
Word Vector-Space Embeddings of Natural

Language Data over Time

Chiraag Lala - s1354622
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429713808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Words are often mapped to vectors in a vector-space (Euclidean-space). Such map-

pings, also called embeddings, are used in many Natural Language Processing (NLP)

tasks. These word embeddings are, generally, intended to reflect the usage, semantic

similarities and relatedness of the words they represent. Simply put, word embeddings

reflect the meaning of the words relative to other words. However, word meanings

are known to change over time (semantic change). Current publicly available word

vector-space embeddings are ‘static’ in nature with no temporal component. Creat-

ing ‘dynamic’ word embeddings by adding temporal information opens the possibility

of capturing the phenomenon of semantic change. These embeddings (with temporal

component) can be used to produce visual animation of semantic change and change

in word relations over time. It also has the potential to improve performance of various

NLP tasks, particularly those involving time like the task of Diachronic Text Evalua-

tion.

This project achieves the following: (1) Create word embeddings with time component

(dynamic embeddings) that captures the meaning/usage/similarities of words across

various times ranging between the years 1800 and 2008. (2) Develop a tool/software

that animates changes in word relations using the dynamic embeddings. (3) Evaluate

the dynamic embeddings created using word similarity measures and Diachronic Text

Evaluation task.

i

Acknowledgements

Thank you Dr Shay Cohen for all the help and guidance. I thoroughly enjoyed working

under your supervision and look forward to work with you on more projects in future.

Thank you Dr Mirella Lapata and Dr Bonnie Webber for ideas on evaluation of em-

beddings

This project is dedicated to all the logophiles out there including my father, Ramesh

Lala, and my brother, Rajeev Lala.

A big thanks to my mother, Deepa Lala, for loving me so much!

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Chiraag Lala - s1354622)

iii

Table of Contents

1 Introduction 1
1.1 The Problem . 1

1.1.1 Static Word Embeddings . 1

1.1.2 Dynamic Word Embeddings 2

1.1.3 Visualization of Dynamic Embeddings 3

1.2 Motivation . 4

1.2.1 Semantic Change and Word Formation 4

1.2.2 For Machine Learning in NLP Tasks 4

1.2.3 This is Pure Fun and Insightful 5

1.3 Core Ideas to Solve the Problem . 5

1.3.1 Learn Meaning of a Word From its Context 6

1.3.2 Google Books N-grams . 6

1.3.3 Dimension Reduction Using MDS 7

1.4 Testing and Evaluation Techniques 7

1.4.1 Diachronic Text Evaluation 7

1.4.2 Word Similarity . 8

1.5 Outline . 8

2 Background - Literature Review 9
2.1 Fields of Research Explored . 9

2.1.1 Word Representation . 9

2.1.2 Machine Learning . 10

2.1.3 NLP Dealing with Time . 10

2.2 Key Publications . 10

2.2.1 Literature and Data to Create Dynamic Embeddings 11

2.2.2 Literature and Resources for Visualization 12

2.2.3 Literature and Data for Embedding Evaluation 12

iv

2.3 Summary . 14

3 Creating Dynamic Embeddings 15
3.1 General Recipe . 15

3.1.1 Mathematical Formulation 15

3.1.2 Description . 16

3.2 The Implementation . 19

3.2.1 Procuring Data . 19

3.2.2 Developing Algorithm . 21

3.2.3 Generating Dynamic Embeddings 23

3.3 Summary . 23

4 Visualization Tool 25
4.1 The Challenge . 25

4.2 Solution . 26

4.2.1 Formulating MDS . 26

4.2.2 Applying MDS . 27

4.3 The Tool . 27

5 Evaluation 32
5.1 Preliminary Qualitative Observations 32

5.2 Word Similarity Measures . 33

5.2.1 Goldstandard Human Ratings 34

5.2.2 Evaluation Framework . 35

5.2.3 Execution . 37

5.2.4 Results . 38

5.2.5 Analysis . 38

5.3 Diachronic Text Evaluation . 41

5.3.1 A Simple ML System for DTE Task 42

5.3.2 Execution . 45

5.3.3 Results . 46

5.3.4 Analysis . 46

6 Conclusions 48
6.1 Achievements . 48

6.2 Quality of Dynamic Embeddings . 49

v

6.3 Other Conclusions . 50

6.4 Future Avenues . 50

6.4.1 Improvement of Dynamic Embeddings 50

6.4.2 Improvements of Visualization Tool 51

6.4.3 Diachronic Text Evaluation 51

Bibliography 52

A Definitions 56
A.1 Vectors And Euclidean Vector Spaces 56

A.2 Euclidean Distance . 56

A.3 Totally Ordered Set . 57

A.4 Word Co-occurrence . 57

A.5 N-grams . 57

B Datasets 58
B.1 Trial Data for Diachronic Text Evaluation 58

B.2 Results For Similarity And Relatedness 59

B.2.1 Table B.1 . 59

B.2.2 Correlation Tables . 60

vi

List of Figures

3.1 Creating Dynamic Embeddings: An Outline. 24

4.1 Visualization Tool: An Outline . 28

4.2 Visualization Application: Web Based User Interface 29

4.3 Trajectories As A Stack Of 2-dimensional Static Word Embeddings 30

4.4 Animation: Words Moving Along A Straight Line 31

5.1 Goldstandard 153: Dynamic Embedding faverage−nlm - Correlation of Each

Stack (Static Word Embedding within faverage−nlm) Over Time - i.e. ρt vs t -

Time Ascends from Left to Right . 39

vii

List of Tables

5.1 Goldstandard 153: Correlation Scores 38

5.2 Mean Square Errors after One Leave Out Cross Validation 46

B.1 Excerpt of Word-Pair Similarity and Relatedness 59

B.2 Goldstandard 200: Correlation Scores 59

B.3 Goldstandard Mixed: Correlation Scores 60

B.4 Goldstandard for Similarity: Correlation Scores 60

B.5 Goldstandard for Relatedness: Correlation Scores 61

viii

Chapter 1

Introduction

1.1 The Problem

The problem addressed in this thesis is to create word embeddings with temporal com-

ponent (dynamic embeddings - see 1.1.2). These embeddings should reliably capture

the meaning and/or usage of English words over time. An extended problem, also ad-

dressed in this thesis, is of visualization of the dynamic embeddings. It is to develop

an animation tool that creates visual animations showing how semantic similarities and

relations between words have changed over time.

To better understand the problem some essential groundwork needs to be laid. These

are included in the following subsections.

1.1.1 Static Word Embeddings

Word Embeddings are mappings (functions) which map words to vectors in a Eu-

clidean vector space (see A.1). Since the projects deals with Euclidean Vectors only,

from here onwards ‘Euclidean vector space’ will simply be called ‘vector space’. If V

is a vocabulary set of words (and tokens) in English language and Rn is n-dimensional

vector-space for some positive integer n, then a mapping f : V → Rn is said to be a

word embedding. Given a word w in the vocabulary set V , the vector f (w) is called

the word embedding of w (under f). For instance, the vector f (hello) will be called

the word embedding of hello.

1

Chapter 1. Introduction 2

Capturing Semantic Information

Word embeddings are generally intended to reflect the semantic similarity and relat-

edness of words. Several publicly released word embeddings - Colobert and Weston

embeddings (Turian et al., 2010), SENNA embeddings (Collobert et al., 2011), Hier-

archical Log Bi-Linear (HLBL) embeddings (Turian et al., 2010) and Huang’s embed-

dings (Huang et al., 2012) - are able to capture surprisingly nuanced semantics even

in the absence of sentence structure (Chen et al., 2013). Each feature (component) of

a word embedding might have different interpretations - grammatical, semantic, word

usage, context, etcetera. Nevertheless, all the popular word embeddings follow the

simple untold rule - the closer the word embeddings geometrically, the more similar is

their meaning/usage - well almost.

Improving NLP Systems

Word embeddings have proved to be useful at improving the performance of various

Natural Language Processing (NLP) systems for tasks like Named Entity Recognition

(NER), Chunking, etcetera. This was first demonstrated in Turian et al. (2010) where

performance of systems for the tasks NER and Chunking were improved by adding

word embeddings - like Collobert and Weston embeddings and HLBL embeddings -

as extra word features. Many such studies followed. Low Rank Multi-View Learning

(LR-MVL) embeddings achieved state-of-the-art performance on NER and chunking

problems (Dhillon et al., 2011). Passos et al. (2014) presents a system that use neu-

ral word embeddings to achieve state-of-the-art results on NER in both Computational

Natural Language Learning (CoNLL) 2003 training data and Ontonotes NER.

Word embeddings do not include any temporal information. These are fixed in time

and hence static. From here onwards, they will be called static word embeddings.

The problem at hand is to develop ‘dynamic’ word embeddings by including temporal

information.

1.1.2 Dynamic Word Embeddings

Define T to be a Time Range set. It could be a continuous or a discrete totally ordered

set (see A.3). For example, it could be the continuous set of time ranging between

years 1800 and 2000, i.e. T = [1800,2000], or it could be a discrete set of separate

years like T = {1800,1805,1810, ...,1995,2000}. Each element of T will be called

Chapter 1. Introduction 3

a time slice or a year slice (if it is clear that the time slices represent years). In this

project we deal with discrete finite time range sets only, so from here onwards T will

be a discrete finite set unless specified otherwise.

Given a time range set T = {t1, t2, ..., tm} (where t1 < t2 < ... < tm), vocabulary set

V and an n-dimensional vector space Rn (for some positive integer n), a mapping

f : V × T → Rn will be called a dynamic word embedding (or simply dynamic em-

bedding). Given a word w in vocabulary set V and a time slice t in time range

set T , the vector f (w, t) will be called dynamic embedding of w at time t. In ad-

dition the finite sequence (f (w, t1), f (w, t2), ..., f (w, tm)) will be called the trajectory

of the word w. For example if T = {1800,1805,1810, ...,2000}, then f (hello,1830)

will be called the dynamic embedding of hello in the year 1830 and the sequence

(f (hello,1800), f (hello,1805), ..., f (hello,2000)) will be called the trajectory of hello.

One way to look at dynamic embeddings is that it is a stack of static word embed-

dings, one for each time slice. So to develop ‘reliable’ dynamic word embeddings

means to develop a stack of static word embeddings (one for each t in T) such that

each static word embedding reflects the true semantic similarity and relations of words

in that time instance.

1.1.3 Visualization of Dynamic Embeddings

Another way to look at dynamic embeddings is from the word perspective. Each word

is moving with time, as depicted by the trajectory of the word (see 1.1.2). If the embed-

dings are reliable then for a collection of words their trajectories show how semantic

relations of those words with respect to each other have changed over time. One of the

goals of this thesis is to develop an animation tool to visualize the word trajectories.

This poses a challenge as dynamic embeddings created are in high dimensional vec-

tor spaces (in this project 25, 50, 100 and 200 dimensional dynamic embeddings are

created) and not in 2- or 3-dimensional space.

Chapter 1. Introduction 4

1.2 Motivation

Extending Static Word Embeddings to Dynamic Embeddings is a simple, elegant and

yet a challenging idea. This idea is mainly driven by the following reasons.

1.2.1 Semantic Change and Word Formation

The main motivation for creating Dynamic Embeddings comes from the fact that natu-

ral language is a dynamic entity. Meaning of words are known to change over time (se-

mantic change). For instance, the English word “abandon” now means “give up com-

pletely”, like abandoning hope, abandoning a baby or surrendering ourselves to emo-

tion. But in 14th century Middle English it meant “to subjugate or subdue”. This ex-

ample was obtained from Oxford English Dictionary website http://www.oed.com/

with access provided by University of Edinburgh. The online dictionary has a service

called timeline which charts chronologically the story of a word from its birth to the

present day. Using it, numerous other examples can be obtained like mouse (from a

rodent to computer device), nice (from foolish to good), pedant (from school master to

person excessively concerned with minor details), bully (from good fellow to a tyrant),

etcetera.

In addition to semantic change, new words get created from time to time like laser,

laptop, twitterati and the most recent ones like sel f ie, bestie, etc. Occasionally many

old rarely used words get extinct over time like abactor (which meant cattle thief),

roentgen (which was a unit of x-radiation and gamma radiation), radix (for the root

of a number in mathematics or the root of a word in linguistics). Although the project

does not deal with the theory behind semantic change, word formation, and word ex-

tinction, it nevertheless provides sheer empirical data that promises to facilitate the

study of these topics from Diachronic Linguistics (Historical Linguistics).

1.2.2 For Machine Learning in NLP Tasks

As mentioned earlier, static word embeddings are already used in many computational

systems for various NLP tasks (like NER, chunking, etc.) as extra word feature to im-

prove the performance of the systems (see 1.1.1). With temporal information added to

the embeddings, dynamic embeddings could prove to be useful in further improvement

of the same systems that use static word embeddings. In fact, dynamic embeddings

http://www.oed.com/

Chapter 1. Introduction 5

promise to be particularly useful in the task of Diachronic Text Evaluation (see chapter

5.3). Diachronic Text Evaluation is a machine learning task that addresses the interest-

ing problem to automatically determine the period when a text was written (Popescu

and Strapparava, 2013). Here the inherent temporal information in the dynamic em-

beddings could prove useful. The potential to improve several machine learning and

NLP systems is a strong motivation to pursue this project.

