

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429713954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Connectionist multivariate
density-estimation and its application to

speech synthesis

Benigno Uria

Doctor of Philosophy
Institute for Adaptive and Neural Computation

School of Informatics
University of Edinburgh

2015

Abstract

Autoregressive models factorize a multivariate joint probability distribution into a
product of one-dimensional conditional distributions. The variables are assigned
an ordering, and the conditional distribution of each variable modelled using all
variables preceding it in that ordering as predictors.

Calculating normalized probabilities and sampling has polynomial computa-
tional complexity under autoregressive models. Moreover, binary autoregressive
models based on neural networks obtain statistical performances similar to that of
some intractable models, like restricted Boltzmann machines, on several datasets.

The use of autoregressive probability density estimators based on neural
networks to model real-valued data, while proposed before, has never been properly
investigated and reported. In this thesis we extend the formulation of neural
autoregressive distribution estimators (NADE) to real-valued data; a model we call
the real-valued neural autoregressive density estimator (RNADE). Its statistical
performance on several datasets, including visual and auditory data, is reported
and compared to that of other models. RNADE obtained higher test likelihoods
than other tractable models, while retaining all the attractive computational
properties of autoregressive models.

However, autoregressive models are limited by the ordering of the variables
inherent to their formulation. Marginalization and imputation tasks can only be
solved analytically if the missing variables are at the end of the ordering. We
present a new training technique that obtains a set of parameters that can be
used for any ordering of the variables. By choosing a model with a convenient
ordering of the dimensions at test time, it is possible to solve any marginalization
and imputation tasks analytically.

The same training procedure also makes it practical to train NADEs and
RNADEs with several hidden layers. The resulting deep and tractable models
display higher test likelihoods than the equivalent one-hidden-layer models for all
the datasets tested.

Ensembles of NADEs or RNADEs can be created inexpensively by combining
models that share their parameters but differ in the ordering of the variables. These
ensembles of autoregressive models obtain state-of-the-art statistical performances
for several datasets.

Finally, we demonstrate the application of RNADE to speech synthesis, and

iii

confirm that capturing the phone-conditional dependencies of acoustic features
improves the quality of synthetic speech. Our model generates synthetic speech
that was judged by naive listeners as being of higher quality than that generated
by mixture density networks, which are considered a state-of-the-art synthesis
technique.

iv

Lay summary
In this thesis we introduce a new set of computational models that can learn the
dependencies among all variables in datasets with tens or hundreds of interrelated
variables. The models introduced learn these dependencies by repeatedly being
presented with observations from the dataset.

Capturing dependencies among variables is an important task in data science
that has many commercial and scientific applications. A good model of this
kind would be able to generate new data (e.g. for synthesizing speech for digital
assistants), denoise measurements (e.g. for denoising digital photographs) or
classify new measurements into different classes (e.g. for speech recognition).

The techniques presented in this thesis are able to model the dependencies
among variables in datasets of small image patches and speech acoustic record-
ings. Very importantly, the techniques developed have mild computational cost
compared to other models with similar capabilities. As a practical demonstration
of the abilities of our models, we applied them to text-to-speech synthesis and
obtained higher quality synthetic speech than other state-of-the-art methods.

v

Acknowledgements
First and foremost, I would like to thank my family and especially my parents.
Their encouragement and support in all my decisions has been fundamental in all
my academic achievements.

Secondly, I would like to thank my supervisors. If any merit should be ascribed
to the author of this thesis, it must be in his good taste at choosing his main
supervisor: Iain Murray. Iain kindled my interest in unsupervised modelling
and wisely guided all my actions without asphixiating my curiosity. I was also
fortunate to have Steve Renals as my second supervisor. Steve’s breadth of
knowledge proved of great help. My third supervisor, Amos Storkey, provided
useful comments during our yearly meetings and words of wisdom during our
coffee breaks. Thanks also to the rest of the Adaptive and Neural Computation
Institute members for providing a constructive and open research environment.

Thirdly, I would like to thank my financial sponsors: EPSRC and Apple. I was
lucky to have John Bridle as my mentor at Apple. John’s guidance and wisdom
will have a lasting effect in my approach to research. I would also like to thank
the rest of Apple’s staff in Cheltenham, specially Hywel Richards with whom I
had many productive conversations, and Shoichiro Yamanashi with whom I had
many beers.

I would also like to thank my friends and colleagues at University of Edinburgh.
They made my four year stay there not only bearable, but at times enjoyable. I
hope we will have many more brews, espresso martinis, and scotchs together in
years to come.

vi

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

(Benigno Uria)

vii

Table of Contents

1 Introduction 1
1.1 List of contributions . 3

2 Connectionist density estimation 5
2.1 Density estimation . 5
2.2 Gibbs distributions . 8
2.3 Mixture models . 10

2.3.1 The EM-algorithm . 12
2.3.2 Mixtures of multivariate Bernoullis 14
2.3.3 Mixtures of Gaussians . 15
2.3.4 Mixtures of factor analysers 16

2.4 Boltzmann machines . 18
2.4.1 Restricted Boltzmann machines 18
2.4.2 Gaussian-Bernoulli restricted Boltzmann Machines 22
2.4.3 Deep belief networks . 23
2.4.4 Deep Boltzmann Machines 25

2.5 Density networks . 26
2.6 Helmholtz machines . 27
2.7 Generalized denoising autoencoders and generative stochastic net-

works . 30
2.8 Autoregressive models . 31

2.8.1 Logistic autoregressive Bayesian networks 33
2.8.2 Autoregressive neural network models 34
2.8.3 Neural autoregressive distribution estimators 36

3 The real-valued neural autoregressive density estimator 41
3.1 Introduction . 41

ix

3.2 Gaussian-RBM autoregressive mean-field updates 42
3.3 The real-valued neural autoregressive density estimator 45

3.3.1 Computational cost of RNADE 47
3.3.2 Variants of parametric conditionals 48
3.3.3 Neural network alterations 48

3.4 Experiments . 49
3.4.1 Low-dimensional data . 49
3.4.2 Natural image patches . 52
3.4.3 Speech acoustics . 60

3.5 Sensitivity to the ordering of dimensions 61
3.6 Discussion . 64

4 A deep and tractable density estimator 67
4.1 Introduction . 67
4.2 Training a factorial number of NADEs 68

4.2.1 Improved parameter sharing using input masks 71
4.3 On the fly generation of NADE ensembles 72
4.4 Related work . 73
4.5 Experimental results . 74

4.5.1 Binary datasets . 76
4.5.2 Real-valued datasets . 85

4.6 Discussion . 87

5 RNADE for speech synthesis 91
5.1 Introduction . 91

5.1.1 Dependencies among acoustic features 93
5.2 Artificial neural networks for acoustic modelling 94
5.3 Conditional RNADE . 96
5.4 Trajectory hidden Markov models 96
5.5 Trajectory-HMMs with RNADE observations 99
5.6 Experimental design . 101
5.7 Experimental results . 102
5.8 Discussion . 105

6 Conclusions 107

x

A Mean-field Gaussian-RBM derivations 111

B RNADE-MoG gradient derivations 115
B.1 Density estimation . 115
B.2 Learning gradients . 115

C Input masks and marginalization under a Bayes’ classifier 119

Bibliography 123

xi

Chapter 1

Introduction

Agents, that is, entities that take decisions, seldom act with complete certainty.
Uncertainty can have multiple causes: the information available to an agent is
usually incomplete or unreliable, and the agent’s ability to predict the consequences
of its actions is limited. The process by which an agent decides its actions can
be divided in two steps (Markowitz, 1952): (1) what to believe and, (2) what to
do given its beliefs. The former is the object of probability theory, the latter of
utility theory. In this thesis we restrict ourselves to the study of beliefs. Action is
outside the scope of our investigations.

In this thesis we will use probability distributions to represent uncertainty. A
probabilistic representation of subjective belief (de Finetti, 1974), and the rules of
probability calculus, are the only coherent representation of uncertain belief that
satisfy a small set of desirable properties (Jeffreys, 1939; Jaynes, 2003).

In machine learning, unsupervised learning, attempts to obtain a joint proba-
bility model over all relevant variables. Given such a model, an agent can solve
any inference task, i.e. calculate any conditional distribution, using the rules of
probability. In other words, the agent can update its belief about a subset of
variables based on new information about some other variables.

In practice, it is often the case that a single inference task is to be solved,
and this task is known in advance. In these cases, the appropriate conditional
distribution can be modelled directly; saving the effort of modelling the relation-
ships among predictor variables. However, the variables predicted may not be
conditionally independent and require the use of structured prediction. Structured
prediction (Taskar, 2004), which is closely related to unsupervised learning, mod-
els the probability distribution among the dependant variables of a conditional

1

2 Chapter 1. Introduction

distribution.
In this thesis we present a new class of unsupervised models (Chapter 3) for

which any inference task can be solved efficiently (Chapter 4). We also show
how these models can be easily adapted to the structured prediction regime
(Chapter 5).

Judging the quality of the models we introduce is not a simple matter. The
choice of a probabilistic model is an empirical science. The usefulness of a model
in making future predictions cannot be judged a priori, that is, regardless of the
data that is modelled. All families of models have inductive biases (Gordon and
Desjardins, 1995; Wolpert, 1996), i.e. assumptions that favour one generalization
decision over others (Mitchell, 1980). Therefore, every assertion about the statis-
tical performance of a family of models should always be qualified by the data or
types of data to which it applies. However, models can be judged a priori on their
computational performance on different tasks like density estimation, inference,
or sampling.

The empirical selection of models is usually done based on their likelihood (Fisher,
1922), or in a Bayesian framework their a posteriori probability (Gelman and
Shalizi, 2010; MacKay, 2003), for the data modelled. Therefore, in order to
perform model selection, it is highly desirable to have probabilistic models for
which calculating their likelihood is computationally feasible.

In this thesis we focus our attention on connectionist1 autoregressive models.
That is, models that utilize neural networks to model each of the conditionals of
an autoregressive factorization of the joint distribution.

Supervised models based on neural networks are state-of-the-art techniques for
the classification of images and speech (Mohamed et al., 2009; Krizhevsky et al.,
2012). In this thesis we hypothesize, and corroborate, that the inductive biases
of neural networks are also appropriate for the unsupervised modelling of those
types of data.

Sampling and density estimation of an entire datapoint are tractable under
an autoregressive model, as long as each of the one-dimensional conditional
distributions of which it is composed are tractable. This makes it possible to
calculate the likelihood of autoregressive models and perform model comparison
with other tractable models. However, marginalizing or sampling subsets of

1The term “connectionism” is less loaded with biological connotations than the term “artificial
neural network”. Therefore our preference for this term in the title of this work.

1.1. List of contributions 3

dimensions conditioned on the value of other dimensions is only tractable in
the few particular cases where the dimensions predicted are at the end of the
autoregressive ordering. In this thesis, we introduce a technique that allows for
easy and tractable marginalization and sampling of subsets of dimensions.

A detailed list of contributions follows.

1.1 List of contributions

In Chapter 3 we introduce the real-valued neural autoregressive density estima-
tor (RNADE), an extension of the neural autoregressive distribution estimator
(NADE) (Larochelle and Murray, 2011) , that can model real-valued data. We
also analyze the statistical performance of RNADE for natural image patches,
speech acoustics, and small datasets of heterogeneous variables.

In Chapter 4 we present a new training procedure, able to obtain a set of
parameters for NADE or RNADE models that can be used for any ordering of
the variables in the autoregressive factorization of the joint distribution. Using
this set of parameters, a model with a convenient ordering of the dimensions can
be chosen at test time to solve exactly and tractably any inference or conditional
sampling tasks. The same training procedure also makes training deep NADE or
RNADEs computationally feasible.

In Chapter 5, a conditional version of RNADE is introduced and used for the
structured prediction of speech acoustics conditioned on phonetic labels. This
model is able to improve the quality of text-to-speech synthesis compared to
unstructured prediction models like mixture density networks.

Chapter 2

Connectionist density estimation

In this chapter we review some of the most popular generative models in the
field of machine learning, with an emphasis on connectionist methods. The low
statistical peformance of mixture models (Section 2.3) for perceptual data and the
low computational performance of Boltzmann machines (Section 2.4) and density-
networks (Sections 2.5, 2.6) serve as motivation for the introduction of extensions
to autoregressive generative models (Section 2.8) in the following chapters.

2.1 Density estimation

A function f is said to be a probability density function1 of the D-dimensional
continuous random variable x ∈ RD if it satisfies:

P (x ∈ A) =
∫
A
f(x)dDx for all measurable subsets A⊂ RD. (2.1)

where P (x ∈ A) is the probability that an outcome, x, will belong to A.
For discrete variables the probability of a particular outcome, a, is well defined

and we also have f(a) = P (x= a), in which case the probability density function
can also be called probability mass function. We will use the term density function
in both cases.

Following Silverman (1986), a density estimator is an approximation of a
random variable’s density function constructed from a dataset of observations
(also called training dataset from here on).

Density estimators are sometimes called generative models in the machine
learning literature. In practice some generative models cannot be used to calculate

1A more rigorous definition of a probability density function can be found in Casella and
Berger (2002) or from a measure theoretic perspective in Billingsley (2008).

5

6 Chapter 2. Connectionist density estimation

normalized probability densities, as it would require an intractable number of
operations. We will use both terms indistinctly, but we will favour the term
“density estimator” when the aim is to obtain normalized probability densities.

Joint probability density estimation of multivariate data is one of the most
fundamental challenges in machine learning. The vast majority of tasks in machine
learning can be posed as doing inference on a generative model of the relevant
variables. That is, calculating the probability of an event, A in (2.1). Usually2,
an inference task involves calculating the distribution of a subset of variables,
conditioned on a known value of a subset of the rest of variables; while the
remaining variables are marginalized i.e. integrated out.

Let us call the subset of interest xI , the subset conditioned on xC , and the
variables to be marginalised xN (for nuisance). Following, the rules of probability
calculus, inference can be posed exclusively in terms of the joint probability density
function:

p(xI |xC) = p(xI ,xC)
p(xC) (2.2)

=
∫
p(xI ,xC ,xN)dxN∫ ∫
p(xI ,xC ,xN)dxIdxN

. (2.3)

A non-exhaustive list of tasks that can be addressed by inference on generative
models includes:

Classification. Also called discriminant analysis, can be done by fitting a density
estimator for each possible class. The posterior distribution over classes
for new observations can be obtained using Bayes’ rule. This approach to
classification can easily deal with missing data by marginalizing over the
missing dimensions (e.g. Duda et al., 2001). Optionally, this method allows
detecting events with a very low probability density under all classes. The
system may reject classifying these outliers, for which, for example, human
intervention may be preferred.

Sampling. Given a density estimator it is possible to generate new data consistent
with the distribution of the training dataset.

Imputation. Sampling any missing variables in an observation, generating plau-
sible complete instances, is possible.

2This illustration does not cover all possible types of events. For example, a variable may be
known to lie in a certain range which would require integrating only over that range.

2.1. Density estimation 7

Compression. Using arithmetic coding, compression can be reduced to obtaining
a good density estimator (e.g. MacKay, 2003, p. 111).

Denoising. Given a good generative model of the data and of the noise process,
it is possible to obtain a distribution over the original data (e.g. Zoran and
Weiss, 2011).

Given expert knowledge about the process that generates the data to be
modelled, a density estimator based on graphical models can be designed (e.g.
Koller and Friedman, 2009). Given such a model, standard inference techniques,
like belief propagation, sampling, and variational approximations, can be used.
However, sometimes the actual generative process, or the mathematical form of
parts of it, is unknown, or too complex. In those cases it may be appropriate to
use a black-box density estimator i.e. a general-purpose model that ignores the
actual process that generated the data.

In this thesis we will only consider black-box density estimators. Nonetheless,
these black-box models can also act as modules in generative models based on
expert knowledge, or as auxiliary models in sampling or variational techniques (e.g.
Bornschein and Bengio, 2014).

In this thesis we will only consider parametric density estimators. That is,
models that have a fixed number of parameters, decided by the user before observ-
ing the training dataset3. In non-parametric models, the number of parameters
grows with the size of the dataset used to fit the model. Readers interested in the
non-parametric approach to density estimation may consult Silverman (1986).

The main characteristic by which density estimators are usually judged and
compared is their statistical performance, that is, their ability to capture the data
generating distribution. In this thesis, we will measure the statistical performance
of the different models by their marginal log-likelihood (Fisher, 1922). That
is, by the average log-probability density they assign to the training data (or a
held-out subset of it not used during training). An extension of our efforts to the
Bayesian framework would encounter the usual complications, which are more
often computational than conceptual (Neal, 1995; MacKay, 1995a).

3Note, however, that for models that can use a variable number of parameters it is common to
crossvalidate this number. That is, the statistical performance of models with different number
of parameters is compared on a held out subset of the training data, and the model with the
best performance on this subset is chosen.

8 Chapter 2. Connectionist density estimation

In practice, the computational requirements, in time and memory, of a model
may be as important as its statistical performance. For a particular model, the
computational complexity of sampling, density estimation, and marginalization
may be vastly different. As a consequence, different models may be appropriate for
different applications. In this thesis we will develop models with attractive com-
putational complexity properties, having low-polynomial complexity for density
estimation, sampling and inference.

An exhaustive review of the field of density estimation is beyond the scope
of this thesis. The interested reader may consult the many textbooks written
on the topic. Both Barber (2012) and Koller and Friedman (2009) are thorough
introductions to the use of graphical models for multivariate modelling. Silverman
(1986) provides an introduction to non-parametric density estimation. Jaworski
et al. (2010) review the copula approach to multivariate modelling. An interesting
introduction to the connectionist approach can be found in Frey (1998).

In the rest of this chapter, we will limit ourselves to present some of the
most popular density estimators used by the machine learning community; with a
special focus on connectionist methods. The aim will not be a detailed description
of the intricacies of using and fitting these models, but to display their strong
and weak points, particularly, regarding their computational performance. This
will motivate our introduction of a new family of density estimators that, we
believe, occupies a different region of the statistical performance vs computational
performance spectrum.

2.2 Gibbs distributions

Energy models assign an energy value, E(x) ∈ R, to each configuration of a D-
dimensional variable of interest x. Energy models whose exponentiated negative
energy integral over the domain of x is finite can be interpreted as probability
distributions whose probability density function is given by the Gibbs distribution:

p(x) = 1
Z

exp{−E(x)} , where Z =
∫

exp{−E(x)}dDx . (2.4)

The integral is substituted by a sum if the domain of x is discrete. Values of x
with higher energy have lower probability. Energy models whose exponentiated
integral is not finite cannot be interpreted as probabilistic models, but may still
be of use for tasks like classification (LeCun et al., 2007). Any probability model

2.2. Gibbs distributions 9

such that p(x)> 0 for all values of x can be posed as an energy model by defining
its energy function as E(x) =− logp(x).

For some energy models, normalized density estimation is not computationally
tractable. The calculation of Z may require inordinate amounts of computation.
The model is only tractable when a closed-form solutions to the integral in (2.4)
exists; or in the case of discrete data, when the number of terms in the sum is
sufficiently small.

A well known example of a tractable energy model is the multivariate Gaussian
which assigns to each point, x ∈ RD, an energy equal to a quadratic distance,
determined by a D×D positive definite covariance matrix Σ, from a point µ∈RD,
called the mean:

E(x) =1
2(x−µ)>Σ−1(x−µ) . (2.5)

Simple generative models like the multivariate Gaussian have attractive compu-
tational and statistical characteristics: calculating the density of an observation,
sampling, and parameter fitting are all computationally cheap.

The Boltzmann machine (Ackley et al., 1985; Hinton and Sejnowski, 1986)
is an energy model over multivariate binary data that, like the Gaussian, has a
quadratic energy function. Unfortunately, as we will see in section 2.4, it does not
share the computational tractability properties of the Gaussian.

Multivariate Gaussian distributions and Boltzmann machines can only attempt
to capture the first and second order moments of the data generating distribution.
A more elaborate energy function is required in order to capture further properties
of the data generating distribution.

Most of the models we review in this chapter increase their modelling capacity
by introducing extra random variables called hidden or latent variables that are
not part of the set of observed variables that we are interested in modelling. The
introduction of latent variables comes at the cost of more expensive inference
procedures: the configuration of the latent variables has to be marginalized in
order to calculate the probabilities of the visible variables. Thus, the increase in
modelling capacity is due to the introduction of a log-sum-exp (e.g. Murphy, 2012,
p. 86) expression in the energy function.

An alternative to the introduction of stochastic latent variables is the use of an
autoregressive model. These models predict the distribution over visible variables
one dimension at a time, following a particular order. Each dimension is modelled

10 Chapter 2. Connectionist density estimation

using a conditional distribution that uses the value of the dimensions already
predicted as explanatory variables. Any joint probability distribution can be posed
as an autoregressive model. The modelling capacity of autoregressive models
depends on the capacity of the function that maps the values of the preceding
dimensions to the parameters of the single dimension conditional distribution
modelled at each step. As we will see in Section 2.8.3 and Chapters 3 and 4, the
use of flexible functions, like artificial neural networks, whose parameters can
be optimized to maximize the likelihood of the resulting model can lead to high
statistical performance on many datasets of interest. Moreover, as long as each of
these one-dimensional conditionals distributions is computationally tractable, the
joint distribution will also be tractable.

2.3 Mixture models

Mixture models increase statistical flexibility by introducing a single discrete-
valued latent variable, c∈ {1 . . .C}, that acts as a switch that decides which among
C possible models is used to generate the observed variables. A Bayes network
depicting a mixture model is shown in Figure 2.1. The marginal distribution over
the observations can be calculated by

p(x) =
C∑
c=1

p(c)p(x |c) . (2.6)

We note that this factorisation is just an application of the sum and product
rules of probability, and any distribution (with discrete hidden variable c) satisfies
it. However, mixture models are usually explicitly parameterized in terms of
this factorisation4. With a set of parameters, π, for p(c) and a different set of
parameters for each conditional distribution of the observations given the hidden
variable p(x |θc). Each of the conditional distributions is called a component, and
the probability mass for each value of c is called the component weight, where the
component weights must be positive and sum to 1.

When used as a black-box density estimator, it is common to use the same
parametric form for all the components in the mixture. However, components
belonging to different families can be used if domain knowledge indicates this
might be a good idea.

4In Section 2.4 we will present the restricted Boltzmann machine: a model that can be
interpreted as a mixture model, but whose parameterization does not explicitly follow the
factorisation in (2.6).

2.3. Mixture models 11

c

x

N

π

θ

Figure 2.1: Bayes network graphical model of a mixture model. For each datapoint,
the discrete variable c identifies the component responsible for generating each of
the N observations x.

Mixture models are computationally inexpensive. Calculating the probability
density of an observation under a mixture model is tractable (as long as it is so
under each of its components, growing linearly with the number of components).
In consequence, model likelihoods can also be computed tractably; allowing the
comparison of their statistical performance to that of other models.

Unfortunately, mixture models can have low statistical performance for a com-
mon class of datasets. When modelling data that originates from a compositional
generative model. That is, if the data is created by the non-exclusive activation
and deactivation of characteristics. In that case, an exponential number of compo-
nents may be necessary, one for each possible combination of the characteristics.
This type of dataset is, generally, better modelled by autoregressive models (see
Section 2.8) or products of experts like the restricted Boltzmann machine (see
Section 2.4).

The parameters of mixture models are usually fitted to maximize the marginal
likelihood of the model for the observed data∑c p(x, c). Even for simple parametric
forms of the components, this maximization problem cannot be solved analytically5.
Gradient descent methods can be used to fit the parameters, but usually the
expectation-maximization (EM) algorithm (Dempster et al., 1977) is used.

In the next section we will review the EM-algorithm in its general variational
form. Following which, we will review some of the most commonly used mixture
models, namely: the mixture of multivariate Bernoulli distributions, the mixture
of Gaussians, and the mixture of factor analysers. These models play an important
role in the subsequent chapters as they will serve as baseline tractable models for

5For certain restrictive classes of mixtures, the parameters of the model can be approximately
recovered from samples using spectral methods. See, for example, Hsu and Kakade (2013).

12 Chapter 2. Connectionist density estimation

our experiments.

2.3.1 The EM-algorithm

The expectation-maximization (or simply EM) algorithm (Dempster et al., 1977)
is an iterative parameter fitting procedure used in the presence of missing or
truncated data. The EM-algorithm is therefore of use in training mixture models,
where the identity of the component used to generate each observation is unknown.
Each iteration of the EM algorithm is guaranteed not to decrease a lower bound on
the likelihood of the model, and therefore will converge to a parameter configuration
that is a, possibly local, maximum of the likelihood landscape.

Following Barber (2012), let p(x, c |θ) be the distribution whose parameters,
θ we would like to fit in order to maximize their marginal likelihood with respect
to some training data D =

{
x(n)

}N
n=1

. To keep the notation tidy we will show
the expressions for a single datapoint x. Let us start by introducing a condi-
tional distribution q(c |x) and calculating its KL-divergence with the conditional
distribution p(c |x,θ):

KL(q(c |x) ‖ p(c |x,θ)) = 〈logq(c |x)〉q−〈logp(c |x,θ)〉q (2.7)

= 〈logq(c |x)〉q−〈logp(x, c |θ)〉q + logp(x |θ) . (2.8)

Rearranging the terms we can obtain an expression for the marginal likelihood of
the parameters, θ, for an observation x:

logp(x |θ) =〈logp(x, c |θ)〉q−〈logq(c |x)〉q + KL(q(c |x) ‖ p(c |x,θ)) . (2.9)

Kullback-Leibler divergences are non-negative(e.g. MacKay, 2003), therefore we
can obtain a lower bound on the likelihood of the parameters θ:

logp(x |θ)≥〈logp(x, c |θ)〉q−〈logq(c |x)〉q . (2.10)

Backed by this result, the EM-algorithm proceeds by iteratively repeating the
following two steps to convergence:

E-step With fixed θ(t−1), optimize q(t)(c |x) to maximize the lower-bound (2.10).

M-step With fixed q(t)(c |x), optimize θ(t) to maximize the lower-bound (2.10).

for an arbitrary initialization of the parameters of p, θ(0).

2.3. Mixture models 13

The EM algorithm, in its general variational form presented thus far, is
guaranteed not to decrease the likelihood lower bound with each step, but offers
no guarantees on the actual likelihood of the parameters. However, if p(c |x,θ(t−1))
is tractable, then it can be used as the variational distribution q(t) at each E-step.
In this case, the EM algorithm is guaranteed to obtain a sequence of parameters
θ(1),θ(2), . . . ,θ(t) with non-decreasing likelihoods for x. We call this version of the
algorithm classic-EM, or simply EM. To prove that these updates will not decrease
the marginal likelihood, we can calculate the difference in marginal likelihood
between two consecutive configurations of θ; using (2.9):

logp(x |θ(t)) =
〈
logp(x, c |θ(t))

〉
p
θ(t)
−
〈
logp(c |x,θ(t))

〉
p
θ(t)

+ KL
(
p(c |x,θ(t)) ‖ p(c |x,θ(t))

)
, (2.11)

logp(x |θ(t+1)) =
〈
logp(x, c |θ(t+1))

〉
p
θ(t)
−
〈
logp(c |x,θ(t))

〉
p
θ(t)

+ KL
(
p(c |x,θ(t)) ‖ p(c |x,θ(t+1))

)
. (2.12)

The KL-divergence in (2.11) is zero, and the second term in each r.h.s cancel out.
Therefore,

logp(x |θ(t+1))− logp(x |θ(t)) =KL
(
p(c |x,θ(t)) ‖ p(c |x,θ(t+1))

)
︸ ︷︷ ︸

≥0

+
〈
logp(x, c |θ(t+1))

〉
p
θ(t)
−
〈
logp(x, c |θ(t))

〉
p
θ(t)︸ ︷︷ ︸

≥0

.

