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PREFACE 

The researches described in this thesis are in the main part 

concerned with Optics and Electromagnetic Theory. They are 

presented in the form of fifteen papers, published in various 

scientific journals within the period 1949 -1955, and are grouped 

together under the following headings: (I) The Optical Image, 

(II) A General Theory of Interference and Diffraction of Light, 

(III) Studies in Electromagnetic Theory, and (IV) Related 

Investigations. 

In paper 1.1 the light distribution near focus in the three - 

dimensional aberration -free diffraction image is investigated and 

formulae are derived for the fraction of the total energy contained 

within the central core of the diffraction image in any prescribed 

receiving plane. In paper 1.2 these formulae are used to determine 

some of the properties of polychromatic star images formed by 

refracting telescope objectives, taking into account the effect of 

the secondary spectrum. The next paper is concerned with the 

effect of the central obstruction of the aperture on the three - 

dimensional light distribution near focus. An historical and 

critical survey of Diffraction Theory of Aberrations is presented 

in paper 1.4, and in paper 1.5 the foundations of the scalar 

Diffraction Theory of optical image formation are investigated. In 

the following paper a new aberration function is introduced, which 



possesses several advantages over aberration functions employed 

previously, and which may be used in investigations based on 

Geometrical Optics or Diffraction Theory. 

In the usual treatments of Interference and Diffraction, the 

sources are assumed to be of vanishingly small dimensions (point 

sources), which emit strictly monochromatic light. Numerous 

problems encountered, especially in applications to Spectroscopy, 

Microscopy and Astronomy, make it highly desirable to formulate a 

theory of Interference and Diffraction on a broader basis, taking 

into account the finite extension of any physical source, as well 

as the finite frequency range of radiation which any physical source 

emits. The need for such a generalization became particularly 

evident when F. Zernike in 1934 established in his pioneering 

researches on partial coherence a number of important and unsuspect- 

ed theorems in this field. In Part II of this thesis, a general 

theory of Interference and Diffraction of Light is presented, which 

applies to any stationary field. This theory makes it possible to 

treat directly problems of Interference and Diffraction with poly- 

chromatic light from finite sources, and includes the majority of 

known results on partial coherence as special cases of much more 

general theorems. An attractive feature of this theory is that it 

operates with observable quantities only. 
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Part III consists of two papers dealing with Electromagnetic 

Theory. In paper 3.1 a new representation of any Electromagnetic 

Field in vacuo is described. The field is represented in terms of 

a single complex scalar wave function, in terms of which the 

momentum density and the energy density of the field may be defined 

by means of formulae strictly analogous to the quantum mechanical 

formulae for the probability current and the probability density.* 

In paper 3.2 several new theorems are derived which apply to any 

Electromagnetic Field in which at least one of the field vectors is 

linearly polarized. 

Some related investigations are described in Part IV. In 

paper 4.1 a systematic derivation is given of the Circle Polynomials 

of Zernike, which play an important part in some branches of 

Diffraction Theory. Several new theorems concerning these polynomials 

are established and a related set of polynomials is investigated. 

Paper 4.2 is concerned with the Xn and Yn functions of Hopkins which 

occur in certain extensions of the analysis of Lommel relating to 

the three -dimensional light distribution near focus. In paper 4.3 

the design of the corrector plate of the Schmidt Camera is discussed 

The analysis of this paper has recently been extended by P. Román 
(Acta Phys. Acad. Sci. Hungaricae, 4 (1954), 209] to regions including 
currents and charges. Román showed that our method leads to a 
simplified treatment of the quantization of the Electromagnetic Field. 
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and a solution is obtained for the design of a plate which leads to 

an optimum performance over the field taken as a whole, with light 

covering a given spectral range. 

The greater part of the work described in this thesis was 

carried out whilst I was a Research Assistant to Professor Max Born 

at Edinburgh University. I wish to acknowledge my sincere gratitude 

to Professor Born for allowing me to spend much time on work of my 

own interest and for many stimulating discussions. 

In accordance with the regulations I state that the work 

described in those papers here submitted, which were published under 

my own authorship, was done entirely by myself, and that none of the 

work reported in this thesis was carried out under supervision. The 

papers of Part II are presented as the main contribution. 

Manchester University, 
August, 1955. 
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PART I 
THE OPTICAL IMAGE 



Reprinted without change of pagination from the 

Proceedings of the Royal Society, A, volume 204, 1951 

Light distribution near focus in an error -free 
diffraction image 

BY E. WOLF, The Observatory, University of Cambridge 

(Communicated by R. O. Redman, F.R.S.-Received 16 June 1950) 

Expressions are derived for the fraction of the total illumination present within certain regions 
in receiving planes near focus of spherical waves issuing from a circular aperture. The 
derivation is based on Lommel's treatment of Fresnel diffraction, and the solution takes the 
form of rapidly convergent series involving Bessel functions. Numerical results are illustrated 
by contour lines. The distribution of the illumination in a number of selected planes near 
focus is studied in greater detail. A comparison with the predictions of geometrical optics is 
also made. As a special case the fraction of the total illumination present in the geometrical 
shadow is discussed. The results provide a mathematical basis for a discussion of the imaging 
properties in optical systems where, as for example in a well- corrected refracting telescope 
objective, the chromatic variation of focus is the only appreciable aberration. 

1. INTRODUCTION 

Although a good deal of attention has been paid in recent years to problems con- 
cerning the effect of diffraction on monochromatic image formation in the presence 
of aberrations, a number of important questions dealing with the diffraction of 
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perfectly spherical waves have so far not been treated. Consider, for example, the 

diffraction of such waves at a circular aperture. With the usual approximations the 

intensity distribution in the geometrical focal plane is given by the well -known 
formula due to Airy (1835 ). The distribution of intensity in other planes was discussed 
by Lommel (1885) in a classical memoir and more recently by Nijboer (1942) and 

Zernike & Nijboer (1949) In most practical applications, however, it is desirable to 

know not only the intensity at points near focus of the waves but also the total 
illumination in the various rings of the diffraction pattern. In the Fraunhofer case, 

where the intensity is given by Airy's expression, the fraction L of the total illumina - 
tiont which is received within a circle of radius r and centred on the axis is given by 

the formula due to Rayleigh (1881), 

L = 1- Jg(v) - Ji(v). (1.1) 

Here y = 11 r, R being the aperture radius, f the radius of the spherical wave filling 

the opening and .l the wave -length. The J's denote Bessel functions of the first kind. 
The literature contains no corresponding result for the more general Fresnel case. 

In this case the total illumination could of course be calculated by numerical 
integrations from Lommel's formulae or from those of Nijboer and Zernike. But 
such a procedure would involve a prohibitive amount of numerical work because of 

the form of the expressions and the complicated behaviour of the intensity dis- 

tribution (see figure 2). In the present paper formulae are derived which permit 
direct calculation of the total illumination 

Starting from Lommel's expressions we obtain a solution which takes the form of 

rapidly convergent series involving Bessel functions. The solution is evaluated near 

focus, and the results are displayed in figure 3a in the form of contour lines. A coni 
parison with results predicted by geometrical optics is also made. It is clearly seen 

that although in the immediate neighbourhood of the focus the illumination curves 
predicted by geometrical optics do not resemble those of the physical solution, the 

two solutions approach each other more and more closely as the distance from the 

focus becomes large compared with the wave -length. The behaviour of L in several 
planes near the focus is examined in greater detail. 

In the special case when the circle for which the fraction of the total illumination 
is determined coincides with the geometrical confusion disk, the series can be 

summed. The solution then reduces to the simple form 

L= 1 - Jo(v) cos v - J1(v) sin v, (1.2) 

the expression Jo(v) cos y + JIM sin y giving the fraction of light within the geometrical 
shadow. 

The results derived in the present paper supplement those of Lommel, Nijboer and 

Zernike and, with them, provide the mathematical basis for a quantitative discussion 

t Following Rayleigh's usage we define the total illumination in a region D as 

f5I(x y) dxdy, 

where I(x, y) is the intensity at a typical point (x, y) of D. 
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of the imaging properties in optical systems where chromatic variation of focus is 

the only appreciable aberration. For example, they make it practicable to calculate 
the light scattered by diffraction from stellar images formed by refracting telescope 

objectives, taking into consideration the presence of the secondary spectrum. 

2. EXPRESSIONS FOR THE TÓTAL ILLUMINATION 

In what follows, u and y are real variables, n and m are non -negative integers, 
Jn denotes a Bessel function of the first kind and Un and Vn are Lommel functions 
defined byt 

Un(u, y) = (- 1)g 
(u1 

n +28 

+28(v), 

co 

s =0 ` 1 

vn(u,y) = (- 1)8(u 
/n+ 

Jn +2s(v)1 
co 

s =0 ` 1 

Further, Yn and Wn denote the related functions 

co 

Yn(u, v) = 0(- 1)8 (n+ 2s) 
(- Jn 

+2s(v), 

W n ( u , v) = sZ0( 1)8 (s+ 1) 
(-21 

+28(v). 

We also define the polynomials 
2m 

Pn6 2m(v) = 1)8 Jn+s(v) 4+2m-s(v) 
s=0 

Finally, we shall find it convenient to set 

Q2m(v) = P0,2m(v) +P1,2m(v) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(a) We shall be concerned with the light distribution in a receiving plane near 
focus O, of convergent spherical waves which issue from a circular aperture. Let 
R be the radius of the opening, C the point of intersection between the spherical 
wave and the axis joining O to the centre of the aperture, and let CO = f. Further, 
let O' denote the point of intersection of the axis with the receiving plane, both this 
plane and the plane of the aperture being assumed to be perpendicular to the axis 
(figure 1). 

To describe the effect of the light waves at a point P near the focus, we introduce 
polar co- ordinates (r, B) in the receiving plane with origin at O' and set 

u = 

2 
Of, 

2rR v= r, (2.6) 

f Two slightly different definitions of the V function appear in the literature. That given 
by (2.1) is used throughout this paper. The Y function has recently been introduced by 
Hopkins (1949) in a paper concerning waves of non -uniform amplitudes. These functions are 
related by the equation 1 v2 

Yn(u, v) = Vn -1(u, v) +uVn +1(u, v)1 

which is implicit in Lommel's memoir and which follows from (2.2) by the application of the 
identity (n + 28) Jn +28(v) = iv[4+23- 1(v) +Jn +2a +1(v)7 
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where Of = 00' (positive in figure 1) denotes the distance between the receiving 
plane and the geometrical focal plane u = 0; it is assumed throughout this paper 
that i f /f, r/f and R/f are small compared to unity. In this notation the first zero 

of intensity on the axis is given by u = 47r, whilst the first dark ring in the geometrical 
focal plane (i.e. the Airy ring) is given by y = 1.22n. The outline of the geometrical 
shadow is given by u = ± v. 

geometrical 
focus 

0 
plane of aperture 

receiving 
plane 

27710 
FIGURE 1. CO=f; 00'=Of; u=fa f; v= r. 

The physical significance of the parameters u and y is as follows: If we test in an 

interferometer the wave in the opening against a spherical wave centred at P, then 
u /4ir is the number of fringes of defocusing whilst v /ir is the number of fringes of 

lateral displacement of P from the axis. 

Let f sin (ct -f) be the wave disturbance in the opening. Here A is a constant 

aY 

sh, 

cix 

Fi 

w: 

while e and t denote the velocity of light and the time respectively. The intensity ax 

I(u, y) at the point P is then given, in suitable units, by the following formula due 

to Lommelf (1885): 

where 

/(2t, y) = u2 [Ul(u, y) + U2(u, v)J, 

¡ArR21 2 Y- Af 2 

(2.7) T 
fr 
CE 

and the U's are Lommel functions defined by (2.1). When I u/v > 1 the U- series 
converge too slowly to be useful for computation, and for this case Lommel expressed 
the solution by means of the related V functions, in the equivalent form 

1 y2 I(u,v) =u2 [ 1+ Vo (u,v) +- 9(u,y)- 2Vo(u,v) cos iu+úl -2Y(u,y) sin 2(u+.!)]. u / 
S 

The solutions 2.7 and 2.8 were also obtained by Struve 1886 by analysis similar to 
that of Lommel. ( > ` > 

Y 
( ) 

Y Y 
p 
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Recently Nijboer (1942) and Zernike & Nijboer, (1949) derived in the course of 

a more general investigation another expression for the intensity and gave a figure 

showing the isophotes near focus (figure 2). 

Starting from Lommel's equations we shall now derive expressions for the total 

illumination received within the area in the receiving plane which is bounded by the 

circle centred on O' and of radius ro. We define 

2n 
L(u, vo) = 

B 
1 f r' 

o fo 
I(u,v)rdrd0, (2.9) 

FIGURE 2. Isophotes [contour lines of I(u, v)] near focus in a meridional plane. The straight 
lines indicate the boundary of the geometrical shadow. The numbers give intensity as 
percentage of the intensity at focus. Axial minima and maxima are indicated by short 
strokes, others by small circles. The figure covers approximately the range - 35 5 u < 35, 
0 vg15. (After Zernike & Nijboer 1940 

where vo denotes the value of the y parameter for points on the boundary of the circle 
and 

B = (A)2 
nR2. 

To the order of accuracy here in question, L(u, vo) may be regarded as giving the 
fraction of the total energy radiated through the aperture which reaches the circle 
centred at 0'. On integrating (2.9) with respect to 0, it follows that 

1 v, 
L(u,vo) = 2 o 

I(u,v)vdv. (2.10) 

The boundary of the circle over which the illumination is to be determined lies inside 
or outside the geometrical confusion disk according as I vo /u 1, and it coincides 
with its boundary when I vo /u I = 1. We shall now examine the three cases separately. 
Since, within the range in which (27) and (2.8) are valid, /(u, y) and consequently 
L(u, v) are even functions of u, we can without loss of generality assume u to be 
positive. The parameter y is positive by definition. 
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(1) The case vo /u < 1 

In this case we have from (2.8) and (2.10) 

L(u, vo) = -2 [2vÓ + L1(u, vo) - 2L2(u, vo) - 2L3(u, vo)], 

where Li(u, vo) = J o o v[ vo(u, v) + V 1(2G, v)] dv, 

fva v2 
L2(u, vo) = 

J 
vlo(u, y) cos 2 + dv, 

o 

f 
vo 1 ¡ v2\ 

L3(u, vo) = VV/(U, y) sin I u+-I dv. 
o \ u 

To evaluate L1 we apply lemma 2t and obtain 

00 v NU, Vo) =Jooso(-1)S(u) 

Sul 

L(e 

(2.11 

Bu 

(2.12 

(2.13 

We find from lemma 4 that in the range of integration the series under the integra 
Ali 

sign is dominated by the series 

°° 2s +1 
1 2 Su 

sE s 2u 
JI exp (rvo), 

which converges for all values of vo. Hence (2.13) may be integrated term by term 
By lemma 6 and from the definition of Q it then follows that 

s v 
L1(u, vo) = 

2 s o 2s+ 
23 

(2.19 

To evaluate L2, we write it in the form 

L2(u, vo) = cos -- uJo °vV(u,v) cos 2udv - sin ¡u f °vV(u,v)sin2udv. (2.15 sh; 
J thi 

We have from lemma 9, for n = 0, on equating real and imaginary parts that 

JV0VV0(u, 
vz 

v) cos dv = uCW (u, vo) cos 
2u + W (u, vo) sin 2u] ' Joy' 

, v2 vz v2 
(2.16 an 

Jo 
vV (u, v) sin 

21 
dv = u [wi(u, vo) sin 

2u 
- W (u, vo) cos 

2uß 
. se: 

(2.15) and (2.16) give 

[Wi.(u, r l ( 11 L2( u, vo)= uvo)cos2lu 
+ul +W2(u,vo)sm2 \u +u)i. (2.17 

In a similar way we find 

L3(u, vo) = u [W (u, vo) sin 
2 

(u + u ) -W (u, vo) cos 
2 

l u + )] . (2.181 

t Lemmas quoted without other reference will be found in the appendix. 

H, 

W 

Si 
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Substituting for L1, L2 and L3 into (2.11) we obtain 

L(u, v0) 
= 02 

2 [1 +só 2s + 1 

Q2s(v)] 

-ú([W(u, vo) -W(u,vo)] cos -1 u+ ) +2W(u,vo)sin -1 u+ -°)}. 

But W1 (u, vo) -W3 (u, vo) 

\ / \ J 

= E (- 1)s(s +1)('J 2s +1(v0) 
s 
ó(- 1)8(8 +1) 

\u)2s 

+3 

J2s +3(v0) 
s 

¡ 
\ 

co 

= f J1(v0)+ E (- 1)s(8 +1) ( +1(v0) -sE ( -1)s 1S(ú2s 
+1 

+1(v0) 
1 s =1 

(2.19) 

( 
2s+1 

= E ( -1)s (2s+ 1) úJ2s+1(vo) 
s=0 

= Yi(u, vo). (2.20) 

¡ Also (u, vo) = ( -1)s (s+ 1) ? 2s+2 o W 
s=0 ` 

= iY2(u, vo). (2.21) 

Substituting from (2.20) and (2.21) into (2.19), we finally obtain for the case voiu 5 1, 

L(u, v0) = [1 + 
2S )1 

Q2s(v0) J 

-u[Y1(u, vo) cos( u +u) +Y2(u, vo) sin2( u +u)1 
. (2.22) 

(2) The case vo/u = 1 

In this case the boundary of the circle coincides with the edge of the geometrical 
shadow. The expression for L can then be obtained by putting vo = u in (2.22). We 
then find 

Now 

L(u, u) = 1 +s ó 2s +)1 
Q2s(u) 

u 
[Yl(u, u) cos u +Y2(u, u) sin u]. 

Y,t(u, u) = E ( - 1)s(n+ 2s) Jn+2s(u), 
s=0 

(2.23) 

(2.24) 

and it has been shown by Lommel (1868, (9), p. 40) that for n 1 the sum of the 
series on the right -hand side of (2.24) is 

2 JZ -1(u) 

Hence for n 1, Yn(u, u) =1; Jn_1(u). 

We also have, by lemma 7, that 

(- 1)sQ2s(u) = Jo(u) cos u + J1(u) sin u. 
s =o 2s+ 1 

Substituting from the last two equations into (2.23) we find that 
L(u, u) = 1- Jo(u) cos u - J1(u) sin u. 

(2.25) 

(2.26) 

(2.27) 
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(3) The case vofu> 1 

In this case we find it convenient to split the range of integration into the two 
intervals 0 < v < u and u < v < vo. We then have from (2.7), (2.10) and (2.27) that 

2 vo 

L(u, vo) = 1-Jo(u)cos u - J1(u) sin u + u 
v[U1(u, v) + U2(u, v)] dv. (2.28) 

From lemma 1, 

fvo 
Vo 

v[Ul(u, v) + U2(u, v)] dv = E ( -1)8 Pi, 28(v) v dv. 
u s =0 

With the help of lemma 4 it can be shown that the series under the integral sign is ñ 
uniformly convergent in the range of integration and can therefore be integrated 
term by term. We then find 

va 

u2 f [Ul(u, v) + UZ(u, v)] dv = 2 E ( - 1)8 u2sivo 
2s(v) dv 

s =0 u 

_ ( -1)8u2s rQ2s(u) Q28(vo)] (by lemma 5) ;to 2s +1 L vo 

= L 
( -1)8(2 

(u) E 
( 1)8(12 sQ2s(vo) 

2s+1 8 =02s +1 

= Jo(u) cos u + J1(u) sin u - E ( -1)8 
` 

u 
l28 

Q28(vo) 
s =1 2s+ 1 vo 

(by lemma 7). (2.29) 

Substituting from (2.29) into (2.28), we finally obtain for the case vofu > 1 

L(u,v0) = 1 -8E 
2s +)1 \ 0 12s Q2s(vo) (2.30) =0 

(b) Before we discuss the general solution (2.22/), (2.27) and (2.30) we shall derive 
2,s 

expressions for the total illumination according to geometrical optics. 
The rays of light which proceed from the region of the opening between circles of 

radii h and h + dh centred on the axis cut the receiving plane in points of the annulus 
formed by the circles of radii r and r + dr centred at 0', where, to first order, 

r h 
(h<R). (2.31) 

The intensity I* at P, according to geometrical optics, is then given by 

2v-hdh A2 I*(u'v) - 2gr dr f 2 
when r< flAfl' 

=0 whenr> flofl. 

From (2.31) and (2.32) it then follows on eliminating h, that 

* =(j) A24Y 
-I (u, 

v) 
u2 

when 

= 0 when 

2 

(2.32) 

(2.33) 



 

d 

9) 
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1 fro 2n (V)2 
Hence L*(u,vo) = I*(u,v)rdrdB = when 

= 1 when 

vo 

u 

vo 

u 

3. NUMERICAL RESULTS AND DISCUSSION OF THE SOLUTION 

The general solution derived in §2 was evaluated for 

v= 0,1,2,...,15 

{}=oo.o5,o.io,...i, 

where A = u/v and B = v /u. The use of the parameters A and B in place of u in 
tabulating Lommel and allied functions was suggested by Hopkins (1949). Although 
this method possesses some advantages it was not found very satisfactory owing to 
the resulting uneven spacing of u. Consequently an inadequate picture of the 
behaviour of L was obtained in some regions, and it was therefore found necessary 
to calculate a few additional values. 

Use was made of the recurrence relation 

(2.34) 

so that for m > 1 

Po,2m+2(v) = 2J0(v)J2m+2(v)-P1,2m(v), 

Q2m(?1) = 2J0(v) JT2m(v) ±-131,2m(V) - Pi, 2m-2(v) 

In table 1 are given the numerical values of some of these polynomials. 

(3.1) 

30) 

/1 /1 /1 !T1 

ABLE 1 

l /] / ive 
2m Q2m(0) Q8m(1) Q2m(2) Q8m(3) Qßm{4) Q2m{5) Q8m{6) Q2m(7) 

0 -{-1.00000 -- 0.77917 -{- 0.38274 + 0 18259 + 0.16209 + 0.13885 -{- 009925 -}- 0.09007 
3 of 2 0 - 0.01378 - 0.15038 - 0.39448 - 0.48300 - 0.36504 - 0.27223 - 0.27020 
lus 4 - - 0.00019 - 0.00826 - 0.04563 - 0.07103 + 0.02781 + 0.21678 + 0.30393 

6 - - - 0.00021 - 0.00245 - 000500 + 0.01818 + 0.09045 + 0.14444 
8 - - - 0.00008 - 0.00021 + 0.00243 -}- 0.01488 + 0.02829 

10 - - - - - 0.00001 + 0.00017 + 0.00142 + 0.00328 
' 31) 12 - - - - -}- 0.00001 + 0.00009 + 0.00026 

14 - - - - - - - + 0.00002 

2m Q2m(8) Q2m(9) Q2m(10) Q2m(11) Qem(12) Q2m(13) Qam(14) Q2m(15) 
0 + 008452 + 0.06834 + 0.06237 + 0.06056 + 0.05220 + 0.04776 + 0.04706 + 0.04227 
2 - 0.24323 - 0.19610 - 0.18690 - 0.17858 - 0.15245 - 0.14294 - 0.14008 - 0.12457 

.32) 4 + 0.26135 -{- 0.24035 + 0.26267 + 0.24499 + 0.21374 + 021562 + 0.20959 + 0.18577 
6 + 0.07522 - 0.06864 - 0.13713 - 0.13011 - 0.15245 - 019062 - 0.18476 - 0.17476 
8 - 0.00200 - 0.09597 - 0.16975 - 0.13071 - 0.03579 + 0.00305 + 0.00842 + 0.04976 

10 - 0-00346 - 0.03176 - 0.06224 - 0.03457 + 0.06531 + 0.14579 -- 013206 + 0.08448 
12 - 0.00067 -0;00579 - 0.01295 - 0.00325 + 0.04182 {- 0.09133 + 0.07432 - 0.01573 
14 - 0.00007 - 0.00070 - 0.00181 + 0.00032 + 0.01254 + 0.02953 + 0.02064 - 0.03699 
16 - - 0.00006 - 0.00019 + 0.00014 -}- 0.00241 + 0.00630 + 0.00346 - 0.01810 
18 - - - 0.00001 + 0.00002 -0.00033 + 0.00098 + 0.00035 - 0.00515 

!.33) 0 - - - - + 0.00004 + 0.00011 0 - 0.00103 
2 - + 0.00003 0 - 0.00016 

24 - - - - - - - - 0.00002 
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The series present in the expressions for L were found to converge very rapidly, 
This is due to the fact that since 

IQ 

Jr(v) I 
<1, (3.2) th 

2m 2m fo: 
(v) 

I 
< 

s=ol 
Js(v) Jam-s(v) I s I Js+1(v) J2m+1-s(v) I < 2(2m+ 1), (3'3) `. ge 

and consequently in the required range, the series 

(- 1)s A 29+1 
`r 

9=0 2s +1 B Q2s( v ) 

are more rapidly convergent than the geometrical series 

2 ( -1)s t28+1, 

s=o 

where 0 5 t < 1. Similar considerations apply to the functions Y1 and Y2 in (2.22). 
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FIQUnE 3. Contour lines for the fraction of total illumination in circles centred on axis in 
receiving planes near focus, according to physical optics and according to geometrical 
optics. Throughout the shaded region L *(u, y) -1. 
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From the calculated values the contour lines of L were constructed for the range 

- 40 < u < 40, 0 < y 515 by graphical interpolation. These are displayed in figure 3a; 

the corresponding curves predicted by geometrical optics are shown in figure 3 b 

for comparison. It is seen that in the immediate neighbourhood of the focus 

geometrical optics does not give a good approximation to the physical solution. With 

increasing departure from the focus the two solutions approach each other more and 

more closely, the level curves of L being in good qualitative agreement with those 

of L* already at distances a few fringes away from the focus. 

The behaviour of L and L* in the planes u = 0, 27r, 47r, 67r, 87r, 107r and 127r corre- 

sponding to defocusing of 0, -, 1, 1f, 2, 2f and 3 fringes respectively is shown in 

figures 4a and 4b. In the special case when u = 0, the receiving plane coincides with 

the geometrical focal plane and L is then given by (2.30) with u = 0, viz. by 

L(0, y) = 1- Q0(v) = 1- JS(v) 

in agreement with Rayleigh's formula (1.1). 

L(u,v) L`(u,v) 
1.0 1.0 

0(Ol 

V 

FIGURE 4a. L(u, y) 

0.5 

o(o) 

(3.4) 

10 

V 

FIGURE 4b. L *(u, y) 

15 

The ratio of total illumination in circles centred on axis in receiving planes near focus, according 
to physical optics (figure 4a) and according to geometrical optics (figure 4b). The numbers 
along the curves are the values of u while the numbers in brackets denote defocusing in 
fringes. The horizontal parts of the curves u = 2ir and u = 47 in figure 4b correspond to 
L* =1. 

It is of interest to examine what fraction e(u) of the total energy is present within 
the geometrical shadow. From (2.27) it follows that to a sufficient approximation 

e(u) = 1- L(u, u) = Jo(u) cos u +JI(u) sin u, (3.5) 

where, as before, u specifies the position of the receiving plane. This function is 
displayed in figure 5. It is not a strictly decreasing function but it has maxima (apart 
from u = 0) when J1(u) = 0 and minima when sinu = 0 (u +0). 

We note that for the particular case of diffraction of spherical waves at a circular 
aperture our solution illustrates the well-known theorem that geometrical optics 
may be regarded as the limiting case of physical optics as A - O. For if we keep r and 
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Lf fixed and let A.->- 0, then u---> co and v co, but u/v remains finite and it can be 

verified that in each of the equations (2.22), (2.27) and (2.30) all the terms except 

the first tend to zero. Consequently as À -+ 0, 

a 

L(u, vo) (ve when 
u 

-> 1 when 

vo 

u 

vo 

u 

< 1, 

1, 

in agreement with the solution (2.34) of geometrical optics. 
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FIarmE 5. The fraction e(u) of the total energy within the geometrical shadow. 

APPENDIX. SOME MATHEMATICAL LEMMAS WI 

The functions U, V, Y, W, P and Q which occur in the lemmas we now derive are 

defined by equations (2.1) to (2.5) 

LEMMA 1. 
0o u 2(n+s) 

U(u,v)+U,2,,+1(u,v) = Fio(-1)8(v) Pn,28(v) Le 
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Proof. Since the U series are absolutely convergent for all u and v, a series for 

Un2 + Uñ +1 can be obtained by performing the various operations term by term. 

Let 

Then 

where 

Hence 

Now 

Iu\n+2s 
/ 

fis as =(-1) s 
v 

Jn+2s(v), Ns =(-1) 11 Jn+1+2s( v) 

U2 = - E n as Un2 +1 = E bs, 
s=0 s=0 

u 
as = E aaS-z - (- 1)s 

n+s s 
Jn+2i(v) 

Jn+2s-21,(v), 
i=0 v i=0 

u 2(n+l+s) s 
bs = NiNs-i = ( - 1)s (- E Jn+1+2i(v) Jn+1+2s-2i(v) 

i=0 v 1=0 
co co co 

U1+ Uñ+1 = F, as + E bs = a0 + E (as + bs-1) 
s=0 s=0 s=1 

= (v\2n = Pn,0(v), 

(Al) 

u1 2(n+s) 2s ¡u\ 2(n+s) 

as+bs-1 = (-1)s(v l i=0 
(-1)ZJn+i(v)Jn+2s-i(v) = (-1)s¡v I Pn,2s(v) 

/ 
\ 

/ 
for s?.. 1. 

On substituting from the last two equations into (A 1) lemma 1 follows. 

LEMMA 2. V2 (u, v) + Vim, +1(u, v) = E (- 1)8 (- )n +s) 

u u(v). 
s =o 

The proof of this lemma is similar to that of lemma 1, viu and Vn now replacing 
u/v and U,t respectively. 

LEMMA 3. Jn+2m(2?'t3osO)c05 (cos 
B 1) °d9 = Pn2m(v). 

Proof. By definition, 
2m 

Pz,2m(v) = 
s 
Fi (-1)8 Jn +s(v)Jn +2m -s(v) 
=0 

From Watson (1922, 5.43 (1), p. 150), 

2 
Jn +s(v) Jn +2m -s (v) = 

J 
nJ2n +2m (2v cos 0) cos 2(m - s) Ode. 

Hence 

where 

2m 2 ln 
Pn, 2m(v) = z (-1)8- J2n4.2m(2v cos 0) cos 2(m - s) 0d0 

s=o 

= 2 
fin 

J2n+2m(2v COS 0) Qt(0) d0, 
77. o 

2m 
cr,n(0) = E (- 1)s cos 2(m -s)0 

s =0 

COS (2m +1)0 
cos 0 

Lemma 3 now follows from (A2) and (A 3). 

(A 2) 

(A 3) 



546 E. Wolf 

LEMMA 4. I P n,2m( v) (n+m) !(.v)2(n+m) 
exP (E2)2). I 

2m 
Prloof. Since Pn,2m(v) =8Z0 ( - 1)sJn+s(v) Jn+2m-s(v), 

2m 
it follows that 

I Pn,2m(v) 
I 

< Jn+s(v) 4+2m-s(v) 
I 

8=0 

By Watson (1922, (4), p. 16) we have, for r 0, 

Jr(v) 15 (v)rexp 
(fv2), (A4) 

so that 

LEMMA 5. 

1. 

I Pn,2m(v) I E (n+ ) ! 

exp (v2) (n+ 2ms) ! 

exp (4v2) 

_ 
v 2<n+rn) 2m 1 

2 egP (v2) s (n +8)1(n + 2m -8) t 

2m+ 1 v 2(n+m) 
5 (n+m) ! (2) exp (Év2) 

v-(2n+2m+1) Pn+1, 2m(v) dv - 1 
v-2n-2m [Pn, 

2m(v) + Pn+1, 2m(v)] 2(2n+2m+1) 

Proof. By definition 

ark 

He 

Int 
is 1 

[sei 

(A 

Le 

Th 

2m 
v-(2n+2m+1)Pn+1,2m(v) dv = f"v-2n+2m+1) ( - 1)8 Jn+1+s(v) 4+1+2m-s(v)i dv Nc 

z(- 1)8 I v- (2n +2m +1)Jn 
+1 +s(v) Jn +1 +2m-s(v) dv. 

8 =0 

The integral under the summation sign can be evaluated by a lemma on cylinder 
functions [see, for example, Watson (1922, (1), p. 136)]. The above-expression then 
becomes 

2m 
( 
-1)s 

+1 v- (2n +2m)[Jn 
+8(v) Jn +2m -s(v) +Jn +8 +1(v) 4+1 +2m -s(v)] 

s =o 2(2n +2m+1) 

LEMMA 6. 

l' 

_ 1 2n+2m) 
2(2n+ 2m+ 1) 

v [Pn,2m(v)+Pn+1,2m(v)] 

v2n+2m+1Pn, sm(v) dv - 2(2n+2m-I-1) 
1 v2n+2m+2[Pn, 

2m(v) + Pn+1, 2m(v)] 

This lemma can be proved by a similar argument as in lemma 5, using Watson 
(1922, (2), p. 136) in place of Watson (1922, (1)., p. 136). 

LEMMA 7. 
s 

( 
-1)8 

=U 2s+ 1 
Q(u) = J0(u) cos u + Jl(u) sin u. 

Proof. By definition of Q2., and from lemma 3 it follows that 

Q28(u) = -J o 

[J2,3(221 cos B) +J +2(2u cos B)] 
cos 

cos B 1) 
0dO, 

so 

In 
fut 
eq 

Le 

Cc 

let 
co 
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and, by applying the addition formula for Bessel functions, we then find that 

f Q2a(u) = ú $ BJ28+1(2ucosB)cos(2s +1)BdO. 

Hence 

547 

(A 5) 

E (- 1)a02a(u) = 
2 f 0" (_ 

J2a +1(2u cos B) cos (2s+ 1) Bde. (A6) 
s =0.2s +1 77. 8'-0 o ucos B 

Interchanging the summation and integration sign, which is justified since the series 

is uniformly convergent in 0 O Pr, and, using the well-known result of Jacobi 
[see, for example, Watson (1922, (4), p. 22)] that 

03 

( -1)8 J28 +1(z) cos (2s + 1) 0 = + sin (z cos 0), 
s =o 

(A 6) becomes 

Let 

( -1)8 
u 

1 sin (2u cos2 B) 
dB. (A7) E 

=0 2s + 1 Q2s( ) n o u cos2 O 

F 
( 
u 

) 
= 

1 Siff sin (2u cos2 0) 
dB. (A 8 

) r o u cos2 B 

i8 
Then 

du 
[uF(u)] = -f cos (2u cos2 B) dO 

2 u f }IT 
cos (u cos 20)d0 

2 u f o sin (u cos 20) dB. 
0 

Now 

so that 

-2 cos (u cos 20) dO = Jo(u), 
o 

2 518 
am (u cos 2B) dB = 0, 

n o 

du [uF(u)] = Jo(u) cos u. 

Integrating several times by parts and using the recurrence relations for Bessel 
functions or otherwise it can easily be verified that the solution of this differential 
equation subject to the boundary condition F(0) = 1 [which is imposed by (A 8)] is 

F(u) = Jo(u) eos u +J1(u) sin u. (A9) 

Lemma 7 now follows from (A 7), (A 8) and (A 9). 

LEMMA 8. 

Proof. 

/ 
Fi ( - 1)8Vn+2s(v) = Wn(u, v)' 

s=0 
co 0o w iv n+28+2p 

8 (-1)8Vn+2s(v) =8 (-1)pE (-1)plu/ 4+2.+2p(v) 
=0 

co co v n+2s+2p 

=sI pE0(-1)a+p Jn+2s+2p(v)' 

Collecting terms of the same order in J and arranging the series in ascending order 
lemma 8 follows. The grouping of terms is justified since the series is absolutely 
convergent. 



548 E. Wolf 

LEMMA 9. 

fro, 
vVn(u, y) exp ( - iv2 /2u) dv = u[Wn +1(u, v0) +iWn +2(u, v0)] exp ( - iv8/2u). 

0 

f 
Proof. 

Jo vT (u, v) exp (- iv2 /2u) dv = f oa sE (- 1)8 v J..+28(v) exp (- iv2 /2u) dv 

+ f tl0 ( +2ssvn+ 2s +1Jn 
+2s(v) exp ( - iv2 /2u) dv. (A 10) 

s=oo u 

The interchanging of the summation and integration sign above is justified, since 

by (A 4) the series under the integral sign is dominated by the series 

ve exp }vo vó n +2e 

s =o (n +2s)! (2u ' 

and is therefore uniformly convergent in the range of integration. The integrals in 

(A 10) can be evaluated with the help of a result due to Lommel (see, for example, 
Walker (1904 (10), p. 131) which states, that for v> 0, 1> 0, 

for (lx)" Jy_1(lx) exp ( - ikx2 /2) dx = - [U(kr2, lr) + iU +1(kr2, lr)] exp (- ikr2/2) 
kv 

Setting l = 1, x = v, r = v0, y = n + 2s + 1, k = 1/u and multiplying by (- 1)8 /un +2e, 

we find 

(- 1)8 
1 

¡` 
y° V21 Jn +2s(v) exp (- iv2 /2u) dv 

un +28 J o 

= (- 1)8 u[Vn +28 +1(u, vo) +iVn +2s +2(u, v0)] exp (- iv8/2u). (A 11) 

Lemma 9 now follows on substituting from (A 11) into (A 10) and using Lemma 8. 

In conclusion, it is a pleasure to thank Dr E. H. Linfoot for much encouragement 
and for helpful discussions in the course of this work. I also wish to thank Dr H. H. 

Hopkins, Mr F. Ursell and Mr P. A. Wayman for useful suggestions. Finally, I wish 

to acknowledge my indebtedness to the Cambridge University Mathematical 
Laboratory for assistance with some of the computations and to Miss C. M. Munford 
for the skill and patience with which she carried them out. 

REFERENCES 

Airy, G. B. 1835 Trans. Camb. Phil. Soc. 5, 283. 
Hopkins, H. H. 1949 Proc. Phys. Soc. 62 B, 22. 
Lommel, E. 1868 Studien über die Besselschen Functionen. Leipzig : Teubner. 
Lommel, V. 1885 Abh. Bayer. Akad. Wiss. 15, 229. A more accessible, though condensed 

account of Lommel's treatment is given in: Gray, A., Mathews, G. B. & MacRobert, T. M. 

1931 A treatise on Bessel functions, 2nd ed. London: Macmillan. 
Nijboer, B. R. A. 1942 Thesis, Groningen. 
Rayleigh, Lord 1881 Phil. Mag. 11, 214. Also Collected papers, 1, 513; 3, 91. 
Struve, H. 1886 Mém. Acad. Sci. St- Pétersb. (7), 34, no. 5, 1 -15. 
Walker, J. 1904 The analytic theory of light. Cambridge University Press. 
Watson, G. N. 1922 A treatise on the theory of Bessel functions. Cambridge University Press.; 
Zernike, F. & Nijboer, B. R. A. 1949 La théorie des images optiques. Éditions de la Revue. 

d'Optique, p. 227. 

PRINTED IN GREAT BRITAIN AT THE UNIVERSITY PRESS, CAMBRIDGE 

(BROOKE ORUTOHLEY, UNIVERSITY PRINTER) 



CONTRIBUTIONS FROM THE CAMBRIDGE 

OBSERVATORIES 

No. io 

ON TELESCOPIC STAR IMAGES 

by 

E. H. LINFOOT and E. WOLF 

PRINTED IN ENGLAND BY TAYLOR & FRANCIS, LTD., LONDON 



Reprinted from the MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 

Vol. 112, No. 4, 1952 

ON TELESCOPIC STAR IMAGES 

E. H. Linfoot and E. Wolf 

(Received x951 December 5) 

Summary 
Diffraction theory is applied to discuss the properties of the polychromatic, 

three -dimensional star images formed by refracting doublet objectives. The 
effects of the secondary spectrum on the light distribution in the diffraction 
image and on the position of best focus are examined quantitatively in two 
special cases : (A) an f /15 refractor of 24 inches aperture, (B) a similar 
refractor of one -third the linear dimensions. The image formed by an f /15 
reflector working without central obstruction (Case R) is analysed for com- 
parison purposes. 

I. Introduction 
The first explanation of the main features of the stellar images seen in a good 

telescope was given by Airy (1835) (z). He showed that, as a direct consequence 
of the undulatory theory of light, a stellar image should exhibit the well -known 
appearance of a bright central dot (the " star disc ") surrounded by faint concentric 
rings. Airy assumed the telescope to be of circular aperture and free from 
aberrations or central obstruction, the effects of air tremor to be negligible, and 
the light to be monochromatic. Thus his analysis, of fundamental importance 
as the starting point for later work, was far from providing an adequate treatment 
of the formation of star images in the large astronomical telescopes which have 
been developed since his day. 

Rayleigh (z) in 188o carried the theory forward by investigating the case 
where small amounts of primary spherical aberration are present ; like Airy, 
he took the light to be monochromatic. He did not discuss the image in detail, 
but showed that, with . amounts of spherical aberration not exceeding one -quarter 
of a wave -length, the intensity at the centre of the star disk at paraxial focus 
was diminished by not more than 20 per cent. 

Lommel (1885) (3) *, in a paper of great power and scope, discussed in detail 
the properties of the out -of- focus, aberration -free monochromatic image- of a 
point source by a circular objective and confirmed the predicted appearances 
experimentally, using a monochromatic light source. The numerical part of 
his work was only carried through for images fairly close to focus. A more 
convenient method of calculating the images far from focus was developed 
thirteen years later by K. Schwarzschild (4), who used asymptotic expressions 
for the intensities. 

Almost at the same time as Lommel, H. Struve (1886) (5) published an 
independent and very similar analysis; he did not work out the numerical 
consequences in such detail, but he gave valuable. approximate expressions for 
the intensity near the edge of the geometrical shadow, where the Lommel -Struve 
expansions are rather slowly convergent. 

* The date of this paper is sometimes given as 1884 or 1886. A later paper (Lommel, ibid., 
531 -664, x886) deals with diffraction by rectangular apertures, obstacles and slits. 
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These investigations still left a rather wide gap between the theory of telescopic 
star . images and their observed appearance. Not only did they leave out of 
account the effects of atmospheric tremor, but they did not discuss the powerful 
effects of the secondary spectrum on star images in large refracting telescopes. 
However, by 1886, Lommel's and Struve's work had provided a means of 
predicting the three -dimensional light distribution near the focus of an error.. 
free monochromatic image. 

No actual diagram of this distribution was published until Berek's paper (6) 

appeared in 1926. A new and more accurate diagram, based on a different 
expansion of the Huygens Kirchhoff diffraction integral from those obtained 
by Lommel and Struve, was recently worked out by Zernike and Nijboer (7); 
it is reproduced as Fig. 2 below. 

The delay in working out thehght- distribution diagram was the more surprising 
since Dennis Taylor, in his stimulating and entertaining paper (8) on the secondary 
colour aberrations of visual telescopes, had in 1894 made abundantly clear the 
importance of a knowledge of this distribution to the makers and users of 

astronomical refractors. 
It was not until 1919 that the subject was carried further by A. E. Conrady (g), 

who worked out in some detail the light distribution in slightly defocused images, 
and in images possessing small amounts of spherical aberration, the receiving 
plane in the latter case being placed at paraxial focus, at marginal focus and 
midway between the two. So far as defocusing was concerned, his results did 
not go beyond Lommel's. His computations were later extended by A. Buxton 
(io) and L. C. Martin (n). 

The next substantial contributions to the theory were made in 1925. by 

Picht (z2) and by Steward (13). Both considered the effects of Seidel aberrations 
on the light distribution in monochromatic diffraction images, and this subject 
has since been fairly extensively discussed during the past 25 years. However, 
apart from the computed figure of Zernike and Nijboer already mentioned, the 
only work published during this period which has an immediate bearing on 

the topic of star images in visual telescopes is Steward's investigation, in the 
paper just referred to, of the effect on the images of a central obstruction of the 
telescope aperture. 

In the present paper we take up once more the old question of star images in 

visual refracting telescopes and develop the theory to the point where a quantitative 
estimate can be obtained of the light lost from the central part of the image by the 
combined effects of diffraction and of the secondary spectrum. Some comparison 
results for reflectors are also obtained. A preliminary survey of the problem 
showed that to carry out this programme on the basis of the existing mathematical 
literature would involve a very large amount of computational labour, and the 
attempt was therefore postponed until an extension of Lommel's and Struve's 
analysis by one of us (Wolf (14)) had made the work easier. 

The part played by atmospheric tremor is very different in the visual and in 

the photographic use of telescopes. In the former, the rare moments of, best 
"seeing are seized upon by the eye, and eye and memory work together to build 
up a picture from what has been glimpsed. In the latter, the photographic 
plate records indiscriminately whatever reaches it during the exposure time and 

consequently it is the tremor disk -or rather its average over the long exposure 
time -which is recorded on the plate. 
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It follows .that .a.study of the effect of atmospheric tremor is an es.sential.part 
of any adequate theory of the photographic star images formed, by, large astro- 
nomical telescopes, while a theory of visual star images as glimpsed during moments 
of nearly perfect seeing may, and shóüld, be " developed without taking 
account of the effects of tremor. Accordingly, we have not attempted to,"inepr- 
porate a theory of tremor disks into the present analysis, although we do include 
some results which could be used to obtain a rough estimate of the space -penetrating 
power of large refractors and reflectors under conditions of average seeing. 

2. Mathematical Preliminaries 

We begin with a brief account of some known results (Lommel (3), H. Struve 
(s), Wolf (x4))" on monochromatic light distribution in space near the focus of 
converging spherical waves issuing from a circular aperture. The formulae 
derived in (3) and (5) concern intensity distribution; those in (id) the total 
illumination within an arbitrarily given circle about the origin in the receiving 
plane. The intensity formulae form the basis of the later work and because the 
handling of the approximations and error terms by Lommel and Struve was not 
quite precise enough for the purposes of the present in vestigation, they are 
rederived here by a more accurate discussion. 

