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Abstract

The use of formal specifications based on varieties of mathematical logic is becoming
common in the process of designing and implementing safety critical systems and
practices for hardware design. Formal methods are usually intended to include in the
specification, all the important details of the final system in the specification, with the aim
of proving that the specification possesses certain properties and lacks other unwanted
properties. In large, complex systems, this task requires sophisticated theorem proving,
which can be difficult and complicated. Telecommunications systems are large and
complex, making detailed formal specification impractical given current technology.
However, formal “sketches” of the behaviours the services provide can be produced, and

these can be very helpful in locating which service might be relevant to a given problem.

This thesis describes CABS, a case-based approach that uses coarse-grained graphical
requirements specification sketches, to outline the basic behaviour of the system's func-
tional modules (called services), thereby allowing us to identify, re-use and adapt re-
quirements (from cases stored in a library), to construct new cases. The matching
algorithm identifies similar behaviour between the input examples and the cases stored in
the case library. By using cases that have already been tested, integrated and im-
plemented, less effort is needed to produce requirements specifications on a large scale.
Using a hypothetical telecommunications system as an example, it will be shown that a
comparatively simple logic can be used to capture coarse-grained behaviour and how a
case-based approach benefits from this. The input from the examples is used both to
identify the cases whose behaviour corresponds most closely to the designer's intentions,
and also in the process of adapting, validating and, finally, verifying the proposed

solution against the examples.
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Chapter:

1. Introduction

Requirements play an important role throughout system development and the lack of
validated, verified and easily accessible requirements has been suggested to be one of the
main areas of focus in requirements engineering [Bubenko 95]. State-based modelling is
one of the ways used in practice to tackle this. A conventional use for state-based
modelling in telecommunications services is in describing the precise behaviour of those
services. Unfortunately this form of detailed modelling is prohibitively expensive for
realistically sized problems.lThis thesis describes a different role for state based models -
not as precise behavioural descriptions but as "sketches" of key features required by a
client. These features are used by a case-based reasoning (CBR) system to suggest

existing services which might be adapted to the clients’ needs.

The core of the thesis is in the CBR matching system but, in order to provide this, we
need to solve a set of subsidiary problems: how to describe required behaviours at an
appropriate level of detail (just sufficient to discriminate cases); how to refine the input
examples if (as is likely) the first draft of this isn’t sufficient; how to test if the required
behaviour is included in the proposed and selected solution (by simulation and

automated verification identifying where the behaviour differs).



2 CHAPTER 1. INTRODUCTION

1.1 Functional Requirements, Problems and Benefits

The application domain that has been chosen is telecommunications services and, in
particular, telephone services. Telephone services are a non-trivial domain where
hundreds of different services and variants of services have been implemented in
telecommunications switches and where the number of services and demand for new
services is increasing. Most big telecommunications companies have tried to apply
formal methods to the specification of telecommunications services, due to the stringent
requirements for reliability in telephone networks and, in particular, the demand that no
additional functionality should affect the basic functionality, such as calling an
emergency service. The application domain is in fact so complex and large, that formal
requirements specifications have not been applied in practice. In the 1970s, research
started in earnest on formally specifying systems and, by the late seventies and early
eighties, industry assumed that research progress was sufficient to bring the knowledge
and research results into practical use [Hsia, Davis, Kung, 93]. A number of large scale
projects were initiated to introduce formal requirements specifications. In most areas,
formal methods did not deliver on their early promise [Zave 91]; a number of

explanations for this are given in [Hall 90].

The size of the application domain (functional requirements of telephone services) used
for reference in this research, is large enough to be non-trivial and to confront a number
of issues arising from a full scale application. Seventeen behavioural outlines of
telecommunications services (the behaviour seen from the point of view of a phone user
without describing any of the complex behaviour occurring in the telecommunications
network) have been formalised and used in evaluation. Each service contains a number
of transition rules', representing the behaviour of the service, and a number of term

definitions connecting the specification of the system to its environment.

" Transition rules and term definitions will be explained in Chapter 5.
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Mainstream requirements capture tools in telecommunications are informal and
methodology centred and do not require any particular notations of formalisms
(Ericssons” PROPS method for example). In the state of the art requirements capturing
tool Rational Rose use-cases are used to capture an initial sketch of the behavioural
requirements. Rational Rose will be introduced at Ericsson to be used as their main
requirements capturing tool. Use-cases capture examples of behaviour. Different
notations can be used in the method depending on the application domain and user
preferences. For example the unified modelling language, UML, is recommended for
static modelling of objects and their relations. Informal requirements in
telecommunications have in a number of cases been shown to be expensive (for an
unconfirmed example se Section 2.3.1), leading to legal problems over the exact
meaning of the informal requirements once a functionality is delivered that does not
meet the customers expectations. Informal requirements have also led to
misunderstandings in the design and implementation, causing serious problems, faults
and down time in telecommunications systems (an example of this is given in Chapter 2).
It has been claimed that poor quality software is costing UK industry £2000 million
every year, and that many failures have their roots in informal requirements and

specifications [Schofield 92].

These problems are the main reasons for the interest in formal methods from major
telecommunications companies. Formal specifications based on varieties of mathematical
logic are being used more frequently in the design of safety critical systems. Formal
methods are usually intended to include all important details of the final system in the
specification, with the aim of proving that it possesses certain properties and does not
exhibit other unwanted properties. Fully formalised requirements are today mostly used
for well isolated problems where the number of states are less than a few thousand, for

example used in protocol specifications. It is believed that a wider use of formal methods

Ericsson is one of the largest communications supplier for network operators, service providers,

enterprises and customers and employees more than 100,000 people in 140 countries.
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would reduce problems caused by textual requirements and formal specifications are
successfully used for many different tasks, but limitations in tools and graphical
notations limit their use today [Jensen 97]. Telecommunications services in general
include hundreds of thousands of states and have been resistant to such rigorous
methods. Isolated parts of the behaviour of services have been formalised but even here
the number of states has been exceeding the limit of performance of available tools
[Capellmann, Christensen, Herzog 98]. Major telecommunications companies started
investigating formal methods thoroughly in the eighties ([Zave 91], [Funk, Reichman 90]
[Kelly, Nonnenman 91]) but none use formal methods routinely in service and feature
requirements. In large, complex systems, this task requires sophisticated theorem proving,
which can be difficult and complicated. Telecommunications systems are large and
complex, making their detailed formal specification impractical with current technology.
Sometimes, the formalism or combination of formalisms is so complex that even experts
in formal methods find it difficult formally to represent some aspects of the system to be
specified [Mataga, Zave 93]. Some researchers doubt that existing methods will scale up

to such complex systems [Heimdahl, Leveson 95].
1.1.1 Previous Experience and Domain Related Problems

In 1985 Ericsson Research & Development started to explore formal methods inl detail.
In autumn 1985 I was employed in an industrial project at Ericsson at the department of
computer science involved with the task of bringing formal specification into use in
industry for the specification of computer based systems. During the following six years,
we collaborated with the University of Stockholm, the University of Uppsala, Stanford
University and the Swedish Institute of Computer Science (SICS), amongst others. The
main task was to develop a formal notation and implement a prototype to explore the use

of formal methods in industrial applications such as telephone service requirements. A
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large coarse grained formal specification of sixteen telephone services’ was made [Funk,
Raichman, 90] where the main behavioural requirements of the services where captured.
Most effort was put into exploring and choosing a suitable formal notation expressive
enough to capture these requirements but not more expressive than necessary, to enable
simulation and analysis of the requirements. The chosen logical notation for this research
is based on the results used in the formal methods project at Ericsson (see Appendix A
and [Funk 93]). The logical notation was expressive enough to be used in formalising
coarse grained telecommunications service specifications on a high abstraction® level but,

for different reasons (lack of resources being one), we had not addressed sufficiently:

1. Re-use and modification of previously specified services or parts of services. The most
frequent situation in the domain of telecommunications service specifications is the

specification of services similar to previous ones.

2. The issue of iteratively refining and incrementally extending requirements that

originally where sketchy, incomplete and contained errors.

3. End users with background in systems design and programming did not accept the
idea of using the formal notation to specify services at Ericsson. Their interest in

formal methods was high until they where confronted with logical axioms. Even

¥ A telephone service (such as divert calls) in Europe is called a feature in the United States. Service is

used here and the word feature always refers to features in case-based reasoning (as described in

Chapter 6).

4 o . . F
At the beginning we had hoped to define a formal notation expressive enough to capture the
complete detailed behaviour of telecommunications services (concurrently occurring events,
parallelisms, timing constraints, nondeterminism, etc.), but realised that this had to be abandoned if

we at the same time wanted to have access to simulation and powerful analysis methods.
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showing slides with logical or mathematical notations drastically reduced any interest

earlier shown.

These factors contributed to the cancellation of the project in 1992 (started in 1985,
about 40 man years where invested). A related project implementing a full scale theorem
prover for service requirements specifications with a graphical interface [Ridley, Ho6k,
Engstedt, Lapins, Lindroos 97], started in 1993 and was successfully completed
technically but cancelled in 1997. The logical notation and the theorem prover was
implemented in C++ and Erlang® and proved to be sufficient for full scale use for service
specifications. A graphical notation was introduced in parallel with the textual notation
(the notation is based on decision trees and bears no similarities to the one used in this
research) and required knowledge in logic and formal methods which turned out to be
more than any users were prepared to accept. Also, the problem of re-use and refinement
of service sketches was not further explored (and was not a defined part of this project).
Ericsson is at the moment not actively involved with formal methods for requirements

specifications of telecommunications services.

1.2 Capturing and Formalising Requirements

In this research, some of the main features of traditional “strong” use of formal
methods are sacrificed in the requirements capture process: we do not require the
specification to be correct and complete from the start. In many application domains,
including the telecommunications domain, original requirements are often sketchy ideas
and it is not always justified to force the user to give complete and correct requirements
from the start [Cybulski 96]. Requirements capture is seen as an iterative refinement

process of some initial requirements that are incomplete (lacking details, missing

? Erlang is a concurrent functional programming language developed at Ericsson and widely spread

both for prototype programming, complex system implementations and in education and for research

at universities.
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behaviour for different situations such as odd and unusual situations) and may contain

flaws (reflecting a naive or an unclear idea of the functionality that needs refinement).

This approach to formal methods has a number of advantages such as: the rapid creation
of an outline of the new behaviour which is used for identifying similar behaviour, then
simulated and refined until the formalised behaviour reflects a required functionality.
This approach is consistent with what has been called a lightweight approach to formal
methods [Hesketh, Robertson, Fuchs, Bundy 95], where the formal notation has been
chosen to be as simple as possible and just expressive enough to outline the main
behaviour required®. The simplicity of the logical notation enables automated
manipulation, translation and comparison between behavioural requirements
specifications and formalised input examples. This enables re-use if the requirements of

services, previously specified and subsequently implemented, are stored in a case library.

1.2.1 Identifying Similar Behaviour

The main focus for this research is on identifying similar behaviour to enable re-use of
previously specified requirements or parts of requirements. In addition to re-use, iterative
refinement, enabling the user to sketch out the required behaviour without giving all the
details from the start is included, in contrast with the common approach within formal
methods where the user is expected to produce complete and correct requirements from

the beginning. The aims of this prototype implementation’ are mainly:

6 ; ; ; :
The notation is purposely not expressive enough to represent the full complexity of

telecommunications requirements specifications, such as concurrence, internal communication, etc.

" The system has been implemented in LPA-Prolog (Macintosh/Windows) and the non-graphical parts

are also compatible with SICSTUS-Prolog.
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e To provide a platform where the identification of similar behaviour can be evaluated

(evaluated in Chapter 8).

e To put the matching and re-use in context of case-based reasoning where an initial
sketch of some wanted behaviour is used for identification of similar behaviour that

may be re-used (evaluated in Chapter 8), refined, validated and verified.

1.3 A Scenario Showing how CABS may be Used

To give a framework for understanding CABS (Case Based Requirements Specification
System) and to put the different chapters in context, I will give a brief example of how
someone might use a full implementation of CABS (including some of the extensions
proposed in Chapter 9). I will not dwell in this description on what has been implemented
and what is left for further work. By reading the rest of the thesis, it will be clear what has
been explored in depth and implemented in this research and what has been left for
further improvements. Figure 1.1 gives an overview of how an idea can be taken to a full
specification (se Section 1.3.1). At present, the first formal level used in
telecommunications requirements is mostly SDL (a programming language with
graphical and textual parts often used for telecommunications applications, see Section
2.4), and earlier steps are informal [Eberlein, Halsall, 96a]. CABS acknowledges the need
for a tool where the behaviour of a new service can be sketched at an early stage
(although this is only one aspect of the requirements). The customer and service designer
can, after providing some behavioural examples of the required behaviour, explore the
new service by simulation. This is a form of high-level prototyping. CABS is also able to
identify similar behaviour in previously specified services and suggest these as solutions,

to be re-used in whole or in part.

| A | From Service Idea to Formalised Requirements

Let's assume that a service provider comes up with the idea that a new
telecommunications service is needed to increase their income and to attract new

customers. The cloud at the top in Figure 1.1 illustrates such a vague idea of some new
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functionality. The more focused idea might then be to provide phone users with an
emergency service, i.e. if something happens, a specific emergency number is
automatically dialled. The details have not yet been worked out, but the board meeting
assigns a task to one of the telecommunications service sales employees which is to
produce a proposal on the functionality, and to acquire an estimate of how much it

would cost to order the functionality from a telecommunications company.

Sketching & Rapid
Prototyping Environme% O

sketching, concretising
aided by re-use, simulation
and verification

£ 4
Customer and service designer

Service Requirements

Formalised using a
lightweight approach,
validated and verified.

Traditional Requirements
Engineering and Design Environment

Use- Cases

refinement,
integration,
expansion

Fully detailed, formalised
functional requirements
with interactions and some
design decisions

Figure 1.1: From an idea via formalised requirements sketches to a full specification.

The sales employee makes a mental picture of how the new service would work from a
phone user’s point of view. Traditionally, a large text document containing requirements

of the new telecommunications service, interwoven with descriptions of functionality,
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restrictions, limitations, implementation details etc. would be produced. Once the service
is ordered and delivered half a year later, it is hoped that it meets the customers needs
and the informal requirements. If not, the company may face legal proceedings on the

meaning of the requirements specification documents.

If she was using CABS, the service designer would make a number of sketches of the
behaviour of the new functionality (as seen from the telephone user’s point of view) in
the graphical editor illustrated in the top left picture in Figure 1.1. The service designer
would first sketch some examples of the most common use of the service. The most
frequent behaviour may be: if a telephone user has an emergency service set up and he
lifts the phone but is not able to dial a number (for example a diabetic in distress, unable
to dial a telephone number but able to lift the receiver), a previously selected number will
be dialled after a short delay (to make sure it is not a normal call). The receiver of the
call would need to have the existing telephone service Callers Display to see who is
calling, and can then decide what action to take For example, he might send an
ambulance/doctor/nurse or call the neighbours to check the situation). The service
designer may also decide to provide examples of the expected behaviour if the called

number is busy or if there is no answer.

Once these examples have been given as behavioural example sketches, the sales
employee asks the system to probose a solution. A matching algorithm searches a case
library where all previously formalised and implemented telephone services are stored,
and identifies a number of services that exhibit similar behaviour. The user inspects them,
reads some brief textual descriptions of them and may explore some of them in greater

depth by simulating their behaviour with the simulator provided®. The system also points

2 Simulating their behaviour involves initialising a number of phones and setting up the different
services for the different phones. The user lifts the receiver with a mouse click on the computer

screen and tests out the behaviour as if real telephones were involved.
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out where differences exist between the sketches of the behaviour and the formalised

behaviour.

The service designer may decide on one proposal that is close in behaviour and already
implemented by another company having a large number of residential care homes,
where the individual guests live in their own apartments but have a reception with a nurse
and part-time medical doctor. The service has been in use for 6 months, and after 3
months of use, the customer ordered an extension of the service since the staff quickly
found out that they needed three alternative choices of numbers (reception, nurse,
doctor). When exploring the service further (using the simulator) she finds that the
emergency numbers can only be changed by the receptionist. After considering the
customers that her company intends to target, she decides to add the possibility for the
telephone user to change the emergency number list themselves. She gives some
examples of this behaviour and makes a selective match using only these input examples,
and finds that the service divert call has a set-up functionality that fits the needs well and
which only needs minor adaptation of the behaviour. The sales employee calls the
technical service support at the telecommunications company they use and also transfers
the input examples and selected solutions (middle square box in the Figure 1.1). A
requirements engineer receives the formalised requirements, simulates and verifies them
together with all other services the customer has to identify interaction and also uses
traditional methods to look at how a design of the functionality can be made together
with an estimate of the cost. One hour later, the customers sales person gets a proposal
back which contains a service which includes the desired behaviour and where all the
functional behaviour has been formalised (bottom square box in the Figure 1.1, all
packaged into a simulation environment easy to use for the customers sales person). The
sales person validates and verifies the service and, at the next board meeting, she
demonstrates the functionality of the new service by simulating it on her PC with
connection to a number of telephones. The decision is then made to go ahead and order
the service which is delivered by re-using parts of the implementation from the similar

services.
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1.4 Structure of Thesis

Chapter 2 gives a brief background in requirements engineering, formal methods, case-
based reasoning and graphical notations, with references to related and relevant
literature/research. In Chapter 3, a brief overview and introduction to the problems
directly addressed in this research are given. Chapter 4 shows the graphical input
examples and defines the syntax and the detailed information that may be added. The
case library and everything stored in it is explained in Chapter 5. Definitions of equal
and similar behaviour and how these can be translated into a set of features used to
identify cases in the case library that have similar behaviour is explained in Chapter 6. In
Chapter 7, the design process from an informal idea of a new behaviour to validated and
verified formal requirements is explored. Chapter 8 contains an evaluation where the
ability to identify similar cases is explored, along with ways in which a solution can be
partially evaluated against the input examples. Further work and ideas of improvements
are given in Chapter 9. Chapter 10 gives a summary and the conclusions of the research.
Appendix A defines the logical notation used by CABS as internal representation.
Appendix B contains a glossary of a number of telecommunications terms. Appendix C
contains all the formalised telephone services stored in the case library and used for
evaluation. Appendix D contains all the input examples used for evaluation in Chapter 8.

Appendices E, F and G are reviewed papers, published during the research.



Chapter:

2. Background

This chapter describes interesting areas related to this research project:
e Requirements engineering.
e Formal methods, their benefits and limitations.
e Examples of formal methods in telecommunications.

e Visual notations for state based systems, both telecommunications oriented and

generic notations (SDL, MSC, PTNs, Petri nets, etc.).

Case-Based Reasoning applied to specification and design tasks.

A brief background from the perspective of this research is given for these areas and

some references are given to enable the reader to investigate them in greater detail.

2.1 Requirements Engineering

In system development, a major task is to establish in detail what the system is supposed
to do. Requirements engineering is concerned with capturing, analysing and defining
precisely the tasks the system should perform. This includes formalisation, re-use and
evaluation of the system and its requirements. Identifying the requirements is an essential

element of system development. Faults/misunderstandings at this level are often very

13



14 CHAPTER 2. BACKGROUND

difficult and costly to correct at later stages. Many faults in systems are traced back to
requirements capture and specification stages, and are believed to cause a large
proportion of industrial costs for poor software (estimated by the UK Department of
Trade & Industry to be above £2000 million per year) [Schofield 92]. In addition to this,
many systems tackle wicked problems [Sommerville 96] where the true nature of the
problem first emerges when they are solved during development. Telephone services
may be classified as wicked problems. Even if their coarse grain characteristic behaviour
is simple, interaction and unusual situations can be difficult to identify and predict, and
are often first identified when implemented. Prototyping may be useful in identifying
and solving wicked problems, since these difficulties may be encountered in a prototype
and can be solved before a full implementation is made. If prototype development by
programming is impractical, too costly, or not feasible for other reasons, simulation of
behavioural requirements may be considered (this approach is used in CABS).
Simulation and prototyping provide new knowledge, as Herbert Simon elegantly
expresses it: Firstly, “even if we have the correct premises, it may be very difficult to
discover what they imply” and secondly, “All correct reasoning is a grand system of
tautologies, but only God can make direct use of that fact. The rest of us must
painstakingly and fallibly tease out the consequences of our assumptions.” [Simon 81,

page 19].

A requirements specification should be open to different implementations as long as the
implementation reflects fully the required behaviour, and excludes all unwanted
behaviour. Implementation of telephone services has been achieved on a variety of
systems (mechanical, electronic and digital), in different programming languages and

programming paradigms (centralised, distributed, concurrent).

A lot of research effort is focused on re-use, and it is assumed that the full potential of
re-use in system development is far from fully exploited. Re-use by categorisation is one
of the main research activities in requirements engineering [Maiden, Mistry, Sutcliffe, 95]

and categorisation is essential to the identification of relevant parts for re-use.
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In program development, re-use is performed by identifying and using program
components or objects from a software library. The amount of code re-used is dependent
firstly on the classification and description of the parts so that they can be identified
when needed, and secondly on how well re-use is incorporated into the system
development process. Automated identification and re-use of software that has not been
classified manually is difficult. Most program code is context dependent (the
interpretation of a program statement is dependent on the previous and following
statements) and allows a lot of freedom to construct a program in a personal style,
making automated identification and re-use difficult (although there is ongoing research
in this area). Behavioural requirements are sometimes less complex than code because
not all the details are included in the requirements. If a formal method restricts the
possible ways in which a behaviour solving a particular problem can be described,
comparison between different requirements is facilitated, and automated identification of

parts that may be relevant for re-use will benefit.

2.2 Formal Methods

Since the 1960s, formal methods have been of growing interest, and have been targeted
with increasing research effort. Formal methods are often regarded as a scientific
approach to software development [Hall 90]. Formal methods allow precise specification
of some aspects of a system; informal specifications are often imprecise, incomplete and
ambiguous. A wide variety of formal representations are available which are suited to
different tasks in requirements specification and the system development process
[Barroca, McDermid, 92]. However, formal notations are not suitable for everything in
the requirements and design process, and it is important to carefully select those parts for
which they are used [Bowen, Hinchey, 95]. One of the main principles applied when
choosing formal representations for requirements engineering is that “a formal
representation should be as simple as possible, but no simpler.” [Zave, Jackson, 97, page
106]. Technological advances and increased expressiveness in formal representations are
important in order to tackle new and demanding application domains. However, a formal

representation with the ability to capture everything would be complicated. Thus,
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expressiveness has a price in terms of automated reasoning capabilities, executability,
proof of consistency, level of mathematical skill needed to understand and use a
formalism, etc. Carefully choosing a simple but sufficiently expressive formal notation
[Wing 90] is an important task when using formal notations, and limiting expressiveness
is a major approach to taming the combinatorial explosion in production systems
[Acharya 94]. Sometimes in formal methods, more research effort has been directed
towards expressive formalisms that are generic and capture as many aspects and details
(such as timing constraints, indeterminism, probabilities, concurrency, etc.) of the system
as possible [Johnson, Benner, Harris, Sanders, 93], than into embedding the formalisms in
some system development method which facilitates requirements capture and aids the

transfer of requirements into a formal notation.

Since the 1980s, formal methods have been used in industry for safety critical
applications (avionics, railway signalling systems, power plant control systems, medical
electronics, VLSI  design), and are often applied by highly skilled
mathematicians/logicians using semi-automated theorem provers. Outside these areas, the
use of formal methods is less common. Even so, a number of successful individual
projects have been reported [Cleland, MacKenzie, 1995]. There is an increasing demand
for the use of formal methods in safety-critical systems, for example the UK Ministry of
Defence (MoD) strongly recommends formal notations, analysis of consistency and
completeness in specifications of safety-critical components and software [Bowen,
Hinchey, 95]. The interest in and demand for formal methods for security-sensitive
applications such as telecommunications, traffic signalling systems, share dealing systems,
banking and finances, is increasing. It is believed that making the use of formal methods
easier for non-mathematicians would enable a wider use of formal methods in security-
critical/sensitive applications. One factor holding back a wider use of formal methods is
“maths scare” amongst designers and programmers [Hall 90]. Furthermore, greater care
in identifying which formal methods are suitable for which problem is needed, as the use
of an unsuitable formal notation may cause a project to experience difficulties or even

fail.
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The main issue of this research is to show that it is possible to identify similar behaviour

to enable requirements capture and re-use in a case-based reasoning system. Some

related issues have been briefly explored and addressed to enable exploration and

validation of the main focus of this research, which is the identification and re-use of

similar behaviour:

1.

Help users to give more accurate requirements.

Addressed in CABS: Sketching input examples exemplifying the behaviour of
some required functionality that are used to identify similar behaviours enables the
user to re-use previously formalised and implemented specifications. They can be
simulated and verified using a case-based reasoning approach which is hoped to
aid the user in identifying problems at an early stage compared with traditional
approaches where the first formalised level is program code. Problems with service
specifications were identified during evaluation that had not been identified before
matching, formalisation, validation and verification of the behaviour which at least

shows that these tools under some circumstances are of benefit.

Reduce errors in the final requirements and system implementation.

Addressed in CABS: By re-using a proposed solution from the case library, errors
will be reduced since the re-used service has already been integrated with other

services and implemented.

Identify and re-use previously specified behaviours that have already been

implemented.

Addressed in CABS: The case-based matching is able to identify similar cases in the
case library that can be re-used in whole or in part as shown in Chapter 8.

Identification and matching is the main focus of this research.

Simplify the task (for non logicians) of creating and modifying formal requirements

specifications.
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e Addressed in CABS: Graphical input sketches combined with transition rules are
believed to be more readily accepted than the direct use of a formal logic. Also, an
iterative refinement process is proposed and supported by CABS. To confirm this
hypothesis, an evaluation with potential users is needed, but this is outside the scope

of this research.

Issues relevant to the task of bringing formal methods to industrial use are explored
more in depth in the following section (Section 2.2.1). If the readers main interest is the

identification and matching similar behaviour reading this section can be omitted.

2.2.1 Issues of Formal Methods and their Relation to this Research

The following are some claims, opinions and critiques about the use of formal methods
which are relevant to the application domain of CABS. Not all of the seven issues are
within the scope of this research but some of them have been addressed to enable
evaluation of CABS’s main issues and others are briefly discussed with some ideas or
references to potential solutions. Selected solution: is a brief description of CABS’s
specific way of addressing them (independent of whether they are a main issue for this

research):

e [t is commonly believed that formal methods are difficult to scale up since expressive
formalisms are often not executable and are only seen as a way of describing

requirements more precisely than with natural language [Hall 90].

= Proposed approach: Choosing a simple logic which is sufficient to formalise the
initial requirements, but not necessarily able to capture the full and final behaviour,
allows us to specify some basic behavioural requirements for the application
domain of telecommunications services and to handle these effectively by

simulation of the initial behaviour, re-use, verification and validation.

= Selected solution: A simple logic tailored to this particular application domain has

been shown to enable re-use by case-based reasoning, simulation and limited
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verification. Also, translation to and from restricted natural language has been

applied for similar notations [Dalianis 95].

® Resistance from non-mathematicians and non-logicians to the use of formal methods

[Zave, Jackson, 96].

= Proposed approach: Bearing in mind the rejection of formal methods by
designers and programmers at Ericsson it is hoped that by using graphical notation
similar to informal or semi-formal notations already used in the application
domain, the acceptance of formal methods will be eased. Textual rules are used in
the domain of telecommunications, transition rules bear similarities to these textual
rules and transition rules can be translated to and from restricted natural language

[Dalianis 95].

= Selected solution: A graphical notation is chosen but no effort has been taken to
make the notation similar to existing notation since this is beyond the scope of this
research and such a notion should be developed in close co-operation with the
final users to warrant for an acceptance. The user is not directly confronted with
the logical notation used internally. A textual representation of transition rules has

not been implemented.

® Formal specifications are difficult to re-use [Hall 90].

= Proposed approach: By using a case-based reasoning approach and a restricted
logical notation, it should be possible to identify parts from a case library that may
be re-used. Identification of cases that are similar to the behaviour exemplified in
the input examples will enable re-use if the same or a similar case exists in the case
library. Also, re-use of individual transition rules may be possible, if the transition

rules are context independent.

= Selected solution: Matching input cases against a case library enables the
identification of similar behaviour (CABS uses an uncomplicated matching

algorithm described in Chapter 6) and evaluated in Chapter 8. Results are
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encouraging and the matching is able to identify the most similar case to sets of
input examples. If no matching case exists in the case library, the matching is able
to identify similar transition rules that may be re-used. The features used for
identifying similar behaviour may need fine-tuning but they have proved to be

fairly robust with the case library used for the evaluation

® Formal methods are often said to be unsupported by tools which allow the user to

iteratively refine and clarify the requirements [Bowen, Hinchey, 96].

= Proposed approach: Design and use an approach based on an iterative refinement
process where an initial idea of some new behaviour can be refined and modified

iteratively until it captures the intended behaviour.

= Selected solution: The CABS approach includes a refinement methodology
supported by the implementation (see Figure 7.1, page 124). The process was used
in the evaluation and no obstacles were encountered. Even if no matching case is
available, the input examples can be used to generate a set of transition rules used
as an initial proposal for the new service (see Figure 7.1). During the evaluation
(Chapter 8), a few unexpected problems were identified both in the input examples
and in the case library, which shows the value of using test cases generated from

input examples.

® Formal specifications are often regarded as difficult to modify [Gotel, Finkelstein,

94].

= Proposed approach: 1) Structuring the telecommunications services as cases (sets
of transition rules), 2) keeping links to the original input examples, test cases, full
specification, etc. (enabling traceability of requirements, from where they originate
and where they have been used) and 3) providing a simulator and automated

verification so that modifications can be explored in depth.

= Selected solution: CABS’s approach is to: 1) structure cases as sets of transition

rules, 2) store all original input examples, informal comments and test, 3) simulate
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and verify cases separately or together with other services. When the behaviour of a
service needs modification, the input examples aid the understanding and
modification process. Test cases identify precisely where the behaviour has been

changed.

® Formal methods are accused of being difficult to combine and integrate with current

system development methods [Bowen, Hinchey, 96].

= Proposed approach: By using a formal notation that can be translated into graphs,
state machines and natural language, and used for simulation (in the same way as
prototypes) and to generate test cases, CABS exhibits desirable features that may

integrate into many systems development methods.

= Selected solution: CABS focuses on re-use and requirements capturing - a process
that is currently hardly supported at all. Nothing in CABS contradicts traditional
system development methods and a system which aids system development would
benefit from the functionality exemplified by CABS. It may even be possible to
translate the output from CABS into the representations used in
telecommunications (SDL, Use-Cases, MSCs, etc.) but this has to be investigated.
Since the formal notation captures state machines, translation to state based

formalisms is possible.

® FExecutable formal methods are often regarded as computationally inefficient.

= Proposed approach: This is often true for advanced formalisms handling
indeterminism and where the application domain is complex. A restricted logic is
proposed for CABS which doesn’t aim to capture all the behaviour of the system
(only the initial behavioural requirements, leaving out unusual behaviour, error
cases, etc.), gives sufficiently fast response times for both simulation and theorem-

proving.

= Selected solution: The CABS system is implemented in PROLOG with acceptable

response time on a desktop computer (response times are below a second for
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simulation and stepwise verification). Matching times are acceptable even if the

case library is considerably larger (see Chapter 8 for details).

Requirements capture is often seen as the main bottleneck in system development
[Bubenko 95]. Using a rigorous formal notation in a lightweight formal approach to
capture the initial behavioural requirements is shown to have some powerful and
desirable features, such as enabling the identification and re-use of previously specified

behaviour.

2.3 Telecommunications and Formal Requirements

Telecommunications have, until recently, been mainly technology driven (limits have
been set by technical constraints), and less application driven. This has changed rapidly
due to the computerisation of telecommunications, which has started replacing technical
limits by limits of imagination and innovation. This revolution will change the demands
and judgements of telecommunications services. Increasing demands for innovative and
creative services with high levels of usefulness, user-friendliness and functionality are
emerging, as they are no longer so tightly limited by the difficulties of implementation in
hardware and software. Bandwidth is still a limited resource, but the bandwidth available
now (and in the near future) is far from fully utilised. One scenario of the future is that
bandwidth will be supplied in the same way as petrol/gas/electricity (Norway and Sweden
allow customers to change their electricity supplier), and the user will make short term
agreements with the supplier offering the best deal on bandwidth. Under this kind of
price competition, telecommunications vendors or independent service providers will
have to provide services adding value to bandwidth supply, such as more sophisticated
telephone services (traditionally call waiting, multi-party calls, re-call, call diversion, levels
of availability/privacy, charge advice, banking and also, increasingly, services based
around the integration of mobile phones/home phones/computers/video/music, etc.).
Changing supplier means, in most circumstances, a changed set of services. Services will
be the supplier’s best assets in such a scenario, and patenting services may be more

relevant than patenting hardware. This puts telecommunications services at the forefront
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of the basic functionality (a basic telephone call) and providers who cannot provide
competitive services to their customers in a short time will see their market share decrease
rapidly. Those suppliers who are able to offer services in which the users are interested,
will attract more customers. Parts used to design and implement services have been
standardised and formalised such as service independent building blocks (SIB’s, [ITU
Q1203], for formalisation see [Nystrom, Jonsson 96]), but telecommunications services
themselves cannot be standardised without stifling competition between operators for

customers.

Telecommunications services can be classified as security-critical (hence formal methods
are of interest and relevance). It is not acceptable that an additional telephone service
should inflict problems on basic functionality such as an emergency call, or cause
problems for other telephone users, (situations which have in fact occurred in the past’).
Formal specifications have been explored as ways of identifying and reducing such
problems in the system development process but are not routinely used. Pamela Zave at
AT&T Bell Laboratories has been active in this area since the late 1970s. PAISLey is an
executable specification language developed by Zave and her research team at Bell
Laboratories over 8 years (from 1979 onwards) [Zave 91]. Her research is now aimed

more at muliparadigmal approaches to requirements specifications, where the underlying

? Call diversion was one of the earliest telephone services provided. The specification and

implementation allowed redirection over many steps. Unfortunately, it also allowed redirection to
the original number. When a user diverted calls to their holiday home and then diverted calls back
from there to their main home, the signalling bandwidth between the two telecommunications
switches was, after a while, used up by phone calls diverted back and forth between them in an
infinite loop. Worse still, a restart of the telecommunications switch left the diverted number
unchanged, causing the same problem all over again. This might have been prevented with
formalised requirements, which had been validated and verified (in CABS, such loops cannot be

specified and the number of steps that a telephone call can be diverted has to be specified explicitly).
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notation is based on a simple logic [Zave, Jackson, 97]. There are some similarities to
CABS’s formal notation; for example, neither system allows internal events, in order to
keep the formalism and semantics simple and only allow specification of the system’s
externally observable behaviour'’). Using logic as the underlying formalism shifts the
focus from the development of a language suitable for a particular application domain to
the selection of a suitable subset of logic, which is as restricted as possible, but expressive

enough to capture the desired features of the domain.

A different approach to service specification (compared with the PAISLey approach) is
the WATSON system [Kelly, Nonnenmann, 92] also developed at AT&T. WATSON
takes informal textual examples of telephone services (a graphical notation is also
mentioned, but not illustrated), and translates them semi-automatically to a logical
notation (similar to the one used in CABS). After the natural language scenarios have
been given (WATSON was able to handle scenarios of the size of four sentences (50
words), in 1992), the system tries to identify incomplete parts and problems in the
informal description and asks the user yes/no questions (WATSON uses an “off the
shelf” theorem prover and domain knowledge mainly encoded in Lisp). WATSON
produces control flow skeletons together with attached code for some parts. Control
skeletons can then be simulated. Such an approach requires large amounts of knowledge
(encoded, stored and kept updated in WATSON) of requirements specification, design,
implementation and application domain knowledge, to be able to produce control flow

skeletons with attached code from short textual descriptions (such as hardware, network

10 By only specifying the system’s interaction with its environment and not the system’s inner
workings, the specification is kept implementation independent (a black box approach since nothing
of the inner working of the system is exposed). The inner working of the system is left for design
and implementation where hardware and software architecture can be chosen to meet other non-
functional requirements (price, size, security, power consumption, distribution, modularity,

technology, etc.)
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protocols, expected end user etiquette, style of skeleton design, etc.). Capturing a large
application domain knowledge base and keeping it up to date is recognised as a problem
in the WATSON project. This is a large task even for a narrow application domain (which
can be partly bypassed if case-based reasoning can be applied, as discussed in Section

2.5).

A Requirements Assistant for Telecommunications Services tool (RATS) was developed
during a PhD project at the University of Wales [Eberlein 97]. RATS enables the user to
give information in a structured and layered approach, mostly as informal text but also
with links to libraries and in other notations. A high level of tractability is maintained by
keeping references and links between all information objects. The system uses
application domain rules to keep track of what information is still missing, guiding the
user and ensuring that all the necessary information is given (218 user defined rules and
33 constraints are currently used). RATS can ask questions such as “How do you intend
to achieve the goal ‘authentication very important’?”. Once the user has linked all
information with a traditionally produced SDL diagram (production of diagrams is aided
by the structured requirements), RATS’ task is completed. Compared with using large
textual requirements documents (which is the current practice), the structured approach
in RATS has some obvious advantages such as tractability and maintainability (for a

comprehensive analysis of the tractability problem see [Gotel, Finkelstein, 94]).

A formal specification project at ERICSSON Telecommunications (research phase 1985-
1991, implementation phase 1992-1997) was centred more around temporal logic
[Echarti, Stalmarck, 88] and theorem proving than PAISLey and WATSON (the logic
used is similar to the one used in WATSON). The functional behaviour of
telecommunications services is expressed in a logical notation (a graphical notation based
on a tree structure is also added in parallel with some logical expressions); generic
application domain knowledge (a conceptual model) is given in a graphical notation
(directly translated to logical axioms). Simulation enables validation of services, and
theorem proving is used to prove consistency (inconsistencies between application
domain knowledge and services can be identified). Test suites used in

telecommunications for testing implementations can be produced semi-automatically
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from event traces generated by the theorem prover (all possible behaviours up to a
certain length may be generated from the specification) [Ridley 94] [Ahtianen, Chatras,
Hornbeck, Kesti, 94]. Event traces share similarities with Node Usage Cases, used in
telecommunications to guide design and implementation [Ask 94]. The notation used in
CABS is based on the notation used in the research project at Ericsson (the logic has

been simplified and restricted; see Appendix A).
There are three desirable features for service development:
1. A prototype/simulation of the new behaviour is needed to explore new services.

2. Formalisation of the functional requirements, to ensure stable properties and safe

integration with other functionality.

3. Ability to re-use, in order to optimise implementation of new services by re-using

previously specified and implemented services.

If formalised requirements can be used as a prototype, the new functionality can be
explored on its own as well as with other services and both 1) and 2) are covered. If the
formalised requirements can be created by identifying and re-using similar services, then
3) will be solved. Current research explores this approach using a narrower focus than
WATSON (CABS does not aim at code production) to capture, refine, re-use and
produce requirements in the domain of reactive systems'', and to enable simulation of
the new requirements. CABS shares one main ambition with WATSON, in Kelly and
Nonnenmann’s own words: “helping ordinary people (that is conventionally trained
telephone  engineers) achieve extraordinary results (mathematically precise

specifications)”. If the mathematically precise notation can be hidden or encapsulated, it

'! Reactive systems have a direct relation between stimulus and response (input/output) and need

external stimuli to produce a response. An example of a trivial reactive system is a light switch

having two states (on/off), with the stimulus being: switching it on or off.



CHAPTER 2. BACKGROUND 27

may be possible to relax the limitation to conventionally trained telephone engineers
with the ambition that telephone users, sales personnel, etc. should be able to specify their
requirements themselves, if their aim is to capture only the characteristic requirements
(not necessarily consistent and complete, i.e. including all exceptions, odd cases, resolved
interactions). Extending, refining and integrating the new behaviour with other
telecommunications services would need more experienced requirements designers. The
CABS approach takes coarse grained graphical input examples exemplifying the desired
behaviour, identifies similar services and parts of services that may be re-used, and
enables validation (simulation of the behaviour) and limited verification of requirements.
This is a worthy task in itself, and if this can be accomplished and accepted by industry
for the specification of reactive systems, the benefits may, for some application domains,
be sufficient to make it worthwhile incorporating formal requirements into the system
design process. Validation by simulation and verification may be regarded as

prototyping combined with the capability to analyse the behaviour in depth.

2.3.1 Specifications in Telecommunications

Customers (public and private telecommunications suppliers, service vendors, institutions,
universities or even private customers), order specific telephone services which they hope
will meet their needs. One difficulty is that precise informal requirements are difficult to
produce and require a high level of skill. It is easy to find examples where misinterpreted

informal requirements have caused serious problems'?. Formal specification aims to

"2 One story (not officially confirmed) goes that the service three party call was informally specified in
such a way that it was able to reach a situation where four parties were able to speak with each
other. When the three party call service was delivered, the customer insisted on having the four party
situation. This could only be implemented by redesigning the hardware, because the exchange only
had digital mixers capable of mixing three speech connections. Finally, a solution was found: a

trunk line (a connection to another telephone exchange) looping back to the same station, treating
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provide precise and exact descriptions, independent of stakeholders (customers,
engineers, programmers, sales personnel, translators, managers, etc.). Different
abstraction levels (with more, or less detail shown) and views (wether only issues relevant
for a particular perspective are shown) of the requirements may be useful for different

stakeholders [Pohl 94].

Naming something often gives us a false sense of understanding it. It is often surprising
how differently words are defined by different domain experts, definitions which
sometimes even contradict each other. In telecommunications, the expression “User A is
in speech connection with user B” has been defined in the following ways by different

persons:

1. A can hear any sound generated by B.
2. A can hear B and B can hear A simultaneously.

3. Either A hears B or B hears A.

None of the three definitions is incorrect. However, speaking about “being in speech
connection” or “being connected” without agreeing on a definition will cause problems

during specification or, worse, during design, implementation or product verification.

2.4 Graphical Notations

There are two main types of symbolic representations which both use symbolic
expressions:  sentential  representation  (natural language  descriptions) and
diagrammatic/graphical representations. The latter can explicitly capture topological and
geometrical relationships which can only be captured indirectly in a textual

representation [Larkin, Simon, 1987]. There is a growing interest in, and promising

the incoming (two party) call as one external caller and able to connect the incoming call with the
two other parties. This is an expensive solution, but must, in this case, have been estimated to be

less costly than breach of the contract.
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results from, the use of graphical formalisms for knowledge elicitation, specification and
programming (see for example [Hirakawa, Monden, Yoshimoto, Tanaka, Ichikawa, 86],
and [Addis, Gooding, Townsend, 93]). It is obvious that the trend in
interaction/communication involving computers is becoming more graphical oriented
(icons, windows, pictures, animation). For many tasks, graphical notations are claimed to
be more readable than textual language [Mataga, Zave, 94]. For the creative and
exploratory phases of forming new knowledge, visualisation is often essential and the use
of diagrams also aids knowledge elicitation and co-operation between those involved
[Addis, Gooding, Townsend, 93]. In formal methods, advanced specification languages
have been developed which tackle a wide variety of application domains, but the human
aspects of the use of these notations (making them easy to use and understand) have
been slower [Robertson 96]. When new formal notations are created, diagrams are often
used (see for example [Allen 83], [Kowalski, Sergot, 86]), but the final notations are
mostly pure linguistic representations. The role of diagrams is rarely recognised and is,
therefore, underestimated in the communication and conceptualisation process [Addis

941].

Recently, more research effort has been focused on giving informal or semi-formal
graphical notations clear syntax and semantics, and developing new notations to enable
the graphical expression of conceptual models, requirements, dynamic behaviour and
programs. Earlier approaches using conventional state machines or state-diagrams
encountered difficulties when applied to system design, due to the exponential explosion
in the number of states [Harel 87], and were claimed to be hard to read, modify and
refine and not suitable for complex specifications [Martin, McClure, 85]. Different
approaches to overcome these problems have been explored and graphical languages
(often combined with a textual language) are common in system development today; for

example:

e SDL (Specification and Description Language, standardised by the International
Telecommunications Union, [ITU-Z100]). The SDL language contains both a
graphical and textual part. The graphical part is similar to flow charts. The graphical

parts together with the textual part of the language enable the user to describe the
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functionality in such great detail that executable code can be generated directly. Some
formalisation efforts have been undertaken, see for example [Leue 95]. With minor
alterations in the semantics, a subset of SDL can be translated to Petri nets which has
been used for protocol verification at Siemens Telecommunication, Germany

[Regensburger, Barnard 98].

Statecharts [Harel et. al. 90]. A graphical notation designed to make it easier to design
and implement real time systems. Similar to SDL, it has a graphical part and a textual

part and detailed descriptions can be created and used to generate executable code.

Process Transition Networks (PTNs) [Malec 92], [Sandewall 90]. PTNs can be
translated to temporal logic and to a subset of Petri nets. The notation aids
conceptualisation and knowledge acquisition and its simplicity makes it easy to use

for domains in which the expressiveness is sufficient.

Use-Cases [Jacobson, Christerson, Jonsson, Overgaard, 93]. Not a notation in itself, but
which allows different notations or even text documents describing specific examples
of how the system to be designed will behave. Formalisation and graphical syntax is

under development [Regnell, Kimbler, Wesslén, 95].

MSC (Message Sequence Charts describing signalling between objects in a distributed
system). A widely used graphical trace language for communicating entities. MSCs
may also be used for requirements specifications with a set of suitable tools [Ben-

Abdallah, Leue 96].

Petri Net notations [Jensen 97] are a graphical notation enabling behavioural analysis
and model checking. The notations are often regarded as complicated for non
logicians and this is sometimes overcome by translating to Petri nets from specialist
languages. For example some parts of SDL (with slightly altered semantics) can be
translated to Petri nets in order to enable model checking [Grahlmann 98]. Since Petri
nets are emerging as a common formal notation into which other notations more close
to notations used in different application domains can be translated, Petri nets are

described in more depth in Section 2.4.1.
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These languages are all more expressive than is required for the approach taken in
CABS, and include different types of concurrency which is often useful or essential when
designing a complex system. In most larger systems, such as telecommunications, the full
functionality is difficult to describe with a state transition notation as the number of states
will by far exceed the number of states that can be practically handled in available
notations. Even so, examples, scenarios and sketches of behaviour for different aspects of
a system’s functionality can be expressed with state-flavoured style, which is often done
informally to complement textual descriptions. An important aspect of CABS is that the
graphical notation used is not intended to be a traditional state-based notation capturing
a finite state machine: a diagram in the notation used may represent a large set of state
machines enabling the user to sketch a behaviour, ignoring details and avoiding
confrontation with the so called state explosion. The notation used in CABS captures the
initial (design independent) sketches of behavioural requirements before design
decisions have been taken'? (the graphical notation for CABS is described in Chapter 4).
Little consideration and time has been spent on what graphical formalism is most
appropriate for the application domain, bearing in mind that the main research
contribution is the identification of similar behaviour. Graphical representation may
provide greater benefit if it has been adapted to the application domain and to a specific

set of users [Robertson 96], but to do so is beyond the scope of this research.

= Design decisions are, for example, dividing the system into communicating entities, internal
concurrency, communication mechanisms, etc. An example of how deeply design decisions are
included in these formalisms would be to use, for example, MSC diagrams with signalling switches
to specify a telecommunications service, and implement the functionality using the internet, instead
of a network of signalling telecommunications switches (most of the “specification” would be

irrelevant™).
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2.4.1 Petri nets

Petri nets are used as a powerful algebraic graphical notation for communicating
automata and are expressive enough to capture systems where concurrent events occur.
This is beyond the ability of the chosen notation for CABS but both Petri nets and input
examples are state (in CABS a node denotes all states the which the given restriction
hold) and transition oriented. Petri nets developed by C. A. Petri in the sixties were the
first general theory for discrete parallel systems. Petri nets have proven to be well suited
to describe concurrency. A wide variety of Petri Net notations exist which either extend
the expressiveness to new classes of problems or make them easier to use. Examples of
extensions are high-level Petri nets, timed Petri nets, stochastic Petri nets and Coloured
Petri (CPN) nets [Jensen 97]. Petri nets have always had a precise formal definition which
enables the use of powerful analysis tools (e.g. SPIN [Holzmann, Peled 94]) that can be
used to prove different properties of Petri nets. Also, there is n on-going effort to

standardise Petri nets.

Lately, Petri nets have emerged as a common notation for different graphical notations
adapted to specific application domains. These notations are translated into Petri Boxes, a
special kind of low level Petri nets enabling a wide variety of verification techniques such
as model checking, verification and application of reduction algorithms [Grahlmann 98].
Both SDL and MSCs have been translated into Petri nets in order to use verification tools

developed for Petri nets.

