
Topology-based Character Motion Synthesis

Shu Lim Ho
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2010

Abstract

This thesis tackles the problem of automatically synthesizing motions of close-character

interactions which appear in animations of wrestling and dancing. Designing such mo-

tions is a daunting task even for experienced animators as the close contacts between

the characters can easily result in collisions or penetrations of the body segments. The

main problem lies in the conventional representation of the character states that is

based on the joint angles or the joint positions. As the relationships between the body

segments are not encoded in such a representation, the path-planning for valid motions

to switch from one posture to another requires intense random sampling and collision

detection in the state-space.

In order to tackle this problem, we consider to represent the status of the characters

using the spatial relationship of the characters. Describing the scene using the spatial

relationships can ease users and animators to analyze the scene and synthesize close

interactions of characters. We first propose a method to encode the relationship of

the body segments by using the Gauss Linking Integral (GLI), which is a value that

specifies how much the body segments are winded around each other. We present how

it can be applied for content-based retrieval of motion data of close interactions, and

also for synthesis of close character interactions. Next, we propose a representation

called Interaction Mesh, which is a volumetric mesh composed of points located at the

joint position of the characters and vertices of the environment. This raw represen-

tation is more general compared to the tangle-based representation as it can describe

interactions that do not involve any tangling nor contacts. We describe how it can be

applied for motion editing and retargeting of close character interaction while avoiding

penetration and pass-throughs of the body segments.

The application of our research is not limited to computer animation but also to

robotics, where making robots conduct complex tasks such as tangling, wrapping,

holding and knotting are essential to let them assist humans for the daily life.

i

Acknowledgements

Here, I would like to express my gratitude to all those who gave me the possibility to

complete this thesis.

I am deeply indebted to my supervisor Dr. Taku Komura from the University of Ed-

inburgh whose help, stimulating suggestions and encouragement help me throughout

the research and writing of this thesis.

I have furthermore to thank Dr. Chiew-lan Tai from the Hong Kong University of

Science and Technology for her valuable comments and suggestions in my research

work. I would also like to thank Dr. Oscar Kin-Chung Au from the City University

of Hong Kong for his insightful help, advice and consultation in my research work.

Additionally I would like to thank Dr. Paul Turner from the Heriot-Watt Univeristy for

his valuable advice in my research project.

Finally I would like to thank my former/current colleagues and fellow Ph.D stu-

dents from the University of Edinburgh for their support in my research work. I want

to thank them for all their help, support, interest and valuable hints. Especially, I am

obliged thank to Hubert Pak-Ho Shum, He Wang and Adam Barnett.

I also want to thank NAMCO BANDAI Games Inc. for providing the game motion

data used in my research work.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Shu Lim Ho)

iii

To my beloved family

iv

Table of Contents

1 Introduction 1
1.1 Research Area . 3

1.1.1 Human Motion Indexing and Retrieval 3

1.1.2 Motion Synthesis . 4

1.1.3 Motion Adaptation and Deformation Transfer 4

1.2 Contributions . 5

1.2.1 Publications . 5

1.3 Thesis Structure . 6

1.4 Definition of Terms . 7

2 Related Research 10
2.1 Data-driven approaches for simulating close character interaction . . . 11

2.1.1 Capturing movements of multiple persons 11

2.1.2 Combining individually captured motions 12

2.1.3 Editing Captured Motions 15

2.1.4 Content-based retrieval of human motions 19

2.2 Automatic Character Motion Synthesis 20

2.2.1 Character interactions by Physically-based simulation 20

2.2.2 Global Path Planning . 22

2.3 Summary of Character Animation and the Fundamental Problem to be

Solved . 24

2.4 Applying Knot Theory for Character Animation 24

2.4.1 Basics of Knot Theory . 25

2.4.2 Gauss Linking Integral . 26

2.4.3 2-Tangles . 28

2.4.4 Conclusion and outlook . 29

2.5 A Representation for Multiple 2D Manifolds 30

v

2.5.1 Mesh Editing by Differential Coordinates 30

2.5.2 Deformation transfer . 31

2.5.3 Conclusion and outlook . 33

3 Indexing and Retrieving Motions of Characters in Close Contact 34
3.1 Introduction . 34

3.2 Representation and Comparison of Topological Relationships 36

3.2.1 2-tangles . 37

3.2.2 Tangles of tree structures . 37

3.2.3 Detecting the Tangles . 39

3.2.4 Encoding the Tangles . 40

3.2.5 Computing Similarities by Topological Relationships 43

3.3 Experimental Results . 46

3.3.1 Comparison between Topological and Euclidean distance . . . 46

3.3.2 Content-based retrieval . 51

3.3.3 Creating animations by Motion Graph 52

3.3.4 Creating animations by concatenating motion clips 54

3.4 Discussions and Conclusion . 55

4 Character Motion Synthesis by Topology Coordinates 58
4.1 Introduction . 58

4.1.1 Contribution . 61

4.2 Topology Space and Coordinates . 61

4.2.1 Topology Coordinates . 62

4.2.2 Mathematical Definition . 62

4.3 Manipulation in Topology Space . 64

4.3.1 Desired Writhe Matrix . 65

4.3.2 Mapping Topology Coordinates to Generalized Coordinates . 68

4.3.3 Additional Manipulations 70

4.4 Experiments . 72

4.4.1 Controlling Characters . 72

4.4.2 Motion Synthesis . 73

4.4.3 Computational Costs . 77

4.4.4 Comparison with global path planning algorithms 77

4.5 Real-time Character Control for Wrestling Games 82

4.5.1 Finite State Machine for Wrestling 84

vi

4.5.2 Experimental results . 86

4.6 Summary and Discussions . 88

5 Spatial Relationship Preserving Character Motion Adaptation 91
5.1 Introduction . 92

5.1.1 Contributions . 93

5.2 Overview . 94

5.3 Interaction Mesh . 95

5.4 Spacetime Deformation . 96

5.4.1 Deformation energy . 96

5.4.2 Acceleration energy . 96

5.4.3 Constraints . 97

5.4.4 Iterative Morphing . 99

5.4.5 Possible artifacts and solutions 100

5.5 Experimental Results . 101

5.5.1 Retargeting Motions of Close Interactions 102

5.5.2 Judo attacks . 102

5.5.3 Fighting scenes . 103

5.5.4 Interactive character control 104

5.5.5 Single character motions . 104

5.5.6 Motion Adaptation in a Constrained Environment 105

5.5.7 Computational Costs . 105

5.6 Discussions . 106

5.6.1 Limitations . 107

5.7 Conclusion and Future Work . 108

6 Conclusion 109
6.1 Summary and Discussion . 109

6.1.1 Human Motion Indexing and Retrieval 109

6.1.2 Motion Synthesis . 110

6.1.3 Motion Adaption and Deformation Transfer 110

6.2 Review of Contributions . 110

6.3 Directions for Future Work . 111

Bibliography 113

vii

List of Figures

1.1 Linearly interpolating the keyframes by joint angles and the desired

transition motion. 2

2.1 A Motion Graph. 13

2.2 Results obtained in [Rose et al., 1998], the sample motions (green) and

the blended motions (yellow). Reproduced from [Rose et al., 1998]. . 17

2.3 Locomotion on a terrain. Reproduced from [Park et al., 2002]. 18

2.4 The construction of Fat Graph. Reproduced from [Shin and Oh, 2006]. 18

2.5 An example of expanding RRT in different stages. Reproduced from

LaValle et al. [LaValle and Kuffner, 2001]. 23

2.6 3 types of Reidemeister moves. 25

2.7 Right-handed (a) and left-handed (b) crossings. 25

2.8 The projection plane does not affect the minimum crossing numbers

for knots and links (left) but does for tangles (right) 26

2.9 The GLI of two directed curves when one strand is surrounding the

other (left), singly tangled (middle), and untangled (right) 27

2.10 GLI satisfies the commutative rule 27

2.11 The tetrahedron composed by two line segments a-b and c-d. 28

2.12 Examples of 2-tangles: (a) rational (b) self knotted and (c) prime tan-

gles. The rational tangles can be composed by successive twists of 2

ends. 29

2.13 Addition, multiplication and inversion of 2-tangles. Reproduced from

[Kauffman and Lambropoulou, 2004]. 29

2.14 Examples of (a) integer tangles and (b) vertical tangles. Reproduced

from [Kauffman and Lambropoulou, 2004]. 30

2.15 A posture of a tiger transferred to a cat model. Reproduced from [Za-

yer et al., 2005]. 32

viii

3.1 The topological relationship where the arm is tangled with the neck

is the same for the above two postures, although the kinematic joint

angles or 3D location of the joints are different 35

3.2 The human motion retrieval based on topological relationships: three

pairs of postures similar to the query postures are returned. The values

on the bottom are the normalized similarity of the output posture with

the query posture. 35

3.3 The process of encoding the tangled postures. For every path connect-

ing the end effectors, we 1) compute and 2) encode the tangle infor-

mation and 3) compare the results with those from other postures. . . 36

3.4 The tree structure of the graph that is used to represent the body struc-

ture. There are 10 paths that connect the end effectors. 38

3.5 The homeomorphic Reidemeister moves after which the relationship

must be considered equivalent. 38

3.6 A 2-tangle and its GLI matrix. The five subtangles and their corre-

sponding submatrices are visualized. 40

3.7 Examples of (a) horizontal tangles and (b) vertical tangles. 40

3.8 An example of encoding a rational tangle while untangling it. The

tangle is encoded as ”two vertical twists (2V) and one horizontal twist

(1H)”. 41

3.9 The four types of subtangles composing the tangle made by two strands

a and b. We assume the directions of the strands are defined. Those

composed of a and b (left most, left middle), only by a (right middle)

and only by b (right most). 41

3.10 The conditions for selecting the subtangle S to be untangled. (a) The

two ends of S needs to be the end points of T . (b) The closest minimal

tangle from e1 and e2 must be the same (c) e1 and e2 is not connected

in this minimal tangle. 42

3.11 Example of rational tangles and their corresponding GLI matrices. . . 43

3.12 Examples of encoding rational tangles. The encoded TangleList is

shown on the bottom. 45

3.13 A similarity matrix of different postures based on topological relation-

ships. 48

3.14 A similarity matrix of different postures based on Euclidean distance

computed by Kovar et al.’s point cloud metric [Kovar et al., 2002]. . . 49

ix

3.15 The representative postures of the three groups of dancing motions

(42,43,48). 51

3.16 The representative postures of the Latin dance motions (50,51,52,57). 51

3.17 Results of content-based retrieval based on the topological relation-

ships. Despite the large variation of the postures, the pairs of postures

with similar topological relationships return high scores. 52

3.18 Precision-scope curves showing the performance of our proposed method

and the point cloud metric. 53

3.19 The Full-nelson hold and Rear Chokehold postures/motions in Group

A. 53

3.20 The dancing postures/motions in Group B. 54

3.21 The matching stages of the assist-walking motion, the backdrop mo-

tion and the lifting motion. 55

3.22 Postures with: (a) prime tangle (b) self tangle. 56

4.1 The snapshots of interpolating the postures in (a) and (c) by Topology

Coordinates (left, red character) and by generalized coordinates (right,

blue character). Postures in (b) are the intermediate postures. The two

arms twist around each other when they are interpolated by Topology

Coordinates, while they penetrate through each other when they are

interpolated by generalized coordinates. 59

4.2 Motions that involve close contacts are generated by controlling the

characters in Topology Space. The user can interpolate keyframe pos-

tures or interactively control the Topology Coordinates of characters

to produce animations such as (a) a character tangling its arms with

a bulky furniture to hold it, (b) two characters playing wrestling by

switching from one tangled posture to another, (c) an octopus tangling

its limbs with a human character while avoiding its limbs getting tan-

gled themselves and (d) a human character wearing a T-shirt. 60

4.3 Overview: The keyframe postures are given based on the Topology

Coordinates. The keyframes are interpolated by frame-based optimiza-

tion. The user can further update the motions by dragging or constrain-

ing segments. 61

x

4.4 The three axes in Topology Space : writhe, center and density. Center,

which specifies the central location of the twist, is composed of two

scalar parameters although it is represented by a single axis in this

figure. Density tells which strand plays the major role to compose the

twist. 62

4.5 Twisting a chain of segments around each other 63

4.6 (upper) Tangles with different density and center, and (lower) the dis-

tribution of elements with large absolute values in the corresponding

writhe matrix. The darkness represents the amplitude of the absolute

value. 63

4.7 A twisted chain (left) and the writhe matrix (middle). The center is

computed by calculating the center of mass of the writhe matrix’s ele-

ments. The writhe matrix is scaled to a square area (right) to compute

the principal axis. The angle made between the principal axis and the

diagonal line is defined as the density. 64

4.8 The overview of updating the kinematics of two serial chains by chang-

ing their Topology Coordinates. The increment/decrement of the Topol-

ogy Coordinate is given at each step. The writhe matrix that corre-

sponds to the updated Topology Coordinate is computed (step 1), and

then the kinematics of the chains are updated so that their writhe ma-

trix becomes similar to the target one (step 2). This process is repeated

until the target Topology Coordinate is reached. 65

4.9 The elements of the writhe matrix are first mapped to a square area,

and then to a circle. The circle is rotated until the axis reaches the

desired density value. Finally, the axis is mapped back to the writhe

matrix. 66

4.10 The elements of the writhe matrix are translated according to the differ-

ence of the target and current center location. As elements with values

might be shifted out from the matrix, the translation applied will not

bring the center to the target location. The process is repeated until the

current center comes close enough to the target location. 68

4.11 (a) Passing a chain through loops. The writhe is around 1 when the

chain passes through the loop. The chain can be passed through mul-

tiple loops by sequentially switching the target loop. (b) Tangling a

chain with a bundle of chains while avoiding to get tangled with others. 71

xi

4.12 The user specifies the area of the body to be tangled. The two paths

(left shoulder - left hand), (right shoulder - right hand) of Character 1

are to be twisted with (head-tip - left hand), (head-tip - right hand) of

Character 2. The posture on the right is the expected final posture. . . 72

4.13 (a) Three keyframe postures to generate a stretching motion. (b) The

wrestling motion in which the red character re-holds the blue character

in various ways. (c) A piggyback motion created from four keyframes. 74

4.14 The topology of the chair model composed of eighteen pipes (left) and

the shirt model with six rings (right) used for creating the animations. 75

4.15 An animation of a human character wearing a shirt. 75

4.16 The five keyframes to produce the animation of re-holding the chair. . 76

4.17 An animation of an octopus catches a number of fishes created by two

keyframes (the initial (a) and final (d) posture). 76

4.18 An animation of an octopus tangles with a human character created by

two keyframes (the initial (a) and final (d) posture). 76

4.19 A character hugging an object composed of a bundle of line segments

(left), and an octopus catching multiple fish simultaneously using its

limbs (right) . 77

4.20 Overview of the character motion synthesis loop. The motions of

the attacker and defender are computed sequentially by two different

quadratic programming problems. 83

4.21 Various wrestling interactions created by the proposed method. . . . 84

4.22 An interface to edit the postures of the wrestling characters by the

Topology Coordinates. The animator specifies the limbs to be tangled

and adjust their Topology Coordinates by the scroll bar at the right. . 85

4.23 A finite state machine of two people wrestling when one character at

the back of the other. 86

4.24 Once an intermediate state of the FSM is reached, the possible transi-

tions are shown to the user. 87

4.25 Without controlling the defender (in purple), the attacker (in yellow)

can tangle with the defender easily by changing the Topology Coordi-

nates. 87

4.26 The defender (in purple) cannot escape from the attack if the player

does not control it quick enough. 88

xii

4.27 The defender (in purple) cannot escape from the attack if the player

does not control it quick enough. 88

4.28 The defender (in purple) escapes from the attack. 88

4.29 The attacker (in yellow) switched the attack in the middle in order to

lock the defender (in purple). 89

5.1 Our system can retarget motions of close interactions to characters of

different morphologies. A judo interaction (red / orange pair) retar-

geted to characters of different sizes. 92

5.2 The posture of an articulated body retargeted to a new morphology

with longer red/green and shorter blue segments. Note that a naı̈ve

approach by joint angles results in a change of context. 94

5.3 Outline . 101

5.4 Outline . 102

5.5 Outline . 102

5.6 (left) A posture of a turn kick interaction. (middle, right) The anima-

tor drags the left foot of the yellow character by mouse and the other

character moves to preserve the spatial relationship. 103

5.7 Original dancing motion (middle) and the retargeted results to a mon-

key model with long arms using a joint-angle based method (left) and

using our method (right). 104

5.8 Snapshots of a character getting into and riding a car model; (red)

original character and (blue) a tall fat character. 105

xiii

Chapter 1

Introduction

Character motion synthesis is an important research topic which has a wide range

of applications including films and computer games. One of the grand challenges

is synthesizing motions that involve tangling and persisting contacts such as those

observed in wrestling and dancing, and motions in constrained environments such as

riding on a car.

Currently, such scenes are manually designed by highly experienced animators. A

basic technique called keyframe animation is mostly used for such a purpose. The

animators manually design the postures of the characters using forward and inverse

kinematics and then the movements are produced by interpolating the joint angles of

the characters. Careful editing is needed for animation of multiple characters in close

proximity as they can easily result in visual artifacts such as penetrations and pass

throughs of each body part. The animator needs to design many keyframes and the

movements are difficult to be recycled for different conditions. As a result, this process

is inefficient and costly.

Using motion capture systems (MOCAP) for automating this process is not an

easy task. Optical systems, that make use of stereo vision technologies, suffer from

occlusions of the markers due to the number of people in the environment. Inertial,

magnetic or mechanical systems can be damaged / injure the subjects when strong

impulses are exchanged between the subjects. Combining individually captured human

motion data can be one of the solutions. However, again, this is a daunting task even

for an experienced animator as each movement easily results in penetrations of body

parts, as there is no coordination of the bodies when they are captured.

The main problem of existing techniques in motion editing and synthesis lies in the

conventional representation of the character states that is based on the joint angles. Let

1

Chapter 1. Introduction 2

us call the manifold composed of valid motions by humans without any penetrations or

pass throughs by the body as motion space and that defined by conventional parameters

such as joint angles as joint angle space for the rest of the thesis. Two spaces are called

isotopic when continuous functions that map elements of one space to the other exist.

The motion space and joint angle space are not isotopic, because a continuous motion

in the joint angle space does not necessarily become continuous in the motion space.

Let us consider such an example. Given two keyframe postures shown in Figure 1.1,

if we linearly interpolate them by joint angles, the arms of the characters will pass

through each other as shown in the bottom of Figure 1.1. On the other hand, the blue

arrows in Figure 1.1 indicate the desired transition motion. This example highlights

Figure 1.1: Linearly interpolating the keyframes by joint angles and the desired transi-

tion motion.

the problem when designing motions based on a representation that is not isotopic to

the real world.

Chapter 1. Introduction 3

1.1 Research Area

In order to tackle these problems, we search for a new representation that is isotopic to

the motion space, which means that a continuous movement defined in the new space

can be mapped to a valid movement in the motion space and vice versa.

In fact, such a representation can be found in knot theory, where two knots are

considered equivalent if one of them can be smoothly deformed into another without

cutting the strings. Many concepts and techniques in knot theory can be applied for

articulated characters that have tree structures. We develop a representation that is

based on such techniques and apply them to the following areas in character animation.

1.1.1 Human Motion Indexing and Retrieval

A representation based on techniques in knot theory has features that are robust against

kinematic difference, which is effective for motion indexing and retrieval of characters

in close proximity. Human motion indexing and retrieval are important for anima-

tors due to the demand to search for motions in the database which can be blended and

concatenated. Most of the previous researches on human motion indexing and retrieval

compute the Euclidean distance of joint angles or joint positions. When selecting mo-

tions of close interactions, animators are interested in the way how the characters inter-

act with each other rather than low-level parameters such as joint angles. In addition to

that, joint angle metric suffers from the problem mentioned above - motions similar in

the joint angle space can be actually very different in the motion space. Using our new

representation, we can define a distance metric that is along the manifold of motion

space.

We compute and encode how the two bodies are tangled with each other using

Gauss Linking Integral (GLI) [Pohl, 1968] and rational tangles [Kauffman and Lam-

bropoulou, 2003]. The encoded relationships, which we define as TangleList, are used

to determine the similarity of pairs of postures. By using such an abstract represen-

tation, we can efficiently and effectively categorize semantically similar motions of

multiple characters in close contacts even though the motions are quite different at

the level of generalized coordinates (joint angles or joint positions) (Figure 3.1). This

representation defines a new distance metric for calculating the similarities of multi-

character interactions.

Using the new topology-based state representation, we can index and retrieve mo-

tions such as one person piggybacking another, one person assisting another in walk-

Chapter 1. Introduction 4

ing, and two persons dancing / wrestling. The new method is useful to manage a mo-

tion database of multiple characters. We can also produce Motion Graph structures of

two characters closely interacting with each other by interpolating and concatenating

movements, which are useful for 3D computer games and computer animation.

1.1.2 Motion Synthesis

Having presented a new representation and distance metric in motion space, next we

present a method to synthesize a motion along the manifold in the motion space. There

are many traditional techniques for synthesizing character motions. For example, In-

verse Kinematics (IK) has been widely used in editing motions of the characters and

robots in computer animation and robotics communities. However, most of the existing

methods directly edit the joint angles or joint positions without considering the struc-

ture of the motion space. As a result, motions with interpenetrations of body segments

will be produced when the characters are closely interacting with each other.

Here, we introduce a new coordinate system called Topology Coordinates, based

on the representation of tangles that we used for motion indexing and retrieval. Using

Topology Coordinates, we can directly edit and plan close interactions in motion space.

This allows us to compute the motion by using local search methods instead of global

path-planning algorithms. As a result, the computation for collision avoidance can be

greatly reduced for complex motions such as tangling the segments of the body.

Topology Coordinates can be used with prevalent techniques in computer anima-

tion, such as keyframe animation and inverse kinematics. We show that character

motions that involve close contacts such as wearing a T-shirt, passing the arms through

the strings of a knapsack, or piggyback carrying an injured person can be synthesized

efficiently.

1.1.3 Motion Adaptation and Deformation Transfer

Next we propose a new representation for handling motions without many tangles

and enhancing our idea of topology-based motion synthesis to 2D manifold surfaces

such as meshed characters, cloth models and 3D environments composed of polygons.

The new representation is called Interaction Mesh, which encodes the structure of the

open space between the nearby body parts. The Interaction Mesh provides a unified

treatment for interacting body parts of single or multiple characters as well as objects

in the environment. As a result, it is applicable to many types of scenarios, such as

Chapter 1. Introduction 5

when a single character’s actions involve close interactions between different body

parts (dancing), multi-character interactions (wrestling, fighting games) and characters

in constrained 3D environments (riding on a car). Additionally, the motions may ei-

ther involve much tangling and contacts (e.g. judo, Figure 5.1) or little contact (e.g.

Lambada dance). The idea of Interaction Mesh is general enough to be applied for

2D polygon structures, which extends its applicability for deformation transfer of 2D

mesh surfaces.

1.2 Contributions

The contributions of this thesis can be summarized as follows:

• We propose a new topology-based representation for describing the relationship

between two characters who are closely interacting with each other. The en-

tanglement of two bodies are computed and encoded based on Gauss Linking

Integral and the concept of rational tangles in 3D space.

• We propose the concept of Topology Coordinates, in which the spatial relation-

ships of the segments are embedded into the attributes. Editing and planning

motions of closely interacting characters by Topology Coordinates can greatly

reduce the computation for collision avoidance using local search methods.

• We propose the concept of Interaction Mesh, in which the spatial relationships

between closely interacting body parts of articulated characters and objects in the

environment are encoded. We further propose an automatic method for editing /

retargetting close interactions of characters in different morphologies using the

Interaction Mesh.

1.2.1 Publications

Portions of the work presented in this thesis have previously been published in the

following academic papers:

• Wrestle alone: Creating tangled motions of multiple avatars from individually

captured motions - Edmond S. L. Ho and Taku Komura

Proceedings of Pacific Graphics 2007, pp. 427-430, Oct 2007.

Bibliography reference [Ho and Komura, 2007b]

Chapter 1. Introduction 6

• Planning tangling motions for humanoids - Edmond S. L. Ho and Taku Komura

Proceedings of the IEEE-RAS International Conference on Humanoid Robots,

pp. 507-512, Nov 2007.

Bibliography reference [Ho and Komura, 2007a]

• Character Motion Synthesis by Topology Coordinates - Edmond S. L. Ho and

Taku Komura

Computer Graphics Forum (Proceedings of Eurographics 2009), vol. 28, issue

2, pp. 299-308, Mar 2009.

Bibliography reference [Ho and Komura, 2009a]

• Indexing and Retrieving Motions of Characters in Close Contact - Edmond S. L.

Ho and Taku Komura

IEEE Transactions on Visualization and Computer Graphics, vol. 15, issue 3,

pp. 481-492, May/June 2009.

Bibliography reference [Ho and Komura, 2009b]

• Real-time Character Control for Wrestling Games - Edmond S. L. Ho and Taku

Komura

Springer Lecture Notes in Computer Science (Proceedings of Motion in Games

2009), LNCS 5884, pp. 128-137, Nov 2009.

Bibliography reference [Ho and Komura, 2009c]

• Spatial Relationship Preserving Character Motion Adaption - Edmond S.L. Ho,

Taku Komura, Chiew-Lan Tai

ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010), vol. 29(4),

July 2010.

Bibliography reference [Ho et al., 2010]

• A Finite State Machine based on Topology Coordinates for Wrestling Games -

Edmond S. L. Ho and Taku Komura

To appear in Journal of Computer Animation and Virtual Worlds.

Bibliography reference [Ho and Komura, 2010]

1.3 Thesis Structure

In Chapter 2, we first review related work in computer animation and robotics. Here

we focus on methods to synthesize motions of multiple characters in close proximity.

Chapter 1. Introduction 7

We discuss how difficult it is to solve our problem by existing methods and why we

need to introduce a topology-based representation. We also review techniques in knot

theory that we use in this thesis. Finally, we review the previous work in mesh editing

and deformation to explore representations for handling 2D manifolds.

