
Algorithms in Lattice QCD 

Stephen M. Pickles 

Doctor of Philosophy 

The University of Edinburgh 
1998 



To Mandy. 



Abstract 

The enormous computing resources that large-scale simulations in Lattice QCD 

require will continue to test the limits of even the largest supercomputers into 

the foreseeable future. The efficiency of such simulations will therefore concern 

practitioners of lattice QCD for some time to come. 

I begin with an introduction to those aspects of lattice QCD essential to the 

remainder of the thesis, and follow with a description of the Wilson fermion 

matrix M, an object which is central to my theme. 

The principal bottleneck in Lattice QCD simulations is the solution of linear 

systems involving M, and this topic is treated in depth. I compare some of the 

more popular iterative methods, including Minimal Residual, Corij ugate Gra-

dient on the Normal Equation, BI-Conjugate Gradient, QMR., BiCGSTAB and 

BiCGSTAB2, and then turn to a study of block algorithms, a special class of it-

erative solvers for systems with multiple right-hand sides. Included in this study 

are two block algorithms which had not previously been applied to lattice QCD. 

The next chapters are concerned with a generalised Hybrid Monte Carlo algo-

rithm (OHM C) for QCD simulations involving dynamical quarks. I focus squarely 

on the efficient and robust implementation of GHMC, and describe some tricks 

to improve its performance. A limited set of results from HMC simulations at 

various parameter values is presented. 

A treatment of the non-hermitian Lanczos method and its application to the 

eigenvalue problem for M rounds off the theme of large-scale matrix computa-

tions. 

'ii 



Declaration 

This thesis has been composed wholly by me and contains my own work, carried 

out as a member of the UKQCD collaboration. 

The solver codes described in chapters 4 and 5 were built on earlier codes owned 

by the UKQCD collaboration; apart from MR, all the inversion algorithms de-

scribed therein, and many new support routines, were implemented by me. Some 

of the material in chapter 5 has been presented in 

S. M. Pickles. Nuc]. Phys. B (Proc. Supp].) 63 (1998) 961-963. 

The GHMC code in chapter 6 was designed and developed in collaboration 

with Zbigniiew Sroczynski and Stephen Booth. It incorporated some pre-existing 

UKQCD code, and some new code written by Mauro Talevi and Bálint Jod; my 

own contribution to the coding effort is an estimated 7,500 lines. Some of the 

material in chapter 6 has been presented in 

Z. Sroczynski, S. M. Pickles and S. P. Booth. Nuci. Phys. B (Proc. Suppi.) 

63 (1998) 949-951. 

The Lanczos code in chapter 8 also incorporated some pre-existing UKQCD code; 

the source code for one key routine was supplied by Christine Davies and modified 

by me; the remaining ten new modules were written by me. 

The studies in chapters 4 and 5 made use of quenched gauge field configurations 

generated by the UKQCD collaboration. The dynamical gauge field configura-

tions used in chapter 7 were generated by Zbigniew Sroczynski and me. 

(Stephen Pickles) 

IV 



Acknowledgments 

Thanks are (hue to Artan Borici, Graham Boyd, Christine Davies, Philippe de For-

crand, Roland Freund, Uwe Glässner, Joachim Hein, David Henty, Karl Jansen, 

Tony Kennedy, Tom Leonard, Harry Newton, Gero Ritzenhöfer, Hubert Simma, 

Peer Uherholz for helpful communications or stimulating discussions. 

To Douglas Smith and Hubert Simma (again) for making their eigenivalue code 

available to me. 

To Alan Irving, James Sexton, Hartmut Wittig, Chris Alitori, Mauro Talevi for 

their involvement in the Dynamical Fermions Project. 

To Blirit Jod for implementing the clover trick of appendix C, and Stephen 

Booth, for rewriting it in assembler. 

To Joshua (R.I.P.) and Jericho for remaining cheerfully responsive. 

To all the denizens of the "four-four corridor", including my supervisors Ken 

Bowler and David Richards. 

Special thanks to Zbigniiew Sroczynski and Stephen Booth. Our collaboration on 

the Generalised Hybrid Monte Carlo code is one I shall remember fondly. 

And most of all, to my wife Mandy, who devoutly refuses to believe in quarks. 



Contents 

1 Introduction 	 i 

2 Introduction to Lattice QCD 	 4 

2.1 Continuum QCD 	 4 

2.2 Lattice QCD 	 6 

2.2.1 Gauge fields on the lattice 	 7 

2.2.2 Fermion fields on the lattice 	 8 

2.3 	The lattice path integral 	 10 

3 The Wilson Fermion Matrix 	 15 

3.1 Introduction 	 15 

3.2 Eigerivalues and Eigenvectors. 	 16 

3.2,1 The eigenivalue spectra of Q and M. 	 17 

3.2.2 A 'spectral' expansion for M 	 19 

3.2.3 The spectrum of M as a function of K 	 21 

3.2.4 Summary 	 23 

4 	Linear systems I - point algorithms 25 

4.1 	Introduction 25 

4.2 	Preconditioning 28 

4.2.1 	Polynomial preconditioning 29 

4.2.2 	Jacobi preconditioning 30 

4.2.3 	D-ILU 30 

4.2.4 	Red-black preconditioning 30 

4.2.5 	LL-SSOR preconditioning 33 

4.3 	Point Algorithms 34 

4.3.1 	Over-relaxed minimal residual 34 

4.3.2 	Conjugate Gradient 35 

4.3.3 	Bi-Conjugate Gradient 38 

4.3.4 	Quasi-Minimal Residual 40 

4.3.5 	Stabilised BI-Conjugate Gradient 43 

vi 



4.3.6 Another Stabilised Bi-conjugate Gradient 	 46 

4.4 Implementation and testing 	 48 

4.4.1 Implementation 	 48 

4.4.2 Testing 	 55 

4.5 Comparison 	 57 

4.6 Exceptional Configurations 	 60 

4.7 Concluding Remarks 	 65 

5 	Linear systems II - block algorithms 66 

5.1 Motivation 66 

5.2 Block Algorithms 68 

5.2.1 	Block Minimal Residual 68 

5.2.2 	B-CGNR 70 

5.2.3 	Block Lanczos 72 

5.2.4 	Block BiCG(y5) 76 

5.2.5 	Block Quasi-Minimal Residual (B-QMR.) 82 

5.3 Implementation 87 

5.4 Scaling 91 

5.5 Concluding Remarks 94 

6 	Generalised Hybrid Monte Carlo 97 

6.1 Introduction 97 

6.2 The Algorithm 98 

6.3 Integrating the equations of motion 102 

6.3.1 	The equations of motion 102 

6.3.2 	Leapfrog integration 104 

6.4 Solvers and preconditioning in GHMC 106 

6.5 Implementation, verification and optimisation 111 

6.5.1 	Operational aspects 111 

6.5.2 	Code verification 113 

6.5.3 	Optimisation 	architectural factors 117 

6.5.4 	Exponentiating the conjugate momenta 118 

vii 



6.5.5 The clover term 	 120 

6.5.6 The energy calculation 	 120 

6.5.7 The first solve in a trajectory 	 121 

6.5.8 Relaxing solver convergence criteria 	 123 

6.6 	Computing observables "on the fly". 	 124 

6.6.1 The chiral condensate 	 125 

7 GHMC: Pilot simulations 	 128 

7.1 Run parameters 	 128 

7.2 	Equilibration and the black arts 	 131 

7.3 Error Estimation 	 133 

7.4 Autocorrelations 	 142 

8 Diagonalisation of M - the Lanczos method 	 146 

8.1 Overview 	 .146 

8.2 	Lanczos tri diagonal isation 	 147 

8.3 Implementation 	 153 

8.4 Verification 	 155 

9 Conclusions and recommendations 	 161 

A Appendix - Notation and Conventions 	 165 

A.1 Matrix notation 	 165 

A.2 Dirac matrices 	 165 

A.3 Cell-Mann matrices 	 167 

B Appendix - Eigenvectors of J-hermitian matrices 	 168 

C Appendix - The structure of the clover term 	 175 

D Appendix - GHMC run-time options 	 179 

E Appendix - Glossary 	 186 

References 	 189 

viii 



List of Tables 
	

197 

List of Figures 

Index 
	

199 

lx 



Chapter 1 

Introduction 

QCD (Quantum ChromoDynamics) is the gauge theory of the strong force. When 

expressed in the Feynmari Path Integral formulation, the natural way to give 

meaning to the infinite-dimensional integrals therein is to regularise the theory 

on a discrete grid of space-time points; the resulting non-perturbative theory is 

known as lattice QCD. 

The computing resources required to deal with even coarse lattices of small phys-

ical volumes are enormous.' If the goal of simulating near-continuum physics on 

the lattice is ever to be achieved, we will need to see steady increases in computing 

power as well as further improvements in lattice methods. 

This thesis is concerned with the role of algorithms in lattice QCD. 

I begin by giving, in chapter 2 a brief introduction to those aspects of lattice QCD 

essential to the present purpose. Readers seeking more detailed information could 

do worse than consult one of several textbooks on the subject [1, 2, 3]. 

The fermion matrix is of central importance to our theme. Hadronic physics can 

not be studied properly on the lattice without recourse to the quark propaga-

tor, which is nothing more than the inverse of the fermion matrix.' The QCD 

'The words "small" and "coarse" are relative to what is achievable with the latest computing 
technology. A lattice described as "large" and "fine" by a practitioner a few years ago might 
be described as "small" and "coarse" today, and a "large, fine" lattice today might still seem 
absurdly "small" and "coarse" to the uninitiated. 

'One might claim, tongue in cheek, that speeding up the computation of quark propagators 
by one third is worth several hundred thousand pounds per annum to the particle physics 
community in Britain alone! 

1 



Chapter 1. Introduction 	 2 

partition function involves the determinant of the fermion matrix.' The eigen-

value spectrum of the fermion matrix is relevant to studies of phase transitions 

in QCD, and is related to the subject of topology. Thus all the classical problems 

of linear algebra are riot just relevant but rather essential to simulating QCD on 

the lattice. Accordingly, chapter 3 is devoted to the fermion matrix and some of 

its properties. 

A review and comparison of some of the more popular iterative methods for 

computing quark propagators is given in chapter 4. I touch on the subject of 

preconditioning, and describe briefly some alternative approaches. 

In chapter 5, 1 consider a special class of iterative solvers for linear systems known 

as block algorithms. Often one requires solutions to a linear system with several 

right hand sides, but the same coefficient matrix, and this is indeed the case 

when computing quark propagators for a given configuration of gauge fields. By 

solving several systems at the same time, it is possible to use the information 

obtained from the solution of each system to help in the solution of the others, 

(hopefully) accelerating the convergence of all. Here I study five block algorithms 

for non-Fiermitian systems, including two which had not been applied previously 

to lattice QCD. 

Lattice simulations with dynamical fermions involve Monte Carlo sampling of 

gauge configurations from a distribution which involves the fermionic determi-

nant. In this thesis, our attention is confined to the Generalised Hybrid Monte 

Carlo method (GHMC), which is the subject of chapters 6 and 7. A description 

of the algorithm and details of our implementation and efforts to improve its 

performance are given in chapter 6. For a more detailed review of dynamical 

fermion algorithms the reader is referred to [4]. 

A limited set of results from HMC simulations at various parameter values is 

presented in chapter 7. Hadron spectrum calculations on these configurations 

'Ignoring the weighting from the determinant is the quenched approximation, which is equiv-
alent in effect to neglecting virtual quark loops. 



Chapter 1. Introduction 	 3 

are outwith the present scope, but details will be reported in [5]. 

The non-hermitian Lariczos method, by which the eigenspectrum of the fermion 

matrix may be extracted, is studied in chapter 8. 

Finally, chapter 9 summarises the salient points of this thesis. 

Algorithms can not be fairly compared in vacuo. The hardware on which a piece 

of software is to runt is an important consideration. For example, the now uni-

versal requirement of scalability on parallel computers rules out some otherwise 

excellent methods, and an efficient implementation of an ordinary algorithm will 

frequently outperform an ordinary implementation of the theoretical favourite. 

Rather than devote a separate chapter to architecture-specific considerations, I 

will make remarks where they seem appropriate during the text. However, wher-

ever relevant, it is to be understood that the methods discussed in this thesis 

are targeted at a specific kind of architecture: massively parallel supercomputers 

consisting of a large number of communicating scalar processors, as exemplified 

by the Cray-T3D or Cray-T3E. 

Furthermore, the motivation behind much of the work underlying this thesis 

was to better enable the physics program of the UKQCD collaboration. Thus 

conclusions on the relative viability of various methods are made against the 

backdrop of clover-improved Wilson fermionis and red-black preconditioning, as 

the collaboration is committed to the former and has made a large investment in 

a highly optimised assembler matrix multiply routine for the latter. 



Chapter 2 

Introduction to Lattice QCD 

Lattice QCD may be viewed in several ways. As a prescription for calculating 

observables of QCD from first principles, lattice QCD is able to make predictions 

which test the correctness of the standard model at energy scales not accessible by 

perturbative methods. As a means of defining what is meant by the QCD func-

tional integrals, lattice QCD serves to place the continuum theory on a sounder 

theoretical footing. Lattice QCD is also an interesting statistical mechanical 

system in its own right. 

2.1 Continuum QCD 

We begin with the QCD Lagranigian in Minkowski space-time. 

£QCD ,CYM + £F 	 (2.1) 

The Yang-Mills term LyM 

rYM = —TrFF. 	 ( 2.2) 

which describes the purely gluonic sector of the theory, is constructed from su(3) 

fields A. (x) (the gauge bosons of the theory), covariant derivatives D, and field 

tensor F: 

A,, (x) = Aa(x)_ 	 (2.3) L 	2 
D1, = 3+igA, 	 (2.4) 

4 



Chapter 2. Introduction to Lattice QCD 	 5 

-- 
LV - 	 [D L , D] 	 (2.5) 

g 

where g is a coupling constant and the A, are the Cell-Mann matrices §(A.3). 

The fermionic term f  is given by 

,CF = 	j (iD - mj) Of 	 (2.6) 
f 

where the sum is over quark flavours, and the o f  are fermion fields. 

The Lagrangian £QCD  is invariant under local gauge transformations of the fields, 

the gauge group being SU(3). 

	

j (x) 	exp(_iO) j (x) 	 (2.7) 

	

O f  (x) 	Of (x) exp (igo) 	 (2.8) 

	

A (x) 	exp (_igo) 	(A,,.(x) - ' 0,)  exp (igo) 	(2.9) 

To quantise the theory in the Feynman path integral formalism one would now 

introduce a QCD partition function (ignoring gauge-fixing and Faddeev-Popov 

terms)1  

= f VAThV exp (j d4XQCD (x)) 	 (2.10) 

and corresponding path integral. The fermion fields are now Grassmann-va.lued. 

Unfortunately, the functional integral is not well-defined. Moreover, the wildly 

oscillating integrand is unsuited to a numerical approach based on Monte Carlo 

methods. A common remedy, especially in lattice studies, is to reformulate the 

original theory in Euclidean, instead of Minkowski, space-time. The transcription 

of the theory onto Euclidean space is accomplished by an analytic continuation 

of the time variable in the complex plane, x°  - —ix. This Wick rotation 

Provided that one's interest is confined to gauge-invariant observables, it will not be nec-
essary to fix the gauge 011 the lattice. 



Chapter 2. Introduction to Lattice QCD 	 6 

modifies the Dirac matrices, the metric and the integration measure, and yields 

the Euclidean partition function 

ZE = /vAvv exp (I d4 xE c0 (x)).  

Hereafter, we shall assume that the transition to Euclidean space has been made, 

and we shall trust the reader to bear this in mind without any superscripts E to 

remind him. 

Quantities such as masses and decay constants are invariant under Wick rotation. 

If necessary, Green's functions calculated in Euclidean space can be analytically 

continued back to Minkowski space.2 

2.2 Lattice QCD 

The lattice approach is to replace the continuum of Euclidean space by a discrete 

grid of space-time points (the lattice), derivatives by finite differences, and space-

time integrals by sums over the lattice. We specialise immediately to isotropic, 

hypercubic lattices with lattice spacing a and lattice volume V = L3 x LT , L being 

the number of lattice sites in each spatial direction and LT being the number in 

the temporal direction. In this thesis, we impose periodic boundary conditions 

on the lattice, identifying the site x + L1 â with the site x. The lattice spacing 

acts as an ultraviolet momentum cut-off 7/a and the volume acts as an infrared 

cut-off; in this sense the lattice is regularising the Euclidean path integral. 

Various discretisations of the fields are possible, and in principle, any discreti-

sation will do as long as the continuum action is recovered in an appropriate 

limiting procedure involving a —~ 0 and V -+ oc. In practice, however, simula-

tions'near the continuum limit' will riot be achievable for many years to come, 

and each discretisation scheme brings its own set of problems. One issue of great 

practical importance is the behaviour of discretisation errors as a function of a. 

Throughout this thesis, we adopt Wilson's original discretisation of the gauge 

'Subject to certain conditions, such as reflection positivity, which need not concern us here. 



Chapter 2. Introduction to Lattice QCD 	 7 

fields [6]. The manner in which we represent fermions on the lattice also traces its 

lineage to Wilson, but incorporates improvements of more recent vintage [7, 8, 9]. 

2.2.1 Gauge fields on the lattice 

Wilson recognised that the way to preserve local gauge invariance on the lattice is 

to represent the gauge fields by SU(3) matrices on the lattice links instead of by 

su(3) matrices on the lattice sites. Thus, the SU(3) variable U (x, x + /i) 	U, 

is associated with the link joining lattice site x to its nearest neighbour in the 

si-direction, x + j. These link fields are the parallel transporters 

(J 	= eXp (_iqaA (x + 	exp (ig[ A1  (x) dx). 	(2.12) 

The ordered product of such link variables around the elementary square is called 

the plaquette L (x) 

D(x) =Ptx+V 	 (2.13) 

Note that 

UIX 	U (x + i, x). 	 (2.14) 

Local gauge transformations V (x) € SU(3) are defined at the lattice sites 

Of (X) 	V(x) j (x) 	 (2.15) 

Of 	6 (x)V(x) 	 (2.16) 

V (x) ir T7-1 (x + ). 	 (2.17) V 

The trace of the plaquette is gauge invariant by construction, as is the trace of 

any product of link variables around a closed path (Wilson loop). A path-ordered 

product of link variables capped by a fermion and an antifermion, such as 

is also gauge invariant 



Chapter 2. Introduction to Lattice QCD 	 8 

The pure gauge part of the lattice action is the sum 

S [U] = 0 	{i - Re Tr D ()}, 	 (2.18) 
L>V 

where fl = 6/g2. It differs from the continuum Yang-Mills action in Euclidean 

space by terms of order a2 . The constant term in equation (2.18) has no physical 

significance and is often omitted; we shall do this ourselves in chapter 6. 

The lattice counterpart of the continuum functional integral J' VA is f[dU] where 

[dU] 	fi dU,, 	 (2.19) 
AIX 

and the invariant group measure dU is the Haar measure. 

2.2.2 Fermion fields on the lattice 

The fermionic part of the lattice action that we adopt in this thesis is, for a single 

quark flavour, 

= I 	(x) (i_
KrCSW 	

) (
x) 	 (2.20) o,. F 1, (x) 

- 

The significance of Wilson's parameter r and the clover coefficient Csw  will be 

discussed shortly. Equation (2.20) is not complete as it stands arid must be 

supplemented by boundary conditions on the fermion fields. In this thesis, we 

use antiperiodic boundary conditions in the time direction 4, 

	

(x+LT4) —(x) 	 (2.21) 

and periodic boundary conditions in each spatial direction i, 

(x + LI) 	(x), 	.1= 1, 2, 3. 	 (2.22) 



Chapter 2. Introduction to Lattice QCD 	 9 

The hopping parameter 
= 

2ma 

1 

+ 8r 	
(2.23) 

is related to the bare quark mass through 

rn 	
-2 a ( -, - i 	

(2.24) 
, 

which we take as the definition of the critical value tr = ic; (a) of the hopping 

parameter. Henceforth, we shall absorb the factor 	in equation (2.20) into a 

redefinition of b and t/. 

If more than one quark flavour is present, then the , , K and r in equation (2.20) 

will carry flavour indices and the fermioruc action will be summed over flavours. 

Setting r = ü in equation (2.20) yields the naIve fermion action. Its leading 

discretisation errors are 0 (a2). However, it gives rise to 16 degenerate fermion 

species in the continuum limit. 

Setting r 0, Csw = 0 in equation (2.20) recovers Wilson's cure for the doubling 

problem. The 15 non-physical doublers of the naïve action are suppressed through 

the acquisition of a mass that diverges as a —+ 0. But a high price has been paid 

for this cure: Wilson's term explicitly breaks chiral symmetry and introduces 

0 (a) discretisation errors. In the remainder of this thesis, we shall take r = 1 

for computational convenience, as 1 (1 + ) is a projection. 

The purpose of the term proportional to Csw is to cancel, at least partly, the 

0 (a) discretisation errors introduced by the Wilson term. The clover coefficient 

Csw owes its name to the fact that 

iF(x) -
(jt 

- 8 	 VX+I ix+D 
Ut 

ux 

+UUt Ut Vx bx—/i 	 U +i x—zi bLx 11  

+ Ut Ut 	
(2.25) 

x— 

+ 	Ut U 	U 	Ut 	
] /LX - h. c. vx_ P— Vx+—V 

reminds some lattice practitioners of a four-leaf clover. The subscripts SW are 



Chapter 2. Introduction to Lattice QCD 	 10 

in deference to Sheikholeslami and Wohiert [7] who introduced this form of the 

action. Various prescriptions exist for fixing Csw, and each raises issues which 

are subtle, but incidental to the thrust of this thesis. 

The fermioriic action (2.20) can be expressed more succinctly by 

Sp = E b (x) M (x, y) (y) 	 (2.26) 

where M (x, y) is the Wilson fermion matrix and the subject of the next chapter. 

2.3 The lattice path integral 

Expectation values of operators 0 (u, ', ) are given on the lattice by 

(0 (u, 0
1 )) = 	f [dU] [d] [d] 0(U1 , ) exp (—S - SF) 	(2.27) 

where 

Z 
= f [du] [d] [d] exp (—S - SF) 	 (2.28) 

is the lattice partition function. We are still working, for simplicity, in a universe 

with only one quark flavour; the generalisation to more than one quark flavour 

is straightforward. 

As it stands, equation (2.27) is a statement about lattice QCD viewed as a 

statistical mechanical system. The connection with physics is made by identifying 

the continuum limit of the right hand side with the vacuum expectation value of 

a corresponding time-ordered operator in the continuum. 

Although it is possible to design algorithms for evaluating integrals over Grass-

mann variables, the problem in general exhibits exponential complexity [10, 11] 

and this kind of approach is not currently feasible on any but the smallest of lat-

tices. It is therefore standard practice to integrate out the Grassmann variables 

in equation (2.27) analytically, and then deal with the remaining integral over 

the gauge fields by other means. 



Chapter 2. Introduction to Lattice QCD 
	

11 

The integral 

J [d] [d] exp(- 
	

(x) M (x, y) (n)) = (let (M) 	(2.29) 

is standard (see eg. [21), and may he applied immediately to equation (2.28): 

Z = —  [dU] det (M [U]) exp (—S 9  [U]) 	/ [dU] exp (_s; [U]) 	(2.30) 

where we have introduced an effective action 

S 1U1  = S [U] - log det (M [U]) = Sps,  [U] - Tr log M [U] 	(2.31) pg L J 

which depends on the gauge fields alone. 

More complicated Grassmanriiani integrals can be handled using the machinery 

of generating functionals. This formalism leads to the following result: 

( 	(:u) (x)) = 	f [dU] exp (_s; [U]) M' (y, x) 	(2.32) 

and, more generally, 

( 	(m) ' (Xi) . . . 	(yr) 	(x) f [U]) 	 (2.33) 

= 	
f [dU] exp (_s [U]) j.  [U] E::M 1  (Zi, .x) . . . M (Z" x) 

where .f [U] is any function of the gauge fields, and the symbol 	is 1 (-1) 

if {ji . . j} is an even (odd) permutation of {i' 	. i}, or zero if {ji . . . §} is 

no permutation of {i1 	i} at all. Thus, performing the integral over fermion 

fields brings down a quark propagator M 1  = M' [U] for each quark-antiquark 

pair in the integrand. 

In general, what remains in the integrand of equation (2.27) after integrating 

out the fermions is the product of the effective action and an effective operator 

which depends on the gauge fields alone, and consists of the product of the 

original function of the gauge fields, and zero or more quark propagators (or, 



Chapter 2. Introduction to Lattice QCD 
	

12 

more usually, some contraction thereof). 

(0 (u,)) = f [dU]exp 	S,ff 	0(U). 	(2.34) 

We are now in a position to discuss the two major bottlenecks of lattice QCD. 

The first bottleneck is performing the integral over gauge fields, and the second 

bottleneck is calculating quark propagators. 

The integral over gauge fields is performed numerically, by Monte Carlo meth-

ods. Suppose that we have available a means for generating gauge configurations 

{U1 , U2,. . . UI\I} with probability 

P (UP) 	exp (-se [Uk ]). 	 (2.35) 

Then the expectation value may be estimated by 

(0 (U, 	 (Ui). 	 (2.36) 

The usual procedure is to simulate a Markov process that converges to the correct 

distribution in the "long time" limit, and then to sample gauge configurations 

at regular intervals after the simulation is believed to have equilibrated. These 

ideas will be made clearer in chapter 6. 

These simulations are horrendously expensive in terms of computer resources 

because of the determinants (one for each flavour) in S. The determinant, 

det M, is a highly non-local object. It can be computed in polynomial time by a 

factorisation scheme (eg. LU-decomposition), but this method requires 0 (12V) 3 

floating point operations and storage for (12V)2  floating point numbers .3 

In the quenched approximation, the computational effort is reduced by several or-

ders of magnitude by the simple expedient of setting det M to a constant, and it 

'With present-day technology, direct methods are completely infeasible on lattices larger 
than about V = 8. 



Chapter 2. Introduction to Lattice QCD 	 13 

is for this very reason that most simulations to date in lattice QCD have been car-

ried out in the quenched approximation. Physically, the quenched approximation 

is equivalent to neglecting the effect of virtual quark loops. Despite some notable 

successes (and failures), this approximation remains completely uncontrolled. 

One of the primary goals of pioneering simulations with dynamical jcrmions4  is to 

quantify the systematic errors that the quenched approximation induces in var-

ious observables. Chapter 6 is devoted to the (genieralised) Hybrid Monte Carlo 

algorithm, which incorporates the effect of the fermion determinants indirectly. 

HMC has yet to be displaced as the most popular method for taking into account 

the effect of virtual quark loops in a universe populated by quarks whose flavours 

come in mass-degenerate pairs. This, of course, is riot the real world, and genuine 

simulations of "full QCD" are yet to come. 

The second bottleneck is the calculation of quark propagators. Hitherto, we 

have employed the suggestive name fermion matrix; now we call upon the full 

machinery of linear algebra. The objects that the matrix M acts on have colour, 

spin and site indices, and belong to a vector space of dimension n = 3 x 4 x V. In 

this language, the object M (x, y) is itself a 12 x 12 matrix coupling sites x and 

y; choosing a basis in which colour and spin indices run faster tFiari site indices, 

it corresponds to one of the elementary squares in figure 3.1. At first sight, it 

appears that we will have to invert the matrix M, but fortunately5  this is not 

so. Because of the translational invariance of the continuum theory, it is usually 

necessary only to consider a quark propagating from a fixed site (usually the 

origin) to a site labelled by x: 

M 1  (x,O), 

so only 12 rows of the inverse are actually required. These are obtained by solving 

the 12 linear systems 

m0i = 'q, 	i = 1,.. . , 12 	 (2.37) 

4The fact that the term "dynamical ferrriions" has become more or less standard in lattice 
jargon, says much about the ubiquity of the quenched approximation. 

'Although M is sparse, M' is dense, and on any lattice larger than about 8 we would not 
even have sufficient memory to store M'. 



Chapter 2. Introduction to Lattice QCD 
	

14 

where each i7j is a point-like source of spin and colour at the origin. Despite 

the notation, the 	and 	in equation (2.37) are not, strictly speaking, lattice 

fermion fields (which are Grassmann-valued); instead they are humble column 

vectors, whose components can be put into one-to-one correspondence with those 

of a lattice fermion field. However, as no genuine fermion fields appear in any of 

the computer programs considered in this thesis, we shall follow accepted practice 

and refer to the objects exemplified by Oi  and as "fermion fields" or "4-spinors". 

Chapters 4 and 5 are devoted to methods for solving equation (2.37). 



Chapter 3 

The Wilson Fermion Matrix 

Figure 3.1: The block structure of the Wilson Fermion matrix on a, 34  lattice. 
Each elementary square represents a 12 x 12 matrix coupling spin and colour. 

3.1 Introduction 

The fermion matrix M is given by 

M=A—iD 	 (3.1) 

15 



	

Chapter 3. The Wilson Fermion Matrix 
	

16 

where the clover term 

A 	I - CSW W 	 (3.2) 

is local, and the hopping term 

D(x, y) 	{UfL(x)(l - 	)x+Thy + U,(x - )(1 + 	 (3.3) 

involves nearest neighbour couplings. 

M = M[U, ic, Csw] couples spin to spin, colour to colour and site to site, so it 

has order n = 4 >< 3 x V where V is the lattice volume. For a typical lattice, 

V = 24 x 48 arid n = 7962624. M is very large. 

As the space-time coupling is nearest neighbour, M is also sparse. Each row 

(column) of A has 3 >< 4 x (8 + 1) = 108 non-zero complex components. 

M is riot hermitiari, but it is J-hermitiari 

JM = MtJ 
	

(3.4) 

for J 	0 'oiour 0 'spatial, where 5 	75  is the familiar spin-permutation 

matrix. 

It is customary to describe M as 75-symmetric (_Y5-Fiermitiari might be more 

precise), and to write 

M = 5 Mt 5 	 (3.5) 

in which 'yr, 0 	0 'spatial has been abbreviated simply as 

The hermitian matrix 

Q='y5 M 	 (3.6) 

is also extremely useful, as is the lattice quark propagator M 1  = Q"ys. M and 

Q are equivalent but not similar. 



Chapter 3. The Wilson Fermion Matrix 	 17 

3.2 Eigenvalues and Eigenvectors. 

3.2.1 The eigenvalue spectra of Q and M. 

The fact that Q is hermitian immediately gives us a lot of information about its 

eigenvalues Ai  and normalised eigenvectors v. 

From 

Q v 	 (3.7) 

it is elementary to obtain 

(A - 	= 0 	 (3.8) 

from which follow the facts that 

the eigenvalues of Q are real 

eigenvectors of Q corresponding to distinct eigerivalues are orthogonal. 

Q has a spectral expansion 

(3.9) 

as does its inverse, when it exists 

Q_1 = 1A1v4. 	 (3.10) 

Expansions for M and M' can be obtained from these in the obvious way. 

Properties (3.8 - 3.9) do not go through for non-hermitian matrices. However 

some insight into the eigenspectrum of M can be obtained from 75-symmetry. 

It is necessary to distinguish between right eigenvectors 

Mri  =piri (3.11) 

and left eigenvectors 

o4 	 (3.12) 



Chapter 3. The Wilson Fermion Matrix 	 18 

First we notice that 

( sr )tM = r Mt 5  = p( r )t 	 (3.13) 

and similarly 

M(y58) = 9i('y53j). 	 (3.14) 

The left eigenvectors are obtained by multiplying the right eigerivectors by y5 , 

and vice-versa. 

A useful lemma is obtained by considering Q sandwiched between eigenvectors 

of M.' On the one hand 

r 5 M'r7  = 

and oil the other 

= 

and consequently 

(p* - p)r t s r = 0. 	 (3.10) 

Setting i = j tells us that each eigenvalue of M is either real or its corresponding 

eigerivector has zero chiraizi;y ', defined by 

X(X) =X 
t 75X 	

(3.16) 
XtX 

One widely known fact is that the pi are either real or occur in complex-conjugate 

pairs. This can be proved by considering the characteristic polynomial for M. 

P(p) = det(M - pI) 

det(ys) det(M - pI) det('ys ) 

det(y5Mys - pI) 

= det(Mt - pJ) 

= det(M_ p*I)* 

'The same result was published in reference [12] in the context of lattice QED2 , and hailed 
as a "new theorem". I noticed it in 1996, some 9 years after [13]. But see also [14, 15, 16, 17]. 



Chapter 3. The Wilson Fermion Matrix 	 19 

= 

So if p satisfies P(p) = 0, then p does too. This completes the proof. 

3.2.2 A 'spectral' expansion for M 

We now seek art expansion for M in terms of its eigenvalues and eigenvectors.2 

Such an expansion is easily written down for hermitian matrices (see eg. equation 

(3.9)). The situation is a good deal more complicated for non-hermitian matrices, 

whose eigenvectors will in general not be orthogonal. 

For the sake of clarity, let us assume that M is diagonialisable with non-degenerate 

eigenvalues. Appendix B shows how to handle the more general case of a diago-

nialisable J-hermitian matrix with possibly degenerate eigenvalues. 

Because the eigenvalues are real or occur in complex conjugate pairs, and by the 

assumption of non-degeneracy of eigenvalues, we have that for each rj satisfying 

(3.11) there is an unique j satisfying 

M 	= pj. 	 (3.17) 

When pi is real, ri and F coincide. This we use to re-write equation (3.15) in the 

form 

(p - p)rj = 0. 	 (3.18) 

We now make one additional assumption!, namely 

	

75rj :~ 0. 	 (3.19) 

(This assumption is not as restrictive as it looks. It turns out that 	'y 5rj is the 

Note added in proof. The same result was proven in 1987 by Itch, Iwasaki and Yoshié [13], 
but no details were given for the case of degenerate eigenvalues. I give a constructive proof of 
the more general case in Appendix B. 



Chapter 3. The Wilson Fermion Matrix 
	

20 

reciprocal of the spectral condition number csp (p) [18] of the eigenvalue p. So if 

our assumption (3.19) is untrue, the eigenvalue problem (3.11) is ill-conditioned 

anyway.) Using this assumption in equation (3.18), we deduce that 

(3.20) 

Let R be the n x n matrix whose columns are the right eigenvectors of M, and 

let A be the diagonal matrix of eigenvalues. 

R = H ...... 
	

(3.21) 

A = diag(pi ,. . . ,p) 
	

(3.22) 

Now consider the matrix product 

G 

-Y5Ti

45T] 5r1  

ri 	rTh ]= = [nXr 	(3.23) 

/ 
I 75Tn 

r5 n  

 

The second equality follows from equation (3.20). We have established that 

Notice now that 

R1 
r -y51 	ysn ] 
r5 	 t 	 (3.24) 

HA = [ 1.1 	.. Pnrn ] = MR. 	 (3.25) 

Thus M is diagonalised by H, and we obtain the following spectral expansion. 