(2.13)

The KL-divergence term is non-negative, and given that θ(t+1) has been optimized
in the M-step to maximize the joint probability of the observations under the
distribution p(c |x,θ(t)), the difference between the third and second terms in (2.13)
must also be non-negative. Therefore, the difference in likelihoods must be non-
negative.

The classic EM algorithm guarantees convergence of the parameters to a local
maximum of the likelihood function. Therefore, as with most local optimization
methods, it may benefit from multiple runs with different θ(0) initializations.

It is possible to use the classic EM algorithm to train a mixture model. Under
a mixture model, p(c |x,θ(t)) can be computed (with a computational complexity
linear in the number of components) by calculating the probability density of

14 Chapter 2. Connectionist density estimation

the observations under each component and renormalizing to obtain a valid
distribution over components:

p(c |x,θ(t)) = p(x |c,θ(t))p(c |θ(t))∑
c′ p(x |c′,θ(t))p(c′ |θ(t))

. (2.14)

To improve the computational performance of EM when the training dataset
is very big, a stochastic minibatch version is sometimes used (Zoran and Weiss,
2011). The intuition behind this technique is that calculating the EM updates for
a randomly chosen subset, B, of the training dataset may be informative enough
to move to a better configuration of the parameters; especially in the first few
iterations when the parameters have been initialized randomly. In order not to
overfit to the subset of training datapoints chosen for each update, the parameters
are not substituted by the parameters obtained in the M-step for the minibatch B.
Instead, a convex linear combination of the previous configuration and the new
parameters is used:

θ̂B←EM(θ(t−1),B) , (2.15)

θ(t) =(1−ηt)θ(t−1) +ηtθ̂B . (2.16)

Where the size of the step, ηt, used at each iteration is annealed in order to
guarantee convergence.

2.3.2 Mixtures of multivariate Bernoullis

Multivariate binary data, x ∈ {0,1}D, can be modelled using a mixture of multi-
variate Bernoulli distributions. Each multivariate Bernoulli distribution assumes
a factorial distribution over the D visible dimensions, and is defined as:

mvBern(x |µ) =
D∏
d=1

µxd
d (1−µd)(1−xd) . (2.17)

That is, the probability of each dimension taking value 1 is independent of the
value of the rest of dimensions.

Therefore, the probability of a particular observation x under a mixture
of C multivariate Bernoulli distributions, each component having parameters
µc ∈ (0,1)D and weight πc ∈ [0,1], is given by:

p(x |π,µ1, . . . ,µC) =
C∑
c=1

πc mvBern(x |µc) . (2.18)

Training is usually done using the EM algorithm, with updates:

2.3. Mixture models 15

E-step :

p(c |x(n),θ(t−1))∝ π(t−1)
c mvBern(x(n) |µ(t−1)

c) . (2.19)

M-step :

π(t)
c = 1

N

∑
n
p(c |x(n),θ(t−1)) , (2.20)

µc
(t) = 1

N

∑
n
p(c |x(n),θ(t−1))x(n) . (2.21)

2.3.3 Mixtures of Gaussians

A common mixture model for real-valued data, x∈RD, is the mixture of Gaussians
(MoG). In a mixture of Gaussians, each component follows a multivariate Gaussian
distribution:

N (x |µ,Σ) = 1√
|2πΣ|

exp
{
−1

2(x−µ)>Σ−1(x−µ)
}
. (2.22)

The probability density of an observation under a mixture of C Gaussians,
with component weights πc, each component having mean µc ∈ RD, covariance
matrix Σc ∈ RD×D, which must be symmetric and positive definite, is given by:

p(x |θ) =
C∑
c=1

πc
1√
|2πΣc|

exp
{
−1

2(x−µc)>Σ−1
c (x−µc)

}
. (2.23)

Training can be done by gradient descent on the negative log-likelihood of the
parameters, but is commonly done using the EM-algorithm, using the steps:

E-step :

p(c |x(n),θ(t−1))∝ π(t−1)
c N (x(n) |µ(t−1)

c ,Σ(t−1)
c) . (2.24)

M-step :

π(t)
c = 1

N

∑
n
p(c |x(n),θ(t−1)) , (2.25)

µc
(t) = 1

N

∑
n
p(c |x(n),θ(t−1))x(n) , (2.26)

Σ(t)
c = 1

N

∑
n
p(c |x(n),θ(t−1))(x(n)−µ(t)

c)(x(n)−µ(t)
c)> . (2.27)

16 Chapter 2. Connectionist density estimation

The number of parameters in an unconstrained covariance mixture of Gaussians
grows quadratically with the dimensionality of the data. Sometimes the covariance
matrix of the components is constrained to be diagonal (axis-aligned-Gaussian
components) or even diagonal and shared by all dimensions (isotropic-variance
components). Another common constrained covariance form is the factor analyser,
presented in the next section.

2.3.4 Mixtures of factor analysers

A mixture of factor analysers (MFA) (Ghahramani and Hinton, 1996) is a mixture
of Gaussians where the covariance of each component is constrained to have the
form low-rank plus diagonal. The main advantage of a mixture of factor analysers
with respect to a mixture of unconstrained Gaussians is its ability to use more
components without overfitting, due to the reduced amount of parameters of each
component.

Let us start by introducing the factor analyser. Factor analysers (FA) are
continuous-latent-variable models used to model real-valued observations. More
specifically, they are Gaussian-linear models. A visible variable x∈RD is modelled
as a linear transformation, parameterized by a matrix F ∈RD×H , of a continuous
hidden variable h ∈ RH , the factors, plus independent Gaussian noise, ε.

x= µ+Fh+ε . (2.28)

The D×H matrix F is called the factor loading matrix, and the D-dimensional
constant µ sets the mean of the Gaussian. Without loss of generality, the factors
are assumed to follow the unit spherical Gaussian distribution:

p(h) =N (h |0,I) , (2.29)

while the Gaussian noise is modelled by a diagonal covariance Gaussian:

p(ε) =N (ε |0,Ψ) . (2.30)

Under a factor analyser, data is expected to lie close to an H-dimensional
affine subspace of the visible space. Given that x is linearly related to h, and
both h and ε are Gaussian distributed, x is Gaussian distributed too:

p(x) =N (x |µ,FFT +Ψ) . (2.31)

2.3. Mixture models 17

c h

x

N

π

θ

Figure 2.2: Bayes network graphical model of a mixture of factor analysers. For
each datapoint, the discrete variable c identifies the component, and h the factors,
responsible for generating the observations x.

In order to maximize the marginal likelihood of the parameters of a factor
analyser, the EM algorithm is used (Rubin and Thayer, 1982) due to the presence
of the unobserved factors. The mean parameter is set to the empirical mean, µ=
1
N

∑
nx

(n), then the EM-algorithm repeats the following updates to convergence:

E-step :

p(h |x) =N (h |m,Σ) , (2.32)

Σ =(I+F>Ψ−1F)−1
, (2.33)

m=ΣF>Ψ−1(x−µ) . (2.34)

where we have hidden the superscripts in F (t−1) and Ψ(t−1) to avoid clutter.

M-step :

F (t) =AH−1 , (2.35)

Ψ(t) =diag
(

1
N

∑
n

(x−µ)(x−µ)>−2FA>+FHF>
)
, (2.36)

A= 1
N

∑
n

(x(n)−µ)〈h〉>p(h |x(n)) , (2.37)

H = 1
N

∑
n

〈
hh>

〉
p(h |x(n))

. (2.38)

A mixture of factor analysers has two sets of latent variables: a discrete hidden
variable, c ∈ 1, . . . ,C, indicating the component used in generating the data; and
the factors, h ∈ RH . A Bayes network graphical model of a mixture of factors
analysers can be seen in Figure 2.2.

18 Chapter 2. Connectionist density estimation

Therefore, the probability density of an observation under an MFA is given
by:

p(x) =
C∑
c=1

πcN (x |µc,F cF
T
c +Ψ), (2.39)

where πc are the component weights satisfying πc > 0 and ∑cπc = 1, F c ∈ RDxH

are the factor loadings of the c-th component, and Ψc = diag(ψc1, . . . ,ψcD) the
covariance of the observation noise.

Mixtures of factor analysers can be trained to maximize the marginal likelihood
of the model for a training dataset using the EM-algorithm; the parameter update
equations can be found in the appendices of Ghahramani and Hinton (1996).

2.4 Boltzmann machines

Boltzmann machines (Ackley et al., 1985) are probabilistic energy models over
binary variables, that assign energy E(x) =−1

2x
>Wx−b>x to each configuration

x ∈ {0,1}D, where W is constrained to be symmetric and have zero value in all
its main diagonal entries.

Boltzmann machines like the one described, where all variables are observed,
only capture the first and second order statistics of the data generating distri-
bution. Latent variables are often introduced in order to capture higher order
statistics (Hinton and Sejnowski, 1986).

In order to facilitate inference and parameter learning, some off-diagonal entries
of the weight matrix W may also be constrained to take value zero. This can be
seen as a restriction of connectivity in the Markov net graphical representation of
the Boltzmann machine.

2.4.1 Restricted Boltzmann machines

Restricted Boltzmann machines (RBMs) are a type of Boltzmann machine with
latent variables and specific type of restricted connectivity. In an RBM variables
are partitioned in two sets, called layers. One of the layers includes all visible
units, x, and the other all hidden units, h (see Figure 2.3). Connectivity between
units in the same layer is not permitted. This restricted connectivity allows us
to substitute the constrained (D+H)× (D+H) matrix of the fully connected
Boltzmann machine with an unconstrained D×H matrix, resulting in the energy

2.4. Boltzmann machines 19

h1 h2 . . . hH

x1 x2 . . . xD

Figure 2.3: Markov network graphical model of a restricted Boltzmann machine. Each
unit (variable) is connected to every unit on the other layer and to no units on its own
layer.

function:

E(x,h) =−x>Wh−b>x−c>h, (2.40)

where W ∈ RD×H , b ∈ RD, and c ∈ RH are parameters of the model. The
probability of a full configuration of visible and latent units is given by:

p(x,h) = 1
Z

exp{−E(x,h)} , where Z =
∑
x,h

exp{−E(x,h)} . (2.41)

The probability of a configuration of the visible variables is calculated by
marginalizing out the hidden variables:

p(x) = 1
Z

∑
h

exp{−E(x,h)}= 1
Z

exp{−F (x)} , (2.42)

where F (x) or free energy of x is defined as: F (x)≡− log∑h exp{−E(x,h)}.
Due to the RBM’s restricted connectivity, the dimensions in h become in-

dependent when conditioned on x . As a consequence, the free energy can be
efficiently computed in O(HD) time:

F (x) =−b>x−
H∑
i=1

log
(
1 + exp

{
x>W ·,i+ ci

})
. (2.43)

However, computing a normalized probability, requires the partition function,
Z. The partition function can be calculated by iterating over all possible values
of the visible variables; using Z =∑

x exp{−F (x)}, which allows us to calculate
it with complexity O(2DHD), which may be feasible if the number of visible
variables is sufficiently small (D . 40). By symmetry on the visible and latent
roles, if the number or hidden units is small, then the partition function can be
calculated in time O(2HHD).

Therefore, RBMs may be practical for tasks requiring normalized probability
estimation, but only if the data is low-dimensional (D . 40). When the data has

20 Chapter 2. Connectionist density estimation

a greater number or dimensions, exact calculation of Z will only be feasible if
the number of hidden units is small (H . 40). Given that adding hidden units
increases the modelling power of RBMs, using a small number of them may be
appropriate or not depending on the complexity of the data generating distribution
that we are trying to model. As an example, Salakhutdinov and Murray (2008)
found that using an RBM with a small number of latent variables to model
binary images of handwritten digits has low statistical performance, and is not
competitive with other tractable models (Larochelle and Murray, 2011).

When Z is intractable, its value can be approximated using Markov chain
Monte Carlo techniques like annealed importance sampling (Salakhutdinov and
Murray, 2008; Murray and Salakhutdinov, 2009) or moment-averaging annealed
importance sampling (Grosse et al., 2013). However, these techniques tend
to underestimate Z which leads to the dangerous conclusion that the model’s
likelihood is higher than its actual value. Therefore, expertise in the use and
tuning of MCMC methods is required when estimating the partition function.

Sampling from an RBM is usually done using block Gibbs sampling (Geman
and Geman, 1984) due to the simple expression of the conditionals

p(x |h) =
D∏
i=1

p(xi |h) where p(xi = 1 |h) = sigm(W i,·h+ bi) , (2.44)

p(h |x) =
H∏
j=1

p(hj |x) where p(hj = 1 |x) = sigm
(
x>W ·,j + cj

)
, (2.45)

where sigm(·) is the logistic sigmoid function defined as:

sigm(x)≡ 1
1 + exp{−x} . (2.46)

Although true samples from an RBM can only be obtained asymptotically,
samples from the Gibbs chain separated by a few Gibbs steps are commonly
used (Hinton, 2010). This requires fitting a parameter that specifies how many
Gibbs steps to take between samples, trading computational time for higher
independence between successive samples.

The parameters of an RBM are usually fitted to maximize the likelihood of the
model given the dataset. Training is usually done by stochastic gradient descent

2.4. Boltzmann machines 21

on the negative marginal log-likelihood of the parameters for the training dataset:

−∂ logp(x)
∂θi

=∂F (x)
∂θi

+ ∂ logZ
∂θi

(2.47)

=∂F (x)
∂θi

+ 1
Z

∑
x̃

∂ exp{−F (x̃)}
∂θi

(2.48)

=∂F (x)
∂θi

+
∑
x̃

1
Z

exp{−F (x̃)} −∂F (x̃)
∂θi

(2.49)

=∂F (x)
∂θi

−
∑
x̃

p(x̃)∂F (x̃)
∂θi

, (2.50)

where x is an observation sampled at random from the training dataset, and the
sum over x̃ is done over the whole domain of the visible variables. The sum in (2.50)
has an exponential number of terms, and is usually approximated by sampling
x̃. However, sampling from the distribution for each gradient update can be too
computationally expensive. In practice, a single sample of x̃ obtained by running
a few block Gibbs steps initialized from the datapoint x is used. This approximate
technique is called contrastive divergence (CD) (Hinton, 2002). In order to obtain
a good distribution estimator a considerable number of Gibbs steps (≈ 25) is
required (Salakhutdinov and Murray, 2008). An alternative technique, called
persistent contrastive divergence (PCD) (Tieleman, 2008), does not reinitialize
the Gibbs chain with the data but with the samples of x̃ used in the previous
stochastic gradient calculation.

RBMs are powerful models able to capture complicated relationships in binary
data (Larochelle and Murray, 2011) (also see comparison tables in Chapter 4).
However, due to the intractability of their partition function, they are seldom
used for probability estimation. Moreover, training cannot be readily done by
gradient descent on the log-likelihood and MCMC techniques are required for
sampling. The intractability of RBMs makes it difficult to even crossvalidate how
many hidden units are required or what training hyperparameter values provide
the best statistical performance.

The most common use for RBMs has been in the pretraining of deep artificial
neural networks (DNNs) (see Section 2.4.3), but this procedure now seems unnec-
essary with the introduction of rectified linear units (Nair and Hinton, 2010; Dahl
et al., 2013), better data-independent initialization techniques (Sutskever, 2013)
and training algorithms (Martens, 2010).

22 Chapter 2. Connectionist density estimation

2.4.2 Gaussian-Bernoulli restricted Boltzmann Machines

Gaussian restricted Boltzmann machines (GRBM) extend restricted Boltzmann
machines to model real-valued data (Welling et al., 2005). The observable variables
in a GRBM take real values, x ∈ RD. The hidden variables are binary valued,
h ∈ {0,1}H .

The energy function for a GRBM has the expression:

E(x,h) =
D∑
i=1

(xi− bi)2

2σ2
i

−
H∑
j=1

cjhj−
D∑
i=1

H∑
j=1

xi
σi
Wi,jhj , (2.51)

where W ∈ RD×H , b ∈ RD, c ∈ RH , σ ∈ R+D are parameters of the model. The
conditional distribution of each layer conditioned on the other are given by:

p(xi |h) =N
xi |bi+σi

H∑
j=1

hjWi,j ,σ
2
i

 , (2.52)

p(hj = 1 |x) =sigm
cj +

D∑
i=1

xi
σi
Wi,j

 . (2.53)

The visible units follow independent Gaussian distributions conditioned on the
value of the hidden variables; while the latent variables factorize into independent
Bernoulli distributions conditioned on the value of the visible units.

The parameters of a Gaussian-RBM are fitted using the contrastive divergence
approximation to the log-likelihood gradient. In practice, learning the value of
the standard deviation parameter of each variable is difficult. The learning rate
for the σi parameters needs to be 3 or 4 orders of magnitude smaller than for the
rest of parameters (Krizhevsky and Hinton, 2009). For this reason, all σi are often
fixed to unity (Cho et al., 2011). Note, that this is usually done for data that
has already been standardized to have variance 1, which results in models that
overestimate the conditional standard deviation and whose samples look noisy.

Cho et al. (2011) reformulated the Gaussian RBM to facilitate learning of
the conditional standard deviations, however it still requires the use of complex
parallel tempering training procedures.

The mean-covariance RBM (Ranzato and Hinton, 2010) is a generalization
of the GRBM that allows for non-diagonal covariance structure for the p(x |h)
conditionals. The spike-and-slab RBM (Courville et al., 2011) introduces a set
of continuous-valued latent variables associated to each binary latent variable.
However, inference using these models is even computationally costlier.

2.4. Boltzmann machines 23

In summary, Gaussian-RBMs suffer from the same drawbacks as binary RBMs,
namely: calculating probability densities is intractable (thus exact likelihoods can-
not be calculated), and sampling requires MCMC methods. Moreover, Gaussian-
RBMs are limited by the diagonal covariance distribution of the visible units
conditioned on the hidden units and the difficulty to fit its variance parameters.

2.4.3 Deep belief networks

Due to the discrete domain of the hidden variables, the distribution modelled by
an RBM can be interpreted as a mixture model with an exponential number of
components; with each configuration of the hidden variables corresponding to a
component of the mixture

p(x |θ) =
∑
h

p(h |θ)p(x |h,θ) , (2.54)

where p(h) are the component weights, and p(x |h) the distribution of each
component. Note that here, we have made the parameters of the RBM, θ, explicit.

In the case of binary RBMs, each component is a multivariate Bernoulli
distribution where the probability of each visible variable is given by (2.44). In the
case of Gaussian-Bernoulli RBMs, each component is a Gaussian whose parameter
values are given by (2.52).

However, an RBM cannot represent any mixture model. The parameters of
all components are tied, i.e. calculated using the reduced number of parameters:
θ. For both the binary and the Gaussian-RBM, the means of the components
are not free to take any set of values. They always correspond to a projection of
the vertices of a hypercube6 of dimensionality H onto the space of observables of
dimensionality D.

The component weights are also calculated using the same RBM parameters
used to calculate the component parameters, and can be obtained by marginalizing
the visible variables (Wang et al., 2012).

Deep belief networks (DBN), as presented in Hinton et al. (2006), aim to
increase the statistical performance of RBMs by untying the parameters used
to calculate the component weights from those used to calculate the parameters
of each component. That is, DBNs introduce a new distribution over h with a

6In the binary RBM it is the logit of the means that lies on the projection of a hypercube’s
vertices.

24 Chapter 2. Connectionist density estimation

(a)

x1 x2 . . . xD

h
(1)
1 h

(1)
2

. . .

h
(1)
H

h
(2)
1 h

(2)
2

. . .

h
(2)
H

h
(3)
1

(b)

x1 x2 . . . xD

h
(1)
1 h

(1)
2

. . .

h
(1)
H

h
(2)
1 h

(2)
2

. . .

h
(2)
H

h
(3)
1 h

(3)
2

. . .

h
(3)
H

Figure 2.4: Chain-graph graphical model representation of a deep belief network. In
(a) a deep belief network with two hidden layers is shown. In (b) a deep belief network
with three hidden layers is shown. The marginal distribution of the top two hidden
layers is modelled by an RBM, while the rest of variables are modelled by a Bernoulli
distribution whose expectation depends only on the configuration of the layer directly
above it.

different set of parameters θ(2):

p(x |θ,θ(2)) =
∑
h

p(h |θ(2))p(x |h,θ) . (2.55)

If this model is to have a higher marginal likelihood for the training data than the
RBM, the new p(h |θ(2)) should better approximate the aggregated posterior (Tang
et al., 2012) ∑x pemp(x)p(h |x,θ) (where pemp is the empirical distribution of x)
more accurately than p(h |θ) given by the original RBM.

A way of guaranteeing an non-decrease in likelihood is to use another RBM
to model p(h) (Hinton et al., 2006) adding a new layer of hidden units (see
Figure 2.4a). In the binary observables case, this new RBM with H visible units
and H(2) hidden units is guaranteed to be able to model p(h) at least as well as
the original RBM as long as H(2)≥D. Simply by setting W (2) =W>, b(2) = c and
c(2) = b we would obtain the original p(h |θ); and by optimizing the parameters to
better model the empirical p(h |x,θ), an increase in log-likelihood for the training
data may be obtainable.

The addition of an extra hidden layer can be repeated as many times as

2.4. Boltzmann machines 25

desired (see Figure 2.4b), always guaranteeing a non-decrease in the log-likelihood
obtainable for the training data.

However, this greedy one-layer-at-a-time procedure is suboptimal. Given
the availability of an untied distribution over the latent units, a better joint
configuration of the parameters of all layers θ,θ(2), . . . may be found. Hinton
et al. (2006) recommend using the greedy algorithm only as an initialization and
utilizing the wake-sleep algorithm (see Section 2.6) to obtain a better generative
model.

The main use of this DBN training algorithm has been as an initialization for
feedforward neural networks. The latent variables in higher layers are hypothesised
to be good high level descriptors of the data. However, as commented before, this
kind of initialization seems, at present, unnecessary.

Calculating normalized probabilities (or probability densities in the case of
continuous observations) under a deep belief networks is intractable. Densities
can be approximated using Markov chain Monte Carlo methods (Murray and
Salakhutdinov, 2009), but it is computationally costlier than under a restricted
Boltzmann machine.

2.4.4 Deep Boltzmann Machines

Deep Boltzmann machines (DBMs) (Salakhutdinov and Hinton, 2009) are a
generalization of restricted Boltzmann machines to several layers of latent units.
The energy function of a DBM with L hidden layers is defined as:

E(x,h) =−b(0)>x−x>W (1)h(1)−b(1)>h(1)−
L∑
l=2

(
h(l−1)>W (l)h(l) +b(l)>h(l)

)
,

(2.56)

where h(l) denotes the l-th layer of latent units, and the parameters of the model
are the biases, b(0...L), and weights, W (1...L), for each layer. Therefore, an RBM
can be seen as a special case of the DBM with just one hidden layer.

In general, in a DBM the distribution over latent variables given a configuration
of the visible variables does not factorize. Therefore calculating the free-energy
of a visible configuration is not tractable. This makes exact calculation of the
log-likelihood gradients of a DBM even more computationally intractable than an
RBM, as both terms in (2.47) are intractable. Techniques to approximate each
term were developed by Salakhutdinov and Hinton (2009), who were able to

26 Chapter 2. Connectionist density estimation

successfully train DBMs with several hidden layers. Calculating the log-likelihood
of a DBM for a given dataset is also intractable but can be approximated using
annealed importance sampling (Murray and Salakhutdinov, 2009; Salakhutdinov
and Hinton, 2009).

2.5 Density networks

Following MacKay (1995b), we will refer to directed latent variable models with
a single layer of latent variables and a parametric non-linear mapping between
latent variables and observations as density networks. Note that, despite their
name, density networks can model discrete valued data.

Density networks can be seen as a generalization of factor analysis, where
the linear mapping between the H-dimensional hidden variables, h, and the
D-dimensional observations, x, is allowed to be non-linear. In a density network
model, the distribution over the hidden variables, p(h), is set a priori (for example,
unit spherical Gaussian) and only a parametric model for p(x |h,θ) is learnt. The
probability of an observation under a density network is given by:

p(x |θ) =
∫
p(x |h,θ)p(h)dHh . (2.57)

MacKay (1995b) proposed using a tractable parametric form for the observation’s
distribution given the latent variable, and estimating (2.57) by taking S samples,{
h(s)

}S
s=1

, from the latent variable’s prior distribution p(h):

p(x |θ)≈ 1
S

S∑
s=1

p(x |h(s),θ) . (2.58)

Training can be done by stochastic gradient ascent on the log-likelihood of the
parameters:
∂ logp(x |θ)

∂θi
= 1
p(x |θ)

∫
p(h)∂p(x |h,θ)

∂θi
dHh (2.59)

= 1
p(x |θ)

∫
p(h)p(x |h,θ)∂ logp(x |h,θ)

∂θi
dHh (2.60)

= 1∫
p(h)p(x |h,θ)dHh

∫
p(h)p(x |h,θ)∂ logp(x |h,θ)

∂θi
dHh , (2.61)

where the last expression, can also be approximated by sampling from the prior
over the latent variables:

∂ logp(x |θ)
∂θi

≈
∑S
s=1 p(x |h(s),θ)∂ logp(x |h(s),θ)

∂θi∑S
s=1 p(x |h(s),θ)

. (2.62)

2.6. Helmholtz machines 27

These estimators for the density and the log-density gradient with respect to
the parameters are unbiased. However, they can have very high variance when
the prior over latent variables is very different from the posterior distribution
p(h |x); requiring a very high number of samples in order to obtain good estimates.
Low-dimensional latent spaces can be sampled in a regular grid, in which case
an expectation-maximization algorithm can be used for training (Bishop et al.,
1998).

2.6 Helmholtz machines

Helmholtz machines (Hinton et al., 1995; Dayan et al., 1995; Dayan and Hinton,
1996) model data using a hierarchy of L latent variable layers where the joint
distribution is given by:

p(x,h(1), . . . ,h(L)) = p(h(L))p(h(L−1) |h(L)) . . .p(h(1) |h(2))p(x |h(1)) . (2.63)

Typically, Helmholtz machines further assume a factorial distribution over the
variables on each layer conditioned on the value of the layer above, such that

p(h(L−1) |h(L)) =
∏
j

p(h(L−1)
j |h(L)) . (2.64)

A Bayes network graphical model showing the generative model of a Helmholtz
machine can be seen in Figure 2.5a. Provided each of the conditionals in (2.64) is
tractable, computing the density of a particular configuration of the latent and
observed variables can be done exactly and tractably. Also, sampling from these
models can be done efficiently using ancestral sampling. However, marginalizing
the latent variables to calculate the density of an observation, and learning the
parameters from a dataset of observations, is intractable due to the “explaining
away” effect in Bayes networks (Pearl, 1988).

A similar approach to density networks, sampling from the prior, can be used.
However, sampling from the prior distribution of p(h) is, in general, very inefficient
and it will lead to an estimator of very high variance (Dayan and Hinton, 1996).