Petri nets look similar to input examples in CABS as shown in Figure 2.1 below (a low-
level Place/Transition Net) where the right example is a Petri net and the left example is
an input example for CABS as described in Chapter 4. The Petri net has been designed to
visually look as similar as possible to the input example for CABS, it has not been
explored whether the two examples are semantically equal. Even though the examples
look similar, the terminology and way of thinking is different. Petri nets are built with
places, input transitions, output transitions, input arcs, output arcs and tokens [Jensen 92].
Places can hold one or more tokens (in the example, there are two telephone tokens), arcs

have the capacity to hold 1 or more tokens (the default being one), transitions have no
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capacity (cannot hold a token). A transition is enabled if the places with arcs leading to
the transition have a number of tokens greater than or equal to the capacity of the arc
(default capacity being one). During execution of a Petri net, the tokens will move
around in the net and the number of tokens may vary. When using a Petri net, terms such
as synchronisation, concurrency and merging are difficult to avoid. The Petri net
example in Figure 2.1 contains the primitive constructions: synchronisation (e.g. the
processes “ring tone a” and “ring signal b” are synchronised by starting the transition
“dialling idle b”), concurrency (e.g. “ring tone a” and “ring signal b” are two
concurrent processes started by the transition “dialling idle b”") and merging which are
not used in CABS when sketching the behaviour of telephone services. In high level Petri
nets, a token can contain complex data and may describe the entire state of the process or
data base. For the input example in the notation for CABS, each node has facts that are
expected to be valid, and all states in which these facts are true are denoted by the node.
For more details see Chapter 4, and for details on facts for the nodes in the CABS input
example see Appendix C.3. The additional facts for nodes in CABS notation may
indicate that high level Petri nets are the closest of these dialects to CABS (tokens in low-
level Petri nets cannot carry any data). On the other hand, high level Petri nets have a
larger vocabulary such as functions (ML is used in CPN), markings, initialisation
expressions, guards and are able to express process invocation, different types of loops
and procedure calls. Kurt Jensen states: “Making a CPN model is very similar to the
construction of a program” [Jensen 92]. This may be very useful when specifying and
designing a complex concurrent system but is much more than CABS needs for initial

sketches of required behaviour.
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Figure 2.1: Input example in CABS and Petri net example

25 Case-Based Reasoning

The central concept of case-based reasoning is expressed by Riesbeck and Schank as:
“... the essence of how human reasoning works. People reason from experience. They
use their own experience if they have a relevant one, or they make use of the experience
of others ...” [Riesbeck, Schank, 1989, page 7]. Aamodt and Plaza’s picture, Figure 2.2,
illustrates the main ideas of case-based reasoning: a problem is given in the top left
corner, similar cases are retrieved from a case library and the most suitable case is
selected and re-used. The most suitable case may need to be revised to solve the problem.
If the solution is approved, the problem and its solution are stored in the case library.
Next time a similar problem is encountered, less adaptation of the retrieved case may be

needed and the performance will increase if similar problems are often encountered and

the features identifying similar cases are good enough.
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Figure 2.2: General architecture of a case-based reasoning system. Adapted from

[Aamodt, Plaza 94].

If a rule based system produces a particular solution, or fails to do so, it may not always
make sense to look at individual rules that produced the result [Jackson 90]. Looking at
a previous case that has solved a similar problem may, for some situations, be easier to
understand because cases provide a context for understanding [Kolodner 93]. A case-
based system may also adapt to changing demands, for example, if a new type of
problem not previously encountered is solved (if no similar cases are available, a solution
to the problem is most likely to be produced manually). The solved problem and its
solution are stored in the case library as a new case, with the aim of expanding its

competence [Aamodt 93]. The next time the system encounters the same or a similar
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problem, the system will have increased its potential to produce a solution. It is more
likely that, in a rule based system, the rules would need to be updated to include this new

class of problems.

Case-based reasoning may be suitable for problem areas in which the knowledge of how
a solution is created is poorly understood [Watson 97], e.g. the creation of formal
requirements of telecommunications services from a set of behavioural examples. The
WATSON system, described in Section 2.3, is one of the few research projects taking on
the task of formally capturing knowledge about how telecommunications services are
formalised from natural language in a semi-automatic approach. In technical domains,
case-based reasoning has been applied to a variety of application domains such as:
architectural design support [Pearce, Goel, Kolodner, Zimring, Sentosa, Billington, 92];
qualitative reasoning in engineering design [Sycara, Navinchandra, 89], [Nakatani,
Tsukiyama, Fukuda, 92], software specification re-use [Maiden, Sutcliffe, 90], software
re-use [Fouqué, Matwine, 93], re-use of mechanical designs [Mostow, Barley, Weinrich,
891, [Bardasz, Zeid, 92], telecommunications network management [Brandau, Lemmon,
Lafond, 91], fault correction in help desk applications [Watson 97], building regulations

[Yang, Robertson, Lee], fault diagnosis and repair of software [Hunt 97].

In conclusion, case-based reasoning may be applied to application domains that are not
sufficiently well understood to create a consistent and complete rule-base, on condition

that:

e problems and their solutions have similarities.

e a case library with past problems and their solutions is available or can be created.
e there are good ways for identifying relevant cases in the case library.

¢ solutions can be adapted and re-used for similar problems.
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G Introduction to CABS

In this chapter, an overview is given of the case-based specification approach, and an
introduction to the problems addressed in this work. In application domains like
telecommunications, formal methods are still not used for requirements specification.
Even so, a number of logical formalisms seem to be ready for large scale commercial use
in real applications and have been explored in the domain of telecommunications
services (see for example [Armstrong, Elshiewy, Virding, 86] and [Echarti, Stdlmarck,
88]). As explored in the previous chapter, there are a number of different reasons why

formal methods are still rarely used for requirements specification in industry.

In the CABS methodology, the task of producing a requirements specification is not just
handled as a simple task of transferring the requirements from the user to the chosen
formalism. It is a much more involved intellectual process, and when parts of the
requirements are captured, the user often modifies and changes his requirements, i.e.
requirements change and evolve until the user is satisfied. This iterative refinement
process is often acknowledged in software production and experimental development,
but less often supported by formal methods. Formal methods practitioners sometimes
give the impression that they are expecting the clients to have their requirements all
ready, and the main task is to get them into some formal notation (not necessarily

executable).

37
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Using CABS, we view the process of producing formal requirements, in particular,
behavioural requirements, as more of an experimental development task, where we start
with sketches of required behaviour and use these sketches to rapidly produce something
which can be evaluated in a variety of ways (simulation, automatic verification, simulation
involving end users, etc.). We then refine the sketch, compare them with similar
requirements, re-use parts of similar requirements, modify the original sketches, all this in
a tightly integrated environment where no unnecessary demands on order or sequence
are put on the requirements engineer. This will aid the user of CABS to refine and extend
the requirements until she is convinced that the formalised requirements capture what the

user/customer requires.

3.1 Outline of the CABS System

CABS attempts to ease or overcome some of the obstacles encountered when producing
formal requirements specifications for telecommunications services. The approach is
based on the combination of formal methods, case-based reasoning, example based input
and the use of an executable logic. By using this combination, CABS aims to make
formal requirements specifications more acceptable and to bring formal requirements
specifications to practical use for telecommunications services (and similar application

domains).

The CABS system is illustrated in Figure 3.1. In the top left-hand corner, the
requirements process starts with a number of graphical input examples provided by the
user and produced with the graphical editor implemented in CABS (see Figure 4.1 for an
example input and the editor). These graphical input examples use nodes and links
(explained in Chapter 4) to sketch the behavioural requirements. When the behaviour of
some examples has been drawn, they can be refined and extended by selecting a node or

link to obtain a window where details can be added.

The matching algorithm (the second box from the top on the left in Figure 3.1), uses the
input examples to identify cases from the case library (top right in Figure 3.1) which

capture similar behaviour. The cases are previously formalised requirements that have
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been validated, verified and integrated with other cases (as described in Chapter 5). An
analysis of the differences and similarities between links and transition rules is used to
identify transition rules that are similar (the analysis measures a number of features and
is described in Chapter 6). It is always possible to determine whether the rules capture
exactly the same behaviour (but this is less likely to occur). When a set of similar
transition rules have been identified, each case is ranked on the basis of its transition rules

and how well they match links in the input examples.

The user has a number of different options (shown in the third box from the top on the
left in Figure 3.1) to choose from when confronted with the result from the matching.
The user may select one of the proposed previously specified services (solid line from
the re-use box) that have been identified as capturing similar behaviour to the
exemplified behaviour. If a close enough case is not present in the case library, then a
new service has to be constructed based on input examples, matching cases and transition
rules. Alternatively, the input examples can be refined (this choice is shown with the
broken line from the re-use box) in order to improve the match. If there is no suitable
match in the case library, the input examples can be used as a starting point to specify a

new case (explored in Chapter 7).

When there is a proposed case that the user believes may be an acceptable solution, she
can verify and validate the proposed solution (the Revise box in Figure 3.1). From the
input examples, test cases are generated which, if successful, verify that the proposed
solution captures the behaviour exemplified in the input examples. The user can also
simulate the dynamic behaviour of the proposed solution in order to validate that her
intentions are captured (these simulations may also be added as test cases). A theorem
prover analyses the solution with respect to known domain restrictions (this is not fully
implemented in CABS: simple checks of restrictions have been implemented, but not
fully integrated, in the CABS prototype). The user may also decide to undertake some
adaptation of the proposed solution in order to make the behaviour conform to the input
examples. At any stage, the user may decide to add more (or refine) input examples and
re-do the match in part or in full (the broken line from the Revise box in Figure 3.1).

When the solution has been validated and verified, it is added to the case library.
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For some application domains, the ultimate goal may be to use the formalised and

confirmed requirements directly as an implementation. This is possible for a very narrow

class of application domains, where the interface to the environment (stimuli/response) of

the requirements specification of the system is expressed on the same abstraction level as

the final system itself and where the final system has to be implemented on a computer

(which is not the case for telecommunications services where stimuli/response are
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commonly expressed on higher abstraction levels). If so, a requirements specification
including all the desired behaviour and excluding all unwanted behaviour might be used
as the final implementation. For the application domain of telecommunications services
there are high demands of efficiency on the final code. The requirements could be seen
as the tip of the iceberg and the final implementation is a highly optimised and
integrated system of software and hardware in a global network of co-operating
telecommunications switches. In these circumstances, the requirements specification is

used as input to the design process and for generating test sequences for verification.

In conclusion, CABS is aimed at providing a closely integrated approach to requirements
design and supporting iterative refinement, re-use and revision to produce formalised,
validated and verified requirements specifications capturing the required behaviour of

the system to be constructed.
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4, Graphical Input Examples
Exemplifying Behaviour

It is common to apply graphical notations to a number of different tasks in specification
and design processes. In telecommunications, graphical notations are widely used,
examples of which are SDL (a graphical Specification and Description Language,
standardised by the International Telecommunications Union [ITU-Z100]), MSC
(Message Sequence Charts), traditional flow charts, etc. Most notations used in
specification have been formalised to a greater or lesser extent and are mostly used for
design reflecting the chosen implementation structure (MSCs capture signalling between
nodes assuming the services are implemented with communicating entities). CABS uses a
graphical notation to capture behavioural examples (see Figure 4.1), which outlines
different parts of some required behaviour, but does not aim to compete with the large
area of ongoing research on graphical formalisms. The graphical notation used is only
intended to capture some of the externally visible behaviour (any requirements
specification should not put demands on how the behaviour is implemented internally
[Wieringa 96]) and internal signalling or communicating entities can purposely not be

expressed in the formalism.

Graphical formalisms for behaviour can mostly be classified as state based, transition

based, transaction based or any combination of these. The full behaviour of a
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telecommunications system contains too many states to be handled graphically (even if
there are only a few telephones involved), without introducing levels of abstraction for
states. Therefore, it is difficult to base telecommunications requirements specifications
directly on state transition diagrams: state transition based formalisms are mainly used in
domains with less then a few thousand states, preferably less than a few hundred states if
they are produced and maintained by humans. If there is no abstraction of states, the
number of different states in the telecommunications domain will be so large that it will
be difficult for a user to handle. From a computational point of view, there would be no
problems with this application domain since the specified behaviour for
telecommunications services is simply that they should be finite and deterministic. The
purpose of the graphical notation is simply to outline the main characteristics of the
behaviour (and not to describe all possible behaviour) and it therefore bypasses the need
to handle large numbers of states; the graphical notation is a starting point for the

production of formal requirements.

For CABS, a graphical transition based formalism has been chosen. The graphical
examples in the CABS system are used in the initial stage of rapidly putting together a
draft specification, and arriving at an executable specification, so that initial ideas about
the required behaviour and their corresponding examples can be refined and validated.
The graphical input examples are also used together with the information added during
the refinement of the input examples to provide automated assistance in verification. It
contains nodes (ovals) and directed links (arrows) which will be explained in detail in
sections 4.1 and 4.2 respectively. Nodes and links are given names (links have their
stimulus name in a square box, where a stimulus is the external event that triggers a
transition from one node to another, if all other conditions are met) and pairs of nodes
can be connected by links in any way. A new node is created by selecting the create
node tool (the first tool in the tool list in Figure 4.1) and a new link is created by
selecting the create link tool (the second tool in the tool list). For nodes and links, an
additional window with details about the node or link can be shown. This window is
shown when the details tool (third tool in tool list) is chosen and the node or link is

selected by clicking on it. A node can be moved by choosing the move tool (the fourth
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tool) and dragging the node to the new position (all links to/from the node will
automatically be updated). A node can be renamed/replaced and a node or link can be
deleted by selecting the corresponding tool (fifth, sixth respective seventh tool), and then
selecting the node or link (any links to/from a deleted node will automatically be
deleted). The graphical representation and editor are designed to be -uncomplicated,
general and deliberately unlike other graphical formalisms used in telecommunications
since their aim is different and similarities may confuse matters. Graphical input
examples also have a non-graphical representation (with some additional information
about the input example), which can be examined by the user by selecting the
information tool (eight tool from the top in Figure 4.1) which results in the display of a
window with details of the input example as shown in Figure 4.2. The ninth tool is used

to redraw the window and the last tool matches the input example against the case library.

i
=

fS[l=—————————— a_basic_edample_0 %
1

all subscribers idle

e

a calling b

° 0

hook_off a

0

# o’ = K & P P

dial tone a

hook_off b

dialling

Figure 4.1: A graphical input example exemplifying a basic behaviour for the service

basic call
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The non-graphical window for the input example (Figure 4.2) contains a scrollable list,
Links in example, with all the links in the input example and information of triggering
stimulus, start node and end node. A scrollable list, Nodes in example:, contains all the
nodes in the input example. These two lists capture all the information shown graphically
in Figure 4.1. Selecting a node or link in these lists and then pressing the Show button
will show a window describing the node or link in detail, as described in Sections 4.1 and

4.2 (this window is also accessible through the detail tool in Figure 4.1).

Some of the functionality may be dependent of the functionality of some previously
specified service. When creating a new input example, the user states the services on
which the new behaviour is obviously dependent: for example, the three way call service
is often defined as an extension of the call waiting service, and if call waiting is not
available, three way call cannot be used on its own. These services are listed under Known
behavioural dependencies: and are called behavioural dependencies to distinguish them
from more subtle dependencies (see Section 5.1) which, in some cases, can be identified
automatically in CABS. Structuring services as being dependent on other services is
common practice for telephone services. In CABS, this information is used in the
matching process where cases on which the behaviour is dependent should be included as

proposed solutions.
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Info about input example: a_basic_edample
Links in example:
Stimulus: From node: To node:
dialling | dial tone a | & calling b 4
hook_off | & calling b | in speech BN
hook off | all subscribers idle| dial tone a
hook_on | a calling b | all subscribers idle
hook_on | dial tone a | all suvbscribers idle | |
hook_on | in speech | all subscribers idle [|iF
Nodes in edample:
all subscribers idle 4
in speech 5
a calling b . Uit}
dial tone a 5
Behavioural dependencies:
basic_telephony 4
>
Input edample categorised as:
basic behaviour T
K
Exemplifies interaction with:
no interaction exemplified E"
5S4
Informal description of input example:
This is an example of the basic behaviowr of a phone call. ﬁ
N
[Eancel ][ Show ][Graphic][ﬂpdate][rest cases]

Figure 4.2: Textual representation of input example

Informal examples of behaviour given in textual requirements specifications of a
telecommunications service are often categorised in some way for convenience of
reference. We have not investigated which categories are most commonly used, but have
implemented a facility for defining categories. Five different categories have been

selected (categories can be added/removed to suit the application domain): basic
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behaviour; odd case; error case; unsuccessful behaviour; excluded behaviour. An input
example may be classified as being in more than one category. The user selects the
categories when creating a new input example and the categorisation is shown in the text
list field Input example categorised as. In Figure 4.2, the input example
a_basic_example is categorised as basic behaviour. Categories may aid the user in the
process of structuring behavioural requirements. The classification may also be used to
assess whether the user has given sufficient input examples, or if the system should
request more input examples. If an input example exemplifies excluded behaviour, it
should be handled differently in the matching, validation and verification process.
Excluded behaviour (negative examples) has not been fully implemented in CABS (see

the discussion in Chapter 10).

Interaction between behaviours is of central concern in telecommunications and is often
claimed to be the most severe problem in developing and managing telecommunications
systems [Zave 93], If the behaviour of a telecommunications service is modified when
some other service is active/inactive, or if it modifies the behaviour of some other service
when it is active/inactive, we say then that the two interact. Interaction between services is
not “a problem that can be solved” since it is part of the required behaviour, therefore
decisions on how services interact have to be made before or during implementation.
When the user adds a new input example, she can select what interaction the input
example exemplifies, and the selected services are shown in the text list Exemplifies
interaction with: in Figure 4.2. In input examples, it is more likely that the desired
interaction is exemplified, leaving unwanted interaction to be handled when the full
specification is produced (including all the desired behaviour and excluding all the

unwanted behaviour). If the unwanted behaviour is exemplified as an input example, it is

'* Some interaction between services may be introduced by architectural/implementation choices such
as dividing the system into communicating processes [Cameron, Velthuijsen 93], and is not relevant

on a requirements specification level.
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categorised as negated input examples. A negated input example can be used if there is
some specific behaviour that should not be allowed (this may be needed in the
telecommunications domain when services interact, but may also be useful in other
situations). Negated input examples are considered a useful extension, and may, in
some situations, further improve matching/verification results, but are not classified as

essential to the approach and have not been implemented in the prototype.

An informal textual description of the input example together with relevant links can be
provided by the user in the text field Informal description of input example. This
information is used for the convenience of the users and for documentation. The
Graphic button shows the window with the graphical representation. The Update button

is used to update any changes (the graphical window is updated dynamically).

4.1 A Node

Each node has a unique name that is a mnemonic name for a situation, such as two
telephone users being in speech connection with each other (the oval in speech in Figure

4.1).

A situation can encompass many different states'’, for example the node dial tone a
(details for this node are shown in Figure 4.4) may intuitively mean that the user a has a
dial tone, which may be true for many different states. In a telecommunications system,
there may be millions of different sfates where the user a has a dial tone, but most of the

differences will be irrelevant for any particular example.

13 A state is defined as a unique description of a system’s current status, as used in state based
approaches, where each state is often given a unique number. A finite state machine is an example

of a frequently used state based formalism.
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4.1.1 Creating Nodes

When the user creates a new input example, the first step is to create some nodes. The
user selects the first tool from the list of tools on the left in Figure 4.1. The user then
clicks on the position in the graphical area where the node is to be placed. A window
where the user can select the node name appears (Figure 4.3). If the user chooses to use a
node that has been specified earlier in some other input example, she clicks on the
selected node and presses the OK button. If in doubt, the Details button can be pressed in
order to inspect the selected node. Ideally there is always a suitable node to select. If a
new node name is given, the details for this new node can be specified as explained in

section 4.1.2 when the Details button is pressed.

Name of new node:|a hung up

or select an exsisting node:

a calling b

all subscribers idle
b busy

dial tone a

in speech

[ cancel | Details |

Figure 4.3: Select node name for input example

After the user has pressed the OK button, the node is drawn as a circle with the name in

the graphical area (Figure 4.1).
4.1.2 Details for Nodes

When a telecommunications expert talks about a specific situation such as two subscribers
being in speech connection (represented by a node in CABS), the user normally has a

comparatively well defined meaning -in her mind. Unfortunately, it often happens that



CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 51

different telecommunications experts do not necessarily have the same meaning in their
minds; hence, a more precise description of a situation is needed. In CABS, a more fine
grained definition of a node is given as a conjunction of terms. Terms are explained in
detail in Section 5.1 (the following example may be sufficient to provide a basic
understanding). To add to or modify the details of a node, the user selects the detail icon
in the graphical window (the third icon on the left in Figure 4.1) and then clicks on the
chosen node in the graphical window. This appears in a node window, as shown in Figure
4.4. If no details have been given for this node, all fields will be empty. The user can now
select the terms (by selecting them from a menu or by typing them into the field) that are
expected to hold for this node, and add them in the corresponding field. For example,
for the node a calling b, the terms calling(a, b) and ring_tone(a) and ring_signal(b) are
expected to hold (terms may also be negated). The first predicate term, calling(a, b), is a
relation between user a and user b, stating that user a is calling user b; the second term
states that user a has a ring tone and the third term states the fact that user b’s telephone
is ringing. A relation term is by definition not externally visible and is therefore added in
the field Characteristics (not externally visible). The two terms ring_tone and ring_signal
are defined as response terms and are therefore, by definition, externally visible and
added in the field Response (externally visible). In telecommunications systems,
externally visible effects are so central that response terms (externally visible terms) are

often treated separately, even on a requirements specification level.

The same node may be used in different input examples, and the input examples in
which the node is used will be shown in the list Node is used in input example. If a node
has to be modified, the user must make sure that the change is valid for all other input
examples using the same node or, if not, they must choose a different name for the node

and define this new node.

When giving input examples, it is obvious to the user in most cases which node is the start
node and which is the end node (there may be more than one). Intermediate nodes are
nodes that are temporarily passed through in order to achieve some required result. The
user can specify whether a node is a start node, an end node, both or neither (if a node is

neither a start node nor an end node, it is;ﬂ'iﬁtérrr?e‘di%te node). In CABS, this selection

A <

y
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is made by ticking the corresponding box in Figure 4.4. This information is useful in the
verification process and in order to automatically generate test cases which will capture
all behaviour between the start and end nodes (this narrows down the number of test
cases considerably and in fact, in a large system, the number of test cases would be

difficult to handle without this information; for more on this, see Chapter 7).

Node: a calling b

Responses (externally visible):

ring_signal(b)& ity
ring_tone(a)
s
Characteristics (not exnternally visible):
calling(a, b) i
R
]
Node is used in input egamples:
a_basic_example_1 ﬁ
-

[]Start node []End node

Figure 4.4: Example of a detailed node description in CABS

As mentioned, the user is expected to give the main characteristics of a node (by
choosing from a list with all terms that have been defined in the case library), excluding
facts of less relevance for the node. In most cases, such a brief description of the main

characteristics will be sufficient, since the input is used primarily for identifying similar
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behaviour in the case library and for the final verification after the requirements have
been formalised. In cases where there is no good match (a new type of behaviour with no
similar case in the case library), the input examples are used as a starting point for
generating a new case. However, in these situations, the input may need refinement. From
this point, whenever we mention input examples, or graphical input examples, we mean

both the diagram itself and the details given on nodes and links.

If all terms have a natural language phrase declared, the user could choose to use natural
language (NL) phrases instead of terms. For example, if calling(A, B) has the NL phrase
A is calling B, this phrase could be shown in Figure 4.4 in the field Characteristics (not
externally visible). An NL translation would be useful for users less familiar with formal
notations and if the examples were shown to customers, they may not wish to see brackets
at all. The way in which formulae of terms can be translated into natural language
phrases has been explored in depth [Dalianis 96]. In CABS, NL phrases have not been
implemented but this is proposed as an extension (adding a prototype implementation of

NL phrases would require little effort).

4.2 A Link

A link in the input example describes a transition from one node to another. The main
condition for the transition to take place is that the stimulus term in the link occurs. A
stimulus in the telecommunications domain may, for example, be an action performed
by a phone user, such as lifting the receiver (hook_off) or dialling a number (dialling) as
shown in Figure 4.1. In the graphical notation it is optional to show arguments for a link.
When looking at the details for a link, all arguments to a stimulus are shown (for example
in dialling(A,Nr,T), the first argument is the phone user dialling, the second argument is
the number dialled and the third argument is the time this occurred). See Section 4.2.1,

Figure 4.6 and Section 5.1 for more on arguments.

When the user wishes to add a new link between two nodes, she selects the second tool
from the list of tools on the left in Figure 4.1 and then clicks on the node from which the

link will originate. Then, she clicks on the terminating node (a broken line is shown
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between the originating node and the cursor until the terminating node is selected). When
the terminating node has been selected, a window for selecting the stimulus term for the
link is shown (Figure 4.5). The user can select a stimulus term from the list showing all
stimuli terms defined in the case library. If the item -- New Stimulus -- is selected, the
user can add the name of a new stimulus term. The user may define the stimulus term in
detail, as described in Section 5.1 (this should be done before the input examples

containing the new term are used in the matching).

Select stimulus for link:
—— New Stimuvlus — N

E:hE-t:]-:_i—'-El"‘.'iC:E
11
:

Figure 4.5: Select stimulus name for new link for input example

When the stimulus term has been selected, the new link will be drawn between the two
nodes and the name of the stimulus term will be shown in a box in the middle of the link.
When all nodes and links have been put in place in the input example (as shown in
Figure 4.1), the input example gives all stakeholders a graphical sketch of the required

behaviour.

4.2.1 Defining or Refining Links

A link is identified by its originating node, its terminating node, its stimulus term and the
input example in which it is used. In our examples, the triggering stimulus name is
always used as the name of the link. We refer to a link by the name of its input example
followed by the originating node name, the triggering stimulus name and the terminating
node name and, therefore, there is no practical need to introduce unique names for links.

In some situations, a link needs some added details in order to reflect the user’s intention
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for the transition between the originating and terminating nodes. The details for a link
are added in the same way as for nodes (by selecting the detail-tool and clicking on the
link in order to get a link window as shown in Figure 4.6). In the link window, we draw
the originating node and terminating node. The first edit field is the stimulus term, with

its arguments extracted automatically from the definition of the term.

In CABS, the terms of the originating and terminating nodes are put, by default, into the
corresponding scroll edit fields in Figure 4.6 (Conditions from originating node: and
Conclusions from terminating node:) when a new link is created. The user deletes the
condition and conclusion terms that seem to be irrelevant or of low significance, bearing

in mind that the link will be used to identify a matching case in the case library.

Additional conditions in Figure 4.6 (field Additional conditions (qualifications/
instantiation):) are there to allow the user to add some specific conditions not explicitly
given by the originating node. In some cases, additional conditions may be added to
discriminate between two links with the same stimulus term leaving the same node. For
example, if user a lifts the receiver and receives a dial tone, she should not currently be
called by some other user (if she lifts the receiver when called by another used she would
answer the incoming call, this can be exemplified with another link). This additional
condition ~calling(Z,a), not explicitly stated in the field Conditions from originating

node, is put in the field Additional conditions (qualifications/instantiation).

Additional conclusions in Figure 4.6 (field Additional conclusions:) are there to allow
the user to add some specific conclusions not explicitly given by the terminating node
(no additional conclusions are given in Figure 4.6). Added conclusions may be facts to
be carried forward in time and used at a later stage in the telecommunications service or
used by some other telecommunications service such as Charge Advice. An example of a
fact needed at a later stage is which user originated a three way call (the service three
way call is specified such that if the person who originated the call hangs up, the other
two connections are cancelled so that no confusion about who is paying for the call may
arise). This fact can be added as an  Additional conclusions:

three_way_call_originator(User) when the three way call is initiated.
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The pop up menu Match select for link: and the buttons Show match and Select are first
relevant during and following matching as is explained in Chapter 7. If a link does not
generate any good matches, the user may decide to refine an input case by
revising/refining the links (by adding/removing appropriate terms), which hopefully
results in a better match. Other ways of improving the matching results are explored in

Chapter 7. The Update button confirms any changes made in the edit fields and the
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a_basic_esample: Init two subscribers-hook_off->dial -
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CTnit two subscribers?
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Triggering stimulus:

hook_off(a, T)
Conditions from originating node:
~ring—signal(a) A
|
Additional conditions (qualification/instantiation):
~calling(2, a) aiy
|
Conclusions from terminating node:
dial_tone(a) ir
L
Additional conclusions:
=
m
Match select for link: Select best match -

([:am:el][ﬁhnw mﬂtiﬂ [ Select ]{Update]

Figure 4.6: An example of a detailed transition link description in CABS

previous definition of the link is replaced.
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4.3 The Use of Graphical Input Examples in CABS

Initially, every case (the required behaviour for a telecommunications service) originates
from a number of graphical input examples. These input examples represent the original
behavioural requirements for the case even if the case itself captures more behaviour than
exemplified in the input examples (the case may have been refined during validation and
integration). We store the input examples for each case in the case library for a number

of reasons:

e Input examples are used to automatically generate test cases and verify that the final
solution (the formalised requirements) captures the behaviour exemplified in the

input examples (explained in Chapter 7).

e Generated test cases are also used to verify the interaction with other cases (explained

in Chapter 7).

e If the behavioural requirements for a case are changed, this change will be made by

altering the graphical input examples.

e We may re-use input examples as a starting point when we specify the behavioural

requirements of a new case (input examples can be copied and renamed in CABS).

e The input examples may be used for understanding, learning and documentation of

the telecommunications system produced.

In Chapter 5, a detailed description is given of exactly what is stored in the case library,

and how relevant information is defined, updated and shown to the requirements

designer.



Chapter:

5.  Case Library

The case library is a central part of CABS. It is intended to contain everything that is
needed for the process of formalising the required behaviour (a subset of the total
behaviour of the system when it has been fully implemented) such as initial requirements,
informal and formalised definitions, test cases used for verification and relations between
these objects. To make CABS’s internal representation easy to extend and modify, the
case library is organised in an object-oriented fashion where each instance can be
uniquely identified and has a number of attributes and methods assigned to it (for
example see [Bose 94]). Figure 5.1 shows an overview of the case library and the
relationships between the main parts within it. The relationships shown as broken lines
have not been implemented in the CABS system (beyond the scope of the research) and
are only shown to give the context. All the main objects in the case library have attributes
such as creation and modification dates, informal description, etc. These organisational
issues and design decisions are all hidden behind the user interface and the case library
will be described as seen through the user interface. Everything in the case library can be

saved and loaded between sessions.

The case library comprises six main sections: case definitions, transition rule definitions,
term definitions, test cases, graphical input examples and system definitions. A system
definition (top left corner of Figure 5.1) is basically a set of cases capturing all the

required behaviour the system is expected to exhibit when it has been implemented,

59



60 CHAPTER 5. CASE LIBRARY

including the more common interactions between these cases. An add-on system is a set
of cases that adds some particular functionality to a system, for example the system
mobile_telephony or ISDN_telephony (Integrated Service Digital Network) adds
behaviour to the system basic_telephony (see glossary in Appendix D). A case (a
telecommunications service) captures the required behaviour of some particular
functionality in a system and is shown in the centre of Figure 5.1. The behaviour of a
case is represented by a set of transition rule definitions (middle left of Figure 5.1) and
definitions of terms (below centre) that are considered to belong to that case. Graphical
input examples (top right of Figure 5.1) exemplify the initial required behaviour of a
case and the more common interactions with other cases. If a case is added or modified,
the interaction between this case and the other cases needs to be analysed and may need
to be verified again (see Chapter 7). All test cases (bottom right of Figure 5.1) that
capture the required behaviour extracted from the input examples, are stored for use in
the automated verification process. Once a case and required behaviour have been
designed and implemented (the implementation of a new telecommunications service
may be a combination of software and hardware such as three party call needing specific
hardware connecting three phone lines to each other), the connection between the
transition rule definitions and term definitions should be kept (these links are shown in
Figure 5.1 as dotted lines). These links, shown as dotted lines, are beyond the scope of

this research.
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Design and
Implementation
of requirements

Figure 5.1: Overview of case library

In the following sections, we will describe the different parts in the case library, their use
and how they are defined or modified by the user. First, we describe terms, which are one
of the most fundamental parts in CABS, then transition rules, which represent the
dynamic behaviour of cases, then cases (telecommunications services in our application
domain), systems (sets of cases) and, finally, we describe graphical input examples and
test cases. Once all the parts of CABS are explained, Chapter 6 explores how similar
behaviour can be identified by input examples and using them in a matching process, in

order to identify cases that may be re-used in whole or in part.

5.1 Terms

The purpose of terms is to capture a system’s current state. Terms are used both in input

examples and in transition rules and are an important part of defining an ontology for
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the domain'®. A precise and clear meaning for each term is crucial to the interpretation
and understanding of a formal specification, although few requirements methods address
this issue effectively [Zave 96]. Also, if a term is used in an input example, it is important
that the term is well understood by the user so that the input examples and the cases in
the case library are built on the same terminology. In CABS, the user is expected to
define terms with care and in detail before the term is used in input examples and in
transition rules. Term definition should be one of the first tasks when approaching a new
application domain or a new class of behaviour that cannot be expressed with existing
term definitions. If a term does not have a clear meaning, or its meaning is modified
during a specification, all previous specifications are no longer valid and have to be re-
validated by the user. For a large system, where the specification may have hundreds of
cases and thousands of transition rules, this will be a tedious and time consuming task. If
a term’s meaning in CABS is changed for some reason, all this work has to be repeated.
The idea is to give elaborated definitions of the meaning of terms in order to reduce the
risk of introducing problems at an early stage, which may cause costly corrections later
on. Informal discussions with telecommunications experts have shown that experts
sometimes disagree on the meaning of terms they use: large efforts are put into
standardisation of telecommunications terminology both by telecommunications
companies and international standardisation organisations, but if terms are properly

defined the first time they are used, some of these efforts may be reduced.

Figure 5.2 shows an example of a term definition in CABS. The purpose of the current
way of defining terms is not to compete with ongoing research in conceptual modelling
(see for example [Johannesson, Boman, Bubenko, Wangler, 97]). However, Figure 5.2
may provide an alternative way of presenting some of the information traditionally
captured in conceptual modelling. The examples merely give an illustration of the

different pieces of information of interest for formalisation/validation/verification and

% Defining an ontology is beyond the scope of this research, only a few aspects of defining an

ontology are addressed. for more details on ontologies, see for example, [Uschold 95].
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exemplifies how this information can be collected at an early stage of requirements
capture. The content of Figure 5.2 will be explained briefly now and explored in more

depth in sections 5.1.1 to 5.1.6.

The first field, Term name (with arguments): in Figure 5.2 is the term name and
arguments; in this example divert(Nrl, Nr2) is typed in by the user when defining the
new term (argument names must start with a capital letter and can contain any number of
letters, numbers and underscores). The next field, Informal description: is an informal
description of the term and arguments. The list Defined term belongs to cases: shows
which cases in the case library the term definition belongs to. The most common
situation is that a term is only defined in one case. On some occasions, it makes sense to
let the same term be defined in more than one case, for example, if there are two varieties
of the same case in the case library. This occurs in telecommunications since services are
often adapted for different customers and markets (the service three party call for
regular customers is different from three party call for Centrex, see glossary in Appendix
D). Terms can be of four types in CABS: stimulus terms, response terms, relation terms
(more than one argument) and attribute terms (zero or one arguments). When defining a
new term, the user has to select the term type by selecting the appropriate type in the
pop-up menu under Type for term: in Figure 5.2. The user can also choose a sort for
each of the term’s arguments (Figure 5.2), Sort for argument <position number>. The
maximum number of arguments is restricted to five in the implementation of the
interface, which is sufficient for the current examples in the application domain and
should also be sufficient for the telecommunications domain. The size of the window is
adapted automatically to the number of arguments in the term. For each term, the type of
relation between the arguments can be specified by selecting the appropriate choice in
the pop-up menu Relation type: in Figure 5.2. The set of types available depends on the
number of arguments for the term: if there are zero or one arguments, the selection
cannot be made. With the pop up menu Term occurrence: the user can select whether a
term has any restrictions on its occurrence. The options for terms with one or more
arguments are one, any, zero or one, one or more. Option one would mean that if the

system can reach a state (see section 5.1.6) in which the term exists more than once or
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not at all, then there is a conflict between the definition and the transition rules leading to
the state. For example, if the terms current_time(l) and current_time(2) are true at the
same time, it is incompatible with this definition. This sort of generic information is often
easiest to capture when the user defines a new term and can then be used in a number of
different ways. For example, if new transition rules are generated from links or adapted
from other transition rules, they can be inspected for consistency with the term
occurrence definition. This information can also be used when verifying a system (see

Chapter 7.6).

The button Show where used produces a cross reference list of all transition rules in the
case library and tells the user which cases contain transition rules that use the term in
their condition-part/conclusion-part (currently this is not fully implemented but it could
be implemented with a simple search function). The More button gives some additional
information, such as the times at which a term definition was created and last modified.
The Update button updates any changes of the definition (if the user has the privilege of
modifying term definitions). The Cancel button ignores any changes and leaves the term

definition unchanged.
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Attribute/relation term: divert

Term name (with arguments):

Relation type:

Term occurrence:

divert(Nri, Nr2)
Informal description:
Calls to phone number Wrl are expected to be diverted 4
to HrZ instead (also see divert_on_no_reply and BT
divert_on_busy). 4h
Defined term belongs to cases:
call diversion 4
r
Type for term: | relation v
Sort for argument 1: | telephone_number v
Sort for argument 2: | telephone_number v

1:1 v

none or more v

[ Cancel |[ Show where used |[ More |

Figure 5.2: An example of a term definition in the CABS system

5.1.1 Significance of Term Names

The terms used are in predicate logic (see for example [Luger & Stubblefield 89]) where
the term names bear the main part of the non-instance-specific information. For

example, if we would like to capture the statement that a user a has dialled the number
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222 and that the number 222 has all its calls redirected to the number 333, that there is a

user b answering calls on number 333, and c is not calling b, we could capture this with

the four terms:

dialling(a,222) and redirect(222,333) and

answer_number(b,333) and not calling(c,b)
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In this example, all the non-instance-specific information is captured in the term name
and all instance-specific information is represented as arguments to the terms. The term
names are relations or attributes that can be given a clear meaning from a phone user’s
perspective. The arguments are phone numbers (222, 333, 444, ...) and phone users (a, b,

¢, ...) which are the most central entities in the telecommunications domain.

In an entity relation model, in contrast, terms are of the form is_a or has_property, and
most of the significance is shifted to the arguments. An example with low significance in

term names and high significance in the arguments would be:

has_property(a,dialling,222) and has_property(222,333) and

has_property(b,answer_number,333) and not has_property(c,calling,b)

In this example most of the significance has been shifted from the term names to the
arguments. Both examples contain the same information when we know the instances and
in most applications, the choice between the two representations may not be of any
significance. But in our approach, it will prove important as will be explained in Chapter
6 (part of the matching is based on term names and is independent of the current domain
of discourse). Term names are central to the matching process and if their significance is

low, this will affect the validity of the matching result.

5.1.2 Instances, Arguments and Sorts

In behavioural input examples, requirements specifications and simulations, a set of
instances are needed (to be precise, names uniquely identifying the real instances in the
domain of discourse, i.e. all the telephones and phone numbers). This is not to be
confused with the application domain (such as telecommunications services). Instances
can be classified into sorts; in the application domain of telecommunications, there are

sorts such as telephone numbers, phone users, etc.

In CABS, it is an advantage to use terms with few arguments as this often gives the term
name higher significance. In fact, everything that can be expressed using terms with

more than two arguments can be represented using terms with only two arguments; but
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this may look odd even if there are advantages in doing so. For example, the facts
answer_nr(User, Nr) & accepts_incoming_calls(User) could be represented with one
term and three arguments, user_info(User, Nr, ‘incoming_calls’). If the term
user_info(User, Nr, F) occurs in a node, link or transition rule, a careful analysis of the
arguments will tell us which information is relevant to the situation. Since our matching
algorithm uses term names as its main guide in identifying relevant matches, the
matching result will be more accurate if terms use fewer arguments (for details on

matching see Chapter 6).

From a pragmatic point of view, any non-trivial specification will initially contain
mistakes, misunderstandings and errors. Sort declarations may be used in a number of
different ways to aid the requirements capture process and, hopefully, to improve the
accuracy of the final specification. The most common use is to identify any mismatch
with sorts and point out where these occur. The argument against sort declarations and
typing is mainly that in prototype systems and small specifications made by one or a few
persons, the gains are not large enough to justify the additional workload. In our
approach to specification, we acknowledge both the need for an early prototype of the
requirements (i.e. to arrive quickly at some intermediate result that can be partly
validated and verified in order to aid the refinement and revision process) and the need
to produce a validated and verified formal specification outlining the required behaviour.
CABS provides, as an option, the default sort Not specified when selecting the sort (in
Sort for argument <argument number> in Figure 5.2), which has all other defined sorts
as a subset. This will allow the user to specify, simulate and refine the system
incrementally and to decide when to declare this information. A new specification should
only be accepted when all arguments have their sort declared (checking that all
arguments have their sorts defined is trivial to implement, although not implemented in
the CABS prototype, see for example [Cohn 85]). Furthermore, theorem provers and

simulators can improve their performance by using sort information.
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5.1.3 Constraints on Terms

There are a number of static constraints that can be declared on terms (static since they
are valid for all states the system can reach). Much research effort has been put into the
modelling of static models: entity relationship modelling is one of the most popular
approaches [Wieringa 96]. A number of different graphical notations are also used and
some are translated into logic [Preifelt, Engstedt, 93] or into logical programming
languages such as PROLOG [Johaneson 91]. Examples of constraints on terms in the

telecommunications domain are:
1. A user can have only one other person calling (next caller gets busy tone).

2. A user can have only one last called number (used when the redial service is

activated).
3. Only one current time can exist in a given state.

This information is useful in the verification process for the specified system. A term can
either be a propositional term, e.g. lamp_is_on or have arguments, e.g.
switched_on(lamp_1l). A term can either be true or false: - switched_on(lamp_1l) means
that it is not true that the lamp_1 is switched on. In the following sections, we will explore
how to represent different aspects of terms and their properties (such as the three

examples above) in more detail.

Each term is defined according to an approach similar to that used in some entity
relationship approaches (for more details on different approaches see [Wieringa 96]). In
the current implementation of CABS, there is no graphical representation of static
constraints for terms. The four static constrains defined in CABS are: type of relation for
terms; sort of arguments; relation type between the arguments; term occurrence, as shown

in Figure 5.2.

If there are two arguments for a term, the choices are 1:1, I:m (m for many), m:1, m:m
(see examples of the relation types in Figure 5.3). The relation type /:1 means that each

object in the set of possible values for the first argument can have only one relation with
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one object in the set of possible values for the second argument. The relation type m:1
means that each object in the set of possible values for argument 1 can have only one
relation with one object in the set of possible values for argument 2, and objects in the set
of possible values for argument 2 can have many relations with different objects in the
set of possible values for argument 1 (for more on this see, for example, [Davis 90]).
This information can be used in various ways in verification and validation, or when

adapting or generating new transition rules.

possible values possible values possible values possible values
for argument 1 for argument 2 for argument 1 for argument 2

’ \ ’ \
A=)
I \ I \
'o»i:o'
| I ! I
DT

\ 7 A ’

~ ’ ~ F

- - - -

I:m

Figure 5.3: Relation type between arguments in a term with two arguments.

An example of a static constraint is a binary relation term named answer_number with
two arguments, the first argument being a telephone user, and the second argument being
the telephone number the user answers. The static constraint is that the user can have
only one answer number. This is an m:1 relation, i.e. each user has only one answer

number and many users can have the same answer number. For example, if it were true
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that answer_number(daniel, 3990) and answer_number(daniel, 5555), that would be in
conflict with the declaration. But the statement answer_number(sandra, 3990)) and

answer_number(andreas, 3990) is not in conflict with the declaration.

In some formal specification approaches, and often in logical systems, redundancy may
be unwelcome, or even purposely avoided and eliminated. In a requirements capture task,
which by nature will often be incomplete, contain errors and require revision and
refinement, we should take every opportunity to collect information which is easily
available and easy to capture, whether to aid the user to clarify her thoughts or for use

later in verification.

5.1.4 Response Terms (Externally Visible)

Any terms visible from the environment in which the final system will operate are
declared as response terms (for example ring signals, dial tones). This may be anything
from an asynchronous request, to a command given to some external equipment or a
message to another system. What effects the visible term will cause outside the specified
system are beyond the control of the specification (with a straightforward extension of
the simulator, communicating systems can be simulated, see Chapter 9). Hence, a clear
understanding of the visible terms is crucial to ground the system’s behaviour in its
environment. In the current implementation, we provide only a facility for adding some
text explaining each term’s meaning (which may also contain references or

formalisations).

5.1.5 Stimulus Terms (External Input)

Stimuli are the only way for the environment of a system to affect its behaviour (for
example dialling, hook_off, hook_on, recall). A stimulus may be ignored by the system,
but the most common response is an internal change of state and, eventually, an external
reaction in the form of changed response terms (see transition rules). If time is an

important part of a behaviour, it may be regarded as an external stimulus.
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5.1.6 A State is a Set of Statements

The purpose of terms is to capture a system’s current state. A state comprises a number
of terms representing all statements which are true, with all other statements not stated as
true assumed to be false. CABS is intended for modelling systems in which we can
assume a closed world (specifications of systems to be implemented with computers
mostly fall into this category, real world systems do not). The closed world assumption
simplifies the logic and is the classical decision taken in many logic based languages
(such as PROLOG) and knowledge based systems (such as production systems).
Requirements specifications of systems implemented with computers (such as
telecommunications services) mostly fall into this category (we either know that
something is true or false, but do not need to reason about situations where we do not

know if something is true/false).

5.2 Transition Rules

When specifying a system in CABS, the only way of causing a change is by a transition
rule. If a transition rule’s conditions are met, the system will change into a state where the
conclusions of the transition rule are true. One of the conditions in a transition rule has
to be a stimulus term. State changes can only occur in response to an external event and,
thereafter, the system will wait (stay in the same state) until a new stimulus is received.
This has the advantage (and for some domains, the limitation) of restricting the
specification to be internally loop free. Depending on the environment of the system, it
may still be possible to create external loops outside the scope of the specification (see

section 5.2.1 about external loops).

Stimuli are sequenced in order to simplify the logic: we do not attempt in this high-level
specification to specify what should happen when signals are competing (e.g. if two users
call a third user at exactly the same time); the approach taken is that the decision of how
to resolve such a situation is not necessarily a requirements choice, and can be dealt with
in the design process (for many application domains, including telecommunications,

assigning an arbitrary but reproducible order between competing external signals will be
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sufficient). Figure 5.4 shows the model used in CABS. Sequences of stimuli provided by
users of telephones are used to activate appropriate transition rules. As a consequence, a
sequence of states is generated, containing sets of facts that describe the system at each
time a stimulus was received (f represents the frame axiom, which transfers unaltered facts
from the previous time 7 to the current time 7+/, see Appendix A for more details on the

logic used).

Logical System
: ) Transition Rule 1:
sequencing | stimulus stimulus at time t+1 &
/ stimuli conditions at time t

P response | conclusions at t+1 &

response at t+1
users

Facts at Facts at
time t time t+1

Figure 5.4: Model of the dynamic behaviour of telecommunications network

An example of a transition rule window in CABS is shown in Figure 5.5. The Stimulus:
field shows the triggering external stimulus condition. The Condition: field contains a
conjunction of terms defining all other conditions that have to be met. The Conclusion
and responses: field is a conjunction of all terms that become true as a consequence of
this transition rule, if the conditions are true. In the Informal description: field, a textual
explanation of the rule, its meaning and references to relevant information are given. In
the list Used in cases: all cases in the case library that include this transition rule are
listed. The user may select a case in the list and press the Show Case button in order to

display the case window, as in Figure 5.7.
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Transition Rule: normal_dialling

Stimulus:
dialling(d, Hr, T)

Conditions:

dial_tone(&)& L
answer _nr(B, Hr)& [=H
“calling(Z, B)&
accepts_incoming_calls(Nr)&
“hook_off time(B, ¥) =
i
Conclusions and responses:
calling(d, B)& e
“dial tone(d)& [
ring_tone(&)é&
ring signal(B)
@
Informal Description:
User & is dialling a number connected to a terminal that |4
accepts incoming calls, is not called by someons else [
and who has not the reciever off the hook. The result is
that & is calling on B. =
(7
Used in cases: s
=

Transition rule is included in priority.

[Eancel] [Shuw case ] [ More J

Figure 5.5: Transition rule example in CABS

The More button gives some additional information on maintenance etc. Above the
buttons, either the text Transition rule is not part of any priority or Transition rule is
included in priority is shown (see Section 5.4.2 for information on priority between
transition rules). Pressing the OK button saves the modifications and closes the window.
Before saving the changes, a brief analysis of the changes is made and if in doubt, the

user must confirm the changes (see Chapter 7 for circumstances under which transition

rules may be modified).
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5.2.1 Recursive Behaviour in Requirements

How to represent recursive behaviour, as well as the restrictions imposed on recursion by
the formalism and syntax, are of major importance for requirements specifications. The
main risk with recursive behaviour is that loops are specified that may be infinite under
some circumstances and that this is not identified during validation and verification (this
would be a major problem in any safety critical application). One advantage of recursive
behaviour is that some requirements are considered easier to express with recursive
behaviour. Before explaining what type of recursive behaviour is enabled in CABS, an
example is given of the call diversion service (see glossary in Appendix D) in a recursive

situation.

Call diversion may be used for diverting a call for more than one step. Calls to phone
number 111 may have been diverted to phone number 222, and calls to 222 may be
diverted to phone number 333. A careless specification of repetitive behaviour may
enable specifications that exhibit unwanted behaviour, which may be difficult to validate
and verify (the problem is to separate loops that always terminate and loops that under
some circumstances may not terminate). If, for example, phone calls to 222 have been
diverted back to 111 in the above example, some formalisms and ways of specifying the
diverted call may cause an infinite loop (see example in footnote 9, page 23). A full
specification (specifying all wanted behaviour and excluding all unwanted behaviour)
should state what happens: an infinite loop is most likely not part of the requirements for
a telecommunications systems. A requirements specification (compared with a full
specification) does not include all wanted behaviour and exclude all unwanted behaviour:
it merely outlines the main behaviour and leaves other parts of the behaviour open for
later refinement, in order to produce a full specification (which is outside the scope of

this research).

In CABS, recursive behaviour is restricted to aid validation and verification. There are

two different ways to express recursive behaviour:
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1. Expanded Recursion: If a finite recursive behaviour is to be expressed with transition
rules, this can be represented with a separate transition rule for each recursive step. A
recursion in n steps will result in » transition rules. Hence, we cannot create infinite
loops and only one time step passes for the rule triggered (if other rules trigger in
parallel, it will still be one time step, for more on this see 5.2.2). This is expressive
enough for telephone services but may be awkward for some cases, especially if a user
manually edits or adds transition rules capturing recursive behaviour (a more
compressed syntactical notation for recursion may be introduced and automatically
expanded to a set of transition rules, see Chapter 8). Both validation and verification
of expanded recursion is supported in CABS (transition rules representing expanded

recursion are, with respect to CABS, no different to other transition rules).