M = RA R— = 
	

pPj 	 (3.26) 
=1 	i 'Y5 ri 	j1 



Chapter 3. The Wilson Fermion Matrix 	 21 

One readily checks that the {P} are a set of ri orthogonal projections 

P2  = 	PI P3 = 	 (3.27) 

so that 	P must be a resolution of the identity. 

By considering Tr 	one observes that 

0 = Tr 75 = 	 (3.28) 

fl ftp. 
0=fr75=TrR-y5R=t 	. 	 (3.29) 

i=1 T')'5Pi 

This last result provides a powerful consistency check on a complete set of eigen-

vectors of M computed by a numerical method such as the one described in 

chapter 8. 

3.2.3 The spectrum of M as a function of i 

Definition. A matrix A is shifted with respect to some scalar u if it is of the form 

A=aI+B 	 (3.30) 

and B is independent of a. 

Writing 

M(i) = 1 - 	 (3.31) 

Z 	 + D, 	 (3.32) 

we see that the matrix M/ic has this property for a 	1/ic. The matrix Q/ic is 

not so fortunate (the 	spoils things completely). We now use this property to 

show that:— 



Chapter 3. The Wilson Fermion Matrix 	 22 

The eigenvectors of M(i) are independent of ic for fixed CSW. 

The eigenvalues of M(ic') are completely determined by the eigenvalues of 

M(k). 

Let the eigenvalues p(i)  satisfying 

= 	 (3.33) 

be ordered by their real part 

Re p'(, ) <— Re p2(') <...< Re pn(k). 	 (3.34) 

Then 

Zrj = 	- M (r,)) ri rj 
	

(3.35) 

and 

M(tt')r, = M(ic + Si)r 

= (1— tZ)r - SK 	I"i 

= 

= 

= 

that is, 
/ 	6p\ 

p(i + S) = (1 + -) p() - -. 	 (3.36) 
/c 

Thus varying ic serves only to translate and dilate the spectrum. Consequently 

only real eigenvalues can be shifted to zero provided ic remains real. Given pc (K) 

real, we can make pc(/c + Jr,) vanish for Sic = 'cpc('c)(l - 



Chapter 3. The Wilson Fermion Matrix 	 23 

Furthermore, suppose that 

Re p j(i) - Re p(i) > 0, 	r, > 0, 	ISKI <t. 	 (3.37) 

Then 

pj(k + Sic) — pj(Ic + Sic) 	(i + 	(p(ic) - pj(Ic)), 	(3.38) 

and consequently 

Re p j(ic + Sic) - Re pj(Ic + Sic) > 0. 	 (3.39) 

From this we see that shifts in ic preserve the ordering of the eigenvalues. 

More generally, we remark that the transformations 

M [ic] —+ M [Ic; + Sic] 	 (3.40) 

M 	M [ic]-' 	 (3.41) 

M[ic] 	M[ic+sicr'  M[ic] 	 (3.42) 

induce corresponding transformations on the eigenvalues, leaving the eigenvectors 

unchanged. These are Möbius transformations, 

a+bp 
= 

	

	 (.43) 
C + dp 

where a, b, c, ci are complex, ac bd. 



Chapter 3. The Wilson Fermion Matrix 	 24 

3.2.4 Summary 

Q='y5 M M 

Q v, = Aivi MT-i  = PiYi 

(X - 	= 0 (p - 	= 0 

X, is real p 	is also an eigerivalue 

= 

vQ 5 M = pjry5  

V tV, 0  75  

75 T 

Q = t 5 Al, 	
1 r[i 	y 

r75 r, 

csp  CSI) (Pi) = 

fl 	 ri 

Tr Q 
n 	n 

Tr M = Tr Mt = 	= 
i=1 	i=1 	Ij75Tz  

v 5 v j 	0 _
TjT 	0 

i=1 1rj,57i 

+ S) =? p( 	+ S) = 	((ic + S)pj(ic) - 

vi depends on tr ri is independent of t 

det (Q) = fl)i j 	11pi  = det (M) = det (Mt) 



Chapter 4 

Linear systems I - point algorithms 

4.1 Introduction 

In this chapter, we are concerned with finding solutions ' to linear systems of 

the form 

(4.1) 

The coefficient matrix M is the non-hermitiari Wilson fermion matrix of chapter 3, 

but many of the observations made here will have broader applicability. If the 

source Tj is a unit vector in some basis, then the solution 0 may be interpreted as a 

column of the quark propagator M 1  in the same basis. In hadron spectroscopy 

it is usually the case that for each gauge configuration in the ensemble, the 

calculation must be repeated several times, eg. 12 times for point-like sources of 

spin and colour at the origin. We use the word "point" in "point algorithms" to 

distinguish these methods from block algorithms, the subject of the next chapter. 

Even on moderately sized lattices, direct methods such as Gaussian elimination 

are simply not viable. The memory requirements (essentially one needs to store in2  

complex numbers because the zero components of M fill in during the calculation) 

are beyond the specifications of even the largest supercomputers. Even if rows 

of the matrix were swapped out to disk, the problem of controlling round-off 

error would be intractable. It is therefore necessary to exploit the sparsity of M. 

Iterative methods do this in a natural way. 

Instead of working with M at the component level, iterative methods require a 

subroutine to implement the matrix-vector product y = Mx. This operation is 

25 



Chapter 4. Linear systems I - point algorithms 	 26 

defined unambiguously by the gauge fields and a few parameters (ic, Csw and 

boundary conditions). Thus the memory requirements are greatly reduced, and 

the computational cost of the matrix-vector multiply scales linearly with the 

lattice volume (instead of quadratically as it would for a matrix-vector multiply 

involving an arbitrary full matrix). 

Iterative methods are traditionally divided into two classes. 

Stationary iterative methods are characterised by relations between succes-

sive approximations 0(k)  of the form 

(k+1) = 	+ c 	 (4.2) 

where both the matrix B and vector c are constant, independent of the 

iteration count k. This class includes Jacobi, Gauss-Seidel, SOR and SSOR. 

Non-stationary iterative methods. 

Generally speaking, the non-stationary methods outperform the stationary ones 

to such an extent that interest in the stationary methods is now primarily his-

torical or pedagogical in nature. We will have nothing more to say on stationary 

methods except to remark that SSOR lives on as an effective preconditioner for 

non-stationary methods. 

Part and parcel of any iterative method are convergence criteria. Ideally we would 

like to terminate when the kth approximation 0M is close enough to the "true" 

solution 0H = Mr/, ie. when 	(*) - (k is sufficiently small.' But 0H is 

not available and so convergence criteria are usually based on the residual vector 

r(k) =77 - 	or its norm I jr(k)H, sometimes called the residuum. Obviously, 

if 1jr(k)H = 0 then ,(k)  satisfies equation (4.1) and we say that the method has 

converged. In practice, however, we use finite-precision floating point arithmetic 

'Unless otherwise stated, the norm 114 of a vector z shall be the 2-norm lIz112 = 



Chapter 4. Linear systems I - point algorithms 	 27 

and we must be content with 

(4.3) 

for some cut-off cl and scale t. S should be chosen to ensure that the solution is 

sufficiently accurate for the purposes to which it will be put (ie. that the error 

due to imperfect convergence is significantly smaller than statistical errors). i 

reflects the scale of the problem; we generally take ft = ft'jH•2 it is usually 

pointless to take S smaller than the machine epsilon appropriate to the precision 

used to represent ,(k)  and TIM, even if (lot products are performed in a higher 

precision, because then the error in r(k)  I I will exceed 	itself, and subsequent 

iterations will not improve the solution. 

The error in the solution is related to the residual by 

- 	= M_lr(k) 	 (4.4) 

and consequently when the convergence criterion (4.3) is satisfied the error is also 

bounded. 

- 	max 	 (4.5) 

Here a (M) denotes the eigenvalue spectrum of M. This bound is considerably 

weaker than the bound on the residuum, especially near the chiral limit where 

M develops very small eigenvalues. 

The remainder of the chapter is structured as follows. Section §(4.2) gives a brief 

introduction to the subject of preconditioning. We see that red-black precondi-

tioning, now the traditional choice in lattice QCD and the one adopted here, can 

be arrived at in a number of ways. We note that when the Clover action is used, 

there are two alternative forms of red-black preconditioning. The first results in 

a 'y5-symmetric coefficient matrix and this is the form used in all numerical tests 

in this chapter. The second does not preserve the 'y5-symmetry of the coefficient 

2 A sensible alternative, often used by numerical analysts, is i = I r(°) H. Of course, 
and 1 ,q11 coincide when the initial guess is the zero vector. Some groups use 	= I'H. This 
must be recomputed at the end of each iteration. 



Chapter 4. Linear systems I - point algorithms 	 28 

matrix but does turn out to be faster in conjunction with algorithms that do not 

depend on 'y5-symmetry; we shall return to this point in the context of optimising 

Generalised Hybrid Monte Carlo simulations in chapter 6. 

Section §(4.3) describes several of the more popular and successful iterative meth-

ods which have been applied to propagator calculations in lattice QCD. In the 

interests of brevity, I do riot go into the underlying theory in any great detail. 

The reader may refer to the textbook [19] for a relatively accessible introduction 

to the theory of conjugate gradient methods, or to the book [20] for a more prag-

matic survey of a wide variety of methods and a comprehensive set of references, 

or to the excellent review [21] of the state of the art of propagator calculations 

in lattice QCD. 

Section §(4.4) discusses some of the issues involved in implementing and testing 

these methods. It will be seen that there is much in common in the overall 

structure of the various methods, and in the kinds of elementary operation that 

each performs. Consequently many of the computational "building blocks" were 

already available to me in the form of subroutines bequeathed by my predecessors 

[22, 23]. 

In section §(4.5) I compare the performance of these algorithms using realistic 

configurations and parameters. 

In section §(4.6) I consider the case of exceptional configurations. By "exceptional 

configuration" I mean operationally that the corresponding fermion matrix de-

velops a very small eigenvalue at a valence r, below the critical value Kc  of the 

ensemble. These are a problem in the quenched approximation, especially at large 

lattice volumes and large Csw.  I describe a method based on the idea of project-

ing out the eigenvector corresponding to the eigenvalue of smallest magnitude. 

Although this method converges in cases where MR, BiCC('ys ), and BiCCSTAB 

fail miserably, it turns out that QMR(y5 ) is the method of choice. 

In section §(4.7) 1 make some concluding remarks. 



Chapter 4. Linear systems I - point algorithms 	 29 

4.2 Preconditioning 

The convergence rate of iterative methods depends on the spectral properties of 

the coefficient matrix M. The idea of preconditioning is to transform the original 

system to one with more favourable spectral properties. Thus a solution 0 to 

equation (4.1) also satisfies 

V 1 MV 1 V2 L' = 	 (4.6) 

for any non-singular V1 , V2. We identify M = V1 1 MV2 1 , ' = Vb, =Vi 

and work with the transformed system 

Mo fl, 	 (4.7) 

recovering 	V2 / at the end. The better that V = V, V2  approximates M, 

the better the preconditioner. Sometimes a distinction is drawn between kJt 

preconditioning in which V2  = I, right preconditioning in which V = I and 

symmetric (or central) preconditioning in which Vi  = V2 , but it is often useful to 

refer to V as the preconditiorier and to discuss its properties without specifying 

the details of its factorisation. The residuals of the original and preconditioned 

systems are related by 

(k) = - Mb(k) = v1 	V i(k). 	 (4.8) 

To he useful, the overhead of multiplying by V1 1  and V2 1  must be offset by a 

reduction in the number of iterations required for convergence.' 

The choice of preconditioner is influenced by the requirement of scalability on 

parallel computers. This rules out some otherwise excellent preconditioners. 

:3Qftefl  the explicit form of V1 1  and V is not known, and one must instead solve equations 
of the form Vx = b. 



Chapter 4. Linear systems I - point algorithms 	 30 

4.2.1 Polynomial preconditioning 

Preconditioning with V-1  a polynomial in M inherits the parallelisation proper-

ties of the underlying matrix-vector product. When used in conjunction with a 

Krylov subspace method, polynomial preconditioning can be expected to require 

at best the same number of multiplications by M as the unpreconditioned system. 

To see this, take the view that a Krylov subspace method generates a polynomial 

in M which is a near optimal reductor for r(0).  However, the polynomial precondi-

tionier can reduce the number of iterations and hence the number of vector-vector 

operations. Practical experience indicates that polynomial preconditioning equa-

tion (4.1) usually does not lead to a reduction in wall-clock time. Nonetheless, 

it has been reported that 4th-order polynomial preconditioning extends the vi-

ability of MR to lighter masses, at a small cost in wall-clock time in the region 

where both 4th-order polynomial and red-black precondition irig coniverge[24]. 

4.2.2 Jacobi preconditioning 

Jacobi preconditioning (or diagonal scaling) is simply preconditioning with V = (Vjj) 

equal to the diagonal of the coefficient matrix M = (M), ie. 

Vij 	rn2 5. 

Block Jacobi preconditioning is the obvious generalisation to preconditioning by 

diagonal blocks of M. 

4.2.3 D-ILU 

This is an incomplete factorisation method in which only the diagonal elements 

are altered. In the special case in which the coefficient matrix can be written 

as I + L + U with L (U) strictly lower (upper) triangular, the preconditioner is 

simply V= (1+ L) (1+ U). 



	

Chapter 4. Linear systems I - point algorithms 	 31 

4.2.4 Red-black preconditioning 

Red-black (or even-odd) preconditioning has long been the de facto standard in 

lattice QCD. 

Working in a basis where all even sites appear before all odd sites induces a 

block-structure on M, and equation (4.1) becomes 

( A 
	-iD00) 

 

 ( 0, ) 

	
( 	

) 
(49) 

-iD0 	A00 	b0 	r,0 
  

Left-multiplying equation (4.9) by 

V1-1 = I + DA 	( 	
I 	

(4.10) 
\ 	 I 	/ 

leads to the decoupled system 

( A 	-- 00 0 	
( 	- ( 	+ kD00AQ1 710 

0 	 A00  - ,2 D00 A/ D, ) 	) - i, +DA'r 6  

(4.11) 

We can now choose either parity p (even or odd), and identifying 

MrIp =APP - k2DA'D-pp 	 (4.12) 

= fif (4.13) 

we can solve 

	

= 	 (4.14) 

on one subspace and reconstruct the other parity of the solution O j5  from 

	

= A 	( + 	 (4.15) 

This results in a significant reduction in memory utilisation and a speed-up of a 

factor of typically 2-3 in wall-clock time, due to the fact that M., has a lower 



Chapter 4. Linear systems I - point algorithms 	 32 

condition number than M. The costs of multiplying a vector by M or one parity 

by M are nearly identical. 

Note that M retains the property of 75-symmetry. However, in contrast to the 

original matrix M, the preconditioned matrix is riot proportional to a shifted 

matrix unless Csw = 0, owing to the hidden k-dependence in A-'. It is for 

this reason that multiple-mass tricks [25, 26, 271 are much more attractive when 

csw=0. 

In exact arithmetic, the residua of the original and preconditioned system co-

incide. For example, solving on the even parity (p = e) we find after a simple 

calculation that 

r=r1—M= (-) = () 	
(4.16) 

In the finite precision that must be used in practice, the second equality begins 

to break down as the target residuum approaches the machine epsilon owing to 

cancellation errors. Using 32-bit precision for the fermion and gauge fields and 

a target residuum of i0ij, one usually finds that ftH is slightly larger than 

When 	0, it is sometimes worthwhile to apply a second block Jacobi 

preconditioner to the system (4.14), ie. left-multiply by A; and work with the 

coefficient matrix 

MPP= I + AD -A 1 D 	 (4.17) PP PP  PP 

instead, at the cost of destroying 'y5-symmetry. This alternative form of red-black 

preconditioning for the clover action may also be thought of as: 

1. Block Jacobi in an even-odd basis with V1  = A, V2  = I, followed by D-ILU 

with V1  = I + L, V2  = I + U, L = —icA]D0 , U = k ce ADeo. The key 

4A possible remedy is to restart using the full (unpreconditioned) matrix. 



Chapter 4. Linear systems I - point algorithms 	 33 

observation here is that 

(I+L) 1  =J — L. 	 (4.18) 

Block Jacobi in an even-odd basis with V1  = A, V2  = I, followed by poiy-

nomialpreconditioning with V1 ' = I+kAD, V2 = I. Notice that V1 ' is 

the approximation to (I - ic A 1 D) obtained by truncating its Neumann 

series at O(K). 

SSOR preconditioning applied to the red-black ordering. 

All of these methods lead to the same decoupled systems of equations. We will 

have more to say on this preconditioner in the context of accelerating Hybrid 

Monte-Carlo simulations in chapter 6. 

4.2.5 LL-SSOR preconditioning 

The recently introduced locally-lexicographic SSOR preconditioning, although 

beyond the present scope, has much to recommend it and it is somewhat apolo-

getically that I refer the reader to the paper by Fischer et. a]. [28] for a full 

treatment. My reason for not including LL-SSOR preconditioning in these stud-

ies is a pragmatic one: insufficient time. To implement LL-SSOR efficiently on 

parallel machines such as the Cray-T31) is known to be difficult, especially when 

the Clover action is used, and several marl-years of effort had already gone into 

writing highly optimised matrix-vector multiply routines in assembly language for 

the Cray-T3D and Cray-T3E using the red-black preconditioned fermion matrix 

and Clover action. 



Chapter 4. Linear systems I point algorithms 
	

34 

4.3 Point Algorithms 

The tests of iterative methods in this chapter were carried out using the 5-

symmetric red-black preconditioning equation (4.14), except where explicitly in-

dicated to the contrary. For convenience, I shall suppress for the remainder of this 

chapter all notational glyphs (such as ) which distinguish between the original 

and preconditioned objects. 

4.3.1 Over-relaxed minimal residual 

We start with minimal residual (MR) because it is the simplest of all non-

stationary iterative methods, can he applied for any non-singular coefficient ma-

trix, and yet exhibits many generic features. 

In each iteration of MR., the solution is updated in the direction of the most recent 

residual. When the over-relaxation parameter w = 1, the distance the solution 

moves along this direction is such that the next residual is minimised, and the 

algorithm is essentially a steepest descent method and liable to become trapped 

in a local minimum. When w > 1 (w < 1) we have over-relaxed (under-relaxed) 

Minimal Residual. In general, any particular linear system may have an optimal 

value of w, riot known a priori. However, the convergence rate of MR appears 

to be fairly insensitive to w near its optimal value, and anything in the range 

1.05 <w < 1.4 is reasonable in QCD applications. We generally use w = 1.1[22]. 

The initial guess 0M can be chosen freely. Our usual choice is 0(0) = 

In a practical implementation of MR, memory is allocated for only one solution 

vector and one residual vector, and the operations (4.22, 4.23) become saxpys. 

Additional storage is required for the work vector s. Once the initial residual r °  

has been set up, the source Tj is not required during the iteration, and this can be 

exploited to economise on memory usage, eg. by overlapping s with T1. The price 

to pay is that it may be necessary to reconstruct nj later (or even reload it from 

'When available, a solution for the same source 71 and gauge configuration at a nearby ic 
will generally be a superior guess, saving a few iterations. The solution for a different source is 
usually inferior. 



Chapter 4. Linear systems I - point algorithms 	 35 

disk if smeared sources are used). This is the case (a) if red-black preconditioning 

is used, as the other parity of the source is needed to determine the other parity 

of the solution, or (b) if an independent check on the residual is desired, or (c) 

if the algorithm is to be restarted. As memory has become cheaper over recent 

years, the necessity of economising on memory usage has diminished somewhat, 

and in some cases (eg. fuzzed sources at heavy masses) the overhead of reloading 

the source from disk may be significant. A simple strategy to avoid the extra 

disk accesses is described in [29]. 

MR 

- MO(0) 	 (4.19) 

for k 	0, 1,2,... until convergence do { 

= Mr 	 (4.20) 

(4.21) 

(k+1) = 	
+ 	 ( 4.22) 

1.(k+1) 	- WOS 	 (4.23) 

} 

4.3.2 Conjugate Gradient 

The conjugate gradient (CG) method of Hestenes and Stiefel [30] requires an 

hermitian positive definite coefficient matrix. But for non-hermitian M, one 

must apply CG to one of the normal equations 

(MtM) = 	 (4.24) 

or 	

(MMt) = , 	= M. 	 (4.25) 



Chapter 4. Linear systems I - point algorithms 	 36 

The first form equation (4.24) is left preconditioning with V 	Mt and leads 

to a method that minimises the residuum. This is known as Conjugate Gradient 

on the Normal equation, least Residual formulation, and is usually abbreviated 

CGNR.. 

The second form equation (4.25) is right preconditioning with V2 1  = Mt, and 

leads to a method which minimises the norm of the error 	- 	. As 

this quantity is not computable, convergence criteria must still be based on the 

residuum. This is known as Conjugate Gradient on the Normal equation, least 

Error formulation, and is usually abbreviated CGNE. Simpson [22] found numer-

ically that, iteration by iteration, CGNE delivers an iterate marginally closer' to 

the true solution than does CGNR. (as is only to be expected) despite a consid-

erably larger residuum. As our central purpose in this chapter and the next is to 

compare the performance of quite different algorithms, it behoves us to compare 

like with like and so we use CGNR, without further apology. 

In exact arithmetic, the convergence of Conjugate Gradient in a fixed number of 

iterations  is guaranteed provided only that the coefficient matrix is non-singular. 

Transforming the original system to one of the normal equations is at first sight 

highly attractive. The price to pay is that both methods square the condition 

number of the system. Another way to see that the normal equation approaches 

are likely to have an adverse effect on the conditioning of the system is to regard 

(M_i)t 	(Mt) 
i 	

as a preconditiorier and to observe that Mt is a very 

poor approximation to M'. 

Before leaving the subject of Conjugate Gradient, it is worth explaining why this 

method is so special. Conjugate Gradient is an example of an iterative method 

which produces approximate solutions that 

1. are characterised by a (global) minimisation property over Krylov subspaces 

generated by the coefficient matrix (minimisation) 

'in the 2-norm 
7equa! to the order of the coefficient matrix 



Chapter 4. Linear systems I - point algorithms 	 37 

2. can be computed with little work per iteration (short recurrences). 

The class of methods having both of these properties are sometimes called con-

jugate gradient methods. That Conjugate Gradient itself has the minimisation 

property is due to the fact that an hermitiari positive definite matrix A induces 

a norm HA  through 

= \/JA. 	 (4.26) 

Although conjugate gradient methods do exist for coefficient matrices which are 

not hermitian positive definite, the fermion matrix M is not so blessed. Necessary 

and sufficient conditions for the existence of a conjugate gradient method are 

given in [31]. 

The remaining methods considered in this chapter work with M as the coefficient 

matrix. Motivated by the fact that lattice computations are memory-limited due 

to the large size of the objects involved, we focus on methods which preserve 

the property of short recurrences at the expense of minimisation. In some cases, 

it is possible to introduce a relaxed version of the minimisation property; for 

example, QMR minimises something (but it is neither the norm of the error nor 

the norm of the residual), and BiCGSTAB incorporates a local minimisation of 

the residuum over the last two search directions. 

An example of a method which preserves global minimisation at the expense of 

short recurrences is GMRES. It is therefore optimal in terms of matrix multipli-

cations amongst algorithms working within the same lKrylov subspace. On large 

and difficult problems, GMRES will exhaust the available memory before conver-

gence is reached and it becomes necessary to restart the method using the latest 

solution as the initial guess. Thus GMRES(k) stores at most Ic previous search 

directions. Also, the required number of vector-vector operations per iteration 

increases with the iteration number, and eventually the cost of vector-vector op-

erations dominates over matrix-vector multiplies. Others, eg. [32, 21], have found 

that in QCD applications BiCGSTAB typically converges in a number of matrix 

multiplies comparable to that of even full GMRES (GMRES(oo)). Assuming the 



Chapter 4. Linear systems I - point algorithms 	 38 

optimality of GMRES(oo) they conclude that, there being no room for major im-

provements from choice or design of algorithm, research in this field is essentially 

mature.8  

4.3.3 Bi-Conjugate Gradient 

The Bi-Conjugate Gradient algorithm (BiCG) of Lariczos [33] and Fletcher [34] 

may be viewed as a generalisation of CC to non-hermitian, indefinite systems. 

As we shall be studying a more general version of the algorithm in chapter 5, we 

shall not dwell on the details of the algorithm here. However, a few remarks are 

in order. 

BiCG constructs five sequences of vectors, x(k)  (the approximate solutions), r(k) 

(the usual residual), (k) ,  (k),  (k), satisfying 

= r,i - Mx (k) ,  

((i))t () = ((fi)f 	= o 

(4.27) 

Vj < i, 	 (4.28) 

(bi-orthogonality), and 

( (j) )t 	= ((fi)t Mt(3) = 0 	Vj < i 	 (4.29) 

(biconjugacy). The kth residual r(k)  is constructed to lie within the Krylov sub-

space 

Ak (M, r(°))= span{ r °), 	. . , Mk_lr(o)}. 	(4.30) 

Similarly, 
(k)  e i' (Mt, (o)) 	 (4.31) 

Like CC, BiCG can be implemented using short recurrences, but unlike CC, it 

does not minimise the norm of the residual vector. However, assuming exact 

arithmetic, BiCG must terminate in ii < n iterations. If ii = n, rM will be 

'This does not rule out the possibility of accelerating propagator calculations through other 
avenues such as preconditioning, block algorithms or multi-grid. 



Chapter 4. Linear systems I - point algorithms 	 39 

orthogonal to a space of dimension n and hence must vanish. Premature termi-

nation, due to the breakdown of the underlying Lanczos process, is possible. The 

symptom is that the next iteration calls for division by zero. Exact breakdowns 

are extremely rare in practice, but a near breakdown can lead to fatal loss of 

precision. 

The convergence history of I jr(OH is far from monotonic, typically showing local 

fluctuations of several orders of magnitude. Nonetheless, BiCG is less susceptible 

than MR, to critical slowing down as K - i. 

This erratic convergence can lead to numerical problems. Using 64-bit precision 

alleviates these in most cases, but does not address the underlying cause. 

We also remark that restarting BiCG is usually undesirable. Following a restart 

the solution will pick up components in directions previously eliminated by biortFiog-

onality, arid, since BiCG lacks any minimisation property, a large number of it-

erations may be required before the solution begins to improve. It may be better 

to use a different algorithm to "polish" the solution. 

For the specific choice r (°) = 5 (°) , it turns out that 	) = y5r(k) Vk and similarly 
= 5(k) Vk. The proof, by induction, relies heavily on the y5-symmetry of 

M. This trick, pointed out in [35, 251, means that vectors m(k)  and 	) can 

be eliminated completely, as can all multiplications by Mt.  Moreover, all the 

coefficients become real, which further reduces the cost of the remaining vector-

vector operations. As there is no a priori reason to suppose that the choice 
(o) 	y5r() should have any adverse affect on the convergence of the algorithm, 

it is fair to say that the trick reduces the computational effort of BiCG by a factor 

of 2. We call the resulting algorithm BiCG(-Y5).' 

Storage is required for the vectors 	)r(k),p(k),t.  As for MR and CGNR, 1  is 

riot required during the iteration. 

Early studies of BiCG in the context of fermion matrix inversions [36] did not make use of 
this trick but still found regimes in which BiCG outperformed MR and CG. 



Chapter 4. Linear systems I - point algorithms 	 40 

BiC G (_y5) 

- M'çb °  

ao 	
( (0)\t 'y5r (j)  =y )  

for k = 0, 1,2,... until convergence do { 

t = MP 

S = Qk/ (p))t5t 

b(k+l) = 	+ 

r (k+1)(k) =r - 

k+1 = ((k+1))t 	7.(k+1) 

(k+l) = 7.(k+1) + (ak+1 /ak) P (k) 

4.3.4 Quasi-Minimal Residual 

The Quasi-Minimal Residual method of Freund and Nachtigal [37] was formulated 

in an effort to overcome the problem of breakdowns in BiCG. Like BiCG, QMR. is 

based on the non-hermitian Lanczos process, and the two methods are intimately 

related.'°  The Lanczos vectors themselves, here denoted v(k)  and 	appear 

explicitly in QMR but not in BiCG. 

In its full version, QMR employs a look-ahead Lanczos algorithm [38] to avoid 

all such breakdowns except the so-called "incurable" ones. The look-ahead Lanc-

zos algorithm relaxes the bi-orthogonality condition between the two Lanczos 

sequences whenever the standard algorithm would break down. Although the 

computational cost of a look-ahead step is approximately the same as that of 

101n fact, the BiCG iterates and residuals can be recovered from the QMR ones. 



Chapter 4. Linear systems I - point algorithms 	 41 

a standard iteration, there is a potentially large memory overhead: in essence, 

previous Lanczos vectors must be remembered for as many iterations as are nec-

essary to "cure" the breakdown. In this work we consider only a simpler version 

of QMR without look-ahead. Even without look-ahead, QMR offers certain ad-

vantages over BiCG: its smoother convergence history places less demands on the 

numerical bandwidth of the supporting architecture. 

QMR constructs its approximate solutions in the Lanczos basis and imposes a 

'quasi'-minimisation on the residual.11  This uses the QR decomposition and can 

be updated cheaply, ie. without sacrificing short recurrences. 

The y5-symmetry of M can he exploited to eliminate the multiplication by Mt in 

each iteration, as well as reducing the memory costs. One chooses 'w° = 757)(0) 

then proves by induction that w(k) 	5w(k), Vk. We call the resulting algorithm 

QMR(-y5 ). 

Note that QMR does riot provide a recurrence for the residual vector. However, an 

upper bound on 	in terms of I jr(o) H, k and 5i,..., Sk was established in [37]. 

It is easy to formulate an alternative stopping criterion based on this bound, and 

to explicitly calculate the residual (requiring an additional matrix-vector multi-

plication) only after the bound is small enough.' 2  Occasionally, when working in 

32-bit precision with an ambitious target residue, it was observed that, approach-

ing convergence, the true residual had a norm larger than that of its theoretical 

upper bound. This was interpreted as a symptom of accumulated numerical 

problems (round-off and loss of bi-orthogonality), and the code was modified to 

force a restart under these conditions. However, even with this modification, the 

method sometimes stagnates with 	one or two orders of magnitude larger 

than the machine epsilon. It is for this reason that I recommend that QMR. be  

used in 64-bit precision for quark propagator calculations. 

"The quasi-minirnisation idea has recently been applied to a host of algorithms, eg. QMR-
CGS and QMRCGSTAB(k) which can be found in the literature. 

121fl my implementation, I compute the true residual once the upper bound is within an 
order of magnitude of the convergence target for Ir(I, and I find typically that only a few 
additional iterations are required. 



Chapter 4. Linear systems I - point algorithms 	 42 

QMR('ys) 

- MOM 

= p = 
l) = 	= 	= 0; 	= 

6-1 = c_i = co = 1; s—i = so  = 0 

for k = 0, 1, 2,... until convergence do { 

Sk = (v(k)) t 5v(k) 

t = MV 

= ((k)) 5ts 

fi8k/8k-1 

(k+1) = t - 	- 

= 1H (I+1) 

9= sk-1/3; 'y = 

C 	+ sa; = —s + ca 

- 	+ p 2  

= 

= ( 	== 0? 1 : ck+1 p/) 	 (4.32) 

X 	+ 5k+1P 

(k) = (v - (k_1) - 9p(k_2))/x 
0(k+1) 	11,(k) + ck+l,p(k) 

/1 = 

} 

Equation (4.32) is written using the ternary operator (? :) borrowed from the C 



Chapter 4. Linear systems I point algorithms 	 43 

programming language. The digit 1 preceding the colon was incorrectly printed 

as 0 in reference [25]. 

4.3.5 Stabilised Bi-Conjugate Gradient 

So far in our treatment of Krylov-subspace methods we have focused on recur-

rence relations between vectors. From a theoretical point of view it is sometimes 

more fruitful to view these methods in terms of recurrence relations between 

polynomials. For example, the statement that the B1CG residual lies in the 

Krylov-subspace generated by M and (0)  may be written in the form 

(k) 
= Pk (M) r ° 	 (4.33) 

where Pk  (M) is a polynomial in M of degree k - 1 satisfying Pk (0) = I. State-

ments about the convergence properties of an algorithm translate into statements 

about the efficiency of their residual polynomials as reductors acting on 

Sonneveld [39] devised an algorithm (Bi)Conjugate Gradient Squared (CGS), in 

which the residual polynomial of BiCG is applied twice 

(k) 
GGS = Pk (M)2 	 (4.34) 

An attractive feature of this method is that, in each iteration, the multiplication 

by Mt  in B1CG is eliminated in favour of an additional multiplication by M, 

which is used to expand the Krylov subspace.13  CGS often (but not always) 

converges significantly faster than BiCG. However, due to the squaring of the 

residual polynomial, the erratic convergence behaviour of BiCG is exacerbated 

in CGS. 

A drawback of CGS is that, even if Pk  (M) is a good reductor for 	it does not 

"The literature of numerical analysis often places a high premium on transpose-free methods 
in which multiplications by the transpose (or hermitian conjugate) of the coefficient matrix 
are avoided, as these operations are often difficult to implement efficiently. For us, however, 
multiplication by Mt  is no more difficult than multiplication by M, and we have equally efficient 
subroutines for both. 



Chapter 4. Linear systems I - point algorithms 	 44 

necessarily follow that pi, (M) will be a good reductor for Pk  (M) 

Van der Vorst [40], following a suggestion by Sonneveld, devised another method, 

Stabilised 131-Conjugate Gradient (BiCGSTAB), in which the residual polynomial 

Of CGS Pk  (M)
2  is replaced by the product pj, (M) Tk  (M). The polynomial 'rk is 

built up in factored form 

k () = ( 1— xoe) (1— Xi) . . . (1 - Xk—i) 	 (4.35) 

where a new zero 1/Xm  is added in the mth iteration, corresponding to a 1-

dimensional minimisation of r(m )H. It is for this reason that BiCGSTAB is 

sometimes described as a hybrid method, the product of BiCG and restarted 

GMRES(1). 

BiCGSTAB was subsequently extended to complex arithmetic by Gutknecht [41], 

and it is his version that we use in the present work. Earlier numerical studies in 

the context of lattice QCD can be found in [42, 32].' 

A detailed analysis of the relationships between the various sequences of orthogo-

nal polynomials would take us too far afield, so I content myself with setting out 

the algorithm and making a few general remarks. For variety, I have suppressed 

iteration numbers wherever possible in writing down the algorithm. Iteration 

numbers are convenient for discussing the theoretical properties of an algorithm, 

but get in the way when designing a computer implementation; here one is more 

concerned with minimising storage and memory-memory copies. 

Storage is required for the vectors /,q,ro,r,v,p,s,t. A significant improvement 

over the naïve implementation is achieved by overlapping the vectors r and s 

in memory, thus saving storage for one vector, and reducing the floating point 

operations count. Although this was pointed out in the original paper by Van 

der Vorst [40], it does not appear to have been widely exploited in lattice imple-

mentations. As usual, the source 77 is not required during the iteration, and if 

14A thorough numerical comparison of CGNR, BICGSTAB and BiCGSTAB2 with Wilson 
fermions in compact lattice QED was reported in [43]. 