The defining characteristic of Helmholtz machines is the use of a separate
tractable recognition model q(h(1), . . . ,h(L) |x) to approximate p(h(1), . . . ,h(L) |x).
Like the generative model, the recognition model also has, typically, a layered
configuration, but reverses the roles of dependent and explanatory variables of

28 Chapter 2. Connectionist density estimation

(a)

x1 x2 . . . xD

h
(1)
1 h

(1)
2

. . . h
(1)
H

h
(2)
1 h

(2)
2

. . . h
(2)
H

h
(3)
1 h

(3)
2

. . . h
(3)
H

(b)

x1 x2 . . . xD

h
(1)
1 h

(1)
2

. . . h
(1)
H

h
(2)
1 h

(2)
2

. . . h
(2)
H

h
(3)
1 h

(3)
2

. . . h
(3)
H

Figure 2.5: Bayes network graphical representation of a three-hidden-layer Helmholtz
machine. (a) shows the generative model; (b) shows the recognition model. In both
cases conditional independence among units in the same layer is assumed given the
layer above in (a) or below in (b).

each conditional distribution:

q(h(1), . . . ,h(L) |x) =q(h(1) |x)q(h(2) |h(1)) . . . q(h(L) |h(L−1)) . (2.65)

A factorial distribution for each conditional in the recognition model was as-
sumed in the classical Helmholtz machine publications, even though p(h(l) |h(l−1))
will rarely be factorial. A Bayes network graphical model showing the recognition
model of a Helmholtz machine can be seen in Figure 2.5b.

As show in the variational-EM derivations of section 2.3.1, it is possible to
obtain a lower bound for the marginal log-density of an observation x under the
generative model, p, by calculating the expectation of the joint p(x,h) when h is
distributed following the recognition model q:

logp(x)≥
〈
logp(x,h(1), . . . ,h(L))

〉
h(1)...h(L)∼q |x

+
〈
− logq(h(1), . . . ,h(L) |x)

〉
h(1)...h(L)∼q |x

.

(2.66)

In order for this bound to be close to the actual marginal log-probability of x
under p, the gap given by KL(q ‖ p) must be small. To achieve this, Hinton et al.
(1995) designed the wake-sleep algorithm that simultaneously trains both models,
generative and recognition, by alternating the so called wake and sleep phases:

2.6. Helmholtz machines 29

Wake phase : A datapoint from the training dataset is used to sample a value
for each hidden variable using q. Then the parameters of the generative
model are modified to increase the probability of the joint configuration.
That is, a stochastic gradient ascent update is performed on the parameters
of p to increase the first term on the r.h.s of (2.66)

Sleep phase : A value for every hidden variable and the observations is sampled
from the generative model. The parameters of the recognition model are
modified to increase the probability of those latent variables being generated
by q.

The main criticism7 towards the wake-sleep training algorithm is that the sleep
phase does not correspond to optimising the parameters of q to maximize the
bound in (2.66) (Dayan and Hinton, 1996; Mnih and Gregor, 2014; Bornschein
and Bengio, 2014). The actual stochastic gradient updates of the parameters of
q with respect to the lower bound have very high variance (Dayan and Hinton,
1996). Recently, with the help of several variance reduction techniques, Mnih and
Gregor (2014) have designed an estimator of the gradient of the lower bound with
respect to the parameters of q whose variance is low enough to be of practical use.
Helmholtz machines trained using this estimator of the correct gradient achieved
higher log-likelihood than those trained using the wake-sleep algorithm (Mnih
and Gregor, 2014).

Another interpretation of the Helmholtz machine poses the recognition model
as an importance sampling proposal distribution (MacKay, 1995b; Bornschein
and Bengio, 2014). This allows estimating the probability of an observation by
using S samples from q(h |x):

p(x |θ)≈ 1
S

S∑
s=1

p(h(s))
q(h(s) |x)

p(x |h(s),θ) . (2.67)

Unfortunately we are usually interested in estimating log-densities, and this
estimator is biased if used for that purpose. Nonetheless, it is expected to
underestimate the log-likelihood of the model, and therefore offer a safe estimation
of its statistical performance.

7In the original formulation of the Helmholtz machine, the authors were not only interested
in fitting models that obtained high likelihoods, they were also interested in finding a plausible
explanation for unsupervised learning in biological neural networks. Therefore they saw the
“purely local delta rule” of the wake-sleep algorithm as a necessity (Dayan and Hinton, 1996).

30 Chapter 2. Connectionist density estimation

New training techniques that allow for joint training of the generative and
recognition models have been recently devised (Gregor et al., 2014; Jimenez-
Rezende et al., 2014; Kingma and Welling, 2014). These techniques are able
to backpropagate through the stochastic units, and can, therefore, train both
networks as a single stochastic autoencoder; where the recognition network acts
as the encoder and the generation network as the decoder. These new techniques
simplify training and obtained better statistical performance than wake-sleep
training.

Helmholtz machines are capable of capturing complex dependencies between
the visible variables (Frey et al., 1996; Mnih and Gregor, 2014). Sampling from
Helmholtz machines can be done exactly and efficiently. However, even with the
use of an inference network, it is not possible to calculate normalized densities
exactly, although a stochastic approximation can be obtained by sampling the
hidden configuration using q. The interest of the machine learning community in
Helmholtz machines has enjoyed a recent revival and constitutes a promising area
of research.

2.7 Generalized denoising autoencoders and gener-
ative stochastic networks

Generalized denoising autoencoders (GDAE) (Bengio et al., 2013, 2014) take
a different approach to modelling complex probability distributions. A GDAE
defines a joint probability distribution as the stationary distribution of an ergodic
Markov chain. The parameters, θ, of this Markov chain’s transition operator are
fitted to capture the distribution of interest, P .

In a GDAE the Markov transition operator is given by the sequential sampling
of two conditional distributions C(x̃ |x) and P (x | x̃,θ):

xt ∼ P (x | x̃t,θ) , where x̃t ∼ C(x̃ |xt−1) . (2.68)

These conditional distributions correspond to the stochastic corruption and de-
noising conditional distributions of a denoising autoencoder (Vincent et al., 2008).
Sampling C corrupts a particle xt−1 (e.g. adds a Gaussian distributed random
vector), while P attempts to recover its value, moving the particle back to the
region of high probability density.

2.8. Autoregressive models 31

If certain constraints for P , C and P are satisfied8, then the stationary distri-
bution of the Markov chain defined by C and P will be consistent with P (Bengio
et al., 2013).

The intuition behind GDAE is that, for some distributions, it is easier to model
the local structure, P(x | x̃) than to model the distribution of interest P(x).

Generative stochastic networks (GSN) generalize GDAEs by introducing a
latent variable in the Markov chain such that:

xt ∼ P (x |ht,θ) , where ht ∼ E(h |ht−1,xt−1) . (2.69)

That is, the corrupted particles of GDAEs, x̃ are substituted by h, a stochastic
encoding of x that can take values in a different domain from that of x. By using
the right, problem dependent, latent encoding, the GSN can result in a Markov
chain with faster mixing.

Approximate samples from a GDAE or a GSN can be obtained by sampling
from the Markov chain (after an initial burn-in period). Normalized densities can
be approximated by using a kernel density-estimator on a sufficient number of
samples. Inference, i.e. sampling or density estimation conditioned on a certain
value for a subset of dimensions, can be done by fixing those variables while
running the Markov chain.

GDAEs and GSN that utilize neural networks to model the Markov transition
operator can model complex distributions (Bengio et al., 2013, 2014). Their main
practical disadvantage is the need to run a Markov chain in order to do inference,
which, depending on the number of samples utilized and the length of the burn-in
period, may be computationally expensive.

2.8 Autoregressive models

We will adopt Frey’s definition of an autoregressive model (Frey, 1998), as a
Bayesian network with no latent variables and cascade connectivity. That is, the
distribution of each variable depends on all other variables preceding it in a given
ordering, o, of the variables. Formally, o is a D-tuple holding a permutation of the
visible variable indices 1 . . .D. The Bayes network of an autoregressive model is
fully specified by choosing an ordering, o, of the variables, as shown in Figure 2.6.

8The most restrictive of these constraints is the consistency of the reconstruction conditional
P (x | x̃,θ) with the true P(x | x̃)∝ C(x̃ |x)P(x)

32 Chapter 2. Connectionist density estimation

(a)

x1 x2 x3 x4

(b)

x1 x2 x3 x4

Figure 2.6: Bayes’ network graphical model of two autoregressive networks specified
by different orderings of the variables. In (a) o= [1,2,3,4], in (b) o= [4,3,2,1]. All
nodes are visible and direct descendants of all nodes preceding them.

General autoregressive models assume no conditional independences. Their
Bayes network specifies a particular factorisation of the probability density func-
tion:

p(x) =
D∏
d=1

p(xod
|xo<d

), (2.70)

where xo<d
stands for the subset of visible variables indexed by the first d− 1

elements of o.
Given the lack of conditional independence assumptions, any probability

distribution can be modelled using an autoregressive model. However, an inductive
bias is introduced by choosing a parametric form for each of the conditionals in
(2.70) and an ordering of the variables.

Density estimation under autoregressive models has mild computational com-
plexity, but some inference tasks require approximate methods. If each of the
one-dimensional conditionals in (2.70) is tractable, it is possible to calculate the
joint density, p(x), tractably simply by multiplying the value of each conditional.
Marginalising out variables at the end of the ordering, o, can be done efficiently,
simply ignoring the conditionals for those variables in (2.70), as they add up to 1:

p(xo1 ,xo2 , . . . ,xok
) =

∑
xok+1 ,xok+2 ...xoD

 D∏
d=1

p(xod
|xo<d

)
 (2.71)

=
k∏
d=1

p(xod
|xo<d

)
∑

xok+1 ,xok+2 ...xoD

 D∏
d=k+1

p(xod
|xo<d

)

︸ ︷︷ ︸
=1

(2.72)

=
k∏
d=1

p(xod
|xo<d

) . (2.73)

However, marginalising out a subset of the dimensions that is not at the end
of o involves summing a number of terms exponential in the number of missing

2.8. Autoregressive models 33

1 x1 x2 x3

x1 x2 x3 x4

Figure 2.7: Neural network diagram (note the lack of hidden layers) that implements a
logistic autoregressive Bayesian network (this is not a Bayes network graphical model).
The restricted connectivity results in a triangular weight matrix. The node labelled “1”
is the bias. Each variable is predicted by a logistic regressor that uses as predictors all
variables preceding it.

dimensions, and will usually require approximate inference techniques like MCMC,
and variational methods (e.g. Bishop, 2006).

In the rest of this section we review some autoregressive distribution estimators
that have appeared in the literature in the last twenty years. Without loss of
generality we will assume the natural index order, o= 1,2, . . . ,D of the dimensions
in the following sections. The models can be defined for any other ordering simply
by permuting the dimensions.

2.8.1 Logistic autoregressive Bayesian networks

Logistic autoregressive Bayesian networks (LARN)9 are the earliest example of
autoregressive methods for joint probability estimation (Frey, 1998). A LARN
models a multidimensional binary variable x∈ {0,1}D by using a logistic regressor
to model each one-dimensional conditional in (2.70). That is, the probability
of each variable taking value 1 is modelled by an affine transformation of the
variables preceding it in the ordering.

P (xd = 1 |x<d) = sigm
(
w(d)x<d+ bd

)
, (2.74)

where the model parameters w(d) belongs to Rd−1 and bd to R. A graphical
representation of the neural network that implements a LARN can be seen in
Figure 2.7.

9LARNs are also called fully visible Bayes networks (FVBN).

34 Chapter 2. Connectionist density estimation

LARNs can only capture first-order dependencies between the variables. The
fact that a predictor takes value 1, will always increase or decrease the probability
of the variable being predicted taking value 1, independently of the value of
the rest of the predictors. That is, a LARN cannot model interactions between
predictor variables.

Calculating the probability mass of an observation has complexity O(D2),
which is tractable. The number of parameters of the model also grows quadratically
with the dimensionality of the data. This may make it necessary to use Bayesian
methods or regularisation techniques, like weight sparsity or weight decay, in order
to avoid overfitting to small datasets. However, for most datasets LARN’s main
drawback will be its limited representational power.

The methods described next address the two limitations of LARNs. Namely,
their inability to capture complex interactions between the predictor variables in
each conditional, and the fixed number of parameters.

2.8.2 Autoregressive neural network models

The use of neural networks with a hidden layer to implement the autoregressive
conditionals in (2.70) was analysed by Bengio and Bengio (2000). These autore-
gressive neural network models (ANNM) address the main limitation of LARNs,
namely their inability to capture interactions between predictor variables, by
adding a layer of non-linear hidden features.

The architecture proposed by Bengio and Bengio can be seen as multiple
neural networks with tied parameters. The value of hidden units that have been
used to predict the preceding dimensions in the ordering, o, are reused. Only KH

new hidden units with full connectivity to the dimensions already predicted are
added to each network, as shown in Figure 2.8.

The model can also be interpreted as a single neural network that predicts
the distribution over all dimensions simultaneously, but guarantees a valid im-
plementation of the factorisation in (2.70) by restricting the connectivity of the
output probability unit for the d-th dimension, to the first KH ×d hidden units;
and from those hidden units to the input value of the first d−1 dimensions, as
shown in Figure 2.9.

Formally, for a binary dataset, the distribution over the d-th dimension in an

2.8. Autoregressive models 35

(a)
x1

1

1

(b)
x1 x2

1 h1 h2

1 x1

(c)
x1 x2 x3

1 h1 h2 h3 h4

1 x1 x2

Figure 2.8: Neural network diagram (this is not a Bayes network graphical model) of an
autoregressive neural network model with three-dimensional observations and KH = 2.
Nodes labelled “1” are biases (input bias not shown for clarity). The probability
distribution of each dimension is calculated using the value of dimensions that precede
it. (a), (b) and (c) show the networks predicting the first, second and third dimensions
in the ordering o= 1,2,3. Weights with the same colour are shared across networks.
Note the restricted connectivity, caused by the addition of KH new hidden units with
each new input. An ANNM can also be represented as a single network, see Figure 2.9

.

1 x1 x2

1 h1 h2 h3 h4

x1 x2 x3

Figure 2.9: Neural network diagram (this is not a Bayes network graphical model) of an
autoregressive neural network model with three-dimensional observations and KH = 2.
Nodes labelled “1” are biases. Note the restricted connectivity. The directed-paths
from inputs to outputs only lead to dimensions that appear later in the ordering o.

36 Chapter 2. Connectionist density estimation

observation is calculated as follows:

p(xd = 1 |x<d) =sigm
KH(d−1)∑

j=1
Wd,jhj + bd

 , (2.75)

hj =tanh
j//KH+1∑

i=1
Vj,ixi+ cj

 , (2.76)

where ·//· stands for integer division, with weight matrices W ∈ RD×KHD, V ∈
RKHD×D, bias vectors b ∈ RD, c ∈ RKHD. Note that due to the restricted
connectivity, many elements in the W and V matrices are not used. In practice, it
can be easily and efficiently implemented using matrix multiplications by setting
to zero the weight of the connections not allowed.

The complexity of calculating the probability of an observation under this
model is O(KHD

2), where KH is the number of hidden units added with each
extra predictor variable and D is the dimensionality of the data.

Bengio and Bengio obtained better statistical performance, as measured by
the model likelihood on a held out dataset, than LARN on a battery of datasets
of small dimensionality.

They also found it advantageous to reduce the number of free parameters by
further pruning the connectivity between the inputs and hidden units. In their
particular implementation, connections from input j to the hidden units added
to predict dimension i are banned if the Kolmogorov-Smirnov statistic between
dimensions i and j is lower than a threshold selected using crossvalidation.

2.8.3 Neural autoregressive distribution estimators

The Neural autoregressive distribution estimator (NADE) (Larochelle and Murray,
2011; Gregor and LeCun, 2011) is an autoregressive model of multivariate binary
data. NADE is based on single-hidden-layer neural networks, but have a different
parameter tying strategy to ANNMs.

Larochelle and Murray developed NADE inspired by the mean-field variational
approximation to the autoregressive conditionals of a binary RBM (Welling and
Hinton, 2002)10. The marginal distribution over visible variables modelled by an
RBM can be factorised (just as any distribution) into an autoregressive product

10Gregor and LeCun independently designed a model identical to NADE from the point of
view of minimum description length (Gregor and LeCun, 2011).

2.8. Autoregressive models 37

of one-dimensional conditionals:

p(x) =
D∏
d=1

p(xd |x<d) , (2.77)

where, given the energy formulation of RBMs, each factor can be rewritten as:

p(xd |x<d) =p(xd,x<d)
p(x<d)

(2.78)

=
∑
x>d

∑
h exp{−E(x,h)}∑

x≥d

∑
h exp{−E(x,h)} . (2.79)

However, most of these conditionals are intractable, as they require summing
over an exponential number of visible unit configurations. To tackle this problem
Larochelle and Murray calculate the mean-field variational approximation to the
distribution p(x≥d,h |x<d) from which they can easily approximate p(xd |x<d)
due to the factorial nature of the mean-field approximation. In more detail, they
fit the factorial distribution:

q(x≥d,h |x<d) =
D∏
j=d

µj
vj (1−µj)(1−vj)

H∏
k=1

τhk
k (1− τk)(1−hk) , (2.80)

where µj and τk are the parameters of the variational model, corresponding to
the expected value of xj and hk respectively. In order to fit those parameters,
the KL-divergence between q(x≥d,h |x<d) and p(x≥d,h |x<d) is minimized. The
following update equations, which are iterated to convergence, are obtained:

τk =sigm
d−1∑
j=1

Wk,jxj +
D∑
j=d

Wk,jµj + ck

 , (2.81)

µj =sigm
 H∑
k=1

Wk,jτk + bj

 . (2.82)

Once convergence has been achieved, the marginal q(xd = 1 |x<d) can be easily
calculated as µd. Approximating each p(xd |x<d) requires fitting a different
mean-field approximation, each of which may need tens of mean-field iterations.

Based on the update equations (2.81) and (2.82), Larochelle and Murray
developed NADE, based on a single mean-field update, which they treat as a
model on its own right, instead of an approximation to an RBM. Therefore,
assuming that µj is initialized to zero, we would obtain an autoregressive model,
where the distribution of each one-dimensional conditional is given by:

p(xd = 1 |x<d) =sigm
(
W>
·,dh(d) + bd

)
(2.83)

hk(d) =sigm
(
W k,<dx<d+ ck

)
, (2.84)

38 Chapter 2. Connectionist density estimation

where the values of the hidden variables is different for each conditional, thus
their dependence on d. The model is parameterised by W ∈ RH×D, b ∈ RD,
c ∈ RH , which are shared by all conditionals.

However, better results can be obtained by untying the weight matrices used
to calculate the hidden unit values and the conditional probabilities. This results
in the definitive formulation of NADE:

p(xd = 1 |x<d) =sigm
(
V >·,dh(d) + bd

)
, where (2.85)

hk(d) =sigm
(
W k,<dx<d+ ck

)
(2.86)

with parameters W ∈ RH×D−1, V ∈ RH×D, b ∈ RD, c ∈ RH .
The weights between the inputs and the hidden units for the neural networks

that calculate each conditional are tied: W ·,<d stands for the first d−1 columns of a
shared weight matrixW , see Figure 2.10. This parameter sharing reduces the total
number of parameters to quadratic in the number of input dimensions (assuming
that H is proportional to D); lessening the need for regularisation. Computing
the probability of a datapoint can be done with complexity quadratic with the
dimensionality of the data, O(DH), by sharing the computation when calculating
the hidden activation of each neural network (W ·,<dx<d+c) recursively. This
only requires the multiplication of a vector times a scalar, and the addition of two
H-dimensional vectors:

a(1) = c (2.87)

a(d+ 1) = a(d) +W ·,dxd (2.88)

This mild computational complexity makes it possible to train a NADE using
gradient ascent techniques. It is also possible to obtain exact independent samples
from the model with complexity O(DH) using ancestral sampling. The likelihood
of a NADE for a dataset can also be calculated efficiently, and thus its statistical
performance can be compared to that of other models.

In their experiments, conducted on binary images of handwritten digits (LeCun
et al., 1998) and a collection of UCI datasets (Bache and Lichman, 2013), Larochelle
and Murray found NADE obtained likelihoods comparable to intractable RBMs
(whose likelihoods had been approximated using annealed importance sampling).
The results were much superior to the likelihoods of other tractable models (small
RBMs and mixtures of multivariate Bernoullis).

2.8. Autoregressive models 39

(a)
xo1 xo2 xo3

1 h1 h2 h3

1 xo1 xo2

(b)
xo1 xo2 xo3

1 h1 h2 h3

1 xo1 xo2

(c)
xo1 xo2 xo3

1 h1 h2 h3

1 xo1 xo2

Figure 2.10: Neural network diagram (this is not a Bayes network graphical model) of a
NADE model with three-dimensional observations. Nodes labelled “1” are biases. The
probability distribution of each dimension is calculated using the value of dimensions
that precede it in the ordering o. (a), (b) and (c) show the networks predicting the
first, second and third dimensions in the ordering o. Weights with the same colour are
shared across networks. Unlike in ANNMs, when an input is present, it is connected
to every hidden unit.

In contrast to ANNMs, NADE uses the same number of hidden units to
calculate each conditional distribution. Both models can be interpreted as a series
of artificial neural networks (one for each one-dimensional conditional) that share
some of their parameters. NADE’s main advantage is its better computational
complexity O(HD) versus ANNM’s O(KHD

2). However if H is approximately
KHD then both models have similar computational requirements.

NADE has been extended to allow the modelling of count data by Larochelle
and Lauly (2012). However no real-valued version of the model had been developed
before the investigations presented in this thesis.

Chapter 3

The real-valued neural
autoregressive density estimator

This chapter is an extended version of the article “RNADE: The real-valued neural
autoregressive density estimation” (Uria et al., 2013) published in NIPS 2013.

In this chapter we introduce RNADE, a new model for joint density estimation
of real-valued vectors (Sections 3.2, 3.3). Our model calculates the density of a
datapoint as the product of one-dimensional conditionals modelled using mixture
density networks with shared parameters. RNADE learns a distributed representa-
tion of the data, while having a tractable expression for the calculation of densities.
A tractable likelihood allows direct comparison with other methods and training
by standard gradient-based optimizers. We compare the performance of RNADE
on several datasets of heterogeneous and perceptual data (Section 3.4), finding it
outperforms mixture models in all cases. We also investigate its sensitivity to the
ordering of the dimensions (Section 3.5).

3.1 Introduction

In this chapter we introduce an extension of NADE able to model real-valued
datasets. Real-valued datasets are commonplace. In this thesis we focus on
modelling perceptual data, like images and sounds, which is central to artificial
intelligence tasks including object and speech recognition. However, modelling
of multivariate real-valued data is an important task in many fields. In finance,
modelling the dependencies among the returns of different instruments plays a
crucial role in portfolio design (Markowitz, 1952). In physics, modelling experi-

41

42 Chapter 3. The real-valued neural autoregressive density estimator

mental data can pinpoint anomalies that may suggest better experimental designs
or new theoretical developments.

Alas, some of the generative models we reviewed in the previous chapter are
only suitable for binary data. Gaussian-RBMs with parameterized conditional
standard deviations are difficult to train, and fixing them leads to models with
low statistical performance (Theis et al., 2011). The mean-covariance RBM and
the spike-and-slab RBM model interesting real-valued datasets better, but suffer
from intractable density calculations.

Autoregressive models that utilize neural networks have, to the best of our
knowledge, only been studied with binary and discrete-valued data. An extension
of these models to real-valued data was suggested before by Bengio and Bengio
(2000), who proposed using a network that outputs the parameters of a fixed para-
metric model for each one-dimensional conditional. However, the implementation
or empirical analysis of their statistical performance on interesting real-valued
datasets has not been reported.

In the next sections, we extend the formulation of NADE to real-valued data,
a model we call the real-valued neural autoregressive density estimator (RNADE).
Following the development of NADE, we will start by calculating the mean-field
update equations of a Gaussian-RBM. However, these equations will suggest a
model handicapped by homoscedastic conditionals. We will refine this model by
using heteroscedastic conditionals, and then generalize it using mixture density
networks to capture multimodal conditionals.

3.2 Gaussian-RBM autoregressive mean-field updates

As we saw in Section 2.8.3, NADE was inspired by the update equations that result
from calculating the mean-field approximation to the autoregressive conditionals of
an RBM. Similarly, given that the Gaussian-RBM is a real-valued extension of the
RBM, we will calculate the mean-field updates of its autoregressive conditionals
and establish whether we can derive a model suitable for real-valued data.

We are interested in approximating the p(xd |x<d) conditionals of a Gaussian-
RBM parameterized by: b ∈ RD, the visible unit biases, c ∈ RH , the latent
variable biases, W ∈RD×H , the weights, and σ ∈R+D, the visible unit conditional
standard deviations. To do so, we will calculate the mean-field approximation of
p(x≥d,h |x<d) by a factorial q(x≥d,h |x<d) from which it is trivial to marginalize

3.2. Gaussian-RBM autoregressive mean-field updates 43

q(xd |x<d). In this mean-field approximation, the distribution of each visible unit
is assumed to take a Gaussian distribution with mean µi and standard deviation
δi; while each latent variable takes a Bernoulli distribution with mean τi. The full
derivations are shown in Appendix A; here we only show the resulting mean-field
update equations:

τi =sigm
ci+ d−1∑

j=1

1
σj
xjWj,i+

D∑
j=d

1
σj
µjWj,i

 , (3.1)

µi =bi+ δi
H∑
k=1

Wi,kτk , (3.2)

δi =σi , (3.3)

which should be iterated until convergence. However, if we limit ourselves to a
single update, by first updating the parameters of the hidden units (every µi is
initialized to zero) followed by an update of the visible unit’s parameters, we
obtain:

τi =sigm
ci+ d−1∑

j=1

1
σj
xjWj,i

 , (3.4)

µi =bi+ δi
H∑
k=1

Wi,kτk , (3.5)

δi =σi . (3.6)

As in the binary-NADE formulation, we derive an autoregressive model over
the visible variables based on the conditionals q(xd |x<d) given by this single-step
mean-field update. Also following the binary-NADE, the weight parameters W
in (3.4) and (3.5) are untied into W and a new matrix V . This results in an
autoregressive model where each one-dimensional conditional is given by:

q(xd |x<d) =N (xd;µd,σ2
d) , (3.7)

with:

µd =bd+σd

H∑
k=1

Vd,khk , (3.8)

hi =sigm
ci+ d−1∑

j=1

1
σj
xjWj,i

 , (3.9)

where b∈RD, c∈RH , W ∈RD×H , V ∈RD×H , and σ ∈R+D are the parameters
of the model, which are fitted on their own right to maximize the likelihood of
the model.

44 Chapter 3. The real-valued neural autoregressive density estimator

Once the weight matrices have been untied, the standard deviation factors
in (3.8) and (3.9) can be incorporated into the weight matrices W and V , finally
obtaining a set of equations where the mean of each autoregressive conditional is
calculated by a regression artificial neural network:

µd =bd+
H∑
k=1

Vd,khk , (3.10)

hi =sigm
ci+ d−1∑

j=1
xjWj,i

 . (3.11)

The variance of each dimension, σd, is fixed. We will call this model RNADE-FV
(for fixed variance) in our tables of results.

The fixed variance of each of these autoregressive conditionals is a property
inherited from the Gaussian-RBM1. It is, nonetheless, a very limiting characteristic:
the entropy of the conditional will be the same regardless of the possibility of
making more accurate predictions given certain values of the preceding dimensions.
In Figure 3.1b we show an example of a distribution where the entropy of x2

varies with the value of x1.
Another limitation of this autoregressive model is the unimodal nature of

the conditionals (3.7). This will prove problematic when modelling datasets like
the one shown in Figure 3.1c. Maximum likelihood training will result in a high
variance Gaussian that covers both modes, and possibly has its mode in a region
of very low actual probability density. We note that this is not a characteristic
inherited from the Gaussian-RBM, whose actual autoregressive conditionals, unlike
their mean-field approximations, may be multimodal.

Fitting the variance parameters in the Gaussian-RBM is difficult due to their
presence in the numerator of (2.52) and denominator of (2.53)2. We expect no
difficulty in fitting the standard deviation parameters of an RNADE-FV. The
only precaution we take in our implementation is to fit the log-standard-deviation
so we can perform unconstrained optimization of all parameters.