1.2.3 This is Pure Fun and Insightful

A final motivation (though one of less academic importance) is that seeing words

move around depending on how its meaning and/or usage changes over time is sim-

ply a delight, especially for word loving logophiles. Take for example, the words car,

machine and computer. Upon entering these words as inputs to the animation/visu-

alization tool developed in the project, you will get to see an animation where ini-

tially the words car and machine move around randomly from the year 1800 onwards

and then the two words come close and stay together from the year 1900 onwards.

Later in the year 1920s, the word computer enters the frame moving randomly. Over

the coming years the word computer gradually comes closer to the word machine

and car drifts away from the rest. Finally from the year 1970 onwards the words

computer and machine stick together while car is away from both. See the animation

on http://homepages.inf.ed.ac.uk/scohen/car-machine-computer.gif.

The above mentioned animation indicates that before the automobile was invented, car

and machine had little relation. Around the time the automobile was invented, machine

and car had related meanings. At some point, machine turned to mean computer. An-

imations like these are good fun to watch and quite insightful into the history of how

things and concepts, and not only words, have evolved over time.

1.3 Core Ideas to Solve the Problem

Many problems and challenges, both technical/practical and theoretical, arose during

the project. These were most comfortably resolved by elegant, creative and sensible

solutions. The solutions involve several interesting ideas. The most important ‘core’

ideas over which the entire project was built on are as follows:

http://homepages.inf.ed.ac.uk/scohen/car-machine-computer.gif

Chapter 1. Introduction 6

1.3.1 Learn Meaning of a Word From its Context

“The meaning of a word is its use in the language” (Wittgenstein, 1973)

“You shall know a word by the company it keeps” (Firth, 1957)

People learn meanings of many new words, which they have never seen before, through-

out their life. Many times meanings are learnt without referring to a dictionary. This is

achieved, perhaps, by guessing the meaning of the new word from its context (neigh-

bouring words with known meanings). Gradually, with repeated encounters with the

same word and repeated guesswork that follows, the true meaning of the word is learnt.

Several theories on Language Acquisition and Vocabulary Development have been

suggested over the years like Noam Chomsky’s Language Acquisition Device (LAD)

(Chomsky, 1965), Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997),

Learning words from sights and sounds (Roy and Pentland, 2002), etc. These the-

ories rely on the concept of word co-occurrence (see A.4). In linguistic sense, word

co-occurrence can be interpreted as an indicator of semantic proximity. The project ex-

ploits this very idea to learn the dynamic embeddings of words in various time periods

using context of those words in that era.

1.3.2 Google Books N-grams

Temporal information for dynamic embeddings needs to be learnt from a reliable

source of text data. The data source should be vast spanning across a long time range.

It should reliably represent the language of the time period during which a particular

text was written. It should, in addition, provide contextual information of the words

because after all the idea is to learn word meanings/usage (via embeddings) from the

context. Many modern textual data sources, like social network data, have a relatively

shorter time range. Language used in twitter, for instance, is very recent because twit-

ter was launched in 2006, just 8 years ago. Also the data should be in a format that is

useful to solve the problem with clear indications to the time of use. The open source

Google Books N-grams is a smart fit to all our requirements (Michel et al., 2011). It

has textual data from the books spanning across a vast time range. The data comes

with time markers which marks the time period during which the book containing the

data was published. To use this data in generating dynamic embeddings is an important

idea over which this project thrived.

(http://storage.googleapis.com/books/ngrams/books/datasetsv2.html)

Chapter 1. Introduction 7

1.3.3 Dimension Reduction Using MDS

Animation of word trajectories on a 2-dimensional computer screen calls for dimen-

sion reduction of the high-dimensional dynamic embeddings. But dimension reduction

could lead to loss of inherent data and similarity information of the data points. This

poses a challenge - to preserve the inherent information of the high-dimensional dy-

namic embeddings after dimension reduction. This problem is addressed mathemati-

cally and computationally using Multi-Dimesional Scaling (MDS) (Borg and Groenen,

2005) which forms the core mathematical idea behind the animation/visualization tool

developed in this project.

1.4 Testing and Evaluation Techniques

The dynamic embeddings created in the project are evaluated using two techniques -

Diachronic Text Evaluation and Word Similarity Measures

1.4.1 Diachronic Text Evaluation

Natural Language changes over time. Texts from different era look and sound differ-

ent. For example, Shakespeare English is very different from modern day English.

Could we have an automated system that determines the period in which a text was

written using these differences? This would be a machine learning task in NLP where

given a text document as an input, the machine predicts the time/year/period in which

the text was written.

Because of the temporal component, an ideal dynamic embedding would carry the

true semantic relations of words for each time slice, although latently. Hence dynamic

embeddings could, perhaps, contribute to Diachronic Text Evaluation (DTE) task by

making use of the stored latent semantic information of words over time. We would

like to see whether the use of Dynamic Embeddings as features for the words (instead

of static word embeddings) improve the performance of DTE systems or not. In our

evaluation tests the performance of a basic DTE system (see 5.3) did improve with

dynamic embeddings created. This indicates that the dynamic embeddings created are

credible, in the sense that they seem to capture the true semantic relations of words in

various times.

Chapter 1. Introduction 8

1.4.2 Word Similarity

The intuition that similar words have their embeddings close to each other needs to

be tested. A small corpus of word pairs rated for similarity by human subjects is ob-

tained. The same word pairs are scored for similarity using the embeddings created.

The two scores (human rating and scores from dynamic embeddings) are compared to

determine how well word similarities have been represented. The comparisons made

in our study show that dynamic embeddings broadly follow the idea - ‘the closer the

embeddings geometrically, more similar the meanings’ - however these are not as ac-

curate as the popular static embeddings - Collobert and Weston embeddings and HLBL

embeddings at presenting word similarity. More analysis and conclusions in chapter 5

and 6.

1.5 Outline

The main objective of this project is to create reliable dynamic embeddings and use it

for animation. Accordingly the project work was divided into four parts - (1) Literature

Review and Background reading to develop the idea firmly, (2) Create the Dynamic

Embeddings, (3) Develop Animation/Visualization tool and (4) Evaluate the Dynamic

Embeddings. Each of the above four parts of project work are described in detail in

dedicated chapters (one for each part). These are chapters 2 to 5. Chapter 6, the final

chapter, presents the conclusion and ideas for potential future work arising from the

project.

Chapter 2

Background - Literature Review

At the early stages of the project work, time was spent to find and study relevant re-

search from similar domains. This was done mainly to familiarize with all the require-

ments of the project and to draw ideas from previous works that could then be com-

bined to develop a detailed execution plan. Besides ideas, we also borrowed datasets,

evaluation framework and motivation to design algorithms. In addition to early stage

readings, a few more publications and research topics were explored at later stages of

the project, and even towards to end, to solve technical obstructions encountered and

for other on-course corrections that were needed.

2.1 Fields of Research Explored

Computational Linguistics is a wide interdisciplinary subject spanning across differ-

ent domains in Linguistics and Computer Science. Of many areas of research, three

main fields of research of direct relevance to the project were explored in immense

detail. These are (1) Word Representation, (2) Machine Learning and (3) Temporal In-

formation in NLP. There is no clear cut boundary separating these fields. In fact most

research papers explored come from overlapping of these fields.

2.1.1 Word Representation

The broad field of Word Representations deals with the challenge of computationally

representing word meaning and other syntactic and semantic features. Such represen-

tations are either symbolic (including information such as the word’s morphology, its

synonyms, its part of speech and other symbolic information) or as a mathematical ob-

9

Chapter 2. Background - Literature Review 10

ject in a vector space or other discrete structure. The focus of this project has been on

the latter – word embeddings in a Euclidean space. Several publications on word rep-

resentations, particularly word embeddings, were studied in detail to get familiarized

with the field and to draw ideas for solutions.

2.1.2 Machine Learning

Machine Learning deals with construction and study of systems that can learn from

data. It involves using Statistics and Mathematics to perform several tasks like cluster-

ing, classification, regression, dimensionality reduction, etcetera. Dimensionality re-

duction (an integral part of the visualization tool) and Regression (used in Diachronic

Text Evaluation task for evaluating the dynamic embeddings created) are machine

learning tasks. Many resources and publications on machine learning topics, specially

those needed in the project, were studied in great detail.

2.1.3 NLP Dealing with Time

Most current natural language processing (NLP) deals with language as if it were a

constant. This however, is not the case as language is continually changing. Few

studies in NLP like Dynamic Topic Models (Blei and Lafferty, 2006), Detecting Epoch

Changes (Popescu and Strapparava, 2013), Diachronic Text Evaluation, etcetera take

temporal information of natural language data into consideration. Research work in

NLP addressing temporal information in natural language data can be regarded to form

a new research area. Several publications from this area were studied for inspiration

and for evaluation framework.

2.2 Key Publications

Just as the practical project work was divided into three parts (1. Create Dynamic Em-

beddings, 2. Visualization tool and 3. Evaluation) similarly the search for literature

was also carried from the same three parts in that order. First publications and books

to help develop methods for creating dynamic embeddings were searched and studied.

Later papers and resources for developing the animation tool and finally works that

could help evaluate the embeddings were explored.

Chapter 2. Background - Literature Review 11

Of all the publications that were read, the important (key) publications, resources and

data used in the project work are mentioned in the following subsections.

2.2.1 Literature and Data to Create Dynamic Embeddings

Computational Word Representations have been well studied in Turian et al. (2010).

The paper describes how performance of existing NLP systems improve when word

representations are taken as extra word features. The study uses publicly available

Brown Clusters (Brown et al., 1992), Collobert and Weston embeddings and HLBL

embeddings (Turian et al., 2010). The latter two are static word embeddings. These

open source static word embeddings were downloaded from http://metaoptimize.

com/projects/wordreprs/ website provided in Turian et al. (2010). These embed-

dings form the starting points from which our dynamic embeddings were created.

Dynamic embeddings are intended to reflect the meaning and/or semantic similarity

and/or relatedness of words. To learn word meaning, we borrowed the popular idea

- distributional hypothesis (Harris, 1954) - that the context captures the meaning of a

word. Distributional hypothesis has been documented and used in various works like

the publication - Landauer and Dumais (1997) - on Latent Semantic Analysis. The

paradigm of acquiring word representation based on distributional hypothesis using

n-grams (see A.5) has been widely explored. Words are clustered into groups based

on their context in Brown Clustering using n-grams (Brown et al., 1992). Similar

clustering of words using n-grams was demonstrated in Uszkoreit and Brants (2008).

N-grams are also used in creation of static word embeddings (Sahlgren, 2006; Turney

et al., 2010). This inspired us to develop a method, based on n-grams, to create our

dynamic embeddings.

Temporal component is what makes dynamic embeddings different from other exist-

ing embeddings. This calls for ways to deal with time. For ideas on dealing data with

time information, we looked at past works in NLP that addressed temporal informa-

tion. These works include Dynamic Topic Models (Blei and Lafferty, 2006; Wang

et al., 2012), Detection of Language Change over Time in Large Corpora (Popescu

and Strapparava, 2013, 2014), and Quantitative Analysis of Culture Over Time (Michel

et al., 2011). Dynamic Topic Models analyze the time evolution of topics in large docu-

ment collections. Blei and Lafferty (2006) analyzed the OCRed archives of the journal

http://metaoptimize.com/projects/wordreprs/
http://metaoptimize.com/projects/wordreprs/

Chapter 2. Background - Literature Review 12

Science from 1880 through 2000 for time evolution of topics in a discrete sense - i.e.

where time range set was discrete. Wang et al. (2012) analysed two news corpora for

time evolution of topics in a continuous sense - i.e. where time range set was continu-

ous. The works on culture change over time (Michel et al., 2011) and language change

over time (Popescu and Strapparava, 2014) introduced and demonstrated use of Google

Books N-grams. The Google Books N-grams data (that has time component) was

found suitable to our needs (see 1.3.2). Hence it was partially downloaded (http://

storage.googleapis.com/books/ngrams/books/datasetsv2.html) and used in

creating our dynamic embeddings. The Google N-gram data was downloaded ‘partly’

due disk-space constraints.

2.2.2 Literature and Resources for Visualization

The greatest challenge for the visualization task was Dimension Reduction. Vari-

ous Machine learning techniques for dimension reduction, like Principal Componenet

Analysis (PCA) and Singular Value Decomposition (SVD) and Multi-Dimensional

Scaling (MDS), were studied in great detail from popular Machine Learning Text

Books - Murphy (2012) and Borg and Groenen (2005) - and research paper - Shaw and

Jebara (2009). Later MDS was used for dimension reduction as it was found easier to

apply to dynamic embeddings created (see section 4.1). All programs were planned

to be developed in Python programming language due to its suitability to NLP tasks.

To maintain continuity of programming language, a Python based Machine Learning

toolkit - Scikit Learn (Pedregosa et al., 2011) - was used for MDS. Just for animation, a

Perl Script was developed. The script takes 2-dimensional dynamic embeddings as in-

put and produce an animation of trajectories using Bresenham line drawing algorithm

(Bresenham, 1965) in animated GIF.

2.2.3 Literature and Data for Embedding Evaluation

Dynamic embeddings are evaluated from two perspectives - (1) How well do they

represent similarity and relatedness of words and (2) How well do they represent the

language change over time.

