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He is quick, thinking in clear images; 

I am slow, thinking in broken images. 

He becomes dull, trusting to his clear images; 

I become sharp, mistrusting my broken images. 

Trusting his images, he assumes their relevance; 

Mistrusting my images, I question their relevance. 

Assuming their relevance, he assumes the fact; 

Questioning their relevance, I question the fact. 

When the fact fails him, he questions his senses; 

When the fact fails me, I approve my senses. 

He continues quick and dull in his clear images; 

I continue slow and sharp in my broken images - 

He in a new confusion of his understanding; 

I in a new understanding of my confusion. 

In Broken Images by Robert Graves 



ABSTRACT 

In recent years it has become clear that the global structure 

of field theories has important physical consequences. In this thesis 

we examine the global structure of some of the most important field 

theories in physics. 

The geometrical formulation of non-Abelian gauge theories is 

reviewed to serve as an introduction to latter parts of the thesis 

and also to allow a comparison to be made with certain results ob-

tained in subsequent chapters. 

A generalisation of the 0(3) non-linear a-model is introduced 

which retains all the interesting features of the 0(3) model. The 

instanton solutions of this generalised model are studied and the 

number of independent self-dual solutions is calculated. The 

classifying space for the inequivalent quantisations of the generalised 

a-model is obtained and the topology of the space of instanton fields 

is discussed. 

The topological structure of gauge theories on compact 4-manifolds 

is considered. It is shown that the topologically non-trivial nature 

of the group of gauge transformations results in no continuous global 

gauge existing and also in the existence of inequivalent quantisations 

of gauge theories. The existence of inequivalent quantisations of 

coupled gauge theories is also considered, as is the existence of 

global anomalies. 

Finally, the problem of globally fixing the gauge in the Polyakov 

string theory and four dimensional Einstein gravity is considered. It 

is shown that in many circumstances no global gauge choice exists. 
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CHAPTER 1 

CLASSICAL GAUGE THEORIES 

1. Introduction 

Since their introduction by Yang and Mills in 1954 (Yang and 

Mills (1954)) non-Abelian gauge theories have assumed a dominant 

position in theoretical physics. The notion of a gauge theory was 

first introduced into physics by Weyl (Weyl (1918)) in an attempt 

to reformulate Maxwell's theory of electromagnetism. The gauge 

concept was however limited to the study of electromagnetic inter-

actions until the work of Yang and Mills, although Klein had con-

sidered a non-Abelian gauge theory 15 years earlier (Klein (1939)). 

A non-Abelian gauge theory is a generalisation of electro-

magnetism in which the Abelian group U(1) is replaced by some non-

Abelian group such as SU(2) or SU(3). This seemingly straight-

forward modification results in non-Abelian gauge theories 

possessing many remarkable properties which are not present in 

electromagnetism. These differences manifest themselves at both 

the classical and the quantum level. The development of the Higgs 

mechanism (Higgs (1966)) in non-Abelian gauge theory led to the 

to the successful model of electro-weak interactions (Weinberg 

(1967) and Salam (1968)) by allowing the gauge fields to acquire 

mass. A non-Abelian gauge theory (Q.C.D.) is also the most 

successful candidate for a quantum theory of the strong interaction. 

In this chapter the geometrical formulation of classical non-

Abelian gauge theory is described. Section 2 introduces the idea 
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of a connection and its curvature. The Yang-Mills equations are 

obtained in Section 3 and the notion of gauge invariance is intro-

duced. Section 4 considers self-dual Yang-Mills potentials which 

are important because they yield an absolute lower bound on the 

Yang-Mills action. Finally, the coupled theory of Yang-Mills 

fields and matter fields is discussed in Section 5. Good expo-

sitions of classical gauge theory from the point of view adopted 

here are Bourguignon and Lawson (1982) and Parker (1982). More 

specialised results can be found in Atiyah and Bott (1982) and 

Atiyah, Hitchin and Singer (1978). 

2. 	Connections and Curvature 

To describe Yang-Mills theory in terms of differential geometry 

one introduces a compact Lie group C and a compact Riemannian 

manifold M. The group C is called the gauge group and M re-

presents the space-time. We then fix a principal C-bundle over N 

C 	P 

'I! Tr 

M 

with canonical projection ir (see Kobayashi and Nomuzu (1963) and 

Steenrod (1951). Associated to P by the adjoint action of G on 

itself is the bundle of groups Ad F 

Ad P = P x G 

and the bundle associated to P by the adjoint action of G on its 

Lie algebra 
OJ 
 is 
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adP 	P X 

G Oj 

Alternatively, the bundle ad P can be thought of as the pull-back 

of the tangent bundle to Ad P in the fibre direction, TF,Ad P by 

the canonical section Se  of Ad P  which sends each point in M 

to the identity ecG. Thus, we have the diagram 

S(TFAd P) 	) T  Ad P 

'1. 
M 	 Ad  

5 
e 

and the identification 

ad P = 	s * (TF  Ad P) 

It is now possible to define the space of p-forms on M with 

values in ad P 

2(M;ad P) 	= 	r(APT*M 0 ad P) 

and the space of all ad P-valued forms on M 

ç*( 	
P) 	= 	r(A*T*N 0 ad P) 

* 
where A T * . M = e Ap T* M is the exterior algebra bundle. The 

* 	pO 
space 0 (M;ad P) is a graded Lie algebra with the following opera-

tions (see Atiyah and Bott (1982) and Parker (1982)). 

(1) 	The Lie bracket on 03 together with exterior multiplication 

give a thap 
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c'(M;ad P) 0 c(M;ad P) - 	(M; ad P) 

(c 0 A) 0 (a 0 B) 	+ 	[A,B] c 

for a c 0P(M), 	M) 	and A, B e r ad P, 

denoted by w 0 8 	- 	[w,O]. 	For w c c(M;ad P) 

8 	 P) this operation satisfies. 

[w,Oj 	= 	(1)pq-f-1 (Ow] 

and the Jacobi identity (for r c c(M;ad P)) 

(_l)P'[ w,[O,]] + (_1)P[8[]] + (_1)r[,[,8]] = 0 

(ii) A compact Lie group G always admits a positive definite 

inner product on its Lie algebra Oj , given by minus the Killing 

form, which is invariant under the adjoint action. Such an inner 

product on I induces a Riemannian metric on ad p and gives a 

map 

c(M;ad P) 0 	p) + 

by 

(c& 0 A) 0 (a 0 B) + (A, B)c 

for 	a. c 	(M)
,a 6

c(M) and A, B c r ad P, 

denoted by 	w 0 8 + wO. 	This operation satisfies 

= 

* 
Finally, the space 0 (M;ad P) can be given a natural inner product 
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structure. If M is oriented then it possesses a unique volume 

element 3.i of unit length in the orientation of N. The corres-

ponding Hodge duality operator * c r End(c2 (M)) is characterised 

by 

= 

for w C Q(M), where < , >M denotes the natural Riemannian 

structure on Q(M). Then the inner product on and the 

Riemannian metric of N combine to give a natural inner product 

on c*(M;ad  'P) 

= 	w *0 	 (2.1) 

for w,0 C c(M;ad P). Note that we will use the notation 

JJwJJ 
	= <w,w> 	and 	1w12 = 

We now introduce the concept of a connection and Its curva-

ture. If we let T F  P denote the tangent bundle along the fibres 

of P and ir*TM  is the pull-back of the tangent bundle of N 

via the canonical projection it: TM - N, then a connection A 

for P is a G-invariant splitting of the natural exact sequence 

of vector bundles over P 

0+TFP+TP+1T*TM+0 

The bundle TP is often called the vertical bundle, and its 

complement TAP,  is called the horizontal bundle of A. Thus 

the splitting A is equivalent to a G-invariant direct sum 

decomposition 

TP = T F  P 0 TAP 



A dual way of thinking of a connection is as a O3-valued 

1-form A on P which 

	

(i) 	has horizontal kernel: 

	

A(i*X) = X, 	for X c Oj 
	

and 

j: Oj c-. TP the natural inclusion of Oj in 

the vertical subspace; 

(ii). is G-equivariant: R A = (Ad g -1  )A for 

Rg : G -' G the right action on G given by 

Rgg' = 9, 1 g, 	for 	g, g' c C. 

Note that it follows from property (i) that TAP ker A. If A 

and A' are two connections on P, then their difference A - A' 

has the following properties 

R(A - A') 	= 	(Ad g)(A - A') 

(A - A')(iX) = 	0, 	for X coj 

i.e., A - A' vanishes on vertical vectors. 

Hence, A - A' pulls-down to M as a 1-form with values in 
1 

ad P, i.e. A - A' c 0 (M;ad P). Therefore, the space of- 

	

con-nections 	(P) on P is naturally an affine space, with 

associated vector space &(M;ad P). 

The curvature of a connection A on P is the 	-valued 

2-form on P defined by 

FA(X,Y) 	= 	dA(hX,hY), 	 (2.2) 
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for X, Y c rTP, where h is the projection onto the horizontal 

subspace of A. From the structure equation the curvature FA  can 

be written as 

FA 	=. dA + I [A,A] 	. 	 (2.3) 

It follows from (2.2) and (2.3) that FA  is an adjoint invariant 

2-form on P which vanishes on vertical vectors. Thus, FA  pulls-

down to M as a 2-form with values in ad P, i.e. 

FA c 122 (M;ad P). 

3. 	The Yang-Mills Equations 

The Yang-Mills action S[A]  on the space of connections 

(P) is defined to be 

SIA] 	= 	II F 
11 

= 	J 1F1 	 (3.1) 

where 	is the norm on 1 2 (M;ad P) defined by (2.1). A 

critical point A c 	'(P) of the Yang-Mills action S is called 

a Yang-Mills connection (potential) and the curvature FA  is 

called a Yang-Mills field. The variational equations of (3.1) are 

called the Yang-Mills equations and to obtain these equations it is 

necessary to introduce the Yang-Mills operator. 

To define this operator recall that a connection A on P 

induces a natural covariant derivative V on all the associated 



vector bundles of P. 	Thus if 

E = PxG V 

is associated to P by a representation 

p : G -- GL (V) 

then A gives a way of differentiationg sections s c rE, along 

a vector field X c rTM, by the following procedure. The sections 

s c rE can be identified with G-equivariant maps from P to V. 

Hence se rE corresponds to a G-equivariant map 

1 	
I' ., 	 -l' 

P - V, 	s(pg) = p(g )s(p) 

Now given a vector field X on M, its horizontal A-lift X to 

P is a well defined C-invariant vector field. Hence 

f'J  

X ,  s 	P+V 

is also G-invariant and corresponds to the section V s c rE. 

This covariant derivative dually corresponds to a differential 

operator 

VA : r(E) -3- r(T*M 0 E) 

given by 

VA: S3-V 
x  
A5 

for s c FE. This differential operator then extends to a dif-

ferential operator 

* 	 +1* r(ATMeE) -3- rCA 	THeE) 

defined by 



	

DA(aøs) 	= daøs+(_1)aøVAs 

where c'. c r(A)T*M)  and s e FE, and extended to any 

* 
c r(A 

p 
  M 0 E) by linearity. 

In our case E = ad P is the vector bundle associated to P 

by the action of G on 03 and we obtain differential operators 

VA : 	2
0 	 1 
(M;ad P) -- 2 (M;ad P) 

and 
* 

DA : 0 (M; ad P) ->. c2 	(M; ad I'). 

In particular DA  acts on c2
* Mad P) as a derivation relative to 

	

both the [, I and 	operations (Atiyah and Bott (1982) and 

Parker (1982)): 

	

DA[w,OJ 	= (DAu,OI + (_1)[w,DAe] 

	

d(w.0) 	= DAW 0 + 	D0 

	

for w c c(M;ad P), 	0 c Q*(M;ad  P). 

The adjoint DA  of  DA  relative to the inner product (2.1) 

is defined by 

* 

	

<DAW , O > 	= 	<w , DAO >  

for w c Qp  (M;ad P) and 0 c Qp+1  (M;ad P). The adjoint D 
*
A is 

called the Yang-Mills operator. Therefore, given a connection 

A c '(P) we have a sequence of operators 

D 	 D 	 D 
cO(M ad. p)A 	c2 1 (M;  ad.  P)A~ 	 . . 

DA 	 DA 	 DA 
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We now obtain the Yang-Mills equations as the variational equations 

of (3.1). Fix a connection A E le(P), because 	(P) is an affine 

space, it suffices to vary A along lines 

At 	= A + tTI 	, 	n0 1 (M;ad P) 

The curvature Ft  of At is given by 

Ft 	= F + t Dri + I t 2 [fl,r] 
	

(3.2) 

where F is the curvature of A. The derivative of the Yang-Mills 

action is 

-- S[A] = lim -{S(AJ — S[A]} 
t-+o 

= 	lim 	1{11F t: II 	— hF 112 
t-3.O 

From (3.2) we have that 

hIFhi2 = IIFII + 2t<DAn,F>  + t2 {lIDnIJ+ <F,[,i]>} + higher terms. 

Thus 

- s[A] 	= <DAn , F>  

Hence, A is a critical point of S if 

0 = -p--  S[A}. I 	=<DAri,F> dt 
t=0 

= <n,DAF> 

for all n c 0 1 (M;ad P). Therefore, A 6 	(P) 	is a Yang-Mills 
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connection if and only if 

D 
A  F  A = 	0 	. 	 (3.3) 

This is the Yang-Mills equation and it can also be written in terms 

of the Hodge * operator which relates DA  and  DA  by 

DA 
* = 
	(l) 1 	* DA* 

on c21'(M;ad P). Hence, the Yang-Mills equation (3.3) is equivalent 

to 

DA*FA = 0 

It is also possible to write the Yang-Mills equation in one 

other form by introducing the Hodge-de Rham Laplacian on 

ad P) 

	

* 	* 
= DD+DD A A A A 

From the Bianchi identity 

DAFA 	0, 

for all A, and the compactness of M we see that (3.3) is equivalent 

to the equation 

AFA = 0 

Thus, Yang-Mills connections are connections with harmonic curvature. 

We will now consider the invariance of the Yang-Mills action 

under gauge transformations. The total space P of the principal 

G-bundle is a manifold with a free right action of G defined on it. 

An automorphism of P is a diffeomorphism f: P -'- P which preserves 
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this structure, i.e., f(pg) = f(p)g, for all p E P and g e G. 

Any automorphism f of P induces, a diffeoinorphism ir(f) of M 

and the group of all bundle automorphisms such that ir(f): M + M 

is orientation preserving is denoted by Aut P. The subgroup of 

Aut P which induces the identity transformation on N is denoted 

by Aut0  P. There is an exact sequence 

O+AutP+AutP+DiffM 
0 

where Diff M is the group of orientation preserving diffeomorphisms 

of N. An automorphism f c AutP is called a gauge transformation 

and the group of all gauge transformations is denoted by 

	

(P) 	= Aut0  P. 

The group of gauge transformations '(P) can also be identified 

with the space of sections of the bundle of groups Ad P, i.e., 

	

(P) 	rAd P 

which forms a group under pointwise multiplication. This can be seen 

as follows. The sections of Ad P can be identified with maps 

f : P G satisfying 

f(pg) = 	g 1f(p)g . 	 (3.4) 

Given a section of Ad P represented by f : P + G we can define 

f P+P by 

	

f(p) 	= 	pf(p) 

It then follows from (3.4) that f is G-equivariant and hence 

f 6 Aut0  P. 	Conversely, given an autombrphism f E Aut P, f 
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defines a unique map f : P -* G such that 

f(p) 	= 	p f(p) 

and G-equivariance of f requires that f satisfies the relation 

(3.4), i.e., f can be identified with a section of Ad P. This 

establishes the correspondence 	'(P) = rAd P. 