1In a Gaussian-RBM, the visible units follow independent Gaussian distributions conditioned
on the value of the latent units. The variances of these Gaussian do not depend on the value of
the latent units.

2Small standard deviations make the hidden units saturate unless the weights are very small,
in which case the mean of the visible units conditioned on the value of the hidden units will be
very close together. That is, it is difficult to learn multimodal distributions. The work of Cho
et al. (2011) reformulates the Gaussian-RBM to avoid the presence of σ in the denominator of
(2.53).

3.3. The real-valued neural autoregressive density estimator 45

(a)

x1

x
2

(b)

x1

x
2

(c)

x1

x
2

Figure 3.1: Each subfigure shows a thousand samples from a distribution with a
different type of p(x2 |x1) conditional. The conditional is: homocedastic in (a),
heterocedastic in (b), and multimodal in (c).

3.3 The real-valued neural autoregressive density
estimator

Each of the autoregressive one-dimensional conditionals given by (3.7, 3.10, 3.11)
can be seen as a trivial mixture density network (MDN). A mixture density
network (Bishop, 1994) is a conditional probabilistic model where the parameters
of a mixture of Gaussians are calculated by a neural network that has for input
the predictor variables; see Figure 3.2. Mixture density networks are capable of
capturing multimodal conditional distributions (e.g. Uria, 2011; Richmond et al.,
2003). The conditional distribution modelled by an MDN can be multivariate;
in which case, a diagonal covariance matrix is commonly assumed3. In order
to guarantee that all the variances are positive, the log-standard-deviation is
commonly predicted. Similarly, for the component weights the network outputs
the energies of a softmax distribution in order to guarantee that they are positive
and add up to one.

In this light, we can extend the formulation presented in the previous section
by substituting the regression neural network used to calculate the mean of each
Gaussian with an MDN that outputs the parameters of a mixture of Gaussians.
Thus, our model, which we call the Real-valued Neural Autoregressive Density-

3An investigation on the use of full covariance matrices for low-dimensional data (< 10
dimensions) can be found in Williams (1996).

46 Chapter 3. The real-valued neural autoregressive density estimator

x1 x2 x3

h1 h2

π1 π2 µ1 µ2 σ1 σ2

Figure 3.2: Graphical representation of a mixture density network. This particular
MDN models a univariate conditional as a mixture of two Gaussian components whose
parameters are calculated from three predictor variables using a neural network with
two hidden units.

Estimator, or RNADE, models the probability density of a vector x as:

p(x) =
D∏
d=1

p(xd |x<d) . (3.12)

Where each of the conditionals is modelled by a mixture of Gaussians:

p(xd |x<d) =
C∑
c=1

πd,cN (µd,c,σ2
d,c) . (3.13)

Whose parameters are calculated by a regression neural network that has x<d for

3.3. The real-valued neural autoregressive density estimator 47

inputs:

πd,c =
exp

{
z

(π)
d,c

}
∑C
c=1 exp

{
z

(π)
d,c

} , (3.14)

µd,c =z(µ)
d,c , (3.15)

σd,c =exp
{
z

(σ)
d,c

}
, (3.16)

z
(π)
d,c =b(π)

d,c +
H∑
k=1

V
(π)
d,k,chd,k , (3.17)

z
(µ)
d,c =b(µ)

d,c +
H∑
k=1

V
(µ)
d,k,chd,k , (3.18)

z
(σ)
d,c =b(σ)

d,c +
H∑
k=1

V
(σ)
d,k,chd,k , (3.19)

hd,i =sigm
ci+ d−1∑

j=1
xjWj,i

 . (3.20)

As a result, the limitations in RNADE-FV caused by the unimodal fixed-
variance conditionals are surmounted. Given that we are only interested in
modelling one-dimensional conditional distributions, the usual diagonal covariance
assumption of MDNs does not impose any limitations. We will let the autoregres-
sive nature of our model deal with the dependencies between dimensions.

3.3.1 Computational cost of RNADE

As in the binary-NADE model, RNADE can compute the hidden unit activations
recursively:

hd,i =sigm
(
ad,i

)
, (3.21)

a1,i =ci , (3.22)

ad,i =ad−1,i+xd−1Wd−1,i . (3.23)

Therefore, RNADE inherits all the mild computational expense characteristics
of NADE. Both, density estimation and sampling can be done in quadratic
time O(DH) (assuming the number of hidden units is proportional to D the
dimensionality of the data). More exactly, in O(DHC) where C stands for the
number of components in each one-dimensional conditional, but we can assume C
to be a small constant.

48 Chapter 3. The real-valued neural autoregressive density estimator

3.3.2 Variants of parametric conditionals

Using a mixture of Gaussians to represent the conditional distributions in RNADE
is an arbitrary parametric choice. Given several components, a mixture of Gaus-
sians model can represent a rich set of skewed, and multimodal distributions with
different tail behaviours. However, other choices may be more appropriate in
particular circumstances.

Conditional distributions of perceptual data are often assumed to be Laplacian
(e.g. Robinson, 1994). Work on natural images often uses scale mixtures (e.g.
Theis et al., 2012), i.e. a mixture of Gaussians where all components share a
common mean parameter. Scale mixtures can model kurtotic distribution and
have less parameters than a regular mixture of Gaussian, but assume a symmetric
unimodal distribution.

A practical disadvantage of mixture model conditionals is the need to cross-
validate the number of components used. Moreover, mixture models suffer from
aliasing, i.e. several parameter configurations (permutations of the components)
produce the same probability distribution. Skewed or kurtotic conditionals can
be modelled by skew-Gaussian or t-Student distributions respectively; which have
only 3 parameters and do not suffer from aliasing. Both, kurtosis and skew can be
captured, for example, by the sinh-arcsinh distribution (Jones and Pewsey, 2009).

We recommend the use of the simplest conditional form possible. The use of
conditional forms with a greater number of parameters should be justified by higher
likelihoods on held out data, or substantial increases in the training likelihood. To
avoid overfitting, the training likelihood should be penalized using, for example,
the Bayes’ information criterion or the Akaike information criterion (e.g. Barber,
2012).

In section 3.4, we experiment with several variants of one-dimensional condi-
tional: Gaussian (RNADE-Gaussian), Laplace (RNADE-Laplace), sinh-arcsinh
(RNADE-SAS), mixtures of Gaussians (RNADE-MoG) and mixtures of Laplace
(RNADE-MOL).

3.3.3 Neural network alterations

As discussed by Bengio (2011), as a NADE (or an RNADE) with sigmoidal units
progresses across the input dimensions d ∈ {1 . . .D}, its hidden units will tend to
become more and more saturated, due to their input being a weighted sum of an

3.4. Experiments 49

increasing number of inputs. Bengio proposed alleviating this effect by rescaling
the hidden units’ activation by a free factor ρd at each step, making the hidden
unit values

hd,i = sigm
(
ρdad,i

)
. (3.24)

A comparison of the statistical performance of RNADEs with or without these
extra parameters is shown in Table 3.5 on page 57. Learning these extra rescaling
parameters works slightly better. All of our experiments use them.

Previous work on neural networks has found that rectified linear units can
work better than sigmoidal non-linearities (Nair and Hinton, 2010). The hidden
values for rectified linear units are:

hd =

ρdad if ρdad > 0

0 otherwise.
(3.25)

In preliminary experiments we found that these hidden units worked better than
sigmoidal units in RNADE, and used them throughout (see results on natural
image patches using several non-linearities on Table 3.4).

3.4 Experiments

We compared RNADE to mixtures of Gaussians (MoG) and factor analyz-
ers (MFA), which are surprisingly strong baselines in some tasks (Tang et al.,
2012; Zoran and Weiss, 2012). Given the known poor performance of discrete
mixtures (Salakhutdinov and Murray, 2008; Larochelle and Murray, 2011), we
limited our experiments to modeling continuous attributes. However it would be
easy to include both discrete and continuous variables in a NADE-like architecture.

3.4.1 Low-dimensional data

We first considered three UCI datasets (Bache and Lichman, 2013), previously
used to study the performance of other density estimators (Silva et al., 2011;
Tang et al., 2012), namely: red wine, white wine and parkinsons. These datasets
have low dimensionality (see Table 3.1), but the data has hard thresholds and
non-linear dependencies that may make it difficult to fit mixtures of Gaussians or
factor analyzers.

Following Tang et al. (2012), we eliminated discrete-valued attributes and an
attribute from every pair with a Pearson correlation coefficient greater than 0.98.

50 Chapter 3. The real-valued neural autoregressive density estimator

Table 3.1: Dimensionality and size of the UCI dataset utilized in Section 3.4.1

Red wine White wine Parkinsons

Dimensionality 11 11 15
Total number of datapoints 1599 4898 5875

Table 3.2: Average test-set log-likelihoods per datapoint for seven models on three
UCI datasets. Performances not in bold can be shown to be significantly worse than
at least one of the results in bold as per a paired t-test on the ten mean-likelihoods,
with significance level 0.05.

Model Red wine White wine Parkinsons

Gaussian −13.18 −13.20 −10.85
MFA −10.19 −10.73 −1.99
RNADE-FV −12.29 −12.50 −8.87
RNADE-Gaussian −11.99 −12.20 −3.47
RNADE-SAS −9.86 −11.22 −3.07
RNADE-MoG −9.36 −10.23 −0.90
RNADE-MoL −9.46 −10.38 −2.63

3.4. Experiments 51

Each dimension of the data was normalized by subtracting its training subset
sample mean and dividing by its standard deviation. All results are reported on
the normalized data.

As baselines we fitted full-covariance Gaussians and mixtures of factor analysers.
To measure the performance of the different models, we calculated their log-
likelihood on held-out test data. Because these datasets are small (see Table 3.1),
we used 10-folds, with 90% of the data for training, and 10% for testing.

We chose the hyperparameter values for each model by doing per-fold cross-
validation; using a ninth of the training data as validation data. Once the
hyperparameter values had been chosen, we trained each model using all the
training data (including the validation data) and measured its performance on
the 10% of held-out testing data. In order to avoid overfitting, we stopped the
training after reaching a training likelihood higher than the one obtained on the
best validation-wise iteration of the corresponding validation run. Early stopping
is crucial to avoid overfitting the RNADE models. It also improves the results of
the MFAs, but to a lesser degree.

The MFA models were trained using the EM algorithm (Ghahramani and
Hinton, 1996; Verbeek, 2005), the number of components and factors were cross-
validated. The number of factors was chosen from even numbers from 2 . . .D,
where selecting D gives a mixture of Gaussians. The number of components was
chosen among all even numbers (in order to halve the number of experiments)
from 2 . . .50 (crossvalidation always selected fewer than 50 components).

The RNADE models were fitted using minibatch stochastic gradient de-
scent (e.g. Duda et al., 2001), using minibatches of size 100, for 500 epochs,
each epoch comprising 10 minibatches. For each experiment, the number of
hidden units (50), the non-linear activation-function of the hidden units (ReLU),
and the form of the conditionals were fixed. Three hyperparameters were cross-
validated using grid-search: the number of components on each one-dimensional
conditional (only applicable to the RNADE-MoG and RNADE-MoL models) was
chosen from the set {2,5,10,20}; the weight-decay (used only to regularize the
input to hidden weights) from the set {2.0,1.0,0.1,0.01,0.001,0}; and the learning
rate from the set {0.1,0.05,0.025,0.0125}. Learning-rates were decreased linearly
to reach 0 after the last epoch.

The results are shown in Table 3.2. Autoregressive methods obtained statistical
performances superior to mixture models on all datasets. An RNADE with mixture

52 Chapter 3. The real-valued neural autoregressive density estimator

of Gaussian conditionals was among the statistically significant group of best
models on all datasets. As show in Figure 3.3 RNADE-SAS and RNADE-MoG
models are able to capture hard thresholds and heterocedasticity.

Unfortunately we could not reproduce the data-folds used by previous work,
however, our improvements are larger than those demonstrated by a deep mixture
of factor analyzers over standard MFA (Tang et al., 2012).

3.4.2 Natural image patches

We also measured the ability of RNADE to model small patches of natural images.
Following the recent work of Zoran and Weiss (2011), we use 8-by-8-pixel patches
of monochrome natural images, obtained from the BSDS300 dataset (Martin et al.,
2001) (Figure 3.4 gives examples).

Pixels in this dataset can take a finite number of brightness values ranging
from 0 to 255. Modeling discretized data using a real-valued distribution can lead
to arbitrarily high density values, by locating narrow high density spike on each
of the possible discrete values. In order to avoid this ‘cheating’ solution, we added
noise uniformly distributed between 0 and 1 to the value of each pixel. We then
divided by 256, making each pixel take a value in the range [0,1].

In previous experiments, Zoran and Weiss (2011) subtracted the mean pixel
value from each patch, reducing the dimensionality of the data by one: the value
of any pixel could be perfectly predicted as minus the sum of all other pixel values.
However, the original study still used a mixture of full-covariance 64-dimensional
Gaussians. Such a model could obtain arbitrarily high model likelihoods, so
unfortunately the likelihoods reported in previous work on this dataset (Zoran
and Weiss, 2011; Tang et al., 2012) are difficult to interpret. In our preliminary
experiment using RNADE, we observed that if we model the 64-dimensional data,
the 64th pixel is always predicted by a very thin spike centered at its true value.
The ability of RNADE to capture this spurious dependency is reassuring, but
we wouldn’t want our results to be dominated by it. Recent work by Zoran and
Weiss (2012), projects the data on the leading 63 eigenvectors of each component,
when measuring the model likelihood (Zoran, 2013). For comparison amongst a
range of methods, we advocate simply discarding the 64th (bottom-right) pixel.

All of the results in this section were obtained by fitting the pixels in a
raster-scan order.

3.4. Experiments 53

−20 0 20 40 60 80
x6

−50

0

50

100

150

200

250

300

x
7

RNADE-FV

−20 0 20 40 60 80
x6

−50

0

50

100

150

200

250

300

x
7

RNADE-Gaussian

−20 0 20 40 60 80
x6

−50

0

50

100

150

200

250

300

x
7

RNADE-SAS

−20 0 20 40 60 80
x6

−50

0

50

100

150

200

250

300

x
7

RNADE-MoG K=20

Figure 3.3: Scatter plot of dimensions x7 vs x6 of the red wine dataset. A thousand
datapoints from the dataset are shown in black in all subfigures. As can be observed,
this conditional distribution p(x7 |x6) is heterocedastic, skewed and has hard thresholds.
In red, a thousand samples from four RNADE models with different one-dimensional
conditional forms are shown. Top-left: In red, one thousand samples from a RNADE-
FV model. Top-right: In red, one thousand samples from a RNADE-Gaussian
model. Bottom-left: In red, one thousand samples from a RNADE-SAS (sinh-arcsinh
distribution) model. Bottom-right: In red, one thousand samples from a RNADE-
MoG model with 20 components per one-dimensional conditional. The RNADE-SAS
and RNADE-MoG models successfully capture all the characteristics of the data.

54 Chapter 3. The real-valued neural autoregressive density estimator

Experimental details follow. We trained our model using patches drawn
randomly from 180 images in the training subset of BSDS300. A validation dataset
containing 1,000 random patches from the remaining 20 images in the training
subset were used for early-stopping when training RNADE. We measured the
performance of each model by measuring their log-likelihood on one million patches
drawn randomly from the test subset, which is composed of 100 images not present
in the training subset. Given the larger scale of this dataset, hyperparameters of
the RNADE and MoG models were chosen manually using the performance of
preliminary runs on the validation data, rather than by an extensive search.

Unless specified otherwise, the RNADE models had h = 512 rectified-linear
hidden units. Training was done by minibatch gradient descent, with 25 datapoints
per minibatch, for a total of 1000 epochs, each comprising 1,000 minibatches. The
learning-rate was scheduled to start at 0.001 (except for RNADE-SAS for which it
was initialised to 0.00005), and linearly decreased to reach 0 after the last epoch.
Gradient momentum with momentum factor 0.9 was used, but initiated at the
beginning of the second epoch. A weight decay rate of 0.001 was applied to the
input-to-hidden weight matrix only. We found that multiplying the gradient of
the mean output parameters by the standard deviation improves results of the
models with mixture outputs4. RNADE training was early stopped but didn’t
show signs of overfitting. Even larger models might perform better.

The MoG model was trained using minibatch EM, for 1,000 iterations. At
each iteration 20,000 randomly sampled datapoints were used in an EM update. A
step was taken from the previous mixture model towards the parameters resulting
from the M-step: θt = (1−η)θt−1 +ηθEM , where the step size, η, was scheduled
to start at 0.1 and linearly decreased to reach 0 after the last update. The training
of the MoG was also early-stopped and also showed no signs of overfitting.

The results are shown in Table 3.3. We report the average log-density on
a million image patches from the held out set of test images. The ranking of
RNADE models is maintained when ordered by validation likelihood; the model
with best test-likelihood would have been chosen using crossvalidation across
all the RNADE models shown in the table. We also compared RNADE with a
MoG trained by Zoran and Weiss (downloaded from Daniel Zoran’s website) from
which we removed the 64th row and column of each covariance matrix. There are

4Empirically, we found this to work better than regular gradients and also better than
multiplying by the variances, which would provide a step with the right units.

3.4. Experiments 55

two differences in the set-up of our experiments and those of Zoran and Weiss.
First, we learnt the means of the MoG components, while Zoran and Weiss (2011)
fixed them to zero. Second, we held-out 20 images from the training set to do
early-stopping and hyperparameter optimisation, while they used the 200 images
for training.

As we expected, the RNADE-FV model with fixed conditional variances
obtained very low statistical performance. Adding an output parameter per
dimension to have variable standard deviations made our models competitive with
MoG with 100 full-covariance components. However, in order to obtain results
superior to the mixture of Gaussians model trained by Zoran and Weiss, we had
to use richer conditional distributions: one-dimensional mixtures of Gaussians
(RNADE-MoG). The best RNADE model obtained on average, 0.9 nats per patch
higher log-density than Zoran and Weiss’s MoG.

In Figure 3.4 we show one hundred examples from the test set, one hundred
examples from Zoran and Weiss’ mixture of Gaussians, and a hundred samples
from our best RNADE-MoG model. Similar patterns can be observed in the three
cases: uniform patches, edges, and locally smooth noisy patches.

The marginal for the brightness of a single pixel in natural image patches
is heavy tailed, closer to a Laplace distribution than a Gaussian. An RNADE
with Laplace conditionals (RNADE-Laplace) obtained higher test-likelihood than
an RNADE with Gaussian conditionals (RNADE-Gaussian). However, using
mixture models as conditionals, likelihoods are higher for Gaussian components.
As can be seen in Figure 3.6, both the RNADE-MoG and RNADE-MoL can
very accurately match the empirical distribution over the first dimension. The
RNADE-MoG must fit predictions of the first pixel, p(x1), with several Gaussians
of different widths, that coincidentally have zero mean. However, later pixels were
predicted better with Gaussian outputs (Figure 3.5); the mixture of Laplace model
is not suitable for predicting with large contexts. In Figure 3.7 we compare two
conditional distributions from an RNADE-MoG and an RNADE-MoL which point
to a plausible explanation: mixing Laplace components with different means results
in a distribution with several density “peaks”, while the mixtures of Gaussians
can still produce smooth unimodal conditionals.

56 Chapter 3. The real-valued neural autoregressive density estimator

Table 3.3: Average per-example log-likelihood of several mixture of Gaussian and
RNADE models on 8-by-8 pixel patches of natural images. These results are measured
in nats and were calculated using one million patches. Standard errors due to the
finite test sample size are lower than 0.1 nats in every case. K gives the number
of one-dimensional components for each conditional in RNADE, and the number of
full-covariance components for MoG.

Model Test log-likelihood

MoG K=200 (Zoran and Weiss, 2012)a 152.8
MoG K=100 144.7
MoG K=200 150.4
MoG K=300 150.4

RNADE-FV 100.3
RNADE-Gaussian 143.9
RNADE-Laplace 145.9
RNADE-SASb 148.5

RNADE-MoG K=2 149.5
RNADE-MoG K=2 h=1024 150.3
RNADE-MoG K=5 152.4
RNADE-MoG K=5 h=1024 152.7
RNADE-MoG K=10 153.5
RNADE-MoG K=10 h=1024 153.7

RNADE-MoL K=2 149.3
RNADE-MoL K=2 h=1024 150.1
RNADE-MoL K=5 151.5
RNADE-MoL K=5 h=1024 151.4
RNADE-MoL K=10 152.3
RNADE-MoL K=10 h=1024 152.5

aThis model was trained using the full 200 images in the BSDS training dataset, the rest
of models were trained using 180, reserving 20 for hyperparameter crossvalidation and early-
stopping.

bTraining an RNADE with sinh-arcsinh conditionals required the use of a starting learning
rate 20 times smaller to avoid divergence during training. For this reason, this model was trained
for 2000 epochs.

3.4. Experiments 57

Table 3.4: Comparison of test-log-likelihoods for three RNADE-MOG models with
5 Gaussian components per conditional and 512 hidden units trained using different
non-linearities for the hidden layer. Standard-errors due to the finite size of the test
dataset are smaller than 0.1 in the three cases.

Nonlinearity Test log-likelihood

Rectified linear units (ReLU) 152.4
Sigmoid 149.6
Hyperbolic tangent (tanh) 148.9

Table 3.5: Statistics for the test-log-likelihood of RNADE-Gaussian models trained
with or without the extra parameters for the rescaling of hidden unit activations
described in Section 3.3.3.

Order Runs Min Max Median Mean St. dev.

No rescaling 15 142.3 142.4 142.4 142.4 0.04
Rescaling 15 143.9 144.1 144.0 144.0 0.06

58 Chapter 3. The real-valued neural autoregressive density estimator

Figure 3.4: Top: 100 8x8 patches from the BSDS test set. Center: 100 samples
from a mixture of Gaussians with 200 full-covariance components. Bottom: 100
samples from an RNADE with 1024 hidden units and 10 Gaussian components per
conditional. All data and samples were drawn randomly and sorted by their density
under the RNADE.

10 20 30 40 50 60
−0.05

0.00

0.05
(f) log pMoG(xi|x<i)− log pMoL(xi|x<i)

Figure 3.5: Average difference in log-density between a RNADE-MoG and an RNADE-
MoL for each pixel. One-standard-error bars are shown.

3.4. Experiments 59

−0.4 −0.2 0.0 0.2 0.4
0

2

4

6

8

10

−0.4 −0.2 0.0 0.2 0.4
0

2

4

6

8

10
pMoG(x1|x<1)

−0.4 −0.2 0.0 0.2 0.4
0

2

4

6

8

10
pMoL(x1|x<1)

Figure 3.6: Left: Histogram of pixel intensities in the BSDS training dataset after
mean brightness removal. Centre: Density function for p(x1) under an RNADE with
mixture of Gaussian conditionals superimposed on the empirical histogram. Right:
Density function for p(x1) under an RNADE with mixture of Gaussian conditionals
superimposed on the empirical histogram.

−0.2 0.0 0.2
−3

−2

−1

0

1

2

3

4

5
log pMoG(x19|x<19)

−0.2 0.0 0.2
−3

−2

−1

0

1

2

3

4

5
log pMoL(x19|x<19)

−0.2 0.0 0.2
−3

−2

−1

0

1

2

3

4

5
log pMoG(x19|x<19)

−0.2 0.0 0.2
−3

−2

−1

0

1

2

3

4

5
log pMoL(x19|x<19)

Figure 3.7: One-dimensional conditionals for the 19th pixel (shown in red on the
left) conditioned on the previous 18 pixels for two natural image patches. Left: The
patch. Centre: Conditional under an RNADE-MoG Right: Conditional under an
RNADE-MoL. RNADE-MoL results in conditionals with peaks of log-density.

60 Chapter 3. The real-valued neural autoregressive density estimator

3.4.3 Speech acoustics

We also measured the ability of RNADE to model small patches of speech spec-
trograms, extracted from the TIMIT dataset (Garofolo et al., 1993). The patches
contained 11 frames of 20 filter-banks plus energy; totalling 231 dimensions per
datapoint. These filter-bank encoding is common in speech-recognition, and better
for visualization than the more frequently used cepstral coefficient features. A
good generative model of speech acoustics could be used, for example, in denoising,
or speech detection tasks.

We fitted the models using the standard TIMIT training subset, which includes
recordings from 605 speakers of American English. We compare RNADE with a
mixture of Gaussians by measuring their log-likelihood on the complete TIMIT
core-test dataset: a held-out set of 25 speakers.

The RNADE models have h= 512 rectified-linear hidden units and a mixture of
20 one-dimensional Gaussian components per output. Given the large scale of this
dataset, hyperparameter choices were again made manually using validation data.
The same minibatch training procedures for RNADE and mixture of Gaussians
were used as for natural image patches.

Training was done using minibatch gradient descent, with 25 datapoints per
minibatch, for a total of 200 epochs, each comprising 1,000 minibatches. The
learning-rate was scheduled to start at 0.001 and linearly decreased to reach 0
after the last epoch. Gradient momentum with momentum factor 0.9 was used,
but initiated at the beginning of the second epoch. A weight decay rate of 0.001
was applied to the input-to-hidden weight matrix only. Again, we found that
multiplying the gradient of the mean output parameters by the standard deviation
improved results. RNADE training was early stopped but didn’t show signs of
overfitting.

The MoG model was trained using minibatch EM, for 1,000 iterations. At
each iteration 20,000 randomly sampled datapoints were used to calculate an EM
step, updating the current mixture model by interpolating the current parameters
and the new parameters resulting from the M step θt = (1−η)θt−1 +ηθEM for
1,000 updates, where the step size (η) was scheduled to start at 0.1 and linearly
decreased to reach 0 after the last update. The training of the MoG was also
early-stopped and also showed no signs of overfitting.

The results are shown in Table 3.6. The best RNADE (which would have

3.5. Sensitivity to the ordering of dimensions 61

Table 3.6: Log-likelihood of several MoG and RNADE models on the core-test set of
TIMIT measured in nats. Standard errors due to the finite test sample size are lower
than 0.4 nats in every case. RNADE obtained a higher (better) log-likelihood.

Model Test LogL

MoG N=50 110.4
MoG N=100 112.0
MoG N=200 112.5
MoG N=300 112.5

RNADE-Gaussian 110.6
RNADE-Laplace 108.6
RNADE-SAS 119.2
RNADE-MoG K=2 121.1
RNADE-MoG K=5 124.3
RNADE-MoG K=10 127.8
RNADE-MoL K=2 116.3
RNADE-MoL K=5 120.5
RNADE-MoL K=10 123.3

been selected based on validation results) obtained, on average, 15 nats more
per test example than a mixture of Gaussians. In Figure 3.8 examples from the
test set, and samples from the MoG and RNADE-MoG models are shown. In
contrast with the log-likelihood measure, there are no marked differences between
the samples from each model. Both set of samples look like blurred spectrograms,
but RNADE seems to capture sharper formant structures (peaks of energy at the
lower frequency bands characteristic of vowel sounds).

3.5 Sensitivity to the ordering of dimensions

RNADEs with different orders of the variables have different inductive biases and
can have different statistical performances for a given dataset. As an illustration,
modelling the dataset shown in Figure 3.1(c) using an RNADE with Gaussian
conditionals can have very different statistical performance for the two orders

62 Chapter 3. The real-valued neural autoregressive density estimator

Figure 3.8: Top: 60 datapoints from the TIMIT core-test set. Center: 60 samples
from a MoG model with 200 components. Bottom: 60 samples from an RNADE
with 512 hidden units and 10 Gaussian output components per dimension. For each
datapoint displayed, time is shown on the horizontal axis, the bottom row displays
the energy feature, while the others display the Mel filter bank features (in ascending
frequency order from the bottom). All data and samples were drawn randomly and
sorted by density under the RNADE model.

possible. We would expect much higher performance using the order {x2,x1} as
both p(x2) and p(x1 |x2) are unimodal distributions. However, the order {x1,x2}
will require modelling the multimodal conditional distribution p(x2 |x1).