Evaluation of Similarity and Relatedness

We looked at ways in which existing static embeddings are evaluated for similarity

and relatedness. We came across two methods - (1) Evaluation using classifiers (Chen

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Chapter 2. Background - Literature Review 13

et al., 2013) and (2) Evaluation using word similarity measures (Agirre et al., 2009).

Consider a training set of word pairs, each pair labelled as synonyms or antonyms.

Similarly consider a test set (different from training set) containing synonym pairs and

antonym pairs. Train a 2-class classifier on the embeddings of training set and test

the classifier on the embeddings of test set. The idea is that if the classifier is suc-

cessful at detecting synonym and antonym pairs then it indicates that the classifier has

learnt synonym/antonym relation between words from the embeddings and thus the

embeddings are reliable at storing the synonym and antonym relations of words. This

evaluation framework using classifiers has been introduced and demonstrated in Chen

et al. (2013).

Evaluation using similarity measures stems from the idea that geometric distance be-

tween embeddings measures the extent of similarity and relatedness of the words. Con-

sider a set of word pairs where each pair is rated for similarity and relatedness by hu-

man subjects. On other hand measure the similarity and relatedness of same set of word

pairs using distance between the corresponding word embeddings. Compare the two

scores using correlation to test how well the embeddings match to the ratings by hu-

man subjects. This evaluation framework has been inspired from Agirre et al. (2009).

WordSim353 dataset (Agirre et al., 2009) of human ratings of similarity and related-

ness of word pairs was used in evaluation of our dynamic embeddings. The dataset

was downloaded from http://alfonseca.org/eng/research/wordsim353.html.

Evaluation of Language Change Over Time

Popescu and Strapparava (2014) used Google N-gram data to explore diachronic phe-

nomena (i.e. language changing over time). The study used statistical approaches

to epoch detection (or time period detection) using language differences and in the

processes it introduced the Diachronic Text Evaluation (DTE) task. We believe, our

dynamic embeddings also reflect the diachronic phenomena and hence we identified

DTE useful for evaluation of our embeddings as well (see chapter 5.3). The DTE task

involves building a system to automatically detect the period in which a text was writ-

ten. A novel supervised machine learning system that uses dynamic embeddings was

developed for the purpose. This machine learning system uses linear ridge regression

from scikit-learn Machine Learning tool (Pedregosa et al., 2011). Ridge regression and

other regressions were studied in detail from Machine Learining text book - Murphy

http://alfonseca.org/eng/research/wordsim353.html

Chapter 2. Background - Literature Review 14

(2012). DTE is task 7 of the upcoming SemEval 2015 (SemEval is an ongoing series

of evaluations of computational semantic analysis systems). Trial data for training and

testing was downloaded from http://alt.qcri.org/semeval2015/task7/index.

php?id=data-and-tools (SemEval task 7 website).

2.3 Summary

From all the gathered research several ideas, datasets and resources were collected and

combined to develop a detailed execution plan. This plan was executed as follows.

Collobert and Weston embeddings and HLBL embeddings (Turian et al., 2010) were

combined with Google Books N-gram data (Michel et al., 2011) to develop a novel

way of creating dynamic embeddings. This novel way of combining static word em-

beddings and n-gram data with temporal information was inspired by several works

from fields of ‘Word Representations’ and ‘NLP to deal with time’(see section 2.1). A

visualization tool was developed using MDS, Bresenham algorithm and animated GIF.

MDS was chosen for visualization tool, after analysing several dimension reduction

techniques, for its applicability. The idea of evaluation frameworks using word simi-

larity and relatedness was borrowed from Agirre et al. (2009). DTE task (introduced in

Popescu and Strapparava (2014)) was used to evaluate dynamic embedding as we be-

lieved that our embeddings reflect the diachronic phenomena. For the purpose, a novel

supervised machine learning system (involving ridge regression) that uses dynamic

embeddings was developed for the DTE task.

http://alt.qcri.org/semeval2015/task7/index.php?id=data-and-tools
http://alt.qcri.org/semeval2015/task7/index.php?id=data-and-tools

Chapter 3

Creating Dynamic Embeddings

Dynamic embeddings are mappings (functions) f of the form f : V ×T → Rn, where

V is vocabulary set, T is a time range set and Rn is an n-dimensional Euclidean vector

space for some positive integer n (see section 1.1.2). Static word embeddings are much

simpler mappings g of the form g : V → Rn (V , and Rn are same as before) (see sec-

tion 1.1.1). An n-gram with time marker refers to a pair of the form ((a1,a2, ...,an), t),

where (a1,a2, ...,an) is an n-gram of words (and tokens) (see A.5) and t is a time

marker.

This chapter presents a general recipe of creating dynamic embeddings by combining

a static embedding and a list of n-grams with time markers. The recipe was followed

in creation of four sets of dynamic embeddings in the project using Collobert and We-

ston embeddings and HLBL embeddings, and Google Books N-grams data. The entire

process of creating the four sets of dynamic embeddings has been described in detail.

3.1 General Recipe

3.1.1 Mathematical Formulation

Let V be a vocabulary set of words (and tokens) and T be a time range set. In addition,

we are given a d-dimensional static word embeddings g : V → Rd and a finite list L of

n-grams with time markers such that all words of the n-grams are in vocabulary set V

and all the time markers are in the time range set T . Let the list be

L = (((a1
1,a

1
2, ...,a

1
n), t

1),((a2
1,a

2
2, ...,a

2
n), t

2), ...,((am
1 ,am

2 , ...,am
n), tm)

15

Chapter 3. Creating Dynamic Embeddings 16

such that ai
j ∈V and t i ∈ T , for all i ∈ {1,2, ...,m} and for all j ∈ {1,2, ...,n}.

We choose an integer p from the set {1,2, ...,n} and call it ‘target position’. In ad-

dition we also choose a function h : Rd×n→Rk and call it the ‘vector operation’ where

k is some positive integer. Note that for practical purpose, vector operation h should be

computable which is to say that for any given input x in Rd×n a computer should be able

to generate an output h(x) in finite time (faster the better). For any word wo in V , define

Iwo to be the indicator function - i.e. Iwo(wo) = 1 and for w 6= wo we have Iwo(w) = 0.

Also let � denote the concatenation - i.e. (a,b,c)� (d,e, f) = (a,b,c,d,e, f)

We are now in a position to formulate the dynamic embeddings. Define dynamic em-

beddings f : V ×T → Rk as

f (w, t) =
∑

m
i=1 Iw(ai

p)× It(t i)×h(g(ai
1)�g(ai

2)� ...�g(ai
n))

∑
m
i=1 Iw(ai

p)× It(t i)
(3.1)

NOTE: It is possible that sometimes for a certain word w′ and certain time slice t ′, the

dynamic embeddings f (w′, t ′) = 0/0 i.e. not de f ined. Such cases occur when there is

no n-gram with time marker t ′ and with word w′ at target position p. In such cases, we

mark f (w′, t ′) =Unk, short for Unknown which is to say that dynamic embedding of w′

at time t ′ does not exist. Hence for mathematical consistency our dynamic embeddings

should be of the form f : V ×T →Rk∪{Unk}. So although Unk is not mentioned, the

definition of dynamic embeddings is understood to have it in the co-domain.

3.1.2 Description

The formula for dynamic embeddings goes to say that for a given word w and time

slice t, we look at only those n-grams that have time marker t and have w at target

position. If no such n-grams exist in L then dynamic embeddings of w at t is simply

labelled as Unk. On the other hand, if such n-grams do exist then these represent the

context of the word w at target position p including itself. Let all the n-grams with w

at target position and t time marker form a list Lw,t . The context depends on length of

n-gram , i.e. n, and target position p. If words that occur only to the right of target word

are to be considered as context then choose p = 1. If only words occurring to left are

to be considered as context then choose p =n. For a larger context choose n to be large.

Chapter 3. Creating Dynamic Embeddings 17

The idea of distributional hypothesis is that the context represents the meaning of the

target word. So to create dynamic embedding of w, its context words should be used to

generate the embedding. One direct way is to start with static embeddings of the con-

text words and then manipulate and combine them to obtain the dynamic embedding

of w at t. The required manipulation and combination of static embeddings of context

words is achieved using the vector operation h. This way for each different n-gram in

Lw,t a new vector is obtained. It makes sense to average these new vectors because the

more frequent contexts of w must have greater influence on its meaning. Averaging

these new vectors amounts to summing the new vectors and then dividing by the total

number of these vectors (which is same as number of n-grams in Lw,t). This is exactly

what is depicted in formula 3.1.

Many different types of dynamic embeddings can be created for same set of static

embedding and N-gram (with time marker) data. This can be simply achieved by

twisting the vector operation h. A different h can lead to a different dynamic embed-

ding. Equation 3.1 can be better understood using examples. A couple of examples

are: (1) Simple concatenation of static embeddings of the context words excluding the

target word (see 3.1.2.1), and (2) Simple averaging of static embeddings of the context

words excluding target word (see 3.1.2.2). Before proceeding to examples here are

some simplifications. Let L be list of five-grams with time markers

L = (((l1
1 , l1

2 ,w1,r1
1,r

1
2), t

1),((l2
1 , l2

2 ,w2,r2
1,r

2
2), t

2), ...,((lm
1 , lm

2 ,wm,rm
1 ,rm

2), tm))

We would like to look at context as both words on the right and words on the left of

a target word. Hence it makes sense to choose the middle word of five-grams, target

position p = 3, as target words. For the qth five-gram in the list L, (lq
1 , lq

2) form the left

context and (rq
1,r

q
2) for the right context of target word wq.

3.1.2.1 Example 1 - fconcatenation

Define the vector operation h to concatenate the static embeddings of the context words

excluding target word.

h(g(l1)�g(l2)�g(w)�g(r1)�g(r2)) = g(l1)�g(l2)�g(r1)�g(r2)

This vector operation was implemented in the project work. From here onwards in the

thesis, dynamic embeddings created using the above vector operation h will be called

Chapter 3. Creating Dynamic Embeddings 18

fconcatenation (or simply fc).

fc(w, t) =
∑

m
i=1 Iw(wi)× It(t i)× (g(li

1)�g(li
2)�g(r1

1)�g(ri
2))

∑
m
i=1 Iw(wi)× It(t i)

(3.2)

NOTE: If the static word embedding is in d−dimensional space (g : V →Rd), then we

get dynamic embedding in higher 4d-dimensional space as fc : V ×T → Rd×4

3.1.2.2 Example 2 - faverage

Define the vector operation h to average the static embeddings of the context words

excluding target word.

h(g(l1)�g(l2)�g(w)�g(r1)�g(r2)) = (g(l1)+g(l2)+g(r1)+g(r2))/4

This vector operation was implemented in the project work. From here onwards in the

thesis, dynamic embeddings created using the above vector operation h will be called

faverage (or simply fa).

fa(w, t) =
∑

m
i=1 Iw(wi)× It(t i)× (g(li

1)+g(li
2)+g(r1

1)+g(ri
2))/4

∑
m
i=1 Iw(wi)× It(t i)

(3.3)

NOTE: In this case static word embedding and dynamic word embedding are in same

d−dimensional space - i.e. if g : V → Rd , then fa : V ×T → Rd

The main difference between these examples is that in fc each position in the context

is treated separately while in fa context positions are irrelevant. For instance, consider

the following five-grams.

• the court instructed the jury

• the jury instructed the court

Under fconcatenation the contexts will have different contribution to the dynamic embed-

ding of ‘instruction’. Under faverage the two contexts will have the same contribution.

Both faverage and fconcatenation have been implemented in the project work. The im-

plementation has been described in detail in the following section.

Chapter 3. Creating Dynamic Embeddings 19

3.2 The Implementation

Implementation of the recipe (equation 3.1) is achieved first by procuring the required

ingredients (datasets) and processing them to be in suitable formats. This is followed

by designing an efficient and scalable algorithm to compute the dynamic embeddings

and finally running the programming to generate them.

3.2.1 Procuring Data

The two ingredients of the general recipe (see equation 3.1) are (1) Static Word Em-

bedding and (2) N-gram data with time markers.

3.2.1.1 Static Embeddings

Several publicly available static word embeddings were explored. Some of these are

Collobert and Weston Embeddings http://wordvectors.org/demo.php

HLBL Embeddings http://wordvectors.org/demo.php

SENNA Embeddings http://ronan.collobert.com/senna/

RNN Embeddings http://rnnlm.org/

Of the many static word embeddings, Collobert and Weston embeddings and HLBL

embeddings have been demonstrated to improve performance of existing systems of

NLP tasks - NER and Chunking - simply by adding them as additional word feature

(Turian et al., 2010). It indicates that, perhaps, these static word embeddings are of

good ‘quality’ (because these were found useful in Turian et al. (2010)) and can add

to the quality of dynamic embedding created. Hence it was decided to develop our

embeddings from these two static embeddings. Both these embeddings come in differ-

ent dimension and for different vocabulary sizes. They are also trained using different

methods.

Collobert and Weston Embeddings data provides static word embeddings of 268810

lexical terms (includes words) in 25, 50, 100 and 200 dimensional Euclidean spaces.

