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ABSTRACT 

Photoplethysmography (PPG) is a simple means of measuring the pulse wave in 

humans, exploitable for the purposes of timing the arrival of the pulse at a particular 

point in the arterial tree, and for pulse contour analysis. This thesis describes a 

methodology for measuring arterial pulse transit time (PTT) from cardiac ejection to 

pulse arrival at the finger. It describes the effect on PTT of drug and exercise induced 

changes in BP. The nature of the relationship between the PPG and arterial pressure 

is also examined, and the PTT technique extended to assessment of conduit vessel 

pulse wave velocity (PWV) during exercise. 

PTT measured from ECG R-wave to PPG finger wave (rPTT) had a negative 

correlation (R2=0.39) with systolic BP (SBP), unaffected by vasoactive drugs in 

some but not all persons. rPTT showed similar beat-to-beat variability to SBP, 

unaffected by drugs. rPTT correlated weakly with diastolic (DBP) and mean (MAP) 

pressure. Cardiac pre-ejection period (PEP) formed a substantial and variable part of 

rPTT (12% to 35%). Transit time adjusted for PEP (pPTT) correlated better with 

DBP (R2=0.41) and MAP (R2=0.45), than with SBP. The PPG wave tracked changes 

in the peripheral pressure wave. Drugs had little effect on the generalised transfer 

function (GTF) describing the association between arterial and PPG waves. 

Strenuous exercise induced a large decrease in rPTT, mainly accounted for by 

decreases in PEP (53% of the total change in rPTT) and in transit time from aorta to 

distal brachial artery (33%). In contrast, minimal change in transit time from wrist to 

finger tip occurred with exercise. 

Simultaneous ear-finger PPG signals were used to measure conduit artery PWV 

during exercise. Ear-finger PWV (PWVef) overestimated carotid-radial PWV 

throughout exertion (overall bias 0.81±1.05ms-1, p<0.001), but the degree of 

difference remained constant. The increase in PWVef with exercise, was greater 

(1.18±0.54ms-1, p=0.035) in healthy subjects with a positive cardiovascular family 

history compared to those without. 

PPG enables analysis of the pulse contour during exercise, but estimation of the 

radial pressure wave from finger PPG by use of a GTF derived at rest, resulted in 
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inaccuracy following exertion. These effects were variable and relatively short-lived. 

Furthermore, a resting GTF used to determine central pressure from the peripheral 

wave, resulted in underestimation of SBP (-5.9±2.1mmHg) and central pressure 

augmentation index (-8.3±2.9%), which persisted for 10 minutes post-exercise. 

rPTT had a negative linear association with SBP (R2=0.94) during strenuous exercise, 

slightly stronger than during recovery (R2=0.85). Differences existed in area-under-

curve of the rPTT/SBP relationship between exercise and recovery, due to 

discrepancies in rate and degree of recovery of SBP and PEP. The linear relationship 

between the rPTT/SBP during exercise was affected by aerobic capacity, and the 

regression slope was less in the anaerobic compared to aerobic phase of exercise due 

to minimal change in PEP during anaerobic exertion. The correlation between 

rPTT/SBP did not change with prolonged aerobic exercise. Finally, measures of 

baroreflex sensitivity during exercise, were not significantly different between actual 

beat-to-beat SBP and SBP estimated using rPTT. 

In conclusion, absolute BP cannot be reliably estimated by measurement of rPTT 

following administration of drugs and during exercise. However, rPTT may have a 

role in measuring BP variability and in the assessing exercise capacity. PPG may 

also be useful in determining the effects of exercise on arterial stiffness, and for 

estimating the pressure wave contour, although its use during exercise for the latter 

purpose must be treated with caution. 
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1 INTRODUCTION 
1.1 BACKGROUND 

The measurement of blood pressure (BP) in the twenty-first century is largely based 

on techniques developed in the nineteenth century. Current techniques using cuff 

occlusion were originally developed by Riva-Rocci (1896) and Korotkov described 

his eponymous sounds nine years later (1905). 

BP is the most important haemodynamic parameter measured in everyday clinical 

practice. Numerous studies have shown a positive association between 

cardiovascular disease and raised BP (Lewington et al. 2002), and monitoring of BP 

is essential in the acute medical setting. However, BP is a dynamic phenomenon, 

varying from beat to beat, and affected in numerous ways such as by respiration, 

changes in posture, or exertion. A sphygmomanometer is not able to detect these 

rapid changes in pressure, taking as long as 1 minute to obtain a reading. Intra-

arterial cannulation is usually agreed to be the gold standard for obtaining accurate 

continuous BP measurements, but is generally unacceptable due to its invasive nature. 

As a result, a number of alternative approaches have been used for non-invasively 

determining “beat-to-beat” pressure. Such measurements, if reliable, would be 

valuable in both a clinical and research setting. Techniques include finger blood-

volume clamping (Peñáz 1973), arterial tonometry (Pressman & Newgard 1963) and 

adaptations of the occlusive arm-cuff sphygmomanometer (Tursky 1972). 

It is, however, the use of the continuous measurement of pulse transit time (PTT) as a 

surrogate marker of BP that this thesis will focus on. Pulse transit time describes the 

time the arterial pressure wave takes to travel between different points in the vascular 

tree. The velocity of wave propagation is affected by pressure and arterial wall 

stiffness. This work describes the development of a methodology to measure PTT at 

a number of anatomical sites. It examines the effect of drugs and exercise on the 

relationship between BP and PTT. The signal analysis techniques described are also 

applied to the measurement of pulse wave velocity and quantification of the pulse 

wave contour, both of which have been shown to be valuable in the assessment of 

vascular function. 
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1.2 TECHNIQUES FOR MEASURING BLOOD 
PRESSURE 

William Harvey (1578 – 1657) was the first person to describe the concept of the 

circulation of blood (Harvey 1628), but it was 200 years later before Jean Poiseuille 

(1797 – 1869) described the measurement of BP in humans (Poiseuille 1828). 

Following the development of the sphygmometer method of indirectly measuring BP 

(Hérisson 1834), significant progress was made in techniques for measuring BP and 

the pulse contour, providing a catalyst for much early research into human 

hypertension, including the proposal in the late 1800s of the concepts of a renal 

mechanism for hypertension and the idea of “essential hypertension”. The methods 

for measuring BP that we still use today were developed around the turn of the 

century, with the development of the Riva-Rocci (1863 – 1937) cuff 

sphygmomanometer in 1896, and the description by Nikolai Korotkov (1874 – 1920) 

of the use of auscultation to determine systolic and diastolic pressure in 1905. 

Sphygmomanometer use was popularised in the early 20th century by the 

neurosurgeon Harvey Cushing (1869 – 1939) as a means of monitoring patients 

during anaesthesia, and continues largely unchanged a century later. 

1.2.1 Intra-arterial invasive monitoring 

Invasive monitoring of BP is generally regarded as the “gold standard”, and is well 

established in clinical practice in high dependency and intensive care settings. In 

general, a catheter is inserted into either the brachial or radial artery, and connected 

via fluid filled manometer tubing to a pressure transducer positioned at heart level. 

Solid-state catheter-tip transducers may also be used to provide high fidelity pressure 

signals unaffected by the damping effects of the fluid filled tube, although are not 

generally used in a clinical setting. Invasive monitoring provides information about 

beat-to-beat BP variability and allows transient pressure changes to be identified. 

Furthermore, 24-hour direct continuous monitoring has been shown to be superior to 

indirect clinic measurements for risk stratification (Khattar et al. 2001). Despite the 

fact that intra-arterial monitoring is relatively safe (Scheer et al. 2002) and not as 

stressful as usually believed (Beamer & Shapiro 1973), it remains impractical for 
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general use, but does offer the opportunity to validate other non-invasive beat-to-beat 

techniques (O'Brien et al. 2002). 

1.2.2 Sphygmomanometry 

With cuff sphygmomanometry, the pressure required to collapse the brachial artery is 

determined by the use of an air-filled occluding cuff, stethoscope, and manometer. 

As the cuff is deflated from suprasystolic pressure, the pressure is noted at which the 

Korotkov sounds produced by the arterial pulse waves appear and disappear as flow 

in the artery increases. Sphygmomanometry and intra-arterial pressure are similar, 

but differences exist as the former detects changes in flow rather than pressure. An 

alternative to auscultation is oscillometry (Janeway 1904), which depends on the 

pressure in the cuff varying continuously with the cardiac cycle, and the amplitude of 

these pressure oscillations being maximal at the mean arterial blood pressure. An 

indirect measurement of systolic and diastolic blood pressure can be derived from the 

curve of oscillatory amplitude as a function of cuff pressure. Sphygmomanometry is 

less accurate and reproducible than direct blood pressure measurement. Inaccuracies 

may be due to equipment (manometer calibration, faulty valves, stethoscope), 

observer problems (digit preference, poor memory), or poor technique (inappropriate 

cuff size, manometer positioning, inflation/deflation rates) (Perloff et al. 1993). It is 

also unable to provide beat-to-beat measurement of pressure. Despite these points, 

sphygmomanometry is sufficiently accurate in most diagnostic and therapeutic 

circumstances. 

1.2.3 Volume-clamping of digit arteries by servoplethysmomanometry 

The Czech physiologist Peñáz described the technique of arterial volume clamping in 

1973 (Peñáz 1973). This technique has now evolved into a commercially available 

system for continuous beat-to-beat blood pressure monitoring (Portapres, TNO 

Biomedical Instrumentation). An inflatable cuff with attached infrared 

photoplethysmograph is applied to the finger. The pressure in the cuff is rapidly 

adjusted to compensate for changes in intra-arterial pressure. The 

photoplethysmograph is used to assess the finger arterial volume. This volume 

clamps the artery at a set point equivalent to two-thirds of the maximal arterial 
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volume, thus resulting in zero transmural pressure. The cuff pressure therefore 

reflects absolute finger arterial blood pressure. An interface worn at the wrist 

controls air supply to the cuff, and relays the signals received from the cuff to the 

main components worn around the waist. There are two cuffs allowing measurement 

to be performed on adjacent fingers alternating at adjustable time intervals, and a 

mechanism is provided to compensate for the hydrostatic effects of raising and 

lowering the arm. 

The method has been shown to correlate best with diastolic and mean intra-arterial 

blood pressure measurements. The accuracy of systolic measurements is less good, 

as variable amplification of systolic pressure occurs distally due to waveform 

reflection and dispersion. This, rather than device error, may account for the bias 

compared to invasively recorded brachial systolic pressure (Omboni et al. 1998), 

rather than the discrepancies being simply due to device inaccuracy. Peripheral 

vasomotor changes also cause error, primarily affecting systolic readings (Jagomagi 

et al. 2001; McAuley et al. 1997). If the cuff is applied incorrectly, calibration 

problems may occur, and no clearly defined method exists for determining the 

accuracy of cuff adjustment. Despite some of these potential problems, the technique 

has been widely used, particularly for the study of blood pressure variability 

(Gomez-Angelats et al. 2004) and baroreflex sensitivity (Gerhardt et al. 1999). 

1.2.4 Arterial tonometry 

Arterial applanation tonometry was first described in 1963 (Pressman & Newgard 

1963). A superficial artery (usually the radial) is flattened (but not occluded) against 

bone using an inflatable cuff, and a piezo-resistive pressure transducer is located over 

the artery being studied. The circumferential tension is rendered negligible in the 

flattened segment of arterial wall, and so the intra-arterial pressure is perpendicular 

to this surface (Drzewiecki et al. 1983). The hold-down pressure required to 

applanate the vessel wall is adjusted so that the pulse pressure measured is 

maximised. The relative shape of the waveform is generally considered to closely 

approximate intra-arterial measurement, although some blunting of the early systolic 

phase of the tonometric waveform has been described (Sato et al. 1993). However 
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absolute pressure is difficult to determine, and the signal is generally calibrated on an 

intermittent basis using cuff sphygmomanometry. Errors can be due to difficulties 

with accurate and reproducible sensor positioning, motion artefact, and calibration 

problems (Matthys & Verdonck 2002). Studies have shown variable correlation of 

tonometry values and intra-arterial measurements, when examining differences in 

beat-to-beat variation, and mean, diastolic and systolic pressure values (Siegel et al. 

1994; Weiss et al. 1996). Accuracy appears to be maintained during episodes of 

hypotension and hypertension (Kemmotsu et al. 1991; Sato et al. 1993). Perhaps of 

more interest in recent years, is the use of tonometry in order to enable the 

assessment of the pulse wave contour. So-called pulse wave analysis is described in 

more detail in section 1.4.3. 

1.3 CLINICAL RELEVANCE OF BLOOD PRESSURE 
MEASUREMENT 

1.3.1 Hypertension and hypotension 

In 1914, the first large epidemiological studies conducted by the life insurance 

company Northwestern Mutual demonstrated that hypertension was associated with 

worse cardiovascular mortality (Fisher 1914), and this has been confirmed 

subsequently by numerous prospective studies (Lewington et al. 2002). Although 

diastolic BP was traditionally regarded as the more important risk factor, systolic BP 

has become recognised as a more powerful predictor of adverse cardiovascular 

outcome (Nielsen et al. 1995). Elevated BP also has relevance beyond simply its role 

in prognostication – hypertension may be a secondary sign of an underlying problem 

such as Cushing’s disease or chronic kidney disease, and malignant or accelerated 

hypertension carries additional short-term risk, including stroke, cardiac failure and 

renal damage. 

Low BP is also of importance. Although chronically low BP in the asymptomatic 

patient is associated with decreased cardiovascular risk (Robbins et al. 1982), 

symptomatic hypotension may cause considerable morbidity. There are numerous 

causes of low BP, including shock, hypovolaemia, vasodilatation, autonomic 

dysfunction, baroreceptor hypersensitivity and drug therapy. Beat-to-beat methods of 
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measuring pressure may be particularly valuable for facilitating the diagnosis of such 

problems, as they enable detection of rapid and transient falls in BP, which cannot be 

measured using sphygmomanometry. 

1.3.2 Blood pressure variability 

The BP measurements used for prognostic purposes have usually been “office” 

readings, which do not accurately reflect the dynamic nature of the cardiovascular 

system. Measurement of morning BP surges (Kario et al. 2003), and the degree of 

nocturnal dipping (Liu et al. 2003) have been shown to be of additional prognostic 

value. Variability of BP is associated with severity and progression of target organ 

damage (Parati et al. 1998; Sander et al. 2000), adverse cardiovascular events 

(Sander et al. 2000), and mortality (Kikuya et al. 2000). It may also be a risk factor 

that is independent of raised BP (Sander et al. 2000). There are both short and long 

term changes in BP. Most of the studies of pressure variability use sampling rates of 

every 15 minutes or more, but it has been shown that using intervals of this length, 

results differ significantly from those obtained by beat-to-beat monitoring, and the 

latter approach should probably be favoured (Di Rienzo et al. 1983; Parati et al. 

1990). 

BP beat-to-beat variability is characterised by spontaneous increases and decreases, 

which result in alterations in baroreceptor activity and reflex changes in heart rate. 

The degree to which changes in pressure are coupled to changes in heart rate through 

the baroreceptor mechanism – so-called baroreflex sensitivity (BRS) – is considered 

clinically important. Decreased BRS has been associated with increased cardiac 

sudden death and arrhythmia in myocardial infarction and heart failure (La Rovere et 

al. 1998; Mortara et al. 1997). It is also a sign of autonomic dysfunction in 

conditions such as diabetes, and again may be of prognostic use in such patients 

(Lawrence et al. 1997). Quantification of BRS can be carried out either by examining 

the effects of spontaneous fluctuations in BP, or by pharmacological or mechanical 

(e.g. valsalva) induced changes in BP (Parati et al. 2001). Beat-to-beat BP 

monitoring has employed finger volume-clamping, tonometry and invasive 

techniques (Chesterton et al. 2005; Oka et al. 2003; Pinna et al. 2000). PTT could 
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potentially be used as an alternative means of determining BRS, but no work has 

been published on this subject to date. 

1.3.3 Drug effects 

Drugs may have important effects on BP, due to alterations of vascular or cardiac 

function, fluid balance, or central regulation. The BP lowering effects may be of 

direct therapeutic benefit (i.e. antihypertensive agents) or a side effect (e.g. 

antiarrhythmic drugs, psychoactive medication). BP monitoring is essential to 

establish the appropriate dose regime of many drugs, and in the case of 

antihypertensive agents to also decide when to initiate therapy. Continuous BP 

measurement allows for more accurate pharmacodynamic evaluation of drugs, such 

as time of onset, peak, and physiological half-life. Furthermore, because the 

sphygmomanometer is only able to take a “snap-shot” of a dynamic phenomenon, 

continuous measurement reduces uncertainty over the actual degree of drug effect. 

Because increased BP variability has been associated with adverse outcome, the 

ability of certain drugs to blunt this variability, or alter other aspects of cyclical 

activity, may be of clinical benefit (Sirgo et al. 1988). Beat-to-beat BP recording is 

also of use in critically ill patients, not only for monitoring of dynamic 

pathophysiological processes, but for observing the effects of rapid pharmacological 

interventions, such as the use of inotropes or antiarrhythmic agents. 

The effect of cardiovascular drugs is particularly relevant to the study of transit time 

and BP, as in order to use PTT as a marker of BP, one must assume a consistent 

relationship between the two variables. This is dependent on the intrinsic stiffness of 

the vessel wall and, when the electrocardiogram (ECG) is used for timing purposes, 

on cardiac contractility. Drug-induced changes in arterial stiffness and myocardial 

contractility, independent of pressure, may thus affect the ability of PTT to 

accurately predict BP. 

1.3.4 Exercise blood pressure 

BP is routinely measured during exercise testing. A failure of BP to increase 

appropriately is considered an indicator of myocardial ischaemia, and indeed rapid 
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detection of hypotension may be valuable in such circumstances. Furthermore, an 

exaggerated increase in pressure during exercise is associated with future 

development of hypertension (Manolio et al. 1994; Singh et al. 1999), correlates with 

the degree of left ventricular hypertrophy (Ren et al. 1985) and is considered a 

predictor of future cardiovascular events (Filipovsky et al. 1992; Sandvik et al. 1993). 

There is also evidence that trained athletes have an exaggerated BP response 

compared to sedentary individuals (Tanaka et al. 1996), presumably due to the 

greater cardiac output achieved by trained individuals (Clausen 1977). 

Figure 1.1. Effect of exercise on the baroreflex response curve 
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Exercise causes decrease in both responding and operating 
ranges. Ranges are also shifted to higher values of heart rate 
and pressure. In addition, the operating point  on the curve 
shifts to a point of lesser gain. Adapted from Raven et al. 2006. 

BP variability is also affected by exercise. It was previously thought that the 

baroreflex function was switched off during exertion, in order to allow parallel 

increases in both BP and heart-rate during exertion. However, it is now recognised 

that this is not the case. The baroreflex function can be described by a sigmoid curve, 

with minimal gain (change in heart rate) for pressures outwith a given operating 

range: that is, above a particular saturation point or below a particular threshold 

pressure. Dynamic measures of BRS (such as the sequence technique described in 

section 7.2.1) show reduced gain during exercise. This is because the arterial 
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baroreflex is reset in response to exercise, and the operating point on the baroreflex 

curve shifts to a point of lower gain, as shown in Figure 1.1 (Raven et al. 2006). 

Differences in BRS have also been observed between healthy sedentary individuals 

and athletes (Kingwell et al. 1995). 

No standards exist for the measurement of BP during exercise. No accepted protocols 

exist for device validation during exercise. Intra-arterial monitoring is generally 

considered ideal, although clearly raises issues with respect to practicality and safety. 

Sphygmomanometry is therefore more commonly used, although is widely accepted 

to be inaccurate during exercise (Griffin et al. 1997). In general, significant 

underestimation of both systolic pressure (Gould et al. 1985; Rasmussen et al. 1985) 

and diastolic pressure (Kaijser 1987) occurs when compared to intra-arterial values. 

Furthermore, sphygmomanometry is unable to detect rapid changes in BP that can 

occur during recovery  (Baum et al. 1992). 

1.4 ARTERIAL STIFFNESS 

Following left ventricular contraction, an arterial pressure pulse propagates distally 

through the arterial tree. The pulse wave is reflected at arterial branch points and the 

arteriolar bed – regions of impedance mismatch. The nature of pulse propagation and 

reflection, including amongst other characteristics the pulse wave velocity, is largely 

governed by the elastic properties of the arterial wall. The overall resulting pressure 

wave contour (a composite of incident and reflected waves) determines BP, and 

mean pressure is a key factor influencing wall stiffness. Arterial stiffness, pulse wave 

velocity and BP are therefore inextricably linked, and this is clearly of relevance with 

respect to use of pulse transit time as a marker of BP. The nature of the association 

between these parameters is discussed below. 

1.4.1 Theoretical aspects of arterial stiffness 

Classical elastic theory is often used to describe arterial mechanics. It relates the 

force per unit area that produces deformation of a body (stress, dyne.cm-2), and the 

deformation described as the ratio of deformation to its original form (strain). An 

elastic modulus, E (Young’s modulus), describes the relationship between the two. 
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Equation 1.1  
ε
ς

==
strain
stressE  

Hooke’s law states that the deformation is proportional to the force applied. This 

does not hold for large forces, above the “elastic limit”, and indeed assumes 

deformations are infinitesimal. Classical theory also assumes the material in question 

is homogeneous. However the arterial wall undergoes large deformations, and has an 

extremely heterogeneous form, composed as it is of a mixture of fibrous, elastic and 

extra-cellular matrix components. It has been shown that E increases exponentially 

with increased pressure according to 

Equation 1.2  PeEE γ
0=  

where E0 is the zero pressure modulus, P is pressure, and γ is a coefficient dependent 

on the vessel type (0.016 < γ < 0.018) (Hughes et al. 1979). It is also worth noting 

that the properties of a truly elastic body are independent of the rate that stress is 

applied. The arterial wall is usually classed as viscoelastic however, where stiffness 

is higher if stress is applied rapidly. Despite this, Bergel found the elastic modulus to 

remain constant for frequencies of 2Hz and above (Bergel 1961b). Finally, the elastic 

behaviour of a material varies in different axes, unless the material is isotropic. The 

arterial wall approximates to this in vivo (Nichols & O'Rourke 1998). 

Pulse wave velocity can be expressed in terms of pressure and volume change. The 

bulk modulus B is the ratio of compressive stress to relative volume change. 

Equation 1.3  
V

PV
B

∆
∆

−= 0  

From Newton’s work on sound wave velocity in air 

Equation 1.4  
ρ
Bc =0  

where c0 is wave velocity and ρ is fluid density. Substituting Equation 1.3 gives: 



11 

Equation 1.5  
V
PV

c
∆⋅
∆⋅

=
ρ

0
0  

This derivation was first made by Young in 1809 (Nichols & O'Rourke 1998) but is 

more often attributed to that described by Bramwell and Hill (1922). Alternatively 

the pulse wave velocity can be expressed in terms of the elastic modulus. The law of 

Laplace describes the circumferential tension T in a thin walled vessel with luminal 

radius R and under distending pressure P. 

Equation 1.6  PRT =  

The circumferential stress, ς, and strain, ε, are described by 

Equation 1.7  
h

PR
=ς  

Equation 1.8  
R
R

π
πε
2

2 ∆
=  

where h is wall thickness. For a tube of length L, the change in tension ∆T can be 

shown to be 

Equation 1.9  
R
REhLT ∆

⋅=∆  

and in terms of volume 

Equation 1.10  
PREhL

R
P
V

−
=

∆
∆ 32π  

Substituting Equation 1.10 in Equation 1.5 

Equation 1.11  
ρR

Ehc
20 =  

for a single unit of length, with the mean value of P taken as 0. This is known as the 

Moens-Korteweg equation, first described in 1878. It assumes the wall is thin and the 

liquid incompressible. The Bergel correction takes into account wall thickness by 
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incorporating Poisson’s ratio ν (the ratio of transverse to longitudinal strain) (Bergel 

1960). This improves the accuracy of the velocity estimation: 

Equation 1.12  
)1(2 20 νρ −

=
R

Ehc  

As pressure increases, h decreases and R increases, and so one would expect velocity 

to fall. However because the elastic modulus of the vessel increases with the 

distending pressure (Equation 1.2), the overall change is an increase in c0. If 

Equation 1.2 is substituted in Equation 1.11: 

Equation 1.13  
0

2
02

hE
cR

e P ⋅
=

ργ  

then 

Equation 1.14  ( ) ( ) ( )[ ]2
0 lnln2ln1 chERP +−⋅= ρ

γ
 

If the first and second terms on the right side of Equation 1.14 change negligibly, 

then pressure is found to be related to the logarithm of pulse wave velocity. 

Equation 1.15  ( )cKP ln2
γ

+=  

It is important to note that any physiological process which may result in a large 

change in pressure, such as neuro-hormonal changes during exercise, may also alter 

the zero pressure tonus E0 of the vessel. This equation has been simplified further 

(Chen et al. 2000) to show a negative linear relationship between pressure and transit 

time T. However this assumes the change in pressure is small. 

Equation 1.16  T
T

P ∆−=∆
0

2
γ

 

In summary, it can be seen that arterial stiffness is dependent on vessel size, wall 

thickness and distending pressure. Vessel stiffness is a key determinant of pulse 

wave velocity, as evident from the Equation 1.5 and Equation 1.11. Because stiffness 
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increases exponentially with pressure, it is therefore theoretically possible to use 

transit time to estimate pressure, due to the inverse linear relationship between the 

two parameters (Equation 1.16). In doing so, however, the assumption must be made 

that the intrinsic arterial wall stiffness (that is, the zero-pressure tonus, E0) remains 

constant. 

1.4.2 Physiological aspects of arterial stiffness and its association with 
blood pressure 

Arterial stiffness is largely determined by two influences: firstly those related to the 

arteries themselves – wall structure and function, and lumen size; and secondly the 

mean distending arterial BP. 

The arterial wall is composed of three concentric anatomical regions. The luminal 

tunica intima is thin and consists of a monocellular layer of endothelial cells 

surrounded by elastin and collagen. The endothelium has a key role in the 

modulation of vascular smooth muscle tone. These muscle fibres exist in well 

defined layers in the tunica media, together with structurally ordered collagen and 

elastin fibres. This layer forms the bulk of the vessel wall. The outermost region, the 

tunica adventitia, is largely collagenous and merges with surrounding connective 

tissue. The three regions are demarcated by the inner and outer elastic laminae. 

Arterial stiffness does not remain constant in different points in the arterial tree 

(Latham et al. 1985), due to anatomical variations (Figure 1.2). Peripheral vessels 

have a greater collagenous component than central arteries, and so are relatively 

stiffer. Peripheral arteries are also narrower, resulting in an additional increase in 

pulse wave velocity. Disease processes such as diabetes, hypertension and 

atherosclerosis, can adversely affect both the intima and media (Nichols & O'Rourke 

1998). Aging is also associated with degenerative structural changes (Carlson et al. 

1970; O'Rourke et al. 1987), and a consequent increase in stiffness, despite the 

increased vessel diameter seen in older persons (Sonesson et al. 1993) which might 

be expected to decrease PWV. 
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Figure 1.2. Anatomical variation in pulse wave velocity 
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PWV at different points in the human aorta (Latham et al. 
1985). 

In addition to these relatively “fixed” variations in stiffness, there are dynamic 

influences on wall elasticity. At low distending pressure, resistance to wall stretch is 

due largely to elastin, which is less stiff than collagen (Bergel 1961b; Dobrin & 

Canfield 1984). However, collagen fibres are recruited at higher pressures in a non-

linear fashion (Figure 1.3). This occurs around 115mmHg in the canine thoracic 

aorta (Armentano et al. 1991). As discussed above, this results in an exponential 

increase in elastic modulus with increasing pressure (Hughes et al. 1979). Increasing 

pressure also results in vessel distension, which from the Moens-Korteweg equation 

might be expected to decrease pulse wave velocity. However, this effect is 

outweighed by the increase in elastic modulus. 
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Figure 1.3. Effect of pressure on arterial wall stiffness 
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Mean values of static incremental elastic modulus (Einc) in the 
thoracic canine aorta (Bergel 1961). 

Vascular smooth muscle also plays an important role in altering the elasticity of 

blood vessels (Dobrin & Rovick 1969). Contraction occurs predominantly 

circumferentially, and is associated with an increase in elastic modulus at any 

particular strain. Paradoxically, smooth muscle contraction leads to a decrease in 

elastic modulus when calculated against pressure. This is because contraction 

decreases the vessel radius, relaxing elastin fibres. The lower elastic modulus of 

elastin thus has a dominant effect over that of collagen fibres, and the stiffness of the 

contracted smooth muscle is unable to offset this (Dobrin & Rovick 1969). Different 

vessels exhibit different degrees of smooth muscle response to vascular mediators 

(Nichols & O'Rourke 1998). For instance, central elastic arteries respond less to 

vasodilators than muscular peripheral arteries, and arteriolar tone responds markedly 

to some agents (e.g. nitroprusside) but not others (e.g. nitroglycerin). Endothelial 

function is also important – acetylcholine usually causes vasodilatation, but induces 

constriction in denuded vessels (Furchgott & Zawadzki 1980). 

Given that arterial stiffness is increased in patients with essential hypertension, and 

that arterial remodelling is a recognised feature of hypertension (Intengan & 

Schiffrin 2001), an important clinical question is whether increased arterial stiffness 

is fully accounted for by the increase in mean distending pressure, or whether there 

are intrinsic wall changes secondary to structural or functional effects. To examine 
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what effects the inherent properties of the wall have on arterial stiffness, it is 

necessary to make measurements under isobaric conditions. Calculation of pressure-

compliance curves, with interpolation of stiffness at a given BP (Laurent et al. 1994), 

has suggested that the increase in arterial stiffness in hypertensive individuals is 

largely due to the increase in mean pressure. Stewart et al used a method for 

generating isobaric conditions using pharmacological interventions to adjust loading 

pressure, concluding that important differences exist in intrinsic wall stiffness 

between populations with normal or high BP, which account for the observed 

differences in pulse wave velocity (Stewart et al. 2006). 

The different conclusions reached are probably accounted for by the methodologies 

employed. As the vessel wall is viscoelastic, luminal diameter at a given pressure is 

affected by the nature of the preceding pressure curve. The resulting compliance-

pressure relationship therefore exhibits hysteresis, and this must be adjusted for when 

estimating isobaric compliance from such curves. This adjustment can lead to 

inaccuracy, and may mask important features of the curve such as differences 

existing due to truly different distending mean pressure. 

The administration of a pharmacological agent creates its own problems, as it is 

difficult to be certain that the drug only affects BP and does not alter intrinsic wall 

stiffness. This issue extends beyond simply the use of drugs as a pharmacological 

tool. Changes in wall structure may occur over a relatively long period of time, due 

to direct effects of drugs such as advanced glycation end-product (AGE) crosslink 

breakers (Kass et al. 2001), or due to remodelling (Levy & Safar 1992). More rapid 

effects of drugs on vessel tone, independent of BP alteration, may occur due to direct 

action on underlying smooth muscle (Bulbring & Tomita 1987; Griendling et al. 

1989) or via endothelial modulation (Furchgott 1983). There is indeed evidence that 

the therapeutic benefit of drugs such as ACE inhibitors may be due to direct effects 

on intrinsic wall stiffness rather than simply a reduction in BP (Tropeano et al. 2006). 

Measurement of drug-induced changes in BP using a surrogate marker such as transit 

time will therefore be prone to the effects of changes in intrinsic wall stiffness. 
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1.4.3 Pulse wave velocity and other measures of arterial stiffness 

Arterial stiffness can be measured in vivo by various methodologies. Ultrasound and 

MRI both allow for the measurement of arterial diameter or cross sectional area 

throughout the cardiac cycle. Relating the change in vessel size (∆S) to the change in 

intra-arterial pressure (∆P), usually recorded by a transcutaneous pressure transducer, 

allows the compliance (∆S/∆P) or distensibility (∆S/[∆P·S]) to be determined. By 

also measuring vessel wall thickness, it can be seen from Equation 1.10 that elastic 

modulus can also be determined. Both imaging modalities have the advantage of 

allowing assessment of vessel flow, in addition to assessing anatomical aspects of the 

vasculature. MRI allows assessment of inaccessible vessels such as the aorta, but is 

impractical in many circumstances, due to expense, scanner availability, the time 

consuming nature of the scans, and restrictions imposed by working within a strong 

magnetic field. Ultrasound is more widely available and cheaper, but is arguably 

more prone to inter-observer variability, and is limited to relatively superficial 

vessels. 

Pulse wave velocity is probably the most widely used measure of arterial stiffness. 

The Moens-Korteweg equation (Equation 1.11) shows that PWV is related to the 

elastic modulus of the vessel wall. PWV is determined by timing the arrival of the 

pressure pulse at two points in the arterial tree, a known distance apart. Pressure 

measurements are either made sequentially, with synchronisation of the two pulses 

using ECG R-wave gating (e.g. SphygmoCor, AtCor Medical), or by simultaneous 

recordings (e.g. Complior, Artech Medical). Simultaneous measurement carries the 

advantage that it makes no assumptions of the constancy of the R-wave-to-pulse 

delay between each measurement site. The timing of the pulse can determined from 

either flow, volume or pressure. These approaches are discussed in more detail in 

section 1.5.1. PWV measurements have been used in more clinical studies of 

cardiovascular outcome than other modalities of assessing arterial stiffness. PWV is 

regarded as a robust and useful measure of compliance against which other measures 

of stiffness can be compared, although it is not a true “gold standard” (Woodman et 

al. 2005). It must be remembered, however, that the true PWV varies over the path 
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length studied, and values of PWV obtained are simply an average, potentially 

incorporating both muscular and more elastic vessels. 

A third, albeit “indirect”, approach is to measure the effect of arterial stiffness on the 

pressure pulse wave contour. Pressure waves are subject to attenuation as they travel 

distally (Bergel 1961a). Despite this, systolic pressure is usually higher in peripheral 

vessels than the aorta. This pulse amplification depends on pulse wave reflection. 

Partial reflection of the incident pressure wave occurs at multiple vascular 

bifurcations, where there are increases in vascular impedance (O'Rourke 1982). Of 

course, these reflected waves are also subject to attenuation. The result is marked 

differences in shape and amplitude at different points in the arterial tree, although the 

leading edge of the wave maintains its identity fairly well (Kapal et al. 1951; 

McDonald 1968). The shape of the pulse wave can be assessed in the time domain, 

by identifying the relative amplitudes of incident and reflected waves, the timing of 

different wave components, and the rate of decay of the diastolic portion of the pulse 

(Oliver & Webb 2003). Waveform decomposition, into incident and reflected parts, 

can also be performed, either by calculating the input impedance using a 

simultaneously recorded flow wave, or by estimating flow using a simple 

mathematical model (Westerhof et al. 2006). Less frequently, the wave is analysed in 

the frequency domain. However, changes in the frequency components of the pulse 

wave as it travels between two points can be assessed by computing a transfer 

function (Karamanoglu et al. 1993; O'Rourke 1970) – a mathematical description of 

the change in the magnitude and phase of different frequency components between 

the input and output signals of a system. This method is widely used in engineering 

sciences, but has been increasingly employed in clinical research allowing the 

estimation of central pressure waves – those that the heart directly interacts with in 

the proximal aorta – from waveforms recorded at more easily accessible peripheral 

sites such as the radial artery. Derived aortic waveforms obtained in this way have 

been shown to relate to cardiovascular outcome (Weber et al. 2004; Williams et al. 

2006). 
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1.5 PULSE TRANSIT TIME 

The association between arterial stiffness and BP, means that if a constant 

relationship can be assumed between the two variables, a measure of the former can 

potentially be used in conjunction with a simple calibration factor to predict the latter. 

Arterial stiffness lends itself to continuous beat-to-beat monitoring, through the 

measurement of the velocity of pulse wave propagation. Furthermore, in any given 

individual the distance over which the velocity is measured is constant, and so the 

pulse transit time – the time taken for the pulse to travel between the two distinct 

arterial sites – may be used without the need to measure path length. 

1.5.1 Signal transduction 

The site of pulse detection affects the choice of transducer required. Intravascular 

catheter-tip manometers are the gold standard for pulse transduction. A direct 

measurement of the pulse wave can be made, with no signal distortion due to fluid-

filled tubing, and it is possible to precisely measure the distance between the two 

measurement sites. Latham et al (1985) carried out one of the first detailed studies of 

aortic PWV in humans, by using a special catheter fitted with six equally spaced 

(10cm) micromanometers. 

Non-invasive methods are preferable, however, as risk and discomfort are minimised. 

Aortic pulse wave velocity can be measured by magnetic resonance imaging 

(Mohiaddin et al. 1993) or Doppler ultrasound (Lehmann et al. 1998), by timing the 

arrival of the arterial flow wave. Non-invasive pressure wave recording, using 

transcutaneous piezoelectric pressure transducers is considerably cheaper, quicker 

and easier to carry out, although is limited to relatively superficial vessels such as the 

femoral, brachial, carotid or radial arteries. Measurement at the latter two sites has 

the additional advantage of being possible to automate, either by use of a multisensor 

device that can optimise signal acquisition (e.g. Colin CBM7000) or by a clamp 

system that holds a single sensor over the required site (e.g. Complior). An 

alternative approach to pulse detection is photoplethysmography, which measures the 

blood volume wave, by monitoring changes in infrared light absorption by the tissues 

throughout the cardiac cycle (Millasseau et al. 2006). Such sensors are cheap, widely 
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available and relatively operator independent, although have disadvantages in the 

limited locations they can be positioned (usually digits or earlobe), and the fact that 

they may be prone to the variabilities in small vessel blood flow. 

Most of the spectral power of the pulse wave form is <25Hz (Nichols & O'Rourke 

1998), necessitating a minimal sampling frequency of twice this (the Nyquist 

criterion). With both invasive and non-invasive transducers, a digital sampling 

frequency of 100-200Hz is often used to avoid losing detail from the wave shape. 

However, up-sampling using mathematical interpolation is still required to improve 

the accuracy of transit time measurements. 

1.5.2 Timing points on the waveform 

In order to determine transit time, a point of identity must be determined on the 

travelling wave, and the velocity of this point used as a characteristic of the entire 

wave. However, the pulse wave contour varies throughout the arterial tree due to the 

effects of wave reflections and pulse wave amplification, resulting in different 

features on the waveform travelling with apparently different velocities. The foot of 

the waveform – where systole, and hence the steep leading edge of the wavefront 

begins – is least prone to the effects of wave reflections, as it occurs early and 

therefore maintains its identity in the propagated wave. The wave foot is therefore 

usually used for timing purposes, although its identification is not without its own 

difficulties. This is because the initial upstroke of the wave foot occurs relatively 

gradually over several milliseconds and may also be concealed by signal noise. 

Various approaches have been used to define the foot of the wave, including tangents 

intersecting with the signal baseline or diastolic slope (Laszt & Muller 1952) or the 

maximum of the second derivative (Chiu et al. 1991). The leading edge of the wave 

also maintains its identity relatively well, so other points on the rising limb have been 

used including the maximum first derivative (Greenfield, Jr. & Fry 1965), or a point 

that is a set percentage of the pulse height (Kapal et al. 1951). 
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1.5.3 Use of the ECG as a proximal timing point and the pre-ejection 
period 

Although sensors can be placed with relative ease at distal locations on limbs or 

digits, it is more difficult to obtain continuous proximal waveform measurements. In 

order to circumvent this problem, the ECG Q or R wave can be used as a marker of 

cardiac ejection. The ECG has the advantages of being relatively tolerant of artefact, 

and simply to measure. However, this introduces the cardiac pre-ejection period 

(PEP) as an important confounding factor. PEP is known as a systolic time interval – 

a time period between two physiologically important points in the cardiac cycle – 

and is defined as the time between onset of electrical systole (the Q-wave) and the 

beginning of mechanical ejection (opening of the aortic valve). Use of the ECG also 

means that only specific timing points are available proximally – namely Q-wave or 

R-wave – rather than the choice of points on the distal pulse contour. 

PEP is determined by preload, afterload and contractility (Nakamura et al. 1983), so 

transit time measured from the ECG is a composite measure comprised of cardiac 

and vascular components. PEP is primarily affected by cardiac contractility in vivo 

(Ahmed et al. 1972; Belz 1995), with increased contractility resulting in shortening 

of the isovolumic contraction time, and thus a decrease in PEP. However, all three 

influences on PEP are inextricably linked. A decrease in cardiac preload (such as that 

achieved with IV frusemide (Buch et al. 1980) or postural tilt (Stafford et al. 1970)), 

leads to a reflex decrease in contractility through the Frank-Starling mechanism, and 

a subsequent rise in PEP. An increase in afterload (e.g. with angiotensin (Belz 1995; 

Harris et al. 1967)) means the time it takes for left ventricular pressure to rise above 

aortic diastolic pressure is greater, and PEP is thus also prolonged. Although PEP is 

primarily a function of cardiac activity, it should nonetheless be noted that the 

association between BP and arterial stiffness, and the fact that BP is a function of 

both arterial and cardiac behaviour, means that arterial stiffness is still indirectly 

associated with PEP. 

The effect of heart rate on PEP is complex and subject to debate (Li & Belz 1993; 

Spodick et al. 1984). Alteration in heart rate with pacing (Harris et al. 1967; Mertens 

et al. 1981) or vagal blockade (Harris et al. 1967; Kelman et al. 1981) does not 
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appear to affect the pre-ejection period. However some interventions which alter 

heart rate, can also affect PEP. This may be due to changes in other physiological 

parameters - for instance, adrenergic stimulation increases both heart rate and cardiac 

contractility. This is important, because it suggests that PEP cannot be compensated 

for by simply taking into account heart rate (Spodick et al. 1984). 

1.5.4 Continuous transit time measurement 

The main reasons for measuring beat-to-beat PWV or PTT is the potential for 

determining beat-to-beat blood pressure change. This has been the primary aim of 

most of the previous research in this area  (Abenstein et al. 1993; Allen et al. 1981; 

Babchenko et al. 2000; Callaghan et al. 1986; Carruthers & Taggart 1988; Chen et al. 

2000; Contrada et al. 1995; Davies et al. 1993; Davies et al. 1994; Geddes et al. 

1981; Gribbin et al. 1976; Heard et al. 2000; Hon & Fukushima 1992; Jennings & 

Choi 1983; Johnston et al. 1982; Lane et al. 1983; Lo & Johnston 1984; Lu et al. 

1992; Marie et al. 1984; Newlin 1981; Nitzan et al. 2002; Obrist et al. 1979; Ochiai 

et al. 1999; Pollak & Obrist 1983; Pruett et al. 1988; Smith et al. 1999; Steptoe et al. 

1976; Steptoe 1977; Steptoe 1978; Thomas 1955; Thomas 1965; Weiss et al. 1980; 

Weltman et al. 1964; Williams & Williams 1964). Because the correlation between 

blood pressure and transit time is expected to vary between individuals, a calibration 

procedure needs to be performed to allow BP to be derived from PTT in any 

particular individual. Subsequent BP measurement then relies on a linear relationship 

existing between the two variables. 

Weltman et al (1964) were the first group to describe the measurement of transit time 

from the ECG. The radial pulse was detected by using a crystal microphone to 

differentiate the pressure wave. In this thesis, the term rPTT has been used to denote 

the time between R-wave peak and the start of the peripheral pulse. pPTT describes 

the vascular transit time, between the end of the pre-ejection period, and the start of 

the peripheral pulse. Weltman et al studied the effects of respiratory events, 

including hyperventilation and Valsalva manoeuvre, on the change in rPTT. Changes 

in arterial pressure were not directly measured, however, and like other early 
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researchers in this field (Williams & Williams 1964), the PEP was assumed to be 

constant for the duration of measurements. 

The first comparisons of true vascular transit time (i.e. not confounded by the 

presence of PEP) with intra-arterial BP in vivo were carried out by Gribbin et al who 

achieved changes in BP by subjecting the arm to negative and positive external 

pressure (Gribbin et al. 1976). They found a linear correlation between PWV and 

mean arterial pressure (MAP), and also demonstrated that the correlation coefficient 

remained constant after re-testing several months later. Further work found linear 

correlations between the rPTT, and both mean (Steptoe et al. 1976) and systolic 

(Allen et al. 1981; Obrist et al. 1979) intra-arterial BP. BP changes were achieved in 

these studies using psychological and physical stresses, and amyl nitrite. However, 

true vascular transit time is reciprocally related to PWV, and so from a strict 

mathematical perspective, a linear relationship between both these parameters and 

BP appears unlikely. It is possible the use of rPTT rather than true vascular transit 

time may explain this paradox; alternatively, the relationships observed may have 

actually been slightly curvilinear. 

Beta-blockade (intravenous propranolol) was also used to examine the effect of 

sympathetic activity on the transit-time/BP relationship (Obrist et al. 1979). 

Interestingly, despite minimal effects on systolic blood pressure (SBP), the 

correlation between SBP and rPTT was attenuated. Although PEP was not directly 

measured in this particular study, the authors suggested that this may be evidence for 

PEP contributing significantly to BP-induced changes in rPTT. An alternative but 

probably less likely explanation might have been drug induced changes in the 

intrinsic stiffness of the arterial wall, altering the true vascular transit time despite the 

pressure remaining unchanged. 

Newlin and Levenson (Newlin 1981; Newlin & Levenson 1979) used a polygraph 

technique to measure PEP. They found that transit time measured between ECG and 

ear, was largely determined by changes in PEP which accounted for approximately 

80% of the total time delay. The fact that the arterial component was still important 

was supported by the improved correlation with BP when the peripheral pulse sensor 
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was located more distally. The importance of the longer path length was upheld by 

other data too (Geddes et al. 1981; Obrist et al. 1979). Geddes et al studied transit 

time measured from the ECG in anaesthetised dogs, and found the femoral time 

correlated better with BP than the carotid, but also confirmed the non-linear nature of 

the relationship between BP and true vascular transit time (Geddes et al. 1981). 

Transit time measured from the ECG has been used during exercise in a number of 

psychophysiology studies (Johnston et al. 1982; Lo & Johnston 1984; Marie et al. 

1984). The principle aim of these studies was to study cardiovascular feedback, 

rather than the haemodynamic changes occurring during exercise. Carruthers and 

Taggart (1988) and Barschdorff and Erig (1998) have used ECG-transit time as a 

marker of BP during exercise. Porta and colleagues proposed a method of using short 

sequences of transit time and systolic BP change to estimate the relationship between 

the two variables during exercise (Porta et al. 2006). 

The r2 linear correlation coefficients of these studies for the relationship between BP 

and rPTT, varied from less than 0.25 to greater than 0.95. Better r2 values were found 

when transit time was measured distally (Lane et al. 1983; Newlin 1981; Obrist et al. 

1979), or in studies that compared true PWV with BP (Geddes et al. 1981; Gribbin et 

al. 1976). Importantly, the BP range achieved in psychophysiology studies may be 

restricted (Lane et al. 1983), and this must be considered if applying the technique to 

situations such as exercise or the administration of vasoactive drugs where larger BP 

variation might be expected. In addition, such interventions may change PEP 

markedly and so impact more noticeably on the ECG-transit time to BP relationship 

(Pollak & Obrist 1983). 

More recently, rPTT has been used as a marker of BP change in a clinical setting, 

including intensive care (Heard et al. 2000), haemodialysis (Ahlstrom et al. 2005) 

and obstetrics (Sharwood-Smith et al. 2006). The methodology has even been 

incorporated into a toilet seat as a means of “non-intrusively” measuring BP (Kim et 

al. 2006)! All these studies have used photoplethysmography as a means of 

transducing the pulse peripherally. Work has been published detailing the effects of 

cold (Zhang & Zhang 2006), sensor contact force (Teng & Zhang 2006) and limb 
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position (Foo et al. 2005b) on PPG transit time values. Methods of PPG artefact 

reduction have also been described (Foo et al. 2004; Foo & Wilson 2006). 

1.5.5 Transit time calibration 

As discussed above, estimation of BP using transit time requires a calibration 

procedure to be performed. There is no agreed method of doing this, although several 

potential options exist. One method is to use hydrostatic changes in pressure. It is 

possible to induce a pressure differential in the arm by raising or lowering the hand. 

This pressure differential can be estimated from the hydrostatic effect of raising a 

column of blood through a known height. However, any change in rPTT will be 

purely due to changes in pPTT, and such a calibration procedure would be unhelpful 

in situations where PEP can be expected to vary. An alternative approach is 

measuring beat-to-beat variability in rPTT and BP at rest, the latter using an 

established method such as tonometry or finger volume-clamping, and to use this to 

generate a regression equation with which to estimate pressure. However, beat-to-

beat variability is relatively small compared with changes that may occur during 

exercise or in response to vasoactive drugs, and the resulting calibration slope will 

therefore be subject to considerable uncertainty. A third method is to use an 

intervention such as exercise or drugs to induce haemodynamic changes, and to use 

the corresponding values of BP and rPTT to obtain a calibration slope. Where 

measurements can be expected to be undertaken in similar repeated circumstances 

(e.g. multiple exercise tests), then such a procedure might be reasonable. Of course, 

such a process would be relatively time consuming, and the risks of additional 

exercise tests or drug administration may be difficult to justify. However, use of 

relatively brief and low intensity exercise to induce only a small BP change (but 

greater than spontaneous beat-to-beat changes) may be an option. A final approach 

might be to use a fixed calibration factor for all individuals, or a variable calibration 

factor adjusted for simple subject characteristics (e.g. age, sex, height/arm length). 
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1.6 AIMS 

From the discussion above, it is evident that it would be attractive to use pulse transit 

time measured from the ECG as a marker of BP. It may be of particular value in 

situations where continuous BP monitoring is favoured over sphygmomanometry. 

