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INTRODUCTION

The problem of extending the Quantum Theory of Fields to

include a description of decay processes has provoked a rapid

growth of interest in recent years. This problem was

temporarily by-passed in the early attempts to formulate a

relativistic Quantum Field Theory1"^ for the obvious reason

that it was simpler initially to ignore decay phenomena and

to consider only the collision processes of stable particles.

The inadequacy of a field theory of stable particles is

evident from the fact that among the sixteen experimentally

established particles, and of course their sixteen anti-

particles — although not all particles are distinct from

their anti-particles — only four? the proton, electron,

photon and neutrino, are stable.

Let us recall the manner in which the stability restriction

was imposed. Among the known interactions between particles

three clear subdivisions are observed appropriately named

'strong', 'electromagnetic' and 'weak' according to the magni¬

tudes of their associated coupling constants. In the past the

conventional procedure has been to assume that 'nature is most
2)

easily described by a sequence of approximations'. The weak

and electromagnetic interactions are successively 'turned off'

which has the effect of forbidding all known decay processes

exhibited by the observed particles. Thus a simplified field

theory describing the strong interactions of all baryons and

mesons has evolved and has become one of the main frameworks



for theoretical investigations in modern field theory, although

it is not clear how serious a distortion of nature is involved.

It is certain that a thorough treatment of unstable particles

must take account of the role of the 'weaker* interactions.

Let us search the axioms of the field theory of stable

particles, which for convenience are listed in detail below,
for the critical points where unstable particles are excluded.

I. Quantum Physics: Quantum Field Theory is an extension

of Quantum Mechanics to an arbitrary number of degrees of

freedom. In particular the vector space formed by the

stationary states of the system should be a Hilbert space and

all observables are hermitian operators on this space.

II, Field Operators; a set of boson fS(x) and fermion H>(x)

Heisenberg operators exist to specify the fields associated with

the particles of the system. The quantities jzKx) and ii>(x)

are to be interpreted in the sense of operator valued distribu¬

tions such that the expressions

are operators and give definite results when g(x) Is a test-

function belonging to the class of all infinitely differentiable

functions of compact support in space-time.

III. Relativistic Invariance; If U(A, a) is a unitary

Lorentz operator in the Hilbert space of the state vectors t^here

A is a homogeneous Lorentz transformation and a is a trans¬

lations! transformation, then

oo

and

UCA , a-). U VA,a) * (A *. ♦ *)
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" -Jr-(A* + +)
In particular hermitian displacement operators P exist such

that

and [P. ,F<->] - -^
where F(x) is an arbitrary Heisenberg operator. In the

representation where the P are diagonal we can define the
r

eigenstates of P so

The set of such eigenstates | p, a> can be shown to span a

Hilbert space which we choose as the Hilbert space of the

system.

IV. Energy-Momentum Spectrum: A unique, invariant, nor-

malizable, lowest-energy vacuum state I 0 > exists and is

defined by

U(A,A)lo> = /o> and /©> = O

The eigenvalue p( of P has the properties
P r

- « t>o ~ £* ^ O and l>0 ^ ©

V. Positive Semi-definite Metric: The norms of all vectors in

Hilbert space must be greater than or equal to zero.

VIf Microcausality:

= o

{iro^>ir^)] = °
if (*•
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VII • Asymptotic Conditions I

Xt Cf I ftoO I 'f-) z (g I (,o / •£-)
*c-+ "too *»•

Jt (f I irOoJ = [{ I fi)
t oo I„

where £ and -^r are arbitrary Heisenberg states and the 'in*
and 'out1 suffixes indicate free in-going and free out-going

Heisenberg field operators.

In addition one could perhaps add an eighth axiom for the

restriction to stable particles mentioned earlier.

Even in a field theory of unstable particles we can con¬

struct a complete orthonormal system of basic vectors spanning

a Hilbert space in the Heisenberg representation from the

asymptotic fields of stable particles or from the set of

eigenstates of the displacement operator • Therefore the

only axioms which are obviously questionable with respect to

unstable particles are III and VII. Firstly violations of

invariance under the unitary parity operator P, charge con¬

jugation operator C and the anti-unitary time reversal operator

T may be possible among weak interaction phenomena. Hence we

should strictly only allow invariance under proper Lorentz trans¬

formations in axiom III. He may still assume invariance under

the PCT-transformation.-^ ' The asymptotic properties of

field operators In axiom VII give the theory an interpretation

in terms of particles. Unfortunately it may be meaningless to

ask for the asymptotic properties of unstable particle field

operators since In the Infinite time-like limits an unstable

particle does not exist physically. In the infinite future
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only the decay products will be present and in the infinite past

only the particles asymptotically associated with the production

process to create the unstable particle will be present. Vfe are

therefore prevented from interpreting an unstable particle field

in terms of a specific particle and in particular from defining

a mass to be associated with this operator. In addition some

method must be found for defining a lifetime for an unstable

particle. Notice that such a mass m and lifetime X will

not be unique since the uncertainty principle predicts a mass

distribution with a mean square deviation from the average

mass given by Zi n-v i = Y which also has an uncertainty
p

^ Y ^ /in, It is clear then that we have to devise a method

of defining consistently a mean mass and mean lifetime which will

only be reasonably accurate provided Y is very small or the

lifetime large. We shall find in Chapter I that the latter re¬

quirement is a physically desirable one.

It is generally believed possible to conceive of single

unstable particle states in the Heisenberg representation as

approximate eigenstates of P and that the accuracy of the

approximation will depend on how long lived the particle is or

how nearly stable. Since it should only be possible to inter¬

pret a state as a single unstable particle state during the

lifetime of the particle itself, such a state seems a rather

elusive quantity to define in the Heisenberg representation

in which all states are stationary.

A vast literature has accumulated on the definition and

treatment of unstable particles in a variety of models using,
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largely approximate and usually non-rigorous methods. Among the

more serious treatments several have aimed at definitions of the

mass and lifetime of an unstable oarticle in field theory. One

such attempt has been made by Matthews and Salam ' who define

a mass density closely related to the Lehmann spectral density

function."^^ The mean mass and lifetime are defined as the

first and second moments of this mass density. Unfortunately

it has been observed^ that such moments do not exist for many

physical examples unless the mass density decreases very rapidly

for large mass values. But in any event the definitions seem

much too artificial.

A specially interesting suggestion made by Peierls-^ appears

more natural and has proved popular in later works. Peierls

indicates that there may be a pole in the lower half plane of

the second Riemann sheet of the propagator and that the real

and imaginary parts of the pole serve to define the mass and

lifetime of the particle propagated. This has since been

verified by Levy^ for the Lee Model with an unstable particle

and he shows further that an exponential decay teim is con¬

tributed to the time dependence of the propagator by the

unphysical pole. This exponential behaviour is believed to

correspond to the quantum mechanically well-known exponential

decay law of resonance states and receives a thorough dis-

cussion in this context by HBhler" (there are many earlier

references given in this paper). Levy's methods, however, are

based on an analytic continuation through the cut in the complex

energy plane for the propagator in order to find the unphysical

sheet pole and he himself shows that the required analytic
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properties cannot easily be demonstrated in field theory. For

the case where a particle has two or more modes of decay, Levy

demonstrates with the Lee Model that it is necessary to con¬

tinue through a certain restricted region of the cut to obtain

the physically correct pole to be associated with an unstable

particle. We will examine this interesting conclusion with

a more general field theoretic model in Chapter II, Jacob and

Sachs®^ have also discovered a similar unphysical pole in

perturbation theory applied to a simplified model of the decay
Ql

mechanism of an unstable particle, Fairlie and Polkinghorne7'

using a model based on a separable potential found that unstable

states can be associated with unphysical poles, Gunson and

Taylor"*"^, Oehme^"1"^ and others have found possible resonance

poles on unphysical sheets of a Mandelstam-type representation

holding for a two-particle scattering amplitude on the

physical sheet, by continuing through the elastic region of

the physical cut in the energy variable using unitarity,
17}

Chew" indicates that if an elementary unstable particle exists

in the theory of Mandelstands double dispersion relations and

unitarity, it can be inserted into the theory as a pole of the

scattering amplitude on an unphysical sheet. The latter is

done somewhat indirectly by introducing a C,D.D, pole* in the

denominator function D of the N/D method1*^ at some

physical energy which then implies a complex zero in the denomina¬

tor D itself. The works just mentioned all hint that the

x Castillejo, Dalitz and Dyson ' noticed that poles, now
called C.D.D. poles, can be freely added to the denominator
function D with two extra arbitrary parameters determining
the position and residue.
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fundamental ideas involved are sufficiently general to apply to

full field theory. This probable generalisation has been dealt
12}

with to some extent by Schwinger who takes the view that

unstable particle behaviour is already contained in the well-

known Lehmann spectral representation^®^ if weak interactions

are explicitly considered. It is important to note that there

is no need for Schwinger to leave the physical sheet in his

analysis since he derives the Breit-Wigner resonance formula

and the exponential decay law without troubling to look for

the unphysical pole. In other words Schwinger finds the

effects of the unphysical pole on the physical sheet rather

than the pole itself. This has the great asset of avoiding

the difficulty with analyticity in field theory discussed

by Levy. Schwinger examines also the possibility that the

exponential decay law fails after a very long time and con¬

cludes that the law is valid in field theory for so long as

it is meaningful to Identify the state of the system as the

single unstable particle state. Hence after a very long time

the decay law becomes dependent on the observation and pro¬

duction mechanisms. A very similar conclusion has been reached

by Jacob and Sachs®^ in perturbation theory and Newton^"4^ after

examining the same problem in Quantum Mechanics with a time-

dependent wave packet formalism. In Chapter II we shall recover

sane of the main points made by Schwinger in analysing the boson

propagator and consider some of the problems to be found in

looking for unphysical poles by discussing a field theoretic

model of a decay process with analytic properties of a

Mandelstam-type. In Chapter III we generalise to unstable
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fermions the methods used in Chapter II. Moffat has

suggested that Schwinger's work can be applied to single dis¬

persion relations for two-particle scattering amplitudes in

field theory. The author too has thought independently along

similar lines and has analysed this generalisation in a rather

different and more thorough fashion, which will be presented

in Chapter IV. Little progress has yet been made to set up

an operator formalism to deal with unstable particles. Work

by Ida*^ attempts to justify a conjectured definition of a

single unstable particle Heisenberg state. This may yet

prove to contain a germ of truth but much is left to be desired

when complex masses are arbitrarily introduced and assigned to

unstable particles. In spite of the fact that in Chapters II,

III, and IV we have a fairly extensive dispersion relation

treatment of unstable particles in full field theory, it could
be more useful to develop an operator formalism. In view of

this we discuss briefly the possible form and properties of a

single unstable particle state in Chapter I. We restrict

ourselves to very general terms and make no rash claims to

have discovered a rigorous treatment. However some aspects of

our conjectures appear to have a general validity and throw

further light on the results of Chapter II.
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CHAPTER I

UNSTABLE PARTICLE STATES

In the introduction we discussed the axiomatic foundation of

a quantum field theory applicable to unstable particles. We

found it mostly unnecessary to alter the usual axioms for stable

particles with the notable exception of the asymptotic conditions.

Essentially we have to find a method of defining one particle

states for unstable particles without using time-like asymptotic

limits. It would clearly be best to look for a method applicable

to stable and unstable particles alike.