The group of gauge transformations 	'(P) acts naturally on 

the space of connections '(P) on P. If A c (P) is a con-

nection and f c F (P) a gauge transformation then f transforms 

A to f A, the pull-back of A by f. The action of f on A 

is given locally by 

*  
f A = 	(Ad f

-1 
 )A + f-1 df 	 (3.5) 

* 
and the curvature of f A is 

F f A 
* 	= 	(Ad f ')FA . 	 (3.6) 

When G is a matrix group these expressions become 

* 
f A 	= 	f 1Af + f 1  df 

and 

	

F f * A 	= 	f'FA f 

It is clear that the Yang-Mills action (3.1) is invariant under the 

transformation in F given by (3.6), i.e., 

* 

	

S[f A] 	= 	S[A] 

for all 	A c 	(P) and 	f c 	'(P). 	Thus we have seen that the 

Yang-Mills action is gauge invariant. 
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4. 	Self-Dual Yang-Mills Connections 

On four dimensional manifolds the Hodge star operator is an 

involution of A2T 
*
M, giving rise to the decomposition 

A2T*M = A2 T*M A 2  TN 	 (4.1) 

where 	ATM are the ±1 eigenspaces of *. Relative to this 

decomposition the Riemannian curvature tensor R has irreducible 

components {s,B,W± }, where s is the scalar curvature, B is the 

traceless Ricci tensor and W+  together give the conformally in-

variant Weyl tensor W = W + W_. Note that the metric is Einstein 

if and only if B = 0 and the metric is conformally flat if and 

only if W = 0. An oriented Riemannian 4-manifold is self-dual if 

its Weyl tensor W = W, i.e., if W = 0. 

It follows from the decomposition (4.1) that c1 2 (M;ad P) 

decomposes as 

c 2 (M;ad P) =. c(M;ad P) 9 2 (M;ad P) 

A connection A c 	(P) on a 4-manifold M is said to be self-dual 

if its curvature FA C c(M;ad P) and anti-self-dual if 

FA C 0 2 (M;ad P). Every w c c2 2 (M;ad P) and can be written uniquely 

as w=w+w where 

 I (1±*) 

Hence, a connection A is self-dual if FA = *FA  and anti-self-dual 

if FA = _*FA . The importance of the (anti-)self-dual connections 

is that they give the absolute minima of the Yang-Mills action. To 

see this recall that principal G-bundles, with G a compact simply 
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connected simple Lie group, over a compact 4-manifold M possess a 

characteristic class, which lies in dimension 4; this is the second 

Chern class c 2 (P) E H 1 (M; ). 	In terms of the (anti-)self-dual 

components F+  of F = F+ + F_ we have 

2 	2 
c 2 (P) 	- ---i  

As 	
2 	 2 	2 

	

IIFII 	= 	IIF~ II + IIF_I 	we have that 

22 	 2 	2 
!IF+ II 	+ hF_Il 	I IIF+hI 	- hF_h 	I 	(4.2) 

and thus the Yang-Mills action satisfies 

S 	4112 1c2 (P)j 	• 	 (4.3) 

Hence, the Yang-Mills action is bounded below by a topological in-

variant of P. It is clear from (4.2) that those connections which 

realise this absolute lower bound are the (anti-)self-dual con-

nections. 

As the (anti-)self-dual connections give the absolute minima 

of the Yang-Mills action it is interesting to know whether such 

connections exist. When M is self-dual then there is a corres-

pondence due to Ward (see Atiyah and Ward (1977)) between self-

dual connections on a bundle over M and holomorphic bundles on 

a complex manifold. When M = S, the Ward correspondence has led 

to the construction of all self-dual connections on G-bundles over 

I4  (see Atiyah, Hitchin, Drinfeld and Manin (1978)). 	It has also been 

shown by Atiyah, Hitchin and Singer (1978) that the space of self- 

dual 'onnections modulo gauge transformations, defined on a principal 
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G-bundle over a self-dual manifold N with positive scalar curva-

ture, is either empty or a manifold of dimension 

p1 
 (ad P) - 	dim G( - 	 (4.4) 

where p1 (ad P) is the first Pontrjagin class of •ad P, x is the 

Euler characteristic of M, and T is the signature of M. The 

question of the existence of self-dual connections has been answered 

in greater generality by Taubes (1982). He has shown that a suf -

ficient condition for there to exist principal C-bundles P over M 

which admit self-dual connections is that the second de Rham co-

homology group 1%2 R(M) of M should have no anti-self-dual elements. 

Finally, it is of interest to know whether all the critical 

points of the Yang-Mills action are (anti-)self-dual. There is still 

an open problem in general, however, it has been shown (Bourguignon 

and Lawson (1981)) that any weakly stable (i.e. non-negative second 

variation) Yang-Mills connection over S with group SU(2) or SU(3) 

is (anti-)self-dual. 

5. The Coupled Yang-Mills Equations 

Let 	P - M be a principal C-bundle over an oriented 4- 

manifold N with compact structure group C. Suppose that 

P : G+GL(V) 

is a representation of C and 

E.= PXGV 

is the associated vector bundle. Let W be any bundle associated to 
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the frame bundle of M. The coupled field equations will specify 

	

a connection A from the space 	(P) of connections on P and 

a section 	from the space 	(P) = r(E 0 W) of E-valued fields 

on N. We shall assume that these equations arise as the stationary 

points of an action integral 

	

s[A, 	= 	J Z(A, ) 	 (5.1) 

where the Lagrangian X is a 4-form constructed from A and 0. 

The group of gauge transformations acts on o c r(E 0 W) by pull-

back. We require that the action (4.1) be gauge invariant, i.e., 

for f c (P), A c '(P) and c (P) 

	

* 	* 

	

S[f A, f fl 	= 	s[A, 01 

The specific form of the action depends upon the nature of the 

field being described. For example, the action of a massless fermi 

field is defined as follows. Let N be a spin 4-manifold (i.e. 

its second Stiefel-Whitney class w 2 (M) c H2 (M; 	vanishes) with 

Riemannian connection V. V induces a connection V on the spin 

bundle S over M. A connection A on P induces a connection 

on any associated bundle E = P xG  V in the manner described 

in Section 3. The connections V S and  V  induce a connection 

V = VS 0 1 +. 1 0 V on the bundle S 0 E. The covariant deriva-

tive V is a map 

V 
r(seE) —*r(S0E®TM) 

and Clifford multiplication gives a map 

* 	C 
F(SOEOTM)—+ r(seE). 
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The Dirac operator D on E-valued spinors j E (S 0 E) on M 

is defined to be the composition of V and C, i.e., 

D : r(s 0 E) -- r(s 0 E) 

is given by 

D = Coy 

Now the massless fermion action on E-valued spinors i4.i e r(s 0 E) 

is defined as 

s[A, 	] 	= 	f [121F A 12 + i(g)l 

where < , > is the inner product on S 0 E and V(g) is the 

measure associated to the metric g on M. 

It is also possible to write down an action for boson fields 

and to obtain the variational equations of the fermi and boson 

actions (see Parker (1982)). We will not consider this further 

because the specific form of the action will not be required in 

later chapters. 
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CHAPTER 2 

NON-LINEAR a-MODELS ON COMPACT RIEMANN SURFACES 

1. 	Introduction 

The main reason for studying the classical 0(3) non-linear 

a-model in two dimensions is its similarities with pure Yang-Mills 

theory in four dimensions. The 0(3) model (Belavin and Polyakov 

(1975)) is a theory of a smooth three component real field 

• = (a) (a = 1,2,3) defined on 1R2 , i.e. • : ]R2  -  ' -I. 	is a 

smooth map. The action of the theory is 

S[] 	21 J 	3 j.3 	d2x 

p 
= 	J 	uv 	a 	

a d2x  

	

J 	 U 

where 6 	 is the Euclidean metric on 1R2 . The field • is subject 

to the constraint 

E 	
a 	

= 	1 
	

(1.2) 

The action (1.1) is invariant under a conformal change in the metric 

g 	= 	6 	 (1.3) 

for Q a smooth real valued function on ]R 2 . 	Taking 

= 2/(l + x2 ) 	 (1.4) 
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for x = (x1 ,x2 ) c 1R2 , and assuming that the field 	obeys the 

boundary condition 

	

(x) + 	as 	jxj 
	

(1.5) 

where 	is a constant, shows that the field defines a smooth map 

: S 2  -'- S2 , from the conformally conipactified Euclidean 2-space to 

the unit 2-sphere in ]R 3 . 	The maps from S 2  to S2  are par- 

titioned into homotopy classes which form a group 'ir 2 (S 2 ) 

this isomorphism is given by the degree of the map. Associated 

with each homotopy class of maps is a topological charge 

QW = * I cab - 	a 
X  ab d2x 	 (1.6) 

and it follows from the inequality 

I 	± c 	x 9b )(aa 	± c 	x 	)d2x a 	ab 	
ac 	

0 (1.7) 

IR 
J  

that 

S 	4Tr IQI . 	 ( 1.8) 

The equality in (1.8) will hold if and only if 

aa 	ab 
±e 	cxab 	= 	0 	 (1.9) — 	— 

and such a field is said to be (anti-) self-dual. In discussing the 

solutions of (1.9) it is important to remember that the 2-sphere S 2  

has a unique complex structure. This arises when it is regarded as 

the complex projective line 1p 2 . 	Under this identification the 

(anti-) self-dual fields correspond to (anti-) holomorphic maps 

from 1P 1  to :11, 1. 

In this chapter a generalisation of the 0(3) model is considered 
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in which the field 	is a smooth map from a compact Riemann sur- 

face M into a compact Kähler manifold V. Using techniques from 

the theory of harmonic maps it is shown in section 2 that the action 

of this theory is bounded below by a topological charge and that 

the fields which realise this absolute lower bound are the (anti-) 

holomorphic maps from M to V. For suitable choices of M and 

V this model coincides with the classical 0(3), cpN  and complex 

Grassmannian models (see, for example, Belavin and Polyakov (1975), 

Eichenherr (1978), Din and Zakrzewski (1980), (1981)). In section 

3 the case when V = IP (the N dimensional complex projec-

tive space) is discussed. In particular, the dimension of the 

space of self-dual fields from M to IP N  of degree n is cal-

culated in terms of N, n and the genus g of N. This result 

gives, for example, the number of independent instanton solutions 

(of a given degree) of the 0(3) or cpN  model. The existence 

of holomorphic maps from a compact Riemann surface to the complex 

Grassmannian Gk(Ctt) is also briefly discussed. The topology of 

the configuration space Q of maps from N to V is considered 

in section 4. The homotopy groups of the configuration space are 

calculated in terms of the homotopy groups of V and the genus g 

of M. The first homotopy group of Q. is related to the existence 

of inequivalent quantisations of the theory and the classifying 

space for these quantisations is calculated. Finally, the rela-

tionship between the topology of the space of self-dual fields 

and the topology of the space of all fields is considered. It is 

shown, for example, that the space of self-dual fields, of degree 

greater than one, in the 0(3) model is not simply connected. 
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2. 	Generalised Non-linear a-Model. 

Let M be a compact Riemann surface with metric g and V a 

compact simply connected n-dimensional Riemannian manifold with 

metric h. Given the Riemannian metric g c r(TM 0 TM)*,  we write 

<u,v> for g(u,v), x E M, u,v c TAM ,  ! 1u112 = <u,v>, and 

similarly for h c r(TV 0 TV). If c: M 4- V is a smooth map then 

the differential of 	at x c M is a linear map 

d4(x): TM 4-T 	V 
X 	q(x) (2.1) 

and hence d(x) c TM0TV. The norm J!d(x)II is defined using 

the metric induced on T M 0 T 	V from the Riemannian structures x 	x)  

on N and V. The generalisation of the 0(3) model is a theory 

of smooth fields : M 4- V with the action given by the "energy" 

of the field. The Lagrangian density X(): M 	is defined 

(see Eells and Lemaire (1978)) 

= 	1.  !Idx) 11 	 (2.2) 

and the action is 

S[] 	= 	'2 I IId(x)I(2 dp(g) 	 (2.3) 

where d11(g) is the canonical volume measure associated with g. 

In local coordinates 

= 	gPU. 	----h 
p ax 	ax 

' ab 
 

(2.4) 

and the correspondence between (2.3) and (1.1) is clearly seen. 

An important feature of the 0(3) model is that the range S 2  

has a complex structure, S 2 	To incorporate this aspect of 
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the 0(3) model into this generalisation it will be assumed that 

V has a complex structure. 

An (almost) complex structure on the manifold V is a section 

TV such that 4 = -id, similarly 
M  e r End TM such 

that J2  = -id is an (almost) complex structure on M (see 

Kobayashi and Nomizu (1963), (1969) for further details). It will 

be assumed here that these almost complex structures are integrable 

and hence define complex structures. A map : M+V is holomorphic 

if its differential dc commutes with the complex structures on M 

and V, i.e. 

- dodJM =V 	 . 	 (2.5) 

A Hermitean metric on V is a Riemannian metric h such that 

	

= <J U, JVV> 	 (2.6) 

for all u, v E TV, p c V. 	The Kähler form w c r(A2T*V)  is 

defined by 

	

w(u,v) = <u,Jv> 
	

(2.7) 

If w is closed then V is a Khler manifold. The complexif i-

cation of TN is TM = TM 	(I and N  may be extended by complexIR  

linearity to 4 c r End TM . Since (J) 2  = -id, there is a 

 direct sum decomposition T M = T 1,0M 0 T0,L  ii, where T1,0  M and 

T° ' 1M are the eigenbundles corresponding to the eigenvalues +i 

and -i of J, respectively. The differential of any map 

: M--V can be extended by complex linearity to d: TM+TV, 

with the canonical decomposition d = 4 + , where 
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: T" °M 
(2.8) 

0 
3: T 

1 
 ' OM -3- T0 '1V 

are defined to be the composition of d followed by projection in 

T V. A map c: M-3-V is (anti-) holomorphic if and only if 

= O) 	= 0. 

Using the derivatives given in (2.8) we can define the (1,0) 

and (0,1) Lagrangian densities by 

= 	I(x)II2 
(2.9) 

= II4(x)tI2 

with the corresponding actions 

= 	
fM lla ~ (X)112  d(g) 

 (2.10) 

= 	f 11 T~ w 11 2 du (g) 

The natural decomposition of the Lagrangian density 

= Xd1'0 	
+(031)() 	

(2.11) 

induces the decomposition 

S[} 	= 	S ( 110 ) 

W + 	 (2.12) 

of the action. 