In Chapter 3, we propose a new data structure called TangleList based on the con-

cept of GLI and rational tangles in knot theory to encode the relationship of two char-

acters in close contacts. The experimental results show that users can retrieve seman-

tically similar motions/postures accurately by using the new topology-based distance

metric. In addition, the results show that the new distance metric can be integrated into

an existing data-driven motion editing method, such as the Motion Graph, and it can

effectively avoid inter-penetration of the different body parts.

In Chapter 4, we introduce the concept of Topology Coordinates for motion syn-

thesis. We also show an example of applying Topology Coordinates for real-time

wrestling games. The experimental results show that the new method can efficiently

produce motions that involve complex tangling. The new method also outperforms ex-

isting global path-planning algorithms for planning the motions of characters in close

contacts.

In Chapter 5, we propose a new data structure called Interaction Mesh for encoding

the spatial relationship between closely interacting body parts of articulated characters

and objects in the environment. We will also present an automatic method for motion

editing / retargeting which preserves the spatial relationships embedded in the Interac-

tion Mesh.

In Chapter 6, we conclude the work in this thesis and discuss about the possible

future directions.

1.4 Definition of Terms

Space-time constraint is a method to synthesize realistic animation by spatiotempo-

rally optimizing the motion subject to constraints based on body positions, kinematics

and dynamics. It solves the problem of high frequency movements which can appear

when per-frame motion editing methods (e.g. Inverse Kinematics) are used.

Motion Graph is a method to synthesize smooth motion sequence by concatenating

and blending captured motions. It is a large scale Finite State Machine (FSM) which

the nodes correspond to postures and edges correspond to short motion clips. It can

Chapter 1. Introduction 8

be computed automatically from captured human motion data by computing the Eu-

clidean distance of all the postures in the data and connecting them by edges if their

distances are below a threshold. By traversing its nodes and edges, a new motion se-

quence will be created.

Laplacian Coordinates is a type of differential coordinates that represent the relative

position of each vertex to its neighbouring vertices. Laplacian coordinates has been

widely used in 3D geometry editing, as the relative representation can well-preserve

the local details.

Writhe is the total number of crossings found when projecting the link(s) from 3D

space onto the 2D plane.

A Tangle is composed of two or more disjointed strings which are twisted around each

other and whose end-points are fixed in the 3D space.

2-tangle is a tangle composed of 2 strings.

Rational tangles are a group of tangles which can be composed of successive twists

of two parallel strings around the vertical and horizontal axes. A rational tangle is also

a 2-tangle.

Generalized coordinates are a set of parameters that can describe the configurations

of a system. In this thesis, the generalized coordinates of the characters or humanoid

robots are joint angles.

Topological relationship is the term used in this thesis to describe the abstract spatial

relationship of two different objects, which is not affected by the coordinate system

or the spatial geometric details. We especially refer to how body parts of articulated

objects are tangled around each other.

Writhe matrix explains how much each pair of segments from two strands/links con-

tributes to the total writhe value. Given two chains/links S1 and S2, each composed of

m and n segments, we can compute a m×n matrix which contains the writhes of every

pair of segments.

Chapter 1. Introduction 9

Meshes have been widely used for representing 3D objects in Computer Graphics. A

mesh is composed of vertices, faces and edges. These information can be used for

reconstruct the shape of the objects. Polygon mesh and volumetric mesh are common

data structure in shape modelling and manipulation in Computer Graphics. A polygon

mesh is used for representing the surface of a 3D object. A volumetric mesh does not

only represent the surface but also the interior/internal structure of the object.

Chapter 2

Related Research

The aim of this research is to synthesize character movements that involve a lot of

close interactions with other characters, objects or the environment. We also aim to

interactively control the characters under such an environment. This is a tough problem

as it can easily result in collisions and penetrations of the body parts.

Historically, such motions have been manually designed by animators with spe-

cial skills using tools based on forward / inverse kinematics. Once the keyframes are

designed, the movements in between are computed by linearly interpolating the joint

angles of the body.

As manual motion synthesis is costly and labour intensive, methods to make use

of captured motion data to simulate interactions among multiple characters have been

developed. We first review such data-driven approaches in Section 2.1.

On the contrary, methods to automatically synthesize the movements based on

physical simulation, optimization and path planning is another major stream of re-

search in character animation. We will next review such automatic methods which

are applicable to close character animation in Section 2.2. We will also review hybrid

methods that combine the data driven approaches and automatic methods.

Both the data driven approach and the automatic synthesis approach have difficul-

ties synthesizing motions that involve close proximity due to problems of collisions

and penetrations. We conclude that the fundamental problem lies in the representation

of the state that is based on joint angles. Further discussion can be found in Section 2.3.

For describing a scene, a representation based on the spatial relationship of differ-

ent body parts is required. In fact, such a representation can be found in knot theory.

We review the basics of knot theory and the techniques which can be applied to our

research in Section 2.4.

10

Chapter 2. Related Research 11

As knot theory mainly focuses on the spatial relationship of 1D manifolds such as

strands, there are problems extending the techniques for characters composed of 2D

surfaces. There are also problems handling motions that does not involve complex

tangling. Therefore, we explore representations that can handle 2D manifolds in Sec-

tion 2.5. We mainly review techniques in mesh editing and deformation transfer, which

are the two main topics of research in meshing today.

2.1 Data-driven approaches for simulating close char-

acter interaction

Here we review methods that we can make use of the captured motion data in order to

simulate the close interactions of multiple characters. A simple approach for creating

a scene of multiple avatars is to capture their motions altogether in the studio. We first

review such researches in Section 2.1.1. As there are many difficulties for capturing

the motions of multiple persons, another stream of data driven approach to simulate

character interactions is to capture the motions of a single person and simulate the in-

teractions by combining such motions. We review such approaches in Section 2.1.2.

If we simply play back the captured motions, the movements are repetitive and mono-

tonic. In order to cope with this problem, many methods to synthesize new motions

by editing and interpolating existing data have been proposed. We review methods

which are applicable to close character interactions in Section 2.1.3. When interpolat-

ing motions, one of the important issues is to automatically search for similar motions

in the database and categorize them. We review such methods for character animation

in Section 2.1.4.

2.1.1 Capturing movements of multiple persons

Here we review researches that take the straightforward approach to synthesize the

animation of multiple persons by capturing their movements altogether at once. The

motion data in the basketball game NBA LIVE 06 [Electronic Arts. Inc., 2006] are

obtained in such a way.

Several researches in the area of crowd simulation also take such an approach for

synthesizing the close interactions of pedestrians [Lee et al., 2007,Lerner et al., 2007,

Paris et al., 2007]. Lee et al. [Lee et al., 2007] use an overhead camera to track the way

pedestrians avoid each other in the crowd and propose to learn such behaviour using

Chapter 2. Related Research 12

non-linear regression. Lerner et al. [Lerner et al., 2007] assume collision avoidance

can be represented by a restricted number of rules and learn them from the video data.

Paris et al. [Paris et al., 2007] capture the trajectories of pedestrians under a number

of specific situations such as passing through a restricted area like a door, walking in

a narrow corridor and two streams of people crossing each other. The captured data

are used to simulate the interactions of pedestrians in the synthesized scene. As only

the 2D position and orientation of each person are tracked in these researches, these

techniques are only applicable for simple interactions such as queuing and avoiding.

Some researches simulate very close interactions such as fighting in this stream.

Park et al. [Park et al., 2004] capture the motions of two Taekwondo fighters and use

Hidden Markov Models (HMM) to learn the transition between the states. Kwon et

al. [Kwon et al., 2008a] capture the motion of two kick boxers and use probabilistic

models to learn their behaviours.

Several problems occur when capturing the motions of multiple persons making

very close interactions. First, it is difficult to capture realistic interactions due to the

limitation of the capturing device and the psychological status of the subjects. The sub-

jects need to wear intrusive devices which affect the psychological status and the phys-

ical performance of the subjects. There are also motions such as those in wrestling,

which are difficult to be captured due the limitations of the tracking system - there

will be a lot of occlusions when the optical system is used and the sensors might be

damaged or broken if mechanical / inertial / magnetic systems are used. Also, the de-

vices might endanger the subjects being captured. Second, the combination of actions

that can be captured tend to be limited (due to the large number of possible combina-

tions and physical limitations), and the combinations synthesized by their systems are

therefore only a small subset of all possible combinations. Therefore, this approach is

not very practical for interactions that involve close proximity and leads to research of

combining individually captured motions.

2.1.2 Combining individually captured motions

Here we review methods to combine motions of singly captured motions in order to

simulate the interactions of multiple characters. We first review the Motion Graph

[Arikan and Forsyth, 2002, Lee et al., 2002, Kovar et al., 2002], which is a basic ap-

proach to make use of captured motion data to interactively control characters. Next,

we explain how we can simulate the interactions of multiple characters by controlling

Chapter 2. Related Research 13

Figure 2.1: A Motion Graph.

each character using the Motion Graph.

2.1.2.1 Motion Graphs

One of the main objectives of researches in character animation is to achieve interactive

control of the characters. This can be achieved by Motion Graphs [Arikan and Forsyth,

2002, Lee et al., 2002, Kovar et al., 2002], which is a large scale Finite State Machine,

whose nodes correspond to postures and edges correspond to short motion clips (see

Figure 2.1). The Motion Graph can be automatically produced from captured human

motion data by computing the Euclidean distances of all the postures in the data and

connecting them by edges if their distances are below a threshold. Using the Motion

Graph, a new series of movements can be synthesized by traversing along its nodes

and edges. The user can interactively control the character by specifying what kind of

motions he / she wants to see. Search trees can be expanded along the graph to find the

best series of motion clips that satisfies the demand of the user.

Planning motions over the Motion Graph by expanding the search tree results in

exponential complexity, and therefore various methods are developed to reduce the

cost. Kovar et al. [Kovar et al., 2002] propose to use branch-and-bound algorithm to

reduce the computation. Shum et al [Shum et al., 2007] propose to use α−β pruning

for a min-max search problem in a competitive environment. Lau and Kuffner [Lau

and Kuffner, 2005] and Kwon and Shin [Kwon and Shin, 2005] propose to use a small

scale Finite State Machine rather than a large scale Motion Graph.

Chapter 2. Related Research 14

Another choice to enable interactive control of the characters is to do precomputa-

tion. Lau and Kuffner [Lau and Kuffner, 2006] extend their method by precomputing

the most efficient series of actions for reaching a large area in the front. Shum et

al. [Shum et al., 2008a] propose a patch-based approach that precomputes the mean-

ingful interactions by expanding the game tree in a short horizon according to the

specifications provided by the animator and saves them as a data structure called inter-

action patches. Then, the interaction patches are spatiotemporally concatenated during

runtime to synthesize a large scale scene where many characters interact with one an-

other.

Various methods to control the characters intelligently under the framework of

reinforcement learning [Sutton and Barto, 2005] have also been proposed. In rein-

forcement learning, the system explores the state space and computes a state-action

table which records the action that benefits the character most in the future. During

run-time, the character simply needs to lookup the state-action table and launch the

recorded action. More specifically, at each time step i, suppose the avatar selects an

action and gets a reward defined by ri. The optimal policy offers an action at every

state that maximizes the following return value:

V =
N

∑
i

γiri (2.1)

where 0 ≤ γ ≤ 1 is a constant called discount factor. Lee et al. [Lee and Lee, 2004]

simulates a scene of two boxers fighting with each other by using temporal difference

learning, which is a basic technique of reinforcement learning. Graepel et al. [Graepel

et al., 2004] let the system learn how the characters in fighting games should move to

compete well with user players.

Although reinforcement learning is an excellent approach to make the characters

interact wisely with the other characters, there are many fundamental problems that

must be solved when applying it for multi-character control. Basically, the dimen-

sionality of the state space cannot be very large as the computational cost increases

exponentially with respect to the dimensionality. This makes it difficult to handle mul-

tiple characters as the dimensionality becomes very large. Shum et al. [Shum et al.,

2008b] reduces the amount of exploration by assuming the important area concentrates

in where the two characters are facing each, and simulate two characters fighting and

carrying luggage. Treuille et al. [Treuille et al., 2007] represent the value function as a

linear sum of low-resolution basis functions and optimize their coefficients to make the

pedestrian characters avoid the others. Different types of interactions require manual

Chapter 2. Related Research 15

tuning for reducing the state space, which hinders the generality of applying reinforce-

ment learning for arbitrary interactions. Second, we come back to the problem of state

representation discussed in Chapter 1. If we use a representation that is based on joint

angles at the lowest level, we will result in a lot of penetrations and collisions. In

summary, if we want to apply reinforcement learning to control the characters wisely,

we must come up with a compact representation that can avoid the large state space

problem and does not suffer from the huge computation of collision detection. Indeed,

this is one of the objectives of our research.

2.1.3 Editing Captured Motions

When combining the individual motions to simulate the close interactions, each motion

needs to be carefully edited so that the interaction looks realistic. For example, when

synthesizing a scene that one character tries to hit another character who dodges the

attack, the hand of the attacker must move towards the head of the defender and the

defender must dodge it at the correct timing. As the number of captured movements

are limited, it is necessary to edit the available motions to simulate realistic interactions

between the characters. In this subsection, we review two basic methods to adapt the

captured movements which are applicable to multiple character animation.

2.1.3.1 Editing Motions by Inverse Kinematics and Spacetime Constraints

The most basic approach is to apply inverse kinematics and edit the motion per frame.

Given the new target locations / trajectories of the body parts, the captured motion

can be edited to follow them. In fact, Lee and Lee [Lee and Lee, 2004] and Shum

et al. [Shum et al., 2007, Shum et al., 2008b] apply such an approach to edit the tra-

jectories of the interacting body parts. Gleicher [Gleicher, 1997] applies spacetime

optimization to spatiotemporally optimize the motion to follow the target trajectories.

It also solves the problem of high frequency movements which can appear when per-

frame methods are used. The approach has also been applied for motion retarget-

ing [Gleicher, 1998], which is to use the captured motions for characters of different

body sizes. Most of the motion editing approaches do not consider the collisions of

the body parts, which is essential when handling close character interactions. Some re-

searchers propose to apply collision detection and push out the overlapping parts of the

bodies [Lyard and Magnenat-Thalmann, 2008] in the direction of the normal vectors

of the colliding surfaces. However, although collision detection can avoid interpene-

Chapter 2. Related Research 16

tration of body segments, the movement of one segment does not affect the movements

of the other segments until collision occurs. Moreover, the normal vector may repulse

the body in the direction of a dead end. As a result, the optimization process can also

get stuck in a local minimum where the resulting motion is not penetration free.

2.1.3.2 Motion Interpolation and Parameterization

Another approach to adjust the motion is to interpolate two different motions to syn-

thesize a new motion in between. This is known as an old technique called motion

blending. Due to the large sample of motions available nowadays, many techniques

to automatically search for similar motions and interpolate them have been developed.

Rose et al. [Rose et al., 1998] propose a concept of verbs and adverb to generate new

motion from examples. In their work, verbs refer to parameterized motions constructed

from sets of similar motions, and adverbs are parameters that control the verbs. For

each verb, the sample motions are time-aligned by manually specifying the key-time

for every motions. Then, the motions clips are placed on a parameter space based

on the characteristics of the motion clips. Motion blending is done by computing the

weights of the sample motions in the corresponding verb using radial basis functions

(RBF). By specifying the adverbs, new motion will be created. In addition, users can

create a verbgraph so that transition motions between verbs can be generated. Figure

2.2 shows the sample motions (green) and the blended motions (yellow) created by

their method. Park et al. [Park et al., 2002] propose a method to generate locomotions

based on motion blending technique in real-time. New locomotions can be generated

by specifying the parameters: speeds, turningangles, and styles. Like [Rose et al.,

1998], RBF is used to compute the weights of the sample motions to blend new mo-

tions. Figure 2.3 shows the locomotion generated by their method.

One of the limitations of this method is that the similar samples are grouped man-

ually. When the motion database is getting larger, it is time-consuming to classify the

sample motions. Kovar et al. [Kovar and Gleicher, 2003] propose a method to au-

tomatically extract the relationships involving in timing, local coordinate frame and

constraints of the input motions. They extend and apply the work to parametric motion

blending in [Kovar and Gleicher, 2004]. As a result, logically similar motions can be

blended to create a new motion. No manual work is required in the whole process.

Mukai and Kuriyama [Mukai and Kuriyama, 2005] considers the problem of motion

interpolation as a statistical prediction of missing data and remove the artifacts which

Chapter 2. Related Research 17

Figure 2.2: Results obtained in [Rose et al., 1998], the sample motions (green) and the

blended motions (yellow). Reproduced from [Rose et al., 1998].

are present in [Kovar and Gleicher, 2004].

Approaches to interpolate similar motions have been extended to Motion Graphs.

Shin et al. [Shin and Oh, 2006] and Heck et al. [Heck and Gleicher, 2007] propose

to synthesize new motions by blending similar motions in the Motion Graph which

start and end at common nodes. Since the number of nodes and edges in the graph is

reduced, motion synthesis can be done quicker than the conventional Motion Graphs.

The main difference between [Shin and Oh, 2006] and [Heck and Gleicher, 2007] is

that [Shin and Oh, 2006] groups motion into the same group if they have a similar

starting and ending poses (called baseposes) while [Heck and Gleicher, 2007] puts

logically similar motions in the same node. The construction of Fat Graph [Shin and

Oh, 2006] is illustrated in Figure 2.4. Safonova and Hodgins [Safonova and Hodgins,

2007] further optimizes the weights of blending to synthesize an optimal series of

Chapter 2. Related Research 18

Figure 2.3: Locomotion on a terrain. Reproduced from [Park et al., 2002].

Figure 2.4: The construction of Fat Graph. Reproduced from [Shin and Oh, 2006].

movements according to the user input.

The main drawback of linear blending methods is that a large number of samples

are required to produce arbitrary movements. Non-linear motion blending methods

have been proposed to synthesize realistic motions from a limited number of samples.

Grochow et al. [Grochow et al., 2004] propose to use Gaussian Process Latent Vari-

able Model (GPLVM) [Lawrence, 2004] for interpolating postures and apply it for a

non-linear inverse kinematics systems. Ye and Liu [Ye and Liu, 2010] propose to

synthesize response motions when the character is pressed from different directions

by using Gaussian Process Dynamical Models (GPDM) [Wang et al., 2008]. These

techniques can reduce the number of samples for interpolation. The drawback is that

the dataset must be selected carefully as they suffer from oversampling.

All parametric approaches require either the system or the user to classify similar

motions to be blended. There are a number of methodologies proposed for such a

purpose. We review such methods in the following section.

Chapter 2. Related Research 19

2.1.4 Content-based retrieval of human motions

Content-based retrieval of human motions is used to search for similar motions that

can be blended together to synthesize a new motion. Arikan et al. [Arikan et al., 2003]

propose using an Support Vector Machines (SVM) to classify the movements of char-

acters. Feng et al. [Liu et al., 2003] propose building a hierarchical tree structure

to quickly retrieve similar motions from the database. In order to consider tempo-

ral variations, Dynamic Time Warping (DTW) is used to synchronize the timings of

actions [Kovar and Gleicher, 2003, Kovar and Gleicher, 2004]. Keogh et al. [Keogh

et al., 2004] present scaling which is more efficient than DTW, and is more suitable for

indexing large human motion databases. We categorize these methods as numerical

methods, as the motions are classified based on distance of low level attributes such as

the joint angles or 3D positions.

Most of the previous research in content-based retrieval of human motions are

based on the Euclidian distances of the joint angles [Liu et al., 2003, Kovar and Gle-

icher, 2003, Kovar and Gleicher, 2004] or the 3D location of the joints [Arikan and

Forsyth, 2002, Arikan et al., 2003]. Such metrics cannot distinguish motions of differ-

ent context, which can easily result in interpenetrations of the body parts when they

are linearly interpolated.

When handling close interactions, we are more interested in the semantic similar-

ities rather than the numerical closeness of low level attributes. Müller et al [Müller

et al., 2005,Müller and Röder, 2006] propose a semantic approach based on the corre-

lation of four joint positions: a virtual plane is defined by the first three joint positions,

and whether the last joint is in front or back of the plane, is used as an operator to in-

dex the posture. They select a number of combinations of joints which are effective to

distinguish human motions and use them to index and retrieve human motions. Such

an approach is more robust in retrieving semantically similar motions, as the results

are not affected by deviation of low level attributes. They require the user to manu-

ally specify the feature that is suitable for each category of motion. This is not general

enough for the retrieval of arbitrary motion. They also do not provide any methodology

of interpolating semantically similar motions.

One of the objectives of this research is to propose a new representation that can

easily distinguish semantically similar and different motions and also enable interpola-

tions of the movements without suffering from collisions and penetrations of the body

parts.

Chapter 2. Related Research 20

2.2 Automatic Character Motion Synthesis

Another direction of synthesizing close character interactions of multiple characters

is to produce them automatically by applying physical simulation, optimization and

path planning. Especially, motions that are dominated by physics, such as passive

motions when falling down, are suitable to be produced by physical simulation. How-

ever, in most cases, we also need to control the characters that actively interact with

the other characters. Such a control can be done by using PD control, or methods

based on optimization. We first review such automatic methods based on physical

simulation and optimization to synthesize motions of close character interactions in

Section 2.2.1. When the motion involves lots of close contacts and avoidances, motion

planning will be required to arrive to the target posture. We will review such methods

in Section 2.2.2.

2.2.1 Character interactions by Physically-based simulation

Physically-based animation has been intensively applied for synthesizing character

movements. Many computationally efficient methods of forward dynamics which

has complexity of O(n) (where n is the number of articulated bodies) have been de-

veloped [Baraff, 1996, Stewart and Trinkle, 1996], and are used in computer games

through middleware such as Open Dynamics Engine [Smith, 2007]. They are most ef-

fective for passive movements such as characters falling down, which are often referred

to as “ragdoll physics”.

Now, let us think of synthesizing the interactions of two characters by using physi-

cally based simulation. Fighting scenes can be a good example. Movements of falling

down when the character is hit can be well simulated by ragdoll physics. When we

want the punched character to resist and recover the original posture, we can apply PD

control [Zordan and Hodgins, 2002]. PD control is a method to apply torques to the

joints relative to the discrepancy from the target posture:

τ = kp(θ−θd)+ kd(θ̇− θ̇d) (2.2)

where τ is the torque applied to the joints, θ are the generalized coordinates in the

current frame, θd are their target values, and kp and kd are constants of elasticity and

viscosity. We can further make the characters step out to keep balance by using hy-

brid methods that blend motions synthesized by PD control and captured motions of

stepping out [Zordan et al., 2005, Arikan et al., 2005, Komura et al., 2005].

Chapter 2. Related Research 21

PD control is also effective to simulate active voluntary movements [Raibert and

Hodgins, 1991, Wooten and Hodgins, 1996, Hodgins and Pollard, 1997, Yin et al.,

2007], such as walkng [Yin et al., 2007], running [Hodgins et al., 1995] and playing

sports [Hodgins et al., 1995, Wooten and Hodgins, 1996]. As tuning the gain parame-

ters such as kp and kd is not very easy, van de Panne and Lamouret [Van De Panne and

Lamouret, 1995] propose to first add external force to guide the character to the cor-

rect motion, and gradually reduce the guidance while optimizing the gain parameters

such that they achieve a balanced gait motion. Yin et al. [Yin et al., 2008] propose to

adapt the gain parameters for a normal walking motion to those under different con-

ditions such as stepping over a large obstacle or pushing heavy objects, by applying

a sampling-based optimization method. Wang et al. [Wang et al., 2009] optimize the

gain parameters so that the motion has features similar to natural human gait motion.

In such cases, Finite State Machines that are composed of a series of target postures

are used to guide the characters to accomplish the desired motion. However, using

such an approach for controlling characters when interacting is difficult because the

PD controller can be very unstable when the characters unintentionally collide with

others. In order to simulate motions such as wrestling or fighting that involve strong

perturbation and impulses, it is necessary to adaptively change the stiffness of the joints

through constant parameters of the PD controller according to the current status of the

characters who are involved in the interaction.

Another stream of physically-based character animation is to parameterize the mo-

tions by generalized coordinates and spatiotemporally optimize an objective function

based on physical parameters such as momentum [Witkin and Kass, 1988, Liu and

Popović, 2002], acceleration [Popović and Witkin, 1999, Fang and Pollard, 2003] and

joint torques [Cohen, 1992, Liu et al., 1994, Liu et al., 2005]. This is the same as

the spacetime optimization method explained in Section 2.1.3. There the motions are

adapted such that the kinematic constraints are satisfied. On the contrary, here the

motions are edited such that dynamic constraints are satisfied. Liu et al. [Liu et al.,

2006] simulate realistic interactions of two characters such as one character avoiding

another and a mother pulling the hand of the child by iteratively applying such space-

time optimization to each character. The advantages of the spacetime optimization are

(1) efficient motions that require minimal energy over time can be produced and (2)

movements that prepare for future events can be produced.

Some researchers propose hybrid methods that make use of captured motion data

and physical simulation. For example, Tak et al. [Tak et al., 2000] propose to con-

Chapter 2. Related Research 22

vert unbalanced captured motions into balanced motions by minimizing the integral of

distance between the zero moment point (ZMP) and the supporting area during a gait

cycle. If this distance is below zero throughout the gait cycle, the motion is balanced.

Nishiwaki et al. [Nishiwaki et al., 2001] propose a similar method to synthesize a bal-

anced motion of a robot. Some researchers propose per-frame methods. In Dynamics

Filter [Yamane and Nakamura, 2003], the character is controlled so that its posture

becomes similar to the reference captured motion while the body is balanced at every

time step. Kagami et al. [Kagami et al., 2000] also balance the robots per-frame by

such an approach. Shin et al. [Shin et al., 2003] propose such a method for character

animation.

There are also hybrid methods for synthesizing response motions when hit or

pushed. Zordan et al. [Zordan et al., 2005] propose to simulate the motion imme-

diately after the impulse by ragdoll physics and then blend it to the most similar falling

down motion saved in the database. Komura et al. [Komura et al., 2005] apply a similar

approach but use a frame-based optimization approach that controls the linear / angular

momentum of the body. Arikan et al. [Arikan et al., 2005] use the SVM to select the

most appropriate motion data to be blended.