For stable bosons the usual procedure is to find an

operator which will project out the one-particle contribution

from the Fourier spectrum of <f toy and giving a normalis-
able state. One arrives at the projection operator*

-lie j out)j (a.x)
T-f oo ~o° "<*» >**

where XCO is a test-function possessing derivatives of all

orders, vanishing faster than any power of t""^ outside a region

-2T < t < -T and is approximately equal to unity inside this

region. The asymptotic condition then ensures that (l.l) applied

to /©> produces the same effect as a free field creation

operator acting on the vacuum |0> produces namely a one particle

* General points of notation are contained in Appendix 1.



"boson state.

For an unstable "boson we must reject the asymptotic limit

in (l.l) and assume the particle is created 'by some external

source at a finite time in an infinite region of space-time R*

Wft now choose the test-function X (t) to vanish outside the

region R and call the time-like extension of R in the

direction x , T = £ dt . This adjustment is still in accord
with axiom II and takes account of the fact that the preparation

or detection of a single particle state cannot be accomplished

instantaneously and at a geometrical point in space. We make a

further plausible conjecture that f (x) should be replaced by

some similar function ^c(x) ^ regi°n R a"t least.
The function X (x) is to be suitably chosen for the projection

v OL

of an approximate one-particle state from yb^i o> whether
refers to a stable or unstable boson. Therefore with

these general assumptions we tentatively propose to represent a

one-particle state of average energy-momentum k^ in the form

90 90 ^

- "*• t 4tXlt)5 <»«.> o>
t .1 *<■ 5^. r

>V- dfc) . ,^ ^ (1.2)

or perhaps we may be permitted to write (1.2) in the simpler form

00 4.—*

lkttC> ~ [ OO iO>
b/ '*T _L

(1.3)

where 3"^'^ s 9 is the unit normal to the



space-like surface tr L*t) , and the constant N is chosen such

that I k, a> is normalised to unity, so

oo

hf =

where

-

-=~ J J4* [NVt<oi#c*> itt,*>]^4**°
•ft?

(1.1+)

•b f y-

[A/ Vt<oI I k,tC >j = J <4 *m/ <O/ ^ few) I «»>>%o £p c>tO
-co *

£ ( JV1 V*'i xl)»° (1.5)

We have used the usual Lehmann techniques'*"®^ to reduce

<©I ^d>0 lo> to the spectral form A ChV^K1
by inserting a complete set of exact eigenstates of P between

H'

^(x) and j6^(x> ). The calculation is identical to the stable

particle field operator derivation. That / k, a> is only an

approximate eigenstate of follows because £ (x) cannot
be an exact solution of the Klein-Gordan equation and can only

l.lcx
be represented approximately as a plane wave solution e

with k0 -J ' .

To be certain that fill, a> is a one-particle state our

energy measurements must be sufficiently accurate to distinguish

| k, from many particle states. The uncertainty principle

then shows that there is a restriction on the time required to

observe J k, as a one-particle state. These restrictions on
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15}
T were pointed out "by Ida *" and constitute what he has called the

particle condition. They are as follows

(a) For a stable particle we must have the indeterminacy of our

energy measurement AS less than the difference between the

energy of a particle of mass n and momentum k and the energy

of the threshold state of mass p. ^ - i.e. is the lowest
mass value of the continuous mass spectrum - and momentum k,

in the energy spectrum of P.,.* HenceM*

AE - T<< (J-6)

Also to eliminate negative energy frequencies we must have

AE ~ T" << (1.7)

(b) For unstable particles the analogous relations are

AE - -r" « (i.s)

AE - T" << Jk\^T - d-9'

where \x,^ and m-s are the masses associated with the weak and
the strong interaction thresholds of the continuous spectrum

respectively.

x This is providing that the discrete one-particle representation
in the spectrum is separate from the multiple particle continuum
representation. This is not strictly true even for stable par¬
ticles if we allow electromagnetic interactions.
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In addition we must have the observation time less than the

lifetime to be sure of observing the particle before decay is

too far advanced, so

r" » y - V'
(1.10)

In the introduction we mentioned that Y should be very

small if we wish to define accurately a mean mass and mean life¬

time for an unstable particle. Prom (1.8) and (1.10) we discover

the explicit condition for a narrow distribution of mass for an

unstable particle, required for physical reasons, in the form

y «<< /kv1'- (1.11)

Ye expect the Lehmann density function g (k ) to have a

discrete i -function tern expressing a stable particle state

tinder strong interactions only. If this particle becomes un¬

stable under weak interactions we expect the £ -function to

spread out into a resonance shape in the continuous spectrum.

The forms of £(*~) under these two sets of conditions can be
pictured as follows

a r*
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The reasons for believing these figures are to be found in

Chapters II and III.

We also expect the time dependence of a wave packet

representing the propagation of an unstable particle to be

exponentially decreasing, ^uch a wave packet or one-particle

amplitude can be represented in the Heisenberg representation

by

= <0|

if x is in the future of the region of preparation R, where

) =. 1 <o|Tf/^)^6t)]/o> (1.13)

It is only necessary to find the time dependence of G(x - x* )

due to the single unstable particle contribution. The probability

that the particle has not decayed after a time t should have

the form, choosing R so that x = 0 e R ,

(1.1U)

In terms of the Fourier transforms G(-k|2) and J' (kf) of(X

G(x - x*) and ^ , (x) we can writeQ*
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or, since we only wish the time dependence

Uk''b) = c"'£ < k'>
-o° (1.16)

where

OO -It
** <• . / -C *C X. a _

- J £* <*■ Xc,c>

ig k' & k
O otherwise. (1.17)

since "f (x) « eikx and "X (x,,) « 1 for x„ e R •a, h- !"

Hi can rewrite the energy condition in (1.17), k^ » kQ in the
form

(1.18)

where A S is the precision of our energy determination in

(1.8), (1.9) and £k, - , £k = .

The factor (k*) therefore acts as a kind of mass filter

since it only allows the integration over k^ in (1.16) to run
over values consistent with the energies and masses we wish to

obtain. We have used rough methods to arrive at (1.16) but the

works of Jacob and Sachs^, and Newton"*"4^ indicate that the form

and above interpretation of (1.16) is essentially correct. It

seems likely that the mass filter introduced by Schwinger* when

discussing the unstable particle contribution to G(x - x1), can

k See Chapter II.
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be best replaced by some argument similar to that presented

here. Further it would appear better, for the sake of easier

comparison between theory and experiment, to consider the time

dependence of g (x) as the one characterising the probability(X

of decay of an unstable particle rather than the time

dependence of G(x - x1).

Similarly we might conjecture that an unstable fermion

state can be represented by

90

ie,*> = -~p [^(ia?)
~OO

where wu(x) is an approximate solution of the Dirac equation
and vanishes outside an infinite space-time preparation region.

A very similar result to (1.16) for the time dependence of the

unstable fermion wave-packet is found to be

- <o\ I />, oC >
00

- ^ Cx>/) (1.20)

if x is in the future of the preparation region, where

S'r (h-x' ) s -J. <0/ TCy IO> (1.21)
Hence

^ck'.tr) = ^ jja.22)
where w (k*) is the Fourier transfoiro of w (x) and has mass

a a

filter properties similar to those of (1.17) and (1.18).



-18-

The state | k, a> defined by (1.3) is not an exact eigen-
state of P 0 but is very nearly identical with an eigenstate
of with real momentum k and mass since

N%'XT

>Lj s«p

| J ere*} 6 n"*? 3 M io>J r J.-CO

9o
I /

•¥

Ko "S'PO

[ jk^ ^ nt* lo>» ' „oc °y+ a>io

2 I h, *i > (1.23)

since 3a(x) •—> 0 as | 1 —* 00 , x^ being a time-like
vector, in such a way that the surface integral vanishes, and we

have used axioms III and IV, and <fAx) 9 for x e R.U) U»

There appears to be no reason why we should not be able to

choose $ (x) such that J k, a> Is an eigenstate of the momentumCL

operator P with real momentum k as eigenvalue but such that

I k, a.y is only an approximate eigenstate of the energy operator

PQ with approximate real energy J I***eigenvalue where [i
is seme mean value for the unstable particle mass. In the stable

particle case it would be possible to choose ga(x) =<0 1 ?((x) I k,
*i 2

as a representation for J (x) with x e R since G(-k* ) inCL [X

(1.15) is given by an expression of the form (-^-/*l ^O
and therefore g (x) = f (x) defined in Appendix 1. If we canCL CL
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find the analogous expression to (-h.7--»6 ) ' for
p

G(-k' ) in the unstable particle case then we can put it in

equation (1.15) and obtain a g (*) which appears to be thecx«

analogous representation for 3F^(x) for x^ = R in the
unstable particle case. In this way we hope that, although

I k, a> is not a unique state belonging to the set of eigen-

states of P ^ , we may be able to express |k, a> in an

approximate way, but sufficiently accurate for experimental

purposes, so that it can be treated as if it were a unique

one-particle unstable state with a given real momentum and some

given energy yet to be defined. In Chapter II we will examine

G(-k' ) in the unstable particle case to find the 'discrete'

one-particle contribution from the mass spectrum and therefore

derive an expression for g (x) or $ r (x) for xit = P.Ut CI u

The fermion state /p, a> can be treated similarly.

Lastly we should mention that the same general conclusions

of this chapter can be drawn from Ida's definition of one-

particle unstable states provided this definition is acceptable.
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CHAPT5R II

TliS BOSON PROPAGATOR

We devote this entire chapter to an analysis of the boson

propagator for the purpose of obtaining a description of the

propagation and allied properties of unstable bosons. We

first repeat some of Schwinger's work"*"2^ but in different

detail from the original.