FIG. I. 

In Fig. 1, ABA'B' represents a circular aperture through which issues a train 
of converging spherical waves of wave -length A. 2a= AA' is the diameter of 
this aperture, C the pole Of the Wave 'surface S which momentarily fills it, O the 
centre of curvature of S. We call CO the axis of the wave train and set CO =f. 

Ox, Oy, Oz are axes of Cartesian coordinates (x, y,'z) in the space near O 
Ce, Cn, CC axes of Cartesian coordinates (e, n, C) in the space near C. It is 
assumed thröúghout that a/f 

By Huygens' principle, the complex displacement at P (x, y, z), near O 
which results from waves of unit amplitude on S is 

DA(P) =fie :Nf JJ--ff dS, (2.1) 
s 

where s denotes the distance of P from the element dS located at P' (e, n, C), 
on the wave front filling the aperture and k = 27r /A. Write 

e= a.p cos 0, x =rcos 

Then 
71=ap sin 0, y=rsin:i. J 

(2.2) 

dS'= alp dp d¢, 

159-- 
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with an error which in the case of an f /15 telescope nowhere exceeds one part 
in I000, and hence 

DA(P) =i {krfo(ó 
(2.4) 

s 
Now on the surface S 

i a2 z 

f- "V1í2- a2p2) =f -f I- 
2 f2 

2 2 ai p4 
= 2f 8+ 

I a4p4 

8 f4 

Therefore 

s2=PP'2=(x-02+(Y-,02+(z- +f)2 
=(x2+y2+z2)+(e2+,12+C2)-2(xe+yn+ + 2f(z - +f2 
=[(f+z)2+r2]+[(f-C)2+a2p2]-f2-2arp cos (¢r-0-24 
=CP2+OP'2-f2-2arp cos (qS- 24 
= R'2 - 2arp cos (0 -0)- 24 

(where R' is written for CP) 

(2.5) 

(2.6) 

= R'2- 2arp cos (0 -0) -z (af 
2 + 41.3 

+....) . (2.7) 

When a/f = á (as it is in an f /15 refracting telescope), the error in replacing the 
last term of (2.7) by za2p2 /f does not exceed sá30 of za2p2l If 

If P is only a " finite number" O(1) of fringes away from focus laterally *, 

then arp /f = O(A). If P is only a " finite number " O(I) of fringes away from focus 
longitudinally, then az . ap /2f 2 = 0(A). Both these conditions are satisfied in 

the region we wish to investigate. Therefore in this region 

2arp/f = O(A), 2zQ2p2 /f 2 = O(ñ), (2.8) 

where O means " less than a moderate multiple of " , say 5 or Io. 
From (2.7), (2.8) 

s 

=R'Cr 2aî ,g a2 2 a4p4 1)2 

I - R,2 cos(- ) -R,2( f + )] 
= R' - 

RP 
cos (0 - 0) - 2 fR? + O ( I + O G:) (2.9) 

The term O(A2 /f) is negligible since A =2 x io -b inch and f is not small. The 
term O(Aa2 /f2) is O0/goo) in an f /15 pencil and so is negligible in a refracting 
telescope when P is only O(1) fringes away from focus. 

Therefore in investigating the value of (2.4) in the present problem we may set 

2 2 

s =R'- RP cos (0 -0) 2fR, , 
ks = kR' -f /R'[vp cos (0 -:/i) + ¡up2], 

where the new variables u, y are defined by the equations 
ka2z har 

u 
f2 

, v . (2.10) 

In physical terms, u/4 7r is the number of fringes of defocusing and v/Ir the number 
of fringes of lateral displacement of P relative to O. We note that v/u I ; I 

* That is to say, if the displacement of P from O would correspond to the appearance of only 
a " finite number " O(i) of fringes on the surface S seen under test in an interferometer. ar /f =a /2 

gives " one fringe of lateral displacement "; za2 /f2 =zA gives " one fringe of defocusing ". 
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according as P lies in the geometrical cone of rays or in the geometrical shadows. 
From (2.4), on substituting for ks and noting that R' =f + ON in the region 
where u /41r, Or are both O(1), we now obtain the approximate formula 

ia2 l .24, 

D2(P)= fexp [ik(f -R')] j I exp {i[Zup2 +vp cos (j- tlr)])pdpd 

1 

= 
2 

2 exp [ik(f - R)] f exp (izup2)Jo(vp)p dp (2.11) 

The integral on the right of (2.11) can be evaluated in terms of the functions 

Un(u, y) = F (- I)m(u ) n +2mJn +2m(v) (2.I2) 
m =0 v 

introduced by Lommel for this purpose ; in fact (see Watson, " Bessel Functions ", 

P. 541) 

where 

1 

2 
J 

Jo(vp) exp ( 2iup2)p dp = C(u, v) + iS(u, v), 
o 

C(u, y) --- 
co 

u 
u 

Ui (u, y) 
sin u¡u 

U2(u, y), 

S(u, y) 
sin ¡u 

Ul(u, y) 
cos u 

U2(u, y). 

(2.11) therefore gives 

DAP) _ exP {i(f- R') + X(u, v) +721} \/(C2 + S2), 

where C, S are written for C(u y), S(u, y) respectively,, 

C S 
cos X = /(C2 + S2) ' 

sin X = /(C2 + S2) 
and 

/(C2+ S2) = 
u 

V { U12(u, y) + U22(u, v)). 

The intensity Ix(z, r) =I(u, v) at P is then given by the equation 

Ia(z,r)=ID2(P)I2 
,a2a4 

_ 2 
(C2 + S2) 

2 4 

42 a 
I 

= [U12(14, y) + U22(u, v)]. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.18) is valid, subject to the limitations already imposed by our approximations, 
for all u, v ; but it is only convenient for computation when 1 v/u > I. When 

v/u <1 it may, as Lommel showed, be replaced with advantage by the equivalent 
formula* 

2a4 I2(z, r) = 
Á u2 

LI + V02(u, y) + 171.2(u, y) 

-2Vo(u,v) COS {2(u+ 71) }- 2V1(u,v)sin {2(u+ u)1], (2.19) 

* When I v/u1=1, (2.18) and (2.I0 reduce to 
naa4 

It(z, r)= ASre - (J02(«) - 2.10(tí) cos U+ I]. u2 
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0o v n I 2na 

_ 
V(ú, v) = + ( - I)m 

\_ 
J,+Em(v) 

_ 
- m=0 . 2l 

(2.20) J 

Lommel used in his argument slightly different approximations from those 
made in the above- modernized version; for example, his parameters specifying 
the position of P are not strictly identical with ours. But the final formulae 
(2.18), (2.19) are the same. 

In the geometrical focal plane, u = o and (2.18) reduces to 

I (o, r) = 4x X24 1 v)2. r (2.2I) 

in agreement with Airy (r). On the Jaxis,\v =o and (2.19) gives 

Ix(z, o) = 44 (sin u ¡2 
. (2.22) 

Lommel's equations (2.18), (2.19) for the distribution in space 
near focus formed the starting point for the derivation by one of us (Wolf (i4)) 
of expressions, needed below, for the fraction of the total illumination L which 
falls- inside a given small circle about the (x,y)- origin in the receiving plane 
z = constant. We define r 

Lx(z, ro) _ 
ßa Ia(z, r)r dr tick. 

To the order of accuracy here in question, LA(z, ro) measures the fraction of the 
total energy issuing from the aperture which reaches the circle r < ro in the given 
receiving plane. Then 

(2:23) 

Lx(Z+r)=(V)2 [ + 
-E ( I)8 (:)28 Q28(v)] 80 2s+I 

where 

- [y1U, y) COS (u + u2JT + Y2(u, v) sin j 2 u+ 

(Iv/ul<1) 
l \ 

-I 8 0 2S+)I v (I vlul > I)r 

n( ) 
8 

- )8( 
- \Z 

n }2s 
n-1-28( ) , Y u v-_E l I n+2s ) J v 

(2.24) 

(2.25) 

(2.26) 

28 

Q28(v) _ ( 1)`[Jt(v)J28 -4(v) +Ji +i(v)J28+1- i(v)a. (2.27) 
i =0 

When u = o, (2.25) reduces to Rayleigh's formula 
LA(o, r) = I - Q0(v) = I - 42(v) -J12(v). (2.28) 

When I v/u = I, (2.24) and (2.25) reduce to LA(z, r) = I - Jo(u) cos u - J1(u) sin u. 

Figs. 2 and 3 show the distribution of IA(z, r) and LA(z, r) near focus in each 
meridional - plane. In Fig. 3 the curves LA(z, r) = coast., or L(u, v) = const. 
can be regarded as analogues in a certain sense of the rays of the geometrical -; 

theory. Their form near the geometrical focus (u, v) _ (o, o) agrees well with '" 

that postulated by Dennis Taylor (8) on experimental grounds for the "cone" of 

light near focus. The comparison is rather rough and ready, since Taylor's 
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observations were made in polychromatic light. Nevertheless, his value of 

just below ± 0.2 mm for the permissible focal tolerance of an f/15 pencil is in 

good accordance with Figs. 2 and 3. 

FIG. z.- Isophotes of an aberration free pencil near focus. (Contour lines of I(u, v) =I1(z, r).) 
The figure covers approximately the region -35...5u35, o<v <ig. The straight lines show the 
boundary of the geometrical shadow. The numbers give intensities as a percentage of the intensity 
at focus. Axial maxima and minima are indicated by short strokes; others by small circles. 

(After Zernike and Nijboer.) 

1 

1 

v 

5 

40 

'MK.= 
-mriziaw- 

11 
-30 -20 -10 0 10 20 30 

->u 
40 

Fia. 3.- Contour lines of L(u, v) =L1(z, r), the fraction of the total illumination inside circles 
r= const. in receiving planes z= const. near focus, expressed in terns of the scale -normalized co- 

o 2iTaaz zirar 
ordinates u= , v= (After Wolf.) 

3. Star images formed by telescope objectives 

3.1. The results of the last section can be used to analyse the structure of 
star images formed by refracting and reflecting telescopes at the centre of their 
field of view and to draw conclusions about the relative efficiency of the two 
types of instruments under conditions of perfect " seeing ". 

In a refracting telescope with a well- figured doublet objective achromatized . 
for visual use, the only appreciable optical error affecting the axial images is the 
secondary spectrum, the effect of which is to bring the light of each separate 
wave - length to a separate focus. 

This focal spread leads to a rather serious loss of light in the central 
diffraction disks of star images formed by large refractors ; Dennis Taylor (8) 
estimated the loss as high as 42 per cent in a 24 -inch refractor of 3o feet focal 
length. But this estimate rested on too primitive a theoretical foundation to be 
quantitatively reliable, and an ingenious attempt two years later by the same author 
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(IS) to investigate the problem experimentally likewise failed to give more than a 
very rough estimate of the light loss. 

To obtain a quantitative description of the image, we need to analyse, in 
terms of wave -length and intensity, the light distribution in space near focus 

. 

which results from the superposition of the three -dimensional diffraction images 
formed in light of all the relevant wave -lengths. Each of these images can be 
taken to be similar to the " aberration -free diffraction image " represented in 
Fig. 2, but their size and brightness vary with the wave -length and their centres 
are distributed along the axis in accordance with the colour curve of the objective, 

To make the problem sufficiently precise for numerical calculation, we must 
introduce some assumptions about the colour curve of the objective and its 
focal ratio, the energy distribution in the spectrum of the star whose image is 
being investigated, and the relative sensitivity of the eye in different regions of 
the visual spectrum. The product of the last two quantities gives the effective 
visual brightness distribution of the starlight as a function of wave -length. 

4000P. 4500 5000 5500 6a00 6500 a 7000 

FIG. 4. Assumed effective brightness function p(a)o(À) for average starlight. p(d) is taken 
from the Planck curve for T =6000 deg. K ; a(A) from the visibility curve of the average human eye 
for light of ordinary brilliance. 

Fig. 4 shows the distribution assumed. It is derived by multiplying Planck's 
ideal energy distribùtion function p(a) corresponding to a temperature T =6000 
deg. K and the visibility function a(A) of the average human eye* for light of 
ordinary brilliance. This choice of p(A), which corresponds to the " smoothed" 
G -type stars, is intended to represent a special case of practical importance. 
It is one rather favourable to the refractor, since it is one in which the visually 
brightest part of the spectrum comes near to the turning point of the colour curve 
of an ordinary visual, doublet objective. For a considerable range of colour 
temperatures it is the a-function, with its maximum at about 5500 A, which 
dominates the results and in this range our numerical findings continue to give a 

fairly accurate picture of the situation. But when used on a blue or on a red star, 
a visual refractor of normal design would not perform as well as on the yellow 
stars considered in the remainder of this paper. 

We make two different assumptions about the colour curve of the objective, 
corresponding respectively to the cases of a large visual refractor of about 24 inches 
aperture and 3o feet focal length and of a medium -sized visual refractor of the 
same design but of one -third the linear dimensions. These cases seem useful 
ones to examine, since experience shows that, for refractors working at about the 

* Taken from Strong, Procedures in Experimental Physics, New York, p. 449, 1936. 
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usual focal ratio f /15, the colour correction is satisfactory to the eye in an 8 -inch 
objective and far from satisfactory in a 24 -inch, even though the angular colour 
aberrations in the two systems may be identical. 

More precisely, we consider the following cases of practical interest : 

Case A. (The Newall telescope at Cambridge.) A refractor of 24-k inches 
aperture and 29 feet focal length, with a colour curve shown in Fig. 5. The 
minimum focus is in light of wave- length Am = 5660 A. We take this as a typical 
large visual refractor. 

Case B. A refractor of one -third the linear dimensions of the Newall 
telescope ; that is, one of aperture 824 inches and focal length 9+ feet, whose 
colour curve is obtained from Fig. 5 on reducing the ordinates in the ratio I : 3. 
This is near to the dimension and colour curve of the Thorrowgood refractor 
at Cambridge and of many other excellent 8 -inch refractors made by Messrs 
Cooke and Sons in the early part of this century. 

of 

20mm .. 

4o00A 5000 ?t,?Sb6oA 6000 

Fio. 5.- Colour curve of the Newall telescope. 

We also consider, for comparison purposes, the hypothetical Case R of a 
reflecting telescope of the same focal ratio as the Newall telescope and as the 
refractor in Case B. (The image formed by a reflector working in polychromatic 
light depends, in all respects except brightness, on its focal ratio and not on its 
linear dimensions.) 

Case R probably does not correspond to any existing telescope, since one must 
go back to Ilerschel's time to find examples of reflectors working, without central 
obstruction, at focal ratios as long as f/15. But from Case R may be derived at 
once the corresponding results for a Herschelian reflector working at any other 
focal ratio, since the polychromatic diffraction images at different focal ratios 
differ only by a simple linear transformation. 

3.2. The " summed visual intensity" and the " summed visual illumination ". - 
Fig. 6 represents a pencil of light of wave- length A issuing from the circular exit 
pupil of a telescope objective and converging towards the corresponding geometrical 
focal point F, on the axis of the telescope. Let Am denote the value of A for which 
the geometrical focal length of the objective is a minimum. We take the 
corresponding focal point Fat, as the origin O of Cartesian coordinates (x, y, z) , 

the axis Oz being along the principal ray of the pencil. In these coordinates 

, 

1000A 
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Fa is the point (o, o, 8(A)), where the value of 8(A) = FAmFA can be read off from 
the colour curve of the objective. In the selected special Cases A and B, 

m --566o A ; in Case A, 8(A) is the quantity [if of Fig. 5 ; in Case B, 8(A) is one - 
third of this quantity. Case R is covered by setting 8(A) = o for all values of A. 

Denoting -\/(x2 +y2) by r, we can then define the "summed visual intensity" 
I *(z, r) at the point P(x, y, z) of the polychromatic diffraction image by the 
equation 

r)- fIa(z - 8(A), r)a(A)p(A) dA 
. (31) 

!cr(A)p(A) dA 

here p(A) measures the energy distribution in the starlight as a function of 

wave -length and a(A) the colour sensitivity of the eye, while IA is the intensity 
function of (2.18) and (2.19). 

FIG. 6. 

The definition can be extended very easily to cover monochromatic light, or 

spectra with bright lines, by substituting for (3.1) the equation 

I *(z, r) = f AI(z - 8(A), r)cr(A) dP(A) 

f a(A) dP(A) 
(3 2) 

in which P(A) measures the total energy of the received starlight in the wave -length 
range (o, A). 

We can also define the " summed visual illumination" L *(z,r0) contained 
in a circle of radius r0, centred on Oz, in the receiving plane specified by the 

parameter z, by the equation 

L*(z, ro) = f 
Lx(z - 8(a), ro)a(A) dP(A) 

fa(a) dP(A) 
which reduces to the form 

(3.3) 

L *(z, ro) = f 
LA(z- 6(A), ro)a(A)p(A) dÀ 

(3.4) 
fa(A)p(A) dA 

in the case of a continuous spectrum. It follows at once from (2.23), (3.2) and 

(3.4) that 
ro 2n 

L*(z, r0) = 2 J J 
I*(z - 6(A), r)r dr dû a o 0 

2 r. 

= 
a2 

I *(z - 8(a), r)r dr. 
0 

(3.5) 

3.3. Choice of receiving plane. -In attempting a definition of best focus which 
shall correspond reasonably well with practical requirements, two obvious pro- 

cedures suggest themselves. One is to define the best focal setting as that 

position of the receiving plane for which the visual brightness at the centre of 
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the image is greatest. The other is to define it as the position for which as much 

visual illumination as possible is contained in a circle of suitable radius lying in 

the receiving plane and centred on the principal ray. 

III (ex o)Q(a)6(A) 

w 

8 

6 

4 

2 

5000 

¡Ia(Z, 0) Q(A) 0Gi) 

5500 6000 
A 

6500A 

5000 5500 6000 6500A 

FIG. 7. -Case A (NeiLall telescope). Chromatic structure of axial intensity in different 
4,r2aa 

receiving planes. The " condensation factor " c= a =1-56 X sou measures the ratio of the 

intensity of the light of wave- length Ain at geometrical focus to its intensity in the entering beam. 

In Case R (or in the case of any aberration -free image formed by a reflector) 
the best focal setting according to either of these definitions agrees with that 
according to geometrical optics. In Cases A and B the determination of best 
focus on either definition involves a fairly detailed examination of the chromatic 
structure of the image. 

Figs. 7 and 12 give the required information about the visual intensities 
along the axis of the image in Cases A and B respectively. Figs. 8 and 13 give 
the corresponding information about the total visual illumination in a small 
circle drawn about the centre of the image in each of a selected set of receiving 
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lo 

B 

6 

4 

z 

10 

8 

6 

4 

Vol. II2 

2 

5000 

La(z, 0...) 4()) cr(X) 

5500 6000 6500A 

A 
5000 5500 6000 6500A 

Fia. 8. -Case A (Newall telescope). Chromatic structure in different receiving planes of the 
visual illumination inside a circle of radius am, equal to the first Airy dark ring for A = ,1m= 566o A. 

10 

0.8 

0.6 

0a 

0.2 
L"(z,a,") 

4. I*(x,0 

I Z 
-0.5 0 t 0.5 1 1.5».m 

Selected -recelvin9 !Acme. 
z,= 026Mm.. 

FIG. 9. -Case A (Newall telescope). Choice of receiving plane. 
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4000 4500 5000 5500 

FIG. so (b). 

6000 6500A 

Fte. io. -(a) Case A (Newall telescope.) Chromatic structure of image in selected receiving 
plane (z8 =o26 mm); (b) Case R (Comparison reflector). Chromatic structure of image in 
geometrical focal plane. 

Each curve shows the total visual illumination, classified according to wave- length, inside a 
circle of angular radius rob` about the origin in the selected focal plane. The angular radius of the 
first Airy dark ring 0=566o A) is and= o" 23. 

1.0 

(5) 

a'"ff -tif (seconds of arc) 

(r) 

1.0 4 6 
Fie. ii. -(a) Summed visual illumination inside circles of prescribed angular radii ro /f. 

Curve i : Case A (Newall telescope) at selected focus; Curve z : Newall telescope at minimum 
geometrical focus; Curve 3 : Comparison reflector at geometrical focus. (b) Summed visual 
intensity at prescribed angular distances r/f from the centre of the image. Curve 4: Newall 
telescope at selected focus; Curve 5 : Comparison reflector at geometrical focus. 
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planes near focus ; the radius ro of this circle is in each case taken equal to the 
radius a, of the Airy disk at the wave- length X , = 5660 A. This wave -length 
corresponds to the minimum geometrical focal length of the two objectives and 
also, fairly closely, to the brightest part of the visual spectrum (see Fig. 4). 

5000 5500 6000 65-00A 

5000 5500 6000 6500A 
Fla. i2. -Case B (8.3 -inch refractor). Chromatic structure of axial intensity in different 

4,T2aa 
receiving planes. The condensation factor " c'= = I.73 X I os measures the ratio of the kny 
intensity of the light of wave -length .lm at geometrical focus to its intensity in the entering beam. 

From Figs. 7, 8, 12 and 13 the summed visual axial intensity I *(z, o) and 

the summed visual illumination L *(z, ro) in Cases A and B can be obtained with 

sufficient accuracy with a planimeter. They are represented, with the appropriate 
normalizing coefficients, in Fig. 9 (Case A) and Fig. 14 (Case B). The point of 

greatest axial intensity I *(z, o) corresponds to the best focal setting according 
to the first definition; that of greatest visual illumination L *(z,a,) to the best 

focal setting according to the second. 

I79 



No. 4, 1952 

10 

8 

6 

4 

z 

On telescopic star Images 466 

io 

L,, (z, a,,,) p(,) a-(a) 

0.18 

a 
5000 5500 6000 6500A 

Fia. 13. -Case B (8.3 -inch refractor). Chromatic structure in different receiving planes of 
the visual illumination inside a circle of radius am, equal to the first Airy dark ring for A = Am = g66o A. 

1.0 

S 

6 

.4 

.z 
Selected +eceivin9 
Vane 

J% 

0.18 ans. 

l 
.4 

¿I l I I z -0.6 -0 -0z 0 0z 0t 0.6 0Bmm 

Fm. 14. --Case B (8.3 -inch refractor). Choice of receiving plane. 
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It appears from Figs. 9 and 14 that, in the two cases considered, both the 
adopted definitions lead to substantially the same choice of best focal setting, 
about o26 mm outside minimum focus in Case A and about o18 mm in Case B. 

3.4. Structure of the image at best focus. -Fig. io shows the structure of the 
star image formed in the best focal plane in Case A (25 -inch refractor) and compares 
it with that formed by the corresponding reflector (Case R). Each curve in 

Fig. io a shows the total illumination, classified according to wave -length, 
contained in a circle of specified angular radius ro /f. The five selected values of 

roll range from 0.07 seconds of arc (about one -third of the angular radius of the 
full Airy disk at the brightest part of the spectrum) to one second of arc (about 
four Airy disk radii). Fig. io b shows the corresponding curves for the reflector. 

io 

La(o,i)p(),)a(a) 

c1"o 

4500 5000 5500 6000 500A 
FIG. I5 (b). 

FIG. 55.- (a) Case B (8.3 -inch refractor). Chromatic structure of image in selected receiving 
plane (.2.8=o 18 mm); (b) Case R (Comparison reflector). Chromatic structure of image in 

geometrical focal plane. 
Each curve shows the total visual illumination, classified according to wave- length, inside a 

circle of angular radius r0 /f about the origin in the selected focal plane. The angular radius of the 
first Airy dark ring (A=-566o A) is am /f= o "68. 

Comparison of the Case A curves with the Case R curves for ro /f= o "07, 
0"15 and 0 "25 shows in detail how the central core of the star image in the 

refractor is robbed of light by the residual chromatism. Inside the circle 

0 "25, roughly equal in size to the yellow Airy disk, is found hardly any 

light outside the wave -length range 5000 -6200 A. Light outside this range, 
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that is to say from both ends of the visual spectrum, therefore makes no appreciable 
contribution to the penetrating power of the telescope; it provides the violet or 
purple halo which is such a disagreeable accompaniment to the star images formed 
by every large visual doublet objective. Fig. 4 shows that this purple light 
contains an appreciable fraction of the whole visual illumination, and comparison 
of the curves for ro /f =1;'o in Figs. Io a and io b, shows that the colour error sends 
only a small part of it outside a circle two seconds of arc in diameter. 

Fia. i6. -(a) Summed visual illumination inside circles of prescribed angular radius ro /f. 
Curve z : Case B (8.3 -inch refractor) at selected focus; Curve 2 : 8.3 -inch refractor at minimum 
geometrical focus; Curve 3 : comparison reflector at geometrical focus. (b) Summed visual 
intensity at prescribed angular distances r/f from the centre of the image. Curve 4 : 8.3 -inch 
refractor at selected focus; Curve 5 : comparison reflector at geometrical focus. 

Marked abscissae: am /f. 

Fig. 15 a gives the corresponding information about image structure in the 
smaller refractor (Case B) and its comparison reflector. Comparison of Fig 15 a 
with Fig. io a allows us to see how much smaller is the disturbance of the central, 
core of the diffraction image by residual chromatism in Case B than in Case A. 
For example, in Case B the chromatism reduces the total visual illumination 
inside a circle of half the diameter of the (yellow) Airy disk* by about 3o per cent; 
in Case A by about 5o per cent. 

Figs. 11 and 16 follow up this point in more detail. In Fig. 11 a is shown the 
"summed visual illumination" (defined in Section 3.2) inside circles of different 
angular radii ro /f about the centre of the image. Curve I refers to Case A in the 
selected focal plane, curve 2 to Case A in the minimal focal plane and curve 3 to 
the monochromatic image (A =A; = 5660 A) in the plane through Fan,. Curve 3 
may also stand for Case R in the geometrical focal plane, since the difference 
between the curves for Case R and for the monochromatic case turns out to be 
inappreciable. 

(The last result explains why the images in a reflector appear free from 
spurious colour, although they are formed by the superposition of coloured 
diffraction images of different sizes.) 

Fig. i6 a gives the corresponding curves with Case B in place of Case A. 
For the same reason as before, curve 3 may be taken as referring either to the 

* M. Verdet (z6) estimates the apparent diameter of the visible bright nucleus of a star image 
under nearly perfect seeing conditions at about half the diameter of the first Airy dark ring. 
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ABSTRACT. The paper is concerned with the effects of central obstruction of the 
aperture on the three -dimensional light distribution near the focus of an aberration -free 
optical system. Diagrams are given of the isophotes (lines of equal light intensity) in two 
selected special cases and are compared with the corresponding diagram for an unobstructed 
aperture. It appears that when the central obstruction is large the bright central nucleus 
of the three -dimensional image becomes longer and narrower, so that focal depth and 
resolving power are both increased. A central obstruction of ratio 0.25, on the other hand, 
is found to have practically no effect on the size and shape of the bright nucleus. 

§1. INTRODUCTION 
THE intensity distribution in space near the geometrical focus of an error -free 
pencil of monochromatic light bounded by a circular aperture has been given 
in a diagram by Zernike and Nijboer (1949). The diagram exhibits in a 

striking way a peculiarity of the diffraction image already noted by Dennis Taylor 
(1893), namely the quasi- tubular structure of the luminous core of the image. It is 

this tubular -elongation of the bright central nucleus of the diffraction image, 
exceeding what we could expect on the basis of more elementary considerations, 
which explains the excellent performance of 6 -in. or 8 -in. refracting telescopes in 
spite of their considerable secondary spectrum. 

In reflecting telescopes there is no secondary spectrum. Colour effects arise 
from the fact that the diffraction patterns surrounding the geometrical focus are of 
different sizes in different wavelengths, but these are so inconspicuous that their 
existence is usually ignored even in the literature of diffraction theory f. However, 
in most reflecting telescopes there is a different complication which affects the 
diffraction images, namely the central obstruction (usually circular in form) of the 
aperture by the diagonal flat or by the secondary mirror. 

It seems unlikely that anyone who has interested himself in this subject should 
not feel a strong desire to know what is the effect of a central obstruction of the 
aperture on the three -dimensional light distribution near focus. In the present 
note this question is discussed by a straightforward application of Lommel's 
classical formulae (Lommel 1885)1, and diagrams of the light distribution are 

* Now at the Department of Applied Mathematics, University of Edinburgh. 
t They are considered by Mecke (1920) and Picht (1931).. A more detailed discussion, 

on somewhat different lines, is contained in our paper (Linfoot and Wolf 1953) on 
telescopic star images. 

$ Some extensions of Lommel's tables of U1 and U2 were needed for figs. 4 and 5, and 
these were kindly prepared for us by the Cambridge University Mathematical Laboratory. 
Since this paper was written, A. Boivin, 1952, y. Opt. Soc. Amer., 42, 60, has published 
interesting new expansions for the Lommel functions with arguments Ií =e°u, v' =ev (see 
eqn, (4)) and applied them to the discussion of diffraction by arrays of ring- shaped apertures. 
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given, in figs. 4 and 5 respectively, for two selected values of the linear obstruction 
ratio E, namely, e = 0.25 and E= 0.707. The corresponding diagram for the 
unobstructed aperture is given for comparison in fig. 3 ; it is substantially identical 
with Zernike and Nijboer's, which was obtained by a different method. An earlier 
diagram by Berek (1926), based, like ours, on Lommel's results, contained 
inaccuracies. 

§ 2. ANALYTICAL FORMULAE. 
We use substantially the same notation and approximations as in Linfoot 

and Wolf (1953). For convergent spherical waves of unit amplitude, issuing 
from a circular aperture of radius R and having radius of curvature f = CO (fig. 1) 

Fig. 1. 

at the moment of emergence, the complex displacement at a point P(x, y, z) in 
space near the geometrical focus 0 is given by the equation 

u, (P)= a f 22 

[exp {ik(f -CP) }] Jo[exp(2iupz)]J0(vp)pdp, (1) 

where u = kR2z /f z 
, v = kRr /f , k= 27r /A, r = + (x2+ y2)1/2 (2) 

To allow for the effect of a central obstruction of radius R' = ER, we subtract 
from u» (P) the complex quantity 

f1 ue ") (P) - ikR'2 
[exp {ik(f - CP) }] 

J o 
[exp (iu'P2)] Jo (v'P) p dp , (3) 

in which u' = kR'zz /f z = E2u, v = kR'r /f = Ev. (4) 

The intensity at Pis then the squared modulus of the quantity 
ul(P) =u2(R)(P) -11 R')(P) 

z 1 ikR [exp {ik (f -C P))] [ o 
[exp (iup2)] Jo (vp) p dp 

1 - ez J[exp (v' P) P dpl . 

o 
(5) 

1 

Now .1. [exp iupz)] Jo (v p) p dp = 
u 

[exp (Yu)] [ U1(u, v) -i U2 (u, v)] 

ffo 

J1 1 0 

[exp (zuPz)] o.(vP) A dP = u 
[exp (2zu')] [ U1(u', v') -i Uz (u', v')] , 

where Ul (u, v), U2 (u, v) are Lommel functions. Thus (5) can be written 

u2(P) = 
a f z 

[exp {ik ( f - CP)}] I 

r 
ú [exp (',iu)] ( Ul -i Uz) -ú [exp ( ziezu)] 

x ( Ul' -i Uz')1, (6) 
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where, U1, U2, Uí , U2' are written for U1 (u, v), U2 (u, v), U1(14' il), U2(14' , v') 

respectively, and the intensity IA (P) =lux(P)12 is given by the equation 

Ia(P)= f2R2 [eXP(zZu)](U1-Z U2)-[exp(2E2u)](U1'-2U2') 

7T2 R4 ¡ = 2{21M2(u,v)-2E2N(u,v; 
ú,v')+E4N2(ú,v')}, 

where 

2 

M2(u,v)= (2)2 (U12-U22), ) M2(u',v'= ()2(Ul'2+U2'2) 
u 

N(u,v; ú,v')= 4,[(U1 U1'+U2 U2') COS ;(1-E2)u 
uu 

+(U2 U1' U1U2')sin 2(1-E2)u] . 

Fig. 2. 

(7) 

(8) 

On the axis of the converging pencil, y = 0 and (6) gives for the intensity the 
expression 4,72R4 (sin é u(1- E2)\ 2 

I i(2', 0) = 
A2f2 \ u / (9) 

the central obstruction increases the distance between the zeros along the axis 
of the system by a factor 1 /(1 --E2) but they remain equally spaced -at least in the 
range where our approximations are valid, namely the part of the axis where u /47r 

does not become large compared with unity. 
In the geometrical focal plane, u = 0 and the expression (7) for the intensity 

reduces to 47.2 R4 r2J1(v) 
/a (0, r) - t2 L 

V 
E 

Ev 
(10) 

The zeros of this function give, in v- units, the radii of the `Airy dark rings' 
corresponding to a centrally obstructed aperture. The expressions (9) and (10) 
were given (with a diffèrent normalization) many years ago by Steward (1925). 

§ 3. COMPUTATIONAL RESULTS 
To interpret figs. 3, 4 and 5 we note that each of them represents one quarter of 

a bisymmetrical pattern obtained by reflecting it in the u- and v -axes. This 
bisymmetrical pattern shows the isophotes (lines of equal light intensity) near focus 
in any meridional section of the pencil. The diagrams apply to pencils of all 
sufficiently long focal ratios (to those, in fact, for which Lommel's formulae are 
valid approximations in the sense of our paper (Linfoot and Wolf 1953)) and the 
use of (u, y) coordinates in the diagrams is equivalent to scale -normalizing the 
cylindrical cartesian coordinates (r, z) in accordance with equations (2). The 
intensity at the geometrical focal point (0, 0) is normalized to unity in each figure. 
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Fig. 3. Isophotes near focus of an aberration -free pencil without central obstruction. 
The intensity at the focus (0, 0) is normalized to unity. The scale -normalized 
coordinates (u, y) possess physical interpretations ; u /41- is the number of fringes 
of defocusing, vlrr the number of fringes of lateral displacement of the point (z, r) 
from the geometrical focus O. The bisymmetrical diagram obtained by reflecting 
the figure in both u- and v -axes shows the light- distribution in any meridional 
section of the pencil; the u-axis is along the principal ray. The shaded area shows 
the region of the geometrical cone of rays. 
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The shaded areas in the bisymmetrical patterns show where the geometrical 
light -cones meet the meridional (u, v) -plane in each case. In the unobstructed 
case (fig. 3) the cone of rays is a solid cone, with axis lying along the u -axis and the 
lines I v/u I =1 lie in its surface. In the centrally obstructed cases the cone is hollow ; 

its axis lies along the u -axis and its ` body ' lies between the two conical surfaces 
traced out when the lines I v/u = e and I v/u I =1 are rotated about the u -axis 

(see fig 2). In fig. 4, e = 0.25, in fig. 5, e =0.707. 
The value e =0.25 was selected for computation because it corresponds to the 

greatest central obstruction which is regarded as tolerable by users of visual 
reflecting telescopes. A comparison of figs. 3 and 4 shows how small is the effect 
of this obstruction on the relative intensities in different parts of the image. In 
particular, the size and shape of the bright central nucleus is almost unaffected. 
There is, however, an increase in the intensity of the first Airy bright ring, the 
effects of which might occasionally be visible to a keen observer. 

The value e =0.707, corresponding to an obstruction of half the area of the 
aperture, was selected with the following idea in mind. When the central 
obstruction is fairly large, for example when it has the above value, the pencil of 
rays passing through the geometrical focus has the form of a hollow circular cone 
(shown in section in fig. 5) and at a sufkcient distance from the geometrical focal 
plane almost all the light is to be found between the walls of this cone, that is to say, 
in the notation of § 2, in the region 0.707 <Iv /ul <1. It is natural to ask whether 
anything at all resembling this type of light distribution is to be found in the near 
neighbourhood of the geometrical focus. Figure 5 provides an answer to the 
question : close to focus, the light distribution has the same general character as in 
the ease of the unobstructed aperture and is strikingly different from that predicted 
by geometrical optics. The main effect, in this . region, of the obstruction is to 
draw out the central nucleus of the image along the axis of the system to approxi- 
mately twice its former length, its cross section being correspondingly reduced. 

These results may be of. some practical value in connection with the design 
of lens- mirror systems, in which the use of mirrors generally involves central 
obstruction of the beam, while the refractive elements usually introduce some 
chromatic variation of focus. The existence and dimensions of a tubular core to 
the diffraction image have here, just as in the case of telescope . doublets, an 
important bearing on the amount of chromatic variation of focus which can be 
tolerated in the system (Conrady 1923, Linfoot and Wolf 1953). 

More academic, but perhaps not entirely without interest, is the point that a 
large central stop on the objective of a refracting telescope not only increases 
resolving power by decreasing the lateral diameter of the bright central nucleus of 
the image but also, by elongating the nucleus in the axial direction, reduces the 
disturbing effects of chromatism on its colour- composition at best focus. 
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ABSTRACT. A historical and critical survey is given of investigations concerned with 
image formation in optical instruments in the presence of aberrations. The development of 
the subject is traced from the early researches of Airy on an aberration -free image. The 
advances made in recent years are discussed in greater detail; these mainly concerp the 
effects of small aberrations, tolerance criteria, and the asymptotic treatment of diffraction 
problems. A section is also included on investigations into the effects of waves of non- 
uniform amplitude. The detailed light distribution in typical images is illustrated by 

¿sophote- diagrams and photographs. 

. 61. INTRODUCTION 
N a perfect optical system the light waves which proceed from each element 

of the object emerge in the image space as convergent waves spherical in 
form. Such an instrument represents an idealization which cannot be 

realized in practice ; in the image space of an actual instrument, the wave surfaces 
will, as a rule, be of a more complicated form. The deviations from the ideal 
spherical form of these surfaces may range in practice from a fraction of a 
wavelength in a well corrected telescope or microscope objective, to several 
dozen wavelengths in instruments required for less precise work. In many cases 
the resulting image bears little resemblance either to the Airy diffraction pattern 
or to the confusion figure predicted by geometrical optics. 

The diffraction theory of aberrations is concerned with the study of images 
formed by actual optical instruments. Recent years have seen important 
advances in this branch of optics and many valuable results have been obtained. 
In particular, in the domain of very small aberrations (amounting only to a fraction 
of a wavelength) greatly simplified series expansions for the light distribution in 
diffraction patterns have been given, supplemented by a detailed study of a 
number of typical cases. The effects of aberrations of intermediate size (about 
one to ten wavelengths) have been studied with the help of a specially constructed 
mechanical integrator. Attempts have also been made to examine the effects of 
large aberrations. Further, a new and systematic investigation of the maximum 
amount of aberrations which niay be tolerated in optical instruments has been 
carried out. The possibility has also been examined of improving the quality of 

* Now at the Department of Mathematical Physics,. University of Edinburgh. 
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the image by deliberately introducing non -uniformity of amplitude and some- 
times, in addition, varying the phase of the disturbance over the exit pupil. 

As no article on the diffraction theory of aberrations has been published in 

the preceding volumes of these Reports we have included In the present account 
a historical review of the subject. The period before 1940 is, however, treated 
only briefly; additional information can be found in the articles of von Laue (1928), 

König (1929), Martin (1946) and in a thesis by Nijboer (1942). A survey of 

experimental investigations on diffraction images was recently .given in a thesis 

by Nienhuis (1948). We begin with a short preliminary section on the geometrical 
treatment of aberrations ; this serves as an introduction to the classification of 

image errors used in the main discussion. 

§ 2. GEOMETRICAL TREATMENT OF ABERRATIONS 

The geometrical theory of aberrations is usually developed by methods due 
to Hamilton based on Fermat's principle of stationary path. This principle 
asserts that if light is propagated from a point P' to a point P in a medium of 

which the refractive index at a typical point is denoted by p., it will travel along 
a path for which the optical length 

JP 
pals (2.1) 

P' 

is stationary with respect to a small variation of that path. The integral (2.1) 

when taken along a natural ray may be regarded as a function of six'variables, 
namely the rectangular Cartesian coordinates of P' and P with respect to some 
fixed reference system. In consequence of Fermat's principle, this function, 
sometimes called the characteristic function of the medium and denoted by 

, V (x', y', z' ; x, y, z) satisfies the relations 
av av av 
ax ay atT 

av 
=wr, 

av 
=Etna' 

av 
=µn. 

(2.2) 

Here (l', m', n') and (l, m, n) denote the direction cosines of the rays at P' and 
at P respectively, while p.' and f.c are the refractive indices at these points. 

Consider an optical instrument with a point source at Pó (x0', yo', zó) emitting 
monochromatic light. From (2.2) it follows that the equations 

V(xó , yo', zó ; x, y, z) = constant (2.3) 

represent the orthogonal trajectories of the rays, i.e. the wave fronts of geometrical 
optics. Except, in the ideal case when (2.3) represents concentric spherical 
surfaces in the image space of the system, the rays will intersect the image plane 
at different points. Geometrical optics identifies the light intensity at a typical 
element of the image plane with the density of these ray intersections. Apart 
from the details of structure, this gives an approximation to the actual light 
distribution when the deformations of the wave fronts are of a considerable 
amount. 

To investigate the appearance of the image it is convenient to introduce an 

aberration function which measures the deviation of the wave fronts from the 

spherical form. We consider a system with cylindrical symmetry and take a 

reference sphere centred on the Gaussian image Po of Po', passing through the 
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centre of O of the exit pupil. Further we denote by A a typical point on this 

sphere and by B the intersection of Po A with the wave which passes through O 

(Figure 1). 
The aberration function, defined by the equation 

= AB, (2.4) 

may be expressed as function of the thrèe rotational invariants a2, r2 and 

ar cos (x -B), where (r, e); and (a, x) denote polar coordinates in the exit pupil and 

of the image point Po respectively. It may as a rule be expanded in the form* 

i(a, r, q) = E aj , aai+krt cosk sb, (2:5) 
i,.7, k, 

where 56= x-0, i,], k are non -negative integers, j k, j -k is even (00), 
2i+ j + h 4, and the a's are constants. 

Let P be the actual point of intersection with the image plane of a typical 
ray proceeding from the exit pupil. From' it is possible to determine with the 
help of Fermat's principle the ray aberration displacements PoP. Those terms 
in (2.5) for which 2i +1 + k = N are called the wave aberrations of the Nth order 

Figure 1. 

The line BAP° does not necessarily lie in the plane Pá OPo. O is the centre of the exit pupil. 

(N is always even) and give rise to ray aberrations of order- N -1. The five 
aberrations of the lowest order (N =4) are as a rule dominant in the paraxial 
region. The corresponding ray aberrations are known respectively as third 
order (sometimes primary or Seidel) spherical aberrations, coma, astigmatism, 
field curvature and distortion and have been discussed in the literature in much 
detail. Their physical meaning is too well known to neèd repeating here. For 
detailed discussions of geometrical aberrations we refer the reader to papers by 
Schwarzschild (1905), by Steward (1926) and by Nijboer (1943). 

§3. THE DIFFRACTION THEORY OF ABERRATIONS 
3.1. A Historical Review 

We mentioned that the geometrical theory of aberrations identifies the 
intensity in the image plane with the ray density. This approximation, which 
in many cases gives an adéquate picture of the light distribution in the image, 
gradually loses its validity as the aberrations become smaller. In the limiting 
case of perfectly spherical waves, for example, issuing from a circular opening, 

* A different expansion recently proposed by Nijboer (1942, 1943) will be discussed later. The ;- 
present notation is substantially due to him. 

f A certain confusion exists in the literature about the terminology. Some earlier authors call 
d first order ray aberrations those which we have denoted as ray aberrations of the third order. 

The classification used here hasthe advantage that it can be generalized to cover errors of focusing y 
which are represented by first order terms. Such errors are often associated with the chromatic 

le aberration. 
PSPR 

7 



98 E. Wolf 

geometrical optics predicts in the focal plane an infinite intensity at focus and 
zero intensity elsewhere ; in reality the image consists of a bright central patch 
surrounded by rings -the familiar Airy pattern. It is therefore clear that in 
certain cases more refined investigations are needed. A direct application of 
electromagnetic theory presents considerable mathematical difficulties ; instead 
one often uses based_ Kirchhoff's formula 

U(P) 
Mr J J D {U Ce Yom/ 

a 
an } dS. (3.1) 

This expresses the wave disturbance at \any point P inside a closed region D as a 
surface integral involving the disturbance U and its gradient a Ulan over the 
boundary. Here r represents the distance of a typical surface element from P, 
a /an denotes differentiation along the inward normal to D, k =2ir /A and A is the 
wavelength. In the investigations which we shall discuss, the scalar disturbance U 
is identified with a component of the electric or the magnetic vector or of a Hertz 
vector. From it the intensity I is derived by means of the approximate relation 

1= constant Up. (3.2) 

When applied to problems of light distribution due to the passage of aberrant 
waves through the exit pupil of an optical instrument, Kirchhoff's formula with 
certain approximations reduces to Huyghens' principle of geometrical optics, 
taking into account however the mutual interference of the secondary wavelets 
proceeding from the opening. Using Huyghens' principle in this form, Airy 
(1835) obtained the solution for the ideal case mentioned above. It is usually 
written as 

I(v) = (3.3) 

where in suitable units I (v) is the intensity in the pattern at distance y from its 

centre and J1 is a Bessel function of the first kind. * 

In two important papers Lommel (1885, 1886) extended Airy's classical result 
by deriving expressions for the intensity distribution due to spherical waves in 

planes other than the geometrical focal plane. For diffraction at a circular 
opening his solution takes the form t 

I(1í, v) = U12(1í, 7)) i U22(ur v)1,, 

where the U's are two of the functions 

......(3.4) 

mec++ 
1)71+28 

Un(u, v) - 
9=0 

(- 1)8 
( Jn +2a(v), (3.5) 

It is a parameter which specifies the position of the receiving plane and y has the 
same meaning as before. When I u/v I >1 the convergence of (3.5) is slow and for 

this case Lommel expressed the solution in terms of the functions 
co 

Vn(u, v) _ (- 1)e (v In F28Jn +2s(v), (3.6) 
s =o u 

* The derivation of (3.3) involved the assumption that the angular semi -aperture of the opening 
is small and that the disturbance over the converging wave is of uniform amplitude. In practice 
these assumptions may be far from valid but it has been shown by Hopkins (1943, 1944) that with 
a suitable interpretation of the argument y, Airy's formula is accurate to within a few per cent for 
systems with angular semi- aperture up to about 39 °. t The case of a circular opening was treated in an almost identical manner by Struve (1886). 
Formulae more convenient for calculating the intensity far from focus were given by Schwarzschild 
1897). 
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which are related to the Un functions by means of the relations 

U2n +1(u, y)± V -221 +1(u, y) = (- 1)n sin 2 (.+ 
2 ) 

/ 2 

- U2n4- 2(u) y) +V- 2n(u,y)_(- l)n cos ZI u+ ). 

