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Abstract

This thesis studies the effectiveness of bio-inspired optimization algorithms in

controlling adaptive antenna arrays. Smart antennas are able to automatically

extract the desired signal from interferer signals and external noise. The angular

pattern depends on the number of antenna elements, their geometrical arrange-

ment, and their relative amplitude and phases. In the present work different

antenna geometries are tested and compared when their array weights are opti-

mized by different techniques. First, the Genetic Algorithm and Particle Swarm

Optimization algorithms are used to find the best set of phases between antenna

elements to obtain a desired antenna pattern. This pattern must meet several

restraints, for example: Maximizing the power of the main lobe at a desired di-

rection while keeping nulls towards interferers. A series of experiments show that

the PSO achieves better and more consistent radiation patterns than the GA in

terms of the total area of the antenna pattern. A second set of experiments use

the Signal-to-Interference-plus-Noise-Ratio as the fitness function of optimization

algorithms to find the array weights that configure a rectangular array. The re-

sults suggest an advantage in performance by reducing the number of iterations

taken by the PSO, thus lowering the computational cost. During the development

of this thesis, it was found that the initial states and particular parameters of

the optimization algorithms affected their overall outcome. The third part of this

work deals with the meta-optimization of these parameters to achieve the best

results independently from particular initial parameters. Four algorithms were

studied: Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing

and Hill Climb. It was found that the meta-optimization algorithms Local Uni-

modal Sampling and Pattern Search performed better to set the initial parameters

and obtain the best performance of the bio-inspired methods studied.
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Chapter 1

Introduction

1.1 Motivation

In the last few years, the use of mobile and wireless communication devices like

mobile phones, global positioning systems and personal digital assistants has in-

creased in such a way that the network bandwidth is affected. One way to tackle

this problem is to design antenna architectures that meet the requirements of

communication systems. In the recent years, antenna designers have benefited

from the use of simulation software tools that allow the exploration of a large va-

riety of configurations before fabrication. A large variety of antennas have been

developed to date [1, 2, 3]; they range from simple structures such as monopoles

and dipoles to complex structures such as phased arrays. One way to improve the

capabilities of an antenna is to consider a set of individual elements in a geomet-

rical configuration creating an antenna array; the overall radiation pattern of the

array is obtained with the summation of each radiated field of every individual

element. The interaction amongst all radiation patterns depends on the geom-

etry of the array (number of elements, distance between elements, etc.), where

the pattern of the elements should interfere constructively in the direction of the

signals-of-interest (SOI) and destructively in any other direction or signals-not-of-

interest (SNOI). Amongst others, one of the characteristics that determines the

shape of the radiation pattern is the geometric configuration of the array (linear,

rectangular, circular, etc.). Numerous studies of antenna array geometries have
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Chapter 1. Introduction

been conducted in the past [4, 5], where, due to their symmetry, uniform circular

arrays (UCA) were found to have advantages over other geometries in terms of

scanning abilities. These advantages motivated the work presented in this thesis

in Chapter 4 where a Uniform Circular Array is considered and its geometric

structure is modified. The circular configuration is rearranged in such a way that

one of the elements is placed in the centre of the array. As shown by the results

in [6], compared to the original UCA, this modification allows better values of

directivity and half-power beamwidth to be obtained.

Another way to solve the problems faced by wireless communication systems

is to employ smart antennas. Smart antennas are systems that combine multiple

antenna elements in order to automatically optimize their radiation pattern in re-

sponse to the signal environment. Smart antennas are able to extract the desired

signal from interferer signals and external noise. This is achieved by radiating

power toward a particular direction and excluding undesired signals from other

incidence angles. Although the concept of smart antennas has been around since

1950, the technology required to implement them has only emerged in the last few

years. The development of digital signal processing permits smart antennas to

execute operations digitally which were once done by analog hardware. As men-

tioned previously, the radiation pattern of an antenna array can be controlled

by changing the characteristics of the system, for example the relative amplitude

and phases of the array elements depend on the angular pattern that must be

achieved. By changing the relative phases of array elements, a process called steer-

ing, an array is capable of focusing its main beam towards a particular direction.

This manipulation of the phases of each element is achieved by signal process-

ing; thus, an algorithm running in a computer control or intelligence calculating

these phases is needed. Due to the recent development of modern computers, the

application of numerical optimization techniques to antenna design has become

possible. Evolutionary optimization algorithms have been applied to adapting the

response of an antenna array in order to reject interference. Genetic algorithms

have been used to tune the amplitude and phase of adaptive antenna arrays in

order to place nulls in the directions of undesired signals [7, 8]. Other bio-inspired

algorithms like the Bees Algorithm have also been used for the pattern synthesis
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Chapter 1. Introduction

of a linear antenna array with prescribed nulls [9]. Moreover, algorithms like the

Particle Swarm Optimization (PSO) [10] also have been found to be effective. In

[11], PSO was used to reconfigure phase-differentiated array antennas by finding

element excitations that produce a main beam with low sidelobes. These devel-

opments in the bio-inspired arena motivated the research done in this thesis in

Chapter 5, where the use of the Particle Swarm Optimization technique to find

the optimal radiation pattern of an adaptive antenna is investigated.

During the development of this thesis, it was found that the performance of an

optimization algorithm to solve a given problem depends heavily on its initial pa-

rameters. To enhance the effectiveness of the algorithm, these parameters should

be carefully selected according to the problem to be solved. For example, the

GA has crossover and mutation rates which will affect the overall ability of the

algorithm to converge to the desired solution. By modifying these parameters,

a good balance between exploration and exploitation can be achieved. Tradi-

tionally, the behavioural parameters have been chosen according to numerous

experiments done by researchers. Parameters can also be selected according to

mathematical analysis as shown in [12], in which the PSO algorithm is analysed

and graphical parameter selection guidelines are provided. The selection of pa-

rameters can be divided in two cases: parameter tuning and parameter control

[13]. In parameter control the parameter values change during the optimization

run. An initial parameter value is needed and it has to suit the control strate-

gies which can be deterministic, adaptive, or self-adaptive [14]. On the other

hand, in parameter tuning the values do not change during the run but there

are still a large number of combinations depending on the number of parame-

ters (variables). In the last chapter of this thesis, the parameters of algorithms

Differential Evolution, Simulated Annealing, Hill Climb and Particle Swarm Op-

timization are selected using a technique called meta-optimization. This process

consists of using another optimization algorithm to find good behavioural param-

eters. Meta-optimization allows for an objective way to find the most suitable

set of parameters for a given optimization method and problem to be solved.

Different antenna problems like maximizing the signal-to-interference-plus-noise

ratio, are solved using meta-optimized parameters. Moreover, antenna synthesis
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Chapter 1. Introduction

problems proposed in the literature [15], namely the optimization of distances be-

tween antenna elements, are tackled as well using meta-optimization techniques

to enhance the efficiency and efficacy of optimization algorithms.

1.2 Research Goals

The aim of this thesis is to investigate different approaches for using bio-inspired

algorithms to enhance the capabilities of smart antennas. This is achieved by

proposing strategies to improve the effectiveness of these algorithms when tack-

ling adaptive antenna array problems. The main objectives of this work can be

summarized in the following points:

1. To understand the geometrical characteristics of antenna arrays and how

they determine the shape of their radiation pattern. This is carried out by

analysing different antenna configurations, particularly uniform circular ar-

rays. To carry out measurements of directivity, half-power beamwidth and

sidelobe levels to provide a better understanding of the effect that displace-

ment of the antenna elements have on the overall performance. To study

the effect that these geometrical changes have on the range of frequencies

at which the antenna can transmit.

2. To study the feasibility of using bio-inspired algorithms like Particle Swarm

Optimization and Genetic Algorithms among others to obtain the optimal

antenna radiation pattern for a given problem. One possible requirement

being the steering of the main beam towards a certain direction while keep-

ing low power levels in the direction of interferers. In particular, to examine

the process of digitally shifting the phase weights of an adaptive antenna

array. To investigate different approaches of computing the appropriate fit-

ness function in order to obtain the best performance of each algorithm. To

carry out a comparison of the different algorithmic approaches suggested

in the past and draw conclusions about their performance. Specifically in

terms of the number of fitness function evaluations which are of paramount

importance in real-time systems like mobile devices.
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3. To investigate and implement different strategies to enhance the effective-

ness of optimization algorithms. To apply these strategies to a number of

optimization algorithms in order to compare their efficiency and efficacy.

To carry out a statistical analysis of the data obtained.

4. To provide a better understanding of the impact initial parameters have on

the ability of optimization algorithms to find the best solution to adaptive

antenna array problems. To generate and provide data that can be used in

the development and implementation of smart antenna systems.

1.3 Thesis Overview

This thesis is organized as follows:

• Chapter 2 presents a general overview of smart antennas and their impor-

tance in wireless communication systems. The fundamentals of antenna

arrays are also described including the definition of figures like directiv-

ity, half-power beamwidth, sidelobe level, etc. The basic antenna array

geometry configurations are also explained. Linear, rectangular and cir-

cular antenna arrays are discussed and their mathematical description is

presented. Additionally, a break down of the formula for obtaining the

signal-to-interference-plus-noise ratio is provided.

• Chapter 3 describes the optimization algorithms used throughout this the-

sis. These algorithms are: Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) which will be used in Chapters 5 and 6. Differen-

tial Evolution (DE), Simulated Annealing (SA), Hill Climb (HC), Pattern

Search (PS) and Local Unimodal Sampling (LUS) are studied in Chapter 7

for meta-optimization.

• In Chapter 4, an analysis of the effect of a central antenna element on

the radiation pattern in a uniform circular antenna arrays is presented.

A modification of the array geometry is considered in which one of the

antenna elements is placed in the centre of the array. The corresponding
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array factor is adjusted to describe the geometric configuration that includes

the central antenna element. Array configurations with different numbers

of antenna elements are tested and the results on directivity and half-power

beamwidth are presented. Using simulation software, a 6-element circular

antenna array was designed and the directivity for a range of frequencies

was obtained. Moreover, additional results were obtained for a range of

transmission frequencies and for different phases of the central element.

• Chapter 5 shows the process of obtaining an optimal radiation pattern for a

linear antenna array using the Particle Swarm Optimization algorithm. In

order to control the main beam and to steer it towards a desired direction

while keeping null at interferers a set of phase shift weights is generated.

The fitness function that allows the calculations of the phase shift weights

is presented and a comparison between the standard genetic algorithm and

the particle swarm optimization is provided.

• Chapter 6 describes the use of the Particle Swarm Optimization algorithm

to generate a set of array weights for a uniform planar rectangular array.

The aim is to maximize the power towards a desired direction while min-

imizing it in the direction of interferers. A fitness function based on the

Signal-to-Interference-plus-Noise Ratio is employed. The results are com-

pared with those obtained by the Genetic Algorithm.

• In Chapter 7, the initial parameters of the algorithms Differential Evolu-

tion, Simulated Annealing, Hill Climb and Particle Swarm Optimization are

selected using a technique called meta-optimization. A group of algorithms,

namely Pattern Search, Local Unimodal Sampling as well as DE and PSO

are selected to act as a second layer of optimization over the mentioned

techniques. Meta-landscapes, as well as statistics, are obtained for each

meta-optimization experiment. A similar antenna problem to that consid-

ered in the previous chapters is solved using the obtained meta-optimized

parameters.

• Chapter 8 presents a summary and the conclusions of this thesis including

the main contributions of this research.
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Chapter 2

Literature Review: Antennas

This chapter provides a general overview of smart antennas and their role in mo-

bile communication systems. The fundamentals of antenna arrays are described

as they will be used throughout this thesis. Figures-of-merit like directivity, half-

power beamwidth, sidelobe level etc. are explained along with the basic antenna

array configurations. The geometry of antenna arrays: linear, rectangular and

circular are discussed as well as their mathematical description. In the final

section, the signal-to-interference-plus-noise ratio is described.

2.1 Smart Antennas

A smart antenna system combines multiple antenna elements to optimize its

radiation and/or reception pattern automatically in response to the signal envi-

ronment. Adaptive antennas are able to automatically extract the desired signal

from interferer signals and external noise. This is achieved by radiation power to-

wards a particular direction and excluding undesired signals from other incidence

angles [16]. This concept is shown in Figure 2.1.

Although the technology required to execute large number of calculations is

new, the concept of smart antennas emerged in the late 50s [17]. The use of mul-

tiple antennas together with a complex signal processing unit has been applied

in defence systems [16]. These systems had a high cost which prevented them

from being used commercially. It was only in recent years that new technolo-
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Figure 2.1: Desired and interfering signals.

gies like digital signal processing (DSP) permitted adaptive arrays to perform

digitally where this was once implemented in analog hardware [18]. This can

be achieved by using digital-to-analog converters connected to antenna elements

controlled by a range of voltages [19]. DSP can be implemented using field pro-

grammable gate arrays (FPGA) allowing parallel processing which would make

the signal processing run faster. Software-based algorithms have also made smart

antennas practical for wireless communications. The global demand for cellular

communications systems and wireless sensor networks justifies the development

of intelligent antennas so as to increase the coverage area, maintain a high quality

of service and eliminate interference with other users.

The goal of a smart antenna system is to augment the signal quality through

a more focused transmission of its radio signal, thus providing higher system ca-

pacities. This allows higher signal-to-interference ratios, lower power levels, and

permits greater frequency reuse. This concept is called space division multiple

access (SDMA) [16]. Another benefit of smart antennas is spatial diversity. In-

formation from the array is used to minimize the effective delay spread of the

channel allowing higher data rates by nulling multipath signals. Higher data

rates reduce fading in the received signal and suppress co-channel interference.

Multipath reduction not only benefits wireless communications but also applies
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to applications of radar systems. These are only a few benefits of smart antennas.

In short, the following list enumerates some of their advantages [20]:

• Reduction of sidelobe levels or null steering

• Increased frequency reuse

• Blind adaptation

• Improved direction-of-arrival (DOA) estimation

• Improved array resolution

• Multiple-input-multiple-output (MIMO) compatibility

• Tracking of moving sources

• Increased degrees of freedom

Smart antenna patterns are controlled via algorithms based on certain cri-

teria. This criteria could be maximizing the signal-to-interference-plus-noise ra-

tio (SINR), minimizing the variance, minimizing the mean-square error (MSE),

steering towards a desired signal, nulling interfering signals etc. When using

adaptive algorithms, the digital beamforming process is referred to as adaptive

beamforming. A diagram of typical adaptive antenna array is shown in Figure 2.2.

The array consists in a set of antenna elements connected to a receiver through

amplitude and phase shift weights. By using an adaptive algorithm, the antenna

is capable of adjust itself to a changing signal environment.

2.2 Figures-of-merit in Array Theory

A typical antenna pattern is shown in Figure 2.3 as a polar plot in linear units.

The main lobe (or main beam) is the lobe containing the direction of maximum

radiation. There are also usually a series of lobes smaller than the main lobe.

Any lobe other than the main lobe is called a minor lobe. A side lobe is defined

as a radiation lobe in any direction other than that of the intended lobe [20].
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Figure 2.2: Adaptive linear array.

Figure 2.3: Typical antenna pattern polar plot.

2.2.1 Directivity

The directivity is a figure-of-merit describing how well the radiator directs energy

in a certain direction. The directivity of an antenna is defined as the ratio of the
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radiation intensity in a given direction from the antenna to the radiation intensity

averaged over all directions. The average radiation intensity is equal to the total

power radiated by the antenna divided by 4π. In other words, the directivity is

the ratio of the power density of an anisotropic antenna relative to an isotropic

antenna radiation in the same total power. If the direction is not specified, the

direction of maximum radiation intensity is implied [21]. In mathematical form,

it can be written as

D =
U

U0

=
4πU

Prad
(2.1)

where

D = directivity (dimensionless)

U = power density (W/unit solid angle)

U0 = radiation intensity of isotropic source (W/unit solid angle)

Prad = total radiated power (W)

By substituting the radiation intensity in Equation 2.1, the directivity can be

written as

D(θ, φ) =
4π U(θ, φ)

∫ 2π

0

∫ π

0
U(θ, φ) sin(θ) dθdφ

(2.2)

The maximum directivity, denoted by D0 is a constant and is the maximum

of Equation 2.2. Thus, the maximum directivity is obtained by calculating the

maximum radiation intensity

D0 =
4π Umax

∫ 2π

0

∫ π

0
U(θ, φ) sin(θ) dθdφ

(2.3)

In an isotropic element, the directivity is equal to 1 since they radiate equally

in all directions and therefore are not directive. In addition to directivity, the

radiation pattern of an antenna is also characterized by its beamwidth and side-

lobe levels as discussed in the following subsections.
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2.2.2 Half-Power Beamwidth

The Half-Power Beamwidth (HPBW) is defined as: “In a plane containing the

direction of the maximum of a beam, the angle between the two directions in

which the radiation intensity is one-half the maximum value of the beam.” [20]

The HPBW is measured from the 3-dB points of a radiation pattern. The HPBW

is the angle between the 3-dB points. Since this is a power pattern, the 3-dB

points are also the half power points. [16]. The beamwidth of the antenna is

a very important figure-of-merit. The smaller the HPBW is, the easier it is to

avoid interference from undesired signals.

2.2.3 Sidelobe Level

In most cases the main lobe is the intended lobe and thus the minor lobes are

side lobes. A measure of how well the power is concentrated into the main lobe

is the (relative) Side-Lobe Level (SLL) which is the ratio of the pattern value of

a side lobe peak to the pattern value of the main lobe.

2.2.4 Array Factor

One of the most important functions in array theory is the Array Factor (AF).

The array factor is a function of the positions of the antennas in the array and

the weights used. By tailoring these parameters, the array performance may be

optimized to achieve desirable properties. For instance, the array can be steered

(change the direction of maximum radiation or reception) by changing the weights

[22].

2.3 Antenna Array Geometry

The radiation pattern of a single antenna element is relatively wide and the values

of directivity are normally low. Adaptive antenna arrays must be able to radiate

power towards a desired angular sector to allow long distance transmissions and

to avoid interference with undesired signals. One way to increase the gain is to

enlarge the dimension of the antenna element but this could be a problem with
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mobile devices due to their size. Another way to enlarge the dimension of the

antenna system is to create a collection of two or more antennas in an electrical

and geometrical configuration. This set of antenna elements is an antenna array

and has a unique radiation pattern which is dictated by five factors:

• The geometrical configuration of the array

• The distance between individual elements

• The excitation phase of the individual elements

• The excitation amplitude of the individual elements

• The relative pattern of the individual elements

In the next subsections, different configurations of 2-dimensional antenna ar-

rays will be studied.

2.3.1 Uniform Linear Array

The antenna elements placed along a line are the simplest of antenna array con-

figurations. Let us assume that the antenna under investigation is an array of

N isotropic radiating elements positioned along the x-axis equidistant from each

other as shown in Figure 2.4. The total field of the array is equal to the field of

a single element positioned at the origin multiplied by a factor which is widely

referred to as the array factor. Thus, for the N -element array, the array factor is

given by [16]

AF = 1+ω1e
j(kd sin(θ)+β1)+ω2e

j2(kd sin(θ)+β2)+ ...+ωNe
j(N−1)(kd sin(θ)+βN ) (2.4)

This can also be expressed as:

AF =
N
∑

n=1

ωne
j(n−1)(kd sin(θ)+βn) =

N
∑

n=1

ωne
j(n−1)ψ (2.5)

where ψ = kd sin(θ) + βn or if the array is aligned along the z-axis, ψ =

kd cos(θ)+βn. k is the wavenumber and equals to 2π/λ, λ being the wavelength.
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Figure 2.4: Linear array of N elements positioned along the x-axis.

d is the distance between elements. θ is the angle as measured from the y-axis

in spherical coordinates. ωn is the amplitude weight at element n and βn is the

phase shift weight at element n.

The total array factor is a summation of exponentials, thus it can be repre-

sented as a vector, which is called the array vector and is written as

ā(θ) =















1

ωne
j(kd sin(θ)+βn)

...

ωne
j(N−1)(kd sin(θ)+βn)















=
[

1 ωne
j(kd sin(θ)+βn) . . . ωne

j(N−1)(kd sin(θ)+βn)
]T

(2.6)

where []T is the transpose of the vector within the brackets. The vector

notation in Equation (2.6) will be used in Chapter 5.

2.3.2 Uniform Rectangular Array

A planar array consists of individual radiators positioned along a rectangular grid.

Planar arrays are versatile and can provide more symmetrical patterns with lower

side lobes compared to linear arrays. Applications include tracking radar, search

radar, remote sensing, communications, and many others [23]. Figure 2.5 shows
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a rectangular array in the x-y plane. There are M elements in the x-direction

and N elements in the y-direction creating an M × N array of elements. The

spaces between elements are dx and dy for the x-directed and y-directed elements

respectively. Each element on the array has a weight ωmn. A planar array is

equivalent to M linear arrays of N elements or N linear arrays of M elements.

The pattern of the entire M × N element array can be deduced by multiplying

the array factors of the corresponding linear arrays as shown in Equation 2.7 [16].

AF = AFx · AFy

=
M
∑

m=1

ame
j(m−1)(kdxsin(θ)cos(φ)+βx)

·

N
∑

n=1

bne
j(n−1)(kdysin(θ)sin(φ)+βy)

(2.7)

am and bn being the amplitude weights. k is the wavenumber and equals to

2π/λ, where λ is the wavelength. θ and φ are the angles as measured from the z-

axis in spherical coordinates and βx and βy are the phase delays for beamsteering.