Although much research has been done for physically-based animation, they still

suffer from the disadvantages due to the parameterization of the movements based on

the joint angles, which we have discussed in Chapter 1. As a result, they still suffer

from penetrations, pass-throughs and local minima that prevent them to be applied

for close interactions. In order to synthesize a motion that is free of such artifacts,

it is necessary to apply methods of global path planning, which is explained in the

following subsection.

2.2.2 Global Path Planning

In order to automatically interpolate two arbitrary postures without falling into local

minima, we need to apply global path planning methods. Methods such as Rapidly-

expanding Random Trees [Lavalle and Kuffner, 2000] or Probabilistic Roadmaps [Kavraki

et al., 1994] are applicable for such purposes. Both methods sample random postures

in the state space and make connections between the samples if transitions can be

made. Once the start and the goal are connected, path-planning is applied to search

for the shortest path that connects the points. Although they efficiently sample points

in the state space, the complexities are still exponential with respect to the degrees of

Chapter 2. Related Research 23

Figure 2.5: An example of expanding RRT in different stages. Reproduced from LaValle

et al. [LaValle and Kuffner, 2001].

freedom (DOF). As a result, it is difficult to be applied to character animation unless

the DOF is reduced. Yamane et al. [Yamane et al., 2004] compute the trajectory of the

luggage to be carried by RRT and compute the character posture by inverse kinemat-

ics. This approach is not very general unless there is enough space for the character to

freely move around. Shapiro et al. [Shapiro et al., 2007] use RRT to compute only the

movements of the arm. This approach is only applicable for motions such as grabbing.

Synthesizing interactions of multiple characters by global path planning is not easy as

the DOF will double. Due to these problems, global path planning is rarely used for

character animation purposes.

Chapter 2. Related Research 24

2.3 Summary of Character Animation and the Funda-

mental Problem to be Solved

We have reviewed two large streams of character animation ; the data-driven approach

and the automatic motion synthesis approach. Although various movements can be

simulated by these approaches, we will face problems when synthesizing close inter-

actions of multiple characters. Among such problems, here we point out a few critical

points that we cope with in this research.

1. Existing metrics (i.e., Euclidean distance of joint angles) to compute similarity

of postures do not consider the spatial relationship between different body parts.

As a result, motions of different context can be classified into the same group of

motions, which results in penetrations / pass throughs when they are interpolated.

2. Existing motion synthesis methods plan the motions at the level of joint angles,

whose complexity is exponential with respect to the DOF of the character(s). In

addition to that, the evaluation of every transition requires intense computation

of collision detection, which can slow down the process significantly.

We can summarize that the fundamental problem lies in the representation that is based

on the joint angles. The joint angle representation does not include any information

of spatial relationships between different body parts unless they are computed by for-

ward kinematics. Spatial relationships are important for recognizing the similarity of

motions and avoiding collisions. Therefore, we explore a new way to represent the

human postures that considers the spatial relationship of different body parts. As we

want to handle motions such as wrestling, which involve a lot of tangling, we first

explore a representation in the knot theory in Section 2.4. Next, we explore methods

to represent the relationship of two different 2D manifolds in the area of mesh editing

and deformation transfer in Section 2.5.

2.4 Applying Knot Theory for Character Animation

Knot theory provides invariants which are useful for distinguishing one knot from an-

other, which are useful for describing the way characters are tangled with one another.

We first review the basics of knot theory in Section 2.4.1. In fact, such invariants have

been applied for controlling robots to tie knots. We also review such research in Sec-

Chapter 2. Related Research 25

Figure 2.6: 3 types of Reidemeister moves.

+1 -1

(a) (b)

Figure 2.7: Right-handed (a) and left-handed (b) crossings.

tion 2.4.1. Finally, we discuss theories and techniques that can be applied for character

motion synthesis doing close interactions.

2.4.1 Basics of Knot Theory

Knots, which are closed, single strands, are considered equivalent if one of them can

be smoothly deformed into another without cutting the strings. The deformation can

be done by the Reidemeister moves [Reidemeister, 1935] as shown in Figure 2.6. As

we need to handle open chains instead of closed loops, we use a concept called tangle

[Conway, 1970] in knot theory. Among the tangles, there is a concept called 2-tangles

[Conway, 1970], which is defined as a pair of strings whose end points are fixed in

Euclidean 3D space.

Many invariants such as crossing numbers and polynomials [Adams, 1994] have

been proposed to distinguish knots. However, none of them is proven to be always suc-

cessful. The minimum crossing number is one of such invariants which is the sum of

the crossings of the strands. Every crossing will be denoted as 1 or -1 as shown in Fig-

ure 2.7, depending on whether it is a left-handed or right-handed crossing. State spaces

based on such invariants have been used to control robots to tie knots [Takamatsu et al.,

2006,Wakamatsu et al., 2006,Matsuno et al., 2006,Saha and Isto, 2006,Saha and Isto,

2007]. In these researches, a state machine based on the crossings are prepared and

used to guide the robots to manipulate the strands.

Most of the existing work based on knot theory assume that the knots and tangles

Chapter 2. Related Research 26

Figure 2.8: The projection plane does not affect the minimum crossing numbers for

knots and links (left) but does for tangles (right)

are projected on a 2D plane before being analyzed. As knots or links are closed curves,

the projection plane does not affect invariants such as the minimum crossing numbers

(Figure 2.8, left). However, in case of tangles, the projection plane affects the number

of crossings (Figure 2.8, right) and as a result, we cannot use the crossing numbers

as the features. It is also difficult to define a plane to project the tangles onto, as the

bodies are always moving around and their orientations will change from time to time.

Therefore, a method to compute the tangles directly from the 3D location/orientation

of the bodies is required in our research.

2.4.2 Gauss Linking Integral

Gauss Linking Integral (GLI), a discovery by Carl Friedrich Gauss in 1833, can directly

compute the linking numbers of two separate closed curves from their 3D trajectories.

GLI has been widely used in various research such as computing the topological sim-

ilarity between different protein and DNA structures [Agarwal et al., 2002, Erdmann,

2004, Klenin and Langowski, 2000]. Since GLI can compute the writhing number in

3D, the topological structures of different protein and DNA can be analyzed in 3D.

The GLI can also be applied for open curves such as 2-tangles. In that case, the output

becomes the average number of crossings when viewing the 2-tangle from all direc-

tions [Erdmann, 2004].

In this research, we also extract the relationships between characters in 3D by com-

puting the GLI between body segments, and guide the characters to tangle with each

other. To the best of our knowledge, no similar research has been done in the area of

computer graphics nor robotics.

The GLI of two directed curves γ1 and γ2 can be computed by

Chapter 2. Related Research 27

Figure 2.9: The GLI of two directed curves when one strand is surrounding the other

(left), singly tangled (middle), and untangled (right)

Figure 2.10: GLI satisfies the commutative rule

GLI(γ1,γ2) =
1

4π

∫
γ1

∫
γ2

dγ1×dγ2 · (γ1− γ2)

∥γ1− γ2∥3 (2.3)

where × and · are cross product and dot product operators, respectively [Pohl,

1968].

The GLI satisfies commutativity and is linear in summation; these are convenient

features when computing all the tangles made between the segments:

GLI(L1,L3) = GLI(L3,L1) (2.4)

GLI(L1 +L2,L3) = GLI(L1,L3)+GLI(L2,L3) (2.5)

where L1 and L2 are two connected curves making a tangle with another curve L3 (see

Figure 2.10).

When calculating the GLI of long curves such as supercoiled DNA, the double in-

tegral in Equation (2.3) is computational costly. When the curve can be approximated

by polylines, we can make use of the analytical solution proposed by Levitt [Levitt,

1983]. Given two polylines, S1 and S2, and they are composed of m and n line seg-

ments respectively, the total writhe (or GLI) of S1 and S2 can be calculated by

Chapter 2. Related Research 28

m

∑
i=1

n

∑
j=1

Ti, j

where Ti, j is the writhe of segment i and segment j. Now we explain how to cal-

culate Ti, j. Suppose points a,b and c,d are the end points of segment i and seg-

ment j, respectively. Let us define the vectors connecting a-b,a-c,a-d,b-c,b-d,c-d by

rab,rac,rad,rbc,rbd,rcd , respectively (Figure 2.11). Using these vectors, the normal

Figure 2.11: The tetrahedron composed by two line segments a-b and c-d.

vectors of the tetrahedron made by these four points can be calculated by:

na =
rac× rad

|rac× rad |
,nb =

rad× rbd

|rad× rbd |
,nc =

rbd× rbc

|rbd× rbc|
,nd =

rbc× rac

|rbc× rac|
.

Finally, Ti, j is calculated by

Ti, j = arcsin(nanb)+ arcsin(nbnc)+ arcsin(ncnd)+ arcsin(ndna).

2.4.3 2-Tangles

As GLI only computes how many times the two curves are winding around each other,

it does not provide the full information of the relationships between two chains. The

concept of 2-tangles [Conway, 1970] can be applied for analyzing the topological re-

lationships of the two open curves. 2-tangles can be categorized into prime tangles,

self-knotted tangles, and rational tangles (See Figure 2.12). The rational tangles are a

group of tangles which can be composed of successive twists of two parallel strings

around the vertical (Figure 2.14 (a)) and horizontal (Figure 2.14 (b)) axes. Rational

tangles can be used in our research because we can calculate an invariant called con-

tinued fractions to distinguish every tangle from the others. In addition, there are tangle

operations for rational tangles as shown in Figure 2.13.

Chapter 2. Related Research 29

(a) (b) (c)

Figure 2.12: Examples of 2-tangles: (a) rational (b) self knotted and (c) prime tangles.

The rational tangles can be composed by successive twists of 2 ends.

Figure 2.13: Addition, multiplication and inversion of 2-tangles. Reproduced from

[Kauffman and Lambropoulou, 2004].

2.4.4 Conclusion and outlook

By extending the concept of rational tangles in tangle theory, it is possible to represent

the topological relationship between the tangled human characters. The existing stud-

ies in knot theory assume that projected images with the minimum crossing number of

the knots / tangles are available. However, by applying Reidemeister moves to a knot

or tangle, tangle projections with different crossing number will be obtained although

they are topologically equivalent. As a result, unless we have a systematic way to

project the knot or tangle, it is difficult to extract the topological relationship between

the tangled characters in 3D space.

Instead of analyzing the topological structure from a tangle projection, GLI can be

used to detect if two curves are tangled in 3D space. In other words, computing the

GLI between the body segments among the characters indicates whether they are tan-

gled or not. By combining the extracted tangling information from the GLI calculation

and the concept of rational tangles, we can distinguish the spatial relationship among

multiple characters.

Chapter 2. Related Research 30

(a)

(b)

Figure 2.14: Examples of (a) integer tangles and (b) vertical tangles. Reproduced

from [Kauffman and Lambropoulou, 2004].

2.5 A Representation for Multiple 2D Manifolds

The knot theory and GLI are adequate for handling motions involving tangles between

1D manifolds such as strands or skeletons. However, these techniques cannot han-

dle close interactions without any tangles. Further, an extension to motions involving

character shapes are difficult since relationships between rigid bodies or surfaces need

to be encoded. Here we explore a representation for 2D surfaces such as mesh data.

We will review two basic areas of geometric data processing ; differential coordinates-

based mesh editing and deformation transfer of mesh data. Differential coordinates

such as Laplacian coordinates enable users to edit 3D geometric shapes while preserv-

ing the local details of the original mesh structure. Deformation transfer [Sumner and

Popovic, 2004] can produce an animation sequence of one character based on that of

another. Although these areas have been extensively explored in the past, we argue

that little research considers the spatial relationship of separate characters and objects.

Such relationships are important for preserving the context of the scene while editing

the character postures or transferring the original deformation to other characters.

2.5.1 Mesh Editing by Differential Coordinates

3D Mesh editing is an important area of research, which is needed to produce arbitrary

mesh shapes from existing data. “As-rigid-as-possible” mesh editing [Alexa et al.,

2000] decomposes 2D and 3D shapes into primitives such as triangles and tetrahe-

dra, respectively, and tries to maintain the rigidity of the primitives while satisfying

the constraints given by the user. However, preserving the rigidity of the shapes is

computationally costly. Alexa [Alexa, 2003] propose to use Laplacian coordinates to

Chapter 2. Related Research 31

maintain the local mesh structure when editing the shape of the object. Sorkine et

al. [Sorkine et al., 2004] extend this method by allowing rotation and scaling of the

Laplacian coordinates. Differential coordinates are convenient for character anima-

tion as the animator can easily produce new postures of the deformable characters by

simply dragging parts of the characters. One problem of the Laplacian techniques

compared to “as-rigid-as-possible” techniques is that the shape of the character can be

distorted due to volume loss. Zhou et al. [Zhou et al., 2005] produce a volumetric mesh

by sampling new vertices inside the original mesh structure, and apply Laplacian mesh

editing to the volumetric mesh. This method requires less computation and the volume

loss problem can be avoided. When the character is not fully deformable, but is an ar-

ticulated character with rigid body parts, it is necessary to add constraints that maintain

the rigidity of the body segments. Adding such constraints into the process of solving

the Laplacian deformation problem can slow down the convergence significantly. Shi

et al. [Shi et al., 2007] solve this problem by using a cascading approach, that solves

a sequence of optimization problems with different objective functions. Another prob-

lem when creating animation by Laplacian deformation is that the temporal coherence

may not be preserved as the character shape is edited frame by frame. Xu et al. [Xu

et al., 2007] propose a spacetime approach that preserves the temporal coherence by

adding interframe constraints that minimize large movements every frame.

When applying these methods for animation of multiple characters in close prox-

imity, the movement of one character will not affect those of the others until a collision

between the body parts occur. This may be inconvenient in some cases. For example,

when editing the movements of two characters dancing, the animator prefers both char-

acters to move simultaneously while preserving the relationship between each other

rather than each character changing its motion independently. However, no previous

research in mesh editing focuses on this problem.

2.5.2 Deformation transfer

By using deformation transfer, an animator can make use of an existing sequence of

mesh animation to control the movements of another character. Examples of such a

scene is shown in Figure 2.15: In this example, the posture of a tiger is transferred to

that of a cat.

The process of deformation transfer goes as follows: Using the basic rest-poses

of the two meshes, the correspondence between the triangles are calculated. When a

Chapter 2. Related Research 32

Figure 2.15: A posture of a tiger transferred to a cat model. Reproduced from [Zayer

et al., 2005].

new configuration of the source mesh is given, the rotation of the triangles from their

original rest-poses are computed and added on top of the target mesh’s rest-pose. This

results in the rough transferred configuration of the target mesh, but the connectivity

of the triangles are ignored at this moment. Finally, an optimization problem to main-

tain the connectivity of the triangles is solved to obtain the final configuration of the

target mesh. For computing the correspondence, Zayer et al. [Zayer et al., 2005] use

harmonic fields to compute the correspondence between the meshes.

One problem with these methods is that the spatial relationship of different body

parts are not considered when editing the postures. Therefore, as you can see in Fig-

ure 2.15, the spatial relationship such as the limbs and the tail can be different after the

deformation transfer. This can be a big problem especially in cases the morphology of

the two characters are very different. For example, a motion to scratch the head done

by a cat model can appear like scratching the neck bottom when it is transferred to a

giraffe model. It is necessary to take into account the spatial relationship of body parts

in order to maintain such context of the scene.

A recent work by Zhou et al. [Zhou et al., 2010] for deformation transfer [Sumner

and Popovic, 2004, Zayer et al., 2005] represents the spatial relationships between

multiple components of an object by Euclidean distances and encode them using a

minimum spanning tree. Since the spatial relationships are assumed to be fixed (same

as rest pose) during deformation, the method is not applicable to motions with time-

varying spatial relationships.

Chapter 2. Related Research 33

2.5.3 Conclusion and outlook

Here we have explored new representations for multiple 2D manifolds. The repre-

sentations such as differential coordinates only take into account the local details and

does not preserve the relationship of separate body parts. The volumetric Laplacian

representation by Zhou et al. [Zhou et al., 2005] is an interesting approach that tries to

cope with the problem of volume-loss. However, it has not been used for preserving

the spatial relationship of different objects. We will look into such an application in

this thesis.

Deformation transfer represents the posture by the relative orientation of the trian-

gles. Again, this does not consider the relationship of separate body parts and therefore

can result in a change of the context after the posture is transferred to different surfaces.

A very recent work by Zhou et al. [Zhou et al., 2010] is the first to consider the spatial

relationships for deformation transfer. However, the application is very limited as they

only consider animations in which the spatial relationship does not change much. In

this thesis we explore a new representation that can encode the relationship of multiple

characters in close proximity and can also handle 2D surfaces.

Chapter 3

Indexing and Retrieving Motions of

Characters in Close Contact

In this chapter, we introduce a new topological representation to encode the spatial re-

lationship between tangled body segments of multiple characters using Gauss Linking

Integral (GLI) and rational tangles in Knot Theory. With the new topological represen-

tation, we can index and retrieve motions such as one person piggy-backing another,

one person assisting another in walking, and two persons dancing / wrestling. The

experimental results show that our method is useful to manage a motion database of

multiple characters. We can also produce Motion Graph structures of two characters

closely interacting with each other by interpolating and concatenating topologically

similar postures and motion clips, which are applicable to 3D computer games and

computer animation.

Portions of this chapter have previously been published as [Ho and Komura, 2009b].

3.1 Introduction

There is a high demand for indexing and retrieving motion data efficiently so that

animators can easily search for the motion they want in the database. Several methods

have been proposed to search human motion data in the database by giving an example

query. Such methods are targeted for motions of single characters, and most of them

evaluate the similarities of the motions by comparing low level attributes such as the

joint angles or joint positions.

On the other hand, in computer animations and games, there are many scenes where

multiple characters are densely interacting with each other. For example, in wrestling,

34

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 35

the arms and legs of each character are tangled with those of the others’ in a complex

way. To index such motions, we cannot simply apply the same methods as for single

characters as the correlations between the characters will be ignored. Suppose one

character is holding the neck of another character, as shown in Figure 3.1. If we want

to search and blend motions to these postures, we need to take into account the fact

that the right arm of the black character is tangled with the neck of the gray character.

Only motions that keep such relationships can be blended to the characters’ motions.

As previous indexing methods of human motions do not take into account the topolog-

ical relationships of body segments, they will not work well for dense interactions of

multiple characters.

Figure 3.1: The topological relationship where the arm is tangled with the neck is the

same for the above two postures, although the kinematic joint angles or 3D location of

the joints are different

Figure 3.2: The human motion retrieval based on topological relationships: three pairs

of postures similar to the query postures are returned. The values on the bottom are

the normalized similarity of the output posture with the query posture.

In this research, we use tangles [Conway, 1970] made between the segments to

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 36

index the pair of postures of two characters. As there can be several tangles made

by different segments of the body, we compose a data structure called a TangleList

to represent the topological relationship of the two bodies. Given two TangleLists,

we can compute their distance to evaluate the similarity of the set of postures. Then,

it is possible to categorize the relationships of two characters, and give an example

relationship as a query to search for similar pairs of postures, as shown in Figure 3.2.

It is also possible to avoid interpolating / blending topologically dissimilar postures

/ motions which can cause body inter-penetrations. As a result, our method is also

useful for applications such as motion synthesis.

This chapter is composed as follows: Section 3.2 explains how to extend the con-

cept of tangles in knot theory to index, encode and compare the relationships between

two characters. In Section 3.3, experiments are conducted to show the performance of

using the topological relationship for content-based retrieval and human animation. In

Section 3.4, we discuss the possibilities of applying the topological relationship and

conclude the work in this chapter.

3.2 Representation and Comparison of Topological Re-

lationships

In this section, the methodology to compute and encode the way two human bodies are

tangled with each other is explained.

Figure 3.3: The process of encoding the tangled postures. For every path connecting

the end effectors, we 1) compute and 2) encode the tangle information and 3) compare

the results with those from other postures.

The overview of the methodology is shown in Figure 3.3. We first compute all the

tangles made between the paths connecting the end effectors. The tangle information

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 37

is then encoded into a data structure called a TangleList. We calculate the similarities

between two pairs of postures by matching the subtangles in the two TangleLists.

The rest of this section proceeds as follows: We first explain the concept of 2-

tangles, which is the minimal unit for representing the topological relationship, and

then explain how to represent the relationship of body structures by a set of 2-tangles.

Next, we explain how to compute and encode the tangle information from the 3D

postures of the characters. Finally, we explain how to compare two sets of postures

based on the encoded data.

3.2.1 2-tangles

We use 2-tangles [Conway, 1970] as the minimal unit to represent the topological

relationship of two characters. A 2-tangle is defined as a pair of strings whose end

points are fixed in Euclidean 3D space.

Examples of 2-tangles are shown in Figure 2.12 (a)-(c). Most of the tangles of the

bodies can be represented by 2-tangles, or a set of 2-tangles.

2-tangles can be categorized into rational tangles (2.12(a)), self-knotted tangles

(2.12(b)), and prime tangles (2.12(c)). The rational tangles are a group of tangles

which can be composed of successive twists of two parallel strings around the vertical

and horizontal axes. In this research, we limit the tangles made between the paths to

rational tangles, because (1) they are the most basic tangles which can represent most

of the postures of humans tangled with each other, and (2) there is an invariant that can

be used to distinguish every tangle from the others.

3.2.2 Tangles of tree structures

As we need to handle human characters, we have to compute the tangles made between

tree structures. Trees are composed of edges and nodes, and therefore, tangles made

between them will be more complex than those between single strings.

The tangles between trees can be examined by checking all the tangles made be-

tween the paths connecting the end effectors of the trees. The graph structure that is

used to represent the human body in this research is shown in Figure 3.4. There are ten

paths connecting the end effectors of this graph.

As shown in Figure 2.10, the GLI of two paths is computed by summing the GLI

between every pair of segments on the paths. That means no matter how you divide the

paths into many segments, the total GLI of the 2 paths will be the same by summing

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 38

1 23 4

5

6

8

7

9

10

Figure 3.4: The tree structure of the graph that is used to represent the body structure.

There are 10 paths that connect the end effectors.

(a) (b)

Figure 3.5: The homeomorphic Reidemeister moves after which the relationship must

be considered equivalent.

up the GLI between every pair of segments. In order to speed up the calculation, we

divide the paths at the joint positions to minimize the number of segments.

The topological relationships of two tree structures are considered equivalent when

the 2-tangles of all the paths are equivalent. An example of a set of postures where

the two characters are tangled is shown in Figure 3.5 (a). In this case, path 5 of the

gray character is tangled with paths 3,4,6,7,8,9 of the black character. The advantage

of representing the tangles of tree structures by the combination of all the 2-tangles is

that, although the tangle crosses a node while the characters are moving, as shown in

Figure 3.5(b), the relationship is acknowledged unchanged. This kind of translation of

tangles is called Reidemeister moves in knot theory. It is important that the state of the

tangle does not change under Reidemeister moves.

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 39

3.2.3 Detecting the Tangles

In this subsection, we explain how to find out the tangles directly from the 3D position

/ orientation of the body segments by computing the Gauss Linking Integrals.

In knot theory, it is always assumed that the tangles or knots are projected onto

a 2D plane. As knots or links are closed curves, the projection plane does not affect

invariants such as the minimum crossing numbers (Figure 2.8, left). However, in case

of tangles, the projection plane affects the number of crossings (Figure 2.8, right) and

as a result, we cannot use the crossing numbers as the features. It is also difficult to

define a plane to project the tangles onto, as the bodies are always moving around

and their orientations are changing from time to time. Here we explain a method to

compute the tangles directly from the 3D location/orientation of the bodies.

3.2.3.1 Efficient Detection of Tangles by the GLI Matrix

This process is similar to what has been done in our previous work in [Ho and Komura,

2007b,Ho and Komura, 2007a]; however, instead of conducting double integrations of

Gauss Integrals for every path as stated in Eq. 2.3, we do this more efficiently by

representing the segments connecting the joints by line segments, and calculating the

GLI between the line segments using the analytical solution [Levitt, 1983]. The readers

are referred to Section 2.4.2 in the Related Work for the details. As a result, the GLI

between arbitrary local paths can be simply calculated by summing the elements of the

matrix.

Now we explain how to find all the tangles based on the GLI. Let us assume we are

going to compute the rational tangles made between two serial links of rigid segments.

This starts by computing all the subtangles made between the two links. Suppose the

two links A and B are composed of m and n segments, respectively. An m× n matrix

that contains the GLI between every pair of body segments is composed. Let us define

this matrix as the GLI matrix. First, we find out all the minimal subtangles, for which

the absolute sum is larger than 0.5 by scanning all the submatrices in the GLI matrix.

The cost for scanning the GLI matrix is O(m2n2).

An example of a 2-tangle and its GLI matrix is shown in Figure 3.6. Five subtangles

are found and the corresponding submatrices are surrounded by the rectangles.

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 40

Figure 3.6: A 2-tangle and its GLI matrix. The five subtangles and their corresponding

submatrices are visualized.

3.2.4 Encoding the Tangles

Let us define the rational tangle to be encoded by T . Rational tangles are composed

of successive, integer numbers of horizontal twists (Figure 3.7 (a)) and vertical twists

(Figure 3.7 (b)). The composition of the TangleList proceeds by untangling T , which

(a) (b)

Figure 3.7: Examples of (a) horizontal tangles and (b) vertical tangles.

is done by successive twists of the two ends, as shown in Figure 3.8. In our case, we do

not necessarily twist for an integer number of times, as the tangles are defined in the

3D space based on the location of the joint positions. Instead, we keep the GLI value

of each twist. On the other hand, it is also difficult to define any absolute standards for

vertical / horizontal twists as the bodies can be oriented in arbitrary ways. Therefore,

we assume the initial twist is a horizontal twist.

In order to correctly untwist tangle T , we need to define the type of the subtangles.

Let us assume a tangle T is composed of two strands, a and b, and the directions are

defined in both strands. The subtangles Si composing T can be categorized into 4

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 41

2 V 2 V 1 H

Figure 3.8: An example of encoding a rational tangle while untangling it. The tangle is

encoded as ”two vertical twists (2V) and one horizontal twist (1H)”.

types: those composed by strand a and a (type AA), strand b and b (type BB), and by

strand a and b in the forward direction (type AB), and in the opposite direction (type

BA). The four types are shown in Figure 3.9.

a

b

b

b

a

a

a

b
type AB type BA type AA type BB

Figure 3.9: The four types of subtangles composing the tangle made by two strands a

and b. We assume the directions of the strands are defined. Those composed of a and

b (left most, left middle), only by a (right middle) and only by b (right most).