Chapter 4. Linear systems I - point algorithms 	 45 

necessary the memory allocated to i  can be reused by another vector, eg. r. 

BiCGSTAB 

r = 	= q - Mb 

v=p=O 

P0 = a = w = 1 

for k = 0, 1,2,... until convergence do { 

pk-I-1=(r(0)  ) t r  

= (pk+1/pk)(a/w) 

p = r + f(p - wv) 

V = MP 
/ 

a=pk+1/y 
(o)  \t 
 ) V  

= r - av 

t=Ms 

0) = tts/ttt 

b+ws+ap 

r = s - w1 

III 

Note that one iteration of BiCGSTAB involves two multiplications by M. 

BiCGSTAB represents a considerable advance over BiCO. The local minimisa-

tions leads to a much smoother convergence than in BiCC, with a concomitant re-

duction in cancellation errors. Hence BiCGSTAB can generally achieve a smaller 

residuum than can BiCO using arithmetic of the same precision. Furthermore, 

the local minimisations make restarting with BiCGSTAB a viable proposition. 



Chapter 4. Linear systems I - point algorithms 	 46 

However, BiCGSTAB will break down whenever BiCG does. 

It is only when BiCG can be applied in its -y5-symmetric form BiCG('ys) that 

the computational effort required becomes comparable to that of BiCGSTAB. 

BiCGSTAB of course has the advantage of being applicable to systems that do 

not possess this symmetry. 

4.3.6 Another Stabilised Bi-conjugate Gradient 

If BiCGSTAB is viewed as the product of BiCG and GMRES(1), it is natu-

ral to expect that products of BiCG with GMRES(k) should exist. Cutknecht 

[41] derived such a method, called by him B1CCSTAB2, which replaces the 1-

dimensional minimisatioris of BiCGSTAB with 2-dimensional ones. Cutknecht 

argued that BiCGSTAB2 should be particularly beneficial for real non-symmetric 

matrices with complex spectrum. 

The algorithm given below is entirely equivalent to Gutknecht's, but I have sup-

pressed unnecessary iteration numbers and re-ordered operations to simplify the 

coding task. It is immediately apparent that both the storage requirements 

and the number of vector-vector operations per iteration are greatly increased 

with respect to BiCGSTAB. Consequently, if BiCGSTAB2 is to be preferred to 

BiCGSTAB, a compensating reduction in matrix-multiplications must be forth-

coming. In all my tests I found this not to be the case; the small reduction in the 

number of iterations was never sufficient to offset the increased work per iteration, 

and BiCGSTAB2 invariably consumed more wall-clock time than BiCGSTAB. 

Storage is required for the vectors 	(k) ,  /,(ki),  (k+I) 	(k) 	(k1) q, 

r, s, t, u, v, X. 	may be overlapped with 	as may (l)  with (k1)  

and u with r. 



Chapter 4. Linear systems I - point algorithms 	 47 

BICGSTAB2 

r = 	= 	= - M ° ; PU = 

for k = 0, 1,2,... until convergence do { 

if (k is odd) { q = s + Op(k_1); x = 1 + v} 

V = MP (k) 

Qkpk/(V(0)  ) t V 

if (k is odd) { x = s - ajx } 

S = - kV 

if (k is even) { 

w = tts/tt 

(k+i) = (k) + okp(k)  + ws 

r = s - wt 

pk+1 = (r
(0) t 

) p 

(pk+1/pk)((Yk/w) 

pk+1 =T + 	
- WV) 

} else { 

compute x  which depend on (s - x),t,x 

(k+1) 
	
[(k_1) + ak_1p1)  + Ozkql + 

[(k) 
 + 	- x 

p = (1 - )x + s + Xt 

Pk+1 	((0))tr; 	= — (pk+i/pk)(ak/x) 

(k+1) = r + [(1 - )q + (k) 
 + xv] 

} 

III 



Chapter 4. Linear systems I - point algorithms 	 48 

4.4 Implementation and testing 

It is appropriate to preface this section by some historical remarks. When I 

started this work, the UI<QCD collaboration had an existing solver code which 

ran on various architectures, including the Cray-T31), Cray-YMP and DEC-

Alpha workstations. The only algorithm supported in the original code was MR. 

Thus there was already available to me a trusted framework into which I could in-

sert new subroutines implementing different algorithms provided only that I kept 

the interfaces plug-compatible. At the same time, others were attempting to im-

prove the performance of the solver application. One strand was parallelisation of 

input and output. More major was the optimisation of the matrix-vector multi-

plication for the Cray-T31) (and later Cray-T3E) by rewriting key subroutines in 

assembly language. A further complication was the advent of a Fortran-90 com-

piler on the Cray-T31), which made it possible to store vectors in 32-bit fields, 

potentially an important optimisation as memory bandwidth is a major limiting 

factor on the Cray-T31) and Cray-T3E. These and other changes meant that 

there was an ongoing need to reintegrate updated modules into the solver code 

and to retest the latest version, a task which generally fell to me. 

It will be appreciated that developing code in such a shifting environment de-

mands a firm adherence to existing styles, standards and interface specifications; 

changes with global impact are usually best avoided. I therefore postponed some 

changes, such as an overhaul of the parameter file reader and the ability to specify 

the precision of external files at run-time, until after the code had settled down. 15 

4.4.1 Implementation 

Examining the operations performed in each algorithm reveals a large degree of 

commonality. The operation which requires the bulk of the computational effort 

in each iteration is that of multiplying a vector by the red-black preconditioned 

fermion matrix, while vector-vector operations account for most of the remainder. 

Compared to these, the cost of control logic and operations involving only scalars 

"Details of these changes may be found in [29]. 



Chapter 4. Linear systems I - point algorithms 	 49 

is entirely negligible. 

I do not give details here of the implementation of the matrix-vector multipli-

cation nor of the geometric decomposition of the lattice over processor elements 

on a parallel machine; these are adequately covered in the documentation of the 

UKQCD MPP codes, and useful background is provided in [23, 22]. For our 

purposes it suffices that there exist trusted subroutines which multiply a vec-

tor by the fermion matrix or its Fiermitian conjugate, and similar ones for the 

red-black preconditioned fermion matrix. The reader should be aware that these 

subroutines involve significant inter-processor communications. 

Before discussing vector-vector operations in detail, it is worth describing how 

each vector is laid out in memory. We do this with reference to the Fortran 

declaration of a fermionic field taken from the solver code. 

CFTRANS psi :1 :1 :1 :site 

Fpoint psi(O:Ncomplex-1,O:Ncolour-1,O:I\Jspin4-1, 

$ 0:Max_body-1,0:I\Tpar-1) 

Here Fpoint is a macro which is expanded by the C-preprocessor to a standard 

Fortran declaration determining the precision of each array element; this may 

be either 32-bit or 64-bit but the exact form of the Fortran declaration will vary 

according to the compiler and platform. 16  Ncomplex, Ncolour, Nspin4, and Npar 

are compile-time constants, taking respectively the values 2 (a complex number 

is represented by an ordered pair of reals),17  3 (number of colours), 4 (number 

of components in a 4-spinor) and 2 (number of parities - even or odd); these 

"Despite the fact that the Cray-T3D, Cray-T3E and DEC workstations all use DEC Al-
pha microprocessors, single and double precisions have different meanings. Thus on the DEC 
workstations, REAL and DOUBLE PRECISION respectively declare 32-bit and 64-bit floating 
point numbers, whereas on Cray systems REAL declares a 64-bit object and 32-bit objects may 
be declared as REAL(KIND=4). The same distinction is seen in the naming conventions of 
BLAS routines: the Cray equivalents of the workstation SAXPY and DAXPY are respectively 
HAXPY and SAXPY. 
'7This representation compels the programmer to keep track of real and imaginary parts 

manually instead of delegating these aspects to the compiler. Historically, the reason for this 
decision was not for any mistrust of compilers' ability to handle complex arithmetic (justified 



Chapter 4. Linear systems I - point algorithms 	 50 

compile-time constants serve a purely documentary purpose and should not be 

altered - thus setting Ncolour to 2 will not change the gauge group to SU(2), 

but rather introduce a host of inconsistencies into a code which is dedicated to 

SU(3). The reason that all sites of even parity appear before all sites of odd 

parity is because of a commitment to red-black preconditioning for which this 

ordering is convenient and efficient.18  

Fermion fields are distributed over processor elements using the same geometric 

decomposition as other lattice fields. Thus the compile-time constant Max-body 

is derived from other compile-time parameters (which can be changed) and de-

termines the maximum number of sites of a single parity on the local lattice; it 

usually includes some additional padding intended to reduce cache conflicts in 

operations involving two fermion fields. 

The line commencing with CFTRANS in column 1 is a directive to Stephen 

Booth's utility ftrans to allow re-ordering of array indices according to a command-

line option after C preprocessing and before invoking the Fortran compiler; in this 

instance the directive instructs ftrans that the fourth index site can be moved 

to the front. On a vector supercomputer it is usually preferable to have the site 

index varying fastest; the ordering with site varying slowly is the one adopted 

on Cray-T3D and Cray-T3E systems. 

These same fermion fields (or one parity thereof if red-black preconditioning is 

in use) play the role of vectors in our iterative methods, the ordering of indices 

determining the basis. From the preceding comments it is apparent that the 

components of each vector are not necessarily laid out contiguously in memory, 

a fact which must be borne in mind when considering the use of BLAS routines 

to implement a vector-vector operation. 

The dominant storage requirements of the algorithms considered here, are (after 

though this might have been), but rather because DOUBLE COMPLEX was not part of the 
Fortran77 standard. 

"Not surprisingly, this ordering is neither convenient nor efficient for LL-SSOR 
preconditioning. 



Chapter 4. Linear systems I - point algorithms 	 51 

the gauge fields through which matrix multiplication is defined) the vectors them-

selves; these are listed in table 4.1. As memory must be allocated at a higher level 

in the call tree for both parities of the source r and solution 0, it is generally true 

that a subroutine performing a solve with the red-black preconditioned matrix 

can usurp this memory for four one-parity vectors, at the cost of overwriting the 

source. In this situation, the memory requirements of CGNR and BiCG(ys) are 

effectively no worse than that of MR. The memory requirements given for QMR, 

include an allowance for work vectors to compute the equation residual in the 

last few iterations. BiCGSTAB2 is by far the most expensive in memory terms; 

I can seen no way to reduce the number of vectors below 11. 

Algorithm Vectors 
MR 3 

CCNR 4 
BiCC('y) 4 

BiCCSTAB 6 
BiCGstab2 ii 
QMR(-Y5) 8 

Table 4.1: Vector storage requirements, excluding q, for various point algorithms. 

In principle, all the vector-vector operations required here could be implemented 

in terms of some minimal set of elementary operations which would include little 

more than scalar multiplication, vector addition and an inner product. Doing so 

would be grossly sub-optimal. To sustain anything approaching the peak perfor-

mance of the Cray-T3D the programmer must arrange to keep the pipe-line full, 

which in turn requires a careful consideration of how memory loads and stores are 

scheduled - memory speed is usually the limiting factor, and minimising memory 

accesses is generally a profitable strategy. Combining elementary operations into 

less general ones opens up numerous avenues for optimisation. However, such a 

strategy can be pushed too far; eventually one ends up with an undesirable situ-

ation involving proliferation of less general, more complicated subroutines, each 

requiring maintenance, optimisation and documentation. One seeks therefore a 



Chapter 4. Linear systems I - point algorithms 	 52 

happy mean. The need for a set of standard routines for this kind of application 

is, of course, not new, and it was to meet this need that the Basic Linear Al-

gebra Subroutines (BLAS) library was developed. The vector-vector operations 

encountered here are the domain of Level 1 BLAS. BLAS libraries are widely 

available on almost any platform capable of seriously tackling a problem of this 

size, and the subroutines themselves are typically highly optimised for the target 

architecture. 

The strategy followed in UKQCD's MPP codes was to develop a set of routines, 

similar to Level 1 BLAS, specifically designed to deal with vectors defined by a 

single parity of a fermion field. The set of operations supported is somewhat wider 

than Level 1 BLAS. All these routines are written in Fortran, but, according to 

compile-time flags specifying the precision, architecture and ordering of indices, 

preprocessing will replace the Fortran code by one or more calls to BLAS routines 

when it is advantageous to do so. 

Table 4.2 lists some of our routines, the operations they perform and the num-

ber of times each is used in each iteration of MR, BiCC(ys), QMRy5) and 

BiCCSTAB, in the current implementation. Figures for CGNR and BiCGSTAB2 

are not given. We have no current implementation of (point) CGNR. and to quote 

figures from the block version would be unfair. The complexity of BiCGSTAB2 

means that there are so many ways of achieving the same end that a breakdown 

would not be particularly meaningful; suffice to say that the cost of vector-vector 

operations averaged over even and odd iterations of BiCGSTAB2 is at least 50% 

more than that of BiCGSTAB. 

The operations implemented by the subroutines faxpy through fysx (in the order 

of table 4.2) are all local, in the sense that no inter-processor communications are 

required. This is the case because every processor has the same components of 

every vector in its local memory. Of these, only faxpy, fcaxpy, fscal and fcscal 

can be implemented using a single call to a standard level 1 BLAS subroutine.19  

'90n vector supercomputers (where the site index varies fastest and components of each 
vector are not contiguous in memory) several BLAS calls may be required. 



Chapter 4. Linear systems I - point algorithms 	 53 

The other routines exist because to achieve the same end through two BLAS 

calls would entail additional memory accesses; for example the effect of faxpz 

could be achieved by ± copy followed by faxpy, both of which are built on BLAS 

routines, but a well designed Fortran loop should perform better. 

The operations implemented by the subroutines and functions fmod2 through 

ft_pseudo_dot involve scalar products and are non-local. Each processor com-

putes a local scalar product, but the results must then be summed over proces-

sors. Both levels of summation are performed in 64-bit precision on all platforms. 

BLAS routines exist for the local part of the scalar products in fmod2 and fcdot.2° 

The routines fc_pseudo_norm and fc_pseudo_dot_re arise in the 75-symmetric 

algorithms BiCG('ys) and QMR(75).21  It is obviously desirable to fold the mul-

tiplication by 'y5  into the calculation of the scalar product. However, despite 

prodigious unrolling of loops, these routines proved particularly difficult to op-

timise, and their performance is poor compared to the efficient BLAS CDOTC 

used in f c_dot. 

Further attempts at optimisation in the area of vector-vector arithmetic can be 

undertaken. For example, it is often the case that an operation such as y = 

is followed by computing the 2-norm of the result. Telescoping the two operations 

into a single subroutine would eliminate one complete access to y, but unless the 

new routine is written in assembly language 12  the speed-up, if any, is likely to be 

marginal. 

"Actually, our implementations of fmod2 and fcdot avoid the use of BLAS when the fermion 
fields are stored in 32-bit precision on the Cray-T3D and Cray-T3E. This is because the BLAS 
functions HDOT and GDOTC (the 32-bit equivalents of SDOT and CDOTC on Cray systems) 
return 32-bit (KIND=4) results which have still to be summed over processors. 

21TFie subroutine fc_pseudo_dot is included only for completeness. It turns out that in all 
cases where an operation of the form ytysx is required, the answer is known to be real due to 
the 75-symmetry of M. 

22Efforts along these lines were made by Cray to optimise the MR solver, the benchmark 
code for the tender leading to the purchase of the Cray-T3E at Edinburgh. The performance 
improvement achieved was dwarfed by improvements to the matrix-vector multiplication. 



Chapter 4, Linear systems I - point algorithms 
	

54 

Routine Operation 

L 
A 
S 

flops 
per 
site MR. 

BiCO 
(Ys) 

QMR 

() 
BiCC 
STAB 

faxpy y = ax + y, 
a 

Y 48 2 3 

faxpz y=ax+z, 
a 

N 48 

faypx y = ay + x, N 48 
aER  

1 2 

fcaxpy y = ax + y, 
a 

Y 96 2 4 

fcaxpz y = ax + z, N 96 
aC  

fcaypx y = ay + x, N 96 
a E C  

1 

fcax y = ax, 
a 

N 72 

fscal x=ax, Y 24 
aER  

2 

fcscal x = ax, 
a 

Y 72 

fysx y=y — x N 24 
fcopy Y   Y 0 
fmod2 xtx  Y 48,G 2 1 1 2 
fcdot ytx  Y 96,GG 1  3 
fc_pseudo.norm x ty5x  N 24,G  1 1 
fc_pseudo_dotre Re yty5x  N 48,G  1 1 
fc_pseudo_dot yt,ysx  N 96,CG  
rbmatrix y = Mx N I I 	1 1 1 2 

Table 4.2: Operations performed in each iteration of various point algorithms. A 
letter G in the "flops per site" column indicates a global sum. 



Chapter 4. Linear systems I - point algorithms 	 55 

4.4.2 Testing 

Testing numerical codes such as these is not simply a case of checking that the 

code delivers the correct answer. The "correct answer" is an idealisation that we 

never expect to achieve; we must be content with an approximate solution 'iL' that 

is sufficiently close to the true solution M 177. The meaning of "sufficiently close" 

must be determined from the physics programme making use of the propagators; 

at the least one requires that errors induced by imperfect convergence he small 

compared to statistical fluctuations over the ensemble of gauge configurations. 

At this point it is wise to recall that the closeness of our solution to the true 

one is controlled only by a convergence criterion based on the norm of the resid-

ual vector, and that this control necessarily becomes weaker as the quark mass 

decreases. 

Bear in mind also that distinct but equally satisfactory solutions can he delivered 

in a number of ways. Even a minor change in the order of summation (arising from 

running the code on a different number of processors, or changing a compile time 

option to enable calls to BLAS, or changing the order of indices in the fermion 

fields) will give rise to a measurably different solution. Choice of algorithm will, 

of course, have a major effect. 

The solver code has an in-built independent check on the equation residual,23  

performed at the end of every solve, which goes part of the way to confirming the 

goodness of the solution. A more genuinely independent check is to load from 

disk two solutions and to compute the distance between them; I have written 

a utility to perform this check. Such a tool, used in conjunction with reference 

solutions obtained by a trusted code using a tight convergence criterion, becomes 

an invaluable mechanism for change control. It can also be used to check that 

the convergence criteria used at particular quark masses are indeed "sufficiently 

close" (in the above sense) to the true solution. 

"Although the subroutine performing the check uses the full matrix instead of the red-black 
preconditioned matrix, this check is not truly independent as the two matrix multiplication 
routines do themselves share some subroutines. 



Chapter 4. Linear systems I point algorithms 	 56 

During the early stages of program development and debugging, the algorithm is 

unlikely to converge at all, and other tests must be devised. Writing individual 

test harnesses and constructing test data for every new subprogram is, although 

advocated by some, often impractical; usually the effort to write the harness 

is much greater than the effort to write the subprogram, and the harness itself 

must be debugged. I generally try to devise a quantity or quantities which can 

be computed in two ways, one of which uses trusted routines as far as possible 

and the other making use of the new routine(s); it is easy to see how this might 

be done for some of the operations in table 4.2. 

Once confidence in the elementary building blocks has been established, one turns 

to the task of debugging the main body of the algorithm. Often the algorithm 

itself suggests useful consistency tests. For example, BiCG('ys) and QMR(ys) 

both depend on bi-orthogonality relations between sequences of vectors, and it 

is easy to insert code to monitor the growth of bi-orthogonality violations, 24  and 

then to remove (or disable) the inserted code before commencing final tests on 

the production version. 

One test in particular proved such a useful diagnostic for all algorithms (except 

QMR) that I left compile-time flags in the code so that it could be re-enabled 

easily if required. This test is to compute explicitly the equation residual at 

the end of each iteration. If the algorithm is working correctly, the discrepancy 

between the equation residual 71 _M(k)  and that given by recurrences 	should 

be small; a good quantity to monitor is I Ir(k) 
- ( - 
	. This test, strong as 

it is, does not catch all bugs. For example, BiCG(ys) will pass this test even if 

the coefficient S is computed incorrectly. 

A bug in the main body of an algorithm will usually prevent the algorithm from 

converging. Unfortunately this is not always the case, so convergence does not in 

itself guarantee the correctness of the code. When implementing BiCGSTAB2, I 

24BiCGSTAB depends theoretically on the same bi-orthogonality relations as BiCG, but most 
of the vectors concerned do not appear explicitly in BiCGSTAB. Nonetheless there are some 
properties which can usefully be checked. 



Chapter 4. Linear systems I - point algorithms 	 57 

overlooked a typographical error in the computation of a coefficient; the bug broke 

the global biorthogonality properties of the underlying BiCG but did not affect 

the local minimisation of BiCGSTAB2; the resulting code converged often but 

not consistently. 21  It is therefore helpful to have some idea of how an algorithm 

should behave - how smoothly and how quickly it is expected to converge - in 

deciding whether it has been implemented correctly. 

4.5 Comparison 

Figure 4.1 overlays the convergence histories of MR, BiCG(-ys), QMR('Y5) BiCGSTAB 

and BiCGSTAB2 at two different quark masses. 26 

At the heavier mass (i = 0.1400), MR is noticeably slower than the other four 

methods, and the gap widens as the quark mass is decreased (ic = 0.14200). This 

behaviour is typical. 

The relatively smooth convergence history of QMR('ys) tends to follow the troughs 

of the erratic convergence history of BiCG('ys). This, too, is typical, and reflects 

the fact that the two methods are closely related. 

BiCGSTAB and BiCGSTAB2 trace out very similar convergence histories, the 

residual norm of BICCSTAB being slightly above that of BiCGSTAB2 in each 

iteration. 

There is a suggestion that at lighter masses, the performance of BiCC(ys) and 

QMR(y5)improves relative to that of BiCGSTAB as the convergence criterion is 

tightened. 

In deciding which algorithm to use for calculating quark propagators in a pro-

duction run, there is no substitute for timing each candidate on the intended 

architecture using the intended parameters (ic, CSW, convergence criterion) on 

one or more configurations drawn from the ensemble of interest. These tests 

was some time before I was prepared to accept that the code was in error, and it took a 
further two weeks to locate the bug. 

"Convergence histories for CGNR may be found in chapter 5. 



Chapter 4. Linear systems I - point algorithms 	 58 

have been carried out from time to time in preparation for production runs on 

the Cray-T3D,27  and BiCGSTAB has usually proved to be the method of choice, 

typically outperforming QMR(ys) and BiCG('y5) by some 10%. The size of this 

gap, due in part to the fact that the vector-vector operations used by BICGSTAB 
have more efficient implementations, is not absolutely compelling. More signif-

icant perhaps is the fact that BiCOSTAB more consistently achieves a target 

residuum of IO-'JJrIJJ when 32-bit precision is used for the fermion fields than 

do BiCc(ys ) and QMR(ys); as performance on the Cray-T3D is dominated by 

memory-bandwidth, using 32-bit precision where possible represents a major op-

timisation. 

27These runs have involved quenched gauge configurations at = 6.0 —6.2, lattices of volume 
16 x 48 and larger, both tadpole and non-perturbatively improved clover coefficients, and target 
residuums of 10IIiiII. The timing exercises concentrated on the lightest masses (typically near 
the strange mass) as these are the most time-consuming. 



-1.0 

-3.0 

E 

-5.0 
Cl) 
ci) 
0 

0) 
o -7.0 

-9.0 

_-f I A 

- MR 
- BiCGSTAB 
- BiCGSTAB2 
- QMR(y5) 

BiCG(y5) 

.1420 

'4. 

Chapter 4. Linear systems I - point algorithms 	 59 

-1.0 

-3.0 

E 

-5.0 
U) 
ci) 

0 

c,) 
-7.0 

-9.0 

-11 fl 

 

K--0.1400 

—MR 
- BICGSTAB 
- BiCGSTAB2 
- QMR(y) 

BiCG (y5) I! 

 

0.0 
	

100.0 	 200.0 	 300.0 
matrix multiplies 

I I.J 

0.0 	 100.0 	200.0 	300.0 
matrix multiplies 

Figure 4.1: Convergence histories for :— 
MR (w = 1.1), BICGSTAB, BiCGSTAB2, QMR(y5), BiCG(y5 ). 

= 0.14, 0.142, 0 = 5.7, V = 8 x 8. Csw = 1.5678 (tadpole-improved). 



Chapter 4. Linear systems I - point algorithms 

4.6 Exceptional Configurations 

In this section, we consider a method for computing quark propagators when the 

fermion matrix develops a single, very small, isolated eigenvalue. The original 

hope was that this method might have been useful in handling the "exceptional 

configurations" observed in quenched UKQCD data [44]. These configurations 

were such that Q = M had a very small eigenvalue at a valence ,c near the 

strange mass, well below the critical value icc, of the ensemble. Our usual methods 

of computing propagators (BiCCSTAB and MR) failed miserably at this r, on 

these configurations, and 3,000 CGNR, iterations reduced the residuum to only 

about i0-31 Jq  . 

The essential idea is to reduce the coefficient matrix by projecting out the eigen-

vector corresponding to the smallest eigenvalue.28  The next few paragraphs show 

why this might be expected to work from a theoretical point of view. 

Let A be hermitian with eigenvalues Ai  ordered by their absolute value, so that 

<...< I A, 1 	 (4.36) 

and let {v} he the corresponding orthonormal eigenvectors. 

Av 	)iv, 	V V j  = 6ij 	 (4.37) 

Further suppose that the lowest eigenvalue is non-degenerate and very small. 

Under these conditions, the condition number of A is very large and standard 

methods for solving 

Ax=b 
	

(4.38) 

will often fail. 

28A similar idea was proposed in [45, 46] in the context of the Polynomial Hybrid Monte 
Carlo algorithm. 



	

Chapter 4. Linear systems I - point algorithms 	 61 

Now define 

P = viv1  

P1 = l—P=>v.v 	 (4.39) 

These are projections 

p2 p 

	

= p1 	 (4.40) 

and orthogonal 

	

PP1  = 0 = P1P. 	 (4.41) 

Defining also 

Ap = A1 v1v=A1 P 

A1 
 =

= A - A 	 (4.42) 

we can re-write equation (4.38) in the form 

(Ap + A±)(P + P±)x = (P + P1)b. 	 (4.43) 

Using the fact that 

	

AP-L  = 0= A1P 	 (4.44) 

and defining Zp = Pz, z1  = P1  z, we can solve 

	

Apxp = bp 	 (4.45) 

on the subspace spanned by v1 , then solve 

A1x1  = b, 	 (4.46) 



Chapter 4. Linear systems I - point algorithms 	 62 

on the subspace orthogonal to v1 , and finally reconstruct the solution on the 

whole space from 

X = XP + Xj. 	 (4.47) 

The solution Xp to (4.45) is just 

xP = 	vtb v1 	 (4.48) 

and the solution x1  to (4.46) can be found by any one of a number of standard 

iterative methods. The hope is that equation (4.46) will be much easier to solve 

than the original equation (4.38). It will certainly have a lower condition number. 

cond(Ai) - 	- 
JAIJ  
 cond(A) 	 (4.49) 

- - 

This method requires knowing both )i  and v1 . We will not know either exactly, 

and will have to work with some A = + 6 and v = v1  +. This will induce errors 

in both Xp arid x1. We still have some freedom in how we choose to represent 

A1. In exact arithmetic, all of the following expressions are equal: 

A1  = A - ivivt = A(1 - viv) = (1 - vivt)A = (1 - vi v)A(1 - viv) (4.50) 

I prefer to work with the last form A1  (1 - vivt)A(i - vivt) because 

it is manifestly hermitian 

A is protected' on both sides 

it gives us better control over the errors. 

The last assertion may be justified by considering the error induced in the equa-

tion residual 

r=b — Ax 	 (4.51) 



Chapter 4. Linear systems I - point algorithms 
	

63 

by the errors in A, and v1 . 

The strategy is as follows. To solve Mi/I = ?7, find the smallest eigenvalue ) 

and corresponding eigenvector v1  of the hermitian matrix Q = -y5 M. Then use 

the above method in conjunction with a standard iterative scheme for hermitian 

matrices to solve Ax = b where A=Q, b = ' 577. Then i/I = x is the solution we 

want. The algorithm set out below applies CGNR to the normal equation 

Qx1  = Q j b j . 	 (4.52) 

Note that equation (4.53) for a holds if everything is exact. In practice we choose 

a to minimise llrl - M?/IH, and we do not use ) at all. 

This method was tested using a configuration on an 8 lattice at a r, for which 

1\2 	> 1O\i I . The eigenvector v1  was pre-computed using the method de- 

scribed in [47, 48, 49] and read in from disk.29  Under these conditions, MR., 

BiCG(-Y5) and BiCGSTAB did not converge at all, stagnating or beginning to 

diverge at llrll 	10I7711. CGNR with projection converged considerably faster 

than CCNR without. However, QMR(-Y5)  converged several times faster again. 

Q MR('ys) was later was applied successfully to compute propagators for the "ex-

ceptional configurations" encountered in [44].30 

In conclusion, the method is viable, but should only be adopted as a last re-

sort when other methods fail. It will perform best when the ratio \2/\1  is 

large. Practical experience indicates that the method requires an extremely good 

approximation of the eigenvector v1, in order to keep the reconstructed residual 

77 - M (p + 	under control. In fact, tighter convergence criteria on the eigen- 

vector than those used in [49] are required for this method to be successful. It 

should also be pointed out that the cost of computing the eigenivector is compa-

rable to that of several solves; so this method is most certainly not to be regarded 

as a means of accelerating propagator calculations. 

29J am grateful to the authors of [49] for making their code available to me. 
"Ultimately these propagators were not included in the analysis of the hadron spectrum. 



Chapter 4. Linear systems I - point algorithms 	 64 

CGNR projecting out v1  

b1  = (1 - P) 5 	- 

= (1 - 

= 	- Q1x °)  

(o) 

P0 
= ( (o) )t (o)  

for k = 0, 1,2,... until convergence do { 

t = 

in 	ttt 

CYk = 

= (k)
OZk  + 

1( k + 

= Qir' 

Pk+i = tt 

O = Pk 1 Pk+1 

(k+1) = .t + 

} 

a = vj/\1 	 (4.53) 

x + 0-v1 



Chapter 4. Linear systems I - point algorithms 
	

65 

4.7 Concluding Remarks 

Of the methods considered in this chapter, BiCGSTAB is the usually the method 

of choice for quark propagator calculations in hadron spectroscopy. With respect 

to BiCGSTAB, BiCGSTAB2 does not reduce the number of matrix multiplica-

tions sufficiently to offset the additional vector-vector operations. 

MR is simple and robust, but its performance degrades more rapidly than the 

other methods considered in this chapter as ic -* iQ. It is too slow in the im-

portant regime of light quark mass, but it remains a viable option for heavy 

quarks. 

BiCC('ys) and QMR(ys) offer performance which is competitive with BICOSTAB, 

but I do not recommend the use of these algorithms when the fermion fields are 

stored in 32-bit precision. Nonetheless, QMR('ys) has certain advantages which 

earn it a place in every well-equipped armoury of lattice QCD tools. It copes 

surprisingly well when the fermion matrix has a very small or even negative 

eigenvalue; because it works with the Lanczos vectors directly it can be modi-

fied to provide estimates of the smallest and largest eigenvalues; and look-ahead 

versions of QMR exist which avoid the problem of Lanczos breakdown. 

CGNR and CGNE are certainly not made obsolete by BiCGSTAB, and these 

remain the most reliable methods for exploring the region i 	i (/3). 

It is unlikely that further research in Krylov-subspace methods will lead to an 

algorithm which significantly outperforms BiCGSTAB and its 75-symmetric com-

petitors. There is however considerable scope for improvement in the area of 

preconditioning. 



Chapter 5 

Linear systems II - block algorithms 

Previous studies of block algorithms in the context of lattice QCD [50, 511 have 

been restricted to small lattices. A re-examination is now in order, given the 

recent improvements in Krylov subspace methods and the advent of large dis-

tributed memories. 

5.1 Motivation 

Krylov subspace methods generate successive approximations /,(k)  to /' = M 1 r1 

such that 
(h) - 	E 1 k (M, y), 	 (5.1) 

where 

Kk(M,y) = span{y,My,...,My} 	 (5.2) 

is the k-th Krylov subspace generated by the matrix M and the vector 

y = r° =77 - MOO). 	 (5.3) 

These methods either 

minimise (or quasi-minimise) the residuum jr(k)II = 	- MO(k)II over 

Kk(M,y), and/or 

enforce bi-orthogonality with respect to some other Krylov subspace r (k) 

Kk (Mt,). 

66 



Chapter 5. Linear systems II - block algorithms 	 67 

When one has several systems M 1  = 71, ,. . . , M 	T/s to solve, using such a 

method s times leads to the construction of the Krylov subspaces 

K 1 (M,y1 ),. . .,K(M,y8 ). 

These subspaces will in general overlap with each other, and in the worst case 

n i =n2 = ... =rr8 =rr= order (M) 

the overlap will be complete. 

By solving the s systems simultaneously, block algorithms eliminate the redun-

dant matrix-vector operations in the above approach. One assembles the s right-

hand sides into an n x s matrix H = (ih,. . . ,r) and solves 

(5.4) 

for IF = 	. . , L). Information from all s Krylov subspaces is now available 

to update each column of the solution. 

The preceding discussion ignores the effect of preconditioning. A perfect precon-

ditioner, ie. one which coincides exactly with the inverse of the coefficient matrix, 

solves the system with a single multiplication; in this case there is no gain to be 

had from the block algorithm. In practice we hope to have good preconditioners, 

so that we usually solve the point (s = 1) problem to the desired accuracy in 

considerably less than n multiplications. 

These considerations lead one to expect that blocking will be most effective on 

badly conditioned systems and/or small volumes, ie. when the number of itera-

tions required for the point algorithm to converge is comparable to the order of 

the matrix. 

Blocking introduces certain overheads. The first of these is memory; the storage 

requirements for vectors in the point algorithm are multiplied by the blocking 

factor s when going to the block algorithm. 



Chapter 5. Linear systems II - block algorithms 	 68 

Secondly, vector-vector operations such as 

y = ax + y and /9 = yx 

in the point algorithm generalise to operations of the form 

Y=Xa+Y and /9=YX 

where X and Y are rt >< s matrices and a and 3 have become s x s matrices. 

Thus the number of vector-vector operations required per iteration scales with 

the square of the blocking factor. We are in the business of trading matrix-vector 

operations for vector-vector operations. 

Thirdly, the trivial operations of multiplication and division by complex numbers 

generalise to the less trivial operations of multiplication by and inversion of com-

plex matrixes. Moreover, on a parallel architecture, these operations have to he 

replicated on every processing node. 

5.2 Block Algorithms 

5.2.1 Block Minimal Residual 

Minimal Residual is not strictly a Krylov subspace method. Each iteration deals 

with a different one-dimensional Krylov subspace and the algorithm lacks any 

termination property. There is no a priori reason to expect that a block version 

should outperform the point version. 

Nonetheless, a block generalisation of (unrelaxed) MR is easily derived, and the 

exercise of doing so reveals some generic characteristics of block algorithms. 