General Properties

The following results due to Lehmann are valid for an

unstable particle field operator as well as a stable particle

field operator if we avoid lehmann1s use of C, P and T

invariance separately, so

f °°
<01 1 o> - *■ j g <■ **"*9 A Ch-x' ; kx)J(2.1)

•'6

« Oo

<o| ^Cuf) ^£>0 lo> »-£j ^A Kl) Jkx (2.2)o

We have only required axioms I to IV with axiom III referring

only to proper Lorentz transformations and

etk^ewecko) = &+)*£ <oj ^to>/o> (2.3)

£ Jj£lo)jo> (2.4)

2 2
where axiom V shows £ (k ) and £*(k ) are real and non-negativ?
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The use of CPT invariance gives

<01 s <ol (2.5)

and this or alternatively axiom VI implies, according to Lovitch

and Tomazawa/"^, that

eCK*) 3 e'c K«-> (2.6)

Therefore we can define the hoson propagator for stable or

unstable particles* as the following function

Co

Gr0>O = £ <olTlo> x GC-k*-) (2.7)

where

oo

J k1*
(2.8)

in which

eC-l*)&C-k»&Ck0) r Urr)3£i<oitCo)/kJ«>lA (2#9)

p
We can use (2.8) to define G(-k ) as a function of a complex

variable 1 so

° J ^ « C*"'>]* (2.10)

2
since g(k~) is real and

x In view of (2.6) it is also clear that the representation (2.8)
is true for particles and the^r anti-particles with the same
spectral density function £(K2) for each.
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lk GC*) * frC-h*-) (2.11)

Formula (2.4) shows that G(«) is an analytic function of -a

apart from a possible cut from « = 0 along the whole positive

real axis on the complex -a-plane and (2.11) shows that
o

G(-k ) is the boundary value of G(«) in the real axis. Hence
2

G(«0 is an analytic continuation of G(-k ) into the complex
2

(-k')-plane. Also a calculation of the discontinuity across

the cut in the g-plane using (2.8) gives

Itv% s tr g i-k*) (2,12)

and so (2,8) is really a dispersion relation for G(») provided

G(e) tends to zero on the infinite circle in the e-plane. We

are assuming here that no subtractions in (2.8) are required
2

for convergence. We shall further assume that G(-k") has been

normalised such that*

oo

j s i (2.i3)
o

We shall be specially interested in poles or strong

variations in G(«) so it will be convenient to have a dis¬

persion relation also for G"~(a) the inverse of G(«). Now
2

G(«) has no complex zeros since, putting « = -k + iy

co

ly* G-c*) =. J J ^; (2.14)
O <kx*kl)x + J1-

x For the case of pseudoscalar mesons with a local Lagrangian,
(2.13) can be deduced directly.
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and this only vanishes if y = 0. ^en if y = 0, G(«) has no
2 2

zeros for (-k~) $ 0 but is positive and increasing for -k

increasing from negative values as can be seen from

oo

J G(i)
_ f K*

di i Ocx-*)* (2.15)

If we can show

* 'Hi.
PO

K* S — I

i <» (2.16)

where £/ signifies the taking of the principal part of the

integral, then it follows that

G-C-2-) « - -g" 2- * infinite circle (2.17)
21}

A theorem has been proved by Kftllen ' and by Ferrari and

Jona-Lasinio22^ which asserts that (2.16) is true under very
2 2

reasonable conditions for f (K~). If £(k ) is integrable for
p

K 0 (which we have assumed in (2.13)) then the conditions are

jjt K*) . £ (KM = O' V (2.18)

A a o
Kv-> otf iK*)"

p
for all integers N > NQ > 0. Gven if £ IK ) is not integrable
the following limit is finite

i. i. ?/ C <!<■«"> UkX** 0 (2.19)

V
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o
if p(K ) can be written as a sum of an integrable function and
a linear combination of functions of the type |fl J (0<Y $ 1)

o Y 0 Y>

and (K~r (log k ) where n is a positive integer. These
p

theorems show that (2.17) follows unless £.(k'~) is a rather

badly behaved function which we assume it is not.

Consider the function ^(*) = (t ®■ (t) t i) along with
the properties of G(a) deduced above. has a cut along

the positive real axis, no poles except at « = 0 and converges

to zero on the infinite circle, therefore we can write a dis¬

persion relation

i . Ji . f °°
1 £ vl K1*— * (2.20)

or
BO

= a1-- i - « [JA Kl- 4

K<-

K"— 4 (2.21)

where

sc-kt) - —!—• £W-fcSte> -
U-mi kx J

I - Q iC"+ £ fc )J
4nCh.x iG-C-k*-)!*-

6C-t£- O

C-kt) • / Gr(-kx)lX (2.22)

and by comparing G"^(0) with [G(0)Jwe have
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which is certainly finite*4 because of assumptions (2,13) and

(2.18).**
We can get a clear picture of most of the information we

2 —1 2
have gathered about G(-k') and G (-k ) from their graphs

below.

p
The threshold of the cut in the (-k~)-plane is determined by the

2
lowest energy contribution to £ («k ) in (2.9). If we assume

2 2
that the threshold occurs at some positive value of -k = KQ ,

which is true for many physical situations, then we move the

threshold away from the origin and consider the likely behaviour

of G(-k2) and G"1(-k2) for (-k2) > 0. Since G^t-k2) is

p —
x In what follows we shall not include the point K = 0 in any

spectrum and in fact we shall not explicitly consider the electro¬
magnetic thresholds which appear at the origin for neutral fields
and at all poles. We presume their effect does not alter the
physical conclusions of our argument.

xx See Appendix 2.
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2 ° 2
a decreasing function for all (-k ) < I , where KQ is the
new position of the threshold, then it is possible that

G~^(-k2) has a zero for KQ2 > (-k2) > 0 and that G(-k2) has
p

a pole at this point. It is not at all likely that G(-k') has a

zero first. A pole in G(-k ) would correspond to a single

particle freely propagating among the various self-energy

effects and might well be expected on physical grounds. The

correctness of this interpretation follows from an examination
2»

of (2.9) with | k, a> as a one-particle state. Then ^'-k )
e 2

has a & -function contribution when -k is on the mass shell
2

of this particle and a pole term appears in G(-k ) at this mass

value. We now write

oo

+ f (2.24)
/-x~*

where

r00 rJ t7.ll
> O

v ^ [•+
< <

2 2 2
and we assume £ -k ) is zero in the regions 0 $ -k < p. and
2 . , 2 ^ „ 2

p. < -k < Kq .
2 —12

We now picture G(-k") and G (-k ) as
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The graphs above lead us to suspect and the formula (2.24)
2 2 2 2

confirms that 0(-k ) may now have a zero for n < -k < KQ
1 2

giving a pole in G (-k ) which in turn may then vanish again
p

for a larger value of (-k ). Hence repetitions of our first
2 12

argument applied to G(-k ) and G (-k ) alternately will produce

a possible succession of poles and zeros. In general we have

graphically

Fig. II-3(a) Fig. II-3(b)



-28-

p
Physically we do not expect more than one pole in G(-k ) since

we do not observe two single particles of different masses but

identical quantum numbers in nature. Therefore from now on we

shall consider only the possibility of one pole and one zero in

G(-k ). Schwinger derives a further spectral representation
2 2

for G(-k ) which is useful in later calculations. If G(-k )

has no poles or zeros but only a cut along the real positive

axis starting at KQ2 then, if K»Q2< KQ2 , from (2.17)

(KoV-a) GCi) I OUS £ » (2.25)

Also j(K'02 - G(«^| has no poles, one zero at # = K'2 and
cut from Kq2 to c© • Hence log [(Ko - has n°

2
poles but a cut chosen from K'Q to oo and converges to zero
on the infinite circle. Therefore we can write a dispersion

relation of the form

t«-*>J• -j-J
where

t a ~tV • 6

a

foC'h1) « " jr J I*" ^ 6

a - JL (GrC~&+i6)\1

r i» ©C-kx~ - crt"' (nGrC'( »en*)7 (2-27)

in which the branch of the cot"1 must be such that its value
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lies between 0 and %» It follows that

. o&.^ [-*£
[ ,1 (2.28)

In spite of the factor (Kq' - z) , G-( a) does not have a pole
p O

since /6q( -k ) has a discontinuity at K' Q of % which produces
P 2

a factor of (K'0~ - b) from the exponential. Since /$0(K ) = %
for K*q2£ K £ Kq2 the formulae (2.28) do not imply that G(b)

2 p 2
has a cut from K*. to "but only a cut from K„ to +■ ooo o 0

is possible. Since f (Kq2) « 0 and R-6 G(Kq2) > 0 then
*J* *} » *• Also R-6 G(-k2) ~ -4 and f (-k2) -

'
f —^ / 2 \

as -k —* 00 where a is a positive number, so that X$0(-k ) —* 0
2

as -k —9 oo . it must therefore follow that the integrals in

(2.28) converge and that 0 £ />Q ^ ft.
2

Similarly for one pole at s = p. and no zeros of Q(«)»
2 2

the forms (2.28) will do if we choose K' < p and

—•* X jt0C-k*) - * dC-kSy*X) (2.29)

2 2
but note here that although ^^(-k ) —>0 as (-k )—» «°

p P
as before we now have Aj_(K0 /* 0 since R£ G(Kq ) ^ 0.

2
For the third case of a pole at 0 = p. and a zero at

g = O 2 > jj.2 in Gr( a) we choose K1 Q2 < fx2 < O 2< KQ2 and

f0C-k*-) —> ^ (2.30)
2 2 2

and here we have /2^Ko * = * and ^2^ ) *~* 0 as (-k ) —» e©
P

in the same manner as /$0(-k )•
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Te picture the three functions as

&<-w.

W '

•c

2-400

* ••

*» ..

,/i
<0 /*

^ 2 -Uk)

v
/* c-*v

F-^ H-4*0

C-IW

The generalisation of this spectral representation to cases

where G(e) has many poles and zeros is perfectly straightforward,

Stable and Unstable Particle Propagation.

We are now interested in G(-k2) under two different external

conditions

(a) when only strong interactions are allowed and we can apply
the usual stable particle theory. This situation is to be

thought of as purely hypothetical.

(b) when all possible interactions are allowed (but see note at

the foot of r^age IS ) and we have to make reasonable generalisa¬
tions from the stable particle theory. This situation is the
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realistic one.

2
For the case (a) where G(-k ) has the physically expected

pole and no zeros we write (2.24) as

G(-ki) * -dL - \* fs * k1 if k'-.t (2.31)
and we also have

-I ... . V .J. LI (&,<-« • At*h~k j (2<32)

whsre Oj1^.2) = 0 and so \s2 = ns2. j^i ♦ j
Therefore we could write

L ** *kKi*)j ( ,33)
so that

<rf>H * . - j„ (2.34)

2 —12
and we picture Gg(-k ) and Gg (-k ) as in Figures 11.2(a), (b).

Consider case (b) with the same particle propagating as in

Gg(-k ) above. If the particle is unstable under the introduction
of weak or electromagnetic interactions then the threshold of the

2
continuous spectrum will occur closer to (-k ) =0 than the point

2 2
(-k ) = ng and we no longer expect physically "to have any poles

2
or zeros of the propagators for (-k ) below the new threshold.

Hence it is reasonable to assume in this case that we can repre-

2
sent the propagator G(-k ) as

a (-W '

CO

(2.35)
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2
and picture G(-k ) as in Figure II-l(a) in which an extra section

of the real axis has been cut compared with Figure II-2(a), i.e.

the section *<w $ . in this region we write

=■ <e C*x) and we expect physically <<

Hence we prefer to write (2.35) in the form
OO 90

(2.36)K*-* kS-» fc Kl4 ll-ifc

where we do not necessarily imply that << fsC*ct) for
We will also write

6l-V) = vf" , ,

p
We now ask the question, what happens to the function G(-k ) in

2
the region where Gg(-k ) has a pole? Let us equate real and
imaginary parts for G(-k2) and G"1(-k2) given by (2.36), (2.37)
and by (2,28) for the region of interest K«J < C-kx') < ksv .

The results are ^

I JP f
„ewc-» «*«•*

(«J*kx) (2.38)
00

-i-W $60(K*-)d.Kl"

tr ib JKv K%.
-It ("tl) S A

Xt+Xt + h.'-.k.'-tt f' fci j1"
o J„ V it"- J,.; K"> *>■

(2.39)

-iE?j
S (K,i + iil) [<-«>-> ° *X+*X (2.40)

Fran (2.38) and (2.39) we get

«3L

s (aj* <:-&>>J (2.4i)
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Also fran (2.39) and (2.40) we get

- * klswC-k*>) cot

s \£+\Z + kx+kx1f f S~££l2dj<1 + 1t* S»CxMjk^ (2.42)
Now ir -k2<^ ns2 then

* ^)-VAV/) (2.43)

2 2
and (2.42) becomes for -k ~ u,_

s

oo

- ITkxSw<-kx) uet & C- ^ fo*fJf) + + (2 .44 )
«w **

By inspection we might expect the right hand side of (2.44)
2 2

to become small at some point p & p. • Hence we expand the
2

last tern about p , so
0» <K> tiC

-iflp f SwC«*)<Jk* _ xlPI *wCk1)<4*1 ... Mp/>f d**%l ~ /*% " -r«-
(2.4?)

