GRAVITY AND OTHER GEOPHYSICAL STUDIES RELATING TO THE CRUSTAL STRUCTURE OF SOUTH-EAST SCOTLAND

by
Evangelos Lagios
B.Sc., Athens University

```
Thesis presented for the degree of
Doctor of Philosophy
of the University of Edinburgh in the
Faculty of Science
```

OCTOBER 1979

DECLARATION

I hereby declare that the work presented in this thesis is my own unless otherwise stated in the text, and that the thesis has been composed by myself.

Evangelos Lagios

CONFESSIONS...

Twameva mata Chapita twameva
Twameva bundhu cha sukha twameva
Twameva vidya draminam twameva
Twameva sarvan mama deva deva
Twameva sarvan mama deva deva
Twameva sarvan mama deva deva

Elizabeth

- iv -

```
I would like to express my sincere thanks to all those who helped me in any way to complete this thesis.
I am thankful to Professor K M Creer, Head of the Geophysics Department for allowing me full use of the Departmental facilities to carry out my project, and for his strong support for financial assistance.
```

I am grateful and particularly indebted to Dr Roger G Hipkin, my supervisor and initiator in Geophysics, not only for suggesting the project, but also for the kindness he has shown me during my stay in Edinburgh and his valuable help which I received in innumerable ways. Dr Hipkin accompanied me many times in fieldwork and particularly during the most difficult part of it, by walking up and down the hills at Lammermuir and Tweeddale in the Southern Uplands. I am thankful to him not only for his constant guidance and advice, but also for his extremely helpful and constructive criticisms during the progress of this thesis. For me it was a great pleasure and joy working with him.

Abstract

I express my sincere thanks to Graham Dawes for his help and advice which I received in computing, especially during the implementation of the contouring routines and his occasional helpful company in fieldwork, which was fully appreciated and is gratefully acknowledged.

I am deeply indebted to my wife, Elizabeth, for her strong support, help in fieldwork and encouragement throughout my work.

I am pleased to extend my warm thanks to Drs Chris Swain and David Powell for their computer programs given to me for my work.

I am thankful to Drs Bruce Hobbs, Rosemary Hutton, Roy Gill and John Donato for useful discussions; especially to Dr Gill for giving me samples for density measurements.

I would like to thank Mr McQuillin, Head of Marine Geophysics Unit, IGS, for his permission to include in my thesis open-file IGS maps.

Also, I express my thanks to Professor J Drakopoulos, Athens University for his strong support for financial assistance and the encouragement he gave me to come to Edinburgh for postgraduate studies. The latter is gratefully acknowledged.

My friends and colleagues, K Dimitropoulos and K Makropoulos; the first for his assistance and useful discussions and the second for the strong support he has shown me for financial assistance.

I would like to thank my parents for their financial support and constant encouragement for which I will never be able to repay them.

The Schillizzi Foundation, the National Hellenic Research Foundation and the Royal Society of London for financial assistance.

Mr John McInnes for computing help with the SACM package.

Miss Routh Thomas who kindly did the susceptibility measurements.

All other members of the Geophysics Department and all my student colleagues, especially, Khalid Fahmi, for the enjoyable time I have had with them during the last three years.

Finally, Miss Linda Nisbet who kindly gave up many of her hours to type this thesis, an achievement for which I am indebted to her.

About 2500 gravity stations were established during a gravity survey of south-east Scotland. The reduction of the gravity observations, including computations of terrain corrections out to 22 km was made automatically by a sequence of computer programs and the Bouguer gravity anomaly map was plotted using different modern contouring routines.

The densities of about 200 rock samples were measured and a new method of estimating the surface density of rock formations, by fitting trend surfaces to the Bouguer anomaly, is described.

The gravity base network was adjusted manually but a least-squares analysis is also described which includes the instrumental drift. A computer program, based on this algorithm was written to perform the calculations and an RMS error of $0.096 \mathrm{~g} . \mathrm{u}$. was obtained for the adjustment of the network.

The Bouguer gravity anomaly map was interpreted with control from aeromagnetic and seismic information. The long-wavelength negative gravity anomaly of the Southern Uplands was interpreted as due to a granite batholith underlying the whole north-eastern part of the region. Particularly in the Tweeddale area, the detailed gravity model was also supported by aeromagnetic modelling. Three bosses near Peebles appear to come within $1 \frac{1}{2} \mathrm{~km}$ of the surface while another near Lammer Law may be shallower still. The interpretation with a granite batholith underlying the area and extending to a depth of $10-12 \mathrm{~km}$
is generally compatible with other geophysical studies in the same area (seismic and magnetotelluric) and explains the formation of some interesting geological faulting features (the Southern Uplands Fault System) as well as the different rates of sedimentation between East Lothian and Midlothian.

The Devonian basins of Lauder, Eyemouth and Oldhamstocks have been studied gravimetrically. The first appears to be a simple V-shaped valley filled with Old Red Sandstone sediments, with a thickness of about 550 m near Lauder. The last two are faulted-bounded and have greater sediment thickness: about 900 m for Oldhamstocks and perhaps 1900 m for Eyemouth. The Cove and Innerwick Faults bounding the main Oldhamstocks Basin have estimated maximum throws of 800 m and 500 m respectively, while the Eyemouth and Coldingham Bay Faults both have throws of about 600 m . The Great Conglomerate of Monynut Edge, west of Oldhamstocks, has a thickness which is unlikely to exceed 400 m .

Finally, an investigation of the Lower Carboniferous volcanics in East Lothian and the inner Firth of Forth was based on combined gravity and magnetic models. The maximum thickness of the volcanics was found to be about 470 m , a few kilometres offshore from Aberlady. They were found not to be the main cause of the north-westerly gravity gradient in the area, which is an edge effect of the underlying granite batholith.
Title i
Declaration ii
Confessions iii
Dedication iv
Acknowledgements v
Abstract viii
Contents x
List of figures xiii
List of tables xvi
CEAPTER I
GEOLOGICAL ATD GEOFEYEICAI SETIEM

1. 1 Tectonic Review 1
1.2 Geological history 8
1.3 Geophysical Review 11
CHAPTER II
FIBLDHCRR AND עAUA KEDUCTICN
2.1 Location of Gravity Measurements 20
2.2 Elevation and Position Measurements 22
2.3 Gravity Measurements 23
2.3.1 Instrument-Drift Characteristics 23
2.3.2 Data Reduction 26
2.3.3 Terrain Corrections 28
2.3.3.1 Digitisation Scheme 28
2.3.3.2 Description of the Terrain Correction, TERCOR, Computer Program 29
2.3.4 Accuracy of Terrain Corrections 32
2.4 Density Measurements 35
2.4.1 Laboratory Density Measurements 35
2.4.2 Least Squares Density Determination 42
2.5 Gravity Anomalies 44
2.5.1 Error estimation of the Gravity Anomalies 47
CHAPTER III
GRATITV BASE STATION NETMOSK ADJUSTHENT
3.1 Introduction 50
3.2 Manual Adjustment of the Network 51
3.3 Least-Squares Adjustment 55
3.3.1 Intraduction 55
3.3.2 Definitions 56
3.3.3 Notation 56
3.3.4 Observational Equation 57
3.3.5 Variance 57
3.3.6 Normal Equations 57
3.3.7 Error Analysis 59
3.3.8 . Programming - Results 63
3.3.9 Calibration Factor Tests 71
CHAPTER IV
THE BOUGUER GRAVITY ANO:ALY ©AF AYD CONTOURTVG ROTTIYEJ
4.1 Introduction 76
4.2 Bouguer Gravity Anomaly Map 76
4.2.1 Construction 76
4.2.2 Description and Correlation with the Geology 79
4.3 Automatic Contouring Routines 87
4.3.1 CALCOMP's General Purpose Contouring Program (GPCP) 91
4.3.2 TRIANG Routine 91
4.3.3 SACM 95
4.4 Regional-Residual Separation 99
CHAPTER V
GRANITES AND OTYER DEEP IGNEODS INPROSIONS
5.1 Introduction 108
5.2 Tweeddale (Peeblesshire) 108
5.2.1 Brief Geological Account 108
5.2.2 Residual Bouguer Gravity Anomaly Map 109
5.2.3 Interpretation 118
5.2.3.1 Density Variation of the Sediments 119
5.2.3.2 Sediment Thickness Variation 121
5.2.3.3 Igneous Intrusion 123
5.2.4 Modelling Procedure 126
5.2.4.1 Gravity 128
5.2.4.2 Magnetic 133
5.2.4.3 Discussion 140
5.3 .Selkirkshire 141
5.3.1 Basement. Uplift 143
5.3.2 Near Surface Intrusion 143
5.4 North-Eastern Southern Uplands 150
5.4.1 Geological Evidence 150
5.4.2 Aeromagnetic Anomalies 152
5.4.3 The Berwick upon Tweed Aeromagnetic Anomaly 154
5.4.4 Gravity Modelling 160
CHAPTER VI
DEYONIAN BASINS AND TAE EAST LOTHIAN AREA
6.1 Introduction 170
6.2 Devonian Basins of SE Scotland 170
6.2.1 Introduction 170
6.2.2 Lauderdale Basin 175
6.2.3 Oldhamstocks Basin 181
6.2.3.1 The Great Conglomerate 181
6.2.3.2 The Lower Carboniferous Sediments 186
6.2.4 Eyemouth Basin 195
6.3 Lammermuir and Dunbar-Gifford Faults 202
6.4 East Lothian Area 209
6.4.1 Continuation of S. E. Granite under East Lothian 217
CHAPTER VII CONCLUSIONS
7.1 Gravity Data Processing 221
7.2 Geological Interpretations 221
REPERENCES 226
APPENDIX A
DATA INPUT TO PROGRAM NET:YORK 237
APFENDIX B
NETHORK COMPUTER PROGRAA
2. Desaription. 245
3. Listing 247
APPENDIX C
CATALOGUE OF GRAVITY DATA 254
APPENDIX D
PROGRAMS AND ROUTINES USED 300
APPENDIX ELISTING OP PROGRAM DENS3304
BACK POCKET1. Aeromagnetic hap of Great Britain (Sheet 1). Compiled by IG.S2. Boveuer Gravity Anomaly Map of SE Scotland
4. Geological Sketch Map of SE Scotland
Figure l.l Caledonian Model (Mitchell \& McKerrow, 1975) 5
Figure 1.2 Caledonian Model (Phillips, et al, 1976) 7
Figure 1.3 LISPB experiment (Bamford et al, 1978) 18
Figure 2.1 Survey area 21
Figure 2.2 Laboratory drift tests (Hipkin, 1978b) 25
Figure 2.3 Outline of the local terrain effect 30
Figure 3.1 Gravity base station distribution over the study area 52
Figure 3.2 Manual gravity base station adjustment 53
Figure 4.1 Gravity anomaly map, plotted by GPCP at 1.5 km grid 77
Figure 4.2 Gravity anomaly map superimposed on the geological map 78
Figure 4.3 Gravity anomaly map plotted with digitised marine data 80
Figure 4.4 Aeromagnetic map over East Lothian and the Firth of Forth 83
Figure 4.5 Smoothed aeromagnetic map (Hall \& Dangley, 1970) 85
Figure 4.6 Gravity anomaly map plotted by GPCP at lkm grid 92
Figure 4.7 Bouguer gravity map plotted by TRIANG routine 94
Figure 4.8 Gravity observations in the study area 96
Figure 4.9 Bouguer gravity map plotted by SACM 98
Figure 4.10 First-degree trend surface of gravity field 102
Figure 4.11 Second-degree trend surface of the gravity field 103
Figure 4.12 Third-degree trend surface of the gravity field 104
Figure 4.13 First-degree residual gravity anomaly map 105
Figure 4.14 Second-degree residual gravity anomaly map 106
Figure 4.15 Third-degree residual gravity anomaly map 107
Figure 5.la Residual gravity anomaly map superimposed over the sketch geological map of the Tweeddale area 111
Figure 5.1 Gravity anomaly map of the Tweeddale area 110
Figure 5.2 Gravitational effect of the LISPB model 113
Figure 5.3 Variation of the regional field calculated from LISPB over the Southern Uplands 114
Figure 5.4 Residual gravity map of the Tweeddale area (linear trend subtracted) 116
Figure 5.5 Residual gravity map of the Tweeddale area subtracting a quadratic trend 117
Figure 5.6 3-D Representation of the residual map of Tweeddale modelled as sedimentary basin 122
Figure 5.7a Gravity profile $A B$ 128
Figure 5.7 2-D Model of Tweeddale granite 131
Figure 5.8a 3-D Model of Tweeddale granite 132
Figure 5.8 Alternative 3-D model of Tweeddale granite 134
Figure 5.9 Alternative model of Tweeddale granite 135
Figure 5.10 Alternative model of Tweeddale granite 136
Figure 5.ll Aiternative model of Tweeddale granite 137
Figure 5.12 Aeromagnetic map with profile (M1) 138
Figure 5.13 Interpretation of (M1) profile 139
Figure 5.14 Interpretation of gravity profile AB 144
Figure 5.15 Alternative interpretation of profile AB 145
Figure 5.16 Alternative interpretation of profile AB 147
Figure 5.17 Alternative interpretation of profile $A B$ 148
Figure 5.18 Outcrops of granitic masses in Southern Uplands 151
Figure 5.20 Aeromagnetic map of part of Berwickshire 155
Figure 5.21 Aeromagnetic profile (M2) 156
Figure 5.2la Berwick Monocline (Shiell, 1963) 158
Figure 5.22 Bouguer gravity map of part of the Southern Uplands 161
Figure 5.23 2-D Representation of the Southern Uplands granite 163
Figure 5.23a 3-D Model of the Southern Uplands granite 164
Figure 5.23b 3-D Model of the Southern Uplands granite 165
Figure 5.24 Bouguer gravity map compiled with Bouguer density $2.70 \mathrm{~g} / \mathrm{cm}^{3}$ 167
Figure 5.25 Part of Bouguer gravity map of the Southern Uplands (Bouguer density $2.70 \mathrm{~g} / \mathrm{cm}^{3}$) 168
Figure 5.26 Alternative 2-D and 3-D model of the Southern Uplands granite 169
Figure 6.1 Palaeogeography of South Scotland and North England of Upper Old Red Sandstone (after Leeder, 1973) 173
Figure 6.2 Direction of palaeocurrents of Upper Old Red Sandstone (after Bluck, 1978) 174
Figure 6.3 Interpretation of profile (LI) - Lauderdale 177
Figure 6.4 Possible interpretation of profile (L2) - Lauderdale 178
Figure 6.5 Possible interpretation of profile (L3) - Lauderdale 180
Figure 6.6 Possible interpretation of profile (II) - Oldhamstocks 184
Figure 6.7 Possible interpretation of profile (I2) - Oldhamstocks 185
Figure 6.8 Open-file IGS geological map (East Lothian) 188
Figure 6.8a Open-file IGS geological map (part of Berwickshire) 189
Figure 6.9 Interpretation of gravity profile (OLl) Oldhamstocks 191
Figure 6.10 Alternative interpretation of (OLl) gravity profile 192
Figure 6.11 Gravity anomaly (rotated) map of Oldhamstocks basin 194
Figure 6.12 3-D Model of the Oldhamstocks basin 196
Figure 6.13 Gravity map superimposed over a sketch geological map of Eyemouth basin 198
Figure 6.14 3-D Model of Eyemouth basin -199
Figure 6.15 Diagramatic representation of the throw of the Lammermuir and Dunbar-Gifford Faults 203
Figure 6.16 Digitised aeromagnetic map at. 2 km intervals 212
Figure 6.17 2-D Modelling of the volcanics of East Lothian and the Firth of Forth 213
Figure 6.18 Gravity effect of the East Lothian and Firth of Forth volcanics 216
Figure 6.19 2-D Model of profile . KL 219
Page
Table II-l Comparison between computer and hand-made terrain corrections 34
Table II-2 Sample description of density measurements 38
Table II-3 Density measurements 40
Table II-4 Summary of density measurements of main rock types 43
Table II-5 Density estimations fitting trend surfaces 45
Table III-1 Adjusted values of gravity base stations by least- squares 65
Table III-2 Lower and upper limits of gravity base stations with 95\% confidence 67
Table III-3 Lower and upper limits of standard deviations with 95\% confidence 69
Table III-4 Histogram of residuals 72
Table III-5 Adjusted and NGRN-73 values of some gravity stations 73
Table III-6 Scale calibration results 74
Table V-l Computed Bouguer density for each lokm National Grid Square over the Tweeddale area 120
Table VI-1 Summary of throws of Lammermuir and Dunbar-Gifford Faults 204

1.1 Tectonic Review

The importance of the Caledonian earth movements becomes apparent when attempting to determine the tectonic history of the Midland Valley and the Southern Uplands from Pre-Cambrian to Upper Palaeozoic and onwards. Many plate tectonic models have been suggested to explain the geology of the southern terminations of the British Caledonides. Most of these models have been reviewed by Moseley (1977).

Wilson (1966) first published, after considerations of fatal evidence, the idea of a Proto-Atlantic ocean, which separated NW Scotland, NW Ireland and W Newfoundland from England-Wales, SE Ireland and E Newfoundland (Wright, 1976). The possible mechanism of its closure in late Ordovician times was suggested by plate tectonics. That Proto-Atlantic or Iapetus Ocean (Harland and Gayer, 1972) was an ocean of long standing (Wright, 1976) and, today, after the accumulation of so much supporting evidence (Williams, 1969, 1972, 1975), its existence is not in dispute, although the process which caused its closure is still not certain.

In the following a brief outline will be given of plate tectonic models associated with the Midland Valley and the Southern Uplands. In those models, the crustal composition under the Midland Valley and Southern Uplands, ie, whether it was of continental or oceanic crust, was a matter of controversy, at least at the beginning.

First, Dewey (1969, 1971) and Dewey and Pankhurst (1970) postulated that subduction took place both to the north-west near the Southern Uplands Fault and also, to the south-east, under the Solway-Northumberland basin. Subduction to the south-east received support from geochemical analysis of the regional magmatic variations in the Ordovician volcanic rocks of England, by Fitton and Hughes (1970). Subduction to the north-west was supported by Church and Gayer (1973). Garson and Plant (1973), in order to explain the calc-alkaline volcanicity in the Midland Valley in Lower Devonian times, accepted the existence of a northward Benioff zone between the Midland Valley and Southern Uplands. Therefore, the Southern Uplands was presented as overlying an oceanic crustal remnant. According to Jean's (1973) and Gunn's (1973) models, so was the Midland Valley.

This was the situation concerning the attempts at modelling by different workers without taking into consideration the full implications of the geophysical evidence, because, after that the idea of oceanic crust under the Midland Valley and Southern Uplands had to be abandoned.

Powell (1971, 1977b) and Agger and Carpenter (1965) pointed out using gravity, magnetic and seismic data, that continental crust underlies the Southern Oplands : the Moho lies at a depth of about 35 km , with overlying layers with a p-wave velocity of $6.4 \mathrm{~km} / \mathrm{s}$ and $5.8 \mathrm{~km} / \mathrm{s}$. Consequently, the models of Dewey and Fitton and Hughes with oceanic crust under the Southern Oplands are unrealistic. Phese models were also strongly criticised by Gunn (1972).

Results from the Lithospheric Seismic Profile of Britain (LISPB) by Bamford et al $(1976,1977,1978)$ have shown that continental crust underlies the Midiand Valley. The seismic layering, including the 6.4 km / s refractor which outcrops in NW Scotland as Lewisian granulite, appears to be continuous as far as the Southern Uplands and may extend under them. An indication that granulite basement underlies the Palaeozoic sediments of the Midland Valley and Ireland has been pointed out by Upton et al(1976) in Rast Lothian, by Wilson (1918) in north-west Ayrshire, by Strongen (1974) in central Ireland and Phillips (1973) in north west Ireland. Also, recent work by Longman et al (1979) and Blaxland et al (1979) suggests evidence of Lewisian basement under the Midland Valley. Therefore, Gunn's (1973) speculation about oceanic crust under the Midland Valley is not valid, while Kennedy (1958) and George (1960) seem to have been right speculating that pre-Cambrian basement underlies the Midland Valley and probably the region further south.

In the following two of the most recent and comprehensive attempts to reconstruct the British Caledonides, by Mitchell and McKerrow (1975) and Phillips et al (1976), are discussed.

Mitchell and McKerrow observed that the tectonic evolution of the Caledonides in Britain is analogous to that of the Burma orogeny of Tertiary age. The Scottish Grampian Highlands, the Midland Valley and the Southern Uplands are comparable to the eastern Highlands, the central Lowlands and the Indoburman ranges of Burma respectively, although the corresponding events in the latter one took place after. 400my. In figure 1.1 the model of the evolution of the Scottish

Caledonides is shown (Mitchell and McKerrow, 1975).

As can be seen, two Benioff zones are represented, one under the Southern Uplands and the other under the Midland Valley. The Iapetus Ocean was in existence until late Ordovician times, while by the Kiddle Devonian, it was finally closed.

Abstract

Considering the Scottish Highlands and the eastern Highlands of Burma, high grade metamorphism characterises both regions. The Grampian Highlands, consisting of Dalradian basement, can be compared with the Kalaw syncline of eastern Burma, which consists of Mesozoic marine sedimentary deposits, mainly because of the turbidites and the thrusting in both areas. Hence, under the Scottish Highlands, according to the model, continental crust is depicted.

In the Midland Valley the igneous rocks of the Girvan area (serpentinite; eclogite etc), the turbidites along the southern part of the Midland Valley of Upper Ordovician and Lọwẹ Silurian age, and the sedimentary rocks of the Lower Old Red Sandstone are compared with the serpentinites, the oceanic and continental sedimentary rocks, throughout the Central Lowlands in Burma, of Upper Cretaceous to Miocene age. Therefore, under the Midland Valley oceanic or thin continental crust is assigned, as it can be seen also from figure 1.1.

Finally, it was considered that the Southern Uplands and the IndoBurma Ranges, which are both characterised by highly thickened

A UPPER CARADOC

Fig. 1. I Diagrammatic cross sections showing evolution of Scottish Caledonides. HBF = Highland Boundary Fault: SUF = Snuthern Upland Fault; HL = Hawick Line; LHL = Leadhills Line; (after Mitchell and McKerrow, 1975).
turbidites, were uplifted in Early to Middle Silurian and Oligocene times, respectively (Walton, 1965; Ziegler, 1970). In both cases the Midland Valley and the Irrawaddy Valley were separated from the ocean because of the uplift of the Southern Uplands and the Indo-Burman Ranges (Mitchell and McKerrow, 1975).

The most comprehensive reconstruction of the British Caledonides was proposed by Phillips et al (1976), which is also consistent with palaeomagnetic evidence, Briden et al (1973), Piper (1978). The innovation introduced by the model is that the two Benioff zones - one under the Southern Uplands and the other under northern England, are not parallel but at an angle ($14^{\circ}-18^{\circ}$) to each other. Therefore, the collision between the Southern Uplands and northern England occurs at a triple junction which migrates to the southwest.

Because the volcanicity in the Lake District ceased in Upper Ordovician times, while subduction to the south-west continued until early Devonian (Mitchell and McKerrow, 1975), dextral slip of 980km was adopted along the suture of Iapetus after its closure. Figure 1.2 shows the closure of Iapetus and the relative places of different crucial localities as the Southern Uplands, the Lake District etc.

As a conclusion, the author is inclined to believe that the closure ' of Iapetus was complete by the end of Silurian times, indicated from independent tectonic (Phillips et al, 1976) and magmatic evidence (Brown and Hennessy, 1978), but the position of the suture is still unclear.

Fig. 1.2 Reconstruction of Iapetus closure (after Phillips et al, 1976).

Geophysical evidence from LISPB by Bamford et al (1977) andelectrical conductivity studies by Jones (1977), Jones and Hutton (1979b), indicate that the suture zone - defined as a mantle or upper crustal discontinuity - occurs under the Southern Uplands, while from sedimentological studies discussed by Phillips et al (1976) the suture is put along the Solway. At this point, because of the postcollisional dextral slip along the "suture" and the fact that the Southern Uplands sedimentary sequence is allochthonous, "the palaeogeographical maps incorporating palinspastic reconstructions and showing two originally adjacent Southern Uplands units (basement and cover) would be particularly useful" as has been indicated by Dr Ingham in Phillips et al (1976).

1. 2 Geological History

In the following section, an attempt will be made to summarise briefly the geological history of that area, with more emphasis given mostly on south-east Scotland.

At the beginning of Ordovician times, the Iapetus Ocean was in existence and deposition of black shales and cherts was taking place, particularly on the continental margins. In Lower Ordovician times the Iapetus Ocean started closing. Subduction occurred under the continental margins (NW and SE) with the folding of shales, being scraped off the seabed and ophiolitic material detatched from oceanic crust and welded onto continental margins. During Caradocian times, with the Iapetus Ocean continuing to close, the Gfignian orogen was formed with intense metamorphism. Due to the $S E$ subduction zone, the Lake District volcanicity took place and, generally, massive trench deposition of greywackes also took place. For more information of the above, see Gunn (1972).

During the Silurian, crustal warping and intense folding of the strata was marked until the end of Silurian times when the closure of the Iapetus was cooplete (Phillips et al., 1976).

Apparently following the closure of the Iapetus Ocean, cessation of the $N W-S E$ stress resulted in a vast out-pouring of volcanic material (calc-alkaline) during Lower Devonian times, especially in the Cheviot region (Robson, 1977), the southern boundary of the Midland Valley and the remainder of south Scotland. There also appeared the SW-NE trending dykes (acid composition) of porphyrites, felsites, and diorites (Pringle, 1948), followed by massive igneous intrusion - with prevalent granodioritic or tonalitic magma - such as the three major outcropping granitic bodies in $S W$ Scotland: Doon, Pleet, Criffel. At that time, shallowwater sediment deposition occured, which later covered the lavas at the bottom of the lakes. All this igneous activity after subduction was complete, suggests either an oversimplified tectonic model or an error in dating.

The absence of Middle Devonian\{in the Cheviots, in the Midland Valley and in the district of Berwickshire generates an uncomformity on the base of the Upper 0ld Red Sandstone sediments which rest on the Lower Devonian sediments in that region. This phenomenon probably implies that uplift took place in Middle and possibly Upper Devonian times, particularly after the intrusion of the plutons in that area and the mass deficiency (Bott, 1974) they caused, followed by erosion, especially of the older rocks. Recent work (Leeder, 1973) has shown fluviatile origin of the Upper Old Red Sandstone sediments of SE Scotland.

The close of the Old Red Sandstone period was followed by an outbreak of intense volcanicity and the lavas can be traced over a considerable part of SE Scotland. During Lower Carboniferous or, especially, the Calciferous Sandstone Series, alkali basalts poured out sub-aerially from pipe-like vents and were intruded into sills with indications (Francis, 1965) that this type of volcanicity continued occasionally throughout the Carboniferous. The lavas of Garleton Hills, in East Lothian, the lavas of Greenlaw, in Berwickshire, Jedburgh, Burntisland and the Clyde Plateau lavas are related.

The deposition of the earliest Calciferous Sandstone Series over that area took place in an environment which was actually marine. The close of the Calciferous Sandstone times was marked by a widespread submergence of almost the whole region under the Carboniferous sea.

During the Upper Carboniferous, the igneous activity continued with the appearance of east-west trending quartz-dolerite dykes and sills over a much wider area than that of south Scotland. This activity is also associated with many east-west trending faults which were proved to be contemporaneous with the dykes and sills (Anderson, 1951).

At the end of the Lower Carboniferous period, especially in the Midland Valley, there was an uplift again leading to more denudation of the land areas. For more details about the deposition of the
different subdivisions of the Upper Carboniferous rocks as well as the volcanic activity of that area, see McGregor and McGregor (1948), Francis (1961, 1965, 1968).

The late- and post-Carboniferous times are dominated by Hercynian movements which, in southern Scotland and northern England are represented by $E-W$ compression, followed by folding (Holborn, Lemmington anticline) and, later, by the intrusion of the whin dykes and the Great Whin Sill (Robson, 1977).

Abstract

in north-west Scotland Finally, the Tertiary period was marked by igneous activity, plateau basalts and dyke swarms. In the south of Scotland the dykes have a NW-SE trending direction. This period is characterised by N-S compression, but those forces were significantly less powerful than the Hercynian forces.

1.3 Geophysical Review

Although there is complete and very comprehensive geological mapping of Britain, the same is not true of geophysical work and exploration of the mainland. The aeromagnetic map of Britain, which has been published by the Institute of Geological Sciences and the parts of it concerning the Southern Uplands and the Southern Uplands Fault show features which are consistent with the surface geology: In particular, the Southern Uplands Fault is represented by a narrow line of magnetic higis (ending at $(30,60)$ on Fig. 4.4) and the Southern Uplands are characterised by a linear magnetic high (near Galloway to Lauder (Fig. 4.5)) surrounded by two magnetic lows. The latter magnatic high was interpreted as being due to a smooth rise in a magnetic basement (about 5.5 to 10 km deep) rather than to a fault or igneous feature
(Gunn, 1972). The line of broad highs in Silurian rocks is crossed obliquely by the magnetic lows caused by Tertiary dykes.

Abstract

Important regional features can be separated and identified from the complex pattern of the aeromagnetic map which is due mainly to shallow magnetised sources, by applying an upward continuation filtering process. Therefore, filtered aeromagnetic maps have been produced by Hall and Dagley (1970) and Gunn (1972), approximating the magnetic field continued to a level of 2 km above the flight level which was about lo00ft above ground level. Some of the significant features will be discussed later. A complete Bouguer gravity anomaly map has still to be published, especially for the south of Scotland-Borders region.

Detailed gravity and magnetic surveys have been carried out in some local areas of south Scotland and north England. In the discussion of some of them which follows attention will be given mostly to the work carried out in the Midland Valley and the Southern Uplands.

The Ballantrae Igneous Complex, in south-west Scotland, was studied by means of gravity and magnetic surveys by Powell (1970, 1977a). He finds that the strong magnetic highs over the Ballantrae Igneous Complex are mainly due to serpentinite, which contains secondary magnetite (Powell, 1970). The sub-circular positive anomaly in the Midland Valley, the Bathgate anomaly (Gunn, 1975), was interpreted by Gunn (1972) as due to a prismatic body of square plan section with its top at a depth of about 10 km and its bottom at about 23 km .

There was an alternative interpretation by Powell (1970) who considered it as being due to a body of 10 miles in diameter with its top only 3 miles deep. Recently, Hossain (1976) gave another interpretation. Conclusions about the origin of the Bathgate magnetic anomaly for the moment are speculative but a revised and, hopefully, a final interpretation is in preparation by McLean and Powell (pers. commun.); it places the causative body at a depth of 1.5 km under the surface and its bottom at a depth of 7 km .

Two gravity traverses across the Cairnsmore Fleet granite were made by Parslow (1968). A Bouguer gravity anomaly map of the Fleet region has been published by Parslow and Randall (1973). According to their interpretation, the Fleet granite represents a small exposure near the top of a batholith, extending not more than 15 km in depth.

The negative gravity anomaly over the Criffell granodiorite has been interpreted, again, as due to a batholithic form, with its floor at least llkm deep. (Bott and Masson-Smith, 1960).

The third major pluton in the south west part of Scotland, the Loch Doon granite, was studied by El-Batroukh (1975), by mainly gravity means. He has concluded that all the three granite batholiths, Doon, Fleet and Criffell are connected at a depth and form a huge batholith extending across the Caledonian trend (NNW to SSE).

The New Red Sandstone rocks around Dumfries and Lochmaben are associated with negative gravity anomalies and an estimated thickness

```
of about lkm (Bott and Masson-Smith, 1960).
```


Abstract

In the Sanquhar Coalfield, Ordovician greywackes underlie the relatively light Upper Carboniferous rocks and therefore a local gravity low is generated, superimposed on a steep regional field which decreases to the south-east. In this case, the residual Bouguer anomalies fit well to the structure of the Carboniferous rocks, but the regional field does not reflect a clear picture of the Ordovician basement (McLean, 1961).

Farther north, the distribution of the Upper Palaeozoic rocks and mainly the major structure of the Maucline Basin, are clearly reflected in the gravity anomalies (McLean, 1966). The presence of the NE-SW faults, as the Southern Uplands Fault, the Kerse Loch Fault give rise to large anomalies. According to gravity data, the Southern Uplands Fault and the Kerse Loch Fault existed in Middle Old Red Sandstone times and the hypothesis ofa N-S compressional Armorican stress (George, 1960, Kennedy, 1958) does not seem to be correct (McLean, 1966).

Very recently, extensive geophysical studies (gravity, magnetic and seismic) carried out in the Firth of Clyde and a synthesis of the solid geology of the above region, has been published by McLean and Deegan (1978).

In the western Midland Valley and the neighbouring areas, ie, the SW part of the Grampians and the Southern Uplands, the regional Bouguer anomaly is characterised by a westwards gravity rise and by a gravity high over the Midland Valley, which decreases to the
north (Grampian Highlands) and south (Southern Uplands)
(McLean and Qureshi, 1966).

The latter regional gravity feature has been explained by a thickening of the crust under the Grampians and the Southern Uplands compared with the crust under the Midland Valley (McLean and Qureshi, 1966). The westwards increase of the regional gravity field in the west Midland Valley is a characteristic of the whole of western Scotland.

Another gravity survey further north on both sides of the western part of the Highland Boundary Fault was carried out by Qureshi (1970). There are steep gravity gradients across the Highland Boundary Fault and the gravity low west of Loch Lomond outlined a sedimentary basin partly filled by Lower Old Red Sandstone sediments with a maximum thickness, over that area, of between 1500-1800m.

Consideration of the isostatic anomalies over the western part of the Midland Valley suggests that they are a general feature of the of the European gravitational field. The average positive values over the Midland Valley, the Highlands and the Southern Uplands are in qualitative agreement with the theory of isostasy (McLean and Quireshi, 1966).

The only gravity work which so far has been carried out in the eastern part of the south of Scotland is the gravity survey in the Midlothian Coalfield (Hipkin, 1977a, 1977b), covering the
southern part of the Midlothian syncline and extending also into the Penicuik syncline. The interpretation of the gravity data gives detailed information on the structure and formation of the faulting features of that area. A Lower Devonian age of the Southern Uplands Fault (Leadburn Fault) is defined. The RoslinVogrie Fault system is considered to be of"major and longstanding proportions," truncating the Leadburn component of the Southern Uplands Fault (Hipkin, 1977b). Its throw is estimated to be, according to the model from gravity data, about 2700 m and a great discrepancy from Tulloch and Watson's (1958) estimations is demonstrated.

Local seismic studies have been undertaken at various sites in the Midland Valley by Hall (1970, 1971, 1974) and near surface Lower Palaeozoic rocks are reported to have compressional wave velocity of $3.65-4.3 \mathrm{~km} / \mathrm{sec}$.

Under the Southern Uplands, a distinct refracting horizon at 12 km depth was found by Jacob (1969), using the Eskdalemuir seismic array. There is an increase in the seismic velocity from $5.54 \mathrm{~km} / \mathrm{sec}$ near the surface to $5.94 \mathrm{~km} / \mathrm{sec}$ at a depth of about 12 km , with a sudden jump to $6.44 \mathrm{~km} / \mathrm{sec}$.

About the same value of $6.4 \mathrm{~km} / \mathrm{sec}$ was recorded again for the Southern Uplands, by the Eskdalemuir stations from the Firth of Forth by Christie (1978). The results indicate a crust of normal continental thickness (approximately 30km depth).

Recently, a deep seismic refraction profile (LISPB) was carried out by an Anglo-German group, N-S across Britain. It was operated as four reversed lines and a preliminary result (Bamford et al, 1976) was reported: there is a clear Moho discontinuity under the Southern Uplands at an estimated depth of $32-36 \mathrm{~km}$. A more detailed analysis (Bamford et al, 1977 and Bamford et al, 1978) showed that the Moho discontinuity changes in nature from a sharp transition under the northern part of the Midland valley to a gradual change under the Southern Uplands. Also, there might be a possible lateral chamge. in the basement between the Southern Uplands the
Fault and the Stublick Fault, and $<$ lower crustal layer appears to shallow beneath the Southern Uplands (figure 1.3). The latter could be due to a partial melting of the rocks at the crust-mantle boundary (Jones, 1977).

Low Poisson's ratios determined from LISPB associated with a layer on both sides, north and south of the Southern Uplands Fault, may be due to quartz enrichment or fracturing under the area, emphasising the tectonic activity which has been taking place on the margins of the Southern Uplands Fault (Assumpcao and Bamford, 1978).

Various electromagnetic studies have been made in the Southern Uplands, but the more recent one is of Jones (1977) and Jones and Hutton (1979a, 1979b). It is reported that under the Midland valley there is a conducting layer at a depth of no greater than 12 km . The conducting zone beneath the Southern Uplands is at a depth greater than 24 km (Jones and Hutton, 1979b). However, a recent interpretation (Ingham, pers. commun.) puts the conducting zone under the Southern Uplands at a depth of only 10-12 kr.

kev
Superficial loyer
Ullll Coledonion bell melamorphics ($6.1-62 \mathrm{~km} / \mathrm{s}$)
58, Lower Polacozoic ($5: 8-6.0 \mathrm{~km} / \mathrm{s}$)
Pre-coledonton bosement ($-64 \mathrm{~km} / \mathrm{s}$)
Pre-Coledonion bosement $1=6.3 \mathrm{~km} / \mathrm{s})$
非雨 Lower crust (~7 km/s)
$=-=$ Upper manlle $(-8 \mathrm{~km} / \mathrm{s})$
? Unceltoin siructure
Fi.g. 1. 3 Grustal section of northern Britain from P-wave interpretation (from Bamford et al. 1978).

Even after the LISFB experiment, the crustal structure of the Southern Uplands and their northerly margin, was still poorly determined. The relationship of the eastern part with that in the west, where the Ballantrae ophiolite sequence and the massive plutons are the central components of many tectonic models, was not known because similar exposures do not occur and very little detailed geophysical exploration had taken place in the south-eastern part of Scotland.

This project was intended to facilitate this comparison between the eastern and the western parts of southern Scotland and to test and perhaps to improve the structural model proposed by LISPB for the Southern Uplands.

2.1. Locations of Gravity Measurements

The survey is delineated by National Grid Eastings 310 to 400 km and Northings 620 to 710 km . About 800 gravity stations had already been established around the Midlothian area and south of it by Dr R G Hipkin and other members of the Geophysics Department between 1974 and 1976. Most of these measurements were made along motorable roads and tracks. This area has the densest coverage of gravity stations. It involves detailed gravity profiles across the Southern Uplands Fault and a good coverage of the Midlothian Coalfield. In some cases, as for example the 10 km National Grid square NT 25 , the coverage is better than two stations per km^{2}.

The rest of the area, shown in Figure 2.1, was surveyed by the author. By the end of 1977 the East Lothian area and the Lauderdale and the Berwickshire area north of $650 \mathrm{~km} N$ were covered and a map of the whole area was presented (Lagios, 1978). However, after the presentation of the marine gravity work. in the Firth of Forth by Tully and McQuillin (1978), it was decided to extend the survey area: to the south from 650 to $620 \mathrm{~km} N$ - the Cheviot area was excluded, NT 88 and NT 89 - and northwards to 710 km N.

Also, many additional gravity measurements were taken in the Lammermuir Hills and in the Tweeddale area by the author and R G Hipkin. The fieldwork in this area was carried out on foot,

Fig. 2.1 Map showing the boundaries of the survey area.
climbing hills sometimes under unfavourable weather conditions. The second part of the fieldwork was completed by the end of 1978. A
total number of 2500 亿gravity stations were established over an area of $5800 \mathrm{~km}^{2}$.

2.2. Elevation and Position Measurements

Extra care was taken during the fieldwork to achieve a high degree of height control, as the final accuracy of the Bouguer anomalies is heavily dependent upon elevation accuracy. Four sources of elevation information were used:
(i) Bench marks, copied from l:2500 maps. These are connected by spirit levelling traverses to the Ordnance Survey Datum at Newlyn Harbour, Cornwall, and are published to the nearest 0.01 m or O.Olft. The greatest part of the study area, that is, Midlothian, East Lothian, Lauderdale, Berwickshire and the Merse, was surveyed using this height control information, levelling from the nearest bench mark and hence maintaining an accuracy better than $0.1 \mathrm{g.u}$. from the point of view of elevation.
(ii) Levelled spot heights, copied from 1:25000 maps. These are unmarked intermediate stations on a levelling traverse between two bench marks, with the same precision as bench marks but published to the nearest 0.1 metre or foot. Almost all of -east
the area south $\langle 0 f 650 \mathrm{~km} \mathrm{~N}$ and
north-westwards of 680 km N was surveyed using levelled spot heights, maintaining an accuracy better than 0.5 g.u.
(iii) In some cases the height was taken from l9th century
bench marks, referred to the older Liverpool datum
and given with accuracy of $0.1 f t$. These are assumed
to be accurate, now, to about 0.3 m , in the absence
of resurvey information.
Unlevelled spot heights, copied from the same maps as
(ii). These are identifiable but unmarked topographic
features, such as tops of hills, measured either by
triangulations (a precision of \pm o. 3m is claimed) or
by stereo aerial photographs (precision of $\pm 2 m$).
The gravity stations which were established in the
Lammermuir Hills and over the Tweeddale area, are
based on spot heights measured by triangulation.
very few of these are stereographic spot heights.

The location of each gravity station was determined from 1:25000 maps with an accuracy better than $\pm 10 \mathrm{~m}$, for most of the gravity stations, which corresponds to an error of less than 0.1 g.u. in the latitude corrections.

2.3. Gravity Measurements

2.3.1 Instrument - Drift Characteristics

All the gravity measurements were made using the LaCoste and Romberg
geodetic gravity meter G-275, which is thermostatically controlled at about $49^{\circ} \mathrm{C}$ with a world wide range and a reading accuracy of 0.02 g.u.

Although generally, the drift of LaCoste and Romberg gravity meters is very small, because drift tests of the G-275 had already been made, a brief description of the drift behaviour will be outlined below.

Interesting laboratory and field tests have shown that when the instrument is removed from its case after storage for some hours, there is an initial phase of rapid increase of reading by 0.2.g.u. (20 $\mu \mathrm{igal}$), lasting for about an hour (Hipkin, 1978b), until a plateau is reached, characterised by a slow and linear decrease - see upper part of Figure 2.2. The central part of Figure 2.2 shows that displacing the beam by only a few eyepiece divisions will quickly result in large jumps in reading, approximately 0.2 g.u. as the beam appears to be held near the position of the lower or upper stop. This suggests that there are different mechanisms applying in the case of clamping and beam displacement.

The result of testing the thermal response of the instrument (Hipkin, 1978 a, b) - see for example the lower part of Figure 2.2 - shows that thermal change effects are rather insignificant for the practical use of regional gravity surveying, where an accuracy of $0.2 \mathrm{~g} . \mathrm{u}$. is adequate.

As a conclusion, although drift effects are generally negligible, the 0.2 g.u. reading displacement can bias measurements reierred to an initial value, as in the case of the observations at a base station

Fig. 2.2 Laboratory drift tests (after Hipkin, 1978b).
at the beginning of a day's fieldwork. For this reason it is suggested that the second measurement, taken at this base, be taken into consideration and not the first one.

```
&.3.2 Data Reduction
A general reduction computer program, GRAV\varnothingl, written by R G Hipkin, was used for the reduction of the gravity observations. According to the program the following operations, described below, are taking place:
```

(1) The total number of gravity stations is read and the datum level - absolute value of gravity of a base - is defined.
(2) The input of data takes place in a manner described in a following paragraph.
(3) Eastings and Northings of each gravity station are converted to longitudes and latitudes, using the National Grid routine, from which the normal gravity is calculated using the constants of the Geodetic Reference System of 1967 (Morelii, 1976), instead of the International Gravity Formula of 1930.
(4) The meter readings are converted to g.u. using the manufacturer's calibration tables.
(5) The time of each observation is converted to days and decimals of a day elapsed since midnight December, 3lst 1899-January 1st 1900, using the Gregorian Day number routine.
(6)

Earth tide corrections are applied to the observed values of gravity for each station, based on the expansion of Cartwright and Tayler (1971), as corrected by Cartwright and Edden (1973).

Normal gravity, free-air and Bouguer corrections are calculated for each gravity station.

Free-air and Bouguer anomalies are calculated for each gravity observation and,
(10) Output with all information concerning every station occurs.

For each station there is a line of literal description (format 18A4), then a line of numerical data using the following parameters: IREF, TIME, CIVIL, EAST, NORTH, GRAV, DENS, TERCF, where:

IREF: is the reference number of a gravity station.
TIME: is the time information of a gravity reading given as hours, minutes, day, month, year。

CIVIL: is the time difference in hours - local time minus Greenwich Mean Time.

EAST: is the National Grid Easting and Northing given in metres NORTH:
and taken from 1:25000 maps with an accuracy of ± 5 metres.
GRAV: is the meter gravity reading.

DENS: is the factor which assigns the Bouguer density after being subtracted from the standard Bouguer density ($2.67 \mathrm{~g} / \mathrm{cc}$) .

TERCF: is the terrain coefficient, expressed in gravity units per unit density (g / cc).

By taking repeated readings at base stations every 3-4 hours, which was adopted during the survey, the tide factor can be removed as a linear drift, calculated by the program.

2.3.3 Terrain Corrections

Progress during the last decade in methods for reducing and processing geophysical data has been reflected by an increased use of computers. New and faster algorithms for making terrain corrections have been proposed by various authors and some of these have been reviewed by Grant (1972) 。

In the study area the terrain corrections were carried out applying a computer program, TERCOR, written originally by C J Swain and modified by the author. A similar program; used for the Kenyan data (Swain and Khan, 1978), covering a much larger area (300 x 300 km) than ours, is described by Swain and Khan (1977). These programs use digitised topographic information, in which the area is divided into square blocks, each with the mean height assigned.

2,3.3.1 Digitisation Scheme

The idea of using rectangular arrays of squares of varying size and their application to the calculation of the terrain effect of gravity stations was proposed by Nagy (1966). Krohm (1976) suggested the idea of interpolating heights between a set of grid points and using these for an estimate of the local terrain correction, applying
multiquadric surfaces. The size of the adopted grid plays an important role in the approximation of the actual terrain effect.

The whole study area was digitised with an accuracy of $\pm 20 f t$ and $50 f t$ from 1:25000 and 1:63360 maps respectively, assigning a mean value of elevation for every square block of topography, the size of one block depending on the digitisation scheme, as described below:
(1) 500 m for the survey area and including 1 km strip surrounding it.
(2) 1 km for the area beyond this and up to 5 km beyond the survey boundary.
(3) 2 km up to 13 km from the survey boundary.
(4) 5 km from 13 km to 23 km 。

Digitising the whole area and the surrounding strips was the most tedious and monotonous part of the task. All the digitised data were checked for probable errors and filed onto a tape by a filing routine, FTERCOR, kindly provided by $C J$ Swain and modified by the author. The digitised value of each block was finally stored by FTERCOR in metres.

2.3.3.2 Description of the Terrain Correction, TERCOR, Computer Program

 The program first reads the gravity stations, at which the terrain effect is desired, with their reference numbers co-ordinates leasting, northing) and heights in metres, taken from GRAVI2, a different version of GRAVø1. Then, for each station, the terrain effect is(1) Local Terrain Effect. At this point the program TERCOR differs in two respects from Krohm's (1976) approach in calculating the local effect: (1) a loom square grid is used for interpolating heights between the original grid of 500 m . Considering a station falling in one of the central 25 blocks (each 500m in size) - see Figure 2.3 - either 100 or 225 heights are interpolated depending whether 4 or 9 blocks are taken into account. The latter depends on the maximum angle subtended at the station by each block. If this is very small then no interpolation is carried out.
0.5 km

21	22	23	24	25
20	7	8	9	10
19	6	1*	2	11
18	5	4	3	12
17	16	15	14	13

*Gravity station
Fig. 2.3 Diagram outlining the central 25 blocks from which the local terrain effect is calculated.
(2) Instead of multiquadric surfaces to carry out the interpolations, a paraboloid is fitted by weighted least squares because this was found to be much quicker (Swain, person. commun). Hence, the local topography is approximated by fitting a paraboloid to the 100 or 225
interpolated heights and the height of the station taken as control. The local terrain effect of each loom block is calculated using the approximate formula for a segment of a hollow cylinder, developed by Bott (1959) with the form:

$$
\begin{equation*}
\Delta g=G A^{2} \rho\left[\frac{1}{r}-\frac{1}{\left(r^{2}+\Delta h^{2}\right)^{\frac{1}{2}}}\right] \tag{2.1}
\end{equation*}
$$

```
where: G = gravitational constant
    \rho = density
    A = length of square (block) side
    r = horizontal distance between the stations
        and the block centre
    \Deltah = height difference between the gravity
        station and the estimated average block
        height.
```

(2) Outer Terrain Effect. This is calculated by the following scheme: (1) For blocks between 1 and 5 km from the gravity station, the full prism formula is used, developed by Nagy (1966). (2) For blocks between 5 and 15 km from the gravity station, the contribution is ignored if the angle subtended at the station by each block is less than 0.5 degrees; otherwise, Kane's (1962) formula is used to calculate the terrain effect of the block:

$$
\begin{equation*}
\Delta g=\frac{2 G A^{2} \rho\left(1.26 A+\left((r-0.63)^{2}+\Delta h^{2}\right)^{\frac{1}{2}}-\left((r+0.63 A)^{2}+\Delta h^{2}\right)^{\frac{1}{2}}\right)}{2.52 r A} \tag{2.2}
\end{equation*}
$$

with the same notations used to describe formula (2.1).

These algorithms were used to calculate the terrain coefficients of all the gravity stations using all blocks whose centres are within 21.94 km of the station, corresponding to the outer edge of Hammer Zone M. The height information was taken from the tape filed by the FTERCOR program. It took aboutl2 seconds on ICL 4-75 computer for the calculation of the terrain coefficient of each gravity station.

2.3.4 Accuracy of Terrain Corrections

It was found that the most critical point of the calculations of the terrain corrections was the local effect. This is due to 4 or 9 blocks immediately surrounding each gravity station. If the topography within the 4 or 9 blocks is flat or varies in a smooth manner, then the local effect is small or rather insignificant. However, in cases where the latter is not applicable, then the local effect depends particularly on the shape of the topography: if the station is on the top of a hill, then the program TERCOR, by fitting the paraboloid, approximates the actual effect with a very good accuracy. However, in cases where the topography was very irregular, particularly for stations along a ridge of hills or along an elongated valley with steep slopes on both sides, it was found that the program gave unreliable results: the error in an extreme case was more than 80% of the near zone value. For this reason, in the Tweeddale area the local effect of the gravity stations was systematically calculated by hand using a Hammer chart. For the
gravity stations elsewhere, the same approach was applied, where it was felt to be required, and then their local effects replaced the corresponding computer values.

There was, of course, a slight miss-match between the circular Hamer zone F - diameter 1.79 km - and the square of the 9 central blocks (see Figure 2.3), but the error is likely to be within the limits of the accuracy of digitisation.

The 500 m square block is approximately the same size as the compartment belonging to Hammer zone F (Hammer,1939), with outer radius at a distance 0.89 km from the station. For blocks outside the outer radius of zone F, the program TERCOR will calculate their effects more accurately, as the area of each digitised block is smaller than the segment of any Hammer zone beyond zone F.

Table II-l shows the difference of terrain coefficients between computer and Hamer chart corrections. The mean difference is 0.05 g.u. so there is no indication of bias. The mean absolute difference is 6.9% with an RMS difference of 9.2%, which is close to the limit of 10% according to Swain (person. commun.).

Walker (1977) used a version of Swain's program similar to the one described above for the calculation of the terrain corrections for the gravity stations in the Kavirondo Rift Valley, Kenya. He used a 1 km digitisation scheme rather than the 500 m one used in our survey area and he found that the error of the terrain correction was about \pm_{-3} g.u.

TABLE II-I

Station Ref No.	$\begin{aligned} & \text { Coordinates } \\ & \text { N.G. } \\ & (\mathrm{km}) \end{aligned}$	Height (m)	Terrain Coeff.		$\begin{array}{\|c} \text { Difference } \\ \text { (II-I) } \end{array}$	Percentage Difference (II-I/I) 100
			```Hand Corr. (I)```	Computer Corr. (II)		
00007	$\begin{aligned} & 351.750 \\ & 673.280 \end{aligned}$	54.29	0.88	0.74	-0.14	-15.9
3566010	$\begin{aligned} & 350.02 \\ & 664.90 \end{aligned}$	191.9	1.44	1.48	0.04	2.78
3566007	$\begin{aligned} & 351.11 \\ & 665.27 \end{aligned}$	194.7	1.57	1.56	-0.01	-0.64
3566004	$\begin{aligned} & 352.48 \\ & 664.72 \end{aligned}$	210.7	2.09	2.20	0.11	5.26
3566001	$\begin{aligned} & 353.85 \\ & 665.08 \end{aligned}$	200.9	1.96	1.93	-0.03	-1.53
3566026	$\begin{aligned} & 354.17 \\ & 668.41 \end{aligned}$	146.3	1.38	1.67	0.29	21.0
3566030	$\begin{aligned} & 356.52 \\ & 667.60 \end{aligned}$	198.2	2.37	2.57	0.20	8.4
3566008	$\begin{aligned} & 350.89 \\ & 665.58 \end{aligned}$	182.9	1.58	1.52	-0.06	-3.8
3566045	$\begin{aligned} & 355.17 \\ & 665.60 \end{aligned}$	193.9	1.83	1.87	0.04	2.2
3567004	$\begin{aligned} & 352.06 \\ & 672.52 \end{aligned}$	67.0	0.64	0.68	0.04	6.2
3567008	$\begin{aligned} & 353.27 \\ & 671.45 \end{aligned}$	82.1	1.08	1.17	0.09	8.3

COMPARISON BETWEEN COMPUTER AND HAND-MADE TERRAIN CORRECTIONS

Also, Qureshi (1961) used a computer program for the terrain corrections, based on Bott's (1959) formula and he found an RMS difference of $4.8 \%$ between Hammer and computer values.

Since most of the gravity stations have terrain coefficients less than 1 g.u. and the majority of the rest between l-lo g.u. (there are of course some stations in the Tweeddale area and also a very few in the Lammermuirs which have terrain coefficients between lo-25 g.u.), it appears that, applying a $10 \%$ error of the computer program, the error is between $O_{0} 1$ to $l$ g.u. Certainly, for most of the gravity stations, the error involved for the estimation of the terrain coefficients is less than 1 g.u.

### 2.4. Density Measurements

### 2.4.1 Laboratory Density Measurements

A number of rock samples were collected during the survey for the purpose of density determination. A few additional samples, particularly of porphyrites and granites from the Tweeddale district were collected by Dr R Gill, who, kindly, gave a portion of these samples for density measurements. Determination of density was made on a total number of about 200 specimens.

Specimens of usually less than 10 gm were used. They were left in water for some time, depending on the type of rock. Igneous rocks were left less time than sedimentary rocks. Usually in these cases, a vacuum is applied to the surface of the water, in which the samples are kept so that the air is removed from the pores more quickly. In our case, because of the small volume of the samples which were used, it was considered unnecessary; this because the diffusion time of the
air is much smaller for small volume samples than that for larger volume samples. Nevertheless, some samples may not have been completely saturated, adding a small error to the results.

Thus the samples, after being in water for some time, were dried quickly and weighed in air $\left(w_{2}\right)$ and then in water ( $w_{3}$ ). Special caution was taken during their weighing in the water: the samples were suspended from a thin wire on which a mark was made, coinciding always with the horizontal surface of the water, for all the samples. At the end, the wire was weighed with the water surface at the same level with the marker on the wire. In that case, the surface tension effects on the wire were the same, with the samples on it and without them.

Following that, the samples were put into an oven (approximately $100^{\circ} \mathrm{C}$ ) and kept overnight. They were then weighed ( $w_{1}$ ) and the $d r y$, saturated and grain density was calculated, applying the following formulae:

$$
\text { Dry density, } d_{d}=\frac{w_{1}}{w_{2}-w_{3}} d_{w}
$$

Saturated density, $d_{s}=\frac{w_{2}}{w_{2}-w_{3}} d_{w}$

$$
\text { Grain density, } d_{g}=\frac{w_{1}}{w_{1}-w_{3}} d_{w}
$$