The array factor can also be written as

AF =
M
∑

m=1

N
∑

n=1

ωmne
j(m−1)ψx+(n−1)ψy (2.8)

where ωmn = am · bn and is a set of complex array weights for each mnth

element. Finally, ψx = (kdxsin(θ)cos(φ) + βx) and ψy = (kdysin(θ)sin(φ) + βy).

2.3.3 Uniform Circular Array

The circular array, in which the elements are placed in a circular ring, is an

array configuration of very practical interest. Its applications span radio direction

finding, air and space navigation, underground propagation, radar, sonar, and

many other systems [24]. The array elements are placed on the x−y plane forming
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Figure 2.5: Rectangular array geometry.

a circle of radius a, and two angles, φ for azimuth and θ for elevation, represent

the components of the desired direction. The circular array configuration is shown

in Figure 2.6. The array factor of a circular array of N equally spaced elements

is written as [24]

AF =
N
∑

n=1

ωne
j[ka sin(θ) cos(φ−φn)+βn] (2.9)

where

N = number of isotropic antenna elements

k = 2π
λ

= wavenumber

a = radius of the circular ring

ωn = amplitude excitation of the nth element

βn = phase excitation of the nth element

φn = 2π( n
N
) = angular position of the nth element
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Figure 2.6: Circular array geometry.

2.4 Signal-to-Interference-plus-Noise Ratio

Maximizing the Signal-to-Interference-plus-Noise Ratio or SINR is a criterion

which can be applied to enhancing the received signal while minimizing the in-

terfering signals [25]. The SINR is defined as the ratio of the desired signal power

divided by the undesired signal power and is given by Equation 2.10 [16]

SINR =
Pss
Puu

= a2
∣

∣w̄H · x̄s
∣

∣

2

w̄H · R̄uu · w̄
(2.10)

An optimization criterion proposed by Applebaum [26], consists in maximizing

SINR. But a direct maximization of Equation 2.10 is not possible since neither a

nor R̄uu can be directly measured. However, as shown in [27], the equation can

be recast as the maximization of the fitness function f(w̄)

f(w̄) =

∣

∣w̄H · x̄s
∣

∣

2

w̄H · R̄xx · w̄
(2.11)

were H means transpose and w̄ is the complex array of weights given by
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w̄ = {wmne
jβmn ;m = 1, ...,M ;n = 1, ..., N} (2.12)

the amplitude and phase of the mnth element are wmn and βmn respectively.

R̄xx is the array correlation matrix for the received signal and is equal to

R̄xx = R̄uu + R̄ss (2.13)

where R̄ss is the desired signal correlation matrix and R̄uu is the undesired

correlation matrix given by

R̄uu = R̄ii + R̄nn (2.14)

R̄ii being the correlation matrix for interferers and R̄nn the correlation matrix

for noise. Finally, x̄s is a vector that represents the array factor as explained in

the previous section and is given by

x̄s = ej(m−1)(kdxsinθcosφ)+(n−1)(kdysinθsinφ) (2.15)

Equation 2.11 can be used as the fitness function for population-based op-

timization algorithms like the Particle Swarm Optimization and Genetic Algo-

rithms.

2.5 Summary

This chapter introduced the concept of smart antennas as well as their importance

in modern communication systems. Smart antennas are comprised of multiple

antenna elements with the aim of optimizing the overall radiation pattern. These

antenna systems are capable of responding to changes in the signal environment.

Adaptive arrays can extract the desired signal and filter undesired signals and

noise. This is achieved by radiating the power towards a certain direction. Until

recent years, these systems had a high cost due to their complexity. Nowadays,

the advances in technology and the commercialization of mobile communication

devices have allowed smart antennas to be implemented in real life applications.

In this chapter the fundamentals of antenna arrays were also discussed. Smart
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antenna radiation patterns are controlled via algorithms that are based in certain

criteria. These algorithms can maximize the signal-to-interference-plus-noise ra-

tio, or minimize the variance or mean-square error. These is often achieved by

using adaptive algorithms, which make these kind of systems referred as adap-

tive beamforming. Figures-of-merit such as directivity, half-power beamwidth,

sidelobe level etc. have been explained. Furthermore, the basic antenna ar-

ray configurations, linear, rectangular and circular, were described along with

their mathematical descriptions. Finally, the signal-to-interference-plus-noise ra-

tio, which will be used in the following chapters was described.
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Chapter 3

Literature Review: Optimization

Methods

This chapter provides the reader with a general overview of the optimization al-

gorithms which will be used in this thesis. The Genetic Algorithm as well as

the Particle Swarm Optimization are used in Chapters 5 and 6 to optimize the

radiation pattern of linear and rectangular antenna arrays. The remaining algo-

rithms: Differential Evolution, Simulated Annealing, Hill Climb, Pattern Search

and Local Unimodal Sampling are used in Chapter 7 for meta-optimization.

3.1 Introduction

Modern communication technologies have grown at its fastest pace in the last

decade. The increasingly number of mobile devices used in the networks has lead

to problems that have to be solved. As mentioned in the previous chapter, the

use of adaptive antenna arrays in mobile communications can help to tackle prob-

lems like co-channel an multi-access interference. For an antenna array system to

be smart, adaptive algorithms have to be applied in order to control and config-

ure the system behaviour to constant changes in the environment. The methods

used for operating adaptive antenna arrays can be broadly classified into two

groups: deterministic and stochastic. The deterministic methods include ana-

lytical methods like fast fourier transform and least square methods [28]. These
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methods are often computationally time consuming when the number of antenna

elements is high. On the other hand, stochastic methods have some advantages

over deterministic methods as explained in [29]. Evolutionary methods like Ge-

netic Algorithm (GA) [30, 31], Simulated Annealing (SA) [32, 33, 34], Differential

Evolution (DE) [35, 36] and Particle Swarm Optimization (PSO) [10] have the

ability to deal with large number of dimensions and are often easily implemented

on computers. The effectiveness of these algorithms for the design and operation

of antenna arrays has lead the present work to study and use them to obtain and

compare results in order to assess their suitability to solve the complex problems

of array adaptation. The following sections present an overview of the optimiza-

tion algorithms used throughout this thesis.

3.2 Genetic Algorithm

A Genetic Algorithm (GA) is a multi-agent optimization method inspired by the

evolution of biological individuals that adapt to their environment through gen-

erations and mutation; a theory proposed by Darwin [37]. The use of GAs for

numerical optimization is attributed to Holland [30] back in the 70s who proposed

the use of this algorithmic approach to solve practical problems rather than for

simulating biological systems. Another text on GAs is attributed to Goldberg

[31]. This idea was rapidly accepted and spread. However, Holland’s aim was to

create a general framework for a kind of adaptive systems rather than to solve

application specific problems. GAs begin with a set of x randomly generated

states which are called population. A string over a finite alphabet represents each

state which are called chromosomes, commonly, a string of 0s and 1s. The selec-

tion of the next generation of individuals depends on the evaluation of a fitness

function. This function returns higher values for better individuals. The next

step is to randomly select two pairs of individuals for reproduction. For each

pair to be mated, a crossover point is chosen at random from the positions in

the string. Then, the offspring themselves are created by crossing over the parent

strings at the crossover point. For example, the first child of the first pair gets the

first three digits from the first parent and the remaining digits from the second
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parent, whereas the second child gets the first three digits from the second parent

and the rest from the first parent. In the final step, each location is subject to

random mutation with a small independent probability. For example, one digit is

mutated in the first, third and fourth offspring. Genetic algorithms combine an

uphill tendency with a random exploration and exchange of information amongst

parallel search threads. Although it can be shown mathematically that, if the

positions of the genetic code is permuted initially in a random order, crossover

conveys no advantage. Genetic algorithms are good to solve problems that deal

with the optimization of nonlienar multimodal functions that have many vari-

ables. Experimental results have shown that GAs are able to find good solutions

to antenna systems. [38]. The pseudocode is shown in Algorithm 1.

3.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a biologically-inspired optimization tech-

nique. It was proposed by Eberhart and Kennedy in 1995 [10]. PSO is inspired by

the social behaviour of swarms of bees. In these biological systems, the collective

behaviour of simple individuals in their environment leads to the solution of a

given problem, for example, finding food. The goal is to find the location with

the highest density of flowers by randomly flying over the field. Each bee can

remember the location where it found the most flowers, and by dancing in the

air, they communicate this information to other bees. Occasionally, one bee may

fly over a place with more flowers than had been discovered by any bee in the

swarm. Over time, more bees end up flying closer and closer to the best patch in

the field. Soon, all the bees swarm around this point.

As an optimization technique, the system is initialized with a population of

random solutions (also called particles) and searches for optima by updating

generations. Each particle remembers its best solution called personal best or ~p

and the global best or ~g which is the best solution achieved so far by any of the

individuals. At each iteration, the particles update their velocity towards the ~p

and ~g locations according to the following two equations:
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Algorithm 1 GA algorithm.

1: Initialize the population randomly in the search-space.

2: while The termination criterion is not met do

3: for Each individual in the population do

4: Select two parents

5: x← RandomSelection(population, F itFunction)

6: y ← RandomSelection(population, F itFunction)

7: Reproduce both parents according to a defined crossover probability

8: child← Reproduce(x, y)

9: if Small random probability then

10: Mutate child

11: child←Mutation(child)

12: end if

13: end for

14: Evaluate population

15: population← new − population

16: end while
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~vn+1 = ω · ~vn + c1r1(~pn − ~xn) + c2r2(~gn − ~xn) (3.1)

~xn+1 = ~xn + ~vn+1 (3.2)

where vn and ~xn are the particle velocity and position at the nth generation re-

spectively. ω is the inertia weight and is used to control the trade-off between

the global and the local exploration ability of the group of particles or swarm,

usually in the range of [0,1]. c1 and c2 are scaling constants that determine the

relative pull of ~p and ~g, usually taken as c1 = c2 = 2.0. r1 and r2 are random

numbers uniformly distributed in (0,1). Once the velocity has been calculated,

the particle moves to its next location. The new coordinate is determined accord-

ing to Equation 3.2. The swarm will continue moving until a criterion is met,

usually a sufficiently good fitness value or a maximum number of iterations. The

pseudocode for the PSO is shown in Algorithm 2. Unlike GAs, the PSO is based

upon the cooperation amongst the individuals rather than their competition. In

addition, it is easier to calibrate and to control the parameters of the PSO over

the GA [39]. GAs require a specific strategy and careful choice of operators ac-

cording to the application, whereas PSO eliminates the process of selecting the

best operators by sequentially updating its equations.

3.4 Differential Evolution

In 1995, Price and Storn proposed a multi-agent heuristical optimization method

called Differential Evolution (DE) [35, 36]. Differential Evolutions grew out of at-

tempts to solve the Chebychev Polynomial fitting Problem. A breakthrough came

when Price came up with the idea of using vector differences for perturbing the

vector population. DE basically works by creating a new possible agent-position

by combining the position of randomly chosen agents from its population, and

updating the agent’s current position in case there is improvement to the fitness.

In other words, instead of classical crossover or mutation, it creates new offspring

from parent chromosomes by using a differential operator. Since the publication

of Price and Storn, the Differential Evolution algorithm has been through sub-
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Algorithm 2 PSO algorithm.

1: Initialize the particles with random velocities and random positions in the
search-space.

2: while The termination criterion is not met do

3: for Each particle in the swarm do

4: Pick two random numbers: ~r1, ~r2 ∼ U(0, 1).

5: Update the particle’s velocity ~v as follows:

6: ~vn+1 = ω · ~vn + c1r1(~pn − ~xn) + c2r2(~gn − ~xn)

Where ~g is the swarm’s best known position, ~p is the particle’s own best
known position, and ω, c1 and c2 are user-defined behavioural parame-
ters.

7: Move the particle to its new position by adding its velocity:

8: ~x← ~x+ ~v

9: if f(~x) < f(~p) then

10: Update the particle’s best known position:

11: ~p← ~x

12: end if

13: if f(~x) < f(~g) then

14: Update the swarm’s best known position:

15: ~g ← ~x

16: end if

17: end for

18: end while
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stantial improvement which make it a versatile and robust tool. It is worth noting

that DE managed to finish 3rd at the First International Contest of Evolutionary

Computation (ICEO) held in Nagoya, May 1996 [40], where the first two places

were given to non-GA type algorithms which are not universally applicable but

which solved the test-problems faster than DE. Like Genetic Algorithms, DE

also employs operators that are dubbed crossover and mutation but with differ-

ent meanings. In this thesis, the classic DE (DE/rand/1/bin) will be used as it

is believed to be the best performing and hence most popular of the DE variants

[41] There are several other variations, for example the JDE Variant proposed

by Brest et al. [42]. DE starts with a population of NP D-dimensional search

variable vectors. Subsequent generations are presented by discrete time steps

(t = 0, 1, 3, ..., t, t+ 1,) etc. As the vectors can change over different generations,

the following notation for representing the ith vector is adopted

~Xi(t) = [xi,1(t), xi,2(t), xi,3(t), ... , xi,D(t)] (3.3)

where ~Xi(t) are vectors called “genomes” or “chromosomes”. For each variable,

there may be a certain range within which the value of the parameter should lie

for better search results. At the beginning, or at t = 0, the problem parameters

are initialized within a defined range. Therefore, if the jth parameter of the

given problem has lower and upper bounds xLj and xUj respectively, then the jth

component of the ith population member is initialized as follows

xi,j(0) = xLj + U(0, 1) ·
(

xUj − x
L
j

)

(3.4)

where U(0, 1) is a uniformly distributed random number lying between 0 and

1. In each generation, to change each population member ~Xi(t), a donor vector

~Vi(t) is created. To create a ~Vi(t) for each ith member, three other parameter

vectors ~a, ~b and ~c are chosen randomly from the current population. Next, a

scalar number F called the differential weight, scales the difference of any two of

the three vectors and the scaled difference is added to the third one so the ~Vi(t)

vector is obtained. This process can be expressed for the jth component of each
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vector as [35]

vi,j(t+ 1) = x~a,i(t) + F ·
(

x~b,i(t)− x~c,i(t)
)

(3.5)

Next, to improve the potential diversity of the population, a crossover scheme

is applied. DE can use two kinds of crossover schemes namely “Exponential”

and “Binomial”. The donor vector exchanges its components with the target

vector ~Xi(t). In “Exponential” crossover, a random integer n is chosen among

the interval [0, D − 1]. This integer is the starting point in the target vector,

from where the crossover or exchange of components with the donor vector will

take place. Another integer L is chosen from the interval [1, D] to represent the

number of components contributed by the donor vector to the target. Once n

and L are chosen the trial vector [35]

~Ui(t) = [ui,1(t), ui,2(t), xi,3(t), ... , ui,D(t)] (3.6)

is formed with

ui,j(t) = vi,j(t) for j =< n >D, < n+ 1 >D, ... , < n− L+ 1 >D

= xi,j(t) (3.7)

where the angular brackets <>D denote a modulo function with modulus D. The

integer L is drawn from [1, D] according to the following pseudocode

L = 0;

while (U(0, 1) < CR) AND (L < D)) do

L = L+ 1;

end while

Hence in effect probability (L > m) = (CR)m−1 for any m > 0. CR is the

crossover probability and is one of the main control parameters of DE just like F .

For each donor vector V , a new set of n and L must be chosen randomly as shown

above. However, in the “Binomial” crossover scheme, the crossover is performed

on each of the D variables whenever a randomly picked number between 0 and 1
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is within the CR value. The scheme can be outlined as

ui,j(t) =







vi,j(t) , if U(0, 1) < CR

xi,j(t) , else
(3.8)

In this way, for each trial vector ~Xi(t) an offspring vector ~Ui(t) is generated. To

keep the population size constant over subsequent generations, the next stem of

the algorithm is a “selection” to determine which one of the target vector and

the trial vector will survive in the next generation. DE actually involves the

Darwinian principle of “Survival of the fittest” in its selection process which may

be outlined as

~Xi(t+ 1) =







~Ui(t) , if f(~Ui(t)) ≤ f( ~Xi(t))

~Xi(t) , if f( ~Xi(t)) < f(~Ui(t))
(3.9)

where f() is the function to be minimized. So if the new trial vector obtains a

better value of the fitness function, it replaces its target in the next generation,

otherwise the target vector is retained in the population. Thus, the population

either gets better or it remains constant but never deteriorates. The DE algorithm

is shown as a pseudocode in Algorithm 3.

3.5 Simulated Annealing

A hill climb algorithm that never makes downhill moves towards states with

lower value will never be complete because it can get stuck on a local maximum.

On the other hand, a purely random walk that moves to a successor chosen

uniformly at random from the set of successors is complete but can be extremely

inefficient. Thus, it seems reasonable to try to combine both hill climb with

a random walk in some way that yields both efficiency and completeness [43].

Simulated annealing (SA) is a generic and probabilistic meta-heuristic algorithm,

introduced in the 80s by Kirkpatrick et al. [32, 33, 34]. While genetic algorithms

are biologically inspired, simulated annealing is “metallurgy inspired”. Thermal

annealing is a technique involved in metallurgy to reduce the defects of a material
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Algorithm 3 DE algorithm.

1: Initialize the agents with random positions in the search-space

2: while The termination criterion is not met do

3: for Each agent vi,j(t) in the population do

4: Pick three agents ~a, ~b and ~c at random, they must be distinct from each
other as well as from agent vi,j(t).

5: Compute the agent’s potentially new position ui,j(t), by iterating over
each i ∈ {1, ..., n} as follows:

• Pick U(0, 1) for use in a stochastic choice next.

• Compute the ith element of the potentially new position ui,j(t),
using Equation 3.8 from above:

• ui,j(t) =

{

vi,j(t) , if U(0, 1) < CR

xi,j(t) , else

• Where the user-defined behavioural parameters are the differential
weight F and the crossover probability CR.

6: if f(~Ui(t)) < f( ~Xi(t)) then

7: Update the agent’s position:

8: ~Xi(t+ 1)← ~Ui(t+ 1)

9: end if

10: end for

11: end while
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by heating and controlled cooling. The heat causes the atoms to become unstuck

from their initial positions (a local minimum of the internal energy) and wander

randomly through states of higher energy; the slow cooling gives them more

chances of finding configurations with lower internal energy than the initial one.

By analogy with this physical process, each step of the SA algorithm replaces

the current solution with a random “nearby” solution, chosen with a probability

that depends on the difference between the corresponding function values and

on a global parameter T (called the temperature), that is gradually decreased

during the process. The dependency is such that the current solution changes

almost randomly when T is large, but increasingly downhill as T goes to zero.

The allowance for uphill moves saves the method from becoming stuck at local

minima, which are the bane of greedier methods. The pseudocode of the SA

algorithm is shown in Algorithm 4. The algorithm starts by generating an initial

solution (usually a random solution) and by initializing the so-called temperature

parameter T . Then the following is repeated until the termination condition is

satisfied: a solution y from the neighbourhood of the current solution is randomly

sampled and it is accepted as a new current solution if

Fitness(Solution) < Fitness(~y) (3.10)

If this condition is not met, the probability decreases exponentially according to

the temperature:

e(
(−f(Solution)−f(~y)

T ) (3.11)

3.6 Hill Climb

The Hill Climb (HC) is an optimization technique which belongs to the family

of local search. It is an iterative algorithm that starts with an arbitrary solution

to a function and attempts to find a better solution by incrementally changing

a single variable of the solution [43, 44, 45]. If the change produces a better

solution, an incremental change is made to the new solution, repeating until no

further improvements can be found. For example, hill climb can be applied to the

45



Chapter 3. Literature Review: Optimization Methods

Algorithm 4 SA algorithm.

1: Initialize the agents with random positions in the search-space.

2: Initialize temperature T ← T0

3: while The termination criterion is not met (T ← 0) do

4: ~y ← rand(~x)

5: Choose randomly from ~x

6: if f(~y) < f(~x) then

7: Solution← ~y

8: Update the Solution value with the better one

9: else

10: Solution← ~y with probability

11: Update the Solution value with a new probability:

e(
(−f(Solution)−f(~y)

T )

12: Update the temperature T

13: end if

14: end while
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travelling salesman problem. It is easy to find an initial solution that visits all the

cities but it will be very poor compared to the optimal solution. The algorithm

starts with such a solution and makes small improvements to it, such as switching

the order in which two cities are visited. Eventually, a much shorter route is likely

to be obtained. Hill Climb is good for finding a local optimum (a good solution

that lies relatively near the initial solution) but it is not guaranteed to find the

best possible solution (the global optimum) out of all possible solutions (the

search space). The relative simplicity of the algorithm makes it a popular first

choice amongst optimizing algorithms. It is used widely in artificial intelligence,

for reaching a goal state from a starting node. The choice of next node and

starting node can be varied to give a list of related algorithms. Although more

advanced algorithms such as simulated annealing or tabu search may give better

results, in some situations Hill Climb works just as well. Algorithm 5 shows the

HC algorithm.

3.7 Pattern Search

Pattern Search (PS), described by Hooke and Jeeves [46], is a family of numeri-

cal optimization methods that samples the search-space locally from the current

position and decreases its sampling-range upon failure to improve its fitness [47].

PS does not require the gradient of the problem to be optimized and can hence be

used on functions that are not continuous. An early and simple PS variant is at-

tributed to Fermi and Metropolis when they worked at the Los Alamos National

Laboratory as described by Davidon [48]. One of the theoretical parameters is

varied at a time by steps of the same magnitude, and when no such increase or

decrease in any one parameter further improved the fit to the experimental data,

the step size is halved and the process repeated until the steps are smaller than

on the desired threshold. The idea of PS is similar to that of Golden Section

Search (GSS) by Kiefer [49], which works for one-dimensional search-spaces by

maintaining three separate points, and at each iteration replacing one of these

with an intermediate point that is chosen so as to close in on the optimum of

an unimodal problem. The variant presented in this thesis is the one used by
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Algorithm 5 HC algorithm.

