-force diagrams for different bowing positions. The axes have been adjusted so
that zero force is at the top right of each plot, so as to reflect the diagram shown in Figure 5.2. Note
that, while the bow force vector angle changes, rotation of the bow itself is not implied. — Parameters:
see Cello D string on page xxix. — Figure reproduced from [31].
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detected regime versus bow position, by counting, in each diagram of Figure 5.4, the number

of waveforms classified into a particular category. The result summarises one of the obvious

trends seen in Figure 5.4, which is the progressive rise in the number of multiple slipping cases

with decreasing bow-bridge distance. Furthermore, after a peak at xB = L
6 , the Helmholtz

region gradually narrows as the bow is brought closer to the bridge.

Figure 5.6 plots the angular range of the bow force vector giving reliable Helmholtz motion,

as a function of bow-bridge distance. This range is evaluated by measuring the respective
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angles of the dark blue and black dashed lines used to delimit a reliable Helmholtz-playable

range independently of the bow force magnitude (see Figure 5.3), as described in Section 5.1.4.i.

While the minimum and maximum bow force angles both increase with decreasing bow-bridge

distance, the playable angular range does not seem to follow such a clear trend. Indeed, as

seen on the red dashed curve in Figure 5.6, the playable angular range only narrows or expands

by a few degrees; such variations are practically indistinguishable from those arising from the

uncertainty in the assignment of the upper (black) line, separating the Helmholtz and multiple

slipping regions. This means that, in terms of the bow force vector control, the breadth of

the Helmholtz playable space remains relatively constant with varying bow-bridge distance.

Note that this observation will, perhaps, not seem familiar to a bowed string player; a possible

explanation could be that smaller bow-bridge distances require steeper bow force angles (i.e.

larger downwards forces), for which finer control is more difficult to achieve.

5.1.4.iii Anomalous low frequencies

A noteworthy feature of all the playability diagrams in Figure 5.4 is the presence of an ALF

band (in yellow), suggesting a “playable ALF region” rather than random, sparsely distributed

cases; this was also observed experimentally by Schoonderwaldt [93]. This ALF region moves

within the raucous region with varying bow position, surrounded by raucous cases when the

string is bowed further from the bridge, and progressively shifting in an anti-clockwise direction

when the bowing point gets closer to the bridge. Eventually, the ALF band provides a clear

separation between raucous motion and constant sticking.

For xB = L
5 (Figure 5.4, top left), two triangle-shaped bands can be observed within

the raucous area. One of them, in yellow, corresponds to the first type of ALF described

in Section 5.1.1, for which the fundamental stick/slip period is almost doubled. The second

wedge, in green, was automatically classified as Helmholtz motion, as the classification algorithm

tolerates a moderate amount of pitch flattening. However, closer inspection of the waveforms

shows what could be the second type of ALF described in 5.1.1, due to ripples reflecting between

the bridge and bow, and for which the resulting pitch is lowered by about one semitone. Without

further analysis, this second band becomes indistinguishable from pitch-flattened Helmholtz

motion for smaller bow-bridge distances.

5.1.4.iv Regime segregation

As a more general comment, it is worth noting that the separation between the different

vibration regimes for all plots of Figure 5.4 is clearly defined, in particular the separation

between Helmholtz and raucous motion, and the boundaries of the ALF regions. This highlights

once again the strong nonlinearity of the bow-string interaction, as it is shown that very small,

incremental shifts in control parameter values can result in drastic pattern changes in the

output signal. In the literature pertaining to nonlinear dynamics, these events are referred to

as bifurcations [63]. Amongst existing studies of the bowed string as a nonlinear dynamical

system, an interesting example is that of an experimental study by Müller and Lauterborn [76],
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who investigated these bifurcations by applying gradually increasing bow velocities. Such

phenomena are difficult to approach analytically, hence reaffirming the suitability of a time-

stepping numerical method based on a physical model to simulate the bowed string system.

5.1.5 A tool for sound synthesis control

The results presented above are qualitative in nature. It is not the ambition of this study to

validate theoretical models or experimental measurements in a quantitative manner; rather, it is

to provide a tool for guiding sound synthesis with the proposed bow-force-controlled algorithm.