99 

..... (3.7) 

The functions Un and V. which Lommel introduced and which now bear his. 

name play an important part in a number of related problems. Lommel evaluated 

numerically the solution for a large number of particular cases. Full use of his 
results was however not made until forty years later when Berek (1926) obtained 
with their help a graphical representation of the three -dimensional light 
distribution near focus.* Recently, Zernike and Nijboer (1949) gave a more 

accurate and detailed diagram (see Figure 2) based on a different expansion of the 
diffraction integral. 

The first investigations concerning diffraction images in the presence of 
monochromatic aberrations appear to be due to Rayleigh and Strehl. Rayleigh 

Figure 2. Isophotes (lines of equal intensity) near focus in a meridional plane in absence of 
aberrations. The straight lines indicate the boundary of the geometrical shadow. The 
numbers give intensity as percentage of intensity at focus. Axial minima and maxima are 
indicated by short strokes, others by small circles.. After Zernike and Nijboer (1949). 

(1879) studied images formed by cylindrical waves affected by a certain 
unsymmetrical aberration which are diffracted at a rectangular aperture, and also, 
examined the effects of third order spherical aberration. In the latter case, 
however, he confined his investigations to determining the intensity at the centre 
of the pattern only. He formulated an important tolerance criterion, known in 
an extended form as Rayleigh's limit. This criterion asserts that the quality of an 
instrument is not sensibly affected by the presence of certain commonly occurring 
types of aberration if they are such that the waves in the image space do not 
deviate by more than a quarter of a wavelength from suitably chosen spherical 
surfaces. This criterion has since become widely used in formulating conditions. 
concerning the maximum amount of aberrations which may be tolerated in the 
practical design of optical instruments. 

Strehl, in his book Théorie des Fernrohres (1894) and in numerous papers 
mostly published between 1893 and 1930 in the Zeitschrift far Instrumentkünde 
and in Zentralzeitung für Optik and Mechanik, studied the effect of third 
order aberrations but he confined his researches mainly to investigating the 
variation of intensity along the principal ray. To him we owe the important 

* Berek's figure is rather inaccurate. Later versions of it show the ouline of the geometrical 
shadow incorrectly as, for example, in the following books : Handbuch der Physik, 1929, 21, 885 and 
Picht, J., 1931, Optische Abbildung (Braunschweig : Vieweg), p. 71. 
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concept now known as Strehl definition (Definitionshelligkeit), viz. the ratio 
of the maximum intensity in a particular receiving plane of an instrument to the 
intensity at the centre of the Airy disc in a perfect system of the same aperture 
and focal length. This quantity supplies in many cases a good measure of the 
quality of the system. 

Conrady (1919), Buxton (1921, 1923) and Martin (1922) investigated the 
effects of various aberrations with the help of numerical integrations. They 
computed a number of particular cases and obtained valuable information 
concerning Rayleigh's criterion. Some work of these authors was also concerned 
-with balancing spherical aberrations of different order against each other so as to 
obtain high intensity at the centre of the pattern ; this question was later studied 
in a more general manner by Richter (1925). 

In important papers Steward (1925) and Picht (1925, 1926) derived series 
expansions for the intensity distribution in typical diffraction images. In 
Steward's treatment the diffraction integral, derived by an immediate application 
of Huyghens' principle, gives the intensity I at a point P of the pattern in the form 

I = J J eixcv 
+ands 12, (3.8) 

where V is a characteristic function and d is the distance from P to a typical 
point of the exit pupil over which the integration is carried out. Steward 
considered at first the effect of spherical aberration in an arbitrary receiving 
plane parallel to the Gaussian image plane, the exit pupil being assumed 
circular. (3.8) then reduces to 

1 

I(u, y)= 
J o 

exp(iut +i 
sue$ 

Asts) . J0(v -Vt) dt 
I2 

. (3.9) 

The problem treated earlier by Lommel corresponds to the case As = 0 for all s. 

By an argument similar to Lommel's, Steward showed that (3.9) can be expressed 
in terms of so -called generalized Lommel functions, these again being series 
involving Bessel functions. 

When other aberrations are present (3.8) takes a more complicated form, 
since simplifying symmetry conditions no longer exist. Steward restricted 
the rest of his analysis to third order aberrations. His paper contains two 

diagrams showing isophotes (lines of equal intensity) in diffraction images, one 
affected by a certain amount of third order coma, the other by third order 
astigmatism. Unfortunately these diagrams are rather incomplete and contain 
some error's [see Nijboer (1947, p. 619) and Kingslake (1948, p. 152)]. Steward 
also studied the effects of different forms of aperture on the resolution. In 
particular he examined the influence of an annular aperture when third order 
spherical aberration is present under out -of -focus conditions. 

Picht (1925, 1926) took as the starting point of his researches a well -known 
result due to Debye that the effect of spherical waves emerging from an optical 
instrument may be represented by a superposition of plane waves with 
different phases, amplitudes and directions of propagation. By generalizing 
Debye's formulae, Picht showed that the intensity distribution associated with 
the passage of aberrant waves through an exit pupil may be written in the form 

( y, )= JJcli(mn)exp{_-zk{(x-e)l+(y_7)m+(z- CH} 
a do I x, z - 

where e= e(m, n), 77= 7)(m, n), C = C(m, n) (3.10) 
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are parametric equations of a typical wave, (l, m, n) are direction cosines of its 

normals and is an amplitude factor. In the presence of third order aberrations, 

Picht obtained the development of (3.10) into series of Bessel functions. From 

these series he computed, for a small amount of spherical aberration, the 

three -dimensional intensity . distribution in the neighbourhood of the paraxial 

focus. He also studied a number of images affected by third order astigmatism 

in systems with a rectangular exit pupil. 
Born (1932, 19aj) studied the influence of very small aberrations of the 

third order. He derived an expression for the intensity, applicable whether 

one or more ebservationa are in terms of the functions 

Ko(v) = 
[Ji(v)]2 

K1(v) _ 2J1(v)J2(v) 
K2(v) 2J1(v2(v) 

Born's formula applies however to distributions in the Gaussian image plane only. 

No further substantial advances were made up to about 1940. The following 

years witnessed a renewed interest in this subject and led to a number of 

important developments which we shall now discuss. 

3.2. Advances since 1940 

3.21 Images in the presence of small aberrations. 
Some of the researches so far described led to results which in many cases 

permitted the calculation of the light distribution in the diffraction images. 

These solutions, however, were not entirely satisfactory as they were either too 
restricted or involved very heavy computations. 

In an important thesis * Nijboer (1942) took up this problem afresh and 
obtained a simpler and more satisfactory solution for cases where the wave 
deformation is small, only a fraction of a wavelength. Nijboer considered two 
series expansions of the aberration function (I), viz. 

(I)(a, r, E .binm0.2l 
+m rn cos me (3.11) 

z,m,n 

and (b(a, r, 46.) = E binmu2z +mRnm(r) cos mci,, (3.12) t 
l,m,n f 

where 1, nz, n are non -negative integers, n m, n -m is even, Rnm(r) are certain 
polynomials which we discuss later, the other symbols having same meaning 1 

as in § 2. A closer examination shows that the first expansion is particularly 
suitable for a geometrical treatment of aberrations, the second for a diffraction 
treatment. We recall that the traditional expansion with the same variables would 
contain terms cos 'NS in place of cos m 0. The occurrence of the Fourier terms is 
essential in Nijboer's theory. f 

Some advantages of the new expansions can be illustrated by considering first 
the geometrical aberrations. It can be shown that in the presence of a single 
aberration 

binma2l+mr cos mop (3.13) 

the rays from the point (r, O) of the exit pupil intersect the plane through 
the Gaussian image point perpendicular to the principal ray in a point (x, y) 
given by ;- 

x + i.Y = ibinma2l +mrn -i a {(n + m)e- 1(m -10 + (n - m)e«m +im }, (3.14) d 
Y 

* An account of this work will also be found in Nijboer (1943, 1947). As mentioned by Nijboer to 
the method was to some extent suggested by earlier unpublished researches of Zernike. 

i 

m 
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-where a and R denote the radius of the exit pupil and of the reference sphere 
respectively. From (3.14) it follows that the main features of the aberration 
figure (given by r = constant), such as symmetry, depend on ni while details 
depend both on m and n. It will be shown further that m and n play a similar 
role in the appearance of the diffraction pattern for an aberration specified by 
the term 

binma2l 
+mR,,tm(r) cos mO. (3.15) 

This suggests a new classification of image errors in which the value of ni 

determines the general type. By analogy with Seidel aberrations, the terms 
with m =0, 1 and 2 may be called spherical aberration, coma and astigmatism 
respectively. Curvature and distortion now appear as degenerate cases of 
spherical aberration and of coma. The terms with m 3 do not occur in Seidel 
theory. This classification considerably simplies the discussion of the higher 
order effects. 

In Nijboer's diffraction treatment the expansion of the aberration function 
is of the form (3.12) where 

Rnm(r) cos mck (3.16) 

are so -called circle polynomials introduced by Zernike (1934) in his diffraction 
theory of phase contrast. These polynomials are orthogonal within the unit 
circle and the Rnm(r) are given by 

Rnm(r) = (- 1)(n-m)12 
( +ñ )l2) rmF [Mn (n + m 2), - Mn m), - Mn - m), m 1, r2] 

(n -m) /2 ` J 
s (n -s)! n 2s 3 17 

aZ0 ( 
-1) s! {j(n +m) -s }! {(n- m) -s)!r ( ) 

where F is a hypergeometric function. The expansion in terms of circle 
polynomials is particularly advantageous for the balancing of very small 
aberrations against each other so as to obtain maximum Strehl definition. We 
observe that in (3.15) a number of terms of the customary form a2i +mr' cosi q are 
combined; with the help of the orthogonality relations for the circle polynomials 
it may be shown that they have been combined in such a way as to give maximum 
intensity in the centre of coordinates for a given value of the coefficient of 

all +mrn Cosm . 
This may be illustrated by recalling that Richter (1925) showed (in a different 
notation) that in the presence of a small amount of spherical aberration of the - 

form 
= A6r6 + A4r4 + Á2r2+ A0, (3.18) 

the Strehl definition is a maximum for a given value of A6 if 

A4/A6 = -3/2, A2/A6 =3/5. (3.19) 

In Nijboer's diffraction treatment the fifth order spherical aberration is given 
by the term 

b06óR6°°(r) = boso(20r6 - 30r4+ 12r2- 1), (3.20) 

and Richter's condition is automatically satisfied. However, we must insist 
that this balancing of aberrations as achieved in Nijboer's theory holds for very 
small aberrations only ; in some cases, as Figure 8 indicates, it no longer holds 
when the maximum wave deformation is only about 0.6A. 
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With the usual approximations the Huyghens -Kirchhoff integral for the 

disturbance at a point (q, t&) in a receiving plane perpendicular to the principal 

ray and specified by a parameter p, can be written in the form 

1 U(p,q,0)= fl 

J 

o 

.0 exp { ipr2 +igr cos (0- 0)- ik(v,r, ¿) }rdrdç. (3.21) 

In the presence of a single aberration Nijboer writes 

I(cr, r, 0) = k ßin,nRDm(r) cos mck, 

where ßinm = ka21+mbl,i,n 

and expands the term exp ads in powers of ß. Neglecting fifth and higher powers 

of ß in (3.21) and integrating with respect to 96 Nijboer obtains 

U(p, q, 0) = 2 
J 

e`pr'Jo(gr)r dr - 2ißlnmjm cos mtb 
J 

1 espr'Rnm(r)J (gr)r dr 
0 o 

+ (Zß2 { 
J 

1 
ep'' {Rnn`(r) }2J0(gr)r dr + i2m cos 2mß 

0 

x J 1 e'Pr' {Rnm(r) }2J2na(gr)r dr } 
(2.3 ! 3 {3im cos mt/s 

ro 
J 

( x I e'Pr' {Rnm(r) }3Jm(gr)r dr +i3m cos 3m0 
J 

e'pr' {Rnm(r) }3J3m(gr)r dr} 

(Zßlnm)4 3 f empr' {Rnm(r) }4J0(gr)r dr + 4i2m cos 2m,/, 2.4!{ fo 

x 
J 

empr' {Rnm(r) }4Jsm(gr)r dr + i4m cos 4m:// 
0 

ri 

x 
J 

e "'r'{Rnm(r) }4J4m(gr)r dr} . (3.23) 
o JJJ 

(3.22) 

From this expression a number of symmetry properties of the diffraction pattern 
may immediately be deduced. It is seen for example that the p -axis is an m -fold 
axis of symmetry. Moreover if m is odd (e.g. as in the case of coma) the intensity 
distribution is symmetrical about the plane p =O. If m is even (but m00) the 
intensity at any point is equal to that in the point resulting from a reflection in the 
plane p =0 and the additional rotation about the p -axis through an angle 7r /m. 
For some special cases this rule has previously been stated by Strehl, by Picht 
and by Steward. 

Nijboer outlined a method based on various properties of the circle 
polynomials which makes possible the development of the integrals in (3.23) 
into series of Bessel functions. The series terminate in the important case p = O. 

From these expansions the isophotes near focus may be determined for a small 
arbitrary single aberration. Some of the diagrams obtained in this way by 
Nijboer (1942, 1947) and Zernike and Nijboer (1949) are reproduced in 
Figures *3, 4, 5, 7. Additional cases of slightly larger aberrations were studied 
by Nienhuis and Nijboer (1949). This later investigation was confined to third 
order effects and contains new formulae and diagrams (Figures 6 and 8) for the 

* Unless otherwise stated, all figures refer to systems with a circular exit pupil and Amax denotes 
the maximum deviation of the wave from the reference sphere, shown in Figure 1. The Figures 
are not all reproduced on the same scale. 
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Figure 3. Isophotes as in Figure 2, in presence of third order spherical aberration of amount 
ßl40 =# (max = 0.48x). The thick line indicates the geometrical caustic. Strehl definition 
0.95. After Zernike and Nijboer (1949). 

Figure 4. Isophotes as in Figure 2, in presence of spherical aberration of amount ßt00 = (1.6A of 
fifth order spherical aberration balanced against 2.4A of third order spherical aberration). 
The thick line indicates the geometrical caustic. Strehl definition 0.965. After Zernike 
and Nijboer (1949). 

4 =r 

Figure 5. Isophotes in the Gaussian image plane in 
presence of third order coma of amount ß131 =1 
( *max= 0.48A). Strehl definition 0.879. The dotted 
curve represents the line of zero intensity. The 
boundary of the geometrical confusion figure is 
also indicated. The numbers represent intensities 
corresponding to a value of 1,000 in the centre 
of the ideal Airy pattern. After Nijboer (1947). 

Figure 6. Isophotes in the Gaussian 
image plane in presence of third 
order coma of amount ßl31 =3 
( 'Dniax = 1.4A). Strehl definition 
0.306. The dotted curves repre- 
sent the line of zero intensity. The 
boundary of the geometrical con- 
fusion figure is also indicated: 
After Nienhuis and Nijboer (1949). 
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Figure 7. Isophotes in the central plane in presence of third order astigmatism of amount 
ß131= 1(cbmax= 0.164). Strehl definition 0.840. The dotted circle indicates the boundary of 
the geometrical confusion figure. After Nijboer (1947). 

Figure 8. Isophotes in the central plane in presence of third order astigmatism of amount 
13/22=4(4)max =0.64A). Strehl definition 0.066. The dotted circle indicates the boundary 
of the geometrical confusion figure. After Nienhuis and Nijboer (1949). 

light distribution in certain receiving planes. It was supplemented by 
photographs (see Plates *) of actual images showing a good agreement with the 
theoretical predictions. In this work the authors rediscover the formula 

[J2S+l(ß)]2, 
originally given in a slightly different notation by Picht (1931, p. 202) for the Strehl 
definition in the central plane p =0 when third order astigmatism is present. 
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Some of the isophote diagrams involved the computation of intensity at as 

many as 600 points. This heavy labour is amply rewarded by the results which 
.give the first real insight into the complex structure of important types of 

diffraction iníage. 
A few cases of small aberrations were also studied by Maréchal and by 

Kingslake by methods which we shall discuss later. 

.3.22. Tolerance conditions. 
Wang Ta -Hang (1941) discussed the location of the best axial focus in the 

presence of spherical aberration and deduced tolerance conditions for the 
maximum permissible amounts of third, fifth and seventh order spherical 
.aberration for systems where the lower order terms are under control. Most of 

Wang Ta -Hang's results were previously found by Conrady, Buxton, Martin 
.and Richter and also follow as special cases from Nijboer's researches. 

Optimum correction of small aberrations and tolerance conditions were 
:studied in an elegant and comprehensive manner by Maréchal (1944 a, b, c, 

1947 a). These investigations are based on a relation between the intensity at 

points near the maximum of the diffraction pattern and the mean square deviation 
of the wave front from a certain reference sphere. 

Figure 18. 

Let E be a wave surface in the exit pupil of an instrument and let S be a sphere 
in its neighbourhood, centred on C and of radius R. Further let A be a point on S 

.and let AC intersect E in B (Figure 18). Finally let 

AB =A, BC =1, do, =do/ f f da, (3.24) 

where dv is an element of E. (In general 00 since C is not necessarily the 

Gauss image point and S does not necessarily pass through the centre of the exit 1 

pupil.) 
For a given wave front and for fixed C, the mean square deviation 

E= 
f f F 

02da,, (3.25) 

of the wave front from the sphere is a function of the radius R. This function 
has a minimum 

-when 
E=E0= if fl2dco- (ff Fldu,)2, 

RRo- f f xldm. 
(3.26) 
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Maréchal showed, that when I 6,1<A/4 (a condition twice less severe than that 
imposed by Rayleigh's criterion), the intensity I (taken as unity at the centre of 
the Airy pattern) at C satisfies the relation * 

27T2 1- 
Á2 

Eo . (3.27) 

Earlier authors found that in presence of certain aberrations of amount 4A, 

the central intensity takes on values between about 0.73 and 0.87, the exact amount 
.depending on the type of aberration. With the help of (3.27) Maréchal was able 
to formulate a new tolerance criterion which unlike that of Rayleigh corresponds 
to a fixed lower limit for the central intensity. 

A system is generally regarded as well corrected if the loss in intensity at the 
centre of the pattern does not exceed 20%, i.e. when 10.8. For such a case 
(3.27) implies that Eo<A2 /180. Maréchal therefore concluded that . for a 
well corrected system the root -mean- square deviation of the wave from the 

mean focal sq .e-' (given by R = R0) is less than A/ -/180. In accordance with 
this criterion, Maréchal then deduced the following tolerance conditions for 
defocusing and for aberrations of the third order : 

Defocusing : íA /2a2. 

Spherical aberration : 4A /a2. 

Coma : 181 . 0.63 . as 
Astigmatism : t- s l. A /a21/2. 
Astigmatism and curvature : (t 

\+ 

s)2 - s)2 \ A2 /a4. 

Combined aberrations : CLL 
f 2 + 1 S Sg 2 + t s 

\2 
+ (t +s s 

¡2 
\ gmas ( )max ( )wax 

Here a denotes the maximum angular semi -aperture in the image space, L denotes 
the longitudinal spherical aberration, g the sine condition ratio, and t and s are 
the abscissae of the tangential and the sagittal focal lines. Further, L denotes 
the maximum amount of the longitudinal spherical aberration which may be 
tolerated when no other aberration is present, Sg , (t - s)max and (t +s). 
having analogous meanings. For fifth order spherical aberration and fifth order 
coma Maréchal found that the tolerances may be increased by 50% provided 
these aberrations are suitably `balanced'. A tolerance condition for third 
order coma substantially in agreement with Maréchal's was recently deduced 
by Kingslake (1948). 

Toraldo di Francia (1946) derived an expression for the lower limit of intensity 
at the centre of the reference sphere in terms of the maximum wave aberration. 
In particular, this expression shows that when the aberration is less than A/4 
the intensity at the centre does not fall below 0.5. 

Françon (1944, 1947 a, b, 1948 a) studied both theoretically and experimentally 
the efficiency of visual optical instruments suffering from spherical aberration. 
(Aberrations may be tolerated when the efficiency, defined as the ratio of the 
limiting resolvable separation of the unaided eye to that of the instrument -eye 
combination, is nearly 1.) He found that for a small pupil (0.8 -0.9 mm. in 
diameter), the eye may be regarded as a perfect instrument and in this case a 

* Väisälä (1922) derived a weaker condition I-4- 477.'Eo /a2. 
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high degree of correction is called for. For pupils of larger size poorer correction 
may be tolerated. Françon showed that for small pupils and objects of very low 
contrast (.-0.3), aberrations of the order of A /16 may be significant. Rayleigh's 
and Maréchal's criteria apply to a perfect eye, and contrast 1. Françon's 
investigations give, for the case of spherical aberration, an extension of Rayleigh's 
criterion for pupils up to 4 mm. and for a range of contrasts. 

3.23. Asymptotic behaviour of the diffraction integral. 
The effects of aberrations which are large compared with the wavelength 

may be investigated by examining the asymptotic behaviour of the diffraction 
integral for large values of k = 21r /À. Van Kampen (1949) studied this problem 
by using a two - dimensional analogue of the principle of stationary phase 
(cf. van der Corput (1948), p. 206). 

The Huyghens- Kirchhoff diffraction integral which describes the complex 
displacement at a point P in the image space of an instrument may be written 
in the form 

U(P) = J J n kg(x, y)erktcx, Y) dx dy, (3.28) 

where D is a domain bounded by a finite number of analytic curves C. 

Van Kampen found that, on account of the rapidity of fluctuation of the 
exponential term in (3.28), the value of U(P) depends substantially on the 
behaviour of the integrand near a limited number of ` critical points ' which 
may be of three kinds : (1) internal points of D at which f is stationary, i.e. where f 
of /ax =of/ay =0 ; (2) boundary points at which f is stationary, i.e. where of /as =0, 
ds being element of C ; (3) corner points or boundary points where two analytic 4 

curves join. 
In the neighbourhood of a critical point of the first kind, the integrand of 

(3.28) can be expanded in the form 

kge'kt =k exp ikaoo exp ik(a20x2 + aslxy + a02y2 + .. 

er: 
di 

ar 

as 
ri 

3. 

d 
at 
ir 
s( 
b 

(boo + bit) x+ ...). .. (329) 

To find the corresponding contribution to the integral van Kampen 41eglects -in 

integrates term by term over 
the ranges. - oo<x< co, - oo<y< oo. The resulting expansion is a power 
series in k-1 beginning with a constant term. For the contribution of a critical 
point of the second kind, van Kampen obtains in an analogous manner a series 
with k-s /z, k -a /z, k-512 and for the contribution of corner points, a power series 
in k -1, in both these cases the constant term .being absent. The total effect is 

then obtained by adding the contribution from each of the critical points. 
The principal term of the final expansion is independent of the wavelength 

and comprises the constant terms of the expansions at critical points of the first 
kind. This part of the solution can be interpreted as a contribution of 

' geometrical optics' taking, however, into account the mutual interference of 

the wave patches arriving at P from the immediate neighbourhood of critical 
points of the first kind. 

The rest of van Kampen's paper ' deals with applications to third order 
aberrations in systems with a circular aperture. He then found for example 
that in the case of astigmatism points of the second kind give rise to an asteroid 
pattern; this pattern was also discussed by Nienhuis (1948). 

Although van Kampen's investigations give some valuable results, his analysis 
c innot be regarded as satisfactory. For example, van Kampen integrates the 
expansions over infinite ranges, a procedure which introduces non -negligible 



The Diffraction Theory of Aberrations log 

errors and in some cases even leads to divergent integrals. To overcome the 
divergence difficulty he uses the well known but mathematically unsatisfactory 
artifice of multiplying the integrand by a term e-° and after integration sets 
43= O. It appears that only the leading terms of van Kampen's expansion have 
any real claim to validity, and these themselves cannot be regarded as having been 
rigorously derived. 

3.24. Images formed by waves on non -uniform amplitude.* 
When studying images which are formed by an instrument of the usual 

design it is as a rule permissible to assume that the waves are of uniform 
amplitude. Several authors have in recent years considered the possibility of 
improving the quality of the image by a suitable variation of the amplitude and 
sometimes also of the phase of the disturbance over the exit pupil. This may 
be realized in practice, for example by evaporating thin films of metallic or 
-dielectric substances on to the lenses or by means of specially constructed filters. 

With the usual approximations, it follows from Huyghens' principle that the 
complex displacement U(x,y) in the receiving plane of a system imaging a point 
source may be written in the form of a double Fourier integral 

+ + 
U(x, y) = J P(p, q)e" cpx +4Y) dp dq, (3.30) 

where P(p, q) is the so- called pupil function (sometimes called transmission 
function), which describes, in terms of the optical direction cosines p and q in 
the image space, the complex displacement over a spherical reference- surface 
centred at x =y =0. The integration is only formally carried out over an infinite 
domain since P is taken as zero when p2 +q2 >pm2, pm being the maximum 
numerical aperture in the image space. In the case of rotational symmetry 
(3.30) may be written as 

U(r) =27r 
Jo P(p)Jo(27rrp)P dp, (3.31) 

where p is the zonal numerical aperture in the image space and r is the distance 
from the 'optical axis in the receiving plane, measured in wavelengths. (The 
symbols r and P now denote different quantities from those in previous sections.) 

Luneberg (1944) considered the case of rotational symmetry and studied 
the effects of variation of amplitude alone. He found that amongst all diffraction 
patterns of equal energy the highest central maximum is given by the normal 
pattern P(p) = constant. In particular, any pattern which gives improved 
resolution must therefore have a lower central maximum. By a variational 
-argument. Luneberg deduced an expression for the pupil function in terms of the 
radius ro of the first dark ring. It appears that for ro<0.31(2ir /po) (i.e. about 

-a half of the radius rA of the first dark ring in the Airy pattern) the resulting 
pattern has a rather low central maximum. 

Luneberg also investigated how to chose P(p) so that the fraction of the total 
illumination 

J 
r° I U(r)12rdr 

L(ro) - °o (3.32) 
JjU(r)12rdr 

o 

* The investigations discussed in this section do not fall under the heading of diffraction theory .of aberrations in the customary sense but are included since they are closely related to the problem of 'optimizing resolution by modifying the waves. 
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which reaches the circle of radius ro<rA is as large as possible. He showed that 
the corresponding pupil function is given as a solution of a certain integral 
equation. He also discussed the resolution of objects of periodic structure and 
found that in this case it is impossible to increase the resolving power by varying 
the amplitude only, but that the contrast of the image may be improved 
considerably by this means. 

Couder (1944) discussed amplitude filters which consist of a plano- concave 
lens filled with an absorbing liquid. The corresponding pupil function is of the 
form P(p) = 10 -ke'. It is perhaps worth noting that Straubel (1902,. 1931) who 
appears to have been the first to study effects of non- uniformity of amplitude on 

resolution also considered pupil functions of this form. Couder found that with 
such a filter it is possible to redistribute the illumination in the diffraction pattern 
so as to facilitate the obsérvation of double stars whose components differ widely 
in brightness. Amplitude filters were also discussed by Lansraux (1946, 1949). 

Boughon, Dossier and Jacquinot (Boughon et al. 1946, Jacquinot et al. 1949) 
considered applications of amplitude variation to spectroscopy. For diffraction 
at a slit (3.31) and (3.32) are replaced by the equations 

+ 
U(x) = JP(x')e211dx1, xx (3.33) 

CO 

J 
r [ U(x) }2 dx 

L(a)- _Tacc, . (3.34) 
J[U(x)Jsdx 

The above authors used the analysis of trigonometrical polynomials to determine 
pupil functions which for a given value of the parameter a make the fraction of 

the total illumination L(a) as large as possible. They also considered distributions 
for which U(x) behaves asymptotically like x-m, m being a positive integer. They 
showed that by the choice of a suitable trigonometric polynomial as pupil function 
the effect of diffraction fringes ca n be reduced, facilitating the detection of 

satellites to bright spectral lines. 
Expansion of pupil functions into series of Hermitian polynomials were 

considered by Duffieux (1946 b). Expansions into series of Legendre polynomials 
were suggested. by Slevogt (1949). 

Lansraux (1947 a, b) discussed the evaluation of the diffraction integral (3.31) 
for cases where P(p) can be expanded in a series of lambda functions 

As(P) = L1 - (P/Pm)98-1- 
cc, 

P(P) = E asAs(P), 
8=1 

(3.35) 

He showed that when (3.36) 

U(P) _ 7rpmti E a828(s -1) ! (2rpm )s) 
(3.37) 

8-1 

Lansraux asserts that for a. small aberration (3.37) is rapidly convergent. That 
this is not necessarily so can be illustrated by considering the simplest aberration, 
namely defocusing, when (3.37) reduces to that solution of Lommel which involves 
the Un series. These series converge rapidly only at points in the geometrical 
shadow (case u/v 1 <1 in §3.1 above). In the direct beam of light even when 

very near focus the series (3.37) is therefore not suitable for computations. 

where the a's are constants 
. co 
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an 
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Hopkins (1949) extended Lommel's analysis to waves of non -uniform. 

amplitude, the non -uniformity considered being of the form a + ß(p /pm)2 where 

a and ß are constants. He obtained a solution in terms of Lommel's original Un 

and Vn functions and certain closely related functions and gave a number of 
intensity distribution curves for out -of -focus patterns. He showed that for 

most ordinary lens systems it is quite justifiable in evaluating the diffraction 

integral to assume the disturbance over the converging waves to be of uniform. 

amplitude. 
Osterberg and Wilkins (1949) studied theoretically the problem of coating 

the exit pupil with light absorbing and refracting materials so as to reduce the 

diameter of the central bright disc in the diffraction pattern. They considered 

pupil functions of the form (3.36) and derived Lansraux' expression very shortly 

by the application of Sonine's integral formula. In some cases choice can be 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
0 04 0.8 1 2 1.6 

Figure 19:- The intensity distribution in diffraction patterns with selected radii r of the first dark 
ring, the central maximum being the highest possible. Curves 2, 3, 4 correspond to. 
r= 0.8r0, 0.75r0 and 0.6ro respectively, where ro denotes the radius of the first dark ring in 
the Airy pattern (curve 1). After Wilkins (1950). 

made of the constants a8 to give pupil functions corresponding to diffraction 
patterns with prescribed properties. As Osterberg and Wilkins point out, 
however, it is not possible to go far in this direction because an arbitrary 
function U(p) cannot, in general, be expressed in series of the type (3.37). The 
resolution of two particles in a bright field by Sonine type microscope objectives 
(microscope objectives for which P(p) is given by (3.36)) was discussed in a paper 
by Osterberg and Wissler (1949). 

Wilkins (1950) showed how to coat the exit pupil so as to obtain for any 
prescribed diameter of the central disc the highest possible central intensity. 
In Figure 19 we reproduce the intensity curves which he obtained for a few 
typical cases. 
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3.25. Other researches. 
In his book L'Intégrale de Fourier et ses Application a l'Optiques and in a series 

of papers, Duffieux (1945 a, b, 1946 b, 1947, 1948) has, partly in collaboration with 
Lansraux (1945), attempted to apply the methods of Fourier transforms to the 
study of Fraunhofer diffraction. * 

We recall that with a suitable interpretation of the variables p, q, x and y the 

complex disturbances P(p, q) in the exit pupil and U(x, y) in the ` pattern at 

infinity ' due to a point source are related by the pair of double Fourier integrals 

U(x,y) = 
J _ J _ P(p, q)e 

i(ir +qv) dp dq, 

(3.38) + + 

co 
P(p q) = J _ J _ V (x,y)ez2`«Px 

+4v) dx dy. 

If the system images an extended incoherent object in which the intensity 
distribution is given by I(x,y), then the corresponding intensity distribution in 

the image is given by + + 
( x'f r Figure )- J _J_I(x)E(x- x',y- y')dx'dy', (3.39) 

th 

where E(x, y) _ U(x, y) 1s. (3.40) A 

By the application of Parseval's theorem, Duffieux and Lansraux (1945) showed 
that the double Fourier transform or the space frequency spectrum T[II(x, y)] 
is connected with that of the object, namely T[I(x, y)], by the relations 

T[II(x,y)] = T[I(x,y)] T[E(x,_v)] =D(p, q) T[I(x,y)] (3.41) + + 
where D(p, q) = E(x', y')e2`r(ilx +04 dx dy. (3.42) 

From (3.41) it follows that D(p, q) may be regarded as a transmission factor which 
characterizes the imaging properties of the system when the object is incoherently 
illuminated. 

For an extended coherent object for which the amplitude distribution is denoted 
by I'(x,y) the intensity distribution II'(x, y) in the image is given by 

+ + 
II'(x,y)= 

J J 
I'(x,y) U(x -x',y- y') dx' dy' (3.43) 

-00 
leading to a relation 

T[II'(x,y)] = T[I' (x, y)]T[U(x, y)] = P(p,q)T[I'(x,y)]. (3.44) 

(3.44) shows that P(p, q) may be regarded as a transmission factor when the 
object is coherently illuminated. 

From D and P Duffieux and Lansraux derived other transmission factors 
which have a bearing on the theory of test objects for optical instruments To one 
such factor d(p), defined by + 

d(p) = 
J 

D(p, q) dq, (3.45) 

is related to resolving power in the image of non- coherent objects. By 

non -rigorous mathematical arguments Duffieux and Lansraux derived a number 
* Additional references to papers dealing mainly with cases where the distribution in the image 

is a function of one variable only will be found in Duffieux (1946 a). 
The existence of a Fourier integral relation between the disturbance over a spherical surface 

filling the exit pupil and the disturbance over its ' focal sphere ' was first pointed out by Michelson 
(1905). 

Figu 

Figure 
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Figure 13. Images in presence of third order spherical aberration of amount '1'max =16,1 at 
marginal focus and at circle of least confusion. After Nienhuis (1948). 

Figure 14. Images in plane bf paraxial focus, 
in presence of third order spherical 
aberration of amounts 4anxax= 17.5x, 8.4.1, 
3.7A, 1.4A. After Nienhuis (1948). 

Figure 15. Images in plane of circle of least 
confusion in presence of third order spherical 
aberration of amounts $max= 17.54, '8.4A, 
3.7A, 1.4A. Scale 3 x as in Figure 14. 

After Nienhuis (1948). 1 
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Figure 16. Images in Gaussian plane in presence of third order coma of amounts 4'max= 0.31, 
1,1, 2.4A, 5A, 10.1,. After Nienhuis, reprinted from Zernike (1948). 

Figure 17. Images in central plane in presence of third order astigmatism of amounts 4'max =1.4A 
2.7A, 3.5A, 6.5A. After Nienhuis, reprinted from Zernike (1948). 
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of relations connecting the various transmission factors and the intensity 
distribution in the image. One of these relations obtained by a formal application 
of Plancherel's theorem connects P with the mo ments of the energy distribution of 
the image. Duffieux (1948) stated that these moments when taken about the 
centre of gravity of the distribution are the sa me for the geometrical and the 
physical image. As has been pointed out by E. H. Linfoot *, Duffieux' analysis 
is rendered invalid by failure to take into account the divergence of certain 

Figure 20. Isophotes in Gaussian plane in presence of third order coma, of amount 4'mas =3.2,1 
After Kingslake (1948). 

Figure 21. Isophotes in Gaussian plane in presence of third order coma, of amount Amax =6.4.1 
After Kingslake (1948). 

integrals ; that the result also is incorrect can easily be seen by considering the 
moments of an error -free image. Several other conclusions of Duffieux are based 
on faulty mathematical arguments and appear to be incorrect. 

Kingslake (1948) investigated the diffraction structure of third order comatic 
images by numerical integrations. He demonstrated that the image is of the size 
and shape determined by ordinary geometrical optics and that the main effect of 
diffraction is to break up the image into an elaborate fine structure of dots and 
lines of light. We give here two of his valuable diagrams (Figures 20 and 21) 
showing the isophotes for coma of fairly large amounts. 

* Math. Rev., 1946, 7, 269; Ibid., 1949, 10, 220. 
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Figure 22. Isophotes in a meridional plane in presence of third order spherical aberration, 
of amount 1max =4A. After Maréchal (1951). 

111%111:17114NINII 

marginal paraxial 

Figure 23, Isophotes in a meridional plane in presence of third order spherical aberration, 
of amount Amax = 6A. After Maréchal (1951). 
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Maréchal (1947b, 1948) designed and constructed a machine for rapid 

evaluation of double integrals of the type occurring in the investigations of 

aberration diffraction effects. To determine the intensity at each point of the 

image, operations taking about 8 -10 minutes are needed. The precision of the 

apparatus is quite adequate for practical purposes, the estimated inaccuracies 

AI being as follows (I =1 at the centre of the Airy pattern) : DI<0.01 when I -1, 
DI<0.003 when DI<0.001 when I -0.01. With the help of this 

ar= io 

Figure 24. Isophotes in presence of third order astigmatism, of amount '5mae = l .5À in central 
plane (upper half), in plane containing a focal line (lower half). After Maréchal (1951). 

integrator Maréchal (1948, 1951) obtained a number of important isophote 
diagrams some of which are showh in Figures 22 -25.* Most of these diagrams 
show the effects of aberrations in the range lA to 10A for which available series 
expansions are not well adapted. The calculations performed with the aid of 
this integrator were also compared by Maréchal with photometric measurements 
of the intensity distribution in actual images; good agreement was found. 

* I am greatly indebted to Dr Maréchal for giving me access to these figures before the 
publication of his own paper. 
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It is well known that in the. approximations of Kirchhoff's scalar theory, the 

disturbance produced by the passage of spherical waves through an aperture 
opening may be regarded as due to the combined effect. of .` geometrical waves' 
and `diffraction. waves' emerging from the aperture edge.* Nienhuis (1948) 

assumed that this result holds (and also that the ` diffraction waves ' possess 

analogous properties) when the incident waves are not strictly spherical- and 

.r=20 

Figure 25. Isophotes in plane of astigmatic focal line, showing combined effect of spherical 
aberration (2A), coma (11) and astigmatism (1A) of third order. After Maréchal (1951). 

applied it to discuss some general features of diffraction images in the presence 
of third order aberrations. 

In the case of astigmatism, Nienhuis showed by a geometrical argument that 
the ` diffraction waves ' from a circular edge give rise to an asteroid pattern. 
This pattern is partly obstructed by the effect of the ' geometrical waves '. Its 

* Ramachandran . (1945) showed that the integral expressing the edge effect can be derived in a 

very simple manner if the variation of the amplitude of the secondary wavelets with direction is 
neglected. This idea was also used by Kathawate (1945) to discuss the effect of diffraction of 
spherical waves at boundaries and obstacles of various forms. 

i Many assertions in Nienhuis' thesis and in other literature give the impression that the trans- 
formation of the diffraction integral into an integral expressing the edge effect and a term expressing 
the geometrical effect has been carried out in the general case, but an examination of the relevant 
papers reveals that the published proofs relate to spherical and plane waves only. 
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shape is in the first approximation independent of the focal setting and is . 

therefore more apparent in a receiving plane through one of the focal lines (see 

Figure 12).* In the presence of coma, rays from opposite points of each aperture 

zone meet the Gaussian plane at the same point. Nienhuis found that the fringe 

structure of the comatic pattern can be ascribed to the interference of these rays, 

in agreement with his observation that the fringes disappear when half of the light 

is blocked out by using a semicircular aperture (Figure 10). For spherical 

aberration Nienhuis found that in the receiving plane through the paraxial focus 

it is mainly the edge effects which determine the structure of the pattern whilst 

in other planes the interference of the `geometrical waves ' plays a considerable 

part. 
In connection with this work it is of interest to note that Durand (1949) 

studied in a comprehensive manner the fringe structure of third order aberration 

Figure 26. Fringe structure of comatic pattern of amount 6'max =8.34. After Durand (1949). 

figures. Though Durand's analysis does not take account of diffraction it has 
many points of contact with the work of Nienhuis. Durand's results may be 
expected to give good approximations to the appearance of the image whenever 
edge effects do not play an important part. This is particularly well illustrated 
by the case of coma (Figure 26). 

Françon (1948 a, b) discussed the effects on the image due to a certain type of 
non -homogeneity in the glass of an objective. He found that in the presence of 
filaments or. veins whose refractive index differs slightly from the bulk of the 
glass, the effects are negligible if the path differences they introduce are less 
than A/8 for p =50, A/6 for p =100 and A/4 for p =200, p being the ratio of the 

* Some of Nienhuis' photographs of diffraction images are also given by Zernike (1948). The 
corresponding values of the aberration constants differ in several cases and some appear to be 
incorrect. In particular it appears that the aberration constants for the first two comatic patterns 
of Figure 16 should be larger. Values of cDmax based on Nienhuis' data are given in Figures 16 
and 17. 
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diameter of the objective to the width of the filament. When one observes two 

neighbouring objects of widely differing brightness the tolerances are much more 

severe. 
Epstein (1949) took up once more the problem treated by Lommel (1885) 

(see § 3.1) and found methods for the numerical evaluation of the associated 
diffraction integral, which possess some advantages over those of Conrady and 

Buxton. 
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Figure 27. 
s 

u= 2Ì f, v= Ï r, 
a= radius of exit pupil, f= focal length, Af =amount of defocusing. 

Contour lines for the fraction of the total illumination inside circles of radius r, centred on 
axis, in receiving planes near focus of spherical waves issuing from a circular aperture 
(a) according to diffraction theory, (b) according to geometrical optics. After Wolf (195e). 

The distribution of the total illumination in out -of -focus images formed by 

spherical waves issuing from a circular aperture was investigated by Wolf (1951). 
He derived expressions for the fraction of the total illumination present inside 
circles of given radii in the receiving plane and applied them to study the 

distribution in a few selected planes near the focus. Wolf also gave a diagram 
(see Figure 27) showing the corresponding chree -dimensional distribution and 

compared it with the prediction of geometrical optics. His results, together with 
those of Lommel, Zernike and Nijboer, provide a mathematical basis for a 

10 20 30 
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quantitative discussion of the imaging properties in optical systems where, 
as for example in a well corrected refracting telescope objective, the chromatic 
variation of focus is the only appreciable aberration. 

Mme. Regnier' (1950) studied the influence of spherical aberration on the 
limiting visibility of Foucault test objects. She used a relation due to Duffieux 
and Lansraux between the pupil function P(p, q), the transmission factor d(p) 
and the limiting visibility, and calculated d(p) for spherical aberration of amounts 
A /4, A /2, 3,1/4, a and for different,forms of exit pupil. The results yield conclusions 
about the dependence of the limiting visibility of test objects on the aberration 
of the objective. 
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In this paper the relationship between the rigorous vector theory and the approximate 
scalar theory is investigated and the usual procedure of calculating the intensity in optical m 
images from a single scalar wave -function is justified. Unlike the earlier discussion of Picht 10 
(1925) the present analysis takes fully into account the polarization and amplitude pro- 
perties which an actual light source and the optical instrument impose upon the radiation 

1e field. 
In the calculations of diffraction images the effect of the non -monochromatic nature of 01 

natural light is usually disregarded. We give an estimate for the maximum wave -length fE 

spread of the source which will give rise to a diffraction pattern that may be calculated from eI 
the single monochromatic wave -function of the scalar theory. 

We find that one of the main reasons for the validity of the scalar theory for wide class of 
optical instruments is the fact that each monochromatic component of the spectrum gives n' 
rise to E and H fields with the property that at any particular instant of time they are ie 
nearly constant over each of the geometrical wave -fronts which are not too close to the 
source or the image region. 