2. External Recursion: This mode of recursion is optional and may be forbidden if
unwanted for an application domain. If a recursion is caused by a response converted
externally (outside the formally specified system) to a signal, it is called an external
recursion (Figure 5.6). Infinite loops can be specified in this way and are outside the
control of the formal notation. The filter process may add restrictions and monitor
recursion. One time step passes for each recursion. This can often be translated
(manually) into expanded recursion. Even if they can be translated manually, they are
different in nature to each other since in CABS, a time step will occur for every
stimulus and hence each recursion will result in a time step. This may be an over-
specification, especially if the requirements can be translated with expanded recursion
(only one time step will pass, independent of the number of recursions). Validation of
external recursion is supported by CABS, which identifies responses named stimulus

and submits the argument as a stimulus to be simulated, see Section 5.2.1.2.

5.2.1.1 Example of Expanded Recursion

As an example, suppose we accept divert call in three steps, then we know that if there are
three divert numbers (divert(123,125) & divert(125, 139) & divert(139, 144)) there
would be three transition rules if we formalise the requirements with expanded recursion.

The first transition rule would handle diversion in three steps; the second one in two
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steps, with the precondition that the last number does not have a divert, and the third in
one step, with the condition that there is no further diversion from that number. Since
there is no transition rule handling four diversions, any further diverts would be ignored
by the specification (which is the aim if we limit the maximum number of diverts to
three). Also, if the second divert was a divert back to 123 (divert(139, 123)) this would
be no problem since the effect is that phone calls to the number 123 end up at 123. This
is most likely a profitable situation for a service provider, since the service provider
normally bills each diversion as a normal call (billed to the subscriber who activated the
diversion). This would result in the subscriber for telephone number 123 paying for the
call between 123 and 125, the subscriber for 125 paying for the call to 139, and the

subscriber for 139 paying for the call to 123 (a triple payment for a call).

5.2.1.2 External Recursion

If recursion is specified as an external recursion, a transition rule concludes a special
response, which is identified by the filtering process, and the argument is returned as a
stimulus (see Figure 5.6). When behaviour is specified with external recursion, the
specification exploits some known and reliable behaviour. In CABS, this special response
term is named stimulus since its argument is one stimulus to be sent as input to the
system. When the filtering process identifies a response, stimulus(<stimulus term to be
sent to system>), it is converted to a stimulus term and sent to the system. The external
filter process is transparent for all responses directed to the users, and only identifies and

filters out responses from the system that should be sent back as stimulus terms.

With this mechanism, we could specify call diversion by having a transition rule identify
when a caller C calls a number N1 for which a diversion is set to number N2, and
generate a response term stimulus( dialling(C, N2, NextTime) ) which the filtering process

will translate to a signal dialling(C, N2, NextTime) and present as an input to the system.
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Logical System

- ; Transition Rule 1:
] > sequencing | stimulus | g jys at time t+1 &
A7 stimuli

= conditions at time t
users - s
Filter | TeSponse | conclusions at t+1 &

process response at t+1

Facts at Facts at
time t time t+1

Figure 5.6: External recursion

If number N2 has also diverted calls to number NI, we would end up with an infinite
external loop. When dialling(C, N2, NextTime) is received by the system, it would
correctly identify that N2 is diverted to NI and generate a response term
stimulus(dialling(C, N1, NextTime)): this may continue forever. It is theoretically difficult
in general to prove that a specification containing external recursion is finite. A crude
way of reducing the risk to the most obvious loops would be to add restrictions in the
filter process. For example, one might only allow a stimulus with the same arguments
(allowing different times) to be sent to the system a certain number of times within a
given time frame. If a restriction is added that the response stimulus(dialling(C,Nr,T)) is
accepted only three times with the same arguments within one second, the loop in the
example would most likely be eliminated. But since there is no way in CABS to prove
that the use of external recursion will not cause an infinite loop, this way of specifying
behavioural requirements should be avoided in cases where reliability is a high priority
(or all external recursion should be translated to expanded recursion in the refinement
process of the specification). In situations where there are good reasons for using
external loops to specify some particular behavioural requirements, the part of the

specification that can cause infinite loops is clearly identifiable.
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5.2.2 Parallel Transition Rules and Order Independence

For requirements specification, it is useful to have transition rules that can trigger in
parallel if all their conditions are met, and can also trigger independently of the order of
the transition rules (transition rules are by default context independent). This can be used
to separate the specifications of more or less unrelated behaviours (for example, separate
call billing functionality for a telephone call from the behaviour of how to establish the
call) which are triggered by the same external stimulus. Context-independent transition
rules give the advantage of defining the behaviour independently of both loading order
and other transition rules included in the full requirements specification (in many rule
based systems, the exact behaviour of a rule can only be determined if the conflict
resolution methods are known, as well as the loading order: the system may behave
completely differently if the rules are loaded in a different order'”). Transition rules
which may trigger in parallel must be checked carefully to ensure that they do not have
conflicting conclusions (this can be done automatically, see Section 7.6). Parallel
transition rules do not affect the expressiveness of the logic and can be translated
(manually) to a set of non parallel transition rules with exactly the same behaviour. Their

sole purpose is to aid the separation of requirements.

5.3 Structuring Functionality in Cases

There are a number of different ways to structure functional specifications. The main
aim of any structure is to make it easier for a human to understand, extend or modify a
specification. It is considered to be difficult to structure large systems in predicate logic.
If a structure is required for a formal specification based on predicate logic, it has to be

introduced either in the formal notation itself or on a meta-level. The most common

17 o: . . . i 3
Since telecommunications systems requirements are composed of hundreds of different services

(cases), it would be a major task to handle loading order for transition rules.
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approaches are to modularise a specification or to divide the specification into a number
of communicating objects (not to be confused with the objects in the domain of

discourse, hence I will call these objects ‘process objects’).

In the chosen telecommunications domain, the functionality is divided into functional
parts'® called services, where each service reflects some particular behaviour of the final
telecommunications system. Services are often classified as either basic services,
capturing some main functionality, or as services which add functionality to these basic
services. In telephony, the basic functionality is to establish a voice or data connection
between two users. Examples of services adding functionality are call return, call minder
and call waiting (for more examples see “Selected services, User guide, BT” and
Appendix B). The basic service in telecommunications is decreasing as part of the total
functionality and the overall functionality is getting more complicated. In our example
domain of telecommunications services, we implemented each service as a separate case,

which follows the traditional way of structuring telecommunications services.

Figure 5.7 shows an example of how a case is displayed in the CABS system. In the scroll
list under the text Transition rules (T-rules) in case: a list with all transition rules
belonging to the case is shown. The user may chose to inspect a particular transition rule
by selecting the appropriate button. This will show the window for the transition rule as
shown in Figure 5.5. In the same way, a transition rule can be removed from or added to
the case. The informal description gives a brief description of the case, its purpose,

functionality and links to relevant documentation. In the list Terms defined by case: a list

¥ In telecommunications, it is also common to have an object oriented structure at the design and
implementation level (but not at the requirements level) where different parts are handled and
implemented separately (trunk lines, protocols, regional processors, access points, etc.). In contrast,
functional requirements specifications should ideally be as independent as possible of design and

implementation decisions.
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with all terms defined by the case is shown. The button Show Term will show the selected

term in the list. This information is used to determine relationships between cases.

If a case specifies behaviour added to that of a previously specified case, in the sense that
a system does not include the base case, the extension case does not make sense on its
own (in telecommunications, three party call may be specified as an extension to call
waiting). If a case specifies some behaviour added to a previously specified case, this is

shown in the list <case name> is dependent on cases: in the window.

The button Interaction makes an in-depth analysis of relations and dependencies
between cases (some of the interaction can be determined automatically in CABS, see
Chapter 9 for more details). The user can choose to inspect the input examples on which
the case has been based on by pressing the Input Examples button, or can choose to
inspect the test cases used for the verification of the case by pressing the Test Cases
button (if no Test Cases have been generated automatically from the case, this can be
initialised). The More button gives some additional information, such as when a case was

last modified.
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EBD————————= Case: basic_uil Vi
Transition rules (T-rules) in case:

answer_call

b leave call

dialling busy_1

dialling busy 2

dialling congestion
disconnect_from_calling
disconnect_if time_out_1

[ Show T-rule ] [Flemnue T-rule] [ Add T-rule ]

@

Informal description of case:

Captures the behaviouwr of a basic telephone call between |47

two telephone users. Includes call to a busy user, ]

congestion and time outs. s
Terms defined hu case:

accepbs dincoming calls(User) : relation 4p

answer _nr(User, Hr) type: relation

busy_tone(User_A) type: response

basic_call is dependent on cases:
basic_telephony

[Input Euamuleﬂ [ Test Cases ] ( Show Term J

[CﬂﬂCEIJ[ More ] { Interaction ]

Figure 5.7: The case window in CABS

In a requirements specification, it should be obvious which parts of the specifications are
requirements and which are merely there to aid the human user in handling a large
specification. To represent both the specification and these additional structures in logic
may complicate the logic used to represent the specification and it may be difficult to
extract the part of the specification relating purely to requirements. With an object
oriented approach, the distinction between specification and supporting structure may be
difficult to make, since dividing a functionality into a number of communicating objects
may be a requirement or just a decision taken in order to make the specification easier to

understand. If a large system with varied functionality is divided into large numbers of
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communicating objects, this may require extensive communication and large numbers of
communication protocols to understand and handle. If so, this may reduce the benefits
from structuring the requirements into objects, or, in the worst case, lead to a
specification which is more complicated than if specified without a communicating

object structure.

In CABS, a case consists of a set of transition rules. Cases also contain references and
information aiding human understanding, re-use, modification and evaluation. The
logical formalism does not know what a case is and treats all transition rules as one large

set of axioms. The main reasons for this design are:

e CABS is aimed at people who are not skilled in logic, so it is important to keep the

logic as clear and simple as possible.
e To avoid complications in the verification and simulation of specifications.

e To keep the distinction clear between what parts of the requirements are requirements

and what parts are an aid to human thought processes.

e One of CABS’ aims is to stretch a simple, executable logic as far as possible and to
explore the benefits and drawbacks of this minimalistic approach in a real application

domain.

As mentioned earlier, a case may be specified as being dependent on another case. The
opposite would be that a case is independent of all other cases and doesn’t interact with
any other cases (not common in the telecommunications domain). If such an approach
can be taken for an application domain, each case may be viewed as a single process that
can be specified, re-used, validated and verified in CABS. If a domain contains individual
autonomous components exhibiting external communication only, there is no need to
consider interaction and dependencies. Such a domain would be well suited for CABS
(or, even better, a simplified version of CABS where all parts especially included to
handle interaction and dependencies are excluded). One current limitation in CABS is

that if the overall behaviour of the system is determined by a set of communicating cases
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(communicating with each other by external stimuli), this may be simulated, but not

formally verified in CABS (beyond the scope of this research).
5. 3.1 Case Relations

A telecommunications service may be dependent on other services (adding functionality
to them) or interact with another service, i.e. there is a new behaviour when both services
are in the same system. For this reason, requirements have to be carefully validated and

verified to determine where and how cases affect each other and the overall behaviour.

Cases being dependent on each other is a common feature of a system that is structured
according to functionality. A case X may add functionality to case Y, hence case X is
meaningless if case Y is not included in the constructed system. This information has to
be captured during the initial specification. Also, analysis of where terms are used, and in
what way (as a condition, conclusion, negated, ...), may identify dependencies and
relations between cases, since terms are specified as belonging to a case. How a term is
used is important during analysis. For example, if a term is used in the condition part of
a transition rule, the rule can never be triggered if no other transition rule has the term in
its conclusion part. Some cross-reference tools have been developed in order to analyse
the transition rules and their use of terms (these tools have not been integrated in the

current version of CABS).
5.4 System Requirements (Sets of Cases)

The requirements specification of a system specified in CABS is a set of cases whose
behaviour (including the most common interaction between them) has been validated
and verified. Systems requirements may include additional input examples, exemplifying
interaction between different cases in the system. In the telecommunications domain,
system requirements may denote all telephone services supplied to a particular country,
service vendor, local or global company. Interactions between systems may also have
input examples exemplifying certain interactions. When a case has been modified or a

new case is added to a system, all input examples describing interaction with other cases
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should be verified again. Also, the system that includes these modified or new cases
should have all its interaction with other systems verified. In CABS, automated
verification of sets of test cases is implemented, assuming that we can select which system

or systems to verify, and select which input examples to verify.

In Figure 5.8, an example of the system window in CABS is shown. First, a list of all cases
included in the system is shown. The user may inspect, remove, replace or add cases to a
system. An informal description is given as a textual description of the system, with links
to relevant material. The list Behaviour dependent on systems/cases: contains the names
of systems and cases on which the system is dependent to specify a meaningful
behaviour. If the list is empty, then the system specifies a meaningful behaviour on its
own. If not, then in telephony it is most likely a set of add-on services (specially designed
services adding functionality for which phone users are prepared to pay extra, which in
turn increase income for telecommunications service providers). If there are cases in the
list, then the system is dependent on any system including these cases. In
telecommunications, there may be a large number of different systems where only a few
cases differ for each system, and so it is preferable if an add-on system is dependent only
on the parts of the system that are the same for all these different systems. This increases

the possibility of re-using the system and facilitates adaptation and integration.

The list Integrated with systems/cases: is a list of systems or cases with which the
particular system has been verified and validated. In telecommunications applications, it
is important to keep track of these, since there are a large number of different systems
designed for specific categories of users, vendors, service providers, etc. If it is a case in
the list, then the same reasoning applies as for the Behaviour dependent on systems/cases:
situation. Also, when validating and verifying a particular service, CABS needs to know in

which context the service is to be tested (a set of cases/systems).
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Figure 5.8: System window in CABS

5.4.1 Different Application Domains

A case library normally contains cases from just one application area, since different
parts of the case library can have only one unique meaning. If a case library captures
different, but related, application domains, where terms may have different meanings,
great care has to be taken to ensure that any reasoning and re-use is not based on terms
from the different application domains having similar but not equivalent meanings. A

requirements capture process, whether formal or informal, has the main purpose of
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outlining the requirements as closely as possible, and if this reasoning process is based on
terms not clearly defined, or even having different meanings, it would complicate matters

considerably.

5.4.2 Priority for Transition Rules in Systems

In some situations, it may be desirable to have context dependent rules on a local level.
Since every transition rule has a unique name, we can define local orders between
transition rules, i.e. if transition rule divert_call triggers (has all its conditions met) then
normal_dialling should not trigger. Such a request can be specified with transition rules
by including all conditions from divert_call as a negated conjunction in the transition
rule normal_dialling. If there are more than two or three transition rules that are
exclusive, or overriding each other, this solution is somewhat tedious as the conditions
will get very large. Therefore, we allow the user to define explicitly a local order between
a number of named transition rules (see Appendix A for more details on logic). Figure
5.9 demonstrates setting the priorities for transition rules triggered by stimulus dialling.
To inspect or modify a priority, the user first selects the stimulus to which the priority
applies (by selecting the stimulus in the list Priority for stimulus). The current order
shown is the number after Priority order followed by the total number of priority orders
for this stimulus in the brackets. In the next list, the name of the transition rules (with the
name of the case in which they are defined) and their local priorities are displayed. For
example, transition rule /. divert_call will override 9. dialling_busy. If divert_call has its
condition met, all the following transition rules in the list cannot trigger. The same
transition rule may occur in different orders which enables the user to specify a lattice. If
transition rules are exclusive (they cannot have their conditions met in the same state),
they may be given the same priority numbers (as is the case for transition rule
dialling_busy_queue_call_1 and dialling_busy_queue_call_2). Protection against
circular priorities should be provided when new priorities are added or existing priorities

are changed (not implemented).
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Figure 5.9: Priority window in CABS

The explicit local order is purely syntactical and, from a logical point of view, the
priority is expanded into negations in the transition rules (explained in Appendix A).
This local order allows us to make the meaning of the transition rules independent of the

order in which they are loaded, as discussed in Section 5.2.2.
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5.5 Graphical Input Examples

All previous graphical input examples on which a specification is built are stored in the
case library, including both their graphical layout (created by the user) and the detailed
requirements added to them under refinement. Since the graphical input examples are
the original source on which the formalised requirements are based, we have to keep
them for further modifications and extensions of the system. In the CABS system, the
user can create new and re-open previously created input examples, and modify and save

them in their graphical form. All information is stored in the case library.

5.6 Storing and Re-using Test Cases

Test cases are generated from input examples and in some cases, revised or added by a
user (user initiated simulations may be stored as test cases; some parts of this are
implemented in CABS). All the test cases are needed in order to verify a modified
system. If changes have been made to some parts of the system, all test cases that can be
theoretically affected by the change have to be re-tested in order to verify that the

required behaviour is still captured by the requirements specifications.

We also need to maintain the link to the input examples from which the test cases
originally stem. This gives us the ability to identify which test cases are still valid or have
to be removed due to changes in the input examples on which they are based. How test
cases are used in the validation and verification task is explained in Section 7.5 and

Section 7.6.



Chapter:

6.  Matching and Identification of

Similar Behaviour

The purpose of the matching process is to identify cases, or parts of cases, hold in the
case library which have similar behaviour (as exemplified by the input examples) and
which may be considered for re-use. A computationally fast and uncomplicated
matching algorithm aimed at identifying similar behaviour is used in CABS. The result
of the matching must be narrow enough to identify candidates for re-use and broad
enough not to exclude relevant cases. The final selection will be carried out by the user,
validating and verifying the selected match with the tools provided in CABS. If the user is
not satisfied with the result of the matching, she may redo the match after refining the
input examples or modifying parameters, thus directing the matching process in order to

identify more suitable candidates.

When a user of CABS wishes to make a match, she selects ‘Match...’ from the CABS pull
down menu. A dialogue window (Figure 6.1) with all the input examples on which the
match may be based is shown. The user selects the input examples to be used in the
match (a_basic_example and a_busy_example have been selected in Figure 6.1). When
the OK button is pressed, the system will try to identify cases in the case library that

capture the same or similar behaviour. The result is shown in Figure 6.9.

89
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a_basic_example
a_busy_example
a_time_out_call

Select input examples
for which a similar
behaviour is to be
identified:

Figure 6.1: Selecting input examples to match.

CABS implements a two-step matching process based on comparing sets which results in
a fast and fairly easy to understand matching algorithm. First, transition rules capturing
the same or similar behaviour (as exemplified in the detailed links from the input
example) are identified, and then cases capturing similar behaviour exemplified in the
input examples are identified. Both individual transition rules and whole cases may be re-
used to create a new requirements specification capturing the exemplified behaviour. In

Figure 6.2, the matching algorithm is outlined in pseudo-code.
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For all links from the input examples, Ly:
For all transition rules in the case library, Tp:

Analyse the different features indicating closeness of
behaviour for Ly and Tp,

Calculate the score for the behavioural closeness between
Lp and Ty, (calculation based on the features and

parameters set by user).

For all cases in the case library, Cj:
Calculate an overall score for Cj based on the closeness scores
of the transition rules in Cj.

Sort transition rules and cases according to their overall
score for closeness of behaviour.

Figure 6.2: Outline of matching algorithm

Requirements specification, as well as re-use of requirements specification, is seen as an
iterative process: parts of the result of the matching can be confirmed by the user before

a partial re-match is carried out, possibly with a different set of matching parameters.

Any matching algorithm able to identify cases with the same or similar behaviour to the
input examples may be considered for the task. The matching may be semantic or
syntactic. Syntactic matching may be a straightforward keyword based matching or a
more elaborate one, using knowledge about the structure in order to improve the
matching result. A syntactic matching which is sufficiently fast and accurate for the task
of identifying similar behaviour has been chosen for CABS. The matching algorithm

used is based on set intersections and unions.

For some application domains, a computationally faster choice would be a pure keyword
based search, identifying terms occurring in both the detailed links and the transition
rules from the case library. A keyword based search produces good results when there

are one or more unique keywords (terms) that may be identified in the input examples,



92 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

or by the user, in order to determine relevant cases and parts of cases. This is true for
some of the services specified in CABS in the telecommunications domain (for example,
redirect calls, which defines and uses the term redirect). Many services in the application
domain of telecommunications do not have easily identifiable unique terms like redirect
calls does (pick up call and voting are examples of services not having any terms defined
and if there are variants of a service in the case library, they will all have the same terms
defined), so keyword matching cannot be used as the only method of identifying cases.
Also, similar services or variants of the same service do not, in most cases, have
discriminating terms, making keyword matching less accurate. If no unique terms are
present in the set of terms, and many cases use the same set of terms, too many matching
cases may be identified as possible candidates. Since telecommunications services
requirements are based on a fairly small set of different terms used by most services
(terms such as answer_number, calling, ring_signal, busy_tone, in_speech), straight
keyword matching is unlikely to produce reliable results in this domain. Keyword based
matching could complement the algorithm used in CABS, since keyword matching is
even faster, and if there are some specific terms related directly to the behaviour
exemplified in the input, the relevant cases can be identified. However, keyword
matching is not implemented in the current system. The matching used in CABS has the
advantage of capturing features, thus allowing the user to make some semantic
assumptions about a match that may be useful in the selection process or when
modifying matching parameters. For more on optimising matching and different
methods on how to prune a search see for example [Althoff, Auriol, Barletta, Manago

95].

In this chapter, we first explore the terms what “similar behaviour” and “closeness of
behaviour” mean, and establish how to identify and score transition rules capturing
behaviour which is similar to the detailed links. After that, the process of identifying
similar cases is described (this process is based on the identified transition rules capturing

a similar behaviour to the links).



CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 93

6.1 Defining Similar Behaviour

One of the main issues in case based reasoning systems is the choice of appropriate
features for cases. A case in the case library is only of use if there is a way of identifying
when the case can be re-used in whole or in part. If indexes are badly selected, it will
require great effort or even be impossible to locate relevant cases. If the indexing
vocabulary [Kolodner 93] is well chosen, it will be easy to compare stored cases to the
given task, and to determine if a case is of interest or not. Hence we need to investigate
both the application domain and the semantics of cases, and to carefully select features to
be used in the matching process. The features used should be fairly easy to understand
and to explain to the user, which will aid in the task of adapting matching parameters to a
particular application domain. The algorithm implementing these features should also be

computationally fast enough to produce a result within an acceptable time.

Before we define the features (see section 6.4) used in the matching algorithm, a number
of expressions are defined. These are used as the basis for feature definitions, which
make the assumptions and compromises necessary to produce acceptable results and

achieve a computationally efficient implementation of the matching algorithm.

In our application domain, it is always possible to determine if a link'® from the input
examples and a transition rule from the case library capture exactly the same behaviour.
If a transition rule and a link have exactly the same behaviour, they must have the same
conditions (stimulus and other conditions) and conclusions (responses and other
conclusions). It will therefore be obvious that all behaviour included in the link is
included in the transition rule, and all behaviour excluded by the link is excluded by the

transition rule. In the following definitions, we will treat the links as transition rules, since

9 If we use ‘link’ without a discriminator, we mean a detailed link (the expanded graphical link with
extended conditions and conclusions). The term ‘graphical link’ will be used to refer to a graphical

link from the input example.
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they are so similar syntactically that there is no need for a distinction in the definitions.
When translating the definitions into features, the difference is of importance and will be
reintroduced, since the features capture some of the semantic aspects of the differences

between links and transition rules.

Definition 0, exactly the same behaviour: Two transition rules exhibit exactly the same
behaviour if and only if all conditions (stimuli and other conditions) and conclusions

(responses and other conclusions) in the transition rules are equal.

If there is more than one link in the input examples which has the same behaviour as a
particular transition rule, the relevance of this transition rule may be more significant (for
further details on combined links, see Section 6.5). The notation of capturing exactly the
same behaviour is not sufficient in the telecommunications domain since it is very
unlikely that a link and transition rule have exactly the same conditions and conclusions.
The reasons for this are that a behavioural input example represents a particular example
of the behaviour, but a transition rule captures many cases, and also includes interaction
with other telecommunications services. This usually results in links having fewer
conditions and conclusions than transition rules. For this reason, we need a more fine

grained vocabulary to be able to reason about closeness of behaviour.

Definition 1, same external triggering condition: Two transition rules have the same

external triggering condition if and only if their stimulus term conditions are equal.

It may be useful to know whether there is a contradiction between a transition rule and a
link, i.e. if they cannot apply to the same states and hence not capture the same

behaviour. This is done in definition 2.

Definition 2, under no circumstances capture the same behaviour: Two transition rules
can under no circumstances capture the same behaviour if there is a contradiction

between their condition parts or their conclusion parts or both.

It may also be useful to know whether a link and transition rule apply to the same state.



CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 95

Definition 3, same originating state: Two transition rules have the same originating state

if and only if all their conditions are equal (stimulus conditions do not need to be equal).

If definition 3 is not met, it may be useful to know if there is any state in which the link
and transition rule have their conditions met. We do not distinguish between a reachable
state and a possible state. The difference between this and definition 3’ is that even if
there is a state (a set of terms) under which both transition rules may have their
conditions met, there may be no possible sequence of stimuli that can bring the system
into this state. Such an analysis may be used as an additional source of information when
determining how similar two transition rules are, but may be computationally expensive

for large requirements.

Definition 3°, some originating states in common: A transition rule, T has some
originating states in common with another transition rule T if the conditions of T; are a

subset of T5’s conditions and there is no contradiction between T and T;’s disjunction.

The relationship between the terminating states may also be of interest:

Definition 4, cause the same effect: Two transition rules cause the same effect if their

conclusions are equal and they have some originating states in common.

A weak form of definition 4 looks at the question of whether there is any state in which

both the link and the transition rule have their conclusions met.

Definition 4°, some terminating states in common: Two transition rules, T and Ty, have
some terminating states in common if T{’s conclusions are a subset of T5’s conclusions

and they have some originating states in common.

In the application domain of telecommunications services, the external visible side effects
(response terms) may have a higher significance than other conclusions, hence we

introduce separate definitions (definitions 5 and 5°) for externally visible side effects

(responses).



96 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Definition 5, same externally visible effects: Two transition rules have the same
externally visible effects if and only if the response terms in their conclusions are equal

and they have some originating states in common.

Definition 5°, some externally visible effects in common: Two transition rules, T{ and
T,, have some externally visible effects in common if T|’s response terms is a subset of

T,’s response terms and they have some originating states in common

Because of the fact that links are expected to be part of some particular input example, it
is unlikely that there are input examples and transition rules meeting the definitions fully,
hence we need to define a set of matching features based on the definitions, which allow
for some flexibility. Features should be defined in such a way that their subsequent use is
computationally efficient. The result should also aid us in determining the closeness of
behaviour between an input example and a set of transition rules from the case library.
These definitions have been selected since they can easily be translated into features
which can all be determined fairly accurately at a low computational cost, using the

structure inside transition rules and comparing sets of terms.

In the next sections, we will explore how these definitions are used to define features
which are useful in the evaluation of behavioural closeness. We will then look at how
these features can be translated into values, and how these values are then combined into
a single value, which gives a sufficiently accurate estimate of the closeness of the

behaviour between links and transition rules, or input examples and cases respectively.

6.2 Using Parts and Sets to Analyse Similarity

Before exploring the connection between the definitions, features for estimating
closeness and structural matches between transition rules and links, the syntactic structure
used for comparison is detailed. The transition rules and the links are each partitioned

into seven parts:
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Transition rule: Stimulus part (extracted from condition part)
Condition part (stimulus and negative conditions excluded)

Negative condition part (stimulus and non negative conditions
excluded)

Conclusion part (response parts and negative conclusions excluded)

Negative conclusion part (response parts and non negative

conclusions excluded)
Response part (extracted from conclusion part)
Negative response part (extracted from conclusion part)

An analysis of arguments for terms is not made at this stage of the matching. Sufficient
assumptions can be made which exclude a large number of transition rules from further
analysis and rate the remaining matches without an in-depth analysis of arguments and
variable bindings (a variable refers to a specific entity in the application domain, such as
a specific phone number or subscriber without naming the entity). The exclusion is made
conservatively, since care must be taken not to exclude transition rules that may be good
candidates. Each part is treated as a set with zero or more terms. This can be done safely
because the condition, conclusion and response parts are all restricted to conjunctions of
terms. With current restrictions on expressions, disjunctive terms (where no brackets are
allowed, and conjunction has priority over disjunction), may be allowed to occur in a
transition rule, and any disjunctions which occur can be expanded to a set of transition

rules containing only conjunctive terms.

The partitioning of transition rules is trivial since terms are typed as stimulus, response,
attribute or relation before they are used in links or transition rules. The stimulus part is
restricted to only one non-negated term of the type stimulus, and the stimulus terms are
only allowed to be used in the stimulus part. The partitioning of terms gives us a basis for
comparison and for drawing some conclusions to be used in the closeness of behaviour
rating. Negated terms in parts are handled separately, so seven features may be compared
for each link/ transition rule pair, and six cross comparisons (negated/ non negated parts,

see line nc2, cn2, nc3, cn3, nc4, cn4 in Figure 6.3) may be made. Selected comparisons
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are used for defining features. They are translated into numerical form and used to
create an overall score, which in turn is used in the final rating of the “closeness”
between the transition rule and link. These comparisons have been chosen because they
are computationally fast to determine, fairly easy to understand and the fact that they can
be used to indicate if a link and a transition rule capture similar behaviour. The choice of
which of these comparisons to use as features and their connection to the definitions are

explored in the following sections.
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LINK comparisons TRANSITION RULE
cl
Stimulus Stimulus
c2
Conditions Conditions
nc2 cn2
n2
Negated Conditions Negated Conditions
c3
Conclusions Conclusions
nc3 cn3
n3
Negated Conclusions Negated Conclusions
c4
Responses Responses
nc4 cn4
n4
Negated Responses Negated Responses

Figure 6.3: Possible comparisons between parts in link and transition rule

For reasons of computational cost, we do not calculate every comparison for every pair
of link/ transition rules, since, if some comparisons are below a threshold set by the user,
the transition rule is classified as uninteresting and no further evaluation on the transition
rule will be made. These thresholds set by the user should ensure that no relevant

matches are excluded but, if in doubt, the threshold values can always be set to zero and
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all matches will be included whatever the score is. This may take a considerable time for
a large case library, and it is up to the user or system manager to weigh up the advantages
of a faster match against the risk of missing possible matches (see section 6.5.1). Since
the comparison is set based without any computationally expensive calculations, it is
computationally fast and only marginally slower than keyword matching since the
comparisons all are implemented as a number of keyword matches (each term in the
link/transition rule is used as a keyword for the corresponding set). Hence, a linear
relationship, depending on the number of terms in the link and the transition rule,
determines the upper limit of the computational cost. In telecommunications
specification, the number of terms in transition rules are expected to be below 35 (in our
case library no transition rule has more than 30 terms). In links from input examples,

even fewer terms are SXpGCth.

6.3 Translating Comparisons to Values

Before defining the features used to estimate how similar the behaviours of a case and
input examples are (Section 6.4), we will describe how to calculate the values used in
these features. It is not necessary to understand this section in detail to be able to
understand the feature definitions. A comparison (all possible comparisons are shown in
Figure 6.3) between a part from a link and a part from a transition rule is first translated
into an integer triple, where the first number is the number of terms in the link, the
second is the number of terms in the intersection and the third is the number of terms in
the transition rule from the case library. These triples are then used to calculate two

coverage percentage values used for calculating the features.

For each comparison, two values called the intersection coverage percentage are
calculated. The intersection coverage percentage values are called ICL (Intersection
Coverage of Link) and ICT (Intersection Coverage of Transition rule). The terms in the
part of the link and the transition rule under consideration are both regarded as two sets
(L and T respectively) and the intersection LNT is a set called I. The value for ICT = 100

* number(I) / number(T) and ICL = 100 * number(I) / number(L). The value is given as
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a percentage value between 0 and 100, appropriately rounded since decimals would not
make any significant difference. If L=0 or T=@ (a rare situation in our application

domain) then ICL (respectively ICT) is set to zero.

In Figure 6.4, the five main situations for coverage are shown. In the first case (top left
example in Figure 6.4) the sets L and T are equal, hence the intersection, I, is also equal
to L and T ((I=LNT) A (L=T)) = I=L=T). The intersection covers 100% of the terms in
the link, hence ICL = 100. The intersection fully covers the terms in the transition rule,

hence ICT = 100 in this case.

If there are 3 terms in T and 2 terms in L and LT, the intersection I = L and contains 2
terms. The intersection has 2/3 of the terms in T giving an ICT value of 67 (67 %) and an

ICL value of 100. This corresponds to the top right example in Figure 6.4.

If there are 2 terms in L and 3 terms in T and the intersection I contains 1 term, then ICL
is 100*1/2 = 50 and ICT = 100*1/3 = 33. This example corresponds to the middle left

example in Figure 6.4.

The middle right example corresponds to the top right example (L and T have their
positions switched, TCL). The bottom example illustrates when the intersection I between
the two sets is empty (LNT) = @. Both ICT and ICL are assigned the value O for the last

situation.
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Full match of Transition rule terms covers
terms linkterms element
: -
Intersecting Terms from link
terms cover transition rule terms
@ -
Intersection

isthe empty set

ED-ED

Figure 6.4: Examples of different matches when comparing parts (sets)

In the next section, we will define the different features used to measure closeness
between a link and transition rule, based on the definitions in the previous section and

examine how to translate the features into numerical values.
6.4 Features for Measuring Closeness of Behaviour

Feature 1, based on definition 1, same external triggering condition (stimulus).
Can the transition rule and link be triggered by the same external stimulus?

Feature 1 is a straightforward match between the stimulus part of the links and the

transition rules (see Figure 6.3, comparison cl).
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If a link and a transition rule have the same stimulus as their triggering condition, feature
1 may be used as an indication that it is relevant to analyse them further for similarity.
For example, if a link has the triggering stimulus hook_on and a transition rule has the
triggering stimulus hook_on, it is obvious that the link and transition rule will trigger in
the same situation if all other conditions and arguments are equal. We can also conclude
that a transition rule with the triggering stimulus dialling cannot trigger in the same
situation as the hook_on link (no parallel stimuli are allowed in the CABS model of the
telecommunications domain). Since links and transition rules are restricted to having
only one triggering stimulus, the match can either be full (the intersection between the
two stimuli sets is equal to the triggering stimulus in the link and the transition rule), or
empty (the intersection is the empty set). Intuitively, we can draw the conclusion that any
transition rule not having the same triggering stimulus as the link cannot capture the
same behaviour and that this is sufficient to exclude the transition rule from further
investigation, thus reducing the search space considerably (see Figure 6.5 for how the

matching in such a case is more efficient).

The difference between definition 1 and feature 1 is that feature 1 matches the stimulus
name but makes no full analysis of the arguments (exemplified below). Feature 1 will
give good results if the term name bears high significance (as described in Chapter
5.1.1). A successful match for feature 1 would occur when the stimlillus dialling(al, 123,
12:00) in a link is matched with the stimulus in a transition rule dialling(A, Nr, Time) and
where no variables are bound to some other values throughout the transition rule (see
Appendix A for details on logic). An example in which feature 1 would reduce the score
is when switch_service_on( al, redirect, 123, 12:00) is matched against
switch_service_on(UserA, hotline, Number, Time). The second argument (redirect and
hotline) are not equal. A difference between feature 1 and definition 1 would occur in
the situation where two variables, or one variable and one constant, are matched and later
on in the condition part of the transition rule are bound to a specific value. For example,
if  switch_service_on(al, redirect, 123, 12:00) is  matched against
switch_service_on(UserA, Service, Number, Time) and the conditions in the transition

rule contains the term equals(Service, hotline), feature 1 would not identify the binding
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of variable Service, since at this stage of the match, no analysis of the condition part is
made. The main reason for this is efficiency: a large number of transition rules can be
excluded from further matching at a low computational price, hence the decision was
made to not include further analysis of variable binding at this stage of the matching (see

Figure 6.5) in order to be able to exclude some additional transition rules.

CABS also allows the definition of similar stimuli. This facility can be used if there are
stimuli which have different term names, but a similar semantics in the application
domain. An example in the telecommunications domain would be the origination of a
call which may be initiated in two ways, either by dialling a number (dialling stimulus) or
by a sef_up stimulus from an ISDN terminal. Thereafter, the matching algorithm will

treat them as the same stimulus for matching purposes.

Feature 2, based on definition 2, exclusive transition rules:

Is there any contradiction, such that the behaviour in the transition rule cannot include

the behaviour exemplified in the link?

The cross comparisons between the non-negated and negated parts of the link and
transition rule (cn2, nc2, cn3, nc3, cn4, nc4 in Figure 6.3) are most useful in determining
if a transition rule is of low or no interest for further investigation. If a contradiction
exists between the link and transition rule, they cannot capture the same or similar
behaviour and we may exclude the transition rule from further investigation. When
matching the arguments to terms, there are situations in which it is difficult to determine
if it is a real contradiction or just appears to be one (e.g. whether answer_number(A,B)
and not answer_number(C,D) is a contradiction or not). If unbound variables exist in
both negated and non negated forms in the link or transition rule (see the example at the
end of this section) we take the conservative approach and do not classify this as a
negation. With this conservative approach, exclusion of transition rules that may be

appropriate candidates is avoided.
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An example of the successful identification of a contradiction between a link and a
transition rule (example of comparison cn2 in Figure 6.3) is when the condition part of a
link has the term dial_tone(al), the transition rule has the condition not
dial_tone(UserA) and UserA has been instantiated to al by matching the stimulus (the
only way of binding arguments during matching). A more difficult example would be if
a link has the condition answer_number(a2, 222) & ... and a transition rule has the
conditions answer_number(UserB, Nrl) & not answer_number(UserC, Nr2) & ... . In this
situation, it is difficult to determine if there is a real contradiction. Since feature 2 does
not perform a full analysis of arguments, feature 2 cannot discriminate between the
negated and non-negated term, and should not be reason enough alone to exclude a

transition rule.

After identifying and removing matches with contradictions above the user-set threshold
in Figure 6.6, the numerical value of contradictions (the sum of the number of terms in
the intersections for cn2, nc2, cn3, nc3, cn4, nc4 in Figure 6.3) is calculated. Since all the
other comparisons have a percentage value between 0 and 100 apart from feature 2, we
translate it with a linear function to a percentage value where 100% signifies no
contradictions and 0% signifies the maximum allowed number of contradictions. If the
maximum number of contradictions is set to 0, then the value for feature 2 is 100% for
all transition rules that are scored. In this case, it does not make sense to give feature 2

any weight in the final scoring. If the maximum number of contradictions is Cpax and
the number of contradictions is Cio and Cipp < Cpyax @and Cpyax > 0 then the ICL and
ICT are set to 100 - 100%Cyot/Cax for feature 2. The fact that feature 2 is calculated in

a different way from the other features may require a careful selection and tuning of the

weight for feature 2 (see Chapter 6.5.1).
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Feature 3, based on definition 3°, some originating states in common:

Can the transition rule trigger in the same or similar situation ?

For feature 3, we can directly apply the result from comparison c2 and n2. If the
intersection of the conditions of the link and transition rule is empty, it is less likely that a
behaviour similar to the link is captured by the transition rule. If the intersection captures
most of the terms in the link’s condition part, the behaviour of the link may be captured
in the transition rule. The additional terms in the transition rule may be additional
interactions and may be used to exclude special situations handled by a separate
transition rule in the case. Since interactions are common in telecommunications services,

we expect that there are more terms in the transition rule capturing interaction.

In the situation where the condition from the link has terms which are not present in the
condition from the transition rule, it may be that the transition rule is more general and
deliberately does not include these terms. A match is often better if most of the terms
from the link are included in the transition rule. By setting the appropriate parameter
values, the final scoring will rate this as an indication of a possibly good match and use

the result to create an overall score of closeness for the transition rule.

An example of a successful indication of a similar behaviour using feature 3 is if the
condition part of a link is answer_number(al, 111) & redirect(111, 222) &
answer_number(a2, 222) & not calling( Z, a2), and the conditions in a transition rule are
answer_number(Al, Nrl) & redirect(Nrl, Nr2) & answer_number(A2, Nr2) & not
calling(Z, A2) & not dont_disturb(A2). In this example, the condition part of the link is a
subset of the condition part in the transition rule, so there exists at least one state in which

both condition parts are true.

An example of a match in which there is a difference in the result between feature 3 and
definition 3" is a link that has its condition part equal to answer_number(al, 111) &
redirect(111, 222) & not dont_disturb(222) and a transition rule that has its condition
part equal to answer_number(Al, Nrl) <& call_back_request(Nrl, Al) & not

dont_disturb(Nrl). In this situation, feature 3 identifies that the terms answer_number
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and not dont_disturb are present in both condition parts, but that the rest of the condition
terms are different. Feature 3 would give the match some significance but since the not
dont_disturb is actually two different identities in: answer_number(al, 111) & not
dont_disturb(222) and the same in: answer_number(Al, Nrl) & not dont_disturb(Nrl),
they would not be regarded as equal by definition 2’ since Nrl and Nr2 cannot have the
values 111 and 222 at the same time), only one of the terms would count as a match. In
some application domains, feature 3 may be preferred, since definition 3° may exclude

interesting matches.

The numerical results for feature 3 are based on the conditions for the link and transition
rule (stimulus excluded for both). These two sets of terms are translated into the numeric

ICT and ICL values (in accordance with Section 6.3).

Feature 4, based on definition 4°, some terminating states in common.
Can the transition rule end in the same or a similar state as the link

If the conclusions from the link and the transition rule match fully, it would signify that
both are causing the same changes to the states to which they apply (responses not
considered). This is a similarity that may be worth noticing even if there is not a full
match in the conclusions. In the telecommunications domain, a transition rule may
include conclusions needed for other services, for example, to note the starting time of a
call in order to provide the charging service with sufficient information. It may also be

the case that the link has omitted terms in the conclusion which are not obvious to the

user making the input examples.

Situations may also occur when a link includes conclusions that are redundant and are
known to be already true in the previous situation and, hence, a match, as shown in
Figure 6.4, middle left example, is expected. For example, if a user puts the phone down
(hook_on), we may specify a generic transition rule concluding that the user is idle. If

this transition rule always triggers when a hook_on stimulus occurs, other transition rules
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can ignore this conclusion. If accuracy of matches of an application domain specified
with parallel*’ transition rules, gives poor results for feature 4, adapting the matching of
feature 4 to consider transition rules that may apply in parallel could improve the

matching result.

An example of the successful indication of a similar behaviour by feature 4 is when the
conclusion part of a link is calling(al, a7) and the conclusion of a transition rule is
calling(Al, A2) & last_call(Al, Nr). In this example, the conclusion part of the link is a
subset of the conclusion part of the transition rule and, therefore, there exists a state in

which both conclusion parts are true.

An example of a match where there is a difference in the result between feature 4 and
definition 4’ is a link that has its conclusion part equal to calling(al, a7) & last_call(al,
777), and a transition rule that has its conclusion part equal to calling(reminder, A2). In
this situation, feature 4 identifies that the term calling is present in both conclusion parts,
but that the rest of the conclusion terms are different. Feature 4 would give the match
some significance but overlooks the fact that the transition rule could never match the
link if the arguments are those set out for definition 4’ (a call from a “reminder” is a
special case where the service reminder call initiates a call and where the reminder is not

an ordinary user).

The numerical results for feature 4 are based on the comparison between the conclusions
for the link and transition rule (c3 and n3 in Figure 6.3). These two sets of terms are

translated into the numeric ICT and ICL values according to Section 6.3.

**Not to be confused with parallel stimuli which are not allowed in order to avoid indeterminism and

added complexity. See Model of the dynamic behaviour of telecommunications network, Figure 5.4.
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Feature 5, based on definition 5°, some external visible effect in common.

Is the externally visible result (responses) from the link included in or similar to the

responses from the transition rule?

If response terms from the link and the transition rule fully match, it would mean that
both may result in a state with the same response. In telecommunications services, this is
an important indication that it may be a good match but, on its own, it is often too
general (many different transition rules have responses such as ring_signal/ ring_tone in
their conclusions). On the other hand, if the response terms do not match, it is less likely
that it is a good match, assuming the user has specified the externally visible side effects
accurately (in telecommunications services, the side effects alone are rarely affected by
interaction with other services). For example, if a link ends in a situation with a
ring_signal, transition rules with no ring_signal as a conclusion are probably not good
candidates, and transition rules having ring_signal as a conclusion would be candidates

for further analysis.

An example of a successful indication of a similar behaviour by feature 5 is if the
conclusion part of a link is not ring_tone(al) & not ring_signal(a2) and the conclusion
in a transition rule is in_speech(Al, A2) & not ring_tone(Al) & not ring_signal(A2). In
this example, the response part of the link is a subset of the response part of the transition
rule so there is at least one state in which both response parts are true. As with previous
features, there is a risk that feature 5 gives a match too much credit since no in-depth

analysis of arguments occurs.

The above example may give too much weight to some transition rules since the link
does not reveal if user al has made a hook_on (ring_tone and ring_signal have to be
cancelled) or if user a2 has made a hook_off (ring_tone and ring_signal have to be
cancelled since a speech connection has occurred which is a completely different
situation and transition rule). In most cases, the combination of features reduces the risk

of such mistakes and in the above case, feature 1 would have indicated that the stimulus
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does not match between the link and the transition rule, and so the transition rule should

not be used in further investigations.

The numerical results for feature 5 are based on the comparison between the conclusions
for the link and transition rule (c4 and n4 in Figure 6.3). These two sets of terms are

translated into the numeric ICT and ICL values are in accordance with Section 6.3.

6.5 Overall Score for Matching

First, we have to produce an overall score for each transition rule that is a candidate for a
link from the input examples. When that is done, we need to produce an overall score for
cases (sets of transition rules) in the case library. After the best matching transition rules
and cases have been identified, both of these results are shown to the user, who must
decide if the match is good enough, or if the input examples need to be extended or the
matching parameters tuned. First, we describe the process of scoring transition rules and

after that, we describe the scoring of the cases.

In order to make a rating of the closeness of transition rules, the results from comparing
these different features and their values are weighted and combined into one value
(according to the matching parameters set by the user). This value is then used as a
measurement of the closeness between a link and transition rule. In order to adjust the
match parameters for a domain, these comparisons and their meaning have to be
understood. In the following sections, we explain how an overall score is calculated for a
comparison, when transition rules are excluded from further calculations, and how the

ranking of transition rules and cases is performed.
6.5.1 Scoring a Match Between Link/Transition Rule

The algorithm for calculating features, reducing the search space and calculating the
final score for a match between a link and transition rule is outlined in Figure 6.5. There

are two types of parameters that can be adjusted in CABS:
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e Threshold parameters reducing the search space by excluding uninteresting matches.

e Parameters guiding the overall scoring of a match (capturing information about the

validity of different features and their relationship in the application domain).

Much computational effort can be saved by excluding transition rules from further
calculations: to minimise the calculations, the user set threshold values are checked after
each feature is calculated. If the result is below the user set threshold, the transition rule
does not need further investigation and the next transition rule can be explored (see
Figure 6.2). The main purpose of the threshold for the features is to make the matching
faster and to reduce the search space (with one exception, which is explained further on).
Another advantage with the threshold settings is that some of the application domain
knowledge about when a transition rule is uninteresting and can be exempt from further

calculation, is captured.
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Figure 6.5: Flow diagram for link/transition rule match

The different threshold values have to be selected carefuily, so that they do not exclude
relevant matches within a particular case library. If these values are set too high, good
matches may be removed before the final scoring. Once the values have been tuned for a

particular case library (and do not exclude interesting cases), they do not need much
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attention. CABS provides a default setting of these parameters, which is initially set and
tuned for the case library currently used (these default values may need updating if the
case library changes greatly). The experienced user can also load and save settings of
threshold and parameter profiles. These may be used if the matching algorithm is

identifying less acceptable matches. Less acceptable matches can have three causes:

e The input examples do not point out suitable cases well enough. Solution:
- Add/refine input examples.

- Exempt proposed transition rules and cases from a rematch.

e There is no good match in the case library. Solution:

- A new case may have to be constructed/generated.

e Threshold and parameter setting are not well chosen for the case library. Solution:
- Load an alternative set of threshold and parameter values and rematch.

- Modify threshold and matching parameters.

The threshold and parameter settings seem to be fairly robust for both the

telecommunications domain and the case library used for evaluation (see Chapter 8).

After all the features have been calculated, an overall score for each transition rule is
calculated. For this overall score, an overall threshold value can be set; if a transition rule
does not meet this threshold it will not be considered as a match to the corresponding
link (see Transition rule threshold in Figure 6.6). If this value is not met, the match will
neither be used for the identification of matching cases (see Section 6.5.2 on parameter
and threshold settings for cases), nor presented to the user as a possible match for a link.
For more detailed settings and optimisation of matching, there are five individual
threshold settings for each of the five features (see Figure 6.6). Only the ICL
(Intersection Coverage of Link) is used for thresholds, since ICL is the most significant
value. For feature 2, there is an additional value where a maximum number of suspected
contradictions is set. This value is also used in the calculation of feature 2’s value, as
explained in Section 6.4. There is also a separate threshold value for the combination of

features 4 & 5. The combination of features 4 & 5 is used when a case library may have
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cases that are of interest if at least one of the features has good scores (which is the case
for some transition rules in the telecommunications domain). These weights should
provide sufficient opportunities for tuning the matching for case libraries for different

application domains.

Match parameters for transition rules

—Parameters for optimising matching algorithm

Transition rule threshold: E

Stimulus threshold, ICL (feature 1): 100
Contradiction treshold, ICL (feature 2): 100 4 |
Condition threshold, ICL (feature 3): 10

Conclusion threshold, ICL (feature 4):

0
Response threshold, ICL (feature 5): D

Feature 4 & 5 threshold:

1) Max number of contradictions, also
vsed in calculation of feature 2.

—Parameters guiding calculation of overall score

[ Adjust weights relative part size in link
Feature (total sum = 100%): 1 2 3 4 5
Weight for feature: 0 |0 |[40 |[35 | [25 |

[ More ][ Help J [ Save settings }[ Load settings ]

Figure 6.6: Parameters for transition rule match

When all the features have been calculated, we have to calculate an overall score for each
relevant match. Calculation of an overall score is based on domain knowledge that
captures the value of the different features for the application domain. In the
telecommunications domain, stimulus and response terms wusually have higher
significance than other conditions and conclusions, and hence should contribute more
towards the final score than other terms in the conditions and conclusions. In fact, the
example setting in Figure 6.6 has the stimulus threshold set to 100% and transition rules

that do not have the same triggering stimulus as the link are exempt from further
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matching. Therefore, there is no need for a weighting of feature 1 (see Weight for
feature, field 1), as we know that all matches qualifying for an overall score calculation,

have the value 100 for feature 1.

