

Scanned as part of the PhD Thesis Digitisation project
http://libraryblogs.is.ed.ac.uk/phddigitisation

Title CABS : a case-based and graphical requirements capture, formalisation and
vertification system

Author Funk, Peter J.

Qualification PhD

Year 1999

Thesis scanned from best copy available: may

contain faint or blurred text, and/or cropped or

missing pages.

Digitisation Notes:

• Pages 42, 58, 192, 208 and 292 missing from original

• Page 183 is page 41 in original

• Page 41 appears twice

http://libraryblogs.is.ed.ac.uk/phddigitisation

CABS: A Case-Based and Graphical Requirements
Capture, Formalisation and Verification System

Peter J. Funk

/ N ?

Ph.D.

University of Edinburgh
1998

Abstract

The use o f formal specifications based on varieties o f m athem atical logic is becom ing

com m on in the process of designing and im plem enting safety critical systems and

practices for hardware design. Form al m ethods are usually intended to include in the

specification, all the im portant details of the final system in the specification, with the aim

of proving that the specification possesses certain properties and lacks other unw anted

properties. In large, com plex systems, this task requires sophisticated theorem proving,

which can be difficult and com plicated. Telecom m unications system s are large and

com plex, m aking detailed formal specification im practical given current technology .

However, formal “sketches” o f the behaviours the services provide can be produced, and

these can be very helpful in locating which service m ight be relevant to a given problem.

This thesis describes CABS, a case-based approach that uses coarse-grained graphical

requirem ents specification sketches, to outline the basic behaviour o f the system 's fu n c

tional m odules (called services), thereby allowing us to identify, re-use and adapt re

quirem ents (from cases stored in a library), to construct new cases. The m atching

algorithm identifies sim ilar behaviour between the input exam ples and the cases stored in

the case library. By using cases that have already been tested, integrated and im

plemented, less effort is needed to produce requirem ents specifications on a large scale.

Using a hypothetical telecom m unications system as an exam ple, it will be shown that a

com paratively sim ple logic can be used to capture coarse-grained behaviour and how a

case-based approach benefits from this. The input from the exam ples is used both to

identify the cases whose behaviour corresponds most closely to the designer's intentions,

and also in the process of adapting, validating and, finally, verifying the proposed

solution against the examples.

I declare that this thesis has been composed by

myself and that the work described in it is my own:

(Peter J. Funk)

Acknowledgements
First of all I would like to express special gratitude and thanks to my supervisors, Dave

Robertson and Gillian Flayes for their valuable feedback, guidance and encouragem en t

during the years. I also want to thank the M arcus W allenberg Foundation (Bengt Gallm o)

and Ericsson which contributed a significant part o f the funding, and I want to especially

thank M ikko Andersson for sharing his experience and helping with practical details. I

would like to thank all my colleagues at Ericsson, and in particular all those who worked

in the departm ent for com puter science research (TR). Two people I wish to m ention

especially are the late B engt-G unnar M agnusson and Nils Skoglund, with whose

friendship I have been honoured and who encouraged my interest in research and its

application.

I would also like to thank Judith Good, W illiam Chesters and Enrique Filloy fo r

friendship, interesting discussions and also valuable com m ents on my ideas, research and

writing. I will always rem em ber these years as some of the most exciting and stim ulating

years o f my life. Last but not least, I wish to express my gratitude to my parents, my

sister Claudia, niece Sandra, nephews Daniel and Andreas and also A lison for their

encouragem ent over the years.

Finally, I wish to thank Professor Tom Addis and Dr. John Lee for agreeing to form ally

examine this thesis and valuable com m ents on the thesis.

Contents

1. INTRODUCTION...1

1.1 F u n c t io n a l R e q u ir e m e n t s , P r o b l e m s a n d B e n e f i t s .. 2

1.1.1 Previous Experience and Domain Related Problems.. 4

1.2 C a p t u r in g a n d F o r m a l is in g R e q u ir e m e n t s ...6

1.2.1 Identifying Similar Behaviour..7

1.3 A S c e n a r i o S h o w in g h o w CABS m a y b e U s e d .. 8

1.3.1 From Service Idea to Formalised Requirements.. 8

l .4 St r u c t u r e o f T h e s is ..12

2. BACKGROUND... 13

2.1 R e q u ir e m e n t s E n g in e e r in g ...13

2 .2 F o r m a l M e t h o d s ..15

2.2.1 Issues o f Formal Methods and their Relation to this Research...18

2.3 T e l e c o m m u n ic a t io n s a n d F o r m a l R e q u ir e m e n t s .. 22

2.3.1 Specifications in Telecommunications...2 7

2 .4 G r a p h ic a l N o t a t io n s .. 28

2.4.1 Petri nets... 32

2.5 C a s e - B a s e d R e a s o n i n g ... 34

3. INTRODUCTION TO CABS... 37

3.1 O u t l i n e o f t h e CABS S y s t e m ... 38

v

VI CONTENTS

4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR.........................4 3

4.1 A N o d e .. 49

4.1.1 Creating N odes ... 50

4.1.2 Details fo r Nodes...50

4 .2 A L in k ..53

4.2.1 Defining or Refining Links..54

4.3 T h e U se o f G r a p h ic a l In p u t E x a m p l e s in C A B S .. 57

5. CASE LIBR ARY... 5 9

5.1 T e r m s ... 61

5.1.1 Significance o f Term Names.. 65

5.1.2 Instances, Arguments and Sorts... 66

5.1.3 Constraints on Terms...68

5.1.4 Response Terms (Externally Visible)...70

5.1.5 Stimulus Terms (External Input) ...70

5.1.6 A State is a Set o f Statem ents ...71

5.2 T r a n s it io n R u l e s ..71

5.2.1 Recursive Behaviour in Requirements...74

5.2.1.1 E xam ple o f E xpanded R e cu rs io n ..75

5.2 .1 .2 E xternal R ecu rs io n ..7 6

5.2.2 Parallel Transition Rules and Order Independence...78

5.3 St r u c t u r in g F u n c t io n a l it y in C a s e s .. 78

5.3.1 Case Relations...83

5.4 S y s t e m R e q u ir e m e n t s (S e ts o f C a s e s) .. 83

5.4.1 Different Application D om ains... 85

5.4.2 Priority fo r Transition Rules in System s ..86

5.5 G r a p h ic a l In p u t E x a m p l e s ..88

5.6 St o r in g a n d R e - u s in g T e st C a s e s ... 88

6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR.......................... 8 9

6.1 D e f in in g S im il a r B e h a v io u r ..93

6.2 U s in g P a r t s a n d S ets t o A n a l y s e S im il a r it y ... 96

6.3 T r a n s l a t in g C o m p a r is o n s t o V a l u e s ..100

6 .4 F e a t u r e s fo r M e a s u r in g C l o s e n e s s o f B e h a v io u r .. 102

6.5 O v e r a l l S c o r e fo r M a t c h in g .. 110

6.5.1 Scoring a Match Between Link/Transition Rule ...110

6.5.2 Scoring a Matching Case... 116

6.6 P r e s e n t a t io n o f M a t c h in g R e s u l t s ...118

7. THE REQUIREMENTS DESIGN PROCESS IN CABS..121

7.1 Id e a f o r N ew B e h a v io u r ...125

7.1.1 Revising an Idea fo r Behaviour...125

7.2 D e f in in g O n t o l o g y ... 126

7.3 E x p r e s s in g a n I d e a w it h In p u t E x a m p l e s ..127

7.3.1 Refining Input Examples... 127

7 .4 M a t c h in g In p u t E x a m p l e s A g a in s t t h e C a s e L ib r a r y a n d S e l e c t in g a S o l u t io n 127

7.4.1 Prepare fo r Match or Re-match .. 128

7.4.2 Selecting a Proposed Solution..729

7.4.3 Adapting a Close M atch .. 729

7.4.4 Generating a New C ase ..130

7.5 V a l id a t in g a P r o p o s e d S o l u t io n ...131

7.5.1 Revising a Solution ... 734

7 .6 A u t o m a t ic a n d In t e r a c t iv e V e r if ic a t io n o f R e s u l t s ...135

7.6.1 Generating Test Cases from Input Exam ples.. 136

7.6.2 Verifying a Test Case Against Formalised Requirements...137

7.7 R e v is in g a n d R e f in in g t h e S o l u t io n ... 140

8. EVALUATION OF CABS.. ...

CONTENTS VH

Vin CONTENTS

8.1 I s s u e s t o E v a l u a t e in C a s e - B a s e d R e t r i e v a l ..142

8.2 E v a l u a t io n o f R e t r ie v a l a n d S o l u t io n A s s e s s m e n t ... 145

8.3 S e l e c t io n o f In p u t E x a m p l e s a n d T a r g e t C a s e s ..147

8.4 E v a l u a t io n o f t h e M a t c h in g A l g o r it h m ... 149

8.4.1 Over-Diffuse Identification o f Solution ..153

8.4.2 Conclusions fo r Match Evaluation..155

8.5 E v a l u a t io n o f A u t o m a t ic V e r if ic a t io n .. 157

8.5.1 Reducing the Need fo r Refinement..160

8.5.2 Conclusions fo r Verification.. 161

8.6 S u m m a r y o f E v a l u a t io n R e s u l t s ... 161

8.7 C o m p u t a t io n a l T im e fo r t h e M a t c h ... 162

9. FURTHER WORK AND EXTENSIONS...165

9.1 U s in g Ic o n s f o r T e r m s a n d S it u a t io n s ...165

9.2 M a p p in g S p e c if ic a t io n A g a in s t D e s ig n O b j e c t s ... 167

9.3 U s in g CABS f o r O t h e r A p p l ic a t io n D o m a in s ... 168

9.3.1 Object Oriented System Specifications... 169

9 .4 S im u l a t io n w it h C o n n e c t e d T e l e p h o n e s ...169

9.5 A d d in g a T h e o r e m P r o v e r t o CABS...170

9.6 A n a l y s in g In t e r a c t io n B e t w e e n M o d u l e s .. 170

9.7 G e n e r a t in g C o d e f r o m S t a t e -B a s e d R e q u ir e m e n t s .. 171

9.8 R e -U s e o f S y s t e m D e v e l o p m e n t P r o c e s s e s ... 171

9.9 R e - U s e o f SDL... 172

10. SUMMARY AND CONCLUSIONS... 173

10.1 S u m m a r y o f W o r k ...174

10.2 L i m i t a t i o n s ...176

10.3 F u t u r e W o r k ..176

11. BIBLIOGRAPHY... 177

APPENDIX A, LOGICAL FORMALISM... 193

APPENDIX B, GLOSSARY... 205

APPENDIX C, CASE LIBRARY USED FOR EVALUATION..................................... 20 9

APPENDIX D, INPUT EXAMPLES USED FOR EVALUATION...................................2 45

APPENDIX E, PUBLISHED PAPER 1..2 73

APPENDIX F, PUBLISHED PAPER 2..2 93

APPENDIX G, PUBLISHED PAPER 3 .. 3 03

CONTENTS IX

X CONTENTS

List of Figures

F ig u r e 1.1: F r o m a n id e a v ia f o r m a l is e d r e q u ir e m e n t s s k e t c h e s t o a f u l l s p e c if ic a t io n 9

F ig u r e 2 .1 : I n p u t e x a m p le in CABS a n d P e t r i n e t e x a m p le ...34

F ig u r e 2 .2: G e n e r a l a r c h it e c t u r e o f a c a s e -b a s e d r e a s o n in g s y s t e m . A d a p t e d fr o m

[A a m o d t , P l a z a 9 4] ... 35

F ig u r e 3.1: O u t l i n e o f t h e CABS a p p r o a c h ..40

F ig u r e 4 .1 : A g r a p h ic a l in p u t e x a m p l e e x e m p l if y in g a b a s ic b e h a v io u r fo r t h e s e r v ic e

BASIC CALL...45

F ig u r e 4 .2: T e x t u a l r e p r e s e n t a t io n o f in p u t e x a m p l e ..47

F ig u r e 4 .3: S e l e c t n o d e n a m e f o r in p u t e x a m p l e ..50

F ig u r e 4.4: E x a m p le o f a d e t a i l e d n o d e d e s c r ip t i o n in CABS...52

F ig u r e 4 .5: S e l e c t s t im u l u s n a m e f o r n e w l in k fo r in p u t e x a m p l e .. 54

F ig u r e 4 .6: A n e x a m p l e o f a d e t a il e d t r a n s it io n l in k d e s c r ip t io n in C A B S56

F ig u r e 5 .1: O v e r v ie w o f c a s e l ib r a r y ..61

F ig u r e 5.2: A n e x a m p le o f a t e r m d e f i n i t i o n in t h e CABS s y s t e m ..65

F ig u r e 5 .3: R e l a t io n t y p e b e t w e e n a r g u m e n t s in a t e r m w it h t w o a r g u m e n t s69

F ig u r e 5 .4: M o d e l o f t h e d y n a m ic b e h a v io u r o f t e l e c o m m u n ic a t io n s n e t w o r k 72

F ig u r e 5.5: T r a n s i t i o n r u l e e x a m p le in CA BS ..73

F ig u r e 5 .6: E x t e r n a l r e c u r s io n ... 77

F ig u r e 5.7: T h e c a s e w in d o w in CABS ..81

F ig u r e 5.8: S y s te m w in d o w in CABS ...85

F ig u r e 5 .9: P r io r it y w in d o w in C A B S ..87

F ig u r e 6 .1: S e l e c t in g in p u t e x a m p l e s t o m a t c h ... 90

F ig u r e 6 .2: O u t l in e o f m a t c h in g a l g o r it h m .. 91

F ig u r e 6 .3: P o s s ib l e c o m p a r is o n s b e t w e e n pa r t s in l in k a n d t r a n s it io n r u l e99

F ig u r e 6 .4: E x a m p l e s o f d if f e r e n t m a t c h e s w h e n c o m p a r in g pa r t s (s e t s)102

F ig u r e 6 .5: F l o w d ia g r a m fo r l in k /t r a n s it io n r u l e m a t c h ...112

F ig u r e 6 .6: P a r a m e t e r s fo r t r a n s it io n r u l e m a t c h ... 114

F ig u r e 6 .7: A m a t c h o f a c a s e a n d a n in p u t e x a m p l e ..116

F ig u r e 6 .8: P a r a m e t e r s f o r c a s e m a t c h ...118

F ig u r e 6 .9: P r e s e n t a t io n o f r e s u l t fr o m m a t c h ...120

F ig u r e 7 .1 : O v e r a l l pr o c e s s fr o m id e a o f b e h a v io u r t o f o r m a l is e d s o l u t io n124

F ig u r e 7 .2: E x a m p l e o f s im u l a t io n w in d o w in C A B S ..133

F ig u r e 7 .3: E x a m p l e o f v e r if ic a t io n w in d o w in C A B S ...139

F ig u r e 8.1: A v e r if ic a t io n v ie w o f C A B S .. 146

F ig u r e 8.2: in p u t e x a m p l e b a s ic _ e x a m p l e _ 0 ..148

F ig u r e 8.3: M a t c h r e s u l t f o r in p u t e x a m p le a _ c a l l _ r e m in d e r _ e x a m p l e ...150

F ig u r e 8.4: M a t c h in g t im e m e a s u r e m e n t s , 32 c a s e s , 225 t r a n s it io n r u l e s164

F ig u r e 9 .1: I d e a o f g r a p h ic a l r e p r e s e n t a t io n o f t e r m s /n o d e s / l in k s .. 166

CONTENTS XI

xn CONTENTS

List of Tables

T a b l e 8.1: T h e f iv e m a in is s u e s t o b e e v a l u a t e d ... 143

T a b l e 8.2: In p u t e x a m p l e s a n d t a r g e t c a s e s .. 149

T a b l e 8.3: M a t c h r e s u l t f o r in p u t e x a m p l e s ...152

T a b l e 8.4: G e n e r a t e d t e s t c a s e s a n d t h e ir su c c e s s r a t e ... 159

Chapter:

1. Introduction

R equirem ents play an im portant role throughout system developm ent and the lack o f

validated, verified and easily accessible requirem ents has been suggested to be one o f the

main areas o f focus in requirem ents engineering [Bubenko 95]. S tate-based m odelling is

one o f the ways used in practice to tackle this. A conventional use for state-based

modelling in telecom m unications services is in describing the precise behaviour o f those

services. U nfortunately this form o f detailed m odelling is prohibitively expensive fo r

realistically sized problem s. This thesis describes a different role fo r state based m odels -

not as precise behavioural descriptions but as "sketches" o f key features required by a

client. These features are used by a case-based reasoning (CBR) system to suggest

existing services which m ight be adapted to the clien ts’ needs.

The core o f the thesis is in the CBR m atching system but, in order to provide this, we

need to solve a set o f subsidiary problem s: how to describe required behaviours at an

appropriate level o f detail (just sufficient to discrim inate cases); how to refine the inpu t

examples if (as is likely) the first draft o f this isn ’t sufficient; how to test if the requ ired

behaviour is included in the proposed and selected solution (by sim ulation and

autom ated verification identifying where the behaviour differs).

1

2 CHAPTER 1. INTRODUCTION

1.1 Functional Requirements, Problems and Benefits

The application dom ain that has been chosen is telecom m unications services and, in

particular, telephone services. Telephone services are a non-trivial dom ain where

hundreds of different services and variants of services have been im plem ented in

telecom m unications switches and where the num ber o f services and dem and for new

services is increasing. M ost big telecom m unications com panies have tried to apply

formal methods to the specification of telecom m unications services, due to the stringent

requirem ents for reliability in telephone networks and, in particular, the dem and that no

additional functionality should affect the basic functionality, such as calling an

emergency service. The application dom ain is in fact so com plex and large, that form al

requirem ents specifications have not been applied in practice. In the 1970s, research

started in earnest on form ally specifying systems and, by the late seventies and early

eighties, industry assum ed that research progress was sufficient to bring the know ledge

and research results into practical use [Hsia, Davis, Kung, 93]. A num ber o f large scale

projects were initiated to introduce formal requirem ents specifications. In m ost areas,

formal m ethods did not deliver on their early prom ise [Zave 91]; a num ber o f

explanations for this are given in [Hall 90],

The size of the application dom ain (functional requirem ents o f telephone services) used

for reference in this research, is large enough to be non-trivial and to confront a n u m b er

of issues arising from a full scale application. Seventeen behavioural outlines o f

telecom m unications services (the behaviour seen from the point o f view o f a phone user

without describing any of the com plex behaviour occurring in the telecom m unications

network) have been form alised and used in evaluation. Each service contains a nu m b er

of transition ru les1, representing the behaviour o f the service, and a num ber o f term

definitions connecting the specification o f the system to its environm ent.

1 Transition rules and term definitions will be explained in Chapter 5.

CHAPTER 1. INTRODUCTION 3

M ainstream requirem ents capture tools in telecom m unications are inform al and

m ethodology centred and do not require any particular notations o f form alism s

(E ricssons2 PROPS m ethod for exam ple). In the state o f the art requirem ents cap turing

tool Rational Rose use-cases are used to capture an initial sketch o f the behavioural

requirem ents. Rational Rose will be introduced at Ericsson to be used as their m ain

requirem ents capturing tool. Use-cases capture exam ples o f behaviour. D ifferent

notations can be used in the m ethod depending on the application dom ain and user

preferences. For exam ple the unified m odelling language, UM L, is recom m ended fo r

static m odelling o f objects and their relations. Inform al requirem ents in

telecom m unications have in a num ber o f cases been shown to be expensive (for an

unconfirm ed exam ple se Section 2.3.1), leading to legal problem s over the exact

m eaning o f the inform al requirem ents once a functionality is delivered that does no t

m eet the custom ers expectations. Inform al requirem ents have also led to

m isunderstandings in the design and im plem entation, causing serious problem s, faults

and down time in telecom m unications system s (an exam ple o f this is given in C hapter 2).

It has been claim ed that poor quality software is costing UK industry £2000 m illion

every year, and that m any failures have their roots in inform al requirem ents and

specifications [Schofield 92],

These problem s are the main reasons for the interest in form al m ethods from m ajor

telecom m unications com panies. Form al specifications based on varieties o f m athem atical

logic are being used m ore frequently in the design o f safety critical systems. Form al

m ethods are usually intended to include all im portant details o f the final system in the

specification, with the aim o f proving that it possesses certain properties and does not

exhibit other unw anted properties. Fully form alised requirem ents are today m ostly used

for well isolated problem s where the num ber o f states are less than a few thousand, fo r

exam ple used in protocol specifications. It is believed that a w ider use o f form al m ethods

Ericsson is one of the largest communications supplier for network operators, service providers,

enterprises and customers and employees more than 100,000 people in 140 countries.

2

4 CHAPTER 1. INTRODUCTION

would reduce problem s caused by textual requirem ents and formal specifications are

successfully used for m any different tasks, but limitations in tools and graphical

notations limit their use today [Jensen 97]. Telecom m unications services in general

include hundreds o f thousands o f states and have been resistant to such rigorous

methods. Isolated parts o f the behaviour o f services have been form alised but even here

the num ber o f states has been exceeding the limit o f perform ance o f available tools

[Capellmann, Christensen, Herzog 98]. M ajor telecom m unications com panies started

investigating form al m ethods thoroughly in the eighties ([Zave 91], [Funk, Reichm an 90]

[Kelly, N onnenm an 91]) but none use formal m ethods routinely in service and feature

requirem ents. In large, com plex systems, this task requires sophisticated theorem proving,

which can be difficult and com plicated. Telecom m unications systems are large and

com plex, m aking their detailed form al specification im practical with current technology.

Sometim es, the form alism or com bination o f form alism s is so com plex that even experts

in formal m ethods find it difficult form ally to represent some aspects of the system to be

specified [M ataga, Zave 93]. Some researchers doubt that existing m ethods will scale up

to such com plex system s [Heimdahl, Leveson 95],

1 .1 .1 Previous Experience and Domain Related Problems

In 1985 Ericsson Research & Developm ent started to explore form al m ethods in detail.

In autumn 1985 I was em ployed in an industrial project at Ericsson at the departm ent o f

com puter science involved with the task o f bringing formal specification into use in

industry for the specification o f com puter based systems. During the following six years,

we collaborated with the University o f Stockholm, the University o f Uppsala, S tanford

University and the Swedish Institute o f C om puter Science (SICS), am ongst others. T he

main task was to develop a formal notation and im plem ent a prototype to explore the use

of formal m ethods in industrial applications such as telephone service requirem ents. A

large coarse grained formal specification o f sixteen telephone services3 was m ade [Funk,

Raichm an, 90] w here the main behavioural requirem ents o f the services where captured.

M ost effort was put into exploring and choosing a suitable form al notation expressive

enough to capture these requirem ents but not m ore expressive than necessary, to enable

sim ulation and analysis o f the requirem ents. The chosen logical notation for this research

is based on the results used in the form al m ethods project at E ricsson (see A ppendix A

and [Funk 93]). The logical notation was expressive enough to be used in form alising

coarse grained telecom m unications service specifications on a high abstraction4 level but,

for d ifferent reasons (lack of resources being one), we had not addressed sufficiently:

1. Re-use and m odification o f previously specified services or parts o f services. The m ost

frequent situation in the dom ain o f telecom m unications service specifications is the

specification o f services sim ilar to previous ones.

2. The issue o f iteratively refining and increm entally extending requirem ents that

originally w here sketchy, incom plete and contained errors.

3. End users with background in systems design and program m ing did not accept the

idea o f using the form al notation to specify services at Ericsson. T heir interest in

form al m ethods was high until they where confronted with logical axiom s. Even

CHAPTER 1. INTRODUCTION 5

3
A telephone service (such as divert calls) in Europe is called a. feature in the United States. Service is

used here and the word feature always refers to features in case-based reasoning (as described in

Chapter 6).

4 At the beginning we had hoped to define a formal notation expressive enough to capture the

complete detailed behaviour of telecommunications services (concurrently occurring events,

parallelisms, timing constraints, nondeterminism, etc.), but realised that this had to be abandoned if

we at the same time wanted to have access to simulation and powerful analysis methods.

6 CHAPTER 1. INTRODUCTION

showing slides with logical or m athem atical notations drastically reduced any interest

earlier shown.

These factors contributed to the cancellation of the project in 1992 (started in 1985,

about 40 man years where invested). A related project implementing a full scale theorem

prover for service requirem ents specifications with a graphical interface [Ridley, Hook,

Engstedt, Lapins, L indroos 97], started in 1993 and was successfully com pleted

technically but cancelled in 1997. The logical notation and the theorem prover was

im plemented in C++ and Erlang5 and proved to be sufficient for full scale use for service

specifications. A graphical notation was introduced in parallel with the textual notation

(the notation is based on decision trees and bears no similarities to the one used in this

research) and required know ledge in logic and formal m ethods which turned out to be

more than any users were prepared to accept. Also, the problem o f re-use and refinem ent

of service sketches was not further explored (and was not a defined part o f this project).

Ericsson is at the m om ent not actively involved with formal m ethods for requirem ents

specifications o f telecom m unications services.

1.2 Capturing and Formalising Requirements

In this research, some o f the main features o f traditional “ s tro n g ” use o f form al

methods are sacrificed in the requirem ents capture process: we do not require the

specification to be correct and com plete from the start. In m any application dom ains,

including the telecom m unications domain, original requirem ents are often sketchy ideas

and it is not always justified to force the user to give com plete and correct requirem ents

from the start [Cybulski 96]. Requirem ents capture is seen as an iterative refinem ent

process o f som e initial requirem ents that are incom plete (lacking details, m issing

5 Erlang is a concurrent functional programming language developed at Ericsson and widely spread

both for prototype programming, complex system implementations and in education and for research

at universities.

CHAPTER 1. INTRODUCTION 7

behaviour for d ifferent situations such as odd and unusual situations) and m ay contain

flaw s (reflecting a naive or an unclear idea o f the functionality that needs refinem ent).

This approach to form al m ethods has a num ber o f advantages such as: the rapid creation

o f an outline o f the new behaviour which is used for identifying sim ilar behaviour, then

sim ulated and refined until the form alised behaviour reflects a required functionality .

This approach is consistent with what has been called a lightw eight approach to fo rm a l

m ethods [Hesketh, Robertson, Fuchs, Bundy 95], where the form al notation has been

chosen to be as simple as possible and just expressive enough to outline the m ain

behaviour req u ired 6. The sim plicity o f the logical notation enables au tom ated

m anipulation, translation and com parison between behavioural requirem ents

specifications and form alised input exam ples. This enables re-use if the requirem ents o f

services, previously specified and subsequently im plem ented, are stored in a case library.

1 .2 .1 Identifying Similar Behaviour

The main focus for this research is on identifying sim ilar behaviour to enable re-use o f

previously specified requirem ents or parts o f requirem ents. In addition to re-use, iterative

refinem ent, enabling the user to sketch out the required behaviour without giving all the

details from the start is included, in contrast with the com m on approach within form al

m ethods where the user is expected to produce com plete and correct requirem ents from

the beginning. The aim s o f this prototype im plem entation7 are mainly:

6 The notation is purposely not expressive enough to represent the full complexity of

telecommunications requirements specifications, such as concurrence, internal communication, etc.

7 The system has been implemented in LPA-Prolog (Macintosh/Windows) and the non-graphical parts

are also compatible with SICSTUS-Prolog.

8 CHAPTER 1. INTRODUCTION

• To provide a platform where the identification of sim ilar behaviour can be evaluated

(evaluated in C hapter 8).

• To put the m atching and re-use in context o f case-based reasoning where an initial

sketch of some wanted behaviour is used for identification o f sim ilar behaviour that

may be re-used (evaluated in Chapter 8), refined, validated and verified.

1.3 A Scenario Showing how CABS may be Used

To give a fram ew ork for understanding CABS (Case Based R equirem ents Specification

System) and to put the different chapters in context, I will give a brief exam ple o f how

som eone m ight use a full im plem entation of CABS (including some o f the extensions

proposed in C hapter 9). I will not dwell in this description on what has been im plem ented

and what is left for further work. By reading the rest o f the thesis, it will be clear what has

been explored in depth and im plem ented in this research and what has been left fo r

further im provem ents. F igure 1.1 gives an overview of how an idea can be taken to a full

specification (se Section 1.3.1). At present, the first form al level used in

telecom m unications requirem ents is mostly SDL (a program m ing language with

graphical and textual parts often used for telecom m unications applications, see Section

2.4), and earlier steps are inform al [Eberlein, Halsall, 96a]. CABS acknowledges the need

for a tool where the behaviour o f a new service can be sketched at an early stage

(although this is only one aspect of the requirem ents). The custom er and service designer

can, after providing some behavioural exam ples o f the required behaviour, explore the

new service by simulation. This is a form o f high-level prototyping. CABS is also able to

identify sim ilar behaviour in previously specified services and suggest these as solutions,

to be re-used in whole or in part.

1,3.1 From Service Idea to Formalised Requirements

L et’s assume that a service provider com es up with the idea that a new

telecom m unications service is needed to increase their incom e and to attract new

customers. The cloud at the top in Figure 1.1 illustrates such a vague idea o f som e new

CHAPTER 1. INTRODUCTION 9

functionality. The m ore focused idea m ight then be to provide phone users with an

em ergency service, i.e. if som ething happens, a specific em ergency num ber is

autom atically dialled. The details have not yet been worked out, but the board m eeting

assigns a task to one o f the telecom m unications service sales em ployees which is to

produce a proposal on the functionality, and to acquire an estim ate o f how m uch it

would cost to order the functionality from a telecom m unications com pany.

S ke tc h in g & R a p id
P ro to typ in g E n v iro n m en t r —n

o ° 0 ^
o

m 25
smxasmmB, p

sketching, concretising
aided by re-use, sim ulation

and verification

Custom er and service designer i
Traditional R eq u irem en ts

E ngineering a nd D esign E n v iro n m en t

Use- Cases

SO 25]

R equirem ents engineer

Service Requirements
Form alised using a

lightw eight app roach ,
validated and verified.

T

I
refinem ent,
in tegration ,
expansion

i
Fully detailed, formalised
functional requirements

with interactions and some
design decisions

Figure 1.1: From an idea via form alised requirem ents sketches to a full specification.

The sales em ployee m akes a m ental p icture o f how the new service w ould w ork from a

phone user’s point o f view. Traditionally, a large text docum ent contain ing requirem ents

o f the new telecom m unications service, interwoven with descriptions o f functionality ,

10 CHAPTER 1. INTRODUCTION

restrictions, lim itations, im plem entation details etc. would be produced. Once the service

is ordered and delivered half a year later, it is hoped that it m eets the custom ers needs

and the inform al requirem ents. If not, the com pany may face legal proceedings on the

meaning of the requirem ents specification docum ents.

If she was using CABS, the service designer would make a num ber o f sketches o f the

behaviour o f the new functionality (as seen from the telephone user’s point o f view) in

the graphical editor illustrated in the top left picture in Figure 1.1. The service designer

would first sketch som e exam ples o f the m ost com m on use o f the service. The m ost

frequent behaviour m ay be: if a telephone user has an emergency service set up and he

lifts the phone but is not able to dial a num ber (for exam ple a diabetic in distress, unable

to dial a telephone num ber but able to lift the receiver), a previously selected num ber will

be dialled after a short delay (to make sure it is not a norm al call). The receiver o f the

call would need to have the existing telephone service Callers D isplay to see who is

calling, and can then decide what action to take For example, he m ight send an

am bulance/doctor/nurse or call the neighbours to check the situation). The service

designer may also decide to provide examples of the expected behaviour if the called

number is busy or if there is no answer.

Once these exam ples have been given as behavioural exam ple sketches, the sales

em ployee asks the system to propose a solution. A m atching algorithm searches a case

library where all previously form alised and im plem ented telephone services are stored,

and identifies a num ber o f services that exhibit sim ilar behaviour. The user inspects them,

reads some brief textual descriptions o f them and may explore some o f them in greater

depth by sim ulating their behaviour with the sim ulator provided8. The system also points

Simulating their behaviour involves initialising a number of phones and setting up the different

services for the different phones. The user lifts the receiver with a mouse click on the computer

screen and tests out the behaviour as if real telephones were involved.

8

CHAPTER 1. INTRODUCTION 11

out where differences exist between the sketches o f the behaviour and the form alised

behaviour.

The service designer may decide on one proposal that is close in behaviour and already

im plem ented by another com pany having a large num ber o f residential care hom es,

where the individual guests live in their own apartm ents but have a reception with a nurse

and part-tim e medical doctor. The service has been in use for 6 m onths, and after 3

m onths o f use, the custom er ordered an extension o f the service since the staff qu ick ly

found out that they needed three alternative choices o f num bers (reception, nurse,

doctor). W hen exploring the service further (using the sim ulator) she finds that the

em ergency num bers can only be changed by the receptionist. A fter considering the

custom ers that her com pany intends to target, she decides to add the possibility for the

telephone user to change the em ergency num ber list them selves. She gives som e

exam ples o f this behaviour and m akes a selective m atch using only these input exam ples,

and finds that the service divert call has a set-up functionality that fits the needs well and

which only needs m inor adaptation o f the behaviour. The sales em ployee calls the

technical service support at the telecom m unications com pany they use and also transfers

the input exam ples and selected solutions (m iddle square box in the F igure 1.1). A

requirem ents engineer receives the form alised requirem ents, sim ulates and verifies them

together with all other services the custom er has to identify interaction and also uses

traditional m ethods to look at how a design o f the functionality can be m ade together

with an estim ate o f the cost. One hour later, the custom ers sales person gets a proposal

back which contains a service which includes the desired behaviour and where all the

functional behaviour has been form alised (bottom square box in the F igure 1.1, all

packaged into a sim ulation environm ent easy to use for the custom ers sales person). T he

sales person validates and verifies the service and, at the next board meeting, she

dem onstrates the functionality o f the new service by sim ulating it on her PC with

connection to a num ber o f telephones. The decision is then m ade to go ahead and o rder

the service which is delivered by re-using parts o f the im plem entation from the sim ilar

services.

12 CHAPTER 1. INTRODUCTION

1.4 Structure of Thesis

Chapter 2 gives a brief background in requirem ents engineering, formal m ethods, case-

based reasoning and graphical notations, with references to related and relevant

literature/research. In C hapter 3, a brief overview and introduction to the problem s

directly addressed in this research are given. Chapter 4 shows the graphical input

examples and defines the syntax and the detailed inform ation that m ay be added. T he

case library and everything stored in it is explained in C hapter 5. D efinitions o f equal

and sim ilar behaviour and how these can be translated into a set o f features used to

identify cases in the case library that have sim ilar behaviour is explained in C hapter 6. In

Chapter 7, the design process from an inform al idea o f a new behaviour to validated and

verified formal requirem ents is explored. Chapter 8 contains an evaluation where the

ability to identify sim ilar cases is explored, along with ways in which a solution can be

partially evaluated against the input examples. Further work and ideas o f im provem ents

are given in C hapter 9. C hapter 10 gives a summary and the conclusions o f the research.

A ppendix A defines the logical notation used by CABS as internal representation.

Appendix B contains a glossary of a num ber o f telecom m unications terms. A ppendix C

contains all the form alised telephone services stored in the case library and used fo r

evaluation. A ppendix D contains all the input examples used for evaluation in C hapter 8.

Appendices E, F and G are review ed papers, published during the research.

Chapter:

2. Background

This chapter describes interesting areas related to this research project:

• R equirem ents engineering.

• Form al methods, their benefits and limitations.

• Exam ples o f form al m ethods in telecom m unications.

• Visual notations for state based systems, both telecom m unications oriented and

generic notations (SDL, M SC, PTNs, Petri nets, etc.).

• Case-Based Reasoning applied to specification and design tasks.

A brief background from the perspective o f this research is given for these areas and

som e references are given to enable the reader to investigate them in greater detail.

2.1 Requirements Engineering

In system developm ent, a m ajor task is to establish in detail what the system is supposed

to do. Requirem ents engineering is concerned with capturing, analysing and defin ing

precisely the tasks the system should perform . This includes form alisation, re-use and

evaluation of the system and its requirem ents. Identifying the requirem ents is an essential

elem ent o f system developm ent. Faults/m isunderstandings at this level are often very

13

14 CHAPTER 2. BACKGROUND

difficult and costly to correct at later stages. M any faults in systems are traced back to

requirem ents capture and specification stages, and are believed to cause a large

proportion o f industrial costs for poor software (estim ated by the UK D epartm ent o f

Trade & Industry to be above £2000 m illion per year) [Schofield 92], In addition to this,

many systems tackle w icked problem s [Som m erville 96] where the true nature o f the

problem first em erges when they are solved during developm ent. Telephone services

may be classified as w icked problem s. Even if their coarse grain characteristic behav iour

is simple, interaction and unusual situations can be difficult to identify and predict, and

are often first identified when im plem ented. Prototyping may be useful in iden tify ing

and solving w icked problem s, since these difficulties may be encountered in a p ro to type

and can be solved before a full im plem entation is made. If prototype developm ent by

program m ing is im practical, too costly, or not feasible for other reasons, sim ulation o f

behavioural requirem ents m ay be considered (this approach is used in CABS).

Sim ulation and prototyping provide new knowledge, as Herbert Sim on elegantly

expresses it: Firstly, “ even i f we have the correct premises, it may be very difficult to

discover what they im p ly" and secondly, “A ll correct reasoning is a grand system o f

tautologies, but only God can make direct use o f that fact. The rest o f us m ust

painstakingly and fa llib ly tease out the consequences o f our a ssu m p tio n s." [Simon 81,

page 19],

A requirem ents specification should be open to different im plem entations as long as the

im plem entation reflects fully the required behaviour, and excludes all unw anted

behaviour. Im plem entation o f telephone services has been achieved on a variety o f

systems (m echanical, electronic and digital), in different program m ing languages and

program m ing paradigm s (centralised, distributed, concurrent).

A lot of research effort is focused on re-use, and it is assum ed that the full potential o f

re-use in system developm ent is far from fully exploited. Re-use by categorisation is one

of the main research activities in requirem ents engineering [M aiden, M istry, Sutcliffe, 95]

and categorisation is essential to the identification of relevant parts for re-use.

CHAPTER 2. BACKGROUND 15

In program developm ent, re-use is perform ed by identifying and using p rog ram

com ponents or objects from a softw are library. The am ount o f code re-used is dependent

firstly on the classification and description o f the parts so that they can be identified

when needed, and secondly on how well re-use is incorporated into the system

developm ent process. A utom ated identification and re-use o f softw are that has not been

classified m anually is difficult. M ost program code is context dependent (the

interpretation o f a program statem ent is dependent on the previous and follow ing

statem ents) and allows a lot o f freedom to construct a program in a personal style,

m aking autom ated identification and re-use difficult (although there is ongoing research

in this area). B ehavioural requirem ents are som etim es less com plex than code because

not all the details are included in the requirem ents. If a form al m ethod restricts the

possible ways in which a behaviour solving a particular problem can be described,

com parison between different requirem ents is facilitated, and autom ated identification o f

parts that may be relevant for re-use will benefit.

2.2 Formal Methods

Since the 1960s, form al m ethods have been o f grow ing interest, and have been targeted

with increasing research effort. Form al m ethods are often regarded as a scientific

approach to software developm ent [Hall 90]. Form al m ethods allow precise specification

o f some aspects o f a system; inform al specifications are often im precise, incom plete and

am biguous. A wide variety o f form al representations are available w hich are suited to

different tasks in requirem ents specification and the system developm ent process

[Barroca, M cDerm id, 92]. However, form al notations are not suitable for everything in

the requirem ents and design process, and it is im portant to carefully select those parts fo r

which they are used [Bowen, H inchey, 95]. One o f the m ain principles applied when

choosing form al representations for requirem ents engineering is that “a form al

representation should be as sim ple as possible, but no sim pler.” [Zave, Jackson, 97, page

106]. Technological advances and increased expressiveness in form al representations are

im portant in order to tackle new and dem anding application dom ains. H ow ever, a form al

representation with the ability to capture everything would be com plicated. Thus,

16 CHAPTER 2. BACKGROUND

expressiveness has a price in term s o f autom ated reasoning capabilities, executability,

p roof o f consistency, level o f m athem atical skill needed to understand and use a

formalism, etc. Carefully choosing a simple but sufficiently expressive form al notation

[Wing 90] is an im portant task when using formal notations, and limiting expressiveness

is a m ajor approach to tam ing the com binatorial explosion in production systems

[Acharya 94], Som etim es in form al methods, more research effort has been d irected

towards expressive form alism s that are generic and capture as m any aspects and details

(such as tim ing constraints, indeterm inism , probabilities, concurrency, etc.) o f the system

as possible [Johnson, Benner, Harris, Sanders, 93], than into em bedding the form alism s in

some system developm ent m ethod which facilitates requirem ents capture and aids the

transfer o f requirem ents into a formal notation.

Since the 1980s, form al m ethods have been used in industry for safety critical

applications (avionics, railway signalling systems, pow er plant control systems, m edical

electronics, VLSI design), and are often applied by highly skilled

m athem aticians/logicians using sem i-autom ated theorem provers. O utside these areas, the

use o f form al m ethods is less com m on. Even so, a num ber o f successful individual

projects have been reported [Cleland, M acKenzie, 1995]. There is an increasing dem and

for the use o f formal m ethods in safety-critical systems, for exam ple the U K M inistry o f

Defence (M oD) strongly recom m ends formal notations, analysis o f consistency and

com pleteness in specifications o f safety-critical com ponents and software [Bowen,

Hinchey, 95]. The interest in and dem and for formal m ethods for security-sensitive

applications such as telecom m unications, traffic signalling systems, share dealing systems,

banking and finances, is increasing. It is believed that m aking the use o f form al m ethods

easier for non-m athem aticians would enable a wider use o f formal m ethods in security-

critical/sensitive applications. One factor holding back a wider use of form al m ethods is

“maths scare” am ongst designers and program m ers [Hall 90]. Furtherm ore, greater care

in identifying w hich form al methods are suitable for which problem is needed, as the use

of an unsuitable formal notation may cause a project to experience difficulties or even

fail.

CHAPTER 2. BACKGROUND 17

The main issue o f this research is to show that it is possible to identify sim ilar behaviour

to enable requirem ents capture and re-use in a case-based reasoning system. Som e

related issues have been briefly explored and addressed to enable exploration and

validation o f the m ain focus of this research, which is the identification and re-use o f

sim ilar behaviour:

7. Help users to give more accurate requirements.

• A ddressed in CABS: Sketching input exam ples exem plify ing the behaviour o f

som e required functionality that are used to identify sim ilar behaviours enables the

user to re-use previously form alised and im plem ented specifications. They can be

sim ulated and verified using a case-based reasoning approach w hich is hoped to

aid the user in identifying problem s at an early stage com pared with traditional

approaches where the first form alised level is program code. Problem s with service

specifications were identified during evaluation that had not been identified before

m atching, form alisation, validation and verification o f the behaviour which at least

shows that these tools under some circum stances are o f benefit.

2. Reduce errors in the fin a l requirem ents and system implementation.

• A ddressed in C ABS : By re-using a proposed solution from the case library, errors

will be reduced since the re-used service has already been integrated with o ther

services and im plem ented.

3. Identify and re-use previously specified behaviours that have already been

im plem ented.

• A ddressed in CABS: The case-based m atching is able to identify sim ilar cases in the

case library that can be re-used in whole or in part as shown in C hapter 8.

Identification and m atching is the m ain focus o f this research.

4. Sim plify the task (fo r non logicians) o f creating and m odifying fo rm a l requirem ents

specifications.

18 CHAPTER 2. BACKGROUND

• Addressed in CABS: G raphical input sketches com bined with transition rules are

believed to be more readily accepted than the direct use o f a formal logic. Also, an

iterative refinem ent process is proposed and supported by CABS. To confirm this

hypothesis, an evaluation with potential users is needed, but this is outside the scope

o f this research.

Issues relevant to the task o f bringing formal m ethods to industrial use are exp lo red

more in depth in the follow ing section (Section 2.2.1). If the readers main interest is the

identification and m atching sim ilar behaviour reading this section can be omitted.

2.2.1 Issues of Formal Methods and their Relation to this Research

The following are som e claims, opinions and critiques about the use o f form al m ethods

which are relevant to the application dom ain o f CABS. N ot all of the seven issues are

within the scope o f this research but some o f them have been addressed to enable

evaluation of C A B S’s main issues and others are briefly discussed with som e ideas o r

references to potential solutions. Selected solution: is a brief description o f C A B S’s

specific way o f addressing them (independent of whether they are a main issue for this

research):

• It is com monly believed that fo rm a l methods are difficult to scale up since expressive

form alism s are often not executable and are only seen as a way o f describing

requirem ents more precisely than with natural language [Hall 90].

=> Proposed approach: C hoosing a simple logic which is sufficient to form alise the

initial requirem ents, but not necessarily able to capture the full and final behaviour,

allows us to specify some basic behavioural requirem ents for the application

dom ain o f telecom m unications services and to handle these effectively by

sim ulation o f the initial behaviour, re-use, verification and validation.

=> Selected solution: A sim ple logic tailored to this particular application dom ain has

been shown to enable re-use by case-based reasoning, sim ulation and lim ited

CHAPTER 2. BACKGROUND 19

verification. Also, translation to and from restricted natural language has been

applied for sim ilar notations [Dalianis 95].

R esistance fro m non-m athem aticians and non-logicians to the use o f fo rm a l m ethods

[Zave, Jackson, 96],

=> P roposed approach: B earing in m ind the rejection o f form al m ethods by

designers and program m ers at Ericsson it is hoped that by using graphical notation

sim ilar to inform al or sem i-form al notations already used in the application

dom ain, the acceptance o f form al m ethods will be eased. Textual rules are used in

the dom ain o f telecom m unications, transition rules bear sim ilarities to these textual

rules and transition rules can be translated to and from restricted natural language

[Dalianis 95].

=> Selected solution: A graphical notation is chosen but no effort has been taken to

m ake the notation sim ilar to existing notation since this is beyond the scope o f this

research and such a notion should be developed in close co-operation with the

final users to warrant for an acceptance. The user is not directly confronted with

the logical notation used internally. A textual representation o f transition rules has

not been im plem ented.

Formal specifications are difficult to re-use [Hall 90].

=> Proposed approach: By using a case-based reasoning approach and a restricted

logical notation, it should be possible to identify parts from a case library that m ay

be re-used. Identification o f cases that are sim ilar to the behaviour exem plified in

the input exam ples will enable re-use if the sam e or a sim ilar case exists in the case

library. Also, re-use of individual transition rules m ay be possible, if the transition

rules are context independent.

=» Selected solution: M atching input cases against a case library enables the

identification o f sim ilar behaviour (CABS uses an uncom plicated m atching

algorithm described in C hapter 6) and evaluated in C hapter 8. Results are

CHAPTER 2. BACKGROUND

encouraging and the m atching is able to identify the m ost sim ilar case to sets o f

input examples. If no m atching case exists in the case library, the m atching is able

to identify sim ilar transition rules that may be re-used. The features used fo r

identifying sim ilar behaviour may need fine-tuning but they have proved to be

fairly robust with the case library used for the evaluation

Formal m ethods are often said to be unsupported by tools which allow the user to

iteratively refine and clarify the requirements [Bowen, Hinchey, 96],

=> P roposed approach: D esign and use an approach based on an iterative refinem ent

process where an initial idea o f some new behaviour can be refined and m odified

iteratively until it captures the intended behaviour.

=» Selected solution: The CABS approach includes a refinem ent m ethodo logy

supported by the im plem entation (see Figure 7.1, page 124). The process was used

in the evaluation and no obstacles were encountered. Even if no m atching case is

available, the input exam ples can be used to generate a set o f transition rules used

as an initial proposal for the new service (see Figure 7.1). During the evaluation

(Chapter 8), a few unexpected problem s were identified both in the input exam ples

and in the case library, which shows the value o f using test cases generated from

input exam ples.

Formal specifications are often regarded as difficult to modify [Gotel, Finkelstein,

94].

=> Proposed approach: 1) S tructuring the telecom m unications services as cases (sets

o f transition rules), 2) keeping links to the original input examples, test cases, full

specification, etc. (enabling traceability of requirem ents, from where they orig inate

and where they have been used) and 3) providing a sim ulator and autom ated

verification so that m odifications can be explored in depth.

=> Selected solution: C A B S’s approach is to: 1) structure cases as sets o f transition

rules, 2) store all original input examples, inform al com m ents and test, 3) sim ulate

CHAPTER 2. BACKGROUND 21

and verify cases separately or together with other services. W hen the behaviour o f a

service needs m odification, the input exam ples aid the understanding and

m odification process. Test cases identify precisely where the behaviour has been

changed .

Form al m ethods are accused o f being difficult to com bine and integrate with current

system developm ent m ethods [Bowen, Hinchey, 96].

=> P roposed approach: By using a formal notation that can be translated into graphs,

state m achines and natural language, and used for sim ulation (in the sam e way as

prototypes) and to generate test cases, CABS exhibits desirable features that m ay

integrate into m any system s developm ent methods.

=> Selected solution: CABS focuses on re-use and requirem ents capturing - a process

that is currently hardly supported at all. N othing in CABS contradicts traditional

system developm ent m ethods and a system which aids system developm ent would

benefit from the functionality exem plified by CABS. It m ay even be possible to

translate the output from CABS into the representations used in

telecom m unications (SDL, Use-Cases, MSCs, etc.) but this has to be investigated.

Since the form al notation captures state m achines, translation to state based

form alism s is possible.

Executable fo rm a l m ethods are often regarded as com putationally inefficient.

=> Proposed approach: This is often true for advanced form alism s hand ling

indeterm inism and where the application dom ain is com plex. A restricted logic is

proposed for CABS which doesn’t aim to capture all the behaviour o f the system

(only the initial behavioural requirem ents, leaving out unusual behaviour, e rro r

cases, etc.), gives sufficiently fast response times for both sim ulation and theorem -

proving.

=> Selected solution: The CABS system is im plem ented in PRO LO G with acceptable

response time on a desktop com puter (response times are below a second fo r

22 CHAPTER 2. BACKGROUND

sim ulation and stepwise verification). M atching times are acceptable even if the

case library is considerably larger (see Chapter 8 for details).

Requirem ents capture is often seen as the main bottleneck in system developm ent

[Bubenko 95]. Using a rigorous formal notation in a lightweight form al approach to

capture the initial behavioural requirem ents is shown to have some pow erful and

desirable features, such as enabling the identification and re-use o f previously specified

behaviour.

2.3 Telecommunications and Formal Requirements

Telecom m unications have, until recently, been mainly technology driven (limits have

been set by technical constraints), and less application driven. This has changed rap id ly

due to the com puterisation o f telecom m unications, which has started replacing technical

limits by limits of im agination and innovation. This revolution will change the dem ands

and judgem ents o f telecom m unications services. Increasing dem ands for innovative and

creative services with high levels o f usefulness, user-friendliness and functionality are

em erging, as they are no longer so tightly lim ited by the difficulties o f im plem entation in

hardware and software. Bandwidth is still a lim ited resource, but the bandw idth available

now (and in the near future) is far from fully utilised. One scenario o f the future is that

bandwidth will be supplied in the same way as petrol/gas/electricity (Norway and Sweden

allow custom ers to change their electricity supplier), and the user will m ake short term

agreem ents with the supplier offering the best deal on bandwidth. U nder this kind o f

price com petition, telecom m unications vendors or independent service providers will

have to provide services adding value to bandw idth supply, such as m ore sophisticated

telephone services (traditionally call waiting, m ulti-party calls, re-call, call diversion, levels

of availability/privacy, charge advice, banking and also, increasingly, services based

around the integration o f m obile phones/hom e phones/com puters/video/m usic, etc.).

Changing supplier means, in most circum stances, a changed set o f services. Services will

be the supplier’s best assets in such a scenario, and patenting services m ay be m ore

relevant than patenting hardware. This puts telecom m unications services at the fo refro n t

CHAPTER 2. BACKGROUND 23

of the basic functionality (a basic telephone call) and providers who cannot provide

com petitive services to their custom ers in a short time will see their m arket share decrease

rapidly. Those suppliers who are able to offer services in w hich the users are interested,

will attract m ore custom ers. Parts used to design and im plem ent services have been

standardised and form alised such as service independent build ing blocks (S IB ’s, [ITU

Q1203], for form alisation see [Nystrom, Jonsson 96]), but telecom m unications services

them selves cannot be standardised without stifling com petition betw een operators fo r

custom ers.

Telecom m unications services can be classified as security-critical (hence form al m ethods

are o f interest and relevance). It is not acceptable that an additional telephone service

should inflict problem s on basic functionality such as an em ergency call, or cause

problem s for o ther telephone users, (situations which have in fact occurred in the past9).

Form al specifications have been explored as ways o f identifying and reducing such

problem s in the system developm ent process but are not routinely used. Pam ela Zave at

AT& T Bell Laboratories has been active in this area since the late 1970s. PA ISLey is an

executable specification language developed by Zave and her research team at Bell

L aboratories over 8 years (from 1979 onw ards) [Zave 91]. H er research is now aim ed

m ore at m uliparadigm al approaches to requirem ents specifications, w here the underly ing

9
Call diversion was one of the earliest telephone services provided. The specification and

implementation allowed redirection over many steps. Unfortunately, it also allowed redirection to

the original number. When a user diverted calls to their holiday home and then diverted calls back

from there to their main home, the signalling bandwidth between the two telecommunications

switches was, after a while, used up by phone calls diverted back and forth between them in an

infinite loop. Worse still, a restart of the telecommunications switch left the diverted number

unchanged, causing the same problem all over again. This might have been prevented with

formalised requirements, which had been validated and verified (in CABS, such loops cannot be

specified and the number of steps that a telephone call can be diverted has to be specified explicitly).

24 CHAPTER 2. BACKGROUND

notation is based on a sim ple logic [Zave, Jackson, 97]. There are some sim ilarities to

CA B S’s formal notation; for example, neither system allows internal events, in order to

keep the form alism and sem antics simple and only allow specification o f the system ’s

externally observable b eh av io u r10). Using logic as the underlying form alism shifts the

focus from the developm ent o f a language suitable for a particular application dom ain to

the selection o f a suitable subset o f logic, which is as restricted as possible, but expressive

enough to capture the desired features o f the domain.

A different approach to service specification (com pared with the PAISLey approach) is

the W ATSON system [Kelly, N onnenm ann, 92] also developed at AT&T. W ATSON

takes inform al textual exam ples o f telephone services (a graphical notation is also

mentioned, but not illustrated), and translates them sem i-autom atically to a logical

notation (sim ilar to the one used in CABS). After the natural language scenarios have

been given (W ATSON was able to handle scenarios o f the size o f four sentences (50

words), in 1992), the system tries to identify incom plete parts and problem s in the

inform al description and asks the user yes/no questions (W ATSON uses an “o ff the

s h e lf ’ theorem prover and dom ain know ledge m ainly encoded in Lisp). W ATSON

produces control flow skeletons together with attached code for some parts. C ontrol

skeletons can then be sim ulated. Such an approach requires large am ounts o f know ledge

(encoded, stored and kept updated in W ATSON) of requirem ents specification, design,

im plem entation and application dom ain knowledge, to be able to produce control flow

skeletons with attached code from short textual descriptions (such as hardware, netw ork

10 By only specifying the system’s interaction with its environment and not the system’s inner

workings, the specification is kept implementation independent (a black box approach since nothing

of the inner working of the system is exposed). The inner working of the system is left for design

and implementation where hardware and software architecture can be chosen to meet other non

functional requirements (price, size, security, power consumption, distribution, modularity,

technology, etc.)

CHAPTER 2. BACKGROUND 25

protocols, expected end user etiquette, style o f skeleton design, etc.). C apturing a large

application dom ain know ledge base and keeping it up to date is recognised as a p rob lem

in the W A TSO N project. This is a large task even for a narrow application dom ain (which

can be partly bypassed if case-based reasoning can be applied, as discussed in Section

2.5).

A Requirem ents Assistant for Telecom m unications Services tool (RATS) was developed

during a PhD project at the U niversity o f W ales [Eberlein 97]. RATS enables the user to

give inform ation in a structured and layered approach, m ostly as inform al text but also

with links to libraries and in other notations. A high level o f tractability is m aintained by

keeping references and links between all inform ation objects. The system uses

application dom ain rules to keep track o f what inform ation is still m issing, guiding the

user and ensuring that all the necessary inform ation is given (218 user defined rules and

33 constraints are currently used). RATS can ask questions such as “H ow do you in tend

to achieve the goal ‘authentication very im p o rta n t’? ”. Once the user has linked all

inform ation with a traditionally produced SDL diagram (production o f diagram s is aided

by the structured requirem ents), R A T S’ task is com pleted. C om pared with using large

textual requirem ents docum ents (which is the current practice), the structured approach

in RATS has som e obvious advantages such as tractability and m aintainability (for a

com prehensive analysis o f the tractability problem see [Gotel. F inkelstein , 94]).

A form al specification project at ERIC SSO N Telecom m unications (research phase 1985-

1991, im plem entation phase 1992-1997) was centred m ore around tem poral logic

[Echarti, Stalm arck, 88] and theorem proving than PA ISLey and W ATSON (the logic

used is sim ilar to the one used in W ATSON). The functional behaviour o f

telecom m unications services is expressed in a logical notation (a graphical notation based

on a tree structure is also added in parallel with som e logical expressions); generic

application dom ain know ledge (a conceptual m odel) is given in a graphical no tation

(directly translated to logical axiom s). Sim ulation enables validation o f services, and

theorem proving is used to prove consistency (inconsistencies betw een application

dom ain know ledge and services can be identified). Test suites used in

telecom m unications for testing im plem entations can be produced sem i-autom atically

26 CHAPTER 2. BACKGROUND

from event traces generated by the theorem prover (all possible behaviours up to a

certain length may be generated from the specification) [Ridley 94] [Ahtianen, Chatras,

H om beck, Kesti, 94], Event traces share similarities with Node Usage Cases, used in

telecom m unications to guide design and im plem entation [Ask 94]. The notation used in

CABS is based on the notation used in the research project at Ericsson (the logic has

been sim plified and restricted; see Appendix A).

There are three desirable features for service development:

1. A prototype/sim ulation o f the new behaviour is needed to explore new services.

2. Form alisation o f the functional requirem ents, to ensure stable properties and safe

integration with other functionality.

3. Ability to re-use, in order to optim ise im plem entation o f new services by re-using

previously specified and im plem ented services.

If form alised requirem ents can be used as a prototype, the new functionality can be

explored on its own as well as with other services and both 1) and 2) are covered. If the

form alised requirem ents can be created by identifying and re-using sim ilar services, then

3) will be solved. C urrent research explores this approach using a narrow er focus than

W ATSON (CABS does not aim at code production) to capture, refine, re-use and

produce requirem ents in the dom ain o f reactive system s11, and to enable sim ulation o f

the new requirem ents. CABS shares one main am bition with WATSON, in Kelly and

N onnenm ann’s own words: “helping ordinary people (that is conventionally tra ined

telephone engineers) achieve extraordinary results (m athem atically precise

specifica tions)”. If the m athem atically precise notation can be hidden or encapsulated, it

11 Reactive systems have a direct relation between stimulus and response (input/output) and need

external stimuli to produce a response. An example of a trivial reactive system is a light switch

having two states (on/off), with the stimulus being: switching it on or off.

CHAPTER 2. BACKGROUND 27

may be possible to relax the lim itation to conventionally tra ined telephone engineers

w ith the am bition that telephone users, sales personnel, etc. should be able to specify their

requirem ents themselves, if their aim is to capture only the characteristic requirem ents

(not necessarily consistent and com plete, i.e. including all exceptions, odd cases, resolved

interactions). Extending, refining and integrating the new behaviour with o ther

telecom m unications services would need m ore experienced requirem ents designers. T he

CABS approach takes coarse grained graphical input exam ples exem plify ing the desired

behaviour, identifies sim ilar services and parts o f services that m ay be re-used, and

enables validation (sim ulation o f the behaviour) and lim ited verification o f requirem ents.

This is a worthy task in itself, and if this can be accom plished and accepted by industry

for the specification of reactive systems, the benefits may, for som e application dom ains,

be sufficient to m ake it worthwhile incorporating form al requirem ents into the system

design process. V alidation by sim ulation and verification m ay be regarded as

prototyping com bined with the capability to analyse the behaviour in depth.

2.3 .1 Specifications in Telecommunications

Custom ers (public and private telecom m unications suppliers, service vendors, institutions,

universities or even private custom ers), order specific telephone services which they hope

will m eet their needs. One difficulty is that precise inform al requirem ents are d ifficult to

produce and require a high level o f skill. It is easy to find exam ples w here m isin terpreted

inform al requirem ents have caused serious p ro b lem s12. Form al specification aims to

12 One story (not officially confirmed) goes that the service three party call was informally specified in

such a way that it was able to reach a situation where four parties were able to speak with each

other. When the three party call service was delivered, the customer insisted on having the four party

situation. This could only be implemented by redesigning the hardware, because the exchange only

had digital mixers capable of mixing three speech connections. Finally, a solution was found: a

trunk line (a connection to another telephone exchange) looping back to the same station, treating

28 CHAPTER 2. BACKGROUND

provide precise and exact descriptions, independent o f stakeholders (custom ers,

engineers, program m ers, sales personnel, translators, managers, etc.). D ifferen t

abstraction levels (with more, or less detail shown) and views (wether only issues relevant

for a particular perspective are shown) o f the requirem ents m ay be useful for d ifferen t

stakeholders [Pohl 94].

Naming som ething often gives us a false sense o f understanding it. It is often surprising

how differently words are defined by different dom ain experts, definitions which

sometimes even contradict each other. In telecom m unications, the expression “U ser A is

in speech connection with user B ” has been defined in the following ways by d ifferen t

persons:

1. A can hear any sound generated by B.

2. A can hear B and B can hear A simultaneously.

3. E ither A hears B or B hears A.

None o f the three definitions is incorrect. However, speaking about “being in speech

co n n ectio n ” or “being connected” w ithout agreeing on a definition will cause problem s

during specification or, worse, during design, im plem entation or product verification.

2.4 Graphical Notations

There are two main types o f sym bolic representations which both use sym bolic

expressions: sentential representation (natural language descriptions) and

diagram m atic/graphical representations. The latter can explicitly capture topological and

geom etrical relationships which can only be captured indirectly in a textual

representation [Larkin, Simon, 1987]. There is a growing interest in, and prom ising

the incoming (two party) call as one external caller and able to connect the incoming call with the

two other parties. This is an expensive solution, but must, in this case, have been estimated to be

less costly than breach of the contract.

CHAPTER 2. BACKGROUND 29

results from, the use o f graphical form alism s for know ledge elicitation, specification and

program m ing (see for exam ple [Hirakawa, M onden, Yoshim oto, Tanaka, Ichikawa, 86],

and [Addis, Gooding, Townsend, 93]). It is obvious that the trend in

interaction/com m unication involving com puters is becom ing m ore graphical oriented

(icons, windows, pictures, anim ation). For many tasks, graphical notations are claim ed to

be m ore readable than textual language [M ataga, Zave, 94], For the creative and

exploratory phases o f form ing new knowledge, visualisation is often essential and the use

o f diagram s also aids know ledge elicitation and co-operation betw een those involved

[Addis, G ooding, Townsend, 93]. In form al m ethods, advanced specification languages

have been developed which tackle a wide variety o f application dom ains, but the hum an

aspects o f the use o f these notations (m aking them easy to use and understand) have

been slow er [Robertson 96]. W hen new form al notations are created, diagram s are often

used (see for exam ple [Allen 83], [Kowalski, Sergot, 86]), but the final notations are

m ostly pure linguistic representations. The role o f diagram s is rarely recognised and is,

therefore, underestim ated in the com m unication and conceptualisation process [Addis

94].

Recently, m ore research effort has been focused on giving inform al or sem i-form al

graphical notations clear syntax and semantics, and developing new notations to enable

the graphical expression o f conceptual models, requirem ents, dynam ic behaviour and

program s. E arlier approaches using conventional state m achines or state-diagram s

encountered difficulties when applied to system design, due to the exponential explosion

in the num ber o f states [Harel 87], and were claim ed to be hard to read, m odify and

refine and not suitable for com plex specifications [M artin, M cClure, 85]. D ifferen t

approaches to overcom e these problem s have been explored and graphical languages

(often com bined w ith a textual language) are com m on in system developm ent today; fo r

exam ple:

• SDL (Specification and D escription Language, standardised by the In ternational

Telecom m unications Union, [ITU -Z100]). The SDL language contains both a

graphical and textual part. The graphical part is sim ilar to flow charts. The graphical

parts together with the textual part o f the language enable the user to describe the

CHAPTER 2. BACKGROUND

functionality in such great detail that executable code can be generated directly. Some

form alisation efforts have been undertaken, see for exam ple [Leue 95]. With m inor

alterations in the sem antics, a subset o f SDL can be translated to Petri nets which has

been used for protocol verification at Siemens Telecom m unication, G erm any

[Regensburger, B arnard 98].

Statecharts [Harel et. al. 90]. A graphical notation designed to m ake it easier to design

and im plem ent real tim e systems. Sim ilar to SDL, it has a graphical part and a textual

part and detailed descriptions can be created and used to generate executable code.

Process Transition Networks (PTNs) [Malec 92], [Sandewall 90]. PTNs can be

translated to tem poral logic and to a subset of Petri nets. The notation aids

conceptualisation and know ledge acquisition and its simplicity makes it easy to use

for dom ains in which the expressiveness is sufficient.

Use-Cases [Jacobson, Christerson, Jonsson, Overgaard, 93], N ot a notation in itself, bu t

which allows different notations or even text docum ents describing specific exam ples

o f how the system to be designed will behave. Form alisation and graphical syntax is

under developm ent [Regnell, Kim bler, W esslen, 95].

M SC (M essage Sequence Charts describing signalling between objects in a d istribu ted

system). A widely used graphical trace language for com m unicating entities. MSCs

may also be used for requirem ents specifications with a set o f suitable tools [Ben-

Abdallah, Leue 96].

Petri Net notations [Jensen 97] are a graphical notation enabling behavioural analysis

and model checking. The notations are often regarded as com plicated for n on

logicians and this is som etimes overcom e by translating to Petri nets from specialist

languages. For exam ple som e parts o f SDL (with slightly altered sem antics) can be

translated to Petri nets in order to enable model checking [Grahlm ann 98]. Since Petri

nets are em erging as a com m on formal notation into w hich other notations more close

to notations used in different application dom ains can be translated, Petri nets are

described in more depth in Section 2.4.1.

CHAPTER 2. BACKGROUND 31

These languages are all m ore expressive than is required for the approach taken in

CABS, and include different types o f concurrency w hich is often useful or essential when

designing a com plex system. In m ost larger system s, such as telecom m unications, the full

functionality is difficult to describe with a state transition notation as the num ber o f states

will by far exceed the num ber o f states that can be practically handled in available

notations. Even so, exam ples, scenarios and sketches o f behaviour for d ifferent aspects o f

a system ’s functionality can be expressed with state-flavoured style, which is often done

inform ally to com plem ent textual descriptions. An im portant aspect o f CABS is that the

graphical notation used is not intended to be a traditional state-based notation cap tu ring

a finite state machine: a diagram in the notation used m ay represent a large set o f state

m achines enabling the user to sketch a behaviour, ignoring details and avoiding

confrontation with the so called state explosion. The notation used in CABS captures the

initial (design independent) sketches o f behavioural requirem ents before design

decisions have been taken13 (the graphical notation for CABS is described in C hapter 4).

Little consideration and tim e has been spent on what graphical form alism is m ost

appropriate for the application dom ain, bearing in m ind that the m ain research

contribution is the identification o f sim ilar behaviour. G raphical representation m ay

provide greater benefit if it has been adapted to the application dom ain and to a specific

set o f users [Robertson 96], but to do so is beyond the scope o f this research.

13 Design decisions are, for example, dividing the system into communicating entities, internal

concurrency, communication mechanisms, etc. An example of how deeply design decisions are

included in these formalisms would be to use, for example, MSC diagrams with signalling switches

to specify a telecommunications service, and implement the functionality using the internet, instead

of a network of signalling telecommunications switches (most of the “specification” would be

irrelevant”).

32 CHAPTER 2. BACKGROUND

2.4 .1 Petri nets

Petri nets are used as a powerful algebraic graphical notation for com m unicating

autom ata and are expressive enough to capture systems where concurrent events occur.