2 2
for -k close enough to fi • Putting (2.45) into (2.44) we find

-trkxswC-kx) £0c-k>) (f.)'! Ck\ju>MV* > (2.46)

2 2 2
for -k v \i en p.- and where

v
_ t « (" i v vlJP f JwCK*-)JKv I

/* - e. [A~ -x- CJKi J
(2.47)

c,.f * f*.'>- ♦ % ^ ^• 4.zv-^J
It is clear that the results (2.46) and (2.47) are only valid if

the introduction of weak interaction terms has a very snail effect

in the region of the cut near -k2 = p. 2? on G"1(-k2).
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The elimination of ^Q(-k^) from (2.41) and (2.46) gives35

fw C- (2.48)
* a/?

2 2
for -k~ ^ jj,~ and

V r ir/xfo Sw (2.49)

The formula (2.48) has the Breit-Wlgner resonance shape we
2 2

predicted and degenerates to a & -function (Oc $ (k + n ) when Y
cannot he distinguished from zero. Thus (2,48) reduces to a

stable particle contribution when the weak interactions are

switched off. It seems quite consistent to associate the

resonance with a particle which is almost stable, having unique

mass ^ and lifetime Y.

The Decay Law

The contribution of (2.48) to G(k, t) is obtained from
r -:k9t ~ It!

G(fe.fc) - ! . Grtlc-) I — • £a . . Jkv
.i * & *£« (*»?

*• -jif.)'"0s>»si. £*. l*'5 _1 £— .
* > J iir

(2.50)

x It is perhaps not obvious that no further approximation is
involved in writing (2.48), (2.49) and more details of the
consistency of these results are given In Appendix 2, where
we also consider the effect a zero In G (-k^) has on results
(2.47), (2.48), (2.49).
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and the latter Integral can be evaluated by integrating round

a complex contour shown below and letting R —* oo

/ *

v *
3

I'Kyu.) - A.

/ I

"5Tk

Fig . II-5

4 J
J — 7-- r Air A '

umfcwr

00
7 ""IT'j" »

- i y. -&■ ^ I ^ ^/H)- *■
V- (.-/.i1. (tn* " J <«,#>>** rtr)*-*•*/*- / K^-yjk

Therefore, where s JTFyuF

&a,b> « 4.-IF •«* • * * t£°*— [ 4<*2zijl±1!£L
V* ui C«y»r* Ci*)x

(2.51)

. 'UJti -{/£)*Itl v^ + ?tti_ 'liSJ,tl
ji. ^

Itl

(2.52)

where we have replaced the integral in (2.52) by the first

approximation of an asymptotic power series expansion in ^ for
large t and obtain the correction term found by Levy^ for the Lee

Model and by Matthews and Salanr '. Levy was first to notice that

the Fourier transform of a function G(t) vanishing below a finite

value of its argument behaves for large t like a power of t.
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So far as the first and most important term in (2.52) is

concerned, the time dependence of the propagator is of a

decreasing exponential type as expected. The time dependence of

the probability amplitude of an unstable particle wave packet is

exhibited in (1.16), It is easy to see that, if k* k,

g (k',t) has the same exponential decay term, as G(k,t) apartOr *""* ™"

from a constant factor. also have

(2.53)

which shows that the particle decays with a lifetime

^ I /L'*

'r. - (2.54)

and correctly gives an elongation of the lifetime for a particle

moving relativistically with momentum k. Like mass, the life¬
time is usually quoted for a particle at rest and here the rest

lifetime is T = Y"1.
Apart from the correction terms already found in (2.52)

other dominant contributions to the propagator at large times will

come from terms of definite frequency such as the lowest order

thresholds. It can be shown from perturbation theory or from the

model we are shortly to discuss that a two-particle threshold at

K2 = Y,2 is characterised by a factor of

Since we wish to converge then e<id) must decrease
faster than K~2 for large K2• Therefore we write

v.

e<*'> s ■*<"*>55?^ •>'«*' (2.5?)
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p
where p is a constant and'J (K ) is a dimensionless * cut-off *

2
function which tends to zero for large K and is normalised so

(K ,2) m 1 by choice of p. It has been shown by Schwinger

that, for gc**') <& /x when , there is
a further correction term to (2.52) of the form

/* ( £- t"
eKw I i<in J' (2.56)

provided K,Jtl» /K,^ • For the exponential decay term co¬
efficient to dominate the threshold correction we must have

K„ltl >> Vs ^ (2.57)

and the power of the exponential decay term is a large multiple of

Vt
or %■'5- 4 5- K~

depending on which bound of 111 given above is the larger.

Hence if Y <<<< is small enough there will be an extended

time interval when the exponential decay term dominates the

threshold contribution, similarly comparing the coefficients

of the two terms in (2.52) we must have yfi*. /JLit/k CK**y**.)x
for the decay coefficient to dominate and the power of the

decay exponential is a large multiple of -

Hence, if Y <<<< p. - IL., the decay exponential dominates for

some time interval. It is interesting to note that Y <<<<
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and Y <<<< (p " are ihe identical requirements, for a

particle at rest, for a resonance to "be observable in (l.ll).
The question is now whether the correction terras with their

purely algebraic decrease will overwhelm the exponential decay

term after a sufficiently long time. Schwinger's view was to

introduce a mass filter to project out a single particle term

and not a kinematically equivalent combination of particles.

This i3 to take account of the experimental limitations in

measuring devices. 3ehwinger has

hi = 4e<K,> -M<K> (2-58)

where MCk) * j 1 fry lK-yMl &[ O fry U-^m.1
and Y « A (i « p., and is the precision of the mass deter¬

mination. The similarity of this perhaps artificial intro¬

duction of a mass filter and the methods of Chapter I is

striking. ,Ye have taken such experimental limitations into

account in Chapter I in a basic manner by using tempered dis¬

tributions and the one-particle amplitude instead of the propa¬

gator. If we replace to. G(k, t) by gn(k, t) ana M(K) byCL **■

1 ***
rr 5 (k, EL.), then apart from certain overall irrelevant

(2%r a " K
multiplicative factors, the equations (2.58) and (1.16) are

identical. Prom this point on our analysis will fall into
12}

line with Schwinger's. ' Thus like Schwinger we conclude

that the exponential law is accurate for <£E)-' «[5ef)\k\ £ Y~'
but when Y (^) ^ ' where a is a positive number,
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the exponential law fails and is no longer independent of obser¬

vations.

The extension and application of the discussion so far in

this chapter to existing particles has "been discussed by
12)

Schwinger ' and need not be repeated here.

Let us return to the discussion in Chapter I of the

definition of unstable particle states. It can be seen from

(2.52) or (2,53) that the one-particle contribution (2.U8) from
p

the spectral density function 0 (K ) to Q(k, t) or g (k, t) in

plane wave form is, apart from irrelevant factors,

and the full wave-packet expression for g (*. ) is, using (1.15),Cm

(2.35) and (2.U8),
*°

k'
. co = 2te° % i+ck')

* (**)*
V

where £ (k* ) is given approximately by (1.17), When this wave-ct

packet has a real momentum k* the corresponding energy is

complex which can be regarded as caused

by a complex mass jj. — £ i Y. The above wave-packet is very
2 P

similar to f (x) defined in Appendix 1 if the a (k + p, ) is01

spread out into a resonance shape. Since gn(x) appears toUi

have all the necessary properties we identify gn(x) with 3F,(x)U# CX

for x e R in order to define the unstable particle state
M-

given in Chapter I without ambiguity. "We shall not, however,

require to make any further reference to this state in what

foilows.
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Analytlc Continuation for a Model of a I ecav Process

We propose to forge a link between Levy* s work with the

Lee model and Schwinger* s work in full field theory, We shall

use a more general model than Levy but we cannot use full field

theory because of analyticity difficulties.

We must first carefully define analytic functions for use

in the complex (-k )-plane, " e have already defined an analytic

continuation of G(-k ) into the physical sheet by (2.10). In

order to continue G-(s) into the first unphysical sheet to be

reached through the real cut we must define an analytic con-

2 2 2
tinuation of p(K ) into the complex K -plane. For real K

we have defined f(K~) by (2.9). If we restrict ourselves to

continuations of G(e) through the lowest energy branch line

then we shall require only the lowest energy term or terms in

the summation of (2.9). Suppose that the lowest energy con-

tribution to £(K ) comes from two-particle intermediate states

only, then consider the following set of reactions

R I p p (G)

R II kx + k2 —» p (V)
R III kl + k2 """* kl + k2

where we have represented particles by their four-momenta.

In brackets we have indicated that reaction R I is described

p
by the propagator ^(-k^), reaction R II by an invariant

2
'vertex' function V(-k") and reaction R III by the s-wave

projection F0(-k'") of the invariant elastic scattering amplitude
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p
P(-k , cos &)• The amplitudes G, 1/ and PQ can he considered
as elements of

I s (2.59)

where _ _ , . ,

vf-a.+M*] * ^ k,kt,u>>
F [-(k,+kL)\ c^e] x -J— < fc,, 3VO, / t, u*>

and ©• is the scattering angle in the centre of mass system.*
The convenience of (2.59) lies in the conciseness of the

unitarity condition which can be written in the region of the

two-particle cut

~T (S+iO) — (s*i s T(*+ iO) ^ ^ £ X
(2.60)

where

I,ft) s ^ - £(,(4»;J*
2

(2.61)

and m^, m2 are the masses of the particles associated with the
two-particle branch cut. For complex s or % we choose the

branches of the square roots in h(-a) such that the real axis
p p

is cut except for the region (ra^ - nig) < % < (m^ + m2) .

We now assume that V and FQ in the physical sheet
have only the branch lines and poles associated with physical

* Further details of notation and the proof of (2.60) are
contained in Appendix 3« Note that we are neglecting iso-spin.



—U-2-

intermediate states of the three reactions R I, R II, R III.

This may not he valid in full field theory, hut seems plausible

from the works of Gunson-Taylor^k);, and Oehmelly using a

Mandelstam-type representation; providing there are no anomalous

thresholds. These works in particular have shown that the two

particle branch points in and PQ have square root charac¬
ters. The only additional results required are the reality

conditions

F.rt) = [*><**>] , s [VU')] (2.62)
P

Note that (2.60) automatically defines ^ (k ) to he

e /K») s -i. I x (2.63)v n

Prom (2.60) we find T(s +io) is the boundary value of an analytic

function

TW« ^Jj (2.64)
where

"Tc($zio) s TCi + io) (2.65)

and so T is an analytic continuation of T through the two-

particle branch cut and connecting two Riemann sheets. The

elements of T have the following continuations

Cr ct) = OCD - —- —— , lJU) c ; ; 5
i + ickuyFod) i+2:k&)F0(*)

(2.66)
FeU)Fo uy *

1 + liK(*)FoC*)
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and now we see that the correct analytic definition for is

eLa) « k<*) vcw'-c*) 4—e^y (2.67)
2

where K is in the two-particle cut region. We also have

= - [ec*»)j* (2.68)
so » --et.CKz) as e —f 0 • The functions
Gc (a) have essentially the same cuts as FqC®) with a square
root two-particle branch point. We take as the continuation of

G(a) the function

G-C{*> - G-£4) - (2.69)

If we wish to look for poles of G (a) it would seem easier to

look for zeros of the inverse jjo *" (»j] if we can define such
a function.