The ICL and ICT value for every feature in a match is used to calculate a total ICL and
ICT value for the transition rule. If all weights are set equally and the weighing is not
adjusted according to the number of terms in the link, the total score for ICL and ICT
respectively would be the sum of all the values for the features divided by the total
number of features. In the generic formula for the calculation of ICL and ICT scores for
a match, TotTerms is the total number of terms from the link used in the calculation of
the features, Fp(ICL) and Fn(ICT) are the ICL and ICT scores for the feature n, WFy, is
the weight for the feature n and LFp is the number of terms of the part in the link on
which the calculation is based. The total score is a pair of values, where the ICL value is
given the highest significance. When sorting all matches for a link, the matches with the
highest ICL will come first and matches with the same ICL will be ordered according to
their ICT value. f is the set of features used for calculating the total score. If a feature

weight is set to zero, it is not used in calculating the total score. x is either L or T.

The total score for the ICL or ICT is calculated as:

ne f

SCORE(ICX) = Z weighted_score(F,(ICx), LF,, TotTerms, WE, )

The weighted score for a feature is calulated by the formula:

F,(ICx) * WE, * LF,
weighted_score(F,(ICx), LF,, TotTerms, WF,, ) =

100 * TotTerms

If the check box Adjust weights according to number of terms in link is unmarked, then

Ll-"'n and TotTerms are both set to the value 1 before the calculations start.



116 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

6.5.2 Scoring a Matching Case

After all transition rules have been scored, the task for the matching algorithm is to
identify cases capturing similar behaviour to the input example. The overall score for
each case depends on the matches between the transition rule in the case and the links in
the input examples. If we look at a particular case, C1, from the case library (see Figure
6.7), some of the transition rules (squares) are matches for links in the input examples,
indicated by broken lines to the matching link. The example in Figure 6.7 has six
matches (ml to m6) between links from the two input examples, E1 and E2 (the two

input examples are indicated by broken circles around a group of links).

Input Examples

matches

transition rules

Figure 6.7: A match of a case and an input example

If the Always match cases box is selected in Figure 6.8, CABS will identify and rank
similar cases (for some situations only matches of transition rules may be relevant). To

score a case, the matching algorithm counts the matches between all links and the
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transition rules in the case (ml to m6 in Figure 6.7). A case with a greater number of
matches is ranked higher than a case with a lower value. This naive approach seems to be
accurate enough (see evaluation in Chapter 8) in most instances of identifying cases of
relevance, after adjustment of some additional parameters guiding the final ranking has

occurred.

If a transition rule in the same case is matched by more than one link (an example of this
is match m1/m2 and m3/m4 in Figure 6.7), we do not know if the transition rule is
capturing many different transitions, if the links in the input examples are a repetition of
a similar link (for m1/m2), or if the application domain allows parallel transition rules to
occur in the same case (for m3/m4). In our telecommunications service examples, we
chose to allow parallel transition rules only if they are from different telecommunications
services (different cases). If the application is specified with transition rules of a more
general character (including a large number of transitions), then different links may be
covered by the same transition rule. If the applications are specified with more specific
transition rules, then the fact that the same transition rule is matched by more than one
link may just be a less relevant match, and hence should not be included in the scoring.
This choice is shown in Figure 6.8: the second choice If same transition rule matches

more links, count each match is not selected.

A decision also has to be made as to what to do if there is more than one matched
transition rule in the same case (m5 and m6 Figure 6.7). If the other transition rule
captures a similar but not exactly the same behaviour, this information may be useful,
since it may increase a case’s relevance. The relevance for multiple matches can be set by
selecting the third choice Give credit if more than one transition rule in case matches
link. Count multiple matches up to NR in Figure 6.8. An upper limit, NR, on how many
matches should be counted can also be set, in order to avoid over-scoring cases which

have a large number of very similar transition rules (set to three in the example).

A parameter, defining a threshold value for when a transition rule should count as a
match for a case, can also be set by the user (Only count matching transition rule if ICL is

above NR in Figure 6.9). This is a different value than the threshold setting for the total
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score for transition rules. A score for a match passing the threshold set for transition
rules allows the rule to be presented as a possible match for a link, but in order to be
counted as a match for a case, the match has to pass this second threshold. If a large
number of cases have a high score, the value may be set higher, to reduce the number of

good matching cases.

Match parameters for cases

(] Match all cases in case library
[]1f same transition rule matches more links, count each match.

[ Give credit if more than one transition rule in case matches link.

Count multiple matches up to

Only count matching#ransition rule if ICL is above

[Cancel ] ( Help ) [I]Bfault settings]
L

’

Figure 6.8: Parameters for case match

6.6 Presentation of Matching Results

When the system has completed the match, the result is presented to the user. Both the
best matching cases and the best matching transition rules are shown. The user is asked to
select a solution that she will use as the proposed solution (or refine the input examples
so a better match may be achieved). Figure 6.9 shows an example of a result from
matching two input examples: a_basic_example and a_busy_example. In the upper left
corner under the text Best matching cases (descending order), a scrollable list with the
best matching cases from the case library is shown. The number in brackets after the
name of the matching case tells the user how many links from the input examples are

matched by the case. The user may inspect a matching case by selecting the case in the
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list and pressing the button Show Case, which will result in the system showing the case

window as shown in Figure 5.7. The Exclude Case button will be explained in Chapter 7.

In Figure 6.9, Links and corresponding transition rules show the links from the input
examples identified by their start node, triggering stimulus and end node. In the table
matching transition rule, the proposed/selected transition rule is shown. There are five

different types of prefixes to the transition rules:

e P: <transition rule name> - The best matching transition rule in the case library
according to the matching result is shown. If the user wishes to see all the matching

rules (sorted in descending order) this can be viewed in the link window (Figure 4.6).

e N: No match is shown when there is no matching transition rule in any case that meets

the set transition rule threshold set in Figure 6.6.

e [: Ignore this link - If the user has labelled a link to not be included in the match. This
choice can be selected when showing the link. The user may set this if it is obvious
that a link captures behaviour from another case on which the new case is dependent.
In telecommunications, it could be a service based on a basic call and therefore,
getting the proposal basic_call as the first and best proposal may not be useful. By
pointing out those links that are not crucial for the new functionality, the matching
result is narrowed down to find cases that capture the selected parts of the input

examples.

The user can inspect a link in more detail by selecting the link in the list and pressing the
button Show Link in Figure 6.9, which results in a link window showing the selected link
in detail. If there are many links, the user may wish to sort the links after the start node,
stimulus, end node etc. This can be selected by pressing the button Sort list (these sorting

choices are not fully implemented in CABS).
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Match for: a_basic_exrample_1 & a_busy_example

Best matching cases (descending order):
basic_call {9}
call_waiting {3}
call_diversion {2}
reminder_call {2}
three_way_calling {1}
queve_calls {1}
charge_advice {1}
call_reminder {1}

( Show Case |[Exclude Case|

P:<proposed transition rule:
N: No match identified

Links and corresponding transition rules: I: Ignore this link

start node ]triggering stimulusl end node ‘matching transition rule
2ll subscribers id| hook_off | dial tone a |P: normal_hook_off <
dial tone a | dialling | & calling b |P: normal_dialling i
a calling b | hook_on | a1l subscribers id|P: discomnect_from_callin
a calling b | hook_off | in speech |P: reminder_accepted
in speech | hook_on | silent b |P: a_leave_call
silent b | hook_on | all subscribers id|P: disconnect_tone
dial tone a | hook_on | all subscribers id|P: discomnect_tone
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Figure 6.9: Presentation of result from match

If the user does not accept the proposal in Figure 6.9, she can add input examples and
redo the match, which will hopefully result in a solution that can be accepted as a
proposed solution (although it may need refinement). For this purpose, the button
Exclude Case can be used when there are proposals in the best matching cases list that
have been inspected and are not relevant. Chapter 7 explores how the user selects, revises,

validates and verifies the solution selected in Figure 6.9.



Chapter:

7. The Requirements Design
Process in CABS

In the previous chapters, we looked closely at the central parts of CABS and explained
the graphical input examples, the case library and the matching process. In this chapter,
we put these parts in the context of requirements design and examine how a requirements
designer may use such a system to produce formalised, validated and verified
requirements. The examples are given in the context of the chosen application domain,
where the most common task is to modify and extend a large system (a large number of
closely interacting telephone services) and where the requirements designer is not
necessarily an expert at applying scientific methods in order to produce requirements.
CABS aims to simplify the task of requirements engineering so that a person with some
idea about a new or modified behaviour can outline their ideas, and then refine, validate
and verify them. Graphical input sketches, case-based reasoning and formalisation are
tools used in combination to aid this creative process and are not aims in themselves.
Persons performing this task may be service vendors, sales staff or even end-users of the
telephone system (or any combination of these), who would benefit from being able to
express and formalise their behavioural requirements. For this reason, we have adopted
the terms: requirements design and requirements designer instead of the traditionally
used requirements engineering and requirements engineer which, for many people, imply

some technically advanced and complicated task. Design often implies a more creative
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process, such as outlining and sketching an idea, so is a better choice of name for the task

CABS aims to support and simplify.

Modifying and adding behavioural requirements to a requirements specification mostly
includes refinement cycles. When an idea for a new behaviour has been formalised,
validated and verified, a large number of iteration and refinement steps may have
occurred. In CABS, these cycles are treated as central parts of the process of producing
requirements. In Figure 7.1, the whole process from idea to a validated, verified and
formalised requirement is outlined. The process of producing a requirements
specification starts with an idea for a new behaviour (the top of Figure 7.1). In the
application domain of telecommunications it is most likely that the new behaviour is
being added to some already specified behaviour. The first step is to decide if the new
behaviour can be expressed within the existing ontology or if the ontology has to be
extended (see Section 7.2). Once the ontology is approved, the requirements designer
can provide input examples outlining the main behaviour with the graphical input editor
in CABS (third oval from top in Figure 7.1, see Section 7.3). Once the user has expressed
some parts of the new behaviour with input examples, including some refinements of
nodes and links as described in Chapter 4, the matching can start. The matching will
identify candidates from the case library as described in Chapter 6. The user selects a
solution and validates the selected solution. If the user does not accept any of the
solutions proposed by CABS, the user has three choices, il, i2, i3 (which are also shown

in Figure 7.1). These are:

il. The user believes that there is some fundamental problem with the idea of the
behaviour to be specified. This is a restart and it may be necessary to modify the
idea, ontology and input examples. In Figure 7.1, this situation is shown with the

arrow pointing to Revise Idea.

i2. The user decides to refine or add new input examples which may be based on the
assumption that the current input examples do not capture the behaviour to be

specified well enough (Refine Input Examples in Figure 7.1).
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i3. The user assumes that the result from the matching can be improved by adjusting
matching parameters and modifying these before a rematch is carried out (Prepare

Jor Re-match in Figure 7.1).

Once a solution has been selected (based on the matching result) the next task is to
validate the proposed solution with the simulator provided (see Section 7.5). If the
validation results in a rejection of the proposal, the user has the same choices as described
when the matching result is rejected (il, i2, i3 in Figure 7.1), as well as an additional
choice, i4, of revising the solution, which is a more traditional way of modification where

the user may edit the transition rules (described in Section 7.5.1).

If the validation is successful, and the user is convinced that the intended behaviour is
captured by the proposed solution, the solution has to be verified. The input examples
are used to generate test sequences (called fest cases) of behaviour that should be
included in the formalised solution. These are automatically or semi-automatically
verified against the formalised solution. If the case includes all behaviour that is included
in the input examples, the verification against the input examples is successful. If the
verification is unsuccessful, the skilled user may use the feedback from the verification in
order to locate the problem and modify the solution (i4, Revise Solution in Figure 7.1),
or iterate back via i3, i2 or il. The text to the right in Figure 7.1 is the part (or parts) of

CABS aiding the process/step to its left.
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7.1 Idea for New Behaviour

Before starting a new specification, an idea of the behaviour to be added has to be
created (the “cloud” marked Idea for New Behaviour at the top of Figure 7.1, with the
cloud indicating that the idea is a mental product “stored” in the users mind*'). The
initial idea is, by its nature, always implicit since it is in the head of a person or a group
of people. Often, the overall goal with an idea is to add some behaviour to an existing
implemented behaviour in order to add value to the total behaviour (in
telecommunications, this is called an added value service). In CABS, the main concern is
the process of formalising an idea for a new behaviour so it can be validated and verified
before any larger commitments, in time and money, have been made, and also provide a

basis for decision making, design and implementation.

Tkl Revising an Idea for Behaviour

If the requirements designer for some reason decides to rethink the idea of the behaviour
(major changes, for refinements see 7.3), all steps after the initial Idea for New Behaviour
in Figure 7.1 have to be performed again. Revising an idea may involve respecification
of ontology and may require major changes in input examples. Revising the behaviour at
this stage (within CABS) is not a major disaster because, at this stage, only a small
investment in the new functionality has taken place (a few hours work). Most likely parts
of the previous formalisation of the idea can be re-used by manually copying ontology,
input examples or parts of input examples and even parts of the solution that could be

re-used by refinement.

*! For more on mental representation both from a philosophical perspective and in the context of

theories of cognition see [Cummins 89].
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7:2 Defining Ontology

Defining an ontology is a main issue in knowledge acquisition and in enabling re-use of
knowledge. Many requirements specification approaches have neglected ontological
issues (most likely due to more pressing problems) but their importance is now widely
acknowledged and research into their use is increasing. The purpose of an ontology is to
capture the conceptualisation of a domain and to define (informal, structured, semi-
formal or formal [Uschold 96]) all relevant concepts and terms. There are three main

areas in which an ontology is useful:

1. Communication between all involved parties.

38

. Interaction between systems.

[F%)

. System design and engineering.

For CABS, the first area above is the most relevant: when a specification of a behaviour is
made, it is essential that the entities, attributes and relations used in the specification have
a clear meaning for all involved parties (customers, requirements designers and end
users). The view taken in CABS is that information which is easy to capture and may be
useful at a later stage (revision / design / implementation), should be captured at the
earliest convenient stage. The definition of an ontology is not the aim and focus of
CABS (it is in fact a research topic in itself), but defining an ontology is still a main part
in the process for transforming an idea of a behaviour to a formalised requirements
specification. Therefore, only a simple approach has been implemented in CABS where
entities, attributes and relations are defined partly informally and partly formally. For the
telecommunications domain it is often possible to identify and use previously specified
definitions stored in the case library (which have been validated and verified). If not, any
addition or modification of the ontology should be carefully investigated, validated and
agreed upon by all involved parties, in order to minimise the risk of serious problems at a

much later stage in the development process [Zave, Jackson, 96].
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73 Expressing an Idea with Input Examples

As described in Chapter 4, the user can give a set of graphical input examples where each
example exemplifies a category (categories such as basic behaviour, odd case, error
case, etc.) or combination of categories of the new behaviour. Once the requirements
designer has an idea for the behaviour, the behaviour is captured using the graphical
examples that are produced with the graphical input example editor. Nodes and links are
refined thereafter using definitions from the case library (the ontology of the domain).
Once the requirements designer has outlined the main characteristics of the new
behaviour with input examples, which capture the most common behaviour, whilst

leaving out less usual behaviour, a match against the case library can be performed.
T30 Refining Input Examples

Refining input examples is done with the graphical input example editor in the same way
as new examples are produced. The user can copy and rename graphical input examples,
as well as add, remove and modify links and nodes until satisfied. Links may also be
excluded from matching for different reasons (some links may not be part of the new
behaviour, merely putting the new behaviour in the context of previously specified

behaviour).

7.4 Matching Input Examples Against the Case Library
and Selecting a Solution
The matching process identifies cases in the case library, capturing similar behaviour to

the behaviour exemplified in the input examples, as described in Chapter 6. This enables

the requirements designer to identify and select a proposed solution.
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7.4.1 Prepare for Match or Re-match

Before the user starts the matching process, he or she has to choose which input examples
are to be used (Figure 6.1). If a match result is not satisfactory and a re-match has to be
performed, selecting a different set of the input examples may be the preferred choice in
an effort to improve the result of the matching. Some of the input examples may guide
the matching better than others and there may even be input examples that misguide the
matching (this will be explained further on). Since the final rating of cases is directed by
the number of matching links/transition rules for the cases, it is obvious that if most input
examples direct the matching in one direction, then a few input examples with links
pointing to another case will have less effect on the final ranking. Matching parameters
are normally not changed, but if matching using the method mentioned above (using
different sets of input examples for the match) does not produce acceptable results, the
user may consider tuning the matching parameters®* in order to try to achieve a better
matching result (Figure 6.6 and Figure 6.8). In the future, the system may also be
involved in the process of improving the matching result by asking the user for some
specific input examples, outlining the behaviour of parts of the functionality. This will
enable it to confirm or exclude cases from the case library (an adaptive approach to case-
based search [Callan, Fawett, Rissland, 91]). This possibility has not been explored in the

current implementation of CABS.

If CABS proposes solutions that are rejected by the requirements designer, these
proposed cases can easily be removed from further re-matches by selecting the proposals
and pressing the Exclude Case button in Figure 6.9. In the same manner, the user may
exclude links from the match if these are judged as being less relevant when searching
for a matching case (these may be links that are known to belong to a case to which the
new behaviour is complementary, but not included in, hence these links may direct the

matching in an unwanted direction). When the user is ready for a re-match, the Redo

27 . 2 H
" Note that to tune the matching parameters, knowledge of the matching process is needed.
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Match button in Figure 6.9 is selected and a dialogue window is shown where the user

can select the input examples on which the rematch will be based.

7.4.2 Selecting a Proposed Solution

When confronted with the matching result (as shown in Figure 6.9), the user must select a
solution. The scroll list Best matching cases (descending order) may include a proposal
that the user might decide to explore. The interface enables the user to inspect any of the
proposals in the list by selecting the case and pressing the Show Case button. If the user
accepts a proposal, the proposal has to be validated and verified (see sections 7.6). If the
proposed case has been validated and verified, the task is completed and the user has
identified a case that captures the required behaviour. In telecommunications, a case may
be re-used directly or with minor modifications, if there is a variant of the service (a case
that has been implemented for some other customer or market but where the main
behaviour and functionality is matching) already specified and implemented. If no
similar service is identified, the use of parts from different cases may be combined into a

new service, which will be explained in the following section.

7.4.3 Adapting a Close Match

If there is a matching case that captures most of the main behaviour, but not all of the
behaviour, the user may select this case as the proposed solution. Then, through
validation and verification, he/she can locate the differences and construct a solution
covering all wanted behaviour by adding transition rules from other cases (the transition
rules may need modification, see Section 7.5.1). All links have their best matches shown
in the menu Match selected for link: in the link window (Figure 4.6), where the user can
select a matching transition rule that is not part of the proposed solution (a manual
selection will by default exclude the link from a rematch). This allows the user to
construct a new case with parts from other cases (modified or unmodified) by adding in
missing behaviour. If some behaviour exemplified by a link is not included in the

solution, this behaviour may be added in three different ways:
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1. The user selects a transition rule from the case library which is good enough to be

adapted and modifies it until it captures the desired behaviour.

2. The user lets the system generate a new transition rule capturing the behaviour of the

link (how transition rules are generated from links is described in Section 7.4.4).
3. The user may manually construct a new transition rule.

In all three cases, validation and verification will identify if the transition rule is fulfilling
its purpose. Once all links whose behaviour was not captured by the selected solution
have been handled in this way, we have a solution that can be fully validated and verified.
When transition rules are used from different cases and added to the new case, the new
behaviour is a combination of parts from previous specified cases. In
telecommunications, parts of behaviour in different services often show similarity (end
users mostly require a uniform interface to services) and hence finding parts of
behaviour from different services that can be used when specifying a new service is

likely.

7.4.4 Generating a New Case

If there are no cases in the case library that can be re-used for the new behaviour, the
input examples can be used to automatically generate a set of transition rules which can
be used as a starting case. A solution case generated in this way will be a naive solution in
the respect that it is merely a generalisation of the input links from all input examples
only including the behaviour of the input examples. It is missing other wanted behaviour
that has not been explicitly exemplified (error cases, odd situations, interaction, etc.)
which would have been included if a previously specified, designed and implemented
case had been re-used as starting point for the new behaviour. A generated case is most
likely good enough as a starting point for refinements, modifications and adaptations, as

described in Section 7.5.1.

CABS generates transition rules from the input examples by putting all conditions into

the condition part of the generated transition rule and all conclusions into the conclusion
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part of the transition rule. Since most heuristics are most likely application domain
dependent they should be given as an external set of rules enabling an easy way of
changing them (the CABS prototype has not implemented these heuristics and the user
has to do these adaptations manually). Since generating transition rules from input
examples is not a main issue in CABS, this part is only briefly outlined and implemented
to point at the possibility and to capture the situations where no good matching case or
set of transition rules exist in the case library. This part is based on earlier experiments
with rule induction [Funk 88], [Verpers 91]. There are interesting research results in the
area of rule induction [Quinlan 87] and logic program induction [Muggleton 90] which

should be used in order to extend this initial approach.

7:5 Validating a Proposed Solution

Executable specifications have lately become more popular and, in addition, for many
non-executable formal notations, there is an ongoing research effort to identify
executable subsets/extensions [Fuchs 92]. One of the main advantages of executable
specifications is that the requirements designer can explore the specified behaviour
(under different circumstances) by simulation. Executable specifications can be used as
part of the communication about the system functionality between customers, system
designers and programmers. The simulation allows an interactive exploration of the
required functionality (the required dynamic behaviour) captured by the requirements
specification. If any unexpected, unspecified or unwanted behaviour is encountered then
the solution needs refinement: the requirements designer can refine, revise and/or extend
the specification (as described earlier in this chapter and shown in Figure 7.1), so that it

captures correctly the intended behaviour.

Since the requirements designers intention of the behaviour is not fully covered by the
examples, and since the proposed solution includes more behaviour than explicitly
exemplified in the input examples, the specification has to be validated. In CABS, we
have implemented a basic text based simulation tool as shown in Figure 7.2. If simulation

is to be used with customers of the system it would need to be improved and the logical
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notation better encapsulated. A graphical representation or simulation animation would
be one way of further assisting understanding for people not skilled in formal notations
[Hughes, Cooling, 91]. Some experiments in graphical and icon based representation for
simulations and specifications have been performed in the domain of

telecommunications services [Preifelt, Engstedt, 92].

In the simulation tool, the user can create an initial state (the Initialise button in Figure
7.2), give a sequence of stimuli to the simulator, and explore which transition rules have
been triggered and what facts and responses are concluded. This gives the user a
powerful tool with which to explore the behaviour of the formalised requirements. The
user starts a simulation by initialising the facts. In Figure 7.2 one subscriber is answering
calls to number 111, answer_number(a, 111), and calls to number 111 are accepted,
accepts_incoming_calls(111) are the initial facts as shown in the top right field. The user
gives a stimulus (which may be selected from a menu containing all valid stimuli) in the
text field Next stimulus: at the top of Figure 7.2 and selects the Simulate button. The New
facts since previous state, Unchanged facts since previous state and Triggered transition
rules fields will be updated and show the state after the stimulus has occurred. If the user
wishes to inspect why a transition rule has triggered, the user can select the button Show
Transition Rule which shows the transition rule with variables replaced by actual values
from the simulation. The user can also explore why a transition rule has not triggered by
choosing the Why Not button®, selecting a transition rule that will be shown with the
conditions which have or have not been met. The field Facts at time shows the current
time step: if the user has simulated a number of steps, the <, > or View time button can be
used to traverse forward and backward in the simulation space (in this implementation, a

new stimulus can only be given at the last time step, but it would be desirable if tree

23

Why Not button and the corresponding functionality has not been implemented in the final
simulator for CABS. Such a functionality is a minor extension and was implemented in an earlier

versions of the simulator.
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structured simulations could be built and a different simulation branch could be started
from any simulation step). Before a simulation is started, the user has to decide with
which cases the new behaviour should be simulated (only transition rules from these
selected cases will be triggered by a stimulus). For telecommunications services [Funk,
Raichman, 1990], it is often an advantage to first simulate a new case without other
interacting cases initially, and once this behaviour has been validated and refined so that
it covers the basic idea, additional cases can be explored. If the user wishes to reset a
simulation from a particular step, the button Reset from is used. If the Initialise button is
chosen, the current simulation is cleared and a new initialisation can be selected (either
select from previously defined initialisation or define a new initialisation containing facts

that are true at time step zero).

Simulate/ Dalidate cases

Next stimulus: [hook_off(a, 1)

Facts at time: D

New factis since previous state: Unchanged facts since previous state:
dial_tomne(a) 41 rlaccepts_incoming_calls(111) ity
hook_off_time(a, 1) [ |answer_nr(a, 111)
time(1)

2 @.ir}'eﬁoj ................
=

Simulated cases:

el

Occurred stimulus: hook_off(a, 1)
Triggerd transition rules:

set_hook_off_time_2
normal_hook_off (Set cases to simulate)

=
[ Cancel ][lnilialise][ Reset ]mew lime][Show Transition Rule] [ Done ]J

L

1r|eall_back

Figure 7.2: Example of simulation window in CABS
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7:5.1 Revising a Solution

If missing behaviour which is part of the input examples is identified, then the proposed
solution needs to be extended (by identifying matching transition rules for the links not
covered by the solution or by refining the transition rules). If missing behaviour, which is
not a part of the input examples, is identified and classified as relevant to include in the
initial behavioural requirements, the input examples should be extended to include this
behaviour. In the domain of telecommunications services, the number of behaviours to
be captured in a specification may be so large that it is not feasible to make input
examples for all behaviours, only for the more common and normal ones. Other more
unusual situations and interactions® are captured by the formalised requirements (a

refinement of the behavioural requirements towards a full specification).

If behaviour is added to the formalised requirements, but not included in the input
examples, there is still a possibility to perform some verification, if the simulation traces
are kept as test cases for later re-verification and to formally prove that any
modifications/alterations to a case have not accidentally changed any of the previously
captured  behaviour  represented by the  simulation traces.  Verifying
modifications/alterations of cases is a major issue for telecommunications service
providers since services are often modified for different markets and users, or altered to
interact in a desirable way with new services. It is a well known fact that alterations are
one of the main causes of errors. This risk of accidentally introduced errors is reduced if

previous input examples and previously performed simulations are re-used to verify that

s looking at a telecommunications service such as call diversion or three party call, it could be
argued that the behaviour normally encountered by the phone user is the main issue for the top level
requirements sketch. The more unusual situations should of course eventually be catered for, but this
can be left for a later stage in the process, after the main behaviour of the new service has been

validated, verified and approved for full implementation.
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none of these behaviours have been accidentally altered (see [Buchanan, Shortliffe 84]).
Storing simulations has not been implemented in CABS but is a trivial extension to the

automatic verification described in Section 7.6.

The solution may be revised on the level of transition rules (I4 in Figure 7.1) by editing
the transition rules in a traditional way until they capture the behaviour exemplified in
the input examples (individual transition rules can be edited in the transition rule window,
Figure 5.5). If transition rules are revised to capture the behaviour exemplified in the
input examples, the solution can be verified as normal, as described in Section 7.6 (no

extra verification with simulation traces as described previously is needed).

7.6 Automatic and Interactive Verification of Results

Validation of new cases can be done more or less systematically but as long as traditional
methods for validation are used, there is no guarantee that all requirements exemplified
in the input examples are captured in the formalised requirements. In CABS, a step of
formal verification is added where the input examples are translated to test sequences
(called test cases) that are used by the verification tool. This is done automatically and
can prove that the behaviour exemplified in the input examples is captured in the case
and its environment, i.e. all the other cases with which it is expected to coexist, and with
which it may also interact or be dependent on. If behavioural examples outlining
excluded behaviour have been given, these have to be proven not to be included in the
behaviour (negative input examples have not been implemented in CABS but is a
straightforward extension of the existing implementation). In CABS we have
implemented this automatic verification for positive input examples. If a case does not
capture some specific behaviour exemplified in links in the input examples, CABS will
point out which behaviour in the input examples is missing from the formalised
requirements. This indicates that the transition rules in the formalised requirements
specification corresponding to these links fail to fulfil their task of capturing the
exemplified behaviour. Hence, the verification has failed and the user has to refine the

input example or add another input example in order to give more information, so that a
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transition rule meeting the requirements can be identified by the matching process or

generated from the input examples.

Once a case and its transition rules have been altered, all cases that include this transition
rule directly or indirectly need to be verified. Those cases which need to be re-verified
can be determined automatically (which can be done without a search through all the

transition rules).

By using a formal notation, we also have the possibility of identifying inconsistency in
rule sets [Funk 93]. A program performing some consistency checks on rules has been

implemented but not integrated in the CABS system (see Chapter 9).

7.6.1 Generating Test Cases from Input Examples

A test case is a sequence of triples of preconditions (facts and responses), stimulus and
postconditions (facts and responses) that are expected to hold before and after the
stimulus has occurred. The input examples are a set of links and nodes. The links contain
conditions (both conditions from the originating node and additional conditions) and
conclusions (both originating from the terminating node and additional conditions)
which can be used directly to produce test sequences, containing sequences of stimuli,
preconditions and conclusions that are expected to hold before/after the stimuli have
been received. If a link has some additional conditions that are not a conclusion of some
previous link or a part of any previous node, these terms can be added to the initial start
situation if this option is selected. Input examples always have a finite number of nodes,
so we only need to generate all possible routes between all the denoted start and end
nodes. We do not need to expand loops since if we follow a branch of stimuli between
start node and end node and encounter a node in the input example that has already
been traversed, this branch needs no further exploration since each node has already had

all its branches explored.

Once all branches for an input example have been expanded between start node and end
node in the input examples, we have a number of test cases to verify. As well as using test

cases, we may also show different properties, such as liveness [Segala, Gawlick, S¢gaard-
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Andersen, Lynch 98], i.e. if a branch cannot reach an end node within a reasonable
number of stimuli (for instance a phone user is only expected to do a reasonable number
of actions resulting in stimuli, dialling, putting calls on hold, joining them into three
party calls etc. which can be limited to a safe maximum number of stimuli), this can be

identified.

7.6.2 Verifying a Test Case Against Formalised Requirements

The purpose of the verification is to verify (formally prove) that all the behaviour
captured in the input examples is included in the formalised requirements and that the
behaviour of negative input examples is excluded from the formalised requirements

[Atkinson, Cunningham 1990].

Definition of included behaviour: Given the same sequence of stimuli, the formalised
requirements capture the behaviour of the input examples if and only if the formalised
requirements exhibit a list of responses which can be mapped to the list of responses in
the input examples: Note that there may be responses in the formalised requirements that

are not present in the list of responses from the input example.

Definition of excluded behaviour: The formalised requirements exclude the behaviour of
the input examples if and only if the formalised requirements do not exhibit the same

responses, given the same sequence of stimuli as exemplified in the input examples.

In CABS, the requirements designer selects which cases or set of cases are to be verified
by selecting from the list Verify Cases in Figure 7.3. If more cases are selected,
interaction between these cases is also verified (if input examples exemplifying
interaction between these exist). If the check box precondition is ticked, the verification
will check that preconditions connected to stimuli in the test case are checked and any
differences are reported. If the check box postcondition is ticked, the postconditions are
checked in the same way. If the check box response is ticked, the externally visible
response terms are checked (same response for same sequence of stimuli). If the check
box attributes and relations is ticked, attributes and relations connected to stimuli in test

sequences are checked. These settings may be useful if a verification fails because of
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differences between the exemplified behaviour of the input examples and the captured
behaviour of the proposed solution and gives the user a tool that may be of help in the
exploration of the differences. If the Verify All button is pressed, all existing test cases for
the selected cases are verified (if the verification of a test case fails, the verification stops
and the failing situation is shown in the Verification window). If the Verify Next button is
pressed, the name of the next un-verified test case is shown in the Verifying test case:
field. Test cases are always named after their originating input example name merged
with a number (the number is the order number in which the test case was generated). If
the requirements designer wishes to step through a test case, the Step button is pressed
and one stimulus at a time from the stimulus list Test sequence is verified (the highlighted

stimulus in the Test sequence: list is the last verified).

In the step mode, the result after every step is shown in the Facts: list, listing all the facts
true in the state. What facts have been changed since the previous time are listed first.
After the dotted line the facts that are not true any more are listed and finally after the
second dotted line, all the facts that have not been changed since the previous step are
listed. The Expected terms: list shows what the test case expects for terms in the state and
the Triggered transition rules: list shows all the transition rules that have been triggered
as a direct consequence of the stimulus. A discrepancy is an indication of a behavioural
difference between the initial requirements and the formalised specification sketch. The
user has to decide if the initial requirements have changed or if the formalised
requirement sketch has to be revised. The Restart button is used to reset the current test
case to its initial start state, which may be useful when stepping trough a test case. The
Select New button allows the user to select and initialise the Verification window with

another test case.

The verification uses the simulator in batch mode. This has the advantage that if any
discrepancies are identified and the verification is halted, the Simulate button can be
pressed and the last test case can be explored with the simulator (stepping
forward/backward, resetting from a particular time and simulating different stimuli and
their effects). The original graphical input example can also be viewed by pressing the

Show Input Example button. The test case can be viewed by pressing the Show Test Case
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button. Each step in the Test Sequence list has a reference to its originating link in the

graphical input example which can be viewed by pressing the Show Link button.

| Derification

Verify cases: Verify: [ preconditions [X] postconditions
T E i responses [ attributes and relations
banki = - -
;,:siif‘i,n Fi [ Uerify All ] [Uerlfg Neat]

Selected test case: test_caseS5
originating from: a_call_back_example [ Step ][ Restart ][59"3“ New}

Test sequence: Facts :

all subscribers idle call_back(a, 222, 3)
hook_off(a, 1) service_accepted(a)
[l BRI el i e b D e Tl e 6 Tl el ] - T S Il A, T St P st g

[<Gle>

service requestia, X, 3) not ring signal(b)
hook_on(a, 4) not ring_tone(a)
End of sequence not calling(a, b)

hook_off_time(a, 1)
answer_nr(a, 111)
answer_nr(b, 222)
accepts_incoming_calls(222)
dialling time(a, 222, 2)
time(2)

—{last_call(222, 111)

ir
<+ Expected terms:

Occurred: service_request(a, call_back, 3) service_accepted(a) E\
Triggered transition rules: R O A R R R
call_back_request_1 7 not ring tone(a)

not ring_sigmal(b)
not calling(a, b)

ks

[ Quit ][Shuu.l Input Euample] @um Test Case][Show Link} [Simulation] [ Done ]

L

Figure 7.3: Example of verification window in CABS

The verification also handles test cases where variables are used. In Figure 7.3 in the Test
sequence list, the third step, service_request(a, X, 3), can under the given restrictions
(preconditions and postconditions), only be equal to service_request(a, call_back, 3) as
shown after Occurred. If the variable causes indeterminism and the variables can be

instantiated to different values, the user has to make a selection to make the test case

valid.
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7.7 Revising and Refining the Solution

A solution may be directly modified by editing transition rules. This does not conflict
with the methodology of CABS since verification and, most likely, validation has to be
performed before the task can be considered complete. The verification ensures that the
solution still conforms to the input examples. If the verification is unsuccessful, the
question to explore is if the input examples or the formalised requirement specification
has to be modified. Once the original idea has been formalised, validated and verified,
the solution includes the behaviour of the input examples. If the input examples reflect

the behaviour of the new functionality, then the solution meets the original requirements.

If the proposed solution needs some revision (such as adding in the behaviour for
unusual situations), or if there is no single case that meets the user’s requirements, a more
traditional approach of editing transition rules may be necessary. This requires

knowledge of production systems and rule based approaches.



Chapter:

8. Evaluation of CABS

As mentioned in Chapter 2, there are hundreds of different telephone services
implemented by modern telephone networks. These exist in different variations where
adaptations have been made for different countries, companies and telephone operators.
The CABS case library contains seventeen telecommunications services (127 transition
rules, 54 terms), reflecting a variety of different types of telephone services commonly
supplied to phone users which are often used in experiments and research involving
service specifications [Funk, Raichman, 1990]. The case library selected for the
evaluation contains the following services®: basic call; call barring; call diversion; call
waiting; call reminder; call back; call return; charge advice; emergency call; three-way

calling; pick-up call; banking; voting; queue calls; caller display; basic telephony.

For case-based reasoning, there are a number of key issues to be evaluated (described in
Section 8.1). The most desirable approach for an evaluation is when a set of objectively-
measurable criteria can be defined and proven: for example, if the aim of a research
project is to apply an approach enabling micro-processors which are ten times faster,

compared with currently available technology, a prototype that meets this criterion is

%3 For details on some of the services, see for example BT’s brochure “Welcome to Selected Services,

Your User Guide”.
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clear evidence that the claims of the research hold. In the area of mathematics, a precise
answer may be a mathematical formula or proof. In artificial intelligence and knowledge
based systems, where different areas and approaches are combined and integrated to
achieve the desired results, an empirical approach to evaluation is usually the preferable

choice [Mark, Greyer, 93].

An important question is: with what data should an evaluation be carried out. For the case
library, a set of services is chosen that is commonly used in experiments with telephone
services [Funk, Raichman, 90], [Klusener, Vlijmen, Waveren, 93]. For these services, input
examples were created in the same way in which end users are expected to use the
system. These are used to evaluate the robustness of the system, and the results reported
give an indication of ﬁow well it meets its claims (identifying similar behaviour and
verifying the solution against the input examples). The results are reported in the tables

of the following sections.

The decision was taken that end user evaluation was not appropriate, for two main
reasons. Firstly, real end users are not accessible; telephone services designers are in great
demand, and they would not grant time for the evaluation of CABS. The second reason is
that since the implementation is fairly large, any results from an end user evaluation
would be questionable as it may be difficult to separate the evaluation of the prototype
(an end user may like or dislike a particular implementation depending on background
knowledge, experience and personal preferences) from the evaluation of the general

approach.
8.1 Issues to Evaluate in Case-Based Retrieval

The success or failure of case-based reasoning systems depends on five key issues listed
in Table 8.1, each with a brief reference to CABS. They are in no particular order and

are extended and adapted from [O'Leary 93] and [Ketler 93]:
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1. How easy is it to use the system (giving input examples on a suitable abstraction

level).

CABS uses graphical input examples. Graphic notations are common in
telecommunications applications and the notation used is considerably less
complex (due to a reduction in expressiveness) than notations traditionally used
(SDL, MSC, CP, etc.). To evaluate the notation is beyond the scope of this research
and the view is taken that the notation should be adapted and tailored to meet the

user's wishes.

. Consistency and uniformity of knowledge representation (sufficient for all
involved parties and also enabling automated verification, adaptation, etc.).

CABS uses a predicate logic notation based on Horn-clauses.

. Clustering of cases (application domain feature).

Telecommunications services, and in particular telephone services, are on a
behavioural level often similar to each other. Different countries and service
providers offer similar, but not identical, services to telephone users. Re-use is high

on the agenda in telecommunications.

. Metrics for the retrieval of cases.
A set of structural features, based on an analysis of the semantics, is used to

identify and retrieve cases capturing similar behaviour.

. Assessment of the solution produced by the system.

CABS uses input examples to verify solutions. Simulation is used to explore
behaviour not covered by the input examples. Theorem proving is a further
extension (partly implemented but not integrated in the prototype system, see

Chapter 9).

Table 8.1: The five main issues to be evaluated
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This research focuses on the identification of similar behaviour for re-use and to confirm
that the final solution captures the behaviour exemplified in the input examples, so issues
4 and 5 in Table 8.1 are the main issues in this evaluation and will be explored in depth

in sections 8.2 and 8.3.

To evaluate issue one to three is beyond the scope of this research but they are discussed
briefly because they are of relevance if a full scale implementation of a system based on

the CABS approach is considered:

Issue 1 (Table 8.1): The behaviour imagined by the user has to be expressed in some
notation as input examples, in CABS. To use a graphical notation is an obvious choice
for the domain of telecommunications since graphical notations are often used in this
application domain for a variety for different purposes. CABS has a very basic graphical
representation (the notation should be adapted to the user’s needs and also for different
application domains. This is beyond the scope of this research.). The main requirement
for the input examples is that it should be possible to translate them into transition rules
used for matching and for generating test cases used in the verification. Whether the
input examples capture the desired behaviour correctly can only be assessed by the
designers, making evaluation of the problem description difficult (especially without

access to end users).

Issue 2 (Table 8.1): For a number of reasons (convenience being one of them), CABS
uses a subset of predicate logic extended with a frame axiom as its knowledge
representation language. With this simple but sufficiently expressive predicate logic, the
implementation of matching, simulation, verification and translation from input examples
to transition rules is realised with reasonable effort. Translation to and from natural

language has also been explored for a notation similar to the one used [Dalianis 95].

Issue 3 (Table 8.1): The application domain of telephone services has the features
needed to make re-use beneficial since similarities between services are common in
telecommunications. Re-use is considered an important matter, and is high on the
priority list for service development. Since new telephone services are designed and

implemented all over the world in different company branches, companies and service
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vendors, it is assumed that a lot of work is repeated and that there is a large potential for
re-use. Effort to standardise service independent building blocks has been undertaken by
the international telecommunications union but this will not lead to standardised services
(as discussed in section 2.3). Section 8.4 shows that CABS has the capability to

considerably reduce repetitive work by identifying similar services.

8.2 Evaluation of Retrieval and Solution Assessment

Figure 8.1 gives an evaluation view of CABS (the large box) and the two main issues:
(i) identifying and retrieving similar behaviour for re-use (issue 4 in Table 8.1) and
(i) verifying the proposed and selected solution against the input examples (issue 5 in
Table 8.1). In the telecommunications service domain, CABS is not expected to find a
case in the case library exactly meeting the exemplified behaviour in the input examples
since it is unlikely that the user would give an example of a behaviour that exactly
matched a case in the case library (When this occurs, either the service is uncomplicated
or the user knows exactly how the service behaves). CABS proposes a list of similar cases
that are candidates for the behaviour expressed in the input examples. The requirements
designer makes the final selection, eventually changing the initial idea of the behaviour
exemplified (changing input examples or accepting input examples belonging to the
case). The overall question to evaluate is whether or not the matching heuristics are
practically useful and produce a set of similar cases, which is small enough to be
manageable, yet broad enough not to miss relevant cases’. If we know the solution case
for a set of input examples, we can find out how well the features used by CABS work to

identify the solution. At the same time, it would not be desirable if the matching only

%% Even so, similarity-matching may not, in a fully functioning system, be the only approach to
identifying relevant cases: keyword matching, text-based matching on informal descriptions of cases,
and matching new input examples against input examples stored with cases in the case library are

some interesting extensions to CABS.
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gave the single most expected case as a solution, since a case capturing exactly this
behaviour need not necessarily be the solution sought (a requirements designer may
revise and extend the behavioural ideas). Therefore, a set of similar cases where the most
similar solution has a high ranking is preferable. In Section 8.3, the input examples are

selected and matched, and the results are summarised and their implications discussed.

Another central feature of CABS is to verify proposed and selected solutions (see Figure
8.1). The matching process should purposely give a set of more or less similar cases
from which the user can select the one(s) they want. The verification, on the other hand,
should confirm that the behaviour exemplified in the input examples is included in the
selected solution and if not, describe where it differs. If it does differ, the requirements
designer has to explore why this is so. In Section 8.5, proposed and selected solutions are

verified against the input examples.

Ideaof

_______ Behaviour
et CABS oo

Behavioural

Examples Case Library

heuristic features to
identify similar behaviour

Identified Similar
Behaving Cases

verify proposed and

v
Verified
Solution

Figure 8.1: A verification view of CABS.
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8.3 Selection of Input Examples and Target Cases

As mentioned erlier the set of cases that are stored in the case library are commonly used
in experiments with telephone services [Funk, Raichman, 90], [Klusener, Vlijmen,
Waveren, 93]. For all cases in the case library, one input example, giving an example of
the behaviour of the corresponding service, was designed. An effort has been made to
produce input examples which are similar to those a requirements designer might give,
without knowledge of the behaviour of any service implementing the exemplified
behaviour. This is fairly easy to achieve, as there is often little choice in how to exemplify
a particular behaviour with an input example. A good illustration of this is
basic_example_0 (Figure 8.2) which contains four nodes: all subscribers idle; dial tone
a; a calling b; in speech. The node dial tone a has the condition dial_tone(a) and the
node a calling b has the condition calling(a, b) & ring_tone(a) & ring_signal(b). The
nodes are connected with the links illustrating the actions the telephone users can make.
This is sufficient for the matching algorithm to identify basic_call as the best matching
case (for matching results see Table 8.3). Different requirements designers would most

likely express the same behaviour in a similar way with the given set of nodes.



148 CHAPTER 8. EVALUATION OF CABS

aII subscrlbers |dle

hook_off

hook_on

dial tone a

dialling

hook_on

a calling b

———————

hook_on

i opeeil

hook_off

Figure 8.2: input example basic_example_0

In Table 8.2, the names of the input examples are given with the corresponding target

case (telephone service). Appendix B lists all the cases in the case library and Appendix

C gives all the input examples used for the evaluation (as listed in Table 8.2).
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Input example

a_banking example
a_barring example
a_basic_behaviour example 0
a_basic_behaviour_ example 1
a_basic_example 0
a_basic_example 1
a_busy example
a_call_back_example
a_call last caller
a_call reminder example
a_call return example
a_call waiting_example
a_charge_advice example
a_divert example
a_multi call_example
a_pick up call example
a_queue example
a_show_number example
a_voting example
a_wake_up call
an_emergency_ example

Case in Case Library

banking

call barring
basic_telephony
basic_telephony
basic_call
basic_call
basic_call

call back

call back

call reminder
call return
call waiting
charge advice
call diversion
tree _way calling
pick up call
queue calls
caller display
voting

reminder call
emergency_call

Table 8.2: Input examples and target cases

Evaluation of the Matching Algorithm

149

Each input example targeting the same case has been used for evaluating the matching

algorithm. Test cases are all defined as being dependent on the basic_call service and

basic telephony service (except input examples describing basic call and basic

telephony), so these services are not considered as a solution and are excluded from the

matching result. The parameters for matching transition rules and cases have been left at

their default values. In Figure 8.3 the matching result for the input example

a_call_reminder_example is shown (for an example on a full matching result, see

Figure 6.9).
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Best matching cases (descending order):

call reminder (3) >
charge_advice (2) [=a]
reminder_call (1}
call waiting {1}
call diversion (1)
three_way calling (1)}

<

Figure 8.3: Match result for input example a_call_reminder_example

The column Best matching cases in Table 8.3 contains the matching result for each input

example. The result from Figure 8.3 is shown as a list with numbers {321111} in Table

8.3. After the results list a number is shown (/6) with the number of links the match is

based on. Since we know the solution case for the match, the number representing the

best case is underscored. Cases that have the same ranking are not ordered in any way.

This rating is actually quite crude; if a more precise ranking is needed for a large case
library, it could be refined by taking the individual scores of transition rules into account
when accumulating the total score for a case, rather than counting the sum of the number
of matching transition rules. The crudeness of the ranking cannot alter the set of
proposed services, but in some cases causes results in two or more cases being ranked
equal highest. Since the requirements designer makes the final selection among all
proposed services and the total number of services were manageable, their ranking
seemed to be a good enough guide for the final selection, and a more discriminating

algorithm was not implemented.

If there is only one best match then the matching process has led the user directly to the
solution. If the number is greater than one, then there are several cases in the case library
which share characteristics with the input example. As explored in detail in Chapter 7, the
requirements designer is expected to handle this situation (by adding more input
examples, excluding links from the input example, exploring and selecting the most

appropriate case, combining more than one case, etc.). Excluding links from the input
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example is an easy approach to improve a matching result if it is obvious that the best
proposed cases are not acceptable. This can be done directly from the detail window for
links, by selecting Link not relevant for match in Match select for link: (see Figure 4.6).
One should bear in mind that excluding links will not extend the search (the same or
fewer cases are proposed as a solution) and will only be useful if the solution case is
within the list of proposed solutions. In the column Excluded links (Table 8.3), some
links which are obviously not relevant for the match have been excluded from the match
and the match has been re-done. The number of links used in the match is given as a
number in the same way as in the column Best matching cases; the number of links will

obviously always be less since links have been excluded from the match.

If the total number of proposed cases which scored higher than one is too high the
requirements designer may increase/reduce appropriate matching parameters. If a service
has few characteristic features, it is expected that this total will be large, whereas if the
service is very specific in its behaviour, there will be fewer cases. No matching parameters
have been altered during the evaluation presented in Table 8.3 (every transition rule

scoring higher than 10 is counted as a match).

Some matching results clearly point out the solution, for example match 6 in Table 8.3.
Case 17, where 10 proposals are ranked, has two proposals ranked highest and this match
is regarded as having a weak focus towards the solution. If the focus is weak the input
example (and the service) may be of more general character and share features with

many other services.
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Input example Best matching Excluded

cases links

1. a_banking_example (2111111}/4 |

2. a_barring_example {111}/8 v

3. a_basic_behaviour_example_0 {433311}/4 v

4. a_basic_behaviour_example_1 {2111}/3 v

5. a_basic_example_0 {(6211111}/6 V

6. a_basic_example_1 {(7211111}/7 vV

7. a_busy_example (2111111112 A

8. a_call_back_example {22211}/6 v

9. a_call_last_caller {1111}/4 4 {1}/1

10. a_call_reminder_example {321111}/6 v

11. a_call_return_example {32211111}/8 v

12. a_call_waiting_example {211}/5 v

183. a_charge_advice_example {322111111}/7 nb {22111}/4

14. a_divert_example (222111111147 | A

16. a_multi_call_example (321}/6 v

15. a_pick_up_call_example {11111}/5 5 {1} /1

17. a_queue_example {(2211111111}/6

18. a_show_number_example {1}/3 v

19. a_voting_example {1111111}/3 Z- 11314131

20. a_wake_up_example {21111}/3 v

21. an_emergency_example {22111}/6 nb {111}/1

Table 8.3: Match result for input examples

The input example, a_basic_example_0, is in fact faulty because a node is missing’,

hence one link is missing and one is faulty. It is interesting that the solution case was

27 : .
When two users are talking to each other and one of them puts the receiver down, the other user
will have silence until their receiver is also put down, the input example makes both the caller and
the called person idle when one person puts the receiver down, this is not true since the person who

did not put down the receiver cannot receive a call or lift the receiver (hook_off).