To obtain a lower bound on the action we introduce the topolo- 

	

gical charge Q{} of the field 	: M-~-V given by 

	

I 	* 
Q[ 	= 	 w 	 (2.13) 
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where Li is the Khler form of V. Then a direct calculation 

(Lichnerowicz (1970)) shows that 

= 	fh12_ 
II(x) 11 2 1 di(g) 

M   

= s"°[] - 

fm  

(2.14) 

Thus the inequality 

+ S ° '[4] 	IS' ° [41 - s ° '[4]I (2.15) 

is the equivalent to the inequality 

S 	2Q 
	

(2.16) 

and we see that the action is bounded below by a multiple of the 

absolute value of the topological charge, just as in the 0(3) 

model. In general, the topological charge defined by (2.13) is not 

invariant under continuous deformations of the field 0 and thus 

does not define an absolute lower bound on the action in each homo-

topy class of maps from M to V. This defect can be remedied by 

requiring V to be a Kähler manifold. Let 	
, 

 4 2  : M 
- V be 

homotopic (denoted by 
l ~2 	and let 	: Mx [0,1] - V be a 

homotopy of 
l 
 and 0 

2 
 Then 

r 	* 	r 	* 	

J 
r 	* 	r 	* 

I 	i 	J 	2W 	= 	
w_ J   

M 	M 	 Mx{0} 	Mx{l} 

I 	* 	 1 	* 

= 	j 	w 	= 	
j 	(dw) 	(2.17) 

(Mx[ 0 ,1]) 	Mx[0,l] 

and thus 
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( 	 J. 

Q[1] - Q[cfJ 	= 	(dw) J MX[0,1] 
(2.18) 

If V is a Kähler manifold then dw = 0 and the' topological charge 

Q defined by (2.13) is a homotopy invariant. Henceforth it will be 

assumed that V has a Kähler structure. Note that the topological 

lower bound on the action of the theory is exactly analogous to the 

topological lower bound on the Yang-Mills action obtained in section 

3 of Chapter 1. 

The space of maps 	: M -'- V (which will be assumed to be base- 

point preserving) are partitioned into homotopy classes, the set of 

which is denoted by [M;V].  The manifold V is simply connected 

and thus by the Hopf classification theorem (Whitehead (1978)) 

[M;V] 	H2 (M;Tr 2 (V)) 

(2.19) 

Thus non-trivial topological classes of maps will exist for those 

spaces V which have a non-trivial second homotopy group. In each 

of these homotopy classes the action of the model will be bounded 

below by twice the absolute value of the topological charge Q. 

Those fields which reasise this absolute lower bound are called 

instanton solutions of the model. It is clear from (2.15) that 

an instanton field satisfies either 

= 0 

or 	 (2.20) 

= 0 

and hence is either holomorphic (self-dual) or anti-holomorphic 

(anti-self--dual). For certain choices of V such maps exist. The 
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case when V = 1N, the N-dimensional complex projective space, 

is discussed in the next section. 

3. 	The Space of Self-dual Maps from M to 

The complex projective space 1N with the Fubini-Study metric 

is a compact simply connected Kähler manifold with 

for all N 1. 	Thus, by (2.19) there exist non-trivial topo- 

logical classes of maps from any compact Rietnann surface M to 

 IP 	For v = N it is possible to write the topological charge  IP 

(2.13) in terms of deg , the degree of the map c: M 	N , and 

Q is given by (Wood (1979)) 

Q[$1 	= 	2r deg 	. 	 (3.1) 

There is a bilective  correspondence between deg 	and the elements 

Of 11(jpN) 	
and thus within each homotopy class of maps of a 

given degree the action is minimised by the (anti-) holomorphic maps. 

If we denote the space of all maps from M to V by Map(M:V) and 

the space of all holomorphic maps by Hol(M;V) then Map(M; 

and Hol(M; N) 	denote the component of Map(M; 	and Hol(M; N) 

of degree n, respectively. In this section we calculate the 

dimension of Hol(M; WN)  which is the number of independent self-

dual fields from H to 1N  of degree n. 

To calculate the dimension of Hol(M; FN)  it is necessary to 

introduce a correspondence between holomorphic maps from M to IP 

and holomorphic line bundles over M. Before explaining this corres-

pondence we will first recall some notions from algebraic geometry 

(see Griffiths and Harris (1978)). 
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A divisor D on a compact Riemann surface is.a finite sum 

D 	E n. x. 
1 1 

of points x c M with multiplicities n.. 	The set of divisors on 

M forms an additive group, denoted Div M. 	If n. 	0, for all i, 

then D is called effective. In terms of sheaves, a divisor D on 

M is a global section of the quotient sheaf flt*/d, where Jit* 

denotes the multiplicative sheaf of non-zero meromorphic functions 

* 
on M and Cr 	the subsheaf of non-zero holotnorphic functions on 

M. Thus we have the identification 

Div M = H°  (M; fl•t/ d) • 	 ( 3.3) 

Let ii: L -'- M be a hlomorphic line bundle over M, for an 

open cover {Ua}  of M there are trivialisations 

: LIu a
x  a: 

a 

of LJ 	= Tr (U 	and transition functions g: UU 	for 

L given by 

* 
g(x) 	= 	(pip1) 'L £ a: 

x 

	

The transition functions g 	are holomorphic, non-vanishing andaa 

satisfy the standard cocycle condition. Given a holornorphic line 

bundle L -- M with trivialisation (i} and transition functions 

{g}, then for any collection of non-zero holomorphic functions on 

Ua f C (U a),  we can define a new trivialisation over {TJ} by 

	

=f 	•lj) a 	a 	a 
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and new transition functions 

g 	= 	 . 	 (3.4) 

As any trivialisation of L over {U} can be obtained in this way, 

the collections and {g} of transition functions define the 

same holomorphic line bundle if and only if there exist functions 

O(U) satisfying (3.4). In terms of sheaves the transition 

functions {g c &(IJfl U8)} represent a Cech cocycle and two 

cocycles {g} and {g} define the same line bundle if and only 

if their difference {gg 	
1 1 is a Cech coboundary. Thus, the 

set of all line bundles L over M is H1(M;d).  The set of all 

line bundles over M has a group structure with multiplication 

given by tensor product and inverses given by dual bundles. This 

group structure coincides with the group structure of H 1 (M; d) and 

is called the Picard group of M, denoted by Pic M. 

The exact exponential sequence of sheaves 

exp 	* 
0 - 	 - 0 	 (3.5) 

induces in cohomology the boundary map 

* 	'5 
H 1 (M;) -' H2 (M;) 	. 	 (3.6) 

For a line bundle L c Pic M = H 1 (N;d) the first Chern class 

c1 (L) is defined to be 6(L) c H 2 (M;) . The degree deg L of the 

line bundle L is defined to be c 1 (L). The set of all holomorphic 

line bundles L c Pic M of degree n is denoted by PicM. 

Let L - M be a holomorphic line bundle with trivialisation 

: LI u 	U x  Q 	over {U} and with transition functions {g} 
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relative to 	. 	The trivialisations 	induce isomorphisms 

p*: O(L)(u) - 

and from the correspondence 

* 
s c 	'(L) (U) - {s 	(s) 6 O' (UCU) } 

it is clear that a ho.lomorphic section s of L over UM is 

equivalent to a collection of functions sc 	(U(U) satisfying 

s 	g s c'. 	c*t3 	8 

in U(UJflU8 . 	Similarly, a meromorphic section s of L over 

U is given by a collection of meromorphic functions S C 

which satisfy sa = g 8  s 8  in UCUc[U8•  If s is a global 

meromorphic section of L then the order of s is i adependent 

of { q) a  I and we may define the divisor (s) of s to be 

(s) = E ord (s) x. 

	

X 	 1 

The section s is holomorphic if and only if (s) is effective 

and the space of holomorphic sections of L over M is 

r(L) = 

We now describe the correspondence between holomorphic maps 

from M to IP and holoinorphic line bundles L over M. 

Associated to any subspace E of the vector space r(L) is the 

linear system JEJ of effective divisors corresponding to the 

sections in E, i.e. 

lEt 	= 	{(s)} 	ECDiv M. 
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As N is compact (s) = (s') only if S = Xs', for A c 1, 

thus IEI is parainetrised by F(E), the projectivisation of E. 

The linear system IEI is said to have no base points if not all 

the sections s £ E vanish at any x c N. In this case the set 

of sections s c E which vanish at x e M define a hyperplane 

HXcE. 	Equivalently, the set of divisors D c IEI which contain 

x forms a hyperplane HCIP(E). Thus, one can define a map from 

M to the dual projective space ]P(E) 	OP(E) is the set of hyper- 

planes in IP(E)) 

* 
f E : N - ]P (E) 

by sending a point x c M to the hyperplane H 
x  e ]P(E). 

This map can be described more explicitly by letting E Cr(L) 

be N+l dimensional with a basis s0,..., SN.  For any trivilisa-

tion 	of L over UCM let s. 	= p*(s.) £ 0(U), then. 

the point [s 
o,ct(x)  ....., s, (x)] £ 1N is independent of the 

trivialisation 	and can be written as [s OW, ..., s(x)]. 

The map f E : M +iP (E) * 	N is then defined by 

= (so  (X), ..., s(x)] 

for x c M, and f E is seen to be holomorphic. Thus a subspace 

E of the space of holomorphic sections of a line bundle L - M 

determines a holomorphic map to IP N.  Conversely, let fE:  M -'-IF N 

be a holomorphic map and let H be the hyperplane bundle on IP 

then L = f H and any section s E E is the pull-back of a 

section of H on 1N, i.e., 

= f;]P H0 ( N ;(yH))CH0 (M ; G(L)) 

- 	 N 
Thus, the map fE:  N +IP determines both the line bundle L and 
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the subspace Ecr(L). This results in the following 

N Correspondence Holomorphic maps f: M +IP , modulo projective 

automorphisms --+ holomorphic line hundles L -'- M with ECr(L) 

such that IEI has no base points. 

Note that the maps f are only determined up to automorphisms of 

N 
Fbecause a different choice of basis s ..... , sN  for E 

gives different homogeneous coordinates on IP N•  Also note that 

maps f: M 
3jpN 

 of degree n correspond to Ecr(L) for line 

bundles L of degree n. 

To obtain the dimension of Hol(M; N) 
 we need the following 

result. 

Lemma 3.1 	Let L be a holomorphic line bundle of degree n 

over a-compact Riemann surface of genus g. Then for n ? 2g the 

complete linear system Ir(L)I has no base points. 

Proof 	For any x e M, we have the short exact sequence of sheaves 

0 -- Or(L-x) -- 	(L) - L -- 0 	 (3.7) 

which gives rise in cohomlogy to the sequence 

r 

- H° (M; 5(L)) -- H° (M;L) - H'(M; CI(L-x)) -- ... (3.8) 

where r 
x 	 i1 is evaluation at x. Let K. be the canonical bundle 

of M and L1  any line bundle over N, then it follows from the 

Kodaira vanishing theorem that if deg L > deg KM  then H 1 (M; (L)) = 0. 

On a Riexnann surface of genus g the degree of KM  is given by the 

Riemann-Hurwitz formula to be deg KM = 2g - 2. Applying this to the 

line bundle L-x we obtain that if deg(L-x) = deg L-1 > 2g-2 then 

H 1 (M; (L-x)) = 0. Thus, for deg L 	2g the exact sequence (3.8) 
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reduces to 

r 

-- H°(M;O'(L)) -- L + 0 

Hence, the evaluation map r 
X 

is surjective and not all the section 

s e r(L) can vanish at x. 

We now calculate the dimension of Hol(M; 

Theorem 3.2 	Let M be a compact Riemann surface of genus g, 

then for n 2g the dimension of Hol(M; WN) 	is given by 

dim Hol(M; :IPN) n  = (N+l)n - N(g-1) 

Remarks (i) If L is a line bundle of negative degree over M 

then H°(M; cY(L)) = 0. Thus, by the correspondence introduced above 

there are no holomorphic maps from N to 1N  of negative degree. 

(ii) If L is a line bundle of degree n over a compact 

Riemann surface N of genus g then for n 2g-1 the dimension 

of r(L) = H° (M; (L)) is given by the Riemann-Roch theorem to 

be n-g+l. Thus, the dimension of Ir(L)I = dim ]P(r(L)) = n-g. 

Proof 	Consider the short exact sequence (which follows from 

Lemma 3.1) 

r x 
O -- K X  -- r(L) 	- L x 

 +0 

where K 
x 	x 	 x = ker r and thus dim K = n-g. The point x e M is 

a base point of IE! if and only if all the sections s c E vanish 

at x. Thus, if x is a base point, the map 

Er(L) + Lx  

obtained by restricting r 	to. E, which takes a section s c E 
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to s(x) C  E, is zero, i.e. E = ker r IE 
	r. Thus, x is 

a base point of IEI if and only if EL- K, and conversely, JEJ 

has no base points if and only if EK, for all x C  M. For a 

given x c M, K x = ker r x gives a hyperplane in the projective 

space 1P(r(L)) parametrising r(L), and thus K 	 the 

dual projective space. For a fixed K 	IP(M)) we have the 

Grassmannian GN+l(K)  of N+l dimensional spaces E in the n-g 

dimensional space K x . This Grassmanian is the fibre over K 
x 

of the fibre bundle 

GN+l(K) -+ 

pr 

iP( r (L)) *  

where 	is the flag manifold consisting of pairs (K,E) with 

ECKCr(L) and dim E = N+l, dim K = n-g. The total space 

has two canonical projections pr 1 (K,E) = K c 	 and 

pr2 (K,E) = E C GN+l(r(L)). By Leunna 3.1, if deg L 	2g then 

Jr(L)J J r(L)J has no base points and there is a well defined map 
* 

f: M -iE'(r(L)) 	given by the correspondence introduced earlier. 

Thus we have the diagram 

GN+l(K) 	 GN+l(K) 

I 
r 	f * i.- pr 	

GN+l(r(L)) 

I _____ jPri 
* 

M 

	

	 ) iP(r(L)) 
f 

ECK, for some x E M, if and only if E c mi pr20 f, thus there 

is no x  M such that ECJK  i.f and only if E 4 im pr 20f. 
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Hence, im pr 2  f consists of exactly those E for which JEJ has 

a base point. The dimension of GN+l(r(L)) is (N -I-l)[n-g+l- (N+1)] 

= (N+1)(n-g)+(N+1)-(N+1) 2  and dini(im pr  ° f) dim 
f* = 

1+(N+1)(rt-g)-(N+1) 2  . 	Thus, dim(im pr2  f) < dim GN+l(r(L))  If 

N 1 and hence pr20 f  is not surjective. Im pr 2  f is a closed 

subvariety in GN+l(r(L)). 	The complement GN+l(r(L))\im pr20f 

is open and consists of those E's with no base points. The Gras-

mannian GN+l(r(L))  can be considered as the fibre over L e Pic(M) 

of the fibre bundle 

GN+l(r(L)) - 4

YN+ 1 (M) 

pjCn(M) 

where the total space 	 consists of pairs (L,E), ECr(L), 

and 	.(L,E) = L c Pic tl(M).  From the above argument those E's for 

which JEJ has no base points form a Zariski open set in 	N+l(M) which 

is the complement of a subvariety in % 1 (M). Thus the dimension of the 

space of holomorphic maps from M to ]P N, modulo projective auto-

morphism, is equal to dim N+l(M) = g + (N+l)(n-g) - N(N+l). 

Finally, the dimension of Hol(M; 	is equal to dim 	N+l(M) 

plus the dimension of PGLN+l(U), 	the group of automorph isms of 

N IF . 	Hence 

dim Hol(M; 	= dim 9'N+l (M) + dim PGLN+l() 

= g + (N+1)(n-g)-N(N+1)+(N+1) 2  - 1 

= (N+l)n - N(g-1) 
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This formula for the dimension of Hol(M: IP N) 	is analogous to 

the expression for the dimension of the moduli space of instantons 

in Yang-Mills theory given in Chapter 1, section 3. 