This is beyond the ability o f the chosen notation for CABS but both Petri nets and input

exam ples are state (in CABS a node denotes all states the which the given restriction

hold) and transition oriented. Petri nets developed by C. A. Petri in the sixties were the

first general theory for discrete parallel systems. Petri nets have proven to be well suited

to describe concurrency. A wide variety of Petri Net notations exist which either ex tend

the expressiveness to new classes of problem s or make them easier to use. Exam ples o f

extensions are high-level Petri nets, timed Petri nets, stochastic Petri nets and C oloured

Petri (CPN) nets [Jensen 97]. Petri nets have always had a precise formal definition which

enables the use o f powerful analysis tools (e.g. SPIN [Holzmann, Peled 94]) that can be

used to prove d ifferent properties of Petri nets. Also, there is n on-going effort to

standardise Petri nets.

Lately, Petri nets have em erged as a com m on notation for d ifferent graphical notations

adapted to specific application domains. These notations are translated into Petri Boxes, a

special kind o f low level Petri nets enabling a wide variety of verification techniques such

as model checking, verification and application of reduction algorithm s [G rahlm ann 98].

Both SDL and M SCs have been translated into Petri nets in order to use verification tools

developed for Petri nets.

Petri nets look sim ilar to input exam ples in CABS as shown in Figure 2.1 below (a low-

level Place/Transition Net) where the right exam ple is a Petri net and the left exam ple is

an input exam ple for CABS as described in Chapter 4. The Petri net has been designed to

visually look as sim ilar as possible to the input exam ple for CABS, it has not been

explored whether the two exam ples are sem antically equal. Even though the exam ples

look similar, the term inology and way o f thinking is different. Petri nets are built with

places, input transitions, output transitions, input arcs, output arcs and tokens [Jensen 92],

Places can hold one or m ore tokens (in the example, there are two telephone tokens), arcs

have the capacity to hold 1 or more tokens (the default being one), transitions have no

CHAPTER 2. BACKGROUND 33

capacity (cannot hold a token). A transition is enabled if the places with arcs leading to

the transition have a num ber o f tokens greater than or equal to the capacity o f the arc

(default capacity being one). D uring execution o f a Petri net, the tokens will m ove

around in the net and the num ber o f tokens m ay vary. W hen using a Petri net, term s such

as synchronisation, concurrency and m erging are difficult to avoid. The Petri net

exam ple in F igure 2.1 contains the prim itive constructions: synchronisation (e.g. the

processes “ring tone a” and “ring signal b ” are synchronised by starting the transition

“d ialling idle b”), concurrency (e.g. “ring tone a” and “ring signal b ” are two

concurrent processes started by the transition “d ialling idle b ”) and m erging which are

not used in CABS when sketching the behaviour o f telephone services. In high level Petri

nets, a token can contain com plex data and may describe the entire state o f the process or

data base. For the input exam ple in the notation for CABS, each node has facts that are

expected to be valid, and all states in which these facts are true are denoted by the node.

For more details see C hapter 4, and for details on facts for the nodes in the CABS inpu t

exam ple see A ppendix C.3. The additional facts for nodes in CABS notation m ay

indicate that high level Petri nets are the closest o f these dialects to CABS (tokens in low-

level Petri nets cannot carry any data). On the other hand, high level Petri nets have a

larger vocabulary such as functions (M L is used in CPN), m arkings, initialisation

expressions, guards and are able to express process invocation, d ifferent types o f loops

and procedure calls. K urt Jensen states: “M aking a CPN m odel is very sim ilar to the

construction o f a p ro g ram ” [Jensen 92], This m ay be very useful when specifying and

designing a com plex concurrent system but is m uch m ore than CABS needs for initial

sketches o f required behaviour.

34 CHAPTER 2. BACKGROUND

Figure 2.1: Input example in CABS and Petri net exam ple

2.5 Case-Based Reasoning

The central concept o f case-based reasoning is expressed by R iesbeck and Schank as:

the essence o f how hum an reasoning works. People reason fro m experience. They

use their own experience i f they have a relevant one, or they make use o f the experience

o f others ..." [Riesbeck, Schank, 1989, page 7]. Aam odt and P laza’s picture, F igure 2.2,

illustrates the main ideas of case-based reasoning: a problem is given in the top left

com er, sim ilar cases are retrieved from a case library and the m ost suitable case is

selected and re-used. The most suitable case may need to be revised to solve the problem.

If the solution is approved, the problem and its solution are stored in the case library.

Next time a sim ilar problem is encountered, less adaptation o f the retrieved case may be

needed and the perform ance will increase if similar problem s are often encountered and

the features identifying sim ilar cases are good enough.

CHAPTER 2. BACKGROUND 35

Problem

Confirmed Proposed
Solution Solution

Figure 2.2: G eneral architecture o f a case-based reasoning system . A dapted from

[Aamodt, P laza 94],

If a rule based system produces a particular solution, or fails to do so, it m ay not always

m ake sense to look at individual rules that produced the result [Jackson 90]. Looking at

a previous case that has solved a sim ilar problem may, for som e situations, be easier to

understand because cases provide a context for understanding [K olodner 93]. A case-

based system m ay also adapt to changing dem ands, for exam ple, if a new type o f

problem not previously encountered is solved (if no sim ilar cases are available, a solution

to the problem is m ost likely to be produced m anually). The solved problem and its

solution are stored in the case library as a new case, with the aim o f expanding its

com petence [Aam odt 93]. The next time the system encounters the sam e or a sim ilar

36 CHAPTER 2. BACKGROUND

problem , the system will have increased its potential to produce a solution. It is m ore

likely that, in a rule based system, the rules would need to be updated to include this new

class of problems.

Case-based reasoning may be suitable for problem areas in which the know ledge o f how

a solution is created is poorly understood [Watson 97], e.g. the creation o f form al

requirem ents o f telecom m unications services from a set o f behavioural exam ples. T he

W ATSON system, described in Section 2.3, is one o f the few research projects taking on

the task o f form ally capturing knowledge about how telecom m unications services are

form alised from natural language in a sem i-autom atic approach. In technical dom ains,

case-based reasoning has been applied to a variety o f application dom ains such as:

architectural design support [Pearce, Goel, Kolodner, Zim ring, Sentosa, B illington, 92];

qualitative reasoning in engineering design [Sycara, Navinchandra, 89], [Nakatani,

Tsukiyam a, Fukuda, 92], software specification re-use [Maiden, Sutcliffe, 90], software

re-use [Fouque, M atwine, 93], re-use o f m echanical designs [Mostow, Barley, Weinrich,

89], [Bardasz, Zeid, 92], telecom m unications network m anagem ent [Brandau, L em m on,

Lafond, 91], fault correction in help desk applications [W atson 97], building regulations

[Yang, Robertson, Lee], fault diagnosis and repair o f software [Hunt 97].

In conclusion, case-based reasoning may be applied to application dom ains that are no t

sufficiently well understood to create a consistent and com plete rule-base, on condition

that:

• problem s and their solutions have similarities.

• a case library with past problem s and their solutions is available or can be created.

• there are good ways for identifying relevant cases in the case library.

• solutions can be adapted and re-used for sim ilar problems.

Chapter:

3. Introduction to CABS

In this chapter, an overview is given o f the case-based specification approach, and an

introduction to the problem s addressed in this work. In application dom ains like

telecom m unications, form al m ethods are still not used for requirem ents specification.

Even so, a num ber o f logical form alism s seem to be ready for large scale com m ercial use

in real applications and have been explored in the dom ain o f telecom m unications

services (see for exam ple [Arm strong, Elshiewy, V irding, 86] and [Echarti, Stalm arck,

88]). As explored in the previous chapter, there are a num ber o f d ifferen t reasons why

formal m ethods are still rarely used for requirem ents specification in industry.

In the CABS m ethodology, the task o f producing a requirem ents specification is not just

handled as a sim ple task o f transferring the requirem ents from the user to the chosen

form alism . It is a m uch m ore involved intellectual process, and when parts o f the

requirem ents are captured, the user often m odifies and changes his requirem ents, i.e.

requirem ents change and evolve until the user is satisfied. This iterative refinem ent

process is often acknow ledged in software production and experim ental developm ent,

but less often supported by form al m ethods. Form al m ethods practitioners som etim es

give the im pression that they are expecting the clients to have their requirem ents all

ready, and the m ain task is to get them into som e form al notation (not necessarily

executable).

37

38 CHAPTER 3. INTRODUCTION TO CABS

Using CABS, we view the process o f producing form al requirem ents, in particular,

behavioural requirem ents, as m ore o f an experim ental developm ent task, where we start

with sketches o f required behaviour and use these sketches to rapidly produce som ething

which can be evaluated in a variety o f ways (sim ulation, autom atic verification, sim ulation

involving end users, etc.). We then refine the sketch, com pare them with sim ilar

requirem ents, re-use parts o f sim ilar requirem ents, modify the original sketches, all this in

a tightly integrated environm ent where no unnecessary dem ands on order or sequence

are put on the requirem ents engineer. This will aid the user o f CABS to refine and extend

the requirem ents until she is convinced that the form alised requirem ents capture what the

user/custom er requires.

3.1 Outline of the CABS System

CABS attem pts to ease or overcom e som e o f the obstacles encountered when p ro d u c in g

form al requirem ents specifications for telecom m unications services. The approach is

based on the com bination o f form al m ethods, case-based reasoning, exam ple based inpu t

and the use o f an executable logic. By using this com bination, CABS aims to m ake

form al requirem ents specifications m ore acceptable and to bring form al requirem ents

specifications to practical use for telecom m unications services (and sim ilar application

dom ains).

The CABS system is illustrated in Figure 3.1. In the top left-hand com er, the

requirem ents process starts with a num ber o f graphical input exam ples provided by the

user and produced with the graphical editor im plem ented in CABS (see Figure 4.1 for an

exam ple input and the editor). These graphical input exam ples use nodes and links

(explained in C hapter 4) to sketch the behavioural requirem ents. W hen the behaviour o f

some exam ples has been drawn, they can be refined and extended by selecting a node o r

link to obtain a w indow where details can be added.

The m atching algorithm (the second box from the top on the left in Figure 3.1), uses the

input exam ples to identify cases from the case library (top right in F igure 3.1) which

capture sim ilar behaviour. The cases are previously form alised requirem ents that have

CHAPTER 3. INTRODUCTION TO CABS 39

been validated, verified and integrated with other cases (as described in C hapter 5). An

analysis o f the differences and similarities between links and transition rules is used to

identify transition rules that are sim ilar (the analysis m easures a num ber o f features and

is described in C hapter 6). It is always possible to determ ine whether the rules capture

exactly the sam e behaviour (but this is less likely to occur). W hen a set o f sim ilar

transition rules have been identified, each case is ranked on the basis o f its transition rules

and how well they m atch links in the input examples.

The user has a num ber o f different options (shown in the third box from the top on the

left in F igure 3.1) to choose from when confronted with the result from the m atching.

The user m ay select one o f the proposed previously specified services (solid line from

the re-use box) that have been identified as capturing sim ilar behaviour to the

exem plified behaviour. I f a close enough case is not present in the case library, then a

new service has to be constructed based on input examples, m atching cases and transition

rules. A lternatively, the input exam ples can be refined (this choice is shown with the

broken line from the re-use box) in order to im prove the match. I f there is no suitable

m atch in the case library, the input examples can be used as a starting point to specify a

new case (explored in C hapter 7).

W hen there is a proposed case that the user believes m ay be an acceptable solution, she

can verify and validate the proposed solution (the Revise box in F igure 3.1). From the

input exam ples, test cases are generated which, if successful, verify that the proposed

solution captures the behaviour exem plified in the input exam ples. The user can also

sim ulate the dynam ic behaviour o f the proposed solution in order to validate that her

intentions are captured (these sim ulations may also be added as test cases). A theorem

prover analyses the solution with respect to known dom ain restrictions (this is not fully

im plem ented in CABS: simple checks o f restrictions have been im plem ented, but no t

fully integrated, in the CABS prototype). The user m ay also decide to undertake som e

adaptation o f the proposed solution in order to make the behaviour conform to the input

exam ples. At any stage, the user may decide to add more (or refine) input exam ples and

re-do the m atch in part or in full (the broken line from the Revise box in Figure 3.1).

W hen the solution has been validated and verified, it is added to the case library.

40 CHAPTER 3. INTRODUCTION TO CABS

r
i
e
v

Graphical example
of required behaviour

Matching:
identify and rank
similar behaviour

Provide more
input examples

R
e
v
i
s
e

Case Library
Transition rules

grouped
in cases

(F orm alised
requ irem ents)

Verify against input

Prove properties

Adapt to conform
to input

Simulate dynamic
behaviour

S
t
o
r
e

Solution not Confirmed
accepted Requirements

Figure 3.1: O utline o f the CABS approach

For some application dom ains, the ultim ate goal may be to use the form alised and

confirm ed requirem ents directly as an im plem entation. This is possible for a very narrow

class o f application dom ains, where the interface to the environm ent (stim uli/response) o f

the requirem ents specification o f the system is expressed on the sam e abstraction level as

the final system itself and where the final system has to be im plem ented on a com pu ter

(which is not the case for telecom m unications services where stim uli/response are

CHAPTER 3. INTRODUCTION TO CABS 41

com m only expressed on higher abstraction levels). If so, a requirem ents specification

including all the desired behaviour and excluding all unw anted behaviour m ight be used

as the final im plem entation. For the application dom ain o f telecom m unications services

there are high dem ands o f efficiency on the final code. The requirem ents could be seen

as the tip o f the iceberg and the final im plem entation is a highly optim ised and

integrated system o f software and hardware in a global netw ork o f co -opera ting

telecom m unications switches. In these circum stances, the requirem ents specification is

used as input to the design process and for generating test sequences for verification.

In conclusion, CABS is aim ed at providing a closely integrated approach to requirem ents

design and supporting iterative refinem ent, re-use and revision to produce form alised,

validated and verified requirem ents specifications capturing the required behaviour o f

the system to be constructed.

Chapter:

4. Graphical Input Examples
Exemplifying Behaviour

It is com m on to apply graphical notations to a num ber o f different tasks in specification

and design processes. In telecom m unications, graphical notations are widely used,

exam ples o f w hich are SDL (a graphical Specification and D escription Language,

standardised by the International Telecom m unications U nion [ITU -Z100]), MSC

(M essage Sequence Charts), traditional flow charts, etc. M ost notations used in

specification have been form alised to a greater or lesser extent and are m ostly used fo r

design reflecting the chosen im plem entation structure (M SCs capture signalling between

nodes assum ing the services are im plemented with com m unicating entities). CABS uses a

graphical notation to capture behavioural exam ples (see F igure 4.1), which outlines

different parts o f som e required behaviour, but does not aim to com pete with the large

area o f ongoing research on graphical formalism s. The graphical notation used is only

intended to capture some o f the externally visible behaviour (any requirem ents

specification should not put dem ands on how the behaviour is im plem ented internally

[W ieringa 96]) and internal signalling or com m unicating entities can purposely not be

expressed in the formalism .

Graphical form alism s for behaviour can mostly be classified as state based, transition

based, transaction based or any com bination o f these. The full behaviour o f a

43

44 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

telecom m unications system contains too m any states to be handled graphically (even if

there are only a few telephones involved), without introducing levels o f abstraction fo r

states. Therefore, it is difficult to base telecom m unications requirem ents specifications

directly on state transition diagram s: state transition based form alism s are m ainly used in

domains with less then a few thousand states, preferably less than a few hundred states if

they are produced and m aintained by hum ans. If there is no abstraction o f states, the

num ber o f different states in the telecom m unications dom ain will be so large that it will

be difficult for a user to handle. From a com putational point of view, there would be no

problem s with this application dom ain since the specified behaviour fo r

telecom m unications services is sim ply that they should be finite and determ inistic. T he

purpose o f the graphical notation is sim ply to outline the m ain characteristics o f the

behaviour (and not to describe all possible behaviour) and it therefore bypasses the need

to handle large num bers o f states; the graphical notation is a starting point fo r the

production o f form al requirem ents.

For CABS, a graphical transition based form alism has been chosen. The graphical

exam ples in the CABS system are used in the initial stage o f rapidly putting together a

draft specification, and arriving at an executable specification, so that initial ideas abou t

the required behaviour and their corresponding exam ples can be refined and validated.

The graphical input exam ples are also used together with the inform ation added du rin g

the refinem ent o f the input exam ples to provide autom ated assistance in verification. It

contains nodes (ovals) and directed links (arrows) which will be explained in detail in

sections 4.1 and 4.2 respectively. Nodes and links are given nam es (links have their

stimulus nam e in a square box, where a stimulus is the external event that triggers a

transition from one node to another, if all o ther conditions are m et) and pairs o f nodes

can be connected by links in any way. A new node is created by selecting the create

node tool (the first tool in the tool list in Figure 4.1) and a new link is created by

selecting the create link tool (the second tool in the tool list). For nodes and links, an

additional window with details about the node or link can be shown. This w indow is

shown when the details tool (third tool in tool list) is chosen and the node or link is

selected by clicking on it. A node can be m oved by choosing the m ove tool (the fo u rth

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 45

tool) and dragging the node to the new position (all links to/from the node will

autom atically be updated). A node can be renam ed/replaced and a node or link can be

deleted by selecting the corresponding tool (fifth, sixth respective seventh tool), and then

selecting the node or link (any links to/from a deleted node will autom atically be

deleted). The graphical representation and editor are designed to be uncom plicated,

general and deliberately unlike other graphical form alism s used in telecom m unications

since their aim is d ifferent and similarities may confuse m atters. G raphical inpu t

exam ples also have a non-graphical representation (with som e additional inform ation

about the input exam ple), which can be exam ined by the user by selecting the

inform ation tool (eight tool from the top in Figure 4.1) which results in the display o f a

window w ith details o f the input exam ple as shown in Figure 4.2. The ninth tool is used

to redraw the window and the last tool matches the input exam ple against the case library.

F igure 4.1: A graphical input exam ple exem plifying a basic behaviour for the service

basic call

46 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

The non-graphical w indow for the input exam ple (Figure 4.2) contains a scrollable list,

Links in example, with all the links in the input exam ple and inform ation o f triggering

stimulus, start node and end node. A scrollable list, N odes in exam ple:, contains all the

nodes in the input exam ple. These two lists capture all the inform ation shown graphically

in Figure 4.1. Selecting a node or link in these lists and then pressing the Show bu tton

will show a window describing the node or link in detail, as described in Sections 4.1 and

4.2 (this w indow is also accessible through the detail tool in Figure 4.1).

Some o f the functionality m ay be dependent o f the functionality o f som e previously

specified service. W hen creating a new input example, the user states the services on

which the new behaviour is obviously dependent: for example, the three way call service

is often defined as an extension o f the call waiting service, and if call w aiting is no t

available, three way call cannot be used on its own. These services are listed under Known

behavioural dependencies: and are called behavioural dependencies to distinguish them

from m ore subtle dependencies (see Section 5.1) which, in som e cases, can be identified

autom atically in CABS. Structuring services as being dependent on other services is

com m on practice for telephone services. In CABS, this inform ation is used in the

m atching process w here cases on which the behaviour is dependent should be included as

proposed solutions.

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 47

Info about input exam ple: a -Jba s ic_exam ple
Links in exam ple:

S tim u lu s : From node: To n o d e :
d i a l l i n g | d i a l to n e a a c a l l i n g b i >
h o o k _ o ff | a c a l l i n g b | i n s p e e c h
h o o k _ o ff | a l l s u b s c r i b e r s i d l e | d i a l to n e a
h ook _ o n | a c a l l i n g b a l l s u b s c r i b e r s i d l e
hook_on | d i a l to n e a | a l l s u b s c r i b e r s i d l e
h ook _ o n | i n s p e e c h a l l s u b s c r i b e r s i d l e o

Nodes in exam ple:
a l l s u b s c r i b e r s i d l e
i n s p e e c h
a c a l l i n g b
d i a l to n e a o

Behauioural dependencies:
b a s ic _ te le p h o n y <>

<>

Input exam ple categorised as:
b a s i c b e h a v io u r

<>

Exem plif ies interaction with:
no i n t e r a c t i o n e x e m p l i f ie d i >

o

Inform al description of input example:
T h is i s a n ex am p le o f t h e b a s i c b e h a v io u r o f a phone c a l l . o

o

Cancel f Shorn [Graphic f Update [fest cases] ff Ok

Figure 4.2: Textual representation of input exam ple

Inform al exam ples o f behaviour given in textual requirem ents specifications o f a

telecom m unications service are often categorised in som e way for convenience o f

reference. W e have not investigated which categories are m ost com m only used, but have

im plem ented a facility for defining categories. Five d ifferent categories have been

selected (categories can be added/rem oved to suit the application dom ain): basic

48 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

behaviour; odd case; error case; unsuccessful behaviour; excluded behaviour. An inpu t

exam ple m ay be classified as being in m ore than one category. The user selects the

categories when creating a new input exam ple and the categorisation is shown in the text

list field Input exam ple categorised as. In Figure 4.2, the input exam ple

a_basic_exam ple is categorised as basic behaviour. Categories m ay aid the user in the

process o f structuring behavioural requirem ents. The classification m ay also be used to

assess whether the user has given sufficient input examples, or if the system should

request m ore input exam ples. If an input exam ple exem plifies excluded behaviour, it

should be handled differently in the m atching, validation and verification process.

Excluded behaviour (negative exam ples) has not been fully im plem ented in CABS (see

the discussion in C hapter 10).

Interaction betw een behaviours is o f central concern in telecom m unications and is often

claim ed to be the m ost severe problem in developing and m anaging te lecom m unications

systems [Zave 93]14. If the behaviour o f a telecom m unications service is m odified when

some other service is active/inactive, or if it modifies the behaviour o f som e other service

when it is active/inactive, we say then that the two interact. Interaction betw een services is

not “a problem tha t can be solved” since it is part o f the required behaviour, therefore

decisions on how services interact have to be m ade before or during im plem entation.

W hen the user adds a new input example, she can select what interaction the inpu t

exam ple exem plifies, and the selected services are shown in the text list Exem plifies

interaction with: in F igure 4.2. In input examples, it is m ore likely that the desired

interaction is exem plified, leaving unwanted interaction to be handled when the full

specification is produced (including all the desired behaviour and excluding all the

unwanted behaviour). If the unw anted behaviour is exem plified as an input exam ple, it is

14 Some interaction between services may be introduced by architectural/implementation choices such

as dividing the system into communicating processes [Cameron, Velthuijsen 93], and is not relevant

on a requirements specification level.

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 49

categorised as negated input examples. A negated input exam ple can be used if there is

som e specific behaviour that should not be allowed (this m ay be needed in the

telecom m unications dom ain when services interact, but m ay also be useful in o ther

situations). N egated input exam ples are considered a useful extension, and may, in

som e situations, further im prove m atching/verification results, but are not classified as

essential to the approach and have not been im plem ented in the prototype.

An inform al textual description o f the input exam ple together with relevant links can be

provided by the user in the text field Inform al description o f input example. This

inform ation is used for the convenience o f the users and for docum entation. The

G raphic button shows the window with the graphical representation. The Update bu tton

is used to update any changes (the graphical window is updated dynam ically).

4.1 A Node

Each node has a unique nam e that is a m nem onic nam e for a situation, such as two

telephone users being in speech connection with each other (the oval in speech in F igure

4 .1).

A situation can encom pass m any different states15, for exam ple the node dial tone a

(details for this node are shown in Figure 4.4) may intuitively mean that the user a has a

dial tone, which may be true for m any different states. In a telecom m unications system,

there m ay be m illions o f different states where the user a has a dial tone, but m ost o f the

differences will be irrelevant for any particular example.

15 A state is defined as a unique description of a system’s current status, as used in state based

approaches, where each state is often given a unique number. A finite state machine is an example

of a frequently used state based formalism.

50 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

4 .1 .1 Creating Nodes

W hen the user creates a new input example, the first step is to create som e nodes. T he

user selects the first tool from the list o f tools on the left in F igure 4.1. The user then

clicks on the position in the graphical area where the node is to be placed. A window

where the user can select the node name appears (Figure 4.3). If the user chooses to use a

node that has been specified earlier in som e other input example, she clicks on the

selected node and presses the O K button. If in doubt, the D etails button can be pressed in

order to inspect the selected node. Ideally there is always a suitable node to select. If a

new node nam e is given, the details for this new node can be specified as explained in

section 4.1.2 when the D etails button is pressed.

N a m e o f n e w node: a hung up

or s e le c t an e u s i s t i n g node:
a c a l l i n g b
a l l s u b s c r i b e r s i d l e
b b u sy
d i a l t o n e a
i n s p e e c h

C a n c e l D e tai ls

O

Figure 4.3: Select node nam e for input exam ple

After the user has pressed the O K button, the node is drawn as a circle with the nam e in

the graphical area (Figure 4.1).

4 .1 .2 Details for Nodes

W hen a telecom m unications expert talks about a specific situation such as two subscribers

being in speech connection (represented by a node in CABS), the user norm ally has a

com paratively well defined m eaning in her mind. U nfortunately, it often happens that

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 51

different telecom m unications experts do not necessarily have the sam e m eaning in their

m inds; hence, a m ore precise description o f a situation is needed. In CABS, a m ore fine

grained definition o f a node is given as a conjunction o f terms. Term s are explained in

detail in Section 5.1 (the following exam ple m ay be sufficient to provide a basic

understanding). To add to or m odify the details o f a node, the user selects the deta il icon

in the graphical w indow (the third icon on the left in Figure 4.1) and then clicks on the

chosen node in the graphical window. This appears in a node window, as shown in F igure

4.4. If no details have been given for this node, all fields will be empty. The user can now

select the term s (by selecting them from a m enu or by typing them into the field) that are

expected to hold for this node, and add them in the corresponding field. For exam ple,

for the node a calling b, the terms calling(a, b) and ring_tone(a) and ring_signal(b) are

expected to hold (term s m ay also be negated). The first predicate term, calling(a, b), is a

relation betw een user a and user b, stating that user a is calling user b; the second term

states that user a has a ring tone and the third term states the fact that user b ’s telephone

is ringing. A relation term is by definition not externally visible and is therefore added in

the field Characteristics (not externally visible). The two terms ring_tone and ring_signal

are defined as response terms and are therefore, by definition, externally visible and

added in the field Response (externally visible). In telecom m unications systems,

externally visible effects are so central that response terms (externally visible term s) are

often treated separately, even on a requirem ents specification level.

The same node m ay be used in different input examples, and the input exam ples in

w hich the node is used will be shown in the list Node is used in input example. I f a node

has to be m odified, the user m ust m ake sure that the change is valid for all o ther input

exam ples using the same node or, if not, they m ust choose a d ifferent nam e for the node

and define this new node.

W hen giving input examples, it is obvious to the user in m ost cases which node is the start

node and w hich is the end node (there may be more than one). Interm ediate nodes are

nodes that are tem porarily passed through in order to achieve som e required result. T he

user can specify whether a node is a start node, an end node, both or neither (if a node is

neither a start node nor an end node, it interm ediate node). In CABS, this selection

52 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

is m ade by ticking the corresponding box in Figure 4.4. This inform ation is useful in the

verification process and in order to autom atically generate test cases which will cap ture

all behaviour between the start and end nodes (this narrows down the num ber o f test

cases considerably and in fact, in a large system, the num ber o f test cases w ould be

difficult to handle w ithout this inform ation; for m ore on this, see C hapter 7).

R e s p o n s e s (e x t e r n a l ly uis ible):
r ing_signal(b)G'
r in g _ to n e (a)

O

O

C h a r a c t e r i s t i c s (not e x t e r n a l l y uis ible):

c a l l in g (a , b)

*

o

Node is u se d in input e x a m p le s :
a _ b a s ic _ e x a m p le _ l

□ S tart node □ End node

C a n c e l Update [OK 1

Figure 4.4: Exam ple o f a detailed node description in CABS

As m entioned, the user is expected to give the main characteristics o f a node (by

choosing from a list with all terms that have been defined in the case library), exc lud ing

facts o f less relevance for the node. In m ost cases, such a brief description o f the m ain

characteristics will be sufficient, since the input is used prim arily for identifying sim ilar

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 53

behaviour in the case library and for the final verification after the requirem ents have

been form alised. In cases where there is no good m atch (a new type o f behaviour with no

sim ilar case in the case library), the input exam ples are used as a starting point fo r

generating a new case. However, in these situations, the input m ay need refinem ent. F rom

this point, w henever we m ention input examples, or graphical input exam ples, we m ean

both the diagram itself and the details given on nodes and links.

If all term s have a natural language phrase declared, the user could choose to use natural

language (NL) phrases instead o f terms. For example, if c a llin g A, B) has the N L phrase

A is calling B, this phrase could be shown in Figure 4.4 in the field Characteristics (no t

externally visible). An N L translation would be useful for users less fam iliar with form al

notations and if the exam ples were shown to custom ers, they m ay not w ish to see brackets

at all. The way in which form ulae o f terms can be translated into natural language

phrases has been explored in depth [Dalianis 96], In CABS, N L phrases have not been

im plem ented but this is proposed as an extension (adding a prototype im plem entation o f

NL phrases w ould require little effort).

4 .2 A Link

A link in the input exam ple describes a transition from one node to another. The m ain

condition for the transition to take place is that the stimulus term in the link occurs. A

stim ulus in the telecom m unications dom ain may, for exam ple, be an action perfo rm ed

by a phone user, such as lifting the receiver (hook_off) or dialling a num ber (d ia llin g) as

shown in Figure 4.1. In the graphical notation it is optional to show argum ents for a link.

W hen looking at the details for a link, all arguments to a stim ulus are shown (for example

in dialling(A ,N r,T), the first argum ent is the phone user dialling, the second argum ent is

the num ber dialled and the third argum ent is the time this occurred). See Section 4.2.1,

F igure 4.6 and Section 5.1 for more on arguments.

W hen the user wishes to add a new link between two nodes, she selects the second tool

from the list o f tools on the left in Figure 4.1 and then clicks on the node from which the

link will originate. Then, she clicks on the term inating node (a broken line is shown

54 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

between the originating node and the cursor until the term inating node is selected). W hen

the term inating node has been selected, a window for selecting the stimulus term for the

link is shown (Figure 4.5). The user can select a stimulus term from the list showing all

stimuli terms defined in the case library. If the item — New Stim ulus — is selected, the

user can add the nam e o f a new stimulus term. The user may define the stim ulus term in

detail, as described in Section 5.1 (this should be done before the input exam ples

containing the new term are used in the m atching).

S e le ct s t im u lu s fo r l ink:

G O
C a n c e l

I — New S tim u lu s —
c h e c k s e r v i c e
d i a l l i n g
h o o k _ o f i
h o o k _ o n
r e c a l l

E
T i

Figure 4.5: Select stimulus name for new link for input exam ple

W hen the stimulus term has been selected, the new link will be draw n between the two

nodes and the nam e o f the stim ulus term will be shown in a box in the m iddle o f the link.

W hen all nodes and links have been put in place in the input exam ple (as shown in

Figure 4.1), the input exam ple gives all stakeholders a graphical sketch o f the requ ired

behaviour.

4 .2 .1 Defining or Refining Links

A link is identified by its originating node, its term inating node, its stimulus term and the

input exam ple in which it is used. In our examples, the triggering stim ulus nam e is

always used as the nam e o f the link. W e refer to a link by the nam e o f its input exam ple

followed by the originating node nam e, the triggering stim ulus nam e and the term inating

node name and, therefore, there is no practical need to introduce unique nam es fo r links.

In some situations, a link needs som e added details in order to reflect the u ser’s in ten tion

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 55

for the transition between the originating and term inating nodes. The details for a link

are added in the sam e way as for nodes (by selecting the detail-tool and clicking on the

link in order to get a link window as shown in Figure 4.6). In the link window, we draw

the originating node and term inating node. The first edit field is the stimulus term, with

its argum ents extracted autom atically from the definition o f the term.

In CABS, the term s o f the originating and term inating nodes are put, by default, into the

corresponding scroll edit fields in Figure 4.6 (Conditions fro m originating node: and

Conclusions fro m term inating node:) when a new link is created. The user deletes the

condition and conclusion terms that seem to be irrelevant or o f low significance, bearing

in m ind that the link will be used to identify a m atching case in the case library.

A dditional conditions in Figure 4.6 (field A dditional conditions (qualifications/

instantia tion):) are there to allow the user to add some specific conditions not explicitly

given by the originating node. In some cases, additional conditions m ay be added to

discrim inate betw een two links with the same stimulus term leaving the sam e node. F or

exam ple, if user a lifts the receiver and receives a dial tone, she should not currently be

called by som e other user (if she lifts the receiver when called by another used she would

answ er the incom ing call, this can be exem plified with another link). This additional

condition ~calling(Z,a), not explicitly stated in the field Conditions fro m originating

node, is put in the field A dditional conditions (qualifications/instantiation).

A dditional conclusions in F igure 4.6 (field Additional conclusions:) are there to allow

the user to add som e specific conclusions not explicitly given by the term inating node

(no additional conclusions are given in Figure 4.6). A dded conclusions m ay be facts to

be carried forward in time and used at a later stage in the telecom m unications service or

used by som e other telecom m unications service such as Charge Advice. An example of a

fact needed at a later stage is which user originated a three way call (the service three

way call is specified such that if the person who originated the call hangs up, the o ther

two connections are cancelled so that no confusion about who is paying for the call m ay

arise). This fact can be added as an A dditional conclusions:

three_w ay_call_originator(U ser) when the three way call is initiated.

56 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

a _ b a s i c _ e x a m p l e : I nit tw o s u b s c r i b e r s - h o o k _ o f f - > d i a l

C I nit tw o s u b s c r i b e r s ^

Triggering s t im u lu s :
(i T a l t o n e j T)

h o o k _ o ff (a , T)

C o n d it io n s fro m o r ig inating node:

r in g _ s ig n a l(a) ■O'

o

Addit ional c o n d it io n s (q u a l i f i c a t i o n / i n s t a n t i a t i o n) :
cal l in g(Z, a) Aj -

<>

C o n c lu s io n s from t e r m in a t in g node:

d ia l_ to n e (a)

Addit ional c o n c lu s io n s:
&

M a tc h s e le c t fo r l ink: Select b e st m a tc h
f ï (ì (ì f i f t

C an c e l Show m a t c h Select Update I OK
v -« v____________________________ j ■-____________________v _________________ _r

Figure 4.6: An exam ple o f a detailed transition link description in CABS

The pop up m enu M atch select fo r link: and the buttons Show m atch and Select are first

relevant during and follow ing m atching as is explained in C hapter 7. If a link does no t

generate any good m atches, the user m ay decide to refine an input case by

revising/refining the links (by adding/rem oving appropriate terms), which hopefu lly

results in a better match. O ther ways o f im proving the m atching results are explored in

C hapter 7. The Update button confirm s any changes m ade in the edit fields and the

previous definition o f the link is replaced.

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 57

4.3 The Use of Graphical Input Examples in CABS

Initially, every case (the required behaviour for a telecom m unications service) originates

from a num ber o f graphical input examples. These input exam ples represent the original

behavioural requirem ents for the case even if the case itself captures m ore behaviour than

exem plified in the input exam ples (the case may have been refined during validation and

integration). W e store the input examples for each case in the case library for a num b er

o f reasons:

• Input exam ples are used to autom atically generate test cases and verify that the final

solution (the form alised requirem ents) captures the behaviour exem plified in the

input exam ples (explained in C hapter 7).

• G enerated test cases are also used to verify the interaction with o ther cases (explained

in C hapter 7).

• If the behavioural requirem ents for a case are changed, this change will be m ade by

altering the graphical input examples.

• We m ay re-use input exam ples as a starting point when we specify the behavioural

requirem ents o f a new case (input examples can be copied and renam ed in CABS).

• The input exam ples m ay be used for understanding, learning and docum entation o f

the telecom m unications system produced.

In C hapter 5, a detailed description is given o f exactly what is stored in the case library,

and how relevant inform ation is defined, updated and shown to the requirem ents

designer.

Chapter:

5. Case Library

The case library is a central part o f CABS. It is intended to contain everything that is

needed for the process o f form alising the required behaviour (a subset o f the total

behaviour o f the system when it has been fully im plem ented) such as initial requirem ents,

inform al and form alised definitions, test cases used for verification and relations between

these objects. To m ake C A B S’s internal representation easy to extend and m odify, the

case library is organised in an object-oriented fashion where each instance can be

uniquely identified and has a num ber o f attributes and m ethods assigned to it (fo r

exam ple see [Bose 94]). F igure 5.1 shows an overview o f the case library and the

relationships between the main parts within it. The relationships shown as broken lines

have not been im plem ented in the CABS system (beyond the scope o f the research) and

are only shown to give the context. All the main objects in the case library have attributes

such as creation and m odification dates, inform al description, etc. These organisational

issues and design decisions are all hidden behind the user interface and the case library

will be described as seen through the user interface. Everything in the case library can be

saved and loaded betw een sessions.

The case library com prises six main sections: case definitions, transition rule definitions,

term definitions, test cases, graphical input exam ples and system definitions. A system

definition (top left corner o f F igure 5.1) is basically a set o f cases capturing all the

required behaviour the system is expected to exhibit when it has been im plem ented,

59

60 CHAPTER 5. CASE LIBRARY

including the m ore com m on interactions betw een these cases. An add-on system is a set

of cases that adds som e particular functionality to a system, for exam ple the system

m obile_ telephony or IS D N jte lep h o n y (Integrated Service D igital Netw ork) adds

behaviour to the system b a s icJe lep h o n y (see glossary in A ppendix D). A case (a

telecom m unications service) captures the required behaviour o f som e particu lar

functionality in a system and is shown in the centre o f F igure 5.1. The behaviour o f a

case is represented by a set o f transition rule definitions (m iddle left o f F igure 5.1) and

definitions of term s (below centre) that are considered to belong to that case. G raphical

input exam ples (top right o f F igure 5.1) exem plify the initial required behaviour o f a

case and the m ore com m on interactions with other cases. I f a case is added or m odified,

the interaction betw een this case and the other cases needs to be analysed and m ay need

to be verified again (see C hapter 7). All test cases (bottom right o f F igure 5.1) that

capture the required behaviour extracted from the input examples, are stored fo r use in

the autom ated verification process. Once a case and required behaviour have been

designed and im plem ented (the im plem entation o f a new telecom m unications service

m ay be a com bination o f softw are and hardware such as three party call needing specific

hardware connecting three phone lines to each other), the connection between the

transition rule definitions and term definitions should be kept (these links are shown in

Figure 5.1 as dotted lines). These links, shown as dotted lines, are beyond the scope o f

this research.

CHAPTER 5. CASE LIBRARY 61

Definitions Term
Definitions

Design and
Implementation
of requirements

Figure 5.1: Overview o f case library

In the following sections, we will describe the different parts in the case library, their use

and how they are defined or m odified by the user. First, we describe terms, which are one

o f the m ost fundam ental parts in CABS, then transition rules, which represent the

dynam ic behaviour o f cases, then cases (telecom m unications services in our application

dom ain), systems (sets o f cases) and, finally, we describe graphical input exam ples and

test cases. O nce all the parts o f CABS are explained, C hapter 6 explores how sim ilar

behaviour can be identified by input examples and using them in a m atching process, in

order to identify cases that m ay be re-used in whole or in part.

5.1 Terms

The purpose o f term s is to capture a system ’s current state. Term s are used both in input

exam ples and in transition rules and are an im portant part o f defining an ontology fo r

62 CHAPTER 5. CASE LIBRARY

the dom ain16. A precise and clear m eaning for each term is crucial to the in terpretation

and understanding o f a form al specification, although few requirem ents m ethods address

this issue effectively [Zave 96]. A lso, if a term is used in an input example, it is im portan t

that the term is well understood by the user so that the input exam ples and the cases in

the case library are built on the same term inology. In CABS, the user is expected to

define terms with care and in detail before the term is used in input exam ples and in

transition rules. Term definition should be one o f the first tasks when approaching a new

application dom ain or a new class o f behaviour that cannot be expressed with existing

term definitions. If a term does not have a clear m eaning, or its m eaning is m odified

during a specification, all previous specifications are no longer valid and have to be re

validated by the user. For a large system, where the specification m ay have hundreds o f

cases and thousands o f transition rules, this will be a tedious and tim e consum ing task. I f

a term ’s m eaning in CABS is changed for som e reason, all this w ork has to be repeated.

The idea is to give elaborated definitions o f the m eaning of term s in order to reduce the

risk o f introducing problem s at an early stage, which m ay cause costly corrections later

on. Inform al discussions with telecom m unications experts have shown that experts

som etimes disagree on the m eaning o f terms they use: large efforts are put into

standardisation o f telecom m unications term inology both by telecom m unications

com panies and international standardisation organisations, but if terms are p roperly

defined the first time they are used, some of these efforts m ay be reduced.

Figure 5.2 shows an exam ple o f a term definition in CABS. The purpose o f the curren t

way o f defining term s is not to com pete with ongoing research in conceptual m odelling

(see for exam ple [Johannesson, Bom an, Bubenko, W angler, 97]). However, F igure 5 .2

may provide an alternative way o f presenting some o f the inform ation traditionally

captured in conceptual m odelling. The exam ples m erely give an illustration o f the

different pieces o f inform ation o f interest fo r form alisation/validation/verification and

16 Defining an ontology is beyond the scope of this research, only a few aspects of defining an

ontology are addressed, for more details on ontologies, see for example, [Uschold 95].

CHAPTER 5. CASE LIBRARY 63

exem plifies how this inform ation can be collected at an early stage o f requirem ents

capture. The content o f F igure 5.2 will be explained briefly now and explored in m ore

depth in sections 5.1.1 to 5.1.6.

The first field, Term nam e (with argum ents): in F igure 5.2 is the term nam e and

argum ents; in this exam ple divert(N rl, Nr2) is typed in by the user when defining the

new term (argum ent names m ust start with a capital letter and can contain any num ber o f

letters, num bers and underscores). The next field, Inform al descrip tion: is an inform al

description o f the term and argum ents. The list D efined term belongs to cases: shows

which cases in the case library the term definition belongs to. The m ost com m on

situation is that a term is only defined in one case. On som e occasions, it m akes sense to

let the sam e term be defined in more than one case, fo r example, if there are two varieties

o f the sam e case in the case library. This occurs in telecom m unications since services are

often adapted for d ifferent custom ers and m arkets (the service three party call fo r

regular custom ers is different from three party call for Centrex, see glossary in Appendix

D). Term s can be o f four types in CABS: stimulus terms, response terms, relation terms

(m ore than one argum ent) and attribute terms (zero or one argum ents). W hen defining a

new term, the user has to select the term type by selecting the appropriate type in the

pop-up m enu under Type fo r term: in Figure 5.2. The user can also choose a sort fo r

each o f the term ’s argum ents (Figure 5.2), Sort fo r argum ent <position number>. The

m axim um num ber o f argum ents is restricted to five in the im plem entation o f the

interface, which is sufficient for the current exam ples in the application dom ain and

should also be sufficient for the telecom m unications dom ain. The size o f the window is

adapted autom atically to the num ber o f arguments in the term. For each term, the type of

relation betw een the argum ents can be specified by selecting the appropriate choice in

the pop-up m enu R elation type: in Figure 5.2. The set o f types available depends on the

num ber o f argum ents for the term: if there are zero or one argum ents, the selection

cannot be made. W ith the pop up m enu Term occurrence: the user can select whether a

term has any restrictions on its occurrence. The options for term s with one or m ore

argum ents are one, any, zero or one, one or more. Option one would m ean that if the

system can reach a state (see section 5.1.6) in which the term exists m ore than once or

64 CHAPTER 5. CASE LIBRARY

not at all, then there is a conflict between the definition and the transition rules leading to

the state. For exam ple, if the term s current_tim e(1) and current_tim e(2) are true at the

same time, it is incom patible w ith this definition. This sort o f generic inform ation is often

easiest to capture when the user defines a new term and can then be used in a num ber o f

different ways. For exam ple, if new transition rules are generated from links or adapted

from other transition rules, they can be inspected for consistency with the term

occurrence definition. This inform ation can also be used when verifying a system (see

Chapter 7.6).

The button Show w here used produces a cross reference list o f all transition rules in the

case library and tells the user which cases contain transition rules that use the term in

their condition-part/conclusion-part (currently this is not fully im plem ented but it cou ld

be im plem ented w ith a sim ple search function). The M ore button gives som e additional

inform ation, such as the times at which a term definition was created and last m odified .

The Update button updates any changes o f the definition (if the user has the privilege o f

m odifying term definitions). The C ancel button ignores any changes and leaves the term

definition unchanged.

CHAPTER 5. CASE LIBRARY 65

A t t r i b u t e / r e l a t i o n te rm : d iu ert

Term n a m e (with a r g u m e n t s) :

d i u e r t (N r 1 , Nr2)

In f o r m a l d e s cr ip t io n :
C a l l s t o phone number N rl a r e e x p e c te d t o be d iv e r t e d
t o Nr2 i n s t e a d (a l s o s e e d iv e r t_ o n _ n o _ r e p ly and
d iv e r t _ o n _ b u s y) . € :

D efined te rm belongs to c a s e s :
c a l l d iv e r s i o n <>

_

Type fo r te rm : re lat ion

Sort fo r a r g u m e n t 1 : t e l e p h o n e _ n u m b e r

Sort fo r a r g u m e n t 2: t e l e p h o n e _ n u m b e r

Re lat io n ty p e :

Term o c c u r r e n c e :

1 : 1

none or m ore -

C a n c e l 1 Show w h e r e u sed More [Update]
____________ V--------------------*

Figure 5.2: An exam ple o f a term definition in the CABS system

5 .1 .1 Significance of Term Names

The term s used are in predicate logic (see for exam ple [Luger & Stubblefield 89]) where

the term nam es bear the m ain part o f the non-instance-specific inform ation. For

exam ple, if we w ould like to capture the statem ent that a user a has dialled the num ber

222 and that the num ber 222 has all its calls redirected to the num ber 333, that there is a

user b answ ering calls on num ber 333, and c is not calling b, we could capture this with

the four terms:

dia lling(a ,222) and redirect(222,333) and

answ er_num ber(b,333) and no t calling(c,b)

66 CHAPTER 5. CASE LIBRARY

In this exam ple, all the non-instance-specific inform ation is captured in the term nam e

and all instance-specific inform ation is represented as argum ents to the terms. The term

names are relations or attributes that can be given a clear m eaning from a phone u se r’s

perspective. The argum ents are phone num bers (222, 333, 444, ...) and phone users (a, b,

c, ...) which are the m ost central entities in the telecom m unications domain.

In an entity relation m odel, in contrast, term s are o f the form is_a or has_property, and

most o f the significance is shifted to the arguments. An exam ple with low significance in

term nam es and high significance in the argum ents w ould be:

has_property(a ,d ia lling ,222) and has_property(222,333) and

has_property(b ,answ er_num ber,333) and no t has_property(c, calling,b)

In this exam ple m ost o f the significance has been shifted from the term nam es to the

arguments. Both exam ples contain the same inform ation when we know the instances and

in m ost applications, the choice between the two representations m ay not be o f any

significance. But in our approach, it will prove im portant as will be explained in C hapter

6 (part o f the m atching is based on term nam es and is independent o f the current dom ain

o f discourse). Term nam es are central to the m atching process and if their significance is

low, this will affect the validity of the m atching result.

5 .1 .2 Instances, Arguments and Sorts

In behavioural input exam ples, requirem ents specifications and sim ulations, a set o f

instances are needed (to be precise, nam es uniquely identifying the real instances in the

dom ain o f discourse, i.e. all the telephones and phone num bers). This is not to be

confused with the application dom ain (such as telecom m unications services). Instances

can be classified into sorts; in the application dom ain o f telecom m unications, there are

sorts such as telephone num bers, phone users, etc.

In CABS, it is an advantage to use terms with few argum ents as this often gives the term

name higher significance. In fact, everything that can be expressed using term s with

more than two argum ents can be represented using term s with only two argum ents; bu t

CHAPTER 5. CASE LIBRARY 67

this m ay look odd even if there are advantages in doing so. For exam ple, the facts

answer_nr(U ser, N r) & accepts_incom ing_calls(U ser) could be represented with one

term and three argum ents, user_info(User, Nr, ‘in co m in g _ ca lls’). If the term

user_info(User, Nr, F) occurs in a node, link or transition rule, a careful analysis o f the

argum ents will tell us which inform ation is relevant to the situation. Since our m atching

algorithm uses term nam es as its main guide in identifying relevant matches, the

m atching result will be m ore accurate if terms use fewer argum ents (for details on

m atching see C hapter 6).

From a pragm atic point o f view, any non-trivial specification will initially contain

mistakes, m isunderstandings and errors. Sort declarations m ay be used in a num ber o f

d ifferent ways to aid the requirem ents capture process and, hopefully, to im prove the

accuracy o f the final specification. The m ost com m on use is to identify any m ism atch

with sorts and point out where these occur. The argum ent against sort declarations and

typing is m ainly that in prototype systems and small specifications m ade by one or a few

persons, the gains are not large enough to justify the additional workload. In our

approach to specification, we acknowledge both the need for an early prototype o f the

requirem ents (i.e. to arrive quickly at some interm ediate result that can be partly

validated and verified in order to aid the refinem ent and revision process) and the need

to produce a validated and verified formal specification outlining the required behaviour.

CABS provides, as an option, the default sort N ot specified when selecting the sort (in

Sort fo r argum ent <argument number> in Figure 5.2), which has all other defined sorts

as a subset. This will allow the user to specify, sim ulate and refine the system

increm entally and to decide when to declare this inform ation. A new specification should

only be accepted when all argum ents have their sort declared (checking that all

argum ents have their sorts defined is trivial to im plement, although not im plem ented in

the CABS prototype, see for exam ple [Cohn 85]). Furtherm ore, theorem provers and

sim ulators can im prove their perform ance by using sort inform ation.

68 CHAPTER 5. CASE LIBRARY

5 .1 .3 Constraints on Terms

There are a num ber o f static constraints that can be declared on term s (static since they

are valid for all states the system can reach). M uch research effort has been put into the

m odelling o f static models: entity relationship m odelling is one o f the m ost po p u lar

approaches [W ieringa 96]. A num ber o f d ifferent graphical notations are also used and

some are translated into logic [Preifelt, Engstedt, 93] or into logical p rog ram m in g

languages such as PRO LO G [Johaneson 91]. Exam ples o f constraints on term s in the

telecom m unications dom ain are:

1. A user can have only one other person calling (next caller gets busy tone).

2. A user can have only one last called num ber (used when the redial service is

activated).

3. Only one current tim e can exist in a given state.

This inform ation is useful in the verification process for the specified system. A term can

either be a propositional term, e.g. lam p_is_on or have argum ents, e.g.

sw itch ed _ o n (la m p _ l). A term can either be true or false: -> sw itch ed _ o n (la m p _ l) m eans

that it is not true that the lam p_l is switched on. In the following sections, we will exp lo re

how to represent different aspects o f term s and their properties (such as the three

examples above) in m ore detail.

Each term is defined according to an approach sim ilar to that used in som e entity

relationship approaches (for m ore details on different approaches see [W ieringa 96]). In

the current im plem entation o f CABS, there is no graphical representation o f static

constraints for terms. The four static constrains defined in CABS are: type o f relation fo r

terms; sort o f argum ents; relation type betw een the arguments; term occurrence, as shown

in Figure 5.2.

If there are two argum ents for a term, the choices are 1:1, l:m (m for m any), m :l, m :m

(see exam ples o f the relation types in Figure 5.3). The relation type 1:1 m eans that each

object in the set o f possible values for the first argum ent can have only one relation with

CHAPTER 5. CASE LIBRARY 69

one object in the set o f possible values for the second argum ent. The relation type m :l

m eans that each object in the set of possible values for argum ent 1 can have only one

relation with one object in the set of possible values for argum ent 2 , and objects in the set

o f possible values for argum ent 2 can have many relations with d ifferent objects in the

set o f possible values for argum ent 1 (for m ore on this see, fo r exam ple, [Davis 90]).

This inform ation can be used in various ways in verification and validation, or when

adapting or generating new transition rules.

possible values possible values possible values possible values
for argument 1 for argument 2 for argument 1 for argument 2

- ' O

O

t / o
- t o ;

‘• o / \ o /

1:1 m:m

m :l l:m

Figure 5.3: Relation type between arguments in a term with two arguments.

An exam ple o f a static constraint is a binary relation term nam ed answ er_num ber with

tw o argum ents, the first argum ent being a telephone user, and the second argum ent being

the telephone num ber the user answers. The static constraint is that the user can have

only one answer num ber. This is an m :l relation, i.e. each user has only one answer

num ber and m any users can have the same answer num ber. For example, if it were true

70 CHAPTER 5. CASE LIBRARY

that answ er_num ber(daniel, 3 990) and answ er_num ber(daniel, 5555), that w ould be in

conflict with the declaration. But the statem ent answer_num ber(sandra, 39 9 0)) and

answ er_num ber(andreas, 3990) is not in conflict with the declaration.

In some form al specification approaches, and often in logical systems, redundancy m ay

be unwelcom e, or even purposely avoided and elim inated. In a requirem ents capture task,

which by nature will often be incom plete, contain errors and require revision and

refinem ent, we should take every opportunity to collect inform ation which is easily

available and easy to capture, whether to aid the user to clarify her thoughts or for use

later in verification.

5 .1 .4 Response Terms (Externally Visible)

Any term s visible from the environm ent in which the final system will operate are

declared as response term s (for exam ple ring signals, dial tones). This m ay be any th ing

from an asynchronous request, to a com m and given to som e external equipm ent or a

m essage to another system. W hat effects the visible term will cause outside the specified

system are beyond the control o f the specification (with a straightforw ard extension o f

the sim ulator, com m unicating systems can be simulated, see C hapter 9). Hence, a clear

understanding o f the visible terms is crucial to ground the system ’s behaviour in its

environm ent. In the current im plem entation, we provide only a facility for adding som e

text explaining each term ’s m eaning (which may also contain references o r

form alisations).

5 .1 .5 Stimulus Terms (External Input)

Stimuli are the only way for the environm ent o f a system to affect its behaviour (fo r

exam ple dialling, hook_off, hook_on, recall). A stimulus m ay be ignored by the system,

but the m ost com m on response is an internal change o f state and, eventually, an external

reaction in the form o f changed response terms (see transition rules). If time is an

im portant part o f a behaviour, it m ay be regarded as an external stimulus.

CHAPTER 5. CASE LIBRARY 71

5 .1 .6 A State is a Set of Statements

The purpose o f term s is to capture a system ’s current state. A state com prises a nu m b er

o f term s representing all statements which are true, with all other statem ents not stated as

true assum ed to be false. CABS is intended for m odelling system s in which we can

assum e a closed world (specifications o f systems to be im plem ented with com puters

m ostly fall into this category, real world systems do not). The closed world assum ption

sim plifies the logic and is the classical decision taken in m any logic based languages

(such as PRO LO G) and knowledge based systems (such as production systems).

Requirem ents specifications o f systems im plem ented with com puters (such as

telecom m unications services) m ostly fall into this category (we either know that

som ething is true or false, but do not need to reason about situations where we do no t

know if som ething is true/false).

5.2 Transition Rules

W hen specifying a system in CABS, the only way of causing a change is by a transition

rule. I f a transition ru le’s conditions are met, the system will change into a state where the

conclusions o f the transition rule are true. One of the conditions in a transition rule has

to be a stim ulus term. State changes can only occur in response to an external event and,

thereafter, the system will wait (stay in the same state) until a new stimulus is received.

This has the advantage (and for some domains, the lim itation) o f restricting the

specification to be internally loop free. D epending on the environm ent o f the system, it

m ay still be possible to create external loops outside the scope o f the specification (see

section 5.2.1 about external loops).

Stim uli are sequenced in order to sim plify the logic: we do not attem pt in this high-level

specification to specify what should happen when signals are com peting (e.g. if two users

call a third user at exactly the same time); the approach taken is that the decision o f how

to resolve such a situation is not necessarily a requirem ents choice, and can be dealt with

in the design process (for m any application domains, including telecom m unications,

assigning an arbitrary but reproducible order between com peting external signals will be

72 CHAPTER 5. CASE LIBRARY

sufficient). F igure 5.4 shows the m odel used in CABS. Sequences o f stimuli provided by

users o f telephones are used to activate appropriate transition rules. As a consequence, a

sequence o f states is generated, containing sets o f facts that describe the system at each

time a stimulus was received i f represents the fram e axiom, w hich transfers unaltered facts

from the previous tim e t to the current time t+1, see A ppendix A for m ore details on the

logic used).

users

Logical System

Figure 5.4: M odel o f the dynam ic behaviour o f telecom m unications netw ork

An exam ple o f a transition rule window in CABS is shown in F igure 5.5. The Stim ulus:

field shows the triggering external stimulus condition. The C ondition: field contains a

conjunction o f term s defining all other conditions that have to be met. The C onclusion

and responses: field is a conjunction o f all terms that becom e true as a consequence o f

this transition rule, if the conditions are true. In the Inform al description: field, a textual

explanation o f the rule, its m eaning and references to relevant inform ation are given. In

the list Used in cases: all cases in the case library that include this transition rule are

listed. The user m ay select a case in the list and press the Show Case button in order to

display the case window, as in F igure 5.7.

CHAPTER 5. CASE LIBRARY 73

Tra n sit io n Rule: n o r m a l_ d ia l l in g

Stim ulus:
d i a l l i n g (A . , N r , T)

Condit ions:
d i a l _ t o n e (A)&
a n s w e r_ n r (B , Nr)&
~ c a l l i n g (Z , B)&
a c c e p t s _ i n c o m i n g _ c a l l s (N r)&
~ 'h o o k _ o f f_ tim e (B , Y)

o

o

C o n clu s io n s and r e s p o n s e s :
c a l l i n g (A , B)&
" 'd i a l _ t o n e (A) &
r in g _ to n e (A) &
r i n g _ s i g n a l (B)

&

< 2

<>

In f o r m a l Description:
U s e r A i s d i a l l i n g a num ber c o n n e c te d t o a t e r m i n a l t h a t
a c c e p t s in c o m in g c a l l s } i s n o t c a l l e d by so m eo n e e l s e
an d who h a s n o t t h e r e c i e v e r o f f t h e h o o k . The r e s u l t i s
t h a t A i s c a l l i n g o n B.

<>

Used in c a s e s : b a s i c c a l l

O

T r a n s it io n rule is included in pr iority.

C a n c e l Show c a s e More GO
Figure 5.5: Transition rule exam ple in CABS

The M ore button gives some additional inform ation on m aintenance etc. Above the

buttons, either the text Transition rule is not part o f any priority or Transition rule is

included in priority is shown (see Section 5.4.2 for inform ation on priority between

transition rules). Pressing the OK button saves the m odifications and closes the window.

Before saving the changes, a brief analysis o f the changes is m ade and if in doubt, the

user m ust confirm the changes (see Chapter 7 for circum stances under which transition

rules m ay be m odified).

74 CHAPTER 5. CASE LIBRARY

5 .2 .1 Recursive Behaviour in Requirements

How to represent recursive behaviour, as well as the restrictions im posed on recursion by

the form alism and syntax, are o f m ajor im portance for requirem ents specifications. T he

main risk with recursive behaviour is that loops are specified that may be infinite u nder

some circum stances and that this is not identified during validation and verification (this

would be a m ajor problem in any safety critical application). One advantage o f recursive

behaviour is that som e requirem ents are considered easier to express with recursive

behaviour. B efore explain ing what type o f recursive behaviour is enabled in CABS, an

exam ple is given o f the call diversion service (see glossary in Appendix D) in a recursive

situation.

Call diversion m ay be used for diverting a call for m ore than one step. Calls to p h o n e

num ber 1 1 1 m ay have been diverted to phone num ber 22 2 , and calls to 222 m ay be

diverted to phone num ber 333. A careless specification o f repetitive behaviour m ay

enable specifications that exhibit unwanted behaviour, which may be difficult to validate

and verify (the problem is to separate loops that always term inate and loops that u nder

some circum stances m ay not term inate). If, for example, phone calls to 222 have been

diverted back to 1 1 1 in the above example, some form alism s and ways o f specifying the

diverted call m ay cause an infinite loop (see exam ple in footnote 9, page 23). A full

specification (specifying all wanted behaviour and excluding all unw anted behaviour)

should state what happens: an infinite loop is m ost likely not part o f the requirem ents fo r

a telecom m unications systems. A requirem ents specification (com pared with a full

specification) does not include all w anted behaviour and exclude all unw anted behaviour:

it merely outlines the m ain behaviour and leaves other parts o f the behaviour open fo r

later refinem ent, in order to produce a full specification (which is outside the scope o f

this research).

In CABS, recursive behaviour is restricted to aid validation and verification. There are

two different ways to express recursive behaviour:

CHAPTER 5. CASE LIBRARY 75

1. Expanded Recursion: If a finite recursive behaviour is to be expressed with transition

rules, this can be represented with a separate transition rule for each recursive step. A

recursion in n steps will result in n transition rules. Hence, we cannot create infinite

loops and only one time step passes for the rule triggered (if o ther rules trigger in

parallel, it will still be one time step, for m ore on this see 5.2.2). This is expressive

enough for telephone services but may be awkward for som e cases, especially if a user

m anually edits or adds transition rules capturing recursive behaviour (a m ore

com pressed syntactical notation for recursion m ay be introduced and autom atically

expanded to a set o f transition rules, see Chapter 8). Both validation and verification

o f expanded recursion is supported in CABS (transition rules representing expanded

recursion are, with respect to CABS, no different to other transition rules).

2. External Recursion: This m ode o f recursion is optional and m ay be forbidden if

unw anted for an application domain. I f a recursion is caused by a response converted

externally (outside the form ally specified system) to a signal, it is called an external

recursion (Figure 5.6). Infinite loops can be specified in this way and are outside the

control o f the form al notation. The filter process m ay add restrictions and m on ito r

recursion. O ne time step passes for each recursion. This can often be translated

(m anually) into expanded recursion. Even if they can be translated m anually, they are

d ifferent in nature to each other since in CABS, a tim e step will occur for every

stim ulus and hence each recursion will result in a time step. This m ay be an over

specification, especially if the requirem ents can be translated with expanded recursion

(only one tim e step will pass, independent o f the num ber o f recursions). V alidation o f

external recursion is supported by CABS, which identifies responses nam ed stimulus

and subm its the argum ent as a stimulus to be sim ulated, see Section 5.2.1.2.

5 . 2 . 1 . 1 E xam ple o f E xpanded R ecursion

As an exam ple, suppose we accept divert call in three steps, then we know that if there are

three divert num bers (divert(123,125) & divert(125, 139) & divert(139, 144)) there

would be three transition rules if we formalise the requirem ents with expanded recursion.

The first transition rule would handle diversion in three steps; the second one in two

76 CHAPTER 5. CASE LIBRARY

steps, with the precondition that the last num ber does not have a divert, and the third in

one step, with the condition that there is no further diversion from that num ber. Since

there is no transition rule handling four diversions, any further diverts w ould be ignored

by the specification (which is the aim if we limit the m axim um num ber o f diverts to

three). Also, if the second divert was a divert back to 123 (divert(139, 123)) this would

be no problem since the effect is that phone calls to the num ber 123 end up at 123. This

is most likely a profitable situation for a service provider, since the service p rovider

normally bills each diversion as a norm al call (billed to the subscriber who activated the

diversion). This w ould result in the subscriber for telephone num ber 123 paying for the

call between 123 and 125, the subscriber for 125 paying for the call to 139, and the

subscriber for 139 paying for the call to 123 (a triple paym ent for a call).

5 . 2 . 1 . 2 E x tern a l R ecursion

If recursion is specified as an external recursion, a transition rule concludes a special

response, which is identified by the filtering process, and the argum ent is returned as a

stimulus (see F igure 5.6). W hen behaviour is specified with external recursion, the

specification exploits som e known and reliable behaviour. In CABS, this special response

term is nam ed stim ulus since its argum ent is one stimulus to be sent as input to the

system. W hen the filtering process identifies a response, stim ulus(<stim ulus term to be

sent to system>), it is converted to a stimulus term and sent to the system. The external

filter process is transparent for all responses directed to the users, and only identifies and

filters out responses from the system that should be sent back as stimulus terms.

W ith this m echanism , we could specify call diversion by having a transition rule identify

when a caller C calls a num ber N1 for which a diversion is set to num ber N2, and

generate a response term stim ulus(dialling(C, N2, N extTim e)) w hich the filtering process

will translate to a signal dialling(C, N2, N extT im e) and present as an input to the system.

CHAPTER 5. CASE LIBRARY 77

Logical System

Figure 5.6: External recursion

If num ber N2 has also diverted calls to num ber N l, we w ould end up with an infinite

external loop. W hen dialling(C, N2, NextTime) is received by the system, it would

correctly identify that N2 is diverted to N l and generate a response term

stimulus(dialling(C , N l, NextTime))-. this may continue forever. It is theoretically d ifficult

in general to prove that a specification containing external recursion is finite. A crude

way o f reducing the risk to the m ost obvious loops would be to add restrictions in the

filter process. For example, one m ight only allow a stimulus with the same argum ents

(allow ing different times) to be sent to the system a certain num ber o f times within a

given tim e frame. If a restriction is added that the response stim ulus(dialling(C ,N r,T)) is

accepted only three times with the same argum ents within one second, the loop in the

exam ple would m ost likely be elim inated. But since there is no way in CABS to prove

that the use o f external recursion will not cause an infinite loop, this way o f specifying

behavioural requirem ents should be avoided in cases where reliability is a high priority

(or all external recursion should be translated to expanded recursion in the refinem ent

process o f the specification). In situations where there are good reasons for using

external loops to specify some particular behavioural requirem ents, the part o f the

specification that can cause infinite loops is clearly identifiable.

78 CHAPTER 5. CASE LIBRARY

5 .2 .2 Parallel Transition Rules and Order Independence

For requirem ents specification, it is useful to have transition rules that can trigger in

parallel if all their conditions are met, and can also trigger independently o f the order o f

the transition rules (transition rules are by default context independent). This can be used

to separate the specifications o f m ore or less unrelated behaviours (for exam ple, separate

call billing functionality for a telephone call from the behaviour o f how to establish the

call) which are triggered by the same external stimulus. C ontext-independent transition

rules give the advantage o f defining the behaviour independently o f both loading o rder

and other transition rules included in the full requirem ents specification (in m any rule

based systems, the exact behaviour o f a rule can only be determ ined if the conflict

resolution m ethods are known, as well as the loading order: the system m ay behave

com pletely d ifferently if the rules are loaded in a d ifferent o rd e r17). Transition rules

which may trigger in parallel m ust be checked carefully to ensure that they do not have

conflicting conclusions (this can be done autom atically, see Section 7.6). Parallel

transition rules do no t affect the expressiveness o f the logic and can be translated

(manually) to a set o f non parallel transition rules with exactly the same behaviour. T heir

sole purpose is to aid the separation o f requirem ents.

5.3 Structuring Functionality in Cases

There are a num ber o f d ifferent ways to structure functional specifications. The m ain

aim o f any structure is to m ake it easier for a hum an to understand, extend or m odify a

specification. It is considered to be difficult to structure large systems in predicate logic.

If a structure is required for a form al specification based on predicate logic, it has to be

introduced either in the form al notation itself or on a m eta-level. The m ost com m on

Since telecommunications systems requirements are composed of hundreds of different services

(cases), it would be a major task to handle loading order for transition rules.

17

CHAPTER 5. CASE LIBRARY 79

approaches are to m odularise a specification or to divide the specification into a nu m b er

o f com m unicating objects (not to be confused with the objects in the dom ain o f

discourse, hence I will call these objects ‘process objects’).

In the chosen telecom m unications domain, the functionality is divided into functional

p arts18 called services, where each service reflects some particular behaviour o f the final

telecom m unications system. Services are often classified as either basic services,

capturing som e main functionality, or as services which add functionality to these basic

services. In telephony, the basic functionality is to establish a voice or data connection

betw een tw o users. Exam ples o f services adding functionality are call return, call m inder

and call w aiting (for m ore exam ples see “Selected services, U ser guide, B T ” and

A ppendix B). The basic service in telecom m unications is decreasing as part o f the total

functionality and the overall functionality is getting m ore com plicated. In our exam ple

dom ain o f telecom m unications services, we im plem ented each service as a separate case,

which follow s the traditional way o f structuring telecom m unications services.

F igure 5.7 shows an exam ple o f how a case is displayed in the CABS system. In the scroll

list under the text Transition rules (T-rules) in case: a list with all transition rules

belonging to the case is shown. The user may chose to inspect a particular transition rule

by selecting the appropriate button. This will show the window for the transition rule as

shown in Figure 5.5. In the same way, a transition rule can be rem oved from or added to

the case. The inform al description gives a b rief description o f the case, its purpose,

functionality and links to relevant docum entation. In the list Terms defined by case: a list

18 In telecommunications, it is also common to have an object oriented structure at the design and

implementation level (but not at the requirements level) where different parts are handled and

implemented separately (trunk lines, protocols, regional processors, access points, etc.). In contrast,

functional requirements specifications should ideally be as independent as possible of design and

implementation decisions.