This includes circumstances where cardiovascular drugs may be employed, or during 

exercise. However, it is possible that variations in the relationship between transit 

time and BP may occur under such conditions, potentially compromising the 

accuracy and reliability of such an approach. As a consequence of making the signal 

recordings necessary to determine transit time, it is also possible to examine the 

pulse wave contour and to calculate pulse wave velocity. Both these techniques may 

be of value in evaluating arterial stiffness. Importantly, although various approaches 

to ECG and pulse signal analysis are already published in the literature, there is no 

established system, commercial or otherwise, which combines these techniques in 

order to provide the ability to measure beat-to-beat transit time coupled with the 

flexibility to perform additional signal recordings and analyses. 

The aim of this work was to develop a robust and flexible methodology for 

measuring pulse transit time and other cardiovascular parameters, and to use this to 

explore the effects of vasoactive drugs and exercise on the nature of the relationship 

between BP and transit time, and on arterial stiffness and the pulse waveform. 

Principle hypothesis: 

• Pulse transit time will vary independently of blood pressure following 

administration of vasoactive drugs and after exercise 

Further specific hypotheses were that: 

• Different vasoactive drugs will have dissimilar effects on each of the separate 

cardiac and vascular components of pulse transit time. Specifically: 

o GTN will increase pPTT and not affect PEP 

o Angiotensin II would decrease pPTT and not affect PEP 

o Noradrenaline would decrease pPTT and decrease PEP 
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o Salbutamol would increase pPTT and decrease PEP 

• Exercise will result in dissimilar effects on the different cardiac component and 

anatomically distinct vascular components of pulse transit time. Specifically: 

o PEP will decrease 

o Vascular transit time will decrease more in larger arteries than smaller arteries 

• Photoplethysmography can be used for timing the arrival of the pulse wave, and 

can thus be used as a simple means of determining conduit artery PWV during 

exercise. 

• Changes in the intra-arterial waveform induced by vasoactive drugs, can be 

measured by simple, operator-independent, non-invasive methods. Specifically: 

o Infra-red digit photoplethysmography 

o Wideband external pulse recording during sphygmomanometer cuff inflation 

• Exercise and vasoactive drugs will alter the nature of the relationship of the pulse 

wave between distinct points in the arterial tree, as determined through changes 

in the vascular transfer function. Specifically: 

o A peripheral-to-central transfer function estimated at rest, will underestimate 

proximal (central) pressure augmentation following exertion 

o The finger-to-peripheral (radial) arterial transfer function will be minimally 

affected by exercise or vasoactive drugs 
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2 METHODOLOGY 
2.1 ETHICAL APPROVAL AND SUBJECT 

RECRUITMENT 

All protocols were approved by the Lothian local research ethics committee, and 

conformed to the requirements of the Declaration of Helsinki (World Medical 

Association 2004). A standard consent form was used to obtain written informed 

consent from all participants. Subjects were all healthy, non-smoking volunteers 

recruited from the local community, with no history of cardiovascular disease or 

other clinically significant condition, and taking no regular medications. 

2.2 ANALOGUE SIGNAL RECORDING 

Studies involving intra-arterial pressure measurement employed custom hardware to 

perform measurements at run-time. 30-second recordings of raw waveform data from 

photoplethysmograph and arterial transducers were recorded at various points during 

these studies, for subsequent offline analysis. Signals were digitised at 200 Hz and 12 

bit resolution using a custom analogue-digital converter, and recorded using custom 

software written by myself in LabVIEW 6.1 (National Instruments). ECG timing 

data was embedded in the photoplethysmograph (PPG) waveform data. These data 

were synchronised with bioimpedance data obtained from the serial output of the 

NCCOM3 Cardiodynamic monitor (BoMed Medical Systems, see below). 

Subsequent studies used a multi-channel analogue-digital converter to record 

physiological waveforms, with subsequent off-line signal analysis using a custom-

written LabVIEW program. Both ADInstruments (MacLab/400 12 bit, 200 Hz) and 

National Instruments (E-series 6036E PCMCIA; 16 bit, 1 kHz) systems were used. 

A digital third-order low pass Butterworth filter was applied to all signals to remove 

noise prior to waveform contour analysis. A 40 Hz frequency cut-off was used for 

ECG signals and 20 Hz for pressure, volume and bioimpedance waveforms. All 

signals recorded at lower frequencies were up-sampled to 1 kHz using the standard 

approach of cubic spline interpolation before further processing. 
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2.3 MEASUREMENT OF PULSE TRANSIT TIME 

Pulse transit time (PTT) was measured between the QRS complex of the ECG, and 

the pulse arrival at the finger or other distal pulse. The term rPTT is used to denote 

the time between R-wave peak and the start of the peripheral pulse. pPTT describes 

the vascular transit time, between the end of the pre-ejection period, and the start of 

the peripheral pulse. Thus, we have the equivalence rPTT=PEP+pPTT. A suffix (e.g. 

“finger”) has been used where required to distinguish different transit time 

measurement sites respectively, although has been omitted where only one recording 

site was used. 

Studies involving intra-arterial pressure measurement employed custom-built 

hardware developed by the University of Edinburgh School of Electronics and 

Engineering. The equipment comprised ECG and PPG signal recording hardware, 

and made transit time calculations at run-time. Although capable of functioning 

autonomously, the system was interfaced by a serial port to a personal computer for 

data logging and control purposes. To allow for more detailed signal processing, later 

studies recorded raw ECG and PPG signals for off-line analysis and computation of 

transit time. 

2.3.1 ECG recording 

Single channel ECG recording was used for all studies, using a standard 3-lead 

configuration (Lead II) connected using standard 5cm disposable solid-gel electrodes. 

Numerous methods have been used for R-wave detection, concentrating on the 

ability to detect complexes in the presence muscle noise, baseline wander and 

electrical interference (Friesen et al. 1990). Dual or multi-channel ECG recording is 

advantageous, particularly during exercise, as the redundancy in such systems can be 

used to improve QRS complex detection and arrhythmia and ectopic beat analysis, 

even when artefact is present (Dotsinsky & Stoyanov 2004; Kaiser & Findeis 1999). 

Lead-switch algorithms have also be used to continuously select the “best” lead 

(Kaiser & Findeis 1999). Multi-lead systems are more complex, however, requiring 

increased computer power and more complex hardware. As the majority of studies 

were to be conducted in healthy subjects, in whom ectopic beats and arrhythmias 
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were anticipated to be relatively unusual, it was felt that the complexities of 

implementing a multi-channel system were not justified by the benefits. 

Two different algorithms were used for detection of the ECG R-wave. These are 

detailed below, including a comparison of their accuracy. Accurate detection of the 

R-wave was crucial to the precise identification of other key points on the other pulse 

waveforms, and all timing measurements were made relative to the peak of the R-

wave. The Q and S waves were also identified relative to the R-wave. 

2.3.1.1 Real-time ECG QRS detection 

A custom ECG system was used for detection of the R-wave for studies involving 

intra-arterial recordings. The ECG signal was recorded using the Lead II 

configuration. The signal was passed through a differential amplifier, additional gain 

stage with low-pass 1st order filter, 5th order low-pass filter, and full wave rectifier. 

Overall gain was around 1000, and the band pass was 5-23 Hz. This output signal 

was then digitised at 1 kHz (8 bit). The output signal consisted of a double hump, 

with a sharp minimum between the two peaks corresponding to a fixed period of 75 

ms after the R-wave maximum (Figure 2.1). 

Figure 2.1. Analogue processing of ECG signal 

 

Bottom trace shows output signal 
after analogue pre-processing stage 
(photograph of oscilloscope screen). 
Sharp minimum between two humps 
corresponds to R-wave, delayed by a 
fixed period of 75 ms. Top trace 
shows timing pulse, the upstroke of 
which corresponds to 40 ms after the 
occurrence of the second hump which 
is used to confirm presence of 
preceding minimum and hence R-
wave. 
 

The first hump was identified from the 4-point moving average as 8 consecutively 

increasing samples followed by a similar period of decreasing samples. The 
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minimum was then found from un-averaged samples. The second hump was then 

identified as for the first. The difference between each peak and the minimum was 

required to exceed a predefined threshold. A minimum period of 256 ms was 

required to have elapsed since the previous detection. 

Outlying beats were removed using a multi-pass filter, based on outlying values 

(greater than four standard deviations of the 16-second centred mean) of transit time 

(three-pass) and heart rate (single-pass). 

2.3.1.2 Off-line ECG QRS detection 

Subsequent studies employed a commercial ECG monitor (LifePulse LP15A, HME 

Ltd), with direct sampling of the analogue output signal. This provided the 

advantages of allowing timing of other ECG time points (e.g. Q wave), and 

functioned relatively independently of lead position (although was optimised for 

Lead II). 

Figure 2.2. Example of offline ECG detection 
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Blue line, ECG signal in mV; red line, first derivative of ECG signal in arbitrary 
units (dotted line represents zero); broken lines represent QRS amplitude threshold 
limits (in mV); dots represent all possible ECG spikes, based on substantial positive 
deflections of first derivative; green dots represent those the algorithm identifies as 
likely R-wave candidates, red dots represent other dismissed deflections. See text for 
details. 

Details of the algorithm used for ECG R-wave identification are given in Appendix 1, 

with an example shown in Figure 2.2. Briefly, the ECG signal was digitally filtered, 
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and a threshold for R-wave detection determined by calculating the running 

maximum of the first derivative of the signal. R-wave deflections were identified 

from positive-to-negative crossing points on the first derivative, occurring in close 

proximity to points at which the first derivative exceeding 30% of the threshold, and 

meeting various predefined criteria. The timing of these QRS complexes was used as 

the initial timing point of the cardiac cycle for all other measurements, including 

recalculating the ECG QRS timings. All ECG data was subject to a two-pass filter, 

with pulses lying outwith 3 standard deviations of the 5-second median average heart 

rate being automatically rejected. 

2.3.1.3 Reliability of ECG QRS detection 

As the real-time algorithm was dependent on specific analogue pre-processing, it was 

not possible to evaluate it using a formal ECG test database. The accuracy was 

therefore studied in 8 healthy males (median age 23) at rest and during an 

incremental exercise test, the same as that described in section 7.2.1. Results are 

shown in Table 2.1. Accuracy was estimated by comparing actual R-wave detections 

with the number expected based on mean heart rate, and using a 16-second centred 

median filter to determine outliers. This demonstrated a sensitivity of around 90% 

and positive predictive value of around 99%. It should be noted that the system 

employed to make real-time measurements used transit time to filter outlying data, 

rather than only heart rate. These sensitivity/positive predictive value results are 

therefore influenced by transit time measurement rather than simply ECG detection. 

However, as transit time measurement relies on ECG timing, these 

sensitivity/positive predictive value results still act as a guide to the reliability of the 

R-wave detection. Importantly, though, this approach may fail to detect the algorithm 

misidentifying different points close together in the same QRS complex (e.g. where 

there is an RSR pattern and there is variability in which R-wave is selected, or in 

situations where the upstroke of a large S-wave is selected in preference to a small R-

wave), although larger beat-to-beat errors will be picked up. Further, it is not 

possible to determine any overall consistent bias relative to the actual R-wave. 

In addition, 30-second samples of waveform data recorded from each exercise stage 

were studied. The number of missed or excess beats was counted manually using the 
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PPG wave as a reference. As only a time stamp marking the occurrence of the R-

wave was recorded, rather than the raw ECG waveform, it was not possible to 

precisely evaluate the timing accuracy of the ECG detection, or the ability to detect 

ectopic beats. Sensitivity and positive predictive value assessed in this way were very 

high (¥99.9%, see Table 2.1). This probably reflects selection bias introduced by 

taking specific care over the 30-second recording interval to minimise movement 

artefact and thus optimise signal quality. 

Table 2.1 Real-time ECG algorithm 
 Sensitivity (%) Positive predictive value 

(%) 
 Direct 

observation 
Estimate Direct 

observation 
Estimate 

Rest 99.9 90.9 99.9 98.7 
Exercise 100.0 90.3 100.0 98.8  

The reliability and accuracy of the off-line QRS detection system was tested against 

the Massachusetts Institute of Technology – Beth Israel Hospital (MIT-BIH) 

arrhythmia database (Moody et al. 1993). This database consists of 48 thirty-minute 

2-channel ECG recordings. QRS complexes have been independently annotated by 

two or more cardiologists, and the database is widely used as standard test material 

for evaluation of arrhythmia detectors. Only the upper channel data (usually lead II) 

from this database was used for evaluation of the off-line algorithm. An estimate of 

the sensitivity of the off-line algorithm during exercise was made from data gathered 

from 10 healthy (7 male, mean age 36 years) individuals, by comparing the actual 

number of R-wave detections with the number expected based on the median heart 

rate. Measurements were made before, during and after a 1-minute incremental 

bicycle ergometer (Lode Rehcor) maximal exercise test as described in section 

2.9.1.1. Selected 2 minute periods of data were analysed from pre-defined time 

periods: 2-4 minutes before exercise, initial 2 minutes of exercise, 2 minutes exercise 

centred around the anaerobic threshold (based on the estimate described in section 

2.9.1), final 2 minutes of exercise, and 1-3 minutes after stopping exercise. 
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Table 2.2. Off-line ECG algorithm 
 Sensitivity (%) Positive predictive 

value (%) 
MIT test database   
 All test ECGs 82.2 83.2 
 Selected ECGs 97.6 98.3 
    
Estimated reliability   
 Rest 97.0 97.6 

Mild 96.0 96.9 
Anaerobic threshold 98.9 98.8  

Exercise 

Peak 98.6 99.7 
 Recovery 96.6 96.9 

Results are shown in Table 2.2. The sensitivity and positive predictive value for the 

off-line algorithm, based on the MIT-BIH database, were 82.2% and 83.2% 

respectively. On assessment of individual ECG records, this appeared to be due to 

particularly poor QRS identification during arrhythmias, ectopics, and QRS 

complexes with unusual morphology. This is unsurprising, as the algorithm was 

purposely optimised to cope with noise due to muscle and movement artefact, in 

subjects with normal sinus rhythm, and was not designed to monitor arrhythmias. 

Indeed, when the MIT-BIH data set was limited to ECGs which excluded large 

numbers (over 5 minutes) of ectopics, periods of arrhythmia (e.g. atrial fibrillation), 

and abnormal QRS morphology (e.g. bundle branch block), sensitivity and positive 

predictive value were found to be similar to that estimated during exercise. The 

estimates of sensitivity during exercise and rest were substantially higher using the 

off-line algorithm than the estimates for the real-time algorithm (p<0.001 and 

p=0.001 respectively), although positive predictive value was no different (p=0.59 

and 0.34 respectively). There were no differences in sensitivity or positive predictive 

value across varying levels of exercise (p=0.54 and 0.33 respectively by ANOVA). 

2.3.2 Photoplethysmography 

Photoplethysmographic pulse monitoring was originally described in the 1930s 

(Hertzman & Spealman 1937). The technique relies on the absorption of light by soft 

tissues and blood, and measures either the reflected or transmitted light intensity by 

using a phototransistor. The precise mechanism underlying the changes in the 
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photoplethysmograph signal remains uncertain. Changes in blood volume throughout 

the cardiac cycle would appear important, and vessel diameter correlates with the 

PPG signal (Greenwald et al. 1997). It is possible that soft tissue movement related 

to underlying arterial pulsation may also be involved, and this is suggested by work 

demonstrating the ability to detect a pulsatile signal at sites overlying large vessels 

but not elsewhere (with the exception of the relatively vascular digits and ear lobe) 

(Loukogeorgakis et al. 2002). Regardless of the exact nature of the PPG signal, it is 

nonetheless a function of the underlying cardiac cycle. The start of the finger volume 

pulse (i.e. the foot of the leading edge of the wave) can therefore be expected to 

correspond to the start of the arterial pressure wave, although other points (e.g. the 

wave peak) may be not be simultaneous. The technique has therefore been used for 

timing purposes by a number of investigators (Allen & Murray 2002; Babchenko et 

al. 2000; Greenwald et al. 1997; Heard et al. 2000; Loukogeorgakis et al. 2002). 

For all studies, the pulse volume wave was detected on the dominant index finger 

using a custom-made infrared transmission photoplethysmograph. A similar device 

was used at the ear. The signal current through the sensing phototransistor fluctuated 

over approximately 0.5µA, with a large DC component. The AC coupling had a long 

time constant (τc≈100s) to reduce signal distortion, with DC levels restored rapidly 

after large signal artefacts by microcontroller intervention. A current-to-voltage 

converter was used with a conversion factor of 1V/µA, followed by voltage gain (×3) 

stage, 5th order low-pass filter and 1st order ripple reduction filter (τc=2 ms). Signal 

output amplitude varied between 0 and 5V. To accommodate low frequency 

variations in pulse amplitude, which varies with factors such as temperature and 

altered blood flow, the infra-red LED current was variable between 1 and 31mA, 

with greater current resulting in greater signal amplitude. A reflective transducer was 

similarly tolerant of motion artefact, but provided poor signal strength when 

extremities were cold (see Figure 2.3), to a degree which rendered it unusable in 

some circumstances. It was therefore decided to use the transmission device. 
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Figure 2.3. Comparison of reflection and transmission photoplethysmography 
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Simultaneous recording of finger pulse using transmission (bold line) and 
reflection (thin line) photoplethysmography, with equivalent LED current.  

Both the algorithms used to identify the pulse wave leading edge were highly 

dependent on accurate identification of the preceding ECG R-wave. Both could 

wrongly identify marked positive artefact deflections as a pulse leading edge. All 

transit time data was therefore subjected to filtering, detailed below. 

2.3.2.1 Real-time pulse wave leading edge detection 

For studies employing arterial-line monitoring (Section 2.8.3), detection of the pulse 

wave leading edge was performed by custom hardware. The signal was digitised at 

200 Hz and 12-bit resolution. The signal was analysed using a 3-point moving 

average. Following detection of the R-wave, the wave leading edge was considered 

to be the first occurrence of 35 ms consecutively increasing samples of minimum 

amplitude 0.156V. The maximum point was subsequently considered reached after 

35 ms consecutively decreasing samples. The wave baseline was taken as the lowest 

point between the preceding maximum and the start of the leading edge. Transit 

times were calculated from the R-wave to the steepest point on the leading edge 

(maximum first derivative), and the point at which a tangent through the steepest 

point intersected the baseline. Transit time results were returned within 35 ms of the 

wave maximum being reached. A variety of pre-specified artefact rejection criteria 

were used. These included (for the finger) transit time values <100 ms or >496 ms, 
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pulse maximum occurring within 165 ms of the ECG, nonsensical timing points (e.g. 

maximum preceding minimum), and the maximum slope being too steep (>12.45 

V/s). 

2.3.2.2 Off-line pulse wave leading edge detection 

For studies not employing arterial line monitoring, detection of the pulse wave 

leading edge was performed offline using a custom LabVIEW program. 

The leading edge of the waveform was taken as the first point at which the first 

derivative exceeded 50% of its maximum over the associated R-R interval, in 

association with a signal amplitude of over 60% of the maximum. The start and end 

of the leading edge was defined as the associated negative-to-positive and positive-

to-negative deflections. Within these limits, transit time was calculated from the R-

wave to the maximum first and second derivatives, and intersecting tangents through 

these two points and the wave baseline. Waveforms were rejected if timing points 

did not make sense (e.g. maximum second derivative occurring after maximum first 

derivative), wave length outwith the range 250 ms to 2000 ms (irrespective of R-R 

interval), and episodes where signal amplitude remained unchanged over a 300 ms 

period (suggesting signal saturation or voltage clamping). 

2.3.2.3 Reliability of pulse wave leading edge detection algorithms 

The reliability of the real-time algorithm was determined in 8 subjects as referred to 

in section 2.3.1.3. Sensitivity was estimated as the number of transit time 

measurements after filtering expressed as a percentage of total number of R-wave 

detections (i.e. prior to filtering). Positive predictive value was estimated as the 

number of transit time measurements after filtering expressed as a percentage of the 

total number of transit time measurements. Sensitivity was not calculated relative to 

the number of R-wave detections after filtering, due to the decision to filter the ECG 

samples using corresponding transit time data, rather than heart rate data (any transit 

time value would therefore have a one-to-one association with an R-wave detection, 

misleadingly implying a “sensitivity” of 100%). Results are shown in Table 2.3. 
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Table 2.3. Real-time pulse wave algorithm 
 Sensitivity (%) Positive predictive 

value (%) 
Rest 90.8 91.5 

Mild 93.5 94.1 
Moderate 93.7 94.0 

Exercise 

Strenuous 90.3 92.0 
Recovery 96.1 96.3 

 An estimate of the reliability of the off-line algorithm was made in 10 healthy 

individuals as described in section 2.3.1.3. Sensitivity and positive predictive value 

were estimated based on actual R-wave detections at rest and at different exercise 

phases. Results are shown in Table 2.4. 

The sensitivity of the off-line algorithm tended to be higher than that of the real-time 

algorithm during exercise and recovery (p=0.065), and was significantly higher 

during rest (p<0.001). Positive predictive value was significantly higher for the off-

line algorithm both during exercise/recovery (p<0.01) and at rest (p<0.001). 

Although there was an apparent overall trend for the sensitivity and positive 

predictive value of both algorithms to decrease during exercise, this was not 

statistically significant (ANOVA: p=0.27 and 0.45 respectively for real-time 

algorithm; p=0.76 and p=0.66 for off-line algorithm). 

2.3.3 Conclusion 

Although the real-time ECG sensitivity was somewhat less than ideal (down to 

90.9%), the system was developed along similar lines to techniques employed by the 

heart-rate monitor manufacturers, with a view to being practical and implemented in 

a standalone measurement system, and positive predictive value was still high 

 
Table 2.4. Off-line pulse wave algorithm 
 Sensitivity (%) Positive predictive 

value (%) 
Rest 98.5 98.6 

Mild 97.4 98.4 
Anaerobic threshold 95.1 96.5 

Exercise 

Peak 94.7 95.9 
Recovery 98.9 99.8 
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(≥98.7%). The offline algorithm improved on sensitivity (≥96.0%), with the benefit 

of an adaptive R-wave detection threshold that would respond to varying signal 

strength and noise levels. Although still less sensitive than some commercially 

available systems (which may exceed 99%), it nonetheless offered good predictive 

power during exercise (≥96.9%). Pulse wave leading edge detection was highly 

dependent on accurate R-wave detection for both systems. The two methods were 

both considered satisfactory, although the more complex algorithm employed offline 

resulted in improved detection. Importantly, the ability of the algorithms to 

determine the peak of the R-wave and different points on the wave leading edge 

within 1 ms accuracy, was crucial to accurate transit time measurement, particularly 

over the short time periods (~30 ms) examined in some studies. Overall, when used 

for making beat-to-beat measurements over a reasonably long time periods, these 

levels of ECG and pulse wave detection reliability still allow a considerable 

proportion (>90%) of pulse wave measurements to be made accurately. 

2.4 MEASUREMENT OF PRE-EJECTION PERIOD 

The gold standard for non-invasive measurement of the pre-ejection period (PEP) is 

echocardiography. It is possible to directly visualise aortic valve motion in M-mode, 

and thus calculate PEP as the time between Q-wave and valve opening. However 

echocardiography is not suitable for continuous measurements and other non-

invasive approaches have been developed instead. The usual method of determining 

systolic time intervals (including PEP) is by simultaneously recording the 

electrocardiogram, phonocardiogram (using a microphone to detect the second heart 

sound, S2), and carotid pulse wave. The method is sometimes known as 

mechanophonocardiography. This technique was first described by Katz and Feil in 

1923 (Katz & Feil 1923), and popularised by Weissler et al in the 1960s (Weissler et 

al. 1969). Positioning of the carotid transducer and microphone are critical as both 

are prone to movement artefact. Erroneous results can be minimised by careful set up 

and averaging results. The technique has been employed by many groups, and has 

been used successfully in exercising subjects (van der Hoeven et al. 1973; van der 

Hoeven et al. 1977). 
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Bioimpedance measurement techniques were described back in the 19th century  

(White et al. 1990) but their present use as a means of determining cardiac function 

is attributed to work originally carried out by Kubicek (Kubicek et al. 1966), and 

elaborated upon by Bernstein (Bernstein 1986) and Sramek. The technique involves 

measuring the impedance (Z) to a high frequency alternating current passed between 

electrodes located at the neck and thorax. Changes in Z reflect changes in aortic 

blood flow, and particular points on the first derivative of the impedance cardiogram 

(dZ/dt) have been related to the opening and closing of the aortic valve (Lababidi et 

al. 1970). With respect to systolic time interval measurement, bioimpedance has 

been compared favourably to both mechanophonocardiography and 

echocardiography (Stern et al. 1985; Thomas 1992), and to invasive techniques 

(Rasmussen et al. 1975). Bioimpedance has been used during exercise, and the 

observed changes in dZ/dt reflected expected variations in systolic time intervals 

(Gollan et al. 1978). An unsuccessful comparison with MPC has been attempted 

during exercise (Thomas 1992), although more recently a small study suggested 

good correlation between impedance and MPC measures (Ono et al. 2004). 

It was felt that bioimpedance was better suited for the purposes of beat-to-beat 

measurement of PEP, and potentially more reliable than MPC during exercise. PEP 

was therefore measured using an NCCOM3 Cardiodynamic monitor (BoMed 

Medical Systems). 5cm solid-gel disposable electrodes were placed in accordance 

with the manufacturer’s instructions. The NCCOM3 device itself has been compared 

favourably with both echocardiography (Kerkkamp & Heethaar 1999) and 

mechanophonocardiography (Thomas 1992). 

The NCCOM3 device determines systolic time intervals internally, and uses these to 

calculate cardiac output and other indices. The values are output in digital format 

every single beat, or as a 16-beat average. It also has analogue outputs (-8 to +8V) 

for the AC component of the impedance waveform (Z) and the first derivative 

(dZ/dt). 
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2.4.1 Calculation of PEP 

2.4.1.1 Real-time calculation of PEP by NCCOM3 device 

Studies employing arterial line monitoring utilised PEP values obtained directly from 

the NCCOM3 device. Although this equipment uses systolic time intervals internally, 

the digital output does not include the PEP value. PEP was thus computed from the 

other available cardiac parameters, and was therefore subject to the integer rounding 

of the variables from which it was calculated: PEP(ms) = (60000/HR)  × STR × ER, 

where HR is heart rate in beats per minute, STR is systolic time ratio, and ER is 

ejection ratio. 

2.4.1.2 Off-line calculation of PEP from dZ/dt signal 

For other studies, PEP was measured by analysis of the NCCOM3 analogue output 

signal. The impedance signal was found to be subject to distortions corresponding to 

the internal detection of the ECG. This consisted of a large spike, of approximately 

10 ms duration. The time constant introduced by analogue differentiation resulted in 

a broad spike of up to 100 ms, which distorted the analogue dZ/dt output. The 

impedance signal was therefore used directly, with spikes identified as changes in the 

first derivative outwith 4 standard deviations of the mean. The spike distortions were 

removed by cubic spline interpolation (Figure 2.4). The signal was filtered (20 Hz 

low-pass filter) and differentiated (dZ/dt) prior to analysis. The peak of the dZ/dt 

signal was identified as the maximum value within 170 ms of the ECG. The time to 

maximal slope of the dZ/dt signal, and the initial negative-to-positive crossing of the 

first derivative of dZ/dt, were identified. The amplitude of this latter point was also 

used as a baseline with which the time of intersecting of a tangent through the 

maximal slope of dZ/dt was calculated. The negative-to-positive crossing point is 

generally regarded as the “B-point”, and coincides with the end of PEP, but the other 

three points (peak, maximum slope, intersecting tangent) were also calculated to 

determine which was the most robust measurement. 
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Figure 2.4. Removal of spike artefacts from impedance signal 
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Bold lines are impedance (Z) signal, thin lines are first derivative of 
impedance (dZ/dt). Red lines represent original NCCOM3 sampled 
analogue output, black lines represent signal following filtering and 
differentiation. 

2.4.2 Accuracy of PEP measurement 

2.4.2.1 Reliability of real-time PEP detection by NCCOM3 

Detection rates of PEP were evaluated in 8 healthy male subjects (section 2.3.1.3). 

PEP values were excluded if lying outwith 3 standard deviations of the running 16-

second centred median. Sensitivity was assessed as the number of recorded PEP 

values as a percentage of the total number of measured transit time values. Results 

are shown in Table 2.5. There was an apparent overall trend for sensitivity to 

decrease with increasing exercise effort but this was not statistically significant 

(p=0.34 by ANOVA). 

 

Table 2.5. Real-time NCCOM3 PEP detection 
 Sensitivity (%) Positive predictive 

value (%) 
Rest 76.6 88.4 

Mild 77.2 96.7 
Moderate 68.4 92.9 

Exercise 

Strenuous 58.3 92.4 
Recovery 71.1 88.9 
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2.4.2.2 Reliability of off-line PEP detection 

The off-line analysis algorithm used to measure PEP was assessed by continuous 

bioimpedance and ECG recording in 10 healthy volunteers during exercise, as 

described in section 2.3.1.3. A two-pass filter was used to remove those detected 

values lying outwith 3 standard deviations of the running 20-second centred median. 

Sensitivity was estimated as the number of valid PEP values after filtering expressed 

as a percentage of the total number of successful R-wave detections. Positive 

predictive value was estimated as the number of PEP values after filtering expressed 

as a percentage of the total number of PEP values. Changes in the delay between 

different time points was examined at all exercise stages. 

 
Table 2.6. Off-line PEP detection 
 Rest Exercise Early recovery 
Sensitivity (%)    

B-point 77.7 54.2 64.8 
Intersecting tangent 83.0 52.8 55.5 
Maximum slope 84.3 57.8 69.3 

 

Waveform peak 81.8 55.0 58.2 
    
Positive predictive value (%)    

B-point 86.9 67.4 71.5 
Intersecting tangent 97.7 81.1 79.0 
Maximum slope 92.4 69.2 74.1 

 

Waveform peak 99.1 84.7 82.7 

Results are shown in Table 2.6. For clarity, exercise data are presented averaged over 

the three workloads. Statistical significance was determined by ANOVA, with post 

hoc analysis employing the Bonferroni correction for multiple comparisons. Over all 

three exercise intensities, there was a trend for sensitivity and positive predictive 

value of all time points to be less during strenuous exertion, but this was not 

statistically significant. However, overall sensitivity and positive predictive value of 

all time points were reduced during exercise relative to rest and recovery (p<0.01). 

Sensitivity of different time points did not vary significantly, either overall or by 

varying exercise intensity, but positive predictive value was better using the 

intersecting tangent and dZ/dt wave peak time points (p<0.01). 
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2.4.2.3 Relationship between different dZ/dt time-points 

The relationship between the time points on the dZ/dt waveform, as measured by the 

off-line algorithm, was assessed using the data referred to in section 2.4.2.2. Results 

are shown in Figure 2.5. All bioimpedance time points decreased with exercise. The 

delay between all three pairs of adjacent time points decreased significantly over the 

exercise period although the maximum change was small (B-point to intersecting 

tangent: -4.1 ms, p=0.037 by ANOVA; intersecting tangent to maximum slope: -6.2 

ms, p<0.001; maximum slope to dZ/dt peak: -10.9 ms, p=0.002). The time between 

the dZ/dt peak and the B-point and intersecting tangent time points decreased 

significantly with exercise (-14.4 ms, p<0.001 and -10.9 ms, p<0.001 respectively). 

2.4.2.4 Comparison of PEP calculated by NCCOM3 and off-line algorithm 

NCCOM3 PEP values were compared with those determined using the off-line dZ/dt 

analysis algorithm in 6 healthy individuals (4 male; median age 32 years). Resting 

ECG and bioimpedance waveform data were recorded simultaneously for 2 minutes 

with NCCOM3 PEP values. Mean values of PEP were calculated over this period. 

Waveforms were analysed from ECG Q-wave to the 4 time points on the 

bioimpedance waveform. Variability in PEP was assessed in terms of standard 

deviation (SD), coefficient of variation (V) and the mean beat-to-beat change (∆BTB). 

Figure 2.5. Relative timing of different dZ/dt points 
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Y-axes = time in ms. Left: Change (mean±SD) in bioimpedance waveform 
measurements with exercise.  true B-point;  intersecting tangent; 

 maximum slope;  dZ/dt peak. Right: Change (mean±SD) in delay between 
various bioimpedance waveform time points with exercise.  B-point and dZ/dt 
peak;  intersecting tangent and dZ/dt peak;  maximum slope and dZ/dt 
peak;  intersecting tangent and maximum slope;  B-point and intersecting 
tangent.  

 



46 

 

Figure 2.6. Variability of different PEP measures 
 

0 

5 

10 

15 
S

td
. d

ev
ia

tio
n 

(m
s)

 

 

 

0

5

10

15

C
oe

ff.
 v

ar
ia

tio
n 

(%
)  

 
 

0 
2 
4 
6 
8 

10 
12 

M
ea

n 
∆

BT
B 

P
E

P
(m

s)
 

 

 

 NCCOM3; waveforms:  true B-point;  intersecting tangent;  maximum 
slope;  dZ/dt peak. 

Results are shown in Figure 2.6. Mean values of NCCOM3 PEP were not 

significantly less than measures made using the waveform B-point (-5.1 ms, limits of 

agreement (2 SD) -20.9 to 9.0 ms, p=0.11), with other waveform measurements 

giving higher values (p<0.01) than the NCCOM3. No significant differences in SD 

and V were seen between NCCOM3 and the true B-point (p=0.47 and p=0.83 

respectively). There was a trend for both SD and V to be lower for the other three 

waveform time points compared to the NCCOM3 PEP, and indeed this difference 

approached statistical significance for V (p=0.06, 0.06 and 0.05 for intersecting 

tangent, maximum slope and wave peak respectively). ∆BTB was notably greater for 

values of PEP calculated to the true B-point on the waveform, than NCCOM3 

(p<0.001), but for the other time points did not vary significantly from NCCOM3 

values. 
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Figure 2.7. Visual identification of PEP using echocardiography 

 
 

Left, parastermal 2-D long-axis view of aortic valve; right, M-mode view 
of aortic valve, with opening of valve shown by arrow. 

2.4.2.5 Comparison of bioimpedance and echocardiography during exercise 

Bioimpedance measurement of PEP was compared against measurements obtained 

by transthoracic echocardiography during exercise. 6 healthy males were studied 

(median age 22 years) at rest, at three points during exercise, and at four points (1, 4, 

9, 14 minutes) following exercise. Exercise was based on a modified STEEP 

protocol (see section 2.9.1.2) with three 3-minute incremental workloads (median of 

45, 90 and 180 watts) performed on a Kettler ergometer. Measurements were carried 

out in the last minute of each exercise phase. 

Echocardiography was performed by a cardiologist using an Acuson 128XP/10c 

ultrasound device (Figure 2.7). Subjects continued pedalling throughout exercise 

measurements, and were encouraged to maintain trunk stability to improve image 

acquisition. Images of the aortic valve opening were captured in M-mode using the 

parasternal long-axis view, and recorded using a DT3152 MACH Series frame 

grabber (Data Translation, Inc.) with CVI Acquisition v1.5 software (Information 

Integrity, Inc.). PEP was measured manually from R-wave of ECG to the point of 

valve leaflet parting, by a single observer blinded to subject and experimental phase. 

The R-wave was considered easier to identify from the images than the Q-wave, and 

bioimpedance measurements were therefore also made relative to the R-wave. The 

timing resolution of echocardiography was 4 ms. 10 cardiac cycles were measured 

for each experimental time point. 
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Figure 2.8. Change in PEP measures with exercise 
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Time shows rest (0 min), three stages of exercise (peak at 
10 min), and four points during recovery. 

 Echocardiography; waveforms:  true B-point; 
 intersecting tangent;  maximum slope;  dZ/dt peak. 

Baseline heart rate was 80±12 bpm, increasing to 157±20 bpm at peak exercise, and 

remaining non-significantly elevated (88±20 bpm, p=0.21) at end of recovery. PEP 

results are shown in Figure 2.8. Echocardiogram measurements of PEP were 

significantly lower overall (p<0.001) than those made using the bioimpedance B-

point (23±12 ms) and intersecting tangent (35±13 ms). There was no significant 

change in bias between echocardiogram and bioimpedance measurement points at 

different points during exercise or recovery (p=0.60 by ANOVA). There was a 

strong overall linear correlation between echocardiogram and bioimpedance 

intersecting tangent measures (r=0.88, p<0.001). A Bland-Altman plot (Bland & 

Altman 1986) comparing these two measures is given in Figure 2.9. 
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Figure 2.9. Bland Altman plot comparing echocardiography and 
bioimpedance PEP 
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Chart compares echocardiographically determined PEP, with 
PEP determined using the intersecting tangent algorithm to 
determine the B-point on the bioimpedance dZ/dt wave. Lines 
show mean bias±1.96SD (95% limits of agreement). 

2.4.3 Conclusion 

Sensitivity for both the NCCOM3 built-in PEP measurements, and those obtained 

using the offline algorithm, were similar. The sensitivity of both systems became 

impaired during exercise. The positive predictive value for the NCCOM3 device 

remained relatively constant, but that of the offline analysis system decreased with 

exercise. Both systems showed similar variability in beat-to-beat measures, although 

this was reduced for certain bioimpedance timing points. The principal disadvantage 

of the NCCOM3 system was that it employed a separate ECG detection algorithm 

(i.e. the internal NCCOM3 system), and differences between the timing of the R-

wave as determined by the NCCOM3 and detection by the separate custom algorithm, 

remained unknown. Accurate synchronisation of NCCOM3 and other beat-to-beat 

measurements was also technically difficult. The offline signal processing overcame 

these difficulties. It also demonstrated a reduction in variability, although positive 

predictive power during exercise was impaired. 

Comparison of the different algorithms suggested relative constancy of the delay 

between different timing points. The intersecting tangent timing point was therefore 

selected as the value which came closest to the true B-point, whilst providing 
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satisfactory sensitivity and positive predictive value. This time point was therefore 

used for calculation of PEP in all other studies. 

Validation of bioimpedance against echocardiography during exercise has not been 

hitherto described in the literature. A strong correlation was found between the two 

measures, although there was significant bias and wide limits of agreement. Part of 

this bias is due to the use of an intersecting tangent, rather than the “true” B-point. 

However, the bias may also have been affected due to uncertainty over the 

measurement delay between physiological ECG signal and display of the ECG 

waveform, and the delay between actual mechanical cardiac activity and display of 

the 1D M-mode ultrasound image data. Unfortunately the Acuson ultrasound device 

manufacturer was unable to provide this information, and although clinically 

unimportant, differences in these two delays may have nonetheless existed. The wide 

limits of agreement may also reflect inaccuracy in determining time-points on the 

echocardiogram images, as time resolution was limited to 4ms, and identification of 

the exact R-wave peak or point of valve separation on images could not always be 

made with single-pixel confidence. Regardless, bioimpedance showed similar 

changes in response to exercise to those seen with echocardiography. Furthermore, 

the relatively small measures of beat-to-beat variability with bioimpedance are 

consistent with satisfactory timing precision. 

2.5 NON-INVASIVE ARTERIAL PRESSURE PULSE 
RECORDING AND ANALYSIS 

2.5.1 Applanation tonometry 

Applanation tonometry was used to non-invasively record the arterial pressure 

waveform. Applanation arterial tonometry was first described in 1963 (Pressman & 

Newgard). A superficial artery is flattened (but not occluded) against bone. The hold-

down pressure required to applanate the vessel wall should be such that the pulse 

pressure measured by an overlying transducer is maximised. The circumferential 

tension is rendered negligible in the flattened segment of arterial wall, and thus the 

pressure perpendicular to this surface represents that within the arterial lumen. 

Accurate measurement of absolute pressure is not possible due to overlying soft 
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tissue, the thickness of the vessel wall, and the difficulty optimising hold-down 

pressure (particularly with a hand-held tonometer). The waveform is therefore 

usually calibrated using systolic/mean and diastolic BP values obtained by 

sphygmomanometry. 

A hand-held high-fidelity micromanometer (SPT-301; Millar Instruments) coupled to 

a custom signal amplifier (similar to that used for the photoplethysmograph signal), 

was used to record the pulse waveform at peripheral sites, including the radial, 

brachial, carotid and femoral arteries. All tonometer measurements were made by a 

single, trained investigator. 

An automated multi-array tonometer (CBM-7000; Colin Medical) was also used for 

continuous monitoring at the radial artery. This was used in accordance with the 

manufacturer’s instructions. The device uses an array of 15 transducers, and 

automatically adjusts the position of the array over the artery to optimise signal 

strength. A wrist splint was used over the dorsal aspect of the wrist to minimise 

movement. The Colin device utilises an oscillometric cuff for pressure calibration, 

but this function was deactivated for all studies, as the signal was utilised for contour 

and timing analysis only (absolute pressure is irrelevant in this context) and cuff 

inflation can disrupt other distal contralateral arm measurements. 

2.5.2 Wideband external pulse recording 

Wideband external pulse (WEP) monitoring was first described in 1988 by Blank 

and colleagues as an alternative non-invasive technique for evaluating the arterial 

pressure pulse (Blank et al. 1988). By using a broad bandwidth sensor placed over 

the brachial artery under the distal edge of a sphygmomanometer cuff, they described 

changes in the externally recorded arterial waveform as a function of cuff pressure. 

They noted that, at suprasystolic cuff pressures, the resulting waveform exhibited a 

typical shape consisting of three peaks and two troughs, although the nature of these 

contour features was not examined further. 

In Chapter 3, the suprasystolic WEP signal was recorded using two adjacent 1.5cm 

diameter piezoelectric sensors (frequency range 0.1 to >1000 Hz) placed beneath the 
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distal edge of a blood pressure cuff directly over the axis of the brachial artery 

(Pulsecor). The distal sensor was positioned centred 1cm from the cuff edge. No 

differences were subsequently found between proximal and distal sensors, and data 

are therefore only reported for the distal sensor. Measurements were made with the 

cuff temporarily inflated to 30mmHg above systolic pressure. The waveform was 

recorded at 200 Hz, thus band-limiting the signal, using software developed by Ilixir 

Ltd (Auckland, New Zealand). 

2.5.3 Pulse wave analysis 

The contour of the pulse wave was analysed in the time domain by noting the timing 

and relative pressures of different inflections and turning points on the waveform in 

question. A minimum of 8 waveforms were ensemble averaged, after normalising for 

pressure but not for time. Timing of the different points was calculated relative to the 

start of the pulse, which was taken as the intersection of a tangent through the point 

of the maximum second derivative with the absolute pulse baseline. The overall 

difference between waveforms recorded at different sites was calculated by taking 

the root mean square error (RMSE) of the two signals, after synchronization using 

the offset between the peaks of the waves. 

2.5.3.1 Arterial and photoplethysmograph pulse 

The incident (P1) and reflected (P2) waves were identified on the peripheral pulse 

wave using the method described by Takazawa and colleagues, using the zero-

crossing points of the fourth derivative (Takazawa et al. 1995). The dicrotic notch 

was identified as the first positive-to-negative zero crossing of the third derivative 

following the reflected wave. The hump in the diastolic portion of the wave was 

taken as the first positive-to-negative crossing of the first derivative, or in the 

absence of this point the first positive-to-negative crossing of the second derivative, 

following the dicrotic notch. Augmentation index was calculated as P2 expressed as 

a percentage of P1. Buckberg subendocardial viability index (SEVR) was calculated 

as the ratio of the area under the diastolic portion of the curve to the area under the 

systolic portion (Buckberg et al. 1972). 
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The custom algorithms used to determine P1, P2 and the dicrotic notch were 

compared against the unpublished algorithms used by the SphygmoCor system 

(AtCor Medical), by examining 400 waveforms analysed by the latter system. 

Waveforms had been recorded under a variety of circumstances, including 

administration of differing doses of GTN (Oliver et al. 2005), departmental 

validation work, and a student project examining the utility of pulse wave analysis in 

subjects with valvular heart disease (Neil Lachlan, University of Edinburgh, 2003). 

Comparisons were made of the delay between T1 and T2, augmentation index and 

time to dicrotic notch. There were strong correlations for measures of both T1-T2 

delay and AIx (R=0.96 and 0.97 respectively, p<0.001). The correlation was 

somewhat less strong for dicrotic notch time (R=0.60, p<0.001). Mean bias 

(SphygmoCor value minus custom algorithm value) and 95% limits of agreement 

were +6.2ms (-10.3 to 22.7), +1.1% (-5.0 to 7.3) and +5.3ms (-35.2 to 45.8) 

respectively. Correlations and Bland-Altman plots are shown graphically in Figure 

2.10. Similarity of AIx values was considered particularly good; the distinctive group 

of SphygmoCor AIx values of zero, reflects the rounding of exported AIx values 

performed by SphygmoCor. Of note, there was a small subset of T1-T2 values that 

were overestimated by the custom algorithm around 60-80ms. There was also a 

subset of dicrotic notch values which were overestimated by the custom algorithm, 

ranging over 275 to 375 ms. The clustering of outlying T1-T2 values is suggestive of 

a subtle difference in algorithm, perhaps due to cut-off limits employed the different 

systems. In contrast, the more variable nature of the outlying dicrotic notch values 

probably points towards the use of completely different algorithms, although may 

also reflect the difficulty often experienced trying to identify this point (Oppenheim 

& Sittig 1995). Given the lack of a “gold-standard” for identification of waveform 

features, the similarities between the custom system and a widely used commercial 

system were considered satisfactory to permit its use in subsequent studies. 
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Figure 2.10. Comparison of pulse wave analysis systems 
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Comparison of custom algorithm and SphygmoCor system for determining T1-T2 
delay, AIx and time to dicrotic notch. Left hand panels show correlation, solid line is 
line of identity, broken line is linear regression. Right hand panels show Bland-
Altman comparison, bias is SphygmoCor values minus custom algorithm values, 
broken lines show mean bias and 95% limits of agreement.  
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2.5.3.2 Wideband external pulse (WEP) 

The WEP signal has been noted by others to have 3 principal waves (S1, S2, S3) 

(Blank et al. 1988). Preliminary visual inspection found the WEP signal to resemble 

the derivative of arterial pressure. The original WEP waveform (WEPS) was 

therefore integrated to provide a derived pressure waveform (WEPA), which was 

analysed as described above. The turning and inflection points on WEPS were 

identified from the zero crossing points of the first through to third derivatives of this 

signal, in a similar manner to that described for arterial waveforms. The timing (T) 

and pressure (P) was noted at all 3 corresponding points, in addition to the trough 

between S1 and S2. The Pulsecor system also estimates compliance (expressed in 

mmHg/ml) from a first-order linear equation (Blank 1996), based on a natural 

logarithm of the ratio of amplitudes of PS1 and PS2 on the WEPS waveform, but does 

not use measures of flow or volume. 

2.5.3.3 Fourier analysis and transfer functions 

The pulse signal was also examined in the frequency domain using Fourier analysis. 

A 10 second rectangular data window was analyzed to provide 0.1Hz frequency bins. 

Transfer functions (section 1.4.3) were computed by dividing the real fast Fourier 

transform of the response signal by that of the stimulus signal (strictly speaking an 

inverse transfer function)  (Cerna & Harvey 2000): 

H(stimulus→response)=Pstimulus(ω)/Presponse(ω) 

where P(ω) is the frequency domain of a complex harmonic signal, ω is the angular 

frequency, and a sinusoidal component is represented by P=|x|ejφ, where |x| is 

amplitude and φ is phase. Generalized transfer functions were computed by 

averaging the separate phase and gain components of the relevant individual transfer 

functions over 0 to 20 Hz. Prior to computing transfer functions, corresponding 

signals were normalised for amplitude with respect to one another, and synchronised 

at the maximal point of the first derivative of the wave-front to remove the phase 

shift due to the pulse transit time. For the work described in Chapter 3, signals were 

normalised to the same amplitude, as the pulse contour was of interest, rather than 
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ability to predict absolute blood pressure. For exercise work in Chapter 6, all signals 

were normalised to radial diastolic and mean pressure, as estimation of central 

systolic BP was of interest. In addition, a further radial-to-carotid GTF was 

computed in a similar manner from waveform data obtained using the commercially 

available SphygmoCor (AtCor Medical) system, by multiplying together the radial-

to-aortic and aortic-to-carotid transfer functions employed by this device, so that 

H(radial→carotid) = [Pradial(ω)/Paortic(ω)]×[ Paortic(ω)/Pcarotid(ω)] = Pradial(ω)/Pcarotid(ω) 

As the derived aortic waveforms are a pure mathematical function of the measured 

peripheral signal, this allowed for an accurate reproduction of the two SphygmoCor 

transfer functions, relatively independently of the quality of signal recording. 