Prom (2.69) we obtain

Define another function fcy

(2.70)

[>cC*)J = &"c*) * U-ni**LC*>

euC-a) [G V*)J (2.71)

4 jj - Air <r~V*)J
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TTow

{g\k-£c)J ' - cTV*Vfe> + [ &'<*v~ce) - &'c«\ce) * J* CCK^-ife)sl.CK-i£)J
and so

Air I 6<-£6>—* Gr"c*<L*i^) -

► — J7» t *XSuC4x) A* € -» O

therefore Sue*1--*'*)—» --S^CkM fc-* © (2.72)

2
and thus (2.71) defines an analytic continuation of BL(K )•
Prom (2.71) we can also show

*

jfc(k<l+££) - - £Su («*■-; 6)J —> S^CtO) ou» fe -» o (2.73)

£
e are now in a position to look for poles of G (a) or

zeros of

A? fiO

i KJt (2.71+)

We now seek zeros in the lower half z-plane of [gC(%)J close
2

to the real axis in the region between K™ and the next branch
2

point . The position of such a zero bq and continuation
into the first unphysical sheet of G*"\a) exposed by the

2 2
clockwise rotation of the cut from K = is illustrated

by Pig. II-6.
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2 2
Put a = x - iy where y is very small and K,^ < x < Kj and
put [$ z)J "1 =0, so taking real and imaginary parts

OP 9(i Q0

\?*AZ tf ).wk' (K'-~U,K-qK^
Jv ^K-^V+ vv J J VX J »»)*''♦ V.1
«w 0 K! 4

(2.75)

J'I. = o
vCjl

ac i*

d A \ —:—77—r + *t \ —r—7—: ■*. 2* *. tut sz c-x-cs° J* yv <* Jv fK-n^S «
+ J* ^ J'wa |) — O

)

(2.76)

but if y is very small, which is necessary to have a sharp

resonance at all, then we approximate (2.75) and (2.76) to get

00 '

SsCKlU<1
oAfl * ^ f _ ,ci> K-h J. "

(2.77)

3 I ♦ f¥ _ „ ^S-CK, = o
J. ifU^-wOi J. /J
«i *»

where we have used (2.72) and assumed Lw\ a,,( x - iy) £ y for

sufficiently small y. Hence

»t - A gv + A w — >c

| = •TT'HrS^ i -t-

oo go 1

fXfi | JSwCK1)^"- ^ Sa
*K Ck1--^) "* Jt CK^O*W K/ J

r#> <» -J
pf [ KXS**Ct<x)JKX f t<\SjO<^)^<1'I
6 J <k-»0v * J (Vc^»Ol
K«i »«j J

-I (2.78)

Therefore we have found a pole of G{ s) at a point e = x - iy
2

and it is possible to show that x = p , y = T where p. and Y

are the mass and lifetime values found by Schwinger and given

ut>e

first equation in (2.78) becomes

in (2.1+7), (2.1+9). We need only use G~ (p~) = 0, and then theS 3
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/ +

99 "1 99

f
-- , <Sy*r>(eS)" (,J|» <t^«4jKK-H.)j VI* *->- v2. 79)

If we use (2.3U) and neglect second and higher powers of (x - p0 ")s

2
with respect to the first power, we obtain x = p. and y * Y since

(2.80)fo"' = « «- [ Kt'48w(*<t>dKx
+ C

® Jt fK^wV" "J CK-!«.>*■

follows from the definition of
•I

in (2.U7) and (2.3U).
c, p

Prom the form of G(a) this pole at z = jjl - iY must occur

only in f ^"(a) since G(a) has no complex poles. Now (2.68) implies
w O

that ^£(a) has a pole at the complex conjugate point z = p + iY.
These poles at a = p.2 - iY in £^(K2) are present in the |v(K2+ io)| 2
factor in the definition of ) in (2.63)# and so are independent

2
of the square root branch point at K,? . If we exhibit the cuts and
singularities of £^(K2) and rotate the cut from K2 * K^~- away from
the region K2 £ K.s/2 we find with zQ = p2 - iY

/

t ^ t
Kty * ft© K*

T

\ *•
"

t-rL^

\
\

Fig. II-7.

2 W
Therefore, for a ft? p. , the poles in f £(b)
simultaneously and we can write

exert their effects

e?<*) * fo isl.. -7 * ££ r—^ - -L-] (2.31)
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p 2
where g asp. and pQ contains the factor h(p. + io) « h(g).

p
For g = K + ie the formula (2.81) is identical with the

resonance formula (2.U-8).

It is also possible to see that jGfc(g)J ~1 must vanish at
b = p.2 + IT since instead of using (2.72) in (2,77) we must

use (2.73) which involves a change of sign in the value of y
2 2

in (2.78)- Rotating the cut from K = K,;f in Fig. II-6 through

nearly 3^0° we find the two poles for Gc(a) as shown in Fig. II-8.

Fig. II-8.

That there may be two complex conjugate poles was first predicted

by Gunson and Taylor10'' who reasoned that (a) has the form

given in (2.66). The denominator is a real function and must

have complex conjugate zeros if it has zeros at all. Ve have

therefore illustrated the truth of this prediction for a propa¬

gator G(g) or vertex function V(«) or scattering amplitude

F0(b) which have Mandelstarn-type analytic properties. Unfor¬
tunately insufficient is yet known about the analytic properties

of V(s), F0(*) in full field theory. Clearly a wider know¬
ledge of such analytic properties will be of great interest,

even though Schwinger's methods of finding resonances due to

weak interactions manages to avoid such difficulties.
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levy* s Ambiguous ^oles

We would like to use an extension of the model we intro¬

duced in the last section, to examine an ambiguity, found by

Levy,^ in defining the correct pole to assign to an unstable

particle. In spite of the fact that there may be two complex

conjugate poles for each resonance, there is no confusion in

defining the real and imaginary parts of these poles as the

mas3 and lifetime of an unstable particle. When we speak of

the pole we shall always infer the pole in the lower half plane

of the first unphysical sheet.

Levy considers the case when a particle has two different

modes of decay. e shall therefore consider that there are two

weak interaction thresholds of a two-particle nature below the
p

strong interaction threshold. We picture G(-k ) as

Obviously Schwinger's arguments can be followed through
2 2 2 2

for ng in either of the regions K< -k < K' : and
2 2 2

K*w < -k < Ks > which we will call region (l) and region (2)
2 2

respectively for convenience. If the branch points , K',t.

are the lowest branch points and are two-particle branch points,
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then we can look for poles on the unphysical sheets with a

model similar to the one used in the last section. However,

the problem is very simply examined by schwinger's methods.

All we wish to determine is the possible lifetimes to be

associated with unstable particles with masses in each of the

regions (1) and (2). Let [-2?tik2 a^C-k2^ and £-2^i k2 sV^-k^jJ
•1 2

be the discontinuities of G (-k ) across the cuts in regions

(1) and (2) respectively. In region (l) we obtain an inverse

lifetime of the form p2)J but with a resonance in
region (2) we have an inverse lifetime of the form

[*npo sj,(n2>]• These definitions are independent of poles
found by various continuations. But if we assume suitable

analytic properties and look for poles by continuing through

region (1) as in Pig. 11-10

glflt 11-10

we find an imaginary part of the form £*M-p0 a^(n^)J if
2 2 2 2

jj. < K,'? . On the other hand if p. > , Levy considers two

different continuations shown in Pig. 11-11 and Pig. 11-12.
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where we continue through region (1) in Fig. 11-11 and find,
f p 2 i

as did levy, a pole with imaginary part htppo(2s^(p"~) - s',^(p ))J ,

while we continue through region (2) in Fig, 11-12 and find a pole

with imaginary part £xppQs'yf^2)] • Levy reasons that, since
2 2

s'w(p ) may be larger than 2s^(p ), the first continuation in
Fig. 11-11 finds a pole with an unphysical negative lifetime and

only the second continuation in Fig. 11-12 finds the correct pole
2 2

for p > K'w • Thus in looking for resonance poles we may have
to reject some for physical reasons.* Gunson and Taylor10^ have

said that a more detailed examination of the extended Lee Model

shows that the spurious pole actually coincides with the

physical pole. The author finds this statement hard to believe

in view of the following analysis of the polology of an exten¬

sion of our analytic model. To do this we add three more

reactions to those we gave earlier so that we have two two-

particle branch cuts as the lowest energy cuts. The extra re¬

actions required have the foms

R IV k'K1 + P <!>•)

R V ki + k2 -> ki + k2 (F')

R VI kl + k2 -> ki + k2 (H)

where we denote R IV by an invariant 'vertex' function

V(a), R V by the s-wave projection F^(a) of an invariant
elastic scattering amplitude F'(a, cos G) and R VI by the

s-wave projection HQ(aO of an invariant centre-of-mass amplitude
H(a, cos ©).**

x Example given by Levy is the decay of charged pions % -* p + i),
u -♦ e + V where V, (m2) >> (m2),

|A 7t 9 71

xx Notation and following analysis is very similar to that used
by Oehmell).
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The new matrix of all the reactions can be represented by

T' - (2.82)

Unitarity gives a relation of the same form as (2.60) for T«

but in place of the matrix f ° 0 \ we must write
v o k(ty)

o o o

O KC*) o \ for (m^ + m2)2$ e £ (mx' + m2,)'i

0 ° ° \ 2
© o j for (H1-J ' + ra2*) £ « £ next threshold.
^6 o k'U)J

where

r &+ ] [* - (2.83)

and m^', m2' are the masses associated with the higher two-
particle branch cut. The above replacements give the corres¬

ponding formula to (2.64) for the continuations of X' toT»c
and X,CC depending on whether a is greater or less than

p

(m^' + m2') • Let us list the various continuations of the
elements. For region (1) we again obtain the results of (2.66)

plus the following

. v'«> - » , H*.«> = - "'<*>
1+ *Ck(*)F0Ci) l + lCkC-iyKU)

F."c« = F.'«) -
I + JLZkU)

(2.84)
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For region (2) below the next threshold

otc<*) * ~ xCt+2tk'w>ft0'uy)-+

* \s'Ci) [v'{*)] Vl+ SLckCi) FcOt)) -4 C kit) kUi)VOr)VCi) H0C* >

V = jz {lfU)(i+ZZk'Gb)f'0C%)) - Jck'U)V'd) H0Ct)j

l/cC*> - J \v'&)Cl+2£kl%) F0Cl)) - HZ kfr)Va)H0(i)}

K^t) = {FoC*)0+ JCk'Ci) F^Ci)) - zzk'd) [naC*)]X]

FjCCi) - J [ FeMCl + lcU&FeCD) -3ck(ir)[H0&)]X}
H"t*> = H0C*)/A

a = Ct+lckii)ft&))0+&L,G)F,'a)) ^4A^)Ui)[H6Ci)j"t (2.85)