80 CHAPTER 5. CASE LIBRARY

with all term s defined by the case is shown. The button Show Term will show the selected

term in the list. This inform ation is used to determ ine relationships between cases.

If a case specifies behaviour added to that o f a previously specified case, in the sense that

a system does not include the base case, the extension case does not m ake sense on its

own (in telecom m unications, three party call may be specified as an extension to call

w aiting). If a case specifies som e behaviour added to a previously specified case, this is

shown in the list <case name> is dependent on cases: in the window.

The button In teraction m akes an in-depth analysis o f relations and dependencies

between cases (som e o f the interaction can be determ ined autom atically in CABS, see

Chapter 9 for m ore details). The user can choose to inspect the input exam ples on which

the case has been based on by pressing the Input Exam ples button, or can choose to

inspect the test cases used for the verification o f the case by pressing the Test Cases

button (if no Test Cases have been generated autom atically from the case, this can be

initialised). The M ore button gives som e additional inform ation, such as when a case was

last m odified.

CHAPTER 5. CASE LIBRARY 81

= = C as e : b a s ic _ c a l l j

T r a n s it io n rules (T -ru les) in c a s e :
a _ l e a v e _ c a l l i>a n s w e r _ c a l l
b _ l e a v e _ c a l l —
d i a l l i n g _ b u s y _ l
d i a l l i n g _ b u s y _ 2
d i a l l i n g _ c o n g e s t i o n
d i s c o n n e c t _ f r o m _ c a l l i n g
d i s c o n n e c t _ i f _ t i m e _ o u t _ l S3

j - hL

Sho w T - r u l e
v j

r C ^
Rem oue T - r u le Rdd T - r u l eL J J

In f o r m a l d e s c r ip t io n of ca se :
C a p tu r e s t b e b e h a v io u r o f a b a s i c t e l e p h o n e c a l l b e tw e e n
tw o t e l e p h o n e u s e r s . I n c l u d e s c a l l t o a b u sy u s e r ,
c o n g e s t i o n an d t im e o u t s . o

T e rm s d e f in ed by c a s e :
a c c e p t s _ i n c o m i n g _ c a l l s (U s e r) t y p e : r e l a t i o n <£

s
- V “

a n s w e r _ n r (U s e r , N r) t y p e : r e l a t i o n
b u s y _ to n e (U s e r_ &) t y p e : r e s p o n s e

b a s i c _ c a l l is d e p e n d e n t on c a s e s :
b a s i c _ t e l e p h o n y o

o
f ~\ f f
In p u t E n a m p le s Test C a s e s Show Term
L J J

C a n c e l MoreL J --------------------- -

I n t e r a c t i o n J [Ok

Figure 5.7: The case window in CABS

In a requirem ents specification, it should be obvious which parts o f the specifications are

requirem ents and which are m erely there to aid the hum an user in handling a large

specification. To represent both the specification and these additional structures in logic

m ay com plicate the logic used to represent the specification and it m ay be difficult to

extract the part o f the specification relating purely to requirem ents. W ith an object

oriented approach, the distinction between specification and supporting structure may be

difficult to make, since dividing a functionality into a num ber o f com m unicating objects

m ay be a requirem ent or ju st a decision taken in order to m ake the specification easier to

understand. I f a large system with varied functionality is divided into large num bers o f

82 CHAPTER 5. CASE LIBRARY

com m unicating objects, this m ay require extensive com m unication and large num bers o f

com m unication protocols to understand and handle. If so, this may reduce the benefits

from structuring the requirem ents into objects, or, in the worst case, lead to a

specification w hich is m ore com plicated than if specified without a com m unicating

object structure.

In CABS, a case consists o f a set o f transition rules. Cases also contain references and

inform ation aiding hum an understanding, re-use, m odification and evaluation. The

logical form alism does not know what a case is and treats all transition rules as one large

set o f axioms. The m ain reasons for this design are:

• CABS is aim ed at people who are not skilled in logic, so it is im portant to keep the

logic as clear and sim ple as possible.

• To avoid com plications in the verification and sim ulation o f specifications.

• To keep the distinction clear between what parts o f the requirem ents are requirem ents

and what parts are an aid to hum an thought processes.

• One o f C A B S’ aims is to stretch a simple, executable logic as far as possible and to

explore the benefits and drawbacks o f this m inim alistic approach in a real application

dom ain.

As m entioned earlier, a case m ay be specified as being dependent on another case. T he

opposite would be that a case is independent of all o ther cases and doesn’t interact with

any other cases (not com m on in the telecom m unications dom ain). If such an approach

can be taken for an application domain, each case may be viewed as a single process that

can be specified, re-used, validated and verified in CABS. If a dom ain contains individual

autonom ous com ponents exhibiting external com m unication only, there is no need to

consider interaction and dependencies. Such a dom ain would be well suited for CABS

(or, even better, a sim plified version o f CABS where all parts especially included to

handle interaction and dependencies are excluded). One current lim itation in CABS is

that if the overall behaviour o f the system is determ ined by a set o f com m unicating cases

CHAPTER 5. CASE LIBRARY 83

(com m unicating with each other by external stimuli), this m ay be sim ulated, but no t

form ally verified in CABS (beyond the scope o f this research).

5 .3 .1 Case Relations

A telecom m unications service m ay be dependent on other services (adding functionality

to them) or interact with another service, i.e. there is a new behaviour when both services

are in the same system. For this reason, requirem ents have to be carefully validated and

verified to determ ine where and how cases affect each other and the overall behaviour.

Cases being dependent on each other is a com m on feature o f a system that is structured

according to functionality. A case X may add functionality to case Y, hence case X is

m eaningless if case Y is not included in the constructed system. This inform ation has to

be captured during the initial specification. Also, analysis o f where term s are used, and in

what way (as a condition, conclusion, negated, ...), m ay identify dependencies and

relations between cases, since terms are specified as belonging to a case. How a term is

used is im portant during analysis. For example, if a term is used in the condition part o f

a transition rule, the rule can never be triggered if no other transition rule has the term in

its conclusion part. Som e cross-reference tools have been developed in order to analyse

the transition rules and their use o f terms (these tools have not been integrated in the

current version o f CABS).

5.4 System Requirements (Sets of Cases)

The requirem ents specification o f a system specified in CABS is a set o f cases whose

behaviour (including the m ost com m on interaction between them) has been validated

and verified. System s requirem ents may include additional input exam ples, exem plify ing

interaction between different cases in the system. In the telecom m unications dom ain,

system requirem ents may denote all telephone services supplied to a particular country,

service vendor, local or global com pany. Interactions between systems m ay also have

input exam ples exem plifying certain interactions. W hen a case has been m odified or a

new case is added to a system, all input examples describing interaction with other cases

84 CHAPTER 5. CASE LIBRARY

should be verified again. Also, the system that includes these m odified or new cases

should have all its interaction with other systems verified. In CABS, au tom ated

verification o f sets o f test cases is implemented, assum ing that we can select which system

or systems to verify, and select which input exam ples to verify.

In Figure 5.8, an exam ple o f the system window in CABS is shown. First, a list o f all cases

included in the system is shown. The user m ay inspect, rem ove, replace or add cases to a

system. An inform al description is given as a textual description o f the system, with links

to relevant m aterial. The list B ehaviour dependent on systems/cases: contains the nam es

o f systems and cases on which the system is dependent to specify a m eaningfu l

behaviour. I f the list is em pty, then the system specifies a m eaningful behaviour on its

own. If not, then in telephony it is m ost likely a set o f add-on services (specially designed

services adding functionality for which phone users are prepared to pay extra, which in

turn increase incom e for telecom m unications service providers). If there are cases in the

list, then the system is dependent on any system including these cases. In

telecom m unications, there m ay be a large num ber o f d ifferent systems w here only a few

cases differ for each system, and so it is preferable if an add-on system is dependent only

on the parts o f the system that are the same for all these different systems. This increases

the possibility o f re-using the system and facilitates adaptation and integration.

The list In tegrated with systems/cases: is a list o f systems or cases with which the

particular system has been verified and validated. In telecom m unications applications, it

is im portant to keep track o f these, since there are a large num ber o f different systems

designed for specific categories o f users, vendors, service providers, etc. If it is a case in

the list, then the same reasoning applies as for the B ehaviour dependent on system s/cases:

situation. Also, when validating and verifying a particular service, CABS needs to know in

which context the service is to be tested (a set o f cases/systems).

CHAPTER 5. CASE LIBRARY 85

S y s t e m : f u l l _ f u n c t i o n a l i t y _ s y s t e m

C a s e s in s y s t e m :
b a s ic _ te le p h D n y
b a s i c _ c a l l
b a n k in g
c a l l _ b a c k
c a l l _ b a r r i n g
c a l l _ d i v e r s i o n
c a l l _ r e t u r n
c a l l _ w a i t i n g
c a l l e r _ d i s p l a y
c h a r g e _ a d v ic e
e m e r g e n c y _ c a l l

Show C a s e R e m oue C a s e Rdd N e w C a s e

I n f o r m a l d e s c r ip t io n of s y s t e m :
C a p tu r e s b o t h b a s i c t e l e p h o n y an d a num ber o f p o p u l a r
a d d e d v a l u e s e r v i c e s . A lso som e e x t r a s e r v i c e s s u c h a s
b a n k in g a n d v o t i n g a r e i n c l u d e d .

o

J v

B e h a u i o u r d e p e n d e n t on s y s t e m s / c a s e s :

In t e g r a t e d w ith s y s t e m s / c a s e s :

C a n c e l Show pr ior it ies More 0 3

Figure 5.8: System window in CABS

5 .4 .1 Different Application Domains

A case library norm ally contains cases from just one application area, since d ifferen t

parts o f the case library can have only one unique m eaning. If a case library captures

different, but related, application domains, where terms m ay have different m eanings,

great care has to be taken to ensure that any reasoning and re-use is not based on terms

from the different application dom ains having sim ilar but not equivalent m eanings. A

requirem ents capture process, whether formal or inform al, has the m ain purpose o f

86 CHAPTER 5. CASE LIBRARY

outlining the requirem ents as closely as possible, and if this reasoning process is based on

terms not clearly defined, or even having different m eanings, it w ould com plicate m atters

considerably .

5 . 4 .2 Priority for Transition Rules in Systems

In some situations, it m ay be desirable to have context dependent rules on a local level.

Since every transition rule has a unique name, we can define local orders between

transition rules, i.e. if transition rule divert_call triggers (has all its conditions m et) then

norm al_dia lling should not trigger. Such a request can be specified with transition rules

by including all conditions from divert_call as a negated conjunction in the transition

rule normal,_dialling. If there are m ore than two or three transition rules that are

exclusive, or overriding each other, this solution is som ewhat tedious as the conditions

will get very large. Therefore, we allow the user to define explicitly a local order between

a num ber o f nam ed transition rules (see A ppendix A for m ore details on logic). F igure

5.9 dem onstrates setting the priorities for transition rules triggered by stimulus dialling.

To inspect or m odify a priority, the user first selects the stim ulus to w hich the p rio rity

applies (by selecting the stimulus in the list Priority fo r stim ulus). The current o rder

shown is the num ber after Priority order followed by the total num ber o f priority orders

for this stimulus in the brackets. In the next list, the nam e o f the transition rules (with the

name of the case in which they are defined) and their local priorities are displayed. F o r

example, transition rule 7. divert_call will override 9. dia llingJousy. I f divert_call has its

condition met, all the follow ing transition rules in the list cannot trigger. The sam e

transition rule may occur in different orders which enables the user to specify a lattice. I f

transition rules are exclusive (they cannot have their conditions m et in the same state),

they m ay be given the sam e priority num bers (as is the case for transition ru le

dia llin g _ b u sy_ q u eu e_ ca ll_ l and dia lling_busy_queue_ca ll_2). P rotection against

circular priorities should be provided when new priorities are added or existing priorities

are changed (not im plem ented).

CHAPTER 5. CASE LIBRARY 87

s g s g P r io r i t ie s fo r s y s t e m : f u l l _ f u n c t i o n a l i t y _ s y s t e m m

P r io r i ty f o r s t im u lu s :
c h e c k _ s e r u i c e 1i R

I diall ing i 1

h o o k _ o f f
h o o k _ o n
re c a l l
s e r u i c e _ r e q u e s t 1

P r io r ity o r d e r 1 (of 1) for s t im u lu s dial l ing
T r a n s ito n ru le s : In c a s e :

1 . d i v e r t c a l l i n c a l l _ d i v e r s i o n £
2 . c a l l b a r r e d u s e r i n c a l l _ b a r r i n g
3 . n o r m a l _ d i a l l i n g i n b a s i c c a l l
4 . d i a l l i n g _ b u s y _ q u e u e _ c a l l _ l i n q u e u e _ c a l l s
4 . d i a l l i n g _ b u s y _ q u e u e _ c a l l_ 2 i n q u e u e _ c a l l s
6 . d i a l l i n g _ b u s y _ q u e u e _ n e j i t _ c a l l i n q u e u e _ c a l l s
7 . d i a l l i n g _ b u s y _ c a l l _ w a i t i n g i n c a l l _ w a i t i n g
8 . d i v e r t _ c a l l _ t o _ b u s y i n c a l l _ d i v e r s i o n
9 . d i a l l i n g _ b u s y _ l i n b a s i c _ c a l l
1 0 . d i a l l i n g _ b u s y _ 2 i n b a s i c _ c a l l

<>
L ow er num ber t a k e p r e c e d e n c e o v e r g r e a t e r

Add p r io r ity M odify Saue
•• ̂ ̂ ------------------

C a n c e l P re u io u s Newt ffShoui s e le c t e d
I

Figure 5.9: Priority window in CABS

The explicit local order is purely syntactical and, from a logical point o f view, the

priority is expanded into negations in the transition rules (explained in A ppendix A).

This local order allows us to make the m eaning of the transition rules independent o f the

order in w hich they are loaded, as discussed in Section 5.2.2.

88 CHAPTER 5. CASE LIBRARY

5.5 Graphical Input Examples

All previous graphical input exam ples on which a specification is built are stored in the

case library, including both their graphical layout (created by the user) and the detailed

requirem ents added to them under refinem ent. Since the graphical input exam ples are

the original source on which the form alised requirem ents are based, we have to keep

them for further m odifications and extensions o f the system. In the CABS system, the

user can create new and re-open previously created input exam ples, and m odify and save

them in their graphical form. All inform ation is stored in the case library.

5.6 Storing and Re-using Test Cases

Test cases are generated from input exam ples and in some cases, revised or added by a

user (user initiated sim ulations m ay be stored as test cases; som e parts o f this are

im plem ented in CABS). All the test cases are needed in order to verify a m odified

system. If changes have been made to some parts o f the system, all test cases that can be

theoretically affected by the change have to be re-tested in order to verify that the

required behaviour is still captured by the requirem ents specifications.

We also need to m aintain the link to the input exam ples from which the test cases

originally stem. This gives us the ability to identify which test cases are still valid or have

to be rem oved due to changes in the input exam ples on which they are based. How test

cases are used in the validation and verification task is explained in Section 7.5 and

Section 7.6.

Chapter:

6. Matching and Identification of
Similar Behaviour

The purpose o f the m atching process is to identify cases, or parts o f cases, hold in the

case library which have sim ilar behaviour (as exem plified by the input exam ples) and

which m ay be considered for re-use. A com putationally fast and uncom plicated

m atching algorithm aim ed at identifying sim ilar behaviour is used in CABS. The result

o f the m atching m ust be narrow enough to identify candidates for re-use and broad

enough not to exclude relevant cases. The final selection will be carried out by the user,

validating and verifying the selected m atch with the tools provided in CABS. If the user is

not satisfied with the result o f the m atching, she may redo the m atch after refining the

input exam ples or m odifying param eters, thus directing the m atching process in order to

identify m ore suitable candidates.

W hen a user o f CABS wishes to make a match, she selects 'M atch... ’ from the CABS pull

down menu. A dialogue window (Figure 6.1) with all the input exam ples on which the

m atch m ay be based is shown. The user selects the input exam ples to be used in the

m atch (a_basic_exam ple and a_busy_exa?nple have been selected in F igure 6.1). When

the OK button is pressed, the system will try to identify cases in the case library that

capture the same or sim ilar behaviour. The result is shown in F igure 6.9.

89

90 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Select input examples a_basic_example i-f
for which a s im ila r a_busy_example
behaviour is to be a_ti me_jout_jcall
identified:

[[OK]J (C a n c e l Iry

Figure 6.1: Selecting input exam ples to match.

CABS im plem ents a tw o-step m atching process based on com paring sets which results in

a fast and fairly easy to understand m atching algorithm . First, transition rules cap tu ring

the same or sim ilar behaviour (as exem plified in the detailed links from the inpu t

exam ple) are identified, and then cases capturing sim ilar behaviour exem plified in the

input exam ples are identified. B oth individual transition rules and whole cases m ay be re

used to create a new requirem ents specification capturing the exem plified behaviour. In

Figure 6.2, the m atching algorithm is outlined in pseudo-code.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 91

For all links from the input examples, L n :

For all transition rules in the case library, T m :

A nalyse the different features indicating closeness of
behaviour for Ln and Tm ,

Calculate the score for the behavioural closeness between
L n and Tm (calculation based on the features and
param eters set by user).

For all cases in the case library, Cj:

C alculate an overall score for Cj based on the closeness scores
o f the transition rules in Cj.

Sort transition rules and cases according to their overall
score for closeness o f behaviour.

Figure 6.2: Outline o f m atching algorithm

Requirem ents specification, as well as re-use o f requirem ents specification, is seen as an

iterative process: parts o f the result o f the m atching can be confirm ed by the user befo re

a partial re-m atch is carried out, possibly with a different set o f m atching param eters.

Any m atching algorithm able to identify cases with the same or sim ilar behaviour to the

input exam ples m ay be considered for the task. The m atching m ay be sem antic or

syntactic. Syntactic m atching may be a straightforw ard keyw ord based m atching or a

m ore elaborate one, using knowledge about the structure in order to im prove the

m atching result. A syntactic matching which is sufficiently fast and accurate for the task

o f identifying sim ilar behaviour has been chosen for CABS. The m atching algorithm

used is based on set intersections and unions.

For som e application dom ains, a com putationally faster choice would be a pure keyw ord

based search, identifying terms occurring in both the detailed links and the transition

rules from the case library. A keyword based search produces good results when there

are one or m ore unique keywords (terms) that may be identified in the input examples,

92 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

or by the user, in order to determ ine relevant cases and parts o f cases. This is true fo r

some o f the services specified in CABS in the telecom m unications dom ain (for exam ple,

redirect calls , w hich defines and uses the term redirect). M any services in the application

domain o f telecom m unications do not have easily identifiable unique term s like redirect

calls does (pick up call and voting are exam ples o f services not having any term s defined

and if there are variants o f a service in the case library, they will all have the same term s

defined), so keyw ord m atching cannot be used as the only m ethod o f identifying cases.

Also, sim ilar services or variants o f the same service do not, in m ost cases, have

discrim inating terms, m aking keyw ord m atching less accurate. If no unique term s are

present in the set o f term s, and m any cases use the sam e set o f terms, too m any m atching

cases may be identified as possible candidates. Since telecom m unications services

requirem ents are based on a fairly small set o f d ifferent terms used by m ost services

(terms such as answer_num ber, calling, ring_signal, busy_tone, in_speech), straight

keyword m atching is unlikely to produce reliable results in this dom ain. K eyw ord based

m atching could com plem ent the algorithm used in CABS, since keyw ord m atching is

even faster, and if there are som e specific terms related directly to the behav iour

exem plified in the input, the relevant cases can be identified. However, keyw ord

m atching is not im plem ented in the current system. The m atching used in CABS has the

advantage o f capturing features, thus allowing the user to m ake som e sem antic

assum ptions about a m atch that m ay be useful in the selection process or when

m odifying m atching param eters. For m ore on optim ising m atching and d ifferen t

methods on how to prune a search see for exam ple [Althoff, Auriol, Barletta, M anago

95],

In this chapter, we first explore the term s what “sim ilar b ehav iou r” and “closeness o f

behaviour” mean, and establish how to identify and score transition rules cap turing

behaviour which is sim ilar to the detailed links. After that, the process o f iden tify ing

similar cases is described (this process is based on the identified transition rules cap turing

a sim ilar behaviour to the links).

6.1 Defining Similar Behaviour

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 93

One o f the m ain issues in case based reasoning systems is the choice o f appropriate

features for cases. A case in the case library is only o f use if there is a way o f iden tify ing

when the case can be re-used in whole or in part. I f indexes are badly selected, it will

require great effort or even be im possible to locate relevant cases. If the index ing

vocabulary [K olodner 93] is well chosen, it will be easy to com pare stored cases to the

given task, and to determ ine if a case is o f interest or not. H ence we need to investigate

both the application dom ain and the sem antics o f cases, and to carefully select features to

be used in the m atching process. The features used should be fairly easy to understand

and to explain to the user, which will aid in the task o f adapting m atching param eters to a

particular application dom ain. The algorithm im plem enting these features should also be

com putationally fast enough to produce a result within an acceptable time.

Before we define the features (see section 6.4) used in the m atching algorithm , a num ber

o f expressions are defined. These are used as the basis for feature definitions, which

m ake the assum ptions and com prom ises necessary to produce acceptable results and

achieve a com putationally efficient im plem entation o f the m atching algorithm .

In our application dom ain, it is always possible to determ ine if a lin k 19 from the inpu t

exam ples and a transition rule from the case library capture exactly the same behaviour.

If a transition rule and a link have exactly the same behaviour, they m ust have the same

conditions (stim ulus and other conditions) and conclusions (responses and other

conclusions). It will therefore be obvious that all behaviour included in the link is

included in the transition rule, and all behaviour excluded by the link is excluded by the

transition rule. In the following definitions, we will treat the links as transition rules, since

19 If we use ‘link’ without a discriminator, we mean a detailed link (the expanded graphical link with

extended conditions and conclusions). The term ‘graphical link’ will be used to refer to a graphical

link from the input example.

94 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

they are so sim ilar syntactically that there is no need for a distinction in the definitions.

W hen translating the definitions into features, the difference is o f im portance and will be

reintroduced, since the features capture some o f the semantic aspects o f the d ifferences

between links and transition rules.

Definition 0, exactly the same behaviour: Two transition rules exhibit exactly the same

behaviour if and only if all conditions (stimuli and other conditions) and conclusions

(responses and other conclusions) in the transition rules are equal.

If there is more than one link in the input exam ples which has the same behaviour as a

particular transition rule, the relevance o f this transition rule may be m ore significant (for

further details on com bined links, see Section 6.5). The notation o f capturing exactly the

same behaviour is not sufficient in the telecom m unications dom ain since it is very

unlikely that a link and transition rule have exactly the same conditions and conclusions.

The reasons for this are that a behavioural input exam ple represents a particular exam ple

of the behaviour, but a transition rule captures m any cases, and also includes in teraction

with other telecom m unications services. This usually results in links having fewer

conditions and conclusions than transition rules. For this reason, we need a m ore fine

grained vocabulary to be able to reason about closeness o f behaviour.

Definition 1, same external triggering condition: Two transition rules have the sam e

external triggering condition if and only if their stimulus term conditions are equal.

It m ay be useful to know whether there is a contradiction between a transition rule and a

link, i.e. if they cannot apply to the same states and hence not capture the same

behaviour. This is done in definition 2.

Definition 2, under no circumstances capture the same behaviour: Two transition rules

can under no circum stances capture the same behaviour if there is a con trad iction

between their condition parts or their conclusion parts or both.

It may also be useful to know whether a link and transition rule apply to the same state.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 95

Definition 3, same originating state: Two transition rules have the same originating state

if and only if all their conditions are equal (stim ulus conditions do not need to be equal).

If definition 3 is not met, it may be useful to know if there is any state in which the link

and transition rule have their conditions met. We do not distinguish between a reachable

state and a possible state. The difference between this and definition 3 ’ is that even if

there is a state (a set o f term s) under which both transition rules m ay have their

conditions met, there m ay be no possible sequence o f stimuli that can bring the system

into this state. Such an analysis may be used as an additional source o f inform ation when

determ ining how sim ilar two transition rules are, but m ay be com putationally expensive

for large requirem ents.

Definition 3 ’, some originating states in common: A transition rule, T j has some

originating states in com mon with another transition rule T 2 if the conditions o f T y are a

subset o f T 2 ’s conditions and there is no contradiction betw een T j and T2 ’s disjunction.

The relationship betw een the term inating states may also be o f interest:

Definition 4, cause the same effect: Two transition rules cause the same effect if their

conclusions are equal and they have some originating states in common.

A w eak form o f definition 4 looks at the question o f whether there is any state in which

both the link and the transition rule have their conclusions met.

Definition 4’, some terminating states in common: Two transition rules, T j and T2, have

som e term inating states in common if T ^ ’s conclusions are a subset o f T 2 ’s conclusions

and they have som e originating states in common.

In the application dom ain o f telecom m unications services, the external visible side effects

(response term s) m ay have a higher significance than other conclusions, hence we

introduce separate definitions (definitions 5 and 5 ’) for externally visible side effects

(responses).

96 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Definition 5, same externally visible effects: Two transition rules have the same

externally visible effects if and only if the response terms in their conclusions are equal

and they have som e originating states in common.

Definition 5’, some externally visible effects in common: Two transition rules, T j and

T2, have some externally visible effects in com m on if T j ’s response term s is a subset o f

T2 ’s response term s and they have some originating states in com m on

Because o f the fact that links are expected to be part o f some particular input exam ple, it

is unlikely that there are input exam ples and transition rules m eeting the definitions fully,

hence we need to define a set o f m atching features based on the definitions, w hich allow

for some flexibility. Features should be defined in such a way that their subsequent use is

com putationally efficient. The result should also aid us in determ ining the closeness o f

behaviour betw een an input exam ple and a set o f transition rules from the case library .

These definitions have been selected since they can easily be translated into features

which can all be determ ined fairly accurately at a low com putational cost, using the

structure inside transition rules and com paring sets o f terms.

In the next sections, we will explore how these definitions are used to define features

which are useful in the evaluation o f behavioural closeness. We will then look at how

these features can be translated into values, and how these values are then com bined into

a single value, which gives a sufficiently accurate estim ate o f the closeness o f the

behaviour between links and transition rules, or input examples and cases respectively.

6.2 Using Parts and Sets to Analyse Sim ilarity

Before exploring the connection between the definitions, features for estim ating

closeness and structural m atches between transition rules and links, the syntactic structure

used for com parison is detailed. The transition rules and the links are each partitioned

into seven parts:

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 97

T ransition rule: S tim ulus part (extracted from condition part)

Condition part (stim ulus and negative conditions excluded)

N egative condition part (stim ulus and non negative conditions

exc luded)

Conclusion part (response parts and negative conclusions excluded)

N egative conclusion part (response parts and non negative

conclusions excluded)

Response part (extracted from conclusion part)

N egative response part (extracted from conclusion part)

An analysis o f argum ents for terms is not m ade at this stage o f the m atching. Sufficient

assum ptions can be m ade w hich exclude a large num ber o f transition rules from fu rther

analysis and rate the rem aining m atches without an in-depth analysis o f argum ents and

variable bindings (a variable refers to a specific entity in the application dom ain, such as

a specific phone num ber or subscriber w ithout nam ing the entity). The exclusion is made

conservatively, since care m ust be taken not to exclude transition rules that m ay be good

candidates. Each part is treated as a set with zero or m ore terms. This can be done safely

because the condition, conclusion and response parts are all restricted to conjunctions o f

terms. W ith current restrictions on expressions, disjunctive term s (where no brackets are

allowed, and conjunction has priority over disjunction), m ay be allow ed to occur in a

transition rule, and any disjunctions which occur can be expanded to a set o f transition

rules containing only conjunctive terms.

The partitioning o f transition rules is trivial since term s are typed as stimulus, response,

attribute or relation before they are used in links or transition rules. The stimulus part is

restricted to only one non-negated term o f the type stimulus, and the stimulus terms are

only allow ed to be used in the stimulus part. The partitioning o f terms gives us a basis for

com parison and for draw ing some conclusions to be used in the closeness o f behaviour

rating. N egated term s in parts are handled separately, so seven features m ay be com pared

for each link/ transition rule pair, and six cross com parisons (negated/ non negated parts,

see line nc2, cn2, nc3, cn3, nc4, cn4 in Figure 6.3) may be made. Selected com parisons

98 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

are used for defining features. They are translated into num erical form and used to

create an overall score, which in turn is used in the final rating o f the “ c lo s e n e s s ”

between the transition rule and link. These com parisons have been chosen because they

are com putationally fast to determ ine, fairly easy to understand and the fact that they can

be used to indicate i f a link and a transition rule capture sim ilar behaviour. The choice o f

which of these com parisons to use as features and their connection to the definitions are

explored in the follow ing sections.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 99

L IN K com parisons TRA N SITIO N RULE

c l

Stim ulus Stim ulus

c 2

C onditions C onditions

N egated Conditions

Conclusions

N egated Conclusions

n3

C onclusions

N egated C onclusions

Responses

N egated Responses

n4

R esponses

N egated Responses

Figure 6.3: Possible com parisons between parts in link and transition rule

For reasons o f com putational cost, we do not calculate every com parison for every pair

o f link/ transition rules, since, if some com parisons are below a threshold set by the user,

the transition rule is classified as uninteresting and no further evaluation on the transition

rule will be made. These thresholds set by the user should ensure that no relevant

m atches are excluded but, if in doubt, the threshold values can always be set to zero and

N egated Conditions

100 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

all matches will be included w hatever the score is. This m ay take a considerable tim e fo r

a large case library, and it is up to the user or system m anager to weigh up the advantages

o f a faster m atch against the risk o f missing possible matches (see section 6.5.1). Since

the com parison is set based without any com putationally expensive calculations, it is

com putationally fast and only m arginally slower than keyw ord m atching since the

com parisons all are im plem ented as a num ber of keyw ord m atches (each term in the

link/transition rule is used as a keyw ord for the corresponding set). Hence, a linear

relationship, depending on the num ber o f terms in the link and the transition rule,

determ ines the upper lim it o f the com putational cost. In te lecom m unications

specification, the num ber o f term s in transition rules are expected to be below 35 (in o u r

case library no transition rule has m ore than 30 terms). In links from input exam ples,

even few er term s are expected.

6.3 Translating Comparisons to Values

Before defining the features used to estim ate how sim ilar the behaviours o f a case and

input exam ples are (Section 6.4), we will describe how to calculate the values used in

these features. It is not necessary to understand this section in detail to be able to

understand the feature definitions. A com parison (all possible com parisons are shown in

Figure 6.3) between a part from a link and a part from a transition rule is first translated

into an integer triple, where the first num ber is the num ber o f term s in the link, the

second is the num ber o f term s in the intersection and the third is the num ber o f term s in

the transition rule from the case library. These triples are then used to calculate two

coverage percentage values used for calculating the features.

For each com parison, two values called the intersection coverage percentage are

calculated. The intersection coverage percentage values are called IC L (Intersection

Coverage o f L ink) and ICT (Intersection Coverage o f Transition rule). The term s in the

part o f the link and the transition rule under consideration are both regarded as two sets

(L and T respectively) and the intersection L n T is a set called I. The value for ICT = 1 0 0

* num ber(I) / num ber(T) and ICL = 100 * num ber(I) / num ber(L). The value is given as

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 101

a percentage value between 0 and 100, appropriately rounded since decim als would no t

m ake any significant difference. If L = 0 or T = 0 (a rare situation in our application

dom ain) then ICL (respectively ICT) is set to zero.

In F igure 6.4, the five main situations for coverage are shown. In the first case (top left

exam ple in Figure 6.4) the sets L and T are equal, hence the intersection, I, is also equal

to L and T ((I= L n T) a (L=T)) => I=L=T). The intersection covers 100% o f the term s in

the link, hence ICL = 100. The intersection fully covers the terms in the transition rule,

hence ICT = 100 in this case.

If there are 3 term s in T and 2 terms in L and L c T , the intersection I = L and contains 2

terms. The intersection has 2/3 o f the terms in T giving an ICT value o f 67 (67 %) and an

IC L value o f 100. This corresponds to the top right exam ple in F igure 6.4.

If there are 2 terms in L and 3 terms in T and the intersection I contains 1 term, then ICL

is 100*1/2 = 50 and ICT = 100*1/3 = 33. This exam ple corresponds to the m iddle left

exam ple in F igure 6.4.

The m iddle right exam ple corresponds to the top right exam ple (L and T have their

positions switched, T c L) . The bottom exam ple illustrates when the intersection I between

the two sets is em pty (L n T) = 0 . Both ICT and ICL are assigned the value 0 for the last

situation.

102 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Full match of
terms

Transition rule terms covers
linktermselement

Intersecting Termsfrom link
terms cover transition rule terms

Intersection
is the empty set

Figure 6.4: Exam ples o f different m atches when com paring parts (sets)

In the next section, we will define the d ifferent features used to m easure closeness

between a link and transition rule, based on the definitions in the previous section and

exam ine how to translate the features into num erical values.

6.4 Features for Measuring Closeness of Behaviour

Feature 1, based on definition 1, same external triggering condition (stimulus).

Can the transition rule and link be triggered by the same external stimulus?

Feature 1 is a straightforw ard m atch between the stimulus part o f the links and the

transition rules (see Figure 6.3, com parison c l) .

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 103

If a link and a transition rule have the same stimulus as their triggering condition, feature

1 m ay be used as an indication that it is relevant to analyse them further for sim ilarity.

For exam ple, if a link has the triggering stimulus h o o k jo n and a transition rule has the

triggering stim ulus hook_on, it is obvious that the link and transition rule will trigger in

the sam e situation if all other conditions and arguments are equal. We can also conclude

that a transition rule with the triggering stimulus dia lling cannot trigger in the same

situation as the hook_on link (no parallel stimuli are allowed in the CABS m odel o f the

telecom m unications dom ain). Since links and transition rules are restricted to having

only one triggering stimulus, the m atch can either be full (the intersection between the

two stimuli sets is equal to the triggering stimulus in the link and the transition rule), or

em pty (the intersection is the em pty set). Intuitively, we can draw the conclusion that any

transition rule not having the same triggering stimulus as the link cannot capture the

same behaviour and that this is sufficient to exclude the transition rule from fu rther

investigation, thus reducing the search space considerably (see Figure 6.5 for how the

m atching in such a case is m ore efficient).

The difference betw een definition 1 and feature 1 is that feature 1 m atches the stimulus

nam e but m akes no full analysis o f the argum ents (exem plified below). Feature 1 will

give good results if the term nam e bears high significance (as described in C hapter

5.1.1). A successful m atch for feature 1 would occur when the stim ulus dia lling(a l, 123,

12:00) in a link is m atched with the stimulus in a transition rule dialling(A, Nr, Time) and

where no variables are bound to some other values throughout the transition rule (see

Appendix A for details on logic). An exam ple in which feature 1 would reduce the score

is when sw itch_service_on(a l, redirect, 123, 12:00) is m atched against

sw itch_service_on(User A, hotline, Number, Time). The second argum ent (redirect and

ho tlin e) are not equal. A difference between feature 1 and definition 1 would occur in

the situation where two variables, or one variable and one constant, are m atched and later

on in the condition part o f the transition rule are bound to a specific value. For exam ple,

if sw itch_service_on(a l, redirect, 123, 12:00) is m atched against

sw itch_service_on(U serA, Service, Number, Time) and the conditions in the transition

rule contains the term equals(Service, hotline), feature 1 would not identify the b inding

104 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

of variable Service, since at this stage o f the match, no analysis o f the condition part is

made. The main reason for this is efficiency: a large num ber o f transition rules can be

excluded from further m atching at a low com putational price, hence the decision was

made to not include further analysis o f variable binding at this stage o f the m atching (see

Figure 6.5) in order to be able to exclude som e additional transition rules.

CABS also allows the definition o f sim ilar stimuli. This facility can be used if there are

stimuli which have different term names, but a sim ilar sem antics in the application

domain. An exam ple in the telecom m unications dom ain would be the origination o f a

call which may be initiated in two ways, either by dialling a num ber (dialling stim ulus) or

by a se tju p stim ulus from an ISDN term inal. Thereafter, the m atching algorithm will

treat them as the sam e stim ulus for m atching purposes.

Feature 2, based on definition 2, exclusive transition rules:

Is there any contradiction, such that the behaviour in the transition rule cannot include

the behaviour exemplified in the link?

The cross com parisons between the non-negated and negated parts o f the link and

transition rule (cn2, nc2, cn3, nc3, cn4, nc4 in Figure 6.3) are m ost useful in determ in ing

if a transition rule is o f low or no interest for further investigation. If a contrad iction

exists between the link and transition rule, they cannot capture the same or sim ilar

behaviour and we may exclude the transition rule from further investigation. W hen

matching the argum ents to terms, there are situations in which it is difficult to determ ine

if it is a real contradiction or ju st appears to be one (e.g. whether answ er_num ber(A ,B)

and no t answ er_num ber(C ,D) is a contradiction or not). I f unbound variables exist in

both negated and non negated form s in the link or transition rule (see the exam ple at the

end o f this section) we take the conservative approach and do not classify this as a

negation. With this conservative approach, exclusion o f transition rules that m ay be

appropriate candidates is avoided.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 105

An exam ple o f the successful identification o f a contradiction between a link and a

transition rule (exam ple o f com parison cn2 in Figure 6.3) is when the condition part o f a

link has the term d ia l_ to n e (a l), the transition rule has the condition no t

dia l_ tone(U serA) and User A has been instantiated to a 7 by m atching the stimulus (the

only way o f binding argum ents during m atching). A m ore difficult exam ple w ould be if

a link has the condition answer_num ber(a2, 222) & ... and a transition ru le has the

conditions answer_num ber(U serB, N r l) & not answer_number(U serC, N r2) & In this

situation, it is d ifficult to determ ine if there is a real contradiction. Since feature 2 does

not perform a full analysis o f argum ents, feature 2 cannot d iscrim inate between the

negated and non-negated term, and should not be reason enough alone to exclude a

transition rule.

A fter identifying and rem oving m atches with contradictions above the user-set threshold

in F igure 6.6, the num erical value o f contradictions (the sum o f the num ber o f terms in

the intersections for cn2, nc2, cn3, nc3, cn4, nc4 in Figure 6.3) is calculated. Since all the

other com parisons have a percentage value between 0 and 100 apart from feature 2 , we

translate it with a linear function to a percentage value w here 100% signifies no

contradictions and 0% signifies the m axim um allowed num ber o f contradictions. If the

m axim um num ber o f contradictions is set to 0, then the value for feature 2 is 100% fo r

all transition rules that are scored. In this case, it does not m ake sense to give feature 2

any w eight in the final scoring. I f the m axim um num ber o f contradictions is Cm ax and

the num ber o f contradictions is Ctot and Ctot < Cm ax and Cm ax > 0 then the ICL and

ICT are set to 100 - 100*Ctot/C m ax for feature 2. The fact that feature 2 is calculated in

a d ifferent way from the other features may require a careful selection and tuning o f the

w eight for feature 2 (see C hapter 6.5.1).

106 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMIFAR BEHAVIOUR

Feature 3, based on definition 3 ’, some originating states in common:

Can the transition rule trigger in the same or similar situation ?

For feature 3, we can directly apply the result from com parison c2 and n2. I f the

intersection o f the conditions o f the link and transition rule is em pty, it is less likely that a

behaviour sim ilar to the link is captured by the transition rule. If the intersection captures

m ost of the terms in the link’s condition part, the behaviour o f the link m ay be cap tured

in the transition rule. The additional terms in the transition rule m ay be additional

interactions and m ay be used to exclude special situations handled by a separate

transition rule in the case. Since interactions are com m on in telecom m unications services,

we expect that there are m ore terms in the transition rule capturing interaction.

In the situation where the condition from the link has terms w hich are not present in the

condition from the transition rule, it m ay be that the transition rule is m ore general and

deliberately does not include these terms. A m atch is often better if m ost o f the term s

from the link are included in the transition rule. By setting the appropriate param eter

values, the final scoring will rate this as an indication o f a possibly good m atch and use

the result to create an overall score o f closeness for the transition rule.

An exam ple o f a successful indication o f a sim ilar behaviour using feature 3 is if the

condition part o f a link is answ er_num ber(a l, 111) & red irec t(l 11, 222) &

answer_number(a2, 222) & not calling(Z, a2), and the conditions in a transition rule are

answ er_num ber(A l, N r l) & redirect(Nrl, Nr2) & answer_num ber(A2, Nr2) & no t

calling(Z, A2) & not dont_disturb(A2). In this example, the condition part o f the link is a

subset o f the condition part in the transition rule, so there exists at least one state in which

both condition parts are true.

An example o f a m atch in which there is a difference in the result between feature 3 and

definition 3 ’ is a link that has its condition part equal to answ er_num ber(a l, 111) &

re d ire c t(l ll , 222) & no t don t_d isturb(222) and a transition rule that has its condition

part equal to answ er_num ber(A l, N r l) & call_back_request(N rl, A l) & no t

do n t_ d is tu rb (N rl). In this situation, feature 3 identifies that the terms answ er_num ber

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 107

and not clont_disturb are present in both condition parts, but that the rest o f the condition

term s are different. Feature 3 would give the m atch som e significance but since the n o t

don t_d isturb is actually two different identities in: answ er_num ber(a l, 111) & no t

d o n t_d istu rb (222) and the same in: answ er_num ber(A l, N r l) & not d o n t_ d is tu rb (N rl),

they w ould not be regarded as equal by definition 2 ’ since N rl and Nr2 cannot have the

values 111 and 222 at the same time), only one o f the term s would count as a match. In

som e application dom ains, feature 3 may be preferred, since definition 3 ’ m ay exclude

interesting m atches.

The num erical results for feature 3 are based on the conditions for the link and transition

rule (stim ulus excluded for both). These two sets of term s are translated into the num eric

ICT and IC L values (in accordance with Section 6.3).

Feature 4, b a se d on d e fin itio n 4 so m e te rm in a tin g s ta te s in co m m o n .

Can the transition rule end in the same or a similar state as the link

If the conclusions from the link and the transition rule m atch fully, it would signify that

both are causing the same changes to the states to which they apply (responses not

considered). This is a sim ilarity that may be worth noticing even if there is not a full

m atch in the conclusions. In the telecom m unications dom ain, a transition rule m ay

include conclusions needed for other services, for example, to note the starting time o f a

call in order to provide the charging service with sufficient inform ation. It m ay also be

the case that the link has om itted terms in the conclusion which are not obvious to the

user m aking the input examples.

Situations m ay also occur when a link includes conclusions that are redundant and are

known to be already true in the previous situation and, hence, a match, as shown in

Figure 6.4, m iddle left example, is expected. For example, if a user puts the phone down

(h o o k_ o n), we m ay specify a generic transition rule concluding that the user is idle. I f

this transition rule always triggers when a hook_on stimulus occurs, other transition rules

108 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

can ignore this conclusion. I f accuracy o f m atches o f an application dom ain specified

with parallel20 transition rules, gives poor results for feature 4, adapting the m atching o f

feature 4 to consider transition rules that m ay apply in parallel could im prove the

m atching result.

An exam ple o f the successful indication o f a sim ilar behaviour by feature 4 is when the

conclusion part o f a link is ca lling(a l, a7) and the conclusion o f a transition rule is

calling(A l, A2) & la st_ ca ll(A l, Nr). In this example, the conclusion part o f the link is a

subset o f the conclusion part o f the transition rule and, therefore, there exists a state in

which both conclusion parts are true.

An exam ple o f a m atch where there is a difference in the result betw een feature 4 and

definition 4 ’ is a link that has its conclusion part equal to calling(a l, a7) & la st_ ca ll(a l,

777), and a transition rule that has its conclusion part equal to calling(reminder, A 2). In

this situation, feature 4 identifies that the term calling is present in both conclusion parts,

but that the rest o f the conclusion terms are different. Feature 4 would give the m atch

some significance but overlooks the fact that the transition rule could never m atch the

link if the argum ents are those set out for definition 4 ’ (a call from a “re m in d e r” is a

special case where the service rem inder call initiates a call and where the rem inder is no t

an ordinary user).

The num erical results for feature 4 are based on the com parison betw een the conclusions

for the link and transition rule (c3 and n3 in Figure 6.3). These two sets o f term s are

translated into the num eric ICT and ICL values according to Section 6.3.

Not to be confused with parallel stimuli which are not allowed in order to avoid indeterminism and

added complexity. See Model of the dynamic behaviour of telecommunications network, Figure 5.4.

20

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 109

Feature 5, b a se d on d e fin itio n 5 ’, so m e ex te rn a l v is ib le e ffe c t in co m m o n .

Is the externally visible result (responses) from the link included in or similar to the

responses from the transition rule?

If response term s from the link and the transition rule fully match, it w ould m ean that

both m ay result in a state with the same response. In telecom m unications services, this is

an im portant indication that it m ay be a good m atch but, on its own, it is often too

general (m any different transition rules have responses such as ring_signal/ ring_tone in

their conclusions). On the other hand, if the response terms do not match, it is less likely

that it is a good match, assum ing the user has specified the externally visible side effects

accurately (in telecom m unications services, the side effects alone are rarely affected by

interaction with other services). For example, if a link ends in a situation with a

ring_signal, transition rules with no ring_signal as a conclusion are probably not good

candidates, and transition rules having ring_signal as a conclusion w ould be candidates

for further analysis.

An exam ple o f a successful indication o f a sim ilar behaviour by feature 5 is if the

conclusion part o f a link is not r ing_ tone(a l) & not ring_signal(a2) and the conclusion

in a transition rule is in_speech(A l, A2) & not r ing_ tone(A l) & not ring_signal(A2). In

this exam ple, the response part o f the link is a subset o f the response part o f the transition

rule so there is at least one state in which both response parts are true. As with previous

features, there is a risk that feature 5 gives a m atch too m uch credit since no in -dep th

analysis o f argum ents occurs.

The above exam ple m ay give too m uch weight to some transition rules since the link

does not reveal if user a l has made a h o o k jo n (r in g jo n e and ring_signal have to be

cancelled) or if user a2 has m ade a hook_o ff (r in g jo n e and ring_signal have to be

cancelled since a speech connection has occurred which is a com pletely d ifferen t

situation and transition rule). In most cases, the com bination o f features reduces the risk

o f such m istakes and in the above case, feature 1 would have indicated that the stimulus

110 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

does not m atch betw een the link and the transition rule, and so the transition ru le should

not be used in further investigations.

The num erical results for feature 5 are based on the com parison between the conclusions

for the link and transition rule (c4 and n4 in F igure 6.3). These two sets o f term s are

translated into the num eric ICT and ICL values are in accordance with Section 6.3.

6.5 Overall Score for Matching

First, we have to produce an overall score for each transition rule that is a candidate for a

link from the input exam ples. W hen that is done, we need to produce an overall score fo r

cases (sets o f transition rules) in the case library. A fter the best m atching transition rules

and cases have been identified, both o f these results are shown to the user, who m ust

decide if the m atch is good enough, or if the input exam ples need to be extended or the

matching param eters tuned. First, we describe the process o f scoring transition rules and

after that, we describe the scoring o f the cases.

In order to m ake a rating o f the closeness o f transition rules, the results from com paring

these d ifferent features and their values are weighted and com bined into one value

(according to the m atching param eters set by the user). This value is then used as a

m easurem ent o f the closeness between a link and transition rule. In order to adjust the

match param eters for a dom ain, these com parisons and their m eaning have to be

understood. In the follow ing sections, we explain how an overall score is calculated for a

com parison, when transition rules are excluded from further calculations, and how the

ranking o f transition rules and cases is perform ed.

6.5.1 Scoring a Match Between Link/Transition Rule

The algorithm for calculating features, reducing the search space and calculating the

final score for a m atch between a link and transition rule is outlined in Figure 6.5. T here

are two types o f param eters that can be adjusted in CABS:

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 111

• T hreshold param eters reducing the search space by excluding uninteresting m atches.

• Param eters guiding the overall scoring o f a m atch (capturing inform ation about the

validity o f d ifferent features and their relationship in the application dom ain).

M uch com putational effort can be saved by excluding transition rules from fu rth e r

calculations: to m inim ise the calculations, the user set threshold values are checked after

each feature is calculated. If the result is below the user set threshold, the transition ru le

does not need further investigation and the next transition rule can be explored (see

F igure 6.2). The m ain purpose o f the threshold for the features is to m ake the m atching

faster and to reduce the search space (with one exception, which is explained further on).

A nother advantage with the threshold settings is that some o f the application dom ain

know ledge about when a transition rule is uninteresting and can be exem pt from fu rther

calculation, is captured.

112 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Figure 6.5: Flow diagram for link/transition rule m atch

The different threshold values have to be selected carefully, so that they do not exclude

relevant matches within a particular case library. If these values are set too high, go o d

matches may be rem oved before the final scoring. Once the values have been tuned for a

particular case library (and do not exclude interesting cases), they do not need m uch

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 113

attention. CABS provides a default setting of these param eters, which is initially set and

tuned for the case library currently used (these default values m ay need updating if the

case library changes greatly). The experienced user can also load and save settings o f

threshold and param eter profiles. These m ay be used if the m atching algorithm is

identifying less acceptable matches. Less acceptable matches can have three causes:

• The input exam ples do not point out suitable cases well enough. Solution:

- A dd/refine input examples.

- Exem pt proposed transition rules and cases from a rematch.

• There is no good m atch in the case library. Solution:

- A new case m ay have to be constructed/generated.

• Threshold and param eter setting are not well chosen for the case library. Solution:

- Load an alternative set o f threshold and param eter values and rematch.

- M odify threshold and m atching param eters.

The threshold and param eter settings seem to be fairly robust for both the

telecom m unications dom ain and the case library used for evaluation (see C hapter 8).

A fter all the features have been calculated, an overall score for each transition rule is

calculated. For this overall score, an overall threshold value can be set; if a transition rule

does not m eet this threshold it will not be considered as a m atch to the correspond ing

link (see Transition rule threshold in F igure 6.6). If this value is not met, the m atch will

neither be used for the identification o f m atching cases (see Section 6.5.2 on param eter

and threshold settings for cases), nor presented to the user as a possible m atch for a link.

For m ore detailed settings and optim isation of m atching, there are five individual

threshold settings for each o f the five features (see Figure 6.6). Only the ICL

(Intersection Coverage o f Link) is used for thresholds, since ICL is the m ost significant

value. For feature 2, there is an additional value where a m axim um num ber o f suspected

contradictions is set. This value is also used in the calculation o f feature 2 ’s value, as

explained in Section 6.4. There is also a separate threshold value for the com bination o f

features 4 & 5. The com bination o f features 4 & 5 is used when a case library m ay have

114 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

cases that are o f interest if at least one o f the features has good scores (which is the case

for som e transition rules in the telecom m unications dom ain). These weights should

provide sufficient opportunities for tuning the m atching for case libraries for d ifferen t

application dom ains.

□ M a tch p a ram e te rs fo r transit ion rules

— Param eters for optim is ing m atch ing a lgorithm

Transition rule threshold: 25

Stimulus threshold, ICL (feature 1):

Contradiction treshold, ICL (feature 2):

Condition threshold, ICL (feature 3):

Conclusion threshold, ICL (feature 4):

Response threshold, ICL (feature 5):

Feature 4 & 5 threshold:

100
100

10

15

1) Wax number of contradictions, also
used in calculation of feature 2.

— Param eters gu id ing calcu lation o f ouerall score-

□ Adjust w e igh ts relatiue part s ize in link

Feature (total sum = 100%): 1 2 3 4 5

LUeight for feature: 0 0 40 35 25

M ore Help Saue se tt in gs 1 f Load se tt in gs
v__________________________J J G O

Figure 6.6: Param eters for transition rule m atch

W hen all the features have been calculated, we have to calculate an overall score for each

relevant match. C alculation o f an overall score is based on dom ain know ledge that

captures the value o f the d ifferent features for the application dom ain. In the

telecom m unications dom ain, stimulus and response terms usually have h igher

significance than other conditions and conclusions, and hence should contribute m ore

towards the final score than other terms in the conditions and conclusions. In fact, the

example setting in Figure 6.6 has the stimulus threshold set to 100% and transition rules

that do not have the same triggering stimulus as the link are exem pt from fu rth e r

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 115

m atching. Therefore, there is no need for a weighting o f feature 1 (see W eight fo r

fea ture , field 1), as we know that all matches qualifying for an overall score calculation,

have the value 100 fo r feature 1 .

The ICL and ICT value for every feature in a m atch is used to calculate a total ICL and

ICT value for the transition rule. If all weights are set equally and the w eighing is no t

adjusted according to the num ber o f terms in the link, the total score for ICL and ICT

respectively w ould be the sum o f all the values for the features divided by the total

num ber o f features. In the generic form ula for the calculation o f IC L and ICT scores fo r

a match, TotTerm s is the total num ber o f terms from the link used in the calculation o f

the features, F n (ICL) and Fn (ICT) are the ICL and ICT scores for the feature n, W Fn is

the weight for the feature n and L F n is the num ber o f term s o f the part in the link on

which the calculation is based. The total score is a pair o f values, where the ICL value is

given the highest significance. W hen sorting all matches for a link, the m atches with the

highest IC L will com e first and matches with the same ICL will be ordered according to

their ICT value, f is the set o f features used for calculating the total score. If a feature

w eight is set to zero, it is not used in calculating the total score, x is either L or T.

The total score for the ICL or ICT is calculated as:

n e f

SC O R E (IC x) = X w eighted_score(Fn (ICx), LFn , TotTerm s, W Fn)

The w eighted score for a feature is calulated by the formula:

F (IC x) * W F * L F
w eig h ted _ sco re (F n (IC x), L F n , T otT erm s, W F n) = ------- ------------------

11 100 * T otT erm s

If the check box A djust weights according to num ber o f terms in link is unm arked, then

L F n and TotTerm s are both set to the value 1 before the calculations start.

116 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

6 .5 .2 Scoring a Matching Case

A fter all transition rules have been scored, the task for the m atching algorithm is to

identify cases capturing sim ilar behaviour to the input exam ple. The overall score fo r

each case depends on the m atches between the transition rule in the case and the links in

the input examples. If we look at a particular case, C l, from the case library (see F igure

6.7), some o f the transition rules (squares) are matches for links in the input exam ples,

indicated by broken lines to the m atching link. The exam ple in F igure 6.7 has six

matches (m l to m 6) betw een links from the two input examples, E l and E2 (the two

input exam ples are indicated by broken circles around a group of links).

Figure 6.7: A m atch o f a case and an input example

If the Always m atch cases box is selected in Figure 6.8, CABS will identify and ran k

similar cases (for som e situations only matches o f transition rules m ay be relevant). T o

score a case, the m atching algorithm counts the matches between all links and the

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 117

transition rules in the case (m l to m 6 in Figure 6.7). A case with a greater num ber o f

m atches is ranked higher than a case with a low er value. This naive approach seems to be

accurate enough (see evaluation in C hapter 8) in m ost instances o f identifying cases o f

relevance, after adjustm ent o f some additional param eters guiding the final ranking has

occurred .

If a transition rule in the sam e case is m atched by m ore than one link (an exam ple o f this

is m atch m l/m 2 and m 3/m 4 in Figure 6.7), we do not know if the transition rule is

capturing m any different transitions, if the links in the input exam ples are a repetition o f

a sim ilar link (for m l/m 2), or if the application dom ain allows parallel transition rules to

occur in the same case (for m 3/m4). In our telecom m unications service examples, we

chose to allow parallel transition rules only if they are from different telecom m unications

services (d ifferent cases). If the application is specified with transition rules o f a m ore

general character (including a large num ber o f transitions), then different links m ay be

covered by the same transition rule. If the applications are specified with m ore specific

transition rules, then the fact that the same transition rule is m atched by m ore than one

link m ay ju st be a less relevant match, and hence should not be included in the scoring.

This choice is shown in Figure 6.8: the second choice I f same transition rule m atches

more links, count each m atch is not selected.

A decision also has to be made as to what to do if there is m ore than one m atched

transition rule in the same case (m5 and m 6 F igure 6.7). If the o ther transition rule

captures a sim ilar but not exactly the same behaviour, this inform ation m ay be useful,

since it m ay increase a case’s relevance. The relevance for m ultiple m atches can be set by

selecting the third choice Give credit i f more than one transition rule in case m atches

link. Count m ultiple m atches up to NR in F igure 6.8. An upper limit, NR, on how m any

m atches should be counted can also be set, in order to avoid over-scoring cases which

have a large num ber o f very sim ilar transition rules (set to three in the example).

A param eter, defining a threshold value for when a transition rule should count as a

m atch for a case, can also be set by the user (Only count matching transition rule i f ICL is

above N R in Figure 6.9). This is a different value than the threshold setting for the total

118 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

score for transition rules. A score for a m atch passing the threshold set for transition

rules allows the rule to be presented as a possible m atch for a link, but in order to be

counted as a m atch for a case, the m atch has to pass this second threshold. If a large

num ber o f cases have a high score, the value may be set higher, to reduce the num ber o f

good m atching cases.

□ Match parameters for cases

Match all cases in case library

□ I f same transition rule matches more links, count each match.

[x] Giue credit if more than one transition rule in case matches link.
Count multiple matches up to |5

Only count m atching^ransition rule if ICL is aboue 50

s r ^ r \

Cancel Help Default settings
________ ^ ̂ v_____________________J

[[Update^

Figure 6 .8: Param eters for case m atch

6.6 Presentation of Matching Results

W hen the system has com pleted the match, the result is presented to the user. Both the

best m atching cases and the best m atching transition rules are shown. The user is asked to

select a solution that she will use as the proposed solution (or refine the input exam ples

so a better m atch m ay be achieved). F igure 6.9 shows an exam ple o f a result from

matching two input exam ples: a_basic_exam ple and a_busy_exam ple. In the upper left

corner under the text Best m atching cases (descending order), a scrollable list with the

best m atching cases from the case library is shown. The num ber in brackets after the

name o f the m atching case tells the user how m any links from the input exam ples are

m atched by the case. The user m ay inspect a m atching case by selecting the case in the

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 119

list and pressing the button Show Case, which will result in the system showing the case

w indow as shown in F igure 5.7. The Exclude Case button will be explained in C hapter 7.

In F igure 6.9, Links and corresponding transition rules show the links from the input

exam ples identified by their start node, triggering stimulus and end node. In the table

m atching transition rule, the proposed/selected transition rule is shown. There are five

d ifferent types o f prefixes to the transition rules:

• P: <transition rule name> - The best m atching transition rule in the case library

according to the m atching result is shown. If the user wishes to see all the m atching

rules (sorted in descending order) this can be viewed in the link window (Figure 4.6).

• N: N o m atch is shown when there is no m atching transition rule in any case that m eets

the set transition rule threshold set in Figure 6.6.

• I: Ignore this link - I f the user has labelled a link to not be included in the match. This

choice can be selected when showing the link. The user m ay set this if it is obvious

that a link captures behaviour from another case on which the new case is dependent.

In telecom m unications, it could be a service based on a basic call and therefore,

getting the proposal basic_call as the first and best proposal m ay not be useful. By

pointing out those links that are not crucial for the new functionality, the m atching

result is narrow ed down to find cases that capture the selected parts o f the input

exam ples.

The user can inspect a link in more detail by selecting the link in the list and pressing the

button Show L ink in Figure 6.9, which results in a link window showing the selected link

in detail. If there are m any links, the user may wish to sort the links after the start node,

stimulus, end node etc. This can be selected by pressing the button Sort list (these sorting

choices are not fully im plem ented in CABS).

120 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Match for: a_basic_eKample_1 & a_busy_e»ample

Best matching cases (descending order):
basic_call {9}
call_waiting {3}
call_diversion {2}
reminder_call {2}
three_way_calling
queue_calls {1}
charge_advice {1}
call_reminder {1}

{1}

Show Case] [Euclude Case

Links and corresponding transition rules:

P:<proposed transition rule>
N: Ho match identified
I: Ignore this link

start node triggering stimulus end node matching transition rule
all subscribers id hook off dial tone a P normal hook off i>
dial tone a dialling a calling b IP normal_dialling
a calling b hook on all subscribers id 1P disconnect from callin
a calling b hook off in speech reminder_accepted
in speech hook on silent b IP a leave call
silent b hook on all subscribers id P disconnect tone
dial tone a hook on all subscribers id P disconnect tone
dial tone a dialling b busy IP dialling_busy_2
b busy hook_on all subscribers id P disconnect tone

o

Show Link Show Match Sort Match result is based on input enamples:

[Construct Solution

Generate Test C a s e s]

a_basic_example_l
a_busy_example i>

Reset match Redo match Simulate Uerify [[i Done 11

Figure 6.9: Presentation o f result from m atch

If the user does not accept the proposal in F igure 6.9, she can add input exam ples and

redo the match, which will hopefully result in a solution that can be accepted as a

proposed solution (although it may need refinem ent). For this purpose, the bu tton

Exclude Case can be used when there are proposals in the best m atching cases list that

have been inspected and are not relevant. C hapter 7 explores how the user selects, revises,

validates and verifies the solution selected in Figure 6.9.

Chapter:

7. The Requirements Design
Process in CABS

In the previous chapters, we looked closely at the central parts o f CABS and explained

the graphical input exam ples, the case library and the m atching process. In this chapter,

we put these parts in the context o f requirem ents design and exam ine how a requirem ents

designer m ay use such a system to produce form alised, validated and verified

requirem ents. The exam ples are given in the context o f the chosen application dom ain,

where the m ost com m on task is to m odify and extend a large system (a large num ber o f

closely interacting telephone services) and where the requirem ents designer is no t

necessarily an expert at applying scientific m ethods in order to produce requirem ents.

CABS aims to sim plify the task o f requirem ents engineering so that a person with som e

idea about a new or m odified behaviour can outline their ideas, and then refine, validate

and verify them. Graphical input sketches, case-based reasoning and form alisation are

tools used in com bination to aid this creative process and are not aims in themselves.

Persons perform ing this task may be service vendors, sales staff or even end-users o f the

telephone system (or any com bination o f these), who would benefit from being able to

express and form alise their behavioural requirem ents. For this reason, we have adopted

the terms: requirem ents design and requirements designer instead o f the traditionally

used requirem ents engineering and requirem ents engineer which, for m any people, im ply

som e technically advanced and com plicated task. Design often im plies a m ore creative

121

122 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

process, such as outlining and sketching an idea, so is a better choice o f nam e for the task

CABS aims to support and simplify.

M odifying and adding behavioural requirem ents to a requirem ents specification m ostly

includes refinem ent cycles. W hen an idea for a new behaviour has been form alised,

validated and verified, a large num ber o f iteration and refinem ent steps m ay have

occurred. In CABS, these cycles are treated as central parts o f the process o f p ro d u c in g

requirem ents. In F igure 7.1, the whole process from idea to a validated, verified and

form alised requirem ent is outlined. The process o f producing a requirem ents

specification starts with an idea for a new behaviour (the top o f F igure 7.1). In the

application dom ain o f telecom m unications it is m ost likely that the new behaviour is

being added to som e already specified behaviour. The first step is to decide if the new

behaviour can be expressed within the existing ontology or if the ontology has to be

extended (see Section 7.2). Once the ontology is approved, the requirem ents designer

can provide input exam ples outlining the main behaviour with the graphical input ed ito r

in CABS (third oval from top in Figure 7.1, see Section 7.3). Once the user has expressed

some parts o f the new behaviour with input examples, including som e refinem ents o f

nodes and links as described in C hapter 4, the m atching can start. The m atching will

identify candidates from the case library as described in C hapter 6 . The user selects a

solution and validates the selected solution. If the user does no t accept any o f the

solutions proposed by CABS, the user has three choices, i l , i2, i3 (which are also shown

in Figure 7.1). These are:

i l . The user believes that there is some fundam ental problem with the idea o f the

behaviour to be specified. This is a restart and it m ay be necessary to m odify the

idea, ontology and input exam ples. In Figure 7.1, this situation is shown with the

arrow pointing to Revise Idea.

\2. The user decides to refine or add new input exam ples which m ay be based on the

assum ption that the current input exam ples do not capture the behaviour to be

specified well enough (Refine Input Exam ples in Figure 7.1).

i3. The user assum es that the result from the m atching can be im proved by adjusting

m atching param eters and m odifying these before a rem atch is carried out (Prepare

fo r R e-m atch in F igure 7.1).

Once a solution has been selected (based on the m atching result) the next task is to

validate the proposed solution with the sim ulator provided (see Section 7.5). If the

validation results in a rejection o f the proposal, the user has the sam e choices as described

when the m atching result is rejected (i l , i2, i3 in F igure 7.1), as well as an additional

choice, i4, o f revising the solution, which is a m ore traditional way o f m odification where

the user m ay edit the transition rules (described in Section 7.5.1).

I f the validation is successful, and the user is convinced that the intended behaviour is

captured by the proposed solution, the solution has to be verified. The input exam ples

are used to generate test sequences (called test cases) o f behaviour that should be

included in the form alised solution. These are autom atically or sem i-autom atically

verified against the form alised solution. If the case includes all behaviour that is included

in the input exam ples, the verification against the input exam ples is successful. If the

verification is unsuccessful, the skilled user m ay use the feedback from the verification in

order to locate the problem and m odify the solution (i4, Revise So lu tion in Figure 7.1),

or iterate back via i3, i2 or i l . The text to the right in Figure 7.1 is the part (or parts) o f

CABS aiding the process/step to its left.

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 123

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

T erm defin ition
Define Ontology) w indow and

case library

G raph ic inpu t
ex am ple editor

G raphic in p u t
exam ple ed ito r

W indow for m atch result
and param eter settings

Match Against A Case-Based
Case Library ^ / m a t c h i n g

W indow fo r transition
ru les and cases

S im ulato r and
th eo rem prover

T est case generator,
in teractive sim ulator
an d theorem prover

Formalised, Validated and Verified Requirements
(including input exam ples, on to logy , test cases, inform al

descriptions and som e in teractions)

Figure 7.1: Overall process from idea o f behaviour to form alised solution

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 125

7.1 Idea for New Behaviour

Before starting a new specification, an idea o f the behaviour to be added has to be

created (the “cloud” m arked Idea fo r New B ehaviour at the top o f F igure 7.1, with the

cloud indicating that the idea is a mental product “s to red ” in the users m ind21). The

initial idea is, by its nature, always im plicit since it is in the head o f a person or a g roup

o f people. Often, the overall goal with an idea is to add som e behaviour to an existing

im plem ented behaviour in order to add value to the total behaviour (in

telecom m unications, this is called an added value service). In CABS, the main concern is

the process o f form alising an idea for a new behaviour so it can be validated and verified

before any larger com m itm ents, in tim e and money, have been made, and also provide a

basis for decision m aking, design and im plem entation.

7 . 1 .1 Revising an Idea for Behaviour

If the requirem ents designer for some reason decides to rethink the idea o f the behaviour

(m ajor changes, for refinem ents see 7.3), all steps after the initial Idea fo r New B ehaviour

in Figure 7.1 have to be perform ed again. Revising an idea m ay involve respecification

o f ontology and m ay require m ajor changes in input exam ples. R evising the behaviour at

this stage (w ithin CABS) is not a m ajor disaster because, at this stage, only a small

investm ent in the new functionality has taken place (a few hours work). M ost likely parts

o f the previous form alisation o f the idea can be re-used by m anually copying ontology,

input exam ples or parts o f input exam ples and even parts o f the solution that could be

re-used by refinem ent.

21 For more on mental representation both from a philosophical perspective and in the context of

theories of cognition see [Cummins 89].

126 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

7.2 Defining Ontology

Defining an ontology is a main issue in know ledge acquisition and in enabling re-use o f

knowledge. M any requirem ents specification approaches have neglected onto logical

issues (m ost likely due to m ore pressing problem s) but their im portance is now widely

acknowledged and research into their use is increasing. The purpose o f an ontology is to

capture the conceptualisation o f a dom ain and to define (inform al, structured, sem i-

formal or form al [Uschold 96]) all relevant concepts and terms. There are three m ain

areas in which an ontology is useful:

1. Com m unication between all involved parties.

2. Interaction between systems.

3. System design and engineering.

For CABS, the first area above is the most relevant: when a specification o f a behaviour is

made, it is essential that the entities, attributes and relations used in the specification have

a clear m eaning for all involved parties (customers, requirem ents designers and end

users). The view taken in CABS is that inform ation which is easy to capture and m ay be

useful at a later stage (revision / design / im plem entation), should be captured at the

earliest convenient stage. The definition o f an ontology is not the aim and focus o f

CABS (it is in fact a research topic in itself), but defining an ontology is still a m ain part

in the process for transform ing an idea o f a behaviour to a form alised requirem ents

specification. Therefore, only a simple approach has been im plem ented in CABS where

entities, attributes and relations are defined partly inform ally and partly form ally. For the

telecom m unications dom ain it is often possible to identify and use previously specified

definitions stored in the case library (which have been validated and verified). If not, any

addition or m odification o f the ontology should be carefully investigated, validated and

agreed upon by all involved parties, in order to m inim ise the risk o f serious problem s at a

much later stage in the developm ent process [Zave, Jackson, 96].