1. INTRODUCTION ti 

According to electromagnetic theory, the light intensity is defined as the time 
average of the energy which crosses per second a unit area which contains the 
electric vector E and the magnetic vector H. Since this energy flow is given by 
the Poynting vector 

S = 4n(EAH), (1.1) 

and since the E and H fields are generally determined from three independent scalar 
wave -functions (e.g. the components of a Hertzian vector), it follows that the 
intensity must also generally be calculated from three scalar wave -functions. It is 
well known, however, that for the purposes of instrumental optics the intensity 
may as a rule be taken as approximately equal to the square of the modulus of 
a single scalar wave -function which is usually identified with a component of one 
of the field vectors E or H or of a Hertzian vector. In spite of the fact that 
practically all diffraction calculations which relate to optical imaging are based on 
such an approximate treatment, no complete justification of this procedure has 
been given. 

t On leave of absence at the Department of Mathematical Physics, University of 
Edinburgh. 
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The only previous investigation which deals with the relation between the 
rigorous theory based on three scalar functions (referred to as vector theory ') and 
the approximate treatment which employs one scalar function (referred to as 

`scalar theory ') appears to be that due to Picht (1925). He identified the single 
wave -function of the scalar theory with a component of the Hertzian vector. 
A scrutiny of his analysis shows, however, that his proof is unsatisfactory and does 
not bring out the essential physical aspects of the problem. In the first place, Picht 
considered only the idealized, strictly monochromatic case; he did not take into 
account the polarization and the amplitude properties which an actual source and 
the optical instrument impose upon the radiation field in the image space. It will 

be evident from the analysis of the present paper that these properties are in fact 
essential for a complete justification of the validity of the scalar theory. Further, 
Picht confined his attention only to points in the image space through which a single 
ray passes; thus he excluded exactly those points which are of the greatest practical 
importance, namely, those in the region of focus. Apart from these considerations 
it must also be pointed out that the scalar function used by Picht is not formally 
equivalent to the scalar function employed by recent writers (cf. review by Wolf 

(1951)). 
In this paper we shall investigate the relation between the two theories and 

justify the use of a single scalar wave -function for the calculation of intensity in 
a wide class of instruments. We find that one of the main reasons for the approximate 
validity of the scalar theory in such cases is the fact that each monochromatic 
component of the spectrum of the source gives rise to E and H fields with the 
property that at any particular instant of time they are nearly constant over each 
of the geometrical wave -fronts which are not too close to the source or the image 
region. 

Owing to the generality of the problem, our arguments are of necessity of 
a qualitative rather than of a quantitative nature; in any particular case the errors 
involved can, however, be estimated. In the last section we give an estimate for the 
maximum wave -length spread of the source that will give rise to a diffraction 
pattern which may be calculated from a single monochromatic wave -function of 
the scalar theory. 

2. PRELIM:NARY CONSIDERATIONS 

We consider a symmetrical-optical system with a point source at .Q0 (figure 1) 

emitting natural, nearly monochromatic light of angular frequency coo. At Q0 we 
choose a set of rectangular Cartesian axes (x1, x2, x3) with the x3 direction along the 
principal ray. The source may be regarded as a dipole of moment P(t) which varies 
both in magnitude and direction with time t. The components of P(t) in the three 
directions will be written in the form of Fourier integrals, 

Pi(t) = v(270 r ±copi(w)expjack) (j = 1, 2, 3). (2.1) 

Since P(t) is real it follows that the complex quantities pi(t) satisfy the relations 

pl((o) =p5(-(0), (2.2) 
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where the asterisk denotes the complex conjugate. Consequently (2.1) can be 
written as / 

Pi(t) _ . /_ f opi(w)expiwtdw (j = 1,2,3), (2.3) 

. denoting the real part. 
NNN J 

i 

plane of entry pupil 
FIGURE 1 

W.'S2 z W 
; 

plane of exit pupil 

01 

Wo denote by p;(w) I and SO) the amplitude and the phase df p;(w), 

AN) = pi(w) I expi8;(w). (2.4) 

Since the source is assumed to emit nearly monochromatic light the modulus 

Pi(w) I 

will, for each j, differ appreciably from zero only within a narrow interval 
(wo - ¡Ow, wo + +O(o). The assumption that the light is natural implies that Si(w) are 
rapidly and irregularly varying functions over the w range (cf. Planck 190o). 

For a fixed j, the typical monochromatic component 

. {p;(w)expiwt} = pi(w) I cos [cot +S ;(w)] (2.5) 

may be regarded as representing a Hertzian oscillator with its axis along the 
x; direction, giving rise to linearly polarized monochromatic light of frequency w. 

The superposition of these components in (2.3) leads to the vector P(t) whose 
dependence on t is of complicated character; in consequence, no matter how small 
zw may be, the resultant field will no longer be polarized. 

We shall assume throughout that the inclinations to the axis of the rays which 
pass through the instrument' are not large, say not more than 10° or 15 °. This 
condition is satisfied by a wide class of optical instruments. (In most telescopes, 
for example, the maximum inclination does not exceed 3 °.) 

3. THE FIELD PRODUCED BY A SINGLE MONOCHROMATIC OSCTT.T.ATOR 

3.1. Since the electromagnetic field due to the actual light source may be regarded 
as a superposition of strictly monochromatic fields, it will be convenient to examine 
first the contributions to the E and H vectors arising from a typical Hertzian 
oscillator at Qo with sharp frequency w. As the field of such an oscillator is weak in 
the neighbourhood of its axis, and as we assume that the angles which the diameters 
of the entry pupil subtend at Q0 are small, it follows that only the components P1(t) 
and P2(t) of P(t) will substantially contribute to the field. We shall therefore take as 
our typical oscillator one which has its axis in the x1x2 plane.¡ 

t This choice is of importance. The main conclusion of the present section holds only for 
fields produced by oscillators which have their axes almost at right angle to the principal ray. 
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Let a{p(w) Po (6)) exp iwt} (3.1) 

be the moment of this typical dipole, Po(co) being a unit vector in the direction of its 
axis. Such a dipole will produce at a point T in vacuo, whose distance from Q0 is 

large compared to the wave -length A = 27rc /w, a field given by (cf. Joos 194.7, p. 325) 

E. _ °..P4, IP(w) I ro A[Po(w)Aro]expi[w(t- r /c) +8(cu)], 

2 H = 
c 

I p(w) I ro^Po(w)exp /e) +s(w)], 

(3.2) 

where ro denotes the unit vector along the line Q0T. 
Let W. denote a typical wave -front in the object space (the refractive index of 

which is assumed to be unity) at distance from Q0 which is large compared to the 
wave -length. Since we assume that the angles which the rays make with the axis 
of the system are small, it follows immediately from (3.2) that at any particular 
instant of time the vectors E. and H0 do not vary appreciably in magnitude and 
direction over W. (For any given case the actual variation can be calculated 
without difficulty from (3.2).) 

The effect of the first surface-[ Si on the field is twofold. $ First, the amplitudes 
of the field vectors are diminished on account of reflexion losses; secondly, the 
planes of polarization are rotated. Fresnel's formulae show that both these effects 
depend mainly on the magnitudes of the angle of incidence. If this angle is small 
(say 10° or so), reflexion losses are also small (^t 5 %) and the rotations of the planes 
of polarization do not exceed a few degrees (cf. Born 1933, p. 34). Moreover, these 
effects are practically uniform over Si. Since the instantaneous values of E. and 
H. do not vary appreciably over the wave -front IV/ they will consequently not vary 
appreciably over the wave -front Wí which immediately follows the surface Si (see 
figure 1). The same applies to the behaviour of the two fields over any other wave - 
front in the space between SI and the second surface 82. For, in the first place, as 
Friedlander (1947) showed, in a homogeneous medium the polarization along each 
ray remains constant. Secondly, since the wave -fronts are nearly spherical (centred 
on the Gaussian image of Q0 by the first surface), the amplitudes will be diminished 
almost in the ratio of their paraxial radii of curvature. 

Repeating these arguments we finally arrive at a wave-front W which passes 
through the centre C of the exit pupil (figure 1) and find again that the instantaneous 
values of E. and H. do not vary appreciably over it. With the help of this result we 
shall now be able to give a mathematical representation for the field vectors in the 
region of the image. 

3.2. We choose a system of rectangular Cartesian axes (x, y, z) with origin at the 
Gaussian image point Q1 of Q0 formed by light of wave- leiígth Ao = 2irc /coo and with 

-j- We assume here that Si. is a refracting surface. If Sl is a mirror, no essential modifications 
of our argument are necessary as is seen by inspection of Fresnel's formulae. 

$ In ordinary optical systems absorption losses can be neglected. In regent years attempts 
have been made to improve the quality of the image by the introduction of artificial absorbing 
layers (cf. Osterberg & Wilkins 1949) or of special absorling filters (cf. Couder 1.944). Such 
special systems would require a more refined investigation and will not be considered here. 
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the z direction along the principal ray CQ,. The field at all points except those in the 
immediate neighbourhood of the geometrical shadow can be approximately 
expressed in the form{- (cf. Friedlander 1947) 

2 

y, z, t) = ° ew(x, y, z) exp i[w t -f(x, y, z)) + 8(w)1, 

2 // 

H,(x,y,z,t) = z)expi[wlt--c f.,(x,y,z))+S(w)] 
(3.3) 

Here f0(x, y, z) is the optical length from the object point to the point. (x, y, z) and 
e,,,(x, y, z) and 11,,,(x, y, z) are mutually orthogonal real vectors. In a homogeneous 
medium of refractive index n, these vectors satisfy the relation 

Ih0I =ne,,I (3.4) 

We take a reference sphere E centred on Q1 which passes through the centre C of 
the exit pupil (figure 2). We denote by R the radius CQ1 of this sphere. In practice 
the distance, measured along a ray, between E and the wave front W will at no 
point of W exceed more than a few dozen wave -lengths. Consequently on E just 
as on W the vectors eo, and h. will be practically constant in magnitude and 
direction. 

Let Q(X, Y, Z) be. a point in the region of the image where the intensity is to be 
determined If the angles which the diameters of the exit pupil subtend at Q are 
small, we may apply Kirchhoff's formula with the usual approximations and find 
on integrating (3.3) over that part E' of E which fills approximately the exit pupil,$ 

3 

EdX, Y, Z, t) 
21ric3 

exp i[wt + 8(w)] 

x J J E s em(x',y' , z') exp l - IC [fu,(x ,y.' , z') + 
J 

s] } d0'', 
l 

3 

H,(X, Y, Z, t) 
27ric3 

exp i[wt + 8(4))] 

x ff- E s hu,(x', 
y', z') exp 1=1C [fi(x',y' , z') + 

(3.5) 

where s = s(x', y', z', X, Y, Z) denotes the distances from a typical point of the 
reference sphere to Q. 

Since the vectors eo,(x',y' , z') and h0(x',y' , z') do not vary appreciably over the 
surface of integration we may replace them, without introducing appreciable errors, 
by the values e0(0, 0, -R), and hß,(0, 0, -R) which they take at the centre C of the 

t Our equations differ from Friedlander's by the presence of the factor (w$ /e2) exp i 8(w) and 
the omission of higher -order terms. This factor suggested by the comparison with (3-2) is 
unimportant for Friedlander's analysis but has to be included in our present formulae in 
view of the subsequent integration over the w band. 

$ In our choice of the surface of integration we have followed recent writers (e.g. Nijboer 
1947). We could, alternatively, have performed the integration directly over the wave -front 
W or over the exit pupil. 
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exit'pupil. Since these vectors are mutually orthogonal and satisfy (3.4), we may 
set, if in addition we take n = 1, 

e0(0, 0, - R) = a(w) a(4l 
hß,(0, 0, -R) = a(e)ß(w),J` 

where a(co) and ß(co) are unit mutually orthogonal vectors in the plane perpendicular 
to the z direction. (3.5) then becomes 

(3.6) 

E,(g,Y , Z, t) = uo,(X, Y, Z) a(co) a(o)) eáp i{cot + S(e))}, 

,Y , Z, t) = c u(%, Y, Z) a(w) ß(co) exp i{mt + S(w)}, 

u., denoting the scalar wave- function 

co 1 
u,(g, Y, Z) 2ricJ ,1 

s exp {-1 y', z') + s]} d'. 
E I 

FIGURE 2 

(3.7) 

(3.8) 

From (3.7) one can immediately show by calculating the Poynting vector 

= 
4n 

[E.AH.] and taking the time average, that the intensity at the point 

Q(á, Y, Z) due to the single dipole (3.1) at Q0 is proportional to the square of the 
modulus of the scalar wave -function uß,(á, Y, Z). For a full justification of the 
validity of the scalar theory we must; however, carry out the time averaging not 
for the monochromatic field but for the total field produced by the actual light 
source. This will be done in the next section with the help of the results which we 
have just derived. 

4. THE TOTAL FIELD IN THE IMAGE REGION 

We saw that the contributions of each frequency component to the total field 
may be regarded as arising essentially from two dipoles at Q0 with their axes along 
the x1 and x2 directions respectively. Hence it follows from (2.3) and (3.7) that the 
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total field in the image region, due to a point source of natural light at P0, may be 
expressed approximately in the form 

E(X,Y,Z,t) _ 
/2 r 

N/Joc 
x [al(w)al(o))expiS1(cv)+a2(ce)a2(co)expiS2(cv)]egpiwtdco, 

H(X,Y,Z,t) 
= N Jo c2u,(g,Y,Z) 

x [a1(ù) 131(w) exp i 41(w) + a2(w) 132(w) exp i S2(w)] exp iwtdw. 

(4.1) 

Here suffixes 1 and 2 refer to the contributions from oscillators which have their 
axes along the x1 and x2 directions. 

In order to determine the intensity at a typical point in the image region it will 
be convenient to write down separate expressions for each of the Cartesian com- 
ponents of E and H. Let 01(a) and 02(ù) denote the angles which the unit vectors 
a1(ù) and a2(ù) make respectively with the x direction in the image space. Since 
a1(ù) and ß1(w) (and a2(a) and ß2(ù)) are real, mutually orthogonal vectors which 
lie in a plane perpendicular to the z direction, it follows from (4.1) that the com- 
ponents of E and H are approximately given byt 

Ex(X, Y, Z, t) = Hr(X,Y , Z, t) = 4/-2 
o 

uo,(X, Y, Z) f (co) exp icotdw, 

E(X,Y,Z,t) = -Hx(X,Y,Z,t) = lj-2 ou,(X,Y,Z)g(w)expi cot dw, 

EZ(X, Y, Z, t) = HZ(X, Y, Z, t) = 0, 

a 

where f (e) = 
C2 

[a1(ù) cos 01(w) exp'i S1(ù) + a2(w) cos 02(w) exp i S2(ù)], 

g(w) = -2 [a1(ù) sin 01(ù) exp i81(w) + a2(w) sin 02(6)) exp i42(ù)]. 

For our subsequent analysis it will be convenient to express the right -hand sides in 
(4.2) as complete Fourier integrals over the range from -oo to +co. This can be 
done immediately by defining the functions u,f and g for negative e by means of 
the relations 

(4.2) 

(4.3) 

f(-w) =f*(ù), 

g(-ù) = g*(w), 

u,(X, Y, Z) = u*(X,Y, Z). 

(4.4) 

t It would be incorrect to conclude from (4.2) that the direction of the energy flow in the 
image region is everywhere parallel to z. For the relative errors in (4.2) may substantially 
affect the calculations of direction in regions where the intensity is small, e.g. in the neighbour- 
hood of the dark rings in the Airy pattern. 
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(4.2) can then be rewritten in the equivalent 'form 

Ex(%,Y,Z,t) = Hy(g,Y,Z,t) = v(2)fI 0(X, Y, Z)f(&i) exp i cutde, 

f°'ux, E(á, Y, Z, t) H(g, Y, Z, t) ,Y , Z) g(w) exp iwtdw, 

EQ(á, Y, Z, t) = H$(g, Y, Z, t) = O. 

From (4.5) (or (4.2)) it follows that the modulus of the Poynting vector 

5=477.[EnH] 

can be approximately expressed in the form 

I S I= L [Ex + Et] = 4r [Hx + Ht]: 

(4.5) 

(4.6)' 

To obtain the required expression for the intensity, we must ,calculate the 
average of I S I over a time interval which is large compared to the period ro = 27r/coo. 

This calculation can conveniently be carried out by means of the elegant method of 
Born & Jordan (1925) j- (also Born 1951, p. 407). 

We consider the radiation field only within a time interval 0 5 t T where T>r0, 
and assume that E = H = 0 fort > T. This assumption involves no loss of generality, 
since for natural light the wave trains may be regarded as statistically independent 
over time intervals which are large compared to the period ro. It then follows from 
(4.5) by the Fourier inversion formula that 

T 
u,,,(g, Y,. Z) f (w) _ 

V(270 J o 
Ex(%,Y , Z, t) exp ( -i wt) dt, (4.7) 

with similar expressions involving the other field components. 
On the assumption that the electromagnetic field is stationary, the intensity 

I (X, Y, Z) can now be calculated easily by averaging over the time interval 0 t T . 
Equation (4.6) gives 

1 T I(X,Y,Z) f 
TJoISIdi 

T 
ro 1 [El +Eÿ] dt. 

In order to evaluate this integral we write with the help of (4.5), 

J o 
STE Ex dt - ( 2rr) 

dtf+c° uj(w) exp i wt dw. 

(4.8) 

(4.9) 

t Alternatively, this could be done by the somewhat lengthy method used by Planck 
(1900) in his classical paper on black -body radiation. 
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On changing the order of integration in the last expression we obtain 

Similarly, 

JT 
Exdt=J± 

ud(w)dwV(2u)f oE 
expiwtdt, 

o 

+ 
= u,,,f(cv)u*f, *dco (by (4.7) and (4.4)) 

_03 

= 
2E1 1 u 12 I.f0012 dw. 

0 

fTE2dt= 
2fo I 

u6, I2 i 9(w) I2 dw. (4.10) 

On substituting from the last two equations into (4.8) we find 

I(X,Y,Z) = 2rT,l o I u0(X,Y,Z) I2[If(w) I2 +I9(e) I2]dw. (4.11) 

This expression contains the scalar wave -function u(x, y, z) under the integral 
sign. Since in the scalar theory this function characterizes the diffraction pattern, 
we must consider more closely the manner in which it depends on co. This is done in 
the appendix. It is shown there (A 16) that 

I 
u. I satisfies the relation 

I 
u. I= I 

u.o 
I 

w wo 
(4.12) 

whenever the frequency spread of the source (i.e. the frequency range over which 
I p j(w) I (j = 1, 2, 3) differ substantially from zero), fulfils the condition (A 14): 

.I Act) l I AA. I< O{ 
l 
1. 6 x 10-2[0.61B+ I Z I +max. 

wo Ao Ao A0- lxo (4.13) 

Here V denotes the aberration of the wave in the exit pupil and max. denotes 
maximum on E'. B (which is of order 1 in most practical cases) gives in suitable 
units the distance of the point of observation Q(X, Y, Z) from the principal ray. 

Whenever (4.13) is satisfied, the expression (4.11) for the intensity may be 
written with the help of (4.12) in the form 

"(X, Y, Z) = I u(X, Y, Z) 12 
2irwc2 T o 

°3 w2[I f(w) I2+ 19(w) I2] dw. (4.14) 

Clearly the term (4.15) 
2mwcoT 

o 

which is independent of (X, Y, Z), must also be independent of T (which is implicitly 
contained in f and g on account of (4.7)) if a stationary phenomenon is observed. 
Hence (4.15) must be a constant (C, say), and the intensity,may therefore be finally 
written in the form 

I(X, Y, Z) = C I u o(X, Y, Z) I2, (4.16) 
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where, as before, u0 denotes the scalar wave- function 

uo,(X, Y, Z) _ 
J J 

l exp _ [fu,(x'y'z') + s] j d. 
27ric E s C 

lJJ 

(4.17) 

Equation (4.16) establishes the approximate validity of the scalar diffraction 
theory and justifies, under the restrictions mentioned, the use of the single scalar 
function (4.17) in the calculation of intensity. 

APPENDIX. BEHAVIOUR OF THE SCALAR WAVE -FUNCTION u41 

OVER THE FREQUENCY BAND 

From (4.17) we see that the behaviour of u., depends essentially on the exponent 
{ -i(e /c) (1+ s)} which in general varies over the domain of integration. The 
variation is, however, small compared with the actual value of the exponent. This 
suggests that we should separate the exponent into two parts, one of which remains 
constant during the integration. To do this we rewrite f0 in the form 

f,,(x',y',z') = do +V(x',y',z'), (Al) 

where do denotes the optical distance for light of wave -length A0 from the source 
Q0 to the centre C of the exit pupil. Since in an error -free system the optical distance 
from Q0 to each point of the reference sphere is the same, it follows that V.(x', y', z') 
may be hiterpreted as the total aberration (i.e. the monochromatic wave aberration 
plus colour error) at the typical point (x', y', z') of the reference sphere. With the 
help of (A1) uw may be written in the form 

2ric 
[ to I 

uo,(X,Y,Z) _ exp- (do+V+s) do'. (A 2) 

We next set X = p cos , x' = p' cos çi', 

Y= p sin 0, y' =p'sin 
r 

so that p and p' denote respectively the geometrical distances of the point of 
observation Q and of a typical point Q' on E' from the principal ray. We then find 
by simple calculation (cf. Nijboer 1947, p. 611) that 

s= R+ifr, (A4) 

where R is the radius 

(of 

the reference sphere and 

[1- 2(R)2]Z +P 2R 2 
RCO(! ')_ 

Hence (A 2) may be written in the form 

u0(X,Y,Z) = 2rricvw(X,Y,Z)exp[ -1-c- do +R), (A6) 

(A 3) 

where 

(A 5) 

v.(X,Y, Z) =ff -1 exp 
E-s c 

(A 7) 
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Clearly vG1 will remain substantially independent of w over the frequency range 

(wo - ¡Ow, coo + ¡Ow) provided that the term - 
c 

(0. +V°,) in the exponent does not vary 

by more than a few units per cent as w takes on different values in the range, whilst 
X, Y, Z and x', y', z' are kept fixed. 

We have, on expanding the exponent into a power series round coo and on 
neglecting terms above the first power in (w - coo), 

V°,)= +V.°)+w cw°[lf+v.°+wo1V°,) ] \\\ m° 

The above condition can therefore be written as 

2c l*+V0+w0 \aw 
I/°, 

0 

A 
100' 

(A 8) 

(A9) 

where A is a constant of the order unity and expresses as a percentage the maximum 
permissible variation of the exponent. We next substitute for *from (A 5) and obtain 

Ato 

2c 
[i_()2]z+P2+Z2 

¡ 

2 B 
cos(-') FV,°{ wola)° 

We can replace (A 10) by the weaker condition 

2IDwI[1 
+1 a)2J 

IZI +p22R 2 +R +max. V°,°+wo l a 
\ w0 

'< 00. 
(A10) 

1 

ÓO' 
(A 1) 

where a denotes the radius of the exit pupil and max. denotes the maximum value 
on the reference sphere E'. 

In (A 11) we can evidently neglect the term ¡(a /R)2 which will in practice be small 
compared to unity and also the term (p2 +Z2) /2R which will be small compared to 
ap/R. p will as a rule be of the order of the resolution of the system, i.e. 

1 
A=B 

0.61R 
a ° 

where B is a quantity of order unity. j' (A 11) can therefore be written as 

l IowI¡IZI+O.61B,to+max. 
2 c l 

V°,°+wo 
A 

)<100' 

or finally, from (A 13), remembering that w = 2lrc /A and that A is of order unity 
(we actually take A = 5), - 

I _ 16'À I <0 2[0.61B +IZI +max. 
¡ y v -1a 

Ao `aA,A0 
. (A14) 

wo 
{1.6x10- 

Ao L Ao 

Here AA denotes the variation in the wave- length associated with the variation 
Ow in the frequency. 

t B may be interpreted as giving the distance of the point Q(X, Y, Z) of observation from 
the principal ray, when the unit of length is taken to be the radius of the first dark ring in 
the Airy pattern for wave -length A0, in an error free system of the same focal ratio and focal 
length. 
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Equation (A 14) provides a rough measure for the wave -length spread Over which 
vo,(X, Y, Z) may be regarded as practically independent of w. In any practical case 

the quantity max. (-a,v,.) can be estimated from a ray trace or from power 
V o Ao 

se ries expansions for the aberration function V; Z andB will be given by the position 
of the point of observation Q. As an example, let us consider the diffraction pattern 
within the circular region round Q1, of radius equal to four times the radius of the 
first Airy ring (B = 4), in the plane Z = 0, of a reflecting system (ay /aíí = 0) for 
which the maximum aberration does not exceed 204 (max. I V /Ao I = 20). (A 14) 

shows that in this case v will not vary by more than a few units per cent provided 

AA <0(7 x 10-4). 

Using (A 6) we now find that whenever (A 14) is satisfied, u0 may be written in 
the form l 

Y, Z) 
27ric 

[v.,. (X, Y, Z)] exp { -1c (do + R) } . (A15) 

Hence in such a case u0, /co is practically independant of w over the interval 
(No -Ow, wo + +Ow), and therefore in this interval u satisfies the relation 

I u0(X,Y,Z) 
I 

I UWW(X,Y, Z) 
w wo 

(A 16) 
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A new characteristic function is introduced which enables an immediate determination of the departures of 
imaging pencils of rays from homocentricity as well as of the deformations of the associated wave fronts from 
spherical form. This function is therefore well suited for investigations of aberration effects on the basis of 
geometrical optics or of diffraction theory. 

Within the approximations of fourth -order theory, the new function is closely related to the Seidel eikonal 
of Schwarzschild, but unlike the latter it is defined in simple physical terms and is applicable whether the 
imaging of a point object or of an extended object is under investigation. The series development of this 
function is carried out in detail up to fourth order. 

I. INTRODIICTION 

THE term "aberration" is used in optics to de- 
scribe either the lack of homocentricity in a 

pencil of rays or the deviation of a wave surface from 
a spherical form. Either of these notions can form a 
starting point for investigations into the imaging 
qualities of optical instruments. Although there exists 
a close connection betwéen the different treatments, 
those based on the concept of a wave aberration have 
become increasingly more favored in recent years. One 
of the main reasons for this development is undoubtedly 
the fact that the concept of a wave aberration can be 
usefully employed in investigations within the domain 
of geometrical optics as well as that of diffraction 
theory. 

An elegant geometrical optical analysis dealing with 
ray aberrations only was carried out by Schwarzschild.l,2 
Although Schwarzschild's main results do not go much 
beyond those obtained by Seidel in his classical papers, 
Schwarzschild's analysis is of great importance since it 
enables a rigorous and systematic separation into orders 
of the various terms that contribute to the ray aberra- 
tions. In his investigations Schwarzschild used Hamil- 
ton's method of characteristic functions. He introduced 
a new function, the so -called Seidel eikonal, of which the 
derivatives with respect to suitably chosen variables 
gave the deviations from the Gauss image point of the 
ray intersections with the image plane. Though very 
powerful, Schwarzschild's treatment possesses the dis- 
advantage that it is based on a function for which no 
simple interpretation can be given in physical terms. 
Similar criticism may also be raised against later treat- 
ments by other authors, in which the variables them- 
selves are defined by means of complicated and often 
rather clumsy expressions. 

Investigations of the image defects based on the 
notion of the wave aberration were carried out chiefly 

' K. Schwarzschild, Astron. Mitt. Köngl. Sternwarte, Göttingen, 
9, (1905). 

2A detailed account of Schwarzschild's investigations will also 
be found in M. Born, Optik (Verlag. Julius Springer, Berlin, 
1933). An extension of Schwarzschild's analysis to nonsymmetrical 
systems was made by G. D. Rabinovich, Akad. Nauk. SSSR, 
Zhurnal Eksper. Teor. Fiz. 16, 161 (1946). 

by Nijboer3.4 and Hopkins.b These authors use certain 
aberration functions that measure directly the deviation 
of the waves from spherical form. It is evident that these 
functions must also be closely related to Hamilton's 
characteristics; this relationship has so far, however, 
not been studied in the literature. 

In the present paper we introduce a new generalized 
aberration function, which we call the aberration char- 
acteristic, and discuss its main properties. We show 
that from it the departures of the imaging pencils of 
rays from homocentricity (the ray aberrations) as well 
as the deformations of the associated wave fronts from 
spherical form (the wave aberrations) can immediately 
be determined. In Sec. III we investigate the form of 
this function up to fourth order for any centered system. 
We find that of its six fourth -order coefficients, five are 
simple multiples of the Seidel sums (representing pri- 
mary spherical aberration, coma, astigmatism, curva- 
ture, and field distortion) and that the remaining fourth - 
order coefficient is closely related to the coefficient that 
represents the spherical aberration of the center of 
the pupil. 

The new aberration characteristic possesses several 
advantages over the functions used by earlier authors. 
For example, unlike the Seidel eikonal, it is defined in 
simple physical terms. Further, unlike the aberration 
functions of Nijboer and Hopkins, the aberration char- 
acteristic is immediately applicable in investigations 
concerned with the imaging of point -as well as of 
extended -objects. It can be applied to centered sys- 
tems consisting of spheric or aspheric surfaces and can 
be used in researches carried out on the basis of geo- 
metrical optics or of diffraction theory. 

II. THE ABERRATION CHARACTERISTIC 

We consider a rotationally symmetrical optical sys- 
tem. We denote by Po a typical point of the object plane 
(assumed for the moment to be at finite distance) and 
by Po', P1', and Pi the points of intersection of a ray 
from Po with the entry pupil, the exit pupil, and the 

8 B. R. A. Nijboer, Physica 10, 679 (1943). 
4 B. R. A. Nijboer, Physics, 13, 605 (1947). 
5H. H. Hopkins, Wave Theory of Aberrations (Oxford, Clarendon 

Press, 1950). 
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Fro. 1. Object, image, and pupil planes. 

Gaussian image plane, respectively (Fig. 1). At the 
axial point of each of these planes we take mutually 
parallel Cartesian axes, the Z directions being taken 
along the axis of the system. 

Let Pi* be the Gaussian image of Po ; then (P1 *Pi) 
will be called the aberration of the ray which passes 
through P1'. Except in the special case where P1 is a 
stigmatic image of Po, the wave fronts in the image 
space associated with the bundle of rays from Po will 
deviate from spherical form. To describe these wave 
deviations we introduce a spherical reference surface 
centered at the Gaussian image point Pi* and passing 
through the center Oi' of the exit pupil.. We call this 
surface the Gaussian reference sphere. 

Let Q and S, respectively, be the points of intersec- 
tion of the ray with the wave front through 01' and 
with the Gaussian reference sphere (see Fig. 2, where for 
simplicity the relevant points and lines are shown as 
coplanar); then (QS) will be called the aberration of the 
wave element at Q. 

We define, the new aberration characteristic NY(X0, Yo, 

X, Y) as the optical length of the actual ray, from Po 
to S: 

`y(X0, Yo, X, Y) = [POS], (1) 

where (Xo, Yo) and (X, Y) denote the coordinates of Po 
and of S, respectively, and the square bracket denotes 
optical length. 

We first show that from the knowledge of this func- 
tion we can immediately determine the aberration 
ß(X0, Yo, X, Y)= (QS) (measured as positive in Fig. 2) 
of the wave element at Q4 We have 

ß(X0, Yo, X, Y)= (Qs)= (1 /ni) {[PoS]-[PoQ] } (2) 

But, since Q lies on the wave front through Oi', 

[PoQ]= [Po01'] (3) 

so that 

43.(X0, Yo, X, Y) = (1/ni) { [PoS]- [PoOt']}, (4) 

$ n143, where n1 denotes the refractive index of the image space, 
is essentially the W function of Hopkins (see reference 5), but is 
expressed in terms of coordinates taken in different planes. Up to 
fourth order 4; may also be identified with the aberration function 
V of Nijboer. (See reference 3.) 

or, in terms-of 1,, 

cI3(Xo, Yo, X, Y)= (1 /ni) {'Y(Xo, Yo, X, Y) 

`I'(X0, Yo, 0, 0)). (5) 

This simple relation expresses the wave aberration in 
terms of the aberration characteristic. 

Next we show that from the knowledge of NI, we can 
also easily determine the ray aberrations. In order to 
see clearly the degree of accuracy of our expressions it 
will be convenient to introduce a quantity§ m.. defined by 

µ= I ai /Mi I , (6) 

where al denotes the radius of the exit pupil and M1 
(taken as negative, in accordance with Schwarzschild's 
notation) is the distance between the exit pupil and the 
Gaussian image plane.µ will be regarded as a small 
quantity of the first order. 

If X, , Z are the coordinates, referred to axes at 01', 
of the typical point Q on the wave front through Oi 'and 
if T denotes the point of intersection of the line QP1* 
with the Gaussian reference sphere, then (see Fig. 3) 

(QP)1*2= (RI+(QT))2, 

i.e., 

L (X-X1*)2-}- (Y- Yi*)2-I- (Z-{-Ml)2= {Rl-r (QT)}2, (7) 

where 

1 R1= /M12+Xi*2+ Yl*z) }= -M1--(X1*2-¡- Y1*2) 
\ 

2M1 
f 

1 

+8M18(X 
i*2+Y1*2)2-i- 0(M11.e) (8) 

is the radius of the Gaussian reference sphere. 
Now (QT)= 0(Miµ') so that Eq. (7) becomes, on 

neglecting the term in (QT)2, 

X°+ 2+Z2 -2 (ÎX1 * -}- Y1 * -ZM1) 
-2R1(QT)+O(M12µe) = O. ' (9) 

In Eq. (9) we may replace (QT) by ß(X0, Yo, X, Y) 
without changing the error term. We then obtain the 

p 

o 

i 

FIG. 2. Definition of aberrations. 

§ The use of such a quantity to make visible the order of ac- 
curacy is due to J. L. Synge, J. Opt. Soc. Am. 33, 129 (1943). The 
great usefulness of such an artifice has been first fully recognized 
by E. H. Linfoot, who applied it in a number of papers concerning 
the aberration theory of the Schmidt camera [e.g. E. H. Linfoot, 
Monthly Notices Roy. Astron. Soc. 109, 279 (1949)]. 
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following approximate equation for the wave front: 
g2+172+ Zz -2 (X X 1 *+ Y 1 * -M 1Z) 

- 2R14'(X0, Yo, X, Y)+O(M12µe) =0. (10) 

Now X= +(M1117), Y= +0(M1µ') so that the 
direction cosines of the ray QP1 are, with inaccuracies 
0(M10, in the ratios 

X- X1 * -R1 X/ :C- Y1 * -Rla\ 
aY 

(Z+M1). (11) 

The coordinates (X1, Y1) of Pi are therefore given, with 
errors 0(M1µ7) 

Xl-X 
by the equations 

X-X1*-R1(a(1)/aX) 

whence 

Y1- 
_ - 1, 

-Y1*-R1(acr/aY) 

a5ë(Xo, Yo, X, Y) 

+ Xl-X1*=R1 
0(M1µ7), ax 

acXo, Yo, X, Y) 
Y1- Yl*=R1 +0(M047). 

aY 

Finally, using Eq. (5) and writing 

OX1= Xi- X1*, D111=Y1-171*, 

(12) 

(13) 

(14) 

it follows that the ray aberration components are given by 

R1 a a 
¿Xi+iDY1 =- -+i -) &(Xo, Yo, X, Y) 

nl ax a 

+(1 +i)0(M1µ7), (15) 

where to the same degree of accuracy we may replace 
R1 by -M1- (1/2M1) (X 1*2+ Y1*2). 

On account of symmetry, the four variables enter 
and NY only in the combinations of X02+ Y 2, X0X 

--YoY, and X2+ r. If then we introduce polar co- 
ordinates 

X= p cose, 

Y= p sinO, 

Xo=r cosx, 

Yo =r sinX, 
(16) 

and set cp= 0- X, the aberration characteristic becomes 
a function of the three rotational invariants p2, r2 and 
pr cosy, only, and the two fundamental equations (5) 
and (15) for the wave aberrations and the ray aberra- 
tions can be written asj 

Cr, p, 50)= (1 /n1) {4r(r, p, 50) - (r, 0, 0)) (17) 

II It is sometimes desirable to determine the deviation of the 
wave surface from a surface other than the Gaussian sphere. This 
can be done by adding to the aberration characteristic terms which 
represent the distance between the Gaussian reference sphere And 

GAL/SS /AN 

REFERENCE SPNERE 

and 

(GAUSS/AN 
/NAGE PO/NT) 

Fio. 3. Computation of aberrations. 

R1 
AX1+i0Y1=-estx-t-w) 

n1 

X[a i a 
-d- J'(r, p, 50)- Feill40(MiA7). (18) 
a p a 

We observe that because of the error term the simple 
relations of the form (13) secure, in general, an order - 
to -order correlation between the wave aberrations and 
the ray aberration up to sixth order only. This fact 
appears to have escaped the attention of earlier authors. 

The aberration characteristic is particularly suited 
for investigations of imaging properties on the basis of 
diffraction theory. Since the phase difference between a 
typical point S on the reference sphere and the object 
point Po is (27/a)'(Xo, Yo, X, Y), where X denotes the 
wavelength, it fellows, by the usual application of 
Huygens -Fresnel principle and with the usual approxi- 
mations, that the disturbance Up at a point P in the 
neighborhood of the Gaussian focus P1* due to a point 
object Po is given by 

ff expik[¢(rp, V)+n1Ri ] 
uP=constant g(p,r,lp) do-. 

E R1Ri 
(19) 

Here g(r, p, co) is an amplitude factor, which in most 
cases can be replaced by a constant R1'=(SP) and 
k= 27/X. The integration is carried out over that part 

of the Gaussian reference sphere which approximately 
fills the exit pupil. In practice, however, it will as a 
rule be permissible to set d r= pdpdço and integrate over 
0<p<a, 0<lp<27r. 
Ìf we wish to investigate the imaging of an extended 

object, the total effect at P can be Obtained from 
Eq. (19) by taking into account its coherence proper- 
ties° and integrating over it. 

The aberration characteristic 'Y is only defined when 
the object is at a finite distance. In the special case 

the actual comparison sphere. Such modifications are of im- 
portance in investigations concerned with the balancing of 
aberrations of different types and orders against each other to 
obtain optimum performance. 

6 H. H. Hopkins, Proc. Roy. Soc. (London) A208, 263 (1951). 
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when the object is at infinity the integration over the 
object does not arise so that in such cases we can use the 
aberration function 43 instead of the aberration char- 
acteristic NY. The ray aberration components may still 
be calculated from Eq. (18), but ' ' must now be re- 
placed by nicD. In this case we must, of course, use 
angular coordinates in place of Xo and Yo. 

III. EXPANSION OF THE ABERRATION 
CHARACTERISTIC UP TO FOURTH ORDER 

Let us suppose that the aberration characteristic is 
expanded in a power series in terms of the three rota- 
tional invariants. Then 

Ap.= í1!(o)+.4,(2) +ßi(4) ... +4r(2K)-J ... (20) 

where 11,(2K) denotes terms of 0(M1µ29. We shall 
investigate the terms up to and including the fourth 
order. 

From the definition of DIY and from Fig. 2, 

=[pops] -[gp1] (21) 

If W (po, qo, p, q1) denotes the angle characteristic ¶ of 
the instrument, i.e., the optical length of the ray be- 
tween the feet of the perpendiculars dropped from the 
axial points Oo and 01 (see Fig. 1) on to the portions of 
the ray in the two external spaces, then 

[PoP1]= W-- no(goXo +goYo) +n1(g1X1 +g1Y1); (22) 

here po, qo denote the cosines of the angles which the ray 
in the object space makes with the X and Y directions, 
p1 and q1, having analogous meanings. Also from the 
figure, 

[SP1]= n1R1 +n1[p1(X 1 -X 1 *) 

+ g1(Y1- Y1 *)] +0(M1µ6) 

=-n1M1_ n1 
(X1*-I-Y1*2) 

2M1 

n1 

+ (X1*2+Y1*2)2+n1[p1(X 1-X 1*) 8M13 

+g1(Y1- Y1 *)] +0(M17a6). (23) 

On substituting from Eqs. (22) and (23) into Eq. (21), 
we find 

iG(Xo, Yo, X, Y)=W(po, go, p1, g1) 

- no(poX o+goYo)+n1(p1X 1 *+g1 Y1*) 

n1 
+ n1M1+-(X 1*2+ Y1*2) 

2M1 

n1 

8M13(X1*2+Y1*2)2+0(M17.16) 
(24) 

Q We use here substantially Schwarzschild's notation. 

OLF Vol.42 

We observe that since ' X= X i -}-0(M1µ3), Y= Y1' 

+0(M1123), and a '' /&X= O(µ3), ag/aY =O(µ3) we can 
replace X by X1' and Y by Y1' in Eq. (24) without changing 
the error term. 

Following Schwarzschild, we shall introduce the 
so -called Seidel variables which, within the accuracy of 
Gaussian dioptric, have very simple invariant proper- 
ties. These variables are defined by: 

xo= a(Xo/lo), 

x1= a(X1/l1), 

tYo = (1/X0) (Xo+Mogo), 
51= (1/X1) (X 1-I-M1p1), 

yo= a(Yo/lo), 

y1= a(Y1/l1), 

no= (1/X0) (Yo+Mogo), 
n1= (1/X1) (Y1+M1g1), 

(2 5) 

where 11 /lo denotes the magnification ratio between the 
image plane and the object plane, X1 /%10 denotes the 
magnification ratio between the planes of the exit and 
the entry pupils, and 

noaolo n1111 
a= - 

Mo M1 

The Seidel variables may be interpreted as follows: 
if we assume that the refractive index of the object and 
image spaces are unity, i.e., no= n1 =1, then ** 

xo = X 0 (X 0 /M0), yo = X o (Yo /Mo), 
x1= Xi(X1 /M1), y1= Á1(Y1 /M1); 

hence xo/Xo and yo /Xo measure the angular distances of 
the object from the axis when observed from the center of 
the entry pupil. The quantities - x1 /X1 -yi /X1 have an 
analogous meaning. The number pairs (X4 o, Xono) and 

X1r71) are, respectively, with errors 0(M1143), the 
coordinates of the points Pó and Pi in which the typical 
ray intersects the planes of the pupils. With the same error 
terms (X161, xir11) may also be identified with the coordi- 
nates (X, Y) of the point S (see Fig. 2) in which the ray 
intersects the Gaussian reference sphere. 

In terms of the Seidel variables, the contributions to 
Eq. (24) become 

no(poXo +goYo) 

= ( oxo +rloyo)- (Mo /noXo2) (xo2 +yo°), 

n1(p,X1 * +g1 
tv1 

*) 

= (S,x0+ niyo) - (Ml /n1X12) (xoxl +yoyi), 
(n1/2M1) (X 1*2+ Yf*2) = (M1 /2n1%12) (xo2 +3'02), 

(nl /ÓM13) (Xl *2+ Y1 *2)2 = (M1/ 8n13X14) (xo2 +yo2) 2. 

** In the special case when the object is at infinity, the factor 
M1 /a1 has a very simple interpretation. We have, if we also take 
the arbitrary factor ),o equal to unity, 

11 M1 Xo 
Y1 =l1Y o -M1 Y0 A1=-A0=- 

lo Al Mo' to x1 Mo- 
. 

When the object is at infinity the factor of proportionality be- 
tween Xi and Xo /Mo (and similarly between Y1 and Yo /Mo) 
equals to the focal length f of the instrument, taken with a nega- 
tive sign; hence 

(26) 

M1__ 

The negative sign arises from the fact that the image is inverted 
when the focal length is positive. 
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Hence Eq. (24) takes the form 

AP= W +xo(iïi- to) +yo(ni- no) -En1Mi 

+[(Mo /noXo) +(Mi /2niXi2)](xo +yo2) 
- (Mi /niX12) (xoxi +yoyi) 

- (M1 /8ni3X14) (xo2 +yó )2 +0(M1µ8) (27) 

We can simplify Eq. (27) by observing that 

xox1= á (x12- { -2xox1 -x12) 

= x12+ á [xo+ (x1- xo)][xo- (x1- xo)] 
= zxi2 +áxo2 +0(M1µ8), 

and similarly 

YoYi= áy12 +áY 2 +0(M1µ8). 

On substituting these expressions in Eq. (27) we obtain 

= W +xo(ti- to) +yo (ni - Ito) +niMi 
+ (Mo/noXo2) (xo2 +Yo2) - (M1 /2n1X12) (x12-1- Y12) 

- (Mi /8n1844) (x02 +yo2)2 +0(M1µ8) (28) 

We now recall that Schwarzschild defined the so -called 
Seidel eikonal S by means of the expressiontt 

S= W+ (Mo /2noXo2) (xo2 +Yo2) 

- (M1 /2niX12) (x12 +Y12) 

+xo(Ei- to) +Yo(nli- ilo), 

of which the total differential is 

dS= (s- o)dxo+ (ni- no)dyo 

+(xo- xi)dti +(yo-yi)diii. (30) 

Remembering that in the accuracy of Gaussian dioptric 
xo =xi, Yo =yi, >ïo =ti, no= ni, it immediately follows 
from Eq. (30) thattt 

S= S(0) -f-S(4).+ ... (31) 

Schwarzschild showed further that 
S(4) = - (A /4)ro2- (B /4)P12- Cro2pi2 cos2cp 

- (D /2)ro2p12 +Ero3pi cos So +Fropi3 cos v, (32) 

primary spherical aberration, coma, astigmatism, curva- 
ture, and field distortion, respectively. 

A comparison of Eqs. (28) and (29) shows that 

Mo M1 
+G= S +n1Mi+ -ro2 ra4 +0(Miµ4). (34) 

2n0A42 8n13Á14 

We now separate into orders. Remembering that 
5(2)=0, we immediately obtain, if we also observe that 
1I'(0, 0, 0, 0) = [01011, 

xlr(0) = [00011, o , 

V2) = (Mo /2noXo2)r02, (35) 
ßi(4) = S(4) - (Mi /8n13X14)ro4. 

Since V4) differs from 5(4) only by the term 
(Ml /8n13X14)ro4, it follows that when (4) is expressed 
in ai form analogous to Eq. (32), it only differs in the 
coefficient of ro4: 

1 M1 B 
,p(4) = --(A+ - )r04-- P14- Cro2p12 cos2co 

4 2n13Á14 4 

D - -ro2P12+Ero °p1 cosce +Fropi3 cosce. (36) 
2 

(29) Hence, in this representation five of the coefficients of 
II" are identical with the Seidel sums. Moreover, since 

where 

ro2=xo2+Yo2, pi2= 62+i1i2 

and 
ropi Cos cp=xoEi+Yoi11 (33) 

are the three Seidel rotational invariants and B, C, D, E, 
and F are the five well-known Seidel coefficients of 

ft Schwarzschild was led to the introduction of the S function 
by observing that in terms of the variables 

dW =xo(d o- -31° d °)-i-Yo(dno- ñ0° dó9 

\ -x,(dE,- 
n, 
MI 

gl) -yl(dni 
-llll s11 

and that the terms on the right -hand side are part of the simple 
total differential (30). 

tt Schwarzschild (see reference 1) draws the incorrect conclusion 
that not only S(' but also S(o) is zero. This error does, however, 
not vitiate his subsequent analysis. It is seen from Eqs. (34), 
and (35), that S(o)= No01]. 