For completeness we mention that we can reach only one more

Riemann sheet, by continuing through either one of the two two-
particle branch cuts and then through the other. The new

functions on this sheet have the forms

„«■«- Jck'ci)by'ci)jx „ yf *-y-.G <*) * &Ci) - -= , ^ (i) s
i +j;kc*) F0u) i * ick'ct* FJa)

v<« - z —fjw
I* id«'(t)F.'«) / + j J/£i) )

CU)-- F.M - , Ho"c*» - - H-ftl
f * J: k'C*) F0'U) 1*2; k'(t) Fjct)

(2.86)
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The correct analytic continuation for pCK2) in the upper two

particle branch cut region (2) is therefore the function

e'L<& - ~ [ ht*)[VG)]*o+j£k'a)Fj2t}) +ka)lv'a)]zo+jikc*)Fi>a))
-ukc*) k'aj iTtw'a)H0ct)j

- - [eL(**)] (2.87)

Poles of G(«) or 1f(e)y V'(&), » F0'(®)? H^a) on
first unphysical sheets to be reached through the lower and upper

two-particle branch cuts, i.e. regions (1) and (2), occur in

complex conjugate pairs and correspond to zeros of (1 + 2ihO)F0(s))
and A respectively. Poles on the only other unphysical sheet

are zeros of (1 + 2ihl(a)FQ•(a)). The zeros of A cannot coin¬
cide with zeros of (1 + 2ih(a)FQ(a)) or (1 + 2ih'(a)FQ•(«))
unless we decouple F0(«) and F0'(a) i.e. unless H0= 0 when
we have simply A • (1 +2ih(a)FQ(a))(1 + 2ih*(e)FQ'(a)). It
is specially interesting to find that p* has poles at the zerosIi
of (1 + 2ih(a)F0(a)) and (1 + 21h'(«)Fc,(a)) when Hc« 0.
In fact, if He*s 0 we can write to first order in H0

elcv * hwfofta* + k'ui[v'a\}x _ k(^k'a)^u)vct)HoCi)it li+aaa>£a> i+2;k'u)%c*y o+i;kc*)F0u))Ct*zck'ct)fctei)

(2*88)

which shows a separation of the two decay modes which therefore

could be discussed as independent processes. The two lifetimes

obtained by discussing the separate contributions of each decay

process to p'(a) are known as the partial lifetimes. The

separation Implies that the sum over the set of states in (2.9)
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can be split into a sum over each of two subsets, one from each

of the two decay processes. Because the modes are independent

we are allowed to identify the partial lifetimes and discuss

them separately and further deducing that an unstable particle

and its anti-particle have equal partial lifetimes as well as

equal total or physical lifetimes. If H0 is not very small
i.e. if the coupling between the two decay modes is not

negligible, p'(«) does not exhibit a separation between the
L

contributions of the two modes. We can no longer discuss any

one mode independent of the other and we cannot deduce that the

partial lifetimes of a particle and its anti-particle are equal

but only that their physical lifetimes are equal. In these

conclusions we are in agreement with a very general argument

given by Metthews and Salam.4^
Let us return to the major discussion of this section.

Poles close to region (1) found by continuation of G(e)

through region (1) shown in Fig, 11-10 have already been dis¬

cussed and we found imaginary parts* of the form

[*MP0V>2>] • SuPP°s® w® continue G(«) through region (2),
2 2 2

below the next threshold > K'^ > K,^ , and look for poles
near region (1) again as shown in Fig. 11-13.

Fig, 11-13.

* The real part is obtained from Ibt G (g) =0 and is independent
of the Riemann sheet we are considering and therefore we quote the
imaginary part as being more characteristic of a complex pole.
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[2 2iip,p0(2s,J(p, ) - sw( p. )
Thus we have found a pole near region (1) by continuing to the left

2 2
of and a pole by continuing to the right of K, but although

their real parts may coincide their imaginary parts will not
"2 2

coincide unless s^(p ) = s,^(p, ) which is not true in general.
Similarly if we avoid region (1) and continue through region (2)

we find that a pole close to region (2) may have an imaginary part

of the form £h-P-p0s^ If we decide to continue through
region (1) to look for a pole near region (2) we will find an

imaginary part of the form |jtp.p0(2s^(p,2) - which is not
equal to [km-PqSt^p2)} in general. However there is in general
no ambiguity in choosing the correct pole to associate with an

unstable particle. If the pole is close to region (1) it would

be illogical to continue through a region above the next branch

cut to look for the pole and similarly if the pole is close to

region (2) it seems natural to continue through region (2) to

find it. The only situation when there may be some ambiguity

is when the real part of the pole is close to the threshold at
2

K*^. But in this case it seems reasonable on physical grounds
to expect that s^(p2) s^(p2) if K'2 and if this is
so then all the unphysical sheet poles will be nearly coincident,

and any continuation will do. If, as Levy suggested by an
2 2

example given earlier, then the imaginary

part of a possible pole near region (2) on a sheet found by

continuing through region (1) will have the wrong sign for

the second equation in (2.77) to be true and a pole is no

longer possible. There would be no possibility of ambiguity

in such a case either. Any poles found by continuing through
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one region and looking for poles close to another only indicate

that resonance poles exist at the same real value on another

unphysical sheet. Therefore we believe that although many

poles may be associated with an unstable particle only one

complex conjugate pair directly produces a resonance in the

physical sheet and is found by continuation through a re¬

stricted region of the physical cut near the resonance. In

the last section we showed in Fig. II-7 how the cut in

p^(«) can be rotated so that the effects of poles in Pj(«)
can be exhibited by (2.8l) as a resonance for e « p • If
w
p^(a) has poles near region (2) found by continuation
through region (1) then we can rotate the cut from out

2
of the way but not the cut from unless we continue

through this cut as well. We illustrate the continuation

through region (1) by Fig. 11-14.

showing singularities and cuts of (pwU) + p,^(e)J . We cannot
now write a formula like (2.81) unless we continue through the

2
cut from K,i and thereby finding the correct poles directly
producing a resonance. This shows that any pair of complex

conjugate poles associated with an unstable particle produces
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a resonance in 3in G(«) either directly or indirectly without

any ambiguity.

Vector Bosons

So far we have restricted ourselves to scalar or pseudo-

scalar bosons but it is a quite straightforward matter to

extend the discussion to vector bosons. A spin 1 boson

propagator can be reduced, by choosing a divergenceless field
and using the PCT theorem or axiom VI, to

where pCK2) is given by an expression of the same form as that
2

in equation (2.9). We could clearly consider D _(-k ) in
^

2
an almost identical fashion to the spin 0 propagator, G(-k ),



-58.

CHAPTER III

TTI3 F3RMI0W PROPfl.GITOR

We propose to extend the methods of the last chapter to

particles of spin Js-. This generalisation is sufficiently-
different in detail to require a thorough discussion.

If we only use the axioms I to V in the introduction, the

fermion propagator has a more complicated character than the
1 Q\

familiar result obtained by Fallen and Lehmann. ~ ' This is

because the derivation by Fallen and Lehmann invokes explicitly

charge conjugation invariance and implicitly space inversion

invariance. Here we shall require only PCT invariance or

axiom VI since decay processes have little respect for in¬

variance under transformations with P, C or T separately. We

have the following definition of the fermion propagator with

^(x) as the fermion Heisenberg field operator
oo

• CO

and the PCT theorem allows the assertion

<©| -jfs l*> s ' (*r)^,<° I fa (3"2)

Now define
/

j (f) s 2, <ol y£<oW©> (3.3)*
y%

then it follows from (3*3) that

* We have chosen a hermitian system of Y matrices so that
= 2 and = Y-^YgY^Y^. Further we define
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ILM" [y*sw'5
and we may expand (3*3) as a series involving the sixteen linearly

independent matrices formed from the Y-matrices and their pro¬

ducts. Tth the help of relativistic invariance properties we

have

| '(Hf- e.eJ-^i * i (
' f*<-!>'>*i e*+ L

(3.5)

where = Yhf ° - Y°Y^ and therefore ij, =0 so weH"

can drop the last term in (3*5). Applying (3.4) to (3.5) gives

[ejc-p1*]* * fj C-P) s j *',*,3,*. (3.6)

and from axiom (V) it has clearly been shown by Lovitch and
20}

Tomozawa * that

e» ^ [ce*.-J-Fe* >*+ eS * e^J
Vx

(3.7)

If we now insert a sum over a complete set of Heisenberg states

into (3.1) and use (3.2), (3.3) and (3.5) we obtain for the

fermion propagator in momentum space

(3.8)

where k = J^ > o . Once more we will assume that the
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spectrum does not contain the origin. In deriving (3.8) we use

the well-known K'allen-Lehmann methods based only on the axioms

I to V and axiom VI or the PCT theorem (3.2).* As for the boson

propagator we assume we can normalise p^CF2) such that
Off

(3.9)

which certainly follows from using the equal time canonical com¬

mutation rules in a field theory derived from a local Lagrangian.

Let us consider the matrix elements of (s,p(P))ai3 with
respect to positive energy spinors u^ and u2 such that

(i t.j, Uj s. O , K . e I ; j m. I , 4 (3.10)

2 2
and we note the results for -p * m •

UJ Cc ¥. f») s - w,

H y CC vi. =. CTj y uj x o } j ' '' * (3.1D

It is interesting to note that the parity non-conserving terms

disappear and we have

it->*0 S vt

w

V K "j J • j , . (3.3.2)' K — vn •• C

and further u, 5* a. m.1, S'p Cp) r o

Also with negative energy spinors v-^ and v9 where

20 )
as Again Lovitch and Tomozawa " ' have shown that the use of the PCT

theorem can be replaced by the use of axioms VI.
19)

as* This particular point has been made by Ida •
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ft y. j» - -m} \Sj - o , WjV. S-| j j 3S. I y A . ( 3*13 )
and we find

oo

v; 3' C|fl -tr. s - { ^J £ v^-v^-ce

2 - /8G1** )

and •*?, SfGp') ^z 5 *^p (fO v< = o.

Since we have used the PCT theorem then the 'anti-farmion*

propagator S*(-p) has the same expectation values i.e.
F

-G? S'f <-J>) IS S. /$(■**%> and ^ Sp (rjs) u. = A £-»0 f Therefore

the fermion and anti-fermion propagators have identical properties.

We have reduced the discussion of the fermion propagators to an

analysis of two functions ^S(m) and J8( -m) which we have

expressed in terms of two spectral functions p ^ and £2*
The latter are real and positive and obey the relation obtained

from (3*7)

o $ e,<x*> (3.15)

We can consider Mm) and ^(-m) as boundary values of an

analytic function except for a possible cut from 0 to oo

on the real axis and a square root cut from 0 to - oo on the
p

real axis in the complex m -plane. Therefore consider the

function

1 4 s',A.

(3.14)
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oo

^(41 = f eiC"*1- JkX (3.16)
o kH.4

where we do not allow the possibility of a zero mass intermediate

state and so the right hand cut will have a threshold at some

point greater than zero. Then we have a gap between the cuts

and we can continue from upper to lower half planes of the

physical sheet. It is straightforward to obtain the results

= M*) (3.17)

4t «rr (3,18)

where the latter result depends on which branch of the square

root j-p we are on. The two sheets of the Hiemann surface

and the branch cut are defined by jr-+ m > 0 as g —9 m2 > 0

and by -m < 0 as z —9 m2 > 0.