```
where: \(w_{1}=\) Dry weight of sample in air,
 \(w_{2}=\) Saturated weight of sample in air,
 \(\mathrm{w}_{3}=\) Saturated weight of sample in water, and
 \(d_{w}=\) Density of water (l g/cc).
```

The effective porosity $P$ was calculated according to the formula:

$$
P=\left(d_{s}-d_{d}\right) 100(\%)
$$


#### Abstract

All the density measurements were carried out using a Stanton microbalance, which weighs up to 200 gm with 0.0001 gm accuracy. The result for each sample and its description is presented in Tables II-2 and II-3. The estimated value of the dry, saturated and grain density is given, with its standard deviation, actually representing variations in density and not errors of measurements, which were negligible.


As shown in Table II-3, the Lower Palaeozoic sediments (Ordovician and Silurian) have a mean saturated density of $2.708 \pm 0.021 \mathrm{~g} / \mathrm{cc}$. This is very close to the value various authors (McLean, 196la, Bott and Masson-Smith, 1960) have reported for the same type of rocks over the Southern Uplands.

Although our hand samples of Caledonian granites are only from four different localities over the Southern Uplands, it is apparent that there is a range from 2.63 to $2.72 \mathrm{~g} / \mathrm{cc}$, from coarse granite to microgranite, respectively. This was expected because the same result had been already obtained by other authors (eg Walker, 1924).

[^0]TABLE II-2

SAMPLE NO	ROCK TYPE	GEOLOGICAL CLASSIFICATION	LOCALITY	NATIONAL GRID REFERENCE
1 $1 a$	Greywacke	Silurian	The Bell   Old Campus Quarry	NT 745640   NT 800695
2	"	"	Hartside Quarry	NT 473535
3	"	"		NT 208241
4	"	"	Crosecleugh Bridge	NT 248200
5	"	"	Earl's Hill	NT 253188
6	"	Ordovician	Quarry Wear Heriot	NT 407540
7	"	"	Lochurd Quarry	NT 335505
8	"	"	Craigburn Quarry	NT 375540
9	Felsite	Lower Old Red Sandstone	Kailzie Hill	NT 278363
10	Porphyrite	"	Kirnie Law	NT 348386
11.	Porphyrite	1	Priesthope Hill	NT 360400
12	Porphyrite	"	"	NT 360400
13	Porphyrite	"	Preston Law	NT 253348
14	Porphyrite	"	Juniper Craigs	NT 245357
15	Sandstone	Upper Old Red Sandstone	Siccar Point	NT 813708
16	Sandstone	Lower Old Red Sandstone	St Abb's Head	NT 317678
17	Conglomerate	Lower Old Red Sandstone	St Abb's Head	NT 915685

DENSITY MEASUREMENTS - SAMPLE DESCRIPTION

$\begin{aligned} & \text { SAMPLE } \\ & \text { NO } \end{aligned}$	ROCK TYPE	GEOLOGICAL CLASSIFICATION	LOCALITY	NATIONAL GRID REFERENCE
18	Great Conglomerate	Upper Old Red Sandstone	Monynut Water	NT 691682
19	Fine-grained sandstone	Upper Old Red Sandstone	Dunbar	NT 673794
20	Dolerite Sill	Lower Carboniferous	Aberlady Bay	NT 445795
21	Black Chert	Ordovician	Broughton Heights	NT 125405
22	Lava	Andesitic	St Abb's Head	NT 905682
23	Basalt	Lower Carboniferous	Markle Quarry	NT 576775
24	Pillow Lava	Ordovician	Broughton Heights	NT 125405
25	Trachyte	Lower Carboniferous	Skid Hill Quarry	NT 508764
26	Cornstone	Upper Old Red Sandstone	Dunbar (Bathing Pool)	NT 674793
27	Sandstone	Upper Old Red Sandstone	Dunbar (Bathing Pool)	NT 673793
28	Sandstone	Upper Old Red Sandstone	Near Bransley Hill	NT 667704
29	Granite	Lower Old Red Sandstone	Broad Law Quarry	NT 344539
30	Coarse Granite	Lower Old Red Sandstone	Kirnie Law	NT 348387
31	Coarse Granite	Lower Old Red Sandstone	Kailzie Hill	NT 280360
32	Microgranite	Lower Old Red Sandstone	Priesthope Hill	NT 344390
33	Country Rock (altered greywackes)	Silurian	Priesthope Hill	NT 346395
34	Slate	Silurian .	$S$ of Preston Law	NT 254348
35	Country rock (altered greywacke)	Silurian	Near Broad Law Quarry	NT 344540
36	Quartz-Dolerite	Lower Carboniferous	Musselburgh	NT 360640

TABLE II-3

SAMPLE NO	NUMBER OF SPECIMENS	SATURATED DENSITY ( $\mathrm{g} / \mathrm{cc}$ )	DRY DENSITY ( $\mathrm{g} / \mathrm{cc}$ )	GRAIN DENSITY ( $\mathrm{g} / \mathrm{cc}$ )	POROSITY   (\%)
1	5	$2.705 \pm .002$	$2.694 \pm .003$	$2.724 \pm .003$	1.1
la	5	$2.704 \pm .009$	$2.695 \pm .008$	$2.720 \pm .011$	0.9
2	5	$2.676 \pm .003$	$2.668 \pm .006$	$2.689 \pm .002$	0.8
3	5	$2.684 \pm .002$	$2.679 \pm .002$	$2.693 \pm .003$	0.5
4	5	$2.721 \pm .007$	$2.713 \pm .007$	$2.734 \pm .007$	0.8
5	6	$2.708 \pm .028$	$2.698 \pm .020$	$2.725 \pm .029$	1.0
6	6	$2.722 \pm .005$	$2.712 \pm .009$	$2.739 \pm .012$	1.0
7	5	$2.702 \pm .007$	$2.694 \pm .008$	$2.714 \pm .007$	0.8
8	5	$2.754 \pm .011$	$2.741 \pm .011$	$2.776 \pm .012$	1.3
9	6	$2.661 \pm . .017$	$2.657 \pm .016$	$2.685 \pm .018$	1.0
10	6	$2.661 \pm .009$	$2.651 \pm .010$	$2.678 \pm .010$	1.0
11	5	$2.708 \pm .009$	$2.705 \pm .010$	$2.713 \pm .010$	0.3
12	5	$2.675 \pm .003$	$2.673 \pm .003$	$2.679 \pm .003$	0.2
13	5	$2.643 \pm .007$	$2.641 \pm .008$	$2.647 \pm .007$	0.2
14	5	$2.626 \pm .004$	$2.616 \pm .004$	$2.643 \pm .005$	1.0
15	7	$2.498 \pm .023$	-	-	-
16	4	$2.695 \pm .013$	-	-	-
17	5	$2.721 \pm .023$	-	-	-
18	5	2.619 士.054	$2.587 \pm .058$	$2.672 \pm .048$	3.2


SAMPLE NO	NUMBER OF SPECIMENS	SATURATED DENSITY ( $\mathrm{g} / \mathrm{cc}$ )	$\begin{aligned} & \text { DRY DENSITY } \\ & (\mathrm{g} / \mathrm{cc}) \end{aligned}$	GRAIN DENSITY ( $\mathrm{g} / \mathrm{cc}$ )	POROSITY   (\%)
19	5	$2.673 \pm .017$	$2.669 \pm .017$	$2.681 \pm .018$	0.4
20	4	$2.900 \pm .015$	$2.895 \pm .018$	$2.910 \pm .011$	0.5
21	5	$2.631 \pm .005$	$2.630 \pm .005$	$2.632 \pm .004$	0.1
22	5	$2.724 \pm .007$	$2.709 \pm .007$	$2.750 \pm .036$	1.3
23	6	$2.722 \pm .013$	$2.698 \pm .012$	$2.763 \pm .015$	2.4
24	5	$2.771 \pm .010$	$2.754 \pm .011$	$2.803 \pm .008$	1.7
25	6	$2.604 \pm .013$	$2.573 \pm .014$	$2.655 \pm .014$	3.1
26	7	$2.665 \pm .012$	$2.651 \pm .012$	$2.687 \pm .014$	1.4
27	6	$2.471 \pm .012$	$2.445 \pm .009$	$2.509 \pm .016$	2.6
28	5	$2.660 \pm .012$	$2.633 \pm .016$	$2.709 \pm .011$	2.7
29	5	$2.712 \pm .004$	$2.711 \pm .006$	$2.717 \pm .005$	0.1
30	6	$2.628 \pm .006$	$2.621 \pm .005$	$2.639 \pm .007$	0.7
31	5	$2.627 \pm .012$	$2.613 \pm .014$	$2.648 \pm .011$	1.4
32	5	$2.719 \pm .004$	2.715 士. 005	$2.727 \pm .004$	0.4
33	7	$2.818 \pm .037$	$2.815 \pm .038$	$2.824 \pm .037$	0.3
34	6	$2.629 \pm .022$	$2.583 \pm .025$	$2.706 \pm .024$	4.6
35	5	$2.703 \pm .007$	$2.695 \pm .007$	$2.717 \pm .006$	0.8
36	6	$2.859 \pm 0.018$	$2.831 \pm 0.020$	$2.911 \pm 0.016$	2.8

Table II-4 shows a summary for most types of rocks in Table II-3 and compared with the values obtained by McLean (196la) at the western part of South Scotland.

### 2.4.2 Least Squares Density Determination

Nettleton (1939) described a method of determining near surface densities by gravity observations along a profile over a topographic feature, a hill or valley with gentle slopes, unrelated to known geological structure. Although his method has been discussed by Parasnis (1952) and applied by various authors, it seems that, often, the results are unreliable.

However, in cases where there is an absence of exposures, a gravimetric method for the indirect determination of density may be necessary。

A computer program, DENS2, written by $R$ G Hipkin, was used to estimate the density of rocks belonging to different geological classifications, by fitting a trend surface to the Bouguer anomaly.

According to the program, the Bouguer anomaly, BA, is fitted by least squares to the power series as follows:

$$
\begin{align*}
B A=(B A)_{0}-(0.41923 h-T)\left(d-d_{0}\right)= & \left(A x^{2}+B y^{2}+C x y+D x+E y+F\right) \\
& +e \tag{2.3}
\end{align*}
$$

where: $h=$ elevation (metres), $T=$ terrain coefficient (g.u./g/cc), $d=$ true density, $d_{0}=$ assumed Bouguer density, $A, B, \ldots, E, F$ coefficients, $e=$ error and (BA) ${ }_{o}=$ the Bouguer anomaly calculated with the assumed density $d_{0}$.

TABLE II-4

Lithology	Number of		Mean Saturated   Density (g/cc)	McLean's (196la)   Estimated Mean Density ( $\mathrm{g} / \mathrm{cc}$ )
	Localities	Specimens		
Ordovician \& Silurian greywackes	9	47	$\begin{aligned} & 2.708 \\ & \pm 0.021 \end{aligned}$	2.72
Lower Old Red Sandstone porphyritesfelsites	6	32	$\begin{aligned} & 2.666 \\ & \pm 0.028 \end{aligned}$	2.58
Upper Old Red Sandstone sediments	6	35	$\begin{aligned} & 2.598 \\ & \pm 0.090 \end{aligned}$	2.41
Lower Old Red Sandstone sediments	2	9	$\begin{aligned} & 2.708 \\ & \pm 0.018 \end{aligned}$	2.61
Sills and Dykes (Quartz-Dolerite)	2	10	$\begin{aligned} & 2.879 \\ & \pm 0.029 \end{aligned}$	2.90
Caledonian Granites	4	21	$\begin{aligned} & 2.671 \\ & \pm 0.050 \end{aligned}$	2.67

SUMMARY OF DENSITY MEASUREMENTS OF THE MAIN ROCK TYPES

In this case, where the Bouguer anomaly is calculated with the assumed density $d_{0}$, the program gives the correction to the Bouguer density used. Using Free-Air anomaly the program gives the complete Bouguer density.

The program DENS2 was applied in some areas for an estimate of the near surface density of different type of rocks in various areas. The stations in each lokm National Grid square were taken for the calculation of the density. Because in some regions the gravity field approximated a $3^{\circ}$ surface better than a $2^{\circ}$ surface, an expansion of the DENS2 was made by the author and DENS3 fits the Bouguer anomaly to a third degree surface.

Some of the successful results applying DENS2 and DENS3 are shown in Table II-5. Generally, fitting a second degree surface has yielded better results and lower standard deviations than fitting a third degree surface on the gravity field over the Southern Uplands. From nine lokm squares within the Southern Uplands, the average near surface density is $2.709 \pm 0.023(\mathrm{~g} / \mathrm{cc})$, almost identical value with the saturated density of the Lower Palaeozoic sediments found in Table II-3.

The newly developed method has proved to be successful, particularly applying it over the Southern Uplands, where the results are very satisfactory.
2.5. Gravity Anomalies

Having all the parameters described in 2.3 .2 as input to GRAVøl, the

TABLE II-5

Geological Classification	NT	```Number of Stations```	Density from DENS2 (g/cc)	Density from DENS3 ( $\mathrm{g} / \mathrm{cc}$ )
Silurian Greywackes	12	23	$2.699 \pm .020$	
Ordovician \& Silurian Greywackes	13	21.	$2.670 \pm 0.036$	
Silurian Greywackes	23	48	$2.746 \pm 0.028$	$2.759 \pm 0.027$
Ordovician \& Silurian Greywackes	24	54	$2.709 \pm 0.031$	
Silurian Greywackes	32	32	$2.685 \pm 0.015$	
Silurian Greywackes	33	32	$2.721 \pm 0.064$	
Ordovician \& Silurian Greywackes	34	17	$2.727 \pm 0.022$	
Silurian \& Upper Old Red Sandstone Sediments	65	29	$2.726 \pm 0.025$	$2.707 \pm 0.013$
Silurian \& Upper Old Red Sandstone Sediments	76	25		$2.699 \pm 0.039$
Silurian \& Upper Old Red Sandstone Sediments	53	30	$2.666 \pm 0.057$	$2.662 \pm 0.051$
Carboniferous Limestones	47	53	$2.557 \pm 0.450$	
Silurian \& Upper Old Red Sandstone Sediments	54	53	$2.750 \pm 0.050$	$2.767 \pm 0.047$
Ordovician \& Lower Old Red Sandstone Sediments	14	20	$2.691 \pm 0.086$	

DENSITY ESTIMATIONS USING COMPUTER PROGRAMS

Free-Air and Bouguer anomalies were calculated using the following equations:

$$
\begin{align*}
& g_{f}=g_{o b s}-g_{n}+3.086 h  \tag{2.4}\\
& g_{B}=g_{f}-(0.41923 h-T C) d \tag{2.5}
\end{align*}
$$

```
where: g}\mp@subsup{g}{f}{}\mathrm{ is the Free-Air anomaly (g.u.)
 gobs is the observed gravity (g.u.) sorrectec for drif:
 g}\mp@subsup{g}{B}{}\mathrm{ is the Bouguer anomaly (g.u.)
 h is the station elevations (m)
 TC is the terrain coefficient (gu/unit density)
 d is the density (g/cm}\mp@subsup{}{}{3}
 G
 System (1967).
```

    \(g_{n}=9780318.495\left(1+0.0052788944 \sin ^{2} \varphi+0.0000234631 \sin ^{4} \varphi\right)\)
    where: $\varphi$ is the latitude. A density of $2.67 \mathrm{~g} / \mathrm{cm}^{3}$ was used in equation (2.5) as it is the usual value for computing Bouguer anomalies for crustal studies. The observed density of surface rocks was not used because the determination of the subsurface density structure is the task of gravity interpretation, not grevity reduction. Estimates of a locally appropriate censity for the topography will de discussed in the chapters dealing with modelling.

All the above computations were carried out using the EMAS (Edinburgh Multi-Access System) ICL4-75 computer, in Edinburgh.

After the least squares adjustment of the gravity base stations, described in Chapter III, and the determination of the new values of the bases, the whole data set of the gravity measurements was rerun. The final values of the anomalies together with the relevant information for each gravity station is presented in Appendix $C$.

The error involved in the observed gravity ( $g_{o b s}$ ) arises mainly from the following factors:
(i) Reading error, which is really very small (approximately 0.03 g.u.).
(ii) The error involved in the absolute value of gravity of the Edinburgh F.B.M., to which all the gravity stations of the survey have been referred. It has been estimated as $\pm 0.33 \mathrm{g.u} .(M a s s o n-S m i t h$ et al, 1974).
(iii) The error due to the drift irregularity of the instrument, which is less than $20 \mu \mathrm{gal}\left(0.2 \mathrm{~g} . \mathrm{u}_{\mathrm{o}}\right)$. Since base station readings were made with ordinary gravity station readings inter spersed between them, the standard deviation of the base station adjustment, found in Table III-4 to be 0.09569 , is typical for any field station and could have been used instead.
(iv) The error due to the Earth tides: GRAVøl calculates the equilibrium tidal corrections with ërror $\pm 0.005 \mathrm{~g} . \mathrm{u} .$, which is very small indeed. In coastal areas a marine tidal effect might be as large as $0.03 \mathrm{~g} . \mathrm{u}$. As has been mentioned elsewhere, this can be removed as a linear instrumental drift, visiting base stations every 3-4 hours.
(v) The error due to the manufacturer's calibration factor. This is only few parts in $10^{4} \mathrm{~g} . \mathrm{u}$. As has been described in Chapter III, a fractional error of $(1.6 \pm 3.8) \times 10^{-4}$ was found for the calibration factor between Edinburgh and Hexham (Table III-6).

The largest gravity difference measured in the survey area with respect to Edinburgh F.B.M. was at Broad Law (NT1524) - 2072.24 g.u., resulting in a calibration error of $0.33 \mathrm{g.u}$.

Of the five cases considered here, the quoted errors for only (i) and (ii) are related to statistically determined standard deviations. The others are estimated maximum errors. All will be treated as if they were standard deviations, which will merely result in an over-estimate of the error. An arithmetic sum gives 0.92 g.u., while the RMS addition is 0.24 g . u.

Therefore, from the five causes considered above, the error in the observed gravity, $g_{\text {obs' }}$ is 0.92 g.u. with an RMS error of $0.24 \mathrm{g.u}$.

Heights determined from bench marks, levelled and other spot heights give an error contribution of $\pm 0.3$ and $\pm 1$ g.u. respectively, as described previously in section 2 of the present chapter. Again, from this section it is concluded that an error of $\pm 10 \mathrm{~m}$ in latitude gives an error of less than $0.1 \mathrm{g.u}$. in the calculation of the normal gravity, $g_{n}$.

Assuming that the mean value of the terrain coefficient of the gravity stations is 2 g.u. per unit density $\left(1 \mathrm{~g} / \mathrm{cm}^{3}\right)$, then the error for the terrain coefficient is 0.2 g. u. per unit density. This value is a true standard deviation, but estimated from only a part of the data.

Treating all the above error estimates as standard deviations, including the probable maximum errors for station elevation, then the standard deviation of the Free-Air (FA) and Bouguer anomalies (BA)is estimated as follows, according to the errors propagation, Young (1962):

$$
\begin{aligned}
& S_{F A}^{2}=S_{O b s}{ }^{2}+S_{g_{n}}^{2}+3.086^{2} S_{h}^{2} \\
& S_{B A}^{2}=S_{o b s}^{2}+S_{g_{\mathrm{D}}}^{2}+(3.086-0.41923)^{2}{S_{h}}^{2}+(2.67)^{2} S_{T C}{ }^{2}
\end{aligned}
$$

where: $S_{o b s}$ is the standard deviation of $g_{o b s}$
$S_{g_{n}}$ is the standard deviation of the normal gravity $g_{n}$
$S_{h}$ is the standard deviation of the height
$S_{T C}$ is the standard deviation of the terrain coefficient, etc.

Using the above analysis and substituting in the above equations according to the height control information of a gravity station, the error is:
(1) From bench marks:

$$
S_{F A}= \pm 0.9 \text { g.u. and } S_{B A}= \pm 1.0 \text { g.u. }
$$

(2) From levelled spot heights:

$$
S_{F A}= \pm 1.2 \text { g.u. and } S_{B A}= \pm 1.3 \text { g.u. }
$$

(3) From other spot heights:

$$
\mathrm{S}_{\mathrm{FA}}= \pm 3.2 \mathrm{g.u.} \text { and } \mathrm{S}_{\mathrm{BA}}= \pm 2.9 \mathrm{g.u}
$$

Therefore, the estimated individual Bouguer anomaly accuracy for most of the gravity stations is $\pm 1-1.5 \mathrm{g.u}$.

### 3.1 Introduction

A gravity meter only measures differences in gravity and if a survey is extended outwards in an uncontrolled way, the errors will accumulate with distance. The network adjustment consists of correcting each measured difference between adjacent bases until the cumulative gravity difference between any two bases on the network is the same for all routes connecting them.

A few workers in the past have attempted to develop an algorithm for the adjustment of a gravity base station network. Pentz (1952) developed one which gives the most probable value for an arbitrary number of base stations in a gravity network, which is expanded when a value of a new base is assigned from two existing bases. As long as the number of conditional equations required to produce the necessary accuracy is maintained, the network of a finite but unknown basesis fully determined, when the conditions for the solution of the normal equations are satisfied.

Smith (1950), based on Gibson's (1937) paper developed a satisfactory graphical method for network adjustment, but it has the disadvantage of being slow.

Searle (1969) developed an analysis for altimetric traverses, but which could also be used for a gravity network, based on minimising the quantity $\Sigma w_{i} Q_{i}^{2}$, where $w_{i} \equiv$ weighting factor $=1$ $\sqrt{N}$
and $N=$ number of height differences in each traverse; $Q_{i}=g_{i}^{\prime}-g_{i}$ where $g_{i}^{\prime}$ and $g_{i}$ are respectively the observed and adjusted height differences in a closing direction along the $i$ th traverse.

In none of these papers was the instrumental drift taken into consideration.

In the study area 52 bases have been established during the gravity survey. Twenty-five of them had already been set up in Midlothian and Tweeddale by Dr Hipkin, before the extension of the survey by the author. They are indicated by an asterisk in Table III-1, where the whole set of the bases is shown. A few of our bases belong to the National Gravity Reference Net - 1973 (Masson-Smith et al, 1974) Although and are marked by a double asterisk. $\{$ all the bases and consequently the whole gravity net are referred to the Edinburgh Fundamental Bench Mark value ( $9815849.16 \pm 0.33$ g.u.) , an alternative base was set up in the Geophysics Department in order to avoid delays due to traffic congestion in Einburgh. This station,initially in 5 South Oswald Road and later in the James Clerk Maxwell Building, was frequently used for the more distant connections, eg. Thankerton and Mordington FBM's. A manual adjustment as well as a least-squares one was made to the network, the analysis of which is described below.

Figure 3.1 shows the distribution of the base stations in the study area. Ties between the bases are shown in the data input file to program NETWORK, appendix A. Those ties which were made between bases before 1978, on which a manual adjustment was made, are also shown in figure 3.2. Later the network was extended and strengthened internally by more cross-ties.

### 3.2 Manual adjustment of the network

Most of the gravity base stations, established in the SE part of Scotland by the end of 1977, were initially adjusted by an empirical manual method. This network is shown in figure 3.2.


Fig. 3.1 Distribution of gravity base stations over the
SE Scotland and Borders region.


Fig. 3.2 Manual gravity base station adjustment.

Black circles represent "zero level" bases to which all the other bases are referred. Zero level bases were not included in the manual adjustment.

The value of gravity at Edinburgh F.B.M. was held fixed and the other zero-level bases separately determined with high precision by a special measurement program and a least-squares adjustment. Thereafter, the three zero-level bases in Edinburgh (Edinburgh F.B.M., Edinburgh A in the Royal Observatory of Edinburgh (Bullard and Jolly, 1936) and Edinburgh James Clerk Maxwell Building - J.C.M.B.) were held fixed for the manual adjustment of the network.

Those bases which are connected directly to one of the zero-level bases, are called "first-level" bases, such as Wallyford, Dirleton, Mordington F.B.M., Pomathorn etc.

Bases which are connected to zero-level bases via one other base are referred to as "second-level" bases. "Third-level" bases are those which are connected to zero-level with the intervention of two bases, etc.

The adjustment of a base of level $N$ involved a weighted mean of the measured ties, achieved with fewer than $M$ links $(M \leqslant 2)$; between it and every other base of level $\mathrm{N}-1$. The weight assigned to such a tie was $\frac{1}{(N+M-1)^{\frac{3}{2}}}$. For example, the adjustment of base 4 (Wallyford,
level 1) which involved links with base 3 (Edinburgh J.C.M.B.),
base 1 (Edinburgh F.B.M.) and base 9 (Gauger's Bush, level 1) is outlined below:

No of links

3

1
1

Wallyford (4)
Links between Bases

Observed Valué Weight

9815829.13	1
9815829.39	1
9815829.40	1
9815829.60	1
9815829.50	$-\quad 1 / \sqrt{2}$

Weighted Mean: 9815829.398 Total Weight: 4.707
The procedure becomes increasingly complex for higher level bases but the results were in reasonable agreement with later work. Figure 3.2 shows the adjusted mean for each base and its standard deviation with its total relative weight in parenthesis.

### 3.3 Least-Squares Adjustment

### 3.3.1 Introduction

Because new base stations were established during the expansion of the survey, as described in Chapter II and, also, additional ties made between the bases, it was considered necessary to make a computer adjustment of the network, using the least-squares technique. This was inevitable because the addition of the new bases and internal cross-ties required the whole manual adjustment to be repeated. A least-squares technique was suggested by $R$ G Hipkin and a description of the setting up of the normal equations is outlined below. Subsequently, an error analysis was made and a computer program, NETWORK, was written to perform the adjustment.

In the adjustment, errors are distributed amongst all the gravity stations, including Edinburgh $F B M$, and the drift rate for each day's observations is recomputed, by least-squares. The datum level is set by constraining only the mean observation at Edinburgh FS!, rather than every reading, to be 9815849.16 (g.u.), so that a standard deviation can be attributed to it.

### 3.3.2 Definitions

Base station is any point at which repeated observations have taken place.

Traverse is a sequence of observations to which a single drift curve is to be fitted.

Gravity observation (g). is obtained by converting the meter dial turns to gravity units and correcting for Earth tides. An (arbitrary) datum value and, possibly, a linear drift correction, which are the same for all stations on the same traverse, may have been applied. The quantity "observed gravity," computed by GRAVøl is a suitable measure for $g$.

### 3.3.3 Notation

The following notation has been used:
$M$ total number of base stations
$m$ index specifying the base station. (m $=1,2, \ldots, M$ )
$K$ total number of traverses
k index specifying the traverse (k = 1, 2,..., $k$ )
$p$ index specifying an observation on $k^{\text {th }}$ traverse at station $m$ $P_{k m}$ number of observations at $m^{\text {th }}$. base station during the $k^{\text {th }}$ traverse $\ell_{m}=\sum_{k=1}^{K} P_{k m}$ total number of observations at $m^{\text {th }}$ base station
$R_{k}=\sum_{m=1}^{M} P_{k m}$ total number of observations on $k^{\text {th }}$ traverse
$G_{m}$ adjusted value of gravity at $m^{\text {th }}$ base station
$a_{k}$ datum constant of $k$ th traverse
$b_{k}$ drift rate for $k^{\text {th }}$ traverse
[] enclose observed quantities
$\rangle$ indicate mean value

### 3.3.4 Observational equation

For each observation, $p$, at base $m$ on traverse $k$, the observed value of gravity $g_{p k m}$ has the form:

$$
\begin{equation*}
g_{p k m}=G_{m}-a_{k}+b_{k} t_{p k m}+\xi_{p k m} \tag{3.1}
\end{equation*}
$$

where $t_{p k m}$ and $\xi_{p k m}$ are the time and error for that particular observation.

### 3.3.5 Variance

From equation (3.1) summing the square of $\xi_{p k m}$ for all the observations at all bases on all traverses, the variance of the network is:

$$
\begin{align*}
& \left(g_{p k m}-G_{m}+a_{k}-b_{k} t_{p k m}\right)^{2} \tag{3.2}
\end{align*}
$$

### 3.3.6 Normal equations

The quantity $\Sigma \xi^{2}$ has to be minimised. Therefore, three sets of equations are produced by setting the partial derivatives of the variance equal to zero. From $\frac{\partial \Sigma \xi^{2}}{\partial a_{k}}$ we have $K$ equations where $k=1,2, \ldots$, $K$ :
 L
p $\mathrm{k} \mathrm{E}_{\mathrm{k}}$ and $\sum_{\mathrm{m}}$ respectively, and thereafter this notation will be held in the following:

From $\frac{\partial \Sigma \xi^{2}}{\partial b_{k}}$ we have $k$ equations for $k=1,2, \ldots, k$ :
$\left[\begin{array}{lll}\Sigma & \Sigma & g_{p k m} \\ m & t_{p k m}\end{array}\right]=\underset{m}{\Sigma}\left[\begin{array}{l}\Sigma t_{p k m} \\ p\end{array}\right] \quad G_{m}-\left[\begin{array}{l}\Sigma \Sigma t_{p k m} \\ m p\end{array}\right] a_{k}+\left[\begin{array}{l}\Sigma \Sigma\left(t_{p k m}\right)^{2} \\ m\end{array}\right] b_{k}$
From $\frac{\partial \Sigma \xi^{2}}{\partial G_{m}}$ we have $M$ equations, when $m=1,2, \ldots, M$ :


Considering equations (3.3), (3.4), (3.5), we have a total number of $M+2 K$ equations, which equals the numbers of unknowns $G_{m}, a_{k}, b_{k}$; but only $(M+2 K)-1$ of them are independent. For, the sum over all bases ( $\left.\begin{array}{c}M \\ \Sigma\end{array}\right)$ on set (3.5) is equal to the sum for all traverses $\mathrm{K} \quad \mathrm{m}=1$.
( $\Sigma$ ) on set (3.4). It appears then that the whole set of $\mathrm{k}=1$
equations is under-determined, for there are ( $2 \mathrm{~K}+\mathrm{M}$ ) - l linearly independent equations with ( $2 \mathrm{~K}+\mathrm{M}$ ) unknowns: an additional equation is required.

This is provided by defining the datum for the survey, which otherwise is entirely relative and could not determine absolute values $\mathrm{G}_{\mathrm{m}}$.

If the base station $m=1$ has to (absolute) gravity value $\zeta_{0}$, the additional required equation is simply $G_{1}=\zeta_{0}$ and the equation with $m=1$ from (3.3) can be omitted.

Summarising the above, we have that the $(M+2 K)$ set of normal equations has the form:

$$
\begin{aligned}
& {[1] \mathrm{G}_{1}} \\
& =\left[\zeta_{0}\right] \\
& {[0] G_{1}+\left[Q_{2}\right] G_{2}+\ldots+\left[-P_{21}\right] a_{1}+\left[-P_{22}\right] a_{2}+\ldots+\left[\sum_{p} t_{p 12}\right] b_{1}+} \\
& {\left[\sum_{p} t_{p 22}\right] b_{2}+\ldots \quad=\left[\sum_{k p} g_{p k 2}\right]} \\
& {[0] \mathrm{G}_{1}+[\mathrm{O}] \mathrm{G}_{2}+\left[\mathrm{Q}_{3}\right] \mathrm{G}_{3}+\ldots+\left[-\mathrm{P}_{31}\right] \dot{a}_{1}+\left[-\mathrm{P}_{32}\right] \mathrm{a}_{2}+\left[-\mathrm{P}_{33}\right] \mathrm{a}_{3}+} \\
& \ldots+\left[\begin{array}{l}
\left.\Sigma t_{p 13}\right] \\
p
\end{array} \mathrm{~b}_{1}+\left[\begin{array}{l}
\Sigma t_{p 23} \\
p
\end{array}\right] \mathrm{b}_{2}+\ldots=\left[\begin{array}{l}
\Sigma \Sigma g_{p k 3} \\
k p
\end{array}\right]\right. \\
& {\left[{ }^{P_{11}}\right] G_{1}+\left[P_{12}\right] G_{2}+\ldots+\left[-R_{1}\right] a_{1}+[0] a_{2}+[0] a_{3}+\ldots+} \\
& {\left[\sum_{m p}^{\Sigma \Sigma t_{p l m}}\right] b_{1}+[0] b_{2}+[0] b_{3}+\ldots \quad=\left[\begin{array}{l}
\Sigma \Sigma g_{p l m} \\
\operatorname{mp}
\end{array}\right]} \\
& {\left[P_{21}\right] G_{1}+\left[P_{22}\right] G_{2}+\ldots+[0] a_{1}+\left[-R_{2}\right] a_{2}+[0] a_{3}+\ldots+} \\
& {[0] b_{1}+\left[\Sigma \Sigma t_{p 2 m}\right] b_{2}+[0] b_{3}+\ldots} \\
& =\left[\operatorname{mpg}_{\mathrm{mp} 2 \mathrm{~m}}\right] \\
& {\left[\begin{array}{l}
\Sigma t_{p l l}
\end{array}\right] G_{1}+\left[\begin{array}{l}
\Sigma t_{p l 2} \\
p
\end{array}\right] G_{2}+\ldots+\left[\begin{array}{c}
-\Sigma \Sigma t_{p l m} \\
m p
\end{array}\right] a_{1}+[0] a_{2}+\ldots+} \\
& {\left[\begin{array}{l}
\Sigma \Sigma\left(t_{p l m}\right)^{2}
\end{array}\right] \mathrm{b}_{1}+[0] \mathrm{b}_{2}+[0] \mathrm{b}_{3}+\ldots \quad=\left[\begin{array}{l}
\left.\Sigma \Sigma g_{\mathrm{mplm}} t_{p l m}\right]
\end{array}\right.} \\
& {\left[\Sigma t_{p 21}\right] G_{1}+\left[\begin{array}{l}
\Sigma t_{p 22}
\end{array}\right] G_{2}+\ldots+[0] a_{1}+\left[\begin{array}{c}
-\Sigma \Sigma t_{p 2 m} \\
m p
\end{array}\right] a_{2}+\ldots+} \\
& {[0] \mathrm{b}_{1}+\left[\begin{array}{l}
\Sigma \Sigma\left(t_{p 2 m}\right)^{2} \\
m p
\end{array} \mathrm{~b}_{2}+\ldots \quad=\left[\begin{array}{l}
\left.\Sigma \Sigma g_{p 2 m} t_{p 2 m}\right]
\end{array}\right.\right.}
\end{aligned}
$$

3.3.7 Error Analysis

Considering equations (3.1) where $G_{m}$ is a function of the uncorrelated measured variables $g_{p k m}$ and $t_{p k m}$, we have (Bevington, 1969):

$$
\begin{equation*}
\left(\xi_{p k m}\right)^{2}=\left(\frac{\partial G_{m}}{\partial g_{p k m}}\right)^{2}\left(\xi_{g_{p k m}}\right)^{2}+\left(\frac{\partial G_{m}}{\partial t_{p k m}}\right)^{2}\left(\xi_{t_{p k m}}\right)^{2} \tag{3.6}
\end{equation*}
$$

Assuming that all the observations of gravity $\left(g_{p k m}\right)$ and time ( $t_{\mathrm{pkm}}$ ) at all bases on all traverses, belong to the same population then the expected value of any $\xi_{g_{p k m}}$ and any $\xi_{t_{p k m}}$ will be as follows:

$$
\begin{equation*}
\left\langle\xi_{g_{p k m}}^{2}\right\rangle=s_{g_{m}}^{2} \text { and }\left\langle\xi_{t_{p k m}}^{2}\right\rangle=s_{t_{m}}^{2} \tag{3.7}
\end{equation*}
$$

for any observation on any traverse; $\xi_{g_{m}}$ and $\xi_{t_{m}}$ are the standard deviations of the gravity observations and time at a base m, respectively.

Assuming $P_{k m}$ observations at the $m$ th base station for the $k^{\text {th }}$ traverse, a total number of $Q_{m}$ observations at the same base for all the traverses, and summing for all traverses and observations, from (3.6) we have:
and from (3.7)

Because the contribution of the second term on the right hand at the above equation is negligible it can be omitted.

Hence, the error for each base is expressed in terms of the total number of observations at that base station. The greater the number of visits to a base, the better the estimation of its error.

The root mean square error of the adjustment $S_{R M S}$ can be derived as the square root of the total variance divided by the total number of observations on all the bases, NOBS, minus one:

$$
S_{R M S}=\left(\frac{\Sigma \xi^{2}}{\text { NOBS }-1}\right)^{\frac{1}{2}}
$$

Because the number of observations at almost any base is relatively small, it is more desirable to estimate confidence limits on the adjusted value, $G_{m}$, rather than simply quote an apparent standard deviation or standard error.

For example, over what range is there a $95 \%$ probability that the true mean $\mu_{G_{m}}$ will be within this confidence interval on either side of our adjusted mean $G_{m}$.

Thus, the confidence interval within which $\mu_{G_{m}}$ falls with $100(1-a) \%$ confidence is (Bendat and Piersol, 1971);

$$
\begin{equation*}
G_{m}-\frac{S_{g_{m}} t_{n, a / 2}}{\sqrt{Q_{m}}} \leqslant \mu_{G_{m}}<G_{m}+\frac{S_{g_{m}} t_{n, a / 2}}{\sqrt{Q_{m}}} \tag{3.10}
\end{equation*}
$$

and the true variance $\sigma_{G_{m}}^{2}$ of $\mu_{G_{m}}$ based upon the standard deviation $S_{G m}$ of $G_{m}$ is:
where $n=Q_{m}-1$ and a can be found from tables showing the percentage points of Student's t distribution - see Bendat and Piersol (1971), p. 389 - and chi-square distribution.

Taking the square root on both sides of equation (3.11), we can have an estimate of a lower and upper limit of the standard deviation of $\mu_{G_{m}}$. This was done with a $95 \%$ confidence interval for the $\mu_{G_{m}}$ and $\sigma_{G m}$, taking the values of the student $t$ and chi-square distribution from tables given by Bendat and Piersol (1971).

A Fortran IV computer program, NETWORK, was written based on the analysis presented in the previous sections. A listing of the program and a description of it is outlined in Appendix B.

The input data to NETWORK are presented in Appendix A. They consist of the reference number of a base station, followed by the observed value of gravity at that base and the time, expressed in number days, using the Gregorian day number routine of the GRAVøl program. It is also possible to see the ties between different base stations.

To solve the $M+2 K=221$ normal equations $(M=57, K=82)$ with a total number of NOBS $=364$ observations, for all the traverses, took.something less than six minutes for 4-75 ICL computer on EMAS and 40 seconds on the 2980 ICL machine.

The results are presented in Table III-I, where for each base the adjusted value, its standard deviation and standard error is shown.

Table III-2 shows the upper and lower 95\% confidence limits of the base station values, after the application of the t test, while Table III-3 shows the same upper and lower limit of the standard deviation of the value of each gravity station, with the number of visits defined in parenthesis.

# TABLE III-1 Adjusted Values of Gravity Base Stations. 

TABLE III-2 Lower and Upper Limits of Base Values with
95\% Confidence.

TABLE III-3 Lower and Upper Limits of St. Deviation with 95\% Confidence. Values in parentheses are number of visits at this base.

TABLE III-1

REFERENCE NUMBER	BASE STATION	ADJUSTED VALUE	STANDARD   deviation	STANDARD ERROR
**	EDINBURGH FBM	9815849.16	0.14	0.03
2	EDINBURGH A	9815689.68	0.11	0.05
3	EDINBURGH-JCMB	9815787.87	0.06	0.01
4	WALLYFORD	9815829.30	0.09	0.02
5	ABERLADY	9816004.56	0.12	0.04
6	DIRLETON	9815960.63	0.12	0.05
7	HADDINGTON	9815786.01	0.08	0.03
8	NORTH BERWICK	9815957.31	0.06	0.03
9	GAUGER'S BUSH	9815929.53	0.07	0.03
10	DUNBAR WEST FBM	9815859.64	0.03	0.01
11	BEESKNOWE	9815768.85	0.13	0.05
12	BILSDEAN	9815663.76	0.08	0.03
13	PRIESTLAW	9815230.78	0.03	0.01
14	CAIRNCROSS	9815548.82	0.11	0.04
15	MAVISHALL	9815333.95	0.07	0.02
16	OLD BOON	9815111.55	0.10	0.03
17	FOGORIG	9815447.86	0.08	0.03
18	Duns	9815393.22	0.14	0.05
19 **	MORDINGTON FBM	9815372.82	0.12	0.04
20	FULTORDLEES	9815485.46	0.04	0.02
21	SELKIRK	9815093.23	0.11	0.06
22	ABERDOUR	9815721.27	0.06	0.03
23	THORNTON	9815879.93	0.08	0.04
24	FLODDEN LODGE	9815477.46	0.04	0.02
25	ANCRUM	9815335.92	0.07	0.03
26	HOSELAW	9815220.40	0.05	0.02
27	KETTLEBRIDGE	9816016.46	-	-
28	HATTON-LARGO	9815941.86	0.06	0.03



TABLE III-2

BASE	LOWER LIMIT	ABS. GRAVITY	UPPER LIMIT
1	9815849.09	9815849.16	9815849.23
2	9815689.54	9815689.68	9815689.82
3	9815787.85	9815787.87	9815787.89
4	9815829.27	9815829.30	9815829.34
5	9816004.48	9816004. 56	9816004.65
6	9815960.50	9815960.63	9815960.76
7	9815785.95	9815786.01	9815786.07
8	9815957.23	9815957.31	9815957.39
9	9815929.47	9815929.53	9815929.58
10	9815859.61	9815859.64	9815859.67
11	9815768.74	9815768.85	9815768.96
12	9815663.69	9815663.76	9815663.82
13	9815230.76	9815230.78	9815230.81
14	9815548.72	9815548.82	9815548.93
15	9815333.91	9815333.95	9815333.99
16	9815111.49	9815111.55	9815111.60
17	9815447.80	9815447.86	9815447.92
18	9815393.11	9815393. 22	9815393.33
19	9815372.73	9815372.82	9815372.91
20	9815485.42	9815485.46	9815485. 50
21	9815093.08	9815093.23	9815093.39
22	9815721.21	9815721.27	9815721.34
23	9815879.81	9815879.93	9815880.04
24	9815477.38	9815477.46	9815477.54
25	9815335.83	9815335.92	9815336.02
26	9815220.34	9815220.40	9815220.45
27	9816016.46	9816016.46	9816016.46
28	9815941.75	9815941.86	9815941.97


29	9815404.29	9815404.34	9815404.39
30	9815230.63	9815230.86	9815231.08
31	9814982.99	9814983.28	9814983.58
32	9815049.59	9815049.69	9815049.78
33	9814976.84	9814977.11	9814977.38
34	9815288.83	9815288.86	9815288.89
35	9815669.93	9815669.93	9815669.93
36	9815808.17	9815808.18	9815808.20
37	9815214.48	9815214.94	9815215.39
38	9815560.31	9815560.77	9815561.23
39	9815639.41	9815639.47	9815639.53
40	0.00	9815415.31	0.00
41	9815456.01	9815456.52	9815457.03
42	9815269.99	9815270.11	9815270.23
43	9815316.26	9815316.33	9815316.39
44	9815309.68	9815310.84	9815312.01
45	9815231.23	9815231.54	9815231.85
46	9815800.59	9815800.78	9815800.98
47	9815246.64	9815246.78	9815246.92
48	0.00	9815459.53	0.00
49	0.00	9815419.87	0.00
50	9815353.57	9815353.93	9815354.30
51	9815292.17	9815292.41	9815292.65
52	9815163.65	9815163.91	9815164.16
53	9815217.13	9815217.25	9815217.37
54	9814997.49	9814997.64	9814997.79
55	0.00	9815214.26	0.00
56	0.00	9814938.34	0.00
57	0.00	9814708.32	0.00


BASE $1(21)$	LOWER LIMIT $0.11$	$\begin{gathered} \text { ST DEVIATION } \\ 0.14 \end{gathered}$	UPPER LIMIT 0.21
2(5)	0.07	0.11	0.32
3(43)	0.05	0.06	0.08
4(26)	0.07	0.09	0.12
5(10)	0.08	0.12	0.21
6( 5)	0.06	0.11	0.31
7(9)	0.05	0.08	0.14
8( 4 )	0.03	0.05	0.19
9( 7)	0.04	0.06	0.14
10( 6)	0.02	0.03	0.06
11( 7)	0.08	0.12	0.27
12(7)	0.05	0.07	0.16
13( 6)	0.02	0.03	0.06
14( 6)	0.06	0.10	0.25
15(18)	0.05	0.07	0.11
16(12)	0.06	0.09	0.15
17(9)	0.05	0.07	0.14
18( 8)	0.09	0.13	0.27
19(8)	0.07	0.11	0.22
20(6)	0.02	0.04	0.09
21(4)	0.06	0.10	0.37
22(5)	0.03	0.05	0.15
23(4)	0.04	0.07	0.27
24(3)	0.02	0.03	0.21
25(4)	0.03	0.06	0.21
26( 5)	0.02	0.04	0.12
27(2)	0.00	0.00	0.01
28(3)	0.02	0.05	0.29


29(9)	0.04	0.06	0.12
30(3)	0.05	0.09	0.56
31( 3)	0.06	0.12	0.75
32(8)	0.07	0.11	0.23
33( 2)	0.01	0.03	0.98
34(24)	0.06	0.07	0.10
35(2)	0.00	0.00	0.00
36( 4 )	0.01	0.01	0.05
37(2)	0.02	0.05	1.61
38( 2 )	0.02	0.05	1.64
39(3)	0.01	0.02	0.15
40(1)	0.00	0.00	0.00
41(3)	0.11	0.21	1.29
42( 2)	0.01	0.01	0.44
43(7)	0.05	0.07	0.16
44(2)	0.06	0.13	4.14
45(5)	0.15	0.25	0.72
46( 8)	0.15	0.23	0.47
47(5)	0.07	0.12	0.33
48( 1)	0.00	0.00	0.00
49(1)	0.00	0.00	0.00
50( 2)	0.02	0.04	1.30
51( 2)	0.01	0.03	0.84
52(.2)	0.01	0.03	0.90
53( 2)	0.01	0.01	0.43
54(3)	0.03	0.06	0.38
55(1)	0.00	0.00	0.00
56(1)	0.00	0.00	0.00
57( 1)	0.00	0.00	0.00

Table III-4 shows the histogram of the errors of the observations, calculated from each observational equation. They are expected to follow the normal distribution. They seem to form a symmetrical normal distribution curve.

Table III-5 summarises the results found from our adjustment and the NGRN-73 gravity values.

### 3.3.9 Calibration factor tests

The difference of absolute gravity values between Edinburgh and Hawick and also the difference between Edinburgh and Hexham found from our adjustment and the NGRN-73 are shown in Table III-6.

Both the local measurements suggest that the manufacturer's calibration factor is too large for the LaCoste and Romberg gravity meter $G-275$, but neither is statistically significant.

Tests which have been carried out along the short calibration line near Macclesfield (Masson-Smith et al, 1974) with the G-274 gravimeter between North Rode and Cat and Fiddle (NRCF) and the newer one, Hatton Heath and Prees (HHP), are also shown in Table III-6. In contrast to the local measurements. these results suggest that the manufacturer's calibration factor is too small. The two calibration line results are not statistically consistent either with each other or with the Scottish measurements.
RMS PESIDUAL 0.09569 GU

LOWER LIXIT OF HISTIGRAM $=-0.478$ UFPER LIMIT OF HISTOGRAM $=0.478$ HISTSONA: IATEPVAL $=0.05 S$

HISTCGEAN

THEQRETICAL HISTCGAAM.										
THEORETICAL FREOUENCY	-1	- 5	8	45	124	124	4?	8	- 5	-1
OSSERYET										
FEEGUENCY	1	1	7	28	145	138	35	7	1	1
EACH *EGALS	3	I:								



TABLE III-5
Adjusted and NGRN-73 Values of Some Stations

FBM NAME	ADJUSTED VALUE (gu)	NGRN-73 VALUE (gu)
Edinburgh	$9815849.16 \pm 0.14$	9815849.16 ( -0.33 *
Modrington	$9815372.82 \pm 0.12$	9815373.76 ( $\left.{ }^{+} 0.77\right)$
Thankerton	$9815230.86 \pm 0.11$	9815230.40 ${ }^{( \pm} 0.59$ )
Elvanfoot	$9814977.11 \pm 0.04$	9814976.95 ( ${ }^{+} 0.64$ )
Hawick	$9814997.64 \pm 0.07$	9814998.02 ( ${ }^{+} 0.35$ )
Wetheral	$9814938.34-$	9814938.11 ( -0.22 )
Hexham	9814708.32 -	9814708.50 ( ${ }^{+} 0.25$ )

* Values in parenthesis indicate standard error.

TABLE III-6
Scale Calibration Results

Link	Manufacturer's Scale   gu	NGRN 73.   gu	Discrepancy   gu	Calibration factor   correction
Edinburgh-Hawick	$851.52 \pm 0.17$	$851.14 \pm 0.48 *$	$0.38 \pm 0.51$	$0.99955 \pm 0.00059$
Edinburgh-Hexham	$1140.84 \pm 0.17 * *$	$1140.66 \pm 0.40^{*}$	$0.18 \pm 0.43$	$0.99984 \pm 0.00038$
North Rode-Cat \& Fiddle	$604.249 \pm 0.040$	$604.53 \pm 0.08 *$	$-0.281 \pm 0.089$	$1.00047 \pm 0.00015$
Hatton Heath-Prees	$555.784 \pm 0.034$	$556.51 \pm 0.09 *$	$-0.726 \pm 0.095$	$1.00131 \pm 0.00017$

* Standard errors: all other errors are standard deviations.
** Predicted error from the least squares adjustment.

If the factor deduced from the HHP calibration line measurement, which is the line now preferred by IGS, is used for the network adjustment, there are now statistically significant discrepancies with local NGRN stations; eg, Edinburgh-Hawick 1.50 $\pm 0.53 \mathrm{gu}$ Edinburgh-Hexham $1.68 \pm 0.47 \mathrm{gu}$.

Therefore, in spite of their apparent good quality, the calibration line measurements have been ignored and the manufacturer's calibration tables were used throughout.

Without further investigation, the calibration discrepancy cannot be explained: it may be due to non-iinearity of the meter scale, or perhaps to a change or error in one of the national calibration lines.

THE BOUGUER GRAVITY ANOMALY MAP AND CONTOURING ROUTINES

### 4.1 Introduction

This chapter deals with the construction and description of the Bouguer gravity anomaly map and its correlation with the geological map of the area. Also, an attempt was made to compare different contouring routines and a regional-residual separation of the gravity map in terms of simple or orthogonal polynomials.

### 4.2 Bouguer Gravity Anomaly Map

### 4.2.1 Construction

After the least squares base station adjustment of the network, the adjusted values of the bases were used as a control to rerun the gravity data using a different version of GRAV $\varnothing 1$ and a suitable output was obtained - with the reference number, co-ordinates and value of each gravity station - as an input to the contouring routines used to plot the data. Various contouring routines were used, described below, in paragraph 4.3, which generate a regular grid of values from the irregularly spaced gravity data, the spacing of the grid interval playing an important role in the more realistic representation of the gravity map. Figure 4.1 shows the gravity data plotted by the General Purpose Contouring Program (GPCP) of the CALCOMP package with a grid interval of 1.5 km . Figure 4.2 shows the same gravity data, plotted with a grid size of 2 km , superimposed on the geological map. All the Bouguer gravity anomaly maps mentioned above were compiled with a


Fig. 4.1 Bouguer gravity anomaly map. Contour interval 10 gu. Plotted by GPCP using l.5km grid size. Crosses represent gravity stations.

Fig. 4.2 Bouguer gravity anomaly map superimposed on the geological map.


Also, it was decided to incorporate marine data by digitising the offshore contours produced by Tully and McQuillin (1978). These are shown in figure 4.3 with a better representation of them in figure 4.9.
4.2.2 Description and correlation with the geology Considering the features of the gravity map (figure 4.1) over the study area, there are positive and negative closures associated with different geological formations.

Starting with negative gravity anomalies, the most predominant feature of the gravity map (figure 4.1) is the gravity low which runs SW-NE over the Lower Palaeozoic rocks of Ordovician and Silurian greywackes, reaching values of -50 gu over the Tweeddale area, -40 gu over the Lauderdale area and -1lo gu over the area of Cockburnspath. This long wavelength negative gravity anomaly is the subject of study in Chapter $V$, where it has been interpreted as being caused by a granite batholith underlying this area. To the north-west of Lauder, there is an offset and widening of the main negative feature caused by the superposition over the Lower Palaeozoic rocks of the Upper Old Red Sandstone sediments. The main negative anomaly is also enlarged by the Calciferous Sandstone series and Upper Devonian sediments of the Cockburnspath-Oldhamstock basin in the north-east of the area. These basins are discussed in detail in Chapter VI.


Figure 4.3 Bouguer gravity anomaly map compiled with marine data (Tully and McQuillin, 1978) and plotted by CALCOMP-GPCP at 10 gu in grid size 2 km .

The second in size of the large negative gravity anomalies is the one associated with the Leven Coalfield with another marking the Midlothian Coalfield. The gravity map suggests that the Leven Coalfield on the western coast of the Firth of Forth is continuous under the sea, covering an area almost the same as onshore; it is characterised by a large (at least -70 gu) negative gravity anomaly. The Midlothian Coalfield is clearly correlated with a low of -30 gu amplitude and it appears, probably misleadigly, from figure 4.3 that it does not continue far into the Firth of Forth.

There are also some other small negative gravity closures on the gravity map (figure 4.1) which are associated with the Devonian basins at Kinross and Eyemouth. The Devonian basin at Eyemouth is discussed in detail in Chapter VI.

Considering the positive gravity anomalies of the gravity map (figure 4.1), there is a positive anomaly of relatively long wavelength over the East Lothian area with an amplitude of 120 gu at Aberlady Bay. A few stations along the seashore of Aberlady indicate anomalies of more than 120 gu and, in the author's opinion, the gravity field continues to increase offshore although its maximum amplitude probably occurs not far from the coast. All of the East Lothian area is characterised by a high with steep gradients of about $10-12 \mathrm{gu} / \mathrm{km}$, towards the Aberlady region. It is suggested that the gravity maximum marks a volcanic centre in Aberlady Bay rather than at the Garleton Hills where there are extrusive trachytes and basalts of Lower Carboniferous age.

Comparing the gravity pattern with the aeromagnetic one (Bullerwell, 1968), figure 4.4, it is concluded that both gravity and magnetic positive anomalies are caused by a Lower Carboniferous basic volcanic centre around Aberlady Bay. This seems to be continuous under the Firth of Forth and is probably connected at depth with the Burntisland lavas through a narrow east-west volcanic belt, truncating the northern end of the Midlothian Coalfield and marking the southern boundary of the Leven Coalfield, something which has already been suggested by Francis (1961). Another possibility is that both the Coalfields are continuous under the Firth of Forth but their gravity effect is marked by a superimposed positive anomaly due to an E-W trending offshore volcanic belt.

The aeromagnetic map, figure 4.4, shows two positive extensions, perhaps due to a sill or lava flow to the north-east and north of the Garleton Hills, one forming a narrow belt, extending several kilometres north-eastwards into the North Sea, while the other one to the north, suggests a small feature, confidently identified as a sill of relatively small vertical thickness (Gunn, 1972). This idea is supported by a small island (Island of May, NT 6699) to the north, which has been marked in the geological map as basalt. As has been suggested by Gunn (1972), the narrow magnetic belt to the north-east of Dunbar may be caused by ophiolitic material, as it lies along the offshore extension of the Southern Uplands Fault (Lammermuir Fault), although there is no clear gravity support in this case.

In the East Lothian area there is also a minor elongated gravity high south-west of Traprain Law (NT 6277), which appears to be


Fig. 4.4 Aeromagnetic map; part of Sheet 11 (after Bullerwell, 1968). Contour interval 10 nT .
correlated with the phonolite intrusion. It is also associated with a large positive magnetic anomaly, as has been shown by the ground magnetic traverses of the vertical component of the earth's field by Bennett (1969). From those studies it was concluded that there are more intrusions to the south-west of Traprain Law, apart from the basalts and trachytes extrusives of Lower Carboniferous age marked on the geological map. The intrusions, which are delineated by the small elongated gravity high (figure 4.1), are caused by basic material, probably of Carboniferous rather than of Permian age (Bennett, 1969).

Going to the western part of the study area, the gravity and by their continuity aeromagnetic pattern also suggest that all the numerous dolerite intrusions around the Edinburgh area and to the west and northwest of it have the same origin and are connected at depth. This belt of high. gravity is similar in form to the upward continued aeromagnetic pattern (figure 4.5). The positive aeromagnetic anomaly connects with others to the west, north-west and southwest of the Edinburgh area and is the north-east part of a major feature which dominates the whole of the Midland Valley.

Recent gravity work on the western part of the Midland Valley (Alomari, Geology Department of Glasgow University, person. commun.) shows that there is a gravity high running from the Island of Arran, a Tertiary igneous centre, through the Clyde plateau lavas to the Bathgate region, where the largest positive gravity and magnetic anomalies over the Midland Valley and Southern Uplands are met, and from there to the Burntisland-Aberlady area. The Arran intrusion is much younger than the other features and not genetically related to them.


Fig. 4.5 Smoothed aeromagnetic map (after Hall and Dagley, 1970).

In the southern part of the study area, the gravity high of 50 gu near Selkirk and Melrose is discussed in detail in Chapter V. At this point it should be noted that the western flank of the Upper Old Red Sandstone basin of the Lauderdale area lines up with the 50 gu contour in Selkirkshire, and the relatively steep gradient east of Melrose, is perhaps indicative of a fault with relatively small dimensions.

In Berwickshire there is a steady decrease of the gravity field south-eastwards towards the Cheviot suite of the granite exposure.

Major and minor fault components exist in various parts of SE Scotland. The Leadburn Fault, the north-east component of the Southern Uplands Fault, is associated with a narrow elongated belt of gravity and magnetic highs. This was interpreted (Gunn, 1972) as due to ophiolitic material emplaced at depth during the Caledonian earth movements and closure of the Iapetus Ocean.

Steep gravity gradients correlated with the Roslin-Vofrie Fault system and the Pentland Fault which bound the Midothian Coalfield to the south and west respectively, confirm that they are major features with a relatively large throw. From the offshore extrapolation of the gravity field north of the Midlothian Coalfield, the anomaly due to the Pentland Fault does not continue very far into the Firth of Forth and terminates where the offshore northern (faulted?) boundary of the Midlothian Coalfield is.

The Eyemouth Fault, marking the south-eastern boundary of the Eyemouth Old Red Sandstone basin is an unexpectedly strong feature in contrast to the Lammermuir and Dunbar-Gifford Faults - probable components of the Southern Uplands Fault system to the north-east, which are not associated with any significant gravity gradients. These faults are discussed in detail in Chapter VI.

### 4.3 Automatic Contouring Routines

The routines which produce contour maps are generally divided into three categories, which will be discussed below.

The first is that a rectangular grid is superimposed over the map area and a value assigned at each grid point. For this stage, estimation techniques vary widely. They usually consist of selecting a number of neighbouring data points and then calculating a weighted average from them, after choosing a weighting function which gives less weight to more distant points. Once the grid values are obtained then straight or curved line segments are drawn by conventional methods for a desired contour level by interpolation from the values at the corners of each rectangular unit.

The second technique consists of triangular structures. A set of irregular triangles is superimposed on the map area, each vertex corresponding to a data point. Once this network is constructed then the contouring procedure is straightforward. This method is rarely used nowadays.

The third category is the so-called 'universal kriging.' This
is an estimation procedure developed as an alternative mean of grid generation. It is an empirical observational theory originated by D G Krige in the estimation of ore problems (Krige, 1966). Later, G Mather on expanded Krige's estimation methods introducing the theory of generalised variables, in which a complete error estimation theory was also developed.

Because universal kriging is associated with a large and a very complicated mathematical analysis, it will not be described here; a review by Olea (1975) is recommended as a further reference. It was considered necessary to mention it because universal kriging overcomes all the disadvantages appearing in weighted average techniques (which are highly empirical, non-optimal, etc) and trend surface analysis. It is an exact interpolation procedure which can also take into account the volume which data observations may have, providing an error estimate at all. generated grid points too.

SURFACE II graphic system (Sampson, 1975) is a Fortran-IV package in which the universal kriging technique has been applied. This package has been implemented at the Rutherford Laboratory, but it was impossible for the author to have access to it.

There are essentially two problems appearing with the first technique of using a grid superimposed over the map area. The first is the definition of the weighting function. Frequently, it has the form of $1 / d^{n}$, where $d$ is the distance of the data point from the point whose value is to be determined and $n$ equalls to 2 or, rarely, 3 etc.

In other cases the weighting function has a different form varying from package to package. Those routines applying weighting functions often suffer from having singularities or inflections at the data points. The second difficulty eventually occurs in the definition and collection of the neighbouring data points. Testing and collection of data points is one of the most timeconsuming operations on a computer, particularly when the grid is to be generated from irregularly spaced data. Again, at this point different methods are applied. One uses a constant "search radius" which takes into consideration those data points which fall within the region defined by a circle centred on the grid point or, by another method, defining neighbouring points as a standard number of the closest data points.

For the production of good quality maps the determination of the grid size is of great importance and it is recommended that the grid size should have a value close to the average spacing of the data points. Then the next, not so critical, action is the determination of the number of the neighbouring data points or the size of the search radius, although, from the author's experience, the latter mainly affects the degree of smoothing, depending on the weighting function used.

In the case of imposing triangles on the data points, the user does not have much opportunity for personal judgement, and the quality of the map depends mainly on the distributions of the data points. If they are evenly distributed, then the shape of the triangles is not so irregular and distortion and local irregularity of the contours is avoided.

In these three techniques for contouring irregularly-spaced data, the non-uniqueness of the problem is obvious. However, this is of less importance when the user is contouring a large amount of data, where the use of the machine becomes necessary. Eventually the cost of an automatically contoured map is competitive with that of a manually contoured map and the variability and inconsistency involved in manual draughting are mostly avoided.

Since in Edinburgh there was access to some very modern contouring packages, the production of automatically contoured gravity anomaly maps by the implementation of those packages was considered advantageous at once. One of the most significant benefits was the possibility of updating maps at a low marginal cost:
author's
Most of the needs were covered by the use of the CALCOMP's. (1973) GPCP implemented in ERCC. Another routine, TRIANG, used at the beginning, was based on a triangular data structure and developed by C Gold, Geology Department, University of Alberta. It was implemented in the Geophysics Department of Edinburgh University and a modified version of it by the author, was used. Also, the SACM package (Surface Approximations and Contour Mapping) available by NERC at Rutherford Laboratory was tried.

Swain (1976) published a program which interpolates irregularlyspaced data onto a regular grid. The grid values are approximated by the smoothest surface which passes through every data point, applying Brigg's (1974) method of mimimum curvature. The