In the point algorithm, the correction to solution at each iteration is in the direc-

tion of the residual vector. In the block algorithm, we want to use information 

from all s linear systems when updating each column of the solution. To achieve 

this, the corrections to each column of the solution must be linear combinations 

of the residual vectors of all s systems. So the core of our iterative method will 



Chapter 5. Linear systems II - block algorithms 
	

69 

take the form 
= q, (k) + R'a' 	 (5.5) 

for some s x s matrix 	which is yet to be determined. 

We also want our recurrence relations to ensure that 

= H - MT(k) 	 (5.6) 

is true for all k. We can make this so for k = 0. Assuming it holds for some k, 

and using equation (5.5) we observe that 

R(k+l) = H -  iti ((k) + Rc )) 

= (H - MW) - MRcx. 	 (5.7) 

This tells us how to update the residuals. 

It remains to determine a(k).  In the point algorithm, the coefficient Oz 
(k)  is chosen 

to rniiiimiser(1).  In the block algorithm, we minimise instead Tr (R(k+1))t 

which is equivalent to minimising the root mean square of the norms of the resid-

ual vectors of the s systems. This is accomplished by setting 

(k)Tr (R1))I 	= 0 	 (5.8) 

and solving for 

Thus we arrive at the following algorithm. 



Chapter 5. Linear systems II - block algorithms 
	 VA 

R °  = H - 

for k = 0, 1,2,. .. until convergence do { 

T = MR(k) 

= WT) 1 TtR(k) 

Ip (k+ 1) 
= R()c(c) + W' 

R(k+l) 	+ R(k) 

} 

I have implemented this method and found that increasing s yields a negligible 

improvement in convergence. For s = 1, it reduces to the unrelaxed (w = 1.0) 

Minimal Residual considered in chapter 4. 

5.2.2 B-CGNR 

The generalisation of Conjugate Gradient to block form is due to O'Leary [52], 

who obtained the algorithm as a special case of her Block Bi-Conjugate Gra-

dient. McCarthy [50] •found that Block Conjugate Gradient could be applied 

advantageously to quark propagator calculations with staggered fermions. 

We, however, are using Wilson fermions, and we apply Block Conjugate Gradient 

to the normal equation 
MtMIJ = MtH. 	 (5.9) 

We call the resulting algorithm Block Conjugate Gradient on the Normal equa-

tion, least Residual formulation. The same algorithm was applied to quark prop-

agator calculations with Wilson fermions by the authors of [51], who called it 

MDMCG. 



Chapter 5. Linear systems II - block algorithms 
	

71 

Increasing s yields a clear improvement in convergence (see figure 5.1), but not 

enough to defray the cost of squaring the condition number. 

B-CGNR 

= H - (5.10) 

P(0)  = (5.11) 

( 0 ) = (p(o))t p(°) 
(5.12) 

for k = 0, 1, 2,... until convergence do { 
T = MP' (5.13) 

= TT (5.14) 

= (5.15) 

p(k+i) 	 + (5.16) 

—Ta-I- R(k) (5.17) 

T = MR (5.18) 

(k+1) = TtT (5.19) 
((k))l(k+1) (520) 

p(k+l) = T + p(k)  

} 

(5.21) 



Chapter 5. Linear systems II - block algorithms 	 72 

5.2.3 Block Lanczos 

Henty et. al [51] studied a method based on the hermitian block Lanczos process 

and applied it to 

(5.22) 

In this formulation, we need each column of the RHS to have unit norm, and we 

work with the hermitian matrix Q = 'y5 M, solving 

QJ? = y 5 HV 1 , 	 (5.23) 

where 

= 	177, 	., 	) 	 (5.24) 

with ijj denoting the jth column of H. The solution to the original system is 

This algorithm does riot yield the residual vector R directly. However, it does 

yield an s x s matrix r(k)  such that (r (k)) t r (k) = (Rk)t  R(k) which can be tested 

for convergence. 

Note also that, in this formulation at least, B-Lanczos is rather more restricted 

than the other algorithms we have considered. For example, it does not allow 

for any intial guess to be supplied, so any restarts must be done using a different 

algorithm. The block-vector x °  used to start the Lanczos sequence coincides 

with the initial residual of equation (5.23) for the guess 	= 0. Furthermore, 

X ° 	must satisfy WO)  )1 X(°)  = I. This imposes some restrictions on how we 

can block the right hand sides if using extended (eg. smeared) sources. 

The algorithm uses the Cholesky decomposition to orthonormalise the columns 

of the Lanczos block-vectors. In one iteration, we find an s >< s upper triangular 

matrix 13(k+1)  satisfying equation (5.26), and in the next iteration, equation (5.25) 

ensures that (x1))tx1) = I. Unfortunately, the Cholesky decomposition 

in equation (5.26) occasionally fails, attempting to take the square root of a neg- 



Chapter 5. Linear systems II - block algorithms 	 73 

ative number. Now the Cholesky decomposition is stable for hermitian positive 

definite matrices (in fact, it is often used to test an hermitian matrix for posi-

tive definiteness), and its failure may be interpreted as indicating that WW is 

indefinite, ie. that W lacks full column rank. This kind of problem (linear de-

pendence of the Lanczos vectors or search directions) must be addressed in any 

robust implementation of a block algorithm; we shall have more to say on this 

topic in the next section. 

Henty found, as we do, that B-Lanczos clearly outperforms B-CCNR. Unfortu-

nately, _y5  is a poor preconditioner for equation (5.4),1  and the wisdom of working 

with the hermitian system is questionable. Consequently, we now proceed di-

rectly to non-hermitian methods, making no attempt to lift the aforementioned 

restrictions in B-Lanczos. 

1 Although 75 M has the same condition number as M, its spectral radius is approximately 
twice that of M. Alternatively, given the structure of M, even the identity matrix will be a 
better approximation to M' than will 



Chapter 5. Linear systems II - block algorithms 
	

74 

B-Lanczos 

U = diag(i,. .., H8H); x° = 5 ffU 1  

a °  = 	= I; b ° 	= 0 

= (x(°)) t  75 JVJX °  

W = 	- 

O(OT O(0) = WtW ;  (°) = (0(0))-t 

= 0; v° = -x° ((o))_1 

for k = 0, 1,2,... until convergence do { 

= w ()) 	 (5.25) 

a 1) (x(k+1)) t 5 Mx(k+1) 

W = 75MX1 - X(k) ((k))t - 

((k+))t(k+1) = WtW 	 (5.26) 

a1) = 	k+1)(k) + 

(k) = (a 1)) 1  t(k) 

U1 	U(k) + X 1 p 

= V(k) - Uo 

b(k+l) = 	(k+1)(k) 

(k+l) 	(k)  + cr 

_b(k+l)o.(k) 

d1 	(Y 
(k+1) +  

(k+1) = 

if converged {'J(k+1) = —Vdv; break} 

(k+i) _ (3(k+))_ta(k+1) 



300.0 	400.0 

0.0 

-2.0 

-8.0 

-10.0 
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 

iteration 

Chapter 5. Linear systems II - block algorithms 	 75 

-1.0 

-11.0 
0.0 	100.0 	200.0 

iteration 

i:....  

-2.0 

-8.0 

-10.0 	 \. 
0.0 	100.0 	200.0 	300.0 	400.0 	500.0 	600.0 

iteration 

1.0 

- 7SI--4 

-11.0 
0.0 	100.0 	200.0 	300.0 	400.0 	500.0 

iteration 

Figure 5.1: Convergence histories for B-CCNR (top) and B-Lanczos at various 
blocking factors s. 

0. 14, 0.142, V = 8, /3 5.7, Csw = 1.5678 (tadpole-improved). 

Note that B-CGNR has two matrix-vector operations 
per iteration whereas B-Lanczos has one. 



Chapter 5. Linear systems II - block algorithms 	 76 

5.2.4 Block BiCG(-y5 ) 

Our starting point is the Block Bi-Conjugate Gradient algorithm (B-BiCG) [52]. 

For convenience, we give the full algorithm here, in a slightly different notation 

to that of O'Leary. 

= H — MW °  

Choose R °  with full column rank 

P(0)  = 

= VTR(o)&(o) 

for k = 0, 1,2,... until convergence do { 

a(k) = ((P(k))' MPH) 1 &(k) )T((k))? VR 

(k) = ((p(k))TMTP(k))-1  ((k))T  (R(k)) T  VT &k) 

(k+1) = p(k)a(k) + 

R1 = MPa + 

(k+1) = _MTP((k) + 

(k) = (0-(k)) -' ((R(k))T VR(k)) -1 ((k+l))T VR1 

(k) = ((k)) -1 ((R(k))T VTR(k)) 1 (R(k+1))T  VT 1 ) 

p(k+1) 	(VR(k+1) + p(k)jj(k)) 

p(k+1) = (VT(k+1) + 

} 

The n x ri matrix V is an arbitrary pre-conditioner, and the choice of V can 

affect the convergence of the algorithm. The iterates W(k)  and residuals R(k) 

H — MIJ(k) are invariant with respect to the choice of non-singular matrices 

and (k) 



Chapter 5. Linear systems II - block algorithms 	 77 

B-B1CG can be reformulated to use the hermitian conjugate operation (.)t  instead 

of the transpose operation (.)T.  One takes complex conjugates of the equations 

for p(k) 	(k) ,  (k),  (k) and 	and writes p(k) = (i5(k))*, f(k) = ((k))* 

= (k))*, 	k) = (k))* 
and &(k) = (k)*. 

The resulting algorithm is 

identical to the above with the lexical replacements (*)T  —+ (*)I and 

Just as in the point algorithm [25], it is possible to exploit the y5-symmetry of 

M to eliminate the sequences {R(' ) } and {P(k)},  as well as the multiplication 

by M, which reduces the computational cost by a factor of two, and reduces 

the memory requirement from 6 vectors to 4 (R(*),  TH, p(*) T(*) 	MP(*)).  

Provided we restrict ourselves to -y5-symmetric preconditioners V = -y5V'y5 , the 

particular choices 

= 'y5 R °  (5.27) 

and 

= ok)Vk (5.28) 

together imply that 

f(k) yR(k) (5.29) 
(k) 5p(k) (5.30) 
(k) = 	k)  (5.31) 
(k) = 	(k)  (5.32) 

hold for all 0 Moreover, the terms 

(p(k))t MP(k) = (p(k))t 5MP(k) 

and 
(ft(k+1))t VR

1 	(R(k+1)) t 5 vR+1  

become hermitian, which fact can be exploited to reduce the number of dot 

'The proof, by induction, is straightforward but tedious. I do not give it here. 



Chapter 5. Linear systems II - block algorithms 	 78 

products per iteration. 

The simplest choice for the pre-conditioner V is the identity matrix, but there are 

other y5-symmetric objects about, viz. A, A', M and their hermitian conjugates, 

along with y5  itself.' 

We record the following properties of B-BiCG('ys): 

(R(k))ty5R(-i) = 	0, 	j 	k (5.33) 

(p(k)) t Mp(j) 0, 	j 	k (5.34) 

(R(k))t5MP(k) = 	(6(k))t (P(k))t 75 Mp(k) (535) 

(R(k))tP() = 	0, 	j < k (5.36) 

R(k) = 	(R(k)) t 5  p(k)8(k) (5.37) 

O'Leary suggested choosing 	to orthonormalise the columns of p(k)•  Until 

this step was incorporated in my implementation, convergence (even in 64-bit 

precision) was the exception rather than the rule. 

Eliminating the sequences {i)}  and {(k)}  and writing 8(k) = (a(k)) -' leads 

to the following form of the algorithm.' The coefficients a, /3, p, y, 8 are s >< s 

complex matrices. 

3V = 75  is a superficially attractive choice, because the norm of the residual may be extracted 

from the diagonal components of (R(k))t ys VR(k) at no extra cost, and the fact that this matrix 
is positive helps the stability of the algorithm which requires its inverse. However, practical 
tests indicate that the y5-preconditioned version takes more than twice as many iterations to 
converge as the V = 1 version. 

'To the best of my knowledge, this is the first -Y5-symmetric version of B-BiCG applied to 
lattice QCD. 



Chapter 5. Linear systems II - block algorithms 	 79 

B-BiCG(ys) 

R °  = H - 

= (R(°) 5 R(°)  

= R° 
	

(5.38) 

for k = 0, 1,2,... until convergence do { 

T = MP(k) 

= ((Pk)t5T)1 (s(k))t (k) 

= p(k)a(k) + 

R(k+) —Tc + R(k) 

(k+1) = (R(k+1 )) t 5 R(k+1 ) 

(k) = (k) (,9(k)) -1 (k+i) 

T = R 1  + p((') 

p(k+1)8(k+1) = I, (5.39) 



Chapter 5. Linear systems II - block algorithms 	 80 

The purpose of the QR decompositions in equations (5.38) and (5.39) is to or-

thonormalise the columns of p(k)  The same end could be achieved by first taking 

the Cholesky decomposition 

(8(k+1))t8(k+1) = TtT 	 (5.40) 

(choosing 6(1)  upper triangular), then setting 

p(k+1) 	T (s(k+1))_1, 	 (5.41) 

and my original implementation did just that. However, occasional failures were 

observed, of the same type that were previously encountered in B-Lanczos. These 

problems were avoided by switching to the QR decomposition which I imple-

mented using the Modified Cram Schmidt method (MGS).6  Despite the fact that 

performing the QR. decomposition in this manner enabled B-BiCG(y5) to con-

verge in many cases where it had previously failed, there remain nonetheless some 

grounds for anxiety: if the columns of T were linearly independent (or almost 

so), then this must be reflected in its QR decomposition, perhaps in one column 

of p(k+1)  being rather poorly determined, or in 	being ill-conditioned. In 

any event, a robust production code should make some attempt to address this 

problem. A minimal answer would be to diagnose near-linear independence and 

restart (perhaps using a different algorithm) if some suitably chosen criterion 

were triggered. A more ambitious code would drop one column from the solution 

and attempt to continue on the deflated system.6  

It is my experience that the stability problems due to the erratic convergence 

history of BiCG are even more pronounced in the block version. Users unable 

(or unwilling) to implement B-BiCC in 64-bit precision should choose another 

algorithm. 

'As a bonus, the floating point operations count for MGS is roughly half that of equations 
(5.40) and (5.41). 

'Since, as will be seen later, the benefits of block algorithms on typical production lattices 
turned out to be marginal, the (non-trivial) modifications along these lines that would be 
required in a production code were never undertaken. 



Chapter 5. Linear systems II - block algorithms 	 81 

1.0 I 

1I 	
B-BiCG(y) 	K=0.1400 

-7.0 
IL 	V J\ 	

IA 
s=1  
s=2 	 V 	

Jj 

-9.0 
s=3 	 11 	iIVI,I 
s=4 	 Lrj 

----------s=6 	 J V 

\/\ 
-11.0 I  

0.0 	 100.0 	 200.0 

iteration 

1.0 

ic=0 1420 

0 

:i 

-90 
s=3 
s4 

----------s=6 

-11.0 I  

0.0 	 100.0 	 200.0 	 300.0 

iteration 

Figure 5.2: Convergence history for B-BiCG('y5) at various blocking factors .s. 
= 0.14, 0.142, V = 8, 0 = 5.7, CSW = 1.5678 (tadpole-improved). 



Chapter 5. Linear systems II - block algorithms 	 82 

5.2.5 Block Quasi-Minimal Residual (B-QMR) 

The original QMR (Quasi-Minimal Residual) algorithm of Freund and Nachtigal 

[37] used blocks of variable sizes in look-ahead steps to avoid Lanczos breakdown. 

Boyse and Seidl [53] described a block version of QMR for complex symmetric 

matrices, using fixed-size blocks to accelerate convergence. Subsequently Freund 

and Malhotra [54] discovered a non-hermitian version .7  The version presented 

here was developed by me in ignorance of the earlier work of Freund and Malhotra. 

It follows closely the ideas of [53], and is less general and less robust than the 

version of [54]. 

We use a block non-hermitian Lanczos process, constructing two sequences of n x s 

matrices 	. , V(), 	. . , w() with the property (block bi-orthogonality) 

( w(0)t 	- 	
13. 	 (5.42) -  

Let 
(k) = [V( 1 ) ..  . V] 	 (5.43) 

and let 

j) (k) = 

a(1) 0(1 ) 

(2) a(2) (2) 

(3) a3 
(5.44) 

where the c (*) ,  /3(*) ,  (*) are s x  complex matrices. Then the recurrence relations 

for the V(*)  can be written in matrix form: 

MV (k) = l(k+i)u1(k) 	 (5.45) 

7The method of Freund and Malhotra has since been applied to QCD by Fiebach, Frommer 
and Freund [55]. I point out that their conclusions regarding the practical utility of Block QMB. 
in lattice QCD are more optimistic than my own. 



Chapter 5. Linear systems II - block algorithms 	 83 

There is a similar relation for the W(*)  involving Mt.  The  W(*)  can be eliminated 

using 'y5-symmetry and the special choice w1 	y5V I) - 

Let V(1)p' be the QR decomposition of R °  = H— MVO) . We aim to construct 

successive approximations of the form 

(k) 	p(°) + 	 (5.46) 

for some ks x s matrix Z(k).  Now 

R(k) = H—M'J 

= H -  M'I° - MV(k)Z(c) 

= R° - MV(k)Z(k) 

= V1p1 - 

= 	j(k+i) [elf) (1) - 

where the (k + 1)s x s matrix e1  is given by 

el  = [ I, X, 0 ... o] 	 (5.47) 

We would like to choose 	to minimise Tr (R(k))t R(k) but this is not possible 

using short recurrences due to the NO-CO theorem of Faber and Manteuffel 

[31]. Instead the QMR approach is to minimise the norms of the columns of 

[1p(') - T(k)Z(k)] .  This "quasi-minimisation" can be accomplished using the 

Q I? decomposition, and updated cheaply from one iteration to the next.8  

81n order to spare the reader some tedious algebra, we do not give the details here; however, 
this part of the derivation follows closely the paper by Boyse and Seidl [53] to which the 
interested reader may refer. 



Chapter 5. Linear systems II - block algorithms 	 84 

B-QMR(ys) 

P(0) = p(-l) = 	0 

	

= 	= 0 

a(0) 	= 	= I = 

R° = = H - MW °  

V1p1 
= 	 (5.48) 

(1) '1 	= 

for k = 1, 2. .. until convergence do { 

8(k) = (v(k))t 76v(k) 

13  (k) = (8(k_1)) 1  (p(k)) t s(k) 

T = 	- V(Ic_l)/3(k) 

a(k) = ((k)) 	(V )t 5T 

7(k+i) = T - 

= r(k+1) 	 (5.49) 

9(k) = 

	

(k) = a 	1)d(k2/3(k) + 

(k) = 	 + 

	

( a(k) b(k) )t ( (k) 

 ) 	(
( 5.50) 

(k) \ 

(k) d(k) 	0 	- 	(k+l) )  

p(k) = (V (k) - p(k_1)6(k) - p(k_2)0(k)) (((k)) -1  

(k) = 

W(k) = 	+ p(k)T(k) 

f(k+1) = 

} 



Chapter 5. Linear systems II - block algorithms 	 85 

The operations (5.48), (5.49) and (5.50) are QR decompositions. The purpose of 

(5.50) is to update the QR decomposition at the heart of the quasi-minimisation. 

I make use of the LAPACK library routines CGEQRF and CUNGQR to im-

plement this operation.' The purpose of (5.48) and (5.49) (implemented using 

MGS) is orthonormalisation of the columns of the Lanczos block-vectors, and the 

same considerations concerning linear independence mentioned in the previous 

sections apply here with equal force. My implementation of B-QMR(-y5) makes 

no attempt to address this problem, but the authors of [54] show how to bring it 

under control, at the same time as incorporating look-ahead steps to cure Lanczos 

breakdowns. 

If one were to naïvely expand equation (5.45), one would obtain a superficially 

different set of recurrence relations for the Lanczos block-vectors V(k)  than that 

given here. However, in exact arithmetic the two methods are equivalent, due 

to block bi-orthogoriality. In finite precision, the method used here helps to slow 

the inevitable loss of block bi-orthogonality through round-off.'°  

The algorithm does not give a recurrence for the residual R(k),  but the 'quasi-

residual' Tr 
())t) 

 is of the same order of magnitude as Tr (R(k)) t  R(k).  

When the quasi-residual is small enough, one can calculate the true residual 

R(k) = H - MW(k) 

90n Cray systems. On workstations, the equivalent routines are called ZGEQRF and 
ZUNGQR. 

101n exact arithmetic, the term (V(k))t  y5T is clearly hermitian, and it is a tempting optimi-
sation to set the anti-hermitian part equal to zero. However, numerical experiments indicate 
that the small anti-hermitian part that arises in finite arithmetic has an important role to play 
in slowing the loss of bi-orthogonality, and I counsel against this optimisation. 



Chapter 5. Linear systems II - block algorithms 

-1.0 
	

B-QMR K0.1400 

s--\4 

-11.0 
0.0 50.0 	100.0 	150.0 	200.0 

iteration 

	

1.0 k 	 B-QMR 1=0.1400 

CT 

-11.0 

	

0.0 	50.0 	100.0 	150.0 	200.0 
iteration  

-1.0 
	

B-QMR K0.1420 

-3.0 

0.0 	50.0 	100.0 	150.0 	200.0 	250.0 	300.0 
iteration 

-1.0 

-3.0 

E 

1. :: 
-9.0 

-11.0 
0.0 	50.0 	100.0 	150.0 	200.0 	250.0 	300.0 

iteration 

Figure 5.3: Convergence history for B-QMR(75 ) at various blocking factors .s. 
= 0.14, 0.142, V = 8, /3 = 5.7, Csw = 1.5678 (tadpole-improved). 



Chapter 5. Linear systems II - block algorithms 	 J1 

5.3 Implementation 

As many of the comments made in section §(4.4) in the context of point algorithms 

apply equally to block algorithms, I shall here focus (somewhat more briefly) on 

those aspects which are peculiar to block algorithms. 

The basic object that a block algorithm deals with is a block-vector. Here is a 

Fortran declaration of such an object, taken from the block solver code. 

CFTRANS Psi :1 :1 :1 :site 

Fpoint Psi(O:Ncomplex-1,O:Ncolour-1,O:Nspin4-1, 

$ 	 0 :Max_body-1 ,0 :Max_block-1) 

The compile-time parameter Max-block determines the maximum blocking factor 

that the compiled code will be able to handle. There is no parity index as we are 

working with the red-black preconditioned fermion matrix. These objects may 

be thought of as arrays of .s single-parity fermion fields. 

Algorithm Vectors 
B-MR 3s 

B-CGNR 4s 
B-Lanczos 5s 

B-BiCC(75 ) 48 
B-QMR('ys ) 7s 

Table 5.1: Vector storage requirements, excluding H, for various block algorithms. 

The block algorithm also has to deal with complex s x s matrices, such as a in 

operations of the form 

Y=Xa+Y 	 (5.51) 

or 

a = ytX 	 (5.52) 



Chapter 5. Linear systems II - block algorithms 	 88 

in which X and Y are block-vectors. We need the ability to add or multiply two 

such objects, as well as the ability to invert them. I have written routines to 

perform the following operations: 

Operation Routine 

bcopy 

bminus 

a = (ata) 	(no sum) bmod2 

bainvb 

/3 = at bdagger 

a=0 bzero 

a = I bidentity 

baxpy 

7/ = aor71 = at bax 

1 = Tr ata  btradaga 

Table 5.2: Operations involving s >< .s matrices and the subroutines that implement 
them. 

The Cholesky decomposition of equation (5.26) and the QR decomposition of 

equation (5.50) are implemented respectively by the subroutines bupper..root 

and bqmrqr. The routines bainvb and bqmrqr are written to use LAPACK calls; 

the remainder are written entirely in Fortran. These operations are all local (they 

require no inter-processor communications) and are replicated on each processing 

node. Little effort was made to optimise these routines, apart from choosing a 

data structure to arrange that all components of these matrices were contiguous 

in memory. 

The computational cost of operations involving block-vectors is more significant. 

Table 5.3 lists the set of subroutines I wrote to provide block-vector support for 



Chapter 5. Linear systems II - block algorithms 
	

89 

the algorithms discussed in this chapter. 

Routine 	I Operation 	I A I B I C I D I E 

bfxcapy Y = Xa + Y 2 3 4 2 3 
bfxcapz Y=Xa+Z 1 2 

bfxca Y=Xa 1 1 
bfysx Y=Y—X 
brdiag_mulLr X 	= 	Xa or 

X = Xa', 
a diagonal 

bfcopy Y = X 
bfzero X = 0 
bfmod2 

Is 
1 1 1 

bfcdot Xty  2 2 1 

bfc_pseudo_dot Xty5 Y 1 2 2 

bfnorm X. = Xi/lixiii,  

borthonorm QR = X 1 1 
hrb_matrix Y = MX or 

Y=MtX 
1 2 1 1 1 

hgamma5matrix Y = I. 

Table 5.3: 
Operations performed in each iteration of (A) B-MR, (B) B-CGNR., (C) B-
Lanczos, (D) B-BICG(75 ) and (E) B-QMR(y5 ). 

For the most part, it proved convenient and efficient to write these routines to 

use calls to the more elementary routines of table 4.2. However, the extra level of 

complexity gives rise to more opportunities for optimisation, and a few wrinkles 

are worth mentioning. 

The floating point operations count to compute YtX  and  Yty5X  can be reduced 

if it is known that the answer is hermitian, and further reduced if Y = X. 

Accordingly, the interfaces to the subroutines bfcdot and bfc_pseudo_dot have 

Boolean arguments indicating whether these conditions are satisfied. 



Chapter 5. Linear systems II - block algorithms 	 90 

The subroutines bfmod2, bfcdot and bfc_pseudo_dot require that each compo-

nent of the local result be globally summed over processors. Most of the overhead 

due to communications latency can be avoided by performing all the local oper-

ations first, then using a single call to a vector global summation routine. The 

price to pay for this optimisation was a proliferation of codes; I took clones of 

fmod2, fcdot, ft_pseudo_dot and fc_pseudo..dotre, added a suffix _local to 

the name of each, and suppressed the summation over processors. 

The operation Y = X + Ya is difficult to implement efficiently, and I decided to 

make do without such a subroutine. Sometimes the need for such an operation 

can be avoided by a cunning trick. For example, the last operation in each 

iteration of B-CGNR is 

P=T+PO, 

and T will be overwritten at the start of the next iteration 

T=MP. 

The trick is to compute instead 

T=T+PO, 

and then interchange the roles of T and P.' 1  

Under certain conditions (64-bit precision on the Cray-T31) with the site index 

varing slowly), the level 3 BLAS routine CGEMM can be used to perform the 

bulk of the work in the subroutines bfcdot and b±xcapy, and there is a compile-

time option in the code to enable this. However, somewhat surprisingly, timings 

on the Cray-T3D indicated that the versions using level 3 BLAS were no faster 

than the versions relying solely on level 1 BLAS.'2  

'11n C this would be done by swapping pointers. In Fortran 77, one can achieve the same 
end by abusing array indices. 

12 The relative efficiencies of level 1 and level 3 BLAS routines are subject to change without 
notice. 



Chapter 5. Linear systems II - block algorithms 	 91 

Block algorithms also open up new avenues for optimisation in the matrix mul-

tiplication routine, arising from the fact that the coefficient matrix M is now 

applied to several vectors at once. These avenues have not been explored. 

5.4 Scaling 

In this section, we discuss how the computational requirements of block algo-

rithms scale with the blocking factor. We are interested in the 'work' required to 

converge one column of the solution vector iJ  as a function of the blocking factor 

s. In practice (assuming a dedicated computer), the only truly meaningful way 

of quantifying 'work' is to measure the elapsed wall-clock time, and this mea-

surement will depend on the architecture used and on the relative performance 

of the subroutines that implement particular operations on that architecture. To 

discuss this 'work' more abstractly, ie. outwith the context of any particular 

architecture, we resort to the often misleading method of counting floating point 

operations, 13  and consequently we are neglecting such items as inter-processor 

communications. 

In general we expect the work W, measured in floating point operations, required 

to converge one column to be described by the ansatz 

w(s)  [v (as + bs 2  + cs + d + es + fs2  + gs3] 	(5.53) 

where a, b,. . . , g are calculable coefficients to be described below, V is the lattice 

volume and w(s) is the number of iterations required to converge all s columns. 

In general, w(s) cannot be determined a priori and must be measured; what we 

can learn from this exercise is how w(s) must behave for the block algorithm to 

break even with respect to the point algorithm. 

The coefficient a is the product of the number of matrix multiplies per iteration 

and the number of floating point operations per lattice site required to implement 

"Often in the literature of block algorithms, this 'work' is quantified solely by counting 
matrix multiplies. This method can only be justified when the cost of a vector-vector operation 
is completely negligible compared to that of a matrix-vector multiply. 



Chapter 5. Linear systems II - block algorithms 	 92 

a matrix-vector multiply. The total floating point operations in a matrix-vector 

multiply is proportional to V by virtue of the structure of the fermion matrix. 

Were we working with an arbitrary coefficient matrix, the cost of a matrix-vector 

multiply would be proportional to the square of the order n of the matrix, and 

for n >> s 2  all other contributions could be neglected. 

The principal contributions to the coefficient b are from operations of the form 

Y = Xa + Z and 0 = ytx for rn x s matrices X, Y, Z and a x a matrices a and 

/. For some algorithms, b also gets a contribution from other operations such as 

the QR decomposition. 

The coefficient c accounts for the remaining vector operations. The major con-

tribution will usually he from the computation of the norms of the columns of 

the residual block-vector. 

The remaining terms involving the other coefficients d, e, f, g account for general 

control logic and operations with .s x a matrices. These terms, being independent 

of V, will be neglected here. However, it should be remembered that the overhead 

of these terms will increase with the number of processors on a parallel architec-

ture as it is impractical to parallelise the underlying operations; in practice they 

are replicated on each processing node. 

For our implementation of B-BiCG('ys), counting floating point operations, ne-

glecting terms not proportional to V and re-arranging gives 

S 
	V (4766s + 72s (6s - 1)). 	 (5.54) 

The apparent negative value of c is due to the fact that optimisations in 0(s2 ) 

vector-vector operations (exploiting hermiticity) give a saving with an 0(a) con-

tribution. The value a = 4766 is that for non-zero Csw on a scalar architecture; 

for Csw = 0, a = 2640.' 

14The overhead due to the clover term has since been reduced greatly by the trick described 
in Appendix C. 



Chapter 5. Linear systems II - block algorithms 	 93 

B-BiCG(y5) 

1.0 - 

0.9 — 

. 0.8

0.6 

0.7 

I 	I 	

EL 

Figure 5.4: The ratiowhere n is the number of iterations required for the 
convergence of B-BiCG(75), is plotted against the blocking factor S. The bursts 
linked by the solid curve (to guide the eye) show the theoretical break-even point 
based on equation (5.54); a measurement of 	above (below) this curve would 
indicate that the block algorithm is slower (faster) than the point algorithm. 



Chapter 5. Linear systems II - block algorithms 	 94 

5.5 Concluding Remarks 

In this chapter, we have studied five block algorithms and their application to 

quark propagator calculations with Wilson fermions. 

We motivated the investigation by observing that, in exact arithmetic, a block 

version of a Krylov-subspace method will terminate in at most n/s iterations. 

This gave us cause to hope that block algorithms could reduce significantly the 

number of matrix-vector multiplications required for convergence. Whether such 

a reduction would translate into savings in wall-clock time on realistic problems, 

ie. at values of 0, ic and lattice volume used in current and planned physics 

programmes, was an open question, due to the fact that the overhead of vector- 

vector operations necessarily grows as 	Before answering this question, we first 

consider the relative merits of the algorithms studied here. 

The convergence properties of B-MR are not improved by increasing the block-

ing factor. This is not surprising, as the algorithm does not enforce any global 

(bi-)orthogonality among the search directions. 

Block Conjugate Gradient must be applied to the normal equation, and so suffers 

in comparison to the other methods due to the squaring of the condition number. 

B-CGNR converges smoothly and increasing the blocking factor improves the 

convergence, as figure 5.1 shows. The same figure also shows several generic 

features of block algorithms. Firstly, as the problem becomes more difficult (i 

approaches i, from below), blocking becomes more effective. Secondly, as the 

blocking factor increases, the convergence history, plotted semi-logarithmically, 

becomes increasingly concave. An important consequence of the second feature 

is that the benefit of blocking increases as the convergence criterion is tightened; 

if performance is one's main criterion for choosing between two algorithms, then 

one must specify the target residuum at which the comparison is to be made. 

Block Lanczos converges more rapidly, if somewhat less reliably, than B-CGNR. 

The same generic features are present in its convergence histories (figure 5.1), but 

somewhat obscured by oscillations. It suffers in comparison to B-BiCG('ys) and 



Chapter 5. Linear systems II - block algorithms 	 95 

B-QMR(75) due to the inferior spectral properties of its coefficient matrix 75 M. 

B-BiCG(ys) (figure 5.2) and B-QMR(ys) (figure 5.3) work with the non-hermitian 

matrix M directly, and they convincingly outperform both B-CGNR and B-

Lanczos. However, B-BiCG(ys) (figure 5.2) and B-QMR(ys) show a weaker im-

provement as the blocking factor is increased than does B-CGNR. 

At the start of this chapter, I suggested that the lattice volume, or order of the 

coefficient matrix, must have some effect on the viability of block algorithms. This 

is easy to see at small volumes. Recalling the discussion at the start of section 

§(5.1), the Krylov-subspace associated with one of the s linear systems is more 

likely at smaller volumes to be relevant 15  to the solution of another, inasmuch as 

there are only so many dimensions in the solution space. This accounts for the 

observations in [51] that, at sufficiently small volumes and small quark mass, the 

number of iterations for convergence becomes independent of quark mass, and 

the residuals of all s systems fall catastrophically around ri/s iterations. 

At large lattice volumes, arguments of this kind cease to hold water. Although 

some residual effect due to the finite order of the coefficient matrix will persist, the 

viability of block algorithms will depend more strongly on the spectral properties 

of the coefficient matrix. In [52], O'Leary showed that Block Conjugate Gradient 

removes the deleterious effect of the s - 1 smallest eigenvalues on the asymptotic 

rate of convergence. If, as expected, similar effects hold for other block algorithms, 

then at large volumes, blocking will be most useful when M has several small 

eigerivalues, isolated from the bulk of the spectrum. Although a study of how the 

eigenvalue spectrum of M depends of /3 (and icsea) is well beyond the scope of the 

present work, McCarthy [50] found ranges in /3 where Block Conjugate Gradient 

is particularly effective for staggered fermioris. 

My more modest purpose was to determine whether block algorithms could use-

fully be employed to accelerate quark propagator calculations in hadron spec- 

15J11 the sense that 0i will have a significant overlap with span{j, M1),.. M'j} for 

i:Aj. 



Chapter 5. Linear systems II - block algorithms 	 96 

troscopy. The short answer appears to be no. 

