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ABSTRACT 

 

The FireGrid project defines a vision whereby computational fire simulation tools are linked to 

real-time information derived from sensors in a building, providing potentially valuable information to 

an end user in terms of the current fire conditions, and, via steered models, their possible evolution. This 

paper outlines the “steering” of the simulation by the sensor data, and demonstrates the potential to 

provide responders with more information than that available solely from the sensor measurements. A 

hypothetical example is described, with a coupled model of fire development and human evacuation 

behaviour used to predict the locations in the building where casualties are most likely to occur.  

 

INTRODUCTION 

 

The modern built environment is rich in sensors which, in addition to their normal building 

management functions, can also be exploited to provide useful information in the event of a fire 

occurring. A detailed knowledge of the evolving conditions during a fire emergency can in theory be 

used to improve the response, both by the occupants and also by fire-fighters. The motivation for the 

FireGrid project [1,2] came from incidents such as the terrorist attacks on the World Trade Center in 

New York, and the building collapses that occurred as a result. The vision of the FireGrid project is to 

couple computational fire simulation tools with real-time sensor information in order to predict the 

future development of the fire and provide advance warning of extreme events such as structural failure. 

However the same approach can also be employed to advantage in less severe fires, by giving 

fire-fighters a better picture of what conditions they may face inside the building. In this paper we shall 

describe an example where the probability of fatalities is estimated for different locations within the 

building, enabling a search and rescue strategy to be prioritised. 

 

STEERING OF MODELS USING BAYESIAN INFERENCE 

 

Mathematically, Bayes’ Theorem is most often expressed in the following form: 
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where P(A) is the probability of event “A” occurring (often termed the “prior” probability), P(A|B) is the 

conditional probability of A occurring, given that event “B” occurs (often termed the “posterior” 

probability). Similarly, P(B) is the probability of B, and P(B|A) is the conditional probability of B given 

that A occurs. The “prior” probability is updated in the light of fresh evidence (the occurrence of event 

B) to give the posterior probability. 

 

If the events A and B both have a range of different outcomes, then following the observation of a 

particular outcome Bi we can write Bayes’ Theorem as follows: 
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where the denominator is an alternative way of expressing P(Bi). If we define the likelihood function 

L(Bi|Aj) as 
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then equation {2} can be simplified to 
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i.e. the posterior probability = the prior probability x the likelihood function. This calculation of the 

posterior probability estimate is known as Bayesian Inference. 

 

A simple example may illustrate the process. Suppose we have a fire in a room, adjacent to a corridor 

that contains a smoke alarm. Let us further assume that the chance of detecting the fire at a given time is 

50% if the connecting door is open, but only 1% if the door is closed (some leakage of smoke around the 

edges may occur). We will use the notation A1 = door open, A2 = door closed, B1 = detection, B2 = no 

detection. If we have no prior information regarding the state of the door, we assign P(A1) = P(A2) = 0.5. 

Substituting into equation {3}, the likelihood L(B1|A1) of detecting the fire if the door is open is 0.50 / 

(0.50 x 0.5 + 0.01 x 0.5), which equals 1.96. Hence, from equation {4}, the inferred probability that the 

door is open, given that the detector operated, is 1.96 x 0.5 = 0.98. If on the other hand there is no 

detection, the likelihood L(B2|A1) of not detecting the fire if the door is open is 0.50 / (0.50 x 0.5 + 0.99 

x 0.5), which equals 0.67, and hence the inferred posterior probability that the door is open is only 0.33. 

 

In a more realistic and complex building, the link between cause and effect will be less straightforward. 

In order to derive the likelihood function, we can use fire modelling to predict what the sensor 

measurements will be, for given input conditions (e.g. combinations of doors open and closed, fire 

location, rate of fire growth, etc). We can estimate P(Bi|Aj) simply as the number of times a particular 

sensor observation Bi occurs in the model outputs, divided by the number of times that the model 

chooses a particular set of input conditions Aj.  

 

With any realistic number of sensors, a perfect match between the model and the actual fire has a 

negligible probability of arising “by chance” with a lucky choice of the necessary input values Aj. Indeed, 

how does one define a match for an analogue device such as a thermocouple? We therefore calculate a 

“fractional match” based on the goodness of fit from a χ
2
 test for each set of predicted sensor readings 

compared to the actual observations. As ν, the number of degrees of freedom (i.e. sensor readings) 

increases, we can approximate the χ
2
 distribution with a Normal distribution of mean ν, variance 2ν. 