```
implementation of this program was tried but it did not work,
even adding the missing line in the published program (Swain,
person. commun.). Minor corrections were made and the program
ran successfully but without satisfactory results on real data.
Similar corrections which were also made by Dr Sowerbutts (person.
commun.) were tried without satisfactory results. Then, the
attempts to run the program successfully were abandoned. Hopefully,
Tobler's (1977) corrections will prove to be more effective.
```


### 4.3.1 CALCOMP's General Purpose Contouring Program (GPCP)

 The grid-value generation as well as the weighting function applied to the neighbouring data points (NP) is described in CALCOMP's (1973) user's manual.It was found that, choosing a small grid size and a large number of neighbouring data points (NP) is very time-consuming on the computer. The gravity data were run using a grid of $1,1.5,2 \mathrm{~km}$ and NP $=18$. This was done because the distribution of gravity stations over the map area is not even and these grid sizes reflect locally the average spacing of the stations. The maps are presented in figures 4.6, 4.1, 4.3. It appears that by increasing the grid size the contours become smoother and some of the local very small closures disappear with a larger grid size.

### 4.3.2 TRIANG Routine

This routine, written initially by $C$ Gold, contours irregularlyspaced data. First a large triangle, big enough to enclose the


Fig. 4.6 Bouguer gravity anomaly map, plotted by GPCP with grid size of 1 km at a contour interval of 10 gu ; smoothing factor 15.
map area, is generated. Then, each data point, one at a time, is entered. Consequently, the big triangle is divided into three new triangles with the inserted point at a vertex of each triangle. This process continues until all the data points are entered. The resulting triangles, which are continuous over the map area, may not have a desirable shape. For this purpose, an optimisation routine checks each triangle against its neighbours to see if the quadrilateral thus formed should be divided the other way on the basis of minimising the length of the dividing line. This has an effect of reducing considerably the number of sharp triangles. As is obvious, this procedure is very time-consuming.

The program was modified so that the triangle structure is plotted and, therefore, the sharp triangles can be identified. By interfering, their shape can be changed, locally, or, more effectively, some data points can be omitted altogether. " This was not always found effective depending particularly on the distribution of the adjacent data points; for example, it was ineffective along dense profiles.

Part of the area was plotted using the TRIANG routine and the map is shown in figure 4.7.

From the experience of using this routine, the following conclusions may be drawn:

1. It is a very slow and expensive routine and, therefore, not satisfactory.

Fig. 4.7 Bouguer gravity anomaly map plotted by TRIANG at 10 gu interval.
2. It is recommended for a small number of data points, but not for a large number.
3. If no other contouring routine is available, then the contouring map should be retraced, applying visual smoothing where the contours have been distorted by sharp local triangles.
4. The map is satisfactory where the data point distribution is even.

In figure 4.8, the station distribution in the eastern Berwickshire, the Merse and generally the south-eastern part of the study area is quite evenly spaced and therefore the contours, except in some local places, have a satisfactory appearance. In places where the area is densely covered.(Midlothian) or where dense gravity profiles are present, the program almost fails in the plotting procedure, besides the fact that it becomes extremely slow and expensive. This was the reason why many of the stations in the Midlothian area were omitted. Some of the dense profiles were deliberately left untouched, for instance, the profiles along the Lammermuir Fault and Dunbar-Gifford Fault, so keeping their effect on the contours.

### 4.3.3 SACM

SACM is one of the very modern contouring packages (as is SURFACE II), which is available to Science Research Council (SRC) users by NERC and implemented at the Rutherford Laboratory.


Fig. 4.8 Gravity observations over the SE part of Scotland and Borders region.

Sciences. It was possible to contour the gravity data using this package and, as it is described below, to produce trend surface maps since that facility is also provided by the package.

Apart from a manual for running the package, no description of the algorithm of SACM was available, as occurs with most commercial contouring packages whose algorithms have not been made public. Therefore, the data structure and interpolation function used for SACM are unknown.

The gravity data plotted by the SACM package are presented in figure 4.9. No smoothing was applied. The similarity of the map when compared with the map plotted by GPCP with the same grid interval (figure 4.3) is remarkable. SACM approximates the offshore digitised contours in a better way than GPCP. Also, the local closures produced by SACM are fewer than by GPCP, for example, along the broad high near the Southern Uplands Fault.


Fig. 4.9 Bouguer gravity anomaly map plotted by SACM; grid size 2 km , contour interval 10 gu.


#### Abstract

4.4 Regional-Residual Separation

In practical situations, gravity anomalies from sources at different depths and different horizontal scales are superimposed. To interpret any one of them, it must be separated from the others. One approach is to postulate the other structures or to determine them by a different technique and then subtract their calculated attraction as a regional field; another makes use of the different wavelength characteristics of deep and shallow sources, hoping that the shorter wavelength residual anomalies left after the longer wavelength "regional" anomalies have been removed properly reflect the local structure under investigation.


As an example of the first approach, the calculated attraction of the LISPB seismic model was removed for the interpretation of the anomalies due to the granite batholith in the Southern Uplands (Chapter V). In this section, examples of the second approach are considered even though, in the end, not much use was made of it.

Apart from the graphical and smoothing methods, techniques have also been developed using digital computers by filtering, by using the second derivative method and by fitting trend surfaces described by orthogonal or non-orthogonal polynomials.

[^1]It uses orthogonal polynomials applied to irregularly spaced
data. Because Whitten's (1974) program seemed very impressive, its implementation was attempted on EMAS. Unfortunately, there were many errors, perhaps in typing, and it was impossible to compile it successfully. After a while this attempt was abandoned.

However, a picture of the regional-residual gravity field of the area was desirable. For this purpose, the SYMAP (1975) package was used for the picture of the regional field of different degrees. It fits monorthogonal polynomials by least squares to the data points. This package has been implemented by ERCC. The maps are obtained on a line printer; the trend surface maps are usually clearly readable but the same is not true for the residual maps, whose display on a line printer is difficult to visualise. Another disadvantage is that because the least squares surface is constrained only at each data point, the approximation by a certain degree surface is very poor in areas where there are very few data points, since the trend surface becomes very unstable away from data points.

In our area a contrast appears for the density of gravity stations on land and offshore, where only at 20 or 50 gu intervals contours (Tully and McQuillin, 1978) have been digitised. Because of that, the gravity field will not be approximated realistically. This was another reason why no SYMAP maps of the residual or regional field are shown.

Instead of SYMAP, the SACM package was used. There, from the data points a grid array is calculated and a least square fit using Chebychev polynomials is applied. Trend surfaces of first,
second and third degree were made. They are shown in figures 4.10, 4.11, 4.12. It is clear from these figures that there is an eastwards decrease of the regional field. The gravity gradient varies from $0.9 \mathrm{gu} / \mathrm{km}$ for the linear trend to $1.25 \mathrm{gu} / \mathrm{km}$ for quadratic trend and $1.66 \mathrm{gu} / \mathrm{km}$ for third degree trend, always in a direction east-west.

Figures $4.13,4.14$ and 4.15 show the residual gravity field anomalies over the study area. In all three maps the general correlation with the geological features of the area is more or less the same. For example, the Midlothian Coalfield, the Aberlady high, the East Fife Coalfield, the Oldhamstocks sedimentary basin, the gravity low along the Caledonian Trend and the Melrose high are a few of the main features which appear almost the same in all three residual maps.

In the following chapters, where the interpretation of some of these features is presented, residual maps obtained by SACM will not be used for two main reasons:

1. A regular access to the SACM package was not possible.
2. Trend surfaces, because they are a pure mathematical abstraction, are usually without any physical or geological meaning; although the residual maps do show correlation with the geology, there is no better indication of the real amplitude of local anomalies.


Fig. 4.10 First-degree trend surface of the gravity field of figure 4.9. Contour interval 10 gu.


Fig. 4.11 Second-degree trend surface of the gravity field (figure 4.9); contour interval 10 gu.


Fig. 4.12 Third-degree trend surface of the gravity field (figure 4.9); contour interval 10 gu .


Fig. 4.13 First-degree residual Bouguer gravity anomaly map. Contour interval 10 gu.


Fig. 4.14 Second-degree residual Bouguer gravity anomaly map. Contour interval 10 gu .


Fig. 4.15 Third-degree residual Bouguer gravity anomaly map. Contour interval 10 gu .

## GRANITES AND OTHER DEEP IGNEOUS INTRUSIONS

### 5.1 Introduction

This chapter deals mainly with the regional interpretation of the long-wavelength gravity anomaly which runs $S W$ to $N E$ parallel to the Caledonian trend, along the Southern Uplands. The latter is interpreted as being due to a large granitic intrusion underlying the area and a detailed modelling attempt was made over the District of Tweeddale. The interpretation of some of the other features of the gravity and aeromagnetic map over the rest of the NE part of the Southern Uplands is also discussed.

### 5.2 Tweeddale (Peeblesshire)

### 5.2.1 Brief geological account

Nicol (1843) first described the geology around the county of Peebles in the last century. The surface geological exposure to the SE of the Southern Uplands Fault is relatively uniform (see figure 5.la); the Ordovician greywackes and shales form part of the SW-NE trending Northern Belt (Walton, 1965), and are followed to the south by similar Silurian sediments (Central Belt). Walton (1955) has made a detailed study of the Silurian greywackes over that region.

Within the Lower Palaeozoic and particularly within the Ordovician, there are the occasional small lenses of black shales and radiolarian cherts. Ashes of Caradocian age are met at Hamilton Hill and Winkston Hill, just north of Peebles, with thicknesses of 45 m and 100 m respectively (Ritchie and Eckford, 1931), while pillow lavas of Llandeilian age occur in the Northern Belt near
the Southern Uplands Fault. The most predominant of the sporadic small igneous intrusive features are the numerous felsite and porphyrite veins in the greywacke strata. Their dimensions vary from 1 to $30 f t$, but others occur in much larger dimensions (Nicol, 1843), sometimes forming whole or part of a mass of a hill, notably the porphyritic exposures at Priesthope Hill (NT 3540) and at Juniper Craigs (NT 2536). Nicol (1843) has estimated the total thickness of the porphyritic sheet.s over that area and reported a number of $200-250 \mathrm{~m}$.

There are also boulders of granite in the nearby drift Kailzie Hill (NT 2836), Kirnie Law (NT 3539) - believed to be locally derived (Gill, person. commun.). These outcrops can also be seen on the Geological Survey map (Sheet 24).

### 5.2.2 Residual Bouguer gravity anomaly map

All the gravity stations in the Tweeddale area were used for the construction of the Bouguer gravity map (more specifically, stations falling within the lokm National Grid squares NT 12, NT13, NTl4, NT22, NT 23, NT 24, NT 32, NT 33, NT 34, and part of the NT25, NT 35, NT 45).

Since the geology to the north-west of the Southern Uplands Fault is not uniform and in order to avoid taking the Devonian sediments and the andesitic lavas to the north-west of the Southern Uplands Fault into account in the modelling procedure, it was decided to rotate the boundaries of the data through $45^{\circ}$. The map is presented in figure 5.l. The Southern Uplands Fault runs parallel, just lkm off the upper margin of the map. The

bouguer gravity anomaly map - after rotation

Fig. 5.1 Bouguer gravity anomaly map of Tweeddale area and gravity station distributions (circles). Line from NW to SE represents the beginning of profile AB. Contour interval logu. BF \& CD represent lines along which 3 -point depth rules were applied
(equation 5.2).


Fig. 5.la Residual Bouguer anomaly map of the Tweeddale area, superimposed upon a geological sketch map. (ORD: Ordovician;
SIL: Silurian; DEV: Devonian; CARB: Carboniferous;
SUF: Southern Jplands Fault; Dl: Dalwick; Gr: Grieston;
Dm: Dumbetha; $\triangle$ : felsite; $\square$ : Porphyrite; $O$ : granite. Contour interval 10 gu ). The LISFB(figure 5.3) linear trend was subtracted.

GPCP was used to contour the data, with a lkm grid interval, since this represents the density of the stations, at least at the centre of the feature, where greatest detail is required.

For the construction of the residual Bouguer gravity map it is necessary to have an estimate of the regional picture of the gravity field. Because the geology over the Tweeddale area appears to be relatively uniform, it was decided that the model from LISPB (Bamford et al, 1977, 1978) should be adopted, since the LISPB line passes through this area.

For this purpose the refracting horizons of the LISPB model were digitised and the gravitational attraction of these layers was calculated using the TALG2D program. The Nafe-Drake curve (Nafe and Drake, 1963) was used for the translation of seismic velocities to densities. The superficial layer of IISPB was not taken into consideration. FHgure 5.2 shows the picture of the regional field. Por computational reasons, the part of this regional field over the survey area was represented by either a linear or quadratic approximation. The LISPB model was assumed to be two-dimensional striking parallel to the Caledonian trend. The area between the dashed lines (figure 5.2 and figure 5.3) represents a region 40 km wide to the $\operatorname{SSE}$ of the Southern Uplands Fault, whilst the area covered by the gravity map in figure 5.1 is only 25 km to the south-east of the Southern Uplands Fault. The regional field between the dashed lines in figure 5.2 is shown in a larger scale in figure 5.3.

A linear gradient of $3.7 \mathrm{gu} / \mathrm{km}$ approximates the calculated effect over the first 25 km to the south-east of the Southern Uplands Fault.


Fig. 5.2 Gravitational attraction (upper part) of the LISPB model, after digitising the refraction horizons and translating the seismic velocities into densities using the Nafe and Drake (1963) curve. The region between the dashed lines represents 40 km to the $S S E$ of the Southern Uplands Fault.


Fig. 5.3 Variation of the regional gravity field calculated from LISPB. Region between dashed lines represents 40 km SSE to the Southern Uplands Fault.

This is the value of the regional trend along the LISPB line. However, because we are interested in the value of the field perpendicular to the strike of the anomaly, the estimation of that was made as follows:
gradient across strike $\equiv \frac{\Delta g}{\Delta x^{\prime}}=\left(\frac{\Delta g}{\Delta x}\right) \frac{1}{\cos \Theta} \equiv\left(\right.$ gradient along LISPB) $\frac{1}{\cos \Theta}$.
where $\Delta x$ represents distance along the LISPB line, and $\Theta=$ angle between LISPB line and the direction perpendicular to the strike of the anomaly ( approximately $25^{\circ}$ ).

Consequently, a linear trend of $4.06 \mathrm{gu} / \mathrm{km}$ was added in the southeast direction across the Caledonian trend, and the residual Bouguer gravity anomaly map over the same area is shown in figure 5.4 as well as superimposed on figure 5.1a.

As an alternative, a quadratic approximation to the regional field estimated by LISPB (figure 5.3) was calculated and the residual gravity anomaly map is shown in figure 5.5.


Fig. 5.4 Residual gravity map of the Tweeddale area, after
subtraction of a linear trend calculated by LISPB
RESIDUAL BOUGUER GRAVITY MAP - QUADRATIC REGIONAL FIELD SUBTRACTED


Fig. 5.5 Residual gravity map of the Tweeddale area subtracting the quadratic trend calculated by LISPB (figure 5.3). Contour interval 10 gu.

### 5.2.3 Interpretation

The general trend of the gravity low in the eastern Southern Uplands is NE-SW, coincident with the main trend of surface features like the age zones, the folds and thrust faults and the bounding Southern Uplands fault. These all follow and help to define a "Caledonian trend". The coincidence of trend suggests a source related to the closure of the Iapetus Ocean.

If, as many authors have proposed, the suture lies under or near to the Southern Uplands, the gravity low could be caused by an obducted sedimentary prism overlying a denser basement; alternatively, the suture might have trapped a zone of lower density sediments between the two opposing basements; finally, the low might be due to a granite, resulting from the subduction. An extensive sedimentfilled gap in the basement ought to have been plainly seen by LISPB.

Detailed and analytical studies on the granite batholiths have been made by Bott (1953, 1956) and Bott and Smithson (1967), while a criterion for distinguishing gravity lows due to either sedimentary basins or igneous intrusions has been outlined again by Bott (1962). In this section, considering the geology of the area, which in a large scale is not different from the general geological picture of the Northern and Central Belts of the Southern Uplands, the interpretation of that long-wavelength negative gravity anomaly will be discussed in terms of three factors which could be responsible for it:
(i) Variation in the density of the Lower Palaeozoic sediments
(ii) variation in the sediment thickness and,
(iii) an igneous intrusion.

### 5.2.3.1 Density Variation of the Sediments

The sediments exposed in the Southern Uplands show an overall decrease in age southwards and while there is no major change in lithology, there is a trend with increasing thickness of trench sediments from north to south. Consequently there is no visible symmetry of rock type about the centre of the anomaly and no corresponding symmetrical density variation would be expected.

From hand samples of rocks taken from different localities over the Southern Uplands, laboratory density measurements have shown that there is not such a considerable systematic density variation in Silurian and Ordovician greywackes. A mean value of $2.708( \pm 0.021) \mathrm{g} / \mathrm{cc}$ saturated density was found (Table II-4) for the greywackes which is not so far from McLean's (1961a) and Bott and Masson-Smith's (1957) values over the Southern Uplands. Nevertheless, a more systematic approach was made by applying Nettleton's (1939) method, fitting a quadratic surface to all the gravity stations falling in each lokm National Grid square. The results have been shown in Table II-5 and summarised in Table $V-1$, for the Tweeddale area. A mean value of $2.711 \pm 0.026 \mathrm{~g} / \mathrm{cc}$ was found.

NT14	NT24	NT34
$2691 \pm 86(20)$	$2709 \pm 31$ (54)	$2727 \pm 22(17)$


NT13	NT23	NT33
$2670 \pm 36(21)$	$2746 \pm 28(48)$	$2721 \pm 64(32)$

NT12
$\mathrm{NT} 22^{*}$
$2749 \pm 36$ (20)
$2685 \pm 15$ (32)

Computed Bouguer density (kg m ${ }^{-3}$ ) in each 10 km National Grid square, with its standard deviation and the number of gravity stations, obtained by fitting a quadratic surface to the Bouguer anomaly. (Because of the unsuitable distribution of stations, a linear surface was fitted in square NT22).

### 5.2.3.2 Sediment thickness variation <br> The original idea (Eipkin and Lagios, 1978) was to interpret the long-wavelength negative gravity anomaly in the Southern Uplands in terms of an obductive sedimentary prism marking the area of the suture of Iapetus.

The first attempt made was the interpretation of a NW-SE trending gravity profile over the Tweeddale area. At that time, because the survey had not been completed in that region, there was not very good control of the profile at the centre of the anomaly. Modelling attempts revealed a great thickness for the greywackes at the centre of the anomaly with unacceptable depths greater than 20km. Even today, trying to model the gravity low in terms of thickness variations of the greywackes, relatively large residuals were found at the centre of the anomaly. Figure 5.6 shows such an attempt with density contrast of $-0.06 \mathrm{~g} / \mathrm{cc}$. Such a sediment density of $2.65 \mathrm{~g} / \mathrm{cm}^{3}$ is already lower than implied by the density measurements but a smaller density contrast will cause the sedimentary prism to extend into the $6.4 \mathrm{~km} / \mathrm{s}$ layer assumed for the regionel calculation.

These two results reflect the short wavelength features of the anomaly near its centre which cannot be modelled by a deep interface like the one generated by a sedimentary prism. This is demonstrated quantitively by the maximum depth estimates discussed in section 5.2.4.1. Therefore, it was difficult to accept such an interpretation, furthermore, it was not in agreement with evidence of the seismic horizons under the Southern Uplands (LISPB).


Fig. 5.6 Three-dimensional representation of the residual gravity map of the Tweeddale area modelled as a sedimentary basin with density contrast $-0.06 \mathrm{~g} / \mathrm{cm}^{3}$. It covers the same area as the residual anomaly map in figure 5.5 viewed from the west.

It is well known that granite batholiths are associated with elevated ground (Highlands, Lake District, Cheviot Hills, Northern Pennines) as has been shown by many authors, Bott (1956), Bott and Masson-Smith (1957), Bott et al (1978), Scrutton and Dingle (1973) etc, and sedimentary basins usually by low ground. The Southern Uplands are characterised by high elevation and particularly over the Tweeddale area there are spots with elevation more than $2700 f t$ and Broad Law (NT 1423) has the highest elevation ( 2755 ft ) in the whole Southern Uplands. In fact, Peeblesshire has the highest mean elevation of any Scottish county.

There are granitic exposures all the way along the Caledonian trend, and particularly in the south-western part of Scotland where detailed studies have already been carried out and described in Chapter I. It has been shown (El-Batroukh, 1975) that the three principal plutons of the south-west of Scotland are connected at depth forming a huge granitic layer extending parallel to the Caledonian strike under the Lower Palaeozoic sediments.

The existence of a granite batholith, both in SW Scotland and along strike in SE Scotland is consistent with recent plate tectonic models for the British Caledonides (Mitchell and McKerrow, 1975; Phillips et al, 1976). The Southern Uplands have been persistently elevated, at least since Upper Silurian times, when it formed part of Cockburnland (Walton, 1965, McKerrow et al, 1977) and, therefore, the existence of a granite batholith also along the NE part of the Southern Uplands should
not be considered as a surprise.

It is worth mentioning that the porphyritic and felsite veins and dykes occur not only in SW Scotland but extend parallel to the strike to the north-east until they reach the Oldhamstocks basin. Although it is believed that these dykes or veins are not all contemporaneous, a high proportion of them are associated with granitic masses and they seem to have been intruded rather later than the formation of those granitic bodies and are clearly associated with granite emplacement in Connemara, Donegal, west and south-west Scotland (Watson, 1964). Felsites and porphyrites are widespread in the region between the Highland Boundary Fault and the Great Glen Fault where granitic exposures occupy about one fourth of the land and, recently, it was shown that they continue under the Moray Firth Basin (Dimitropoulos and Donato, 1979). In the Southern Uplands these dykes were intruded during Lower Old Red Sandstone times (Kelling, 1962) after the compression normal to the Caledonian strike.

Further strong support in favour of a granite batholith comes from the carbonisation and graphitisation of the organic material of the Moffat shales (Peach and Horne, 1899). This has been attributed (Watson, 1976) to thermal effects from regional metamorphism and a deep seated igneous body, centred at depth in the vicinity of Hartfell (NT 1213) which is only $7-8 \mathrm{~km}$ south-west of the area under consideration. The thermal effects of this body can be detected on a regional scale from reflectivity measurements on graptolite fragments: Watson (1976) deduced
from temperature computations outside a cooling pluton and their relationship with reflectivity that the igneous body occupied a radius of 8 km from Hartfell, assuming $700^{\circ}$ for the initial temperature of magma, but his data did not define the northern boundary of his intrusion

Mineralisation associated with buried granites is usually expected, but it is only sporadic in the Southern Uplands and in the area of Tweeddale not strongly developed. It has been reported (Hardy, 1892; Wilson and Flett, 1921) that lead ore has been worked at several localities in the Tweed Valley and its tributaries. The most extensive workings were at the abandoned Grieston Mine (NT 3136) near Traquair (NT 3335), at Dalwick (NT 1734) near Stobo and at Dumbetha (NT 3433), see figure 5.la.

Elsewhere in the Southern Uplands it is reported (Wilson and Fleet, 1921) that abandoned copper mines exist in the Lauderdale district and at Pristlaw Hill (NT 645635); also, in Berwickshire near Elba (NT 787613) and at Ellenford (NT 730600), two old abandoned mines exist, near the Cockburnlaw granitic exposure.

The LISPB experiment determined a seismic velocity of $5.84 \pm 0.02 \mathrm{~km} / \mathrm{sec}$ for the layer of supposedly Lower Palaeozoic sediments, which is the same as the one found by Holder and Bott (1971) for the granite batholith at the south-western part of England. Because that value is a typical one found generally for granites (Woollard, 1962; Powell, 1971), it does not contrast with the velocity of the Lower Palaeozoic greywackes (Powell, 1971), and therefore, although the LISPB line crosses the

Tweeddale area, it is not expected to show the lateral extent of any supposed granite batholith.

The low Poisson's ratio found (Assumpcao and Bamford, 1978) from S-wave arrivals to the south-east of the Southern Uplands Fault, is consistent with quartz enrichment, something that is supported by Nicol (1843) in his accounts on the quartz veins over the area.

### 5.2.4 Modelling Procedure

5.2.4.1 Gravity

As has been discussed in the previous sections, the evidence in favour of a granite batholith underlying the area of consideration seems strongest and this is how the structure is going to be modelled.

The residual Bouguer gravity map shown in figure 5.4 and figure.5.5 was made using GPCP and the grid size of the array was determined at lkm , which reflects the spacing of the gravity stations in the centre of the anomaly, although this is not true for other regions of the same area, particularly towards the margins of the map.

A three-dimensional attempt was made to model the batholith, using MODG3D program. For this purpose two conditions were required:
(1) the density contrast between the Lower Palaeozoic rocks and the igneous rocks and (2) the depth, at which a fixed point of the model had to be constrained.

As has been discussed previously, a density of $2.72 \mathrm{~g} / \mathrm{cc}$ for the

Lower Palaeozoic sediments seems to be very reasonable, although this value can be greater (approximately $2.73 \mathrm{~g} / \mathrm{cc}$ ) at greater depths than that determined from surface hand samples.

Published densities of exposed granitic rocks in south-east Scotland (Walker, 1928) vary between 2.63 and $2.80 \mathrm{~g} / \mathrm{cc}$ and, therefore, do little to constrain the interpretation. From a few massive boulders on Kailzie Hill and Kirniew Law, a saturated density of $2.628 \pm 0.009 \mathrm{~g} / \mathrm{cc}(11$ samples) was found, with $2.663 \pm 0.027 \mathrm{~g} / \mathrm{cc}(42$ samples) for nearby porphyrites and felsites. In south-west Scotland the Griffel granodiorite was interpreted (Bott and Masson-Smith, 1960) with a gradational density between 2.64 and $2.71 \mathrm{~g} / \mathrm{cc}$, while the Fleet granite was modelled (Parslow and Randall, 1973) with a density of $2.63 \mathrm{~g} / \mathrm{cc}$.

Apart from the author's density measurements of porphyrites and felsites, it is reported (Nicol, 1843) that those varieties do not vary much in density over the Tweeddale area and representative values of 2.600 and $2.552 \mathrm{~g} / \mathrm{cc}$ are given, respectively.

Density contrasts, between Lower Palaeozoic sediments and the igneous intrusion of $0.06,0.07,0.08$ were chosen for modelling purposes (density contrasts always in $\mathrm{g} / \mathrm{cc}$ ).

A profile $A B$ (figure 4.6) was constructed across the strike of the feature, figure 5.7a. The points for the first 24 km were taken from the array generated by GPCP from the residual map and the remainder from the contours of the map. A maximum
eL.g • 6 ța -LTZ 乙Si LN pue ZLD OTZ LN əIE əTTfOXd əपन


gradient of about $13 \mathrm{gu} / \mathrm{km}$ is observed. For an estimate of the depth of the centre of the mass which causes the anomaly, the formula amplitude/maximum-gradient was applied (Bott and Smith, 1958) :

$$
\begin{equation*}
h \leqslant 0.86 \frac{[\Delta g] \max }{[d(\Delta g) / d x] \max } \tag{5.1}
\end{equation*}
$$

Allowing a maximum amplitude of about 90 gu of the anomaly due to the granite and taking the above mentioned maximum gradient, then $\mathrm{h} \leqslant 6 \mathrm{~km}$.

For an estimate to the top of the body the following formula was applied (Bott and Smith, 1958):

$$
\begin{equation*}
\text { if } \mu=\frac{2 \Delta g(x)}{\Delta g(x+d)+\Delta g(x-d)}>1 \leadsto h \leqslant d\left(\mu^{2 / 3}-1\right)^{-\frac{1}{2}} \tag{5.2}
\end{equation*}
$$

where $\Delta g(x-d), \Delta g(x), \Delta g(x+d)$ is the value of gravity at places $x-d$, $\mathrm{x}, \mathrm{x}+\mathrm{d}$ along a straight line, respectively. This rule, which has the advantage of giving results unbiased from the regional gradient, was applied on stations falling approximately along the lines $C D$, EF (figure 5.1) after the interpolation of some values. Along the line $E F, h \leqslant 4.6 \mathrm{~km}$ was found and from stations along the line $C D$ values of 3.4 and 2.6 km for maximum depth was found. Thus, it appears that the depth, $h$, to the top of the granitic body should be:

while the centre of mass is at a depth of something less than 6 km .

Program MODG3D was used for a three-dimensional inversion model. The interface was approximated with vertical prisms of lkm side (the grid size of the residual map). Different density contrasts were applied. Figure 5.7 shows a contouring of the model inversion with a fixed depth near the centre of the anomaly of 1.5 km and a density contrast of $0.07 \mathrm{~g} / \mathrm{cc}$. It is from the third iteration with root mean square residual of 4.4 gu . It was observed that increasing the fixed depth of the body, the model was converging very slowly, particularly at the top and bottom margin of the modelling area. Using the data array of the isodepth contours of the batholith of figure 5.7 , SYMVU was used to produce a three-dimensional picture, shown in figure 5.8a.

As can be seen from the model, there are three main bosses, on a body whose shape is typical for a granite batholith, with outward sloping sides, extending to a depth of more than lokm and possibly more than 12 km . One of the bosses, which is the main one, appears near where the minimum anomalies occur (-49.97 and -49.25 gu) around the area of Cardrona Forest. The middle one is near the Juniper Craigs porphyritic exposure and the third one near Posso Craig (NT 2032) where again some felsites have been marked on the one inch geological map.

From the distribution and the accuracy of the gravity data over that area, it is concluded that the boss which comes near the surface under Cardrona Forest, just 2 km north-west of the Grieston Quarry, is the most confident one.


Fig. 5.7 Isodepth map of the Tweeddale Granite; contour interval 2 km . Intersections represent 10 km National Grid square.


Fig. 5.8a Three dimensional model of the upper surface of the Tweeddale Granite, viewed from the west. The computation includes infinite extensions from all edges of the model, the beginnings of which in the $S W-N E$ direction are included in the drawing. CF : Cardrona Forest: P : Posso Craig; C : Crookston (NT 2537).

Models were also produced with a quadratic regional field
(represented in figure 5.3), subtracted from the original Bouguer gravity map of the area (figure 5.1). Figure 5.8 represents a three-dimensional picture of that attempt. From the latter figure it is concluded that the resulting model does not differ significantly from the models produced after the subtraction of a linear trend, and, generally, in all those models the boss near Cardrona Forest appears to be the most predominant one.

Also, various models were tried. Figures 5.9, 5.10 and 5.11 show the three-dimensional picture of various models with density contrast -0.06, -0.07, $-0.08 \mathrm{~g} / \mathrm{cc}$ fixed at a depth of lkm .

### 5.2.4.2 Magnetic

Looking at the aeromagnetic map over the Tweeddale area, a mean positive linear magnetic feature appears to be running in a direction NE-SW within the belt of the gravity low. The northern zero magnetic contour seems to form the same offset to the north-west, before approaching the Lammer Law (NT 5261) area, as does the gravity pattern. A magnetic profile (M1) was traced (figure 5.12) along the same direction as the gravity profile AB, and a twodimensional modelling attempt was made. The computer program MODM2D was used. The co-ordinates of the corners of the body shown in figure 5.13 were taken from the gravity model with a density contrast of $0.07 \mathrm{~g} / \mathrm{cc}$ as shown in figure 5.7.

It was found that an intensity of magnetisation of 9.5 nT resulted in a very good match to the observed profile (M1), figure 5.13. The body was assumed to be normally magnetised
(*)'Magnetization' is used throughout for the product $\mu_{0} M$ so that it is measured in units of magnetic induction, eg. $n T$.

- ธтี 0 Three-dimensional model of the upper surface of Tweeddale
Granite, viewed from the west; density contrast $0.06 \mathrm{~g} / \mathrm{cm}^{3}$,
fixed at a lkm depth. CF: Cardrona Forest





Fig. 5.12 Aeromagnetic map (after Bullerwell, 1968) of part of SE Scotland. Contour interval 10 nT .


Fig. 5.13 Magnetic profile (Ml) across the Tweeddale batholith. The corners of the model were taken from the gravity model (figure 5.7); assigned intensity of magnetisation 9.5 nT . Coordinates of the profile are NT 210472 and NT 520150.
according to the earth's present magnetic field. The very good agreement of the predicted and observed profiles adds support to the gravity model. This magnetisation compares with values of about 10 nT found by Powell (1970) for the Fleet and Dee granites and about 100 nT for Criffel.

### 5.2.4.3 Discussion

Observing those different models, it is concluded that the granite is extended to the north-east and south-west and has a trend parallel to the Caledonian trend. It appears that the batholith comes near the surface again at the south-west margin and reaches a depth of about 2 km , but this is not certain as the gravity stations coverage over that area is rather poor and there is not good control. Therefore, the picture over that part is rather dubious, but certainly the body extends to the south-west.

Looking at the profile AB (figure 5.7a) a gradational change in the density contrast might be happening at the south-eastern part of the granite, observing the . Ionger constant slope of the curve, compared to the north-wfstern part. Such an increase in density going outwards from the centre of the body has been observed in hand samples across the outcrop of the Criffell granodiorite (Bott and Masson-Smith, 1960). In all the models which have been produced, it has been assumed that the density contrast between granite and country rock was constant. This might be considered as unlikely in view of possible changes of the composition of granite in depth or of increase of the density of the sediments due to compaction. Thus, estimates of the depth to which the granite extends from surface density measurements of the rocks and gravity anomalies seems to be
uncertain. However, a rough estimate can be made using information from other geophysical work over the area. Magnetotelluric measurements (Jones and Hutton, 1979a,b; Jain and Wilson, 1967) suggest that a conducting zone within the crust underlies the Southern Uplands and channels the flow of earth currents induced in the adajcent areas (the North Sea and Solway Firth). Jones and Hutton (1979b) had estimated the top of the conducting body at a depth of 24 km under the Southern Uplands. However, more recent interpretation of the magnetotelluric data at sites Earlyburn (NT 2249), Peebles (NT 2740), Yarrow (NT 2924) and Borthwick Brae (NT 3616) (these sites are almost in a straight line across the granite) have shown with a one-dimensional inversion that the conductor $\left(10^{2} \mathrm{Om}\right)$ is at shallower depth, $10-12 \mathrm{~km}$ and underlies a highly resistive layer ( $10^{4} \mathrm{Om}$ ) which the author considers as the lower part of the batholith. The depth is consistent also with seismic evidence (Jacob, 1969) of a refractor at 12 km depth.

### 5.3 Selkirkshire

In this section, an attempt will be made to interpret the gravity high south of Melrose and south-east of Selkirk. It forms a plateau with an area of more than $20 \mathrm{~km}^{2}$ which, from the distribution and density of the gravity stations, is well defined. It runs parallel along the strike of the gravity low to the north-west and terminates at the south-western margins of the Lauderdale Upper Old Red Sandstone basin. Although its limits to the north-east are well defined, to the south-west the situation is not so clear. From Bullerwell's unpublished gravity

```
map (personal communication) it is obvious that this
gravity high continues to the south-west and attains higher
values (approximately lOO gu) particularly around the Lower
Carboniferous extrusive basalts at Lockerbie. Thus, it appears
that this high might be due to intrusive intermediate or basic
volcanic rocks with their thickness becoming progressively larger
to the south-west.
```

Over the area of Melrose in particular, an analytical petrographical study was made (McRobert, 1914) on the acid and other intrusions, marked on the geological map as intrusive basalts, intrusive felstones and volcanic agglomerates in necks of Calciferous Sandstone age. It is suggested that the Eildon Hills (NT 5532) are probably the denuded remains of a composite laccolith and the presence of lavas underneath may be inferred from the stratiform appearance of those hills, while the geochemical resemblance to the Eildon suite of intrusions of a group of dykes and sills about a mile south-west of the Chiefswood (NT 5434) agglomerate neck, may be considered as a positive sign of continuation at depth between these two formations (McRobert, 1914).

Quantitative attempts were made for the interpretation of this high which appears in the observed profile AB (figure 5.7a). The steep gradient at the south-east margin of the granite continues with almost the same slope then nearly flattens in an area where there is not a very good control of gravity stations but, as mentioned previously, the continuation of this high is clear to the south-west.


#### Abstract

The generation of this steep gradient of the margin of the granite batholith can be attained either by putting a denser mass at a depth between $6-12 \mathrm{~km}$ or fixing it near the surface. In figure 5.14 to figure 5.17 representative models are shown. Thus, the interpretation has been approached either (1) by basement (2.78 g/cc) uplift or (2) by an intrusion near the surface. Both cases are discussed.


### 5.3.1 Basement uplift

Figure 5.14 and figure 5.15 represent quantitative models which match the observed profile. Gunn (1972) has interpreted the magnetic high over the Southern Uplands along a north-west southeast profile in south-west Scotland as due to a rise in the magnetic basement from 10 to 5 km depth. Although the profile $A B$ coincides with Gunn's magnetic high, his interpretation seems rather unlikely as it is not consistent with the seismic data (Jacob, . 1969), which places a distinct refraction horizon at a depth of about 12 km .

### 5.3.2 Near surface intrusion

In the author's opinion this is the most likely case. The existence of an intrusive layer of Lower Carboniferous age underlying the area and extending to the south-west is suggested by the geological account and the pattern of the aeromagnetic anomalies.

The Chiefswood agglomerate neck is associated with the most predominant feature, a strong positive magnetic anomaly which


Fig. 5.14 Gravity profile AB. A possible interpretation of the gravity high at the south-eastern part in terms of basement uplift. Densities in $\mathrm{g} / \mathrm{cm}^{3}$.


Fig. 5.15 Gravity profile AB. An alternative interpretation. Densities in $\mathrm{g} / \mathrm{cm}^{3}$.

```
has the shape characteristic of a stock-like source. Other
minor magnetic highs are associated with local intrusive
dykes and sills and the pattern suggests that there is an
association or connection with the extrusive basaltic belt
near Kelso.
While this is the situation to the north-east of the zero magnetic contour, to the south-west the pattern changes. The postulated intrusion associated with the south-east part of the profile \(A B\) does not show a clear magnetic expression and lies within a region of negative anomalies. Here, elongated magnetic features occur, trending north-west to south-east, which are associated with reversely magnetised Tertiary dykes (Bruckshaw and Robertson - , 1949). These interrupt the major SW-NE magnetic high over the Southern Uplands.
```

Figures 5.16 and 5.17 show two representative models constructed to fit the gravity anomaly profile AB.

If the intrusion is at some depth below the surface as has been modelled in figure 5.16, then the picture of the magnetic field above the surface may be weak and untraceable. If it is near the surface, as in figure 5.17, then by being in an area where strongly magnetised dykes are predominant it may still be very difficult to trace. The whole aeromagnetic pattern is disturbed to the south-west of the zero magnetic contour.


Fig. 5.16 Gravity profile $A B$. Alternative interpretation in terms of an intrusion at depth. Densities in $\mathrm{g} / \mathrm{cm}^{3}$.


Fig. 5.17 Gravity profile $A B$. Alternative interpretation in terms of a near-surface intrusion. Densities in $\mathrm{g} / \mathrm{cm}^{3}$.

Finally, considering figures 5.15 and 5.16 , a step on the southeastern side of the granite at the basement was put in, in order to generate the correct trend to match with the observed profile. In figure 5.15, this was made more successfully than in the case represented by figure 5.16.

Although Gunn (1970) proposed a basement uplift like figure 5.14 on the basis of magnetic data, much of this anomaly is now interpreted as due to the granite. Moreover, this profile is not consistent with seismic evidence. However, the magnetic data tend to argue against a very shallow source of higher denser material. The small magnetic high shown on figure 5.13 at about 35 km along the profile is perhaps consistent with a source at intermediate depth, like figure 5.16, which is still consisted with a seismic refractor at 12 km depth.

### 5.4 North-eastern Southern Uplands

From the gravity data and the detailed model in the Tweeddale area it was obvious that the batholith extended at depth to the north-east, along the Caledonian trend, even though the axes in Tweeddale tend to swing E-W (see Fig.5.7 and the aeromagnetic anomalies, Fig. 5.12).

Before describing the attempt to model the gravity data over a larger area, the geological and aeromagnetic information will be outlined.

### 5.4.1 Geological evidence

From the beginning of this century, it was recognised that the Silurian strata of Midlothian, East Lothian and Berwickshire had been invaded by numerous igneous intrusions in early Devonian times, most of which are quartz-porphyrites, but a few have a granitic texture.

Considering the last category, the granitic masses of Priestlaw in East Lothian, Cockburnlaw and Lamberton Beach in Berwickshire and Broad Law in Midlothian were studied in detail by Walker (1924). Later on, a few more igneous bodies were incorporated in the study, notably the large Spango mass, the Polshill granite, the small Kimie Law granitic exposure and the small dioritic-looking boss at Lyne Water (Walker, 1928) all of which can be seen in figure 5.18.


Fig. 5.18 Outcrops of granitic masses in the Southern Uplands (after Walker, 1928).

E: Edinburgh, G; Glasgow, GG: Galloway Granites,
P: Priestlaw Granite, C: Cockburnlaw Granite,
L: Lamberton Beach Granite, B: Broad Law Granite,
S: Spango Granite, PE: Polshill Granite,
LW: Lyne Water Granite, K: Kimie Law Granite.
--- : Boundary separating the Galloway Granites

Their age is considered to be post-Silurian because they were intruded after the main Caledonian movements and show little or no Silurian foliation (Walker, 1928) and, from evidence of pebbles found in Upper Old Red Sandstone conglomerates, is restricted to the Lower and Middle Old Red Sandstone. Most of the above intrusions and particularly the masses of Priestlaw, Cockburnlaw, Broad Law and Lamberton Beach, are very similar petrographically and show a quartz-dioritic magma composition which is strongly allied to the granodiorites of Galloway (Walker, 1924, 1928). The tonalitic or granodioritic magma, prevalent over such a wide area is the most striking feature of that belt of the British Caledonides, and it is quite probable that the plutons are the underground expression of the Lower Devonian volcanic activity, forming a layer of similar magmatic composition and continuous at depth.

### 5.4.2 Aeromagnetic anomalies

All of the granitic masses in south-east Scotland are associated with strong magnetic anomalies. From the aeromagnetic map (in backpocket), the Priestlaw granitic intrusion is associated with a positive magnetic expression of a total amplitude of 110 nT and from the form of the anomaly it is suggested that the intrusion is a steep-sided, stock-like body, normally magnetised in the earth's present magnetic field. From the smoothed version of the aeromagnetic map (Gunn, 1972), it is concluded that the body extends to a large depth. Modelling: attempts (Bennett, 1969) have shown a value of ~ 12 nT for the magnetisation contrast. The Cockburnlaw
intrusion is also associated with a positive aeromagnetic anomaly of 100 nT and from the shape of the anomaly it is suggested that the body is elongated, with an east-west direction. The Lamberton Beach intrusion falls within the largest positive magnetic anomaly in Berwickshire, but this will be discussed later.

All these aeromagnetic anomalies are clearly associated with instrusions which are exposed. However, the aeromagnetic map reveals other features similar in shape to them.

A roughly circular positive magnetic anomaly to the west of the Priestlaw exposure occurs in the vicinity of Lammer Law (NT 5761), with a total amplitude of :60 nT. The shape of the anomaly reveals a stock-like intrusion, similar in form to that in the Priestlaw area. Since, as will be outlined farther on, it coincides with a small negative residual gravity anomaly, it is strongly believed that it is caused by another granitic boss coming near to the surface, something which Bennett has already suggested. He carried out detailed ground magnetic traverses in an attempt to delineate the boundaries of the intrusion.

According to his results, the top of the body may lie at about 170-330 metres below O.D. and the estimated magnetisation contrast between the intrusion and the country rock is close to the one estimated for Priestlaw, ie, 13-14 nT.

Thus the magnetization of both the Priestlaw and Lammer Law granites is very close to that found for Tweeddale.

Also from the aeromagnetic map (back-pocket) another smaller closure occurs south of Priestlaw intrusion with a positive amplitude of 60 nT near Byrecleugh (NT 6258) which, from ground magnetic surveys (Bennett, 1969) proved to be two distinct anomalies, suggesting the presence of two intrusions, one at Byrecleugh and the other farther north. The latter coincided with an unnamed hill at NT 637601, and is probably produced by a small stock-like body, normally magnetised, rather near to the surface.

### 5.4.3 The Berwick upon Tweed aeromagnetic anomaly

The Berwick upon Tweed aeromagnetic anomaly is the most prominent feature of the aeromagnetic map in the Berwickshire area (figure 5.20). The amplitude of the anomaly is more than 250 nT and shows a body which is elongated $N W-S E$, within a region of negative gravity anomalies. The anomaly is only 20 km north of the Cheviot suite.

A profile (M2) was constructed and the shape of the anomaly is shown in figure 5.21. A rough interpretation was attempted from the shape and the amplitude of the anomaly (figure 5.21) by the method developed by Bruckshaw and Kunaratnam (1960).

Assuming a uniform magnetisation of the body, represented by a two-dimensional thick slab, the depth to the top of the slab, its width and its magnetisation can be obtained from this method. It was found that the depth to the top of the causative body is $1.5 \pm 0.3 \mathrm{~km}$, with a width of 2.5 km and an amplitude of magnetisation of 1700 nT corresponding to a susceptibility of about 0.034 .


Fig. 5.20 Aeromagnetic map of part of Berwickshire (after Bullerwell, 1968), showing also direction of profile (12). Contour interval 10 nT .


All of the above results must be considered carefully, because the assumptions of the method are not very realistic.

For the moment, the cause of the Berwick aeromagnetic anomaly is quite speculative, but there are indications that this intrusion might be a granitic one:-
(i) The Lamberton Beach acid intrusion is only $6-7 \mathrm{~km}$ to the northwest of Berwick and definitely falls within the region of the strong positive magnetic anomaly. Also, all the other small bosses in East Lothian (Lammer Law, Priestlaw) are characterised by positive magnetic anomalies but with smaller amplitude.
(ii) The susceptibility of the intrusion falls within the limits of granites (with magnetite) variation (Parasnis, 1972).
(iii) The causative body falls in a region where negative gravity anomalies occur. To the north-east of Berwick upon Tweed a narrow negative gravity anomaly belt extends about 20 km offshore (Tully and McQuillin, 1978). It is not clear if this gravity anomaly belt can be exclusively attributed to the succession of the Carboniferous sediments.

The postulated intrusion might have played an important role in the formation of the Shiell's (1963) Monocline (figure 5.2la), which resulted from $E-W$ compression. It is suggested that the offshore granitic(?) intrusion should have given greater stability on the foreshore part of the monocline and during the Hercynian movements the uplift of the Southern Uplands block

took place along the plane of weakness forming the reverse Boundary Fault (figure 5.2la).

The interpretation of the aeromagnetic anomaly as due to the granite might be wrong: it might be due to associated lavas like parts of the Cheviot magnetic anomaly, but in this case hidden by the Carboniferous.

### 5.4.4 Gravity Modelling

Because the negative gravity anomaly in the Tweeddale is distinct and closed, this area was examined separately (section 5.2) and modelled in sections 5.2.4.1 (gravity) and 5.2.4.2 (magnetic). Section 5.4 is dealing with the less well-defined extension of the Tweeddale anomaly to the north-east, where it covers most of the eastern Southern Uplands. In this part, section 5.4.4, almost the whole of this negative anomaly will be modelled. The gravity data were rotated $35^{\circ}$ so that the upper (NW) margin of the Bouguer gravity anomaly map of the area where the granite batholith was going to be modelled was delineated by the Lammermuir Fault. The north-east edge of the gravity map was just before the beginning of the Upper Devonian sediments of the Oldhamstocks-Cockburnspath basin. Figure 5.22a shows the Bouguer gravity anomaly map which has dimensions of $18 \times 60 \mathrm{~km}$.

In this area the Upper Old Red Sandstone sediments of the Lauderdale area have been stripped off (see detailed modelling of that area in Chapter VI). Figure 5.22b shows the residual Bouguer gravity anomaly map, where again, the calculated quadratic regional gravity field from the LISPB model (figure 5.3) has been removed.

Both maps in figure 5.22 were reduced with the standard Bouguer density $2.67 \mathrm{~g} / \mathrm{cc}$ and the GPCP generated an array of 2 km grid size. Subsequently, program MODG3D was used to construct a model of the interface with 2 km side square blocks.


Fig. 5.22 (a) Bouguer gravity anomaly map.
(b) Residual gravity map.

Contour interval 10 gu . Intersections show lokm National Grid square lines.

Depth control was applied by fixing a point in the Tweeddale area at a depth of 2 km . The resulting model is shown in figure 5.23, 5.23a, 5.23 b where the density contrast is $0.06 \mathrm{~g} / \mathrm{cc}$. Any other density contrast with a value close to the one of $0.06 \mathrm{~g} / \mathrm{cc}$ will not cause a significant change in the overall shape of the model, only a displacement in the vertical scale.

The general shape of the batholith over the Tweeddale area has not significantly changed, but as can be seen from the model, the granite appears to reach even shallower depths (less than 1 km ) around the Lammer Law area. This is actually expected looking at the residual gravity map. To the north-east of the Lammer Law the granite is dipping again. It appears that the boss under the Lammer Law area is a comparable feature to the Tweeddale granite. It extends to the north-west and is responsible for the offset to the north-west of the zero anomaly contour of the gravity map.

Therefore, it is quite probable that the steep gravity gradients observed over East Lothian are caused by the granite batholith, deepening steeply to the north-west after coming nearest to the surface under the Lammer Law region.

Because the Southern Uplands are characterised by high elevation, particularly the Tweeddale area, it was thought that the gravity map over that area might be topographically biased. For this purpose it was decided to compile a gravity map reduced with a more representative Bouguer density for the whole area of the Southern Uplands covered by the study area. The value of


Fig. 5.23 Isodepth map of the Southern Uplands batholith at 1 km contour interval. Intersections represent lokm National Grid square lines. (a) (b) modelling results subtracting a linear and quadratic trend (LISPB) respectively from the gravity map of figure 5.22(a).


VIEWED FROM EAST-DC=-. OE,FIXED GT $1 . S K M$ DEFTH (ISMS RES=1AGU)LING TEO SUE

Fig. 5.23a Three-dimensional model of the Southern Uplands batholith viewed from the east. Density contrast $0.06 \mathrm{~g} / \mathrm{cm}^{3}$. Linear trend (LISPB) subtracted, LL: Lammer Law; P: Peebles.


Fig. 5.23b Three-dimensional model of the Southern Uplands batholith (subtracting a quadratic trend (LISPB)). P: Peebles; LL: Lammer Law.
$2.70 \mathrm{~g} / \mathrm{cc}$ was chosen and the map is shown in figure 5.24 .

The Tweeddale granite was, after that, remodelled, although no radical changes were expected in the model. From the gravity map (figure 5.25a), the residual map was constructed (figure $5.25 b$ ), subtracting as before the regional gravity field calculated from LISPB.

Again, MODG3D program was used to approximate the interface of the granite with a density contrast of $0.08 \mathrm{~g} / \mathrm{cc}$ and square blocks of 2 km side. The resulting model is shown in figure $5.26(\mathrm{a}, \mathrm{b})$.

The gravity map of the north-east part of the Southern Uplands has hardly changed. The Lamer Law boss appears in a clearer manner than before now that the -40 gu closure has appeared there and, near the Priestlaw area and south of it', the batholith is expected to be at a slightly shallower depth than it was before (figure 5.23).



Fig. 5.25 (a) Bouguer gravity anomaly map compiled with $2.70 \mathrm{~g} / \mathrm{cm}^{3}$ Bouguer density. Contour interval 10 gu (crosses represent gravity stations).
(b) Residual gravity map at 10 gu contour interval. Both maps were plotted. by GPCP at a 2 km grid interval. Intersections show lokm National Grid square.


Fig. 5.26 (a) Isodepth of the Southern Uplands batholith covering the same area as the residual gravity map (figure 5.25b).
(b) Three dimensional model of the upper surface of the batholith covering the same area as map in figure 5.25b; P: Peebles.

DEVONIAN •BASINS AND THE EAST LOTHIAN AREA

### 6.1 Introduction

The scope of this chapter is the modelling of the Devonian basins of East Lothian and Eastern Berwickshire, the investigation of the north-eastern component of the Southern Uplands Fault System and the quantitative modelling of the East Lothian Lower Carboniferous lavas.

### 6.2 Devonian Basins of SE Scotland

### 6.2.1 Introduction

In East Lothian and Berwickshire, the outcrops of the Old Red Sandstone sediments are confined to the south-east of the Dunbar-Gifford Fault; they comprise of a belt which, starting from Gifford, stretches to the north-east, between the Dunbar-Gifford Fault and the Lammermuir Fault to Dunbar, and thereafter, to the south-east through the Monynut Edge towards the west of Duns. Two belts extend eastwards from Monynut Edge, one narrow belt reaching the coast at Cockburnspath and Siccar Point and the other, farther south, reaching st Abb's and the Eyemouth coast.

The same belt west of Duns extends to the south-west and joins with the sediments of the Lauderdale District to the north and, to the south, it extends beyond Jedburgh. To the north of the Lauderdale Basin there are two more patches of old Red Sandstone which form almost a continuous belt to the north through Channelkirk, joining with the Fala and Soutra conglomerate
on either side of the Lammermuir Fault. Except for the red feldspathic sandstones and conglomerates around Eyemouth and St Abbs which belong to the Lower Old Red Sandstone, all the other exposures appear to belong to the upper division. In this region it is probable that those sediments described as belonging to the Upper Devonian are in fact of Carboniferous age (Greig, 1971), as the division between these two facies can only be drawn with difficulty.

It is believed that the Upper Old Red Sandstone once covered a much larger area than today; extending over the Lammermuirs. By denudation and erosion the conglomerates now mark the margins of those hills, lying unconformably upon the Silurian greywackes. The Upper Old Red Sandstone subdivisions in East Lothian and Berwickshire are the Lower or Great Conglomerate and the later one, the Upper Red Sandstones and Marls with occasional pebbly beds (Howell; et al, 1866). Later, Clough et al (1910) and Greig (1971) considered the sandstones southeast of the Lammermuir Fault, near Gifford and Fala as the lowest division.

According to the original workers, the downward movement under which the deposition of these sediments took place brought the whole Lammermuir chain under shallow water and covered them with conglomerates and sandstones, but recent sedimentological work on the Upper Old Red Sandstone sediments of the Scottish Borders (Leeder, 1973) has shown a wholly fluviatile origin. Under the same fluviatile environment, deposition occurred in
the Fife and Kinross area, controlled by an eastward dipping palaeoslope (Chisholm and Dean, 1974).

Generally in the northern part of the Midland Valley the deposition of the Old Red Sandstone took place along a SW to NE trending axis, south of, and parallel to, the Highland Boundary Fault, thinning south-westwards. The palaeoslope in the Lower Devonian had a south-west dipping direction (Bluck, 1978; Morton, 1979), during which a red-bed sedimentary sequence of probably alluvial origin (western Midland Valley) was developed in a fault controlled basin (Morton, 1979). During Upper Devonian times the palaeoslope changed and, generally, a SE dipping direction was shown (Bluck, 1978).

Although geologists seem to agree about the direction of the palaeocurrents near the northern margins of the Midland Valley, the same is not true in the Borders region. Paterson et al (1976) disagree with Leeder (1973), figure 6.1, suggesting the orthogonal direction of palaeocurrents (eastward or southeastward dipping palaeoslope), and in a few places they disagree with Smith (1967).

The granite batholith under the north-eastern part of the Southern Uplands puts a constraint on the direction of the palaeocurrents. The SE direction of the palaeocurrents indicated by Paterson et al (1976) is more consistent with the uplift of the Lammermuirs caused by the batholith and the generally southerly direction of the drainage system in Upper Devonian times. Bluck's (1978) picture, figure 6.2,



Fig. 6.2 Directional structures and an average maximum clast size for the basal part of Upper Old Red Sandstone (after Bluck, 1978 (fig. 11)).
SUF: Southern Uplands Fault; HBFZ: Highland Boundary Fault zone.
shows this even more clearly: the deposition of the Upper old Red Sandstone has taken place in a peripheral manner around the uplifted zone of the NE termination of the Southern Uplands.

In the following, parallel to the geological account a geophysical picture based on gravity data will be given for the areas of Lauderdale, Eyemouth and Oldhamstocks.

### 6.2.2 Lauderdale Basin

The conglomerates of Lauderdale seem to mark the course of a deeply eroded valley which, as it drains to the south, today opens out southwards and flattens, particularly to the southeast. The ridge which separates the Soutra conglomerates with the ones at the head of the Lauder Basin seemed to exist before the deposition of the Upper Old Red Sandstone over that area (Clough et al, 1910), this is compatible with the granite emplacement and uplift after the end of Silurian times. At a later epoch when the local erosion greatly increased, the conglomerates gathered on the bottom of the valley and farther to the south along the gentler slopes, followed later on by the accumulation of red sandstones and marls of the local drainage system with a south-easterly direction.

The cross-sectional shape of the basin is suspected, especially from the northern part to about Lauder in the south, to have a $V$-shape, because of the configuration of the gravity contours. In order to avoid complications due to the
regional gravity field, gravity profiles were traced across it parallel along the Caledonian trend.

Two profiles, located on figure 4.7 have been taken from a 5 gu contour gravity map, compiled with Bouguer density of $2.67 \mathrm{~g} / \mathrm{cc}$ and plotted using the TRIANG routine. The observed profiles were digitised at 100 m intervals and the MODG2D automatic inversion program was used. The density contrast used between the Silurian greywackes and the Upper Old Red Sandstone sediments was $0.20 \mathrm{~g} / \mathrm{cc}$.

This density contrast is rather too large for the contrast between greywacke and conglomerate. In the western part of Scotland, McLean (1961a) found 2.54 ( -0.02 ) $\mathrm{g} / \mathrm{cc}$ for fine quartz conglomerate. Tables II-2 and II-3 show a mean value of $2.62 \mathrm{~g} / \mathrm{cc}$ for the Great Conglomerate. However, because this basin is not filled exclusively with conglomerates but also with sandstones, the density contrast $0.20 \mathrm{~g} / \mathrm{cc}$ is probably realistic.

The resulting model from those two profiles, figure 6.3, 6.4 show a $V$-shaped valley with a depth of about 300 m below ground level.

Because the Lauderdale Valley fluctuates in an altitude between 600 and $700 f t$ and the surrounding hills between about 1250 and 1450ft (Hog's Law, NT 555 552), it was thought that the gravity map, from which those two profiles were traced, might be topographically biased. For this reason the gravity data were reduced with a $2.70 \mathrm{~g} / \mathrm{cc}$ Bouguer density, which is


Fig. 6.3 Profile (LI). Interpretation of the Lauderdale Upper Old Red Sandstone basin. National Grid coordinates of the end points of the profile are NT 515478 and NT 565 511. Density contrast $-0.20 \mathrm{~g} / \mathrm{cm}^{3}$. $c^{3}$ : Upper Old Red Sandstone; b5: Silurian.


Fig. 6.4 Profile (L2). An interpretation of the Upper Old Red Sandstone, Lauderdale Basin. National Grid coordinates of the end points of the profile NT 5226471 and NT 566 500. Density contrast $-0.20 \mathrm{~g} / \mathrm{cm}^{3} . \mathrm{c}^{3}$ : Upper Old Red Sancstone; $b^{5}$ : Silurian.
representative of the Southern Uplands (Chapter II) and plotted with GPCP, with a grid interval of 1 km . Subsequently, profile (L3) was traced; its position appears on figure 5.24.


#### Abstract

Digitised values at 500m intervals were input to the MODG2D program. This time a density contrast of $-0.10 \mathrm{~g} / \mathrm{cc}$ was assumed for the Old Red Sandstone sediments, implying that the basin was filled exclusively with conglomerates.


The model shows (figure 6.5) that the maximum depth of the bottom of the basin in the region defined by the profile is about 550 m .

A three-dimensional modelling attempt was also made in this area but it was very soon realised that the regional field was not suitable for the modelling programs. Although the result was a reasonably good model for the region south of Lauder, it was unacceptable for the area north of it.

As a conclusion, the Lauderdale Devonian Basin has a thickness near Lauder which is unlikely to exceed the value of 600 m and probably is nearer to 300 m ; it becomes relatively thinner towards the north and the data are inadequate to show if its northern margin is fault bounded. South of Lauder the basin broadens and three-dimensional modelling suggests that the thickness of the sediments is similar to that to the north and certainly less than 1000 m .


Fig. 6.5 Profile (L3). A possible interpretation of the Lauderdale sedimentary basin. Density contrast $-0.10 \mathrm{~g} / \mathrm{cm}^{3}$. UORS: Upper Old Red Sandstones; SIL: Silurian. Coordinates of the end points of the profile are NT 51004744 and NT 56755088.

### 6.2.3 Oldhamstocks Basin


#### Abstract

6.2.3.1 The Great Conglomerate

The eastern part of the Lammermuir chain in Berwickshire is crossed almost perpendicularly by the Great Conglomerate belt. In the north this commences south of Dunbar, extends south along the Monynut Edge and then passes through the narrow channel between Greenhope (NT 7361) and Cranshaws (NT 6962). Subsequently, it opens again with its western margin reaching Dirrington Law (NT 7055) west of Duns, where it attains a thickness of nearly 680 m (Pringle, 1948). From this area, the western flank of the conglomerate swings to the $S W$, but with its texture becoming finer and more sandy, passing up into fine feldspathic sandstone (Clough et al, 1910), where it expands even more and is expected to reach a considerable thickness.


The conglomerate belt at Oldhamstocks and Innerwick is bounded to the west by the Silurian greywackes of the Lammermuir Hills, from which is believed to be formed (according to Geikie in Howell et al, 1866), and to the east by the Lower Carboniferous sediments with the Innerwick Fault being the physical boundary between these two formations.

According to Davies (person. commun.) the Great Conglomerate of Monynut Edge, west of the Innerwick Fault, is of Lower Old Red Sandstone age. The conglomerate probably lies under the Lower Carboniferous sediments on the eastern side of the fault.

About $200-300 \mathrm{~m}$ to the south of the Cove Fault (which starts from Cove (NT 780717) and runs westwards to the Oldhamstocks area) and parallel to it, runs a narrow Old Red Sandstone belt, which extends from Oldhamstocks to the coast near Siccar Point. It consists, surprisingly, of sandstones and marls belonging to the top third division of the Upper Old Red Sandstone succession, and is thus of younger age than the Great Conglomerate.

Geikie (Howell et al, 1866) pointed out this sudden transition eastwards from the conglomerates at the eastern flank of the Lammermuirs to red sandstones and marls. , He noticed that along the fault, which runs from near the Whiteadder south-eastward to the Borthwick Hill (NT 7656), conglomerates comprise the western side of this fault, while the eastern side is occupied mainly by red sandstones with red shales and marls. A somewhat similar case occurs farther north in the narrow belt between Oldhamstocks and Siccar Point. Geikie also tried to give an explanation to this phenomenon and suggested that the "effect of the fault (running SE of Whiteadder River) would thus be to depress the Silurian region on the north-east side, so as to let in, in a wedge shape, the sandstones and marls which were formed at a later time against a higher and of course newer margin, which still remains." He also proposed that the eastern end of the conglomerate round the Lammermuirs might mark the edge of the old Silurian land.

Considering the conglomerate zone of Monynut Edge, the Great Conglomerate of this region attains a greater height than the
nearby Lammermuir Hills (about 400m). This is an indication that at one time it must have extended far more beyond the narrow belt it occupies today.

This strip was studied gravimetrically by two-dimensional models, derived by two profiles (I1) and (I2) over that area (see figures 6.6 and 6.7).

The first profile (Il), interpreted in figure 6.6 , was digitised at 100 m intervals and the automatic MODG2D inversion program was used. A density contrast of $0.20 \mathrm{~g} / \mathrm{cc}$ was assigned between the Silurian greywackes and the Great Conglomerate, although this is rather too large and is more representative of the contrast between Silurian and Lower Carboniferous sediments. A linear regional field of -1. $4 \mathrm{gu} / \mathrm{km}$ was subtracted from $S W$ to $N E$ in order to make the model outcrop in the south-western part.

The second profile (I2), figure 6.7, extends parallel to the Caledonian trend. A density contrast of $0.12 \mathrm{~g} / \mathrm{cc}$ was used, which is more appropriate to the contrast between Silurian and Great Conglomerate, and the modelling program MODG2D was again used. In figure 6.7, the depth of the basin to the NE of the Innerwick Fault appears to be relatively large; this is due to the unrealistically low density contrast used for the Lower Carboniferous sediments of that area. Also, the throw of the Innerwick Fault appears to be large, but this feature will be discussed later.


Fig. 6.6 Profile (Il) see fig. 4.7. A possible interpretation of the Oldhamstocks basin (density contrast $-0.2 \mathrm{~g} / \mathrm{cm}^{3}$ ). $b^{5}$ : Silurian; $c^{3}$ : Upper Old Red Sandstone;
$\mathrm{d}^{l}$ : Lower Carboniferous. Coordinates of the ends of the profile are NT 652717 and NT 743742.


Fig. 6.7 Profile (I2) - see fig. 4.3. An interpretation of 3 , the Oldhamstocks basin (density contrast $-0.12 \mathrm{~g} / \mathrm{cm}^{3}$ ). Coordinates of the end points of the profile are NT 670700 and NT 756 770. ---? indicate approximate boundary between Devonian and Carboniferous sediments.

Considering these two models, it appears that the floor of the Old Red Sandstone has a gentle slope towards the coast to the east, like the present topography of the Silurian in that area. As the density contrast $0.12 \mathrm{~g} / \mathrm{cc}$ between the Silurian and the Great Gonglomerate is quite representative, it seems that the maximum thickness of the conglomerate is unlikely to exceed 400m. This value is in agreement with the one shown on the unpublished IGS geological map (figure 6.8) while Geikie's calculations (thickness of 540 m with a maximum limit of 610 m ) were overestimated (Howell et al, 1866).

### 6.2.3.2 The Lower Carboniferous sediments

The Carboniferous sediments of the Oldhamstocks Basin were studied by two further gravity profiles. The following information was used for the construction of the models over that area:

1. Two boreholes were made in Skateraw (NT 734751) and Birnieknowes (NT 755724) by the Institute of Geological Sciences; the first one is Skateraw, pierced 29.44 m of sediments of the Lower. Limestone Group, overlying 260.22m of Calciferous Sandstone Measures (Dinantian), the base of which was not reached. The other, in Birnieknowes, pierced 438.76 m of Calciferous Sandstone Measures (Dinantian) and 69.42m of Upper Old Red Sandstone sediments, with its base not reached.
2. The offshore information was from seismic reflection profiles carried out by IGS. They reveal a sequence of synclines and anticlines shown in figures 6.8 and 6.8a.
3. Density information: Bennett (1969) has found a density contrast of $-0.12 \mathrm{~g} / \mathrm{cc}$ between Old Red Sandstone and Silurian strata and $0.18 \mathrm{~g} / \mathrm{cc}$ between Old Red Sandstone and Calciferous Sandstone Series, "based on laboratory measurements of the saturated density of rock specimens from those formations."

Therefore, it is clear that the Calciferous Sandstone series have a density which is relatively smaller than those shown by McLean (196la) and the value of $2.54 \mathrm{~g} / \mathrm{cc}$ which could generally be accepted as a representative value of the Lower Carboniferous - We st sediments in South Scotland. This could be explained by the occurrence of oil-shales in the Calciferous Sandstone series, which can be seen on the coast between Dunbar and Cockburnspath. (Clough et al,(1910), believed they were indicative of an approach to the conditions which led to the formation of the great oil-shale group in Mid and West Lothian). McLean (196la) reports a density of $2.27 \pm 0.10 \mathrm{~g} / \mathrm{cc}$ for the carbonaceous shales of the Central and Western Midland Valley.

Considering the above, it is not clear if the Upper Old Red Sandstone sediments underlying the Calciferous Sandstone series consist of conglomerate or red sandstones. In the following, considering the profile (OLl), an attempt was made

 data.


to trace the boundary between the Silurian and the combined overlying sediments. A density contrast of $0.20 \mathrm{~g} / \mathrm{cc}$ was chosen. This is the contrast between the densities of the Silurian and the average of the conglomerate $(2.60 \mathrm{~g} / \mathrm{cc}$ (Bennett, 1969) or approximately 2.0 g 2 cc (Table II-3)) and the Calciferous Sandstone series, and the shales of $2.42 \mathrm{~g} / \mathrm{cc}$ (Bennett, 1969); also, $2.52 \mathrm{~g} / \mathrm{cc}$ is ciose to the value for the sandstone at Siccar Point (Table II-3).

Because only a single interface is required, again the MODG2D inversion routine was used. A regional trend of -4 gu/km was subtracted from the observed values of gravity given at loom intervals. The resulting model is shown in figure 6.9. The most surprising feature is the Cove Fault which appears to have a normal throw of 800 m and a dip of about $77^{\circ}$. The anticline, deduced from offshore seismic profiles has been picked up, which means that it reaches the coast and probably continues even farther westwards. The syncline marked near Birnieknowes (figure 6.8a) does not appear in the model, although the syncline north-west of Skateraw does, since the interface of the model deepens, especially after the eighth kilometre of the profile.

Figure 6.10 shows a more quantitative model of the same area. Again, the observed values of profile (OLI) were used, subtracting a regional trend of $-4 \mathrm{gu} / \mathrm{km}$. It was assumed that conglomerates are underlying the Lower Calciferous sediments and a density of $2.60 \mathrm{~g} / \mathrm{cc}$ was assigned. For the Calciferous Sandstone series and shales, and the Carboniferous


Fig. 6.9 Profile (OLl) - in figure 4.7. A possible interpretation of the Oldhamstocks basin with the borehole information. Coordinates of the profile ar NT 784707 , NT 755724 and NT 720753.




Fig. 6.10 An alternative model of the gravity profile (OLl). Density contrasts in text.
CF: Cove Fault; B: Birnieknowes; S: Skateraw.

Limestone Group, densities of $2.42 \mathrm{~g} / \mathrm{cc}$ and $2.55 \mathrm{~g} / \mathrm{cc}$ were used. A value of $2.50 \mathrm{~g} / \mathrm{cc}$ was assigned for the belt of red sandstones south of the Cove Fault. The TALG2D program was used. To control the interfaces of the upper two layers, the borehole and the offshore seismic information were used.

From this model it appears that the depth of the Carboniferous sediments is about 500 m and as the density contrast of $0.18 \mathrm{~g} / \mathrm{cc}$ seems to be the maximum one, then the depth of 500 m for the Carboniferous sediments should be the minimum one. The underlying Devonian sediments fluctuate, in this case, between 200-250m. The small Devonian Basin south of the Cove Fault is very shallow, probably about 130 m and is unlikely to be more than 200-250m. The Cove Fault still appears with the considerable throw of about 600m, but with a slightly smaller dip in this model, about $72^{\circ}$.

A qualitative attempt was also made to model the Oldhamstocks basin in a three-dimensional way. The boundaries of the area for this purpose are shown in figure 6.11 a by the rotated Bouguer gravity anomaly map. After constructing the residual gravity map (figure 6.11b) by subtracting the estimated value calculated by LISPB, MODG3D was used to approximate the Silurian interface by 1 km side vertical prisms with a density contrast of $0.12 \mathrm{~g} / \mathrm{cc}$ between Silurian and post-Silurian sediments. This density contrast is rather small for the sediments east of the Innerwick Fault, but it is going only to generate a vertical scale displacement by overestimating the


Fig. 6.11 (a) Bouguer gravity anomaly map of Oldhamstocks basin at 10 gu contour interval.
(b) Residual gravity anomaly map subtracting the LISPB regional field (figure 5.3).

In both maps intersections show the corners of 10 km National Grid squares.
depth to the Silurian interface, accentuating as a consequence the faulting features of that area (Cove Fault, Innerwick Fault).

The SYMVU routine produced the three-dimensional picture (figure 6.12) of the array-depths generated by MODG3D. As can be seen from figure 6.12, the Oldhamstocks Basin comprises a trough which extends into the sea. The Devonian and Lower Carboniferous sediments are mostly bounded on the west by the Innerwick Fault and or the south by the Cove Fault which extends clearly into the sea. To the NW, approaching Dunbar, the basin becomes shallower. It is expected that the maximum thickness of the sediments occurs offshore, where the smallest gravity values (about -120 gu ) are met (Tully and McQuillin, 1978).

The movements of the Innerwick Fault attain their maximum throw (probably•less than 500 m ) NW and SE of the Innerwick, which is at the western end of the axis of an anticline (figure 6.8a).

### 6.2.4 Eyemouth Basin

In eastern Berwickshire, $S W$ of Eyemouth, there is a narrow northeasterly trending belt of Lower Old Red Sandstone, consisting of a series of sandstones and fine conglomerates of feldspathic character, associated with tuffaceous beds and


Fig. 6.12 Three-dimensional model of the Silurian interface of Oldhamstocks basin, viewed from the south and covering the same area as the maps in figure 6.11.
flows of andesitic lava. Geikie (1864) first described the geology of this area and the $1: 63,360$ geological map of this region indicates uncertain junctions between the Lower Silurian and Devonian sediments, except for the boundaries along the two fault lines: the Eyemouth Fault running from Edingtonhill (NT 9158) to the coast of Eyemouth, and the unnamed fault to the south of Coldingham running from northeast of Cairncross (NT 9064) to Coldingham Bay (NT 918665).

Again, in this region, an attempt was made to generate a quantitative picture of the thickness of the Lower Old Red Sandstone. The area which was chosen for modelling is outlined in figure 6.13, where the Bouguer gravity anomaly map is superimposed on a sketch geological map.

The Lower Silurian-Devonian interface was approximated by sixteen square blocks of 2 km side, chosen so that the block boundaries approximately coincided with the fault-like trends on the gravity map. From the sixteen gravity values, digitised from the gravity map (figure 6.13), a linear trend of $2 \mathrm{gu} / \mathrm{km}$ was subtracted and program MODG3D worked out the vertical extent of each prism. The resulting model is shown in figure 6.14; a density contrast of $-0.10 \mathrm{~g} / \mathrm{cc}$ between the sediments of the basin and the Lower Silurian of this region was taken.

Considering figure 6.14, it can be seen immediately that the prism at the north-western side does not outcrop as it is

[-] Alluvium


Lower Old Red Sandstone
$\left[\begin{array}{ll}{[1]} & \text { Upper Old Red } \\ n & \text { Sandstone }\end{array}\right.$ $\square$ Silurian

-     - Gravity stations

T T Fault
------- Uncertain lines

Fig. 6.13 Bouguer gravity anomaly map superimposed on a sketch geological map of the Eyemouth area. Contour interval 5 gu. Intersections represent corners of 5 km National Grid squares. A: Ayton; R: Reston.


Fig. 6.14 Three-dimensional interpretation Silurian interface of the Eyemouth basin, approximated by 2 km square prisms.
expected to from the geological map (figure 6.13). All the other prisms to the north-east and east outcrop at a relatively satisfactory level. However, in spite of the imperfections of this model, the following conclusions may be drawn:

1. The Silurian inlier north of Ayton is faulted not only on the north-western side, the Coldingham Bay Fault, but also on the south-western side. In the first case, the Coldingham Bay Fault appears with a throw of about 600 m while in the second case the throw of the sediments to the $S W$ appears confidently to be of the same magnitude (about 600m).
2. The Eyemouth Fault starts about lkm NE of Ayton by having a significant down-throw to the NW and thereafter it maintains its throw of about 600 m , running along a south-westerly direction until approximately the boundary with the Upper Old Red Sandstone sediments. Thereafter, the whole structure is about 300 m deeper, but the calculated throw is virtually the same.
3. The Lower OId Red Sandstone sediments appear to be faulted under the Upper Devonian, attaining a maximum thickness of about 1900m (using the above density contrast).
4. The narrow belt of Lower Old Red Sandstone sediments which extends along the north-eastern side of the Silurian inlier until it reaches the Eyemouth coast has a relatively small thickness (about 120-130m) and the throw of the Eyemouth Fault, which runs partly along its north-eastern side, seems to be insignificant there.
5. The latter suggests that the "inlying Silurian block which contains the Coldingham Bay beds is actually continuous with the Lower Silurian sediments south and west of Eyemouth; this would contradict Shiell's and Dearman's $(1963,1966)$ conclusions that the Silurian strata around that area, are in fact either of Arenig age - deformed initially by mid-Ordovician movements - or of Cambrian age deformed initially. in pre-Arenig times.
6. The 1910 edition of the $1: 63,360$ geological map, Sheet 34, from which the sketch geological map of figure 6.13 was made, is actually better constructed in the north-eastern part than the IGS unpublished geological map (figure 6.8a).

Considering the age of the Eyemouth Fault, Geikie (1864) concluded that it must be pre-Upper Devonian as its throw continues at its south-western part under the Upper Devonian sediments of this area (Edingtonhill), but is not observed in them. This is in excellent agreement with figure 6.14 •

In this section the supposed north-eastern component of the Southern Uplands Fault System is investigated by examining its gravity expression, and its position as a tectonic boundary.

Although to the south-west, the Leadburn Fault component of the Southern Uplands Fault system is generally associated with either the Glen App Fault (Anderson, 1951; Greig, 1971) or the Straiton Fault (McGregor and McGregor, 1948), to the northeast, the picture is less clear: the Lammermuir Fault is mapped en echelon with the Leadburn Fault, running from the southern termination of a minor north-south fault (the Cockmuir Fault) to the East Lothian coast south of Dunbar. Anderson (1951) considered that the Pentland Fault might take over from the Southern Uplands Fault System, while Max (1976), following Tulloch and Watson (1958) suggested that the Leadburn Fault might be continuous under or within the Midlothian Coalfield, perhaps reaching the Firth of Forth, near Prestonpans. However, according to detailed studies in the Midlothian Coalfield (Hipkin, 1977b), the Leadburn Fault component is not continuous under the Coalfield, but terminates at the Roslin-Vorgie Fault System. Thus, it never reaches the Firth of Forth coast.

Max (1976) also stated that the present line of the Southern Uplands Fault continuing north along the Lammermuir Fault, is unrealistic. These ideas are critically examined below, but first a closer look at the throw of the Lammermuir Fault and


Fig. 6.15 Diagramatic representation of the throw of the Lammermuir and Dunbar-Gifford Fault in East Lothian.
R.V.F. : Component of the Roslin - Vogrie Fault System. Rectagular represents the limits of the granite model (see figure 5.23a).

TABLE VI-1

LAMMERMUIR FAULT				
National Grid Reference	Hade (degrees)	Displacement ( m )	Depth to first density   interface (SE side) (m)	
NT 375 562   NT 390 572   NT 436 609   NT 544 654   NT 561 681	small   small   10   small   25	$\begin{aligned} & \sim .160 \\ & * 270 \\ & 945-1100 \\ & \because 350 \\ & 1500-1700 \end{aligned}$	$\begin{aligned} & 40-50 \\ & 30-40 \end{aligned}$	Hipkin   Lagios (1978)   Bennett (1969)   Shearer   Bennett (1969)
DUNBAR-GIFFORD FAULT				
NT 290 532   NT 392 612   NT 485 661   NT 534 692   NT 658 786	small   ?   30   small   25	$\begin{gathered} \cdots 150 \\ \text { opposite throw } \\ : 260 \\ * 270 \\ 420-460 \end{gathered}$	small $\begin{gathered} -50 \\ \text { small } \\ 170-180 \end{gathered}$	Hipkin   Lagios (1978)   Bennett (1969)   Shearer   Bennett (1969)

SUMMARY OF THROW OF THE LAMMERMUIR AND DUNBAR-GIFFORD FAULTS
the other fault running parallel to the NW of it, the DunbarGifford Fault, is necessary.

Table VI-1 summarises the results of detailed gravity profiles across the Lammermuir, Dunbar-Gifford Faults, obtained by Bennett (1969), the author and other members of Geophysics Department of Edinburgh University. The throw of the faults is displayed in figure 6.15.

Considering the latter figure, the calculated downthrows of the Lammermuir Fault by Bennett (1969) seem to be rather overestimated. Also, the detailed gravity profile across the Dunbar-Gifford Fault east of the A7 (NT 392 612) suggested a throw opposite from the one expected. It is not clear whether this result is true or whether it was affected by the southwesterly continuation (?) of a dolerite dyke to the NE of the profile.

The Southern Uplands are frequently considered as a distinct tectonic province, bounded to the north by the Southern Uplands Fault, of which the Lammermuir Fault is considered to be a part. This needs to be examined more clearly (as actually happens later). The characteristics which define the Southern Uplands as a tectonic unit are the following:
(i) Generally high elevation with relative stability after Silurian times.
(ii) Pre-Devonian trench and oceanic sediments at or near the surface.
(iii) Few post-Silurian sedimentary basins, with no major ones along the Caledonian trend.