CHAPTER 8. EVALUATION OF CABS 153

identified in spite of this mistake. This result was unexpected, but on analysing the result
it becomes clear that this is exactly one of the desired benefits of case-based reasoning
compared with other more precise approaches (e.g. some logical proof of equivalence).
Input examples may lack details or even be partly faulty, but if the heuristics for the
match (the features used) are well chosen, the matching algorithm should be robust
enough to identify relevant solutions based on the part of the input example which is not
faulty. During the evaluation, a more obscure fault was identified in the matching (if
matching transition rules had constants in their stimulus part, variables were accidentally
bound in stimulus terms with these constants). Coincidentally, this problem only caused
the matching algorithm to miss the correct solution in one example and after correcting

this problem the four input examples got one additional proposed case.

8.4.1 Over-diffuse identification of solution

For all input examples used in the evaluation, the solution case is amongst the proposed
solutions, but in two cases (13, 21) the correct solution case was not amongst the highest
ranked, and in two cases (9, 19), more than three proposals where ranked highest. Before
analysing these cases, a brief summary of how such a result may be tackled by the
requirements designer is given. If a requirements designer does not find an appropriate
case among the proposed cases, one of their first actions is to refine the input examples
(as described in Chapter 7), either by supplying more input examples or refining those
already given. One way of refining input examples is to label links as not directly being a
part of the behaviour sought for in the case library, which as shown below, often gives a
better matching result. For example, in the service charge_advice, everything in the input
example 13 (Table 8.3) up to telephone user a talking to telephone user b (for input
example see Appendix C) is a normal call, but the matching process does not know that
and should still identify similar services to propose for this part of the input example; this
may misdirect the search in some situations or result in a less focused proposal,

depending on how large a part of the input example is part of the target case. If these
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links (up to node speech) are marked as being irrelevant for the search’®, the search
focuses on the part in which the requirements designer is interested. For input example
13 this brings the correct service (charge_advice) to the top of the ranking list (shared
with call_reminder which could be classified as having a similar behaviour to the
example®®); before this selection of links charge_advice was ranked to be amongst the
second best proposals. The re-match result is shown in the column Excluded links in

Table 8.3.

After the requirements designer has excluded selected links in the input example,
example 19 still shares the solution with other proposals which may be considered as a
weak focus on the solution, but when inspecting the matching result of the link, the
highest ranked transition rule belongs to the service voting, hence the service voting is
correctly identified as the best match (a list with proposed and ranked similar transition
rules can be viewed in the detail link window, see Section 4.2.1). This shows that the
link/transition rule matching is able to correctly rank the transition rule from the solution
case as the highest. This information is not carried forward when ranking cases in the
case library due to the crude approach of counting the number of matching links for
each case. Also, for input example 21, the solution would have been ranked the highest if
the link/transition rule ranking had been carried forward to the ranking of the cases.
Hence the ranking of cases would benefit from receiving and using more information
from the link/transition rule match. Using more information from the link/transition rule
match when calculating the overall score for matching cases is considered a minor

alteration. This would further improve the matching results, especially if the matching

*® The links are still relevant when verifying the behaviour.

9 ; :
Reminder_call may even have parts that could have been re-used to create a new service
charge_advice if such a service had not existed in the case library. No analyses of this possible re-use

has been explored.
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result is based on a few links from the input example. It would add a few calculations to
each ranked case in the case library which would be negligible with other calculations
performed for each transition rule and case (for more on time efficiency of matching

algorithm see Section 8.7).

8.4.2 Conclusions for Match Evaluation

For all input examples given, CABS was able to identify the corresponding solution
amongst the highest ranked proposals and for 14 (out of 21) input examples, it ranked
the solution as the best proposal. In 19 (out of 21) input examples, the solution was
amongst the three highest ranked proposals. When it did not rank the solution amongst
the highest, excluding irrelevant links in the input example, it put the solution case
amongst the highest ranked, but for input example 19, seven other suggestions were
ranked at the same level. This is sufficient in the case library used for the evaluation, but
may give the requirements designer too many cases to select from in a large case library.
By using more information from the links/transition rule match when ranking, cases from
the case library would help in the identification of the best solution. In the input
examples, we purposely avoided using solution specific terms since, in a larger case
library, the user may not always be able to identify and chose these terms. For example,
the service voting has a term vote_counter(VoteNumber,TotalVotes) used as a counter
and the service call_diversion has a term redirect(FromNumber, ToNumber). These terms
were purposely not used in the input examples in order to simulate a less knowledgeable
service designer. It may be argued that a more experienced service designer, when
designing input examples and selecting from a list of 52 terms, may select one of these
terms. This would focus the search considerable (but not necessarily exclude a solution

not containing these terms), and improve the matching result.

This result is sufficient to enable a requirements designer to identify the corresponding
case in the case library. If this was the hit-rate in a full-scale system, it would be very

good, since if this represented all services that would have been fully specified, evaluated,
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verified, integrated with other telephone services and implemented’, a large amount of

work would have been saved.

In some cases it would be beneficial to provide the designer with both similarity
matching and some additional matching approaches, for example keyword matching.
Keyword matching would in many situations be less accurate and miss possible solutions
when compared with similarity matching, but it may be able to focus the search,
especially in small case libraries, since it is more likely that there are specific terms
unique for a particular service. If an experienced requirements designer can identify the
terms discriminating the solution service from other services, the service would be found
with keyword matching (in telecommunications services this is less common since many
services do not introduce new terms even if they were, they may not always be easy to
guess, even with access to all term definitions). As mentioned earlier, a restrictive attitude
towards using terms discriminating a solution from other cases was adopted when
producing input examples for the evaluation. Also CABS is not dependent on cases
having particular keywords discriminating them from other services since the matching is
bases on a careful analysis of the semantics of transition rules, translated to a number of

syntactic features.

A relevant question is what happens if the matching cannot identify a suitable case if
there is no similar case (a new type of service not yet specified and implemented) in the
case library. Some case-based reasoning approaches cannot handle such a situation. In
CABS, input examples are translated to transition rules which are not expected to contain
all details, interactions etc. These input transition rules can be used by the requirements
designer as a starting point for the new service and the input example may be refined and

extended to generate transition rules closer to what is needed for the new service. Hence,

3 : . ' . !
. Implemented in a way where all references between requirements, specification, design and
implementation are kept, and where the design and implementation is structured in a way that re-use

is enabled (for example an object oriented approach).
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the approach does not falter if there are no suitable cases in the case library or if the
requirements designer (with the help of CABS) fails to identify a suitable case in the case

library.

8.5 Evaluation of Automatic Verification

All the input examples that describe a full behavioural example from a start node to an
end node have been used to produce test cases (for consistency, all test cases are listed in
Table 8.4). Cases marked with “-” in the Generated Test Cases column in Table 8.4
have input examples not including a start node and end node or are not detailed enough
to generate test cases. If a test case does not include a start and end node, it may just be a
fragment of some required behaviour which may be sufficient to identify a matching
case or it may be an addition to other input examples (7b, a_busy_example in Table 8.4
is an addition to 7, a_basic_example_1, so, it is not sufficient on its own to generate test
cases, but generates test cases in conjunction with a_basic_example_1). If the
requirements designer accepts a match, all input examples belonging to the search should
be used to generate test cases and these should pass the automated verification before the
solution is accepted. The verification process of test cases do not accept differences as the
matching does and will therefore identify possible problems. In those test sequences
used, the test sequences identified problems both in the input examples and in the
solution case. After correcting these, the input example will pass. The input examples

identified one ore more of the following problems (no particular order):

a) Variables were used in input examples that might cause unwanted indeterminism.
Refining input examples by changing variables to constants makes them more
specific. Verification can handle variables in stimuli if there is only one variable

binding possible (no indeterminism).

b) Faults/misunderstandings in the input examples were identified. An input example
may contain faults and misunderstandings (as in input example 5 discussed in Section
8.4.1) yet still be sufficient for identification of an acceptable solution case in the case

library. Test cases produced from such an input example should not pass the
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c)

verification and the input example should be refined to reflect the factual

requirements.

Conditions to links that have not been used anywhere else (in nodes/links) in an input
example may not be determinable when testing a test case. If additional conditions are
consistent they may, by default, be added to the start node (this option has been
implemented in CABS), but if they are not consistent, no test cases are produced and

the input example needs refinement.

d) Missing facts for transition rules expected to trigger: If during verification, a

e)

particular transition rule, which is expected to trigger has some preconditions that
have not been mentioned in any node or link in the input example, then these
preconditions will also be missing in the test case and this transition rule cannot
trigger. This can be resolved by adding these facts either to the corresponding link
(additional conditions) or to the start node (or any other appropriate node) in the

input example.

Identified faults in the case library: If the input example is correct and the cases tested
do not pass, then the cases are not correct. The requirements designer has the choice
of either modifying the matching service or making a new variation of it which meets
the current requirements. If the difference is small, much of the proposed case failing

the verification may be re-used.

Most of the generated test sequences identified some problems, showing that the

approach of using test cases to recognise potential problems is helpful. Services specified

and stored in the case library for the evaluation were assumed to be functioning properly

based on simulation during the development. Even so, a number of problems were

identified when verifying test cases. This shows that during the development of new

services (not previously specified and stored in the case library), the use of test cases will

be useful. Test cases are also valuable when new services are integrated with previous

existing services (added value services such as call_waiting and three_way_calling have

much interaction). Also, if a new service accidentally alters some of the behaviour of a

previously formalised service, this will be identified by the test cases if the previous
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unaltered behaviour that has accidentally been changed is included in the input
examples/test cases. If test cases identified problems, the necessary corrections in the
input examples or cases in the case library have to be carried out by the requirements
designer until the test cases pass. This correction/refinement was carried out for some of
the input examples and cases during the evaluation, but not for all of them, since this
effort does not contribute to the evaluation itself. Problems of class a, ¢ and d are all
classified as refinements of the input examples and are often trivial (less than twenty

minutes work for most input examples).

Input example Generated Correctly identifying
test cases problems(a-e)/passed(p)
1. a_banking_example 1 ad
2. a_barring_example 1 p
3. a_basic_behaviour_example_0 1 p
4. a_basic_behaviour_example_1 1 p
5. a_basic_example_0 3 b
6. a_basic_example_1 3 p
7. a_busy_example - =
7b. 6 &7 5 p
8. a_call_back_example 2 b
9. a_call_last_caller 1 b,e
10. a_call_reminder_example 2 b
11. a_call_return_example 2 b
12. a_call_waiting_example 1
13. a_charge_advice_example 1 a,b,e
14. a_divert_example 2 b,e
15. a_multi_call_example 1 e
16. a_pickup_call_example 1 e
17. a_qgueue_example 1 e
18. a_show_number_example 1 b
19. a_voting_example 1 e
20. a_wake_up_example 1 b,d
21. an_emergency_example 1 de

Table 8.4: Generated test cases and their success rate
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8.5.1 Reducing the Need for Refinement

Refinements of type a, ¢ and d may prevent test cases from passing even if there is
potential for the test case to pass. The effort required from a user in refining these by
replacing variables with constants and including necessary facts to start node/conclusions
could be reduced when generating test cases. This is possible because when the test cases
are produced and verified, the user has selected a solution case. This information can be
used to refine the input examples and fill in missing details or make over-generalisation
specific enough to produce test case which less or no need for refinements of type a, c

and d.

Refinements of class a always originate from the use of variables in input examples. In
most cases it is obvious what terms should be for a stimulus, such as user x lifting the
receiver at time 1, off_hook(x,1). Time variables do not need to be given since these can
easily be determined when generating test cases. A user may exemplify how a service is
invoked in a particular situation by adding a link between two nodes,
service_request(x,Service,T). The requirements designer cannot know the name or code
for the service since it is either a new service or it is unknown which of the services it is in
the case library, before matching. However once a solution proposal has been accepted,
the service is known to be fransfer_call and so CABS could instantiate these variables and
generate a test case with less variables (CABS can handle variables if there is only one
choice, then during the verification of the test case, the variable is instantiated to the only

possible value).

Refinements of class ¢ and d are often required because of missing facts in the initial
state. In the input examples, nodes are a conjunction of facts that are required to be true,
and the node denotes all states that have these facts true. When generating a test case, a
proper start state is required. Since nodes are expected to be predefined (often by some
more experienced requirements designer) and it is expected that input examples can be
created by selecting nodes from a set provided, the start node can often be (and is for the
evaluation) so well defined that it can be used as a start state for verifying test cases. If

each case in the case library has a proposed start state (or required facts for any a start
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state), for simulation and testing, this could be merged with facts in the start node in the
input example. If there are contradictions it may be relevant to report these. Some
variables that have been used in terms occurring in nodes and links in the input example
could be bound to constants and missing facts could be added, reducing the need of

refinements of type a, ¢ and d.

8.5.2 Conclusions for Verification

Generating test cases from input examples to verify that the behaviour of the test cases
are included in the solution, has been shown to enable the user to improve the standard
of the input examples and of cases that are under development. In most situations,
refinement of input examples is trivial and was usually achieved by adding (or removing)
a term in a node or link. The value of these automatically generated test cases is also
obvious if changes are made in requirements or when new services are integrated with
other services, since all previous test cases can be re-evaluated in order to confirm that no
accidental change of behaviour in other services has occurred by integrating a new
service in a communication system. This is a major issue in any specification of a large

system that is modified and extended.

8.6 Summary of Evaluation Results

CABS can, using input examples, identify similar cases and also use the input examples
to identify differences between the behaviour outlined in the input examples and the
selected case. An improvement to the ranking of cases with the same number of
matching links is proposed: by using the ranking from the matching link and the
transition rules, the ranking for each case would better reflect the link/transition rule
match (this is a small extension). If there is no matching case in the case library for an
input example, the input examples can be used as a starting point to construct a new case
which is most likely to be more efficient than formalising a service from scratch

(although no tests have been carried out on this). The approach is also robust because it
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is not necessary for the solution to be the highest ranked as the requirements designer
can make the final selection from the proposed solutions. The test cases generated from
the input examples identified problems in both the input examples and the cases in the

case library, and so they proved to be of use.

8.7 Computational Time for the Match

One of the advantages of the CABS approach is that it has a fast matching algorithm
enabling the identification of similar behaviour. The matching is performed in two steps:
firstly all links in the input example are matched against all transition rules and then all
cases are ranked by inspecting their transition rules matching result and by making a
ranking of each case in the case library. It is expected that a common size of an input
example contains 5-8 links. As described earlier matching of each link is based on
comparing sets of terms. The computational time used for this is linear in the size of the
sets. In the current case library the number of terms in a transition rule is between 5 and
35 terms and a link has between 5 and 15 terms. Once the matching result is calculated, it

is stored with the link (a ranked list of the best matching transition rules for the link).

Once all transition rules have been matched against all links, each case is matched against
the input example. This is done by taking all transition rules belonging to a case and
giving the case a numerical value representing the number of transition rules that match
with any link from the input example. Hence matching and ranking all cases is a linear
algorithm and directly proportional to the number of transition rules in the case, the
number of cases in the case library and the number of links in the input examples. This
enables an implementation of a very fast matching algorithm. For a realistically large
case library, containing some hundred cases and some thousand transition rules with an
optimised implementation of the matching algorithm, the response time, for matching an

input example of normal size (5-8 links), could be guaranteed to be below a second.
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Some time measurements where the time scale is irrelevant’’ ensures that the prototype
implementation performance is in accordance with the matching algorithm (see Figure

8.4).

3! The implementation is made in an interpreted Prolog. Implementation has been made with no
efficiency considerations and an object oriented layer that at least triples each access time to links,
cases and transition rules has been used. The Prolog used is written for the 68000 processor
emulated on a PowerPC. External interface to C++, efficient data storage available in LPAProlog
and partial compilation mode (this requires declaration of what parts of the program are static and
what parts are dynamic, which would take considerable time in a prototype system often changed and
modified) have not been used in the prototype implementation. A re-implementation of the
matching taking these factors into consideration and using a faster computer (5-10 times faster
computers are available) should be sufficient to increase the matching performance by two to three

orders of magnitude. Hence the fact that the time scale in the tests are seconds is irrelevant.
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Figure 8.4: Matching time measurements, 32 cases, 225 transition rules

The variation reflect the different sizes of links, transition rules and cases. Some
additional tests with different sizes of case libraries (smaller than 32 cases) showed that it
is likely that the total matching time in the implementation also is linear to the size of the
case library (ca. 4:1, every additional case increases the time consumption with 0.26 time
units for an average sized input example, 6-8 links) in accordance with the matching
algorithm. For more on optimisation strategies for matching see [Althoff, Auriol,

Barletta, Manago 95]
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0. Further Work and Extensions

In this chapter, some suggestions and ideas for further work and extensions are given.
They are not presented in any particular order. Some of the proposals are minor
implementation issues, which would have been implemented in the CABS system if there
had been more time. Others may be seen as challenging ideas, maybe PhD projects in

themselves, which I wish to document in this context to ensure that they are not lost.
9.1 Using Icons for Terms and Situations

In the links and nodes, the names of the terms and arguments provide the main means
for a requirements designer to remember their meaning, which is informally described in
the case library. For an alternative representation, a suggestion is to use icons
(experiments with use of icons for telecommunications services have been made by
[Preifelt, Engstedt, 92]). Terms or conjunctions of terms and nodes which are
conjunctions of terms and links (which have the originating node as preconditions and
the terminating node as conclusions) could be assigned icons. Figure 9.1 shows an idea
of how a link could be represented by icons instead of terms, nodes and links. The node
all subscribers idle in Figure 4.1 is represented by the icon in the upper right corner in
Figure 9.1. When clicking on this icon, a details window could be shown (as exemplified
in Figure 4.4 for the node a calling b). The next node, dial tone a is in the middle right

and the link is represented by an icon symbolising that the receiver is lifted. In the
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bottom right corner is an icon representing the node a calling b and the link (stimulus
dialling) connection the two nodes dial tone and a calling b is shown beside the arrow
pointing to this node. Choosing and designing icons would be highly application domain
specific. If the mapping is a direct mapping between sets of terms, links and nodes,
adding such a graphical representation is a matter of implementation (but with plenty of
interesting possible extensions and improvements that may be small or large research
projects: graphical simulation where the output from a simulation is presented in icons

representing the terms may be one of the larger ones).

""—.._'__User a Userb Userc .

Figure 9.1: Idea of graphical representation of terms/nodes/links
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9.2 Mapping Specification Against Design Objects

Most approaches to formal methods for specification have a weak connection between
the specification and the actual design. Usually the specification is used for guiding the
design and programming, at best the test cases are generated from the specification which

may be used in a method to verify the implementation.

In large systems one of the main tasks is to update and modify the system (and hence the
corresponding requirements and specifications) to meet new demands. With the weak
connection between specification, design and program, the question arises of whether it is
worth the effort to keep the specification up to date with changes in the system. In
industry, requirements are not often maintained, which is sometimes suspected to be one
of the reasons, that some years after they are written, systems start to get more and more

difficult to modify and maintain.

By choosing the same formalism for the design of the different components and objects
of the design, and the specification, we may use this in a mapping process. Given a new
or modified specification we generate a design where we know which design components
corresponds to which part in the specification. If the complete specification can be
mapped in such a way that all parts of the specification correspond to design components

and objects, then we have a design which can be realised.

An even stricter approach would be to only allow a specification with already designed

and implemented components and objects®?. If all the components and objects are

2 An analogy to this would be to let an architect only use a given set of ready made symbols in the
production of a plan for a building. These symbols correspond to pre-manufactured components such
as ready made walls, electricity and water pipes, floors with a ready made finish, all with a given
specification. Contrast this with a plan where all walls, electricity, placing of windows and water

pipes have to be worked out uniquely for each design and the building has to be built with bricks



168 CHAPTER 9. FURTHER WORK AND EXTENSIONS

already implemented in software or hardware then there may not be any need for
programming or construction of new hardware. On a lower level, some integration and
adaptation of the objects and components may still be needed. Test cases (generated
from specifications, in a similar way as test cases are generated from input examples may
be adopted by breadth first expansion of possible stimuli/response sequences to a chosen
depth) may be used to verify that the implementation meets the requirements. An
interesting question is whether it is possible to map specifications onto Service
Independent Building Blocks (Sib’s), as standardised and specified by the International
Telecommunications Union (ITU) as part of the Intelligent Network Recommendations.
If terms in a specification could be mapped against functions in a functional language
(such as the concurrent programming language Erlang, [Armstrong, Virding, Williams,
1993] which is used for implementing telecommunications services), an implementation

could be generated from a specification.

9.3 Using CABS for Other Application Domains

Application domains which, for practical reasons, are too large for explicitly state based
approaches may be considered as potential application domains for CABS. If an
application domain has a fairly simple interaction with its environment, where the
connection between response and stimulus is not too complicated, but contains large
numbers of states, and where it is of value to explore in detail the behaviour to show that
the system will have certain properties and lack other properties, CABS may be
considered. Also domains such as train signalling systems, safety systems in cars,
aeronautics, power plants, computerised medical equipment (dialysis machines, scanners,

etc.) may be potential application domains.

and concrete by highly skilled craftsmen.
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9.3.1 Object Oriented System Specifications

A similar approach to CABS may be potentially useful for requirements capture of
software objects in an object oriented system. In object oriented methods it is popular to
include some state based formalism describing behavioural requirements on objects.
Each object would be seen as having a closed behaviour. Stimuli and responses need to
be classified as belonging to the environment of the system, or as belonging to another
object in the system. Structuring the system in this way will result in some limitations in
validation and verification, since CABS does not incorporate the overall validation and
verification of communicating objects (but the formalised requirements in logic may be
used in some theorem prover able to do validation and verification of sets of
communicating objects). If behavioural requirements used in object oriented methods

are similar enough to the one used in CABS, similar behaviour could be identified.

9.4 Simulation with Connected Telephones

Simulation by providing stimuli sequences in order to explore the behaviour is useful in
order to explore a telecommunications service. If presenting the functionality to
customers, end user or to evaluate a services popularity with telephone users before
implementing the service, a simulation with real end user equipment may be useful. An
interface between the simulation tool in CABS and telephones could be written. A
number of phones could be connected to a PC and then the service could be tried out
before ordering it, if the receiver of telephone a has been lifted, the stimulus
off_hook(a,1) is sent to the simulator in CABS. The response dial_tone(a) needs to be
translated by the telephone driver and a dial tone is sent. Time response for simulation of
the formalised services may be sufficient if a small number of telephones/terminals are
used (even if the simulator is fast, a couple of hundred telephones/terminals is to be likely

a maximum if response times must be below a second).
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9.5 Adding a Theorem Prover to CABS

One of the benefits of using a formal notation for requirements specification is that it
enables the requirements designer to reason about the specification. This is the main
advantage of a logical formalism over many other specification and programming

languages [Bundy 92]. The kinds of reasoning we wish to do are:
1. Verification (whether the specification implements the required behaviour).
2. Synthesis (of specifications into a new specification).

3. Transformation (transform the specification into a representation using less memory

and/or time when simulated).
4. Termination (show that no deadlocks exists).
5. Abstraction (abstract information about the type of its input/output etc.).

6. Consistency checking (prove that there are no contradictory statements in the

specification).

CABS partly tackles 1 (test cases), 4 (restriction in language, see Appendix A) and 6 (a
program identifying potential inconsistency between transition rules has been
implemented, but not integrated). Adding a theorem prover would greatly increase CABS
abilities in these areas. At the moment, there are a number of advanced theorem provers

available that could be used.

9.6 Analysing Interaction Between Modules

As mentioned earlier, the condition and conclusion part in transition rules can be cross-
referenced. This gives valuable information on relations between transition rules and
cases. For example, if a transition rule R1 belonging to case C1 has a conclusion term T
and a transition rule R2 belonging to case C2 has the term T as a condition, then we can

conclude that case C1 may influence the behaviour of case C2 in one step. More obvious
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analyses can be made: for example, if a term only occurs in conclusions of transition
rule, and is not used in any condition part of a transition rule, then the conclusion of this
term is redundant. A wide variety of such analyses can be performed with straight
forward cross-references between transition rules. These may be helpful in the
requirements capturing process and aid the understanding of cases and their interactions,

and relations.

9.7 Generating Code from State-Based Requirements

Statecharts [Harel, Naamad, 87] is part of a semi-automatic method that supports stepwise
refinement to produce C, Ada or VHDL code. Formal methods for requirements
specification and for program specification often have similarities, especially if the
requirements specification is executable. Code is automatically generated from formal
specifications, such as RSML [Heimdahl, Keenan, 1997] and non-instantaneous state
transition assertions (NSA) [Gordon 86]. The code produced from RSML is 5-10 times
slower than manually produced code from the state machines but if the transformations
producing the code are correctness preserving, the code will have the same properties as
the specification. Since both Statecharts and RSML reduce the complexity of large state
transition diagrams by using substates, and if substates and CABS terms in transition
rules can be mapped onto these, the approaches may potentially be combined. If
combined, RSML, NSA and Statecharts would be able to apply a CABS approach to re-
use and CABS would benefit from generating code from requirements. The same
reasoning may be relevant for UML (Rumbaugh, Booch and Jacobson), OOA (Shlaer-
Mellor) and JSD (M. Jackson) which all have graphical notations and may be extended
with a re-use approach based on similar behaviour (an object with similar behaviour

could be identified and proposed for re-use).
9.8 Re-Use of System Development Processes

Ericsson has a large number of detailed descriptions of system development processes

that have been tailored for different projects (hardware and software) and to meet
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specific requirements (ISO 9000, toll-gates, milestones, well specific input/output
information for different process steps). The processes are currently stored simply as
pictures and text. A preliminary analysis of these processes suggests that the formal
notation used in CABS might be used to describe them. It might then be possible to
identify similar processes or parts of processes that can be re-used. Identifying
similarities and differences can also be used to compare the solution processes to some
master or standard process to identify and point out differences and suggest

improvements. This possibility is being investigated with Ericsson and QLabs.

9.9 Re-Use of SDL

Re-use of SDL (se Section 2.4) diagrams form previous program implementations. SDL
is more expressive than the formal notation used in CABS. Even so the graphical parts
may be used as a skeleton for re-use and the formal notation in CABS may be extended
to be more expressive. Since SDL is a graphical programming language that is being
used more widely and outside traditional telecommunications applications, identification

of similar behaviour in SDL diagrams is interesting.
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commonly expressed on higher abstraction levels). If so, a requirements specification
including all the desired behaviour and excluding all unwanted behaviour might be used
as the final implementation. For the application domain of telecommunications services
there are high demands of efficiency on the final code. The requirements could be seen
as the tip of the iceberg and the final implementation is a highly optimised and
integrated system of software and hardware in a global network of co-operating
telecommunications switches. In these circumstances, the requirements specification is

used as input to the design process and for generating test sequences for verification.

In conclusion, CABS is aimed at providing a closely integrated approach to requirements
design and supporting iterative refinement, re-use and revision to produce formalised,
validated and verified requirements specifications capturing the required behaviour of

the system to be constructed.
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10.  Summary and Conclusions

As described in Chapter 1, formal notations can be used to formalise coarse grained
telecommunications service requirements at a high level of abstraction. Formal methods
for requirements have a number of advantages over informal methods, as discussed in
Chapter 2.1 and 2.2. Even so, formal methods are not routinely used for
telecommunications service requirements specifications. Previous research projects by
Ericsson aiming at the use of formal requirements for service specifications suggest that
the main reasons for this is that a number of issues have not been sufficiently addressed

and solved (repeated from Section 1.1.1):

1. Re-use and modification of previously specified services or parts of services. The most
frequent situation in the domain of telecommunications service specifications is the

specification of services similar to previous ones.

2. The issue of iteratively refining and incrementally extending requirements that were

originally sketchy, incomplete and contained errors.

3. End users with background in systems design and programming did not accept the
idea of using the formal notation to specify services at Ericsson. Their interest in
formal methods was high until they where confronted with logical axioms. Even

showing slides with logical or mathematical notations drastically reduced any interest

shown earlier.
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These factors contributed to the cancellation of a large formal methods project and
currently there is no active work at Ericsson to bring formal methods to broader use in

requirements specifications for telecommunications services.

10.1 Summary of Work

In this research, the main focus is on issue 1 in the previous list and a different use of
formal methods for requirements specification is proposed. Traditionally, state based
formal methods for requirements specifications are used to describe the precise
behaviour of all the requirements. This detailed modelling is difficult for more
realistically sized problems. However, formal “sketches” of the required behaviours can
be produced. The formalised service sketches are not intended to capture all the required
behaviour and exclude all the unwanted behaviour, but are merely intended to sketch the
key features of the behaviour required. These features are used to identify and suggest

similar existing services in a case-based reasoning approach.

The similar services proposed may be adapted to the users’ needs and can be validated
and verified against the initial service sketches. The chosen application domain of
telecommunications services is non-trivial and seventeen services often used in evaluation
of service specifications have been specified and used in the evaluation. Matching is the
core component of a case based reasoning system and has been the main focus of this
research. In order to evaluate the matching, subsidiary components for the CBR system
have been implemented: a graphical input editor where input examples can be produced
and refined, a simulator to simulate the proposed and chosen solution and a verification
component that generates test cases from the input example and verifies that the final
solution contains this behaviour. The matching component and these subsidiary
components have been implemented in the CABS system enabling the user to sketch
desired behaviours of a telecommunications service, for which the CBR system proposes
similar solutions from the case library that may be re-used in whole or in part. The input
examples and the simulator/verification component are used to evaluate the matching

algorithm. See Figure 3.1 for the different parts in CABS. Both the matching and the re-
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use of test cases have been put in context with an iterative requirements development

method as shown in Figure 7.1.

CABS performs matching on two levels. Firstly each link in the input examples with the
corresponding originating and terminating node are translated to transition rules which
will only be used for matching. These input transition rules are then matched against all
transition rules in the case library to identify transition rules that capture “similar”
behaviour as defined in Chapter 6. Transition rules in the case library are grouped in
services and the result from the transition rule matching is used to identify which of the
services in the case library have a similar behaviour to the input examples. To evaluate
the matching, a case library with seventeen services and twenty-one input examples of
services have been used. All the input examples were very rudimentary and only
captured a coarse grained sketch of a small part of the total behaviour of the
corresponding service in the case library. Even so, the matching successfully identified
the corresponding services (including some where the input example and service did not

captured exactly the same behaviour) as evaluated in Chapter 8.

To test the proposed solution, the input examples were used to generate test cases which
were automatically tested against the selected service with a batch mode of the simulator.
Since the solution was known to each input example, no problems were expected in the
verification, but more than half of the test cases did not pass. By analysing these, a
number of mistakes were found in the input examples and in services in the case library,
which shows that the verification process was useful under these circumstances. So many
errors in the case library would not be expected under real conditions since all the
services in the case library would already have been successfully integrated and fully

implemented, and many mistakes should have been corrected during this process.

Input examples and test cases also play a rol when completely new services have to be
specified and there is no similar service in the case library. The input examples are
translated to a set of transition rules when used in the matching, and these transition rules
can be used as the starting point for a new service. During refinement of the new service,

the test cases will identify where the service differs from the input examples, and the
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requirements designer has to either change the input examples or the service

requirements.

10.2 Limitations

The formal notation used in CABS is constrained to suit a particular (efficient) matching
strategy and visualisation, in this sense its simplicity is a virtue. However its limited
expressiveness makes CABS unsuitable for more complex behaviour including
concurrency, timing constraints, communicating processes and simultaneously occurring
events, which would have been possible if a more expressive formal notation had been

chosen (for example Petri nets).

If requirements specifications and formal methods are used for tasks where new
requirements bear little similarity to previous requirements, more traditional use of
formal methods may be preferred, i.e. mathematicians develop the formal requirements
directly in a suitable formal notion using logic or algebraic notation. The proposed
method is aimed at applications where re-use and modification are central issues. Using a
system such as CABS would be unnecessarily limiting for problems where re-use and

modification of specification is less relevant.

10.3 Future Work

This research will be continued by identifying commercially interesting areas where
identification of similar behaviour is of value and where a case library with formalised
cases exists or can easily be produced. By producing prototypes for this new application

domain, further insights to the problem of identifying similar behaviour will be achieved.

The hope is that this result can be transferred to other application domains where
comparison and re-using of similar behaviour is relevant. Some potential application
domains where the identification of similar behaviour is of interest have already been
identified: re-use of system development processes and re-use of SDL diagrams (SDL is

briefly described in Section 2.4) as mentioned briefly in Section 9.8 and 9.9.
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Another area for future work is the exploration of graphical notations suitable to use for
the CABS approach. The view taken in this thesis (following [Zave, Jackson 97]) is that a
notation for requirements is preferably limited in expressiveness and just sufficient to
express the requirements in which we are interested. The CABS approach uses coarse
grained sketches of the main system behaviours as described in Chapter 4. This needs to
be just complex enough to provide a notation in which input examples can be sketched
and used for matching and verification in the case-based reasoning framework (see
Section 2.5) to enable the evaluation of matching and verification (Chapter 8). This
thesis makes no claim that the graphical notation used is "best" for this purpose - other
equally parsimonious notations may exist and many more complex graphical notations
certainly do exist. One benefit of the notation currently used in CABS is that it is trivial
to translate to the features used by the matching algorithm and other notations may need
more elaborate transformations. However, it is worth considering the relationship between
the CABS notation and at least one other more complex, traditional graphical notation.
Perhaps the most obvious example for a telecommunications domain is Petri nets (see
Section 2.4 and 2.4.1). We explain below why Petri nets where not used as graphical

notation for sketching input examples in the CABS implementation.

1. Petri nets main benefit are their ability to express concurrency and Petri nets are the
first general formal notation for describing discrete parallel systems. Although
concurrency is important in the operation of telecommunications services, many of
the requirements relevant to the choice of those services do not directly involve
concurrency.  Furthermore, the introduction of concurrency into the CABS
requirements model is only worthwhile if it is used in the CBR matching. It is not
clear what the role of concurrency would be in that algorithm but it would probably
add to its complexity. Complex matchers can become difficult to maintain and
understand. The additional sophistication of a concurrent model might also make the
current CABS validation and analysis phase more complex and thus more difficult to

support.
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2. In research projects where Petri nets have been used it is common to simplify or adapt

them according to the task and the users' needs. A notation is either defined in terms
of Petri nets or internally translated to Petri nets. These notations often contain
restrictions and simplifications reducing the expressiveness and complexity of the
notation compared with a direct use of Petri nets. Examples where such notations have
been used and defined in terms of Petri nets or internally translated to Petri nets are
PTNs [Malec 92], SDL and MSC [Grahlman 98] (some more details in section 2.4)

and structured analysis and design diagrams (SADT diagrams) [Jensen 97].

. Basic Petri nets (Petri nets with Boolean tokens, a token is present or absent in a place)

do not provide sufficient input to the matching algorithm. Stimulus and response
sequences generated from Petri nets may be sufficient to use in the matching process
for simpler applications where the distance in terms of sequences of stimuli and the
following response is close. In telecommunication services this relation between input
and output is not that simple and the distance can be very large in terms of
stimuli/responses/time and an altered behaviour may be the result of some signalling
that occurred a long time ago, i.e. activation of the service "divert calls" may have
been done weeks earlier. If input examples were given as short Petri net sketches the
features to match on would be considerably reduced since places are numbered and
tokens have Boolean values. The approach taken in CABS provides the matching

algorithm with more features (see item 4).

. In addition to stimuli and responses in the input sketches the notation used in CABS

enables the characterisation of nodes and transitions with conjunctions of predicates
having a clear meaning in the application domain (for example the predicate
“divert_calls(Nrl, Nr2)”). Predicates may be seen as a memory of some previous
occurred signalling. The predicates provide additional features for the matching
algorithm and can also be used in the process of generating new transition rules if a
new service is to be constructed (when no similar services are available in the case

library).
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5. It may be possible to extract sufficient information from Coloured Petri nets to feed
the matching algorithm. In Coloured Petri nets each token has a colour, where the
colour may represent a specific individual together with some additional data (a local
or global state). A transition can only occur if the tokens with the correct colours are
available. The number of colours of tokens in telephone services would be large since
a telephone user can be in many different states independently of place in the Petri
net. The approach of adding characteristics to nodes as conjunctions of predicates was
preferred in CABS and predicates not relevant for the node may be left out (this may

even improve the matching under certain conditions, see Section 6.1, 6.3 and 6.4).

6. The expressiveness of Petri nets is greater than the internal predicate logic notation
used for cases in the CABS case library. Hence the notation used in CABS will be
insufficient if it is used in application domains where concurrency is a Kkey
requirement. The application domain model and the logical notation used in CABS

requires stimulus to be sequenced, see Figure 5.4.
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Appendix A

A. Logical Formalism

This appendix gives an overview and an informal description of the formal logical
language. An algorithmic and operational description is given of the logical framework
before a brief definition of the language is given. This appendix does not need to be
understood in order to use or understand the CABS system. Some parts of this

description also appears in [Funk 93].
A.l Overview of the Logical Language

By choosing a logical representation, we are able to reason about the specification. This
is the main advantage of a logical formalism over other specification and programming
languages [Bundy 92]. The kinds of reasoning we wish to do are: verification (does the
specification implement the required behaviour), synthesis (synthesis of specifications
into a new specification), transformation (transform the specification into a representa-
tion using less memory and/or time when simulated), termination (show that no
deadlocks or loops exists), abstraction (abstract information about the type of its in-
put/output etc.) and consistency checking (prove that there are no contradictory state-

ments in the specification).
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The logical language used is based on two temporal logics. Mostly it is based on the
logical framework called Loxy [Echarti, Stilmarck 88], tailored to contain the necessary
expressiveness needed for specification of reactive systems such as telecommunication
systems. The logical notation has also been inspired and influenced by the temporal
logical approach in first order predicate logic using fluents; but instead of introducing
fluent-functions [Davis 90] the two layer model from Loxy is kept. The language may
also be compared to PROLOG, the main difference being that the language handles
change in a more explicit manner and that the language (i.e. the inference rule) is
logically sound and has been made decidable by introducing certain restrictions. The
logical language is a subset of first order predicate logic, with some important restrictions
and a frame axiom. The logical language used in the project is carefully chosen to have
enough expressive power to specify basic telecommunication network services while
avoiding any unnecessary constructions. The main difference is that the language sug-
gested assumes a closed world and only has negation as failure (explained more closely
in description of logical framework); Loxy has both true negation and negation as
failure. Negation as failure has proved easier to work with, and has been shown to be

sufficient for a fairly large telecommunications application [Funk, Raichman 90].

A world state is a finite set of atomic ground formulae with no variables as arguments. A
stimulus, S, is an external input to the system. Transition rules are rules which are
triggered by external stimuli, and if their conditions are true at WO then their conclusions
are true at W1. The frame axiom states that all facts that are not contradicted carry over
from WO to W1. The system may be described using state transitions, where the transition

rules define all the possible transitions between states.
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State WO State W1
Al & ... Aj-1
e State Transition Rule 1: aptleLn

S & WO0: Al &... Ai
_}

W1: A0 & not Aj

Figure A.l: Example of a state transition in a logical system

After all possible rules are triggered by the stimuli, the frame axiom will move all facts

from WO to W1 if they are not contradicted in W1.

The specified system is monotonic (a previous state cannot be altered), since the logical
formalism only allows new conclusions in a new state and there is no mechanism to
change or add any conclusions to a previous state. If a specification is able to produce
contradictory conclusions, it is regarded as an inconsistent specification. In contrast to
the specified system, the process of specification of the system is typically non-
monotonic since parts of the behaviour are both added, removed and modified in an

iterative approach.

In a large system with many states, the advantage of having transition rules instead of
state transitions is obvious (one rule may represent hundreds of state transitions), and
even in a medium sized realistic specification, there will be many thousands of different
states. Many of these states may not be reachable in an actual specification, but it illus-
trates the worst case complexity, which makes a pure state-transition approach unsuitable
in any large domain, because. enumering all the states explicitly and specifying each state
transition explicitly in a manual fashion, would be far too time-consuming. When
implementing some sort of plan generator the size of each state may easily be reduced
by storing only the facts changed, removed or added, when compared with the previous

state.
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A high level specification (specification sketch), is an incomplete description of the
system [Johnson 88]. It leaves out details which are necessary in order to produce a full
specification. The specification process has the task of refining the specification sketch
into a consistent and complete specification. A set of behavioural example-sketches
could be seen as a specification sketch of the system's behaviour, and a complete and

consistent set of transition rules as a low-level specification.

A.2 Operational Description of Language

Before giving a brief formal definition of the language, we give an operational and al-
gorithmic description of the language. First we start with the two main parts in the lan-

guage: world state and transition rules.
A.2.1 World State

As mentioned earlier a world state contains only facts, no variables. A world state is
always deterministic, since it is always a set of conjunctive ground terms with no variables

(facts). An example of a particular world state might be:

ring_tone(al).

calling(al,a2).

ring_signal(a2).

answering_number(al, 111).

answering_number(a2, 222).
Great care has to be taken when choosing the ground facts, since the granularity of the
facts largely determines what can be described and what the system can reason about in
the domain. Changing an established conceptual model (facts and their relations) is a

large task, and may affect most of the specification.

A.3 Transition Rules and Their Meaning

As mentioned earlier, cases are represented as sets of transition rules. The notation shown

to users has been simplified because the system is not targeted at users knowledgeable in
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predicate logic. Mainly, quantifiers have been left out in a traditional way as, for
example, is the case in Prolog and some rule based systems. There are also some
restrictions added to prevent users from creating expressions unwanted in our logic,
which in turn allows us to have a very simple simulator and theorem prover. This
restriction also enables more rigorous investigation of the formalised behavioural
specifications, such as identification of inconsistency, identification of reachable states

from where no sequence of stimuli will lead back to the start state, and so on.

One of the restrictions on transition rules are that no unbound variables are supposed to
occur in the conclusion part, since this may lead to nondeterminism and complicate
matters. Also, the introduction of new constants is restricted, which eases the verification
task (the number of states will be finite). Another restriction is that “or” statements are
not allowed. This is for two reasons: Firstly an “or” statement in a conclusion part would
lead to nondeterminism, which would complicate matters considerably for simulation,
theorem proving, matching and verification. Secondly, “or” statements in the condition
part would complicate the matching algorithm. If, for some reason, users wanted “or”
statements in condition parts, a tool translating these transition rules to a number of
transition rules capturing equivalent behaviour would be trivial to implement providing

that their conclusion parts are the same.

An example of the formal part of a transition rule in CABS (divert call):
Stimulus: dialling(A, Nr, T)

Conditions: dial_tone(A) & answer_nr(B, Nr) &
divert(Nr, Nr2) &
answer_nr(B2, Nr2) &
~dont_disturb(Nr2) &
~calling(Z, B2) &

accepts_incoming_calls(Nr2)

Conclusions and responses: calling(A, B2) &

ring_tone(A) &
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ring_signal(B2) &

~ dial_tone(A)
The logical form of this transition rule is:

VANrN2BB2OTT
o(T+1, dialling(A, Nr, OT)) A p(T, dial_tone(A)) A p(T, answer_nr(B, Nr))  p(T,
divert(Nr, Nr2)) A p(T, answer_nr(B2, Nr2)) A p(T, —dont_disturb(Nr2)) A
3 Z p(T, —calling(Z, B2)) Ap(T, accepts_incoming_calls(Nr2))
—
p(T+1, calling(A, B2)) A p(T+1, ring_tone(A)) A p(T+1, ring_signal(B2)) A

p(T+1, — dial_tone(A))

The stimulus term in the o-expression has to be true at time T+1 and all other conditions
have to be true at time T. All the conclusions are true at time T+1. The frame axiom
moves over all unchanged terms from T to T+1. Only conjunctive expressions are
allowed in transition rules. All variables occurring in the conclusion have to be bound in
the condition. If an unbound variable is negated in the condition part, it is always
existentially quantified; all other variables are universally-quantified. The translation
process is completely mechanical and bi-directional (formulas in the restricted logic can

be translated back to a transition rule, in a one-to-one mapping).

The restricted predicate logic, together with the frame axiom, allows us to implement
powerful tools for computationally efficient simulation, theorem proving, consistency
checking, etc. The expressiveness of the language is still sufficient for the domain. We
have purposely been restrictive in extending the logic to keep it on a trivial level, making
it understandable for non-logicians and mathematicians. This is in contrast to some
research in formal methods , which often aim to expand the expressiveness (which may

result in logics that are hard to learn and use by non-logicians).

This formalism is expressive enough to capture all systems receiving sequenced stimuli
and returning external visible responses based on what sequence of stimuli the system has

received. Any extensions to the logic may have the purpose of identifying contradictions,
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compressing transition rules or capturing time-independent expressions. If these
extensions do not extend the expressiveness of the logic used, they may be introduced on
a meta-level or only be included in the logic during analysis (as in the case of identifying

contradictions).

A.4 Algorithmic Description

W is the initial state, and it has to be a non-empty world state, since there is no way of
creating new instances in transition rules. After world state Wy a stimulus occurs at t' (t' is

the successor of t). If a transition rule contains the stimulus as a triggering condition and

the rule's conditions are true in Wy, then the rule is triggered and the conclusions are true
at Wy. Then the post production system (see Section 5) and the intra-state rules are
applied (intra state rules have not been used in the telecommunication example), and all
possible conclusions are derived from the new facts (both true facts and negated facts).
After that the frame axiom is applied which transfers all the facts which are not contra-
dicted in Wi to Wy. In our domain, negation as failure is sufficient (all facts have to be
known), so all negated facts can be removed from Wy'. A pseudo code description of the

algorithm is given below:
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tis set to 0 (W is the initial state)

REPEAT
WAIT FOR STIMULUS
IF Stimulus received at time t+1
FOR ALL transition rules R
IF Rj has the Stimulus received as precondition
IF all other conditions in Rj are provable at time t
Add conclusions given from Rj at time t+1 (both true and negated facts)
END IF
END IF
END ALL
If intra-state rules exist apply post production system
Apply frame axiom
(facts at W¢ not contradicted at Wy are moved to Wy)
Close Wy (negated facts removed, redundant)
IF incremental development check for contradictions.
IF limited memory remove Wi.
tissettot+ 1
END IF
END REPEAT.
Since transition rules are restricted to make conditions only on 7, this algorithm can be

implemented very efficiently.
A.5 Syntax and Semantics of Restricted Logical Language

This section may be omitted if the reader is not particularly interested in the definition
and exact meaning of the language. The informal descriptions, explanations and exam-

ples of the language should give sufficient details of the language for most readers.

Formulae in layer L1 are concerned only with a static world (within a single state). State-

transition rules and world states (a conjunction of atomic ground formula) are used to
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capture change. State-transition rules are only allowed to refer to two adjacent world
states. The syntax and semantics of the language are easy to understand and are believed

to be intuitive even for non-logicians.
Definition of L1

Language L1 is predicate logic but some important restrictions are introduced making
the logic very basic but sufficient for the chosen application domain: the top level

requirements of telephone services.
Formulae in L1

The only terms allowed are conjunctions of atomic formulae or their negation. This

makes L1 purposely trivial.
Quantifiers in L1

All variables in the state-transition rules are universally quantified, except when there is a
variable in a negated statement which doesn’t occur anywhere else: this then has to be
existentially quantified. Since there is no risk of confusing quantifiers, they are dropped

in the representation of transition rules (the same approach is adopted in Prolog).
Domain of L1

The domain is finite, e.g. D = subscribers U telephone numbers U services U counters.
The interpretation is split into:

Iconstant constants - always the same.

Ipredicate  state predicates - different at different world states. Transition rules and

the frame rule apply to state predicates.

Istimulus stimulus predicates - different at different world states. Stimulus predicates

are only externally determinable and the frame rule does not apply

stimulus rules.
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World State

A world state is the interpretation of all L1 predicates, i.e. a direct representation of the

state of the world.
Transition Rules

Transition rules have preconditions (including one stimulus predicate) and conclusions
both formulae of LI. t and " index the world state in which the interpretation of the
conjunction of predicate have to be true. t' is always a direct successor of t (t* is
sometimes written as t+1 in previous chapter which directly reflects the consecutive

numbering of world states).
Algorithm

The Operational implementation of the algorithm is shown in Section A.4. How it works
semantically is that the algorithm evaluates the truth value of the precondition part of the
transition rules in the interpretation of world state t. The condition for a transition rule is
a list of predicates (negated or not negated). Each predicate is interpreted relative to a

world state t.

If all atomic formulae in the condition part of a transition rule hold in world state t and
the triggering predicate holds, then the transition rule is said to have its conditions met

(i.e. the transition rule triggers).
Transition rules trigger if:

interpretationgopstant Y Interpretationpredicate, |= preconditions

We can think of each atomic formula from the conclusion part of a rule, that has
triggered as a restriction on the range of allowable interpretations at time step t’, or
equivalently, as a subset of all interpretations. The way the algorithm combines these
formulae is equivalent to taking the intersection of the corresponding interpretation
subsets. Then, the frame rule is applied, narrowing down the possible world states at t’ to

one, by selecting the world state that has the least difference when compared with the
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previous world state. If the set of possible world states is empty, then the transition rules
are identified as being inconsistent and the algorithm detects this. In the operational
implementation of the algorithm, it can be said that the frame rule copies all non-altered
predicates from the previous world state t to t'. Transition rules can be seen as

implications in a temporal logic.
true(t, conditions) A true(t’,stimulus) — true(t’, conclusions)

when true(t, f) is true iff interpretationggnstant Y interpretationpredicatﬁt |=f

When the conditions and stimulus are true a new world state t” is generated where the
conclusions hold. An external stimulus term is required to occur at every time step: if no
transition rule is triggered there is no difference between the world state t and t’, except

the stimulus predicate.

It can easily be verified that:

1) if all the transition rules triggered at t are consistent,
the algorithm finds an interpretation for t* which makes them true
and is maximally consistent with the interpretation at t.