Now we can define three attributes for each subtangle, the type, GLI, and twist.

The type is either of BB, AB, BA, AA, the GLI keeps the GLI value of the subtangle,

and twist tells whether the subtangle is either made by a “vertical”(V) twist or an

“horizontal” (H) twist.

The untwisting can be done systematically by the following process. First, we put

all the subtangles into a group defined by G. We start by finding the subtangle to be

untwisted in G. The subtangle S that satisfies the following conditions is selected.

1. Two end points of S, defined here by e1 and e2, are also the end points of T

(Figure 3.10(a)), which means there is no other subtangle between the end points

of S and those of T .

2. S can be untangled by twisting e1 and e2

The second condition can be judged by checking whether (i) the closest minimal tangle

from e1 and that from e2 are the same (Figure 3.10(b)). (Remember the minimal tangles

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 42

are those whose GLI values are above 0.5 which are found using the method explained

in Section 3.2.3.1) and that (ii) e1 and e2 are not connected in this minimal tangle

(Figure 3.10(c)).

S

e1

e2

e1

e2

e1

e2

T

(a) (b) (c)

Figure 3.10: The conditions for selecting the subtangle S to be untangled. (a) The two

ends of S needs to be the end points of T . (b) The closest minimal tangle from e1 and

e2 must be the same (c) e1 and e2 is not connected in this minimal tangle.

Once the subtangle S that satisfies these conditions is found, we virtually untangle

this subtangle by removing it from G, and putting it into the top of TangleList and

repeat the process iteratively until the whole tangle is untangled. When untangling a

subtangle, we record its type (either of BB, AB, BA, AA).

For tangle types AB and BA, the tangles can be efficiently detected using the

method explained in Section 3.2.3.1. For the tangle types AA and BB, the tangles

were composed by the rigid segments from the same strand. In these cases, the writhe

matrices are different from those in type AB and BA. Here we prepare another writhe

matrix, which is computed by calculating the GLI between the rigid segments on the

same strand, for checking tangle types AA and BB. As a result, the system scans 3

matrices - one for type AB or BA, another for type AA and the last one for type BB

for detecting and encoding the tangles.

When checking the tangle type, the system first checks the GLI matrices computed

from the two paths, path1 and path2. Since type AA and BB are self-tangles and have

a single direction only, the system can recognize them by checking the GLI matrices

computed from path1 against path1 and path2 against path2.

For type AB and BA, the difference between them is the directions of the paths as

shown in Figure 3.9. In Figure 3.11, the elements with large GLI value were shaded

in black. For rational tangles, the dark areas tend to form a straight line. From this

observation, we found that we can estimate the directions of the path by check the

slope of the straight line formed by the dark areas. If the slope is negative, it is a

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 43

AB-type tangle. If the slope is positive, it is a BA-type tangle.

a b

c d

a

b

c d

a b

d c

a

b

c d

a b

c d

a

b

c d

(a) (b) (c)

Figure 3.11: Example of rational tangles and their corresponding GLI matrices.

There is a special case which you cannot compute the slope for the straight line,

an example is shown in Figure 3.11 (c). If a single long segment is tangled with a

chain, a n× 1 matrix will be computed where n is the number of segments on the

chain. In this case, we could not estimate the direction of the paths. Our system

handles this special case by checking the Euclidean distances between the end-points

of the segments. By doing this, we can estimate the direction of the paths. For human

postures/motions, however, it is less likely to have a single long segment tangled with

other body segments.

Once the type of the tangle has been detected, the system compares the types of

consecutive tangles. If the type of the tangle is different from that of the previous sub-

tangle, we can say that the twist direction has switched too. Otherwise, the consecutive

subtangles with the same type will be merged. The merging operation is the same as

concatenating the rational tangles.

If no subtangle that satisfies condition (1) and (2) is found, T is not a rational

tangle. In that case, we do not use this tangle to evaluate the similarity. The process of

encoding the tangle information is summarized in Algorithm 1.

Two examples of tangles encoded by this method are shown in Figure 3.12. Whether

the two tangles are the same or not can be checked by comparing their TangleLists.

The details are explained in the next subsection.

3.2.5 Computing Similarities by Topological Relationships

Given two different sets of postures where the two characters are tangled with another,

we compute the similarities of the postures / movements by using the encoded tangle

information.

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 44

Algorithm 1 Encoding the tangle information
Put all subtangles in G

while G is not empty do
Pick out the subtangle S in G that satisfies condition 1 and 2

if S = NIL then
T is not a rational tangle. Exit()

end if
Check the two ends of S and set S.type.

if TangleList is empty then
S.twist = H

else
if S.type! = Sp.type then

S.twist =!Sp.twist

else
merge S and Sp and define it as S

S.twist = Sp.twist

S.type = Sp.type

end if
end if
Sp = S

Add S into TangleList

end while

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 45

Figure 3.12: Examples of encoding rational tangles. The encoded TangleList is shown

on the bottom.

As shown in Figure 3.4, there are 10 paths connecting every pair of end-effectors in

the articulated structure we use in the system. Therefore, there are 10×10 = 100 pairs

of paths formed between two characters. For every pair of paths, the system builds the

TangleList structure, in which all the subtangle information is saved.

In order to compare the similarity between the pairs of postures, we have prepared

two distance functions according to the application. Suppose we have two pairs of

postures: the first pair is defined by u and the other by v, and there are m paths on u

and n paths on v, respectively. Each pair of postures has m× n TangleLists, each of

which represents how the paths between the end effectors are tangled.

In the first distance function, we evaluate the overall topological similarity between

two pose pairs, which will be useful for managing a database of human motions. This

is done by accumulating the distance between the corresponding TangleLists in u and

v:

d =
m

∑
i=1

n

∑
j=1

dist(TangleListu
i ,TangleListv

j) (3.1)

where i and j are the indices of the paths, and TangleListu
i and TangleListv

j are the

i-th TangleList in u and j-th TangleList in v, respectively, and dist() is a function that

computes the distance between two TangleLists.

The distance between TangleLists is computed by finding the matching subtangles

in the two TangleLists and comparing their GLI values. When matching a subtangle,

we use a method similar to dynamic time warping: if the l-th subtangle of TangleList

1 is matched with the k-th subtangle of TangleList 2, subtangles of TangleList 1 whose

index is larger than the l cannot be matched with subtangles of TangleList 2 whose

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 46

index is smaller than k.

dist(TangleListu
i ,TangleListv

i) =

min
jul , j

v
l
∑
k=1

(TangleListu
i [j

u
k].GLI−TangleListv

i [j
v
k].GLI)2 +P (3.2)

where 0 < ju
1 < ... < nu,i, 0 < jv

1 < ... < nv,i and nu,i and nv,i are the number of subtan-

gles in TangleListu
i and TangleListv

i , respectively, and P is the sum of squares of the

GLI of the subtangles in TangleListu and TangleListv which could not find a matching

subtangle.

The second distance function is used to judge whether postures and motions can

be interpolated or blended without inter-penetrations of the segments. For such ap-

plication, it is more meaningful to evaluate the maximum GLI difference rather than

accumulating the difference of GLI for all the combination of paths:

blendable(TangleListu
i ,TangleListv

i) =

max
k

(min
jul , j

v
l

|TangleListu
i [j

u
k].GLI−TangleListv

i [j
v
k].GLI|). (3.3)

We can estimate that when blendable() returns a value larger then 0.5, it is unlikely

that the postures can be linearly interpolated without penetration, as some parts of the

body need to be tangled / untangled.

3.3 Experimental Results

The results of computing the similarities of posture pairs based on the topological

relationships are presented in this section. We also show examples of interpolating /

concatenating different motion clips by using topological relationships as a measure.

3.3.1 Comparison between Topological and Euclidean distance

We first compared the performance of the distance metrics of Eq. 3.2 which is based on

topological relationship, and that based on Euclidean distance, to distinguish posture

pairs which are semantically similar / dissimilar. Fifty eight posture pairs which can

be divided into the following seven categories were prepared:

• Full Nelson holds (motion 1-8)

• back holds (9-11)

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 47

• firefighter carries (12-15)

• back-breakers (16-22)

• octopus holds (23-25)

• one person carries (26-32)

• piggyback-carries (33-36)

• walk support (37-39)

• dancing (40-49)

• Latin dance (50-58)

We computed the normalized similarities between the postures, whose values are be-

tween 0 (less similar) and 1 (highly similar) by using both the topological and Eu-

clidean distance metrics. They are computed by 1− d/dmax, where d is the distance

between the posture pairs and dmax is the maximum distance found among all the pair

postures used in this research. For the Euclidean distance, we used the point cloud

metric proposed by Kovar et al. [Kovar et al., 2002].

The results are visualized in Figure 3.13 and Figure 3.14. The darker areas repre-

sent higher similarity and the lighter areas represent lower similarity. The postures of

the same kind are grouped together along the row/columns.

It can be observed that in the similarity matrix based on the topology, the distance

between postures in the same group of actions are small. On the other hand, that does

not necessarily apply to the results based on the Euclidean distance. For example, when

using the topological distances, it can be observed that all the motions in the category

of Full Nelson holds, back holds, and firefighter carries are evaluated as similar, while

there are significant variations when using Euclidean distances.

In some categories, the topological relationships between the characters are differ-

ent. Those postures are 20, 21, and 22 in back breakers, 25 in octopus holds, 28 to

32 in one person carries, and 36 in piggy back carries. Therefore, their topological

distances from the other motions in the same category are relatively large. However,

in some cases, the Euclidean distance between such postures with other postures in the

same category are small because the positions of the joints are similar. This happens

at posture 26 in octopus hold; although the Euclidean distance with the other postures

are small, its topological relationship is actually different.

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 48

Figure 3.13: A similarity matrix of different postures based on topological relationships.

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 49

Figure 3.14: A similarity matrix of different postures based on Euclidean distance com-

puted by Kovar et al.’s point cloud metric [Kovar et al., 2002].

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 50

The dancing postures (40-49) are composed of three groups. In the first group (40-

42, Figure 3.15 (a)), the white character is holding the torso of the black character,

and the black character is holding the neck of the white character. These postures are

topologically equivalent to those of the walk assisting motion (37-39). In the second

group (43-47, Figure 3.15 (b)), the white character is holding the torso of the other,

and the third group of postures are same as those of the first group, but the role of

the two characters are switched (43-47, Figure 3.15 (c)). The proposed method can

differentiate the postures correctly as shown in Figure 3.13.

In all the Latin dance postures (50-58), the left arm of the white character is tangled

with the torso of the black character. In addition to that, the black character’s two arms

(50, Figure 3.16(a)), left arm (51, Figure 3.16(b)) or right arm (52-58, Figure 3.16(c))

are tangled with the neck of the white character. In posture 57-58, there is an additional

tangle between the white character’s left arm and the black character’s right leg (Figure

3.16(d)). Although the postures in the same group are topologically equivalent, they

are kinematically dissimilar. It is difficult to classify them in the kinematic framework,

as shown in Figure 3.14. Since the white character’s right arm is tangled with the

torso of the black character and the left arm of the black character is tangled with

the neck of the white character in most of the dancing and Latin dance postures, the

topological similarity of these postures are large, and as a result, a large gray area exists

in the similarity matrix in Figure 3.13. Such topological similarity cannot be detected

by Euclidean distance, and there is no consistency in the corresponding region of the

similarity matrix shown in Figure 3.14.

In the similarity matrix computed by Euclidean distances, it can be observed that

the variance of the similarity is large in both cases that the postures are in the same or

different groups. The large variance within the same group implies that the similarity

is largely dependent on the kinematics and can result in inconsistencies. There is a lot

of risk that it treats semantically different postures as similar and semantically similar

postures as different. On the other hand, in the similarity matrix computed by topology

distance, the variance is low. In some cases, the topology distance returns false positive

results. For example, a grey area exists in 50-57 x 38-47 of the topology distance-based

matrix. This is simply because the postures in these groups are topologically similar.

The low variance suggests the consistency within the same group, and little influence

by the kinematics of the postures.

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 51

(a) (b) (c)

Figure 3.15: The representative postures of the three groups of dancing motions

(42,43,48).

(a) (b) (c) (d)

Figure 3.16: The representative postures of the Latin dance motions (50,51,52,57).

3.3.2 Content-based retrieval

Next, an experiment of content-based retrieval was done. The example postures were

given as queries and the results together with the numerical similarity of each pair were

computed and returned to the user.

Some of the results are shown in Figure 3.2 and 3.17. The similarities of the pos-

tures are computed by Eq. 3.2. It can be observed, postures with similar topological

relationships are at the top of the lists.

We further compare the performance of our proposed method with the traditional

point-cloud approach for motion retrieval. Here we compute the precision, which is the

ratio of relevant results to retrieval results, for the postures in the same database used

in the experiments in Section 3.3.1. The precision-scope curve and precision rate are

derived by averaging the results from queries using different full-nelson hold postures

as input. The precision-scope graph (Figure 3.18) shows that our method returned

relevant (i.e. topological equivalent) results as top-ranked results while the point cloud

metric is failing to distinguish the postures with different topological relationships.

The ambiguity in differentiating the postures may lead to a lot of collisions and inter-

penetrations of the body segments if we use the retrieved postures/motions for motion

blending or concatenation.

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 52

Figure 3.17: Results of content-based retrieval based on the topological relationships.

Despite the large variation of the postures, the pairs of postures with similar topological

relationships return high scores.

3.3.3 Creating animations by Motion Graph

Thirdly, Motion Graphs [Arikan and Forsyth, 2002,Lee et al., 2002,Kovar et al., 2002]

were created based on two sets of posture / motion data - one set on wrestling (Group
A, Figure 3.19) and the other on dancing (Group B, Figure 3.20) - and we evaluated

the animations created based on these Motion Graphs.

In Motion Graphs, the nodes represent postures and edges represent transition mo-

tions between the postures. They can be produced by comparing the distance between

every posture of the captured motion data and connecting nodes by edges whose dis-

tances are below a given threshold. Here we created a small-scale Motion Graph using

the postures in Section 3.3.1 and some additional short motion clips. We calculated the

distance between all the postures and also the initial / final posture of the short motion

clips, and connected the postures by edges if the distance was smaller than a threshold.

Three different methods were used to create the graphs and the results were com-

pared. Firstly, we used the point-cloud distance metric in [Kovar et al., 2002] to com-

pose the graph. Secondly, we used the topological distance of Eq. 3.3 explained in

Section 3.2.5 to compose the graph. This is because we want to find out whether the

two postures can be blended or not rather than finding out the overall topological simi-

larity of the two posture pairs. We had tightened the threshold to 0.45, which is slightly

below 0.5 to reduce the risk of inter-penetrations of the segments. Finally, we used a

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 53

Figure 3.18: Precision-scope curves showing the performance of our proposed method

and the point cloud metric.

2-pass method which first filters out postures whose topological relationships are too

different and then compares the closeness based on the point-cloud metric.

(a) (b) (c) (d)

Figure 3.19: The Full-nelson hold and Rear Chokehold postures/motions in Group A.

The statistics of the Motion Graphs created based on the postures/motions of Group

A and B are shown in Table 3.1 and 3.2, respectively. In the tables, invalid edges refer

to the edges (transition motions) causing the bodies to intersect/penetrate each other.

By using the point cloud metric alone, a lot of invalid edges were found as many

postures within each group are numerically similar, although their topological rela-

tionships are different. Those apply to postures shown in Figure 3.19(b) and 3.19(d),

for example.

By using the topological distance alone, the number of invalid edges is reduced

significantly. Since only topological distance is compared, some of the edges are con-

necting two numerically dissimilar postures. We found that most of these edges are

valid edges. However, blending numerically dissimilar postures is not preferred in

Motion Graphs since discontinuous motions will be created. The risk of intersecting

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 54

(a) (b) (c) (d)

Figure 3.20: The dancing postures/motions in Group B.

/ penetrating will also rise as the bodies need to move a lot when interpolating the

postures.

By using the 2-pass method, we only connected the postures whose point-cloud

and topological distances are both small; as a result, no invalid edges are found. This

implies that taking into account the topological distance between the postures is very

useful in motion blending and concatenation, especially when the motion database

contains a lot of motions whose topology are different.

Euclidean Topological 2-pass

of edges 98 110 28

of invalid edges 50 8 0

Table 3.1: Statistics of the Motion Graph based on wrestling postures / motions

Euclidean Topological 2-pass

of edges 120 110 48

of invalid edges 47 18 0

Table 3.2: Statistics of the Motion Graph based on the dancing postures / motions

3.3.4 Creating animations by concatenating motion clips

Finally, we used topological distance as a measure to evaluate whether motion clips

can be concatenated or not. Three motion clips were prepared: (a) a person giving

a shoulder to assist the walk of another (Figure 3.21,top), (b) a person doing a one-

person arm carry to another (Figure 3.21, middle), and (c) a person conducting a back

drop to another (Figure 3.21, bottom). First, we computed the TangleLists of the

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 55

two bodies at every frame of the motion clips. Based on the topological relationship,

the walking motion and the carrying motion are divided into three stages, and the

backdrop motion is divided into two stages. By comparing the TangleLists of every

frame between the motions, it was found that the topological relationship at the third

stage of the walking motion and at the first stage of the carry and backdrop motion are

the same. We have further found the best frame to concatenate the walking motion and

the carry motion, and the walking motion and the backdrop motion. By comparing the

Euclidean distance of the joints, the smooth transitions from the walking motion to the

carry motion and the walking motion to the backdrop motion were achieved.

Figure 3.21: The matching stages of the assist-walking motion, the backdrop motion

and the lifting motion.

3.4 Discussions and Conclusion

In this chapter, we have proposed a new method to index postures of two characters

closely interacting with each other. The method is based on the theory of rational tan-

gles, and it is shown that we can categorize various postures of two characters tangled

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 56

(a) (b)

Figure 3.22: Postures with: (a) prime tangle (b) self tangle.

with each other. We have also shown that a baseline method using low level attributes

such as the position of the joints can suffer from categorizing such postures.

We have limited the tangles made between the segments to rational tangles. There

are also different categories of tangles called self-knotted tangles and prime tangles.

Such tangles have more complex structures and there is still no invariant known for

them. However, since we are limiting our subjects to human bodies, we do not have

to worry about them for the following reasons: (1) The human body is composed

of a limited number of rigid segments, and therefore, it is difficult to compose self-

knotted / prime tangles by the human body. (2) Although self-knotted / prime tangle are

composed at some paths, usually there are other rational tangles sharing the subtangles

with those self-knotted / prime tangles. Our system then encodes such rational tangles

and use them to distinguish the postures. As a result, by simply excluding the self-

knotted / prime tangles from considerations, we can compute the similarities of the

pairs of postures by using the TangleLists of the rational tangles.

In the experimental results, we have shown several examples concatenating dif-

ferent motion clips by using Motion Graphs [Arikan and Forsyth, 2002, Lee et al.,

2002, Kovar et al., 2002]. By comparing different distance metrics, the results clearly

showed that using topological distance as a measure can reduce the number of col-

lisions or penetrations in the blended motions. However, there are problems when

interpolating topologically similar but kinematically dissimilar postures. For example,

the location of the supporting feet can be quite different, which makes the resulting

motions discontinuous and unnatural. By combining the topological and Euclidean

distance metrics, the blended motions are free from collisions or penetrations while

the visual quality (in terms of continuity of the motions) is comparable to those created

by conventional Motion Graphs. Taking into account the topological distance helps to

generate collision-free motions automatically, especially when the motion database

Chapter 3. Indexing and Retrieving Motions of Characters in Close Contact 57

contains motions in which multiple characters closely interact with each other.

We mainly conducted experiments at the posture level instead of the motion level.

It is straightforward to extend this concept to the motion level where the topological

relationships change over time. As explained in Section 3.3.4, we can segment the

motion at the postures when the topological relationship changes, and index or retrieve

the motions using a sequence of topological relationships.

We proposed to encode the tangles made between the global paths connecting the

end effectors; another approach to encode the tangles is to compute the local GLI

between shorter paths such as those made by the limbs. Such an approach might be

more efficient as we will only need to encode the local area where the tangles are

composed. However, a drawback is that another approach to estimate the similarities of

postures which are composed of different segments will be required. For example, the

two postures in Figure 3.5 are composed of different segments, although they should

be considered similar. As our method is based on the topological relationship of global

paths, such postures are treated as equivalent. We can further compare the details by

comparing the kinematical difference.

Chapter 4

Character Motion Synthesis by

Topology Coordinates

Having presented a systematic way to index postures of two characters closely inter-

acting with each other by topological representation in Chapter 3, we now present

how the topological information can be used in character motion synthesis. We in-

troduce the concept of Topology Coordinates, in which the topological relationships

of the segments are embedded into the attributes. As a result, the computation for

collision avoidance can be greatly reduced for complex motions that require tangling

the segments of the body. Our method can be combinedly used with other prevalent

frame-based optimization techniques such as inverse kinematics.

Portions of this chapter have previously been published as [Ho and Komura, 2007a],

[Ho and Komura, 2009a], [Ho and Komura, 2009c] and [Ho and Komura, 2010].

4.1 Introduction

Despite the huge amount of research that has been done in the field of robotics and

computer animation, synthesizing motions that involve close contacts is still a chal-

lenging task. Previous research suffers from a huge amount of computation for col-

lision avoidance as path-planning is done at the level of generalized coordinates or

Cartesian coordinates, which are the lowest level of state representation.

In this research, we efficiently plan such complex motions by introducing the idea

of Topology Coordinates which takes into account the topological relationships of the

segments. In Topology Coordinates, writhe, which represents how much the segments

twist around each other, is the main attribute of the state space. We can easily avoid

58

Chapter 4. Character Motion Synthesis by Topology Coordinates 59

collisions of segments by simply moving the segments along the axis of writhes in

Topology Coordinates. For the rest of this article, let us call the manifold represented

by the Topology Coordinates as Topology Space.

(a) (b) (c)

Figure 4.1: The snapshots of interpolating the postures in (a) and (c) by Topology

Coordinates (left, red character) and by generalized coordinates (right, blue character).

Postures in (b) are the intermediate postures. The two arms twist around each other

when they are interpolated by Topology Coordinates, while they penetrate through each

other when they are interpolated by generalized coordinates.

Let us think of the example of interpolating the two postures shown in Figure 4.1

(a) and (c) again. The main difference of the two postures is that in (a), the left arm is

crossing over the right arm, and vice-versa in (c). Although the two postures are similar

at the level of generalized coordinates, the arms will penetrate through each other if

they are linearly interpolated, as the blue character is doing. On the other hand, the

two postures are far apart from each other in Topology Space. If they are linearly

interpolated in Topology Space, we will obtain a motion in which the character twists

its arms around each other, as the red character is doing.

We propose a method to interactively synthesize motions of close contacts by mod-

eling the movements in Topology Space. The movements in Topology Coordinates can

be easily mapped to / inversely mapped from generalized coordinates. Therefore, we

can combine our method with keyframe animation and frame-based optimization.

Our approach is most suitable for creating motions which involve close contacts

between characters / deformable objects. The user can interpolate keyframe postures

or interactively control the Topology Coordinates to produce animations such as a char-

acter tangling its arms with a bulky furniture to hold it (Figure 4.2 (a)), two characters

playing wrestling by switching from one tangled posture to another (Figure 4.2 (b)),

an octopus tangling its limbs with a human character while avoiding its limbs getting

tangled themselves (Figure 4.2 (c)) and a human character wearing a T-shirt (Figure

Chapter 4. Character Motion Synthesis by Topology Coordinates 60

(a) (b) (c) (d)

Figure 4.2: Motions that involve close contacts are generated by controlling the char-

acters in Topology Space. The user can interpolate keyframe postures or interactively

control the Topology Coordinates of characters to produce animations such as (a) a

character tangling its arms with a bulky furniture to hold it, (b) two characters playing

wrestling by switching from one tangled posture to another, (c) an octopus tangling its

limbs with a human character while avoiding its limbs getting tangled themselves and

(d) a human character wearing a T-shirt.

4.2 (d)).

Our Approach: Instead of planning the motions at the level of generalized coordi-

nates, we first plan the movements in Topology Space. The changes in the Topol-

ogy Coordinates are mapped to generalized coordinates through optimization based

on quadratic programming, which can handle other common constraints such as kine-

matic or dynamical constraints. Our method can be integrated with other frame-based

optimization approaches, so that it can enhance the functions of previous methods.

The outline of our method to synthesize character animation is shown in Figure

4.3. The details of each step are as follows: (1) The user specifies how the characters

tangle their bodies during the animation. The user specifies the segments of the body

to be tangled using our user interface, and produces a keyframe posture by changing

the Topology Coordinates. The concept of Topology Coordinates is explained in Sec-

tion 4.2. Our interface to edit keyframe postures is explained in Section 4.4.1. (2)

The animation of the characters is produced by interpolating the keyframe postures

in Topology Space. The basic idea to control multi-segment chains by changing the

Topology Coordinates is explained in Section 4.3. (3) If the user is not satisfied with the

animation, he/she can further add kinematic constraints or control either of the char-

acters interactively using inverse kinematics, or even replace the motion of character

with captured motion data. The topological relationship between the characters can be

kept by using Topology Coordinates as constraints. Examples of such animations are

shown in Section 4.4.2.

Chapter 4. Character Motion Synthesis by Topology Coordinates 61

Figure 4.3: Overview: The keyframe postures are given based on the Topology Co-

ordinates. The keyframes are interpolated by frame-based optimization. The user can

further update the motions by dragging or constraining segments.

4.1.1 Contribution

• We propose a new state space called Topology Space, in which the topological

relationship of the body segments are embedded in the coordinate system. As a

result, motion synthesis of complex interactions that requires collision avoidance

can be done efficiently.

• We propose a method to map the movements in Topology Coordinates to those

in generalized coordinates.

4.2 Topology Space and Coordinates

In this section, we explain the fundamental ideas of topology space in which the topo-

logical relationships of multibody segments are embedded in the coordinate system.

We also present their mathematical definitions.

In Topology Space, we assume the segments are modelled by curves or line seg-

ments. If the character has a multibody structure, we control the hierarchical bone

structure of the characters in Topology Space.