An application of this result is to calculate the number of in-

dependent self-dual solutions, of degree n, of the classical CP N  

model. This corresponds to calculating the dimension of Hol(S 2 ; P N) 

Recall from the remark made earlier that there are no holomorphic maps 

from s 2  to ]P' of negative degree and therefore there are no self-

dual fields of negative topological charge. As S 2  has g = 0 we 

have for all n 0 that 

dim Hol(S2; ]N) 	= 	(N+l)n+N 
	

(3.9) 

The classical 0(3) model corresponds to the CPI model and hence, 

for all n 	0, 

dim Hol(S2; N) n 
	= 	2n + 1 
	

(3.10) 

which agrees with the number of independent parameters in the general, 

explicitly known, self-dual solution of degree n. 

To conclude this section we note that a theory of maps from M 

to the complex Grassmannian GK(cEm)  generalises the complex Grass-

mannian model (see Din and Zakrzewski (1981)). The Grassmannian 

GK ( m) is a simply connected Kähler manifold and thus the self-dual 

fields from M to GK(cEm)  are given by the holomorphic maps 

Hol(M;GK (Cm  )). Although the analogue of theorem 3.2 for the dimen-

sion of Ho1(M;GK(Um)) is not known, certain holomorphic maps from 

M to GK ( m) do exist. For example, if M is holomorphically 

immersed in 1N 
 then the Gauss map (see Griffiths and Harris (1978)) 

y: M -- G2(U1) 

is holomorphic (see Eells and Lemaire (1978), for example). 
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4. 	Topology of the Configuration Space 

An interesting feature of field theories with non simply con-

nected configuration spaces is that they can possess inequivalent 

quantisations. If Q,  is the configuration space of the theory in 

question then the inequivalent quantisations are classified by 

(Dowker (1980) and Isham (1981)) 

0 = Hom(7r1 (Q), U(l)). 	 (4.1) 

In fact, the arguments leading to this result are not quite 

complete as they ignore the possibility of the theory possessing 

a Wess-Zumino type term. This problem can be seen most clearly 

from the canonical view-point. Let be the configuration 

space of the theory and the cotangent bundle ir: T 	is the 

phase space, this carries a canonical non-degenerate symplectic 

2-form 	
' 

defining the natural Hamiltonian structure. In 

canonical quantisation we choose a complex line bundle 	-- 

the Hubert space 7~f of states of the quantised theory is the 

space of sections of X  and the equations of motion of the theory 

are implemented as operator equations on Z. 	If the canonical 

symplectic structure on TQ defined by Q can be changed by 

adding a curvature term pulled-back from Q , then the equations 

of motion defined by this new symplectic structure will differ 

from those defined by Q. An example of such a change in the 

symplectic structure occurs when one considers the motion of a 

charged particle in the field of a magnetic monopole. The quan-

tisation of the magnetic charge of the monopole is a consequence 

of the modification in the symplectic structure. A second important 

example of such a modification in the equation of motion of a physical 



-38- 

system is the addition of the Wess-Zumino term in the SU(3) non-

linear a-model. It is the presence of this term in the model that 

is responsible for the important consequences discovered by Witten 

(Witten (1983)). 	The way in which the Wess-Zumino term arises in 

the SU(3) a-model by changing the symplectic structure has been 

investigated by Rainadas (Ramadas (1984)). If, however, we consider 

a theory which has no Wess-Zumino type term then to eliminate the 

possibility of altering the canonical symplectic structure we can 

require that the complex line bundle 	-Q must be flat. Then 

it is well known that the flat complex line bundles over 91  are 

classified by Hom(Tr 1 (Q,), U(l)), 	which gives (4.1). As there 

are no Wess-Zumino type terms in the non-linear a-models being con-

sidered here the classification (4.1) is valid. 

For the classical 0(3) model Q.= Map" (S 2 ;S 2) and 

7T 1 
	

7r1(c22S2) = 7 3 (S 2) = 2Z, thus 

0 = 	Hom(, U(l)) 
(4.2) 

U(l) 

For a generalised non-linear a-model discussed in section 2, 

= Map(M;V) and the homotopy groups rrq ( 
.) are given by the 

following theorem (the space Map(M;V)  is assumed to have the 

compact - open topology (see Whitehead (1978)). 

Theorem 4.1 Let M be a compact Riemann surface of genus g and V 

a compact topological space. The homotopy groups of Map(M;V) are 

given by 

lrq (MaP* (N;V) = [n q+1 M I 
2g • 

ir 	(V) q+2 

for q 	1. 

It atawU he nAd t w 2u £ 

r 4v14 
c a 	ea 

2. £pcce+ 1tt44 	 e+L4-5. 
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Proof 	Recall that ir1 (M) = free group on a1b 1a2b2  ..* agbg  

subject to the relation a b a 1 b
1 
 ... a b a 1  b- 1 = 1. M can ill 1 	ggg g 

be obtained from the wedge product of 2g circles by attaching a 

-1-1 -1-1 cell in dimensioc. two via the map a = a b a. b 	... a b a b 111 1 	ggg g 

i.e., 

M .VSue2 
2g 	a 

Now 

a C 7r1 (V S 1 ) 
2g 

and its suspension 

S  c 7r2 (\j/ S 2 ) 
2g 

is null-homotopic (Sa = 0) because 112  is Abelian. Thus, the 

suspension of M is 

SM 	VS2 Ue3  
2g 	Sa 

\J s 2  v 
2g 

Suspending this q-1 times gives 

5q+l 

2g 

and the homotopy groups of Map(M;V) are given by 

•11q 
Map(M;V) = (SM;V] 

Is q+l;V1 2g e 

q+l (V) I 2g e 	CV) 

	

- 	 q+2 
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We also have the following consequences: 

Corollary 4.2 

l p*(M; F
N) 	- 	2g 	

for N = 1 

2g 	
for N 2 

Proof. This follows from the homotopy groups of F N which are 

obtained from the exact homotopy sequence of the Hopf fibration 

IJ(l) + s 2N 	-*. 

Corollary 4.3 	For m k+2 

. 14ap*  (M; G k  (,m) 	2Z 2g 

Proof. 	This follows from the homotopy result (see appendix) 

ffq(Gk(lEm)) = 7q_1 (U(k)) 	for 	q < 2(m-k) 

Thus, the classifying space for inequivalent quantisations for 

v= IP
N  is  

fHom(2Z 2 	, U(l)). 	for N 
0 	

IHom(2Z 29 , U(l)), 	for N 	2 

and for V = Gk ( m) is 

0 = Hom(2, UM) for m > k+l 

Note that for M = S 2  (i.e., g = 0) both the complex Grasmannian 

model and the CPN  (N 2) model have a unique quantisation. Only 
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the 0(3) model has a non-trivial 0 for g = 0, which is given by 

(4.2). The related issue of the existence of inequivalent quantisation 

of gauge theories will be considered in Chapter 3. 

To conclude, we briefly consider the relationship between the 

topology of the space of self-dual fields Hol(M;V)  and the topo-

logy of the space of all fields Nap(N;V).  For M ='S2 and 

V = 	this problem has been solved by a theorem of Segal's 

(Segal (1979)). This theorem states that the inclusion 

Hol(S2; 	) n. 
	
Map(S2 ; ]PN ) n  is a homotopy equivalence up to 

dimension n(2N-1). For example, when N = 1, 

7r  Hol(S2;S2)n = 	q 1T Map(S2;S2) 	q+2 it 	(S2 ) 

for q < n. For q = 1, we obtain 

ff1 Hol(S2 ;S2 ) 	ii3 (S2 ) 	71 

for n > 1, and hence the space of self-dual fields of degree 

greater than 1 in the 0(3) model is not simply connected. 

Appendix 

We prove here the formula for the stable homotopy of Gk (Cm) 

used in corollary 4.3, namely 

•TIq(Gk(tm)) = • ifq_1 (U(k)) 	 (Al) 

for q < 2(m-k). 

First recall that as a homogeneous space 

Gk(m) 	= 	U(m) 	- 	 (A2) 
U(k) x  U(m-k) 
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We know that U(mi-l)/U(m) = S 2u1+ 1 and from the homotopy exact 

sequence of the fibration 

U(m) -~- U(m+l) 

S 
2m+1 

we see that the inclusion U(m)C- U(m+1) is a homotopy equi- 

valence up to dimension 2m, i.e., i'r q (U(m)) = 7rq (U(m+l)) 	for 

q < 2m. 	Applying this result to the inclusion 1J(m-k) (—* U(m) 

gives 

ii g (U(mk)) = Trq (U(m)) 	 (A3) 

for q < 2(m-k). The homotopy exact sequence of the fibration 

U(m-k) -* U(m) 

'I, 
U(m) /U(m-k) 

together with (A3) result in 

Ji•q (U(m)/U(mk)) 	= 	0, 	 (A4) 

for q < 2(m-k). Finally, from the expression (A2) for Gk (am) as 

a homogeneous space it is clear that we have a fibratioñ 

U(k) - U(m)/U(m-k) 

.1. 
Gk(C) 

and the homotopy exact sequence of this together with (A4) results 

in the desired formula (Al). 
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THE TOPOLOGY OF GAUGE THEORIES ON COMPACT 4-MANIFOLDS 

1. 	Introduction 

It is well known that certain topological aspects play an 

important role in non-Abelian gauge theories defined on compact 

orientable 4-dimensional manifolds. Recall from Chapter 1, for 

example, that if P -'- M is a principal G-bundle over a compact 

4-manifold M then the Yang-Mills action, defined on the space 

of connections on P, is bounded below by a topological invariant 

of P (i.e., minus the second Chern class of P). The existence 

of such a topological lower bound on the action of a Yang-Mills 

system is crucially important for the existence of instanton 

solutions of the Yang-Mills equations. These instanton solutions 

have been used in several interesting ways in the study of non-

Abelian gauge theories (e.g., the semi-classical analysis of 

Yang-Mills systems and the resolution of the U(l) problem). 

In this chapter we will be concerned with certain topological 

aspects of gauge theories defined on compact 4-manifolds which are 

of a different nature to those which lead to the instanton pheno-

menon. Whereas the lower bound on the Yang-Mills action is a con-

sequence of the topological properties of the principal bundle 

P - M, we will be concerned here with the topological properties 

of the group '(P) of gauge transformations of P. The topology 

of T (P) is interesting in its own right and also leads to im-
portant physical consequences. One of the most immediate conse-

quences of the, topologically non-trivial nature of 	(P) is 
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that it is impossible to fix globally the gauge in a gauge theory 

defined on any of a large class of 4-manifolds. The topology of 

(P) is also related to the topology of the gauge orbit 

space Cem l '(P). A knowledge of the topology of 	 and 

hence of 	(P)/ 	(P), allows one to examine the possibility of 

there existing inequivalent quantisations of gauge theories on 

4-manifolds. The analogous task for non-linear a-models on Rie-

mann surfaces was carried out in Chapter 2. Finally, the tolopo- 

gically non-trivial nature of 	(P) may result in the gauge 

theory coupled to left-handed fermions being inconsistent. If 

the gauge group G = SU(n), for instance, then it is shown that 

such an inconsistency can occur only when n = 2. 

2. 	The Geometry of the Orbit Space 	'/ 

In this section we will show that, with suitable restrictions, 

the action of 	on 	' results in a principal fibre bundle 

ce~ 

To do this we first show that there exists a local slice 

through any connection A c C6 which intersects each orbit once 

and only once in a neighbourhood of A. Recall from Chapter 1 

that the group 	 of gauge transformations of P is 

	

(P) 	r Ad  

= 	r(P X  G) 

The space of sections of ad P = P 	has the natural structure 

of a Lie algebra induced by the Lie algebra structure on each fibre. 
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Hence the space 

cg(P) 	= radP 

= 	r(P xG) 

plays the role of the Lie algebra of the group (P) 	of gauge 

transformations. The exponential map 

exp:CJ-9.G 

induces a natural map 

Exp: 6  (P) - 

defined by 

Exp(a)(p) = 	exp(a(p)) 

where a c G (P) and p c P. Given a c 	(P) the smooth map 

t -+ Exp(ta) defines a 1-parameter subgroup of 	(P) which 

satisfies (Bleeker (1981)) 

d 
Exp(ta)(p) = a(p) dt 

If we consider the curve g t 	= 	Exp(ta) 	in then for 

A c '(P) 	we have that (Bleecker (1981)) 

d* 	I A 	=DA a . 	 (2.1) 

t=o 

(P) is an af fine space with c 1 (M; ad P) as its vector group, 

therefore there is a natural identification 

T A(f 	c2 1 (M; ad P) 
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for the tangent space to V at A c 	. From (2.1) the tangent 

space to the orbit of 	at A c i' 	is exactly the image of the 

map 

DA: c ° (M; ad P) -- 2 1 (M; ad P) 

Given r c 1 (M; ad P) , thenrelative to the norm on 

12 1 (M; ad P) defined in Chapter 1, ri lies in the orthogonal com-

plement of im DA  if 

* 
D A 
	 A 	

ao> 	<D r,> 

	

= 	
=  

for all o E Q 
0
(M; ad P). Hence 

* 
DA n = 0 

The orthogonal complement of liii DA is precisely the kernel of 

DA. 	For A c ' 	the transversal slice at A across the orbits 

of 	is given by 

	

A = {A + rijri c 0 1 M ad P) 	and 	DAli 	= 	o}. 	(2.2) 

It may be shown (Mitter and Viallet (1981)) that these local slices 

are globally effective, i.e., that in a sufficiently small neigh-

bourhood of A c ' they intersect each orbit once and only once. 

Infinitesimal variations of connections in the direction of im DA 

are infinitesimal variations through gauge equivalent connections. 

Infinitesimal variations in the direction of ker D *A are infini-

tesimal deformations of the connection A.- It follows from the 

above argument that the tangent space to A c CC has the direct 

sum decomposition 
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TA e = im DA • ker DA . 	 (2.3) 

The local slice 	0A provides a good local gauge around the 

connection A. 

The Yang-Mills action S is a p_invariant functional 

defined on the space. Ce of connections. Hence, S pulls-down 

to give a well-defined function on the gauge orbit space 

Unfortunately, the quotient space 	'I '' is not a manifold be- 

cause the action of 	on 	is not free, i.e., there are gauge 

transformations f c , f id, such that f*A = A. It is 

however possible to obtain a free group action by restricting 

the action of on re in either one of the following two 

ways. The action of f c 	on A c ' is given by 

f•A = f 1 Af+f 1 df 

= A+f 1 DAf. 

If • A is a fixed point of f c 	then f.A = A, which implies 

that DA  f = 0. We define the group • f 
of effective gauge trans-

formations by 

;= çiz 
	

(2.4) 

where Z is the centre of G. Also let Ce be the space of irre-

ducible connections on P. Then 	acts freely on (j'  and the 

local slices give ei ' a (Hilbert) manifold structure (see 

Mitter and Viallet (1981)). There is also a principal v-bundle 

over 

(2.5) 

Cel 
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Alternatively, we can choose a base-point x e N and consider 

the restricted group of gauge transformations 	equal to the 

identity on P , the fibre of P over x c M, i.e., 
xo 	 0 

() 	= If c y(P)lf(P0) = p 0 , for p 
0 	X0  
c P }. (2.6) 

If f C 5? fixes A c Cif then D A  f = 0. Hence f is covariantly 

constant and f preserves the parallel transport defined by A c 

Since f = id at p0 , parallel transport makes it the identity 

everywhere. Therefore if fA = A then f = id and the action 

of 	'* on ' is free. The free action of 	on C&  together 

with the existence of local slices results in 	/ 	having a 

manifold structure modelled on a Hubert space and in a principal 

'-bundle over lel 	(see Mitter and Viallet (1981)) 

CC 

'1. 	 (2.7) 

We will now discuss the relationship between the bundles (2.5) 

and (2.7) and the problem of globally fixing the gauge in a gauge 

theory. 