1: Initialize the neighbours with random positions in the search-space.

2: Initialize MaxFitness which is the maximum fitness reached at a point.

3: Found← true

4: while The termination criterion is not met (Found← true) do

5: Found← false

6: for Each neighbour ~x do

7: if f(~x) > MaxFitness then

8: MaxFitness← f(~x)

9: Update the MaxFitness value with the new one

10: Solution← ~x

11: Update the overall solution Solution

12: Found← true

13: end if

14: end for

15: end while
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Pedersen in [50]. The pseudocode of PS is shown in Algorithm 6.

3.8 Local Unimodal Sampling

Local Unimodal Sampling (LUS) is an optimization method which can be thought

of as an extension of the previously discussed PS method. It was introduced in

2008 by Pedersen [51]. It samples all dimensions simultaneously, while decreasing

its sampling-range in much the same manner as PS. The reason for decreasing

the sampling-range during optimization is that a fixed sampling-range has no

possibility of converging to a local optimum [50]. LUS decreases the search-

range exponentially when samples fail to improve on the fitness of the current

position. Some optimization techniques use exponential decrease of search-range,

for example the Luus-Jaakola method [52] and also the method presented by

Fermi and Metropolis [48]. For the sampling done by the LUS method, the new

potential position denoted by ~y is chosen from the neighbourhood of the current

position ~x:

~y = ~x+ ~a (3.12)

where the vector ~a is randomly and uniformly generated:

~a ∼ U
(

−~d, ~d
)

(3.13)

where ~d is the current sampling-range, initially chosen as the full range of the

search-space and decreased during optimization. When a sample fails to improve

the fitness, the sampling-range is decreased for all dimensions simultaneously. The

amount by which the sampling-range will be decreased is calculated in the same

way as in the PS method. The sampling-range is halved for every dimension after

n failures to improve fitness. The sampling-range ~d should therefore be multiplied

with q for each failure to improve the fitness:

~d = q · ~d (3.14)

with q being defined as:

q ← n
√

1/2 (3.15)
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Algorithm 6 PS algorithm.

1: Initialize ~x to a random position in the search-space:

~x ∼ U
(

~blo,~bup

)

where ~blo is the lower boundary of the search-space and ~bup is the upper
boundary.

2: Set the initial sampling range ~d to cover the entire search-space:

~d← ~bup −~blo

3: while The termination criterion is not met do

4: Pick an index R ∈ {1, ..., n} uniformly and randomly

5: Let ~y be the potentially new position in the search-space, wich is ex-
actly the same as the current position ~x, except for the Rth element
yR, which is found from the neighbourhood of xR simply by adding dR:

yi =

{

xi + di , i = R

xi , else

6: if f(~y) < f(~x) then

7: Keep the new position: ~x← ~y

8: Otherwise update the sampling-range and direction for the Rth dimen-

sion: dR ← −
dR
2

9: end if

10: end while
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where n is the dimensionality of the problem to be optimized. The LUS algorithm

is shown in Algorithm 7

3.9 Summary

In this chapter, the optimization algorithms used throughout this thesis were

presented. Each algorithm was discussed and a general overview as well as pseu-

docode was explained. Evolutionary methods have been selected to solve antenna

problems as they are capable of dealing with large number of dimensions. In the

case of antenna arrays, each antenna element added to the system represents an

additional dimension that has to be solved. The Genetic Algorithm combines an

uphill tendency with a random exploration and exchange of information amongst

parallel search threads. Moreover, Genetic algorithms are good to solve prob-

lems that deal with the optimization of nonlienar multimodal functions that have

many variables. Experimental results have shown that GAs are able to find good

solutions to antenna systems [38]. On the other hand, unlike GAs, the PSO is

based upon the cooperation amongst the individuals rather than their competi-

tion. In addition, it is easier to calibrate and to control the parameters of the PSO

over the GA [39]. GAs require a specific strategy and careful choice of operators

according to the application, whereas PSO eliminates the process of selecting

the best operators by sequentially updating its equations. For these reasons, the

GA and PSO algorithms have been chosen in this work to tackle antenna array

problems as will be discussed in Chapters 5 and 6.
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Algorithm 7 LUS algorithm.

1: Initialize ~x to a random position in the search-space:

~x ∼ U
(

~blo,~bup

)

where ~blo is the lower boundary of the search-space and ~bup is the upper
boundary.

2: Set the initial sampling range ~d to cover the entire search-space:

~d← ~bup −~blo

3: while The termination criterion is not met do

4: Pick a random vector ~a ∼ U
(

−~d, ~d
)

5: Add this to the current position ~x, to create the new potential position ~y:
~y = ~x+ ~a

6: if f(~y) < f(~x) then

7: Update the new position: ~x← ~y

8: Otherwise decrease the sampling-range by the factor q from Equation
3.15: ~d← q · ~d

9: end if

10: end while
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Chapter 4

Antenna Array Geometry

This chapter analyses the effect of a central antenna element on the radiation

pattern in a uniform circular antenna array. A modification of the array geome-

try is considered in which one of the antenna elements is placed in the centre of

the array. The corresponding array factor is adjusted to describe the geometric

configuration that includes the central antenna element. This distribution al-

ters the radiation pattern in such a way that the array directivity and half-power

beamwidth are affected. An increase on the directivity and a decrease of the half-

power beamwidth are obtained by adjusting the phase of the central element. A

reduction of the side-lobe levels is also achieved. Array configurations with dif-

ferent number of antenna elements were also tested, and the results on directivity

and half-power beamwidth are presented. Using Microstripes, a software tool

that enables the simulation of antennas, a 6-element circular antenna array was

designed and the directivity for a range of frequencies was obtained. Moreover,

additional results were obtained for a range of transmission frequencies.

4.1 Introduction

Since the beginning of the twentieth century, antenna designers have investigated

different antenna architectures to meet the requirements of communication sys-

tems. Nowadays, these efforts can benefit from the use of simulation software

tools which allows the exploration of a large variety of configurations before fab-
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rication, thus, reducing design times, costs etc. A large variety of antennas have

been developed to date [23, 26, 53, 54]; they range from simple structures such

as monopoles and dipoles to complex structures such as phased arrays. Usually,

the radiation pattern of a single element antenna is very wide and it provides

low values of directivity. As noted in Chapter 2, this problem can be solved by

increasing the size of the antenna to obtain higher values of gain. However in the

case of mobile devices, a higher size implies expenditure of energy which is nor-

mally very restrained. Another way to enlarge an antenna is to consider a set of

individual elements in a geometrical configuration creating an antenna array [22].

It is convenient that the elements of the array are identical to enable a simpler

analysis and design. The overall radiation pattern of the array is obtained with

the phasor summation of each radiated field of every individual element. The

interaction among all radiation patterns depends on the geometry of the array

(number of elements, distance between elements, etc.) where the pattern of the

elements should interfere constructively in the direction of the Signals-Of-Interest

(SOI) and destructively in any other direction or Signals-Not-Of-Interest (SNOI).

To determine the shape of the radiation pattern, five characteristics of the array

can be adjusted [20]:

• The geometry configuration of the array (linear, rectangular, circular, etc)

• The excitation phase of the individual elements

• The excitation amplitude of the individual elements

• The relative displacement between the elements

• The relative pattern of the individual elements

The excitation phase and amplitude has received extensive attention [55, 56,

57]. However, the array geometry has received relatively little attention even

though it also strongly influences the radiation pattern. The reason for this is

primarily due to the complex way in which the geometry affects the radiation pat-

tern [58]. Numerous studies for different geometries have been conducted in the

past [59, 60]. However, these studies include mostly uniform linear arrays (ULAs)
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and uniform rectangular arrays (URAs). In [4, 5], the performance of uniform

circular arrays (UCAs) was examined. It was found that this arrangement of ele-

ments have no edge constraints so the beam pattern can be electronically rotated.

Circular arrays have also the capability of compensating the effect of mutual cou-

pling by breaking down the array excitation into a series of symmetrical spatial

components. In other words, the symmetry of UCAs provides a major advantage

when scanning a beam pattern azimuthally through 360◦ with little change in

either beamwidth or sidelobe level.

Other work in antenna array geometry has been done in [61], where the ca-

pacity of different array configurations was studied. The capacities of these con-

figurations were measured in terms of SNR. Also in this field, several antenna

array geometries on MIMO channel eigenvalues were investigated in [62]. Four

different antenna array geometries were considered, namely, uniform linear ar-

ray, uniform circular array, uniform rectangular array and uniform cubic array.

All the considered geometries had the same number of elements and fixed inter-

element spacing. The uniform linear array geometry showed superiority to the

other considered geometries.

Not only can the number of elements in a circular array be varied but the

actual position in the ring can be carefully selected to obtain a desired radiation

pattern. In [63] an optimum antenna array geometry was obtained in terms of

suppressing interference. An optimization algorithm, namely Simulated Anneal-

ing was used to find the optimum array positioning and several configurations

were presented. In [64], a genetic algorithm was used to optimize the element

placement in a concentric ring array to obtain the lowest maximum sidelobe level

at boresight. This optimization found the spacing that balances the height for

all the sidelobes. It has also been observed that a planar arrangement with an

element at the centre increases array steering capability as well as reducing the

side lobe levels [65].
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4.2 Circular Array with Central Element

Previous studies have pointed out the advantages of circular antenna arrays as

well as the observations made in [65] of a central element. Uniform Circular

Arrays, or (UCA) are a popular type of antenna arrays which have several ad-

vantages such as scan capability (they can perform a 360◦ scan) while the beam

pattern is kept invariant [66, 67]. For these reasons, the present work contem-

plates the use of Uniform Circular Arrays and explores a variation of the geom-

etry structure. The circular configuration is rearranged in such a way that one

of the elements is placed in the centre of the array. As shown by the results in

this chapter, this modification permits better values of directivity and half-power

beamwidth compared to the original UCA.

This arrangement of emitters has been proposed in the past [68]: SPEAR is

an antenna design consisting of one central element connected to the source and

several surrounded parasitic elements in a circle. By adjusting the value of the

reactance, the parasitic elements form the antenna array radiation pattern into

different shapes. In the present work, different shapes of the radiation pattern

are obtained by using different excitation phase angles for the central element.

Additionally, this work includes comparisons between the standard and the mod-

ified UCA designs. Results for a range of different frequencies against directivity

between both architectures are also presented. In addition, a circular array with

a central element is presented in [69], where spiral elements are arranged in an

hexagonal shape. This work obtains total gain results but the number of ele-

ments is fixed. In the present work, several UCA arrays with different number

of elements (from 4 to 20) are explored to compare and obtain the best array

configuration. Figure 4.1 shows both the standard and modified arrays studied

in this thesis.

4.3 Deduction of Radiation Pattern Formula

As presented in Chapter 2, the array factor for a circular array of N equally

spaced elements is [16]
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(b) Modified UCA.

Figure 4.1: Standard and Modified uniform circular arrays.

AF =
N
∑

n=1

ωne
j[ka sin(θ) cos(φ−φn)+βn] (4.1)

And to steer the main lobe in the (θ0, φ0) direction, the phase excitation of

the nth element can be chosen to be

βn = −ka sin θ0 cos(φ0 − φn) (4.2)

Given that the modified array shown in Figure 4.1(b) has one antenna element

at the centre and the radius for this element is 0, the displacement phase factor

on the array factor becomes ejβx where βx is the phase excitation of the element

at the centre. The total field of the array is determined by the addition of the

fields radiated by the individual elements. Thus, the resulting array factor for

the modified array is the sum of the array factor of the standard circular array

plus the antenna element at the centre

AF (θ, φ) = ejβx +
N
∑

n=1

Ine
j[ka sin θ cos(φ−φn)+βn] (4.3)

This array factor represents the modified circular antenna array shown in

Figure 4.1(b) and will be used in the following section to obtain data and compare
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its performance against the standard circular antenna array 4.1(a).

4.4 Results

In order to analyse the effect caused by a central element on the radiation pattern

of a uniform circular antenna array, several experiments are performed. These ex-

periments consist in a comparison between the standard and the modified UCA

arrays. The first experiment measures both the directivity and the half-power

beamwidth of circular arrays with different number of antenna elements. The

second experiment explores the possibility of changing the phase of the central

element. In practice, this shift in the phase can be obtained electronically and

can affect the overall radiation pattern of the array. A third experiment consists

in replicating the previous tests but this time using a 3D electromagnetic simu-

lation tool called Microstripes [70]. The Microstripes software allows to design

antenna arrays and performs simulations in terms of frequency response. These

simulations show 3D representations of the beam pattern, which are also studied

in this experiments.

4.4.1 Experiment 1: Directivity and HPBW

A comparison between the standard and modified UCAs is presented. Matlab

simulations were performed to calculate the directivity based on the fields above

the x− y plane and the HPBW at the maxima. The directivity and HPBW were

obtained for arrays with different number of antenna elements.

Figure 4.2 shows that the directivity of the modified UCA is higher than the

one for the standard UCA in a range of 4 to 20-element antennas. The maximum

value of directivity, 8.25dB, is obtained with a 6-element array. Then it gradually

decreases if more antenna elements are used. This is due to the decrease of power

provided by the single central element compared with the total power supplied

by the rest of the elements. It should be noted that, up to 20 elements, the

directivity of the modified UCA is still higher than the one of the standard UCA.

In the case of the HPBW (Figure 4.3), the modified UCA presents a smaller

angle compared with the standard UCA for any number of antennas from 4 to
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Figure 4.2: Directivity and number of elements.

20. This is a desired result given that a narrower HPBW allows the antenna to

avoid Signals-Not-Of-Interest more effectively [54].
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Figure 4.3: HPBW and number of elements.

4.4.2 Experiment 2: Phase shift of the central element

The second experiment consists in modifying the phase shift of the central element

and obtain values of directivity and HPBW. The central element phase φ is

shifted from 0◦to 360◦. Figures 4.4 and 4.5 show the changes on directivity and

HPBW respectively. On both figures, the standard UCA (dashed line) shows

a constant directivity and HPBW since it has no central element. It can be

observed that with a phase shift of 180◦, the directivity reaches its highest, while
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the HPBW exhibits its smallest angle. Although, these values are lower than in

the standard UCA for angles from 0◦to 110◦and 250◦to 360◦for directivity and

from 0◦to 100◦and 260◦to 360◦for HPBW.
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Figure 4.4: Directivity and phase of the central element.
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Figure 4.5: HPBW and phase of the central element.

Figure 4.6 shows an example for both antennas steering at θ = 20◦. It can be

observed that the modified UCA achieves a higher directivity than the standard

UCA at the desired angle.

Results in terms of side-lobe level were also obtained. A polar plot of relative

directivity is shown in Figure 4.7, where the modified UCA exhibits a lower side-

lobe level compared with the standard UCA.
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Figure 4.6: Directivity in dB and dimensionless.
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Figure 4.7: Polar plot of relative directivity.

4.4.3 Experiment 3: Design with Microstripes tool

Besides Matlab simulations, a 3D electromagnetic simulation tool called Mi-

crostripes [70] was used to plot the radiation pattern of the standard and modified

UCAs. Microstripes is used extensively for solving challenging radiation problems

including complex antenna structures. Two antenna array designs with 6 elements

each were simulated to compare the standard and modified architectures. The

results show a decrease of the side-lobe levels in the modified array. See Figures

4.8 and 4.9.
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Figure 4.8: 3D standard array pattern.

Figure 4.9: 3D modified array pattern.

The Microstripes simulations were performed for a variety of frequencies in

which the antenna can transmit. Figure 4.10 shows the set of frequencies and

the associated directivity. It can be seen that for almost all the frequencies, the

directivity is higher for the modified UCA compared with the standard design.

The radiation pattern for both antennas was obtained from Microstripes. In

Figure 4.11(a), it can be seen that the modified array presents lower values of

side-lobe levels. Figure 4.11(b) is a polar plot showing the same data.
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Figure 4.10: Directivity against frequency.

(a) Rectangular field pattern plot. (b) Polar field pattern plot.

Figure 4.11: Radiation pattern for standard (red) and modified (black) circular
arrays.
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4.5 Non isotropic elements

In the previous subsection, the antenna elements used to obtain Directivity and

HPBW measurements were considered isotropic. In an isotropic element, the

directivity equals to 1 since the radiation occurs in all directions. But in a real

world application, the antenna elements have a specific structure which affects

the interference between the elements of an antenna array, thus changing the

resulting radiation pattern. Moreover, the particular design of the entire array

influences the antenna response to different transmission frequencies. This should

also be taken into account when designing antenna arrays for real applications.

For these reasons, the present work also includes the following tests of the mod-

ified uniform circular antenna array. The experiments consist in designing an

UCA using Microstripes and simulations are performed for different ranges of

frequencies to obtain data that allows a comparison between the standard and

the modified UCA.

To perform these experiments, a real application circular antenna array de-

sign was used. This design, amongst others, is part of the work carried out by

the ESPACENET project [71] which targets the development of flexible and in-

telligent embedded networked systems for aerospace applications. The aim is to

develop a network architecture which can be applied to a constellation of micro

satellites, which would one day replace existing large multifunctional satellites.

The MEMS antennas designed by the group are constructed on the top substrate

and have through wafer vias connecting the antennas to the MEMS and control

structures.

4.5.1 Operation Frequencies

A series of simulations were performed using Microstripes for the proposed Mod-

ified Circular Array using the research group’s design of the antenna element.

The array consists of a ring of 8 elements and a ninth in the centre. Figure 4.12

a picture of the array.

Results for 10 different frequencies were obtained: 13.58, 21.91, 31.2, 46.63,

55.73, 66.28, 92.26, 109.49, 125.55 and 143.32 GHz. Table 4.1 summarizes the
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Figure 4.12: Modified Circular Array using the antenna elements proposed by
the research group.

Table 4.1: Antenna results over a different range of frequencies.

Frequency Directivity Gain Antenna efficiency Material loss
(GHz) (dBi) (dBi) (%) (dB)

13.58 7.18 3.78 45.66 -3.40
21.91 10.67 8.50 60.60 -2.17
31.20 13.50 12.33 76.40 -1.16
46.63 14.56 13.49 78.16 -1.07
55.73 13.65 13.22 90.53 -0.43
66.28 12.86 12.46 91.39 -0.39
92.26 11.39 10.57 82.70 -0.82
109.49 9.17 7.96 75.61 -1.21
125.55 8.65 7.12 70.15 -1.53
143.32 10.30 9.11 76.16 -1.18

results for bandwidth, directivity, gain and efficiency of the antenna at the respec-

tive frequencies. In terms of directivity, it can be seen that the levels are low for

the low frequency of 13.58GHz, but it increases with frequencies 21.91GHz and

31.20GHz. The directivity is at its highest (14.56dBi) when the frequency value

is 46.63GHz and then it decreases as the frequency augments from 55.73GHz to

125.55GHz. It is worth notice that for the frequency of 143.32GHz the directivity

increases again, this time to 10.3dBi. A similar behaviour can be found for the
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gain, which maximum value of 13.49dBi occurs when the frequency is 46.63GHz.

The antenna efficiency follows the same pattern as the directivity, with the high-

est value of 90.53% when the frequency is 55.73GHz. Also the material loss,

measured in dB, is lower with the lower frequencies of 13.58GHz and 21.91GHz,

and its highest value of -0.39 occurs with the frequency of 66.28GHz.

Figures 4.13 to 4.22 show graphics obtained with Microsripes for each fre-

quency respectively. On each figure, a 2-dimensional plot of the array pattern is

shown as well as a 3-dimensional representation of the main lobe. Figure 4.13

shows a lobe with almost no sidelobe levels for frequency 13.58GHz, the same

can be noticed in Figure 4.14 for the frequency of 21.91GHz. Figures 4.15 and

4.16 show the array pattern for frequencies 31.20GHz and 46.63GHz, this time

it can be seen that there are small sidelobes, although the directivity is at its

highest for these frequencies as discussed previously in Table 4.1. In the case

of Figures 4.17 and 4.18 the sidelobes begin to show getting closer to the main

lobe and the directivity decreases. Finally, Figures 4.19 to 4.22 show patterns

where the main lobe is lost among the sidelobes which suggest that the antenna

design being tested (Figure 4.12) is unable to operate under the frequencies from

92.26GHz to 125.55GHz.

(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.13: Frequency 13.58GHz. Directivity: 7.187dBi.
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(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.14: Frequency 21.91GHz. Directivity: 10.677dBi

(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.15: Frequency 31.20GHz. Directivity: 13.505dBi

4.6 Summary

A geometry modification to the conventional uniform circular antenna array has

been proposed. This modification consists in the placement of one of the antenna

elements at the centre of the array. This element, modifies the overall radiation

pattern in such a way that the directivity is increased whilst the half-power

beamwidth angle is reduced. The result is a better capability of transmission

in the desired direction and avoiding unwanted signals. It was also observed

that the sidelobe levels of the radiation pattern were lower than those of the

conventional circular antenna array which also helps to avoid interference. It
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(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.16: Frequency 46.63GHz. Directivity: 14.566dBi

(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.17: Frequency 55.73GHz. Directivity: 13.653dBi

was concluded that, to obtain the best trade-off, the circular array should be

conformed by 6 antenna elements, which is the configuration that shows better

directivity and reduced half-power beamwidth.
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(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.18: Frequency 66.28GHz. Directivity: 12.860dBi

(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.19: Frequency 92.26GHz. Directivity: 11.398dBi

(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.20: Frequency 109.49GHz. Directivity: 9.177dBi



(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.21: Frequency 125.55GHz. Directivity: 8.659dBi

(a) 2-dimensional plot. (b) 3-dimensional plot.