These are trained based on Neural Language Model (NLM) (For more details on NLM

refer Bengio et al. (2006)). HLBL embeddings data provides static word embeddings

of 246122 lexical terms in 50 and 100 dimensional Euclidean spaces. These are trained

on Hierarchical log bi-linear (HLBL) language model (for more details on HLBL lan-

http://wordvectors.org/demo.php
http://wordvectors.org/demo.php
http://ronan.collobert.com/senna/
http://rnnlm.org/

Chapter 3. Creating Dynamic Embeddings 20

guage model refer to Mnih and Hinton (2009)). Both the embeddings are induced as

described in the paper - Turian et al. (2010) - on the Reuters Corpus Volume 1 (RCV1)

corpus, cleaned as described in the paper (roughly 37M words of News text). Also,

these embeddings are scaled and come in a common format as a Text (.txt) file where

each line looks as follows:

word vector

An example line of a word and its 5 dimensional embedding,

artificial 1.135467 2.937684 8.443371 6.378421 0.323859

For the project, 25-dimensional Collobert and Weston embeddings and 50-dimensional

HLBL embeddings were downloaded.

3.2.1.2 N-gram With Time Stamps

Ideally to capture more context, n-grams with larger n should be selected. But then the

data would be enormous and will take lot of computing time for processing. A right

balance of context and ease of computing was to be struck. The downloaded HLBL

embeddings were trained using five-grams (Turian et al., 2010). Smaller n-grams were

expected to have mostly functional words (‘the’, ‘a’, ‘an’, ‘of’, ‘in’, etcetera) around

nouns and verbs - like the ball of. This might not be fruitful. Larger than 5, the

n-grams data would be massive and difficult to process. In the project we settled for

five-grams with context of two terms to the left and two to the right of the target term.

Google Books five-grams were found suitable to our purpose. The five grams came

with time stamps as years in which the books containing the five-grams were pub-

lished. These are books from official sources documented by Google and hence we be-

lieve that Google Books five grams reliably capture the language of various epoch. The

time span covered by Google Books N-grams is vast ranging in reverse chronological

order from the year 2008 to years as far back as 1505 (or even more). Several different

5-grams dating back to 16th and 17th century, like the five gram aire of Odcombe in

the from 1618 were found. Notice the use of the word ‘aire’ which is an archaic word

no longer used and not found in n-grams of later years. Back then ‘aire’ meant ’an

altar’ (Online Oxford English Dictionary’s timeline service, http://www.oed.com/

search?q=aire&scope=ENTRY&timeline=true&type=dictionarysearch, with ac-

http://www.oed.com/search?q=aire&scope=ENTRY&timeline=true&type=dictionarysearch
http://www.oed.com/search?q=aire&scope=ENTRY&timeline=true&type=dictionarysearch

Chapter 3. Creating Dynamic Embeddings 21

cess provided by University of Edinburgh was used to find the history of the word

‘aire’). The five-grams data from google is the only source of n-gram data of such

kind. Due to its reliability and time range, we decided to use it for our purpose.

These datasets come as a text file where each line is in the following format.

5gram year match-count volume-count

For our purpose, only the 5gram, year and match count data is needed. Match count is

the number of times the specific 5gram appears in the specified year. More that 1TB

of such data is available. We looked at only a small fraction of the n-gram data of

around 176GB. The 5gram in the dataset included Part-Of-Speech tags appended to

the lexical terms. POS tags were of no use and hence were removed using ‘regular

expressions’ from re module in python (for more on regular expressions in python re-

fer to Wikibooks module on the topic - http://en.wikibooks.org/wiki/Python_

Programming/Regular_Expression). After stripping the POS tags, the datasets text

file had each line that look like,

analysis is often described as 1991 2 1

Here the 5gram (analysis is often described as) appears 2 times in the books

that were published in the year 1991. The data was further segregated into text files for

each year - for example all five-grams with same time marker, say 1998, were stored

in one text file for that year (see ??).

3.2.2 Developing Algorithm

Algorithms to compute dynamic embedding by combining static embedding and N-

gram data were developed. Two algorithms, one for faverage (see 3.1.2.2) and one for

fconcatenation (see 3.1.2.1) were developed. These two algorithms are exactly similar,

except for the vector operation h used - in one case vectors are added and in other case

the vectors are concatenated. Due to the sheer size of the 5-gram data, importance was

given to make the algorithm efficient and scalable.

Ideas For Efficiency

For the task of computing dynamic embeddings, inspired by the formula 3.1, a brute-

force method would be to compute f (w, t) by iterating over the entire range of n-grams

repeatedly for each word w and each time t. Such a brute-force algorithm would be

http://en.wikibooks.org/wiki/Python_Programming/Regular_Expression
http://en.wikibooks.org/wiki/Python_Programming/Regular_Expression

Chapter 3. Creating Dynamic Embeddings 22

highly inefficient. The processing time can be cut down drastically by smart usage

of the data structure ‘dictionaries’ in python (for more on dictionaries in python re-

fer to Wikibooks module on the topic - http://en.wikibooks.org/wiki/Python_

Programming/Dictionaries). Secondly, instead of iterating over the entire or even a

small list of n-grams, the algorithms were designed to iterate just once over the n-gram

list.

Algorithm

A pseudocode of the algorithm is presented below.

Step 1: Store static word embedding g as a dictionary W with words w from vocabulary

set V as its keys and vectors g(w) as the corresponding values.

Step 2: Define two other dictionaries H and C with all word-time pairs (w, t) from V ×T

as its keys and initialize the corresponding values in C to 0 and corresponding

values in H to zero vector (0,0, ...,0). The dimension of vectors in H is same as

the expected dimension of dynamic embeddings.

Step 3: Read five-gram data, one line at a time. Each five-gram represented as

((l1, l2,w,r1,r2), t,c) where c is the count of how many times the five-gram was

repeated in that year t.

Sub-step 3.1: Search the static embeddings of the context words in W

i.e g(l1),g(l2),g(r1),g(r2)

Sub-step 3.2: Compute h(g(l1)� g(l2)� g(w)� g(r1)� g(r2)). Vector operation h could be

any - like averaging or concatenation excluding target word w.

Sub-step 3.3: Add the vector computed in step 3.2 to value of the key (w, t) in dictionary H.

Add the count c to the value of the key (w, t) in dictionary C.

Step 4: For all (w, t) pairs, divide the value of the key (w, t) in H by the value of the same

key in C. In case, the count value is 0 then label the value of the key (w, t) in H

to be Unk.

Step 5: H obtained is the dynamic embedding.

http://en.wikibooks.org/wiki/Python_Programming/Dictionaries
http://en.wikibooks.org/wiki/Python_Programming/Dictionaries

Chapter 3. Creating Dynamic Embeddings 23

3.2.3 Generating Dynamic Embeddings

Two sets of python programs on the basis of algorithm in 3.2.2 were developed - one

for fconcatenation and other for faverage. These were made to run on two static word

embeddings - 25-dimensional Collobert and Weston embeddings (also called NLM

embeddings) and 50-dimensional HLBL embeddings. Hence four different dynamic

embeddings were created.

• faverage using NLM embeddings (25-dimensional dynamic embedding)

• fconcatenation using NLM embeddings (100-dimensional dynamic embedding)

• faverage using HLBL embeddings (50-dimensional dynamic embeddings)

• fconcatenation using HLBL embeddings (200-dimensional dynamic embedding)

Vocabulary set V was same as all the words and terms in the static word embeddings.

Time range set T was chosen to be

T = {1800,1805,1810, ...,2000,2005,2008}.

Around 7.5 GB of dynamic embeddings were generated in almost 60 days starting from

first week of June 2014 to first week of August 2014. These are stored in text (.txt) files,

one file for each time slice. The files are in the same format as the static embeddings

(see 3.2.1.1). For example, head and tail excerpts of dynamic embedding created using

faverage and NLM embeddings for the year 1975 are presented in Appendix ??. Such

files for each year slice in time range T and for each of the four dynamic embeddings

were created.

3.3 Summary

The figure 3.1 presents a succinct outline. The general recipe (see 3.1) of dynamic

embeddings takes static word embeddings and combines it with n-gram data (with time

markers). The choice of static word embedding g data, n-gram data, target position

p, vector operation h, vocabulary set V and time range set T uniquely determine the

dynamic embedding to be created. In the project Collobert and Weston, and HLBL

static word embeddings were considered (see 3.2.1.1). A small fragment of Google

Books five-grams was used (see 3.2.1.2). The middle word of the five-grams was the

chosen target position p = 3. Averaging and Concatenation excluding target word were

Chapter 3. Creating Dynamic Embeddings 24

Static Word
Embeddings

g(w)

Existing static word
embeddings.

(Collobert and Weston,
and HLBL)

Google Books N-grams

N-grams with
temporal component

(5-grams)

Dynamic Word
Embedding

f(w,t)

Figure 3.1: Creating Dynamic Embeddings: An Outline.

the vector operations used (see 3.1.2.2 and 3.1.2.1). Vocabulary set was same as the

words in static embeddings. Time range set were taken at steps of 5 years starting

from 1800 to 2005 in addition to the year 2008. All these components were combined

using an efficient algorithm designed for this purpose (see 3.2.2). Four different sets

of dynamic word embeddings were generated and stored as text files (see 3.2.3).

Chapter 4

Visualization Tool

Dynamic embeddings f (w, t) can be viewed from two perspectives - (1) time perspec-

tive and (2) word perspective. The time perspective looks at dynamic embeddings as

a stack of static word embeddings, one for each time slice. Given a fixed time t, the

set of embeddings { f (w, t)|w ∈ V} looks like any other static word embedding. The

word perspective looks at trajectories of words (see 1.1.2). Given a word w, its trajec-

tory - (f (w,1800), f (w,1805), ..., f (w,2005), f (w,2008)) - in high dimensional space

depicts the motion of the word. Trajectories of three or four (or more) words taken

together are expected to depict the changing relations between those words over time.

A visualization tool that animates the trajectories of set of words given to it as input

was developed. This chapter describes that tool.

4.1 The Challenge

Dynamic embeddings generated are in high dimensional space (25-, 50-, 100- and

200-dimensional dynamic embeddings were created. See 3.2.3). Dimension reduction

to 2-dimensional space is required to visualize the trajectories of the input set of words.

The main idea is to project the trajectories of words to a 2-dimensional plane within

the high dimensional space. The choice should be such that there is minimum loss of

the word relationship information. For instance, imagine two word having trajectories

in 3-dimensional Euclidean space. Let the trajectory of first word be

((1,0,0),(0,1,0),(−1,0,0)) and the trajectory of second word be

((−1,0,0),(0,−1,0),(−1,0,0)). Notice that both words are in the X-Y plane in the

25

Chapter 4. Visualization Tool 26

3-dimensional space. If now the trajectories are projected onto the X-Z plane then

there is loss of information. After projection to X-Z plane the first word trajectory

is ((1,0),(0,0),(−1,0)) and for second word it is ((−1,0),(0,0),(−1,0)). It is intu-

itively clear that there is loss of information because the two trajectories meet at (0,0)

after projection to the X-Z plane. The correct projection, in this case, would have been

to the X-Y plane where relation between trajectories would be preserved.

Choice of the plane poses a challenge. Such problems are addressed in dimension-

ality reduction techniques like Singular Value Decomposition (SVD) and Multidimen-

sional Scaling (MDS). Both the techniques are based on Principal Component Anal-

ysis (PCA) and make use of eigenvectors and eigenvalues from linear algebra. For a

detailed mathematical treatment on SVD, refer to chapter 5, ‘Singular value decom-

position and principal component analysis’, of the book ‘A practical approach to mi-

croarray data analysis’ (Wall et al., 2003). For MDS refer to book ‘Modern Multidi-

mensional Scaling: Theory and Applications’ (Borg and Groenen, 2005).

4.2 Solution

We believe that Euclidean distance (see A.2) between the word embeddings represent

their semantic similarity - Smaller the distance between the embeddings of two words,

more similar is the meaning/usage of two words. Hence the objective is to preserve the

distance between the trajectories of the high dimensional space as much as possible

after dimension reduction to 2-dimensional space. MDS does exactly that and hence it

was chosen for the purpose.

4.2.1 Formulating MDS

Let finite number of objects be {Ob1,Ob2, ...,Obn}. Suppose the distance between

each pair of objects is known. Denote δi, j as the distance between Obi and Ob j. Dis-

similarity matrix (or distance matrix) ∆ is a n×n square matrix defined as

∆ :=


δ1,1 δ1,2 ... δ1,n

δ2,1 δ2,2 ... δ2,n
...

...
...

δn,1 δn,2 ... δn,n



Chapter 4. Visualization Tool 27

Given ∆ and a positive integer m, MDS finds n vectors x1,x2, ...,xn in m-dimensional

Euclidean space Rm satisfying the following condition.

Given any n vectors y1,y2, ...,yn in Rm, then

∑
i< j

(‖xi− x j‖−δi, j)2 ≤∑
i< j

(‖yi− y j‖−δi, j)2 (4.1)

In other words, MDS finds n vectors x1,x2, ...,xn (representing the n objects

{Ob1,Ob2, ...,Obn}) in m-dimensional Euclidean space Rm in such a way that the Eu-

clidean distance (see A.2) ‖xi−x j‖ ≈ δi, j as much as possible. Simply put, MDS finds

vectors in m-dimensional space representing the objects and preserves the distance re-

lation between the objects.