Alas, finding the best ordering of the dimensions is a combinatorial optimization
problem. Checking the performance under a particular ordering requires training
an RNADE model, which makes exhaustive search intractable for problems with
more than a few dimensions. Techniques that allow learning the connectivity

3.5. Sensitivity to the ordering of dimensions 63

Table 3.7: Statistics for the test-log-likelihood (in nats) of 15 RNADE-Gaussian models
trained using random orders of the dimensions or raster-scan order. Random orders
are superior.

Order Runs Min Max Median Mean St. dev.

Scan-order 15 143.9 144.1 144.0 144.0 0.06
Random orders 15 144.8 145.1 144.9 144.9 0.07

structure of a Bayes net (Chow and Liu, 1968; Buntine, 1991) can be used to find
a partial ordering of the dimensions. Also, given domain knowledge about the
causal relationship of the variables modelled, a heuristic ordering of the variables,
in which causes precede effects can be expected to be easier to model (Guyon
et al., 2007).

All experiments presented so far were done on a single ordering of the dimen-
sions for each dataset. For the UCI datasets we utilized the ordering in the UCI
data files; for natural images raster-scan ordering, i.e. top-down and left-to-right;
for speech acoustics the features were ordered by time, and within each time-frame
from low to high frequency, followed by the energy feature.

To test the importance of the order for natural image patches, we trained
15 RNADE-Gaussian models with different orders chosen at random and 15
RNADE-Gaussian using scan-order (top to bottom, left to right) with different
seeds for the random number generator. The results are shown in Table 3.7.
All 15 picked-at-random orders obtained a test-log-likelihood between 144.8 and
145.1 nats, while the scan-order models obtained log-likelihoods between 143.9
and 144.0. The mean of the distribution test-likelihoods for orders picked at
random was judged as greater than that of raster-scan order RNADEs by a t-test
at significance level α = 0.01.

Note that these results are maintained if we use the likelihoods for the validation
dataset, which would allow us to claim the ability to choose a random order for
our experiments without overfitting to the test data. We show test-log-likelihood
for easier comparison to the rest of results shown in other tables.

However, the difference in performance among random orders was comparable
to that among runs that use the same ordering but different random-number-
generator seeds. We cannot exclude the possibility of even better orderings, but

64 Chapter 3. The real-valued neural autoregressive density estimator

finding them would require combinatorial optimization techniques.
We would also like to know whether the advantage of using a random order is

maintained when RNADEs with more capable one-dimensional conditional forms
are used. To test this, we re-trained the best architecture in Table 3.3 on page 56;
i.e. an RNADE-MoG with 10 components per conditional and 1024 hidden units
using the random-ordering that obtained highest validation likelihood for the
experiments in Table 3.7. We obtained a test-log-likelihood of 153.7 nats, which
coincides with that of the raster-scan ordering (the validation likelihood was also
the same up to the first decimal). This seems to indicate that the advantage of
using random orderings for this dataset when using a simple Gaussian conditional
does not transfer to more complex conditional forms.

The advantage of random orders for a Gaussian conditional is surprising, but
its absence in the case of multimodal conditionals points to a possible explanation.
Knowing the value of pixels from different regions of the patch can detect the
presence or absence of an edge early on, while scan-order modelling has to hedge for
its possible presence at every pixel by increasing the variance of the conditionals.
A mixture form for the conditionals would be less affected by this because a
component with small weight and high variance can be used to hedge for the
presence of edges.

3.6 Discussion

Mixture Density Networks (MDNs) (Bishop, 1994) are a flexible conditional model
of probability densities, that can capture skewed, heavy-tailed, and multi-modal
distributions. In principle, MDNs can be applied to multi-dimensional data. How-
ever, the number of parameters that the network has to output grows quadratically
with the number of targets, unless the targets are assumed independent. RNADE
exploits an autoregressive framework to apply practical, one-dimensional MDNs
to unsupervised density estimation.

Modelling real-valued data with a series of one-dimensional conditionals is more
challenging than modelling binary data. Any one dimensional distribution over
a binary variable is given by a Bernoulli distribution. However, when modelling
real-valued data, a specific parametric form for each conditional must be chosen.
This choice, and the limited ability of the neural network to map its inputs to
the parameters of the conditionals, introduces an inductive bias. A sufficiently

3.6. Discussion 65

large mixture of Gaussians can represent any density, and a one-hidden-layer
neural network with enough hidden units can approximate any function to an
arbitrary precision. However, these theoretical assurances offer little comfort
in the real-world scenario of limited data and computational resources. Other
one-dimensional forms than the ones analyzed in this chapter may aid RNADE to
generalize better to different context sizes and across a range of applications.

One of the main drawbacks of RNADE, and of neural networks in general, is the
need to decide the value of several training hyperparameters. The gradient descent
learning rate can be adjusted automatically using, for example, the techniques
developed by Schaul et al. (2013). Also, methods for choosing hyperparameters
more efficiently than grid search have been recently developed (Bergstra and
Bengio, 2012; Snoek et al., 2012). These, and several other recent improvements in
the neural network field, like dropouts (Srivastava et al., 2014), should be directly
applicable to RNADE, and possibly obtain even better performance than shown
in this work. RNADE makes it relatively straight-forward to translate advances
in the neural-network field into better density estimators, or at least into new
estimators with different inductive biases.

In summary, in this chapter we have presented RNADE, a novel ‘black-
box’ density estimator. Both likelihood computation time and the number of
parameters scale linearly with the dataset dimensionality. Generalization across a
range of tasks, representing arbitrary feature vectors, image patches, and auditory
spectrograms is excellent.

Chapter 4

A deep and tractable density
estimator

This chapter is an extended version of the article “A deep and tractable density
estimator” (Uria et al., 2014) published in ICML 2014.

In this chapter we introduce an efficient procedure to simultaneously train a
NADE model for each possible ordering of the variables, by sharing parameters
across all these models (Section 4.2). We can thus use the most convenient model
for each inference task at hand, and ensembles of such models with different order-
ings are immediately available (Section 4.3). Moreover, unlike the original NADE,
our training procedure scales to deep models. Empirically, ensembles of deep NADE
models obtain state of the art density estimation performance (Section 4.5).

4.1 Introduction

NADE and RNADE, have been shown to be state-of-the-art joint density models
for a variety of real-world datasets (Larochelle and Murray, 2011) (also previous
Chapter), as measured by their predictive likelihood. These models predict each
variable sequentially in an arbitrary order, fixed at training time. Variables at the
beginning of the order can be set to observed values, i.e., conditioned on. Variables
at the end of the ordering are not required to make predictions; marginalizing
these variables requires simply ignoring them, see Equation (2.73). However,
marginalizing over and conditioning on any arbitrary subsets of variables will not
be easy in general.

Another disadvantage of NADE compared to other neural network models is

67

68 Chapter 4. A deep and tractable density estimator

that an efficient deep formulation (e.g. Bengio, 2009) is not available. While ex-
tending NADE’s definition to multiple hidden layers is trivial, we simply introduce
regular feed-forward layers between the computation of the hidden units in (3.20)
and outputs in (3.17, 3.18, and 3.19), we lack an efficient recursive expression
like (3.22 and 3.23) for the added layers. Thus, when NADE has more than one
hidden layer, each additional hidden layer must be computed separately for each
input dimension, yielding a complexity cubic on the size of the layers O(DH2L),
where L represents the number of layers. This scaling seemingly made a deep
NADE impractical, except for datasets of low dimensionality.

In this chapter, we present a procedure for training a factorial number of
NADE (or RNADE) models simultaneously; one for each possible ordering of the
variables. The parameters of these models are shared, and we optimize the mean
cost over all orderings using a stochastic gradient technique. After fitting the
shared parameters, we can extract, in constant time, the NADE model with the
variable ordering that is most convenient for any given inference task. While the
different NADE models might not be consistent in their probability estimates, this
property is actually something we can leverage to our advantage, by generating
ensembles of NADE models “on the fly” (i.e., without explicitly training any
such ensemble) which are even better estimators than any single NADE. In
addition, our procedure is able to train a deep version of NADE, incurring an
extra computational expense only linear in the number of layers.

4.2 Training a factorial number of NADEs

Looking at the simplicity of inference in Equation (2.73), a naive approach that
could exploit this property for any inference task would be to train as many NADE
models as there are possible orderings of the input variables. This approach,
requiring O(D!) time and memory, is not viable. However, we show here that
through some careful parameter tying between models, we can derive an efficient
stochastic procedure for training all models, minimizing the mean of their negative
log-likelihood objectives.

Consider for now a parameter tying strategy that simply uses the same weight
matrices and bias parameters across all NADE models (we will refine this proposal
later). We will now write p(x |θ,o) as the joint distribution of the NADE model
that uses ordering o and p(xod

|xo<d
,θ,o<d,od) as its associated conditionals,

4.2. Training a factorial number of NADEs 69

which are computed as specified in Section 2.8.3 (Section 3.3 for RNADE), or its
straightforward extension in the deep network case. Thus we explicitly treat the
ordering o as a random variable. Notice that the dth conditional only depends on
the first d elements of the ordering, and is thus exactly the same across NADE
models sharing their first d elements in o. During training we will attempt to
minimise JOA (for order-agnostic loss), the expected (over variable orderings)
negative log-likelihood of the model for the training data:

JOA(θ) = E
o∈D!
− logp(X |θ,o) (4.1)

∝ E
o∈D!

E
x(n)∈X

− logp(x(n) |θ,o), (4.2)

where D! is the set of all orderings (i.e. permutations of D elements). We note this
objective does not correspond to a mixture model, in which case the expectation
over orderings would be inside the log operation.

Using NADE’s autoregressive expression for the density of a datapoint, (4.2)
can be rewritten as:

JOA(θ) = E
o∈D!

E
x(n)∈X

D∑
d=1
− logp(x(n)

od
|x(n)

o<d
,θ,o) , (4.3)

where d indexes the elements in the order, o, of the dimensions. By moving the
expectation over orders inside the sum over the elements of the order, the order
can be split in three parts: o<d standing for the index of the d−1 first dimensions
in the ordering; od the index of the d-th dimension in the ordering, and o>d

standing for the indices of the remaining dimensions in the ordering. Therefore,
the loss function can be rewritten as:

JOA(θ) = E
x(n)∈X

D∑
d=1

E
o<d

E
od

E
o>d

− logp(x(n)
od
|x(n)

o<d
,θ,o<d,od) . (4.4)

The value of each term does not depend on o>d. Therefore, it can be simplified
as:

JOA(θ) = E
x(n)∈X

D∑
d=1

E
o<d

E
od

− logp(x(n)
od
|x(n)

o<d
,θ,o<d,od) . (4.5)

In practice, this loss function (4.5) will have a very high number of terms and will
have to be approximated by sampling x(n), d, and o<d uniformly. The innermost
expectation over values of od can be calculated cheaply for a NADE given that

70 Chapter 4. A deep and tractable density estimator

x1 x2 x3 x4 x5

h1 h2 · · · hH

x1 x2 x3 x4 x5

Figure 4.1: Graphical representation of a feed-forward neural network that estimates
JOA for an orderless-NADE that models a 5-dimensional variable. In this particular
instance of the estimator d = 3, and o<d = {x1,x4}. The estimation calculated is:
ĴOA =−5

3 (logp(x2 |x1,x4) + logp(x3 |x1,x4) + logp(x5 |x1,x4)).

the hidden unit states hd are shared for all possible od. Therefore, assuming all
orderings are equally probable, we will estimate JOA(θ) by:

ĴOA(θ) = D

D−d+ 1
∑
od

− logp(x(n)
od
|x(n)

o<d
,θ,o<d,od) , (4.6)

which provides an unbiased estimator of (4.2). Thus training can be done by
descent on the stochastic gradient of ĴOA(θ). This method corresponds to a very
simple procedure where the number of inputs present is sampled uniformly from
0 . . .D−1, a random subset of dimensions of that size is picked as inputs, and the
rest of dimensions are predicted as the next dimension in the ordering and rescaled
by D

D−d+1 to account for the reduced number of outputs. An implementation of
this order-agnostic density estimator corresponds to a single feedforward pass
through an artificial neural network with D inputs and D outputs, or a mixture
density network in the case of real-valued data (see Figure 4.1).

The end result is a stochastic training update costing O(DH+H2L), as in
regular multilayer neural networks. At test time, sampling and density calculation
of a NADE with a single hidden layer remains O(DH). We unfortunately cannot
avoid a complexity of O(DH2L) in NADEs with several hidden layers, and perform
D passes through the neural network to obtain all D conditionals for some given
ordering. However, this is still tractable (low-degree polynomial complexity),
unlike, for example, computing probabilities in a restricted Boltzmann machine

4.2. Training a factorial number of NADEs 71

or a deep belief network.

4.2.1 Improved parameter sharing using input masks

While the parameter tying proposed so far is simple, in practice it leads to poor
statistical performance. One issue is that the values of the hidden units, computed
using (3.20), are the same when a dimension is in xo>d

(a value not present in the
inputs) and when the value of that dimension is zero and conditioned on. When
training just one NADE with a fixed o, each output unit knows which inputs feed
into it, but in the multiple ordering case that information is lost when the input
is zero.

In order to make this distinction possible, we augment the parameter sharing
scheme by appending to the inputs a binary mask vectormo<d

∈ {0,1}D indicating
which dimensions are present in the input. That is, the i-th element of mo<d

is 1
if i ∈ o<d and 0 otherwise. A graphical representation of this technique is shown
in Figure 4.2. One interpretation of this modification is that the bias vector c
of the first hidden layer is now dependent on the ordering o and the value of
d, thus slightly relaxing the strength of parameter sharing between the NADE
models. We have found in practice that this adjustment is crucial to obtain good
density estimation performance. Some results showing the difference in statistical
performance with and without training masks can be seen in Table 4.2 as part of
our experimental analysis (see Section 4.5 for details).

Therefore, we will substitute the expression for the hidden unit states (3.20)
with:

hd = sigm
(
W ·,o<d

xo<d
+Umo<d

+c
)
, (4.7)

where U ∈RH×D. This modification still admits a recursive expression of the first
hidden layer activations:

a1 = c (4.8)

ad+1 = ad+xod
W ·,od

+U ·,od
, (4.9)

which allows us to maintain the mild run-time complexity of one-hidden-layer
NADEs.

72 Chapter 4. A deep and tractable density estimator

x1 x2 x3 x4 x5 m1 m2 m3 m4 m5

h1 h2 · · · hH

x1 x2 x3 x4 x5

Figure 4.2: Graphical representation of a feed-forward neural network that estimates
JOA for an orderless-NADE with input masks. This NADE models a 5-dimensional
variable. In this particular instance of the estimator sampling chose values d= 3, and
o<d = {x1,x4}. The mask, which depends deterministically on d and o, takes value
m= (1,0,0,1,0). The estimate calculated is:
ĴOA =−5

3 (logp(x2 |x1,x4,m) + logp(x3 |x1,x4,m) + logp(x5 |x1,x4,m)).

4.3 On the fly generation of NADE ensembles

Our order-agnostic training procedure can be thought of as producing a set of
parameters that can be used by a factorial number of NADEs, one per ordering
of the input variables. These different NADEs will not, in general, agree on the
probability of a given datapoint. While this disagreement might look unappealing
at first, we can actually use this source of variability to our advantage, and obtain
better estimates than is possible with a set of consistent models.

A NADE with a given input ordering corresponds to a different hypothesis
space than other NADEs with different ordering. In other words, each NADE with
a different ordering is a model in its own right, with slightly different inductive
bias, despite the parameter sharing.

A reliable approach to improve on some given estimator is to instead construct
an ensemble of multiple, strong but different estimators, e.g. with bagging (Or-
moneit and Tresp, 1995) or stacking (Smyth and Wolpert, 1999). Our training
procedure suggest a straightforward way of generating ensembles of NADE models:
generate a set of uniformly distributed orderings {o(k)}Kk=1 over the input variables
and use the average probability 1

K

∑K
k=1 p(x|θ,o(k)) as our estimator.

4.4. Related work 73

Ensemble averaging increases the computational cost of density estimation
linearly with the size of the ensemble, while the complexity of sampling doesn’t
change (we pick one of the K orderings, o(k), at random from the ensemble and
sample from the corresponding NADE). Importantly, the computational cost of
training remains the same, unlike ensemble methods such as bagging. Moreover,
an adequate number of components can be chosen after training, and can even be
adapted to the available computational budget on the fly.

4.4 Related work

As mentioned previously, autoregressive density/distribution estimation has been
explored before by others. For the binary data case, Frey (1998) considered the
use of logistic regression conditional models, while Bengio and Bengio (2000)
proposed a single layer neural network architecture, with a parameter sharing
scheme different from the one in the NADE model (Larochelle and Murray, 2011).
In all these cases however, a single (usually random) input ordering was chosen
and maintained during training.

Frey (1998) already used ensembles of autoregressive models. He noted the
difficulty of finding a good ordering and used a mixture of models; each trained
using a different ordering of the variables. He also trained ensembles of models
using different initial parameters and justified this as approximate Bayesian
inference over the parameters.

Gregor and LeCun (2011) proposed training a variant of the NADE architecture
under stochastically generated random orderings. Like us, they observed much
worse performance than when choosing a single variable ordering, which motivates
our proposed parameter sharing scheme relying on input masks. Gregor and
LeCun generated a single ordering for each training update, and conditioned on
contexts of all possible sizes to compute the log-probability of an example and its
gradients. Our stochastic approach uses only a single conditioning configuration
for each update, but computes the average log-probability for the next dimension
under all possible remaining orderings. This change allowed us to generalize
NADE to deep architectures with an acceptable computational cost.

Goodfellow et al. (2013) introduced a procedure to train deep Boltzmann
machines by maximizing a variational approximation of their generalised pseudo-
likelihood. This results in a training procedure similar to the one presented in

74 Chapter 4. A deep and tractable density estimator

this work, where a subset of the dimension is predicted given the value of the rest.
Our algorithm also bears similarity with denoising autoencoders (Vincent et al.,

2008) trained using so-called “masking noise”. There are two crucial differences
however. The first is that our procedure corresponds to training on the average
reconstruction of only the inputs that are missing from the input layer. The
second is that, unlike denoising autoencoders, the NADE models that we train
can be used as tractable density estimators.

Our training technique also resembles dropouts (Srivastava et al., 2014).
Dropouts is a regularization technique used for training neural networks with
many hidden units. As the number of hidden units in a neural network is increased,
its bias is reduced, and parameter fitting becomes more prone to overfitting to
the training dataset. To avoid overfitting, the dropouts technique sets to zero
with a certain probability the output of hidden and input units. At test time,
no outputs are set to zero, and weights are rescaled to account for the higher
expected number of inputs to each unit.

Both our training procedure and dropouts set some of the inputs to zero.
However, the purpose and the details of each technique are different. The purpose
of dropouts is regularization, while the purpose of our procedure is to obtain
an unbiased estimator of the order-agnostic loss for a NADE. In our training
procedure, the number of inputs to be set to zero is sampled uniformly from
1 to D, while in dropouts each input is dropped independently with a certain
probability. Note that under dropouts it is almost impossible to drop all inputs,
while in our procedure this will happen as often as any other number of them.
Also, our procedure does not drop any hidden unit outputs.

Dropouts can be combined with our training procedure to avoid overfitting of
NADE and RNADE models with many hidden units.

4.5 Experimental results

We performed experiments on several binary and real-valued datasets to asses the
performance of NADEs trained using our order-agnostic procedure. We report
the average test log-likelihood of each model, that is, the average log-density of
datapoints in a held-out test set. In the case of NADEs trained in an order-agnostic
way, we need to choose an ordering of the variables so that one may calculate the
density of the test datapoints. We report the average test log-likelihoods over ten

4.5. Experimental results 75

Ta
bl

e
4.

1:
Av

er
ag

e
te

st
-s

et
lo

g-
lik

eli
ho

od
pe

r
da

ta
po

in
t

(in
na

ts
)

of
di

ffe
re

nt
m

od
els

on
eig

ht
bi

na
ry

da
ta

se
ts

fro
m

th
e

UC
Ir

ep
os

ito
ry

.
Ba

se
lin

e
re

su
lts

we
re

ta
ke

n
fro

m
La

ro
ch

ell
e

an
d

M
ur

ra
y

(2
01

1)
.

M
od

el
A

du
lt

C
on

ne
ct

4
D

N
A

M
us

hr
oo

m
s

N
IP

S-
0-

12
O

cr
-le

tt
er

s
RC

V
1

W
eb

M
oB

er
no

ul
lis

−
20
.4

4
−

23
.4

1
−

98
.1

9
−

14
.4

6
−

29
0.

02
−

40
.5

6
−

47
.5

9
−

30
.1

6
R

B
M

−
16
.2

6
−

22
.6

6
−

96
.7

4
−

15
.1

5
−

27
7.

37
−

43
.0

5
−

48
.8

8
−

29
.3

8
FV

SB
N

−
13
.1

7
−

12
.3

9
−

83
.6

4
−

10
.2

7
−

27
6.

88
−

39
.3

0
−

49
.8

4
−

29
.3

5
N

A
D

E
(fi

xe
d

or
de

r)
−

13
.1

9
−

11
.9

9
−

84
.8

1
−

9.
81

−
27

3.
08

−
27
.2

2
−

46
.6

6
−

28
.3

9

N
A

D
E

1h
l

−
13
.5

1
−

13
.0

4
−

84
.2

8
−

10
.0

6
−

27
5.

20
−

29
.0

5
−

46
.7

9
−

28
.3

0
N

A
D

E
2h

l
−

13
.5

3
−

12
.9

9
−

84
.3

0
−

10
.0

5
−

27
4.

69
−

28
.9

2
−

46
.7

1
−

28
.2

8
N

A
D

E
3h

l
−

13
.5

4
−

13
.0

8
−

84
.3

7
−

10
.1

0
−

27
4.

86
−

28
.8

9
−

46
.7

6
−

28
.2

9

Eo
N

A
D

E
1h

l(
2

or
d)
−

13
.3

5
−

12
.8

1
−

83
.5

2
−

9.
88

−
27

4.
12

−
28
.3

6
−

46
.5

0
−

28
.1

1
Eo

N
A

D
E

1h
l(

16
or

d)
−

13
.1

9
−

12
.5

8
−

82
.3

1
−

9.
68

−
27

2.
38

−
27
.3

1
−

46
.1

2
−

27
.8

7

76 Chapter 4. A deep and tractable density estimator

different orderings chosen at random. Note that this is different from an ensemble,
where the probabilities are averaged before calculating its logarithm. To reduce
clutter, we have not reported the standard deviation across orderings. In all cases,
this standard deviation has magnitude smaller than the log-likelihood’s standard
error due to the finite size of our test sets. These standard errors are also small
enough not to alter the ranking of the different models. In the case of ensembles
of NADEs the standard deviation due to different sets of orderings is, as expected,
even smaller. Every results table is partitioned in three parts by horizontal lines,
the top part contains baselines, the middle part results obtained using the orderless
training procedure, and the bottom part the results of ensembles of NADEs. In
every table the log-likelihood of the best single model, and the log-likelihood of
the best ensemble are shown in bold.

Training configuration details common to all datasets (except where specified
later on) follow. We trained all order-agnostic NADEs and RNADEs using
minibatch stochastic gradient descent on JOA, (4.5). The initial learning rate,
which was chosen independently for each dataset, was reduced linearly to reach
zero after the last iteration. For the purpose of consistency, we used rectified
linear units (Nair and Hinton, 2010) in all experiments. We found that this
type of unit allow us to use higher learning rates and made training converge
faster. We used Nesterov’s accelerated gradient (Sutskever, 2013) with momentum
value 0.9. No weight decay was applied. To avoid overfitting, we early-stopped
training by estimating the log-likelihood on a validation dataset after each training
iteration using the ĴOA estimator, (4.6). For models with several hidden layers,
each hidden layer was pretrained using the same hyperparameter values but only
for 20 iterations, see recursive procedure in Algorithm 1.

4.5.1 Binary datasets

We start by measuring the statistical performance of a NADE trained using our
order-agnostic procedure on eight binary UCI datasets (Bache and Lichman, 2013).

Experimental configuration details follow. We fixed the number of units per
hidden layer to 500, following Larochelle and Murray (2011). We used minibatches
of size 100. Training was run for 100 iterations, each consisting of 1000 weight
updates. The initial learning rate was cross-validated for each of the datasets
among values {0.016,0.004,0.001,0.00025,0.0000675}.

4.5. Experimental results 77

Algorithm 1 Pretraining of a NADE with n hidden layers on dataset X.
1: procedure pretrain(n, X)
2: if n= 1 then . Recursion base case
3: nade← get-one-hidden-layer-NADE-random-parameters()
4: nade← train(nade,X)
5: return nade

6: else
7: nade← pretrain(n−1) . Recursive call
8: nade← remove-output-layer(nade)
9: nade← add-a-new-hidden-layer(nade)

10: nade← add-a-new-output-layer(nade)
11: nade← train(nade,X)
12: return nade

13: end if
14: end procedure

Results are shown on Table 4.1 on page 75. We compare our method to mixtures
of multivariate Bernoullis with their number of components cross-validated among
{32, 64, 128, 256, 512, 1024}, tractable RBMs of 23 hidden units, fully visible
sigmoidal Bayes networks (FVSBN), and NADEs trained using a fixed ordering
of the variables. All baseline results are taken from Larochelle and Murray (2011)
and details can be found there. NADEs trained in an order-agnostic manner
obtain performances close to those of NADEs trained on a fixed ordering. The use
of several hidden layers offers no advantage on these datasets. However, ensembles
of NADEs obtain higher test log-likelihoods on all datasets.

We also present results on binarized-MNIST (Larochelle and Murray, 2011), a
binary dataset of 28 by 28 pixel images of handwritten digits. Unlike classification,
density estimation on this dataset remains a challenging task.

Experimental configuration details follow. Training was run for 200 iterations
each consisting of 1000 parameter updates, using minibatches of size 1000. The
initial learning rate was set to 0.001 and chosen manually by optimizing the
validation-set log-likelihood on preliminary runs.

Results for MNIST are shown in Table 4.2 on page 79. We compare our method
with mixtures of multivariate Bernoulli distributions with 10 and 500 components,
fixed-ordering NADEs, RBMs (500 hidden units), and two-hidden-layer DBNs

78 Chapter 4. A deep and tractable density estimator

(500 and 2000 hidden units on each layer) whose performance was estimated
by Salakhutdinov and Murray (2008); Murray and Salakhutdinov (2009). In
order to provide a more direct comparison to our results, we also report the
performance of NADEs trained using a fixed ordering of the variables, minibatch
stochastic gradient descent and sigmoid or rectified linear units. We found the type
of hidden-unit did not affect statistical performance, while our minibatch SGD
implementation seems to obtain slightly higher log-likelihoods than previously
reported.

One and two hidden-layer NADEs trained by minimizing JOA obtain marginally
lower (worse) test-likelihoods than a NADE trained for a fixed ordering of the
inputs, but still perform much better than mixtures of multivariate Bernoullis
and very close to the estimated performance of RBMs. Although, lower than the
estimated performance of DBNs. NADEs with more than two hidden layers are
not beneficial on this dataset.