In the Feynman path integral approach to quantising gauge 

theories one is interested in quantities of the form 

Z = f g)A exp - S[A] 
CC 

where S[A]  is the Yang-Mills action. The difficulty with the 

integral is that the i-orbits have infinite measure. To remove 
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these infinities one should integrate over the orbit space 

which is, however, intractible. To circumvent this difficulty 

one attempts to fix the gauge, that is, to choose in a continuous 

manner one gauge potential on each v-orbit. Therefore, the 

choice of gauge is a continuous map s: eel Y - 	' such that 

p s = id where p: le + 	is the canonical projection. 

The functional integral is then evaluated over s( T / ' ) with 

a weight factor given by the Jacobian of p: s( 	) -- 
 
 relf 

In electrodynamics on ]R the Coulomb gauge is frequently 

chosen. If A (p = 1,..., 4) are the components of the vector
11  

potential the Coulomb gauge condition is that 

.A. 	= 	0 
1 1 

(2.8) 

for i = 1,2,3. 	Under a gauge transformation A becomes
11  

	

A' 	= A+A 

	

U 	 11 	U 

Thus any vector potential A 	can be transformed into a potential 

A 
11 
 which satisfies the Coulomb gauge condition if 

2A 	= 	-. A! 
1 1 

(2.9) 

where V2 =
i 

3 
1 
 is the spatial Laplacian. If A is regular 

everywhere and finite at infinity, then (2.9) will have a unique 

solution if the boundary conditions which are imposed are such 

that there are no non-trivial solutions of the equation 

V 2 A 	= 	0. 

Therefore, under these assumptions, the Coulomb gauge is a good 

gauge fixing condition for electrodynamics defined on 
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For a non-Abelian theory on 1R' it 

attempt to fix the gauge by imposing the 

versality condition (2.8) on the gauge p 

non-Abelian gauge transformation g, A 
11 

would seem reasonable to 

three dimensional trans-

tential A . Under a 
p 

will transform to 

A p 
	 p 
' 	= 	9 1 A g+g1 a g11 

and (2.8) will be satisfied if 

1 
.A 1  . + [

Di 	1 
, .gg) 	= 	0 	 (2.10) 

where D. 
1 

= 3 
1 
. + A 1  . is the spatial covariant derivative. If 

(2.10) possesses a unique solution under the assumption of suitable 

boundary conditions at infinity, then the Coulomb gauge will be a 

good gauge fixing condition in a non-Abelian theory. The exis-

tence of a unique solution of equation (2.10) was considered by 

Gribov (1978) who showed that, for large enough fields, (2.10) has 

more than one solution. 	Therefore, the Coulomb gauge "fixing" 

condition does not fix the gauge uniquely in such a theory. 

Motivated by this result, Singer (1978) showed that it was im-

possible to find a continuous gauge fixing condition for any SU(n) 

gauge theory defined on a space-time which is the 4-sphere S 

(which amounts to studying gauge fields on ]R' with certain asymp-

totic behaviour). Singer proved this result by studying the global 

geometry of the gauge theory concerned and showing that there 

existed a topological obstruction to the existence of a global 

gauge fixing condition. The same idea will be used here to show 

that a non-Abelian theory defined on any of a large class of 4-

manifolds must possess a Gribov ambiguity (i.e., that it is im-

possible to continuously fix the gauge in such a theory). 
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The geometrical part of the argument leading to this conclusion in-

volves the fibre bundles (2.5) and (2.7) introduced earlier in this 

section. The proof is completed as a consequence of the informa- 

tion obtained in the next section concerning the topological 

structure of the group of gauge transformations. 

The space CUIO of irreducible connections is open and dense in 

	

' (Singer (1978)). Therefore if a continuous gauge s: C€IC - 	were 

to exist then the restriction si 	 -'- ' would give a 

global section of the bundle 	-- 	/ 	. Such a global section 

exists if and only if the bundle is trivial, i.e., 

= ceifxq. 
Applying ir() to this gives 

•ff q() 	 Ttq( C'/C) 	• 	1l•q (C') 

for all q 0. The space 	is, in fact, contractible (Singer 

(1978)) and thus 

Tr 
q ( ce / c9 )  e 7Tq (C) 	 0 

for all q 	0. 	Therefore, if •ffq ( 	) 	0, for some q 	0, 

then no continuous gauge s: e / 	4- 	exists. It will be shown 
11.1 

in the next section that 	is homotopically non-trivial for a large 

class of 4-manifolds. 

A second variant of the gauge fixing problem involves the 

restricted group of gauge transformations 	 In many cir- 

cumstances in a gauge theory on 1R 4  it is natural to work 

with those gauge transformations which are the identity at in- 

finity. 	When IR' 	is conformally compactified to give S, 

with the base-point x E SL corresponding to infinity, the gauge 

transformations which are the identity at infinity correspond 
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to the gauge transformations which preserve x 0 . In this framework a 

choice of gauge is precisely a global section of the bundle 

-* 	 As before such a section exists if and only if the 

bundle is trivial, i.e., 

ce/*x 	* 

and hence 

7T 
q ( ce) 	Tl•q( ce/) • tq(*) 

for all q 0. Recalling that 	is an affine space and thus 

contractible gives 

7T q( "*) • Tfq() 	0 

for all q 	0. 	Hence, no global gauge (i.e., no global section). 

exists if 	is homotopically non-trivial. In section 3 it will 

be shown that 	is topologically non-trivial on any closed com- 

pact orientable 4-manifold. 

Although it is often impossible to fix the gauge globally in 

a Yang-Mills theory there always exist local gauges which are given 

by the slices 	If .L is a sufficiently small neighbourhood 

of a connection A c V  then UVA is  a good gauge in 	. If the 

local path integral we wish to evaluate is 

Z = 	J 	Aexp-S[A] 

and 	: C61  	 is the canonical projection with the res- 

triction 	 : 	-' 	 then we can write 
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z = 	5 
	

exp - S[A] 

fA 

= 	5 A exp - S[l 	A] ,;R l * 

= 5 	det( 	IA 	
A exp - SEA] 

Y'A 

The Jacobian determinant det( y2 I ) 
IA of 
	IA is the 

Fadeev-Popov determinant associated with the local gauge 

3. 	The Topology of 	on Compact 4-Manifolds 

We have seen in section 2 that the topological non-triviality 

of 	or 	represents the obstruction to globally fixing the 

gauge. Also recall from section 4 of Chapter 2 that the inequiva-

lent quantisations of the non-linear cy-model were classified in 

terms of the fundamental group of the configuration space of the 

theory. For a Yang-Mills theory the configuration space can be 

taken to be 	 A knowledge of the homotopy groups of 

is equivalent to a knowledge of the homotopy groups of 

Thus the classifying space for the inequivalent quantisations of 

a Yang-Mills theory can be determined from the topological nature 

of 	We will also see in section 4 that the topology of 

can be such that a global anomaly is present when the gauge theory 
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is coupled to left-handed fermions. In this section we will discuss 

the topology of the groups 	and 	on compact 4-manifolds. 

In particular, it is shown that the topology of 	is essentially 

completely determined on any compact simply connected spin 4-manifolds. 

For a given principal G-bundle 

G -- P 

1. 
M 

over M we have the group 	(P) of gauge transformations of P. 

Together with 	(P) there are the two subgroups (ç(P)  and 

defined in section 2. Thus for each principal G-bundle 

there are the groups ç(P) 	(P) and 	'()• The isomorphism 

classes of princupal G-bundles over N are classified by (Steenrod 

(1951)) 

G(M) 	= 	[M; BG) 

where BG is the universal classifying space of G. When G is 

simply connected, which is the case we will concentrate on, 

is given by the following result. 

Theorem 3.1 	Let M be a closed compact orientable 4-manifold 

and G a compact simply connected semi-simple Lie group. 	If the 

Lie algebra 03 of G has a decomposition 

93 OJl e  

into 	i 	non-trivial simple ideals CJ i  (1 < i < 2) 	then 



-55- 

t2G (M) 

Proof. 	If G is a compact simply connected semi-simple Lie 

group then the 5-skeleton of BG is homotopically a wedge product 

of 2 4-spheres (Bott (1956)). Thus 

$G(M) = [M; BG] 

[M;VS] 

EE [M; S] 

By the Hopf classification theorem (Whitehead (1978)) 

[H; S 4] 	H4 (M; 72 

72 

Hence 

(M) 2 	7Z. 

Thus, for G any compact simply connected semi-simple Lie group, 

there are a countably infinite number of inequivalent principal 

G-bundles over any compact 4-manifold N. One might expect that 

the homotopy type of the groups 	'(P), 	(P) and 

would depend on the isomorphism class of P. The next theorem, 

proved by Singer (Singer (1978)) for G = SU(n), asserts that 

the homotopy type of 	' .(P) is independent of P. 
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Theorem 3.2. 	Let M be a closed compact orientable 4-manifold 

and G a compact simply connected Lie group. If 	(P) is the 

group of restricted gauge transformations on P and Map(M;G) 

the group of base-point preserving maps from M to G then there 

is the (weak) homotopy equivalence 

9 (P) 	" Map(M;G) 

Proof. 	Let x0 C M be the base-point and D a disc centred 

on x. Note that c1 (P) = 0 and c 2 (P) can be localised. 	P 

is trivial over D. The complement M = M\D is homotopy equi- 

valent to a 3-complex and since 

also trivial over M . Let P 
0 	 1 

P 
2  =pj M 	Mo  xG. Then P is 

0 

c: S 3  -- G where S 3 	SD.. If 

f:D -G and f: M 	G. On 

f2  = 	f1 '. If f 6 	 then 

G is simply connected P is 

=ID D 
x  C and 

determined by a patching map 

f c 	then f = f 11f 2 1 where 

the boundary S 3  of D f satisfies 

f(x0) = e. 	Let 

{f: (D, x0 ) 	+ 	(G, e)} 	= ee 

be given by 	f -- f1 . 8 is a homomorphism with kernel 

K 	= 	If c 	f1 : D - e} 

If2 : (M0 ,S 3 ) 	(G,e)} 

Thus we have the fibration 

B 
0 — K —p 	—.* 	—*. 0 

Since tt is contractible there is a weak homotopy equivalence 

However, (M,S 3 ) "s (M,x) and hence 
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-3. 	(G,e)} 

Using this result we can now investigate the topological structure 

of 	'• The main case we will consider will be when M is simply 

connected. 

Theorem 3.3. 	Let M be a closed compact orientable simply con- 

nected 4-manifold and G a compact simply connected Lie group. Also 

let r = rank H2 (M). Then we have the long exact sequence 

Y'*) 
-  74 (G)

-  [ir3(G)]' 
+ l 	'* -  7 5 (G) 

+-  [ ir4 (G)]r 	... + 
 [Tr  

.2(G)]' _ rr.() -4-  7r. 4 (G) + 

Proof. 	The 4-manifold M is simply connected so it is, homotopically, 

a wedge product of r 2-spheres with a.4-cell attached (Milnor (1958)) 

That is, the 2-skeleton M 2  of M is 

M 2  

This implies that there is a cofibration (Switzer (1975), Whitehead 

(1978)) 

sc 	 S 2a 
14 

s3 -f  VS2 	M -*- s 	
- Vs3 -- SM -i-  S 5  —a- Vs14 

r 	 r 	 r 

ScL 
_VS -~ S  -3- s 4 -k VS  3  _+ 

where a: S 3-- M 2 	\J S 2  is the attaching map for the top cell, 

S 	is the j'th suspension of a and S 3 M is the j'th suspension 

of M (see Switzer (1975), Whitehead (1978). Mapping this cofibration 
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into the group G gives the long exact sequence 

[S 3 ;G] 	- 	 -  [M;G] 	[S;G] 

r 

~ ® [S;G] -  [SM;G] -  [S5;G] -- ()[S;G] 

r 	 r 

~ 

 

6[S:+.2 ;G] *  -<-  [S3M;G] 	S3+4;G] -®[S 1+3 ;G] *  ~ 

Recalling that 

[M;G] 

[SM;G] 

it. Map.(M;G) = [S 3M;G] 

and that ii 2 (G) = 0 yields 

0 -<- it MaP(M;G) -  rr4 (G) - 
 [113(G)]r 

-

1 

 Map (M;G) 

~ it5(G) ~ [ 4 	
j

(G)Jr 	
~ [ii 	(G)]' 	it 1p(M;G) ~ ir.(G) ~ 

+2 	
. 

 

Finally, using the homotopy equivalence of theorem 3.2 completes the 

proof. 

We can now show that 	is homotopically non-trivial on a 

compact simply connected 4-manifold. First we give a useful 

Lemma 3.4. 	The even dimensional rational homotopy groups of a 

compact simply connected Lie group G vanish, i.e., 

0 Q = 0 
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Proof. 	H(G; Q) is an exterior algebra on odd dimensional 

generators (Spanier (1966). Hence C is rationally homotopy equi-

valent to a product of odd dimensional spheres. Odd dimensional 

spheres have no even dimensional rational homotopy groups. 

We now have the following 

Theorem 3.5. 	If M is a closed compact orientable simply con- 

nected 4-manifold and G a compact simply connected Lie group then 

{o} 

for some j 	0. 

Proof. 	Assume that Ir.(') = { o}, for all j 	0. 

Then from theorem 3.3 we obtain that 

7T
4 
 (G)[ 3 (G) r  

Tensoring with Q gives 

7r4 (G) 0 Q = N3 (G)]r 0 

Then lemma 3.4 implies that 

[i 3 (G)J' 0 Q 	= 0 

which is a contradiction. Hence, either 1r( ' ) 	{O} or 

Tr 
	 {o}. 

From the discussion in section 2 we know that the topological 

non-triviality of 	is the obstruction to the existence of a 

global section s: 'C If -i- 	. 	Therefore, theorem 3.5 implies 

that no global section exists. Hence, relative to the group of 



restricted gauge transformations 	there is no continuous global 

gauge in any non-Abelian gauge theory defined on a compact simply 

connected 4-manifold, with any compact simply connected gauge group. 

Given an additional restriction on the topology of M it is 

possible to determine the topology of 	essentially completely. 

We have the following result. 

Theorem 3.6. 	Let M be a closed compact orientable simply 

connected spin 4-manifold and G a compact simply connected Lie 

group. Then we have the following relationships for the homotopy 

groups of 

7r4 (G) 

and 

0 	[ ~2(G)]r 	
- 7r 	(G) - 0 

for all j 	1. 