4.2.2 Applying MDS

Scikit-Learn is a python based machine learning module which has an in-built function

for applying MDS called manifold.MDS. This function uses numerical methods and

PCA to solve the optimization problem 4.1. Starting with initial n vectors v1,v2, ...,vn

it reaches to a solution x1,x2, ...,xn after many iterations improving its solution in each

iteration. For visualization purpose, manifold.MDS was used to find objects in 2-

dimensional Euclidean space. The procedure involves taking a distance matrix as a list

of list in python and providing it as input to manifold.MDS. It produces 2-dimensional

solution vectors x1,x2, ...,xn as a list of list. Other parameters of the manifold.MDS

function like maximum number of iterations, number decimal places of accuracy, di-

mension to be reduced to (in our case 2), etcetera are also required to be set before

applying the function.

4.3 The Tool

A visualization tool based on MDS and animation was developed. This tool allows

users to compare the trajectories of any set of words (from the dynamic embeddings).

An outline of how the application works is presented in the flowchart 4.1. A web

interface (see 4.2) for the application has also been created. Please check the web ap-

plication at http://kinloch.inf.ed.ac.uk/words/index.php.

http://kinloch.inf.ed.ac.uk/words/index.php

Chapter 4. Visualization Tool 28

User Enters
Three (Or
Several) Words

INPUT

w1 w2 w3

High Dimensional
Trajectories

f(w1 t) f(w2 t) f(w3 t)
obtained from

dynamic
embeddings

Obtain
Trajectories

2-dimensional Trajectories
F(w1 t) F(w2 t) F(w3 t)

Dimension Reduction
 MDS

Bresenham
Algorithm

Animated GIF
(Dr Shay
Cohen’s script)

OUTPUT

Animation
Moving Words

User Studies
Animation

Dissimilarity Matrix

Compute Euclidean Distance

Figure 4.1: Visualization Tool: An Outline

User gets to enter any number of words in a dialogue box on the interface. The dy-

namic embeddings (see 3) of the entered words are searched to obtain their trajectories.

Assume a user enters 3 words w1, w2 and w3. For dynamic embedding f : V ×T →Rd

where T = {1800,1805,1810, ...,2005,2008} and d = 25 (or 50 or 100 or 200 depend-

ing on the type of dynamic embeddings chosen), the trajectories

f∀t(w1, t) = (f (w1,1800), f (w1,1805), f (w1,1810), ..., f (w1,2005), f (w1,2008))

f∀t(w2, t) = (f (w2,1800), f (w2,1805), f (w2,1810), ..., f (w2,2005), f (w2,2008))

f∀t(w3, t) = (f (w3,1800), f (w3,1805), f (w3,1810), ..., f (w3,2005), f (w3,2008))

are obtained. The trajectories could have Unk terms. All the vectors in each trajec-

tory (except the Unk terms) are collected as objects. Euclidean distances (see A.2)

between each pair of vectors/objects is computed and stored in a dissimilarity matrix

(see 4.2.1). Scikit-Learn’s manifold.MDS function is applied to the dissimilarity ma-

trix. It generates 2-dimensional vectors for the high dimensional objects preserving

the distance relation between the objects. The 2-dimensional vectors obtained repre-

Chapter 4. Visualization Tool 29

Figure 4.2: Visualization Application: Web Based User Interface

sent 2-dimensional trajectories for words w1, w2 and w3. Denoting the 2-dimensional

trajectories using F : {w1,w2,w3}×T → R2, we get

F∀t(w1, t) = (F(w1,1800),F(w1,1805),F(w1,1810), ...,F(w1,2005),F(w1,2008))

F∀t(w2, t) = (F(w2,1800),F(w2,1805),F(w2,1810), ...,F(w2,2005),F(w2,2008))

F∀t(w3, t) = (F(w3,1800),F(w3,1805),F(w3,1810), ...,F(w3,2005),F(w3,2008))

(4.2)

These 2-dimensional trajectories are given as inputs to an animation script. The script

produces an animation of the words (entered by user) moving in space over time using

Bresenham algorithm (Bresenham (1965)) and animated GIF. The script scales the in-

put 2-dimensional vectors to fit to screen when producing animation. A time indicator

Chapter 4. Visualization Tool 30

Steam

Engine

Year = 1910

w2
w3

w1

w2

Steam

Steam
Engine

Petrol

1900

Year 1970

Year 2000

w1

w2

w3

w1
w3

w2

1905

1910

1915

w3

Figure 4.3: Trajectories As A Stack Of 2-dimensional Static Word Embeddings

is presented on the top right of the animation screen 4.2 to indicate the changing years

in the animation.

NOTE: The 2-dimensional trajectories (see 4.2) are discrete points on a plane. From

the time perspective the trajectories can be viewed as a stack of 2-dimensional static

word embeddings (see 4.3). Animation we create is based on the assumption that word

relations do not change abruptly and hence the real trajectory of the words is contin-

uous. For a word w with 2-dimensional trajectory points (F(w,1800),F(w,1805), ...),

the above assumption would imply that the true trajectory of the word w is continu-

ous over time passing through the discrete points (F(w,1800),F(w,1805), ...). For the

purpose of animation this continuity is shown using a straight line. For example, the

continuous trajectory of w is made to move along a straight line from F(w,1800) to

F(w,1805) at a uniform speed and then along another straight line from F(w,1805) to

F(w,1810) and so on (see 4.4). This straight line motion of words is achieved using the

Bresenham Algorithm. Many slides of GIF images of the words at varying positions

Chapter 4. Visualization Tool 31

Steam

Engine

Year = 1910

w2
w3

w1

w2

Steam

Steam
Engine

Petrol

1900

Year 1970

Year 2000

w1

w2

w3

w1
w3

w2

1905

1910

1915

w3

w1

w2

w3

Figure 4.4: Animation: Words Moving Along A Straight Line

are generated. These GIF images slides are then made to animate.

Chapter 5

Evaluation

This chapter presents a qualitative and a couple of quantitative analysis of the cre-

ated dynamic embeddings. Qualitative analysis is achieved using some preliminary

observations using the visualization tool. Quantitative analysis involves addressing the

following two questions - (1) Do the created dynamic embeddings represent the true

semantic similarity and relatedness of words? - (2) Do the created dynamic embed-

dings represent language change over time? To answer these questions, two evaluation

tasks were set in place (one for each question) and experiments were run on those

tasks. The set up of the evaluation tasks and our findings have been presented in this

chapter.

5.1 Preliminary Qualitative Observations

The qualitative evaluation involves simple visual checking of whether the animations

generated using visualization tool reflects known relations of words over time or not?

Recall the example of words car, machine and computer mentioned in section 1.2.3.

This example shows the changing relations between the three words. In addition to

changing relations, we see many animations where there is no significant movement.

These correspond to concepts and words that have not changed meaning and semantic-

relations over time. Take, for example, the words red, green, blue and yellow (colours)

and one, two, three and f our(numbers). These words have not changed their mean-

ing/relations with other words over a long time. The animation of trajectories of these

words show that the words red, green, blue and yellow stay glued together over time

and so do one, two, three and f our. The two sets - colours and numbers stay separated

throughout the animation from year 1800 to 2008 - which is what we expect. Consider

32

Chapter 5. Evaluation 33

a similar type of example of words wall, door, window, pen, paper and ink. The six

words are clustered again into two sets over time - wall, door and room in one set and

pen, paper and ink in the other. Such interesting animations reflect that the dynamic

embeddings created are behaving in the way we expect them to behave, at least for

certain cases. It is however difficult to make sense of many animations where words

seem to move randomly. Hence qualitative observations are not enough. This made us

shift our focus to quantitative evaluations.

5.2 Word Similarity Measures

Do the dynamic embeddings created represent the true semantic similarity and relat-

edness of words?

To answer this question, first we need to understand what does ‘true’ semantic sim-

ilarity and relatedness mean. ‘True’ here represents the collective human sense, so

‘true semantic similarity of a pair of words’ represents the extent of similarity/relat-

edness of the two words as perceived by people in general. For instance, consider the

word money and two of its synonyms cash and wealth. In many cases each individual

has a perception of one of the synonyms being semantically more similar to the given

word. Similarly, in the case of words money, property and bank where words are not

synonyms, one of the words could be perceived as conceptually more related to money

than the other. An averaged perception of all people could indicate the true extent of

semantic similarity (or relatedness) between word pairs. In an experiment described in

Agirre et al. (2009), the word cash was found semantically more similar to money than

wealth and bank was found conceptually more related to money than property. This

indicates that there are, perhaps, different extents of semantic similarity (and/or relat-

edness) of words as perceived by people. An evaluation task, that involves comparing

the semantic and relatedness information captured in the dynamic embeddings to the

human perceived extents of similarity, had been designed and executed. The details of

the evaluation task and results are presented in the following subsections. For results,

also see appendix B.2.

Chapter 5. Evaluation 34

5.2.1 Goldstandard Human Ratings

In a survey experiment described in Agirre et al. (2009), a set of 153 word pairs were

rated on a scale from 0 to 10 for similarity and relatedness by thirteen subjects. In

another survey experiment (Agirre et al., 2009), a set of 200 word pairs (different pairs

from previous 153) were rated on the same scale of 0 to 10 for similarity and related-

ness by sixteen subjects. The individual ratings by the subjects were averaged for each

word pair. This way, each of the 353 (153+200) word pairs received a score represent-

ing human perception of their extent of similarity and relatedness. See the first three

columns of table in Appendix B.4 - it shows a small excerpt of the 353 word pairs and

human scores (third column). The first 153 word pairs with mean human scores from

13 subjects will be called ‘Goldstandard 153’. The next 200 word pairs with mean

human scores from 16 subects will be called ‘Goldstandard 200’. The whole dataset

of 353 word pairs with human (mean) scores shall be called ‘Goldstandard mixed’

Later, the 353 word pairs with human mean score for each were segregated into two

parts - (1) word pairs with mean score more than 5 (250 of these exist) and (2) word

pairs with mean score less than or equal to 5 (103 of these exist). Of the 250 word

pairs with mean score greater than 5, except for one word pair the rest 249 were fur-

ther split into two sets. One set included all synonym pairs and antonym pairs (100

of these exist) and other set included the rest 149 pairs (these are word pairs that are

conceptually related and not by meaning). Agirre et al. (2009) used WordNet (Miller,

1995) to identify the synonym antonym pairs. The set with 100 synonym and antonym

pairs along with 103 word pairs with mean score ≤ 5 comprised a new set for testing

similarity in Agirre et al. (2009). We shall call this new set to be ‘Goldstandard for

similarity’. The set with 149 remaining pairs along with the 103 word pairs with mean

score ≤ 5 comprised another new set for testing relatedness in Agirre et al. (2009).

This will be called ‘Goldstandard for relatedness’.

Simply put, there are five gold-standard data sets:

Goldstandard 153

Goldstandard 200

Goldstandard mixed

Goldstandard for similarity

Goldstandard for relatedness

Chapter 5. Evaluation 35

5.2.2 Evaluation Framework

In static embeddings, we believe, that the distance between word embeddings repre-

sents the extent of similarity and/or relatedness of the corresponding words. The untold

intuitive rule is - the closer the embeddings, the more similar/related the words (mean-

ings).

The evaluation framework compares this distance between word pairs to the human

ratings of the same word pairs. Correlation of distance data with human ratings for

word pairs is computed and analysed.

5.2.2.1 Mathematical Formulation

Let there be n word pairs (u1,v1),(u2,v2), ...,(un,vn) with mean human score of sim-

ilarity (and/or relatedness) h1,h2, ...,hn respectively. Let g : V → Rk be a static em-

bedding we wish to test (for similarity and relatedness). Compute euclidean distances

d1,d2, ...,dn such that di = ‖g(ui)−g(vi)‖.. Find the correlation between the two scores

(h1,h2, ...,hn) and (d1,d2, ...,dn) using the following procedure. Compute the expected

values (means)

Edistance = (d1 +d2 + ...+dn)/n

Ehuman−score = (h1 +h2 + ...+hn)/n.

Compute the Standard deviations,

StdDevdistance =
√

((d2
1 +d2

2 + ...+d2
n)/n)− (E2

distance)

StdDevhuman−score =
√

((h2
1 +h2

2 + ...+h2
n)/n)− (E2

human−score).

Finally, the correlation ρ between distances and human judgement scores is computed

using

ρ = (
n

∑
i=1

(
di−Edistance

StdDevdistance
× hi−Ehuman−score

StdDevhuman−score
))/(n−1) (5.1)

In the ideal hypothetical case, if both the human scores of similarity/relatedness of

word pairs and distances between the corresponding static embeddings represent to

‘true’ relations between the words then a correlation between the two data sets should

come out to be ρ = −1. Note that it would be −1 because as distance between word

embeddings decrease then they represent that the words are more similar and hence the

Chapter 5. Evaluation 36

human rating is higher. In practice, for good static embeddings, we look for correla-

tions ρ−→−1. For results to reflect all the embeddings, it is preferred to have larger

values of n (i.e more word pairs scored) with scoring by more larger sample of human

subjects.

5.2.2.2 Extending the Framework to Evaluate Dynamic Embeddings

The evaluation framework described in above section is meant for static word em-

beddings. For the dynamic word embeddings, an extension of the same procedure is

required. Two possible extensions are proposed here.

The main idea used in extending the framework is that from time’s perspective, dy-

namic embeddings are a stack of static word embedding, one for each time slice t.