2.6 MEASUREMENT DEVICE SIGNAL DELAY 

The analogue signal processing that occurs in the majority of these medical devices, 

introduces a time delay between the physiological input signal, and the electronic 

analogue output signal which is digitised and recorded. This delay can vary between 

a few milliseconds and up to 70 ms, depending on the device, and it is therefore 

important to take this delay into account when determining the time difference 

between two waveforms recorded using different devices. 

2.6.1 LifePulse ECG 

The LifePulse LP15A signal delay was determined by connecting the device to a 

simulated ECG signal, and the delay measured using the software developed for 

transit time measurement. The mean delay was 5.7±0.4 ms. between the R wave 

peaks. The delay between Q wave nadirs was fractionally shorter at 5.2±0.5 ms. The 

delay between S wave nadirs was notably longer at 9.4±0.5 ms due to the time 

constant of the electronics. It was felt that it was therefore most appropriate to use 

the delay between R waves, as this was considered the most reliable timing point. 
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2.6.2 Photoplethysmograph and Millar tonometer amplifier 

The photoplethysmograph and Millar tonometer amplifier delay was determined by 

the device manufacturer by passing a simulated pulse waveform to the device. The 

reported delay between the maximal slope of the input and output waveforms was 

found to be 48 ms. 

2.6.3 NCCOM3 dZ/dt waveform 

The NCCOM3 signal delay was determined by measuring the impedance across a 

specially designed electronic circuit. This circuit had a baseline resistance of 90Ω, 

which was increased by ~10Ω for a 200 ms period every second. A simulated 0-5V 

square wave was output simultaneously with the change in resistance. The delay 

between the leading edges of the simulator signal and the measured NCCOM3 

impedance output signal was 7.5±0.7 ms. 

2.6.4 Colin tonometer 

It was not possible to pass a simulated signal to the Colin device in order to measure 

the input-output delay. The delay was therefore measured relative to the Millar 

tonometer using two approaches. Firstly, sequential measurements of the radial pulse, 

at exactly the same point on the skin surface, were made in a single individual, gated 

to the ECG R-wave. The foot-to-foot difference between wavefronts was determined 

using an intersecting tangent through the maximal wave slope, and the mean 

difference from the Millar tonometer found to be -6.9 ms. The second method 

involved simultaneously recording the Colin and Millar signals, with the Millar 

tonometer sequentially placed immediately proximal and immediately distal to the 

Colin transducer housing. The time delay between Colin and Millar signals was 

averaged for distal and proximal measurements, and found to be -8.8 ms. The 

average signal delay through the Colin device was thus estimated as 40.0 ms. 

2.7 PULSE WAVE VELOCITY CALCULATION 

Pulse wave velocity requires the pulse transit time and distance between two 

anatomical sites to be known. For all studies, values of transit time were based on 
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timing determined by using an intersecting tangent algorithm, except where stated 

otherwise. The intersecting tangent method identifies the wave start as the point at 

which a tangent through the steepest point of the wave front (maximum first 

derivative) intersects a horizontal baseline through the absolute minimum of the 

wave (Chiu et al. 1991). 

Measurements requiring use of the Millar tonometer at two distinct anatomical sites 

were made sequentially, with timing gated to the ECG R-wave. A minimum of 10 

seconds of data was used for sequential measurements. For velocity measurements 

made between different transducers (e.g. Millar to Colin, Colin to 

photoplethysmograph, etc.), simultaneous waveforms were used. 

Distance was measured using a tape measure, along a straight line between sternal 

notch and waveform recording site. Measurements to points on the arm were made 

with the elbow and wrist straight, and the shoulder abducted at 90° with no extension 

or flexion. The sternal notch was used as the reference point for bioimpedance timing 

measurements. Ear measurements were made in a straight line to the ear lobe. 

Distance between two sites was taken as the difference in the two measurements 

from the sternal notch. 

2.8 BLOOD PRESSURE MEASUREMENT 

2.8.1 Manual sphygmomanometer 

All manual sphygmomanometer blood pressure readings were made by the same 

experienced investigator for any particular study. Measurements were made using a 

calibrated mercury sphygmomanometer, in accordance with the guidelines laid down 

by the European Society of Hypertension (O'Brien et al. 2003). Blood pressure was 

read to the nearest 2mmHg, with diastolic BP taken as Korotkov phase V 

(disappearance), or as Korotkov phase IV (muffling) if phase V was indeterminate. 

In general, measurements were completed within 30 seconds of commencing cuff 

inflation. A manual sphygmomanometer was used in preference to an automated 

device, to improve reliability particularly during maximal exercise. 
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2.8.1.1 Reproducibility 

5 blood pressure measurements were made every minute at rest in 20 healthy 

individuals. Average BP was 125/79mmHg. The average standard deviation of these 

five systolic and diastolic measurements were 3.9mmHg and 3.1mmHg respectively. 

Average coefficient of variation was 3.1% for systolic BP and 4.0% for diastolic BP. 

2.8.1.2 Rounding of BP 

98% of systolic BP values and 100% of diastolic BP values (from data in section 

2.8.1.1) were found to end in an even digit, consistent with rounding of 

measurements to the nearest value adjacent to the mercury column. There was a 

tendency for a greater number of measurements than expected to finish in 0 (28% 

systolic, 40% diastolic; p<0.01 by Chi-Square test), and a lesser number to finish 

with 2 (12% systolic, 7% diastolic; p<0.01), suggesting a degree of bias toward 

rounding down (but not up) to a multiple of 10. 

2.8.2 Automated sphygmomanometer 

For studies where BP measurements were not required during exercise, and where a 

manual sphygmomanometer was not used, BP was recorded at the left brachial artery 

using a validated oscillometric sphygmomanometer (HEM705, Omron Healthcare). 

2.8.3 Intra-arterial cannula 

Intra-arterial pressure monitoring was carried out for all BP measurements described 

in Chapter 3, and for a single study as described in Chapter 7. A 20G 80-mm Vygon 

catheter was inserted under local anaesthesia (1% lidocaine) into the non-dominant 

radial artery, using the Seldinger technique. A splint was used to minimise wrist 

movement. The cannula was connected by fluid-filled (0.9% saline) semi-rigid 

tubing to a TruWave disposable transducer (Edwards Life Sciences) positioned level 

with the right atrium and connected to a Diascope 2 monitor (S & W Medical). The 

intra-arterial pulse was not used for calculation of transit time, as a significant delay 

was introduced by the use of a fluid filled catheter, and the constancy of this delay 

was difficult to ascertain. 
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Transducers were factory calibrated and exceeded AAMI standards for performance 

interchangeability, with a sensitivity of 5 µV·V-1·mmHg-1 ±1% and nonlinearity of 

the greater of ±1.5% or ±1mmHg. The natural frequency of the system was 40 Hz. A 

custom 12 bit 200 Hz digitiser was used to sample the analogue monitor output. 

Systolic BP and diastolic BP were taken as the maximum and minimum values of the 

waveform corresponding to the last measured R-wave, with mean pressure calculated 

as the integrated average over the corresponding pulse cycle. 

2.8.4 Portapres 

Non-invasive continuous finger blood pressure was measured using a Portapres 

device (TNO Biomedical Instrumentation). The technique of arterial volume 

clamping was originally described by the Czech physiologist Peñáz (1973). An 

inflatable cuff with attached infrared photoplethysmograph is applied to the finger. 

The pressure in the cuff is rapidly adjusted to compensate for changes in intra-arterial 

pressure. The photoplethysmograph is used to assess the finger arterial volume. This 

volume clamps the artery at a set point equivalent to two-thirds of the maximal 

arterial volume, thus resulting in zero transmural pressure. The cuff pressure 

therefore reflects absolute finger arterial blood pressure. A mechanism is provided to 

compensate for the hydrostatic effects of raising and lowering the arm. Only a single 

finger cuff was used (rather than switching repeatedly between dual cuffs), sized and 

positioned, on either the middle or ring finger, in accordance with the manufacturers 

instructions. The Portapres waveform analogue output was continuously recorded, 

and systolic, diastolic and mean pressure determined as for intra-arterial pressure. 

2.8.4.1 Comparison with manual sphygmomanometry 

Sphymomanometry has previously been compared with Portapres measurements 

during exercise. The main purpose of Portapres measurements was for assessment of 

BP variability, and a prospective comparison of the two methodologies was therefore 

not repeated. A retrospective analysis was performed, however, using measurements 

taken during the studies described in Chapter 7. In 2040 measurements made in 

healthy individuals before, during and after exercise, Portapres gave higher values of 

both systolic (4.6±23mmHg, p<0.01) and diastolic (14.5±21mmHg) pressure than 
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manual sphygmomanometer measurements (Figure 2.11). It is clear from the 

standard deviation of the difference, that limits of agreement between the measures 

were marked. The difference in diastolic measurements using the two techniques was 

skewed towards higher measures using the Portapres, and bias tended to become 

greater at higher pressures (Pearson coefficient -0.12 for mean BP versus difference 

in BP, p<0.001). These observations were not noted for systolic pressure. 

 

Figure 2.11. Bland-Altman plots comparing manual 
sphygmomanometry and Portapres 
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Left chart, systolic BP; right chart, diastolic BP. Charts 
show mean bias±1.96SD (95% limits of agreement). 
Bias is difference relative to manual 
sphygmomanometry. 
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2.9 EXERCISE TESTING 

Cycle exercise was performed in the semi-recumbent position. Subjects rested both 

arms on cushioned surfaces to either side of the ergometer to minimise movement, 

with elbows flexed and forearms horizontal. Pedals with straps were used for all 

studies. Three different ergometers were used for different studies – Comfort Cycle 

JPB 2000 (Johnson, UK), Kettler SX1 (Heinz Kettler GmbH & Co., Germany), and 

Lode Rehcor (Lode BV, Netherlands) with modification to enable pedalling in a 

semi-recumbent position (Figure 2.12). 

 
Figure 2.12. Modified Lode Rehcor cycle ergometer 

2.9.1 Exercise Protocols 

Different exercise protocols were used depending on the study aims. At the end of 

exercise, pedalling was stopped completely with no “cool down” period, to improve 

the reproducibility of the transit time and blood pressure recovery slopes. Where 

unknown, the work/VO2 slope was assumed to be 10 mlO2·min-1·W-1 (Wasserman et 

al. 2004), and physiological parameters were predicted from the following equations: 
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• Maximum heart rate = 220-a 

where a is age in years. 

• VO2-MAX = ((K1-(a×K2)) × (K3+A)) +B 

where a is age in years; A is predicted weight based on (h×K4)-K5), or average of 

predicted and actual weight if the latter is smaller; B is 6 × difference between 

predicted and actual weight, unless latter is smaller in which case B=0; K1 to K5 are 

22.78, 0.17, 43.0, 0.65 and 42.8 respectively for females, or 50.72, 0.372, 0.0, 0.79 

and 60.7 respectively for males (Wasserman et al. 2004). 

• VO2-AT = VO2-MAX × (K1 + a × K2) 

where a is age; K1 is 0.3613 (female) or 0.400 (male); K2 is 0.0026 (female) or 

0.001 (male). 

2.9.1.1 Maximal exercise protocol 

Workload was increased in a linear fashion every 1 or 3 minutes, depending on the 

study. Increments were either every 3 minutes based on 15% of the predicted 

VO2-MAX, or every minute based on the formula described by Wasserman, 

Workwatts/min=((h×s)-(150+(6×w)))/100, where h is height (cm), w is weight (kg), and 

s is either 12 (female) or 20 (male) (Wasserman et al. 2004). Workload increments 

were rounded to the nearest 5W in both cases. Exercise was continued to exhaustion, 

with subjects verbally encouraged to persevere as long as possible. 

2.9.1.2 Modified STEEP protocol 

The Standardised Exponential Exercise Protocol (STEEP) protocol was described by 

Northridge et al and uses exponential rather than linear workload increments 

(Northridge et al. 1990). It has the advantage of achieving a relatively wide range of 

workloads in a short time period, and is standardised for weight. The original bicycle 

STEEP protocol started at 2 METs and incremented workload by 15% of the 

previous stage every minute. (MET refers to metabolic equivalent, where 1 MET is 

equal to basal metabolic rate; estimation of corresponding workloads can be made 
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from standard equations). A modified protocol was used, where workload was only 

incremented every 3 minutes, but to levels based on a 25% increment every minute. 

This allowed measurements to be made in the last minute of every 3 minute period, 

once the exercise response had reached a plateau. 

2.9.1.3 Heart-rate targeted protocol 

Stages were based on a percentage of the predicted maximum heart rate (from the 

equation 220 minus age in years). Workload was incremented gradually (10W every 

30s) until the target heart rate was achieved. This protocol has the advantage that 

assumptions about VO2-MAX do not need to be made and subject’s fitness has less 

impact on exercise duration. 

2.9.1.4 Sub-maximal exercise 

A 1 minute incremental protocol was used, as described in section 2.9.1.1, until 

workload corresponding to the anaerobic threshold was reached. The workload was 

maintained at this fixed value until the end of exercise, after which pedalling was 

stopped completely. Anaerobic threshold was either defined by previous maximal 

stress test, or predicted from the equation above. 

2.9.2 Expired gas analysis 

Expired breath gas analysis was performed using an Msx ErgoSpirometer System 

(Morgan Medical, UK). This device uses a continuous on-line quadrupole mass 

spectrometer to measure respiratory gas concentrations. The gas sampling rate is 30 

ml/min with 50 Hz temporal resolution. The system has <1% stability per 24 hours 

and linearity <1%. The detection limit is 100 ppm and the accuracy ±0.2% for O2 and 

CO2. The gas delay time (i.e. the period between an instantaneous flow/volume event, 

and the corresponding gas analysis event) is fixed at 480 ms. The respiratory flow 

rate is measured using a turbine device connected to the end of a mouthpiece, and 

has a sensitivity of 2.2 ml per airscrew revolution. 

The system was allowed to warm up for at least 2 hours prior to use. Calibration was 

two-way in accordance with the manufacturer’s recommendations, and carried out 
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prior to each test. Turbine calibration was performed using a standard 3 litre syringe 

with 3 inspiratory and expiratory cycles, and considered acceptable if within the 

range ±20 ml of the reference standard. Gas calibration was performed by attaching 

the system to a mixed gas bottle (14.99% O2, 5.02% CO2, 4.99% Ar, balance N2) and 

initiating the automatic calibration program. The delay time was in-built and not 

recalibrated. 

Subjects breathed through a mouth-piece and wore a nose clip for the duration of 

exercise. Measurements were made at rest for 5 minutes immediately prior to and 

subsequent to pedalling. 

Breath-by-breath data was centre-averaged over 8 breaths. VO2-MAX was taken as the 

peak value achieved during exercise. The V-slope method was used to determine the 

anaerobic threshold (AT) as previously described (Beaver et al. 1986). Briefly, the 

respiratory compensation (RC) point was first calculated by identifying the point 

which maximised the difference (at least 15%) between the linear regression slopes 

on either side of it on the VE/VCO2 correlation plot. The RC point was taken as the 

intersection between these regression lines. The AT was then identified in a similar 

manner on the VCO2/VO2 correlation plot, but excluding data lying beyond the RC 

point. Where AT could not be identified using the V-slope method using plots of 

VE/VCO2, VE/VO2, RER, and end tidal CO2 and O2 as previously described 

(Wasserman 1984). VO2-AT was defined as oxygen uptake at the point at which AT 

was reached. A simple recovery model was calculated by calculating the mean 

response time (MRT) by use of a Levenberg-Marquardt algorithm to find the least 

squares set of coefficients of the best fit exponential decay curve,  

VO2-T=VO2-BL –∆VO2-SS×[1–e-(T-δ)/τ], where T represents time, BL is baseline, SS is 

steady state amplitude, δ is the delay and τ is the time constant, and MRT=δ+τ. 

Transit time and other beat-to-beat data was matched to breath data by averaging 

over the corresponding breath period. 
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2.10 DRUGS 

For the study described in Chapter 3, all drugs were made up after insertion of the 

arterial cannula. All drugs were administered via a 20G intravenous cannula sited in 

the antecubital fossa of the dominant arm. The rate of infusion was kept constant at 1 

ml/min. All drugs were administered in 3 consecutive doses of 5 minutes each (total 

15 minutes), with a 25 minute washout period following each drug. Drugs given 

were glyceryl trinitrate (GTN; Nitrocine, Schwarz; 0.1, 1, 4µg/kg/min), angiotensin 

II (Clinalfa; 2, 6, 12ng/kg/min), noradrenaline (Levophed, Abbott; 20, 60, 

120ng/kg/min) and salbutamol (Ventolin, Allen and Hanburys; 0.4, 1.2, 

2.4µg/kg/min). Drug order was not randomised. Salbutamol was given last due to its 

relatively long half-life. Dose ranges and washout periods were based on previous 

studies, and selected for their anticipated effects on BP and heart rate. GTN was 

selected for anticipated decreases in BP (Hargreaves & Muir 1992; Jiang et al. 2002). 

Noradrenaline and angiotensin II increase mean arterial pressure (MAP) to a similar 

degree, but the former also increases peripheral pulse pressure (Ramsay et al. 1992; 

Wilkinson et al. 2001). The expected response to salbutamol was a fall in diastolic 

pressure (DBP) and rise in systolic pressure (SBP) and HR (Gibson & Coltart 1971; 

Yacoub & Boyland 1973). 

For the pilot work described in Chapter 4, GTN (Nitrocine, Schwarz) was diluted in 

water to give 50µg in 50µL. This was administered sublingually using a pipette. 

Dose was based on work previously conducted in the University of Edinburgh 

Clinical Pharmacology Unit (JJ Oliver, personal communication), which 

demonstrated that the selected dose of GTN would have minimal effects on blood 

pressure and conduit and central artery PWV, despite substantially reducing 

augmentation index  (Oliver et al. 2005). 
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2.11 DATA ANALYSIS 

Statistical analyses are described in detail in relevant chapters. SPSS (v12.5 and 

v14.0, SPSS Inc.) was used for most statistical analyses and graphing. Microsoft 

Excel (v9.0, Microsoft Corp.) was used for some statistical analyses (some t-tests and 

descriptive statistics) and for graphing data. 

Data are generally presented in terms of mean ± standard deviation when describing 

the study population, and mean ± standard error when describing the accuracy of the 

mean. Evaluation of two comparable variables (e.g. actual and derived BP) is in 

terms of mean bias and limits of agreement, as described by Bland and Altman 

(1986). Comparison of different variables is generally by linear regression. Where 

beat-to-beat data are compared with single measurements of another variable (e.g. 

manual BP), the former is centre-averaged around the same time point. Assessment 

across multiple time points is by repeated measures analysis of variance 

(rmANOVA), with paired t-tests for post-hoc analysis where appropriate. Summary 

measures (e.g. maximum change from baseline), as described by Matthews et al 

(1990), are also used where appropriate, with comparisons using t-tests. 
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3 EFFECT OF VASOACTIVE DRUGS ON PULSE 
TRANSIT TIME AND THE PULSE WAVEFORM 

3.1 INTRODUCTION 

Beat-to-beat estimation of blood pressure using pulse transit time has many potential 

applications. One particular of area of value would be the assessment of rapid blood 

pressure changes in response to cardiovascular drugs, both in the clinical 

environment such as intensive care, and in a research setting. Furthermore, more 

widespread clinical use would involve measurements in patients taking medications 

for chronic cardiovascular conditions, such as hypertension, angina or heart failure. 

An understanding of the effects of drugs on the relationship between blood pressure 

and transit time is therefore essential. To date, little work has been published on the 

effects of vasoactive drugs on this measurement in humans. In particular, studies 

have not been carried out quantifying PEP or comparing rPTT with invasive BP 

measurement. This study used various vasoactive drugs to produce differing cardiac 

and vascular responses. The rationale was to compare changes in transit time 

measurements with the clinical “gold standard” for BP measurement, over a wide BP 

range and under different conditions of vascular tone and cardiac contractility. 

As a consequence of pulse recording for transit time calculation, it is also possible to 

assess the pulse wave contour. The finger pulse wave (Millasseau et al. 2006) and 

blood pressure cuff, the latter which can be adapted for WEP recordings (Blank et al. 

1988), are far more widely available in clinical practice than intra-arterial monitoring 

or non-invasive tonometry. These methodologies therefore provide an attractive 

means of recording the arterial pulse wave. As an extension of the transit time study, 

it was decided to investigate the utility of finger pulse and WEP recording as a means 

of evaluating the pulse waveform following cardiovascular drug administration. 

It was hypothesised that the relationship between intra-arterial BP and rPTT would 

vary following the administration of different vasoactive drugs, due to differing 

effects on the vascular and cardiac components of rPTT, making rPTT an unreliable 

predictor of BP. 
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It was also hypothesised that the features of the suprasystolic WEP signal would be 

closely related to the shape of the invasively measured arterial pressure pulse. 

Furthermore, it was hypothesised that drugs would induce changes in the 

photoplethysmograph finger pulse, but also alter nature of the relationship between 

the finger and intra-arterial radial pulse. 

3.2 METHODOLOGY 

Studies were carried out in healthy men, aged 18 to 25, and performed in a quiet, 

temperature controlled (22±2°C) environment, after at least 1 hour of acclimatisation. 

Subjects were allowed a light breakfast not less than 4 hours prior to attending, and 

were requested to refrain from alcohol, caffeine, nicotine or medications for the 

preceding 24 hours. Studies were conducted with the subject lying supine. 

Four drugs were administered as described in section 2.10. The experimental time 

course is shown in Figure 3.1. Drug order was not randomised, and doses and 

washout periods were based on published literature to produce consistent and 

predictable changes in blood pressure and arterial tone: a decrease in blood pressure 

was anticipated with GTN (Hargreaves & Muir 1992; Jiang et al. 2002); 

noradrenaline and angiotensin II were both expected to increase mean pressure, but 

the former was expected to cause a greater increase in pulse pressure (Ramsay et al. 

1992; Wilkinson et al. 2001); salbutamol was predicted to cause a decrease in 

diastolic pressure due to peripheral vasodilatation, and a marked tachycardia and 

increase in systolic pressure due to positive chronotropic and inotropic effect (Gibson 

& Coltart 1971; Yacoub & Boyland 1973). 

 

Figure 3.1. Experimental time course 
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Continuous real-time beat-to-beat measurements of intra-arterial BP (section 2.8.3), 

finger transit time (sections 2.3.1.1 and 2.3.2.1) and PEP (section 2.4.1.1) were made 

throughout the entire study protocol. Pulse wave velocity was calculated from the 

pPTTfinger (rPTTfinger minus PEP). Pulse waveform measurements, including Millar 

tonometry measurements, were recorded in the last 30 seconds of each experimental 

phase. Wide-band external pulse (WEP) measurements were made immediately 

before each drug and at the end of the highest dose (WEP measurements were 

discarded in one subject due to technical problems). 

For beat-to-beat parameters, baseline was considered to be the 2 minutes 

immediately prior to each infusion period. Changes from baseline, and differences 

between each drug baseline, were assessed by analysis of variance (ANOVA). The 

relationships between BP and different measures of transit time were evaluated by 

linear regression. Regression slopes and intercepts, and Z-transformed Pearson 

correlation coefficients were compared for each drug infusion and washout period 

using repeated measures ANOVA. Beat-to-beat variability was assessed for SBP, 

rPTT and HR. Power spectra were calculated using a smoothed Lomb periodogram 

for all three variables for each individual drug dose. Coherence is analogous to 

correlation coefficient in the time domain, ranging from 0 (no coherence) to 1, and 

was computed over the frequency ranges 0.05Hz to 0.2Hz, and 0.2Hz to 0.4Hz. 

Comparison of coherence values was made by ANOVA. 

As discussed in section 2.5.3.2, preliminary visual inspection of the waveforms 

revealed the WEP signal (WEPS) to resemble the first derivative of arterial pressure 

(ARTS), and the WEP signal was thus mathematically integrated (WEPA) for 

comparison with the directly recorded arterial pressure wave (ARTA). Equivalent 

timing and pressure parameters obtained by the two methodologies were compared 

by regression analysis (i.e. WEPA with ARTA; WEPS with ARTS). Bias for these 

measures was assessed by the Bland and Altman method (Bland & Altman 1986). 

Linear regression correlation coefficients between the difference and mean of both 

measures were computed to evaluate trends in bias over the measurement range. The 

overall difference between waveforms was assessed by root mean square error 

(RMSE). 
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PPG-to-radial transfer functions were computed as described in section 2.5.3.3. 

Individualised transfer functions (ITFs) were computed for each of the 13 

experimental time points for each individual, and averaged to provide 13 dose 

specific, 4 drug specific, and 1 single overall generalised transfer functions (GTFdose, 

GTFdrug and GTFall respectively). 

3.3 RESULTS 

12 healthy, non-smoking men were studied. Subject characteristics are given in Table 

3.1. All took regular non-competitive exercise. All were normotensive, with normal 

12-lead ECGs, lipid profiles, serum biochemistry and blood count. Maximal change 

from baseline in transit time and blood pressure are given in Table 3.2, with dose 

response plotted in Figure 3.2. Changes in wave parameters are given in Table 3.3. 

Table 3.1. Subject characteristics (N=12) 
Age (years) 22 ± 1.7 
Height (cm) 178 ± 6 
BMI (kg/m2) 23.6 ± 1.9 
Resting brachial BP (mmHg) 126/75 ± 10.8/7.7 
Heart rate (bpm) 63 ± 7 
Total cholesterol (mmol/L) 4.1 ± 0.6 
HDL cholesterol (mmol/L) 1.4 ± 0.3 
Values are mean ± standard deviation or N(%). 

3.3.1 Transit time and blood pressure 

3.3.1.1 Drug effect on transit time and blood pressure 

GTN caused an increase in rPTT, pPTT and HR, and decreases in SBP, DBP and 

MAP. Angiotensin II and noradrenaline caused increases in SBP, DBP and MAP, 

and decreases in rPTT and pPTT. SBP and pulse pressure increases tended to be 

greater with noradrenaline than angiotensin II, but this difference was not statistically 

significant (p=0.11). The PEP and HR responses were variable between subjects, but 

overall both decreased with noradrenaline and did not change with angiotensin II. 

Despite the similar change in BP, decreases in PEP and rPTT were significantly 

greater with noradrenaline than with angiotensin II (p=0.005 and p=0.002 

respectively). Salbutamol reduced DBP, MAP, rPTT and PEP, and increased HR and 

pPTT. The SBP response was varied, and overall, did not significantly change; 8 
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subjects had a significant increase in SBP, whereas 4 had a clear decrease. Baseline 

values of SBP, DBP, MAP and HR were not constant between drug phases (p<0.05 

by ANOVA), due in particular to increases in all four parameters prior to salbutamol 

administration. This was mirrored by decreases in rPTT, pPTT and PEP. 

3.3.1.2 Correlation between transit time and blood pressure 

Correlations between BP and PTT are shown in Figure 3.3. rPTT had an inverse 

linear correlation with SBP (combined average across all subjects and drugs 

R2=0.39). There was no difference in correlation coefficient (p=0.88) or slope 

(p=0.69) between different drugs by repeated measures ANOVA. rPTT was 

significantly (p<0.01) better correlated with SBP than with either DBP (R2=0.02) or 

MAP (R2=0.08). Also, rPTT showed differences in correlation with DBP (p<0.001) 

and MAP (p<0.001) between different drugs. pPTT was better correlated (p<0.001) 

with DBP (R2=0.41) and MAP (R2=0.45) than with SBP (R2=0.33). Different drugs 

did not affect the correlations between pPTT and DBP (p=0.11), or pPTT and MAP 

(p=0.39). However, the pPTT/SBP correlation did differ between drugs (p<0.01). 

Figure 3.2. Blood pressure, heart rate and transit time responses 
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Table 3.2. Maximal change from baseline for different agents 
  rPTT PEP pPTT Heart rate SBP DBP MAP 
  ms ms ms bpm mmHg mmHg mmHg 

 
Baseline 260 (17) 95 (15) 164 (12) 63 (7) 134 (12) 66 (5) 85 (6) 
Maximum 276 (18) 92 (16) 184 (26) 77 (9) 122 (10) 61 (6) 77 (6) GTN 
Change 15.3 (11.4)* -3.5 (10.6) 20.6 (16.0)* 14.3 (5.2)* -12.6 (8.1)* -4.5 (5.0) † -7.8 (4.9)* 

         
Baseline 266 (19) 100 (15) 166 (23) 62 (8) 139 (13) 67 (6) 84 (6) 
Maximum 257 (23) 105 (19) 150 (21) 60 (10) 156 (13) 82 (7) 102 (8) Angiotensin II 
Change -9.2 (8.1)* 5.9 (11.5) -15.2 (7.0)* -2.6 (8.4) 17.5 (8.3)* 15.0 (4.4)* 18.1 (5.4)* 

         
Baseline 261 (15) 95 (19) 165 (18) 61 (8) 141 (10) 68 (6) 86 (7) 
Maximum 238 (18) 87 (19) 151 (20) 57 (8) 164 (13) 81 (8) 104 (10) Noradrenaline 
Change -22.4 (10.5)* -7.6 (10.1) † -14.4 (7.6)* -4.0 (6.4)* 22.9 (14.5)* 12.3 (5.5)* 17.4 (8.3)* 

         
Baseline 249 (16) 91 (19) 158 (21) 66 (10) 151 (12) 71 (9) 92 (9) 
Maximum 218 (18) 30 (12) 188 (16) 125 (13) 153 (25) 39 (9) 68 (11) Salbutamol 
Change -32.5 (9.8)* -62.2 (19.4)* 29.9 (14.2)* 59.1 (7.6)* 2.5 (19.0) -31.7 (4.3)* -23.3 (6.0)* 

         
Values are mean (SD) for all subjects. Significance * p<0.01, † p<0.05. Abbreviations as per text. 
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Figure 3.3. Linear regression analysis of the PTT and BP relationship in a typical 
subject.
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3.3.1.3 Accuracy of blood pressure prediction using transit time 

The value of rPTT and pPTT as predictors of SBP and DBP respectively was 

assessed based on the assumption that it would be possible to obtain an ideal 

calibration slope for each individual equating to the average linear regression slope 

for all drugs. 95% limits of agreement for predicted versus actual BP were 

±17.0mmHg (SBP/rPTT) and ±17.3mmHg (DBP/pPTT). Percentage predicted 

values falling within 5, 10 and 15mmHg of actual value (based on British 

Hypertension Society system for assessing BP measurement accuracy (O'Brien et al. 

1993)) were 44%, 66% and 73% respectively for SBP, and 42%, 64% and 72% 

respectively for DBP. 

3.3.1.4 Transit time and blood pressure variability 

Average power spectra over all drugs are shown in Figure 3.4. An example of the 

similarity in SBP and rPTT variability is given in Figure 3.5. Mean coherence 

between SBP and rPTT variability was significantly (p<0.001) greater at both lower 

and higher frequencies (0.58±0.37 and 0.70±0.33 respectively) than coherence of HR 

and rPTT variability (0.46±0.41 and 0.52±0.38 respectively). There was no 

significant difference in coherence between HR and either rPTT or SBP, for lower 

(p=0.33) or higher (p=0.16) frequencies. Coherence was not significantly affected by 

drug type or dosage (p=0.96), and is shown in Figure 3.6. 

 

Figure 3.4. Average power spectra (all drugs) 
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Figure 3.5. Example of beat-to-beat variability of SBP and rPTT 
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Values are data from one individual recorded over 90 minutes during 
washout period prior to salbutamol. Black, systolic BP; red, rPTT. Note axis 
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formal regression analysis and is for sake of clarity only. 

 
  

Figure 3.6. Coherence between rPTT, SBP and HR variability 
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Table 3.3. Changes in waveform measures with individual drugs 

 GTN Angiotensin II Noradrenaline Salbutamol 

Haemodynamic parameter Before End Before End Before End Before End 

 PWV (m/s) 5.3±0.6 4.8±0.8* 5.3±1 6.1±1.5* 5.2±0.7 5.9±1.3* 5.9±0.9 5±0.6* 

 Compliance (ml/mmHg) 1.7±0.2 2.2±0.1* 1.9±0.2 1.4±0.1* 1.8±0.2 1.5±0.2* 1.8±0.2 2.2±0.1* 

WEP waveform         

 TS1 (ms) 49±3 54±5* 51±5 51±5 49±5 47±4 48±4 43±3* 

 TS2 (ms) 249±21 266±53 253±17 215±14* 252±17 219±17* 234±21 174±44* 

 TS3 (ms) 362±28 388±48* 362±24 363±23 369±23 364±31 359±18 326±57 

 TS2-TS1 (ms) 200±20 211±50 201±15 163±14* 202±14 172±16* 186±19 130±43* 

 PS1/PS2 (%) 34±9 22±8* 30±10 37±11* 31±10 37±9* 33±9 22±18* 

Intra-arterial waveform         

 TA1 (ms) 109±14 121±12* 104±14 99±6 101±11 98±12* 98±12 81±14* 

 TA2 (ms) 237±16 247±24 229±15 213±8* 230±16 217±13* 223±17 190±17* 

 TA2-TA1 (ms) 128±6 126±13 125±7 113±5* 128±8 118±5* 124±7 116±11 

 TDN (ms) 319±16.6 330±46 321±25 306±10* 317±16 313±13 312±15 259±31* 

 AIx (%) 39±6 25±23 26±6 53±17* 29±7 52±14* 31±8 12±24 

Root-mean-square error (RMSE)         

 WEPA & ARTA (mmHg) 14.2±5.4 17.2±18.3 13.3±5.3 17.7±5.0* 17.3±8.5 22.1±11.7 20.3±11.9 28.9±22.4 

 WEPS & ARTS (mmHg/s) 39±13 49±18 42±16 42±12 53±30 58±38 59±38 139±74* 

 ARTA & GTFall (mmHg) 9.0±3.3 5.5±3.4 5.5±4.7 7.4±5.8 6.2±3.8 8.1±4.4 7.8±2.6 16.3±8.8* 

Values are mean±SD. * indicates significant (p<0.05) change. Abbreviations as per text. 
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3.3.2 Pulse wave analysis 

3.3.2.1 Drug effect on wave parameters 

Maximum changes in arterial (ARTA) and WEPS wave parameters are shown in 

Table 3.3. Dose response for ARTA parameters is graphed in Figure 3.7. PWV, 

arterial AIx and WEPS PS1/PS2 ratio decreased with GTN and salbutamol, and 

increased with noradrenaline and angiotensin II. Compliance measured by WEP 

mirrored changes in PWV, with a negative correlation overall (r= 0.44, p<0.05). The 

WEPS TS2-TS1 time delay and arterial TA2-TA1 time delay decreased with all drugs, 

except GTN. These changes were largely accounted for by a decrease in TS2 and TA2 

respectively. However, TS1 and TA1 both decreased with salbutamol. Increases in 

arterial TA1 and TA2, and in WEPS TS1 and TS2 were observed with GTN, accounting 

for the lack of change in TA2-TA1 or TS2-TS1. 

Figure 3.7. Changes in arterial pulse wave parameters over duration of experiment 
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3.3.2.2 Relationship of WEP signal to first derivative of arterial pressure 

Figure 3.8A, with the RMSE for the two signals shown at the bottom of Table 3.3. 

Bland-Altman plots are shown in Figure 3.10. The RMSE did not vary significantly 

between experimental phases, despite being notably greater at the end of salbutamol 

administration. Regression analysis confirmed a strong positive correlation between 

the two methods with respect to timing of different components of the waveform (see 

Table 3.4), although TS1, TS2 and TS3 occurred consistently slightly earlier when 

measured by WEPS compared to ARTS. There was also a trend for the bias to get 

progressively more negative at greater values of TS1 and TS3, although the reverse 

was true for TS2. Although no significant mean differences existed between 

methodologies in the TS2-TS1 delay or the PS1/PS2 ratio, there was nonetheless a 

statistically significant tendency for the bias to become increasingly positive at 

greater values of TS2-TS1 and PS1/PS2. 

3.3.2.3 Arterial pressure wave estimation using WEP signal 

Figure 3.8B. Bland-Altman plots are shown in Figure 3.11. RMSE values were large 

(Table 3.3), but statistically greater with angiotensin II only (p<0.05). The WEPA 

signal appeared slightly damped relative to ARTA, although the timings of reflected 

waves were similar. Regression analysis (Table 3.4) confirmed that TA1 and TA2 

occurred at similar times, although the bias of the TA2-TA1 time delay became more 

positive with increasing values. AIx showed a consistent bias of 7±18% across the 

measurement range relative to intra-arterial measurements. 

The similarities between the WEPS signal and the first derivative of the arterial 
waveform (ARTS) are demonstrated in  
 

The WEPS signal was integrated (WEPA) to assess how accurately the arterial 
pressure wave contour could be estimated. Similarities in wave shape are shown in  
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Figure 3.8. Comparison of wave shapes obtained by WEP and intra-arterial monitoring 
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3.3.2.4 Comparison of transfer functions in the frequency domain 

GTFall and each GTFdrug are shown in Figure 3.9 (individual GTFdose curves are not 

shown for the sake of clarity). GTFs were compared using the area under the curve 

(AUC) for magnitude and phase. No significant changes in gain were seen between 

any of the GTFs. Phase did vary significantly (p<0.001, rmANOVA), however, 

specifically due to an overall positive phase shift with higher doses of salbutamol. 

3.3.2.5 Comparison of effect of transfer functions on derived pulse contour features 

Overall, there were significant (p≤0.02, rmANOVA) variations in TA1, TA2 and the 

TA2-TA1 difference using different GTFs. These variations were specifically 

accounted for by differences between GTFall and GTFdrug (p≤0.005), with no 

significant differences found between GTFdrug and GTFdose (p≥0.85). The degree of 

variation for TA1, TA2 and TA2-TA1, was influenced by different drugs (p≤0.03, 

rmANOVA), but not by the different doses (p≥0.08). However, differences between 

GTFall and GTFdrug were small for TA1 (-1.2±3.2ms, p<0.001), TA2 (+1.4±7.6ms, 

p=0.01) and TA2-TA1 (+2.6±9.5ms, p<0.001). The effects of drugs on these 

differences were also small, with no clear pattern attributable to different 

agents: -2.0±5.9ms (angiotensin II) to 0.0±1.7ms (salbutamol) for TA1; -2.1±3.8ms 

(GTN) to 3.7±8.1ms (salbutamol) for TA2; -0.4±3.7 (GTN) to 4.2±14.5ms 

(angiotensin II) for TA2-TA1. No significant variation (p≥0.45, rmANOVA) existed 

between GTFs for AIx, RMSE or Tdn. 
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3.3.2.6 Comparison of measured and derived waveforms 

Due to the relatively small differences between GTFs, and the small variations in 

error introduced by different drugs, further comparisons have been made using 

waveforms derived using GTFall only. Bias and limits of agreement between arterial 

measurements and derived waveforms are given in Table 3.4, with RMSE values 

shown in Table 3.3. Bland-Altman plots for the different comparisons are shown in 

Figure 3.12. 

The degree of difference was significantly influenced by drug (p≤0.027, rmANOVA), 

but not by dose (p≥0.13). Specifically, GTFall significantly (p≤0.005, post hoc paired 

t-test) overestimated AIx with GTN (+5.8±2.0%) and salbutamol (+6.8±1.4%), and 

Tdn with GTN (+10.9±3.2ms). GTFall also overestimated (p≤0.022) TA2 and TA2-TA1 

for angiotensin II (+6.7±2.7ms, +8.9±2.1ms respectively), noradrenaline 

(+5.1±2.1ms, +4.5±1.5ms) and salbutamol (+22.4±5.3ms, +13.9±4.6ms). TA1 was 

underestimated during GTN administration (-5.3±2.2ms, p=0.02) and overestimated 

during salbutamol (+8.5±1.1ms, p<0.001), although this was not significant in the 

multivariate repeated-measures analysis. 

Overall, TA1, TA2, TDN and AIx were all slightly overestimated by GTFall, and derived 

and measured values were positively correlated (Table 3.4). There was no apparent 

correlation between derived and measured TA2-TA1, and the bias of 7.2±21.4ms was 

not statistically significant. There was a tendency for the bias to get significantly 

greater at increased values of TA1, TA2 and TA2-TA1, and decreased values of AIx. 
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Table 3.4. Comparison of different measured and derived waveform 
parameters 

Comparison r for 
comparison 

Mean bias 
(ms/%) 

95% limits of 
agreement (ms/%) r for bias 

WEPS - ARTS (Figure 3.10)    

 TS1 0.70‡ -13.6 ± 1.0‡ -30.7 – 3.5 -0.75‡ 

 TS2 0.73‡ -18.9 ± 2.9‡ -70.6 – 32.8 0.39‡ 

 TS3 0.68‡ -33.2 ± 3.6‡ -97.3 – 30.9 -0.27* 

 TS2- TS1 0.64‡ -5.3 ± 3.0 -59.4 – 48.8 0.52‡ 

 PS1/PS2 (%) 0.41‡ -0.6 ± 1.2 -22.0 – 20.8 0.52‡ 

WEPA - ARTA (Figure 3.11)    

 TA1 0.39‡ -7.7 ± 1.9‡ -42.2 – 26.8 0.0 

 TA2 0.61‡ -1.4 ± 2.6 -49.2 – 46.4 0.35† 

 TA2- TA1 0.61‡ 1.4 ± 1.6 -27.0 – 29.8 0.71‡ 

 AIx (%) 0.60‡ -7.2 ± 1.9‡ -41.3 – 26.9 0.0 

ARTA - GTFall (Figure 3.12)    

 TA1 0.68‡ -0.4 ± 0.9‡ -23.5 – 22.7 0.53‡ 

 TA2 0.29‡ -7.5 ± 2.0‡ -61. 6 – 46. 6 0.39‡ 

 TA2- TA1 -0.11 -7.2 ± 1.6 -49.1 – 34.7 0.21† 

 TDN 0.56‡ -4.8 ± 2.0* -59.3 – 49.7 0.0 

 AIx (%) 0.65‡ -3.2 ± 0.9‡ -28.5 – 22.1 -0.19* 

“r for comparison” is Pearson coefficient for correlation between related 
parameters. “Mean bias” is mean±standard error of difference between the 
related parameters. “r for bias” is Pearson coefficient for correlation 
between difference and mean of related parameters. * p<0.05; † p<0.01; ‡ 
p<0.001. Abbreviations as per text.  
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Figure 3.9. Comparison of radial-to-finger generalised transfer functions 
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Figure 3.10. Comparison of wideband external pulse with first-derivative of 
arterial pressure 
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908070605040
Mean (ms)

0

-10

-20

-30

-40

-50

-60

D
iff

er
en

ce
 W

EP
-a

rte
ria

l (
m

s)

 
350300250200150

Mean (ms)

50

0

-50

-100

-150

D
iff

er
en

ce
 W

EP
-a

rte
ria

l (
m

s)
 

TS3 TS2-TS1 

500450400350300250
Mean (ms)

40

20

0

-20

-40

-60

-80

-100

-120

-140

D
iff

er
en

ce
 W

EP
-a

rte
ria

l (
m

s)

 
250200150100

Mean (ms)

100

50

0

-50

-100

-150

D
iff

er
en

ce
 W

EP
-a

rte
ria

l (
m

s)

 
PS1/PS2  

40302010
Mean (%)

30

20

10

0

-10

-20

-30

D
iff

er
en

ce
 W

E
P-

ar
te

ria
l (

%
)

 

 
Bland-Altman plots of WEP measures 
(difference and mean of actual WEP 
value and that derived from first-
derivative of arterial pressure). Dashed 
lines represent mean bias and 95% limits 
of agreement (±1.96SD). 
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Figure 3.11. Accuracy of arterial measures derived using the wideband external 
pulse 
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Bland-Altman plots of arterial pressure measures (difference and mean of arterial 
value derived by integrating WEP signal and actual measured value). Dashed lines 
represent mean bias and 95% limits of agreement (±1.96SD). 
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Figure 3.12. Accuracy of arterial measures derived from photoplethysmography 
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3.4 DISCUSSION 

3.4.1 Effect of cardiovascular drugs on pulse transit time 

The association between PTT and BP was studied extensively in the field of 

psychophysiology (Geddes et al. 1981; Gribbin et al. 1976; Lane et al. 1983; Steptoe 

et al. 1976; Weiss et al. 1980) in the 1970s and 1980s, and more recently by Ochiai 

et al (1999) and Chen et al (2000). rPTT has also been used to predict BP in a 

clinical setting (Heard et al. 2000). The current study is the first to examine 

simultaneously the effects of vasoactive drugs on rPTT, PEP and invasively 

measured BP in humans. 

The expected haemodynamic changes occurred with all four drugs, although the SBP 

response to salbutamol was mixed. rPTT had a negative correlation with SBP, which 

was relatively unaffected by different drugs in the population as a whole. rPTT also 

appeared to be useful as a marker of SBP variability. However, DBP and MAP were 

weakly correlated with rPTT, although more strongly related to pPTT. 

SBP is dependent on both vascular function and ventricular contraction, and so it is 

perhaps unsurprising that rPTT, a composite measure of both vascular and cardiac 

activity, is correlated with SBP. However, although in the study population as a 

whole the correlation between rPTT and SBP appeared relatively unaffected by drugs, 

this finding must be treated with caution. There were slight differences in the rPTT 

response between noradrenaline and angiotensin II, despite similar BP profiles. 

Furthermore, it should be noted that 4 subjects in this study had positive correlations 

between rPTT and SBP during the administration of salbutamol. This drug has 

positive inotropic and chronotropic β2 adrenergic effects, as well as causing 

peripheral arterial relaxation. Although a fall in PEP is associated with an increase in 

cardiac inotropy, this does not necessarily relate to an increase in SBP, as any 

potential pressure rise may be offset by decreases in pressure augmentation by 

reflected waves or changes in aortic stiffness (Nichols & O'Rourke 1998). It would 

therefore appear inappropriate to use rPTT as a predictor of SBP in all persons, 

particularly for assessing changes due to vasoactive drugs. Moreover, even using an 

idealised calibration slope, the limits of agreement between predicted and actual BP 
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were wide and would not meet the criteria of the British Hypertension Society, 

although similar inaccuracies have been described previously between 

sphygmomanometric and direct arterial pressure measurements (Brown et al. 1994; 

Turjanmaa 1989). 

These data also show that PEP accounts for a substantial and variable proportion of 

rPTT, ranging from around 12% to 35%. A number of relatively recent studies have 

employed rPTT as a marker of vascular function (Bulpitt et al. 1999; Cameron et al. 

2003), but this study demonstrates that the use of rPTT purely for the assessment of 

arterial stiffness is inappropriate and should be avoided, as PEP cannot be assumed 

to remain constant. Other devices such as the Colin VP-1000 (Colin Corporation, 

Japan), have eliminated PEP by utilising the phonocardiogram to time cardiac 

ejection. The phonocardiogram is regarded by many as the ideal way of determining 

systolic time intervals. The principal disadvantage, however, compared to 

bioimpedance, is that it requires accurate identification of two timing points rather 

than simply one: firstly, the end of cardiac ejection (the second heart sound); 

secondly, the left ventricular ejection period (measured by identifying the dicrotic 

notch using a proximal arterial pulse wave). 

rPTT may nonetheless offer a potentially valuable means of detecting beat-to-beat 

changes in SBP. Indeed, with regular re-calibration to standard oscillometric BP as 

suggested by Chen et al (2000), rPTT offers the opportunity to assess BP variability 

and detect sudden or transient haemodynamic changes. BP and HR variability are 

considered to offer important insights into vasomotor activity, have been associated 

with clinical outcomes, including cardiovascular death, and may be used in 

assessment of autonomic neuropathy (Parati et al. 1995). Sympathetic modulation of 

BP alters the HR through the actions of the sinoaortic baroreflex; coherence between 

these two measures therefore reflects baroreflex activity (Lanfranchi & Somers 

2002). rPTT shows beat-to-beat variability closer to that of SBP than HR, and 

therefore may have a role in the assessment of vasomotor control and BP variability. 
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pPTT, but not rPTT, was strongly inversely correlated with DBP and MAP. 

Furthermore, the correlation was inconsistent between pPTT and SBP. These 

findings are both consistent with the fact that arterial stiffness, and therefore vascular 

pulse transit time (i.e. pPTT), is dependent on MAP, rather than SBP. In many 

circumstances, SBP and DBP/MAP are positively associated with each other. This 

has led others to inappropriately use rPTT to predict both these variables (Carruthers 

& Taggart 1988; Heard et al. 2000), with DBP calculated following adjustment for 

HR. However, the divergent SBP and DBP/MAP responses to salbutamol in 8 

subjects in this study have not been reported in previous published work in this field, 

and the current data suggest that rPTT cannot be used to predict DBP or MAP 

without a knowledge of PEP, regardless of the HR response. 

This study has a few limitations. Baseline values of BP were not constant prior to 

each drug, tending to rise steadily over the course of the study, particularly after 

noradrenaline. Due to the short half-life of both pressor agents in particular, it seems 

unlikely that the rise in BP is entirely accounted for by direct drug effects. 