2) if there is no interpretation for t' - the transition rules are inconsistent - then the

algorithm detects this.
Concluding Remarks on Logic

Surprisingly, this simple and trivial logic is adequate for the high level requirements
specifications sketching/outlining the basic behaviour of telephone services (the original
logic including inference rules was not needed for this task and reduced to a logic
directly tracking what is true in each world state). This enables powerful automated
analysis of behavioural specifications that would be considerably more difficult in a logic

which included inference rules.
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Appendix B

Glossary

Basic telephony: see POTS.

Busy: In telephony, a busy user is a user that for some reason cannot answer the phone
(already in speech connection, called by someone else, activated a don’t disturb

service, giving all callers a busy tone).

Call back: when calling a user who is busy, the calling user can press 5 and hang up the
telephone. When the other user completes his call and is idle, the user who requested
call back gets a ring signal (short rings) indicating that the previously called person
can receive calls. If the phone is activated, a call will be originated to the now idle

user.

Call waiting: a telephone service that allows a user who is engaged in a call to get a
notification that someone else is trying to call. This other call is normally indicated
by some sound signal and the called user can switch between the two calls or

complete the current call and answer the new call.

Centrex: a set of services specially designed for smaller companies which have a
distributed location, but wish to operate as a single company (local telephone

numbers, pick up call service, etc.).

ISDN: A standard for digital telephone/terminal connections providing two separate
64kb channels and one signalling channel. This allows the user to have more than
one connection at a time, for example a phone call and a internet connection at the

same time.

Mobile telephony: Different types of mobile telephone services.
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Pick up call: if a phone is ringing in your office on another desk, call that number (get a
busy tone) and press 6. The call will be redirected to your phone and you answer
the call (no need for running across the room and answering your working

colleague’s phone).

POTS: Plain Old Telephony Services. The most basic telephone functionality provided,
such as making a phone call. The functionality most people think of when talking
about telephones. Today this is a small part of the overall functionality of a

telecommunication system (and is rapidly getting smaller).

Requirements designer, this is the person or persons using CABS in order to produce a
formalised, validated and verified requirement starting from an idea of the
behaviour. They may be a sales person, a customer (a service provider), a telephone
user, or any combination of these who wish to design a new functionality. New
services may have the purpose of making a service provider more attractive, increase
income, or it may be a small or large company with the need of some specially

designed services.

Service: a part of a telecommunication systems functionality identifiable as a unit by the
telephone user and provided to telephone users as individuals or as a set of different
services (three party call, call back, call waiting are some common services). In the
United States, a service is called a feature and a service is a larger unit such as
telephony or mobile telephony. We will not use feature at all in connection with

telephony since it is part of the case-based reasoning vocabulary.

Three Party Call (TPC): A service where three parties can speak to eachother at the
same time. This is often specified as an extension to the call waiting service. If the
originator of the conference hangs up his phone, the remaining parties are
disconnected due to the problem of who should pay for the ongoing calls. TPC
included in centrex behaves slightly different than normal 7PC. With TCP in
centrex, there is no disconnection if the originating party hangs up and the other

users are in the same company (company pays calls anyway).
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Appendix C

Case Library Used for Evaluation

The systems standard_services_UK (a hypothetical set of services) used for evaluation
and examples are shown in this appendix. All seventeen telephone services (US read:
telephone features), used for the evaluation are shown with selected transition rule
definitions (75 % of in total 128) and term definitions (28 % of in total 53). An
extended Appendix B with all transition rule definitions and term definitions may be

requested.
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C.1 Telephone System standard_services UK

A telephone system is a set of telephone services listed in the list under Cases in system.

(see Chapter 5 for details).

System: standard_services_UK S=i——|

Cases in system:
basic_telephony
basic_call
banking
call_back
call barring
call_diversion
call_return
call_waiting
call reminder
call_reminder
caller_display
charge_advice
emergency_call
pick_up_call
queve_calls
reminder_call
three_way_ calling
voting

[ Show Case ][Hemuue case) ﬁ:ldd New CaseJ

Informal description of system:

Captures both basic telephony and a number of popular [{}
added value services. Also some extra services such as [ |
banking end voting are included. L
Behaviour dependent on SyStBITlS/CﬂSGS:
ats
<
Integrated with systems/cases:
uka
O

[Cancel] [Show prinrities} | More |
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C.2 Telephone Service basic_telphony

Each telephone service (case) has a set of transition rule definitions and term definitions
listed under Transition rules (T-rules) in case: (respectively, Term defined by case:.) The
transition rules capture the behaviour of the service. If the case is dependent on other

cases, the behaviour specified only makes sense together with these cases.

D% Case: basic_call

Transition rules (T-rules) in case:
a_leave_call
answer_call
b_leave_call
dialling busy_1
dialling busy_ 2
dialling congestion
disconnect_from_calling
disconnect_if time_out_1
disconnect_if_time_out_2
disconnect_if_time_out_3
disconnect_tone
normal_dialling
normal_hook_off

[ Show T-rule ] [Remuue T—rule] [ Add T-rule )

[

<l

Informal description of case:

]Captures the behaviour of a basic telephone call >
between two telephone users. Includes call to a busy [ |
user, congestion and time outs. <L
Terms defined by case:
accepts_incoming calls(User) type: relation |{}
answer nr(User, Hr) type: relation [ |
busy_ tone(User_A) type: response
calling(User_A, User_B) type: relation
dial tone(&) type: response
ring signal(User_B) type: response
ring_tone(User_A) type: response
silent_tone(User_A) type: response | |
unknown_number (Fr) type: attribute [{¥
basic_call is dependent on cases:
basic_telephony Iﬁ
<
[lnput EHampIes] ( show Term )

[Cance[}( Maore ] Llnteraction J
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C.2.1 Transition Rules for Service

The behaviour of a case is defined in detail by all its transition rules.

The Stimulus: field shows the triggering external stimulus condition. The Condition:

field contains a conjunction of terms defining all other conditions that have to be met.

The Conclusion and responses: field is a conjunction of all the terms that become true as

a consequence of this transition rule, if the conditions are true. In the Informal

description: field, a textual explanation of the rule, its meaning and references to relevant

information, are given. In the list Used in cases: all cases in the case library that include

this transition rule are listed.

=—=———— Transition Rule: answer_call =i—"—x|
Stimulus:

[bock_ofsf(User A, T)
Conditions:

calling(User_B, User_A)

[

Conclusions and responses:
“ealling(User B, User_A)&
“ring_tone(User_B)&

“ring_signal(User_A)&
in_speech(User_B, User_A)

Informal Description:
Inditiat & service request.

[ €] 2] [€]

Used in cases:

@l 2] €]

Transition rule is included in priority.

e o —_—
——— Transition Rule: a_leave_call ="icecFz=

Stimulus:

[book_on(a, T)

Conditions:
in_speech(A, B)

=

Conclusions and responses:

silent_tone(B)&
Tin_speech(A, B)

o] [<

Informal Description:
Cancel any service/request.

2] (€

Used in cases: [fiCR-u0

Transition rule is included in priority.

(cancet | [ show case ][ More ][ Priority ](ok

:

=— Transition Rule: b_leave_call —m——|

Stimulus:

[book_on(B, T) |
Conditions:

in_speech(A, B) {3

=
Conclusions and responses:
silent_tone(A)& >
“in_speech(A, ) W
o]
Informal Description:
Cancel in_speech by called user B. |

Used in cases:

e (@

Transition rule is included in priority.

Cancel l[ Show case ][ More J Priority |

(cancel ) show case ][ More ][ Priority ] ok )

E=—— Transition Rule: dialling_busy_1

Stimulus:
|dialling(a, Br, T)
Conditions:
dial_tone(A)&
anseer_nr(B, Nr)&
accepts_incoming calls(Fr)&
hook_off time(B, Th)

>

Conclusions and responses:

busy_tene(A)&
“dial_tone(A)

B (€

Informal Description:
User A calles a user B who has his telepbone activeted,

B [

Used in cases:

EIERE

Transition rule is included in priority.

[_L‘ancel ][ Show case ][ More }[ Priority ]
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Transition Rule: dialling_busy_2 5&5ic"—=

Stimulus:
[aitingta, ¥, J
Conditions:
dial_tone(A)& >
answer_nr(B, Nr)& 1
accepts_incoming calls(Nr)&
ealling(Z, B)
=
Conclusions and responses:
busy_tone(A)& e
“dial_tone(A) w
<
Informal Description:
User A calles someone who slredy is called by someone >
else W
-
A%
Used in cases: M
A%

Transition rule is included in priority.

[l:ancel][ Show case ]{ Maore ][ Priority ][[ 0k )

== Transition Rule: disconnect_from_calling

Stimulus:
[book_on(a, T)

Conditions:
ealling(A, B)

Conclusions and responses:
“calling(h, B)&
“ring_tone(A)&
“ring_signal(B)

Informal Description:

Cancel a call.

x5 b8 s L |

Used in cases:

j

Transition rule is not part of any priority.

[tantel][ show case ][ More ] ( ok |

=—— Transition Rule: dialling_congestion =—=
Stimulus:

[fisiling(a, ®r, T |
Conditions:

dial_tone(A)& Bt
unknosn_number(Nr) I
=
Conclusions and responses:
~dial_tone(A)& {3
message (' number not recogniced') 1
W
Informal Description:
User A calles a unknown number. Q
W
Used in cases: M
A

Transition rule is not part of any priority.

[l:ancel ][ Show case ][ More ] m

=== Transition Rule: disconnecl_if_time_out_1 ==

Stimulus:

[tick(T)

Conditions:
dial_tone(A)#busy tone(A)k
hock _off time(A, T _book)&
calculate(T_max is T_hook+25)&
brue(T»T_max)

=)

Conclusions and responses:
message(A, ‘Pleas replace the hand-set and try agmin’, T
“dial_tone(A)

B [@

Informal Description:
After 25 seconds dial_tone disconnect

2] [

Used in cases:

Qll=] (4]

Transition rule is not part of any priority.

[ cancel | show case | More | -
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=== Transition Rule: disconnect_if_time_out_2 ==

Stimulus:

[tiex(T)

Conditions:

message(A, 'Pleas replace the band-set and try again’,
Tm)&

hook_off_time(A, T_hook)&

calculate(T_max is T _book+60)&

true(T»T_max)

)

Conclusions and responses:

message(A, 'Pleas repluce the bhand-set !11° T)&
“message(A, 'Pleas replace the hand-set and try aguin',
Tm)

] [<f

Informal Description:

After 60 seconds hook of with no action
give long disconnect message.

2 [€

Used in cases:

jo

Transition rule is not part of any priority.

[EBI'ICEI ][ Show case ][ More ]

=== Transition Rule: disconnect_if_time_out_3 ==

Stimulus:

[tdex(T) ]
Conditions:

message(A, 'Pleas replace the band-set !!!° Tm)&k p

book _off time(A, T_hook)&
caloculate(T_max is T _book+30)&
true(T:T_max)

i
Conclusions and responses:
“message(A, "Pleas replace the hand-set |!!", Tm) <
-
A
Informal Description:
After 20 seconds loud message end no sctions stop any _Q

messages.

Used in cases:

j J <

Transition rule is not part of any priority.

Transition Rule: disconnect_tone

=

Stimulus:

[book_on(a, T)

Conditions:

busy_tone(A)#
message(A, [Message)#
silent_tone(A)#
request_rejected(A)#
request_accepted(A)#
call suiting tone(A)

Conclusions and responses:

“request_rejected(A)&
“dial_tone(A)&
“message(h, tessage)&
“busy_tone(A)&
“silent_tone{A)&
“call waiting tone(A)

Informal Description:

Cancel any service or service request.

2 [CIwE

Used in cases:

j@o@

Transition rule is not part of any priority.

[Eancel ][ Show case ][ More J l@

{Eancel][ Show case ][ More ] [ 0k |
=——— Transition Rule: normal_dialling
Stimulus:
dialling(A, Nr, T) |
Conditions:
dial_tone(A)& &
answer_nr(B, Fr)& 1
accepts_incoming_calls(Nr)&
“enlling(Z, B)&
“hook_off_time(B, Y) L_|
A%
Conclusions and responses:
|calling(h, B)& et
ring_tone(A)& 1
ring_signal(B)&
~dial_tone(A)
=
Informal Description:
User A is dialling & number connected to a terminal that |3
accepts incoming calls, is not called by somecne else B
and who has not the reciever off the hook. The result is
that A is calling on B. =
O
Used in cases: ey
O

Transition rule is included in priority.

[Cuntel][ Show case ][ More J[ Priority ]Ll’= ok )
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=———— Transition Rule: normal_hook_off §_|

Stimulus:
[Book _off(h, 1) J
Conditions:
“calling(t, A)& |
“in_speech(Z, A)
5
Conclusions and responses:
dial_tone(A) 2
I
A%
Informal Description:
Tell user that he may giv a service request (this by a 3
dial tone message). |

Used in cases: [TE1

Transition rule is not part of any priority.

[‘cancel ][ show case ][ More | Cox )

C.2.2 Terms for Service

Se Section 5.1 for a detailed explanation of term definitions.

=———— Relation term: answer_nr &)F"Fc:i:"—|

anseer_nr(User, Nr) |
Informal description:
'% Relation term: accepts_incoming_calls === User a answers on the telephone number Hr. >
|n:cepls_in:nming_mllstvser) | E
Informal description: Defined term belongs to cases:
User accepts incomming calls. 2 basic_call e
= =
Defined term belongs to cases: Type for term: [ relation 2
basic_call 4
% Sort for argument 1: [ user_id - |
Yups for term: | _oistion = Sort for argument 2: [ telephone_number - |
Sort for argument 1: [ user_id |
Relation type: [ 1:1 -
Term occurrence: | none or more | Term occurrence: [ none or more ¥ |
(cancel | [ show where used ] [ More ] (update | (‘cancel ] show where used | [ More | (update ]
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Response term: busy_tone -2
busy_tone(User_A)

Informal description:

User A bas & busy tone. This tells the user that the
called user cen not accept a cnll due to some resson
such as being involvd in some other service.

Defined term belongs to cases:

SN

basic_call

Type for term: [ response

J|Jlam

Sort for argument 1: [ user_id

Term occurrence: [ _none or more v |

(cancel | (show where used ) [ More Update |

=———— Response term: dial_tone |
[dill_tnw(AJ

Informal description:

User A is recieving a message indicating that the >
system is redy for a service request (dialing a —]
number) . i
Defined term belongs to cases:

basic_call 3
=

Type for term: | response - |

Sort for argument 1: [ user_id ¥

Term occurrence: | none or more v |

(Cancel ][ show where used | [ More ) (update))

=———— Response term: ring_tone %l
Enq_tnm( User_A)|

Informal description:

User_B is calling some other user, this information is
given by ring signal.

Defined term belongs to cases:

basic_cell

Type for term: [ response

JER EE

Sort for argument 1: | user_id

Term occurrence: [ none or more v |

(cancel ](Show where used | [ More ] (update )

=——— Relation term: celling FeESES =
Elinq(ll’ser_&_ User_B)
Informal description:

User_A is calling User_B. If User_B accepts then the 43
users will get a speech connection. =
k%4
Defined term belongs to cases:

basic_call ats
]

Type for term: [ relation |

Sort for argument 1: [ user_id hdl|
Sort for argument 2: [ user_id |

Relation type:

Not specified Vl

Term occurrence: | none or more w I

(cancel ] (show where used | ( More | (update )

Response term: ring_signal ————|

ring_signal(User_B) r

Informal description:

There is someone requesting s speech connection with >
User B. ma
A%
Defined term belongs to cases:

basic_call <
A%

Type for term: [ response - |

Sort for argument 1: [ user_id |

Term occurrence: [_none or more |

(cancel ] (show where used ) [ More ) (update )

Response term: silent_tone —=———--|

=

|sileht_tc| ne{User_A)

Informal description:

User_A bas no tone, a situation where User_A mainly is [{3
requersted to desctivate the phone (service completed). ||
o

Defined term belongs to cases:

basic_call 2
&

Type for term: | response |

Sort for argument 1: [ user_id - |

Term occurrence: | none or more "']

(cancel | [ show where used ][ More ] Update




218 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

=—— fAttribute term: unknown_number — ]

unknown_number(Nr) |

Informal description:

Br is an invalide number. g
Sl

Defined term belongs to cases:
basic_call 2
]
Type for term: | attribute - |
Sort for argument 1: [ telephone_number v]

Term occurrence: [ _none or more ¥ |

[ Cancel ][ Show where used ][ More | (update )
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C.3 Telephone service basic_telphoney

Case: basic_telephony S ee——=|

set_dialling time_1
set_dialling time_2
set_hook_off time_1
set_hook_off time_2
set_hook_on_time_1
set_hook_on_time_2

Transition rules (T-rules) in case:

bhook_on resets dialling tine
hook_on_resets_hook_off time

[ Show T~rua &moue T—r@ [ Add T—rulej

Informal description of case:

This case contains all basic behaviour in common for
all telephony behaviour. This case dose not provide
any telecommunication behaviour by itself, merely

dialling(A, Nr, T)
dialling_time(A, Nr, T)

Terms defined by case:

check zervicerd, Service,

Th

: stanndlus
type: stimulus
type: relation

basic_telephony is dependent on cases:

ﬁnput EHampIes]

(cancel |( More |

[ Show Term

[ Interaction J

C.3.1 Transition Rules for service

= Transition Rule: hook_on_resets_dialling_time |

Stimulus:
|book_on(a, T)
Conditions:

dialling_time(A, Nr, TD) 1<)
5]
Conclusions and responses:
~dielling_time(A, Nr, TD) ity
o
Informal Description:
Reset hook off time and other times. )

Used in coses:

ARl [@

Transition rule is not part of any priority.

(cancel ) [ show case ][  More |

== Transition Rule: hook_on_resets_hook_off_time =

Stimulus:
[Book_on(TAREZ, VARE1) ]
Conditions:
book_off_time(TARSZ, VARS0) [&

=
Conclusions and responses:
~hook_off time(VARGZ, VARS0) |
&
Informal Description:
Beset hock off time and other times. 2

Used in cases:

[EIEREN

Transition rule is not part of any priority.

(cencel | show case ][ More |
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=——— Transition Rule: set_dialling_time_1 &
Stimulus:

|d.nl‘.|.mq'(A. Br, T)
Conditions:

time(0T)&
dialling time(A, OFR, OT)

>

Conclusions and responses:
dialling time(A, Nr, T)&
time(T)&
~dialling time(A, ONR, OT)&
“time(0T)

Informal Description:
set time when dialling wus done

Used in cases:

e 3 o o = O e = <

|

Transition rule is not part of any priority.

[l:am:el ][ Show case ][ More ]

i

=——— Transition Rule: set_hook_ofi_time_| =

Stimulus:
|pock_stf(a, T)

Conditions:

hook_otf_time(A, T_old)& i
time(T_old) 1
=
Conclusions and responses:
time(T)& it
book_off time(A, T)& .
“hook_off_time(A, T_old)&
“time(T_old)
=
Informal Description:
Set hook off time when user lifts the reciever. 3
=
Used in cases: M
O

Transition rule is not part of any priority.

=—— Transition Rule: set_dialling_time_2 =—|

Stimulus:

[d¢islling(a, ¥r, T)

Conditions:

time(OT)& O
~dialling_time(A, ONR, OT) .
=]
Conclusions and responses:
dialling time(A, Fr, T)& 4
time(T)& 1
“time(0T)
i
Informal Description:
set dialling_time when user dialled (first time). >
-z
Used in cases: P_g
>

Transition rule is not part of any priority.

(cancel ) show case |[ More |

i

[Cnncel ][ Show case ][ Maore ]

ok )

[E===Transition Rule: set_hook_on_time_2 ——

Stimulus:
[book_on(a, T) ]
Conditions:
“book_on_time(A, TX)& o
time(T_old) =]
=
Conclusions and responses:
time(T)& 4]
book_on_time(A, T)& |
“time(T_old)&
“service_accepted(A)
=
Informal Description:
Reset hook off time and other times. ir
=
Used in cases: m
o

Transition rule is not part of any priority.

[cancet | show case ) More )

k
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=—— Transition Rule: set_recall_time_2 ==

Stimulus:
|[recall(a, 5, T) ]
Conditions:
time(TT)& <
“recall_time(A, Z) 1
1Z]
Conclusions and responses:
recall time(A, T)& i
time(T)& Bl
“time(TT)
=
Informal Description:
set time when recall was done {3
=
Used in cases: Fﬂﬂ_‘g
&

Transition rule is not part of any priority.

( cancel | show cnse_][ More J [ ok )
== Transition Rule: sel_time_| =————
Stimulus:
[switch_service_on(VARS6, VARSS, TARS4) ]
Conditions:
time(VARS3) {3
o
Conclusions and responses:
time(TARS4)& ity
“time(VAR93) '—

Informal Description:

Set time when stimulus recieved

2] (@

Used in cases:

]¢1

Transition rule is not part of any priority.

[EQI'ICEI ][ Show case ][ More ] -

=——— Transition Rule: set_recall_time_1

Stimulus:
[recall(a, X, 1) |
Conditions:

=)

time (TR)&
recall_time(A, TO)

Conclusions and responses:
recall_time(A, T)&
time(T)&
“recall time(A, TO)&
“time(TR)

2 €]

Informal Description:
set time when recall was done

2] [<f

Used in cases:

J :»I <)

Transition rule is not part of any priority.

[Cam:el ][ Show case ][ More ]

Transition Rule: start_call_back_request =—|

Stimulus:
|hook_off(VARS, TARB) |

Conditions:
ealling(call_back, VAR9)&
call_back_notice(VARY, VTAR7)&
call_back(VAR?, VARG, VARS)&
ring_signal(VAR9)

)

Conclusions and responses:
~call_back(TARS, TARE, VARS)&
“calling(call_back, VAR9)&
“call_back_notice(TARS, VAR7)

2] |4

Informal Description:
Start an call back

B] [

Used in cases:

jo &l

Transition rule is included in priority.

[ Cancel ][ Show case ][ Maore J[ Priority J
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Transition Rule: set_time_2 BV

Stimulus:
|Sl'itl: h_service off(VARO, VAROD, T)

Conditions:
time(T01d) itd
=
Conclusions and responses:
time(T)& i
“time(TOLd) 1
=
Informal Description:
Set time when stimulus recieved £
5]
Used in cases: Wg
o

Transition rule is not part of any priority.

[Eancel ][ Show case ][ More ]

|§_ Transition Rule: time_tick &FiFee)ee"Fesss

== Transition Rule: set_time_3 ===

Stimulus:
Echeck_servicocvmlm, VTAR103, VAR102)| |
Conditions:
time(FARIO1) 3
I
A%
Conclusions and responses:
time(TARI 02)& )
“time(VARID1) |
o]
Informal Description:
Set time when stimulus recieved )
=
Used in cases: Wé
o

Transition rule is not part of any priority.

Stimulus:
|tick(TAR4T) ]
Conditions:
time(TAR4E) P
=
Conclusions and responses:
time(TAR4T)& it
“time(TAR4E) =
|
Informal Description:
Formard internal clock one step {3
1z
Used in cases: m’g
<
Transition rule is not part of any priority.
(cancel | [ show case | More (T

[E&I‘ICE| ][ Show case ][ More }
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C.4 Telephone service banking

E———— Case: banking

Transition rules (T-rules) in case:

[

usk_for_sccount_number
ask_for_ code
ask_new_sccount Number
bank_timeout

jcancle _bank

tell _balance

=)

[ Show T-rule ][ﬂemaue T—rule][ Add T-rule ]

Informal description of case:
user can call a bank number, give account and
personal security code and check balans on accounts
or transfer money between accounts (if external

ATCE | L5

iy , hccountFrtype

user account(Identity, Account) type: relation
banking is dependent on cases:

basic_telephony

basic_call

[Cﬂncel][ More ]

&
O

[ Interaction ][[ ok ||

C.4.1 Transition Rules for service

5]
(]
[O8]

=——— Transition Rule: ask_banking_choice === == Transition Rule: ask_for_account_number ==
Stimulus: Stimulus:
[dis1ling(A, Code, T) ] [¢ia1ling(A, BankFusmber, T) =
Conditions: Conditions:
message(A, ' type youwr personal code:’, TH)& > dial_tone(A)& o
active_service(A, bank, AccountMr)& i service_name_code(bank, BankNumber) il
bank_account(VARO, AccountNr, Code)
= =
Conclusions and responses: Conclusions and responses:
“message(A, ' type yow personal code:’', TH)& H message(A, 'type your bank account number:',6 T)& Ty
message(A, “select service, 0 to leave service, 1 for 1 “dial_tone(A) ™
balance.', T)
= =
Informal Description: Informal Description:
it et
— b
A% A%
Used in cases: I Used in cases: &
O O

Transition rule is not part of any priority.

[Eancel ][ Show case H Maore ]

Transition rule is not part of any priority.

[Eancel ][ Show case }{ More ]

ok ]
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E==== Transition Rule: ask_for_code ———| == Transition Rule: ask_new_account_Number §=_]
Stimulus: Stimulus:
[2ialling(h, Aecounthr, T) | [dialling(a, 1, ) o)
Conditions: Conditions:
message(A, "type your bank account nwmber:’, TH)& > message(A, msgl, Tm) >
bank_account(User_Id_number , AccountBr, VART) 1 i
= =
Conclusions and responses: Conclusions and responses:
“message(A, “type your bank account number:’', TH)& _'{_}. “message(A, msgl, Tm)& 43
message(A, ' type your personal code:’, T)& message(A, 'Type youwr bank account number:', T) [ |
active_service(A, bank, AccountNr)
= =
Informal Description: Informal Description:
) i
= =
Used in cases: _ Used in cases: F_E
A% o
Transition rule is not part of any priority. Transition rule is not part of any priority.
(cancel | (‘show case | More | Cox ) (‘cancer ) show case | More (@)

Transition Rule: bank_timeout =iea0F——

Stimulus:
[tick(TARIZ) ]
Conditions:
message(tell(FARI1, TARIO, TAR9))& oy
scoount(VARIL, VARS)& |
calculate(TART is VARIZ2-TAR9)&
trus(TART> 10)
=
Conclusions and responses:
“account(TAR1l, VARB) <
5]
Informal Description:
ity
o]
Used in cases: E_E
i

Transition rule is not part of any priority.

[CEI’ICE'][ Show case ][ More ] ﬁ

=== Transition Rule: cancle_bank —o=x

Stimulus:
[¢ialling(a, 0, ) ]
Conditions:
message (A, HSG, TH)& 3
active_service(A, bank, X) [
=
Conclusions and responses:
“message(A, 56, TH)& T
“active_service(A, bank, X) 1
=
Informal Description:
it
o
Used in cases: F_g
<

Transition rule is not part of any priority.

[Cuntei ][ Show case ][ More ]
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== Tronsition Rule: tell_balance e

Stimulus:

[dialling(a, 1, )

Conditions:

balance. ', TN)}&
active_service(A, bank, Account)&
account_balance(Account , Balance)

messege(A, "select service, 0 to leave service, | for r

=
Conclusions and responses:
“message(A, 'select service, 0 to leave service, 1 for ey
balance.', TH)& =
message(A, (' Balans is ', Balance, '. 0 for quit, 5 for
other service. '), T)
=
Informal Description:
<

Used in cases:

@] <]

Cancel |Shmu case I More |

Transition rule is not part of any priority.

)

(Lo
\)
wn

E===—— Transition Rule: time_titk —————|

Stimulus:
[tick(TARET) |
Conditions:
time(TAR4E) 1]
=
Conclusions and responses:
time(TAR4T)& <
“time(TAR4G) 5]
Iz
Informal Description:
Forward internal clock one step _Q
=
Used in cases: M
Transition rule is not part of any priority.
[ Cancel ][ Show case ][ More ]

C.5 Telephone service call_back

=———— Case:callhack |

call back_busy 2

call _back_notice

call _back_request_1
call_back_request_2
cancel_call_back_notice
deactivate_call back_l
deactivate_call back 2

Transition rules (T-rules) in case:
call back busy 1

2]
("show T-rute ] (Remove T-rute] [ Add T-rule |

Informal description of case:

Allows s user to request a call back if the celled
user is busy or does not answer. Onec the celled user
is not busy or has used the phone, the users phone

< f=>

Terms d
A, N, =T
1_back_notice(a, T)

efined by case:

call_back is dependent on cases:

basic_call

Input Examples

[Eancel_][ More J

[ Interaction J[[_ﬂk )|
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C.5.1 Transition Rules for call_back

Transition Rule: call_back_busy_1 El

=——— Transition Rule: call_back_busy_? FFFis

Stimulus: Stimulus:
[service_request(A, call back, T) ] [service_request(A, cell back, T) |
Conditions: Conditions:
busy_tone(A)& ) busy_tone(A)& 7]
dialling time(A, Fr, TD)& dialling time(A, Hr, TD)& m
call_back{A, NO, TO)& “eall_back(A, NO, TO)&
answer_nr(B, Nr) answer_nr(8, Nr)
= =
Conclusions and responses: Conclusions and responses:
service_accepted(A)& Q service_accepted(A)& i
~call_back(A, FDU, TO)& call_back(A, Nr, T)& o
call back(A,6 Hr, T)& “busy_tone(A)
“busy_tone(A)
= =
Informal Description: Informal Description:
Initiet a call back request if called to a busy 3 Initiat a call back request if called to a busy oy
subscirber. Cancel previous call back, 71 subscirber. =1
=
Used in cases: [ Used in cases: FE_E
A

Transition rule is not part of any priority. Transition rule is not part of any priority.

[I:ancel ][ Show case ][ Maore ] [l:&l'ltﬂ ][ Show case }[ More J

Transition Rule: call_back_notice e =——— Transition Rule: cali_back_request_1 &=

Stimulus: Stimulus:
Itick{Y.\RZé)I | Iservice_request(&, call_back, T)
Conditions: Conditions:

call_back(VTARZ3, TARZZ, TARZ1)&
hook_on_time(TAR23, TAR20)&
answer_nr(VARIS, VTAR22)&
book_on_time(TARIS, TARLB)&
true(TARZ0»=TARZ1 )&
“ealling(VARIT, VARIS)&

Conclusions and responses:
call back_notice(VAR23, VAR24)& 4
calling({call_back, TAR23) feil

ring_tone(A)&

dialling time(A, Hr, Time)&
answer_nr(B, Nr)&
calling(A, B)

Conclusions and responses:
call back(A, Nr, T)&
service_sccepted(A)&
“calling(A, B)&
“ring_signal(B)&
“ring_tone(A)

Informal Description: Informal Description:

Tell user that call back can be made

2] €]

Used in cases:

Qll2] (€]

Transition rule is not part of any priority.

)

[ Cancel ][ Show case ][ Maore I

Initiat s call back reguest.

B @B @ EO_U H

Used in cases:

]u:> <)

Transition rule is not part of any priority.

(cancet | show case ][ More |
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|[&==== Transition Rule: call_back_request_2 FFF—— === Transition Rule: cancel_call_back_notice ==
Stimulus: Stimulus:
service_request(A, call_back, T) | [ticx(TARL6) |
Conditions: Conditions:
ring_tone(A)& o call_back_notice(TARIS, VARI4)& <
dialling time(A, Hr, TD)& | calling(cell_back, TARIS)& [
call_back(A, WD, TO)& time(TARLI)&
answer_nr(B, Nr)jk calculate(VARIZ is TARI4+60)&
calling(a, B) - call _back(TARIS, TARIl, VARIO)& —
o) true(TARL3)=TARIZ) O
Conclusions and responses: Conclusions and responses:
call_back(A, Nr, T)& & “call_back(VARIS, VARLl, VARLO)& &
service_accepted(A)& ] “calling(call_beck, TARIS)& =
“calling(A, B)& “eoall_back_notice(TARIS, VAR14)
“ring_signal(B)&
“ring_tone(A)& -
“call back(A, ND, TO) o =
Informal Description: Informal Description:
Initiat & call beck request, Cancel previous cell back. g Ring 60 seconds, if no answer, stop ringing 3
= =
Used in cases: FI_? Used in cases: M
i o
Transition rule is not part of any priority. Transition rule is not part of any priority.
[ Cancel ][ Show case ][ More J [Cﬂl’!tel ][ Show case ][ More ]

Transition Rule: deactivate_call_back_] —m—| =——= Transition Rule: deactivate_call_back_2 =
Stimulus: Stimulus:
[switch_service off(VARSE, call back, VAESS) | [switch_service_off(TARS0, call back, TAR4S) ]
Conditions: Conditions:
call_back(VARS6, VTARS4, VARS3)& [ call_back(TARSO, TAR4B, TAR47) &
call_back_notice(VARSZ2, VARS1) | =
= =
Conclusions and responses: Conclusions and responses:
~call_back_notice(VARS2, VARSI)& 7] “call_back(VARS0, TARSB, VAR47) m
“call_back{TARS6, VARS4, VARS3)
Iz &
Informal Description: Informal Description:
ity <
= 5]
Used in cases: {3 Used in cases: <3
il &
Transition rule is not part of any priority. Transition rule is not part of any priority.
(cancer ) show case | More | ok | (‘cancet ) show case ][ More | [ ok ]




E=—= Transition Rule: deactivate_call_back_3
Stimulus:

[sntch_serv.\:e_o(.{{\‘hmé, call_back, TAR4S)
Conditions:

“call_buck(VAR46, TAR44, TAR43)

Conclusions and responses:
service_accepted (TAR46)

Informal Description:

o s b | ||

Used in cases:

Q] 4]

Transition rule is not part of any priority.

[Cnncel ][ Show case j[ More ]
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= Transition Rule: deactivate_call_back_3 ==
Stimulus:
[switch_service_off(TAR46, call_back, VAR4S) ]
Conditions:
“eall_back(TAR46, TAR44, VAR43) <
5]
Conclusions and responses:
service_accepted(TAR4S) 'g
=
o
Informal Description:
its
A
Used in cases: F_@
o

Transition rule is not part of any priority.

[Cancel ][ Show case ][ More 1 m

== Ironsition Rule: start_call_back_request

Stimulus:
|book_of£(TARS, VARS)
Conditions:

ealling(call _back, VARS)&
call back_notice(VARS, VAR7)&
call _back(TARS, TARS, VARS)&
ring_signal(VAR9)

Conclusions and responses:
“call_back(VARI, VARG, VARS)&
~ealling(call_back, VAR9)&
~eall_back_notice(VARS, VAR7)

Informal Description:
Start an call back

B g w B L WW

Used in cases:

]c

Transition rule is included in priority.

[Enncelj[ Show case ]{ More _][ Priuritg][[ (T30 |
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C.5.2 Terms for call_back

ES=———=-u= Relation term: call_back

=———— Relation term: call_back_nolice V02 |“u_h““_\_ T o) ]
o1} aok notie(h, 1) ] Informal description:
Informal description: who requested a call back and at what time 1<
when a call back notice started 3 3
= Defined term belongs to cases:
Defined term belongs to cases: call_back ]
call_back 2 -5-
& Type for term: | relation |
Type for term: |_relation | Sort for argument 1: [ user_id M|
Sort for argument 1: | user_id - | Sort for argument 2: [ number ~]
Sort for argument 2: [_time | Sort for argument 3: [ time i
Relation type: [ M:M v | Relation type: [ M:M:M ]
Term occurrence: [ none or more | Term occurrence: [ none or more v |
(cancel ] show where used ] [ More | (update ) (Cancel ][ show where used ][ More ] (update |

C.6 Telephone service call_barring

Case: call_barring

Transition rules (T-rules) in case:
a0 11 barring inoondie
activate_call barring incoming
icall barred user
icheck_barring_incoming ealls_1
lcheck_barring_incoming calls 2
ldesctivate_call_barring_incoming_calls

<l

( show T-rule | [Remove T—rule][_ncm T-rule ]

Informal description of case:
IFives a user the possibillity to refuse all calls
during the time the service is activated. Outgoing
calls are not affected.
Terms defined bg case:
oall barring pind M, Finlir
dont_disturb(Br)

call_barring is dependent on cases:

basic_call Fi_l
&

[Eancei][ Mare ] [ Interaction ][[ ok ||
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C.6.1 Transition Rules for service

! Transition Rule: activete_call_barring_incoming_calls |

Transition Rule: activate_call_barring_incoming_calls_2

Stimulus:
|Sﬂtch_service_on(.\, barring incoming cells, T) I

Conditions:

dial_tene(A)& 3
“eall_barring pin(Fr, PinNr)& el
answer_nr(A, Hr)
=
Conclusions and responses:
dont_disturb(Nr) O
&)
Informal Description:
Activate call barring, pin number not required. e
A4
Used in cases: F_g
A

Transition rule is not part of any priority.

[Eancel][Shnw case ][ Maore ]

)

Stimulus:
|switch_service_on(h, (barring_incoming_calls, PinNr), T) ]
Conditions:
dial_tone(A)&
call barring pin(Nr, Pinfir)&
answer_nr(A, Nr)

B

Conclusions and responses:
dont_disturb(Nr)

B [@

Informal Description:
Activate call barring service, pin number required.

2] [l

Used in cases:

A [@

Transition rule is not part of any priority.

(cancel ) (‘show case ) ( More ) Cox )

Transition Rule: call_barred_user &+

Stimulus:
[tallinga, ®r, T) ]

Conditions:

dial_tone(A)& iy
answer_nr(Z, Nr)& |
dont_disturb(Nr)
5]
Conclusions and responses:
“disl_tone(A)& it
busy_tone(A) 1
<
Informal Description:
If someons calls a user that has requested call barring [}
then give calling user busy tone. 1
=
Used in cases: F_g
s

Transition rule is included in priority.

Cancel lShuw cnsel More | Priority |! 0Ok B

= Transition Rule: check_barring_incoming_calls_1 =|
Stimulus:
|check_service(A, (barring incoming_calls, Pinfir), T)| |
Conditions:
dinl_tone(A)& I
answer_nr(A, Nr)& 1
call_barring pin(Nr, Pinfir)&
dont_disturb(Fr)
=
Conclusions and responses:
“disltone(A)& 4
request_sccepted(A) W
=
Informal Description:
Check if service is is switched on, pin number required. [{}
&
Used in cases: M
A%

Transition rule is not part of any priority.

[m[ Show case ][ More ]
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== Transition Rule: check_barring_incoming_calls_2 =
Stimulus:

[:hﬂ:k_sorviceth, barring_incoming_calls, T) ]
Conditions:

dial_tone(A)&

answer_nr(A, Nr)&

~“call _barring_pin(Nr, Pinfir)&
“dont_disturb(Nr)

2

Conclusions and responses:

“dialtone(A)&
request_accepted(A)

2] €l

Informal Description:
Tell user if service is switched on., No pin number
requested

2 (€l

Used in cases:

Aol [@

Transition rule is not part of any priority.

[_I:aru:el ][ Show case ] More I

=—— Transition Rule: start_call_back_request ==

Stimulus:
|book_cff(TARS, TARS)

Conditions:
calling(call_back, TAR9)&
call_back_notice(TARI, VAR7)&
call_back(VARS, VTARS, VARS)&
ring_signal(VAR9)

=

Conclusions and responses:
~call_back(TARS, VTARS, VARS)&
“ealling(call_back, TARI)&
“eall_back_notice(VARS, VART)

] [«

Informal Description:
Start an call back

2] (€]

Used in cases:

EIERE

Transition rule is included in priority.

Transition Rule: deactivate_call_barring_incoming_calls

Stimulus:
Isntnh_service_o.{.l‘.(k, (barring_incoming_cells, Pinfir), T) |

Conditions:
dial_tone(A)& )
call_barring_pin(Nr, Pinfr)&
answer_nr(A, Nr)
=
Conclusions and responses:
“dont_disturb{Nr) ﬁ
=
Informal Description:
Switch call barring of if right pin number is given. Q‘
=
Used in cases: FE!_E
<

Transition rule is not part of any priority.

(‘cancet ) show case ][ More ] -l

(cancet ) ((show case ) (™Mare ) (Priority ) (Cox_)
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C.7 Telephone service call_diversion

= Case: call_diversion

+
a ate_divert_invalid
deactivate_divert
divert_cell
divert_call_to_busy

Transition rules (T-rules) in case:

&l

('show T-rute ) (Remove T-rute]( Add T-rute )

Informal description of case:

Terms defined by case:
divert(livl , S

el @

call_diversion is dependent on cases:

[blsi:_cnll

Input Examples

Show Term

I§I§

[Eancel][ More ]

[ Interaction ][[ ok |

C.7.1 Transition Rules for Service

==— Transition Rule: activate_divert VFicF-a
Stimulus:

[switch_service_on(TARZL, (divert, VARZ0), VARIS) ]
Conditions:

dial _tone(TARZ1)&
answer_nr(TARZ1, TARZO)&
answer_nr(VTAR2], VAR20)

[

Conclusions and responses:

request_accepted(VARZ1)&
divert({VAR20, VAR20)

] [@

Informal Description:

Bl &

Used in cases:

a2l [@

Transition rule is not part of any priority.

[c::ncel J[ Show case ][ More ]

Transition Rule: activate_diveri_invalid =

Stimulus:
1sﬁt:h_servi=¢_un(v.\ms, (divert, VARI7), VARLG)

Conditions:

dial_tone(TARLE)& 3
answer_nr(TARLB, TARIS)& |
“answer_nr(TARL4d, VAR1T)
O]
Conclusions and responses:
request_rejected(TARIS) O
=
Informal Description:
i
=
Used in cases: I
2

Transition rule is not part of any priority.

[Cunl:el ]( Show case ][ More ] m
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=— Transition Rule: deactivate_divert it
PR —

Stimulus:
|s-itch_swv1ce_atf(|'ull , divert,K TVARIZ)
Conditions:

dial_tone(VAR13)&

answer_nr(VARLI3, TARLI1)&
divert{VAR1l,K TARID)

[

Conclusions and responses:
~divert(VARI1, TARLD)

2] [@

Informal Description:

] [@l

Used in cases:

IR E

Transition rule is not part of any priority.

[ cancel | show case ][ More |

=———— Transition Rule: divert_call

Stimulus:
[eiting(a, B, T ]
Conditions:
divert(Nr, Nr2)&
answer_nr(B, Nr2)&
“hook_cff time(B, X)&
“dont_disturb(Fr2)&
~calling(Y, B)&
accepks incoming calls(Nr2)
Conclusions and responses:

calling(A, B)& <
ring_tone(A)& m
ring_signal(B)&
“dial_tone(A)

7]

Informal Description:

DCall to a dumber that is diverted will be redirected to [{}|
the other number and a call amde if idle. =]

Used in cases:

jo

Transition rule is included in priority.

{Cnnl:el ][ Show case ][ More ][ Priority ]l 0k !l

== Transition Rule: deactivate_divert EBFcF

Stimulus:
[sn’t:h_soruce_cjx(ln.la, divert, TARIZ) ]
Conditions:

dial_tone(VARI3)& {7

answer_nr(VARI3, VARI1)& 1

divert(FARLl, VARLO)
=

Conclusions and responses:

“divert(TARL!, VAR1O) <3
'_
1z

Informal Description:
it
|

Used in cases: M
&

Transition rule is not part of any priority.

[Eancel_}[ Show case ][ More ]

L

=—— Transition Rule: divert_call_to_busy 5"

Stimulus:
[¢ialling(a, ¥r, T) |
Conditions:
answer_nr(Z, Nr)& 47|
divert(Nr, NrB)&
anseser_nr(E, NrB)&
accepts_incoming cells(B)&
book_off_time(B, Th)#
“dont disturb(B)
Conclusions and responses:
busy_tone(A)&
“dial_tone(A)

2 [EI=]

Informal Description:
Call to a diverted number that is bussy or bhas dont
disturb aktivated.

2] (&

Used in cases:

Gl (€]

Transition rule is included in priority.

[CBnceI ][ Show case ][ More J[ Priority J[[ 0k_J]




C.8 Telephone

C.8.1 Transition Rules for service
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service call_reminder

Case: call_reminder

call reminder time ont
reminder_accept_on_hold
reminder_saccepted
start_call reminder

Transition rules (T-rules) in case:

[ Show T-rule ][ﬂemnue T—rule}[ Add T-rule J

Informal description of case:

4 user having a call waiting and makes a hook on
recieves a reminding call,

Terms defined by case:

|

IR REIE

call_reminder is dependent on cases:

call waiting

B

Input Examples

[Cancel )L More J

[ Interaction J Iml

[Z=== Transition Rule: call_reminder_time_out

Stimulus:

[tdex()]

Conditions:

ring_signal{A)&
book_on_time(A,
calculate(TX is
true(T»=TX)

calling(call_reminder, A)&

&

TH)&
TH+15)&

Conclusions and responses:

“ring_signal(A)

“calling(cell_reminder, A)&

B2 €

Informal Description:

I

Used in cases:

Transition rule is not part of any priority.

] 2| [@]
A [

[Eance! ][ Show case _]L More ]

0k )

=—— Transition Rule: reminder_accept_on_hold —
Stimulus:
[nook_of£(E, T J
Conditions:
calling(call_reminder, B)& ats
on_bold(B, A)& |
silent_tons(A)
o]

Conclusions and responses:
“ring_tone(A)&
“calling(A, B)&
in_speech(d, B)&
“ecalling(call _reminder, A)&
“on_hold(B, A)&
“silent tone(A)

Informal Description:

& call reminding B who has someone on hold is accepted
by lifting the reciever

2] el

Used in cases:

Transition rule is not part of any priority.

[ Cancel ] L Show case ][ Maore ]
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L_E Transition Rule: reminder_accepled =——

Stimulus:
[hook_of£(B, T)
Conditions:

Transition Rule: start_call_reminder =

Stimulus:
[Bock _on(h, T) |

Conditions:

calling(call reminder, B)& _Q calling(B, A)& <3
calling(h, B)& ring_tone(B)& 1
ring_tons(A)& call_maiting_tone(A)&
ring_signal(B) on_hold(A, B)
o] =
Conclusions and responses: Conclusions and responses:
in_speech(A, B)& Q jealling(cell reminder, A)& Q
speech_start(A, T)& “call_saiting tone(A)&
“ring_signal(B)& ring_signal(A)&
“ring_tone(A)& ~on_hold(A, B)
“calling(A, B)& = -
“calling(eall reminder, B) 2 -
Informal Description: Informal Description:
a call reminding B someone is on hold is accepted by it A has a call waiting and makes a book on. Remind A that _g|
lifting the reciever. B somecne is calling A (previously on hold).
= )
Used in cases: < Used in cases: i
o o

Transition rule is included in priority. Transition rule is not part of any priority.

[Cancel ][ Show CBSE_][ More ][ Priority ] [ 0k [Cnnl:el_][ Show case ][ More ] -
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C.9 Telephone service call_return

E=——— case: coll_retunn =~

Transition rules (T-rules) in case:

call last_celler_idle
dialling store_caller
dialling store_caller first
[last_call_nummber

last_call nummber_l

i

<l

('show T-rute | (Remove T—rule][ Add T-rule |

Informal description of case:

redial the last called number.

Terms defined by case:

del @B

call_return is dependent on cases:

basic_call

ks
A%

Input Examples

lI

[Esncel ][ Maore ]

[ Interaction ]l[ ok |

C.9.1 Transition Rules for service

E=——"" Transition Rule: call_last_caller_busy
Stimulus:

[ealling(a, 2, T

Conditions:

~“dial_tone(A)&
answer_number(A, Nr)k
last_call(Nr, NrCalled)&
message(A, Text, TH)&
unswer_number(B, NrCalled)&

calling(Z, B)

=3

Conclusions and responses:

busy_tone({A)&
“message(A, Text,K TH)

[®] [<

Informal Description:

Fhen told last celler, this number will be called
if user presses number 2 on the phone (called wser is
busy).

2] [<]

Used in cases:

]o
]c:

Transition rule is not part of any priority.

[ Eancel][ Show case ]{ More ]

Transition Rule: call_last_caller_idle ==

Stimulus:
|@ialling(A, 2, T)

Conditions:
“dial_tone(A)&
|answer_nusber(A, Hr)&
last_call(NFr, HrCalled)&
message(A, Text, TH&
answer_nusber(B, FrCalled)&
“ealling(Z, B)

Conclusions and responses:
calling(h, B)&
ring_signal(B)&
ring_tene(A)&
“message(A, Text,6 TH)

[

2] [

Informal Description:

Fhen told last caller, this number will be called
if user presses nunber 2 on the phone.

B [@

Used in cases:

Transition rule is not part of any priority.

[Eancel J[ Show case ] More
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E==—— Transition Rule: dialling_store_caller V=

Stimulus:
[dialling(A, ¥r, T) |
Conditions:
dial_tone(A)&
answer_nr(A, ANr)&
“equal(ANr, NR)&
answer_nr(B, Nr)&
accepts_incoming calls(NR)&
last call{ANr, OLNr)
Conclusions and responses:
“last_csall(Nr, OLKr)&
last_call(Nr, Afr)

[©

ERE

Informal Description:

2 (@l

Used in cases:

[EIIERE

Transition rule is not part of any priority.

=——— Transition Rule: last_call_nummber_1

[Eancel J[ Show case ]( More ] -

= Transition Rule: dialling_store_caller_first =——|
Stimulus:

[dialling(A, Br, T)
Conditions:

dial_tone(d)&
answer_nr(A, ANr)&
“equal(ANr, Nr)&
answer_nr(Y, Nri&
accepts_incoming_calls(Nr)&
~last call(Br K ANr)
Conclusions and responses:

last_call(Nr, ANr)

=

] (&l

Informal Description:

] (&

Used in cases: SeElg i ve

Transition rule is not part of any priority.

(‘cancer ) (‘show case ) More ] (Cox )

Stimulus:
|service_request(A, call return, T) ]
Conditions:
dial_tone(A)& <3
answer_nr(A, Nr)& B
“last_call(Z, Hr)
=
Conclusions and responses:
|message(A, "no number stored’, T)& <
~disl_tone(A) u
s
Informal Description:
it
=3
Used in cases: k)
A

Transition rule is not part of any priority.