Before any comparison can be made with experimental data, it must be considered that the

physical model used in this work is missing arguably essential features, potentially having

great influence on playability. Some of these features may include the finite width of the

bow, the presence of torsional waves [6], or a mobile bridge boundary, dynamically coupled

to a realistic bridge-body model. Schoonderwaldt [93] has experimentally demonstrated that

damping conditions have significant influence on the bow force limits defining the playable

region; specifically, he outlines the intrinsic string damping, the coupling to the body, and the

stopping finger as the factors most influential on playability. It would therefore be appropriate

to derive results as those presented here, using accurate calibration of the frequency-dependent

loss profile of the string, as described in Chapter 3, and to explore the influence of an absorbing

stopping finger on playability; this is left, for now, as further work.

Qualitatively, nonetheless, the diagrams compiled for the proposed model indeed show

similarities with Schelleng diagrams, in that a triangular Helmholtz-playable area is visible,

in terms of downwards and transverse bow force components. As observed experimentally [93],

the transition between the Helmholtz and multiple slipping regions is not clearly defined; this

could result from the progressive character of this transition, and perhaps from its dependency

on initial transient response. Further observation of the waveforms lying in the vicinity of

the minimum bow force limit confirms that many continuously transitioned between multiple

slipping and Helmholtz motion; this suggests that results computed from a delayed analysis

window would certainly produce a different set of diagrams.

Following this observation, it is straightforward to see how this analysis could be applied

to the characterisation of transient behaviour. In addition to the quality of the steady-state

regime, the initial bowed string transient characteristic, and particularly its duration [47], plays

a major part in the evaluation of playability. In this respect, the force vector representation

for bow control offers a significant advantage; a step onset of transverse bow force is arguably

comparable to the application of an initial transverse acceleration to the bow, which is the

control parameter used by Guettler for his pioneering transient analysis [45]. The same method

as that described in Section 5.1.3 can therefore be used for the evaluation of transient behaviour,

if applied to many analysis windows, each centred at a different time; most importantly, the

analysis can be performed on the same simulated dataset, without the need to recompute

thousands of simulations with a different set of control parameters.

The steady-state playability diagrams presented here, possibly coupled with a future

transient characterisation study, could constitute a collection of presets for the sound synthesis
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of a range of strings with known physical parameters. Options to compile playability diagrams

for any virtual string, outside of such database, could perhaps be explored in further refinements.

The relatively consistent triangular structures observed in Figure 5.4 could be the starting point

for a much more targeted (and time-efficient) analysis, over a few carefully selected combinations

of control parameters, aiming at determining approximate minimum and maximum bow force

angles as a function of bowing position.

5.2 Gesture reproduction for sound synthesis

This section, and the concluding part of this thesis, aims to illustrate the range of sound

synthesis possibilities offered by the bowed string numerical model presented throughout

Chapters 3 and 4. All the simulations presented here were run in MATLAB, at a standard

audio sample rate (Fs = 44.1 kHz)6, with the grid spacing h set as close as possible to the

stability limit. The output waveforms, in the form of string displacement time histories, were

read out from the discrete string point immediately adjacent to the bridge termination.

5.2.1 Summary of the control parameters

5.2.1.i Physical parameters

The first aspect of user control for the proposed algorithm lies in the physical parameters of the

system. An end user has total and independent control over every constant physical parameter

defined in this work, summarised in the table on page xxv. The parameters are manually input

into a MATLAB script, referred to as the instrument file. For a given audio sample rate, the

grid spacing can then be set according to the stability condition given in (2.91).

The table of physical parameter values given on page xxix may be used as a safeguard,

if one is concerned with the synthesis of realistic bowed string instrument sounds; the more

adventurous composer can experiment with different parameter combinations, not limited by

physical constraints. Recalling the results of Section 5.1, it is important to note that, given the

nature of bowed string motion, unusual combinations of physical parameters may drastically

limit playability.

5.2.1.ii Control signals

The second aspect of user input, and the focus of the rest of this Section 5.2, is gestural control,

defined by a set of dynamically varying parameters for each bow and finger:

� Bow parameters:

– bow position xn
B along the string, closer to or further away from the bridge;

– downwards bow force fn
extB,(w), often referred to as “bowing pressure”;

6With the exception of those for which spectrograms were computed, where the sampling rate was increased
in order to enhance resolution.
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– tangential bow force fn
extB,(y), which will determine the bowing velocity, and, in turn,

the amplitude of bowed string motion.