Randomising drug order was not carried out as the much longer half life of 

salbutamol necessitated its administration last, and it was not justifiable to carry out 

the separate elements of the study on different days, as this would have required 

repeated arterial cannulation. The washout periods were also kept relatively short, to 

minimise the duration of cannulation. Despite these points, the aim of the different 

drugs was to achieve a wide range of BP under varying conditions of vascular tone, 

and this was still achieved even if the haemodynamic effects of one drug had not 

completely resolved before the administration of the next. The use of fluid-filled 

manometer tubing introduces a degree of inaccuracy between pressure at the catheter 

tip, and that at the more proximal transducer. However, this discrepancy was 

constant between subjects, and fluid filled manometer tubes are nonetheless regarded 

as the “gold standard” in clinical practice. HR is a potential confounding factor 

(Lantelme et al. 2002) in the assessment of vascular stiffness and BP, although 

debate continues over whether reported increases in pulse wave velocity with HR are 

genuine (Hayward et al. 2002). Importantly however, the large change in HR seen 

with salbutamol does not affect the interpretation of DBP being more important than 
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SBP as a determinant of pPTT, because a high HR would, if anything, increase 

arterial stiffness and thus reduce vascular transit time. 

3.4.2 Effect of drugs on the pulse wave contour 

Pulse wave analysis is becoming increasingly popular as a means of assessing 

arterial stiffness. Elevated aortic AIx has been associated with increased mortality in 

end-stage renal disease (London et al. 2001), increased severity of coronary artery 

disease (Weber et al. 2004), presence of diabetes (Wilkinson et al. 2000) and 

hypercholesterolaemia (Wilkinson et al. 2002c), and increased age (Kelly et al. 

1989). AIx has also been used in the assessment of endothelial function (Wilkinson 

et al. 2002a). However, applanation tonometry, the usual method of recording the 

waveform, can be difficult to perform, and methods requiring less user training and 

potentially cheaper technology are therefore attractive alternatives. Both 

sphygmomanometry and photoplethysmography (PPG) are already widely used in 

the clinical environment, the latter in the form of oxygen saturation monitors. The 

present study demonstrates that mathematical manipulation of the PPG and WEP 

waveforms can be performed to reproduce the signals measured using invasive 

arterial recording. The study also demonstrates that large haemodynamic changes 

due to vasoactive drug administration have little effect on the accuracy of the 

waveforms derived using either of these methodologies. 

It was shown that the suprasystolic WEP signal resembles the first derivative of 

intra-arterial pressure and can, therefore, be used to estimate the arterial pressure 

wave. Time delays and measurements of reflected wave amplitude measured by 

WEP analysis, correlate with those obtained directly from the arterial signal, and 

similar changes occur with both techniques during administration of pharmacological 

agents. Although it is important to note that the RMSE was substantial with all drugs 

(4-5mmHg is the limit of accuracy of devices for recording arterial pressure  

(Millasseau et al. 2000)), and that this may therefore limit the role of suprasystolic 

WEP analysis as an accurate alternative to direct intra-arterial pressure recording or 

applanation tonometry, the WEP responses nonetheless tracked those of the arterial 

line and can thus still be considered a potentially useful means of evaluating 
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cardiovascular function. Furthermore, in addition to the obvious benefits of being 

non-invasive, the WEP system has the advantage that it has potentially far less 

operator dependency than tonometry and could be incorporated relatively easily into 

standard oscillometric sphygmomanometer devices. 

It has been suggested by the manufacturers of Pulsecor that the S2-S1 delay is 

inversely related to PWV (Blank 1996); a similar relationship with PWV has been 

proposed for the time delay between systolic and diastolic peaks on the finger 

photoplethysmograph waveform (Millasseau et al. 2002). The current study found 

that the TS2-TS1 delay, measured by both WEPS and the first derivative of the arterial 

pressure pulse, decreased with all drugs except GTN, which caused a small non-

significant increase. The TA2-TA1 delay, measured from the arterial pressure pulse, 

also decreased with both pressor agents and salbutamol, albeit the latter not 

significantly. The TS2-TS1 and TA2-TA1 time delay findings were similar to each other, 

but not in line with either expected or measured PWV responses. Changes in the 

magnitude of reflected waves, due to changes in peripheral impedance mismatch, 

may affect the timing of apparent wave peaks and thus alter the apparent velocity of 

reflections. It can also be difficult to identify S2 in circumstances of marked 

vasodilatation and increased heart rate. These factors may in part explain the time 

delay findings described. GTN given in similar doses to those used in the present 

study has been shown to have only small effects on the finger pulse systolic-diastolic 

time delay, despite large changes in the relative amplitude of these wave components 

(Millasseau et al. 2003a), and thus inaccuracy in identifying S2 or A2 may have been 

particularly important with this drug. The decrease in PWV with salbutamol in this 

study is due to peripheral vasodilatation and a decrease in MAP, offsetting any 

potential increase as a result of tachycardia (Haesler et al. 2004). The corresponding 

fall in TS2-TS1 (and to a lesser extent, TA2-TA1) is not consistent with this PWV 

change, and may also be explained by the factors described above. These findings 

were identified with both WEP and arterial line, and were consistent in all subjects, 

suggesting this is a genuine phenomenon. Regardless of the precise cause of these 

findings, it would, therefore, appear unwise to use these time delays as a surrogate 

marker of PWV. 
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The ratio of amplitudes of the original WEPS signal showed changes similar to AIx 

and PWV. However, as pointed out by Millasseau and colleagues (Millasseau et al. 

2003a), it is difficult to directly relate values obtained from the derivative of the 

pulse waveform to the biomechanical properties of the cardiovascular system. The 

ratio of amplitudes is also used by Pulsecor to obtain a measure of vascular 

compliance, and the values obtained in the current study correlate with measured 

PWV. It is important to note, however, that the currently unpublished mathematical 

function used to derive compliance is not validated and is based on small subject 

numbers (Blank 1996). Furthermore, the compliance value is an estimate only, as 

neither volume nor flow is known. The current study was not designed to validate the 

accuracy of the compliance values, and a measure of vascular function taken directly 

from the waveform was thus considered more relevant. In this respect, AIx is an 

established and useful marker of vascular function (Wilkinson et al. 2001), albeit not 

a direct measure of arterial compliance (Kelly et al. 2001). WEP-derived arterial 

pressure waves showed changes in AIx similar to those directly measured using the 

arterial line. As the correlation may have been inflated by pooling data across 

interventions known to alter AIx, baseline data was examined alone. This analysis 

revealed that the positive correlation persisted (R=0.42, p<0.01) with a similar 

degree of bias (-7.7±12.7%). The bias between the two methods probably reflects the 

damping of the WEPA waveform, with a relatively smaller PA2 amplitude. It remains 

uncertain whether WEP signals can be used to evaluate central haemodynamics, 

although this would appear possible, given that radial AIx correlates closely with 

derived aortic AIx (Millasseau et al. 2003b). 

Blank and colleagues described a similar appearance of the suprasystolic WEP pulse 

contour to that observed in the present study (Blank et al. 1988). Below systolic 

pressure, the suprasystolic signal became obscured, with the waveform taking on the 

intra-arterial pressure pulse contour as cuff pressure approached diastolic pressure. 

Below diastolic pressure, the signal diminished in size as it requires adequate 

coupling between the sensor surface and the skin. Although they did not compare the 

suprasystolic shape directly with intra-arterial pressure, they acknowledged that this 

waveform was probably still intrinsically related to the arterial pressure pulse, and 

may therefore contain clinically important information. This is supported by the 
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current study. In addition, Blank found that the suprasystolic signals had less high 

frequency energy than diastolic WEP signals, the latter correlating directly with 

intra-arterial pressure. This may explain the apparent damping of the arterial pressure 

signals derived from the suprasystolic WEP traces in the current study, and is 

presumably related to the effects of pulse transmission through the non-vascular 

upper limb tissues and inflated cuff. The principal advantage of using the 

suprasystolic WEP waveform, as opposed to the sub-systolic or diastolic signals, is 

that adequate coupling of the sensor to the skin is always present, and that a 

composite signal comprised of any diastolic component is avoided. 

It is still not clear why the WEP signal resembles the derivative of the intra-arterial 

pressure wave. Occlusion of the brachial artery does not prevent the distal 

propagation of vibrations resembling the original pulse waveform through the air-

filled cuff and non-vascular tissues. If the air-filled cuff is considered a low-

impedance continuation of the artery, then a reflection would be expected to occur at 

the interface which would be subject to a 90 degree phase shift, effectively inverting 

it (Nichols & O'Rourke 1998). Assuming these two signals (normal and inverted) are 

of similar magnitude and slightly offset in time from one another, then the sum of the 

two amplitudes will be a function of the pressure gradient and thus resemble the first 

derivative. Alternatively, the signal may represent the effects of obstructed flow, 

generating waves similar to the flow wave which is closely related to the pressure 

gradient in peripheral vessels. However, these suggestions are purely speculative, 

and additional studies are required to understand the mechanics underlying 

generation of the suprasystolic WEP signal, and whether the signal is affected by 

non-vascular parameters, such as cuff material or size. 

Use of the PPG waveform for pulse contour analysis is more widely recognised than 

use of the WEP signal (Dillon & Hertzman 1941; Morikawa 1967), and there has 

been a resurgence of interest largely thanks to the separate work of Takazawa 

(Takazawa et al. 1998) and Chowienczyk (Chowienczyk et al. 1999; Millasseau et al. 

2000). Chowienczyk and colleagues have shown that the time to the first and second 

peaks of the pulse wave relate to arterial stiffness and endothelial function 

(Chowienczyk et al. 1999), and have used a transfer function applied to the PPG 
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waveform to obtain a corresponding radial waveform (Millasseau et al. 2000). 

Karamanoglu and Feneley have also used a transfer function to synthesis the aortic 

waveform from the finger (Karamanoglu & Feneley 1997). Nonetheless, the effect of 

large haemodynamic changes, as achieved in this study, on the relationship between 

PPG wave and the arterial pressure pulse, have not hitherto been described. 

The haemodynamic changes resulting from drug administration did not appear to 

markedly affect the results obtained from different PPG-to-radial transfer functions. 

Others have also found that far smaller doses of GTN have had minimal impact on 

transfer functions, both PPG-to-radial (Millasseau et al. 2000) and radial-to-aortic 

(Karamanoglu et al. 1993; Pauca et al. 2001). The much larger doses of drugs given 

during this study might be expected to have particularly marked effects on smaller 

arteries, and thus potentially alter the PPG-to-radial transfer function. The constancy 

of the transfer function in this study is therefore somewhat unexpected, although may 

be explained by a tendency for these drugs to primarily affect higher frequency 

waveform components which contribute less to the overall spectral power of the 

signal (Nichols & O'Rourke 1998). Clearly, this study did not enable us to test 

whether the radial-to-aortic transfer function remains similarly constant, but it 

certainly adds weight to the argument that a peripheral-to-aortic GTF obtained from 

the finger can be utilised with equal acceptability in the assessment of vascular 

function during the administration of vasoactive drugs, as a GTF obtained from the 

radial artery. 

A reasonably strong correlation was found between all waveform parameters 

obtained from both PPG and SphygmoCor signals. However, the limits of agreement 

were large, and significant bias existed for most parameters. Certainly the two 

methodologies cannot be directly interchanged, but both methods appear similarly 

able to track cardiovascular changes due to vasoactive substances. The doses of 

drugs given during this study were chosen to achieve large changes in blood pressure, 

and therefore the hypothesis tested is whether a generalised transfer function holds 

under haemodynamic extremes. However, it would be valuable to assess whether the 

PPG can also detect subtle differences in wave shape, such as those achieved by 

administration of low-dose vasoactive drugs, or found in different patient populations. 
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The use of fluid-filled manometer tubing for the measurement of arterial pressure is 

once again a weakness of this study, arguably more relevant in the context of pulse 

contour analysis, where the gold-standard is the intravascular catheter-tip solid-state 

transducer, than for measurement of pressure, where it is the regarded as the 

definitive clinical measure. Measurement error due to sub-optimal damping was 

minimised during the study by using a short tube length. The increased fundamental 

frequency of the heart rate during the administration of salbutamol might account for 

the greater RMSE observed between both WEP and PPG waveforms, and intra-

arterial signals, following this drug. With respect to comparison of the brachial WEP 

signal with the radial intra-arterial wave, cannulation of the radial artery is safer than 

that of the brachial artery; and therefore ethically more acceptable. The resulting 

comparison of different anatomical sites may, therefore, partially account for the 

differences seen between actual and WEP-derived pressure signals, but is unlikely to 

influence the conclusions reached. As discussed above, the variability in baseline 

haemodynamic measurements prior to different drugs, does not prevent the study 

achieving the aim of comparing waveforms under widely varying pharmacologically-

induced haemodynamic circumstances. 

3.4.3 Conclusion 

In conclusion, this study demonstrates that rPTT has a negative correlation with SBP, 

which although relatively unaffected by vasoactive drugs in some persons, is not 

reliable enough to enable rPTT to be a surrogate marker of SBP. Furthermore, the 

significant contribution of PEP to rPTT means that use of the latter parameter as a 

marker of purely vascular function should be avoided. However, rPTT may have a 

role in the assessment of BP variability and rapid pressure change. pPTT, rather than 

rPTT, is associated with DBP/MAP, and so the use of rPTT as a predictor of diastolic 

or mean pressure is inadvisable. 

The study also shows that the supra-systolic WEP signal correlates strongly with the 

first derivative of the intra-arterial pressure wave. The PPG-to-radial transfer 

function is minimally affected by drugs. Both methods appear able to detect changes 

in the pulse waveform induced by vasoactive drugs similar to those measured by 
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invasive monitoring. Further work is merited to investigate the true nature of the 

WEP signal, and whether either technique can be used in the study of cardiovascular 

physiology in disease states, including assessment of cardiovascular risk, disease 

severity and endothelial function (Safar et al. 2001; Wilkinson et al. 2002b). 
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4 EFFECT OF EXERCISE ON VASCULAR AND 
CARDIAC COMPONENTS OF PULSE TRANSIT TIME 

4.1 INTRODUCTION 

Estimation of beat-to-beat blood pressure using transit time during exercise has been 

attempted in the past (Barschdorff & Erig 1998; Carruthers & Taggart 1988), and is a 

potentially attractive approach as many physiological measurements become difficult 

during exertion due to movement artefact. Transit time measured from the ECG to 

finger is comprised of cardiac (pre-ejection period) and vascular components. The 

vascular path length incorporates a small segment of aorta, large and small conduit 

arteries, plus the smaller vessels in the hand and finger (Figure 4.1). Exercise results 

in large changes in vascular and cardiac function, but to date, the manner in which 

different components of transit time respond to exertion has not been described. 

Figure 4.1. Pulse arrival at different arterial sites 

rPTTfinger

 

It is well recognised that arterial stiffness varies throughout the arterial tree. Latham 

et al (1985) elegantly demonstrated that pulse wave velocity varies from proximal to 

distal aorta. Peripheral vessels have higher proportions of stiffer collagen and smooth 

muscle than central elastic arteries (Dobrin & Rovick 1969; Harkness et al. 1957), 
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reducing their distensibility (Armentano et al. 1995; Learoyd & Taylor 1966). 

Furthermore, it can be seen from the Moens-Korteweg equation that as peripheral 

vessels become narrower, pulse wave velocity will increase independent of the 

arterial wall elastic modulus (section 1.4.1). 

Exercise is associated with release of a diverse range of vasoactive substances, such 

as catecholamines due to sympathetic activation, nitric oxide through changes in 

endothelial shear stress, and local metabolites from exercising muscle (Kingwell 

2000). However, the mechanisms through which vasodilatation occurs may vary 

between arterial sites. For instance, initial neural stimulation and subsequently the 

accumulation of vasodilatory metabolites, may result in vasodilatation in 

microvessels. However, it is the pressure gradient resulting from these changes that 

induce upstream vasodilatation, due to flow-induced shear stress (Koller & Kaley 

1991). Functional diversity can also be seen in the response to drugs – glyceryl 

trinitrate (GTN) has minimal effects on the aorta and on arterioles (Yaginuma et al. 

1986), but causes marked arterial dilatation (Westling et al. 1984). 

It was hypothesised that this structural and functional diversity would mean that 

changes in different components of transit time in response to exercise would not 

necessarily be proportional to one another. 

Prior to work during exercise, a pilot study was conducted with the aim of 

establishing the feasibility of measuring transit time over a small distance (the radial 

artery at the wrist to the fingertip). GTN was used as a means of obtaining changes in 

conduit arteries, whilst having minimal effects on peripheral vascular resistance and 

therefore mean distending blood pressure (Yaginuma et al. 1986). Previous work by 

our department (JJ Oliver, personal communication) had suggested that the selected 

dose of GTN would have minimal effects on blood pressure and conduit and central 

artery PWV, despite substantially reducing augmentation index (Oliver et al. 2005). 

It was hypothesised that these changes in AIx may be due to alterations in smaller 

artery PWV, and may therefore be detectable in the hand, independent of larger 

conduit artery PWV. 
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4.2 METHODOLOGY 

4.2.1 Pilot study of the effect of GTN of on radial-finger pulse wave 
velocity 

9 subjects (2 male), mean age 29.2±5.5 years, participated in an unblinded, 

uncontrolled study of the effects of GTN on pulse wave velocity in the hand. None 

were on medications, and one female was a social smoker. Subjects rested supine for 

20 minutes prior to measurements commencing. 30-second simultaneous recordings 

of carotid (Millar tonometer, section 2.5.1), radial (Colin CBM7000, section 2.5.1) 

and finger (photoplethysmography, section 2.3.2.2) waveforms were made. Wrist 

and finger measurements were made on the same side. Blood pressure was recorded 

using an oscillometric brachial sphygmomanometer on the contralateral arm. 

Distance measurements (for calculation of PWV) were made using straight-line 

measurements as described in section 2.7. 

The study protocol is shown in Figure 4.2. Three baseline measurements were made, 

each 2 minutes apart, prior to GTN administration. 50µg GTN, made up to 50µL in 

water, was given sublingually using a pipette. Measurements were subsequently 

made every 2 minutes initially, and every 5 minutes thereafter. 

Baseline values were taken as the average of the three pre-GTN measurements. 

Change over the course of the study was established by repeated measures ANOVA, 

with post-hoc analysis by paired t-test examining difference from baseline. Time to 

peak/trough was calculated by averaging time/magnitude of peaks for each 

individual. 

Figure 4.2. GTN pilot study protocol 
          
    50µg GTN      
    ↓      
              

(-25)     -5 -3 -1  2 4 6 8 10 12 15 20 25 30
Measurement points (min)  
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4.2.2 Effect of exercise on cardiac and vascular components of transit 
time 

9 healthy subjects (4 female), mean age 25.8±5.4 years, were studied in a quiet, 

temperature controlled environment, following a 15-minute period of rest. 

Subjects performed a 3-stage modified STEEP exercise protocol (section 2.9.1.2), 

using a Kettler SX1 semi-recumbent bicycle ergometer. Haemodynamic 

measurements were recorded at rest, in the last minute of each exercise phase, and at 

2, 5, 10 and 15 minutes post-exercise. 

Continuous recordings of bioimpedance (section 2.4.1.2), finger and ear 

photoplethysmograph waves (section 2.3.2.2), radial artery tonometer waveform 

(section 2.5.1) and ECG (section 2.3.1.2) were made. Brachial artery waveforms 

were recorded in the last minute of each experimental measurement phase, using a 

Millar SPT301 tonometer (section 2.5.1). Brachial blood pressure was measured 

manually at the same time as brachial waveforms, but in the contralateral arm 

(section 2.8.1). Signals were digitised at 1 kHz using a National Instruments E-series 

6036E PCMCIA data acquisition card (section 2.2), and signal processing was 

performed offline. 

Data were compared across time points using repeated measures ANOVA, with 

paired t-tests used post hoc to compare individual time points. 

4.3 RESULTS 

4.3.1 Effect of GTN on wrist-finger pulse wave velocity 

Subject characteristics and baseline haemodynamic values are given in Table 4.1. 

Changes in certain parameters are shown graphically in Figure 4.3. No changes were 

seen in mean pressure (p=0.18 by repeat measures ANOVA), systolic (p=0.67) or 

pulse pressure (p=0.16) over the course of the study. Post-hoc analysis identified a 

small increase in systolic (1.9±2.1 mmHg, p=0.025) and pulse (3.8±2.8 mmHg, 

p=0.004) pressure at 4 minutes only. Heart rate increased after GTN (p<0.001), by an 
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average of 6.8±4.7bpm at 5.8±6.2 minutes. Cardiac output and systemic vascular 

resistance did not vary during the experiment (p=0.34 and 0.23 respectively). 

Central AIx decreased with GTN (p=0.001), by an average of -11.8±5.2 percentage 

points at 11.3±10.1 minutes. This change persisted after adjustment for HR 

(p=0.015). Peripheral AIx also decreased (p<0.001), by an average of -14.6±6.1 

percentage points at 8.9±8.3 minutes. Carotid-radial PWV fell significantly 

(p<0.001), by an average of -2.1±1.1m/s at 4.3±4.7 minutes. Radial-finger PWV 

increased (p<0.001) following GTN, by an average of 5.2±3.2m/s at 8.2±2.7 minutes. 

Table 4.1. Subject characteristics and baseline 
haemodynamic values 
Parameter Mean±SD, N(%) 
Age (years) 29.5 ± 5.5 
Male 2 (22%) 
Smokers 1 (11%) 
Height (cm) 167 ± 12 
BMI (kg/m2) 22.8 ± 4.4 
  
Carotid-radial PWV (ms-1) 12.0 ± 2.9 
Radial-finger PWV (ms-1) 7.4 ± 2.2 
Radial AIx (%) 49.6 ± 18.3 
Derived aortic AIx (%) 5.5 ± 12.7 
Heart rate corrected aortic AIx (%) -1.8 ± 10.4 
Cardiac output (L/min) 7.9 ± 2.3 
Heart rate (bpm) 60.5 ± 10.5 
SVR 9.9 ± 2.6 
SBP (mmHg) 101.6 ± 11.6 
DBP (mmHg) 58.7 ± 4.5 
Pulse pressure (mmHg) 42.9 ± 12.2 
MAP (mmHg) 73.4 ± 6.0 
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Figure 4.3. Haemodynamic responses to 50µg GTN 
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4.3.2 Effect of exercise on cardiac and vascular components of transit 
time 

Changes at peak exercise, and significance over the period of exercise are given in 

Table 4.2, and shown graphically in Figure 4.4. 

4.3.2.1 Blood pressure and heart rate 

BP increased from 104/67±13/11 (MAP 79±10) mmHg at rest, to 153/66±22/9 

(MAP 94±7) mmHg at peak exertion. Diastolic BP did not change over the study. 

Heart rate increased from 63.6±8.1 to 120±18.3 bpm. 

4.3.2.2 ECG Intervals 

Baseline QR, RS and QS intervals were 28.3±15.6, 39.1±6.1 and 67.4±19.8 ms 

respectively. QR, RS and QS intervals did not vary with exercise (p=0.40, 0.45 and 

0.48 respectively, rmANOVA). 

4.3.2.3 Pulse waveform timing points 

The time difference between the intersecting tangent of the maximum first derivative 

and intersecting tangent of the maximum second derivative, varied significantly over 

the experimental period for the finger wave (p=0.006, rmANOVA), decreasing 

significantly at peak exertion (p=0.029). Variation also occurred with the ear wave, 

although did not quite reach statistical significance (p=0.056). The time difference 

between the time of maximum second derivative, and the intersecting tangent of the 

maximum first derivative, was small (-2.3 to +1.9ms), and did not vary significantly 

for either finger (p=0.13) or ear (p=0.47) waveforms. The difference between the 

time of the maximum first derivative and the time of the maximum second derivative, 

varied significantly during the study for the finger wave (p=0.001), decreasing at 

peak exercise (p=0.009). No significantly difference was seen for this time delay 

with the ear wave (p=0.68). Of note, the magnitude of all three time differences was 

similar for both ear and finger waves, although the difference between maximum 

second derivative, and the intersecting tangent of the maximum first derivative, was 

marginally greater for the finger (2.5±2.9 ms, p<0.001). The variances of all three 

time intervals were considerably greater for the ear compared to finger waves. 
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Table 4.2. Baseline and peak changes in timing parameters 

 Baseline Peak rmANOVA 
p value 

ECG QRS-complex time intervals 
 Q-R 28.3 ± 15.6 32.9 ± 6.0 0.40 
 R-S 39.1 ± 6.1 41.9 ± 5.2 0.45 
 Q-S 67.4 ± 19.8 74.8 ± 6.7 0.48 
Pulse wave time intervals (ms) 

Finger 12.5 ± 0.9 11.6 ± 1.6* 0.006 Int. tan. dP2 – int. tan. dP1 
Ear 13.4 ± 4.3 11.8 ± 2.3 0.056 
Finger 1.9 ± 0. 7 0.6 ± 1.9 0.13 Int. tan. dP1 – max. dP2 
Ear -0. 9 ± 4.3 -2.3 ± 4.6 0.47 
Finger 32.2 ± 2.8 28.7 ± 2.6† 0.001 Max. dP2 – max. dP1 
Ear 33.6 ± 9.6 30.6 ± 8.3 0.68 

Transit time relative to R-wave (ms) 
 dZ/dt int. tan. 94.6 ± 16.1 56.3 ± 10.5† <0.001 
 Ear 140.7 ± 17.0 83.9 ± 18.5‡ <0.001 
 Brachial 158.9 ± 20.3 96.9 ± 20.3‡ <0.001 
 Radial 193.7 ± 15.1 122.0 ± 25.2‡ <0.001 
 Finger 227.3 ± 18.2 155.3 ± 24.9‡ <0.001 
Time intervals (ms) 
 dZ/dt int. tan. – ear 46.0 ± 6.1 27.6 ± 11.6† <0.001 
 dZ/dt int. tan. – brach 64.2 ± 15.4 40.1 ± 20.3‡ <0.001 
 Ear – brachial 18.2 ± 11.4 11.5 ± 7.5* 0.019 
 Brachial – radial 34.8 ± 7.4 29. 7 ± 4.5 0.064 
 Radial – finger 33.6 ± 6.5 33.3 ± 2.5 0.094 
     
Time intervals as % of rPTTfinger 
 R-wave – dZ/dt int. tan 41.5 ± 5.6 36.5 ± 5.5 0.001 
 dZ/dt int. tan. – ear 20.2 ± 2.2 17.3 ± 5.6 0.12 
 dZ/dt int. tan. – brach 28. 2 ± 6.2 24.6 ± 7.1 0.093 
 Ear – brachial 7.9 ± 5.0 7.2 ± 4.9 0.66 
 Brachial – radial 15.5 ± 4.0 18.8 ± 2.7* <0.001 
 Radial – finger 14.8 ± 2.3 21.9 ± 3.9‡ <0.001 
Values of various transit time measures at baseline and peak exertion. Values are 
mean±SD. Int. tan. dP1/dP2 and max. dP1/dP2 correspond to timing points using an 
intersecting tangent through, or the maximum point on, the first and second 
derivatives respectively. rmANOVA indicates significant change over entire 
experimental period. Significant change at peak exercise cf. baseline: *p<0.05; † 
p<0.01; ‡ p<0.001. 
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Figure 4.4. Effect of exercise on components of R-wave-to-finger transit time 
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Changes in different components of transit time at rest (0 min), increasing exercise (4-10 
min) and recovery (12-25 min). Values are mean ± standard error. 
A. BP and HR; red, SBP; green, MAP; blue, DBP; black, HR 
B. Components of QRS complex; QR interval; RS interval; QS interval 
C. Difference between timing points on finger (red) and ear (blue) waves; I, maximum first 
and second derivatives; II, intersecting tangents of first and second derivatives; III, 
maximum second derivative and intersecting tangent of first derivative. 
D. Timing of different components of transit time relative to ECG R-wave; black, 
bioimpedance B-point; blue, ear; green, brachial; orange, radial; red, finger. 
E. Duration of different time interval components of transit time; black, R-wave to B-point; 
blue, B-point to ear; green, B-point to brachial; dashed black, ear to brachial; orange, 
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4.3.2.4 Timing at Differing Vascular Sites 

ECG R-wave to B-point (as determined by intersecting tangent), and ear, brachial, 

radial and finger (as determined by intersecting tangent of the maximum first 

derivative) transit times, varied over the course of the experiment (p<0.001, 

rmANOVA), decreasing from baseline at peak exercise for all parameters (p≤0.001, 

paired t-test). 

The time interval between bioimpedance B-point and pulse wave leading edge at the 

ear and brachial artery, in addition to the brachial-to-ear interval, showed a 

significant change over the course of the experiment (p<0.001, rmANOVA), with 

decreases from baseline to peak exertion (p≤0.02). The brachial-radial transit time 

did varied slightly over the course of the experiment (p=0.064, rmANOVA), with a 

trend towards a small decrease by 4±5ms at peak exertion (p=0.14, paired t-test). The 

radial-finger transit time also showed no significant variation over the duration of the 

study (p=0.094, rmANOVA), although post-hoc analysis suggested a slight increase 

immediately in recovery (37±5 ms), relative to baseline (34±6 ms, p=0.079) and peak 

exercise (33±3 ms, p=0.012). 

When expressed as a percentage of the overall r-wave-to-finger transit time, there 

were decreases in the proportional contribution of PEP (p=0.001), and B-point to ear 

(p=0.12) and brachial (p=0.093) intervals, no change in the ear-to-brachial interval 

(p=0.66), and increases in brachial-to-radial (p<0.001) and radial-to-finger (p<0.001) 

intervals. 

4.4 DISCUSSION 

4.4.1 GTN pilot work 

This study demonstrated that GTN induced significant increases in PWV measured 

between the radial artery at the wrist and the finger. These findings were consistent 

across individuals, and detectable despite small changes in transit time in the order of 

10ms, albeit a significant proportion of the baseline transit time of around 30ms. 
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The increase in radial-finger PWV was unexpected, as either vasodilatation or a fall 

in peripheral pressure – both potential effects of GTN – were anticipated to result in 

a decrease in this measure. The other haemodynamic changes found are supportive of 

a normal response to GTN. The changes in blood pressure and augmentation index 

were both in line with previous work (Oliver et al. 2005). Other than a small change 

at 4 minutes, the former did not significantly vary over the course of the study, and 

the latter (measured peripherally and derived centrally) decreased to the degree 

expected and returned to baseline by the end of the study. The fall in carotid-radial 

PWV was not in agreement with previous findings, although nonetheless consistent 

with the response that might be expected due to vasodilatation in the muscular 

arteries of the arm (Westling et al. 1984). Indeed, brachial artery dilatation in 

response to GTN is a well recognised phenomenon employed widely as an 

endothelial independent control for flow-mediated dilatation studies (Corretti et al. 

2002). Of note, prior work carried out in our department utilised the commercial 

SphygmoCor (AtCor Medical) system, which employs sequential waveform 

recordings and uses a handheld tonometer at both sites. It is possible that the 

methodology used in the present study (simultaneous measurement of both 

waveforms, with an automated rather than hand-held tonometer at the wrist) 

improved the quality and accuracy of wave recordings, and thus the sensitivity for 

changes in carotid-radial PWV. 

The time course of the radial-finger PWV change appeared to be similar to the 

changes in augmentation index, and both measures appear to lag marginally behind 

the conduit artery PWV and heart rate changes. They also show persistence after the 

normalisation of carotid-radial PWV has occurred. It is possible that this is accounted 

for by local changes in flow in the smaller peripheral vessels (such as those in the 

hand), resulting in a release over the next few minutes of vasoactive substances 

which mediate the changes observed, in contrast to the large conduit vessel where 

GTN has a direct, and therefore more rapid, action. Alternatively, the relatively 

earlier effects of GTN on proximal conduit vessels, or of increased heart rate 

effecting an alteration in viscoelastic arterial wall behaviour due to changes in the 

rate of change of pressure, may themselves result in a delayed release of vasoactive 

mediators. Such mediators may have downstream effects manifest in the changes in 
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augmentation index and radial-finger PWV. The similarity in time scales between 

augmentation index and radial-finger PWV responses suggests that changes in the 

former in response to GTN are due to the behaviour of small arteries, such as those in 

the hand, rather than larger conduit vessels. 

Why an increase, rather than decrease, in radial-finger PWV? It is possible that the 

effects of blood viscosity – a determinant of PWV from the Moens-Korteweg 

equation – may be of relevance in this vascular region, with vasodilatation resulting 

in a decrease in viscosity and corresponding rise in PWV. Alternatively, dilatation of 

proximal feed arteries might be expected to result in increased downstream flow, 

regardless of constant mean systemic pressure and peripheral vascular resistance. It 

is possible that the increased flow results in direct mechanical distension of smaller 

distal vessels, accompanied by increased stiffness negating any possible local 

vasodilatation. The increase in local stiffness would be associated with an increase in 

PWV, despite mean distending pressure remaining constant. 

Clearly, these suggestions are entirely speculative, although do point to the potential 

for intriguing further work in this area. Of course, this study did not have a placebo 

control, and it may be argued that some of the changes in radial-finger PWV (and in 

particular the fact that this measure remained elevated at the end of the monitoring 

period) may reflect environmental adaptation over the course of the study, such as 

warming of the hands. However, it would appear unlikely that this accounts for the 

relative rapidity of onset of the response, and the time course is highly suggestive of 

GTN being causative. Regardless of the lack of control, and the exact mechanism 

underlying the responses demonstrated, the study suggests that the technique 

employed is able to detect small changes in transit time in a local region, and may 

therefore be extended to the study the effects of exercise. 

4.4.2 Effect of exercise on vascular and cardiac components of transit 
time 

Most measurements of PEP commence at the Q-wave (unless absent), but for pulse 

transit time measurements, the R-wave is often used as its peak is relatively simpler 

to identify. This raises the question of whether the Q-R interval remains constant. 
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The current study found no significant change in Q-R interval with exercise. The Q-

R interval was defined for the purposes of the present work as the period between 

nadir of Q-wave to peak of R-wave, and accounts for perhaps less than a third of the 

QRS duration. However, identification of the start of the Q-wave is actually more 

complicated than identification of the simple minimum of the Q-wave nadir. This is 

because it relies on accurately determining the ECG iso-electric line, and measuring 

the intersection of the start of the Q-wave with this line. This is particularly difficult 

if the iso-electric line is affected by baseline wander, as may occur during exertion. 

A similar problem applies to identifying the end of the S-wave. It has been shown 

that minimal change in the Q-R interval occurs with submaximal exercise (1.3 ± 

2.7ms) (Goldberger & Bhargava 1983) or adrenaline (Mezzacappa et al. 1999), but 

there is little other published work that specifically discusses changes in the Q-R 

interval. Increases in QRS duration of 21ms were found in subjects with marked 

myocardial ischaemia during exercise (Michaelides et al. 1993), which probably 

equates to considerably less than 10ms change in Q-R interval, but such changes do 

not appear to occur in health. 

The lack of change found in the present study may reflect the definition of Q-R 

described above (i.e. the use of the nadir rather than start of the Q-wave) resulting in 

a smaller Q-R time period that would be more difficult to identify any change in. It 

can probably be assumed that changes in Q-R interval will occur in proportion to 

changes in the overall QRS duration. However, the Q-S period, which forms a more 

substantial proportion of the true QRS duration, was also not found to change 

significantly. It can be concluded that exercise in healthy individuals does not 

significantly alter the individual QRS components, and that use of the R-wave rather 

than Q-wave is acceptable due to the constancy of the difference between them. 

The intersecting tangent method was used to determine the timing point on the 

bioimpedance waveform, as this was established in the earlier methodological 

development to be the most robust measure of PEP, and varied minimally relative to 

other points on the waveform during exertion (section 2.4.2.3). It is worthwhile 

noting, however, that PEP is comprised of both the electromechanical (EM) delay, 

and the period of isovolumic contraction. The measurement of the pre-ejection 
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period rarely involves sub-dividing it into its component subintervals, and this was 

not possible during the present study. However, Martin et al (1971) used several 

different acute interventions to induce changes in ventricular function. They found 

that externally measured PEP (which includes the EM delay) had a close linear 

correlation with invasively determined actual isovolumic contraction time. Similar 

results were found by Mezzacappa et al (1999) with the administration of adrenaline. 

This suggests that most changes in PEP are due to variation in isovolumic 

contraction time. 

Pulse wave velocity is frequency dependent; that is, the different harmonic 

components of the wave travel at different speeds. Measurements are therefore best 

made on high frequency parts of the waveform, where variations in apparent phase 

velocity are minimal. The foot of the wave is preferable as it is usually least affected 

by wave reflections (Hayward et al. 2002; Nichols & O'Rourke 1998), although the 

leading-edge can also be used. Accurately identifying the wave foot can be difficult, 

especially when there is a degree of baseline signal noise. The maximum first 

derivative (i.e. maximum rate of change) often occurs around halfway up the leading 

edge of the pulse wave (Greenfield, Jr. & Fry 1965). Identifying it is independent of 

finding the bottom or top of the wave, but it may be subject to changes in wave shape 

(Hayward et al. 2002). The peak of the second derivative (acceleration waveform) 

can be used to determine the foot of the pulse wave (Chiu et al. 1991). The 

intersecting tangent method uses a tangent drawn through a point on the leading edge, 

and determines the time at which this line intersects the baseline. The point on the 

leading edge is commonly taken as the maximum rate of change (Laszt & Muller 

1952), although a tangent through the maximum second derivative also is described 

above. A number of different approaches have been compared (Chiu et al. 1991), and 

an intersecting tangent using the maximum first derivative is generally considered 

the most reliable time point. 

The current study found a decrease in the time delay between the maximum first 

derivative and the maximum second derivative, and between the intersecting tangents 

of these two points, for the finger only, and is due to the steepening of the leading 

edge with increased cardiac contractility during exertion. There were similar trends 
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with the ear wave, and the lack of statistical significance echoes the greater 

variability in the pulse contour at this measurement site. This is particularly true of 

the middle part of the leading edge, as reflected in the high standard deviation of the 

difference between the timing of maximum first derivative and maximum second 

derivative. This variability is probably multifactorial, including variation in baseline 

perfusion of the pinna, varied blood flow increases in response to exercise, and 

inconsistent placement of the probe on the ear lobe. The proximity in time of the 

maximum second derivative and the intersecting tangent of the maximum first 

derivative accounts for the inability to detect any change in the interval between 

these two measures. The similarity in the overall time differences between ear and 

finger waves, reflects the relative consistency of the leading edge throughout the 

arterial tree (McDonald 1968; Nichols & O'Rourke 1998), in contrast to the later part 

of the waveform which is more prone to variability due to a combination of the 

effects of pulse wave amplification and wave reflections. 

At rest, the R-wave-to-finger transit time was accounted for by around 42% PEP, 

28% proximal vascular component (B-point to brachial pulse), and 15% for both 

brachial-to-radial and radial-to-finger intervals. There were decreases in the PEP and 

dZ/dt-to-brachial intervals of 38±22 and 27±12 ms respectively during exercise. The 

lack of change in distal transit time components corresponded to an increase in the 

proportion of R-wave-to-finger transit time accounted for by these intervals. 

In vitro experiments have allowed the study of the independent effects of changes in 

preload, afterload and contractility on the pre-ejection period (Nakamura et al. 1983). 

An increase in preload reduces the PEP, whereas a rise in afterload prolongs the PEP. 

An isolated increase in contractility reduces PEP. In vivo, these parameters are 

inextricably linked, but PEP appears to be primarily affected by cardiac contractility 

(Ahmed et al. 1972; Belz 1995). An increase in contractility, as occurs during 

exercise, increases the rate of change of left ventricular pressure (dP/dt), and thus 

shortens isovolumic contraction and consequently the PEP. Exercise-induced 

peripheral arterial dilatation may also contribute to the fall in PEP. 
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With respect to vascular components of transit time, there was only a substantial 

decrease in the B-point-to-brachial interval. This arterial segment encompasses a 

short portion of aorta, subclavian artery and the majority of the brachial artery, 

varying between large elastic vessel proximally, and large muscular conduit vessel 

distally. It is probable that the decrease in transit time proximally is because of an 

increase in pulse wave velocity reflecting increased arterial stiffness due to increased 

mean distending pressure. Peripheral resistance is an important determinant of mean 

pressure, and dynamic exercise causes a decrease in peripheral resistance. However, 

mean pressure is also a function of cardiac work, and can therefore be increased 

during exercise due to catecholamine-mediated increased cardiac contractility and 

the subsequent rise in systolic pressure. It is possible to find a decrease in mean 

pressure during exercise when measured using sphygmomanometry. However, this 

can be due to underestimation of diastolic pressure by this technique, and intra-

arterial pressure measurement during exertion often demonstrates an increase in 

diastolic BP (Palatini 1994). 

Mean pressure remains relatively constant throughout the arterial tree, with the 

exception of the small resistance vessels, and this remains true during exercise 

(Rowell et al. 1968). It is therefore improbable that differences in mean pressure 

account for differences between the proximal pathway and, in particular, the 

brachial-to-radial component. Differences in pulse pressure between sites also appear 

unlikely to account for the lack of change in transit time in the brachial-to-radial 

segment. Pulse amplification occurs in the peripheries, and this effect is amplified by 

exercise (Rowell et al. 1968). An increase in pulse pressure results in a greater rate of 

change of pressure and, due to the viscoelastic nature of the arterial wall, a greater 

increase in stiffness. This would correspond to an increase in pulse wave velocity 

and corresponding decrease in transit time in this arterial segment, contrary to the 

observations made above. This suggests that it is differences in the change in 

intrinsic stiffness of the arterial wall in response to exercise that account for the 

discrepancies between arterial sites. Nitric oxide is a key regulator of vascular 

function during exercise (Kingwell 2000). Exercise increases blood flow, resulting in 

increased shear stress. This induces nitric oxide release by endothelial cells, and 

leads to vasodilatation. However, inhibition of basal nitric oxide has been shown to 
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have no effect on aortic PWV, other than through changes in mean distending 

pressure (Stewart et al. 2003). It is possible that a decrease in intrinsic wall stiffness, 

perhaps mediated by nitric oxide, occurs in the peripheries rather than centrally, 

offsetting any increase in stiffness due to the rise in mean distending pressure. This 

may account for the lack of change in transit time in the brachial-radial arterial 

segment, in contrast to the decrease observed proximally. 

The lack of change in radial-to-finger transit time is perhaps unexpected given the 

large haemodynamic changes that occur with exercise, including thermoregulatory 

adaptations involving smaller blood vessels. Ostensibly, it might be concluded that 

the increase in stiffness resulting from the increase in mean arterial pressure with 

exercise, offsets the decrease in stiffness due to exercise-induced vasodilatation. 

Following exercise, mean pressure would fall, while vasodilatation persists, resulting 

in a prolongation of transit time. Although vasodilatation with GTN appears to cause 

the opposite effect, one explanation might be that exercise simply has a more 

profound effect at this arterial site, offsetting the effects of increased flow and 

pressure. 

The mechanisms underlying these responses may have particular relevance for the 

study of exercise transit time in persons taking vasoactive drugs. Beta-blockers, for 

instance, can result in a prolongation in PEP following catecholamine stimulation, 

due to α-mediated vasoconstriction (Obrist et al. 1979); the usual response is PEP 

shortening due to β1 stimulation and increased contractility. Furthermore, peripheral 

vasoconstriction may result in changes in transit time in distal arterial segments. In 

contrast, calcium channel blockers may result in greater arterial vasodilatation. 

Furthermore, rate-limiting calcium channel blockers may also significantly reduce 

cardiac contractility and heart rate, again prolonging PEP. Nitrates and other nitric 

oxide donors may cause similar effects to those observed in the GTN pilot work on 

the radial-to-finger path. It is clear, therefore, that the composite nature of the 

rPTTfinger measurement may be affected in a multitude of ways, and this may form 

the basis for future work. 
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4.4.3 Conclusion 

In conclusion, it has been shown that the principal decrease in rPTTfinger occurring 

during exercise is due to a shortening of the PEP and an increase in PWV in larger 

vessels. Although it has proven possible to measure changes in transit time between 

wrist and finger, changes in PWV in this anatomical region do not appear to 

contribute to overall changes in rPTTfinger during exercise. Further work may be 

indicated to explore, perhaps using pharmacological tools, the reasons for these 

differences. 
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5 EXERCISE PULSE WAVE VELOCITY 
MEASUREMENT USING 
PHOTOPLETHYSMOGRAPHY 

5.1 INTRODUCTION 

Pulse wave velocity (PWV) is a widely used surrogate marker of arterial stiffness 

(Woodman et al. 2005). Numerous studies have now shown a positive association 

between PWV and adverse cardiovascular outcome. Central PWV has been 

correlated with cardiovascular mortality in end-stage renal failure (Blacher et al. 

1999) and hypertension (Laurent et al. 2001), in addition to other unfavourable 

outcomes such as increased coronary events (Boutouyrie et al. 2002). Central PWV 

is increased in the presence of a number of cardiovascular risk factors, including age 

(Vaitkevicius et al. 1993), smoking (Zeiher et al. 1995), hypercholesterolaemia 

(Aggoun et al. 2000; Lehmann et al. 1992b) and type II diabetes (De Vriese et al. 

2000; Lehmann et al. 1992a). Conduit artery stiffness would also appear to be of 

importance. Reduced peripheral artery compliance has been associated with 

atherosclerotic plaque burden in coronary artery disease (Syeda et al. 2003), 

increased lipoprotein (a) levels (Schillinger et al. 2002) (associated with endothelial 

dysfunction) and risk of cardiovascular events (Grey et al. 2003). Furthermore, 

augmentation index, which is dependent on both central and peripheral vascular 

stiffness, has also been associated with increased mortality in end-stage renal disease, 

independent of central PWV (London et al. 2001), and with risk of coronary artery 

disease (Weber et al. 2004). This supports the argument that peripheral vascular 

compliance may have an important association with cardiovascular outcome. 

Importantly, these studies have involved the measurement of arterial stiffness at rest. 

However, arterial stiffness has particular relevance to exercise. Resting large artery 

stiffness, measured by various techniques including PWV, has been found to predict 

exercise tolerance in healthy subjects (Eugene et al. 1986), athletes (Kingwell et al. 

1995; Tarnawski et al. 1994), and patients with heart failure (Bonapace et al. 2003) 

or coronary artery disease (Kingwell 2002). Aerobic exercise training has been 

shown to increase arterial compliance after 1 week (Cameron & Dart 1994). 
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Impaired exercise capacity has also been associated with reduced carotid artery 

distensibility in essential hypertension (Olsen et al. 2001). Furthermore, both 

absolute and relative increases in systolic blood pressure during exercise are 

recognised as better predictors of cardiovascular risk than resting blood pressure 

(Filipovsky et al. 1992; Mundal et al. 1994; Mundal et al. 1996). Increases in 

exercise diastolic pressure have also been associated with the presence of risk factors 

(Acanfora et al. 1991; Akhras et al. 1985), although have not been shown to be 

useful prognostically (Mundal et al. 1994). 

BP and compliance are inextricably linked. The influence of resting arterial stiffness 

on exercise capacity, and the association of both resting stiffness and exercise BP 

with adverse cardiovascular outcome, suggests that changes in stiffness during 

exercise may be of importance. To date there is no established means of doing so, as 

most technologies are adversely affected by motion artefact. In section 4.3.2, it was 

shown that the radial-finger transit time is influenced minimally by exertion. It was 

decided to compare the use of photoplethysmography against applanation tonometry, 

as a means of measuring conduit vessel PWV during exertion. The technique was 

then applied in a small study comparing subjects with and without a family history of 

cardiovascular disease. 

5.2 METHODS 

5.2.1 Validation of exercise pulse wave velocity as determined by 
photoplethysmography 

18 healthy, non-smoking subjects, aged 19 to 30 years, were studied in a quiet, 

temperature controlled environment, following a 20-minute period of rest. 

Volunteers were allowed a light meal not more than 1 hour prior to the study, and 

were asked to avoid vigorous exercise on the day of the study prior to participating. 

Subjects performed a 3-stage exercise protocol, using a semi-recumbent bicycle 

ergometer (Kettler, SX1, section 2.9), with forearms supported horizontally at the 

level of the xiphisternum. Each exercise stage was heart rate targeted, lasting 3 

minutes each, with target heart rates of 50-60%, 60-70% and 70-80%, as described in 

section 2.9.1.3. Haemodynamic measurements were recorded at rest, in the last 
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minute of each exercise phase, and at 3, 5 and 10 minutes post-exercise. Blood 

pressure was recorded using a manual sphygmomanometer (section 2.8.1). Pulse 

wave velocity was recorded using photoplethysmography at the right index finger 

and right ear lobe, and by applanation tonometry at the right carotid and radial 

arteries. All waveforms were recorded simultaneously using a MacLab/400 system 

(section 2.2). 

Data were compared across time points using repeated measures ANOVA, with 

paired t-test used post hoc to compare individual time points. 

5.2.2 Effect of family history of cardiovascular disease on exercise 
pulse wave velocity 

Healthy, non-smoking male and female volunteers were recruited to participate in a 

maximal exercise test. Participants were allowed a light meal not more than 2 hours 

prior to the study. A positive family history of cardiovascular disease was defined as 

a 1st degree relative developing ischaemic heart disease, stroke, peripheral vascular 

disease or hypertension aged under 60 (males) or 65 (females) years of age. 

Subjects performed a maximal exercise stress test, using a semi-recumbent bicycle 

ergometer (Kettler SX1 or Lode Rehcor, section 2.9.1.1). Haemodynamic 

measurements were made at rest, every 3 minutes throughout exercise and for the 

first 15 minutes of recovery. Blood pressure was recorded manually. Pulse wave 

velocity was measured as described above. 