We might be tempted to conclude that the DBN’s inductive bias is more
useful than NADE’s in modelling binary images of digits. However, it has been
recently found (Murray, 2015) that the RBM and DBN used in our comparisons
were trained using a slightly different dataset. Our NADEs where trained on the
standard binarized-MNIST dataset (Larochelle and Murray, 2011) where the binary
value of each pixel was sampled once from the original grey-scale MNIST dataset.
In contrast, the pixel values were sampled for each gradient calculation when
training the RBM and DBN. This difference results in an augmented dataset that
has been reported to grant an advantage close to 2 nats for other models (Burda
et al., 2015).

Ensembles of NADEs obtained by using NADEs with different variable or-
derings but trained simultaneously with our order-agnostic procedure obtain
better statistical performance than NADEs trained using a fixed ordering. These
EoNADEs can also surpass the estimated performance of RBMs with the same
number of hidden units, and even approach the estimated performance of a (larger)
2-hidden-layer deep belief network. A more detailed account of the statistical
performance of EoNADEs can be seen in Figure 4.3 on page 80. We also report
the performance on NADE trained by minimizing JOA but without input masks.
Input masks are necessary for obtaining competitive results.

Samples from a 2 hidden layer (500 hidden units per layer) NADE trained
using the order-agnostic method are shown in Figure 4.4 on page 81. Most of

4.5. Experimental results 79

Table 4.2: Average test-set log-likelihood per datapoint of different models on 28×28
binarized images of digits taken from MNIST.

Model Test LogL

MoBernoullis K=10 −168.95
MoBernoullis K=500 −137.64
RBM (500 h, 25 CD steps) approx. −86.34
DBN 2hl approx. −84.55
NADE 1hl (fixed order) −88.86
NADE 1hl (fixed order, ReLU, minibatch) −88.33
NADE 1hl (fixed order, sigm, minibatch) −88.35

NADE 1hl (no input masks) −99.37
NADE 2hl (no input masks) −95.33
NADE 1hl −92.17
NADE 2hl −89.17
NADE 3hl −89.38
NADE 4hl −89.60

EoNADE 1hl (2 orderings) −90.69
EoNADE 1hl (128 orderings) −87.71
EoNADE 2hl (2 orderings) −87.96
EoNADE 2hl (128 orderings) −85.10

80 Chapter 4. A deep and tractable density estimator

1 2 4 8 16 32 64 128
Models averaged

−93

−92

−91

−90

−89

−88

−87

−86

−85

−84

Te
st

lo
gl

ik
el

ih
oo

d
(n

at
s)

2hl-DBN
RBM
NADE (fixed order)
1hl-NADE
2hl-NADE

Figure 4.3: Test-set average log-likelihood per datapoint for RNADEs trained with
our new procedure on binarized images of digits.

the samples can be identified as digits. In Figure 4.5 on page 82 we show 10
local modes obtained by coordinate ascent on the log-probability assigned by the
model (see caption), and initialised from samples. The modes have much smoother
edges than the samples and even smoother edges than the test-set datapoints in
Figure 4.4.

Figure 4.7 shows some receptive fields from the model’s first hidden layer (i.e.
columns of W). Most of the receptive fields resemble pen strokes. We also show
their associated receptive fields on the input masks (i.e. columns of U). These
can be thought of as biases that activate or deactivate a hidden unit. Most of
them will activate the unit when the input mask contains a region of unknown
values (zeros in the input mask) flanked by a region of known values (ones in the
input mask).

Having at our disposal a NADE for each possible ordering of the inputs
makes it easy to perform any inference task. In Figure 4.6 we show examples
of marginalization and imputation tasks. Arbitrarily chosen regions (10 by 10
pixels) of digits in the MNIST test-set are to be marginalized or sampled from. An
RBM or a DBN would require an exponential number of operations to calculate
either the marginal density or the density of the complete images. A NADE

4.5. Experimental results 81

Figure 4.4: Top: 50 examples from binarized-MNIST ordered by decreasing likelihood
under a 2-hidden-layer NADE. Bottom: 50 samples from a 2-hidden-layer NADE,
also ordered by decreasing likelihood under the model.

trained on a fixed ordering of the variables would be able to easily calculate the
densities of the complete images, but would require approximate inference to
calculate the marginal densities. Both an RBM and a fixed-order NADE require
MCMC methods in order to sample the hollowed regions. However, with our
order-agnostic training procedure we can easily calculate the marginal densities
and sample the hollowed regions in linear time just by constructing a NADE with
a convenient ordering of the pixels.

82 Chapter 4. A deep and tractable density estimator

-111.0 -100.2 -78.8 -62.4 -58.8 -56.5 -54.0 -53.5 -53.5 -52.8

-110.7 -86.8 -76.8 -69.2 -64.5 -63.5 -63.5 -63.5 -63.5 -63.5

-114.0 -97.1 -75.2 -69.5 -67.4 -63.2 -59.6 -56.9 -56.0 -53.6

-114.5 -87.0 -77.5 -74.3 -71.5 -71.5 -69.3 -67.6 -64.7 -63.1

-113.5 -88.1 -71.6 -67.5 -65.0 -63.9 -63.8 -63.5 -61.3 -61.3

-113.0 -90.7 -81.0 -75.1 -69.3 -67.9 -67.6 -66.6 -66.1 -66.1

-102.1 -78.2 -63.4 -61.5 -60.1 -59.9 -59.1 -58.6 -57.2 -56.0

-117.8 -84.4 -72.8 -60.1 -58.6 -57.2 -56.4 -55.9 -55.9 -55.9

-77.2 -68.9 -62.4 -56.8 -55.5 -54.9 -49.2 -49.0 -49.0 -49.0

-51.7 -30.8 -28.7 -24.7 -24.7 -24.6 -24.6 -24.6 -24.6 -24.6

Figure 4.5: Denoising of 10 samples obtained from a 2-hidden-layer NADE by coordi-
nate ascent on their probability mass. Pixels are taken at random and assigned the
value that makes the probability of the sample higher under a fixed ordering of the
dimensions. 784 pixels have been visited between each datapoint shown (left-to-right).
The log-probability-mass of each datapoint is shown on top.

4.5. Experimental results 83

-61.21 -36.33

-84.40 -46.22

-96.68 -66.26

-86.37 -73.31

-93.35 -79.40

-45.84 -41.88

Figure 4.6: Example of marginalization and sampling. First column shows five examples
from the test set of the MNIST dataset. The second column shows the density of
these examples when a random 10 by 10 pixel region is marginalized. The right-most
five columns show samples for the hollowed region. Both tasks can be done easily
with a NADE where the pixels to marginalize are at the end of the ordering.

84 Chapter 4. A deep and tractable density estimator

Figure 4.7: Top:50 receptive fields (columns of W) with the biggest L2 norm.
Bottom: Associated receptive fields to the input masks (columns of U).

4.5. Experimental results 85

4.5.2 Real-valued datasets

We also compared the performance of RNADEs trained with our order-agnostic
procedure to RNADEs trained for a fixed ordering. We start by comparing the
performance on three low-dimensional UCI datasets (Bache and Lichman, 2013)
of heterogeneous data, namely: red wine, white wine and parkinsons. We report
the test-log-likelihood on 10 folds of the dataset, each with 90% of the data used
for training and 10% for testing. All experiments use normalized data. Each
dimension is normalized separately by subtracting its training-set average and
dividing by its standard deviation.

Experimental details follow. Learning rate and weight decay rates were chosen
by per-fold cross-validation; using grid search. One ninth of the training set
examples were used for validation purposes. Once the hyperparameter values had
been chosen, a final experiment was run using all the training data. In order to
prevent overfitting, training was stopped when observing a training likelihood
higher than the one obtained at the optimal stopping point in the corresponding
validation run. All RNADEs trained had a mixture of 20 Gaussian components
for output, and were trained by stochastic gradient descent on JOA. We fixed the
number of hidden units to 50, as in Section 3.4.1. The learning rate was chosen
among {0.02,0.005,0.002,0.0005} and the weight decay rate among {0.02,0.002,0}.

The results are shown in Table 4.3. RNADEs trained using our procedure
obtain results close to those of RNADEs trained for a fixed ordering on the red
wine and white wine datasets. On the Parkinsons dataset, RNADEs trained for a
fixed ordering perform better. Ensembles of RNADEs obtained better statistical
performance on the three datasets.

We also measured the performance of our new training procedure on 8 by 8
patches of natural images in the BSDS300 dataset. We compare the performance
of RNADEs with different number of hidden layers trained with our procedure
against a one-hidden layer RNADE trained for a fixed ordering (Section 3.4), and
with mixtures of Gaussians (Zoran and Weiss, 2012).

We adopted the setup described in the previous chapter. The average intensity
of each patch was subtracted from each pixel’s value. After this, all datapoints
lay on a 63-dimensional subspace, for this reason only 63 pixels were modelled,
discarding the bottom-right pixel.

Experimental details follow. The dataset’s 200 training image set was parti-

86 Chapter 4. A deep and tractable density estimator

Table 4.3: Average test log-likelihood for different models on three real-valued UCI
datasets. Baselines are taken from the previous chapter.

Model Red wine White wine Parkinsons

Gaussian −13.18 −13.20 −10.85
MFA −10.19 −10.73 −1.99
RNADE (fixed) −9.36 −10.23 −0.90

RNADE 1hl −9.49 −10.35 −2.67
RNADE 2hl −9.63 −10.23 −2.19
RNADE 3hl −9.54 −10.21 −2.13

EoRNADE 1hl 2 ord. −9.07 −10.03 −1.97
EoRNADE 2hl 2 ord. −9.13 −9.84 −1.42
EoRNADE 3hl 2 ord. −8.93 −9.79 −1.39
EoRNADE 1hl 16 ord. −8.95 −9.94 −1.73
EoRNADE 2hl 16 ord. −8.98 −9.69 −1.16
EoRNADE 3hl 16 ord. −8.76 −9.67 −1.13

4.6. Discussion 87

tioned into a training set and a validation set of 180 and 20 images respectively.
Hyperparameters were chosen by preliminary manual search on the model likeli-
hood for the validation dataset. We used a mixture of 10 Gaussian components
for the output distribution of each pixel. All hidden layers were fixed to a size
of 1000 units. The minibatch size was set to 1000. Training was run for 2000
iterations, each consisting of 1000 weight updates. The initial learning rate was
set to 0.001. Pretraining of hidden layers was done for 50 iterations.

The results are shown in Table 4.4. RNADEs with less than 3 hidden layers
trained using our order-agnostic procedure obtained lower statistical performance
than a fixed-ordering NADE and a mixture of Gaussians. However RNADEs with
5 or more hidden layers are able to beat both baselines and obtain what are, to the
extent of our knowledge, the best results ever reported on this task. Ensembles of
RNADEs also show an improvement in statistical performance compared to the
use of single RNADEs.

No signs of overfitting were observed. Even when using 6 hidden layers, the
cost on the validation dataset never started increasing steadily during training.
Therefore it may be possible to obtain even better results using more hidden layers
or more hidden units per layer. Samples from the 6 hidden layers NADE trained
in an order-agnostic manner are shown in Figure 4.8.

4.6 Discussion

In this chapter we have introduced a new training procedure that simultaneously
fits a NADE for each possible ordering of the dimensions. In addition, this new
training procedure is able to train deep versions of NADE with a linear increase
in computation, and construct ensembles of NADEs on the fly without incurring
any extra training computational cost.

NADEs trained with our procedure outperform mixture models in all datasets
we have investigated. However, for most datasets several hidden layers are required
to surpass or equal the performance of NADEs trained for a fixed ordering of the
variables. Nonetheless, our method allows fast and exact marginalization and
sampling, unlike the rest of the methods compared.

Models trained using our order-agnostic procedure obtained what are, to the
best of our knowledge, the best statistical performances ever reported on the
BSDS300 8×8-image-patches datasets. The use of ensembles of NADEs, which

88 Chapter 4. A deep and tractable density estimator

Table 4.4: Average test-set log-likelihood for several models trained on 8 by 8 pixel
patches of natural images taken from the BSDS300 dataset. Note that because these
are log probability densities they are positive, higher is better.

Model Test LogL

MoG K=200 (Zoran and Weiss, 2012) 152.8
RNADE 1hl (fixed order) 153.7

RNADE 1hl 143.2
RNADE 2hl 149.2
RNADE 3hl 152.0
RNADE 4hl 153.6
RNADE 5hl 154.7
RNADE 6hl 155.2

EoRNADE 6hl 2 ord. 156.0
EoRNADE 6hl 32 ord. 157.0

Figure 4.8: Top: 100 examples of 8×8 patches in the BSDS300 test set. Bot-
tom: 100 samples from a 6-hidden-layer RNADE-MoG trained using our order
agnostic procedure. Both sets of datapoint have been ordered by decreasing likelihood
under the RNADE.

4.6. Discussion 89

we can obtain at no extra training cost and have a mild effect on test-time cost,
improved statistical performance on most datasets analyzed.

The addition of masks to indicate which of the inputs are present proved
necessary in order to obtain competitive statistical performances. An explanation
for their advantage is that using masks is equivalent to marginalizing the missing
dimensions when each of the units in the first hidden layer is considered as a Bayes’
classifier. The derivations are shown in Appendix C on page 119. The Bayes
classifier resulting from two Bernoullli distributions, or two Gaussians with the
same covariance matrix, is equivalent to a sigmoid-linear discriminant (MacKay,
2003). Neural networks usually assume that all input features are present at all
times, and therefore the parameterization in terms of the discriminant function is
preferred as it has a smaller number of parameters and, unlike the Bayes classifier
parameterization, it does not suffer from aliasing (for a single unit). However,
in cases like the order-agnostic NADE, it may be advantageous to maintain the
full Bayes’ classifier parameterization so that marginalization of missing inputs
can be performed. This idea might also be worth exploring in other models, like
denoising autoencoders with “drop noise”, or dropouts regularization.

It is perhaps unsurprising that ensembles obtained higher statistical perfor-
mance than single NADEs, given that we chose the ordering of the single NADEs
at random. Due to the concavity of the log function, Jensen’s inequality guaran-
tees that E

o
logp(x |o) < logE

o
p(x |o), which does not preclude a single ordering

from being better than an ensemble. In all our experiments using ensembles, we
chose the orderings of variables for each of the components at random, but more
elaborate techniques could be used (Smyth and Wolpert, 1999).

Chapter 5

RNADE for speech synthesis

This chapter is an extended version of the article “Modelling acoustic feature
dependencies with artificial neural networks: Trajectory-RNADE” (Uria et al.,
2015) published in ICASSP 2015.

Given a transcription, sampling from a good model of acoustic feature trajec-
tories should result in plausible realizations of an utterance. However, samples
from current probabilistic speech synthesis systems result in low quality synthetic
speech. Henter et al. have demonstrated the need to capture the dependencies
between acoustic features conditioned on the phonetic labels in order to obtain high
quality synthetic speech. These dependencies are often ignored in neural network
based acoustic models (Section 5.2). We tackle this deficiency by introducing a
probabilistic neural network model of acoustic trajectories, trajectory RNADE,
able to capture these dependencies (Sections 5.3, 5.4, 5.5). Trajectory-RNADE
produces higher quality mean and sampled trajectories than those generated by a
mixture density network (Section 5.6).

5.1 Introduction

We define text to speech synthesis (TTS), or simply speech synthesis, as the task
of generating an acoustic waveform intelligible by a human listener given a text
transcription.

Speech synthesis technology has high commercial value. It is regularly used
by automated phone systems, navigation systems and virtual digital assistants
among others.

Good synthetic speech must be intelligible, but other attributes like natural-

91

92 Chapter 5. RNADE for speech synthesis

Text Phonetic labels Acoustics WaveformFront-end Back-end Vocoder

Figure 5.1: Speech generation diagram.

ness, speaker identifiability, and the ability to convey the emotional state of the
purported speaker are also important.

A schematic diagram showing the functioning of a typical TTS system can
be seen in Figure 5.1. Generation of synthetic speech occurs in three stages.
In the first stage, text is input to the system and analyzed by the front-end
which generates phonetic labels for each frame of speech (typically separated by
5 milliseconds). The number of phonetic labels in a modern system can run in
the hundreds and includes information about the identity of the phone, stress
level, tone, grammatical category, distance to the end of word, and others. In
a second stage, the back-end generates acoustic features that correspond to the
phonetic-labels output by the front-end. In a third stage the acoustic features are
transformed into a waveform using the appropriate vocoder. All three stages are
active fields of research. In this chapter we try to improve the back-end stage by
utilizing a conditional version of RNADE to model the distribution of the acoustic
features given the phonetic labels.

Speech synthesis systems can be classified in two types depending on whether
they use a unit-selection or a probabilistic back-end. Unit-selection systems (Hunt
and Black, 1996) store a database of natural speech and generate synthetic speech
by pasting together segments of natural speech whose phonetic labels are most
similar to those of the text to be synthesized. In contrast, probabilistic back-ends
use a probabilistic model of the acoustics conditioned on the phonetic labels. The
most common kind of probabilistic model is a diagonal-covariance Gaussian whose
mean is calculated using a decision tree (Zen et al., 2009).

Speech generated by modern TTS systems of either kind is highly intelligi-
ble (Black and Tokuda, 2005). Probabilistic back-ends tend to be more amenable
to emotion and speaker adaptation, can rely on smaller training datasets, and
have a smaller memory footprint in exchange for more computation. However,
unit-selection systems with big unit reservoirs (tens of hours) still result in higher
quality synthetic speech (Zen et al., 2009).

In this chapter we aim to improve the quality of synthetic speech generated

5.1. Introduction 93

by probabilistic back-ends by using a conditional version of RNADE instead of
mixture density networks (Zen and Senior, 2014) or decision-tree-tied Gaussian
models (Zen et al., 2009).

5.1.1 Dependencies among acoustic features

Given a text transcription, samples from a good conditional probabilistic model
of the acoustics should result in plausible speech acoustic realizations. However,
samples from current probabilistic models sound noisy and unnatural (Shannon
et al., 2011). For this reason, it is common practice to output the mean acoustic
trajectory when synthesising speech. However, mean acoustic trajectories sound
muffled due to their unusually high smoothness. To reduce this over-smoothing,
postfiltering and generation techniques that take into account the variance of the
acoustic trajectory are usually applied to modify the acoustics generated (Tomoki
and Tokuda, 2007).

Two incorrect conditional independence assumptions contribute to the unnat-
uralness of samples from traditional acoustic models: conditional independence
across time; and conditional independence across acoustic features.

Conditional independence across time is usually dealt with by augmenting the
acoustic features with dynamical features, i.e. finite differences in time (Tokuda
et al., 2000). Using these dynamical features, it is possible to construct a joint
probabilistic model of the trajectory across time (Zen et al., 2004, 2007b). We
will review the trajectory-HMM in Section 5.4.

In contrast, conditional independence across acoustic features is often taken
for granted in speech synthesis systems (Zen et al., 2013; Zen and Senior, 2014;
Qian et al., 2014). However, experiments carried out by Henter et al. (2014)
indicate that ignoring the dependency between acoustic features conditioned on
a transcription, results in lower perceived naturalness. In their experiments,
Henter et al. recorded several instances of the same utterance produced by a
single speaker. Using this database, they produced resampled instances by using
trajectories from different recordings for each of the acoustic features. These
resampled instances would have, on average, the same probability density under
the data generating distribution if the conditional independence assumption was
valid. The resampled instances were compared to the original recordings by a

94 Chapter 5. RNADE for speech synthesis

panel of non-expert listeners using a sensitive MUSHRA1 (ITU, 2003) assessment
methodology. The results pointed to a significant decrease of perceived quality in
the resampled recordings.

In traditional decision-tree-tied Gaussian models, independence across features
can be relaxed by the use of full (Shannon et al., 2011) or semi-tied covariance
matrices (Gales, 1999). Here, we attempt to tackle these conditional dependencies
across acoustic features in systems based on artificial neural networks, where it
has commonly been ignored.

5.2 Artificial neural networks for acoustic modelling

Artificial neural networks for regression can be interpreted as conditional prob-
ability models. The output of a neural network trained to minimise the mean
square error criterion, can be interpreted as the mean of a fixed variance Gaussian
distribution trained to maximize the conditional probability of the output given
the input (Bridle, 1990).

Mixture density networks (MDNs) (Bishop, 1994, 1995) provide an explicit
and more powerful model of conditional probability distributions. An MDN uses
a neural network to output the parameters of a fixed family of distributions (for
example means, variances, and component weights for a mixture of Gaussians)
given some inputs. MDNs have been used for speech synthesis (Zen and Senior,
2014), modelling the conditional probability of acoustic features conditioned on
phonetic labels.

Usually MDNs output the parameters of a one-dimensional mixture of Gaus-
sians for each dimension, in which case, the model assumes conditional inde-
pendence across dimensions given the input, see Figure 5.2.a. An MDN could
be designed to output a full covariance matrix, for example by outputting the
parameters of its Cholesky decomposition (Williams, 1996), but that approach
will not scale past a few dimensions, given that the number of outputs would grow
quadratically with the dimensionality of the acoustic features.

1MUltiple Stimuli with Hidden Reference and Anchor

5.2. Artificial neural networks for acoustic modelling 95

(a)

lt

xt,1

xt,2

xt,3

...

lt+1

xt+1,1

xt+1,2

xt+1,3

...

. . .

(b)

lt

xt,1

xt,2

xt,3

...

lt+1

xt+1,1

xt+1,2

xt+1,3

...

. . .

Figure 5.2: (a) Hidden Markov model with observations (acoustic features) condi-
tionally independent of each other given the hidden state (phonetic labels). This
conditional independence assumption is present in mixture density networks and
diagonal-covariance Gaussian models. (b) Hidden Markov model with no conditional
independence assumption between dimensions in the same time frame. Conditional
RNADE introduces the arrows shown in blue with respect to a mixture density network.
This graphical model can also be implemented by a hierarchical Markov decision
tree (Jordan et al., 1997).

96 Chapter 5. RNADE for speech synthesis

5.3 Conditional RNADE

To capture the dependencies among acoustic features, we propose the use of
RNADE to capture the joint conditional distribution of acoustic features, xt,
conditioned on phonetic labels, lt. Designing a conditional version of RNADE
(or binary NADE) can be done by adding another set of inputs that are always
present in the calculation of the one-dimensional conditionals.

As we have seen in Chapter 4, deep RNADEs can be efficiently trained, but
sampling has O(DH2) computational complexity, which makes them too slow for
speech synthesis, where computational performance is crucial. Therefore we will
limit our investigations to RNADEs with one hidden layer and fixed ordering,
i.e. the class of models introduced in Chapter 3. The practical limitation to one
hidden layer only affects the autoregressive part of RNADE. It is possible to
use several hidden layers to compute useful predictive features from the phonetic
labels, as shown in Figure 5.3.

In order to also capture dependencies across time, we combine the trajectory-
HMM formulation with a conditional-RNADE, a model we will call trajectory-
RNADE. In the next section we review the trajectory-HMM, after which we
provide a more detailed description of trajectory-RNADE.

5.4 Trajectory hidden Markov models

Trajectory hidden Markov models (Zen et al., 2004) relax the conditional inde-
pendence assumption between observations at different times given the latent
variable in HMMs. To do so, trajectory-HMMs model not only the value of the
observations, given the latent variables, but also the first and second derivatives of
the observations. In practice, given that the observations are measured at discrete
times, finite differences between the observation and its preceding and following
values are used. These finite differences (or deltas in speech-synthesis parlance)
are commonly calculated using equations:

∆xt =− 1
2xt−1 + 1

2xt+1 (5.1)

∆2xt =xt−1−2xt+xt+1 (5.2)

For simplicity we will limit the exposition to one-dimensional observations (acoustic
features), the extension to multivariate observations is straightforward.

5.4. Trajectory hidden Markov models 97

lt

h1

h2

h3

h4

h5

x<d

hauto

µd σd

Figure 5.3: Connectivity in a conditional RNADE with one hidden autoregressive layer
and several conditional feature extraction layers. The diagram only shows the outputs
used when predicting the parameters of a Gaussian distribution over the d-th acoustic
feature, xt,d, conditioned on phonetic labels, lt, and other acoustic features already
predicted, x<d. At training time the values of x<d are taken from the training dataset,
at test time they are samples obtained from the network.

Let us denote by x≡ (x1,x2, . . . ,xT) the vector of observations, and by

z ≡ (x1,x2, . . . ,xT ,∆x1,∆x2, . . . ,∆xT ,∆2x1,∆2x2, . . . ,∆2xT) (5.3)

the augmented vector of observations and deltas, and by l ≡ (l1, l2, . . . , lT) the
vector of phonetic labels for a sequence of length T . Given the vector of la-
bels, a trajectory-HMM model assumes conditional independence between the
observations across time, and between the observations and the deltas:

pz(z | l) =
T∏
t=1

p(xt | lt)p(∆xt | lt)p(∆2xt | lt) (5.4)

However, given (5.1) and (5.2), any plausible augmented vector can be obtained
as a linear transformation of a vector of static observations, z =Mx, where the
matrix M of size 3T ×T has the form:

98 Chapter 5. RNADE for speech synthesis

M =

1 0 0 0
0 1 0 0
0 0 1 0

. . .
0 1 0
0 0 1

−1
2

1
2 0 0

−1
2 0 1

2 0
0 −1

2 0 1
2

. . .
−1

2 0 1
2

0 −1
2

1
2

−1 1 0 0
1 −2 1 0
0 1 −2 1

. . .
1 −2 1
0 1 −1

(5.5)

That is, all plausible augmented observations lie on the T -dimensional subspace
spanned by the columns of this matrix. If we ignore all implausible augmented
trajectories outside of this subspace, the distribution over observations, x, will
follow a renormalized distribution:

px(x) = 1
K
pz(Mx) where K =

∫
pz(Mx)dTx (5.6)

When the distribution over augmented vectors is modelled by a Gaussian,
z ∼ N (µz,Σz), it is straightforward to calculate the renormalized probability
over trajectories of observations. The distribution over the subspace of z that
satisfies constraints (5.1) and (5.2) is also a Gaussian, whose distribution can be
found completing the square:

x∼N (µx,Σx) (5.7)

Σx =
(
M>Σz

−1M
)−1

(5.8)

µx =ΣxM
>Σz

−1µz (5.9)

5.5. Trajectory-HMMs with RNADE observations 99

Even if Σz is diagonal, as we assumed in (5.4), the resulting Σx will not, in
general, be diagonal, and will, in effect, capture the dependency of the observations
across time. Under this model, µx is the most probable trajectory, also called the
MLPG-trajectory (maximum likelihood parameter generation) by speech synthesis
practitioners.

It is possible to approximate the MLPG calculations for a mixture of Gaussians
distributions over each frame of augmented observations (Zen et al., 2004). How-
ever, these methods only guarantee convergence to a local maximum. Sampling
with MoG marginals over augmented vectors would also require approximate
inference techniques.

5.5 Trajectory-HMMs with RNADE observations

In order to capture dependencies across acoustic features in the same time frame
and dependencies across time, we introduce the trajectory-RNADE hidden Markov
model. We define a trajectory-RNADE as a conditional-RNADE that models
the acoustic features of a single time frame autoregressively, doing it in groups of
three dimensions at a time (observation, delta and double delta).

In order to sample an utterance, the model outputs the distribution over the
observation and deltas of a single acoustic feature for each time frame conditioned
on their corresponding phonetic labels. Then a trajectory for that acoustic feature
is sampled (or the most probable trajectory is chosen) using the trajectory-HMM
formulation shown in the previous section. When the trajectory of an acoustic
feature has been decided, it can be used as input to the autoregressive networks
that predict the trajectory of subsequent features. See Algorithm 2.

In order to be able to use the trajectory-HMM formulation, we used a single
univariate Gaussian as the conditional distribution of each acoustic feature (or
delta) in all our experiments.