� Finger parameters:

– finger position xn
F along the string, determining the (possibly time-varying) pitch of

the produced note;

– downwards finger force fn
extF,(w), used to capture the string against the fingerboard,

or to lightly push the finger against the string in order to play natural harmonics or

to damp residual oscillations.

It should be noted that, if the string model was designed to include a geometric nonlinearity

(leading to, e.g., tension modulation), the application of a transverse finger force fn
extF,(y) would

suffice to reproduce pitch-bending gestures, often used in guitar playing.

In a second MATLAB script, referred to as the score file, the user inputs a list of breakpoint

times and values for each of the five control parameters cited above. Time series are then

generated for all parameters, using linear interpolation between breakpoints. The resulting

piecewise linear control signals can then be modified at will; a representative example is the

addition of an oscillatory term in the finger position signal, so as to simulate a vibrato sound,

as will be seen in Section 5.2.2.iv.

5.2.2 Example gestures

5.2.2.i Varying bow forces and position

As long as the combination of bow force and bow position remains within the playable area

of the control parameter space (see Section 5.1), the bow control parameters can be updated

dynamically during the course of a simulation, while keeping Helmholtz motion sustained. This

allows for dynamic variations of a note’s timbre and loudness, directly mapped to the same

parameters that a player would handle on a real instrument, as opposed to a more abstract

representation of their influence over the output sound. For instance, a sharper, more brilliant

sound is achieved by bowing the string closer to the bridge termination; loudness is controlled by

adjusting the bow tangential force, in order to increase or decrease the bow velocity. Figure 5.7

illustrates the spectral variations associated with dynamic changes to the bow downwards force,

tangential force, and position along the string, during a simple synthesised bowed string gesture.

5.2.2.ii Natural harmonics

It is possible to bow natural string harmonics by placing the finger at an integer fraction of the

string length. The finger downwards force fn
extF,(w) must be small enough that the string does

not touch the fingerboard, but large enough that the finger has a grip on the string. Figure 5.8

shows the spectrogram of a simulated bowed harmonic on a violin A string, where the string

is stopped at its mid-point (xF = L
2 m), and bowed at xB = 3L

4 m. As expected, the second
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Figure 5.7: Spectrogram (1st plot) of the synthetic sound produced by bowing a violin A string with
varying bow position xn

B (2nd plot), bow downwards force fn
extB,(w) (3

rd plot), and bow tangential force

fn
extB,(w) (4th plot). (i) Higher harmonics appear when increasing the bow force and bowing closer to
the bridge. (ii) An increase in bow tangential force does not influence the spectral content of the sound,
but globally increases its amplitude. (iii) The free string oscillations decay as soon as the bow is lifted
up, at frequency-dependent rates. — Parameters: see Violin A string on page xxix.

harmonic is the strongest; there are also partials at odd multiples of its frequency7. Some

beating is observed when the string oscillations are left to decay, perhaps related to the finger’s

own resonant frequency being excited.

7Partials at even multiples of the second harmonic’s frequency are not excited here, since their modal shapes
comprise a node at the location of the bowing point.
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Figure 5.8: Top: spectrogram of the bowed first harmonic on a violin A string. Bottom: simulation
snapshot, showing the bow and finger positions. — Parameters: see Violin A string on page xxix.

5.2.2.iii Bouncing bow

The bow spontaneously bounces against the string, if the initial vertical bow velocity is high

enough (i.e., if the bow is pushed down too quickly onto the string, typically with a downwards

initial velocity of 1—10 m/s), and the downwards force fn
extB,(w) is too small to immediately

compensate the restoring force due to the tension of the string. A video of a bouncing

bow simulation is available online8. With more refined control over the gesture parameters,

it is indeed possible to simulate spiccato playing. Exploration of the full potential of the

proposed model to reproduce these more complex gestures would greatly benefit from a real-

time implementation, where dynamic parameters are mapped to a controller; this is out of the

8https://charlottedesvages.com/companion/appl-sci-16/

https://charlottedesvages.com/companion/appl-sci-16/
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Figure 5.9: Top: spectrogram of a synthesised gesture, showing a glissando along a cello D string
followed by a vibrato; the stopped string vibrations are then left to decay. Bottom: corresponding
finger position along time. — Parameters: see Cello D string on page xxix.

scope of this thesis, and it is simply pointed out here that the numerical model enables such

gestures.

5.2.2.iv Moving finger

The left hand finger can be moved along the string while pressed down against the fingerboard.