Figure 4.22: Frequency 143.32GHz. Directivity: 10.300dBi



Chapter 5

Bio-inspired Algorithms for

Radiation Pattern Optimization

In this chapter, an optimal radiation pattern is obtained for a linear antenna ar-

ray using the particle swarm optimization technique. A set of phase shift weights

is generated in order to steer the beam towards any desired direction while keep-

ing nulls in the direction of interferers. The fitness function which allows the

calculations of the phase shift weights is presented. A comparison between the

standard genetic algorithm and the particle swarm optimization was studied and

the results show that the latter achieves a better and more consistent radiation

pattern than the GA. Moreover, a number of experiments show that the PSO is

capable of solving the problem using less number of fitness function evaluations

on average.

5.1 Introduction

Wireless communication technologies have experienced a fast growth in recent

years. The latest mobile devices offer multi-bandwidth services and to enable

this, new technologies have to be developed. Spatial processing is considered

the last frontier in the battle for improved cellular systems and smart antennas

are emerging as the enabling technique. The use of adaptive antenna arrays

in mobile handsets can help eliminate co-channel interference and multi-access
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interference amongst other problems. These breed of antennas are able to radiate

power towards a desired angular sector, thus, avoiding interference with undesired

devices. Figure 5.1 shows a graphic explanation of this concept. The number,

geometrical arrangement, and relative amplitude and phases of the array elements

depend on the angular pattern that must be achieved. By changing the relative

phases of array elements, a process called steering, an array is capable of focusing

its main beam towards a particular direction.

Figure 5.1: Radiation pattern for desired and interfering angles -60◦, 30◦.

This thesis is part of an ongoing research at the System Level Integration

research group [72, 73, 74]. This research focuses on reconfigurable MEMS (Micro-

Electro-Mechanical Systems) sensors and antennas. The group has developed

a series of phased array antennas which are ideal for reconfigurable networks.

MEMS devices offer very low loss switching which means that the RF network of

MEMS switches will not interfere or degrade antenna radiation patterns. MEMS

can be used in several ways to achieve reconfigurability. One of these options is

to employ MEMS switches to connect the antenna elements. These phase shifters

are designed to alter the phase of the signal on the transmission line. They are

fabricated from the same material as the antenna and much smaller than DMTL

(Distributed MEMS Transmission Line) phase shifters. This approach allows

the design of smart antennas capable of steering its radiation pattern towards a

given direction by configuring the relative phases of the array elements. Figure

5.2 shows a diagram of a general phase-shift smart antenna system.
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Figure 5.2: Diagram of a Phase-shift Smart Antenna system.

Although, as noted in Chapter 3, for a beamsteered array to be a smart

antenna it has to use signal processing in order to obtain the desired beam pattern

according to certain conditions. Thus, an algorithm that controls the antenna

performance is needed. In the case of phase-shift arrays, the phase of each antenna

element must be set by a computer control or intelligence.

5.2 Adaptive Antenna Arrays and Bio-Inspired

Algorithms

Due to the amazing development of computers, the application of numerical opti-

mization techniques to antenna design has become possible. Genetic algorithms

have been applied to adapting the response of an antenna array in order to reject

interference. In [7], a constrained GA was used to prevent nulling of the desired

signal received by the main beam. This work used amplitude and phase, phase

only and amplitude only weights. Wang et al. [8] also proposed the optimiza-

tion of amplitude and phase with genetic algorithms using a combined approach
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including subarray amplitude weights. Their results show that the combined ap-

proach reduces the grating lobes successfully. In [9], the Bees Algorithm (BA)

was used for the pattern synthesis of a linear antenna array with prescribed nulls.

Nulling of the pattern is achieved by controlling the amplitude of each array el-

ement. On the other hand, a phase-only technique was proposed in [75] where

local genetic algorithms were used to search for the optimal weighting vector of

the phase shift perturbation of the antenna array. A new convergent method

referred to as the two-way convergent method was presented.

Other bio-inspired algorithms like the Particle Swarm Optimization (PSO)

[10] have been found to be effective in optimizing difficult multidimensional prob-

lems in a variety of fields [76] including electromagnetics [77, 78]. This technique

has proven to be successful for antenna design, as presented in [79, 15, 78] and

has been shown to outperform, in certain cases, other optimization methods [80].

The PSO algorithm has been used to reconfigure phase-differentiated array an-

tennas in [11]. In this work, element excitations are found that produce a main

beam with low sidelobes with the additional requirement that the same excitation

amplitudes should result in a high directivity and pencil-shaped main beam.

As described in Chapter 3, Particle Swarm Optimization is based on the

behaviour of groups of living creatures like a swarm of bees. Their goal is to

find the location with the highest density of flowers by randomly flying over the

field. Each bee can remember the location where it found the most flowers,

and by dancing in the air, it can communicate this information to other bees.

Occasionally, one bee may fly over a place with more flowers than had been

previously discovered by any bee in the swarm. Over time, more bees end up

flying closer and closer to the best patch of the field. Soon, all the bees swarm

around this point.

The suitability of the PSO algorithm for adaptive arrays has been described in

[81], where it was employed for blind adaptation of the directional characteristic

of antenna arrays. It was found that the PSO is capable of following the dynamic

changes in the environment and the possibility of an FPGA implementation was

discussed. Modifications to the PSO algorithms have been presented by Li et al.

[82], where the EPSO (Extended Particle Swarm Optimization) was proposed.
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This extension uses a velocity updating mechanism and new exceeding boundary

control operators to overcome the drawbacks of PSO.

Previous work on the field of antenna array analysis and design using PSO

have been presented in [15], where the relative position of the antenna elements

has been optimized to obtain minimum Side-Lobe Levels (SLL) and nulls towards

the undesired directions. The PSO algorithm has successfully been also applied

to design other kinds of antennas like circular antenna arrays [83] by setting the

distance between the elements. However, in the case of smart antennas, the po-

sition of the antenna elements is fixed so the relative displacement can not be

changed. To determine the shape of the radiation pattern, another characteristic

of the array must be adjusted, for example the excitation phase of each indi-

vidual element. Phase shifters connected to the antennas can be used to cancel

interference by placing nulls on the directions of the interfering sources. This was

proposed in [84] and was accomplished by using Memetic Algorithms.

In this chapter, the use of the Particle Swarm Optimization technique to find

the optimal radiation pattern of an adaptive antenna is proposed. By calculating

the phase shift weights of a linear antenna array, the beam direction can be steered

towards a desired angle. In addition, it is possible to place nulls at the direction

of possible interferers. The present work compares these results with the ones

obtained by using a Genetic Algorithm (GA) and shows that the PSO performs

better in terms of power levels. Furthermore, for a desired array configuration,

the number of fitness function evaluations performed by the PSO is shown to

be less than the one from the GA. This can lead to an improvement in the

overall performance of an adaptive array since its configuration must meet tough

demands.

5.3 Problem Description

Let us assume that the antenna under investigation is an array of 2N infinitesimal

dipoles positioned along the x-axis equidistant from each other as shown in Figure

5.3. The total field of the array is equal to the field of a single element positioned

at the origin multiplied by a factor which is widely referred to as the array factor.
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Figure 5.3: Linear array of 2N elements positioned along the x -axis.

Thus, for the 2N -element array, the array factor is given by [23]

AF (θ) =
2N
∑

n=1

wne
j(n−1)(kd cos(θ)+β) (5.1)

ψ = kd cos(θ) + β

If the distance among elements is d and the reference point is the centre of

the array, the array factor becomes

AF (θ) =
2N
∑

n=1

αne
j[(n−N−0.5)ψ+βn] (5.2)

where

2N = number of antenna elements

αn = amplitude weight at element n

βn = phase shift weight at element n

ψ = 2π
λ
d sin(θ) = kd sin(θ)

θ = angle of interfering or desired signal

In this work, only the phase shift weights are considered, so the amplitude

weights are constant. If the phase shifts are odd symmetry, the array factor can

be written as
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AF (θ) = 2
N
∑

n=1

cos[(n− 0.5)ψ + βn] (5.3)

and in its normalized form

AFn(θ) =
1

N

N
∑

n=1

cos[(n− 0.5)ψ + βn] (5.4)

This equation represents a mathematical description of the antenna radiation

pattern and can be used by optimization algorithms. The PSO algorithm is able

to search for optimal phase shift weights using a fitness function based on this

array factor.

5.4 Simulations

This section presents the three main experiments performed to demonstrate the

performance of the Particle Swarm Optimization and the Genetic Algorithm. The

first experiment consists in simulating a 20-element linear antenna array with 1

desired transmitter and 1 interferer. Both the PSO and the GA algorithms will

obtain an optimum phase-shift vector that configures the array in such a way that

the resulting main lobe points towards the desired signal, while the array pattern

presents a null in the direction of the interferer. The aim of the experiment is

to compare the results obtained by the algorithms in terms of average number of

function evaluations. As mentioned before, this measure describes the capability

of an algorithm to find an acceptable solution and is an important factor in the

performance of mobile devices. The second experiment is similar to the first one

and the aim is to test both algorithms to a more difficult environment, namely

having two undesired signals instead of one. Given the difficulty of obtaining a

suitable array pattern, the second experiment is performed for a 40-element linear

antenna array. Lastly, a third experiment is run to investigate the possibility of

having two desired signals instead of one. Once again, the PSO and the GA

algorithms are tested for a 40-element antenna.
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5.4.1 Experiment 1: 1 desired and 1 undesired signals

Given a desired transmitter called user1 at the direction of -60◦ and an interferer

transmitter called user2 at 30◦, find a set of phase shifters that will configure a

linear antenna array in such a way that the main lobe is directed to user1 whilst

a null is presented to user2. For this problem, an array of 20 isotropic elements is

defined, so N = 10 which is the dimension of the problem and the result consists

of a vector x of 10 elements, each one corresponding to βn. Figure 5.1 shows an

illustration of the desired radiation pattern.

The geometry of the linear array is defined as follows: The distance d of any

two adjacent elements is set to λ/2 = 2 where λ is the wavelength. k equals to

(2π)/λ and represents the wavenumber. The PSO algorithm is programmed in

Matlab and is based on the Standard PSO 2007 proposed by Maurice Clerc in

[85]. The parameters are set as shown in Table 5.1.

Table 5.1: Set of parameters for the PSO.

Swarm size 20
Inertia 1.0
Correction factor 2.0
Minimum boundary −π
Maximum boundary π
Tolerance 1x10−6

The swarm size is set to 20 individuals. The inertia corresponds to the weight

w and is fixed to 1.0. The correction factor are the constants c1 and c2 in the

PSO velocity Equation 3.1. Previous work has shown that a value of 2.0 is a good

choice for both parameters [86]. Initial positions are chosen at random inside the

search space which is [−π; π] radians. This means that the algorithm must be

configured to limit each particle position to those constraints. If a particle moves

out of the the search space, its position is set to the previous value. The algorithm

stops when the difference between successive fitness function values is less than

the tolerance value, in this case, 1x10−6. Given that there are two conditions to

be met, the fitness function consists of two parts: F (θ1) which will attempt to

maximize the value of the array factor for the direction of user1 = -60◦. While a
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second function, F (θ2) must minimize the array factor for the direction of user2

= 30◦. The following fitness function is deduced

FitnessFunction = F1 − F2 (5.5)

where

F1 = |AF (θ1)|
2

=

∣

∣

∣

∣

∣

1

N

N
∑

n=1

cos[(d− 0.5)k sin(θ1) + βn]
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∣

∣
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2

(5.6)

and

F2 = |AF (θ2)|
2
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∣

2

(5.7)

where θ1 and θ2 correspond to the angles of user1 and user2 respectively.

A standard Genetic Algorithm (GA) is tested to compare its performance

against the PSO. The Matlab function ga from the ”Genetic Algorithm and

Direct Search Toolbox” is used. All parameters are left to their default values

(see Table 5.2 except for the population size which is set to 20, the maximum

number of generations which is 500, the defined boundaries −π and π and the

tolerance value which is the same as the PSO: 1x10−6. Using the same tolerance

for both algorithms ensures that they will attempt to reach a result within the

same error of each other.

After running the simulations, a vector of phase shift weights for each algo-

rithm is obtained, xga and xpso as shown in Table 5.3.

The algorithm initializes each particle with a set of randomly generated shift

weights. These values are optimized at each iteration until their values produce

an array pattern that meets the given constraints. This optimization is shown

as a change in the values of the phase-shift vector which is represented by the

position of each particle. Figure 5.4 is a graph that shows the behaviour of one

of the particles for this run. It can be seen that the particle’s position converges
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Table 5.2: Set of parameters for the GA.

Population size 20
Individual’s encoding Real
Selection Stochastic uniform
Reproduction Elite count: 2. Crossover fraction: 0.8
Mutation Constraint dependent default
Crossover Scattered
Migration Forward. Fraction:0.2. Interval: 20

Table 5.3: Phase shift vectors (in radians) to obtain a main lobe at -60◦, null at
30◦.

xga xpso
β1 = 1.4378 β1 = 1.2899
β2 = -0.7943 β2 = -2.2126
β3 = 1.0848 β3 = 0.5883
β4 = 2.6372 β4 = 3.0162
β5 = -0.2880 β5 = -0.3530
β6 = 2.3845 β6 = 2.4889
β7 = -0.1420 β7 = -1.2133
β8 = 1.9148 β8 = 1.5080
β9 = -0.8593 β9 = -1.9363
β10 = 0.8625 β10 = 0.7529
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to the optimum values on each iteration until the stop criteria is met.
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Figure 5.4: Phase-shift vector of one of the particles for a 20-element array.

The resulting radiation pattern in dB (decibels) is shown in Figure 5.5. As

can be seen, both algorithms successfully obtained a suitable set of phase shift

weights that produce the desired radiation pattern. The main lobe is directed

towards the angle of user1 = -60◦, while a null in the direction of user2 = 30◦ is

formed. It can also be noted that the PSO algorithm achieved a better radiation

pattern than that obtained by the GA. The power of the main lobe is also higher

for the PSO as the value of the null is lower. It was also observed that the PSO

algorithm performed a lower number of fitness function evaluations than the GA.

The PSO executed 1338 fitness function operations whereas the GA executed

1667.

To further study this, the same experiment was run 100 times and the mean

was calculated. Another factor to consider is the dimension of the problem or

number of array elements. In Figure 5.6, the graph shows the total number of

function evaluations executed by both algorithms over different dimensions. For

a range of dimensions from 5 to 30, the GA performed more function evaluations

than the PSO. This is important since a dynamic configuration of the array
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Figure 5.5: Radiation pattern for desired and interfering angles -60◦, 30◦.

should meet the performance requirements according to the application. The

total number of fitness function evaluations indicates the overall performance of

the system, given that the fitness function evaluation is the most computationally

intensive part of the algorithm.

5.4.2 Experiment 2: 1 desired and 2 undesired signals

A second experiment was performed in which the capability of avoiding two dif-

ferent directions instead of one was tested. In this example, user2 is moved to

the direction -20◦, closer to the desired user1 which remains at -60◦. A third

undesired user, user3 appears in the direction 40◦. The aim is to create nulls in

user2 and user3 directions. This time, the number of antenna elements is set

to 40 so the dimension of the problem is N = 20. The rest of the parameters

for both algorithms are the same as the first experiment. A set of 20 phase shift

weights is obtained from the GA and PSO algorithms as shown in Table 5.4.

Figure 5.7 show the convergence of the phase-shift vector of one of the par-

ticles. It can be seen that the optimum values are obtained around the 70th

iteration.
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Figure 5.6: Average number of function evaluations against dimensions.

Table 5.4: Phase shift vectors for main lobe at -60◦, nulls at -20◦, 40◦.

xga xpso
β1 = 1.7244 β1 = 1.5439
β2 = 0.6048 β2 = -2.1608
β3 = 0.6785 β3 = 0.4752
β4 = 2.3043 β4 = 3.1413
β5 = 0.6309 β5 = -0.2736
β6 = 1.9293 β6 = -3.1392
β7 = 0.9169 β7 = -1.2152
β8 = 1.2024 β8 = 1.2778
β9 = 2.2653 β9 = 3.1415
β10 = 0.9047 β10 = 0.7004
β11 = 3.1094 β11 = -2.9015
β12 = 0.9034 β12 = -0.0983
β13 = 2.4115 β13 = -3.1415
β14 = 0.3607 β14 = -0.9601
β15 = 1.1969 β15 = 1.4342
β16 = 0.3128 β16 = -1.7718
β17 = 1.2371 β17 = 0.9627
β18 = 2.8380 β18 = -2.7192
β19 = 0.3142 β19 = 0.0213
β20 = 2.8321 β20 = 2.8388
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Figure 5.7: Phase-shift vector of one of the particles for a 40-element array.

It is important to note that the fitness function must be modified for this

problem since there is a third factor that affects its output. The new fitness

function is given by Equation 5.8.

Fitness = F1 − F2 − F3 (5.8)

where

F1 = |AF (θ1)|
2

=
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and

F3 = |AF (θ3)|
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where F3 corresponds to the third condition which is a null at the direction

of user3 = 40◦. After simulating the GA and PSO algorithms, the resulting

radiation pattern, shown in Figure 5.8, is obtained.
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Figure 5.8: Radiation pattern for desired angle -60◦, and interfering angles -
20◦ and 40◦.

Once again, it can be observed that both algorithms are able to optimize

a set of phase shift weights that cause a main lobe and two nulls to point to

the desired and interfering directions. Similar to the first experiment, the PSO

algorithm performs generally better in terms of radiating power. Moreover, it

can be noticed that the Side-Lobe Levels (SLL) which are the lobes other than

the main lobe, are considerably lower for the PSO compared to those for the GA.

This is often desirable as it helps to avoid other interfering signals at different

directions other than the main lobe. These experiments suggest that the PSO
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algorithm tends to perform better than the GA algorithm in terms of higher

power in the desired direction and lower power in the interfering directions. This

lead to carrying out a third experiment to further study this: In order to observe

if the PSO obtains in general better configurations, the second experiment with

the same conditions was repeated 1000 times. The power at the main lobe and

null directions (maximum and minimum levels) of user1, user2 and user3 for

both algorithms was measured. The results of both PSO an GA algorithms are

shown in Figure 5.9.
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Figure 5.9: Main lobe and nulls power values for the GA and PSO algorithms.

It can be observed that the power of the main lobe obtained by the PSO algo-

rithm is generally maintained around -5dB for almost all of the 1000 experiments

while the levels achieved by the GA are not as constant and oscillate between

-5dB and -10dB. Similarly, the power radiated towards the undesired directions

is generally lower in the case of the PSO compared with the ones obtained by the

GA.

5.4.3 Experiment 3: 2 desired and 3 undesired signals

A third experiment was conducted to investigate the possibility of having two

desired users instead of one. This time, user1 and user2 have desired angles at
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20◦ and 60◦ respectively. A number of three undesired directions is set at -70◦,

-50◦ and 0◦. The resulting pattern of this experiment is shown in Figure 5.10.
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Figure 5.10: Radiation pattern for two desired angles at 20◦ and 60◦, and inter-
fering angles at -70◦, -50◦ and 0◦.

It can be seen that both algorithms managed to get prescribed nulls at the

undesired directions, but the PSO was slightly better at directing the beams with

the most power towards the desired users.

5.5 Summary

In this chapter, the Particle Swarm Optimization method was used to obtain a

set of phase shift weights that configure a linear antenna array. These weights

were optimized in order to maximize the power of the main lobe at a desired

direction while keeping nulls towards interferers. A comparison with a Genetic

Algorithm was studied and the results of 1000 experiments show that the PSO

achieves better and more consistent radiation patterns than those of the GA. It

was also observed that the total number of fitness function evaluations is lower

for the PSO, which suggests an advantage in terms of performance as the function

evaluation tends to have higher computational cost.
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Chapter 6

Adaptive Antennas and Particle

Swarm Optimization

In this chapter, the Particle Swarm Optimization algorithm is used to generate a

set of array weights for a uniform planar rectangular array. The goal is to max-

imize the power towards a desired direction while minimizing it in the direction

of interferers. A fitness function based on the Signal-to-Interference-plus-Noise

Ratio is used. The results are compared with those obtained by the Genetic Al-

gorithm. These results suggest that the PSO algorithm outperforms the GA in

terms of the total number of fitness function evaluations. It was also concluded

that the PSO is able to obtain lower sidelobe levels which help to avoid interfer-

ence. Moreover, the gain levels are lower in the direction of interferers compared

with those obtained by the GA.

6.1 Introduction

With the fast growth of mobile communication devices, new adaptive techniques

are required to reduce the effects of interfering radiation. These methods must

be able to conform to the ever changing environment conditions and maintain

an efficient use of the communication channel. Adaptive antenna arrays are able

to automatically extract the desired signal from interferer signals and external

noise. Moreover, they are capable of continuously updating their array weights
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to ensure the best quality of service is achieved [27]. This is attained by radiating

power towards the desired angular sector, thus, excluding undesired signals from

other incidence angles.

Several methodologies have been proposed in the past to find the optimal syn-

thesis of array weights. One such technique was proposed by Applebaum in [87]

where an algorithm for adaptive interference cancellation is presented. Together

with the adaptive sidelobe cancellation (SLC) by Howells [88, 89] it became known

as the Howells-Applebaum algorithm. Another approach has been proposed by

Widrow et al. in [90] where by using the least mean squares (LMS) a self-training

system for adaptive arrays was developed. Both the Howells-Applebaum and

Widrow methods are gradient-search algorithms. Although these solutions are

mathematically elegant, their implementation in hardware is very difficult due

to the cost of the analog components. Some solutions require an expensive re-

ceiver at each antenna element. In order to make adaptive antennas commercially

available, the hardware must use already available components which are in the

digital domain. Digital phase shifters in standard array architectures turn out

to be a cheap solution as the use of expensive adjustable amplitude weights or

correlators is avoided.