Comparisons were made between family history groups by unpaired t-test. 

5.3 RESULTS 

5.3.1 Validation of exercise pulse wave velocity as determined by 
photoplethysmography 

Average subject age was 21.9±2.8 years. 9 subjects were male. Median workloads at 

the 3 exercise stages were 50W, 110W and 170W. Haemodynamic measurements are 

shown in Figure 5.1, and are discussed below. 
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Carotid-radial transit time (TTCR) changed significantly from a baseline of 

80.1±5.5ms over the experimental time course (p=0.029, repeated measures 

ANOVA). TTCR was significantly (p<0.01, paired t-test) decreased from baseline at 

all exercise time points. Peak change occurred at stage 3 of exercise (68.2±8.4ms, 

p=0.001), and TTCR had returned to baseline by 5 minutes recovery. 

Ear-finger TT (TTEF) also significantly changed from a baseline of 88.4±11.0ms over 

the course of the study (p=0.01, rmANOVA). TTEF was significantly decreased at 

stages 2 (81.4±10.8ms, p=0.027) and 3 (78.3±11.1ms, p=0.016) of exercise, and 

remained depressed at 10 minutes recovery (82.9±9.4ms, p=0.027). 

Carotid-ear (TTCE) and radial-finger (TTRF) transit time remained relatively constant 

over the period of exercise and recovery. However, although no significant changes 

in TTRF were seen (p=0.12, rmANOVA), TTCE showed slight variability over the 

study period (p=0.009, rmANOVA). Post-hoc analysis demonstrated that this was 

entirely accounted for by a small increase in TTCE at the end of recovery, relative to 

baseline (+4.5±6.4ms, p=0.02). 

TTEF was significantly greater (p≤0.022) than TTCR at all time points, with the 

exception of the end of recovery (p=0.06), the latter accounted for by a slight 

increase in TTCE. However, the difference between these two TT measures did not 

vary over the course of the experiment (p=0.47, rmANOVA). Furthermore, the 

change from baseline in both TTEF and TTCR was not statistically different (p=0.12, 

rmANOVA) between the two methods. 

Both PWVCR and PWVEF were significantly (p<0.05) increased at stages 2 and 3 of 

exercise. PWVCR increased from 6.89±0.67ms-1 at rest to 8.29±0.63ms-1 at peak 

exercise (p=0.002). PWVEF increased from 7.77±0.89ms-1 at rest to 8.85±1.42ms-1 at 

peak exercise (p=0.024). PWVCR had returned to baseline after 5 minutes recovery, 

but PWVEF was still elevated at 10 minutes recovery (8.29±0.94ms-1, p=0.027).
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Figure 5.1. Effect of exercise on photoplethysmograph and tonometers measures 
of transit time 
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Changes in different measures of transit time at rest (0 min), increasing exercise 
(3-9 min) and recovery (12-19 min). Values are mean ± standard error. 
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A, absolute values of transit time. B, change from baseline of transit time.C, 
absolute values of PWV. D, change from baseline of PWV. E, difference between 
carotid-radial and ear-finger PWV. F, Bland-Altman plot comparing carotid-
radial and ear-finger PWV; different symbols represent different experimental 
time points. 
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Overall, PWVEF was significantly higher than PWVCR by an average of 

0.81±1.05ms-1 (p<0.001, paired t-test). This difference was not significant at peak 

exertion (8.9±1.3 vs. 8.3±1.3 ms-1, p=0.15), and was greatest at 10 minutes recovery 

(1.2±1.0ms-1, p<0.001). However, the degree of difference between the two measures 

did not vary over the experiment (p=0.42, rmANOVA). Furthermore, the change 

from baseline did not vary significantly between PWVCR and PWVEF over the 

duration of the experiment (p=0.20, rmANOVA). 

5.3.2 Effect of family history of cardiovascular disease on exercise 
pulse wave velocity 

Subject characteristics are shown in Table 5.1. Subjects were well matched, although 

the negative family history group were on average slightly older. Haemodynamic 

parameters are shown in Table 5.2. There were no significant differences in baseline 

blood pressure (including mean pressure), heart rate or pulse wave velocity. 

Furthermore, no significant differences were found between these parameters at peak 

exercise. However, pulse wave velocity was slightly lower at rest and higher at 

maximum exertion in the positive family history group, resulting in a significantly 

greater (+1.18 ± 0.54 ms-1, p=0.035) increase in PWV in subjects with a positive 

family history. 

Table 5.1. Subject characteristics 
 Cardiovascular family history  
 Negative (N=24) Positive (N=14) p value 
Male 13 (54%) 6 (43%) 0.28* 
Age (years) 24.5 ± 2.6 22.8 ± 1.5 0.023 
Weight (kg) 67.3 ± 8.4 65.4 ± 12.3 0.61 
BMI (kg/m2) 23.8 ± 4.1 22.0 ± 2.8 0.21 
Peak workload (W) 234 ± 83 251 ± 94 0.42 
BP (mmHg) 123/73 ± 16.5/7.6 120/74 ± 11.2/5.9 >0.51 
Values are mean ± standard deviation or N (%). * binomial test. 
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Table 5.2. Effect of cardiovascular family history on haemodynamic responses to exercise 
  Family history   
  Negative Positive Difference p value 

Baseline 123/73 ± 16.5/7.6 120/74 ± 11.2/5.9 -3.4/+0.9 ± 5.2/2.5 >0.51 
Peak exercise 183/71 ± 30.9/13.7 179/77 ± 15.9/17.5 -4.6/+5.7 ± 8/5.4 >0.29 Blood pressure 

(mmHg) Change 62/-1.5 ± 23.5/14.3 59/3.2 ± 14.9/18.6 -2.9/+4.7 ± 6.6/5.7 >0.41 
      

Baseline 92 ± 7.3 94 ± 7.6 +2.4 ± 2.6 0.30 
Peak exercise 113 ± 19.1 121 ± 14.5 +7.9 ± 6.2 0.14 

Mean arterial 
pressure 
(mmHg) Change 21.5 ± 18.1 26.8 ± 14.5 +5.3 ± 5.9 0.66 
      

Baseline 68 ± 16.3 73 ± 15.1 +5.7 ± 5.4 0.37 
Peak exercise 160 ± 22.2 169 ± 12.6 +8.9 ± 5.8 0.21 Heart rate 

(bpm) Change 93 ± 22.3 96 ± 18.6 +3.1 ± 7.2 0.38 
      

Baseline 11.3 ± 1.7 10.6 ± 1.6 -0.67 ± 0.57 0.25 
Peak exercise 13.1 ± 1.8 13.6 ± 2.3 +0.52 ± 0.68 0.46 Pulse wave 

velocity (ms-1) Change 1.8 ± 1.4 3.0 ± 1.9 +1.18 ± 0.54 0.035 
Values are mean±SD. Difference is mean±SD between family history groups. Significance is calculated by unpaired t-
test. 
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5.4 DISCUSSION 

This study demonstrated that relative changes in PWV during exercise, measured 

using photoplethysmography at the finger and ear, closely matched changes in PWV 

determined by tonometry at the carotid and radial arteries. However, the former 

method consistently overestimated carotid-radial PWV. Furthermore, the limits of 

agreement between methods were substantial. As was noted in Chapter 4, there was 

minimal change in the distal radial-finger and carotid-ear components. The 

application of this methodology in a small population with and without a family 

history of cardiovascular disease, suggests that change in PWV may be positively 

associated with increased cardiovascular risk, independent of BP change. 

5.4.1 Validation of ear-finger PWV 

Previous work has been carried out using photoplethysmography to measure PWV. 

Greenwald first described the use of reflection PPG for timing the pulse wave at the 

radial and femoral arteries, comparing the technique against doppler and invasive 

aortic measurements (Greenwald et al. 1997). Loukogeorgakis et al (2002) used a 

reflection PPG probe placed over the radial and dorsalis pedis arteries, and found 

transit time values to compare favourably with those recorded using doppler 

ultrasound at the same sites (mean bias +8.6ms, 95% limits of agreement -27 to 

+45ms). They also found wrist-ankle transit time was similar to invasively 

determined aorto-iliac transit time (0ms, -22 to +22ms). Linear correlations with 

doppler and, to a lesser degree, invasive measurements were strong (r=0.95 and 0.83 

respectively). More recently, Tsai and colleagues (2005) found that finger-toe PWV 

measured using PPG correlated with carotid-femoral tonometer PWV (r=0.67). They 

found both tonometry and PPG PWV gave higher values for hypertensive and 

dyslipidaemic subjects, compared with those without those risk factors. They did not 

compare measures in terms of bias/limits of agreement, which would seem 

appropriate given the different path lengths examined. The similarities found by both 

studies with aortic transit time is interesting due to the prognostic relevance of aortic 

PWV. It may suggest that arm and leg segments of the path length negate each other, 

making the PPG measures largely dependent on aortic (rather than conduit) stiffness. 

Foo and Lim have also described changes in PPG in response to changes in posture 
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but have not compared this with other recording modalities (Foo & Lim 2006). 

Nitzan et al found an increase in finger-toe PPG PWV with age, but did not compare 

the technique against other measures (2002). Other groups have used PPG for timing 

measurements. Allen and Murray measured rPTT for finger, ear and toe, and found 

that all decreased with age (2002). rPTTfinger has also been used as a measure of 

compliance in diabetes (Cameron et al. 2003). However, these studies did not take 

into account pre-ejection period, and the former did not comment on the delay 

between different sites. 

There have been few previous attempts at measuring PWV during exercise; this is 

undoubtedly due to the practical aspects of obtaining satisfactory signal recordings 

during movement. Although this hurdle can be theoretically overcome by the use of 

invasive catheter-tip pressure transducers, this solution clearly introduces new 

problems relating to safety, practicality and availability. The presence of a catheter in 

the femoral artery also restricts leg exercise. Alternatively, Siche et al described the 

measurement of PWV during exercise by doppler ultrasound at the subclavian artery 

and abdominal aorta (Siche et al. 1989b; Siche et al. 1989a). They found no 

significant differences in PWV at different stages of exercise with age or with 

presence or absence of hypertension, although PWV was significantly higher in 

hypertensive subjects during recovery (Siche et al. 1989b). This technique could 

potentially be extended to include the radial artery as a distal measurement site, 

allowing both central and conduit vessel PWV to be determined. The main hurdle is 

the expertise required to obtain good flow recordings – this can be a challenge at rest, 

and although the reproducibility was actually considered better during exercise 

(Siche et al. 1989a), the technical skill required cannot be underestimated. Other 

groups have described the measurement of PWV in the immediate post-exercise 

phase. Following acute dynamic exercise, Kingwell used whole body compliance 

(Liu et al. 1986) and both leg and aortic pulse wave velocity to demonstrate that 

arterial stiffness decreases in healthy subjects (Kingwell et al. 1997). Regional 

differences in the recovery response have also been demonstrated using a technique 

employing semi-occlusive blood pressure cuffs situated proximally and distally on 

both upper and lower limbs (Naka et al. 2003), with PWV in the latter showing a 
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greater decrease around 10 minutes post-exercise. However, neither of these 

techniques are particularly suited to use during exercise. 

To date, only one other study has described the use of PPG to measure PWV during 

exercise. Nottin et al used a combination of Doppler ultrasound at subclavian and 

brachial arteries, and PPG at the finger, to determine upper limb PWV. They found 

subclavian-to-finger PWV to be reproducible (coefficient of variation 2.9%), 

although acknowledged the difficulties in obtaining satisfactory Doppler signal 

quality. They also attempted to measure subclavian-to-brachial PWV using 

sequential Doppler recordings, but the coefficient of variation was considerably 

greater (15.7%)  (Nottin et al. 2006). 

Exercise has been shown to have a minimal effect on the distal transit time 

components, meaning that change in the overall ear-finger transit time largely 

reflects changes in conduit vessel mechanics. Furthermore, the fact that the ear-finger 

path length is subtractive rather than sequential (i.e. they are both in opposite 

directions from one another), means that the distal components of transit time cancel 

each other out to a certain degree. Nonetheless, there are unresolved issues regarding 

the use of photoplethysmography for measurement of exercise PWV. One problem is 

the possible effect of skin temperature and environmental factors. With prolonged 

exercise, gradual changes in the radial-to-finger or carotid-to-ear time interval may 

occur that were not evident with the above study, independent of any change in 

conduit artery PWV. Furthermore, there appeared to be a slight increase in the 

difference between methods post-exercise. This may have reflected post-exercise 

vasodilatation primarily affecting the distal vessels – this potential lack of constancy 

in the distal arterial path could result in measurement inaccuracy. With respect to the 

methodology employed in the current study, the use of carotid artery tonometry is a 

limitation. Recording of accurate carotid signals proved extremely difficult at high 

work levels due to excessive motion artefact including both respiratory effort and 

trunk movement during pedalling. By using a 10-second recording time, this allowed 

for at least 20 pulse complexes to be captured, over around 3 respiratory cycles. The 

maximum slope of the pulse leading edge is moderately well preserved during 

exercise, and by use of an intersecting tangent through this point, timing points could 
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be identified with reasonable confidence. The relatively large number of pulse waves 

measured averages out further measurement error. Nonetheless, the rather large 

limits of agreement between the two techniques are mainly accounted for by 

variability in the timing of the carotid wave. Importantly, however, the differences 

between techniques remained similar at both high and low workloads, despite 

considerably less carotid artefact during less intense exercise. Although this is 

partially reassuring, it is not possible to discount the chance that bias introduced by 

poor quality carotid recordings masked genuine differences between methods. The 

considerable overall bias between methods means that it is not possible to simply 

substitute ear-finger measurements for those made by tonometry. However, the 

relative changes in ear-finger PWV mirrored changes in tonometry values quite 

accurately. Indeed, by calibrating the photoplethysmography technique using resting 

measurements of PWV obtained by tonometry, it may still be possible to estimate 

absolute values of conduit artery PWV. 

Unfortunately, the technique is limited to measurement of PWV in an inactive limb. 

As demonstrated by Naka et al, regional differences in PWV occur in the recovery 

period (2003), and it is therefore probable that this extends to during exercise too. 

Limb movement results in excessive sensor artefact, and also results in a cyclical 

artefact related to repetitive body movements causing inertial blood flow. The latter 

artefact in particular completely obscures pulsation related to the cardiac cycle, 

preventing the sensor being placed on the toe during pedalling. This latter problem 

also limits the technique to treadmill or similar exercise, as movement of the hand 

and head during running are not compatible with satisfactory signal acquisition. 

Central PWV measurement is also not possible. However, coupling the ear 

measurement with bioimpedance, may allow for the aortic-carotid PWV to be 

determined, and this is a potential area for future work. 



128 

5.4.2 Finger-ear PWV as a marker of cardiovascular risk 

The finding that young, healthy persons with a family history of cardiovascular 

disease, had a greater increase in ear-finger PWV than controls with no family 

history, is of potential importance as a means of predicting cardiovascular outcome. 

As discussed earlier, resting arterial stiffness is felt to offer prognostic information 

independent of resting blood pressure (Blacher et al. 1999; Boutouyrie et al. 2002; 

Grey et al. 2003; Laurent et al. 2001), and exercise blood pressure is felt to be a 

more powerful marker of cardiovascular risk than resting pressure (Filipovsky et al. 

1992; Mundal et al. 1994; Mundal et al. 1996). Therefore, the hypothesis that 

exercise arterial stiffness may be of even greater use than these alternative measures, 

is of interest, and is supported by the present study. One key vascular mediator 

released during exercise is nitric oxide, and it is possible that impaired endothelial 

function in the higher risk population, was associated with a failure of the usual 

exercise-induced nitric oxide release, resulting in a greater increase in intrinsic wall 

stiffness despite similar increases in blood pressure in both groups. It is worthwhile 

noting, that although baseline values of PWV were not significantly different, there 

was a slight tendency for resting PWV to be lower in the positive family history 

group. This does raise the question of whether the study was underpowered to detect 

a genuine difference at baseline. 

As the study was very small, the results must be interpreted with caution. A similarly 

sized study, showed differences in exercise BP between groups with and without a 

cardiovascular family history (Bond, Jr. et al. 1994), and indeed was the basis for 

powering the present study. The failure to find a change in blood pressure in the 

current work may simply represent the more heterogenous population studied. The 

population had a relatively narrow age range and all were healthy non-smokers, but 

both sexes were represented, and the diversity that this may have introduced could 

have obscured important differences. The age was slightly greater in the group with 

no family history, although if anything this might be expected to have reduced the 

difference in outcome measure. Unfortunately, lipid profiles could not be obtained on 

the majority of subjects due to technical problems. 
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5.4.3 Conclusion 

It has been shown that relative changes in ear-finger PWV during exercise, reflect 

changes in conduit artery PWV measured by conventional tonometry. It is possible 

that this measure may be a useful marker of cardiovascular risk. There is the need to 

carry out further validation work on subjects with and without CV risk factors, 

during and after prolonged exercise, and in the presence of cardiovascular-active 

drugs. The utility of the technique as a method for risk stratification should also be 

studied in a larger population. 
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6 EFFECT OF EXERCISE ON THE ARTERIAL 
TRANSFER FUNCTION 

6.1  INTRODUCTION 

Exercise is an important aspect of everyday life, and peripheral blood pressure (BP) 

during exertion is recognised as a marker of cardiovascular risk (Filipovsky et al. 

1992; Kurl et al. 2001; Mundal et al. 1996; Singh et al. 1999), independently of 

resting peripheral BP. From the pathophysiological perspective, central BP is likely 

to be more relevant than peripheral BP for the development of cardiovascular disease, 

and there is increasing evidence that resting central pressure may be a stronger 

predictor of vascular events and disease severity than brachial pressure (Roman et al. 

2007). This may well also be true during exercise. Increased arterial stiffness 

augments central systolic pressure due to effects on wave reflections (Nichols & 

O'Rourke 1998). This results in greater pulsatile stress in the aorta, leading to 

structural changes, remodelling and atherogenesis (Nichols & O'Rourke 1998). It 

also increases left ventricular afterload and myocardial oxygen consumption (Kelly 

et al. 1992). Furthermore, the decrease in augmentation and the rapid decay in 

diastolic pressure, compromise myocardial perfusion which occurs predominantly 

during diastole (Watanabe et al. 1993). These factors are of particular importance 

during exercise, when large changes occur in cardiac work and vascular function. 

However, marked differences exist between central and peripheral BP (Kroeker & 

Wood 1955), due to systolic pressure amplification in the peripheral vessels, and 

these differences are amplified by exercise (Rowell et al. 1968). At present, however, 

there is no established way of measuring central BP during exertion. 

To overcome the difficulties associated with invasive measurement of central 

pressure, transfer functions have been developed to derive the aortic pressure 

waveform from peripheral artery waveforms (Karamanoglu et al. 1993). A transfer 

function is a mathematical description of the change in the magnitude and phase of 

different frequency components between the input and output signals of a system 

(section 1.4.3). It can thus be used to estimate pressure waveforms in inaccessible 

arteries (e.g. the aorta) from more readily accessible sites (e.g. the radial artery). A 
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generalised radial-to-aortic transfer function (GTF) assumes that the properties of the 

upper limb arteries are virtually identical between individuals. The transfer function 

has indeed been shown to remain relatively constant in subjects with coronary heart 

disease (Chen et al. 1997), even after the administration of vasoactive drugs (Pauca 

et al. 2001; Segers et al. 2001; Soderstrom et al. 2002). Derived aortic waveforms 

obtained using this method have been shown to relate to cardiovascular outcome 

(Weber et al. 2004; Williams et al. 2006). Although this technique might therefore 

be seen as a potential method of determining central BP during exercise, most of the 

validation studies to date have been in males undergoing diagnostic cardiac 

catheterisation. Discrepancies in the transfer function have been demonstrated 

between men and women (Hope et al. 2002), diabetic and non-diabetic populations 

(Hope et al. 2004), and persons with and without coronary disease (Segers et al. 

2000). The large increases in mean distending pressure and intrinsic arterial wall 

stiffness that occur with exertion might also be expected to alter the transfer function, 

with an increase in the velocity of higher frequency harmonics. This would result in 

greater convexity of the derived waveform, and a relatively lower systolic peak for 

any given diastolic and mean pressure. Using the finger pulse as an alternative means 

of predicting the pressure pulse contour is also attractive, due to the simplicity and 

widespread availability of photoplethysmography. However, marked changes in 

smaller arteries such as those in the hand occur during exercise, and these may be 

expected to significantly alter the transfer function under these circumstances. 

The following study examined healthy volunteers undertaking moderately strenuous 

aerobic exercise, to address the hypothesis that a peripheral-to-central arterial 

transfer function derived at rest would underestimate central pressure immediately 

after exercise. It also studied the effects of exercise on the finger-to-radial transfer 

function, which not only has relevance to derivation of conduit artery pressure 

waveforms using the finger wave, but by extension of the prior hypothesis has a 

bearing on the estimation of central pressure. 
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6.2 METHODOLOGY 

30 healthy male volunteers with variable exercise capacity, aged 18 to 31, were 

recruited. Studies were conducted in a quiet, temperature controlled (22±2°C) 

environment. Subjects avoided eating for 3 hours prior to the study. 

Following an initial rest period of rest, baseline measurements of central (carotid-

femoral) and conduit (carotid-radial) arterial pulse wave velocity were made in the 

supine position, as described in section 2.7. Subjects then transferred to a semi-

recumbent cycle ergometer (SX1, Kettler) with all further measurements made in the 

sitting position. Central pressure was determined non-invasively at the carotid artery. 

Blood pressure, heart rate, carotid, radial and finger waveforms were recorded before, 

and immediately (within 1 minute) and 10 minutes after, aerobic exercise. A heart-

rate targeted exercise protocol was used as described in section 2.9.1.3, until the 

heart rate reached 65-70% of the individual’s estimated maximum. Pedal cadence 

was maintained between 70 to 100 rpm. Once the target heart rate was achieved, the 

associated workload was maintained for a further 15 minutes. 

BP was recorded using an automated sphygmomanometer (section 2.8.2). PWV was 

measured by sequential 10 second-recordings of the radial, carotid and femoral artery 

waveforms using an SPT301 tonometer (section 2.5.1). Simultaneous non-invasive 

carotid, radial and finger waveforms were recorded using hand-held tonometry 

(SPT301), automated tonometry (CBM7000, Colin Medical) and 

photoplethysmography respectively, over around 30 seconds. Carotid waveforms 

were acquired on the right side with the subject looking straight ahead and 

minimising respiratory excursions to reduce movement artefact. Both forearms were 

supported at the level of the xiphisternum, with a splint positioned over the dorsal 

aspect of the right wrist to minimise movement during radial waveform recording. 

Signals were digitised at 1kHz using a DAQCard 6036E as described in section 2.2. 

10-second simultaneous radial and carotid waveform segments were selected for the 

rest and immediate post-exercise phases, using visual inspection to ensure signal 

stability and to exclude artefact. Transfer functions were computed from these 

waveforms for each individual subject and both time points, as described in section 
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2.5.3.3, and averaged to obtain resting and exercise specific generalised transfer 

functions (GTFrest and GTFexercise) for both finger-to-radial and radial-to-carotid 

transformations. To address the potential for bias resulting from the application of a 

GTF derived from the same set of data as that to which it is subsequently applied, 

additional transfer functions (GTFrest-2, GTFexercise-2) were calculated using data from 

a subset (N=10) of the study population and applied to the remaining individuals. In 

addition, an independently generated radial-to-carotid GTF obtained from the 

SphygmoCor system (GTFsphygmocor) was applied to all subjects’ data. GTFs were 

applied to the relevant measured waveforms at each experimental time point. 

Measured and derived ensemble-averaged waveforms were analysed to obtain values 

of systolic BP, augmentation index, timing of the dicrotic notch (TDN), maximum 

dP/dt, and the timing of incident and reflected waves (T1 and T2 respectively). 

Results are expressed as mean ± standard deviation, and difference in means as mean 

difference ± standard error. Waveform measurements were compared using paired t-

tests. The area under the curve for the 0 to 10 Hz phase and magnitude components 

of GTFrest and GTFexercise were compared by paired t-tests. 

6.3 RESULTS 

Subject characteristics are shown in Table 6.1, and changes in peripheral 

haemodynamic variables in Table 6.2. Volunteers had normal resting BP, and normal 

resting central and conduit artery PWV. As expected, there were significant increases 

in heart rate, diastolic BP, and mean pressure. Systolic BP, AIx, maximum slope and 

dicrotic notch pressure also increased at all measurement sites. T1 and TDN decreased 

for at all measurement sites. T2 decreased at the finger and carotid artery, but did not 

fall significantly at the radial artery. AIx and TDN remained significantly different 

from baseline at 10 minutes recovery at all sites. SBP also remained significantly 

elevated after 10 minutes at the carotid artery and finger, but not the radial artery. 

Maximum slope remained significantly elevated at the radial artery only. 
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Table 6.1. Subject characteristics (N=30) 
Age (years) 22.3 (2.4) PWV (ms-1)  
Height (cm) 177 (9)  carotid–femoral 6.2 (1.1) 
BMI (kg.m-2) 22.9 (2.6)  carotid–radial 8.2 (1.1) 
FHx CVD (N, %) 10 (33%) Resting HR (bpm) 72 (11.3) 
Resting BP (mmHg) 119/69 (8.0/6.4) Peak exercise work (W) 84 (18) 
Values are mean (SD). BMI, body mass index; FHx CVD, family history of 
cardiovascular disease in first degree relative aged 65 years or less; PWV, pulse 
wave velocity, HR, heart rate. 

 

Table 6.2. Haemodynamic changes with exercise 
Variable Rest Immediately post-

exercise 
10 minutes post-

exercise 
Heart rate (bpm) 72 ± 11.3 131 ± 8.1‡ 85 ± 11.9* 
DBP (mmHg) 69 ± 6.4 89 ± 33.3† 75 ± 9.8† 
MAP (mmHg) 86 ± 7.4 117 ± 29.4‡ 91 ± 9.5† 
    
Finger volume wave    
 SBP (mmHg) 111 ± 11.7 167 ± 31.1‡ 115 ± 11.6* 
 AIx (%) 32 ± 13.9 46 ± 13.0‡ 39 ± 13.8† 
 Max. slope (mmHg.s-1) 512 ± 125 1009 ± 370‡ 474 ± 126 
 TDN (ms) 278 ± 17 256 ± 20‡ 263 ± 18† 
 T1 (ms) 110 ± 8 101 ± 10‡ 109 ± 8 
 T2 (ms) 211 ± 16 200 ± 17‡ 204 ± 17 
    
Radial pressure wave    
 SBP (mmHg) 119 ± 8.0 177 ± 30.2‡ 121 ± 10.6 
 AIx (%) 57 ± 14.6 66 ± 13.2† 62 ± 12.3† 
 Max. slope (mmHg.s-1) 705 ± 91 1292 ± 458‡ 630 ± 140* 
 TDN (ms) 269 ± 18 241 ± 23‡ 253 ± 19‡ 
 T1 (ms) 88 ± 7 84 ± 8† 90 ± 7 
 T2 (ms) 202 ± 13 198 ± 14 202 ± 12 
    
Carotid pressure wave    
 SBP (mmHg) 105 ± 10.3 157 ± 30.6‡ 110 ± 11.9† 
 AIx (%) 18.9 ± 12.2 36 ± 14.8‡ 29 ± 12.5‡ 
 Max. slope (mmHg.s-1) 477 ± 121 1038 ± 466‡ 485 ± 139 
 TDN (ms) 270 ± 17 240 ± 21‡ 252 ± 19‡ 
 T1 (ms) 106 ± 15 87 ± 19‡ 101 ± 19 
 T2 (ms) 191 ± 16 173 ± 19‡ 185 ± 17 
DBP, diastolic BP; MAP, mean arterial BP; SBP, systolic BP; AIx, augmentation 
index; TDN, timing of dicrotic notch; T1, timing of incident wave; T2, timing of 
reflected wave; * p<0.05, † p<0.01, ‡ p<0.001, significant difference from rest. 
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6.3.1 Radial-carotid generalised transfer function 

Differences between measured carotid parameters, and carotid values derived from 

the radial artery (including those obtained using GTFsphygmocor), are shown in Figure 

6.1. 

At rest, there were no significant differences between any measured and GTFrest-

derived parameters. GTFsphygmocor also showed no significant differences from 

measured values at rest, with the exception of TDN which was overestimated by 

9.9±1.7ms (p<0.001). In particular, GTFrest and GTFsphygmocor were not significantly 

different from actual measured values of either SBP (0.0±0.9 mmHg, 

p=0.96; -0.2±0.9 mmHg, p=0.83 respectively) or AIx (0.4±2.8%, p=0.9; 2.1±2.8, 

p=0.47). GTFexercise overestimated SBP (2.5±1.0 mmHg, p=0.02), AIx (11.3±3.0%, 

p=0.001) and maximum dP/dt (89.9±21.3 mmHg.s-1, p<0.001), and underestimated 

TDN (-7.9±1.8 ms, p<0.001) and T1 (-10.7±4.4 ms, p=0.024). 

Immediately after exercise, GTFrest and GTFsphygmocor significantly underestimated 

SBP (-5.8±2.1 mmHg, p=0.01; -5.6±1.9 mmHg, p=0.007 respectively), AIx 

(-8.3±2.9%, p=0.008; -11.6±2.8%, p<0.001) and maximum dP/dt (-161.8±65.6 

mmHg.s-1, p=0.021; -214±62 mmHg.s-1, p<0.001), and significantly overestimated 

TDN (23.8±5.3ms, p<0.001; 14.7±3.2ms, p<0.001). These errors persisted at 10 

minutes, albeit to a lesser degree. T1 and T2 were overestimated by GTFrest (but not 

GTFsphygmocor) immediately post-exercise only (15.7±3.7ms, p<0.001; 16.5±6.0ms, 

p=0.010, respectively). Values of all parameters derived using GTFexercise 

demonstrated no significant bias either immediately or 10 minutes after exercise. 

Similar findings were found using GTFrest-2 and GTFexercise-2 to those described above. 

Carotid waves derived at rest using GTFrest-2, or immediately or 10 minutes after 

exercise using GTFexercise-2, showed no significant bias from measured values of AIx, 

SBP, maximum dP/dt, TDN or T1. GTFrest-2 underestimated AIx, SBP and maximum 

dP/dt, and overestimated TDN and T1 immediately 

(-15.4±4.5%, -7.5±2.3mmHg, -186±61mmHg.s-1, 22.1±4.3ms, 15.0±5.9ms, 

respectively; p≤0.025) and at 10 minutes post-exertion (-10.9±3.5%, -3.9±1.0mmHg, 

-92±24mmHg.s-1, 22.9±3.4ms, 14.6±5.6ms; p≤0.022). In contrast, GTFexercise-2 
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overestimated AIx (14.1±5.4%, p=0.025), SBP (4.6±1.6mmHg, p=0.013) and 

maximum dP/dt (117±37mmHg.s-1, p=0.009), and underestimated TDN (-12.3±4.2, 

p=0.013) at rest. Exercise did not affect the estimation of T1 by GTFexercise-2, or 

estimation of T2 by either GTFrest-2 or GTFexercise-2. 

Radial-carotid GTFrest, GTFexercise, and GTFsphygmocor are shown in Figure 6.2. There 

was a significant decrease in gain (p=0.001) and a positive phase shift (p=0.012) in 

GTFexercise compared to GTFrest, over 0 to 10 Hz. 
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Figure 6.1. Difference in carotid parameters derived from radial wave, relative to
actual measured carotid values 
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Figure 6.2. Radial-to-carotid transfer functions 
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6.3.2 Finger-radial generalised transfer function 

Differences between measured and derived (from the finger wave) radial parameters 

are shown in Figure 6.3. 

Radial values derived using GTFrest were not significantly different from measured 

resting values for any parameter. However, GTFrest significantly overestimated SBP 

(6.9±2.6 mmHg, p=0.015), maximum dP/dt (123.4±53.2 mmHg.s-1, p=0.029) and 

TDN (8.6±2.8 ms, p=0.005) immediately after exercise, although only TDN remained 

significantly different at 10 minutes (3.9±1.1 ms, p=0.001). 

GTFexercise-derived waveforms showed a significantly lower AIx (-6.3±2.1%, 

p=0.005) at rest, but other parameters (SBP, maximum dP/dt, TDN, T1, T2) were not 

significantly different from measured values. GTFexercise demonstrated no significant 

bias in any parameter immediately post-exercise. At 10 minutes recovery, however, 

GTFexercise underestimated SBP (-2.7±0.9 mmHg, p=0.007) and maximum dP/dt 

(-42.7±13.6 mmHg.s-1, p=0.004), and overestimated T2 (5.6±1.4 ms, p<0.001). 

GTFrest-2 and GTFexercise-2 did not reflect the findings with GTFrest and GTFexercise, 

with exercise not affecting the bias of either GTFrest-2 or GTFexercise-2. 

Finger-radial GTFrest and GTFexercise are shown in Figure 6.4. There were no 

significant differences in gain or phase, as determined by AUC for <10Hz, between 

the two transfer functions. 
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Figure 6.3. Difference in radial parameters derived from finger wave, relative to 
actual measured radial values 

-6

-4

-2

0

2

4

6

8

10

12

Sy
st

ol
ic

 B
P

 (m
m

H
g)

 

-10

-8

-6

-4

-2

0

2

4

6

A
ug

m
en

ta
tio

n 
in

de
x 

(%
)

 

-100

-50

0

50

100

150

200

Rest Immediately
post-exercise

10 minutes
recovery

M
ax

im
um

 s
lo

pe
 (m

m
H

g.
s-1

)

 

0

2

4

6

8

10

12

T D
N
 (m

s)

 

-4

-3

-2

-1

0

1

2

3

4

T 1
 (m

s)

 

-6

-4

-2

0

2

4

6

8

Rest Immediately
post-exercise

10 minutes
recovery

T 2
 (m

s)

 
Values are mean±SE (N=30). Bars represent GTFrest (grey) and GTFexercise (white). 
* p<0.05, † p<0.01, ‡ p<0.001, significant difference from measured value. 

* 

* 

†

†

†

‡ 

† 

† 



142 

Figure 6.4. Finger-to-radial transfer functions 
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6.4 DISCUSSION 

The current study is the first to describe the effects of exercise on the peripheral-to-

central and radial-to-finger transfer function in young, healthy adults. It demonstrates 

that if a peripheral-to-central arterial transfer function obtained at rest, is used to 

derive central waveform parameters immediately after exercise, various derived 

central pressure parameters will be biased. In particular, the key measures of central 

pressure load, central systolic BP and augmentation index, are underestimated after 

exercise. The effect of exercise on the peripheral-to-central transfer function is still 

present 10 minutes after stopping exercise. Although the use of an exercise-specific 

transfer function improves this estimation, it does not hold at rest. The effect of 

exercise on the finger-to-radial transfer function is less clear-cut, but appears to result 

in an overestimation of estimated systolic pressure with associated increase in the 

maximal leading edge slope, and an ensuing fall-off in pressure in diastole. Many of 

these changes appear to resolve within 10 minutes of cessation of exercise. 

Peripheral-to-central transfer functions provide an attractive means of determining 

aortic pressure non-invasively, and their use during exercise is of particular interest 

as there are relatively few data on the effects of exertion on central haemodynamics. 

Exercise has marked effects on the stiffness of the arterial wall, both through an 

increase in distending mean BP (particularly at higher levels of exertion), and by 

effects on the intrinsic properties of the arterial wall due to the release of various 

local and systemic vasoactive mediators. Furthermore, increased heart rate is 

associated with an increased rate of change of pressure, and may therefore increase 

stiffness because of the viscoelastic nature of the arterial wall (Bergel 1961b). The 

change in gain and phase of the transfer function following exercise is probably 

accounted for by a combination of these factors. It is not entirely clear whether the 

resulting bias demonstrated in this study of -5.8 mmHg central systolic BP and -8.3% 

AIx, is great enough to be of clinical relevance. The discrepancies are similar to or 

greater than the differences in these parameters observed at rest in populations with 

and without cardiovascular disease (Weber et al. 2004), or resulting from different 

therapeutic agents (Asmar et al. 2001). The disagreement corresponds to an 

inaccuracy of only approximately 3.7% for SBP, although 11.1% of the overall 
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central SBP range. The relative error in AIx is considerably greater at approximately 

23% of the peak AIx value. If the error across the populations remains relatively 

constant, then this is of less concern, although the advantage of using a GTF in the 

first place is somewhat defeated. It is also uncertain, however, whether drug 

treatment or other interventions such as exercise training, may alter the GTF 

response to exercise (and thus the degree of underestimation of central 

haemodynamics) in an unpredictable manner. 

The finger volume wave has been used to derive the radial pressure wave at rest 

(Millasseau et al. 2000), including following administration of GTN. This has not 

previously been extended to exercise, although work has been done describing the 

relationship between finger pressure pulse and aortic pulse wave (Stok et al. 2006). 

The current study suggests that exercise results in changes in transfer function that 

generate a more convex wave contour. However, these changes are relatively short-

lived. Furthermore, the variability in finger-to-radial transfer function gain, 

particularly at higher frequencies, is considerably greater than that for the radial-to-

carotid transfer function, and differences in rest and exercise transfer function were 

not apparent from analysis in the frequency domain. It is therefore difficult to know 

whether or not these findings are of significant practical relevance. The timing of 

derived wave components was affected only minimally, whereas pressure was more 

markedly altered. This is reflected in the greater (albeit, not significantly) transfer 

function gain during exercise, with less variation in phase shift. Of note, although 

prediction of blood pressure during exercise using the volume wave is arguably of 

little use, systolic pressure estimation and the other wave parameters were used in the 

present study as ways of characterising the pulse shape, rather than as practical 

clinical measures. However, if it could be shown that the effects of exercise on the 

radial pulse contour have relevance in the context of cardiovascular risk prediction, 

then these findings may be of importance. In addition, the fact that exercise alters 

both radial-to-carotid and finger-to-radial transfer functions, may compound the 

inaccuracy of any attempt to derive central waveforms from the finger volume pulse. 

Two other recent studies have examined the effect of exercise on the arterial transfer 

function. Sharman et al found no effect of exertion on the radial-to-aortic transfer 
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function (Sharman et al. 2006), whereas Stok et al found that increasing exercise led 

to an underestimate and more unreliable measurement of systolic pressure derived 

from the finger pressure pulse (Stok et al. 2006). Both studies used invasive 

measurement of aortic pressure in patients undergoing diagnostic coronary 

angiography. Important methodological issues may account for the different 

conclusions reached by these studies. The duration of exercise in the Sharman study 

was rather short at only 3 to 6 minutes, and included a protocol employing one-

legged cycling. Furthermore, the heart rate responses were not particularly marked, 

at least in part due to beta-blockade in the majority of individuals. Although the 

blood pressure increases observed above were similar to those of Sharman, the 

exercise protocol in the current study was considerably longer and the intensity of 

workload more accurately gauged by the heart rate response; it is possible that the 

overall intensity of the exercise in the Sharman study was too low to have a 

significant effect on the intrinsic properties of the arterial wall, and thus no 

measurable effect on the transfer function. The work by Sharman was carried out in 

older subjects, many with proven coronary disease who were taking various 

cardiovascular drugs. Significant differences have been demonstrated in the resting 

radial-to-carotid transfer function between subjects with coronary disease and 

healthy volunteers (Segers et al. 2000). Age and vascular disease increase resting 

arterial stiffness, but also lead to diminished catecholamine-mediated inotropic, 

chronotropic and arterial vasodilatory effects in response to exercise (Nichols & 

O'Rourke 1998); this may well have blunted any change in transfer function in 

response to exercise. The presence of certain vasoactive drugs has been shown to 

have no effect on the resting GTF (Pauca et al. 2001; Segers et al. 2001; Soderstrom 

et al. 2002), but it is not known whether these too may have altered the arterial 

response to exercise, thus minimising the change in transfer function. Importantly, 

despite similar drug therapy in a comparable population, an effect of exercise on the 

transfer function was nonetheless demonstrated by Stok et al, suggesting that drug 

treatment, age and the presence of vascular disease was less likely to account for the 

findings of Sharman et al. Clearly, however, the transfer function developed by Stok 

and colleagues comprises both proximal and distal conduit arterial components, 

including the vasculature of the hand, and the question must therefore be raised as to 
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whether the differences in rest and exercise transfer function are explained by 

changes in larger conduit artery function, or whether they are simply due to effects 

on the finger-to-radial vascular segment. It is recognised that exercise can lead to 

inaccuracy of blood pressure measurement at the finger using the volume-clamp 

method employed by Finapres (Hildebrandt et al. 1991). Furthermore, the local 

effects of certain drugs may have resulted in changes in the finger pressure pulse that 

are not evident in the pulses of larger arteries. However, the current study suggests 

that, whereas the resting radial-to-carotid transfer function underestimates proximal 

pressure, the finger-to-radial transfer function overestimates it. It seems likely, 

therefore, that the overall change in finger-to-aortic transfer function demonstrated 

by Stok et al is indeed primarily determined by changes in proximal conduit artery 

function, rather than changes distally. It is worthwhile noting that the finger pressure 

pulse is not exactly the same as the volume wave, and a degree of caution must 

therefore be exhibited when using the findings of the current study to explain those 

obtained using the Finapres system. Nonetheless, both waveforms are closely 

associated due to the utility of photoplethysmography by both methodologies 

(Millasseau et al. 2000; Millasseau et al. 2006). Interestingly, although Sharman et al 

concluded that the resting GTF held following exercise, their published data 

nonetheless shows that the difference between derived and actual systolic BP was 

significantly greater (p<0.001 calculated from reported data using unpaired t-test) 

during exercise than at rest (-4.7±3.3 vs. -1.3±3.2 mmHg respectively). This group 

have published widely using the SphygmoCor system, so their interpretation of their 

findings may have been influenced by this conflict of interests. 

The present study has some important limitations. First is the use of non-invasive 

carotid waveforms, rather than invasive recording of aortic pressure. The use of the 

carotid artery as a surrogate for central pressure is not ideal. However, the risks 

inherent in aortic catheterisation preclude its use in a young, healthy population. 

Furthermore, the carotid artery pulse contour has been used previously as a substitute 

for invasive central arterial measurements (London et al. 2001; Safar et al. 2002). 

The differences between aortic and carotid systolic pressure are less than 5mmHg 

(Karamanoglu & Feneley 1996). Discrepancies in stiffness at each site in healthy 

subjects are small (Paini et al. 2006), and differences between carotid and aortic 
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augmentation are minimal in young adults (Nichols & O'Rourke 1998). Second, the 

accuracy of manually recorded carotid waveforms was worse than the radial 

waveforms obtained using the automated tonometer during rest. This was quantified 

by differences in the coefficient of variation of pulse height (5.0±2.1% vs. 

10.1±3.4%, radial and carotid respectively) and baseline (2.9±2.3% vs. 8.1±6.7%). 

No significant change was observed in the height variability following exercise, 

although baseline variability increased for both signals (5.1±3.8%, p=0.02 vs. 

16.7±1.5%, p=0.01). Although sub-optimal waveforms might arguably have 

adversely affected the accuracy of the derived transfer function, the transfer function 

derived from the SphygmoCor system was not subject to such error and yet provided 

similar results. Carotid waveform inaccuracy may also have resulted in error in the 

actual and measured values of AIx at peak exercise. It is difficult to be certain 

whether such an error had a skewed distribution, but it seems more likely that this 

would result in greater variability rather than any mean bias. Third, it was assumed 

that diastolic and mean pressure remained constant between radial and carotid 

arteries, as absolute direct pressure measurement is not possible at the latter. It is 

recognised that diastolic pressure tends to decrease proximally by about 1-2mmHg 

(Pauca et al. 1992). However, this difference is small relative to the difference in 

systolic pressure, and calibration using this approach is considered generally 

acceptable (Nichols & O'Rourke 1998). Moreover, AIx is not dependent on absolute 

pressure, as it represents the relative amplitudes of incident and reflected wave 

components. Fourth, the timing of signal recording during this study is also 

worthwhile noting. During pilot work, it was not possible to obtain satisfactory and 

reliable carotid signal acquisition during exercise, and recordings were therefore 

made in the immediate post-exercise period to reduce movement artefact. It is 

possible that the rapid haemodynamic changes that occur in the immediate post-

exertion period may account for the change in the transfer function, rather than the 

direct effects of exercise (Kingwell et al. 1997). It is unlikely that this issue will be 

resolved by non-invasive measurements (although radial and finger measurements 

would be possible), and it would be interesting to see whether significant changes in 

transfer function occur between peak exercise and immediate cessation of exertion. 

Fifth, GTFrest and GTFexercise were derived from the same data that they were 
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subsequently applied to, potentially biasing the accuracy of each transfer function 

towards its associated exercise phase. Nonetheless, in the case of the radial-carotid 

GTF, the results given by GTFsphygmocor and by the use of a GTF derived from an 

independent subset of subjects, were not subject to such bias and yet yielded similar 

conclusions. In the case of the finger-radial GTF, it seems likely that the relatively 

small effect of exercise on the GTF, and the greater (cf. radial-carotid) inter-subject 

GTF variability, meant that the study was under-powered to detect differences 

between GTFrest-2 and GTFexercise-2. Finally, the limits of agreement between actual 

and derived measurements were fairly high, as evidenced by the large standard 

deviations of the difference. This is not entirely accounted for by variability in the 

carotid waveform quality, as limits of agreement were of similar magnitude for the 

finger-to-radial results. However, the aim of the present study was to establish 

whether overall bias existed between derived and actual measurements, rather than 

accuracy of the technique, and this does not affect the principal conclusions. There is 

arguably, of course, little point in predicting a proximal waveform from a distal site, 

when the former can be directly measured anyway. However, it is important to 

recognise that the use of the finger wave is attractive due to its simplicity and ease-

of-use, and that mean bias in the derived carotid waveform may extend to error in 

derived aortic waveforms too. 

6.4.1 Conclusion 

The use of a generalised arterial transfer function for determining central pressure is 

an attractive alternative to invasive monitoring, with potential uses in both the 

clinical and research environments (Mackenzie et al. 2002; Oliver & Webb 2003). It 

has been increasingly employed in the assessment of cardiovascular risk (Weber et al. 

2004; Williams et al. 2006) and vascular function at rest (Wilkinson et al. 2002a), 

despite increasing evidence that the GTF does not remain constant in all 

circumstances (Hope et al. 2002; Hope et al. 2004; Segers et al. 2000). Given the 

lack of data on the central arterial response to exercise, the use of a GTF in these 

circumstances is clearly appealing, potentially opening the gateway to larger clinical 

studies, examining amongst other things the effects of blood pressure lowering drugs 

on central exercise BP and the utility of this measure as a marker for cardiovascular 
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risk. The results of the current study suggest that significant underestimation of key 

central haemodynamic measures may occur when using a transfer function derived 

under resting conditions. The use of a resting GTF in such circumstances appears 

unwise; an exercise specific transfer function might be favoured, although this 

requires further investigation. Estimation of radial pressure from the finger wave also 

appears to be subject to inaccuracy, although these effects are more variable and 

short-lived. 
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7 EFFECT OF EXERCISE ON THE RELATIONSHIP 
BETWEEN PULSE TRANSIT TIME AND BLOOD 
PRESSURE 

7.1 INTRODUCTION 

Blood pressure measurement during exercise is considered a more powerful 

prognostic marker than resting BP (Filipovsky et al. 1992; Manolio et al. 1994; Ren 

et al. 1985; Sandvik et al. 1993), and may be an indicator of physical fitness (Tanaka 

et al. 1996). Measurement of BP during exercise is difficult however, due to the 

rapidity of pressure changes, underestimation with cuff sphygmomanometry, and 

motion artefact. Pulse transit time has been show previously to be linearly associated 

with systolic BP during exercise (Carruthers & Taggart 1988), and may therefore 

offer potential as a means on non-invasively estimating beat-to-beat exercise BP. 

To date, however, the relationship between transit time and BP during exercise has 

not been examined in detail. In particular, differences between exercise and recovery 

phases, the effects of prolonged exercise compared with short, maximal exertion, and 

levels of fitness, have not been studied. 

Three studies were carried out to address the hypothesis that it would not be possible 

to use transit time as a reliable measure of BP during exercise. The first study 

compared the association of pulse transit time with invasively measured BP, 

examining differences between correlations during and after exercise, beat-to-beat 

variability, and the potential for transit time use for baroreflex sensitivity monitoring 

during exertion. The second study examined the effects of prolonged sub-maximal 

exercise on the correlation between transit time and BP. The third study examined 

the effects of fitness on the correlation between the two variables, and the 

reproducibility of the technique. 

7.2 METHODS 

All studies were conducted in a quiet, temperature controlled (22±2°C) environment, 

following a 30-minute period of rest. Volunteers were allowed a light meal not less 
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than 4 hours prior to the study, and refrained from alcohol, caffeine, nicotine or 

medications for the preceding 24 hours. 

7.2.1 Comparison of transit time and intra-arterial pressure 

9 non-smoking male subjects, aged 18 to 25 years (22.6±1.4), were studied. 

Continuous real-time beat-to-beat measurements of intra-arterial BP (section 2.8.3), 

finger transit time (section 2.3) and PEP (section 2.4.1.1) were made throughout the 

entire study protocol. The arterial cannula was inserted prior to the rest period. Data 

was recorded as described in section 2.2. 