The discontinuity of ^(b) across the right hand cut gives*
for m2 > 0 using (3.17), (3.18) and (3.16)

o = * [fxw) -
(3.19)

J*. Ac-"**) - 12 £x C**»*)
p

and the discontinuity across the left hand cut gives for m < 0

x Note that we chose k »^ > O and that this is

independent of the square root branch point in the z-plane.
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p,c«x) J**-
K •

Jm — " ImI J
4 (3.20)

I~^—0 r i~l j Eli> K- vvv"1

Again we have assumed that the integrals we deal with converge.

We are once more interested in writing a dispersion relation for

the inverse of Sis) i.e. Let us first examine s&(b)
iQ

for complex zeros. Consider a = re and choose

Je1 ~ 1 wt where -it < © < ji, therefore

i )«x-a7-
(3.21)

and from (3.15) it can easily he shown that the numerator of

the integral in (3.21) is always positive. Hence 3in i(g) =0

only if 3m = 0 or if © = 0 or a real and positive.

If the behaviour of p^(K^) and pgCK; is such that we can
ppS

apply the Ferrari and Jona-Lasinio * theorem, then

/&£*"> as i-—> infinite circle (3.22)
JV

provided we avoid the cuts on the real axis.

Hence [ffrr^o -1] has cuts from 0 to -a® and
0+ to + co on the real axis in the a-plane, no poles, and

converges to zero on the infinite circle. Therefore we can write

a dispersion relation in the form
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A"u-> * Jf.
CNS? \

tC*<)dKv
^ f 7lf CK ) !j K - i + j kV fc /

o o /

^ 2
where for the sheet in which J z'—^ m "> 0, b —* m > 0

(call J(z) = ^I(e))

tC»0 -

«tir£K

»
_ £ rCK^ ;e) - t ^ j]

ft* u£^r

(3.23)

2 Kf,C^^ - f i£k1)
K / /J J**1) / 1

% c

and

'XCK)
i C'^-f
flVn^oJ"1 _ [Axc-

o

f "V «?> fe jj
C-Kv+rfe)^ j

(3.24)

* 7^' [ '- «)]"']

_l [/£ * (-X1*-*O "»> ✓£ XC-Kl-i"t )J
^ UW)ll

!
- [ £>*t"a>- *'

K | /SXC-K^)/1 i K41"* KV-rr

(3.25)

x Note the change In sign of the factor across the square
root cut. **
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and so the sign of *X(K) is indefinite in the sense that it

is dependent on the dynamics of the problem. Also for the sheet

in which JIT -—> -m , (callus) = A (z! : a > o

tc»o — - — ? [ &-c*x+ceiy'- [J\Kx-se)] '] = fxC*1) ^ o

(3.26)

and
s ~ ' — „ fxo
,kmW)Ix Jo

(3.27)

which also has an indefinite sign.

We can obtain more information from the derivative of J&(z)

co

A
_ _j_ f £ JF

d a J /
C C«-&> (3.28)

and so for real, positive b

Zto

at J (3.29)

Thus <• o for real, positive a and <lAjQ —> -<»
a* PC az

as a ► 0* but y%{o) = [ ?—)Jd" which may beK

positive, negative or zero but is certainly finite since

- [°°fatf-) in1f j. f ** e,*«»>J** (3>30)J k u JM pex
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and in view of assumption (3*9).

Similarly ^ ^ c for rQal, positive a and JA-&
d ir +*

as a -+ 0+. In fact 4I3:(b) * only if a—» 0+. If

the lower limit of the integrals is K£2 and KQ2 > K^2
first point or threshold where the spectral functions are no

longer zero, we can deduce

—¥ <*>

0B ^

— < - f s f <.
K- ^ K+ K,+m

(3.31)

- -T-< - f «i£52i!£.1 s. s [ < _i_K0 +♦»• J /t- K4-vv\ A*. K— vw

All the information gathered about ^(m) and allows

us to picture them roughly as follows in the region between the

cuts

i r / * x v»l

Fig. III-l.
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The curved dotted lines are the limits found in (3•31) and since

JAt**) < 0 an(3 J JC-**l 0 there are three types of behaviour

for each of ^(m) and &(-m) envisaged.

Let us examine each type separately for ^8(m) first

2 2
Type I : here we have „8(m) > 0 for 0 < m < and so the

rough forms for „8"^(m) in this region, using (3*31) again, is

This figure shows quite clearly that has no zeros

and will have no zeros even if we are allowed to move the value of K'
p

to KQ • Physically we expect a pole of Jo(m) or a zero of
***<») to appear on the real axis to represent the one fermion

contribution to the intermediate states in the propagator.

Hence this type seems to be uninteresting.
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Type III t in this case the form of is

/& !>0

**»*

Fipt m-3>

Now we see that is negative and increasing in the region
^2 ?

0 < in < and there Is a possibility that, as we increase
P T

up to Kq , /$ (m) may cross the real axis. There will be a
pole ln/£(m) * so we must write

/S c >*o — _&o_
t

-C»Cf*vO€iwQ CiKl
* \

"c

(3.32)

such that

p
x This is strictly a pole in the variable m only not m but

the distinction is no more than academic here.
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e"* L * " hnrjz.^ > °
OP

I + f ^ f TfOOdU1 _ c
KV-H* J «Vnl

K«j V

rtl < >Co

2 2 2
where we assume there is a region M < m < KQ in which p^
and p2 are zero. The existence of such a pole in (3«32)
depends upon ?<(K) heing negative and we shall consider the

implications of this later. We picture ^(m) and

now as

We could continue to show that zeros and poles of £(m) can

2
occur alternately along the real positive m -axis as for the

boson propagator but since we know of no physical situation in

which there is more than one pole, we shall stop at this point

with poles. A zero of >5(m) is possible from Figure iri-4(a) and
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this can be discussed in an analogous manner to the case of the

boson propagator with a zero. We shall not consider such zeros

for this type further.

Type II : The picture of is more complicated to begin

with and is roughly shown

Fig. ITT-5.

Here we must accommodate the pole of ,S""^(m) and rewrite (3*23)

in the following form

/&" 2
f tCK)^Kl
J. K-m*"-
«o

ao

**■ J «lK <t

— ) (3.33)
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where
LfiC«M - CK*m«) e,<«x)J « **X
—

=. OJ "-X-

X% S — - ~ %C'*) I L f — {K+t»i)tp,CKtjJJ.K1'^ Uw ** 1—,kw)»
oo

^ _L- . \ p,<K*)d«l > c- a- \
ti** & («+»>o)x

•T 2 2 2
The fonn of X(m) In the region mQ < m < is very
similar to that of type III and we conclude that ^""'"(m) may

2
vanish as we increase K£ and so we have (3«32) and (3•33)
as valid forms of /£(m) and X~^(m) for this case with the

physically expected pole. The only difference here compared

with type III Is that the zero of ,S(m) must be included.

There is no objection to be raised in having a zero of ^(m)
p 1

at the origin, i.e. m0 =0 since the pole In X (m) would
then be incorporated in the left hand cut.

Now let us turn to the consideration of X( -m). It is

clear that type I for ,8(-m) Is similar to type I for j8(m)

In that no poles or zeros can occur. Types II and III for

,8(m) and >8(-m) are also analogous. The point, here, is to
find exactly what behaviour is physically expected of >S(-m).
There is of course no obvious objection to zeros but we must

question the possibility of poles. We observe that It is well-

known that the one-particle contributions to the inteimediate

states in the fermion propagator which are physically expected

appear to be associated with discrete £ -function terms in
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p-^CK2)24^ while p^CK2> = 0 at such points and never has a
S -function teim.20^ We have already shown by (3.19) that

only S -function terms in p2(K2) giv9 poles in,8(-m). Therefore
we do not expect >8(-m) to have any poles. If we wish to forbid

poles in /8(-m) completely then the type of behaviour when

,8(-m) < 0 for 0< m2< Y.^ is the most suitable. This
would imply /8(0+) < 0 which further implies from (3.23)

that 7C(K) is predominantly negative in (3.25) but positive

in (3.27). This is Just what we required when we examined

Type III of >8(m) above for a pole to appear. The most likely-

behaviour for/5(m) would then be type III. However It is still

possible for,8(m) to have poles and xS(-m) not to have poles even

if ,8(0+) > 0 so long as ,8(0+) is not too large since "X(K)

will have to be predominantly negative in (3*2^). From now on

we shall discuss only the behaviour of,8(m)«

As in the boson ease we can derive a further spectral

representation of ,8(m) for later convenience. If iJ(m) has no

2
poles or zeros and only cuts from 0 to -<o and from KQ to
+ « in the m2-plane, if K*2 < KQ2 ,

(JS7-*©') <z. 1 as z —» infinite circle (3.34)

Also £( fP - K^X§(s)J has no poles, one zero at K£2 and cuts
0 to -oo and KQ2 to + oo . Hence log £( JP* - K^)S(a)J has

2
no poles, a cut from to + oo and from 0 to -«o and converges

to zero on the infinite circle. Therefore we can write a dis¬

persion relation of the form
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qo ©»

^ [(&-*)*;] - (3-35)
«£* a

here

-shims]
r <* 9ck—<q) — ce>£~' [ 5$££ll I ^ o (3-36)^ <r £i2«<<>(C**) - fxcK1)) J

= -^"YkJ -& k[ *<">] <3-37)

also

and it follows that

oo

j. f i»^2i±L j. f jiiiliii1
i» ^,t % 7r J »<l+4

e —-—• * jl
,

JSP-*' (3.38)
00

. 2° i

-' f 0<.x)«^xii* i r ^ (Kid**-
*-4 * ^rJo kN-4

and we can choose the behaviour of *S(K) in exactly the same

manner as in the boson case for the representations of types I

and III. For the case of type II where j8(b) must have a
2 2 2

zero at g = mQ we need only choose = mQ in the
above formulae from (3.34) to (3.38).

V/e now wish to examine ,$(+m) under the two different

types of interaction (a) and (b) which we introduced in

Chapter II. For case (a) when Jf(m) has no zeros and one

pole, we write (3.32) as
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A 00 r -&i- •* \ C**M " J** (3.39)
' *»-"« i? Kl-V,vt

and (3.23) as

( tS00«Ut- f *?{f£K>JKl \
V+ i- "^X7* * j (3-«)\ •<* o

OP 00

where /£ 4 Chs) =. o and so 1 •+• X —- +. i t 1 ~

«i 0

But for ,&(m) of type II we must include one zero of /8(m)
if ;8(m) is to have a pole. We can use the above form (3.3°)

for >£(m) with the condition ^(m ) = 0 and instead of (3.40)

Oo 00

0- _ - ( . . Aji1- f OCSCk) sA*2- . f XSCK.)4k.1 \° fc ' * 7^7 - J -5^7. - J ?~vJ (3.41)
i K, 6 ✓

with *-<->« o ^ 1 - * f = o

Under interactions of type (h) we consider that the first
2 2

continuum threshold K. is nearer the origin than Mg so
that /S(m) of type III under strong interactions becomes

4&

jLcr*) - Le*CKt)"+ j Ce^K^-cx-t-v^)eS*x)j(._ 2,A w.v-; t j. xt_ wO-- c €kfc( */

'do „

00

JL 'c***) ■= w\ |< + f + r r xo<Uk«- \
A J K^mVC ) KVtwVfc J<04 Kj 0 / (3.43)
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But when ,S(m) is of type II under interaction type (a) there

are two possibilities, i.e. that >8(m) may haw a zero in the
2 2

region 0 < m < or may not. If /8(m) has no zero and is

of type II under interaction type (a) then /S(m) and *-3-(n0
are represented by (3.42) and (3.43). If ,£(m) has a zero

p
then this zero will not occur at mQ in general. Thus we have
in this case the form (3.42) with ^(m^) = 0 and with

* » (l*- f 145^- » f (3 44J
^ hv-1** JKv J kSw14.£ j

In all cases we try to find the behaviour of &(m) in the
2 2 2

region near m = Mg above the threshold • We carry out
an identification of real and imaginary parts for the two

2 2 2
spectral forms of >S(m) in the region < m < Kg
similar to the boson case.