Other approaches have been proposed where the synthesis is treated as an

optimization problem using evolutionary techniques like the genetic algorithm.

Genetic algorithms are ideal for solving such problems as they are capable of

optimizing nonlinear multimodal functions that have many variables. Moreover,

experimental results show that GAs are able to find good solutions to antenna

array optimization in a quick manner [38]. In recent years, modern computer

systems have enabled researchers to apply these techniques to antenna design

[78, 11, 91]. Besides the GAs, another bio-inspired algorithm which is widely

used is the PSO algorithm. It has been found to be effective in optimizing dif-

ficult multidimensional problems in a variety of fields [76, 78]. Unlike GAs, the

PSO is based upon the cooperation amongst the individuals rather than their

competition. In addition, it is easier to calibrate and to control the parameters

of the PSO over the GA [39]. GAs require a specific strategy and careful choice

of operators according to the application, whereas PSO eliminates the process of
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selecting the best operators by sequentially updating its equations. Therefore,

the aim of this work is to evaluate the effectiveness of the PSO in solving adaptive

antenna array challenges and to analyse and compare its performance with other

optimization techniques.

6.2 Mathematical Formulation

Let us consider a traditional narrowband antenna array of N elements as shown

in Figure 6.1.

Figure 6.1: Traditional narrowband antenna array.

s(k) is a desired signal arriving from the angle θ0. i1(k) to iN(k) are N

interferers arriving from angles θ1 to θN . M elements with M phase weights

receive the total signal composed by the desired signal and the interferers. The

general total array output is given by [16]

y(k) = ω̄H · x̄(k) (6.1)
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where

x̄(k) = ā0s(k) + [ā1 ā2 · · · āN ] ·















i1(k)

i2(k)
...

iN(k)















+ n̄(k)

= x̄s(k) + x̄i(k) + n̄(k) (6.2)

with

ω̄ = [ω1 ω2 · · · ωM ]T = array weights

x̄s(k) = desired signal vector

x̄i(k) = interfering signals vector

n̄(k) = zero mean Gaussian noise for each channel

āi = M -element steering vector for the θi direction of arrival

The weighted array output power for the desired signal is

Pss = E
[

∣

∣ω̄H · x̄s
∣

∣

2
]

= ω̄H · R̄ss · ω̄ (6.3)

where

R̄ss = E
[

x̄sx̄s
H
]

(6.4)

is the signal correlation matrix. And the weighted array output power for the

undesired signals is given by

Puu = E
[

∣

∣ω̄H · ū
∣

∣

2
]

= ω̄H · R̄uu · ω̄ (6.5)

where

R̄uu = R̄ii + R̄nn (6.6)

with
R̄ii = correlation matrix for interferers

R̄nn = correlation matrix for noise

The Signal-to-Interference-plus-Noise Ratio (SINR) is defined as the ratio of
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the desired signal power divided by the undesired signal power

SINR =
Pss
Puu

= a2
∣

∣w̄H · x̄s
∣

∣

2

w̄H · R̄uu · w̄
(6.7)

Maximizing the SINR is a criterion which can be applied to enhancing the

received signal while minimizing the interfering signals [25]. The Applebaum op-

timization criterion [26], consists in maximizing SINR. But a direct maximization

of Equation 6.7 is not possible since neither a nor R̄uu can be directly measured.

However, as shown in [27], the equation can be recast as the maximization of the

fitness function f(ω̄)

f(ω̄) =

∣

∣ω̄H · x̄s
∣

∣

2

ω̄H · R̄xx · ω̄
(6.8)

Equation 6.8 can be used as the fitness function for population-based optimiza-

tion algorithms like the Particle Swarm Optimization and Genetic Algorithms.

6.3 Results

In this section, the capabilities of the PSO algorithm to obtain an optimal set of

weights are assessed. The results of several numerical experiments are presented

and compared with those of the GA algorithm.

Three different experiments are conducted: The first experiment involves the

optimization of a 10x10-element rectangular array. The aim is to use the SINR

in the fitness function of the Particle Swarm Optimization and the Genetic Algo-

rithm to find a set of array weights. These weights should configure the antenna

array in such a way that it can receive desired signals and block undesired or

jammer signals. The results are presented as graphics showing the resulting ra-

diation patterns. Another goal of this experiment is to calculate the number of

evaluations performed by each of the two algorithms. This figure is useful to

predict the overall performance of a communication system, as often the com-

putational effort happens when evaluating the fitness function. Thus, reducing

the number of evaluations, while obtaining an acceptable result is important for

mobile communication devices.
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The second experiment is similar to the first one. The PSO and GA algorithms

find the antenna set of weights but this time using a fixed number of iterations.

The goal of the experiment is to evaluate the minimum gain level towards the

prescribed nulls obtained by each algorithm. This experiment helps to assess the

capability of the PSO and GA algorithms to find the best possible solution given

a limited number of fitness function evaluations.

The third and last experiment consists in solving the same problem as be-

fore but for different antenna array configurations (20-element array, 2x8-element

array, 4x6-element array, 5x5-element array and 10x10-element array). In this

experiment, the algorithms Least Means Squares (LMS) and Recursive Least

Squares (RLS) [92] together with the PSO and GA algorithms, solve the problem

for each antenna geometry.

6.3.1 Experiment 1: Number of evaluations

The first experiment deals with the optimization of a 10 × 10-element half-

wavelength-spaced planar rectangular array. The goal is to find a set of array

weights that will configure each element to obtain an optimized beam pattern

for the following conditions: A desired transmitter called user1 at the direction

(θ=0◦,φ=0◦) and 3 undesired signals jammer1, jammer2 and jammer3 coming

from directions (θ=20◦,φ=30◦), (θ=60◦,φ=45◦) and (θ=-40◦,φ=-60◦) respectively.

To solve this problem, the PSO and GA algorithms are initialized with the

following parameters: Dimension = M × N = 10 × 10 = 100. Number of in-

dividuals = 24. The initial positions of the individuals are randomly generated

inside the search space with minimum and maximum boundaries of [−1, 1]. The

stopping criteria for both algorithms consists of a tolerance value of 1× 10−4. In

other words, the process stops when the fitness function reaches a value greater

than or equal to 1− (1× 10−4).

Table 6.1 shows the parameters set for the PSO and GA algorithms for this

experiment. Note that both algorithms use the same tolerance (1×10−4) in order

for them to exert the same effort to find a solution.

The PSO algorithm was programmed in Matlab and is based on the Standard

PSO 2007 proposed by Maurice Clerc in [93]. The PSO parameters are set as
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(a) Radiation pattern for jammer1
(θ=20◦,φ=30◦).
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(b) Radiation pattern for jammer2
(θ=60◦,φ=45◦).
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(c) Radiation pattern for jammer3 (θ=-
40◦,φ=-60◦).

Figure 6.2: PSO and GA radiation patterns for 3 jammers.
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Algorithm PSO GA
Dimension M×N = 10×10 = 100
Number of individuals 24
Initial position [−1, 1]
Minimum boundary -1
Maximum boundary 1
Tolerance 1× 10−4

Inertia weight (w) 1.0 -
Correction factor (c1, c2) 2.0 -
Individual’s encoding - Real
Selection - Stochastic uniform
Mutation - Constraint dependent default
Crossover - Scattered

Table 6.1: Parameters used by the PSO and GA algorithms when optimizing a
10× 10-element planar rectangular array

following: The weight w in Equation 3.1, also called inertia, is set to 1.0. The

constants c1 and c2, or correction factor, are set to 2.0. Previous work has shown

that this value is a good choice for both parameters [86]. For the case of the GA

algorithm, the “Matlab Genetic Algorithm and Direct Search Toolbox” is used.

All parameters of the ga Matlab function are left to their default values except

for the ones previously mentioned. Note that by using the same tolerance as the

PSO (1× 10−4) both algorithms exert the same effort to find a solution.

After running the simulations, each algorithm obtained a vector of array

weights. Figure 6.2 shows the resulting radiation patterns in dB (decibels). It

can be seen that both algorithms are able to generate suitable array weights to

produce the desired radiation pattern. The main lobe, that corresponds to user1

is directed towards (θ=0◦,φ=0◦), whereas 3 nulls appear for the undesired signals

jammer1 = (θ=20◦,φ=30◦), jammer2 = (θ=60◦,φ=45◦) and jammer3 = (θ=-

40◦,φ=-60◦). In order to obtain statistical significance, the algorithms are run

100 times. The mean was calculated and the results are shown in Table 6.2.

Mean for 100 runs PSO GA
Number of evaluations 327.36 960
Number of iterations 14.64 39
Area above the pattern 32.9896 27.8802

Table 6.2: PSO and GA statistics after 100 runs.

It can be observed that the PSO executes a lower number of fitness function
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evaluations on average. The number of evaluations helps to predict the overall

performance of the system, given that most of the computational effort done by

the algorithm consists of the evaluation of the fitness function. By calculating the

area above each radiation pattern, it can be noted that the sidelobe Levels (SLL)

which are the lobes other than the main lobe, are lower for the PSO compared

to those for the GA. This is often desirable as it helps to avoid other interfering

signals at different directions other than the main lobe.

6.3.2 Experiment 2: Gain level of prescribed nulls

A second experiment was performed, this time with 4 interferers: jammer1,

jammer2, jammer3 and jammer4 coming from directions (θ=45◦,φ=-80◦), (θ=-

55◦,φ=70◦), (θ=-20◦,φ=50◦) and (θ=80◦,φ=40◦) respectively. The same param-

eters of the previous experiment are used except for the stopping criteria. This

time the number of iterations is fixed to 100 for both GA and PSO. The purpose

of this change is to evaluate the minimum gain level reached in the direction of

prescribed nulls. Figure 6.3 shows the radiation patterns obtained.

The mean minimum power at all the nulls for the PSO algorithm is −35.7 dB

whereas the power for the GA is −23.4 dB. These figures suggest that the PSO

algorithm tends to perform better than the GA algorithm in terms of radiation

power directed towards undesired signals.

6.3.3 Experiment 3: Different array configurations

In the third and last experiment, the Particle Swarm Optimization, the Genetic

Algorithm, the Least Means Squares and the Recursive Least Means are used to

solve a similar problem to the previous experiments. Three interferers: jammer1,

jammer2, and jammer3 coming from directions (θ=-60◦), (θ=-30◦) and (θ=45◦)

are to be avoided. Figure 6.7 shows the array pattern of a 20-element linear

antenna array. It can be seen that the PSO algorithm obtains the lowest null

levels compared with the GA, LMS and RLS methods. Figures 6.8, 6.9, 6.10 and

6.11 show similar results for a 2x8-element array, 4x6-element array, 5x5-element

array and 10x10-element array respectively. These results show that both the

97



Chapter 6. Adaptive Antennas and Particle Swarm Optimization

−80 −60 −40 −20 0 20 40 60 80
−40

−30

−20

−10

0
Beam Pattern (phi = −80º)

Theta (degrees)

G
a
in

 (
d
B

)

 

 
PSO
GA

(a) Radiation pattern for jammer1
(θ=45◦,φ=-80◦).
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(b) Radiation pattern for jammer2 (θ=-
55◦,φ=70◦).
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(c) Radiation pattern for jammer3 (θ=-
20◦,φ=50◦).
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(d) Radiation pattern for jammer4
(θ=80◦,φ=40◦).

Figure 6.3: PSO and GA radiation patterns for 4 jammers.
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Figure 6.4: 3 interferers.
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Figure 6.5: 5 interferers.

10 20 30 40 50 60 70 80 90 100
−40

−35

−30

−25

−20

−15

−10

−5

0

Runs

G
a

in
 (

d
B

)

 

 
PSO

GA

Figure 6.6: Null levels for each run.
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PSO and GA algorithms are capable of obtain the desired results independently

from the geometry configuration of a given antenna array.

6.4 Summary

In this chapter, the Signal-to-Interference-plus-Noise Ratio was used in the fit-

ness function for population-based optimization algorithms. The Particle Swarm

Optimization method was used to generate a set of array weights to configure

a planar rectangular array. These weights were optimized in order to maximize

the power towards a desired direction whilst minimizing it in the direction of

interferers. A standard Genetic Algorithm was also studied and the results show

that the PSO performs better in terms of the total number of fitness function

evaluations. This suggests an advantage in performance as the fitness function

tends to have a high computational cost. It was also observed that the PSO

obtains on average lower sidelobe levels which are desirable to avoid interference.

Furthermore, the gain levels in the direction of nulls were computed and it was

found that the PSO produces lower values than those of the GA.
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Figure 6.7: Linear 20-element array pattern showing nulls at -60◦, -30◦ and 45◦

for algorithms PSO, GA, LMS and RLS.
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Figure 6.8: Rectangular 2x8-element array pattern showing nulls at -60◦, -30◦ and
45◦ for algorithms PSO, GA, LMS and RLS.
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Figure 6.9: Rectangular 4x6-element array pattern showing nulls at -60◦, -30◦ and
45◦ for algorithms PSO, GA, LMS and RLS.
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Figure 6.10: Rectangular 5x5-element array pattern showing nulls at -60◦, -
30◦ and 45◦ for algorithms PSO, GA, LMS and RLS.
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Figure 6.11: Rectangular 10x10-element array pattern showing nulls at -60◦, -
30◦ and 45◦ for algorithms PSO, GA, LMS and RLS.
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Chapter 7

Meta-Optimization Techniques

During the development of this thesis it was observed that the performance of

optimization algorithms depends heavily on their initial parameters. To enhance

the effectiveness of an algorithm, these parameters should be carefully selected

according to the problem to be solved. For example, the GA has crossover and

mutation rates which will affect the overall ability of the algorithm to converge

to the desired solution. By modifying these parameters, a good balance between

exploration and exploitation can be achieved. In this chapter, the parameters

of algorithms such as Differential Evolution, Simulated Annealing, Hill Climb

and Particle Swarm Optimization will be selected using a technique called meta-

optimization. This process consists of using another optimization algorithm to

find good behavioural parameters. A group of algorithms, namely Pattern Search,

Local Unimodal Sampling as well as DE and PSO are selected to act as a second

layer of optimization over the mentioned techniques. Meta-landscapes, which

are graphical representations of the meta-optimization problem are shown as

well as statistics obtained for each meta-optimization experiment. A similar

antenna problem to that in the previous chapter is solved using the obtained

meta-optimized parameters. Moreover, antenna synthesis problems proposed in

the literature will also be tackled using meta-optimization techniques. Results

show that these meta-optimized parameters enable the algorithms to obtain bet-

ter results than those achieved by standard parameters as well as the parameters

obtained by hand-tuning.
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7.1 Introduction

Traditionally, the behavioural parameters have been chosen according to numer-

ous experiments done by researchers. One example is presented in [94], where

the impact of inertia weight and maximum velocity on the performance of the

PSO algorithm is analysed. A number of experiments were performed with dif-

ferent values for these parameters and it was concluded that when the maximum

velocity is small, an inertia weight of approximately 1 is a good choice. Another

example of parameter analysis is given in [95], where a constriction factor is pro-

posed to limit the maximum velocity while using the inertia weight according

to a given equation. In relation to the DE algorithm, Storn et al. [36] describe

several variants of the algorithm and provide some general hints on their usage.

Parameters can also be selected according to mathematical analysis as shown

in [12] in which the PSO algorithm is analyzed and graphical parameter selec-

tion guidelines are provided. This study showed different results of the speed of

convergence and the treadeoff with the robustness of the solutions. Clerc and

Kennedy [93] also show an analytical view of the particle’s trajectory which leads

to a generalized model of the algorithm and its convergence tendencies.

The selection of parameters can be divided into two cases: parameter tuning

and parameter control [13]. In parameter control the parameter values change

during the optimization run. An initial parameter value is needed and it has

to suit the control strategies that can be deterministic, adaptive, or self-adaptive

[14]. On the other hand, in parameter tuning the values do not change during the

run but there is still a large number of combinations depending on the number

of parameters (variables). The following section explains the meta-optimization

strategy which is a kind of parameter tuning.

7.2 Meta-optimization

Meta-optimization consists of using an optimization method to tune the param-

eters of another optimization method. Meta-optimization is also called Meta-

evolution or Automated Parameter Calibration. This concept was used as early

as 1978 by Mercer and Sampson [96], but due to the large computational costs,
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their research was very limited. In 1986 Grefenstette [97] applied a GA as a sec-

ond level optimizer to identify efficient GAs for a set of numerical optimization

problems. As explained in the previous section, optimization techniques such

as PSO and GAs have a set of parameters that control their behaviour when

optimizing a given problem. These parameters affect greatly the output of the

optimization method and must be chosen carefully. It is worth mentioning that a

given set of parameters could work well when optimizing a specific problem but

perform differently when optimizing another. Thus, finding the best parameters

can be an arduous task and will depend on human perception of how they work.

Meta-optimization allows an objective way to find the most suitable set of

parameters for a given optimization method and problem to be solved. The

way meta-optimization works is by using an optimization algorithm that has

the parameters as output. During the meta-optimization process, every new set

of parameters is used by the optimization algorithm and its output evaluated.

Thus, the outer layer is in charge of finding a better set of parameters until a

stop condition is met. Figure 7.1 shows this concept.

Figure 7.1: Meta-optimization. The parameters of the optimization algorithm
are obtained by another optimization algorithm as a second layer.
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7.3 Meta-landscapes

In optimization problems, researchers often have to deal with the complexity

of having an exponential increase of dimensions in a problem space. This is

called the curse of dimensionality, a term coined by Richard E. Bellman [98]. In

meta-optimization, the number of parameters to be optimized is multiplied by

the meta-optimizer’s own parameters. For each new parameter, the number of

candidate solutions grows exponentially. For this reason, it is desirable that the

meta-optimizer algorithm is as simple as possible. This means that the problem

to be solved by the meta-optimizer should not be so complex as to have the

algorithm fail to converge. One way to observe the kind of problem the meta-

optimizer has to deal with, is to generate a 3-dimensional plot of the meta-fitness

landscape. Most of the methods have more than two parameters so it is necessary

to fix some of them to be able to produce a viewable plot.

Consider the PSO algorithm with c1 and c2 fixed to 1.49445. The variable

parameters being the number of particles NP and the inertia weight ω. The

boundaries for these parameters are [1, 200] forNP and [-2, 2] for ω. Figure 7.2(a)

shows the meta-fitness landscape of the PSO when optimizing a 16-element linear

antenna array and using the SINR (Signal to Interference plus Noise Ratio) as the

fitness function. The algorithm is executed 50 times and runs for 200 iterations.

These results suggest that the problem of meta-optimizing the PSO algorithm to

solve the antenna array is simple. The meta-landscape surface is fairly regular and

without obvious local minima. The graph shows that the meta-fitness values are

worst when only a few number of particles are used. Figure 7.2(b) shows a closer

look at the meta-landscape by capping the meta-fitness values at 8. It can be

observed that a larger number of particles (above 50) is not only unnecessary but

also worsens the results. In addition there is a symmetry in the values of ω, both of

which are better when they are close to 0, either with positive or negative values.

Something similar can be observed in Figure 7.3(a) where the meta-landscape

for the DE algorithm was obtained with the same problem. In this case, the

variables are the number of particles NP and the crossover probability CR. The

third parameter F is fixed to 0.6. It can also be noticed that the meta-landscape is

fairly simple with a single minima. Figure 7.3(b) shows a close up of this region.
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In the same fashion, the meta-landscapes for the SA and HC algorithms were

obtained and are shown in Figures 7.4 and 7.5 respectively. For the SA algorithm

the sampling range r and the start value α were used as variables while the end

value β was set to 0.01 and the temperature T to 40000. The HC algorithm

has only two parameters: the sampling range factor r and the probability weight

D. Both figures show meta-lanscapes quite similar to those of the DE and PSO

algorithms with a valley of good performing parameter combinations. It should

be recalled that for these experiments, some of the parameters were fixed, so it

is possible that an optimization using all the parameters will look different. The

full results will be shown in the following sections.

(a) Meta-landscape for 2 dimensions. (b) Capped at 8 for clarity.

Figure 7.2: Meta-landscape for PSO obtained by varying two dimensions: The
number of particles and the weight. The third and fourth parameters (c1 and c2)
are fixed to 1.49445. For 50 runs and 200 iterations. 16-element linear antenna
array.

7.4 Parameter Tuning of Optimization Methods

for Antenna Arrays

As explained in previous sections, a meta-optimization technique can be applied

to optimization algorithms solving antenna problems. In Chapter 6 the PSO

and GA algorithms were used to maximize the SINR to enhance the received

signal while minimizing the interferers of an adaptive antenna array. A set of

weights were obtained as a result of the PSO and GA techniques. In this section
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(a) Meta-landscape for 2 dimensions. (b) Capped at 6 for clarity.

Figure 7.3: Meta-landscape for DE obtained by varying two dimensions: The
number of particles and crossover probability. The third parameter F is fixed to
0.6. For 50 runs and 200 iterations. 16-element linear antenna array.

(a) Meta-landscape for 2 dimensions. (b) Capped at 8 for clarity.

Figure 7.4: Meta-landscape for SA obtained by varying two dimensions: The
sampling range factor and α. The third and fourth parameters β and T are fixed
to 0.01 and 40000 respectively. For 50 runs and 200 iterations. 16-element linear
antenna array.
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(a) Meta-landscape for 2 dimensions. (b) Capped at 8 for clarity.