Chapter 4. Character Motion Synthesis by Topology Coordinates 62

4.2.1 Topology Coordinates

Here the three attributes of Topology Coordinates are explained. The first attribute is

the writhe, which counts how much the two curves are twisting around each other.

Writhe can be calculated by using Gauss Linking Integral (GLI) [Pohl, 1968]. The

GLI of two directed curve can be calculated by Eq. 2.3.

Curves can twist around each other in various ways. In order to further specify

the status of the two chains, we introduce two other attributes, center and density.

Examples of changing these attributes for a pair of strands are shown in Figure 4.4.

Center, which is composed of two scalar parameters, explains the center location of

the twisted area. Density, which is a single scalar parameter, explains how much the

twisted area is concentrated at one location along the strands. When the density is zero,

the twist is spread out all over the two strands. When the density value is either very

large or very small, we can say one strand is playing a major role to compose the twist,

as it is twisting around the other strand which is kept relatively straight (Figure 4.4).

When the density turns from negative to positive, or vice-versa, the strand playing the

major role switches.

writhe

density

center

Figure 4.4: The three axes in Topology Space : writhe, center and density. Center,

which specifies the central location of the twist, is composed of two scalar parameters

although it is represented by a single axis in this figure. Density tells which strand plays

the major role to compose the twist.

4.2.2 Mathematical Definition

We represent the bone structure of characters by a set of line segments. Therefore,

now we will mathematically define the Topology Coordinates of serial chains. Let us

assume we have two chains S1 and S2, each composed of n1 and n2 line segments,

Chapter 4. Character Motion Synthesis by Topology Coordinates 63

Figure 4.5: Twisting a chain of segments around each other

connected by revolute, universal or gimbal joints (Figure 4.5). In this case, we can

compute the total writhe by summing the writhes by each pair of segments:

w = GLI(S1,S2) =
n1

∑
i=1

n2

∑
j=1

Ti, j (4.1)

where w represents the writhe, Ti, j is the writhe between segment i on S1 and j on

S2. An analytical solution exists for computing Ti, j [Levitt, 1983] and the details are

Figure 4.6: (upper) Tangles with different density and center, and (lower) the distribution

of elements with large absolute values in the corresponding writhe matrix. The darkness

represents the amplitude of the absolute value.

explained in Section 2.4.2 in the Related Work. Let us define a n1×n2 matrix T whose

(i, j)-th element is Ti, j, and call this the writhe matrix. The writhe matrix explains

how much each pair of segments from S1 and S2 contributes to the total writhe value.

Various twists and the corresponding writhe matrix are shown in Figure 4.6.

We first define a 2D vector c as the center calculated by the following equation:

c = (xg,yg) = (
∑n1

i ∑n2
j i ·Ti, j

w
− n2

2
,
∑n1

i ∑n2
j j ·Ti, j

w
− n1

2
) (4.2)

This explains the center of the twisted chains in Topology Space. It tells the overall

location of the twisted area.

In Figure 4.6, it can be observed that the elements with large absolute values con-

centrate along a particular axis across the matrix. This axis tends to be vertical when

S1 twists around S2 and horizontal when S2 twists around S1. When both chains twist

Chapter 4. Character Motion Synthesis by Topology Coordinates 64

around each other, the axis lies along the diagonal line. This observation leads us to the

definition of the density to be the orientation of the principal axis. As different pair of

chains result in different sizes of writhe matrices, we first normalize the data by scal-

ing the writhe matrix to a square area, and then compute the principal axis in this area.

We can compute the orientation of this axis against the diagonal line and define this as

the density (Figure 4.7). Although the density is defined as such, we do not actually

need to compute the density value from an existing writhe matrix. This definition is

just convenient as we update the density value through rotating the elements within the

writhe matrix. This process is explained in Section 4.3.

Figure 4.7: A twisted chain (left) and the writhe matrix (middle). The center is computed

by calculating the center of mass of the writhe matrix’s elements. The writhe matrix is

scaled to a square area (right) to compute the principal axis. The angle made between

the principal axis and the diagonal line is defined as the density.

We have explained how to compute the Topology Coordinates from the kinemat-

ics of the chains in this section. We can also solve the inverse problem; computing

the kinematics from the Topology Coordinates. The methodology of such a manipula-

tion, which is useful for generating motions that involve twisting, is explained in the

following section.

4.3 Manipulation in Topology Space

In this section, we first explain how to synthesize the motions of a pair of serial chains,

composed of n1 and n2 segments, by changing their Topology Coordinates. The Topol-

ogy Coordinates of the chains are gradually updated and their movements are mapped

to the generalized coordinates (Figure 4.8). This process is repeated until the Topology

Coordinates reach their target values. At every step, suppose we want to change the

Topology Coordinates from G = (w,d,c) to G+∆G = (w+∆w,d+∆d,c+∆c). Using

the updated Topology Coordinates, a corresponding writhe matrix is computed (step 1

Chapter 4. Character Motion Synthesis by Topology Coordinates 65

Figure 4.8: The overview of updating the kinematics of two serial chains by changing

their Topology Coordinates. The increment/decrement of the Topology Coordinate is

given at each step. The writhe matrix that corresponds to the updated Topology Coor-

dinate is computed (step 1), and then the kinematics of the chains are updated so that

their writhe matrix becomes similar to the target one (step 2). This process is repeated

until the target Topology Coordinate is reached.

in Figure 4.8). This process is explained in Section 4.3.1. Then the kinematics of the

serial chains are adjusted so that their writhe matrix becomes similar to the one com-

puted from the Topology Coordinates (step 2 in Figure 4.8). This process is explained

in Section 4.3.2.

Finally, we explain how this methodology can be used for two other manipulations:

one is to pass a chain through a loop, and the other is to tangle a chain with a bundle

of chains. These methods are explained in Section 4.3.3.

4.3.1 Desired Writhe Matrix

Here we explain a method to compute a writhe matrix that corresponds to a given

Topology Coordinates coordinate G = (wd,dd,cd). This is done by first preparing a

matrix which has all the values concentrated at one or two columns of the matrix, and

then rotating and translating this part inside the matrix.

We start from a n1× n2 matrix I, who has values evenly distributed at the (n2 +

1)/2-th column if n2 is odd, or at both the n2/2 and n2/2+1-th column if it is even:

I =

0 · · · , 1

n1
, · · · ,0

...

0 · · · , 1
n1
, · · · ,0

,

0 · · · , 1

2n1
, 1

2n1
, · · · ,0

...

0 · · · , 1
2n1

, 1
2n1

, · · · ,0

(n2 is odd) (n2 is even)

Note that for this writhe matrix, the corresponding Topology Coordinates are w =

1,d = −π
4 ,c = (0,0). In order to obtain a writhe matrix for arbitrary Topology Coor-

Chapter 4. Character Motion Synthesis by Topology Coordinates 66

dinates, we rotate and translate the elements of I.

4.3.1.1 Updating the density

As the density was defined as the orientation of the main axis of the writhe matrix,

rotating I around the center results in changing the density. We first map the elements

of the writhe matrix to a circle, rotate the values around the center until the orientation

reaches the target density value dd , and finally inverse-map the values onto the matrix

(Figure 4.9). The mapping from the matrix to the circle is done by first mapping the

matrix into a square area, and then into a circle area. The inverse mapping is done

vice-versa. This operation is defined as M′ = R(I,dd), where M′ is the output matrix.

The details of this operation are explained below:

Figure 4.9: The elements of the writhe matrix are first mapped to a square area, and

then to a circle. The circle is rotated until the axis reaches the desired density value.

Finally, the axis is mapped back to the writhe matrix.

• Firstly, the elements of the input matrix M are mapped to an area within a square

which is centered at the origin of a 2D Cartesian coordinate, and whose edges

are over x =±1 and y =±1. This is done by

vi =
i−oi

oi
,v j =

j−o j

o j
.

where (oi,o j) is the center of the input writhe matrix

oi =
n1 +1

2
,o j =

n2 +1
2

.

• Secondly, (vi,v j) are mapped into an area inside a circle whose radius is 1 by the

following equation:

v′i = vi

√
1−

v2
j

2

v′j = v j

√
1−

v2
i

2

Chapter 4. Character Motion Synthesis by Topology Coordinates 67

• Thirdly, (v′′i ,v
′′
j) is rotated ϕ units around the origin according to the target den-

sity value dd .

(v′′i ,v
′′
j) = R(ϕ)(v′i,v

′
j).

• Finally, (v′′i ,v
′′
j) is inverse-mapped back into the square area, and the indexes in

the new writhe matrix are computed:

v′′′i =
v′′i√

1− v′′j
2

2

v′′′j =
v′′j√

1− v′′i
2

2

i′ = oi +oiv′′′i

j′ = o j +o jv′′′j

where (v′′′i ,v
′′′
j) is the vertex in the square area and (i′, j′) are the indices where

the elements of M at indices (i, j) are mapped to. As (i, j) went through transfor-

mations of scaling and rotation, (i′, j′) are no longer integers. Therefore, at the

last stage, we will compute the elements of the new writhe matrix M′ by using

the weighted sum of entries at (i′, j′):

M′(i′′, j′′) =
∑4

k=1 D(i′′− i′k, j′′− j′k)M(i, j)

∑4
k=1 D(i′′− i′k, j′′− j′k)

where (i′′, j′′) are the new integer indices of matrix M′, (i′k, j′k)(k = 1, ...,4)

are the transformed indices of the four neighbouring elements (located at upper

left, upper right, lower left and lower right) of (i′′, j′′) and D() represents the

Euclidean distance operator.

This operation of rotation results in changing the density of the chain-pairs.

4.3.1.2 Updating the center

For changing the center, we simply translate all the elements according to the differ-

ence of the target and current location of the center (Figure 4.10). As elements with

values might be shifted out from the matrix, the translation applied will not bring the

center to the target location. The matrix is recursively translated until the error is

smaller than a predefined threshold. As the sum of the elements can be smaller than

one after some elements are shifted out from the matrix, the values are normalized

at the end. This operation is defined here as Tr(M,cd), where cd is the target center

location and M is the input matrix.

Chapter 4. Character Motion Synthesis by Topology Coordinates 68

Figure 4.10: The elements of the writhe matrix are translated according to the differ-

ence of the target and current center location. As elements with values might be shifted

out from the matrix, the translation applied will not bring the center to the target loca-

tion. The process is repeated until the current center comes close enough to the target

location.

4.3.1.3 Calculating the desired writhe matrix

Up to here, the writhe value has been kept to 1. Finally, we multiply w to the whole

matrix so that it reaches the desired writhe value. Let us define this operation by

S(M,wd). We sequentially apply R(), Tr() and S() to I to obtain the writhe matrix

of the target Topology Coordinate. It is to be noted that when these operators are

applied to the writhe matrix in this order, each operation will only update either the

density, center or the writhe, respectively, without affecting the other attributes. The

writhe matrix T computed by the following operation represents Topology Coordinate

(wd,dd,cd):

Td = S(Tr(R(I,dd− π
4
),cd),wd). (4.3)

4.3.2 Mapping Topology Coordinates to Generalized Coordinates

Here we explain how to update the generalized coordinates according to the updates in

of the Topology Coordinates. Assuming the current generalized coordinates of the two

chains are (q1,q2), and the Topology Coordinates of the two chains are to be updated

from G = (w,d,c) to G+∆G = (w+∆w,d +∆d,c+∆c), the task here is to compute

the updates of the generalized coordinates (∆q1,∆q2).

We first compute Td, the desired writhe matrix at G+∆G, using the method ex-

plained in Section 4.3.1, and then update the kinematics of the chains so that the re-

Chapter 4. Character Motion Synthesis by Topology Coordinates 69

sulting writhe matrix becomes similar to the desired writhe matrix. Let us assume

the writhe matrix of the current configuration is T, and its update after changing the

configuration is ∆T.

T+∆T−Td = 0 (4.4)

Here we assume the updates are small enough so that the relationships of ∆T, and

(∆q1,∆q2) are linear:

∆T =
∂T
∂q1

∆q1 +
∂T
∂q2

∆q⃗2. (4.5)

When we control the two chains, we need to make sure that the two chains do not

penetrate through each other. When two line segments approach to each other, the

writhe value increases. At the moment before they cross each other, the absolute value

of the writhe approaches 0.5. Therefore, penetrations can be avoided by limiting the

maximum writhe value between arbitrary segments:

|Ti, j +∆Ti, j| ≤ σ (1≤ i≤ n1,1≤ j ≤ n2) (4.6)

where ∆Ti, j is the (i, j)th element of ∆T, σ is a threshold, that is set to 0.2 in our

experiments to prevent the segments from approaching too close to each other.

We can also add any kinematical constraints which can be linearized with respect

to the generalized coordinates when the movement is small, such as the movements of

any parts of the body in Cartesian coordinates or the center of mass. Let us summarize

such constraints as follows:

r = J1∆q1 +J2∆q2, (4.7)

where J1,J2 are the Jacobians of this constraint, and r is the linearized output of this

constraint.

The update of the configurations of the chains can be computed by minimizing an

objective function that represents the norm of the movements subject to constraints

(4.5)-(4.7):

min
∆q1,∆q2,δ

∥∆q1∥2 +∥∆q2∥2 +∥δ∥2 s.t.

∆T = ∂T
∂q1

∆q1 +
∂T
∂q2

∆q2

|Ti, j +∆Ti, j| ≤ σ

(1≤ i≤ n1,1≤ j ≤ n2)

T+∆T−Td +δ = 0

r = J1∆q1 +J2∆q2

(4.8)

Chapter 4. Character Motion Synthesis by Topology Coordinates 70

where δ is a vector of parameters introduced to convert Eq. 4.4 into soft constraints.

The updated generalized coordinates (q1 + ∆q1,q2 + ∆q2) correspond to the target

Topology Coordinate (w+∆w,d+∆d,c+∆c). By repetitively solving Eq. 4.8, we can

update the configurations by specifying the trajectories of the Topology Coordinates.

In the proposed method, there is an unique mapping from the Topology coordinates

to the desired writhe matrix. However, there is no reverse mapping from a writhe

matrix back to the Topology Coordinates. Instead, we use the desired writhe matrix as

a reference to control the actual writhe matrix of the links in order to control how they

are tangled together.

4.3.3 Additional Manipulations

Here we first introduce a technique to pass a serial chain through a loop (Figure 4.11

(a)), which is useful for simulating movements such as moving the arms through

sleeves or passing a hand through a hole. Next we introduce a technique to tangle

a serial chain with a bundle of serial chains (Figure 4.11 (b)). Such a motion happens

when holding the arms and torso of another character at the same time.

Passing a chain through loops: When controlling the serial chain to pass through

a loop, we will only use the writhe of the Topology Coordinates as we do not care

near which part of the loop that the serial chain is passing through. The writhe can

be computed by Eq. 4.1. The writhe approaches one when the chain passes through

the loop, as shown in Figure 4.11(a), (Recall the Gauss Integral computes the average

number of crossings when viewing from all directions). Therefore, we control the

serial chain by gradually increasing the writhe value between the loop and the chain

and updating the kinematics of the serial chain accordingly:

min
∆q,δ
∥∆q∥2 +δ2 subject to w+

∂w
∂q

∆q+δ = wd (4.9)

where q,∆q are the generalized coordinates of the serial chain and their updates, δ is

a variable to convert the constraint into a soft constraint, w is the current writhe value

between the chain and the loop and wd is the target writhe value to reach in this step.

When passing the chain through multiple loops, we switch the target loop from one to

another. In our experiments, when the writhe of the chain with the current target loop

has exceeded 0.95, we switched the target loop to the next one (Figure 4.11(a)).

Tangling a chain with a bundle of chains: Here we explain how to tangle a chain

C with a bundle of chains C1, ...,CM, while avoiding getting tangled with another set

of chains C̄1, ...,C̄m (Figure 4.11(b)). The main idea is to specify the average of the

Chapter 4. Character Motion Synthesis by Topology Coordinates 71

Figure 4.11: (a) Passing a chain through loops. The writhe is around 1 when the

chain passes through the loop. The chain can be passed through multiple loops by

sequentially switching the target loop. (b) Tangling a chain with a bundle of chains while

avoiding to get tangled with others.

writhes between C and C1, ...,CM, while keeping their variance small. The following

problem is repetitively solved until the chain twists around a bundle of chains:

min
∆q
∥∆q∥2 +

M

∑
k=1

(
w+∆w

M
− (wk +∆wk))

2

subject to

∆w = ∆w1 + ...+∆wM

∆wk =
∂wk
∂q ∆q(1≤ k ≤M)

Ti,k j +∆Ti,k j ≤ σ(1≤ k j ≤ nk)

0.5≥ w̄l +∆w̄l

∆w̄l =
∂w̄l
∂q ∆q(1≤ l ≤ m)

Ti,l j +∆Ti,l j ≤ σ(1≤ kl ≤ nl)

(4.10)

where ∆q is the increment of C’s generalized coordinates, nk, nl are the number of

segments composing Ck and C̄l , wk (1≤ k≤M) and wl(1≤ l≤m) are writhes between

C and (Ck,C̄l), respectively. The third and sixth constraints keep the line segments from

penetrating through each other. The fourth constraint prevents C from getting tangled

with C̄ j by keeping their writhes below 0.5.

Here we again only specified the writhe of the Topology Coordinate as the chain

may not have enough degrees of freedom for the user to specify the center and density,

as there are many other chains to get tangled with. However, it is possible to com-

bine this problem with that of Eq. 4.8 by specifying the Topology Coordinates of the

controlled chain and one of the serial chains in the bundle.

Chapter 4. Character Motion Synthesis by Topology Coordinates 72

4.4 Experiments

In this section, we show some example motions produced by our system. We first

explain about our user interface to produce keyframe postures for character anima-

tion. Then, we show the resultant animations produced by interpolating such keyframe

postures.

4.4.1 Controlling Characters

We provide an interface (Figure 4.22) for the user to interactively edit the postures

of one or two characters. The user can specify the topological constraints as well as

ordinary kinematic constraints, such as the trajectories of the end effectors. Once the

keyframe postures are generated, their Topology Coordinates are available, and we can

interpolate the postures in Topology Space.

Because the techniques explained in Section 4.3 are only for open serial chains or

loops, we need to specify the paths between the character’s joints / end effectors which

we want to tangle. For instance, suppose we want to generate a posture of a wrestling

attack called Full Nelson Hold (Figure 4.12, right), in which the attacker needs to first

pass the arms under those of the other character from behind, and then let the attacker

press the other’s neck. In this case, the paths “left shoulder - left hand” and “right

shoulder - right hand” must be twisted with the paths “head-top - left hand” and “head-

top - right hand” of the other character, respectively. Once the paths to be tangled are

Figure 4.12: The user specifies the area of the body to be tangled. The two paths (left

shoulder - left hand), (right shoulder - right hand) of Character 1 are to be twisted with

(head-tip - left hand), (head-tip - right hand) of Character 2. The posture on the right is

the expected final posture.

specified, the user can use the scrollbars to adjust the writhes, density and center of the

Chapter 4. Character Motion Synthesis by Topology Coordinates 73

paths. The values set by the scrollbars are used to compute the desired writhe matrix

Td in Eq. 4.8.

If there are two characters, we constrain the posture of one character by default,

as we found this is easier for the user to generate the desired postures. The user can

alternately switch the active character until the postures are satisfactory. The user can

also adjust the postures using inverse kinematics. In this case, the posture of the other

character is updated so that the Topology Coordinates are kept the same.

The postures created can be used as a keyframe for motion synthesis. We inter-

polate the keyframes in Topology Space, and therefore, we can easily twist the seg-

ments around each other without using complex path-planning or collision avoidance

schemes. The interpolated motions can be further adjusted by the user using inverse

kinematics: the user can drag a segment of one of the bodies by the mouse. The pos-

tures of the two bodies will be updated so that the kinematic constraints and topological

constraints are both satisfied.

4.4.2 Motion Synthesis

Here, experimental results of controlling characters by the Topology Coordinates are

shown. First, motions of a single / multiple human characters that require close con-

tacts between segments were created. Next, examples of a human character interacting

with rigid / deformable objects were created. Finally, animations of an octopus inter-

acting with swimming fishes or a human character were created.

Human character animation : First, a motion of a single character was generated by

interpolating keyframe postures shown in Figure 4.13(a). In these postures, the body of

the character is self-tangled. Such postures cannot be interpolated by the generalized

coordinates without self-collisions. We can easily produce natural-looking behaviors

by interpolating them in Topology Space.

Next, wrestling movements of two human characters were simulated by interpolat-

ing five keyframe postures in Figure 4.13(b). For the motion of the red character in

the front, we imported motion capture data of a single character moving around. The

Topology Coordinates of the postures were linearly interpolated. The attacking charac-

ter behind had to dynamically adjust its movements so that the Topology Coordinates

between the limbs become the same as the target values. This example shows that our

method can be combinedly used with captured motion data.

Finally, a piggyback motion that requires multiple tangles by the limbs was created

Chapter 4. Character Motion Synthesis by Topology Coordinates 74

as shown in Figure 4.13(c). Four keyframe postures were used to create this motion.

Although this motion requires a significant amount of collision avoidance, we can

produce the motion in a very short time. The computational cost for creating this

motion is compared with that when using a global path-planning method based on

RRT is presented in Section 4.4.4.2.

(a)

(b)

(c)

Figure 4.13: (a) Three keyframe postures to generate a stretching motion. (b) The

wrestling motion in which the red character re-holds the blue character in various ways.

(c) A piggyback motion created from four keyframes.

Interaction with rigid/deformable objects: First, we created an animation of a char-

acter re-holding a chair in various ways. The topological structure of the chair is shown

in Figure 4.14 (left). The five keyframes shown in Figure 4.16 are used to produce the

animation. The keyframes are created by changing the Topology Coordinates of the

character’s arm with the pipes of the chair. If these postures are interpolated by gener-

Chapter 4. Character Motion Synthesis by Topology Coordinates 75

alized coordinates, the body can easily penetrate through the pipes of the chair. When

we interpolate the postures in Topology Space, the arms can avoid the pipes and hold

the chair. Next, an example of a character holding a deformable object composed by

Figure 4.14: The topology of the chair model composed of eighteen pipes (left) and the

shirt model with six rings (right) used for creating the animations.

a bundle of line segments is generated (Figure 4.19(left)). The writhe values between

the path formed by the two arms and the bundle of lines of the object were increased

to create an animation of holding the object. The method explained in Section 4.3.3

was used to simulate such a motion. The character can stably hug the object although

the shape of the object is dynamically deformed. The character adjusts its posture so

that its topological relationship with the object does not change. This example shows

our method is extensible to control the topological relationships of 3D shapes.

Finally, an example of a human character wearing a shirt is made. Six virtual rings

were prepared inside and at the fringe of the shirt (Figure 4.14 (right)). The character

was guided to pass its arms and necks through the rings by the topological constraints.

The screenshots of the animation are shown in Figure 4.15. This example shows that

our method is also useful for creating animations of characters interacting not only with

each other, but also with deformable models. It also shows we can handle topological

relationships between the serial bodies and rings.

Figure 4.15: An animation of a human character wearing a shirt.

Octopus Motions: We have prepared an octopus model whose legs are modeled by

serial chains of rigid segments. Each leg is composed of twelve segments. Firstly,

we show an example in which the octopus catches a number of fishes using different

limbs simultaneously (Figure 4.17). The difficulty of generating such motions is that

Chapter 4. Character Motion Synthesis by Topology Coordinates 76

Figure 4.16: The five keyframes to produce the animation of re-holding the chair.

if we do not take into account the tangle constraints, the limbs can get tangled with

each other. In our system, this is avoided by adding extra constraints to prevent the

limbs to generate tangles whose writhe is larger than 0.5. As a result, the limbs will

move away from each other when their distance gets closer. We have also generated an

example of tangling the octopus with a human character (Figure 4.18). The motions of

the octopus were created from only two keyframe postures, one each for the initial and

final posture.

(a) (b) (c) (d)

Figure 4.17: An animation of an octopus catches a number of fishes created by two

keyframes (the initial (a) and final (d) posture).

(a) (b) (c) (d)

Figure 4.18: An animation of an octopus tangles with a human character created by

two keyframes (the initial (a) and final (d) posture).

In summary, although these animations can be produced by existing techniques,

they will require careful tuning to avoid artifacts. For example, if they are made by tra-

Chapter 4. Character Motion Synthesis by Topology Coordinates 77

ditional keyframe animation methods, a great number of keyframes need to be inserted

to guide the character correctly and avoid penetrations of segments.

Figure 4.19: A character hugging an object composed of a bundle of line segments

(left), and an octopus catching multiple fish simultaneously using its limbs (right)

4.4.3 Computational Costs

In our demos, we used a human character model of 42 DOF, and an octopus model of

276 DOF. All DOFs are used when controlling the characters. For the human character

model, when one character is controlled, we can obtain an interactive rate of 40 frames

per second when using a Pentium IV 3.2 GHz PC. When two characters are simulta-

neously controlled, we can still obtain a frame rate of 30 frames per second. We use

ILOG CPLEX 9.1 [ILOG Inc, 2005] as our quadratic programming solver.

The bottleneck of the computation is at that of the writhe matrix. When we want

to tangle a body of n1 segments with that of n2 segments while avoiding it getting

tangled with another body of n3 segments, the cost for computing the writhe matrices

becomes O(n1×n2+n1×n3). For tangle avoidance, we can omit computing the matrix

elements for those which are far away from each other. Therefore, the complexity

becomes O(n1× n2). The analytical solver of the GLI enables fast computation of

the writhe matrix. As the writhe matrix is sparse, once it is computed, the quadratic

programming solver can efficiently compute the generalized coordinates. Therefore,

we can achieve real-time performance even when the DOFs of the bodies are large.

4.4.4 Comparison with global path planning algorithms

We have conducted an experiment to compare the performance of synthesizing tan-

gling motions using Topology Coordinates with global path planning methods in joint

Chapter 4. Character Motion Synthesis by Topology Coordinates 78

angle space. In [Ho and Komura, 2007a], we proposed to use GLI as one of the criteria

when planning tangling motions using Rapidly-Exploring Random Trees (RRT). The

details of the algorithm are explained in the next section (Section 4.4.4.1).