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 127

7 .3 Expressing an Idea with Input Examples

As described in C hapter 4, the user can give a set o f graphical input exam ples where each

exam ple exem plifies a category (categories such as basic behaviour, odd case, error

case, etc.) or com bination o f categories o f the new behaviour. Once the requirem ents

designer has an idea for the behaviour, the behaviour is captured using the graphical

exam ples that are produced with the graphical input exam ple editor. Nodes and links are

refined thereafter using definitions from the case library (the ontology o f the dom ain).

Once the requirem ents designer has outlined the main characteristics o f the new

behaviour with input examples, which capture the m ost com m on behaviour, whilst

leaving out less usual behaviour, a m atch against the case library can be performed.

7 . 3 .1 Refining Input Examples

R efining input exam ples is done with the graphical input exam ple editor in the same way

as new exam ples are produced. The user can copy and renam e graphical input examples,

as well as add, rem ove and m odify links and nodes until satisfied. Links m ay also be

excluded from m atching for d ifferent reasons (som e links m ay not be part o f the new

behaviour, m erely putting the new behaviour in the context o f previously specified

behaviour).

7 .4 Matching Input Examples Against the Case Library

and Selecting a Solution

The m atching process identifies cases in the case library, capturing sim ilar behaviour to

the behaviour exem plified in the input examples, as described in C hapter 6. This enables

the requirem ents designer to identify and select a proposed solution.

128 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

7.4 .1 Prepare for Match or Re-match

Before the user starts the m atching process, he or she has to choose which input exam ples

are to be used (Figure 6.1). If a m atch result is not satisfactory and a re-m atch has to be

perform ed, selecting a different set o f the input exam ples may be the preferred choice in

an effort to im prove the result o f the m atching. Som e o f the input exam ples may gu ide

the m atching better than others and there may even be input exam ples that m isguide the

matching (this will be explained further on). Since the final rating o f cases is directed b y

the num ber of m atching links/transition rules for the cases, it is obvious that if m ost input

examples direct the m atching in one direction, then a few input exam ples with links

pointing to another case will have less effect on the final ranking. M atching param eters

are norm ally not changed, but if m atching using the m ethod m entioned above (using

different sets of input exam ples for the m atch) does not produce acceptable results, the

user m ay consider tuning the m atching param eters22 in order to try to achieve a better

m atching result (Figure 6.6 and Figure 6.8). In the future, the system m ay also be

involved in the process o f im proving the m atching result by asking the user for som e

specific input exam ples, outlining the behaviour o f parts o f the functionality. This will

enable it to confirm or exclude cases from the case library (an adaptive approach to case-

based search [Callan, Fawett, Rissland, 91]). This possibility has not been explored in the

current im plem entation o f CABS.

If CABS proposes solutions that are rejected by the requirem ents designer, these

proposed cases can easily be rem oved from further re-m atches by selecting the proposals

and pressing the Exclude Case button in Figure 6.9. In the same m anner, the user m ay

exclude links from the m atch if these are judged as being less relevant when searching

for a matching case (these may be links that are known to belong to a case to which the

new behaviour is com plem entary, but not included in, hence these links may direct the

m atching in an unwanted direction). W hen the user is ready for a re-m atch, the R edo

Note that to tune the matching parameters, knowledge of the matching process is needed.22

M atch button in Figure 6.9 is selected and a dialogue window is shown where the user

can select the input exam ples on which the rem atch will be based.

7 . 4 . 2 Selecting a Proposed Solution

W hen confronted with the m atching result (as shown in Figure 6.9), the user m ust select a

solution. The scroll list B est m atching cases (descending order) m ay include a p roposal

that the user m ight decide to explore. The interface enables the user to inspect any o f the

proposals in the list by selecting the case and pressing the Show Case button. If the user

accepts a proposal, the proposal has to be validated and verified (see sections 7.6). I f the

proposed case has been validated and verified, the task is com pleted and the user has

identified a case that captures the required behaviour. In telecom m unications, a case m ay

be re-used directly or w ith m inor m odifications, if there is a variant o f the service (a case

that has been im plem ented for some other custom er or m arket but where the m ain

behaviour and functionality is m atching) already specified and im plem ented. If no

sim ilar service is identified, the use o f parts from different cases m ay be com bined into a

new service, which will be explained in the following section.

7 . 4 . 3 Adapting a Close Match

If there is a m atching case that captures m ost of the m ain behaviour, but not all o f the

behaviour, the user m ay select this case as the proposed solution. Then, th ro u g h

validation and verification, he/she can locate the differences and construct a solution

covering all w anted behaviour by adding transition rules from other cases (the transition

rules m ay need m odification, see Section 7.5.1). All links have their best m atches shown

in the m enu M atch selected fo r link: in the link window (Figure 4.6), where the user can

select a m atching transition rule that is not part of the proposed solution (a m anual

selection will by default exclude the link from a rem atch). This allows the user to

construct a new case with parts from other cases (m odified or unm odified) by adding in

m issing behaviour. If som e behaviour exem plified by a link is not included in the

solution, this behaviour m ay be added in three different ways:

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 129

1. The user selects a transition rule from the case library which is good enough to be

adapted and m odifies it until it captures the desired behaviour.

2. The user lets the system generate a new transition rule capturing the behaviour o f the

link (how transition rules are generated from links is described in Section 7.4.4).

3. The user may m anually construct a new transition rule.

In all three cases, validation and verification will identify if the transition rule is fu lfilling

its purpose. O nce all links whose behaviour was not captured by the selected solution

have been handled in this way, we have a solution that can be fully validated and verified.

W hen transition rules are used from different cases and added to the new case, the new

behaviour is a com bination o f parts from previous specified cases. In

telecom m unications, parts o f behaviour in d ifferent services often show sim ilarity (end

users m ostly require a uniform interface to services) and hence finding parts o f

behaviour from different services that can be used when specifying a new service is

likely.

7 .4 .4 Generating a New Case

If there are no cases in the case library that can be re-used for the new behaviour, the

input exam ples can be used to autom atically generate a set o f transition rules which can

be used as a starting case. A solution case generated in this way will be a naive solution in

the respect that it is m erely a generalisation o f the input links from all input exam ples

only including the behaviour o f the input examples. It is m issing other wanted behav iour

that has not been explicitly exem plified (error cases, odd situations, interaction, etc.)

which would have been included if a previously specified, designed and im plem ented

case had been re-used as starting point for the new behaviour. A generated case is m ost

likely good enough as a starting point for refinem ents, m odifications and adaptations, as

described in Section 7.5.1.

CABS generates transition rules from the input exam ples by putting all conditions into

the condition part o f the generated transition rule and all conclusions into the conclusion

130 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 131

part o f the transition rule. Since m ost heuristics are m ost likely application dom ain

dependent they should be given as an external set o f rules enabling an easy way o f

changing them (the CABS prototype has not im plem ented these heuristics and the user

has to do these adaptations m anually). Since generating transition rules from input

exam ples is not a main issue in CABS, this part is only briefly outlined and im plem ented

to point at the possibility and to capture the situations where no good m atching case o r

set o f transition rules exist in the case library. This part is based on earlier experim ents

w ith rule induction [Funk 88], [Verpers 91]. There are interesting research results in the

area o f rule induction [Quinlan 87] and logic program induction [M uggleton 90] which

should be used in order to extend this initial approach.

7.5 Validating a Proposed Solution

Executable specifications have lately becom e m ore popular and, in addition, for m any

non-executab le form al notations, there is an ongoing research effort to identify

executable subsets/extensions [Fuchs 92]. One o f the m ain advantages o f executable

specifications is that the requirem ents designer can explore the specified behaviour

(under d ifferent circum stances) by sim ulation. E xecutable specifications can be used as

part o f the com m unication about the system functionality between custom ers, system

designers and program m ers. The sim ulation allows an interactive exploration o f the

required functionality (the required dynam ic behaviour) captured by the requirem ents

specification. If any unexpected, unspecified or unwanted behaviour is encountered then

the solution needs refinem ent: the requirem ents designer can refine, revise and/or extend

the specification (as described earlier in this chapter and shown in F igure 7.1), so that it

captures correctly the intended behaviour.

Since the requirem ents designers intention of the behaviour is not fully covered by the

exam ples, and since the proposed solution includes m ore behaviour than explicitly

exem plified in the input examples, the specification has to be validated. In CABS, we

have im plem ented a basic text based sim ulation tool as shown in Figure 7.2. I f sim ulation

is to be used w ith custom ers o f the system it would need to be im proved and the logical

132 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

notation better encapsulated. A graphical representation or sim ulation anim ation w ould

be one way o f further assisting understanding for people not skilled in form al notations

[Hughes, Cooling, 91]. Som e experim ents in graphical and icon based representation fo r

sim ulations and specifications have been perform ed in the dom ain o f

telecom m unications services [Preifelt, Engstedt, 92],

In the sim ulation tool, the user can create an initial state (the Initialise button in F igure

7.2), give a sequence o f stimuli to the sim ulator, and explore which transition rules have

been triggered and what facts and responses are concluded. This gives the user a

powerful tool with which to explore the behaviour o f the form alised requirem ents. T he

user starts a sim ulation by initialising the facts. In Figure 7.2 one subscriber is answ ering

calls to num ber 1 1 1 , answer_num ber(a, 111), and calls to num ber 1 1 1 are accepted,

accepts_incom ing_calls(111) are the initial facts as shown in the top right field. The user

gives a stimulus (which m ay be selected from a m enu containing all valid stimuli) in the

text field N ext stimulus: at the top o f F igure 7.2 and selects the Sim ulate button. The New

facts since previous state, U nchanged fa c ts since previous state and Triggered transition

rules fields will be updated and show the state after the stimulus has occurred. If the user

wishes to inspect why a transition rule has triggered, the user can select the button Show

Transition R ule which shows the transition rule with variables replaced by actual values

from the sim ulation. The user can also explore why a transition rule has not triggered by

choosing the Why N ot b u tto n 23, selecting a transition rule that will be shown with the

conditions which have or have not been met. The field Facts at time shows the curren t

time step: if the user has sim ulated a num ber o f steps, the < , > or View time button can be

used to traverse forw ard and backward in the sim ulation space (in this im plem entation, a

new stimulus can only be given at the last tim e step, but it w ould be desirable if tree

Why Not button and the corresponding functionality has not been implemented in the final

simulator for CABS. Such a functionality is a minor extension and was implemented in an earlier

versions of the simulator.

23

structured sim ulations could be built and a d ifferent sim ulation branch could be started

from any sim ulation step). Before a sim ulation is started, the user has to decide with

which cases the new behaviour should be sim ulated (only transition rules from these

selected cases will be triggered by a stimulus). For telecom m unications services [Funk,

Raichm an, 1990], it is often an advantage to first sim ulate a new case without o ther

interacting cases initially, and once this behaviour has been validated and refined so that

it covers the basic idea, additional cases can be explored. If the user wishes to reset a

sim ulation from a particular step, the button Reset fro m is used. I f the In itialise button is

chosen, the current sim ulation is cleared and a new initialisation can be selected (either

select from previously defined initialisation or define a new initialisation containing facts

that are true at time step zero).

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 133

□ S im ulate/ Ualidate cases

Neat stim ulus: hook_off(a , 1)

Facts a t tim e: 11 | |[Simulate]|
New fa c ts since preuious sta te : Unchanged facts since preuious sta te :

dial_tone(a)
hook_off_time(a, 1)
time(1)
not time(O)

Occurred stim ulus: hook_off(a , 1)
Triggerd tran s ition rules:________

se t_hook_o ff_ tim e_2
norm a l_hook_off

accepts_incoming_calls(111)
a n sw er_ n r(a , 111)

Simulated cases:

iull_functionality_system
banking
basic_call
basic_telephony
call back

Set cases to sim ulate

[Reset from]

■ù

{ Cancel) [In it ia lis e] [Reset~~) f<~) f>~] [Uiew time") [Show Transition Rule) [Done)

Figure 7.2: Exam ple o f sim ulation window in CABS

7.5 .1 Revising a Solution

134 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

If m issing behaviour which is part o f the input exam ples is identified, then the p roposed

solution needs to be extended (by identifying m atching transition rules for the links no t

covered by the solution or by refining the transition rules). If m issing behaviour, w hich is

not a part o f the input examples, is identified and classified as relevant to include in the

initial behavioural requirem ents, the input exam ples should be extended to include this

behaviour. In the dom ain o f telecom m unications services, the num ber o f behaviours to

be captured in a specification m ay be so large that it is not feasible to m ake inpu t

examples for all behaviours, only for the m ore com m on and norm al ones. O ther m ore

unusual situations and in teractions24 are captured by the form alised requirem ents (a

refinem ent o f the behavioural requirem ents tow ards a full specification).

If behaviour is added to the form alised requirem ents, but not included in the inpu t

examples, there is still a possibility to perform som e verification, if the sim ulation traces

are kept as test cases for later re-verification and to form ally prove that any

m odifications/alterations to a case have not accidentally changed any o f the previously

captured behaviour represented by the sim ulation traces. V erify ing

m odifications/alterations o f cases is a m ajor issue for telecom m unications service

providers since services are often m odified for d ifferent m arkets and users, or altered to

interact in a desirable way with new services. It is a well known fact that alterations are

one o f the main causes o f errors. This risk o f accidentally introduced errors is reduced if

previous input exam ples and previously perform ed sim ulations are re-used to verify that

24 If looking at a telecommunications service such as call diversion or three party call, it could be

argued that the behaviour normally encountered by the phone user is the main issue for the top level

requirements sketch. The more unusual situations should of course eventually be catered for, but this

can be left for a later stage in the process, after the main behaviour of the new service has been

validated, verified and approved for full implementation.

none o f these behaviours have been accidentally altered (see [Buchanan, Shortliffe 84]).

Storing sim ulations has not been im plem ented in CABS but is a trivial extension to the

autom atic verification described in Section 7.6.

The solution m ay be revised on the level o f transition rules (14 in Figure 7.1) by editing

the transition rules in a traditional way until they capture the behaviour exem plified in

the input exam ples (individual transition rules can be edited in the transition rule window,

F igure 5.5). I f transition rules are revised to capture the behaviour exem plified in the

input exam ples, the solution can be verified as norm al, as described in Section 7.6 (no

extra verification with sim ulation traces as described previously is needed).

7 .6 Automatic and Interactive Verification of Results

Validation o f new cases can be done more or less system atically but as long as traditional

m ethods for validation are used, there is no guarantee that all requirem ents exem plified

in the input exam ples are captured in the form alised requirem ents. In CABS, a step o f

form al verification is added where the input exam ples are translated to test sequences

(called test cases) that are used by the verification tool. This is done autom atically and

can prove that the behaviour exem plified in the input exam ples is captured in the case

and its environm ent, i.e. all the other cases with which it is expected to coexist, and with

which it m ay also interact or be dependent on. If behavioural exam ples outlin ing

excluded behaviour have been given, these have to be proven not to be included in the

behaviour (negative input exam ples have not been im plem ented in CABS but is a

straightforw ard extension o f the existing im plem entation). In CABS we have

im plem ented this autom atic verification for positive input exam ples. If a case does not

capture som e specific behaviour exem plified in links in the input exam ples, CABS will

point out w hich behaviour in the input exam ples is m issing from the form alised

requirem ents. This indicates that the transition rules in the form alised requirem ents

specification corresponding to these links fail to fulfil their task o f capturing the

exem plified behaviour. Hence, the verification has failed and the user has to refine the

input exam ple or add another input exam ple in order to give m ore inform ation, so that a

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 135

transition rule m eeting the requirem ents can be identified by the m atching process o r

generated from the input examples.

Once a case and its transition rules have been altered, all cases that include this transition

rule directly or indirectly need to be verified. Those cases which need to be re-verified

can be determ ined autom atically (which can be done w ithout a search through all the

transition rules).

By using a form al notation, we also have the possibility o f identifying inconsistency in

rule sets [Funk 93]. A program perform ing som e consistency checks on rules has been

im plemented but not integrated in the CABS system (see C hapter 9).

7.6.1 Generating Test Cases from Input Examples

A test case is a sequence o f triples o f preconditions (facts and responses), stim ulus and

postconditions (facts and responses) that are expected to hold before and after the

stimulus has occurred. The input exam ples are a set o f links and nodes. The links contain

conditions (both conditions from the originating node and additional conditions) and

conclusions (both originating from the term inating node and additional conditions)

which can be used directly to produce test sequences, containing sequences o f stimuli,

preconditions and conclusions that are expected to hold before/after the stimuli have

been received. If a link has som e additional conditions that are not a conclusion o f som e

previous link or a part o f any previous node, these term s can be added to the initial start

situation if this option is selected. Input exam ples always have a finite num ber o f nodes,

so we only need to generate all possible routes between all the denoted start and end

nodes. We do not need to expand loops since if we follow a branch o f stimuli between

start node and end node and encounter a node in the input exam ple that has already

been traversed, this branch needs no further exploration since each node has already had

all its branches explored.

Once all branches for an input exam ple have been expanded betw een start node and end

node in the input examples, we have a num ber o f test cases to verify. As well as using test

cases, we may also show different properties, such as liveness [Segala, Gawlick, S0g a a rd -

136 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

Andersen, Lynch 98], i.e. if a branch cannot reach an end node within a reasonable

num ber o f stim uli (for instance a phone user is only expected to do a reasonable num ber

o f actions resulting in stimuli, dialling, putting calls on hold, jo in ing them into three

party calls etc. w hich can be limited to a safe m axim um num ber o f stimuli), this can be

identified.

7 . 6 . 2 Verifying a Test Case Against Formalised Requirements

The purpose o f the verification is to verify (form ally prove) that all the behaviour

captured in the input exam ples is included in the form alised requirem ents and that the

behaviour o f negative input exam ples is excluded from the form alised requirem ents

[A tkinson, C unningham 1990].

D efinition o f included behaviour. Given the same sequence o f stimuli, the form alised

requirem ents capture the behaviour o f the input exam ples if and only if the form alised

requirem ents exhibit a list o f responses which can be m apped to the list o f responses in

the input exam ples: N ote that there may be responses in the form alised requirem ents that

are not present in the list o f responses from the input example.

D efinition o f excluded behaviour: The form alised requirem ents exclude the behaviour o f

the input exam ples if and only if the form alised requirem ents do no t exhibit the same

responses, given the same sequence o f stimuli as exem plified in the input examples.

In CABS, the requirem ents designer selects which cases or set o f cases are to be verified

by selecting from the list Verify Cases in Figure 7.3. If m ore cases are selected,

interaction between these cases is also verified (if input exam ples exem plify ing

interaction betw een these exist). I f the check box precond ition is ticked, the verification

will check that preconditions connected to stimuli in the test case are checked and any

differences are reported. I f the check box postcond ition is ticked, the postconditions are

checked in the same way. If the check box response is ticked, the externally visible

response term s are checked (same response for same sequence o f stimuli). If the check

box attributes and relations is ticked, attributes and relations connected to stimuli in test

sequences are checked. These settings may be useful if a verification fails because o f

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 137

differences between the exem plified behaviour o f the input exam ples and the cap tured

behaviour of the proposed solution and gives the user a tool that m ay be o f help in the

exploration o f the differences. If the Verify A ll button is pressed, all existing test cases fo r

the selected cases are verified (if the verification o f a test case fails, the verification stops

and the failing situation is shown in the Verification window). If the Verify N ext button is

pressed, the nam e o f the next un-verifled test case is shown in the Verifying test case:

field. Test cases are always nam ed after their originating input exam ple nam e m erged

with a num ber (the num ber is the order num ber in which the test case was generated). I f

the requirem ents designer wishes to step through a test case, the Step button is pressed

and one stimulus at a tim e from the stimulus list Test sequence is verified (the highlighted

stimulus in the Test sequence: list is the last verified).

In the step mode, the result after every step is shown in the Facts: list, listing all the facts

true in the state. W hat facts have been changed since the previous time are listed first.

After the dotted line the facts that are not true any more are listed and finally after the

second dotted line, all the facts that have not been changed since the previous step are

listed. The Expected terms: list shows what the test case expects for terms in the state and

the Triggered transition rules: list shows all the transition rules that have been triggered

as a direct consequence o f the stimulus. A discrepancy is an indication o f a behavioural

difference betw een the initial requirem ents and the form alised specification sketch. The

user has to decide if the initial requirem ents have changed or if the form alised

requirem ent sketch has to be revised. The Restart button is used to reset the current test

case to its initial start state, which m ay be useful when stepping trough a test case. The

Select New button allows the user to select and initialise the V erification window with

another test case.

The verification uses the sim ulator in batch mode. This has the advantage that if any

discrepancies are identified and the verification is halted, the Sim ulate button can be

pressed and the last test case can be explored with the sim ulator (stepping

forward/backward, resetting from a particular time and sim ulating different stimuli and

their effects). The original graphical input exam ple can also be viewed by pressing the

Show Input Exam ple button. The test case can be viewed by pressing the Show Test Case

138 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS 139

button. Each step in the Test Sequence list has a reference to its orig inating link in the

graphical input exam ple which can be viewed by pressing the Show L ink button.

U erification
Verify cases: Uerify: ^ preconditions E

^ responses E

[Uerify All] [Uerify Newt]

I postconditions
I a ttr ib u te s and re lations

Selected test case:
originating from:

Test sequence:

test_case55
a_call_back_example [Step) (Restart] [Select Neu»)

Facts
all subscribers idle
hook_ofi(a, 1)
dialling(a, 222, 2)
service_request(a, X, 3)
hook_on(a, 4)
End of sequence

call_back(a, 222, 3)
service_accepted(a)
not ring_signal(b)
not ring_tone(a)
not calling(a, b)
hook_off_time(a, 1)
answer_nr(a, 111)
answer_nr(b, 222)
accepts_incoming_calls(222)
dialling_time(a, 222, 2)
time(2)
last_call(222, 111)

Expected term s:
Occurred: service_request(a, call_back, 3)
Triggered tra n s itio n rules:_____________

service_accepted(a) o

:all_back_request_l not ring_tone(a)
not ring__signal(b)
not calling(a, b)

Quit] [Shorn Inpu t Enample] [shorn Test Case] [Shorn Link) [s im ulation] [Done

Figure 7.3: Exam ple o f verification window in CABS

The verification also handles test cases where variables are used. In Figure 7.3 in the Test

sequence list, the third step, service_request(a, X, 3), can under the given restrictions

(preconditions and postconditions), only be equal to service_request(a, ca lljback, 3) as

shown after Occurred. If the variable causes indeterm inism and the variables can be

instantiated to different values, the user has to m ake a selection to m ake the test case

valid.

140 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESS IN CABS

7.7 Revising and Refining the Solution

A solution may be directly m odified by editing transition rules. This does not conflict

with the m ethodology o f CABS since verification and, m ost likely, validation has to be

perform ed before the task can be considered com plete. The verification ensures that the

solution still conform s to the input exam ples. If the verification is unsuccessful, the

question to explore is if the input exam ples or the form alised requirem ent specification

has to be m odified. Once the original idea has been form alised, validated and verified,

the solution includes the behaviour o f the input examples. If the input exam ples reflect

the behaviour o f the new functionality, then the solution m eets the original requirem ents.

If the proposed solution needs some revision (such as adding in the behaviour fo r

unusual situations), or if there is no single case that m eets the user’s requirem ents, a more

traditional approach o f editing transition rules may be necessary. This requires

knowledge o f production system s and rule based approaches.

Chapter:

8. Evaluation of CABS

As m entioned in C hapter 2, there are hundreds o f different telephone services

im plem ented by m odem telephone networks. These exist in d ifferent variations where

adaptations have been m ade for d ifferent countries, com panies and telephone operators.

The CABS case library contains seventeen telecom m unications services (127 transition

rules, 54 term s), reflecting a variety o f d ifferent types o f telephone services com m only

supplied to phone users which are often used in experim ents and research involving

service specifications [Funk, Raichm an, 1990]. The case library selected for the

evaluation contains the follow ing services25: basic call; call barring; call diversion; call

waiting; call rem inder; call back; call return; charge advice; em ergency call; three-w ay

calling; pick-up call; banking; voting; queue calls; caller display; basic telephony.

For case-based reasoning, there are a num ber o f key issues to be evaluated (described in

Section 8.1). The m ost desirable approach for an evaluation is when a set o f objectively-

m easurable criteria can be defined and proven: for exam ple, if the aim o f a research

project is to apply an approach enabling m icro-processors which are ten times faster,

com pared with currently available technology, a prototype that m eets this criterion is

25 For details on some of the services, see for example BT’s brochure “Welcome to Selected Services,

Your User Guide”.

141

142 CHAPTER 8. EVALUATION OF CABS

clear evidence that the claim s o f the research hold. In the area o f m athem atics, a precise

answer may be a m athem atical form ula or proof. In artificial intelligence and know ledge

based systems, where d ifferent areas and approaches are com bined and integrated to

achieve the desired results, an em pirical approach to evaluation is usually the preferab le

choice [Mark, Greyer, 93].

An im portant question is: with w hat data should an evaluation be carried out. For the case

library, a set o f services is chosen that is com m only used in experim ents with te lephone

services [Funk, Raichm an, 90], [Klusener, V lijmen, W averen, 93]. For these services, inpu t

exam ples were created in the sam e way in which end users are expected to use the

system. These are used to evaluate the robustness o f the system, and the results reported

give an indication o f how well it m eets its claim s (identifying sim ilar behaviour and

verifying the solution against the input exam ples). The results are reported in the tables

of the following sections.

The decision was taken that end user evaluation was not appropriate, for two m ain

reasons. Firstly, real end users are not accessible; telephone services designers are in great

demand, and they w ould not grant time for the evaluation o f CABS. The second reason is

that since the im plem entation is fairly large, any results from an end user evaluation

would be questionable as it m ay be difficult to separate the evaluation o f the p ro to type

(an end user may like or dislike a particular im plem entation depending on b ack g ro u n d

knowledge, experience and personal preferences) from the evaluation o f the general

approach.

8.1 Issues to Evaluate in Case-Based Retrieval

The success or failure o f case-based reasoning systems depends on five key issues listed

in Table 8.1, each with a b rief reference to CABS. They are in no particular order and

are extended and adapted from [O 'Leary 93] and [Ketler 93]:

CHAPTER 8. EVALUATION OF CABS 143

1. H ow easy is it to use the system (giving input exam ples on a suitable abstraction

level).

CABS uses graphical input examples. Graphic notations are com mon in

telecom m unications applications and the notation used is considerably less

com plex (due to a reduction in expressiveness) than notations traditionally used

(SDL, MSC, CP, etc.). To evaluate the notation is beyond the scope o f this research

and the view is taken that the notation should be adapted and tailored to m eet the

u ser’s wishes.

2. C onsistency and uniform ity o f know ledge representation (sufficient for all

involved parties and also enabling autom ated verification, adaptation, etc.).

C ABS uses a pred ica te logic notation based on H orn-clauses.

3. C lustering o f cases (application dom ain feature).

Telecom m unications services, and in particular telephone services, are on a

behavioural level often sim ilar to each other. D ifferent countries and service

providers o ffer similar, but not identical, services to telephone users. Re-use is high

on the agenda in telecommunications.

4. M etrics for the retrieval o f cases.

A set o f structural features, based on an analysis o f the semantics, is used to

identify and retrieve cases capturing sim ilar behaviour.

5. A ssessm ent o f the solution produced by the system.

C ABS uses input examples to verify solutions. Sim ulation is used to explore

behaviour no t covered by the input examples. Theorem proving is a fu rth er

extension (partly implem ented but not integrated in the prototype system, see

C hapter 9).

Table 8.1: The five main issues to be evaluated

144 CHAPTER 8. EVALUATION OF CABS

This research focuses on the identification o f sim ilar behaviour for re-use and to con firm

that the final solution captures the behaviour exem plified in the input exam ples, so issues

4 and 5 in Table 8.1 are the m ain issues in this evaluation and will be explored in dep th

in sections 8.2 and 8.3.

To evaluate issue one to three is beyond the scope o f this research but they are discussed

briefly because they are o f relevance if a full scale im plem entation o f a system based on

the CABS approach is considered:

Issue 1 (Table 8.1): The behaviour im agined by the user has to be expressed in som e

notation as input exam ples, in CABS. To use a graphical notation is an obvious choice

for the dom ain o f telecom m unications since graphical notations are often used in this

application dom ain for a variety for different purposes. CABS has a very basic graphical

representation (the notation should be adapted to the user’s needs and also for d iffe ren t

application domains. This is beyond the scope o f this research.). The m ain requ irem ent

for the input exam ples is that it should be possible to translate them into transition rules

used for m atching and for generating test cases used in the verification. W hether the

input exam ples capture the desired behaviour correctly can only be assessed by the

designers, m aking evaluation o f the problem description difficult (especially w ithout

access to end users).

Issue 2 (Table 8.1): For a num ber o f reasons (convenience being one o f them), CABS

uses a subset o f predicate logic extended with a fram e axiom as its know ledge

representation language. W ith this simple but sufficiently expressive predicate logic, the

im plem entation o f m atching, sim ulation, verification and translation from input exam ples

to transition rules is realised with reasonable effort. Translation to and from natural

language has also been explored for a notation sim ilar to the one used [Dalianis 95].

Issue 3 (Table 8.1): The application dom ain o f telephone services has the features

needed to m ake re-use beneficial since sim ilarities betw een services are com m on in

telecom m unications. Re-use is considered an im portant matter, and is high on the

priority list for service developm ent. Since new telephone services are designed and

im plem ented all over the world in different com pany branches, com panies and service

CHAPTER 8. EVALUATION OF CABS 145

vendors, it is assum ed that a lot o f work is repeated and that there is a large potential fo r

re-use. E ffort to standardise service independent building blocks has been undertaken by

the international telecom m unications union but this will not lead to standardised services

(as discussed in section 2.3). Section 8.4 shows that CABS has the capability to

considerably reduce repetitive work by identifying sim ilar services.

8.2 Evaluation of Retrieval and Solution A ssessm ent

Figure 8.1 gives an evaluation view o f CABS (the large box) and the two m ain issues:

(i) identifying and retrieving sim ilar behaviour for re-use (issue 4 in Table 8.1) and

(ii) verifying the proposed and selected solution against the input exam ples (issue 5 in

Table 8.1). In the telecom m unications service dom ain, CABS is not expected to find a

case in the case library exactly m eeting the exem plified behaviour in the input exam ples

since it is unlikely that the user would give an exam ple o f a behaviour that exactly

m atched a case in the case library (W hen this occurs, either the service is uncom plicated

or the user knows exactly how the service behaves). CABS proposes a list o f sim ilar cases

that are candidates for the behaviour expressed in the input exam ples. The requirem ents

designer m akes the final selection, eventually changing the initial idea o f the behaviour

exem plified (changing input exam ples or accepting input exam ples belonging to the

case). The overall question to evaluate is whether or not the m atching heuristics are

practically useful and produce a set o f sim ilar cases, which is small enough to be

m anageable, yet broad enough not to miss relevant cases26. If we know the solution case

for a set o f input exam ples, we can find out how well the features used by CABS work to

identify the solution. A t the same time, it would not be desirable if the m atching only

"6 Even so, similarity-matching may not, in a fully functioning system, be the only approach to

identifying relevant cases: keyword matching, text-based matching on informal descriptions of cases,

and matching new input examples against input examples stored with cases in the case library are

some interesting extensions to CABS.

146 CHAPTER 8. EVALUATION OF CABS

gave the single m ost expected case as a solution, since a case capturing exactly this

behaviour need not necessarily be the solution sought (a requirem ents designer m ay

revise and extend the behavioural ideas). Therefore, a set o f sim ilar cases where the m ost

sim ilar solution has a high ranking is preferable. In Section 8.3, the input exam ples are

selected and m atched, and the results are sum m arised and their im plications discussed.

Another central feature o f CABS is to verify proposed and selected solutions (see F igure

8.1). The m atching process should purposely give a set o f m ore or less sim ilar cases

from which the user can select the one(s) they want. The verification, on the o ther hand,

should confirm that the behaviour exem plified in the input exam ples is included in the

selected solution and if not, describe where it differs. I f it does differ, the requirem ents

designer has to explore why this is so. In Section 8.5, proposed and selected solutions are

verified against the input examples.

Figure 8.1: A verification view o f CABS.

CHAPTER 8. EVALUATION OF CABS 147

8.3 Selection of Input Examples and Target Cases

As m entioned erlier the set o f cases that are stored in the case library are com m only used

in experim ents with telephone services [Funk, Raichm an, 90], [Klusener, Vlijmen,

W averen, 93]. For all cases in the case library, one input exam ple, giving an exam ple o f

the behaviour o f the corresponding service, was designed. An effort has been m ade to

produce input exam ples which are sim ilar to those a requirem ents designer m ight give,

w ithout know ledge o f the behaviour o f any service im plem enting the exem plified

behaviour. This is fairly easy to achieve, as there is often little choice in how to exem plify

a particular behaviour with an input example. A good illustration o f this is

basic_exam ple_0 (Figure 8.2) w hich contains four nodes: all subscribers idle; dial tone

a; a calling b; in speech. The node dial tone a has the condition dia l_ tone(a) and the

node a calling b has the condition calling(a, b) & ring_tone(a) & ring_signal(b). T he

nodes are connected with the links illustrating the actions the telephone users can m ake.

This is sufficient for the m atching algorithm to identify basic_call as the best m atching

case (for m atching results see Table 8.3). D ifferent requirem ents designers would m ost

likely express the sam e behaviour in a sim ilar way with the given set o f nodes.

148 CHAPTER 8. EVALUATION OF CABS

Figure 8.2: input exam ple basic_exam ple_0

In Table 8.2, the nam es o f the input exam ples are given with the corresponding target

case (telephone service). A ppendix B lists all the cases in the case library and A ppend ix

C gives all the input exam ples used for the evaluation (as listed in Table 8.2).

CHAPTER 8. EVALUATION OF CABS 149

Input example Case in Case Library

1. a_banking example banking
2 . a_barring example call barring
3 . a_basic_behaviour example 0 basic_telephony
4 . a_basic behaviour example 1 basic telephony
5. a_basic example 0 basic call
6. a basic example 1 basic call
7 . a busy example basic call
8 . a call back example call back
9 . a_call last caller call back
10 . a_call reminder example call reminder
11 . a_call_return example call return
12 . a_call_waiting example call waiting
13 . a__charge advice example charge advice
14 . a_divert example call diversion
15 . a_multi call example tree way calling
16 . a pick up call example pick up call
17 . a queue example queue calls
18 . a show number example caller display
19 . a voting example voting
20 . a wake up call reminder call
21 . an emergency example emergency call

Table 8.2: Input examples and target cases

8.4 Evaluation of the Matching A lgorithm

Each input exam ple targeting the same case has been used for evaluating the m atching

algorithm . Test cases are all defined as being dependent on the basic_call service and

basic telephony service (except input exam ples describing basic call and basic

telephony), so these services are not considered as a solution and are excluded from the

m atching result. The param eters for m atching transition rules and cases have been left at

their default values. In F igure 8.3 the m atching result for the input exam ple

a_ca ll_ rem inder_exam ple is shown (for an exam ple on a full m atching result, see

F igure 6.9).

150

Best m a t c h in g c a s e s (d e s c e n d in g order) :

CHAPTER 8. EVALUATION OF CABS

c a l l_ r e m iiu ie r (3) o
c h a r g e _ a d v ic e (2)
r e m iiu ie r _ c a l l {1}
c a l l _ w a i t i n g {1)
c a l l _ d iv e r s i o n . {1)
t h r e e _ w a y _ c a l l in g {1}

o

Figure 8.3: M atch result for input exam ple a_call_rem inder_exam ple

The colum n Best m atching cases in Table 8.3 contains the m atching result for each inpu t

example. The result from Figure 8.3 is shown as a list with num bers {321 1 1 1 } in Table

8 .3 . After the results list a num ber is shown (/6) with the num ber o f links the m atch is

based on. Since we know the solution case for the match, the num ber representing the

best case is underscored. Cases that have the same ranking are not ordered in any way.

This rating is actually quite crude; if a m ore precise ranking is needed fo r a large case

library, it could be refined by taking the individual scores o f transition rules into accoun t

when accum ulating the total score for a case, rather than counting the sum o f the n u m b er

o f m atching transition rules. The crudeness o f the ranking cannot alter the set o f

proposed services, but in some cases causes results in two or m ore cases being ranked

equal highest. Since the requirem ents designer m akes the final selection am ong all

proposed services and the total num ber of services were m anageable, their rank ing

seemed to be a good enough guide for the final selection, and a m ore d iscrim inating

algorithm was not im plem ented.

If there is only one best m atch then the m atching process has led the user directly to the

solution. If the num ber is greater than one, then there are several cases in the case lib rary

which share characteristics with the input example. As explored in detail in C hapter 7, the

requirem ents designer is expected to handle this situation (by adding m ore input

examples, excluding links from the input example, exploring and selecting the m ost

appropriate case, com bining m ore than one case, etc.). Excluding links from the inpu t

CHAPTER 8. EVALUATION OF CABS 151

exam ple is an easy approach to im prove a m atching result if it is obvious that the best

proposed cases are not acceptable. This can be done directly from the detail window fo r

links, by selecting Link not relevant fo r m atch in M atch select fo r link: (see F igure 4 .6).

One should bear in m ind that excluding links will not extend the search (the same or

few er cases are proposed as a solution) and will only be useful if the solution case is

w ithin the list o f proposed solutions. In the colum n Excluded links (Table 8.3), som e

links w hich are obviously not relevant for the m atch have been excluded from the m atch

and the m atch has been re-done. The num ber of links used in the m atch is given as a

num ber in the sam e way as in the colum n Best m atching cases; the num ber o f links will

obviously always be less since links have been excluded from the match.

If the total num ber o f proposed cases which scored higher than one is too high the

requirem ents designer m ay increase/reduce appropriate m atching param eters. I f a service

has few characteristic features, it is expected that this total will be large, whereas if the

service is very specific in its behaviour, there will be few er cases. N o m atching param eters

have been altered during the evaluation presented in Table 8.3 (every transition rule

scoring higher than 10 is counted as a match).

Som e m atching results clearly point out the solution, for exam ple m atch 6 in Table 8.3.

Case 17, where 10 proposals are ranked, has two proposals ranked highest and this m atch

is regarded as having a weak focus towards the solution. If the focus is weak the input

exam ple (and the service) m ay be o f more general character and share features with

m any other services.

152 CHAPTER 8. EVALUATION OF CABS

Input example Best matching Excluded
cases links

1. a_banking_example {2.1 11 11 1 } /4 a/

2. a_barring_example { 1_1 1 } / 3 V

3. a_basic_behaviour_example_0 {4.3331 1 } /4 V

4. a_basic_behaviour_example_1 {2.1 1 1 } /3 V

5. a_basic_example_0 {6.211 1 1 1 } / 6 V

6. a_basic_examp!e_1 {7.211 1 1 1 }/7 V

7. a_busy_example {2 .11111111 }/2 V

8. a_call_back_example {2.2 21 1} / 6 V

9. a _ c a llja s t_ c a lle r {1_1 1 1} / 4 4 {!_} /1

1 0. a_call_reminder_example {3.21 11 1 }/6 V

11. a_call_return_exam ple {3.221 1 1 1 1 }/8 V

1 2. a_call_waiting_example {2.1 1 } /5 V

13. a_charge_advice_example {32.21 1111 1 }/7 nb {2.21 1 1 } /4

1 4. a_divert_example {2.221 1 1 1 1 1 1 } /7 V

1 6. a_multi_call_example {3.2 1 } /6 V

1 5. a_pick_up_call_example { 1_1 1 1 1 }/5 5 {1 .}/1

1 7. a_queue_example {2 .2111 11111 }/6 V

1 8. a_show_number_example { 1_} / 3 V

19. a_voting_example {1_111111 } /3 7 {1 1 1 1 1 1 1 } /1

20. a_wake_up_example {2.1 1 1 1 } /3 V

21. an_emergency_example {2 211 1 } /6 nb {11 1 }/1

Table 8.3: M atch result for input examples

The input example, a_basic_exam ple_0, is in fact faulty because a node is m issing27,

hence one link is m issing and one is faulty. It is interesting that the solution case was

27 When two users are talking to each other and one of them puts the receiver down, the other user

will have silence until their receiver is also put down, the input example makes both the caller and

the called person idle when one person puts the receiver down, this is not true since the person who

did not put down the receiver cannot receive a call or lift the receiver (liook_ojf).

CHAPTER 8. EVALUATION OF CABS 153

identified in spite o f this mistake. This result was unexpected, but on analysing the result

it becom es clear that this is exactly one o f the desired benefits o f case-based reasoning

com pared with other m ore precise approaches (e.g. som e logical p ro o f o f equivalence).

Input exam ples m ay lack details or even be partly faulty, but if the heuristics for the

m atch (the features used) are well chosen, the m atching algorithm should be robust

enough to identify relevant solutions based on the part o f the input exam ple which is no t

faulty. D uring the evaluation, a m ore obscure fault was identified in the m atching (if

m atching transition rules had constants in their stimulus part, variables were accidentally

bound in stim ulus term s with these constants). Coincidentally, this problem only caused

the m atching algorithm to m iss the correct solution in one exam ple and after correcting

this problem the four input exam ples got one additional proposed case.

8 .4 .1 Over-diffuse identification of solution

For all input exam ples used in the evaluation, the solution case is am ongst the p roposed

solutions, but in two cases (13, 21) the correct solution case was not am ongst the h ighest

ranked, and in two cases (9, 19), m ore than three proposals where ranked highest. Before

analysing these cases, a b rie f sum m ary o f how such a result m ay be tackled by the

requirem ents designer is given. If a requirem ents designer does not find an appropriate

case am ong the proposed cases, one o f their first actions is to refine the input exam ples

(as described in C hapter 7), either by supplying m ore input exam ples or refining those

already given. O ne way o f refining input examples is to label links as not directly being a

part o f the behaviour sought for in the case library, which as shown below, often gives a

better m atching result. For example, in the service charge_advice, everything in the input

exam ple 13 (Table 8.3) up to telephone user a talking to telephone user b (for input

exam ple see A ppendix C) is a norm al call, but the m atching process does not know that

and should still identify sim ilar services to propose for this part o f the input example; this

m ay m isdirect the search in some situations or result in a less focused proposal,

depending on how large a part o f the input exam ple is part o f the target case. If these

154 CHAPTER 8. EVALUATION OF CABS

links (up to node speech) are m arked as being irrelevant for the search28, the search

focuses on the part in which the requirem ents designer is interested. For input exam ple

13 this brings the correct service (charge_advice) to the top o f the ranking list (shared

with call_rem inder which could be classified as having a sim ilar behaviour to the

exam ple29); before this selection o f links charge_advice was ranked to be am ongst the

second best proposals. The re-m atch result is shown in the colum n E xcluded links in

Table 8.3.

After the requirem ents designer has excluded selected links in the input exam ple,

exam ple 19 still shares the solution with other proposals which m ay be considered as a

weak focus on the solution, but when inspecting the m atching result o f the link, the

highest ranked transition rule belongs to the service voting, hence the service voting is

correctly identified as the best m atch (a list with proposed and ranked sim ilar transition

rules can be viewed in the detail link window, see Section 4.2.1). This shows that the

link/transition rule m atching is able to correctly rank the transition rule from the solution

case as the highest. This inform ation is not carried forw ard when ranking cases in the

case library due to the crude approach o f counting the num ber o f m atching links fo r

each case. Also, for input exam ple 21, the solution would have been ranked the highest if

the link/transition rule ranking had been carried forward to the ranking o f the cases.

Hence the ranking o f cases would benefit from receiving and using m ore in fo rm ation

from the link/transition rule match. Using m ore inform ation from the link/transition rule

m atch when calculating the overall score for m atching cases is considered a m in o r

alteration. This would further im prove the m atching results, especially if the m atch ing

98
The links are still relevant when verifying the behaviour.

Reminder_call may even have parts that could have been re-used to create a new service

charge_advice if such a service had not existed in the case library. No analyses of this possible re-use

has been explored.

29

CHAPTER 8. EVALUATION OF CABS 155

result is based on a few links from the input example. It would add a few calculations to

each ranked case in the case library which would be negligible with o ther calculations

perform ed for each transition rule and case (for m ore on tim e efficiency o f m atching

algorithm see Section 8.7).

8 . 4 . 2 Conclusions for Match Evaluation

For all input exam ples given, CABS was able to identify the corresponding solution

am ongst the highest ranked proposals and for 14 (out o f 21) input examples, it ranked

the solution as the best proposal. In 19 (out o f 21) input exam ples, the solution was

am ongst the three highest ranked proposals. W hen it did not rank the solution am ongst

the highest, excluding irrelevant links in the input example, it put the solution case

am ongst the highest ranked, but for input exam ple 19, seven other suggestions were

ranked at the sam e level. This is sufficient in the case library used for the evaluation, bu t

may give the requirem ents designer too many cases to select from in a large case library.

By using m ore inform ation from the links/transition rule m atch when ranking, cases from

the case library would help in the identification o f the best solution. In the input

exam ples, we purposely avoided using solution specific terms since, in a larger case

library, the user m ay not always be able to identify and chose these terms. For exam ple,

the service voting has a term vote_counter(V oteN um ber,TotalV otes) used as a counter

and the service call_diversion has a term redirect(From Num ber, ToNumber). These terms

were purposely not used in the input examples in order to sim ulate a less know ledgeable

service designer. It m ay be argued that a more experienced service designer, when

designing input exam ples and selecting from a list o f 52 terms, m ay select one o f these

terms. This w ould focus the search considerable (but not necessarily exclude a solution

not containing these term s), and im prove the m atching result.

This result is sufficient to enable a requirem ents designer to identify the correspond ing

case in the case library. I f this was the hit-rate in a full-scale system, it would be very

good, since if this represented all services that would have been fully specified, evaluated,

156 CHAPTER 8. EVALUATION OF CABS

verified, integrated with other telephone services and im plem ented30, a large am ount o f

work would have been saved.

In some cases it would be beneficial to provide the designer with both sim ilarity

m atching and som e additional m atching approaches, for exam ple keyw ord m atching.

Keyword m atching would in m any situations be less accurate and m iss possible solutions

when com pared with sim ilarity m atching, but it may be able to focus the search,

especially in small case libraries, since it is m ore likely that there are specific term s

unique for a particular service. If an experienced requirem ents designer can identify the

terms discrim inating the solution service from other services, the service would be fo u n d

with keyw ord m atching (in telecom m unications services this is less com m on since m any

services do not introduce new terms even if they were, they m ay not always be easy to

guess, even with access to all term definitions). As m entioned earlier, a restrictive attitude

towards using terms discrim inating a solution from other cases was adopted when

producing input exam ples for the evaluation. Also CABS is not dependent on cases

having particular keyw ords discrim inating them from other services since the m atching is

bases on a careful analysis o f the sem antics o f transition rules, translated to a num ber o f

syntactic features.

A relevant question is what happens if the m atching cannot identify a suitable case if

there is no sim ilar case (a new type o f service not yet specified and im plem ented) in the

case library. Som e case-based reasoning approaches cannot handle such a situation. In

CABS, input exam ples are translated to transition rules which are not expected to contain

all details, interactions etc. These input transition rules can be used by the requirem ents

designer as a starting point for the new service and the input exam ple m ay be refined and

extended to generate transition rules closer to what is needed for the new service. Hence,

Implemented in a way where all references between requirements, specification, design and

implementation are kept, and where the design and implementation is structured in a way that re-use

is enabled (for example an object oriented approach).

30

CHAPTER 8. EVALUATION OF CABS 157

the approach does not falter if there are no suitable cases in the case library or if the

requirem ents designer (w ith the help o f CABS) fails to identify a suitable case in the case

library .

8.5 Evaluation of Automatic V erification

All the input exam ples that describe a full behavioural exam ple from a start node to an

end node have been used to produce test cases (for consistency, all test cases are listed in

Table 8.4). Cases m arked with in the Generated Test Cases colum n in Table 8.4

have input exam ples not including a start node and end node or are not detailed enough

to generate test cases. I f a test case does not include a start and end node, it m ay ju st be a

fragm ent o f som e required behaviour which m ay be sufficient to identify a m atching

case or it m ay be an addition to other input exam ples (7b, a_busy_exam ple in Table 8 .4

is an addition to 7, a_basic_exam ple_l, so, it is not sufficient on its own to generate test

cases, but generates test cases in conjunction with a_basic_exam ple_ l). If the

requirem ents designer accepts a match, all input exam ples belonging to the search should

be used to generate test cases and these should pass the autom ated verification before the

solution is accepted. The verification process o f test cases do not accept differences as the

m atching does and will therefore identify possible problem s. In those test sequences

used, the test sequences identified problem s both in the input exam ples and in the

solution case. A fter correcting these, the input exam ple will pass. The input exam ples

identified one ore m ore o f the following problem s (no particular order):

a) V ariables were used in input exam ples that m ight cause unw anted indeterm inism .

R efining input exam ples by changing variables to constants m akes them m ore

specific. V erification can handle variables in stimuli if there is only one variable

binding possib le (no indeterm inism).

b) Faults/m isunderstandings in the input exam ples were identified. A n input exam ple

m ay contain faults and m isunderstandings (as in input exam ple 5 discussed in Section

8.4.1) yet still be sufficient for identification of an acceptable solution case in the case

library. Test cases produced from such an input exam ple should not pass the

158 CHAPTER 8. EVALUATION OF CABS

verification and the input exam ple should be refined to reflect the factual

requirem ents.

c) Conditions to links that have not been used anyw here else (in nodes/links) in an input

exam ple may not be determ inable when testing a test case. I f additional conditions are

consistent they may, by default, be added to the start node (this option has been

im plem ented in CABS), but if they are not consistent, no test cases are produced and

the input exam ple needs refinem ent.

d) M issing facts for transition rules expected to trigger: I f during verification, a

particular transition rule, which is expected to trigger has some preconditions that

have not been m entioned in any node or link in the input exam ple, then these

preconditions will also be m issing in the test case and this transition rule canno t

trigger. This can be resolved by adding these facts either to the corresponding link

(additional conditions) or to the start node (or any other appropriate node) in the

input exam ple.

e) Identified faults in the case library: I f the input exam ple is correct and the cases tested

do not pass, then the cases are not correct. The requirem ents designer has the choice

o f either m odifying the m atching service or m aking a new variation o f it which m eets

the current requirem ents. I f the difference is small, m uch o f the proposed case failing

the verification may be re-used.

M ost o f the generated test sequences identified some problem s, showing that the

approach o f using test cases to recognise potential problem s is helpful. Services specified

and stored in the case library for the evaluation were assum ed to be functioning p roperly

based on sim ulation during the developm ent. Even so, a num ber o f problem s were

identified when verifying test cases. This shows that during the developm ent o f new

services (not previously specified and stored in the case library), the use o f test cases will

be useful. Test cases are also valuable when new services are integrated with previous

existing services (added value services such as call_w aiting and three_w ay_calling have

much interaction). Also, if a new service accidentally alters som e o f the behaviour o f a

previously form alised service, this will be identified by the test cases if the previous

CHAPTER 8. EVALUATION OF CABS 159

unaltered behaviour that has accidentally been changed is included in the inpu t

exam ples/test cases. I f test cases identified problem s, the necessary corrections in the

input exam ples or cases in the case library have to be carried out by the requirem ents

designer until the test cases pass. This correction/refinem ent was carried out for some o f

the input exam ples and cases during the evaluation, but not for all o f them, since this

effort does not contribute to the evaluation itself. Problem s o f class a, c and d are all

classified as refinem ents o f the input exam ples and are often trivial (less than twenty

m inutes w ork for m ost input examples).

Input exam ple G enerated C orrectly identifying
test cases problem s(a-e)/passed(p)

1 . a_banking_example 1 a,d

2. a_barring_exampie 1 P

3. a_basic_behaviour_example_0 1 P

4. a_basic_behaviour_example_1 1 P

5. a_basic_example_0 3 b

6. a_basic_example_1 3 P

7. a_busy_example - -

7b. 6 & 7 5 P

8. a_calLback_example 2 b

9. a _ c a llja s t_ c a lle r 1 b,e

10. a_call_reminder_example 2 b

1 1 . a_call_return_example 2 b

12. a_call_waiting_example 1 e

13. a_charge_advice_example 1 a,b,e

14. a_divert_example b,e

15. a_multi_call_example 1 e

16. a_pickup_call_example 1 e

17. a_queue_example 1 e

18. a_show_number_example 1 b

19. a_voting_example 1 e

20. a_wake_up_example 1 b,d

21 . an_emergency_example 1 d,e

Table 8.4: Generated test cases and their success rate

160 CHAPTER 8. EVALUATION OF CABS

8 .5 .1 Reducing the Need for Refinement

Refinem ents o f type a, c and d m ay prevent test cases from passing even if there is

potential for the test case to pass. The effort required from a user in refining these by

replacing variables with constants and including necessary facts to start node/conclusions

could be reduced when generating test cases. This is possible because when the test cases

are produced and verified, the user has selected a solution case. This inform ation can be

used to refine the input exam ples and fill in m issing details or m ake over-generalisation

specific enough to produce test case which less or no need for refinem ents o f type a, c

and d.

Refinem ents o f class a always originate from the use of variables in input exam ples. In

most cases it is obvious what term s should be for a stimulus, such as user x lifting the

receiver at tim e 1, o ff_ h o o k(x ,l). T im e variables do not need to be given since these can

easily be determ ined when generating test cases. A user m ay exem plify how a service is

invoked in a particular situation by adding a link between two nodes,

service_request(x,Service, T). The requirem ents designer cannot know the nam e or code

for the service since it is either a new service or it is unknown which o f the services it is in

the case library, before m atching. However once a solution proposal has been accepted,

the service is known to be transfer_call and so CABS could instantiate these variables and

generate a test case with less variables (CABS can handle variables if there is only one

choice, then during the verification o f the test case, the variable is instantiated to the only

possible value).

Refinem ents o f class c and d are often required because o f m issing facts in the initial

state. In the input exam ples, nodes are a conjunction o f facts that are required to be true,

and the node denotes all states that have these facts true. W hen generating a test case, a

proper start state is required. Since nodes are expected to be predefined (often by som e

m ore experienced requirem ents designer) and it is expected that input exam ples can be

created by selecting nodes from a set provided, the start node can often be (and is for the

evaluation) so well defined that it can be used as a start state fo r verifying test cases. I f

each case in the case library has a proposed start state (or required facts fo r any a start

CHAPTER 8. EVALUATION OF CABS 161

state), for sim ulation and testing, this could be m erged with facts in the start node in the

input exam ple. If there are contradictions it may be relevant to report these. Som e

variables that have been used in terms occurring in nodes and links in the input exam ple

could be bound to constants and m issing facts could be added, reducing the need o f

refinem ents o f type a, c and d.

8 .5 .2 Conclusions for Verification

G enerating test cases from input exam ples to verify that the behaviour o f the test cases

are included in the solution, has been shown to enable the user to im prove the standard

o f the input exam ples and o f cases that are under developm ent. In m ost situations,

refinem ent o f input exam ples is trivial and was usually achieved by adding (or rem oving)

a term in a node or link. The value o f these autom atically generated test cases is also

obvious if changes are m ade in requirem ents or when new services are integrated with

other services, since all previous test cases can be re-evaluated in order to confirm that no

accidental change o f behaviour in other services has occurred by integrating a new

service in a com m unication system. This is a m ajor issue in any specification o f a large

system that is m odified and extended.

8.6 Summary of Evaluation Results

CABS can, using input exam ples, identify sim ilar cases and also use the input exam ples

to identify differences between the behaviour outlined in the input exam ples and the

selected case. An im provem ent to the ranking o f cases with the same num ber o f

m atching links is proposed: by using the ranking from the m atching link and the

transition rules, the ranking for each case would better reflect the link/transition rule

m atch (this is a small extension). If there is no m atching case in the case library for an

input exam ple, the input exam ples can be used as a starting point to construct a new case

which is m ost likely to be m ore efficient than form alising a service from scratch

(although no tests have been carried out on this). The approach is also robust because it

162 CHAPTER 8. EVALUATION OF CABS

is not necessary for the solution to be the highest ranked as the requirem ents designer

can m ake the final selection from the proposed solutions. The test cases generated from

the input exam ples identified problem s in both the input exam ples and the cases in the

case library, and so they proved to be o f use.

8.7 Computational Time for the Match

One o f the advantages o f the CABS approach is that it has a fast m atching algorithm

enabling the identification o f sim ilar behaviour. The m atching is perform ed in two steps:

firstly all links in the input exam ple are m atched against all transition rules and then all

cases are ranked by inspecting their transition rules m atching result and by m aking a

ranking o f each case in the case library. It is expected that a com m on size o f an input

exam ple contains 5-8 links. As described earlier m atching o f each link is based on

com paring sets o f terms. The com putational time used for this is linear in the size o f the

sets. In the current case library the num ber o f terms in a transition rule is between 5 and

35 terms and a link has betw een 5 and 15 terms. Once the m atching result is calculated, it

is stored with the link (a ranked list of the best m atching transition rules for the link).

Once all transition rules have been m atched against all links, each case is m atched against

the input exam ple. This is done by taking all transition rules belonging to a case and

giving the case a num erical value representing the num ber o f transition rules that m atch

with any link from the input exam ple. Hence m atching and ranking all cases is a linear

algorithm and directly proportional to the num ber o f transition rules in the case, the

num ber o f cases in the case library and the num ber o f links in the input exam ples. This

enables an im plem entation o f a very fast m atching algorithm . For a realistically large

case library, containing som e hundred cases and some thousand transition rules with an

optimised im plem entation o f the m atching algorithm , the response time, for m atching an

input exam ple o f norm al size (5-8 links), could be guaranteed to be below a second.

CHAPTER 8. EVALUATION OF CABS 163

Som e time m easurem ents where the time scale is irrelevant31 ensures that the p ro to type

im plem entation perform ance is in accordance with the m atching algorithm (see F igure

8 .4).

31 The implementation is made in an interpreted Prolog. Implementation has been made with no

efficiency considerations and an object oriented layer that at least triples each access time to links,

cases and transition rules has been used. The Prolog used is written for the 68000 processor

emulated on a PowerPC. External interface to C++, efficient data storage available in LPAProlog

and partial compilation mode (this requires declaration of what parts of the program are static and

what parts are dynamic, which would take considerable time in a prototype system often changed and

modified) have not been used in the prototype implementation. A re-implementation of the

matching taking these factors into consideration and using a faster computer (5-10 times faster

computers are available) should be sufficient to increase the matching performance by two to three

orders of magnitude. Hence the fact that the time scale in the tests are seconds is irrelevant.

164 CHAPTER 8. EVALUATION OF CABS

number of links in input example

Figure 8.4: M atching tim e m easurem ents, 32 cases, 225 transition rules

The variation reflect the d ifferent sizes o f links, transition rules and cases. Som e

additional tests with different sizes o f case libraries (sm aller than 32 cases) showed that it

is likely that the total m atching time in the im plem entation also is linear to the size o f the

case library (ca. 4:1, every additional case increases the tim e consum ption with 0.26 tim e

units for an average sized input example, 6-8 links) in accordance with the m atch ing

algorithm . For m ore on optim isation strategies for m atching see [Althoff, Auriol,

Barletta, M anago 95]

Chapter:

9. Further Work and Extensions

In this chapter, som e suggestions and ideas for further work and extensions are given.

They are not presented in any particular order. Some o f the proposals are m in o r

im plem entation issues, w hich would have been im plem ented in the CABS system if there

had been m ore time. Others m ay be seen as challenging ideas, m aybe PhD projects in

them selves, which I wish to docum ent in this context to ensure that they are not lost.

9.1 Using Icons for Terms and Situations

In the links and nodes, the nam es o f the term s and argum ents provide the main m eans

for a requirem ents designer to rem em ber their m eaning, which is inform ally described in

the case library. For an alternative representation, a suggestion is to use icons

(experim ents with use o f icons for telecom m unications services have been m ade by

[Preifelt, Engstedt, 92]). Term s or conjunctions o f term s and nodes which are

conjunctions o f term s and links (which have the originating node as preconditions and

the term inating node as conclusions) could be assigned icons. F igure 9.1 shows an idea

o f how a link could be represented by icons instead o f terms, nodes and links. The node

all subscribers idle in Figure 4.1 is represented by the icon in the upper right corner in

Figure 9.1. W hen clicking on this icon, a details window could be shown (as exem plified

in F igure 4.4 for the node a calling b). The next node, dial tone a is in the m iddle righ t

and the link is represented by an icon sym bolising that the receiver is lifted. In the

165

166 CHAPTER 9. FURTHER WORK AND EXTENSIONS

bottom right com er is an icon representing the node a calling b and the link (stim ulus

dialling) connection the two nodes dial tone and a calling b is shown beside the arrow

pointing to this node. Choosing and designing icons w ould be highly application dom ain

specific. If the m apping is a direct m apping between sets o f terms, links and nodes,

adding such a graphical representation is a m atter o f im plem entation (but with plenty o f

interesting possible extensions and im provem ents that m ay be small or large research

projects: graphical sim ulation where the output from a sim ulation is presented in icons

representing the term s m ay be one o f the larger ones).

F igure 9.1: Idea o f graphical representation o f term s/nodes/links

CHAPTER 9. FURTHER WORK AND EXTENSIONS 167

9.2 M apping Specification Against Design Objects

M ost approaches to form al m ethods for specification have a weak connection between

the specification and the actual design. Usually the specification is used for guiding the

design and program m ing, at best the test cases are generated from the specification which

may be used in a m ethod to verify the implementation.

In large system s one o f the main tasks is to update and m odify the system (and hence the

corresponding requirem ents and specifications) to m eet new dem ands. W ith the weak

connection betw een specification, design and program , the question arises o f w hether it is

worth the effort to keep the specification up to date with changes in the system. In

industry, requirem ents are not often m aintained, which is som etimes suspected to be one

o f the reasons, that som e years after they are written, systems start to get m ore and m ore

difficult to m odify and maintain.

By choosing the sam e form alism for the design o f the d ifferent com ponents and objects

o f the design, and the specification, we may use this in a m apping process. Given a new

or m odified specification we generate a design where we know w hich design com ponents

corresponds to which part in the specification. I f the com plete specification can be

m apped in such a way that all parts o f the specification correspond to design com ponents

and objects, then we have a design which can be realised.

An even stricter approach would be to only allow a specification with already designed

and im plem ented com ponents and objects32. If all the com ponents and objects are

32 An analogy to this would be to let an architect only use a given set of ready made symbols in the

production of a plan for a building. These symbols correspond to pre-manufactured components such

as ready made walls, electricity and water pipes, floors with a ready made finish, all with a given

specification. Contrast this with a plan where all walls, electricity, placing of windows and water

pipes have to be worked out uniquely for each design and the building has to be built with bricks

168 CHAPTER 9. FURTHER WORK AND EXTENSIONS

already im plem ented in softw are or hardw are then there m ay not be any need fo r

program m ing or construction o f new hardware. On a lower level, som e integration and

adaptation o f the objects and com ponents may still be needed. Test cases (generated

from specifications, in a sim ilar way as test cases are generated from input exam ples m ay

be adopted by breadth first expansion o f possible stim uli/response sequences to a chosen

depth) may be used to verify that the im plem entation m eets the requirem ents. A n

interesting question is whether it is possible to m ap specifications onto Service

Independent B uilding B locks (S ib ’s), as standardised and specified by the In ternational

Telecom m unications U nion (ITU) as part o f the Intelligent N etw ork R ecom m endations.

If terms in a specification could be m apped against functions in a functional language

(such as the concurrent program m ing language Erlang, [Arm strong, V irding, Williams,

1993] which is used for im plem enting telecom m unications services), an im plem entation

could be generated from a specification.

9.3 Using CABS for Other Application Domains

Application dom ains which, for practical reasons, are too large for explicitly state based

approaches m ay be considered as potential application dom ains for CABS. If an

application dom ain has a fairly simple interaction with its environm ent, where the

connection between response and stimulus is not too com plicated, but contains large

numbers o f states, and where it is o f value to explore in detail the behaviour to show that

the system will have certain properties and lack other properties, CABS may be

considered. Also dom ains such as train signalling systems, safety systems in cars,

aeronautics, pow er plants, com puterised m edical equipm ent (dialysis m achines, scanners,

etc.) may be potential application domains.

and concrete by highly skilled craftsmen.

CHAPTER 9. FURTHER WORK AND EXTENSIONS 169

9 .3 .1 Object Oriented System Specifications

A sim ilar approach to CABS may be potentially useful for requirem ents capture o f

softw are objects in an object oriented system. In object oriented m ethods it is popular to

include som e state based form alism describing behavioural requirem ents on objects.

Each object w ould be seen as having a closed behaviour. Stim uli and responses need to

be classified as belonging to the environm ent o f the system, or as belonging to ano ther

object in the system. Structuring the system in this way will result in som e lim itations in

validation and verification, since CABS does not incorporate the overall validation and

verification o f com m unicating objects (but the form alised requirem ents in logic m ay be

used in som e theorem prover able to do validation and verification o f sets o f

com m unicating objects). If behavioural requirem ents used in object oriented m ethods

are sim ilar enough to the one used in CABS, sim ilar behaviour could be identified.

9 .4 Simulation with Connected Telephones

Sim ulation by providing stim uli sequences in order to explore the behaviour is useful in

order to explore a telecom m unications service. If presenting the functionality to

custom ers, end user or to evaluate a services popularity with telephone users before

im plem enting the service, a sim ulation with real end user equipm ent may be useful. A n

interface between the sim ulation tool in CABS and telephones could be written. A

num ber o f phones could be connected to a PC and then the service could be tried out

before ordering it, if the receiver o f telephone a has been lifted, the stimulus

o ff_ h o o k (a ,l) is sent to the sim ulator in CABS. The response dial_tone(a) needs to be

translated by the telephone driver and a dial tone is sent. T im e response for sim ulation o f

the form alised services m ay be sufficient if a small num ber o f telephones/term inals are

used (even if the sim ulator is fast, a couple o f hundred telephones/term inals is to be likely

a m axim um if response times must be below a second).

170 CHAPTER 9. FURTHER WORK AND EXTENSIONS

9.5 Adding a Theorem Prover to CABS

One o f the benefits o f using a form al notation for requirem ents specification is that it

enables the requirem ents designer to reason about the specification. This is the m ain

advantage o f a logical form alism over m any other specification and p rog ram m in g

languages [Bundy 92]. The kinds o f reasoning we wish to do are:

1. V erification (w hether the specification im plem ents the required behaviour).

2. Synthesis (of specifications into a new specification).

3. T ransform ation (transform the specification into a representation using less m em ory

and/or time when sim ulated).

4. Term ination (show that no deadlocks exists).

5. A bstraction (abstract inform ation about the type of its input/output etc.).

6 . Consistency checking (prove that there are no contradictory statem ents in the

specification).

CABS partly tackles 1 (test cases), 4 (restriction in language, see A ppendix A) and 6 (a

program identifying potential inconsistency between transition rules has been

im plemented, but not integrated). Adding a theorem prover would greatly increase CABS

abilities in these areas. A t the moment, there are a num ber o f advanced theorem provers

available that could be used.

9.6 Analysing Interaction Between Modules

As m entioned earlier, the condition and conclusion part in transition rules can be cross-

referenced. This gives valuable inform ation on relations between transition rules and

cases. For example, if a transition rule R1 belonging to case C l has a conclusion term T

and a transition rule R2 belonging to case C2 has the term T as a condition, then we can

conclude that case C l m ay influence the behaviour o f case C2 in one step. M ore obvious

CHAPTER 9. FURTHER WORK AND EXTENSIONS 171

analyses can be made: for example, if a term only occurs in conclusions o f transition

rule, and is not used in any condition part o f a transition rule, then the conclusion o f this

term is redundant. A wide variety o f such analyses can be perform ed with straight

forw ard cross-references between transition rules. These m ay be helpful in the

requirem ents capturing process and aid the understanding o f cases and their interactions,

and relations.