```
Similarly the Midland Valley is characterized by the following:
```

(i) Generally lower elevation (compared to the Southern Uplands); occasional high elevation is due to more resistent igneous rocks.
(ii) Most outcropping rocks are post-Silurian and are not oceanic or trench sediments, but unmetamorphosed land or shallow marine sediments; there are also abundant Carboniferous volcanics.
(iii) Development of deep post-Silurian sedimentary basins along the Caledonian trend as well as in other directions and significant faulting and folding . ..... . during the Permo-Carboniferous times.

A precise definition of these two tectonic units is difficult to make, because several marginal areas appear to be transitional, with some properties of both units.

Underlying granitic masses could be the cause of the long-standing stability of the Southern Uplands and the associated lack of sedimentary basins, as well as its high elevation.

Taking the Southern Uplands Fault System as a boundary marker between two distinct tectonic provinces, the Midland Valley and the Southern Uplands, the Pentland Fault is not an acceptable continuation from the Leadburn Fault for the following reasons:

1. Its position is north-west of the Midlothian Coalfield.
2. It changes its downthrow (Anderson, 1951) to the NW and $S E$ as it runs to the Firth of Forth. This is a characteristic mostly met with in the (Western) Midland Valley faults.
3. It is the area immediately $S E$ of the Leadburn Fault (and not the Pentland Fault) which is overlying the large granite batholith (Chapter V) extending in the Southern Uplands along the Caledonian trend. Hence, the Leadburn component, having the same trend, appears to be the most natural boundary between the Midland Valley and the Southern Uplands. In fact, it is suggested here that the Leadburn component of the Southern Uplands Fault was formed because of the uplift of the Southern Uplands during the emplacement of the granite batholith (since uplift of country rocks along faults was long ago proposed during the emplacement of some plutons (Noble, 1952)).

After excluding the Pentland Fault as the continuation of the Southern Uplands Fault, as a tectonic boundary, the question still remains as to its most probable location.

The Lammermuir Faultis unlikely to be a tectonic boundary because of its age, which is believed to be initiated in postDevonian times (the Dunbar-Gifford Fault was formed at a later stage). Also, one would tend to consider as a northeasterly boundary of the Southern Uplands, the north-easterly termination of the underlying area batholith; in fact the north-western margin of the batholith in the East Lothian area extends farther to the NW than the Lammermuir and the DunbarGifford Fault.

Therefore, it is suggested that the north-eastern continuation of the Southern Uplands boundary is (1) either along the edge of the granite batholith in East Lothian (farther NW of the Lammermuir and Dunbar-Gifford Faults) or (2) the monocline fold of the eastern side of the Midlothian Coalfield, running from the Roslin-Vorgie Fault System to the coast near Prestonpans. To the east of this fold, the Old Red Sandstone and to a lesser extent, the Carboniferous are absent or more thinly developed than to the west.

The north-easterly increase of the throw of the Lammermuir and the Dunbar-Gifford Fault, can be explained as the differential rate of subsidence along the underlying batholith in Carboniferous times (it should be noted (Chapter V) that the batholith to the NE of Lammer Law extends at progressively greater depths under the surface) which generally gives a better stability in that area (East Lothian) compared with the one of the Midlothian where the rate of subsidence was relatively higher and the deposition of sediments considerably greater.

### 6.4 East Lothian Area

Detailed geological accounts of the East Lothian and East Fife areas have been given by Geikie (1902), Clough et al (1910) and McGregor and McGregor (1948).

It is well known that intensive volcanicity broke out during the Lower Carboniferous times and the vast outpouring of lavas (calc-alkaline) started first in the eastern part of the Midland Valley, notably in the Burntisland area and the Garleton Hills, and then they spread to the western part, the lava beds becoming progressively younger from NE to SW.

In the upper part of the Dinantian, the lavas formed the Burntisland and Garleton Hills Group, which are believed to be in continuous sequence under the Firth of Forth and, also, may be continuous with the Clyde Plateau lavas, forming the Forth Volcanic Group (Francis, 1965). The continuation of the lavas at depth receives support from the aeromagnetic picture of these areas.

The lower part of the volcanic sequence in the East Lothian area (Garleton Hills) is basaltic, while the upper part is more acid (trachytes etc) compared with that of West Lothian and Eastern Fife. McGregor and McGregor (1948) estimated the whole sequence in Garleton Hills to be 600 m .

Apart from the basaltic lavas and the trachytes in the East Lothian area there are numerous intrusions and necks, which were
the subject of study for many geologists, not only there, but also in the East Fife area (Prancis(1961) and referred papers).

According to Francis (1968) there are two types of intrusions: (1) Alkaline, which are restricted to areas of Carboniferous sediments and take the form of dolerite sills up to l20m in thickness. In the East Lothian area they are confined mainly to the Traprain Law area, forming the Traprain Law phonolite intrusion, and in the area immediately south of Aberlady Bay. (2) Calc-alkaline, forming dykes and sills of quartz-dolerites and tholeiites. They have an $E-W$ direction and although the sills are met with in the Carboniferous sediments, the dykes extend into older rocks. In East Lothian few of the dykes can be traced in the eastern part of this region. The age of these intrusions is late Carboniferous and, in the Midland Valley, they are related to the Midland Valley Sill (Francis; 1965), extending beneath the sediments and covering a large area of the eastern part of the Midland Valley.

The aeromagnetic picture suggests a complex pattern over the East Lothian area and the magnetic high (230nT) a few kilometres SW of Aberlady suggests rather a local thickening of the lavas at that point.

An attempt was made to estimate the thickness of those volcanic rocks in the East Lothian area and under the Firth of Forth from the aeromagnetics; subsequently, their gravitational attraction was calculated to find out its contribution to the
observed steep gravity gradient across East Lothian.

For this, the aeromagnetic map (Bullerwell, 1968) was digitised at 2 km intervals. The resulting values are contoured in figure 6.16. As was expected, these values present a smooth picture of the digitised area, simplifying its complexity.

Dr Powell's (Glasgow University) MAGRAV program was used. The upper surface of the lava beds was fixed at a shallow constant depth (about 20 m ) beneath the ground surface (350m) bellow the flight level (about 330 m ) of the aeromagnetic survey.

To start the iterative procedure of the program, an input array of base depths was given. In the south-eastern part of the digitised area, near Gifford, the lavas are exposed and their thickness is known (about 40 m ). Thus, the base depth of the input model was given at this point. A magnetisation contrast of 450 nT was given as an input. The latter value was based on susceptibility measurements of a quartz-dolerite dyke near Musselburgh. After 30 iterations the RMS residual between the input digitised values and the calculated values, was 2.16 nT . The resulting base depths are shown in figure 6.17.

The maximum thickness of the lavas occurs a few kilometres SW of Aberlady Bay with a value of about 470 m . It is clear


Fig. 6.16 Map showing the result of digitising the aeromagnetic map (Bullerwell, 1968) at 2 km intervals. Contour interval 50 nT.


Fig. 6.17 Three-dimensional aeromagnetic interpretation of the volcanic rocks in the Firth of Forth and East Lothian. Contours at 0.050 km interval.
that they are continuous under the Firth of Forth and definitely extend to the west. To the north, figure 6.17, the volcanic rocks are roughly bounded by the zero magnettic anomaly contour, with their thickness increasing southwards.

Having a quantitative estimate of the thickness of the East Lothian volcanic sequence, their gravitational attraction was calculated by postulating a density contrast between the Lower Carboniferous sediments and the basic Carboniferous rocks. A mean density of $2.80 \mathrm{~g} / \mathrm{cc}$ was assigned for the basic rocks: basalts - late Carboniferous sills and dykes. Density measurements of basalt from Markle quarry (Table II-2) have shown a value (about $2.722 \mathrm{~g} / \mathrm{cc}$ ), see Table II-3, similar to the one found for the Clyde Plateau lavas (McLean, 196la), and a value of nearly $2.90 \mathrm{~g} / \mathrm{cc}$ is representative for the more dense dykes and sills. The trachytes proved to be less dense than the basalts, as was actually expected. Hence, a density contrast. of $0.25-0.30 \mathrm{~g} / \mathrm{cc}$ between the Carboniferous basic rocks and the sediments is reasonable.

A slightly modified version of program MODG3D was used to calculate an approximate gravitational attraction of this basic sheet. The bottom depths-array was the lower termination of the prisms of MODG3D, while their upper part was fixed at a constant shallow depth (about 20m). The density contrast was $0.25 \mathrm{~g} / \mathrm{cc}$, which will probably yield a lower limit to the amplitude of the gravity expression of the lava beds.

Figure 6.18 shows the gravity map of the area, according to this procedure. The gravity maximum SW of Aberlady Bay has a value of 39 gu. Assigning a density contrast of $0.30 \mathrm{~g} / \mathrm{cc}$, then the maximum value will be 47 gu.

Independently of the maximum value, the interesting fact is that the observed maximum gradient at the south-eastern part of figure 6.18 is only about $3 \mathrm{gu} / \mathrm{km}$. This implies that the presence of the lava beds contribute little (one fourth) to the observed gradient ( $13 \mathrm{gu} / \mathrm{km}$ ) of the Bouguer anomaly in the Haddington area of East Lothian. As a consequence, the steep gradient must be caused by the edge of the granite batholith at this area, as suggested in $5.4 .40^{-}$. This supports the hypothesis that the granite is responsible for the relative stability of the whole East Lothian area compared to the Midlothian and East Fife Coalfield area in Carboniferous times, as reflected by the different rate of deposition and considerable different development of the sedimentary sequence.

By having a picture of the thickness of the lavas and removing their effect from the Bouguer anomaly map of the area, the monoclinal fold on the East-Midlothian boundary (perhaps formed because of the influence of the granite batholith) becomes even more clear as the eastern boundary of the Midland Valley.


### 6.4.1 Continuation of the Southern Uplands Granite under East Lothian

 In this section, the northerly continuation of the granite batholith under East Lothian is examined and discussed.From the models of the Southern Uplands batholith discussed in section 5.4.4, it has already been inferred that the granite does extend to the north of the modelled area into East Lothian; earlier in this chapter it was also suggested that it is the underlying granite, rather than the Carboniferous volcanics, which causes the steep gravity gradients there. The continuation of the granite will now be shown explicitly by a two-dimensional gravity model.

The gravity profile KL was constructed, running at an angle of about $18^{\circ}$ to the LISPB line. The position of the profile is shown on the gravity anomaly map-in back pocket. Again a regional field from the LISPB model (Fig. 5.2 and 5.3) was calculated and removed. The residual gravity profile is shown in the upper part of figure 6.19.

The shallow structure of the model (Fig.6.19) was deduced from Sheet 33 of the $1^{\prime \prime}$ Geological Map of Scotland, dated 1894, as well as from a still unpublished one in preparation for the area (Tulloch, personal communication). The Spilmersford borehole (Davies, 1974), (at NT 45706902 and shown on figure 6.8) was found very useful as a control for the Lower Carboniferous sediments and volcanics: this was the reason for choosing the profile over Spilmersford. The following generalized succession was found in the bore (Davies, 1974):
(i) 21 m of Lower Limestone Group,
(ii) 259.64 m of Calciferous Sandstone sediments (Dinantian),
(iii) 256.64 m of lavas, tuffs and agglomerates (Dinantian),
(iv) 1.06 m of Calciferous Sandstone sediments,
(v) 114.5 m of intrusive dolerite (late Westphalian, McAdam, 1974),
(vi) 8.9 m of Upper Old Red Sandstone sediments, the base of which was not reached.

The rock densities used to construct the model (Fig.6.19) were deduced and based on density measurements made by the author (Chapter II), on values of density used in the western part of the Midland Valley (McLean and Qureshi, 1966) and on geophysical surveys at the Spilmersford borehole (Allsop, 1974); the following: values were adopted:
(i) $2.55 \mathrm{~g} / \mathrm{cm}^{3}$ for Lower Limestone Group,
(ii) $2.54 \mathrm{~g} / \mathrm{cm}^{3}$ for Calciferous Sandstone sediments,
(iii) $2.54 \mathrm{~g} / \mathrm{cm}^{3}$ for Upper Old Red Sandstone (the same density with the Calciferous Sandstone Series was used here for the sake of simplicity of the model),
(iv) $2.72 \mathrm{~g} / \mathrm{cm}^{3}$ for Lower Palaeozoic sediments (Silurian and Ordovician),
(v) $2.73 \mathrm{~g} / \mathrm{cm}^{3}$ for the lavas and tuffs and agglomerates,
(vi) $2.90 \mathrm{~g} / \mathrm{cm}^{3}$ for the dolerite intrusion (sill),
(vii) $2.65 \mathrm{~g} / \mathrm{cm}^{3}$ for granite.

Using these densities, the TALGED program was used to match the residual values of the profile KL . The results are shown in figure 6.19.

In this model, it is clearly shown that the granite extends northwards under East Lothian to about the coast, at one point coming within


Fig. 6.19 An interpretation of profile KL (see gravity map, back pocket). Densities used in text. LT : Lavas, tuffs, agglomerates; shaded layer represents olivine-basalt. Coordinares: NT 385795 and NT 567512.

1700 m of the surface. This occurs just south-west of Lammer Law, at a point corresponding closely to the centre of the Lammer Law aeromagnetic anomaly, although the profile is 1.5 km to the southwest of the centre. This offset, together with the fact that it is a two- rather than three-dimensional model, probably explains the different depths obtained, 1700 m here and less than 330 m from the aeromagnetic anomaly (Bennett, 1969).

The total thickness of the volcanic rocks in figure 6.19 is also consistent with the model derived from aeromagnetic anomalies in section 6.4 .

## CONCLUSIONS

### 7.1 Gravity Data Processing

A total of 2500 gravity stations have been observed in south-east Scotland, mainly by the author. This is a part of Britain for which no gravity anomaly observations had been reported in the literature before and for the first time a Bouguer anomaly map was prepared for it and published (Lagios and Hipkin, $1979 \mathrm{a}, \mathrm{b}$ ). These data are now available to the public in catalogue form (Appendix C). All stages of their reduction and presentation (Chapter II) were handled adequately on a computer, including the contouring: of the map (Chapter IV).

The base station network and other field measurements were observed with unusual accuracy: a least-squares network adjustment gave a root mean square residual of only 0.096 g.u. ( 9.6 microgal), which is much better than the National Gravity Reference Net (1973) - see Chapter III.

### 7.2 Geological Interpretations

In Chapter $V$ it was strongly argued that a granite batholith underlies the north-eastern part of the Southern Uplands (Fig.5.23a and Fig. 5.23b) and it was also shown more specifically in Chapter VI that the batholith underlies almost the whole East Lothian area (Fig.6.19). This interpretation offers a significant key to explaining and understanding the structure and evolution of the upper crust there, which is noted for its high elevation and long-

LISPB did not succeed in tracing the upper and mid-crustal refractor horizons under the Southern Uplands with much certainty. Now, in the light of the evidence of a granite underlying this area, this can be understood: the small width of the Southern Uplands and the presence of the granitic bodies would cause scatter and consequently, the "disappearance" of the seismic rays coming from greater depths towards the surface. This phenomenon has recently been demonstrated in a preliminary way in the region between the Highland Boundary Fault and the Great Glen Fault (Dimitropoulos, person. commun.).

The age of emplacement of the batholith is taken to be Lower or Middle Devonian because it appears to be related to the small granite outcrops in East Lothian and Berwickshire, which have this age (section 5.4.1). This coincides with the age for the main movements on the Leadburn Fault, deduced by Hipkin (1977 b) from the cutting out across the fault of Lower Devonian sediments underneath the Carboniferous and Upper Devonian.

Thus the Leadburn component of the Southern Uplands Fault System was initiated during the uplift which accompanied the emplacement of the granite, and the fault runs along its north-western flank (the Leadburn Fault is situated 1 km beyond the north-western margin of the area modelled in figures 5.7 to 5.10 , and parallel to this edge). Relatively little ( $<90 \mathrm{~m}$ ) post-Devonian movement on the Leadburn Fault is recorded (Tulloch and Watson, 1958), compared with about 2 km during the Devonian.

In areas where faulting features appear to be running along or little beyond the margins of the granite (e.g. Leadburn Fault), their throw develops with large dimensions, particularly when the granite comes closer to the surface. However, when faults are met in areas which are underlain by the batholith, their throw appears to be generally small (Lammermuir and Dunbar-Gifford Faults, (?)Southern Uplands Fault near New Cumnock).

Although the north-western boundary of the Southern Uplands is defined clearly in the central part by the Leadburn Fault, in the north-east, the boundary is more properly defined by the edge of the granite than by the Lammermuir Fault, which has been envisaged as the boundary by many geologists (Chapter VI). It was shown (Chapter VI) that the shape of the gravity field in East Lothian is probably not strongly affected by the Lower Carboniferous volcanics, and therefore is dominated by the edge effect of the granite, which extends at depth nearly to the coast.

Hence, the boundary of the Southern Uplands, as defined by the edge of the batholith, might be near the present coast-line from Prestonpans (the eastern boundary of the Midland Valley, section 6.4) to Dunbar.

The southern limits of the batholith are deduced from gravity models in section 5.3.4.1 and 5.4.4 to run in the central Southern Uplands approximately between St. Mary's Loch, via Galashiels, to Lauder, more or less parallel to the Caledonian trend.

The position of the remainder of the southern boundary and most of the eastern boundary is largely conjectural. Beyond Lauder,
the southern limit becomes obscure because the superposition of the Upper Devonian and Lower Carboniferous sediments, and Carboniferous intrusive and extrusive volcanics creates a more confused gravity anomaly field.

Nevertheless, the gravity high, which in Selkirkshire clearly identifies the southern limit, is perhaps related to highs around Greenlaw and south of Eyemouth, which suggests a boundary roughly following the Rivers Blackadder, Whiteadder and Tweed between Greenlaw and Berwick upon Tweed. This broadly marks the boundary between the lower lying Merse, inferentially beyond the buoyant effect of the granite, and the more elevated Southern Uplands, underlain by it. Again, it is near the northern margin of the Carboniferous Borders Basin, the formation of a basin suggesting greater stability to the north.

Although such a southern boundary is speculative, it does include all the minor granite exposures of the eastern Southern Uplands and is consistent with the very few other means of inferring where the granite might be. However, it does exclude Cheviot. It would be difficult either to prove or disprove a connection at depth between Cheviot and the Southern Uplands batholith on the basis of the gravity anomalies, but the development of the Borders Basin between them makes a lack of connection not completely improbable.

The eastern boundary is again conjectural but Geikies's observation of a facies change in the Devonian to the west of the Innerwick Fault (section 6.2.3.1), and the development of a significant Devonian basin at Oldhamstocks suggest that the boundary between

Dunbar and Eyemouth is near the present coast-line, perhaps initially following the Innerwick and Cove Faults. The coastal boundary fault described by Shiell (1963) - see figure 5.21 a - might then close the eastern and southern boundaries but an extension seawards is perhaps suggested by the aeromagnetic anomalies.

In general, the picture of granite intrusion causing uplift along an axis between Tweeddale and Lammer Law, decreasing to the east and south-east fits very well with Bluck's (1978) Upper Old Red Sandstone depositional trends (figure 6.2).

The presence of the granite is generally consistent with recent plate tectonic models (Phillips et al, 1976). Because a granitic belt is not expected to overlie the region where subduction was taking place, the author prefers those tectonic models which put the suture of Iapetus along the Solway rather than in the Southern Uplands.

AGGER, H.E. and CARPENTER, E.W. 1965. A crustal study in the vicinity of the Eskdalemuir seismological array station. Geophys: J.R. Astron. Soc., Vol. 9, pp. 69-83.

ALLSOP, J.M. 1974. Geophysical surveys at the Spilmersford Borehole, East Lothian, Scotland. Bull. geol. Surv. Gt. Br., Vol. 45, pp. 63-72.

ANDERSON, E.M. 1951. The dynamics of faulting and dyke formation with applications to Britain. Oliver and Boyd, Edinburgh.

ASSUMPCAO, M. and BAMFORD, D. 1978. LISPB-V studies of crustal shear waves. Geophys. J.R. Astron. Soc., Vol. 54, pp. 61-73.

BAMFORD, D., FABER, S., JACOB, B., KAMINSKI, W., NUNN, K., PRODEHL, C., FUCHS, K., KING, R. and WILLMORE P. 1976. A lithosphere seismic profile in Britain. I - preliminary results. Geophys. J.R. Astron. Soc., Vol. 44, pp. 145-160.

BAMFORD, D., NUNN, K., PRODEHL, G., JACOBS, B. 1977. LISPB-III. Upper crustal structure of N. Britain. J. Geol. Soc. Lond. Vol. 133, pp. 481-488.

BAMFORD, D., NUNN, K., PRODEHL, C., JACOB, B. 1978. LISPB-IV. Crustal structure of Northern Britain. Geophys. J.R. Astron. Soc., Vol. 54, pp. 43-60.

BENDAT, J.S. and PIERSOL, A.G. 1971. Random data: analysis and measurement procedures. Wiley-InterScience, New York.

BENNETT, J.R.P. 1969. Results of geophysical surveys in the Haddington area. Inst. Geol. Sci. Rep. GP/AG/70/13.

BEVINGTON, P.R. 1969. Data reduction and error analysis for the physical sciences. Edit. McGraw-Hill, New York.

BLAXLAND, A.B., AFTALION, M. . VAN BREEMEN, O. 1979. Pb isotopic composition of feldspars from Scottish Caledonian granites and the nature of the underlying crust. Scott. J. Geol., Vol. 15, pp. 139-151.

BLUCK, B.J. 1978. Sedimentation in a late orogenic bäsin: the Old Red Sandstone of the Midland Valley of Scotland. Repr. Geol. Jour. Sp. Is No. 10.

BOTT, M.H.P. 1953. Negative gravity anomalies over acid "intrusions" and their relation to the structure of the earth's crust. Geol. Mag., Vol. 90, pp. 257-67.

BOTT, M.H.P. 1956. A qeophysical study of the granite problem. 2uart. J. Geol. Soc. Vol. 12, pp. 45-67.

BOTT, M.H.P. 1959. The use of electronic digital computers for the evaluation of gravimetric terrain corrections. Geophys. Prospect., Vol. 7, pp. 45-54.

BOTT, M.H.P. 1962. A simple criteria for interpreting negative gravity anomalies. Geophysics, vol. 27, pp. 376-381.

BOTT, M.H.P. 1974. The geological interpretation of a gravity survey of the English Lake District and the Vale of Eden. J.: Geol. Soc. Lond. , Vol. 130, pp. 309-331.

BOTT, M.H.P. and MASSON-SMITH, D. 1957. The geological interpretation of a gravity survey of the Alston Block and the Durham Coalfield. Quart. J. Geol. Soc., Vol. 113, pp. 93-116.

BOITT, M.H.P. and MASSON-SMITH, D. 1960. A gravity survey of the Criffell granodiorite and the New Red Sandstone deposits near Dumfries. Proc. Yorks. Geol. Soc., Vol. 32, pp. 317-332.

BOTT, M.H.P. and SMITH, R.A. 1958. The estimation of the limiting depth of gravitating bodies. Geophys. Prospect., Vol. 6, pp. 1-10.

BOTT, M.H.P. and SMITHSON, S.B. 1967. Gravity investigations of subsurface shape and mass distributions of granite batholiths. Bull. Geol. Soc. Amer., Vol. 78, pp. 869-885.

BOTT, M. H.P. , ROBINSON, J. and KOHNSTAMM, M.A. 1978. Granite beneath Market Weighton, East Yorkshire. J.: Geol. Soc. Lond., Vol. 135, pp. 535-43.

BRIDEN, J.C., MORRIS, W.A., PIPER, J.D.A. 1973. Palaeomagnetic studies of the British Caledonides - IV. Regional and Global Implications. Geophys. J.R. Astron. Soc., Vol. 34, pp. 107-1 34 .

BRIGGS, I.C. 1974. Machine contouring using minimum curvature. Geophysics, Vol. 39, pp. 39-48.

BROWN, G.C. and HENNESSY, J. 1978. The initiation and thermal diversity of granite magmatism. Phil. Trans. R. Soc. A. 288, pp. 631-643.

BRUCKSHAW, J.M. and KUNARATNAM, K. 1960. The interpretation of magnetic anomalies due to dykes. Geophys. Prospect. Vol. 1l, pp. 509-522.

BRUCKSHAW, J.M. and ROBERTSON, E.I. 1949. The magnetic properties of the tholeiite dykes of north England. Month. Not. of R.f.S. Geophys. Suppl., Vol. 5(8), pp. 308-320.

BULLARD, E.C. and JOLLY, H.L. 1936. Gravity measurements in Great Britain. Month. Not. of R.A.S. Geophys. Suppl. Vol. 3, No. 9, pp. 443-477.

BULLERWELL, W. 1968. Aeromagnetic map of part of Great Britain and Northern Ireland, Sheet ll. Inst. Geol. Sci., London.

CALCOMP - Applications software (1973) G.P.C.P. (A general purpose contouring program). Users' manual. California Computer Products, Inc. La Palma - USA.

CARTWRIGHT, D.E. and EDDEN, A.C. 1973. Corrected tables of tidal harmonics. Geophys. J.R. Astron. Soc., Vol. 33, pp. 253-264.

CARTWRIGHT, D.E. and TAYIER, R.J. 1971. New computation of the tide-generating potential. Geophys. J.R. Astron. Soc., Vol. 23, pp. 45-74.

CHISHOLM, J.I. and DEAN, J.M. 1974. The Upper Old Red Sandstone of Fife and Kinross: a fluviatile sequence with evidence of marine incursion. Scott. J. Geol., Vol. lo(1), pp. 1-30.

CHRISTIE, P.A.F. 1978. A report on the Cambridge North Sea experiment. Paper presented at 2nd UK Geophys. Assembly, Liverpool. Abstract in: Geophys. J.R. Astron. Soc., Vol. 53, pp.140.

CHURCH, W.R. and GAYER, R.A. 1973. The Ballantrae ophiolite. Geol. Mag., Vol. 110, pp. 497-5lo.

CLOUGH, C.T., BARROW, G., CRAMPTON, C.B., MAUFE, H.B., BAILEY, E.B. and ANDERSON, E.M. 1910. The Geology of East Lothian. Mem. Geol: Surv. Scotland. Edinburgh.

DAVIES, A. 1974. The Lower Carboniferous (Dinantian) sequence at Spilmersford, East Lothian, Scotland. Bull. geol. Surv. Gt. Br., Vol. 45, pp. 1-24.

DEWEY, J.F. 1969. Evolution of the Appalachian Caledonian orogeny. Nature, Vol. 222, p. 124 --129.

DEWEY, J.F. 1971. A model for the Lower Palaeozoic evolution of the southern margin of the Early Caledonides of Scotland and Ireland. Scott. J. Geol., Vol. 7, p. 219-235.

DEWEY, J.F. and PANKHURST, R.J. 1970. The evolution of the Scottish Caledonides in relation to their isotopic age pattern. Trans. Roy. Soc. Edin., Vol. 68, pp. 361-387.

DIMITROPOULOS, K. and DONATO, J. 1979. A geophysical interpretation of the Inner Moray Firth sedimentary basin. In press. Abstract in Geophys. J.R. Astron. Soc., Vol. 57, p 260.

EL-BATROUKH, S.I. 1975. Geophysical investigations on Loch Doon granite, south-west Scotland. PhD. Thesis, University of Glasgow.

FITTON, J.G., HUGHES, D.J. 1970. Volcanism and plate tectonics in the British Ordovician. Earth and Planetary Sci. Letters, Vol. 8, pp. 223-228.

FRANCIS, E.H. 1961. Thin beds of graben keolinized tuff and tuffaceous siltstone in the Carboniferous of Fife. Bull. geol. Surv. Gt. Br., Vol. 17, pp. 191-215.

FRANCIS, E.H. 1965. Carboniferous-Permian igneous rocks, In: the Geology of Scotland (Ed. G.y. Craig). Edinburgh.

FRANCIS, E.H. 1968. Review of Carboniferous Permian volcanism in Scotland. Geol. Rdsch., Vol. 57, pp. 219-246.

GARSON, M.S. and PLANT, J. 1973. Alpine type ultramafic rocks and episodic mountain building in the Scottish Highlands. Nature Phys. Sci., Vol. 242, pp. 34-38.

GEIKIE, A. 1864. The geology of Eastern Berwickshire. Mem. Geol. Surv. Scotland, London.

GEIKIE, A. 1902. The geology of Eastern Fife. Mem. Geol. Surv. Scotland, Glasgow.

GEORGE, T.N. 1960. The stratigraphic evolution of the Midland Valley. Trans. Geol. Soc. Glasg., Vol. 24, p. 32.

GIBSON, M.O. 1937. Network adjustment by least squares - alternative formulations and solution by iterations. Geophysics, Vol. 6, pp. 168-79.

GRANT, F.S. 1972. Review of data processing and interpretation methods in gravity and magnetics. Geophysics, Vol. 37, pp. 647-661.

GREIG, D.C. 1971. The south of Scotland. HMSO, Edinburgh.
GUNN, P.J. 1972. Wiener filter transformations of gravity and magnetic fields and a regional interpretation of the Midland Valley of Scotland and Northern Ireland. PhD Thesis, University of Durham.

GUNN, P.J. 1973. Location of the Proto-Atlantic suture in the British Isles. Nature, Vol. 242, pp. ll-ll2. 1975.

GUNN, P.J. $\{$ Interpretation of the Bathgate magnetic anomaly, Midland Valley, Scotland. Scott. J. Geol:, Vol. ll(3), pp. 263-267.

HALL, J. 1970: The correlation of seismic velocities with formations in the SW of Scotland. Geophys. Prospect., Vol. 18, pp. 134-148.

HALL, J. 1971. A preliminary seismic survey adjacent to the Rashiehill borehole near Slamannan, Stirlingshire. Scott: J. Geol., Vol. 7, pp. 170-174.

HALL, J. 1974. A seismic reflection survey of the Clyde Plateau lavas in North Ayrshire and Renfrewshire. Scott. J. Geol., Vol. 9, pp. 253-279.

HALL, D.H. and DANGLEY, M.A. 1970. Regional magnetic anomalies IGS Report No. 70/10.

HAMMER, S. 1939. Terrain correction tables for gravity. Geophysics. Vol. 4, pp. 184-194.

HARDY, J. 1892. Report of meetings for 1891: History of the Berwickshire Naturalist Club, Vol. IX, p. 481. , '

HARLAND, W.B. and GAYER, R.A. 1972. The Arctic Caledonides and earlier oceans. Geol. Mag., Vol. 109, pp. 289-314.

HIPKIN, R.G. 1977a. A gravity survey over the Midlothian Coalfield. Contr. Paper in Southern Uplands Workshop, Edinburgh.

HIPKIN, R.G. 1977b. A gravity survey of the South Midlothian Coalfield and the Southern Uplands Fault System. Contr. paper in the lst UKGA, Edinburgh. Abstr. in Geophys. J. R. Astron. Soc:, Vol. 49, p. 289.

HIPKIN, R.G. 1978a. A microgravimetric network for secular gravity studies in Scotland. Geophys. J.R. Astron. Soc., Vol. 52, pp. 383-46.

HIPKIN, R.G. 1978b. A microgravimetric network for secular gravity studies in Scotland. Paper pres. at the Intern. Gravity Commission, Paris.

HIPKIN, R.G. and LAGIOS, E. 1978. A gravity survey of SE Scotland: the Southern Uplands. Paper pres. at the 2nd UKGA, Liverpool. Abstract in: Geophys. J.R. Astron. Soc., Vol. 52, p. 160.

HOLDER, A.P. and BOTT, M.H.P. 1971. Crustal structure in the vicinity of south-west England. Geophys. J.R. Astron. Soc., Vol. 23; pp. 465-468.

HOSSAIN, M.A. 1976. Analysis of the major gravity and magnetic anomalies centred about Bathgate, central Scotland. MSc Thesis, University of Glasgow.

HOWELL, H.H., GEIKIE, A. and YOUNG, J. 1866. The geology of East Lothian.... Mem. Geol. Surv. Gt. Britain, London.

IBM. 1969. System/360 scientific subroutine package (PL/I) (360A-CM- $\varnothing 7 \mathrm{X}$ ). Program description and operations manual,

JACOB, A.W.B. 1969. Crustal phäse velocities observed at the Eskdalemuir Seismic Array. Geophys. J.R. Astron. Soc., Vol. 18, pp. 189-197.

JAIN, S. and WILSON, C.D.V. 1967. Magneto-telluric investigations in the Irish Sea and Southern Scotland. Geophys. J.R. Astron. Soc., Vol. $12, \mathrm{pp} .165-180$.

JEANS, P.J.F. 1973. Plate tectonic reconstruction of the Southern Caledonides of Great Britain. Nature Phys. Sci., Vol. 245, pp. 120-122.

JONES, A.G. 1977. Geomagnetic induction studies in Southern Scotland, PhD. Thesis, University of Edinburgh.

JONES, A.G. and HUTPON,_R. 1979a. A multi-station magnetotelluric study in Southern Scotland - I. Fieldwork, data analysis and results. Geophys. J.R. Astron. Soc., Vol. 56, pp. 329-350.

JONES, A.G. and HUTTON, R. 1979b. A multi-station magnetotelluric study in southern Scotland - II. Monte-Carlo inversion of the data and its geophysical and tectonic implications. Geophys. J.R. Astron. Soc., Vol. 56, pp. 351-368.

KANE, M.F. 1962. Comprehensive system of terrain corrections using a digital computer. Geophysics, Vol. 27, pp. 455-62.

KELLING, G. 1962. The petrology and sedimentology of Upper Ordovician rocks in the Rhinns of Galloway, south-west Scotland. Trans. R. Soc. Edinburgh, Vol. 65, pp. 107-137.

KENNEDY, W.Q. 1958. The tectonic evolution of the Midland Valley of Scotland. Trans. geol. Soc. Glasgow, Vol. 23, p. 106.

KRIGE, D.G. 1966. Two-dimensional weighted moving average trend surfaces for ore evluations. Proc. Symposium on mathematical statistics and computer applications in ore evaluation, Johannesburgh, pp. 13-79.

KROHN, D. 1976. Gravity terrain corrections using multiquadratic equations. Geophysics, Vol. 41, pp. 266-275.

LAGIOS, E. 1978. A gravity survey of SE Scotland: East Lothian, the Lammermuir Fault, and the Old Red Sandstone Basins. Paper presented at the 2nd UKGA 1978, Liverpool. Abstract in: Geophys. J.R. Astron. Soc., Vol. 52, p. 160.

LAGIOS, E. and HIPKIN, R.G. 1979a... More on the Tweeddale granite. Paper presented at 3rd UKGA, Southampton... Abstr. in: Geophysi. J.R. Astron. Soc., Vol. 57, p. 275.

LAGIOS, E. and HIPKIN, R.G. 1979b. The Tweeddale granite - a newly discovered betholith in the Southern Uplands. Nature, Vol. 280, pp. 672-675.

LEEDER, M.R. 1973. Sedimentology and palaeogeography of the Upper Old Red Sandstones in the Scottish Border basin. Scott: J. Geol., Vol. 9, pp. 118-144.

LONGMAN, C.D., BLUCK, B.J. and VAN BREEMEN, O. 1979. Ordovician conglomerates and the evolution of the Midland Valley. Nature, Vol. 280, pp. 578-581.

MASSON-SMITH, D., HOWELL, P.M. and ABERNETHY-CLARK, A.B.D.E. 1974. The National Gravity Reference Net, 1973. Ord. Surv. prof. Pap., Vol. 26, 22 pages.

MAX, M.D. 1976. The pre-Palaeozoic basement in SE Scotland and the Southern Uplands Fault. Nature, Vol. 264, pp. 485-486.

MCADAM, A.D. 1974. The petrography of the igneous rocks in the Lower Carboniferous (Dinantian) at Spilmersford, East Lothian, Scotland. Bull. geol. Surv. Gt. Br., Vol. 45, pp. 39-46.

McGREGOR, M. and MCGREGOR, A.G. 1948. The Midland Valley of Scotland (2nd Ed.). British Regional Geology, Geol. Surv., UK. HMSO, Edinburgh.

MCKERROW, W.S., LEGGETT, J.K. and EALES, M.H. 1977. Impricate thrust model of the Southern Uplands of Scotland. Nature, Vol. 267, pp. 237-239.

McLEAN, A.C. 1961. Gravity survey of the Sanquhar Coalfield. Proc. Roy. Soc. Edin. B, Vol. 68, pp. 112-127.

McLEAN, A.C. 196la. Density measurements of rocks in SW Scotland. Proc. Roy. Soc., Edin., Vol. 68, pp. 103-111.

McLEAN, A.C. 1966. A gravity survey in Ayrshire and its geological interpretation. Trans. Roy. Soc. Edin., Vol. 66, pp. 239-265.

MCLEAN, A.C. and DEEGAN, C.E. 1978. The solid geology of the Clyde Sheet $\left(55^{\circ} \mathrm{N} / 6^{\circ} \mathrm{W}\right)$. Inst. Geol. Sci. Rep. 78/9.

McLEAN, A.C. and QURESHI, I.R. 1966. Regional gravity anomalies in the western Midland Valley of Scotland. Trans. Roy. Soc. Edin., Vol. 66, pp. 267-83.

MCROBERT, W.R. 1914. Acid and intermediate intrusions and associated ash necks in the neighbourhood of Melrose. Quart: J. Geol. Soc., IXX, pp. 303-14.

MITCHELL, A.H.G. and MCKERROW, W.S. 1975. Analogous evolution of the Burma Orogen and Scottish Caledonides. Geol. Soc. America Bull., Vol. 86, pp. 305-15.

MORELLI, C. 1976. Modern standards for gravity surveys. Geophys. J.R. Astron. Soc. . Vol. 45, p. 199.

MORTON, D.J. 1979. Palaeogeographical evolution of the Lower Old Red Sandstone basin in the western Midland Valley. Scott: J. Geol., Vol. 15(2). pp. 97-116.

MOSELEY, F. 1977. Caledonian plate tectonics and the plane of English Lake District. Geol. Soc. America Bull., Vol. 88, pp. 764-788.

NAFE, J.E. and DRAKE, C.L. 1963. Physical properties of marine sediments, in: "The Sea," Vol. 3, Ed. M.N. Hill (Interscience) pp. 794-815. New York.

NAGY, D. 1966. The prism method of terrain corrections using digital computers. Pure and Applied Geophysics, Vol. 63, pp. 31-39.

NETTLETON, L.L. 1939. Determination of density for reduction of gravimeter observations. Geophysics, Vol. 4, pp. 176-83.

NICOL, J. _1843. On the geology of Peeblesshire. Trans. Highl. Soc. of Scotland, vol. XIV, New Ser., Vol. VIII, pp. 149-206.

NOBLE, J.A: 1952. Evaluation of criteria for the forcible intrusion of magma. Jour. Geology, Vol. 60, pp. 34-57.

OLEA, R.A. 1975. Optimum mapping techniques using Regionalised Variable Theory. Kansas Geol. Survey, Univ. of Kansas.

PARASNIS, D.S. 1952. A study of rock densities in the English Midlands. Mon. Not. Roy. Astr. Soc. Geophys. Suppl., Vol. 6, pp. 252-71.

PARASNIS, D.P. 1972. Principles of applied geophysics. Ed. Chapman and Hall, London.

PARKER, R.L. 1972. The rapid calculation of potential anomalies. Geophys. J.R. Astron. Soc., Vol. 31, pp. 447-455.

PARSLOW, G.R. 1968. The physical and structural features of the Cairnsmore Fleet granite and its aureole. Scott..J. Geol., Vol. 4, pp. 91-108.

PARSLOW, G.R. and RANDALL, B.A.O. 1973. A gravity survey of the Cairnsmore of Fleet granite and its environs. Scott. J. Geol., Vol. 9, pp. 219-231.

PATERSON, I.B., BROWNE, M.A.E. and ARMSTRONG, M. 1976. Upper Old Red Sandstone palaeogeography. Scott. J. Geol., Vol. 12, pp. 89-91.

PEACH, B.N. and HORNE, J. 1899. The Silurian rocks of Britain, I. Scotland. Mem. Geol. Surv., Glasgow.

PENTZ, H.H. 1952. A least square method for gravity meter base stations. Geophysics, Vol. 18, pp. 314-400.

PHILLIPS, W.E.A. 1973. The pre-Silurian rocks of Clare Island, Co. Mayo, and the age of metamorphism of the Dalradian in Ireland. J. geol. Soc. Lond., Vol. 129, pp. 585-606.

PHILLIPS, W.E.A., STILLMAN, C.J. and MURPHY, T. 1976. A Caledonian plate tectonic model. J.. geol. Soc. Lond., Vol. 132, pp. 576-609.

PIPER, J.D.A. 1978. Palaeomagnetism and palaeogeography of the Southern Uplands block in Ordovician times. Scott. J. Geol., Vol. l4(2), pp. 93-107.

POWELL, D.W. 1970. Magnetised rocks within the Lewisian of Western Scotland and under the Southern Uplands. Scott. J. Geol., Vol. 6, pp. 353-371.

POWELL, D.W. 1971. A model for the Lower Palaeozoic evolution of the south margin of the early Caledonides of Scotland and Ireland. Scott. J. Geol., Vol. 7, pp. 369-372.

POWELL, D.W. 1977a. Gravity and magnetic interpretations of Ballantrae ophiolites. Contributed paper: S.U. Workshop held in Edinburgh, 11 March 1977.

POWELL, D.W. 1977b. Gravity and magnetic interpretations of Southern Uplands granites. Contributed paper: S.U. Workshop held in Edinburgh, 11 March 1977.

PRINGLE, J. 1948. The South of Scotland. Brit. Reg. Geology, Geological Survey and Museum, Edinburgh, HMSO.

QURESHI, I.R. 1961. A gravity survey of the regions of the Highland Boundary Fault between Callander and Cowal. PhD Thesis, University of Glasgow.

QURESHI, I.R. 1970. A gravity survey of a region of the wighland Boundary Fault in Scotland. Quart.J.geol. Soc., Vol. 125, pp. 481-502.

RITCHIE, M. and ECKFORD, R.J.A. 1931. The lavas of Tweeddale and their position in the Caradocian sequence. Summ. Prog: for 1930. Mem. Geol. Surv., pp. 46-57.

ROBSON, D.A. 1977. The structural history of the Cheviot and adjacent regions. Scott. J. Geol., Vol. 13, pp. 255-262.

SAMPSON, R.J. 1975. Surface-II graphic system. Number l series on special analysis. Kansas Geological Survey.

SCRUTTON, R.A. and DINGLE, R.V. Basement control over sedimentation on the continental margin west of Southern Africa. Trans. Geol. Soc.Afr., Vol. 77, pp. 253-260.

SEARLE, R.C. 1969. Barometric hypsometry and a geophysical study of part of the Gregory Rift Valley. PhD Thesis, University of Newcastle upon Tyne.

SHIELLS, K.A:G 1963. The geological structure of north-east Northumberland. Trans. R. Soc. Edinb., Vol. 65, pp. 449-481.

SHIELLS; K.A.G. and DEARMAN, W.R.' 1963. Tectonics of the Coldingham Bay area of Berwickshire, in the SW of Scotland. Proc. Yorks. Geol. Soc., Vol. 34, p. 209.

SHIELLS, K.A.G. and DEARMAN, W.R. 1966. On the possible occurrence of Dalradian rocks in the SW of Scotland. Scott. J. Geol., Vol. 2, pp. 231-242.

SMITH, A.E. 1950. Graphic adjustment by least squares, Geophysics, Vol. 16, pp. 222-227.

SMITH, T.E. 1967. A preliminary study of sandstone sedimentation in the Lower Carboniferous of the Tweed Basin. Scott. J. Geol., Vol. 3, pp. 282-305.

STROGEN, P. 1974. The sub-Palaeozoic basement in Central Ireland. Nature, Vol. 250, pp. 562-563.

SWAIN, C.J. 1976. A Fortran IV program for interpolating irregularly spaced data using the difference equations for minimum curvature. Computers and Geosciences, Vol. 1, it pp. 231-240.

SWAIN, C.J. and KHAN, M.A. 1977. A catalogue of gravity data in Kenya. Leicester University Publications.

SWAIN, C.J. and KHAN, M.A. 1978. Gravity measurements in Kenya. Geophys: J.R: Astron: Soc., Vol. 53, pp. 427-429.

SYMAP. 1975. User's reference manual. Laboratory of Computer Graphics and Spatial Analysis, Graduate School of Design, Harvard University.

SYMVU. 1977. A user's guide. Edinburgh Catalogue No. 18.900.102 (Ed. D.T. Muxworthy). Program Library Unit, Edinburgh.

TALWANI, M., WORZEL, J.L. and LANDISMAN, M. 1959. Rapid gravity computations for two-dimensional bodies, with application to the Mendocino submarine fracture zone. J. Geophys. Res.. Vol. 64, pp. 49-59.

TOBLER, W. 1977. Corrections to C J Swain's program for interpolating irregularly spaced data. Computers and Geosciences, Vol. 3, p. 181.

TULLOCH, W. and WATSON, H.S. 1958. The geology of the Midlothian Coalfield. Mem. Geol. Surv. Scot. , Edinburgh.

TULLY, M.C. and McQUILLIN, R. 1978. A gravity survey of the UK sector of the North Sea. Paper pres. at 2nd UKGA, Liverpool. Abstr. in: Geophys.'J.R. Astron. Soc., Vol: 52, p. 140.

UPTON, B.G.J., ASPEN, P. and GRAHAM, A. 1976. Pre-Palaeozoic basement of the Scottish Midland Valley. Nature, Vol. 260, pp. 517-518.

WALKER, F. .1924. Four granitic intrusions in SE Scotland. Trans. Edinb. Geol. Soc., Vol. 11, p. 357.

WALKER, F. 1928. Plutonic intrusions of the Southern Uplands, East of Nith Valley. Geol: Mag., Vol. 65, pp. 153-162.

WALKER, P. 1977. An automatic data reduction and analysis of a gravity survey of the Kavirondo Rift Valley, Kenya. MPh Thesis; University of Leeds.

WALTON, E.K. 1955. Silurian greywackes in Peeblesshire. Proc. Roy. Soc. Edinb: B. , Vol. 65, pp. 327-357.

WALTON, E.K. 1965. In "The geology of Scotland" (ed. G.y. Craig). pp. 161-227. Fdinburgh.

WATSON, J. 1964. Conditions in the metamorphic Caledonides during the period of late orogenic cooling. Geol. Mag., Vol. lol, pp. 457-465.

WATSON, S.W. 1976. The sedimentary geochemistry of the Moffat shales: a carbonaceous sequence in the Southern Uplands of Scotland. PhD Thesis (unpubl.) University of St Andrews.

WHITTEN, E.H. 1974. Orthogonal polynomial contoured trend surface maps for irregularly spaced data. Computer Applications, Vol. $1, \mathrm{pp} .171-192$.

WILLIAMS, A. 1969. Ordovician of the British Isles, in Kay, M. ed. North Atlantic geology and continental drift. Am. Assoc. Petroleum Geologists Mem. 12.

WILLIAMS, A. 1972. Distribution of brachiopod assemblages in relation to Ordovician palaeogeography in Organisms and continents through time (ed. N.F. Hughes) Spec. Pap. Palaeont., Vol. 12, pp. 241-269.

WILLIAMS, A. 1975. Plate tectonics and biofacies evolution as factors in Ordovician correlation, in The Ordovician system: proceeding of a Palaeodological Association Symposium Cardiff, University of Wales Press and Nat. Mus. Wales, (ed. M.G. Bassett). pp. 18-53.

WILSON, G.V. 1918. Preliminary notes on volcanic necks in north-west Ayrshire. Trans. Geol. Soc. Glasgow, Vol. 16, pp. 86-99.

WILSON, J.T. 1966. Did the Atlantic close and re-open? Nature, Vol. 211, pp. 676-681.

WILSON, G.V. and FLETT, J.S. 1921. Memoirs of the Geological Survey, Scotland. Special reports on the mineral resources of Great Britain. The lead, zinc, copper and nickel ores of Scotland. Fdinburgh.

WOOLLARD, G.P. 1962. The relation of gravity anomalies to surface elevations, crustal structure and geology. Res. Rep. Series No. 62-9. Univ. of Wisconsin, Dept. Geology.

WRIGHT, A.E. 1976. Alternating subdiction direction and the evolution of the Atlantic Caledonides... Nature, Vol. 264, pp. 156-160.

YOUNG, H.D. 1962. Statistical treatment of experimental data. McGraw-Hill, New York.

ZIEGLER, A.M. 1970. Geosynclinal development of the British Isles during Silurian period. J. Geol., Vol. 78, p. 445.

## APPEINDIX A

DATA INPUT TO PROGRAM NETWORK


3
1320.40
2024.25
18: 2.40

152R．05
1333.93
1527.40
1829.40
1334.02
1333.04

182？．4？
1663.61
$15 \div 3.6,5$
10́63．6．1
1663.61
1543.54
1543.54

100́3． 61
12．2？．40
1230.93
1230.93
1230.93

17ヶ？．2n
1ら6う．0́？
1350.61
1763.30

176天。气。
1250．61
1455.27
1063.61
1405.27

176．3．5？
1357.61

1769．01
1359.61
2004.61

1950．61
1957.38
1327.48
1727.59
9929.56

1757．38

2004．25
18： 8.40
125.7 .42639

1257．6〇273
1257.70347
1255.42703
125.60067
1255.78611
1255.86389
1253.43819
$1253 . i 1523$
1253.74366
1250.45556
1250.61319

125 ？． 79931
1250.35069
1248.43333

124．3．53056
1248.61806

124？．7ヶ042
1239.40792

1239．0ヶ403
$1239.811: 1$
1233.47361

1233．66453
1238．$\because 2056$
1243.468 .75
1243.62222
1243.79722
1227.4708 .3
1229.55417
1229.68617
1227.75000
1222.45417

1222．58611
1222.75203

1219．41111
12i？．55625
1219.67514
1219.79097
1186.44236 1186．67798 1186.73919

4	1029.40	1199.43125
5	2004.69	1199.58194
4	1029.40	1190.75139

.7

3
$1827.4 n$
20.44 .53
$1329.4 n$
1829.40 2004.91

13??.4ก
1829.40
2094.75
1320.40
1349.10
1229.13
2004.41
1960.45
1549.16
1960.73
1957.32
1027.69
1349.16
$122 ? .40$
172?.7
$135 ? .80$
1320.40
1329.40
1730.02
1780.17
1329.40

182?.40
14か5.57
1425.67
1327.40
1787.79
1333.94
1787.79
$1767.7 \%$
1334.02
1757.79
1757.7?
175.7.31
1757. $\because 2$

175?.7
1230.72
? 03.40
174 ?.65
1404.39

17:7.79


1?			
	3	1787.79	1451.36250
	30	1230.72	1451.43369
	33	977.07	1451.40528
	32	1049.46	1451.52014
	54	297.62	1451.57292
	10	1111.55	1451.62847
	17	1447.94	1451.6458,
	13	1393.17	1451.65694
	1 1?	1372.84	1451.67917
	14	$154 \% .65$	1451.69306
	4	1529.37	1451.7430\%
	3	1757.79	1451.7631?
	3	1787.70	1453.43380
	3	17\%.7.78	1453.44583
	2	1.689 .51	1453.46389
	1	1843.91	1453.48194
	1	1348.87	1458.48611
	3	1757.?9	1453.49931
	2	16.9 .73	1453.50972
	2	1039.73	1458.51181
	1	1347.15	1458.52917
	1	1343.12	1453.53194
	3	1757.84	145.7.54514
	3	178.7.76	1453.54792
	?	16.59 .49	1453.55694
	2	1689.50	1453.56042
	3	1757.63	1453.57153
	3	1707.7?	1453.57431
5 ( 5			
	3	1727.95	1445.41523
	1	1849.16	1445.43889
	3	1707.7\%	1445.45417
	1	1340.16	1445.47361
	3	1387.62	1445.49236
?			
	3	1787.79	1624.35833
	7	175.5.97	1624.40000
	13	1230.71	1024.42500
	is	1323.28	1624.45833
	17	1447.72	1624.76875
	? 5	1333.96	1624.79861
	3	1787.79	162.4.82847
5 5 3 ,			
	3	1737.79	16.25 .35417
	13	1230.55	1625.41667
	17	1447.62	1625.45000
	: 5	1333.63	1025.02847
	3	1737.79	1025.86250
ó			
	3	1757.79	1627.34583
	; ${ }^{\text {¢ }}$	1111.54	1627.40694
	:?	1372.58	1627.82431
	20	1485.29	1627.84653
	11	1768.65	1627.37500
	3	17:7.79	1027.71597

$\therefore$

	3	1727.70	1¢25.35556
	15	1333.55	1635.39514
	25	1335.00	1035.4423in
	26	1225.22	1635.66111
	15	1323.71	16.35 .90263
	3	1707.7\%	1635.83194
$\sigma$	3	170.7.79	1634.35709
	25	135 F .74	14,34.405:3
	26	122).20	1654.71736
	17	9322.90	1634.76.744
	12	1663.46	1034.72514
	?	122?.29	1634. 21607
	7	1785.0.	1034.:301?
	3	1757.7?	10.54.56.9n6
$\geq$			
	16	1111.60	1637.30503
	21	1093.31	1637.52252
	15	1333.98	1637.71181
4			
	15	1333.08	1632.40139
	21	1073.24	1633.613:9
	25	¢335.96	1033.69306
	16	1111.60	1038.70181
4			
	20	1220.22	1541.43380
	26	1220.22	1541.04792
	24	1477.20	1641.73953
	18	1303.10	1641.77023
3			
	26	1220.22	164?.43601
	24	1477.26	1042.50069
	19	1372.46	1642.73403
3			
	19	1372.46	1644.42847
	24	1477.08	1644.58958
	17	1372.46	1044.70806
3			
	21	$10 \bigcirc 3.24$	1647.44503
	54	957.43	1647.55067
	25	1355.74	1047.5695?
7			
	5	2004.61	1651.41597
	7	1706.06	1051.43264
	11	170?.01	1651.45417
	$?$	1920.53	1051.46875
	i	1969.69	1651.40028
	7	1756.03	1651.502.3
	5	2704.t,	1651.52361
5			
	3	1727.79	1652.35139
	22	1721.11	1052.40931
	3	1757.79	1652.74931
4			
	3	1787.7?	1054.3541?
	22	1721.30	16.54 .43194
	23	1379.91	1454.71528
	3	178.7.79	1054.76359

1025.35556
1655.39514
1035.4423n
1635.66111
1635.90203
1635.8.3194
1634.35969
1434.4 $45 \% 3$
1034.71736
1634.76944
1634.79514
1634.2.1667

1:34.:381?
$1054.56 .9 n 6$
1637.305 a
1637.52252
1637.71181
1632.40139
1633.613:9
1033.67306

1ヶ38.76181
164.4.43850
1541.947\%2

1ヶ41.73950
1641.77093

104?.43601
1042.06069
1642.73403
1644.42847
1644.58958
1044.70806
1647.44583
1647.55067

154?.5895?
1651.41507
1651.43264
1651.45417
1051.46275
1651.4?028
$1551.5 n 2.33$
1552.35139
1052.40931
1652.74931
1054.35417
1054.43194
10.54.7635?
1727.75
1377.67
1707.79
1767.70
2016.43
1941.87
1379.93
1737.79
1655.30528
1655.60977
1655.77431
1600.34444
1660.55903
1660.59167
1060.62361
1660.68611
1665.40060
1665.53750
1665.72222
1666.39031
1666.44236
1666.67014
1666.71111
1676.42569
1676.77639
1676.30347
355.50029 355.07708 ? 55.7ヘ139
362.56507
362.63681 362.688こ9
$369.3: 583$ 369.64306 369.62204 36?.69861
344.52056 344.60069 344.62056 344.67097
709.50722 703.62500 703.7006?
429.42361
427.44752
429.69444
030.42569
930.43958
n30.46597
930.47847
930.60111
330.30203
1240.79
124. 0.05
13:6.40
932.41875
932.56528
732.69097
733.38542
933.45833
?33.52083
933.66944
203.30653
393.66736
2.93 .75764
2?3.32639
702.72403
002.80694
902.86181
218.35194
218.31181
315.35764
237. 36.597
737.3へ952
037.70694
940.37292
940.44583
? 40.4868 .1
940.543 (. 6
041.37153
741.43651
941.62611
341.72222
944.36597
944.30444
944.62222
944.71523
944.76736
947.38542
947.66181
947.0.2958
ก54.35333
254.30444
054.43542
954.45833
354.47222
054.49331
954.50694
754.51736
? 54.53403
354.54097
254.59230

	$3 ?$	193?.54	354.60764
	50	1354.08	954.63958
	45	1459.63	954.65833
	34	1263.85	954.66736
3			
	34	1283.90	683.42014
	35	1505.89	683.60069
	34	1233.70	683.63289
i			
	1	1347.16	690.41667
	34	1253.9?	690.44444
	51	1353.85	590.03889
	34	125.3 .63	690.65273
3			
	46	1301.07	504.49861
	41	1457.24	804.60056
	40	1801.07	604.75000
06			
	34	1233.90	1675.36458
	47	1247.07	1675.4166.7
	55	1214.38	1675.48050
	45	1231.70	1675.49931
	32	1049.72	1675.58750
	34	12กn.90	1675.7770
$1:$			
	3	1797.7?	1681.35275
	34	123\%.95	1651.35542
	45	1231.77	1681.41042
	32	1047.72	1681.42361
	21	1093.10	1681.55764
	$\geq 2$.	104?.57	10́ㅇ.66730
	15	1334.05	1681.78125
	54	1233.33	108.1.30833
	$2 ?$	1404.34	1681.31736
	3	1757.79	1081.34583
5			
	46	1991.07	723.4?583
	1	1347.80	723.54875
	1	1849.80	723.57708
	1	1850.14	723.62708
	46	1851.07	723.63264
$9 \%$			
	83	$17: 77.79$	1359.32361
	30	1230.92	1789.36944
	33	977.02	1989.39236
	56	933.23	1989.50000
	57	70.3 .26	1789.55694
	54	997.64	1789.62292
	19	1372.65	1989.69097
	3	1737.79	178. 7 ¢6067

## 1. Description

Network is a Fortran-IV computer program which performs a leastsquare adjustment of gravity base station network.

With the first READ statement, the total number of traverses ( $K$ ), bases (M), observations (NOBS) and the datum of the network (Gl), are read from channel 7. A serial reference number (NBASE) must be assigned to each of the base stations, beginning at 1 for the site of the network datum Gl.

With the second and third READ statements the rest of the required data are read from channel 8, as presented in Appendix A; that is, the reference number of a base (NBASE), the observation of its gravity value before adjustment (GRAV) reduced by $9814000 \mathrm{~g} . \mathrm{u}$. and the time of observation (TIME) given in days and decimals of a day. Traverses values may optionally have been corrected prior to the adjustment by any linear drift function; traverses need not be closed loops, but if not, the same set of trial base station values must have been used in the initial reduction.

Subsequently the arrays $A$ and $B$ of the ( $M+2 K$ ) normal equations are constructed: $A X=B$, corresponding to equations 3.3, 3.4 and 3.5. The solution of the latter set of simultaneous equations is executed by subroutine SOLVE, which is a modified version of the SIMQ