4.4.4.1 Motion Planning by the RRT

Now we explain the algorithm to plan the given configuration from postures at which

the two avatars are separate. There are two assumptions in this method: 1) the planning

starts from postures such that none of the segments are tangled; 2) the characters are

standing close enough to each other so that they can start the segments to get tangled.

Let us assume the information of all the tangles in the target configuration qgoal , which

is the final posture of the characters in the animation, is saved in a list. We pick a tangle

from the list and move the characters so that the GLI of the path composing the tangle

becomes close enough to that in qgoal . This is repeated for all the tangles.

The movements of the characters to compose each tangle is computed using the

RRT method. This is a motion planning problem to find out a collision-free path start-

ing from the initial position qinit to the target posture qgoal . Bertram et al. [Bertram

et al., 2006] modified the RRT searching algorithm for reaching tasks on robot arms

by guiding the RRT expansion towards the goal region instead of defining the goal

configurations explicitly. We use this approach to make the character entangle its body

to the other character.

At each step of the RRT search, the 3D motion of end effector E, which is mainly

involved in the tangle, is computed. The posture of the character is then computed by

inverse kinematics (IK). Only collision-free body configurations are valid for the RRT

expansion.

The pseudo-code of the modified RRT planning algorithm BuildRRT is shown in

Algorithm 2 and 3. The algorithm is almost the same as those described in Yamane et

al. [Yamane et al., 2004] and Bertram et al. [Bertram et al., 2006].

In BuildRRT(), starting from the initial posture qinit , the RRT τ is expanded until a

posture that satisfies the preferred topological relationship is found. At each iteration,

the function SelectTarget() returns a random 3D location. However, it returns the target

configuration qgoal at a probability of 0.05 [Yamane et al., 2004]. This output point

Vrand of SelectTarget() is passed to subfunction ExtendHeuristics() where the RRT τ is

further expanded.

In ExtendHeuristics(), given the random point Vrand in 3D space, we first find the

configuration qnear at which the position of the end effector is closest to Vrand .

Chapter 4. Character Motion Synthesis by Topology Coordinates 79

Starting from qnear, the new posture qnew is then computed in NewConfigByIK().

The system uses a general IK engine to compute the new posture from qnear by trans-

lating the end effector towards Vrand for a predefined step size.

Algorithm 2 BuildRRT(qinit ,qgoal,Tangle(pa, pb))

E← End Effector of pa

τ.init(qinit);

for k = 1 to K do
Vrand ← SelectTarget(V (E,qgoal), 0.05);

ExtendHeuristics(τ, Vrand,Tangle(pa, pb);

end for
return τ;

In NewConfigByIK(), collision detection is performed on the body segments of

the characters. As we are planning the movement of only the end effector, there will

be more than one IK solutions in most cases. However, only collision-free body con-

figurations are valid for the RRT expansion. Once a collision is detected, the system

will try to edit the positions of the body segments according to the penetration depth

while satisfying the constraints of translating the end effector. If there no collision-free

configuration is found, qnew will be discarded.

After IK, the GLI value of the paths between the bodies are computed to check

whether the tangle’s GLI value is getting closer to that of the target configuration. We

have to also make sure that tangles which do not exist in the target configuration are not

generated when expanding the RRT. In order to avoid configurations with extra tangles,

we monitor the GLI values between the path Pa and all the Pbs of the other body: if

any GLI goes above 0.5 for pairs which are not tangled in the target configuration, this

configuration is discarded. If these conditions are satisfied, the new configuration qnew

is added into the branch of τ. By comparing the GLI values, the RRT expansion will

be biased to create a body configuration which is similar to qgoal .

4.4.4.2 Results

For the scene of one character piggybacking another (Figure 4.13 (c)), it takes more

than 1000 seconds when the global path planning method presented in Section 4.4.4.1

is applied. On the other hand, by using Topology Coordinates, we can obtain the results

in less than 2 seconds.

Chapter 4. Character Motion Synthesis by Topology Coordinates 80

Algorithm 3 ExtendHeuristics(τ,Vrand,Tangle(pa, pb)))
qnear← ranking.front();

if NewConfigByIK(Vrand , qnear, qnew)) returns a valid qnew then
for every path p′b in Body B which is not included in TangleList do

if |GLIqnew(pa, p′b)|> 0.5 then
Goto FAILURE;

end if
end for
if |GLIqnew(pa, pb)−GLIqgoal(pa, pb)|< |GLIqnear(pa, pb)−GLIqgoal(pa, pb)| then

return qnew

end if
end if

FAILURE:

IncreaseFailureCount(qnear, 1);

if FailureCount(qnear)> f then
ranking.remove(qnear);

qparent ← PARENT(qnear);

IncreaseFailureCount(qparent , 1);

end if
return qnear;

Chapter 4. Character Motion Synthesis by Topology Coordinates 81

4.4.4.3 Discussion

Now let us discuss about the advantage of using Topology Coordinates for motion

planning. Topology Coordinates provide a high-level abstraction of the relationship

between the body segments and they can be easily converted into the generalized co-

ordinates by solving a quadratic programming problem in polynomial time. Continu-

ous trajectories at the level of Topology Coordinates will always result in continuous

movements in the motion space. On the contrary, existing representations based on

joint angles / positions greatly suffer from the expensive cost of examining the validity

of every transition which can be easily violated by collisions and penetrations of the

body parts. This is due to the fact that the Topology Coordinates is a representation

based on the relationships, while existing representations requires an additional step to

evaluate the relationships after the actual posture of the characters are computed.

Let us examine the complexity of planning a basic movement of winding one arm

around another. If we are using Topology Coordinates, we simply need to update their

values by linear interpolation, which results in the complexity of O(N) for solving the

quadratic programming problem in Eq. 4.8, where N is the degrees of freedom of

the body. On the contrary, for directly exploring for the target posture by RRT at the

level of joint angles, the cost will be O(exp(N)). In addition to that, the cost of each

iteration, will also be expensive as the test of collisions and pass throughs is further

required whenever a new random posture is produced.

Now, let us examine the complexity for more complex target postures that require

the winding of multiple limbs, such as those in wrestling movements. In this case,

the cost of planning for Topology Coordinates can increase to O(n!×N) where n is

the number of windings between the limbs. This is assuming that every wind will be

produced one after another, which is usually the case for humans tangling their bodies

with others. For methods based on joint angle + RRT, the cost will remain the same

as O(exp(N)) as it simply randomly expands all the DOF simultaneously. Although

the theoretical cost for Topology Coordinates may increase due to the permutation of

the tangle order, in practice such effect is negligible for character animation due to the

low number of tangles that can be produced between the bodies. In addition to that,

extra constraints (for example, In case of the piggy-back, the arms of the person to be

carried need to be tangled with the neck of the carrier first to increase the stability) will

further bring down the number of the possible sequences.

Chapter 4. Character Motion Synthesis by Topology Coordinates 82

To summarize, motion planning at the level of Topology Coordinates can greatly

reduce the cost of motion planning thanks to the abstractness and the relationship-

based representation.

4.5 Real-time Character Control for Wrestling Games

Now we introduce a technique to make use of the Topology Coordinates to simulate

complex interactions such as those in wrestling games in real-time. A finite state ma-

chine of attacks and defenses based on Topology Coordinates is precomputed and used

to present the game players the next possible moves for attacking / escaping from the

opponent. The player who has an opportunity to attack is shown the possible actions on

the list of icons. The characters can also be controlled kinematically by using inverse

kinematics.

We first prepare a finite state machine of two characters wrestling based on Topol-

ogy Coordinates. This is produced by the animator by first keyframing a number of

representative postures of wrestling attacks by Topology Coordinates, and then con-

necting postures by transitions that correspond to movements of entangling / desolving

tangles.

During runtime, the Topology Coordinates of the two virtual wrestlers are com-

puted based on their postures, and the corresponding node in the finite state machine

is found. The players are then shown the list of possible attacks that can be launched

from the current posture. The user also has a choice to control the characters directly

by inverse kinematics to get away from attacks and holds by the opponent player.

Let us first give an overview of the computation of the characters’ motions. The

flow of the system is illustrated in Figure 4.20. The motion of each character is com-

puted sequentially by two different quadratic programming problems. The attacker’s

movement is guided by the Topology Coordinates - once the attack is specified, the

attacker tries to tangle its body with the defender’s body according to the target config-

uration. The attack can be switched in the middle if the player thinks a different attack

is more effective under the current configuration. The defender needs to escape from

the attacks by controlling the body segments involved in the tangling process. The

player uses a pointing device to move a body segment and the posture of the defender

is computed by inverse kinematics based on quadratic programming.

Now we explain about the method to control the attacker. The attacker’s motion

is determined based on the defender’s current posture and the target Topology Coor-

Chapter 4. Character Motion Synthesis by Topology Coordinates 83

Figure 4.20: Overview of the character motion synthesis loop. The motions of the at-

tacker and defender are computed sequentially by two different quadratic programming

problems.

dinates in the next time step. Let us assume the configurations of the attacker and

defender are represented by q1 and q2, respectively. Solving Eq. 4.8 is not a good

idea to compute the motion of the attacker, as the updates of the attacker’s movements

takes into account the movements of the defender in the next time step. This makes

the defender difficult to escape from the attacker. Therefore, we solve the following

problem for computing the motion of the attacker:

min
∆q1,δ
∥∆q1∥2 +∥δ∥2 s.t. (4.11)

∆T =
∂T
∂q1

∆q1 (4.12)

|Ti, j +∆Ti, j| ≤ σ(1≤ i≤ n1,1≤ j ≤ n2) (4.13)

T+∆T−Td +δ = 0 (4.14)

r1 = J1∆q1 (4.15)

where r1 represents the kinematic parameters of the attacker. This technique adds

an effect of physiological delay for launching a response motion with respect to the

defender’s movements, which increases the realism of the interaction. It also adds

an essence of a game play to the interaction between the two virtual wrestlers as the

attacker may not be able to achieve the target Topology Coordinates if the defender is

controlled well.

Next, the defender’s movement is computed by solving the following inverse kine-

Chapter 4. Character Motion Synthesis by Topology Coordinates 84

matics problem:

min
∆q2
∥∆q2∥2 s.t. (4.16)

∆T =
∂T
∂q2

∆q2 (4.17)

|Ti, j +∆Ti, j| ≤ σ(1≤ i≤ n1,1≤ j ≤ n2) (4.18)

r2 = J2∆q2. (4.19)

where r2 represents the kinematic parameters of the defender, based on the input from

the pointing device and any other kinematic constraints. The GLI between every seg-

ment pairs are still considered to avoid penetrations.

The attacker’s motion is computed first by solving Eq. 4.11 and the attacker’s

posture is updated. Then, the defender’s motion is computed by solving Eq. 4.16.

Once both character’s motion is updated, the time counter is increased.

The key point of controlling the defender is to move the body such that it can ef-

ficiently escape from the attacks. Such movements are those which can reduce the

writhe value by little motion. For example, when the attacker starts to shift to a con-

figuration of a rear-choke hold (Figure 4.21 (a)) , which is an attack to squeeze the

neck from behind, the most efficient way to escape is to knee down at the last moment,

which requires little movement. On the other hand, if the attacking player can predict

such escaping moves of the defender and switch to another move that can make use of

such movements, the player can efficiently tangle the attacker’s body to the defender.

(a) (b) (c)

Figure 4.21: Various wrestling interactions created by the proposed method.

4.5.1 Finite State Machine for Wrestling

In this subsection, we explain how a Finite State Machine (FSM) of two characters

wrestling are produced from the keyframe postures designed using the Topology Co-

ordinates.

Chapter 4. Character Motion Synthesis by Topology Coordinates 85

Figure 4.22: An interface to edit the postures of the wrestling characters by the Topol-

ogy Coordinates. The animator specifies the limbs to be tangled and adjust their Topol-

ogy Coordinates by the scroll bar at the right.

The animator first prepares postures of two characters wrestling by updating the

Topology Coordinates of the body segments. Scroll-bars that let the user adjust the

writhe, center and density values are provided to generate different configurations. A

view of the interface for editing the postures by the Topology Coordinates is shown in

Figure 4.22.

Once the postures are designed, we start to produce the FSM. First, the designed

postures are added as new states of the FSM. The topological status of the designed

postures are evaluated based on the concept of rational tangles presented in Chapter 3.

The rational tangles between all the routes that connect the end effectors are computed.

Next, we find all the shortest paths from the designed postures to the untangled states

in which the two characters simply stand next to each other. The limbs are untangled

one by one, and each of such states are added into the state machine as well. Let us

call these states intermediate states. Many intermediate states might be shared between

different attacks.

Finally, the system creates the FSM by connecting the nodes (postures) with similar

topological states. As discussed in Chapter 3, we connect the postures/states if the

absolute differences of the writhe between every pair of routes are less than a threshold

of 0.5. An example finite state machine of one character attacking another from behind

Chapter 4. Character Motion Synthesis by Topology Coordinates 86

is shown in Figure 4.23.

The FSM mode starts only when the characters are close enough and one of the

player launches an attacking action. When the characters are separate from each other

in the beginning, they are not in the state of the FSM. Both characters freely move

around according to the user input until either of them reach a state where the user can

launch a new attack. As shown in Figure 4.24, the possible choices are shown on the

screen and the user selects one of them by the mouse.

There are also states that the defender can start an attack - if the player controlling

the defender reacts faster than the player controlling the attacker to launch such an

attack, the status of the fight can be switched. The user who has selected an action

earlier becomes the attacker.

Figure 4.23: A finite state machine of two people wrestling when one character at the

back of the other.

4.5.2 Experimental results

We have simulated a number of interactions between two virtual wrestlers both con-

trolled by game players. Those include rear-choke hold (Figure 4.21 (a)), Full Nelson

hold (Figure 4.21 (b)) and a number of different squeezing motions from the back.

The virtual wrestlers start from separate postures and the attacker approaches to the

defender to tangle its body with it.

The movement of the attacker is controlled by specifying the Topology Coordi-

nates. In the first animation, the attacker performed an attack by tangling i) right arm

with the neck of the defender and ii) left arm with the left arm of the defender. Without

controlling the defender, this attack can be performed easily by changing the Topology

Coordinates of the attacker as shown in Figure 4.25.

Chapter 4. Character Motion Synthesis by Topology Coordinates 87

Figure 4.24: Once an intermediate state of the FSM is reached, the possible transitions

are shown to the user.

Figure 4.25: Without controlling the defender (in purple), the attacker (in yellow) can

tangle with the defender easily by changing the Topology Coordinates.

In the second example, the defender tries to escape from the attacks shown in Fig-

ure 4.25. In our implementation, the player can specify kinematic constraints on the

defender by dragging the body segments using a pointing device. In Figure 4.26, the

player dragged the left hand (colored in red) of the defender. However, the defender

fails to escape from the attack as it was not controlled quick enough. More exam-

ples are shown in Figure 4.27. In Figure 4.28, the defender escapes from the attack

successfully by moving the torso quickly and vigorously.

The attacker can also switch to another wrestling move in the middle of the attack.

In the third example, the defender escapes from the attack by blocking the right arm of

the attacker in the early stage of the interaction. Then the attacker switches to another

wrestling move by tangling its right arm with the right arm of the defender and its left

arm with the torso and neck of the defender. Finally the attacker successfully locks

Chapter 4. Character Motion Synthesis by Topology Coordinates 88

Figure 4.26: The defender (in purple) cannot escape from the attack if the player does

not control it quick enough.

Figure 4.27: The defender (in purple) cannot escape from the attack if the player does

not control it quick enough.

with the defender. The screenshots of this interaction are shown in Figure 4.29.

4.6 Summary and Discussions

In this chapter, we have proposed a new method to control characters by using topo-

logical constraints. We specify how the segments of the characters should twist around

each other over time. Various basic motions such as hugging, wrestling attacks, hold-

ing a bulky object, which were difficult to be handled before can be generated. The

ability to create complex motions of a character which has a large DOF such as an

octopus tangling its arms with a human character while avoiding the penetrations from

only a few number of keyframes is a great advantage of our method. Existing global

path-planning techniques based on RRT will suffer when DOF of the character is large.

Figure 4.28: The defender (in purple) escapes from the attack.

Chapter 4. Character Motion Synthesis by Topology Coordinates 89

Figure 4.29: The attacker (in yellow) switched the attack in the middle in order to lock

the defender (in purple).

There are some shortcomings with our method: First of all, as our method is based

on local optimization, in some cases the solver can get caught in local minima. This

happens mostly when there are too many topological constraints to be solved simulta-

neously. In fact, some topological constraints cannot be physically satisfied at the same

time. In such a case, the user needs to decrease the number of topological constraints

by limiting the number of chains to get tangled with or restrained from being tangled

with. This can be done interactively by the user.

Secondly, in this chapter we assume all the models are only composed of line

segments. Many objects have area and volume, and sometimes it is difficult to approx-

imate the topological relationships by those objects by line segments. We also did not

handle the collisions between the rigid objects. The penetration of line segments can

be examined by tracing the writhe value. However, another collision detection scheme

is required for rigid bodies. Although we can insert a collision detection stage after

the postural updates and add repulsive forces to the segments so that they do not pen-

etrate each other, sometimes the shape of the rigid bodies can inhibit the bodies from

getting tangled / untangled. One solution is to model each rigid segment by a mesh

of line segments. We can use a multi-resolution approach and represent the segments

by line segments at low resolution and by a mesh structure in high resolution. When

precise collision avoidance based on the detailed shape is required, we can calculate

the motions using the high resolution model.

Thirdly, the user needs to specify the order to tangle the segments to those of the

other. When there are many tangles between the characters, there are many ways to

Chapter 4. Character Motion Synthesis by Topology Coordinates 90

arrive to the goal postures. The appropriate way to evaluate such routes can be applica-

tion dependent, and usually the user prefers to specify it by him/herself. Therefore, in

this research, we let the user specify the sequence by him/herself by providing the list

of sequence. Planning the sequence of tangles and synthesizing a sequence of motions

can be one direction for future research.

As a future work, we would like to apply Topology Coordinates to analyze and

synthesize knotting and unknotting motions of robots. Previous work in knot tying / 1D

deformable object manipulations in the robotics community analyze the configuration

/ state of the knotting / tangling based on 2D configurations of the strands [Wakamatsu

et al., 2006, Matsuno et al., 2006]. One of the limitations for these methods is that a

2D plane has to be defined in order to correctly compute the topological status. As a

result, the work in [Wakamatsu et al., 2006, Matsuno et al., 2006] perform knotting /

tangling on a table. However, it is very difficult to define such as plane when handling

objects in the 3D world. As our method can analyze the topology of the configuration

of strands in 3D, we believe that it is more flexible for planning interactions between

robots and 1D deformable objects in the real world.

Chapter 5

Spatial Relationship Preserving

Character Motion Adaptation

While interactions with complex tangling of body segments such as those in wrestling

and dancing can be efficiently generated by Topology Coordinates, we would like to

generalize the concept of topology-based motion editing method and apply it to handle

close interactions without any tangles.

In this chapter, we present a new method for editing and retargeting motions that in-

volve close interactions between body parts of single or multiple articulated characters,

such as dancing, wrestling, and sword fighting, or between characters and a restricted

environment, such as getting into a car. In such motions, the implicit spatial rela-

tionships between body parts/objects are important for capturing the scene semantics.

We introduce a simple structure called an Interaction Mesh to represent such spatial

relationships. By minimizing the local deformation of the Interaction Meshes of ani-

mation frames, such relationships are preserved during motion editing while reducing

the number of inappropriate interpenetrations. The Interaction Mesh representation is

general and applicable to various kinds of close interactions. It also works well for

interactions involving contacts and tangles as well as those without any contacts. The

method is computationally efficient, allowing real-time character control. We demon-

strate its effectiveness and versatility in synthesizing a wide variety of motions with

close interactions.

Portions of this chapter have previously been published as [Ho et al., 2010].

91

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 92

Figure 5.1: Our system can retarget motions of close interactions to characters of

different morphologies. A judo interaction (red / orange pair) retargeted to characters of

different sizes.

5.1 Introduction

Close interactions, not necessarily with any contacts, between different body parts of

single or multiple characters or with the environment are common in computer an-

imation and 3D computer games. Yoga, wrestling, dancing and moving through a

constrained environment are some examples. In such motions, the spatial relationships

between different body parts of characters are important in capturing the semantics

of the scene. When an animator synthesizes or edits such movements, special care is

needed to preserve these spatial relationships, for example, “arching back to avoid a

punch”, “hands extending around each other”, “two bodies moving synchronously in

close proximity” or “getting into a small car by bending down”. However, traditionally,

such spatial relationships exist only in the animator’s mind and are not digitally embed-

ded into the data. Although humans use spatial relationships to recognize semantics of

interactions, their usage has not been considered much in character animation.

Existing scene representations have a fundamental limitation in handling such close

interactions. Currently, a motion is typically described in terms of joint angles and

kinematic constraints such as contacts. With this representation, automatically com-

puting a valid motion requires randomized exploration and significant computation for

collision detection. The animator also needs to shoulder the burden of specifying all

the kinematic constraints in advance. From the animator’s perspective, this is imprac-

tical and not conductive to manual editing. Competitive automatic solutions require an

effective representation that allows the extraction of spatial relationships from existing

motion data and synthesis of new animations that preserve these relationships. Such

a representation will not only allow quantitative evaluation of the way different body

parts are interacting, but also facilitate qualitative characterization of scene semantics.

In this research, we propose a simple representation which we call the Interaction

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 93

Mesh to represent the spatial relationships between nearby body parts. The Interac-

tion Mesh is a volumetric mesh defined by the joints of the characters and the vertices

of the objects/environment with which the characters are interacting. When editing or

retargeting the movements, the motions are automatically adapted by deforming the In-

teraction Meshes at all frames with efficient Laplacian deformation techniques [Alexa,

2003, Zhou et al., 2005]. The high-level semantics of the interactions are maintained

through preserving the local details of the Interaction Meshes.

The Interaction Mesh representation is general. It provides a unified treatment for

interacting body parts of single or multiple characters as well as objects in the envi-

ronment. As a result, it is applicable to many types of scenarios, such as when single

character’s actions involve close interactions between different body parts (dancing)

or multi-character interactions (wrestling, fighting games). Additionally, the motions

may either involve much tangling and contacts (e.g. judo, Figure 5.1) or little contact

(e.g. Lambada dance). Additionally, it can be applied either per-frame or in the space-

time domain according to the complexity of the problem and the available computing

resources.

Motion adaptation with the Interaction Mesh is fully automatic. When the animator

changes the size or morphology of the characters or edits parts of the motion, the sys-

tem automatically deforms the Interaction Meshes at all the frames using a spacetime

optimization and creates a new motion sequence that preserves the original context of

the scene. No constraints need to be specified by the animator since they are all en-

coded in the Interaction Meshes. If desired, the user may add extra constraints such as

anchoring the bodies at the feet. The approach is efficient, allowing real-time control of

characters in virtual environments. Specifically, the computational cost increases only

linearly in the number of frames and the complexity of the articulated body structures.

The Interaction Mesh is useful for synthesizing motions for films, computer games

and digital mannequin systems. We demonstrate its usefulness in character animation

by retargeting captured human motions to characters of very different proportions and

volumes, such as a monkey and also by editing the motions of multiple characters

while preserving the original context of the scene.

5.1.1 Contributions

• We introduce a new representation called the Interaction Mesh for encoding the

spatial relationships between closely interacting body parts of articulated char-

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 94

Figure 5.2: The posture of an articulated body retargeted to a new morphology with

longer red/green and shorter blue segments. Note that a naı̈ve approach by joint angles

results in a change of context.

acters and objects in environment.

• We then present an automatic method that uses the Interaction Mesh for editing

or retargeting motions with close interactions. The synthesized motions pre-

serve the spatial relationships, and thus the scene semantics, while reducing the

number of inappropriate interpenetrations.

5.2 Overview

We give an overview of our method in this section. First, the data of the original char-

acters and the motion is loaded into our system. Each body segment of the character

model is surrounded by a bounding volume which will be used for collision detection.

The Interaction Mesh is then computed for every time frame.

Next, the user edits or retargets the motion by specifying some of the following:

the target body sizes, morphology, target positions or new trajectories of some body

parts. These constraint parameters are then interpolated and used to morph the original

bodies to the target bodies. At every morph-step, the entire motion is adapted towards

achieving the target motion. This iterative approach is necessary since the collisions

between the body parts/objects need to be carefully monitored and resolved.

At every morph-step, the system adapts the motion by minimizing the Laplacian

deformation of the Interaction Meshes at all the animation frames (or a fixed window

of frames at a time, according to available computing resources) and the acceleration

of the bodies in these frames (see Figure 5.2 for an example of the adapted result of one

frame). This spacetime optimization is performed to ensure temporal coherence of the

motion. The optimization is subject to various constraints, namely, bone-length con-

straints, collision constraints and positional constraints. Collisions are then detected

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 95

between the bounding volumes. If collisions are detected, the penetration depths are

evaluated and a new set of collision constraints are defined to resolve the penetrations

in the next morph-step.

5.3 Interaction Mesh

In this section, we describe how we compute the Interaction Meshes for a given motion.

We assume that the mesh characters are rigged with skeletons, and each body segment

is bounded by a volume (we use capsules and boxes in our experiments).

The postures of the characters are represented by the positions of the joints, rather

than the joint angles. Using the joint positions as parameters has the advantage of

making the constraint matrix sparse since the joints are treated as independent parti-

cles. In contrast, using the joint angles as parameters makes the Jacobian matrix very

dense, as the joints near the root affect the movements of all the joints below in the

hierarchy [Shi et al., 2007].

We compute the volumetric Interaction Mesh for every animation frame. Using the

positions of joints and vertices of objects as a point cloud, we apply Delaunay tetrahe-

dralization [Si and Gaertner, 2005] (see Figure 5.2). Note that the spatial relationships

which we want to preserve are those between body parts that are in close proximity

and are not occluded by other parts. Since the Delaunay tetrahedralization favors con-

necting such parts with edges, the Laplacian coordinates of vertices which are defined

by vertex neighborhood will lead to mutual influence between these body parts. By the

nature of Laplacian mesh editing in preserving local details, the spatial relationships

of our interest will be maintained.