M1 
1P(4)fro, 0, cP) 

=- (A+ ro4, 
4 2n13X14) 

the remaining coefficient is related to the spherical 
aberration of the axial point of the pupil. 

Finally, in order to express the aberration charac- 
teristic in terms of the ordinary rotational invariants of 
Sec. II rather than in terms of the Seidel rotational 
invariants ro2, pie, and ropi cos we observe that 

re= 
(n0Xo 2 1 -) r2 , p12 = -[P2 +0(M12µ4)] 

Mo Al2 

n0X0 
ropi cos co= [rp cos co +O(XoMiµ3)] 

MoXi 

It is seen on substituting these expressions into 
Eqs. (35) and (36) that the error terms will give con- 
tributions of order higher than fourth. Hence, the 
required expression for the aberration characteristic up to 
fourth order is obtained by replacing in Eqs. (35) and (36) 
the Seidel rotational invariants by (noAo /Mo)27.2, (1 

/X12)p2, 
and (noXo /MoX1)rp cow, respectively. We then finally 
obtain, if in addition we set the arbitrary factor Xo equal 
to unity, 

V® =[0001, 
1I1(2) = á (no /Mo)r2, 
íßi(4) = -iA,r4_113/p4_ cr2p2 cos2co- áD'r2p2 

+E'r3p cosco+F'rp3 cosco, 

and 

1 

(37) 
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where 
A'= (no /Mo)4(A+M1 /2n13X14), 

B'= (1 /X14)B, 

C'= (no /Mo)2(1 /X12)C, 

D'= (no /Mo)2(1 /M12)D, 

E'= (no /Mo)3(1 /X 1)E, 
F' = (no /Mo) (1/X13)F. 

We also immediately find from Eqs. (17), (20), and 
(37) that 

E. WOLF 

where 

(38) 

11,^ cp(4)-f.. cD(6).+ (39) 

§§ When the object is at infinity we use, as explained at the 
end of Sec. II, the 43 function only. In that case 4, is still given 
by Eq. (40) but (r /Mo)' must be used in place of the variable r'. 

Vol. 42 

n144= - 4B'p4- C'r2p2 cos2to 

áD'r2p2- 1-E'r3p cos(p+F'rps cosv. (40) 

This equation shows that the five aberration coeffi- 
cients B', C', D', E', and F' can be interpreted in a 
natural way when they are defined with relation to the 
deformations of the wave fronts from spherical form. 
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A macroscopic theory of interference and diffraction 
of light from finite sources 

I. Fields with a narrow spectral range 

BY E. WOLF 

Department of Mathematical Physics, University of Edinburgh 

(Communicated by M. Born, F.R.S.-Received 27 January 1954) 

A macroscopic theory of interference and diffraction of light in stationary fields produced 
by finite sources which emit light within a finite spectral range is formulated. It is shown 
that a generalized Huygens principle may be obtained for such fields, which involves only 
observable quantities. The generalized Huygens principle expresses the intensity at a 
typical point of the field in terms of an integral taken twice independently over an arbitrary 
surface, the integral involving the intensity distribution over the surface and the values of 
a certain correlation factor, which is found to be the `degree of coherence' previously intro- 
duced by Zernike. Next it is shown that under fairly general conditions, this correlation 
factor is essentially the normalized integral over the source of the Fourier (frequency) 
transform of the spectral intensity function of the source, and that it may be determined 
from simple interference experiments. Further, it is shown that in regions where geometrical 
optics is a valid approximation, the coherence factor itself then obeys a simple geometrical 
law of propagation. Several results on partially coherent fields, established previously by 
Van Cittert, Zernike, Hopkins and Rogers, follow as special cases from these theorems. 

The results have a bearing on many optical problems and can also be applied in in- 
vestigations concerned with other types of radiation. 

1. INTRODUCTION 

In the usual treatments of interference and diffraction of light, the source is assumed 
to be of vanishingly small dimensions (a point source), emitting strictly mono- 
chromate radiation. Such treatments correspond essentially to an idealized wave 
field created by a (classical) oscillator. Huygens's principle, in the extended formula- 
tion of Fresnel, may be regarded as an approximate propagation law for such fields. 
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In recent years remarkable advances have been made in practical optics in con- 

nexion with interference and diffraction of light and electrons; in particular, the 
phase- contrast method (Zernike 1934 a, b), the method of the coherent background 
(Zernike 1948) and the method of reconstructed wave -fronts (Gabor 1949, 1951) 
must be mentioned. These discoveries, as well as numerous problems in both 
theoretical and practical optics, make it highly desirable to extend the theory of 
interference and diffraction to fields produced by an actual source, i.e. a source of 
finite extension and one which emits light within a finite frequency range. 

First steps towards formulating such a theory were made by Berek (1926 a, b, e, d), 
Van Cittert (1934, 1939), Zernike (1938) and Hopkins (1951, 1953). The experi- 
mental counterpart of these investigations dates back to Michelsont (1890, 1891 a, b, 

1892, 1920)4 In the theoretical papers just referred to correlation factors for light 
disturbances at two arbitrary points or at two instants of time were introduced 
and applied to particular problems, notably by Hopkins (1 953). However, only a 
moderate progress was achieved in formulating the general laws relating to such 
fields and in fact the subject presents to -day a somewhat confused picture. This is 
mainly because each of the four authors introduced a formally different correlation 
factor, which in turn led to many disconnected results. 

In the present investigation a systematic study is made of interference and 
diffraction in stationary§ optical fields produced by finite sources which emit light 
within a finite frequency range. Part I is mainly restricted to the case when the 
effective frequency range is sufficiently narrow. In § 2 it is shown that a Huygens 
principle may be formulated for such fields, which involves only observable 
quantities. In this generalized form, the Huygens principle expresses the intensity 
at an arbitrary point of the field in terms of an integral taken twice independently 
over an arbitrary surface, the integrand involving (1) the values of the intensity at 
all points of this surface and (2) a correlation factor, which turns out to be the 
complex form of the `degree of coherence ' introduced by Zernike. In this formula- 
tion the Huygens principle is subject to similar restrictions on its range of validity 
as encountered in connexion with its usual form, but a rigorous formulation is 
possible and will be given in part II of this investigation. 

In § 3 the significance of the coherence factor is discussed, and it is shown that it 
may be determined from simple interference experiments. In § 4 it is shown that 
under fairly general conditions the coherence factor is essentially the normalized 
integral over the source of the Fourier (frequency) transform of the intensity 
function j(g, y) of the source. This relation takes a particularly simple form when 
the frequency range of the radiation is sufficiently narrow and when some further 
simplifying conditions are satisfied. Under these restrictions several of the earlier 

t See also Michelson & Pease (1920 and Pease (193i) 
$ A fuller historical survey is given in my article in Vistas in astronomy (Wolf 1954). In 

addition to the literature quoted there, reference to a discussion of a more abstract kind may 
be added: Wiener (193o), chapter i, §9. 

§ By a stationary field we mean here a field of which all observable properties are constant 
in time. This definition includes as special case the usual case of high frequency sinusoidal 
time dependence; or the field constituted by the steady flux of (polychromatic) radiation 
through an optical system. But it excludes fields for which the time average over a 
macroscopic time -interval of the flux of radiation depends on time. 
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results of Van Cittert (1934), Zernike (1938) and Hopkins (1951) are then shown to 
follow as special cases. It is also found that in regions where the approximations of 
geometrical optics hold, the coherence factor itself then obeys a simple geometrical 
law of propagation. In § 6 it is shown that when the source is small, the generalized 
Huygens principle may be expressed in a simple form in which the properties of 
the source and the transmission properties of the medium are completely separated. 

The results have an immediate bearing on many optical problems and can also 
be applied in investigations concerned with other types of radiation. 

2. A GENERALIZED HUYGENS's PRINCIPLE 

We shall be concerned with stationary optical fields-and begin by considering 
the propagation of a beam of natural, nearly monochromatic light from a finite 
source E. For reasons of convergence we assume that the radiation field exists 
only between the instants t = -T and t = +T. It is easy to pass to the limit T -co 
subsequently. 

Let V(x, t) denote the disturbance at a point specified by the position vector x, 
at time t. We shall represent V in the form of a Fourier integral: 

Then 

r+ 
V(x, t) =J ?J(X, V) e-2ní14dv. 

03 

T 
v(X, V) = 

J -T 
V(x, t) e2nivtdt. 

(2.1) 

(2.2) 

Since the light is assumed to be almost monochromatic, I v(x, v) I will differ appreci- 
ably from zero only in a narrow frequency range vo - Ay v 5 va + Av. 

Let us take a surface sad cutting across the beam and consider the intensity at 
a point P(x) on that side of 4' towards which the light is advancing (figure 1). 

FIGURE 1 

Each Fourier component of (2.1) represents a perfectly monochromatic wave, 
and therefore (under the usual restrictions on its range of validity) obeys Huygens's 
principle in the usual form 

v(x, v) = 
eikrl 

AI dxt. 
J r rI 

(2.3) 
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Here xi is the position vector of a typical point P1 on the surface d, r1 is the distance 

27ry 27r 
from P1 to P, k = 

e 
= 

A 
, c being the vacuum velocity of light and A the wave - 

length. Further, Al is the usual inclination factor of Huygens's principle: 

Ai [cos q5' - cos 01]; (2.4) 

the meaning of the angles 01 and 01 is shown in figure 2. 

incident ray 
normal to ctg 

diffracted ray 

P 

FI4IIRE 2 

From (2.1) and (2.3) it follows that 
+co earl 

V(x, t) = f dv e -2 "1 r v(x1, v) -9. Al dxi . 
,J d 1 

(2.5) 

The intensity at P is then given by 

I(x) _ <V(x, t) V *(x, t) >, (2.6) 

where asterisks denote the complex conjugate and the brackets denote average 
over the interval -T <t T. Substituting from (2.5) into (2.6) we obtain 

+co + 
1(x) = l f _ CO 

r dvdv'exp{-27ri(v-v')t} 

x fai 
J 

v x v v x exp {i[kri -k r2]} 
A A,* dx dx ) 2 7 ( 1, ) ( 21 / 1 2 1 ( ) 

fat rira 

where k' = 2771/ lc, A' = A(k'), and the points 11(xi) and P2(x2) explore the surface 
d independently. 

Since the light is assumed to be nearly monochromatic and of frequency v° the 
curve v(x, v), considered as a function of v, will have a peak at v = v° and fall off 
rapidly on both sides, being practically zero outside the range (v° - Ay, v° -I- Lxv). 

Under these conditions we may replace both k and k' in the term 
exp {i[kri - k'r2]} Á1A2* 

by Y0> = 27rvo /c. (2.7) then becomes - r r(x1,x2)exp{ikio>(ri-r2)}Alo)Ao)*12, 
(2'8) 

at J t r1 r2 
where 

T + + 
P(xi, x2) = 1 f f f Jv(xi, v) v'`(x2, v') exp { - 27ri(v - v') t} dvdv'. (2.9) 

2T -T 03 - 
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+T 
Since Lim exp { - 27ri(v - v') t}dt = 8(v - v'), 

T Sao -T 
where S is the Dirac Delta function, it follows that, for sufficiently large T, (2.9) 
reduces to 

1 +- 
P(x1' 

x2) = 2T 
5v(xi,v)v*(x2,v)dv, _ (2.10) 

or, using the convolution ( Faltung) theorem, 

P(xv x2) = <V(x1, t) V *(x2, t)>. (2.11) 

It will be useful to normalize P by setting 

x x2) '(x1, x2) 2 12 y( 1, 2) = / {r(xi, x1) P(x2, x2)} 
( ) 

Now 1'(x8, x8) (s = 1, 2) is nothing but the intensity IS at the point xs, so that (2.12) 
may be written as 

r(xi, x2) y(xi,x2) 
Ñ(IiI2) 

. (2.13) 

Substituting from (2.13) into (2.8), we finally obtain 

I(x) = f f v(Ii4)y12exp {ik(°) ri -r2)} 
`dxidx2, 

al .mt ri r2 
(2.14) 

where y12 has been written for y(xi, x2). 
Equation (2.14) may regarded as a generalized principle. In the usual 

formulation (2.3), Huygens's principle applies only to strictly coherent radiation 
and expresses the (non -observable) disturbance at a point in the wave field as sum 
of contributions from each element dxi of the primary wave (or, more generally, 
of an arbitrary surface). In the present formulation, the restriction of strict co- 
herence is dropped and the intensity is calculated by slimming over all products 
dxi dx2 of the surface, each contribution being weighted by the appropriate value 
of the correlation factor 712. It will be shown that in any particular case, this factor 
may be determined from simple experiments, and that under fairly general con- 
ditions it may also be calculated from the knowledge of the intensity function of 
the source and the optical transmission properties of the medium. Hence our 
generalized Huygens principle involves observable quantitiest only. 

3. DETERMINATION OF THE y FACTOR FROM EXPERIMENT 

The relations (2.13) and (2.11) are formally equivalent to relations (4) and (5) 
of Zernike's ( 1938) paper and show that P(xi, x2) is the mutual intensity and y(xi, x2) 

t An earlier formulation of Huygens's principle in terms of observable quantities, due to 
Gabor (1952; Private communication), must also be mentioned: `Set up a coherent radiation 
field and apply to it a small perturbation by introducing objects in the path of radiation 
which do not destroy the coherence. If the absolute amplitudes of the perturbed field are known 
in one cross -section, they are thereby determined in all cross- sections.' This formulation is, 
however, not sufficiently general, being restricted to strictly coherent radiation. 
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the complex degree of coherence, j- two important concepts introduced by Zernike. 
The degree of coherence has been previously defined in a different way and under 
more restrictive conditions by Van Cittert (1934) 

In general y is complex. It is easily seen that its absolute value is less than unity. 
For one has, using the well -known modulus inequality for integrals, 

JTTV(Xl,t)V*(X2,t)dt 
lJT TI V(XVt)V*(x2't)I dt} (:3.1) 

Moreover, by Schwarz's inequality, 

l 

J 
( 

T TI 
V(Xl,t) V*(X2,t) I dt12J 

T 

T 
V(xl,t) I2dt f TTI V(X2,t) 12 dt. (3.2) 

From and (32), 

J 
TTV(Xl,t) V*(x2,t)dt < 

lJ T TI 
V(xUt) I2dt}}1J-TI 

V(x2,t) I2dt}}, (3.3) 

or, in terms of r, I r(xl, x2) 
I 

< .J{r(xl, xl) r(x2, x2)}, 

whence I y(xl, x2) I 5 1. (3.4) 

In order to see the significance of y and also to confirm our earlier statement that 
it is an observable quantity, we shall apply our generalized Huygens principle to 
a simple interference experiment. 

Figure 3 shows the arrangement. Light from a finite source E falls either directly 
or via an optical system on to a screen d which has small openings at P1 and P2. 

The resulting interference fringes are observed on a second screen 
If d i and c1.212 denote the areas of the openings at PI and P2, our generalized 

Huygens principle (2.14) reduces to the following expression when integration is 
taken over the non -illuminated side of the screen d: 

¡ l2 I ̂  IiYlll / lAi(dsl)2+V(I1I2)Y12e%p ik(rl-r2)}A1A2 1 2 
2 

/ +I2Y22 - 1 2 

A2A2*("2)2+N(I2I1)Y21 r2 r2 r1 

exp {ik(r2 - ri)} 
A2 A1 d.sa'12 ddl. 

(3.6) 

The upper index zero has now been omitted on k, Al and A. Since Yll E i it follows 
that the first term gives precisely the value I(1) of the intensity which would be 
obtained at P if the opening at P1 alone was open (dd2 = 0), the third term having 
a similar interpretation: 

I(1)(x) - 
2 

I 
Al 

12 ("1)2, 

I(2)(x) = 2 I A2 12 (d.sa'12)2 

(3.6) 

f In the first part of this paper, Zernike defined the degree of coherence of two light 
vibrations as the visibility of the interference fringes that may be obtained from them under 
the best circumstances, i.e. when both intensities are made equal and only small path - 
differences introduced. The analytical definition given by equation (4) of his paper [equivalent 
to (2.12) above] is however more general and applies whether or not the two intensities are 
equal; nor is it restricted to small path differences. 
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The second and the fourth term in (3.5) are complex conjugates of each other. 
Hence using the identity 

z +z* = 2°.ß(z) (3.7) 

(.2 denoting the real part), the sum of the two terms may be written as 

11 
2 V(/1 --1A1 

I I A2 I 
7121 cos [arg y12 + k(r1- r2)] dalds12 

r1 r2 

= 2AAI(1)I(2))17121 cos [arg y12 +k(ri -r2)], (3.8) 
and (3.5) then reduces to 

I = I(1).+I(2) 
+2Ñ(I(1)I(2))17121 cos [argyle +k(ri -r2)J (3.9) 

We see that in the limiting cases 1 712 I = 1 and 
I Ylz I = 0 (3.9) reduces to the 

usual laws for the combination of perfectly coherent and completely incoherent 
disturbances. Hence (3.9) may be regarded as a generalized interference law in which 
the factor 7i2 is a measure of the degree of correlation between the disturbances 
at P1 and P2. This law was derived previously in a different manner by Zernike 

FIGURE 3. An interference experiment with a finite source. 

(1938). It has also been derived under a more restrictive definition of the coherence 
factor by Hopkins (1951). 

The generalized interference law (3.9) enables the calculation of I(x) when 
I(1), I(2) and Y1a is known. Conversely when I(1), I(2) and I are known 712 may be 
determined from measurements of intensities. One has only to measure I(1), I(2) 

and I for different values of r1 and r2 and solve the resulting equations obtained from 
(3.9) for 

1 7121 and arg 712. Hence the coherence factor may be considered to be 
an observable quantity. 

As pointed out by Zernike and Hopkins, the coherence factor is closely related 
to the visibility-[ and the position of the fringes. By (3.9) one has 

Imax. = I(1) +I(2) + 2 AW(1)I(2)) I yi21 
I = I(1)-f-I(2)_2AI(I(1)I(2)) 

I y12I 
(3.10) 

f The visibility 'r(x) of interference fringes, a concept due to Michelson, is defined by 

- /max. - /min. 
/max. + /min. 

where /max. is the maximum of the intensity at the centre of the brightest fringe near P(x) 
and /min. is the intensity at the centre of the adjacent dark fringe. 
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Hence the visibility 'V is given by 

_ 2 

/I(1) 
I Y12 I 

I(2) j(1) 

(3.11) 

Moreover, it is seen from (3.9) that arg y12 appears formally as the `phase difference' 
between the disturbances at the two points; it is equal (in suitable units) to the 
amount of lateral displacement of the fringe system from the position which it would 
occupy if argyle was equal to zero. In practice one can often set I(1) =I(2). (3.11) 
shows that the visibility is then simply equal to the absolute value of the coherence 
factor. 

In the paper already referred to, Hopkins (1951) claimed that Zernike's results 
relating to partially coherent fields may be derived without any resort to statistical 
analysis. This claim is not justified; Hopkins's analysis, unlike Zernike's, is applic- 
able only to the limiting case of vanishingly narrow frequency range. For a similar 
reason, a claim by Van Gittert (1939) as to the equivalence of his correlation factor 
with the degree of coherence of Zernike also does not appear to be justified. 

For a full understanding of the coherence problem, it is obviously essential to 
take the finite frequency range of actual radiation into account. This may be done 
with the help of Fourier analysis as described in § 2. Alternatively, one may express 
the disturbance in the form 

V(x,t) = U(x,t)exp {- 27rivot }, (3.12) 

where the complex amplitude U is now a function of both position and time. Since 
the light is assumed to be nearly monochromatic and of frequency vo, U will, 
however, at each point vary slowly (and irregularly) in comparison with the fre- 
quency vo, and will remain practically constant over an interval of time depending 
on the coherence length of the light.t 

The path differences encountered in instrumental optics are, as a rule, small 
compared to the coherence length. Hopkins's theory will in these cases lead sub- 
stantially to the same results as the present analysis. When large path differences 
ure involved Hopkins's theory can, however, rio longer be expected to be applicable. 

The representation (3.12) was used by Zernike (1938) and also previously by 
Berek (1926 (a) -(d)). For a quantitative treatment the Fourier integral approach 
seems, however, to be more appropriate and has also the attractive feature that it 
brings the optical coherence problems within the scope of methods well established 
in connexion with other statistical problems encountered in physics. 

Experimental investigations, using small path differences, were recently carried 
out by Baker (1953) and Arnulf, Dupuy & Flamant (1953) Good agreement with 
the existing theories was obtained. 

t The coherence length may be defined as the maximum path difference between the inter- 
fering beams for which interference fringes may be obtained. The finite value of the coherence 
length arises mainly from (1) natural broadening of spectral lines due to the finite lifetime of 
atomic states, (2) broadening due to atomic collisions and (3) Doppler broadening due to the 
thermal motion of the atoms. For an excellent account of the coherence length see Born 
(1933) 
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Finally a paper by Duffieux (1953) may also be mentioned. It contains some 
criticisms of the earlier theories and discusses the connexion between the coherence 
factor and the transmission functions introduced by him and Lansraux in earlier 
investigations. 

4. EXPRESSIONS FOR THE MI TIIAL INTENSITY FUNCTION 

We shall now derive an explicit expression for the mutual intensity function P12 

in terms of the intensity function of the source and the transmission function of the 
medium. No restriction on the frequency range will now be imposed. 

We assume that the source E is a radiating element of a plane surface and divide 
it into elements dEl, dE2, ..., whose linear dimensions are small compared to the 
wave -length. If Vm(x, t) denotes the disturbance at the point P(x) and time t due 
to the mth element of the source, then 

V (x, t) = EVm(x, t), 

nnd (2.11) becomes 

++ /¡ 

P12 = <L Vm1x1, t) E vn(x2, t) 
m n 

// _<E Tin(x1, t) Vm(X2, t)> + < 
+ 

Vm(xl, t) Vn\X2, t)), 
m+n 

(4.1) 

where m and n run independently through all possible values. Now to a very good 
approximation, the disturbances from different elements of the source may be 
treated as statistically independent, i.e. 

<Vm(xl, t) Vn*,(x2, t)> = 0 when m +n, 

so that the last term in (4.1) vanishes. If we also introduce the Fourier inverse 
vm(X, y) of Vm(X, t) 

van(x, v) = -T ln(x, t) e2nivt dt, 

and use the convolution theorem, 
/ / 

we then obtain the following expression for Pis: 

P12 = <i Vm(x1, t) Vm(x2, t)> (4.2 a) 

Let 

9n 

1 r+°° 
= 2T E J vm(Xl, v) vm(X2, v) dv. (4.2b) 

K(X', x", y) = a(x', x") exp {29fi(vf c) <?(X', x")} (4.3) 

(a and real) be the transmission function of the medium, defined as the disturb- 
ance at P "(x ") due to a monochromatic point source of frequency y and of unit 
strength at P' (x' ). (Strictly a and <9' also depend on the frequency, but this depend- 
ence may here be neglected.) In particular, if the points are situated in a region 
where diffraction effects are not dominant, then the phase function .SP is simply the 

t We define a source of unit strength as one which in vacuo would give rise to a disturbance 
of unit amplitude at a unit distance from it. 
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Hamilton point characteristic function of the medium, i.e. the optical length of the 
natural ray joining x' to x ", and the amplitude a may be obtained from the usual 
conservation law of geometrical optics. In vacuo, for example, 

%- exp {ikIX' -x "I} (44) Ix'-x"I 
If gm denotes the position vector of the element dEm of the source, then the 

disturbance at a point P(x) due to a typical Fourier component vm(x, y) of Vm(x, t) 

may be written as vm(x, y) = vm(gm, y) K(g,, x, y). (4.5) 

Hence (4.2 b) becomes 
1 +°° 

"12 = - I vm( , v) 12 K(gm, xl, v) % *( , X2, V) dv 
2T m _ 

where 

+ = 2rr a(n, x1) ag., x2)J I vm(g., v) 12 exp {27fivT12(gm)} dv, 

T12gm) = C [`.99(gm, xi) -.91(gm, x2)l 

(1.(;) 

(4.7) 

represents the difference in the time needed for light to travel to x1 and x2 from the 
element dEm of the source. Applying the convolution theorem to (4.6) it follows that 
P may also be written in the form 

F12 = E agm; xi) a( m, x2) \'m(m, t -T12) V (Em, t)>. (4.8) 
m 

Instead of I vm(g,n, y) I which is defined for only a discontinuous set of values gm, 
we may introduce a function j(g, y) which represents the intensity per unit area of 
the source, per unit frequency range; j- it is defined for the whole continuous set of 

g values. Absorbing the factor 1/2T in our definition of j, (4.6) then becomes 
p co + 

F12 = 
$ 

(gag, xi) a(g, x2)1 j(g, y) exp {27rivr12(g) }.dv. (4.9) 
E m 

The amplitude factor a(g, x8) (s = 1, 2) of the transmission function will as a rule 
be a slowly varying function of g. Also in most applications the linear dimensions 
of the source will be small compared to the distance from the source to xs. Hence 
in (4.8) and (4.9) we may as a rule replace a(g, x8) by a(0, x8) without introducing 
an appreciable error. Finally, normalizing P as before, we obtain 

<Vm( m,t -T12) Vm( ,t)> 
712 = <vm(gm, t) vm,(g, t)i 

m 
r 

f fE 
dE 

J 
+ j( y) exp {27rivT12(g)} dv 
o0 

r + 
J 

dg f j( g, v) 4v 
E o0 

, 

(4.í0a) 

(4.106) 

i.e. the coherence factor is essentially the normalized integral over the source of the 

Fourier (frequency) transform of the intensity function of the source. 

f We neglect here the variation of the intensity with direction. The effect of this variation 
can also be taken into account by introducing a more general intensity function j(g, p, v), 
p being a directional variable. 
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5. SOME APPROXIMATE EXPRESSIONS FOR THE COHERENCE FACTOR 

We shall now consider the form which the expressions for y take when the 
effective frequency range is sufficiently narrow. We shall show that they lead, 
in special cases, to several results obtained previously by Van Cittert (1934), 
Zernike (1938), Hopkins (1951) and Rogers (1953). 

Let us assume that the effective frequency range is so narrow that v may be 
replaced by v° in the integral in (4.9). This will be permissible, if 

I APTI2(g) I < 1, 

or, since Av = - cdA/A.2 and 7-12(g) = e [99(g, x1) -.99(g, x2)], if 

0A 
A 

I < I 
.c"(g, x1) -(g, x2) I , 

We also set 
J 

j(, v) dv = J(g); 

(4.9) then gives on normalizing 

712 - v(Ii J EJ(g) 
a(g, x1) a(g, x2) exp {27riv0r12(g)} dg, 

where I = P = fEJ(g) a2(g, xs) d (8 = 1, 2). 

In particular, in vacuo (air) one has (cf. (4.4)) 

R , .99(g, xs) = Rs, 

with Rs = I xs - 1- 

(5.3) then reduces to 

712 = 
f J(g) exp {ik 0>(R1- R2)} dg, 

Ñ(III2) ERIR2 

where I = f)d g (s = 1, 2). 

Integrals of the form (5.4) are well known in optics. They represent the complex 
amplitude at the point P2 in a diffraction pattern around P1, when diffraction takes 
place at an aperture which is identical in form with E, the amplitude in the dif- 
fracting aperture being proportional to J(g). This expression for the coherence 
factor was first obtained by Zernike (1938) and later by Hopkins (1951). 

If, as before, we neglect the variation of the amplitude factor with g we obtain 
from (5.3) 

(5.1) 

(5.2) 

(5.3) 

(5.3a) 

(5.4) 

fEJ(g) 
exp {27rivOT12(g)} d 

712 = f 
E 
J(g) dg 

(5.5) 
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This relation may be further simplified if either the linear dimensions of the source, 
or the distance between P1 and P2 are small compared to the distance from the source 
to P1 and P2. In the first case one may expand T12(g) at a suitable point 0 (g, = 0) of 
the source and neglect higher order terms: 

7-12(g) N -c WA xi) -Y(0, x2)] + C g. [Y(g, xi) -,r(g, x2)]E=0 

Now by the fundamental property of the .So function, 

á [.(g, xs)]g =0 = - PS (s = 1, 2), 

where ps denotes the ray vector!' at 0 of the ray OP.. Hence 

7-12(g) ^'C[ß(0, x1) -Y(0, x2)] - c g (p1 - P2), 

and (5.5) reduces to 

J(g) exp { - ilclolg . (p1 - P2)} dg 
Y12 = 

E exp {ikm[9(O, xi) - 99(O, x2)] } (5.9) 
J(g) dg 

E 

CHO 

(5.7) 

(5.8) 

Hence when the effective frequency range is sufficiently narrow and the source small 
enough, the coherence factor is equal to the product of the term 

exp {ikiol[.(O, x1) x2)]} 

and the complex amplitude in an associated Fraunhofer diffraction pattern. 
Similar analysis may be used when the distance between P1 and P2 is small 

compared to the distance from the source to these points. In place of (5.6) we now 
have 

T12(g) ^' - 1 [aT(g, x)1 
c 8x 

= - 
e- 

(x2 - x1) Pi(g), 

where pí(g) is the ray vector at P1 of the ray g x1. (5.5) now reduces to 

712 = 
J 

EJ(g) exp {- ikm(x2 - xi) Pi(g)} dg 

SE 
J(g) dg 

(5.10) 

(5.11) 

In particular, assume that Pl and P2 are in a plane parallel to the source and 
illuminated directly by it and that the medium between the source and the plane is 

homogeneous and of refractive index n = 1. If we choose as origin of the position 
vector the point P1, then pi(g) = - gi g 1. Moreover, it will often be permissible to 

- A ray vector p at a point P is defined by the relation p = ns, s being the unit vector 
along the ray at P and n the value of the refractive index at that point. 
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replace I g I by the distance d between the plane of the source and the plane con- 
taining P1 and P2. (5.11) then reduces to 

J 
J(g) exp {ilc1°)x2 . g/d} d 

Y12 = (5.12) 

f(g) dg 
E 

hence the coherence factor is again expressed in the form of a complex amplitude in an 
associated Fraunhofer diffraction pattern. This result was first obtained, for a source 
of circular or rectangular form, under a somewhat different definition of the y 
factor by Van Cittert (1934) It is of importance in the theory of the stellar inter- 
ferometer (cf. Hopkins 1951). 

From (5.9) one can easily derive a simple `propagation law' for the coherence 
factor, valid (subject to the restrictions mentioned) in regions where diffraction 
effects are not dominant.f Consider two pairs of points P,(x1), P2(x2) and Pi(xi), 
nx2) in the field, such that Pi lies on the ray from 0 to P1 and P2 lies on the ray 
from 0 to P2 (figure 4). Then it immediately follows from (5.9) that 

Y(xi, xá) = Y(x1, x2) exp {ik(0) [.9°(x xi) -'(x2, xá)] }. (5.13) 

PZ 132! 

FIGURE 4. Propagation of `coherence' in regions where geometrical optics is a 
valid approximation (small source and narrow frequency range assumed). 

In particular, if the optical path [PIP¡] equals the optical path [P2P2], 
e.g. when P, and P2 are one wave -front and Pi and PZ on another wave -front, then 
(x1i xl) = ß(x2, x4) and (5.13) reduces to 

y(34,34) = Y(xi, x2). (5.14) 

We may therefore say that under the restrictions mentioned, the coherence is propagated 
in accordance with the laws of geometrical optics. 

It was shown by Hopkins (1951) that the absolute value of the coherence factor 
for two points in the . entry pupil of an optical system and of the corresponding 
conjugate points in the exit pupil is the same. The result is seen to be an immediate 
consequence of the theorem just established. 

It was also pointed out by Rogers (1953) that the degree of coherence is conserved 
in a beam of light from image plane to image plane in Gaussian systems, This result 
too is a special case of the law expressed by (5.13). 

t A more general propagation law valid everywhere will be discussed in part II of this 
investigation. 
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6. THE GENERALIZED HUYGENS PRINCIPLE IN THE SPECIAL 

CASE OF A SMALL SOURCE 

In this section we shall reformulate the generalized Huygens principle by making 
use of the relation which expresses the coherence factor in terms of the intensity 
function of the source, the source being assumed to be sufficiently small. Before 
doing this, we shall, however, generalize (2.14) by dropping the restriction that the 
medium between the surface of integration and the point of observation is homo- 
geneous. 

If the medium between .sa'l and P is heterogeneous or contains refracting or 
reflecting surfaces, then clearly the factor exp {ik(0)rs) /rs} (with 8 = 1, 2) in (2.14) has 
to be replaced by the appropriate transmission function if (x.9, x, v0), giving 

I(x) = 
J Jd'I12) Y12K(xv x, vo) K *(x2, x, vo) A)A°)* dx1dx2. (6. ) 

Assume that the conditions under which (5.9) was derived are satisfied. Then, 
from (5.3a), 

where 

(6.1) then becomes 

Is = Pss = a2(O, xs) f £J(g) dg = a2(6, 3[8) 

= JJ()d g = f 
E 

f + 9(g, v) dv. 
03 

.(6 2) 

(6.3) 

I(x) - f J 
712a(O, xi) a(0,x2)I(x1,x,v0)x*(x2,x,v0)Ai0A20*d1dx2 (li-1) 

r! .rat 

Substituting from (5.9), setting 

JJ() exp { - ikmg (P1- P2)} dg 

SEdg , 
= cr(Pi - P2), 

and using (4.3) we obtain 

I(x) -f f f(P1- p2) K(0, x1, vo) g*(0, x2, vo) t .t 
x%(xl, x, vo) %*(x2, x, 

v0) VAT)* dxldx2. 

(6.5) 

(6.6) 

In this formula, the effect of the source and the transmission properties of the medium 
are completely separated. The source is characterized by the factor o(p1- p2) which 
is the normalized Fourier transform of J(g), and the medium is characterized by 
the transmission function K which in practice can be calculated by methods well 
known in optical designing (e.g. from a ray trace). The ray vectors pl and p2 occur- 
ring in the source factor o and the position vectors x1 and x2 of points on the surface 
of integration are connected by the canonical relations (5.7). It is clear that 
the integration over the surface .sa'l may be replaced by integration over the solid 
angle which the entry pupil of the instrument subtends at the source, Also instead 
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of integration twice over one surface (e.g. the exit pupil) one may reformulate (6.6) 
so as to involve one integration over each of two different surfaces (e.g. the entry and 
the exit pupils). Similar formulae were found by Hopkins (1951, , 1953). 

Within the accuracy of the present analysis (6.6) shows that in a given medium, 
sources which have identical a factors will give rise to the same intensity distribution. 
This is probably the main reason why, in Gabor's method of reconstructed wave - 
fronts (Gabor 1949, 1951), one may use a different source for the reconstruction 
from that employed in taking the hologram. In practice, the intensity function will 
be often practically independent of the position of the radiating element, and it 
then follows that provided the geometrical shapes of the sources are the same the 
o- factors will be identical. 

7. CONCLUDING REMARKS 

Our generalized Huygens principle makes it possible to obtain solutions to a 
variety of problems encountered in light optics, and with suitable modifications 
may also be applied in investigations concerned with other kinds of radiation 
(electron beams, X -rays, micro- waves). Some possible applications of our results 
to astronomical investigations and their relation to Michelson's pioneering 
researches on the application of interference methods to astronomy have already 
been briefly discussed elsewhere (Fiirth & Finlay- Freundlich 1954; Wolf 1954). 

It is well known that in applications to problems of image formation in optical 
systems with low numerical aperture, Huygens's principle gives results in excellent 
agreement with experiments, but it fails at higher apertures. Now (5.9) and (5.11) 
show that in systems with high aperture the y factor may vary appreciably over 
the domain of integration. Consequently it may be expected that our generalized 
Huygens principle, which takes into account this variation, will have a wider range 
of validity than Huygens's principle in its usual form. Since in our formulation 
the Huygens principle involves observable quantities only, it should be possible to 
determine its range of validity from experiment. 

It can be shown that in the limiting case as I 712 I 1, (6.1) reduces to usual 
expressions for the intensity due to an ideal monochromatic point source. Thus 
(6.1) contains practically the whole elementary diffraction theory of image forma- 
tion as a special case, and together with (4.9) leads, as we have seen, to many of the 
previously derived results concerning partially coherent fields. However, the 
limitations of our analysis must also be stressed, by summarizing the main assump- 
tions under which these formulae were derived: The generalized Huygens principle 
has been established on the assumption that the usual conditions for the validity 
of Huygens's principle are satisfied and that the effective frequency range is 
sufficiently narrow; in the derivation of the expression (4.9) for the F factor it 
has been assumed that the effect of the medium is described with a sufficient accuracy 
by a transmission function of the form (4.3). In (6.6) it was assumed, in addition 
to both these conditions, that the source is sufficiently small. Some of these restric- 
tions will be removed in part II of this investigation, where it will be shown that the 
coherence factors of Van Cittert, Zernike and Hopkins are special cases of a more 
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general correlation function which rigorously obeys the wave equation and with 
the help of which precise propagation laws may be formulated. 

In conclusion, I wish to thank Professor Max Born, F.R.S., for stimulating and 
helpful discussions, and Professor E. Finlay- Freundlich for valuable information 
concerning possible applications to astronomy. I am also indebted to Dr A. B. 
Bhatia and Mr G. Weeden for useful suggestions. Finally, I wish to thank Mr and 
Mrs R. M. Sillitto for having drawn my attention to some important aspects of 
Michelson's work. 
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A macroscopic theory of interference and diffraction 
of light from finite sources 

II. Fields with a spectral range of arbitrary width 

BY E. Wor ' 

n : The Physical Laboratories, University of Manchester 

[in: 

(Communicated by M. Born, F..R.S. Received 29 November 1954) 

The results of part I of this investigation are generalized to stationary fields with a spectral 
range of arbitrary width. For this purpose it is found necessary to introduce in place of 
the mutual intensity function of Zernike a more general correlation function 

n i (xl, x9, T) = < 
a 

(x1, t +7) p *(x2, t)>, 

which expresses the correlation between disturbances at any two given points Pl(x1), P9(x9) 
in the field, the disturbance at P1 being considered at a time T later than at P9. It is shown 
that is an observable quantity. Expressions for la in terms of functions which specify the 
source and the transmission properties of the medium are derived. 

Further, it is shown that in vacuo the correlation function obeys rigorously the two wave 
equations 

ôar 
ce aT9 (s =1, 2), 

where V is the Laplacian operator with respect to the co- ordinates (x y z3) of P3(x8). 
Using this result, a formula is obtained which expresses rigorously the correlation between 
disturbances at P1 and P9 in terms of the values of the correlation and of its derivatives at 
all pairs of points on an arbitrary closed surface which surrounds P1 and P9. A special case 
of this formula (P9 = P1, T = 0) represents a rigorous formulation of the generalized Huygens 
principle, involving observable quantities only. 

1. INTRODUCTION 

In part I of this investigation (Wolf (1954a), to be referred to as I), interference and 
diffraction of light in stationary fields produced by finite sources which emit light 
within a small but finite spectral range were studied. Whilst the results obtained 

2.2 
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are of interest in connexion with a variety of problems, they are inadequate in the 
treatment of problems where the path differences between the interfering beams tie 
are sufficiently large (cf. appendix 2 below). The present paper removes this ca 
restriction, and extends the results to stationary fields of any spectral range. us 

In the investigation of I, the mutual intensity function 

r(x1, x2) = <V (x1, t) V *(x2, t)> (1.1) 

of Zernike, played an essential part. In (1.1), V (x, t) represents the complex dis- 
turbance at a point specified by the position vector x, at time t, asterisks denoting 
the complex conjugate and sharp brackets the time average. In order to extend 
the analysis to fields with a spectral range of arbitrary width, it is found necessary 
to introduce in place of (1.1) the more general correlation function 

P(x1, x2, T) = <V(xv t +T) V *(x2, t) >. (1.2) 

With the help of this function which is shown to represent an observable quantity, 
the generalized Huygens principle derived in I and the generalized interference law 
(I, (3.9)) of Zernike & Hopkins are extended to the wider class of fields under con- 
sideration. Expressions for P(x1, x2, T) in terms of quantities which specify the fi 
source and the medium are also derived. a 

In § 7, it is shown that in vacuo the correlation function (1.2) obeys rigorously u 
the wave equations 1ó2T , 

DiP = 2 a7.2 , fi 

.. (1.3) e 

0 §P 
e2 ôT , 

a. 

Tt 

t 
where 9 and 9a are the Laplacian operators with respect to the co- ordinates of the a 

points specified by the position vectors x1 and x2 respectively. 
In § 8, a formula is derived which expresses rigorously the correlation between the 

disturbances at two given points PI(xi) and P2(x2) in the field in terms of the corre- 
lation, and its derivatives, between the disturbances at all pairs of points on an 
arbitrary closed surface surrounding P1 and P2. A special case of this formula 
(x1 = x2, T = 0) represents a rigorous formulation of our generalized Huygens c 

principle. 
As in I, polarization effects are not considered in the present paper. They will be 

taken into account in part III of this investigation, where it will be shown that 
a natural generalization of our results leads to a unified treatment of partial 
coherence and partial polarization and to a formulation of a wide branch of 
optics in terms of observable quantities only. 

2. PRELIMINARY: A COMPLEX REPRESENTATION OF REAL, POLYCHROMATIC FIELDS 

When dealing with a real, monochromatic (or nearly monochromatic) field, it is 
usual to employ a complex representation, the field variable being identified with 
the real part of an appropriate complex function. 

t A brief preliminary account of some of these results will be found in Wolf (1954 b). 
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he In the present paper we shall be concerned with polychromatic fields, i.e. with 
ns fields which cover a finite spectral range. It will be convenient to use also in this 
its case a complex representation, this being a natural extension of the representation 

used in connexion with monochromatic fields. 
Let F(t) be a real function, defined for all values of t (- oo <t < oo) which possess 

a Fourier integral representation: 

Pco 
is- 

110' JO 

ud 
With F we associate the (generally complex) function P, defined as 

ry 

03 

.P(t) 
= J o (av +ibv) e- 

anivedv. (2.2) 
.2) 

It is seen that 
by F(t) = RP(t), (2.3) 

aw where Jl denotes the real part. 
)11- .(t) will be referred to as the half -range complex function associated with the real 
the function F(t) ; it is characterized by the property that it may be represented by 

a Fourier integral which contains no terms of negative frequencies. j- F defines P 
81Y uniquely and vice versa. 

Throughout this paper a real function and the associated half -range complex 
function will be denoted by the same symbol, the latter being distinguished by a 
circumflex. The use of half -range complex functions in place of real functions con- 
siderably shortens some of our calculations, and enables the resulting formulae 
to be expressed in a form which closely resembles those obtained in connexion with 

bhe almost monochromatic fields in I. 

bhe 
Te- 3. A SPACE -TIME CORRELATION FUNCTION OF STATIONARY FIELDS 

an In order to extend the analysis of I to stationary fields the spectral range of 
ula which is arbitrarily wide, it is necessary, as will be seen below, to introduce, in place 
ens of the mutual intensity function (1.1) of Zernike, the more general correlation 

functions 1 b P(xi,x2,.) = <V(xi,t +r)V *(x2,t) >, (3.1) 

hat 
tial f Added in proof 21 March. 1955: Since this was written I find that the same complex 

representation of real fields was introduced previously by Gabor (1946, p. 432) in his 
of interesting investigations in communication theory. Gabor also points out that the real and 

imaginary parts of such `half -range complex functions' are Hilbert transforms of each other. 
$ The auto -correlation function, which in our notation would be written as 1f(x, x, r), was 

previously employed in optics by a number of authors, e.g. Wiener (1930), Van Cittert (1939) 

LDS and Parke (1948). Wiener (1930, p. 119) points out that this function played a fundamental 
part in Schuster's theory of white light. 

it is Added in proof 21 March 1966: In a very interesting paper which was published since 

rith this was written, Blanc- Lapierre & Dumontet (1955) applied the general theory of random 
functions to the optical coherence problems. In their treatment which leads to several new 
results some of which are closely related to ours, the cross -correlation function (3.2) plays 
also a basic role. 
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which expresses the correlation between disturbances at the points Pi(xi) and 
P2(x2), the disturbance at x1 being considered at a time r later than at x2. The sharp 
brackets denote the time average. t 

By a straightforward calculation carried out fully in appendix 1, it may be shown 
that if V is a half -range complex function (in the sense defined in the previous section) 
the correlation function defined by (3.1) is likewise a half -range complex function, 
the knowledge of P(xl, x2, r) being equivalent to the knowledge of the real function 

P(Xi, X2, r) = PP(X1, x2, T) = 2 <V(X1, t+T)'V(X2, t)>. (3.2) 

We shall need an expression for P in terms of the Fourier components of V. Let 
,. r 

- 

o 

then rT 
(3 3) 

v(x, y) = V (x, t) e2nivf dt. 