Proof. 	We have the cofibration 

Sct 	 s2 c 
S 3 	52 -k M -~ 

S4 	V  S3
- SM - s ----±\js - 

-- v sJ+2 
- SM 	s4 

 j
+1 a 

r 	 r 

where a: S3 -\j? is the attaching map for the 4-cell e. Let 

= Sa c Tr 4(S) 	 (S 3). Thus 8 = 8 1 	82 

where 8. c 7r4(S3) 	2Z . 	 Let y 
= 
8. for 1 < i < r. Then 

c 2Z 	 and for y 0 the mapping cone C of y is C 	S 3  V S5; 
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for y Y 0, C = 53 U e 5 	SW2 , the suspension of the complex 

projective plane ]P 2 . 

In general if X = Sn  U e 2 , for n 3, then X = S'1
V 5n+2 

if and only if Sq 2 : H1'(X; 2Z 	 - Hh12(X; ZZ 	 is zero 

(Spanier 1966)). If C 	is the mapping cone for a = 1 	2 

(i.e. C 	SM is the cofibre of the cofibration given above) then 

H3 (C; ZZ 2 = 2Z 2 • 2Z 2  e 	2 (r copies) and 6 = 0 if and 

only if Sq 2  x. = 0, for x the generator of the i'th copy of 

Hence, 	0 if and only if Sq 2x = 0, for all X £ H2 (M;.,), if 

and only if x.v2  = 0 mod 2, for all x E H2 (M; 2 ) , by the 

definition of the Wu class v2 . On an orientable 4-manifold v 2  = w2  

where w2  is the second Stiefel-Whitney class. Thus, a = Sc = 0 

if and only if w2  = 0. Hence, if M is spin S 3 ci = 0, for all 

1. Mapping the cofibration of theorem 3.3 into the group G and 

using this result proves the theorem. 

The rational homotopy groups of 	are even more completely 

determined. 

Theorem 3.7. 	If M is a closed compact orientable simply con- 

nected spin 4-manifold and G is a compact simply connected Lie 

group then 

0 Q = 0 

and 

2j+l*) 0 'i 
	= Err 2j+3 (G)] ' 	 rr 2 . 5 (c) 

Proof. 	The first statement follows from applying lemma 3.4 to 

the results of theorem 3.6. The second statement follows from 

theorem 3.6 because any short exact sequence of rational vector 
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spaces splits. 

Using theorem 3.6 it is now possible to prove that if M is 
A. 

spin then C  is homotopically non-trivial. 

Theorem 3.8. 	If M is a compact simply connected spin 4-manifold 

and C a compact simply connected Lie group then 	is homo- 

topically non-trivial, i.e. 

1I(') 	0 	{o} 

for some j 	0. 

Proof. 	The groups 	
, c5 and 	are related by the 

fibrations (Singer (1978)) 

	

0 	z 	. 	 , 0  

and 

0 -p-  -- 	-k G -) 0 	 (3.2) 

where Z is the centre of G. It follows from the exact homotopy 

sequence (3.1) that 

rr.() 

for all j 	2. Now assume that 

Tr T = 	{ o} 

for all j 	0. Then from the homotopy exact sequence of (3.2) we 

have that 

Tt.1(G) 
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for all j 	2. Inserting this in the exact sequence of theorem 3.6 

gives 

0 - [.+2(G)]r 	lr.+i(G) +- j+4 (G) +- 0 

for all j 	2. 	Taking j = 2 and tensoring with t? yields 

the short exact sequence 

0 +- [4(G)]r .8 Q ------- 7r 3 (G) 0 Q 	6- 	0 4 

Lemma 3.4 implies that 

7r (G)0 Q = 0 

which is a contradiction. 

Therefore, from the discussion of section 2, theorem 3.8 implies 

that no continuous global gauge s: Cel '-3.  ' exists in a non-
Abelian gauge theory (with simply connected gauge group) defined on 

a compact simply connected spin 4-manifold. 

In the later discussion of the existence of inequivalent quan-

tisations of gauge theories and global anomalies the homotopy group 

will be crucial. It was proved in theorem 3.6 that 

7r4 (G) 
	 (3.3) 

if M is simply connected and spin. One might wonder whether the 

assumption that M is spin is necessary to obtain (3.3). In fact 

it is, as can be seen from the following 

Example. 	Let M be the complex projective plane IF2 . Recall 

that IF 2  is a simply connected 4-manifold which is not spin. Then 

if G = SUM we have that 
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7T ( P 	0 

This is because, by theorem 3.2, 

7t0  Map, (]p2;  SU(2)) 

[ ]p2; SU(2)1 

0 

However, 1T4 (SU(2)) = 7Z . Thus, theorem 3.6 does not hold when M 

is not spin. 

We now establish a relationship between the homotopy types of 

the orbit space S'i 	(respectively 	"'*) and the group of 

gauge transformations (respectively These relationships 

are given in the next theorem (related issues concerning the homo-

topy type of 
C9

are  also discussed in Atiyah and Bott (1982)). 

Theorem 3.9 	For M a compact 4-manifold and G a compact Lie 

group there are homotopy equivalences 

" Map (M; BG) 

and 

ce(p)/(P) " Map(M; BG) 

where Map(M; BG) 	(respectively Map(M; BG)) denotes the com- 

ponent of Map(M; BG) (respectively Map(M;BG)) which induces the 

bundle P. 

Proof 	The fibre bundle 
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C'(p) 	-) 

'I. 

has contractible total space. Hence this bundle is universal for 

and 

B(P) 	'\' 

Let 

G _ 

BG 

be a universal bundle for G. Let Map(P;EG)G  be the space of 

G-equivariant maps from P to EG. The group 	(P) acts 

naturally on Map(P;EG)G  by composition. This results in the 

principal 	(P) - bundle 

(P) 	'__- 	Map(P;EG)G 

I 
Map (M;BG) 

The total space Map(P;EG)G  is contractible so this is a universal 

bundle for 	(P). Hence 

B C§ (P) 	". 	Map (M; BG) 

and thus 

Map (M; BG) 

Similarly, for the second case, the bundle 



(P) 

'I. 
'(P)/ 

is universal for 	 Hence 

B 	 ,'J 	 'e(P)/f(P) 

The group ,(P) acts naturally on the space Map(P; EG)G,  of 

base-point preserving G-equivariant maps from P to EG, by 

composition. This yields a principal 	- bundle 

() 	Map*(P;EG)G 

Map(M; BG) 

klap* (P;EG) 	is contractible and hence 

B 	 't' 	Map*  (M; BG) 

Thus 

ce(P),(P) 	' 	Map(N; BG) 

The independence of the homotopy type of 	 on the iso- 

morphism class of P (theorem 3.2), when G is simply connected, 

is equivalent to the independence of the homotopy type of the com-

ponent Map(M;BG) on the isomorphism class of P. Thus 

Theorem 3.10 	For M a closed compact orientable 4-manifold and 

G a compact simply connected Lie group we have that 

rt' 	Map*  (M; BG) 
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Proof. 	Directly from theorems 3.2 and 3.9. 

For N = S, theorem 3.10 results in 

e(P)/(P) 	,', 	Map(S 4 ; BC) 

", 	q4 (BG) 

" 

This reproduces a result of Atiyah and Jones (1978). 

When M is simply connected and spin the homotopy groups of 

reml Y* (P) are given by the following 

Theorem 3.11. 	Let N be a closed compact orientable simply 

connected spin 4-manifold and C a compact simply connected Lie 

group. Then 

r4 (G) 

and 

0 E - N+1(G)Jr 	 (e/) ( 	 ii . 3 (G) 	0 

for all j 	2. 

Proof. 	Inserting ir('/ ' ) ii.(B) 
- 	

7T 
j-1 

for all 	j 	1, 	into the expressions given in theorem 3.6 gives 

this result. 

The point has now been reached where we can discuss the in-

equivalent quantisations of Yang-Mills theories. The notion of 



inequivalent quantisations of a field theory was discussed in 

Chapter 2. This phenomenon has been discussed in connection with 

canonical quantisation by Isham (1981) and from a path integral 

point of view by Dowker (1980). As we saw in Chapter 2, if 

is the configuration space  of the field theory under consideration 

and the theory possesses no Wess-Zumino type terms in its action 

then the inequivalent quantisations of the theory are classified 

by 

0 	= 	Hom( 7r 1 (a), U(l)) 
	

(3.4) 

As Yang-Mills theory has no Wess-Zumino type terms this classifi-

cation is valid. 

If we consider the Yang-Mills action to be a 	-invariant 

functional on the space 	of connections then the configuration 

space is 

.Q =  lel!~ *  - 

We know from theorem 3.11 that if M is a closed compact orientable 

simply connected spin 4-manifold and G is a compact simply con-

nected Lie group then ir1 (i9/f* ) 	ii(G). 	Hence, for such M 

and G the classifying space for inequivalent quantisations of a 

Yang-Mills theory is 

0 	= 	Hom(7r 4 (G-), u(l)) 

Examples. 	(1) 	For G = SU(n) we have that 

7T 
 4  (SU (n) 	 2z 2 	

for 	n = 2 

0 	for n3 

sdIwuu A Jwe G ih 
A ike,017 t ezce 4 i4 



M.  

Thus SU(n) Yang-Mills theories possess a unique quantisation 

for all n 3. 	For n = 2 

e 	= 	Hom(ZZ 	U(l)) 

(ii) 	For G = Sp(n) we have rr4 (Sp(n)) = ZZ , for all 

n 1. Hence, Sp(n) gauge theories have inequivalent quantisations 

for all n; these are classified by 

0 	= 	Hom( 2 , U(l)) 

So far the discussion of the inequivalent quantisations has been 

limited to pure gauge theories. We will now consider gauge theories 

coupled to matter fields. Recall from Chapter 1 that a matter field 

(D is a section from the space e = r(E 0 W), where E is a 

vector bundle associated to P by some representation of G and W 

is any bundle associated to the frame bundle of M. The group 

of gauge transformations acts on 	by pull-back. 	To discuss 

the inequivalent quantisations of coupled gauge theories it is 

necessary to understand the geometry of the configuration space 

involved. The group 	of restricted gauge transformations 

acts freely on Ir  and hence acts freely on ce X 	 Further- 

more, it has been proved by Parker (1982) that there exist globally 

effective local slices for this action. The free group action to-

gether with the globally effective local slices result in the 

quotient 	' x 	 being a smooth manifold and in a smooth 

principal 	- bundle 
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I 
	

(3.5) 

ex iç 

over Cc x 

If we consider the action for a coupled gauge theory to be 

a 	-invariant functional defined on the space Ce x 	of 

fields then the configuration space of the theory is 

= C(f x  E / 
f* - 

The space. @ of sections of E 0 W is a vector space. Hence, 

is contractible. 	'j' is also contractible and thus 'f x 

is contractible. Therefore the bundle (3.5) is a universal bundle 

for 	and we have the hotnotopy equivalence 

't. 

However, we know from the proof of theorem 3.9 that 

BC 

Hence there is a homotopy equivalence 

, 	i5'iç 

between the configuration spaces for pure and coupled gauge theories. 

One important consequence of this homotopy equivalence is that 

the classifying spaces for the inequivalent quantisations of pure 

and coupled gauge theories are identical. Thus, an STJ(n) gauge 

theory coupled to fermionic or bosonic matter fields has a non-

trivial quantisation only for n = 2; in this case 
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0 	= Hom(ZZ , UM) 

2Z 2 

as for the pure theory. '  

	

So far we have discussed the topology of the group 	of 

restricted gauge transformations on a simply connected manifold in 

some detail. Under the additional assumption that M is spin the 

topology of 	can be determined essentially completely. In 

this section we will briefly consider the topological nature of 

* when M is not simply connected. 

We know from theorem 3.2 that for M a compact 4-manifold 

and G a compact simply connected Lie group 	the group 	is 

homotopically equivalent to Map(M;G). 	Thus 

, Map(M;G) 

[M;Gj 

For certain compact 4-manifolds M it is easy to show that 

# {O}. 	For example, if M = T 	(the 4-torus) then 

7T 
0 	

{o} may be shown as follows. First note that in 

general (Whitehead (1978)) if 

r 	= [X;G] 

and X is a product space of the form 

n 
	n2 	 n  

X 	= 	S 	xS 	x .....xS 

where S 	is the n.-sphere, then the group T has a central chain 

of length k 

r = r 	D T] 	 r 	= 	{ o} 	(3.6) 

OIL  

shcu2d k 
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with 

r. 	/r. 	11 	7r n(C) (G) 	. 	 (3.7)  
IciI=i 

In this last expression 	11 	denotes the direct product of the 
IaI=i 

honiotopy groups 1r () (G) over those subsets c*c 	{l,2, ..., k} 

which have exactly i members. The number n(c) is defined to be 

n(a) 	= 	E 	n 
icc 

	

Specialising to the case of X = T4 	S 1  x  S 1 x  S 1  x S, the 

subgroups r i in (3.6) give rise to the central chain 

r = r 0 r 1 r 2 r 3 r4  = { o} 

in which the ri's satisfy 

r 3/r 4 	r (G) 
4 

r 2 /r 3 	rr3 (G) • 7r 3 (G) • ir 3 (G) • 

0 

r/r1 	ii1 (G) e rr 1 (G) 	• Tr (G) 

For G a compact semi-simple Lie group i1 3 (G) 	71 and hence 

r 2 /r 3 ZZ 0 2Z •71 • ZZ 

Therefore the group r = [T;G] 	has a non-trivial subgroup and 

Tr 0 
	

{0} . 	 (3.8) 

A similar argument also shows that if M = S - x  S 3  then 
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{O} 

It is a consequence of (3.8) that it is impossible to fix a 

global gauge in a theory defined on the 4-torus. It also follows 

from (3.8) that 

Trl( '"'*) 	{O} 

and hence there may exist inequivalent quantisations of gauge 

theories on T. 

As far as the gauge fixing problem is concerned the obstruc-

tion to globally fixing the gauge comes from the non-vanishing of 

any of the homotopy groups of 	It is possible to give a 

more involved argument involving rational homotopy groups which 

proves that 	is homotopically non-trivial on any compact 

4-manifold. A detailed proof of this result is in Killingback 

and Rees (1984) and here we will only state the result and give 

an idea of the proof. 

Theorem 3.12. 	Let M be a closed compact orientable 4-manifold 

and G a compact simply connected semi-simple Lie group. Then 

# CO} 

for some j 	0. 

Outline of Proof. 	By theorem 3.2 it suffices to prove that 

. Map.(M;G) 	O} for some j 	0. That is there exists a 

j 	0 such that 
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[M; &G] 	# 	CO} 

Then assuming that 

	

dim([M; c23 G] 	0 	i: ) 	= o 

for all j 	0 and considering several cofibrations for the 

r-skeleton (1 < r < 4) of M allows one to obtain an inductive 

relationship between the dimensions of the rational homotopy groups 

Tr 2k+l(G) 0 Q . This inductive relationship may then be used to 

obtain a contradiction. 

As a consequence of this theorem it is impossible to globally 

fix the gauge in a theory defined on any closed compact orientable 

4-manifold with a compact simply connected gauge group. 

4. 	Global Anomalies on Compact 4-Manifolds 

One of the most interesting consdquences of the topologically 

non-trivial nature of 	is that a gauge theory coupled to a 

single doublet of left-handed fermions may be inconsistent. We 

will only give a brief discussion of this phenomenon, concentrating 

on the topological property of 
19 *  which is necessary for the in-

consistency to arise. 