The orientation of some body segments cannot be computed only from the posi-

tions of joints bounding that segment. For example, the joint positions of the elbow

and the wrist are insufficient to confirm the rotation around the forearm. In order to

compute such orientations, we sample one extra virtual vertex on the surface of each

bounding volume, as in [Shi et al., 2007]. These additional virtual vertices are added

to the point cloud when defining the Interaction Mesh. Since each virtual vertex is not

rigidly constrained to the body parts, its position is brought back to the original local

coordinate frame once the bone’s orientation is confirmed. Another possible solution

is to use inverse kinematics. The orientation of the body segments can be inferred

from the joint positions and the orientation in the original motion [Bodenheimer et al.,

1997]. Such an approach can keep the number of vertices in the Interaction Mesh low.

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 96

5.4 Spacetime Deformation

In this section we present the spacetime optimization problem that we solve to adapt

the motion at each morph-step. The spatial relationships of the body parts/objects

are preserved by minimizing the Laplacian deformation energy of all the Interaction

Meshes [Alexa, 2003, Zhou et al., 2005] subject to constraints derived from the mor-

phed body sizes, detected collision and user-defined position constraints. We also

introduce an acceleration energy to reduce jaggedness between frames.

5.4.1 Deformation energy

Let m be the number of vertices in the Interaction Mesh, pi
j(1≤ j ≤m) be the vertices

at frame i, Vi be a vector of size 3m that includes all pi
j such that Vi = (pi

1
ᵀ
, · · · ,pi

m
ᵀ
),

and pi
j
′ and V′i be the updated vectors after the deformation. The deformation energy

of the mesh is defined as

EL(V′i) = ∑
j

1
2
∥δ j−L(pi

j
′
)∥2 (5.1)

=
1
2

V′i
ᵀMᵀ

i MiV′i−bᵀ
i MiV′i +

1
2

bᵀ
i bi (5.2)

where L is the operator to compute the Laplacian coordinates from the vertex loca-

tions Vi, δ j is the original Laplacian coordinate, and Mi,bi are the matrix and vector,

respectively, computed by expanding Equation (5.1). The Laplacian coordinates are

calculated by:

L(p j) = p j− ∑
l∈N j

w j
l pl (5.3)

where N j is the one-ring neighborhood of p j and w j
l are the normalized weights which

are set as inversely proportional to the distance between the vertices so that farther

apart vertices have less influence on each other.

5.4.2 Acceleration energy

To reduce jaggy jumps between frames, we introduce an acceleration energy term EA

which imposes temporal relations between corresponding vertices in adjacent frames.

Specifically, to reduce sudden acceleration, we minimize the movement of the corre-

sponding vertices in adjacent frames:

EA(V′i−1,V
′
i,V
′
i+1) =

1
2
∥V′i−1−2V′i +V′i+1∥2 (5.4)

where V′i is the set of vertices at frame i.

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 97

5.4.3 Constraints

Here we explain the bone-length constraints, positional constraints and collision con-

straints imposed in the spacetime deformation.

5.4.3.1 Bone-length constraints

We introduce the bone-length constraints in order to morph the bone lengths (distance

between adjacent joints) from the original scales to the target scales. In each morph-

step and each animation frame, the target length le for each bone e is computed by

linearly blending the original and final lengths. Then, a constraint enforcing the target

length is imposed as (∥p1
e
′−p2

e
′∥− le)2 where p1

e
′
,p2

e
′ are the end vertices of the edge

e. Linearizing all the bone-length constraints results in

CB(V′i) = BiV′i− l, (5.5)

where Bi is the Jacobian matrix and l is a vector of constant terms.

Sometimes the bone-length constraints may conflict with the Laplacian deforma-

tion energy which means satisfying the bone-length constraints increases the Laplacian

deformation energy. This conflict is the main source of slow convergence. We cope

with this problem by excluding the vertex pb from the neighborhood of vertex pa when

computing the Laplacian coordinate of pa if the edge connecting pa and pb corresponds

to a bone of the body.

5.4.3.2 Positional constraints

The user can add positional constraints by anchoring some joints or a linear combi-

nation of their locations. The original trajectories of these body parts are gradually

morphed to the given trajectories in each morph-step. We compute the target locations

of these parts, Pi, using linear interpolation, and write the positional constraints as:

CK(Vi
′) = KiV′i−Pi (5.6)

where K is a 3k× 3m weight matrix that defines the influence of each joint in each

positional constraint, and k is the number of positional constraints.

5.4.3.3 Collision constraints

The collision constraints prevent penetration between the bounding volumes of the

skeleton. We perform collision detection by applying the ODE library [Smith, 2007]

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 98

to the current configuration of the bounding volumes. Specifically, when a penetration

is detected, we compute the penetration depth, directions and the point pair penetrating

each other the farthest and add the following constraints:

CC(V′i) = JiV′i−di (5.7)

where Ji is the Jacobian of the positions of the colliding parts with respect to the

joint positions, and di is the penetration depth multiplied to the normal vectors of the

penetrated surface. The Jacobian is computed by finite differencing. The joint vertices

are moved and the locations of the penetrating points are recomputed according to the

posture. We do not apply collision detection to adjacent body parts along the body tree

structure as self-penetrations easily happen when the joints are bent.

5.4.3.4 Constraint energy

We separate the constraints in Equation (5.5)-5.7 into soft and hard constraints:

FiV′i = fi (soft), HiV′i = hi (hard) (5.8)

and define a constraint energy that represents the amount of violation of the soft con-

straints:

EC(V′i) =
1
2

V′i
ᵀFi

ᵀWFiVi
′− fi

ᵀWFiV′i +
1
2

fi
ᵀWfi. (5.9)

where W is a square diagnol matrix that assigns a different weight to each constraint.

By default, we set the bone-length constraints and one positional constraint (sup-

porting foot) hard, and the collision constraints and the rest of the positional constraints

soft. The bone-length constraints are set hard so that the bodies are correctly scaled

to the target values. Soft collision constraints stabilize the motion when there is lit-

tle open space. It also provides the animator some results when collisions cannot be

avoided due to insufficient open space when bodies are enlarged. It is also necessary

to set the other positional constraints soft to avoid over constraining. By default, the

weights in W are set 4.0 and 0.4 for the collision and additional positional constraints,

respectively. The constraints can be switched between soft and hard according to the

desired animation effect. When the number of morph steps is small, we also need to

set the bone-length constraints soft, and their weights are set to 2.0.

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 99

5.4.4 Iterative Morphing

At every morph-step, the body sizes and the positional constraints are updated, and

the motions of the characters are adapted by minimizing the sum of the deformation

(Eq.5.1), acceleration (Eq.5.4) and constraint energy (Eq.5.9) of all frames subject to

the hard constraints. The adapted motion is computed by solving

argminV′i,λi(1≤i≤n)

n

∑
i

EL +w∆EA +EC +λᵀ
i (HiV′i−hi) (5.10)

where n is the number of frames, V′i is the set of new vertex positions at frame i, λi

are the Lagrange multipliers and w∆ is a constant weight (we use 0.2). Note that EA

is not defined for the first and last frames, hence we set them to zero. The spacetime

optimization problem in Equation (5.10) can be solved by differentiating it with respect

to V′i and λi, and solving the following linear equation:(
M ᵀM +w∆AᵀA +F kᵀW F k C kᵀ

C k 0

)(
V

λ

)

=

(
M ᵀB +F kᵀW f

H

)
(5.11)

where B , H , f , V and λ are vectors that include bi (in Eq.5.2), hi, fi (in Eq.5.8),

V′i and λi for all the frames, respectively, i.e. B = (bᵀ
1 , ...b

ᵀ
n)ᵀ, H = (hᵀ

1 , ...h
ᵀ
n)ᵀ,

f = (fᵀ1 , ...f
ᵀ
n)ᵀ, V = (V′ᵀ1 , ...V

′ᵀ
n)ᵀ, λ = (λᵀ

1 , ...λ
ᵀ
n)ᵀ and M is the Laplacian matrix,

F k is a soft constraint matrix at the k-th morph-step, each of which includes Mi in

Equation (5.2), and Fi in Equation (5.8) for all the frames, respectively:

M =

M1 · · · 0

... . . .

0 Mn

 ,F k =

Fk

1 · · · 0
... . . .

0 Fk
n

 ,

and A is a matrix that computes the acceleration for all the frames from V , W =

diag(W, ...,W), and C k is the constraint matrix at the k-th morph-step, which includes

Hi in Equation (5.8) for all the frames:

A =

0
I −2I I

. . .

I −2I I
0

,C k =

Hk

1 · · · 0
... . . .

0 Hk
n

 .

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 100

Algorithm 4 Motion Adaptation by Interaction Mesh
Input: Skeleton and input motion sequence

initial / final body scaling factors: s0,s f

locations of initial/final positional constraints: p0,p f

Output: Target motion sequence

(Initialization)
- Compute the Interaction Meshes (vertex positions and connectivity) of all input

frames.

(Motion Adaptation)
for k=1 to N morph-steps do

- Update body scale / location of positional constraints:

sk← N−k
N s0 +

k
N s f , p j← N−k

N p0 +
k
N p f

- Update the constraint matrices Fi,Hi, the target values of the constraints fi,hi

in Equation (5.8) and the deformation vector bi in Equation (5.2) for frames i =

1, ...,n.

- Update the vertex locations by solving Equation (5.10).

- Compute segment orientations and update virtual vertices.

end for

Our motion adaptation algorithm is summarized in Algorithm 4.

The Interaction Meshes are defined for the original motion frames and their con-

nectivities are kept unchanged at all the morph-steps, which results in a constant M .

Note that re-computing the tetrahedralization at each morph-step would result in grad-

ual drifting of the motion away from the original sequence. Keeping the mesh topology

from the original motion helps to preserve the spatial relationships of the components

in the original motion.

5.4.5 Possible artifacts and solutions

Due to the non-uniform weighting of the edges, drastic updates of the morphing pa-

rameters such as the character sizes may result in flipping of the tetrahedra in the

Interaction Meshes. Such flipping, if it occurs in an open space does not cause notice-

able artifacts, but may result in a change of context if it happens with a tetrahedron

composed of two bones which are nearby but not adjacent to each other. We prevent

the flipping by detecting collisions between the body parts and applying the collision

constraints (Eq.5.7) at each morph step. However, the system may fail when the lin-

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 101

Figure 5.3: Flipping of a tetrahedron during a morph-step may lead to a change of

spatial context: (left) initial posture, (middle) flipping happens at the left lower leg of

the yellow character when using 5 morph-steps, (right) flipping avoided when using 10

morph-steps.

earization of the collision constraints breaks down, which happens when the body sizes

are very narrow and the penetration depth is too large. This results in pushing out the

penetrating body in the wrong direction (see Figure 5.3). The problem can be avoided

by giving enough volume to the body parts and setting small morph steps. We obtained

satisfactory results using 10 morph-steps for all the examples.

The soft collision constraints can result in penetrations when the bodies are en-

larged too much while there is limited open space. We can alert the user of the lack

of space by giving the sum of the squares of penetration depth for reference. The user

can then choose to either enlarge the environment or stop scaling.

The system may become unstable when the original motion contains movements

where the body parts pass through each other. When this happens, the direction the

collision constraint pushes the bodies away from each other will turn opposite at some

moment, resulting in a large movement in one frame. This contradicts the minimization

of acceleration energy and causes vibrations. Switching off the collision constraints at

the frames of these pass throughs can remove such artifacts.

5.5 Experimental Results

In this section, we show experimental results from applying our motion retargeting

method to character animation. We apply it to several types of motions with close in-

teractions, namely, between body parts of a single character or multiple characters, and

between a character and its environment. We also demonstrate its usefulness for real-

time character control. The heights of the feet are all constrained to the original values

by hard constraints by default, which are necessary especially when the characters are

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 102

Figure 5.4: Snapshots of a sword attacking motion (left) retargeted to characters of

different morphologies (middle, right).

Figure 5.5: Snapshots of a back breaking attacking motion (left) retargeted to charac-

ters of different morphologies (middle, right).

standing on the ground.

5.5.1 Retargeting Motions of Close Interactions

First we show the results of retargeting motions involving only characters. We use

motions involving much tangling and contacts, such as judo, as well as those with few

contacts, such as dancing and attackers/defenders in fighting games.

5.5.2 Judo attacks

Our first motion example is a judo “Ogoshi throw” in which the attacker holds the arm

and the waist of the defender and throws the defender by carrying him/her onto the

back. We retarget the motions of the thrower and the defender to characters of var-

ious morphologies. We use the body sizes of characters in Allen et al. [Allen et al.,

2003] as reference (See Figure 5.1). Here, although the proportions and the bound-

ing volumes of the new characters are completely different from those of the original

characters, our system can still produce the Ogoshi throw. Note that previous motion

editing/retargeting approaches are difficult to apply to this kind of close interactions

since they only consider the joint angles of the original motion but not the spatial re-

lationships. As a result, the retargeted motion may have a different context (e.g. the

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 103

Figure 5.6: (left) A posture of a turn kick interaction. (middle, right) The animator drags

the left foot of the yellow character by mouse and the other character moves to preserve

the spatial relationship.

arms extend to the other side of the defender’s body). They also require the animators

to manually specify all the positional constraints in all the frames, such as the attacker’s

hand holding the defender’s body. This can be a tedious task for the animator.

5.5.3 Fighting scenes

Our next two motion examples are fighting scenes involving two characters provided

by a game company.

The first scene involves a character holding a sword attacking its enemy. The sword

penetrates through the enemy character when the enemy is stabbed, and therefore, we

turned off the collision constraint in those frames. The second scene is from the same

game. The character holding the sword breaks the back of the enemy with both arms

and drops it. The sword unintentionally passes through the arm of the defender in

some of the frames, which is due to the manual design. Again, we turned off the

collision constraint in those frames. Both the attacker’s and defender’s morphologies

are changed and animations of different combination of bodies are created. Snapshots

of the original and synthesized motions are shown in Figure 5.4 and Figure 5.5, re-

spectively. Note that manual editing would require a lot of care to avoid unintentional

penetrations of the sword into the body. Our method can automatically produce the

motion of passing the sword into the space between the enemy’s arm and torso. These

examples show that our method can also be used for manually designed motions which

are not penetration-free. In such cases, the context of the penetrations (e.g. stabbing

the enemy) are preserved in the synthesized results. Feedback from the game company

indicates that the quality of our retargeted movements is high enough for games usage.

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 104

Figure 5.7: Original dancing motion (middle) and the retargeted results to a monkey

model with long arms using a joint-angle based method (left) and using our method

(right).

5.5.4 Interactive character control

Next, we show a demo of using the Interaction Mesh for real-time control of characters.

Pausing the animation of interaction at some frame, we can let the user interactively

control a body part using inverse kinematics while maintaining its spatial relationships

with the other character(s). In such cases, we solve Equation (5.11) for a single frame

rather than for the entire motion, which provides real-time performance. The other

character(s) will follow the movements of the controlled character according to the

Interaction Mesh at that frame. The controlled body part is softly constrained by an

additional positional constraint. An example of editing a posture in a turn-kick motion

is shown in Figure 5.6. The updates in the edited frame can be propagated to the whole

motion by iteratively solving Equation (5.10) using the edited posture as a constraint.

5.5.5 Single character motions

We use a dancing motion in which the character performs an arms cycling motion and

retarget it to a character with monkey proportions (Figure 5.7). Our method can pre-

serve the context of the motion despite the much longer arms of the monkey character.

In contrast, the method of [Lyard and Magnenat-Thalmann, 2008] results in a motion

with many collisions, causing the movements to appear unstable. Note that since this

motion does not involve any tangles, the topology coordinates presented in Chapter 4

are also difficult to apply.

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 105

Figure 5.8: Snapshots of a character getting into and riding a car model; (red) original

character and (blue) a tall fat character.

5.5.6 Motion Adaptation in a Constrained Environment

Motions in a constrained environment, such as getting in and out of a car, involve

close maneuvers and collision avoidance. Retargeting such motions to characters of

different sizes or adapting the motions to environment with different parameters (e.g.

size of car) has a great demand in CAD design and digital mannequins [Badler et al.,

1999]. Here we show examples of using the Interaction Mesh for such a purpose. We

captured the motion of a person getting into a car and holding the steering wheel. The

environment is composed of simple polylines representing the car doors, ceiling, floor,

seats, and steering wheel. The Interaction Mesh is composed of the vertices of the

environment and the skeleton joints and end effectors. Snapshots of the input motion

and that retargeted to a scaled character are shown in Figure 5.8. Observe that the

character’s motion is successfully adapted to the new character size. Since some of

the interactions of the character with the car, such as ducking and passing through the

narrow space, cannot be described only with explicit constraints such as contacts, these

motions are difficult to handle for previous methods.

5.5.7 Computational Costs

The main bottleneck of our method is solving the large linear equation in Equation (5.11).

We use UMFPACK [Davis, 2004] and GotoBLAS [Goto and Van De Geijn, 2008].

Since the Laplacian matrix M and the constraint matrix C k are both sparse, the compu-

tation only increases linearly with respect to the number of vertices in all the Interaction

Meshes. Therefore, the complexity of the problem is O(m×n), where m is the number

of vertices in each mesh and n is the number of frames. For all the retargeting examples

shown in this research, the computation required for each motion is around 1 minute

for an animation of 100 frames, using one core of a Core i7 2.67GHz CPU. Since most

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 106

of the computation, such as the computation of the Laplacian and constraint matrices

and solving the large linear system [Bolz et al., 2003] are highly parallelizable, much

faster response can be expected with GPU implementations.

5.6 Discussions

In this section, we compare our approach with previous methods in terms of advantages

and limitations.

Simply combining the kinematic constraints and collision avoidance as is done

in [Lyard and Magnenat-Thalmann, 2008] cannot preserve spatial relationships be-

tween bones. Although collision detection can avoid interpenetration of body parts,

the movement of one part does not affect the movements of the other parts until colli-

sion occurs. Moreover, as shown in Figure 5.7, left, the collision does not necessarily

repulse the body in the direction that maintains the context of the original scene. As a

result, coordination between the bodies can easily be lost. With our method, the Inter-

action Mesh moves all the nearby bones together such that their spatial relationships

are maintained.

Shi et al. [Shi et al., 2007] apply a cascading scheme for motion retargeting to

speed up the process and make use of the GPU resources. Such a cascading scheme is

inapplicable to the motions of our interest since it may greatly update the posture after

one iteration. Large updates may be acceptable for open postures such as standing and

reaching out for an object, however for motions with close interactions between body

parts, resolving all the collisions after a large update may result in a change of context,

for example, the body parts may be flipped to the opposite side. This also explains why

we need to gradually morph the morphology of the characters and sizes of objects in

the scene.

The concept of the Interaction Mesh is very general. It is possible to compute the

Interaction Mesh using vertices of freeform meshes and use it for shape deformation.

This can be an interesting application of deformation transfer [Sumner and Popovic,

2004, Zayer et al., 2005] and cloth animation. For example, animation of a character

wrapping an object or wearing clothes.

Using a high resolution volumetric mesh, such as one defined by the surface of a

mesh character, may be a good solution for intricate finger motions, such as manipu-

lating a thread or small object, as it can represent the details of the interaction between

the fingers’ surface and the object. However, applying such a method for spacetime

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 107

control of a full body character will be very computationally costly due to the huge

number of vertices.

Spacetime optimization is known to be an important tool for creating realistic char-

acter motions since it allows the characters to prepare for the interactions ahead along

the timeline [Liu et al., 2006], such as an early bending of the torso before entering a

car. It also removes jaggedness from the movements, which is a drawback of frame-

based approaches. Therefore, we argue that our combined use of a volumetric structure

defined by joint positions and the spacetime optimization is a good design choice for

efficient synthesis of realistic motions of interactions.

The acceleration energy term might unnecessarily smooth the large accelerations

from impacts, which is often an important feature of motions. Experimentally, we

have found the advantage of using the acceleration term outweigh the smoothing of

high impulse movements. One possible solution for maintaining the features of high

acceleration is to use inter-frame Laplacian coordinates proposed in Kwon et al. [Kwon

et al., 2008b] instead of the acceleration energy.

5.6.1 Limitations

Our method may fail when the constraints are drastically different from those in the

original motion, such as when one of the interacting characters is scaled too small

or too large. In such situations, the body parts may be too far apart to maintain the

interactions. However, any methods that use inverse kinematics are not immune to

such a problem under extreme scaling. An example of this vulnerability is when a

character is in contact with another object at many parts of its body, for example, a full

body hold. If the object’s size is scaled down, the Laplacian deformation will try to

preserve the spatial relationship at all the contact areas, which is physically impossible

due to the rigidity of the body parts. As a result, the deformation error will be shared

among all the contact areas, resulting in the loss of all contacts. This is related to

the fact that our method does not require user-specified contact constraints. A simple

possible solution is to prioritize such contacts and impose contact constraints at areas

which appear to be important. Another solution may be to recompute the Interaction

Meshes at certain morph-steps when the spatial relationship is difficult to preserve and

allow the mesh to drift from the original topology.

Chapter 5. Spatial Relationship Preserving Character Motion Adaptation 108

5.7 Conclusion and Future Work

In this research, we have presented a new method to edit and retarget character anima-

tion that involves many close interactions by introducing a new representation called

Interaction Mesh. When updating the motion, the spatial relationships between dif-

ferent body components and objects can be preserved by applying a spacetime opti-

mization to minimize the deformation of the Interaction Meshes subject to collision

constraints as well as bone-length and positional constraints. The method is fully au-

tomatic, not requiring manual intervention from the user. We have demonstrated the

effectiveness of the proposed method by showing realistic synthesized animations of

various types of close interactions, which are difficult to produce using previous meth-

ods.

As future work, we plan to numerically evaluate the topological and geometric fea-

tures of the Interaction Meshes, and introduce a metric to compare motions at the level

of Interaction Meshes. Specifically, we are interested in parameterizing the Interaction

Mesh. We will then be able to evaluate the similarity of motions. As a result, the

parameterized Interaction Mesh can be applied to various applications such as motion

blending and concatenation in Motion Graphs [Arikan and Forsyth, 2002, Lee et al.,

2002, Kovar et al., 2002]. We will also be able to extend our method for use in re-

inforcement learning, enabling computer-controlled characters to smartly interact with

user-controlled characters in closely interacting environments.

Chapter 6

Conclusion

6.1 Summary and Discussion

In this thesis, we have presented new representations for encoding the spatial rela-

tionships between multiple characters and objects in proximity. Experimental results

show that the new representations can be applied to various problems including motion

editing and retrieval in character animation.

6.1.1 Human Motion Indexing and Retrieval

Most of the previous research on human motion indexing and retrieval compute the

Euclidean distance of joint angles or joint positions. When retrieving human motions,

we are more interested in the context of the scene rather than low level representations

such as joint angles. The work in [Müller et al., 2005,Müller and Röder, 2006] extract

the semantics of the motions using a manually predefined boolean feature set to encode

the relationships between joints. Semantically similar motions can be retrieved using

such an approach. However, users have to specify all the boolean features that define

the semantics of the scene in advance.

We proposed TangleList to encode the tangles made between the body parts of

single / multiple characters. Using Gauss Linking Integral, we can directly compute

the features which are robust against minor kinematic differences. The TangleList

contains the semantics of the scene as each element describes how each body part is

tangled with the others. We further defined a distance metric based on TangleList.

Experimental results show that the new metric is also useful for finding motions which

can be blended without any penetrations.

109

Chapter 6. Conclusion 110

6.1.2 Motion Synthesis

Existing methods for creating charcter animations, such as Motion Graphs [Arikan

and Forsyth, 2002,Lee et al., 2002,Kovar et al., 2002], Motion Retargetting [Gleicher,

1998] and Keyframe animations, are based on low level representations such as joint

angles and positions. Interpolating postures at such a level will result in a huge amount

random sampling and collision detection [Lavalle and Kuffner, 2000], especially when

the movement involves close interactions of characters. However, the computational

cost increases exponentially when the number of DOFs increases. When handling

close interactions between multiple characters, the huge computational cost makes it

infeasible for real-time applications such as 3D computer games.

The concept of Topology Coordinates presented in Chapter 4 is an abstract repre-

sentation that describes the spatial relationship between the tangled body parts. Using

Topology Coordinates, we can directly plan and edit close interactions in motion space.

This allows us to use local search methods instead of global path-planning algorithms.

A smooth transition in the motion space which has no interpenetration of the body parts

can be obtained by linearly interpolating the Topology Coordinates from two different

postures/keyframes. Experimental results show that our method is significantly more

efficient than global path-planning algorithms for complex motions such as tangling

the segments of the body.

6.1.3 Motion Adaption and Deformation Transfer

We further proposed a new representation called Interaction Mesh to handle close inter-

actions without many tangles. While Topology Coordinates are computed based on 1D

links, the Interaction Mesh can encode the spatial relationship between 2D manifolds

such as meshed characters, cloth models and 3D environments composed of polygons.

In addition, we proposed a unified framework to automatically compute and maintain

the spatial relationship between characters and objects in the scene when editing and

retargetting the motions.

6.2 Review of Contributions

The contributions of this thesis are summarized as follows:

• We proposed a new topology-based representation for describing the relation-

ship between two characters who are closely interacting with each other. The

Chapter 6. Conclusion 111

relationship of two bodies are computed by Gauss Linking Integral and encoded

by rational tangles.

• We proposed the concept of Topology Coordinates, in which the spatial relation-

ships of the segments are embedded. We can edit and plan motions of closely

interacting characters by local search which significantly reduce the computation

for collision avoidance.

• We proposed the concept of Interaction Mesh, which encodes the spatial rela-

tionships between closely interacting body parts of articulated characters and

objects in the environment. We further propose an automatic method for editing

/ retargeting close interactions of characters.

6.3 Directions for Future Work

In this section, we will discuss the future directions for extending the work presented

in this thesis. First of all, we would like to improve the performance of our motion syn-

thesis methods by using parallel programming techniques. General-purpose computing

on graphics processing units (GPGPU) takes the advantages of using high-performance

multi-core processors on graphics card and the highly parallelizable nature of GPU

programming for computations which are traditionally performed by CPUs. Since

most of the computation, such as the computation of the Laplacian and constraint ma-

trices and solving the large linear system, in our proposed frameworks are highly par-

allelizable, much faster response can be expected with GPU implementations. Then

we will be able to handle large scale problems such as adapting the motions of many

characters and objects at interactive frame rate.