It follows from (3.1), on using the convolution theorem, that 
1 °° 

P(xl, x2, r) = lim v(xi, v) v*(x2, v) e-2nivT dv. (3 4) 
T..)..3 2T o 

We note a useful relation between P(x2, xi, - r) and P(x1, x2, r). From (3.4), 

P(X2, Xi, - T) = X2, T) (3.5) n 
We shall normalize I' by setting 

Px x2, r) Px x T) 
9(Xi'X2,T) 

= P x x( O' IP X x 0 I(xh V/ (x2) ' 
(36) 

( 1 1 ) I ( 2 2 ) ( 1) v ( 2) 
n n 

where I(xs) = P(xs, xs, 0) = <V(x8, t) V*(xs, t)> (s = 1, 2) (3.7) 

is the intensity at the point Ps(x8). On applying the modulus inequality for integrals 
and the Schwarz inequality to (3.4), one has, by a similar argument as in I, § 3, 

1/(x1, x2, T) I 1. (3.8) 

n 
4. AN APPROXIMATE PROPAGATION LAW FOR P(Xi, X2, T) AND AN EXTENSION OF 

THE GENERALIZED HUYGENS PRINCIPLE TO FIELDS WITH SPECTRAL RANGE OF 

ARBITRARY WIDTH 

As in I we consider the propagation of a beam of light from a finite source E. 
The field will again be assumed to be stationary, but no restriction on the width of 
the spectral range will now be imposed. 

t In I, the time average was taken over the finite range -T t < T, but it is more convenient 
mathematically (although it is not more significant physically) to allow the range to become 
infinite by proceeding to the limit T co, as customary. We shall now understand the time 
average in this sense: 

n 1 T A 
r(xi, x2, r) = lim f V(xl, t+ r) V 

n 
*(x2, t) dt. 

77_,.03 2T -T 
The integration over the frequency range was taken in I from - oo to + co, but as explained 

in the preceding section we may set v(x, v) = 0 for y < 0 and hence integrate over the positive 
range 0 < v < o0 only. The quantities which were denoted by V(x, t), r(xl, x2) and 7(x1, x2) in 

I would in the present notation be therefore written as V(x, t), P(x1, X2) and 1)(x1, x2). 

d 
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Let d be a . surface cutting across the beam (see figure 1) and let Pi(xl) and 
P2(x2) be two points on that side of d towards which the light is advancing. We shall 
derive an expression for the correlation P(x1, x2, r) between the disturbances at 
P1 and P2, in terms of the values which P takes at all pairs of points on the surface d. 

cr4 

PZ 

rZ 

Fioua,E 1. Derivation of a propagation law for P(x1, x2,7). 

P 

Each Fourier term v(x, y) exp { -i 27714} of V represents a perfectly monochromatic 
wave. Hence the value of v at P1 may be expressed (under the usual restrictions) in 
terms of the values which y takes at all points on the surface d, by means of the 
ordinary Huygens principle: 

eíkrl 
v(xi, V) _ v(x1, v)- Aidx1. 

r1 
(4.1) 

Here xi is the position vector at a typical point P1 on the surface stf, ri is the distance 
from Pi to P1 (see figure 1), k = 27ry /c = 27r /A, c being the vacuum velocity of light 
and A the wave- length. A denotes as before the usual inclination factor (see I, (2.4)). 

In a similar way, the values v(x2, y) at P2 may be expressed in the form 

r eikr2 
v(x2, y) = 

J 
v(x2, y) (4.2) 

fdt r2 

From (4.1) and (4.2), 

r r 
eik(rl r2) 

v(xi, y) 
v*(x2, 

y) = 
J J v(xi 

y) 
v*(xn v) AlA2 12, (4.3) 

.mt .f ri r2 

the points P1(211) and P2(212) exploring the surface d independently. Next we 

multiply (4.3) by 
2T 

exp { - 27riv7 }, integrate over the frequency range and proceed 

to the limit T co. We then obtain the following expression for P(x1, x2, 7): 

(x1, 

x2, 
r) J .fat J At IT m 2T,/ 0 v(Ri, 

y) 
v *(2i2, 

y) 
exp { - 27riv [r r1 c r2J }A1 At 

dv} al dx2. 

ied 

1JJ 

ive 
1 in Now in the integral over the frequency range, the factors Al and Af are well - 

behaved functions, depending on the frequency only through a multiplicate factor v. 



251 Interference and diffraction of light. II 
We shall take Ai and At outside the v integration in mean valuest (denoted by Al 
and At). The remaining part of the frequency integral gives, in the lirait T - oo, 

precisely P I xi, x2, T ri - r2) . Hence (4.4) reduces to the relatively simple law 
c 

P(x1,x2,T- r1 
-r2) 

P(Xi, X2, T) = 
rir2 

c Ai At dxidx2. (4.5) 
si .saf 

Equation (4.5) expresses P(xi, x2, T) in terms of the values which this function 
takes at all pairs of points Pi and P2 on the surface, the time argument for each pair 
having the values T - (Ti- r2), where ri = rife and 7-2 = ref c are the times needed for 
light to travel from Pi to Pi and from P2 to P2 respectively. 

Of particular interest is the special case when the points P1 and .P2 coincide and 
when, in addition, T = O. Denoting the common point by P(x), the left -hand side 
of (4.5) reduces to the intensity I(x) at P, and, if (3.6) is also used, one obtains 

/(x) = Lid rV/(21) ri I (x2) 

(_ 
xi x2 r2 ril i n12, (4.6) 

I(xi) and I(12) being the intensities at two typical points Pi and P2 of the 
surface d. 

In (4.6) 9 may be replaced by y = .eÿ, since the imaginary part of 9 contributes 
nothing to the integral, as I and AiNt are real. That the integral is actually real may 
be shown formally by verifying that it remains unchanged when its complex 
conjugate is taken. This result follows immediately on using (3.5) and interchanging 
the independent variables xi and 312. In place of (4.6) we may therefore write 

I(x) = foi VI(xi) 4I(x2) y(_ i, x2, r2 -ri)A111 dx2. (4,6 a) 
rlrs c 

Equation (4.6a) (or (4.6)) may be regarded as a generalized Huygens principle for 
stationary fields of an arbitrary spectral range. It expresses the intensity at the point 
P(x) in terms of the intensity distribution over an arbitrary surface d, the con- 
tribution from each pair of elements of the surface being weighed by the appropriate 
value of the correlation factor y(x1, x2, r). This factor, which is a generalization of 
the degree of coherence of Zernike, may, like the latter, be determined from experi- 
ments (cf. § 5 below). It may also be calculated from the knowledge of an (observ- 
able) correlation function of the source and of the transmission properties of the 
medium (cf. § 6 below). Hence our extended formulation of the generalized Huygens 
principle involves again observable quantities only. 

f This step of the analysis, though formally correct, is somewhat unsatisfactory, since the 
mean values will depend not only on the geometrical situation, but also on the form of y, as 
function of frequency. It should, however, be borne in mind that the inclination factor A of 
the ordinary Huygens principle represents only a rough approximation, and is, in most 
practical cases, simply replaced by a constant. The difficulty disappears in the rigorous 
formulation given in § 8 below. 

t 
t 
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In order to see more clearly the connexion between the formula just derived, and 
some of the formulae given previously, consider the special case when the light is 
practically monochromatic, of frequency v°. If we express I' and ÿ in the form 

r(x1, x2, T) = G(x1, x2, T) e- 2nivor, 

5)(x1, x2, T) = g(x1, x2, r) e- 2nivor, 

the quantities G and g, considered as functions of r, will vary slowly compared with 
the variation of the exponential term. If sufficiently small path differences are 
involved, the variations of G and g, with r, may be completely neglected, i.e. we 
may then write 

(4.7) 

l 
G 

N 
G(xv x2) 

N 
I'(x1, x2, 

0),l 

g^' g(xv x2) ~ (x1, x2, 0)] (4.8) 

G is essentially Zernike's mutual intensity (denoted by r(x1, x2) in I) and g his 
complex degree of coherence (denoted by y(x1,x2) in I). With this substitution, 
(4.5) reduces to Zérnike's propagation law (Zernike 1938, equation (9)).t 

G(x1 1' G(x1, x2) x2) eik(o)(ri-rd AAZ )* dx1 dX2, f mf s, r r2 
(4.9) 

where km = 2irv° /c, = A(v°); and with the same approximation (4.6) reduces to 
the more restricted formulation of the generalized Huygens principle given in I. 

5. THE GENERALIZED INTERFERENCE LAW AND DETERMINATION 

OF THE CORRELATION FUNCTION FROM EXPERIMENTS 

5.1. The case x1 +x2 
In order to determine the correlation functions from experiment we may use a 

procedure similar to that described in I in connexion with the determination of the 
less general correlation functions of Zernike. 

441 

FIGURE 2. Experimental determination of r(xl, x2, r). 

We place a screen at across the field so as to pass through the points P1(x1) and 
P2(x2), small openings dd1 and dó12 being made at these points. The resulting 
intensity distribution is observed on a second screen .sal' (figure 2). 

t Zernike actually neglected the variation of the inclination factor over the surface paf 

integration, setting as usual, A = i /A. 
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Taking the integrals (4.6a) over the non -illuminated side of the screen Jzi, we 

obtain for the intensity 1(x) at the point P(x) the expression 

i(x) ,/(x21) 
I Al (d`i)2 + I(22) 

I A2 íd(2)2 
r 

1 

VI (x1) 1(x2) 
\x1, 

x2, 
r2 - 

c 

ri1 
Al At dd1 dd2 

r1r2 1 

+VI(xr)VI(x1)y(x2, x1r1 r2J112A1dsà2d.A11. (5.1) 
21 

Now the first term on the right is precisely the intensity I(1)(x) which would be 

obtained at P if the openings at P1 alone was open (dd2 = 0) : 

j(1)(x) = I(21) I Al I2 (d .'1)2, (5.2) 

the second term j(2)(x) = I722) 
I A2 12 *12)2 

2 

(5.3) 

having a similar interpretation. Also, on account of (3.5) and remembering that 
y is the real part of ÿ, 

+2, l r l x1r1 
-r2/ lx x r2 -r1/ . 

(5.4) 
c = Y 1 2 c 

Further, since Á is purely imaginary, AIM =A1Á2 _ 
I Al I I A21. Hence (5.1) 

reduces to 
I(x) = ja)(x) + jc2)(x) + 2vr1)(x) v jc2)(x)y 

\x1' 

r2 - 
C 

(5.5) 

(5.5) represents a general interference law for stationary fields. 

It is seen that in order to determine y(x1, x2, T) it is only necessary to take the 

distances r1 and r2 such that r2 - r1 = T, and to measure the intensities /(x), I()(x) 

and I(2)(x). y is then given by 

( r2 

= 
- r1l /(x) 

/- 
IM1)(x) - I(2)(x) 

Y(x1x2, 
c ) 2NI(1)(x)02)(x) (5'6) 

If the value of P is !also required, it is necessary, in addition, to measure the 
intensities 1(x1) and 1(x2) at the points P1 and P2. Then from (5.6) and (3.6), 

r íx1 x2, r2 - 2 I) () nI( )( ) [I(x) - 10)(x) - 1(2)(x)]. (5.7) 

In the special case when the effective frequency range is sufficiently narrow 
(path differences small enough), (5.5) reduces, on substitution from (4.7), to the 
formula I, (3.9) of Zernike and Hopkins: 

I(x) = jcu(x) +I(2)(x) + 2 vp.)() (2)(x) 
I 9(x1, x2) I cos [arg g(x1, x2) + k°)(r1- r2)l 

(5.8) 
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5.2. The case x1 =x2 

It has been assumed so far that the two points Pl and P2 are distinct. We must 
now consider the special case when they coincide. 

When Pl = P2, (3.1) and (3.4) reduce to 

P(x1, x1, T) = <V (xl, t +T) V *(xl, t)) = lim 1 I v(xl, U) Ile -2ffi r dv. (5.9) 
T._>03 2T o 

Hence P may now be determined by measuring the spectral intensity function 

I(xl'v) = 
T_..0, 2T 
l I v(x1, y) 12 at P1 and evaluating the Fourier integral. (If, in 

addition to x1 = x2, one also has T = 0, P reduces, of course, to the intensity at P1.) 

A more direct determination of P(x1, x2, T) appears to be possible, in principle, 
by the use of some interferometer based on the principle of division of amplitude 
(cf. Williams 1941). 

,Suppose that the beam of light is divided at the point P1(xl) into two beams (for 
example, in the Michelson interferometer), which then proceed via different paths 
and are reunited again at a point P(x). Let the transmission functions (cf. I, § 4) 

of the two paths for strictly monochromatic radiation of frequency y be 

K(x1, x, y) = I Kl I eta"', K(x2, x, v) = I K2 I e2n"4z. (55.10) 

Then the Fourier component v(x, y) at P is related to that at P1 by 

v(x, y) = (KlA, +K2A2)v(x1, v)(121. (5.11) 

where ad is the element of area around P1 which reflects and transmit the 
incident light. Hence the intensity at P is given by 

I(x) = lim 1 I v(x, v) I2dv 
2,-÷,0 2T o 

= I(1)(x) +I(2)(x) + /(x), (5.12) 

where 
co 

I(1)(x) = lim 1 
I v(xv y) 12 

I 

K112 
I Al I2(Sd)2dv, 

2,_>03 2T o 

Ic2)(x) = lim 1 I v(xv y) 12 
I K2 12 

I A2 12(8`02 dv, (5.13) 
T->oe 2T o 

5(x) = lim 1 f:l v(xl, v) 121 K 11 K2 I I Al I I 

A2 Sd)2 cos 2nv(c2 - O1) dv. 1 I( TaoT 

In general, 
I 

Kl I, I 
K21, 01 and 02 will depend on the frequency, since owing to 

the refraction at the individual elements of the interferometer, light of different 
frequencies will proceed along slightly different paths. In many cases, however, 
this effect will be negligible; I Kl I and I K2 I may then be taken outside the integrals 
in (5.13) and / becomes, apart from a multiplicative factor, the Fourier cosine 
transform of the spectral intensity function, this being equal to r according to 
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(5.9). The expression (5.12) for the intensity may then be expressed in a form strictly 
analogous to (5.5) : 

I(x) I(1)(x) 
I(2)(x) 2.I(1)(x) V1(2)(x) y(xl, °2 °I) 

, (5.14 ) 

with I(1)(x) = I K1 
I2 1 111 I2 (S 1)2I(x1), 

I(2)(x) = I 
K2 12 

1 112 12 (8,91)2 /(X1), 

1(x1) = u m 2T o I v(xl' v 
12 

dv = (V (x1, t) 
V *(xl' t)>. 

The term I(1)(x) represents the intensity which is obtained at the point P(x) if the 
second beam is excluded (K2 = 0), the term 1(2)(x) having a similar interpretation. 
Hence to measure y(xl, x1, T) it is only necessary (provided 

I K1 I, I K2 I, 01 and 02 
may be treated as independent of y) to set the interferometer so that (02 - 01) /c = T. 

y is then given by a formula analogous to (5.6): 

(5.15) 

+1, 
2°¡ 1- 

c J 2VI(1)(x)VI(2)(x) 

1(x) - I(1)(x) - I(2)(x) 
(5.16) 

And I' is given by 
r¡xl 02 

c 
011 = I(x1) y(xv xv °2 c °1) (5,17) 

The investigations of Zernike (1938, 1948; see also I, § 3) brought out the close 
connexion which exists between the visibility factor of Michelson and the correlation 
(characterized by ÿ(x1, x2, 0)) of disturbances at two points in the field, at the same 
instant of time. These investigations interpreted, also from a new point of view, 
Michelson's method for the determination of the intensity of radiation across a 
radiating source from the measurements of the visibility of fringes, a method which 
in recent years has become of fundamental importance' in radio astronomy (cf. 
Ryle 195o; Smith 1952). With the help of the preceding analysis, it will now be 
shown that there is a complementary relation between the visibility function and 
the correlation (characterized by ÿ(x1, x1, r)) of disturbances at two instants of time, 
at the same point in the field. This result leads to a new interpretation of Michelson's 
well-known method (Michelson 1891, 1892) for the determination of the energy 
distribution in spectral lines from measurements of the visibility.t 

Let y0 be the mean frequency of the spectral distribution, assumed now to be 
confined within a narrow frequency range vo - Ay < v vo + i v and set 

9(x1, x1, r) = h(x1, r) a -2' o-r (5.13) 

Further, assume, as is usually the case, that I(1)(x) .'I(2)(x). Equation (5.14) 
then becomes 

I(x) = 2 /(1)(x) {1 + I h(xl, r) I cos [arg h(x1, T) - 27rvor] }. (5.19) 

Since Av /vo << 1, h, considered as a function of T, will change very slowly in com- 
parison with cos 27rvor and sin 27rv0r, so that the minima and maxima of the 
intensity are effectively given by r values which satisfy the relation 

sin [arg h(xl, r) - 27rvor] = 0. (5.20) 

t In this connexion see also the paper by Van Cittert (19$9). 
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The corresponding maxima and minima have the values 

Imax. = 21(')(x) [1 + I h(xv r) I ] 
Iin. = 2 /(1)(x) [1- I 

h(x1,T) 
I ]. 

The visibility .r of the fringes is therefore 

= I g. +I = I h(x1,T) I = I (x1, x1, T) , (5.22) 
max. min. 

i.e. the visibility is equal to the absolute value of the complex correlation factor 9(x1, X1, T). 

Hence according to (5.9), using the Fourier inversion formula, it is possible to obtain 
information about the intensity distribution in the spectrum from measurements 
of the visibility, provided that suitable assumptions about the associated phase 
[arg 9(xl, x1, r)] are made. t 

It is now seen that the two methods of Michelson correspond essentially to the 
two limiting cases T -+ 0 and x2-> xl of our theory. 

(5.21) 

6. EXPRESSIONS FOR P IN TERMS OF QUANTITIES WHICH 

SPECIFY THE SOURCE AND THE MEDIUM 

We shall now derive explicit expressions for the P factor in terms of quantities 
which specify the source and the transmission properties of the medium. 

As in I we assume the source E to be a radiating plane area and divide it into 
elements 8E1, 8E2, ..., which are small in linear dimensions in comparison with the 
optical wave -lengths. Let 

co 

V,n(x, t) = f vm(X, v) e -2nivt dv (6.1) 
Jo 

be the disturbance due to the mth element; the total disturbance V(x, t) is then 
given by 

V (x, t) = E Vm(x, t). 
m 

(6.2) 

Hence P(x1, x2, T) = <f. (Xi, t -{-T) P* (X2, t)> 

[ten = E E rmn(Xi, X2, r), (6.3) 
m n 

n n 
where rn(xl, x2, r) = < 1(x1, t + r) Vñ(x2, t)> 

1 
0° 

= lim 
J 

vm(Xl, v) vñ(x2, v) e`2nivr dv. (6.4) 
T-).c0 2 0 

In most cases of practical interest (e.g. for a gas discharge or incandescent solid) 
it will be permissible to assume that the radiation from the different elements of 
the source is mutually incoherent, i.e. that for all values of x1, x2 and T 

mn(Xl,x2,T) = 0 when m +n. (6.5) 

Ì As is evident from (5.19), the phase may in principle be obtained from the measurement 
of the position of the fringes. This has been pointed out already by Rayleigh (1892) in an open 
letter to Michelson, in which he discussed the question of a complete determination of the 
intensity distribution from Michelson's experiments. 
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There are, however, important cases when this assumption does not hold. For 
example, if the source is not a `natural' source, but is a secondary source obtained 
by imagining a source of natural light by a lens of a finite aperture, then on account 
of diffraction there will exist a finite degree of correlation in the plane of the secondary 
source at points which are sufficiently close to each other. Accordingly, we shall 
first consider the general case when Pmn + O. 

Let am(v) be the strength of the radiation from the element 84, at frequency v. 

and let K(x', x ", v) be the transmission function of the medium. Thent 

vm(X, v) = am(v) K(gm, X, v), (6.6) 

where gm denotes the position vector of the mth element of the source. (6.3) then 
becomes 

with 

and 

Let 

co 

X2 T) = Fi Jmn(v)L(g m, gn; X1) X2; y) 0-21'1°T dv, 
m n 0 

Jmn(v) = lim 2rr Lam(v) añ(v)i, Tco 

L(4m gn; Xi, X2; v) = K( X1, v) K*(gn, X2, v) 

J o Jmn(v) e-21'í°u dv = Pmn(u) 

(6.7) 

(6'8) 

(6.9) 

We also introduce the frequency transform of L: 

foeL(; 
XU X2; v) 8 -2nivu dv = M(bm, gn; X1, X2; u). (6.10) 

0 

The relation (6.7) then becomes, on using the convolution theorem, 

(' co 

P(Xl, X2,1) = E E J Pmn(u) Mgm, gn; xi, x2; T- u) du. 
m n -co 

(6.11) 

(6.11) expresses P(x1,x2,r) in terms of Pmn(u) and M. The former specifies the 
source and may be determined from experiments described in § 5. The latter specifies 
the medium and may be obtained from calculations based on a ray trace. 

For incoherent sources (i.e. sources for which (6.5) holds), the double summation 
in (6.11) reduces to a single summation: 

c 
P x x T) = J (v)1'(gm x x v) e-21'1°' dv (6.12) ( 1 2 mn n 1 2 m 0 

(' +ec A 

= E I Pmn(u) M( m, gn; x1, x2; T - u) du. (6.13) 

If the elements SEi, SE2, ... are taken small enough, one may replace the sum- 
mations by integrations over the source, provided that obvious modifications are 

A 
made : One introduces in place of Pmn and Jinn which are defined only for the 
discrete set of g values, the functions 6 and j defined for a continuous range of 
g and g', such that 

Pmn(u) = 6 (g, g', u) dEdE', (6.14) 

Jmn(v) _ i(g, g', v) dEdZ', (6.15) 

t We neglect here the variation of the source strength with direction. 
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it being assumed that m + n. 6 and j are, on account of (6.9), Fourier transforms 
of each other. In place of (6.7) and (6.11) one then obtains 

11(x1, x2, T) = dgdg' .7(, g', v) L(g, gi; xi, x2; v) e-27rivT dv (6.16) 

= f fdg dg' f S2 (g, g', u) M(g, g'; x1, x2; T - u) du, (6.17) 
E E _co 

where g and g' explore the surface L' of the source independently. 
In the case of an incoherent source, we set 

11,.m(u) = S2(g, u) dE, (6.18) 

Jmm(u) = j(g, v) dI. (6.19) 

j(g, v) is nothing but the spectral intensity function of the source; it represents 
the intensity per unit area of the source per unit frequency range. In place of 
(6.12) and (6.13) one then obtains 

r(x1, x2, T) = f dg f j(g, v) L(g, g; x1, x2; v)e -2t1T dv (6.20) 
E 0 

+w n 
= f Edg f f (g, u) M(g, g; x1, x2; T - u) du. (6.21) 

As an example, consider the case of an incoherent source in . a homogeneous 
medium. The transmission function of a homogeneous medium is 

exp(27rive Ix -g, 
K(g, x, y) - 

I x 
(6.22) 

so that 
(27ri 

v R2)l 

g; xi, x2, v) = I , (6'23) R1R2 

with R1= x1- I, R2 = 
I x2- g I 

. (6.24) 

(6.20) then gives the following expression for 11(x1, x2, r): 

P(x1,x2,T) =fzdgEilgi'iyi)2exp 
l 

- 2rivrT-R1-R2J)dv (6.25) 

6(g, 
T R1- R21 

= 
R1 R2 

c 
dg. ( 6.26) 

7. DIFFERENTIAL EQUATIONS FOR THE CORRELATION FUNCTION 11 

In its usual form, Huygens's principle describes within a certain degree of 
accuracy the propagation of the light disturbance V (x, t). As is well known, this 
principle may be regarded as an approximate formulation of a rigorous theorem 
due to Kirchhoff (see, for example, Baker & Copson 195o), this theorem being a 
consequence of the fact that V obeys rigorously the wave equation. 
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In the present investigation we have found a generalization of the Huygens 

principle which applies to the intensity rather than to the complex disturbance, and, 
more generally, we have found a kind of Huygens principle for the propagation of 
the correlation function P(xi, x2, r). These results suggest that P itself obeys certain 
differential equations and that our propagation laws are essentially some approxi- 
mate formulations of the associated `Kirchhoff's theorems'. We shall now show 
that this indeed is the case. 

In vacuo, the complex disturbance V(x, t) satisfies the wave equation 

V2v a -2 a = O. 

Consequently each Fourier component v(x, v) obeys the equation 
2 

°2v 
¡2irvj 

v = 0. 

Let 

c 

a2 a2 a2 

°1 = axi ayi azi 

(7.1) 

(7.3) 

be the Laplacian operator with respect to the co- ordinates xi, yi, zi of the point 
Pi(x1). It then follows from (3.4) and (7.2) that 

°1P(xi, r) = lim - 1 

L 

[VIv(xi, v *(x2, v) a -2nlvr dv 
T-->ao 2T Jo 

277.2 1 r °° 
= - --2-- lim J v2v(xi, v) v *(x2, v) a -an-vz dv. (ï .4) 

C Tao T o 

Also from (3.4), 

a2 
2 P(x1, x2, r) _ - 27r2 hill. 

J 
v2v(xi, v) v *(x2, v) e-2nlvr dv. 

aT T-ao T 0 

Comparison of (7.4) and (7.5) shows that 

°2f, -c22 - o. 

(7.5) 

(7.6) 

Similarly, if °Z denotes the Laplacian operator with respect to the co- ordinates 
x2, y2, z2 of the point P2(x2), then 

°$P 
a2 ôT = 0. (7.7) 

Hence, in vacuo, the correlation function P(x1, x2, r) obeys rigorously the two wave 
equations (7.6) and (7-7). 

Each of the two wave equations describes the variation of the correlation when 
one of the points (P2 or P1) is fixed whilst the other point as well as the parameter r 
varies. It will be recalled that r denotes a time difference; in all experiments it will 
play the part of the difference in the optical path (divided by c). The actual' time 
makes no appearance in our formulae. This is a most desirable aspect of the theory, 
since true time variations are not observed in optical fields. 
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8. A RIGOROUS FORMULATION OF THE PROPAGATION LAW FOR r 
AND OF THE GENERALIZED HUYGENS PRINCIPLE 

We are now in a position to derive a rigorous propagation law for P and also to 
formulate rigorously the generalized Huygens principle. 

Let P(x) and A(a) be any two points in the field and let af be any closed surface 
surrounding P; the point A may be either inside or outside this surface. 

If V2 denotes the Laplacian operator with respect to the co- ordinates of P(x), 
then, according to (7.6), 

1 a2P(x, = a r) 
V2r(x, a, T) 

c2 aT2 
U. (8.1) 

Hence, using Kirchhoff's integral formula (cf. Baker & Copson 195o, p. 37), we may 
express r(x, a, r) in the following form: 

r(x' a, r) = 4TT f . {f{]-+g [ar +4 1 ] } d , (8.2) 

where a 1 lar 1 

f an(r)' g--cran' --r' (8.3) 

r being the distance from a typical point P(x) on the surface to P(x) (see figure 3a), 
a/an denoting differentiation along the inward normal to d; and the brackets 
[ ... ]- denote retarded values, i.e. values obtained by replacing T by T -r/c, e.g. 

[r] -= r(x,a,T -r /c). (8.4) 

(a) (b) 

FIGURE 3. Illustrating Kirchhoff's integral theorem and the `propagation law' for P. 

It may be shown by an argument similar to that used to derive Kirchhoff's formula 
that the integral (8.2) with advanced values (r +tic in place of T -r /c) also satisfies 
the wave equation, provided g is replaced by - g. If expressions for V in terms of 
retarded terms only are admitted, as it is reasonable to do on physical grounds, then 
Kirchhoff's integral for P(x, a, r) in terms of the retarded values of P clearly 
represents the physical solution. The situation is, however, different in the case of 
r(a, x, r). For if again only expressions in terms of retarded values are admitted for 
V, Kirohhoff's integral for F(a, x, r) must involve terms like 

f <V (a, t +T) V *(X, t- r /c)> = f <f' (a, t +T +r /c) V *(x, t)> 

= fr(a,x,T +r /c), (8.5) 
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^ ^ 

i.e. it must involve `advanced' values of fi The full formula for f (a, x, T) therefore is 

11(a,x,r) = -4;1 fil (f[fl+ -g[ra Pi +h[ánr] dj`' 
(8.6) 

the brackets [...]+ denoting the advanced values, e.g. 

[P]+ = r(a,x,T +r /c). (8.7) 

We now apply (8.2) and (8.6) to derive an expression for l'(x1, x2, T) in terms of an 
integral which involves the values of f' and its derivatives at all pairs of points 
P1, P2 on an arbitrary closed surface d surrounding Pl and P2 (see figure 3b). 

We set x = x1, a = x2, x = xi in (8.2). This gives 

r(x1, xß' 
T) 

4_ rat lfiLr]i +9i[ r]i +h1{ ani f ] ) dit, (8.8) 

where the arguments in the brackets [...]T. are xl, x2, T - rl /c, e.g. 
^ 

Lr)i = r(x1,x2,T- rife);. (8.9) 

r1 being the distance from P1 to P1, h, g1 and h1 the appropriate values off, g and h 
a /anl denoting differentiation at P1 along the inward normal to d. 

Next we express each of the retarded terms in (8.8) in terms of Kirchhoff's integral 
over the surface. Setting a = xl, x = x2, x = x2 in (8.6) and writing T' in place of T 

where T' is arbitrary for the present, we obtain 

r(5i1, x2, T') i- f {f2Lr] - g2[aT' r]2 +h2[ r]2 
dx2, 

(8.10) 

where the arguments of the terms in the brackets [...]t are xl, 212, T' + r2 /c, e.g. 

[r]2 = f'(x1,5E2,T' +r2 /c), (8.11) 

the other symbols having a similar meaning as before. Differentiating (8.10) with 
respect to T', we obtain 

Î' x x2, = i-f {f2[ r]+ - [ár2 r] + [aman + ( lr ß -i g2 + r dX2. (8.12) 
Sat 

ß 
2 2 2 

Differentiation of (8.10) with respect to ni gives 

Ì` x 
7!) = 4arJ t f [1 rJ a Lan aT rJ 2 [á2 ̂ J 

) ( ) ( v x2= ß- g2 , + h2 l' dx2. 8.13 

Setting T = T-rl/c in (8.10) to (8.13) and substituting into (8.8), we finally obtain. 

^ 

r(xl' x27) (4b1 t)2 . .i fif2[r] -f1 g2 a,r r] +f1 h2[ 
a 

ß r] 
a2 ^ a2 ^ 

+91 JFß[r r] -g192[aTß P] + gih2[ar an2 
r] 

h.fß[ P] -h°g2[an1aT P] +1a,712[aanß r1J dxldx2, (8.14) 
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where the arguments of the ternis in the brackets are RI, x2, T - rl - r2 
, e.g. m 

[P] = T rl - 
c 

2(l`) 

(8.15) 

The formula (8.14) may be regarded as a rigorous formulation of the propagation 
law for P. It expresses the correlation between disturbances at P1 and P2 in terms of 
the correlations and its derivatives at all pairs of points on an arbitrary closed surface 
surrounding P1 and P2. 

In the special case when P1 and P2 coincide (x1 = x2 = x (say)) and when in 
addition T = 0, (8.14) reduces to, when we also substitute from (3.6), 

_ _ r 2 

I(x) (4n)2J.J1VI2 f1f2[Y]+(f2g1-flg2)[I9] -glg2 a 2y]) 
a a 

(4'i[9])) + ,a 2(4112[9]) +g1h2 

+,I2f2h(VIM -g2h 
1 

a 
(v'1[9])) 4 

2 

+hl h2 andant(II1Ñ12[]) cal d 2, (8.16) 

where 11 = I(xl), 12 = I(54) and [ÿ] = ÿ (t, x2, (r2- ri)/c). By a similar argument 
to that used in connexion with (4.6), ÿ may be replaced in (8.16) by y. (8.16) may 
be regarded as a rigorous formulation of the generalized Huygens principle. 

APPENDIX 1. CROSS- CORRELATION BETWEEN REAL FUNCTIONS IN TERMS OF 

THE ASSOCIATED HALF -RANGE COMPLEX FUNCTIONS 

We shall establish the following theorem: 
Let F(t) and G(t) be any two real functions, which possess Fourier integral repre- 

sentations and let P(T) be the cross correlation function 

P(T) = 2 f + F(t +T) G(t) dt. (A 1.1) 
.1 co 

Then the half -range complex function P(r) associated with P(r) is given by 

P(r) = f 
+a) 

(t +T) ô *(t) dt, (A 1.2) 
.1 

where P and 0 are the half -range complex functions associated with F and G respectively. 
Proof. Let a,, and b,, be the Fourier coefficients of F and c and d the Fourier 

coefficients of G: m 

F(t) = 
J 

(a,, cos2nvt + b sin 27rvt) dv, (A 1.3) 
0 

0(t) = 
J 

oe(c cos 27714 +d,, sin 2irvt) dv. 
0 

(A 1.4) 
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In accordance with the definition of § 2, the associated half -range complex functions 
are then given by 

P(t) = (av + ib,,) e-znivt dv, 

L(t) = (4, +id)e-2n14 dv. 
0 

(A 1.5) 

Consider now the Fourier representations of P(r) and P(r). Substitution from 
(A 1.4) into (A 1.1) gives 

Now 

P(r) = 2 f +tF(t+T) f (ea cos 27rvt+d,, sin 27rvt)dv. (A 1.7) 
J co Jo 

F(t +T) cos 27rvtdt 

= r +F(u) cos 27rv(u -T) du 
J 

= cos2lrvr f +F(u) cos 2lrvudu + sin 27rvrJ + F(u) sin 27rvu du 
J co 

= 1-(a cos 27rvr + b sin 21rvT), (A 1.8) 

where the Fourier inversion formula was used. Similarly 

f F(t +T) sin 27rvtdt = 2 (b cos 27rvr - a, sin 2in'r). (A 1.9) 
J 

Hence, interchanging the order of integration in (A 1.7) and using the last two 
relations, one obtains 

co 

P(T) = f f{[ac + bdJ cog 2in'r + [bc -ad] sin 2nvr} dv. 
o 

The associated half -range complex function P(r) is therefore given by 

(r) = f c°{[ a c, + kelp] +i[bc- a d] }e- 2nivrdv 

co r 
J(a + iba) (;- id) e-2n1vT dv. 

o 

(A 1.10) 

(A 1.11) 

Next consider the integral on the right of (A 1.2). Substitution from (A 1.6) gives 

But 

CO 

J 

CO 

1+'(t+r)G`*(t)dt = 
J 
+ dtÍ+(t+r) f (c-id)e2n'*tdv. (A 1.12) 

I 

P(t+T)e2nivtdt 
= f +c° P(u)e2niv(u-r) d26 

co 

= (a+ib) e-2nivr, (A 1.13) 

A 

( 
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where the Fourier inversion formula was used. Interchanging the order of integra- 
1 ion in (A 1.12) and using (A 1.13), one obtains 

J+co 
= 

I 

(a +ib) (c- id )e- 2i Tdv. (A 1.14) 
co 

On comparing (A 1.14) with (A 1.11), the theorem follows. 

APPENDIX 2. THE RANGE OF VALIDITY OF THE 

RESTRICTED THEORY OF PAPER I 
We shall now investigate the range of validity of the restricted formulation of 

the generalized Huygens principle and of the generalized interference law of Zernike 
and Hopkins, as given in the preceding paper of this series. 

The essential approximation which was made in the derivation of these formulae 
in I, was the replacement of the exponential term 

exp {i(kr1 - k'r2)} by exp {ik( ° >(r1 - r2)} 

in the expressiont I, (2.7): 

I(x) = 1 
J T 

dt J dvdv' exp {- 2ni(v -v')t} 
2T -T 0 0 

X J d .ztv(xl, v)v *(xz'v,) 
exp {i(kr1 k'r2)} 

A1A2 dxldx2. (A 2.1) 
r2 

To see what restriction this implies, we note that 

kri - k'r2 = kc °)(ri - r2) + (k - k(°)) (r1- r2) + (k - k') r2. (A 2.2) 

(A 2.1) may therefore be written as 

I (x) =failaG(Xl, x2, 
r2) 

exp {i[k(0>(ri - r2 (k - km) (r1- r2)J} 

where 
1 T wrao 

0(x1, x2, r2) = 
2T 

dt 
J ° J 

v(xi, v) v*(x2, v') exp { - 2ri(v - v') (t - r2/c)} 
-T 

dvdv'. 

(A 2.4) 

We now change the variable of integration in (A 2.4) from t to t' = t- r2 /c. Then, 
since rT' 

lim 
J 

exp {- 2uri(v- v')t' }dt' = 8(v -v'), (A2.5) 
T'--co -T' 

where S is the Dirac delta function, it follows, that in the limit T - oo, G becomes 
independent of r2 and is equal to 

ao 

1'(x1, x2) =T m G(x1, x2, r2) =lim 2T 0 

v(xi, v)v *(x2, v)dv (A 2.6) 

T 
= lim 1 

J 
V (xi, t) V* (x2, t) dt. (A 2.7) 

T -+ao 2T -T 

t In I, the lower limits of the integrals over the frequency range were actually taken as - oo. 

We replace them here by 0, since as explained in § 2 above, v(x, y) = 0 for v < O. 
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Hence in the limit T-->co, (A 2.3) differs from the approximate expression I, (2.8) 
by the presence of the term (k - km) (r1- r2) in the exponential term and by the 
factor AT), Ar* in place of AIM. Setting k - = Ok, r1- r2 = Or, and replacing 
the inclination factors by their mean values, it follows that I, (2.8) will be a valid 
approximation if 

IAkI I1 rI 27, (A2.8) 

or, since k = 27r /A, i k = - 2rr&. /A2, and the condition becomest 

A2 

ItrIC IOAI. 

Hence the more restricted formulation of the generalized Huygens principle and of the 
generalized inkrference law given in paper I is applicable if the path differences 
between the interfering beams are small compared to A2 /I 0A I 

The quantity A2 /I AA 
I 
has a simple physical interpretation: it represents (apart 

from a multiplicative factor of the order of unity), the coherence length of the 
radiation. A proof of this result will be found in Born (1933, p. 137) and Kahan 
(1952, p. 310). 

(A2.9) 

This work was carried out during the tenure of an Imperial Chemical Industries 
Research Fellowship, the award of which, by the University of Manchester is 
gratefully acknowledged. It is also a pleasure to thank Dr F. D Kahn for some 
helpful discussions. 
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IL NUOVO CIMENTO VOL. 111. l4. ti lo Dicembre 1954 

Optics in Terms of Observable Quantities. 

E. WOLF. 

Department of Astronomy, The University, Jlr,,,chester, England 

(ricevuto il 26 Settembre 1954) 

Summary. - Space -time correlation functions are defined which express 
the correlation between components of the electromagnetic field vectors 
in stationary fields. These functions form sets of 3 x 3 matrices, the indi- 
vidual elements of which obey the wave equation. Unlike the field vectors 
which are not measurable at the high frequencies _encountered in Optics 
our correlation functions may be determined with the help of standard 
optical instruments. The results enable a unified treatment of theories 
of partial coherence and partial polarization to be obtained, and suggest 
a formulation of a wide branch of Optics in terms of observable quan- 
tities only. 

In all Optical experiments the only quantities which are observable are 
the averages of certain quadratic functions of the field components. It is 
therefore tempting to try to formulate the laws of Optical fields directly in 
terms of such quantities rather than in terms of the Immeasurable field vectors 
as has been customary in the past. 

It was as early as 1852 that STOKES (9 showed that a nearly monochro- 
matic (plane) light wave may be characterized at each point by four para- 
meters which now bear his mime ( *). If 

(1) E2, = al (x, t) cos {2nvot - al (x, t)} , E. = a2(x, t) cos {2gtvot - aE(x, t)}, 

(1) G. G. STOKES: Trans. Uam,b. Phil. Soc., 9, 399 (1852). Also his Mathematical 
and Physical Papers (Cambridge, 1901), vol. III, p: 233. 

( *) Very good accounts of the Stokes parameters may be found in CIIAx nnA- 
SE1U AR (2) and WALKER, (3). 
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are the components of the electric vector of such a wave in two mutually 
orthogonal directions at right angles to the direction of propagation, the Stokes 
parameters are defined by 

(2) j P= <ai--a>, Q= <u -a,>, 
lU= <2ala2 cos (a,- 042)ß , V= <2a1a2 sin (al- alp 

the brackets <....> denoting time average. Then the intensity I(p, e) assoc- 
fated with vibrations in the direction which makes an angle v with the 
x- direction, when retardation e is introduced between the two components, 
is given by (see CHANDRASEKHAR (9), p. 29) 

(3) lcos 2v +(U cos e- V sin e) sin 2yß]. 

By measuring I for different values of ' and e :, the four parameters may lw 
determined 

Let us now introduce in place of Ex and Ev, the associated complex vectors 

A A 

(4) Ex= a1(x, t) exp {i[2nvot-a1(x, t)]}, By= a2(x, t) exp (i[2nv-0t - a,(x, t)]}. 

Next we construct the four functions 

(5) 
A n E _ <Ei(x, t)Ef (x, t)>, 

where i and j can each take on the value x or y and asterisk denotes the 
complex conjugate. The knowledge of these four quantities is equivalent to 
the knowledge of the four Stokes parameters; in fact the Stokes parameters 
are simple linear combinations of the f=,'s. If (3) is expressed in terms of 
these quantities, one finds after a simple calculation that 

(6) lop, 0= Ix(v) -I- Iv(y)) + 2V Lop) AtI,(1u) IY1, [arg 71.y + e] 

where 

(7) 1,(Ip) = Ex.,. c,os2 Ip, Iv(ip) = EN sin2.,p, 

and 

(3) 
- 

E.,111/ 

VEw.VE 
; 

(2) 5. I:HANLRASEH1iAR: Radiative Trans/er (Ux#ord, l'.' 

(3) M. J. WALKER: Amer. Jaunt. Phys., 22, 170 (I J.-l1 ). 
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and the well -known - inequality P2 > Q2+ U2 + V2 becomes simply I yav I <1. 
Equation (6) is formally identical with the generalized interference law derived 
in recent years in the theory of partially coherent scalar fields (ZEitNTKE (4), 

HOP.KINS (S), WoLF (e)). In the special case when y = 0, (6) reduces to the 
usual law for the combination of completely incoherent fields; when l y = 1 

it reduces to the ordinary interference law for fields which are perfectly coherent. 
Partially coherent and partially polarized fields are characterized by the 
intermediate values of l y1 . 

Now the Stokes parameters (or the 2 by 2 matrix whose elements are de- 
fined by (5)) give the intensity and express the correlation between the com- 
ponents of E at the same point in space and at the same instant of time. 
)Ioreòver they are defined only for a plane wave whose effective frequency 
range is sufficiently narrow. In 'order to characterize a general stationary 
field ( *), we introduce, by analogy with the scalar case (see WOLF (7)), cor- 
relation functions between field components at different points in space and 
at different instants of time. 

Let 

(9) E,(x, t) = I a,,;(x) cos {2 vt - a,,,(x)} dv , (i = .x., y or z) 

be the Fourier representation of a typical field component over the time 
interval - T < t < T, E being formally assumed to be zero outside this 
range, and 'define the functions 

m 

I O) E,(x, t) -f a,,,(x) exp {i[2zvt -; (x)} dv . 

\ (, now introduce a 3x3 correlation matrix E whose elements are 

A n 

(11) E,(x xs, r) = <Ei(x t+z)E*(x2, t)) . 

Similar considerations to those employed in connection with scalar fields of 

(4) F. ZEttNIKE: Physica, 5, 785 (1938). 
(5) H. H. HorxiNS:. Proc. Roy. Soc., A 208, 263. (1951). 
(e) E. WoLF: Proc. Roy. Soc.,, A 225, 96 (1954). 
( *) By a stationary field we mean here a field of which all observable properties 

are constant in time. This includes as a special case the usual case of high frequency 
periodic time- dependence; 'or the field constituted by the steady flux of polychromatic 
radiation through an optical system. But it excludes fields for which the time average 
over a macroscopic time interval of the flux of radiation depends on time. 

(7) E.. WoLF: Proc. Roy. Soc., in press. 
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arbitrary frequency range and with vector fields characterized by the Stokes 
parameters indicate, that the expressions for the electric energy density ap- 
propriate to various experimental conditions are simple functions of the ele- 
ments of the E- matrix; and moreover that all these elements may be determined 
from experiments by means of standard optical instruments. 

Since the electric vector satisfies the wave equation, it can readily be shown 
eel 

that each element of the (-matrix satisfiet two equations% 

(12) 

[ VIEH _'.,`" 
C." cz' 

1 c-E;; 
DáEz; _ - - e2 G1.L2 

where Di and 'S7: are the Laplacian operators with respect to the coordinates 
of x1 and x,, and e is the velocity of light in the vacuum. Thus not only the 
unmesurable field vectors, but also the observable correlation functions here 
introduced obey rigorous propagation laws. This result should prove particul.1 H 

useful in connection with scattering problems. 
In addition to the (-matrix, one can introduce similar matrices involving 

components of the other field vectors (H, D and B) and also matrices involving 
mixed pairs like E; and Hi. On account of Maxwell's equations, these matrices 
are related by a set of first order partial differential equations with respect 
to the variables x,, x,, and T. In the analysis of all optical experiments oT will 
play the part of an optical path difference. The actual time, like the frequency 
has been eliminated. - 

Unlike the (-matrix, the ëe matrix is not likely to be of any interest in 
Optics, since no radiation detectors appear to be available at Optical wave- 
lengths which would respond to the magnetic rather than the electric field. 
It may, however, prove useful in connection with applications to other types 
of partially coherent radiation, e.g. in Radio Astronomy. The matrix con- 
taining the mixed pairs should prove useful in experiments where the (aver- 
aged) flux of energy rather than the energy density is measured. 

The matrices here introduced may be expected to play a role in Electro- 
magnetic field theory which is somewhat analogous to that which the Density 
matrix of von NEUMAN (8) plays in Quantum Mechanics. An analogy between 
the Stokes parameters and the Density Matrix has been noted previously 
(PERRIN (9), FALLOFF and MACDONALD (10); see also FANO (l9)). It is, how_ 

(8) J. V. NEUMANN: Gätt. Nachr., 245 (1927). 
(0) F. PERRIN, Joir,,. ('l,rm. Phys., 10, 415 (1942). 