In recent years, the UKQCD programme of quenched hadron spectroscopy has 

concentrated on /3 > 6.0, V > 16 x 48 and quark masses extending down to 

the strange mass (or slightly lighter), with Csw fixed by the value of /3 and the 

improvement prescription (both tadpole improvement, and more recently, non-

perturbative improvement). Even at the lightest of these masses, the smallest of 

these volumes and the strongest of these couplings, the fastest block algorithms 

exhibited at best a marginal reduction in wall-clock time on the Cray-T3D com-

pared to their s = 1 versions, so that to use a block algorithm in preference to 

point BiCGSTAB would not have been warranted. Subsequent improvements to 

the matrix multiplication routine (highly optimised assembly language routines 

on the Cray-T3E and a better implementation of the clover term as described in 

appendix C) have weakened the case for block algorithms even further, as the rel-

ative cost of matrix-vector to vector-vector operations has fallen. Adding to this 

the fact that B-BiCG(ys ) and B-QMR('75 ) in 32-bit precision cannot consistently 

achieve our usual target residuum of iOnH, we are lead to the inescapable con-

clusion that block algorithms are unlikely to impact on the future of quenched 

hadron spectroscopy. 

The outlook is similar for hadron spectroscopy using dynamical fermions. I 

timed B-BiCG('ys) and B-QMR('y5 ) in 64-bit precision on the Cray-T3E, us-

ing gauge configurations generated as part of the HMC simulations described in 

chapter 7,16  and found that, in terms of wall-clock time, s = 1 was optimal for 

all Kvalence 	sea 

16 	= 5.2, N f  = 2, V = 12 3  x 24 



Chapter 6 

Generalised Hybrid Monte Carlo 

In this chapter, I describe the generalised Hybrid Monte Carlo algorithm (GHMC) 

[56], and show how it may be used for lattice QCD simulations involving two 

mass-degenerate flavours of dynamical quark. It is not my purpose to review 

alternative methods, and my treatment of the background theory will be brief. 

Instead, I focus primarily on the design, implementation and optimisation of the 

code. 

6.1 Introduction 

The partition function of lattice QCD in the presence of two mass-degenerate 

flavours of dynamical quark may be written 

Z 
= f [dU] det (M[U]tM[U]) exp (—S 9  [U]). 	 (6.1) 

Our goal is to generate gauge field configurations U, U1,, C SU(3), with proba-

bility 

det (M[U]tM[U])  exp (—S 9  [U]). 

For reasons which will be discussed later, we work instead with the red-black 

97 



Chapter 6. Generalised Hybrid Monte Carlo 	 98 

preconditioned matrix, by making use of the identities' 

det M = det (Ae cle 

	

) det (A00 - k 2 D AiD) 	 (6.2) 

= det (A00 ) det (Ae - K 2 D Ai Doe  

	

) 	 (6.3) 

which we summarise by 2  

det M = det (A) det (M) . 	 (6.4) 

After rewriting the fermionic determinant as an integral over bosonic fields (pseud-

ofermions) ç defined only on sites of parity p, our problem becomes one of gen-

erating gauge field configurations with probability 

P (U, 0) = 1 exp (Sejj  [U, q5]) 	 (6.5) 
zf I 

where 

Sjj [U, ] = S 9  [U] - 2 In det A + 	
1 	

(6.6) 

and 

Zejj 	f [dU] [d*] [d] exp (S,!11 [U, 0 	(6.7) 

We do this using a generalised Hybrid Monte Carlo algorithm (GHMC). 

'These follow from properties of determinants and the factorisations 

(A B ) (A o ) 
	 ) 
(i 	A 1 B 	(i B(A — BD'C 0 

C DC Io D—CA-1B0 D) 	D 1 C 	I 

applied to the fermion matrix in the even-odd basis. 
2j  apologise for the change in notation; in this chapter and the next I use the notation M, 

to conform with [4, 57]. 



Chapter 6. Generalised Hybrid Monte Carlo 
	

99 

6.2 The Algorithm 

One begins by introducing fictitious momentum fields P, canonically conjugate 

to U, and then defines a Hamiltonian 

[P, U, ] = Tr P 2 + Saji [U, ], 	 (6.8) 
2 	11 

and a partition function 

f [dP] [dU] [d*]  [d] exp (- [P, (I, ]) 	 (6.9) 

in which Sejj plays the role of a potential. The conjugate momenta reside on 

the lattice links and belong to the su(3) algebra. It is therefore convenient to 

represent them in terms of the Gell-Mann matrices §(A.3) 

8 

p11w 
	pa ) 	 (6.10) - 

a=1 

and we need store only 8 real numbers on each link. 

The algorithm GHMC, set out schematically overleaf, defines a Markov process 

which has exp (—'H) as its fixed point.3  Consequently, after equilibration, GHMC 

will generate P, U, 0 with probability 

P 	
1

(P,U,q) 	—exp (—'H[P,U,q]) 	 (6.11) 

/Zejj 
expHTr P 2)) 	exp ( - Sejj 

 ) 	

(6.12) = (— ) 
eff 

P(P)P(U,q). 	 (6.13) 

Thus the probability distribution factorises and the conjugate momenta have no 

effect on observables. 

3The proof for HMC may be found in [58]. 



Chapter 6. Generalised Hybrid Monte Carlo 
	

100 

1. Given an initial configuration of U and P fields at time r = 0, refresh the 

pseudofermions 0 by 

= icr 2, [U]71 
PI  (6.14) 

where ij is a complex vector of zero-mean, unit-variance Gaussian noise. 

Integrate §(6.3.2) the equations of motion §(6.3.1) to calculate P and U at 

a time NmddY later. 

Reverse the sign of P. 

Metropolis. Accept the new configuration with probability 

rnin{1,exp(—A9-{)}, 	AW = 'Hy_N!fld dT  'H=0 	(6.15) 

otherwise restore the original 'r = 0 momentum and gauge fields. 

Reverse the sign of P. 

Refresh the momenta by mixing in a real field of Gaussian noise, with 

mean zero and variance 

1=1,...,8 	(6.16) 

Go to 1 with the resulting P and U fields. 

'If we had used -  in equation (6.10), we would use variance 1 here. 



Chapter 6. Generalised Hybrid Monte Carlo 	 101 

The pseudofermions are held fixed throughout the molecular dynamics. Re-

freshing pseudofermions in the manner of step (1) ensures that the distribution 

of pseudofermion fields converges simultaneously with the distribution of gauge 

fields. 

The purpose of the molecular dynamics integration in step (2) is to propose a 

new pair of U and P fields which are distant (in configuration space) from the 

original pair, at the same time as having a high probability of being accepted in 

step (4). Violations of energy conservation are only important insofar as they 

affect the acceptance rate. However, violations of reversibility are crucial as they 

destroy the correctness of the algorithm 

The ergodicity of GHMC arises out of the stochastic nature of the i and in steps 

(1) and (6). It is the Metropolis accept-reject step (4) that makes the algorithm 

exact. 

The tunable parameters of GHMC are the mixing angle 6, the step size d and 

the trajectory length N111d. The standard Hybrid Monte-Carlo algorithm of [58] is 

the special case of GHMC for which 9 = 7/2. GHMC with Nmc j = 1 is equivalent 

to the L2MC of Horowitz [59, 60]. 



Chapter 6. Generalised Hybrid Monte Carlo 	 102 

6.3 Integrating the equations of motion 

6.3.1 The equations of motion 

The Hamiltonian (6.8) gives rise to the equations of motion' 

U = iPU 	 (6.17) 

= 	 (6.18) 

The dots denote differentiation with respect to molecular dynamics time i. The 

force term 	is equal to the traceless part of 

u (_c + KWAX - kcSwc) - h.c. 

and has contributions originating from the pure gauge (c), pure Wilson (W) 
and clover (C,) parts of the action. 

We define fields X and Y 

	

(Xe) 	

(Ye ' )\ 
- 	 I  

X0 	 Y0  
X  

which are given on sites of parity p by 

- 	
(tjPP 

)1 	 (6.20) -" p - 

Y - Mtpp 
P  
- 	XP 	 (6.21) 

and on the other parity ji by 

	

Vp - - 	 ( 6.22) li   

Yp   = icAIJ4Yp. 	 (6.23) 

'For a detailed derivation of the equations of motion, the reader is referred to [4] or [57], 
and useful background can be found in [61]. 



Chapter 6. Generalised Hybrid Monte Carlo 	 103 

Labelling sites of parity p by x, we denote by (XP)XPthat  part of X which is 

local to site x, and we treat it as a 12-component column vector. It is convenient 

also to define 

= 	(' 	(X),XP  + (XP) XP 	
(6.24) 

= 	(X) + (X) () + 2 (A 1). 	(6.25) 

Each A has 144 components, and the object Tr 1 A is the 3 >< 3 complex matrix 

that results when Ax  is traced over its hidden spin indices. Explicit forms for 

9AX7 W, and C, can now be given in terms of the X, Y, A and the SU(3) link 

variables U. 

= 

	

	(u
Ut Ut +Ut 	Ut 

tlx-vu_) 	 (6.26) 
II 

Wl-zx  = Tr 	 (1 + ) + XY (1 - /L)] 	(6.27) 

Clix = E Tr [A + ] U(JU VtX 
I' 

+ 	LJV +TrSPIfl  [aA ++ ] UUt 
vx 

ii 

+ 	E UVX+/L (Jitx+i Tr 1  [o,LV AX+,] Uz13;  i  

+U 	 [,7,,A,]1 A ] IJX/Ut /X+V 
V 

- 	Tr spin 	U v+f-D U  zx-DU tix-I 
V 

- 
V 

- 	Ut 	 [a V AX_} UVT_ VX+L-VU
t  LX-V 

V 

- 	Ut 	Ut 	UVX_Tr$Pfl  [o /JV A] 	 (6.28) VX+L-IJ ItX-V 
V 



	

Chapter 6. Generalised Hybrid Monte Carlo 
	 104 

6.3.2 Leapfrog integration 

The integration scheme used to integrate the equations of motion in the molecular 

dynamics part of GHMC is required to be area-preserving and reversible. Sym-

metric, symplectic integrators satisfy this requirement, and perhaps the simplest 

of these is the so-called "leapfrog" integration scheme. 

We define operators lu  and lp by 

U 

(exp(itp)U\ 

	

j(t) 
( 	

I = 	 (6.29) 

	

F ) 	 P 	/ 

( 	\ 

	

Tp(t) 
( 	

I = 	 I 	 (6.30) 
F U ) 	P 

U  

_its) 

and then use the compound operator 

	

7-  (t) = 'Tp (t/2)'Tu (1) Yp (1/2) 	 (6.31) 

to integrate equations (6.17) and (6.18) through one timestep di: 

( U(dT) 	 (U (0)\ 

	

=1(d'7-) 	J 	 (6.32) 

	

P(d) / 	 P(0)j 

A molecular dynamics trajectory is integrated by repeated application of equa-

tion (6.32): 

(

U(NmddY) 

	

	1(d)Nmd ( U(0) \ 
P (NmddT) ) = 	 p (0)) 	

(6.33) 

= Yp (dr/2) (Tu (dr)Yp (dy))Nm Tu (dr) Yp (d/2) 

in which we used the fact that Yp (1/2)2 = 7P- (1). The integration scheme (6.33) 

conserves energy up to terms 0 (d)2. 

Following a suggestion of Sexton and Weingarten [62], we can decompose 1X 



Chapter 6. Generalised Hybrid Monte Carlo 	 105 

into a pure gauge part and a fermionic part. 

- 	+ lix 	P X 	 (6.34) 

The pure gauge part .F )  consists of those terms in the definition of LT  which AX 

are not proportional to ic. The fermionic part TJ )  is much more expensive to 

compute as it depends on the fields X and Y. We define corresponding operators 

in the obvious way: 

(
7-P9) 

) 	

u  (t) 	= 
( 	

I 	 (6.35) 

	

P 	P - jj(P9) j 

) 	

( 

	

j;f) (t) (U 
	

U 
= 	 I 	 (6.36) 

	

P 	P—itT(s) )' 

and observe that 

	

r @) = 7-pg) (t) 	(L) = 	i 	(/;). 	 (6.37) 

We obtain a generalised leapfrog scheme by using the compound operator 

(t) = 	
G 	(_L-FU  (- 	

±(6.38) 

	

2nçJ 	mc) 	2mq)I

nc 

for flç = 1,2,... in place of 1(t) in equation (6.33). The standard leapfrog 

scheme is recovered by setting flç = 1 and making use of equation (6.37). The 

hope is that better energy conservation can be had for flç > 1. In some regimes, 

we find that flq = 2 provides a modest improvement in acceptance rate at little 

additional cost, but that further increases are rarely worthwhile [4]. We generally 

use ng  = 1 or 2 in production. 



Chapter 6. Generalised Hybrid Monte Carlo 	 106 

6.4 Solvers and preconditioning in GHMC 

The solution X to 

1t1 	[U] t  Icf [U] X 	 (6.39) 

must be computed each time the gauge fields are altered. This is the most 

computationally demanding part of GHMC, and hence the most promising target 

for optimisation. 

The obvious, and traditional, strategy is to use the Conjugate Gradient Method 

with the hermitian, positive and (hopefully) definite MM PP  as the coefficient 

matrix. It was in anticipation of this that we chose to re-express the fermionic 

determinant in terms of the red-black preconditioned matrix (equation (6.4)). If 

instead we had formulated GHMC on the full matrix M with pseudofermions 

defined on both parities, we would now be dealing with the larger system 

MtMX= cb 

which is not amenable to red-black preconditioning due to the fact that MtM 

involves next-to-nearest neighbour couplings. 

Although Conjugate Gradient is in some sense optimal for an arbitrary hermitian 

positive definite coefficient matrix,' it is possible here to exploit the fact that the 

coefficient matrix is given in factored form, computing X with two successive 

solves 

1. = 	 (6.40) 
PP  P 

2. 	1k,  P XV= 	 (6.41) 

using an efficient non-hermitian solver such as BiCGSTAB. The hope is that 

reduction in condition number will offset the additional solve. We find that the 

two-step method using BiCGSTAB yields very significant performance gains (of 

51t is optimal amongst iterative methods that deal with the same Krylov subspace. 



Chapter 6. Generalised Hybrid Monte Carlo 	 107 

up to 40%) on the Cray T3E, Cray T31) and Alpha workstations.' To eliminate 

the effect of the imperfect convergence of Y on the accuracy of X, we "polish" 

X with a Conjugate Gradient restart. 

It should be pointed out that the two-step solve method can use red-black pre-

conditioning regardless of whether GHMC is formulated to use the full fermion 

matrix or the red-black preconditioned matrix. 

In section §(4.2), I alluded to the possibility of applying a further block Jacobi 

preconditioner to the red-black preconditioned system. We actually use that 

preconditioning here. Equation (6.41) can be preconditioned by left-multiplying 

by A. Since App  is hermitian, equation (6.40) can be preconditioned in the 
PP 

same way. To handle equation (6.39), we use central preconditioning, and solve 

the transformed system 

(A_1I1ti M A_1j  (AX) = A;'q, 	 (6.42) PP pp PP pp 

in order to work with a coefficient matrix that is manifestly hermitian and posi-

tive. 

I set out the Conjugate Gradient algorithm, with explicit preconditioning, below. 

All vectors are defined on one parity only, and I have suppressed all parity indices 

for notational convenience. R(k) = - MtMX(k) is the residual after the kth 

iteration. The preconditioner V = V1 V2  is applied centrally (V1  = V2  = C), 

modifying the iterates 

X(k) 4 	= CX(k) 	 (6.43) 

and residuals 

R(k) 	(k) = C_ 1 R(k). 	 (6.44) 

In practice, we take either C = A,,p  or C I. 

'This conclusion is, at least in part, architecture specific. Some groups claim no advantage 
to BiCGSTAB over Conjugate Gradient on APE/Quadrics machines. 



Chapter 6. Generalised Hybrid Monte Carlo 

Conjugate Gradient 

= - 
= cx° 

P(0) = 

P0 
= (J(o))t 

for k = 0, 1, 2,... until convergence do { 

T = Mc-1 P 

1r=TT 

= Pk 

(k+1) = 	
+ 	

k) 

Z = CMT 

j(k+1) = — Za + (k)  

Pk+i = ((k+i))t (k+1) 

= CR' 	 (6.45) 

1) 
= Pk

-1 
 Pk+1 

p(k+1) _ (k+i) + 



Chapter 6. Generalised Hybrid Monte Carlo 	 109 

An interesting and sometimes useful aspect of Conjugate Gradient is that esti-

mates of the smallest and largest eigenvalues (arid hence condition number) of 

the coefficient matrix can be obtained at little extra cost.7  The key observation, 

by properties of the Conjugate Gradient algorithm, is that the matrix 

((o)) t 

T(k) = 	 CMtMC (r(0) 

(7k)) t 

r(k)) 	
= 	( J) 

- 
-0) )t_ 

() 

is real, symmetric and tridiagonal, with non-zero components that can be eas-

ily extracted from coefficients computed during the iteration. Since the {r(3) } 

are orthonormal, we are in effect accomplishing a Laniczos tridiagonalisatiori of 

the coefficient matrix. When Conjugate Gradient converges after (say) m itera-

tions, the extremal eigenvalues of T(m)  are taken as approximations to those of 
CMtMC. Agreement to five or six significant figures is routinely achieved. 

The BiCGSTAB algorithm that we use in GHMC is set out below, with explicit 

preconditioning. Once again, all vectors are defined on one parity only, and parity 

indices have been suppressed. L is an optional left preconditioner which modifies 

the residuals R(k) 	(k) = LIR(c) but leaves the iterates X(c)  unchanged. In 

practice, we take either L = App  or L = I. The version given here is appropriate 

for the solution of equation (6.41); to handle equation (6.40), simply replace 

X —+ Y and M -+ Mt wherever they occur. 

7j am grateful to James Sexton for bringing this to my attention. 



Chapter 6. Generalised Hybrid Monte Carlo 	 110 

BiCGSTAB 

= - Aix(0)  

= LR°  

v=P=0 

PO  = a = w = 1 

for k = 01  1,2,... until convergence do { 

Pk+1 = ())
t (k) 

13 = ( pk+1/pk)(a/w) 

P= (k)+(p W V) 

V = L 1 MP 

a = Pk+1/ 
(o))t 

V 

S=RaV 

T = L 1 M8 

= TtS/TTT 

X 1 	X(k) + WS  + aP 

(k+1) = S - wT 

R(k+i) = 	 (6.46) 

} 



Chapter 6. Generalised Hybrid Monte Carlo 	 111 

I found that this block Jacobi preconditioning typically reduced the number of 

iterations for BiCGSTAB to converge on equations (6.40) and (6.41) by some 

15%. The improvement for Conjugate Gradient on equation (6.39) was even 

more significant, at some 25%. These savings in the number of iterations do 

translate into similar savings in wall-clock time for the following reasons. 

Firstly, there is no significant overhead in the multiplication by the coefficient 

matrix. Using preconditioned BiCGSTAB to solve equation (6.41), the coefficient 

matrix 

MPP = A - K D A 1 D- 	 (6.47) 

is replaced by 

- I - 2A; pp D -A 1 D-pp 	 (6.48) PP PP - 

so we have effectively traded a multiplication by Ap. for a multiplication by its 

inverse, and the costs of these two operations are approximately equal.' Similar 

remarks (but with different coefficient matrices) apply to BiCGSTAB on equa-

tion (6.40) and to CC on equation (6.39). 

Secondly, it is possible to skip the updates of the residuals of the original system 

in equations (6.45) and (6.46). One must then be content to base convergence 

criteria on the preconditioned residuum, but this is reasonably satisfactory as the 

ratio of the two residua is typically of order unity. In my implementation, I only 

compute the residual of the original system after the preconditioned residuum is 

within N/2 of the convergence target. 

6.5 Implementation, verification and optimisation 

6.5.1 Operational aspects 

Run-times for dynamical fermion simulations are typically measured in months 

or even years. This simple fact has important consequences which informed the 

'Actually, at the time of writing, the cost of multiplication by the inverse is actually less 
than that of the forward multiply, which has not yet been rewritten to exploit the trick of 
§(6.5.5). 



Chapter 6. Generalised Hybrid Monte Carlo 	 112 

design of our code. We wanted to make maximum use of the available computing 

resources, at the same time as minimising the impact of the inevitable system 

breaks. Furthermore, we tried to allow for improved modules to be swapped into 

the production code during a production run. I now describe three features of 

our implementation which did much to achieve these ends. 

The first of these is checkpointing. The essential purpose of checkpointing is 

damage control; by recording the state of the simulation periodically we can 

recover from a system crash without losing too great an amount of precious 

computing time. At the end of each trajectory, the state of the simulation is 

completely defined by the fields U, F, the state of the random number generator, 

and the run-time options; during a trajectory, rather more information is required 

to specify the state. It is, therefore, both natural and convenient to implement 

checkpointing by saving to disk the state of the simulation at the end of an 

integral number of trajectories.' Lest a disk failure occur while a checkpoint is 

being written, we work with a cycle of (at least) two sets of checkpoint files. 

The second feature is a facility to stop the simulation tidily and on demand. This 

was achieved by including in the code at the end of every trajectory a test for the 

existence of a flag file; if the file is found to exist, the program takes a checkpoint 

and stops. The operational flexibility that this feature provided to us proved 

extremely invaluable in numerous situations, including several that we had not 

foreseen. 

The third feature is a robust and flexible parameter file reader. The program 

reads its run-time options from a free-format text file consisting of keyword and 

value pairs as well as optional embedded comments.'° Such a flexible format does 

much to reduce time lost due to human error, as will be appreciated by anyone 

who has had to work with parameter files that depend on specifying options in 

On large volumes at light masses we generally checkpoint at the end of every trajectory, 
but the ability to checkpoint less frequently was used on cheaper simulations where a trajectory 
takes only a few minutes to complete. 

"The currently supported keywords and their meanings are listed in D. 



Chapter 6. Generalised Hybrid Monte Carlo 	 113 

the correct sequence.11  Moreover, it enables a new version of the code using new 

run-time options to be swapped in painlessly during a simulation.12  Our param-

eter file strategy also facilitated the implementation of checkpointing; it was a 

simple matter to write to disk, as part of every checkpoint, a complete param-

eter file defining everything necessary to resume the simulation from the latest 

checkpoint; having written a checkpoint we also record the location of the asso-

ciated parameter file. Similar parameter files are saved along with every gauge 

configuration that is stored for subsequent analysis; these serve to document the 

options used in the generation of the gauge configuration (including a definition 

of the file format) and to record information from which the integrity of the files 

themselves can be ascertained (time-sliced plaquette and checksums). 

These three features are supplemented by a suite of shell scripts. Once a simula-

tion is deemed to have equilibrated, little operator intervention is required other 

than occasionally to resume the rim. The script that does this function (1) en-

sures that the simulation is not already running by testing for the non-existence 

of a lock file, and if no lock file is found, creates a lock file and continues, 13  (2) 

finds the latest checkpoint parameter file and takes a copy to be read by the 

CHMC code,14  (3) invokes the GIIMC code itself, and once this has completed 

(4) deletes the lock file created in (1), and finally, if no flag file exists to indicate 

that the simulation has been stopped on demand, (5) submits to the NQS queue 

a job which runs this script again. Step (5) ensures that full use is made of the 

machine's uptime. Other scripts in the suite fulfill essential housekeeping func-

tions such as bundling and archiving of the generated gauge configurations and 

their conjugate momenta. 

1  'Even worse is the all too common scenario in which options can only be changed by recom-
piling the code. 

"An earlier methodology in UKQCD's MPP codes was to delegate all parameter file parsing 
to a separate program. This resulted in an unhealthy inertia, as even a minor change to the 
parameters of one application necessarily assumed system-wide proportions. 

"Such precautions are unfortunately necessary on a shared machine. 
"The parameter file reader is written to ignore duplicated keywords, so this is a convenient 

place to insert any parameter overrides. 



Chapter 6. Generalised Hybrid Monte Carlo 	 114 

6.5.2 Code verification 

Verifying the correctness of a code of this magnitude is no simple task. For the 

most part, unit testing of the component modules presents no particular difficulty, 

although constructing test harnesses and test data is not always straightforward. 

The full scope of the problem becomes apparent once the individual modules have 

been integrated into a single code and the obvious bugs (those that prevent the 

code from running to completion) have been ironed out. Our ultimate concern 

is that the code produces the correct results. In the solver, we always had the 

ability to verify the solution by the simple expedient of substitution, but no such 

possibility exists here. We can gain some confidence in our code by reproducing 

published results, insofar as any are available, but sooner or later we shall have 

to venture into uncharted waters in parameter space. 

Tests which depend on the correctness of the code as a whole are therefore ex-

tremely precious, and I identify some of these below. 

1. Reproducibility. If the same code is run twice from the same starting condi-

tions, the results of the second run should reproduce those of the first. This 

requirement, without which one could never develop satisfactory confidence 

in the code's correctness, is not as trivial as it might seem at first sight,15  

and actually influenced the design of our code. For example, in the interests 

of economy, we store on disk only two rows of the gauge field configurations, 

reconstructing the third as required from the condition that each link ma-

trix is special and unitary; in order to ensure reproducibility it is necessary 

to reunitarise the gauge fields in memory whenever they are written to 

disk.16  Similarly, although the conjugate momenta are reinitialised at the 

"For example, changing the processor grid will induce tiny changes in global summations, 
and these will be magnified by the chaotic dynamics of GHMC. Moreover, although the gauge 
fields and conjugate momenta are stored in a format which is independent of the processor grid, 
the state of the the random number generator is not currently defined in a grid-independent 
way. 

"In finite precision, reunitarising a reunitarised gauge field will induce in it a tiny but 
measurable change. 



Chapter 6. Generalised Hybrid Monte Carlo 	 115 

start of every trajectory in pure HMC, in our current implementation they 

must be included in every checkpoint to ensure reproducibility. 17 

2. Energy conservation and scaling. Although HMC defines a conservative dy-

namical system, the discrete integration scheme that we employ to compute 

the evolution of U and P means that the molecular dynamics trajectory will 

depart from the LIR = 0 surface. A small L7-{ is necessary to ensure a sat-

isfactory acceptance rate; we therefore require at the very least that our 

code can achieve a sufficiently small A-1, if necessary after "reasonable" 

tuning of Nmd and d'r. More powerful tests can be designed around the 

observation that in any symplectic integration scheme z7-t should scale (to 

leading order) as a power of the timestep d'r; such tests were conducted on 

our code in [4] for the leapfrog scheme that we employ in production and 

for several higher-order integration schemes, and the results were found to 

he satisfactory. 

3. Reversibility. In order to ensure detailed balance the molecular dynamics 

trajectory must be reversible. We measure violations of reversibility on 

an intial P and U by integrating the equations of motion forward through 

molecular dynamics time Nmdd'r to obtain P' and U' (the forward trajec-

tory), then reversing the sign of P' and integrating through a further N d dT 

to obtain P" and U" (the reverse trajectory), and finally computing 

2 

su= (6.49) 
N 

I 	8 

8P = 	 + ()a2 	
(6.50) 

N x4l a=1 

and 

SA = 	(U", P") - '- (U, P). 	 (6.51) 

"The GHMC algorithm requires initial conjugate momenta; if no starting P is supplied 
our program will generate one, and the net effect is to boost the state of the random number 
generator, destroying reproducibility. 



Chapter 6. Generalised Hybrid Monte Carlo 	 116 

The plus sign in equation (6.50) compensates for the fact that P" is the 

negative of what would be obtained by changing the sign of dr instead of 

P. The quality of these measurements should be interpreted with reference 

to the best that one could hope to achieve, given the lattice volume and 

precision used; for example, 8LU less than 

-I- 
2\ 

2 

RU IL ,x)iiU 
/ 

where c is the machine epsilon, is not realistically attainable. If all solves 

are done exactly, employing a symplectic integration scheme guarantees 

the reversibility of the tra.jectory up to machine precision. The impact 

of inexact solves on reversibility can be eliminated by adopting a strategy 

whereby the initial guesses at the solutions are chosen reversibly; in practice 

this means that the initial guesses for X, and/or } should be constant 

throughout the simulation, the zero vector being the obvious choice. 18 

4. The quantity (exp (-3-t)), the average being taken over trajectories in 

an equilibrated Markov chain, should agree within errors to unity. This 

provides both a useful diagnostic for deciding whether a simulation has 

thermalised, and an extremely potent check of the code. 

Although these tests are powerful, it is nonetheless possible to have an incorrect 

code that passes them all. During the early stages of system testing, we had 

a reproducible, energy-conserving, reversible code and a thermalised simulation, 

which failed to reproduce published results.'9  The average plaquette is one quan- 

181t is for this reason that we decided in the design phase to eschew educated guessing 
techniques, amongst which the chronological inversion method [63] is the most sophisticated. 
However, I did experiment briefly with some non-reversible guessing strategies, including the 
simple expedient of taking for the initial guess(es) the solution(s) from the previous timestep; 
I saw significant savings in solver iterations at the expense of disturbingly large reversibility 
violations. 

"The problem turned out to be that we were using the wrong variance when refreshing 
pseudofermions; the error could be swept up in a redefinition of 0 and dr, so that it appeared 
to all intents and purposes as if we were simulating at the wrong value of /3. 



Chapter 6. Generalised Hybrid Monte Carlo 	 117 

tity that provides a convenient reference. We have run simulations in both the 

pure gauge (ic = 0) and pure Wilson (ic L 0, Csw = 0), and reproduced published 

results for the plaquette, within errors. It was more difficult to verify our code 

for non-zero Csw,  owing to the lack of published data. We are indebted to Matt 

Wingate and the MILC collaboration for agreeing to run a small HMC simulation 

at non-zero Csw  using their own code, and to Karl Jansen for some suggestions 

on how to test the clover part of the action using a cumulant expansion. 

6.5.3 Optimisation - architectural factors 

Performance on the Cray-T3E is dominated by memory bandwidth. Although 

the memory system of the T3E is much improved relative to the T31) (streams, 

secondary cache and E-registers), the disproportionately faster processors20  mean 

that memory optimisations are actually more important on the T3E than on the 

T31). The fact that the processors support multiple instruction issue coupled 

with the increased complexity of the memory system makes it a good deal more 

difficult to take full advantage of the machine's capabilities. Typically, even highly 

optimised Fortran code can sustain only a small fraction of the theoretical peak 

speed, so key routines must be written in assembly language. As a by-product 

of the tender process that led to the acquisition of the Cray-T3E at Edinburgh, 

we were fortunate to obtain a set of highly optimised routines implementing 

multiplication by the fermion matrix. Since then a number of additional routines 

have been rewritten in assembler, 21  and currently less than 25% of the run-time 

is spent executing Fortran code. 

A significant optimisation on the Cray-T3E is to use 32-bit instead of 64-bit 

floating point numbers to represent the gauge, conjugate momenta and pseudo-

fermion fields. The improvement in speed (worth a factor of about 1.7 to us) is 

20The Alpha EV5.6 processors are clocked at 450 MHz and are capable of issuing two floating 
point instructions in each clock cycle for a peak performance of 900 MFlops per processing 
element. 

21We are indebted to Stephen Booth for several assembler routines manipulating 3 x 3 matri-
ces, and for an assembly language version of the multiplication by A, using the trick described PP 
in §(6.5.5). 



Chapter 6. Generalised Hybrid Monte Carlo 	 118 

entirely due to the reduction in the time taken for memory loads and stores; the 

number of clock cycles for a register to register floating point operation is the 

same in both precisions. Obviously, the improved performance must be weighed 

against degradation of acceptance rate and less tangible considerations such as 

reversibility and the accuracy of energy calculations. 

The Cray-T3E memory system is equipped with a number of streams, which 

supersede the read-ahead buffers of the Cray-T3D. By enabling streams we gain 

a further factor of about 2 in speed.22  

Together these optimisations (assembly language, 32-bit precision and streams) 

account for an approximately seven-fold increase in speed. 

6.5.4 Exponentiating the conjugate momenta 

The gauge updates in the equations of motion require the exponential of the 

conjugate momenta on each link. 

U,, (,T + d) = exp (i(1rP(r + dr)) U(r) 	(6.52) 

We compute the exponential exactly, or rather, up to machine precision. Since 

the Ptx  are hermitian and traceless, this ensures that the U, will remain unitary 

and special, again up to machine precision. We have two methods for computing 

the exponential. 

The first method unitarily diagonalises the hermitian matrix H = 

H = QtDQ 	 (6.53) 

using the LAPACK library routine CHEEV, then computes 

exp (iHd) = Qt exp (iDdT) Q. 	 (6.54) 

"Spare a thought for those compelled by circumstance to develop codes on earlier versions 
of the Cray-T3E which were not "stream-safe". 



Chapter 6. Generalised Hybrid Monte Carlo 	 119 

The other method works with the traceless, anti-hermitian matrix C = 

and proceeds along the following lines.23  It follows from the Cayley-Hamilton 

theorem that any power series in the 3 x 3 matrix C can be expressed as a 

polynomial in C of order at most 2, and in particular that 

exp(C)=aI+bC+cC2 
	

(6.55) 

for some a, b and c which depend on C but not on the choice of basis. In a basis 

in which C is diagonal, exp(C) may be represented by 

2 
icr 	 icr 

al + b 	i/3 	 + c 	i fl 	 (6.56) 

—i(a+) 	 —i(a+) 

Here icr, i13 and —i(cr + ) are the pure imaginary eigenvalues of C, which we 

determine by solving the characteristic equation 24  using Cardano's formula and 

some trigonometry. Equation (6.56) can be re-expressed as a linear system with 

Vandermoride's matrix as the coefficient matrix 

( 

1 	 ()2 	
\ ( a ) 

	( 	

eia  

b = 	

) 	

(6.57) 

(a + ) (—i (a + ))2 
/ 	

c 

which may be solved for a, b, and c. Special care must be taken if C has degenerate 

eigenvalues. 

The two methods give results which do not differ significantly, but the sec-

ond method, being some six times faster than the first, is the one we use in 

23We are grateful to A. D. Kennedy [64] for providing details of this method. 
24Computing the characteristic equation is simplified by expressing det (\I - C) in terms of 

traces of G2  and G3. 



Chapter 6. Generalised Hybrid Monte Carlo 	 120 

production. 25 

6.5.5 The clover term 

The operations of multiplying by the clover term App  and its inverse A; can be 

simplified quite significantly by exploiting the block structure of the clover term 

itself.26  Details are given in appendix C. The trick reduces the floating point 

operations count to construct the clover term by a factor of about 4, and the 

operations count to multiply by the clover term or its inverse by a factor slightly 

larger than 2. The memory requirements to store the clover term are halved. 

6.5.6 The energy calculation 

Since the energy )-1 is an extensive quantity, constrained by the conservative 

dynamics to change in small part over the course of a trajectory, the calculation 

of AW will become more and more problematic as the lattice volume is increased. 

We calculate the energy on a site-by-site basis at the beginning and end of each 

trajectory, finally computing All by slimming the site-by-site differences. This 

unnecessary refinement was originally intended to help reduce round-off error, 

but any benefits are entirely negligible due to the fact that global summations 

are performed in 64-bit precision. We note that on V = 12 x 24 this method 

yields a A9-1 that does not differ significantly from the naïve result. 