 

Note that it is simply impracticable to calculate (and store) the likelihood functions for all possible 

permutations of the Aj’s and Bi’s. The model therefore needs to run (many times, very quickly) at the 

same time as the fire is developing, in order to calculate the likelihood functions for the observed sensor 

measurements. 

 

If the model is run beyond the time of the current sensor observations, it can be used to predict the future 

– not just further sensor measurements, but also e.g. how fast the fire is growing, how likely flashover is 

to occur, whether people will be exposed to smoke and how likely this is to prove fatal, etc. The range of 

variables that can be predicted obviously depends on the capabilities of the model being used for the 

task. 
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Initially, the model will be run with Monte-Carlo sampling that reflects the a-priori understanding of the 

probability distributions for the input variables. As sensor measurements become available, Bayesian 

Inference is used to update these (posterior) probability distributions. The Monte-Carlo sampling will 

then use the posterior distributions, rather than the prior distributions. The predictions from the model 

will also change, in the light of the posterior probabilities. Over time (via observational evidence), the 

posterior probabilities for the input variables will converge on values that give a close match between 

the model and the actual fire, up to the current time – and hopefully also a good match for some time into 

the future as well. 

 

For the FireGrid project, we have used the BRE Monte-Carlo model CRISP, which includes a 

fully-coupled simulation of fire growth, smoke spread, active and passive fire protection systems, and 

the egress and interaction of people with the fire environment [3]. Some minor changes to the CRISP 

source code were required to port the model from a PC to high-performance computers (HPC), 

specifically Edinburgh’s ECDF cluster and the national HPCx machine. Detection of the fire would 

trigger the transmission of the sensor readings to the HPC over a high-speed data network (the “Grid”, 

hence the project name “FireGrid”). This would also trigger execution of the model, predictions from 

which would be passed together with the actual sensor measurements to the fire-fighters’ Command and 

Control centre, to inform their operational decisions. A live fire demonstration that integrated all the 

components of the FireGrid project took place at BRE in October 2008 [2]. Here, a different example 

application is described for the purpose of illustrating the potential for sensor steering, orientated around 

the human behaviour aspects of the problem. 

 

APPLICATION EXAMPLE 

 

The application example described in this paper is a hypothetical care home building for the 

elderly. It was chosen to provide a balance between realism and practicality (given the current state of 

development of FireGrid). The structure is subdivided into a number of compartments, allowing the risk 

estimates to be localised. 

 

Scenario description 

The floor plan of the hypothetical building is shown in figure 1. Each room has an ID number, from 1 to 

33. Rooms 1~14, 17~20 and 23~24 are bedrooms; rooms 15, 16 and 21 are bathrooms; rooms 22, 25, 27 

and 30 are store rooms; rooms 26 and 29 are common rooms, room 28 is the staff room, and “rooms” 

31~33 are corridors. The room usage affects the probabilities and types of fires that are expected to 

originate there, and the probability that people will be present. 

 

Doors link the rooms with the corridors. They are identified by the ID’s of the rooms they connect (with 

a further identifier “top”, “bottom”, “left” or “right” as required. The open ends of corridors 31 and 33 

represent the building exits.  

 

There is a smoke detector fitted in each room, identified by the room ID number. 

 

There is one elderly resident for each of the bedrooms (20 in all). 75% of the residents are ambulant, the 

remainder require assistance to escape. Their behaviour is simple: on hearing the alarm there is a delay 

while they react (and wake up if necessary), then the ambulant ones escape while the non-ambulant 

await rescue. It has been assumed for this example that the “actual” fire starts in the late evening, so 

some residents will be in their bedrooms (awake or asleep), while others are in the common rooms or 

bathrooms. 

 

There are two members of staff on “night duty”. They are assumed to be in the staff room (ID = 28), and 

when they have heard and reacted to the alarm, they will investigate the fire and attempt first-aid 

fire-fighting if conditions permit, and warn and rescue residents as necessary. 