Figure 7.5: Meta-landscape for HC obtained by varying two dimensions: The
sampling range factor r and probability weight D. For 50 runs and 200 iterations.
16-element linear antenna array.

the Differential Evolution, Simulated Annealing and Hill Climb algorithms will

be used along with the PSO. Howerver before optimizing an antenna problem,

their set of parameters will be meta-optimized using simple algorithms like Pat-

tern Search and Local Unimodal Sampling. The DE and PSO will also be used

as meta-optimizers. The following subsections describe the meta-optimization

process.

7.4.1 Meta-optimization Results

The problem to be solved consists of a 16-element uniform linear antenna array

with a distance between elements of 0.5λ. A desired signal arrives from the

0◦ direction while three interferer signals come from 30◦, 60◦and -45◦. In order

to obtain the weights needed, Equation 6.8 will be used by the optimization

process as the fitness function.

The meta-optimization algorithms were programmed in C language using a

modified version of SwarmOps which is a source-code library for doing numerical

optimization written by Pedersen [99]. The SwarmOps source-code is published

under the GNU Lesser General Public License. Table 7.1 shows the results of

the meta-optimization process which was run to obtain the best parameters for

the DE algorithm. The first 4 columns show the four algorithms used as meta-
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optimizers as well as the parameters used. PS needs no initial parameters, LUS

uses γ = 3 while DE and PSO have a set of parameters (NP=50, CR=0.9,

F=0.6) and (S=50, ω=0.729, c1=c2=1.4944) respectively. It is worth noting

that these parameters are taken from [35, 100] for DE and [86, 101] for PSO

and will be considered the “standard” ones in this thesis. Another factor in the

meta-optimization process is the number of meta-runs which in this case is 6.

The number of meta-iterations is defined according to the number of parameters

to be optimized multiplied by 20. This will allow a fair number of meta-iterations

depending on the number of variables. The fifth column in Table 7.1 is the number

of optimization iterations performed in the meta-optimization phase. In this case,

for each process three different experiments were run: using 200, 500 and 1000

iterations. This is to observe the variation in the quality of the results according

to the number of iterations and it will be discussed later on. The next column is

the meta-fitness obtained in every experiment and shows the value obtained at the

end of the 60 meta-iterations. The last three columns present the output which

is the set of parameters suitable for the DE algorithm to best solve the antenna

problem. The first is the number of particles NP , the second is the crossover

probability CR and the third the differential weight F as described in Chapter

3. These set of parameters will be used in the second phase of the optimization

problem which is to run the DE algorithm to optimize the linear array described

above. Another important factor in the meta-optimization process is the number

of runs or repetitions performed by the algorithm being meta-optimized (in this

case the DE). This is in order to obtain statistical significance and is set to

100 runs. In other words, several runs are performed to minimize the chance

that a better or worse result is obtained due only to the random nature of the

algorithms. For these reason and, as explained in previous sections, the meta-

optimization process is as complex as the multiplication of its stages, thus, the

time taken by the experiment to finish can be considered lengthy. Table 7.5

shows the time taken in hours by each of the four meta-optimizers when running

the optimized algorithm for 200, 500 and 1000 iterations. The description of the

computer system used to run all the simulations on this thesis is the following:

64-bit Intel 4-Core i7 720QM @ 1.60GHz with 4.0Gb in RAM. Note: It should
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be mentioned that the nature of the processor, which has 4 cores, provided a

substantial reduction in execution time compared with other architectures, for

example with 1 core only. The meta-optimization of the algorithms SA, HC and

PSO was performed in the same fashion. The only difference is the number of

meta-iterations, given that each algorithm has a different number of parameters.

The results for these algorithms are shown in Tables 7.2, 7.3 and 7.4 respectively.

7.4.2 Optimization Results

Once the meta-optimized parameters for each algorithm are obtained, the next

step is to run the algorithms using those parameters. In order to assess the re-

sults of the meta-optimization process, the results are shown together with the

results of simulations performed with standard as well as hand-tuned parameters.

The parameters shown in Tables 7.1, 7.2, 7.3 and 7.4 are then used to configure

the DE, SA, HC and PSO algorithms in order to solve the same problem as the

previous section. Note that not only the results from using standard parameters

are shown, but the ones resulting from hand-tuning or trial an error of adjusting

the parameters to solve this particular antenna problem. The parameters (Refer

to Chapter 3 for a detailed explanation for each parameter) used in these exper-

iments are shown in Tables 7.6, 7.7, 7.8 and 7.9. A close look at Table 7.6 shows

that the number of particles NP suggested by the meta-optimization process is

always less than the standard and the hand-tuned data. This can be regarded

as an advantage if an implementation in hardware is in mind. For example, in

a cellular architecture where each processing element implements a particle or

individual, this reduction will lead to a decreased power consumption. The same

situation can be observed in the case of the PSO algorithm in Table 7.9.

7.4.3 PSO Particle Velocity and Position

One way to assess the performance of the algorithms using the meta-optimized

parameters is to observe their behaviour. In the case of the PSO, the particles

have a velocity and a position. Each particle is given a random velocity and a

random position at the beginning of the algorithm. In the next iteration, each
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Meta- Time usage (hrs)
method 200 iterations 500 iterations 1000 iterations

PS 0:46 2:31 4:27
LUS 0:34 1:57 3:37
DE 0:49 2:35 4:37
PSO 0:48 2:34 4:38

Table 7.5: Time taken by each meta-method to optimize the four algorithms DE,
SA, HC and PSO running on a 64-bit Intel 4-Core i7 720QM @ 1.60GHz system.
Each algorithm was run 100 times.

Meta-method NP CR F

Standard [35, 100] 300 0.9 0.5
Hand-tuned 50 0.01 0.05

PS 36 0.937561 0.241292
LUS 32 0.891637 0.270391
DE 36 0.888624 0.201017
PSO 31 0.854729 0.140400

Table 7.6: Standard, hand-tuned and meta-optimized Differential Evolution pa-
rameters used to solve the 16-element linear antenna array with a main lobe at
0◦ and nulls at 30◦ , 60◦ and -45◦ .

Meta-method r α β T

Standard 0.01 0.3 0.01 40000
Hand-tuned 0.05 0.03 0.5 50000

PS 0.05214 0.00001 0.000376 6343.75
LUS 0.05375 0.00044 0.322461 82547.10
DE 0.05200 0.00001 0.019163 8158.36
PSO 0.05273 0.00001 0.670021 51376.20

Table 7.7: Standard, hand-tuned and meta-optimized Simulated Annealing pa-
rameters used to solve the 16-element linear antenna array with a main lobe at
0◦ and nulls at 30◦ , 60◦ and -45◦ .

particle calculates a new velocity and a new position according to the PSO equa-

tions 3.1 and the fitness function. The expected behaviour is that the particles

move faster in the early stages of the process and reduce their velocity as they

get closer and closer to the solution. This helps the algorithm to converge faster
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Meta-method r D

Standard 0.01 10
Hand-tuned 0.5 5000

PS 0.039063 0.001
LUS 0.991528 2573.24
DE 0.887655 778.25
PSO 0.728137 2973.91

Table 7.8: Standard, hand-tuned and meta-optimized Hill Climb parameters used
to solve the 16-element linear antenna array with a main lobe at 0◦ and nulls at
30◦ , 60◦ and -45◦ .

Meta-method S ω c1 c2

Standard [86, 101] 50 0.729 1.49445 1.49445
Hand-tuned 50 0.09 1 1

PS 39 0.006883 -0.062488 1.72909
LUS 42 -0.014692 0.221414 1.27601
DE 40 -0.008264 0.10312 1.42876
PSO 43 -0.010369 0.010174 3.11112

Table 7.9: Standard, hand-tuned and meta-optimized Particle Swarm Optimiza-
tion parameters used to solve the 16-element linear antenna array with a main
lobe at 0◦ and nulls at 30◦ , 60◦ and -45◦ .

as the probability of a particle being initialized close to the solution is low but

increases with the iterations as it improves the solution.

In Figure 7.6, the velocity of one of the particles over the number of iterations

is shown. Each graph represents the velocity when using standard, hand-tuned,

PS and LUS meta-optimized parameters. It can be seen that the velocity of the

particle with the standard parameters varies in the range of [-1, 1] along the itera-

tions and keeps changing even when reaching 1000 iterations. This means that the

PSO is unable to converge at this moment when using the standard parameters.

The second graph shows the velocity with hand-tuned parameters. This time,

the velocity is reduced and reaches 0 before 400 iterations. Then, when using the

LUS and PS meta-optimized parameters the velocity settles significantly faster,

even before 200 iterations. These results show that the meta-optimization has

enabled the PSO algorithm achieve better performance in terms of convergence
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time and accuracy which can be very helpful in real-time systems.
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Figure 7.6: Velocity of one of the PSO particles using the standard [86, 101],
hand-tuned, LUS meta-optimized and PS meta-optimized parameters.

A similar conclusion can be drawn when observing the position of the particle.

In Figure 7.7, a similar behaviour is shown when using the standard [86, 101],

hand-tuned, LUS meta-optimized and PS meta-optimized parameters. The posi-

tion varies between -2 and 2 during the 1000 iterations when using the standard

parameters. But when using LUS and PS meta-optimized parameters, the parti-

cle settles faster, before the 400 iterations.

After running the DE, SA, HC and PSO algorithms, a set of array weight vec-

tors is obtained by each algorithm for the 16-element linear antenna array. These

vectors are shown in Table 7.10. Note that the vectors have 32 elements because

the array weights consist of a complex number that represents the amplitude and

the phase of each antenna element.
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Figure 7.7: First position of one of the PSO particles using the standard [86],
hand tuned, LUS meta-optimized and PS meta-optimized parameters.

123



Chapter 7. Meta-Optimization Techniques

S
ta

n
d
a
rd

D
E

0
.5
0
,
-0

.7
2
,-1

.0
0
,
0
.1
7
,-0

.2
8
,-0

.9
9
,
0
.1
2
,-0

.4
4
,-0

.9
8
,-0

.5
1
,-0

.7
7
,-1

.0
0
,-0

.6
4
,
0
.2
1
,
0
.2
2
,-1

.0
0
,-0

.6
5
,-0

.9
9
,-1

.0
0
,-0

.5
5
,-1

.0
0
,-0

.3
4
,-0

.8
8
,-0

.7
7
,-0

.6
3
,-1

.0
0
,-0

.8
4
,-0

.9
8
,-0

.7
7
,-0

.6
7
,-0

.0
8
,-0

.7
6

S
A

0
.8
7
,

0
.9
7
,
0
.5
9
,
0
.6
5
,
0
.6
0
,-0

.0
5
,
0
.3
9
,-0

.0
7
,-0

.2
1
,
0
.7
1
,
0
.4
8
,
0
.7
8
,
0
.1
3
,
0
.9
2
,
0
.5
8
,-0

.5
5
,-0

.5
6
,-0

.7
0
,-0

.3
3
,-0

.3
3
,
0
.0
9
,-0

.3
5
,
0
.1
5
,
0
.2
6
,-0

.4
4
,-0

.0
5
,
0
.2
3
,-0

.2
7
,
0
.1
6
,-0

.8
0
,-0

.6
9
,-0

.7
7

H
C

0
.8
8
,
-0

.2
9
,
0
.3
6
,
0
.4
4
,
0
.2
3
,
0
.6
9
,
0
.6
0
,-0

.3
1
,
0
.5
2
,-0

.8
5
,
0
.7
1
,
0
.5
7
,-0

.3
8
,-0

.4
3
,-0

.4
9
,
0
.6
5
,
0
.3
4
,
0
.8
5
,
0
.9
6
,
0
.5
3
,
0
.9
0
,-0

.4
7
,-0

.6
2
,
0
.5
7
,
1
.0
0
,-0

.0
9
,
0
.2
9
,-0

.1
2
,
0
.7
8
,
0
.6
9
,-0

.3
1
,-0

.5
3

P
S
O

1
.0
0
,

1
.0
0
,
1
.0
0
,
1
.0
0
,
1
.0
0
,
1
.0
0
,
1
.0
0
,
0
.7
9
,
1
.0
0
,
1
.0
0
,
0
.8
7
,
0
.5
7
,-1

.0
0
,-1

.0
0
,-0

.7
3
,
0
.1
6
,-0

.4
3
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-0

.9
5
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0

H
a
n
d
-tu

n
e
d

D
E

0
.4
7
,

0
.6
3
,
0
.5
4
,-0

.4
2
,
0
.4
4
,-0

.3
0
,
0
.7
9
,
0
.1
2
,-0

.2
0
,
0
.6
6
,
0
.2
2
,
0
.8
5
,
0
.8
2
,
0
.1
1
,
0
.6
8
,-0

.0
0
,
0
.5
8
,-0

.3
5
,-0

.4
7
,-0

.8
2
,-0

.8
9
,-0

.9
8
,-0

.6
1
,-0

.6
8
,-0

.4
7
,-0

.4
3
,
0
.6
3
,
0
.1
9
,
0
.4
2
,-0

.4
2
,
0
.7
6
,-0

.4
7

S
A

0
.4
7
,
-0

.2
0
,-0

.7
6
,-0

.7
0
,-0

.6
6
,-0

.8
4
,-0

.5
9
,-0

.7
7
,-0

.8
0
,-0

.0
3
,-0

.2
9
,-0

.7
4
,-0

.5
3
,-0

.2
6
,-0

.4
2
,-0

.8
2
,
0
.5
7
,
0
.1
6
,
0
.8
4
,-0

.2
4
,-0

.4
6
,-0

.5
7
,-0

.2
9
,-0

.8
4
,
0
.1
4
,
0
.2
0
,
0
.9
0
,-0

.6
3
,-0

.2
3
,-0

.4
9
,
0
.4
6
,
0
.2
1

H
C

-0
.3
4
,
0
.9
3
,
0
.8
6
,
0
.7
4
,-0

.8
6
,-0

.4
1
,
0
.1
6
,
0
.3
6
,
1
.0
0
,-0

.4
3
,-0

.5
0
,
0
.1
6
,-0

.1
4
,-0

.5
5
,-0

.1
2
,
0
.1
1
,-1

.0
0
,
0
.0
0
,-0

.4
4
,-0

.3
0
,
0
.4
9
,-1

.0
0
,-1

.0
0
,-0

.6
9
,
0
.4
1
,-0

.9
5
,-1

.0
0
,-0

.7
6
,-1

.0
0
,-1

.0
0
,-0

.8
4
,-1

.0
0

P
S
O

0
.0
5
,
-0

.2
8
,-0

.0
8
,
0
.0
1
,
0
.3
3
,
0
.2
5
,
0
.1
9
,
0
.5
4
,-0

.2
3
,-0

.0
3
,
0
.3
1
,-0

.4
8
,
0
.0
7
,
0
.4
5
,
0
.2
1
,-0

.2
8
,
0
.6
2
,
0
.4
8
,
0
.0
7
,
0
.4
5
,
0
.0
2
,-0

.4
3
,
0
.1
3
,
0
.2
9
,
0
.1
1
,
0
.2
2
,
0
.7
4
,-0

.0
7
,
0
.2
6
,
0
.4
9
,
0
.6
3
,
0
.4
7

P
S

m
e
ta

-o
p
tim

iz
e
d

D
E

-0
.8
8
,-0

.9
7
,-0

.2
9
,-0

.7
7
,-0

.9
9
,-0

.9
0
,-0

.7
2
,-0

.9
9
,-1

.0
0
,-0

.3
3
,
0
.0
6
,-1

.0
0
,-0

.2
8
,-0

.3
3
,-0

.1
6
,-0

.0
4
,
0
.7
4
,
1
.0
0
,
0
.6
5
,
0
.7
2
,
0
.3
6
,-0

.4
3
,
0
.6
0
,
1
.0
0
,
0
.6
6
,
0
.3
3
,
0
.9
2
,
0
.9
6
,
0
.3
3
,-0

.0
0
,
0
.1
8
,
0
.2
6

S
A

-0
.7
5
,-0

.2
0
,-0

.6
2
,-1

.0
0
,-0

.9
4
,-0

.8
5
,-0

.7
8
,-0

.1
6
,-0

.4
0
,-0

.1
4
,-0

.7
9
,
0
.1
5
,-0

.6
8
,-0

.9
7
,-0

.4
2
,-1

.0
0
,
0
.9
4
,
0
.0
4
,
0
.6
9
,
0
.4
2
,
0
.7
1
,
0
.4
3
,-0

.0
7
,
0
.4
2
,
0
.3
3
,-0

.0
4
,
0
.6
3
,-0

.8
5
,-0

.1
9
,-0

.0
7
,
0
.3
7
,
0
.5
4

H
C

-0
.1
6
,
0
.2
7
,
0
.0
7
,-0

.3
7
,-0

.6
5
,
0
.5
7
,-0

.0
2
,
0
.3
2
,
0
.7
3
,-0

.1
1
,-0

.7
3
,
0
.6
9
,
0
.4
0
,
0
.5
2
,-0

.5
6
,-0

.0
1
,-0

.6
8
,
0
.1
9
,
0
.0
8
,-0

.7
9
,-0

.3
9
,-0

.6
2
,-0

.6
0
,-0

.6
5
,-0

.9
7
,-0

.5
6
,-0

.7
4
,-0

.8
5
,-0

.6
5
,-0

.7
2
,-0

.7
8
,-0

.9
6

P
S
O

0
.4
6
,

0
.1
5
,-0

.7
9
,-0

.0
4
,-0

.5
6
,
0
.2
4
,
0
.1
3
,-0

.4
3
,
0
.1
8
,
0
.0
8
,-0

.2
7
,
0
.4
2
,-0

.2
9
,
0
.3
3
,-0

.1
0
,
0
.2
3
,
1
.0
0
,
0
.7
8
,
1
.0
0
,
0
.5
9
,
0
.6
1
,
1
.0
0
,
0
.6
5
,
0
.8
5
,
0
.9
4
,
0
.8
1
,
0
.9
9
,
0
.9
0
,-0

.4
8
,
0
.8
0
,
0
.0
4
,
0
.2
2

L
U
S

m
e
ta

-o
p
tim

iz
e
d

D
E

-0
.8
1
,-0

.6
8
,
0
.1
1
,-0

.1
2
,-0

.0
0
,-0

.8
1
,-0

.4
0
,-0

.9
4
,-0

.0
8
,-0

.4
1
,-0

.1
2
,-0

.4
7
,-0

.2
8
,-0

.7
5
,-0

.1
2
,-0

.7
7
,-0

.9
8
,-0

.3
6
,-0

.5
8
,-0

.7
0
,-0

.5
4
,-0

.9
5
,-1

.0
0
,-0

.6
0
,-0

.9
0
,-0

.9
2
,-0

.8
6
,-0

.3
1
,-0

.4
0
,-0

.9
8
,-0

.7
3
,-0

.9
7

S
A

-0
.1
1
,
0
.6
4
,
0
.1
0
,
0
.8
6
,
1
.0
0
,
0
.7
9
,
0
.9
0
,
0
.9
0
,
0
.9
4
,
0
.5
7
,
0
.3
0
,
0
.2
4
,-1

.0
0
,
0
.1
5
,
1
.0
0
,
0
.9
6
,-0

.3
4
,-1

.0
0
,-0

.7
7
,
0
.2
8
,
0
.7
3
,-0

.3
9
,
0
.0
1
,
0
.0
8
,-0

.2
4
,-0

.0
3
,-0

.2
1
,
0
.1
3
,-0

.7
1
,-0

.2
4
,-0

.3
6
,-0

.7
4

H
C

0
.4
0
,
-0

.2
5
,-1

.0
0
,-0

.7
6
,-0

.6
2
,-1

.0
0
,-0

.2
8
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-0

.6
4
,-1

.0
0
,-1

.0
0
,-0

.4
6
,
1
.0
0
,-0

.5
5
,-1

.0
0
,-1

.0
0
,
1
.0
0
,
1
.0
0
,
0
.2
2
,
0
.3
6
,-1

.0
0
,-1

.0
0
,-0

.5
3
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-0

.4
1
,-1

.0
0
,-1

.0
0
,-0

.3
1

P
S
O

1
.0
0
,

0
.2
6
,
1
.0
0
,
1
.0
0
,
1
.0
0
,
0
.4
2
,
0
.5
6
,
1
.0
0
,
0
.2
2
,
0
.8
8
,
0
.9
4
,
1
.0
0
,
0
.6
5
,
1
.0
0
,
0
.5
0
,
1
.0
0
,
1
.0
0
,
0
.9
1
,
1
.0
0
,
0
.9
4
,
0
.9
9
,
0
.9
0
,-0

.2
2
,
0
.4
5
,
1
.0
0
,
1
.0
0
,
0
.7
7
,
1
.0
0
,
1
.0
0
,
0
.4
7
,
1
.0
0
,
1
.0
0

D
E

m
e
ta

-o
p
tim

iz
e
d

D
E

-0
.7
0
,-0

.9
9
,-1

.0
0
,-0

.7
8
,-0

.6
5
,-1

.0
0
,-1

.0
0
,-0

.9
9
,-0

.9
8
,-0

.3
0
,
0
.3
4
,
0
.2
4
,-0

.4
0
,-1

.0
0
,-0

.5
4
,-0

.9
9
,
1
.0
0
,
0
.6
3
,
1
.0
0
,
1
.0
0
,
0
.9
2
,
1
.0
0
,
0
.7
7
,
1
.0
0
,
0
.6
8
,
0
.2
2
,
0
.9
9
,
0
.5
9
,
0
.8
3
,
0
.5
4
,-0