```
subroutine (IBM Scientific Subroutine Package, l969), using the
method of Gauss elimination. This routine returns the unknowns X
in the array B, with the first M elements as the adjusted base
values and the remaindering K elements as estimates of, or
corrections to, the drift rate during each traverse.
```

The standard deviation (DGRAV) and the standard error (STEER) of each base as well as the RMS residual of the network adjustment (SIGMA) are calculated according to the analysis presented in section 3.3 .7 of Chapter III. Also, the lower and upper limits of the adjusted values of the gravity bases and their standard deviations, with a 95\% confidence interval - applying Student's "t" test - is calculated according to equations 3.10 and 3.11 (Chapter III); all those results are output to channel 6 .

The residuals after adjustment (ERROR) from all the observational equations are prepared for display as a histogram on a line printer and output to channel 6. For this, the IBM S.S.P., (1969) subroutine HIST was modified so that the class interval was one standard deviation (SIGMA). Class frequencies predicted by a normal distribution are also shown.

After the main program, the listing of the subroutines SOLVE and HIST is presented.

PROGRAFi NE TUORK
PERFORMS LEAST-SGUARE ADJUSTMENT OF A GRAVITY BASE STATION NETHORK

REAL*8 ERROR (364), ERRSO,SERSO.TIME2,GT,A(221.221),B(221),SIGMA 1.ERSGM(57), DGRAV(57),STERR(57), CNIN(57),GUL(57), GLL(57),VUL(57), VL 1L(57), GPR(364), GAUSPR

DIMENSION HBASE (364), GRAV (364), TIME(364),FREQ(20), NBST(57), T(50) $1 \times 025(50) \times 975(50)$

COMMON A,ERROR,E,ERSQM, DGRAV,STERR,GRAV,TIME,NBASE,CNIN,GUL,GLL, IVUL, VLL,GPR

PERCEHTAGE POINTS OF T DISTRIBUTION
FOR 95\% CONFIDENCE
DATA T/12.766.4.303.3.182.2.775.2.571.2.447.2.365.2.306.2.262.2.2


 $118.2 .017 .2 .016,2.015 .2 .014,2.313 .2 .012 .2 .011 /$

PERCENTAGE POINTS FOR CHI-SQUARE DISTRIBUTION FOR $95 \%$ COIFFICENCE
DATA X9751.000542.. $5506356,0.216$. 0.484 . 0.831.1.237.1.689.2.179.2.7


 $12,26.0,26.8,27.5,28 \cdot 3,29.1,29.9,30.7,31 \cdot 5,32 \cdot 35741$
DATA X $025 / 5.0238,7.377,9.348,11.143,12.832,14.449,16.012,17.534,1$

 $14,44.460 .45 .722,46.979,48.1,49.3,50.5,51,7,52.9,54,1,55,3,56.5,57$ $1.9,59.341,60.5,61.7,62 \cdot 9,64 \cdot 3,65 \cdot 6 \cdot 66.9,68 \cdot 2,69.4,70.5,71.421$
$K=N O$ OF TRAVEREES.NHTOTAL IUUMBER OF OPSERVATIONS G1=AESOLUTE VALUE OF GRAVITY
READ(7,100)K,M,:OES,G1
FORMAT(213:I4,F1O.2)
$N N=H+2 * K$
NS = NIN * NN
NFREE = NORS-NN
DO $21=1$. NN
DO $2 \mathrm{~J}=1$, NA:
$9(J)=0$ 。
$2 A(I, J)=0$.
$\mathrm{N}=\mathrm{C}$
DC 1 I=1,K $L=M+I$
$L N=M+K+I$
READ (8.200) IK
FORMAT (I2)
$A(L \cdot L)=-I K$
DO 1 NP=1,IK $\mathrm{N}=\mathrm{N}+1$

```
READ(8,300) NBASE(N),GRAV(N),TIME(N)
300 FORMAT(I7,5X,F1G.2,7X,F10.5)
 TIMEN=TIME(N)
 J=NBASE(N)
 GRAVN=GRAV(N)
 TIME2=TIMEN-TIMEN
 GT=GRAVN=TIMEN
 A(L,J)=A(L,J)+1
 A(J,L)=A(J,L)-1
 A(J,J)=A(J,J)+1
 A(J,LN)=A(U,L&)+TIREEN
 A(LH,J)=A(L!&J)+T1ME:;
 A(L,LN)=A(L,LN)+TIMEN
 A(LN,LN)=A(LN,LN)+TIME2
 A(LN,L)=A(LNOL)+T1ME:S
 B(J)=B.(J)+GRAVA
 B(L)=B(L)+GRAVN
 B(LN)=B(LN)+GT
 1 continue
3
 DO 3 J=1,N:
 A(1,J)=0.
 A(1,1)=1.
 B(1)=G1
C SOLUTION OF SIMULTAREOUS EGUATIONS
 CALL SOLVE(A,E,N:!,IER)
C IF IER=0 ACCEPTAELE SOLUTIO:!
 HFITE(G,&&8) IER
888 FORMAT('IEK=0,12)
C WRITE(6,999) (I,B(I),I=1,NN)
 ERSUM=0.
 SERSG=0.
 MK=M+K
 OO 51 N=1.M
 ERSOM(N)=0.
 STERR(N)= 「.
 NBST(:N)=0
 51 DGRAV(iN)=0.
 DO }55\mathrm{ N=1,NORS
 5S ERRDR(N)=0.
 N=0
 REWIND 8
 DO 11 KK=1,K
 L1=K+KK
 L2=MK+KK
 READ(8,200) IK.
 DO IJ NP=1.1K
```

```
 iN=N+1
 READ(B,300) J,GRAVN,TIMEN
 NEST(J)=NBST(J)+1
 ERKOR(N)=ERROR(N)+GRAVN-B(J)*B(LI)-TIMEN*B(L2)
 ERSUM=ERSUM+ERROR(N)
 ERRSQ=ERROR(N)*EKPOR(N)
 ERSGM(J)=ERSOM(J)+ERRSQ
 SERSG=SERSG+ERRSG
 11 CONTJNUE
 OO 52 N=1,H
 IF(iNEST(N).EG.1)GO TO 133..
 GO TO 134
133 DGRAV(N)=0.
 STERR(N)=0.
 GO TO 52
 CALCULATION OF STANDARD DEVIATION & STANDARD ERROR
 OF EACH BASE
 DGRAV(iv)=DGR&V(!j)+DSQRT(ERSQM(N)/NBST(N))
 STERR(N)=STERR(N) +DGRAV(N)/SQRT(FLOAT(NBST(N)))
 CONTINUF
 DO 53 I= 1.N
 93 E(I)=9(I)+5E14%00.
C
 CNIN(I)=DGRAV(I)*T(L)/SORT(FLOAT(NEST(I)))
 GUL(I)=5(I)+CNJA!(I)
 GLL(I)=B(I)-CN!IN(I)
 VLL(I)=DGRAV(I) *SORT(FLCAT(L)/X025(L))
 VUL(I)=DGRAV(I)*SORT(FLOAT(L)/X975(L))
 GO TO S4
95 GUL(1)=0.
 GLL(I)=C.
 VLL(I)=0.
 VUL(I)=C.
 contINUE
 \RITE(5.9`7)
 #FITE(6, ᄏ9ヲ)(I,E(I), DGRAV(I),STERR(I),I=1,H)
 WRITE(6,719)
 FORHAT(9X, "RASE*,3X, 'LOWCF LIMIT*, 2X,'ABS. GREVITY*, 2X,*UPPER LI
 1MIT•)
 WRITE(6,719)(I,GLL(I),E(I),GUL(I),I=1,M)
719 FORNAT(10X,I2.5X,F10.2,4X,F1J.2.4X,F10.2/)
 HRITE(6.494)
```



```
IMIT*)
```

```
 HRITE(6;729) (I, :NEST(I),VLL(I),DGKAV(I),VUL(I),1=1,M)
729 FORMAT(1CX,I2,"(*,I2,*):,1X,F10.2,4X,F1O.2,4X,F10.2f)
997 FORMATMIOX, 'EASE STATION*, 2X, 'ADJUSTED VALUE*, 2X, STAND. DEVIATIO
 1N*,2X**STAND. ERROR*)
C HRITE(6,702) (J,ERROR(J),J=1,HOPS)
C998 FORMAT(IJ.5X,F15.5)
 URITE(6.568) SERSG
S6E FORMAT(*SERSG=`,FIO.5)
C CALCULATION OF MEAN & RMS EFROR OF NETHORK
 EMEAA=ERSUM/FLOLT(NOBS)
 SIGMA=DSQRT(SERSG/FLOAT(HORS-1))
 #RITE(5,704) EMEAF'
 #RITE(6,703) SIGMA
 704 FONHAT(20X, "ENEA:N=*,F10.5)
C7C2 FORHIAT(20X,12,5X,F10.5)
703 FOR!4AT(*O*, 20X,*S1GMA**F1C.5)
 959 FORMAT(14X,I3,9X,F10.2,9X,F5.2,12X,F5.2/)
C
 HISTOGRAH
C FIND MINIMUM,MAXIMUM VALUE OF ERROR
 ERMAX=-1000000C0.0
 ERHIN=-ERMAX
 DO 24 I=I, HOES
 XI=ERROR(I)
 IF(XI.GT.ERMAX) ERV:AX=XI
 IF(XI\bulletLT\bulletERHIIN) ERMIN=XI
 24 CONTINUE
C
DETERMINATION OF NUMEER OF INTERVALS
 I=1
 INC=0
5981 INC=INC+2*I
 HL=INC*SIGMA/2.
 IF(HL.LT.ABS(ERKIM).AND.HL.LT.ERMAX) GOTO 5981
 INC=INC+I
 XI=-HL-HL/2.
 x.2 = HL +HL/2.
 GFITE UPPER & LURER LINIT NUMEERS FOR THE HISTOGRAM
 &RIT[(6,152%G) XI,X2,SIGMA
520E FORMATC* XI= *FI5.3." X2 = *,F15.9." HISTOGRARI INTERVAL= =,F
 15.3)
 EVALUATIO:d OF THE FREGUENCY NUMEER
 GO 71 J=1.INC
 FREQ(J)=0.
 x12=x2-x1
 00 26 I=1.NOBS
 J=IDINT((ERROR(I)-X1/XI2)=INC)+1
 FREQ(J)=FREG(J)+1.
 26 COFTIFUE
 CALL HIST(1,FREQ,INC)
 STOP
 END
```

SUBRDUTINE SOLVE FOR SOLUTICN OF A SET OF NORMAL EQUATIONS BY THE HETHOD OF GAUSS ELIMIHATION MODIFIED VERSION OF SIMO ROUTINE (IEM, 1959)

SUEROUTINE SOLVE $(A, B, N, K, S)$
REAL*8 A(48841), E(221),BIGA,SAVE
$T O L=0.0$
$K S=0$
$J J=-N$
00 E $5 \mathrm{~J}=1$ ! !
$J Y=J+1$
$J J=J J+N+1$
EIGA=0.
$I T=\mathrm{J} J-J$
$0030 \quad I=J, N$.
$I J=I T+I$
IF(OABS(BIGA)-DABS(A(IJ))) 20.30.30
EIGA=A(IJ)
IMAX $=1$
CCH:TI:NUE
IF (DASS(BIGA) -TOL) $35 \cdot 35,40$
$K S=1$
RETURN
II $=J+N+(J-2)$ $1 T=I M A X-J$

DO $50 \mathrm{~K}=\mathrm{J}$, H
$I I=I 1+N$ $I 2=I 1+I T$ SAVE=A(II) $A(11)=A(12)$ $A(12)=S A V E$ $A(I I)=A(I 1) / E I O A$ $S A V E=B(I M A X)$ G(IHAX) $=E(J)$ E(J)=SAVE/EIGL

IF (J-N) 55,70.55
IGS=iN* $(J-1)$
0065 IX=JY, $k$
$I X J=I G S+I X$
IT:ニJーIX
0069 Jx=JY!?
$I X J X=N+(J X-1)+1 Y$. $J J X=I X J X+I T$
$60 \quad A(I X J X)=\Delta(I X J X)-(A(I X J) * A(J J X))$
$65 \quad B(I X)=P(I X)-(R(J)+F(I X J))$

```
 RY=N-1
```

    RY=N-1
    IT=N* is
    IT=N* is
        DO RO J=1,NY
        DO RO J=1,NY
            IA=IT-J
            IA=IT-J
    IB=N-7
    IC=N
    DO 80 K=1,J
    E(IB)=B(IE)-A(IA)*E(IC)
    IA=IA-N
    IC=IC-1
    RETURN
    END
    SUBROUTINE HIST FOR PRINTING HISTOGRAM IN A
LINE PRI\#TER. HODIFIED VERSIC: OF HIST(IPM,1969)
SUBROUTINE HIST(NU,FREGQIF:)
DIMENSION JOUT(20),FREQ(20)
DATA K/O*'/,NOTH/: */
FORMAT("EACH *,A1,'EQALS ',I2." FOINTS',/)
FORMAT(IS,4X,2\#(4X,A1))
FORMAT(•INTERVAL`,4X,19(12,3:),12)
FORMAT(1HI.47X,' HISTOGFAM .,I3)
FORMAT(PFREGUEWCY',2UI5)
FORMAT(' CLASS')
FORMAT(113(0-0))
ERITE(6,4) NU
DO 12 I=1,IH:
JOUT(1)=FREQ(1)
BRITE(E,5)(JOUT(I),I=1,IN)
HRITE(6,7)
FMAX=0.0
DO 20 I=1,IN
IF(FREG(I)-F!{AX) 2G,20.15
FMAX=FREG(I)
CONTINUE
JSCAL=1
IF(FMAX-50.) 40,40.3C
JSCAL=(FMAX+49.0)/50.0
HRITE(G,1) K,JSCAL
00 50 I=1,IM
JOUT(I)=NGTH
MAX=FMAX/FLOLT(JSCAL)
DO 80 I=1, Max
x=14AX-(I-1)
DJ 70 J=1,IN
IF(FREG(J)/FLOAT(JSCAL)-X) 70,600.60
JOUT(J)=K
continue
IX=X*FLOAT(JSCAL)
\&RITE(6,2) IX,(JOUT(J),J=1,IN)

```
```

05 90 I=1.IN

```
JCUT(I)=I
URITE(6,7)
URITE(6,3) (JOUT (J), J=1, IN)
HRITE(6,6)
RETURN
END

\title{
CATALOGUE OF GRAVITY DATA OF
} SOUTH-EAST SCOTLAND

PART I
CLASSIFIED BY IOkm NATIONAL GRID SQUARE

Stations with reference number from 1 to 57 are base stations which have been involved in the least-squares adjustment of the gravity base network.

Easting, Northing and Elevation are in metres; Bouguer anomaly and Terrain Coefficient in gu and gu/density unit (\(\mathrm{gr} / \mathrm{cm}^{3}\)), respectively.

REFEREMCE ～U：Eこ？

EASTI：G H2FTHI：

\section*{}

32815？・ヒ73ラちロ。
325575． 670550 。

336975．672450．
345275．675400．
347837 ． 633440 。
35175：．67328：。
35605\％．594762．
36047 ！ 690917 。
355913．673747．
35225も．675550
3762お㐾。67274？
564132．654385．
3ヶヲ12？．6らコミ88
345875 ．651110
357555 ． 645738 ．
377445.648195 。

37 3025．5う4725。
375189．659525．
37595 ¢ \(5 \leqslant 9.937\)
351c5？ヒ G28536
315525．f．57175
32．7275• Кラシこ25。
35270.636475
351603.524760 ．
351835.533150

330663．70737E
342175 •704540．
\(32355 \% 660590\).
277187.637374.
309837.524270.
330763.624890

29599世．51932\％．
324570 ．65е870．
335950.558950.

326000．673000． 32272ミ．651780． \begin{tabular}{l}
33144 C .652340 ． \\
225751. \\
\hline
\end{tabular} 325751.653490.
323125 ． 652620 ． 32575 © 653462 。 318560.653380 。 \(31558 \% 648910\). \(316415 \cdot 643085\) ． 333063.634550.
325455.671293. \(323163.5393 \leqslant 3\). \(325980.6 \leq 34\) J0． 32354 C．óう 8820 。 327276 － 55 S560． \(32229 \%\) 55156气． \(32226 \mathrm{C}^{\circ}\) ． \(645999^{\circ}\) ． 32566す． 651600 。

ELEVATIÓ
,
-
 31.060
 11.942
 35.303
 54.250
 35.045
 13.241
 24.713
 \(57.07 ?\)
 43.358
 271.520
 123.361
 213.505
 281.145
 120.255
 151.758
 106.215
 137.709
 250.850
 135.771
 71.549
 30.040
 141.9?3
 173.431
 49.439
 \(64 \cdot 34.3\)
 -
 253.860
220.240
 \(24 \varepsilon .700\)
 76.570
 -
 \(290 \cdot 100\)
 10 1.750
 100.0.6
 211.760
 173.210
 277.550
 211.540
 152.244
 158.434
 155.030
 165.150
 183.170
 228.340
 273.315
 301.280
 280.200

ミOUGUEP．
ANOVALY
COEFFICIENT

\begin{tabular}{|c|c|c|c|c|}
\hline 316450 & 310375.445563. & 235.306 & 63.74 & 1.38 \\
\hline 3164093 & 319512646530. & 161.560 & 7.34 & 3.04 \\
\hline 31640 ¢4 & ？ \(1853 \% 549850\) 。 & \(1 \varepsilon\) ¢． 500 & 13.96 & 5.07 \\
\hline 3164085 & 317255641800 & 189.860 & 35.01 & \(5 \cdot 15\) \\
\hline 31540 こ́ & 317020.542380 。 & 194.030 & 4 2．38 & \(5 \cdot 33\) \\
\hline 3154037 & 315269 644240． & 294.420 & 78.12 & 4．92 \\
\hline 3154008 & \(31605: 546500\) 。 & 257.540 & 8 8．11 & 3.70 \\
\hline 31640 こ9 & 316.129 .647590. & 214.700 & 69.18 & 1.91 \\
\hline 3154010 & 313430.547440 ． & 223．7とう & 64.48 & 1.02 \\
\hline 3164011 & 3149410546740 & 245．2も？ & 53.43 & 0.96 \\
\hline 3154012 & \(31532 \therefore 645440\) 。 & 241.420 & 74.42 & 1.13 \\
\hline 3164013 & \(31535 \% 64 \mathrm{~F} 160\). & 26.3 .500 & 85.58 & 1.07 \\
\hline 3164014 & \(3155 \leqslant 2.645940\) 。 & 254.200 & 33．27 & 1.15 \\
\hline 3164215 & 己こ575－643：10． & 197.330 & 71.11 & 4.04 \\
\hline 3164016 & 315053．643220． & 200．350 & 78．92 & 3.90 \\
\hline 3164017 & \(314330 \cdot 643520\). & 2ك1．527 & 90.08 & 4.10 \\
\hline 3154012 & 314030.544010 。 & 266．730 & 98.65 & 3.32 \\
\hline 3164015 & 313710.544610. & 219.260 & 88.23 & 1.95 \\
\hline 3154020 & 312536.644580. & 236.100 & 84.08 & 1.85 \\
\hline 3164021 & 312440.644350 。 & 258.150 & 81.97 & 1.43 \\
\hline 3164022 & 315530．648490． & 220.400 & 53.31 & 1.71 \\
\hline 31540.23 & \(31692 ?\) 64\％36C． & 249.560 & 65．38 & 2．04 \\
\hline 3164024 & 31740 － 648180 。 & 3 f 1.570 & 79.42 & 2.12 \\
\hline 3164025 & 21743 51647880 。 & 318.200 & 83.33 & 2.26 \\
\hline 3164026 & 317985647560. & 344.480 & 85．54 & 2.50 \\
\hline \(31 \in 4527\) & 31834.645950. & 286．540 & 78.18 & 2． 30 \\
\hline 3154528 & 31851 ． 546680. & 285.300 & 75.84 & 4.39 \\
\hline 3164029 & 310640．646150． & 285.90 C & 62.63 & 1.73 \\
\hline 3154030 & 31854\％．649910． & 302.700 & 74.53 & 2.40 \\
\hline 3164031 & 319850649890. & 319.400 & 81.93 & 2.44 \\
\hline 3154032 & 319210.643910. & 331.300 & 86.66 & 1.93 \\
\hline 3154053 & 31941 ¢ 645930. & 342.000 & 79.53 & 1.62 \\
\hline 3164034 & 314120.645990. & 232.000 & 67.72 & 1.11 \\
\hline 3164035 & 311085643000. & 259.400 & 89.51 & 2.47 \\
\hline 3164036 & 312300.641550. & 557．480 & 92．96 & 15.80 \\
\hline 3164037 & 3134 E？641300． & 535.535 & 71.96 & 17.17 \\
\hline 3164038 & \[
31230 \text { G } 641 \mathrm{CC}
\] & \[
1570.390
\] & 93.95 & 18.53 \\
\hline 3165001 & 31635 \％651400． & 259.550 & 34.44 & 1．74 \\
\hline 3165002 & 315400．6564c0． & 277.770 & ¢4．96 & 0.72 \\
\hline 3155003 & 31842 －555520． & 251．080 & 33.44 & C． 62 \\
\hline 3155004 & 31752 C ． 653000 ． & 247．560 & 28．61 & 0.98 \\
\hline 3155005 & 318450.652690. & 274．330 & 13.33 & 0.49 \\
\hline 3165086 & 318450.651750. & 271.220 & 19.7 ¢ & 0.65 \\
\hline 3165097 & 318800.651700. & 265．050 & 21.82 & 0.81 \\
\hline 3165098 & 315410.650080. & 225.990 & 47．82 & 1.03 \\
\hline 31650 \％9 & 31627 －650460． & 244.420 & 47．10 & 1.13 \\
\hline 3165010 & 31597 C －650550． & 23E．050 & \(48 \cdot 53\) & 0.97 \\
\hline 3165011 & 315386.651080. & 226.270 & 47.28 & 0.94 \\
\hline 3165912 & 31510 －65：350． & 230.270 & 48.05 & 1．08 \\
\hline 3165013 & 314970.651500. & 235.530 & 57.95 & 1．03 \\
\hline 3165014 & 314970.651960 － & 256．600 & 53.62 & 2.76 \\
\hline 3155015 & 314380.652100. & 267．300 & 54．22 & 1．\(\varepsilon 2\) \\
\hline 3165015 & 31408 ¢．652210． & 273．100 & 57．14 & 1.54 \\
\hline 3165017 & 31392 j －652270． & 270.380 & 52.10 & ［． 90 \\
\hline 3165018 & \(3!2500\) 655570． & 350.550 & 99.44 & 1.89 \\
\hline 3155019 & 3125 ¢．555370． & 340.510 & 100.81 & \(2 \cdot 64\) \\
\hline
\end{tabular}

316502
3165021
3165022
3155323
\(3165: 24\)
3155025
3155026
3155027
3165028
3165029
3155030
3155031
3165032
\(31 \in 5033\)
3165034
3155035
3165035
3165037
3155038
3165039
316504 ？
3165041
3165042
3155043
3165044
3165045
3165045
3165047
3165048
3155045
3165050
31550 う1
31650 この
3155053
3165054
3155055
3155056
3165057
3165058
3165950
3155050
3155051
31650.52

3155063
3165054
3165055
3155066
3165057
3155058
\(316505 ?\)
3165070
3155071
3155572
3165073
3165074
3155075
3165076
3165077
\begin{tabular}{|c|c|c|}
\hline ¢． & E34740． & 316.130 \\
\hline & & 316.130 \\
\hline 312870. & 653850. & 314.550 \\
\hline 312550. & 653780． & 313.380 \\
\hline 313030. & 653740 ． & 314.280 \\
\hline \(31385 \%\) 。 & 652430. & 277.140 \\
\hline 31378 \％． & 652540. & 280．240 \\
\hline 31372\％ & 652520 & 282．540 \\
\hline 31365 & 65272？． & 282.960 \\
\hline 313520. & 652800 & 284．0．0 \\
\hline 313536. & 652870 & 285.460 \\
\hline 31348 r ． & 652770． & 28．7．760 \\
\hline 31342 \％． & 653075． & 292．970 \\
\hline 313250 & 653350 & 302.300 \\
\hline 313170 。 & 653610． & 309.310 \\
\hline 316100 & 555738. & 280.948 \\
\hline 315738 。 & 655975. & 321.050 \\
\hline 315450 。 & 656725. & 347.350 \\
\hline 315463 。 & 656950 & 366.700 \\
\hline 315488. & 657063. & 372.116 \\
\hline 315400 － & 657825． & 345.543 \\
\hline 316950. & 655820. & 295.700 \\
\hline 317792. & 657525. & 276.600 \\
\hline 31595：． & 658870． & 254.460 \\
\hline 31952 ¢． & 658590 & 257.900 \\
\hline \(31900 \%\) & E58400． & \(263.2 \in 0\) \\
\hline 319760. & 658310. & \(2 \in 5.700\) \\
\hline 319320. & 659200. & 272.790 \\
\hline \(31886 \%\) & 658720. & 272．200 \\
\hline 310350. & 651400 & 250.330 \\
\hline 319210. & 651250. & 258.600 \\
\hline 318940. & 651050. & 258.200 \\
\hline 318790. & 650850. & 260．300 \\
\hline 318648. & 650440 & 249.560 \\
\hline 318500. & 650240 & 246.300 \\
\hline 319320. & 550100 & 240.900 \\
\hline 318370. & 650090 & 245.010 \\
\hline 31840 ¢。 & 650100 & 251.500 \\
\hline 319510. & 650230. & 360.100 \\
\hline \(315 习 5\) \％ & 655920. & 276.800 \\
\hline 313670. & 655720 & 278.950 \\
\hline 319560. & 656510 & 279.800 \\
\hline 319250. & 656240. & 281.000 \\
\hline 318967. & 655990. & 284.400 \\
\hline 318560. & 655520． & 282．500 \\
\hline 31847 ！ & 655350 & 280.370 \\
\hline 31932 n ． & 655130. & 278．600 \\
\hline 313130 ． & 554630 & 280．500 \\
\hline 31793 ：－ & E54450． & 275.190 \\
\hline \(317 \leq 1 \mathrm{~J}\) 。 & 654050. & 279.850 \\
\hline 31716 ？ & 654390 & 281.040 \\
\hline 315679 。 & 654950 & 285．300 \\
\hline 315502. & 552750. & 277．760 \\
\hline \(31=36:\) 。 & 652670. & 275．800 \\
\hline 318320． & 652770. & 273.100 \\
\hline 318120 。 & 652E00． & 267.580 \\
\hline 317390. & 553210. & 270.400 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 98.85 & 2.87 \\
\hline E9．21 & \(2 \cdot 04\) \\
\hline 95.92 & 1.91 \\
\hline 87.74 & 1.57 \\
\hline 86.71 & 1.41 \\
\hline 55.05 & 0.91 \\
\hline 55.12 & 0.91 \\
\hline 55.13 & 0.71 \\
\hline 56.85 & C． 94 \\
\hline 59.48 & 0.95 \\
\hline 60.09 & 1.02 \\
\hline 61.58 & 1.09 \\
\hline 63．96 & 1.07 \\
\hline 77.08 & 1.18 \\
\hline 79.20 & 1.31 \\
\hline 51.25 & 2.26 \\
\hline 80.53 & 2.64 \\
\hline 96.04 & 2.44 \\
\hline 97.37 & 2.34 \\
\hline 100.17 & 2.45 \\
\hline 110.79 & 3.24 \\
\hline 60.27 & 2.37 \\
\hline 63.08 & 2.04 \\
\hline 45.39 & 1.36 \\
\hline 47.8 S & 1.34 \\
\hline 54.15 & 1.67 \\
\hline 56.68 & 1.75 \\
\hline 71.21 & 2.14 \\
\hline 67.93 & 1.90 \\
\hline 33.22 & 1.74 \\
\hline 35.58 & 1.66 \\
\hline 35.1 \％ & 1.34 \\
\hline 41.67 & 1.35 \\
\hline 50.50 & 1.95 \\
\hline 55.86 & 3.26 \\
\hline 5う．12 & 2.6 .1 \\
\hline 55.47 & 2.44 \\
\hline 58．46 & 2.29 \\
\hline 80.53 & 1.65 \\
\hline 24.98 & 0.75 \\
\hline 28.14 & 0.83 \\
\hline 27.73 & C． 86 \\
\hline 27.54 & 0.72 \\
\hline 29.44 & 0.71 \\
\hline 31.70 & C． 57 \\
\hline 32.70 & 0.53 \\
\hline 32.05 & 0.53 \\
\hline 32.02 & 0.48 \\
\hline 34.67 & 0.49 \\
\hline 35.05 & 0.51 \\
\hline 41.26, & 0.68 \\
\hline 45.96 & 0.79 \\
\hline 17.55 & ［． 54 \\
\hline 15.71 & 0.48 \\
\hline 18.12 & 0.51 \\
\hline 22.32 & 0.50 \\
\hline 28.46 & 0.71 \\
\hline 31.20 & 0.73 \\
\hline
\end{tabular}

3165078
3165079
3165080

3166061
3156002
3166003
3166094

3167001
31670 民2
31670 C3
3167004
316705
3157206
3167007
3167018
3167009
3167010
3167011
3167012
3167013
3167014
3167015

3168001
\(31680=2\)
\(31680 \div 3\)
31580 ii
3168055
3158096
\(31680 \mathrm{C7}\)
3168058
3168009

3169001
31690 C 2
3159003
3159014
3169005
3169065
3159097
\(31590: 8\)
3169019
3169010
3169011
3169012
3165013
316.9014

3169015

3170031
31700 02
3170003
31700 C4
3170005 31700 25
316920.653170.
243.200
233.450
234.150
\begin{tabular}{rr}
36.07 & 1.02 \\
39.91 & 1.41 \\
42.09 & 1.44 \\
78.39 & 1.01 \\
93.40 & 1.53 \\
98.24 & 2.14 \\
107.47 & 1.70
\end{tabular}
\begin{tabular}{rr}
81.82 & 0.84 \\
68.92 & 0.68 \\
70.70 & 0.48 \\
62.52 & 0.42 \\
73.78 & 0.62 \\
76.05 & 0.40 \\
77.66 & 1.22 \\
93.04 & 0.50 \\
106.09 & 0.36 \\
109.03 & 0.29 \\
108.43 & 0.33 \\
97.24 & 0.53 \\
70.06 & 0.49 \\
8.11 & 0.98 \\
43.71 & 1.09
\end{tabular}
\begin{tabular}{ll}
74.89 & 0.50 \\
43.61 & 0.39 \\
50.57 & 0.92 \\
45.64 & 0.43 \\
.45 .17 & 0.55 \\
5.27 & 1.16 \\
-0.62 & 0.72 \\
12.69 & 0.57 \\
11.78 & 0.73
\end{tabular}
\begin{tabular}{rrr}
-2.11 & 0.55 \\
-1.40 & 0.68 \\
-11.00 & 0.86 \\
-1.54 & & 0.33 \\
-5.25 & 0.27 \\
-1.25 & 0.51 \\
11.78 & 1.22 \\
19.36 & 0.55 \\
8.69 & 3.85 \\
16.89 & 0.67 \\
21.25 & 0.40 \\
12.09 & 0.90 \\
3.30 & 0.86 \\
-15.56 & 0.57 \\
14.50 & 2.57 \\
& & \\
22.07 & 0.37 \\
14.79 & 0.40 \\
14.42 & 0.50 \\
23.37 & 0.72 \\
30.49 & 1.59 \\
20.45 & 0.68
\end{tabular}

3175037
31700.8
3170069
3175019
3170011
3170012
3170013
3170014

3251001 3261002

3252921
\(32525: 3\)
\(32620: 4\)
3262005
3252036
3252：こ7
3262008
3262017
3252015
3252311
3262012
3262013
3252514
3252015
3262016
3262017
3252018
3262019
3262020
3262021

32535こ1
32630 نे2
\(32630=3\)
3263054
\(32630 \div 5\)
3253006 3263007 3263008 3253009 326301 ？ 3263011
3253512
3253513
3263014 3263015 3253516 3263017 3263018 3263019 3263020 3263021 3253022 3253023 3253024 3253225
\begin{tabular}{|c|c|c|c|c|}
\hline 315238. & 70785¢ & 10E．1EG & 20.63 & 1.14 \\
\hline \(31955 \%\) & 7ヵセ3C0． & 130.485 & 12.29 & 1.80 \\
\hline 316997 。 & 705500. & 162.090 & 5.56 & 1.13 \\
\hline 316875. & 70497 C & 173.736 & －0．86 & 1.77 \\
\hline 315513. & 705500. & 127.100 & 13.36 & 0.72 \\
\hline 314725. & 794325. & 116.464 & 11.45 & 0.55 \\
\hline 317725. & 722625 。 & 137.100 & 1.39 & 4.24 \\
\hline 319365. & 7：1500． & 118.598 & 7.79 & 5.56 \\
\hline & NT & 21 & & \\
\hline 32544 & 619503. & 4 28．737 & 39．71 & 2.88 \\
\hline 327030． & 619540 。 & 371．うら1 & 27．98 & 4.65 \\
\hline & NT & 22 & & \\
\hline 321805. & 623120. & 281.530 & 5.04 & 7.49 \\
\hline 323975． & 522920． & 249.300 & 2.54 & 8． 37 \\
\hline 323ラ75． & 620470. & 248.290 & 3．54 & 7.76 \\
\hline 325430 － & 623350 & 251.350 & 6.02 & 7.16 \\
\hline 325585 。 & 623990 ． & 252.450 & 5.73 & 4.95 \\
\hline 329100. & 624530 ． & 242.210 & 6.02 & 4.19 \\
\hline 328000 － & 520000 ． & 350.145 & 20.51 & 3.57 \\
\hline 328370. & 625550 ． & 264．700 & 3.24 & 7.53 \\
\hline 328230 & 525230. & 280.400 & ． \(4 \cdot 32\) & 7.37 \\
\hline 328576 & 627340 ． & 296．310 & －3．17 & 6.56 \\
\hline 327320. & 628520. & 350.000 & －3．20 & 4．20 \\
\hline 323840 & 621720. & 250.546 & 11.11 & 11.74 \\
\hline 3247 勺？ & 620320． & 296.265 & 14.55 & 5.49 \\
\hline 320469 & 625220． & 498.400 & －8．74 & 3.35 \\
\hline 322440 。 & 62630u． & う78．250 & －7．33 & 7.36 \\
\hline 321820 & 627450 ． & E95．900 & －3．06 & 13.65 \\
\hline \(32227{ }^{5}\) & 627ミ40． & 597.400 & －7．53 & 12.73 \\
\hline \(32220 \%\) & 628360． & 503.600 & 31.51 & 14.37 \\
\hline \(32290 ?\) & 629790. & 510.80 & －19．22 & 7．98 \\
\hline \(32075 \%\) & 624080 & 464．200 & 5.70 & 4.46 \\
\hline & NT & 23 & & \\
\hline 326756 & 639552. & 156.831 & －45．75 & 3.82 \\
\hline 327900. & 638422 。 & 178．709 & －43．50 & 4.62 \\
\hline 329215. & 638459 － & 156.971 & －44．55 & 6.32 \\
\hline 322550 & 538412 。 & 197.710 & －22：34 & 2.94 \\
\hline 321775. & ¢37825． & 191.409 & －2E．81 & 3.95 \\
\hline 32132 － & 636535. & 208.560 & －28．85 & 4.96 \\
\hline 321350 & 635363 ． & 214.450 & －32．74 & 5.39 \\
\hline 325800 & 634500 & 234.130 & －33．78 & 7.62 \\
\hline 32\％2才： & 633455 － & 252．580 & －35．32 & B． 86 \\
\hline 320365. & 632420． & 253.740 & －37．80 & 10.03 \\
\hline \(32035 \%\) & 631163. & 266.350 & －33．87 & 13.37 \\
\hline \(32755 \%\) & 639725. & 161.544 & －4？．75 & 4.54 \\
\hline 323738. & 537175 。 & 174.355 & －44．53 & 3.94 \\
\hline 323488. & 639250. & 154.767 & －49．33 & 5.65 \\
\hline 325230． & 630340 & 188.060 & －35．50 & 2.72 \\
\hline 326028． & 535210 ． & 315.500 & －45．76． & 5.14 \\
\hline 327360 & 637290. & 384.4 ：0 & －44．21 & 7．52 \\
\hline 527630. & 635710 ． & 429.500 & －44．65 & 10.59 \\
\hline 32812？． & 636310 & 493．100 & －40．78 & 11.93 \\
\hline 327 もも & 635170 。 & 325.500 & －37．54 & 14.08 \\
\hline 32749 ： & 633185 & 552.090 & －26．54 & 21.16 \\
\hline 322220. & 639510. & 178．910 & －21．38 & 2.28 \\
\hline 324630. & 639660. & 186.700 & －34．26 & 2.88 \\
\hline 323440 。 & 639830 ． & 250.200 & －25．91 & 3.21 \\
\hline \(32139 \%\) & 533400 ． & 250.290 & －17．47 & 3.00 \\
\hline
\end{tabular}

3253026 3263027
3253J28
3253329
3253030
3263031
3253032
3253032
3263034
3263035
3263030
3253うこ7
3253038
3263039
3253049
3253241
3253042
3263043
3253344
3253345
3253046
3263047
3253048

3264001
\(32640: 2\)
3254053
3254004
3254005
3264005
3254037
3254008
3254009
3254010
3254011
3254012
3254013
3254014
3254315
3264015
3264017
3264018
3264019
\(3254: 20\)
3254021
3264022
3254023
3254024
3254025
3264026
3254027
3254028
3264029
3254030
3264031
3254032
3264033 3264034
\begin{tabular}{|c|c|c|}
\hline 320830. & 639340 & 2．6．3んし \\
\hline 321849 & 637120 & 28．8．500 \\
\hline 32258 \％ & 63ESE0 & 229．590 \\
\hline 32366 & 637180 & 212.100 \\
\hline 324470 & 637000 & 16E．300 \\
\hline 32458 & 637600 & 185.500 \\
\hline 32514 & 635510 & 187．900 \\
\hline 32758 & 639110 & 161.890 \\
\hline 329 & 632630 & 266．570 \\
\hline 32831 & 631890 & 353.500 \\
\hline 32769 & 531290 & 354.4 CC \\
\hline 32727 & 531940 & 376．780 \\
\hline 32479 & 530860 & 710.900 \\
\hline 32255 & 635025 & 520.440 \\
\hline 32233 ！ & 634264 & 571．125 \\
\hline 322552 。 & 633475 ． & 525.140 \\
\hline 323050. & 633275 & 574.100 \\
\hline 324050. & 632850 & 718.110 \\
\hline 324175. & 632250 & 730.000 \\
\hline 325013. & \(633=50\) & S93．560 \\
\hline 325325. & 635200 & 581．860 \\
\hline 324575. & 635550 & 493.170 \\
\hline \(32370 \%\) & 636065 & 3\％9．076 \\
\hline & NT & 24 \\
\hline 32294 ． & 649609. & 281.100 \\
\hline 32358 ？ & 649422 & 257．950 \\
\hline 324405 & 643515 & 2 亿4．740 \\
\hline 324475. & 548030 & 200.58 C \\
\hline 324185. & 647013. & 194.180 \\
\hline 324490. & 642950 & 176.800 \\
\hline 324960 & 641362. & 16．9．5 70 \\
\hline 325100. & 643392. & 156.900 \\
\hline 324100. & 640583. & 183．18C \\
\hline 320675. & 649386. & 179.660 \\
\hline 320835 ． & 640788. & 198.03 C \\
\hline 321000 & 641597 ． & \(2 ¢ 4.360\) \\
\hline 321500 。 & 643722. & 245.320 \\
\hline 322268 & 644355 & 278．075 \\
\hline 323360 。 & 64う702 & 233.730 \\
\hline 320.575. & 64 2370． & 179.258 \\
\hline 320880 & 640090 & 171.130 \\
\hline 320180. & 646280 & 345.000 \\
\hline 321720. & 645090 & 306.540 \\
\hline 322110 & 645880 & 257．700 \\
\hline 322570 & 649710. & 292．330 \\
\hline 32314 & 649710 ． & 275.300 \\
\hline 323040 & 649780 & 259 \\
\hline 324475 & 549263. & 23．0． \\
\hline 324785 & 549230. & 282．245 \\
\hline 324937 。 & 649375. & 2？1．846 \\
\hline 325075. & 547490. & 3¢7．535 \\
\hline 32525？ & 649550 & 359．322 \\
\hline 323834 。 & 645675. & 189．506 \\
\hline 323925. & 644425. & 198.530 \\
\hline 324295. & 542900. & 170.337 \\
\hline 324455. & 641520. & 177．275 \\
\hline 325575. & 640313. & 16 \\
\hline 32747 9． & 645090 & 522. \\
\hline
\end{tabular}
\begin{tabular}{rr}
-9.42 & 2.28 \\
-29.11 & 5.24 \\
-34.82 & 7.57 \\
-43.00 & 5.80 \\
-47.52 & 7.16 \\
-45.86 & 6.34 \\
-43.23 & 4.12 \\
-44.48 & 4.26 \\
-23.40 & 4.51 \\
-23.15 & 5.92 \\
-21.34 & 5.63 \\
-18.29 & 7.27 \\
-23.48 & 14.90 \\
-24.44 & 24.95 \\
-35.23 & 15.90 \\
-35.53 & 19.36 \\
-27.51 & 25.97 \\
-25.38 & 24.66 \\
-24.02 & 24.12 \\
-29.72 & 18.98 \\
-35.69 & 15.59 \\
-42.51 & 14.67 \\
-46.44 & 7.01
\end{tabular}
\begin{tabular}{rr}
60.42 & 0.87 \\
50.23 & 1.35 \\
37.88 & 4.10 \\
30.37 & 3.97 \\
18.40 & 4.13 \\
-10.49 & 4.80 \\
-21.83 & 4.59 \\
-37.74 & 3.04 \\
-27.86 & 3.23 \\
-2.75 & 2.80 \\
-1.78 & 3.06 \\
6.09 & 7.49 \\
3.79 & 2.07 \\
8.15 & 1.10 \\
15.27 & 2.39 \\
-2.99 & 2.80 \\
-2.90 & 3.04 \\
52.68 & 2.64 \\
37.47 & 1.60 \\
30.77 & 1.21 \\
64.36 & 0.86 \\
58.62 & 0.94 \\
55.97 & 0.98 \\
44.93 & 3.25 \\
45.18 & 2.25 \\
47.82 & 1.88 \\
45.33 & 2.00 \\
48.85 & 1.87 \\
7.96 & 5.20 \\
2.74 & 5.70 \\
-8.03 & 5.14 \\
-20.99 & 4.06 \\
-35.89 & 3.85 \\
32.33 & 17.53
\end{tabular}

3254335
3264035
3254037
3264 C 38
3254030
3264040
3264041
3254042
3254043
3254044
3254045
3254045
3254347
3264048
3254049
3254050
3264051
3254052
3254053
3264054

3265001
3265002
3265053
\(32550 \div 4\)
3 2． 5.05
3265066
32650.7

32550 ：
3255297
3265010 3265011
\(32 \leqslant 5012\)
3255013
3255014
3265015
3255015
3255017
3265018
3265019
3255020
3255021
3265022
3265023
3265024
3255025
3255026
3255027
3255028
3265029
3265030
3265031
3255032
3255033
3265034
3265035
3255036
3265037
\begin{tabular}{|c|c|c|}
\hline 32731 & 648360 & \(6 E .200\) \\
\hline 32814 & 648340 。 & 457.100 \\
\hline 327540 。 & 647070. & 517.200 \\
\hline 32771 & 645720. & 553.50 U \\
\hline 323100 & 544440 & 567．200 \\
\hline 3289 & 643770 & 501.100 \\
\hline 328850 & 542560 & 550.800 \\
\hline 32334 & 640940 & 410.000 \\
\hline 325800 & 540330 & 161.100 \\
\hline 325276 & 640572 & 158．710 \\
\hline 326950 & 641580 & 247.800 \\
\hline 32746 ？ & 641660 & 332.030 \\
\hline \(32781 \%\) & 541030 & 342．000 \\
\hline 327005. & 641020. & 350.400 \\
\hline 325830. & 640330 & 161.510 \\
\hline 323700. & 546660. & 205．400 \\
\hline 3227 ji & 645200 & 253.200 \\
\hline 32124 & 642560 & 217.000 \\
\hline 32302 ！ & 640030 & 192.000 \\
\hline 329330 。 & 645020 & 307.800 \\
\hline & N & 25 \\
\hline 32 & 658590 & 231.100 \\
\hline 327580 & \(65 \leqslant 770\) & 262.350 \\
\hline 324830. & 658220 & 242.490 \\
\hline 32018！ & 6j2680 & 249.373 \\
\hline 3278 & \(6575 \cup 0\) & 255．540 \\
\hline 328370 。 & 656270 & 259.110 \\
\hline 32970 & 656380 & 263.690 \\
\hline 32553 & ち55630 & 260．170 \\
\hline 32690 － & 655870. & 268.090 \\
\hline 32437 \％ & 650150. & 214.596 \\
\hline \(32322 \%\) 。 & 651850. & 245.340 \\
\hline 32322 。 & 551550 & 272．770 \\
\hline 3224 & 651920. & 282．340 \\
\hline 32160 & 653120. & 288．340 \\
\hline 320020 。 & 652150 ． & 291.400 \\
\hline 320900 。 & 652970. & 290.000 \\
\hline 322500. & 658220． & 23E．300 \\
\hline 321770. & 653670. & 278.750 \\
\hline 322370 & 654450 ． & 264.450 \\
\hline 324750 。 & 657540 ． & 262．550 \\
\hline 32425 f & 655589 。 & 270.350 \\
\hline 327652. & 652550 & 264．790 \\
\hline 32860 ！ & 653270 ． & 270.760 \\
\hline 328880. & 553800. & 270.500 \\
\hline 32523\％ & 65500 C & 282．050 \\
\hline 327150 & 658180． & 268．690 \\
\hline 323880 & 656915 & 251．SE3 \\
\hline 321475. & 657700． & 263.151 \\
\hline 32368 6． & 659570. & 166.350 \\
\hline 323800. & 659580 & 178．200 \\
\hline 323950. & 659550. & 194.230 \\
\hline 324210. & 659470 ． & 225.410 \\
\hline 324311. & 659190. & 229.860 \\
\hline 324770. & 658850 & 251．500 \\
\hline 325770. & 658210. & 262.100 \\
\hline 32519 ！ & 558670. & 248．300 \\
\hline 325270 & 655250. & 235．500 \\
\hline
\end{tabular}
\begin{tabular}{rr}
27.29 & 16.20 \\
13.12 & 5.57 \\
18.50 & 8.69 \\
4.51 & 11.49 \\
-4.21 & 11.26 \\
-14.26 & 12.71 \\
-21.11 & 13.84 \\
-34.28 & 5.88 \\
-35.88 & 4.19 \\
-37.04 & 5.07 \\
-34.02 & 4.15 \\
-26.24 & 4.12 \\
-44.08 & 8.20 \\
-22.57 & 11.48 \\
-34.87 & 4.19 \\
21.61 & 3.63 \\
11.92 & 1.55 \\
3.61 & 5.45 \\
-22.34 & 4.38 \\
-5.66 & 15.89
\end{tabular}
\begin{tabular}{|c|c|}
\hline 16.53 & 0.81 \\
\hline 72.12 & 0.57 \\
\hline 24.03 & 0.69 \\
\hline 34.29 & 0.76 \\
\hline 71.67 & 0.55 \\
\hline 66.24 & 0.69 \\
\hline 50.21 & 0.78 \\
\hline 7\％．95 & 0.65 \\
\hline 78.25 & 0.54 \\
\hline 56． 29 & 3.67 \\
\hline 71.97 & 2.12 \\
\hline 81．34 & 0.80 \\
\hline 82.37 & 0.61 \\
\hline 28．40 & 0.62 \\
\hline 33.03 & 1.12 \\
\hline 26.89 & 0.51 \\
\hline 19.79 & 0.74 \\
\hline 12.56 & 0.54 \\
\hline 11.39 & 0.56 \\
\hline 30.14 & 0.70 \\
\hline 35.90 & 0.82 \\
\hline 53.87 & 1.37 \\
\hline 42.49 & 1.19 \\
\hline 40.14 & 0.98 \\
\hline 48.11 & 0.71 \\
\hline 54.40 & 0.67 \\
\hline 22.56 & c． 61 \\
\hline \＆． 77 & 0.66 \\
\hline 24．23 & 2.19 \\
\hline 21.27 & 1.67 \\
\hline 20.66 & 1.35 \\
\hline 21.62 & 1.15 \\
\hline 23.55 & 0.94 \\
\hline 20.48 & 0.80 \\
\hline 36.23 & 0.70 \\
\hline 34.26 & 0.76 \\
\hline 25.95 & 0.74 \\
\hline
\end{tabular}
\(32 \in 5038\) \(326503!\) 3255040 3255141 3265042 3265043 3255044 3265945 3255045 3265047 325504 ？ 3255049 326505 j
3265051
3265052
3255053
3265054
3265055
3265055
3265057
3255058
3265059
3255050
3255061
3265052
3255063
3255054
3265055
3265055
3265057
3255358
3255050
3265070
3265071
3265072
3255073
3255074
3265075
3255076
3255077
3255078
3265079
32550.50