(Cancet ) (‘show case ) ( More |

== Transition Rule: last_call_nummber ===

Stimulus:
[service_request(i\, call_return, T) |
Conditions:
dial_tone(A)& 2
answer_nr(A, Hr)&
last_call(Nr, LNr)
=
Conclusions and responses:
ge(A, "last caller is; LNr' K6 T)& 2
“dial_tone(A)
=
Informal Description:
it
=
Used in cases: kt
A%

Transition rule is not part of any priority.

Cancel |Shm.u case | More
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(5]
ad
oo

C.10 Telephone service call_waiting

== Case: call_waiting

Transition rules (T-rules) in case:

answer_call _waiting
lcheck_call smiting 1
fcheck_call_waiting 2
[deactivate_call wsiting
dialling busy call saiting
reject_call_smiting
stop_call_wmaiting

[ Show T-rule ] [Remoue T-rule]{ Add T-rule ]

Informal description of case:

it
=

Terms defined by case:
call maiting Nrg type
call_waiting tone(A) type: response
on_hold(A, B) type: relation |{F

call_waiting is dependent on cases:

besic_call H
o
Input Eramples

(concet |( More ] [ Interaction ][0k )

C.11 Telephone service caller_display

[ Case: caller_display =

Transition rules (T-rules) in case:

dialling dizpl
dialling display
remove_display_number_1
remove_display number_ 2
remove_display_number_ 3
reset_displayed number

@l

( Show T-rule ] [ﬁemuue T‘-rule} [ Add T-rule ]

Informal description of case:

Terms defined by case:

1leri B, Tdisplavlr:

el @

caller_display is dependent on cases:
basic_call

Input Examples Show Term

[Eancel][ More ] [ Interaction Jl[ ok ||

I§l§




APPENDIX C. CASE LIBRARY USED FOR EVALUATION

C.12 Telephone service charge_advice

|§ Case: charge_advice E__l
Transition rules (T-rules) in case:

charge_advice_l =
charge_advice_2
deactivate_charge advice
make _call_to_tell_cost
make _call to_tell cost_2
save_speech_start_time

=]

(“show T-rule ][r_lemnue T-rule) ( Add T-rule |

Informal description of case:

User may request that next call or all calls have
charge advice. Once the csll has finnished after a
short while a call to the user telling the costs is

Terms defined by case:

chargs M, Iialledifr, Tims) trpei relation
charge_advice(A, Option) type: relation
harge cost(NRl, NR2, Price) type: relation

charge_advice is dependen! on cases:
basic_telephony

Input Examples Show Term

[Eancel][ More ] [ Interaction J[[ ok |

IE@

C.13 Telephone emergency_call

‘§— Case: emergency_call S"———

Transition rules (T-rules) in case:

c
emergency_call
set_emergency_call_l
set_emergency_call_2

( show T-rule | (Remove T-rule)( Add T-rule |

Informal description of case:
I user who has emergency call activeted will get an |}
automatic call to a pre selected number if reciever E
iz lifted and no number diald within a selected time |

basic_call

&
o

[Eancei][ Mure_] [ Interaction ][{ ok )
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C.14 Telephone service pick_up_call

E=———— Case: pick_up_call —————x
Transition rules (T-rules) in case:

i

el

('show T-rute | [Remove T-rule]( Add T-rule |
Informal description of case:

ILf a telephone rings on a desk near you, you may dial 2

the telephones number, get a busy tone, press s =

number or specisl button on your phone and answer ]
Terms defined by case:

ke

A

pick_up_call is dependent on cases:
basic_call

Input Enamples

[l:untei][ More ] [ Interaction J|[ ok |

==

C.14.1 Transition Rules for service

Transition Rule: pick_up_call EI

Stimulus:
|recall(h, pick_up_cell, T)
Conditions:
busy_tone(A)&
dialling time(A, Nr,6 TARO)&
answer_nr(8, Hr)&
ring sigral(B)&
calling(2, B)&
ring tone(Z)

[

Conclusions and responses:
“ecalling(Z, B)&
“busy_tone(A)&
“ring_signal(B)&
“ring_tone({Z)&
in_speech(Z, A)

[2] (<l

Informal Description:
take over a call

[®] [<]

Used in cases:

[SIERE

Transition rule is not part of any priority.

[ Cancel ][ Show case ][ Mure_]
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C.15 Telephone s

ervice queue_calls

EE=——== Case: queue_calls E_l

Transition rules (T-rules) in case:

i
8

check_gueus_calls
deactivate_gqueus

dialling busy queue_call ]
dialling busy queue_call 2
dialling_busy_gueue_next call
first_in_gqueve_starts_calling_l
first_in_gqueve_starts_calling 2 A

( show T-rute | [Remove T~r@[ Add T-rule |

Informal description of case:
If a call to a nunber having the queue calls service
then 1f bussy the caller will be placed in & gueue
Once a telephone gets free the first in the queue
Terms defined by case:
= r
Fuiting queue(Nr, A, B, C)

et
=

type: attribute FpY
type: relation

queue_calls is dependent on cases:

241

A
basic_call H
o

Input Examples

(cancet J(_ More |

(interaction | (Cox )

C.15.1 Transition Rules for service

=——— Transition Rule: aclivate_queue ==|

Stimulus:

switch_service_on(A, gqueue_calls,K T)

Conditions:

answer_nr(A, Nr)

Conclusions and responses:

queue_if busy(Nr)&
request_accepted(A)

Informal Description:

Activates the service quewe calls for a specific
telephone number.

Used in cases:

FIRLE

Transition rule is not part of any priority.

[Cnncel ][ Show case J More |

(I,

Stimulus:
| |dislling(a, Br, T) ]
Conditions:
I dial_tone(A)& {H
™ lanswer_nr(C, Nr)& i
queuve if busy(Nr)&
waiting_gqueuwe(Hr, Q1, Q1, Q2)
7 =
Conclusions and responses:
& “waiting queue(Nr, Q1, Q1, Q2)& ats
=] waiting_gueue(Nr, Q1, 02, A)& ™
message(A, 'pleas wait', T)
5 =
Informal Description:
it it
=
Used in cases: M
A

== Transition Rule: dialling_busy_queue_nex!_call =|

Transition rule is included in priority.

[Enncel ][ Show case ][ More ] Priority li 0k '
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== Transition Rule: first_in_queue_starts_calling_2 =

Stimulus:
[hock_on(TAR4T, TAR4G) |
Conditions:
ansser_nr{TAR47, TAR4S)& [
waiting queue(VAR4S, VAR44, VAR44, VAR44)& m
miting queus(TAR4S, TAR44, TAR44, TAR44)&
“equal(VAR44, TAR44)
5]
Conclusions and responses:
calling(TAR44, TAR4T)& ]
waiting quoue(VAR4S, VAR44, VAR44, VAR44)& 1
“waiting_queue(VAR4S, VAR44, VARd4, TARd4)
=
Informal Description:
move first in queve to calling party oy
=
Used in cases: M
O

Transition rule is not part of any priority.

[ cancel |( show case |[ More |
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C.16 Telephone service voting

E=——— (ase:voting =

Transition rules (T-rules) in case:

uctivate_voting 2 'g
check_votes
deasctivate_voting
vote
&

[ Show T-rule J[Hemoue T-rule][ Add T-rule J

Informal description of case:

Counts ell cells to o particular number, may be reset
set and checked by service holder (pin nusber
required}.

Terms defined by case:

EIDEEIE

voting is dependent on cases:
basic_telephony

Input Examples

[Eﬂncel][ More ] [ Interaction ]|[ ok |

B

C.16.1 Transition Rules for service

=—— Transition Rule: activate_voting_1 %l = Transition Rule: activate_voting_2

Stimulus: Stimulus:
[switch_service_un(&, [voting, VoteRumber, Pin], T) I lsn‘tch_sorvict_on(&, [voting, VoteKumber, Pin], T) '
Conditions: Conditions:
dial_tone(A)& IQ [dianl_tone{A)& it
answer_nunber (A, Nr)& answer_number(A, Nr)& -
vote_pin(VoteNumber, Pin)& vote_pin(VoteNumber, Fin)&
vote_counter(VoteNumber, OLDCount) ~“vote_counter(VoteNumber, OLDCount)
2] =
Conclusions and responses: Conclusions and responses:
service_accepted(A)& 4 service_sccepted(A)& ey
vote_counter(VoteNumber, 0)& | vote_counter(VoteHumber, 0) m
“vote_counter(VoteNusber, OLDCount)
= =
Informal Description: Informal Description:
Initialise woting counter O ita
5] =
Used in cases: [5 Used in cases: =
AS4 o

Transition rule is not part of any priority.

[ Eanceﬂ[ Show case ][ Maore ] -

Transition rule is not part of any priority.

[tance!][ Show case ][ More ] -




244 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

== Iransition Rule: check_voles FeFiceTcFS——=

Stimulus:
[cbeck_service(A, [voting, VoteNusber, Pin], T)| |
Conditions:
dial_tone(A)&
answer _number(A, Hr)&
vote_pin(VoteNumber, Pin)&
vote _counter({VoteNumber, Count)

[

Conclusions and responses:

message(A, ("Vote counter is ', Count))&
“dial_tone(A)

2] [l

Informal Description:

] [

Used in cases:

Transition rule is not part of any priority.

(concel | show case |[ More |

E==—————— Transition Rule: vote S|

Stimulus:
|dinlling(A, FoteNumber, T)

Conditions:
dial_tone(A)&
vote_counter(VoteNumber, O0ldCount)&
calculate(NewCount is OldCount+l)

=

Conclusions and responses:
vote_counter(VoteNusber, NewCount)&
“vote_counter({VoteNumber , OldCount)é&
service_accepted(A)&

“dial_tone(a)

B

Informal Description:
Add upp counter

E

Used in cases:

J@

Transition rule is not part of any priority.

= Transition Rule: deactivate_voting ———|

Stimulus:
[switch_service off(A, [voting, VoteNr, Pin], T) |
Conditions:

dial_tone(A)&
vote_pin(VoteNr, Pin)&
vote_counter(VoteNr, Count)

[&

Conclusions and responses:
“disl_tone(A)&
service_accepted(A)&
“vote_counter(VoteNr, Count)&
“vote_pin{VoteNr, Pin)

2 [¢

Informal Description:
Cancel and reset voting.

B (@

Used in cases:

EIEEE

Transition rule is not part of any priority.

:

[l:&ncel ][ Show cusa[ More ] Ok

Cancel E Show case More
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Appendix D

Input Examples Used for Evaluation

All the graphical input examples used for the evaluation are given in this appendix. For
35% of the links used in the input examples, their “link detail windows” are shown (in
total, all input examples have 98 links). For 60% of the nodes, the node details have been
shown (all input examples are based on 22 different nodes). An extended version of

Appendix C, with all link and node definitions may be requested.

D.1 Input Example a_banking_example

EE——— anking_example

E| :u:li-s_uhs l:rfbers_ijjzl:e:)
*
®
®
L8
E — ——
ﬁ <ésk for idenlitl?D
[=]
a
5
A&
[ il 4]
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D.1.1 Details for Nodes in Input Example

Node: ask for identity —————|

Responses (externally visible):
“dial_tone(a)& {#
message(n, TX, 2) ™
=
Characteristics (not enternally visible):
=
Node is used in input eramples:
u_banking_exemple i
=
[Jstart node [ End node
Update

[E===—=—=—==Node: select service

Responses (externally visible):
essage(a, SelTXT, 3)& {3
“message(e, SelTXTO, 2) N
=
Characteristics (not externally visible):
=
Node is used in input examples:
&_banking example it
s
[Jstart node [JEnd node

D.1.2 Details for Links in Input Example

a_hunking example: dial tone a-dislling->ask for identi

a_banking_enample: ask for identity-dialling->select s¢

<ask for |den1|tg>

Trlggermg stimulus:
Idulh.nq(u Z,T)

Conditions from originating node:

dial_tone(a) i}_
=
Additional conditions (qualification/instantiation):
il
|
Conclusions from terminating node:
~dial_tone(a)& =

message(s, TX, 2)

Additional conclusions:

Q] (€]

Proposed transition rule: dialling_busy_gqueue_call_ 1

Match select: [ Select best match |

[ Show selected arguments in graphic window
[Eancel ] [Shuw mutch} [ select }[Update] | ok )

(usk mril:lermh__D.,,_____‘_“< | t )
select service

Triggering stimulus:
[di.nmg(. 1235, T)

Conditions from originating node:

message(a, TX, 2) i
e
hdd

Rdditional conditions (qualification/instantiation):
ktd
=

Conclusions from terminating node:

message(a, SelTXT, 3)& 3

“message(a, 5e1TXTO, 2) 1
Iz

Additional conclusions:
it
=

Proposed transition rule: ask_banking choice
Match select: [ Select best match
[0 Show selected arguments in graphic window

[I:ancel } [Shom matcn] [ select ][Update] IC ok )
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D.2 Input Example a_barring_example

a_barring_example Em—— |

all subscriber

hook_off a

dial tone a

# o0 = K @ﬂ@@@wuﬁ'

D.2.1 Details for Links in Input Example

= n_barring_enample: dial tone a-dialling—->b busy =

S m———

Triggering stimulus:
[tia11ing(e, 222, T)

Conditions from originating node:

diel_tone(a) itd
5]
Additional conditions (qualification/instantiation):
dont_disturb(222) |
]
Conclusions from terminating node:
busy tons(a) ﬁ

]
Additional conclusions:
atd
=
Proposed transition rule: cell_barred_user
Match select: [ Select best match |

[ Show selected arguments in graphic window

[Eoncel } [Shnw mutch] [ Select J[Updale] IC ok
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D.3 Input Example a_basic_example_1

EOE==——-== o_basic_example_| )

Fo’=8 PP PF ,H

hook_off a

(all subscribers

hook_on a

idie

hook_on a

in speech

hook_off b

o calling b

D.3.1 Details for Nodes in Input Example

=—————— Node: all subscribers idle

Responses (externally visible):

“in_speech(b, a)&
“in_speechi{a, b)&
~dial_tone(b)&
“dial_tone(a)&
“ring_tone(b)&
“ring_tone(a)&
“ring_signal(b)&
“ring_signal(a)

<l

Characteristics (not externally visible):

time(0)&
“ealling(a, b)&

Tealling(b, a)&
accepts_incoming_calls(222)&
answer_nr(b, 222)&
answer_nr(a, 111)

|

<l

Node is used in input examples:

u_banking_example
a_barring_example
a_basic_behaviour_example_ 0

G ES

B start node

End node

=

249

S Node: dinl tone o EEEE—

Responses (externally visible):

diel_tone(s) g
&
Characteristics (not externally visible):
iti
=
Node is used in input examples:
a_banking_example s
a_barring_example ?
a_basic_example_ 0 =

[JStart node [JEnd node

o) C0)
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=————— Node: a callingh |

Besponses (externally visible):

ring_tone(a)& >
ring_signal(b) -
=
Characteristics (not externally visible):
calling(a, b) Kt
=
Node is used in input examples:
a_basic_example_0 it
e_besic_example_l =
«_call_back_exemple =]

Cstart node [JEnd node

e) GO

E==—-———= Node: in speech

Responses (externally visible):

in_speech(a, b)& 3
“ring_signal(b)& i
“ring_tone(a)&
“calling(a, b)
=
Characteristics (not externally visible):
it
=
Node is used in input examples:
a_basic_example 0 ets
a_basic_example_1 =1
a_call reminder_example -;-

[]start node []End node

(i) CF)

R Node:silenth e

Responses (exterpally visible):

silent _tone(b)& e
“in_speech(a, b) =
5]
Characteristics (not externally visible):
it
A4
Node is used in input examples:
a_basic_example_|1 4
a_call_reminder_example =
a_call_reminder_example 2 e

[ start node [ End node

-
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D.3.2 Details for Links in Input Example

a_basic_example_1: all subscribers idle-hook_ofr->dial

(Eﬁ subscribers idTe)

T —= " Cdiol tone o
Triggering stimulus:

a_basic_esample_1: dial tone a-hook_on->all subscribe

|'hnuk_au< w, T)

Conditions from originating node:

“ring_signal(a)k it
“calling(b, a) [
=
Rdditional conditions (qualification/instantiation):
itd
=
Conclusions from terminating node:
dial_tone(a) 2

=
Additional conclusions:
it
=
Proposed transition rule: normal_ hook_off
Match select: [ Select best match v

5] Show selected arguments in graphic window
[Cancel ] [Shuw mntch] [ Select ][Updute] {Cox )

dial tone a o s
(g_ll subscribers Idlg_)

Triggering stimulus:
Ihnnk_nt\( a, T)

Conditions from originating node:

dial_tone(a) O
Iz
Additional conditions (qualification/instantiation):
atd
1z
Conclusions from terminating node:
~dial_tone(e) i}-
=
Additional conclusions:
it
=
Proposed transition rule: disconnect_tone
Match select: [ Select best match |

[ show selected arguments in graphic window
[Enncel J[Show mutch] [Select ][Undnle ] I ok )




]
i
2

£ a_basic_example_1: dial tone a-dialling->a calling b g
dial tone a —_—_—
a colling b))
Triggering stimulus: e
[di-lh‘ng(., 222, T) |
Conditions from originating node:
dial_tone(a) i
=
Additional conditions (qualification/instantiation):
it
=
Conclusions from terminating node:
ealling(a, b)& ity
ring_signal(b)& B
ing_tone(s) |
r ieb a 0
Additional conclusions:
it
&
Proposed transition rule: normal_dialling
Match select: [ Select best match - |

[] show selected arguments in graphic window
[Enntel ] [Shum mnlthJ [ Select ][Updnte] I ok )

l% a_basic_enample_1: in speech-hook_on->silent b %

I —

Triggering stimulus:
[hnok_on(n )

Conditions from originating node:
“calling(a, b)&
in_speechi{a, b)&
“ring_signal(b)&
“ring_tone(a)

Additional conditions (qualification/instantiation)

=

Conclusions from terminating node:
silent_tone(b)&
“in_speech(a, b)

[ (@[] [

Iz
Additional conclusions:
it
1z
Proposed transition rule: a_leave_call
Match select: [ Select best match -]

(] Show selected arguments in graphic window
[tuntel ] [Shou.t mutch] [ Select ][udee] IC ox
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£ a_basic_example_1: a colling b-hook_off->in speech 3|

Cmsd——— >

Triggering stimulus:
[hnnk_of::h_ )

Conditions from originating node:

ealling(a, b)& Q
ring_sigral(b)&
ring_tone(a) -
=
Additional conditions (qualification/instantiation):
iti
A%
Conclusions from terminating node:
in_speech{a, b)& Q\_

“ring_signal(b)&
“ring_teone(a)

Additional conclusions:

Proposed transition rule: reminder_saccepted
Match select: [ Select best match
] Show selected arguments in graphic window

[tantel ] [Shou.l match] [ Select }[Updnte] | ok )

{ BB (@

a_basic_eqample_1: silent b-hook_on->all subscribers i

D S—

1:311 subscribers idlé)
Triggering stimulus: ——r
IEnk_cu\(h, T
Conditions from originating node:

silent_tone(l) Q
]
Additional conditions (gualification/instantiation):
it
o]
Conclusions from terminating node:
“silent_tone(b) Q
=
Additional conclusions:
it
5]
Proposed transition rule: disconnect_tone
Match select: [ Select best match -

B3 Show selected arguments in graphic window
[Eancel][Shuw rnatch] [ Select ][Update]|[ oK |
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a_basic_example_1: a calling b-hook_on->all subscribe:

Triggering stimulus:
|lmak_on(a_ T)

Conditions from originating node:
calling(a, b)&
ring _signal(b)&
ring_tone(a)

[

Additional conditions (qualification/instantiation)

Conclusions from terminating node:

“ring_signal(b)&
“ring_tone(s)

[ ST T R

Additional conclusions:

ARl (@

Proposed transition rule: disconnect_from_calling
Match select: | Select best match
(] Show selected arguments in graphic window

[Cnncel] [Shnw mﬂtchJ [Seiec! ][UpdateJ | ok

4

J

D.4 Input Example a_basic_example_0

In this input example the node “silence b” has been forgotten (when the receiver for
phone a has been put down, b hears a silent tone in the telephone until b puts down the
receiver, se a_basic_example_l). As described in Chapter 8, the matching algorithm is

able to identify the intended service in the case library (basic_call).

a_basic_esample_) ===

|
L]

=8 B PP M

all subscribers idie

dial tone a

hook_off b

a calling b
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D.5 Input Example a_busy_example

a_busy_example —=—————|

il
L

=R &P @R M

dial tone a

D.5.1 Details for Nodes in Input Example

Node: b busy EEDVDV—e————

Responses (externally visible):

busy_tone(a)

@

el

Characteristics (not externally visible):

(=

<l

Node is used in input examples:

a_barring example
a_busy example
a_call_back_example

qule

[ start node  [JEnd node

O
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D.5.2 Details for Links in Input Example

[E== a_busy_exomple: dial tone a-dialling->b busy =|

~——--H_

Triggering stimulus:
|dil1.1i,ng(n, 222, 1)

Conditions from originating node:

dial_tone(a) Q
Zl
Additional conditions (qualification/instantiation):
answer_nr(b, 222)& _&
calling(X, b) -
O
Conclusions from terminating node:
busy_tone(a)& 2

“dial_tone(s)

Additional conclusions:

aB @

Proposed trensition rule: dialling busy 2
Match select: | Select best match - |
[]Show selected arguments in graphic window

[Eancel J [Show mntch] [ Select ][Updalej | ok |

D.6 Input Example a_basic_behaviour_1

a_basic_behaviour_example_1

::;I-I'suhs:rihers Id_l_:e':

‘=R FLER

oo ]
Ln
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D.7 Input Example a_basic_behaviour_0

[JE=== a_basic_behaviour_example_0 E=——F

Fo=R8 FP P M

D.7.1 Details for Nodes in Input Example

Node: lime | |

Responses (externally visible):
ot
5]
Characteristics (not externally visible):
time(1)
=
Node is used in input examples:
a_basic_bebaviour_ example 0 3
a_basic_behaviour_example_l -
A%
[Jstart node [ End node
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D.8 Input Example a_call_back_example

]
m
o
I
(=]
o
=4
e
inl
=
]
=
a
=
=
©

dial tone a

7= R PP A M

(o calling b)

:B’I_l subscribers ld-l-é)

]é;II back req uest;ﬁ)

[ service_request call_back ]

D.8.1 Details for Nodes in Input Example

Node: call back requested §|

Responses (externally visible):

“busy_tone(a)& <
service_accepted(a) Sl
=
Characteristics (not externally visible):
it
=
Node is used in input examples:
u_call_back_example 2
O]

[ start node

[JEnd node

257
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D.8.2 Details for Links in Input Example

a_call_back_example: a calling b-service_request->call a_call_back_example: b busy-service_request->call ba
——
—_— (l_:_gll back requested > (;_g_ll back quuestgg_)

Triggering stimulus:
|ser\'ice_re||uest(l, b

Triggering stimulus:
Iservice_request(a, call_back, T)

Conditions from originating node: Conditions from originating node:

calling(e, b}& > busy_tone(a) e
ring_signal(b)& 1 |
ring_tone(a) L - |
2 &
Additional conditions (qualification/instantiation): Rdditional conditions (qualification/instantiation):
] it
= =
Conclusions from terminating node: Conclusions from terminating node:
service_accepted(a) > “busy_tone(a)& e
1 service_sccepted(a) i
5] 5]
Additional conclusions: Additional conclusions:
“ealling(a, b)& 0 ki
“ring_signal(b)& ] ||
“ring tone(a) i3 tad
Proposed trensition rule: call_back_requeat_1 Proposed transition rule: call_back_buay_2
Match select: [ Select best match - | Match select: [ Select best match |
3] Show selected arguments in graphic window [ Show selected arguments in graphic window
[tancel ][Shuw mulch] [ Select ][I}pﬁute] IO ok ) [tancel ]{Shum malch] [ Select ][Update] {Cox )

D.9 Input Example a_call_last_caller

ED

a_coll_last_coller BV

all subscribers idre:D

4

hook_—

off a

dial tone a

| hook_on a

dialling

Fo'=8 PR LM

service_request

—-—— .,
_service accepted )

—_—
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D.9.1 Details for Links in Input Example

a_call_last_caller: b busy-service_request->seruice acc

Triggering stimulus: - T—————"
1snrvice_req\lest(l. Service, T)

Conditions from originating node:

busy_tone(a) aiy
5]
Additional conditions (qualification/instantiation):
ki
=
Conclusions from terminating node:
service_sccepted(a)& Q_

~busy_tone(a)

=
Additional conclusions:
it
=
Proposed transition rule: call_back_buay 2
Match select: [ Select best match - |

[J show selected arguments in graphic window
[I:ancel ] [Shuw mn!ch] [ Select ][ Update] IC ok )

D.10 Input Example a_call_reminder_example

i
Ll

i E
a_call_reminder_example =Frc0—F——=

'n-.I_I subscribers iEIB

hook_off a

dial tone a

Carting]

hook_off b

ﬁ@mﬁ&@@@ﬁq

reminder

Y

¢’a waiting on b
g 1waiting 0nb,
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D.10.1 Details for Nodes in Input Example

Node: a waiting on b HFficFiccaaa

Fesponses (externally visible):

it]
Characteristics (not externally visible):
call_waiting tone(b)& O
calling(a, b)& o=
on_hold(b, a)
0]
Node is used in input examples:
a_call resinder_example et
a_call_resinder_example_2 "
u_call _waiting _example =]

[Jstart node [ End node

(upsste ) )

Node: reminder S

Responses (externally visible):

Ting_signal(h) I
=
Characteristics (not externally visible):
)
-zl
Node is used in input examples:
a_call reminder_example 4
a_call_reminder_example_2 =]
A%

[ start node [JEnd node

D.10.2 Details for Links in Input Example

a_call_reminder_example: dial tone a-dialling->a waiti

a_call_reminder_example: a waiting on b-hook_on->res

T
a waiting on b_)
Triggering stimulus: .
[tiealling(e, 222, T)
Conditions from originating node:

dinl_tone(a) 2
=
Additional conditions (qualification/instantiation):
|
=l
Conclusions from terminating node: -
call_waiting tone(b)& it

ealling(a, b)&
on_beld(b, a)

Additional conclusions:

a2 (€]

Proposed transition rule: dialling busy call weiting

Match select: [ Select best match - |

(] Show selected arguments in graphic window
(cancet ] (show match | (“setect | (update | (Cok )

(8 waiting on b )
——" E‘@mindeb
Triggering stimulus:
Ihoo!r_on(h, )

Conditions from originating node:
call weiting tone(b)&
calling(s, b)

[

Additional conditions (qualification/instantiation)

Conclusions from terminating node:
ring_signal(b)

2] [elI2f™ <]

Additional conclusions:
“en_hold(b, a)

[N

Proposed transition rule: start_cell_reminder
Match select: | Select best match
[ Show selected arguments in graphic window

(cancel ) (show maten] [ setect | (update ) (Cox )

4]
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a_call_reminder_example: reminder-hook_off->in spee

Triggering stimulus:
Eﬂok_o.{.t(h, T)
Conditions from originating node:

U

ring_signal(d) j
kh
fdditional conditions (qualification/instantiation):
it
&
Conclusions from terminating node:
in_speech(a, b)& 1
“ring_signal(b) =
=
Additional conclusions:
&
|
Proposed transition rule: reminder_accepted
Match select: [ Select best match |

B Show selected arguments in graphic window

[run:el][smm match ) [ select lumjaie||[ 0K )

a_call_reminder_esample: reminder-tick->all subscribe

@mind@ o .
~———" " Gl subseribers idie >
Triggering stimulus: = AT

[t:i:k('r)

Conditions from originating node:
ring signal(b)

Additional conditions (qualificatio n/instantiation)

EISC

Conclusions from terminating node:
“ring_signal(b)

()]

Additional conclusions:

SR

Proposed transition rule: call reminder_time_cut
Maotch select: | Select best match
[ Show selected arguments in graphic window

[Eancel ] [Shuw match] [Select ][undn!e] [ ok )

4

D.11 Input Example a_call_return_example

E0E——— a_call_return_example —————=

hook_off a

dial tone a

service_request _

(last caller 222

Fo'=R PP PR W

R T
all subscribers idlf_
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D.11.1 Details for Links in Input Example

a_call_return_example: dial tone a-service_request->li

dial tone a R
(last caller 222 )
s il

Triggering stimulus:
Esenicp_requ.est(.\, Service, T)

Conditions from originating node:

a_call_return_example: last caller 222-dialling->a callir

dial_tone(s) Q
=
Rdditional conditions (qualification/instantiation):
2
=
Conclusions from terminating node:
message(a, Text, T) it
=
Additional conclusions:
disl_tone(a) g
=]
Propeosed transition rule: last_call_nummber
Match select: | Select best match -]

[ show selected arguments in graphic window
[Cantel }[Shnw rnattn] [ Select ][Update] | ok )

a_call_return_example: last caller 222-dialling->b busy

,""_r_‘_""‘-—.
SIBsL Iy Ree e o .@

Triggering stimulus:
Idil}linq(a, Service_code, T)

Conditions from originating node:

[message(a, Text, T)& T
“dial_tone(s) [ |
=
Additional conditions (qualification/instantiation):
Tast_call(lll, 222) 5]
=
Conclusions from terminating node:
busy tone(a) iy
=
Additional conclusions:
“messuge(a, T, TH) aty
=
Proposed trensition rule: ceall_lasat_caller_busy
Match select: | Select best match - |

B Show selected arguments in graphic window
[Eantel } [snom mntch] [ select ]LUpdnteJ [C ok )

-"'.-'_'_'_‘_‘_‘-""-
(last caller 222 ) i —
—_— T G calling D>

Triggering stimulus: —
Idiﬂli.ng(u, Service_code, T)

Conditions from originating node:

message(e, Text, T)& i
~dial_tone(a) B
1T}
Rdditional conditions (qualification/instantiation):
last_call(11l, 222) |
=
Conclusions from terminating node:
ring tone(a)& 2

calling(a, b)&
ring_signal(b)

15
Additional conclusions:
“message(a, Text, TH) {3
5]
Proposed trensition rule: call_laat_caller_idle
Match select: [ Select best match w |

[J Show selected arguments in graphic window
[Eancel] (Shmu match) [ select J[Updn\e] I ok )
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D.12 Input Example a_call_waiting_example

[AI]
ol

a_call_waiting_example %"—==l

hook_off a

dial tone a

dialling

Fo'=RFPPF M

all subscriber

(a waitingon b’

s idle

D.12.1 Details for Links in Input Example

a_call_waiting_example: dial tone a-dialling->a waitinc

dial tone a = ks iy
<

Triggering stimulus:
!dinlling(a_ 222, T)

—'d-'_._'_‘-"‘-""-
a waiting on b )
— "

Conditions from originating node:

dial _tone(a) i
=
Additional conditions (qualification/instantiation):
call_waiting(222)& O
in_speech(b, ¢) =
&
Conclusions from terminating node:
call_waiting tone(b)& L5
calling(a, b)& =1
on_bold(b, ) -
o
Additional conclusions:
ks
=

Proposed transition rule: dialling_busy_call_waiting
Match select: [ Select best match - |
[ Show selected arguments in graphic window

[EancelJ[Show match] [Selent] update | [ ok )

263

a_call_waiting_esample: a waiting on b-recall->in spee

“a waiti b’
( 8 waiting on __)._“___‘__‘
Triggering stimulus:

[nmn(b, switch, T)

Conditions from originating node:

call_waiting tone(b)& 7
|celling{a, b)& I
on_hold(b, a) U
O
Additional conditions (qualification/instantiation):
it
iz
A
Conclusions from terminating node:
“calling(n, b) P
=
Additional conclusions:
“eall_waiting tone(a)& ]
Tin_speech(b, c)& E
~call_wwiting tone(b) b
Proposed transition rule: switch_between_calls
Match select: | Select best match - |

[ Show selected arguments in graphic window

[Eancel J [Show match] [ Select ][Update] | ok
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D.13 Input Example a_charge_advice_example

a_charge_advice_example ===y

A= PRPRD

all suhscrlbers |dle

an cost of c§u>

charge advice cali)

i

hook_off a

D.13.1 Details for Links in Input Example

a_charge_advice_example: in speech-hook_on->charge

-ﬂ_‘_“‘-ﬂ—“““ < |:h nrg

Triggering stimulus:

e adim:e cull )

Ibnol: _on{s, T)

Conditions from originating node:

in_speechi{a, b) {3
5]
Additional conditions (qualification/instantiation):
it
=
Conclusions from terminating node:
ring_signal(a)& ity
calling(C, a) .
=
Additional conclusions:
htd
=
Proposed transition rule: a_leave_call
Match select: | Select best match |

] Show selected arguments in graphic window

(cancet ) (show maten) (“setect |(update | (Cok )

a_charge_advlce..euarnple: charge aduice call-hook_of

R <e|| cost of |:ﬂi>

Triggering stimulus:
i_hun](_n!!(l T)

( charge aﬂul:e call )

Conditions from originating node:

calling(C, a)& O
ring_signal(s) 1
|
Additional conditions (qualification/instantiation):
it
=
Conclusions from terminating node:
“ring_signal(a)& il

message(a, Cost, X)

=
Additional conclusions:
it
=
Proposed transition rule: enswer_charge_sdvice
Match select: [ Select best match |

[ Show selected arguments in graphic window

[Eancel ][Shnw rnatch] [ select ][Update] Lok )
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o_charge_aduice_example: all subscribers idle-tick->ch

('all'lwsuhscrlbers ldle) — —_—
R (tharge advice call_ (9]
Triggering stimulus: re—
[tiek(T)

Conditions from originating node:

“calling(b, a)& ity
lanswer_nr(a, 111) I
=
Additional conditions (qualification/instantiation):
kts
5]
Conclusions from terminating node:
calling(C, a)& e

ring signal(a)

1z
Additional conclusions:
it
1z
Proposed transition rule: start_reminder
Match select: [ Select best match - |

Show selected arguments in graphic window
(cancel ) (show match) (‘select )(update ) (Cok )

D.14 Input Example a_divert_example

a_divert_example V0=

| hook_off a

B|| SI.IDSI:!’"JEI’S idl&

\

dial tone a

# =R EP R LM

a calling b

hook_on a

hook_off a
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a_divert_example: dial tone a-dialling->a calling b

ﬂlﬂ! tone a

"“‘---__.. a calling n>

Triggering stimulus:
dialling(a, 333, T)

Conditions from originating node:

dial_tone{an)

=3

Additional conditions (qualification/instantiation)

divert(222, 333)&
divert(333, 222)&
answer_nr(b, 222)

Conclusions from terminating node:

ring_tone(a)k
calling(a, b)&
ring_signal(b)

o] (@[] €]

Additional conclusions:

S E

Proposed transition rule: divert_call

Match select: [ Select best match

Al

[] show selected arguments in graphic window
[Enncel }[Shnw mnt::h] [ Select ][Updnte] [ ok
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=]

a_divert_example: dial tone a-dialling->b busy =

=——-—_H

Triggering stimulus:

[aielling(a, 333, T)

Conditions from originating node:

dial_tone(a) Q
=
Additional conditions (qualification/instantiation):
divert(333, 222)& <
answer_nr(b, 222) =1
&
Conclusions from terminating node:
husy_r.une(u)] 2
=
Additional conclusions:
i
0]
Proposed tranasition rule: divert_call_to_buay
Match select: [ Select best match vl

[ Show selected arguments in graphic window

(cancel ] (show match) [ select |(update ] (oK )

D.15 Input Example a_multi_call_example

EI=—— a_multi_cal_example =———|

hook_off a

dial tone a

F =R P A Ml

¢a waiting on b’
g waltingon b

all sub scrlhers ldle

—_—

er speech a IJ_{'.‘
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D.15.1 Details for Nodes in Input Example

Node: in speech a b c D=

Responses (externally visible):

in_speech(b, c)& {H
in_speech(b, )& ]
in_speech(a, b)
Z
Characteristics (not externally visible):
“calling(a, b)& T
“on_hold(b, a) =1
&
Node is used in input examples:
a_multi_call_example <
=

[Jstart node

[JEnd node

update | (C ok )

D.15.2 Details for Links in Input Example

a_multi_call_example: in speech a b c-hook_on->silent

Qn speech a ]J_D
D

Triggering stimulus:

[baok_on(h 1)

Conditions from originating node:

in_speech(a, b)& <
in_speech(b, c)& B
~on_hold(b, &) =
&
Additional conditions (qualification/instantiation):
ity
O
Conclusions from terminating node:
~in_speech(b, c)& _Q.

“in_speech(b, a)&
silent_tone(a)&

a_multi_call_example: a waiting on b-recall-*in speech

|silent tone(c) 5
Additional conclusions:
it
=
Proposed transition rule: leave_three_way_call
Match select: [ Select best match - |

[® show selected arguments in graphic window
[l:uncel ] [Shm.u match] [ select ][Update] I ok )

("8 waiting on b)) s SR
e R‘*’@ speechab c>
Triggering stimulus: e
[reun(b, 3, T)
Conditions from originating node:

call_waiting tone(b)& 43
calling(a, b)& ]
on_hold(b, a) Lot
A
Additional conditions (qualification/instantiation):
it
=
Conclusions from terminating node:
in_speech(s, b)& |}

in_speech(b, c)&
“on_bold(b, a)

O]
Additional conclusions:
it
5]
Proposed transition rule: start_three_way_call
Match select: [ Select best match |

[ Show selected arguments in grophic window
[Eancel ] [Show match] [ Select ][Upﬁate] I ok )
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D.16 Input Example a_pick_up_call_example

Em——————

a_pick_up_call_enample —m———]

sII suhs cribers |d|e)

hook_off a

dial tone a

e

(@ in speech with b

o
%
®
ES
S
5
ﬁ
=

Ceatted is busy>—[recall |

D.16.1 Details for Links in Input Example

a_pick_up_call_example: called is busy-recall->a in spe

(cnlled is husg) —_—
— T g Cn in speech with b 3D

Triggering stimulus: ———
irec.:u(. A, T

Conditions from originating node:

busy_tone(a) Q
=
Additional conditions (qualification/instantiation):
it
=]
Conclusions from terminating node:
“busy_tone(a)& ﬁ

in_speech(b, a)&
“ring_signal(c)

=
Additional conclusions:
i
[T
Proposed transition rule: pick_up_call
Match select: | Select best match v |

[ Show selected arguments in graphic window
(concel | (show maten ) ( select ](update ) ((ok )
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D.17 Input Example a_queue_example

1= a_queue_esample BEe=——r£— |
<

Call subscribers idie

hook_off a

dial tone a

Fo'=R FP P <M

Caveue cal hook_off b
S

|

a calling b)

—

D.17.1 Details for Links in Input Example

= a_queue_example: queue call-hook_on->a calling b =

Caueue cail
queue call —
"—'——___________‘ =
e G calling |J>
Triggering stimulus: ———
Ihook_on(h. T
Conditions from originating node:

“dial_tone(a) il
2]
Additional conditions (qualification/instantiation):
aty
5
Conclusions from terminating node:
calling(a, b)] ﬁ

Additional conclusions:

Q| [@f

Proposed transition rule: first_in_queue_starts_call
Match select: [ Select best match - |
B Show selected arguments in graphic window

cancel | (show match ) ( setect |(update | ok )
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D.18 Input Example a_show_number_example

f1&——— a_show_numb CEGTD

all subscribers idle

hook_off a

dial tone a

dialling

Tdisplay cellers numl{eﬁ

Fo'=R EFPIE M

D.19 Input Example a_voting_example

[}
'L_I

a_voting_example S

all subscribers idie

hook_off a

o= PP PF M
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D.20 Input Example a_wake_up_call

Ee=——— a_wake_up_call %'

w@j

all subscribers idie

(@unke up n:al:l>

hook_off a

in speech

F'=RPPAF

D.20.1 Details for Links in Input Example

a_wake_up_call: all subscribers idle-tick->wake up call]

(:n—l'l-s_uh scrib ers_iEI‘ef) p———
e e S Cwake up l:ﬂll>
Triggering stimulus: e
[ts,ck(r)

Conditions from originating node:

accepts_incoming calls(222)&
~disl_tone(n)&

time(0)&

“dial_tone(b)

Additional conditions (qualification/instantiation)

Conclusions from terminating node:
ring signal(a)

Bl B e

Additional conclusions:

Q] [«

Proposed transition rule: start_reminder
Match select: [ Select best match
] Show selected arguments in graphic window

[Eum:el ][Snow match] [ select ][UpdateJ I ok J]

4
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an_emergency_esample

E all subscribers idie

LD

hook_off a

—

(a calling b

hook_off b

D.21.1 Details for Links in Input Example

= sn_emergency_exsomple: delny-tick->a calling b =

CoN—

Triggering stimulus:
[tick(ﬂ

Conditions from originating node:

a calling b))

dial_tone(a) it3
=
Additional conditions (qualification/instantiation):
it
=
Conclusions from terminating node:
calling(s, b)& atd

ring signal(b}&
ring_tone(a)

5]
Additional conclusions:
atd
1T
Proposed transition rule: emergency_call
Match select: | Select best match |

[ Show selected arguments in graphic window
[cancel ][Shnm mutth] [ Select ][I.Indate] I ok )
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Case-Based Support for the Design
of Dynamic System Requirements*

Peter J. Funk and Dave Robertson

Edinburgh University, Department of Artificial Intelligence
80 South Bridge, Edinburgh EH1 1HN, UK
E-mail: {peterf | dr} @aisb.ed.ac.uk

Abstract. Using formal specifications based on varieties of mathematical logic is becoming
common in the process of designing and implementing software. Formal methods are usually
intended to include all important details of the final system in the specification with the aim of
proving that it possesses certain mathematical properties. In large, complex systems, this
task requires sophisticated theorem proving, which can be difficult and complicated.
Telecommunication systems are large and complex, making detailed formal specification
impractical with current technology. However roughly formal “sketches™ of the behaviours
these services provide can be produced, and these can be very helpful in locating which service
might be relevant to a given problem. Our case-based approach uses coarse-grained
requirements specification sketches to outline the basic behaviour of the system's functional
modules (called services), thereby allowing us to identify, reuse and adapt requirements (from
cases stored in a library) to construct new cases. By using cases that have already been tested,
integrated and implemented, less effort is needed to produce requirements specifications on a
large scale. Using a hypothetical telecommunication system as our example, we shall show
how comparatively simple logic can be used to capture coarse-grained behaviour and how a
case-based approach benefits from this. The input from the examples is used both to identify
the cases whose behaviour corresponds most closely to the designer's intentions and to adapt
and finally verify the proposed solution against the examples.

1. Definition of Problem

One of the main problems facing designers is adding changes and modifications to an
existing system in order to meet new demands. Because telecommunications systems are
long-term investments, existing systems are constantly being extended to meet new
demands from customers. As a rule, most code in a telecommunications system is
successively replaced over a fifteen-year period (and the appropriate hardware updates
made), so that the system can meet all its new requirements.

The purchase of new telecommunication services is a matter of importance to both
customers and suppliers, therefore today new services are very carefully defined, albeit in
informal documents which are often contractually binding. Our CABS system (CAse-
Based requirements Specification [10, 11]), takes behavioural examples which define a
service's desired behaviour (see figure 1) as input and produces transition rules (called
partial rules) that cover the same behaviour as the input examples. These partial rules are
then used in a matching process to identify similar, previously formalised services and

transition  rules, which  have  already been tested  and integrated

* This research was supported by the Marcus Wallenberg Foundation for Scientific Research and Education

and EUA Telecommunication Systems Laboratories, Sweden.
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‘ Behavioural Example Sketches

Partial Rules M%
O Generalise Verif
]
Q | 1 ~

MCLT_’\\/N_? ‘\\\\ Adapl&VaIidateO O
\ 1@1)13 O\E: OOOQ ®

{ @ Service 41
N
O : New formal service sketch
Service i
Coarse-grained formal descriptions | | \
| \
Full design and
integration
of new service
1 =)
1 1 1
1 1 T
!\ 1 1A
Previous telecom. system design capturing New telecom. system design capturing
behaviour of telecom. services 1.. m behaviour of service 1 .. m+1

Fig. 1. Behavioural example, services and the full design of the system.

with other services. By reusing them, we should reduce the time needed to develop. test
and integrate the new service requirements with the other services it has to interact with.
This allows us at an early stage to provide the customer and supplier with the ability to
explore the dynamic behaviour of the new service (by simulation of the formalised
requirements), before any time and effort has been spent on design and implementation.

It is very beneficial to clarify and correct any disagreement on functionality at this stage.

Each sheet in the bottom left corner of the diagram represents a collection of pre-
viously designed and integrated services, composed of very complex configurations of
system components. The new service requirements (of which the formalised requirements
is a small but important part) has also to be designed and integrated. Formalised
requirements can be used in a variety of ways to enhance the traditional software

development process [4]. e.g., as a reference by which to guide design, to generate test
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cases [24], and to map onto design components [22], etc. If we have access to the relation
between all previously designed and implemented parts, and their originating coarse-
grained service requirements, we may assist the designers in choosing parts for reuse, by
pointing out where modifications have to be made, when producing a design of the new
service (thus taking us to our end point in the bottom right corner of figure 1). We do

not address the task of producing a final design.

The main objective of this paper is to give an overview of our approach, which in-
volves combining case-based reasoning with formal methods in order to benefit from the
reuse of previously formulated requirements in the design of large systems. Section 2
briefly describes CABS relations to formal methods. Section 3 examines CABS in its
context of case-based reasoning. Section 4 gives a brief overview and some examples of
the logic used for representing cases in the case library. Section 5 gives an example of
input to CABS, and explains how transition rules are generated from it. Section 6 exam-
ines how input cases are matched to cases stored in the case library. This section also of-
fers illustrations of the set theoretical approach as well as the pseudo code for the
matching algorithm. Section 7 gives a brief account of how specifications are adapted
and tested. Section 8 explores some related work. Finally, section 9 summarises the re-

search.

2. Requirements Specifications

Much effort has been made over many years to bring formal methods into use in indus-
try. The fact that they are nevertheless not widely used may indicate that they are not yet
mature, or that they are misunderstood by industry, or that industry has difficulty inte-
grating them into current software development processes [15]. Although individual
elements of a reactive system's behaviour may be amenable to representation and
verification using formal methods, scaling up this approach to the specification of large

complex systems appears to be difficult.

If we are to specify the complete behaviour of a large reactive system in detail in a
single formalism, we may end up needing sophisticated logics and sets of axioms that can
handle concurrency, time constraints, indeterminism, asynchronism, statistics, etc. The
resulting complexity of proving theorems and simulating dynamic behaviour can be
difficult to handle. In addition, many of the formalisms used for complex specifications
are not "executable", and therefore do not allow developers to explore the dynamics of

the specifications.

However, if we simply wish to outline the original requirements, as opposed to

providing a complete formal specification (including error handling, odd cases, unusual
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interactions, etc. [28]), it is usually sufficient to consider a simplified view. We call such a
view a requirements specification, since these are the original requirements, not a
complete specification. We note in passing that these are not the only possible
requirements which one might collect for such a system — they are merely a particular

type of functional requirement.

3. Case-Based Reasoning for Requirements Capture

CABS is closely structured accordingly to the four REs (Retrieve, Reuse, Revise, Restore,
[1]) in the case-based reasoning cycle (see figure 2). CABS uses a simple predicate logic
to represent, in the case library, only the coarse-grained behaviour of functional elements
that have already been designed and implemented. This logic is able to represent stimuli,

facts, responses and simple transition rules (as shown in section 4). A case in the case

library is & set of  transition rules (a service). The logic
Input, given as examples of Case Library
the new required behaviour (Formalised

requirements)

|
' Rul
! Prepare input for s
: R matching grouped '
In cases |
(I I
|
L L :
| T|  Identify similar :
1 transition rules R
| |
1 € R | €
: vV ! Verify against input g
oo Rank modules e i
| and parts of cases v|| Prove properties : {
| : 10
l J 1 |[TAdapt to conform I T
: R > S to input '
: Construct solution . - e
e e || Simulate dynamic r
! . behaviour |
: u || Merge appropriate = r
i cases/parts of cases i |
, S / S
[ € i
I J P
] ‘ Solutionnot  Confirmed
| Proposed Solution ___| accepted  Requirements
|
|
1

______ Provide more k

input examples

Fig. 2. Overview over the CABS system
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used to represent the dynamic behaviour of cases gives us access to the coarse-grained,
dynamic behaviour of each case — which provides the basis for choosing fully specified

indexes [19] and for testing new cases.

The designer provides input to the system in the form of examples of the new
required behaviour and the first task (upper left box in figure 2) is to prepare the input
for the matching. CABS translates the input examples to a set of transition rules, which
are under-specified since they do not give all details and only describe parts of the
behaviour and hence the produced transition rules are called partial rules (see section 5
and 0).

The partial rules enable us to determine the similarity between the behaviour of a case
in the case library and the behaviour of the new case outlined by the designer (and to
indicate where the differences lie). The system identifies the cases that exhibit behaviour
most similar to the new behaviour and uses them to construct a proposed solution. In
addition, behavioural elements inside cases are accessible in this notation and so elements

of a case can be used to construct a new solution.

The revision phase relies on the simulator and theorem prover (see section 7). By
using a simulator, we automatically verify whether the proposed solution covers the
behaviour exemplified in the input. If CABS discovers any discrepancies at this semantic
level, it makes an attempt to adapt them, or points out where the differences lie, and
requests further refinement of the input. The theorem prover may also be used to

identify parts that need adaptation.

Finally the user can use the simulator and the theorem prover to explore whether the
new formalised service meets his intention. If not, he provides more input examples, or, if
his idea of the behaviour has changed, he modifies the previously given input examples.
A confirmed solution is then stored in the case library (if it has been successfully de-

signed and implemented), which bring us back up in the right upper corner of figure 2.

4. A Simple Case Description Logic

To represent cases, we have chosen a simple logic based on first-order predicate logic
extended with a frame axiom [10,7,13]. Note that since we are using our coarse-grained
specifications only as a means of identifying the appropriate designed and implemented
services rather than modelling all the details of services, it is sufficient to use a
comparatively simple logic. Simplification gives us further advantages by making the
specification more accessible to users. For example, it is easier to state behavioural
sequences because we ignore problems arising from asynchronous events. It is also
possible to provide tractable methods for interfacing to the logic via natural language

and/or graphical systems (see e.g. [8. 5, 6, 25, 9]). The behaviour sequences may also be
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used to test the final specification and for test generation for the final implementation, in

addition to tests generated form the specifications [24].