The pure gauge contribution S to the energy is proportional to the average pla-

quette, and it can be calculated in similar fashion (see eg. [23]). Using properties 

of the Cell-Mann matrices, the kinetic term 

8 

Tr p2  = 	
()2 	

(6.58) 
2 	

tLX 

X,.L a1 

25TO be fair, one could hope to improve the performance of the first method by writing a 
diagonalisation routine optimised for hermitian, traceless, 3 x 3 matrices. I did not explore this 
possibility because, once the second method had been introduced, the fraction of run-time spent 
in exponentiating the conjugate momenta was so small that further attempts at optimisation 
would be unrewarding. 

"We were made aware of this possibility by reference [65]. 



Chapter 6. Generalised Hybrid Monte Carlo 	 121 

is also straightforward. 

The fermionic contribution has two parts 

SieOt t 	-1 
- 	) q5-21ndetApp. 	 (6.59) 

The first term can be computed by either 

t 	 = çbX 	 (6.60) 

or 
-1 

t(JtPP M) MP-P(6.61) 'p p. 

We use the second method (equation (6.61)) in practice. 

The term In det A s  is easily calculated by exploiting the LDL factorisation of 

A15f  which is already calculated for use in the routine implementing multiplication 

by A 1. Since L is lower triangular with ones down the diagonal, we have IT 

det App =det(LtDL) = detD, 	 (6.62) 

and the determinant reduces to the product of the diagonal components, each of 

which can be shown to be real and positive. 21  When the inverse of the clover term 

is computed by the method described in appendix (C), the above calculation must 

be modified, but this is easily done. The remaining subtlety is the need to avoid 

underfiow and overflow when taking the product of the diagonal components. We 

do this by rescaling the running product whenever it becomes dangerously small 

or dangerously large. On a parallel architecture, the need for a global product 

routine is obviated by first taking the logarithm of the determinant on the local 

lattice, then completing the calculation using existing routines for the global sum. 

"Provided only that A ff  is hermitian and positive definite. 



Chapter 6. Generalised Hybrid Monte Carlo 	 122 

6.5.7 The first solve in a trajectory 

Recall that the pseudofermions q are refreshed at the start of each trajectory 

from 

(6.63) 

for Gaussian noise 77, and that, by equations (6.40) and (6.41), Y. is given by 

= MX = Açt. 	 (6.64) 

Thus, immediately after the refresh (before the gauge fields on which M depends 

have changed) we have 

= 77 	 (6.65) 

and consequently there is no need to compute Y. If a two-step solve is being used, 

the very first solve for Y in each trajectory can be avoided. Moreover, avoiding 

this solve also avoids introducing an error into Y due to imperfect convergence. 

A further consequence of this observation is that, in view of equation (6.61), the 

fermionic contribution to the initial energy is computable up to machine precision 

without the need for any solve. 

As the accuracy of GHMC depends crucially on the accuracy of the calculation 

of the change in energy over a trajectory, computing the energy in this way seems 

highly desirable, and our code was designed to exploit this trick. 

There is one potential drawback to the trick of skipping the initial solve for Y: 

it is manifestly not reversible - it is impossible to do the final solve for Y on 

the reverse trajectory exactly. It is worth noting that the trick will not affect 

measurements of 8zU, as the final gauge field update in the leapfrog integration 

scheme is performed before the final solve. It will, however, affect measurements 

of SAP (and hence 5A9-{). The deleterious effect of the trick on reversibility can 

be made arbitrarily small by tightening the convergence criteria on the exterior 

solves. Although no significant reduction in reversibility was observed on 12 x 24 

lattices when this trick was introduced, the possible impact on reversibility should 



Chapter 6. Generalised Hybrid Monte Carlo 	 123 

not be forgotten. 

6.5.8 Relaxing solver convergence criteria 

Although the accuracy of the exterior (ie. first and last) solves in each trajectory 

is important inasmuch as it determines the accuracy of the calculation of z3-( 

(and hence the correctness of a GHMC simulation), the accuracy of the interior 

solves is rather less important. It is even permissible to conduct the molecular 

dynamics using a guidance Hamiltonian W which differs from the one used in 

the Metropolis step, but we did not explore this possibility. 28 

Provided that a reversible guessing strategy is adopted, the interior solves can 

be performed using looser convergence criteria than the exterior ones. 21  We will 

then be trading acceptance rate for solver iterations. Studies conducted on small 

volumes [4] found that quite promising savings in the work effort per accepted 

configuration could be had by this means. 

As the lattice volume is increased and as the sea-quark mass is reduced, it becomes 

more difficult to control departures of the molecular dynamics from the AR - 0 

surface, and we have essentially only three run-time options that we can tune to 

maintain a reasonable acceptance rate: d, flg arid the convergence criteria for 

the internal solves. Now, whichever precision (32-bit or 64-bit) we are using for 

the fields (J, 0, X, Y, will determine the tightest convergence criteria that we 

can use for the external solves. When 32-bit precision is used at lighter masses 

on larger lattices, it will often be the case that the convergence criteria used in 

the internal solves is the same as that used in the external solves. 

From this it would be wrong to conclude that relaxing solver convergence criteria 

is not useful at light masses and large volumes. My view is that the problem 

is riot so much being unable to relax the internal criteria with respect to the 

281n principle, it is possible that a guidance Hamiltonian 7-' = -(O', ic', C) could yield a 
higher acceptance rate than 7-L(/3, K, Csw). However, /3", 	and 	must be tuned and this 
will not be cheap. 

29Thjs strategy was championed in [66] as a theoretically sound alternative to chronological 
inversion methods, 



Chapter 6. Generalised Hybrid Monte Carlo 	 124 

external, but rather being unable to tighten the external criteria with respect to 

the internal. The problem arises out of the fact that on any given architecture 

there is a limited choice of precision in which to work, and it is exacerbated by the 

fact that our codes make this choice at compile-time. The remedy that I propose 

is to use 32-bit precision for the internal solves (thereby benefiting from reduced 

memory accesses on the Cray-T3E), and 64-bit precision everywhere else. This 

would necessitate a major overhaul of existing codes, 3' but I recommend it highly 

nonetheless. 

6.6 Computing observables "on the fly". 

In a HMC simulation, gauge configurations will generally be stored less frequently 

than they are generated. This is a sensible strategy. Configurations separated 

by a single trajectory are usually highly correlated, and hadronic observables are 

typically calculated on configurations separated by intervals of order the (rele-

vant) auto-correlation time. 

However, in order to estimate the autocorrelation times, one needs observables 

calculated more frequently. We are interested, therefore, in observables which 

can be calculated cheaply on each "physical" gauge configuration. By cheaply 

I mean that the cost is significantly less than the cost of the trajectory, and by 

"physical", I mean those configurations which are accepted into the sample, ie. 

the starting configurations in each GHMC trajectory. 

Observables obtainable as by-products of computations which must be done any-

way are therefore desirable. These include 

1. The 1 x 1 Wilson loop, or plaquette, which is proportional to the pure gauge 

part of the action. We do not, at present, have parallel codes to compute 

larger Wilson loops. 

"Two versions, one for each precision, of each of a large number of modules would need to 
be invokable at run-time. Is there a way to achieve this without duplicating the source of each 
module? This consideration is especially important in an environment where all change-control 
mechanisms are anarchic. 



Chapter 6. Generalised Hybrid Monte Carlo 
	

125 

The number of iterations of the solver. 

The chiral condensate (b) is not itself cheap to compute, but a noisy 

estimator can be obtained as a by-product of the first solve in a GHMC 

trajectory. 

Other quantities that we log at the end of each trajectory are the initial and final 

total energies, the kinetic, fermionic and pure gauge contributions thereto, and 

the result of the Metropolis decision. Such information enables us to monitor 

(exp (—z\-1)) and acceptance rate, and is useful in deciding whether a 

simulation has equilibrated, and whether it is behaving as expected. 

6.6.1 The chiral condensate 

The chiral condensate (?J') is proportional to the trace of the inverse of the 

fermion matrix. 

It is useful to relate TrM 1  to the red-black preconditioned matrix. Formally, we 

have 

Tr M 1  

= Tr [(A icD) 1 ] 

= Tr [(I - i A_1 D) I A_i] 

= Tr [(i+ (A-1D)  + (,cA_1D)2 + (kA-ID)'  + ...) A_i] (6.66) 

= Tr [(I + (kA-1D)'  + (A-1D) 
+ ...) 

A_i] 	 (6.67) 

= Tr [(i_ (A_1D) 2)_'  A_11 
	

(6.68) 

= Tr [(A - 	 (6.69) 

The Neumann series expansions in equations (6.66) and (6.68) converge if the 



Chapter 6. Generalised Hybrid Monte Carlo 
	

126 

spectral radius of icAD is less than one. Equation (6.67) relies on the fact that 

the matrices 
1 ( A-  D) 

2m+1 
 A m0,1,2,... 

are block off-diagonal and hence do not contribute to the trace. It remains to 

recognise that the matrix in equation (6.69) 

('cL 0 
A—k 2DADI 	 l_=M 	 (6.70) 

0 M00 ) 

is nothing other than (both parities of) the red-black preconditioned fermion 

matrix. We have, therefore, that 

Tr M = Tr JL1 + Tr 	 (6.71) 

and, taking the ensemble average over gauge configurations, 

jr M) = 2(Tr M') = 2(Tr Mr), 	 (6.72) 

since observables must be independent of the choice of parity. 

A noisy estimate of TrM 1  can be obtained in the following manner. If 

are noise vectors with the property 

urnI 
NU 

	

E 	 (6.73) 
N—oo NE n=1 

then 
1 NE 

	

TrIct 1 = urn 	 (6.74) 
NE-+OO NE 

We can now estimate (TrIt/I;1 ) by the sample mean over gauge configurations 

U(Nu) produced in a GHMC simulation: 

1 1 Nu NE 

(6.75) (Tr1tf71)
NU NE 

 
m=1 n=i 



Chapter 6. Generalised Hybrid Monte Carlo 	 127 

Ideally the number of estimators NE on each gauge configuration should be large. 

However we can hope, appealing to the ergodicity of GHMC, that equation (6.75) 

will still provide a useful, albeit rather noisy, estimate even for NE 	1. 

The vectors 71, used to refresh pseudofermions in GHMC, have components drawn 

at random from a Gaussian distribution of zero mean and unit variance, and hence 

possess property (6.73).31  Furthermore, at the start of each trajectory, Y. = 71 

and the gauge configuration is "physical", and so 

tMl
PP 
	M-1Y = r/tX 	 (6.76) 

In this way, we get one estimate almost for free, the only additional cost being a 

single inner product. 

The purist will notice that this method is not strictly valid in view of the subtle 

correlations that exist between the noise vectors j(Th)  and the gauge configurations 

U(m+1 ) .  It is not known whether the bias that these correlations may cause is 

significant. 

"Note that if an accurate estimate of TrM' on individual gauge field configurations is 
required, it is preferable to take several estimators using Z2  noise [67] instead of Gaussian noise 
(see eg. [68]). 



Chapter 7 

GHMC: Pilot simulations 

This chapter describes a series of pilot simulations using the GHMC code de-

scribed in chapter 6. These were amongst the first simulations using two degen-

erate flavours of dynamical clover-improved Wilson fermions. 

7.1 Run parameters 

At the outset it was appreciated that simulations involving dynamical fermions 

necessarily require several orders of magnitude more computing time than quenched 

simulations. However, this leaves much room for uncertainty as to the computing 

time required per independent configuration at some f3, K and lattice volume.1  

Our aim then was to begin to map out the {/3, tc, V}-parameter space for dynam-

ical clover-improved Wilson fermions in preparation for later, more ambitious 

simulations. At the same time it was not intended that this be a throw-away 

calculation: the lattice volume in physical units would need to be sufficiently 

large for meaningful hadron spectroscopy. The choices of 0 and V were therefore 

informed by 

the experience of the UKQCD collaboration with clover-improved fermions 

in quenched simulations, 

previous dynamical simulations with unimproved Wilson fermions by other 

collaborations, particularly SESAM, 

'In this chapter, the notation ic = ' sea shall always characterise a sea-quark mass in a 
GHMC simulation. 

128 



Chapter 7. GHMC: Pilot simulations 	 129 

trial simulations on 44  lattices and conservative estimates of scaling be-

haviour, 

estimates of the speed that our code would sustain on the new Cray-T3E 

at Edinburgh,2  and 

political pressure to be delivering preliminary results on timescales of 4-6 

months. 

Taken together, these considerations implied that the lattice would of necessity 

be rather coarse. This was felt by some to be a good thing, as it is on coarse 

lattices that 0 (a)-improvement should be seen to best advantage. 

The clover coefficient Csw was fixed in each case by the choice of /3 and the 

prescription of non-perturbative improvement. We remain indebted to the AL-

PHA collaboration for making available to us preliminary estimates of CSW  at 

N1 =2.3  

During the first weeks of production, there was some vacillation over the choice 

of /3, but eventually most effort was given over to /3 = 5.2. Simulations at 

/3 = 5.2, i = 0.136,.. . , 0.1395, V = 12 x 24 were followed by smaller volume 

runs (V = 8 >< 24) to enable finite-size effects to be studied. The /3 = 5.2 runs at 

larger volume V = 16 3  x 24 came later, as did the lightest mass run at /3 5.2, 

= 0.1398, V = 12 3 >< 24. Rather smaller statistics were obtained at /3 = 5.3 

and /3 = 5.4; for the most part these runs were scheduled to take advantage of 

computing capacity made spare by artificial constraints due to the job-queuing 

policy on the Cray-T3E. 

Table 7.1 lists the parameters used in these simulations. The burned' column 

gives the trajectory numbers which were discarded for equilibration. 'pcsn' gives 

'This was complicated by the fact that the delivery schedule was altered so that only a 
16-node interim machine was available during the first few months. 

'Actually, it is at the very range of # that we chose to explore (9 < 5.4) that Csw is most 
difficult to determine precisely. The estimate of Csw = 1.76 at /3 = 5.2, for example, has since 
been revised upwards to 2.02. 



Chapter 7. GHMC: Pilot simulations 	 130 

the precision (32-bit or 64-bit), flç was defined by equation (6.38), 'pre' indicates 

whether the block Jacobi preconditioning of §(6.4) was employed, and 'acc' gives 

the percentage acceptance rate. 

In all cases the trajectory length was held fixed NddT = 1. The GHMC mixing 

angle was also held fixed, 6 = 7r/2, so that it is standard Hybrid Monte Carlo 

that is being employed. Although it was recognised that tuning these parameters 

could potentially improve autocorrelation times, it was thought likely that the 

cost of the tuning exercise itself would outweigh any benefits that might ensue. 

3 Csw  V/24 'sea Burned Analysed pcsn Nmd flç pre acc 
5.2 1.76 8 .1360 1549-1649 1650-3000 32 50 1 y 79.3 
5.2 1.76 8 3  .1370 3001-3099 3100-5004 32 50 1 y 79.0 
5.2 1.76 8 .1380 5005-5599 5600-7000 32 50 1 y 76.8 
5.2 1.76 8 3  .1390 7001-7699 7700-10056 32 50 1 y 70.3 
5.2 1.76 8 3  .1395 10057-10149 10150-21150 32 50 2 y 68.3 

5.2 1.76 12 .1360 1530-2210 2211-5190 64 50 2 n 77.1 
5.2 1.76 12 3  .1370 1601-1999 2000-8007 64 50 2 n 73.1 
5.2 1.76 12 .1380 1601-1999 2000-8001 64 50 2 n 71.5 
5.2 1.76 12 3  .1390 2001-2399 2400-8019 64 50 2 n 61.1 
5.2 1.76 12 3  .1395 5861-6299 6200-11305 64 64 2 n 65.9 
5.2 1.76 12 3  .1398 10001-10609 10610-15118 64 100 2 y 81.4 
5.2 1.76 16 3  .1390 1001-1309 1310-2924 32 100 2 y  83.4 
5.2 1.76 16 .1395 2001-2309 2310-5503 32 100 2 y 77.5 
5.3 1.72 12 .1340 1859-2349 2350-3000 32 50 1 y 59.0 
5.3 1.72 12 3  .1350 3001-3399 3400-5000 32 64 1 y 77.3 
5.3 1.72 12 .1360 4987-5499 5500-7205 32 64 1 y 75.6 
5.3 1.72 12 3  .1370 7183-7299 7300-9228 32 64 2 y 81.8 
5.3 1.72 12 .1380 9229-9499 9500-11638 32 64 2 y 75.4 
5.4 1.69 12 3  .1320 601-899 900-1182 64 50 1 n 56.8 
5.4 1.69 12 3  .1330 720-1199 1200-2378 64 64 1 n 78.1 
5.4 1.69 12 .1340 901-1499 1500-2921 64 50 1 n 65.5 
5.4 1.69 12 3  .1350 1421-1999 2000-4432 64 50 2 y 77.5 
5.4 1.69 12 .1360 1381-1999 2000-4211 64 50 2 y 73.7 
5.4 1.69 12 .1370 4212-5099 5100-8025 64 64 2 y  79.5 

Table 7.1: GHMC run parameters. All runs used pure HMC, BiCGSTAB with a 
target residue of 10 7, and dr = 1/Nmd. 



Chapter 7. GHMC: Pilot simulations 	 131 

7.2 Equilibration and the black arts 

How do you decide whether a simulation has thermalised? What parameters do 

you vary and by how much in order to achieve a reasonable acceptance rate? 

These are questions which have no entirely satisfactory answers - there is much 

"black art" involved in running a GHMC simulation. 

Here I try to convey something of the strategies that we followed and refined 

during these pilot simulations. 

At each /3 and V, our usual approach was to start from a random configuration of 

the gauge fields, as this generally leads to much faster convergence than starting 

from the unit gauge configuration. The initial value of ic is chosen to be well 

below the range in which the critical value is suspected to lie. The initial value 

of the timestep is taken to be rather large, and the initial convergence criteria for 

the internal solves are loose. One then accumulates statistics until all gross trends 

in the monitored observables appear to have died away. One now makes a small 

increase in ic, and resumes from the last stored configuration. The process of 

incrementing ic and accumulating statistics is iterated until the sea-quark mass is 

light enough to be considered "interesting"; in the absence of any better criterion, 

the longer the solver takes to converge, the more interesting is the sea-quark 

mass. The purpose so far has been solely to obtain a gauge configuration near to 

the equilibrium distribution of the heaviest interesting quark mass, and hitherto 

one can have followed a fairly aggressive policy, not worrying overmuch about 

acceptance rate and full equilibration (thermalisation). But now it is time to be 

more careful. 

Based on experience gained at the previous i, it may be necessary to adjust 

one or more of dr, nç and the solver's convergence criteria in order to achieve a 

satisfactory acceptance rate at the new K. It is best to make any such adjust-

ments as early as possible, since in principle one should allow for re-equilibration 

whenever any simulation parameters are altered. We generally aimed for an ac-

ceptance rate in the range of 70-80%, and with practice, we got better at getting 



Chapter 7. CHMC: Pilot simulations 
	 132 

this right without repeated parameter tweaking. 

The question of equilibration is now an important, and delicate, one. Unfor-

tunately, given the cost of simulations with dynamical ferm.ions, any reliable 

diagnostic of equilibration is likely to require a level of statistics comparable to, 

or greater than, the level on which it is ultimately intended to base the analysis 

of physical observables. The policy that we followed was that 

there should be no evidence of any trend (or cyclicity) remaining in moni-

tored observables, 

a further number of trajectories at least equal to several times our best 

guess at the worst case exponential autocorrelation time §(7.4) have been 

discarded (or 'burned'), and 

the average of exp (—An) over the remaining trajectories should be consis-

tent with one. 

There are various potential traps here; for example, one could easily deceive 

oneself with respect to the last criterion by varying the window over which 

exp (—A3-1) is estimated. 

By the time that one has determined the start of the range of trajectories which 

is deemed safe for analysis, one will already have accumulated a modest level 

of statistics. This may well be sufficient to provide a preliminary estimate of 

lattice spacing (which runs with i'),  quark mass or other quantity. On the basis 

of this information, one can decide whether to move on to a lighter mass, or to 

accumulate further statistics at the current one. 

Near the critical value of the sea-quark mass, we expect that the number of 

iterations Nsoiver  that the solver takes to converge should obey a critical scaling 

law, and we make the ansatz 

/1 	1 
lKsolver 	. 	 (7.1) 



Chapter 7. GHMC: Pilot simulations 	 133 

Once modest statistics have been accumulated at three values of ic, equation (7.1) 

may be used to obtain a preliminary estimate of Kc, which itself can inform the 

choice of the next it. The estimate can be refined with each new it and with 

increased statistics. The final value, however, should be determined from an 

analysis of the hadron spectrum. 

Using Conjugate Gradient at /3 = 5.2, Csw = 1.72, V = 12 3  x 24, the measured 

value of the exponent in equation (7.1) is 8 = —0.612(2) [4, §4.2.3]. I am not 

aware of any simple model from which 8 can be predicted. 

7.3 Error Estimation 

The problem with estimating the errors in observable quantities in this kind of 

Markov process is that the configurations from which they are determined will 

be correlated with each other, so the naïve estimate will in general underestimate 

the true error. The problem of estimating the error in an observable is closely 

related to the problem of determining the integrated autocorrelation time §(7.4) 

for that observable. 

The standard practice in Fiadrori spectroscopy is to compute observables on con-

figurations which, it is hoped, can safely be considered independent. The usual 

criterion is that the configurations are separated by at least twice the typical 

integrated autocorrelation time for hadronic observables. 

However, it is hard to believe that discarding the intermediate measurements 

could possibly improve the estimate of the central value, nor give a more reliable 

estimate of the error. Moreover, as will be seen, measuring the autocorrelation 

time is itself problematic. 

Here we need to estimate observables from measurements taken at the end of 

every trajectory, and these will certainly not be independent. 

There is no one "correct" method. The method I use here is inspired by the 

bootstrap[69]. Given an ordered set of k measurements (eg. of the average 

plaquette measured after the accept/reject step in a HMC trajectory) x1 ,. . . , Xn 



Chapter 7. GHMC: Pilot simulations 	 134 

we group the measurements into sub-sequences (or bins) of size b 

so that 

n = mb + r. 	 (7.2) 

If r = 0, there are rn bins each of size b, otherwise there are m + 1 bins, and 

the last bin has size r < b. Now take the average iij of the values in the ith bin, 

and apply a bootstrap resampling procedure [69] to the data set 	±2,. . 

determining the 68% (say) confidence limits. To reduce any bias towards the last 

few measurements in the original data set, we choose the ith bin with probability 

equal to the size of the bin divided by n. 

The procedure is repeated for b = 1, 2,. .. , bmjj  where hopefully bmax  is large com-

pared to the integrated autocorrelation time and small compared to the number 

of samples n. If these two conditions can be met simultaneously, we expect to see 

plateaux in the confidence limits once the bin size is large enough that the {±} 

can be considered independent. The upper and lower limits on the error bars are 

then read off from the ordinates of the plateaux. 

The method is rather expensive (one needs to sort the resampled data sets at 

each bin size), but it is able to provide asymmetric error bars and is independent 

of any estimate of the autocorrelation time. Indeed, it can be used as a rough 

consistency check on a direct measurement of the autocorrelation time. 

In figure 7.2 confidence limits calculated by this method are plotted against bin-

size for the average plaquette (which is strongly correlated) and the initial kinetic 

energy at the start of each GHMC trajectory (which is completely uncorrelated, 

being a sum of normal deviates). The quality of the plateaux obtained by this 

method can be deceptive 	contrast figure 7.3 in which the same information 

is displayed using logarithmic scales for the abscissae 	so these error estimates 

should be viewed with some caution. 



Chapter 7. CHMC: Pilot simulations 
	 135 

Table 7.2 shows the average plaquette, TrM 1 /V and the number of BiCGSTAB 

iterations required to solve 	with a target residue of 10, for each of PP P 

the simulations in table 7.1. In all cases, the error bars are consistent with being 

symmetric about the central value. Figures 7.4-7.6 display the same information 

in graphical form. 

0.530 

0.523 

0.526 

3) 

5) 
0.524 

CS 

0.522 

0.520 

0.519 

6.05 

6.00 

1-. 
1- 

5.95 

. - . 

- 	. 
I 

I 
. 

- 
1. 

1 

12000 	 14000 
Tr a.j o c t Cs 

.16000 

5.90 
10000 	 12000 	 14000 	 16000 

Tr 	j c t. Cs ry 

Figure 7.1: Sample HMC time series for plaquette (top) and TrM;1 /V (bottom). 
Parameter values are 0 = 5.2, Csw = 1.76, K = 0.1398, V = 12 3  x 24. 



Chapter 7. GHMC: Pilot simulations 
	

136 

0.5254 

0.5253 

0.5252 

0.5261 

05250 

247900 

1471180 

247860 

247840 

247820 

0 	 100 	200 	100 	400 	 0 	 100 	200 	300 	400 
Olin Size 	 Bin Size 

663660 

- 	
A 	 1 

A 

0 	 100 	200 	300 	400 	 0 	 100 	200 	300 	400 
Bin Size 	 Olin Size 

Figure 7.2: Upper and lower 68% confidence limits on the average plaquette 

(top left), TrM 1  (top right), NBCGSTAB  (bottom left) and initial kinetic energy 

(bottom right) as a function of bin-size. The central broken curve is the bootstrap 
median. The central solid line is the mean; the other solid lines show the naïve 
errors. Parameter values are 0 = 5.2, CSW = 1.76, i-  = 0.1398, V = 12 3  x 24. 

87.0 

86.5 

0 
o  
- 86.0 

85.5 
U 

80.0 

° 663550 
4) 
0 

4) 
0 

0 

663540 



Chapter 7. GHMC: Pilot simulations 
	

137 

0.5254 

0.5253 

247900 

247880 

247660 

247840 

247820 

247800 

0.5252 

05251 

fl S2Sfl 

57.0 

86.5 

0 o  

86.0 

85.5 
U 

85.0 

645 

1 	 10 	 100 
Bin Size 

1000 

663560 

663550 

0 

V 
0 

- 	
663540 

683530 
1000 

10 	 100 	 1000 
Bin Size 

 

 

 

1 	 10 	 100 
Bin Size 

10 	 100 	 1000 
Bin Size 

Figure 7.3: Upper and lower 68% confidence limits on the average plaquette 

(top left), T41;1  (top right), NBCGSTAB  (bottom left) and initial kinetic energy 
(bottom right) as a function of bin-size. Logarithmic scales are used for the 
abscissae. Otherwise the plots are the same as in figure 7.2 



Chapter 7. CHMC: Pilot simulations 	 138 

G CSW V sea Plaquette TrM'/V NBCGSTAB 

5.2 1.76 8 	>< 24 0.1360 0.4879(5) 6.1438(17) 23.1(1) 
5.2 1.76 123  x 24 0.1360 0.48744(16) 
5.2 1.76 8 3  x 24 0.1370 0.4933(5) 6.1242(16) 26.41(15) 
5.2 1.76 12 3 >< 24 0.1370 0.49461(12) 
5.2 1.76 83  x 24 0.1380 0.5040(6) 6.0857(23) 33.5(3) 
5.2 1.76 12 3 >< 24 0.1380 0.50390(15) 
5.2 1.76 83  x 24 0.1390 0.5153(6) 6.0324(23) 48.8(7) 
5.2 1.76 12 3  x 24 0.1390 0.51558(18) 
5.2 1.76 16 3  x 24 0.1390 0.51620(20) 6.0296(8) 49.75(30) 
5.2 1.76 8 3  x 24 0.1395 0.5231(3) 5.9897(15) 68.4(8) 
5.2 1.76 12 3  x 24 0.1395 0.52182(19) 5.9972(9) 76.2(1.2)(a) 
5.2 1.76 16 3  x 24 0.1395 0.52201(9) 5.9964(5) 67.8(3) 
5.2 1.76 123  x 24 0.1398 0.52524(15) 5.9762(8) 85.7(7) 
5.3 1.72 12 3  x 24 0.1340 0.52272(30) 6.0690(12) 25.4(1.2) 
5.3 1.72 i2 3  x 24 0.1350 0.52842(20) 6.0428(7) 30.11(9) 
5.3 1.72 12 3  x 24 0.1360 0.53311(16) 6.0172(7) 36.81(12) 
5.3 1.72 12 3  x 24 0.1370 0.53787(15) 5.9867(6) 48.52(21) 
5.3 1.72 12 3  x 24 0.1380 0.54166(13) 5.9554(7) 71.4(5) 
5.4 1.69 12 3 >< 24 0.1320 0.54489(20) 
5.4 1.69 12 3 >< 24 0.1330 0.54746(12) 6.0168(4) 
5.4 1.69 12 3 >< 24 0.1340 0.54979(9) 6.0000(5) 
5.4 1.69 12 3  x 24 0.1350 0.55219(8) 5.9783(4) 40.31(7) 
5.4 1.69 12 3  x 24 0.1360 0.55448(8) 5.9551(5) 51.82(13) 
5.4 1.69 123  x 24 0.1370 0.55664(8) 5.9300(6) 73.65(23) 

Table 7.2: 
The average plaquette, TrM 1 /V and NBCGSTAB  for various 13, 'sea  and lattice 
size. 
(a) not preconditioned. 



-F 5,2 V=163x24 

- 0=5.2 V12x24 

5.2 VB3x24 

o =5.3 V123x24 

0 5.4 V123x24 

0.50 

11 

III 

Chapter 7. GHMC: Pilot simulations 	 139 

I 	I I I I 

0 
0 

0 
0 

0 
0 

H 

H 

H 

H 

H 

0.56 

054 

A 

0.52 

0.132 	0.134 	0.136 	0.138 	0.140 
/Icsea 

Figure 7.4: The average plaquette as a function of 'sea  Error bars, indicating 
the 68% confidence levels, are smaller than the plotting symbols. 



Chapter 7. CHMC: Pilot simulations 
	

140 

6.2 

A 
> 

H 
V 

5.9 

H 

- H 

- 0 H 
0 

- 0 	
H 

+ 

0 	 H 

0 

05.2 V= 16'X24 
- x =5,2 V= 12'x24 
- 0=5.2 V83 24 
- H 5.3 V123x24 

° 
5.4V123x24 I  

u.0 

0,132 	0.134 	0.136 	0.138 	0.140 

sea 

Figure 7.5: TrM'/V as a function of ksea. Error bars, indicating the 68% 
confidence levels, are smaller than the plotting symbols. 



Chapter 7. GHMC: Pilot simulations 
	

141 

100 

BiCGSTAB iterations 

iii 

FBI 

60 

0 

I III 

H 

H 

5,2 V1624 
=5.2 V=124 

o 5.2 V8 x24 
H 5.3 V1224 

I 	I 	I 	

° 	V=12 
3 
 x24 

0.136 	0.138 	0.140 

20 

0 L__ 

0.134 

ICsea  

Figure 7.6: The number of BiCGSTAB iterations required to solve MY
PP 21 

 = 
to a target residue of iO as a function of Ic sea. Error bars, indicating the 68% 
confidence levels, are smaller than the plotting symbols. 



Chapter 7. CHMC: Pilot simulations 	 142 

7.4 Auto correlations 

The sample autocorrelation function on a sequence of measurements {x1, x2,. . . , x?} 

on (a realisation of) a time series [70, 71] is given by 

p(t) = 

	

	 (7.3) 
,y(0) 

where 'y (t) is the sample autoco variance at lag t 

(t) = 	(x - ) (x 	- ±) 	 (7.4) 

and x is the sample mean.4  

The exponential autocorrelation time Texp characterises the approach of a simula-

tion to the equilibrium distribution. In practice, 'Texp  is extracted by fitting the 

autocorrelation function to the model 

p (t) 	
(—Text p) 

exp 
	

(7.) 

over some range of the lag. 

The integrated autocorrelation time Tint  is defined by 

Tint = lim Tcum (T), 	 (7.6) 
T—oo 

where 

Tcum(T) = + p(t) 	 (7.7) 

is sometimes called the cumulative autocorrelation time. In practice we have a 

finite number of measurements and must estimate Tint by looking for a plateau in 

"y (t) is a biased estimator of a property of the time-series itself, to which we have access 
only through measurements 1x1 , x2,... , x,} on one particular realisation. Other estimators are 
possible; the choice made here (and in [4]) of I instead of 1  in equation (7.4) ensures that 
the sample auto-correlation matrix is non-negative definite [71, §7.2]. 



Chapter 7. GHMC: Pilot simulations 	 143 

a plot of the cumulative autocorrelation time as a function of T. That this might 

sometimes be problematic can be seen by inspecting figure 7.7. The integrated 

autocorrelation time quantifies the effect of auto correlat ions on the statistical 

quality of a sample: the effective number of independent measurements in a 

sample of ri correlated measurements is n/2rt [3, page 384]. 

Estimates of Texp  and r 11t for the plaquette were calculated along these lines in 

[4], and I shall riot reproduce that work here. Instead, I shall use the errors 

determined in §(7.3) to quote "ball-park estimates" on the plaquette integrated 

autocorrelation time. The estimates in table 7.3 were calculated from 

' 1 f07( M) 
2 

 
(7.8) 

where o (k) is the error determined by the method of §(7.3) at a bin-size of k, and 

the bin-size rn lies within the plateau. In the absence of any reliable estimate of 

the uncertainties in the plaquette error bars, these numbers should be taken with 

a very large grain of salt. Comparing these estimates with the values reported 

in [4], one sees that [4] is slightly more conservative, but that, within errors, the 

two sets are consistent. It should be pointed out that there was some variation 

in the acceptance rate in these simulations, and that the acceptance rate must 

influence autocorrelation times. 5  

Autocorre1ation times diverge as the acceptance rate goes to zero. 



Chapter 7. GHMC: Pilot simulations 	 144 

to 

I 
0520170K3000 Tr 	 0520 175K3000 p1aquett 

	

05 	 0.5 	 - 

	

00 	 0.0 - 

	

—0.5 	 —0.5 	 LII 
0 	 100 	000 	300 	400 	500 	 0 	100 	200 	300 	400 	500 

t 	 t 

	

C 	 a 

062CI7003000 Pr 	 0522170103000 p1uqutto 

20 	 40 	 60 	 00 	100 	 lOG 	 200 	 300 	 400 

t. 	 t 

	

10 	 40 

H76  

	

5 	 20 

	

0 	 100 	000 	300 	400 	.500 	 0 	 100 	200 	300 	400 	.500 

T 	 T 

Figure 7.7: Autocorrelation functions (top), their logarithms (middle) and cumu-

lative (bottom) autocorrelation functions for TrM' (left) and plaquette (rightPP  ). 

5.2, CW = 1.76, 'sea = 0.139, V = 12 X 24. 



Chapter 7. GHMC: Pilot simulations 
	

145 

V/24 11 .132 1 .133 1 .134 1 .135 1 .136 1 .137 1 .138 1 .139 1 .1395 1 .1398 11 

5.2 83 23 28 29 39 58 

5.2 12 3 16 .20 25 35 34 24 

5.2 16 3 30 18  

123 	11 	1 	1 13 	1 21 	1 18 	1 17 	1 15 

Table 7.3: 
Estimates of integrated autocorrelation times for the plaquette for various /9, it sea  

and lattice size. These should be taken cum magno grano salis. 