Hence, for each time t, we can compare the stack of dynamic embedding at t with the

human scores on the same set of word pairs. This way, correlation coefficients ρt is

obtained for each time slice t in time range T . The ρ′ts could be evaluated further by

averaging them or plotting them over time to see the changes.

Another way to evaluate would be to compute an average static embedding from the

dynamic embeddings for each word. The averaging is done over time. Let f : V ×T →
Rk be a dynamic embeddings where T has say q number of time slices. For a word w

in V , its average static embedding denoted as a f (w) is computed as,

a f (w) = ∑t∈T f (w, t)
q

.

The averaged a f : V →Rk is a static embedding and can be evaluated using the frame-

work 5.2.2.1. This evaluation would represent the average quality of the dynamic

embedding over time and will be represented as ρaveraged . Note here, as language is

changing and it is very different in long past from the present, we expect word relations

in the past very different from their current relations. Hence we expect the dynamic

embeddings of the past to bring down the quality of the averaged dynamic embeddings

a f . Also note that ρaveraged and average of ρt’s (= ∑t∈T ρt
q) are two different concepts

giving rise to two different values.

Chapter 5. Evaluation 37

5.2.2.3 Baselines

To know where do dynamic embeddings stand in terms of quality with respect to es-

tablished static word embeddings, we need to have baselines computed using the latter.

Note that quality of dynamic embeddings at representing similarity and relatedness is

measured using (1) ρ′ts, (2) average of ρ′ts and (3) ρaveraged (see above section 5.2.2.2).

It is these measures that are compared with the baselines. The baselines are computed

in the same way as in equation 5.1

Since dynamic embeddings f are created using a ‘static word embedding’ g and N-

grams with time markers, it makes sense to have baselines for f obtained from g (g

being at the root of f). In the project, four dynamic embeddings were created - two

from Collobert and Weston (NLM) embeddings and two from HLBL embeddings.

So two correlation coefficients - ρnlm from NLM embeddings and ρhlbl from HLBL

embeddings could be computed using the same evaluation framework 5.2.2.1. These

would form the baselines.

5.2.3 Execution

For word similarity and relatedness evaluation of the four dynamic embeddings cre-

ated, the following procedure was followed.

(1) Five goldstandards (see section 5.2.1) were obtained from http://alfonseca.

org/eng/research/wordsim353.html (Agirre et al., 2009).

(2) For each time slice t in t = {1800,1805, ...,2005,2008}, for each dynamic em-

bedding f that was created and for each word pair (u,v) in the WordSim353

dataset (Agirre et al., 2009), euclidean distances ‖ f (u, t)− f (v, t)‖ were com-

puted. For verification, the cosine angle measures - i.e. f (u,t)• f (v,t)
‖ f (u,t)‖×‖ f (v,t)‖ were also

computed.

(3) For each static embedding g (out of NLM and HLBL embeddings), euclidean

distances ‖g(u)−g(v)‖ (and g(u)•g(v)
‖g(u)‖×‖g(v)‖) were computed.

(4) Using computed distances (and cosines) in above steps 2 and 3, ρ′ts, average of

ρ′ts, ρaveraged and baselines ρnlm, ρhlbl , and same correlation coefficients using

cosine angle measures were computed for each of the four dynamic embeddings

http://alfonseca.org/eng/research/wordsim353.html
http://alfonseca.org/eng/research/wordsim353.html

Chapter 5. Evaluation 38

Table 5.1: Goldstandard 153: Correlation Scores

ρt−average ρaveraged Baseline ρnlm Baseline ρhlbl

faverage−nlm -0.1621063594 -0.165640657 -0.2886195278

fconcat−nlm -0.176488843 -0.1870198196 -0.2886195278

faverage−hlbl -0.2040145741 -0.2042482948 -0.3542788386

fconcat−hlbl -0.2161318757 -0.2271269078 -0.3542788386

and each of the goldstandards of step 1. Equation 5.1 was used for the purpose

of computing correlations.

(5) Results obtained in step 4 were analysed.

5.2.4 Results

Average of ρ′ts (To be denoted as ρt−average), ρaveraged and baselines ρnlm and ρhlbl

were computed for each of the five goldstandard dataset 5.2.1. For instance, we get the

following table for ‘goldstandard 153’.

Similar such tables for other goldstandard datasets are presented in appendix B.2.2.

In addition, correlations of individual years ρts were plotted against time t as a his-

togram to identify patterns (if any). For ‘goldstandard 153’, see the chart 5.1.

5.2.5 Analysis

From tables B.4 and in appendix B.2.2, values of different types of correlations ρ are

negative in almost all cases. However, these values are still quite far off from−1. This

reflects that the dynamic embeddings do appear to follow the intuitive rule - the closer

the embeddings, the more similar the meanings/relatedness/similarity - however, they

are not very accurate at representing the true word similarity and relatedness (assuming

the goldstandard are true representations of similarity and relatedness.

The correlations obtained for Goldstandard 153 (see table B.4) are very different to

those obtained for Goldstandard 200 (see table B.2 in appendix). In fact, for Goldstan-

dard 200 the dynamic embeddings seem to be almost unrelated with the human scores

Chapter 5. Evaluation 39

Figure 5.1: Goldstandard 153: Dynamic Embedding faverage−nlm - Correlation of Each Stack

(Static Word Embedding within faverage−nlm) Over Time - i.e. ρt vs t - Time Ascends from Left

to Right

Chapter 5. Evaluation 40

with ρ≈ 0, while for Goldstandard 153 ρ≈ 0.19. The two goldstandard datasets were

created by two separate groups of subjects. It indicates, perhaps, the WordSim353

datasets are not very reliable (score by same dynamic embedding varying drastically

from one group of subjects to another). More reliable measures of human scoring of

word similarity and relatedness could help.

Baselines from static word embedding are always found to be closer to −1 than corre-

lations from dynamic word embeddings (see tables B.4 and B.2.2). Created dynamic

embeddings seem to have lost quality compared to the static embedding from which it

was created. This calls for better ways of developing dynamic embeddings.

HLBL embeddings have better correlations ρ than NLM embeddings and the other

dynamic embeddings. The Dynamic embeddings created using HLBL embeddings

have better correlations (closer to −1) compared to those created using NLM embed-

dings. This gives hints that, dynamic embeddings created from better quality static

word embeddings are likely to be better. Future developments of dynamic embeddings

should focus on developing them from better quality static embeddings.

Dynamic embeddings based on the concatenation vector operation have better correla-

tion (closer to −1) than those created using average vector operation (notice fconcat−g

has better correlation scores than faverage−g, for whatever static embedding g might be

(see tables B.4 and B.2.2). Concatenation operation better than average operation at

preserving similarity and relatedness of words.

Correlations over time (see plot 5.1) do not show the trend we expected. The ex-

pected trend would be that correlations improve (get closer to −1) as time increases

and finally nearing the present time it is the best representing current word relations as

perceived by people in present era. However the plot 5.1 seems to vary a lot. A faint

observation though is that for years 1800 to 1900 the correlation scores ρt vary a lot

(from -0.3 for year 1860 to almost 0 for year 1825), while for years closer to 2000, the

correlation scores become consistent and remain more or less constant (varying little

between -1.2 to -2.6). This is, perhaps due to sparseness of Google five-gram data for

earlier years. The future developments of dynamic embeddings must bring such varia-

tions for older times under control by training on a much larger corpus of N-grams.

Chapter 5. Evaluation 41

Simply put, the dynamic embeddings created are certainly not the best but they do

seem to be on the right track with scope for further improvements.

5.3 Diachronic Text Evaluation

Do dynamic embeddings created capture the diachronic phenomena (language change)?

In an attempt to answer this question, a Machine Learning task called Diachronic Text

Evaluation (DTE) was explored. DTE task is: given a document of text, predict the

time when it was likely written based on words, terms and style of language used. The

idea is that if the created dynamic embeddings do capture language change over time

then it should, in theory, be possible to use the dynamic embeddings to detect when a

document of text was written. The current attempts to address this task, discussed in

Popescu and Strapparava (2013), Popescu and Strapparava (2014) and Mihalcea and

Nastase (2012) are based on computing word occurrence in a particular epoch. For

instance, in one approach to DTE a probability distribution over various time epochs

is computed for each word. This distribution assigns to a word-time pair (w, t), the

probability of using the word w in the time epoch t. For the entire document, a new

probability distribution over time epochs is computed using the word probability dis-

tributions of the words in the document. This probability distribution of the document

is then used to make a prediction of the year when a text was written. Diachronic Text

Evaluation is task 7 of the upcoming SemEval 2015.

Current works on Diachronic Text evaluation are still in an infant stage. Further im-

provements to current DTE systems are being explore based on syntax, semantics and

other features as described in Popescu and Strapparava (2014). This thesis proposes the

use of dynamic word embeddings as an extra word feature in the current systems for

DTE to improve performance. Our proposal is based on the belief that dynamic word

embeddings capture the ‘true’ semantic relations between words over time (‘True’

refers to the actual semantic relations of the time period). These relations stored in

the dynamic embeddings could be exploited for better epoch detections in the DTE

task.

For the purpose of this project, a novel and simple machine learning (ML) system

for DTE task was developed that uses dynamic embeddings. For comparison, the same

Chapter 5. Evaluation 42

machine learning system that uses static word embedding (instead of dynamic) was

also developed. The two systems were trained and tested on the same dataset. The

performance of the two systems was then compared and analysed.

5.3.1 A Simple ML System for DTE Task

A supervised ML system, based on linear regression, for DTE task was developed. It

required data for training the ML system.

5.3.1.1 Trial Data

Diachronic Text Evaluation, being task 7 of SemEval 2015, has a website http:

//alt.qcri.org/semeval2015/task7/ dedicated to task. The website provides in-

formation, resources and data to develop systems for DTE. At the time this thesis

was printed, a complete training data was still being developed and only a trial data

was available on the DTE task website. It was decided to use the Trial data for both

training and testing our supervised ML system. The trial data comprises of 84 short

documents with time epoch markers like in the example in appendix B.1. Three time

epoch markers of varying size are provided. In the example B.1, the time markers are

“1946-1952”, “1943-1955” and “1939-1959”. We consider the average of the smallest

time range to be a time stamp of the document. In this case, the time stamp of the

document “Sears Famous ... soapthat’s all.” is 1949. The trial data set of 84 examples

is denoted as a list of document and time-stamp pair

Trial = ((d1, t1),(d2, t2), ...,(d84, t84))

where di are the documents and ti are corresponding time stamps.

5.3.1.2 The ML System

Let ((d1, t1),(d2, t2), ...,(dn, tn)) be n number of document-timestamp pairs used for

training ML system. Assume there exists a mapping v : {d1,d2, ...,dn}→Rk that maps

the n documents to vectors in some k-dimensional Euclidean space. Call v(di) as the

vector of document di. Denote each component of v(di) as v(di) j ∈ R. In other words

the vector

v(di) = (v(di)1,v(di)2, ...,v(di)k)Transpose.

The simple ML system developed in the project is based on linear regression.

http://alt.qcri.org/semeval2015/task7/
http://alt.qcri.org/semeval2015/task7/

Chapter 5. Evaluation 43

Consider the linear equation,

y = (c0)+(c1× x1)+(c2× x2)+ ...+(ck× xk) (5.2)

The ML system learns the values of the coefficient vector C = (c0,c1,c2, ...,ck) by

fitting the vectors of documents from the training data to (x1,x2, ...,xk) and timestamps

of the training data to y in equation 5.2. Mathematically, if

V (di) = (1,v(di)) = (1,v(di)1,v(di)2, ...,v(di)k)

then the ML system learns the linear function 5.2, by minimizing the following

min
c0,c1,...,ck

(t1− (C •V (d1)))2 +(t2− (C •V (d2))2 + ...+(tk− (C •V (dk))2 (5.3)

where C •V (di) = c0 +(c1× v(di)1)+(c2× v(di)2)+ ...+(ck× v(di)k)

The ML system developed in the project goes a step further, it performs a ridge re-

gression, i.e it learns the coefficients of the following equation from the training data

y = (c0)+(c1× x1)+(c2× x2)+ ...+(ck× xk)+(α× (c2
0 + c2

1 + ...+ c2
k)) (5.4)

NOTE: In the project, α = 0.5 was chosen after a few cross validation experiments

with trial data (see Machine learning: a probabilistic perspective Murphy (2012) for

more details on cross validation for selection of α parameter in ridge regression).

5.3.1.3 Document Vector Using Dynamic Embedding

The ML system developed was intended to use dynamic embeddings created for DTE

task. A simple and novel way of incorporating dynamic embeddings is to use it to

compute the vector of the documents. This is achieved by the following process.

Let f : V ×T → Rp be dynamic embedding. Let document d consist the sequence of

words (w1,w2, ...,wl(d)) where l(d) is the length of document d. For each time slice t,

compute vector of the document d at time t as

vt(d) =
f (w1, t)+ f (w2, t)+ ...+ f (wl(d), t)

l(d)
(5.5)

NOTE: If a particular word does not have a dynamic embedding at time t then that

word is simply ignored from the document in computing the document vector at time

t. Finally we define the document vector as

v(d) = v1800(d)� v1805(d)� ...� v2008(d) (5.6)

Chapter 5. Evaluation 44

where � represents concatenation.

This way, for the 84 examples of documents (d1,d2, ...,d84), the document vectors

(v(d1),v(d2), ...,v(d84)) are computed.