5 minutes of baseline resting measurements were made prior to performing a 3-stage 

heart rate targeted exercise protocol, using a semi-recumbent bicycle ergometer 

(Comfort Cycle JPB 2000, Johnson, section 2.9), with forearms supported 

horizontally at the level of the xiphisternum. Stages lasted 4 minutes (heart rate 

<50%), 4 minutes (50-75%) and 2 minutes (>75%) respectively, as described in 

section 2.9.1.3. Measurements continued for 15 minutes following cessation of 

exercise. 

Data were compared across time points using repeated measures ANOVA, with 

paired t-tests used post hoc to compare individual time points. Where specific 

experimental phases are given, data were either averaged across the entire phase, or 

averaged over a 2-minute period at the end of that phase, as specified in the results. 

Linear regression was carried out on beat-to-beat data, with comparison of 

correlation and regression coefficients made by paired t-test. Area-under-the-curve 

(AUC) was used to examine differences in correlation between exercise and recovery 

phases, using 15-second averaged data. The rate at which parameters returned to 

steady state during recovery was evaluated by fitting an exponential decay curve and 

calculating the mean response time. Frequency analysis was assessed for SBP, rPTT 

and HR. Power spectra were calculated using a smoothed Lomb periodogram for all 

three variables across the entire experimental period. Spectral coherence (see section 

2.5.3.3) was computed over the frequency ranges 0.05Hz to 0.2Hz, and 0.2Hz to 

0.4Hz. Baroreflex sensitivity (BRS) was examined using sequence analysis, with a 

sequence defined as a series of 3 consecutive beats during which systolic BP and the 
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R-R interval either increased or decreased continuously by at least 1mmHg/beat and 

3ms/beat respectively. For each sequence, the slope of the regression line between 

SBP and R-R interval was calculated. Baroreflex effectiveness index (BEI) was 

calculated as the ratio of the number of valid sequences (as defined above) as a 

proportion of the total number of systolic BP sequences. BEI provides information 

about baroreflex function complementary to BRS, and reflects the effects of other 

mechanisms such as central inhibitory influences or non-baroreflex regulation at the 

sinus node level. 

7.2.2 Effect of sub-maximal on exercise on transit time 

8 non-smoking male subjects, aged 18 to 25 years (22.6±1.4), were studied. 

Continuous recordings were made of finger and ear PPG (section 2.3.2.1), Portapres 

pressure (2.8.4), ECG (section 2.3.1.2) and bioimpedance (section 2.4.1.1). Blood 

pressure was recorded manually (section 2.8.1). Signals were recorded as described 

in section 2.2, and timing measurements made offline. 

5 minutes of baseline resting measurements were made initially. Subjects then 

carried out a sub-maximal exercise test, as described in section 2.9.1.4. At this point, 

exercise ceased completely and subjects were monitored for a further 15 minutes. 

Blood pressure was measured at each minute of baseline, incremental exercise and 

recovery, and every 5 minutes once steady workload was achieved. 

Where comparisons with manual blood pressure were made, continuous waveform 

measurements were averaged over the 1 or 5 minutes (depending on frequency of 

measurements) centred around the corresponding BP time point. Trends across the 

sub-maximal phase, lasting from minute-15 to minute-60, were assessed by repeated 

measures ANOVA and by linear regression against time. Derived systolic BP was 

calculated using the correlation slope obtained by plotting rPTT and actual systolic 

BP at both rest and peak exercise (section 7.3.1.2). Baroreflex sensitivity and power 

spectra were also calculated during the constant workload phase for both Portapres 

and rPTT-derived SBP as described above (section 7.2.1). 



154 

7.2.3 Effect of fitness on the transit time – blood pressure relationship 

46 subjects were studied undertaking a maximal stress test, as described in section 

2.9.1.1. Haemodynamic measurements were made as described in section 7.2.2 

above. Breath-by-breath expired gas analysis was carried out as discussed in section 

2.9.2. “Fitness” was quantified using measures of oxygen uptake, workload, recovery 

time, heart-rate/work slope and usual level of physical activity. 

Following 5 minutes of baseline resting measurements, subjects then carried out a 

maximal exercise test, continuing to exhaustion. Measurements were continued for 

30 minutes post-exercise, with BP recorded every minute for the first 10 minutes, 

and 5 minutes thereafter. Statistical analyses were performed as for sections 7.2.1 

and 7.2.2 above. 

A sub-set of 16 individuals repeated the study after a variable period of time (1 to 12 

weeks) to assess reproducibility with respect to transit time change and correlation 

slopes. 
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7.3 RESULTS 

7.3.1 Comparison of transit time and intra-arterial pressure 

Subject characteristics are shown in Table 7.1. Changes in arterial BP, transit time 

and PEP are shown in Figure 7.1, with baseline, maximal and final recovery values 

given in Table 7.2. There were significant (p≤0.001 by repeated measures ANOVA) 

changes in systolic, mean and diastolic pressure, heart rate, rPTT, pPTT and PEP 

over the course of the study. All three blood pressure parameters increased to peak 

exercise, and decreased below baseline levels during recovery. Heart rate remained 

increased at the 15 minutes recovery. rPTT, pPTT and PEP all decreased at peak 

exercise, but returned to baseline by 15 minutes recovery. PEP comprised 41% of 

rPTT at rest, falling to 29% at peak exertion. 

Table 7.1. Subject characteristics (N=9) 
Age (years) 22.6 ± 1.4 
Height (cm) 176 ± 5 
BMI (kg/m2) 24 ± 1.9 
Family history of CVD 1 (11%) 
Total cholesterol (mmol/L) 4.1 ± 0.6 
HDL cholesterol (mmol/L) 1.4 ± 0.3 
Values are mean ± standard deviation or N(%). 

 

Table 7.2. Effect of exercise on haemodynamic parameters 
Haemodynamic 
parameter Rest Peak exercise End recovery 

Systolic BP (mmHg) 142.0 ± 6.6 212.6 ± 21.0‡ 125.4 ± 13.9† 
Mean BP (mmHg) 95.3 ± 6.2 121.6 ± 13.4‡ 87.6 ± 11.6* 
Diastolic BP (mmHg) 75.0 ± 8.0 84.9 ± 12.0† 70.5 ± 12.3 
Heart rate (bpm) 71.0 ± 10.7 140.6 ± 12.4‡ 85.3 ± 11.8‡ 
rPTT (ms) 266.3 ± 23.0 196.3 ± 15.4‡ 268.4 ± 22.7 
pPTT (ms) 154.3 ± 18.1 137.7 ± 22.8* 158.7 ± 14.8 
PEP (ms) 107.5 ± 16.0 55.1 ± 17.0‡ 105.5 ± 18.6 
PEP (% of rPTT) 41.0 ± 5.4 28.8 ± 9.8† 39.8 ± 5.6 
Values are mean ± SD. Rest values are mean of 5 minutes baseline. Peak 
exercise values are mean of entire 2 minutes of stage 3. End of recovery is 
average of final 2 minutes of recovery. * p<0.05; † p<0.01; ‡ p<0.001, 
significance relative to 5 minute baseline period. 
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Figure 7.1. Effect of exercise on intra-arterial blood pressure and transit time 
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7.3.1.1 Correlation between BP and transit time parameters 

Linear regression and correlation coefficients describing the relationship between 

different components of PTT, and different BP parameters, are shown in Table 7.3. 

rPTT had a strong negative linear correlation with systolic BP (R=-0.97) during 

exercise, more so than with diastolic BP (R=-0.59, p=0.006) or mean BP (R=-0.87, 

p=0.022). rPTT also correlated more strongly with systolic BP (R=-0.92) during 

recovery, than with either diastolic BP (R=0.03, p<0.001) or mean BP (-0.69, 

p=0.001). Mean BP correlated marginally better with pPTT than did systolic BP 

(p=0.048) during recovery only, but the correlations were weak (R=-0.12 vs. -0.03), 

and otherwise there were no significant differences in the correlation between pPTT 

and any of the BP parameters during either exercise or recovery. rPTT correlated 

significantly better than pPTT with both SBP and MBP, for during both exercise 

(p=0.011 and 0.042 respectively) and recovery (p=0.001 for both). There were no 

significant differences in the strength of the correlation between diastolic BP and 

either pPTT or rPTT, during either exercise or recovery. 

The strength of the SBP/rPTT correlation was slightly less during recovery (R=-0.92), 

although this difference was not statistically significant (p=0.12). Furthermore, no 

significant differences existed in slope (p=0.34) or intercept (p=0.13) of the 

SBP/rPTT relationship. DBP correlated better with rPTT during exercise compared 

with recovery (p=0.002), but otherwise no differences were found in the remaining 

BP/PTT correlations. Furthermore, no differences in the correlation gradient were 

found in any BP/PTT correlation between different experimental phases. The 

correlation intercept was greater during exercise for the rPTT/DBP (p=0.026) and 

rPTT/MBP (p=0.032) correlations only. Despite this, clear hysteresis was observed 

between exercise and recovery phases of the correlation between rPTT and all three 

BP parameters (Figure 7.2). This was confirmed by comparison of the area under the 

curve (AUC) of each experimental phase (p≤0.002 for each). The mean response 

time for SBP to reach steady state was less than that of rPTT (1.99±0.53 vs. 

2.56±0.58 min, p=0.079), although there was no difference between rPTT and PEP 

(2.34±0.75 min, p=0.59). No significant difference in AUC was found between 

exercise and recovery, for the correlation between pPTT and any BP parameter. The 
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strength of the correlation between SBP and rPTT was not significantly different 

from that between HR and rPTT during exertion (p=0.44), but the former correlation 

was significantly stronger than the latter during recovery (p=0.037). 

Table 7.3. Regression and correlation coefficients for transit time / BP 
relationships 
 DBP MBP SBP HR 
Pearson correlation coefficient, R    

Exercise -0.59 ± 0.31 -0.87 ± 0.11 -0.97 ± 0.02 -0.96 ± 0.02 rPTT Recovery 0.03 ± 0.53 -0.69 ± 0.3 -0.92 ± 0.08 -0.76 ± 0.10 
Exercise -0.46 ± 0.32 -0.43 ± 0.44 -0.36 ± 0.5 -0.50 ± 0.30 pPTT Recovery -0.3 ± 0.21 -0.12 ± 0.4 -0.03 ± 0.49 -0.05 ± 0.39 

      
Regression slope     

Exercise -0.14 ± 0.09 -0.37 ± 0.14 -1.02 ± 0.3 -1.00 ± 0.16 rPTT Recovery -0.05 ± 0.19 -0.24 ± 0.23 -0.9 ± 0.33 -1.42 ± 0.43 
Exercise -0.31 ± 0.26 -0.5 ± 0.58 -0.98 ± 1.57 -0.32 ± 0.30 pPTT Recovery -0.19 ± 0.2 -0.16 ± 0.37 0.02 ± 1.21 -0.18 ± 0.65 

      
Regression constant (intercept)    

Exercise 109 ± 28 190 ± 37 405 ± 68 332 ± 25 rPTT Recovery 79 ± 47 147 ± 54 360 ± 78 379 ± 45 
Exercise 124 ± 42 179 ± 83 315 ± 225 181 ± 30 pPTT Recovery 97 ± 37 112 ± 57 128 ± 188 175 ± 58 

      
Difference in AUC (ms.mmHg)    
rPTT  962 ± 612 790 ± 394 615 ± 417 - 
pPTT  340 ± 2872 366 ± 1430 288 ± 686 - 
Values are mean±SD of intra-individual correlations. AUC, area under curve 
(difference is exercise minus recovery). 
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Figure 7.2. Example of hysteresis in the rPTT/systolic BP 
relationship between exercise and recovery phases 
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Data in typical subject. Time points are 15 second averages 
for sake of clarity. , exercise phase; , recovery phase. 
Regression lines shown are best-fit quadratic. 

7.3.1.2 Estimation of systolic BP using rPTT 

Linear regression coefficients for the exercise period, calculated from five different 

segments of data – entire exercise period alone, exercise and recovery periods 

combined, first 4-minute stage of exercise only, 5 minutes resting data alone, and a 

slope plotted between the 30 second average immediately prior to exercise and 

immediately prior to the cessation of exercise – are shown in Table 7.4. Systolic BP 

derived using these five regression equations (SBPex, SBPex-rec, SPBmildex, SBPrest and 

SBPrest-peak respectively), with differences from measured BP, are shown in Figure 

7.3. 

Table 7.4. Regression coefficients for estimation of systolic BP using rPTT 
 SBPex SBPex-rec SPBmildex SBPrest SBPrest-peak 
Intercept 405 ± 68 413 ± 58 333 ± 76 298 ± 56 395 ± 73 
Slope -1.02 ± 0.27 -1.08 ± 0.26 -0.72 ± 0.28 -0.59 ± 0.19 -0.98 ± 0.33 
Values are mean±SD of intra-individual comparisons. 
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Figure 7.3. Systolic BP estimated from rPTT 
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Left: Systolic BP estimated using rPTT, mean±1SE. Broken line indicates measured 
systolic BP. Right: Difference between estimated systolic BP and measured systolic 
BP, mean±1SE. Orange, SBPex; blue, SBPex-rec; green, SPBmildex; red, SBPrest; black, 
SBPrest-peak.. 

Derived values were compared with actual systolic BP measured at baseline (average 

of 5 minutes), the final 2 minutes of each exercise stage, and the 2 minutes at 5, 10 

and 15 minutes recovery. No significant differences existed between actual SBP and 

either SPBmildex or SBPrest at rest or during the first exercise stages. However, both 

considerably underestimated (>10mmHg) systolic BP at stages 2 and 3 of exercise 

both rest and peak BP, with considerable variability in the error. In contrast, during 

the recovery phase, both estimates of systolic BP were significantly (p≤0.013) higher 

by between 12 and 17mmHg than measured values at all time points. SBPex and 

SBPrest-peak underestimated by around 3mmHg (p<0.01) actual SBP at rest and stage 1, 

with no significant bias at stage 2 exercise. A significant underestimation persisted at 

peak exertion, albeit considerably less and with smaller limits of agreement (-4.0±3.3 

mmHg, p=0.007 and –6.6±6.4 mmHg, p=0.014 respectively). Systolic BP was again 

overestimated during recovery, by around 21 mmHg at 5 minutes, but not 

significantly differently from SPBmildex or SBPrest later in recovery. SBPex-rec gave a 

considerably greater error at rest than the other estimates, fell between the other four 

estimates during exercise, and gave substantially better estimates of BP in the latter 

two stages of recovery. 
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In summary, of the five different regression equations, SBPex and SBPrest-peak were 

considered to give the best overall estimates of actual peak exercise SBP, whilst 

differing only minimally from SPBmildex and SBPrest at rest and mild exercise. 

SBPex-rec was not significantly less accurate at peak exercise, and gave an improved 

estimate of recovery BP, but underestimation of resting BP was not felt to favour its 

use for estimating systolic BP during the exercise phase. Comparison of SBPex and 

SBPrest-peak demonstrated minimal differences at all stages of exercise (–0.8±2.1 

mmHg at rest, +1.2±1.5 mmHg at peak exercise, and –0.7±1.6 mmHg at 15 minutes 

recovery), and as the calculation of SBPrest-peak requires potentially only a single 

baseline and peak BP measurement, this simpler means of calibration was used for 

further work examining baroreflex sensitivity. A Bland-Altman plot comparing 

measured systolic BP and SBPrest-peak is shown in Figure 7.4. Of note, this 

demonstrates a significant tendency for bias to becoming increasingly positive with 

decreasing blood pressure (R=0.40). 

Figure 7.4. Bland-Altman plot comparing systolic BP and 
SBPrest-peak. 
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Broken horizontal lines show mean bias (predicted 
measurement minus actual) and 95% limits of agreement 
(mean±1.96SD). Zero reference line is shown as solid line. 
Broken diagonal line demonstrates correlation between 
bias and average of actual/derived values. 
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7.3.1.3 Estimation of beat-to-beat variability and baroreflex sensitivity using rPTT 

Spectral power analysis of heart rate, systolic BP and rPTT are shown in Figure 7.5. 

Coherence between rPTT and systolic BP, and between rPTT and heart rate, is also 

shown in Figure 7.5. When individual experimental phases were examined, low 

frequency coherence (0.05 to 0.20 Hz) was significantly greater for rPTT/BP 

(compared with rPTT/HR) during recovery only (p<0.001), with no significant 

differences at other time points. When examined across the entire experimental 

period, rPTT/BP low frequency coherence was significantly higher than rPTT/HR 

coherence (p<0.001). High frequency coherence (0.20 to 0.40 Hz) was significantly 

higher (p≤0.015) for rPTT/BP at mild and moderate exercise, and during recovery, 

with no differences found at rest or peak exertion. Overall, high frequency coherence 

was again higher (p<0.001) for rPTT/BP. 

Figure 7.5. Spectral power analysis and spectral coherence 
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Left, spectral power analysis of rPTT (solid line), measured systolic BP (dotted) and 
heart rate (dashed); values are mean across entire experimental time period. 
 
Right, spectral coherence calculated over different experimental phases; thick lines 
represent coherence between systolic BP and rPTT, and thin lines, coherence 
between heart rate and rPTT; solid lines represent high frequency coherence (0.2-
0.4Hz), and dashed lines, low frequency coherence (0.05-0.2Hz); values are 
mean±1SE. 
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Baroreflex sensitivity, including baroreflex effectiveness index, is shown in Figure 

7.6. There was not found to be any statistically significant difference between BRS, 

as quantified by both sequence regression slope and by BEI, when calculated using 

either actual SBP or derived pressure (SBPrest-peak), at any of the 5 experimental time 

points. 

Figure 7.6. Baroreflex sensitivity and baroreflex effectiveness 
index 
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Values are mean±1SE. Solid line, BRS derived from actual 
systolic BP values; dashed line, BRS derived from estimated 
systolic BP (SBPrest-peak). 
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7.3.2 Effect of sub-maximal on exercise on transit time 

Subject characteristics are given in Table 7.5. Baseline, sub-maximal (average during 

constant workload) and end-of-recovery BP, heart rate, rPTT, pPTT and PEP are 

shown in Table 7.6. Changes over the entire experimental time period are shown in 

Figure 7.7. SBP and HR increased at to peak exercise (p<0.001), whereas DBP, rPTT, 

pPTT and PEP all decreased (p≤0.001). HR, PEP and rPTT were elevated at the end 

of recovery (p=0.029, 0.009 and 0.002 respectively), whereas other parameters were 

not significantly different from baseline. The increase in rPTT following exercise 

was therefore associated with an increase in PEP rather than any change in pPTT. 

The percentage contribution of PEP thus varied from 33.2% at baseline, 29.1% 

during exercise, and 36.8% post-exercise. 

Table 7.5. Subject characteristics (N=8, all male) 
Age (years) 28.2 ± 6.9 
Height (cm) 181 ± 6 
BMI (kg/m2) 22.5 ± 1.9 
BP (mmHg) 136/75 ± 12.6/7.6 
Heart rate (bpm) 57.4 ± 7.2 
VO2-AT (L/min) 2.44 ± 0.54 
VO2-MAX (L/min) 3.94 ± 0.26 
WorkAT (W) 206 ± 41 
WorkMAX (W) 375 ± 36 
Mean recovery response time (min) 3.72 ± 0.52 
Average activity per week (hours) 8.0 ± 0.9 
Competitive sport (≥national level) 6 (75%) 
Values are mean ± standard deviation or N(%) 

 

Table 7.6. Baseline, sub-maximal exercise and recovery parameters 

 Baseline Sub-maximal 
phase 

End of 
recovery 

Systolic BP (mmHg) 133.9±13.9 202±18.2 129.6±14.7 
Diastolic BP (mmHg) 71.3±8.6 47.8±14.9 72.9±8.7 
Heart rate (bpm) 56.2±5.5 124.1±10.8 66.4±10.3 
rPTT (ms) 208±19.9 150.2±11.6 221.1±18.3 
pPTT (ms) 138.6±11.2 106.9±14.7 139.7±10.7 
PEP (ms) 69.4±12.5 43.3±4.3 81.5±9.8 
PEP% (% of rPTT) 33.2±3.8 29.1±4.7 36.8±2.3 
Values are mean ± 1SD. 
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Figure 7.7. Haemodynamics changes during submaximal exercise 
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constant workload, and recovery 
phases. Measurement points are 
as detailed in text. Black, SBP and 
DBP (mmHg); green, heart rate 
(bpm); red, rPTT (ms); blue, 
pPTT (ms); purple, PEP (ms). 
Values are mean±1SE. 
 

During the constant sub-maximal phase, HR had a tendency to increase with time 

(regression against time, R=0.24, p=0.043; rmANOVA, p<0.001). Both PEP and 

DBP showed variability over the sub-maximal phase (p=0.031 and 0.028, 

rmANOVA), but this was not related to time (R=0.12 and -0.18, p=0.31 and 0.14 

respectively). SBP, rPTT and pPTT did not change during the sub-maximal phase. 

Derived systolic BP over the sub-maximal phase is plotted against actual SBP in 

Figure 7.8. The matching at the 15-minute time point is due to the use of this time as 

one of the points for calculating the regression slope used to derive SBP from rPTT. 

A Bland-Altman plot comparing derived and actual SBP over the entire study is 

given in Figure 7.9. Mean bias during the sub-maximal phase was +0.7±8.3 mmHg 

(p=0.45), and over the entire experimental period, +1.0±13.3 mmHg (p=0.20). 

Although there was a degree of variability in derived SBP over time (p=0.028, 

rmANOVA), this was not related to time (p>0.11, regression vs. time). In contrast, 

Portapres significantly underestimated SBP over the entire experiment (3.8±25.7 

mmHg, p=0.014), and this was particularly so during the sub-maximal phase 

(-27±25.9 mmHg, p<0.001). Over the entire study, the percentage of derived SBP 

values falling within 5%, 10% and 15% of actual values (as based on British 

Hypertension Society grading) were 51%, 75.8% and 88.4%. The accuracy of SBP 

prediction improved when the sub-maximal phase alone was examined, with 77.8% 

of values within 5% and 20.8% within 10% accuracy. 

Rest Incr Sub-max Recov
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Figure 7.8. Systolic BP during sub-maximal exercise 
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rPTT. 
 

 

Figure 7.9. Bland-Altman comparison of actual and derived systolic BP 
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Broken lines show mean bias 
(derived minus actual SBP) and 
95% limits of agreement, for 
entire experimental period. 
 

Variability in baroreflex sensitivity was examined over the course of the sub-

maximal phase. Baroreflex effectiveness index was very low, so the first and last 20 

minutes of data were used, to increase the numbers of valid sequences available for 

comparison. BEI decreased from 0.02±0.05 to 0.005±0.02 (p=0.045, Mann-Whitney 

U), despite no change in the total number of SBP sequences observed (p=0.78). 

Initial BRS slope was 0.93±0.54, and did not change with exercise (p=0.12). 
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Power spectra for Portapres SBP and for SBP derived from rPTT, during the sub-

maximal phase, are shown in Figure 7.10. Coherence was significantly greater in the 

0.05 to 0.20 Hz frequency range (mean coherence 0.73±0.24) than the 0.20 to 0.40 

Hz range (0.30±0.39). Although coherence, for both low and high frequency ranges, 

increased slightly from the initial 15 minutes (0.65±0.31 and 0.16±0.47 respectively) 

to the last 15 minutes (0.80±0.18 and 0.44±0.35), this change was not statistically 

significant (p=0.13 and 0.11 respectively). However, coherence between HR/rPTT 

(0.77±0.23 low frequency, 0.24±0.44 high frequency) and SBP/rPTT did not differ 

for low (p=0.23) or high (p=0.48) frequency ranges. 

Figure 7.10. Power spectra for systolic BP during sub-maximal exercise 
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Red, Portapres systolic BP. 
Black, systolic BP derived from 
rPTTfinger. 
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blocks during sub-maximal 
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7.3.3 Effect of fitness on the transit time – blood pressure relationship 

Subject details are given in Table 7.7, and responses to exercise are shown 

graphically in Figure 7.11. 

Table 7.7. Subject details (N=46) 
Male 31 (67.4%) 
Age (years) 33 ± 8.7 
Height (cm) 176 ± 10.4 
BMI (kg.m2) 23.0 ± 3.3 
BP (mmHg) 126.4/80.0 ± 12.9/7.6 
Heart rate (bpm) 64.4 ± 12.8 
VO2-AT (L/min) 1.57 ± 0.62 
VO2-MAX (L/min) 2.86 ± 0.93 
WorkloadAT (W) 130 ± 54 
WorkloadMAX (W) 270 ± 82 
Mean recovery response time (min) 3.81 ± 0.40 
Heart rate – work slope (W/bpm) 2.47 ± 0.82 
Average activity per week (hours) 6.9 ± 4.8 
Competitive sport (≥ national level) 11 (23.9%) 
Values are mean±SD or N(%). 

 
Figure 7.11. Haemodynamic responses to exercise 
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Values are mean±SE. Time points are, for T0 to T5 respectively, rest, 
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The average regression slope of the rPTT/systolic BP correlation during exercise was 

-0.81±0.27 during exercise. There was a strong correlation between slope gradient 

and the change from baseline to peak exercise in systolic BP (R=0.63, p<0.001). 

However, no correlation existed between slope gradient and the change with exercise 

in rPTT (p=0.29), or its components PEP (p=0.21) or pPTT (p=0.45). 

The slope was found to have a significant (p<0.01) positive correlation with various 

measures of exercise capacity, including VO2-MAX, VO2-AT, workload at peak 

exercise and anaerobic threshold, and the heart rate-work slope, although there was a 

large degree of co-linearity. In a multivariate linear model, incorporating the 

additional factors of age, sex, and height, VO2-MAX was the strongest predictor of 

slope gradient (R=0.45, p=0.002). However, this was largely due to the strong 

positive correlation between VO2-MAX and exercise systolic BP (R=0.71, p<0.001). 

The linear regression equation for rPTT/SBP slope and VO2-MAX, had the coefficients 

gradient=0.133 and intercept=-1.194. Given a difference in VO2-MAX of 1 standard 

deviation (0.93L/min), this corresponds to a change in the rPTT/SBP slope gradient 

of 0.124. As the offset of the rPTT/SBP slope can be calculated by use of resting 

values of rPTT and SBP, this would result in an underestimation of peak-exercise 

SBP of 10.1mmHg, based on the mean decrease in rPTT during exercise of 81.6ms. 

This corresponds to an error of 5.1%, given the average peak SBP of 196.9mmHg. 

The slope of the SBP/rPTT correlation was significantly steeper during aerobic 

exercise, than after the anaerobic threshold was reached (-1.07±0.16 vs. -0.41±0.09, 

p<0.001). The strength of the correlation (as determined by Pearson coefficient) did 

not differ however (p=0.25). The rate of change of workload was constant 

throughout the entire exercise period, so changes in BP and rPTT were calculated 

relative to work. The BP/work slope was constant before and after exercise 

(0.26±0.13 vs. 0.26±0.12 mmHg/W, p=0.95), whereas the rPTT/work slope fell 

significantly during anaerobic exercise (-0.45±0.21 vs. -0.23±0.10 ms/W, p<0.001). 

The change in rPTT/work slope was due to a combination of minimal change in PEP 

post-anaerobic threshold (-0.31±0.18 vs. –0.02±0.05 ms/W, p<0.001), offset by a 

slight increase in the rate of change of pPTT (-0.15±0.09 vs. –0.20±0.08 ms/W, 
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p=0.006). The degree of change in rPTT/SBP correlation slope was unaffected by 

any of the above measures of exercise capacity (including VO2-AT and workload at 

anaerobic threshold) or by age, sex, height, or resting or exercise BP or heart rate. 

The exercise and recovery SBP/rPTT correlations showed significant differences, as 

determined by AUC (472±729 ms.mmHg, p<0.001). rPTT and SBP had returned to a 

steady state by 30-minutes post-exercise, albeit 11.0±13.4 ms above and –7.6±8.6 

mmHg below baseline respectively (p<0.001 for both). The systolic BP predicted 

from rPTT at 30-minutes post-exercise was not significantly different from the actual 

value (0.3±10.9 mmHg, p=0.85). However, SBP returned to steady state more 

rapidly than rPTT (mean response time 2.8±0.8 vs. 3.5±0.7 min respectively, 

p<0.001). The degree of difference in AUC between exercise and recovery was 

significantly negatively correlated with VO2-MAX, the heart rate-work slope, and 

positively correlated with resting heart rate. The difference was also slightly greater 

in women (p=0.072). Multivariate analysis found VO2-MAX and heart rate/work slope 

to be independent predictors of the difference in AUC. Both VO2-MAX and heart 

rate/work slope had negative correlations with the difference in recovery rates 

between SBP (R=-0.26, p=0.09) and rPTT (R=0.38, p=0.009) with the recovery rate 

for SBP increasing with exercise capacity. However, neither of these measures of 

exercise capacity was correlated with the difference between measured and estimated 

SBP at 30-minutes post-exercise (p=0.43 for both). 

Reproducibility of PTT and BP measurements was examined in 16 subjects who 

were studied on a second occasion, between 1 and 12 weeks following the first study. 

The baseline and peak measures of heart rate, SBP, rPTT, PEP, VO2-MAX and 

workload did not vary significantly between visits. Bias was -4.1±16.9 ms and 

2.6±7.3 mmHg respectively for resting rPTT and SBP. At peak exercise, bias was 

0.4±9.5 ms and -3.6±14.9 mmHg respectively. The corresponding coefficients of 

variation were 8.3%, 5.9%, 7.9% and 7.5% respectively. There was considerably 

greater variability in the correlation slope, although no significant bias between visits 

was observed (0.02±0.23, p=0.67). This corresponds to a potential error of 

±31.5mmHg, based on a mean change in rPTT during peak exercise of 70ms. 

Coefficient of variation for regression slope was 28.2%. 
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7.4 DISCUSSION 

rPTT has been used during exercise in a number of psychophysiology studies 

(Johnston et al. 1982; Lo & Johnston 1984; Marie et al. 1984). The principle aim of 

those studies was to study cardiovascular feedback, rather than the haemodynamic 

changes occurring during exercise. Carruthers and Barschdorff have also used rPTT 

as a marker of BP (Barschdorff & Erig 1998; Carruthers & Taggart 1988). Several 

groups have studied the changes in systolic time intervals, including PEP, that occur 

during exercise (Cardus & Vera 1974; Gollan et al. 1978; Martin et al. 1971; Sugiura 

et al. 1981; Thomas 1992). However, this is the first time that the relationship 

between exercise rPTT, PEP and blood pressure has been examined in detail. 

A strong negative correlation SBP and rPTT was observed during exercise. rPTT 

correlated better with SBP than either DBP or MAP, whereas pPTT reflected 

changes in intra-arterial DBP. Furthermore, spectral coherence between HR, SBP 

and rPTT confirmed that rPTT was more closely associated with BP than HR. 

Importantly, however, these studies have demonstrated important discrepancies in 

the linear nature of the rPTT/SBP correlation which has important implications for 

use of transit time in the estimation of exercise BP. 

7.4.1 Factors affecting the transit time – blood pressure relationship 
during exercise 

Initially, it is worthwhile discussing important differences in the findings between 

the arterial-line study and the maximal stress test. Firstly, only minimal change was 

observed in pPTT at peak exercise in the arterial-line experiment (16.7±15.7 ms), 

compared to the maximal exercise test (45.5±13.5 ms). Secondly, whereas SBP fell 

to a steady-state recovery value below that of baseline during both experiments, 

rPTT returned to normal only during the arterial-line study. Why do these differences 

exist? It seems most likely that the exercise workload in the arterial-line study was 

significantly less than that corresponding to VO2-MAX, and this is reflected in the 

lower maximal heart rates achieved in the arterial-line experiment. Furthermore, the 

maximum stage was only maintained for 2-minutes. Indeed, both the heart rate and 

fall in pPTT during the arterial-line study are actually similar to that observed at the 
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anaerobic threshold during the maximal stress test (-54.4±15.8 bpm and 18.0±12.6 

ms respectively). At lower levels of exertion, any effect of an increase in systolic 

pressure on MAP is offset by a decrease in peripheral vascular resistance due to 

vasodilatation (Ekelund 1967). Increasing systolic pressure becomes the predominant 

determinant of MAP at higher workloads however, and the exponential association 

between distending pressure and arterial stiffness (Hughes et al. 1979) results in a 

corresponding decrease in pPTT. Most probably, the relative brevity and low-

intensity of the final stage during the arterial-line study, meant that the changes in 

both MAP and pPTT were relatively small. MAP was not reported for the maximal 

test, as sphygmomanometry commonly underestimates diastolic pressure (Kaijser 

1987). Indeed, the intra-arterial measurements clearly demonstrated an increase in 

DBP, whereas sphygmomanometry measurements showed a decrease. Finally, 

following maximal exercise, the greater post-exertion arterial dilatation reduces left 

ventricular afterload leading to a relative shortening of PEP (and therefore rPTT) 

compared to baseline values. An alternative explanation for these observations may 

be the differences in the methodology employed in each study. It is possible that, 

during the arterial line study, bioimpedance overestimated the decrease in PEP and 

hence masked any change in pPTT. Alternatively, the reverse may have been true of 

the custom bioimpedance algorithm used during the maximal exercise study. 

However, similarities between the two techniques as tested in the initial 

methodological development suggest this is unlikely to be the case. A final important 

issue is that the real-time signal processing system gave considerably higher values 

of transit time than the off-line analysis system. Unfortunately, it was not possible to 

directly compare the two systems. Both systems were able to detect small changes in 

transit time, and so it seems reasonable to make the assumption that the timing 

resolution was adequate for both. The off-line system was subject to considerable 

testing, including accurately determining hardware processing time delays and visual 

confirmation of time points, and its absolute timing accurate was therefore 

considered to be reliable. However, the real-time system could not be subject to such 

rigorous testing. The likeliest reason for the differences in timing are likely to be 

errors in the hardware signal processing delays, although subtle differences in the 

intersecting tangent algorithm may also have contributed. Unfortunately, as these 
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discrepancies only came to light after the decision to move to an off-line system had 

been made, it was not possible to explore them in more detail. Nonetheless, the 

relative changes in transit time recorded appear robust, and absolute measurements 

are probably subject to a constant error, thus not affecting the conclusions. 

The rPTT/SBP correlation was slightly, albeit not significantly, weaker during 

recovery than during exercise, with no changes in regression slope. Hysteresis was 

observed between exercise and recovery phases. During both the experiments, SBP 

fell below pre-exercise baseline levels during recovery. However, rPTT reached a 

steady-state value greater than baseline only following maximal exercise, and indeed 

this corresponded to the lower-than-baseline value of SBP observed at this time. 

Despite this, hysteresis existed in the rPTT/SBP relationship in both studies, as in 

both experiments SBP returned to the steady-state recovery level more rapidly than 

did rPTT. Interestingly, the rate of change of SBP during recovery appeared 

inversely associated with exercise capacity, resulting in a rPTT recovery curve 

similar to that of SBP, thus reducing the hysteresis observed. This finding is perhaps 

not unexpected. Athletes are known to have marked resting left ventricular dilatation 

with superior mechanisms for increasing cardiac output (Clausen 1977), and a 

mismatch of stroke volume and isometric muscle effort occurs during recovery. This 

would result in a slower fall in BP in trained individuals corresponding to the slower 

increase in PEP (and thus rPTT), and hence increase the linearity of the rPTT/SBP 

recovery relationship. 

Estimation of SBP from rPTT requires calibration of the system. Use of beat-to-beat 

rPTT and BP data gathered at rest is one option, and potentially a technique such as 

tonometry might be used to achieve resting BP measurements. Such an approach has 

the advantage of not requiring an initial exercise test to achieve the calibration. 

Despite this benefit, however, this approach resulted in an underestimation of peak-

exercise pressure. Use of data from low intensity exercise is a compromise, with the 

advantage that only a brief calibration exercise test needs carried out and BP 

measurements may be obtained using a sphygmomanometer. Again, however, this 

resulted in underestimation of peak-exercise SBP. Unsurprisingly, use of rPTT and 

SBP data over a wide range resulted in a better estimation of peak SBP; the most 
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practical approach was to take measurements of BP and rPTT at rest and at peak 

exercise alone, and to assume linearity between these points. The decreased linearity 

between rPTT/SBP during recovery means that BP prediction will be subject to error. 

However, the degree of inaccuracy in recovery BP depends to a large degree on 

whether or not rPTT returns to a value relative to baseline that corresponds to the 

difference between baseline and recovery SBP. Of course, the intra-subject 

variability in regression slope was also considerable, and a single calibration has 

therefore the potential to result in large errors in estimated SBP. 

The regression slope was primarily determined by the degree of change in SBP rather 

than the degree of change in rPTT. Furthermore, the regression slope was correlated 

with exercise capacity, due to the greater increase in SBP with increasing VO2-MAX, a 

phenomenon which is well recognised (Tanaka et al. 1996). The variability in 

regression slope with VO2-MAX, would correspond to an underestimation of peak 

exercise SBP if a single generalised regression equation was used, making 

individualised calibration essential. The regression slope also became less steep in 

the anaerobic phase of maximal exercise, due to a decrease in the rate of change of 

rPTT relative to SBP. This change was not influenced by exercise capacity. This 

difference was not observed during the arterial line study, presumably due to the 

lower level of exertion. This may also account for the steeper overall rPTT/SBP 

regression slope observed in the arterial line study, although differences in the BP 

measuring methodology may also be implicated, as sphygmomanometry tends to 

underestimate intra-arterial SBP during exertion. The decrease in rate of change of 

rPTT during the anaerobic phase was largely accounted for by minimal change in 

PEP at higher workloads. This probably corresponds to a marked increase in cardiac 

output (with corresponding increases in contractility causing a fall in PEP) due to 

vagal withdrawal upon initiation of exercise (Rowell 1991), whereas at higher 

exercise intensity first-order heterostatic reflexes mediated through sympathetic 

outflow increase heart rate and vasoconstriction (Palatini 1994). 

The colinearity of many cardiovascular variables during a maximal exercise test may 

have potentially masked changes in the relationship between transit time and BP. So-

called “cardiovascular drift” occurs during prolonged exertion. Peripheral vascular 
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resistance and MAP decline with long-lasting effort, whilst heart rate increases, and 

cardiac output remains relatively constant (Ekelund 1967; Palatini 1994). These 

changes appear largely related to cutaneous thermoregulatory mechanisms 

(Brengelmann 1983), although cardiac function may be affected (Douglas et al. 

1987). BP is maintained through various mechanisms, including vasoconstriction of 

non-essential vascular beds, muscle chemoreflexes (Rowell 1991), and resetting of 

the arterial baroreflex to maintain a higher pressure (Walgenbach & Donald 1983). 

Despite these various changes, it was found that the accuracy of systolic BP 

prediction from rPTT remained relatively constant throughout a period of sustained 

sub-maximal exercise. Beat-to-beat accuracy, as assessed by coherence with 

Portapres values, also remained relatively constant during this period. The constancy 

of pPTT despite a presumed underlying decrease in MAP is suggestive of either a 

compensatory change in intrinsic wall stiffness, perhaps secondary to sympathetic 

tone, or possibly due to marked vasodilatation in the hand segment. The current work 

certainly suggests that transit time measurements can be used over periods of 

prolonged sub-maximal exertion, but more work needs to be done to elucidate the 

mechanisms involved. It would also be of interest to note the change in rPTT/SBP 

correlation if a further maximal exercise test were carried out following a period of 

prolonged sub-maximal exertion, as the decrease in peripheral vascular resistance 

limits the subsequent maximal BP response (Palatini et al. 1990). 

Finally, SBP predicted from rPTT was shown to measure baroreflex sensitivity to a 

similar degree to intra-arterial beat-to-beat BP measurements. In addition, a slight 

fall in baroreflex effectiveness index (BEI) calculated from predicted SBP, occurred 

over prolonged sub-maximal exertion. The arterial baroreflex is set to a higher 

operating level during exertion in order to maintain an adequate BP (Raven et al. 

2006). The slight decrease in BEI observed in the current work may reflect 

compensatory mechanisms in response to the cardiovascular drift discussed above. 

7.4.2 Conclusion 

In conclusion, there is a strong negative linear correlation between rPTT and SBP, 

which although constant during prolonged submaximal exercise, changes at higher 
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levels of exercise and is affected by exercise capacity. Furthermore, the correlation 

differs during recovery, with this too affected by both intensity of exertion and 

exercise capacity. Calibration is also essential, but one-off calibrations may be 

inadequate due to the large intra-individual coefficient of variation in regression 

slope. These factors mean that rPTT is not a reliable means of measuring absolute BP 

during exertion, although further work is merited to examine whether the technique 

can be used for the study of the effects of exercise on baroreflex sensitivity. 
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8 DISCUSSION 
Elevated resting BP measured during clinical consultation is a powerful predictor of 

CV risk, and is usually measured using cuff sphygmomanometry. However 

measurement of BP is also of value in other less controlled circumstances, but the 

dynamic fluctuations in the cardiovascular system may mean that 

sphygmomanometry is unhelpful. Furthermore, there is increasing recognition that 

assessment of vascular function through the measurement of arterial stiffness may be 

of value beyond determination of BP alone. Pulse transit time measured between the 

ECG QRS complex and the peripheral photoplethysmograph waveform has been 

proposed as a potential surrogate marker of BP. 

This thesis has described a methodology for the measurement of the pulse wave at 

various sites in the arterial system, using a variety of technologies. It has used these 

methods to examine the relationship between transit time and BP under two 

situations of particular importance – drug administration and exercise – and has also 

extended the techniques to the assessment of conduit artery pulse wave velocity and 

pulse contour analysis. This chapter reviews some of the important aspects of the 

methodology employed and the findings from the drug and exercise studies, and 

examines areas of possible future work. 

8.1 A METHODOLOGY FOR MEASURING PULSE 
TRANSIT TIME 

Digital processing has significant advantages over the analogue computing and 

manual techniques employed in the transit time work published around the 1970s. 

These include avoiding observer bias (a problem with manual measurements), time 

savings (particularly with respect to reanalysis of data using different algorithms and 

processing of large quantities of data), automatic identification of outliers, and the 

ability to use the recorded data for alternative purposes such as pulse wave analysis. 

The initial real-time signal-processing system was developed by the University of 

Edinburgh School of Engineering and Electronics, in conjunction with Dr Ronald 

Mackie of Pulse Time Products (PTP), a company which develops heart rate 
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monitors for the consumer market. Although the real-time system had been 

thoroughly tested and commercially implemented, and indeed was optimised for the 

purposes of this thesis, it lacked flexibility, in particular with respect to integration 

with external signal measurement hardware and post-hoc data processing. 

Furthermore, although the ECG detection provided good temporal resolution (<1ms), 

it was felt that the sensitivity of the system, albeit adequate for the consumer market, 

could be substantially improved. The processing power of the system also limited the 

complexity and number of time points that could be measured on the leading edge of 

the pulse wave. 

As no commercial system was available at the time that could perform the required 

analyses to address these issues, a custom system was developed using LabVIEW 6.1. 

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a 

development environment based on graphical programming. It is designed to 

facilitate the design and implementation of test and measurement systems and is 

easily interfaced with external data acquisition hardware. In particular, LabVIEW 

provides a wide range of useful mathematical and signal processing tools, such as 

curve fitting and interpolation, Fourier transformation and digital filtering. It was 

used to create an off-line signal analysis system enabling automated timing analysis 

of various physiological signals, as well as analysis in the frequency domain and 

ensemble-averaging of a series of wave complexes in order to evaluate the pulse 

contour. 

Most previously published work on transit time has reported results for the ECG-to-

PPG delay, with the PPG signal recorded at the finger or occasionally the ear. The 

custom LabVIEW system demonstrated sensitivity and positive predictive values for 

both ECG and pulse wave algorithms of around 95 to 99%, even during strenuous 

exercise, with a timing resolution of <1ms. It also enabled the measurement of the 

arterial signal at other anatomical sites simultaneously, making it possible to 

determine the transit time in smaller segments of the overall path length, and to 

calculate the pulse wave velocity. Furthermore, it provided the ability to measure 

PEP. Many studies which utilise ECG-pulse transit time do not measure this systolic 

time interval, despite it contributing a significant amount to the overall transit time 
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period. Those studies that have measured PEP have generally employed a polygraph 

approach (Newlin 1981; Newlin & Levenson 1979), but it was felt that transthoracic 

bioimpedance would be more practical to implement on a beat-to-beat basis. 

Although validated at rest, the accuracy of the technique during exercise has been 

hitherto questionable (Ono et al. 2004; Thomas 1992), but a novel intersecting-

tangent algorithm was developed which had satisfactory accuracy for the purposes of 

the subsequent studies. Bioimpedance measures changes in blood volume throughout 

the cardiac cycle, and therefore is influenced by both ventricular contraction and 

aortic distension. Aortic distension also varies along the length of the vessel, 

corresponding to propagation of the pressure wave. The interaction of these different 

factors means that accurately relating the overall bioimpedance waveform contour to 

the underlying physiological processes is not possible. Nonetheless, the start of the 

impedance wave (B-point) corresponds to the start of the cardiac cycle, regardless of 

the nature of the subsequent waveform, and the B-point has been shown to be the 

most well-defined and easily detected point on the impedance signal (Lababidi et al. 

1970). 

The use of external, commercially available hardware for signal acquisition 

introduces the important issue of the electronic delay between physiological input 

signal and analogue output signal. Although well recognised by electronic engineers, 

this phase lag is not usually acknowledged in medical literature. Although the error 

introduced might be assumed to be constant, it is of particular importance if 

measuring a short time interval with two different medical devices with different 

delays, where it may account for a substantial proportion of the overall period. 

Furthermore, the phase delay may fluctuate in certain commercial devices, 

presumably due to varying computational overheads (Foo et al. 2005a). Pilot work 

found this to be the case with the SphygmoCor system too, although it was not found 

to be a problem with any of the hardware employed in the studies described in this 

thesis. Finally, the delay may differ slightly between different points on the signal in 

question, and more importantly could theoretically be influenced by changes in the 

fundamental frequency of the input signal (i.e. heart rate). The phase delay must 

therefore be calculated for a specific timing point (e.g. R-wave cf. Q-wave), and the 
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assumption made that the spectral power of the higher frequency wave components 

that determine the aforesaid timing points remains relatively constant. 

There is scope to improve on all the signal detection algorithms. The pulse wave and 

bioimpedance detection in particular, however, are adversely affected by the 

problems of movement artefact. Techniques for reducing motion artefact in PPG 

signals are described in the literature (Kim & Yoo 2006), and indeed a technique 

known as triaxial accelerometry has been used to reconstruct corrupted PPG signals 

in order to determine PTT (Foo et al. 2004). No means of artefact reduction for 

bioimpedance signals is described, although it is likely to be extremely challenging 

as it is not a small discrete anatomical region being measured. Nonetheless, overall 

the measurement system devised for this thesis was considered robust, flexible and 

easy to use, and should facilitate further work in this field. 

8.2 EFFECT OF CARDIOVASCULAR DRUGS ON PULSE 
TRANSIT TIME 

Many pharmacological agents have important effects on vascular function. In 

Chapter 3, the effects of haemodynamic disturbance with drugs was examined. 

Advantages of continuous measurement of BP during drug administration include 

improved evaluation of pharmacodynamic profiles of rapid acting agents, assessment 

of short term variability including baroreflex sensitivity, assessment of hypotension 

(which may be rapid onset or transient), and monitoring of acutely unwell patients. 

However, to be a reliable measure of BP, the relationship between transit time and 

this variable would have to remain constant; it was hypothesised that this would not 

hold under the influence of differing drugs, which may have diverse effects on 

cardiac contractility and the intrinsic stiffness of the arterial wall, independently of 

changes in BP. The work described in this thesis can be compared with other 

published work documenting the effects of vasoactive drugs on transit time. 

Amyl nitrite is an obsolete nitric oxide donor, given by inhalation to treat angina, and 

has a similar mechanism of action to GTN. Despite having no major direct cardiac 

effects, it causes venodilation with a reduction in preload, and if a high enough dose 

is given, the resulting arteriolar dilatation will cause a fall in BP and afterload 



181 

(Sawayama et al. 1969). There may also be a baroreceptor-mediated increase in LV 

contractility (Talley et al. 1971). Both Steptoe (Steptoe et al. 1983) and Pollak 

(Pollak & Obrist 1983) found that amyl nitrite caused a transient fall in PEP in 

humans, which is consistent with the change expected based on mechanism of action. 

Although the former study did not compare this with BP change, the latter did find a 

positive correlation with SBP. Both studies also found an increase in pPTT, which 

would be expected due arteriolar dilatation and fall in MAP. However, Pollak found 

that rPTT increased, whereas Steptoe found it to decrease. The reason for this 

difference is unclear: both studies measured the distal pulse at a similar location (the 

radial artery), but neither document the BP changes that occurred, and the work by 

Pollak does not quantify the degree of PEP or pPTT change but merely the 

correlation with BP. Furthermore, due to the route of administration of amyl nitrite, 

the doses administered are unknown. The study described in Chapter 3 used a large 

dose of GTN to achieve a decrease in BP, and may be expected to have similar 

effects on transit time to amyl nitrite. Indeed, pPTT decreased, but PEP did not 

change (rPTT therefore also decreased). The reason for the constancy of PEP is 

uncertain. Indeed, Ochiai et al performed similar work in dogs, and found that GTN 

caused a decrease in PEP measured invasively. In the current study, it is possible that 

the decrease in preload causes a decrease in contractility (through the Frank-Starling 

mechanism) with a subsequent rise in PEP. This may have offset any fall in PEP due 

to the effects of a decrease in afterload: this might have occurred either due to a 

shortening of the isovolumic contraction time due to the reduction in aortic valve 

opening pressure, or secondary to baroreflex-mediated increased contractility. 