.0
8
,
0
.3
4

S
A

0
.0
6
,
-0

.1
3
,-0

.8
9
,-0

.6
6
,-0

.8
1
,-0

.4
0
,-0

.4
9
,
0
.1
9
,-0

.7
2
,-0

.2
7
,
0
.2
8
,-0

.2
4
,-0

.5
0
,
0
.1
9
,-0

.8
4
,-0

.6
0
,-0

.3
4
,-0

.6
3
,-0

.8
0
,-0

.7
2
,-0

.8
3
,-0

.7
6
,
0
.0
4
,-0

.5
1
,-0

.9
1
,-0

.1
0
,-0

.0
8
,-0

.4
5
,
0
.2
4
,-0

.1
0
,-0

.3
1
,
0
.1
0

H
C

1
.0
0
,
-0

.5
7
,-0

.6
3
,-0

.3
0
,-0

.1
2
,
1
.0
0
,-1

.0
0
,-0

.6
7
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-1

.0
0
,-0

.3
9
,-1

.0
0
,-0

.6
5
,-1

.0
0
,-0

.9
7
,-1

.0
0
,-1

.0
0
,
1
.0
0
,-1

.0
0
,-1

.0
0
,-0

.3
7
,-1

.0
0
,
1
.0
0
,-1

.0
0
,-0

.7
9
,-0

.1
3
,-1

.0
0
,
0
.4
7

P
S
O

0
.0
2
,

1
.0
0
,
0
.2
9
,
0
.7
2
,
0
.0
2
,
0
.9
9
,
0
.8
4
,
0
.1
7
,
0
.4
3
,
0
.9
0
,
0
.3
8
,
0
.0
7
,
0
.9
7
,
1
.0
0
,
0
.8
4
,
1
.0
0
,-0

.5
4
,-0

.9
5
,-0

.5
0
,-0

.3
6
,-0

.7
3
,
0
.0
8
,
0
.9
2
,-0

.9
6
,-0

.7
5
,-0

.6
7
,-0

.7
1
,-0

.0
3
,-0

.9
6
,-0

.6
1
,-0

.7
5
,
0
.0
8

P
S
O

m
e
ta

-o
p
tim

iz
e
d

D
E

-0
.1
1
,-0

.1
7
,
0
.6
5
,-0

.4
0
,-0

.1
2
,-0

.2
0
,
0
.2
5
,-0

.5
0
,
0
.3
6
,
0
.3
6
,
0
.0
6
,-0

.7
1
,
0
.3
6
,-0

.3
2
,
0
.0
9
,-0

.0
8
,
0
.3
8
,
0
.7
6
,
1
.0
0
,
1
.0
0
,
0
.5
6
,
0
.5
1
,
0
.4
8
,
0
.7
6
,
0
.6
1
,
0
.6
0
,
0
.8
8
,
0
.8
9
,
0
.4
5
,
0
.8
1
,
0
.9
9
,
0
.6
2

S
A

0
.8
1
,

0
.3
8
,
0
.3
1
,
0
.3
6
,
0
.7
9
,
0
.1
8
,
0
.8
3
,
0
.4
9
,
0
.6
9
,
0
.7
8
,
0
.3
6
,
0
.5
7
,
0
.7
6
,
0
.9
7
,
0
.6
0
,
0
.1
5
,-0

.0
8
,
0
.1
1
,-0

.7
4
,-0

.8
1
,-0

.8
4
,
0
.0
8
,
0
.1
5
,
0
.2
3
,-0

.2
9
,-0

.3
1
,-0

.5
5
,
0
.0
1
,-0

.4
0
,-0

.2
2
,
0
.2
4
,-0

.7
0

H
C

-1
.0
0
,
0
.1
0
,-0

.7
9
,
0
.2
6
,-1

.0
0
,-1

.0
0
,
0
.4
2
,
0
.2
1
,
0
.4
5
,
0
.7
0
,-1

.0
0
,-0

.1
5
,-1

.0
0
,-1

.0
0
,-0

.5
3
,-1

.0
0
,-1

.0
0
,-0

.1
1
,-1

.0
0
,-0

.3
3
,-0

.4
3
,-0

.5
1
,-1

.0
0
,
0
.4
1
,
0
.1
0
,-0

.1
6
,-1

.0
0
,
1
.0
0
,-1

.0
0
,-0

.1
0
,
0
.3
6
,-1

.0
0

P
S
O

0
.8
1
,

0
.3
8
,
0
.6
2
,
0
.6
3
,
0
.2
9
,
0
.4
8
,
0
.2
0
,
0
.6
0
,
0
.1
3
,
0
.4
1
,
0
.4
0
,
0
.0
4
,
0
.2
1
,
0
.5
4
,
0
.5
7
,
0
.2
5
,
0
.4
7
,
0
.0
8
,-0

.5
6
,-0

.4
5
,-0

.6
3
,-0

.0
5
,-0

.0
2
,-0

.1
7
,-0

.3
3
,-0

.7
7
,
0
.3
7
,-0

.0
6
,-0

.1
4
,-0

.2
0
,-0

.1
5
,
0
.0
8

T
ab

le
7.10:

A
n
ten

n
a
w
eigh

ts
vectors

ob
tain

ed
w
ith

th
e
D
E
,
S
A
,
H
C

an
d
P
S
O

algorith
m
s
u
sin

g
th
e
m
eta-op

tim
ized

p
aram

eters
calcu

lated
b
y
th
e
P
S
,
L
U
S
,
D
E
an

d
P
S
O

m
eta-op

tim
izers.

124



Chapter 7. Meta-Optimization Techniques

7.4.4 Statistical Analysis

During the optimization process, statistical data of the performance of the DE,

SA, HC and PSO algorithms was collected. As stated previously, the algorithms

were run 100 times each to obtain statistical significance and it is the mean,

standard deviation, lower and upper quartiles, minimum, maximum and sum that

Table 7.11 shows. It can be noticed that when using the standard parameters,

particularly for the SA and HC algorithms, the mean fitness is much higher (0.60

and 0.63) compared with the (0.007 and 0.002) of the DE and PSO algorithms.

Consequently, the sum values are higher as can be seen at the end of the table.

The statistical data is shown in graphical form in the following figures. Each

figure shows the results for the DE, SA, HC and PSO methods, and each one has

been optimized with one of the four meta-optimizers (PS, LUS, DE and PSO).

The figure consists of a graph with the mean of 100 runs of each fitness function

over the number of iterations. It also presents three box plots corresponding to

the standard, hand-tuned and meta-optimized results. The box plot was found

to be a convenient way of graphically depicting the fitness function. In this case,

the box plot has the following features:

• The top and bottom of each box are the Q1 and Q3 which are the 25th and

75th percentiles of the samples, respectively.

• The whiskers are lines extending above and below each box. Whiskers are

drawn from the ends of the interquartile ranges to the furthest observations

within the whisker length.

• Observations beyond the whisker length are marked with a red + sign and

are known as outliers. In this study, an outlier is a value that is more than

1.5 times the interquartile range away from the top or bottom of the box.

Figures 7.8, 7.9, 7.10 and 7.11 show the results for the Differential Evolution

method when using parameters meta-optimized with the LUS algorithm with 200

iterations. It can be observed that the hand-tuned parameters obtain a better

mean fitness function value compared to the standard parameters. Moreover, the

meta-optimized parameters achieve lower values still. On the other hand it can
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Parameters Method Mean Std.Dev. Q1 Q3 Min Max Sum

Standard

DE 0.0076 0.0043 0.0047 0.0050 0.0015 0.0267 0.7586
SA 0.6081 0.2179 0.5834 0.7417 0.1049 0.9607 60.811
HC 0.6374 0.2330 0.9456 0.7652 0.1280 0.9741 63.738
PSO 0.0021 0.0008 0.0020 0.0030 0.0009 0.0051 0.2147

Hand-tuned

DE 0.0496 0.0218 0.0820 0.0312 0.0095 0.1128 4.9628
SA 0.0109 0.0045 0.0117 0.0089 0.0039 0.0246 1.0948
HC 0.0899 0.0327 0.0668 0.1182 0.0214 0.1831 8.9945
PSO 0.0087 0.0103 0.0041 0.0019 0.0019 0.0819 0.8654
DE 0.0018 0.0005 0.0022 0.0013 0.0009 0.0028 0.1785

PS SA 0.0022 0.0006 0.0016 0.0019 0.0011 0.0052 0.2176
meta-optimized HC 0.0026 0.0008 0.0014 0.0033 0.0013 0.0047 0.2580

PSO 0.0024 0.0010 0.0021 0.0025 0.0010 0.0069 0.2378
DE 0.0016 0.0005 0.0010 0.0012 0.0008 0.0032 0.1591

LUS SA 0.0034 0.0011 0.0040 0.0039 0.0020 0.0092 0.3441
meta-optimized HC 0.0862 0.0302 0.0551 0.0606 0.0091 0.1809 8.6174

PSO 0.0024 0.0011 0.0022 0.0013 0.0007 0.0084 0.2365
DE 0.0017 0.0005 0.0020 0.0015 0.0008 0.0036 0.1703

DE SA 0.0026 0.0009 0.0017 0.0028 0.0013 0.0067 0.2578
meta-optimized HC 0.0903 0.0306 0.0833 0.1437 0.0231 0.1628 9.0349

PSO 0.0024 0.0011 0.0011 0.0018 0.0010 0.0066 0.2374
DE 0.0017 0.0005 0.0011 0.0013 0.0009 0.0033 0.1664

PSO SA 0.0024 0.0007 0.0018 0.0026 0.0010 0.0057 0.2366
meta-optimized HC 0.0885 0.0300 0.1238 0.0575 0.0147 0.1540 8.8451

PSO 0.0025 0.0010 0.0017 0.0036 0.0011 0.0062 0.2469

Table 7.11: Statistics of 100 runs of the DE, SA, HC and PSO algorithms when
using the standard and hand-tuned parameters as well as those obtained by meta-
optimization using the PS, LUS, DE and PSO algorithms. The problem to be
solved was a 16-element linear antenna array with a main lobe at 0◦ and nulls
at 30◦ , 60◦ and -45◦.
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also be seen in the box plots that there is a significant variation in each of the

100 runs when using the standard parameters. The hand-tuned box plot shows

better progress and more regularity in the quartiles compared with the standard

results. The meta-optimized box plot looks similar to the hand-tuned one, but a

closer look shows that there is even less variance in the data after 120 iterations.

Lastly it can be seen that the four meta-optimizers performed very similar to

each other as can be seen on noted by comparing the four figures.

The results obtained when running the Simulated Annealing over 100 times are

shown in Figures 7.12, 7.13, 7.14 and 7.15 for meta-optimizers PS, LUS, DE and

PSO respectively. The fitness function graph shows similar results to those for the

DE algorithm in that the mean values for the meta-optimized results are better

compared to those obtained with the standard and hand-tuned parameters. It can

also be observed in the box plots that there is a great variation in the different runs

when using the standard parameters. The hand-tuned results show much better

progress in terms of variation and a desired decrease in the fitness function values

with every iteration. The box plot for the meta-optimized parameters shows

more regularity as depicted in the quartiles, especially after 120 iterations when

there are almost no outliers (marked with a red + sign), unlike the hand-tuned

results. Finally, as observed previously, there is no great difference between meta-

optimizers. The PS, LUS, DE and PSO algorithms were able to meta-optimize

the problems in a similar manner.

A different situation can be observed in Figures 7.16, 7.17, 7.18 and 7.19

where the Hill Climb algorithm was tested. The mean fitness function graph

shows little difference between the fitness values obtained by the algorithm using

hand-tuned parameters and with meta-optimized ones. Although the exception

is when using the PS meta-optimizer as can be seen in Figure 7.17. One possible

explanation for this is that the number of meta-iterations in the particular case

of the Hill Climb algorithms was set to 40 as shown previously in Table 7.3.

As explained before, the number of meta-optimizations was decided according

to the total number of parameters to be meta-optimized. In the case of HC,

there are only two parameters r and D, so the meta-optimizers performed only

40 meta-iterations compared to 60 and 80 in the case of the DE, SA and PSO
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algorithms.

Finally, the Particle Swarm Optimization was also run for 100 times and

the results are shown in Figures 7.20, 7.21, 7.22 and 7.23. It can be observed

that the fitness values obtained with the meta-optimized parameters are better

compared to those produced by the standard and hand-tuned ones. Although,

unlike the case when meta-optimizing the Simulated Annealing algorithm, the

values from the standard PSO parameters show some grade of consistency. This

is due to the extensive research [86, 101] that has been carried out to obtain

these parameters. Although the hand-tuned parameters calculated in this thesis

are able to obtain more regularity between different runs as can be seen in the box

plots, this demonstrates that the selection of parameters when using optimization

techniques depends greatly on the particular problem that is being solved.
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Figure 7.8: Mean fitness after 100 runs of the DE method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
PS for 200 iterations.
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Figure 7.9: Mean fitness after 100 runs of the DE method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
LUS for 200 iterations.
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Figure 7.10: Mean fitness after 100 runs of the DE method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
DE for 200 iterations.
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Figure 7.11: Mean fitness after 100 runs of the DE method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
PSO for 200 iterations.
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Figure 7.12: Mean fitness after 100 runs of the SA method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
PS for 200 iterations.
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Figure 7.13: Mean fitness after 100 runs of the SA method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
LUS for 200 iterations.
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Figure 7.14: Mean fitness after 100 runs of the SA method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
DE for 200 iterations.
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Figure 7.15: Mean fitness after 100 runs of the SA method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
PSO for 200 iterations.
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Figure 7.16: Mean fitness after 100 runs of the HC method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
PS for 200 iterations.
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Figure 7.17: Mean fitness after 100 runs of the HC method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
LUS for 200 iterations.
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Figure 7.18: Mean fitness after 100 runs of the HC method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
DE for 200 iterations.
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Figure 7.19: Mean fitness after 100 runs of the HC method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
PSO for 200 iterations.
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Figure 7.20: Mean fitness after 100 runs of the PSO method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
PS for 200 iterations.
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Figure 7.21: Mean fitness after 100 runs of the PSO method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
LUS for 200 iterations.
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Figure 7.22: Mean fitness after 100 runs of the PSO method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
DE for 200 iterations.
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Figure 7.23: Mean fitness after 100 runs of the PSO method and quartiles using
standard, hand-tuned and meta-optimized parameters. Meta-optimization with
PSO for 200 iterations.
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7.5 Geometry Synthesis and Meta-optimization

In Chapter 4, the importance of the spatial position of antenna elements in an an-

tenna array was stressed. It was explained that the radiation pattern was affected

by displacing the antenna elements in such a way that it was possible to reduce

sidelobe levels while preserving the gain. It is also possible to place nulls at the

direction of undesired signals, thus reducing interference. In this section, meta-

optimization techniques are employed to synthesis the antenna array geometry in

order to obtain minimum sidelobe levels and null control.

The methods used for antenna array synthesis can be classified into two cat-

egories: deterministic and stochastic. The deterministic methods include an-

alytical methods and semi-analytical methods. The deterministic methods in

general are computationally time consuming as the number of elements in the

array increases [102]. On the other hand, stochastic methods are nowadays very

commonly used in electromagnetics [29, 77, 103]. Stochastic methods have the

ability to deal with large number of optimization parameters, escaping from local

minima and are easy to implement. Amongst others, the PSO algorithm has been

extensively used for antenna synthesis in recent years [78].

In particular, different variations of the PSO have been employed in the area

of antenna synthesis. In [15], Khodier formulated a fitness function used by the

PSO to obtain minimum sidelobe levels and null control by calculating the area

under the curve of the desired array pattern. The distance between antenna el-

ements of a linear antenna array was optimized and the results were compared

with the QPM (Quadratic Programming Method) technique. This concept was

later used in [104] where the synthesis was carried out for planar arrays and in

[83] for circular arrays. Other similar work is presented in [105] where different

evolutionary optimization techniques were used to reduce sidelobe levels of cir-

cular arrays. In addition, modifications to the PSO algorithm were proposed,

namely the NPSO in [106] and IPSO in [107].

In this thesis, the approach proposed by Khodier in [15] has been studied

and the meta-optimization techniques explained in this chapter were applied to

the same antenna problem. This was done in order to compare the performance

of the PSO algorithm when using meta-optimized parameters to obtain desired
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antenna geometry which presents minimum sidelobe levels as well as null control.

The problem to be solved is the second example in [15] which consists of a 28-

element linear array designed for SLL suppression in the region [0◦, 180◦] and

prescribed nulls at 55◦, 57.5◦, 50◦, 120◦, 122.5◦and 125◦. To achieve this, the

following function is used to evaluate the fitness:

Fitness =
∑

i

1

∆φi

φui
∫

φli

|AF (φ)|2 dφ+
∑

k

|AF (φk)|
2 (7.1)

where [φli, φui] are the spatial regions in which the SLL is suppressed, in this

case from 0◦ to 180◦. ∆φi = φui − φli, and φk are the directions of the nulls.

After the meta-optimization process, the parameters found for the PSO are:

NP = 30, ω = 0.130108, c1 = 0.470517 and c2 = 1.846860. These parameters are

then used by the PSO to optimize the antenna synthesis problem. The results

of the optimization are shown in Table 7.12 and are the vectors corresponding to

the distances of each antenna element to the array centre. The resulting antenna

pattern is shown in Figure 7.24. It can be noted that lower sidelobe levels can be

achieved when using the meta-optimized parameters.

7.6 Summary

In this chapter, a technique called meta-optimization was investigated. Meta-

optimization consists of employing a second optimization algorithm to find good

behavioural parameters for a given technique. The meta-landscapes for differ-

ent optimization schemes were presented and it was concluded that the problem

of finding better parameters was relatively simple when using non-complex al-

gorithms like PS and LUS. Experiments were carried out in which an antenna

problem was solved by using standard, hand-tuned and meta-optimized param-

eters. The results showed a better progress in terms of the number of iterations

as well as consistency in the values of fitness functions. Lastly, an antenna syn-

thesis problem was solved using meta-optimized parameters and, as shown in

Figure 7.24, it was found that the PSO algorithm achieved lower sidelobe levels

compared to those presented in previous publications.
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Figure 7.24: Lower sidelobe levels obtained with meta-optimized parameters com-
pared with Khodier’s results [15]. A 28-element array with SLL suppression region
of [0◦, 180◦] and prescribed nulls at 55◦, 57.5◦, 60◦, 120◦, 122.5◦ and 125◦.



Chapter 8

Summary and Conclusions

8.1 Introduction

The focus of this thesis has been to investigate the effectiveness of bio-inspired

optimization algorithms for controlling smart antennas. This investigation was

carried out by analysing, testing and comparing the different antenna array ge-

ometries. Measurements of directivity, half-power beamwidth and sidelobe levels

as well as frequency response were obtained. The feasibility of using bio-inspired

algorithms such as Particle Swarm Optimization and Genetic Algorithms to ob-

tain an optimal antenna radiation pattern for a given problem was studied. The

process of digitally shifting the phase weights was investigated as well as dif-

ferent approaches to computing the appropriate fitness function. A comparison

of different optimization algorithms was carried out in terms of fitness function

evaluations. Moreover, study of the impact of initial parameters on the ability of

optimization algorithms applied to smart antennas was presented. This has paved

the way to establish the best configuration parameters to enhance the efficiency

and efficacy of bio-inspired algorithms for adaptive arrays.

The following sections present a summary of the work carried out in this thesis

followed by the conclusions derived from the research presented herein. Finally,

guidelines for future work are provided.
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8.2 Summary

In recent years, wireless communications technologies have grown in such a man-

ner that new adaptive techniques are required to reduce the effects of interference.

The use of smart antennas in mobile devices can help eliminate co-channel in-

terference and multi-access interference among other problems. These kind of

antennas are able to radiate power towards a desired direction and simultane-

ously avoid interference by reducing power in other directions.

One way to control the antenna radiation pattern is to modify the antenna

geometry in such a way that a desired beam is created. The design of anten-

nas benefits from modern simulation software tools that allow the exploration

of different antenna configurations. In Chapter 4, a geometric modification to

the conventional uniform circular antenna array was proposed. The modification

consisted in placing one of the antenna elements at the centre of the array. It

was shown that, given the appropriate phase shift to this central element, the

antenna directivity was increased while the half-power beamwidth angle was re-

duced. This resulted in better capability of transmitting the maximum power

towards the desired direction and of avoiding unwanted signals. It was also ob-

served that the sidelobe levels of the radiation pattern were lower than those of

the conventional circular antenna array.

Throughout this thesis, it has been noted that in order for an antenna system

to be “smart”, a sophisticated signal processing control is needed. Due to the

impressive development of computers, the application of optimization algorithms

to antenna problems has become feasible. Bio-inspired algorithms like Genetic

Algorithm and Particle Swarm Optimization are being applied to adapt the re-

sponse of an antenna array in order to reject interference. These techniques have

proven to be successful in the antenna array arena, from the physical design of an-

tenna elements to beamforming on large antenna arrays. The application of these

optimization algorithms to control the characteristics of the antenna pattern have

been employed in Chapters 5 and 7. Chapter 5 focuses on the application of the

Particle Swarm Optimization method to obtain a set of phase shift weights to be

used in an adaptive antenna array. These weights allow the system to maximize

the power of the main beam in a desired direction while reducing interference by
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placing nulls toward jammers. The results obtained by the PSO algorithms were

compared with those produced by the conventional Genetic Algorithm. It was

observed that the PSO achieves better and more consistent radiation patterns.