Given that the integrated autocorrelation times in table 7.3 are rather poorly 

determined, it would he dangerous to infer any trend of 	with /3, K or V. 

Nonetheless, taking the data at face value, there does appear to be a systematic 

decrease in r as the coupling becomes weaker.6  To test this tentative hypothesis, 

reliable determinations of 	at /3 = 5.3 or 5.4 would be required, which in turn 

would require a substantial increase in statistics. If this trend were confirmed, 

it would help to account for the fact that we find much longer autocorrelation 

times at /9 = 5.2 than did the SESAM collaboration at /3 = 5.6 [72, 73, 68]. 

'The dependence of lint on /3 should properly be studied at fixed sea-quark mass. However, 
the critical value of 'sea  decreases as /3 increases, and we do not have reliable estimates of either 
sea-quark masses or the critical value of Ksea at /3 = 5.3 and /3 = 5.4. Instead, we can be guided 
by the number of solver iterations required for convergence, interpreting table 7.3 in the light 
of figure 7.6. Thus there is a rough correspondence between (/3, ic) = (5.2, 0.1395), (5.3, 0.138), 
(5.4, 0.137), and similarly between (/3, i) = (5.2, 0.139), (5.3,0.137), (5.4, 0.136). 



Chapter 8 

Diagonalisation of M the Lanczos method 

8.1 Overview 

In this chapter, we describe a method for diagonalising the non-hermitian fermion 

matrix M.1  

In outline, the method consists of the following steps. 

Use the non-hermitian Lanczos method to find a similarity transformation 

that tridiagonalises M: 

X 1 MX = T. 

Use the QL algorithm with implicit shifts [78] to diagonalise T: 

S'TS=A. 	 (8.1) 

The columns of XS become the (right) eigenvectors of M: 

M (XS) = (XS) A. 	 (8.2) 

Normalise the eigenvectors and create an index table [78] for the eigenvalues 

according to the ordering rule (B.13), so that pairs of eigenvectors (ri , rj) 

corresponding to complex conjugate eigenvalues (pd, pfl can be identified. 

Steps 1 and 2 are essentially as described in [75, 76]. To the best of my knowledge, 

'If one is interested only in the eigenvalues of Q = 75 M, then the method of Cullum and 
Willoughby [74, 75, 76, 77] is more appropriate. 

146 



Chapter 8. Diagonalisation of M - the Lanczos method 	 147 

no serious attempt has yet been made to utilise the non-orthogonal basis of 

eigenvectors {r1,. . . , r} in the calculation of observables. 

In view of the spectral expansion for M that was established in §(3.2.2), and in 

view of equation (3.36), this method yields an all-to-all propagator at almost any 

value of ic = 6va1ence 
1 rf'y5  

M 1  (k) = 
i=1 Pi (n)5r 	

(8.3) 

Thus, in principle at least, diagonalising M provides direct access to a wealth of 

interesting quantities, such as det (M), Tr [M-'], Tr ['y5 M 1 ] and any hadronic 

correlation function. Properties of the eigenvectors themselves, especially those 

corresponding to real eigenvalues, are relevant to the subject of lattice topology. 

In practice, the usefulness of this approach is severely limited. The huge memory 

requirements  restrict the applicability of the method to very small lattices, too 

small, in fact, for any meaningful hadron spectroscopy. As will be seen, the 

computational effort is completely dominated by the (unfortunately necessary) 

reorthogonalisation of the Lanczos vectors. The complexity is therefore n3, which 

is no better than most dense direct methods. 

8.2 Lanczos tridiagonalisation 

In this section, we outline a non-hermitian Lanczos method for tridiagonalising 

the fermion matrix M. 

We begin by demanding that there exist a similarity transformation 

X'MX = T 
	

(8.4) 

'Storage must be allocated for n = 12V vectors, each having n complex components. 



Chapter 8. Diagonalisation of M 	the Lanczos method 

where T is complex, symmetric and tridiagonal. 

a1  131 

01 a2  02 

T= 	/2 a3 
	

(8.5) 

m-1 

f5n-1 an 

The reason for insisting that T be symmetric is that this greatly simplifies the 

anticipated diagonalisation of T using the QL algorithm. 

We write 

X 	= 	(x 1,x2  .... x) 	 (8.6) 

Y 	= 	(y1,y2 .... y) 	 (8.7) 

and we require that 

yt = X-1. 	 (8.8) 

Equation (8.8) gives immediately the biorthogonality property 

8ij, 	 (8.9) 

which we will make good use of below. From equations (8.4) and (8.8) we have 

MX = XT 	 (8.10) 

MY = YT*. 	 (8.11) 

Performing the matrix multiplications in equations (8.10) and (8.11), inspecting 

the kth column of the results, and rearranging, leads to 

/3kXk+1 = Mxk - akxk - Iik_lXk_1 	Xk+1 	 (8.12) 

= Myk — ayk — /3_l yk_l Yk+1• 	 (8.13) 



Chapter 8. Diagonalisation of M 	the Lanczos method 	 149 

An expression for ak can be obtained by left-multiplying equation (8.12) by y kt 

and using biorthogonality. 

ak = yMxk . 	 (8.14) 

Equations (8.12) and (8.13) also provide an expression for / 

= 4iXk+1. 	 (8.15) 

Equations (8.12) and (8.13) provide recurrence relations for xk and Yk,  which we 

supplement with the initial conditions 

=YO= 0 (8.16) 

= (8.17) 

xi 	=1 1,30 (8.18) 

Y 	i//. (8.19) 

i and i  may be chosen freely, with the proviso thati 	0. 

With these recurrence relations and initial conditions, we have everything that 

is necessary to write down the algorithm. But we have riot yet made use of 

the y5-symmetry of M. Given our experience with BiCG and QMR, we should 

expect that 'y5-symmetry can be exploited so as to halve the work effort and 

storage requirements. Here, however, we cannot simply set Yk  equal to 'ysxk, 

because, in general, X75Xk can be either positive or negative and we must respect 

equation (8.9). The remedy is to set 

Yi = 312'5Xl 	 (8.20) 

where 3k = ±1 is the sign of xy5xk,  and then to show that 

Yk == Sk5Xk 	 (8.21) 



Chapter 8. Diagonalisation of M 	the Lanczos method 	 150 

implies that 

Yk+1 = 5k+175Xk+1. 	 (8.22) 

For the induction to succeed, we need to supplement equations (8.20) and (8.21) 

by a recurrence relation for the 5k  and an initial condition for so. A moment's 

thought reveals that the missing ingredients are 

	

3k+1 
=Ok  
 8k, 	 (8.23) 

= 1. 	 (8.24) 

Proceeding with the induction, one finds that the ak  have become real, that the 

/3k are either real or purely imaginary, and that the recurrence relation (8.23) is 

consistent with biorthogonality 

	

sjx 5 xj  = Sjj. 	 (8.25) 

Before writing down the 75-symmetric form of the algorithm, we make a few 

remarks. 

The first remark is that, in exact arithmetic, rl,, must vanish. This is because 

is orthogonal to a vector space of dimension ri and therefore must equal the 

zero vector. The magnitude of /3 provides one simple diagnostic of convergence 

we will consider others below. It is also possible for the algorithm to terminate 

prematurely with a vanishing /k,  k < n. This is exactly the same kind of Lanczos 

breakdown that arose in the context of solver algorithms in chapters 4 and 5. 

Exact breakdowns appear to be exceedingly rare on typical gauge configurations, 

provided that a sensible choice is made for x1. A near-breakdown can lead to 

fatal loss of precision. 

The second remark is that, in view of biorthogonality, we have more than one 

way of calculating ak 

ak = 5k4MXk 	 (8.26) 



Chapter 8. Diagonalisation of M 	the Lanczos method 	 151 

= SkXM (xk - Xk_1k_1). 	 (8.27) 

These are equivalent in exact arithmetic, but may have different numerical prop-

erties in the finite precision that must be used in practice. 

The third remark is that round-off errors in finite precision lead inevitably to a 

loss of biorthogonality between the latest right Lanczos vectors {xk, Xk+1 .... } and 

the earliest left Lanczos vectors {yi, Y2,• . .}. Although equation (8.27) seems to 

perform moderately better in this regard than does equation (8.26), it is usually 

necessary to re-orthogonalise xk+1  against all previous Yj, j = 1,. . . , lc in order 

to control the magnitude of /3,. This seems to be unavoidable even on lattices as 

small as V = 44 •  

The fourth, and final, remark is that the same algorithm can be used for any 

symmetric matrix. In particular, it can be used to good effect with the red-black 

preconditioned matrix 

= (A + tD) A' (A - D) 	
() . 

1k, 0 	
(8.28) 

0 	k "  

In view of the decoupling of even sites and odd sites, the eigenspectra of M and 

M00  can be calculated independently. 

The algorithm is given below. 



Chapter 8. Diagonalisation of M - the Lanczos method 	 152 

Lanczos Tridiagonalisation of M = y5  Mt75  

0 

SO  = 1 

Choose i  such that x 1'y5 x i 	0 

Si = sign (si) 

I\/X5Xi 	if 	> 0 

- 1 
00 

i-1si 	if S, <0 

= 

for k=1,2,...,ndo{ 

t = Mx - Xk_1/3k_1 

ak = ,5kX75t 

Xk+1 = t - Xkak 

Sk+l = 8kX+175Xk+1 

5k+l = sksign(Skl) 

IifSk+l>0 
= 	

i-7 1  f 8k+1  <0 

Xk+1 = Xk+1//9k 

reorthogonalise Xk+l  against all previous Yj 	5(5Xj, j = 1,.. . , k 

rescale Xk+1  so that xLlsxk+l = 3k+1 

} 



Chapter 8. Diagonalisation of M -- the Lanczos method 	 153 

The reorthogonalisation procedure is set out below. As the lattice volume is 

increased the computational effort required by the reorthogonalisation soon be-

comes the dominant contribution. Even on lattices as small as V = 44, all other 

operations, including the n matrix-vector multiplications, are entirely negligible. 

Therefore, any efforts at performance optimisation should be concentrated on the 

reorthogonalisation routine. The purpose of the multiplications by _Y5  in equa-

tions (8.29) and (8.30) is to permit the use of efficient BLAS routines to perform 

the dot products inside the loop. 

Reorthogonalisation 

Xk+1 = y5 x i 	 (8.29) 

w=0 

forj=1,2,...,kdo{ 

= (sjxtxk+1)xj +'W 

} 

X k+1 = 75Xk+1 	 (8.30) 

Xk+1 = — w + Xk+1 

8.3 Implementation 

Most of the operations required by the Lanczos tridiagonalisation routine are the 

same matrix-vector and vector-vector operations required by the solver algorithms 

of chapter 4. It is therefore natural to use the same geometric decomposition of 

the lattice that was used in the other codes discussed in this thesis. Even the 

reorthogonalisation procedure can be built out of the same elementary building 

blocks. Indeed, this is one reason why the Lanczos method was attractive in the 



Chapter 8. Diagonalisation of M - the Lanczos method 	 154 

first place. On a parallel architecture, the tridiagonalisation routine naturally 

leads to a situation in which every processor has its own copy of the tridiagonal 

matrix T. This gives rise to a memory overhead equivalent to 2(NpE - 1) ad-
ditional vectors, NPE being the number of processor elements; this overhead is 

usually insignificant compared to the in Lanczos vectors. 

The diagonalisation of T is not an operation that we have encountered previously 

in this thesis. I use the complex QL algorithm with implicit shifts to accomplish 

the diagonalisation.' I do not describe the QL algorithm here, but I do make two 

remarks. 

The QL algorithm accomplishes the diagonalisation through a sequence of el-

ementary rotations; these same rotations can he applied simultaneously to the 

Lanczos vectors, so that, when the diagonalisation is complete, the Lanczos vec-

tors have been overwritten by the eigenvectors of M. 

The diagonalisation of T itself does not parallelise in any natural way, but this is 

of little consequence as the cost of the entire operation is negligible compared to 

reorthogonalisationi. However, the extra processors do make their presence felt 

during the back-transformation of the Lanczos vectors, which turns out to be 

embarrassingly parallel. 

The creation of the index table in step 3 is an interesting problem. In exact 

arithmetic, the solution would be trivial: sort the eigenvalues by their real part, 

using first the modulus and then the sign of the imaginary parts to break ties. In 

the absence of any degenerate eigenvalues, this simple approach would be entirely 

sufficient to identify complex-conjugate partners - they will appear next to each 

other after sorting. 

The problem is not so trivial in finite arithmetic, because there will be some 

error in the determination of each eigenvalue. Sorting the eigenvalues by their 

real part is still useful, and will serve to bring complex conjugate partners close 

am indebted to Christine Davies for providing the source of a serial code to perform this 
operation. 



Chapter 8. Diagonalisation of M 	the Lanczos method 	 155 

together, but they are no longer guaranteed to be adjacent. Some refinement 

is possible by imposing cuts in numerical tests of equality, so that two numbers 

are considered equal if the absolute value of their difference is smaller than some 

predefined tolerance. My current implementation proceeds along these lines, and 

usually succeeds, more by good luck than good management, on lattices of size 

V = 43 x 2. 

On larger lattices the problem becomes more difficult for two reasons. Firstly, the 

eigenvalues in the centre of the spectrum will tend to have slightly larger errors. 

Secondly, the real parts of the eigenvalues become more dense in the real line. 

Thus it becomes more likely that two or more complex conjugate pairs of eigen-

values will be interleaved after sorting. My current implementation usually fails 

to identify complex conjugate partners correctly on lattices of size V = 43 x 8, and 

more sophisticated logic is required. It is possible to devise a reliable algorithm 

which uses the sort only to identify candidate pairs of eigenvectors (r,rj), and 

confirms or refutes their complex conjugacy by computing r 5r. This quantity 

is typically of order 10_i  if pi  and pj are genuinely complex conjugate partners, 

but of order 10_iD  otherwise. 

8.4 Verification 

There are various means of verifying the correctness of the eigenvalues and eigen-

vectors computed by the method. 

The magnitude of /3 provides a direct quantitative check on the convergence of 

the Lanczos tridiagonalisation routine. It should be consistent with zero. 

Since 	and the hopping term are both traceless, summing the eigenvalues 

provides a simple consistency check. One should find 

TrM=p=n. 	 ( 8.31) 

Direct tests of the quality of the eigenvalues and eigenvectors are easily performed 



Chapter 8. Diagonalisation of M 	the Lanczos method 	 156 

by computing lIMr - pr j . The overhead is considerable, but nonetheless small 

compared to reorthogonalisation. 

If the method is applied to the full fermion matrix and to both parities of the 

red-black preconditioned matrix, equation (6.71) suggests checking that 

Tr M 1  - Tr M 1  - Tr A'_" 

is consistent with zero. 

The quantity 
Th 

j1 r'y5r 

provides a potent consistency check on the eigenvectors. As shown in section 

§(3.2.2), this quantity should equal zero. It tests simultaneously the quality of 

the eigenvectors and whether the matching of complex conjugate pairs of eigen-

values has been performed correctly. On a V = 43 >< 2 lattice, this quantity is 

typically of order 10, but it will jump by 10 orders of magnitude or more if any 

misidentification of complex conjugate partners is made. 

Eigenvalue spectra calculated by this method on a 43  x 8 lattice can be seen in 

figures 8.1 and 8.2. The former shows the spectrum of M, and the latter the 

spectra of M and 1(100. Both were calculated on the same gauge configuration, 

which was generated by the HMC method of chapter 6 with N f  = 2, 0 = 5.2, 

and Csw = 2.02. The quark mass is rather heavy at ksea  = kvaience  =0.13. 

The eigenvalue spectrum in figure 8.3 was calculated on another dynamical gauge 

configuration at the same coupling but lighter quark mass (tsea = kvalence  = 

0.134). The lighter quark mass does appear to induce some subtle differences,4  

but I caution the reader against inferring too much from a single gauge configu- 

4The small eigenvalues are closer to the origin and to the imaginary axis at the lighter mass, 
and there appears to be a greater suppression of eigenvalues near the real axis at the lighter 
mass. Whether this second effect is genuinely significant, or merely a statistical fluctuation, or 
symptomatic of incomplete equilibration in the simulation at the heavier mass, is not known 
to me. Greatly increased statistics would be required to clarify this point. 



Chapter 8. Diagonalisation of M - the Lanczos method 	 157 

ration. 

The distribution of the small eigenvalues of M (or MtM) is relevant to the 

convergence behaviour of the iterative methods discussed in chapters 4 and 5. 

The condition number of the fermion matrix depends sensitively on the location 

of the smallest eigenvalue. Whether block algorithms provide any significant 

speed-up depends on the blocking factor .s and the location of the s smallest 

eigenvalues. The benefits of red-black preconditioning can clearly be seen by 

comparing figure 8.2 to figure 8.1; the eigenvalues of M are confined to a smaller 

ellipse than are those of M, and the smallest eigenvalues of M are roughly twice 

as large as those of M. 

The matrix whose eigenvalues are plotted in figure 8.1 possesses two genuinely 

real eigenvalues, confirmed by the non-zero chiralities of the corresponding eigerl-

vectors. Now, in simulations with dynamical fermions, gauge field configurations 

on which the fermion matrix possesses zero modes at kvalence = ttsea  are expected 

to be suppressed by the presence of the fermionic determinant in the effective 

action. However, as pointed out in chapter 3, a real eigenvalue can be shifted 

to zero by varying kvalence. Computing propagators at 1 vaIence 	'sea IS partially 

quenched, yet the practice is not uncommon in hadron spectroscopy with dy-

namical fermions. Under these circumstances it is still possible to encounter 

exceptional configurations, the plague of the quenched approximation; the Modi-

fied Quenched Approximation [79] is designed to address this problem by shifting 

the poles of the quark propagator in a controlled way. 



Chapter 8. Diagonalisation of M 	the Lanczos method 
	

158 

0.6 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

0.0 
	

0.5 	1.0 	1.5 	2.0 

Real 

10 

Inverse 

5 

I 

—5 

—10 L 

	

0 
	

1 	2 	3 	4 	5 

Real 

Figure 8.1: Eigenvalue spectra of the Wilson fermion matrix (top) and its inverse 

(bottom). V = 43 >< 8, /J = 5.2, Csw = 2.02 (non-perturbatively improved), 

	

Nf  = 21 'sea = tvaIence 	0.13. 



	

0.4 
	

4 

	

0.2 
	

2 

0.0 

H 

	

—0.2 	 —2 

—0.4 
0.0 	0.5 	1.0 	1.5 	2.0 	0 

Real 
1 	 2 	 3 

Real 

Chapter 8. Diagonalisation of M 	the Lanczos method 
	

159 

4 

2 

bh 
('j 

H 

—2 

—4 
0.0 	0.5 	1.0 	1.5 	2.0 	 0 	 1 	 2 	 3 

Real 	 Real 

Figure 8.2: Eigenvalue spectra of the red-black preconditioned fermion matrix 
on the even parity (top left) and the odd parity (bottom left). The spectra of 
the corresponding inverse matrices are shown to the right. N f  = 2, /' = 5.2, 
Csw = 2.02 (non-perturbatively improved), N1  = 2, 'sea = 'valence 0.13. The 
gauge configuration is the same as for figure 8.1. 

0.4 

0.2 

0.0 

—0.2 

_n A 



Chapter 8. Diagonalisation of M - the Lanczos method 
	

160 

0.6 

0.4 

0.2 

0.0 

—0.4 

—0.6 

0.0 
	

0.5 	1.0 	1.5 	2.0 

Real 

10 

Inverse 

5 

bj) 

—5 

0 
	

1 	 2 	 3 	 4 

Real 

Figure 8.3: Eigenvalue spectra of the Wilson fermion matrix (top) and its inverse 
(bottom). V = 43 x 8, /3 = 5.2, Csw = 2.02 (non-perturbatively improved), 
N1 	21  'sea = 1 va1ence = 0.134. Contrast figure 8.1. 



Chapter 9 

Conclusions and recommendations 

A large part of this thesis concentrated on algorithms for solving linear sys-

tems involving the Wilson fermion matrix. Most attention was given to the 

case of clover-improvement and red-black preconditioning. I described and im-

plemented various algorithms, including BiCG('ys), QMR('ys), BiCGSTAB and 

BiCGSTAB2, and compared their performance with each other and with a pre-

existing implementation of MR. BiCOSTAB was found to be the method of choice 

in most of the regimes studied. There remain, however, places for MR, QMR('ys ) 

and even CGNR in any fully equipped armoury of tools for quark propagator 

calculation. 

It is unlikely that future research in Krylov-subspace methods will lead to any 

dramatic improvements over the methods considered here. Those attempting to 

accelerate quark propagator calculations are advised to spend their energies in 

areas where research is less mature. At present, the search for better precon-

ditioners seems to hold much promise. LL-SSOR has already emerged as the 

preconditioner to beat.' 

Chapter 5 was concerned with block algorithms, iterative methods in which the 

solutions of linear systems with multiple right-hand sides are determined simul-

taneously. I described, implemented and compared four block algorithms: B-

CCNR, B-Lanczos, B-BiCC('ys) and B-QMR(ys). Of these, only the first two 

who are interested in experimenting with LL-SSOR and who have access to the 
source of the UKQCD MPP codes, should note that a LL-SSOR preconditioned version of MR 
may be found in mrsolverssor_1 . F, courtesy of its author, Gero Ritzenhdfer. The matrix 
multiplication is not optimised, and it is restricted to the unimproved case Csw = 0. A version 
using BiCGSTAB may be found in bicgstab.solverssor.F. 

161 



Chapter 9. Conclusions and recommendations 	 162 

had been studied previously in lattice QCD. It was found that B-BiCG('y5) and 

B-QMR('ys) both outperform B-CGNR and B-Lanczos very significantly, a fact 

which is attributed to the superior spectral properties of M compared with MM 

and 75 M. However, none of these methods performed sufficiently well to be pre-

ferred to BiCGSTAB at the weak couplings and large lattices that characterise 

the UKQCD collaboration's current programme of hadron spectroscopy. If block 

algorithms have a role to play in the future of lattice QCD, it is most likely to be 

at stronger coupling and lighter mass; the possibility of block algorithms should 

be borne in mind by anyone contemplating simulations with highly-improved 

fermionic actions on coarse lattices. 

Chapter 6 described an implementation of the Generalised Hybrid Monte Carlo 

algorithm, and much attention was given to methods for improving performance. 

Although hardware-specific optimisations were most significant in this regard, 

I focused on more portable, algorithmic improvements. Of the various tricks 

and techniques that were discussed in chapter 6, four in particular are worthy of 

recapitulating here. 

Replacing one Conjugate Gradient solve by two BiCGSTAB solves was found to 

result in savings of up to 40%, but it is not known whether this will remain true 

at much lighter sea-quark masses. Once it is accepted that BiCGSTAB should 

be used to perform the solves, the wisdom of formulating GHMC in terms of 

the determinant of the red-black preconditioned matrix can be called into ques-

tion. If instead one defines pseudofermions on both parities and works with the 

full fermion matrix, a wider variety of preconditioning strategies, including LL-

SSOR, becomes available. Moreover, it has been suggested [68] that defining 

pseudofermions on half the lattice sites could have an adverse effect on autocor-

relation times. 

The next two tricks are related to the clover term. Exploiting a symmetry in 

the block structure of the clover term halved the memory required to store the 

LDL decomposition of A, and reduced the effort required to compute the de-

composition by a factor of four. The cost of multiplying by the inverse of A 



Chapter 9. Conclusions and recommendations 	 163 

was approximately halved. This trick has since been incorporated into the solver 

code. 

It was found that applying a further block Jacobi preconditioner to the red-

black preconditioned system yielded a modest improvement in the convergence 

rate of solvers in GHMC. This preconditioner has not yet been retrofitted to the 

solver code, but the effort should be worthwhile. On quenched configurations, 

improvements to MR of up to 30 per cent have been observed.' BiCGSTAB 

can be. handled in exactly the same way as in the GHMC code. It is possible to 

apply block Jacobi preconditioning to the y5-symmetric algorithms BiCG(-ys) and 

Q MR(ys) as a central preconditioner, because the matrix Mpp  = A PP  Mpp  A PP is 

y5-symmetric. There will be two ways to proceed. The obvious way is to work 

with M directly, but multiplications by M will clearly be more expensive 

than multiplications by 	The alternative is to absorb the factors of AY into 

redefinitions of the various vectors that appear in the recurrence relations; one 

should find that all explicit occurrences of APP   can be eliminated, but that inner 

products will now involve 	In either case, the preconditioner will involve 

some additional overhead to offset any gains from faster convergence, and the net 

improvement may be too small to justify the coding effort. 

The fourth technique is nothing other than our mechanisms for checkpoiriting and 

resuming a GHMC simulation. These mechanisms enabled us to make maximum 

use of the available computing resources and to minimise the impact of system 

failures, and may validly be regarded as an important optimisation. 

Chapter 7 described our first experiences with Hybrid Monte Carlo simulations 

using two mass-degenerate flavours of dynamical clover-improved Wilson fermions. 

It raises questions concerning the effect of the coupling constant on autocorrela-

tion times. 

'Users with access to the source of the UKQCD MPP codes can find an example using the 
MR algorithm in mrsolver.2.F. 

30'Leary's formulation of B-BiCG in 1(5.2.4) applied central preconditioning along these 
very lines. 



Chapter 9. Conclusions and recommendations 
	

164 

Chapter 8 announced the existence of a parallel Lanczos code to diagonalise the 

fermion matrix. It is my hope that this code will prove useful. 



Appendix A 

Notation and Conventions 

A.1 Matrix notation 

Suppose A is an arbitrary m x n matrix. Then aij  shall denote the component of 

A in the ith row and jth column, and Ak denotes the kth column of A. Sometimes 

we write A = (a 1). AT  and At denote respectively the transpose and hermitiari 

conjugate of A, ie. 

AT = (a), At = ( ji  a). 

Iteration numbers on a matrix or vector are indicated by superscripts in paren-

theses, eg. A(k)  denotes the matrix A in the kth iteration. As the inverse of the 

transpose (hermitian conjugate) of a square matrix equals the transpose (hermi-

tiari conjugate) of its inverse, we also write unambiguously 

(AT)1 = (A-' 
)T AT, (At)-' = (A_1)t = At 

I trust my readers to correctly infer the dimension of the identity matrix, which 

I denote by I, from the context in which it occurs. The notation Jij  is reserved 

for the Kronecker delta. 

165 



and 
0010 

0001 
-y5= 

1 0 0 0 

0100 

(A.1) 

Appendix A. Notation and Conventions 	 166 

A.2 Dirac matrices 

We use the following representation of the Euclidean gamma matrices: 

o o 0  

o o iO 

o —z 0 0 

—i 0 0 0 

o Ui 0 

o 0 0 —i 
Y3= 

—z 0 0 0 

o iOU 

00 01 

0 0 —1 0 

0 —1 0 0 

10 00 

100 0 

010 0 
y4= 

0 0 —1 0 

0 0 0 —1 

Here the spinor indices z, v run from 1 to 4, corresponding to x, y, z, t. 

(A.2) 

Explicitly, 



100 

)3= 0 —1 0 

000 

000 

6 0 0 1 

010 

(A.4) 

Appendix A. Notation and Conventions 	 167 

—1000 0—j0 0 

0100 i 000 
0712 	= 913 

00-10 000—i 

0001 00 i 0 

0001 0 —1 0 0 

0010 —10 0 0 
914 U23 

0100 0 0 0-1 

1000 0 0-10 

000—i 0010 

0 0 i 0 0 0 0 —1 
U24 	= 34 

0-10 0 1000 

i 0 0 0 0 —1 0 0 

A.3 Gell-Mann matrices 

(A.3) 

We adopt the same conventions for the Cell-Mann matrices as given in [80, pages 

516-7], that is 

	

0 1 0 	 0 —i 0 

	

100 	2 =i 00 

	

000 	 000 

	

0 0 1 	 0 0 —i 

	

)4= 0 0 0 	)= 0 0 0 

	

100 	 iO 0 

	

000 	 100 

0 	

) 8(0 0 —2 ) 

These are traceless, hermitian and normalised such that 

Tr [.)'b] = 28.b 	 (A.5) 



Appendix B 

Eigenvectors of J-hermitian matrices 

Let A E CNXN be a J-hermitian matrix. That is, there exists a non-singular 

matrix J E CNXN such that 

IA = AtJ. 	 (B.6) 

Since J is invertible, A and At are similar matrices and have the same Jordan 

form, trace, determinant, characteristic polynomial and minimum polynomial. 

Considering the characteristic polynomial of A 

det (A - \I) = det (J) det (A - \I) det (i') 	(B.7) 

= det (JAJ_1 - Al) 	 (B.8) 

det (At AI) 	 (B.9) 

= 	det (A*_Al) 	 (B. 10) 

det (A_A*I)* 	 (B.11) 

we observe that if ,\ is a zero of the characteristic polynomial, then ) is too. 

Consequently the eigenvalues of A are real or occur in complex conjugate pairs. 

Moreover, A., and A have the same multiplicity. 

We assume that A is diagonalisable, that is there exist N eigenvalues A (not 

necessarily distinct) corresponding to N linearly independent eigenvectors v. 

That is, 

Avi  = 	 (B.12) 

In general, the vi  will not be orthogonal. We do not require that the vi  be 



Appendix B. Eigenvectors of J-hermitian matrices 	 169 

normalised. 

Without loss of generality, let the eigenpairs (), v) be sorted on key 

(Re Ai , I Im Ai  I , sign (Im ))) . 	 (B.13) 

By this we mean that i <j implies 

Re Ai  < Re Aj  

	

Re Ai  Re Aj 	Tm Ai l < Ilm Aj l  

	

Re )tj = Re Aj  and I Im Ai  I = Im )j 	,' sign (Im )) <sign (Im. A). 

Degenerate eigenvalues are ordered arbitrarily, but consecutively. Forming the 

matrices 

V = (v1 ,...,vN) 	 (B.14) 

A = diag) 	 (B.15) 

we can re-write the eigenva!ue equation (B.12) in matrix form 

AV=VA. 	 (B.16) 

The assumption of linearly independent eigenvectors means that V has rank N 

and is consequently non-singular. 

Because the eigenvalues occur in complex conjugate pairs, the sets {A} and {)} 

are the same. We can write 

	

A3i  = 
	

(B.17) 

and arrange for the eigenpairs 	, 3) to be ordered by the same rule as above, 

ie. we sort these eigenpairs on key 

(Re ) 1 jTm Afl, sign (Im Ar)), 



Appendix B. Eigenvectors of J-hermitian matrices 	 170 

but with the additional constraint that degenerate eigenpairs appear in the same 

order in both schemes. If Aj  is real and simple, then nj  and 1j coincide. 

In terms of the matrix 

(B.18) 

we have 

AV=VA*. 	 (B.19) 

Multiplying equation (B.16) on the left by J and using equation (B.6) one finds 

that the i-th column of JV is an eigenvector of At  with eigenvalue A. Doing the 

same with equation (B.17) gives that the i-th column of JV is an eigenvector of 

At with eigenvalue .\. 

Notice that, on the one hand, 

= Aj fJv 	 (B.20) 

but on the other hand 

JAv j  = 	5WJv. j   

= 	(A3)tJv   

(*3)t Jv  

3Jv.  

So if A j  and Aj  are distinct, then JvJ  = 0. 

The matrix form of this result is 

[A, VtJV] = 0. 	 (B.25) 

This means that the matrix VJV, which has components 

(f/rtJV) = Jv 	 (13.26) 



Appendix B. Eigenvectors of J-hermitian matrices 	 171 

is block diagonal. There is one block for each distinct eigenvalue, and the size 

of the block is given by the multiplicity of the corresponding eigenvalue. We 

now observe that any linear combination of eigenvectors corresponding to the 

same eigenvalue A is itself an eigenvector with eigenvalue A, and we set about 

exploiting this freedom to find matrices of eigenvectors W and W such that 

WtJW is diagonal, at the same time as satisfying 

AW = WA 	 (B.27) 

AW = WA. 	 (B.28) 

The procedure is analogous to finding an orthonormal set of eigenvectors corre-

sponding to a multiple eigerivalue of an hermitian matrix, except that here the 

eigenvectors (the columns of W) are to be hi-orthogonal with respect to another 

set of vectors (the columns of JW). 

Let B3  denote the block corresponding to the j-th distinct eigenvalue ft j  of mul-

tiplicity m3 . Given the ordering rule (B.13) on the A, we have 

[Lj 	A = ... 	Ai3 m3 _i 	 (B.29) 

for some i. Defining 

Vi 	(vii )... ,'ii+mi_i) 	 (B.30) 

. . 	ij+mj_i) 	 (B.31) 

we have 

B3= 1/ tJl, 	 (B.32) 

and we may take its LDU decomposition 

= L D Uj. 	 (B.33) 

Here, D3  is diagonal, L j  is lower triangular and U is upper triangular. Both 

L j  and Ui  have ones down the diagonal and are therefore invertible. The LDU 



Appendix B. Eigenvectors of J-hermitian matrices 	 172 

decomposition of VtJV  is just the direct sum of the 

Taking 

- 1/U3 	 (B.34) 

= VL t. 	 ( B.35) 

we have by construction that 

WtJW =D 	 (13.36) 

which is diagonal, and plainly 

AW = A1'U1 = = Wjpj  

AW = AVj L1t = 	1,IL7t = Witt .  

It is now plain that 

W 	= 	(Wl,...,Wl)(wl,... ) wN)  

.,W 1 ) (w1,. . . ) w) (13.40) 

satisfy equation (B.27), and furthermore 

WJW=B =D = D. 	 (B.41) 

Now the left hand side of equation (B.41) is the product of non-singular matrices 

and hence non-singular. Therefore D is also non-singular, and 

W1 = D 1 WtJ. 	 (B.42) 

Multiplying equation (B.27) from the right by W' we obtain a spectral decom-

position for A: 

A = WADi,VtJ. 	 (13.43) 



Appendix B. Eigenvectors of J-hermitian matrices 	 173 

Observing that 

= D, 	 (B.44) 

equation (B.43) may also be expressed in the form: 

N 

:=1 WjJW Z 
	 (B.45) 

This equation (B.45) is our main result. We observe that if J is the identity 

matrix, then A is hermitian, t7vi  = wi and equation (B.45) reduces to the familiar 

spectral decomposition for an hermitian matrix. 

It should be pointed out that the ordered set {il} is not in general a permuta-

tion of {w}, unless all the eigenvalues of A are simple (in which case the LDU 

decomposition is trivial and W = V and W = 
CT). However, this is remedied 

automatically if J has certain hermiticity properties as we shall now show. 

We assume now that J is hermitian'. Consider the j-th distinct eigenvalue j 

and its corresponding block Bj  = V,tJV. 

Suppose first that yj is real. By the ordering rule, V = V, and by the hermiticity 

of J, B1  is hermitian. Then the LDU decomposition of Bj  reduces to the LDL 

decomposition. We find that 

147 = 	 (B.46) 

and 

Wj = V7 L t = VLt W. 	 (B.47) 

Notice that if J were not hermitian, each column of l'V would be some linear 

combination of the columns of W3 . 