9 .7 Generating Code from State-Based Requirements

Statecharts [Harel, Naam ad, 87] is part o f a sem i-autom atic m ethod that supports stepwise

refinem ent to produce C, Ada or VHD L code. Form al m ethods for requirem ents

specification and for program specification often have similarities, especially if the

requirem ents specification is executable. Code is autom atically generated from form al

specifications, such as RSM L [Heimdahl, Keenan, 1997] and non-instantaneous state

transition assertions (NSA) [Gordon 86], The code produced from RSM L is 5-10 times

slow er than m anually produced code from the state m achines but if the transform ations

producing the code are correctness preserving, the code will have the same properties as

the specification. Since both Statecharts and RSM L reduce the com plexity o f large state

transition diagram s by using substates, and if substates and CABS term s in transition

rules can be m apped onto these, the approaches m ay potentially be com bined. I f

com bined, RSM L, NSA and Statecharts would be able to apply a CABS approach to re

use and CABS w ould benefit from generating code from requirem ents. The same

reasoning m ay be relevant for UM L (Rum baugh, B ooch and Jacobson), OOA (Shlaer-

M ellor) and JSD (M. Jackson) which all have graphical notations and m ay be ex tended

with a re-use approach based on sim ilar behaviour (an object with sim ilar behaviour

could be identified and proposed for re-use).

9.8 Re-Use of System Development Processes

Ericsson has a large num ber o f detailed descriptions o f system developm ent processes

that have been tailored for d ifferent projects (hardware and software) and to m eet

172 CHAPTER 9. FURTHER WORK AND EXTENSIONS

specific requirem ents (ISO 9000, toll-gates, m ilestones, well specific input/output

inform ation for d ifferent process steps). The processes are currently stored sim ply as

pictures and text. A prelim inary analysis of these processes suggests that the form al

notation used in CABS m ight be used to describe them. It m ight then be possible to

identify sim ilar processes or parts of processes that can be re-used. Iden tify ing

similarities and differences can also be used to com pare the solution processes to som e

m aster or standard process to identify and point out differences and suggest

improvements. This possibility is being investigated with Ericsson and QLabs.

9.9 Re-Use of SDL

Re-use o f SDL (se Section 2.4) diagram s form previous program im plem entations. SDL

is m ore expressive than the form al notation used in CABS. Even so the graphical parts

m ay be used as a skeleton for re-use and the form al notation in CABS m ay be ex tended

to be more expressive. Since SDL is a graphical program m ing language that is being

used more widely and outside traditional telecom m unications applications, identification

of sim ilar behaviour in SDL diagram s is interesting.

CHAPTER 3. INTRODUCTION TO CABS 41

com m only expressed on higher abstraction levels). I f so, a requirem ents specification

including all the desired behaviour and excluding all unwanted behaviour m ight be used

as the final im plem entation. For the application dom ain o f telecom m unications services

there are high dem ands o f efficiency on the final code. The requirem ents could be seen

as the tip o f the iceberg and the final im plem entation is a highly optim ised and

integrated system o f software and hardware in a global netw ork o f co -opera ting

telecom m unications switches. In these circum stances, the requirem ents specification is

used as input to the design process and for generating test sequences for verification.

In conclusion, CABS is aim ed at providing a closely integrated approach to requirem ents

design and supporting iterative refinem ent, re-use and revision to produce form alised,

validated and verified requirem ents specifications capturing the required behaviour o f

the system to be constructed.

Chapter:

10. Summary and Conclusions

As described in C hapter 1, form al notations can be used to form alise coarse gra ined

telecom m unications service requirem ents at a high level o f abstraction. Form al m ethods

for requirem ents have a num ber o f advantages over inform al m ethods, as discussed in

C hapter 2.1 and 2.2. Even so, form al m ethods are not routinely used fo r

telecom m unications service requirem ents specifications. Previous research projects by

Ericsson aim ing at the use o f form al requirem ents for service specifications suggest that

the m ain reasons for this is that a num ber o f issues have not been sufficiently addressed

and solved (repeated from Section 1.1.1):

1. Re-use and m odification o f previously specified services or parts o f services. The most

frequent situation in the dom ain of telecom m unications service specifications is the

specification o f services sim ilar to previous ones.

2. The issue o f iteratively refining and increm entally extending requirem ents that were

originally sketchy, incom plete and contained errors.

3. End users with background in systems design and program m ing did not accept the

idea o f using the form al notation to specify services at Ericsson. Their interest in

form al m ethods was high until they where confronted with logical axioms. Even

showing slides with logical or m athem atical notations drastically reduced any interest

shown earlier.

173

174 CHAPTER 10. SUMMARY AND CONCLUSIONS

These factors contributed to the cancellation of a large form al m ethods project and

currently there is no active work at Ericsson to bring form al m ethods to broader use in

requirem ents specifications for telecom m unications services.

10.1 Summary of Work

In this research, the main focus is on issue 1 in the previous list and a different use o f

formal m ethods for requirem ents specification is proposed. Traditionally, state based

formal m ethods for requirem ents specifications are used to describe the precise

behaviour o f all the requirem ents. This detailed m odelling is d ifficult for m ore

realistically sized problem s. H ow ever, formal “sketches” o f the required behaviours can

be produced. The form alised service sketches are not intended to capture all the requ ired

behaviour and exclude all the unwanted behaviour, but are m erely intended to sketch the

key features o f the behaviour required. These features are used to identify and suggest

sim ilar existing services in a case-based reasoning approach.

The sim ilar services proposed m ay be adapted to the users’ needs and can be validated

and verified against the initial service sketches. The chosen application dom ain o f

telecom m unications services is non-trivial and seventeen services often used in evaluation

of service specifications have been specified and used in the evaluation. M atching is the

core com ponent o f a case based reasoning system and has been the main focus o f this

research. In order to evaluate the m atching, subsidiary com ponents for the CBR system

have been im plemented: a graphical input editor where input exam ples can be p ro d u ced

and refined, a sim ulator to sim ulate the proposed and chosen solution and a verification

com ponent that generates test cases from the input exam ple and verifies that the final

solution contains this behaviour. The m atching com ponent and these subsidiary

com ponents have been im plem ented in the CABS system enabling the user to sketch

desired behaviours o f a telecom m unications service, for which the CBR system proposes

similar solutions from the case library that may be re-used in whole or in part. The input

exam ples and the sim ulator/verification com ponent are used to evaluate the m atch ing

algorithm. See Figure 3.1 for the different parts in CABS. Both the m atching and the re

CHAPTER 10. SUMMARY AND CONCLUSIONS 175

use o f test cases have been put in context with an iterative requirem ents developm ent

m ethod as show n in Figure 7.1.

CABS perform s m atching on two levels. Firstly each link in the input exam ples with the

corresponding originating and term inating node are translated to transition rules which

will only be used for matching. These input transition rules are then m atched against all

transition rules in the case library to identify transition rules that capture “ s im ila r ”

behaviour as defined in C hapter 6. T ransition rules in the case library are grouped in

services and the result from the transition rule m atching is used to identify which o f the

services in the case library have a sim ilar behaviour to the input exam ples. To evaluate

the m atching, a case library with seventeen services and tw enty-one input exam ples o f

services have been used. All the input exam ples were very rudim entary and only

captured a coarse grained sketch o f a small part o f the total behaviour o f the

corresponding service in the case library. Even so, the m atching successfully identified

the corresponding services (including some where the input exam ple and service did not

captured exactly the same behaviour) as evaluated in C hapter 8.

To test the proposed solution, the input exam ples were used to generate test cases which

were autom atically tested against the selected service with a batch m ode o f the sim ulator.

Since the solution was known to each input example, no problem s were expected in the

verification, but m ore than half o f the test cases did not pass. By analysing these, a

num ber o f m istakes were found in the input exam ples and in services in the case library,

which shows that the verification process was useful under these circum stances. So m any

errors in the case library would not be expected under real conditions since all the

services in the case library would already have been successfully integrated and fully

im plem ented, and m any m istakes should have been corrected during this process.

Input exam ples and test cases also play a rol when com pletely new services have to be

specified and there is no sim ilar service in the case library. The input exam ples are

translated to a set o f transition rules when used in the m atching, and these transition rules

can be used as the starting point for a new service. During refinem ent o f the new service,

the test cases will identify where the service differs from the input exam ples, and the

176 CHAPTER 10. SUMMARY AND CONCLUSIONS

requirem ents designer has to either change the input exam ples or the service

requirem ents.

10.2 L im itations

The formal notation used in CABS is constrained to suit a particular (efficient) m atching

strategy and visualisation, in this sense its sim plicity is a virtue. H ow ever its lim ited

expressiveness m akes CABS unsuitable for m ore com plex behaviour including

concurrency, tim ing constraints, com m unicating processes and sim ultaneously occu rring

events, which would have been possible if a m ore expressive form al notation had been

chosen (for exam ple Petri nets).

If requirem ents specifications and form al m ethods are used for tasks where new

requirem ents bear little sim ilarity to previous requirem ents, m ore traditional use o f

formal m ethods may be preferred, i.e. m athem aticians develop the form al requirem ents

directly in a suitable form al notion using logic or algebraic notation. The p roposed

method is aimed at applications where re-use and m odification are central issues. Using a

system such as CABS would be unnecessarily lim iting for problem s where re-use and

modification o f specification is less relevant.

10.3 Future Work

This research will be continued by identifying com m ercially interesting areas where

identification o f sim ilar behaviour is o f value and where a case library with form alised

cases exists or can easily be produced. By producing prototypes for this new application

domain, further insights to the problem o f identifying sim ilar behaviour will be achieved.

The hope is that this result can be transferred to other application dom ains where

com parison and re-using o f sim ilar behaviour is relevant. Som e potential application

dom ains where the identification o f sim ilar behaviour is o f interest have already been

identified: re-use o f system developm ent processes and re-use o f SDL diagram s (SDL is

briefly described in Section 2.4) as m entioned briefly in Section 9.8 and 9.9.

CHAPTER 10. SUMMARY AND CONCLUSIONS 176a

A nother area for future work is the exploration of graphical notations suitable to use fo r

the CABS approach. The view taken in this thesis (following [Zave, Jackson 97]) is that a

notation for requirem ents is preferably limited in expressiveness and ju st sufficient to

express the requirem ents in which we are interested. The CABS approach uses coarse

grained sketches o f the main system behaviours as described in C hapter 4. This needs to

be ju st com plex enough to provide a notation in which input exam ples can be sketched

and used for m atching and verification in the case-based reasoning fram ew ork (see

Section 2.5) to enable the evaluation of m atching and verification (C hapter 8). This

thesis m akes no claim that the graphical notation used is "best" for this purpose - o ther

equally parsim onious notations may exist and many more com plex graphical notations

certainly do exist. One benefit of the notation currently used in CABS is that it is trivial

to translate to the features used by the matching algorithm and other notations may need

m ore elaborate transform ations. However, it is worth considering the relationship between

the CABS notation and at least one other more com plex, traditional graphical no tation .

Perhaps the m ost obvious exam ple for a telecom m unications dom ain is Petri nets (see

Section 2.4 and 2.4.1). We explain below why Petri nets where not used as graphical

notation for sketching input examples in the CABS im plem entation.

1. Petri nets m ain benefit are their ability to express concurrency and Petri nets are the

first general form al notation for describing discrete parallel systems. A lthough

concurrency is im portant in the operation of telecom m unications services, m any o f

the requirem ents relevant to the choice of those services do not directly involve

concurrency. Furtherm ore, the introduction of concurrency into the CABS

requirem ents m odel is only worthwhile if it is used in the CBR m atching. It is not

clear what the role o f concurrency would be in that algorithm but it would p robab ly

add to its com plexity. Com plex matchers can becom e difficult to m aintain and

understand. The additional sophistication of a concurrent model m ight also m ake the

current CABS validation and analysis phase more com plex and thus m ore difficult to

support.

2. In research projects where Petri nets have been used it is com m on to sim plify or adapt

them according to the task and the users' needs. A notation is either defined in term s

o f Petri nets or internally translated to Petri nets. These notations often contain

restrictions and sim plifications reducing the expressiveness and com plexity o f the

notation com pared with a direct use of Petri nets. Exam ples where such notations have

been used and defined in terms of Petri nets or internally translated to Petri nets are

PTNs [M alec 92], SDL and MSC [Grahlman 98] (som e m ore details in section 2 .4)

and structured analysis and design diagrams (SADT diagram s) [Jensen 97],

3. Basic Petri nets (Petri nets with Boolean tokens, a token is present or absent in a place)

do not provide sufficient input to the m atching algorithm . Stim ulus and response

sequences generated from Petri nets may be sufficient to use in the m atching process

for sim pler applications where the distance in terms of sequences o f stimuli and the

follow ing response is close. In telecom m unication services this relation between input

and output is not that simple and the distance can be very large in term s o f

stim uli/responses/tim e and an altered behaviour may be the result o f som e signalling

that occurred a long time ago, i.e. activation of the service "divert calls" m ay have

been done weeks earlier. If input examples were given as short Petri net sketches the

features to m atch on would be considerably reduced since places are num bered and

tokens have Boolean values. The approach taken in CABS provides the m atching

algorithm with more features (see item 4).

4. In addition to stimuli and responses in the input sketches the notation used in CABS

enables the characterisation of nodes and transitions with conjunctions o f predicates

having a clear m eaning in the application dom ain (for exam ple the pred icate

“d ivert_ca lls(N rl, N r2)”). Predicates may be seen as a m em ory of som e previous

occurred signalling. The predicates provide additional features for the m atch ing

algorithm and can also be used in the process of generating new transition rules if a

new service is to be constructed (when no sim ilar services are available in the case

library).

176b CHAPTER 10. SUMMARY AND CONCLUSIONS

CHAPTER 10. SUMMARY AND CONCLUSIONS 176c

5. It m ay be possible to extract sufficient inform ation from C oloured Petri nets to feed

the m atching algorithm . In Coloured Petri nets each token has a colour, where the

colour m ay represent a specific individual together with some additional data (a local

or global state). A transition can only occur if the tokens with the correct colours are

available. The num ber o f colours of tokens in telephone services would be large since

a telephone user can be in many different states independently o f place in the Petri

net. The approach of adding characteristics to nodes as conjunctions of predicates was

preferred in CABS and predicates not relevant for the node may be left out (this m ay

even im prove the m atching under certain conditions, see Section 6.1, 6.3 and 6.4).

6 . The expressiveness o f Petri nets is greater than the internal predicate logic notation

used for cases in the CABS case library. Hence the notation used in CABS will be

insufficient if it is used in application dom ains where concurrency is a key

requirem ent. The application dom ain model and the logical notation used in CABS

requires stim ulus to be sequenced, see Figure 5.4.

BIBLIOGRAPHY 111

11. Bibliography

A am odt A. (1993). A C ase-Based Answ er to Some Problem s o f K now ledge-B ased

Systems. Scandinavian C onference on Artificial Intelligence. E. Sandewall, C.G.

Jansson (eds.), IOS Press, pp 168-182.

A am odt A., P laza E. (1994). Case-Based Reasoning: F oundational Issues,

M ethodological Variations, and System Approaches. A I Com m unications, vol 7 no. 1,

pp 39-59.

A charya A. (1994). Scaling up production systems: Issues approaches and targets. T he

K now ledge Engineering Review, vol 9:1, pp 61-12.

Addis T.R. (1993). K nowledge Science: A Pragm atic A pproach to Research in Expert

System s. ES93, pp 321-339.

Addis T.R., G ooding D.C., Townsend J.J. (1993). K now ledge A cquisition with Visual

Functional Program m ing. K nowledge A cquisition for K nowledge Based Systems, 7th

E uropean W orkshop, EKAW ‘93, Lecture Notes in AI 723, Springer Verlag, pp 379-

406 .

A llen J.F. (1983). M aintaining Knowledge about Temporal Intervals. C om m unication o f

the ACM , N ovem ber, vol 26, Nr 11, pp 832-843.

178 BIBLIOGRAPHY

A lthoff K.-D., A uriol E., Barletta R., M anago M. (1995). A Review o f Industrial Case-

Based Reasoning Tolls. AI Intelligence, Oxford.

Arm strong J.L., E lshiew y N.A., V irding R. (1986). The Phoning P h ilosopher’s Problem

or Logic Program m ing fo r Telecom m unications Applications. IEEE, pp 28-33

Ask G. (1994). Delphi-generated. TTCN Test Suites- usage in certification. Internal

Docum ent JT/V -94:247, Ericsson, Sweden.

A htianen A., Chatras B., H ornbeck M., Kesti S. (1994). Experience With O ctopus

Autom ated TTC N Translation Tools Applied to GSM/SS7. In protocol Test Systems, vol

VI, E lsevier Science.

A tkinson W., C unningham J. (1990). Proving Properties o f a safety-critical system.

Im perial College R esearch R eport Soc 90/28.

Bardasz T., Zeid I. (1992). Dejavu: A C ase-Based Reasoning D esigner’s A ssistant Shell.

Artificial Intelligence in D esign ‘92, J.S. Gero (ed.), K luwer A cadem ic Publishers, pp

477-496 .

Barroca L.M ., M cD erm id J.A. (1992). Formal M ethods: Use and Relevance fo r the

D evelopm ent o f Safety-Critical Systems. The Com puter Journal, vol 35, N o 6, pp 5 7 9 -

599.

B en-A bdallah H., Leue S. (1996). Architecture o f a Requirem ents and D esign Tool

Based on M essage Sequence Charts. Technical Report 96-13, U niversity o f Waterloo,

pp 1-19.

Borgida A., G reenspann S., M ylopoulus J. (1985). Knowledge Representation as the

Basis fo r Requirem ents Specification. IEEE Computer, April.

Bose R. (1994). Strategy fo r integrating object-oriented and logic program m ing.

Know ledge-Based System s, vol 7, num ber 2, pp 66-74.

BIBLIOGRAPHY 179

Bow en J.P., H inchey M .G. (1996). Seven M ore M yths o f Form al M ethods. To appear in

IEEE Softw are, pp 1-12.

Brandau R., Lem m on A., Lafond C. (1991). Experience with E xtended Episodes: Cases

with Com plex Tem poral Structure. W orkshop on case-based reasoning, M organ

K aufm ann, pp 1-12.

B ubenko J.A. jr. (1995). Challenges in Requirem ents E ngineering. Invited talk in

Proceedings o f IEEE International Sym posium on Requirem ents Engineering, pp 160-

162.

B uchanan B.G., Shortliffe E.H. (1984). Rule Based Expert Systems: The M YCIN

Experim ents o f the Stanford H euristic Program m ing Project. A ddison-W esley.

B undy A. (1992). Tutorial notes: reasoning about logic program s. Second In ternational

Logic P rogram m ing Sum m er School, LPSS '92. Proceedings, G. Com yn, N.E. Fuchs,

& M .J. R atcliffe (eds.), Springer-V erlag, pp 232-277.

Callan J.P., Faw cett T.E., Rissland E.L., CABOT (1991). A n Adaptive A pproach to Case-

based Search. P roceedings o f the Twelfth International C onference on Artificial

Intelligence.

Cam eron E.J., V elthuijsen H. (1993). Feature Interactions in Telecom m unications

System s. IE E E Com m unication, August, pp 18-23.

Capellm ann C., Christensen S., Herzog U. (1998). Visualising the Behaviour o f

Intelligent Networks. Visual ‘98, International W orkshop on V isualisation Issues fo r

Form al M ethods, ed. M argaria T, Posegga J.

C leland G., M acK enzie D. (1995). Inhibiting Factors, M arket Structure and the

Industrial Uptake o f Form al M ethods, in Industrial Strength Form al Specification

Techniques, Folorida, pp 46-60.

180 BIBLIOGRAPHY

Cohn, A. G. (1985). On the Solution o f Schubert’s Steam roller in M any Sorted Logic.

IJCAI, pp 1169-1174.

Cum mins R. (1989). M eaning and m ental representation, M IT Press, B radford Books.

Cybulski J.L. (1996). T he Form al and the Inform al in Requirem ents Engineering.

W orkshop on Requirem ents Engineering, M onash University, Caulfield, V ictoria,

Australia, pp 2.1-17.

Dalianis H. (1995). Concise N atural Language G eneration from Form al Specifications,

Taxonom ic Representation. PhD thesis, U niversity of Stockholm , The R oyal Institute of

T echnology .

Davis E. (1990). R epresentations o f C om m onsense K nowledge, chapters 2 and 3.

M organ Kaufm ann.

Dom eshek E.A ., K olodner J. (1992). Toward a C ase-Based A id fo r Conceptual D esign.

International Journal o f Expert System s, vol 4, N um ber 2, pp 201-220.

Easterbrook S., N useibeh B. (1995). M anaging Inconsistencies in an E volving

Specification. IEEE, pp 1-48.

Eberlein A.P.-G., C row ther M .J., Halsall F. (1996a). RATS: A Software Tool To A id The

Transition From Service Idea To Service Implementation.

Eberlein A.P.-G., C row ther M .J., Halsall F. (1996b). A n Expert System For The

D evelopm ent O f N ew Telecom m unications Services.

Echarti J.P., S tälm arck G. (1988). A logical fram ew ork fo r specifying discrete dynam ic

systems. Technical Report, E llem tel Telecom m unications System Laboratories.

Engstedt M. (1991). A Flexible Specification Language using N atural Language a n d

Graphics. M Sc thesis, U niversity o f Edinburgh.

BIBLIOGRAPHY 181

Evertsz R. (1991). The A utom ated Analysis o f Rule-based Systems, Based on their

P rocedural Sem antics. Proceedings o f the Twelfth International C onference on

A rtificial Intelligence.

Fencott P.C., Lockyer M .A ., Taylor P. (1992). The Integration o f S tructured and Form al

M ethods fo r Real-Tim e Systems Specification. Proceedings: 5th In ternational

Conference on: Putting into practice m ethod and tools for inform ation system design,

France, Septem ber, pp 313-323.

Fouque G., M atwin S. (1993). Com positional Software Reuse with C ase-Based

Reasoning. C onference on A rtificial Intelligence A pplications 1993, IEEE, Florida.

Fuchs N., Schw itter R. (1995). Specifying Logic Programs in C ontrolled N atural

L anguage. W orkshop on C om putational Logic for N atural L anguage Processing,

E d in b u rg h .

Funk P.J. (1988). Induction o f Autom ata via Rules fro m Situation Sequences. Technical

Paper, U niversity o f S tockholm and Ellem tel Telecom m unications System

L aboratories.

Funk P.J. (1993). D evelopm ent and M aintenance o f Large Form al Specifications

Supported by C ase-Based Reasoning. Technical Paper TP026, University o f

E d inburgh .

Funk P.J., R aichm an S. (1990). ROS, An Im plem entation Independent Specification fo r

ISDN. Technical Report, E llem tel Telecom m unications System Laboratories,.

Funk P.J., R obertson D. (1994). Requirem ents Specification o f Telecom m unications

Services Assisted by Case-Based Reasoning. The 2nd International C onference on

Telecom m unications System s, M odelling and Analysis, N ashville, pp 160-169.

182 BIBLIOGRAPHY

Gelfond M., L ifschitz V. (1993). Representing action and change by logic program s.

Logic Program m ing, pp 301-321.

Gotel O.C.Z, F inkelstein A.C.W, (1994). A n Analysis o f the Requirem ents Tractability

Problem. Proceedings: International Conference on Requirem ents Engineering EEEE,

pp 94-101.

Goel A.K. (1992). Representation o f Design Functions in Experience-B ased Design.

Intelligent Com puter A ided Design, E lsevier Science Publishers, pp 283-303.

Gordon M. (1986). A Form al M ethod fo r H ard R eal-T im e Programm ing, pp 379-410.

G rahlm ann B. (1991). C om bining Finite Automata, Parallel Programs and SDL using

Petri Nets. T A C A S’98, pp 1-16.

H eim dahl M .P.E., Leveson N.G. (1995). Completeness and Consistency Analysis o f

State-B ased Requirem ents. ACM 95/1 pp 3-14.

Hall A. (1990). Seven M yths o f Form al M ethods. IEEE Software, pp 11-19, Septem ber.

Harel D. (1987). Statecharts: A Visual Formalism For Com plex Systems. Science o f

C om puter Program m ing 8, pp 231-274, E lsevier Science Publishers.

Harel D., Lachover H., Naam ad A., Pnueli A., Politi M., Sherm an R., Shtull-T rauring A.,

Trakhtenbrot M, (1990). STATEM ATE: A Working Environm ent fo r the D evelopm ent

o f Complex Reactive Systems. IEEE Transaction on Software Engineering, vol 16, no 4.

Harel D., Naamad. A. (1995). The STATEM ATE semantics o f Statecharts. T echnical

Report CS95-31, The W eizm an Institute o f Science.

Hayes P. (1985). Some Problem s and Non-Problem s in Representation Theory, in

Readings In K now ledge R epresentation, M organ K aufm ann Publishers Inc, pp 3-22.

BIBLIOGRAPHY 183

H esketh J., R obertson D., Fuchs N., Bundy A. (1996). Lightw eight Form alisation in

Support o f Requirem ents Engineering. U niversity o f Edinburgh.

H inchey M .G. (1993). The D esign o f Real-Time Applications, pp 178-182, IEEE.

Hirakawa M ., M onden N., Yoshim oto I., Tanaka M „ Ichikaw a T. (1986). Hi-Visual, A

Language Supporting Visual Interaction in Programming, in V isual Languages, Chang

S., Ichikaw a T., Ligom enides P. (eds.), M anagem ent and Inform ation Systems P lenum

Press, pp 233-259.

H olzm ann G .J., Peled D. (1994). A n Im provem ent in Form al Verification. FO RTE 1994

Conference, Sw itzerland, pp 1-12.

H sia P., Davis A., K ung D. (1993). Status Report: Requirem ents Engineering. IEEE

Software, Novem ber, pp 75-79.

H ughes T.S., Cooling J.E. (1991). Real-Tim e System s - A nim ation Prototyping o f Form al

Specifications, in T hird International C onference on Software E ngineering for Real

Tim e System s, Loughbourgh University, pp 51-57.

Hunt J. (1997). Case based diagnosis and repais o f software fau lts. Expert Systems, vol

14, no 1, pp 15-23.

ITU 1.254 R ecom m endation CCITT 1.254 (1992). Integrated Service D igital Network,

General S tructure and Service Capabilities, International Telecom m unications Union,

Geneva, Swizerland.

ITU Z .100 R ecom m endation CCITT Z.100 (1994). CCITT Specification and Design

Language (SDL). International Telecom m unications Union, Geneva, Swizerland.

ITU X .21x R ecom m endation CCITT X.21x (1995). Service D efinitions. In ternational

Telecom m unications Union, Geneva, Swizerland.

184 BIBLIOGRAPHY

ITU Q.1203, R ecom m endation CCITT Q .1203 (1992). In ternational

Telecom m unications Union, Geneva, Swizerland.

Jackson P. (1990). Introduction to Expert system s, A ddison-W esley.

Jacobson I., C hristerson M., Jonsson P., Ö vergaard G. (1993). O bject-O riented Software

Engineering, A Use Case D riven Approach. Addison W esley.

Jensen K. (1992). C oloured Petri Nets, Basic Concepts, Vol 1, Springer-Verlag.

Jensen K. (1997). Coloured Petri Nets, Practical Use, Voi 3, Springer-Verlag.

Johannesson P., B om an M., B ubenko J., W angler B. (1997). Conceptual M odelling,

Prentice Hall.

Johnson W .L. (1988). D eriving Specifications fro m Requirem ents. IEEE, pp 428-438.

Johnson W.L., B renner K.M, (1993). Developing Form al Specifications fro m Inform al

Requirem ents. IEEE Expert, voi 8, no. 4.

Johnson W.L., B renner K.M, Harris D.R., Sanders, (1993). D eveloping F orm al

Specifications fro m Inform al Requirem ents. IEEE Expert, A ugust, pp 82-90.

Karjoth G., Kooij M. (1992). Form al M ethods fo r the Im plem entation o f Specifications.

pp 841-850.

Kelly V.E., N onnenm ann U. (1987). Inferring Formal Software Specifications fro m

Episodic Descriptions. Sixth N ational Conference on A rtificial Intelligence.

Kelly V.E., N onnenm ann U. (1991). Reducing the Complexity o f Form al Specification

Acquisition. A utom ating Software Design, M. Lowry, & R. M cCartney (eds.), pp 4 1 -

64.

BIBLIOGRAPHY 185

K etler K. (1993). C ase-Based Reasoning: A n Introduction. Expert System s With

A pplications, vol 6, pp 3-8.

K lusener S., V lijm en B., W averen A. (1993). Service Independent Building B locks-I;

Concepts, Exam ples and Form al Specifications. Technical R eport P9310, U niversity o f

Am sterdam ,.

K olodner J. (1991). Im proving H um an D ecision M aking through C ase-Based D ecision

A iding. A I M agazine, Summ er, pp 52-68.

K olodner J.L. (1993). Case-Based Reasoning. M organ Kaufm ann.

Kowalski R., Sergot M. (1986). A Logic-based Calculus o f Events. New G eneration

C om puting 4, Springer-V erla, pp 67-95.

Larkin J.H., S im on H.A. (1987). Why a Diagram is (Som etim es) Worth Ten T housand

Words. Journal: Cognetive Science, vol 11, pp 65-99.

Lecceuche R., Robertson D., Barry C. (1998). A cquisition o f Focus Rules fo r

Requirem ents E licitation Systems. Subm ittet to ECA I 98.

Leue S. (1995). Specifying Real-Tim e Requirem ents fo r SD L Specifications - A Tem poral

L ogic-B ased A pproach . Proceedings o f the Fifteenth International Sym posium on

Protocol Specification, Testing, and V erification PSTV '95, C hapm ann & Hall, pp 19-

34.

L uger G.F., S tubblefield W.A. (1989). Artificial Intelligence and the Design o f E xpert

System s, Benjam in/Cum m ings Publishing.

M aiden N .A .M ., M istry P., Sutcliffe A.G. (1995). How People Categorise Requirem ents

fo r Reuse: a Natural Approach. Proceedings o f Second IEEE In ternational

Sym posium on R equirem ents Engineering, pp 148-155.

186 BIBLIOGRAPHY

M aiden N.A.M ., Sutcliffe A.G. (1995). Requirem ents Engineering by Exam ple: an

Empirical Study. Proceedings o f IEEE International Sym posium on R equirem ents

Engineering, pp 104-111.

M alec J. (1992).Process Transition Networks: The Final Report. Technical R eport L iTH -

ID A -R-92-07, L inköping U niversity, pp 1-31.

M ark M., G reer J. (1993). Evaluation M ethodologies fo r intelligent Tutoring Systems.

Journal o f Artificial intelligence in Education, vol4. no 2/3, pp 129-153.

M ataga P., Zave P. (1993). Form al Specifications o f Telephone Features, pp 20-49.

M izuno O., N iitsu Y, A M ethod o f D esigning C om m unication Service Specifications

Using M essage Sequence Charts. E lectronics and Com m unications in Japan, Part 1, vol

76, pp 1-15.

M oor D.J., Sw artout W.R. (1988). Explanation in expert systems: a survey. R esearch

Report ISIRR, University o f Southern California, pp 88-228.

M ostow J., Barley M., W einrich T. (1989). A utom ated reuse o f design p lans. A rtificial

Intelligence in Engineering, vol 4, no. 4, pp 181-196.

M ott S. (1993). Case-Based Reasoning: Market, Applications, and F it With Other

Technologies. Expert Systems W ith Applications, vol 6, pp 97-104, Pergam on Press

Ltd.

M uggleton S .,(1990). Inductive A cquisition o f Expert Knowledge, Turing Institute Press

and A ddison-W esley.

Nakata K. (1992). B ehavioural Specification with N onm onotonic Tem poral Logic. D.

Finn (ed.) Prelim inary Stages o f E ngineering Analysis and M odelling W orkshop, AID

'92, pp 41-45.

BIBLIOGRAPHY 187

N akatani Y., T sukiyam a M ., Fukuda T. (1992). E ngineering Design Support Fram ew ork

by Case-Based Reasoning. ISA Transaction, vol 31, no. 2, pp 235-180.

N onnenm ann U., Eddy J.K. (1992). KITSS - A functiona l Software Testing System Using

a H ybrid Domain Model. IEEE, pp 136-142.

N yström J. H., Jonsson B. (1996). Formalization o f Service Independent Building Blocks.

A IN ’96 workshop, Passau, pp 1-14.

O 'Leary D. (1993). Verification and Validation o f C ase-Based System. Expert Systems

W ith A pplications, vol 6, Pergam on Press Ltd, pp 57-66.

Pearce M ., Goel A.K., K olodner J.L ., Sim ring C., Sentosa L., B illington R. (1992). Case-

B ased D esign Support. IEEE, October, pp 14-20.

Pohl K. (1994). The Three D im ensions o f Requirem ents Engineering: A Fram ework a n d

its Applications. Inform ation Systems, vol 19, no 3, pp 243-258.

Preifelt S., E ngstedt M. (1992). Results fro m the VINST Project. In Swedish. Technical

R eport, E llem tel Telecom m unications System s Laboratories.

Quinlan J.R. (1987). Generating Production Rules From D ecision Trees. P roceedings o f

the T enth International Joint Conference in AI, M organ K aufm ann Publisher.

R egensburger F., Barnard A. (1998). Formal verification o f SD L systems a t the Siemens

m obile phone department. TA C A S’98, pp 439-455.

R idley G.A. (1994). Description o f TTCN Test Suite G eneration fro m A U C D elphi

Specification. Internal D ocum ent F94 2194, Ericsson, Sweden.

Ridley G.A., H öök H., Engstedt M ., Lapins E., L indroos L. (1997). Form al specification

system ECLA RE. Internal Docum ent UR97, Ericsson, Sweden.

188 BIBLIOGRAPHY

Riesbeck C., Schank R. (1989). Inside Case-Based Reasoning, Law rence Erlbaum Inc.

Robertson D. (1996). D istributed Specifications. ECA I 96, 12th European C onference

on Artificial Intelligence, Budapest, Hungary, John W iley & Sons Ltd, pp 390-394.

Robertson D., Agusti J. (1998). A utom ated Reasoning in Conceptual M odelling, d raft

book, available from the authors at D A I Edinburgh.

Sandewall E. (1990). Proposal fo r a ProArt specification platform . Technical R eport

LA IC-ID A -90-TR 18, L inköping University.

Segala R., Gawlick R., Spgaard-A ndersen J., Lynch N. (1998). Liveness in T im ed and

Untim ed System s. Subm itted for journal publication. A vailable from the authors, pp 1-

52.

Schofield M. (1992). Form al M ethods: The N ext Generation o f System Design Tools.

Quality and R eliability Engineering International, vol 8, pp 549-555.

Semmens L.T., France R.B., D ocker T.W .G. (1992). In tegrated S tructured Analysis a n d

Formal Specification Techniques. The C om puter Journal, vol 35, No 6, pp 600-610.

Simon H.A. (1981). The Sciences o f the Artificial, The M IT Press 1969, M assachusetts,

Second edition reprint.

Skoglund N. (1993). System hantering m ed regier. In Swedish, Internal D ocum ent,

Ellem tel Telecom m unications System Laboratories.

Smyth B., Keane M.T. (1994). Retrieving Adaptable Cases. In: S. W ess, K .-D. A lthoff, &

M.M. R ichter (eds.), Topics in Case-Based Reasoning, Springer-Verlag.

Somm erville I. (1996). Software Engineering, fifth edition part one & five, A ddison

Wesley.

BIBLIOGRAPHY 189

Sycara K.P., N avinchandra D., Guttal R., Koning J., N arasim han S. (1992). CADET: A

Case-Based. Synthesis Tool fo r Engineering Design. In ternational Journal o f E xpert

System s, vol 4, no. 2, pp 167-188.

U schold M. (1996). Building Ontologies: Towards a U nified M ethodology. P roceedings

o f Expert System s 1996, Cam bridge, UK,.

V argas-V era M ., Robertson D., Inder R. (1993). An E nvironm ent fo r Com bining Prolog

Programs. In Third International W orkshop on Logical Program Synthesis and

T ransform ation .

V erpers K. (1991). Induction o f rules from Behavioural Sequences (in Swedish). M .Sc.

dissertation, Royal Institute o f Technology, Stockholm, Sweden.

W atanabe L., Rendell L. (1991). Learning Structural Decision Trees from Exam ples.

P roceedings o f the Tw elfth International C onference on A rtificial Intelligence.

W atson I. (1997). A pplying Case-Based Reasoning: Techniques for Enterprise Systems,

M organ K aufm ann.

W enger E. (1987). A rtificial Intelligence and Tutoring System s (C om putational and

Cognitive A pproaches to the Com m unication o f Knowledge), pp 261-288. M organ

K aufm ann Publishers, Inc.

W ieringa R.J. (1996). R equirem ents engineering: Fram ew ork for understanding. John

W iley & Sons Ltd, Chichesters.

W ringa R., D ubois E. and Huyts S. (1997). Integrating Sem iform al and Form al

Requirem ents. Proceedings o f the N inth International C onference on A dvance

Inform ation System s Engineering (C A iSE’97), Barcelona, Spain.

W ing J.M . (1990). A specifier’s introduction to Form al M ethods. Com puter, vol 23. pp

8-24.

190 BIBLIOGRAPHY

Yang S.-A., Robertson D., Lee J. (1995). Use o f Case-Based Reasoning in the D om ain o f

Building Regulations. Topics in Case-Based Reasoning, Springer-Verlag, pp 292-306.

Zave P. (1991). An Insider’s Evaluation o f PAISLey. IEEE T ransaction on Software

Engineering, voi 17, no. 3. M arch.

Zave P. (1993). Feature Interactions and Form al Specifications in T elecom m unications.

Computer, voi 26, no. 8.

Zave P., Jackson M. (1996). Four D ark C om ers o f Requirem ents Engineering. A C M pp

1-34.

APPENDICES

191

APPENDIX A

Logical Formalism

193

194 APPENDIX A. LOGICAL FORMALISM

Appendix A

A. Logical Formalism

This appendix gives an overview and an inform al description of the form al logical

language. An algorithm ic and operational description is given o f the logical fram ew ork

before a brief definition o f the language is given. This appendix does not need to be

understood in order to use or understand the CABS system. Som e parts o f this

description also appears in [Funk 93].

A .l Overview of the Logical Language

By choosing a logical representation, we are able to reason about the specification. This

is the main advantage o f a logical form alism over other specification and p rog ram m in g

languages [Bundy 92], The kinds of reasoning we wish to do are: verification (does the

specification im plem ent the required behaviour), synthesis (synthesis o f specifications

into a new specification), transform ation (transform the specification into a rep resen ta

tion using less m em ory and/or time when simulated), term ination (show that no

deadlocks or loops exists), abstraction (abstract inform ation about the type o f its in

put/output etc.) and consistency checking (prove that there are no contradictory state

ments in the specification).

APPENDIX A. LOGICAL FORMALISM 195

The logical language used is based on two tem poral logics. M ostly it is based on the

logical fram ew ork called Loxy [Echarti, Stâlmarck 88], tailored to contain the necessary

expressiveness needed for specification o f reactive systems such as te lecom m unication

systems. The logical notation has also been inspired and influenced by the tem poral

logical approach in first order predicate logic using fluents; but instead o f in troducing

fluent-functions [Davis 90] the two layer model from Loxy is kept. The language m ay

also be com pared to PROLOG, the main difference being that the language handles

change in a m ore explicit m anner and that the language (i.e. the inference rule) is

logically sound and has been made decidable by introducing certain restrictions. The

logical language is a subset of first order predicate logic, with som e im portant restrictions

and a fram e axiom. The logical language used in the project is carefully chosen to have

enough expressive pow er to specify basic telecom m unication netw ork services while

avoiding any unnecessary constructions. The main difference is that the language sug

gested assum es a closed world and only has negation as failure (explained more closely

in description o f logical fram ew ork); Loxy has both true negation and negation as

failure. N egation as failure has proved easier to work with, and has been shown to be

sufficient for a fairly large telecom m unications application [Funk, R aichm an 90].

A world state is a finite set o f atomic ground form ulae with no variables as argum ents. A

stimulus, S, is an external input to the system. Transition rules are rules which are

triggered by external stimuli, and if their conditions are true at WO then their conclusions

are true at W l. The fram e axiom states that all facts that are not contradicted carry over

from WO to W l. The system may be described using state transitions, where the transition

rules define all the possible transitions between states.

196 APPENDIX A. LOGICAL FORMALISM

W 1: AO & not Aj

Figure A. 1: Exam ple o f a state transition in a logical system

After all possible rules are triggered by the stimuli, the fram e axiom will m ove all facts

from WO to W1 if they are not contradicted in W l.

The specified system is m onotonic (a previous state cannot be altered), since the logical

form alism only allows new conclusions in a new state and there is no m echanism to

change or add any conclusions to a previous state. If a specification is able to p roduce

contradictory conclusions, it is regarded as an inconsistent specification. In contrast to

the specified system, the process o f specification o f the system is typically n o n

m onotonic since parts o f the behaviour are both added, rem oved and m odified in an

iterative approach.

In a large system with many states, the advantage o f having transition rules instead o f

state transitions is obvious (one rule m ay represent hundreds o f state transitions), and

even in a medium sized realistic specification, there will be m any thousands of d ifferen t

states. M any o f these states may not be reachable in an actual specification, but it illus

trates the worst case com plexity, which makes a pure state-transition approach unsuitable

in any large domain, because, enum ering all the states explicitly and specifying each state

transition explicitly in a manual fashion, would be far too tim e-consum ing. When

im plem enting some sort of plan generator the size o f each state m ay easily be reduced

by storing only the facts changed, rem oved or added, when com pared with the previous

state.

APPENDIX A. LOGICAL FORMALISM 197

A high level specification (specification sketch), is an incom plete description o f the

system [Johnson 88]. It leaves out details which are necessary in order to produce a full

specification. The specification process has the task o f refining the specification sketch

into a consistent and com plete specification. A set of behavioural exam ple-sketches

could be seen as a specification sketch o f the system 's behaviour, and a com plete and

consistent set o f transition rules as a low-level specification.

A .2 Operational Description of Language

Before giving a b rief form al definition o f the language, we give an operational and al

gorithm ic description o f the language. First we start with the two main parts in the lan

guage: world state and transition rules.

A. 2.1 World State

As m entioned earlier a world state contains only facts, no variables. A world state is

always determ inistic, since it is always a set o f conjunctive ground terms with no variables

(facts). A n exam ple o f a particular world state m ight be:

r in g _ to n e (a l) .

c a llin g (a l,a 2).

r in g _ sig n al(a2).

answ ering_num ber(al, 1 1 1).

answ ering_num ber(a2 , 22 2).

Great care has to be taken when choosing the ground facts, since the granularity o f the

facts largely determ ines what can be described and what the system can reason about in

the dom ain. C hanging an established conceptual m odel (facts and their relations) is a

large task, and may affect most o f the specification.

A .3 Transition Rules and Their Meaning

As m entioned earlier, cases are represented as sets of transition rules. The notation shown

to users has been sim plified because the system is not targeted at users know ledgeable in

predicate logic. M ainly, quantifiers have been left out in a traditional way as, fo r

example, is the case in Prolog and some rule based systems. There are also som e

restrictions added to prevent users from creating expressions unw anted in our logic,

which in turn allows us to have a very simple sim ulator and theorem prover. This

restriction also enables m ore rigorous investigation of the form alised behavioural

specifications, such as identification o f inconsistency, identification o f reachable states

from where no sequence o f stimuli will lead back to the start state, and so on.

One of the restrictions on transition rules are that no unbound variables are supposed to

occur in the conclusion part, since this may lead to nondeterm inism and com plicate

matters. Also, the introduction of new constants is restricted, which eases the verification

task (the num ber o f states will be finite). A nother restriction is that “o r” statem ents are

not allowed. This is for tw o reasons: Firstly an “or” statem ent in a conclusion part would

lead to nondeterm inism , which would com plicate matters considerably for sim ulation,

theorem proving, m atching and verification. Secondly, “o r” statem ents in the condition

part would com plicate the m atching algorithm . If, for some reason, users wanted “ o r ”

statements in condition parts, a tool translating these transition rules to a num ber o f

transition rules capturing equivalent behaviour would be trivial to im plem ent provid ing

that their conclusion parts are the same.

An example of the formal part of a transition rule in CABS (divert call):

Stimulus: dialling(A, Nr, T)

Conditions: dial_tone(A) & answer_nr(B, Nr) &

divert(Nr, Nr2) &

answer_nr(B2, Nr2) &

~dont_disturb(Nr2) &

~calling(Z, B2) &

accepts Jncoming_calls(Nr2)

Conclusions and responses: calling(A, B2) &

ring_tone(A) &

198 APPENDIX A. LOGICAL FORMALISM

ring_signal(B2) &

~ dial_tone(A)

The logical form o f this transition rule is:

V A Nr Nr2 B B2 OT T

o(T+1, dialling(A, Nr, OT)) a p(T, dial_tone(A)) a p(T, answer_nr(B, Nr)) a p(T,

divert(Nr, Nr2)) a p(T, answer_nr(B2, Nr2)) a p(T, -ndont_disturb(Nr2)) a

3 Z p(T, —icalling(Z, B2)) a p (T , accepts_incoming_calls(Nr2))

—>

p(T+1, calling(A, B2)) a p(T+1, ring_tone(A)) a p(T+1, ring_signal(B2)) a

p(T+1, - i dial_tone(A))

The stim ulus term in the o-expression has to be true at time T + l and all other conditions

have to be true at time T. All the conclusions are true at time T+1. The fram e axiom

moves over all unchanged terms from T to T+1. Only conjunctive expressions are

allowed in transition rules. All variables occurring in the conclusion have to be bound in

the condition. If an unbound variable is negated in the condition part, it is always

existentially quantified; all other variables are universally-quantified. The translation

process is com pletely m echanical and bi-directional (form ulas in the restricted logic can

be translated back to a transition rule, in a one-to-one m apping).

The restricted predicate logic, together with the fram e axiom, allows us to im plem ent

powerful tools for com putationally efficient simulation, theorem proving, consistency

checking, etc. The expressiveness o f the language is still sufficient for the dom ain. We

have purposely been restrictive in extending the logic to keep it on a trivial level, m aking

it understandable for non-logicians and m athem aticians. This is in contrast to som e

research in form al m ethods , which often aim to expand the expressiveness (which m ay

result in logics that are hard to learn and use by non-logicians).

This form alism is expressive enough to capture all systems receiving sequenced stimuli

and returning external visible responses based on what sequence o f stimuli the system has

received. Any extensions to the logic may have the purpose of identifying contradictions,

APPENDIX A. LOGICAL FORMALISM 199

com pressing transition rules or capturing tim e-independent expressions. I f these

extensions do not extend the expressiveness o f the logic used, they m ay be introduced on

a meta-level or only be included in the logic during analysis (as in the case o f identifying

contradictions).

A .4 A lgorithm ic Description

W o is the initial state, and it has to be a non-em pty world state, since there is no way o f

creating new instances in transition rules. After world state W t a stimulus occurs at t' (t1 is

the successor of t). If a transition rule contains the stimulus as a triggering condition and

the rule's conditions are true in W t, then the rule is triggered and the conclusions are true

at Wf. Then the post production system (see Section 5) and the intra-state rules are

applied (intra state rules have not been used in the telecom m unication exam ple), and all

possible conclusions are derived from the new facts (both true facts and negated facts).

A fter that the fram e axiom is applied which transfers all the facts which are not co n tra

dicted in Wt to Wp. In our dom ain, negation as failure is sufficient (all facts have to be

known), so all negated facts can be rem oved from Wt'. A pseudo code description o f the
<jr~

algorithm is given below:

200 APPENDIX /t. LOGICAL FORMALISM

APPENDIX A. LOGICAL FORMALISM

t is set to 0 (W o is the initial state)

201

REPEAT

W A IT FOR STIM ULUS

IF Stim ulus received at time t+1

FO R A LL transition rules R

IF Rj has the Stim ulus received as precondition

IF all other conditions in Rj are provable at time t

Add conclusions given from Ri at time t+1 (both true and negated facts)

END IF

END IF

EN D ALL

If intra-state rules exist apply post production system

A pply fram e axiom

(facts at W[not contradicted at Wp are moved to Wp)

Close Wp (negated facts removed, redundant)

IF increm ental developm ent check for contradictions.

IF lim ited m em ory rem ove Wt.

t is set to t + 1

END IF

END REPEAT.

Since transition rules are restricted to make conditions only on t, this algorithm can be

im plem ented very efficiently.

A .5 Syntax and Semantics of Restricted Logical Language

This section may be om itted if the reader is not particularly interested in the definition

and exact m eaning o f the language. The inform al descriptions, explanations and exam

ples o f the language should give sufficient details o f the language for m ost readers.

Form ulae in layer L I are concerned only with a static world (within a single state). State-

transition rules and world states (a conjunction of atom ic ground form ula) are used to

capture change. State-transition rules are only allowed to refer to two adjacent world

states. The syntax and sem antics of the language are easy to understand and are believed

to be intuitive even for non-logicians.

Definition of LI

Language L I is predicate logic but som e im portant restrictions are introduced m aking

the logic very basic but sufficient for the chosen application dom ain: the top level

requirem ents o f telephone services.

Formulae in LI

The only terms allowed are conjunctions o f atomic form ulae or their negation. This

makes L I purposely trivial.

Quantifiers in LI

All variables in the state-transition rules are universally quantified, except when there is a

variable in a negated statem ent which doesn’t occur anyw here else: this then has to be

existentially quantified. Since there is no risk o f confusing quantifiers, they are d ropped

in the representation o f transition rules (the same approach is adopted in Prolog).

Domain of LI

The dom ain is finite, e.g. D = subscribers u telephone num bers u services u counters.

The interpretation is split into:

^constant constants - always the same.

^predicate state predicates - d ifferent at different world states. Transition rules and

the fram e rule apply to state predicates.

^stimulus stimulus predicates - different at different world states. Stim ulus predicates

are only externally determ inable and the fram e rule does not apply

stimulus rules.

202 APPENDIX A. LOGICAL FORMALISM

World State

APPENDIX A. LOGICAL FORMALISM 203

A world state is the interpretation o f all L I predicates, i.e. a direct representation o f the

state o f the world.

Transition Rules

Transition rules have preconditions (including one stimulus predicate) and conclusions

both form ulae of L I. t and t ’ index the world state in which the interpretation o f the

conjunction o f predicate have to be true, t ’ is always a direct successor o f t (t’ is

som etim es written as t+ 1 in previous chapter which directly reflects the consecutive

num bering o f w orld states).

Algorithm

The O perational im plem entation o f the algorithm is shown in Section A .4. How it works

sem antically is that the algorithm evaluates the truth value o f the precondition part o f the

transition rules in the interpretation o f world state t. The condition for a transition rule is

a list o f predicates (negated or not negated). Each predicate is interpreted relative to a

world state t.

If all atom ic form ulae in the condition part of a transition rule hold in world state t and

the triggering predicate holds, then the transition rule is said to have its conditions met

(i.e. the transition rule triggers).

T ransition rules trigger if:

in terpretationconstant u interpretationprecjjcatet |= preconditions

We can think o f each atomic form ula from the conclusion part o f a rule, that has

triggered as a restriction on the range o f allowable interpretations at time step t ’, or

equivalently, as a subset o f all interpretations. The way the algorithm com bines these

form ulae is equivalent to taking the intersection o f the corresponding interpretation

subsets. Then, the fra m e rule is applied, narrowing down the possible world states at t ’ to

one, by selecting the world state that has the least difference when com pared with the

previous world state. If the set o f possible world states is empty, then the transition rules

are identified as being inconsistent and the algorithm detects this. In the operational

im plementation of the algorithm , it can be said that the fram e rule copies all non-altered

predicates from the previous world state t to t ’. Transition rules can be seen as

im plications in a tem poral logic.

true(t, conditions) a true(t’,stim ulus) —> true(t’, conclusions)

when true(t, f) is true iff interpretationconstant u interpretationp,-ecjjcatet |= f

W hen the conditions and stimulus are true a new world state t ' is generated where the

conclusions hold. An external stim ulus term is required to occur at every time step: if no

transition rule is triggered there is no difference between the world state t and t ’, except

the stimulus predicate.

It can easily be verified that:

1) if all the transition rules triggered at t are consistent,

the algorithm finds an interpretation for t ’ which m akes them true

and is m axim ally consistent with the interpretation at t.

2) if there is no interpretation for t ’ - the transition rules are inconsistent - then the

algorithm detects this.

Concluding Remarks on Logic

Surprisingly, this sim ple and trivial logic is adequate for the high level requirem ents

specifications sketching/outlining the basic behaviour o f telephone services (the orig inal

logic including inference rules was not needed for this task and reduced to a logic

directly tracking what is true in each world state). This enables powerful autom ated

analysis of behavioural specifications that would be considerably more difficult in a logic

which included inference rules.

204 APPENDIX A. LOGICAL FORMALISM

APPENDIX B

Glossary

205

206 APPENDIX B. GLOSSARY

Appendix B

Glossary

Basic telephony: see POTS.

Busy: In telephony, a busy user is a user that for some reason cannot answer the p h o n e

(already in speech connection, called by som eone else, activated a d o n ’t d isturb

service, giving all callers a busy tone).

Call back: when calling a user who is busy, the calling user can press 5 and hang up the

telephone. W hen the other user com pletes his call and is idle, the user who requested

call back gets a ring signal (short rings) indicating that the previously called person

can receive calls. If the phone is activated, a call will be originated to the now idle

user.

Call waiting: a telephone service that allows a user who is engaged in a call to get a

notification that som eone else is trying to call. This other call is norm ally indicated

by some sound signal and the called user can switch between the two calls or

com plete the current call and answer the new call.

Centrex: a set o f services specially designed for sm aller com panies which have a

distributed location, but wish to operate as a single com pany (local te lephone

numbers, pick up call service, etc.).

ISDN: A standard for digital telephone/term inal connections providing two separate

64kb channels and one signalling channel. This allows the user to have m ore than

one connection at a time, for exam ple a phone call and a internet connection at the

same time.

Mobile telephony: D ifferent types o f m obile telephone services.

APPENDIX B. GLOSSARY 207

Pick up call: if a phone is ringing in your office on another desk, call that num ber (get a

busy tone) and press 6. The call will be redirected to your phone and you answer

the call (no need for running across the room and answering your w orking

co lleague’s phone).

POTS: Plain Old Telephony Services. The most basic telephone functionality provided,

such as m aking a phone call. The functionality most people think o f when talking

about telephones. Today this is a small part o f the overall functionality o f a

telecom m unication system (and is rapidly getting smaller).

Requirements designer, this is the person or persons using CABS in order to produce a

form alised, validated and verified requirem ent starting from an idea o f the

behaviour. They may be a sales person, a custom er (a service provider), a telephone

user, or any com bination o f these who wish to design a new functionality. New

services m ay have the purpose o f making a service provider more attractive, increase

incom e, or it may be a small or large com pany with the need of som e specially

designed services.

Service: a part of a telecom m unication systems functionality identifiable as a unit by the

telephone user and provided to telephone users as individuals or as a set of d ifferen t

services (three party call, call back, call waiting are some com m on services). In the

United States, a service is called a feature and a service is a larger unit such as

telephony or m obile telephony. We will not use feature at all in connection with

telephony since it is part o f the case-based reasoning vocabulary.

Three Party Call (TPC): A service where three parties can speak to eachother at the

sam e time. This is often specified as an extension to the call w aiting service. If the

o rig inator o f the conference hangs up his phone, the rem aining parties are

d isconnected due to the problem o f who should pay for the ongoing calls. TPC

included in centrex behaves slightly different than norm al TPC. With TCP in

centrex, there is no disconnection if the originating party hangs up and the o ther

users are in the same com pany (company pays calls anyway).

Appendix C

Case Library Used for Evaluation

209

210 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

Appendix C

Case Library Used for Evaluation

The systems standard_services_U K (a hypothetical set o f services) used for evaluation

and exam ples are shown in this appendix. All seventeen telephone services (US read:

telephone features), used for the evaluation are shown with selected transition rule

definitions (75 % o f in total 128) and term definitions (28 % o f in total 53). An

extended A ppendix B with all transition rule definitions and term definitions may be

requested.

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 211

C .l Telephone System standard_services_UK

A telephone system is a set o f telephone services listed in the list under Cases in system.

(see C hapter 5 for details).

System: s tandard_seru ices_UK

Cases in system:
basic_telephony
basic_call
banking
call_back
call_barring
call_diversion
call_return
call_waiting
call_reminder
call_reminder
caller_display
charge_advice
emergency_call
pick_up_call
queue_calls
reminder_call
three_way_calling
voting o

Shout Case
(''l
Remoue Case Add Neut Case

Informal description of system:
Captures both basic telephony and a number of popular
added value services. Also some extra services such as
banking and voting are included.

O
O

Behattiour dependent on s y s te m s/ca se s :

oo
In tegra ted uiith sy s tem s/cases :

oo
Cancel Shout priorities More OD

212 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

C.2 Telephone Service basic_telphony

Each telephone service (case) has a set o f transition rule definitions and term defin itions

listed under Transition rules (T-rules) in case: (respectively, Term defined by case:.) T he

transition rules capture the behaviour o f the service. If the case is dependent on o ther

cases, the behaviour specified only m akes sense together with these cases.

Case: basic_cal l

Transit ion rules (T-rules) in case:
a_leave_call
answer_call
b_leave_call
dialling_busy_l
dialling_busy_2
dialling_congestion
disconnect_from_calling
disconnect_if_time_out_l
disconnect_if_time_out_2
disconnect_if_time_out_3
disconnect_tone
normal_dialling
normal book oil

o

o
Show T-rule Remoue T-rule Rdd T-rule

In fo rma l descript ion o f case:
¡Captures the behaviour of a basic telephone call
between two telephone users. Includes call to a busy
user, congestion and time outs.

Terms defined by case:
accepts_incoming_calls(User) type: relation
answer nr(User, Nrl type : relation
busy _tone (User _A.) type: response
calling(User_&, User_B) type: relation
dial tone(k) type : response
ring_signal(User_B) type: response
ring_tone (User_A.) type: response
silent_t°ri® (User_A.) type: response
unkno7m_number (Nr) type: attribute O

basic_ca l l is dependent on cases:
basic_telephony

Input Example s Shorn Term

Cancel More Interact ion GO

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 213

C .2.1 Transition Rules for Service

The behaviour o f a case is defined in detail by all its transition rules.

The Stim ulus: field shows the triggering external stimulus condition. The Condition:

field contains a conjunction o f terms defining all other conditions that have to be met.

The Conclusion and responses: field is a conjunction o f all the terms that becom e true as

a consequence o f this transition rule, if the conditions are true. In the In form al

description: field, a textual explanation o f the rule, its m eaning and references to relevant

inform ation, are given. In the list Used in cases: all cases in the case library that include

this transition rule are listed.

1 Transition Rule: an sin er_ca ll =■ — =~=

Stimulus: Stimulus:
| h o o k _ o .fi (U se r_ A , T) |h ook_on(A , T)

Conditions: Conditions:
c a l l i n g (U s e r _ B , U ser_A) <>

<>

i n _ s p e e c h (A , B) <>

<>
Conclusions and responses: Conclusions and responses:

~ c a l l i n g (U s e r _ B , U ser_A)&
“ r in g _ to n e (U s e r_ B)&
~ r in g _ s ig n a l(U se r_ A) &
in _ s p e e c h (l f s e r _ B , U ser_A)

<>

<>

s i l e n t _ t o n e (B)&
~ in _ s p e e c h (A , B)

<>

<>
Inform al Description: Inform al Description:

I n i t i â t a s e r v i c e r e q u e s t . <>

<>

C a n c e l any s e r v i c e / r e q u e s t . O

<>

Used in cases: Used in cases: i>

O <>
Transition rule is included in priority. Transition rule is included in priority.

(Cancel](Shorn case) (More)(Priority] |(Ok]| (Cancel)(Show case)(More)(Priority)|| Ok]|

Stimulus: Stimulus:
|h o o k _ o n (B , T) | d i a l l i n g (h , H r , T)

Conditions: Conditions:
in _ s p e e c h (A , B) O

<>

d ia l_ to n e (A)&
a n sw e r_ n r (B , Nr)&
a c c e p ts _ in c o m in g _ c a l ls (R r)&
h o o k _ o ff _ tim e (B , Th)

O

T>
Conclusions and responses: Conclusions and responses:

s i l e n t _ t o n e (A) &
" in _ s p e e c h (A , B)

o bu sy _ to n e(A)&
" d ia l_ to n e (A)

O

<>
Inform al Description: Inform al Description:

C a n c e l in _ s p e e c l i by c a l l e d u s e r B . o U se r k c a l l e s a u s e r B who h a s h i s t e le p h o n e a c t i v a t e d . <>

<>

Used in cases: o Used in cases: O

<>

Transition rule is included in priority. Transition rule is included in priority.

(C a n c e l] (Sh o w case)(More][Priority]f| Ok |) (C ancel](S h o w case](More](Priority] f [Ok ¡1

214 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

- - s Transition Rule: d ia lling_busy_2 = 5 Transition Rule: d ia llln y _co n ye stio n --------- a

Stimulus: Stimulus:
|d i a l l i n g (A , N r , T) | d i a l l i n g (A , H r , T)

Conditions: Conditions:
d ia l_ to n e (A)&
a n sw e r_ n r(B , N r)6
a c c e p ts _ in c o m in g _ c a l ls (N r)&
c a l l i n g (Z , B)

&

A

d ia l_ to n e (A)&
unknow n_num ber(N r)

<>

A
Conclusions and responses: Conclusions and responses:

b u sy_ tone(A)&
d ia l to n e (A)

<>

A

~ d i a l _ t o n e (A)&
m e ssa g e('n um ber n o t r e c o g n i c e d ')

o

A
Inform al Description: Inform al Description:

U ser A c a l l e s som eone who a l r e d y i s c a l l e d by som eone
e l s e .

<>

A

U se r A c a l l e s a unknown num ber. <>

A

<>

A
Used in cases: <>

A1
Transition rule is included in priority. Transition rule is not part of any priority.

{ Cancel](Show case)(More]{ Priority) f | Ok ft (Cancel)(Sh o w case](More) (| Ok ft

---------Transition Rule: disconnect, from, calling Transition Rule: disconnect if time nut 1 - ■

Stimulus: Stimulus:
|liook_on(A, T) |tick(T)

Conditions: Conditions:
calling(A, B) <>

A

dial_tone(A)#busy_tone(A)&
hook_off_time(A, T_hook)&
calculate(T_max is T_hook+25)&
true(T>T_max)

o

A
Conclusions and responses: Conclusions and responses:

"calling(A, B)&
*ring_tone(A)&
~ring_signal(B)

<>

A

message(A, ‘Pleas replace the hand-set and try again', T*
~dial_tone(A)

o

A
Inform al Description: Inform al Description:

Cancel a ca ll. <>

A

After 25 seconds dial_tone disconnect <>

A
Used in cases: ■0

A A
Transition rule is not part of any priority. Transition rule is not part of any priority.

(c a n c e l] (Sh o w case)(More] f(Ok ft (Cancel)(Shorn case](More) f(Ok j]

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 215

: Transition Rule: d isco n nect_if_tim e_o u t_2 '

Stimulus:
= -Transition Rule: d isco n nect_if_tim e_o u t_3

Stimulus:
| t i c k (T) | |t ic !c (T)

Conditions: Conditions:
m essag e (A , 'P l e a s r e p l a c e t h e h a n d - s e t and t r y a g a i n ' ,
Tm)&
h o o k _ o ff_ tim e (A , T_hook)6c
c a lc u la te (T _ m a x i s T_hook+60)&
true(T > T _m ax)

<> m essag e (A , 'P l e a s r e p l a c e t h e h a n d - s e t ! ! ! ' , Tm)&
h o o k _ o f f _ t ime(A , T_hook)&
c a lc u la te (T _ m a x i s T_hook+90)&
true(T > T _m ax)

<>
Conclusions and responses: Conclusions and responses:

m essag e (A , 'P l e a s r e p l a c e t h e h a n d - s e t ! ! ! ' , T)&
"m e ssa g e (A , 'P l e a s r e p l a c e t h e h a n d - s e t and t r y a g a i n ' ,
Tm)

loi
10

"m essag e (A , 'P l e a s r e p l a c e t h e h a n d - s e t ! ! ! ' , Tm)

lo
i

10

Inform al Description: Inform al Description:
A f te r 60 s e c o n d s hook o f w i th no a c t io n
g iv e lo n g d i s c o n n e c t m e s s a g e .

<> A f te r 90 se c o n d s lo u d m essag e and no a c t io n s s to p any
m e ssa g e s .

<>

<>

Used in cases: <>

<>

Used in cases: o

<>

Transition rule is not part of any priority. Transition rule is not part of any priority.

[C a n c e l]] Shorn case] (More] ((Ok j) [Cancel] [Shorn case) (More] [(Ok |)

- Transition Rule: d isconnect_tone — Transition Rule: norm al-dialling

Stimulus: Stimulus:
hooK _on(A , T) |d i a l l i n g (A , N r , T)

Conditions: Conditions:
b u s y _ to n e (A)tt Q-
m essag e (A , M essa g e)#
s i le n t _ to n e (A) #
r e q u e s t _ r e j e c t e d (A) # ^
r e q u e s t_ a c c e p te d (A) # —
c a l l w a i t i n g to n e (A) 'O'

d ia l_ to n e (A)&
a n sw e r_ n r (B , Nr)&
ac c e p t s _ in c o m in g _ c a l l s (Nr) &
" c a l l i n g (Z , B)&
" h o o k _ o f f_ t im e (B , Y)

<>

Conclusions and responses: Conclusions and responses:
" r e q u e s t_ r e j e c t e d (A) & ■‘fr
" d ia l_ to n e (A) &
"m e ssa g e (A , t te s sa g e)&
"b u sy _ to n e (A)& tT
" s i l e n t _ t o n e (A)6c —
" c a l l w a i t i n g to n e (A) ,0r

c a l l i n g (A , B)&
r in g _ t o n e (A)&
r i n g _ s i g n a l (B)&
" d i a l _ t o n e (A)

O;

<>
Inform al Description: Inform al Description:

C a n c e l an y s e r v i c e o r s e r v i c e r e q u e s t . ■û U ser A i s d i a l l i n g a num ber c o n n e c te d t o a t e r m in a l t h a t
a c c e p ts in c o m in g c a l l s , i s n o t c a l l e d by som eone e l s e
and who h a s n o t t h e r e c i e v e r o f f t h e hook . The r e s u l t i s
t h a t A i s c a l l i n g o n B.

<>

<>

Used in cases: o

o <>

Transition rule is not part of any priority. Transition rule is included in priority.

(Cancel)(Shorn case)(More J Ok j (Cancel](Shout case)(More)[Priority] |[Ok ||

216 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

! Transition Rule: norm al_hook_off !

Stimulus:
|h o o l(_ o fi(A , T)

Conditions:
'c a l l i n g (Y , O
'in _ s p e e c h (Z , k)

O
Conclusions and responses:

d ia l_ to n e (A)

Inform al Description:
T e l l u s e r t h a t he may g iv a s e r v i c e r e q u e s t (t h i s by a
d i a l to n e m e ssa g e) .

o
Used in cases:

Transition rule is not part of any priority.

■<>
<>

Cancel] [Shorn case)[More] [(Ok)}

C .2.2 Terms for Service

Se Section 5.1 for a detailed explanation o f term definitions.

. ■- Relation term: accepts_incom ing_ca lls

j a c c e p ts _ in c o m in g _ c a l ls (U s e r) 1
Inform al description:

U ser a c c e p ts incom m ing c a l l s .

-I7-
Defined term belongs to cases:

b a s i c _ c a l l

Type for term: | relation ▼

Sort for argument 1: | user_id ▼

Term occurrence: | none or more ▼ |

[Cancel][Shoup mhere used] (More] (U pd ate)

Relation term : an s iu e r_n r i

a n s w e r_ n r (U s e r, H r)

Inform al description:
U se r a a n s w e rs o n th e te l e p h o n e num ber N r.

Defined term belongs to cases:
b a s i c _ c a l l

Type for term : | relation

Sort for argum ent 1: | u ser_id

Sort for argum ent 2: | telephone_num ber

Relation type: | 1:1

Term occurrence: | none or more ▼ |

(Cancel] (Shorn m here usetT) [More) (Update)

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 217

|c a l l in g (U s e r _ A , U ser_B)

Inform al description:

|b u sy _ to n e (U se r_ A)
User_A i s c a l l i n g U se r_ B . I f User_B a c c e p ts t h e n th e
u s e r s w i l l g e t a s p e e c h c o n n e c t io n .