It is therefore straightforward to introduce gestures such as glissando, where the finger slides up

or down along a significant portion of the string, and vibrato, by oscillating the finger around a

central position, at a sub-audio rate. Figure 5.9 shows the spectrogram for a glissando gesture,

followed by a vibrato; the corresponding finger position is displayed underneath the spectrogram

for reference.

5.2.2.v Rattling

In the absence of a bow, it is possible to reproduce a pluck gesture, for instance, by initialising

the string displacement and velocity away from the string’s resting state, or feeding an additional

external force directly into the string as a time series, at the desired plucking point, with the

help of a pointwise distribution akin to jnF or jnB [10]. A pluck at the same position in both

polarisations, with large enough amplitude, will excite the string with enough energy to collide

and rub against the fingerboard, possibly repeatedly; the resulting sound is that of the string
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Figure 5.10: Large amplitude oscillations of a violin A string, resulting in repeated collisions and
friction with the fingerboard. Top: vertical polarisation; bottom: horizontal polarisation. The grey
vertical lines mark times when the string is anywhere in contact with the fingerboard; the red lines
denote contact events at the readout position (x = L/2). The displacement of the string was initialised
with the shape of the fundamental transverse mode, in both polarisations, to emulate a “diagonal”
pluck; collision and friction both generate higher partials. — Parameters: see Violin A string on
page xxix.

rattling against the fingerboard. Figure 5.10 shows the waveform obtained by a large amplitude

pluck of a violin string, in both polarisations, where the times where the string is in contact

with the fingerboard are highlighted.

Concluding remarks

This chapter has taken the first steps towards demonstrating the usability of the numerical

bowed string model developed in this work as a tool for musical sound synthesis. An exploration

of the control parameter space has provided a graphical representation of the playable space in

terms of bow control. This parameter map showed qualitative resemblance with others obtained

with experimental data, although further refinements are necessary in order to generalise the

analysis of the results presented here.

The inclusion of lumped and distributed interactions with the player (through the bow

and finger) and fingerboard allows to simulate articulated gestures in a relatively instinctive

and concrete manner, without having to rely on somewhat abstract hypotheses. An eloquent

example to illustrate this point is the versatility of the finger model, which accounts for several

important phenomena which would be difficult (or impossible) to model with a simple absorbing

string termination. Here, the simple action of pushing a finger down onto the string results
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in damped dynamic behaviour in both polarisations, control of the string’s speaking length,

possible slipping of the string under the fingertip while captured, and allows to play natural

harmonics. The portion of the string between nut and finger is also excited, and participates in

the overall dynamic behaviour of the system. The adaptation of this work to a more realistic

situation, with multiple fingers, is trivial, as well as the design of a multiple string environment

(provided the strings are independent).



Chapter 6

Conclusions and perspectives

This work outlines the development of a time-domain numerical model of a dual polarisation

bowed string system, with the aim of designing a new tool for the synthesis of stringed

instrument sounds. After a brief summary of the research contributions proposed in each

Chapter, a review of remaining open problems is presented; finally, possible paths for future

work are put forward.

6.1 Summary and contributions

Chapter 2 serves to describe the physical and numerical framework used in the rest of this

thesis. Mathematical tools and notations are introduced with a case study of a simplified

physical system: the lossless, stiff, isolated, linear string. Relevant aspects of the discretisation

of the physical model into a space-time domain FD scheme are described for this simplified

system, in order to later facilitate analysis. The procedure to derive a stable time-stepping

algorithm from the numerical scheme is outlined.

Chapter 3 introduces modelling of frequency-dependent losses in the stiff linear string,

adapting a frequency-domain model to a time-domain framework. The Q-factors of the string

transverse modes constitute a particular loss profile in the frequency domain, depending on

known (or measurable) physical parameters [113]. This profile is approximated by the means of

a passive network, with a driving-point impedance determined by a set of positive, adjustable

parameters. These parameters are then optimised in order to closely fit the known loss profile

characterising a particular string. The equivalent time-domain system requires coupling the

string displacement to a number of additional state variables. It is shown that only a small

number of these additional states is required in order for the Q-factors computed on simulations

to match the theoretical loss profile to a satisfactory level. The method described in Chapter 3

hence offers a reliable means to simulate linear string vibration with accurate decay times, all

within a time-domain framework.