Now suppose that y j  is not real. Without loss of generality, we may take Tm /IJ < 

0. Perform the LDU decomposition of the corresponding block. 

B2 = ytjV1 = L1 D1U. 	 (B.48) 

41f J is anti-hermitian, work with the hermitian matrix I' = ii instead. 



Appendix B. Eigenvectors of J-hermitian matrices 	 174 

By the ordering rule the next block B+1 corresponds to I-i+i =and further-

more 

Vj = vj+1, 	= vi. 

Therefore 

B31  = 	 VtJV = VtjtV = 

Thus the hermiticity of J permits us to set consistently 

W3 + = wj=1/UT l  

= W=L;t 

 

 

 

 

and we only need to perform one LDU decomposition. 

The practical importance of the ordering rule is now clear. Given an hermitian 

matrix J, a J-hermitian matrix A, and any complete set of eigenvalues and corre-

sponding eigenvectors, we can apply an ordering rule to construct two numberings 

of the eigenpairs, and then construct, in place, another set of eigenpairs {(\, w)} 

satisfying equation (B.45). Moreover, there is no need to store the {(A',)} as 

these are given in terms of the 	w)} by the ordering rule. 

One might question the usefulness of this result. After all, if J is hermitian, JA is 

hermitian, and A can be expanded in terms of the eigenvectors of JA. However, 

it may be the case that one is interested in properties of the eigenvectors of A. 

Alternatively, it may be the case that A is a shifted matrix and JA is not, and 

that one is interested in the properties of A or A 1  at several values of the shift. 

The Wilson fermion matrix in lattice QCD is such a matrix. 



Appendix C 

The structure of the clover term 

On each site, the clover term A is given by 

A = 1 - 	 (C.53) 

In the obvious basis (colour indices run faster than spin), 	has the block 

form 
Wi  W2  W3  

- - 

I

w1  W4  

W3 	

t 

W4  W1  

W4 -w3  w 

W4  

—W3  

W2  

—Wi  

(C.54) 

where the 3 x 3 matrices Wi  W4  are given by 

= 	F12  

W2  = 	iF13 	F23  

1473  = —F34  

1/174  = 	iF24  - F14  (C.55) 

Note that W1  and W3  are hermitian. 

175 



Appendix C. The structure of the clover term 	 176 

It is now apparent that the clover term can be written in the form 

A
B  C\ 

	

=( 	B) 	
(C.56) 

where 

B = (1+ ICSWWl  icCW2  \ 

) 	
(C.57) 

- rCSWWI 
 

C(ttCswW3CTW

4  ) 
(C.58) 

CSWW  

We now seek a similarity transformation S such that S 1 AS is block diagonal 

for arbitrary B, C. These requirements do not uniquely fix S, but the choice 

S \/( 	
J 

	

= - 	 (C.59) 
I —j) 

gives 

SAS= (B+C 
	0 	

(C.60) 
0 B—C) 

This choice is a convenient one, because then 

S = 51 = St = ST. 	 (C.61) 

It should not come as a complete surprise that the columns of S are the eigen-

vectors of s. 

We can use this to reduce the computational cost of multiplying a 12-component 

column vector by A, thus: 



Appendix C. The structure of the clover term 
	

177 

o 	I 

B_C) I _I  

where 

x = (B+C)(u+v) 

y = (B—C)(u—v) 

Instead of one 12 x 12 matrix-vector multiply, we now have two 6 x 6 matrix-vector 

multiplies, plus a small overhead of two 6-component vector additions. 

The same trick can be used to reduce the computational cost of multiplication 

by the inverse of the clover term. 

0 

(BC)-1)(I 'I 
U 

 

where now 

x = (B+C) 1 (u+v) 

y = (B—C)'(u—v) 



Appendix C. The structure of the clover term 	 178 

In both the GHMC and solver codes, it is necessary to do many multiplications by 

= A 1  [U, i, Csw] during which U, ic and Csw remain constant. In practice, 

we first compute the LtDL decompositions of B + C and B — C and use these 

to implement multiplication by their inverses. Note that 

L is lower triangular with ones on the diagonal, and D is diagonal 

B and C are hermitian so the decompositions exist 

LtDL works just as well as the more usual LDLt 

it is just as efficient and generally more accurate to compute (LtDL) ' 

by solving LDLx = y ( this requires only a back substitution, scaling, and 

forward substitution ). See the discussion in Numerical Recipes [78, section 

2.3] on the related topic of the LU decomposition. 

The trick reduces the memory required to store the decomposition by a factor of 

2, and the operation count for multiplication by A 1  by a factor slightly better 

than 2. The operation count for computing the decomposition is reduced by a 

factor of about 4. 



Appendix D 

GHMC run-time options 

The GHMC code reads its run time options from a text file carrying the suffix 

.eri. Every stored gauge configuration is accompanied by a file carrying the suffix 

.par; this file has the same format as the .eri file, and contains the complete set of 

run-time options to resume the GHMC simulation from the gauge configuration 

it accompanies. 

Options are specified by keyword and value pairs, the value being separated from 

the keyword by one or more spaces (tabs are not equivalent to spaces and should 

be avoided). An exclamation point at the start of a line introduces a comment, 

and trailing comments, introduced by an exclamation point following the value 

string, are also allowed. The order in which options appear in the parameter file 

is insignificant, except that if an option is specified twice it is the first instance 

that survives. 

The allowed keywords and their meanings are specified overleaf. 

179 



Appendix D. GHMC run-time options 	 BE 

latt[X} Size of lattice in X-dimension. 

latt[Y] Size of lattice in Y-dimension. 

latt[Z] Size of lattice in Z-dimension. 

latt[T] Size of lattice in T-dimension. 

start_type Allowed values are: 

0 old: load in an old gauge configuration 

1 cold: set all gauge links to the identity matrix 

2 hot: start from a random gauge configuration 

start-sweep Trajectory number to start from. 

mg-seed Positive integer used to re-seed the random number generator. If zero, 

the state of the random number generator (RNG) will be loaded from the 

.rng file associated with the gauge configuration. As the state of the RNG 

depends on the processor grid, it is necessary to re-seed when the number 

of processors is changed. rngseed must be non-zero for cold or hot starts. 

bc[X] Fermionic boundary condition in X-direction, default: 'periodic'. 

bc[Y] Fermionic boundary condition in Y-direction, default: 'periodic'. 

bc[Z] Fermionic boundary condition in Z-direction, default: 'periodic'. 

bc[T] Fermionic boundary condition in T-direction, default: 'antiperiodic'. 

caic_par Parity, 0 (even) or 1 (odd), on which pseudo-fermions are defined. 

beta The simulation parameter /3. 

kappa Sea K. 

clover Cs. 



Appendix D. GHMC run-time options 	 181 

beta-shift Default 0. Not yet implemented. The guidance Hamiltonian for the 

molecular dynamics can in principle use a different value /3' = /3 + /3; 

beta-shift would specify 6fl. 

kappa-shift Default 0. Not yet implemented. As beta-shift. 

clover-shift Default 0. Not yet implemented. As beta-shift. 

mixing-parameter 	where 0 is the GHMC mixing angle (see §(6.2)). Pure 

HMC is specified by the value 1.0. 

timestep The size of the molecular dynamics timestep dr. 

sweep-length The trajectory length Nmd. 

gauge_updates n, usually 1 or 2. See §(6.3.2). 

num_sweeps The number of trajectories to perform this time. 

save-it Determines the frequency at which gauge configurations etc. are to be 

saved to disk. The GHMC code saves data for future analysis whenever the 

remainder on dividing the trajectory number by save-it is zero. A zero 

value of save-it is defined to mean "never save". 

checkpoint-it Determines the frequency at which checkpoints are to be taken, 

by the same recipe as for save-int. The value 0 disables checkpointing. 

checkpoint -cycle _len The number of checkpoints in a checkpoint cycle. Should 

be at least 2, but there is no compelling reason for more than 2. 

next -checkpoint _num The number of the next checkpoint to write. Should 

not exceed checkpoint_cycle_men. 

time _limit -in _mins The GHMC code will take a checkpoint and stop if start-

ing the next trajectory is likely to cause the elapsed run time to exceed 

time_limit_in_mins. This feature is especially useful when jobs are submit-

ted through a queueing system which imposes a time limit on jobs. 



Appendix D. GHMC run-time options 	 182 

load-momenta Determines whether the conjugate momenta should be loaded 

from disk. Allowed values are 'yes' and 'no'. If resuming from an 'old' 

configuration, always set load-momenta to 'yes'. Even in pure HMC, the 

old conjugate momenta are required to ensure reproducibility. 

solver-type Inversion algorithm to use. Allowed values are: 

'cg' Conjugate Gradient. This choice implies a 1-step solve. 

'bicgstab' BiCGSTAB. This choice implies a 2-step solve. 

restart _solver_type Should always be 'cg' at present. 

guess _strategy_x Strategy to employ when choosing the initial guess 	Al- 

lowed values are: 

zero 	= 0 (recommended). 

noise x° = i (dubious). 

source 	= 0 (not recommended). 

last The solution from the previous timestep is taken as the initial guess. 

Faster than zero, but manifestly non-reversible and not advised. 

guess_strategy_y Strategy to employ when choosing the initial guess y(°)  Al-

lowed values are as for guess-strategy-x. 

restarts Number of restarts. 2 is recommended. 

min_iter Minimum number of solver iterations. 

max_iter Maximum number of solver iterations. Set max_iter to about 50% 

more than the average number of iterations required for convergence at 

this kappa and solver-type. 

print_freq Set this to 0 unless you really want to monitor the size of the residuum 

in every solve. If print_freq = n > 0, the solver will report the value of the 

residuum 	whenever mod(lv,n) = 0, k being the iteration number. 



Appendix D. GHMC run-time options 	 183 

omega Over-relaxation parameter, only used for MR. Default: 1.1. This can 

be tuned to accelerate convergence. A reasonable range is 1.05 < w < 1.4. 

Not currently used (MR is not currently implemented in the GHMC code). 

target _residue The stopping criterion for the exterior (first and last) solves in 

each trajectory. The algorithm is deemed to have converged on the solution 

(Y or X) when the equation residuum is smaller than target-residue. As 

the exterior solves control the accuracy of the energy calculation, I advise 

against any attempts at economy here. Use 0.1E-06 in 32-bit precision and 

don't be afraid to ask for more accuracy (say 0.1E-09) in 64-bit precision. 

See the discussion in §(6.5.7). 

relax_md_residue_by The convergence criteria for the interior solves (during 

the molecular dynamics) may be relaxed with respect to the exterior solves. 

See the discussion in §(6.5.8). The target residue for the interior solves is 

given by target-residue x relax_md_residueiy. 

precondition Allowed values are 'yes' and 'no'. If 'yes', the solver will use the 

block Jacobi preconditioning described in §(6.4), except on the last restart. 

input_gauge_size Allowed values: 4, 8. Size, in bytes, of each floating point 

number in the input files containing the gauge configuration and their con-

jugate momenta. 

byte -swap -input -gauge Allowed values are 'no', 'yes'. This option determines 

whether any special endianness conversion is to be done when loading gauge 

configurations (arid their conjugate momenta) from disk. 

output_gauge_size Allowed values: 4, 8. Size, in bytes, of each floating point 

number in the output files containing gauge configurations and their con-

jugate momenta. 

byte _swap_output-gauge Allowed values are 'no', 'yes'. This option deter-

mines whether any special endianness conversion is to be done when saving 

gauge configurations (arid their conjugate momenta) to disk. 



Appendix D. GHMC run-time options 	 184 

output-gauge-path Name of the directory to contain the gauge configurations 

stored by the GHMC code for subsequent analysis. 

output_fe_path Name of the directory to contain the .par and .rng files associ-

ated with stored gauge configurations. 

output-mom-path As output-gauge- path but for conjugate momenta. 

input -gauge -path Name of the directory containing the old gauge configura-

tion, if any, to be loaded from disk. 

input_fe_path Name of the directory containing the .par and .rng files associ-

ated with the input gauge configuration, if any. 

input-mom-path As input-gauge-path but for conjugate momenta. 

checkpoint-path Name of the directory used for saving checkpoint information. 

input-stem The root file names for the input gauge configuration and conjugate 

momenta are constructed by appending predefined strings to input-stem. 

output-prefix The root file names for the output gauge configuration and con-

jugate momenta are constructed by appending predefined strings to out -

put_prefix. input-stem contains the trajectory number but output-prefix 

does not. 

validate_plaquettes Allowed values are 'yes' and 'no'. If 'yes', the average 

plaquette of the gauge configuration loaded from disk will be computed 

and compared with the values specified in 

plaquette-real real part of average plaquette 

plaquette_imag imaginary part of average plaquette 

The program will abort if the values do not match. These numbers are 

computed when a gauge configuration is generated, and stored in .edi files 

by the pure gauge code (quenched) or .par files by the Hybrid Monte Carlo 

code (usually dynamical). This option, and the options below, provide a 

useful check on the integrity of a gauge configuration. 



Appendix D. GHMC run-time options 	 185 

validatetplaquettes Allowed values are 'yes' and 'no'. As validate_plaquettes, 

but the average is taken over each time-slice separately. Values are specified 

in 

tplaquette_real [t] 

tplaquetteimag[t] 

where t denotes the time-slice, 0 < i < Iatt[T] —1. 

validate_tcsum Allowed values are 'yes' and 'no'. If 'yes', a checksum will be 

computed for each time-slice of the gauge configuration as it is loaded, and 

compared against values specified in 

tcsum[t] An integer, 0 < t < latt[T] —1. 

plaquette_real See validate_plaquettes 

plaquetteimag See validate_plaquettes 

tplaquette-real [t] See validate_tplaq uettes. 

tplaquette_imag[t] See validate_tplaquettes. 

tcsum[t] See validate_tcsum. 



Appendix E 

Glossary 

Block algorithm An iterative method for solving linear systems with multiple 

right-hand sides simultaneously. Contrast point algorithm. 

BLAS Basic Linear Algebra Subroutines. A library of subroutines for perform-

ing basic vector-vector and matrix-vector operations. Available on a wide 

variety of platforms, and often highly optimised for the target architecture. 

Condition number The condition number (with respect to inversion), cond (A) 

of a square matrix A is given by 

cond(A) = 

For a common choice of norm, 

max JAI 
cond (A) 

= mm JAI 

corid (A) provides a crude measure of the difficulty of solving a linear system 

of the form 

Ax=b, 

the larger the condition number, the more difficult the problem. 

Dublin plot A plot of 1/k (or rnq ) as a function of 3. Useful for discussing 

continuum extrapolations at constant a. 

Krylov subspace The k-th Krylov subspace generated by a matrix A and vector 



Appendix E. Glossary 
	

187 

v is given by 

'k (A, v) = span{v, Av,.. , Ak_l v } 

Krylov subspace method An iterative method for solving a linear system 

Ax=b 

which utilises a sequence of Krylov subspaces 

{Kk (A,b_Ax(°))}, 

in order to construct successive approximations x(c)  to x = Ab. 

LAPACK LAPACK (Linear Algebra Package) is a library of linear algebra and 

eigenproblem solvers. It is available on a wide variety of platforms, and 

supersedes the earlier packages UNPACK and EISPACK. 

Machine epsilon The machine epsilon e is the smallest number such that the 

floating point representation of 1.0 + e is distinguishable from 1.0. e is 

typically 0 (10) in 32-bit precision and 0 (1015)  in 64-bit precision. 

Point algorithm Any iterative method for solving linear systems with a single 

right-hand side. Contrast block algorithm. 

QR decomposition The QR decomposition of a matrix A is the factorisation 

A = QR, where R is upper triangular and Q satisfies  QQ = I. 

restart Having obtained an approximate solution to the matrix equation Ax = b 

using an iterative method, it is sometimes useful to restart. The solution is 

repeated using the latest approximation, x(c)  say, as the initial guess 

The algorithm used in the restart need not necessarily be the same as in 

the original solve. Usually the restart will converge in much fewer iterations 

than the original solve, therefore yielding a more reliable final residual. 



Appendix E. Glossary 	 188 

saxpy A subroutine in the BLAS library which performs the operation 

y - ax + y 

for real vectors x, y and real scalar a. More generally, the name given to 

the class of vector-vector operations of this form, for any vectors x and y 

and any scalar a. 

Sparse matrix A matrix A = (a) for which most of the components aij  are 

zero. There is no clear division between "sparse" and "dense", but a good 

operational definition is that a matrix is sparse if it pays to exploit the 

zeroes. The fermion matrix becomes more sparse as the lattice volume is 

increased. 



References 

M. Creutz. Quarks, Gluons and Lattices. Cambridge University Press, 

Cambridge, 1983. 

Heinz J. Rothe. Lattice Gauge Theories: An Introduction. World Scientific, 

Singapore, 1992. 

I. Montvay and G. Münster. Quantum Fields on a Lattice. Cambridge 

University Press, Cambridge, 1994. 

Zbigniew Sroczynski. Taking Lattice QCD Beyond the Quenched Approxi-

mation. PhD thesis, University of Edinburgh, 1998. 

UKQCD Collaboration. Light hadron spectroscopy with 0(a) improved dy-

namical fermions. in preparation, (1998). 

K. G. Wilson. Confinement of quarks. Phys. Rev. D, 10, 2445-59, (1974). 

B. Sheikholeslami and R. Wohlert. Improved continuum limit lattice action 

for QCD. Nucl. Phys. B, 259, 572-596, (1985). 

C. Heatlie et al. The improvement of hadronic matrix elements in lattice 

QCD. Nucl. Phys. B, 352, 266-288, (1991)- 

M. Liischer, S. Sint, R. Sommer and P. Weisz. Chiral symmetry and 0(a) 

improvement. Nucl. Phys. B, 478, 365-400, (1996). 

M. Creutz. Evaluating grassmann integrals. hep-lat/9806037, 1998. 

M. Creutz. Grassmann integrals by machine. hep-lat/9804021, 1998. Pre-

sented at 16th International Symposium on Lattice Field Theory (LATTICE 

98), Boulder, CO, 13-18 Jul 1998. 



REFERENCES 	 190 

C. R. Gattringer, I. Hip, C. B. Lang. Topological Charge and the Spectrum 

of the Fermion Matrix in Lattice-QED-2. Nucl. Phys. B, 508, 329-352, 

(1997). 

S. Itoh, Y. Iwasaki and T. Yoshié. U(1) problem and topological excitations 

on a lattice. Phys. Rev. D, 36, 527-45, (1987). 

J. Smit and J. Vink. Remnants of the index theorem on the lattice. Nucl. 

Phys. B, 286, 485-508, (1987). 

J. Smit and J. Vink. Topological charge and fermions in the two-dimensional 

lattice U(1) model (I). Staggered fermions. Nucl. Phys. B, 303, 36-56, 

(1988). 

J. Vink. Topological charge and fermions in the two-dimensional lattice U(1) 

model (II). Wilson fermions. Nucl. Phys. B, 307, 549-70, (1988). 

P. Hernández. On the Index Theorem for Wilson Fermions. hep-lat/9801035, 

1998. CERN preprint no. CERN-TH/97-370. 

F. Cliatelin. Eigenvalues of Matrices. Wiley, Baffins Lane, Chichester, 1993. 

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins 

University Press, Baltimore, Maryland, third edition, 1996. 

R. Barrett et. al. Templates for the Solution of Linear Systems: Building 

Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, 1994. 

A. Frommer. Linear systems solvers - recent developments and implications 

for Lattice computations. Nucl. Phys. B (Proc. Suppl.), 53, 120-126, (1997). 

hep-lat/9608074 (1996). 

A. D. Simpson. Algorithms for Lattice QCD. PhD thesis, University of 

Edinburgh, 1991. 

N. P. Stanford. Portable lattice QCD software for massively parallel pro-

cessor systems. PhD thesis, University of Edinburgh, 1994. 



REFERENCES 	 191 

R. Gupta et. al. QCD with dynamical Wilson fermions. Phys. Rev. D, 40, 

2072-84, (1989). 

A. Frommer et al. Many Masses on One Stroke: Economic Computation 

of Quark Propagators. mt. J. Mod. Phys., C6, 627-638, (1995). Wup-

pertal University Preprint WUB 95-12, Technical Note HLRZ-95-20, hep-

lat /9504020. 

U. Glässner. How to compute Green's Functions for entire Mass Trajectories 

within Krylov Solvers. hep-lat/9605008, 1996. 

B. Jegerlehrier. Multiple Mass Solvers. Nuci. Phys. B (Proc. Suppi.), (1997). 

hep-lat/9708029. 

S. Fischer et al. A Parallel SSOR Precoriditioner for Lattice QCD. Comput. 

Phys. Cornmuri., 98, 20-34, (1996). Wuppertal University Preprint WUB 

96-1, HLRZ 4/96. 

S. M. Pickles. Solver code: a status report. available on the UKQCD col-

laboration's internal web pages, 1997. 

M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving 

Linear Systems. J. Res. Nat. Bur. Stand., 49, 409-36, (1952). 

V. Faber and T. Manteuffel. Necessary and sufficient conditions for the 

existence of a conjugate gradient method. SIAM J. Numer. Anal., 21, 352-

362,(1984). 

A. Boriçi and Ph. de Forcrand. Fast Krylov Space Method for Calculation of 

Quark Propagator. hep-lat/9405001, 1994. IPS Research Report No. 94-03. 

C. Lanczos. Solution of systems of linear equations by minimized iterations. 

J. Res. Natl. Bur. Stand., 49, 33-53, (1952). 

R. Fletcher. Conjugate Gradient methods for indefinite systems. In C. Wat-

son, editor, Numerical Analysis, pages 73-89. Springer-Verlag, Berlin, 1975. 



REFERENCES 	 192 

R. W. Freund. Lanczos-Type Algorithms for Structured Non-Hermitian 

Eigenvalue Problems. In D. Brown et al., editor, Proceedings of the Cor-

nelius Lanczos International Centenary Conference, pages 243-245, Philadel-

phia, 1993. SIAM. 

M. Plagge. Investigation of the biconjugate gradient algorithm for the in-

version of fermion matrices. Technical Reprt PRINT-93-0042, Münster 

University, Dec 1992. hep-Iat/9212007. 

R. W. Freund and N. Nachtigal. QMR: a quasi-minimal residual method for 

non-Hermitian linear systems. Numer. Math., 60, 315-339, (1991). 

B. N. Pariett, D. R. Taylor and Z. A. Liu. A look-ahead Lanczos algorithm 

for unsymmetric matrices. Math. Comp., 44, 105-124, (1985). 

P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear sys-

tems. SIAM J. Sci Statist. Comput., 10, 36-52, (1989). 

H. A. Van der Vorst. BI-CGSTAB: A fast and smoothly converging variant 

of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. 

Statist Comput., 13, 631-644, (1992). 

M. H. Gutknecht. Variants of Bicgstab for Matrices with Complex Spectrum. 

SIAM J. Sci. Comput., 14, 1020-1033, (1993). 

A. Frommer et al. Accelerating Wilson Fermion Matrix Inversions by Means 

of the Stabilized Biconjugate Gradient Algorithm. Int. J. Mod. Phys., 

C5, 1073-1088, (1994). Wuppertal University Preprint WUB 94-10, hep-

lat/9404013. 

G. Celia et. al. Efficiency of different matrix inversion methods applied to 

Wilson fermions. mt. J. Mod. Phys. C, 7, 787-809, (1996). hep-lat/9606003. 

P. A. Rowland. Light Hadron Spectroscopy in Quenched QCD. PhD thesis, 

University of Edinburgh, 1994. 



REFERENCES 	 193 

R. Frezzotti and K. Jansen. A Polynomial Hybrid Monte Carlo Algorithm. 

Phys. Lett. B, 402, 328-334, (1997). 

R. Frezzotti and K. Jansen. Experiences with the Polynomial Hybrid Monte 

Carlo Algorithm. In C. T. H. Davies et. al., editor, Nuci. Phys. B (Proc. 

Suppl.), volume 63, pages 943-945, 1998. hep-lat/9709033. Talk given by 

R.F. at the International Symposium on Lattice Field Theory, 22-26 July 

1997, Edinburgh, Scotland. 

T. Kalkreuter and H. Simma. An Accelerated Conjugate Gradient Algorithm 

to Compute Low-Lying Eigenvalues - a Study for the Dirac Operator in 

SU(2) Lattice QCD. Cornput. Phys. Cornmun., 93)  33-47, (1996)- 

D. Smith, H. Simma, M. Toper (UKQCD Collaboration). Topological struc-

ture of the SU(3) vacuum and exceptional eigenmodes of the improved 

Wilson-Dirac operator. In C. T. H. Davies et. al., editor, Nuci. Phys. B 

(Proc. Suppi.), volume 63, pages 558-560, 1998. hep-lat/9709128. Talk given 

by D.S. at the International Symposium on Lattice Field Theory, 22-26 July 

1997, Edinburgh, Scotland. 

H. Simma, D. Smith (UKQCD collaboration). Low-lying Eigenvalues of the 

improved Wilson-Dirac Operator in QCD. hep-lat/9801025, 1998. 

J. F. McCarthy. The Block Conjugate Gradient Method. Phys. Rev. D, 40, 

2149-2152, (1989). Indiana University Preprint WHET 160 (1989). 

D. Henty, R. Setoodeh and C. T. H. Davies. A Study of Block Algorithms 

for Fermion Matrix Inversion. Nuci. Phys. B, 337, 487-508, (1990). 

P. D. O'Leary. The Block Conjugate Gradient Algorithm and Related Meth-

ods. Lin. Algebra Appi., 29, 293-322, (1980). 

W. E. Boyse and A. A. Seidl. A Block QMR Method for Computing Multi-

ple Simultaneous Solutions to Complex Symmetric Systems. SIAM J. Sci. 

Comput., 17, 263-274, (1996). 



REFERENCES 	 194 

R. W. Freund and M. Maihotra. A Block QMR Algorithm for Non-Hermitian 

Linear Systems with Multiple Right-Hand Sides. AT&T Bell Laborato-

ries, Numerical Analysis Manuscript No. 95-09, (1995). Available from 

http://cm.bell-labs.com/cs/doc/95.  

P. Fiebach, A. Frommer and R. W. Freund. Variants of the Block-QMR, 

Method and Applications in Quantum Chrornodynamics. AT&T Bell Lab-

oratories, Numerical Analysis Manuscript No. 97-8-01, (1997). Available 

from http://cm.bell-labs.com/cs/doc/97.  

A. D. Kennedy, R. Edwards, H. Mino and B. Pendleton. Tuning the gen-

eralized Hybrid Monte Carlo algorithm. Nucl. Phys. B (Proc. Sup pl.), 47, 

781-784, (1996). 

Z. Sroczyriski, S. M. Pickles and S. P. Booth. UKQCD Dynamical Fermioris 

Project, 1997. 

S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth. Hybrid Monte 

Carlo. Phys. Lett. B, 195, 216-222, (1987). 

A. Horowitz. The second order Langevin equation and numerical simulations. 

Nucl. Phys., B280[FS18](3), 510-522, (1987). 

A. Horowitz. A generalized guided Monte Carlo algorithm. Phys. Lett. B, 

268, 247-252, (1991). 

Gottlieb et al. Hybrid-molecular-dynamics algorithms for the numerical sim-

ulation of quantum chromodynamics. Phys. Rev. D., 35, 2531-2542, (1987). 

J. C. Sexton and D. H. Weingarten. Hamiltonian evolution for the hybrid 

Monte Carlo algorithm. Nucl. Phys. B, 380, 665-677, (1992). 

R. Brower et al. Chronological Inversion Method for the Dirac Matrix in Hy-

brid Monte Carlo. Nucl. Phys, B, 484, 353-374, (1997). hep-lat/9509012v2 

(1996). 



REFERENCES 	 195 

A. D. Kennedy. Exact exponential mapping for su(3). private communica-

tion, 1990. 

M. Göckeler et. al. First results with non-perturbative fermion improvement. 

In Nucl. Phys. B (Proc. Suppl.), volume 53, pages 312-314, 1997. hep-

lat/9608081. Talk given by P. Stephenson at the International Symposium 

on Lattice Field Theory, 1996, St. Louis. 

R. G. Edwards, I. Horváth and A. D. Kennedy. Non-Reversibility of Molec-

ular Dynamics Trajectories. Nucl. Phys. B, 484, 375-402, (1997). 

S. J. Dong and K. F. Liu. Stochastic Estimation with Z2  Noise. Phys. Lett. 

B, 328, 130-136, (1994). hep-lat/9308015. 

G. Ritzenhöfer. Flavour Singlet Operators: A First Calculation of Quark-

Loop Insertions in Full QCD. PhD thesis, Wuppertal University, 1997. 

B. Efroni. The jacknife, the bootstrap and other resampling plans. Society 

for Industrial and Applied Mathematics, (1982). 

G. E. P. Box and G. M. Jenkins. Time Series Analysis: Forecasting and 

Control. Prentice Hall, New Jersey, third edition, 1994. 

P. J. Brockwell and R. A. Davis. 	Time Series: Theory and Methods. 

Springer-Verlag, New York, second edition, 1991. 

SESAM Collaboration. QCD with dynamical Wilson fermions - first results 

from SESAM. In Nucl. Phys. B (Proc. Suppl.), volume 47, pages 386-

393, 1996. hep-lat/9510001. Contributions by Th.Lippert and H.Hoeber to 

LAT95, Melbourne, July 1995. 

Th. Lippert et al. SESAM and TXL Results for Wilson Action 	A Status 

Report. In Nucl. Phys. Proc. Suppl., volume 60A, pages 311-334, 1998. 

hep-lat/9707004. 



REFERENCES 	 196 

J. Cullum and R. A. Willoughby. Computing eigenvalues of very large sym-

metric matrices - ail implementation of a Lanczos algorithm with no re-

orthogonalisation. J. Comp. Phys, 44, 329, (1981). 

I. M. Barbour et al. The Lanczos Method in Lattice Gauge Theories. In 

The Recursion Method and Its Applications, pages 149-164. Springer-Verlag, 

1985. 

R. Setoodeh, C. T. H. Davies and I. M. Barbour. Wilson fermions on the 

lattice - a study of the eigenvalue spectrum. Phys. Lett. B, 213, 195-202, 

(1988). 

T. Kalkreuter. Study of Cullum's and Willoughby's Lanczos method for 

Wilson fermions. Nuci. Phys. B (Proc. SuppL), 49, 168-173, (1996). hep-

iat/9509071. 

W. H. Press, S. A. Teukoisky, W. T. Vetterlirig and B. P. Flannery. Nu-

merical Recipes in Fortran. Cambridge University Press, Cambridge, second 

edition, 1992. 

W. Bardeen et. al. Light Quarks, Zero Modes, and Exceptional Configura-

tions. Phys. Rev. D, 57, 1633-1641, (1998). hep-lat/9705008. 

C. Itzykson and J. Zuber. Quantum Field Theory. McGraw-Hill, New York, 

International Edition edition, 1985. 



List of Tables 

4.1 	Storage requirements of various point algorithms 	 51 

4.2 	Work requirements of various point algorithms 	 54 

5.1 	Storage requirements of various block algorithms 	 87 

5.2 	Operations involving s x s matrices 
	

MO 

5.3 	Work requirements of various block algorithms 	 89 

7.1 GHMC run parameters 	 130 

7.2 Plaquette, TrM/V and NBCGSTAB for various runs 	 138 

7.3 	Estimates of integrated autocorrelationi times for the plaquette 	145 

197 



List of Figures 

3.1 The Wilson Fermion Matrix 15 

4.1 Convergence histories for various point algorithms 59 

5.1 Convergence histories for B-CGNR and B-Lanczos 75 

5.2 Convergence history for B-BiCG('y5 ) 81 

5.3 Convergence history for B-QMR(75) 86 

5.4 Break-even curve for B-BiCC('y5 ) 93 

7.1 HMC time series for plaquette and TrM 1 /V 135 

7.2 68% confidence limits on plaquette 136 

7.3 68% confidence limits on plaquette - logarithmic abscissa 137 

7.4 Plaquette as a function of 'sea 139 

7.5 TrM'/V as a function of 'sea 140 

7.6 Solver iterations as a function of ksea 141 

7.7 Autocorrelations in GHMC 144 

8.1 Eigenvalue spectrum of the Wilson fermion matrix 158 

8.2 Eigenvalue spectrum of the red-black preconditioned fermion matrix 159 

8.3 Eigenvalue spectrum of the Wilson fermion matrix - lighter mass 160 

198 



Index 

auto correlation, 142 

function, 142 

autocorrelation time, 142 

exponential, 132, 142 

integrated, 133, 142 

Bi-Conjugate Gradient, 38 

BiCGSTAB, 43, 109 

BiCGSTAB2, 46 

BLAS, 52, 90, 153, 186 

block algorithm, 186 

Block Bi-Conjugate Gradient, 76 

Block Conjugate Gradient 

on the normal equation, 70 

Block Lanczos, 72 

Block Minimal Residual, 68 

Block QMR, 82 

bootstrap, 133 

Cayley-Hamilton theorem, 119 

checkpointing, 112 

chiral condensate, 125 

chirality, 18 

clover term, 16 

clover trick, 120, 175 

condition number, 32, 36, 60, 62, 109, 

186 

Conjugate Gradient, 35, 106 

on the normal equation, 35 

convergence criteria, 26 

relaxing in GHMC, 123 

Dirac matrices, 166 

Dublin plot, 186 

eigenvalues, 17, 109 

eigenvectors, 17 

left, 17 

right, 17 

exceptional configurations, 28, 60 

fermion matrix, 15 

characteristic polynomial, 18 

shifted, 21 

spectral expansion, 19 

Gell-Mann matrices, 99, 167 

GI-IMC, 97 

energy conservation, 115 

equations of motion, 102 

operational aspects, 111 

reproducibility, 114 

reversibility, 115, 122 

run-time options, 112, 179 

solvers, 106 

the algorithm, 100 

hopping parameter, 9 

hopping term, 16 

J-hermitian, 16, 168 

Krylov subspace, 66, 186 

199 



INDEX 

methods, 30, 66, 187 B-CGNR, 71 

B-Lanczos, 74 
Lanczos 

B-MR, 70 
tridiagonalisation, 109, 147 

B-QMR(-y5), 84 
LAPACK, 85, 118, 187 

BiCG(-y5 ), 40 
leapfrog integration, 104 

BiCGSTAB, 45, 110 
generalised, 104 

BiCGSTAB2, 47 

machine epsilon, 27, 187 Conjugate Gradient, 108 

matrix notation, 165 GHMC, 100 

Minimal Residual, 34, 68 Lanczos tridiagonalisation, 152 

reorthogonalisation, 153 
plaquette, 124 

Minimal Residual, 35 
point algorithm, 187 

QMR('ys), 42 
preconditioning, 29 

block Jacobi, 30, 107, 163 

D-ILU, 30 

in GI-IMC, 106 

Jacobi, 30 

LL-SSOR, 33 

polynomial, 30 

red-black, 31, 98, 106, 107 

QMR, 40 

QR decomposition, 187 

quark propagator, 16 

quenched approximation, 12 

restart, 32, 35, 187 

saxpy, 34, 187 

shifted matrix, 21 

template 

B-BiCG('y5 ), 79 