Consider a gauge theory coupled to a left-handed fermion 

doublet. Let M be a compact oriented spin 4-manifold and P 

a principal G-bundle over M, where C is a compact simply con-

nected Lie group. Let p be a representation of G on a vector 

space V and E the associated vector bundle 
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E = P XGV 

The spin bundle S over M decomposes to give S = S • 5-

where 
S  and S are the bundles of positive and negative 

chirality, respectively. Each A c 	(P) gives a Dirac operator, 

as describeØ in Chapter 1, which will now be written as 

r(S+ 0 E) -y r(s 0 E) 

Now let G = STJ(2), the action of a left-handed fermion 

doublet coupled to the gauge field is given by 

S 	 ['IF 	+ 	j) A 

where j.i c r(s+  0 E) and p(g) is the volume measure on M. The 

partition function of this theory is then given by 

Z = 	J 	A DL P 'L' exp(-S) 

To discuss the effective theory one would, like to integrate out the 

fermions. Integrating over 	ip 	gives 

	

J exp[ - 
 J 	

OA  p (g)] 	= 	(det 

The quantity det 16A  is formally the infinite product of all the 

eigenvalues of 0 	 Since 11 anticommutes with 15  the eigen- 

values of 0A  occur in pairs (+X, -A). To define (det 

for a particular connection A we may choose to use either +X 

or -X for each eigenvalue. Once this choice has been made there 

is no further freedom because (det 	must vary smoothly with A 
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in order to satisfy the Schwinger-Dyson equations. If we define 

J. 
(det 0 A2  to be the product of all the positive eigenvalues +A, 

say, then (det 0A 2  is invariant under infinitesimal gauge trans-

formations. However, (det 0A 2  may not be invariant under gauge 

transformations which are disconnected from the identity. Let 

f c 	be a gauge transformation disconnected from the identity. 

If the fermion integral changes sign under f, i.e., 

I 
(det 0 f•A  ) 	= - (det 0A2 

then the theory will be inconsistent. This is for the following 

reason (see Witten (1982)). The partition function is 

Z 	= 	J 	A (det 0A 	exp(- I!FI 4  ) 

This vanishes identically because the contribution of any gauge 

potential A is exactly cancelled by the equal and opposite 

contribution of fA. 	The same is true for the path integral 

Z with any gauge invariant insertion X. Therefore the expecta-

tion values 

= 	= 

are indeterminate. Hence, the theory is inconsistent. 

.1 
Suppose that for a particular connection A (det 

0A2  is 

defined to be the product of the positive eigenvalues + X. Now 

let f c be a topologically non-trivial gauge transformation 

and consider the connection 

At 	= 	(1 - t)A + t f•A 
	

(4.1) 

with t varied smoothly from 0 to 1. 	As t varies the 
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eigenvalues may rearrange themselves. If the number of positive 

eigenvalues that become negative as t varies from 0 to 1 is 

odd then the fermion integral will change sign. For M = S 

the group of gauge transformations is 	12 1 (SU(2)) and hence 

r( 	 ir4 (SU(2)) 

Taking f c 	to be disconnected from the identity then it may 

be shown (Witten (198Z)) that for At  given by (4.1) (det 

changes sign as t varies from 0 to 1. To demonstrate this 

requires the use of the mod 2 index theorem for a five dimen-

sional Dirac operator (Atiyah and Singer (1971) and Atiyah, 

Patodi and Singer (1976)). It is the non-triviality of ir0( '*) 

that is the necessary topological condition for this global anomaly 

to exist. For G = SU(n) (n 3) we have that 

ir( 	*) 	7r4 (SU(n)) 	0 

and hence no anomaly can occur for SU(3), for example. 

We now return to a theory with a compact simply connected 

gauge group C defined on a compact simply connected spin 4-manifold 

M. From theorem (3.6) for such. M and G 

4 (G) 

Hence, the topological condition for the global anomaly to occur 

is identical to that when M = S. In particular for G = SU(n), 

the anomaly can only occur for n = 2. The sufficient conditions 
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for the existence of a global anomaly depend on index theorem 

arguments. Further details of this can be found in Atiyah and 

Singer (1984), Lott (1984) and Singer (1982). 
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f'TTA 	 I 

GLOBAL ASPECTS OF FIXING THE GAUGE IN THE. 

POLYAKOV STRING AND EINSTEIN GRAVITY 

1. 	Introduction 

The Feynman path integral approach to quantising gauge theories 

appears to be the best method available at present. It has been 

applied with considerable success to the quantisation of Yang-Mills 

theories and QCD. In the Euclidean path integral approach to Yang-

Mills theories one considers functional integrals of the form 

Z = f ZA exp - S[A'j  
Ce. 

where 	A is a measure on the space 	of all gauge potentials 

A. S[A]  is the Yang-Mills action of A and the functional inte-

gral is taken over all gauge potentials which satisfy some suitable 

boundary condition. However, as we have seen in Chapter 3, there 

is a problem in evaluating this path integral which results from 

the gauge invariance of the action S(A]. 	Recall that if f c 

is a gauge transformation then S[fA] = S[A], for A E 

The difficulty arises because the orbits of 	' are expected to 

have infinite measure. The functional integral should really be 

carried out over the gauge orbit space lel . However, (61 
is an intractable space. The idea of fixing the gauge is intended 

to circumvent this difficulty. We choose, in a continuous way, 

one gauge potential on each 	_orbit i.e., we choose a continuous 



map s: Cell - 	such that p o s = id, where p: 	-- 	/ 

is the canonical projection. The functional integral is then evaluated 

over s('/''), weighted by the Jacobian of p: s(/)  

This yields the Fadeev-Popov determinant. As was shown in Chapter 3, 

the topologically non-trivial nature of the group 	of gauge trans- 

formations results in the non-existence of a continuous global gauge 

for theories on many 4-manifolds. In this chapter we consider the 

possibility of choosing a global gauge fixing condition for theories 

which possess an invariance under the group of diffeomorphisms of 

a manifold M. The two theories of this type which we concentrate 

on are the Polyakov String and four dimensional Einstein gravity. 

It is shown that in both these theories there exists a toiological 

obstruction to globally fixing the gauge. This obstruction comes 

from the topologically non-trivial nature of the group of diffeo-

morphisms of M. 	It is completely analogous to the obstruction to 

fixing the gauge in Yang-Mills theories discussed in Chapter 3. 

It should be noted that similar ideas to those used here have also 

been discussed by Isham (1981) in connection with the canonical 

quantisation of gravity. 

The remainder of this chapter is organized as follows. In 

section 2 the formulation of the Polyakov String theory and four 

dimensional Euclidean gravity is recalled. Section 3 introduces 

the local gauge slices and the geometric structure of the orbit 

space of Riemannian metrics modulo diffeomorphisms. The obstruc-

tion to globally fixing the gauge in these two theories is then 

proved in section 4. 
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2. Formulation of the Polyakov String and Euclidean Gravity 

The dynamics of the Polyakov string is described in terms of 

the world sheet swept out by the string as it evolves in D 

dimensional (Euclidean 

assumed to be a closed 

tnannian manifold M 2 . 

cribed by an immersion 

on M2  are (U, E), 

space-time. The world sheet will be 

compact orientable 2 dimensional Rie-

This 2 dimensional surface can be des- 

x: M2-*]R D  , 	for D 	3. Local charts 

where U a  is an open subset of M2  and 

Ca  a homeomorphism of U onto an open subset of 1R 2 . The im-

mersion x: M2 - 	induces a Riemannian metric h on M 2 . 

Now let g by a new Riemannian metric on M 2  independent of h. 

The local 2-form defined in the chart (U,,&,  ) by 

 - 

	

)

I 
JTr(g 	h 	(det g o  

 

d 1  )(a) 	 ()(a) 	(a) 

( -1  = 	Tr g() h(a)  )ii(g) (2.1) 

where p(g) is the volume element associated to g, satisfies 

(a) 
= 	

() 	a 
in U fl U and hence defines a global 2-form 

on i12 . The action of the string theory is defined to be (see 

Onofri and Virasora (1982)) 

W[x,g] 	= 	I 
) 

= 4 Tr(g 1h)(g) . 	 (2.2) 
N2  

This is the action introduced by Polyakov (1981). The partition 

function is then given by the path integral 
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Z 	
= 	J 	g 	x exp -. W[x,g] . 	 (2.3) 

The Polyakov action is invariant under diffeomorphisms of M 2 . 

Let O(M2)  denote the group of (orientation preserving) diffeo-

morphisms of M2  and let A(M2) denote the space of Riemannian 

metrics on 1;12 . 	(N2) acts naturally onA(M2) by pull-back 

i.e., for if  E 	 (M2 ) and g c/tC(M2) we have 
giT = irg cjtM2). 

The diffeomorphism group of M2  also acts on the immersion 

2 	D 	 2 	D x: M ~ IR to give x = x ii: M + IR . The metric induced 

on M2  by the immersion x is h TF  = Trh The action W[x,g] 

has the invariance (Folyakov (1981)) 

W[x, g] 	= 	W[x,g] 
	

(2.4) 

Therefore, two metrics on the same 	(N2)-orbit correspond to 

the same geometry, but represented in two different sets of local 

charts. The space of inequivalent 2-geometries is given by the 

orbit space ../If(M2) / 	(M2 ) 

A remarkable feature of the Polyakov string theory is that 

the partition function (2.3) can be evaluated explicitly (see 

Polyakov (1981)). 	To carry out the path integral over D g it 

is necessary to fix the gauge by choosing a representative metric 

of each orbit of /(N2)/ n (M2). Polyakov's choice was the con-

formal gauge, i.e., to find a representative of each orbit of the 

form (in a given local chart) 

gab M =  e"6 ab 	 (2.5) 

which is always possible for 2-dimensional surfaces. This choice 

will not uniquely specify the gauge if M2  admits a non-trivial 
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group C(M2) of conformal transformations (also see Otiorfri and 

Virasoro (1982)) C(M2 ) = {irE Z (M2 )I there is a smooth 

p: M2 _~_ JR such that 

Tg 	= 	e g, 	for all g cJ"((M2 )} 

For M2  = S 2 , C(S 2) = SL(2,); 	for M2  = T2 , 

C(T2 ) = 0(2) x  0(2); for surfaces of higher genus C(M 2) is 

discrete (see Goldberg (1962)). 

Using the conformal gauge the functional integral over 	g 

can be evaluated to obtain the partition function as a functional 

integral over 4,  of the Liouville action 

L[4,] 	
= I 	+ 2 e4,]d2 	

. 	 (2.6) 

For this path integral over 	4, to be well defined it would 

seem to be necessary for the gauge choice (2.5) to be continuous. 

It is not clear that the conformal gauge satisfies this require-

ment. In fact, it will be shown later that for many surfaces M 2  

there is no continuous global gauge fixing condition. This is a 

purely global result and there always exists a well defined local 

gauge. 

Four dimensional Einstein gravity shares with the Polyakov 

string theory the property of being invariant under the diffeo-

morphism group of a compact Riemannian manifold. Let the (Euclidean) 

space-time be represented by a compact 4-dimensional Riemannian 

manifold M. The Euclidean action is (see Gibbons, Hawking and 

Perry (1978)) 

= 
- __6rr 

1 __G  I R(det g) 2  d'x S[g] 	1 	 + boundary te rm  (2.7) 
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where R is the scalar curvature of the metric g on M. The 

manifolds with which we will be concerned will be closed and without 

boundary. Hence, we will neglect the boundary term in (2.7). If 

A4M) represents the space of Riemannian metrics on M4  and  D  (M) 

the group of (orientation preserving) diffeomorphisms of M then 

for ir £ 	(M4) and g 

* 
S[ir g] 	= 	S{g] 	. 	 (2.8) 

Thus, the action is constant on orbits of 	(M). 

The partition function is then defined to be 

Z 	= 	fj)g exp - S[g] . 	 (2.9) 

There are, of course, many problems in attempting to evaluate this 

functional integral (see Gibbons, Hawking and Perry (1978)). In 

addition to these one might anticipate that the invariance of the 

action under the diffeomorphism of M would lead to a similar 

problem in evaluating the path integral as occurs in gauge theories, 

i.e., that the orbits of 	(M) would have infinite measure. The 

path integral should be carried out over the orbit space 

(M)/(M4), which is, however, intractable. This problem 

could be overcome by fixing the gauge (i.e., choosing in a con- 

tinuous fashion a metric on each 	(M)-orbit) and then proceeding 

to evaluate the Fadeev-Popov determinant. We shall show later that 

for many 4-manifolds M4  such a continuous global gauge does not 

exist. Local gauges, however, always exist and may be used to 

define the Fadeev-Popov determinant in a neighbourhood of a given 

metric g 
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3. 	The Local Gauge Slices 

In this section we will consider the action of the group of 

diffeomorphisms of a compact manifold on the space of Riemannian 

metrics defined on the manifold. This topic has been investigated 

in detail by Ebin (1968) and it has also been studied in connection 

with the theory of Wheeler-de Witt superspace (Fischer (1967)). 

Further details of the ideas mentioned here can be found in these 

references. 

Let M be a compact orientable n-dimensional manifold without 

* 
boundary. TM will be its tangent bundle, T M its cotangent 

bundle and S2T*M  the bundle of symmetric covariant 2-tensors. 

The space of Riemannian metrics .A(M) on M is defined to be the 

space of all smooth sections of S2T 
*
M which induce a positive 

definite inner product on each tangent space TM, x e M. Then 

,4{(M) is a positive open cone in r(S2T*M),  i.e., /t(M) is open 

in r(s2T*M)  and if A, p > 0, g, h c/1 M), then Ag + p h e /t1(M) 

Let 	(N) be the group of orientation preserving diffeomorphisms 

of M. Then 	(M) acts on r(s2T*M)  as follows: if ir c 	(M), 

g c r(S2T*M),  and X, Y c TM, x c M, then 

(1T*g)(X,Y) 	grr(x) (Tir X, Tn Y) 

This action can be written as a map A: )(M) x r (S2T*M) + r ( S 2T*M) .  

It is clear that .fl(M)  is invariant under the action, so we can write 

A: 	xji4-3-j 	Note that when the manifold M is not in question 

we will simplify A(M) and Z (M) to ,/tt and 	, respectively. 

The space of metrics has a (weak) Riemannian structure defined 

on it as follows. Each h c /'t'. is a Riemannian structure on TM. 



an 

It therefore induces a Riemannian structure on T * M and S 2T 
*
M. 

Let ( )h be this structure on S2T*M.  Also h c/i4, induces 
* 

a volume element p on M. For w, e c (S 2T M) we define 

°>h by 

8>h = 
	

0)h 

M  

>h is a positive definite bilinear form on r(s2T*M).  Since 

,1, is open in r(s2T*M), Al. is a manifold whose tangent space at 

each point is canonically identified with r(S2T*M). Thus for each 

h c' 	< >h on r (S2T*M)  defines a Riemannian structure on 

The most important property of < >h is that it is in-

variant under the natural action of 	on 	, i.e., 	acts 

by isometry. To see this first note that (Eb.±ni (1968)), for 

ir c 	, g cA{, 	C, C c TA=r(s2T*M), x c M 

* * 	* 7T  
(71 	, 71 	 = 

The diffeomorphism ir c 	also acts on the set of volume elements 

of M by pull-back. If ii is the volume element of g then 

* 	 * 
it j.i is the volume element of it g. Hence 

* 

fm * * lr& * 
(it , it Tr 

= 	
(, o g 

or 
* 	* 

7T 
	<i:;, E >g 
	 (3.2) 

Therefore, 11 c 	is an isometry. 