The benefits of working fully in the space-time domain are best illustrated in Chapter 4,

where the linear string model presented in Chapter 3 is coupled, in two polarisations, to a

139
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dynamic bow and finger, as well as a rigid, distributed fingerboard; the interaction forces

are nonlinear in both polarisations. In one direction, the finger, bow, and fingerboard are

coupled to the string through a penalty impact model. When the string is excited in the other,

perpendicular direction, the normal contact forces result in tangential friction. The friction

model for the rosin-coated bow hair enables the various well-established bowed string regimes

to take place; for the finger and fingerboard, friction keeps the string pinned in place, allowing

to play stopped notes. Control parameters, such as the position of the finger and bow, as well

as the normal and transverse forces exerted on them, are time-varying; they can be dynamically

updated at each time step, without at all upsetting the stability of the algorithm.

The focus of Chapter 5 is the use of the algorithm detailed in Chapters 3 and 4 for sound

synthesis purposes. A qualitative, exploratory study of playability of the virtual bowed string

is first presented, in order to provide a visual representation of the control parameter map,

highlighting musically useful regions. A number of qualitative similarities are found with

previous experimental studies of bowed string playability, indicating, to a certain extent, that

the proposed algorithm reproduces expected bowed string behaviour. The primary purpose

of the playability diagrams compiled with simulation outputs is to provide a guiding hand to

sound synthesis, by aiding the manual setting of input control parameters.

Finally, the second part of Chapter 5 gives an overview of the synthetic sound possibilities

offered by the bowed, stopped string algorithm. A major advantage of the numerical model

described throughout this work, perhaps with respect to other existing bowed string synthesis

engines, is that of gestural flexibility. A wide variety of gestures can be reproduced with only

a handful of control streams, each corresponding to a parameter familiar to a musician playing

a real instrument (for instance, finger position, or bow force). In particular, gestures such as

vibrato and glissando are readily available through the finger location parameter. Moreover, the

timbre of a played note can be made to evolve, with varying degrees of subtlety, by introducing

variations in bow force and position. Pizzicato playing at high amplitudes induces repeated

collisions and friction between the string and the distributed fingerboard, significantly affecting

the timbre. Bouncing of the bow against the string occurs spontaneously, opening the door to

the synthesis of yet more advanced gestures.

6.2 Open questions

6.2.1 Frequency-dependent losses in the linear string

The time-domain approach to frequency-dependent loss modelling for the transverse modes of

the linear string, described in Chapter 3, uses Valette’s model [113] as a starting point, as have

a number of recent works on (modal-based) string numerical modelling [80, 56]. This model

contains a number of free parameters, difficultly adjustable for a particular string without

experimental data. Furthermore, the measurements in [113] were taken on harpsichord strings;

had the experiment been performed on strings with physical properties such as those described

in this work, used on bowed string instruments, the theoretical model proposed by Valette and
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Cuesta might not have been the best possible fit. A more accurate representation of the loss

profile of a particular string would arise from experimental measurements performed on that

string. Fortunately, the method described in Chapter 3 could straightforwardly be adapted to

take a set of experimental data as a reference for optimisation, rather than an analytical curve.

One particular design was proposed for time-domain modelling of losses, making use of

the Foster structure illustrated in Figure 3.4. It may be worth exploring other designs giving

rise to positive-real impedances, in the hope of improving the quality of the simulated results,

and/or further simplifying the synthesis algorithm, by achieving a comparable fit quality with

potentially fewer damping terms.

As seen in the simulation results presented in Section 3.7.1, the Q-factors computed from

the time-domain output signals seem to drift away from their theoretical value, as frequency

increases. It is strongly suspected that frequency warping associated with the transfer from

continuous to discrete domain plays an important role in this drift. Further analysis is required

in order to locate the sources of frequency warping, both spatial and temporal, leading to the

observed discrepancy between theory and results.

6.2.2 Impact parameters

The Hunt and Crossley penalty contact model [55] used to describe interactions in the vertical

polarisation between the string and the bow, fingerboard, and finger, relies on three parameters

for each object, defining stiffness and dissipated energy during contact; they have not presently

been calibrated to experimental data. The collision parameter values could be determined, for

instance, through a procedure akin to a load/unload test.