Interestingly, in earlier work, Steptoe found no change in rPTT in response to amyl 

nitrite, and proposed that the decrease in PEP may have offset the increase in pPTT, 

although PEP was not measured (Steptoe et al. 1976). 

The effects of noradrenaline and angiotensin II have not been examined previously. 

Despite similar BP responses, noradrenaline achieved a greater decrease in PEP and 

rPTT compared to angiotensin II. Both drugs cause peripheral vasoconstriction 

resulting in increased BP and afterload with corresponding fall in pPTT, but positive 

inotropic effects of noradrenaline probably caused an additional decrease in PEP. 

Dobutamine, a β1-agonist, was used by Ochiai et al to achieve an increase in SBP 
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and MAP in dogs, resulting in a fall in PEP and pPTT due to positive inotropic 

effects (Ochiai et al. 1999). Ochiai also observed that phenylephrine, an α1-agonist, 

caused similar BP and pPTT changes, but an increase in PEP and rPTT. In contrast, 

Weiss observed that although MAP increased with phenylephrine, rPTT did not 

change, suggesting that the increase in PEP was not great enough to offset the 

decrease in pPTT (Weiss et al. 1980). 

The response of transit time to salbutamol has not been studied either. However, 

isoproterenol, a non-selective β-agonist, has been used by Contrada and by Weiss 

(Contrada et al. 1995; Weiss et al. 1980). Both studies found a decrease in rPTT, 

although neither measured PEP. The variable increase in SBP and decrease in DBP 

observed by Contrada is similar to the changes described in Chapter 3 with 

salbutamol. Weiss reported a non-significant decrease in MAP with similar dosing, 

presumably because the increased SBP offset the fall in DBP. The measurement of 

PEP in the current study confirms that the changes in rPTT are due to a fall in PEP 

due to the positive inotropic response, offsetting the increase in pPTT secondary to a 

decrease in peripheral vascular resistance. 

SBP is a function of both cardiac and arterial function, but similar values of SBP do 

not imply similar cardiac and arterial function. The findings of all the above studies 

suggest that changes in PEP do not reliably correlate with changes in SBP, regardless 

of any consistency in the relationship between MAP/DBP and pPTT, and hence rPTT 

cannot be used to predict SBP during administration of drugs with diverse 

cardiovascular effects. In addition, although no effect of drugs was found on the 

correlation between MAP/DBP and pPTT in the current study, potential changes in 

the intrinsic properties of the arterial wall independent of changes in distending 

pressure, mean that the constancy of the latter relationship should not be assumed 

either. Despite the problems with predicting absolute BP over a wide range of 

haemodynamic circumstances however, the coherence in the frequency domain 

between SBP and rPTT suggest that the latter measure may still have a role in the 

assessment of short-term BP variability. 
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8.3 PULSE TRANSIT TIME MEASUREMENT DURING 
EXERCISE 

Although other studies have measured transit time during exercise, a detailed 

examination of the changes occurring during exertion has not been previously 

described. 

Various timing points have been used in the past for measuring transit time. Given 

the large haemodynamic changes that occur during exercise, it was essential to 

establish whether the timing measurement point was important. Previous 

investigators have used either the Q-wave or the R-wave as a proximal timing point. 

Although the latter is easier to detect, the former corresponds more closely to the 

start of ventricular depolarisation. Nonetheless, the difference appeared relatively 

constant between all three points on the QRS complex. The leading edge of the PPG 

signal was also found to maintain its shape fairly well, although more variability was 

observed in the ear wave. The difference between measurement points remains 

relatively constant throughout exercise. The consistency of the leading edge is well 

recognised (McDonald 1968), although this has not been previously confirmed 

during exercise. The measurement points on the ECG and distal pulse would 

therefore not appear to be confounding factors, although clearly a constant timing 

offset will be introduced depending on the time points selected. 

Transit time is usually treated as a single parameter, or occasionally broken down 

into a separate cardiac and vascular component. However, this has not been 

previously carried out during exercise, and moreover, the long vascular path length 

has generally be regarded as uniform. It has been shown here that not only does the 

change in PEP play a key role in determining exercise rPTT, but there are also 

substantial variations in the responses to exertion of the different arterial segments 

which make up the total path length. The reasons for these variations have not been 

examined here, although differing responsiveness to vascular mediators such as nitric 

oxide, and structural differences such as increased peripheral smooth muscle and 

vessel diameter, may be responsible. This is an important area for future work. 
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The relative constancy of radial-finger TT is useful, as it means that by 

simultaneously measuring PPG signals at ear and finger, the conduit artery pulse 

wave velocity can be determined during exercise. The current work suggests that this 

technique may have a role in cardiovascular risk stratification, and this offers the 

opportunity for further study. However, further validation work is merited first to 

determine whether the distal (e.g. radial-finger) vascular component remains constant 

in the presence of vasoactive drugs, vascular dysfunction (e.g. hypertension), and 

prolonged or exhaustive exercise. The use of bioimpedance also raises the question 

of whether the B-point can be used as a proximal timing point for the assessment of 

central PWV. The distal measurement point could potentially be the carotid artery (or 

indeed ear, assuming constancy of the carotid-ear segment). Alternatively, abdominal 

aortic flow could be measured as described previously (Siche et al. 1989b). Initial 

validation could be carried out against non-invasive tonometry or Doppler ultrasound 

measurements at rest, but validation during exercise would be more challenging, and 

ideally require invasive measurements. 

The use of rPTT to predict absolute beat-to-beat systolic BP during exercise is 

attractive, and indeed a strong negative linear association between the two variables 

is apparent, and holds during prolonged submaximal exercise. However, at anaerobic 

levels of exertion, the rate of change of PEP slows, and the nature of the rPTT/SBP 

correlation changes. This results in an underestimation of peak SBP if rPTT is 

calibrated using data gathered at rest or during low-intensity work. It would be 

interesting to establish whether a clear inflection point exists in the rPTT/work slope 

or whether the decrease occurs gradually with increasing workloads. If an inflection 

point existed, it might be useful to see whether it corresponds to an identifiable 

physiological process, such as the anaerobic or lactate threshold. This would be of 

considerable interest in the sports science field, where this threshold is an important 

limiting factor in endurance exercise, and may be of value in guiding training. 

Furthermore, the nature of the rPTT/SBP correlation differs during recovery, and the 

nature of this difference is affected by the intensity of exertion and by exercise 

capacity. Recovery BP is of clinical relevance, although not commonly reported, and 

may be influenced by vascular dysfunction (Casiglia et al. 1994). Unfortunately, the 

error in rPTT-predicted SBP during recovery is considerable, and it is also possible 
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that differences in arterial function may influence this error. Prediction of SBP 

following exercise using this technique can therefore not be recommended. 

8.4 PULSE WAVE ANALYSIS 

It has also been possible to study what effect drugs and exercise have on the 

relationship between finger volume pulse and peripheral pressure pulse contours. The 

finger volume pulse has been used for the assessment of vascular function in aging 

(Millasseau et al. 2002), type II diabetes (Chowienczyk et al. 1999), and smoking 

(McVeigh et al. 1997), and to study the effects of various drugs (Millasseau et al. 

2003a; Takazawa et al. 1998; Weinberg et al. 2001). However, only a limited work 

has been carried out to date comparing finger and peripheral artery pulses. Work by 

Allen and Murray have used neural networks to compare the signals (1999). 

Millasseau et al showed that the transfer function describing the relationship between 

the two signals remained relatively constant following the administration of GTN, or 

between hypertensive and normotensive individuals (Millasseau et al. 2000). The 

work in Chapter 3 demonstrated that even large haemodynamic disturbances due to 

pharmacological intervention have little impact on the transfer function. This is 

probably because the drugs had little effect on the lower frequency components of 

the waveform, which comprise the greater proportion of total spectral power. In 

Chapter 6 an effect of exercise on both the finger-to-radial and radial-to-carotid 

transfer functions was, however, detected. This seems likely to be due to the greater 

changes in BP, intrinsic stiffness and, possibly, heart rate, in comparison to the 

changes obtained with drugs. The more rapid normalisation of the distal transfer 

function following exercise, also suggests that the characteristics of this particular 

vascular domain are less affected by haemodynamic changes than larger conduit 

vessels. 

The technique of photoplethysmography is still relatively infrequently used for the 

purposes of pulse wave analysis. It is clear, however, that the finger volume wave 

can be used to assess arterial function, and that both finger and peripheral arterial 

pulses are closely related and presumably influenced by similar vascular 

biomechanical properties. It would appear that use of the finger volume wave is an 
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entirely acceptable alternative to applanation tonometry, even in the presence of 

vasoactive drugs. Nonetheless, caution must be applied to the prediction of proximal 

arterial waveform measures or soon after exercise, although an interesting area for 

future work may be evaluation of how vascular dysfunction affects the impact of 

exercise on the transfer function. 

8.5 CONCLUSIONS AND FUTURE WORK 

Although the use of transit time as a predictor of absolute BP is questionable, the 

techniques described in this thesis may still have a role in assessment of 

cardiovascular function. Measurement of rPTT may be of value in the measurement 

of baroreflex sensitivity (BRS) and short-term BP variability, both of which have 

prognostic value (La Rovere et al. 1998; Parati et al. 1998; Sander et al. 2000). 

Although the present work describes assessment of spontaneous BRS, this could be 

extended to the administration of ephedrine, Valsalva manoeuvre or cold pressor test. 

It remains to be seen whether use of rPTT in any of these ways, including during 

exercise, can detect changes induced by therapeutic interventions or indeed have a 

role as a marker of cardiovascular risk. Photoplethysmography has also been shown 

to be useful in the measurement of pulse wave velocity during exercise. To date, 

little work has been done on arterial stiffness during exertion due to the difficulties in 

obtaining reliable measurements. The techniques described in this thesis need to be 

extended to larger cross-sectional studies and prospective trials, and the effects of 

interventions such as drugs and exercise training needs to be evaluated. Finally, pulse 

wave analysis using recording of the photoplethysmograph and WEP signals 

deserves more widespread use. Several studies have used PPG to examine arterial 

function, but there are no outcome studies to date, and the effects of therapeutic 

interventions are unknown. The WEP technique also shows potential in the 

assessment of the vascular function, with the advantage that it might be easily 

incorporated into standard sphygmomanometer devices, but a more detailed 

understanding of the true nature of the WEP signal is required before it can be 

applied more widely.  
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APPENDIX 1 

The threshold for R-wave detection was determined following digital filtering of the 

ECG signal using a 12th-order 0.3 to 20 Hz band-pass Butterworth filter. The 

maximum first derivative of the ECG signal was determined for every 2 seconds of 

data, and the running 3-rank median calculated to provide a detection threshold. 

Potential ECG R-wave deflections were identified as positive-to-negative crossing 

points on the first derivative occurring within 128 ms of the first derivative 

exceeding 30% of this current threshold. 

1. Do QRS complexes meet all the following three conditions? 

a. Q-R interval <50 ms 

b. R-S interval <50 ms 

c. sum of amplitudes of Q-nadir to R-peak, and R-peak to S-nadir, 

within 50-175% of the 5 second running median of this amplitude 

(this median amplitude is the “amplitude threshold”) 

2. Of these complexes, identify pairs where the R-R interval exceeds 50% of the 

5 second running median, and exclude one of the pair which differs most in 

QR+RS amplitude sum from the corresponding amplitude threshold 

3. The 5-second median R-R interval is recalculated, and step 2 repeated 

4. If a gap exists between QRS complexes, of within 20% of an integer multiple 

of the median R-R interval, then it is possible that one or more QRS 

complexes have been wrongly excluded 

a. The QRS complex within 10% of the expected time (based on median 

R-R interval), which is closest in QR+RS amplitude sum to the 

amplitude threshold, and meets either criteria 1a or 1b, is reinstated 

5. The timing of these QRS complexes was used as the initial timing point of 

the cardiac cycle for all measurements, including recalculating QRS timings 

The limits given in 1a and 1b are defined by the nadir of the Q and S waves, and the 

sum of the two values is therefore less than the true QRS duration. All ECG data was 

subject to a two-pass filter, with pulses lying outwith 3 standard deviations of the 5-

second median average heart rate being automatically rejected. 
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APPENDIX 2 

The following papers have been published as a result of the work in this thesis, and 

are reproduced with permission of the respective publishers on the following pages: 

Payne, R. A., Symeonides, C. N., Webb, D. J., Maxwell, S. R. 2006: Pulse transit 

time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J 

Appl Physiol, 100, 136-41. 

Payne, R. A. & Webb, D. J. 2006: Arterial blood pressure and stiffness in 

hypertension: is arterial structure important? Hypertension, 48, 366-7. 

Payne, R. A., Isnardi, D., Andrews, P. J., Maxwell, S. R., Webb, D. J. 2007: 
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Payne, R. A., Teh, C. H., Webb, D. J., Maxwell, S. R. J. 2007: A generalized arterial 

transfer function derived at rest underestimates augmentation of central pressure after 
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Payne, R. A., C. N. Symeonides, D. J. Webb, and S. R. J. Maxwell.
Pulse transit time measured from the ECG: an unreliable marker of
beat-to-beat blood pressure. J Appl Physiol 100: 136–141, 2006. First
published September 1, 2005; doi:10.1152/japplphysiol.00657.2005.—
The arterial pulse-wave transit time can be measured between the ECG
R-wave and the finger pulse (rPTT), and has been shown previously to
have a linear correlation with blood pressure (BP). We hypothesized that
the relationship between rPTT, preejection period (PEP; the R-wave/
mechanical cardiac delay), and BP would vary with different vasoactive
drugs. Twelve healthy men (mean age 22 yr) were studied. Beat-to-beat
measurements were made of rPTT (using ECG and photoplethysmo-
graph finger probe), intra-arterial radial pressure, PEP (using cardiac
bioimpedance), and transit time minus PEP (pPTT). Four drugs (glyceryl
trinitrate, angiotensin II, norepinephrine, salbutamol) were administered
intravenously over 15 min, with stepped dosage increase every 5 min and
a 25-min saline washout between agents. All subjects in all conditions
had a negative linear correlation (R2 � 0.39) between rPTT and systolic
BP (SBP), generally constant between different drugs, apart from four
subjects who had a positive rPTT/SBP correlation with salbutamol. The
95% limits of agreement between measured and rPTT-predicted SBP
were �17.0 mmHg. Beat-to-beat variability of rPTT showed better
coherence with SBP variability than it did with heart rate variability (P �
0.001). PEP accounted for a substantial and variable proportion of rPTT
(12–35%). Diastolic (DBP) and mean arterial BP (MAP) correlated
poorly with rPTT (R2 � 0.02 and 0.08, respectively) but better with
pPTT (rPTT corrected for PEP, R2 � 0.41 and 0.45, respectively). The
95% limits of agreement between measured and pPTT-predicted DBP
were � 17.3 mmHg. In conclusion, the negative correlation between
rPTT and SBP is generally constant, even with marked hemodynamic
perturbations. However, the relationship is not reliable enough for rPTT
to be used as a surrogate marker of SBP, although it may be useful in
assessing BP variability. DBP and MAP cannot be predicted from rPTT
without correction for PEP. The significant contribution of PEP to rPTT
means that rPTT should not be used as a marker of purely vascular
function.

preejection period; pulse-wave transit time

MONITORING OF BLOOD PRESSURE (BP) in a clinical or research
setting is often performed using techniques that evolved in the
19th century (31). However, traditional sphygmomanometry is
unable to monitor the short-term dynamic variability that
occurs with BP, and the invasive nature of arterial cannulation
limits its use to critically ill patients. A noninvasive beat-to-
beat measurement of BP would be extremely valuable. A
number of approaches have been developed, including most
notably finger blood-volume clamping (28) and arterial tonom-
etry (29). Although some studies have suggested that there is
reasonable accuracy with these systems (32, 40), the technol-

ogy itself is generally expensive, cumbersome, and prone to
movement artifact.

An alternative technique involves measuring the transit time
of the pulse pressure wave through the arterial tree. Measure-
ment of pulse transit time involves detecting the pulse arrival
at two separate arterial sites. This can be achieved easily
distally using infrared photoplethysmography, and differential
pulse transit time measured between finger and toe, as detected
by photoplethysmography, has indeed been shown to satisfac-
torily reflect changes in pulse-wave velocity measured by
Doppler ultrasound (23). The ECG R-wave is often used as a
proximal timing point because it is simple to detect and tolerant
of motion artifact. However, importantly, there is a consider-
able delay between the onset of electrical cardiac activity and
the start of mechanical ventricular ejection (22). This delay is
comprised of both the electromechanical delay and the period
of isovolumic contraction, and is referred to as the preejection
period (PEP).

It has been suggested that, because a near-linear correlation
exists between transit time measured from the R-wave (rPTT)
and BP, rPTT might be used as a surrogate marker of pressure
(9). The use of rPTT in this way was originally described in the
1950s (34), and considerable research was subsequently per-
formed on its application in the study of cardiovascular feed-
back, mainly in the field of psychophysiology (9, 19, 33, 37).
There have been several studies that revisited the technique in
recent years, probably due to the increasing ease with which
signal analysis can be carried out using modern technology (1,
7, 14, 26). However, little work has been published on the
effects of vasoactive drugs on this measurement in humans. In
particular, studies have not been carried out quantifying PEP or
comparing rPTT with invasive BP measurement.

This study used various vasoactive drugs to produce differ-
ing cardiac and vascular responses. The rationale was to
compare changes in transit time measurements with the clinical
“gold standard” for BP measurement over a wide BP range and
under different conditions of vascular tone and cardiac con-
tractility. We hypothesized that the relationship between intra-
arterial BP and rPTT would vary following the administration
of different vasoactive drugs due to differing effects on the
vascular and cardiac components of rPTT.

METHODS

Studies were carried out in healthy men, aged 18–25 yr, with no
history of cardiovascular disease and taking no regular medications.
Informed consent was obtained from all participants. The protocol

Address for reprint requests and other correspondence: R. Payne, Clinical
Pharmacology Unit, Univ. of Edinburgh, Western General Hospital, Crewe
Rd., Edinburgh, EH4 2XU, UK (e-mail: r.payne@ed.ac.uk).

The costs of publication of this article were defrayed in part by the
payment of page charges. The article must therefore be hereby marked
“advertisement” in accordance with 18 U.S.C. Section 1734 solely to
indicate this fact.

J Appl Physiol 100: 136–141, 2006.
First published September 1, 2005; doi:10.1152/japplphysiol.00657.2005.

8750-7587/06 $8.00 Copyright © 2006 the American Physiological Society http://www. jap.org136

http://jap.physiology.org


was approved by the local research ethics committee and conformed
to the requirements of the Declaration of Helsinki5.

Studies were performed in a quiet, temperature-controlled (22 �
2°C) environment after at least 1 h of acclimatization. Subjects were
allowed a light breakfast not less than 4 h before attending and were
requested to refrain from alcohol, caffeine, nicotine, or medications
for the preceding 24 h. Studies were conducted with the subject lying
supine. Continuous beat-to-beat measurements of BP, transit time, and
PEP were made throughout the entire study protocol.

All drugs were administered via a 20-gauge intravenous cannula
sited in the antecubital fossa of the dominant arm. The infusion rate
was kept constant at 1 ml/min. After an initial 20-min 0.9% saline
run-in period, four drugs were given, each for 15 min, with the dose
increased every 5 min. A 25-min washout period followed each drug.
Drugs given were glyceryl trinitrate (0.1, 1, 4 �g �kg�1 �min�1),
angiotensin II (2, 6, 12 ng �kg�1 �min�1), norepinephrine (20, 60,
120 ng �kg�1 �min�1), and salbutamol (albuterol, 0.4, 1.2, 2.4
�g �kg�1 �min�1). Drug order was not randomized. Salbutamol was
given last due to its relatively long half-life. Dose ranges and washout
periods were based on previous studies and selected for their antici-
pated effects on BP and heart rate (HR) (10, 12, 15, 30, 38, 39).
Glyceryl trinitrate was selected for anticipated decreases in BP (12,
15). Norepinephrine and angiotensin II increase mean arterial pressure
(MAP) to a similar degree, but the former also increases peripheral
pulse pressure (30, 38). The expected response to salbutamol was a
fall in diastolic pressure (DBP) and a rise in systolic pressure (SBP)
and HR (10, 39).

Intra-arterial pressure monitoring was used for all BP measure-
ments. A 20-gauge 80-mm Vygon catheter was inserted under local
anesthesia (1% lidocaine) into the nondominant radial artery using the
Seldinger technique. A splint was used to minimize wrist movement.
The cannula was connected by fluid-filled semi-rigid tubing to a
TruWave disposable transducer (Edwards Life Sciences) positioned
level with the right atrium and connected to a Diascope 2 monitor (S
& W Medical). Transducers were factory calibrated and exceeded
AAMI standards for performance interchangeability, with a sensitivity
of 5 �V �V�1 �mmHg�1 �1% and nonlinearity of the greater of
�1.5% or �1 mmHg. The natural frequency of the system was 40 Hz.
SBP and DBP were taken as the maximum and minimum values of the
waveform corresponding to the last measured R-wave, with mean
pressure calculated as the average over the last pulse cycle. Custom
hardware was used for determination of the transit time. The ECG was
detected using a standard three-lead configuration (Lead II), with the
signal sampled at 1 kHz. The pulse volume wave was detected on the
dominant index finger using infrared transmission photoplethysmog-
raphy, digitized at 200 Hz, with linear interpolation to 1-kHz accu-
racy. The time delay was calculated between R-wave peak and the
base of the leading edge of the finger pulse wave. The pulse wave base
was identified as the intersection of the tangent through the steepest
part of the slope with the absolute minimum value of the pulse wave
(8). PEP was determined from the B point of the first derivative of the
transthoracic cardiac bioimpedance waveform, using an NCCOM3
Cardiodynamic monitor (BoMed Medical Systems). Bioimpedance
has previously been validated for determination of systolic time
intervals (17), and the NCCOM3 device has itself been compared
favorably with both echocardiography (16) and mechanophonocardio-
graphy (35). Pilot work established that, over a 1-min resting period,
the standard deviation of PEP measurements was 5.2 ms (mean 69
ms), with a mean beat-to-beat difference of 3.5 ms. The coefficient of
variation in baseline PEP measurements was 8.9%. We consider these
small variations in beat-to-beat PEP measurements obtained by our
experimental technique to reflect satisfactory intrasubject reliability.

All data are expressed as means � standard deviation (SD) unless
otherwise stated. Changes from baseline, taken as the 2 min immedi-
ately before each infusion period, were assessed by ANOVA. Differ-
ence between each drug baseline was also compared by ANOVA.

Measurements of transit time were taken both from ECG R-wave
(rPTT) and from end of PEP (pPTT). The relationships between BP
and different measures of transit time were evaluated by linear
regression. Regression slopes and intercepts and Z-transformed Pear-
son correlation coefficients were compared for each drug infusion and
washout period using repeated-measures ANOVA. Beat-to-beat vari-
ability was assessed for SBP, rPTT, and HR. Power spectra were
calculated using a smoothed Lomb periodogram (18) for all three
variables for each individual drug dose. Coherence is analogous to
correlation coefficient in the time domain, ranging from 0 (no coher-
ence) to 1, and was computed over the frequency ranges of 0.05–0.2
and 0.2–0.4 Hz. Comparison of coherence values was made by
ANOVA.

RESULTS

Subjects were all healthy, nonsmoking men, age 22 � 1.7 yr,
who took regular noncompetitive exercise. Average height and
weight were 178 � 6 cm and 75 � 4.8 kg, respectively.
Resting oscillometric brachial BP was 126/75 � 10.8/7.7
mmHg, and 12-lead ECGs were normal in all subjects. Total
and high-density lipoprotein cholesterol were 158 � 23 and
55 � 13 mg/dl, respectively, with normal serum biochemistry
and blood count. Maximal change from baseline in hemody-
namic parameters are given in Table 1, with dose response
plotted in Fig. 1. Glyceryl trinitrate caused an increase in rPTT,
pPTT, and HR, and decreases in SBP, DBP, and MAP. Angio-
tensin II and norepinephrine caused increases in SBP, DBP, and
MAP, and decreases in rPTT and pPTT. SBP and pulse pressure
increases tended to be greater with norepinephrine than angioten-
sin II, but this difference did not achieve statistical significance
(P � 0.11). PEP and HR responses were variable between
subjects, but overall both decreased with norepinephrine and did
not change with angiotensin II. Despite the similar change in BP,
decreases in PEP and rPTT were significantly greater with nor-
epinephrine than with angiotensin II (P � 0.005 and P � 0.002,
respectively). Salbutamol reduced DBP, MAP, rPTT, and PEP
and increased HR and pPTT. The SBP response was varied and,
overall, did not significantly change; eight subjects had a signif-
icant increase in SBP, whereas four had a clear decrease. Baseline
values of SBP, DBP, MAP, and HR were not constant between
drug phases (P � 0.05 by ANOVA), due in particular to increases
in all four parameters before salbutamol administration. This was
mirrored by decreases in rPTT, pPTT, and PEP. The relationship
between PTT and BP in a typical subject is shown in Fig. 2.

rPTT had an inverse linear correlation with SBP (combined
average across all subjects and drugs R2 � 0.39). There was no
significant difference in correlation coefficient (P � 0.88) or
slope (P � 0.69) between different drugs by repeated-measures
ANOVA. rPTT was significantly (P � 0.01) better correlated
with SBP than it was with either DBP (R2 � 0.02) or MAP
(R2 � 0.08). Furthermore, rPTT showed significant differences
in correlation with DBP (P � 0.001) and MAP (P � 0.001)
between different drugs. pPTT was more strongly correlated
(P � 0.001) with DBP (R2 � 0.41) and MAP (R2 � 0.45) than
it was with SBP (R2 � 0.33). The correlation between pPTT
and DBP was unaffected by different drugs (P � 0.11). The
same was true for pPTT and MAP (P � 0.39). However, the
pPTT-SBP correlation was different between drugs (P � 0.01).

The value of rPTT and pPTT as predictors of SBP and DBP,
respectively, was assessed based on the assumption that it
would be possible to obtain an ideal calibration slope for each
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individual equating to the average linear regression slope for
all drugs. The 95% limits of agreement for predicted vs. actual
BP were �17.0 mmHg (SBP/rPTT) and � 17.3 mmHg (DBP/
pPTT). Percentage-predicted values falling within 5, 10, and
15 mmHg of actual value [based on British Hypertension
Society system for assessing BP measurement accuracy (25)]
were 44, 66, and 73%, respectively, for SBP, and 42, 64, and
72%, respectively, for DBP.

Average power spectra over all drugs are shown in Fig. 3.
An example of the similarity in SBP and rPTT variability is
given in Fig. 4. Mean coherence between SBP and rPTT
variability was significantly (P � 0.001) greater at both lower
and higher frequencies (0.58 � 0.37 and 0.70 � 0.33, respec-
tively) than coherence of HR and rPTT variability (0.46 � 0.41
and 0.52 � 0.38, respectively). There was no significant
difference in coherence between HR and either rPTT or SBP

for lower (P � 0.33) or higher (P � 0.16) frequencies.
Coherence was not significantly affected by drug type or
dosage (P � 0.96) and is shown in Fig. 4.

DISCUSSION

The association between pulse transit time and BP was
studied extensively in the field of psychophysiology (9, 11,
19, 33, 37) in the 1970s and 1980s, and more recently by
Ochiai et al. (26) and Chen et al. (7). rPTT has also been
used to predict BP in a clinical setting (14). The present
study is the first to examine simultaneously the effects of
vasoactive drugs on rPTT, PEP, and invasively measured
BP in humans.

The expected hemodynamic changes occurred with all four
drugs, although the SBP response to salbutamol was mixed.
rPTT had a negative correlation with SBP, which was rela-
tively unaffected by different drugs in the population as a
whole. rPTT also appeared to be useful as a marker of SBP
variability. However, DBP and MAP were weakly correlated
with rPTT, although more strongly related to pPTT.

SBP is dependent on both vascular function and ventric-
ular contraction, and so it is perhaps unsurprising that rPTT,
a composite measure of both vascular and cardiac activity,
is correlated with SBP. However, although in the study
population as a whole the correlation between rPTT and
SBP appeared relatively unaffected by drugs, this finding
must be treated with caution. There were slight differences
in the rPTT response between norepinephrine and angioten-
sin II, despite similar BP profiles. Furthermore, it should be
noted that four subjects in this study had positive correla-
tions between rPTT and SBP during the administration of
salbutamol. This drug has positive inotropic and chrono-
tropic �2-adrenergic effects, as well as causing peripheral
arterial relaxation. Although a fall in PEP is associated with
an increase in cardiac inotropy, this does not necessarily
relate to an increase in SBP, as any potential pressure rise

Table 1. Maximal change from baseline for different agents

rPTT, ms PEP, ms pPTT, ms
Heart Rate,
beats/min SBP, mmHg DBP, mmHg MAP, mmHg

GTN
Baseline 260 (17) 95 (15) 164 (12) 63 (7) 134 (12) 66 (5) 85 (6)
Maximum 276 (18) 92 (16) 184 (26) 77 (9) 122 (10) 61 (6) 77 (6)
Change 15.3 (11.4)* �3.5 (10.6) 20.6 (16.0)* 14.3 (5.2)* �12.6 (8.1)* �4.5 (5.0)† �7.8 (4.9)*

Angiotensin II
Baseline 266 (19) 100 (15) 166 (23) 62 (8) 139 (13) 67 (6) 84 (6)
Maximum 257 (23) 105 (19) 150 (21) 60 (10) 156 (13) 82 (7) 102 (8)
Change �9.2 (8.1)* 5.9 (11.5) �15.2 (7.0)* �2.6 (8.4) 17.5 (8.3)* 15.0 (4.4)* 18.1 (5.4)*

Norepinephrine
Baseline 261 (15) 95 (19) 165 (18) 61 (8) 141 (10) 68 (6) 86 (7)
Maximum 238 (18) 87 (19) 151 (20) 57 (8) 164 (13) 81 (8) 104 (10)
Change �22.4 (10.5)* �7.6 (10.1)† �14.4 (7.6)* �4.0 (6.4)* 22.9 (14.5)* 12.3 (5.5)* 17.4 (8.3)*

Salbutamol
Baseline 249 (16) 91 (19) 158 (21) 66 (10) 151 (12) 71 (9) 92 (9)
Maximum 218 (18) 30 (12) 188 (16) 125 (13) 153 (25) 39 (9) 68 (11)
Change �32.5 (9.8)* �62.2 (19.4)* 29.9 (14.2)* 59.1 (7.6)* 2.5 (19.0) �31.7 (4.3)* �23.3 (6.0)*

Values are means (SD) for all subjects. GTN, glyceryl trinitrate; SBP, systolic blood pressure; DBP diastolic blood pressure; MAP, mean arterial pressure;
rPTT, pulse transit time measured between the ECG R-wave and the finger pulse; pPTT, pulse transit time minus preejection period (PEP). *P � 0.01; †P �
0.05.

Fig. 1. Mean dose response graphs for blood pressure (BP; thick line), heart
rate (HR; broken line), and pulse transit time (PTT) and preejection period
(PEP) (thin lines). Data were averaged over 60-s intervals for clarity. See
individual labels for separate BP and time components. SBP, systolic BP; DBP
diastolic BP; MBP, mean BP; rPTT, PTT measured between the ECG R-wave
and the finger pulse; pPTT, PTT minus PEP; bpm, beats/min.
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may be offset by decreases in pressure augmentation by
reflected waves or changes in aortic stiffness (24). It would
therefore appear inappropriate to use rPTT as a predictor of
SBP in all persons, particularly for assessing changes due to
vasoactive drugs. Moreover, even using an idealized cali-
bration slope, the limits of agreement between predicted and
actual BP were wide, although similar inaccuracies have
been described previously between sphygmomanometric
and direct arterial pressure measurements (2, 36).

These data also show that PEP accounts for a substantial
and variable proportion of rPTT, ranging from �12 to 35%.
A number of relatively recent studies have employed rPTT
as a marker of vascular function (3, 4), but this study
demonstrates that the use of rPTT purely for the assessment

of arterial stiffness is inappropriate and should be avoided,
as PEP cannot be assumed to remain constant. Other de-
vices, such as the Colin VP-1000 (Colin), have eliminated
PEP by utilizing the phonocardiogram to time cardiac ejec-
tion. The phonocardiogram is regarded by many as the ideal
way of determining systolic time intervals. The principal
disadvantage, however, compared with bioimpedance, is
that it requires accurate identification of two timing points
rather than simply one: first, the end of cardiac ejection (the
second heart sound); second, the left ventricular ejection
period (measured by identifying the dicrotic notch using a
proximal arterial pulse wave).

rPTT may nonetheless offer a potentially valuable means of
detecting beat-to-beat changes in SBP. Indeed, with regular

Fig. 2. Linear regression analysis of PTT and
BP relationship in typical subject with glyc-
eryl trinitrate (GTN; {), angiotensin II (E),
norepinephrine (‚), and salbutamol (�). Fig-
ure shows relationship between rPTT (left)
and pPTT (right) with systolic (top), mean
(middle), and diastolic (bottom) BP.
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recalibration to standard oscillometric BP as suggested by
Chen et al. (7), rPTT offers the opportunity to assess BP
variability and detect sudden or transient hemodynamic
changes. BP and HR variability are considered to offer impor-
tant insights into vasomotor activity, have been associated with
clinical outcomes, including cardiovascular death, and may be
used in assessment of autonomic neuropathy (27). Sympathetic
modulation of BP alters the HR through the actions of the
sinoaortic baroreflex; coherence between these two measures
therefore reflects baroreflex activity (20). rPTT shows beat-to-
beat variability closer to that of SBP than HR and, therefore,
may have a role in the assessment of vasomotor control and BP
variability.

pPTT, but not rPTT, was strongly inversely correlated
with DBP and MAP. Furthermore, the correlation was
inconsistent between pPTT and SBP. These findings are
both consistent with the fact that arterial stiffness, and
therefore vascular pulse transit time (i.e., pPTT), is depen-
dent on MAP rather than SBP. In many circumstances, SBP
and DBP/MAP are positively associated with each other.
This has led others to inappropriately use rPTT to predict
both these variables (6, 14), with DBP calculated following
adjustment for HR. However, the divergent SBP and DBP/
MAP responses to salbutamol in eight subjects in this study
have not been reported in previous published work in this
field, and the present data suggest that rPTT cannot be used
to predict DBP or MAP without a knowledge of PEP,
regardless of the HR response.

This study has a few limitations. Baseline values of BP
were not constant before each drug, tending to rise steadily
over the course of the study, particularly after norepineph-
rine. Due to the short half-life of both pressor agents in
particular, it seems unlikely that the rise in BP is entirely
accounted for by direct drug effects. Randomizing drug
order was not carried out because the much longer half-life
of salbutamol necessitated its administration last and it was
not justifiable to carry out the separate elements of the study
on different days, because this would have required repeated
arterial cannulation. The washout periods were also kept
relatively short to minimize the duration of cannulation.

Despite these points, the aim of the different drugs was to
achieve a wide range of BP under varying conditions of
vascular tone, and this was still achieved even if the hemo-
dynamic effects of one drug had not completely resolved
before the administration of the next. The use of fluid-filled
manometer tubing introduces a degree of inaccuracy be-
tween pressure at the catheter tip and that at the more
proximal transducer. However, this discrepancy was con-
stant between subjects, and fluid-filled manometer tubes are
nonetheless regarded as the gold standard in clinical prac-
tice. HR is a potential confounding factor (21) in the
assessment of vascular stiffness and BP, although debate
continues over whether reported increases in pulse-wave
velocity with HR are genuine (13). Importantly, however,
the large change in HR seen with salbutamol does not affect
the interpretation of DBP being more important than SBP as
a determinant of pPTT, because a high HR would, if
anything, increase arterial stiffness and thus reduce vascular
transit time.

In conclusion, this study demonstrates that rPTT has a
negative correlation with SBP, which although relatively un-
affected by vasoactive drugs in some persons is not reliable
enough to enable rPTT to be a surrogate marker of SBP.
Furthermore, the significant contribution of PEP to rPTT
means that use of the latter parameter as a marker of purely
vascular function should be avoided. However, rPTT may have
a role in the assessment of BP variability and rapid pressure
change. The association of pPTT with DBP/MAP means that
use of rPTT as a predictor of diastolic or mean pressure is
inadvisable.
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Arterial Blood Pressure and Stiffness in Hypertension
Is Arterial Structure Important?

Rupert A. Payne, David J. Webb

Increasingly, in recent years, the stiffness of large elastic
arteries has been recognized as a major determinant of
vascular function and cardiovascular risk.1,2 The dis-

tally propagating arterial pressure pulse is reflected at arterial
branch points (sites of impedance mismatch), and the velocity
and magnitude of these reflections is determined by arterial
stiffness. Whereas peripheral vascular resistance largely de-
termines diastolic BP, central systolic BP and pulse pressure
are influenced by the augmentation of aortic pressure because
of wave reflections, as well as by the character of ventricular
ejection. Increased stiffness leads to greater pulsatile stress
and strain and may influence endothelial shear stress, con-
tributing to remodeling and structural abnormalities of the
blood vessel wall and to atherogenesis. An increase in aortic
stiffness also results in an increase in left ventricular after-
load and, consequently, myocardial oxygen consumption3

and compromise of myocardial perfusion during diastole, par-
ticularly in the subendocardial region.4 That central arterial
stiffness is clinically relevant is evident from the studies
showing a positive predictive value of aortic stiffness for
cardiovascular risk in hypertension,5,6 although the precise
mechanism of this association remains unclear.

Arterial stiffness is largely determined by 2 influences:
first, those related to the arteries themselves (wall structure
and function and lumen size); and, second, the mean distend-
ing arterial BP. The main load-bearing components of the
arterial wall are elastin fibers, stiffer collagen fibers, and
vascular smooth muscle. Smooth muscle contraction results
in increased arterial stiffness because of a decrease in lumen
size and shifting of load onto stiffer collagen fibers. In-
creasing mean distending pressure causes a small increase in
lumen size. However, transfer of stress from elastin to
collagen fibers outweighs this effect, leading to an exponen-
tial increase in arterial stiffness with pressure. Given that
arterial stiffness is increased in patients with essential hyper-
tension and that arterial remodeling is a recognized feature of
hypertension,7 an important question has been whether in-
creased aortic stiffness is fully accounted for by the increase
in mean distending pressure or whether there are intrinsic

wall changes secondary to structural or functional effects.
Indeed, this may be of importance in selecting treatment for
individual patients.

To examine what effects the inherent properties of the
vessel wall have on arterial stiffness, measures such as
compliance, distensibility, pulse wave velocity (PWV), or
elastic modulus must be compared under isobaric conditions.
Previous work has either used pressure-compliance curves
with interpolation of stiffness at a given blood pressure (BP)8

or has normalized transmural pressure by placing the arm in
a pressurized air chamber.9 However, in this issue of Hyper-
tension, Stewart et al10 describe a method for generating
isobaric conditions using a pharmacological intervention that
acutely normalized the loading pressure in hypertensive
subjects, dispensing with some of the assumptions associated
with other methods. Stewart et al10 studied 20 subjects with
treated but inadequately controlled essential hypertension and
20 matched normotensive controls. Acutely reducing mean
arterial pressure in the normotensive subjects, using glyceryl
trinitrate (GTN), caused a corresponding reduction in arterial
stiffness, as quantified by carotid-femoral PWV (PWVCF) and
carotid distensibility. However, when mean pressure in the
hyper-
tensive patients was reduced to the baseline level of the
normotensive individuals, there was no change in either PWVCF

or arterial distensibility. Furthermore, using angiotensin II to
increase the mean arterial pressure of normotensive subjects
to the baseline level of the hypertensive individuals, arterial
stiffness increased but still remained lower in the normoten-
sive subjects. These findings suggest that the increase in
aortic stiffness seen in hypertensive patients is because of an
increase in intrinsic wall stiffness rather than simply elevated
BP and may also imply a degree of resistance to changes of
distending pressure. Importantly, this is in contrast to results
from experiments using alternative techniques, which suggest
that the increase in arterial stiffness in hypertensive individ-
uals is largely because of the increase in mean pressure.8,9

The 2 questions one must surely ask are, first, why do these
findings seem to disagree with the findings of others using
different methodology, and second, what relevance might
these observations have from a clinical perspective?

Estimation of isobaric compliance from pressure-diameter
curves8 requires important assumptions to be made, and it can
be argued that the full pressure–diameter relationship should
be considered rather than 1 value in the cardiac cycle. Be-
cause the vessel wall is viscoelastic, luminal diameter at a
given pressure is affected by the nature of the preceding
pressure curve. This results in the compliance–pressure rela-
tionship exhibiting hysteresis, which must either be “re-
moved” or ignored to create a curve from which compliance
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can be calculated at any given BP. This curve-fitting proce-
dure may result in a potentially large error in the estimate of
compliance and, additionally, mask differences between 2
clearly distinct pressure–compliance loops. Furthermore, this
approach disregards potential differences in the pressure–
compliance loop that might exist at truly different distending
mean pressures. Normalizing transmural pressure using me-
chanical means9 removes the potential inaccuracy introduced
by such mathematical assumptions. However, it ignores
systemic hemodynamic differences, such as wave reflections,
that may exist. It can also only be used to examine conduit
vessels and not large central arteries. The administration of a
pharmacological agent (in this case GTN) is, of course, not
without problems either. Small doses of GTN do not seem to
change BP or PWVCF. It is possible, however, that the larger
doses of GTN used in this study altered the intrinsic aortic
wall stiffness independent of the reduction in mean BP.
Furthermore, the aortic wall response to GTN may have
differed between the hypertensive and normotensive groups.
Alternatively, the duration of GTN administration may have
been of sufficient duration to induce reflex neurohormonal
responses to the hypotension induced and act in a counter-
regulatory way to maintain a higher PWVCF in the hyperten-
sive patients: pressure-diameter relationships are captured
within the pressure excursions of a single cardiac cycle and
have the potential advantage that they are not subject to such
unknown hemodynamic changes. This was a relatively small
study, and the findings would benefit from confirmation,
including studies in previously untreated patients. In addition,
there is a lack of data describing the changes in arterial
stiffness in response to acute BP lowering with drugs other
than GTN, and this is an important area for future work.
Nonetheless, use of pharmacological intervention to achieve
isobaric conditions would seem more clinically applicable
than previous methodology, given that PWVCF can adversely
affect central BP and cardiac function and is closely linked to
cardiovascular risk.

Why are these findings potentially clinically relevant? Arterial
stiffness is a risk factor for cardiovascular disease, independent
of BP, and the study from Stewart et al10 suggests that simply
lowering BP may not necessarily be sufficient to address this
important risk factor. Indeed, other work2 has shown that
antihypertensive treatment with angiotensin-converting
enzyme inhibitors, angiotensin II receptor blockers, and
calcium-channel blockers reduces arterial stiffness, whereas
thiazide diuretics have less favorable effects, and �-blockers
have little impact. The study by Stewart et al10 suggests that
hypertensive remodeling is likely to be important, so any
beneficial response is likely to take time to occur, either

through direct effects on the arterial wall or because of
reduced shear stress or pulsatile load. This would fit with
recent work11 showing that larger doses of perindopril in-
crease distensibility while having no additional effect on BP,
consistent with a direct effect on intrinsic wall stiffness. Some
newer agents targeting endothelial dysfunction or those di-
rectly affecting arterial structure, such as advanced glycation
end-product crosslink breakers,12 may also offer promise in
this area. Nevertheless, the failure of arterial stiffness to
improve with thiazides, drugs with established morbidity and
mortality advantages in hypertension, serves as a reminder
that BP reduction per se remains of prime importance. More
work is clearly indicated, using the powerful tools now avail-
able, to establish the mechanisms whereby chronic lowering
of BP, using established and newer agents, reduces arterial
stiffness and improves clinical outcome.
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Background. Wideband external pulse (WEP) monitoring, using a broad bandwidth

piezoelectric sensor located over the brachial artery under the distal edge of a sphygmo-

manometer cuff, can be used for evaluating the contour of the arterial pressure pulse wave.

The pulse contour contains valuable information relating to cardiovascular function which may

be of clinical use in addition to blood pressure measurements. The aim of this study was to

compare the shape of the WEP signal during inflation of the cuff to suprasystolic pressure,

with intra-arterial pressure waves, after the administration of vasoactive drugs.

Methods. Radial intra-arterial and suprasystolic WEP waveforms were recorded in 11 healthy

men (mean 23 yr) before and at the end of infusion of glyceryl trinitrate, angiotensin II, norepi-

nephrine, and salbutamol. Waveform similarity was assessed by comparing the timing and

pressure of incident and reflected waves and by root mean square error (RMSE).

Results. The WEP signal was found to closely resemble the first derivative of intra-arterial

pressure. The WEP signal could be used to derive an arterial pressure wave with minimal bias

in the timing of incident [28 (18) ms, mean (SD)] and reflected [21 (24) ms] waves.

Augmentation index was underestimated by WEP [27 (18)%]. WEP also provided a measure

of compliance which correlated with pulse wave velocity (r¼20.44). RMSE values after the

administration of each of the four drugs mentioned earlier were 12.4 (3.8), 17.7 (5.0), 22.1

(11.7), and 28.9 (22.4) mm Hg, respectively. Changes in derived WEP signals were similar to

those measured by arterial line with all drugs.

Conclusions. The suprasystolic WEP signals can be used to derive arterial pressure waves which,

although not identical, track changes in the intra-arterial pulse wave induced by vasoactive drugs.

Br J Anaesth 2007; 99: 653–61

Keywords: arterial pressure, drug effects; arterial pressure, measurement; cardiovascular

system, effects; compliance; equipment, monitors; monitoring; arterial pressure
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The contour of the arterial pressure pulse wave contains

valuable information about cardiovascular function and,

although rarely used in clinical practice, is increasingly

recognized as a valuable means of assessing vascular

function.1 2 After cardiac contraction, a pulse wave propa-

gates distally through the arterial tree. This wave is par-

tially reflected at arterial branch points, with the velocity

and magnitude of the reflection dependent on arterial

wall stiffness and the degree of impedance mismatch,3

particularly at the arteriolar bed. (Impedance mismatch is

essentially the change in vascular resistance that occurs at

an arterial branch point.) The reflected wave augments

the incident pressure wave, the latter also dependent on

ventricular contraction and aortic stiffness, and thus deter-

mines the overall pulse wave shape. The ratio of pressure

augmentation to pulse pressure is often referred to as aug-

mentation index (AIx). Arterial stiffness is affected by

many factors, including vessel wall structure,4 vascular
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smooth muscle activity,5 endothelial function,6 and mean

distending arterial pressure.7 Increased arterial stiffness is

a major contributing factor to elevated systolic and pulse

pressures2 and has been shown to be associated with

target organ damage8 and with increased mortality inde-

pendent of blood pressure.9 10 Furthermore, increased

pressure augmentation, as a consequence of increased

arterial stiffness, has been shown to be an important

determinant of cardiac work and myocardial perfusion11 12

and is associated with adverse cardiovascular outcome.13 14

Analysis of the pulse shape can also be used for determin-

ing direct measurements or indirect estimates of cardiac

function, such as left ventricular ejection time15 or cardiac

output,16 respectively. At present, there is little evidence

for an association between perioperative complications and

admission blood pressures of ,180/110 mm Hg.17 An

alternative means of preoperative risk stratification, such as

pulse contour analysis, may therefore be more useful than

blood pressure measurement alone, but the technique

ideally needs to be simple and practical.

In clinical practice, monitoring of the pressure wave

using intra-arterial methods is widespread in the setting

of acute illness and anaesthesia. However, the invasive

nature of this technique makes it unsuitable for most

research studies or for general clinical use.

Non-invasive applanation tonometry has been success-

fully used in a clinical research setting for pulse wave

analysis,18 but adequate practice and training are essen-

tial. Wideband external pulse (WEP) monitoring was

first described in 1988 by Blank and colleagues19 as an

alternative non-invasive technique for evaluating the

arterial pressure pulse. Using a broad bandwidth (0.1–

2000 Hz) piezoelectric sensor placed over the brachial

artery under the distal edge of a sphygmomanometer

cuff, they described changes in the externally recorded

arterial waveform as a function of cuff pressure. They

noted that, at suprasystolic cuff pressures, the resulting

waveform, transmitted through soft tissues and cuff

material rather than the vasculature, exhibited a typical

shape consisting of three peaks and two troughs,

although the nature of these contour features was not

examined further. It is an attractive technique, as it

uses potentially simple and cheap technology, can be

performed quickly, and requires minimal operator train-

ing, in comparison with other non-invasive assessments

of arterial function such as tonometry18 or vascular

ultrasound.20 This method has recently been incorpor-

ated into a commercial system (Pulsecor, Auckland,

New Zealand) for the assessment of vascular function.