It is now possible to define the local gauge slice through a 

metric g 	as the orthogonal complement of the tangent space 

to the 	-orbit through g, relative to the inner product 
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< >g• 	The orbit of 
	through g c/t{  is defined by the map 

Ag: 	-i'Z. 	 (3.3) 

given by A(ri) = Tr g. The derivative of this map at the identity 

in 	is 

Tjd X g 	T.d 	
-3- T.,A'f. 

Recalling the identifications Tjd 	r(TN) and T 9 
 A= r(s2T*M), 

we have that 

T id g 
A : T(TM) -- r(s2T*M) 	. 	 (3.4) 

To compute Tid  Ag  let X e r(TM) be a smooth vector field on M. 

X generates a 1-parameter group of diffeomorphisms {7r}.  The smooth 

curve 	C: ]R -- 	in 	given by C(t) = Tr. with 7r = 

has tangent vector at t = 0. given by X = (d/dt)C(t)Jo. 

Tid A  maps X to the tangent vector to the curve (A g  C)(t) 

inA't. Thus 

id g (T 	A )(X) 	= 	•a(Ag 	c)(t)I 
I t=0 

= 	Ag(1rt) 

= 7r 
t=O 

= 

where 	g is the Lie derivative of g with respect to the vector 

field X. Therefore the map Tid  Ag : r(TN) -- F(S2T*M) is given by the 

first order differential operator 6 g : r(TM) - r(s 2T M) where 



00 

cSgX 	= 

for X £ r(TN) and g E  . Note that ker 5
g 
 = space of Killing 

vectors on the Riemannian manifold (M,g). 

It follows from standard properties of differential operators 

(Palais (1965)) that the image im 
'5g  isclosed and has closed 

complement in F(S 2T M). Thus the tangent space to the orbit 

through g c 	is given by im cS g  and the local slice to this 

orbit at g is the orthogonal complement of im 
6   

relative to 

the inner product < >. Hence, the local slice at g e At 
is given by those g + S c,A'(, s c  r(s2T*M), for which 

0 = <s, ôgX>g 	= 	<6 S X>g 	 (3.5) 

for all X c r(TM). 	6 	is the < >g - adjoint of 
6g 
 The 

local slice through g E  is written as 

-= {g + s 	c r(s 2 r
* 
 H) and ô

* 
 s = 0} . 	(3.6) g 

In a sufficiently small neighbourhood of a given metric g £/t1 

the slice 
1Yg intersects each orbit once and only once (Ebin 

(1968)). Therefore this slice defines a good local gauge around g. 

We also have as a consequence of (3.5) the direct sum decomposition 

r(s2* 	 * 

	

TM) 	im 6 eker 	. g 	g 	 (3.7)  

The geometrical structure of the orbit space /'/J will 

now be considered. The space // 	is not a manifold because 

the action of 	on ,4.  is not free. If we define the isometry 

group of g c/t- to be 

* 
I 	= 	 = g} g 



then 	has g as a fixed point if 1g 
	{O}. 	There are, however, 

two ways to obtain a free action. If we restrict our attention to 

the space of metrics /l1L1'1which have trivial isometry group, 

i.e., 

A1,= 	{g C/I•tIIg  = {o} } 

then the action of 	on "C is free. The space 	is open and 

dense in 	(Ebin (1968)). The globally effective local slices 

and the free 	-action on 	results in a principal 	- 

bundle 

CJD 

1 	(3.8) 

over 	which is now a smooth manifold. 

Alternatively, we can restrict to the group 	of diffeo- 

morphisms which leave a point x0  c M fixed and also leave the 

frame at x 0  fixed, i.e. 

=7T C 	7T (X 
) = x 	and T 

XO 
 7T = id 	} TM 

x 
0 

Now if 7r c 	is an isometry for some g c,4{, i.e., 

if rr*g = g, then it = idM (see Helgason (1962)). Therefore, 

acts freely onj%'j,. 	Again the orbit space A'(i 	is a 

manifold and we have a principal 	- bundle over 

(3.9) 
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To conclude this section we make some statements of a geo-

metrical and topological nature. 

Proposition 3.1. 	The manifolds .At/ 	and 	 have a 

natural Riemannian structure. 

Proof. 	It follows from the invariance of < >g under the 

action of 	on ,t (equation (3.2)) that < 	>g projects to 
.10 

give a well defined metric on 	and 

Proposition 3.2. 	The space 

} Yg 	(g + s Is 	(S2T*M) and 	* s = o 
g 

is the horizontal space at g c 	or g E,/t .  of a connection 

on the bundle (3.8) or (3.9), respectively. 

Proof. 	According to (3.7) the space 	is complementary to 

the tangent space to the fibre at g c ,4. Since the Riemannian 

structure of At is preserved by the action of 	we have that 

ker 5 

	

	= 71(ker 6
*
), for all rr c 	. 	Therefore, 

rrg g 
= 	

and the slice 	is the horizontal space of a 
7r g 

connection. 

Proposition 3.3. 	There are homotopy equivalences 

B 	r 

and 
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Proof. 	These results follow from the contractibility of the total 

spaces of the bundles (3.8) and (3.9). The space of metrics /it is 

convex and hence contractible The space ./ is also contractible. 

This can be proved in analogy with Singer's proof (Singer (1978)) 

that the space of irreducible connections on a principal SU(n)-

bundle over a compact manifold is contractible. 

Proposition 3.4. 	The groups 	and 	are related by the 

fibration 

Tr 

- 	+F (TM) + 0 
	

(3.10) 

where F+(TM)  is the principal GL+(n,  IR) - bundle of frames on 

M with a given orientation. 

Proof. 	The projection it is given by evaluation at the base- 

point. It is clear that the fibre of it is 	and that (3.10) 

has the homotopy lifting property. 

4. The Obstruction to Globally Fixing the Gauge 

We will now use the principal fibre bundles introduced in 

section 3 to discuss the possibility of globally fixing the gauge 

in the Polyakov string theory and in four dimensional Euclidean 

gravity. Suppose that we are considering a theory defined on a 

compact orientable n-manifold 141 , with an action which is a 

- invariant functional onJt(M). Then a global gauge is 

a continuous map s:A/$D -.A't such that p  s = id M/ 
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where p:A - /I 0 is the canonical projection. If such a gauge 

were to exist then the restriction 

:jL/ 	+A' 

would give a global section of the principal 	-bundle (3.8). Such 

a global section exists if and only if (3.8) is trivial, i.e., 

IV 	 lu 

J 	gxAi 

Applying it 
() to this expression and recalling that ,/11 is con-

tractible (:ee proof of proposition 3.3), i.e. it(fl) = 0, for 

all q 0, gives 

7Tq() • 	 0 

for all q 0. Thus, the obstruction to the existence of a global 

gauge is the non-vanishing of any of the homotopy groups of 

It should be noted that the bundle (3.8) has been used here 

purely as an auxillary device and has little direct physical signi-

ficance. This is for the following reason. To obtain (3.8) it was 

necessary to restrict attention to those metrics with trivial iso-

metry groups. However, it is known that many classical solutions 

of both the Polyakov string theory and four dimensional Euclidean 

gravity have non-trivial isometry groups. Therefore, to restrict 

attention to only those metrics in Al. eliminates many classical 

solutions which may be important in understanding the full theory. 

For example, such solutions may be required in order to undertake 

a semiclassical analysis of the theory. 

In contradistinction to the unphysical nature of (3.8) the 
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bundle (3.9) does have physical significance. The restriction to 

those diffeomorphisms of Mn  which leave both a point x c Mn 

fixed and the frame at x0  fixed appears quite acceptable. For 

example, consider M   to be the one point compactification of a non-

compact manifold Mn,  with x c M' corresponding to the point at 

infinity in Mn.  Then the diffeomorphisms in 	(M ') correspond 

to the diffeomorphisms of Mn  which are the identity at infinity 

and also have their derivative equal to the identity at infinity. 

This type of restriction on the diffeomorphisins of M n 
 is 

physically acceptable. 

If we now consider fixing the gauge in a theory with a 

- invariant action defined on A'(M") then the bundle 

(3.9) may be used directly. In this case a' global gauge choice 

is a global section of (3.9), which exists if and only if the 

bundle At,  _k/ 	is trivial. By the same reasoning as used 

earlier, the obstruction to such a global section is the non-

vanishing of any of the hotnotopy groups of 

Taking the theory under consideration to be the Polyakov 

string, with -  M2  a compact Riemann surface of genus p, invariant 

under either 	(M2) or 	(M2 ) yields the following results. 

Theorem 4.1. 	There exists no global gauge s:JfJ 	-,Al-  for 

M2  of genus p = 0 or 1. 	For p > 1 there is no topological 

obstruction to the existence of such a gauge. 

Proof. 	This follows directly from the homotopy type of 	(M2 ) 

(Earle and Eeels (1967)), namely 
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(S 2 ) 	'' 	S0(3) 	 for p = 0 

(T2 ) 	"v 	S0(2) x S0(2) 	for p = 1 

{o} 	 for p > 1 

Theorem 4.2. 	There is no global section of J'k(-3. iL/ 	for 

M2  of genus p > 0. For p = 0 there is no obstruction to such 

a section. 

Proof. 	The homotopy groups of 	(M2) and 	(M2) are 

related by the exact homotopy sequence of the fibration (3.10) 

- 	
q 	

-- 	(()) 	it q ((M2 )) - it 
q (F+ 

 (fl2)) 	q-1 ((M2)) -- 

Recall that F+(TM2) 	]R3  x  0(TM2 ), where O(TM2) is the prin- 

cipal S0(2) — bundle of orthonormal frames of H. Hence, 

F+(TM2) has the same homotopy type as O(TM2 ). 	For p = 0, 

(S 2) " S0(3) and F+(TS2) nu S0(3) are isomorphic, hence 

0 

for all q 0. This gives the last sentence of theorem 4.2. 

For p > 0, assume that 

tq ( * (M2 )) 	0 

for all q 0. It follows that 

7Tq((M2)) 	flq (F+ (TM2 )) 	 (4.1) 

for all q 	1. Hence, for p = 1 and q = 1, (4.1) implies that 



-95- 

SO(2)) = ir1 (SO(2) x  SO(2) x  SO(2)) 

i.e., 	2Z 0 2Z = 2Z S 2Z 0 2Z , which is a contradiction. For 

p > 1, (4.1) implies that 

ir q (F+  (TM2 )) 	0 	 (4.2) 

for all q 1. But from the defining fibration of F+(TM2) 

GL+(2, ]R) -- F
+
(TN2 ) 

1.; 
M2  

and (4.2) it follows that 7r1 (M2) = 0, which is a contradiction. 

Thus, 	(M2) is non-contractable for N2  of genus p > 0. 

For four-dimensional Euclidean gravity, invariant under either 

or 	(M' ), the obstruction to globally fixing the gauge 

is the non-contractability of%(Mu) or 	 respectively. 

It is probable that for any compact 4-manifold M the groups 

(M4) and 	(M) will be homotopically non-trivial. For 

certain classes of compact 4-manifolds it is possible to show that 

iT((M)) 0 {0} and 7 (0(M4 )) 	(0) . Note that it follows 

from the exact homotopysequence of the fibration (3.10) that if 

{0} then iT((M)) # {0}. 

The first class of compact 4-manifolds M' for which 

(0) 	are product manifolds. 
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Theorem 4.3. Let 	M4 = 	N 1 xN2  (where dim N1  = dim N, 	= 2) 

be an oriented product manifold. Then 

{O} 

Proof. 	Let 111  and 112  be orientation reversing diffeomorphisms 

of N1  and N2  respectively. Let [N 1 ] c H 2 (N1) and 

[N1 ] c H 2 (N2) be the 2 dimensional cohomology classes of N 1  and 

N2 , respectively. Then rr  [N1] = - [N1 ] 	and 112  [N2 ] = - [N2]. 

Thus 

(Ir1xir2)*[N1x N2] 	= 	[N 
1 ] 

x 

= 	- [N1 ] x -[N2] 

= 	[N1 ] x  [N2 ] 	= 	[N1  x  N2 ] 

and 7r X ir 2  is an orientation preserving diffeomorphism of 

N1  x  N2 . 	However, Or  X rr) [N1 ] X 	= - [N1] X  1 and therefore 

it 1  x Tr 	 is not homotopic to the identity. 

The second class of compact 4-manifold which have a discon-

nected diffeomorphism group are smooth submanifolds of the complex 

projective space 

Theorem 4.4. 	Let M' C 1P 3  be a smooth compact 4-dimensional 

submanifold of IF 3 . 	Then 

 {o} 

Proof. 	Let V 	be a smooth 4-dimensional submanifold of F3 
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defined  by the zero set of a polynomial f with real coefficients 

V 	= 	Cx c IF 3  If(x) 	= 	0 } 

Let c: IF 3  - ]P 3  given by x —a- x be complex conjugation. Then 

c sends V to itself. If a c H 2 (iF 3 ) is the positive generator 

of H2 ( IF 3 ) then 	c*: H2 ( ]P 3 ) + H2 ( IF 3 ) is given by a -'- -a. 

Therefor:, if i: VC,,  IF 3  is the inclusion of V in F3 ,  (c IV) 

sends i a to -i a. 	Since 21 a J 0 it follows that cJ 

is not homotopic to the identity. Since any 	IF 3  is diffeo- 

morphic to a surface V 	P3  it follows that 

{O} 

In the Euclidean approach to quantum gravity the compact 

4-manifolds S 2  x  S 2 , ]P 2  and a K3 surface are important as 

compact gravitational instantons. It follows from theorems 4.3 

and 4.4 that the group of diffeomorphisms of these three manifolds 

is disconnected. Hence we have the following. 

Theorem 4.5. 	Let M 1' be any one of the compact 4-manifolds 

S 2 XS 2 , iF 2  or a K3  surface. Then 

{o} 

Proof, 	For M4 = S 2 x  S 	the result follows directly from 

theorem 4.3. For M4 = IF 2  the proof of theorem 4.4 implies that 

c: IF 2 	IF 2  (complex conjugation) is not homotopic to the identity. 

The model of a K3 surface is the quartic surface in ]P 3  defined by 
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M = {[x1 ,x2 ,x3 ,x4 ] 	X + X2 4  + x 3 4+ x4 1  = o} 

As M is defined by a polynomial with real coefficients, theorem 

4.4 implies that CO}. As any 1(3 surface M is 

diffeomorphic to the surface M it follows that ir(CJ(M' + )) 

Furthermore, it follows from theorem 4.5 that for M4 = S 2  x S 2  

or a 1(3. surface 

{O} 

Therefore, it is impossible to globally fix the gauge in Euclidean 

gravity, with either a or (M) invariance, defined on 

s 2  x s 2 , iF2  or a K3 surface. 

Although, as we have seen, in general it is not possible to 

define a global gauge in four dimensional Euclidean gravity, there 

always exist local gauges given by the gauge slices Y9. These 

local gauges can be used to define the path integral in some suf-

ficiently small neighbourhood U of g 	in which Y is 

a good gauge. We wish to evaluate 

Z = f Dg exp - s1g] 

If 	: Jt1 	is the canonical projection with the restriction 

IDg: fg  +A4i 	then we can write 

Z = j 
	

g exp - S[g] 

I! () 



= J 

= 	
det(I g) 	g exp - S[g] 

The Jacobian determinant det(Q I y ) of 	 is the Fadeev- 

Popov determinant associated with the local gauge Y'g 
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