The logic represents transition rules that handle changes, and intra-state rules that
handle domain knowledge inside states, i.e. facts true at time tj (see figure 3). A frame
axiom moves all unchanged facts from the previous state T, to the next one, T+1. A

transition rule is constructed using two types of term:

o(T, E) denotes that an event, E, occurred at time T.
p(T, P) denotes that the property, P, holds in the state of the system at time T.

Preconditions of transition rules must contain a single, triggering event and may also
contain a conjunction of system properties (or their negation) which determines whether
the transition rule can apply to the current system state. The conclusion of a transition
rule contains a conjunction of properties (or their negation) which will hold in the
succeeding state after the transition rule is applied. An example of a transition rule is
given below, where offhook is the stimulus signalling that the user has lifted his/her

receiver:

Transition Rule: normal_offhook
vV SubscA
o(T+1, offhook(SubscA)) &
p(T, idle(SubscA)) &
=p(T, 3 SubscB calling(SubscB,SubscA))
—  =p(T+1, idle(SubscA)) &
p(T+1, dialtone(SubscA)).

Stimuli are sequenced in order to simplify the logic: we do not attempt in this high-
level specification to specify what should happen when signals are competing (e.g. if two
users call a third user at exactly the same time), and we suggest that the decision of how
to resolve such situations is not necessarily a requirements choice, and can be dealt with
in the design process. Figure 3 shows the model used in the formal requirements
specifications of telecommunications services. Sequences of stimuli which are provided

by users of telephones are used to activate appropriate
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Logical System

. ! Transition Rule 1:
sequencing | simulus 1 cimulus at time t41 &

stimuli 2 .
/ conditions at time t

—
T se .
@ < 2880n conclusions at t+1 &

users response at t+1

t

Facts at Facts at
time t time t+1

Fig. 3. Model of the dynamic behaviour of telecommunications network.

transition rules. As a consequence, a sequence of states is generated, containing sets of
facts that describe the system after each event (f represents the frame axiom, which

transfers unaltered facts from the previous time ¢ to the current time 7+17).

Because of the simplifications which we have made in our high-level specification
language, we are able to simulate the behaviour obtained from these specifications by
using a fairly simple theorem prover and simulator (see section 7). The theorem prover
and simulator have been implemented in Prolog, together with a basic environment which
allows the designer to test the specification and refine it in accordance with her ideas. It is
necessary that this process be manual since we cannot know what the designer has in
mind. We cannot require that she make a complete formal and correct description of her
ideas in one step. Most likely, she will refine her ideas and give them a formal representa-

tion after she has simulated the formalised behaviour.

5. Assigning Behavioural Features to Cases

In the telecommunications domain, it is natural for users to describe new services by
giving examples of the behavioural sequences that they should produce. The task of our
case-based system is to locate existing services which most closely match these
behavioural examples, based on their high-level specifications [17]. Since our case li-
brary consists of sets of transition rules, we must provide a means of matching these rules
to behavioural examples. The behavioural examples may be given in a variety of
notations, such as restricted natural language, graphical notations, scenarios etc., as long
as they can be translated to a set of partial transition rules. We have chosen an
intermediate formal representation, used as a starting point in producing a set of tran-
sition rules capturing the behaviour. The following is a behavioural example in its

intermediate notation accompanied by a translation into English:
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phoneNumber(A,111) & A’s phone number is 111.
phoneNumber(B.222) & B’s phone number is 222.
idle(A) & Subscriber A is idle.
idle(B) Subscriber B is idle.

= then

offHook(A) A lifts his receiver.

> and as a consequence
dialTone(A) A hears a dial tone.

= then

dials(A,222) A dials 222.

> and as a consequence
ringTone(A)& A hears a ringing tone.
ringSignal(B)& B hears a ringing signal.

Table 1. Intermediate notation and translation to English.

A behavioural example starts with a conjunction of terms denoting the main features
classifying exemplified states in which the following event (after the symbol
*-") occurs. Thereafter a sketch of some of the terms outlining the main characteristics
of the resulting state are given (after the symbol “->*). The last two steps may be

repeated.

It is easy to generate a set of rules that precisely covers the behaviour given in a
behavioural example. However, what we want is a set of rules that covers general
behaviour, without excluding all other behaviour. Since humans often leave out obvious
statements, we may wish to add some of the assumed domain knowledge. For this and for
handling instances and variables we need some heuristics. This is acceptable, since the
transition rules generated from the input are mainly used as indexing features in the
matching process. The original input examples are also kept in their initial form, to be

used later in validation and verification.

6. Re-Using and Finding the Best Matched Case

In section 5 we described how to put behavioural examples into rule form in preparation
for the matching process. We shall now sketch the matching algorithm itself. Our aim is
to reuse as much as possible of previously specified formal requirements, which is
possible if the new demands on the system are semantically similar to previous demands

and the previous demands are adaptable [26].
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We treat the stimulus, condition and conclusion elements of the transition rules as sets
of atomic terms. With this approach it is easy to identify matching rules. Figure 4 gives
examples of different matches of elements from transition rules in the case library, and

partial rules.

Case element covers Full match of
partial rule element elements
Intersecting Partial rule element
elements covers case element

I"a

Fig. 4. Examples of different matches of transition rule elements.

An element in a rule is either a stimulus, condition or conclusion element. An element
is a set of terms (a stimulus element is always a set with only one term). P denotes an ele-
ment in a partial transition rule. C denotes the corresponding element of the case library
rule. / stands for the intersecting terms in these two sets of terms. The relation between P,
C and [ is used as a basis for the final scoring. An example of two condition elements
from two transition rules are:

Condition element in rule Pj: p(T,idle(X)), p(T,last_diald(X,Nr))
Condition element in rule Cj: p(T,redirect(X,Nr)), p(T,idle(X))

The intersection / is in this match a set containing one term, {p(T,idle(X)}. The following
is an example of the process from behavioural example to a scored match:

Behavioural example (the notation for which bears similarities to signalling schemes
for informal telephone service examples, see e.g. [18]):
idle(A) — offHook(A) -> dialTone(A) & idle(B) — dials(A,222) -> ringTone(A) &
ringSignal(B).

Translating this into two partial rules gives:

Partial Transition Rule P1: ¥V A
o(T+1,0ffHook(A)) &

p(T,idle(A))
— p(T+1,dialTone(A)).
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Partial Transition Rule P2: ¥ ANR B
o(T+1,dials(A,NR)) &
p(T,idle(B))
= p(T+1,ringTone(A)) &
p(T+1,ringSignal(B)).

In most cases this translation is a straightforward process, but in some situations
heuristics are used to make an assumption about what the user means or to keep the
partial rules within the restrictions opposed on transition rules. This can be accepted since
we mainly use the partial rules to index the case library. One heuristic is used to avoid
introducing unbound variables in a transition rules conclusion. In the above example this
is noted by the fact that idle(B) in the behavioural example is only used as a precondition

in P2. If it had also been used as a conclusion in rule P1, we would have introduced an

unbound variable in the conclusions, which would conflict with our restrictions.

C1 and C2 are two transition rules (oversimplified to focus the attention on matching)

belonging to the case “standard telephone call™:

Transition Rule C1: call busy
vV SubscA NR SubscB
o(T+1,dials(SubscA,NR)) &
p(T,answers_on_number(SubscB,NR)) &
—p(T,idle(SubscB))
— p(T+1,busy_tone(SubscA)) &
p(T+1,call_busy(SubscA,NR)).

Transition Rule C2: normal call
v SubscA NR SubscB
o(T+1,dials(SubscA,NR)) &
p(T,answers_on_number(SubscB,NR)) &
p(T,idle(SubscB))
— p(T+1,ringTone(SubscA)) &
p(T+1,ringSignal(SubscB))&
p(T+1,last_called_nr(SubscA,NR)).
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Only the matching of P2 is illustrated. We start by comparing P2 with C1. Some parts of
the rules so standardised that they can be excluded in the matching process (e.g. time
information and quantifiers). All three elements (stimulus, condition, conclusion) are to

be matched, we start with the stimulus element:

Stimulus element in P2: dials(A,NR)
Stimulus element in C1: dials(SubscA,NR)

This gives a full match (identifying appropriate variables in the two terms).

Condition element in P2: idle(B)
Condition element in C1: answers_on_number(SubscB,NR),

—idle(SubscB)

The condition element in the rule C1, from the case library, has a negated form of an

expression in P2. At this stage we simply conclude that the two sets do not have any

common terms and contain one negation (used later when elements are finally ranked).
The intersection of the conclusion element in C1 and P2 does not contain any elements,
hence P2 and C1 only have a full match in their stimuli.

We now continue by matching P2 with C2, where again their stimuli match fully. We

then compare their conditions.

Condition element in P2: idle(B)
Condition element in C2: answers_on_number(SubscB,NR),

idle(SubscB)

The condition of rule C2, from the case library, covers the condition of P2, hence the

condition of C2 is more restricted than P2. Similarly the conclusion element of C2

contains one additional conclusion term.

Conclusion element in P2: ringTone(A), ringSignal(B)
Conclusion element in C2:ringTone(SubscA),

ringSignal(SubscB),
last_called_nr(SubscA,NR)

Finally we employ a heuristic scoring algorithm to produce a numerical triple for
each match and sort the matching rules in the case library, 'best first'. The approach taken
is to give a percentage figure to each matching element in the rules (compare figure 4

with table 2).

P2 matching C1:
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The intersection I is 100% of C1-stimulus and 100% of P2-stimulus.

The intersection I is 0% of C1-condition and 0% of P2-condition.

A negation of a term exists.

The intersection I is 0% of C1-conclusion and 0% of P2-conclusion.

P2 matching C2:
The intersection I is 100% of C2-stimulus and 100% of P2-stimulus.
The intersection I is 50% of C2-condition and 100% of P2-condition.

The intersection 1 is 67% of C2-conclusion and 100% of P2-conclusion.

Table 2. Coverage percentage of intersection for C1 and C2.

The fact that there exists a negation of a term in the match of the P2-condition and

the C1-condition indicates that it is a mismatch, hence C1 may be excluded from further
calculations. In CABS the user can decide whether or not to apply this filtering criterion
to negation. Comparison of the scores for the three individual elements of the match
provides us with a final ranking of each rule.

The pseudo-code for the matching algorithm appears below (all the domain-specific

parameters have been omitted):

For all partial transition rules generalised from the input Pp:
For all transition rules in the case library, Cm:

For p in {stimulus element, condition element, conclusion element}:
Calculate the intersection, Ip for Ppp and Cmp
Calculate the coverage percentage of Ip on Ppp,
Calculate the coverage percentage of Ip on Crp.

Determine the final score for Cp by:
Apply filtering criterion to negation (if a negated term exists, we may

either choose to ignore it or to weight the result, depending on how the
user has parameterized the system) in order to get a final score for Cp as a
match for Pp.
For all cases (requirements specifications), S:
For all partial rules Pp:
Take the score from the rule in S which has the best score as a match for Pp

and use it in order to score S in total.
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7. Revising the Proposed Solution

CABS performs four steps of revision (see figure 2): test proposed solution against input
(simulator) and against general domain knowledge (theorem prover); adapt any
differences or ask user for clarification (by providing or refining input examples); fi-
nally the user explores the proposal with the simulator and theorem prover and confirms

the behaviour or refines/modifies his input examples.

To perform a verification between the input examples and the proposed solution, we
simulate the proposed solution and use the intermediate input as input to the simulation.
If the proposed solution covers the behaviour of the input, the next step is to prove
general domain properties about the solution. Examples of such properties in telephone

services may be:

1. A subscriber cannot be in speech connection with himself.

2. In all situations a subscriber should be able to request to leave the current service
(on_hook).

For the purpose of refining and testing the requirements specifications, a user in-
terface is provided for the simulator and theorem prover. The simulator allows the user to
give sequences of stimuli and evaluate whether the response exhibited by the formal
specification corresponds to his intentions. This step is important in refining the design-
er's idea of how the service should behave in its final state. If the service does not
correspond to his intention, the user has to provide more input examples, or refine
previous given input examples. One other advantage of simulation, compared with
theorem proving, is that it is more resistant to inconsistency in the formalised re-
quirements, which is to be expected during the refinement process.

An example of a simulation is given in figure 5. We first display the initial facts in our
simulation. If we want to simulate subscriber al going off-hook at time 1, we type
O(1,offhook(a1)). The simulator triggers all the rules with offhook as their triggering con-
dition and with all their conditions true, and thereafter shows the result (facts at time 1).
To check if our set of transition rules behaves as expected if subscriber al is calling her-
self, we give the stimulus O(2,dialling(a1,111)). If a term is crossed out, it is not true at
this time, but was true in the previous state. If a term is shown in bold face, it is a new

term that has been added.
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>Load service: basic_phone_call.
state-transition rules C0,C1,C2,C3

>initialise one_subscriber.

Initial
facts

Facts at time 0 subscriber(al)

idle(al)
answer_nr(al,111)

O(1,offhook(al))

Facts at time 1 subscriber(al) Rule C;O: "
answer_nr({al,111) normal_ofthoo
i triggered.

dial_tone(al)

O(2,dialling(a1,111))

Rule C1:
call_busy
triggered.

5 at ti 2 .
Facts attime 2 [ e eriber(at)

answer_nr(a1,111)
busy_tone(al)

Fig. 5. Example of a simulation

The simulation system is highly interactive with the designer because full expansion
of all possible states would require a huge amount of memory in any non-trivial
specification. Fortunately, expanding the search space interactively by only a limited
number of steps at a time is already of value in our domain since phone users are not
usually expected to take part in any complex sequence of actions before returning to the
initial state (hook on). Proving that a particular state cannot be reached in any sequence
of, say, 8 steps will therefore be desirable for the user and will help him to validate his

formal requirements specifications.

8. Related Work

Producing formal requirements from informal ones is an active research area. Much
research in formal methods aims at producing detailed specifications of software, and the
level of detail and difference in abstraction between the specification and the software to
be produced is often small. We have adopted the approach of highly restricting the
formalism and only outlining the main behaviour in our requirements specifications.
With this approach we avoid some of the problems of using formal specification. There
are similarities between the CABS approach and systems such as ARISE [6], AIR [20]
and WATSON.

WATSON [17] is in essence based on the same ideas as CABS and has influenced our
research. WATSON also starts with scenarios (similar to behavioural example sketches)
which are used in a variety of different ways to produce formal requirements of
telephone services. WATSON uses extensive domain knowledge (about telephone

hardware. network protocols, preferred styles of control skeleton design, etc.) in the
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process. The user is consulted to resolve problems that the system cannot resolve itself.
One of the key differences is that CABS takes the approach of using examples to gener-
ate features in order to identify and reuse previously specified services. WATSON has
proved to be difficult to scale up for realistic use [24]. Our belief is that case-based
reasoning and extensive reuse of previous requirements may help to bridge the gap
between informal requirements and formal requirements and aid in the task of updating

a previous implementation to capture the new requirements.

There has been much research in the area of applying case-based reasoning to the
domain of design. Examples of systems using case-based reasoning to tackle such
complex tasks are CADET [27], BOGART [21], DEJAVU [2], KRITIK [14] and
SUPPORT [23]. A number of different approaches are used, such as multi-level repre-
sentations, verifying results by qualitative simulations, and derivational analogy (i.e. the
storing and reuse of design plans). In particular, case-based planners explore the use of
formal logical representations. NETTRACK (Network Traffic Management Using Cases)
[3] is a system which uses formal logic and which originally used a representation similar
to situation calculus related to the representation used in CABS. CABS narrow focus on a
particular class of specifications allows us to automate the case-based reasoning process

considerably, compared with more general systems.

9. Conclusions

We have presented a system that produces formalised requirements, capturing the dy-
namic behaviour of a particular class of requirements (sequential, non distributed, de-
terministic). Given an outline of a required behaviour, the system produces a formal
requirements specification capturing certain dynamic aspects of the requirements, con-
structed from previous cases and parts of cases. Selecting the way in which cases should
be represented is an essential aspect of providing case-based support for specification of
system requirements. A case should be able to represent the dynamic behaviour that the
specification calls for. In our approach, the requirements designer has only to give
examples of a new service's behaviour. The input is translated to a representation, more
suitable for matching, and a set of generalised partial transition rules is produced. These
rules are then used in the matching process, and modules with similar behaviour are

identified by means of a simple and sufficient matching algorithm based on set theory.

The logic used for the representation of cases contains transition rules, terms (stimuli,
responses, facts) and a frame axiom handling change of time (discrete time steps). This
logic has proved to be sufficient for outlining and testing (by simulation and theorem
proving) the behaviour of some telecommunications services' coarse-grained behaviour
[12]. The combination of simple representation and a case-based approach that we

advocate can be successfully applied in order to reuse elements of earlier requirements.
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Because the older cases describe the behaviour of existing services that have been fully
tested, integrated and implemented, the effort required to integrate a new service with

these other services - or to test it - is considerably reduced.

If the behaviour of a case does not fully conform to the behavioural examples, the
missing elements of behaviour can be filled in by using the rules, generalised from the
examples. This will produce a naive solution - which the user may subsequently refine
and test - that conforms to the behavioural examples. Since the logic is comparably
simple, it is easy to verify by simulation that the identified service and its transition rules
correspond to the behaviour in the input examples. The user can also simulate the
system's behaviour to examine other behaviour which he may not have stipulated in the
original examples, but which may have arisen as a result of reuse (such as interaction with

other services).
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in Case-Based Reasoning®

Peter J. Funk and Dave Robertson

Edinburgh University, Department of Artificial Intelligence
80 South Bridge, Edinburgh EH1 1HN, UK
E-mail: {peterf | dr} @aisb.ed.ac.uk

Abstract. In the telecommunications domain, reuse of service specifications is a major
issue. However, it has proved difficult to modularise services because of the high degree of
interaction between them. Direct application of formal logics to the specification of services
has proved impractical because of the size of the services. However, much of this complexity
stems from the details of implementation of the services; by contrast, the principal
behaviours of a service are often approximated by simple varieties of logic which are easily
accessible to users. We address the problem of determining, from a library of services, those
which might be appropriate for reuse in constructing a new service. Simple behavioural
sequences are used to provide features within a CBR system which matches these to
behavioural examples supplied by users. By side-stepping the problem of formally specifying
the entire service, we aim to promote greater reuse of services while avoiding a commitment to
full logical specification.

Non-mathematicians often have difficulty in expressing requirements formally. By using a
CBR approach the user can sketch out simple, familiar behaviours and with these examples the
system is able to retrieve relevant cases and interactively produce a formal requirements sketch
capturing the new required behaviour. A case in the case library encapsulates a particular
formalised behaviour in a simple logic which is sufficient to capture the key dynamic
behaviours of the domain. With a simulator the user can evaluate the behaviour without being
confronted with the formal representation itself. Our domain is telephone features such as call
waiting, redirect call, call back. These telephone services are stored in the case library as
cases, each consisting of a set of transition rules. In previous papers we have described the
general architecture of the system (see for example [Funk & Robertson 1994]). In this paper

we focus on matching dynamic behaviour and the formal representation of the cases.

* This research was supported by the Marcus Wallenberg Foundation for Scientific Research and Education

and ERICSSON Utvecklings AB, Sweden.
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1. Introduction

The CABS system (see [Funk & Robertson 94]) approaches the design of formal
requirements specification of telecommunication services. The user gives coarse-grained
examples of the required behaviour, which are then matched against cases in a case
library in order to identify similar parts of previous cases (requirements specifications).
These previous cases are then used in the process of producing a new specification. This
approach reduces the effort required to produce requirements specifications since parts
of existing specified, tested and integrated specifications may be reused to construct the
requirements. This Case-Based approach relies on simple formal notation for features of
the cases, capturing the required dynamic behaviour. This notation enables the
comparison of cases with respect to these features, suggesting where they may exhibit the

same behaviour and where they might differ.

The CABS system aims to cover a small section of the domain of telephone service
requirements including the dynamic requirements of the services “redirect call”, “wake
up call” “call back”™, etc. These are examples of services which are frequently reused.
The case library contain cases which capture the behaviour of the requirements of a
specific telephone service. In this and similar domains, it is not merely a matter of
producing a new solution to capture the required behaviour of the new functionality, we
also have to specify the requirements of interaction with other services as well as
behaviour in exceptional circumstances. If we can reuse a past case in such a domain, we
may benefit from the fact that the case is already integrated with other services, and that

the behaviour of such exceptions may already have been specified.

This paper focuses on how to represent cases which themselves represent dynamic
behaviour, and also on the comparison of cases. A brief outline of the CABS system is
given in Section 2. In Section 3 the requirements of cases which capture dynamic
behaviour are outlined. Examples and an outline of the formal logic used to store cases
are given in Section 4. Section 5 discusses dynamic similarity measurements. Finally

Section 6 contains a brief summary and conclusions.
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2. Brief Description of the approach taken in CABS

In Figure 1 a brief overview of CABS is given, structured according to the four REs
(Retrieve, Reuse, Revise, Restore) [Aamodt & Plaza 94] in the case-based reasoning cycle.
In CABS the input is given as coarse-grained examples of the new behaviour. As
described in Figure 1, the input is translated into a representation in which the necessary
features for the matching can easily be accessed. In the matching process we identify
transition rules (explained in Section 4) capturing a similar behaviour. Thereafter the
modules (sets of transition rules) are ranked according to their similarity. The most
common situation will be that there is one single case in the case library close enough to
the new case to be used as a starting point for constructing new requirements
specification. In some situations there are sets of rules from different cases which are
similar to different parts of the input. They have to be merged and might need some
adaptation in order to produce a proposed solution which is consistent. The adaptation
might simply be to add a transition rule connecting two states not captured in the
retrieved case but captured in the input. Finally the proposed solution is tested and
further adapted to conform to the input example and the user’s intentions as closely as

possible.

The representation of cases as used in CABS needs to meet a number of requirements,
such as being able to reuse cases both in whole or in part, determine what parts of cases
differ and what parts are similar, and identify inconsistency between parts of cases
merged in order to produce a proposed solution. In the next Section we will outline the

main features of such a representation.
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Fig. 1. Overview over the CABS system

3. Representing Dynamic Reactive Behaviour

Representing dynamic behaviour is an active research area and formalisms like event
calculus, situation calculus, mt-calculus, petri-nets, CCS, etc. have been widely explored in
this context. These representations have the expressive power to reason about different

aspects of temporal behaviour such as communicating processes, history, indeterminism,
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events valid in an open duration, etc. However, we are not concerned with describing all
the possible behaviours of services — only an outline of the main features of their
behaviour, which can assist in identifying appropriate services. It is important that the
language we use should be simple enough to be communicated to non specialist users,
since they must ultimately approve the service specified. If we restrict ourselves to
specifying a single process which accepts discrete sequenced stimuli, a simple finite state
machine represented in predicate logic (Moor-automaton, see e.g. [Lewis &
Papadimitriou 81]) may be used.

This allows us to:

e store a particular behaviour in the form of a set of transition rules (a case).
* compare cases and determine if they capture the same behaviour.

¢ determine which parts of two compared cases correspond and which do not.
¢ produce a new behaviour by reusing parts of cases.

» determine which parts of the behavioural example given as input are covered by the

proposed solution, and which are not.

4. A Simple Logic Capturing Change

The language we use [Funk 93, Echarti & Stdlmarck 88, Gelfond & Lifschitz 93]
contains transition rules (R), stimuli, (S), atomic terms (A) and states (T), which are sets of
atomic terms. A stimulus is the only cause of change. Atomic terms are used to describe
a state or part of a state. A rule contains a set of preconditions (atomic terms). If the
stimulus S has occurred and the precondition is true, the conclusions are necessarily true

in the next state.
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State TO State T1
: Al & ... Aj-1
A1 &...An Stimulus S —# AO & not A
Transition Rule Rn: Aj+1& ... An
S & A1 &... Al
_)
AQ & not Aj

Fig. 2. Example of a transition.

State transition rules have been argued to be sufficient for outlining the main behaviour
of simple telephone services [Funk & Raichman 90] and we have used these to specify

16 different services. Following is a simplified example of a transition rule:

Stimulus :  dialling(A,Nr)
Precondition at T: answer_on(B,Nr) &
-~ redirect(Nr,Nr2)&
idle(B).
Conclusion at T+1:  calling(A,B) &
ring_tone(A) &
ring_signal(B).
Our syntax assures an ordered sequence of time points and restricts us to only having
preconditions about T and conclusions about T+1. This excludes reasoning about
anything other than the immediate past, but gives a simple and computationally efficient
implementation. Using predicate logic gives us access to a number of validation tools for
consistency checking, simulation, transformation etc. (see for example [Bundy 92]). We
may also add restricted natural language and graphical notations [Dalianis & Hovy 93,

Davis 90] in order to further aid the user in the validation process of a new service.

5. Similarity Measurement of Dynamic Behaviour

There are two steps in identifying useful cases: we have to identify similar cases, and

thereafter rank these cases according to how easily they can be adapted in order to
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produce a solution (see e.g. [Smyth & Keane 93]). To identify whether a case is similar

to the input behaviour we have to determine:
* which transitions of the input example are covered by the case.
* which state transitions are missing in the case.

* what extra information the case captures and whether this extra behaviour is of

interest for the proposed solution.

+ if state transitions in the input are not covered, are there transition rules close to the

input and are these candidates for adaptation.

The input examples are translated into partial transition rules — partial since it is
assumed that the input examples are not complete but merely an outline of the required
behaviour. Hence the partial rules’ preconditions may have missing predicates and the

conclusions may be incomplete.

If the matching algorithm (see [Funk & Robertson 1994] for the algorithm) does not
find an appropriate rule for a state transition we have to either adapt a similar rule from
the case library or use the transition rule generated from the input to fill the gap. This
allows us, at the very least, to come up with a suggestion capturing the same behaviour as

the input.

6. Conclusions

This paper has provided an overview of the different parts of a case-based reasoning
system supporting the reuse of telecommunication services based on requirements
expressed as dynamic behaviour. It has focused in particular on the representation of

cases and the matching of dynamic behaviour.

We have outlined how a simple logic is used to capture the behaviour of cases. Cases
are indexed using transition rules as features, which enables us to capture simple forms of
dynamic behaviour and compare cases with respect to their behaviour. This allows us to

reuse cases or parts of cases in order to produce a proposed solution.
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Abstract

Producing formal specifications within a suitable logical framework
has been used as a methodology for specifying systems with
exceptionally high reliability requirements. There are substantial
difficulties in scaling up the approach to complex real-world specifica-
tion tasks. It is time-consuming and tedious work to develop a formal
specification of some new demand, and often the connection with the
initially required behaviour is difficult to maintain. The addition and
integration of a new demand into the existing specification is a difficult
task, in which the risk of accidentally changing some previously
required behaviour is high. However, supporting the specification pro-
cess with case-based reasoning offers a number of advantages. First,
by providing a case library that stores both a required behaviour of the
system and its final representation, the connection between them can
be maintained. Similarly, previously successful modification and ex-
tension cases are identified and can be used and adapted to the
current task. Finally, we can test the modified specification by
verifying that previously required behaviours are covered, and thus
identify parts affected by changes (a simulator and a theorem prover
are implemented for this). Our example domain is the specification of
telecommunication network services. A decidable and deterministic
temporal logic is used as the representation. The system accepts input
in the form of behavioural examples, which are used to identify similar
cases in the case library. A set of domain-independent metrics based
on a set-theoretical approach and domain dependent global parame-
ters are used for fine-tuning matching between cases.

Keywords: case-based reasoning, behavioural examples, formal
specification, requirements capture, telecommunication, temporal
logic.
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1 Introduction

This paper addresses the process of producing, extending and
modifying a large formal specification of telecommunication network
services supported by case-based reasoning. A case-based specification
support system for creating and managing large formal specifications
is outlined. Input to the system consists of behavioural examples that
are parsed and translated into partial rules. This set of partial rules is
used to identify similar cases (rules and rule-sets) in the case-library.
A number of similarity metrics are used to produce an overall score for
each case. Finally, examples of how the solution is tested with the
implemented simulator and theorem prover are shown. The
implementation is done in Prolog.

The three main objectives of the system (called CABS) are: 1) to
develop a method for describing the required behaviour of the service
by giving examples, which are then used to retrieve similar cases; 2) to
define and implement a simple temporal logic sufficient for specifying,
validating and verifying simple telecommunication network services; 3)
to develop a technique for retrieving cases from the case library with

the help of similarity metrics.

Section 2 gives some background on telecommunication services, re-
quirements capture and formal specification, while section 3 gives an
overview of case-based reasoning. Section 4 gives a brief description of
the temporal logical language chosen as the representation. Section 5
deals with the identification of similar cases; 6 gives a brief
description of how to adapt an identified similar case to the current
task, and 7 gives an example of how to test the adapted case. Section 8

contains a brief summary and conclusions.

2 Formal Specification and
Telecommunication

In telecommunications, requirements for reliability and robustness are
extremely stringent. The increase in network services makes the
software in telecommunication system ever more complicated (they are
already regarded as some of the most complex man-made systems)

and any error in a new service may affect overall performance. Formal
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specification, in which specifications are presented within a logical
framework, is attracting increasing interest, both as a topic of research
and as a tool for industry. Formal specification gives us some
important advantages over specification that is presented informally.

A public telecommunication exchange contains a great many

different network services. Some common examples are:

o Normal Call

. Outgoing call Barring
° Do Not Disturb

° Call Waiting

e Call Hold Reminder

. Basic Diversion

o Diversion on Busy

° Diversion on No Reply
. Automatic Call-Back
. Inquiry

° Conference Call

. Call Transfer

. Hot Line

. Automatic Alarm Call
° Repeat Last Call

° A-number Transfer

. Televoting

o Queue

. Text messages between ISDN terminals

These services have all been specified with state-transition rules in an
earlier experiment [7]. By way of examples, we can take Do Not
Disturb. This is a service that can be activated and deactivated by the
subscriber dialling a service code. When it is activated, no incoming
calls can reach him. The caller may be told that this particular number
cannot be reached at the moment.

A specification is used to define behaviour that has to be
implemented in a system, often at great cost. Any faults in the

specification will show up much later and generate expensive redesign
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and reimplementation. In our domain this means redesign and
reimplementation of software and hardware. However, a formal
specification, beside being useful in a mapping process to generate
design and implementation of the system [11], may also be used to
eliminate faults at an early stage.

Large formal specifications have shown themselves to be difficult to
maintain and adapt to new demands; errors and inconsistency may be
introduced. However, by using similar service specifications as a
starting point, we may reduce the cost of producing new services and
restrict the risk of introducing errors and inconsistency, since a
previously specified service should already be properly tested and
integrated into the complete specification. There may be thousands of
similar services created for different markets and customers, and when
a new service is specified, CABS may, at best, identify an already
specified service that matches the new demand, or a service that needs

only minor adaptation.

The main task when developing a large system specification is to
change and add behaviour step by step (see Figure 1). A large system
must adapt to new demands, so changes must be made during its
entire life span. If we have an initial specification, Sy, and some ideas
for new behaviour in the system, we would like to update the
specification to cover this new behaviour, and if necessary, to change
previously existing behaviour in a controlled way so it will interact ap-
propriately with the new behaviour. By formalising these new ideas of
behaviour, we get a set, C, of behaviours that have to be integrated into
the existing specification. The process of deciding how the behaviour
formalised in C and Sp are to be integrated is one that requires a great

deal of manual effort.

Sn+1 = integrate(Sp, C)

As a rule, this process 1s commonly repeated continuously
throughout a large system's lifetime, and is therefore the main process
to support. In a large system this is a time consuming, costly and error-
prone process and the person integrating Sp and C needs to be familiar

with the complete behaviour of the system. We may think of the initial
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specification S1 as being the result of adding behaviour to the initially
empty specification Sy.

[dea for new
behaviour in the
system

Sketchine & Full and consistent
: specification of

concretising -
system S n

Changed or added

formal requirements C
for system behaviour

Integrate(S o C)

New, full and consistent
specification of
system Sn+1

Figure 1. Changing a specification.

The telecommunications domain has two attributes that make the
approach in Figure 1 particularly suitable. Firstly, each step in the
extension of the system is already nominally defined as a
telecommunication service. Second, it is already common practice to
describe new telecommunication services with an example that
illustrates the basic behaviour of the new service.

A model expressive enough to capture the relevant dynamic
behaviour of a telecommunication system offering network services is
shown in Figure 2. The response given to a stimulus is a message
(signal, tone, etc.). Another response from the system is that users are
put into speech connection with each other. This response is seen as a
command to a switch with the ability to perform a small set of tasks,
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such as connecting users with a channel of a certain bandwidth (speech
connection). Figure 2 illustrates how a stimulus triggers a state-
transition rule, which may cause a response from the system and move
the system to a new state t+1. To simplify the problem, states are
indexed by time points, which represent the smallest resolution in
discrete time handled by the system, and the stimuli are sequenced.
The process f uses the frame axiom to move all uncontradicted facts
from t to t+1 (see section 4).

Logical System

stimulus state transition rule 1:

sequencing : :
/' q el e . stimulus at time t+1 &

stimuli £ :
conditions at time t

>
@ response conclusions at t+1 &
< response at t+1
USers i *

switch

Facts at Facts at

connecting . :
time t time t+1

users

Figure 2. Model of the dynamic behaviour of telecommunication
network.

The system is structured according to network services, and each
network service contributes to a particular part of the overall be-
haviour of the system. This particular behaviour appears in the logical
system as a set of new or modified state-transition rules.

3 Case-Based Reasoning

Case-based reasoning is a method that uses conclusions drawn from
observing past successful cases to solve a current task. The case-based
approach is inspired by observations of human reasoning, which to a
large extent seems to rely on adaptation of past experience to current
problems [3]. A case-based reasoning system may also extend its own
performance, since each time the system is used the number of cases in
the case library will increase and so the system gains experience of the

past'.
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Figure 3 gives an overview of the general architecture of a case-based
reasoning system. First we have to identify the indices of the input
task that will be used to retrieve a similar case from the case library.
This similar case, or list of similar cases, may need to be adapted in
order to solve the current task. In most case-based reasoning systems,
testing the solution is a manual step in which the user has either to
accept or reject the solution. If he accepts the solution, it is added as a
new case to the case library. If he rejects it, the reason for rejection has
to be identified and either corrected or eliminated. The cause of the
failure may indicate that the indexing rules do not identify all the im-
portant indices in the task; therefore, the indexing rules have to be up-
dated. With this done, the system may propose a similar but better

case.
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Proposed
Solution
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Predictive
Features

Repair
(Correction)

T

Repair
Rules

Explanation

Analysis

Figure 3. General architecture of a case-based reasoning system [12].

A platform for a successful case-based reasoning system is based on
three conditions: 1) the domain has to be understood; 2) the index
mechanism has to be defined and implemented; 3) previous cases have
to be stored [9]. As mentioned, in the domain of telecommunication
network services it is already common practice to informally represent
examples of the services' behaviour. CABS uses formal behavioural
examples to create indices which will be used to identify similar cases
(described in section 6). We have used five cases to evaluate the

approach.
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4 Logical Framework

By choosing a temporal logic to represent the specification and cases,
we are able to reason about the specification. This is the main
advantage of logical formalism over other specification and pro-
gramming languages [1]). The kinds of reasoning we wish to do are:
verification (determining whether the specification implements the re-
quired behaviour); synthesis (synthesising specifications into a new
specification); transformation (transforming the specification into a
representation that uses less memory and/or time when simulated);
termination (showing that no deadlocks or loops exist); abstraction
(abstracting information from the specification about its type of in-
put/output, etc.) and consistency checking (proving that there are no
contradictory statements in the specification).

The logical language used here is partly based on the logical frame-
work called Loxy [4], which is tailored to contain the necessary expres-
siveness for the specification of reactive systems such as
telecommunications systems. The language may be compared to
Prolog, but it is different in that it handles change in a more explicit
manner, and has been made decidable by the introduction of certain
restrictions (see [10]). Only monotonic systems can be specified in this
logic, since logical formalism only allows new conclusions in a new
state; there is no mechanism to change or add any conclusions to a
previous state. If a specification is able to produce contradictory conclu-
sions, it is regarded as an inconsistent specification, see [8]. In a large
system with many states, the advantage of having rules —instead of
enumerating every state transition — is obvious (one rule may
represent hundreds of state transitions), and even in a medium-sized
specification, there will be many thousands of different states.

State-Transition Rules

In the logical formalism presented here, only state-transition rules can
make a dynamic change in the system. A state-transition rule is
always triggered by an external stimulus. Furthermore, a state-
transition rule always works on two adjacent world states, the current
(T) and the new (T+1). An example of a state-transition rule is:
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normal_dialling:
stimulus (occurred at T+1): dialling (X, Nr)
precondition (at T): dialtone(X) &
answer_nr (X2 ,Nr) &
~calling(z,X2) &
idle (X2)
conclusion at T+1: calling(X,X2) &
ringsignal (X2) &
ringtone(X) .
A rudimentary translation of this into English might look thus: If a
subscriber, X, dials a number, he will get a dial-tone. If we assume that
X2, to whom X rings, has an unengaged line, X2 will get a ring-signal,
and X will get a ring-tone (on translating rules from/to English see [5]

and [2]).

Intra-State Rules

The sets of axioms used to infer new facts inside a world state are
called intra-state rules. These axioms are necessarily true for all world
states. Thus, they can be seen as a definition of a conceptual model for
the domain. One advantage of sticking to a few types of intra-state
rules from which only a simple conceptual model can be constructed is
that the simple model is easily remembered by the person who makes
the specification, and the risk of mind-slips causing errors in the
specification is minimised. The two main intra-state rules are
'‘mutually exclusive' and 'general, predicate's, both of which are de-

scribed below.

Mutually Exclusive Predicates

We have exclusive sets of predicates where only one of the predicates
can be true for the same entity in the same state, according to the
conceptual model of the domain. An example of this is the set of tones,
where only one tone can be heard at a time by the same user in a
particular state, T. The following example shows an example with the
syntax chosen for declaring mutually exclusive predicates:

xor ([dial_tone(A), busy tone(A), ring tone(A)]).

In English this means that it is only possible for a entity A to have one
of the three attributes.
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General Predicate Names

Since state-transition rules represent possible state transitions from a
set of states to a subsequent set of states, the need for general predi-
cates arises. The following is the definition of the general predicate,

tone:

is_a(tone(A), [dial_tone(A),busy_tone(A),ring tone(A)])

This means that if A has one of the three attributes, then it also has
the attribute tone.

5 Identifying Similar Cases

Input to the system is given as behavioural examples. The example
below shows minimal behavioural examples containing one stimulus, a
partial-start state and an end state. A partial state is expected to be
under-specified, hence a traditional rule-induction approach will be dif-
ficult to apply [6].

We start by choosing the option to specify a new behaviour. We then
give as input an example illustrating the behaviour we would like to
specify. In most cases, a behavioural example will involve several

stimuli and several complex states:

nra>specify.
Give a service example (start-state -- stimulus -> next-state
o)

mon> idle & ~calling -- offhook -> dialtone.

The example of behaviour given above simply asserts that if the state
contains an idle entity and no one is calling this entity, if the state
perceives an off-hook, the result will be a dial tone. The system will use
this sketch of the behaviour to identify similar state-transition rules in
the case library and the most similar rule-set (a service). The two types
of case in the case library, the rules and the rule-sets, provide a way of
modularising the behaviour of the specified system. The first step is to
produce something that can be used to identify similar cases, therefore
the behavioural examples are translated into a set of partial rules (as
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there is only one stimulus in our example, only one partial rule is

generated):
partial rule:
stimulus (occurred at T+1): offhook
precondition (at T): idle & ~calling
conclusion at T+1: dialtone.

To simplify the explanation, we assume that there are only three cases
in the case library: two state-transition rules and a rule-set containing
these two rules:

normal_offhook:
stimulus (occurred at T+1): offhook (X)
precondition (at T): idle(X) &
~calling(z,X) &
~inspeech (Y, X)
conclusion at T+1: dialtone(X).
In English: if off hook is received from X and X is idle and no
one is calling X and X is not in speech connection then the
result is that X has dial tone.

dialling_busy:

stimulus (occurred at T+1): dialling(X,Nr)
precondition (at T): dialtone(X) &
answer_nr (X2,Nr) &
~idle(X2)
conclusion at T+1: busytone (X)

called_busy(X,Nr) .
In English: if X dials a number Nr and X has a dial tone and
there is a subscriber X2 having this number as answer number
and X2 is not idle then X gets a busy tone and we know that X
called a busy number Nr.

Rule-Set : normalcall {normal_offhook, dialling busy}.
In English: The ©rule-set normalcall contains two state-
transition rules: normal_offhook; dialling_ busy.

By treating the stimulus, preconditions and conclusions as three sets
of predicates, we arrive at a set-theoretical approach (based on sets) to
calculate how similar two rules may be. Given a partial rule and a rule
from the case library, similarity is determined by matching each part
of the two rules (i.e. the stimulus, the preconditions and the

conclusions).

The coverage of the partial rule is called the ICP (intersection
coverage of a partial rule) and is calculated by the formula: ICPi = 100
* Length(Ii) / Length(P1), where Length is the number of predicates and
i is an index denoting the rule part ( stimulus s, precondition p or
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conclusion c). Iis the intersection between the rule part in the rule M
from the case library, and the partial rule P generated from the
behavioural example. The coverage of the matching rule is called the
ICMi and is given by: 100 * Length(l1) / Length(Mi).

There is also a measurement for the number of predicates that occur
as negated predicates in the corresponding rule part. This information
is useful in the final scoring since a matching rule containing the
negation of a predicate occurring in the corresponding part of the
partial rule can never cover the behaviour described by the partial rule.
If the rule, M, from the case library is the rule named 'offhook' the
different sets to match are:

Table 1. The different sets

Ms = {offhook} Ms = {offhook}
Pp = {idle, -~calling} Mp = {idle, ~calling, ~inspeech}
Pc = {dialtone} Mc = {dialtone}

The calculation of the domain-independent weights of all three rule

parts gives:

Table 2. Similarity between rule parts

SEAREINE . o v wsereie s e hs s ICP = 100 ICM = 100 Neg = 0
precondition . ......ciiiennnn ICP = 100 ICM = 67 Neg = 0
conelusion i ¢5 Sk es neeed e 0 e ICP = 100 ICM = 100 Neg = 0

These values are used for producing an overall score for the matching
rule result. This final domain-dependent scoring is governed by a
number of global parameters, and in this example the three parts
contribute equally to the final score. How a rule part, that contains a
negated predicate in the corresponding part of the matching rule,
affects the total score, is determined by another global parameter, see

[8].

If the global parameters are configured in such a way that each part
contributes one-third to the overall score (assuming that each rule part
1s equal in weight when producing the overall score), the overall ICP for
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the rule 1s 100 * 1/3 + 100 * 1/3 + 100 * 1/3 = 100 and the overall ICM =
100 * 1/3 + 67 * 1/3 + 100 * 1/3 = 89.

Similar rules are:

ormadl. BFEReDk. Tl mr o it ICE: = 100 ICM = 89
The same calculations performed on dialling busy gives:
(6 e Ul B L B s ) G- e S T e et ety LSV ICP: = 0 IcCM = 0

Most similar service is: normalcall

The rule-set normalcall is identified in the case library, and is
defined as the set of rules {normal_offhook, dialling busy}. Since the
rule normal_ofﬂiook 1s a member of this set, and no other rule-sets
exist, the identified rule-set is the best match. Scoring the best service
1s calculated in a way similar to that used for identifying similar rules.

6 Adaptation

The next task is to adapt the identified case from the case library to
the current problem. The conceptual model (intra-state rules) may also
need to be extended. These steps have not been automated, and it is
difficult to do so for three reasons: 1) it is assumed that the given
behavioural examples do not describe the full behaviour required; 2) in
the current implementation, negative examples are not handled,
therefore unwanted behaviour must be excluded manually by adding
restrictions to the state-transition rules; 3) it is not expected that a
'100 per cent' match will be found in a realistic domain. When adapting
the set of rules to the current task, some case-based systems use
critiquing of the solution by identifying similarities and differences
between the manually produced solution and similar cases. Ideas on
how to partly automate the adaptation process are given in [8].

7 Testing the Solution

The obvious initial test to perform is one that will determine whether
the behaviour specified by the behavioural examples is covered by the
produced solution. If not, the adaptation has not been successfully
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completed. The set of rules should be tested until the user and, if
possible, the end user are completely convinced that the set of rules
reflects the intended behaviour.

Both the theorem prover and the current version of the simulator
need some initial facts to start with. In our example, we have one

subscriber, al, which is idle at the initial state (called 'time 0'):

nnn>facts. (Command to list facts)
Facts at time 0, (initial facts)
subscriber(al)
answer_nr(al,111) (the subscriber al has an answer number 111)

idle(al)

Simulator
The simulator also requires a set of rules and intra-state rules. When
the simulator is given some stimuli, it applies all the state-transition

rules and intra-state rules.

The following is an example of simulator use, with some clarifying

comments.

Our example specification has a simple conceptual model with two intra-

state rules:

aox>1if. (Command to list all intra-state rules)
is_a(tone(a), [dial_tone(A), ring_tone(aA)]). {1}
xor ([idle(A),tone(A)]). {2}

The state-transition rules and rule-set in the case library are shown in

section 6.

If we want to simulate that subscriber al goes off-hook at time point 1, we
write:

npo>o0(l,0ffhook(al)).
Signal :offhook received.

All preconditions for the state-transition rule normal_hook are true at
time point 1 (idle(x) &~calling(z,X) & ~inspeech(Yy,X)) and hence the rule is
triggered
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Rule: normal_offhook triggered.

The fact dial_tone(al) is a direct conclusion of the triggered rule. "Not
true anymore: idle(al)" 1is derived from our conceptual model
(intra-state rules). dial_tone(X) "is_a" tone(X) (from {1}) and tone
i1s "xor" with idle (X) (from {2}). Hence idle (al) cannot be true.

New facts at time point = 1
New fact: dialtone(al)
Not true anymore: idle(al)

The simulator has now triggered all the rules with off_hook as their
triggering condition, and all their preconditions true. The next test is to
let subscriber al call his own number 111, which should result in a
busy tone if the service reflects our intention, which it does:

non>o0(2,dialling(al,111)).
Signal :dialling received.
Rule: dialling busy triggered.

New facts at time point = 2
New fact: busytone(al)
New fact: called _busy(al,111)

Theorem Prover
When the service has been shown to meet the user's and the end user's
intentions in the simulation, we may also use the theorem prover to
prove different properties about the simulations. Since the simulator
stores all traversed world states until it is explicitly reset, the user can
use the theorem prover to reason about these states. In our
simulation, we have only traversed three states:

stimuli received: stimuli received:
initial facts offhook(al) dialling(al,111)
Facts at time O: Facts at time 1: Facts at time 2:
dialtone(al) busytone(al)

subscriber(al) ;
answer_nr(al,111) subscriber(al) > subscriber(al)

idle(al) answer_nr(al,111) answer_nr(al,111)
called_busy(al,111)

Triggered rule: Triggered rule:
normal_offhook calling_busy
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Figure 4. Facts after the simulation

In any realistic simulation, more than one subscriber will be involved,
and hundreds of states may be traversed before a specified service is
regarded as having been properly tested in the simulator. There are a
number of general questions that should be asked to ensure that
changes made in the specification have not disturbed the normal
operation of the system. These questions may include: Is there any
state in which a particular subscriber has been in speech connection
with himself?'; Ts there a state the user cannot go on-hook. Our first
example below identifies a state in which an off hook made by al
resulted in a dial tone:

poa>o(Tl,o0ffhook(al)) & p(Tl,dialtone(al))?
Proved at time 1

All states searched.

The next question is of a more general nature, and asks whether there
are any traversed states in which the subscriber has gone on hook and
been put into idle as a result. If such a state is identified, there is
obviously an error in the specification.

nan>0(Z,onhook(al)) & ~p(Z,idle(al))?

All states searched.

The theorem prover tries to prove facts by using conclusions that can
be derived from state-transition rules or intra-state rules. First, it
tries to establish if something is true in the state itself. If this fails, it
tries to prove the fact by applying the intra-state rules. If the fact
cannot be proved in the world state or by applying the intra-state rules,
the fact is assumed false by 'negation as failure'. The theorem prover is
very efficient and will give an answer at a low computational cost even
if the domain is reasonably complex. The price to pay is that there is no
way of defining loops or recursive definitions. This price may seem
great, but it has shown to be sufficient for the 19 different specifyed

telecommunication services that use our current state-transition rules

[7].
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8 Conclusion

To evaluate our approach we implemented a prototype of some of the
essential parts of a case-based reasoning system for supporting the
specification of large systems. A simple but sufficient temporal logic
was defined and implemented. The temporal logic (to a grate degree
similar to Loxy) seems to possess useful properties such as being
computationally efficient, sound, decidable, and completel, as well as
offering an approach that can be used to decide if a specification is
consistent or not. This gives a platform for future development of
formal reasoning about the specification, ie. proving different
properties, combining several specifications into one new specification,
abstracting information about a specification and transforming a
specification into a representation that uses less time and memory

when simulated.

A set of metrics for similarity measurements between behavioural
examples and state-transition rules or rule-sets was implemented on a
set-theoretical basis. A set of global parameters controls how the final
scoring of a match is calculated from the set of well-defined metrics.
Some initial service specifications have been produced and put in the
case library as test-cases. For a full evaluation, still more services
have to be specified.

The matching subsystem will always have a heuristic component
when it calculates the final scoring from the metrics. The global
parameters need to be tuned for different domains. Here, a more
encompassing example would help the evaluation of the metrics and
global parameters. They may need to be revised and extended to
produce a good result.

Although CABS is at an early stage in its development, it
demonstrates how taking a case-based approach can assist in reducing
the problems associated with the modification of large-scale formal
specifications of telecommunications services. If successful, this
approach may lead in the future, to great reduction of the time used to

11f used with an appropriate proof strategy.
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specify, design, adapt and integrate new demands into reactive sys-

tems.

(1]

(2]

3]

[4]

[6]

[7]

(8]
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