<>

<>Inform al description:
Defined term belongs to cases:

U ser k h a s a b usy to n e . T h is t e l l s t h e u s e r t h a t th e
c a l l e d u s e r c a n n o t a c c e p t a c a l l due t o some r e a s o n
su c h a s b e in g in v o lv d i n some o t h e r s e r v i c e .

O

<>
b a s i c _ c a l l <>

<>Defined term belongs to cases: .
b a s i c _ c a l l

Û.
Type for term : | relation ▼

Sort for argument 1 : | user_id ▼

Type for term : | response ▼ Sort for argument 2: | user_id ▼

Sort for argument 1 : | user_id ▼

Relation type: | Not specified ▼ |

Term occurrence: | none or more ▼ | Term occurrence: | none or more ▼ |

[Cancel](Shorn w here used] (More] [U pd ate] (Cancel)[Shorn inhere used] [More] [U pd ate]

|d ia l_ to n e (A) j r i n g _ s ig n a l (U s e r _ B)

Inform al description: Inform al description:
U ser k i s r e c i e v i n g a m essage i n d i c a t i n g t h a t t h e
sy s te m i s re d y f o r a s e r v i c e r e q u e s t (d i a l i n g a
n u m b e r) .

T h ere i s som eone r e q u e s t i n g a s p e e c h c o n n e c t io n w i th
U ser_B .

<>

<>
Defined term belongs to cases: Defined term belongs to cases:

b a s i c _ c a l l <>

<>

b a s i c _ c a l l <>

<>

Type for term : | response ▼ | Type for term : | response ▼

Sort for argument 1: | user_id Sort for argument 1: | user_id ▼

Term occurrence: | none or more ▼ | Term occurrence: | none or more t \

(Cancel][Shorn w here used] [More] ¡U pd ate) [Cancel)(Shorn w here used] (More) ¡U p d ate]

i S S U Response term : ring_tone H I Response term : silent_tone

|r in g _ to n e (U s e r_ A) | j s i l e n t _ t o n e (U se r_k)

Inform al description: Inform al description:
U ser_B i s c a l l i n g some o t h e r u s e r , t h i s i n f o r m a t io n i s
g iv e n by r i n g _ s i g n a l .

<> User_A h a s no t o n e , a s i t u a t i o n w here User_A m a in ly i s
r e q u e r s t e d t o d e a c t i v a t e t h e phone (s e r v i c e c o m p le te d) .

O

Defined term belongs to cases: Defined term belongs to cases:
b a s i c _ c a l l <> b a s i c _ c a l l o

Type for term : | response ▼ Type for term : | response yr

Sort for argum ent 1 : ! user_id ▼ Sort for argument I : | user_id yr

Term occurrence: | none or more ▼ | Term occurrence: | none or more ▼ |

[Cancel](Shorn w here used] [More) [U pd ate] [Cancel](Show w here used) (More] [U pd ate]

218 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

Attribute term : unknow n_num ber !

unknow n_num ber(N r)

Inform al description:
Nr i s a n i n v a l i d e num ber.

Defined ferm belongs to cases:
b a s i c c a l l

Type for term: | attribute

Sort for argument 1: | telephone_num ber

Term occurrence: none or more ▼

Cancel) [Shorn mhere u sed) [More) (Update]

C.3 Telephone service basic_telphoney

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 219

Case: basic_telephony

Transit ion rules (T-rules) in case:

hook_on_resets_hook_off_time
set_dialling_time_l
set_dialling_time_2
set_hook_off_time_l
set_hook_off_time_2
set_hook_on._time_l
set_hook on time 2

< > l

o

Show T-rule Remoue T-rule Add T-rule

In formal descript ion of case:
This case contains all basic behaviour in common for
all telephony behaviour. This case dose not provide
any telecommunication behaviour by itself, merely

Terms defined by case:

dialling(&, Nr, T)
dialling_time(A., Nr, T)

type : stimulus
type : relation

basic_te lephony is dependent on cases:

Input Examples Shorn Term

r a

Cancel
V.

r >

More
v J

In teract ion |(_ 2 ! Ü

C .3.1 Transition Rules for service

Transition Rule: ho ok_on_resets_d ialling _tim e

Stimulus:
|h o o k _ o n (A , T)

Conditions:
d ia l l in g _ t im e (A . , N r , TD) <>

<>
Conclusions and responses:

" ■ d ia llin g _ tim e (A ., N r , TD)

<>
Inform al Description:

R e s e t hook o f f t im e and o t h e r t im e s .

10
1

10

<>
Transition rule is not part of any priority.

(Cancel](Show case)(More) f| Ok)|

== Transition Rule: h o o k _o n _rese ts_h o o k _o ff_tim e ü ü

Stimulus:
hook_on(Y AR62, YAR61)

Conditions:
hook_off_ tim e(Y A R 6 2 , YAR60) o

Conclusions and responses:
'h o o k _ o ff_ tim e(Y A R 6 2 , YAR60) o

Inform al Description:
R e s e t hook o f f t im e and o t h e r t im e s . o

o
Used in cases: M g

 <>
Transition rule is not part of any priority.

[Cancel] [Shout case) (More) (| Ok

2 2 0 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

= Transition Rule: se t_d ia llin g _tim e_2 =

Stimulus:
| d i a l l i n g (A , H r , T)

Conditions:
tim e (0 T)&
" d i a l l in g _ t i m e (A , OHR, OT)

O

<>
Conclusions and responses:

d i a l l i n g _ t i m e (A,
tim e (T)&
~ tim e (0 T)

H r , T)& O

Ô
Inform al Description:

s e t d i a l l i n g _ t i m e when u s e r d i a l l e d (f i r s t t i m e) . o

Ô

Used in cases: o

<>
Transition rule is not part of any priority.

[Cancel] [Shorn case) [More] (L Ok I)

______ Transition Rule: se t_h o o k _o n _tim e_2 ■

Stimulus:
|h ook_on(A , T) 1

Conditions:
“ h o o k _ o n _ tim e (k ,
t im e (T _ o ld)

TX)& <>

Conclusions and responses:
tim e (T)&
h o o k _ o n _ tim e (k , T)&
~ tim e (T _ o ld)&
~ s e r v ic e _ a c c e p te d (A)

<>

o
Inform al Description:

R e s e t hook o f f t im e and o t h e r t im e s . <>

Used in cases: O

<>
Transition rule is not part of any priority.

[Cancel j (Shorn case) (More) (T Ok)|

- ------Transition Rule: set_d ialling_tim e_1 s= ~ = = =

Stimulus:
|di«lling(fc, Hr, T)

Conditions:
time(0T)&
dialling_time(A, OHR, OT)

<>

<>
Conclusions and responses:

dialling_time(A, Hr, T)&
time(T)&
"dialling_time(A, OHR, 0T)&
“time(OT)

<>

<>
Inform al Description:

set time when dialling was done <>

—
A>

Transition rule is not part of any priority.

[Cancel](Shorn case)[More] f(Ok j)

Transition Rule: se t_h o o k_o ff_tim e_1 —

Stimulus:
|h o o k _ o ff (A , T)

Conditions:
h o o k _ o ff_ tim e (A , T _old)&
tim e (T _ o ld)

Conclusions and responses:
t im e(T)&
h o o k _ o ff_ tim e (A , T)&
_h o o k _ o ff_ tim e (A , T _old)&
- t im e (T _ o ld)

lol
10

Inform al Description:
S et hook o f f t im e when u s e r l i f t s t h e r e c i e v e r . <>

.
AT

<>
Transition rule is not part of any priority.

(Cancel)(Shorn case)[More) (| Dk II

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 221

*r= Transition Rule: se t_re ca ll_ t im e _2 ~ = = Transition Rule: se t_ re c a ll_ t lm e _ l — =
Stimulus: Stimulus:

| r e c a l l (A , 5 , T) | r e c a l l (A , X, T)

Conditions: Conditions:
tim e(T T)&
" r e c a l l _ t im e (A , Z)

<> tim e(T R)&
r e c a l l_ t im e (A , TO)

<>

<>
Conclusions and responses: Conclusions and responses:

r e c a l l _ t i m e (A , T)&
tim e (T)&
- tim e (T T)

O

<>

r e c a l l_ t im e (A , T)&
tim e (T)&
“ r e c a l l_ t im e (A , T0)&
" tim e (T R)

<>
Inform al Description: Inform al Description:

s e t t im e when r e c a l l was done O s e t t im e when r e c a l l was done <>

<>
Used in cases: Used in cases:

o <>
Transition rule is not part of any priority. Transition rule is not part of any priority.

[C a n c e l]] Shorn case](More] [(Ok j| [C a n c e l]] Sh o w case)(More) f(Ok j|

Stimulus: Stimulus:
| s w i t c h s e r v i c e on(YAR96, VAR95, VAR94) |hook_of£(V A R 9, VARS)

Conditions: Conditions:
time(YAR93)

<>

c a l l i n g (c a l l _ b a c k , VAR9)&
c a ll_ b a c k _ n o tic e (Y A R 9 , YAR7)&
c a ll_ b a c k (Y A R 9, YARfi , YAR5)&
rin g _ s ig n a l(V A R 9)

o

Conclusions and responses: Conclusions and responses:
time(YAR94)&
~tim e(V A R93)

o

<>

“ c a ll_ b a c k (V A R 9, VARS, VAR5)&
“ c a l l i n g (c a l l _ b a c k , YAR9)&
~ c a ll_ b a c k _ n o tic e (Y A R 9 , YAR7)

<>

Inform al Description: Inform al Description:
S e t t im e when s t im u lu s r e c i e v e d

<>

S t a r t a n c a l l back o

{>

Used in cases: i> Used in cases: o

<> <>
Transition rule is not part of any priority. Transition rule is included in priority.

(Cancel] (Sh o w case)(More) f| Ok || [C a n c e l)(Sh o w ca se)(More)[Priority)|| Ok ||

2 2 2 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

I Transition Rule: se t_tim e _2 j

Stimulus:
s w i tc h _ s e r v ic e _ o .f i (VARO , VARO, T)

Conditions:

Conclusions and responses:
tim e (T)& | 0 |
" tim e (T O ld)

O
Inform al Description:

S et t im e when s t im u lu s r e c i e v e d Q-

Used in cases: O

 <>
Transition rule is not part of any priority.

Cancel] [Shorn case] [More] [(Ok)]

! Transition Rule: se t_t im e _3 j

Stimulus:
|c h e c k _ s e r v ic e (VARI 04 , VARI 0 3 , VARI 02)|

Conditions:
t im e (VARI 01) -Ô-

Conclusions and responses:
t im e (VARI 02)&
" t im e (VARI 01)

•it

Inform al Description:
S e t t im e when s t im u lu s r e c i e v e d ■a

<>

Used in cases:

<>
Transition rule is not part of any priority.

Cancel] [Shorn case D C ” ore It 0k)l

Stimulus:
|tick(VAR47)

Conditions:
time(VAR46) O

<>
Conclusions and responses:

time(VAR47)&
~time(VAR46)

<>

<>
Inform al Description:

Forward internal clock one step

lo
l

to

<>
Transition rule is not part of any priority.

(Cancel](Shout case](More) || 0k ||

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 223

C.4 Telephone service banking

Transition rules (T-rules) in case:

a sk _ fo r_ a c c o u n t_ n u m b e r
a s k _ f o r_ c o d e
ask_new _accoun t_H um ber
b a n k _ t ime ° ut
c a n c le _ b a n k
t e l l _ b a l a n c e

<>

[Show T-rule] [Remoue T-rule] [Rdd T-rule

Inform al description of case:
u s e r c a n c a l l a bank n u m b er, g iv e a c c o u n t and
p e r s o n a l s e c u r i t y co d e and ch e ck b a l a n s o n a c c o u n ts
o r t r a n s f e r money b e tw e e n a c c o u n ts (i f e x t e r n a l

2

Terms defined by case:

b a n k _ a c c o u n t(U s e r_ Id _ n u m b e r , A c c o u n tN rty p e : r e l a t i o n
u s e r _ a c c o u n t (I d e n t i t y , A c co u n t) ty p e : r e l a t i o n

banking is dependent on cases:
b a s ic _ te le p h o n y
b a s i c _ c a l l

oo
[input Enamples] (Shorn Term]

(C a n c e l] (More) (Interaction] f(Ok]]

C.4.1 Transition Rules for service

I Transition Rule: ask_banking_choice i

__________________Stimulus:___
| d i a l l i n g (A , C ode, T) |

Conditions:
m essag e (A , ' ty p e y o u r p e r s o n a l c o d e : ' , TH)& O
a c t iv e _ s e r v i c e (A , b a n k , A ccountN r)&
bank_account(Y A R O , A c c o u n tN r, Code)

o
Conclusions and responses:

"m e ssa g e (A , ' ty p e y o u r p e r s o n a l c o d e : ' , TH)& G
m essag e (A , ' s e l e c t s e r v i c e , 0 t o l e a v e s e r v i c e , 1 f o r
b a l a n c e . ' , T)

o
Inform al Description:

G

O
Used in cases:

<>
Transition rule is not part of any priority.

[Cancel] [Shorn case) (More) [[Ok)1

j Transition Rule: ask_fo r_acco u nt_n um b er i
__________________Stimulus:
| d i a l l i n g (A , BankHum ber, T)

Conditions:
d i a l _ t o n e (&)& ^
s e r v ic e _ n a m e _ c o d e (b a n k , BankNumber)

Conclusions and responses:
m essag e (A , ' t y p e y o u r bank a c c o u n t n u m b e r : ' , T)&

d i a l_ to n e (A)

Inform al Description:

Used in cases:

Transition rule is not part of any priority.

IO
G

(Cancel] [Shout case) [More] [(Ok

224 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

Transition Rule: ask _fo r_co d e — Transition Rule: ask_neuLi_account_N um ber

Stimulus: Stimulus:
|d i a l l i n g (A , A c c o u n tN r, T) |d i a l l i n g (A , 1 , T)

Conditions: Conditions:
m essag e (A , ‘ ty p e y o u r bank a c c o u n t n u m b e r : ' , TH)&
b a n Jc _ acc o u n t(U ser_ Id _ n u m b er, A c c o u n tN r, VAR7)

<>

<>

m essag e (A , m s g l , Tm) <>

<>

Conclusions and resp onses: Conclusions and responses:
"m essag e (A , ' t y p e y o u r bank a c c o u n t n u m b e r : ' , TH)&
m essag e (A , ' ty p e y o u r p e r s o n a l c o d e : ' , T)&
a c t iv e _ s e r v i c e (A , b a n k , A ccoun tN r)

&

<>

"m e ssa g e (A , m s g l, Tm)&
m essag e (A , 'T y p e y o u r bank a c c o u n t n u m b e r : ' , T)

<>

<>

Inform al Description: Inform al Description:
o

<>

<>

<>
.

Used in cases: o Used in cases: o

<>

Transition rule is not part of any priority. Transition rule is not part of any priority.

(Cancel] (Shorn case] (More] (j Ok j| [Cancel] [Shorn case](More] [j Ok jj

Stimulus: Stimulus:
|tick (V A R 12) |d i a l l i n g (A , 0 , T)

Conditions: Conditions:
m e s s a g e (te l l (Y A R l1 , YAR10, YAR9))&
ac co u n t(V A R l1 , VARfl)&
ca lc u la te (Y A R 7 i s VAR12-VAR9)&
true(V A R 7>10)

<>

<>

m essag e (A , HSG, TN)&
a c t iv e _ s e r v i c e (A , b a n k , X)

2

§1
Conclusions and responses: Conclusions and responses:

" a c c o u n t (VARI 1 , YAR8) "m essag e (A , tlSG, TN)&
" a c t i v e _ s e r v i c e (A , b a n k , X)

<>
Inform al Description: Inform al Description: |

<>

<>

§1

<>

Used in cases: t-iiiliriT

1
Used in cases:

i
Transition rule is not part of any priority. Transition rule is not part of any priority.

(Cancel](Shorn case][More] [(Ok jj (Cancel] [Shorn case](More) Ok j)

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 225

Transition Rule: te ll_ba lance j

Stimulus:
| d i a l l i n g (A , 1 , T)

Conditions:

Used in cases:

Transition rule is not part of any priority.

[Cancel] [Shom case] [More]

I Transition Rule: tim e_tick j

|tick (Y A R 47)

Conditions:
time(YAR46)

Conclusions and responses:
time(YAR47)&
"tim e(Y A R 46)

Inform al Description:

O

Forw ard i n t e r n a l c lo c k one s t e p O

Ô

Used in cases: 3>

<>
Transition rule Is not part of any priority.

0 * 1

C.5 Telephone service calljback

Case: call_back !

Transition rules (T-rules) in case:
O

c a l l_ b a c k _ b u s y _ 2
c a l l back n o t i c e
c a l l_ b a c k _ r e q u e s t_ l
c a l l_ b a c k _ r e q u e s t_ 2
c a n c e l c a l l b ac k n o t i c e
d e a c t i v a t e c a l l back 1
d e a c t i v a t e c a l l b ac k 2 o

(Shout T-rule) (Remoue T-rule) (fidd T-rule

Inform al description of case:
A llo w s a u s e r t o r e q u e s t a c a l l b ac k i i t h e c a l l e d
u s e r i s b u sy o r d o e s n o t a n s w e r . Onec t h e c a l l e d u s e r
i s n o t b u sy o r h a s u se d th e p h o n e , t h e u s e r s phone

Terms defined by case:

c a l l_ b a c k _ _ n o tic e (A , T) ty p e : r e l a t i o n
i r

7Y-

ca ll- back is dependent on cases:
b a s i c _ c a l l oo

(input Euamples] Shout Term

(Cancel (More) Interaction) f(Ok J

226 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

C.5.1 Transition Rules for calljback

Transition Rule: ca ll_b ack_b u sy_1 =

Stimulus:
= Transition Rule: ca ll_b ack _b u sy _2 ~

Stimulus:
| s e r v ic e _ r e q u e s t (A , c a l l _ b a c k , T) | s e r v i c e r e q u e s t (A , c a l l b a c k , T)

Conditions: Conditions:
bu sy _ to n e(A)&
d i a l l i n g _ t im e (A , N r , TD)&
c a l l_ b a c k (A , HO, T0)&
a n sw e r_ n r(B , H r)

<>

<>

b u sy _ to n e(A)&
d i a l l i n g _ t i m e (A, H r , TD)&
~ c a l l_ b a c k (A , HO, T0)&
a n s w e r_ n r (B , Nr)

<>

<>
Conclusions and responses: Conclusions and responses:

s e r v ic e _ a c c e p te d (A)&
* c a l l_ b a c k (A , HO, T0)&
c a l l_ b a c k (A , H r , T)&
” busy_ to ive(A)

<> s e r v ic e _ a c c e p te d (A) &
c a l l_ b a c k (A , N r, T)&
" b u sy _ to n e (A)

<>

<>
Inform al Description: Inform al Description:

I n i t i a t a c a l l b ac k r e q u e s t i f c a l l e d t o a b u sy
s u b s c i r b e r . C a n c e l p r e v io u s c a l l b a c k .

o I n i t i a t a c a l l back r e q u e s t i f c a l l e d t o a b usy
s u b s c i r b e r .

<>

Used in cases: o Used in cases: O
<>

Transition rule is not part of any priority. Transition rule is not part of any priority.

[Cancel] [Shout case) [More] [(Ok j) (Cancel](Shorn case](More] |f Ok j)

-----------_= Transition Rule: c a ll_b a c k _n o tic e=

Stimulus:
|tick(7AR24)|

Conditions:
call_back(YAR23, YAR22, YAR21)& {
hook_on_time(YAR23, YAR20)&
ansvrer_nr(YAR19, YAR22)& rf
book_on_time(YAR19, VAR18)&
true(YAR20>=VAR21)& j!
”callincj(YAR17 , YAR19)& <

Conclusions and responses:
call_back_notice(YAR23, YAB24)& <
calling(call_back, YAB23)

>

<>
Inform al Description:

Tell user that ca ll back can be made >

<>

Used in cases: >

<>
Transition rule is not part of any priority.

(Cancel] [Shout case) [More] [(Ok)

— ------- Transition Rule: ca ll_b a ck _re q u e st_ l :...................

Stimulus:
|service_request(A, call_back, T) 1

Conditions:
ring_tone(A)&
dialling_time(A, Hr, Time)&
answer_nr(B, Nr)&
calling(A, B)

*

<>
Conclusions and responses:

call_back(A, Nr, T)&
service_accepted(A)&
'’calling(A, B)&
~ring_signal(B)&
~ring_tone(A)

o

A
Inform al Description:

In itia t a ca ll back request. o

A

Used in cases: o
A

Transition rule is not part of any priority.

(Cancel](Shout case] (More) f(Ok)|

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 227

T ransition Rule: eau h a rk rp q n p s t 7 r-'~
Stim ulus:

T ransition Rule: can ce l_ ca ll_ b ack _ n o tic e
Stim ulus:

|service_requjest(A, call_back, T) | tick (YARI6)
C onditions: Conditions:

ring_toive (A) &
dialling_time(A, Hr, TD)&
call_back(A, HO, T0)&
answer_nr(B, Hr)&
c&llii^gCA, B)

<> call_back_notice(YAR15, YAR14)&
calling(call_back, YAR15)&
time(YAR13)&
calculate(YAR12 is VAR14+60)&
call_back(YAR15, YARI 1, YAR10)&
true(YAR13>=YAR12)

<>

<>
Conclusions and re sp o n se s : Conclusions and re sp o n se s :

call_back(A, Hr, T)&
service_accepted(A)&
"calling(A, B)&
"ring_signal(B)&
"ring_tone(A)&
"call back(A, HO, TO)

<> "call_back(YAR15, VARI 1, YAR10)&
"calling(call_back, YAR15)&
"call_back_notice(YAR15, YAR14)

<>

<>
In fo rm ai D escription: In fo rm al D escription:

I n i t iâ t a c a ll back request. Cancel previous call back. <> Ring 60 seconds, i i no answer, stop ringing i>

Used in c a se s : o Used in cases:

<> <>
T ransition ru le is no t p a r t o f any p rio rity . T ransition ru le is no t p a r t o f any p rio rity .

(Cancel) [Shorn case) (M ore] f(Ok)1 (Cancel] [S h o w c a se) (M ore] |[Ok)J

Stim ulus: Stim ulus:
|switch_service_o±f(YAR56, call_back, VAR55) |swltch_service_off(YAR50, call_back, Y&R49)

C onditions: C onditions:
call_back(YAR56, YAR54, YAR53)&
call_back_notice(VAR52, VAR51)

<>

<>

call_back(TAB50, YAR48, YAR47)

<>
Conclusions and re sp o n se s : C onclusions and re s p o n se s :

"call_back_notice(YAR52, VAR51)&
"call_back(YAR56, YAR54, VAR53)

{>

"call_backCYAB50, YMW8, YAR47) <>

In fo rm al D escription: In fo rm al D escription:
o

<>

<>

<>

Used in c a se s : o Used in cases: &
<>

T ransition ru le is n o t p a rt o f any p rio rity . T ransition ru le is no t p a r t o f any p rio rity .

[Cancel) [Show case) [M ore) |[Ok j| (Cancel)(Shorn case][M ore] || Ok ||

228 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

- - --------Transition Rule: d e actiu ate_ca ll_b ack _3

Stimulus:

Transition Rule: d e a ct iu a te _ca ll_b a ck _3 ■

Stimulus:
|switch service oii(7AR46, ca ll back, 7AR45) |switcb_service_ofi(7AR46, call_back, 7AR45)

Conditions: Conditions:

"call_back(7AR46, 7AR44, 7AR43) <>

<ÿ

“call_back(7AR46, 7AR44, 7AR43) <>

<>

Conclusions and responses: Conclusions and responses:
service_accepted(7AR46) <>

<>

service_accepted(7AR46) <>

<>
Inform al Description: Inform al Description:

o <>

Used in cases:

<>
Transition rule is not part of any priority. Transition rule is not part of any priority.

(Cancel] [Shorn case)[More] |(Ok j| [Cancel) (Shorn case] [More] (i Ok j)

I Transition Rule: s ta rt_c a ll_b a c k _re q u e st i

Stimulus:
|hook_o.f.f(7A R 9, 7ARB)

Conditions:
c a l l i n g (c a l l _ b a c k , 7AR9)&
c a l l_ b a c k _ n o t ic e (7 A R 9, 7AR7)&
c a ll_ b a c k (7 A R 9 , 7AR6, 7AR5)&
r i n g _ s i g n a l (7AR9)

o

Conclusions and resp onses:
'c a l l_ b a c k (7 A R 9 , 7AR6 , 7AR5)6c
'c a l l i n g (c a l l _ b a c k , 7AR9)&
'c a l l_ b a c k _ n o t ic e (7 A R 9 , 7AR7)

Inform al Description:
S t a r t a n c a l l b ac k

Used in cases:

Transition rule is included in priority.

[Cancel] (Shom case] (More) (Priority^) [(Ok)1

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 229

C .5 .2 Terms for calljback

Relation term : ca ll_b ack _n o tice j

c a l l_ b a c k _ n o t i c e (A , T)

Inform al description:
when a c a l l b a c k n o t i c e s t a r t e d

Defined term belongs to cases:

Type for term : | relation

Sort for argum ent 1: | u ser_id

Sort for argum ent 2: | time

Relation type: | M;M

Term occurrence: none or more ▼

Cancel] (Shorn m here u se d) [More Update

Relation term : ca ll_b ack i

c a l l_ b a c k (A , K r , CT)

Inform al description:
who r e q u e s t e d a c a l l b ac k and a t w hat t im e

Defined term belongs to cases:

Type for term : | relation

Sort for argument 1: | user_id

Sort for argum ent 2: | number

Sort for argument 3: | time

Relation type: | M:M:M

Term occurrence: none or more ▼

Cancel) (Shouu mhere used^) (More

O
<>

<>

Update I

C.6 Telephone service calljbarring

Case: call_barring i

Transition rules (T-rules) in case:

a c t iv a t e _ c a l l_ b a r r in g _ in c o m in g _ c a l l s _ 2
c a l l_ b a r r e d _ u s e r
c h e c k _ b a r r in g _ in c o m in g _ c a l l s _ l
c h e c k _ b a r r in g _ in c o m in g _ c a l ls _ 2
d e a c t i v a t e _ c a l l _ b a r r in g _ i n c o m i n g _ c a l l s

o
[Shom T-rule | [Remnue T-rule] [Rdd T-rule |

Inform al description of case:__________________
|S iv e s a u s e r t h e p o s s i b i l l i t y t o r e f u s e a l l c a l l s
d u r in g t h e t im e th e s e r v i c e i s a c t i v a t e d . O u tg o in g
c a l l s a r e n o t a f f e c t e d .

Terms defined by case:
11 ■■m i n i

d o n t_ d i s tu r b (Hr) ty p e : a t t r i b u t e

call_barring is dependent on cases:

[input Examples) [Shom Term]

[Cancel) [More] [Interaction] [[Ok]]

230 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

C.6.1 Transition Rules for service

j T ransition Rule: a c tiu a te _ c a ll_ b arrin g _ in co m in g _ ca lls T ransition Rule: a c tiu a te _ c a ll_ b a rrin g _ in c o m in g _ c a lls_ 2

Stim ulus: S tim ulus:
|switch service_on(A, barring_incoming_calls, T) |switch_service_on(A, (barring_incoming_calls, PinNr), T)

Conditions: Conditions:
dial_tone(A)&
"call_barring_pin(Nr, PinNr)&
answer_nr(A, Nr)

<>

<>

dial_tone(A)&
call_barring_pin(Nr, PinNr)&
answer_nr(A, Nr)

O

A
Conclusions and re s p o n se s : C onclusions and re s p o n se s :

dont_disturb(Nr)

1̂
1

IO

dont_disturb(Nr) <>

<>
In fo rm al D escrip tion : In fo rm al D escrip tion:

Activate c a ll barring, pin number not required. <> Activate c a ll barring service, pin number required. <>

<>
- —

ô

A/

<>
Transition ru le is n o t p a r t o f any p rio r ity . T ransition ru le is n o t p a r t oT any p rio r ity .

(C a n c e l j f sh°ut c a s e) (M ore) || Ok]1 (Cancel)(Shorn c a s e)(M ore) f| Ok ¡1

T - - D I IIK j = T ransition Rule: ch eck _ b a rrin g _ in co m in g _ ca l[s_ l =

Stim ulus: S tim ulus:
|dialling(A, Nr, T) |chec]i_service(A, (barring_incoming_calls, PinHr), T)|

C onditions:Conditions:
dial_tone(A)&
answer_nr(Z, Nr)&
dont_disturb(Nr)

<>

A

dial_tone(A)&
answer_nr(A, Nr)&
call_barring_pin(Nr, PinNr)&
dont_disturb(Nr)

<>

Conclusions and re sp o n se s : C onclusions and re s p o n se s :
~dial_tone(A)&
busy_tone(A)

<> "dialtone(A)&
request_accepted(A)

<>

Inform al D escription: In fo rm al D escrip tion :
I i someone calls a user that has requested ca ll barring
then give calling user busy tone.

<>

Check i f service i s i s switched on, pin number required. <>

__ —

<> <>
T ransition ru le is included in p rio rity . T ransition ru le is n o t p a r t o f any p rio r ity .

(c a n c e l)) Shorn case)(M ore)[P rio rity] || Ok || (Cancel] [Shorn c a s e] [M ore] [(Ok)]

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 231

= Transition Rule: check_b arring _incom ing_calls_2 =

Stimulus:
c h e c k _ s e r v ic e (A , b a r r in g _ in c o m in g _ c a l l s , T)

Conditions:
d ia l_ to n e (A)6 c
a n s w e r_ n r (A , Nr)&
" c a l l _ b a r r i n g _ p i n (N r , P inH r)&
~ d o n t_ d i s tu r b (N r)

o

Conclusions and responses:
" d ia l to n e (A) &
r e q u e s t_ a c c e p te d (A)

Inform al Description:
T e l l u s e r i f s e r v i c e i s s w itc h e d on . No p i n num ber
r e q u e s t e d

o

Used in cases:

Transition rule is not part of any priority.

[Cancel] [Shorn case) [More] [(Ok)|

Transition Rule: deactiuate_ca ll_barring _incom ing _ca lls

__________________Stimulus:__
| s w i t c h _ s e r v ic e _ o f f (A , (b a r r i n g _ i n c o m i n g _ c a l l s , P in H r) , T) |

Conditions:
d ia l_ to n e (A)&
c a l l_ b a r r i n g _ p i n (N r , P in N r)&
an sw e r_ n r(A , Nr)

Conclusions and responses:
'd o n t _ d i s tu r b (N r)

Inform al Description:
S w itc h c a l l b a r r i n g o f i f r i g h t p i n num ber i s g iv e n .

Used in cases:

Transition rule is not part of any priority.

[Cancel] (Shorn case [More) [(OK ll

Transition Rule: s ta rt_ca ll_b ack _re q u est

__________________Stimulus:
|hook_off(Y A R 9, VAR8)

__________________ Conditions:
c a l l i n g (c a l l _ b a c k , YAR9)6c
c a ll_ b a c k _ n o tic e (Y A R 9 , VAR7)&
c a ll_ b a c k (Y A R 9 , YAR6, YAR5)&
r i n g _ s i g n a l (YAR9)

__________________Conclusions and responses:
"c a ll_ b a c k (Y A R 9 , YAR6, YAR5)&
" c a l l i n g (c a l l _ b a c k , VAR9)&
" c a ll_ b a c k _ n o t ic e (Y A R 9 , YAR7)

Inform al Descrlotlon:
S t a r t a n c a l l back <>

Used in cases: O

<>
Transition rule is Included in priority.

(Cancel) (Shorn case] [More) [Priority) (¡ _ 0 k _ j J

O

O

O

O

C.7 Telephone service call_diversion

232 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

______ Case: call diuersion :

Transition rules (T-rules) in case:

a c t i v a t e _ d i v e r t _ i i w a l i d
d e a c t i v a t e _ d i v e r t
d i v e r t _ c a l l
d iv e r t_ c a l l_ to _ b u s y

(Shorn T-rule] [Remoue T-rule] [Add T-rule

Inform al description of case:
<>

Terms defined by case:

o
call_diuersion is dependent on cases:

b a s i c _ c a l l oo
(input Euamples) (Shorn Term]

(Cancel)(More] (Interaction) f[Ok]|

C.7.1 Transition Rules for Service

..........= Transition Rule: actiu ate_d iu ert ^

Stimulus:

Transition Rule: actiuate_d iuert_inualid ■

Stimulus:
|sw itc h _ se rY ic e _ o n (Y A R 2 1 , (d i v e r t , VAR20), YAR19) |s w itc h _ se rv ic e _ o n (V A R 1 8 , (d i v e r t , TM U7) , TAR16)

Conditions: Conditions:
d ia l_ to n e (Y A R 2 1)&
answ er_nr(Y A R 21, YAR20)&
answ er_nr(Y A R 21, VAR20)

lo
i

10

d ia l_ to iie (Y A R 18)&
a n s t re r_ n r (YAR18, YAR15)&
"answ er_nr(Y A R 14, YARI7)

<>

<>
Conclusions and responses: Conclusions and responses:

re q u e s t_ a c c e p te d (V A R 2 1)&
d iv e rt(V A R 2 0 , VAR20)

o re q u e s t_ re je c te d (V A R 1 8) O

Inform al Description: Inform al Description:
o o

<>

g
—

o
Transition rule is not part of any priority. Transition rule is not part of any priority.

[C a n c e l]] shoUJ case](More] [(Ok j| (C a n c e l) (Shouu case)(More) f(Ok]1

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 233

— = Transition Rule: d e a ct iu a te _d iu e rt____ =

Stimulus:
|switch_service_off(YAR13, divert, VAR12)

Conditions:
dial_tone(YAR13)&
answer_nr(YAR13, YARll)&
divert(VARll, YARI 0)

<>
Conclusions and responses:

"divert(YARll, YAR10)

01

10
1

Inform al Description:

lo
l

lo
l

—

<>
Transition rule is not part of any priority.

[Cancel) [Shorn case] (More] f(Ok j)

= Transition Rule: d eactiuate_d iuert =

Stimulus:
|s w i tc h _ s e r v ic e _ o f f (V A R 1 3 , d i v e r t , YAR12)

Conditions:
dia l_ to n e(V A R 1 3)&
answ er_nr(V A R 13, Y A Rll)&
d iv e rt(Y A R 1 1 , VARIO)

<>

Conclusions and responses:
" d iv e r t (Y A R ll , YARI 0)

lol
lol

Inform al Description:
<>

—

<>

Transition rule is not part of any priority.

(Cancel) [Shorn case)[More] 0 Ok j|

I Transition Rule: d iuert_call i

|d i a l l i n g (A , H r , T)

Conditions:
d i v e r t (N r , Nr2)&
a n s w e r_ n r (B , Nr2)&
" h o o k _ o i± _ tim e (B , X)&
" d o n t _ d is t u r b (Hr 2) &
" c a l l i n g (Y , B)&
a c c e p ts in c o m in g c a l l s (N r 2)

Conclusions and responses:
c a l l i n g (A , B)&
rin g _ to n e (A)&
r i n g _ s i g n a l (B)&
" d ia l_ to n e (A)

Inform al Description:
D C all t o a dum ber t h a t i s d i v e r t e d w i l l b e r e d i r e c t e d to
t h e o t h e r num ber and a c a l l amde i f i d l e .

<>

Used in cases:
—

o
Transition rule is included in priority.

Cancel J (Shorn case) (More) [Priority) [(Ok)]

; Transition Rule: d iu ert_ca ll_to _b u sy ;

__________________Stimulus:
[d i a l l i n g (A , N r , T)

Conditions:
a n s w e r_ n r (Z , Nr)&
d i v e r t (N r , NrB)&
a n s w e r_ n r(B, NrB)&
a c c e p ts_ irv c o m iiv g _ c a lls (B) &
h o o k _ o f f _ tim e (B , Th)#
" d o n t d i s tu r b (B) ______________

Conclusions and responses:
b u sy _ to n e(A)&
" d ia l_ to n e (A)

o

Inform al Descriotion:
C a l l t o a d i v e r t e d num ber t h a t i s b u s s y o r h a s d o n t
d i s t u r b a k t i v a t e d .

<>

<>

Used in cases:
—

<>
Transition rule is included in priority.

(Cancel) (Shom case) [More) (Priority^) (| Ok |)

C.8 Telephone service call_reminder

234 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

= = ^ = = = ^ = = = l a s e : c a l l_ re m in d er —

T ran s it ion ru les (T-ru les) in case:
lcaH reminder time out
reminder_accept_on_hold
reminder_accepted
start_call_reminder

51
(S h o w T -ru le] (Remoue T-rule] (Rdd T -ru le

In fo rm a l de sc r ip t ion o f case:
k user having a call waiting and makes a hook on
recieves a reminding call. Ô]

51
T erm s de f in ed by case:

c a l l_ re m in d e r is d e p e nd e n t on c ases :
call_waiting O

(input Euamples]

(Cance l] (M o r e] (In te r a c t io n] f(Ok j)

C.8.1 Transition Rules for service

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 235

-— j Transition Rule: rem ind er_accepted - - = Transition Rule: s ta rt_ca ll_re m in d e r '
Stimulus: Stimulus:

|h o o k _ o f f (B (T) ¡book o n (A , T)
Conditions: Conditions:

c a l l i n g (c a l l _ r e m i n d e r , B)&
c a l l i n g (A , B)&
r in g _ to n e (A)&
r i n g _ s i g n a l (B)

<>

<>

c a l l i n g (B ,
r in g _ to n e (B)&
c a l l_ w a i t in g _ t o n e (A) &
o n _ h o ld (A , B)

O

<>
Conclusions and responses: Conclusions and resp onses:

in _ s p e e c h (A , B)&
s p e e c h _ s t a r t (A , T)&
" ■ r in g _ s ig n a l (B) &
~ r i n g _ t o n e (A)&
~ c a l l i n g (A , B)&
" c a l l i i v q (c a l l re m in d e r B)

<>

<>

c a l l i n g (c a l l _ r e m i n d e r , A)&
- c a l l_ w a i t i n g _ t o n e (A)&
r i n g _ s i g n a l (A)&
~ o n _ h o ld (A , B)

<>

<>
Inform al Description: Inform al Description:

a c a l l r e m in d in g B som eone i s o n h o ld i s a c c e p te d by
l i f t i n g t h e r e c i e v e r .

<>

<>

A h a s a c a l l w a i t i n g an d m akes a hook o n . Remind A t h a t
som eone i s c a l l i n g A (p r e v i o u s ly o n h o ld) .

<>

— nn

<> O
Transition rule is included in priority. Transition rule is not part of any priority.

(Cancel](Show case) f More](Priority) fi Ok j) [Cancel) (Shorn case) [More) f(Ok)]

236 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

C.9 Telephone service call_return

__ Case: ca ll_return - 1 ,:h

Transition rules (T-rules) in case:

c a l l _ l a s t _ c a l l e r _ i d l e
d i a l l i n g _ s t o r e _ c a l l e r
d i a l l i n g _ s t o r e _ c a l l e r _ f i r s t
la s t_ c a ll_ n u m m b e r
la s t_ c a ll_ n u m m b e r_ l

a>

[Shorn T-rule] (Remoue T-rule] [Add T-rule

Inform al description of case :
r e d i a l t h e l a s t c a l l e d num ber. O

<>
Terms defined by case:

oa m -¿M t ̂ n) ' . » i l w <m

ca ll_re turn is dependent on cases:
b a s i c _ c a l l o

o

(input Enamples) (Shorn Term]

(Cancel) (More] (In teraction] f[Ok]j

C.9.1 Transition Rules for service

I Transition Rule: c a ll_ la st_ca lle r_b u sy

__________________Stimulus:
| d i a l l i n g ; A, 2 , T)

Conditions:
" d ia l_ to n e (A) &
answ er_num ber(A , ïîr)ôf
l a s t _ c a l l (N r, N rC a lle d)&
m essag e (A , T e x t , TH)&
answ er_num ber(B , H rC a lle d)&
c a l l in q Ç Z . B)___________________

Conclusions and responses:
b usy_ tone(A)&

m essag e (A , T e x t , Ttl)

Inform al Description:
When t o l d l a s t c a l l e r , t h i s num ber w i l l be c a l l e d
i i u s e r p r e s s e s num ber 2 on t h e phone (c a l l e d u s e r i s
b u s y) .

Used in cases:

 «>
Transition rule is not part of any priority.

Cancel] [Shorn case][More] [(Ok)]

g Transition Rule: c a ll_ la s t_ca lle r_ id le - -

Stimulus:
[d ia l l in g (A . , 2 , T) 1

Conditions:
~ d ia l_ to n e (A.) &
answ er_num ber(A , Nr)&
l a s t _ c a l l (N r , N rC a lle d)&
m essage(A ., T e x t , Ttl)&
a n sw er_ n u m b er(B , N rC a lle d)&
" c a l l i n g (Z , B)

V

Conclusions and responses:
c a l l i n g (A , B)&
r i n g _ s i g n a l (B)&
r in g _ to n e(A .)&
~ m essage(A , T e x t , Ttt)

Inform al Description:
When t o l d l a s t c a l l e r , t h i s num ber w i l l be c a l l e d
i f u s e r p r e s s e s num ber 2 o n th e p h o n e .

<>

Used in cases: O

A
Transition rule is not part of any priority.

(Cancel](Shout case)(More) f(Ok)|

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 237

- ---̂ =̂ Transition Rule: d ia llin g _sto re_ca lle r

Stimulus:
; Transition Rule: la s t _ c a ll_ n u m m b e r_ l ------------ =

Stimulus:
|d i a l l i n g (A , N r , T) | s e r v i c e r e q u e s t (A , c a l l r e t u r n , T)

Conditions: Conditions:
d ia l_ to n e (A)&
an s7 7 e r_ n r(A , ANr)&
"e q u a l(A N r , NR)&
a n s w e r_ n r (B , Nr)&
a c c e p ts _ in c o m in g _ c a l l s (NR) &
l a s t c a l l(A N r OLNr)

<> d ia l_ to n e (A)&
a n sw e r_ n r(A , Nr)&
" l a s t _ c a l l (Z , Nr)

O

Conclusions and responses: Conclusions and responses:
" l a s t _ c a l l (N r , OLNr)&
l a s t _ c a l l (N r , ANr)

m essag e (A , ‘no num ber s t o r e d 1 , T)&
" d ia l_ to n e (A)

lol
li>

Inform al Description: Inform al Description:
<> <>

O

Used in cases: O Used in cases:

Transition rule is not part of any priority. Transition rule Is not part of any priority.

(Cancel)(Shorn case](More) [(Ok]J (Cancel](Shorn case](More] |'(Ok ||

I Transition Rule: d ia llin g -sto re _ca lle r_first I

Stimulus:
|dialling(A, Nr, T)

Conditions:
d ia l_tone()̂&
answer_nr(A, ANr)&
"equal(ANr, Nr)&
answer_nr(Y, Nr)&
accepts_incoming_calls (Nr) &
"last ca lif Hr , A?r)___ |0

Conclusions and responses:
last_ca ll(K r, Attr) <>

Inform al Description:
O

Used in cases: <>

<>
Transition rule Is not part of any priority.

Cancel] [Shout case] (More) (j__0k_

I Transition Rule: last_call_num m b er I

Stimulus:
service_request(A, call_return, T)

Conditions:
dial_tone(A)& ^
answer_nr(A, Nr)&
last_call(N r, LNr)

Conclusions and responses:
message(A, ‘last caller is : LNr', T)& Q
"dial_tone(A)

o
Inform al Description:

Used in cases:

Transition rule is not part of any priority.

IO
<>

Cancel] [Shorn case J [More] ([Ok]]

C.10 Telephone service call_waiting

238 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

C . l l Telephone

Case: call_m aiting j

Transition rules (T-rules) in case:

a n s w e r _ c a l l_ w a i t in g
c h e c k _ c a l l_ w a i t in g _ l
c h e c k _ c a l l_ f f a i t in g _ 2
d e a c t i v a t e _ c a l l _ w a i t i n g
d i a l l i n g _ b u s y _ c a l l _ w a i t i n g
r e j e c t _ c a l l _ w a i t i n g

[Shorn T-rule] [Remoue T-rule [Rdd T-rule

Inform al description of case:
<>

<>
Terms defined by case:

c a l l_ w a i t in g _ to i \ e (A)
o n h o ld (A , B)

ty p e : r e s p o n s e
t y p e : r e l a t i o n

i r

<>
call_iuaiting is dependent on cases:

b a s i c _ c a l l o
o

[input Enamples) r Show Term

Cancel] [More] [Interaction] f(Ok j

service caller_display

Case: caller_d isp lay i

Transition rules (T-rules) in case:

d i a l l i n g _ d i s p l a y _ c a l l e r _ 2
re m o v e _ d isp la y _ n \im b er_ l
rem o v e _ d isp la y _ n u m b er_ 2
rem ove_d isp lay_nuxnber_3
re s e t_ d is p la y e d _ n u m b e r

o

o
[Shorn T-rule j [Remoue T-rule] [Odd T-rule

Inform al description of case:

C.12 Telephone service charge_advice

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 239

— ; Case: charge_aduice i|

Transition rules (T-rules) in case:

c h a rg e _ a d v ic e _ l
c h a rg e _ a d v ic e _ 2
d e a c t iv a te _ c h a r g e _ a d v ic e
m a k e _ c a l l_ to _ te l l_ c o s t
m a k e _ c a l l_ to _ te l l_ c o s t_ 2
s a v e _ s p e e c h _ s ta r t_ t im e

§1

[Show T-rule) [Remoue T-rule) [Rdd T-rule

Informal description of case:
U se r may r e q u e s t t h a t n e x t c a l l o r a l l c a l l s hav e
c h a rg e a d v ic e . Once th e c a l l h a s f i n n i s h e d a l t e r a
s h o r t w h i le a c a l l t o t h e u s e r t e l l i n g th e c o s t s i s

p

Terms defined by case:
| c h i r g e i Nr., I d i l l e i H r , Tim* ■ t y p e : r e l a t i o n

3
c h a rg e _ a d v ic e (A , O p tio n) ty p e : r e l a t i o n

| |c h a rg e_ c o st(IT R l , NR2, P r i c e) ty p e : r e l a t i o n |

charge_aduice is dependent on cases:
b a s ic _ te le p h o n y o l

(input Enamples) (Shouu Term]

(Cancel](More] (Interaction] [(Ok]1

C.13 Telephone emergency_call

Case: em ergency_call

Transition rules (T-rules) in case: §1

<>

c a n c e l_ e m e rg e n c y _ c a ll_ 2
e m e rg e n c y _ c a ll
s e t_ e m e rg e n c y _ c a l l_ l
s e t_ e m e rg e n c y _ c a l l_ 2

[Shorn T-rule] (Remoue T-rule] [Add T-rule

Informal description of case:
I u s e r who h a s em ergency c a l l a c t i v a t e d w i l l g e t an
a u to m a t ic c a l l to a p r e s e l e c t e d num ber i f r e c i e v e r
i s l i f t e d and no num ber d i a l d w i th in a s e l e c t e d t im e S7

Terms defined by case:

e m e rg e n c y _ tim e o u t(H r, T im ou t) ty p e : r e l a t i o n
u-

em ergency_call is dependent on cases:
b a s i c _ c a l l oo

(input Enamples) (Show Term]

(Cancel)(More) (Interaction) f[Ok]|

C.14 Telephone service pick_up_call

240 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

Transition rules (T-rules) in case:
O

(Shout T-rule) [Remoue T-rule] [Add T-rule

Inform al description of case:
f l i a te le p h o n e r i n g s on a d e sk n e a r y o u , y ou may d i a l
th e te le p h o n e s nu m b er, g e t a b u sy t o n e , p r e s s a
num ber o r s p e c i a l b u t to n on y o u r phone and answ er

£

Terms defined by case:

s
pick_up_ca ll is dependent on cases:

b a s i c _ c a l l O
O

(input Enamples]

(Cancel] (More) (Interaction) f[Ok]]

C .14.1 Transition Rules for service

. — iransi t ion Rule: Dirk un call =

Stimulus:
| r e c a l l (A , p i c k _ u p _ c a l l , T)

Conditions:
b usy_ tone(A)&
d ia l l i n g _ t im e (A , N r, VAR0)&
a n s w e r_ n r(B, N r)&
r i n g s ig n a l(B)&
c a l l i n g (Z , B)&
r i n g to n e (Z)

101
10

Conclusions and responses:
" c a l l i n g (Z , B)&
“ b u sy_ tone(A)&
" r i n g _ s i g n a l (B) &
" r in g _ to n e (Z)&
in _ s p e e c h (Z , A)

<>
Inform al Description:

t a k e o v e r a c a l l o

<>

Used in cases: o

Transition rule is not part of any priority.

(Cancel) [Shout case)[More] Ok)l

C. 15 Telephone service queue_calls

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 241

— ' = Case: queue_calls ■ =

Transition rules (T-rules) in case:

£c h e c k _ q u e u e _ c a lls
d e a c t iv a te _ q u e u e
d ia l l i n g _ b u s y _ q u e u e _ c a l l_ l
d i a l l in g _ b u s y _ q u e u e _ c a l l_ 2
d ia l l in g _ b u s y _ q u e u e _ n e x t_ c a l l
f i r s t _ i n _ q u e u e _ s t a r t s _ c a l l i n g _ l
f i r s t _ i n _ q u e u e _ s t a r t s _ c a l l i n g _2 %

(Shorn T-rule) (Remoue T-rule] [Add T-rule

Informal description of case:
I f a c a l l t o a num ber h a v in g t h e queue c a l l s s e r v i c e
t h e n i f b u ssy t h e c a l l e r w i l l b e p la c e d i n a q u e u e .
Once a t e le p h o n e g e t s f r e e t h e f i r s t i n t h e queue

Terms defined by case:

w a it in g _ q u e u e (N r , A, B, C) ty p e : r e l a t i o n
<>

queue_calls is dependent on cases:
b a s i c _ c a l l o

o

(input Examples) (Show Term)

(Cancel](More] (Interaction] f[Ok]1

C. 15.1 Transition Rules for service

= Transition Rule: actiuate_queue =

Stimulus:
Transition Rule: d ia lliny_b usy_q ueue_nent_ce ll

Stimulus:
|switch_service_on(k , queue_calls, T) |di«lling(i. Hr, T)

Conditions: Conditions:
answer_nr(A, Nr) <>

<>

dial_tone(A) &
answer_nr(C, Nr)&
queue_if_busy(Hr)&
waiting_queue(Nr, Q1, Q1, Q2)

<>

<>
Conclusions and responses: Conclusions and responses:

queue_if _busy (Nr)&
request_accepted(k)

<>

"waiting_queue(Nr, Q1, Q1, Q2)&
waiting_queue(Nr, Q1, Q2, A)&
message(A, 'pleas w ait', T)

<>

<>
Inform al Description: Inform al Description:

Activates the service queue calls for a specific
telephone number.

<>

<>

Used in cases: o Used in cases: o

<>
Transition rule is not part of any priority. Transition rule is included in priority.

[C an ce l](Shorn case j(More j (l Ok |) [Cancel)[Shorn case)[More][Priority]f(Ok j)

242 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

^ 3 Transition Rule: f irs t_ in _q u e u e _sta rts_ca llin g _2

Stimulus:
|hook_on(7A R 47, 7AR46)

Conditions:
an sw er_ n r(7 A R 4 7 , 7AR45)&
w a itin g _ q u eu e (7 A R 4 5 , 7AR44, 7AR44 , 7AR44)&
w a itin g _ q u e u e (7 A R 4 5 , 7AR44, 7AR44, 7AR44)&
'e q u a l (7AR44, 7AR44)

<>
Conclusions and responses:

c a l l in g (7 A R 4 4 , 7AR47)&
w a itin g _ q u eu e (7 A R 4 5 , 7AR44, 7AR44 , 7AR44)&
~ w a itin g _ q u eu e (7 A P .4 5 , 7AR44, 7AR44, 7AR44)

<>

Inform al Description:
move . f i r s t i n qu eu e t o c a l l i n g p a r ty o

<>

Used in cases: o

Transitio
<>

n rule is not part of any priority.

(Cancel (ShoLU case) (More] [(Ok j)

C.16 Telephone service voting

APPENDIX C. CASE LIBRARY USED FOR EVALUATION 243

=- Case: uoting ;

Transition rules (T-rules) in case:

a c t iv a t e _ v o t in g _ 2
c h e c k _ v o te s
d e a c t i v a t e _ v o t i n g
Y ote

o
(Shorn T-rule) [Remoue T-rule] [Add T-rule

Inform al description of case:
C o u n ts a l l c a l l s t o a p a r t i c u l a r n u m b er, may b e r e s e t
s e t and ch e ck e d by s e r v i c e h o ld e r (p i n num ber
r e q u i r e d) . <>

Terms defined by case:

5
uoting is dependent on cases:

b a s ic _ te le p h o n y o

[input Enamples]

(Cancel] (More] [Interaction] f(Ok)l

C .16.1 Transition Rules for service

1 Transition Rule: actiuate_uoting_1

| s y i t c h _ s e r v i c e _ o n (A , [v o t i n g , Y oteN um ber, P i n) , T) |

Conditions:
d ia l_ to n e (A)Ó i
an sw er_ n u m b er(A , Hr)&
v o te _ p in (Y o te K u m b e r, P in)&
v o te _ c o u n te r (Y o te N u m b e r , OLDCount)

o
Conclusions and responses:

s e r y ic e _ a c c e p ted(A)&
v o te _ c o u n te r (Y o te N u m b e r , 0)&
~ Y o te _ c o u n te r (Y oteN um ber, OLDCount)

•i>

o
Inform al Description:

I n i t i a l i s e w o t in g c o u n te r

Used in cases:

Transition rule is not part of any priority.

Cancel ̂ [Shorn case I f More 1 [I— Rig— |J

I Transition Rule: actiuate_uo ting_2 j

__________________Stimulus:_________________________________
I s w i t c ^ s e r v i c e ^ n Ç A , [v o t i n g , Y oteN um ber, P i n) , T)

Conditions:
d ia l_ to n e (A)&
answ er_num ber(A , Nr)&
v o te _ p in (Y o te N u m b e r, P in)&
'Y o te _ c o u n te r(Y o te N u m b e r, OLDCount)

*0-

Conclusions and responses:
s e r v ic e _ a c c e p te d (A)&
v o te _ c o u n te r(Y o te N u m b e r, 0)

o

Inform al Description:
O

Used in cases:

Transition rule is not part of any priority.

(Cancel) [Shorn case | (More) [[Ok)|

244 APPENDIX C. CASE LIBRARY USED FOR EVALUATION

j Transition Rule: check_uotes !

Stimulus:
|c h e c k _ s e r v ic e (A , [v o t in g , 7o teH um ber, P i n] , T)|

Conditions:
d ia l_ to n e (A)& ^
answ er_num ber(A , Rr)6i
v o te _ p in (7 o te H u m b e r , P in)&
v o te _ c o u n te r (7 o te H u m b e r , C o u n t)

Conclusions and responses:
m essag e (A , (‘V o te c o u n te r i s C o u n t))& ^
~ d ia l_ to n e (A)

Informal Description:

O
Used in cases:

Transition rule is not part of any priority.

■<>
{>

Cancel j (Shorn case] (More] (| Dk]1

; Transition Rule: deactiuate_uoting
Stimulus:

|s w i tc h _ s e r v ic e _ o f i (A , [v o t i n g , 7 o te N r , P i n] , T)

Conditions:
d ia l_ to n e (A)&
v o te _ p in (7 o te H r , P in) &
v o te _ c o u n te r (7 o te N r , C o u n t)

Conclusions and responses:
~ d ia l_ to n e (A)&
s e r v ic e _ a c c e p te d (A)&
~ v o te _ c o u n te r (7 o te lT r , C ount)&
" v o te _ p in (7 o te N r , P in)

T>

O
Inform al Description:

C a n c e l and r e s e t v o t in g . o

o
Used in cases:

Transition rule is not part of any priority.

(Cancel] [Shorn case] (More] [[Ok |1

; Transition Rule: potè

__________________Stimulus:
|d i a l l i n g (& , T o te H w ib e r, T)

Conditions:

Used in cases:

Transition rule is not part of any priority.

(Cancel] (Shorn case] (More] l o k j j

Appendix D

Input Examples Used for Evaluation

245

246 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

Appendix D

Input Examples Used for Evaluation
All the graphical input exam ples used for the evaluation are given in this appendix. For

35% o f the links used in the input examples, their “link detail w indow s” are shown (in

total, all input exam ples have 98 links). For 60% o f the nodes, the node details have been

shown (all input exam ples are based on 22 different nodes). An extended version o f

Appendix C, with all link and node definitions may be requested.

D .l Input Example a_banking_example

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D. 1.1 Details for Nodes in Input Example

247

-===-= Node: ask for identity -■■■
R esp o n se s (e x t e r n a l l y v i s i b l e) :

" ■ d ia l_ to n e (a)&
m e s s a g e (a , TX, 2)

<>
C h aracteristics (not externally uisible):

<>
Node is used in input exam ples:

a _ b a n k in g _ e x a m p le <>

<>

□ Start node □ End node

[Cancel j (Update] f(OK II

= = Node: se lect seruice
R e sp o n se s (e x t e r n a l l y v i s i b l e) :

fn e s s a g e (a , SelTXT, 3)& o
" m e s s a g e (a , SelTXTO, 2)

<>
Characteristics (not externally uisible):

<>
Node is used in input exam ples:

a_ b an k in g _ ex am p le Q_

<>

□ Start node □ End node

[Cancel J (Update] f(OK 1

D. 1.2 Details for Links in Input Example

a_banking_eH am ple: dial tone a-dlalling->ask for ¡dent a_banking_eH am ple: ask for identitg-d ialling->select s(

(di a l tone a) - _ ________________ Ç[ask for identity^)________ _ ________________.
—- Cask for identity

Triggering stim ulus: ----------- """
— <3e ,e c * seruice^)

Triggering stim ulus: "
|dialling(a, Z, T) |di&lling(a, 1235, T)

Conditions from originating node: Conditions from originating node:
dial_tone(a) <>

<>

message(a, TX, 2) <>

<>
Additional conditions (qualification/instantiation): Additional conditions (q ualification/instantiation):

<>

<>

<>

<>
Conclusions from term inating node: Conclusions from term inating node:

~dial_tone(a)&
message(a, TX, 2)|

<>

<>

message(a, SelTXT, 3)&
“message(a, SelTXTO, 2)

<>

Additional conclusions: Additional conclusions:

<>

O

<>
P ro p o sed t r a n s i t i o n r u l e : d ia l l in g _ b u s y _ q u e u e _ c a l l_ l P ro p o sed t r a n s i t i o n r u l e : a s k _ b a n k in g _ c h o ic e

M atch se lect: | Select best match ▼ Match se lect: | Select best match

E l Shorn se lected argum ents in graphic ujindoui E l Shorn se lected argum ents in graphic window

(Cancel](Shorn m atch) [Select][Update) [[OK]| [Cancel](Shorn m atch] [Select)(Update] [[OK)]

D.2 Input Example a_barring_example

248 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D.2.1 Details for Links in Input Example

ÜÜ a_barring_eHam ple: dial tone a-dialling->b busg nzu

(^dial tone eT)-------- - -------
' (b busyJ)

Triggering stim ulus:
|dialling(e , 222, T)

Conditions from originating node:
dial_tone(a) O

Additional conditions (qualification/instantiation):
dont_disturb(222) O

<>
Conclusions from term inating node:

I o ; a) o

Additional conclusions:
<>

Proposed
Match se

E l ShOUJ

tra n s it io n ru le : call_barred_U3er
lect: | Select best match ▼ |

selected argum ents in graphic mindotu

[Cancel (sh o iu m a tch) [Select][Update) |[O K j|

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION 249

D.3 Input Example a_basic_example_l

D .3 .1 Details for Nodes in Input Example

N o d e : a l l s u b s c r i b e r s i d l e ■ ■ =

R e sp o n se s (e x t e r n a l l y v i s i b l e) :

" in _ s p e e c h (b , a)&
" i n _ s p e e c h (a , b)&
~ d ia l_ to n e (b) 6 t
" d i a l_ to n e (a) &
“ r in g _ to n e (b) &
" r in g _ to n e (a) &
" r i n g _ s i g n a l (b) &
" r i n g _ s i g n a l (a)

i r

u

C h a r a c t e r i s t i c s (n o t e u t e r n a l l y u i s i b l e) :

t im e (0)&
" c a l l i n g (a , b)&
- c a l l i n g (b , a)&
a c c e p ts _ in c o m in g _ c a l l s (222)&
a n s w e r _ n r (b , 222)&
a n s w e r _ n r (a , 111)

<>

N o d e i s u s e d in i n p u t e n a m p l e s :
a_ban3cing_exam ple
a _ b a rr in g _ e x a m p le
a _ b a s ic _ b e b a v io u r _ e x a m p le _ 0 X7

[3 S t a r t n o d e ^ E n d n o d e

(C a n c e l] [U p d a t e) |f OK II

= N o d e : d i a l t o n e a =

R e sp o n se s (e x t e r n a l l y v i s i b l e) :

d i a l _ t o n e (a)

<>

C h a r a c t e r i s t i c s (n o t e w t e r n a l l y u i s i b l e) :

e .

N o d e i s u s e d in i n p u t e u a m p l e s :
a_ban3<ing_exam ple
a _ b a rr in g _ e x a m p le
a_ b a s ic _ e x a m p le _ 0

nr

■

□ S t a r t n o d e □ E n d n o d e

(C a n c e l) [U p d a t e) f(OK l|

250 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

R esp o n ses (e x t e r n a l l y v i s i b l e) :

□ Start node □ End node

[Cancel] [Update] [(OK])

Node: in speech I
R e sp o n se s (e x t e r n a l l y v i s i b l e) :

in_speech(a, b)&
" rin g _ s ig n a l(b)&
~ring_tone(a)&
"c a llin g (a , b)

o

C h aracteristics (not enternally uisible):

□ Start node □ End node

(Cancel) (Update] (| OK j)

Node: silent b
R esp o n se s (e x t e r n a l l y v i s i b l e) :

s i l e n t _ t o n e (b)&
" in _ s p e e c h (a , b)

o

C h aracteristics (not enternally uisible):

□ Start node □ End node

Update) |1 OK ||

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D .3 .2 Details for Links in Input Example

251

a_basic_eH am ple_1 : all subscribers idle-hook_off->dial a_b asic_eH am p le_l : dial tone a-hook_on->all subscribe

C^all subscribers id le^)^^ - - - - - - Cdial tone a) - _______________________
(^dial tone a)

Triggering stim ulus: - - - - - —
~ Call subscribers idle I)

Triggering stim ulus: _ _ - - - - - - - - — — ""
|h o o k _ o i f (a , T) |h o o lt_ o n (4 , T)

Conditions from originating node: Conditions from originating node:
~ r i n g _ s i g n a l (a)&
" c a l l i n g (b , a)

loi

lo
i

d ia l_ to iv e (a) O

< >
Additional conditions (qualification/instantiation): Additional conditions (qualification/instantiation):

< >
< >

o

<>
Conclusions from term inating node: Conclusions from term inating node:

d i a l _ t o n e (a) < > " d i a l _ t OIve(a) o

Additional conclusions: Hdditional conclusions:
o
< >

o

P r o p o s e d t r a n s i t i o n r u l e : n o r m a l _ h o o k _ o f f P r o p o s e d t r a n s i t i o n r u l e : d i s c o n n e c t _ t o n e

Match se lect: | Select best match ▼ Match se lect: | Select best match ▼ |

£3 Shout selected argum ents in graphic window [xl shorn se lected argum ents in graphic window

[Cancel] [sho w m atch] [Select][Update] [[OK j| (Cancel][Shorn match) (Select)[Update] f[OK)]

252 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

1 a_basic_eKom ple_1 : dial tone a-dialling->a calling b = I a _b as ic _e K a m p le _l : a calling b-hook_off->in speech 1

(a i o l tone a) ^ -------—- C a callinq b A ^ -------■_
~ “ (a calling b j)

Triggering stim ulus: ' "
(jn sp e e ch j)

Triggering stim ulus: -------
|dialling(a, 222, T) |hook_off(b, T)

Conditions from originating node: Conditions from originating node:
dial_tone(a) <>

<>

calling(a, b)&
ring_signal(b)&
ring_tone(a)

O

Additional conditions (qualification/instantiation): Additional conditions (qualification/instantiation):
i>

<>

O

<>
Conclusions from term inating node: Conclusions from term inating node:

calling(a, b)&
ring_sigi\al(b)&
ring_tone(a)

in_speech(a, b)&
"ring_signal(b)&
"rii\g_tone (a)

<>

Additional conclusions: Additional conclusions:
<>

<>

o

<>
Proposed tra n s it io n ru le : n o rm al_d ialling Proposed tra n s it io n ru le : reminder_accepted
Match se lect: | Select best match ▼ Match se lect: | Select best match ▼ |

□ Shorn selected argum ents in graphic window 13 Shorn selected argum ents in graphic window

[Cancel j ^Show match j [Select] [Update] f(OK j] [Cancel] [sho w m atch] [Select](Update] ([OK j)

m a _b asic_eK am p le_1 : in speech-hook_on->silent b ^ a _b a s ic _e H a m p le _ l: silent b-hook_on->all sub scribers i

u n speec lT)---^ __ ^ --------
------- (s ile n t tT)

(s i le n t b)— ____ _ -------------_____
~ sub scribers idle 2̂

Triggering stim ulus: --------
|book_on(a, T) |hook_on(b, T)

Conditions from originating node: Conditions from originating node:
"c a llin g (a , b)&
in_speech(a, b)&
"ring_signa l(b)&
"rin g tone(a)

<>

<>

s ilen t_ to n e (b) <>

<>

Additional conditions (qualification/instantiation): Additional conditions (qualification/instantiation):
4>

<>
Conclusions from term inating node: Conclusions from term inating node:

silent_tone(b)&
"in_speech(a, b)

<>

<>

" s ile n t_ to n e (b)

Additional conclusions: Rdditional conclusions:

<> <>
P roposed t r a n s i t i o n r u l e : a _ l e a v e _ c a l l P ro p o se d t r a n s i t i o n r u l e : d is c o n n e c t_ to n e

Match se lect: | Select best match sr Match se lect: | Select best m atch ▼ |

E Show selected argum ents in graphic window 13 Show selected argum ents in graphic window

(Cancel] (sho w match | (Select)(Update) |[OK]| (Cancel) (Show m atch) (Select)(Update] f[OK j|

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION 253

a _b a s ic _e n a m p le _ l: a calling b-hook_on->all subscribei

(T j calling hO- _____--------------_____
' Call subscribers Idle 5
Triggering stim ulus:_________~ — "

|h o o k _ o n (a , T)

Conditions from originating node:
c a l l i n g (a , b)&
r i n g _ s i g n a l (b)&
r i iv g _ to n e (a)

<>

Additional conditions (qualification/instantiation):

<>
Conclusions from term inating node:

" r i n g _ s i g i \ a l (b) &
"riiY g _ to rv e(a)

ndditional conclusions:
£r

P roposed t r a n s i t i o n r u l e : d i s c o n n e c t_ f ro m _ c a ll in g
Match se lect: | Select best match t |

K Show se lected argum ents in graphic window

[Cancel] [Show m atch] [Select) f Update) I o k J

D .4 Input Example a_basic_example_0

In this input exam ple the node “silence b ” has been forgotten (when the receiver fo r

phone a has been put down, b hears a silent tone in the telephone until b puts down the

receiver, se a_basic_exam ple_ l). As described in C hapter 8, the m atching algorithm is

able to identify the intended service in the case library (basic_call).