3265081
3265082
3265083
3255034
3255095
3265046
3265097
32550 28
3255089
3265090
3265051
3255092
3255073
3265094
\(32650 \geqslant 5\)
\begin{tabular}{|c|c|}
\hline く59590． & 236.110 \\
\hline 32644 ，659ヲ30． & 231.300 \\
\hline 32416 －654700． & 279．500 \\
\hline 324740 － 555540 & 276．020 \\
\hline \(325100 \cdot 555440\) & 267．900 \\
\hline \(325440 \cdot 655250\) & 273.210 \\
\hline 325¢30．655つ00 & 264.300 \\
\hline 32504 ：654870 & 256.100 \\
\hline 325020．654470 & 271.500 \\
\hline 325320.654910. & 271.500 \\
\hline \(325430 \cdot 655090\) & 26.9 .750 \\
\hline \(32560 こ 555030\) & 274.590 \\
\hline 32678 c． 655050 & 270.480 \\
\hline \(32710 \% 655020\) & 254.280 \\
\hline 327240.554370 & 259.830 \\
\hline 328040.654100 & 259.430 \\
\hline 328880.653810 & 270.890 \\
\hline 329130.65466 & 282.460 \\
\hline 329230.655710 & 282.530 \\
\hline 329880.657840. & 232.200 \\
\hline 327420.658110 & 203.050 \\
\hline 323420.659820 & 185.830 \\
\hline 323530.659340 & 185.040 \\
\hline 323249.5 － 3920. & ？ 15.760 \\
\hline 323200.658720 & 221．700 \\
\hline 323070.653100 & 237.400 \\
\hline \(323110 \cdot 657970\) & 236.450 \\
\hline 323320.657520 & 232.890 \\
\hline 323370.657310 & 242.700 \\
\hline \(323400 \cdot 65538\) & 240.010 \\
\hline 323120.655910 & 252.700 \\
\hline 322973.656500 & 258．2：0 \\
\hline 322612.655460 & 261.500 \\
\hline 322470.656370 & 265.840 \\
\hline 32223 C －655910 & 269.400 \\
\hline 32234 ？655580 & 265．290 \\
\hline 321990.555240 & 275.720 \\
\hline 322230.655040 & 271.590 \\
\hline 322670.655420 & 281.000 \\
\hline 322910.655550. & 259.550 \\
\hline 323490.655650 & 259．790 \\
\hline 32352 \％656460 & 254.290 \\
\hline 32278 ¢．6j1580 & 233.320 \\
\hline 32272\％．551780． & 285.790 \\
\hline 322530.651850. & 285．700 \\
\hline \(32255 \%\) ．651910． & 223.250 \\
\hline 22470.651940 。 & 280．450 \\
\hline 22385．652000． & 282．780 \\
\hline 322320.652090 & \(28 \%\)－16， 0 \\
\hline 322200.552120 & 287.880 \\
\hline 22120．552170 & 250.300 \\
\hline \(2236 \%\) ら三2280 & 204.780 \\
\hline 21950．6j2310 & 297． 360 \\
\hline 21870．652370 & 303.240 \\
\hline 21790.552440 & 335.350 \\
\hline \(71 \%\) 652500． & 315.920 \\
\hline 1679．652530． & 310.410 \\
\hline 21710.652720. & 324.060 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 22.88 & 0.75 \\
\hline 20．69 & 0.75 \\
\hline 58.33 & 0.59 \\
\hline 79．94 & C． 62 \\
\hline 81.51 & 0.63 \\
\hline 85.92 & 0.47 \\
\hline 87．18 & 0.54 \\
\hline 8？．85 & C． 55 \\
\hline 84.20 & ［． 52 \\
\hline 94.35 & 0.51 \\
\hline 83.52 & 0.51 \\
\hline 8.34 & ［． 53 \\
\hline 78．14 & 0.56 \\
\hline 80.53 & 0.80 \\
\hline 72.18 & U．E9 \\
\hline 51.61 & 0.95 \\
\hline 40.18 & 0.98 \\
\hline 43.04 & C． 73 \\
\hline 50.26 & 0.79 \\
\hline 53.75 & 0.84 \\
\hline 60.56 & 1.14 \\
\hline 17.55 & 1.37 \\
\hline 18.76 & 1.60 \\
\hline 14.78 & 0：92 \\
\hline 11.86 & 0.90 \\
\hline 16.14 & 0.65 \\
\hline 17.35 & 0.50 \\
\hline 19.00 & 0.67 \\
\hline 19.62 & 0.55 \\
\hline 17.01 & 0.53 \\
\hline 14.56 & 0.50 \\
\hline 11.13 & 0.48 \\
\hline 11.73 & 0.50 \\
\hline 10.66 & 0.51 \\
\hline 5.37 & 0.44 \\
\hline 5.85 & 0.43 \\
\hline 3.26 & 0.47 \\
\hline 4.80 & 0.49 \\
\hline 5.88 & 0.46 \\
\hline 10.19 & 0.47 \\
\hline 18.22 & \(0.6 E\) \\
\hline 13.32 & 0.56 \\
\hline 83.54 & 0.61 \\
\hline 82.84 & 0.59 \\
\hline 83.48 & 0.55 \\
\hline 83.74 & 0.55 \\
\hline 77.34 & 0.65 \\
\hline \(7 \geqslant .77\) & 0.72 \\
\hline 76.49 & 0.56 \\
\hline 73.64 & 0.65 \\
\hline 71.84 & 0.55 \\
\hline 75.06 & 0.58 \\
\hline 59.59 & 0.64 \\
\hline 72.43 & 0.63 \\
\hline 55.43 & 0.67 \\
\hline 54.36 & 0.90 \\
\hline 56．59 & 0.77 \\
\hline 57．59 & C． 97 \\
\hline
\end{tabular}

3255095 326507 3265098 3265049 3255100 32651 ：1 3265102 32t：51i． 3255194 \(32651: 5\) 3265106 3265147
3265198 \(32551 \leq 5\)
326511u 3265111 3255112 3265113 3265114 3265115 3265116 3255117 3255118 3265119
3255125
3265121
3265122
3265123
3255124
3265125
326.5125

3265127
3265128
3255129
3265130
3265131
3265132
3255133
3265134
3265135
3265136
3265137
3255138
3265139
3255140
3265141
3265142
3255143
3265144
3265145
3265146
3265147
3255148
3255149
3265150
3265151
3255152
3255153
\begin{tabular}{|c|c|c|c|c|}
\hline 321530. & 652870 & 305.760 & 49．36 & C． 72 \\
\hline 321585 & 652370. & 304．440 & 43．86 & C． 69 \\
\hline 324595 & 551360． & 244.320 & 64.71 & 1.54 \\
\hline 324590. & 651375. & 271.500 & 64.13 & 1.17 \\
\hline 325230 。 & 551370． & 280.360 & 67.27 & 1.13 \\
\hline 325710 & 651340. & 285．300 & 65.38 & 1.29 \\
\hline 326110. & 650560. & 306.700 & 53．86 & 2.30 \\
\hline \(32630 \%\) 。 & 650320. & 308．800 & 49.51 & 3.11 \\
\hline 325310. & 650100. & 307．360 & 4 2． 4 \％ & 4.61 \\
\hline 32197 \＃． & 659740 ． & 233．070 & 2E．95 & 1． 37 \\
\hline 32144 ¢ & 659910. & 242．500 & 32.41 & 1． 51 \\
\hline 320990 & 659670. & 253．150 & 37.81 & 1.49 \\
\hline 320580. & 659320. & 256．580 & 41.36 & 1.43 \\
\hline 32636\％． & 655210. & 250.230 & 43.07 & 1.45 \\
\hline 320070 & 650130. & 352.000 & 83.20 & 1.27 \\
\hline 3202000 & 650650. & 349.500 & 85.15 & 1.18 \\
\hline 320490. & 550050. & 337.420 & 86.22 & 0.99 \\
\hline 329782． & 650010. & 328．500 & 83.19 & C． 92 \\
\hline 321000. & 650080 。 & 322.590 & 83.70 & 0.86 \\
\hline 321310 & 659240. & 320．600 & 81．88 & 0.75 \\
\hline 321850 & 659080. & 302.700 & 77.38 & 0.90 \\
\hline 322 ころ0． & 65004 c & 34.4 .300 & 74.43 & 0.85 \\
\hline 323025. & 650070. & 270．7c0 & 65．65 & c． 93 \\
\hline 322968. & 650220. & 277．400 & 70.44 & 0.89 \\
\hline 322883. & E50440． & 243．300 & 71.70 & 0.81 \\
\hline 32272 ． & \(6537 \in \cup\)－ & 272.520 & 77.27 & C． 81 \\
\hline 32254 ن． & 650910. & 277．400 & 76.24 & 0.75 \\
\hline 322550. & 6513500. & 296.820 & 80.45 & 0.73 \\
\hline 324420 。 & も52570． & 244.400 & 78.86 & 1.36 \\
\hline 324550 & 553030 － & 2七8．000 & 79.59 & 0.71 \\
\hline 325010. & 658740 ． & 254．5う0 & 24．11 & 0.70 \\
\hline 325380. & 658440 ． & 253.900 & 25.76 & 0.64 \\
\hline 32342 \％． & 655370． & 263.000 & 19.02 & 0.77 \\
\hline 32352 \％ & 6557 C 0 & 267．300 & 23.61 & C． 86 \\
\hline 323710 & E55780． & 266．300 & 28.11 & 0.91 \\
\hline 323820. & 655940 ． & 255．5c0． & 30.76 & 0.92 \\
\hline 323940 。 & 656120． & \(265.200^{\circ}\) & 32.36 & 0.96 \\
\hline 324100. & 655360. & 273.4 ？ 0 & 35.23 & 0.92 \\
\hline 324320 － & 655850. & 271．30C & 41.92 & 0.77 \\
\hline 32468 ． & 657430 － & 263.300 & 30.06 & 0.74 \\
\hline 324920. & 657980 & 244．750 & 25.73 & C． 75 \\
\hline \(32520 ?\) & 658080. & 248.730 & 28.59 & 0.79 \\
\hline 325860 & 658080． & 260．300 & 42.22 & 0.72 \\
\hline 326130. & －57720． & 271.700 & 57.98 & 0.60 \\
\hline 325580. & 65 330 & 261．800 & 28.75 & 0.71 \\
\hline 322720. & 653390 & 234．100 & 15.45 & 0.71 \\
\hline 32274 ¢ & 653240 & 234．700 & 16.34 & 0.60 \\
\hline 322530 & 658230. & 235．500 & 18.44 & 0.71 \\
\hline 32222 － & 653080. & 245.050 & 23.48 & 0.65 \\
\hline \(322.12 \%\) & 657940 & 253．100 & 15.54 & 0.64 \\
\hline 32.1550 & 657710 ． & 263．180 & 8.00 & 0.66 \\
\hline 320990. & 557450. & 271．7c0 & 2ก．81 & 0.62 \\
\hline 320550. & E57280． & 274．EC0 & 23.63 & 0.63 \\
\hline 320300. & 657100 & 272．500 & 23.76 & 0.65 \\
\hline 323220. & 655080 & 266.100 & 18.18 & 0.70 \\
\hline 322980. & 654780 & 271．000 & 18.09 & 0.63 \\
\hline 322716 & 654470 & 272.800 & 14.73 & 0.52 \\
\hline 322510. & 654390. & 270.100 & 13.01 & 0.64 \\
\hline
\end{tabular}

3265154 3265155 3255156 3255157 3265158 3265159 3265150 3265151 3265152 3265163 3265154 3265155 3265156 3265167 3255158 3265159 3265170 3265171 3265172 3265173 3265174 3265175 3265176 3265177 3265178 3265179 3265180
3265191
3265182
3265183
3265194
3265185
3265186
3265187
3255188
3265189
3265190
3265191
3265172
3255193
3265194
3265105
3265195
3255197
3265198
3265199
3255200
3265201
3265202
3265203
3265204
3265205
3265206
3265207
3255208
3255299
3265210
3265211

\begin{tabular}{|c|c|}
\hline 14.05 & 0.61 \\
\hline 14.40 & 0.59 \\
\hline 7.25 & 0.45 \\
\hline 1.89 & C. 50 \\
\hline 4.89 & 0.53 \\
\hline 5.58 & 0.45 \\
\hline 5.75 & 0.44 \\
\hline 4.99 & 0.50 \\
\hline 7.84 & 0.40 \\
\hline 6.64 & 0.37 \\
\hline 12.08 & 0.41 \\
\hline 27.58 & 0.61 \\
\hline \(3 \mathrm{C} \cdot 95\) & 0.76 \\
\hline 22.55 & 0.56 \\
\hline 22.64 & 0.50 \\
\hline 19.18 & c. 53 \\
\hline 68.39 & 1.27 \\
\hline 54.16 & 1.14 \\
\hline 51.27 & 1.32 \\
\hline 42.21 & 1.16 \\
\hline 39.99 & 1.23 \\
\hline 37.43 & 1.95 \\
\hline 31.21 & 2.11 \\
\hline 33.78 & 1.99 \\
\hline 37.02 & 0.91 \\
\hline 35.33 & 0.93 \\
\hline 52.59 & 0.64 \\
\hline 68.92 & 0.55 \\
\hline 70.39 & ¢. 57 \\
\hline 71.20 & 0.57 \\
\hline 71.25 & 0.53 \\
\hline 68.95 & 0.58 \\
\hline 59.90 & 0.68 \\
\hline 23.33 & 1.07 \\
\hline 26.79 & 1.37 \\
\hline 15.36 & 0.63 \\
\hline 18.27 & 0.65 \\
\hline 18.87 & 0.69 \\
\hline 29.55 & 0.74 \\
\hline 22.65 & 0.78 \\
\hline 27.25 & 0.83 \\
\hline 30.59 & 0.75 \\
\hline 38.55 & 0.72 \\
\hline 44.02 & 0.67 \\
\hline 47.26 & 0.61 \\
\hline 49.52 & 0.57 \\
\hline 51.37 & 0.56 \\
\hline 53.52 & 0.53 \\
\hline 56.71 & 0.51 \\
\hline 59.29 & 0.50 \\
\hline 52.0 ? & 0.50 \\
\hline 65.39 & 0.51 \\
\hline 68.02 & 0.51 \\
\hline 73.68 & 0.54 \\
\hline 72.70 & 0.58 \\
\hline 74.89 & 0.56 \\
\hline 80.84 & 0.56 \\
\hline 79.30 & 0,58 \\
\hline
\end{tabular}

3265212
32552：3
3265214
3255215
3255215
3255217
3265218
3255215
3255220
3265221
3265222
3265223
3265224
3265225
3265226
32652 27
3255224
3265229
3255230
3255231
3265232
3265233
3265234
3265235
3255236
3265237
326523．8
3265239
3265240
3255241
3255242
3265243
3255244
3265245
3266001
3266002
3256503
3256004
3266005
3256JJE
3266397
3266068
3266069
3256310
3255011
3266012
3256013
3256014
3256015
\(326 \in 016\)
3266017
3255018
3256019
3266020
3266021
3266022
3266023

324140．55？810． 324169．653720．
324206.653510 。

32424 ： 653530 ．
324280 ． 653440 ．
324250.553360.
324280.653270 ．

32430 ： 653180. 324310 ．553060． 324310.552950. 324329．65280？． 32433 f －652802． 324330 － 52710 。 324345．65＜525． 324350 ．652530． 324363 ． 652450 ． 324350 ．652310． 324380 ． 652210 ． 32437 C － 652110 ． 324380.651780 324210.551970 32720 厄． 659140.
327190.558990.
327160.558400. 325770．659580 328720.554880 329237．659900 32才33C．65\％060 329420 ． 659200 ． 329550.653350 ． 329580．659590． 208.537 325830．659820．222．084 329910．655930．107．251 327010．550100．475．500 NT 25
32532日．66857C． 121.380 327780 ． 658230 32451 ： 558339 323470 ．668560． 322080.668720 ． 320560．657050． 32852？．651379．
327150．652220． 329339．655740． 327580.657560 ． 32952：．659540． 32955：．659700。 329482．659770． 327410 ． 659940 ． 32308 ． 652500 ． 323070 ． 652550 ． 32305～．662550． 323320.552730 。 323000.652770. 322980.652820 ． 32296．66287n． 323415.553030 ． 32226：．653560．

2t．0． 375 こち5．368 257．307 255．319 257.230 254．737
252．256
245.510
247.147
246.475
247.132

247．057
24€． 260
\(244.5: 9\)
243.924
241.449
235.773
239.753
239.1 ㄹ 0
238.680

245．215
260.932
268.356
270.700

288．588
222.247
227.286
223.053
218.520
212.553
120.000
181.020
156.000
118.000
127.950
191.170
159.330
70.540
54.010
96.140
86.220
82.800
78.180
213.560
211.020

207．540
205.080
203.820
203.400 205．380
181． 980
227.250
\begin{tabular}{|c|c|}
\hline 78．04 & 0.62 \\
\hline 77.08 & 0.65 \\
\hline 75.87 & 0.65 \\
\hline 77.42 & 0.71 \\
\hline 74.59 & 0.75 \\
\hline 74.26 & c． 73 \\
\hline 76.97 & 0.79 \\
\hline 77.51 & 0.88 \\
\hline 75．73 & 1.01 \\
\hline 78.27 & 1.04 \\
\hline 77.91 & 1．0． 2 \\
\hline 75.20 & 1.04 \\
\hline 75.05 & 1.08 \\
\hline 77.43 & 1.16 \\
\hline 75.59 & 1.22 \\
\hline 73.71 & 1.33 \\
\hline 73.17 & 1.43 \\
\hline 72.17 & 1.45 \\
\hline 72.38 & 1.53 \\
\hline 73.03 & 1.54 \\
\hline 72.45 & 2.12 \\
\hline 35.26 & 0.97 \\
\hline 42.00 & C．95 \\
\hline 49.84 & C． 74 \\
\hline 35.74 & 1.42 \\
\hline 45.04 & 0.83 \\
\hline 43.37 & 0.75 \\
\hline 41.41 & 0.77 \\
\hline 39.09 & 0.79 \\
\hline 34.74 & 0.81 \\
\hline 30.23 & 0.82 \\
\hline 23.03 & 0.85 \\
\hline 19.31 & 0.88 \\
\hline 40.58 & 9.16 \\
\hline －2．64 & 0.81 \\
\hline 25.52 & 0.77 \\
\hline C3．09 & 1.60 \\
\hline 97.12 & 1.79 \\
\hline 76.35 & 1.67 \\
\hline 93.59 & 1.64 \\
\hline 12.60 & 0.73 \\
\hline －5．75 & 0.94 \\
\hline 12.84 & C． 84 \\
\hline 0.38 & 0.73 \\
\hline 4.98 & 0.73 \\
\hline 9.86 & 0.75 \\
\hline 7.18 & 0.81 \\
\hline 10.05 & 0.75 \\
\hline 51.50 & 2.11 \\
\hline 53.71 & 2.10 \\
\hline 55.88 & 2.26 \\
\hline 56.93 & 2.31 \\
\hline 59.74 & 2.70 \\
\hline 62.36 & 2.60 \\
\hline 64.25 & 2.55 \\
\hline 58.78 & 2.38 \\
\hline 86.34 & 4.58 \\
\hline
\end{tabular}

32ヒ6024 3265025 326も226 326．6． 27
3265028
3256029
3256030
3256931
3256032
3256033
3255034
3256035
325603E
3266037
3256038 \(325 \leq 030\)
3266040
3266041
3256042
3256043
3256044
3256045
3256045
325EE47
3256043
3256049
325605 ？
3256551
326.5052

3256053
3256054
325605 5 3266956 3256057 3256058 325 ヒロ コ 3256050 3266061 3256052 3266963 3265054 325E055 3256056 3256.357 3256058 3266059 3256070 3266071 \(326 \in 072\) 3266073 3256074 325 ED 75 3265076 3266077 3266378 3256579 3256080 3266081
321900.653740 ．

226.200

225．880
323030．653070．185．580
322935．6́2940． 296.760
322915．562970．207．120
322990．662380．225．640
323030．652410．227．350
32307\％．552380．227．980
323110 ．662350． 226.700
323160．\(\in \in 2320\) ． 224.700
32317 •65227お． 225.430
32320 5．562230． 224.480
323230 ．562180． 223.120
323250．662140． 222.080
32328 E．652100． 221.720
\(323310 \cdot 652060\) ． 222.410
323315.652060 ． 223.500

328550．661700．159．293
329780 ．652220．152．226
329250.653100 ．148．796
329090.653990 ． 143.952

329440 ．664510．131．716
323400 ．650175．186．750
\(324305.6515 \in 5\) ．172．530
323312．651110．205．500
323562．653780．182．940
323750.651100 ． 177.010

32345 多 651890．223．000
323287．6521c5．221．800
323337．662240． 213.540
323890． 65224 ． 205.130
324405.652325 ．187．730

324845 ．652050．168．820
324020 660905．182．040
324125.650735 ．181．350
324150.650430 ． 184.290

324550．650710．175． 550
32457 C．SE118C． 168.140
325050 ． 651490 ． 154.500
325130.651780 ． 140.700

32543 U．G61OEO． 142.100
325090．653500．178．050 324760 ．653873．187．210 324252.654510 ．198．540 324150.654130 .206 .980 324060.653780 ． 194.250 323830.653570 ． 323010 ．653070． 323350.652920 。 32289？．E62310． 322510 ．651910． \(32344 \%\) 653550． 323485 ． 650170 。 326136 ．66た240． 325880．650590． 325802.650820. 32570 •651076． 325700．651520．
\begin{tabular}{ll}
81.34 & 5.70 \\
84.75 & 5.42 \\
71.60 & 3.98 \\
66.24 & 2.54 \\
66.87 & 2.54 \\
52.59 & 2.23 \\
4.54 & 2.01 \\
47.34 & 1.91 \\
45.17 & 1.87 \\
43.07 & 1.80 \\
41.82 & 1.77 \\
41.06 & 1.74 \\
33.76 & 1.66 \\
38.90 & 1.57 \\
32.12 & 1.61 \\
36.79 & 1.59 \\
35.92 & 1.59 \\
-21.32 & 0.99 \\
-20.98 & 0.81 \\
-29.66 & 0.70 \\
-28.51 & 0.90 \\
-25.29 & 0.82 \\
21.02 & 1.30 \\
21.50 & 1.33 \\
24.87 & 1.45 \\
24.23 & 1.42 \\
24.48 & 1.47 \\
34.26 & 1.57 \\
37.76 & 1.59 \\
38.45 & 1.59 \\
28.56 & 1.20 \\
22.24 & 1.08 \\
15.98 & 1.22 \\
19.01 & 1.10 \\
17.83 & 1.08 \\
18.28 & 1.07 \\
16.08 & 1.19 \\
13.98 & 1.18 \\
17.04 & 1.47 \\
15.35 & 1.80 \\
14.35 & 1.64 \\
25.01 & 1.01 \\
33.30 & 1.20 \\
65.06 & 2.50 \\
55.88 & 1.94 \\
51.30 & 1.82 \\
58.35 & 1.94 \\
72.30 & 3.98 \\
50.31 & 1.78 \\
43.44 & 2.40 \\
53.39 & 2.49 \\
24.53 & 1.44 \\
21.77 & 1.30 \\
15.03 & 0.89 \\
17.04 & 0.98 \\
13.12 & 1.04 \\
9.70 & 1.05 \\
13.37 & 2.66 \\
& \\
\hline
\end{tabular}

3こらEOS？ 325603 ？ 3256594 32600 © 5 3266096 3265087 \(325 \in 088\) \(326 \in 085\) 3266070 3256091
325E0ミ2
326ヒロヲ3
3266334
3256035
3266095
3256037
3256398
3266097
3266100
3256151
3266102
32E61：Z
\(32551: 4\)
3266105
3256136
\(32661: 7\)
32561 58
\(32661 \because ?\)
326511 ？
326 E 111
3266112
\(32561: 3\)
3266114
3266115
3266116
3266117
3265119
3256119
3266120
326 t1 21
3266122
3266123
326.6124

3266125
32 6́6126
3266127
3266128
3266129
3256135
3256131
3256132
3266133
3256134
3266135
3266135
3266137
3266138
\begin{tabular}{|c|c|c|c|c|}
\hline 325551. & 653579 & 175.130 & －3．07 & C． 82 \\
\hline 324880 & 勺52420． & 155．190 & 17.61 & 1.38 \\
\hline 32574 ： & ES3000． & 158.730 & －7．58 & 0.80 \\
\hline 326840. & 653080. & 157．3：C & －11．74 & 0.80 \\
\hline 327233 。 & 653250． & 156．250 & －15．50 & 0.76 \\
\hline \(32712 \%\) & 663390. & 154．200 & －15．42 & 0.73 \\
\hline 32737 ）． & 653450 & 156．070 & －13．09 & 0.71 \\
\hline 327812 & 653860. & 151．550 & －24．87 & 0.89 \\
\hline \(32915 \%\) & 654570． & 137.160 & －25．21 & 1.14 \\
\hline 32695 & 65356n． & 157．930 & －13．20 & 0.73 \\
\hline 325090. & 6．5392C． & 148.150 & －11．32 & C． 8.8 \\
\hline 326750. & 6E4189． & 158．490 & －11．34 & 0.84 \\
\hline \(32326 \%\)－ & 65047 i & 185．52u & 25.43 & 1.46 \\
\hline 323139 & 55038 C & 187．760 & 25.06 & 1.47 \\
\hline 323010. & 660260. & 190．200 & 24.85 & 1.52 \\
\hline 323290. & 66014？ & 187．930 & 24.31 & 1.41 \\
\hline 322180 & 651190. & 257．310 & 44.04 & 1.98 \\
\hline \(32171 \%\) & 660630． & 257．440 & 36.79 & 1.69 \\
\hline 321030． & 660250. & 232.720 & 32.48 & 1.52 \\
\hline 322129. & 661580. & 275.250 & 61.01 & 2.66 \\
\hline 321440 。 & 651110 & 281．900 & 67.70 & 2．59 \\
\hline 321080 & 550830. & 281．150 & 67.10 & \(2 \cdot 37\) \\
\hline 320190. & 550510． & 285．500 & 85.78 & 8.87 \\
\hline 320605. & 660450 ． & 288．500 & 70.85 & 2.51 \\
\hline 320300. & 650250． & 289．010 & 72.56 & 3.02 \\
\hline 320 こヲ「。 & 555こ30． & 200．300 & 73.45 & 3.19 \\
\hline 324810. & 650180． & 204．586 & 22.29 & 1.08 \\
\hline 324820． & 660500. & 189．065 & 10.95 & 1.22 \\
\hline こ24シ70． & 651180 & 168.140 & 13.72 & 1.18 \\
\hline 325879. & 654150 & 167.000 & 15.72 & 0.90 \\
\hline 325540 & 654540． & 171．934 & 31.06 & 1.17 \\
\hline こと5580。 & 655430 ． & 175.031 & 36.75 & 1.35 \\
\hline 325470 。 & 655820 ． & 166.208 & 43.00 & 1.89 \\
\hline 324780 。 & \(65545 \%\) 。 & 251.967 & 55.89 & 3.88 \\
\hline 324440 。 & 555030． & 20.315 & 65.28 & 3.40 \\
\hline 323759. & 651100. & 177.010 & 24．32 & 1.47 \\
\hline 327300. & E51750． & 121．755 & －2．22 & 0.80 \\
\hline 32748 － & 650110. & 228．328 & 18.15 & 0.85 \\
\hline 32757 ： & 650380 & 216．521 & 14.38 & 0.89 \\
\hline 327820. & 660710 ． & 204．699 & 8.94 & 0.87 \\
\hline 326220. & 551230. & 1ع1．2ヶ0 & －11．28 & 0.85 \\
\hline 329545 & 6S1060． & 183.030 & －7．45 & 0.81 \\
\hline 329490. & 651010 & 185.290 & －9．20 & 0.86 \\
\hline 329430 & SE1ESO． & 162．019 & －16．57 & 0.88 \\
\hline 32¢¢2こ。 & 650280． & 197.765 & 15.54 & 0.92 \\
\hline ？27923。 & E59170． & 195.430 & 12.59 & 0.92 \\
\hline 329960 & 650280 ． & 155.445 & 8.65 & 0.93 \\
\hline 326755 & 602700. & 112．877 & 5.83 & 3.81 \\
\hline 327136 & 652030． & 168.598 & －3．22 & 0.86 \\
\hline 327305. & 551750 & 181.795 & －2．0：1 & 0.80 \\
\hline 326730. & 651570. & 186.199 & 0.81 & 0.93 \\
\hline \(32677 \%\) & SE1500． & 186．539 & 1.18 & 0.92 \\
\hline 326570. & 651480． & 183.483 & 6.73 & 0.94 \\
\hline 325280. & GE1150． & 183.594 & 12.14 & 0.95 \\
\hline 32723 。 & E55573． & 143.526 & 15.69 & 0.76 \\
\hline 326783. & 665645． & 158.348 & 14.17 & 0.80 \\
\hline 326513. & 65こ218． & 163.434 & 10.75 & 0.81 \\
\hline
\end{tabular}

3256139
325614 ！
3266141 3256142 3266143 3256144 3266145 32EG14E 3266147
3265148 3256140 3256150 326も151
\(32661=2\) 3266153 3256154 326615う 3266156 3266157 3266158 32561 う 3256150 3265151 3206152 3256153 326と154 3266155 3256155 3256157 \(326 \in 168\)

3257001 3267952
32670 ［2 32670114 3267005 32570.6 32670 ：17
3267008 32570 こヲ 3257010 3267911 3267012 3267013 3257014 3267015 3257016 3267017 3257018 3257019 3257020 3267021 3267022 3257023 3257024 \(32570<5\) 3257326 3257027

32670 ．655230． \(32740 \%\) 655350． 32780 U．655400． 327880 ．666050． 327639.555220 。 32745 \％555520． 327238.655373. 326990.668000. 328080 655760． \(32848 \% 655530\) 。 329480．655930． 329550 •665560． 32977お．65517c． 32735r．65419：。 329000.653520 ． 327000 ．663380． 329240.653100 ． \(32948 \% 65350\) 。． 329860 ．654000． 329800.652140 ． 32520 ．652100． 329865 － 652430 ． 328880.652600. 325050.662800. 324570．652930． उटеと86．554750． 3294ど0．65う120． 328420．665300． 32950 － 656710 。 コ2975ヶ．65751～。 NT 27
323525．674625． 322625．675う75． 329975.675450 。 321512.674375 ． 323600 ． 675838 ． 324962 ． 675575 。 32755 0． 671300 。 329012 •671650． 326659.670775. 32131 ． 672012 ． 32163 E •672202． 321805．672215． 322350 ．672307． 322597．572285． 322547.672198. 323173.67230 C ． 323532.672475 ． 323345． 672498 。 324115.672663. 324448.672665 ． 324705 ．672693． 325073.672570 ． 325385 ．672450． 325535 ． 672475 ． 325833.672447 。 325240．672452． 325507．672575．
151.576
155.758
151.368
145.546
140.513
145.506
143.526
125.850
148.283

137．721
105．7\＆2
\(1: 1.168\)
116.587
130.156
148.513
146.777
149.029
141.005
131.532
153.661
139.110
151.761
154.053
147.816 149.352
71.438
132.419 144.857
109.146

13 C .779
21.340
48.770
\(57 \cdot 320\) 52.320
39.040
23.480
\(48 \cdot 900\)
48.900
78.940
48.479
49.058
47.463
44.710
45.073
47.221

49．Fع5
52．181
70.119
68.496
73.085
74.770
74.475
79.505
73.785
73.200
74.760
84.071
\begin{tabular}{|c|c|}
\hline ¢． 84 & 0.75 \\
\hline －1．89 & 0.73 \\
\hline －12．86 & 0.75 \\
\hline －2．05 & 0.65 \\
\hline 3.08 & 0.68 \\
\hline 11.63 & 0.76 \\
\hline 17.59 & 0.76 \\
\hline 50.90 & 0.72 \\
\hline －12．32 & 0.77 \\
\hline －25．73 & 0.82 \\
\hline －27．83 & 0.77 \\
\hline －23．20 & 0.73 \\
\hline －31．79 & 0.96 \\
\hline －25．91 & 0.80 \\
\hline －24．09 & 0.85 \\
\hline －25．32 & 0.70 \\
\hline －29．34 & 0.70 \\
\hline －31．15 & 0.71 \\
\hline －34．17 & 0.77 \\
\hline －21．68 & 0.83 \\
\hline －21．06 & 1.19 \\
\hline －24．23 & 0.76 \\
\hline －24．79 & 0.73 \\
\hline －25．66 & 0.74 \\
\hline －23．83 & 0.69 \\
\hline －15．91 & 5.60 \\
\hline －28．47 & 0.91 \\
\hline －25．47 & 1.20 \\
\hline －13．56 & 0.78 \\
\hline －9．54 & 0.78 \\
\hline 82．32 & 0.76 \\
\hline 86.16 & 0.37 \\
\hline 83．02 & C． 48 \\
\hline 80.06 & 0.66 \\
\hline 81.93 & 0.34 \\
\hline 85.79 & 0.35 \\
\hline 90．55 & 0.71 \\
\hline 55.05 & 0.52 \\
\hline 98.85 & 0.50 \\
\hline 71.26 & 0.73 \\
\hline 75.94 & 0.69 \\
\hline \(72 \cdot 13\) & 0.70 \\
\hline 72.59 & 0.71 \\
\hline 73.98 & 0.71 \\
\hline \(7 \mathrm{6.c8}\) & 0.74 \\
\hline 70．84 & 0.71 \\
\hline 81.08 & 0.65 \\
\hline 87.29 & 0.63 \\
\hline 93．42 & 0.57 \\
\hline 97．58 & 0.57 \\
\hline 59.47 & 0.56 \\
\hline 90．73 & 0.52 \\
\hline 101.26 & 0.50 \\
\hline 102.32 & 0.49 \\
\hline 102.56 & 0.49 \\
\hline 103.03 & 0.52 \\
\hline 100．80 & C． 72 \\
\hline
\end{tabular}

3267028
3257029
3267332
3257031
3267032
3267033
3257334
3267035
3257035
3267037
32E7338
3257337
3267040
3257941
3267042
3257043
3267044
3267045
3257045
3257047
3257948
3267047
3267050
3267951
3257052
3267053
3267954
32575 うう
3267056
3267057
3257058
3267059
3267060
3257061
3267052
3257063
3257054
3267055
3257055
3257057
3267958
3267069
3267070
3257071
3267972
3257073
3258001
3268002
\(32580: 3\)
3258094
3268005
3268005
3268007
32680 ©8
32689：9
3268010
\begin{tabular}{|c|c|c|c|c|}
\hline 327216 。 & 675175. & 14.449 & 52.25 & 0.44 \\
\hline 328905. & 675652． & 7．357 & 97.53 & 0.37 \\
\hline 329302. & 675735. & 5.163 & 106.74 & 0.42 \\
\hline 327725. & 675272 ． & 4.578 & 100.56 & 0.34 \\
\hline 327267 ． & 676452 ． & 4.463 & 98.22 & 0.32 \\
\hline 327050. & 676560. & 5.154 & 98.36 & 0.31 \\
\hline 326408. & 675772 ． & 5.898 & 36.57 & 0.31 \\
\hline 325180. & 675845. & 8.397 & 97.59 & ［i． 29 \\
\hline 325873. & 676947. & 7.590 & 93.42 & 0.33 \\
\hline 325673. & 677007. & 7.094 & 92.65 & 0.29 \\
\hline 324538 － & 676935. & 7.310 & 70.82 & 0.40 \\
\hline 324580 － & 677007. & 8.357 & 91.59 & c． 40 \\
\hline 324250 & 677010. & 7.924 & 91.70 & 0.42 \\
\hline 32365 こ。 & \(\leq 77355\) & 5.793 & 00.91 & 0.47 \\
\hline 323410. & 677222. & 5.553 & 03.03 & 0.43 \\
\hline 322710 & 677335. & 7.088 & 94.81 & 0.40 \\
\hline 321745 • & 676910. & 28.578 & 95.38 & 0.61 \\
\hline 321000. & 676875. & 13.808 & 96.19 & 0.57 \\
\hline 320275. & 677044. & 5.182 & 70.35 & 0.58 \\
\hline 320685. & 675150. & 43.586 & 87.39 & 0.47 \\
\hline 327080. & 671740. & 66.035 & 96.38 & 0.67 \\
\hline 327180. & 671850. & 60.381 & 95.99 & 0.68 \\
\hline 32728 ． & 671580. & 54.359 & 93.75 & 0.68 \\
\hline 32738 C 。 & 671540. & 52．229 & 91.78 & 0.68 \\
\hline 327470 。 & 671390. & 42.748 & 90.50 & 0.72 \\
\hline 327510. & 671300． & 47.771 & 88.73 & C． 73 \\
\hline 329130． & 6707E0． & 52.017 & 75.76 & 0.86 \\
\hline 328329. & 670540. & 53.272 & 67.71 & 0.58 \\
\hline 328460 & 670380. & 65.459 & 60.25 & 0.66 \\
\hline 32895 ？ & 670230. & 53.968 & 26.76 & 0.87 \\
\hline 329210. & 670300 & 50．355 & 16.26 & 0.83 \\
\hline 328665 & 670350 & 58.032 & 43.50 & 0.79 \\
\hline 329750. & 670300. & 54.547 & 31.47 & 0.90 \\
\hline 32898 ？ & 670200. & 54.857 & 25.28 & 0.85 \\
\hline 327070 － & 673790. & 30.729 & 84.76 & 0.57 \\
\hline 327010 & 674280. & 28．561 & 89.32 & 0.51 \\
\hline 329790. & 674960. & 5.071 & 80.30 & 0.46 \\
\hline 325512. & 571262. & 75.761 & 105.11 & 0.89 \\
\hline 32550 \％ & 671275. & 74.212 & 105.27 & 0.53 \\
\hline 325762 。 & 671287. & 71.841 & 106.94 & 1.01 \\
\hline 325050. & 671362 ． & 66.581 & 107.80 & 0.83 \\
\hline 326162. & 671400. & 65.040 & 107.54 & 0.80 \\
\hline 325262． & 671475. & 63.399 & 104.06 & 0.74 \\
\hline 326362. & 671525. & 62.592 & 101.83 & 0.69 \\
\hline 326550. & 671500. & 60.554 & 100.44 & 0.66 \\
\hline 326775. & 671712. & 60.249 & 99．04 & 0.63 \\
\hline & NT & 28 & & \\
\hline 320169. & 689350． & 14.3 .856 & 35.94 & 0.64 \\
\hline 320362 。 & 638525． & 143.561 & 49.24 & 0.82 \\
\hline 322306. & 693150 & 96.317 & 54.24 & 1.20 \\
\hline 324525. & 633288． & 84.125 & 57.73 & 1.08 \\
\hline 325875. & 539325． & 61.570 & 61.62 & 0.63 \\
\hline 325033 。 & 687963． & 98.146 & 65.34 & 1.11 \\
\hline 324025. & 685875. & 51.511 & 62.10 & 2.87 \\
\hline \(32350 \%\) 。 & 635775. & 10.773 & 70.50 & 0.72 \\
\hline \(32045 \%\) 。 & 635450. & 145.594 & 52.17 & 3.07 \\
\hline 321388. & 687300. & 167.030 & 39.17 & 3.16 \\
\hline
\end{tabular}

3268011
3258012

3262041 3265092
3259003
3259544 3269005
3265006
32550 С7
3259008
3260009
3269010
3259311
3255912
3269013
3265014
3255015
3259015
3269017
3265018
3255019
3255020
3270001
3270302
327 CJ 9 J
3270004
3270305
3270206
3270007
3270068
3270509
3270010
3270011
3270012
3270013
3270314
327625
3361001
33610：2
33510：2
3351004
3352001
3362 5：2
3362093
3362004
3352005
3362066
3352007
33620 C8 3352299
3352019
3352011
3362012
3352013

32350． 688025 ．159．106 32らう2上•635う25• 36．88゙1 \(2 \exists\)
322275．627850．77．754 323838．69545C．127．437
32520 •691036．71．354
322775 • Є70752．79．553
\(320545 \cdot 690363\) ．155．753
320913．692106．131．350
3203うこ．6うこうこち．125．175
322012．67315？．119．177
323875.693075 ． 150.706

32555\％．692925．94．100
324325．5ラ4550．106． 315
32175 •675425．65．562
320800 ． 635950 － 96.957
324400 •696950．78． 774
326200.657738 ．70．104
\(327432 \cdot 677325\) ．57． 942
327825．695188． 95.738
329750.65285 C ． 40.264

328105 6 51588 ．\＆． 700
328975.698488 ． \(51.84 \epsilon\) NO 20
321932．791190．107．530
32295お． 702070 。 155.174
325428．701540．122．865
324545.703960 ．204．856

32385コ． 755080 ． 271.160
322905．706300． 274.100
324025．750075．141．458
328500 •700950．71．994
329338.702700 － 35.128

328103．765425．152．138
325926．705425．103．060
32538民．707725． 57.040
32225 －70と238． 94.050
328475． 707488 ． 43.040
32840：708975．41．060 NT 31
333601.614656 ． 306.950 339589．614958． 273.406 330563.619450 ． 227.570 332040 • 619550 ． 233.782 \(\because T \quad 32\)
331350 ．625700． 353.725
330425．627500．327．780
330750．625913．259．055
335900．625075．277．756
331220．6252日u。 264．500
332530．625480．222．504
333450．62125 ！ 220.576
334150．621740．210．852
335310．621E70．208．483
335473.621480 ．195．378

337200．622510．187．147
337570． 523700 ．190．366
33880C． 524270 ．171． 307
\begin{tabular}{|c|c|}
\hline 48.50 & 1.75 \\
\hline 51.03 & 1.07 \\
\hline 3． 58 & 0.54 \\
\hline 16．58 & 0.94 \\
\hline 72．81 & 0.57 \\
\hline 45.35 & 0.44 \\
\hline 35.13 & 1.26 \\
\hline 21.40 & 0.46 \\
\hline 2.75 & 0.30 \\
\hline 20．82 & 0.36 \\
\hline 27．26 & 1.19 \\
\hline 18．71 & 0.63 \\
\hline 21.30 & 0.32 \\
\hline －． 07 & C． 54 \\
\hline 2.53 & 0.38 \\
\hline 2． 58 & 0.41 \\
\hline 2.73 & 0.28 \\
\hline －0．26 & 0.25 \\
\hline 7.00 & 0.40 \\
\hline －3．62 & 0.91 \\
\hline 3 ¢． 53 & 0.66 \\
\hline －15．32 & 0.28 \\
\hline 10.52 & 1.96 \\
\hline 16.90 & 0.97 \\
\hline 12.20 & 0.74 \\
\hline 12.44 & 1.64 \\
\hline 12.38 & \(2 \cdot 82\) \\
\hline －21．01 & 3.51 \\
\hline S． 51 & 1.08 \\
\hline ¢． 98 & 0.34 \\
\hline 17.30 & 0.45 \\
\hline －3．47 & 0.92 \\
\hline －8．03 & 2．24 \\
\hline 2.53 & 2．34 \\
\hline 1.47 & 3．12 \\
\hline －8．02 & 0.71 \\
\hline －3．22 & 0.47 \\
\hline 70.99 & 0.92 \\
\hline 39.78 & 0.76 \\
\hline 32.96 & 4.57 \\
\hline 32．77 & 4.20 \\
\hline －1．58 & 4.50 \\
\hline －3．17 & 5.31 \\
\hline \(\therefore .90\) & 5． 24 \\
\hline 6． 28 & 5.68 \\
\hline 10.29 & 3． 54 \\
\hline 27.48 & 4.54 \\
\hline 32.19 & 5.06 \\
\hline 32．53 & 5.26 \\
\hline 35.52 & 4.76 \\
\hline 40.49 & 3.58 \\
\hline 43.55 & 5.28 \\
\hline 43.47 & 3.08 \\
\hline 45.15 & 3.53 \\
\hline
\end{tabular}

33 ERC14 3352015 3362016 3362017 3362016 3352019 336202： 3352021
3352022
3352023
3362024
3353001
3363002
3353003
3353004
3353035
3353006
3363007
3353098
335359
3353010
3363011
3353012
3353013
3353014
3363015
3353015
3363017
3363018
3353019
3363020
3353021
3363022
3363023
3363024
3363025
\(33 \leqslant 3026\)
3363027
3353028
3353029
3353030
3363031
3363032
3364001 3364002 33540.33 3354354 3364005 3364006 33540.57 3354058 335400 ？ 336401 ： 3364011 3364012 3364012
\begin{tabular}{|c|c|c|}
\hline シ930． & 627550． & 16 \\
\hline 338330． & 629350. & 199.340 \\
\hline 337450 。 & 628600. & 195.682 \\
\hline 335230． & 627750. & 194.767 \\
\hline 335530. & 625389 & 310.240 \\
\hline 337100. & 625020. & 260.180 \\
\hline 336980． & 625800. & 363.582 \\
\hline 334530. & 627170． & 218.346 \\
\hline 3342600 & 6．25213． & 215.525 \\
\hline 333320. & 625420. & 237.440 \\
\hline 33こ260． & 625320. & 239.573 \\
\hline & & 33 \\
\hline
\end{tabular}

330300．638755．152．209 332605．637950．148．557 331315.636885 ． 147.223 331970．635950．161．716 332589．635275．165．560 333080．536335．142．41€ 333570．637959．162．289 333525．538763．173．070 33240 ．633937．165．561 331575．533450．180．405 333800 ．633537．190．187 331775．632775．195．325 331850.631825 .216 .356 331413.631025 ． 244.227 331175 ．630300． 269.780 330425.539388 ． 151.486 331500．537375．157．517 333520．637040．139．577 336100．636820． 133.154 330010.533350 .227 .700 331570 ．632030．213．400 333370.635490 ．151．300 334960．636760．136．900 337240．637140． 141.700 338089.637380 ．135．500 333470．639510．189．080 330550．638125．150．572 335425．639525．584．750 335875．633350． 337502．632825． 338112．634100． 338725．635107．

NT
333270． 641550 。 333930．643120． 334550 ． 645750 ． 334350.647450 ． 334750 ． 645100 ． 334380 ． 643970 ． 331200.643770 ． 335459． 644280. 331850． 642920 ． 332530．642740． 33555！．645975． 335513． 545150 ． 337175． 644275 ．
566.520 599.01 c 527.300 522.730 34
205.851
257.306
\(335 \cdot 5=3\)
342.500
356.818

285．757
258.330
303.500
236.500
229.200
591.312
573.535
590.400
\begin{tabular}{|c|c|}
\hline 22.70 & 9.83 \\
\hline 21.05 & 4.4 \\
\hline 20.42 & 5.05 \\
\hline 21.01 & 5.78 \\
\hline 31.94 & 5.21 \\
\hline 32．35 & 3.18 \\
\hline 31．61 & 3.73 \\
\hline 15.16 & 3.85 \\
\hline 19.15 & 4.25 \\
\hline 17.34 & 3.81 \\
\hline \(12 \cdot 14\) & 3.84 \\
\hline －43．90 & 5.14 \\
\hline －49．25 & 5.96 \\
\hline －31．19 & 9.21 \\
\hline －24．71 & 5.05 \\
\hline －26．33 & \(4 \cdot 17\) \\
\hline －23．06 & 4.97 \\
\hline －21．29 & 10.30 \\
\hline －20．50 & 11.54 \\
\hline －12．68 & 4.90 \\
\hline －22．41 & 5.32 \\
\hline －14．92 & 10.28 \\
\hline －14．00 & 7.13 \\
\hline －4．2？ & 10.89 \\
\hline －10．14 & ع． 08 \\
\hline －8．72 & 6.22 \\
\hline －42．70 & 7.68 \\
\hline －41．04 & 5.63 \\
\hline －28．19 & 8.22 \\
\hline －15．35 & 8.23 \\
\hline －23．28 & 5．00 \\
\hline －12．41 & 8．C3 \\
\hline －19．43 & 5.77 \\
\hline －17．25 & 11.67 \\
\hline －13．12 & 3．43 \\
\hline －7．33 & 8．58 \\
\hline －24．19 & 9.83 \\
\hline －40．57 & E．49 \\
\hline －2．57 & 13.45 \\
\hline 3．8i & 16.40 \\
\hline 16.45 & 9.98 \\
\hline 5.70 & 12.82 \\
\hline 5.82 & 15.05 \\
\hline －26．01 & 10.84 \\
\hline －24．46 & 9.95 \\
\hline 3.50 & 7.94 \\
\hline －11．33 & 10.46 \\
\hline －14．95 & ¢． 53 \\
\hline －15．82 & 9.72 \\
\hline －13．97 & 13.23 \\
\hline －14．41 & 9.39 \\
\hline －20．35 & 15.49 \\
\hline －28．08 & 11.51 \\
\hline －14．78 & 9.43 \\
\hline －17．99 & 5.67 \\
\hline －13．55 & S．18 \\
\hline
\end{tabular}

3364014 3354015 3354516 3364017

33550 さ1 33650こ2 3355003 3355044 3365005 3365055 3355007 3365008 3355095 335521 个 3355011 3365012 3355013 3355014 3355015 3355016 3355017 3355018 3365019 3365020 3355021 3365 j 22 \(33550<3\) 3365024 3365025 3355025 3355027 3365028 3355029 3365230 3365031 3365032 3355033 3355034 335E035 3365036 3355337 3365938 3355039 3365040 3355041 3355042 335504.3 3365044 3365045 3355046 3355047 3365048 3355049 \(335505 \%\) 3365051
3305052

337150．645125． 339125．642725． 337165 ．641265． 338550.540300 。 NT 35
337175．65玉470．229．4ラ9 \(337285 \cdot 559430\) ．235．334 337633 ．659380． 249.991 337970．658，250．255．745 33日．75．659205．255．138 338320．659050．257．446 339250．655875．238．091 339550 ．656325．276．370 339512．555455．277．020 33？480．655550．274．277 339400．655763．273．257 339275．656890．271．797 337155．655350．264． 276 339075．657！50．267．419 339013．657200． 270.308 338863．657350．271．494 338715.557540 。 271．571 338665．657608．258．4巳6 338550 • 657722 ．265．716 338475．657812．262．569 339600． 655510 ． 270.130 337450．656210．275．00C 339200．657380．272．330 ．337530．658110．256．300 335080.558290 。 256．000 335480.658440 ．219．520 336000 ．659110． 203.400 336450.659420 ． 195.120 335680 ． 659770 ． 151.70 C 330080.657100 .249 .420 331620 ．656150．266．760 331300.555370 .28 C .340 330870 －ธう4150．273．510 339900 ．653009． 245.280 339000.652560 ． 253.940 335420 ．650680．299．0．0 334870 ．652320． 352.510 335320．655550．310．270 336920.656940 ． 254.200 334980.557650 .256 .970 332520.655560 。 235．520 33178：． 55842 に． 135.250 3322 20．657980．153．710 33 2259．657450． 237.510 33：120．652555．295．219 33 ？60 ． 557425.306 .500 33057う．652513．298．264 \(330338 \cdot 654530\) ． 271.450 330788• 554075• 273．402 330755．553750．279．830 330910．653100．285．300 33ここ45．656375．240．266

555．280 562．050 502．010 541.530
229.459

プ・・フ7
71.400
\begin{tabular}{|c|c|}
\hline －11．20 & 14．01 \\
\hline －10．43 & 7.62 \\
\hline －12．83 & 7.24 \\
\hline －4．75 & 19．39 \\
\hline 24.79 & 0.98 \\
\hline 27．71 & 1.61 \\
\hline 26． 83 & 0.95 \\
\hline 24.47 & 0.82 \\
\hline 22.44 & 0.82 \\
\hline 21.90 & 0.77 \\
\hline 5.84 & 0.84 \\
\hline 14.53 & 1.06 \\
\hline 14.31 & 1.05 \\
\hline 15．4： & 1.13 \\
\hline 15.93 & 1.25 \\
\hline 13.56 & 1.35 \\
\hline 15.34 & 1.34 \\
\hline 16.76 & 1.12 \\
\hline 15.75 & 0.95 \\
\hline 1ヒ・゚ン & 0.86 \\
\hline 15.25 & 0.83 \\
\hline 15.97 & 0.78 \\
\hline 15.4 \％ & 0.77 \\
\hline 19.27 & 0.76 \\
\hline 14.58 & 1.32 \\
\hline 14.73 & 1.11 \\
\hline 18.85 & 0.55 \\
\hline 21.60 & 0.94 \\
\hline 23.91 & 0.82 \\
\hline 21.82 & 1.05 \\
\hline 19.82 & 1.20 \\
\hline 18.41 & 1.44 \\
\hline 25.63 & 2.25 \\
\hline 52.89 & 0.78 \\
\hline 32.25 & 1．01 \\
\hline 27.82 & 1.17 \\
\hline 27.03 & 1．22 \\
\hline 13．59 & 5．1．8 \\
\hline 3.71 & 4.76 \\
\hline 7．03 & 5.30 \\
\hline 13.79 & 1.26 \\
\hline 27.15 & 2.37 \\
\hline 21.71 & 1．01 \\
\hline 20．78 & 1.18 \\
\hline 30.27 & 1． 24 \\
\hline 43．40 & 0.79 \\
\hline 20.61 & 1.10 \\
\hline 50.93 & 0.84 \\
\hline 32.87 & 1.93 \\
\hline 28.73 & 2．56 \\
\hline 29.56 & 2.34 \\
\hline 33.49 & 0.96 \\
\hline 25.13 & 1.21 \\
\hline 27.25 & 1.28 \\
\hline 27.88 & 2.10 \\
\hline 32.33 & 1．59 \\
\hline
\end{tabular}

3355053
\(33 \leq 5054\)
3365055
3365055
3355057
3355058
3355059
\(335506 \%\)
\(33550 \leq 1\)
\(3.3550: 2\)
3355053
3365054
\(33550 \leqslant 5\)
3355056
3365057
\(33550 \in 8\)
\(33550 \leq 5\)
\(335507 \%\)
3365071
3355072
3355073
コ355 274
3365075
3365.76

3355077
3355078
3365079
3365080
3355091
3355092
3365083
3355094
3355085
3355056
3365087
3355088
3355059
335509 ）
3355091
3365032
3355053
3355294

3366001
3356002
3356033
3366004
3366055
3356026
33560 C 7
3356008
3356009
3356010
3366011
3366012
3366013
3365014
3365015
\begin{tabular}{|c|c|c|c|c|}
\hline 334533. & 657623. & 253.237 & 22.75 & 1.10 \\
\hline 335185 & ヒう 980. & 234．500 & 23.53 & 1.62 \\
\hline 3こ5う〇0． & 658520． & 204．112 & 24.50 & 1.52 \\
\hline 335E15． & 558500. & 217．770 & 29．95 & 1.27 \\
\hline 335030. & 5う 220 － & 229.783 & 24.97 & 1.28 \\
\hline 335270 。 & Gラ8：20． & 230．513 & 15.26 & 1.12 \\
\hline 336550. & 557725. & 230.775 & 25.20 & 1.24 \\
\hline 336700. & 657475 。 & 240.900 & 27．18 & 1.07 \\
\hline 335500. & 右う73し0． & 251．450 & 22.48 & 0.58 \\
\hline 335890. & 6こくうチう。 & 252.338 & 22．92 & 0.97 \\
\hline 337010 & 555530． & 264．132 & 20．29 & 1.24 \\
\hline 337100 。 & 655512 ． & 271．138 & 18.40 & 1．25 \\
\hline 337250 。 & 555339. & 285．324 & 18.18 & 1.37 \\
\hline 337343 。 & 655189． & 二）4．5と．1 & 22．73 & 2．05 \\
\hline 337515 。 & 655160． & 2¢8．962 & 22.64 & 1.55 \\
\hline 337705. & 656110. & 310.086 & 23.75 & 1.65 \\
\hline 337800 － & 655040 ． & 318.278 & 23.34 & 1.64 \\
\hline 337960. & 655745 & 323．319 & 21.41 & 1.25 \\
\hline 338195 。 & 655805 & 325．785 & 19.18 & 1.06 \\
\hline 338338. & 655735. & 322.772 & 18.88 & 0.98 \\
\hline 338530. & 655550 & 314.259 & 17.08 & 0.90 \\
\hline 337130. & 655513. & 271．138 & 18.36 & 1． 25 \\
\hline 332140 。 & 657970 。 & 212.399 & 39.48 & 1.04 \\
\hline 336560. & 555830． & 3：2．516 & 24.66 & 2.09 \\
\hline 335020. & 65う410． & 331.559 & 24.81 & 2．59 \\
\hline 334790. & 554080 & 399．200 & 22.20 & 2.30 \\
\hline 334930. & 653350． & \(4: 3.600\) & 22.83 & 1.80 \\
\hline 334640 － & 652740 & 378.000 & 17.30 & 1.49 \\
\hline 332510 － & \(65 \equiv 050\). & 151.200 & 35．73 & 1.51 \\
\hline 335140 。 & 659719. & 171．300 & 28．34 & 1.24 \\
\hline 335620 。 & 659260. & 190.900 & 21.57 & 1.23 \\
\hline 336820 。 & 652450 & 228．300 & 17.81 & 0.93 \\
\hline 337520 。 & 655360 ． & 250．200 & 27.52 & 0.97 \\
\hline 338100. & 55：400． & 232．390 & 15．18 & 1.26 \\
\hline 339640 ． & 659550. & 239.932 & 8.84 & 1.01 \\
\hline 339260 。 & 655880 & 237.700 & 5． 58 & 0.84 \\
\hline 337420. & 550230. & 236.307 & 9.61 & 0.85 \\
\hline 337230 。 & 658430 ． & 254.566 & 11.18 & C．85 \\
\hline 339170 。 & 657920 。 & 251.100 & 11.03 & 0.87 \\
\hline 334490 － & 653570. & 449.885 & 30.51 & 5.53 \\
\hline 333990. & 5う3500． & 420.329 & 35.13 & 4.30 \\
\hline 333530. & 55325こ． & \(4 \leq 0.553\) & 32．82 & 5.60 \\
\hline & & 35 & & \\
\hline 334060. & 667330 ． & 51.589 & －19．05 & 1.08 \\
\hline 334530. & 656SEO． & 78.720 & －15．76 & 1．31 \\
\hline 335270 。 & 665550． & 123.580 & －0．13 & 1.38 \\
\hline 336080. & 556020. & 186.380 & 4.57 & 1.59 \\
\hline 337179 。 & 665280． & 204.862 & 14.29 & 1.30 \\
\hline 337760. & 554940 & 160．109 & 15.34 & 1.06 \\
\hline 335580. & 654480． & 128．384 & 20.27 & 1.06 \\
\hline 339420 。 & 654330. & 145.919 & 15.73 & 0.85 \\
\hline \(33 \div 880\). & 663732 ． & 172.974 & 3．65 & 0.79 \\
\hline 338450 － & 655340 ． & 140.583 & 18.77 & 0.89 \\
\hline 335670 － & 655340 ． & 120．548 & 21.62 & ［．83 \\
\hline 339520. & 557080. & 100.961 & 25.06 & 0.75 \\
\hline 338870 － & 667600. & 117.253 & 27.18 & 0.84 \\
\hline 334060. & 657330 ． & 5С． 389 & －19．05 & 1.08 \\
\hline 334062 & 657330 ． & \(5 \% .789\) & \(-17.05\) & 1.08 \\
\hline
\end{tabular}

3350015 3366017 3356018 3366919 3356020 3366021 3366322 3366023 3366024 3366025 3356026 3366027 3365028 3366029 3365039 3356031
3366032
3366033
3356034
3365035
3365035
3366037
3356038
3 356:
336604 ?
3366041
3365042
3355043
3365044
3356045
3356046
3356547
3366048
3366049
3356050
3366051
3366052
3356053
3366054
3356055
3366056
3366057
3 3 5 E 0 je
\(3366 \% 59\)
3366050
3360061
3366352
3356253
3366054
\(33 \leq 6055\)
3356055
3356057
3356058
3366059
3366070
3356071
3355072

\begin{tabular}{|c|c|c|}
\hline 33459 & & 137.8 \\
\hline 334980 & 65395 & \\
\hline 336470 & 652440 & \\
\hline 337510 & 553170 & \\
\hline 336230 & 663980 & \\
\hline 334920 & 653010. & \\
\hline \(334 \geq 30\) & 552030 & \\
\hline 34070. & 651000. & \\
\hline 490 & 552930 & 127 \\
\hline
\end{tabular} 333000 . 654320. 86.294 33314 C . 665690. 45.577 332510.655570 . 334060.667330 . 334060.557330. 337750 . 555810. 336990 . 558080 . 338070.668490. 339560 . 659120. 337530. 659520. 338530.659930 . 336540 . 659070 . 335860.659960. 335820 . 657890. 334690.659770. 338880. 663710. 339530.652860 . 338 E50. 651390. 339050.651390 . 334360 . 657330 . 335100.651390. 339150. 651238. 335222. 661100. 339185.660900. 339125.650750 . 339160 . 650624. 339200 . 650390. 339220 . 660175. 339055.651475 . 338975.651575. 338862.651575. 333250 . 665350. 333450 . 652570. 33382 . 65112奛。 335420 . 651570 336650 . 562670 335550 . 650400 332524 -651080 330620 . 659220 331460.658420.
332160.557930. 331790.555860 331080.555330 \(330690 \cdot 664940\) 332930.653340 333490.55203 C

333450 . 652580.
\begin{tabular}{|c|c|}
\hline -13.6.1 & 1.52 \\
\hline 4.35 & 1.56 \\
\hline 4.51 & 1.83 \\
\hline 16.70 & 0.77 \\
\hline 15.25 & 0.81 \\
\hline 11.72 & 2.12 \\
\hline -12.41 & 1.50 \\
\hline 5.50 & 1.38 \\
\hline 7.18 & 1.22 \\
\hline -12.25 & \(1 \cdot 15\) \\
\hline -27.17 & 1.25 \\
\hline -26.88 & 1.67 \\
\hline -30.72 & 0.87 \\
\hline -19.05 & 1.08 \\
\hline -15.05 & 1.08 \\
\hline 25.50 & 1.08 \\
\hline 22.52 & 0.96 \\
\hline 32.00 & 1.12 \\
\hline 36.27 & 0.56 \\
\hline 2G. 24 & 1.76 \\
\hline 32.48 & 1.09 \\
\hline 12.88 & 1.14 \\
\hline 5.00 & 0.86 \\
\hline 3.45 & 0.99 \\
\hline -8.64 & C. 76 \\
\hline 15.27 & 0.92 \\
\hline 13.48 & 1.04 \\
\hline 7.52 & 1.00 \\
\hline 4.11 & 1.04 \\
\hline -15.05 & 1.08 \\
\hline 4.17 & 1.09 \\
\hline \(2 \cdot 17\) & 1.09 \\
\hline -2.53 & 1.12 \\
\hline -2.50 & 1.04 \\
\hline C. 11 & 0.88 \\
\hline 1.30 & 0.86 \\
\hline 3.67 & 0.92 \\
\hline 5.31 & 0.87 \\
\hline 3.37 & 1.14 \\
\hline 3.33 & 1.15 \\
\hline 5.77 & 1.07 \\
\hline -27.78 & 1.22 \\
\hline -17.22 & 1.27 \\
\hline 5.56 & 1.29 \\
\hline 13.50 & 1.04 \\
\hline 16.76 & 0.77 \\
\hline 14.32 & 1.44 \\
\hline -4.57 & 0.97 \\
\hline -13.91 & 0.58 . \\
\hline -24.91 & 0.58 \\
\hline -29.36 & 0.64 \\
\hline -35.00 & 0.83 \\
\hline -37.99 & C. 75 \\
\hline -34.48 & 0.74 \\
\hline -23.74 & 1.12 \\
\hline -12.34 & 1.15 \\
\hline -17.28 & 1.27 \\
\hline
\end{tabular}