We hypothesized that the features of the suprasystolic

WEP signal would be closely related to the shape of

the invasively measured arterial pressure pulse. We

examined the relationship by recording both signals in

healthy volunteers after the administration of vasoactive

pharmacological agents to achieve large changes in the

pressure contour through disturbance of blood pressure,

the intrinsic properties of the arterial wall, and cardiac

contractility.

Methods

Study population

The study was conducted at The University of Edinburgh’s

Clinical Research Centre in accordance with the principles

of the Declaration of Helsinki and was approved by the

local research ethics committee. Written informed consent

was obtained from each volunteer. Eleven healthy men,

aged 20–25 yr (mean 23) were enrolled. Exclusion criteria

included taking any regular medication, contraindication to

arterial cannulation or any of the study drugs, and the pre-

sence of cardiovascular or other significant illness. Subjects

were studied after 4 h of fasting and 24 h of abstinence

from caffeine, alcohol, and nicotine.

Measurement techniques

Arterial pressure was measured invasively at the non-

dominant radial artery. A 20G 80 mm catheter (BP7-95 440,

Vygon, Ecouen, France) was inserted under local anaesthe-

sia (lidocaine 1%) using the Seldinger technique and con-

nected by semi-rigid fluid-filled tubing to a disposable

pressure transducer (TruWave, Edwards LifeSciences,

Saint-Prex, Switzerland) positioned level with the right

atrium. Transducers were factory-calibrated and exceeded

AAMI standards for performance interchangeability, with a

sensitivity of 5 mV V21 mm Hg21 +1% and a non-linearity

of the greater of +1.5% or +1 mm Hg. The natural fre-

quency of the system was 40 Hz. Waveforms were recorded

at 200 Hz using a custom amplifier and analogue–digital

converter interfaced to LabVIEW 6.1 data-logging software

(National Instruments, Newbury, UK).

The WEP signal was recorded using two adjacent 1.5

cm diameter piezoelectric sensors (frequency range 0.1 to

.1000 Hz) placed beneath the distal edge of a blood

pressure cuff directly over the axis of the contralateral bra-

chial artery (Pulsecor). The distal sensor was positioned

centred 1 cm from the cuff edge. No differences were sub-

sequently found between proximal and distal sensors, and

data are therefore reported for the distal sensor only.

Measurements were made with the cuff temporarily

inflated to 30 mm Hg above systolic pressure. The wave-

form was recorded at 200 Hz, thus band-limiting the

signal, using software developed by Ilixir Ltd (Auckland,

New Zealand). Signal processing was performed using

MATLAB (R12) (The MathWorks Inc., Natick, MA,

USA) and LabVIEW software.

Pulse wave velocity (PWV) was calculated determining

the transit time of the pulse between the proximal aorta

and finger, as previously described.21 The proximal pulse

wave was detected determining the B-point of the
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transthoracic cardiac bioimpedance waveform recorded

using an NCCOM3 Cardiodynamic Monitor (BoMed

Medical Systems, Irvine, CA, USA). This point has been

shown to correspond to the start of mechanical ventricular

ejection.22 The distal pulse was recorded simultaneously at

the fingertip using infrared photoplethysmography. The

start of the finger pulse wave was determined using an

intersecting tangent algorithm, as described by Chiu and

colleagues.23 Photoplethysmography has been favourably

compared with more established methods for the measure-

ment of PWV.24 The straight-line distance between the

sternal notch and fingertip was used as a surrogate for the

true vascular path length.

Waveform feature analysis

Waveforms were recorded during �30 s intervals at each

time point. The 30 s signal was then ensemble-averaged to

provide a single representative waveform for each individ-

ual subject at each individual time point. A preliminary

visual inspection found the WEP signal to resemble the

first derivative of arterial pressure, dP/dt. The original

WEP waveform (WEPS) was therefore compared directly

with the first derivative of the arterial pressure wave

(ARTS) and was also integrated to provide an estimated

pressure waveform (WEPA) for comparison with the orig-

inal intra-arterial signal (ARTA). WEPS and WEPA were

normalized to the same amplitude range as ARTS and

ARTA, respectively.

The WEPS signal has been noted by others19 to have

three principal waves (S1, S2, S3). These were recognized

using turning and inflection points identified from the zero

crossing points of the first through to third derivatives of

the signal in a similar manner to that previously described

for arterial waveforms.25 The timing (T) and pressure (P)

were noted at all three corresponding points, in addition to

the trough between S1 and S2. The WEPA and ARTA

signals were analysed by employing similar methods to

identify the incident and first reflected waveforms (A1, A2)

and using corresponding pressures to calculate AIx from

the equation 100�(PA22DBP)/(PA12DBP). These par-

ameters are shown in Figure 1. The Pulsecor system also

estimates compliance (expressed in mm Hg ml21) from a

first-order linear equation on the basis of a natural logar-

ithm of the ratio of amplitudes of PS1 and PS2 on the WEPS

waveform,26 but does not use measures of flow or volume.

The overall difference between waveforms was calcu-

lated by taking the root mean square error (RMSE) of the

Fig 1 (A) Average ARTS (solid) and WEPS (dotted) signals; y-axis divisions: 50 mm Hg s21. (B) Average ARTA (solid) and WEPA (dotted) signals;

y-axis divisions: 10 mm Hg.

Suprasystolic wideband external pulse
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two signals, after synchronization using the offset between

the peaks of the WEPS and ARTS waveforms.

Experimental protocol

All studies were conducted in a quiet, temperature-

controlled environment [22 (2)8C], after 1 h acclimatiz-

ation, with the subject in the supine position. After a

saline 0.9% 20 min run-in period, four drugs were

administered for 15 min, with the dose increased every 5

min. Drugs and doses were glyceryl trinitrate (GTN; 0.1,

1, 4 mg kg21 min21; Nitrocine, Schwarz, Chesham, UK),

angiotensin II (2, 6, 12 ng kg21 min21; Clinalfa,

Läufelfingen, Switzerland), norepinephrine (20, 60, 120 ng

kg21 min21; Levophed, Abbott, Maidenhead, UK), and

salbutamol (albuterol; 0.4, 1.2, 2.4 mg kg21 min21;

Ventolin, Allen and Hanburys, Uxbridge, UK). All were

administered i.v. at a constant rate of 1 ml min21 through

a 20G cannula sited in the antecubital fossa of the right

arm. A 25 min washout period was allowed after each

drug, with salbutamol given last because of its longer half-

life. The order was not randomized, and doses and

washout periods were based on published literature to

produce consistent and predictable changes in arterial

pressure and arterial tone: a decrease in arterial pressure

was anticipated with GTN;27 both norepinephrine and

angiotensin II were expected to increase mean pressure,

but the former was expected to cause a greater increase in

pulse pressure;28 29 salbutamol was predicted to cause a

decrease in diastolic pressure because of peripheral vasodi-

latation, and a marked tachycardia and increase in systolic

pressure because of positive chronotropic and inotropic

effects.30 Pulse transit time and arterial pressure data at

each time point have been published elsewhere.21 WEP

and intra-arterial recordings were made immediately

before each drug and at the end of the highest dose.

Statistical analysis

Data are presented as mean (SD). Changes in physiological

parameters with each drug, relative to the respective base-

line, were evaluated by paired t-tests. Changes in baseline

between drugs were assessed by repeated measures analy-

sis of variance (rmANOVA). The nature of the correlation

between equivalent parameters obtained from WEP and

intra-arterial signals was evaluated by linear regression

analysis. Comparison of the different methodologies was

expressed in terms of mean bias and limits of agreement, as

recommended by Bland and Altman.31 Linear regression

correlation coefficients between the difference and mean of

both measures were computed to evaluate any tendency for

bias to increase or decrease over the measurement range.

PWV is inversely proportional to compliance32 and the

nature of this correlation may vary between individuals; an

average correlation coefficient was therefore computed for

all individuals. Statistical analysis was performed using

SPSS 12.0 (SPSS Inc., USA). P-values ,0.05 were con-

sidered statistically significant.

Results

Changes in haemodynamic values are given in Table 1.

Mean arterial pressure (MAP) and diastolic blood pressure

(DBP) decreased with GTN and salbutamol, and increased

with norepinephrine and angiotensin II. Systolic blood

Table 1 Changes in haemodynamics with individual drugs. Values are mean (SD). * indicates significant (P,0.05) change. Abbreviations are as per text

GTN Angiotensin II Norepinephrine Salbutamol

Before End Before End Before End Before End

Haemodynamic parameter

SBP (mm Hg) 130 (13) 119 (9)* 133 (17) 153 (13)* 137 (12) 162 (14)* 148 (12) 150 (24)

DBP (mm Hg) 63 (4) 57 (4)* 62 (7) 79 (7)* 65 (6) 79 (8)* 69 (7) 36 (6)*

MAP (mm Hg) 79 (5) 73 (4)* 76 (8) 99 (9)* 81 (7) 99 (10)* 88 (8) 66 (10)*

HR (beats min– 1) 69 (10) 88 (12)* 68 (8) 62 (9) 68 (8) 63 (10) 73 (13) 136 (12)*

PWV (m s21) 5.3 (0.6) 4.8 (0.8)* 5.3 (1) 6.1 (1.5)* 5.2 (0.7) 5.9 (1.3)* 5.9 (0.9) 5 (0.6)*

WEP waveform

TS1 (ms) 49 (3) 54 (5)* 51 (5) 51 (5) 49 (5) 47 (4) 48 (4) 43 (3)*

TS2 (ms) 249 (21) 266 (53) 253 (17) 215 (14)* 252 (17) 219 (17)* 234 (21) 174 (44)*

TS3 (ms) 362 (28) 388 (48)* 362 (24) 363 (23) 369 (23) 364 (31) 359 (18) 326 (57)

TS22TS1 (ms) 200 (20) 211 (50) 201 (15) 163 (14)* 202 (14) 172 (16)* 186 (19) 130 (43)*

PS1/PS2 (%) 34 (9) 22 (8)* 30 (10) 37 (11)* 31 (10) 37 (9)* 33 (9) 22 (18)*

Compliance (ml mm Hg21) 1.7 (0.2) 2.2 (0.1)* 1.9 (0.2) 1.4 (0.1)* 1.8 (0.2) 1.5 (0.2)* 1.8 (0.2) 2.2 (0.1)*

Intra-arterial waveform

TA1 (ms) 109 (14) 121 (12)* 104 (14) 99 (6) 101 (11) 98 (12)* 98 (12) 81 (14)*

TA2 (ms) 237 (16) 240 (32) 229 (15) 213 (8)* 230 (16) 217 (13)* 223 (17) 190 (17)*

TA22TA1 (ms) 128 (6) 126 (13) 125 (7) 113 (5)* 128 (8) 118 (5)* 124 (7) 116 (11)

AIx (%) 39 (6) 25 (23) 26 (6) 53 (17)* 29 (7) 52 (14)* 31 (8) 12 (24)

RMSE

WEPA and ARTA (mm Hg) 14.2 (5.4) 12.4 (3.8) 13.3 (5.3) 17.7 (5.0) 17.3 (8.5) 22.1 (11.7) 20.3 (11.9) 28.9 (22.4)

WEPS and ARTS (mm Hg s21) 39 (13) 49 (18) 42 (16) 42 (12) 53 (30) 58 (38) 59 (38) 139 (74)
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pressure (SBP) increased with norepinephrine and angio-

tensin II, and decreased significantly with GTN only.

Baseline values of SBP, DBP, and MAP varied between

drugs (P,0.05 by rmANOVA), with an increase in all

values exclusively before salbutamol. Heart rate at base-

line did not vary between drugs (P¼0.33).

PWV, ARTA AIx, and WEPS PS1/PS2 ratio decreased

with GTN and salbutamol, and increased with norepi-

nephrine and angiotensin II. Compliance measured by

WEP mirrored changes in PWV, with a negative corre-

lation overall (r¼20.44, P,0.05). The WEPS TS22TS1

time delay and ARTA TA22TA1 time delay decreased with

all drugs, except GTN, where no change was seen. These

changes were largely accounted for by a decrease in TS2

and TA2, respectively. However, both TS1 and TA1

decreased with salbutamol. Norepinephrine caused a

greater increase in SBP and pulse pressure than angioten-

sin II (P,0.05), but similar changes in MAP and other

measures of vascular function.

The similarities between the WEPS and ARTS wave-

forms obtained are shown in Figure 1A, with the RMSE

for the two signals shown at the bottom of Table 1. The

RMSE did not vary significantly between experimental

phases, despite being notably greater at the end of salbuta-

mol administration. Regression analysis confirmed a strong

positive correlation between the two methods with respect

to timing of different components of the waveform

(Table 2), although TS1, TS2, and TS3 occurred consistently

slightly earlier when measured by WEPS compared with

ARTS (Fig. 2). There was also a trend for the bias to

become progressively more negative at greater values of

TS1 and TS3, although the reverse was true for TS2 (Fig. 2).

Although no significant mean differences existed between

methodologies in the TS22TS1 delay or the PS1/PS2 ratio,

there was a statistically significant tendency for the bias to

become increasingly positive at greater values of TS22TS1

and PS1/PS2 (Fig. 2).

The WEPS signal was integrated (WEPA) to assess how

accurately the arterial pressure wave contour could be esti-

mated. Similarities in wave shape are shown in Figure 1B.

RMSE values were large (Table 1) and statistically greater

with salbutamol only (P,0.05). The WEPA signal

appeared slightly damped relative to ARTA, although the

timings of reflected waves were similar. Regression analy-

sis (Table 2) confirmed that TA1 and TA2 occurred at

similar times, although the bias of the TA22TA1 time delay

became more positive with increasing values (Fig. 3). AIx

showed a consistent bias of 27 (18)% across the measure-

ment range relative to intra-arterial measurements (Fig. 3).

Discussion

This study is the first to describe the relationship between

the contours of the suprasystolic WEP signal and the

intra-arterial pressure wave, and the effect of vasoactive

drugs on the former. We have shown that the suprasystolic

WEP signal resembles the first derivative of intra-arterial

pressure and can therefore be used to estimate the arterial

pressure wave. Time delays and measurements of reflected

wave amplitude measured by WEP analysis correlate with

those obtained directly from the arterial signal, and similar

changes occur with both techniques during the adminis-

tration of pharmacological agents. Although it is important

to note that the RMSE was substantial with all drugs (4–5

mm Hg is the limit of accuracy of devices for recording

arterial pressure33), and that this may therefore limit the

role of suprasystolic WEP analysis as an accurate alterna-

tive to direct intra-arterial pressure recording or applana-

tion tonometry, the WEP responses nonetheless tracked

those of the arterial line and can thus still be considered a

potentially useful means of evaluating cardiovascular

function. Furthermore, in addition to the obvious benefits

of being non-invasive, the WEP system has the advantage

that it has potentially far less operator dependency than

tonometry and could be incorporated relatively easily into

standard oscillometric sphygmomanometer devices and

utilized in pre-admission screening or during preoperative

management.

It has been suggested by the manufacturers of Pulsecor

that the S22S1 delay is inversely related to PWV;26 a

similar relationship with PWV has been proposed for the

time delay between systolic and diastolic peaks on the

finger photoplethysmograph waveform.33 The current

study found that the TS22TS1 delay, measured by both

WEPS and the first derivative of the arterial pressure

pulse, decreased with all drugs, except GTN, which

caused a small non-significant increase. The TA22TA1

delay, measured from the arterial pressure pulse, also

decreased with both pressor agents and salbutamol,

although the latter not significantly. The TS22TS1 and

TA22TA1 time delay findings were similar to each other,

but not in line with either expected or measured PWV

Table 2 Comparison of different WEP and intra-arterial parameters. ‘r for

comparison’ is Pearson’s coefficient for correlation between related

parameters; ‘Mean bias’ is the mean difference between the related

parameters; ‘r for bias’ is Pearson’s coefficient for correlation between

difference and mean of related parameters. *P,0.05. Abbreviations are as per

text

Comparison r for

comparison

Mean bias 95% Limits

of agreement

r for

bias

WEPS2ARTS

TS1 0.70* 214 (ms)* 231.1 to 3.1 (ms) 20.75*

TS2 0.73* 219 (ms)* 270.0 to 32.0 (ms) 0.39*

TS3 0.68* 233 (ms)* 297.7 to 31.7 (ms) 20.27*

TS22TS1 0.64* 25 (28) (ms) 259.9 to 49.9 (ms) 0.52*

PS1/PS2 0.41* 20.6 222.2 to 21.0 0.52*

WEPA2ARTA

TA1 0.39* 28 (ms)* 243.3 to 27.3 (ms) 0.0

TA2 0.61* 21 (ms) 248.0 to 46.0 (ms) 0.35*

TA22TA1 0.61* 1 (ms) 227.0 to 29.8 (ms) 0.71*

AIx 0.60* 27 (%)* 242.3 to 28.3 (%) 0.0
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responses. Changes in the magnitude of reflected waves,

because of changes in peripheral impedance mismatch,

may affect the timing of wave peaks and thus alter the

apparent velocity of reflections. It can also be difficult to

identify S2 in circumstances of marked vasodilatation and

increased heart rate. These factors may in part explain the

time delay findings described. GTN given in similar doses

to those used in the present study has been shown to have

only small effects on the finger pulse systolic–diastolic

time delay, despite large changes in the relative amplitude

Fig 2 Bland–Altman plots of WEP measures (difference and mean of actual WEP value and that derived from first derivative of arterial pressure).

Dashed lines represent mean bias and 95% limits of agreement (+1.96SD).

Payne et al.
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of these wave components,34 and thus inaccuracy in identi-

fying S2 or A2 may have been particularly important with

this drug. The decrease in PWV with salbutamol in this

study is because of peripheral vasodilatation and a

decrease in MAP, offsetting any potential increase as a

result of tachycardia.35 The corresponding decrease in

TS22TS1 (and to a lesser extent, TA22TA1) is not consist-

ent with this PWV change and may also be explained

by the factors described earlier. These findings were ident-

ified with both WEP and arterial line and consistent in

all subjects, suggesting this is a genuine phenomenon.

Regardless of the precise cause of these findings, it would

therefore appear unwise to use these time delays as a sur-

rogate marker of PWV.

The ratio of amplitudes of the original WEPS signal

showed changes similar to AIx and PWV. However, as

pointed out by Millasseau and colleagues,34 it is difficult

to relate directly values obtained from the derivative of the

pulse waveform to the biomechanical properties of the car-

diovascular system. The ratio of amplitudes is also used

by Pulsecor to obtain a measure of vascular compliance,

and the values obtained in the current study correlate with

measured PWV. It is important to note, however, that the

currently unpublished mathematical function used to

derive compliance is not validated and is based on small

subject numbers.26 Furthermore, the compliance value is

an estimate only, as neither volume nor flow is known.

The current study was not designed to validate the accu-

racy of the compliance values, and a measure of vascular

function obtained directly from the waveform was thus

considered more relevant. In this respect, AIx is an estab-

lished and useful marker of vascular function,29 although

not a direct measure of arterial compliance.28 WEP-

derived arterial pressure waves showed changes in AIx

similar to those directly measured using the arterial line.

As the correlation may have been inflated by pooling data

across interventions known to alter AIx, baseline data

were examined alone. This analysis revealed that the posi-

tive correlation persisted (r¼0.42, P,0.01) with a similar

degree of bias [27.7 (12.7)%]. The bias between the two

methods probably reflects the damping of the WEPA wave-

form, with a relatively smaller PA2 amplitude. It remains

Fig 3 Bland–Altman plots of arterial pressure measures (difference and mean of arterial value derived by integrating WEP signal and actual measured

value). Dashed lines represent mean bias and 95% limits of agreement (+1.96SD).

Suprasystolic wideband external pulse

659



uncertain whether WEP signals can be used to evaluate

central haemodynamics, although this would appear poss-

ible, given that radial AIx correlates closely with derived

aortic AIx.36

Blank and colleagues19 described a similar appearance

of the suprasystolic WEP pulse contour to that observed in

the present study. Below systolic pressure, the suprasysto-

lic signal became obscured, with the waveform taking on

the intra-arterial pressure pulse contour as cuff pressure

approached diastolic pressure. Below diastolic pressure,

the signal diminished in size, as it requires adequate coup-

ling between the sensor surface and the skin. Although

they did not compare the suprasystolic shape directly with

intra-arterial pressure, they acknowledged that this wave-

form was probably still intrinsically related to the arterial

pressure pulse and may therefore contain clinically import-

ant information. This is supported by the current study. In

addition, Blank found that the suprasystolic signals had

less high frequency energy than diastolic WEP signals, the

latter correlating directly with intra-arterial pressure. This

may explain the apparent damping of the arterial pressure

signals derived from the suprasystolic WEP traces in the

current study and is presumably related to the effects of

pulse transmission through the upper limb tissues and

inflated cuff. The principal advantage of using the supra-

systolic WEP waveform, as opposed to the sub-systolic or

diastolic signals, is that adequate coupling of the sensor to

the skin is always present, and that a signal comprised of

any diastolic component is avoided.

It is still not clear why the WEP signal resembles the

derivative of the intra-arterial pressure wave. Occlusion of

the brachial artery does not prevent the distal propagation

of vibrations resembling the original pulse waveform

through the air-filled cuff and non-vascular tissues. If the

air-filled cuff is considered a low-impedance continuation

of the artery, then a reflection would be expected to occur

at the interface, which would be subject to a 908 phase

shift, effectively inverting it.3 Assuming these two signals

(normal and inverted) are of similar magnitude and

slightly offset in time from one another, then the sum of

the two amplitudes will be a function of the pressure gra-

dient and thus resemble the first derivative. Alternatively,

the signal may represent the effects of obstructed flow,

generating waves similar to the flow wave which is closely

related to the pressure gradient in peripheral vessels.

However, these suggestions are purely speculative, and

additional studies are required to understand the mechanics

underlying generation of the suprasystolic WEP signal and

whether the signal is affected by non-vascular parameters,

such as cuff material or size.

The use of fluid-filled manometer tubing for the

measurement of intra-arterial pressure is a weakness of

this study. Invasive monitoring was selected in preference

to tonometry, as there is no operator dependency.

Measurement error because of sub-optimal damping was

minimized during the study by using a short tube length.

The increased fundamental frequency of heart rate during

the administration of salbutamol might account for the

greater RMSE observed between WEP and intra-arterial

signals with this drug. Cannulation of the radial artery is

safer than that of the brachial artery, and different arms

were used for measurements owing to the loss of the ipsi-

lateral radial pulse signal upon brachial cuff inflation. The

resulting comparison of different anatomical sites may

therefore partially account for the differences seen

between actual and WEP-derived pressure signals but is

unlikely to influence the conclusions reached. A further

limitation of the study is the failure of haemodynamic

responses to return to baseline after the administration of

norepinephrine. The physiological changes were probably

not directly because of the drug, as its half-life is very

short, but rather due to a natural stress response to the pro-

longed study. Indeed there was a trend for arterial pressure

to increase throughout the experiment. However, the

failure of the response to return to baseline after norepi-

nephrine did not prevent the study achieving the aim of

comparing waveforms under widely varying pharmaco-

logically induced haemodynamic circumstances.

In conclusion, the supra-systolic WEP signal appears to

correlate strongly with the first derivative of the

intra-arterial pressure wave and is able to detect changes

in the pulse waveform induced by vasoactive drugs similar

to those measured by invasive monitoring. The arterial

pulse contour recorded using alternative methodologies

has already been shown to be clinically relevant. Further

work is therefore merited to investigate the true nature of

the supra-systolic WEP signal, whether it can be used in

the study of cardiovascular physiology in disease states,

and to evaluate reproducibility in a larger population.
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A generalized arterial transfer function derived at rest
underestimates augmentation of central pressure
after exercise
Rupert A. Payne, Chun Huat Teh, David J. Webb and Simon R.J. Maxwell
Objectives Peripheral exercise blood pressure and resting

central blood pressure are considered more relevant to

cardiovascular health than resting peripheral blood

pressure. Central exercise blood pressure may well be an

even more useful measure, but there is no simple non-

invasive means of determining it. The aim of the present

study was to establish whether the estimation of central

blood pressure from peripheral blood pressure using a

transfer function derived at rest, would hold after aerobic

exercise.

Methods Thirty healthy young men were studied before and

immediately (< 1 min) and 10 min after 15 min bicycle

exercise at 65–70% of maximum heart rate. Simultaneous

carotid and radial artery waveforms were recorded, and

radial-to-carotid generalized transfer functions (GTF) were

calculated using Fourier analysis for rest and immediately

postexercise. Central systolic blood pressure (SBP) and

augmentation index (AIx) were calculated for measured and

derived waves.

Results The resting GTF underestimated central SBP and

AIx immediately (S5.8 W 2.1 mmHg, P U 0.01; S8.3 W 2.9%,

P U 0.008) and 10 min after (S2.0 W 0.7 mmHg, P U 0.008;

S7.0 W 2.1%, P U 0.003) exercise. No significant bias was
0263-6352 � 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins
found between measured and derived (using resting GTF)

carotid values at rest. The use of an exercise-specific

GTF resulted in no specific bias immediately or 10 min

after exercise, although it overestimated blood pressure

and AIx at rest (2.5 W 1.0 mmHg, P U 0.02; 11.3 W 3.0%,

P U 0.001).

Conclusion A peripheral-to-central arterial GTF derived at

rest significantly underestimates key measures of central

arterial pressure immediately after exercise, and pressure

estimations may be improved by the use of an exercise-

specific GTF. J Hypertens 25:2266–2272 Q 2007 Wolters

Kluwer Health | Lippincott Williams & Wilkins.
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Introduction
Exercise is an important aspect of everyday life, and

peripheral blood pressure during exertion is recognized

as a marker of cardiovascular risk [1–4], independently of

resting peripheral blood pressure. At rest, central blood

pressure has been shown to be a more important deter-

minant of vascular function and cardiovascular risk than

peripheral blood pressure [5], and this may well also be

true during exercise. Increased arterial stiffness augments

central systolic pressure by effects on wave reflections [6].

This results in greater pulsatile stress in the aorta, leading

to structural changes, remodelling and atherogenesis [6].

It also increases left ventricular afterload and myocardial

oxygen consumption [7], while compromising myocardial

perfusion in diastole [8]. This is of particular importance

during exercise, when large changes occur in cardiac work

and vascular function. Marked differences exist between

central and peripheral blood pressure [9], however, as a

result of systolic pressure amplification in the peripheral

vessels, and these differences are amplified by exercise

[10]. At present, however, there is no established way of

measuring central blood pressure during exertion.
To overcome the difficulties associated with the invasive

measurement of central pressure, a transfer function has

been developed to derive the aortic pressure waveform

from the radial artery waveform [11]. A transfer function

is a mathematical description of the phase and magnitude

change in different frequency components of a pulsatile

phenomenon between two sites, and is widely used in

engineering sciences. A radial-to-aortic generalized trans-

fer function (GTF) assumes that the properties of the

upper limb arteries are virtually identical between indi-

viduals. The transfer function has indeed been shown to

remain relatively constant in individuals with coronary

heart disease [12], even after the administration of vaso-

active drugs [13–15]. Derived aortic waveforms obtained

using this method have been shown to relate to cardio-

vascular outcome [16,17]. Although this technique might

therefore be seen as a potential method of determining

central blood pressure during exercise, most of the vali-

dation studies to date have been in men undergoing

diagnostic cardiac catheterization. Discrepancies in the

transfer function have been demonstrated between men

and women [18], diabetic and non-diabetic populations

mailto:r.payne@ed.ac.uk
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[19], and individuals with and without coronary disease

[20]. The large increases in mean distending pressure and

intrinsic arterial wall stiffness that occur with exertion

might also be expected to alter the transfer function, with

an increase in the velocity of higher frequency harmonics.

This would result in greater convexity of the derived

waveform, and a relatively lower systolic peak for any

given diastolic and mean pressure.

We studied healthy volunteers undertaking moderately

strenuous aerobic exercise, to address the hypothesis that

a peripheral-to-central arterial transfer function derived

at rest would underestimate central pressure immediately

after exercise.

Methods
Subjects
Thirty healthy young male volunteers with variable

exercise capacity were recruited. Subjects had no past

history of cardiovascular or other significant illnesses, and

were taking no regular medications. Studies adhered to

the principles of the Declaration of Helsinki. Studies

conformed to institutional ethical requirements and

volunteers provided informed consent.

Study protocol
After an initial period of rest, baseline measurements of

central (carotid-femoral) and conduit (carotid-radial)

arterial pulse wave velocity (PWV) were made in the

supine position. Subjects then transferred to a semi-

recumbent cycle ergometer (SX1; Heinz Kettler GmbH

and Co., Ense-Parsit, Germany) with all further measure-

ments (including baseline arterial wave recordings) made

in the sitting position. Central pressure was determined

non-invasively at the carotid artery. Blood pressure, heart

rate and carotid and radial artery waveforms were

recorded before, and immediately (within 1 min) and

10 min after, aerobic exercise. All waveform measure-

ments were made by a single investigator (C.H.T.). An

initial workload of 50 W was set for all subjects, and pedal

cadence maintained between 70 and 100 rpm. Workload

was increased by 10 W every 30 s until the heart rate

reached 65–70% of the individual’s estimated maximum,

calculated as 220 minus age in years. Once the target

heart rate was achieved, the associated workload was

maintained for a further 15 min.

Pulse wave velocity and blood pressure
Blood pressure was recorded at the left brachial artery

using a validated oscillometric sphygmomanometer

(HEM705; Omron Healthcare, Bannockburn, Illinois,

USA). PWV was measured by sequential 10-s recordings

of the radial, carotid and femoral artery waveforms using a

hand-held tonometer (SPT301; Millar Instruments, Inc.,

Houston, Texas, USA), gated to the R-wave of the

electrocardiogram (LifePulse LP15; HME Ltd., South

Mimms, Herts, UK). PWV was calculated using the
intersecting tangent of the maximum first derivative

for waveform timing purposes [21], and straight-line

distance measurement between the sternal notch and

waveform recording sites.

Pulse waveform acquisition
Simultaneous non-invasive carotid and radial artery

waveforms were recorded using hand-held (SPT301)

and automated (CBM7000; Colin Medical Instruments

Corp., Komaki City, Japan) tonometers, respectively,

over approximately 30 s. Carotid waveforms were

acquired on the right side with the subject looking

straight ahead and minimizing respiratory excursions to

reduce movement artefact. Both forearms were supported

at the level of the xiphisternum, with a splint positioned

over the dorsal aspect of the right wrist to minimize

movement during radial waveform recording. Signals were

digitized at 1 kHz using a 16-bit analogue–digital conver-

ter (DAQCard 6036E; National Instruments Corp., Austin,

Texas, USA) and stored for off-line analysis.

Calculation of transfer functions and pulse wave
analysis
Signals were analysed using custom software written in

LabVIEW 6.1 (National Instruments). Ten-second sim-

ultaneous radial and carotid waveform segments were

selected for the rest and immediate postexercise phases,

using visual inspection to ensure signal stability and to

exclude artefact. Signals were smoothed using a five-

point moving average. Radial and carotid waveforms

were synchronized by identifying the wave foot using

the intersecting tangent, to remove the phase shift

introduced by the transit time between the two signals.

Radial signals were normalized to brachial diastolic and

systolic pressure, with mean pressure computed using

numeric integration of the waveform. Carotid signals

were then normalized assuming a constant diastolic and

mean pressure throughout the arterial tree (i.e. equiv-

alent to radial values) [5]. Transfer functions were

computed from these waveforms for each individual

subject and both time points, by dividing the Fourier

transform of the input (radial) signal by that of the

output (carotid) signal [22]: H(radial!carotid)¼Pradial(v)/

Pcarotid(v), where P(v) is the frequency domain of a

complex harmonic signal, v is the angular frequency,

and a sinusoidal component is represented by P¼ jxjejw,

where jxj is amplitude and w is phase. GTF (GTFrest

and GTFexercise) were computed by averaging the

relevant individual transfer functions over 0–20 Hz.

Derived carotid waveforms were obtained by applying

both GTFrest and GTFexercise to radial waveforms recorded

at all three experimental timepoints. A similar procedure

was carried out using a subset of 10 individuals to compute

the GTF (GTFrest-2 and GTFexercise-2), and applying these

GTF to the remainder of the study population. A further

radial-to-carotid GTF (GTFsphygmocor) was computed in a

similar manner from waveform data obtained using the
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Table 1 Subject characteristics (N U 30)

Variable Mean�SD

Age (years) 22.3�2.4
Height (cm) 177�9
BMI (kg/m2) 22.9�2.6
Family history CVD (N, %) 10 (33%)
Resting BP (mmHg) 119/69�8.0/6.4
Pulse wave velocity (m/s)

Carotid-femoral 6.2�1.1
Carotid-radial 8.2�1.1

Resting heart rate (bpm) 72�11.3
Peak exercise workload (W) 84�18

BP, Blood pressure; BMI, body mass index; Family history CVD, cardiovascular
disease in first degree relative aged 65 years or less.
commercially available SphygmoCor (AtCor Medical Ltd.,

West Ryde, New South Wales, Australia) system, by

multiplying together the radial-to-aortic and aortic-to-

carotid transfer functions employed by this device,

so that H(radial!carotid)¼ [Pradial(v)/Paortic(v)]� [Paortic(v)/

Pcarotid(v)]¼Pradial(v)/Pcarotid(v). As the derived aortic

waveforms are a pure mathematical function of the

measured peripheral signal, this allows for an accurate

reproduction of the two SphygmoCor transfer functions,

relatively independently of the quality of signal recording.

It also provides a further resting GTF obtained using

waveform data independent of that recorded during

the study.

Radial, carotid and derived-carotid waveforms were all

analysed in a similar manner. Ten-second waveform

signals were ensemble-averaged by synchronizing waves

at the maximum first derivative. The augmentation index

(AIx) was calculated as a measure of wave reflection and

arterial stiffness, expressed as the difference in amplitude

between incident and reflected waves, as a percentage of

pulse pressure. Component waves were identified

by finding the relevant zero-crossing points on the

fourth derivative of the waveform as described previously

[23].

Statistical analysis
Data were analysed using SPSS v14.0 (SPSS Inc.,

Chicago, Illinois, USA). Results are expressed as mean

� standard deviation, and difference in means as mean

difference� standard error. Waveform measurements

were compared using paired t-tests. The area under

the curve for the 0–10 Hz phase and magnitude com-
Table 2 Haemodynamic changes with exercise

Variable Rest

Heart rate (bpm) 72�11.3
DBP (mmHg) 69�6.4
MAP (mmHg) 86�7.4
Radial SBP (mmHg) 119�8.0
Measured carotid SBP (mmHg) 105�10.3
Radial AIx (%) 57�14.6
Measured carotid AIx (%) 18.9�12.2

AIx, Augmentation index; DBP, diastolic blood pressure; MAP, mean arterial pressure;
difference from rest value.
ponents of GTFrest and GTFexercise were compared by

paired t-tests.

Results
Subject characteristics are shown in Table 1 and

changes in peripheral haemodynamic variables in

Table 2. Volunteers had normal resting blood pressure,

and normal resting central and conduit artery PWV.

As expected, there were significant increases in heart

rate (58.9� 11.9 bpm, P< 0.001), diastolic blood pressure

(20.3� 33.7 mmHg, P¼ 0.005), mean arterial pressure

(31.7� 29.0 mmHg, P< 0.001), and radial systolic

blood pressure (SBP; 57.5� 31.1 mmHg, P< 0.001) and

AIx (7.8� 11.1, P¼ 0.002) immediately after exercise.

Measured carotid SBP and AIx also both significantly

increased (52.0� 30.3 mmHg and 16.9� 12.9%, respect-

ively, P< 0.001 for both). All parameters remained signifi-

cantly elevated (P� 0.02) above resting values at 10 min

recovery, with the exception of radial SBP (P¼ 0.23).

Differences between measured and derived carotid

parameters are shown in Fig. 1. There was no significant

difference between carotid artery SBP obtained using

GTFrest, and measured values, at rest (difference

0.0� 0.9 mmHg, P¼ 0.96). GTFrest significantly underes-

timated carotid artery SBP immediately after exercise

(�5.8� 2.1 mmHg, P¼ 0.01), however, and at 10 min post-

exercise (�2.0� 0.7 mmHg, P¼ 0.008). Conversely, an

exercise-specific transfer function,GTFexercise, gavesignifi-

cantly higher values of carotid SBP at rest (2.5� 1.0 mmHg,

P¼ 0.02), but there was no bias immediately postexercise

(�0.1� 2.2 mmHg, P¼ 0.96) or at 10 min recovery

(0.6� 0.7 mmHg, P¼ 0.37). Similar results were found

for carotid AIx: GTFrest underestimated carotid AIx

immediately postexercise (�8.3� 2.9%, P¼ 0.008) and at

10 min (�7.0� 2.1%, P¼ 0.003), but not at rest (0.4� 2.8%,

P¼ 0.90); GTFexercise demonstrated no significant bias

immediately postexercise (�2.6� 2.8%, P¼ 0.37) and at

10 min recovery (2.6� 2.3%, P¼ 0.27), but overestimated

resting (11.3� 3.0%, P¼ 0.001) carotid AIx.

In order to address the issue of potential bias resulting

from the application of a GTF derived from the same set

of data as that to which it is subsequently applied, transfer

functions calculated from a subset of the study population

(GTFrest-2, GTFexercise-2) were applied to the wave data
Immediately postexercise 10 Min postexercise

131�8.1MMM 85�11.9M

89�33.3MM 75�9.8MM

117�29.4MMM 91�9.5MM

177�30.2MMM 121�10.6
157�30.6MMM 110�11.9MM

66�13.2MM 62�12.3MM

36�14.8MMM 29�12.5MMM

SBP, systolic blood pressure. MP<0.05; MMP<0.01; MMMP<0.001, significant
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Fig. 1

Difference in derived carotid systolic blood pressure (SBP, top) and
carotid augmentation index (AIx, bottom), compared with actual
measured carotid values. Values are mean�SE (N¼30). Bars
represent GTFrest (black), GTFsphygmocor (diagonal hatching) and
GTFexercise (white). �P<0.05, ��P<0.01, ���P<0.001, significant
difference from measured value.

Fig. 2
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Transfer functions, shown as gain and phase shift for the relationship
between radial and carotid arteries. Solid line, resting generalized
transfer function (GTFrest); dotted line, exercise transfer function
(GTFexercise); dashed line, Sphygmocor-derived transfer function
(GTFsphygmocor). Heavy line is mean, thin lines are�1 SD (SD not
shown for GTFsphygmocor for clarity).
obtained from the remaining individuals, and a resting

GTF obtained independently from the SphygmoCor sys-

tem was applied to the entire study population. Similar

findings to those described above were obtained using

GTFrest-2 and GTFexercise-2: AIx and carotid SBP were

overestimated at rest when derived using GTFexercise-2

(14.1� 5.4%, P¼ 0.025; 4.6� 1.6 mmHg, P¼ 0.013,

respectively), and underestimated at peak exercise

when derived using GTFrest-2 (�15.4� 4.5%, P¼ 0.005;

�7.5� 2.3 mmHg, P¼ 0.007). Differences between actual

values of both AIxand carotid SBP, and those derived using

GTFrest-2, persisted at 10-min recovery (10.9� 3.5%,

P¼ 0.008; 3.9� 1.0 mmHg, P¼ 0.002). No significant

bias was observed between actual and derived measures

of either AIx or SBP when derived using the GTF appro-

priate to that experimental timepoint. GTFsphygmocor

gave similar findings to GTFrest, underestimating both

carotid SBP and AIx immediately postexercise (�5.6�
1.9 mmHg, P¼ 0.007; �11.6� 2.8%, P< 0.001, respect-

ively) and at 10 min recovery (�2.1� 0.7 mmHg, P¼
0.004; �6.3� 2.2%, P¼ 0.009), but demonstrating no bias

at rest (�0.2� 0.9 mmHg, P¼ 0.83; 2.1� 2.8%, P¼ 0.47).

GTFrest, GTFexercise, and GTFsphygmocor are shown in

Fig. 2. There was a significant decrease in gain
(P¼ 0.001) and a positive phase shift (P¼ 0.012) in

GTFexercise compared with GTFrest, over 0–10 Hz.

Discussion
The current study is the first to describe the effects of

exercise on the peripheral-to-central arterial transfer

function in young, healthy adults. It demonstrates that

both central SBP and AIx, important measures of aortic

pressure dependent on the effects of arterial stiffness, are

underestimated after exercise when a transfer function

derived at rest is used. The use of an exercise-specific

transfer function improves this estimation, but does not

hold at rest. The effect of exercise on the transfer func-

tion is still present 10 min after stopping exercise.

Transfer functions provide an attractive means of deter-

mining aortic pressure non-invasively, and their use

during exercise is of particular interest as there are

relatively few data on the effects of exertion on central

haemodynamics. Exercise has marked effects on the

stiffness of the arterial wall, both through an increase

in distending mean blood pressure (particularly at higher

levels of exertion), and by effects on the intrinsic proper-

ties of the arterial wall as a result of the release of various
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local and systemic vasoactive mediators. Furthermore,

increased heart rate is associated with an increased rate of

change of pressure, and may therefore increase stiffness

because of the viscoelastic nature of the arterial wall [24].

The change in gain and phase of the transfer function

after exercise is probably accounted for by a combination

of these factors. It is not entirely clear whether the

resulting bias demonstrated in our study of �5.8 mmHg

SBP and �8.3% AIx is great enough to be of clinical

relevance. The discrepancies are similar to or greater than

the differences in these parameters observed at rest in

populations with and without cardiovascular disease [17],

or resulting from different therapeutic agents [25]. The

disagreement corresponds to an inaccuracy at peak exer-

cise of only approximately 3.7% for SBP, although 11.1%

of the overall central SBP range. The relative error in AIx

is considerably greater at approximately 23% of the peak

AIx value. If the error across populations remains rela-

tively constant, then this is of less concern, although the

advantage of using a GTF in the first place is somewhat

defeated. It is also uncertain, however, whether drug

treatment or other interventions such as exercise training

may alter the GTF response to exercise (and thus the

degree of underestimation of central haemodynamics) in

an unpredictable manner.

Two other recent studies have examined the effect of

exercise on the arterial transfer function. Sharman et al.
[26] found no effect of exertion on the radial-to-aortic

transfer function, whereas Stok et al. [27] found that

increasing exercise led to an underestimate and more

unreliable measurement of systolic pressure derived from

the finger pulse. Both studies used invasive measure-

ments of aortic pressure in patients undergoing diagnostic

coronary angiography. Important methodological issues

may account for the different conclusions reached by

those studies. The duration of exercise in the study by

Sharman et al. [26] was rather short at only 3–6 min, and

included a protocol employing one-legged cycling.

Furthermore, the heart rate responses were not particu-

larly marked, at least partly as a result of beta-blockade in

the majority of individuals. Although the blood pressure

increases were similar between our study and that of

Sharman et al. [26], the exercise protocol in our study was

considerably longer and the intensity of workload more

accurately gauged by the heart rate response; it is possible

that the overall intensity of the exercise in the study by

Sharman et al. [26] was too low to have a significant effect

on the intrinsic properties of the arterial wall, and thus no

measurable effect on the transfer function. The work by

Sharman et al. [26] was carried out in older subjects, many

with confirmed coronary disease who were taking various

cardiovascular drugs. Significant differences have been

demonstrated in the resting radial-to-carotid transfer

function between individuals with coronary disease

and healthy volunteers [20]. Age and vascular disease

increase resting arterial stiffness, but also lead to dimin-
ished catecholamine-mediated inotropic, chronotropic

and arterial vasodilatory effects in response to exercise

[6]; this may well have blunted any change in transfer

function in response to exercise. The presence of certain

vasoactive drugs has been shown to have no effect on the

resting GTF [13–15], but it is not known whether these

may also have altered the arterial response to exercise,

thus minimizing the change in transfer function. Impor-

tantly, despite similar drug therapy in a comparable

population, an effect of exercise on the transfer function

was nonetheless demonstrated by Stok et al. [27]

suggesting that drug treatment, age and the presence

of vascular disease was less likely to account for the

findings of Sharman et al. [26]. It should, however, be

noted that exercise causes marked peripheral vasodilata-

tion and can lead to an inaccuracy of blood pressure

measurement at the finger using the volume-clamp

method employed by Finapres [28]. Furthermore, the

local effects of certain drugs may result in changes in the

finger pulse that are not evident in the pulses of larger

arteries. It might therefore be argued that some of the

inaccuracies in central pressure estimation found by Stok

et al. [27] may be accounted for by error resulting from use

of the Finapres, although our own work suggests that

their findings are at least partly accounted for by changes

in the conduit vessel properties in response to exercise.

Interestingly, although Sharman et al. [26] concluded

that the resting GTF held after exercise, their published

data nonetheless show that the difference between

derived and actual SBP was significantly greater

(P< 0.001 calculated from reported data using an unpaired

t-test) during exercise than at rest (�4.7� 3.3 versus

�1.3� 3.2 mmHg, respectively).

The present study has some important limitations. First

is the use of non-invasive carotid waveforms, rather than

invasive recording of aortic pressure. The use of the

carotid artery as a surrogate for central pressure is not

ideal. The risks inherent in aortic catheterization, how-

ever, preclude its use in a young, healthy population.

Furthermore, the carotid artery pulse contour has been

used previously as a substitute for invasive central arterial

measurements [29,30]. The differences between aortic

and carotid systolic pressure are less than 5 mmHg [31].

Discrepancies in stiffness at each site in healthy individ-

uals are small [32], and differences between carotid and

aortic augmentation are minimal in young adults [6].

Second, the accuracy of manually recorded carotid wave-

forms was worse than the radial waveforms obtained

using the automated tonometer during rest. This was

quantified by differences in the coefficient of variation of

pulse height (5.0� 2.1% versus 10.1� 3.4%, radial and

carotid, respectively) and baseline (2.9� 2.3% versus

8.1� 6.7%). No significant change was observed in the

height variability after exercise, although baseline varia-

bility increased for both signals (5.1� 3.8%, P¼ 0.02 versus

16.7� 1.5%, P¼ 0.01). Although suboptimal waveforms
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might arguably have adversely affected the accuracy

of the derived transfer function, the transfer function

derived from the SphygmoCor system was not subject to

such error and yet provided similar results. Carotid wave-

form inaccuracy may also have resulted in error in the

actual measured values of AIx at peak exercise. It is

difficult to be certain whether such error had a skewed

bias, but it seems more likely that this would result in

greater variability but not necessarily any overall mean

bias. Third, we assumed that diastolic and mean pressure

remained constant between radial and carotid arteries, as

absolute direct pressure measurement is not possible at

the latter. It is recognized that diastolic pressure tends to

decrease proximally by approximately 1–2 mmHg [33].

This difference is, however, small compared with the

difference in systolic pressure, and calibration using this

approach is considered generally acceptable [6]. More-

over, AIx is not dependent on absolute pressure, as it

represents the relative amplitudes of incident and

reflected wave components. Fourth, the timing of signal

recording during this study is also worthwhile noting.

During pilot work, we were unable to obtain satisfactory

and reliable carotid signal acquisition during exercise,

and recordings were therefore made in the immediate

postexercise period to reduce movement artefact. It is

possible that the rapid haemodynamic changes that occur

in the immediate postexertion period may account for the

change in the transfer function, rather than the direct

effects of exercise [34]. It is unlikely that this issue will

be resolved by non-invasive measurements, and it would

be interesting to see whether significant changes in transfer

function occur between peak exercise and the immediate

cessation of exertion. Fifth, GTFrest and GTFexercise were

derived from the same data that they were subsequently

applied to, potentially biasing the accuracy of each trans-

fer function towards its associated exercise phase. None-

theless, the results given by GTFsphygmocor and by the use

of GTF derived from only a subset of the subjects, are not

subject to such bias, but yielded similar conclusions.

Finally, the limits of agreement between measurements

were fairly high, as evidenced by the large standard

deviations of the difference, probably secondary to the

variability in the carotid waveform quality. The aim of

the present study was, however, to establish whether

overall bias existed between derived and actual measure-

ments, rather than the accuracy of the technique, and this

does not affect our principal conclusion. After all, there is

arguably little other use for predicting carotid waveforms

from the radial artery, when the former can be directly

measured anyway; more important is that the mean bias

in derived carotid waveform values may also extend to

derived aortic waveforms.

In conclusion, the use of an arterial GTF for determining

central pressure is an attractive alternative to invasive

monitoring, with potential uses in both the clinical and

research environments [5,35]. It has been increasingly
employed in the assessment of cardiovascular risk [16,17]

and vascular function at rest [36], despite increasing

evidence that the GTF does not remain constant in all

circumstances [18–20]. Given the lack of data on the

central arterial response to exercise, the use of a GTF in

these circumstances is clearly appealing, potentially

opening the gateway to larger clinical studies, examining

among other things the effects of blood pressure-lowering

drugs on central exercise blood pressure and the utility of

this measure as a marker for cardiovascular risk. The

results of the current study suggest that a significant

underestimation of key central haemodynamic measures

may occur when using a transfer function derived under

resting conditions. The use of a resting GTF in such

circumstances should therefore be treated with caution;

an exercise-specific transfer function might be favoured,

although this requires further investigation.
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