In a trajectory RNADE the trajectory of each acoustic feature over the whole
utterance is predicted before the trajectories of the following acoustic features are
predicted.

As it is common, during training we model the static and delta features as
unconstrained variables, even though the trajectory can only lie on a subspace of
the augmented space. This inconsistency between the training criterion and the
actual generation procedure causes an underestimation of the variability of the

100 Chapter 5. RNADE for speech synthesis

Algorithm 2 Sampling from a trajectory-RNADE HMM conditioned on
phonetic labels. The utterance has a duration of T frames and the acoustic
features have dimensionality D.

1: procedure sample(l1, . . ., lT)
2: x = array[D×T] . acoustics
3: for d= 1 . . .D do
4: µz = array[3T]
5: Σz = array[3T] . diagonal
6: for t= 1 . . .T do
7: µz[t, t+T,t+ 2T], Σz[t, t+T,t+ 2T] = rnade(lt, x[1. . . (d−1), t])
8: end for
9: µx, Σx = distribution-over-observations(µz, Σz)

10: . Implemented by Equations (5.8) and (5.9)
11: x[d,·] = sample-gaussian(µx,Σx)
12: end for
13: return x
14: end procedure

acoustic trajectory (Shannon et al., 2011).

The trajectory HMM formalism corresponds to a product of Gaussians (Williams,
2005). A product of Gaussians is itself a Gaussian distribution whose precision
parameter is the sum of the precisions of the n Gaussians multiplied. If we assume
the Gaussians multiplied have approximately the same variance, by multiplying
each of their variances by n, their product will have the same variance. This leads
to a heuristic where we will multiply the variances of the static and delta features
by 3. This heuristic has previously been shown to improve the likelihoods of
trajectory models (Shannon et al., 2011, 2013), and our results in the next section
agree with this finding. A training technique consistent with the trajectory model
generation and practically applicable to neural networks has been recently devel-
oped (Xie et al., 2014) in the field of voice conversion, and could be incorporated
to our experiments.

5.6. Experimental design 101

5.6 Experimental design

Our experimental goal is to compare the statistical performance of trajectory-
HMMs with observations modelled by either conditional-RNADEs or by MDNs.

The systems were trained using the database recorded to build the TTS entry
by Cooke et al. (2013). It consists of 2 hours of data of a British male voice.
The data used here was sampled at 48kHz. We split the dataset into a training
subset of 2602 utterances, 98 validation utterances (used for early stopping and
selecting hyperparameters during training) and a test set of 99 utterances. We used
STRAIGHT vocoding (Kawahara et al., 1999) to extract 60 mel-cepstral features,
25 band aperiodicity features, f0 (linearly interpolated in unvoiced regions) and
a voiced/unvoiced feature for a total of 87 dimensions. In order to train both
the RNADE and the MDN we used forced-alignments obtained with a standard
HMM-GMM system (Zen et al., 2007a).

The input phonetic labels were the same for both the MDN and RNADE. We
included the substate alignment from the HMM-GMM system and its relative
position within the substate (Qian et al., 2014).

The acoustic data was rescaled to the range 0.01–0.99, logit-transformed,
augmented with deltas and double deltas, and standardized to mean zero and
standard deviation one. Modelling the logit-transformed version of the data
guarantees that samples will remain in an acceptable range even when using
Gaussian models, which have infinite support.

The MDN used in our experiments had five hidden layers, each had 600 rectified
linear units (Nair and Hinton, 2010). We used a Gaussian output per dimension
(mean and standard deviation) as we found no increase in statistical performance
(as measured by log-likelihood of the model for a validation dataset) when using a
mixture of Gaussians (MoG). Previous work has reported a benefit from mixture
models (Zen and Senior, 2014), although those models were fitted with ten times
more data than here.

The trajectory RNADE in our experiments also had five conditional hidden
layers, and one autoregressive hidden layer. Each hidden layer had 600 recti-
fied linear units (see Figure 5.3). We used a Gaussian output per dimension,
again finding no increase in log-likelihood for a validation dataset when using
a MoG. In the RNADE model we chose the following order for the acoustic
features: voiced/unvoiced, f0, mel-cepstral features (0 to 59 in that order), band

102 Chapter 5. RNADE for speech synthesis

aperiodicities (1 to 25 in that order).
Both models were trained using AdaDec (Senior et al., 2013) for 1000 epochs

of 1000 updates each, minibatches of size 100 were used. The learning rate was
initialized to 3×10−4 and decreased by 3×10−7 after each epoch.

5.7 Experimental results

We are mainly interested in measuring the quality of the two systems as generative
models of speech acoustics conditioned on phonetic labels. Samples and mean
trajectories from the two models are available online2. To measure the statistical
performance of the models we report their test-set log-likelihood (average log-
density of a frame in the held out test set). Results are shown in Table 5.1.
The first row shows the log-likelihood of each model considering the static and
delta features as unconstrained dimensions, this is our training criterion. Note
that the first row is not comparable to the rest, as it considers models over
the delta-augmented acoustic (261 dimensions) space, while the following rows
consider only the acoustic trajectories (87 dimensions). The second row shows
the likelihoods of the models by ignoring the delta-features, i.e. each frame is
considered independent of the rest conditioned on the labels. The third and fourth
rows show the likelihood of the models using the trajectory HMM formalism to
calculate the density of the trajectories.

To compensate for the underestimation in variance caused by a training
criterion inconsistent with the trajectory model (the delta-features are predicted
independently of the static features, even if they can be deterministically calculated
given all static values), we also calculated the densities under a trajectory model
where the variances of static and delta features were multiplied by 3 (we also
tried multiplying the variances by other factors but they resulted in lower test
log-likelihoods). As commented in Section 5.5, this heuristic increase in variance
improves the likelihoods and the global variance of samples.

Trajectory-NADE achieved higher likelihoods under all criteria. This leads
us to conclude that it is a better joint model of acoustic feature dependencies
conditioned on phonetic labels than an MDN.

Due to the sequential nature of RNADE we can calculate which acoustic
features are being predicted more accurately than by an MDN. In Figure 5.4 we

2http://www.benignouria.com/permalink/rnade_synthesis

http://www.benignouria.com/permalink/rnade_synthesis

5.7. Experimental results 103

v/uv
f0
E

mcep1

mcep10

mcep20

mcep30

mcep40

mcep50

bap1

bap10

bap20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Logdensity increase (nats)

v
/u

v
f0 m

ce
p

b
a
p

Fi
gu

re
5.

4:
In

cr
ea

se
in

av
er

ag
e

lo
g-

de
ns

ity
pe

ra
co

us
tic

fe
at

ur
e

ob
ta

in
ed

by
a

tra
je

ct
or

y
RN

AD
E

wi
th

re
sp

ec
tt

o
a

tra
je

ct
or

y
M

D
N.

Bo
th

m
od

els
ha

d
th

e
va

ria
nc

es
of

th
e

st
at

ic
an

d
de

lta
fe

at
ur

es
m

ul
tip

lie
d

by
3

be
fo

re
ca

lcu
lat

in
g

th
e

di
st

rib
ut

io
n

ov
er

tra
jec

to
rie

s.
Di

m
en

sio
ns

ar
e

sh
ow

n
in

th
e

or
de

rt
he

y
ar

e
pr

ed
ict

ed
by

th
e

RN
AD

E
m

od
el.

104 Chapter 5. RNADE for speech synthesis

Criterion MDN Traj-RNADE

Avg. log-density x, ∆x, ∆∆x 0.87 102.60

Avg. log-density x −32.45 7.18
Avg. log-density x trajectory model −18.16 23.04
Avg. log-density x trajectory model (3× variance) 23.12 59.27

Table 5.1: Average log-density per frame (in nats) on a held-out test set of 96
utterances, greater numbers are indicative of better models.

investigate the source of the increase in likelihood. The y-axis shows the average
increase in likelihood obtained by modelling the trajectory of a feature using a
trajectory RNADE instead of a trajectory MDN (both having the variances of
statics and deltas multiplied by 3, bottom row in Table 5.1). The figure shows
the features in the order they are predicted by the RNADE model. We expect no
increase in prediction accuracy of the voiced/unvoiced feature, as the RNADE
uses uses the same predictor variables as the MDN in this case (any difference is
caused by the stochastic training procedure). Regarding f0, we observe an increase
in accuracy of about half a nat, which shows that knowing whether a frame is
voiced or not is helpful in predicting f0 (the f0 values were linearly interpolated in
unvoiced regions). A similar increase in log-density is observed in the prediction
of the frame energy (mcep0). Regarding the mel-cepstral features, there is a slight
increase in log-density of the 1st feature (mcep1), followed by a higher increase in
the middle cepstral features (mcep2–mcep28) and a greater and growing increase
in accuracy in the higher cepstral features (mcep29–mcep59) that describe the fine
structure of the spectrum. These features are very difficult to predict conditioned
only on the phonetic labels, but seem to show a high degree of dependency with
each other. Regarding band aperiodicity features, we again find a small increase
in the log-density of the first feature followed by a higher increase in the following
features (which are highly correlated to the first).

We are also interested in measuring the quality of the synthetic speech generated
by each system. We performed three forced-preference tests comparing: (1)
trajectory samples from an MDN and an RNADE, (2) trajectory means from
an MDN and an RNADE (3) trajectory samples and trajectory means from an
RNADE. Samples were obtained using the 3× variance heuristic, and means

5.8. Discussion 105

MDN Traj. RNADE n

Sample Mean Sample Mean

19.4% - 80.6% - 900
- - 16.0% 84.0% 865
- 33.6% - 66.4% 794

Table 5.2: Subjective evaluation results. The last column shows the total number of
comparisons performed by the 29 participants for each of the tests. For statistically
significant results at a 0.99 level in a two-tailed binomial test (indiference null-
hypothesis) the preferred system is shown in bold font.

using the MLPG (Tokuda et al., 2000) algorithm. All tests were performed by a
group of 29 native English speakers using headphones in sound-deadened booths.
The participants were asked to choose the higher quality instance from pairs of
utterances presented in a random order. The results can be seen in Table 5.2.
The participants showed preference for means and samples generated from the
RNADE instead of the MDN. They also showed preference for means instead of
samples generated by RNADE.

5.8 Discussion

The use of NADE for speech synthesis was proposed before by Yin et al. (Yin
et al., 2014). They used fixed-variance real-valued version of NADE to replace the
means of an HMM-GMM speech synthesis system; training a different NADE for
each state. In contrast, our approach takes full advantage of the neural network
formulation of RNADE: it uses a single network that takes phonetic labels as
inputs, and outputs means and standard deviations for each acoustic feature.

The trajectory HMM formulation, using deltas to model the dependencies
across time, is a limiting one. Calculating the distribution over trajectories is slow.
It requires a matrix inversion, making it difficult to optimize the right training
criterion. It also limits the family of distributions that can be used to model each
frame of the augmented-feature distribution to a Gaussian. Autoregressive HMMs
are a promising research direction for speech synthesis (Shannon et al., 2013), but
in preliminary experiments training fully-autoregressive RNADEs (autoregressive

106 Chapter 5. RNADE for speech synthesis

both across the features in a frame and across time) got stuck in local optima that
model smooth speech-like acoustic trajectories but ignore the phonetic labels.

We will also investigate the importance of the order in which the acoustic-
dimensions are predicted. RNADEs with different orders may model different
joint distributions, especially if any of the empirical one-dimensional conditionals
is multimodal.

In conclusion, our experimental results show that trajectory RNADE is better
than an MDN at modelling the joint distribution of acoustic features conditioned
on phonetic labels. Furthermore, trajectory RNADE also produces higher quality
synthetic speech as judged by subjective preference tests.

Chapter 6

Conclusions

In this thesis, we have presented RNADE, the first formulation of a neural
autoregressive model for real-valued data. We have shown RNADE is a capable
model that obtained state-of-the-art statistical performance for speech acoustics,
and small natural image patches. RNADE also has attractive computational
characteristics, namely, probability density estimation and sampling of complete
datapoints scales with the square of the data dimensionality (assuming the number
of hidden units is proportional to the dimensionality of the data). This allows
for easy training by stochastic gradient descent on the negative log-likelihood
for a training dataset, and makes model comparison with other tractable models
possible.

We have also presented a training procedure that circumvents the main draw-
back of autoregressive models: the fixed ordering of the variables modelled. Using
our order-agnostic training procedure, it is possible to obtain a set of parameters
that can be used by a NADE (or RNADE) for any ordering of the variables.
Choosing the order of the variables at test-time allows us to obtain a model that
can marginalize or sample any subset of dimensions exactly and tractably.

The same training procedure makes it practical to train NADEs with several
hidden layers. These deep models obtained even higher statistical performance
than shallow NADEs or RNADEs for some natural image patches and segments
of speech spectrograms.

We have also presented a method to obtain ensembles of NADEs. Our ensem-
bles of NADEs are mixtures of NADEs that share the same parameter values, but
differ in their ordering of the variables. These ensembles can be created with no
extra training computation by using our order-agnostic training. The ensembles

107

108 Chapter 6. Conclusions

obtained higher test-likelihoods than single NADEs in all datasets tested.
Perhaps most importantly, some of the work presented in this thesis has already

proved useful to other researchers. RNADE has been used to improve the mixing
rate of generalized denoising autoencoders by Ozair et al. (2013). As we briefly
commented in Section 2.7, a necessary condition for the consistency of a GSN is
the need for the reconstruction operator to be consistent for the true conditional
reconstruction distribution. Often, this reconstruction operator must be able to
capture multimodalities, and sampling new reconstructions must be fast to allow
for better mixing, both traits make conditional-RNADE an ideal candidate.

Our work on order-agnostic training, and particularly the ability to train a
deep NADE has been used by Raiko et al. (2014) to create NADE-k, which extends
the 1-step mean field approximation of RBMs that inspired NADE to k steps. A
NADE-k can be seen as a deep-NADE with tied weights, where every even layer
reconstructs the input and every odd layer recomputes the hidden units. NADE-k
obtains slightly better likelihoods than a regular NADE on the datasets tested
by Raiko et al.. However, as with every deep NADE, this increased performance
comes at the price of cubic complexity for sampling and density estimation.

Regular binary NADEs have been used as a variational distribution for the pos-
terior of binary latent variables in Helmholtz machines in the so called reweighted
wake-sleep algorithm (Bornschein and Bengio, 2014). RNADE makes an extension
to real-valued latent variables straightforward.

The work detailed in this thesis can be extended in numerous ways. The choice
of a parametric form for the conditionals of an RNADE can be rather arbitrary
in the absence of domain knowledge. A possible extension would be the use of
quantile regression (Koenker and Bassett, 1978) and monotonic interpolation to
approximate a free form cumulative distribution function for each one-dimensional
conditional, which would also facilitate its use for compression. Another aspect
that requires further investigation is the use of fully autoregressive (across time
and acoustic features) conditional RNADEs for speech synthesis. The optimization
problems we found in our initial attempts may be tackled using training techniques
that condition on previous samples of the model (Bengio et al., 2015).

One of the most interesting aspects of NADE is its ability to leverage neural-
network techniques to obtain tractable density estimators. The field of artificial-
neural-networks is blooming with new advances every year. By adapting these
advances to the NADE and RNADE framework, we can obtain more power-

109

ful density estimators1. Active fields of research include: the design of new
non-linearities (Nair and Hinton, 2010; Goodfellow et al., 2013), regularization
techniques (Srivastava et al., 2014; Goroshin and LeCun, 2013), new optimization
techniques (Martens, 2010; Schaul et al., 2013), and hyperparameter selection
procedures (Snoek et al., 2012, 2015). All of these techniques became prominent
after the initiation of this thesis and can conceivably be incorporated into our
models, hopefully leading to even better statistical performance than the one we
have shown.

In the last chapter of this thesis, we have demonstrated the applicability of
the techniques presented to improve the results of a speech synthesis system, a
real-world task of high commercial value. It is our hope that the work presented
here will soon prove useful in many other commercial and scientific endeavours.

1Assuming that the inductive biases that prove useful for discrimination are also useful for
unsupervised modelling.

Appendix A

Mean-field Gaussian-RBM
derivations

In this appendix we derive the equations for the mean-field approximation of the
autoregressive conditionals of a Gaussian-RBM. No new material is presented.

We are interested in approximating p(xd |x<d). To do so, we will calculate the
mean-field approximation of p(x≥d,h |x<d):

p(x≥d,h |x<d) = 1
Z(x<d)

exp

D∑
j=d

(xj− bj)2

2σ2
j

−
H∑
k=1

hkck−
H∑
k=1

D∑
j=1

xj
σj
Wj,khk

(A.1)

by a factorial q(x≥d,h |x<d) from which it is trivial to marginalize q(xd |x<d):

q(x≥d,h |x<d) =
D∏
j=d
N (x |µj , δ2

j)
H∏
k=1

Bern(h |τk) (A.2)

=
D∏
j=d

1√
2πδj

exp
{
−1

2
(xj−µj)2

δ2
j

}
H∏
k=1

τhk
k (1− τk)(1−hk) (A.3)

(A.4)

We will minimize the KL(q ‖ p) with respect to the parameters of q: µ, δ, τ :

111

112 Appendix A. Mean-field Gaussian-RBM derivations

KL(q ‖ p) =〈− logp(x≥d,h |x<d)〉x≥d,h∼q−〈− logq(x≥d,h |x<d)〉x≥d,h∼q (A.5)

=K(x<d) +
D∑
j=d

1
2σ2

j

〈
x2
j

〉
q
−

D∑
j=d

bj
σ2
j

〈xj〉q−
H∑
k=1

ck〈hk〉q−

−
d−1∑
j=1

H∑
k=1

1
σj
xjWj,k〈hk〉q−

D∑
j=d

H∑
k=1

1
σj
〈xj〉qWj,k〈hk〉q−

−
D∑
j=d

logδj−
D∑
j=d

1
2δ2
j

〈
x2
j

〉
q

+
D∑
j=d

µj
δ2
j

〈xj〉q−
D∑
j=d

µ2
j

2δ2
j

+

+
H∑
k=1
〈hk〉q logτk +

H∑
k=1
〈1−hk〉q log(1− τk) (A.6)

=K ′(x<d) +
D∑
j=d

µ2
j + δ2

j

2σ2
j

−
D∑
j=d

bjµj
σ2
j

−
H∑
k=1

ckτk−

−
d−1∑
j=1

H∑
k=1

1
σj
xjWj,kτj−

D∑
j=d

H∑
k=1

1
σj
µjWj,kτj−

−
D∑
j=d

logδj +
H∑
k=1

τk logτk +
H∑
k=1

(1− τk) log(1− τk) (A.7)

Taking partial derivatives and solving for zero:

∂KL(q ‖ p)
∂µi

=0 (A.8)

µi
δ2
i

− bi
δ2
i

− 1
δi

H∑
k=1

Wi,kτk =0 (A.9)

µi =bi+ δi
H∑
k=1

Wi,kτk (A.10)

∂KL(q ‖ p)
∂δi

=0 (A.11)

δi
σ2
i

− 1
δi

=0 (A.12)

δi =σi (A.13)

113

∂KL(q ‖ p)
∂τi

=0 (A.14)

log τi
1− τi

=ci+
d−1∑
j=1

1
σj
xjWj,i+

D∑
j=d

1
σj
µjWj,i (A.15)

τi =sigm
ci+ d−1∑

j=1

1
σj
xjWj,i+

D∑
j=d

1
σj
µjWj,i

 (A.16)

Appendix B

RNADE-MoG gradient derivations

In this appendix we provide pseudo-code for the calculation of densities and
learning gradients. No new material is presented.

B.1 Density estimation

In Algorithm 3 we detail the pseudocode for calculating the density of a datapoint
under an RNADE with mixture of Gaussian conditionals. The model has param-
eters: ρ ∈ RD, W ∈ RD×H , c ∈ RH , bα ∈ RD×K , V α ∈ RD×H×K , bµ ∈ RD×K ,
V µ ∈ RD×H×K , bσ ∈ RD×K , V σ ∈ RD×H×K

B.2 Learning gradients

Training of an RNADE model can be done using a gradient ascent algorithm
on the log-likelihood of the model given the training data. Gradients can be
calculated using automatic differentiation libraries (e.g. Theano Bergstra et al.
(2010)). However we found our manual implementation to work faster in practice,
possibly due to our recomputation of the a terms in the second for loop in
Algorithm 4, which is more cache-friendly than storing them during the first loop.

Here we show the derivation of the gradients of each parameter of a NADE
model with MoG conditionals. Following Bishop (1994), we define φi(xd |x<d) as
the density of xd under the i-th component of the conditional:

φi(xd |x<d) = 1√
2πσd,i

exp

−(xd−µd,i)2

2σ2
d,i

 , (B.1)

115

116 Appendix B. RNADE-MoG gradient derivations

Algorithm 3 Computation of p(x)
a← c

p(x)← 1
for d from 1 to D do
ψd← ρda . Rescaling factors
hd←ψd 1ψd>0 . Rectified linear units
zαd ← V α

d
>hd+bαd

z
µ
d ← V µ

d
>
hd+bµd

zσd ← V σ
d
>hd+bσd

αd← softmax(zαd) . Enforce constraints
µd← zµd

σd← exp{zσd}
p(x)← p(x)pMoG(xd;αd,µd,σd)

. pMoG is the density of a mixture of Gaussians
a← a+xdW d,· . Activations are calculated recursively, xd is a scalar

end for
return p(x)

and πi(xd |x<d) as the “responsibility” of the i-th component for xd:

πi(xd |x<d) = αd,iφi(xd |x<d)∑K
j=1αd,jφj(xd |x<d)

. (B.2)

It is easy to find just by taking their derivatives that:

∂p(x)
∂zαd,i

= πi(xd |x<d)−αd,i (B.3)

∂p(x)
∂zµd,i

= πi(xd |x<d)
xd−µd,i
σ2
d,i

(B.4)

∂p(x)
∂zσd,i

= πi(xd |x<d)
(xd−µd,i)2

σ2
d,i

−1
 (B.5)

Using the chain rule we can calculate the derivative of the parameters of the

B.2. Learning gradients 117

output layer parameters:

∂p(x)
∂V α

d
= ∂p(x)

∂zαd,i

∂zαd,i
V α
d

= ∂p(x)
∂zαd,i

h (B.6)

∂p(x)
∂bαd

= ∂p(x)
∂zαd,i

∂zαd,i
bαd

= ∂p(x)
∂zαd,i

(B.7)

∂p(x)
∂V µ

d

= ∂p(x)
∂zµd,i

∂zαd,i
V µ
d

= ∂p(x)
∂zµd,i

h (B.8)

∂p(x)
∂bµd

= ∂p(x)
∂zµd,i

∂zαd,i
bµd

= ∂p(x)
∂zµd,i

(B.9)

∂p(x)
∂V σ

d
= ∂p(x)

∂zσd,i

∂zαd,i
V σ
d

= ∂p(x)
∂zσd,i

h (B.10)

∂p(x)
∂bσd

= ∂p(x)
∂zσd,i

∂zαd,i
bσd

= ∂p(x)
∂zσd,i

(B.11)

By “backpropagating” the we can calculate the partial derivatives with respect
to the output of the hidden units:

∂p(x)
∂hd

= ∂p(x)
∂zαd,i

∂zαd,i
∂hd

+ ∂p(x)
∂zµd,i

∂zµd,i
∂hd

+ ∂p(x)
∂zσd,i

∂zσd,i
∂hd

(B.12)

= ∂p(x)
∂zαd,i

V α
d + ∂p(x)

∂zµd,i
V µ
d + ∂p(x)

∂zσd,i
V σ
d (B.13)

and calculate the partial derivatives with respect to all other parameters in
RNADE:

∂p(x)
∂ψd

= ∂p(x)
∂hd

1ψd>0 (B.14)

∂p(x)
∂ρd

=
∑
j

∂p(x)
∂ψd,j

ad,j (B.15)

∂p(x)
∂ad

= ∂p(x)
∂ad+1

+ ∂p(x)
∂hd

ρd1ψd>0 (B.16)

∂p(x)
∂W d,·

= ∂p(x)
∂ad

xd (B.17)

∂p(x)
∂c

= ∂p(x)
∂a1

(B.18)

Note that gradients are calculated recursively, due to (B.16), starting at d=D

and progressing down to d= 1.

118 Appendix B. RNADE-MoG gradient derivations

Algorithm 4 Computation of the learning gradients for a datapoint x
a← c

for d from 1 to D do . Compute the activation of the last dimension
a← a+xdW d,·

end for
for d from D to 1 do . Backpropagate errors
ψ← ρda . Rescaling factors
h←ψ 1ψ>0 . Rectified linear units
zα← V α

d
>h+bαd

zµ← V µ
d
>
h+bµd

zσ← V σ
d
>hd+bσd

α← softmax(zα) . Enforce constraints
µ← zµ

σ← exp{zσ}
φ← 1

2
(µ−xd)2

σ2 − logσ− 1
2 log(2π) . Calculate gradients

π← αφ∑K
j=1αjφj

∂zα← π−α
∂V α

d ← ∂zαh

∂bαd ← ∂zα

∂zµ← π(xd−µ)/σ2

∂zµ← ∂zµ ∗σ . Move tighter components slower, allows higher learning
rates

∂V µ
d ← ∂zµh

∂bµd ← ∂zµ

∂zσ← π{(xd−µ)2/σ2−1}
∂V σ

d ← ∂zσh

∂bσd ← ∂zσ

∂h← ∂zαV α
d +∂zµV µ

d +∂zσV σ
d

∂ψ← ∂h1ψ>0 . Second factor: indicator function with condition ψ > 0
∂ρd←

∑
j ∂ψjaj

∂a← ∂a+∂ψρ

∂W d,·← ∂axd

if d= 1 then
∂c← ∂a

else
a← a−xdW d,·

end if
end for

return ∂ρ, ∂W , ∂c, ∂bα, ∂V α, ∂bµ, ∂V µ, ∂bσ, ∂V σ

Appendix C

Input masks and marginalization
under a Bayes’ classifier

In this appendix we show that interpreting each hidden unit of a neural network
as a Bayes’ classifier implies the need for a correction of their bias when input
features are missing. This capability can be added to NADE by the use of input
masks, as we proposed in Chapter 4.

A Bayes’ classifier calculates the posterior probability of a datapoint belonging
to a particular class by comparing its log-density under a generative model of
each class (e.g. Duda et al., 2001). Bayes’ classifiers can always be expressed as a
sigmoid function:

p(A |x) = pA(x)πA
pA(x)πA+pB(x)πB

(C.1)

= sigm
(

logpA(x)− logpB(x) + log πA
πB

)
(C.2)

Where pA(x) and pB(x) are the density functions of classes A and B, and πA and
πB the prior probabilities of each class.

Thus, each hidden unit in a neural network with sigmoid non-linearities can be
interpreted as a Bayes’ classifier where logpA(x)− logpB(x) is a linear function.
This is the case, for example, when the generative models of each class are
multivariate Bernoulli distributions, in the case of binary data, or multivariate
Gaussians with shared covariance in the case of real-valued data.

Assuming x is a multivariate binary variable, and classes A and B are modelled
by multivariate Bernoulli distributions, let us denote by µ(A)

d the probability of
the d-th dimension taking value 1 under the generative model for class A, and
similarly µ

(B)
d for class B. The probability of an observation under model A is

119

120 Appendix C. Input masks and marginalization under a Bayes’ classifier

given by:

logp(x |A) =
∑
d

[
xd logµ(A)

d + (1−xd) log
(

1−µ(A)
d

)]
(C.3)

=
∑
d

xd log µ
(A)
d

1−µ(A)
d

+ log
(

1−µ(A)
d

) , (C.4)

and similarly for B. Therefore, under multivariate Bernoulli models, (C.2) can
be written as:

p(A |x) = sigm

∑
d

xd

log µ
(A)
d

1−µ(A)
d

− log µ
(B)
d

1−µ(B)
d

︸ ︷︷ ︸

wd

+
∑
d

log 1−µ(A)
d

1−µ(B)
d

+ log πA
πB︸ ︷︷ ︸

b

(C.5)

Where the factors multiplying xd correspond to the weights, wd, of a hidden unit
and the second sum inside the sigmoid corresponds to the bias, b.