, 
(10) ll. L. bALKUFF and .1. E. ?1I .0 UxALu: Joan/. OM. Soc. Amer., 41, Mil (1951). 
(u.) [J. FANO: Phys. Rev., 93, 1:21 (1954). 
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ever, evident' that only by considering more general correlation functions, such 
as those here introduced, does one obtain an adequate 'tool for the study of 
propagation problems in a general stationary electromagnetic field. 

A fuller discussion of the subject matter Of this note will be published 
t a later date. . 

This work was carried out during the tenure of an Imperial Chemical In- 
dustries Research Fellowship and was also supported by a grant from the 
Carnegie Trust for the Universities of Scotland, both of which are gratefully 
acknowledged. 

RIASSIINTO (*) 

Si definiscono funzioni di correlazione spazio -tempo che esprimono la correlazione fra 
componenti dei vettori del campo elettromagnetico in campi stazionari. Queste funzioni 
formano gruppi di 3 x 3 matrici i cui elementi individuali soddisfano all'equazione 
d'onda. A differenza dei vettori di campo che, alle alte frequenze che intervengono in 
Ottica, non sono misurabili, le nostre funzioni di correlazione possono essere determi- 
nate con l'ausilio degli ordinari apparecchi ottici. I risultati consentono un trattamento 
unificato delle teorie della coerenza parziale e della polarizzazione parziale e suggeri- 
scono una formulazione di un ampio settore dell'Ottica in termini di sole grandezze 
osservabili. 

( *) Tradurione a cura della Redazione. 
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Abstract. It is shown that in a region which is free of currents and charges, any 
electromagnetic field may be rigorously derived from a single, generally complex, 
scalar wave function V(x, t). In terms of this function the momentum density 
g(x, t) and the energy density w(x, t) of the field may be defined in such a way 
that they are represented by expressions analogous to the formulae for the 
probability current and the probability density in quantum mechanics; in a 
homogeneous isotropic medium 

g(x,t)- 8a l"-o 

V*] c[V *OV +V , 

w(x, t)= g- VV *+ 1 vV.vV *] . 

10 

The densities defined in this way differ from those given by the usual expressions, 
but the choice is justified since the differences disappear on integration over 
any arbitrary macroscopic domain. (The corresponding Lagrangian densities 
differ by a four divergence.) When V is of the form Vo(x)e ' Wt g is found to form 
a solenoidal field which is orthogonal to the co- phasal surfaces arg Vo = constant. 

§ I. INTRODUCTION 

N a region of space which is free of charges and currents an electromagnetic 
field is fully specified by the magnetic vector potential A. From it the 
electric and the magnetic field vectors may be derived by means of well - 

known relations. 
In a wide class of problems, particularly in those encountered in optics, the 

actual behaviour of the field vectors is of little interest. What one primarily 
wishes to know is the average energy or the average flux, and one is led to wonder 
whether for such purposes the derivation from a vector potential is really the 
most suitable one. Except in the so- called `rigorous' diffraction theory, one 
does in fact often employ in optical considerations of energy a single, generally 
complex, scalar wave function (usually called the disturbance, or the complex 
amplitude), whose squared modulus is taken as the measure of the light intensity. 
This simple procedure has been employed in optics since about the time of 
Fresnel (the disturbance then being considered to be the displacement of a 

particle in an `elastic ether') and has been the subject of much criticism, in spite 
of the fact that under fairly general conditions it gives results which are found 
to be in excellent agreement with experiment. The validity of the scalar 

1' On leave o absence from the University of Adelaide, Adelaide, South Australia. - 
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theory has been justified, at least as an approximation or as a time average, for 
a number of special cases only : (a) for certain two- diménsional problems and 
for monochromatic fields with rotational symmetry (cf. Braunbek 1951), (b) in 
applications to diffraction problems encountered in optical instruments of usual 
design and working with non -polarized and almost monochromatic light (Picht 
1931, Luneberg 1947 -8, Theimer, Wassermann and Wolf 1952). 

Now it is well known that the energy density and the momentum density 
(and consequently the light intensity) are not uniquely defined by the electric 
and the magnetic field vectors. One may always add to the Lagrangian density 
a four divergence which gives no contribution to the field equations, though 
it may alter the local (unobservable) values of the densities of the energy and 
the momentum. Such alteration must of course lead to no observable changes 
in the total amount of energy and momentum contained in any extended 
(macroscopic) domain. The question is therefore open as to whether one 
could not define the energy and momentum densities in such a way that they 
would always be expressible in a simple manner in terms of a single complex 
scalar wave function, the field vectors remaining unchanged. In the present 
paper it is shown that this in fact is possible. 

We find that in regions where no currents or charges are present the 
magnetic potential may be rigorously derived from a single, generally complex, 
scalar wave function V(x, t), which we call the complex potential. In terms of 
this function the momentum density g(x, t) and the energy density w(x, t) in 
a homogeneous isotropic medium may be defined by means of formulae analogous 
to the expressions for the probability current and the probability density in 
quantum mechanics : 

and 
g(x, t) - 1 [V *VV+ VVV *], 

8741.0c 
} 

w(x, t) = 8 [2 VV* + 1 vV . vV *1 ; 

!o 
these quantities satisfy a conservation law of the usual form: 

d+v .g =0. (1.2) 

The corresponding Lagrangian density L is 

L(x,t) = 
87T 

{c2VV *- 1 vV.vV * {; (1.3) 

here E0, µo are the dielectric constant and the magnetic permeability and c is the 
vacuum velocity of light. 

An interesting consequence of the present analysis is the result that in the 
case when the time enters V only through the factor a -'wt, i.e. when V is of the 
form V(x, t) = v(x) exp {i[kt (x) - cot]) (y and e.3° real) (1.4) 

(u, = frequency, k = a, /c), g and w become independent of time and (1.1) reduces 

(1.1) 

to 
k2 

g(x) = v2Vco5°. 

The conservation law now becomes 

V.g(x) =0. 

(1.5) 

(1.6) 
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Equation (1.5) shows that the energy flow is orthogonal to the surfaces of constant 
phase of the complex potential and (1.6) expresses the fact that the vector field g. 

is solenoidal. One is thus led rigorously to the concept of `electromagnetic rays', 
and one obtains for a class of electromagnetic fields a simple model which may 
be regarded as a natural generalization of geometrical optics. 

§ 2. DEFINITION OF THE COMPLEX POTENTIAL 

We consider an electromagnetic field in a homogeneous, isotropic medium. 
In regions free of currents and charges the field quantities may be derived from 
a single vector potential a(x, t) which satisfies the homogeneous wave equation 
and also the divergence condition 

V. =0. (2.1) 

In general, currents and charges will, of course, be present in some parts 
of the x space. It will be convenient to imagine these enclosed in boxes and 
to consider in place of SA the function A defined by 

A(x, t) = (x, t) outside and on the boxes 
= 0 inside the boxes. 

A is formally defined over the whole x space and may be represented by a 
Fourier integral 

A(x, t) = f [a(k, t) cos (k . x) + b(k, t) sin (k . x)] dk, (2.2) 

where, since A is real, the integration is carried over half of k space (e.g kx0). 
On account of (2.1) the (real) vectors a(k, t) and b(k, t) are orthogonal to k, 

a.k= b.k =0. (2.3) 

With each k we associate two unit vectors 11(k) and 12(k) such that 11, 12 and k 
form a right- handed orthogonal triad. This may be done for example by 
choosing a constant vector n and taking as 11 a unit vector perpendicular to the 
(k, n) plane and as 12 a unit vector perpendicular to k and 11: 

11(k) 
i n n k I' 

1(k) 
k n 11 k2n -(n . k)k 

12(k) Ik2n-(n.k)kI 

(2.4) 

Equations (2.3) show that a and b lie in the plane of 11 and 12 and may therefore 
be resolved along these vectors : 

a1=a.11, 
b1=b.11, 

a2=a. 12, 

b2=b.12. 
Next we form the complex combinations 

a(k, t) = a1(k, t) +ia2(k, t), 

(2.5) 

ß(k, t) =b1(k, t) +ib2(k, t), 
(2.6) 

and regard a and ß as Fourier coefficients of a function V: 

V(x, t) = f [a(k, t) cos (k . x) + ß(k, t) sin (k . x)] dk. (2.7) 

We call V(x, t) the complex potential of the field. 
We have now replaced the magnetic vector potential by a complex scalar 

function. Conversely it is easily seen that from the complex potential V, the 
75-2 
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magnetic vector potential A and consequently the field vectors may be uniquely 
derived. For in the first place, from the knowledge of V the quantities a and ß 
may be obtained by applying the Fourier inversion formula. Then al, a2, b1 and 
b2 may be determined from (2.6). From them the Fourier components a and b 
of the complex potential are obtained : 

a=a111+a212, b =b111+b212. (2.8) 

Finally, if one forms the combinations a cos (k , x) + b sin (k . x) and integrates 
over all k, one obtains the vector potential A. Hence the scalar V(x, t) 
completely specifies the field.* 

It is easily seen that in a homogeneous isotropic medium of dielectric 
constant eo and magnetic permeability µo the complex potential satisfies the 
wave equation e 

V2V- 02° V =0. (2.9) 

For, since the vector potential A satisfies the wave equation 

pap -Eo A = 2o0, 
one must have, for each component, 

Ak = a( k, t) cos (k . x) + b(k, t) sin (k . x) (2.11) 

k2c2 
Ak Ak+ O. (2.12) 

Eollo 

It then follows from (2.12), (2.55 and (2.6) that the corresponding terms VR of 
V, i.e. Vk = cc( k,t) cos (k.x) +ß(k,t) sin (k.x), (2.13) 

must satisfy the scalar wave equation 
k2c2 

Vk + Eoµo 
Vk = O. (2.14) 

Consequently the complex potential satisfies the homogeneous wave equation (2.9). 

of A, 

(2.10) 

3. THE MOMENTUM DENSITY AND THE ENERGY DENSITY 

3.1. We now derive expressions for the momentum density and the energy 
density of the field in terms of the complex potential. We restrict our discussion 
to a homogeneous isotropic medium. 

In terms of the vector potential, the electric and the magnetic field vectors 
are given by 1 

E = --c A, 1.1, 0H =VAA, (3.1) 

and the total momentum G of the field is 

G(t)= J(EnH)dx= . 

I 

AA(VAA)dx, (3.2) 
µo 

the integration being taken throughout the x space. 

* Note added in proof. Since this paper was written our attention has been drawn to a 
paper by E. T. Whittaker (Proc. Loud. Math. Soc., 1904, 1, 367), where it is shown that 
in vacuo at points not occupied by electrons a field produced by any number of electrons 
moving in any arbitrary manner may be derived from two real scalar wave functions. , 

The connection between Whittaker's analysis and that of the present section is being 
investigated and it is hoped to publish the results in a later communication. 
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To express G in terms of V we first substitute into (3.2) from (2.2). We have 

A= f [ácos (k.x) +b sin (k.x)]dk, 
(3.3) 

VAA= f kA[- asin(k.x) +bcos(k.x)]dk. 

fence 
G = - 

4µoc 
f dx f f [á(k', t) cos (k' . x) + b(k', t) sin (k' . x)] 

A[lc ( -a(k, t) sin (k. x) + b(k, t) cos (k .x)] dkdk'. (3.4) 

Phis becomes, with the help of the Fourier integral theorem, 
2 

G = - 2Foc 
f á(k, t) n [k n b(k, t)] - b(k, t) n [k n a(k, t)] dk, (3.5) 

using (2.8), 7T 
2 

G = `- f [(41 +a2ó2)- (b1ä1 +b2a2)]kdk 2µoc 
2 

- 2114 f [(a*ß+aß*)-(á*ß+(iiß*)]kdk 

1 J(iT*VV+iTVV*)dx (3.6) 
8lr,u0c 

Hencé the density g of the momentum may be defined as 

g(x,t) =- 8 c[V *VV +VVV *]. (3.7) 
!to 

The electric and the magnetic energy densities may also easily be defined 
in terms of the complex potential. The total electric energy We is 

We(t) = 8! f E2 dx 

= 8zrc2 f dxjj f (k,t)cos(k.x) +b(k,t)sin(k.x)} 

.{ k,t)cos(k'.x) +(k',t)sin(k'.x) }dkdk' 

= ÇJ(+b2)dk 

= 2c2 f ([112+0122+b12+b22) dk 

2 

2c2 f (off * +ßß *)dk 

= 87rc2 
J7T*)th x. 

The total magnetic energy Wm is 

W,,,(t) = 8r f H2 dx, 

and one finds, by a similar calculation as above, 

Win(t) = 1 
8 

f (VV. V V *) dx. 
rµo 

(3.8) 

(3.91 
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Equations (3.8) and (3.9) show that one may define the electric and magnetic 
densities we and w,,, by the expressions 

we(x, t) = V 8c2 V *, wnt(x, t) = 87r jo 
(V V . V V*) (3.10) 

It is easily verified, with the help of the wave equation .(2.9), that the total 
energy density w =we + wm and the energy flux S = cg satisfy the conservation law 

+V.S =0. (3.11) 

3.2. V is in general a complex function. Let v denote its amplitude and 
its phase : V(x, t) = v(x, t) exp {i «(x, t) }. (3.12) 

If one substitutes from (3.12) into the wave equation (2.9) and separates real 
and imaginary parts, one obtains the following two equations : 

V2v- v(Vi)2- E2o(v- v2) =0, (3.13) 

In terms 
Wm are 

2(Vv). (V0) + vV20 -Ec oo(2vß +4) =0. ......(3.14) 

of v and ç the momentum density g and the energy densities we and 

g(x, t) = (vVv + v2çWO), 

We(x) t) = 871.c2 (v 
2 +cb2v2), (3.15) 

wm(x, t) = 8 
{(Vv)2+ v2(V )2 }. 

Of particular interest is the case when the time enters only through a factor!' 
e -iwt. Then v is independent of time and 0 is of the form 

0(x, t) = ke9(x) -cot (3.16) 
(k= co /c). The eqns. (3.13) and (3.14) reduce to 

(Dey)2_ jV2v=n2, (3.17) 

Vv.Dei+ vV2e° =0, (3.18) 

where n2 = eojo. (3.19) 
The expressions (3.7) and (3.10) for the momentum densities and the energy 
densities become 2 

g(x) = v2Ve5o, (3.20) 

( )__ 2 
we (x) 

87r 
v2, (3.21) 

2 

wm(x) 877P v2 
[(Va)2+ 

k2 
( V log v)21 . (3.22) 

fi Note added in proof : A general monochromatic wave must be represented by a 
V function of the form 

V(x, t) = Vi(x)e -i°'t+ Va(x)ei°,t, 
where Vl and V2 are complex functions of positions. It appears that the case here 
considered (VV -O) represents a monochromatic wave of arbitrary shape but circularly 
polarized, at least in the sense of a space average over a macroscopic domain. 
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Equation (3.20) shows that the energy flow is orthogonal to the surfaces 

eY(x) = constant. 

Moreover, (3.18) may be written in the form 

V.(v2V9) =0; 

(3.23) 

(3.24) 

his relation (which also follows from the conservation law (3.11)) shows that,the 
rector field g is solenoidal. 

The two results which we have just established show a close analogy with 
he model presented by geometrical optics. The surfaces e= constant may be 
-egarded as generalized wave fronts and the energy may be considered as being 
propagated along the curves (rays) orthogonal to these surfaces. 

To determine the wave fronts e= constant one must in general solve two 
equations (3.17) and (3.18). But we note that the second term in (3.17) contains 
as multiplicative factor the second power of the small quantity 1 /k. Except in 
special regions this term will be very small in comparison with n2 = colio and 
may therefore be neglected. This implies that the geometrical wave fronts 
given by the solution of the eikonal equation 

(De50)2 = (3.25) 

are in general a very good approximation to the waves associated with the complex 
potential.t Better approximations may be obtained by the application of the 
W.K.B. method, or with the help of Huygens' principle (or Kirchhoff's integral 
formula). 

One can also easily write down an expression for the variation of the amplitude 
along each ' electromagnetic ray' (orthogonal trajectory to the surfaces). For 
if a /aT denotes differentiation along a particular ray, a /aT =Vc$" . V, and (3.18) 
gives av /aT + +(V2eY)v = 0 ; hence 

/ 
fT 

v(T)=v(T0)exp[ -J p2,0dT ]. 
TO 

(3.26) 

§ 4. A COMPARISON WITH THE CLASSICAL THEORY 

The energy and the momentum of the electromagnetic field may be derived 
by a variational principle from a Lagrangian density L' which is Lorentz 
invariant : 1 

L'= 
8n cA2- -1 (V (4.1) 

The variational principle leads to the vector wave equation (2.10) for the vector 
potential A. 

In the present theory we have, in place of (2.10), the scalar wave equation (2.9) 
for the complex potential V. This equation may also be derived from the 
variational principle by replacing L' by the Lagrangian density 

L. - {c2 - 
VV *- 1 OV.OV4. (4.2) 

!" o 

t In this connection méntion must be made of recent researches of Luneberg (cf. 1949, 
particularly pp. 55- 56), which have shown that for small wavelengths geometrical optics, 
in its extended form, including also description of vectorial properties of the field, gives 
a very good first approximation to a steady state field. 

$ It is of interest to note the analogy with the Lagrangian density for a scalar meson 
with zero rest mass. 
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Since L' and L lead to the same field equations, their difference must be of 
the form L- L'= P + div Q. (4.3) 

In consequence, the momentum density g and the energy density w of the present 
theory will differ from the usual expressions g' and w' associated with (4.1). In 
fact one has relations of the type 

g - g' = grad P, w -w' =- div ot, (4.4) 

where P = P and Q = of if P and Q do not involve the field variables. The effect 
of these differences will be negligible on integration over an arbitrary domain 
which is large compared with the wavelength. 

That the usual definition of energy flow, based on the Poynting vector, is not 
the only possible one is of course well known.* Our present definition has 
several advantages. We saw, for example, that in a field represented by a complex 
potential of the form V(x, t) = Vo(x)e_iac (4.5) 

g, we and wn, are independent of time and g is orthogonal to the surfaces of 
constant phase of the complex potential. But even in more complicated fields 
the densities as defined by the present theory seem to lead to simpler results. 
To illustrate this point we consider an example (essentially due to Braunbek 
1951): 

Suppose that the vector potential of a field in vacuo (E0 =µo =1) is 

A(x, t) = C{n2 cos [k(nl . x - ct)] + n3 cos [k(nz . x - ct)], (4.6) 

where C is a constant and n1, n2, n3 is a right- handed orthogonal triad of unit 
vectors. A straightforward calculation gives for the time average 

(S,) (c(4AH)) of the Poynting vector : 
z 

(S' ) 
ck2C 

[(n1 + nz) - nzcos [k(n 1- nz) .x]. (4.7) 

This expression does not satisfy the relation (S') . curl <S' ) = 0 which would 
obtain if (S') possessed orthogonal trajectories (cf. Weatherburn 1930, p. 217). 
On the other hand one easily finds that the average energy flux S = cg as defined 
by (3.7) possess orthogonal trajectories. For one has in this case (taking 
n = n1+ n2) 

V(x,t) =C j 1 
2(1 -i)cos [k(ni.x- ct] +i cos [k(nz.x -ct)] ,. (4.8) 

From (4.8) and (3.7) one obtains, by a straightforward calculation, 
ck2C 

(S) = (cg) = -s- [ni+ nz] [1- cos (k(ni - nz) . x)J , (4.9) 

and it follows from (4.9) that (S) satisfied the required condition for the existence 
of orthogonal trajectories : (S) . curl (S) = 0. 

It is seen that (S') and (S) differ by a space -periodic function, to which clearly 
no physical meaning can be attached. For div {(S') - (S >1= 0, and consequently 
the (time- averaged) energy which crosses any closed surface in the field, will be 
the same whether S or S' is taken to define the energy flow. 

*cf. Stratton 1941, p. 134; also Hines 1952. 
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Finally we give a summary 9f our m ain formula and the corresponding 
formulae of the classical theory; 

Usual definition 
Basic field quantity A 

Lagrangian density 

Field equation 

Momentum density 

Electric energy density 

Magnetic energy density 

(E=_. A, fcoH°OAAI 

l 

// 

8r 
{en 

cQ A2 (AA)a } 

v2A- 
JJ 

c 

(EAH) 

Present definition 

V 

1 is! VV *- 1 OV. vv *l 
Fio 

O2V- 
E° Zo V=0 

c 

1 (v*vV+ vvv*) 
8wµoc 

Ep 
E 

Ep * 

87r 87rc2 
VV 

Po 
8 

OV.VV* 
fo 

ACKNOWLEDGMENT 

In conclusion we wish to thank Professor Max Born for his interest in this 
work and for stimulating discussions. 

REFERENCES 

BRAUNBEK, W., 1951, Z. Naturforsch., 6a, 12, 
HIES, C. 0., 1952, Canad. y. Phys., 30, 123. 
LUNEBERG, R. K., 1947 -8, Propagation of Electromagnetic Waves (mimeographed notes 

of lectures delivered at New York University) ; 1949, Asymptotic Development of 
Steady State Electromagnetic Fields, New York University, Mathematics Research 
Group, Report No. EM -14. 

Plcirr, J., 1931, Optische Abbildung (Braunschweig : Vieweg). 
STRATTON, J. A., 1941, Electromagnetic Theory (New York : McGraw -Hill). 
THEIMER, 0., WASSERMANN, G. D., and WOLF, E., 1952, Proc. Roy. Soc. A, 212, 426. 
WEATHERBURN, C. E., 1930, Differential Geometry of Three Dimensions, Vol. II (Cam- 

bridge : University Press). 



3.2 

Reprinted from the Proceedings of the Cambridge Philosophical Society, 
Volume 50, Part 4, pp. 614 -622, 1954. 

PRINTED IN GREAT BRITAIN 

ON LINEARLY POLARIZED ELECTROMAGNETIC WAVES 
OF ARBITRARY FORM 

BY A. NISBET AND E. WOLF 

Communicated by N. KEimiER 

Received 1 February 1954 

ABSTRACT. Two simple laws connecting the amplitude and phase functions of a mono- 
chromatic electromagnetic wave of arbitrary form are derived, holding in the case when one of 
the field vectors is linearly polarized. The first is a generalized Fermat's principle which enables 
determination of the phase when the amplitude is known; the second expresses the propagation 
of the (vector) amplitude along the curves orthogonal to the co- phasal surfaces. Some other 
general properties of linearly polarized fields are also discussed, and illustrative examples are 
given. 

1. Introduction. In recent years researches on the foundations of geometrical 
optics, and in particular the important investigations of Luneberg (6), have shown that 
it is possible to formulate simple transport laws relating not only to the propagation 
of energy but also the propagation of amplitude and direction of polarization of 
monochromatic electromagnetic fields in the limit of infinitely high frequency 
(negligible wave -length). 

The present investigation is concerned with the question of extending these laws 
to fields of any frequency. It is shown that rigorous generalizations holding for any 
monochromatic electromagnetic field in which at least one of the field vectors is 
linearly polarized- may in fact be obtained. In particular, the following two laws are 
established for such fields: 

(1) A relation between the vector amplitude and the phase which is of the form of 
a generalized eikonal equation. The associated Fermat's variational problem then 
enables the determination of the phase when the amplitude is known. 

(2) A transport equation for the propagation of the vector amplitude along the 
orthogonal trajectories (` electromagnetic rays') of the co- phasal surfaces. This is found 
to be formally identical with the Luneberg -Friedlander transport equation. 

Certain other general properties of linearly polarized fields are discussed and the 
results are illustrated with reference to the classical Sommerfeld half -plane problem, 
to the magnetic dipole field and to a wider class of fields of practical interest. 

2. Maxwell's equations in terms of amplitude and phase functions. 2.1. We begin with 
a few preliminary remarks concerning polarization, amplitudes and phases of a mono- 
chromatic vector field. 

A real vector field G(r, t) which is harmonic in the time t, with circular frequency w, 

may be written G(r, t) = p(r) cos cot -F q(r) sin wt 

= s g(r)e -t', (2.1) 

t By a linearly polarized monochromatic wave we mean one in which the field vector at any 
particular point remains, with varying time, always in the same direction; but unlike the case of 
a homogeneous plane wave, this direction may be different at different points of the field. As will 
be shown below, many fields of practical interest are of this type. 
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where g = p + iq, p and q being real vector functions of position r, and 91 denotes 
the real part. At any given point the vector G lies in a plane, the plane of p and q; and 
its end -point describes with varying time an ellipse (the polarization ellipse) of which 
p and q are conjugate semi -diameters and r the centre. In special cases the ellipse may 
of course degenerate into a circle or a straight line, the field then being circularly or 
linearly polarized. It is important to realize that, contrary to the case of a plane wave, 
the state of polarization may be different at different points of the field ; and in particular 
that if G is linearly polarized throughout a given domain, it is not necessarily in the same 
direction at every point of the domain. Such a variation is exhibited even by relatively 
simple fields, as, for example, that of an electric or magnetic dipole (see §4.3 below). 

The field G may be represented in an infinite number of ways, namely, 

G(r, t) = Rg'(r) eitkY(r > -(,al, (2.2) 

where g'eik '= g. (2.3) 

Here the amplitude function g' = p' +iq', p' and q' are any other pair of conjugate 
semi -diameters of the polarization ellipse, 9' is the associated phase function and k is 
the usual factor u /c, c being the velocity of light in vacuo. 

We shall mainly be concerned with linearly polarized waves. Then p and q are in the 
same direction, i.e. q = fp, (2.4) 

where/ is a real scalar function of position. In this case we may choose the amplitude 
function to be real and writet 

G(r, t) = a(r) eitkAr» }, (2.5) 

where a = p,/(1 +f2) (2.6) 

and tan kb' = f. (2.7) 

We shall call (2.5) the principal form of G, and a and 9' the principal amplitude 
function and principal phase function respectively. 

We can also define the principal form of G for the general case of elliptic polarization 
as that corresponding to the choice of p' and q' along principal axes of the polarization 
ellipse. Definition (2.5) then corresponds to the limiting case when the minor axis 
is zero. 

2.2. We now consider a monochromatic electromagnetic field in an isotropic non- 
conducting medium, of dielectric `constant' e(r) and magnetic permeability ,a(r), 
free of currents and charges. We write the field vectors (in general elliptically polarized) 
in the form (2.2): 

E(r) = e(r) eitk.Pe(r) -), 
H(r) = h(r) 

Substitution of these expressions into Maxwell's equations 

VAE- ik,aH =O, 
VAH +ikeE =0, 

V. (,uH) = 0, 

V. (eE) = 0,. 

(2.8) 

(2.9) 

{2.10) 

(2.11) 

(2.12) 

t We omit the symbol 91 in (2.5), and subsequently when there is no risk of confusion. 
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e eik.Pe =( - 
É 
Vh n h- 
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n h} eik.sh, 

h. V.h+ikV . (,uh) = 0, 

e.V.9:+ikeV . (ee) = O. 
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(2.13) 

(2.14) 

(2.15) 

(2.16) 

Elimination of the magnetic vector gives the wave equation for the electric vector, 
which, in terms of e and , has the form 

. (e,V.9:,n) + ,V.9:,n a) +1 2 (e, ,u) = 0, (2.17) 

where n2 = ea, (2.18) 
and 

.1Y(e, n) = {n2- (V.996)2} e, 

n u) = { V2. 9: -V.9:. V logic} e +2(e.V log n)V..9: +2(V.9:.V)e, (2.19) 

.,ll(e,e u) = V2e +(Vlogic) A(V Ae) +V(e.Vloge). 

The corresponding relation between h and .9h is 

. ( h, V. 9:.n) +k ,V.9'h,n,e) +- .,ll(h u, e) = 0. (2.20) 

We shall now investigate the implications of these relations for electromagnetic 
fields in which the electric vector is linearly polarized. Results for the complementary 
case of linearly polarized magnetic vector are of course strictly analogous, and may 
be obtained by interchange of E and H, e and h, <9: and 99h, and e and -,u in the 
appropriate formulae. 

3. Electromagnetic fields with linearly polarized E- vector. When the electric vector is 
linearly polarized we use the principal form (2.5); then e(r) = a(r), where a is real. 
Separating real and imaginary parts in (2.17) then givest 

(a,V.9,n) +k . 2.,ll(a,e u) =0, (3.1) 

and 2'(a, V.9 , n a) = 0. (3.2) 

Also, the divergence condition (2.16) gives 

a.VV = 0 (3.3) 

and V.a +a.Vloge = O. (3.4) 

We now show that these equations have interesting interpretations. 

3.1. A generalization of Fermat's principle. Written explicitly, (3.1) is 

{n2- (V.9')2 }a +k2 {V2a+ (V log,u) A (V A a) + V(a .V log e)} = 0, (3.5) 

Ì In this section we write .5o in place of ., as no confusion is likely to occur. 
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giving, after scalar multiplication by a and use of (3.4), 
\ 

(VY)2 =n2 -k á2 a.jVAI 
/1 

Vna)). (3.6) 
ll 

\,a 

We note that as k-->oo, (3.6) reduces correctly to the eikonal equation of geometrical 
optics: (Vw)2 = n2. (3.7) 

In this limiting case, therefore, 9' is completely specified (apart from boundary con- 
ditions) by the refractive index function n alone. The surfaces 9'(r) = constant are 
then the wave fronts of geometrical optics. Their orthogonal trajectories are the 
geometrical optics rays, which are the solution of Fermat's variational problem 

(Inds = O. (3.8) 

In general, however, the second term on the right -hand side of (3.6) cannot be 
neglected; but if a(r) is assumed to be known, e.g. from experiment, the principal phase 
function may even then be determined -with the help of a (generalized) Fermat 
principle. For if we introduce a modified refractive index function 

N(r) = [n2 a . {V A (I V A a) }] , (3.9) 

(3.6) takes the form of a generalized eikonal equation / 1 

(V9')2 = N2. (3.10) 

Hence if the principal amplitude a(r) is regarded as known, the principal phase function 
.So is nothing but Hamilton's characteristic function of the variational problem 

SfNds=O. (3.11) 

We note the simple forms taken by N in the following special cases: 

(i) ,a= 1: N2= n2- ka2a. {VA(Vna», 

(ii) e and, a constant: N2 = n2+ a2 a . V2a. 

3.2. Transport equation for the principal amplitude. Next we consider the implication 
of (3.2), which is in full 

(V2' -Vb. V logic) a +2(a. V log n) V9 +2(VS. V) a = 0. (3.13) 

(3.12) 

Introducing the operator afar = V.99. V, (3.14) 

so that T is a parameter specifying position along the orthogonal trajectories (`electro- 
magnetic rays') to the surfaces .9' = constant, (3.13) becomes 

ôa 
+ 

¡ 
¡aicV' f- v9I +(a.Vlogn)V9 =0. (3.15) 

This gives the variation in the principal amplitude a along each ray. It is formally 
identical with the transport equation of Luneberg (6)t for the propagation of 

Ì An account of some of Luneberg's analysis is also given in a paper by Kline (5). Luneberg's 
proof is based on the full Maxwell's equations, but it has been shown by Copson(3) that the 
transport equation is a consequence of the second order wave equation for each field vector. 



A. NISBET AND E. WOLF 618 

discontinuities in an electromagnetic field, and with that of Friedlander (4)t valid 
within the accuracy of geometrical optics, for the propagation of the vector amplitude 
of a monochromatic field. However, in these papers the functions satisfy rigorously 
the eikonal equation (3.7), whereas ours satisfies the more general equation (3.10). 

The transport equation (3.15) may be regarded as complementary to the generalized 
eikonal equation (3.10). For (3.15) enables the determination of a when 5 is known, 
whereas (3.10) enables the determination of when a is known. The content of (3.13) 
(or (3.15)) can be conveniently discussed in two stages, one relating to the variation 
of the squared amplitude along each `ray', the other concerned with the variation of 
the direction of polarization. t 

We note first that (3.3) implies that the electric vector lies in the tangent plane to the 
surface 6 = constant. Multiplying (3.13) scalarly by a and using this result, it follows 
that as 

V . ( Val = O. (3.16) 

It will be seen later ( §3.3) that (3.16) 
\ 
\expres 

/ 
/ses the law of conservation of the average 

energy flow ( Poynting vector). 
Equation (3.16) may also be written in the form 

a2 

-log _ - V2Y (3.17) 
aT 

Hence if as /,a is known at a particular point T = To of a ray its value at any point on 
the ray is given by 

ex (_) 
as 

(_) 
ai f _p(_f 

T 

V29odr }, (3.18) 
T 

or, using (3.14), by the equivalent form 

#1 = 
`/loegp{ -J sec (V.99)2 d99/ 

(3.19) 

integration being along the ray in each case. 
Next we derive from (3.15) a simple equation for the propagation along each ray 

of the unit vector u which specifies the direction of the electric vector. Substituting 
a = u ,,/(a2) into (3.15), and using (3.17), gives, after a simple calculation, the transport 
equation au 

aT +(u.V log n)V9 =0. (3.20) 

In particular, if the medium is homogeneous, V log n = 0, and (3.20) gives au /ar = 0, 
implying that in a homogeneous medium the direction of polarization remains constant 
along each ray. 

3.3. The average Poynting vector. Equation (2.13) with e = a, where a is real, shows 
that in general the magnetic vector will be elliptically polarized even when the electric 

t Though not explicitly stated by Friedlander, the later part of his paper is also restricted to 
linearly polarized fields. 

$ Our discussion of (3.15) is similar to that of Luneberg and Friedlander but is included here 
for the sake of completeness and also because our standpoint is different. For we are here con- 
cerned neither with a pulse solution (Luneberg) nor with geometrical optics (Friedlander), but 
with a (rigorous) solution of Maxwell's equations representing a monochromatic field with 
linearly polarized electric (or magnetic) field vector. 
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vector is everywhere linearly polarized. An example of this situation is the field of 
a magnetic Hertzian oscillator (see §4.3). It is, however, easy to see that the time 
average of E. H over an interval of time which is large compared to the period 2n/co is 
zero, implying that E and H are on the average' mutually orthogonal. For, by (2.13), 

E.H =+ {E.H* =4-9î{'_a.(V.9'Aa)_.,a.(VAa)} =0. (3.21) 

Further, the time average of the Poynting vector S is given by 

8REAH* _ $n. ?If {aA(i Verna -ik VAa)} = a2V .r, (3 22) 
l \ \ \i 4a / ,a 

showing that in a field where E is linearly polarized the mean Poynting vector is orthogonal 
to the cophasal surfaces . = constant of the electric vector. Equations (3.22) and 
(3.16) then give the conservation law 

t." (3.23) 

4. Examples. 4.1. Included in the class of problems to which the results of the 
previous section apply are what are essentially orthogonal two -parameter problems. 
Let 0i, 02, 03 be orthogonal curvilinear coordinates, defined by the metric 

ds2 = yidBi +y2á01 +yádB3, (4.1) 

where y3 =Y;(01, 02) Cl = 1, 2, 3). (4.2) 

Then if E, H, a and, a are also independent of 03, Maxwell's equations split up into two 
independent sets. The first set involves E3, H1 and H2 only, and therefore represents 
a field with a linearly polarized E- vector, while the other involves H3, E1 and E2 only, 
and therefore represents a field with a linearly polarized H- vector. The results of the 
previous section (with appropriate modification in the second case) are therefore 
immediately applicable to each of these two fields. 

4.2. An interesting example in this category is the field obtained by the diffraction 
of an infinite plane wave by a semi -infinite perfectly reflecting screen, first solved 
rigorously by Sommerfeld in a well-known paper. Recent diagrams of Braunbek and 
Laukien (2) (Figs. 1 a, b) based on Sommerfeld's solution, illustrate the general con- 
clusion (3.22) that the mean Poynting vector is orthogonal to the co- phasal surfaces 
of the appropriate field vector t. 

4.3. Another simple example is furnished by the field of the Hertzian oscillator. For 
a magnetic dipole of moment m e--2 in vacuo (e = a = 1), we have (see any standard 
textbook) 

E = r2 
(1 

+ kr I m4 f euk`"-") 
> 

H r2 { (1 + kr k2r2) m - (1 + kr k2r2) (m . r) r) eick'-") , 

(4.3) 

(4.4) 

t For the case of `plane fields' and fields with rotational symmetry the orthogonality of the 
mean Poynting vector to the co- phasal surfaces associated with a component of one of the field 
vectors has been pointed out previously by Braunbek(1). 

f 

1 

] 
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where r is the distance from the dipole and r is the unit radial vector. The electric 
field is here linearly polarized, though the magnetic field is in general elliptically 
polarized. The principal form of E is immediately seen to be 

with 

E = a ek.99\\1 e t), 

a= r2(1+k-21mAr 

(4.5) 

(4.6) 

and k.5é = kr + tan-1 (l/kr), (0 <tan`1(l/kr) < ir). (4.7) 

In terms of the phase function Ye we also have 
\ 

H (1+ 
k r21 -1(1 

+ k3r3) m- (l + kr 
2i 3i 

+ k3r3J (m . ezck.e -,t). 

(a) 

(4.8) 

(b) 

Fig. 1. The classical Sommerfeld half -plane diffraction problem (H- polarization). (a), curves of 
constant phase of the H- vector. (b), lines of the average energy flow (Poynting vector). 
(After Braunbek and Laukien(2).) 

From these expressions the various relations of §3 are readily verified for this field; in 
particular, the time -averaged Poynting vector is given by 

4 

S= 8REAH *= sr2(mA A {m- (m.1")ill 

4 

87r r2 
(m n r)2 r. (4.9) 

Using (4.6) and (4.7), it then follows that everywhere (not only in the distant zone) 

= Sna2V, (4.10) 

in agreement with (3.22). 

5. Electromagnetic fields with both E and H linearly polarized. Finally, we consider 
the special case when the field vectors E and H are both linearly polarized. Then 
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e = ae and h = ah (say), where ae and ah are real, and all the results of §3 hold, not 
only for the E field but also for the H field (with appropriate changes). In addition, 
as we now show, this field possesses some further simplifying features, analogous to 
that of an ordinary plane wave. 

The average Poynting vector may now be expressed in the two alternative forms: 

S = 877.# 
a2VSe = -c ah Vh 

implying that V. and Váh are everywhere parallel. 
Multiplying (2.13) by e- i,k.ve and equating real and imaginary parts gives 

ah cos 71 = 1 Vb n ae, 

ah sin ll = 
kC 

V A ae, 

where we have written rl(r) = kb(r) - k..91(r) 

for the difference between the phases of E and H. From (5.2) we have 

ae. ah = 0; 

and from (5.1), using (3.3) and the corresponding relation ah.VSh = 0, 

ae.S= ah.S =0. 
Hence E, H and S are mutually orthogonal. It is also readily seen that 

c 
S = 8aeAahcosr/. 

Further, using (5.5) in (5.3), we find 

ae. (V A ae) = 
0 ;} ah. (V A ah) = O. similarly 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5'8) 

Now (5.8) is precisely the condition that ae and ah should each form a normal con- 
gruence of curves (Weatherburn (7)). Recalling (5.1), we see that E, H and S are at 
each point in space respectively orthogonal to the three members of a triply orthogonal 
system of surfaces passing through that point. 

Eliminating ah between (5.2) and the analogous relation 

;cos?' = -1 V n ah 
e (5.9) 

gives V.99e.V..91 = eucos2v. (5.10) 

With (5.1) this leads to I S I = 
8naeah 

cosy (5.11) 

Further, the average energy density W is 

W (eE2 +,uH2) (5.12) = 
167r 

(ea: +,uah), 8n 

a 

s 

t 
0 

s 

1 

s 

r 

c 
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so that the rate of flow, y, of the average energy density is given by 

2 V(eu) aeah 

W '(e!l) ( ea: + fca } 

c 

V(e /1)' 
In the case when sing/ = 0, (5.4) and (5.1) give 

ea: = ph, 

622 

(5.13) 

(5.14) 

(5.15) 

so that the electric and magnetic energy densities are now equal; only in this case does 
the equality sign in (5.14) hold. Further, from (5.3) with sing/ = 0, we have, in place 
of (5.8), the stronger condition 

similarly 
VAae=0; 
Aah= 0.1 

(5.16) 

Hence ae and ah are now gradients of scalar fields. Also, since now V. = V.91, (5.10) 
shows that the co- phasal surfaces of E and H satisfy the eikonal equation of geo- 
metrical optics: (V.9 )2 = eft, (V4)2 = eu. (5.17) 

We see therefore that an electromagnetic field with E and H both linearly polarized and 
differing in phase by an integral multiple of n has the same properties as a linearly 
polarized plane wave, and so can be regarded as its natural (curvilinear) generalization. 

One of us (E. W.A. is indebted to Edinburgh University for the award of an I.C.I. 
Research Fellowship for Session 1953 -4 and to the Carnegie Trust for the Universities 
of Scotland for a Research Grant during the time in which this work was carried out. 
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ABSTRACT. The paper is concerned with the construction of polynomials in two variables, 
which form a complete orthogonal set for the interior of the unit circle and which are `invariant 
in form' with respect to rotations of axes about the origin of coordinates. It is found that though 
there exist an infinity of such sets there is only one set which in addition has certain simple 
properties strictly analogous to that of Legendre polynomials. This set is found to be identical 
with the set of the circle polynomials of Zernike which play an important part in the theory of 
phase contrast and in the Nijboer -Zernike diffraction theory of optical aberrations. 

The results make it possible to derive explicit expressions for the Zernike polynomials in a 
simple, systematic manner. The method employed may also be used to derive other orthogonal 
sets. One new set is investigated, and the generating functions for this set and for the Zernike 
polynomials are also given. 

1. Introduction. In his paper on the phase- contrast test Zernike (7) introduced 
certain polynomials Uñ (x, y) which form a complete orthogonal set for the interior of 
the unit circle x2 + y2 < 1 (x and y real). Apart from their usefulness in the theory of 
phase contrast, these polynomials.play a fundamental role in the diffraction theory of 
optical aberrations as developed by Nijboer, partly in collaboration with Zernike 
(Nijboer (5) and (6), Zernike and Nijboer (9).) 

Zernike obtained the circle polynomials as eigenfunctions of a certain second -order 
partial differential equation which is invariant with respect to rotations of axes about 
the origin of coordinates x = y = O. Although his procedure leads to a set of poly- 
nomials with the required properties his derivation appears to be somewhat arbitrary. 
In a later paper Zernike and Brinkman (8) showed that the circle polynomials also 
occur in connexion with axially symmetrical solutions of the potential equation in 
four -dimensional space. The properties of these polynomials have been investigated 
in detail by Nijboer (5). 

Now it is easy to see (cf. § 2) that there exist an infinite number of complete sets of 
polynomials which are orthogonal for the interior of the unit circle. It is, therefore, 
natural to inquire what the properties are which distinguish the polynomials of 
Zernike from the other sets. This and some more general questions concerning poly- 
nomials that are orthogonal over the unit circle are discussed in the present paper. Of 
the great variety of possible sets only those are considered which transform into 
themselves by a representation of the two -dimensional rotation group. In the present 
case, however, it is possible to avoid the abstract formalism of group theory with the 
help of a kind of normalization; one determines sets which contain only such poly- 
nomials as are invariant in formt with respect to rotations of axes about the 

t By invariance in form' we mean that the polynomials satisfy the invariance relation (2.3). 
This is in agreement with the definition of invariance given by Madelung((4), p. 98 (5)). We use 
the phrase `invariance in form' to avoid confusion with the more customary definition corre- 
sponding to the special case of (2.3) with G(0) a 1. 



41 Circle polynomials of Zernike and related orthogonal sets 
origin. Such sets (provided they are complete) will clearly be useful in applica- 
tions. 

It is found that although there exist an infinity of complete orthogonal sets which 
contain only polynomials of the above form, there is only one set which, in addition, 
has certain properties that are analogous to those of the set of Legendre polynomials. 
This special set is found to be identical with that of the Zernike polynomials. With 
the help of this result and using some well-known properties of Jacobi polynomials 
explicit expressions for the Zernike polynomials are then derived in a simple and 
systematic manner. 

The same method may be used to derive other orthogonal sets. One new set is 
discussed, and the generating functions for this set and for that of Zernike polynomials 
are given. 

2. Some orthogonal sets. We wish to find polynomials (not necessarily real) in two 
real variables x and y, which form a complete orthogonal set for the interior of the 
unit circle x2 + y2 < 1. The orthogonality condition will be written in the form 

Ji' Vta >(x,y)Vf>(x,y)dxdy = A ß&«ß, (2.1) 
z +vß41 

where, for the present, Va> and Vß> denote typical polynomials of the set, an asterisk 
denotes the complex conjugate, Saß is the Kronecker symbol andAaß are normalization 
constants to be chosen later. 

Clearly there are many such sets. This can be seen, for example, by applying the 
orthogonalization process of Schmidt to all monomials xiy1(i ? 0, j 0), and noting 
that the resulting set depends on the order j- in which the monomials are orthogonalized. 
We must therefore specify more closely the set which we wish to derive. 

2.1. We shall first inquire whether a complete orthogonal set exists which is such that 
it contains only polynomials that are invariant in form with respect to rotations of 
axes about the origin x = y = O. By such invariance we mean that when any rotation 

x' = x cos 0 +y sin 0, 1 

(2.2) 
y' = -xsin0 +ycosç,j 

is applied, each polynomial V(x, y) is transformed into a polynomial of the same form, 
i.e. V satisfies the following relation under the transformation (2.2): 

V(x, y) = G(0) V(x', y'), (2.3) 
G(0) being a continuous function with period 2ir of the angle of rotation 0 and G(0) = 1. 