 

Human Behaviour in Fire Symposium 2009

563



1

32

23

4

5

7 8 9 11

22

3 14

16

17

30

31

2

13 24

15

26

2829

10

21

12

33

25

6

27

18 19 20

33

1

32

23

4

5

7 8 9 11

22

3 14

16

17

30

31

2

13 24

15

26

2829

10

21

12

33

25

6

27

18 19 20

33

 
 

Figure 1. Layout of the hypothetical building example. 

 

The “actual” fire (itself a CRISP simulation) starts in room 25. The doors have self-closers fitted, and it 

has been assumed a-priori for the Bayesian Inference that there is only a 5% chance that each door will 

(independently) be wedged open. However, for the actual fire, the following doors are open: (25-32), 

(8-32), (12-33), (16-32), (26t-33) and (32-33). During the fire, the following detectors activate: 25 

(0.5min), 32 (1min), 8 (1.5min), 16 (1.5min), 33 (1.5min), 31(2min), 12 (5min), 26 (6.5min), 23 (8min) 

and 20 (11min). Note that some of these are in rooms where the doors were initially closed, therefore 

must have been opened (permitting smoke movement) at some time later as a consequence of human 

behaviour and evacuation. 

 

Results 

After 5 minutes the situation is as shown in figure 2. The shaded rooms are those in which a smoke 

detector has activated in the “actual fire”. The double-ended arrows indicate doors which are wedged 

open in the “actual fire”. The skull symbols indicate the rooms where the sensor-steered CRISP model is 

predicting a risk of death per fire that is greater than 1x10-3
, at a time of 30 minutes after ignition (i.e. 

each CRISP simulation is run for 25 minutes “simulated time” beyond the 5 minutes of sensor data). 

 

The sensor-steered CRISP model was good at identifying which doors were open, but less successful in 

deducing the properties of the fire (growth rate, etc). Almost certainly it would have helped to record 

precise detector activation times, rather than simply “on / off” every 30 seconds. However there are still 

some unresolved issues with the implementation of the Bayesian Inference – some of which come down 

to the fundamental question “what is the (quantified) goodness of fit between the model and the data?”. 

Using a χ
2
 test to estimate the fit is not perfect, since the test assumes all the measurements are 

independent, when some clearly are not. Also, the error terms in the χ
2
 formula are likely to be 

dominated by modelling rather than measurement uncertainties. How should the modelling uncertainties 

be estimated? 
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Figure 2. Situation 5 minutes after fire starts. Shading indicates rooms where detection has occurred; 

double-headed arrows indicates doors initially wedged open, and skull symbols show where deaths are 

predicted to occur up to 30 minutes after fire start. 

 

Note that the above visualisation is useful for a spatial overview of where the risks are, but gives no 

information on the relative magnitude of the risks. For this paper, a simple histogram of risk versus room 

ID can be plotted (figure 3), although this would be impractical for larger multi-compartmented 

buildings. There is a question whether only deaths should be shown or people with significant non-fatal 

toxic doses as well. Also note that neither visualisation method shows the uncertainties inherent in the 

predictions. More work would be required on the visualisation interface to address these issues. 

 

It is striking that the majority of deaths are predicted to occur in the corridors. In order to investigate the 

possibility that these resulted from the actions of the staff (either exposing themselves to smoke in an 

effort to rescue dependent occupants, or exposing occupants as a consequence of the rescue attempts), 

the simulations were repeated without staff intervention. Space does not permit a detailed examination 

of these results, but it was noted that the overall risk levels were much higher without the staff, and that 

the risks were distributed over a greater number of rooms. 
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Figure 3. Estimated risk of death per fire in each of the different rooms of the building, 5 minutes and 30 

minutes after fire start. 

 

CONCLUSIONS 

 

This paper demonstrates the potential of using a sensor-steered simulation to predict the future 

evolution of fire emergencies, and thus provide responders with more information than that available 

solely from the sensor measurements. The results are sensitive to the assumptions made about the 

human behaviour, so it is important to get this right. In addition to the determination of a-priori data for 

the model, there is also further work to be done on the Bayesian Inference process, and on the 

visualisation of the results. 

 

The results in this paper are intended solely to demonstrate the sensor-steering process, and should in no 

way be taken as representative of the hypothetical building occupancy type. 
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