5.3.1.4 Baseline Document Vectors

If dynamic embedding f is created from static word embedding g, then it makes sense

to compare f to g in the DTE task. This would help answer the question : does dy-

namic embedding f (instead of static word embedding g) improve the performance of

ML system for DTE. Hence baseline document vectors using static word embeddings

g are computed as follows.

If document d consists the sequence of words (w1,w2, ...,wl(d)) where l(d) is the length

of document d, then baseline document vector b is defined as

b(d) =
b(w1)+b(w2)+ ...+b(wl(d))

l(d)
(5.7)

NOTE: Again, if a particular word w does not have a static embedding (g(w) = Unk)

then simply exclude the word from the document.

This way, for the 84 examples of documents (d1,d2, ...,d84) in trial data, the docu-

ment vectors (b(d1),b(d2), ...,b(d84)) are computed.

Another baseline b2 of document vectors is obtained from equation 5.6. In that equa-

tion, replace concatenation with vector addition. The vector addition will take the

time factor away from the dynamic embedding for document vector. Mathematically,

baseline 2 document vector b2 is defined as

b2(d) = v1800(d)+ v1805(d)+ ...+ v2008(d) (5.8)

where vt(d) is as defined in equation 5.5.

This way, for the 84 examples of documents (d1,d2, ...,d84) in trial data, the docu-

ment vectors (b2(d1),b2(d2), ...,b2(d84)) are computed.

Chapter 5. Evaluation 45

5.3.1.5 One Leave Out Cross Validation

As training data was not available (at the time this thesis went for printing), the 84

document–time-stamp pairs in trial data were used to do both - training and testing of

the ML system. This was achieved using ‘one leave out cross validation’.

Let D = ((d1, t1),(d2, t2), ...,(d84, t84)). Define

Di = D\{(di, ti)}

where the Di includes every example other than (di, ti)

One leave out cross validation is to train the ML system on Di and test it on (di, ti),

iteratively for i in list (1,2, ...,84). For instance, when ML system trains on Di, it

learns the coefficients and parameters of the equation 5.4 from all the data set other

than (di, ti). Call this function learnt as eqi. When eqi is tested on di, then it predicts a

time of when the document di might have been written - call the predicted time Ti. The

difference between predicted time Ti and actual time stamp ti will be called the error

ei. Let E denote the mean square error which is,

E =
e2

1 + e2
2 + ...+ e2

84
84

.

The smaller is the mean square error E, the better is the ML system at the task of DTE.

5.3.2 Execution

Three Machine Learning systems, all three exactly similar differing only in how the

vectors representing the documents are constructed, were developed. An in-built ridge

regression function in scikit - learn module Pedregosa et al. (2011) is used to learn the

regression from data. Let the three ML systems be called Mv, Mb and Mb2 . Mv system

uses document vector as defined in section 5.3.1.3 using dynamic embeddings. Mb

system uses baseline b to compute the document vectors (see 5.7) using static word

embeddings and Mb2 uses baseline b2 as defined in equation 5.8. Let Ev, Eb and Eb2

be mean square errors of ML systems Mv, Mb and Mb2 respectively. For each of the

four dynamic embeddings created, the three systems are made to compute the mean

square errors through one-leave-out cross validation on the trial dataset (see 5.3.1.5).

Twelve mean square error values of three ML systems and four dynamic embeddings

are computed and results are analysed.

Chapter 5. Evaluation 46

Table 5.2: Mean Square Errors after One Leave Out Cross Validation

Ev Baseline Eb Baseline Eb2

faverage−nlm 3758.264319 3315.528777 5180.170875

fconcat−nlm 3321.795009 3315.528777 3619.567825

faverage−hlbl 3839.25929 4557.360831 5300.940471

fconcat−hlbl 3301.842722 4557.360831 3946.231923

5.3.3 Results

Three ML systems made to run on four different dynamic embeddings generate twelve

mean square errors, which are tabulated below.

5.3.4 Analysis

Mean square errors tabulated in section 5.2 are used for analysis. An important point

to add here is that the ML systems were trained and tested on a very small trial dataset

so results cannot be considered very significant. However these could be considered to

form a preliminary study, of dynamic embeddings at DTE task, before training data is

available on SemEval task 7 website http://alt.qcri.org/semeval2015/task7/

The NLM embeddings with lower mean square errors seem better at DTE task than

HLBL embeddings. In analysis of Word Similarity (see section 5.2.5) HLBL em-

beddings were inferred to be better at representing similarity and relatedness. So it

indicates that static embeddings could be good at some tasks and not good at other.

Perhaps, the way the two embeddings - NLM and HLBL - were developed might hold

key to answer why NLM is better at DTE while HLBL is better at similarity and relat-

edness measures.

ML systems using dynamic embeddings fconcat−g are always better than faverage−g

where g could be any - NLM or HLBL embeddings. This means dynamic embeddings

developed using concatenation seem better at DTE task. This implies that, perhaps,

dynamic embeddings developed using the concatenation vector operation capture lan-

http://alt.qcri.org/semeval2015/task7/

Chapter 5. Evaluation 47

guage change much better than vector addition.

ML system Mb is transformed into Mv if instead of HLBL embeddings, dynamic em-

beddings created using HLBL f?−hlbl are used. This replacement improves perfor-

mance of the system drastically and hence supports the view that dynamic embeddings

could prove useful in DTE task. Same cannot be said for NLM though. Hence more

studies are required.

Ev is always less than corresponding baseline Eb2 . Both Ev and Eb2 were computed

from the dynamic embeddings with one difference - Ev is computed for Mv that con-

catenates the document vectors over time (see equation 5.6) while Eb2 is for Mb2 that

performs vector addition of the documents vectors over time (see equation 5.8). Con-

catenation ensures that differences over time are not lost, in the sense that each com-

ponent of the document vector v(d) refers to some time slice. On the other hand, none

of the components of b2(d) can be identified to any time slice due to vector addition,

an indicator to loss of differences over time. Ev better than Eb2 in all cases indicates

that differences between v1800(d),v1805(d), ...,v2008(d) could be useful at DTE task.

It justifies our belief that dynamic embeddings do seem to capture language change.

Hence future developments should try and preserve the differences over time.

Chapter 6

Conclusions

6.1 Achievements

The project began with the aim of creating word vector space embeddings over time

(dynamic embeddings). In attempts to create these, a general recipe of generating new

dynamic embeddings from (1) static word embeddings and (2) n-gram data with time

markers was mathematically formulated. Using Google n-gram corpus, NLM embed-

dings and HLBL embeddings creation of four sets of dynamic embeddings of varying

dimensions was demonstrated.

Dynamic embeddings can be viewed from two perspectives - (1) From word perspec-

tive as trajectories of words moving in space with changing times and (2) From time

perspective as a stack of static word embeddings (one for each time slice). The word

perspective inspired us to create an application of the dynamic embedding: the vi-

sualization tool (see chapter 4). This tool helps visualize semantic change and other

diachronic phenomena. This tool posed a challenge of reducing the dimension of tra-

jectories in high dimensional space to 2-dimensional space. Dimension reduction was

achieved using MDS. Animation was achieved using Bresenham algorithm and ani-

mated GIF. A web application using the developed visualization tool was also created

- http://kinloch.inf.ed.ac.uk/words/index.php.

A supervised Machine learning system that uses dynamic embedding for the Diachronic

Text Evaluation task was developed. It demonstrates a potential of using dynamic em-

beddings in improving systems that detect the period when a text was written (see

chapter 5).

48

http://kinloch.inf.ed.ac.uk/words/index.php

Chapter 6. Conclusions 49

6.2 Quality of Dynamic Embeddings

Do dynamic embeddings represent true semantic similarity and relatedness of words?

Using Word Similarity evaluation framework (see chapter 5), the dynamic embeddings

were identified to follow the ‘intuitive rule’: the closer the embeddings geometrically,

the more related and similar the words are. This is because, correlation between dis-

tances of embeddings and similarity measures of corresponding word pairs was al-

most always found negative (see appendix B.2). However, because these correlation

values were close to 0 in spite of being negative, it was concluded that the distance

metric was not very accurate at representing the ‘true’ word similarity and related-

ness. An average ρaverage ≈−0.102 of the dynamic embeddings (averaged over all the

four dynamic embeddings) was computed. This was compared to the average baseline

ρbaseline≈−0.304. The result shows that there is loss in quality when dynamic embed-

ding is generated. Compared to baseline static embeddings, our dynamic embeddings

had ρaverage values of nearly one-third of the baseline ρbaselines values as also seen by

the correlations above. Hence it was concluded that dynamic embeddings had lesser

quality than the quality of the static embedding from which they are being created and

the loss was nearly 2/3rd of the ρ score. Quality here is referred in terms of correla-

tion coefficients ρ as computed in equation 5.1. In addition, it was noted that to create

good quality dynamic embeddings, start with a better quality static embeddings. This

is because dynamic embeddings from good quality static embeddings were found to

have more negative ρ values (see tables in B.2. At the same time it was noted that the

human ratings of word similarity itself varies from one group of subjects to another

(see analysis 5.2.5). Hence nothing too conclusive could be found to answer the above

question except for the ‘intuitive rule’.

Do dynamic embeddings capture diachronic phenomena (language change)?

Use of dynamic embeddings instead of HLBL embeddings were shown to improve

the performance of ML system for Diachronic Text Evaluation (DTE) (See the mean

value scores in table in section 5.2). In addition taking the average of the mean square

errors, we get average Ev≈ 3524 and average of Eb≈ 3936 and average of Eb2 ≈ 4517.

This surely is a good sign, in the sense that even in after averaging over four dynamic

embeddings created, there is a near 10percent lesser mean square errors (between Ev

Chapter 6. Conclusions 50

and EB). ML system using dynamic embeddings were also found to perform better

than baseline 2 system at all times. It is the way dynamic embeddings are used that

contributes to how the ML system gets improved. As described in analysis of DTE

task and results above, our belief that dynamic embeddings do capture diachronic phe-

nomena has been strengthened.

6.3 Other Conclusions

HLBL embeddings was found better at representing similarity and relatedness of words

while NLM embeddings were found better in DTE task of detecting time when a doc-

ument is written. This implies that embeddings vary in quality from task to task.

Concatenation based dynamic embeddings were found better than average based ones.

Concatenation operation used in the DTE task as well was found to improve perfor-

mance of the systems. It could thus be concluded that concatenation is a good oper-

ation (compared to averaging) at preserving both the semantic similarity information

and language change information when used in DTE task.

6.4 Future Avenues

6.4.1 Improvement of Dynamic Embeddings

The general recipe of creating dynamic embeddings can be explored further to make

new kinds of embeddings. Dynamic embeddings created have one shortcoming which

is that it cannot capture words at start or end of a sentence, because of our requirement

to have context on both sides of target word. This could also be explored. Including

other syntactic and semantic cues, especially Part Of Speech tags to create dynamic

embeddings can be looked at. Training on the entire Google Books N-gram corpus

(including n-grams of other sizes) can be explored, functional words could be dealt

with separately. Combining different types of static embeddings and creating new

kinds of dynamic embeddings like the one in which time range is continuous can be

thought through. Words from other languages like French, German, etcetera could also

be incorporated.

Chapter 6. Conclusions 51

6.4.2 Improvements of Visualization Tool

Distance metric was found to be not a very accurate measure of semantic similarity

and relatedness of words. So new kinds of distance metrics could be explored for

better representation of word similarity and relatedness. Visualization and animation of

word trajectories in 3-dimensional space, a bit challenging but not impossible, would

definitely be next step forward. Other improvements to user experience can also be

explored.

6.4.3 Diachronic Text Evaluation

Dynamic embeddings do show signs of great applicability, specially for DTE task, due

to its temporal features and indications of capturing the diachronic phenomena in the

study presented in this thesis. A novel Machine Learning system for DTE that includes

dynamic embeddings as word features could be developed. Incorporating dynamic

embeddings of words as extra word features to existing Machine Learning systems for

DTE (to improve performance of systems) could be looked at. One promising future

prospect would be to build on the ideas of this thesis to participate and contribute in

SemEval 2015 task 7 of Diachronic Text Evaluation.

Bibliography

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., and Soroa, A. (2009).

A study on similarity and relatedness using distributional and wordnet-based ap-

proaches. In Proceedings of Human Language Technologies: The 2009 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics, pages 19–27. Association for Computational Linguistics. (on pp. 13,

14, 33, 34, and 37)

Anton, H. and Rorres, C. (2010). Elementary Linear Algebra: Applications Version.

John Wiley & Sons. (on p. 56)

Bengio, Y., Schwenk, H., Senécal, J.-S., Morin, F., and Gauvain, J.-L. (2006). Neural

probabilistic language models. In Innovations in Machine Learning, pages 137–186.

Springer. (on p. 19)

Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of

the 23rd international conference on Machine learning, pages 113–120. ACM. (on

pp. 10 and 11)

Borg, I. and Groenen, P. (2005). Modern Multidimensional Scaling: Theory and Ap-

plications. Springer. (on pp. 7, 12, and 26)

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM

Systems journal, 4(1):25–30. (on pp. 12 and 29)

Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-

based n-gram models of natural language. Computational linguistics, 18(4):467–

479. (on p. 11)

Chen, Y., Perozzi, B., Al-Rfou’, R., and Skiena, S. (2013). The expressive power of

word embeddings. CoRR, abs/1301.3226. (on pp. 2, 12, and 13)

52

Bibliography 53

Chomsky, N. (1965). Aspects of the Theory of Syntax. Massachusetts Institute of

Technology. M.I.T. Press. (on p. 6)

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.