6.2.3 Friction force

As touched upon in Section 4.2.3.ii, the force-velocity curve given by (4.18) for the bow friction

coefficient has been shown to be a flawed model [100, 41], failing to take into account an apparent

temperature dependence of the friction force. Beyond this fundamentally physical question, as

detailed in Section 4.3.6.ii, the form of the friction curve leads to an issue in the resolution

of the nonlinear system obtained after discretisation. Fortunately, here, the description of the

string’s behaviour in the discrete domain allows for the bow equation to be decoupled from the

rest of the nonlinear system, if the bowing point is far enough away from any other contact

points between the string and the fingerboard or finger. The scalar nonlinear equation for bow

friction force, with three potential solutions, can then be resolved with Friedlander’s ambiguity

(see Figure 4.9).

Isolating the bow equation to solve it graphically may not be a possibility with more

advanced string models, however; a geometric nonlinearity, a more advanced damping model,

the introduction of longitudinal and torsional wave modelling, could all become major obstacles

to the ad-hoc resolution of Friedlander’s ambiguity. A model based upon rosin temperature for

the bow friction coefficient, the validity of which is although still debated [41], provides a single

deterministic solution, removing the need for graphical resolution of the friction force. Such a
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representation may be worth investigating, as a more robust (yet perhaps more computationally

expensive) alternative to the relative velocity curve for the proposed bowed string synthesis

algorithm.

The question of finger and fingerboard friction characteristics has been approached heuris-

tically in this work. Extensive experimental measurements would be necessary in order to

determine such properties, and to clarify the extent of their influence on the behaviour of the

full system.

6.2.4 Aliasing

The strongly nonlinear collision and friction forces lead to sharp deformations of the string,

within time scales possibly shorter than the time step k, and therefore to the generation of

high frequency components. At audio sample rates, aliasing may be an issue, where these

high partials are reflected at the upper frequency limit, and pollute the audible spectrum with

unwanted artefacts.

The issue of aliasing has not been tackled in this work. In recent modal-based modelling

of string-fingerboard collisions [56], it was found that very high sample rates, in the order of

the MHz (well above audio standards), were necessary to ensure convergence of the numerical

solution, indicating that aliasing may have significant bearing on the results presented in this

manuscript. In particular, given the strong nonlinearity of the bow friction coefficient, the effect

of higher sampling rates on bowed string playability may be an interesting problem to consider.

6.3 Perspectives and further work

A natural extension of the physical modelling work presented in this thesis is the coupling

of string motion, in two polarisations, to a model of the bridge and body of the instrument.

Multiple strings could then also be coupled with each other, through this flexible system,

reflecting the design of a full instrument, and giving rise to sympathetic string vibration. Bridge

motion is primarily rotational, pivoting about the treble foot, under which the rigid soundpost

is placed in many bowed string instruments. The two polarisations of transverse vibration of

a string stretched across the top of the bridge are thus mutually coupled through the bridge’s

rotational motion. The dual polarisation model proposed here is ready for adaptation to such

a setting.

At high audio sample rates, the resolution of the discrete spatial grid becomes high enough

such that the pointwise bow and finger models constitute a lesser approximation to the physical

world. Instead, in this situation, the contact areas between the string and the bow and

fingertip cover a number of grid points, and may be treated as distributed. In particular,

the finite width of the bow hair has been investigated experimentally and implemented in

simulations [83, 84, 92, 72]; it was found to have significant influence on bowed string behaviour,

as partial slipping of the string under sections of the bow hair was observed.

The transverse dynamics of the bow hair were approximated, in this work, with a 1-degree

of freedom model. Previous work has concerned modelling of both transverse and longitudinal
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vibration of the bow hair (see, e.g., [73]), as well as dynamics of the bow stick [42]. A full bow

model could constitute a worthwhile extension of this work, perhaps enhancing gestural control

and playability.

Evidently, further refinements to the physical model would certainly come with increased

computational costs. A different avenue of investigation should be taken if the aim is to bring

the bowed string algorithm closer to real-time execution, for sound synthesis applications. In

this context, two important aspects must be considered, namely algorithmic efficiency and user

control interface.

At each time step, two non-sparse nonlinear systems (one in each polarisation) must be

solved in order to update the state variables. The requirement to use iterative methods in

order to solve these systems is a clear bottleneck in the execution of the algorithm, and

constitutes the primary obstacle towards improving computational efficiency. The use of

simplified, piecewise-linearised functions for impact and friction forces could provide a cursory

path to real-time implementation. In any case, perhaps without resorting to such extremes, an

extensive evaluation of the sensitivity of simulated output to incremental simplifications of the

physical model could certainly be valuable; if realistic sound synthesis is the primary concern,

listening tests could constitute part of such an evaluation.