Secondly, we edit the postures/motions of the characters kinematically in the pro-

posed methods. In the future, we would like to apply our method for controlling char-

acters in physically-based environments, such as by combining it with the balance

keeping techniques in [da Silva et al., 2008, Macchietto et al., 2009]. We cannot di-

rectly apply our methods to control robot as physical constraints and contact force are

not included in our framework. Tackling such a problem may also lead to solutions

for controlling multi-biped robots to cooperatively accomplish tasks such as carry-

ing objects together. With the future direction for improving the performance of our

frameworks discussed in last paragraph, we believe that the physical-based interaction

editing method can be applied for real-time applications such as 3D computer games

Chapter 6. Conclusion 112

and controlling humanoids interactively.

Finally, we would like to further generalize the concept of topology-based motion

editing for 2D surfaces, such that we can handle cloths and meshed characters. Using

the Interaction Mesh can be a solution. However, when handling large scale problems

such as the interaction of high resolution cloth, we are interested in the topology of the

cloths rather than the local spatial relationships between all vertices. An interesting

research direction would be representing the spatial relationship of 2D manifolds by an

abstract representation like the concept of using Topology Coordinates for 1D strands.

For example, the winding number is a signed number which computes how many times

a point is surrounded by a 2D curve in the counter-clockwise direction. This is an

abstraction of the representation between the two interacting objects. We are interested

in extending the concept of the winding number for 2D manifolds. By doing this, we

will be able to represent how the 2D manifolds are facing each other. As a result,

we can make use of the extended version of winding number for indexing and editing

motions of meshed characters as well as deformable objects such as cloth.

Bibliography

[Adams, 1994] Adams, C. C. (1994). The Knot Book. W. H. Freeman and Co.

[Agarwal et al., 2002] Agarwal, P. K., Edelsbrunner, H., and Wang, Y. (2002). Com-

puting the writhing number of a polygonal knot. In SODA ’02: Proceedings of the

thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 791–799,

Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

[Alexa, 2003] Alexa, M. (2003). Differential coordinates for local mesh morphing

and deformation. The Visual Computer, 19(2-3):105–114.

[Alexa et al., 2000] Alexa, M., Cohen-Or, D., and Levin, D. (2000). As-rigid-as-

possible shape interpolation. In SIGGRAPH ’00: Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, pages 157–164, New

York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Allen et al., 2003] Allen, B., Curless, B., and Popović, Z. (2003). The space of hu-

man body shapes: reconstruction and parameterization from range scans. In SIG-

GRAPH ’03, pages 587–594.

[Arikan and Forsyth, 2002] Arikan, O. and Forsyth, D. A. (2002). Interactive motion

generation from examples. ACM Transactions on Graphics, 21(3):483–490.

[Arikan et al., 2003] Arikan, O., Forsyth, D. A., and O’Brien, J. F. (2003). Motion

synthesis from annotations. ACM Transactions on Graphics, 22(3):402–408.

[Arikan et al., 2005] Arikan, O., Forsyth, D. A., and O’Brien, J. F. (2005). Push-

ing people around. In SCA ’05: Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 59–66, New

York, NY, USA. ACM Press.

113

Bibliography 114

[Badler et al., 1999] Badler, N. I., Palmer, M. S., and Bindiganavale, R. (1999).

Animation control for real-time virtual humans. Communications of the ACM,

42(8):64–73.

[Baraff, 1996] Baraff, D. (1996). Linear-time dynamics using lagrange multipliers. In

SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics

and interactive techniques, pages 137–146, New York, NY, USA. ACM.

[Bertram et al., 2006] Bertram, D., Kuffner, J., Dillmann, R., and Asfour, T. (2006).

An integrated approach to inverse kinematics and path planning for redundant ma-

nipulators. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1874–1879. IEEE.

[Bodenheimer et al., 1997] Bodenheimer, B., Rose, C., Rosenthal, S., and Pella., J.

(1997). The process of motion capture: Dealing with the data. In Computer Anima-

tion and Simulation 97, pages 3–18.

[Bolz et al., 2003] Bolz, J., Farmer, I., Grinspun, E., and Schröoder, P. (2003). Sparse

matrix solvers on the gpu: conjugate gradients and multigrid. ACM Transactions on

Graphics, 22(3):917–924.

[Cohen, 1992] Cohen, M. F. (1992). Interactive spacetime control for animation. In

SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer graphics

and interactive techniques, pages 293–302, New York, NY, USA. ACM.

[Conway, 1970] Conway, J. H. (1970). An enumeration of knots and links, and some

of their algebraic properties. In Computational Problems in Abstract Algebra (Proc.

Conf., Oxford, 1967), pages 329–358, Oxford. Pergamon, Press.

[da Silva et al., 2008] da Silva, M., Abe, Y., and Popović, J. (2008). Interactive simu-

lation of stylized human locomotion. ACM Transactions on Graphics, 27(3):82:1–

82:10.

[Davis, 2004] Davis, T. A. (2004). Algorithm 832: Umfpack, an unsymmetric-

pattern multifrontal method. ACM Transactions on Mathematical Software, 30(2

(Jun.)):196–199.

[Electronic Arts. Inc., 2006] Electronic Arts. Inc. (2006). Nba live 06.

Bibliography 115

[Erdmann, 2004] Erdmann, M. A. (2004). Protein similarity from knot theory and ge-

ometric convolution. In RECOMB ’04: Proceedings of the eighth annual interna-

tional conference on Resaerch in computational molecular biology, pages 195–204,

New York, NY, USA. ACM.

[Fang and Pollard, 2003] Fang, A. C. and Pollard, N. S. (2003). Efficient synthesis of

physically valid human motion. ACM Transactions on Graphics, 22(3):417–426.

[Gleicher, 1997] Gleicher, M. (1997). Motion editing with spacetime constraints. In

SI3D ’97: Proceedings of the 1997 symposium on Interactive 3D graphics, pages

139–ff., New York, NY, USA. ACM Press.

[Gleicher, 1998] Gleicher, M. (1998). Retargetting motion to new characters. In SIG-

GRAPH ’98: Proceedings of the 25th annual conference on Computer graphics and

interactive techniques, pages 33–42, New York, NY, USA. ACM Press.

[Goto and Van De Geijn, 2008] Goto, K. and Van De Geijn, R. (2008). High-

performance implementation of the level-3 blas. ACM Transactions on Mathemati-

cal Software, 35(1):1–14.

[Graepel et al., 2004] Graepel, T., Herbrich, R., and Gold, J. (2004). Learning to

fight. Proceedings of Computer Games: Artificial Intelligence Design and Edu-

cation (CGAIDE 2004), pages 193–200.

[Grochow et al., 2004] Grochow, K., Martin, S. L., Hertzmann, A., and Popović,

Z. (2004). Style-based inverse kinematics. ACM Transactions on Graphics,

23(3):522–531.

[Heck and Gleicher, 2007] Heck, R. and Gleicher, M. (2007). Parametric motion

graphs. In I3D ’07: Proceedings of the 2007 symposium on Interactive 3D graphics

and games, pages 129–136, New York, NY, USA. ACM Press.

[Ho and Komura, 2007a] Ho, E. S. and Komura, T. (2007a). Planning tangling mo-

tions for humanoids. In Proceedings of the 7th IEEE-RAS International Conference

on Humanoid Robots, 2007, pages 507–512.

[Ho and Komura, 2007b] Ho, E. S. and Komura, T. (2007b). Wrestle alone: Creating

tangled motions of multiple avatars from individually captured motions. In PG ’07:

Proceedings of the 15th Pacific Conference on Computer Graphics and Applica-

tions, pages 427–430, Washington, DC, USA. IEEE Computer Society.

Bibliography 116

[Ho and Komura, 2009a] Ho, E. S. and Komura, T. (2009a). Character motion synthe-

sis by topology coordinates. In Dutr’e, P. and Stamminger, M., editors, Computer

Graphics Forum (Proceedings of Eurographics 2009), volume 28, pages 299–308,

Munich, Germany.

[Ho and Komura, 2009b] Ho, E. S. and Komura, T. (2009b). Indexing and retrieving

motions of characters in close contact. IEEE Transactions on Visualization and

Computer Graphics, 15(3):481–492.

[Ho and Komura, 2009c] Ho, E. S. and Komura, T. (2009c). Real-time character con-

trol for wrestling games. Springer Lecture Notes in Computer Science (Motion in

Games 2009), LNCS 5884:128–137.

[Ho and Komura, 2010] Ho, E. S. and Komura, T. (2010). A finite state machine based

on topology coordinates for wrestling games. To appear in Journal of Visualization

and Computer Animation.

[Ho et al., 2010] Ho, E. S. L., Komura, T., and Tai, C.-L. (2010). Spatial relationship

preserving character motion adaptation. ACM Transactions on Graphics, 29(4):1–8.

[Hodgins and Pollard, 1997] Hodgins, J. K. and Pollard, N. S. (1997). Adapting sim-

ulated behaviors for new characters. In SIGGRAPH ’97: Proceedings of the 24th

annual conference on Computer graphics and interactive techniques, pages 153–

162, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Hodgins et al., 1995] Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien,

J. F. (1995). Animating human athletics. In SIGGRAPH ’95: Proceedings of the

22nd annual conference on Computer graphics and interactive techniques, pages

71–78, New York, NY, USA. ACM.

[ILOG Inc, 2005] ILOG Inc (2005). ILOG CPLEX 9.1 User’s and reference manual.

[Kagami et al., 2000] Kagami, S., Kanehiro, F., Tmiya, Y., Inaba, M., and Inoue, H.

(2000). Autobalancer: An online dynamic balance compensation scheme for hu-

manoid robots. pages 329–340. A K PetersLtd.

[Kauffman and Lambropoulou, 2003] Kauffman, L. H. and Lambropoulou, S. (2003).

On the classification of rational tangles.

Bibliography 117

[Kauffman and Lambropoulou, 2004] Kauffman, L. H. and Lambropoulou, S. (2004).

On the classification of rational tangles. Advances in Applied Mathematics,

33(2):199–237.

[Kavraki et al., 1994] Kavraki, L., Svestka, P., Latombe, J., and Overmars, M. (1994).

Probabilistic roadmaps for path planning in high-dimensional configuration spaces.

Technical report, Stanford, CA, USA.

[Keogh et al., 2004] Keogh, E., Palpanas, T., Zordan, V. B., Gunopulos, D., and Car-

dle, M. (2004). Indexing large human-motion databases. In VLDB ’04: Proceedings

of the Thirtieth international conference on Very large data bases, pages 780–791.

VLDB Endowment.

[Klenin and Langowski, 2000] Klenin, K. and Langowski, J. (2000). Computation of

writhe in modeling of supercoiled dna. Biopolymers, 54:307–317.

[Komura et al., 2005] Komura, T., Ho, E. S., and Lau, R. W. (2005). Animating re-

active motion using momentum-based inverse kinematics. Journal of Computer

Animation and Virtual Worlds (special issue of CASA 2005), 16(3):213–223.

[Kovar and Gleicher, 2003] Kovar, L. and Gleicher, M. (2003). Flexible automatic

motion blending with registration curves. In SCA ’03: Proceedings of the 2003

ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 214–

224, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Kovar and Gleicher, 2004] Kovar, L. and Gleicher, M. (2004). Automated extraction

and parameterization of motions in large data sets. ACM Transactions on Graphics,

23(3):559–568.

[Kovar et al., 2002] Kovar, L., Gleicher, M., and Pighin, F. (2002). Motion graphs.

ACM Transactions on Graphics, 21(3):473–482.

[Kwon et al., 2008a] Kwon, T., Cho, Y.-S., Park, S. I., and Shin, S. Y. (2008a). Two-

character motion analysis and synthesis. IEEE Transactions on Visualization and

Computer Graphics, 14(3):707–720.

[Kwon et al., 2008b] Kwon, T., Lee, K. H., Lee, J., and Takahashi, S. (2008b). Group

motion editing. ACM Transactions on Graphics, 27(3):80:1–80:8.

Bibliography 118

[Kwon and Shin, 2005] Kwon, T. and Shin, S. Y. (2005). Motion modeling for on-

line locomotion synthesis. In SCA ’05: Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 29–38, New

York, NY, USA. ACM.

[Lau and Kuffner, 2005] Lau, M. and Kuffner, J. J. (2005). Behavior planning

for character animation. In SCA ’05: Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 271–280, New

York, NY, USA. ACM.

[Lau and Kuffner, 2006] Lau, M. and Kuffner, J. J. (2006). Precomputed search trees:

planning for interactive goal-driven animation. In SCA ’06: Proceedings of the

2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages

299–308, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Lavalle and Kuffner, 2000] Lavalle, S. M. and Kuffner, J. J. (2000). Rapidly-

exploring random trees: Progress and prospects. In Algorithmic and Computational

Robotics: New Directions, pages 293–308.

[LaValle and Kuffner, 2001] LaValle, S. M. and Kuffner, J. J. (2001). Randomized

kinodynamic planning. International Journal of Robotics Research, 20(5):378–400.

[Lawrence, 2004] Lawrence, N. D. (2004). Gaussian process latent variable mod-

els for visualisation of high dimensional data. In Advances in Neural Information

Processing Systems (Proceedings of NIPS 2003), pages 329–336, Cambridge, MA.

MIT Press.

[Lee et al., 2002] Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S.

(2002). Interactive control of avatars animated with human motion data. ACM

Transactions on Graphics, 21(3):491–500.

[Lee and Lee, 2004] Lee, J. and Lee, K. H. (2004). Precomputing avatar behav-

ior from human motion data. In SCA ’04: Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 79–87, Aire-la-

Ville, Switzerland, Switzerland. Eurographics Association.

[Lee et al., 2007] Lee, K. H., Choi, M. G., Hong, Q., and Lee, J. (2007). Group

behavior from video: a data-driven approach to crowd simulation. In SCA ’07:

Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer

Bibliography 119

animation, pages 109–118, Aire-la-Ville, Switzerland, Switzerland. Eurographics

Association.

[Lerner et al., 2007] Lerner, A., Chrysanthou, Y., and Lischinski, D. (2007). Crowds

by example. Computer Graphics Forum (Proceedings of Eurographics), 26(3):655–

664.

[Levitt, 1983] Levitt, M. (1983). Protein folding by restrained energy minimization

and molecular dynamics. J. Mol. Biol, 170:723–764.

[Liu et al., 2005] Liu, C. K., Hertzmann, A., and Popović, Z. (2005). Learning

physics-based motion style with nonlinear inverse optimization. ACM Transactions

on Graphics, 24(3):1071–1081.

[Liu et al., 2006] Liu, C. K., Hertzmann, A., and Popović, Z. (2006). Composition

of complex optimal multi-character motions. In SCA ’06: Proceedings of the 2006

ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 215–

222, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Liu and Popović, 2002] Liu, C. K. and Popović, Z. (2002). Synthesis of complex

dynamic character motion from simple animations. ACM Transactions on Graphics,

21(3):408–416.

[Liu et al., 2003] Liu, F., Zhuang, Y., Wu, F., and Pan, Y. (2003). 3d motion retrieval

with motion index tree. Computer Vision and Image Understanding, 92(2-3):265–

284.

[Liu et al., 1994] Liu, Z., Gortler, S. J., and Cohen, M. F. (1994). Hierarchical space-

time control. In SIGGRAPH ’94: Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pages 35–42, New York, NY, USA.

ACM.

[Lyard and Magnenat-Thalmann, 2008] Lyard, E. and Magnenat-Thalmann, N.

(2008). Motion adaptation based on character shape. Comput. Animat. Virtual

Worlds, 19(3-4):189–198.

[Macchietto et al., 2009] Macchietto, A., Zordan, V., and Shelton, C. R. (2009). Mo-

mentum control for balance. ACM Transactions on Graphics, 28(3):1–8.

Bibliography 120

[Matsuno et al., 2006] Matsuno, T., Tamaki, D., Arai, F., and Fukuda, T. (2006). Ma-

nipulation of deformable linear objects using knot invariants to classify the object

condition based on image sensor information. IEEE/ASME Transactions on Mecha-

tronics, 11(4):401–408.

[Mukai and Kuriyama, 2005] Mukai, T. and Kuriyama, S. (2005). Geostatistical mo-

tion interpolation. ACM Transactions on Graphics, 24(3):1062–1070.

[Müller and Röder, 2006] Müller, M. and Röder, T. (2006). Motion templates for au-

tomatic classification and retrieval of motion capture data. In SCA ’06: Proceedings

of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation,

pages 137–146, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Müller et al., 2005] Müller, M., Röder, T., and Clausen, M. (2005). Efficient content-

based retrieval of motion capture data. ACM Transactions on Graphics, 24(3):677–

685.

[Nishiwaki et al., 2001] Nishiwaki, K., Sugihara, T., Kagami, S., Inaba, M., and In-

oue, H. (2001). Online mixture and connection of basic motions for humanoid

walking control by footprint specification. 2001 IEEE International Conference on

Robotics and Automation(ICRA’01), pages 4110–4115.

[Paris et al., 2007] Paris, S., Pettré, J., and Donikian, S. (2007). Pedestrian reactive

navigation for crowd simulation: a predictive approach. Computer Graphics Forum,

26(3):665–674.

[Park et al., 2004] Park, S. I., Kwon, T., Shin, H. J., and Shin, S. Y. (2004). Analysis

and synthesis of interactive two-character motions. Technical Note, KAIST, CS/TR-

2004-194.

[Park et al., 2002] Park, S. I., Shin, H. J., and Shin, S. Y. (2002). On-line locomo-

tion generation based on motion blending. In SCA ’02: Proceedings of the 2002

ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 105–

111, New York, NY, USA. ACM Press.

[Pohl, 1968] Pohl, W. (1968). The self-linking number of a closed space curve. Jour-

nal of Mathematics and Mechanics, 17:975–985.

[Popović and Witkin, 1999] Popović, Z. and Witkin, A. (1999). Physically based mo-

tion transformation. In SIGGRAPH ’99: Proceedings of the 26th annual conference

Bibliography 121

on Computer graphics and interactive techniques, pages 11–20, New York, NY,

USA. ACM Press/Addison-Wesley Publishing Co.

[Raibert and Hodgins, 1991] Raibert, M. H. and Hodgins, J. K. (1991). Animation of

dynamic legged locomotion. In SIGGRAPH ’91: Proceedings of the 18th annual

conference on Computer graphics and interactive techniques, pages 349–358, New

York, NY, USA. ACM.

[Reidemeister, 1935] Reidemeister, K. (1935). Knot Theory. BCS Associates,

Moscow, Idaho, U.S.A.

[Rose et al., 1998] Rose, C., Cohen, M. F., and Bodenheimer, B. (1998). Verbs and

adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and

Applications, 18:32–40.

[Safonova and Hodgins, 2007] Safonova, A. and Hodgins, J. K. (2007). Construction

and optimal search of interpolated motion graphs. ACM Transactions on Graphics,

26(3):106.

[Saha and Isto, 2006] Saha, M. and Isto, P. (2006). Motion planning for robotic ma-

nipulation of deformable linear objects. Proceedings of IEEE International Confer-

ence on Robotics and Automation (2006), pages 2478–2484.

[Saha and Isto, 2007] Saha, M. and Isto, P. (2007). Manipulation planning for de-

formable linear objects. IEEE Transaction on Robotics, 23:1141–1150.

[Shapiro et al., 2007] Shapiro, A., Kallmann, M., and Faloutsos, P. (2007). Interactive

motion correction and object manipulation. In I3D ’07: Proceedings of the 2007

symposium on Interactive 3D graphics and games, pages 137–144, New York, NY,

USA. ACM.

[Shi et al., 2007] Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B.

(2007). Mesh puppetry: cascading optimization of mesh deformation with inverse

kinematics. ACM Transactions on Graphics, 26(3):81.

[Shin et al., 2003] Shin, H. J., Kovar, L., and Gleicher, M. (2003). Physical touch-

up of human motions. In PG ’03: Proceedings of the 11th Pacific Conference

on Computer Graphics and Applications, pages 194–203, Washington, DC, USA.

IEEE Computer Society.

Bibliography 122

[Shin and Oh, 2006] Shin, H. J. and Oh, H. S. (2006). Fat graphs: constructing an

interactive character with continuous controls. In SCA ’06: Proceedings of the

2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages

291–298, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Shum et al., 2008a] Shum, H. P. H., Komura, T., Shiraishi, M., and Yamazaki, S.

(2008a). Interaction patches for multi-character animation. ACM Transactions on

Graphics, 27(5):1–8.

[Shum et al., 2007] Shum, H. P. H., Komura, T., and Yamazaki, S. (2007). Simulating

competitive interactions using singly captured motions. Proceedings of ACM Virtual

Reality Software Technology 2007, pages 65–72.

[Shum et al., 2008b] Shum, H. P. H., Komura, T., and Yamazaki, S. (2008b). Sim-

ulating interactions of avatars in high dimensional state space. ACM SIGGRAPH

Symposium on Interactive 3D Graphics (i3D) 2008, pages 131–138.

[Si and Gaertner, 2005] Si, H. and Gaertner, K. (2005). Meshing piecewise linear

complexes by constrained delaunay tetrahedralizations. In Proc of the 14th Interna-

tional Meshing Roundtable, pages 147–163.

[Smith, 2007] Smith, R. (2007). Open dynamics engine. http://www.ode.org/.

[Sorkine et al., 2004] Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C.,

and Seidel, H.-P. (2004). Laplacian surface editing. In Proceedings of the Euro-

graphics/ACM SIGGRAPH Symposium on Geometry Processing, pages 179–188.

[Stewart and Trinkle, 1996] Stewart, D. and Trinkle, J. C. (1996). An implicit time-

stepping scheme for rigid body dynamics with coulomb friction. International Jour-

nal for Numerical Methods in Engineering, 39(15):2673–2691.

[Sumner and Popovic, 2004] Sumner, R. W. and Popovic, J. (2004). Deformation

transfer for triangle meshes. ACM Transactions on Graphics, 23(3):397–403.

[Sutton and Barto, 2005] Sutton, R. S. and Barto, A. G. (2005). Reinforcement Learn-

ing: An Introduction. A Bradford Book, The MIT Press.

[Tak et al., 2000] Tak, S., young Song, O., and Ko, H.-S. (2000). Motion balance

filtering. Computer Graphics Forum, 19(3):437–446.

Bibliography 123

[Takamatsu et al., 2006] Takamatsu, J., Morita, T., Ogawara, K., Kimura, H., and

Ikeuchi, K. (2006). Representation for knot-tying tasks,. IEEE Transactions on

Robotics, 22(1):65–78.

[Treuille et al., 2007] Treuille, A., Lee, Y., and Popovic’, Z. (2007). Near-optimal

character animation with continuous control. ACM Transactions on Graphics,

26(3):7:1–7:7.

[Van De Panne and Lamouret, 1995] Van De Panne, M. and Lamouret, A. (1995).

Guided optimization for balanced locomotion. In Terzopoulos, D. and Thalmann,

D., editors, 6th Eurographics Workshop on Animation and Simulation, Computer

Animation and Simulation, September, 1995, Eurographics, pages 165–177, Maas-

tricht, Pays-Bas. Springer.

[Wakamatsu et al., 2006] Wakamatsu, H., Arai, E., and Hirai, S. (2006). Knot-

ting/unknotting manipulation of deformable linear objects. International Journal

of Robotics Research, 25(4):371–395.

[Wang et al., 2008] Wang, J. M., Fleet, D. J., and Hertzmann, A. (2008). Gaussian

process dynamical models for human motion. IEEE Transactions on Pattern Recog-

nition and Machine Intelligence, pages 283–298.

[Wang et al., 2009] Wang, J. M., Fleet, D. J., and Hertzmann, A. (2009). Optimizing

walking controllers. ACM Transactions on Graphics, 28(5):1–8.

[Witkin and Kass, 1988] Witkin, A. and Kass, M. (1988). Spacetime constraints.

Computer Graphics (Proceedings of SIGGRAPH 88), 22:159–168.

[Wooten and Hodgins, 1996] Wooten, W. L. and Hodgins, J. K. (1996). Animation of

human diving. Computer Graphics Forum, 15(1):3–13.

[Xu et al., 2007] Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., and Guo, B. (2007). Gra-

dient domain editing of deforming mesh sequences. ACM Transactions on Graph-

ics, 26(3):84.

[Yamane et al., 2004] Yamane, K., Kuffner, J. J., and Hodgins, J. K. (2004). Synthe-

sizing animations of human manipulation tasks. ACM Transactions on Graphics,

23(3):532–539.

Bibliography 124

[Yamane and Nakamura, 2003] Yamane, K. and Nakamura, Y. (2003). Dynamics fil-

ter - concept and implementation of online motion generator for human figures.

IEEE Transactions on Robotics, 19(3):421–432.

[Ye and Liu, 2010] Ye, Y. and Liu, C. K. (2010). Synthesis of responsive motion using

a dynamic model. Computer Graphics Forum, 29(2):555–562.

[Yin et al., 2008] Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. (2008). Con-

tinuation methods for adapting simulated skills. ACM Transactions on Graphics,

27:Article 81.

[Yin et al., 2007] Yin, K., Loken, K., and van de Panne, M. (2007). Simbicon: Simple

biped locomotion control. ACM Transactions on Graphics, 26(3):Article 105.

[Zayer et al., 2005] Zayer, R., Rössl, C., Karni, Z., and Seidel, H.-P. (2005). Harmonic

guidance for surface deformation. Computer Graphics Forum, 24(3):601–609.

[Zhou et al., 2005] Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and

Shum, H.-Y. (2005). Large mesh deformation using the volumetric graph laplacian.

ACM Transactions on Graphics, 24(3):496–503.

[Zhou et al., 2010] Zhou, K., Xu, W., Tong, Y., and Desbrun, M. (2010). Deformation

transfer to multi-component objects. Computer Graphics Forum (Proceedings of

Eurographics 2010), 29(2):319–325.

[Zordan and Hodgins, 2002] Zordan, V. B. and Hodgins, J. K. (2002). Motion capture-

driven simulations that hit and react. Proceedings of ACM SIGGRAPH Symposium

on Computer Animation, pages 89 – 96.

[Zordan et al., 2005] Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M. (2005).

Dynamic response for motion capture animation. ACM Transactions on Graphics,

24(3):697–701.