(2011). Natural language processing (almost) from scratch. Journal of Machine

Learning Research, 12:2493–2537. (on p. 2)

Dhillon, P., Foster, D. P., and Ungar, L. H. (2011). Multi-view learning of word em-

beddings via cca. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Wein-

berger, K., editors, Advances in Neural Information Processing Systems 24, pages

199–207. Curran Associates, Inc. (on p. 2)

Firth, J. (1957). Papers in linguistics, 1934-1951. Oxford University Press. (on p. 6)

Harris, Z. S. (1954). Distributional structure. Word. (on p. 11)

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving word

representations via global context and multiple word prototypes. In Proceedings of

the 50th Annual Meeting of the Association for Computational Linguistics: Long

Papers - Volume 1, ACL ’12, pages 873–882, Stroudsburg, PA, USA. Association

for Computational Linguistics. (on p. 2)

Kroeger, P. R. (2005). Analyzing grammar: An introduction. Cambridge University

Press. (on p. 57)

Landauer, T. K. and Dumais, S. T. (1997). A solution to plato’s problem: The latent

semantic analysis theory of acquisition, induction, and representation of knowledge.

Psychological review, 104(2):211. (on pp. 6 and 11)

Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., Hoiberg,

D., Clancy, D., Norvig, P., Orwant, J., et al. (2011). Quantitative analysis of culture

using millions of digitized books. science, 331(6014):176–182. (on pp. 6, 11, 12,

and 14)

Mihalcea, R. and Nastase, V. (2012). Word epoch disambiguation: Finding how words

change over time. In ACL (2), pages 259–263. (on p. 41)

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the

ACM, 38(11):39–41. (on p. 34)

Bibliography 54

Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical distributed language model.

In Advances in neural information processing systems, pages 1081–1088. (on p. 20)

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press. (on

pp. 12, 13, and 43)

Passos, A., Kumar, V., and McCallum, A. (2014). Lexicon infused phrase embeddings

for named entity resolution. CoRR, abs/1404.5367. (on p. 2)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-

peau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830. (on

pp. 12, 13, and 45)

Popescu, O. and Strapparava, C. (2013). Behind the times: Detecting epoch changes

using large corpora. (on pp. 5, 10, 11, and 41)

Popescu, O. and Strapparava, C. (2014). Time corpora: Epochs, opinions and changes.

Knowledge-Based Systems. (on pp. 11, 12, 13, 14, and 41)

Roy, D. K. and Pentland, A. P. (2002). Learning words from sights and sounds: A

computational model. Cognitive science, 26(1):113–146. (on p. 6)

Sahlgren, M. (2006). The word-space model: Using distributional analysis to represent

syntagmatic and paradigmatic relations between words in high-dimensional vector

spaces. (on p. 11)

Shaw, B. and Jebara, T. (2009). Structure preserving embedding. In Proceedings of the

26th Annual International Conference on Machine Learning, pages 937–944. ACM.

(on p. 12)

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: A simple and

general method for semi-supervised learning. In Proceedings of the 48th Annual

Meeting of the Association for Computational Linguistics, ACL ’10, pages 384–

394, Stroudsburg, PA, USA. Association for Computational Linguistics. (on pp. 2,

11, 14, 19, and 20)

Turney, P. D., Pantel, P., et al. (2010). From frequency to meaning: Vector space

models of semantics. Journal of artificial intelligence research, 37(1):141–188. (on

p. 11)

Bibliography 55

Uszkoreit, J. and Brants, T. (2008). Distributed word clustering for large scale class-

based language modeling in machine translation. Citeseer. (on p. 11)

Wall, M. E., Rechtsteiner, A., and Rocha, L. M. (2003). Singular value decomposi-

tion and principal component analysis. In A practical approach to microarray data

analysis, pages 91–109. Springer. (on p. 26)

Wang, C., Blei, D., and Heckerman, D. (2012). Continuous time dynamic topic mod-

els. arXiv preprint arXiv:1206.3298. (on pp. 11 and 12)

Wittgenstein, L. (1973). Philosophical investigations:. Philosophical Investigations:

The English Text of the Third Edition. Macmillan. (on p. 6)

Appendix A

Definitions

A.1 Vectors And Euclidean Vector Spaces

In mathematics, R is the set of all real numbers geometrically represented using an in-

finite line. The n-dimensional Euclidean vector space Rn, for a positive integer n, is the

set {(r1,r2, ...,rn)|r1,r2, ...,rn ∈ R}. R2 and R3 represents our intuition of a geometric

plane and space respectively. Any element (a1,a2, ...,an) in Rn is called a vector in the

n-dimensional Euclidean vector space. Intuitively, the vectors represent the points in

the vector space.

More about vectors, vector spaces and operations on such spaces can be found in

conventional linear algebra text books. Chapter 3 in ‘Elementary Linear Algebra: Ap-

plications Version’ (Anton and Rorres, 2010) presents a nice, thorough and sufficient

introduction to basic concepts of vectors and Euclidean vector spaces.

A.2 Euclidean Distance

Let a = (a1,a2, ...,an) and b = (b1,b2, ...,bn) be two vectors in Euclidean space Rn (see

A.1) for some positive integer n. Then Euclidean distance between a and b, denoted as

‖a−b‖ is

‖a−b‖=
√

(a1−b1)2 +(a2−b2)2 + ...+(an−bn)2.

Euclidean distance represents the common intuition of distance in physical world.

56

Appendix A. Definitions 57

A.3 Totally Ordered Set

In mathematics, a set S is called a totally ordered set if it has a relation called total

order, denoted as ≤, such that the following are satisfied,

• a≤ a, for all elements a in S.

• a≤ b and b≤ a implies a = b.

• a≤ b and b≤ c implies a≤ c.

• For any two elements a and b in S, either a≤ b or b≤ a.

Example: Time periods are totally ordered sets where the relation a ≤ b means that

either time instance a comes before b or the two time instances are the same.

A.4 Word Co-occurrence

In linguistics, word co-occurence can either mean concurrence / coincidence of words

(terms) or, in a more specific sense, the frequency of occurrence of two terms from a

text corpus alongside each other in a certain order (Kroeger, 2005).

A.5 N-grams

In computational linguistics, a contiguous sequence of n items from a given text is

called an N-gram. The items can be letters or words or tokens. An N-gram of length

1 is called a“unigram”; length 2 is a “bigram”; length 3 is a “trigram”. Larger sizes

are referred to by the value of n like “four-gram”, “five-gram”, and so on. This project

deals with five-grams of words and tokens.

Appendix B

Datasets

B.1 Trial Data for Diachronic Text Evaluation

Example of a document in trial data for DTE task is given below:

<text id="365cp1113232119">

<textF no="1904-1910" no="1911-1917" no="1918-1924" no="1925-1931" no="1932-1938"

no="1939-1945" yes="1946-1952" no="1953-1959" no="1960-1966" no="1967-1973"

no="1974-1980" no="1981-1987" no="1988-1994" no="1995-2001" no="2002-2008"

no="2009-2015">

<textM no="1696-1708" no="1709-1721" no="1722-1734" no="1735-1747" no="1748-1760"

no="1761-1773" no="1774-1786" no="1787-1799" no="1800-1812" no="1813-1825"

no="1826-1838" no="1839-1851" no="1852-1864" no="1865-1877" no="1878-1890"

no="1891-1903" no="1904-1916" no="1917-1929" no="1930-1942" yes="1943-1955"

no="1956-1968" no="1969-1981" no="1982-1994" no="1995-2007" no="2008-2020">

<textC no="1708-1728" no="1729-1749" no="1750-1770" no="1771-1791" no="1792-1812"

no="1813-1833" no="1834-1854" no="1855-1875" no="1876-1896" no="1897-1917"

no="1918-1938" yes="1939-1959" no="1960-1980" no="1981-2001" no="2002-2022">

Sears Famous Kenmore Completely Automatic Washer.It’s like magicfood-It,

set it and forget it. Washes all kinds of clothes amazingly clean, automatically.

Rinses ail clothes 7 times, automatically. Spins all clothes damp dry,

automatically. Two little dials do all the workno watching, no waiting

just load the clothes, set the dial,add soapthat’s all.

</text>

58

Appendix B. Datasets 59

Table B.1: Excerpt of Word-Pair Similarity and Relatedness

WORD 1 WORD 2 HUMAN (MEAN) YEARS 1800 1805 ...

money dollar 8.42 Unk Unk

money cash 9.08 0.4003086431 0.3403557557

money wealth 8.27 0.2614127117 0.2039819144

money property 7.57 0.3134598117 0.2542957324

money bank 8.5 0.7593744204 0.3769771715

space world 6.53 0.3914747233 0.4322863634

preservation world 6.19 0.6500469855 0.4416165133

direction combination 2.25 0.5949834979 0.5269165972

Table B.2: Goldstandard 200: Correlation Scores

ρt−average ρaveraged Baseline ρnlm Baseline ρhlbl

faverage−nlm -0.03747611492 -0.03626861278 -0.2722516676

fconcat−nlm -0.03444177037 -0.02855099298 -0.2722516676

faverage−hlbl -0.02567159053 0.03181987821 -0.2961077762

fconcat−hlbl -0.02365395643 0.02758360941 -0.2961077762

B.2 Results For Similarity And Relatedness

B.2.1 Table B.1

Refer to table B.1. Mean of human ratings of similarity in third column. Euclidean

distance between word pairs in dynamic embeddings for various years in fifth column

onwards.

Appendix B. Datasets 60

Table B.3: Goldstandard Mixed: Correlation Scores

ρt−average ρaveraged Baseline ρnlm Baseline ρhlbl

faverage−nlm -0.08748873505 -0.08715957471 -0.290286389

fconcat−nlm -0.09636033926 -0.09879840571 -0.290286389

faverage−hlbl -0.1040119688 -0.07856670688 -0.321061014

fconcat−hlbl -0.110360536 -0.09512138281 -0.321061014

Table B.4: Goldstandard for Similarity: Correlation Scores

ρt−average ρaveraged Baseline ρnlm Baseline ρhlbl

faverage−nlm -0.1307137174 -0.1234126906 -0.4059548027

fconcat−nlm -0.1332167122 -0.1209145616 -0.4059548027

faverage−hlbl -0.1669964071 -0.1386733081 -0.3922579879

fconcat−hlbl -0.1679772554 -0.1486743488 -0.3922579879

B.2.2 Correlation Tables

B.2.2.1 Goldstandard 200: Table B.2

B.2.2.2 Goldstandard Mixed: Table B.3

B.2.2.3 Goldstandard for Similarity: Table B.4

B.2.2.4 Goldstandard for Relatedness: Table B.5

Appendix B. Datasets 61

Table B.5: Goldstandard for Relatedness: Correlation Scores

ρt−average ρaveraged Baseline ρnlm Baseline ρhlbl

faverage−nlm -0.06619116297 -0.0715297706 -0.1796253312

fconcat−nlm -0.07390115563 -0.0947179799 -0.1796253312

faverage−hlbl -0.08110358021 -0.05536940697 -0.2622672459

fconcat−hlbl -0.07390115563 -0.0947179799 -0.2622672459

	Introduction
	The Problem
	Static Word Embeddings
	Dynamic Word Embeddings
	Visualization of Dynamic Embeddings

	Motivation
	Semantic Change and Word Formation
	For Machine Learning in NLP Tasks
	This is Pure Fun and Insightful

	Core Ideas to Solve the Problem
	Learn Meaning of a Word From its Context
	Google Books N-grams
	Dimension Reduction Using MDS

	Testing and Evaluation Techniques
	Diachronic Text Evaluation
	Word Similarity

	Outline

	Background - Literature Review
	Fields of Research Explored
	Word Representation
	Machine Learning
	NLP Dealing with Time

	Key Publications
	Literature and Data to Create Dynamic Embeddings
	Literature and Resources for Visualization
	Literature and Data for Embedding Evaluation

	Summary

	Creating Dynamic Embeddings
	General Recipe
	Mathematical Formulation
	Description

	The Implementation
	Procuring Data
	Developing Algorithm
	Generating Dynamic Embeddings

	Summary

	Visualization Tool
	The Challenge
	Solution
	Formulating MDS
	Applying MDS

	The Tool

	Evaluation
	Preliminary Qualitative Observations
	Word Similarity Measures
	Goldstandard Human Ratings
	Evaluation Framework
	Execution
	Results
	Analysis

	Diachronic Text Evaluation
	A Simple ML System for DTE Task
	Execution
	Results
	Analysis

	Conclusions
	Achievements
	Quality of Dynamic Embeddings
	Other Conclusions
	Future Avenues
	Improvement of Dynamic Embeddings
	Improvements of Visualization Tool
	Diachronic Text Evaluation

	Bibliography
	Definitions
	Vectors And Euclidean Vector Spaces
	Euclidean Distance
	Totally Ordered Set
	Word Co-occurrence
	N-grams

	Datasets
	Trial Data for Diachronic Text Evaluation
	Results For Similarity And Relatedness
	Table B.1
	Correlation Tables