Given the factorial nature of the multivariate-Bernoulli, marginalizing any
missing variables, simply requires ignoring the terms corresponding to those
dimensions. In (C.5), this means that the sums over d must iterate only across

the dimensions present. Each dimension present adds a log 1−µ(A)
d

1−µ(B)
d

to the bias.
Therefore, in order to marginalize the missing dimensions, a correction of the bias
in the discriminant function is required.

The inclusion of input masks in the orderless-NADE adds exactly this capability
to the model. We can interpret the mask weights, U in (4.7) as log 1−µ(A)

d

1−µ(B)
d

.
Therefore, after the addition of input masks, each of the hidden units in the
orderless-NADE can be interpreted as a Bayes’ classifier that performs correct
inference even with missing inputs.

The parameters of each hidden unit in an orderless-NADE can, therefore, be
parameterized in terms of the expected value for each multivariate Bernoulli and
the log prior-odds as in (C.5), or in terms of W , U and b, as in (4.7) on page 71.

In the case of real-valued inputs, similar derivations can be reached in the
case of a Bayes’ classifier that utilizes a shared diagonal covariance Gaussian as a
generative model of each class. That is,

logp(x |A) = 1
2(x−µA)>Σ−1(x−µA)− logZ (C.6)

121

In which case, given the shared covariance, the normalizing and quadratic
terms in the discriminant cancel and we end up with a linear discriminant function:

p(A |x) = sigm
(
x>Σ−1(µA−µB) + 1

2
[
µ>BΣ−1µB−µ>AΣ−1µA

]
+ log πA

πB

)
(C.7)

Which in the case of diagonal covariance can be rewritten as a sum of simple
terms:

p(A |x) = sigm

∑
d

xd
µ

(A)
d −µ

(B)
d

σ2
d︸ ︷︷ ︸

wd

+
∑
d

1
2

µ(B)

d

σd

2

−

µ(A)
d

σd

2+ log πA
πB︸ ︷︷ ︸

b

(C.8)

For the shared diagonal covariance case, marginalizing out missing dimensions
is equivalent to iterating the sums over d across the inputs present. As in
the binary case, each input present adds a term to the bias of the sigmoid-
linear discriminant function, and a bias correction is necessary when some of the
dimensions are missing. Orderless-RNADE with input masks has the ability to
correctly marginalize missing inputs. We note that in this case it is not possible to
recover the parameters of the generative model for each class from the parameters
of the orderless-RNADE.

This last derivation points to a route for a more powerful first hidden layer,
by using non-shared or non-diagonal covariance matrices.

In all our experiments we have used rectified linear units instead of sigmoid
units. However, we can think of the ReLU non-linearity as an approximation to
− log sigm(−x) (see Figure C.1 on the following page), and the output of ReLU
units as the negative log-posterior of the a two-class classifier.

122 Appendix C. Input masks and marginalization under a Bayes’ classifier

10 5 0 5 10

0

2

4

6

8

10

ReLU(x)
log sigm(x)

Figure C.1: Comparison of rectified linear (blue) and negative log sigmoid (green)
non-linearities.

Bibliography

Ackley, D., Hinton, G., and Sejnowski, T. (1985). A learning algorithm for
Boltzmann machines. Cognitive Science, 9(1):147–169. (pages 9 and 18)

Bache, K. and Lichman, M. (2013). UCI machine learning repository.
http://archive.ics.uci.edu/ml. (pages 38, 49, 76, and 85)

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge
University Press. (pages 8, 12, and 48)

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sam-
pling for sequence prediction with recurrent neural networks. arXiv preprint
arXiv:1506.03099. (page 108)

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends
in Machine Learning, 2(1):1–127. (page 68)

Bengio, Y. (2011). Discussion of “The Neural Autoregressive Distribution Es-
timator”. In Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics, volume 15 of Journal of Machine Learning Research
W&CP, pages 38–39. (page 48)

Bengio, Y. and Bengio, S. (2000). Modeling high-dimensional discrete data with
multi-layer neural networks. In Advances in Neural Information Processing
Systems, volume 12, pages 400–406. MIT Press. (pages 34, 42, and 73)

Bengio, Y., Laufer, E., Alain, G., and Yosinski, J. (2014). Deep generative stochas-
tic networks trainable by backprop. In Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Journal of Machine Learning
Research W&CP, pages 226–234. (pages 30 and 31)

123

124 Bibliography

Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013). Generalized denoising auto-
encoders as generative models. In Advances in Neural Information Processing
Systems, volume 26, pages 899–907. MIT Press. (pages 30 and 31)

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research, 13:281–305. (page 65)

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins,
G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and
GPU math expression compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy). (page 115)

Billingsley, P. (2008). Probability and Measure. John Wiley & Sons. (page 5)

Bishop, C. (1994). Mixture density networks. Technical Report NCRG 4288,
Neural Computing Research Group, Aston University, Birmingham.

(pages 45, 64, 94, and 115)

Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford University
Press, Inc. (page 94)

Bishop, C. (2006). Pattern Tecognition and Machine Learning. Springer New
York. (page 33)

Bishop, C., Svensén, M., and Williams, C. (1998). GTM: the generative topo-
graphic mapping. Neural computation, 10(1):215–234. (page 27)

Black, A. and Tokuda, K. (2005). The Blizzard Challenge 2005: Evaluating
corpus-based speech synthesis on common datasets. In Proceedings of the 6th
Annual Conference of the International Speech Communication Association,
pages 77–80. ISCA. (page 92)

Bornschein, J. and Bengio, Y. (2014). Reweighted wake-sleep. CoRR.
(pages 7, 29, and 108)

Bridle, J. (1990). Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocomputing,
pages 227–236. Springer. (page 94)

Bibliography 125

Buntine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of
the 7th conference on Uncertainty in Artificial Intelligence, pages 52–60. Morgan
Kaufmann Publishers. (page 63)

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance weighted
autoencoders. volume abs/1509.00519. (page 78)

Casella, G. and Berger, R. (2002). Statistical Inference. Duxbury Press. (page 5)

Cho, K., Ilin, A., and Raiko, T. (2011). Improved learning of Gaussian-Bernoulli
restricted Boltzmann machines. In Proceedings of the 21st International Con-
ference on Artificial Neural Networks, pages 10–17. Springer. (pages 22 and 44)

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462–467.

(page 63)

Cooke, M., Mayo, C., Valentini-Botinhao, C., Stylianou, Y., Sauert, B., and Tang,
Y. (2013). Evaluating the intelligibility benefit of speech modifications in known
noise conditions. Speech Communication, 55:572–585. (page 101)

Courville, A., Bergstra, J., and Bengio, Y. (2011). A spike and slab restricted
Boltzmann machine. In Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics, volume 15 of Journal of Machine Learning
Research W&CP, pages 233–241. (page 22)

Dahl, G., Sainath, T., and Hinton, G. (2013). Improving deep neural networks
for LVCSR using rectified linear units and dropout. In IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 8609–8613. IEEE.

(page 21)

Dayan, P. and Hinton, G. (1996). Varieties of Helmholtz machine. Neural Networks,
9(8):1385–1403. (pages 27 and 29)

Dayan, P., Hinton, G., Neal, R., and Zemel, R. (1995). The Helmholtz machine.
Neural Computation, 7(5):889–904. (page 27)

de Finetti, B. (1974). Theory of Probability, volume 1. Wiley. (page 1)

126 Bibliography

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B: Statistical Methodology, 39(1):1–38. (pages 11 and 12)

Duda, R., Hart, P., and Stork, D. (2001). Pattern Classification. John Wiley &
Sons. (pages 6, 51, and 119)

Fisher, R. (1922). On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, pages 309–368. (pages 2 and 7)

Frey, B. (1998). Graphical Models for Machine Learning and Digital Communica-
tion. MIT Press. (pages 8, 31, 33, and 73)

Frey, B., Hinton, G., and Dayan, P. (1996). Does the wake-sleep algorithm produce
good density estimators? In Advances in Neural Information Processing Systems,
volume 8, pages 661–670. MIT Press. (page 30)

Gales, M. (1999). Semi-tied covariance matrices for hidden Markov models. IEEE
Transactions on Speech and Audio Processing, 7(3):272–281. (page 94)

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D., Dahlgren, N., and Zue,
V. (1993). Darpa TIMIT acoustic-phonetic continuous speech corpus CD-ROM.

(page 60)

Gelman, A. and Shalizi, C. (2010). Philosophy and the practice of Bayesian
statistics. British Journal of Mathematical and Statistical Psychology. (page 2)

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6(6):721–741. (page 20)

Ghahramani, Z. and Hinton, G. (1996). The EM algorithm for mixtures of factor
analyzers. Technical Report CRG-TR-96-1, University of Toronto.

(pages 16, 18, and 51)

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).
Maxout networks. In Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Journal of Machine Learning Research W&CP,
pages 1319–1327. (pages 73 and 109)

Bibliography 127

Gordon, D. and Desjardins, M. (1995). Evaluation and selection of biases in
machine learning. Machine Learning, 20(1-2):5–22. (page 2)

Goroshin, R. and LeCun, Y. (2013). Saturating auto-encoders. CoRR. arXiv
preprint arXiv:1301.3577. (page 109)

Gregor, K., Danihelka, I., Mnih, A., Blundell, C., and Wierstra, D. (2014). Deep
autoregressive networks. In Proceedings of The 31st International Conference on
Machine Learning, volume 32 of Journal of Machine Learning Research W&CP,
pages 1242–1250. (page 30)

Gregor, K. and LeCun, Y. (2011). Learning representations by maximizing
compression. CoRR. arXiv preprint arXiv:1108.1169. (pages 36 and 73)

Grosse, R., Maddison, C., and Salakhutdinov, R. (2013). Annealing between distri-
butions by averaging moments. In Advances in Neural Information Processing
Systems, volume 26, pages 2769–2777. (page 20)

Guyon, I., Aliferis, C., and Elisseeff, A. (2007). Causal feature selection. Compu-
tational methods of feature selection, pages 63–86. (page 63)

Henter, G., Merritt, T., Shannon, M., Mayo, C., and King, S. (2014). Measuring
the perceptual effects of modelling assumptions in speech synthesis using stimuli
constructed from repeated natural speech. In Proceedings of the 15th Annual
Conference of the International Speech Communication Association, Interspeech,
pages 1504–1508. (page 93)

Hinton, G. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771–1800. (page 21)

Hinton, G. (2010). A practical guide to training restricted Boltzmann machines.
Technical Report UTML TR 201003, Department of Computer Science, Univer-
sity of Toronto. (page 20)

Hinton, G., Dayan, P., Frey, B., and Neal, R. (1995). The “wake-sleep” algorithm
for unsupervised neural networks. Science, 268(5214):1158–1161.

(pages 27 and 28)

Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7):1527–1554. (pages 23, 24, and 25)

128 Bibliography

Hinton, G. and Sejnowski, T. (1986). Learning and relearning in Boltzmann
machines. Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, 1:282–317. (pages 9 and 18)

Hsu, D. and Kakade, S. (2013). Learning mixtures of spherical Gaussians: moment
methods and spectral decompositions. In Proceedings of the 4th conference on
Innovations in Theoretical Computer Science, pages 11–20. ACM. (page 11)

Hunt, A. and Black, A. (1996). Unit selection in a concatenative speech synthesis
system using a large speech database. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, ICASSP-96, volume 1, pages 373–376.
IEEE. (page 92)

ITU (2003). Method for the subjective assessment of intermediate quality level of
coding systems. Technical Report BS.1534, International Telecommunication
Union Radiocommunication Assembly. (page 94)

Jaworski, P., Durante, F., Hardle, W., and Rychlik, T. (2010). Copula Theory
and its Applications. Springer. (page 8)

Jaynes, E. (2003). Probability Theory: The Logic of Science. Cambridge University
Press. (page 1)

Jeffreys, H. (1939). Theory of Probability. Clarendon Press. (page 1)

Jimenez-Rezende, D., Mohamed, S., and Wierstra, D. (2014). Stochastic backprop-
agation and approximate inference in deep generative models. In Proceedings of
The 31st International Conference on Machine Learning, volume 32 of Journal
of Machine Learning Research W&CP, pages 1278–1286. (page 30)

Jones, M. C. and Pewsey, A. (2009). Sinh-arcsinh distributions. Biometrika,
96(4):761–780. (page 48)

Jordan, M., Ghahramani, Z., and Saul, L. (1997). Hidden Markov Decision Trees.
In Advances in Neural Information Processing Systems, volume 9. MIT Press.

(page 95)

Kawahara, H., Masuda-Katsuse, I., and de Cheveigné, A. (1999). Restructuring
speech representations using a pitch-adaptive time–frequency smoothing and
an instantaneous-frequency-based f0 extraction: Possible role of a repetitive
structure in sounds. Speech Communication, 27(3):187–207. (page 101)

Bibliography 129

Kingma, D. and Welling, M. (2014). Auto-encoding variational bayes. CoRR.
arXiv preprint arXiv:1312.6114. (page 30)

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica: journal
of the Econometric Society, pages 33–50. (page 108)

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles
and Techniques. MIT Press. (pages 7 and 8)

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from
tiny images. Master’s thesis, Computer Science Department, University of
Toronto, Canada. (page 22)

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, volume 25, pages 1097–1105. (page 2)

Larochelle, H. and Lauly, S. (2012). A neural autoregressive topic model. In
Advances in Neural Information Processing Systems, volume 25, pages 2708–
2716. (page 39)

Larochelle, H. and Murray, I. (2011). The neural autoregressive distribution
estimator. In Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics, volume 15, pages 29–37.

(pages 3, 20, 21, 36, 37, 38, 49, 67, 73, 75, 76, 77, and 78)

LeCun, Y., Bottou, L., Orr, G., and Müller, K. (1998). Efficient backprop. Neural
networks: Tricks of the trade, pages 546–546. (page 38)

LeCun, Y., Chopra, S., Hadsell, R., Ranzatto, M., and Huang, F. (2007). Energy-
based models. In Predicting Structured Data, pages 191–246. MIT Press. (page 8)

MacKay, D. (1995a). Bayesian methods for supervised neural networks. In The
Handbook of Brain Theory and Neural Networks, pages 144–149. MIT Press.

(page 7)

MacKay, D. (1995b). Bayesian neural networks and density networks. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 354(1):73–80. (pages 26 and 29)

130 Bibliography

MacKay, D. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press. (pages 2, 7, 12, and 89)

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.
(pages 1 and 41)

Martens, J. (2010). Deep learning via Hessian-free optimization. In Proceedings
of the 27th International Conference on Machine Learning, pages 735–742.

(pages 21 and 109)

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A database of human
segmented natural images and its application to evaluating segmentation al-
gorithms and measuring ecological statistics. In International Conference on
Computer Vision, volume 2, pages 416–423. IEEE. (page 52)

Mitchell, T. (1980). The need for biases in learning generalizations. Technical
report, Department of Computer Science, Laboratory for Computer Science
Research, Rutgers University. (page 2)

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in
belief networks. In Proceedings of the 31th International Conference on Machine
Learning, volume 32 of Journal of Machine Learning Research W&CP, pages
1791–1799. (pages 29 and 30)

Mohamed, A., Dahl, G., and Hinton, G. (2009). Deep belief networks for phone
recognition. In NIPS Workshop on Deep Learning for Speech Recognition and
Related Applications. (page 2)

Murphy, K. (2012). Machine learning: a probabilistic perspective. MIT press.
(page 9)

Murray, I. (2015). Personal communication. (page 78)

Murray, I. and Salakhutdinov, R. (2009). Evaluating probabilities under high-
dimensional latent variable models. In Advances in Neural Information Pro-
cessing Systems, volume 21, pages 1137–1144. (pages 20, 25, 26, and 78)

Nair, V. and Hinton, G. (2010). Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th International Conference on Machine
Learning, pages 807–814. (pages 21, 49, 76, 101, and 109)

Bibliography 131

Neal, R. (1995). Bayesian Learning for Neural Networks. PhD thesis, University
of Toronto. (page 7)

Ormoneit, D. and Tresp, V. (1995). Improved Gaussian mixture density estimates
using Bayesian penalty terms and network averaging. In Advances in Neural
Information Processing Systems, volume 8, pages 542–548. MIT Press. (page 72)

Ozair, S., Yao, L., and Bengio, Y. (2013). Multimodal transitions for generative
stochastic networks. CoRR. arXiv preprint arXiv:1312.5578. (page 108)

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann. (page 27)

Qian, Y., Fan, Y., Hu, W., and Soong, F. (2014). On the training aspects of deep
neural network (DNN) for parametric TTS synthesis. In IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP-2014, pages
3829–3833. (pages 93 and 101)

Raiko, T., Li, Y., Cho, K., and Bengio, Y. (2014). Iterative neural autoregressive
distribution estimator NADE-k. In Advances in Neural Information Processing
Systems, volume 27, pages 325–333. (page 108)

Ranzato, M. and Hinton, G. (2010). Modeling pixel means and covariances using
factorized third-order Boltzmann machines. In Computer Vision and Pattern
Recognition, pages 2551–2558. IEEE. (page 22)

Richmond, K., King, S., and Taylor, P. (2003). Modelling the uncertainty in
recovering articulation from acoustics. Computer Speech & Language, 17(2):153–
172. (page 45)

Robinson, T. (1994). SHORTEN: simple lossless and near-lossless waveform
compression. Technical Report CUED/F-INFENG/TR.156, Engineering De-
partment, Cambridge University. (page 48)

Rubin, D. and Thayer, D. (1982). EM algorithms for ML factor analysis. Psy-
chometrika, 47(1):69–76. (page 17)

Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann machines. In Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics,
volume 5, pages 448–455. MIT Press. (pages 25 and 26)

132 Bibliography

Salakhutdinov, R. and Murray, I. (2008). On the quantitative analysis of deep
belief networks. In Proceedings of the 25th International Conference on Machine
Learning, pages 872–879. (pages 20, 21, 49, and 78)

Schaul, T., Zhang, S., and LeCun, Y. (2013). No more pesky learning rates.
In Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Journal of Machine Learning Research W&CP, pages 343–351.

(pages 65 and 109)

Senior, A., Heigold, G., Ranzato, M., and Yang, K. (2013). An empirical study
of learning rates in deep neural networks for speech recognition. In IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP-
2013, pages 6724–6728. (page 102)

Shannon, M., Zen, H., and Byrne, W. (2011). The effect of using normalized models
in statistical speech synthesis. In Proceedings of the 12th Annual Conference
of the International Speech Communication Association, Interspeech, pages
121–124. (pages 93, 94, and 100)

Shannon, M., Zen, H., and Byrne, W. (2013). Autoregressive models for statistical
parametric speech synthesis. IEEE Transactions on Audio, Speech, and Language
Processing, 21(3):587–597. (pages 100 and 105)

Silva, R., Blundell, C., and Teh, Y. (2011). Mixed cumulative distribution networks.
In Proceedings of the 14th International Conference on Artificial Intelligence
and Statistics, volume 15, pages 670–678. (page 49)

Silverman, B. (1986). Density Estimation for Statistics and Data Analysis, vol-
ume 26. CRC press. (pages 5, 7, and 8)

Smyth, P. and Wolpert, D. (1999). Linearly combining density estimators via
stacking. Machine Learning, 36(1-2):59–83. (pages 72 and 89)

Snoek, J., Larochelle, H., and Adams, R. (2012). Practical Bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing
Systems, volume 25, pages 2960–2968. (pages 65 and 109)

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary,
M., Prabhat, and Adams, R. (2015). Scalable Bayesian optimization using deep
neural networks. CoRR. arXiv preprint arXiv:1502.05700. (page 109)

Bibliography 133

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958. (pages 65, 74, and 109)

Sutskever, I. (2013). Training Recurrent Neural Networks. PhD thesis, University
of Toronto. (pages 21 and 76)

Tang, Y., Salakhutdinov, R., and Hinton, G. (2012). Deep mixtures of factor
analysers. In Proceedings of the 29th International Conference on Machine
Learning, pages 505–512. (pages 24, 49, and 52)

Taskar, B. (2004). Learning Structured Prediction Models: A Large Margin
Approach. PhD thesis, Stanford University. (page 1)

Theis, L., Gerwinn, S., Sinz, F., and Bethge, M. (2011). In all likelihood, deep
belief is not enough. The Journal of Machine Learning Research, 12:3071–3096.

(page 42)

Theis, L., Hosseini, R., and Bethge, M. (2012). Mixtures of conditional Gaussian
scale mixtures applied to multiscale image representations. PLoS ONE, 7(7).

(page 48)

Tieleman, T. (2008). Training restricted Boltzmann machines using approxima-
tions to the likelihood gradient. Proceedings of the 25th International Conference
on Machine Learning, pages 1064–1071. (page 21)

Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., and Kitamura, T. (2000).
Speech parameter generation algorithms for HMM-based speech synthesis. In
IEEE International Conference on Acoustics, Speech, and Signal Processing.
ICASSP-2000, pages 1315–1318. (pages 93 and 105)

Tomoki, T. and Tokuda, K. (2007). A speech parameter generation algorithm con-
sidering global variance for HMM-based speech synthesis. IEICE Transactions
on Information and Systems, 90(5):816–824. (page 93)

Uria, B. (2011). A deep belief network for the acoustic-articulatory inversion
mapping problem. Master’s thesis, University of Edinburgh. (page 45)

Uria, B., Murray, I., and Larochelle, H. (2013). RNADE: The real-valued neural
autoregressive density-estimator. In Advances in Neural Information Processing
Systems, volume 26, pages 2175–2183. (page 41)

134 Bibliography

Uria, B., Murray, I., and Larochelle, H. (2014). A deep and tractable density
estimator. In Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Journal of Machine Learning Research W&CP, pages
467–475. (page 67)

Uria, B., Murray, I., Renals, S., Valentini, C., and Bridle, J. (2015). Mod-
elling acoustic feature dependencies with artificial neural networks: Trajectory-
RNADE. In IEEE International Conference on Acoustics, Speech and Signal
Processing. ICASSP-2015, pages 4465–4469. (page 91)

Verbeek, J. (2005). Mixture of factor analyzers Matlab implementation. (page 51)

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning, pages 1096–1103. ACM.

(pages 30 and 74)

Wang, N., Melchior, J., and Wiskott, L. (2012). An analysis of Gaussian-binary
restricted Boltzmann machines for natural images. In European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning,
pages 287–292. (page 23)

Welling, M. and Hinton, G. (2002). A new learning algorithm for mean-field
Boltzmann machines. In Proceedings of the International Conference on Artificial
Neural Networks, pages 351–357. Springer. (page 36)

Welling, M., Rosen-Zvi, M., and Hinton, G. (2005). Exponential family har-
moniums with an application to information retrieval. Advances in Neural
Information Processing Systems, 17:1481–1488. (page 22)

Williams, C. (2005). How to pretend that correlated variables are independent by
using difference observations. Neural Computation, 17(1):1–6. (page 100)

Williams, P. (1996). Using neural networks to model conditional multivariate
densities. Neural Computation, 8(4):843–854. (pages 45 and 94)

Wolpert, D. (1996). The lack of a priori distinctions between learning algorithms.
Neural Computation, 8(7):1341–1390. (page 2)

Bibliography 135

Xie, F., Qian, Y., Fan, Y., Soong, F., and Li, H. (2014). Sequence error minimiza-
tion training of neural network for voice conversion. In Proceedings of the 15th
Annual Conference of the International Speech Communication Association,
Interspeech, pages 2283–2287. (page 100)

Yin, X., Ling, Z., and Dai, L. (2014). Spectral modeling using neural autoregressive
distribution estimators for statistical parametric speech synthesis. In IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP-
2014, pages 3824–3828. (page 105)

Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T., Black, A., and Tokuda, K.
(2007a). The HMM-based speech synthesis system version 2.0. In Proceedings
of the 6th ISCA Workshop on Speech Synthesis, pages 294–299. (page 101)

Zen, H. and Senior, A. (2014). Deep mixture density networks for acoustic
modeling in statistical parametric speech synthesis. In IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP-2014, pages
3872–3876. IEEE. (pages 93, 94, and 101)

Zen, H., Senior, A., and Schuster, M. (2013). Statistical parametric speech
synthesis using deep neural networks. In IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP-2013, pages 7962–7966. IEEE.

(page 93)

Zen, H., Tokuda, K., and Black, A. (2009). Statistical parametric speech synthesis.
Speech Communication, 51(11):1039–1064. (pages 92 and 93)

Zen, H., Tokuda, K., and Kitamura, T. (2004). An introduction of trajectory model
into HMM-based speech synthesis. In Proceedings of the 5th ISCA Workshop
on Speech Synthesis, pages 191–196. (pages 93, 96, and 99)

Zen, H., Tokuda, K., and Kitamura, T. (2007b). Reformulating the HMM as a
trajectory model by imposing explicit relationships between static and dynamic
feature vector sequences. Computer Speech & Language, 21(1):153–173. (page 93)

Zoran, D. (2013). Personal communication. (page 52)

Zoran, D. and Weiss, Y. (2011). From learning models of natural image patches
to whole image restoration. In International Conference on Computer Vision,
pages 479–486. IEEE. (pages 7, 14, 52, and 55)

136 Bibliography

Zoran, D. and Weiss, Y. (2012). Natural images, Gaussian mixtures and dead
leaves. Advances in Neural Information Processing Systems, 25:1745–1753.

(pages 49, 52, 56, 85, and 88)

	cover sheet
	thesis
	Introduction
	List of contributions

	Connectionist density estimation
	Density estimation
	Gibbs distributions
	Mixture models
	The EM-algorithm
	Mixtures of multivariate Bernoullis
	Mixtures of Gaussians
	Mixtures of factor analysers

	Boltzmann machines
	Restricted Boltzmann machines
	Gaussian-Bernoulli restricted Boltzmann Machines
	Deep belief networks
	Deep Boltzmann Machines

	Density networks
	Helmholtz machines
	Generalized denoising autoencoders and generative stochastic networks
	Autoregressive models
	Logistic autoregressive Bayesian networks
	Autoregressive neural network models
	Neural autoregressive distribution estimators

	The real-valued neural autoregressive density estimator
	Introduction
	Gaussian-RBM autoregressive mean-field updates
	The real-valued neural autoregressive density estimator
	Computational cost of RNADE
	Variants of parametric conditionals
	Neural network alterations

	Experiments
	Low-dimensional data
	Natural image patches
	Speech acoustics

	Sensitivity to the ordering of dimensions
	Discussion

	A deep and tractable density estimator
	Introduction
	Training a factorial number of NADEs
	Improved parameter sharing using input masks

	On the fly generation of NADE ensembles
	Related work
	Experimental results
	Binary datasets
	Real-valued datasets

	Discussion

	RNADE for speech synthesis
	Introduction
	Dependencies among acoustic features

	Artificial neural networks for acoustic modelling
	Conditional RNADE
	Trajectory hidden Markov models
	Trajectory-HMMs with RNADE observations
	Experimental design
	Experimental results
	Discussion

	Conclusions
	Mean-field Gaussian-RBM derivations
	RNADE-MoG gradient derivations
	Density estimation
	Learning gradients

	Input masks and marginalization under a Bayes' classifier
	Bibliography