3356『73 3？ 36574 3355075 3366075 \(3365 C 77\) 3 3 56078， 3355079 3365090 3366081 3355052 33563 \＆ 3366094 ЗЗも60こち． 3356086 3355087 3366088 3366089 \(33660 \geqslant 9\) \(33 \leq 52 ? 1\) 3356092 3356553 335634 33660 ت5 3366096 \(33560 \geqslant 7\) \(33660 \equiv 8\) 3366053 3356150 3366191 3366192 \(33561: 3\) 3366104 3356155 3356106 3356197 3366108 3366199 3366110 3355111 3366112 3366113 3356114 3356115 3366115 3366117 3356115 3365110 \(336 \in 12 \%\) 3356121 3365122 3366123 3366124 3366125 3366126 3356127 3366128 3365129 336E130

87.285 55.425
68.242 33.590
57.490
157.700

7 C .57 C
83.049

172．ラ2～
169.31 C
157.54 ：
149.000
134.110
125.580
148.150
157.890
188.748
172.375
169.921
170.482
169.235

164．208
\(153 \cdot 051\)
157．837
154.557

14 ．． 065
143.558
136.500
134.649
131.171

125．5\＆0 71.061 59.705
104.547
85.550
66.832
76.032
－5． 573
108.777
111.182
89.143

58． 342
65．568
75.583
70.973

RE． 330
5С． 78.9
79.720
123.980
186.780

2 14． 8 62
169.109

122．384
145． 319
172．774
145.583
120.548
\(1 \subset 0 . \exists 61\)
\begin{tabular}{|c|c|}
\hline －27．33 & 1.24 \\
\hline －31．25 & 1．27 \\
\hline －33．93 & 6．79 \\
\hline －3．22 & 0.85 \\
\hline －15．43 & c． 96 \\
\hline 19.13 & 1.14 \\
\hline －24．17 & 0.63 \\
\hline \(-33.81\) & 1.01 \\
\hline 5.49 & 0.90 \\
\hline －5．32 & 0.90 \\
\hline －14．59 & 0.83 \\
\hline －17．25 & 0.87 \\
\hline －25．13 & 1．04 \\
\hline －23．42 & 0.98 \\
\hline 7.73 & 0.95 \\
\hline －7．15 & 0.91 \\
\hline 7.48 & 0.94 \\
\hline 4.98 & 0.90 \\
\hline 2.94 & 0.93 \\
\hline －0．88 & 0.87 \\
\hline －5．61 & 0.90 \\
\hline －8．22 & 0.88 \\
\hline －12．93 & 0.87 \\
\hline －15．15 & 0.83 \\
\hline －16．29 & 0.82 \\
\hline －18．34 & 0.87 \\
\hline －19．81 & 0.92 \\
\hline －22．82 & 1.03 \\
\hline －24．15 & 1.03 \\
\hline －25．84 & 1.00 \\
\hline －24．11 & 0.98 \\
\hline －27．12 & 1.47 \\
\hline －22．95 & 2.33 \\
\hline －35．85 & 0.50 \\
\hline －31．18 & 0.81 \\
\hline －32．69 & 0.87 \\
\hline －33．86 & 0.73 \\
\hline －34．30 & 0.71 \\
\hline －27．84 & 0.68 \\
\hline －32．09 & 0.72 \\
\hline －37．45 & 0.93 \\
\hline －31．14 & 0.83 \\
\hline －30．85 & 0.70 \\
\hline －30．52 & 0.60 \\
\hline －25．03 & 0.71 \\
\hline －22．80 & 0.65 \\
\hline －15．05 & 1.08 \\
\hline －15．76 & 1.31 \\
\hline －3．05 & 1.41 \\
\hline 4.55 & 1.72 \\
\hline 14.35 & 1.32 \\
\hline 15.37 & 1.07 \\
\hline 20.27 & 1.06 \\
\hline 15.73 & 0.85 \\
\hline 9.65 & 0.79 \\
\hline 18.77 & 0.89 \\
\hline 21.62 & 0.83 \\
\hline 25.04 & 0.74 \\
\hline
\end{tabular}

す36́6131 3366152 3366133 3356134 3366135 3356136 3356137
3356139 \(335613 ?\) 3366145 3366141 3366142 3356143 3366144 3366． 145 3366146 3366147 3366148 3366149 3366159 3356151 3356152 3366153 3356154 33561 5 33E6156 3366157 3356158 3366159 3366150 3366151 3366152 3356153

3367001 3357002 3357023 3367004 3367005 3357306 3357057 3367008 33670 ： 3.357915 3367011 3357012 \(33 \in 7013\) 3357014 3357015 3367015 3367017 3357019 3367019 3367020 3367021 3357022 3357323
3357024
\begin{tabular}{|c|c|c|c|c|}
\hline 33¢870． & 657590. & 117.253 & 27.12 & 0.64 \\
\hline 334050. & 557330 － & 50.789 & －19．05 & 1． 18 \\
\hline 334060. & \(6 \in 7330\). & 50.789 & －19．05 & 1.08 \\
\hline 334490. & 655650． & 157.319 & －13．51 & 1.53 \\
\hline 334990 & 654590. & 151.211 & 4.35 & 1．5E \\
\hline 334980. & ES3950． & 197．064 & 4．51 & 1．83 \\
\hline 336470 。 & 662440 ． & 200.043 & 16.75 & 0.79 \\
\hline 337510. & 553170. & 176.707 & 16.27 & 0.82 \\
\hline 336330. & 653780. & 245.769 & 11.83 & 2.16 \\
\hline 334020. & 653010. & 145.540 & －12．41 & 1.50 \\
\hline 334530. & 662030. & 209.526 & 5.50 & 1.38 \\
\hline 334070 － & 651000 － & 142.256 & 7.18 & 1.22 \\
\hline 333400. & 552030 ． & 127.001 & －12．25 & 1.15 \\
\hline 333000. & 654320 ． & 86．294 & －27．17 & 1.25 \\
\hline 333140. & 665690. & 45.677 & －26．88 & 1.67 \\
\hline 332510． & 655670. & 68.412 & －30．94 & 0.79 \\
\hline 534060 。 & 667330. & 56.389 & －19．05 & 1．08 \\
\hline 334060. & 557330 ． & 50.989 & －19．05 & 1.08 \\
\hline 337790. & 666810. & 169.234 & 25.60 & 1.08 \\
\hline 336990. & 658080． & 117.427 & 22．52 & 0.76 \\
\hline 338070. & 659490. & 152.555 & 32.03 & 1.13 \\
\hline 339660. & 66912 C． & 106.594 & 36.24 & 0.55 \\
\hline 337530. & 66952C． & 149.720 & 26.29 & 1.78 \\
\hline 339630. & 65才930． & 146.526 & 32.48 & 1.09 \\
\hline 335540. & ヒらプ70． & \％4．143 & 12.88 & 1.14 \\
\hline 335850 。 & 659960. & 53.026 & 5.00 & 0.86 \\
\hline 335820. & 6E7990． & \(04.8 \leq 9\) & 3.51 & 1.01 \\
\hline 334550. & 658770． & 43.747 & －5．54 & 0.76 \\
\hline 338880 & 653710. & 145.387 & 15.27 & 0.92 \\
\hline 338630. & 652865 & 161.077 & 13.48 & 1.04 \\
\hline 338650. & 661990. & 152.888 & 7.55 & 1.01 \\
\hline 339090. & 651390. & 233.364 & 4.14 & 1.05 \\
\hline 334060. & 667330. & 50．789 & －19．05 & 1．C8 \\
\hline & NT & 37 & & \\
\hline 338092. & 572830. & 36.713 & 49.37 & 0.85 \\
\hline 337135. & 672105. & 50.281 & 25.92 & 0.83 \\
\hline 336250. & 671200. & 37.471 & 13.50 & 0.78 \\
\hline 335545. & 570300. & 31.933 & 7.86 & 0.98 \\
\hline 336300. & 670725. & 127.202 & 32.52 & 0.83 \\
\hline 339035. & 671165 & 143.005 & 35．57 & 2.09 \\
\hline 338675. & 671820. & 119.539 & 44.82 & 1.32 \\
\hline 330262． & 672490. & 103.501 & 49.35 & 1.09 \\
\hline 338615. & 672775 ． & 53.826 & 61.09 & 1．08 \\
\hline 337700. & 672750 & 32．084 & 43.88 & 0.76 \\
\hline 335710. & 670653. & 149.538 & 33.11 & 1.16 \\
\hline 339925. & 670800 & 122．ê12 & 36．74 & 0.63 \\
\hline 337537. & 673175. & 28．027 & 41.00 & 0.59 \\
\hline 338555. & 673ヲも3． & 26．579 & 71.43 & 0.55 \\
\hline 339500. & 573ころう． & 34.728 & 68．10 & 0.60 \\
\hline 330502. & 671488. & 47.350 & 6.90 & 0.46 \\
\hline 331525. & 671150. & 55.780 & －13．24 & 0.53 \\
\hline 333512. & 670550. & 25.260 & －12．27 & 0.54 \\
\hline 333775. & 671752 ． & 21.350 & －11．25 & 0.49 \\
\hline 330260. & 674470 & 4． 345 & 59.43 & 0.43 \\
\hline 330380. & 674320. & 4.857 & 62.63 & 0.44 \\
\hline 330740 。 & 674080 － & 4.323 & 45.36 & 0.44 \\
\hline \(33: 970\). & \(673 \geqslant 20\). & 4.787 & 4 x .58 & 0.47 \\
\hline 331100 。 & 673830. & 4.573 & 40.73 & 0.50 \\
\hline
\end{tabular}

3367025
3357026
3357227
3367028
3367024
\(336703 ;\)
3367931
3357832
3367033
3357034
3357535
3367036
3367037
3357338
3367039
3369001
3369002
335 シコロ 3
3363004
3369005
33703.1
\(33700 \%\) ？
3370053
3370004
3370035
3375055
3370007
3370008
3370009
3379015
337：011
3370012
3370013
3370014
3370015
3370016
3452001 3462002 3452003 \(34520: 4\) 3462005 3452005 3452007 \(34620: 8\) \(34520=9\) 3462010 3452011 3452012 3452013 3462014 3452015 3452016

3453001 3453302
\begin{tabular}{|c|c|c|}
\hline 1223. & 675760． & 4.446 \\
\hline 331340. & 573560. & 4.509 \\
\hline 331489. & 673560. & 4.509 \\
\hline 331720． & 573410. & 6.276 \\
\hline 331960 。 & 673370 ． & 7.945 \\
\hline 332160 。 & 673380. & 7.121 \\
\hline 332410. & 673320. & 8.182 \\
\hline 332630. & 673150 & \(\varepsilon .003\) \\
\hline 332950. & 673040. & 5.560 \\
\hline 333540. & 672940. & 5.501 \\
\hline 334060 。 & \(672740^{\circ}\) & G． 5 E4 \\
\hline 334510 。 & 672730. & 4.304 \\
\hline 334660. & 572043. & 21.037 \\
\hline 355210. & 571530. & 22.834 \\
\hline 335450. & 579335． & 25.712 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 331300 。 & 675588. & 52.456 \\
\hline 334175. & 638075. & 25.552 \\
\hline 336500. & 699375. & 28.346 \\
\hline 332650. & 675963. & 50.527 \\
\hline 33880. & \(6 \geqslant 4050\) ． & 55.199 \\
\hline 33053 P ． & 700525. & 67.566 \\
\hline 335425. & 790975. & 36． 271 \\
\hline 338363 。 & 70.550. & 6.126 \\
\hline 339100. & 702850 & 49.582 \\
\hline 337850. & 704500 & 97.231 \\
\hline 338250. & 705375. & 17c．718 \\
\hline 338250. & 790050 & 140.543 \\
\hline 335200. & 728800． & 154.259 \\
\hline 334759 。 & 707875. & 184.434 \\
\hline 334200 。 & 705850. & 176.814 \\
\hline 333975. & 704525. & 165．232 \\
\hline & & 30 \\
\hline
\end{tabular}

334450 ．702ラ75．88．422 332005 ．702560． 111.892 332475.705150 ．125．608 33 5550．705820． 143.286 332725．705810．133．j33 NT 42
348525．627577．260．504 349313．624775．242．621 349400.523850 ．183．185 347282．622513．171．602 348813．621450． 211.531 343763．E22450． 225.552 345425．621100．180．442 345463．522575． 252.370 344250．623555．338．407 343188．624700． 262.128 \(340538 \cdot 624557\) ． 181.356 34370 ：6．25300． 155.106 341700 ．629895．152．410 345463．627875．123．749 3462£5．62 3100 ． 117.343 34577\％．629925．136．246， NT 43
345538．635650．122．259 348050．535950．144．562
\begin{tabular}{|c|c|}
\hline 37.70 & 0.53 \\
\hline 31.09 & 0.56 \\
\hline 2f．18 & 0.61 \\
\hline 19.28 & 0.58 \\
\hline 16.04 & 0.56 \\
\hline 13.53 & 0.54 \\
\hline 4.58 & 0.47 \\
\hline 4.51 & 0.43 \\
\hline 3.18 & 0.49 \\
\hline 2.92 & C． 45 \\
\hline 1.46 & 0.45 \\
\hline 3.43 & 0.48 \\
\hline －3．57 & 0.55 \\
\hline －0．57 & 0.58 \\
\hline 4.74 & C． 85 \\
\hline －39．58 & 0.20 \\
\hline －54．07 & 0.31 \\
\hline －69．48 & 0.28 \\
\hline －55．99 & 0.40 \\
\hline －30．53 & 0.78 \\
\hline －23．26 & 0.30 \\
\hline －56．16 & 0.43 \\
\hline －55．11 & 0.35 \\
\hline －45．87 & C． 65 \\
\hline －25．42 & 0.67 \\
\hline －7．77 & 1.03 \\
\hline －3．30 & 0.44 \\
\hline 0.34 & 1.27 \\
\hline －2．89 & 1.55 \\
\hline －5．55 & 1.38 \\
\hline －2．49 & 1.51 \\
\hline －17．44 & 0.58 \\
\hline －12．10 & C． 0.64 \\
\hline 2.30 & 0.45 \\
\hline 5.63 & 1.35 \\
\hline －2．20 & 0.81 \\
\hline 50.26 & 1.11 \\
\hline 47.84 & 0.81 \\
\hline 43.09 & 1.05 \\
\hline 43.07 & 2.07 \\
\hline 45.56 & 1.32 \\
\hline 45.86 & 1.14 \\
\hline 42.85 & 1.98 \\
\hline 50.21 & 0.86 \\
\hline 50.77 & 1.87 \\
\hline 50.48 & 1．9E \\
\hline 47.85 & 2．5 \\
\hline 43.58 & 2.65 \\
\hline 26.35 & 6.91 \\
\hline 43.85 & 2.63 \\
\hline 48.21 & 3.75 \\
\hline 49.35 & 3.13 \\
\hline 36.29 & 3.15 \\
\hline 20.70 & 4.01 \\
\hline
\end{tabular}

34530：3 3463004 3453005 3463305 \(34530: 7\) 3463008 3463009 3453010 3463011 3453012 3453013 3453314 3453015 3453015 3463017 3453318 3453319 3463020 3463021 3453322

3464001 3464002 3454003 3454004 3454005 3464006 3454007 3454308 3464049 3464010 3464011 3464012 3454013 3464014 3464015 3454015 3454017 3464018 3454319

3465001 346 be92 3455003 3455004 3455005 3465006 3455307 3455038 3455009 3465010 3455011 3455012 3455013 3455014 3455915 3455915 3465017
 NT 44
345850.645175 ． 288.950 346017．644600．183．483 34754う．643325． 355.357 34855\％．642155． 340.296 347725．642075． 340988.640438 － 340075． 5412010 ． 340305.542213. 345325． 543005 ． 342339．64550． \(34120!649825\) • 349150． 645895. 341450.645425 ． 347350．649525． 349150.649700 ． 34428？．648310． 344930 ． 645550 ． 345760．644400． 345420.640070 ．

NT 4
345250 ．659410． 371.347 3448с̈と．657625． 345.813 \(344505 \cdot 657300\) ． 322.550 343545．655085． 343125．654445． 34257 © 653575 ． 342700 ．5う234う。 341155 ．653315． 340890.653795. 34：375． 654625 。 340325.554025. 342245.651575 ． 34.9700 ．653505． 222.455 349495．553975． 231.120 349360． 654550 ．220．357 34R75尺．55492シ．240．182 34815u．655275．265．078．
\begin{tabular}{|c|c|}
\hline 15.52 & 5.52 \\
\hline 12.75 & 3.59 \\
\hline 2.25 & 6.86 \\
\hline －1．34 & 1.77 \\
\hline －1．82 & 1.85 \\
\hline 14.26 & 4.34 \\
\hline 2.15 & 1.55 \\
\hline －5．03 & 1.73 \\
\hline 9.53 & 4.73 \\
\hline 20.02 & 2.84 \\
\hline 19.00 & 1.39 \\
\hline －1．96 & 5.72 \\
\hline －9．64 & 2.48 \\
\hline 47.18 & 1.87 \\
\hline 55.94 & 1.87 \\
\hline 3.8 .87 & \(2.1 \epsilon\) \\
\hline 31.55 & 8.40 \\
\hline －4．87 & 1.72 \\
\hline 2.60 & 1.56 \\
\hline 13.45 & 3.74 \\
\hline －14．75 & 1.98 \\
\hline －13．06 & 5.14 \\
\hline －3．83 & 1.80 \\
\hline 8.74 & 1.60 \\
\hline 10.80 & 1.18 \\
\hline －10．94 & 4.36 \\
\hline －14．10 & 4.56 \\
\hline －14．49 & 5.61 \\
\hline －15．51 & 5.18 \\
\hline －24．28 & 1.70 \\
\hline －25．27 & 2．58 \\
\hline －24．89 & 3.35 \\
\hline －17．96 & 4.82 \\
\hline －24．6？ & 1.64 \\
\hline －22．01 & 1.55 \\
\hline －29．85 & 2.91 \\
\hline －26．86 & 4.96 \\
\hline －10．79 & 4.30 \\
\hline －4．49 & 3.85 \\
\hline －23．26 & 2.12 \\
\hline －16．29 & 1.31 \\
\hline －19．31 & 1.05 \\
\hline －7．34 & 3.29 \\
\hline －4．93 & 4.57 \\
\hline －10．81 & 2.74 \\
\hline －10．30 & 1.43 \\
\hline －3． 54 & 4.97 \\
\hline －0．40 & 3.22 \\
\hline 1.31 & 2.54 \\
\hline 1.36 & 2.02 \\
\hline －： 0.92 & 2.65 \\
\hline －33．91 & 1.35 \\
\hline －31．89 & 1.28 \\
\hline －30．65 & 2.16 \\
\hline －32．82 & 2.13 \\
\hline －28．51 & 1.80 \\
\hline
\end{tabular}

34ETOIE 345501 c
345 うこ2？
3465021
3455022
3455023
3455524
3465025 3465026 3455327 3455528 3455020 345 こ030 3455031
3455932
3455033
34 65034
34560 む̃ 1
\(34560: 2\)
346 EOS 3
3456304
3455095
3466005 34560.7

3466353 \(34660: 9\)
3466010
3466011 346651 ？ \(34550: 3\) 3466014 34 EGO 15 3456015 34660：7 3466018 3466019 3466020 3465021 3466022 346ヒ023 3456024 3455225 3466025 3466027 3456 j 28 346 F： 29 345EO20 3456031 3456032 3456033 3456034 3456035 3456035 3456037 3455038 3466039
 NT 4
345725．658587．103．556 348210．659815．79．542 348245 ． 658350 ． 99.859 347465 ．657350．133．816 349675．655260． 34929 2．656900． 348150．6E5050． 347175 －653950． 348538.653580 ． 349198.653460 。 346800 EE14CO． 346120 ． 657405 ． 34540 5． 655125 ． 344975 ．667500． 341710.668600 ． 341525.657500 34050 Je 657550 340075. 342720 。 343425 。 3442 GU． 345905 ． 345405 。 34444 今． 343650 。 341475 ． 34075 i． 340825 。 34：195． 342315 ． 342725 ． 34335 j ． 34345 ！ 344075 。 344410 。 344563 ． 341409. 340788 344825.553200 ．

655912 。 667535 ． 554950 ． 654412 652970 662175 550263. 65ころ7う 652138 662770 653510． 654425 552725 ． \(661 \geqslant 65\) ． 652545． 653950 555565 。 6ES462． 651350 。 650750 ．
215.358 236.429 239.957 90.309
208.437
162.42 G
147.101
174.047

192．7E1
203.535
220.458
34.467
157.771
111.785
99.282
84.145
156.383
134.557

136．587
167．3．35
169.752
167.374
199.620
251.447

236．835
192．132
202．482
203.753
169.015
185.512
208.483

1 ب． 4.216
187．709
159.106
130.247
－
\begin{tabular}{|c|c|}
\hline －18．04 & 1.60 \\
\hline －27．90 & 1.97 \\
\hline －23．10 & 0.96 \\
\hline －15．06 & 1.15 \\
\hline －12．47 & 8.47 \\
\hline －17．44 & 2.25 \\
\hline －25．58 & 1.49 \\
\hline －17．22 & 1.12 \\
\hline －3．63 & 1.57 \\
\hline －2．33 & 1.27 \\
\hline 2.52 & 1.33 \\
\hline 7.08 & 1．06 \\
\hline 2.56 & 2.59 \\
\hline 3.00 & 3.19 \\
\hline －17．05 & 2.62 \\
\hline －3．44 & 2.72 \\
\hline －24．98 & 2． 56 \\
\hline 6.58 & 0.76 \\
\hline 10.85 & 0.81 \\
\hline C． 83 & 0.92 \\
\hline －7．92 & 0.94 \\
\hline －22．34 & 1.55 \\
\hline －17．71 & 0.88 \\
\hline －21．71 & 1． 34 \\
\hline －23．03 & 1.15 \\
\hline －22．58 & 1.52 \\
\hline －32．77 & 2.03 \\
\hline －21．83 & 1.68 \\
\hline －4．15 & 1.14 \\
\hline －14．68 & 1．0．4 \\
\hline 3．08 & 0.74 \\
\hline 28.43 & 0.57 \\
\hline 34.57 & 0.47 \\
\hline \(28 \cdot 12\) & 0.64 \\
\hline 21.29 & 0.61 \\
\hline 15.12 & 1.05 \\
\hline －13．02 & 0.66 \\
\hline －24．\({ }^{\text {c }}\) & 0.77 \\
\hline －31．96 & 1． 21 \\
\hline －34．30 & 1．08 \\
\hline －9．17 & 1.27 \\
\hline －10．54 & 1.09 \\
\hline －14．44 & 0.95 \\
\hline －4．61 & 0.76 \\
\hline － 5.64 & 0.70 \\
\hline 10.56 & 0.80 \\
\hline －17．10 & 1.01 \\
\hline －24．14 & C． 75 \\
\hline －25．90 & 0.93 \\
\hline －21：33 & C．78 \\
\hline －19．43 & 0.74 \\
\hline －7．82 & 0.70 \\
\hline －15．86 & 1.07 \\
\hline －15．23 & 0.76 \\
\hline －4．56 & 0.80 \\
\hline 24.42 & 0.54 \\
\hline
\end{tabular}

3457011 \(34 \leq 72: 2\) 3457013 3457054 3457305 3457296 3467067 3457008 3457055 3457010 3467011 3467012 3457013 3457014 3457015 3467016 3457017 3457018 3467019 3467020 3457021 3457922 3457023 3457024 3457325 3467326 3467027 3467028 3457027 3457020 3457031 3467032 3457033 3467034 3457035 3467036 3457037 3457038 3457039 3467040 3467941 3467042 3457043 3467044 3467045 3457046 3467047 3467048 3457045 346705 ？ 34670 E1 3467052 34570 こう

3458001 34680 こ． 2 3458003
\begin{tabular}{|c|c|c|c|c|}
\hline 34．：273． & 672925. & －2．351 & 51.74 & 0.70 \\
\hline 3418．25． & 671790. & 53．098 & 45.87 & 0.30 \\
\hline \(34285 \%\) 。 & 670787． & 2e． 400 & 42.97 & 0.4 \\
\hline 343475 • & 67＠063． & 151.408 & 32.18 & 0.4 \\
\hline 345063 ． & 673375. & 51.712 & 29．36 & 0.5 \\
\hline 347575. & 671550. & 87.478 & 32.62 & 0.4 \\
\hline 349350. & 672525. & 61.431 & 31.77 & 0.61 \\
\hline 349150. & 675563. & 78.326 & 77.06 & 0.56 \\
\hline 34323 － & 677837. & 32.262 & 04.93 & 0.48 \\
\hline 347637. & 578337. & 19．043 & 98．67 & C． 39 \\
\hline 347048. & 679412. & 12.130 & 111.14 & 0.25 \\
\hline 34220：。 & S75738． & 10.543 & 106.14 & 0.27 \\
\hline 343125. & \(672 \pm 12\). & 2.4 .525 & 57.15 & 0.42 \\
\hline 343725. & 672575. & 91.737 & 53.27 & 0.51 \\
\hline 343512 。 & 671980. & 124.790 & 47.66 & 0.72 \\
\hline 344575. & 672258. & 115.159 & 43.5 ？ & 0.50 \\
\hline 344493. & 673800. & 75.370 & 69.77 & 0.47 \\
\hline 344663. & 674375. & E7．435 & 75.24 & C． 44 \\
\hline 345550. & 675812. & 61.902 & 77.20 & 0.55 \\
\hline 345157 。 & 674700. & 78．341 & 74.27 & 0.41 \\
\hline 346950. & 673975. & 96．713 & 55.00 & 0.41 \\
\hline 345325． & 673705. & 95.344 & 57.08 & 0.42 \\
\hline 345325. & 673275. & 107.020 & 55.92 & C． 52 \\
\hline 345350. & 671225. & 118.511 & 37.04 & 0.48 \\
\hline 344575. & 570112. & 105.561 & 27.87 & 0.45 \\
\hline 3432030 & 674163. & 35.701 & 67.11 & 0.58 \\
\hline 340875. & 674400 ． & 32.115 & 71.52 & 0.55 \\
\hline 341375 。 & 674738. & 28．651 & 75.76 & 0.53 \\
\hline 342275. & 575020. & 31.121 & 80.69 & 0.51 \\
\hline 344137. & 675ヲ38． & 25.220 & 86． 17 & 0.52 \\
\hline 344490 ． & 575438. & 43.112 & 34.75 & 0.45 \\
\hline 344450 。 & 576787． & 13.590 & 107.70 & 0.42 \\
\hline 34552 & 677125. & 33.458 & \(\geqslant 3.08\) & 0.54 \\
\hline 347162． & 677350 & 37.936 & 91.13 & C． 70 \\
\hline 347402． & 676888. & 76.161 & 91.55 & 0.68 \\
\hline 342375. & 671225. & \＆ヒ． 776 & 48.27 & 0.39 \\
\hline \(34595 \%\) & 671025. & ？1．381 & 31.75 & 0.52 \\
\hline \(34838 \%\) 。 & 671988. & 78.163 & 33.62 & 0.50 \\
\hline 348541. & 673550. & 61.314 & 45.78 & 0.48 \\
\hline 348475. & 674370. & 95.058 & 60.44 & 0.45 \\
\hline 34：438． & 674975. & 100.713 & 67.39 & 0.61 \\
\hline 346403. & 678835. & 11.418 & 111.61 & C． 27 \\
\hline 3451705． & 670750 & 104.376 & 40.98 & C． 44 \\
\hline 341525. & 670540. & ¢ 1.324 & 40.80 & 0.40 \\
\hline 348559. & 670975. & 62.151 & 20.08 & 0.70 \\
\hline 347895. & 671460. & 52.545 & 18.44 & 0.80 \\
\hline 34－287． & 675587. & 8.159 & 83.81 & C． 37 \\
\hline 341462 ． & 675850. & 4.952 & 85.07 & 0.43 \\
\hline 3423 ¢5． & ら75ヲ12． & 4.768 & 85.87 & 0.52 \\
\hline 343705. & \(676 E 57\). & 4.113 & 76.59 & 0.45 \\
\hline 344160 ． & 677435. & 4.727 & 101.95 & C． 35 \\
\hline 344332. & 6787 ¢7． & 6.358 & 112.67 & 0.25 \\
\hline 345460 ． & 679312. & 8.708 & 115.41 & 0.21 \\
\hline & NT & 48 & & \\
\hline 348595. & 590925. & 7.027 & 102.23 & 0.21 \\
\hline 349325． & 581117. & 8.307 & 106.14 & 0.21 \\
\hline \(34583 \%\) 。 & 631725. & 14.388 & 73.95 & 0.17 \\
\hline
\end{tabular}

34 5とにこ 4 3458005 3468006 34520 0． 7 3468058 3458009 3458010 3458011

3470001 \(34700<2\) 3470003 34700 C 4 3470005 3470006 3470007 3470068 3470009 3470010 3470011 3470012 3470013 3470014 3470015 \(34753: 6\) 3470017

3562021 3562052 3552003 35620 i4 3562005 3552006 3562507 3552008 3552005 3552010 3562011 3562012
3552013
3552014 3552015 3552016 3552017 3552018 3552019 3562020 55520？1 3562022 3552023 3552024 3う520 25

35530 ：1 3563002 35533 ？ 3 3563：こ4
\begin{tabular}{|c|c|c|}
\hline 345551. & 62n135． & E．130 \\
\hline 34775 し． & 681112. & 7.594 \\
\hline 348088. & 632575. & 25.667 \\
\hline 344970 。 & 630075. & 10.223 \\
\hline 345550． & \(63: 475\). & O．COO \\
\hline 345350. & 630512． & 0.020 \\
\hline 345050. & 680450. & 0.020 \\
\hline 347487 。 & 692787. & 64.102 \\
\hline \multicolumn{3}{|c|}{NO 40} \\
\hline 340113. & 708213． & 182.040 \\
\hline 342613. & 707936 & 178.350 \\
\hline 344563 。 & 707900. & 207.060 \\
\hline 346375. & 707775. & 185.554 \\
\hline 345813. & 706065. & 144.841 \\
\hline 346150. & 704625． & 145.755 \\
\hline 343892. & 704750. & 73.518 \\
\hline 346875. & 703288. & 39.075 \\
\hline 347388． & 701310. & 13.137 \\
\hline 344838. & 713095. & 49.040 \\
\hline 342365 。 & 733140. & 29.527 \\
\hline 341700 。 & 704775. & 81.412 \\
\hline 342063. & 705300. & 84.040 \\
\hline 344513. & 705125. & 167.040 \\
\hline 34 ころ25． & 702575. & 19.568 \\
\hline 34985 ］． & 7982s0． & 174.060 \\
\hline 349825. & 702100. & 17.270 \\
\hline \multicolumn{3}{|l|}{NT 52} \\
\hline 354255 。 & E27450． & 171．507 \\
\hline 353850. & 525213. & \(129.5=8\) \\
\hline \(35 ¢ 125\). & 629100. & 260.900 \\
\hline 355575． & 628325. & 142.546 \\
\hline 3う4らこ0． & 627263. & 139．598 \\
\hline 356059. & 625875. & 122.834 \\
\hline 354800. & 625138. & 145.799 \\
\hline 355675． & 623525. & 148.133 \\
\hline 355500. & 622375. & 187.452 \\
\hline 35645 ： & 621157. & 159.459 \\
\hline 354525． & 620300. & 131.978 \\
\hline 354038. & 621775. & 160.530 \\
\hline 353390． & 623100. & 193.548 \\
\hline 352775. & 624550. & 138.379 \\
\hline 3512\％2． & 623138. & 193.243 \\
\hline 350075． & 624775. & 216.408 \\
\hline 352792． & 627500. & 185.546 \\
\hline 355952. & 629300. & 119.177 \\
\hline 358910. & 628155. & 136.246 \\
\hline 357567 。 & －625375． & 128.216 \\
\hline 355375 。 & 625050． & 114.300 \\
\hline 357575 • & \(6 \geq 5 \leq 50\). & 158.814 \\
\hline 359338． & － 525257 。 & 115.738 \\
\hline 358500. & －624100． & 172.922 \\
\hline 359638. & －629523． & 285．302 \\
\hline \multicolumn{3}{|l|}{NT 53} \\
\hline 359313. & －639275． & 126．757 \\
\hline 357275 。 & －638520． & 109.156 \\
\hline 357000 。 & －637520． & 136.550 \\
\hline 355075. & ． 63872 & 166.726 \\
\hline
\end{tabular}
\begin{tabular}{rr}
117.17 & 0.21 \\
103.45 & 0.23 \\
96.01 & 0.32 \\
117.55 & 0.17 \\
121.37 & 0.15 \\
123.00 & 0.18 \\
123.07 & 0.17 \\
95.22 & 1.46 \\
& \\
-3.40 & 1.32 \\
-5.06 & 0.73 \\
-7.02 & 1.63 \\
-6.61 & 0.78 \\
-1.80 & 0.67 \\
-2.71 & 1.86 \\
12.15 & 0.75 \\
3.33 & 1.12 \\
5.09 & 0.28 \\
-14.41 & 1.16 \\
-30.87 & 1.72 \\
-31.35 & 1.26 \\
-0.81 & 1.59 \\
-13.90 & 1.31 \\
-44.09 & 0.60 \\
17.84 & 0.58 \\
18.20 & 0.31
\end{tabular}
\begin{tabular}{ll}
55.15 & 0.53 \\
45.77 & 0.68 \\
53.43 & 0.68 \\
54.30 & 0.52 \\
52.46 & 0.51 \\
48.75 & 0.42 \\
45.79 & 0.42 \\
44.83 & 0.39 \\
63.11 & 0.55 \\
35.13 & 0.93 \\
45.21 & 0.63 \\
44.20 & 0.46 \\
43.75 & 0.45 \\
45.48 & 1.08 \\
48.36 & 1.27 \\
45.19 & 0.60 \\
55.75 & 0.97 \\
55.84 & 0.67 \\
42.50 & 0.31 \\
47.03 & 0.31 \\
58.51 & 0.60 \\
37.87 & 0.50 \\
34.14 & 0.68 \\
\(41.4 \epsilon\) & 0.75 \\
54.83 & 1.44 \\
& \\
35.00 & 0.74 \\
38.74 & 1.94 \\
39.33 & 1.78 \\
31.06 & 1.40
\end{tabular}

35もことい5
35630： 6 3こちううも7
\(35630: 8\)
35630 ！．9
3563010
3553011
3553012
3553013
3563014
3553015
35530：5
3553017
3563018
3553015
355302？
3563021
3563022
3553023
3553024
3553025
3563026
3553027
355ここ28
3563029
3ちも30こう

3554031
35640 ：2
\(3564 \mathrm{C}: 3\)
35540 ：4
35640 ：5
3564046
\(35640 \div 7\)
3554008
\(35540: 5\)
3564010
3564011
3564012
3554013
3564014
3564015
3554015
3554017
3554018
3554019
3564020
3554221
3564C22
3564023
3554024
3554925
3564025
35640 2́7
3554028
3564529
3564030
3554031

3564032
3554 533
3554034
3564035
3564035
3564037
3564038
3564039
3564040
3554041
3564042
3564043
3554044
3554045
3564045
3564047
3564048
3564040
3564050
3564051
3564052
35640 こ3

35E5001
35650 ：2
\(35650: 3\)
3565054
35650 ［5
3555006
\(35650: 7\)
3565048
3565019
3565310
3565011
3555012
3555013
3555014
3565015
3565015
3565017
3555018
3555015
3565020
3565021
3565922
3565023

356E0J1
3566302
3565：－3
3566084
3566005
3566006
3565057
3566008
3566069 355601 ？
356EJ11

350530．654375．252．374
251550．657175．255．118
35 2045．653150． 35130ن゙．655490． 351300 ．651650． 350725 －651335． 350295．552200． 351500 ． 650900 。 350810 ． 653400 ． 351525．55272う。 352430：651650． 35264 © 651175． 35310 。650375． 3ミ3275．óう1880。 356750．65．3050． 3う7392．554501． 355605．555125． 354525．654413． 35475 ．651225． ふう3775•652975• 352525.655800 ． 353750 。 ó 5 ड 375 。 356025．555750． NT 55
35335こ．66505C．200．860 353415．554880．207．160 353150．654805．209．850 352480．654720．210．560 351550．654750．211．730 350ラ75．654270． 351115．65う275． 351475 •655585． 350895．665585． 3う0020．654305． 350065．655375．

215．018 240.955 259．086 184.319 106．701 217．ヨマ3 207．337 1：1．055 227．727 235．3 56 270.357 214.629 182．7ミ1
255．550
193.953
180.746 149.962 231．343 230.429 176.16 ？ 144.585 263.348 252.374
255.118 359.354 234．391 189.850 202.592 205．435 187.411 202.581 21 － 770 212．141 191.326 \(198.4 \in 1\) 363．017 367.285 409.550 448.056 413.514 382.827 388． 225 50：－020 347．400 445.000 222．200 194.700 182． 710 186.430 191.710 ：55．476
\begin{tabular}{rr}
4.93 & 6.75 \\
4.03 & 0.38 \\
-30.16 & 1.22 \\
-15.85 & 1.46 \\
-20.30 & 1.46 \\
-8.88 & 0.85 \\
0.45 & 1.20 \\
10.62 & 1.26 \\
0.47 & 0.74 \\
3.00 & 0.73 \\
-2.35 & 1.25 \\
13.92 & 0.90 \\
15.57 & 0.77 \\
27.55 & 0.93 \\
22.83 & 0.64 \\
23.66 & 0.65 \\
31.25 & 0.51 \\
24.28 & 1.25 \\
18.71 & 0.91 \\
9.85 & 1.20 \\
9.25 & 1.52 \\
-2.71 & 1.52
\end{tabular}
\begin{tabular}{rr}
-29.48 & 1.43 \\
-41.97 & 4.54 \\
-36.60 & 1.59 \\
-31.87 & 4.21 \\
-39.55 & 1.35 \\
-36.59 & 1.38 \\
-34.15 & 1.41 \\
-32.84 & 1.35 \\
-46.53 & 2.34 \\
-43.91 & 1.50 \\
-44.13 & 1.68 \\
-39.94 & 1.76 \\
-33.71 & 1.38 \\
-5.19 & 2.35 \\
-15.36 & 1.64 \\
-21.86 & 2.25 \\
-28.79 & 3.58 \\
-30.92 & 3.28 \\
-23.26 & 7.36 \\
-34.20 & 4.47 \\
-34.59 & 10.10 \\
-32.71 & 3.97 \\
-24.26 & 2.46
\end{tabular}
\begin{tabular}{ll}
-12.17 & 1.93 \\
-12.18 & 2.02 \\
-11.59 & 2.10 \\
-12.41 & 2.20 \\
-13.61 & 2.20 \\
-15.56 & 2.52 \\
-25.39 & 1.56 \\
-27.54 & 1.52 \\
-29.77 & 1.33 \\
-22.40 & 1.48 \\
-22.30 & 1.20
\end{tabular}

356FOU12 \(356 \in \mathbb{C} 13\) 3556914 35 56015
3566015
3566017
3566018
3556019
3566020
\(356 \in \mathbb{2} \geq 1\)
3556022
35660 ？ 2
3566024
3566025
3565025
3556027
3566028
3566027
3556030
3556031
3565 C 32
35660.33

3566034
3566035
3556036
356E037
3556038
3555037
3566240
3556041
3556542
3555043
3566044
3566045
3556046
3556047
3566048
3566049
3566050
3565051
3565052
3566053
3556054
35560 55
3566055
3566057
355605 2
3566059
3565050
3566061
3566052
3556063
3566054
3566065
3555055
3566057
3566058
\begin{tabular}{|c|c|c|}
\hline & 65うこ20． & 177.27 C \\
\hline 3515 & 666．605． & 148．\({ }^{1270}\) \\
\hline 353218 & 657305 & 127.960 \\
\hline 3うろう7う。 & 657010. & \(134 \cdot 110\) \\
\hline 353650 & 565690. & 146.200 \\
\hline 353669 。 & 655780 & \(174 \cdot 760\) \\
\hline 35427 － & 655570 & 185.530 \\
\hline 3545 & E55280 & 2．5．010 \\
\hline 35437 & 654700 & 217．960 \\
\hline 3540 & 65402 C & 253.320 \\
\hline 3535リ0． & 653210 & 305.310 \\
\hline \(35390 \%\) & 653550 & 277．06＝ \\
\hline 353585． & 659115 & 123.910 \\
\hline 354025 。 & 65：180 & 134.460 \\
\hline 334175 。 & 658410 & 145.300 \\
\hline 354775. & 658290 & 173.120 \\
\hline 3550C：。 & 668180 & 127.520 \\
\hline 35599. & 667525 & 189．500 \\
\hline 356520 。 & 657505 & 198.170 \\
\hline 356810. & 657230 & 213.590 \\
\hline 35744 － & 657075 & 220.450 \\
\hline 358970 & 665730 & 262.330 \\
\hline 359700. & 655425 & 270.120 \\
\hline 354490. & 555780 & 352.040 \\
\hline 35744 ］． & 657075 & 220.450 \\
\hline 358970． & 666730 & 262.330 \\
\hline 355000 。 & 557260 & 157.520 \\
\hline 35728 2． & 557072 。 & 202．510 \\
\hline 356965. & 655510 & 20E．280 \\
\hline 35625．j． & 555850 & 195.520 \\
\hline 355720． & 655760 。 & 186.340 \\
\hline 35554 & 655820 。 & 180.390 \\
\hline 355525. & 655225. & 178.550 \\
\hline 355170 。 & 655605. & 153.940 \\
\hline 354975. & 655500. & 224.220 \\
\hline 35354 ？ & 659725. & 128．530 \\
\hline 35353） & 659520. & 129．540 \\
\hline 353415 。 & 665790. & 107.290 \\
\hline 353430. & \(65: 330\). & 109.730 \\
\hline 253900． & 655320. & 178．310 \\
\hline 354120 。 & 655820 ． & 171.300 \\
\hline 352575 。 & 667070 & 144.090 \\
\hline 351415. & 658180. & 128.710 \\
\hline 351775 。 & 657780. & 110.350 \\
\hline 35120．0． & 559715 。 & 116．780 \\
\hline 35372\％ & 663860 & 130.000 \\
\hline 35339 ？ & \(55 \geqslant 180\) & 124.260 \\
\hline 35342 & 657020． & 115．720 \\
\hline 35341 j & 658550 & 104.410 \\
\hline 35347 。 & 668100． & 113.200 \\
\hline \(35326 \%\) 。 & 657390. & 108.070 \\
\hline 353045 & 657530. & 123.333 \\
\hline 358956 & 555130. & 422．757 \\
\hline 353250． & 654325. & 410.565 \\
\hline 3うヲヲ75． & 654885. & 390.449 \\
\hline 352859 。 & 551950. & 487.320 \\
\hline 355500. & 653562． & 481.500 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline －29．73 & 1.34 \\
\hline －27．39 & 1.40 \\
\hline －19．33 & 1.64 \\
\hline －22．46 & 1.64 \\
\hline －25．13 & 1.68 \\
\hline －26．95 & 1.72 \\
\hline －10．19 & 2.02 \\
\hline －8．64 & 1.81 \\
\hline －11．24 & 2.02 \\
\hline －21．73 & 1.81 \\
\hline －24．76 & 2.95 \\
\hline －22．21 & 2.60 \\
\hline －12．66 & 1.51 \\
\hline －11．17 & 1.62 \\
\hline －12．85 & 1.57 \\
\hline －9．97 & 1.70 \\
\hline －7．32 & 1.82 \\
\hline 8.53 & 2.35 \\
\hline 12.08 & 2．57 \\
\hline 13.97 & 2．90 \\
\hline 12.04 & 2．98 \\
\hline 6.04 & 2.98 \\
\hline 3.60 & 2．50 \\
\hline －10．27 & 3.00 \\
\hline 12.39 & 2.98 \\
\hline 6.26 & 2.98 \\
\hline －5．75 & 3.13 \\
\hline 13.69 & 2．88 \\
\hline 8.05 & 2．71 \\
\hline 2.70 & 2．70 \\
\hline －1．86 & 2.47 \\
\hline －3．47 & 2．21 \\
\hline －1．15 & 2．04 \\
\hline －5．43 & 1.87 \\
\hline －7．35 & 1.90 \\
\hline －4．20 & 1.11 \\
\hline －7．32 & 1.13 \\
\hline －12．58 & 1.44 \\
\hline －13．58 & 1.55 \\
\hline －18．35 & 1.71 \\
\hline －7．80 & 2.01 \\
\hline －22．14 & 1.35 \\
\hline －17．99 & 0.95 \\
\hline －18．66 & 1．38 \\
\hline \(-13.61\) & 1．08 \\
\hline －6．00 & 1.13 \\
\hline －10．47 & 1.19 \\
\hline －2．57 & 1． 24 \\
\hline －13．87 & 1.57 \\
\hline －13．51 & 1.54 \\
\hline －15．52 & 1．81 \\
\hline －15．76 & 1.46 \\
\hline －6．03 & 5.59 \\
\hline 1.21 & 3.98 \\
\hline －9．57 & 2.20 \\
\hline －39．8E & 7.15 \\
\hline －23．26 & 3.51 \\
\hline
\end{tabular}

35818\&. \(567338 \cdot \quad 268.834\)
\begin{tabular}{|c|c|}
\hline 13.54 & 4.48 \\
\hline 21.70 & 0.68 \\
\hline 18. \({ }^{\text {P }} 7\) & 0.58 \\
\hline 15.95 & 0.67 \\
\hline 14.42 & 0.68 \\
\hline 7.73 & 0.82 \\
\hline 1.68 & ¢. 51 \\
\hline -0.17 & 1.12 \\
\hline -1.52 & 1.17 \\
\hline -5.64 & 1.12 \\
\hline - 0.82 & 4.35 \\
\hline 8.71 & 5.03 \\
\hline 0.51 & 1.13 \\
\hline -5.57 & 1. 28 \\
\hline -2.76 & 2.27 \\
\hline 4.23 & 1.42 \\
\hline -3.27 & 1.28 \\
\hline -2.94 & 1.10 \\
\hline 0.84 & 1.04 \\
\hline 15.79 & 1.37 \\
\hline 25.73 & 0.70 \\
\hline 45.26 & 0.59 \\
\hline 57.08 & 0.41 \\
\hline 35.06 & 0.70 \\
\hline 4 ミ.83 & 0.63 \\
\hline 59.95 & 0.56 \\
\hline 32.26 & 0.86 \\
\hline 52.94 & 0.95 \\
\hline 6C. 20 & 1.12 \\
\hline 93.12 & 0.47 \\
\hline 96.89 & 0.58 \\
\hline 87.37 & C.97 \\
\hline 77.71 & 0.52 \\
\hline 54.35 & 1.86 \\
\hline 45.03 & 1.15 \\
\hline 43.43 & 0.78 \\
\hline \(7 \geqslant .71\) & 0.68 \\
\hline 71.55 & C. 85 \\
\hline 72.32 & C. 57 \\
\hline 67.00 & 0.59 \\
\hline \(5 シ .01\) & 0.41 \\
\hline 83.57 & 0.4 C \\
\hline 85.07 & 0.45 \\
\hline 75.05 & 0.40 \\
\hline 4 \%.31 & 0.66 \\
\hline 35.53 & 0.88 \\
\hline 25.96 & 0.77 \\
\hline 14.56 & 0.75 \\
\hline 17.87 & 0.94 \\
\hline \(1 \leq .43\) & 0.97 \\
\hline 5.34 & 1. 25 \\
\hline 7.88 & 1.04 \\
\hline 5.5? & 1.17 \\
\hline 3.5 & 1.50 \\
\hline -5. - \(^{0}\) & 2.34 \\
\hline 4.03 & 1.75 \\
\hline \(1 \cdot 79\) & 1.78 \\
\hline
\end{tabular}

3567257
3557058
3567059
355735？
3557051
3567052
3567063
3557054
3567955
3557056
3567067
3557058

3567070
3567071
3567072

3568001 35680 ［2
3558003
3558004
3558005
\(35680: 55\)
35583う7
3558058
35580 Cg
3568010
3554011
3558312
3558013
3568014
3558015
3558015
3568017
3568018
3558919
3568020
3568021
3568022
3558023
3568024
3568025
3568026
3558027
3568928
3568029
3568030
3558031

3570001 \(35700 \div 2\)
3570003
3570204
3570905
3570046
3570007
3570028
\begin{tabular}{|c|c|c|c|c|}
\hline \(3585 \leq 8\) & 671575. & 135．413 & －4．88 & 2.44 \\
\hline 3509905 & 671093. & 146.384 & －2．97 & 2.44
3.36 \\
\hline 355300. & 671812 & 99.339 & 2.26 & 1．33 \\
\hline 355303. & 675380. & \(\bigcirc 0.378\) & 24.33 & 1.26 \\
\hline \(35753 \%\) & 675600. & \(9 C .725\) & 22.96 & 1.44 \\
\hline 358292. & 575812. & 57.585 & 23.06 & 0.81 \\
\hline 358645. & \(675 \geqslant 25\). & 39.840 & 22.87 & 0.93 \\
\hline 35＇855． & 671187. & E4．561 & 2.25 & 0.84 \\
\hline 350780. & 570180. & 77.999 & 0.72 & －． 84
C． 89 \\
\hline 351400 。 & 671350. & 58.289 & 7.25 & 0.89
0.08 \\
\hline 352220. & 672150. & 59.566 & 5.92 & 0.82 \\
\hline 351940. & 673100. & 62.709 & 21.53 & 0.65 \\
\hline \(35095 \%\) & 672413. & 55．248 & 22.05 & c． 75 \\
\hline 354075. & 675112. & 79.553 & 42.63 & 0.75 \\
\hline 354162. & 577600. & 48.592 & 55.03 & 0.48 \\
\hline 354 i 37 。 & 679087. & 34.506 & 75.75 & 0.42 \\
\hline \multicolumn{5}{|r|}{NT 58 （ 0.42} \\
\hline 350340 。 & 651858. & 22．765 & 92.44 & 0.30 \\
\hline 35124. & 632195. & 32.940 & 85．88 & 0.45 \\
\hline 351300． & 691725. & 30.100 & 91.37 & 0.43 \\
\hline 551095. & 630585. & 9．338 & 94.79 & C． 30 \\
\hline 351158. & 681162 ． & 15.274 & 91．51 & 0.22 \\
\hline 350685. & 683432. & 37.146 & 83.33 & 0.22 \\
\hline 351650 & 632575. & 25.044 & 80.01 & 0.15 \\
\hline 352875. & 632355 。 & 35.504 & 8ミ． 77 & U．18 \\
\hline 354220 。 & 682300. & 75.343 & 90.51 & 2.21 \\
\hline 354100. & 681400 & 46.833 & 20.48 & 0.42 \\
\hline 355740 － & 633050. & 63.014 & 59.17 & 0.33 \\
\hline 354.885 。 & 693367. & 59.554 & 73.75 & 0.31 \\
\hline 355135 。 & 693975. & 56.048 & 70.24 & 0.40 \\
\hline 354517 。 & 695287 ． & 14.088 & 68.79 & 0.40
0.31 \\
\hline 351590. & 685615． & 5.327 & 72.78 & 0.09 \\
\hline 353665. & 691426 & 25.575 & 45.53 & 0.62 \\
\hline 358820. & 690810. & 49．310 & 43.51 & 0.69 \\
\hline 359300. & 680100. & 11.274 & 32.81 & 0.46 \\
\hline 357512. & 631765. & 52.752 & 58.46 & 0.30 \\
\hline 35712 e & 532775. & 40.440 & 51.29 & 0.51 \\
\hline 357960. & 633020. & 35.774 & 57.29 & 0.30 \\
\hline 356725. & 633475. & 59.421 & 60.84 & 0.29 \\
\hline 351455. & 633962. & 26.208 & 84．78 & 0.20 \\
\hline 352337 • & 694512. & 17.586 & 83.26 & C． 14 \\
\hline 353962. & 685112. & 22.272 & 72.46 & 0.20 \\
\hline 357887. & 695137. & 45.036 & 52.98 & C． 56 \\
\hline 353075.
350927. & 694762. & 30.828 & 52.88 & 0.27 \\
\hline 359937.
354325. & 683512. & 19.780 & 51.89 & 0.42 \\
\hline 354325 • & 630325. & 19.108 & 79.50 & 0.33 \\
\hline 35630 斤。 & E81013． & 48.703 & 70.07 & 0.44 \\
\hline 358275 。 & 631475. & 53.302 & 65.19 & 0.35 \\
\hline \multicolumn{5}{|r|}{N0 50 0．35} \\
\hline 35270 ¢。 & 702575. & 22.030 & 17.30 & \\
\hline 354375. & 702675. & 27．050 & 13.24 & 0．22 \\
\hline 354025. & 704250 ． & 35．397 & 21.72 & 0．24 \\
\hline 354550. & 705063. & 55.199 & 24.32 & 0． 34 \\
\hline 354575 。 & 708513. & 113.447 & 15.15 & 0．39 \\
\hline 352725. & 708100. & 134.030 & 15.35 & 0.39
0.53 \\
\hline 353075 • & \(70 \leq 550\). & 92.060 & 24．08 & 0.58 \\
\hline \(3520 \in 3\). & \(7 \% 4800\) 。 & 52.050 & 22.20 & 0．50 \\
\hline
\end{tabular}

3578005 3570512 357．311 3570012 3570913 3570014 3570315 3570015

3662001 36520 0 2 \(36 \leq 20: 3\) 3662034 3562005 3652006 3662007 3652058 \(36620: 9\) 3552010 3662011 3652012 3652013 3も62114 3652915 3652016 3662017 3652013 3552019

3652020 3662021

3653 こ． 1
3663062
3563003
3663004 3563005
3663006
3653007 3553028 3663009 3663010 3653011 3663012 3553013 3653014 3553015 3663015 3653こ17 3553018 3663019 3653020 3653021 3653022 3663023 3653024 3653025 3653026 3663027
\begin{tabular}{|c|c|c|}
\hline 351016 & 7 フロ520。 & 12を．ことし \\
\hline 3こ6せ2E & 708900. & 58.050 \\
\hline 3う7200 & 707563. & 71.384 \\
\hline 35 ジ25． & 7 78363． & 64.040 \\
\hline 3 3 70 亿 & 705115. & 32.040 \\
\hline 355850 & 703500. & 19.050 \\
\hline 351125 & 701300. & 19.942 \\
\hline 350875. & 73.3550. & \(\geq 3.100\) \\
\hline & NT & 52 \\
\hline \(36 \mathrm{~S} 55 \%\) & 628750. & 134.112 \\
\hline 35273！． & 623505 & 110.333 \\
\hline 351075． & 625863 ． & 148．000 \\
\hline 354325 ． & 625675. & 145.594 \\
\hline \(3 \leq 325 \%\) & 624230 & 154.534 \\
\hline 355こ63． & 623325． & 116.129 \\
\hline 3¢4935． & 62 5090 & 93.578 \\
\hline 350975 。 & 522900． & 96． 258 \\
\hline 351675 。 & 621335. & 129.000 \\
\hline 353590 & 521030 & 216.40 E \\
\hline 355595 & S20475． & 122.225 \\
\hline 367415 & 620313． & 195.072 \\
\hline 358785 & 621738. & 119.000 \\
\hline 35 こう00 & 620595. & 95.707 \\
\hline 359020 & 624760. & 59.741 \\
\hline 357560 & 522800. & 141.000 \\
\hline 355038 & 622225. & 121.006 \\
\hline 355425 & 623513. & 50.221 \\
\hline 357125 & 625750. & 65.532 \\
\hline 368342 。 & 625575. & 87．478 \\
\hline 359105. & 628115. & 85.344 \\
\hline & NT & 63 \\
\hline 35813 d． & \(63 \geqslant 325\). & 177．394 \\
\hline 3582¢8． & 638500. & 135.331 \\
\hline 369525. & 637163. & 94.183 \\
\hline 357575. & 635425. & 78.334 \\
\hline 353375. & 6344 E5． & 65.837 \\
\hline 35E538． & 633550. & 63.094 \\
\hline 366575. & 632738. & 85.354 \\
\hline 355888. & 634350. & 131.574 \\
\hline 365875. & 635800. & 147.218 \\
\hline 353425. & 635930 & 143.256 \\
\hline 361505 & －34838 & 135.331 \\
\hline \(36016 ?\) & 633850 & 170．3を3 \\
\hline \(35: 30 \%\) 。 & 635325 & 232．258 \\
\hline 352012 & 532438 & 84.734 \\
\hline 362753. & 631788. & 65.227 \\
\hline 350575. & 530185. & 78.538 \\
\hline 35287玉。 & 530525. & 80.772 \\
\hline 304083 。 & 631050 ． & 7E．310 \\
\hline 35560 O． & 630575. & 109.118 \\
\hline 357025. & 632413. & 67．565 \\
\hline 367585. & 530700. & 80.162 \\
\hline 36980u． & 631015. & 73.152 \\
\hline 363525． & 633405. & 108．509 \\
\hline 355425. & 632803. & 114.505 \\
\hline 355457. & 638525. & 185.318 \\
\hline 354725. & 639550. & 152.763 \\
\hline 363150. & 635225 ． & 151.486 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 13.57 & 0.87 \\
\hline 17.99 & 0.40 \\
\hline 15.30 & 0.28 \\
\hline 22.87 & 0.29 \\
\hline 22．75 & 0.24 \\
\hline 17.74 & 0.17 \\
\hline 19.54 & 0.18 \\
\hline 18.73 & 0.37 \\
\hline 34.32 & 0.49 \\
\hline 36.12 & 0.55 \\
\hline 33.19 & 0.72 \\
\hline 28.19 & 0.46 \\
\hline 25.31 & 0.44 \\
\hline 25.53 & 0.46 \\
\hline ख1．17 & 1.19 \\
\hline 33.58 & 1.34 \\
\hline 33.28 & 1.67 \\
\hline 32.04 & 1．5？ \\
\hline 39.38 & 0.90 \\
\hline 25．14 & 0.78 \\
\hline 33.51 & 0.94 \\
\hline 2¢．61 & 1.30 \\
\hline 35.20 & 2.09 \\
\hline 31.49 & 0.98 \\
\hline 34.12 & 1.01 \\
\hline 29．81 & 1.12 \\
\hline 35.47 & 1.31 \\
\hline 35.65 & 0.61 \\
\hline 27.80 & 0.62 \\
\hline 15.80 & 0.64 \\
\hline 16.03 & 0.78 \\
\hline 15.10 & 0.46 \\
\hline 13.32 & 0.45 \\
\hline 21.42 & 0.48 \\
\hline 21.25 & C． 61 \\
\hline 25.06 & 0.58 \\
\hline 19.65 & 0.42 \\
\hline 17.37 & U． 31 \\
\hline 23.85 & 0.36 \\
\hline 29.47 & C． 83 \\
\hline 34．09 & 0.94 \\
\hline 24．77 & 1.73 \\
\hline 37.33 & 0.60 \\
\hline 42.66 & 0.85 \\
\hline 37．36 & 0.55 \\
\hline 35.60 & 0.49 \\
\hline 32.89 & 0.73 \\
\hline 22．89 & 0.62 \\
\hline 20．23 & 0.34 \\
\hline \(17 \cdot 12\) & 0.47 \\
\hline 18.92 & 0.40 \\
\hline 28.65 & 0.63 \\
\hline 27.78 & 0.58 \\
\hline 13.58 & 1.47 \\
\hline 19.75 & 0.38 \\
\hline 28．49， & C． 23 \\
\hline
\end{tabular}

3653う28 3653：29

3664061 3664022 3654003 3664904 \(36640: 5\) 3664206 3554057 3654008 3664099 3654010 3064211 3664012 3664 C 13 3554014 3654015 3664016 3664017 3664318 3654019 3664020 3664021 3664022 \(3 \leq 64023\) 3664024 3664025 3654326 3554027 3564028 3664029
3564030
3664931
3564032
3664033
3654034
3654035
3664035
3664037
3664038
3654039
3664040
3664041
3654042
3654043
3654044
3654045
3654046

3665001
3665042
365500.3

3655514
3665025
3565006 3655007

353775．637275．131．978
 NT 64
 360525.647505. 237.584
207.533
190.195
177.808
192.551

172．513
191．822
158．513
177.598
140.575

207．501
167．741
15i．789
167．03C
161.239
154.742
162.154

152．559
13E．183
\(145 \cdot 0\) ．2
157.182
170.98 ？

109．778
236．220
173.736
184.800
155.582
177.846
195.386
147.523
176.530
161.950
143.009
\(\mathrm{H} T \leqslant 5\)
369375．657088． 215.356
355775．655ラ75．
35895 G －657850．
35833：も5 6.685. 360275．650653． 36145 C .650825.
35250 • 551275.
305.067