With regards to user control, the exploratory parameter sweep presented in Section 5.2 could

be the starting point for further playability studies. Due to the nature of the bowing control

parameters, the same simulation data can be used for transient analysis, simply focusing the

analysis window at different times during the initial transient. Furthermore, the waveform iden-

tification problem seems particularly well-suited to a machine learning classification algorithm,

which could potentially provide a robust tool if systematic characterisation of the playable space

of any given string is sought after.

The issue of user interface is a vastly different topic than those treated in this thesis, yet

a crucial one for any real world applications of the work presented here. At this time, the

synthesis of complex bowed string gestures can only be achieved with manual offline input

of breakpoint functions for each control parameter, with no direct feedback before the sound

output has been computed. If simulation is achievable in real time, in a realistic manner,

mapping control parameters to a hardware controller would, without a doubt, reveal the full

potential of the synthesis algorithm for gesture reproduction.
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Appendix A

Maximum bow force and pitch

flattening: relation with

Friedlander’s analysis

In Section 4.3.6.ii, a condition was found on the bow normal force, such that the solution of the

discrete equation for the bow relative velocity was unique. It is shown here that this constraint

is not a numerical one (like the stability condition is), but is rather related to the nature of the

bowed string model.

Consider the simplified system of an ideal string, coupled to a pointwise bow at constant

position xB, with constant velocity vB, pushing down onto the string with a constant force fB.

Using the same notations as established in Section 4.2.3.ii, the transverse displacement y(x, t)

of the string obeys:

ρS∂2
t y = T∂2

xy − JBfBφB (vrel,B) (A.1)

where JB ≜ δ (x− xB) is a Dirac delta function, and vrel,B is defined as:

vrel,B ≜ ẏ (xB, t)− vB(t) (A.2)

Equation (A.1) may be discretised as:

ρSδtty
n = TDxxy

n − jBfBφB

(
vnrel,B

)
(A.3a)

vnrel,B ≜ hjTBδt·y
n − vnB (A.3b)

The stability condition for this scheme is the same as that for the 1D wave equation:

h

hmin
⩾ 1 (A.4a)

hmin ≜
√

T

ρS
k ≜ ck (A.4b)
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Equation (A.3a) can be rearranged to derive an update equation for yn+1:

yn+1 =

(
2I+

Tk2

ρS
Dxx

)
yn − yn−1 − k2

ρS
jBfBφB (A.5)

Rewriting Equation (A.5) in terms of vnrel,B yields the following nonlinear equation:

vnrel,B + σBfBφB + ζnB = 0 (A.6)

where σB, ζ
n
B are constants, defined as:

σB ≜ k

2ρS
hjTBjB (A.7a)

ζnB ≜ vnB − h

2k
jTB

((
2I+

Tk2

ρS
Dxx

)
yn − 2yn−1

)
(A.7b)

Friedlander’s construction, detailed in Section 4.3.6.ii, yields a condition on σB so that the

solution of Equation (A.6) is unique:

− 1

σBfB
⩽ min (φ′

B) ⇒ fB ⩽ − 2ρS

khjTBjBmin
(
φ′
B

) (A.8)

With the friction curve defined by (4.18), −min (φ′
B) = 44.5. The minimum bow force beyond

which pitch flattening occurs therefore only depends on the string’s physical parameters, the

time step k, the grid spacing h, and the magnitude of the discrete distribution vector jTB.

Without the bow force term, Scheme (A.3a) can be proved to provide the exact solution for

the 1D wave equation, when the grid spacing and time step are set at the stability limit, that

is h = ck [8, pp. 133—136]. Furthermore, it was seen in Section 4.3.1 that h |jB| ⩽ 1, and is

indeed equal to 1 under the restriction that xB lies exactly on a grid point.

In these limits, the bound on the bow force fB such that the solution of (A.6) is unique is

given by:

fB ⩽ − 2cρS

min
(
φ′
B

) (A.9)

This is indeed the same bound as that found analytically by Friedlander [39], in the continuous

domain. The bound does not vanish, even when the time step and grid spacing are made very

small (keeping h
hmin

constant).
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