D.5 Input Example a_busy_example

254 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D.5.1 Details for Nodes in Input Example

R e sp o n se s (e x t e r n a l l y v i s i b l e) :

□ Start node □ End node

(Cancel] [Update] [[__0 K __ j)

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D. 5 .2 Details for Links in Input Example

255

a_busy_eH am ple: dial tone a-dialling->b busy i

dial tone a

Triggering stim ulus:
| d i a l l i n g (a , 2 2 2 , T)

Conditions from originating node:
d i a l _ t o n e (a)

Additional conditions (qualification/instantiation):
a n s w e r _ n r (b , 222)6*
c a l l i n g (X , b)

Conclusions from term inating node:
b u sy _ to n e(a)6 *
~ d i a l _ t o n e (a)

Additional conclusions:

P roposed t r a n s i t i o n r u l e : d ia l l i n g jb u s y _ 2
Match se lect: Select best match

□ Shorn se lected argum ents in graphic window

[Cancel] f Show match (Select)(Update] (f OK)1

D.6 Input Example a_basic_behaviour_l

256 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D.7 Input Example a_basic_behaviour_0

D .7.1 Details for Nodes in Input Example

R esp o n se s (e x t e r n a l l y v i s i b l e) :

□ Start node □ End node

[Cancel] [Update] | o i (|

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D.8 Input Example a_call_back_example

D. 8.1 Details for Nodes in Input Example

R e sp o n se s (e x t e r n a l l y v i s i b l e) :

□ Start node □ End node

[Cancel] (Update) [(OK 1

D .8.2 Details for Links in Input Example

258 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

a_call_back_eH am ple: a calling b-seru ice_request-> call a_ca ll_back_eK am p le : b busy-seru ice_request-> call ba»

Qb b u sy')-------------------- —--------------------—

" ~ ■“ Ccall back requested))
Triggering stim ulus: -------------------

*“ Cç.all back req u ested))
Triggering stim ulus: -----------—

| s e r v i c e _ r e q u e s t (a , X, T) |s e r v i c e _ r e q u e s t (a , c a l l_ b a c J c , T)

Conditions from originating node: Conditions from originating node:
c a l l i n g (a , b)&
ri i \g _ s ig i \a l (b) &
riiv g _ to n e (a)

O

<>

b u s y _ to n e (a) <>

{>

Rdditional conditions (qualification/instantiation): Additional conditions (qualification/instantiation):
{>

<>
Conclusions from term inating node: Conclusions from term inating node:

s e r v ic e _ a c c e p te d (a) <> “ b u sy _ to n e (a)6 c
s e r v ic e _ a c c e p te d (a)

O

{>

Additional conclusions: Rdditional conclusions:
“ c a l l i i \ g (a , b)&
~ r i n g _ s i g n a l (b)&
- r in g _ to n e (a)

<>

<>

<>

<>
P r o p o s e d t r a n s i t i o n r u l e : c a l l _ b a c k _ r e q u e s t _ l P r o p o s e d t r a n s i t i o n r u l e : c a l l _ b a c k _ b u s y _ 2

Match select: | Select best match ▼ Match se lect: [Select best match ▼ |
^ Shorn selected argum ents in graphic window H Shouu selected argum ents in graphic luindom

[Cancel] [sho w m atch] (Select] [U pdate] [(OK j | (Cancel] [Shorn match) [Select] [Update] fj OK]]

D.9 Input Example a_call_last_caller

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION 259

D. 9.1 Details for Links in Input Example

a _c a ll_ la s t _ c a lle r : b busy-seru ice_req u est-> seru ice act

Q> b u s y) ------- . -----------------...
(^service accepted])

Triggering stim ulus: ------------—
|s e rv ic e_ req u es t(a , S erv ice , T) 1

Conditions from originating node:
busy_tone(a) -_r

Additional conditions (qualification/instantiation):

<>
Conclusions from term inating node:

serv ice_accep ted (a)&
~busy_tone(a)

Additional conclusions:

P ro p o se d t r a n s i t i o n r u l e : c a ll_ b a c k _ b u sy _ 2
M atch se lect: | Select best match - 1

□ Shorn se lected argum ents in graphic window

(Cancel] [Shorn m atch] (Select](Update] |[OK)l

D .10 Input Example a_call_reminder_example

D.10.1 Details for Nodes in Input Example

260 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

- ■ - Nndp: n limiting on b E======^=i^ iE
R esp o n ses (e x t e r n a l l y v i s i b l e) : R esp o n se s (e x t e r n a l l y v i s i b l e) :

<>

A

ri n g _ s ig n a l (b) i>

A
Characteristics (not externally uisible): Characteristics (not externally uisible):

c a l l_ w u i t i n g _ to n e (b)&
c a l l i n g (a , b)&
o n _ h o ld (b , a)

<>

A

O

A
Node is used in input exam ples: Node is used in input exam ples:

a _ c a l l_ re m in d e r_ e x a m p le
a _ c a ll_ re m in d e r_ e x a m p le _ 2
a _ c a l l_ w a i t in g _ e x a m p le

û a _ c a ll_ re m in d e r_ e x a m p le
a _ c a l l_ re m in d e r_ e x a m p le _ 2

A

□ Start node □ End node □ Start node □ End node

(Cancel] (Update] fj OK j| [Cancel) [Update] f(OK j|

D .10 .2 Details for Links in Inprit Example

a_ca ll_rem inder_exam p le : dial tone a-dialling->a Luaitii a_ca ll_rem in d er_exam p le : a tuaiting on b-hook_on->rei

Qdial tone a^)------- ----- ------------— (a Limiting on b ____ ------ -—

(a waiting on b)
Triggering stimulus:

— (Ve mi nde r)
Triggering stim ulus:

l d i a l l i n g (a , 2 2 2 , T) |b o o k _ o n (b , T)

Conditions from originating node: Conditions from originating node:
d ia l _ t o n e (a)

A

c a l l_ w a i t in g _ t o n e (b)&
c a l l i n g (a , b)

A
Additional conditions (qualification/instantiation): Additional conditions (qualification/instantiation):

<>

A
<>

A
Conclusions from term inating node: Conclusions from term inating node:

c a l l_ w a i t in g _ to n e (b)fit
c a l l i n g (a , b)&
o n _ b o ld (b , a)

<>

A

r i n g _ s i g n a l (b) <>

A
Additional conclusions: Additional conclusions:

o
A

" o n _ h o ld (b , a) o
A

P r o p o s e d t r a n s i t i o n r u l e : d i a l l i n g _ b u s y _ c a l l _ w a i t i n c P r o p o s e d t r a n s i t i o n r u l e : s t a r t _ c a l l _ r e m i n d e r

Match se lect: | Select best match ’*• Match se lect: | Select best match
^ Shorn selected argum ents in graphic window [3 Show selected argum ents in graphic window

(Cancel](Show match) (Select](Update] [(OK]] (Cancel)(Show m atch] (Select)(Update) |[OK]|

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION 261

a_ca ll_rem in d er_enam ple : rem inder-hook nff->in spec

(7em inde^)^ _________________ ___________ _
' Q n speech])
Triggering stim ulus:

|hook_oii(b, T) —|

Conditions from originating node:
nng_signal(l))

<>

Tv
Additional conditions (qualification/instantiation :

<>

o
conclusions from term inating node:

in_speech(a, b)&
*ring_signal(b) <>

o
Additional conclusions:

o

n
P roposed t r a n s i t i o n r u l e : re m in d e r_ a c c e p te d
Match se lect: J Select best match j

E3 Shorn se lected argum ents in graphic window

Cancel)(Shorn m atch] (Select](Update] |(OK]|

a_ca ll_rem in d er_enam p le : rem inder-tick->nll subscribe

C re m in d e rV

" Call sub scribers idle 5
Triggering stim ulus: ----------------- '

| t i c k (T)

Conditions from originating node:
ring_sigi\al(b) <>

Ô
Additional conditions (qualification/instantiation :

{>

Conclusions from term inating node:
nng_signal(b) g

O
Additional conclusions:

<>

Proposed tra n s it io n ru le : ca ll_rem ind er_tiiae out
Match se lect: | Select best match - 1

K Shorn se lected argum ents in graphic window

(Cancel](shoLu m atch] (Select](Update] f(OK j)

D . l l Input Example a_call_return_example

D. 11.1 Details for Links in Input Example

262 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

a_ca ll_return_eH am ple: dial tone a-seru ice_req uest-> lf a_ca ll_return_eH am ple: last caller 222-dialling->a callii

(d ia l tone a _____ _______________ (1 a s tc â n ë r2 2 2 > ._________ ___________
*- (la s t ca ller 222 .)