241．C57
293．4？8
2もE． 395
255．323
233.458.
\begin{tabular}{|c|c|}
\hline 27．95 & \(0 \cdot 37\) \\
\hline 34.32 & 0.52 \\
\hline －3．31 & 0.55 \\
\hline －2．76 & 0.45 \\
\hline －4．53 & 0.54 \\
\hline －5．96 & C． 36 \\
\hline －3．51 & C． 37 \\
\hline 3.32 & c． 38 \\
\hline 2．2F & C． 41 \\
\hline 3.78 & 0.55 \\
\hline 10.07 & 0.39 \\
\hline 2．01 & 0.78 \\
\hline \(4 \cdot 75\) & C． 41 \\
\hline －．71 & C． 32 \\
\hline 0．87 & 0.39 \\
\hline －3．37 & 0.57 \\
\hline 1.96 & 0.46 \\
\hline 6．83 & 0.50 \\
\hline 10.22 & 0． 77 \\
\hline 13.48 & 0．40 \\
\hline 1.62 & 0.43 \\
\hline 10.74 & 0.63 \\
\hline 28.15 & 0.47 \\
\hline 7． 24 & 0.67 \\
\hline 1 is． 32 & 0.47 \\
\hline 4.42 & 0.43 \\
\hline 8.56 & 0.30 \\
\hline 0.33 & 0.77 \\
\hline 7．14 & C． 29 \\
\hline 18.53 & 0.31 \\
\hline 23.30 & 0.35 \\
\hline 4.74 & 0.34 \\
\hline 11.56 & 0.42 \\
\hline 16.96 & 0.33 \\
\hline 21.55 & 0.32 \\
\hline 17.34 & 0.38 \\
\hline 21.59 & 0.35 \\
\hline 27.80 & C． 87 \\
\hline 2.44 & 0.42 \\
\hline 0.72 & 0.29 \\
\hline 15.15 & 0． 36 \\
\hline 6．93 & 0.32 \\
\hline 6.91 & 1.14 \\
\hline 1.04 & 0.42 \\
\hline 22.94 & 0.27 \\
\hline 15.65 & 0.53 \\
\hline 22.49 & 0.42 \\
\hline 27．27 & 0.38 \\
\hline －27．31 & 1． 12 \\
\hline －16．94 & 1.12 \\
\hline －2 -5.5 & 1.09 \\
\hline －29．09 & 1.69 \\
\hline 0.88 & 0.91 \\
\hline －2．75 & 1.02 \\
\hline －9．80 & 1.13 \\
\hline
\end{tabular}

こうらこここと
\(36555: 9\)
3665010
35うちら11
3655912
3565313
3565c14
3555915
3665 216
3655017
3665018
3665019
3655020
3665921
3665022
3555023
3655 2 24
3665025
3565026
3655027
3665028
3665029
3656001
35652． 2
\(356 \in 0.3\)
3666064
3565005
36560 E 6
3666007
36E650 0
3666009
3565010
3566311
3666012
3656013
36GEEI4
3655015
366EO16 3555017
365EC18
366ETO 19
3666020
3656221
3666922
\(365 \leqslant 023\)
3666024
3665025
3655525
3666027
3666028
35SEJ？
\(356 \in 630\)
3566031
3667901 3667952 3667003
\begin{tabular}{|c|c|c|c|c|}
\hline 353175. & 5501610. & 217．322 & －4．23 & 0.70 \\
\hline 264175. & 65こ175． & 268.712 & －4．77 & 0.55 \\
\hline 354375． & 551625. & 2くも． 340 & －8．77 & 0.78 \\
\hline 36585． & 650 ¢ 25. & 203.572 & －7．53 & 0.62 \\
\hline 3 \(65 \geqslant 0\) ． & 651288. & 234.596 & －8．56 & 0.48 \\
\hline 35820 こ。 & 651588． & 232.323 & －9．77 & 0.58 \\
\hline 369300. & 651775. & 222.515 & －10．61 & 0.65 \\
\hline \[
\begin{aligned}
& 365530 \\
& 35541 E:
\end{aligned}
\] & \[
\begin{aligned}
& 553765 \text {. } \\
& 654 \cong 25 .
\end{aligned}
\] & \[
\begin{aligned}
& 310.856 \\
& 340.157
\end{aligned}
\] & \[
\begin{aligned}
& -12.74 \\
& -13.84
\end{aligned}
\] & \[
\begin{aligned}
& 1.58 \\
& 1.35
\end{aligned}
\] \\
\hline 35433 L ． & 654525. & 331.013 & －15．99 & 1.28 \\
\hline 353475. & 65.3875. & 315.430 & －15．27 & 1.58 \\
\hline 352405. & 654775. & 446.337 & －12．32 & 4.41 \\
\hline 351302. & 655495. & 435.473 & －22．78 & 2.31 \\
\hline 3606ul． & 655475 • & 46.4 .210 & －25．99 & 2.86 \\
\hline 363075． & 656875 & 436.473 & －25．79 & 3.65 \\
\hline 355335． & ヒう7n95． & 351.188 & －18．11 & 2.28 \\
\hline 354675. & 655180． & 300.228 & －14．37 & 1.48 \\
\hline 356775 。 & 655975． & 309.067 & －17．05 & 1.12 \\
\hline 366625. & 658575. & 273.101 & －21．53 & 1.43 \\
\hline 367375 ． & 55こう38． & 336.225 & －23．34 & 1.59 \\
\hline 357320 。 & 657405. & 316.382 & －18．59 & 2.46 \\
\hline 36170 ¢ & \[
652525
\] & \[
\begin{aligned}
& 349.300 \\
& 66
\end{aligned}
\] & －5．55 & 1.91 \\
\hline 360175. & 659418． & 245.714 & 5.71 & 4.04 \\
\hline 35152 C & 658275． & 344.807 & －17．56 & 2.91 \\
\hline 352137. & 657475 ． & 314.498 & －22．59 & 1.83 \\
\hline 36.2435. & GSE 965. & 287.644 & －26．70 & 3.27 \\
\hline 353335． & 655960. & 28，7．442 & －26．36 & 1.90 \\
\hline 354068. & 665150. & 280．544 & －33．25 & 1.94 \\
\hline 365575. & 653825. & 250.295 & －49．42 & 2.56 \\
\hline 368525. & 653135． & 20.0 .396 & －41．33 & 4.10 \\
\hline 359690. & 651225. & 187.190 & －45．41 & 2.32 \\
\hline 35987： & 65252E． & 193.852 & －44．03 & 3.13 \\
\hline 353655. & 654675. & 284.178 & －30．42 & 1.61 \\
\hline 362560. & 664655. & 312.265 & －15．21 & 1.49 \\
\hline 350550. & 654200. & 433.437 & －13．27 & 3.57 \\
\hline 351315. & 653505. & 400.527 & －20．18 & 2.46 \\
\hline 362475 ． & E¢2175． & 301.752 & －20．45 & 4.25 \\
\hline 363425. & 661105. & 307.543 & －30．11 & 2.76 \\
\hline 365175. & 651588. & 420.014 & －38．98 & 4.48 \\
\hline 355150. & 650275. & 413.718 & －27．50 & 3.99 \\
\hline 368425. & 654540 ． & 212.141 & －44．76 & 5.30 \\
\hline 368313. & 655725. & 251.155 & －40．66 & 4.58 \\
\hline 359625. & 654700. & 358.750 & －53．59 & 4.95 \\
\hline 36932う。 & 655888． & 344.424 & －51．10 & 7.15 \\
\hline 35860 ． & 656825． & 359.054 & －40．34 & 11.01 \\
\hline 368775 & 568563. & 310.896 & －43．86 & 14.51 \\
\hline 358513. & 653920． & 354.482 & －62．51 & 5.65 \\
\hline 355773． & \(6 \leq 3575\) 。 & 247.302 & －44．16 & 2.69 \\
\hline 365088. & 667950. & \(267 . \leq 15\) & －43．90 & 3.01 \\
\hline 366043 。 & 668758． & 330.464 & －3シ．21 & 3.31 \\
\hline 355975. & 657425. & 261.519 & －40．39 & 4.18 \\
\hline 355015 ． & 653275． & 252.070 & －35．45 & 3.10 \\
\hline 357275 。 & 655215. & 242.012 & －45．59 & 7.52 \\
\hline & NT & 67 & & \\
\hline 355525. & 674375. & 104.024 & －11．90 & 1.67 \\
\hline 35630\％． & \(674 \geqslant 25\) 。 & 76.711 & －16．70 & 2.69 \\
\hline 367075. & 675360. & 78．393 & －21．12 & 2.26 \\
\hline
\end{tabular}
\(36679: 4\)
\(3 \in 67055\)
3 ESTCJG
36570 © 7
3667068
3667009
3567312
3667011
3667.012

3657913
3567014
3657015
3667016
3667017
3667:18
3657019
3667020
3667021
3657022
3657023
36́67024
3557925
3057926
3657027
\(3 \in 67028\)
3657029
3667030
3557031
3667032
3557033
3557034
3667035
3667036
3557037
3567338
3667037
3667040
3657041
3567042
3657043
3567044
3667045
3657045
3667047
3657048
3657545
3667059
3667051
\(3 \in 67052\)
3658021
3670021
3570002
3762001
37620i2
3752023

\(37620: 4\) 37620.5 3762020 3752307 3752058 3752000 3762010 3762011 3762212 3762013 3762014 3762315 3752015 3762017 3762018 3752019 376202 ？ 3752021 3762022 3752023
\(37 \in 30\) ن1
3753002
375 300
37535し4
37530 © 5
3753006
3753007
\(37530: 8\)
\(375300 ?\)
376， 310
3763011
3763012
3763013
3753014
3753015
3763016
3763017
3763018
3753019
3753020
3763021
3763022
3753023
3763024
3763025
3753026
3753027
3753028
3763029
3763030
3753031

3764001 3764002
3754033
3754004
\begin{tabular}{|c|c|c|}
\hline \(37 \times 895\). & ら2こ125． & 79.000 \\
\hline 373105. & 629525． & 159.410 \\
\hline 372663 － & 628950. & 116.738 \\
\hline 372575. & 625405. & 88.392 \\
\hline 374540. & 625545. & 66.090 \\
\hline 373400. & 623375 & 125.578 \\
\hline 373050. & 522325. & 129.030 \\
\hline 371125. & 521453. & 162.154 \\
\hline \(37 \leq 10 \%\) & 524875 & 77.724 \\
\hline 375365 & 623575 & 143．5 51 \\
\hline 375907. & 622275 & 178．063 \\
\hline 37920 & 625 25 & 26．968 \\
\hline \(37 ヲ \ni \ni\) ¢。 & S25675 & 57.536 \\
\hline 379142. & 529555 & 171．532 \\
\hline 375650. & 628430 & 108.505 \\
\hline 375175. & 523575 & 113.395 \\
\hline 37511 C － & 625525. & 141.458 \\
\hline 377242. & 626800 & 106.385 \\
\hline 372130. & 623.010. & 115.924 \\
\hline 378125. & 621475 ． & 120.001 \\
\hline & NT & 73 \\
\hline 37080 ט． & 635750. & 136.855 \\
\hline 371320. & 638450. & 115.824 \\
\hline 372400 。 & 637713. & 51.816 \\
\hline 37295 & 635475. & 64.008 \\
\hline 370063 。 & 634900. & 67.566 \\
\hline 371775. & 635100 & 62．179 \\
\hline 37945 － & 633013. & 45.415 \\
\hline 372250 & 630763. & 43.586 \\
\hline 372325 。 & 532538. & 84.430 \\
\hline 372226. & 630600. & 108．8．14 \\
\hline 373525 。 & 630300 & 150.571 \\
\hline 3748 Cj & 631500 & 117.958 \\
\hline 375825 & 530950 & 116.129 \\
\hline 37815 & 630225 & 171.000 \\
\hline 379750 & 631488 & 109.000 \\
\hline 372375 。 & 532550 & 202．000 \\
\hline 375425 。 & 532663 & 137.000 \\
\hline 375475. & 634600 & 58.217 \\
\hline 378659 & 537390 & 41.758 \\
\hline 377455 。 & 535450 & 133.307 \\
\hline 378525. & 633975 & 155.448 \\
\hline 37424 ？ & 633238. & 82.296 \\
\hline 373240. & 634192. & 34.747 \\
\hline 3732500 & 535950 & 51.236 \\
\hline 373913. & 637225 & 38.710 \\
\hline 373605. & 639105. & 76．810 \\
\hline 374975. & 633225. & 60.346 \\
\hline 375575. & 535850 & 33.223 \\
\hline 376775. & 637913. & 28.000 \\
\hline 377825. & 538575 & 28.000 \\
\hline 379475. & \(63 \geqslant 720\) 。 & 35.000 \\
\hline & NT & 74 \\
\hline 372875. & 649150. & 217.322 \\
\hline 371575. & 647675 & 229.210 \\
\hline 370455 。 & 645300. & 173.906 \\
\hline 37115？ & 645040 ． & 148.411 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 15.72 & C． 56 \\
\hline 14.37 & 0.87 \\
\hline 11.90 & 0.91 \\
\hline 1.59 & 0.80 \\
\hline －10．83 & 1.22 \\
\hline －14．04 & 0.54 \\
\hline －7．92 & 2.28 \\
\hline 35.71 & 0.85 \\
\hline －26．02 & 1.56 \\
\hline －32．10 & 1.37 \\
\hline －30．71 & 1.58 \\
\hline －28．54 & 2.64 \\
\hline －15．23 & 11.99 \\
\hline －11．87 & 0.77 \\
\hline －9．60 & 1.04 \\
\hline 11.77 & 0.73 \\
\hline －15．93 & 0.99 \\
\hline －21．53 & 1.42 \\
\hline －38．88 & 3.72 \\
\hline －33．31 & 5．15 \\
\hline 14.36 & 0.48 \\
\hline 14.72 & 0.65 \\
\hline 12．28 & C． 73 \\
\hline 16.15 & 0.43 \\
\hline 16.77 & 0.36 \\
\hline 3．75 & 0.42 \\
\hline 21．34 & 0.56 \\
\hline 23.75 & 0.91 \\
\hline 17.21 & 0.54 \\
\hline 18.48 & 0.40 \\
\hline 22.10 & 0.68 \\
\hline 23．83 & c． 54 \\
\hline 22.09 & C． 55 \\
\hline －7．51 & 0.63 \\
\hline －8．79 & 0.94 \\
\hline 6.73 & 1.65 \\
\hline 25.73 & 0.59 \\
\hline 13.40 & 0.79 \\
\hline 19.43 & 0.63 \\
\hline 11.54 & 0.84 \\
\hline 10.52 & 0.93 \\
\hline 18.48 & 0.60 \\
\hline 21.54 & 0.68 \\
\hline 8．53 & \(0 \cdot 37\) \\
\hline 15.35 & \(0 \cdot 61\) \\
\hline 12.30 & 0.34 \\
\hline 17.51 & 0.42 \\
\hline 15.89 & 0.57 \\
\hline 15.16 & 0.63 \\
\hline 13.85 & C． 54 \\
\hline 17.78 & 0.42 \\
\hline 7.09 & 1.00 \\
\hline 15.33 & 0.89 \\
\hline 22.81 & 0.48 \\
\hline 22.33 & 0.67 \\
\hline
\end{tabular}

3754005 375406 3764307 3754008 3754009 3764010 3764011 3764912 3754013 3764914 3754215 3754015 3754017 3754018 3764019
3764020
3764021
3764022 3754023 3764024 3764025 3764020 3764027 3754228 3764027 3764030 3754031 3754032 3754033 3764034 3764035 3754035 3754037 3764038 3754039 3764040 3764041

3755001 3765052 3765003 \(37650<4\) 3755065 375505 3755007 3765009 3755299 3755010 3765011 3765012 3755013 3765014 3755015 3765016 3755017 3755018 3765019 3765020

37260 © 645520 ． 374025．645545． 375135 ． 645425 。 375475.645700. 376350.647700 ． 37845 C .548475. 3795uc． 649325. 377195.547550 ． 375230.648925 ． 37590 • 645075 ． 374305.649545 。 37327 \％647140． \(370445 \cdot 544850\) 。 37172 j． 644200 ． 372725.642992 。 373142．6435こ7。 373350.644452 。 377057． 646525 。 37227 ． 643400 ． 37：542．641545． 371700.641800 ． 371633.640705. 372910.641300 ． 374325.640575 ． 374135.641755 。 374415.643020 ． 376425.643480 ． 376325.642425 ． 376350.641445 ． 377638.640610 ． 378775 ． 377495. 640775： \(377685.645370^{\circ}\) 37ラ53「．644600． 379525.643725 ． 375635.642595 。 377325 ． 644250 ． NT 75
377825.655750 ． 378525.655725 ． 378825．657200． 379600.658550 ． \(37750 \%\) 。́う 3750 。 375502 •658125． 377175 ．655950． 375475.659480 ． 375203.658355 ． 373848．658850． 37305 i ． 659875 。 371413.658455 ． 371505.654875 。 374875.551413. 373607 •651317． 372500.551575 。 37475 •650357． 374482 ． 553350 。 379575．653525． 378175 ． 650025 ．
153.331 152.59 .6
114.000

133． 350
128.016
106.500
100.316
115.076
106.316
135.889
153.156
155.500
161.040

176．je9
137.707
141.494
129.258
97.780
181.077
192.043
151.813
125.982
113.212
\(82 \cdot 384\)
87.121
91.367
75.855 \(73 \cdot 704\) 74.362 65．3．77 42.572 71.33 C 76．312 68.350 60.360 52．426 64.519
101.504 129.108
87.700 145.100 196.301
133.502
129.345
237.134
144.178
251.168 165.116 262.433 222.199 174.700 218.542 235.510 188.366 172．008 95.591 96.300
\begin{tabular}{rr}
12.53 & 6.46 \\
12.35 & 0.60 \\
11.53 & 0.47 \\
12.43 & 0.46 \\
4.22 & 0.40 \\
4.82 & 0.37 \\
2.06 & 0.35 \\
-4.61 & 0.44 \\
-5.14 & 1.34 \\
-13.41 & 0.68 \\
-6.88 & 0.82 \\
6.53 & 0.69 \\
24.34 & 0.40 \\
15.61 & 0.53 \\
14.17 & 0.52 \\
13.49 & 0.56 \\
14.93 & 0.69 \\
9.58 & 0.36 \\
20.35 & 0.48 \\
24.13 & 1.17 \\
19.80 & 0.73 \\
18.25 & 0.43 \\
20.39 & 0.35 \\
12.11 & 0.32 \\
15.13 & 0.42 \\
12.17 & 0.48 \\
12.45 & 0.32 \\
12.31 & 0.29 \\
14.80 & 0.27 \\
16.12 & 0.28 \\
14.23 & 0.34 \\
16.07 & 0.25 \\
11.55 & 0.33 \\
3.70 & 0.23 \\
14.95 & 0.27 \\
12.22 & 0.25 \\
11.99 & 0.35
\end{tabular}
\begin{tabular}{ll}
-25.11 & 0.73 \\
-18.97 & 0.84 \\
-45.24 & 1.53 \\
-25.55 & 1.25 \\
-25.72 & 1.27 \\
-35.33 & 2.27 \\
-22.92 & 2.27 \\
-40.74 & 1.12 \\
-35.75 & 3.84 \\
-50.53 & 2.38 \\
-53.08 & 3.16 \\
-54.42 & 1.78 \\
-28.33 & 1.40 \\
-20.40 & 0.88 \\
-10.61 & 0.45 \\
-6.65 & 0.66 \\
-15.12 & 0.90 \\
-19.52 & \multirow{2}{*}{.84} \\
-5.43 & 0.37 \\
-2.50 & 0.44
\end{tabular}

3755021
375ちき？2
3755023
3765024
375502
3765025
3765027
3765028
3755029
3755075
3755031
3765032
\(37560 こ 1\)
\(376 \in 0=2\)
3766003
\(37560: 4\)
\(37660: 5\)
3756006
3766007
3766058
3766090
3756010
3766011
3755012
3756013
3766014
3766015
3756015
3766911
3766018
3766017
3766020
3766021
3766022
3765023
3766024
3765025

3767001 3757002 3757063 3767044 3757005 3767006 375795 3767098 3767 C 4 3767012 3757011 3767012 3767013 3757014 3757215 3767016 3767017 3757019

577225．650705． 375738．6うごち63． 116.500 119.740 110.590 98．037
118.772
125.544
100.755
121.700

152．243
244.4 亿

322．783
195．206
75
117.189
116.590
157.207
228.030
271.108

188．520
233.590
215.213
153.775
180.145
165.919

237．257
240.353

245． 315
234．153
150.110
213.090
233.870

161．713
317.502
391.060
412.390 353.873
349.506 249.326 77
372012．674335．
79.549 80.898 73.555 133.380 193.024 133.160 100.459 73.049 47.695 90.586 64.730 151．281 138.410 94.497 \(46 \cdot 336\) \(26 \cdot 213\) 22．202
27．513
\begin{tabular}{|c|c|}
\hline －13．53 & 0.52 \\
\hline －2\％．30 & 0.59 \\
\hline －19．80 & 0.58 \\
\hline －10．60 & 0.46 \\
\hline －11．73 & 0.55 \\
\hline －13．67 & 0.75 \\
\hline －9．83 & 0.45 \\
\hline －24．24 & 0.93 \\
\hline －31．25 & 1.65 \\
\hline －32．68 & 2.89 \\
\hline －28．05 & 3.11 \\
\hline －32．37 & 1.30 \\
\hline －67．77 & 2.34 \\
\hline －55．15 & 5.08 \\
\hline －58．05 & 2.11 \\
\hline －57．21 & 1.51 \\
\hline －60．98 & 2.84 \\
\hline －65．47 & 1.62 \\
\hline －51．73 & 1.13 \\
\hline －52．80 & 1.31 \\
\hline －59．35 & 1.52 \\
\hline －61．40 & 1.15 \\
\hline －63．28 & 1.74 \\
\hline －50．46 & 1.56 \\
\hline －60．01 & 1.79 \\
\hline －58．08 & 2.83 \\
\hline －63．49 & 2.20 \\
\hline －54．56 & 3.11 \\
\hline －62．34 & 1.00 \\
\hline －50．08 & 1.19 \\
\hline －95．33 & 1.63 \\
\hline －53．02 & 3.03 \\
\hline － 75.14 & 7．01 \\
\hline －63．62 & 9.37 \\
\hline －73．29 & 5.52 \\
\hline －5？．99 & 5.28 \\
\hline －71．32 & \(5 \cdot 13\) \\
\hline －74．47 & 2． 57 \\
\hline －90．05 & 2.25 \\
\hline －97．28 & 2.54 \\
\hline －99．88 & 2.76 \\
\hline －82．22 & 5.47 \\
\hline －95．71 & 3.99 \\
\hline 119.39 & 1.96 \\
\hline 111.71 & 1.72 \\
\hline －91．75 & 2.54 \\
\hline －70．05 & 3.77 \\
\hline 118.04 & 1.71 \\
\hline －59．93 & 2.28 \\
\hline －52．13 & 2.05 \\
\hline －69．00 & 2.47 \\
\hline －90．01 & 1.83 \\
\hline －95．22 & 1.27 \\
\hline －72．77 & 1.12 \\
\hline －51．27 & 1.18 \\
\hline
\end{tabular}

3757019
3767920
3767021
3767022
3767023
3767024
3767025
3767026
3863001
3863002
3853003
3853094
3863045
3863096
38630.77

3863028
3863009
3863010
3853311
3863012
3863013
3863014
3853015
3853116
3853017
3863018
3853019
3853020
3863021
3863022
3864001
3864002
3864003
3864004
3864085
3864006
3864007
3864008
3854009
3864010
3864011
3864012
3254013
3854014
3964015
\(3854: 15\)
3864017
3864018
3864019
3と54020
3854 C 21
3854022
3864023
3854024
3854025
3864025
\begin{tabular}{|c|c|c|c|c|}
\hline 374283. & 675849. & 25.592 & -59.54 & \\
\hline 372723. & 675471. & 26.213 & -95.22 & 1.27 \\
\hline 376825. & 670750. & 136.139 & -110.15 & 1.48 \\
\hline 375850 • & 670150. & 134.570 & -87.54 & 1.57 \\
\hline 374250. & 670550. & 139.482 & -98.01 & 2.21 \\
\hline 370650 - & 675513. & 71.774 & -79.62 & 1.21 \\
\hline 375289 • & 671325. & 115.520 & -112.47 & 1.69 \\
\hline 374387 。 & 574337. & 24.550 & -93.53 & 1.58 \\
\hline & NT & 83 & & \\
\hline 380700. & 634575. & 112.166 & 1.31 & 0.62 \\
\hline 382088. & 635850 . & 74.371 & -2.34 & 0.62 \\
\hline 333525. & 637200. & 48.158 & -4.16 & 0.54 \\
\hline 383342. & 634525. & 146.569 & -3.34 & 1.63 \\
\hline 384913. & 633563. & 87.000 & 0.12 & 0.85 \\
\hline 384045. & 631975. & 108.000 & -4.07 & 1.30 \\
\hline 385975. & 632675. & 89.306 & -3.98 & 3.65 \\
\hline 397115. & 633115. & 71.018 & -23.74 & 2.09 \\
\hline 388600. & 632575. & 72.542 & -24.88 & 3.04 \\
\hline 389775. & 631650. & 99.000 & -32.55 & 4.03 \\
\hline 388813. & 535038. & 159.000 & -13.70 & 1.29 \\
\hline 388100. & 636200 . & 97.231 & -4.28 & 1.61 \\
\hline 385750. & 639250. & 28.000 & 0.70 & \\
\hline 38525?. & 637313. & 36.271 & -3.78 & 0.50 \\
\hline 386200. & 635425. & 66.000 & -4.94 & 1.18 \\
\hline 380838. & 632350. & 195.377 & -6.03 & 1.18 \\
\hline 380725. & E37975. & 83.000 & 8.05 & 0.86 \\
\hline 382375. & 638525. & 21.641 & 10.05 & 0.75 \\
\hline 333825. & 639463. & 21.300 & 1.5.1 & 0.47 \\
\hline 380075 - & 633463. & 43.891 & 17.62 & 0.37 \\
\hline 389430. & 637575. & 66.000 & -10.71 & 0. 71 \\
\hline 388075. & 638.255. & 53.545 & -13.20 & 0.44 \\
\hline & NT & 84 & & \\
\hline 330525. & 649700. & 85.954 & 0.83 & C. 25 \\
\hline 382513 . & 648313. & 63.703 & 4.38 & 0.25
0.15 \\
\hline 384575. & 647175. & 72.847 & 5.42 & 0.18 \\
\hline 385250. & 645400. & 60.960 & 3.54 & 0.18 \\
\hline 387009. & 645213. & 42.777 & . 1.50 & 0.16 \\
\hline 387775. & 648155. & 54.364 & -2.66 & 0.13 \\
\hline 38960 . & 647125. & 14.326 & -7.34 & C. 44 \\
\hline 387713. & 649325. & 48.463 & -13.19 & 0.14 \\
\hline 385600. & 548588. & -66.446 & - 0.18 & 0.14 \\
\hline 383913. & 649713. & 55.436 & 0.77 & 0.18 \\
\hline 385088. & 643863. & 45.720 & 4.19 & 0.17 \\
\hline 387188.
385513. & 643325. & 34.138 & -1.60 & 0.21 \\
\hline 385513.
398875. & 642775. & 36.881 & 2.11 & 0.21 \\
\hline 398875.
388875. & 643750 . & 35.052 & -1.4? & 0.22 \\
\hline 388875
387150 & 641038. & 66.446 & -4.45 & 0.26 \\
\hline 387150 & 642225. & 39.729 & -5.50 & 0.28 \\
\hline \(38765 \%\) & 642113. & 55.169 & -3.56 & 0.23 \\
\hline 386425 - & 640175. & 46.534 & 0.96 & 0.29 \\
\hline 383350 & 641135. & 53.645 & 8.74 & 0.35 \\
\hline 38251\%. & 642253. & 58.522 & 3.25 & 0.18 \\
\hline 39625. & 641525. & 50.350 & 11.20 & 0.34 \\
\hline 381500.
382488. & 6.40710. & 37.490 & 9.96 & 0.30 \\
\hline 382488. & 543415. & 77.724 & 12.36 & 0.27 \\
\hline 332075. & 644588. & 72.347 & 12.39 & 0.16 \\
\hline 38345:66 & 645025. & 68.845 & 8.28 & 0.19 \\
\hline 381313. & 646125. & 49.378 & 10.80 & 0.37 \\
\hline
\end{tabular}

3\＆5ちごい
3REちのコ2
3贝E50：3
3もう5う〔4
3865355
3865045
3 \＆E EOU 7
3255378
38550 －5
385E010
3865．211
3855912
3855：13
385ミこ14
3865015
3555 J15
3865 E 17
3865018
3865019
3 555 220
3865.121

3855022
3865023 3455224
3865う2．
3865026
3865027
3255028
385ち029
3865030
3855031
3255032
3855233
3855034
3865035
3855336
\(38 \in 5\) ころ7
38650 38
3865039
3855040
3865041
3855： 42
3865043
\(33653: 1\)
3865902
38660：3 3566904 \(38665: 5\) 385E0：i 3366937 38565 C 3866305 3866010 38EEOI1 3866012

38こ713． 647825 （NT \(\mathrm{gj}^{73.762}\)
280055．652527．S4．851 \(390975 \cdot 653455\) • \(\quad\) •3．300 320745 • 654585 ． 110.982 381755． 655475 ．\＆1．523 383575．655775．77．544 380725 • 655025．と5．555 384782 ． 654975 ． 57.606 383275．654551．69．516 333575 •65さ525． 332755．652725． 380925．651560． 3ころ500．657107． 385035 ． 557080 。 399715 •657525． 387688．65775 。 387400 ． 558775 ． 388750.659725.

399625．658575．
3e6675．659635．
352575．657250．
352017．657200．
382050 － 650850 ．
364985．650588．
30525： 650575 。
\(38735 \%\) 550150．
389590.651190.

388017．650775．
355910.551630.

386795：552525．
358250．652570．
38588 C ． 552600 。
388763．653700．
338525．654575．
389553.655275 。
388325.655370 ． 336313．655950． 385513．E54975． 386725.653475 ． 383175.651725 ． 383720 ． 650450 ． 395130 ．652150． 387738.653525 。 395450.653400 ． NT 25
380875 ． 555560 ． 116.765
381200.654400 ．145．747

380687 ．563865．181．018 331855．551092． 231.111 351755.655715 ． 112.297 \(382385 \cdot E 55565\) ．161．040 382805．655950．185．574 38317过 65807ミ．228．300 388382．657700． 387350．658450． 385360 ．662800． 384559． \(6 \leq 35 \varepsilon 7\) 。

178．318
219.403 95．489 89．754
\begin{tabular}{|c|c|}
\hline \(8 \cdot 21\) & 0.26 \\
\hline －10．01 & 0.46 \\
\hline －14．42 & 0.35 \\
\hline －22．25 & 0.45 \\
\hline －31．45 & 0.43 \\
\hline －34．78 & 0.87 \\
\hline －31．97 & 0.64 \\
\hline －26．19 & 0.25 \\
\hline －25．23 & 0.34 \\
\hline －15．09 & 0.28 \\
\hline －11．73 & 0.27 \\
\hline －8．3？ & 0.39 \\
\hline －34．7．3 & 0.41 \\
\hline －33．81 & 0.38 \\
\hline －23．18 & 0.42 \\
\hline －33．79 & 1． 12 \\
\hline －39．03 & 0.44 \\
\hline －32．19 & 0.40 \\
\hline －23．52 & 0.41 \\
\hline －30．19 & 0.51 \\
\hline －15．43 & 0.90 \\
\hline \(-33.75\) & 0.57 \\
\hline －4．52 & 0.22 \\
\hline －1．96 & 0.24 \\
\hline －4．79 & 0.33 \\
\hline －6． 38 & 0.21 \\
\hline －13．58 & C． 14 \\
\hline －11．04 & 0.38 \\
\hline －10．22 & 0.14 \\
\hline －9．49 & 0.14 \\
\hline －15．86 & 0.13 \\
\hline －16．37 & 0.14 \\
\hline －21．68 & 0.17 \\
\hline －21．33 & 0.23 \\
\hline －26．56 & 0.42 \\
\hline －28．84 & 0.81 \\
\hline －27．35 & 0.53 \\
\hline －25．59 & 0.47 \\
\hline －13．91 & 0.16 \\
\hline 8．28 & 0.21 \\
\hline 0.28 & 0.18 \\
\hline －5．74 & C． 17 \\
\hline －15．84 & 0.16 \\
\hline －13．85 & 0.15 \\
\hline －57．02 & 5．31 \\
\hline －54．13 & 2.79 \\
\hline －53．64 & 1.61 \\
\hline －23．55 & 2.19 \\
\hline －40．54 & 1 10．E1 \\
\hline －36．00 & 10.14 \\
\hline －44．23 & 8.06 \\
\hline －62．34 & 3.59 \\
\hline －35．52 & 1.81 \\
\hline －47．93 & 3.47 \\
\hline －23．55 & 1.50 \\
\hline －30．85 & 2.95 \\
\hline
\end{tabular}

3850゙13
3856514 38E6015 3ESED1白 38，55：1？ 3856018 38EGC19 3856こ20 306Eこ21 3856022 3856023 3856024
 3世E5O25 3おヒ5027 3856028 3356029 3956030 3865031 3855032 3856：？3 3865034 3866035

3953011 3063002 3953023
3963004
39530こ5
3753006
3763007
3953008
39630 ：9
3963017
3963011
3953012
3953013
3963014
3763015
3953.15

3763017
3953018
3963019
3053020
3753021

39640 1 \(37540: 2\)
\(39540: 3\)
3064094
\(3 \exists \in 40\) © 5
3954096
\(33640: 7\) 3954008 376400 3964019 3ヲ64011 3754012
\begin{tabular}{|c|c|c|c|c|}
\hline 35410 & 663ジ5． & 92.415 & －33．74 & 3．39 \\
\hline \(38355 \%\) & 654712. & 180.822 & －43．08 & 2.05 \\
\hline 382345 & 654563. & 156.567 & －49．88 & 3.50 \\
\hline こと155び。 & 655490 & 175.847 & －54．10 & 4.85 \\
\hline 3ع440こ。 & E57975． & 211．283 & －65．12 & 2．07 \\
\hline 385325. & 557133. & 193.941 & －55．74 & 1．37 \\
\hline 386082 。 & 665355. & 180.756 & －44．85 & 1.12 \\
\hline 336925 & \(65 \leq 475\). & 177.068 & －36．72 & 1.27 \\
\hline \(38375 \%\) & 655225． & 97.721 & －10．57 & 0.93 \\
\hline 3¢ヲ85们。 & 565485. & 99．953 & －10．74 & 0.78 \\
\hline 385289。 & 664586 & 159．575 & －8．58 & 0.63 \\
\hline 308750 。 & 652755． & C6．426 & －17．70 & 0.68 \\
\hline 368930 & 561225． & と1．239 & －27．36 & 0.40 \\
\hline 387145 。 & 650400. & 128．180 & －32．65 & 1.04 \\
\hline \(38582 \%\) 。 & 660180． & 93.200 & －18．83 & 0.49 \\
\hline 334325. & 650758. & 126.553 & －11．16 & 1.49 \\
\hline 352575. & 65：370． & 155.245 & －14．51 & 1．54 \\
\hline 381300 。 & 650120 。 & 158.735 & －20．17 & 1.85 \\
\hline 385400 。 & \(6 E 1495\). & 135.540 & －15．26 & 0.92 \\
\hline 384300. & 652185 ． & 192.977 & －15．31 & 2． 27 \\
\hline 336125. & 651712. & 123．970 & －20．79 & 0.91 \\
\hline 388025. & 652145 ． & 74.278 & －21．88 & 0.57 \\
\hline 387200 & \[
\begin{array}{r}
665240 \\
\because T
\end{array}
\] & \[
93
\] & －24．55 & 1．19 \\
\hline 371125. & 635250 ． & 42．000 & －10．28 & 0.61 \\
\hline 399755. & 634525. & 111．252 & －25．33 & 1.11 \\
\hline 303288． & 634250 ． & 42.367 & －47．87 & 1.47 \\
\hline \(3 \ni 3300\). & 632713. & E6．000 & －53．75 & 1.83 \\
\hline 372525. & 631225. & 56.000 & －58．81 & 3.39 \\
\hline 3947 ¢́0． & 631608. & 51.000 & －77．97 & 1.54 \\
\hline 3ミ6675． & 631538. & 42.977 & －77．10 & 1.20 \\
\hline 3ヲう175． & 632700 。 & 46.000 & －76．82 & 0.98 \\
\hline 394825. & 634040 ． & 41.148 & －71．44 & 0.82 \\
\hline そう7175． & 633925. & 41.758 & －65．09 & 0.75 \\
\hline 39840 － & 633775. & 48.768 & －65．39 & 0.72 \\
\hline 39752 － & 635425. & 92．559 & －69．41 & 0.66 \\
\hline 395925． & 635185. & 58.326 & －52．29 & 0.76 \\
\hline 395225． & 637535. & 117.000 & －51．59 & 0.80 \\
\hline 394200 。 & 537182. & 38.000 & －29．5 5 & C． 80 \\
\hline 390075. & 636050 ． & 117.000 & －13．53 & 0.85 \\
\hline 39128 \％ & 637400. & 53.035 & －13．05 & C． 30 \\
\hline 353040 。 & 639025. & 43.000 & －21．82 & 0.55 \\
\hline 394875 。 & 638EE3． & 114.605 & －45．53 & 0.81 \\
\hline \(3 \ni 5 \geqslant 8\) ¢ & 537250 ． & 128.730 & －58．38 & 0.37 \\
\hline 39995：。 & 637575． & 124.000 & －71．73 & 0.42 \\
\hline & NT & 94 & & \\
\hline 355956． & 645500 & 50.292 & －43．35 & 0.28 \\
\hline 358175. & 649050. & 86.368 & －45．85 & C． 42 \\
\hline 305683． & 647e25． & 69.454 & －53．シ4 & C． 26 \\
\hline 373263 。 & 645100. & 52.730 & －55．87 & 0.12 \\
\hline 396550． & 545525. & 72.152 & －55．79 & 0.12 \\
\hline 357250 & 543438 。 & 75．286 & －54．78 & 0.17 \\
\hline 3ミ5253． & 642553. & 55.446 & －42．79 & 0.30 \\
\hline 305738． & 641755. & 97.231 & －48．30 & 0． 28 \\
\hline 3ミ7538． & 641438. & 1п¢．070 & －54．37 & 0.37 \\
\hline 3こ3513． & 541038. & 51.316 & －37．79 & 0.56 \\
\hline 372588. & \(64250 \%\) ． & 53.094 & －24．74 & 0.16 \\
\hline 390463. & 643025. & 46．939 & －5．47 & 0.15 \\
\hline
\end{tabular}

3564013 3954014 3954915 3954016 3764017 3554018 3964019 3964020 3964021 3954022 3954923

3565001 3955092 3955jヶ3 3755044 \(39550 \div 5\) 39559 ［5
3955007
3965008
3955005
3955019
3955011
3965012
3965013
3555014
3555015
3955016
3965017
3955018
3965019
3965020
3065021
3955022
3565023
3965024
3965025
3955025
3765027
3965028
3066001
39660こ2
3956003
3966004
3966005
3956095
3966007
3965008
3966029
3966010
3966011
3956012
3956013
3956014
3756015
3966016
\(37438: 640695\) ． 374150 • 542775 。 393と25． 544475 。 391550.644513 。 37070 C． 645250 ． 391063． 647575 ． 372363．648475． 393875.649325. 394575 ． 647957 。 394325.545432 ． 3ラ2425．645625． NT
354525．655600． 3745尹2．554100． \(37550 \because\) ． 53370. 37345 ！． 656025 。 353505． 657200 。 3э3ラ15．5ラ8305． 39245 C • 659363 。 391475.658325 。 390200 －657820． 391175.657850 ． 392100 ． 657450 。 392250 ．655050． 370900．655500． 393575．650275． 392725 ．651075． 391675 •651375． 390539650975 。 3ヲ2375．Eう19笖0。 373275．552538． 394700 ． 652475 。 395738． 652600 。 353325．653715． 391875．653725． 350825 ．653790． 3y205c．652763． 376750．658 13 。 3き8425．55553\％。
377588．651467． NT 95
370075．655588 370188．655302 3श1225．657188． 391875． 667200 。 3ミ1う25．55553を。 3ヲ149「．555150． 392275.554750 。 392550.653425 。 371450 ． 553575 。 379688．654945． 390075．653027． 391500 •652275． \(3 \geqslant 0530\) •652750． 359782．651750． 392125.651200 。 391675．650325．
54.559 69.190

81． 586 45.720
51.816
40.538

44．806
54．559
55．16？
81.382

53．545 55
93.944 43．276 68．200
88．388
124.7 cc
150.300
\(9 C .30 c\)
ㅇ․ 34 ？
124.322

132．933
136.830
80.541
77.781
35.300
30.900

41． 751
47.936
40.234
38.342
24.054
9.749
56.752

55．590
61．132
48．774
112.471
72.238
\(17 \cdot 783\)
\(80.1 \in 7\)
\(82.18 \epsilon\)
50.292
23.891

21．176
55．247
65.984

72．238
83.168
87.587
100.429

71． 3 eb
\(\div 0.330\)
50.555
52.073
44.143
\begin{tabular}{rl}
-4.41 & 0.31 \\
-41.79 & 0.21 \\
-45.24 & 0.19 \\
-11.53 & 0.15 \\
-8.05 & 0.23 \\
-14.04 & 0.15 \\
-16.14 & 0.12 \\
-18.23 & 0.24 \\
-36.13 & 0.19 \\
-42.35 & 0.33 \\
-18.49 & 0.11
\end{tabular}
\begin{tabular}{rr}
7.45 & 0.68 \\
-11.51 & 0.56 \\
-14.27 & 0.74 \\
7.40 & 0.65 \\
16.26 & 0.84 \\
19.11 & 1.22 \\
20.72 & 0.50 \\
16.11 & 0.49 \\
-13.00 & 0.57 \\
9.84 & 0.76 \\
15.73 & 0.78 \\
-1.88 & 0.52 \\
-14.63 & 0.28 \\
-15.34 & 0.16 \\
-10.56 & 0.22 \\
-9.71 & 0.14 \\
-10.44 & 0.13 \\
-10.03 & 0.17 \\
-9.24 & 0.21 \\
-19.56 & 0.37 \\
-19.91 & 0.68 \\
-9.81 & 0.37 \\
-5.50 & 0.20 \\
-13.80 & 0.18 \\
-5.21 & 0.17 \\
-25.93 & 2.46 \\
-38.04 & 1.12 \\
-36.58 & 0.71
\end{tabular}
\begin{tabular}{rr}
-3.18 & 0.92 \\
-7.04 & 0.97 \\
-5.27 & 1.29 \\
6.30 & 1.02 \\
3.63 & 1.27 \\
13.88 & 0.66 \\
14.18 & 0.70 \\
11.93 & 0.53 \\
12.15 & 0.44 \\
10.13 & 0.65 \\
6.44 & 0.55 \\
-2.42 & 0.33 \\
-5.76 & 0.52 \\
-11.97 & 0.33 \\
0.28 & 0.41 \\
-0.64 & 0.84
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 3966017 & 390375． & 660725 & 65.532 & －18．26 & ［． 41 \\
\hline 3966016 & 333255. & 650410． & \＆\＆．521 & 29.05 & C． 83 \\
\hline 3966319 & 374057 。 & 65209？． & 65．227 & \(1 \in .11\) & 0.62 \\
\hline 3966020 & 374400 。 & 653150 & 28．251 & 18.03 & 0.72 \\
\hline \(396 \in 021\) & 3F4425． & 604045. & 11.279 & 15.43 & C．68 \\
\hline 3965022 & 393175. & 653こ00． & 58．826 & 10.77 & 0.61 \\
\hline 3766023 & 375682 。 & 650425. & 57.415 & －2．08 & 2.57 \\
\hline
\end{tabular}

\section*{PRCGRAMS AND ROUTINES USED}

In the following section, apart from small programs written mainly for the data manipulation, a brief summary of the programs and routines used will be given.
1. GRAV \(\varnothing 1, G R A V \varnothing 3, \ldots, G R A V 12:\) Different output versions of the general reduction program of gravity data. See detailed description in Chapter II.
2. FTERCOR: Filing program, checking the digitised topography for errors and storing it into a file as data input to TERCOR program; written initially by \(C\) J Swain.
3. TERCOR: Calculates the terrain coefficient of gravity stations (see description in Chapter II), written by C J Swain.
4. DENS1, DENS2, DENS3: Programs calculating the Bouguer density fitting by least squares first, second and third degree surface, to the Bouguer anomaly. See description in Chapter II. DENSI, DENS2 were written by \(R G\) Hipkin and DENS 3 by the author. DENS3 is listed in Appendix 3.
5. NETWORK: Performs the least squares adjustment of a gravity base station network (see detailed description in Chapter III).
6. IRSPAC: Converts irregularly spaced data observations into a regular grid, Swain (1976).
7. TRIANG: Plotting routine which plots irregularly spaced data using the triangle method (see description in paragraph 4.3.2), written by \(C\) Gold.
8. GPCP: Plotting routine; for details see CALCOMP's (1973) User's Manual.
9. SACM: Commercial package for plotting regularly or irregularly spaced data, performing trend surface analysis (regionalresidual separation).
10. SYMAP: Computer mapping program, displaying graphically spatial data with variable density and texture, creating complete maps on a lineprinter and providing a method of interpolating irregularly spaced data (SYMAP user's reference manual, 1975).
11. SYMVU: Program producing three dimensional display of data on a graph plotter (SYMVU user's guide, 1977).
12. MODM2D: Program calculating the disturbance in the total intensity of the earth's magnetic field produced by a number of parallel horizontal prisms of infinite length, arbitrary polygonal cross-section and specified magnetisation, along a profile. (Marine Geophysics Unit (MGU) program.)
13. TALG2D: Program calculating the gravity anomaly in the earth's field along a profile perpendicular to parallel horizontal prisms of infinite length and of arbitrary polygonal cross-section (specified by the co-ordinates of their corners) with a specified density contrast. For details see Talwani et al (1959). (MGU program.)
14. PARKG2D: Two dimensional program written as an iterative procedure and based on Parker's (1972) paper to calculate the 2-D gravitational anomaly caused by an uneven layer of material, whose upper boundary is defined by the equation \(Z=h(\vec{r})\).

Then the iterative scheme is:
\(F\left[h_{1}(\vec{r})\right]=\frac{1}{2 n G_{p}} F\left[\Delta g\left(\vec{r}_{0}\right)\right] \quad \exp \left(K Z_{0}\right)-\underset{n=2}{\Sigma} \frac{K^{n-1}}{n!} F\left[h_{0}^{n}(\vec{r})\right]\)

\(F\left[h_{p}(\vec{r})\right]=\frac{1}{2 n G_{p}} F\left[\Delta g\left(\vec{r}_{0}\right)\right] \quad \exp \left(K Z_{0}\right)-\sum_{n=2} \frac{K^{n-1}}{n!} F\left[h_{p-1}^{n}(\vec{r})\right]\)

The notation \(F[\ldots]\) denotes Fourier transform.

It was found that the series of the Fourier transforms was not converging in a satisfactory way. Convergence can be achieved when \(h / z \leqslant 1\), something which was not satisfied in the Southern Uplands, trying to model the gravity low in terms of
a granite batholith (Chapter v); by putting a value of more than \(4-5 k m\) for 8 , it caused problems on the term \(\exp \left(K Z_{0}\right)\), and \(h\) in our case was as big as 12 km . This might be overcome. by attenuating the high frequencies in the term of \(F\left[h^{n}(\vec{r})\right]\).
15. MODG3D: Three-dimensional iterative automatic inversion program calculating the gravity anomaly at grid points due to an interface with a given density contrast where its depth at one point is known. The interface is approximated by rectangular prisms with given length and width, but variable depth whose gravitational attraction is calculated by the use of the full prism formula. (Program written by R G Hipkin.)
16. MODG2D: . This program calculates the gravity anomaly along a profile due to a given interface with a constant density contrast. The interface is approximated by prisms with a horizontal or sloping base extending infinitely perpendicular to the direction of the profile. The computation of the attraction of prisms is based on the full slab formula. (Program written initially by \(R\) G Hipkin.)
17. MAGRAV: Three-dimensional iterative routine which adjusts an initial model to fit given magnetic field data and calculates its gravitational attraction or vice versa. Program written by Dr D Powell, Geology Department, Glasgow University.

\section*{THE FROGRAM DENSS}
```

PRGGRAF DEN3 CALCULATES THE EGUGUER DEOSITY FITTING A THIPD
UEGREE SURFACE TO THE SQUGUER ANOMALY
STHENEIOQ GRV(1000), RHO(10,0), X(1000), Y(1000), A(11,11), B(11)
1 IIPEF(120?),ELEV(1000),TER(1G00), ERR(1000), BOUGER(1000)
UATA IMPUT CM CHANFELS
IFEF=AEFERENCE NUMBER OF GRAVITY STATION
X=EASTING OF GRAVITY STATIOA
Y =NORTHING OF GRAVITY STATION
ELEV=ELEVATION OF GPAVITY STATION
GRV=BOUGUER GRAVITY OF GRAVITY STATIOA
TER=TERRAI!: COEFFICIEHT OF GPAVITY STATION
EASTIMG, HORTHING, ELEVATION ARE
IN METRES
Du 1 I=1.200?
REAE(5,1,j0,EHC=2) IFEF(I),X(I),Y(I),ELEV(I),GRV(I),TER(I)
1 RHO(I)=0.41928+ELEV(I)-TER(I)
2 N=I-1
100 FOR4AT (I7,2F8.0,F9.3.F7.2,F6.2)
SET ARRAYS INITIALLY TO ZERO
E0 3 I= 1,1i
S(1)=0.0
00 3 J=1.11
3 A(I,J)=0.0
NOPMALISE THE VARIABLES
CALL HAXMIN(N,X,XHAX,IXMAX,XMIN,IXMIN)
CALL {AXMIA(N,Y,YMAX,IYMAX,YBIN,IYMIN)
CALL MAXMIN(N,RHO,RHOMAX,IROMAX,RHOMIN,IROMIN)
CALL MAXMIN(N,GRV,GMAX,IGMAX,GMIN,IGMIN)
XSCALE = XYAX - XHIN
YSCALE = YMAX - YMIN
GSCALE = GMAX - GMIN
RSCALE = PHGNAX - RHOMIN
OO 4 I=1,A
GRV(I)=(GRV(I)-GMIN)/GSCALE
RHO(I)=(RHC(I)-RHCMIN)/RSCALE
X(I)=(X(I)-XHIN)/XSCQLE
4 Y(I)=(Y(I)-YMIN)/YSCALE
evaluate the elements of the normal equation matrices
00 5 I=1,N
X<=X(I)*X(I)
XY=X(I)*Y(I)

```
```

Y?=Y(I)*Y(I)
X3=X(I)* X2
X_Y=X2*Y(I)
XY2=X(I)*Y2
Y 3=Y2*Y(I)
X4=X3*X(I)
X3Y=X3*Y(I)
X2Y2=X2*Y2
XY S=X(I)*YZ
Y4=Y3*Y(I)
X5=X4*X(I)
X4Y= X4*Y(I)
X3Y2=X3*Y2
X2Y3=X2*Y3
XY4 =Y4*X(I)
Y5=Y4*Y(I)
XE=X5*X(I)
YE=Y5*Y(I)
X5Y =X 5*Y(I)
XY5=Y5* X(I)
XJYZ=X3*YZ
X4Y2=X4+Y2
X2Y4=X2*Y4
XRPV=X(I)*GRV(I)
YGRV=Y(I)*GRV(I)
X2GFV=X2*GFV(I)
XYGRV =XY*GRV (I)
Y2GFV =Y 2*GFV(I)
XRHO=X(I)*FHO(I)
YRHO=Y(I)*RHO(I)
X2RHO=X2*RHC(I)
XYFHO =XY * PHO (I)
Y2RHO=Y2*RHO(I)
XJ\tilde{NHO}=X3*RHO(I)
Y 3RHC=Y 3*RHÖ(I)
X2YRHO=X2FHO*Y(I)
XY2RHO=Y2RHC*X(I)
X3GRV=X3*G\tilde{NV (I)}
Y ZGFV =Y Z*GRV (I)
XEYGFV =X2GFV *Y(I)
XY2GRV=Y2GRV*X(I)
X.3GF.V =X 3*GFV(I)
X2YGFV=X2Y*GFV(I)
XYZGRV=XY2*GRV(I)
YZGRV=Y3+GFVV(I)
Y SPHÚ=X3*RFO(I)
X2YFH(I=X2Y*RHO(I)
XY2RHO=XY2*RHO(I)
Y3PHO=Y3*RKO(I)
A(1, ट)=A}(1,2)+X(I
A(1,3)=A(1,3)+Y(I)
A(1,4)=A(1,4)+X2

```
```

    A(1,5)=A(1,5)+XY
    A(1,E)=A(1,6)+Y2
    A(1,7)=A(1,7)+X3
    A(1,8)=A(1,8)+X2Y
    A(1,Y)=A(1,O)+XY2
    A(1,10)=A(1,10)+Y3
    A(1,11)=A(1,11)+RHO(I)
    A(2,4)=A(2,4)+X3
    A(2,5)=4(2,5)+X2Y
    A(2,6)=A(2,6)+XY2
    A(2,7)=A(2,7)+X.4
    A(2,&)=A(2,8)+X3Y
    A(\check{~},9)={(2,9)+X2Y2
    A(2,10)=A(2,10)+XY3
    A (2,11)=A(2,11)+XRHO
    A(3,6)=A(3,6)+Y3
    A(3,7)=A(3,7)+X3Y
    A (3,8)=A (3,8)+X2Y2
    4(3,5)=4(3,9)+XY号
    A(3,10)=A(3,10)+Y4
    A(3,!1)=A(3,11)+YRHO
A(4;4)=A(4;4)+Y,4
A(4,5)=A(4,5)+X3Y
\Delta(4,E)=A(4,6)+X2Y2
A(4,7)=A(4,7)+X.5
A(4,8)=A(4,8)+X4Y
A(4,P)=$4,9)+X3Y2
A(4,10)=A(4,10)+X2Y3
A}(4,1i)=A(4,11)+X2PH
A(5,6)=A(5,5)+XY3
A(5,7)=A(5,7)+X4Y
A(5,0)=A(5,8)+X3Y2
A(5,?)=A(5,0)+X2Y3
A(5,1!)=A(5,10)+XY4
A(5,11)=A(5,11)+XYRHO
A(E,G)=A(G,E)+Y4
A(6,7)=A(5,7)+X3Y2
A(6,R)=A(E,R)+X2Y3
A(E, 位=A(5,9)+XY4
A(\epsilon:,10)=A(E,10)+Y5
A(E,11)=L(E,I1)+Y2RHO
A(7,7)=A(7,7)+X6
A(7,9)=A(7,8)+X5Y
A (7, Y)=4(7,: ) +X4Y2
A(7,1!)=A(7,1!)+X3Y3
A(7,11)={(7,11)+X3KHO
A(8, f, )=A(&,0%)+X4Y2
A(A,O)=\triangle(8,O)+X3Y3
A({,10)=A(E,10)+X2Y4
A(E, 11)=A(R,11)+XZYRHO
A(丹,1!)=A(?,10́)+XY5
A}(G,1i)=&(G,ii)+XY2RHO
```
```
    A(10,10)=A(10,10)+Y6
    A(10.11)=A(10,11)+Y3RHO
    A(11,11)=A(11,11)+RHO(I) *RHO(I)
    G(1)=B(1)+GRV(I)
    B(2)=E(2)+XGRV
    E(3)=B(3)+YGRV
    E(4)=B(4)+X2GRV
    E(5)=B(5)+XYGRV
    B(E)=8(G)+Y2GRV
    S(7)=E(7)+X3GRV
    B(C)=B(S)+X2YGRV
    E(?)=亏(9)+XY2GRV
    E(10)=E(10)+Y3GFV
    S(11)=E(11)+RHO(I)*GPV (I)
    D0 6 I=1,1i
    e(I)=e(I)/il
    00 6 J=1,11
O A(I;J)=A(I,$/N
A(1, 1)=1.0
A(2,1)=A(1,2)
A(2,2)=A(1,4)
A(2,3)=A(1,5)
A(3,1)=A(1,3)
A(3,2)=A(1,5)
A(3,3)=A(1,6)
A(3,4)=A(2,5)
A(3,5)=A(2,6)
A(4,1)=A(1,4)
4(4,2)=A(2,4)
A(4,3)=A(3,4)
A(5,1)=A(1,5)
A(5,2)=A(2,5)
A(5,3)=A(3,5)
A(5,4)=A(4,5)
A(5,5)=A(4,6)
A(6,1)=A(1,G)
A(5,2)=A(2,6)
A(E,3)=A(3,6)
A(E,4)=A(4,6)
A(5,5)=A(5,6)
A(7,1)=A(1,7)
\#(7,2)=A(2,7)
A(7,3)=\&(3,7)
A(7,4)=A(4,7)
A(7,5)=A(5,7)
A(7,5)=A(5,7)
A(B,2)=A(2,3)
4(?,2)=4(2, こ)
A(iu.2)=4(2,10)
A(8,j.)=A(?, 8)
A(`, 3)=A(3,G)
A(8,1)=A(1,8)
A(7,1)=A(1,5)
A(1., 1)=A(1,10)
A(11,1)=A(1,11)
A(t.,5)=4(3,i?)
``` ```
A(11,2)=A(2,11)
A(11,5)=A(3:il)
4(11,7)=1(4,ii)
A(11.5)=A(5,1i)
A(1i,E)=A(6,ii)
A(11,7)=1(7,11)
A(11,*)=A(3,11)
A(11,9)=A(9,11)
A(11,1j)=A(:r.11)
A(E,4)=4(4,方)
L(\pi,5)=A(4,7)
A(S,5)=A(4,1:!)
A(अ,4)=A(5, 3)
A(\xi,5)=A(6,\#)
A(g,S)=A(5,0)
A(1?,4)=A(5.3)
A(1;,5)=A(5,1?)
A(12,5)=A(5.12)
A(1j,3)=A(3,1,)
A(9,7)=A(7,8)
A(S,8)=A(7, 堷
A(?,\#)=A(7,10)
A(7,5)=A(8,10)
A(7,9)=A(7,10)
A(1:0,7)=A(7,10)
A(1],B)=A(9,i0)
A(i;:7)=A(9,1j)
A(3,7)=A(7,7)
CALL SIMU(A,S,1:,ISING)
IF (ISINS.EO.1) GO TO S9OI
CGIVEPT TO UNGNORMALISED VAPIABLES AND DETERMINE SIGMA
DO 7 I=1,:
``````
1:+S(5)*X(I)*Y(I)+B(G)*Y(I)*Y(I)+B(7)*X(I)*X(I)*X(I)+B(E)*X(I)*X(
1 I)*Y(I)+E(?)*X(I)*Y(I)*Y(I)+B(1O)*Y(I)*Y(I)*Y(I)+B(II)*RHO(I))
7 ERF(I)=EPR(I) -GSCALE
OE|SE=P(11)*GSCALE/RSCALE
A刃2=B(S)*GSCALE/(YSCALE*YSCALE).
A11=E(う)=\hat{G}=SALE/(XSCALE*YSCALE)
A2:]=E(4)*GSCALE/(XSCALE*XSCALE)
A !1=e(3)*GSCALE/YSCALE-2.E*AO2*Y:IIN-A11*XMIN
A10=B(2)*GSCALE/XSCALE-2.Û*A20*XHIN-A11*YMIN
A j0=B(1)*GSCALE +GMIN-A1O*XMIN-AOI*YMIN-A 20*XMIN*XMIN
1-A11+XMIN*Y:IIN-AO2*Y:OIN*YMIN-DENSE*RHOMIN
VAR=:.!
00 3 I=1,N
X(I) =X(I)*XSCALE+XMIN
Y(I)=Y(I) +YSCALE + Yi.I:%
GRV(I)=GRV(I)*GSCALE + GMIN
RHO(I)=RHO(I)*RSCALE+RHOMIN
BOUGER(I)=A0U+A1O*X(I)+ASI*Y(I)+A20*X(I)*X(I)+A11*X(I)*Y(I)
1 +AO2*Y(I)*Y(I)+RHO(I)*DENSE
o VAR=VAR+ERR(I)*ERR(I)/(RHO(I)*RHO(I))
SIGMA=SORT(VAR/N)
``` ```
impput ChaMNEL 6
mRITE (o,Zこ?)(IREF(I),X(I),Y(I),ELEV(I),GRV(I), EOUGER(I), ERR(I)
1 ,i=i,M)
2OG FORMAT \& DETERMIMATIGM OF THE SOUGUER DENSITY EY FITTING A
``````
1 EASTI%%
? HOETHIVG HEIGHT DESEfVED CALCJLATEO RESIDUAL"/" NUMEER
3 (METN゙ES) (AETMES) (METRES) ANGMALY ANOMALY.
4 /i(110.2F10.0.F10.3,3F10.3))
HITE (G,3以J) DE:SE,SIO%A,O
B_; FSOQ\&T (/1/" DEVSITY CORfECTION= ', FIE.5," STANOARD DEVIATION
1 = ', FIU.5,' WITH ',I4,' OBSEPVATIOMS')
``````
400 FOR!aT (" '///" FOLYNOMIAL FOF THE FEGIONAL FIELD'/E25.10." + ',
l =12.5,PX + P.E12.5.0Y + ',E12.5.'X*X + ',E12.5,PX*Y + ',E12.5,
2 (Y*Y')
STJP
\#\#1 NRITE (6,90c!3)
\xiシg10 FGRMAT (* :O SOLUTION POSSIELE: SINGULAR MATRIX*)
stop
E%O
```
the subroutine maxMin

SURROUTINE HAXMIN（N，F，FHAX，IMAX，FHIN，IMIN）
DIMENSION F（： F ）
FMAX $=-1$ ． BE 49
FAIN＝1．0E40
$\mathrm{I}=$ ？
1 I $=1+1$
IF（FMaX．GT．F（I））GO TO 2 FMAX＝F（I） I：$A X=1$
2 IF（FAIH•LT．F（I））GO TO 3
FAIN＝F（1）
IMIN＝I
3 COnTI：NE
IF（I．EQ．N）GO TO 4
GJ TO 1
4 RETUR：N
E：




[^0]:    Sampling from six different localities of Upper Devonian sedimentary rocks has shown a variation of density from 2.47 to $2.67 \mathrm{~g} / \mathrm{cc}$, for sandstones to fine-grained sandstones, respectively, with a mean value generally greater than that for the same kind of sediments at the western part of the Midland Valley and Southern Uplands (McLean, 196la).

[^1]:    Many algorithms producing trend surface maps from regularly or irregularly spaced data have been developed during the last few years, using orthogonal or non-orthogonal polynomials. There is quite an extensive bibliography on this subject, here exemplified by a recent algorithm produced by Whitten (1974).