The following theorem will now be established: 
THEOREM 1. A polynomial V(x, y). of degree n will be invariant in form with respect 

to rotations of axes about the origin x = y = 0, if and only if, when expressed in polar 
coordinates (r, 0), it is of the form 

V(rcosqi,r sin 0) = R(r)eii0, (2.4) 

t For example, in the analogous one -dimensional case, the orthogonalization of the sequence 
1, x, xß, xa, ... (I) 

over the range -14 x 41 gives Legendre polynomials. If, however, the terms in (I) are ortho- 
gonalized in a different order, other complete sets are in general obtained. The set of Legendre 
polynomials is distinguished from all other sets which are orthogonal over -1 x < 1 by the 
property that it contains a polynomial of every degree. 
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where l is an integer, positive, negative or zero and R(r) is a polynomial in r of degree n, 
containing no power of r lower than Moreover, R(r) is an even or an odd polynomial 
according as l is even or odd. 

To prove this theorem, we use the fact that the application of two successive 
rotations through angles 01 and 952 is equivalent to a single rotation through the angle 
01+ 02. It then follows from (2.3) that G must satisfy the functional equation 

G(01) G(00 = G(Sb1 +4a) (2'5) 
The general solution with the period 27r of this equation is (cf. Born (1), p. 153) 

G(Sb) = eizO, (2.6) 
where l is any integer, positive, negative or zero. On substituting from (2.6) into (2.3), 
using (2.2) and setting x' = r, y' = 0, it follows that V must be of the form 

V(r cos 9,r sin 0)= R(r)e' #, (2.7) 

where R(r) = V(r, 0) is a function of r alone. Next expanding a 46 in powers of cos 0 
and sin S6 and using the fact that V is a polynomial of degree n in x = r cos and 
y = r sin 0, it immediately follows that R must be of the form asserted in Theorem 1. 

It will be seen later that there exist an infinity of complete sets of polynomials which 
are orthogonal for the interior of the unit circle and which contain only such poly- 
nomials as are invariant in form with respect to rotations of axes about x = y O. 

However, the following, theorem holds: 

THEOREM 2. There is one and only onet set which is 
(a) orthogonal for the interior of the unit circle. 
(b) contains only such polynomials as are invariant in form with respect to rotations 

of axes about the origin x = y = O. 

(c) contains a polynomial for each permissible pair of values of n (degree) and l (angular 
dependence), i.e. for integral values of n and 1 such that n 0, l 0, n and n-l 
is even. 

To prove this theorem, we choose an integer l' and orthogonalize the sequence of 
the linearly independent functions 

rI1'1 a sb, 
rii'1+2 ei'O, ru't +4 eil'Ç, ... (2.8) 

over the interior of the unit circle. That this can be done follows from the Schmidt 
orthogonalization process. Let us denote the k + lth member of the orthogonalized 
set by''1i'l +2k. Then %/iri +2k(x,y) = °ß¡í'i +sk(r)ei9s, 
where aPr i. +2k is of the form 

ri, +ak(r) = [ak (xi% 2r11'I +2 +... ak 2krlt'I }2k1 

and the a's are constants such that 

27rañ Snn. = f f ^Knt'(x, y) %/1;(x, y) dxdy 
x'+U'.41 

= 27T f 1 ,R*1'(r) °;'c(r)rdr, 
0 

t Two polynomials which are such that one is a constant multiple of the other are regarded 
here as identical. 

(2.9) 

(2.10) 

(241) 
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af,', being normalization constants to be chosen later. It follows from Schmidt's process 
that for every value of k, ak, 2k+ 0, so that aT a' I +2k is a polynomial in r of degree 

I 
l' + 2k 

and consequently r 
1 
+2k is a polynomial of degree 1/1 

I 
+ 2k in x and y. Moreover, 

°girl +2k(r) is seen to be an even or odd polynomial according as l' is even or odd and 
contains no powers of r of degree lower than 

I 
l' I. If now we allow l' to take all possible 

integral values a set is obtained which satisfies postulates (b) and (c) of Theorem 2. The 
set also satisfies the postulate (a); for those 'V' polynomials which have the same upper 
suffix are orthogonal on account of (2.11) and those which have different upper suffix 
are orthogonal on account of the orthogonality of the exponential factor over the 
0 domain. 

Next we show that there is no other set which satisfies all the requirements of 
Theorem 2. For let us assume that another set satisfying all the postulates of Theorem 2 

exists. Then, by (b), each polynomial of this set must be of the form 

¡il +2k(x, Y) _ .Qfzl +2k(r) ei46, 

ßj11 +2k(r) = [ák,orIll+ Fek 2rIZl +2 +... +GLZk,2krl where /1+293, 

(2.12) 

and by (a), 17. and A' satisfy the orthogonality relations of the form (2.11). Further, 
according to (c), the constant ák, 2k + 0 exists for every integer l' and for every non - 
negative integer k. 

Let l' be a particular value of 1. On multiplying r.°RI i? +2k successively by Af 
1' 

I , .°iPr r 
I +2, 

+4 °a1i' 1 +2k -2 and integrating over 0 r 1 it follows on account of (2.11) that 
when l' is even (odd), art, +2k and similarly aft' +2k are orthogonal with a weighting 
factor r to every even (odd) power such that 

I1'I,j <Il'I +2k -2. (2.13) 

Consequently any linear combination of °a¡z. +2k and Kr 1+2k, and in particular the 
function (r) = 4, 2ka¡í'I +2k(r)- ak,2k are I +2k(r) (2.14) 

is orthogonal to any polynomial .9(r) which contains only powers ri of r such that the 
inequalities (2.13) hold and which is an even or odd polynomial according as l' is even 
or odd. Now .F (r) itself satisfies the conditions imposed on .9(r) and hence must be 
orthogonal to itself, i 

.F *(r) (r)rdr = O. 
0 

Since the integrand is positive or zero throughout the range of integration it follows 
that, (r) -0, whence ák,2kajll +2k(r) - ak,2k°a¡í'1 +2k, (2.15) 

showing that for each value l' of 1,N5, 1+2k is a constant multiple of .9/111, +2k so that the 
two sets are identical. This concludes the proof of Theorem 2. 

The set (2.9) contains En + 1) (n + 2) linearly independent polynomials of degree n. 
Hence every monomial xiyi (i 0, j > 0 integers) and consequently every polynomial 
may be expressed as a linear combination of a finite number of the r's. By Weier- 
strass's theorem on approximations by polynomials it then follows that the 'V set is 
complete. t 

f We are indebted to Dr E. Ruch for some helpful discussions concerning the completeness 
of orthogonal sets. 
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It is of interest to note that there exist other complete orthogonal sets for the 
interior of the unit circle which consist of polynomials invariant in form with respect 
to rotations of axes about the origin. This immediately follows from similar con- 
siderations as outlined in the footnote on p. 41 in connexion with the uniqueness of 
the Legendre polynomials. Such sets, however (clearly infinite in number), do not 
satisfy requirement (c) of our uniqueness theorem, namely, that they contain a poly- 
nomial for each pair of the permissible values of n and 1. 

2.2. From the manner in which the polynomials were defined it is seen that the 
radial polynomials 111, Mil +2, A¡ai +4 M, 11+2k may be regarded as functions 
obtained by orthogonalizing the sequence 

rill, rlal +2, real +4, rla1 +2k (2.16) 

with the weighting factor r over the range 0 r 1. From Schmidt's orthogonalization 
process it then immediately follows that the ratios of the constants a which occur in 
each polynomial are real. Since polynomials which differ from each other only by 
a constant multiplicative factor are regarded here as identical, we may take the a's 
(and consequently the «'s) to be real. Moreover, since in (2.16) only the absolute value 
of l enters, it follows that a(r) = (2.17) 

where the /1's are constants depending only on the normalization of the two poly- 
nomials 9I;' and .Vn. Hence, if the normalization is chosen so that fin = 1 for all l and 
n, then R, a(r) = Min(r) and consequently 

"regx, y) _Betz "5, (2.18) 

m = I/ I denoting non -negative integers. 
Now the circle polynomials of Zernike (Zernike (7), Nijboer (5)) which, as already 

mentioned, play an important part in certain optical problems, are real polynomials 
of the formt 

Uñm(x,y) = Rñ cosmy5 

sinm 
Moreover the complex combinations 

Uñ (x, y) ± i Un m(x, y) = Rñ (r) e±imM (2.20) 

are easily seen to satisfy all conditions of Theorem 2. Hence the Zernike circle poly- 
nomials are simply the real polynomials R: (r) cos m95 and .2m(r) sin mq5 associated with 
(2.18). 

It will now be shown that with the help of our results and from certain well-known 
results concerning Jacobi polynomials explicit expressions for the radial polynomials 
.m(r) may almost immediately be written down. 

3. Explicit expression for the radial polynomials. Since oPñ" (r) is a polynomial in 
r of degree n which contains no power of r lower than m and is an even or odd poly- 
nomial according as n is even or odd, it follows that each a can be expressed in the form 

gñm(r) = t}m21,(n-m1(t), (3.1) 

t Zernike actually used the same symbol [7:1(x, y) for IC (r) cos m95 and R' (r) sin míß. 
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where t = r2 and 1.(n_m)(t) denotes a polynomial in t of degree -(n - m). The ortho- 
gonality condition (2.11) becomes, remembering that gf and consequently .2 are 
now real, 

f 
i 

aEJ 0 tm.k(t) 
.,2k(t) dt = añ mskk, (3.2) 

where k = +(n -m), k' = (n' - m). 

Since the radial polynomials 4,f, m(r) are the functions obtained by orthogonalizing 
the sequence (2.16) (with J l = m) with the weighting factor r over 0 r c 1, it is seen 
from (3.1) and (3.2) that polynomials /0(t), 21(t), .22(t), ..., .2k(t), ... may be obtained 
by orthogonalizing the sequence 

1, t, t2, ..., tk, ..., (3.3) 

with the weighting factor w(t) = tm over the range 0 t 1. 

Now functions Gk(p, q, t) obtained by orthogonalizing (3.3) with a more general 
weighting factor w(t) = tq -1(1- t)P -q (q> 0,p -q> - 1) 

over the range 0 t 1 are well known. They are the so -called Jacobi (or hyper - 
geometric) polynomials.t 

Gk(p,q,t)- 
k!(q -1)! 

k 
(p +k +s -1)! 

ts, 
(p +k -1)! s =o (k -s)! s! (q +s -1)! 

whose orthogonality and normalization properties are given by 

(3.4) 

J 
ltq- 1(1 -t)P 1Gk(p,q,t)Gk (p, q,t)dt = bk(p,q)skk, (3.5) 
0 

where bk(p,q) = 
k! [(q -1)!]2 (p -q +k)! 

(3,6) (q +k -1)! ( +k -1)! (p +2k). 

(With this choice of bk, Gk(p, q, 0) = 1 for all values of k, p and q for which G is defined.) 
Hence on comparing (3.2) and (3.5) it follows that 

4k(t) =,{ 2a f,mfbk(m +1,m +1) } Gk(m +1,m +l,t). (3.7) 

From (3.7) and (3.1) we obtain, remembering that k = - m), 

°JP,Vm(r) = ,.J {2a, m/bk(m +1,m +1) }rmGk(m +1,m +1,r2). (3.8) 
Following Zernike we shall choose the normalization so that 

R±,m(1) = 1. (3.9) 

The corresponding values of the normalization constants ae m can easily be determined. 
We have from (3.8) and (3.9) 

.J {bk(m +1,m+1)/2a,f,m} = Gk(m +l,m +1, 1). (3.10) 

The value Gk(m + 1, m + 1, 1) can be obtained from the generating function (cf. Courant - 
Hilbert (2), p. 77) 

[z-1+,J{1-2z(1-2r2)+z2}]m- 
2.; 

¡m+s1 G(m+l,m+l,r2)zs. 
(2zr2)m V{1- 2z(1- 2r2) + z2} 6=0 s 8 (3.11) 

t See, for example, Madelung((4), p. 57), Courant and Hilbert ((2), p. 76) and Kemble ((3), 
p. 594). In the account of Courant and Hilbert there appear two misprints, the weighting factor 
being incorrectly given as x( 1- x) v -1 instead of xQ -1(1- x)P -q, and the range for q is incorrectly 
given as q> -1 instead of q> O. 
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For r = 1 the left -hand side reduces to (1 + z)-1 and we obtain, on expanding this 
expression into a power series and on comparing it with the right -hand side of (3.11): 

G8(m +1,m +1,1) = (- 1)8I¡m +s) (3.12) 
`` s 

Hence from (3.10) and (3.12), 

,/{2añ mf bk(m + 1, in + 1)} = (- 1)Mn -m) ((-(n 
+ m)\ 

Substituting from (3.6) into (3.13) with k = (n -ni), we obtain 
1 

(3.13) 

= 
an 

2n +2' (3.14) 

With this choice of normalization we have from (3.8) and (3.13) 

aVn(r) = (- 1)in- m)( -(n +m) rmO(n- 
m)(m +1,m +1,r2). (3.15 

\ -m)) (3.15) 

On substituting from (3.4) for the Jacobi polynomials we finally obtain the required 
explicit expressions for the radial polynomials: 

}(n -m) (n - s) ! 

aPñ m(r) = ( 
1)8 rn -2s (3.16) 

8 =o s! {En +m) -s }! {(n- m) -s }! 

We can also immediately write down the generating function for g± m(r) by setting 
n = m + 2s in (3.15) and then substituting into (3.11). This gives 

[1 +z- V {1- 2z(1- 2r2) +z2 }]m co zsófm (r). (3 17) 
(2zr)m,J {1 + 2z(1- 2r2) +z2} a_0 m +2s 

The expressions (3.15) and (3.16) for the radial parts of the circle polynomials are in 
agreement with those obtained by Zernike (7). 

4. A related orthogonal set. The methods of the previous sections may also be used 
to derive explicit expressions for other sets of functions orthogonal for the interior 
of the unit circle. We shall discuss briefly only one other set which has analogous 
properties to that of the Zernike polynomials. 

Instead of polynomials in x and y alone, we now consider polynomials W in x, y, and 
r = V (x2 + y2) which are invariant in form with respect to rotations of axes about the 
origin. By an argument similar to that used to establish Theorem 1, one finds that if 
W is such a polynomial of degree n in x, y and r it must be of the form 

W (r cos q5, r sin 0, r) = S(r) eu95 , (4.1) 

where l is an integer, positive, negative or zero and S(r) is a polynomial in r of degree n 
such that it contains no powers of r lower than . 

Again, an infinity of orthogonal sets of this type can be shown to exist. It may, 
however, be proved by an argument similar to that used in §2.2 that there is only one 
W set which has the additional property that it contains a member for each permissible 
pair of values of the suffixes n and 1, i.e. for n, l integers and n I . We denote the 
polynomials of this special set by Yfrin and the corresponding radial parts by .9%. Then 
#' may be obtained by orthogonalizing in place of (2.8) the sequence 

rll'leil'o, r11'I+1eit'o, rli'I+2ezZ'¢ ..., rll'I+keil'¢, (4.2) 
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over the interior of the unit circle. If we normalize the polynomials so that 

.9° (1) = 1 

for all n and 1, then we find, following the procedure of § 3, that 

m 
.Sìñm(r) = (- 1)n-m 1) n -m rmGn(2m +2, 2m + 2, r), (4.3) 

f1 m(r) 99 m(r) r dr = 1 nn' 
o 2n + 2 

m again denoting a non -negative integer. From (4.3) and (3.4) we obtain the following 
explicit expressions for £ m(r) : 

and that (4.4) 

(2n +1 -s)! 
`fifm (r) = 

( 1) 
s 

r 
n s (4'5) n -m -s)! (n +m+ l -s)! 

The first few of the radial polynomials .9° are exhibited in Table 1. Using (4.3) and 
the formula (cf. Courant and Hilbert, (2), p. 77) 

G/(p, q, r) _ (4 - l) ! rí-4(1- r)P 
dk [r4 +k -1(i - r)23-4 +9, 

(q + k - 1)! drk 

Table 1. First few of the polynomials Yen(r) 

m 
0 1 2 3 

0 1 3r- 2 10r2-12r+3 36r3-60r2+30r-4 
1 - r 57.2 - 4r 21r3- 3072+ l Or 
2 - - r2 7r3 - 6r2 
3 - - r3 

it follows that .ñm(r) may be expressed in the form 

r -(m +l) d non 
km(r) = (n -m)! {dr} 

[en+n +l(r- 1)n -m]. 

The generating function for .5 m(r) is obtained by replacing in (3.11) m + 1 by 
2m + 2, r2 by r and using (4.3) with n = m + s. This gives 

[1 +z- ,J {1 +2z(1- 2r) +z2 }]2m +1 ao 

rm+l(2z)2m +1 J {1 + 2z(1 - 2r) + z2} z8`m+ +s(r)' 

A comparison of (4.7) and (3.17) shows that the following relation exists between the 
.92 set and some members of the a set: 

rSÇm(r2) = gz (2+i +1)(r). (4.8) 

By an argument similar to that used in § 2, it may be shown that the set of the #Y' 

functions is complete. Since the YY' functions are polynomials in x, y and r = , J(x2 + y2). 

whereas the Zernike U functions are polynomials in x and y alone, the yr functions 
may be expected in some applications to be more appropriate than the polynomials of 
Zernike. 

(4.6) 

(4.7) 
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a paper which concerns the disturbance near focus of waves I of radially nonuniform amplitude, and which forms an exten- 
sion of Lommel's classical analysis,' Hopkins2 was led to the 
introduction of two new functions, 

y n+2, 
Xn(y, z)=y n= i (-1)a(n+2s) Jm+2.(z), 

ay .-o z 
aljn z n+2, 

ITn(y,z)=- y =Z(-})'(n+2s)(y Jn+2.(z) 
(1) 

Here Un and V. denote the Lommel functions and J. is a Bessel 
function of the first kind. Recently Boivin3 derived interesting 
"multiplication" theorems which express Un(a2y, as), Vn(a2y, az), 
Xn(a2y, az), and Yn(a2y, as) in series involving these functions 
with successive orders but with arguments (y, z). These formulas 
are of importance when one studies diffraction by concentric 
arrays of ring- shaped apertures. 

I pointed out elsewhere' that the Yn functions can be expressed 
in terms of the Lommel V. functions by means of the simple 
relation 

z)= Vn-i(y, z)+yVn+1(y, z)], 

and similarly (2) 

z2 X,(y,= z) +) 

9 
Un +1(y, z ) +yUn -,(y, z) 

It is therefore possible to express the new formulas of Boivin for 
X,,(a2y, az) and 17n(a2y, as) in terms of the ordinary Lommel 
functions with arguments (y, s), giving* 

(c'2-1)"1 
z2 

X..(a2y, az)= 
28÷1/41 U°-'+1(y, z) 

+2sU-,(y, z)+yUn-a-1(y, z)], 

Yn(a2y, as) _Z (- 1)a(a2a+ slab Ly 

- 2s V .+.(y , z) +y V m+a +, (y, z)]. 

Alternatively, one can replace y by a2y and z by az in (2) and 
apply Boivin's formulas for Un(a2y, az) and Vn(a2y, az). One 
then obtains the simpler relations 

Xn(a2y, as) (a2- 2.+15)1 aY1 

,2 

X Un- . +1(y, z)+a2yUn- ,_1(y, z)], 

V+,-1(y, z) 

(3) 

,-o 

Yn(a 
J"f aE) = ( 1)a(a2 

aJ 

a-0 2'±1S! 

X 
z2 

Vn{. +1(y, z) +a2yV n+. +i(y, s)]- 

The U and V functions of the higher orders which occur in (3) 
and (4) can be easily calculated with the help of the recurrence 
relations 

(4) 

Un(y, -FU .+2(Y, z) =OnJn(z), 

V,,(y, z) + V,+s(y, z) _ y/ nJn(z). 

Equations (3) or (4), together with (5), make it possible to 
evaluate X,,(a2y, az) and Yn(a2y, as) from tables of the four 
basic functions U,(y, z), U2(y, z), Vo(y, s), V,(y, z) of Lommel's 
original problem. This will considerably simplify calculations on 
the basis of Boivin's theory of the effect of waves presenting a 
radial variation of amplitude. 

i E. Lommel, Abh. Bayer. Akad. Wiss. 15, 229 (1885). 
2 H. H. Hopkins, Proc. Phys. Soc. (London) B62, 22 (1949). 
3 A. Boivin, J. Opt. Soc. Am. 42, 60 (1952). 
4 E. Wolf, Proc. Roy. Soc. (London) A204, 535 (1951). 
* An error in sign of the term sU-.(y, s) in Boivin's formula for 

Xn(a'y, na) is corrected here. 

(5) 

4.2 
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The paper discusses the problem of designing the aspheric surface of a Schmidt camera so as to obtain 
optimum performance, in an agreed sense, over the field taken as a whole. A solution is obtained in a form 
which allows the optimum plate -profile to be quickly determined for a Schmidt camera of given aperture - 
ratio and field -size, working over a given spectral range. It is shown that at apertures near f/3 the optimum 
plate can be obtained by slightly decreasing the strength of an ordinary "color- minimised" Schmidt plate, 
while in wide -field systems working at apertures near f /1, it is better to use a plate with neutral zone at the 
edge of the aperture. 

1. INTRODIICTION 

A. S a rule the corrector plates of Schmidt cameras are 
1. designed without paying much attention to the 

off -axis images. The aspheric profile is calculated so that 
the system gives an_error -free axial image in light of one 
particular wave -length, and at the same time the 
paraxial convexity of the plate is chosen so as to make 
the axial color -error as small as possible. 

This simple procedure gives satisfactory results in 
medium -sized cameras of not too short focal ratio. How- 
ever, it is evident from the theoretical point of view that 
some improvement could be obtained by a more careful 
choice of plate -profile. For the sizes and shapes of the 
off-axis images depend on the monochromatic off -axis 
aberrations of the system as well as on its chromatism, 
and the correct choice of plate -profile would take ac- 
count of these two aberrations simultaneously, com- 
bining them with axial undercorrection to the best 
advantage over the field taken as a whole. 

The present paper shows how a choice of plate - profile 
can be made which, in a certain sense, optimises the 
optical performance of the camera over a given field. In 
Section 2 the aberration theory of the Schmidt camera is 
summarised in a form suitable for the later discussion. 
In Section 3 a definition of effective image- radius is set 
up, and in Section 4 this image -radius is evaluated, for a 
Schmidt of given aperture -ratio and field, in terms of 
two parameters a and p which describe the plate -profile. 
Lastly, in Section 5, the results obtained are used to 
design optimum plate - profiles in two numerical cases 
and to draw one or two general conclusions. In particu- 
lar, it appears that in wide -field systems of apertures 
approaching f/1 the optimal plate -profile is one which 
is nearly fiat at the edge; while at apertures near f/3 an 
optimised plate can be obtained, with neutral zone at or 
near 0.866 of the full radius, simply by shortening the 
wave -length at which the plate is designed to give axial 
stigmatism. 

2. THE ABERRATIONS OF THE SCHMIDT CAMERA 

We wish to see what choice of plate -profile will give 
optimum imaging (in some agreed sense) over the whole 
of a given field. 

Let R denote the radius of curvature of the mirror, H 
the radius of the effective plate -aperture, and set 

µ =H /R. (1) 

Since the focal length f of the system is nearly equal to 
ZR, it follows that 2µ is very nearly equal to the nu- 
merical aperture of the system, so that in an f /2- camera 
µ = *, approximately. 

It can be shown that, to the order of approximation 
adopted in treating µ2 as negligible in comparison with 
unity, there is no loss of generality in supposing that the 
corrector plate has its aspheric surface towards the 
mirror.* 

If we use ordinary Cartesian coordinates in the plane 
of, the aperture -stop, with origin on the axis of the 
system, the edge of the aperture stop is the circle 
x2 +y2 = H2. It is more convenient to introduce new 
coordinates u, y, connected with x, y by the scale - 
relation, 

x= Hu, y =Hv; (2) 

then the edge of the aperture stop is the circlè u2- }-v2 =1 
(see Fig. 1). 

To simplify the formulas, we now choose R as the unit 
of length, setting R =1. Then H= µ, and Eqs. (2) become 

x= tat, y =µv. (3) 

The plate - profile which gives axial stigmatism in light 
for which the plate has refractive index N is then given 
by the equation 

(N -1)s= (r2_ 

+ 1l1e (f2- fo2)3+ constant-}-O(µ8), (4) 

where s denotes the `figuring depth,' ** r2= u2+v2 and ro 

is the radius of the neutral zone of the plate. The actual 
focal length of the system is then 

f = (1- µ29'o2) 
-3 (5) 

* See Linfoot (2) for a proof of this statement and also of 
Eqs. (4), (9), and (11) below. 

** i.e., the depth of glass which, laid on to a plane surface, would 
produce the desired profile. It is convenient to allow s to take 
both positive and negative values and to suppose that s =0 at 
the center of the aspheric surface. 
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and its numerical aperture 

2a= 212(1 - µ2m2)1. (6) 

If terms of order 126 may be neglected, (4) can be 
written in the simpler form 

(N- 1)s= 4µ4(r4- ar2)+0(A6), (7) 

where a= .2ro2, or in the equivalent form 

(N-1)s= 4a4(0-art)+0(Xs), (8) 

in virtue of (6). Whether or not terms of order 126 are 
small enough to be negligible in the equation of the 
plate- surface, the off -axis aberrations SX, SY of the 
system, measured - in seconds of arc, are given at the 
point of angular off -axis displacement v =0(12) in the 
u- direction on the spherical field surface by the equationt 

N+1 a a2 i a 
SX--ZSY=4K1.3s02 -I-lu - 

2N au 
-Flu 

aut 2N av 

32 
1 

ar2)+0(Kµ7), (9) 
auav 

where K= 648,0OO/r. Since 12 =X[1+0(X2)], this equa- 
tion remains valid if 1.1 is replaced by X. In an f/2 system, 
X2 and 122 are approximately 1/64 and (9) gives SX and 
SY accurately to within a few percent of their biggest 
values. 

In light of a different wave -length, for which the 
refractive index of the plate is n, the rays of the axial 
parallel pencil are no longer brought to a sharp focus. If 

n -N =0(122), (10) 

the aberrations are now given by the equation 

n-1 n-I-1 a 32 

SX--iSY=4K123q)2 --I-Zu- 
N-1 2n au au2 

ia 32 l 
J(0-ar2) 

2n av auav 

n-N(a al 
K123 

\ ++1 N-1 au av 

X (0=ar2)-I-O(K127). (11) 

Let no be the value of the refractive index of the plate 
at some selected point of the spectrum and suppose, 
what is true in a practical case, that n- no and N -no 
are both 0(122). Then if we use, in place of SX, SY, the 

t In a system of central obstruction -ratio we have sinipoµ, 
so that the condition (p= 0(A) is always satisfied. 

quantities SX *, SY* defined by the equation 

L 
--1 a 

SX *- I- ZSY *= 4K123p2 
n0 +1u 

2no au aut 

32 

i a 32 
+ +á2n (0-ar2) 

2no av auav 

n-N a a 
+Kµ3 (--i- )(0-ar2), (12) 

no-1 \au av 

the error committed is only. 0(Kµ7) in each case. 
From (12) it follows that the aberrations SX, BY of 

the system depend, to within an accuracy 0(Kµ7), only 
on n -N, a, µ and io; to this accuracy, they are effectively 
independent of the choice of no because the value chosen 
for no can only be varied by 0(a2). 

The two fifth -order aberrations of the Schmidt camera 
are lateral spherical aberration and a species of higher 
astigmatism. We can balance the lateral spherical aber- 
ration by undercorrecting the system on axis, and can 
compensate the higher astigmatism to some extent by 
increasing the `central bulge' of the plate, i.e., by 
increasing a. However, too big a departure from the 
value which minimizes the greatest slope of the plate - 
profile (namely a = á) will give excessive chromatism 
and so spoil the performance of the system. 

Axial undercorrection in n -light can be obtained by 
choosing a plate-profile (4) with Nhn. The quantity N >, 
here takes on the role of a parameter which, together 
with a, specifies the coefficients of r2 and 0 in the 
geometrical plate -profile. (N and a still possess physical 
interpretations, of course ; N is the refractive index at 
which the plate would give a stigmatic axial image, 
while a is 2r02 -twice the squared radius of the neutral 
zone in our present units.) Changes in N and a will, in 
accordance with (4), alter the sixth -power term in the 
plate - profile, as well as the squared and fourth -power 
terms, but only the changes in the squared and fourth - 
power terms affect the form of the expressions (11) and 
(12) for the aberrations of the system. 

Since n and N enter (12) only through their difference 
n -N, the optimal choice of N depends strongly on the 

FIG. 1. The Schmidt camera. 
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spectral characteristics of the light to be transmitted by 
the system. 

In wide -field systems, (n- Nino- 1) <<vo2 and it 
appears from (12) that chromatism is not very im- 
portant. But in large astronomical Schmidt cameras, 
working over a 5- or 6- degree field at a focal ratio of 
1/2.5 or longer, considerations of chromatism play an 
essential part in determining the optimum plate -profile. 

3. 

The notion of optimising the performance of the 
system over a given field Som 

Soo can be interpreted in 
various ways. The most primitive interpretation, and 
for some purposes the best, is to take the greatest image - 
diameter for all object points in the given field and for 
all wave -lengths in the adopted spectral range, and to 
say that the performance is optimised when this diame- 
ter is made as small as possible. But even if diffraction 
effects are disregarded, this procedure does not corre- 
spond very well to the requirements of the physical 
situation when, for example, the effective intensity of 
the light. rises to a peak at a certain point in its spectrum 
and tails off to very small values at either end. 

Moreover, in cases where the size of the image is 
comparable with the resolving power of the photographic 
film, the performance is affected by photographic image - 
spread and there is no very close correspondence, even in 
monochromatic light, between image- diameter as de- 
fined above and the diameter of the star -images actually 
formed on a photographic plate. 

In such cases it seems more appropriate physically, as 
well as more convenient analytically, to define the 
effective radius of a single monochromatic image as the 
square root of the expression 

rH2 ff 
x=+Y= SHy 

C(6X)2+(5Y)2]dxdy (13) 

and the effective monochromatic image- radius for the 
system working over the field Vo as the square root 
of 

2 

E f'° O d f f [(5X)2+(SY)2]dxdy rH2Po2 
X2 +y2 SHp 

2 

2 

f cpdSo ff [(SX)2+(SY)2]dudv. 
r(po o 

(14) 

This definition will therefore be adopted in the present 
discussion. It is equivalent, if we imagine the ray - 
density distribution in each stellar image to be replaced 
by a mass -distribution, to defining the effective radius of 
the image as its radius of gyration about its center 
(5X, SY) = (0, 0) and the effective monochromatic 
image -radius over the whole field as the mean- square 

average of these effective radii over the field -circle 

The value of E= E(rpo; a, N -n) is different for 
different wave -lengths, and in assessing the performance 
of the system it is necessary to take account of the fact 
that the images are not monochromatic. 

4. EVALUATION OF E 

The Eq. (12) can be written in the form 

SX= Kµ3[Pu(r2- ÿa) +So2u3] +0(Kµ7) 
SY= Kµ3[Qv(r2- 

2 a)+ cu2v] +0(Kµ7) 

where cp =0(A) and the quantities 

2no +1 n -N 
P= ßp2+ , =P- rp2 (16) 

2no no -1 

(15) 

are each O(µ2). 
By (11), (12) and (14) we can write 

E =E*[1 +0042)], 
where 

2 wo 

E*=o2 f (pdSo ff [(SX*)2+(5Y*)2]dudv 
u2 +v2 51 

5X*= Kp3[Pu(r2- ÿa)+ So2u3 
5Y*= KµaCQv(r2- 2a)+ p2u2v 

From (19) 

(5X *)2+ (S Y *)2 = K2µ6[ (F2u2 +Q2v2) (r2- z a)2 

+ 2 ç u2 (Pu2 +Qv2) (r2- a) + 4,4u472]. (20) 

Now 

ff (P2u2+Q2v2) 
(r2- 102dudv 

uY+vs 51 

ff 
u2+vs 51 

=1.2(p 2 + Q 2) f f r2(r2-iz a)2dudv 

u2+v21 

= (P2+Q2)(a2-4a+2); (21) 
16 

(Pu2+Qv2)u2(r2- a)dudv 

= 1-PP-FOG-la); 

zr 1 3r f f u4r2dudv= f cos4BdB f r7dr=-. 
0 o 32 

u'+vs<1 

(22) 

(23) 
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Hence, 

fJ [(SX*)2+(517*)2]dndv 

f- -{-v= 

Set 

PLATES OF SCHMIDT CAMERAS 

= -K2 AfiE(P2+ (a2--8-a+ 2) 
16 

+2(3P+Q)(2 3a)cp2+2 4041 

then, by (16), 

P= (1+a) cp2+pcPo2, Q= acP2+p0o2; 

cPdc0(P2+Q2)= cPo6[16(1+2a+2a2)+z1,(1+2«)+p2], 
fo 

wo 

1 n-N 1 a=-, p= -; 
2no no-1 cpo2 

(24) 

(25) 

J 
wo 

cPdcP' cP2(3P+Q)= VO 6[16(3+4a)+p], 

I 
wo 

sod ço cp4=16soo 6. 

Substituting from (24) into (18) and using the last 
three equations, we finally obtain 

E *= gK2F16cp041(a2 -8a/3- 1-2)[16(1 +2a +2a' -) 
+0(1 +2a) +p2] 
+2(2- áa)[16(3 +4a) +p] +41 , (26) 

z s 

2 

15 

-z -1 

and the effective image- radius in n -light is 

EI= (E *)I { 1+O(µ'-)1. 
If we define 

e *= (a2- 8a/3+2) [s (1 +2a +2a2) 
+1p(1 +2a) +p2] 
+2(- áa)[16(3 +4a) +p1+4, (27) 

where a, p are given as before by (25), then the effective 
image- radius in n -light is 1(e * /2)IKµ3cpo2. 

Figure 2 shows (e *)I as a function of a and p. (e *)I is 
effectively independent of the choice of no since, as 
already remarked, this is true of SX * +iSY *. In the 
actual computation of Fig. 2, no was taken as 1.55. 

5. 

Conclusions of some practical interest can be drawn 
from Fig. 2 about the optimum choice of plate - 
profile in Schmidt cameras of given focal ratio and field - 
size, working in light of known wave -length range. 

As an example, suppose that the camera works at 
f/3.5 over a field of 8° diameter, i.e., with obstruction 
ratio 2. Then ;co =1/14 and if no= 1.55 we obtain 
from (25) 

1 n -X 
a =- =0.32, p= (14)22= 356(n -N). (28) 

3.10 0.55 

Suppose that at the two ends of the adopted wave- 
length -range n has the values 1.53123 and 1.54011. This 
would be the case with a plate of Chance glass HC525588 

a=o z 

Adrill1111, 
111 

\.. 

Pao 
mks* , 

-3 -2 -lv b= i 
FIG. 2. Level curves for (e *)¡ as a function of a and p. 

z 

25 

2o 

15 

1.0 
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and an adopted spectral range F -h, which is the most 
commonly used range of the astrographic spectrum. 
Then, by (28), the variation in p corresponding to this 
spectral range is 

356(1.54011- 1.53123)= 3.16. (29) 

If a horizontal linear segment, of fixed length equal to 
3.16 units,. is moved into a position on Fig. 2 which 
makes (e *)1 as small as possible throughout the segment, 
then the common ordinate a of its points gives the opti- 
mum radius ro of the neutral zone on the plate by means 
of the equation 

a= 2ro2/R2, (30) 

while the optimum value of N can be read off in the 
following way. To each point of the movable segment 
corresponds a particular value of n, these values running 
linearly from rip= 1.53123 at the left -hand end of the 
segment to nh= 1.54011 at its right -hand end. By (12) 
and (25), the value of n which falls on the line p =0 in 
Fig. 2 corresponds to the wave -length for which the 
system is axially stigmatic ; the appropriate choice of N 
is therefore equal to this value. 

To make (e *)1 as small as possible over the whole of 
the linear segment, it is sufficient to move the segment 
horizontally until the value of (e *)1 is balanced at its 
two end -points, and then, keeping this balance, to slide 
the segment up or down until the value of (e *)1 at the 
two end points is a minimum. The selected position of 
the segment is shown as FOh on the graph. 

This method of balancing the aberrations is best 
suited to systems intended for use as spectrograph 
cameras. With systems intended solely for direct 
photography, it would be possible to proceed in a more 
refined way by taking into account the varying density 
of the photographic spectrum along the adopted wave- 
length range and trying to minimise the weighted mean 
of e* over this range. But so much elaboration hardly 
seems appropriate in a discussion of the present 
character. 

From Fig. 2 it is seen that, for this system, the `best' 
values of a are those between 1.2 and 1.5, and that there 
is little to choose between different values in this range, 
provided that N is suitably chosen in each case. The 
effective image radius in F and h light is then 

á(e */2)1Kµ84po2= 0.136(e *)1 =0.12 second of arc. 

As a second example, consider an f/1 camera with 
obstruction ratio t, working over a 19° field. Here we 
have 

4po= 6i p= (n- N/0.55) 62= 65.44(n -N), 

and the length of the p- segment corresponding to a 
variation 0.00888 in the value of n is now only 0.6 unit. 
This shortening of the segment, by a factor 5 compared 
with the first example, is the graphical expression of the 

much smaller importance, in the second system, of 
chromatism relative to the monochromatic aberrations. 

In this case the selected position of the segment, 
shown as F'O'h' on the graph, gives 

a =2..0, N= 1.5383 

as the optimum values ; then (e*)4= 0.52 and the effective 
image radius is 31.66(e *)1 =16.5 seconds of arc. The 
value a= 2.0 corresponds to a plate with its neutral zone 
at the edge of the aperture. 

It will be seen that in the f/3.5 system of the first 
example the effect of the monochromatic errors is 
merely to displace the best choice of `stigmatic' wave- 
length' some way from the center towards the violet end 
of the effective range, and that even for the unusually 
wide field of 8° the best value of a is substantially the 
same as that which optimises the axial image. * ** 

Besides indicating optimum values of a and N in 
numerical cases, Fig. 2 provides answers to one or two 
questions of a more general character. For example, the 
`best monochromatic plate,' represented on the graph 
by the point A at which (e *)1 attains its least value 0.43, 
is the plate with 

n-N 1 

a=2.25, p= -=-0.18, 
no-1 so2 

that is, 
a= 2.25, N =n +0.10 02. 

The term 0.104,02 indicates the axial undercorrection 
required to balance the monochromatic errors of the 
system over the given field. For a monochromatic 
Schmidt in which the corrector plate is designed to give 
axial stigmatism, the optimum value of a is 2.1 ; this 
system is represented on the graph by the point B at 
which (e *)1 takes its least value along the line p =0, 
namely 0.46. 

More generally still, Fig. 2 shows that in astronomical 
Schmidt cameras of focal ratio f/3 or f/3.5 and with 
obstruction ratio not exceeding á, the monochromatic 
aberrations are of small importance compared with the 
color -error, while the opposite is true for large -field 
systems working at focal ratios near to f /1. An f/2 
system occupies an intermediate position, in which 
neither type of aberration can be said to dominate the 
other. 
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* ** The effective radius of the axial image is least when a =4/3. 
This . follows from (26) on substituting for p its value (25) 
and setting .po =0, when we obtain E *= }Kaµo(n- N)2 /(no -1)2 
X (a2- 8a/3+2). The diameters of the color -confusion circles are 
least when a =3/2 (Strömgren (1), p. 81). 
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MICROWAVE OPTICS 
WITHIN the past two decades much research has 

been carried out on" lectromagnetic radiation 
of wave -lengths which belong to the transition region 
between the ordinary radio region and. the optical 
region of the electromagnetic spectrum. Because of 
certain properties characteristic of this range, and 
also because the wave -lengths in this transition range 
are of the order of magnitude- of most mechanical 
devices handled in laboratories, this new branch of 
electromagnetic theory," often called microwave 
optics, offers to physicists many interesting new 
opportunities. These are being well explored, for 
example, in connexion with communications and 
radar. 

During the four days June 22-25, a symposium on 
microwave optics was held at McGill University, 
Montreal, under the joint sponsorship of the Eaton 
Electronic Research Laboratory, of Commission VI 
of the International Scientific Radio Union (U.R.S.I.) 
in Canada and the United States, and of the Elec- 
tronic Research Directorate, Air Force Cambridge 
Research Center (U.S.A.). The symposium marked 
the scientific opening of the Eaton Electronic 
Research Laboratory, which now, in its third year 
of existence, is already playing a prominent part in 
this field of research, under the directorship of Prof. 
G. A. Woonton, 

The main aim of the symposium was to bring 
together scientists who work not only on microwave 
optics but also on related subjects, such as light 
optics, information theory, operational methods, etc., 
thus enabling exchange of information and a closer 
collaboration between research workers in these fields. 

The symposium was attended by about 140 
'scientists mainly from Canada and the United States 
and by seven guest speakers from Europe. During 
the four days, altogether sixty -four papers dealing 
with a wide range of subjects were presented. These 
numbers themselves indicate the great interest now 
shown in microwave optics. There were altogether 
eight half -day sessions on the following subjects : 

scattering (two sessions) ; microwave optical systems 
and aberrations ; electromagnetic diffraction (two 
sessions) ; electromagnetism and diffraction ; Fourier 
transforms and information theory ; radio lenses, 
and other 'topics of special interest. In addition, 
there was a round -table conference on Fourier trans- 
forms, under the chairmanship of Dr. Roy C. Spencer 



of Lim Air Force. Cambridge Research Center. It is 
impossible in a short article to analyse the very 
extensive material presented at the symposium, and 
consequently only a brief account of the main subjects 
discussed will be given. 

Papers presented in the session on scattering were 
mainly concerned with :power series solutions of 
scattering problems, . and with calculations and 
measurements of scattering cross -sections and radar 
cross -sections. Some integral- equation techniques 
were also described and applied to problems of 
diffraction by spheres, -cones and wedges, subject to 
simple boundary conditions. 

The session on microwave optical systems. and 
aberrations began with a survey of some of the 
esearch carried out at the Naval Research Laboratory 

in Washington, and described investigations on 
microwave optical systems for use in radar scanning 
antenn s. Other papers were concerned with wide - 
angle focusing properties of paraboloidal mirrors, 
with applications of Rayleigh's tolerance criteria to 
microwave systems, and with the behaviour of the 
geometrical field near caustics. The -ideal lens of 
Luneberg and its variants were discussed by several 
speakers in this session and also -in the session on 
radio lenses. An interesting contribution to aberration 
theory was made in a paper concerned with charm: 
teristic curves in the image space, where a method 
was proposed for the derivation of functions ortho- 
gonal over parabolic and other ,domains ; these 
should prove useful in certain theoretical investi- 
gations of difftactiort. 

In the session on radio lenses and other topics of 
speeial interest, an interesting account was given of 
some of the current researches carried out at the 
Ministry of Supply Telecommunication Research 
Establishment. in Great Malvern ; it dealt mainly 
with the use of optical techniques at millimetre wave- 
lengths. Several papers discussed the behaviour of 
various artificial dielectrics. 

The papers presented in the two sessions just 
mentioned indicated the similarity as well as the 
differences between systems employed in microwave 
optics and in light optics : microwave systems work 
as a rule with a smaller number of surfaces and larger 
numerical apertures ; in microwave optics aspherical 
surfaces and asymmetricál combinations are the rule 
in light optics they are the exception.. In systems 
working with ordinary light the illumination is, as a 
rule, uniform ; in microwave systems it is usually 
tapered. 

Electromagnetism and especially electromagnetic 
diffraction were particularly well represented. Many 



of the contributions dealt with various aspects of 
diffraction by apertures in plane screens, and were 
followed by lively discussions. The theoretical papers 
were mainly concerned with approximate methods of 
solution, while those dealing with the experimental . 

aspects described methods and results of measure 
ments of diffraction fields. The literature of diffraction 
by apertures in plane screens is very extensive, 
and the comments from the audience indicated the 
difficulties faced by all but the experts on this class 
of problems when trying to assess the merits of the 
various methods of solution and the present state of 
knowledge in this field. The present writer shares 
the view expressed by some of the scientists taking 
part in the discussion, that a formal solution to a 
diffraction problem is often of relatively little value- 
unless supplemented by computational data, and 
that a good deal more effort ought to be devoted to 
this end. (In this connexion it maybe of some interest 
to mention that although Sommerfeld's classical 
solution of the half -plane problem was obtained as 
early as _1896 and numerous discussions of this 
problem have been published: since, it was not until 
1952 that detailed diagrams were given, showing the. 
behaviour of the amplitude and phase and of the 
energy flow (Poynting vector) in the neighbourhood 
of the diffracting edge (W. Braunbek and G. Laukien, 
Optik, 9, 174 (1952) ; the diagrams bring out inter- 
esting features not previously suspected.) 

Other papers dealt with asymptotic solutions (for 
large wave -numbers) of linear partial differential 
equations, with a new method (called `cliff method') 
for approximate integration, and with the application 
of operational techniques to the development of 
diffraction ìntegrg,ls. ' Another group of papers was 
concerned with scalar 'treatment of diffraction 
problems and with the analogies between the field of 
geometrical optics and certain diffraction fields. A 
generalization of Fermat's Principle was suggested in 
a paper entitled "The Geometrical Theory of Dif- 

% fraction". A good deal of attention was given to a 
paper concerned with the `creeping wave' in the 
theory of diffraction. It outlined a method for 
problems concerned with the diffraction by objects 
not larger than about a hundred wave -lengths ; the 
asymptotic expansions can then no longer be used, 
as there may be a considerable contribution from a 
wave creeping around the back of the object. 

As alrëady mentioned, one session was devoted to 
Fourier transforms and information theory. Accounts 
of useful Fourier and operational techniques were 
given and various applications described. Spme 
analogies between optics and information theory were 