Triggering stim ulus:
~~~~-------- "" <̂ a calling bĵ >

Triggering stim ulus: -----------
| s e r v ic e _ r e q u e s t ( A ,  S e r v i c e ,  T) |d i a l l i n g ( a ,  S e rv ic e _ c o d e , T)

Conditions from originating node: Conditions from originating node:
d i a l _ t o n e ( a ) Ç>

<>

m e s s a g e (a ,  T e x t ,  T)& 
" d i a l _ t o n e ( a )

O;

Additional conditions (qualification/instantiation): Additional conditions (qualification/instantiation):
<>

<>

l a s t _ c a l l ( 1 1 1 ,  222) o

<>
Conclusions from term inating node: Conclusions from term inating node:

m e s s a g e (a ,  T e x t ,  T) C>

<>

r in g _ to n e ( a ) &  
c a l l i n g ( a ,  b)&  
r i n g _ s i g n a l (b)

<>
Additional conclusions: Additional conclusions:

d ia l _ t o n e ( a ) <> " m e s s a g e (a ,  T e x t ,  TH) <>

P r o p o s e d  t r a n s i t i o n  r u l e :  l a s t _ c a 1 l_ n u m m b e r P r o p o s e d  t r a n s i t i o n  r u l e :  c a l l _ l a s t _ c a l l e r _ i d l e

Match se lect: | Select best match sr Match se lect: | Select best match |

H  Shocu se lected  argum ents in graphic window □  Show selected argum ents In graphic window

[ Cancel )( Show match ) ( Select )[ Update ) f( OK ]1 ( Cancel ] [ Show m atch ] ( Select ]( Update ] [( OK ]|

a_ca ll_retu rn _e»am p le : last caller 222-dialling->b busg

(  last caller 2 2 2 )-____^ ^  -------
------------ "  " ( b b u s g j )

Triggering stim ulus: --------
|di&llii\g(a, Service_code, T)

Conditions from originating node:
message(a, Text, T)& 
~dial_tone(a)

<>

<>
Additional conditions (qualification/instantiation):

last_call(111, 222) <>

Conclusions from term inating node:
busy_tone(a) <>

Additional conclusions:
"message(a, T , Til) <>

<>
P r o p o s e d  

Match sc 

K  Shou.

t r a n s i t i o n  r u l e :  c a l l _ l a s t _ c a l l e r _ b u s y

lect: 1 Select best match - 1
selected argum ents in graphic window

[ Cancel [sho w  m atch] [ Select ][up d ate It OK )|



D .12 Input Example a_call_waiting_example

APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION 263

D. 12.1 Details for Links in Input Example

a_ca ll_w aiting _eH am ple: a waiting on b-recall->in spee

(  a waiting on b ^ -----------
"  ------ Q n speech^)

Triggering stim ulus:
| r e c a l l ( b ,  s w i t c h ,  T) 1

Conditions from originating node:
c a l l_ w a i t in g _ t o n e ( b )& 
c a l l i n g ( a ,  b)& 
o n _ h o ld (b ,  a )

<>

Rdditional conditions (qualification/instantiation):
o

O
Conclusions from term inating node:

~ c a l l i n g ( a , b ) <>

<>
Rdditional conclusions:

~ c a l l_ w a i t in g _ to n e ( a )& 
~ in _ s p e e c h ( b , c)&  
~ c a l l_ v r a i t in g _ to n e  ( b )
P r o p o s e d  t r a n s i t i o n  r u l e :  s w i t c h _ b e t w e e n _ c a l l s

Match select: | Select best match -1
□  Show selected  argum ents in graphic window

[ Cancel ] [sho w  m atch) [ Select ) [  Update ) f( OK 11



D.13 Input Example a_charge_advice_example

264 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D. 13.1 Details for Links in Input Example

a_charge__aduice_eHam ple: charge aduice ca ll-h o o k_o f

(^charge aduice c a lO ^ _  -----------------
(Tell cost of ca lT }  

Triggering stim ulus: ~~-----------------^
|hooJc_oif(a , T) 1

Conditions from originating node:
ca lling (C , a)& 
r  ing_si giva 1 ( a )

<>
Additional conditions (qualification/instantiation):

o

Conclusions from term inating node:
"rin g _ s ig n a l(a )& 
message(a, Cost, X)

<>

Additional conclusions:

<>
P ro p o sed  
Match se 

Ë3 Shorn

t r a n s i t i o n  r u l e :  an sw er._ ch a rg e _ ad v ic e
ect: 1 Select best match -
se lected  argum ents in graphic w indow

[ Cancel ] [ Shorn m atch) [ Select ) [ Update It  OK j|



APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION 265

a_charg e_ad u ice_en am p le : all subscribers idle-tick->ch

C all subscribers Idle^)^

Triggering stim ulus:
| t i c k ( T )

'(c h a rg e  aduice ca l\J )

Conditions from originating node:
" c a l l i i v g ( b , a)6t 
a n s w e r _ n r ( a , 111)

o

Additional conditions (qualification/instantiation):
■C-

Conclusions from term inating node:
c a l l i iv g ( C ,  a)&  
r i n g _ s i g n a l ( a )

o

fldditional conclusions:

P ro p o sed  t r a n s i t i o n  r u l e :  s ta r t_ r e m in d e r
Match se lect: Select best match

[3 Show selected argum ents in graphic window  

f Cancel ] [ Show m atch] f Select ][  Update ] [[ OK ])

D .14 Input Example a_divert_example



D .14.1  Details for Links in Input Example

266 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

m a_diuert_eHam ple: dial tone a-dialling->a calling b = s== a_d iuert_eKam ple: dial tone a-dialling->b busy ===

(^dial tone a )̂_________ -̂-------- (a ia l  tone a ) —  ----- ^
"■*“ Q j calling bĵ )

Triggering stim ulus:
- ^ Q )b u s y ')

Triggering stim ulus:
|d ialling(a, 333, T) |dialling(a, 333, T)

Conditions from originating node: Conditions from originating node:
dial_tone(a) <>

<>

dial_tone(a) O

<>
Additional conditions (qualification/instantiation): Additional conditions (qualification/instantiation ):

divert(222, 333)& 
divert(333, 222)& 
answer_nr(b, 222)

<>

<>

divert(333, 222)& 
a nswer_i\r ( b , 222 )

O

<>
Conclusions from term inating node: Conclusions from term inating node:

ring_tone(a)& 
calling(a, b)& 
ring_signal(b)

{> busy_tone(a)| <>

Additional conclusions: Additional conclusions:{>
<>

<>
<>

P roposed  t r a n s i t i o n  r u l e :  d i v e r t _ c a l l P roposed  t r a n s i t i o n  r u l e :  d iv e r t_ c a l l_ to _ b u s y
Match se lect: | Select best match ▼ Match se lect: | Select best match ▼ |

□  Shorn selected arguments in graphic window 13 Shorn selected arguments in graphic window

( Cancel )( Show match ) ( Select )[ Update ] f( OK ] ( Cancel j [Show m atch] [ Select ][ Update ] f[ OK j]

D .15 Input Example a_multi_call_example



APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D. 15.1 Details for Nodes in Input Example

267

= Node: ¡n speech a b c
R esp o n se s  ( e x t e r n a l l y  v i s i b l e ) :

i n _ s p e e c h ( b , c )& 
i n _ s p e e c h ( b , a )& 
in _ s p e e c h ( a ,  b )

o .

<>

Characteristics (not eHternally uisible):
" c a l l i n g C a ,  b)&  
" o n _ h o ld ( b , a )

<>

Node is used in input eKamples:
a _ m u lt i_ c a l l_ e x a m p le <>

<>

□  Start node □  End node

( Cancel ] [ Update ] f( OK l|

D. 15.2 Details for Links in Input Example

a_m u lti_ca ll_enam p le : in speech a b c-hook_on->silent a_m ulti_call_eHam ple: a waiting on b-recall->in speech

(Tn  speech a b P)_______ (  a waiting on b ._______________
Q ile n t a & L )

Triggering stim ulus:
- "  (jT, speech a b ĉ > 

Triaaerina stim ulus: '----------- -—"
jhao)c_on(b, T) |recall(b , 3, T)

Conditions from originating node: Conditions from originating node:
in_speech.( a , b)& 
in_speecli(b< c)& 
"on_hold(b, a)

<>

<>

call_waiting_tone(b)& 
calling(a, b)& 
on_hold(b, a)

<>

Ô
Additional conditions (qualification/instan tiation ): Additional conditions (qualification/instan tiation ):

{>

<>

<>

<>
Conclusions from term inating node: Conclusions from term inating node:

"in_speech(b, c )& 
"in_speech(b , a)& 
s ile n t_ to n e (a)& 
s i le n t  tone(c)

<> in_speecli(a, b)& 
in_speech.(b, c)& 
~on_hold(b, a)

<>

<>
Additional conclusions: Rdditional conclusions:

<> {>

<>
P ro p o se d  t r a n s i t i o n  r u l e :  le a v e _ th re e _ w a y _ c a l l P roposed  t r a n s i t i o n  r u l e :  s ta r t_ th r e e _ w a y _ c a l l
Match se lect: | Select best match ▼ Match se lect: | Select best match ▼ |

ED Show selected arguments in graphic window E3 Shorn selected arguments in graphic window

[ Cancel ] [show  m atch) [  Select ) [  Update ) [[ OK ]| ( Cancel ) (  Show match ) ( Select ](  Update ) |[ OK ]|



268 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D.16 Input Example a_pick_up_call_example

D .16.1  Details for Links in Input Example

a_p ick_up _call_eH am ple : called is busy-recall->a in spe

(^called is b u sy ) ..
( a  in speech w ith b j )  

Triggering stim ulus:________  "
r e c a l l ( a ,  A, T)

Conditions from originating node:
b u s y _ to n e (a )

Additional conditions (qualification/instantiation):

Conclusions from term inating node:
" b u s y _ to n e (a )&  
in _ s p e e c h ( b , a)&  
" r i n g _ s i g n a l ( c )

o
Additional conclusions:

P roposed  t r a n s i t i o n  r u l e  : p ic k _ u p _ c a l l
Match select: Select best match

] Show selected argum ents in graphic window

[ Cancel ) ( Show match ) [ Select ) [ Update ) ^ OK



APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D .17 Input Example a_queue_example

D. 17.1 Details for Links in Input Example

= a_queue_eHample :  queue call-hook_on->a calling b j j

(^queue cal ? ) — _ ------ — .
' ' ~ -  ( a  calling b^)
Triggering stimulus:__________ ~

h o o k _ o n ( b ,  T )

Conditions from originating node:
' d i a l _ t o n e ( a )

Additional conditions (qualification/instantiat ion):

Conclusions from terminating node:
c a l l i i \ g ( a ,  b ) | o

Additional conclusions:

P ro p o se d  t r a n s i t i o n  r u l e :  f i r s t _ i n _ q u e u e _ s t a r t s _ c a l ]

Match select:  Select best match

IH1 Show selected arguments in graphic window  

[ Cancel ) [ Show m atch)  f Select ] f Update ) [[ OK ]]

269



270 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D.18 Input Example a_show_number_example

D.19 Input Example a_voting_example



APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION 271

D .20 Input Example a_wake_up_call

D .20 .1  Details for Links in Input Example

a_Luake_up_call :  all subscribers idle-tick->wake up call

Cal l subscribers id l e } .^ ^  ___—  
Cwake

Triggering stimulus:
up call]}

| t ic J c (T )

Conditions from originating node:
a c c e p ts _ i i \c o m iiv g _ c a l ls  ( 222 ) & 
"d .ia l_ to rv e  ( a ) & 
tim e (0 )&

£

<>
Additional conditions (qualification/instantiation):

O

Conclusions from terminating node:
r i n g _ s i g n a l ( a ) <>

<>
Additional conclusions:

<>
Pro p o sed  

Match sei 

^  Shorn

t r a n s i t i o n  r u l e :  s t a r t _ r e m i n d e r
ect: 1 Select best match yr I

selected arguments in graphic window

[ Cancel j Show match] [ Select ] [ Update ][[ OK j)



D.21 Input Example an_emergency_example

272 APPENDIX D. INPUT EXAMPLES USED FOR EVALUATION

D .21.1 Details for Links in Input Example

an_emergency_eHample: delay-tick->a calling b ^

(^deiay^)-
( a  calling b^) 

Triggering stimulus: '—  — '
| t i c l< ( T )

Conditions from originating node:
d i a l _ t o n e ( a )

Rdditional conditions (qualification/instantiation):

Conclusions from terminating node:
c a l l i n g ( a ,  b )&  
r in g _ s i g n x a l  (  b  )  & 
r i n g _ t o n e ( a )

Additional conclusions:

P roposed  t r a n s i t i o n  r u l e :  em e r g e n c y _ c a l l
Match select:  Select best match

S  Shout selected arguments in graphic window  

[ Cancel ] [ Show match] [ Select ][  Update ] [[ OK j|



APPENDIX E 

Published Paper 1



APPENDIX E. PUBLISHED PAPER i 274

I N B

Case-Based Support for Design 
of Dynamic System Requirements

P e te r J. F u n k  and  D av e  R o b ertso n

E d inburgh  U n iversity  
D epartm ent o f A rtificial In telligence 

80 S ou th  B rid g e , E d in b u rg h  E H 1 IH N , U K  
E -m ail: p e te rf@ a isb .ed .a c .u k , d r@ a isb .ed .ac .u k

P ublished  in:

F unk , P .J ., R o b ertso n  D ., C ase-B ased  S u p p o rt fo r the D esign  o f  D ynam ic 
S ystem  R eq u irem en ts. In: A dvances in C ase-B ased  R easo n in g , Selected  P ap e rs , 
K ean e  M ., H a to n  J .P ., M anago M . (ed s.) , S p ringer-V erlag  (IS B N  3 -5 4 0 -6 0 3 6 4 - 
6), pp . 2 1 1 -2 2 5 , 1995.

This paper is an extended and revised version of the paper published by the authors at the Second 
European Workshop on Case-Based Reasoning, Proceedings, France, pp. 293-301, 1994.

mailto:peterf@aisb.ed.ac.uk
mailto:dr@aisb.ed.ac.uk


APPENDIX E. PUBLISHED PAPER 1 275

Case-Based Support for the Design 
of Dynamic System Requirements*

Peter J. Funk and Dave Robertson

Edinburgh University, Department of Artificial Intelligence 
80 South Bridge, Edinburgh EH1 1HN, UK 

E-mail: {peterf | dr}@aisb.ed.ac.uk

A bs t r ac t .  U sing  fo rm al specifica tions based  on varie ties o f  m ath em atical lo g ic  is b e co m in g  
com m on in the process o f  designing and im plem en ting  softw are. Form al m ethods are usually  
in tended  to include all im portan t details o f the final system  in the specifica tion  w ith the aim  o f 
p rov ing  that it p o ssesses certain  m athem atical p roperties . In large, com plex  system s, th is  
task  requires so p h istica ted  theorem  prov ing , w hich can be difficult and c o m p lica ted . 
T e lecom m unication  system s are large and com plex, m aking deta iled  form al sp e c if ic a tio n  
im p ractica l w ith  curren t tech n o lo g y . H ow ever roughly  form al “ sk e tch es” o f  the b e h av io u rs  
these serv ices provide can be produced, and these can be very helpful in locating  w hich serv ice  
m igh t be re levan t to  a given problem . Our case-based approach  uses coarse-g ra ined  
req u irem en ts spec ifica tion  sketches to ou tline  the basic behav iour o f  the system 's fu n c tio n a l 
m odules (called  serv ices), thereby a llow ing  us to iden tify , reuse and adapt requ irem ents (from  
cases sto red  in a library) to construct new  cases. By using cases that have already been tes ted , 
in tegrated  and im plem ented , less effort is needed to produce requirem ents sp ec ifica tio n s on a 
large  scale. U sing a h y p o th e tica l te lecom m unication  system  as our exam ple , we shall show  
how  co m p arativ ely  sim ple  logic can be used to capture coarse-grained  beh av io u r and how a 
case-b ased  approach  benefits  from  this. The input from  the exam ples is used b o th  to id en tify  
the cases w hose beh av io u r corresponds m ost closely  to the designer's  in ten tio n s  and to adapt 
and finally  verify  the p roposed  so lu tion  against the exam ples.

1. Definition of Problem

One o f the main problem s facing designers is adding changes and m odifications to an 
existing system  in order to m eet new dem ands. Because telecom m unications systems are 
long-term  investments, existing systems are constantly being extended to m eet new 
dem ands from  custom ers. As a rule, most code in a telecom m unications system is 
successively replaced over a fifteen-year period (and the appropriate hardware updates 
made), so that the system  can m eet all its new requirements.

The purchase of new telecom m unication services is a m atter o f im portance to both  

custom ers and suppliers, therefore today new services are very carefully defined, albeit in 

inform al docum ents which are often contractually binding. O ur CABS system  (CAse- 

Based requirem ents Specification [10, 11]), takes behavioural exam ples which define a 

service's desired behaviour (see figure 1 ) as input and produces transition rules (called 

partial rules) that cover the same behaviour as the input examples. These partial rules are 

then used in a m atching process to identify similar, previously form alised services and 

transition rules, which have already been tested and integrated

* T his research  was supported  by the M arcus W allenberg  Foundation  for S c ien tific  R esearch and Education  

and EU A  T elecom m unication  System s L aboratories, Sw eden.



276 APPENDIX E. PUBLISHED PAPER 1

Behavioural Example Sketches

Previous telecom, system design capturing New telecom, system design capturing
behaviour of telecom, services 1 .. m behaviour of service 1 .. m+1

Fig. 1. B ehavioural exam ple, se rv ices and the fu ll design  o f  the system .

with other services. By reusing them, we should reduce the time needed to develop, test 

and integrate the new service requirem ents with the other services it has to interact with. 

This allows us at an early stage to provide the custom er and supplier with the ability to 

explore the dynam ic behaviour o f the new service (by sim ulation o f the form alised 

requirem ents), before any time and effort has been spent on design and im plem entation. 

It is very beneficial to clarify and correct any disagreem ent on functionality at this stage.

Each sheet in the bottom  left corner o f the diagram  represents a collection o f p re 

viously designed and integrated services, com posed o f very com plex configurations o f  

system com ponents. The new service requirem ents (of which the form alised requirem ents 

is a small but im portant part) has also to be designed and integrated. Form alised 

requirem ents can be used in a variety o f ways to enhance the traditional software 

developm ent process [4], e.g., as a reference by which to guide design, to generate test



APPENDIX E. PUBLISHED PAPER 1 277

cases [24], and to map onto design com ponents [22], etc. If  we have access to the relation 

between all previously designed and im plem ented parts, and their originating coarse

grained service requirem ents, we may assist the designers in choosing parts for reuse, by 

pointing out where m odifications have to be made, when producing a design o f the new 

service (thus taking us to our end point in the bottom  right corner o f figure 1). We do 

not address the task o f producing a final design.

The m ain objective o f this paper is to give an overview o f our approach, which in 

volves com bining case-based reasoning with formal m ethods in order to benefit from  the 

reuse o f previously form ulated requirem ents in the design o f large systems. Section 2 

briefly describes CABS relations to form al m ethods. Section 3 exam ines CABS in its 

context o f case-based reasoning. Section 4 gives a brief overview and som e exam ples o f  

the logic used for representing cases in the case library. Section 5 gives an exam ple o f  

input to CABS, and explains how transition rules are generated from  it. Section 6 exam 

ines how input cases are matched to cases stored in the case library. This section also o f 

fers illustrations o f the set theoretical approach as well as the pseudo code for the 

m atching algorithm . Section 7 gives a brief account o f how specifications are adapted 

and tested. Section 8 explores some related work. Finally, section 9 sum m arises the re 

search.

2. Requirements Specifications

M uch effort has been m ade over many years to bring form al m ethods into use in in d u s

try. The fact that they are nevertheless not widely used may indicate that they are not yet 

m ature, or that they are m isunderstood by industry, or that industry has difficulty in te

grating them  into current software developm ent processes [15]. A lthough individual 

elem ents o f a reactive system 's behaviour may be am enable to representation and 

verification using formal m ethods, scaling up this approach to the specification o f large 

com plex system s appears to be difficult.

If  we are to specify the com plete behaviour of a large reactive system  in detail in a 

single form alism , we may end up needing sophisticated logics and sets o f axiom s that can 

handle concurrency, time constraints, indeterm inism , asynchronism , statistics, etc. The 

resulting com plexity  o f proving theorem s and sim ulating dynam ic behaviour can be 

difficult to handle. In addition, many o f the form alism s used for com plex specifications 

are not "executable", and therefore do not allow developers to explore the dynam ics o f  

the specifications.

However, if  we sim ply wish to outline the original requirem ents, as opposed to 

providing a com plete formal specification (including error handling, odd cases, unusual



interactions, etc. [28]), it is usually sufficient to consider a sim plified view. W e call such a 

view a requirem ents specification, since these are the original requirem ents, not a 

com plete specification. We note in passing that these are not the only possible 

requirem ents which one m ight collect for such a system  -  they are m erely a particu lar 

type o f functional requirem ent.

278 APPENDIX E. PUBLISHED PAPER 1

3. Case-Based Reasoning for Requirements Capture

CABS is closely structured accordingly to the four REs (Retrieve, Reuse, Revise, Restore, 

[1]) in the case-based reasoning cycle (see figure 2). CABS uses a sim ple predicate logic 

to represent, in the case library, only the coarse-grained behaviour o f functional elem ents 

that have already been designed and im plemented. This logic is able to represent stimuli, 

facts, responses and sim ple transition rules (as shown in section 4). A case in the case 

library is a set o f transition rules (a service). The logic

Input, g iven as exam ples o f C ase L ibrary

R
e
s
t
o
r
e

Provide jn o re  
input exam ples

Fig . 2. O verv iew  o v er the C A B S system



APPENDIX E. PUBLISHED PAPER 1 279

used to represent the dynam ic behaviour o f  cases gives us access to the coarse-grained, 

dynam ic behaviour o f each case -  which provides the basis for choosing fully specified 

indexes [19] and for testing new cases.

The designer provides input to the system  in the form  o f exam ples of the new 

required behaviour and the first task (upper left box in figure 2 ) is to prepare the input 

for the m atching. CABS translates the input exam ples to a set o f transition rules, which 

are under-specified since they do not give all details and only describe parts of the 

behaviour and hence the produced transition rules are called partial rules (see section 5 

and 6).

The partial rules enable us to determ ine the sim ilarity betw een the behaviour o f a case 

in the case library and the behaviour o f the new case outlined by the designer (and to 

indicate where the differences lie). The system  identifies the cases that exhibit behaviour 

m ost sim ilar to the new behaviour and uses them  to construct a proposed solution. In  

addition, behavioural elem ents inside cases are accessible in this notation and so elem ents 

o f a case can be used to construct a new solution.

The revision phase relies on the sim ulator and theorem  prover (see section 7). By 

using a sim ulator, we autom atically verify w hether the proposed solution covers the 

behaviour exem plified in the input. If  CABS discovers any discrepancies at this sem antic 

level, it makes an attem pt to adapt them, or points out where the differences lie, and 

requests further refinem ent o f the input. The theorem  prover m ay also be used to 

identify parts that need adaptation.

Finally the user can use the sim ulator and the theorem  prover to explore whether the 

new form alised service meets his intention. If not, he provides m ore input exam ples, or, if 

his idea o f the behaviour has changed, he m odifies the previously given input exam ples. 

A confirm ed solution is then stored in the case library (if it has been successfully d e 

signed and im plem ented), which bring us back up in the right upper com er o f figure 2 .

4. A Simple Case Description Logic

To represent cases, we have chosen a simple logic based on first-order predicate logic 

extended with a fram e axiom  [10,7,13]. Note that since we are using our coarse-grained  

specifications only as a means o f identifying the appropriate designed and im plem ented 

services rather than m odelling all the details o f services, it is sufficient to use a 

com paratively sim ple logic. Sim plification gives us further advantages by m aking the 

specification m ore accessible to users. For example, it is easier to state behavioural 

sequences because we ignore problem s arising from  asynchronous events. It is also 

possible to provide tractable m ethods for interfacing to the logic via natural language 

and/or graphical systems (see e.g. [8, 5, 6, 25, 9]). The behaviour sequences may also be



280 APPENDIX E. PUBLISHED PAPER 1

used to test the final specification and for test generation for the final im plem entation, in 

addition to tests generated form  the specifications [24],

The logic represents transition rules that handle changes, and intra-state rules that 

handle dom ain know ledge inside states, i.e. facts true at time tj (see figure 3). A fram e 

axiom moves all unchanged facts from  the previous state T, to the next one, T + l. A 

transition rule is constructed using two types o f term:

o(T, E) denotes that an event, E, occurred at time T.
p(T, P) denotes that the property, P, holds in the state o f the system  at tim e T.

Preconditions o f transition rules m ust contain a single, triggering event and may also 

contain a conjunction o f system  properties (or their negation) which determ ines whether 

the transition rule can apply to the current system  state. The conclusion o f a transition 

rule contains a conjunction o f properties (or their negation) which will hold in the 

succeeding state after the transition rule is applied. An exam ple o f a transition rule is 

given below, where offhook is the stimulus signalling that the user has lifted his/her 

receiver:

Transition Rule: norm al_offhook 

V SubscA

o(T+1, o ffhook(SubscA)) & 

p(T, idle(SubscA)) &

->p(T, 3 SubscB calling(SubscB,SubscA))

— > -ip(T+1, idle(SubscA)) &

p(T+1, d ia ltone(SubscA)).

Stimuli are sequenced in order to sim plify the logic: we do not attem pt in this h igh- 

level specification to specify what should happen when signals are com peting (e.g. if two 

users call a third user at exactly the same time), and we suggest that the decision o f how 

to resolve such situations is not necessarily a requirem ents choice, and can be dealt with 

in the design process. F igure 3 shows the model used in the form al requirem ents 

specifications of telecom m unications services. Sequences of stimuli which are provided 

by users o f telephones are used to activate appropriate



APPENDIX E. PUBLISHED PAPER 1 281

Logical System

Fig. 3. Model of the dynamic behaviour of telecommunications network.

transition rules. As a consequence, a sequence o f states is generated, containing sets o f  

facts that describe the system after each event ( f  represents the fram e axiom , which 

transfers unaltered facts from  the previous time t to the current tim e t+1).

Because o f the sim plifications which we have made in our high-level specification 

language, we are able to sim ulate the behaviour obtained from  these specifications by  

using a fairly sim ple theorem  prover and sim ulator (see section 7). The theorem  prover 

and sim ulator have been im plemented in Prolog, together with a basic environm ent which 

allows the designer to test the specification and refine it in accordance with her ideas. It is 

necessary that this process be m anual since we cannot know what the designer has in 

mind. W e cannot require that she m ake a com plete formal and correct description o f her 

ideas in one step. M ost likely, she will refine her ideas and give them  a formal representa

tion after she has sim ulated the form alised behaviour.

5. Assigning B ehavioura l Fea tures  to Cases

In the telecom m unications domain, it is natural for users to describe new services by 

giving exam ples o f the behavioural sequences that they should produce. The task o f o u r 

case-based system  is to locate existing services which m ost closely m atch these 

behavioural exam ples, based on their high-level specifications [17]. Since our case li

brary consists o f sets o f transition rules, we must provide a means o f m atching these rules 

to behavioural examples. The behavioural exam ples m ay be given in a variety o f  

notations, such as restricted natural language, graphical notations, scenarios etc., as long 

as they can be translated to a set o f partial transition rules. We have chosen an 

interm ediate form al representation, used as a starting point in producing a set o f tran 

sition rules capturing the behaviour. The following is a behavioural exam ple in its 

interm ediate notation accom panied by a translation into English:



282 APPENDIX E. PUBLISHED PAPER 1

p h o n e N u m b e r(A ,lll)  & 

phoneN um ber(B ,222) & 

idle(A) & 

idle(B)

A 's  phone num ber is 111. 

B 's  phone num ber is 2 2 2 .

Subscriber A is idle. 

Subscriber B is idle, 

then

offH ook(A ) A lifts his receiver.

dials(A ,222)

dialTone(A )

-> and as a consequence 

A hears a dial tone, 

then

A dials 222.

ringT one(A )&

ringSignal(B )&

-> and as a consequence 

A hears a ringing tone. 

B hears a ringing signal.

Table  1. Intermediate notation and translation to English.

A behavioural exam ple starts with a conjunction o f terms denoting the main features 

classifying exem plified states in which the follow ing event (after the sym bol 

occurs. T hereafter a sketch of som e o f the term s outlining the main characteristics 

of the resulting state are given (after the sym bol The last two steps m ay be

repeated.

It is easy to generate a set o f rules that precisely covers the behaviour given in a 

behavioural exam ple. However, what we want is a set o f rules that covers general 

behaviour, w ithout excluding all other behaviour. Since hum ans often leave out obvious 

statements, we may wish to add some of the assum ed dom ain knowledge. For this and fo r 

handling instances and variables we need some heuristics. This is acceptable, since the 

transition rules generated from  the input are mainly used as indexing features in the 

matching process. The original input exam ples are also kept in their initial form, to be 

used later in validation and verification.

6. Re-Using and  Finding  the Best M atched  Case

In section 5 we described how to put behavioural exam ples into rule form  in preparation  

for the matching process. W e shall now sketch the m atching algorithm  itself. Our aim  is 

to reuse as m uch as possible o f previously specified form al requirem ents, which is 

possible if the new dem ands on the system are sem antically sim ilar to previous dem ands 

and the previous dem ands are adaptable [26].



APPENDIX E. PUBLISHED PAPER 1 283

W e treat the stimulus, condition and conclusion elem ents o f the transition rules as sets 

o f atom ic terms. W ith this approach it is easy to identify m atching rules. F igure 4 gives 

exam ples o f different matches o f elem ents from  transition rules in the case library, and 

partial rules.

Case element covers 
partial rule element

Full match of 
elements

Intersecting
elements

C

Partial rule elem ent 
covers case element

Fig. 4. Examples of different matches of transition rule elements.

An elem ent in a rule is either a stimulus, condition or conclusion elem ent. An elem ent 

is a set o f terms (a stimulus elem ent is always a set with only one term). P denotes an ele

ment in a partial transition rule. C  denotes the corresponding elem ent o f the case library  

rule. /  stands for the intersecting terms in these two sets o f terms. The relation between P, 

C  and /  is used as a basis for the final scoring. An exam ple o f  two condition elem ents 

from  two transition rules are:

Condition element in rule Pi: p(T,idle(X)), p(T,last_d ia ld(X ,N r))

Condition elem ent in rule Cj: p(T,redirect(X ,N r)), p(T,id le(X))

The intersection I is in this m atch a set containing one term, {p(T,idle(X)}. The follow ing 

is an exam ple o f the process from  behavioural exam ple to a scored match:

B ehavioural exam ple (the notation for which bears sim ilarities to signalling schemes 

for inform al telephone service examples, see e.g. [18]):

idle(A) -  offH ook(A ) -> dialTone(A ) & idle(B) -  dials(A ,222) -> ringTone(A ) & 

ringSignal(B ).

Translating this into two partial rules gives:

Partial Transition Rule P1: V A

o(T+1 ,o ffH ook(A )) & 

p(T ,id le(A ))

-> p(T+1 .d ia lT one(A )).



284 APPENDIX E. PUBLISHED PAPER 1

Partial Transition Rule P2: V A NR B

o(T+1 ,dia ls(A,NR)) & 

p(T ,id le(B))

-> p(T+1 ,ringTone(A)) &

p(T+1 ,ringS ignal(B )).

In most cases this translation is a straightforw ard process, but in som e situations 

heuristics are used to m ake an assum ption about what the user m eans or to keep the 

partial rules within the restrictions opposed on transition rules. This can be accepted since 

we mainly use the partial rules to index the case library. One heuristic is used to avoid 

introducing unbound variables in a transition rules conclusion. In the above exam ple this 

is noted by the fact that idle(B) in the behavioural exam ple is only used as a p recond ition  

in P2 . If  it had also been used as a conclusion in rule P1, we would have introduced an 

unbound variable in the conclusions, which would conflict with our restrictions.

C1 and C2 are two transition rules (oversim plified to focus the attention on m atch ing) 

belonging to the case “standard telephone call” :

Transition Rule C1: call busy

V SubscA NR SubscB 

o(T+1 ,d ia ls(SubscA,NR)) & 

p(T ,answ ers_on_num ber(S ubscB,N R )) & 

-ip (T ,id le (S ubscB ))

-» p(T+1 ,busy_tone(S ubscA )) & 

p(T+1 ,ca ll_busy(S ubscA ,N R )).

Transition Rule C2: normal call

V SubscA NR SubscB 

o(T+1 ,dia ls(SubscA,NR)) & 

p(T ,answ ers_on_num ber(SubscB,N R )) & 

p(T,idle(SubscB))

-» p(T+1 ,ringTone(SubscA)) & 

p(T+1 ,ringS ignal(S ubscB))&

p(T+1 ,las t_ca lled_nr(S ubscA ,N R )).



APPENDIX E. PUBLISHED PAPER 1 285

Only the m atching o f P2 is illustrated. W e start by com paring P2 with C1. Som e parts o f  

the rules so standardised that they can be excluded in the m atching process (e.g. time 

inform ation and quantifiers). All three elem ents (stimulus, condition, conclusion) are to 

be m atched, we start with the stimulus element:

Stimulus element in P2: dials(A,NR)

Stimulus element in C 1: dials(SubscA.NR)

This gives a full m atch (identifying appropriate variables in the two terms).

Condition element in P2: idle(B)

Condition element in C1: answ ers_on_num ber(SubscB ,N R ),

-nidle(SubscB)

The condition elem ent in the rule C1, from  the case library, has a negated form  o f an 

expression in P2. At this stage we simply conclude that the two sets do not have any 

com m on term s and contain one negation (used later when elem ents are finally ranked). 

The intersection o f the conclusion elem ent in C1 and P2 does not contain any elements, 

hence P2 and C1 only have a full m atch in their stimuli.

W e now continue by matching P2 with C2, where again their stimuli m atch fully. We 

then com pare their conditions.

Condition element in P2: idle(B)

Condition element in C2: answ ers_on_num ber(SubscB ,N R ),

idle(SubscB)

The condition o f rule C2, from  the case library, covers the condition o f P2, hence the 

condition o f C2 is more restricted than P2. Sim ilarly the conclusion elem ent o f C2 

contains one additional conclusion term.

Conclusion element in P2: ringTone(A), ringSignal(B)
Conclusion element in C2:ringTone(SubscA),

ringSignal(SubscB),

last_ca lled_nr(S ubscA ,N R )

Finally we em ploy a heuristic scoring algorithm  to produce a num erical triple fo r 

each m atch and sort the matching rules in the case library, 'best first'. The approach taken 

is to give a percentage figure to each m atching elem ent in the rules (com pare figure 4 

with table 2).

P2 matching C 1:



286 APPENDIX E. PUBLISHED PAPER 1

The intersection I is 100% of C1-stimulus and 100% of P2-stim ulus.

The intersection I is 0% o f C1-condition and 0% o f P2-condition.

A negation o f a term  exists.

The intersection I is 0% o f C1-conclusion and 0% o f P2-conclusion.

P2 m atching C2:

The intersection I is 100% of C2-stimulus and 100% of P2-stim ulus.

The intersection I is 50% o f C2-condition and 100% of P2-condition.

The intersection I is 67% o f C2 -conclusion and 100% of P2-conclusion.

Table  2. Coverage percentage of intersection for C1 and C2.

The fact that there exists a negation o f a term in the m atch o f the P2-condition and 

the C1-condition indicates that it is a m ismatch, hence C1 may be excluded from  fu rth e r

calculations. In CABS the user can decide whether or not to apply this filtering criterion

to negation. C om parison of the scores for the three individual elem ents o f the m atch 

provides us with a final ranking o f each rule.

The pseudo-code for the m atching algorithm  appears below (all the dom ain-specific 

param eters have been omitted):

For all partial transition rules generalised from  the input P n:
For all transition rules in the case library, Cm:

For p in {stimulus elem ent, condition elem ent, conclusion element}:

Calculate the intersection, Ip for Pnp and Cmp 

Calculate the coverage percentage o f Ip on Pnp,

Calculate the coverage percentage o f Ip on Cmp.

Determ ine the final score for Cm by:

A pply filtering criterion to negation (if a negated term  exists, we m ay 

either choose to ignore it or to weight the result, depending on how the 

user has param eterized the system) in order to get a final score for Cm as a 

match for Pn .

For all cases (requirem ents specifications), S:

For all partial rules Pn:

Take the score from  the rule in S which has the best score as a m atch for Pn 

and use it in order to score S in total.



APPENDIX E. PUBLISHED PAPER 1 287

7. Revising the  Proposed  Solution

CABS perform s four steps o f revision (see figure 2): test proposed solution against input 

(sim ulator) and against general dom ain know ledge (theorem  prover); adapt any 

differences or ask user for clarification (by providing or refining input exam ples); f i

nally the user explores the proposal with the sim ulator and theorem  prover and confirm s 

the behaviour or refines/m odifies his input examples.

To perform  a verification between the input exam ples and the proposed solution, we 

sim ulate the proposed solution and use the interm ediate input as input to the sim ulation. 

If the proposed solution covers the behaviour o f the input, the next step is to prove 

general dom ain properties about the solution. Exam ples o f such properties in te lephone 

services may be:

1. A subscriber cannot be in speech connection with himself.

2. In all situations a subscriber should be able to request to leave the current service 

(on_hook).

For the purpose o f refining and testing the requirem ents specifications, a user in 

terface is provided for the sim ulator and theorem  prover. The sim ulator allows the user to 

give sequences o f stimuli and evaluate whether the response exhibited by the form al 

specification corresponds to his intentions. This step is im portant in refin ing the design 

er's idea o f how the service should behave in its final state. If  the service does not 

correspond to his intention, the user has to provide m ore input exam ples, or refine 

previous given input examples. One other advantage o f sim ulation, com pared with 

theorem  proving, is that it is more resistant to inconsistency in the form alised re 

quirem ents, which is to be expected during the refinem ent process.

An exam ple o f a sim ulation is given in figure 5. W e first display the initial facts in our 

sim ulation. If  we want to simulate subscriber a l  going off-hook at time 1, we type 

0(1 ,offhook(a1 )). The sim ulator triggers all the rules with offhook as their triggering co n 

dition and with all their conditions true, and thereafter shows the result (facts at time 1 ). 

To check if  our set o f transition rules behaves as expected if subscriber a l  is calling h e r

self, we give the stimulus 0 (2 ,d ialling(a1 ,1 1 1 )). If  a term  is crossed out, it is not true at 

this time, but was true in the previous state. If  a term is shown in bold face, it is a new 

term  that has been added.



288 APPENDIX E. PUBLISHED PAPER 1

>Load service: basic_phone_call. 
state-transition rules C0,C1 ,C2,C3 

>initialise one_subscriber.

Fig. 5. Example of a simulation

The sim ulation system  is highly interactive with the designer because full expansion  

of all possible states would require a huge am ount o f m em ory in any non-trivial 

specification. Fortunately, expanding the search space interactively by only a lim ited 

num ber o f steps at a time is already of value in our dom ain since phone users are not 

usually expected to take part in any com plex sequence of actions before returning to the 

initial state (hook on). Proving that a particular state cannot be reached in any sequence 

of, say, 8 steps will therefore be desirable for the user and will help him  to validate his 

formal requirem ents specifications.

8. Related W ork

Producing form al requirem ents from  inform al ones is an active research area. M uch 

research in formal m ethods aims at producing detailed specifications of software, and the 

level of detail and difference in abstraction between the specification and the software to 

be produced is often small. We have adopted the approach o f highly restricting the 

form alism  and only outlining the main behaviour in our requirem ents specifications. 

W ith this approach we avoid some of the problem s o f using form al specification. T here 

are similarities between the CABS approach and systems such as A RISE [6], AIR [20] 

and WATSON.

W ATSON [17] is in essence based on the same ideas as CABS and has influenced ou r 

research. W ATSON also starts with scenarios (sim ilar to behavioural exam ple sketches) 

which are used in a variety o f different ways to produce formal requirem ents o f  

telephone services. W ATSON uses extensive dom ain know ledge (about te lephone 

hardware, network protocols, preferred styles o f control skeleton design, etc.) in the



APPENDIX E. PUBLISHED PAPER 1 289

process. The user is consulted to resolve problem s that the system  cannot resolve itself. 

One o f the key differences is that CABS takes the approach o f using exam ples to g en e r

ate features in order to identify and reuse previously specified services. W ATSON has 

proved to be difficult to scale up for realistic use [24]. Our belief is that case-based 

reasoning and extensive reuse o f previous requirem ents m ay help to bridge the gap 

betw een inform al requirem ents and formal requirem ents and aid in the task o f updating  

a previous im plem entation to capture the new requirem ents.

There has been m uch research in the area o f applying case-based reasoning to the 

dom ain o f design. Exam ples of systems using case-based reasoning to tackle such 

com plex tasks are CADET [27], BOGART [21], D EJA V U  [2], K RITIK  [14] and 

SUPPORT [23]. A num ber o f different approaches are used, such as m ulti-level rep re 

sentations, verifying results by qualitative simulations, and derivational analogy (i.e. the 

storing and reuse of design plans). In particular, case-based planners explore the use o f  

formal logical representations. NETTRA CK  (N etw ork Traffic M anagem ent Using Cases) 

[3] is a system  which uses formal logic and which originally used a representation sim ilar 

to situation calculus related to the representation used in CABS. CABS narrow focus on a 

particular class o f specifications allows us to autom ate the case-based reasoning process 

considerably, com pared with m ore general systems.

9. C onclusions

We have presented a system  that produces form alised requirem ents, capturing the d y 

nam ic behaviour o f a particular class of requirem ents (sequential, non distributed, d e 

term inistic). Given an outline o f a required behaviour, the system  produces a form al 

requirem ents specification capturing certain dynam ic aspects o f the requirem ents, co n 

structed from  previous cases and parts o f cases. Selecting the way in which cases should 

be represented is an essential aspect o f providing case-based support for specification o f  

system  requirem ents. A case should be able to represent the dynam ic behaviour that the 

specification calls for. In our approach, the requirem ents designer has only to give 

exam ples o f a new service's behaviour. The input is translated to a representation, m ore 

suitable for m atching, and a set o f generalised partial transition rules is produced. These 

rules are then used in the m atching process, and m odules with sim ilar behaviour are 

identified by m eans o f a simple and sufficient m atching algorithm  based on set theory.

The logic used for the representation o f cases contains transition rules, terms (stimuli, 

responses, facts) and a fram e axiom  handling change o f time (discrete tim e steps). This 

logic has proved to be sufficient for outlining and testing (by sim ulation and theorem  

proving) the behaviour o f some telecom m unications services' coarse-grained behaviour 

[12]. The com bination o f simple representation and a case-based approach that we 

advocate can be successfully applied in order to reuse elem ents o f earlier requirem ents.



290 APPENDIX E. PUBLISHED PAPER 1

Because the older cases describe the behaviour o f existing services that have been fu lly  

tested, integrated and im plem ented, the effort required to integrate a new service with 

these other services - or to test it - is considerably reduced.

If the behaviour o f a case does not fully conform  to the behavioural exam ples, the 

missing elem ents o f behaviour can be filled in by using the rules, generalised from  the 

examples. This will produce a naive solution - which the user may subsequently refine 

and test - that conform s to the behavioural examples. Since the logic is com parab ly  

simple, it is easy to verify by sim ulation that the identified service and its transition rules 

correspond to the behaviour in the input examples. The user can also sim ulate the 

system 's behaviour to exam ine other behaviour which he may not have stipulated in the 

original examples, but which may have arisen as a result o f reuse (such as interaction with 

other services).

R eferences

1. A. Aamodt, E. Plaza, Case-Based Reasoning: Foundational Issues, Methodological Variations, and 

System Approaches. A1 Communications, vol. 7 no. 1, 39-59, 1994.

2. T. Bardasz, I. Zeid, Dejavu: A Case-Based Reasoning Designer’s Assistant Shell. Artificial Intelligence 

in Design ‘92, J.S. Gero (ed.), Kluwer Academic Publishers 477-496, 1992.

3 . R. Brandau, A. Lemmon, C. Lafond, Experience with Extended Episodes: Cases with Complex Temporal 

Structure. Workshop on case-based reasoning, Morgan Kaufmann, 1-12, 1991.

4 . A. Bundy: Tutorial notes: reasoning about logic programs. Second International Logic Programming 

Summer School, LPSS '92. Proceedings, G. Comyn, N.E. Fuchs, & M.J. Ratcliffe (eds.), Springer- 

Verlag, 232-277, 1992.

5. H. Dalianis: Aggregation in the NL-generator of the Visual and Natural Language Specification Tool. 

The Sixth International Conference of the European Chapter o f the Association for Computational 

Linguistics, EACL-95, Dublin, Ireland, 1995.

6. E. Davis: Representations o f Commonsense Knowledge, chapters 2 and 3. Morgan Kaufmann, 1990.

7. J.-P. Echarti, G. Stilmarck: A logical framework for specifying discrete dynamic systems. Technical 

Report, Ellemtel Telecommunication Systems Laboratories, 1988.

8 . M. Engstedt: A Flexible Specification Language using Natural Language and Graphics. MSc thesis,

University of Edinburgh, 1991.

9 . N. Fuchs, R. Schwitter, Specifying Logic Programs in Controlled Natural Language. Workshop on

Computational Logic for Natural Language Processing, Edinburgh, 1995.

10. P.J. Funk: Development and Maintenance of Large Formal Specifications Supported by Case-Based 

Reasoning. Technical Report TP026. University of Edinburgh, 1993.

11. P.J. Funk, D. Robertson: Requirements Specification of Telecommunication Services Assisted by Case- 

Based Reasoning. The 2nd International Conference on Telecommunication Systems, Modelling and 

Analysis, Nashville, 160-169, 1994.

12. P.J. Funk, S. Raichman, ROS, an Implementation Independent Specification for ISDN. Technical 

Report, Ellemtel Telecommunication Systems Laboratories, 1990.



APPENDIX E. PUBLISHED PAPER 1 291

13. M. Gelfond, V. Lifschitz: Representing action and change by logic programs. Logic Programming, 

301-321, 1993.

14. A.K. Goel, Representation of Design Functions in Experience-Based Design. Intelligent Computer 

Aided Design, Elsevier Science Publishers, 283-303, 1992.

15. A. Hall: Seven Myths of Formal Methods. IEEE Software, September, 11-18, 1990.

16. W.L. Johnson, K.M Brenner, Developing Formal Specifications from Informal Requirements. IEEE 

Expert, vol. 8, no. 4, 1993.

17. V.E. Kelly, U. Nonnenmann: Reducing the Complexity of Formal Specification Acquisition. 

Automating Software Design, M. Lowry, & R. McCartney (eds.), 41-64, 1991.

18. S. Klusener, B. Vlijmen, A. Waveren: Service Independent Building Blocks-I; Concepts, Examples and 

Formal Specifications. Technical Report P9310, University of Amsterdam, 1993.

19. J.L. Kolodner: Case-Based Reasoning. Morgan Kaufmann (1993).

20. N.A.M. Maiden, A.G. Sutcliffe, Requirements Engineering by Example: an Empirical Study. 

Proceedings o f IEEE International Symposium on Requirements Engineering, 104-111, 1995.

21. J. Mostow, M. Barley, T. Weinrich, Automated reuse of design plans. Artificial Intelligence in 

Engineering, vol. 4, no. 4, 181-196, 1989.

22. K. Nakata: Behavioural Specification with Nonmonotonic Temporal Logic. D. Finn (ed.), Preliminary 

Stages o f Engineering Analysis and Modelling Workshop, AID '92, 41-45, 1992.

23. Y. Nakatani, M. Tsukiyama, T. Fukuda, Engineering Design Support Framework by Case-Based 

Reasoning. ISA Transaction, vol. 31, no. 2, 235-180, 1992.

24. U. Nonnenmann, J.K. Eddy, K1TSS - A functional Software Testing System Using a Hybrid Domain 

Model. IEEE, 136-142, 1992.

25. S. Preifelt, M. Engstedt, Results from the VINST Project (In Swedish). Technical Report, Ellemtel Tele

communication Systems Laboratories, 1992.

26. B. Smyth, M.T. Keane: Retrieving Adaptable Cases. In: S. Wess, K.-D. Althoff, & M.M. Richter (eds.), 

Topics in Case-Based Reasoning, Springer-Verlag, 1994.

27. K. Sycara, D. Navin chandra, R. Guttal, J. Koning, S. Narasimhan, CADET: A Case-Based Synthesis 

Tool for Engineering Design. International Journal o f Expert Systems, vol. 4, no. 2, 167-188, 1992.

28. P. Zave, Feature Interactions and Formal Specifications in Telecommunications. Computer, vol. 26, no. 

8 , 1993.



APPENDIX F 

Published Paper 2

293



294 APPENDIX F. PUBLISHED PAPER 2

&

Capturing and Matching Dynamic Behaviour 
in Case-Based Reasoning

P ete r J. F u n k  and  D av e  R obertson

E d in b u rg h  U n iversity  
D epartm ent o f A rtificial In telligence 

80 S ou th  B rid g e , E d in b u rg h  E H 1 IH N , U K  
E -m ail: p e te rf@ a isb .ed .a c .u k , d r@ a isb .ed .ac .u k

P ub lished  in:

F u n k , P .J ., R o bertson  D ., C ap turing  and  M atching D ynam ic B eh av io u r in C ase- 
B ased  R easo n in g , In: P ro g re ss  in C ase-B ased  R easo n in g , P ro ceed in g s , Ian  D . 
W atso n  (ed .), S p rin g e r-V erlag  (IS B N  3 -5 4 0 -6 0 6 5 4 -8 ), pp. 85-90 , 1995.

mailto:peterf@aisb.ed.ac.uk
mailto:dr@aisb.ed.ac.uk


APPENDIX F. PUBLISHED PAPER 2 295

Capturing and Matching Dynamic Behaviour 
in Case-Based Reasoning*

Peter J. Funk and Dave Robertson

Edinburgh University, Department of Artificial Intelligence 
80 South Bridge, Edinburgh EH1 1HN, UK 

E-mail: (peterf | dr} @aisb.ed.ac.uk

A b s tra c t. In the telecommunications domain, reuse of service specifications is a major 

issue. However, it has proved difficult to modularise services because of the high degree of 

interaction between them. Direct application of formal logics to the specification of services 

has proved impractical because of the size of the services. However, much of this complexity 

stems from the details of implementation of the services; by contrast, the principal 

behaviours of a service are often approximated by simple varieties of logic which are easily 

accessible to users. We address the problem of determining, from a library of services, those 

which might be appropriate for reuse in constructing a new service. Simple behavioural 

sequences are used to provide features within a CBR system which matches these to 

behavioural examples supplied by users. By side-stepping the problem of formally specifying 

the entire service, we aim to promote greater reuse of services while avoiding a commitment t o 

full logical specification.

Non-mathematicians often have difficulty in expressing requirements formally. By using a 

CBR approach the user can sketch out simple, familiar behaviours and with these examples the 

system is able to retrieve relevant cases and interactively produce a formal requirements sketch 

capturing the new required behaviour. A case in the case library encapsulates a particular 

formalised behaviour in a simple logic which is sufficient to capture the key dynamic 

behaviours of the domain. With a simulator the user can evaluate the behaviour without being 

confronted with the formal representation itself. Our domain is telephone features such as call 

waiting, redirect call, call back. These telephone services are stored in the case library as 

cases, each consisting of a set of transition rules. In previous papers we have described the 

general architecture of the system (see for example [Funk & Robertson 1994]). In this paper 

we focus on matching dynamic behaviour and the formal representation of the cases.

* This research was supported by the Marcus Wallenberg Foundation for Scientific Research and Education 

and ERICSSON Utvecklings AB, Sweden.



296 APPENDIX F. PUBLISHED PAPER 2

1. In troduction

The CABS system (see [Funk & Robertson 94]) approaches the design o f form al 

requirem ents specification o f telecom m unication services. The user gives coarse-g rained  

examples of the required  behaviour, which are then m atched against cases in a case 

library in order to identify sim ilar parts o f previous cases (requirem ents specifications). 

These previous cases are then used in the process o f producing a new specification. This 

approach reduces the effort required to produce requirem ents specifications since parts 

of existing specified, tested and integrated specifications may be reused to construct the 

requirements. This Case-Based approach relies on sim ple form al notation for features o f  

the cases, capturing the required dynam ic behaviour. This notation enables the 

com parison of cases with respect to these features, suggesting where they may exhibit the 

same behaviour and w here they might differ.

The CABS system  aims to cover a small section o f the dom ain of telephone service 

requirem ents including the dynam ic requirem ents o f the services ’’red irect ca ll” , “ w ake 

up ca ll” “call back” , etc. These are exam ples o f services which are frequently  reused. 

The case library contain cases which capture the behaviour of the requirem ents o f a 

specific telephone service. In this and sim ilar dom ains, it is not m erely a m atter o f  

producing a new solution to capture the required behaviour o f the new functionality, we 

also have to specify the requirem ents o f interaction with other services as well as 

behaviour in exceptional circum stances. If  we can reuse a past case in such a dom ain, we 

may benefit from the fact that the case is already integrated with other services, and that 

the behaviour o f such exceptions may already have been specified.

This paper focuses on how to represent cases which them selves represent dynam ic 

behaviour, and also on the com parison o f cases. A brief outline o f  the CABS system  is 

given in Section 2. In Section 3 the requirem ents o f cases which capture dynam ic 

behaviour are outlined. Exam ples and an outline o f the formal logic used to store cases 

are given in Section 4. Section 5 discusses dynam ic sim ilarity m easurem ents. F inally  

Section 6 contains a b rief sum m ary and conclusions.



APPENDIX F. PUBLISHED PAPER 2 297

2. B rief Description of the approach  taken  in CABS

In F igure 1 a b rief overview o f CABS is given, structured according to the four REs 

(Retrieve, Reuse, Revise, Restore) [Aamodt & Plaza 94] in the case-based reasoning cycle. 

In CABS the input is given as coarse-grained exam ples o f  the new behaviour. As 

described in Figure 1, the input is translated into a representation in which the necessary 

features for the m atching can easily be accessed. In the m atching process we identify  

transition rules (explained in Section 4) capturing a sim ilar behaviour. T hereafter the 

m odules (sets o f transition rules) are ranked according to their sim ilarity. The m ost 

com m on situation will be that there is one single case in the case library close enough to 

the new case to be used as a starting point for constructing new requirem ents 

specification. In som e situations there are sets o f rules from  different cases which are 

sim ilar to different parts o f  the input. They have to be m erged and m ight need som e 

adaptation in order to produce a proposed solution which is consistent. The adaptation  

m ight sim ply be to add a transition rule connecting two states not captured in the 

retrieved case but captured in the input. Finally the proposed solution is tested and 

further adapted to conform  to the input exam ple and the u ser’s intentions as closely as 

possible.

The representation o f cases as used in CABS needs to m eet a num ber of requirem ents, 

such as being able to reuse cases both in whole or in part, determ ine what parts o f cases 

differ and what parts are similar, and identify inconsistency between parts o f  cases 

m erged in order to produce a proposed solution. In the next Section we will outline the 

main features of such a representation.



298 APPENDIX F. PUBLISHED PAPER 2

Input, given as exam ples o f C ase L ibrary

R
e
s
t
o
r
e

Provide jn o re  _ 
input exam ples

Fig. 1. Overview over the CABS system

3. R epresenting  Dynamic Reactive Behaviour

Representing dynam ic behaviour is an active research area and form alism s like event 

calculus, situation calculus, Tt-calculus, petri-nets, CCS, etc. have been widely explored in 

this context. These representations have the expressive pow er to reason about d ifferen t 

aspects o f temporal behaviour such as com m unicating processes, history, indeterm inism ,



APPENDIX F. PUBLISHED PAPER 2 299

events valid in an open duration, etc. However, we are not concerned with describing all 

the possible behaviours of services -  only an outline o f  the main features of their 

behaviour, which can assist in identifying appropriate services. It is im portant that the 

language we use should be simple enough to be com m unicated to non specialist users, 

since they m ust ultim ately approve the service specified. If we restrict ourselves to 

specifying a single process which accepts discrete sequenced stimuli, a sim ple finite state 

m achine represented in predicate logic (M oor-autom aton, see e.g. [Lewis & 

Papadim itriou 81]) may be used.

This allows us to:

• store a particular behaviour in the form o f a set of transition rules (a case).

• com pare cases and determ ine if they capture the same behaviour.

• determ ine which parts o f two com pared cases correspond and which do not.

• produce a new behaviour by reusing parts o f cases.

• determ ine which parts o f the behavioural exam ple given as input are covered by the

proposed solution, and which are not.

4. A Simple Logic C ap tu ring  Change

The language we use [Funk 93, Echarti & Stalrnarck 88, G elfond & Lifschitz 93] 

contains transition rules (R), stimuli, (S), atomic terms (A) and states (T), which are sets of 

atom ic terms. A stimulus is the only cause of change. A tom ic term s are used to describe 

a state or part o f  a state. A rule contains a set o f preconditions (atom ic terms). If the 

stimulus S has occurred and the precondition is true, the conclusions are necessarily true 

in the next state.



300 APPENDIX F. PUBLISHED PAPER 2

—>

AO & not Aj

Fig. 2. Exam ple o f a transition.

State transition rules have been argued to be sufficient for outlining the main behav iour

of simple telephone services [Funk & Raichm an 90] and we have used these to specify

16 different services. Follow ing is a sim plified exam ple o f a transition rule:

Stimulus : d ia lling (A .N r)
Precondition at T: answer_on(B,Nr) &

-i redirect(Nr,N r2)& 
id le (B ).

Conclusion at T+1: calling(A,B) &
ring_tone(A) & 
ring_signal(B ).

Our syntax assures an ordered sequence o f time points and restricts us to only having 

preconditions about T and conclusions about T+1. This excludes reasoning abou t 

anything other than the immediate past, but gives a simple and com putationally  efficient 

implementation. Using predicate logic gives us access to a num ber o f validation tools fo r 

consistency checking, sim ulation, transform ation etc. (see for exam ple [Bundy 92]). We 

may also add restricted natural language and graphical notations [Dalianis & Hovy 93, 

Davis 90] in order to further aid the user in the validation process of a new service.

5. Similarity M easurem en t of Dynamic Behaviour

There are two steps in identifying useful cases: we have to identify sim ilar cases, and 

thereafter rank these cases according to how easily they can be adapted in order to



APPENDIX F. PUBLISHED PAPER 2 301

produce a solution (see e.g. [Smyth & Keane 93]). To identify w hether a case is sim ilar 

to the input behaviour we have to determine:

• which transitions o f the input exam ple are covered by the case.

• which state transitions are m issing in the case.

• what extra inform ation the case captures and w hether this extra behaviour is o f

interest for the proposed solution.

• if state transitions in the input are not covered, are there transition rules close to the

input and are these candidates for adaptation.

The input exam ples are translated into partial transition rules -  partial since it is 

assum ed that the input exam ples are not com plete but m erely an outline o f the required  

behaviour. H ence the partial ru les’ preconditions may have m issing predicates and the 

conclusions may be incom plete.

If the m atching algorithm  (see [Funk & Robertson 1994] for the algorithm ) does no t 

find an appropriate rule for a state transition we have to either adapt a sim ilar rule from  

the case library or use the transition rule generated from  the input to fill the gap. This 

allows us, at the very least, to come up with a suggestion capturing the same behaviour as 

the input.

6. C onclusions

This paper has provided an overview o f the d ifferent parts o f a case-based reasoning 

system supporting the reuse o f telecom m unication services based on requirem ents 

expressed as dynam ic behaviour. It has focused in particular on the representation o f 

cases and the m atching o f dynam ic behaviour.

W e have outlined how a simple logic is used to capture the behaviour o f cases. Cases 

are indexed using transition rules as features, which enables us to capture sim ple form s of 

dynam ic behaviour and com pare cases with respect to their behaviour. This allows us to 

reuse cases or parts of cases in order to produce a proposed solution.



302 APPENDIX F. PUBLISHED PAPER 2

R eferences

Aamodt, A. and Plaza, E., (1994). Case-Based Reasoning: Foundational Issues, Methodological Variations, 

and System Approaches. AI Communications, Vol. 7, No 1, pp 39-59.

Bundy, A., (1992). Tutorial notes: reasoning about logic programs. Second International Logic 

Programming Summer School, LPSS '92. Proceedings, pp. 252-77, Comyn G., Fuchs N.E., & Ratcliffe 

M.J. (eds.), Springer-Verlag.

Dalianis H. and Hovy E. (1993). Aggregation in Natural Language Generation, The Fourth European 

Workshop on Natural Language Generation, Proceedings, Pisa, Italy.

Davis, E., (1990). Representations o f Commonsense Knowledge, chapters 2 and 3. Morgan Kaufmann.

Echarti, J. P. and Stälmarck, G., (1988). A logical framework for specifying discrete dynamic systems, 

Technical Report, Ellemtel Telecommunication Systems Laboratories.

Engstedt, M., (1991). A Flexible Specification Language using Natural Language and Graphics. MSc thesis, 

University of Edinburgh.

Funk, P. J. and Robertson D., (1994). Case-Based Selection of Requirements Specifications for 

Telecommunication Systems. Second European Workshop on Case-Based Reasoning, Proceedings, 

Keane M., Haton J. P., Manago, M. (eds.), Chantilly, France, pp. 293-301.

Funk, P. J., (1993). Development and Maintenance of Large Formal Specifications Supported by Case-Based 

Reasoning. TP26. University of Edinburgh.

Funk, P. J., Raichman, S., (1990) ROS, An Implementation Independent Specification for ISDN, Technical 

Report, Ellemtel Telecommunication Systems Laboratories.

Gelfond, M. and Lifschitz, V. (1993). Representing action and change by logic programs, Logic 

Programming, pp. 301-321.

Lewis, H. R. and Papadimitriou C. H., (1981). Elements of theTheory o f Computation, Prentice-Hall.

Smyth, B. and Keane M. T., (1993). Retrieving Adaptable Cases, In K-D. Althoff, K. Richter, & S. Wess 

(eds.), First European Workshop on Case-Based Reasoning. Kaiserslauten: Germany.



APPENDIX G 

Published Paper 3

303



304 APPENDIX G. PUBLISHED PAPER 3

Requirem ents Specification 
of 

Telecommunication Services 
Assisted by Case-Based Reasoning

f P e t e r  F u n k  &  f D a v e  R o b e r ts o n

Published in:
Proceedings to the 2nd In ternational Conference on Telecommunication 

Systems, Modelling and Analysis, N ashville 1994.

f  E llem tel Telecom m unication System s Lab. £ Edinburgh U niversity
Dept, of System and Product M anagem ent Dept, of A rtificial Intelligence
Box 1505 80 South Bridge
S-125 25 Alvsjo Edinburgh EH1 2QL
Sweden Scotland, UK
peter.funk@eua.ericsson.se dr@aisb.edinburgh.ac.uk

A b s t r a c t

Producing formal specifications w ithin a suitable logical framework 
has been used as a methodology for specifying system s with 
exceptionally high reliability requirem ents. There are su b s tan tia l 
difficulties in  scaling up the approach to complex real-world specifica
tion tasks. It is time-consuming and tedious work to develop a formal 
specification of some new demand, and often the connection w ith the 
initially required behaviour is difficult to m aintain . The addition and 
in tegration of a new dem and into the existing specification is a difficult 
task , in  which the risk  of accidentally changing some previously 
required behaviour is high. However, supporting the specification pro
cess with case-based reasoning offers a num ber of advantages. F irst, 
by providing a case library th a t stores both a required behaviour of the 
system and its final representation, the connection betw een them  can 
be m aintained. Similarly, previously successful modification and ex
tension cases are identified and can be used and adapted  to the 
current task . Finally, we can tes t the modified specification by 
verifying th a t  previously required behaviours are covered, and thus 
identify parts  affected by changes (a sim ulator and a theorem  prover 
are im plem ented for this). Our example dom ain is the specification of 
telecommunication network services. A decidable and determ inistic 
tem poral logic is used as the representation. The system  accepts input 
in the form of behavioural examples, which are used to identify sim ilar 
cases in  the case library. A set of dom ain-independent metrics based  
on a set-theoretical approach and dom ain dependent global param e
ters are used for fine-tuning m atching between cases.

K e y w o rd s : c a s e - b a s e d  re a s o n in g , b e h a v io u r a l  e x a m p le s , f o r m a l

s p e c if ic a t io n , r e q u ir e m e n t s  c a p tu re , t e le c o m m u n ic a t io n , t e m p o r a l  

lo g ic .

mailto:peter.funk@eua.ericsson.se
mailto:dr@aisb.edinburgh.ac.uk


APPENDIX G. PUBLISHED PAPER 3 305

1 Introduction
T h i s  p a p e r  a d d re s s e s  th e  p ro c e s s  o f  p ro d u c in g , e x te n d in g  a n d  

m o d ify in g  a  la rg e  fo r m a l  s p e c if ic a t io n  o f  t e le c o m m u n ic a t io n  n e tw o rk  

s e r v ic e s  s u p p o r te d  b y  c a se -b a se d  re a s o n in g . A  c a s e - b a s e d  s p e c i f ic a t io n  

s u p p o r t  s y s t e m  fo r  c r e a t in g  a n d  m a n a g in g  la rg e  fo r m a l  s p e c i f ic a t io n s  

is  o u t l in e d . In p u t  to  th e  s y s t e m  c o n s is t s  o f b e h a v io u r a l  e x a m p le s  t h a t  

a re  p a r s e d  a n d  t r a n s la t e d  in to  p a r t i a l  r u le s .  T h i s  s e t  o f  p a r t i a l  r u le s  i s  

u s e d  to  id e n t i f y  s im i la r  c a s e s  ( r u le s  a n d  r u le - s e t s )  in  th e  c a s e - l ib r a r y .  

A  n u m b e r  o f  s im i la r i t y  m e t r ic s  a re  u s e d  to  p ro d u c e  a n  o v e r a l l  sc o re  fo r  

e a c h  c a s e . F in a l l y ,  e x a m p le s  o f  h o w  th e  s o lu t io n  i s  t e s te d  w i t h  th e  

im p le m e n t e d  s im u la t o r  a n d  th e o re m  p ro v e r  a re  s h o w n . T h e  

im p le m e n t a t io n  is  d one in  P ro lo g .

T h e  th re e  m a in  o b je c t iv e s  o f th e  s y s t e m  (c a l le d  C A B S )  a re : 1) to  

d e v e lo p  a  m e th o d  fo r  d e s c r ib in g  th e  r e q u ir e d  b e h a v io u r  o f  th e  s e rv ic e  

b y  g iv in g  e x a m p le s , w h ic h  a re  th e n  u se d  to r e t r ie v e  s im i l a r  c a s e s ; 2 ) to  

d e f in e  a n d  im p le m e n t  a  s im p le  t e m p o r a l  lo g ic  s u f f ic ie n t  fo r  s p e c ify in g , 

v a l id a t in g  a n d  v e r i f y in g  s im p le  te le c o m m u n ic a t io n  n e t w o r k  s e r v ic e s ; 3 ) 

to  d e v e lo p  a  te c h n iq u e  fo r  r e t r ie v in g  c a s e s  f ro m  th e  c a se  l ib r a r y  w i t h  

th e  h e lp  o f  s im i l a r i t y  m e t r ic s .

S e c t io n  2 g iv e s  so m e  b a c k g ro u n d  on  te le c o m m u n ic a t io n  s e r v ic e s , r e 

q u ir e m e n t s  c a p tu re  a n d  fo rm a l  s p e c if ic a t io n , w h i le  s e c t io n  3 g iv e s  a n  

o v e rv ie w  o f c a se -b a se d  re a s o n in g . S e c t io n  4  g iv e s  a  b r ie f  d e s c r ip t io n  o f 

th e  t e m p o r a l  lo g ic a l  la n g u a g e  c h o se n  a s  th e  r e p r e s e n t a t io n . S e c t io n  5 

d e a ls  w i t h  th e  id e n t i f ic a t io n  o f  s im i la r  c a s e s ; 6 g iv e s  a  b r ie f  

d e s c r ip t io n  o f  h o w  to  a d a p t  a n  id e n t if ie d  s im i la r  c a s e  to  th e  c u r re n t  

t a s k ,  a n d  7 g iv e s  a n  e x a m p le  o f  h o w  to  t e s t  th e  a d a p te d  c a s e . S e c t io n  8 

c o n ta in s  a  b r ie f  s u m m a r y  a n d  c o n c lu s io n s .

2 Formal Specification and 
Telecommunication

I n  t e le c o m m u n ic a t io n s , r e q u ir e m e n t s  fo r  r e l i a b i l i t y  a n d  r o b u s tn e s s  a re  

e x t r e m e ly  s t r in g e n t . T h e  in c re a s e  in  n e tw o rk  s e r v ic e s  m a k e s  th e  

s o f tw a re  in  te le c o m m u n ic a t io n  s y s te m  e v e r  m o re  c o m p lic a te d  ( t h e y  a re  

a lr e a d y  re g a rd e d  a s  so m e  o f th e  m o s t  c o m p le x  m a n - m a d e  s y s t e m s )  

a n d  a n y  e r ro r  in  a  n e w  s e rv ic e  m a y  a f fe c t  o v e r a l l  p e r fo rm a n c e . F o r m a l



306 APPENDIX G. PUBLISHED PAPER 3

s p e c if ic a t io n , in  w h ic h  s p e c i f ic a t io n s  a re  p re s e n te d  w i t h in  a  lo g ic a l  

f r a m e w o r k , i s  a t t r a c t in g  in c r e a s in g  in t e r e s t ,  b o th  a s  a  to p ic  o f  r e s e a r c h  

a n d  a s  a  to o l fo r  in d u s t r y .  F o r m a l  s p e c i f ic a t io n  g iv e s  u s  so m e  

im p o r ta n t  a d v a n ta g e s  o v e r  s p e c if ic a t io n  t h a t  i s  p re s e n te d  in f o r m a l ly .

A  p u b lic  t e le c o m m u n ic a t io n  e x c h a n g e  c o n ta in s  a  g re a t  m a n y  

d if fe r e n t  n e t w o rk  s e r v ic e s . S o m e  c o m m o n  e x a m p le s  a re :

• N o r m a l  C a l l

• O u tg o in g  c a l l  B a r r in g

• D o  N o t  D is t u r b

• C a l l  W a it in g

• C a l l  H o ld  R e m in d e r

• B a s i c  D iv e r s io n

• D iv e r s io n  o n  B u s y

• D iv e r s io n  o n  N o  R e p ly

• A u t o m a t ic  C a l l - B a c k

• In q u ir y

• C o n fe re n c e  C a l l

• C a l l  T r a n s f e r

• H o t  L in e

• A u t o m a t ic  A la r m  C a l l

• R e p e a t  L a s t  C a l l

• A - n u m b e r  T r a n s f e r

• T e le v o t in g

• Q u e u e

• T e x t  m e s s a g e s  b e tw e e n  I S D N  t e r m in a ls

T h e s e  s e r v ic e s  h a v e  a l l  b e e n  s p e c if ie d  w i t h  s t a t e - t r a n s i t io n  r u le s  in  a n  

e a r l ie r  e x p e r im e n t  [7 ] , B y  w a y  o f e x a m p le s , w e  c a n  t a k e  D o  N o t  

D is t u r b .  T h i s  i s  a  s e r v ic e  t h a t  c a n  be a c t iv a t e d  a n d  d e a c t iv a t e d  b y  th e  

s u b s c r ib e r  d ia l l in g  a  s e rv ic e  code. W h e n  i t  i s  a c t iv a t e d , no  in c o m in g  

c a l ls  c a n  r e a c h  h im . T h e  c a l le r  m a y  be to ld  t h a t  t h is  p a r t i c u la r  n u m b e r  

c a n n o t  be r e a c h e d  a t  th e  m o m e n t .

A  s p e c if ic a t io n  is  u se d  to  d e f in e  b e h a v io u r  t h a t  h a s  to  b e  

im p le m e n te d  in  a  s y s te m , o fte n  a t  g re a t  c o s t . A n y  f a u l t s  in  th e  

s p e c if ic a t io n  w i l l  s h o w  u p  m u c h  la t e r  a n d  g e n e ra te  e x p e n s iv e  re d e s ig n



APPENDIX G. PUBLISHED PAPER 3 307

a n d  r e im p le m e n t a t io n . In  o u r  d o m a in  t h is  m e a n s  r e d e s ig n  a n d  

r e im p le m e n t a t io n  o f s o f tw a re  a n d  h a r d w a r e . H o w e v e r , a  f o r m a l  

s p e c i f ic a t io n , b e s id e  b e in g  u s e fu l  in  a  m a p p in g  p ro c e s s  to  g e n e ra te  

d e s ig n  a n d  im p le m e n t a t io n  o f  th e  s y s t e m  [1 1 ] , m a y  a ls o  be u s e d  to  

e l im in a t e  f a u l t s  a t  a n  e a r ly  s ta g e .

L a r g e  fo r m a l s p e c if ic a t io n s  h a v e  sh o w n  t h e m s e lv e s  to  be d i f f i c u l t  to  

m a in t a in  a n d  a d a p t  to  n e w  d e m a n d s ; e r ro r s  a n d  in c o n s is t e n c y  m a y  be 

in t ro d u c e d . H o w e v e r , b y  u s in g  s im i la r  s e rv ic e  s p e c i f ic a t io n s  a s  a  

s t a r t in g  p o in t , w e  m a y  re d u c e  th e  c o s t o f  p ro d u c in g  n e w  s e r v ic e s  a n d  

r e s t r i c t  th e  r i s k  o f  in t ro d u c in g  e r ro r s  a n d  in c o n s is t e n c y , s in c e  a  

p r e v io u s ly  s p e c if ie d  s e rv ic e  s h o u ld  a lr e a d y  be p ro p e r ly  t e s te d  a n d  

in t e g r a t e d  in to  th e  c o m p le te  s p e c if ic a t io n . T h e r e  m a y  be th o u s a n d s  o f  

s im i la r  s e r v ic e s  c re a te d  fo r  d i f fe r e n t  m a r k e t s  a n d  c u s to m e r s , a n d  w h e n  

a  n e w  s e rv ic e  i s  s p e c if ie d , C A B S  m a y , a t  b e s t , id e n t i f y  a n  a lr e a d y  

s p e c if ie d  s e rv ic e  t h a t  m a tc h e s  th e  n e w  d e m a n d , o r  a  s e rv ic e  t h a t  n e e d s  

o n ly  m in o r  a d a p ta t io n .

T h e  m a in  t a s k  w h e n  d e v e lo p in g  a  la rg e  s y s t e m  s p e c i f ic a t io n  i s  to  

c h a n g e  a n d  a d d  b e h a v io u r  s te p  b y  s te p  (se e  F ig u r e  1 ). A  la rg e  s y s t e m  

m u s t  a d a p t  to  n e w  d e m a n d s , so c h a n g e s  m u s t  be  m a d e  d u r in g  i t s  

e n t i r e  l i f e  s p a n . I f  w e  h a v e  a n  i n i t i a l  s p e c i f ic a t io n , S n , a n d  so m e  id e a s

fo r  n e w  b e h a v io u r  in  th e  s y s t e m , w e  w o u ld  l i k e  to  u p d a te  th e  

s p e c i f ic a t io n  to  co ve r t h is  n e w  b e h a v io u r , a n d  i f  n e c e s s a r y , to  c h a n g e  

p r e v io u s ly  e x is t in g  b e h a v io u r  in  a  c o n tro lle d  w a y  so i t  w i l l  in t e r a c t  a p 

p r o p r ia t e ly  w i t h  th e  n e w  b e h a v io u r . B y  f o r m a l is in g  th e s e  n e w  id e a s  o f 

b e h a v io u r , w e  g e t a  s e t , C , o f  b e h a v io u r s  t h a t  h a v e  to be in te g ra te d  in to  

th e  e x is t in g  s p e c i f ic a t io n . T h e  p ro c e s s  o f d e c id in g  h o w  th e  b e h a v io u r  

fo r m a l is e d  in  C  a n d  S n  a re  to  be in te g ra te d  i s  o n e  t h a t  r e q u ir e s  a  g re a t

d e a l o f  m a n u a l  e f fo r t .

S n + 1  = in t e g r a t e (S n , C )

A s  a  r u le , t h is  p ro c e s s  is  c o m m o n ly  re p e a te d  c o n t in u o u s ly  

th ro u g h o u t  a  la rg e  s y s te m 's  l i f e t im e , a n d  is  th e re fo re  th e  m a in  p ro c e s s  

to  s u p p o r t . I n  a  la rg e  s y s te m  t h is  i s  a  t im e  c o n s u m in g , c o s t ly  a n d  e rro r-  

p ro n e  p ro c e s s  a n d  th e  p e rs o n  in t e g r a t in g  S n  a n d  C  n e e d s  to  be f a m i l i a r

w i t h  th e  c o m p le te  b e h a v io u r  o f  th e  s y s te m . W e  m a y  t h in k  o f  th e  i n i t i a l



308 APPENDIX G. PUBLISHED PAPER 3

s p e c if ic a t io n  S i  a s  b e in g  th e  r e s u l t  o f  a d d in g  b e h a v io u r  to  th e  i n i t i a l l y  

e m p ty  s p e c if ic a t io n  S q .

F ig u r e  1. C h a n g in g  a  s p e c if ic a t io n .

T h e  t e le c o m m u n ic a t io n s  d o m a in  h a s  tw o  a t t r ib u t e s  t h a t  m a k e  th e  

a p p ro a c h  in  F ig u r e  1 p a r t i c u la r l y  s u i t a b le .  F i r s t l y ,  e a c h  s te p  in  th e  

e x te n s io n  o f th e  s y s t e m  is  a l r e a d y  n o m in a l ly  d e f in e d  a s  a  

te le c o m m u n ic a t io n  s e rv ic e . S e c o n d , i t  i s  a l r e a d y  c o m m o n  p ra c t ic e  to  

d e s c r ib e  n e w  te le c o m m u n ic a t io n  s e r v ic e s  w i t h  a n  e x a m p le  t h a t  

i l l u s t r a t e s  th e  b a s ic  b e h a v io u r  o f  th e  n e w  s e rv ic e .

A  m o d e l e x p re s s iv e  en o u g h  to  c a p tu re  th e  r e le v a n t  d y n a m ic  

b e h a v io u r  o f  a  t e le c o m m u n ic a t io n  s y s te m  o ffe r in g  n e tw o rk  s e r v ic e s  i s  

sh o w n  in  F ig u r e  2 . T h e  re s p o n s e  g iv e n  to  a  s t im u lu s  is  a  m e s s a g e  

(s ig n a l ,  to n e , e t c .) .  A n o t h e r  re sp o n s e  fro m  th e  s y s t e m  is  t h a t  u s e r s  a re  

p u t  in to  sp e e c h  c o n n e c t io n  w i t h  e a c h  o th e r . T h i s  re s p o n s e  i s  s e e n  a s  a  

c o m m a n d  to  a  s w it c h  w i t h  th e  a b i l i t y  to  p e r fo rm  a  s m a l l  s e t  o f t a s k s ,



APPENDIX G. PUBLISHED PAPER 3 309

s u c h  a s  c o n n e c t in g  u s e r s  w i t h  a  c h a n n e l  o f  a  c e r t a in  b a n d w id t h  (s p e e c h  

c o n n e c t io n ) . F ig u r e  2 i l l u s t r a t e s  h o w  a  s t im u lu s  t r ig g e r s  a  s t a t e -  

t r a n s i t io n  r u le ,  w h ic h  m a y  c a u s e  a  re sp o n s e  f ro m  th e  s y s t e m  a n d  m o ve  

th e  s y s t e m  to  a  n e w  s t a t e  t+ 1 . T o  s im p l i f y  th e  p ro b le m , s t a t e s  a re  

in d e x e d  b y  t im e  p o in t s , w h ic h  r e p re s e n t  th e  s m a l le s t  r e s o lu t io n  in  

d is c r e te  t im e  h a n d le d  b y  th e  s y s t e m , a n d  th e  s t im u l i  a re  se q u e n c e d . 

T h e  p ro c e s s  f  u s e s  th e  f r a m e  a x io m  to  m o ve  a l l  u n c o n t r a d ic te d  f a c t s  

f ro m  t  to  t+ 1  (se e  s e c t io n  4 ).

Logical System

F ig u r e  2 . M o d e l o f  th e  d y n a m ic  b e h a v io u r  o f  te le c o m m u n ic a t io n

n e tw o rk .

T h e  s y s t e m  i s  s t r u c t u r e d  a c c o rd in g  to  n e tw o rk  s e r v ic e s , a n d  e a c h  

n e tw o rk  s e rv ic e  c o n t r ib u te s  to  a  p a r t i c u la r  p a r t  o f  th e  o v e r a l l  b e 

h a v io u r  o f  th e  s y s te m . T h i s  p a r t i c u la r  b e h a v io u r  a p p e a r s  in  th e  lo g ic a l  

s y s t e m  a s  a  s e t  o f  n e w  o r m o d if ie d  s t a t e - t r a n s i t io n  r u le s .

3 Case-Based Reasoning

C a s e - b a s e d  r e a s o n in g  i s  a  m e th o d  t h a t  u s e s  c o n c lu s io n s  d r a w n  fro m  

o b s e rv in g  p a s t  s u c c e s s fu l  c a s e s  to  so lv e  a  c u r r e n t  t a s k .  T h e  c a s e - b a s e d  

a p p ro a c h  i s  in s p ir e d  b y  o b s e rv a t io n s  o f  h u m a n  re a s o n in g , w h ic h  to  a  

la rg e  e x t e n t  s e e m s  to  r e ly  on a d a p t a t io n  o f p a s t  e x p e r ie n c e  to  c u r re n t  

p ro b le m s  [3 ] . A  c a s e - b a s e d  re a s o n in g  s y s t e m  m a y  a ls o  e x te n d  i t s  o w n  

p e r fo rm a n c e , s in c e  e a c h  t im e  th e  s y s te m  is  u s e d  th e  n u m b e r  o f  c a s e s  in  

th e  c a s e  l ib r a r y  w i l l  in c re a s e  a n d  so th e  s y s te m  g a in s  e x p e r ie n c e  o f  th e  

p a s t ' .



310 APPENDIX G. PUBLISHED PAPER 3

F ig u r e  3 g iv e s  a n  o v e rv ie w  o f  th e  g e n e ra l a r c h it e c t u re  o f  a  c a s e - b a s e d  

re a s o n in g  s y s t e m . F i r s t  w e  h a v e  to  id e n t i f y  th e  in d ic e s  o f  th e  in p u t  

t a s k  t h a t  w i l l  be u se d  to  r e t r ie v e  a  s im i la r  c a se  f ro m  th e  c a s e  l ib r a r y .  

T h i s  s im i la r  c a s e , o r l i s t  o f s im i la r  c a s e s , m a y  n e e d  to  be a d a p te d  in  

o rd e r  to  s o lv e  th e  c u r re n t  t a s k ,  h i  m o s t  c a s e - b a s e d  r e a s o n in g  s y s t e m s ,  

t e s t in g  th e  s o lu t io n  is  a  m a n u a l  s te p  in  w h ic h  th e  u s e r  h a s  e i t h e r  to  

a cce p t o r re je c t  th e  s o lu t io n . I f  h e  a c c e p ts  th e  s o lu t io n , i t  i s  a d d e d  a s  a  

n e w  c a se  to  th e  c a se  l ib r a r y .  I f  h e  re je c t s  i t ,  th e  re a s o n  fo r  r e je c t io n  h a s  

to be id e n t if ie d  a n d  e i t h e r  c o rre c te d  o r e l im in a t e d . T h e  c a u s e  o f  th e  

f a i lu r e  m a y  in d ic a t e  t h a t  th e  in d e x in g  r u le s  do n o t id e n t i f y  a l l  th e  i m 

p o r ta n t  in d ic e s  in  th e  t a s k ;  th e re fo re , th e  in d e x in g  r u le s  h a v e  to  be u p 

d a te d . W i t h  t h i s  d o n e , th e  s y s t e m  m a y  p ro p o se  a  s im i l a r  b u t  b e t t e r  

c a se .



APPENDIX G. PUBLISHED PAPER 3 311

F ig u r e  3 . G e n e r a l  a r c h i t e c t u r e  o f  a  c a se -b a s e d  r e a s o n in g  s y s t e m  [1 2 ] .

A  p la t fo r m  fo r  a  s u c c e s s fu l  c a s e -b a s e d  r e a s o n in g  s y s t e m  i s  b a s e d  on 

th re e  c o n d it io n s : 1) th e  d o m a in  h a s  to  be u n d e rs to o d ; 2 ) th e  in d e x  

m e c h a n is m  h a s  to  be d e f in e d  a n d  im p le m e n te d ; 3 ) p re v io u s  c a s e s  h a v e  

to  be s to re d  [9 ] . A s  m e n t io n e d , in  th e  d o m a in  o f t e le c o m m u n ic a t io n  

n e t w o r k  s e r v ic e s  i t  is  a l r e a d y  co m m o n  p ra c t ic e  to  in f o r m a l ly  r e p re s e n t  

e x a m p le s  o f  th e  s e rv ic e s ' b e h a v io u r . C A B S  u s e s  fo r m a l  b e h a v io u r a l  

e x a m p le s  to  c re a te  in d ic e s  w h ic h  w i l l  be u se d  to  id e n t i f y  s im i l a r  c a s e s  

(d e s c r ib e d  in  s e c t io n  6 ) . W e  h a v e  u se d  f iv e  c a s e s  to  e v a lu a t e  th e  

a p p ro a c h .



312 APPENDIX G. PUBLISHED PAPER 3

4 Logical Fram ework

B y  c h o o s in g  a  t e m p o r a l  lo g ic  to  r e p re s e n t  th e  s p e c i f ic a t io n  a n d  c a s e s , 

w e  a re  a b le  to  re a s o n  a b o u t  th e  s p e c i f ic a t io n . T h i s  i s  th e  m a in  

a d v a n ta g e  o f lo g ic a l  f o r m a l is m  o v e r  o th e r  s p e c i f ic a t io n  a n d  p ro 

g ra m m in g  la n g u a g e s  [1 ] ) . T h e  k in d s  o f  r e a s o n in g  w e  w is h  to  do a re : 

v e r i f ic a t io n  (d e te rm in in g  w h e t h e r  th e  s p e c i f ic a t io n  im p le m e n t s  th e  r e 

q u ire d  b e h a v io u r ) ; s y n t h e s is  ( s y n t h e s is in g  s p e c i f ic a t io n s  in to  a  n e w  

s p e c i f ic a t io n ) ;  t r a n s f o r m a t io n  ( t r a n s fo r m in g  th e  s p e c i f ic a t io n  in to  a  

r e p r e s e n t a t io n  t h a t  u s e s  le s s  m e m o ry  a n d /o r t im e  w h e n  s im u la t e d ) ;  

t e r m in a t io n  (s h o w in g  t h a t  no d e a d lo c k s  o r lo o p s  e x is t ) ;  a b s t r a c t io n  

(a b s t r a c t in g  in fo r m a t io n  fro m  th e  s p e c i f ic a t io n  a b o u t  i t s  ty p e  o f  i n 

p u t/o u tp u t , e tc .)  a n d  c o n s is te n c y  c h e c k in g  (p ro v in g  t h a t  th e re  a re  no 

c o n t r a d ic t o r y  s t a t e m e n t s  in  th e  s p e c i f ic a t io n ) .

T h e  lo g ic a l la n g u a g e  u s e d  h e re  is  p a r t l y  b a s e d  on th e  lo g ic a l  f r a m e 

w o rk  c a lle d  L o x y  [4 ] , w h ic h  is  t a i lo r e d  to  c o n ta in  th e  n e c e s s a r y  e x p r e s 

s iv e n e s s  fo r  th e  s p e c i f ic a t io n  o f  r e a c t iv e  s y s t e m s  s u c h  a s  

t e le c o m m u n ic a t io n s  s y s t e m s . T h e  la n g u a g e  m a y  be c o m p a re d  to  

P ro lo g , b u t  i t  i s  d i f fe r e n t  in  t h a t  i t  h a n d le s  c h a n g e  in  a  m o re  e x p l i c i t  

m a n n e r , a n d  h a s  b e e n  m a d e  d e c id a b le  b y  th e  in t r o d u c t io n  o f  c e r t a in  

r e s t r ic t io n s  (se e  [1 0 ] ) . O n ly  m o n o to n ic  s y s t e m s  c a n  be s p e c if ie d  in  t h i s  

lo g ic , s in c e  lo g ic a l  f o r m a l is m  o n ly  a l lo w s  n e w  c o n c lu s io n s  in  a  n e w  

s t a t e ; th e re  i s  no m e c h a n is m  to  ch a n g e  o r a d d  a n y  c o n c lu s io n s  to  a  

p re v io u s  s t a t e . I f  a  s p e c if ic a t io n  i s  a b le  to p ro d u c e  c o n t r a d ic t o r y  c o n c lu 

s io n s , i t  i s  r e g a rd e d  a s  a n  in c o n s is t e n t  s p e c i f ic a t io n , se e  [8 ] . I n  a  la rg e  

s y s te m  w i t h  m a n y  s t a t e s ,  th e  a d v a n ta g e  o f  h a v in g  r u le s  - in s t e a d  o f  

e n u m e r a t in g  e v e ry  s t a t e  t r a n s i t io n  -  i s  o b v io u s  (one r u le  m a y  

r e p re s e n t  h u n d re d s  o f  s t a te  t r a n s i t io n s ) ,  a n d  e v e n  in  a  m e d iu m - s iz e d  

s p e c if ic a t io n , th e r e  w i l l  be m a n y  t h o u s a n d s  o f  d i f f e r e n t  s t a t e s .

State-T ransition R ules
I n  th e  lo g ic a l fo r m a l is m  p re s e n te d  h e re , o n ly  s t a t e - t r a n s i t io n  r u le s  c a n  

m a k e  a  d y n a m ic  c h a n g e  in  th e  s y s t e m . A  s t a t e - t r a n s i t io n  r u le  i s  

a lw a y s  t r ig g e re d  b y  a n  e x t e r n a l  s t im u lu s .  F u r t h e r m o r e , a  s t a t e -  

t r a n s i t io n  r u le  a lw a y s  w o r k s  on  tw o  a d ja c e n t  w o r ld  s t a t e s ,  th e  c u r r e n t  

(T )  a n d  th e  n e w  ( T + l ) .  A n  e x a m p le  o f  a  s t a t e - t r a n s i t io n  r u le  i s :



APPENDIX G. PUBLISHED PAPER 3 313

n o r m a l _ d i a l l i n g :
s t i m u l u s  ( o c c u r r e d  a t  T + l ) : d i a l l i n g ( X , N r )

p r e c o n d i t i o n  ( a t  T ) : d i a l t o n e ( X )  &
a n s w e r _ n r ( X 2 , N r )  &
- c a l l i n g ( Z , X 2 ) & 
i d l e ( X 2 )

c o n c l u s i o n  a t  T + l :  c a l l i n g ( X , X 2 ) &
r i n g s i g n a l ( X 2 ) & 
r i n g t o n e ( X ) .

A  r u d im e n t a r y  t r a n s la t io n  o f  t h is  in to  E n g l i s h  m ig h t  lo o k  t h u s :  I f  a  

s u b s c r ib e r , X ,  d ia ls  a  n u m b e r , h e  w i l l  get a  d ia l- to n e . I f  w e  a s s u m e  t h a t  

X 2 , to  w h o m  X  r in g s , h a s  a n  u n e n g a g e d  l in e , X 2  w i l l  g e t a  r in g - s ig n a l ,  

a n d  X  w i l l  g e t a  r in g - to n e  (on  t r a n s la t in g  r u le s  fro m /to  E n g l i s h  se e  [5 ] 

a n d  [2 ] ) .

Intra-State R ules

T h e  s e t s  o f a x io m s  u s e d  to  in f e r  n e w  fa c t s  in s id e  a  w o r ld  s t a t e  a re  

c a l le d  in t r a - s t a t e  r u le s .  T h e s e  a x io m s  a re  n e c e s s a r i ly  t r u e  fo r  a l l  w o r ld  

s t a t e s . T h u s ,  t h e y  c a n  be se e n  a s  a  d e f in it io n  o f  a  c o n c e p tu a l m o d e l fo r  

th e  d o m a in . O n e  a d v a n ta g e  o f  s t ic k in g  to  a  fe w  t y p e s  o f in t r a - s t a t e  

r u le s  fro m  w h ic h  o n ly  a  s im p le  c o n c e p tu a l m o d e l c a n  be c o n s t ru c te d  i s  

t h a t  th e  s im p le  m o d e l i s  e a s i ly  re m e m b e re d  b y  th e  p e r s o n  w h o  m a k e s  

th e  s p e c i f ic a t io n , a n d  th e  r i s k  o f m in d - s l ip s  c a u s in g  e r ro r s  in  th e  

s p e c i f ic a t io n  is  m in im is e d . T h e  tw o  m a in  in t r a - s t a t e  r u le s  a re  

'm u t u a l ly  e x c lu s iv e ' a n d  'g e n e ra l, p re d ic a te 's , b o th  o f  w h ic h  a re  d e 

s c r ib e d  b e lo w .

M utually E xclusive P redicates

W e  h a v e  e x c lu s iv e  s e t s  o f  p re d ic a te s  w h e re  o n ly  one o f  th e  p re d ic a t e s  

c a n  b e  t r u e  fo r  th e  s a m e  e n t i t y  in  th e  s a m e  s t a t e , a c c o rd in g  to  th e  

c o n c e p tu a l m o d e l o f  th e  d o m a in . A n  e x a m p le  o f  t h i s  i s  th e  s e t  o f to n e s , 

w h e re  o n ly  one to n e  c a n  be h e a rd  a t  a  t im e  b y  th e  s a m e  u s e r  in  a  

p a r t i c u la r  s t a t e , T .  T h e  fo llo w in g  e x a m p le  s h o w s  a n  e x a m p le  w i t h  th e  

s y n t a x  c h o s e n  fo r  d e c la r in g  m u t u a l ly  e x c lu s iv e  p re d ic a te s :

xor([dial_tone(A), busy_tone(A), ring_tone(A)]).
I n  E n g l i s h  t h is  m e a n s  t h a t  i t  is  o n ly  p o s s ib le  fo r  a  e n t i t y  A  to  h a v e  one 

o f  th e  th re e  a t t r ib u t e s .



314 APPENDIX G. PUBLISHED PAPER 3

G eneral P red icate Nam es

S in c e  s t a t e - t r a n s i t io n  r u le s  r e p r e s e n t  p o s s ib le  s t a te  t r a n s i t io n s  f ro m  a  

s e t  o f s t a t e s  to  a  s u b s e q u e n t  s e t  o f s t a t e s ,  th e  n e e d  fo r  g e n e ra l p r e d i

c a te s  a r i s e s .  T h e  fo llo w in g  is  th e  d e f in it io n  o f  th e  g e n e ra l p re d ic a te ,

t o n e :

i s _ a ( t o n e ( A ) , [ d i a l _ t o n e ( A ) , b u s y _ t o n e ( A ) , r i n g _ t o n e ( A ) ] )

T h i s  m e a n s  t h a t  i f  A  h a s  one o f  th e  th re e  a t t r ib u t e s ,  th e n  i t  a ls o  h a s  

th e  a t t r ib u t e  t o n e .

5 Identifying Sim ilar Cases

In p u t  to  th e  s y s t e m  i s  g iv e n  a s  b e h a v io u r a l  e x a m p le s . T h e  e x a m p le  

b e lo w  s h o w s  m in im a l  b e h a v io u r a l  e x a m p le s  c o n t a in in g  o n e  s t im u lu s ,  a  

p a r t i a l - s t a r t  s t a t e  a n d  a n  e n d  s t a t e . A  p a r t i a l  s t a t e  i s  e x p e c te d  to  b e  

u n d e r- s p e c if ie d , h e n c e  a  t r a d i t io n a l  r u le - in d u c t io n  a p p ro a c h  w i l l  be  d i f 

f ic u l t  to  a p p ly  [6 ] .

W e  s t a r t  b y  c h o o s in g  th e  o p t io n  to  s p e c ify  a  n e w  b e h a v io u r . W e  th e n  

g ive  a s  in p u t  a n  e x a m p le  i l l u s t r a t in g  th e  b e h a v io u r  w e  w o u ld  l ik e  to  

s p e c ify . In  m o s t  c a s e s , a  b e h a v io u r a l  e x a m p le  w i l l  in v o lv e  s e v e r a l  

s t im u l i  a n d  s e v e r a l  c o m p le x  s t a t e s :

n t m > s p e c i f y .

G i v e  a  s e r v i c e  e x a m p l e  ( s t a r t - s t a t e  —  s t i m u l u s  - >  n e x t - s t a t e  

. . . ) :

n n n >  i d l e  & - c a l l i n g  - -  o f f h o o k  - >  d i a l t o n e .

T h e  e x a m p le  o f  b e h a v io u r  g iv e n  a b o ve  s im p ly  a s s e r t s  t h a t  i f  th e  s t a t e  

c o n ta in s  a n  id le  e n t i t y  a n d  no one is  c a l l in g  t h is  e n t i t y ,  i f  th e  s t a t e  

p e rc e iv e s  a n  o ff-h o o k , th e  r e s u l t  w i l l  be  a  d ia l  to n e . T h e  s y s te m  w i l l  u se  

t h is  s k e t c h  o f  th e  b e h a v io u r  to  id e n t i f y  s im i la r  s t a t e - t r a n s i t io n  r u le s  in  

th e  c a se  l ib r a r y  a n d  th e  m o s t  s im i la r  ru le - s e t  (a  s e r v ic e ) .  T h e  tw o  ty p e s  

o f  ca se  in  th e  c a se  l ib r a r y ,  th e  r u le s  a n d  th e  r u le - s e t s ,  p ro v id e  a  w a y  o f 

m o d u la r is in g  th e  b e h a v io u r  o f  th e  s p e c if ie d  s y s te m . T h e  f i r s t  s te p  i s  to  

p ro d u c e  s o m e th in g  t h a t  c a n  be u se d  to  id e n t i f y  s im i la r  c a s e s , th e re fo re  

th e  b e h a v io u r a l  e x a m p le s  a re  t r a n s la t e d  in to  a  s e t  o f  p a r t i a l  r u le s  (a s



APPENDIX G. PUBLISHED PAPER 3 315

th e re  i s  o n ly  one s t im u lu s  in  o u r  e x a m p le , o n ly  one p a r t i a l  r u le  i s  

g e n e ra te d ) :

p a r t i a l  r u l e :  
s t i m u l u s  ( o c c u r r e d  a t  T + l )  : o f f h o o k

p r e c o n d i t i o n  ( a t  T ) : i d l e  & - c a l l i n g
c o n c l u s i o n  a t  T + l :  d i a l t o n e .

T o  s im p l i f y  th e  e x p la n a t io n , w e  a s s u m e  t h a t  th e r e  a re  o n ly  th re e  c a s e s  

in  th e  c a se  l ib r a r y :  tw o  s t a t e - t r a n s i t io n  r u le s  a n d  a  r u le - s e t  c o n ta in in g  

th e s e  tw o  r u le s :

n o r m a l _ o f f h o o k :
s t i m u l u s  ( o c c u r r e d  a t  T + l ) :  o f f h o o k ( X )

p r e c o n d i t i o n  ( a t  T ) : i d l e ( X )  &
~ c a l l i n g ( Z , X )  &
- i n s p e e c h ( Y , X) 

c o n c l u s i o n  a t  T + l :  d i a l t o n e ( X ) .
I n  E n g l i s h :  i f  o f f  h o o k  i s  r e c e i v e d  f r o m  X a n d  X i s  i d l e  a n d  n o
o n e  i s  c a l l i n g  X a n d  X i s  n o t  i n  s p e e c h  c o n n e c t i o n  t h e n  t h e  
r e s u l t  i s  t h a t  X h a s  d i a l  t o n e .

d i a l l i n g _ b u s y :
s t i m u l u s  ( o c c u r r e d  a t  T + l ) :  d i a l l i n g ( X , N r )

p r e c o n d i t i o n  ( a t  T ) : d i a l t o n e ( X )  &
a n s w e r _ n r ( X 2 , N r )  &
- i d l e ( X 2 ) 

c o n c l u s i o n  a t  T + l :  b u s y t o n e ( X )
c a l l e d _ b u s y ( X , N r ) .

I n  E n g l i s h :  i f  X d i a l s  a  n u m b e r  N r  a n d  X h a s  a  d i a l  t o n e  a n d
t h e r e  i s  a  s u b s c r i b e r  X2 h a v i n g  t h i s  n u m b e r  a s  a n s w e r  n u m b e r
a n d  X2 i s  n o t  i d l e  t h e n  X g e t s  a  b u s y  t o n e  a n d  w e  k n o w  t h a t  X 
c a l l e d  a  b u s y  n u m b e r  N r .

R u l e - S e t  : n o r m a l c a l l  { n o r m a l _ o f f h o o k ,  d i a l l i n g _ b u s y } .
I n  E n g l i s h :  T h e  r u l e - s e t  n o r m a l c a l l  c o n t a i n s  t w o  s t a t e -
t r a n s i t i o n  r u l e s :  n o r m a l _ o f f h o o k ;  d i a l l i n g _ b u s y .

B y  t r e a t in g  th e  s t im u lu s ,  p re c o n d it io n s  a n d  c o n c lu s io n s  a s  th re e  s e t s  

o f  p re d ic a t e s , w e  a r r iv e  a t  a  s e t - th e o r e t ic a l  a p p ro a c h  (b a se d  on  s e t s )  to  

c a lc u la t e  h o w  s im i la r  tw o  r u le s  m a y  b e . G iv e n  a  p a r t i a l  r u le  a n d  a  r u le  

fro m  th e  c a s e  l ib r a r y ,  s im i la r i t y  i s  d e te rm in e d  b y  m a t c h in g  e a c h  p a r t  

o f  th e  tw o  r u le s  ( i .e . th e  s t im u lu s ,  th e  p re c o n d it io n s  a n d  th e  

c o n c lu s io n s ) .

T h e  c o ve ra g e  o f th e  p a r t i a l  r u le  is  c a l le d  th e  I C P  ( in t e r s e c t io n  

co v e ra g e  o f  a  p a r t i a l  r u le )  a n d  is  c a lc u la t e d  b y  th e  fo r m u la :  I C P i  = 1 0 0  

*  L e n g t h ( I i )  / L e n g t h (P i ) ,  w h e re  L e n g t h  is  th e  n u m b e r  o f  p r e d ic a t e s  a n d  

i  i s  a n  in d e x  d e n o t in g  th e  ru le  p a r t  ( s t im u lu s  s , p re c o n d it io n  p o r



316 APPENDIX G. PUBLISHED PAPER 3

c o n c lu s io n  c ). I  i s  th e  in t e r s e c t io n  b e tw e e n  th e  r u le  p a r t  in  th e  r u le  M  

fro m  th e  c a s e  l ib r a r y ,  a n d  th e  p a r t i a l  r u le  P  g e n e ra te d  f ro m  th e  

b e h a v io u r a l  e x a m p le . T h e  co ve ra g e  o f  th e  m a tc h in g  r u le  i s  c a l le d  th e  

IC M i  a n d  is  g iv e n  b y : 10 0  *  L e n g t h ( I i )  / L e n g t h (M i) .

T h e r e  is  a ls o  a  m e a s u r e m e n t  fo r  th e  n u m b e r  o f  p r e d ic a t e s  t h a t  o ccu r 

a s  n e g a te d  p re d ic a te s  in  th e  c o rre s p o n d in g  r u le  p a r t .  T h i s  in f o r m a t io n  

i s  u s e fu l  in  th e  f in a l  s c o r in g  s in c e  a  m a tc h in g  r u le  c o n ta in in g  th e  

n e g a t io n  o f a  p re d ic a te  o c c u rr in g  in  th e  c o rre s p o n d in g  p a r t  o f  th e  

p a r t ia l  r u le  c a n  n e v e r  c o v e r  th e  b e h a v io u r  d e s c r ib e d  b y  th e  p a r t i a l  r u le . 

I f  th e  r u le , M , f ro m  th e  c a se  l ib r a r y  i s  th e  r u le  n a m e d  'o ffho ok ' th e  

d i f fe r e n t  s e t s  to  m a t c h  a re :

T a b le  1. T h e  d i f fe r e n t  s e ts

Ms = { o f f h o o k }  Ms = { o f f h o o k }

P p  = { i d l e ,  - c a l l i n g }  Mp = { i d l e ,  - c a l l i n g ,  - i n s p e e c h }

P c  = { d i a l t o n e }  Me = { d i a l t o n e }

T h e  c a lc u la t io n  o f  th e  d o m a in - in d e p e n d e n t  w e ig h t s  o f  a l l  th re e  r u le  

p a r t s  g iv e s :

T a b le  2 . S im i l a r i t y  b e tw e e n  r u le  p a r t s

s t i m u l u s .....................................................................  I C P  = 1 0 0  ICM = 1 0 0  N e g  = 0

p r e c o n d i t i o n  ......................................................  I C P  = 1 0 0  ICM = 67  N e g  = 0

c o n c l u s i o n  .......................................................  I C P  = 1 0 0  ICM = 1 0 0  N e g  = 0

T h e s e  v a lu e s  a re  u s e d  fo r p ro d u c in g  a n  o v e r a l l  sc o re  fo r  th e  m a t c h in g  

ru le  r e s u l t .  T h i s  f in a l  d o m a in - d e p e n d e n t  s c o r in g  is  g o v e rn e d  b y  a  

n u m b e r  o f g lo b a l p a r a m e t e r s ,  a n d  in  t h is  e x a m p le  th e  th re e  p a r t s  

c o n t r ib u te  e q u a l ly  to  th e  f in a l  sc o re . H o w  a  r u le  p a r t ,  t h a t  c o n t a in s  a  

n e g a te d  p re d ic a te  in  th e  c o rre sp o n d in g  p a r t  o f  th e  m a t c h in g  r u le , 

a f fe c t s  th e  t o t a l  s c o re , i s  d e te rm in e d  b y  a n o th e r  g lo b a l p a r a m e t e r ,  se e  

[8],

I f  th e  g lo b a l p a r a m e t e r s  a re  c o n f ig u re d  in  s u c h  a  w a y  t h a t  e a c h  p a r t  

c o n t r ib u te s  o n e - th ird  to  th e  o v e r a l l  s c o re  (a s s u m in g  t h a t  e a c h  r u le  p a r t  

i s  e q u a l in  w e ig h t  w h e n  p ro d u c in g  th e  o v e r a l l  s c o re ) , th e  o v e r a l l  I C P  fo r



APPENDIX G. PUBLISHED PAPER 3 317

th e  r u le  i s  1 0 0  *  1/3 + 1 0 0  *  1/3 + 1 0 0  *  1/3 = 1 0 0  a n d  th e  o v e r a l l  I C M  =

1 0 0  *  1/3 + 6 7  *  1/3 + 1 0 0  *  1/3 = 8 9 .

S i m i l a r  r u l e s  a r e :

n o r m a l _ o f  f h o o k ...............................................................  I C P  = 1 0 0  ICM = 89

T h e  s a m e  c a lc u la t io n s  p e r fo rm e d  o n  d ia l l in g  b u s y  g iv e s :

d i a l l i n g _ b u s y ..................................................................  I C P  = 0 ICM = 0

M o s t  s i m i l a r  s e r v i c e  i s :  n o r m a l c a l l

T h e  r u le - s e t  n o r m a l c a l l  i s  id e n t if ie d  in  th e  c a s e  l ib r a r y ,  a n d  i s  

d e f in e d  a s  th e  s e t  o f  r u le s  {n o rm a l_ o f fh o o k , d ia l l in g _ b u s y } .  S in c e  th e  

r u le  n o rm a l_ o f fh o o k  is  a  m e m b e r  o f  t h is  s e t , a n d  no o th e r  r u le - s e t s  

e x is t ,  th e  id e n t if ie d  r u le - s e t  i s  th e  b e s t  m a tc h . S c o r in g  th e  b e s t  s e rv ic e  

is  c a lc u la t e d  in  a  w a y  s im i la r  to  t h a t  u se d  fo r  id e n t i f y in g  s im i la r  r u le s .

6 Adaptation
T h e  n e x t  t a s k  i s  to  a d a p t  th e  id e n t if ie d  c a se  fro m  th e  c a s e  l ib r a r y  to  

th e  c u r r e n t  p ro b le m . T h e  c o n c e p tu a l m o d e l ( in t r a - s t a t e  r u le s )  m a y  a ls o  

n e e d  to  be e x te n d e d . T h e s e  s te p s  h a v e  n o t b e e n  a u to m a te d , a n d  i t  i s  

d i f f i c u l t  to  do so fo r  th re e  re a s o n s : 1) i t  i s  a s s u m e d  t h a t  th e  g iv e n  

b e h a v io u r a l  e x a m p le s  do n o t d e s c r ib e  th e  f u l l  b e h a v io u r  r e q u ir e d ; 2 ) in  

th e  c u r r e n t  im p le m e n t a t io n , n e g a t iv e  e x a m p le s  a re  n o t  h a n d le d , 

th e re fo re  u n w a n te d  b e h a v io u r  m u s t  be e x c lu d e d  m a n u a l ly  b y  a d d in g  

r e s t r ic t io n s  to  th e  s t a t e - t r a n s i t io n  r u le s ;  3 ) i t  i s  n o t  e x p e c te d  t h a t  a  

'1 0 0  p e r  c e n t ' m a tc h  w i l l  be fo u n d  in  a  r e a l i s t ic  d o m a in . W h e n  a d a p t in g  

th e  s e t  o f r u le s  to  th e  c u r re n t  t a s k ,  so m e  c a s e - b a s e d  s y s t e m s  u se  

c r i t iq u in g  o f th e  s o lu t io n  b y  id e n t if y in g  s im i l a r i t i e s  a n d  d if fe re n c e s  

b e tw e e n  th e  m a n u a l ly  p ro d u c e d  s o lu t io n  a n d  s im i la r  c a s e s . Id e a s  on 

h o w  to  p a r t l y  a u to m a te  th e  a d a p ta t io n  p ro c e s s  a re  g iv e n  in  [8 ] ,

7 Testing the Solution
T h e  o b v io u s  i n i t i a l  t e s t  to  p e r fo rm  is  one t h a t  w i l l  d e te r m in e  w h e th e r  

th e  b e h a v io u r  s p e c if ie d  b y  th e  b e h a v io u r a l  e x a m p le s  is  co v e re d  b y  th e  

p ro d u c e d  s o lu t io n . I f  n o t , th e  a d a p t a t io n  h a s  n o t b e e n  s u c c e s s fu l ly



318 APPENDIX G. PUBLISHED PAPER 3

c o m p le te d . T h e  s e t  o f  r u le s  s h o u ld  be te s te d  u n t i l  th e  u s e r  a n d , i f  

p o s s ib le , th e  e n d  u s e r  a re  c o m p le te ly  c o n v in c e d  t h a t  th e  s e t  o f  r u le s  

r e f le c t s  th e  in te n d e d  b e h a v io u r .

B o th  th e  th e o re m  p ro v e r  a n d  th e  c u r re n t  v e r s io n  o f  th e  s im u la t o r  

n e e d  so m e  i n i t i a l  f a c t s  to  s t a r t  w it h .  I n  o u r  e x a m p le , w e  h a v e  one 

s u b s c r ib e r , a l ,  w h ic h  i s  id le  a t  th e  i n i t i a l  s t a te  ( c a l le d  't im e  O'):

a n n > f a c t s . (Command to list facts)
F a c t s  a t  t i m e  0 ,  ( i n i t i a l  f a c t s )  

s u b s c r i b e r ( a l )
a n s w e r _ n r  ( a l .  1 1 1 )  (the su b scrib er  a l  has an a n sw er  n u m b er  111) 
i d l e ( a l )

Simulator
T h e  s im u la t o r  a ls o  r e q u ir e s  a  s e t  o f  r u le s  a n d  in t r a - s t a t e  r u le s .  W h e n  

th e  s im u la t o r  i s  g iv e n  so m e  s t im u l i ,  i t  a p p l ie s  a l l  th e  s t a t e - t r a n s i t io n  

r u le s  a n d  in t r a - s t a t e  r u le s .

T h e  fo llo w in g  is  a n  e x a m p le  o f  s im u la t o r  u se , w i t h  so m e  c la r i f y in g  

c o m m e n ts .

Our example specification has a simple conceptual model with two intra

state rules:

n n n > l i f  . (Command to list all intra-state rules)

i s _ a ( t o n e ( A ) , [ d i a l _ t o n e ( A ) , r i n g _ t o n e (A ) ] ) .  {1}

x o r ( [ i d l e (A ) , t o n e (A ) ] ) .  {2}

T h e  s t a t e - t r a n s i t io n  r u le s  a n d  r u le - s e t  in  th e  c a s e  l ib r a r y  a re  s h o w n  in  

s e c t io n  6 .

If we want to simulate that subscriber al goes off-hook at time point 1, we 
write:

n n n > o ( 1 , o f f h o o k ( a l ) ) .
S i g n a l  : o f f h o o k  r e c e i v e d .

All preconditions for the state-transition rule normal_hook are true at 
time point 1 (idie(x) &~caiiing(z,x> & -inspeech (y, x)) and hence the rule is 
triggered



APPENDIX G. PUBLISHED PAPER 3 319

R u l e :  n o r m a l _ o f f h o o k  t r i g g e r e d .

The fact dial_tone (al) is a direct conclusion of the triggered rule. "Not 
true anymore: idle(al) " is derived from our conceptual model

(intra-state rules). dial_tone (X) "is_a" tone(X) (from {1}) and tone 
is "xor" with idle (X) (from {2}). Hence idle (al) cannot be true.

N ew  f a c t s  a t  t i m e  p o i n t  = 1 
N e w  f a c t :  d i a l t o n e ( a l )
N o t  t r u e  a n y m o r e :  i d l e ( a l )

T h e  s im u la t o r  h a s  n o w  t r ig g e re d  a l l  th e  r u le s  w i t h  o f f_h o o k  a s  t h e i r  

t r ig g e r in g  c o n d it io n , a n d  a l l  t h e i r  p re c o n d it io n s  t r u e . T h e  n e x t  t e s t  i s  to  

le t  s u b s c r ib e r  a l  c a l l  h is  o w n  n u m b e r  1 1 1 , w h ic h  s h o u ld  r e s u l t  in  a  

b u s y  to n e  i f  th e  s e rv ic e  r e f le c t s  o u r  in te n t io n , w h ic h  i t  d o e s :

n a n > o ( 2 , d i a l l i n g ( a l , l l l ) ) .

S i g n a l  : d i a l l i n g  r e c e i v e d .

R u l e :  d i a l l i n g _ b u s y  t r i g g e r e d .

N ew  f a c t s  a t  t i m e  p o i n t  = 2 
N e w  f a c t :  b u s y t o n e ( a l )
Ne w  f a c t :  c a l l e d _ b u s y ( a l , 1 1 1 )

Theorem Prover 
W h e n  th e  s e rv ic e  h a s  b e e n  s h o w n  to m e e t th e  u s e r 's  a n d  th e  e n d  u s e r 's  

in t e n t io n s  in  th e  s im u la t io n , w e  m a y  a ls o  u se  th e  th e o re m  p ro v e r  to  

p ro v e  d i f fe r e n t  p ro p e r t ie s  a b o u t th e  s im u la t io n s .  S in c e  th e  s im u la t o r  

s to re s  a l l  t r a v e r s e d  w o r ld  s t a t e s  u n t i l  i t  i s  e x p l i c i t l y  r e s e t ,  th e  u s e r  c a n  

u se  th e  th e o re m  p ro v e r  to  re a s o n  a b o u t  th e s e  s t a t e s .  In  o u r  

s im u la t io n , w e  h a v e  o n ly  t r a v e r s e d  th re e  s t a t e s :

stimuli received: stimuli received:

initial facts o ffhook(a l) d ia llin g (a l, 111)

Triggered rule: Triggered rule:
norm al_offhook calling_busy



320 APPENDIX G. PUBLISHED PAPER 3

F ig u r e  4 . F a c t s  a f t e r  th e  s im u la t io n

In  a n y  r e a l i s t i c  s im u la t io n , m o re  t h a n  one s u b s c r ib e r  w i l l  be in v o lv e d , 

a n d  h u n d re d s  o f s t a t e s  m a y  be t r a v e r s e d  b e fo re  a  s p e c if ie d  s e rv ic e  i s  

re g a rd e d  a s  h a v in g  b e e n  p ro p e r ly  t e s te d  in  th e  s im u la t o r .  T h e r e  a re  a  

n u m b e r  o f g e n e ra l q u e s t io n s  t h a t  s h o u ld  be a s k e d  to  e n s u re  t h a t  

c h a n g e s  m a d e  in  th e  s p e c i f ic a t io n  h a v e  n o t d is t u rb e d  th e  n o r m a l 

o p e ra t io n  o f th e  s y s t e m . T h e s e  q u e s t io n s  m a y  in c lu d e : 'Is  th e re  a n y  

s t a te  in  w h ic h  a  p a r t i c u la r  s u b s c r ib e r  h a s  b e e n  in  sp e e c h  c o n n e c t io n  

w i t h  h im s e lf ? ' ;  ' Is  th e re  a  s t a t e  th e  u s e r  c a n n o t  go o n -h o o k . O u r  f i r s t  

e x a m p le  b e lo w  id e n t i f ie s  a  s t a t e  in  w h ic h  a n  o f f  h o o k  m a d e  b y  a l  

r e s u lt e d  in  a  d ia l  to n e :

n n n > o (T1 , o f f h o o k ( a l ))  & p (T1 , d i a l t o n e ( a l ) ) ?

P r o v e d  a t  t i m e  1

A l l  s t a t e s  s e a r c h e d .

T h e  n e x t  q u e s t io n  is  o f  a  m o re  g e n e ra l n a t u r e , a n d  a s k s  w h e t h e r  th e re  

a re  a n y  t r a v e r s e d  s t a t e s  in  w h ic h  th e  s u b s c r ib e r  h a s  gone on h o o k  a n d  

b e e n  p u t  in to  id le  a s  a  r e s u l t .  I f  s u c h  a  s t a t e  i s  id e n t if ie d , th e re  i s  

o b v io u s ly  a n  e r r o r  in  th e  s p e c if ic a t io n .

n n n > o ( Z , o n h o o k ( a l ))  & ~ p ( Z , i d l e ( a l ) ) ?

A l l  s t a t e s  s e a r c h e d .

T h e  th e o re m  p ro v e r  t r ie s  to  p ro v e  fa c t s  b y  u s in g  c o n c lu s io n s  t h a t  c a n  

be d e r iv e d  fro m  s t a t e - t r a n s i t io n  r u le s  o r in t r a - s t a t e  r u le s .  F i r s t ,  i t  

t r ie s  to  e s t a b l is h  i f  s o m e th in g  is  t r u e  in  th e  s t a t e  i t s e l f .  I f  t h i s  f a i l s ,  i t  

t r ie s  to  p ro v e  th e  fa c t  b y  a p p ly in g  th e  in t r a - s t a t e  r u le s .  I f  th e  f a c t  

c a n n o t  be p ro v e d  in  th e  w o r ld  s t a te  o r b y  a p p ly in g  th e  in t r a - s t a t e  r u le s ,  

th e  fa c t  i s  a s s u m e d  fa ls e  b y  'n e g a t io n  a s  f a i lu r e ' .  T h e  th e o re m  p ro v e r  i s  

v e r y  e f f ic ie n t  a n d  w i l l  g ive  a n  a n s w e r  a t  a  lo w  c o m p u t a t io n a l  c o s t  e v e n  

i f  th e  d o m a in  is  r e a s o n a b ly  c o m p le x . T h e  p r ic e  to  p a y  i s  t h a t  t h e r e  is  no 

w a y  o f  d e f in in g  lo o p s  o r r e c u r s iv e  d e f in i t io n s . T h i s  p r ic e  m a y  s e e m  

g re a t , b u t  i t  h a s  sh o w n  to  be s u f f ic ie n t  fo r  th e  19  d i f fe r e n t  s p e c ify e d  

te le c o m m u n ic a t io n  s e r v ic e s  t h a t  u se  o u r  c u r re n t  s t a t e - t r a n s i t io n  r u le s

m.



APPENDIX G. PUBLISHED PAPER 3 321

8 Conclusion

T o  e v a lu a t e  o u r  a p p ro a c h  w e  im p le m e n te d  a  p ro to ty p e  o f  so m e  o f  th e  

e s s e n t ia l  p a r t s  o f  a  c a s e - b a s e d  r e a s o n in g  s y s t e m  fo r  s u p p o r t in g  th e  

s p e c i f ic a t io n  o f  la rg e  s y s t e m s . A  s im p le  b u t  s u f f ic ie n t  t e m p o r a l  lo g ic  

w a s  d e f in e d  a n d  im p le m e n te d . T h e  t e m p o r a l  lo g ic  (to  a  g ra te  d e g ree  

s im i la r  to  L o x y )  s e e m s  to  p o s s e s s  u s e fu l  p r o p e r t ie s  s u c h  a s  b e in g  

c o m p u t a t io n a l ly  e f f ic ie n t , so u n d , d e c id a b le , a n d  c o m p le te 1, a s  w e l l  a s  

o f fe r in g  a n  a p p ro a c h  t h a t  c a n  be u se d  to  d e c id e  i f  a  s p e c i f ic a t io n  i s  

c o n s is t e n t  o r n o t . T h i s  g iv e s  a  p la t fo r m  fo r  fu t u r e  d e v e lo p m e n t  o f 

fo r m a l  r e a s o n in g  a b o u t  th e  s p e c if ic a t io n , i .e . p ro v in g  d if fe r e n t  

p ro p e r t ie s , c o m b in in g  s e v e r a l  s p e c if ic a t io n s  in to  one n e w  s p e c i f ic a t io n , 

a b s t r a c t in g  in fo r m a t io n  a b o u t  a  s p e c i f ic a t io n  a n d  t r a n s f o r m in g  a  

s p e c i f ic a t io n  in to  a  r e p r e s e n t a t io n  t h a t  u s e s  le s s  t im e  a n d  m e m o ry  

w h e n  s im u la t e d .

A  s e t  o f  m e t r ic s  fo r  s im i l a r i t y  m e a s u r e m e n t s  b e tw e e n  b e h a v io u r a l  

e x a m p le s  a n d  s t a t e - t r a n s i t io n  r u le s  o r r u le - s e t s  w a s  im p le m e n te d  on  a  

s e t - t h e o r e t ic a l  b a s is .  A  s e t  o f  g lo b a l p a r a m e t e r s  c o n t ro ls  h o w  th e  f in a l  

s c o r in g  o f  a  m a tc h  i s  c a lc u la t e d  fro m  th e  s e t  o f  w e l l- d e f in e d  m e t r ic s .  

S o m e  i n i t i a l  s e rv ic e  s p e c i f ic a t io n s  h a v e  b e e n  p ro d u c e d  a n d  p u t  in  th e  

c a se  l ib r a r y  a s  t e s t - c a s e s . F o r  a  f u l l  e v a lu a t io n , s t i l l  m o re  s e r v ic e s  

h a v e  to  be s p e c if ie d .

T h e  m a t c h in g  s u b s y s t e m  w i l l  a lw a y s  h a v e  a  h e u r i s t i c  c o m p o n e n t 

w h e n  i t  c a lc u la t e s  th e  f in a l  s c o r in g  fro m  th e  m e t r ic s .  T h e  g lo b a l 

p a r a m e t e r s  n e e d  to  be tu n e d  fo r  d i f fe r e n t  d o m a in s . H e r e , a  m o re  

e n c o m p a s s in g  e x a m p le  w o u ld  h e lp  th e  e v a lu a t io n  o f  th e  m e t r ic s  a n d  

g lo b a l p a r a m e t e r s .  T h e y  m a y  n e e d  to  be r e v is e d  a n d  e x te n d e d  to  

p ro d u c e  a  good r e s u l t .

A lth o u g h  C A B S  is  a t  a n  e a r ly  s ta g e  in  i t s  d e v e lo p m e n t , i t  

d e m o n s t r a te s  h o w  t a k in g  a  c a s e -b a s e d  a p p ro a c h  c a n  a s s i s t  in  re d u c in g  

th e  p ro b le m s  a s s o c ia te d  w i t h  th e  m o d if ic a t io n  o f la r g e - s c a le  fo r m a l  

s p e c i f ic a t io n s  o f  t e le c o m m u n ic a t io n s  s e r v ic e s . I f  s u c c e s s fu l , t h i s  

a p p ro a c h  m a y  le a d  in  th e  fu t u r e , to  g re a t  re d u c t io n  o f  th e  t im e  u s e d  to

T f used w ith an appropriate proof strategy.



322 APPENDIX G. PUBLISHED PAPER 3

s p e c ify , d e s ig n , a d a p t  a n d  in t e g ra t e  n e w  d e m a n d s  in to  r e a c t iv e  s y s 

t e m s .

References
[1 ] B u n d y , A . ,  T u t o r i a l  n o te s : r e a s o n in g  a b o u t  lo g ic  p ro g ra m s . 

Second International Logic Programming Summer School, 
LPSS '92. Proceedings, pp  2 5 2 - 7 7 , E d i t o r s :  C o m y n , G . ;  F u c h s , 

N . E . ;  R a t c l i f f e ,  M . J .  S p r in g e r - V e r la g  (1 9 9 2 ) .

[2 ] D a l i a n i s  H . ,  A  n a t u r a l  la n g u a g e  g e n e ra t io n  s y s t e m  fo r 

v a l id a t in g  s p e c i f ic a t io n s  fo r  te le p h o n e  s e r v ic e s . T e c h n ic a l  

R e p o r t , E l le m t e l  T e le c o m m u n ic a t io n  S y s t e m s  L a b o r a t o r ie s  

a n d  S to c k h o lm s  U n iv e r s i t y  (1 9 9 2 ) .

[3 ] D o m e s h e k , E . ,  A . ,  K o lo d n e r , J . ,  T o w a r d  a  C a s e - B a s e d  A id  fo r 

C o n c e p tu a l D e s ig n , International Journal of Expert Systems, 
V o l .  4 , N u m b e r  2 , pp  2 0 1 -2 2 0  (1 9 9 2 ) .

[4 ] E c h a r t i ,  J . ,  P . ,  S t ä lm a r c k ,  G ., A  lo g ic a l  f r a m e w o r k  fo r 

s p e c ify in g  d is c re te  d y n a m ic  s y s t e m s , T e c h n ic a l  R e p o r t , 

E l le m t e l  T e le c o m m u n ic a t io n  S y s t e m  L a b o r a t o r ie s  (1 9 8 8 ) .

[5 ] E n g s t e d t , M .,  A  f le x ib le  S p e c if ic a t io n  L a n g u a g e  u s in g  N a t u r a l  

L a n g u a g e  a n d  G r a p h ic s .  M S c  t h e s is ,  U n iv e r s i t y  o f  E d in b u r g h  

(1 9 9 1 ) .

[6 ] F u n k ,  P . ,  In d u c t io n  o f  A u t o m a t a  v ia  R u le s  f ro m  S i t u a t io n  

S e q u e n c e s . U n iv e r s i t y  o f S to c k h o lm  a n d  E l le m t e l  T e le 

c o m m u n ic a t io n  S y s t e m  L a b o r a t o r ie s  (1 9 8 8 ) .

[7 ] F u n k ,  P . ,  R a ic h m a n , S . ,  R O S ,  A n  Im p le m e n t a t io n  In d e p e n d e n t  

S p e c if ic a t io n  fo r  I S D N , T e c h n ic a l  R e p o r t , E l le m t e l  T e le 

c o m m u n ic a t io n  S y s t e m  L a b o r a t o r ie s  (1 9 9 0 ) .

[8 ] F u n k ,  P . ,  D e v e lo p m e n t  a n d  M a in t e n a n c e  o f L a r g e  F o r m a l  

S p e c if ic a t io n s  S u p p o r te d  b y  C a s e - B a s e d  R e a s o n in g . M S c  

t h e s is ,  U n iv e r s i t y  o f  E d in b u r g h  (1 9 9 3 ) .



APPENDIX G. PUBLISHED PAPER 3 323

[9 ] K e t le r ,  K . ,  C a s e - B a s e d  R e a s o n in g : A n  In t ro d u c t io n , Expert

Systems With Applications, V o l .  6 , p p 3 -8  (1 9 9 3 ) .

[1 0 ] K o w a ls k i ,  R . ,  D a t a b a s e  U p d a t e s  In  T h e  E v e n t  C a lc u lu s ,

D e p a r t m e n t  o f  C o m p u t in g , Im p e r ia l  C o l la g e , L o n d o n  (1 9 8 6 ) .

[1 1 ] N a k a t a ,  K . ,  B e h a v io u r a l  S p e c if ic a t io n  w i t h  N o n m o n o to n ic  

T e m p o ra l  L o g ic , D . F in n  (e d .) Preliminary Stages of Engineering 
Analysis and Modelling Workshop, pp  4 1 -4 5 , A I D  '9 2  (1 9 9 2 ) .

[1 2 ] R ie s b e c k , C . ,  S c h a n k  R . ,  Inside Case-Based Reasoning,

L a w r e n c e  E r lb a u m  In c .  (1 9 8 9 ) .