In addition, the total number of fitness function evaluations was lower for the

PSO. This suggests an advantage in terms of computational cost as the function

evaluation represents a high percentage of the total performance.

Chapter 6 proposed a similar use of Particle Swarm Optimization for beam-

forming but the criteria for selecting weights was changed. The fitness function

used the signal-to-interference-plus-noise ratio. Also in this chapter, the antenna

configuration was changed to a uniform rectangular array. The weights were op-

timized by maximizing the SINR which causes an increase in power toward the

desired direction and a decrease in the direction of interferers. A standard Ge-

netic Algorithm was also programmed to use this fitness function and the results

were compared to those from the PSO.

In Chapter 7, the importance of choosing the right initial optimization param-

eters was stressed. A technique called meta-optimization was introduced which

consists of employing a second optimization layer to find the best behavioural

parameters for a given algorithm. This technique, also called super-optimization

or meta-evolution had not previously been used for antenna optimization prob-

lems so its feasibility had to be proven. To accomplish this, the meta-landscapes

for different optimization algorithms solving an antenna problem were obtained.

A series of experiments was carried out in order to compare the algorithm per-

formance when using standard, hand-tuned and meta-optimized parameters. In

the case of the PSO algorithm, the change in velocity and position was studied

in order to observe the behaviour of the particles. It was found that the particles

converged faster when using the meta-optimized parameters compared with the

velocities achieved with the standard and hand-tuned parameters. Furthermore,

an antenna synthesis problem was also tackled using meta-optimization. Several

meta-optimizers were used to find the best parameters that configured the PSO

algorithm so as to find the optimum distances between elements in a problem

presented previously by other researchers.
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8.3 Conclusions

This thesis has investigated the geometrical characteristics of uniform circular

antenna arrays and how they affect the overall radiation pattern. This was carried

out by analysing different antenna configurations. A geometric modification to

the conventional uniform circular antenna array was proposed in which one of the

antenna elements is placed at the centre of the array. In Chapter 4, measurements

of directivity, half-power beamwidth and sidelobe levels were performed and it

was found that the radiation pattern can be modified in such a way that the

directivity is increased while the half-power beamwidth angle is reduced. The

result is a better capability of transmitting in the desired direction and avoiding

unwanted signals. In the same chapter it was also observed that the sidelobe levels

of the radiation pattern were lower than the ones of the conventional circular

antenna array which also helps to avoid interference. It was concluded that, to

obtain the best trade-off, the circular array should be conformed by 6 antenna

elements, which is the configuration that shows better directivity and reduced

half-power beamwidth.

Furthermore, this work focused on the feasibility of using bio-inspired al-

gorithms to control adaptive antenna arrays. Algorithms like Particle Swarm

Optimization and Genetic Algorithm were used to obtain the optimal antenna

radiation pattern for a given problem. A comparison between these two algo-

rithms was carried out and the results show that the PSO achieves better and

more consistent radiation patterns than those of the GA. It was also observed

that the total number of fitness function evaluations is lower for the PSO, which

suggests an advantage in terms of performance as the function evaluation tends

to have higher computational cost. Furthermore, the signal-to-interference-plus-

noise ratio was used in these algorithms as part of the fitness function. The

Particle Swarm Optimization method was used to generate a set of array weights

to configure a planar rectangular array. These weights were optimized in order

to maximize the power towards a desired direction whilst minimizing in the di-

rection of interferers. A standard Genetic Algorithm was also studied and the

results show that the PSO performs better in terms of the total number of fitness

function evaluations. This suggests an advantage in performance as the fitness

144



Chapter 8. Summary and Conclusions

function tends to have a high computational cost. It was also observed that the

PSO obtains on average lower sidelobe levels which are desirable to avoid inter-

ference. In addition, the gain levels in the direction of nulls were computed and

it was found that the PSO produces lower values than those of the GA.

Finally, this thesis investigated strategies that enhanced the effectiveness of

the optimization algorithm. It was found that the selection of the right initial

optimization parameters was of importance in order to obtain better results. A

technique called meta-optimization was used to find the best behavioural param-

eters for a given antenna problem. As this technique has never been applied

to antenna optimization, a series of experiments was carried out to study the

feasibility of this approach. Meta-landscapes for different optimization schemes

were presented and it was concluded that the problem of finding better parame-

ters was relatively simple when using non-complex algorithms like PS and LUS.

Experiments were carried out in which an antenna problem was solved by using

standard, hand-tuned and meta-optimized parameters. The results showed better

progress in terms of the number of iterations as well as consistency in the values

of fitness functions. A classical problem in antenna synthesis was also studied,

namely the use of Particle Swarm Optimization for linear array synthesis with

minimum sidelobe and null control. A set of optimization parameters was ob-

tained and used to configure the PSO algorithm to calculate the distance between

elements for the mentioned linear array. It was found that the meta-optimized

PSO outperformed the results found in the literature. The present thesis pro-

vides a better understanding of the configuration parameters used by different

optimization algorithms when solving adaptive antenna array problems.

8.4 Future Work

At the conclusion of this thesis, there are issues that still need further investiga-

tion:

• This work focused on the maximization of the signal-to-interference-plus-

noise ratio as the criteria used by the optimization algorithms. However,

other avenues can be investigated in order to expand into a real world
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application where additional information can be obtained. Transmission

power, Bit-Error-Rate and Quality of Service amongst others are parame-

ters that can be used in addition to the SINR. Furthermore, it is necessary

to consider different scenarios such as multi-path interference and other

background noise models in order to approximate the experiments to real

situations.

• The algorithms used in this thesis were the “standard” ones, in other words,

the basic versions. This leaves a lot of possible avenues open to develop-

ments in terms of using the more advanced and optimized versions. In

particular, there are several versions of the PSO algorithm that have been

adapted to solve antenna problems, for example the improved PSO pre-

sented in [107] and the Enhanced PSO (EPSO) described in [108] among

others [39, 109]. In future work, these versions can be meta-optimized and

their performance compared with each other.

• For performance reasons, the simulations carried out in this thesis for meta-

optimization were limited to linear arrays. With the appropriate computa-

tional power, larger configurations of antennas could be tested.
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Acronyms

AF Array Factor

BA Bees Algorithm

DE Differential Evolution

DMTL Distributed MEMS Transmission Line

DOA Direction-of-Arrival

DSP Digital Signal Processing

EPSO Extended Particle Swarm Optimization

FPGA Field Programmable Gate Arrays

GA Genetic Algorithm

HC Hill Climb

HPBW Half-Power Beamwidth

LMS Least Mean Squares

LUS Local Unimodal Sampling

MEMS Micro-Electro-Mechanical Systems

MIMO Multiple-Input-Multiple-Output

MSE Mean-Square Error

PS Pattern Search
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PSO Particle Swarm Optimization

QPM Quadratic Programming Method

RLS Recursive Least Squares

SA Simulated Annealing

SDMA Space Division Multiple Access

SINR Signal-to-Interference-plus-Noise Ratio

SLC Side-Lobe Cancellation

SLL Side-Lobe Level

SNOI Signals-Not-of-Interest

SOI Signals-of-Interest

UCA Uniform Circular Array

ULA Uniform Linear Array

URA Uniform Rectangular Array
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[44] T. Krink and M. LÃ¸vbjerg, “The lifecycle model: Combining particle

swarm optimisation, genetic algorithms and hillclimbers,” in Proceedings

of the 7th International Conference on Parallel Problem Solving from Na-

ture, 2002, pp. 621–630.

[45] S. Chalup and F. Maire, “A study on hill climbing algorithms for neural

network training,” in Proceedings of the Congress on Evolutionary Compu-

tation (CEC’99), Washington D.C, 1999, pp. 2014–2021.



[46] R. Hooke and T. Jeeves, “”Direct Search” solution of numerical and sta-

tistical problems,” Journal of the Association for Computing Machinery

(ACM), vol. 8, no. 2, pp. 212 – 229, 1961.

[47] V. Torczon, “On the convergence of pattern search algorithms,” SIAM Jour-

nal on Optimization, vol. 7, pp. 1–25, 1993.

[48] W. C. Davidon, “Variable metric method for minimization,” Journal on

Optimization (SIAM), vol. 1, no. 1, pp. 1–17, 1991.

[49] J. Kiefer, “Sequential minimax search for a maximum,” Proceedings of the

American Mathematical Society, vol. 4, no. 3, pp. 502–506, 1953.

[50] M. E. H. Pedersen, “Tuning & simplifying heuristical optimization,” Ph.D.

dissertation, University of Southampton, 2010.

[51] A. C. M.E.H. Pedersen, “Local unimodal sampling,” Hvass Laboratories

Technical Report no. HL0801, 2008.

[52] R. Luus and T. Jaakola, “Optimization by direct search and systematic

reduction of the size of search region,” American Institute of Chemical En-

gineers Journal (AIChE), vol. 19, no. 4, pp. 760–766, 1973.

[53] R. C. Johnson, Antenna Engineering Handbook, 3rd ed. McGraw-Hill,

1993.

[54] A. Ben and G. Mohammad, Adaptive Array Systems: Fundamentals and

Applications, 1st ed. John Wiley & Sons, Ltd., 2005.

[55] Y. C. Chung and R. Haupt, “Optimum amplitude and phase control for an

adaptive linear array using a genetic algorithm,” in Antennas and Propa-

gation Society International Symposium, 1999. IEEE, vol. 2, aug 1999, pp.

1424 –1427 vol.2.

[56] H. Zhao, Z. Xie, H. Wang, and J. Jin, “Beam shaping for satellite phased

array antenna using dual coding genetic algorithm,” in Wireless Communi-

cations, Networking and Mobile Computing, 2009. WiCom ’09. 5th Inter-

national Conference on, sep 2009, pp. 1 –4.



[57] G. Mahanti, A. Chakraborty, and S. Das, “Floating-point genetic algorithm

for design of a reconfigurable antenna arrays by phase-only control,” in Mi-

crowave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Confer-

ence Proceedings, vol. 5, dec. 2005, p. 3 pp.

[58] P. J. Bevelacqua, “Antenna arrays: Performance limits and geometry opti-

mization,” Ph.D. dissertation, Arizona State University, May 2008.

[59] B. D. Satish, “Comparative analysis of antenna beam patterns of the 6-by-1

linear array and the 6-by-2 rectangular array,” International conference on

computer Communication and Control, pp. 152–161, 23-25th Nov 2006.

[60] J. Foutz, A. Spanias, S. Bellofiore, and C. Balanis, “Adaptive eigen-

projection beamforming algorithms for 1d and 2d antenna arrays,” An-

tennas and Wireless Propagation Letters, IEEE, vol. 2, no. 1, pp. 62 –65,

2003.

[61] M. M. Sohul, “Impact of antenna array geometry on the capacity of mimo

communication system,” in Electrical and Computer Engineering, 2006.

ICECE ’06. International Conference on, dec. 2006, pp. 80 –83.

[62] A. Abouda, H. El-Sallabi, and S. Haggman, “Impact of antenna array geom-

etry on mimo channel eigenvalues,” in Personal, Indoor and Mobile Radio

Communications, 2005. PIMRC 2005. IEEE 16th International Symposium

on, vol. 1, sept. 2005, pp. 568 –572.

[63] P. Bevelacqua and C. Balanis, “Optimizing antenna array geometry for

interference suppression,” Antennas and Propagation, IEEE Transactions

on, vol. 55, no. 3, pp. 637 –641, march 2007.

[64] R. Haupt, “Optimized element spacing for low sidelobe concentric ring ar-

rays,” Antennas and Propagation, IEEE Transactions on, vol. 56, no. 1,

pp. 266 –268, jan. 2008.

[65] M. Dessouky, H. Sharshar, and Y. Albagory, “Efficient sidelobe reduction

technique for small-sized concentric circular arrays,” Progress In Electro-

magnetics Research, vol. PIER 65, pp. 187–200, 2006.



[66] F. P. and P. Darwood, “Beamforming for circular and semicircular array

antennas for low-cost wireless lan data communications systems,” in IEE

Proc. Microwaves, Antennas and Propagation, vol. 145, April 1998, pp.

153–158.

[67] B. L. and C. Comsa, “Analysis of circular arrays as smart antennas for

cellular networks,” in Proc. IEEE Int. Symp. Signals, Circuits andSystems,

vol. 2, July 2003, pp. 525–528.

[68] K. Gyoda and T. Ohira, “Design of electronically steerable passive array

radiator (ESPAR) antennas,” Antennas and Propagation Society Interna-

tional Symposium, vol. 2, pp. 922–925, July 2000.

[69] R. J. Barton, P. J. Collings, P. E. Crittenden, M. J. Havrillas, and A. J.

Terzuoli, “A compact passive broadband hexagonal spiral antenna array,”

International Geoscience and Remote Sensing Symposium, pp. 593–595,

July 2007.

[70] C. Microstripes, http://www.cst.com, [Accessed April, 2011].

[71] T. Arslan, N. Haridas, E. Yang, A. Erdogan, N. Barton, A. Walton,

J. Thompson, A. Stoica, T. Vladimirova, K. McDonald-Maier, and W. How-

ells, “ESPACENET: A framework of evolvable and reconfigurable sensor

networks for aerospace based monitoring and diagnostics,” in Adaptive

Hardware and Systems, 2006. AHS 2006. First NASA/ESA Conference on,

june 2006, pp. 323 –329.

[72] N. Haridas, A. T. Erdogan, T. Arslan, A. J. Walton, S. Smith, T. Stevenson,

C. Dunare, A. Gundlach, J. Terry, P. Argyrakis, K. Tierney, A. Ross, and

T. O’Hara, “Reconfigurable mems antennas,” in Proc. NASA/ESA Conf.

Adaptive Hardware and Systems AHS ’08, 2008, pp. 147–154.

[73] N. Haridas, A. El-Rayis, A. T. Erdogan, and T. Arslan, “Multi-frequency

antenna design for space-based reconfigurable satellite sensor node,” in

Proc. Second NASA/ESA Conf. Adaptive Hardware and Systems AHS 2007,

2007, pp. 14–19.



[74] N. Haridas, A. T. Erdogan, T. Arslan, and M. Begbie, “Adaptive micro-

antenna on silicon substrate,” in Proc. First NASA/ESA Conf. Adaptive

Hardware and Systems AHS 2006, 2006, pp. 43–50.

[75] C.-H. Hsu, “Optimizing beam pattern of adaptive linear phase array an-

tenna using local genetic algorithm,” in Antennas and Propagation Society

International Symposium, 2005 IEEE, vol. 1B, 2005, pp. 315 –318 vol. 1B.

[76] R. C. Eberhart and Y. Shi, “Evolving artificial neural networks,” in Proc.

1998 Int. Conf. Neural Networks and Brain, Beijing, 1998.

[77] S. M. Mikki and A. A. Kishk, “Quantum particle swarm optimization

for electromagnetics,” IEEE Transactions on Antennas and Propagation,

vol. 54, no. 10, pp. 2764–2775, October 2006.

[78] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in elec-

tromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 2,

no. 52, pp. 397–407, February 2004.

[79] J. Robinson, S. Sinton, and Y. Rahmat-Samii, “Particle swarm, genetic

algorithm, and their hybrids: optimization of a profiled corrugated horn

antenna,” in Proc. IEEE Int. Symp. Antennas Propagation, ser. vol. 1, San

Antonio, TX, 2002, pp. 314–317.

[80] J. Kennedy and W. M. Spears, “Matching algorithms to problems: an

experimental test of the particle swarm and some genetic algorithms on

multi modal problem generator,” in Proc. IEEE Int. Conf. Evolutionary

Computation, 1998.

[81] G. Kokai, T. Christ, and H. Frhauf, “Using hardware-based particle swarm

method for dynamic optimization of adaptive array antennas,” in Adaptive

Hardware and Systems, 2006. AHS 2006. First NASA/ESA Conference on,

june 2006, pp. 51 –58.

[82] W. Li, Y. Hei, X. Shi, S. Liu, and Z. Lv, “An extended particle swarm

optimization algorithm for pattern synthesis of conformal phased arrays,”



International Journal of RF and Microwave Computer-Aided Engineering,

vol. 20, no. 2, pp. 190–199, March 2010.

[83] M. Shihab, Y. Najjar, N. Dib, and M. Khodier, “Design of non-uniform

circular antenna arrays using particle swarm optimization,” Journal of elec-

trical engineering, vol. 59, no. 4, pp. 216–220, 2008.

[84] C.-H. Hsu, W.-J. Shyr, and C.-H. Chen, “Adaptive pattern nulling design

of linear array antenna by phase-only perturbations using memetic algo-

rithms,” Innovative Computing, Information and Control, 2006. ICICIC,

vol. 3, pp. 308–311, Aug 2006.

[85] M. Clerc, http://clerc.maurice.free.fr/pso/, [Accessed: April 2011].

[86] R. C. Eberhart and Y. Shi, “Particle swarm optimization: Developments,

aplications and resources,” in Proc. 2001 Congress on Evolutionary Com-

putation, ser. vol. 1, 2001, pp. 81–86.

[87] S. Applebaum, “Adaptive arrays,” Antennas and Propagation, IEEE Trans-

actions on, vol. 24, no. 5, pp. 585 – 598, Sep. 1976.

[88] P. Howells, “Intermediate frequency sidelobe canceller,” in U.S. Patent

3202990, August 24, 1965.

[89] ——, “Explorations in fixed and adaptive resolution at GE and SURC,”

Antennas and Propagation, IEEE Transactions on, vol. 24, no. 5, pp. 575

– 584, sep 1976.

[90] B. Widrow, P. Mantey, L. Griffiths, and B. Goode, “Adaptive antenna

systems,” Proceedings of the IEEE, vol. 55, no. 12, pp. 2143 – 2159, dec.

1967.

[91] M. Benedetti, R. Azaro, D. Franceschini, and A. Massa, “PSO-based real-

time control of planar uniform circular arrays,” IEEE Transactions on An-

tennas and Propagation, vol. 5, pp. 545–548, 2006.

[92] R. Monzingo and T. Miller, Introduction to Adaptive Arrays. Wiley, New

York, 1980.



[93] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and

convergence in a multidimensional complex space,” Evolutionary Compu-

tation, IEEE Transactions on, vol. 6, no. 1, pp. 58 –73, feb 2002.

[94] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm op-

timization,” Lecture Notes in Computer Science, vol. 1447, pp. 591–600,

1998.

[95] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction fac-

tors in particle swarm optimization,” in Evolutionary Computation, 2000.

Proceedings of the 2000 Congress on, vol. 1, 2000, pp. 84 –88.

[96] R. Mercer and J. Sampson., “Adaptive search using a reproductive meta-

plan,” in The International Journal of Systems and Cybernetics, ser. 7,

1978, pp. 215 – 228.

[97] J. Grefenstette, “Optimization of control parameters for genetic algo-

rithms,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 16,

no. 1, pp. 122 –128, jan. 1986.

[98] R. E. Bellman, Dynamic programming. Princeton University Press, 1957.

[99] M. E. H. Pedersen. (2011) Swarmops. numerical & heuristic optimization.

[Online]. Available: http://www.hvass-labs.org/projects/swarmops/

[100] D. Zaharie, “Critical values for the control parameters of differential evolu-

tion algorithms,” Proceedings of MENDEL 2002, 8th International Mendel

Conference on Soft Computing, pp. 62–67, 2002.

[101] A. Carlisle and G. Dozier, “An of-the-shelf PSO,” Proceedings of the Par-

ticle Swarm Optimization Workshop, pp. 1–6, 2001.

[102] M. M. Khodier and M. Al-Aqeel, “Linear and circular array optimization:

a study using particle swarm intelligence,” Progress In Electromagnetics

Research B, vol. 15, pp. 347–373, 2009.

[103] Y. Rahmat-Samii and N. Jin, “Particle swarm optimization (pso) in en-

gineering electromagnetics: A nature-inspired evolutionary algorithm,” in



Electromagnetics in Advanced Applications, 2007. ICEAA 2007. Interna-

tional Conference on, sep 2007, pp. 177 –182.

[104] N. Petrella, M. Khodier, M. Antonini, M. Ruggieri, S. Barbin, and

C. Christodoulou, “Planar array synthesis with minimum sidelobe level

and null control using particle swarm optimization,” in Microwaves, Radar

Wireless Communications, 2006. MIKON 2006. International Conference

on, May 2006, pp. 1087 –1090.

[105] D. Mandal, A. Bhattacharjee, and S. Ghoshal, “Comparative optimal de-

signs of non-uniformly excited concentric circular antenna array using evo-

lutionary optimization techniques,” in Emerging Trends in Engineering and

Technology (ICETET), 2009 2nd International Conference on, Dec. 2009,

pp. 619 –624.

[106] ——, “A novel particle swarm optimization based optimal design of three-

ring concentric circular antenna array,” in Advances in Computing, Control,

Telecommunication Technologies, 2009. ACT ’09. International Conference

on, Dec. 2009, pp. 385 –389.

[107] D. Mandal, S. Ghoshal, and A. Bhattacharjee, “Improved swarm intelli-

gence based optimal design of concentric circular antenna array,” in Applied

Electromagnetics Conference (AEMC), 2009, Dec. 2009, pp. 1 –4.

[108] M. Mangoud and H. Elragal, “Wide null beamforming using enhanced par-

ticle swarm optimization,” in Communications (MICC), 2009 IEEE 9th

Malaysia International Conference on, dec 2009, pp. 159 –162.

[109] M. Benedetti, R. Azaro, and A. Massa, “Memory enhanced pso-based opti-

mization approach for smart antennas control in complex interference sce-

narios,” Antennas and Propagation, IEEE Transactions on, vol. 56, no. 7,

pp. 1939 –1947, july 2008.