Consider first /8(m) of type III and we have

CV oo

»Tlp[ if jf'1
_ . K* ^-nj K'^**

(3.4?)

a»

"

^ x'- * tr j k'Vk1

-n * V'fco = - ^<x). J-
»C

(3.46)

-v r r -^v)dji,v r% J X'^~xx k'— KV J K'\Kv + J tc'Vs*'' y
k v r a 'Kw

_ 1 ^ I S'1 i \ ? Ck')^*'2-^ k'-k* "" -5r J k'V*x
t (K-Kw) wo^Cx). A * (3.47)
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The equations (3.45) and (3.46) give

»lK [ f 0C«)] ( r, , ,

and from (3.46) and (3.47)

-Tr K ZWC%O oat jlftO

*" ■* * I«— K| O 6 '

(3.49)

If ?C i: Mthen using

^ C»o sr (f,0 j U-m4) (3.50)

we have for (3.49), with (3.39), (3.40) and (3.50)

* JO

-irKt%) urt-^K) sr (frj )~'(K-/*Is) + K f I - *" » * ■: x 1t> j K — K j k'V*Cv
o

(3.51)

2 2
and there will be some point M <5£ M , if weak interaction con¬

tributions are small enough, such that

-p j&K) « (f,0) Vu-M) (3.52)

Comparing (3.51) and (3.52) we conclude

M—sr-f *-££■)\ Kw O '

«f oo

•c*xwaoJ**/. x"' / S \-l 20 f f K. XW(ftOd»<<fO = (f..) - <; Jv - J ~£wF
*w o
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which again are valid if the weak interactions have a small

Ls
2 2

enough effect in the neighbourhood of the cut at m = p, •

Eliminating 4 from (3.48) and (3.52) gives

(3.54)
tr

where

* = *+ m (3.55)

The contribution of this resonance in [2Kp^(K2) - p2(K2)J to the
time dependence of the propagator S£,(x) is obtained from 36

oe oc>

:i SF Uj ~ Uj | '* ^ ^W "/ = | ^ ^^*"0 (3.56)

2 2
where -p" = m and therefore

S: S'ln,t)«: = f 'J'" ( Cft " *^a) P. <•">] J

J JfcV.K* J CJ£,

x From physical arguments, p2(K^) has no $-function singu¬
larities and there-fore we suspect that fh(* ) is the
spectral function possessing the resonance and that we could
neglect p£(K2) in (3.54) and have instead

ftCK1) -
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where £n = *//».
An examination of the above algebra shows that if >8(m)

is of type II with a zero under interaction (a) and a zero

under interaction (b), the argument remains almost exactly the

same. Slight alterations are required to Jtj*" which has the
5

extra term wand to,&""^(m) which has the extra

term AVV**»oThis means that instead of (3.51) we have

-tr* ZwCk) <*rtjrfoc) <* C^rVx-M,) + " * ~
k — X

oo _

GO

3 K'-Kl J K'^k1m +

-+

which only alters M and (p., _ J""1 in (3.53) to

(3.58)
©

4« ( X +n
lo

rt - r. r T - A! , fi/f W«Wk> T J
U

©

f » (3.59)
OiJ~' = O? )"'f K^wcx)<tKv r

ht c«±<*)x J**»v ©

All the other results will have the same form as for type III.

If /8(m) is of type II under interaction (a) but has no

zero under interaction (b) then we write instead of (3.51)

- TT K tW<>0 c-o-t fiix) x Ce«o) c<-«»> - ——
mcl- < *•

©e ee

•+ K ~fl/ C Vfcc'VU'*- _ f -XV)^'1 , _ _ %

H (3-6o)

giving for (3.53) the results
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-

^ -^r -) (3.61)

fa S"1 _ /„ * \~' **oA4l K^X^K^K1 fxVX>*y*»)Jj<>-ce^ -(e,J -

•<i O

At first sight it appears that the pole at m 2 in has tooO 5

p
large a contribution for M *%, Mg, However the point mQ where
SZX<.m) has a pole is a point where we might expect tos

2 2
have a strong pole-like behaviour although mQ > JL. • That this
is indeed the case follows on the same lines as Appendix 2 in

which we showed that near zeros of the boson propagator produce

a pole-like behaviour in the inverse propagator when the zero is

covered by a weak interaction cut. In this case we put for

K X nu

Ri £ (?oS) '.{**•^ j (3.62)

and find for K ftr mQ «

,$<«> * (?.)" (^r) <3.63)

where
oo

^ j [eTc*x) - c <-t-+*o > e.wY**q S t»^ 4 to **©
tfvjr K1--^

o.*/)-'-rf f -■*<K"v,°<3-64)
and we also have
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where

twCwO * (3.65)
*- C*U4)X

lr' * irto - fvwC^Mj ° (3'66)

This shows that there will he a pole-like contribution to the

integrals in (3.61) due to the resonance behaviour of t (K)

in (3*65) which compensates for the pole terms near m0 •

Thus we conclude that only minor differences in the

definitions of mass, lifetime and renormalisation constant to

be associated with the unstable fermion, occur for each of the

propagator types. The time dependence of the probability

amplitude of an unstable fermion wave packet can be obtained

in exactly the same manner as for unstable bosons and the

same conclusions for very long times can be deduced. It is

quite straightforward to adjust the discussion of the model

which ye introduced in Chapter II so that it anplies to

fermions. The application to physical particles is not

difficult and it follows from the use of the (CPT)-theorem

that the masses and lifetimes of particles and their anti-

particles are identical.
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CHAPTBR IV

TWO-PA.RTICL3 SCATTERING AMPLITPDSS

We complete the application of the methods used in Chapters

II, III of describing resonances in dispersion relation theory
with the consideration of dispersion relations for two-particle

scattering amplitudes.* We shall restrict ourselves to

scattering amplitudes for which dispersion relations have been

proved in axiomatic field theory for strong Interactions.

Therefore we shall consider only the dispersion relations

proved by Lehmann2^ for the elastic scattering of the two

particle systems Y-e, it - , it - it and it - 2 • To

have a definite process in mind which contains interesting

features among the above reactions, we shall consider it -

scattering. If we denote the momenta of the incoming boson

and fermion by k and p and the outgoing by k' and p*

with -k2 m -k|2 = jo,2, -p2 = -p*2 = M2 we have for the
invariant amplitude, where J(x) = ( Q - jx )^(x) and tf(x)
is the Heisenberg field operator describing a pion field with

mass y,,

P J - — < f'l 7C*) I f>, k. **% >

*

T(Z n (4.1)
1^)

x A similar approach has been published by Moffat unknown to
the present author until a separate analysis had been worked out.
Dispersion relations for the inverse scattering amplitude have
previously been written out by Fsldman, Matthews and Salam.25)
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where

r -^i(k+h!)*
Ml-(p+h\L~>e]* ij + <K'fjci^7£-4)Jl/.> 6»<->

- oo

(4,2)

and we have used notations similar to those in Appendix 3*

If we take account of spin and iso-spin denoting the charge

variables of the initial and final pions by indices X, X1,

M can be written in the general form

T. - i Tx-ji[y.a,*k->]t,

- j; [iUk.fc.oj IV, t,] t* j (4.3)

where the are the usual Pauli matrices and we have already

defined spinors u and u in Chapter III.

According to Lehmann the amplitudes and satisfy

= if <4.4,

where 2wM = W2 - 2£? - K2 - p,2 and V/2 » -(p + k)2, 4A2 = (k»-k)2,
while the amplitudes T2 and satisfy

- —j

The relations (4,4) and (4,5) are true for fixed momentum transfer
O

A which must be further restricted for pion-nucleon scattering

such that
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provided the spectrum allows the matrix elements <p / J(o)/ pn>
to differ from zero, apart from discrete values of pR, only for

2 2
-Pn ^ (W + y,) • If the mass associated with the threshold of
the continuous spectrum Is allowed to he lower than (M + p), the
condition for the validity of the dispersion relations is2^

-Ww, (MV/*1-2*1,"«**,,) > O (4.7)

vhere Wm» j m l- «2-wi.-w*^] and m^

and m2 are the smallest masses of states lpn^ > l pi> such
that

<o| T(o)|fn></>J j£o)ie> *o
(4.8)

<oj j <o> / CfV i J <o> lo> =£ O

where ( » f. j? ♦»») C^o = J" <»«.) and , -A*»X = .

Only the amplitudes and have one particle terms due to

the physically expected single nucleon intermediate states. Hence

let us examine first the amplitude and ignore the iso-spin

flop term. For simplicity denote by plain T and rewrite

(4.4) in the form for strong interactions only

oo

"rCw'At) ' * i j

'[w'iwVt w'l aVwVifej (4.9)
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where a1 = as shown in

the A-ppendix 3» Note that the one-particle poles lie between the

cuts if

X? < % (4.10)

and that this upper limit is essentially the same as that in (4.6)

since M/p, 9s 7 for pions and nucleons. Hence the dispersion

relation will be valid so long as the poles occur between the

strong interaction cuts. The only other relation which involves

the absorptive part of T or AUP is the unitarity relation

which we shall use implicitly. Subtractions cause only trivial

modifications to (4.9)» and we ignore them.
2 2

Mow consider T(W , A ) as the boundary value of an analytic
o

function T(«, A ) given by

ao

TVi.A1) = f f ' - " -L-l -if Ww'* ImTC'U1).
L J

CfiyS-

'[ t w-*>-»■ i] (4.11)

2
which has two cuts on the real axis from (M + p.) to +c° anc3

from {a2 - (M + to -eo and two poles at M2, a2 - M2. It
is difficult to obtain further information about the behaviour

of T(e, A ) in the a-plane since our knowledge of Xm!T is very
2 2

sketchy in general. If we assume that the behaviour of T(Vf , A I

between the cuts is dominated by the pole terms then we have the
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following picture noting the symmetry with respect to W2 = ~/2

TVwv, Ax) a

o.V-tH
Hx M i

Fig. IV-1.

If we are to obtain a dispersion relation for the inverse

of T(W^,A2) we must look for complex zeros of TCW2,^2).
2 2

Hence with a = x + iy and putting R/T(a,A ) = 0 = hi T(«,A )
we hqve

)'[TiSSr- - ,-TSJ.J • if j--*-™*.,.

f £11 f ]
* L Iw'iif*

i [ U-lwi^ * ,T^J * i [ ^ Tew-. A1)
(T^)*

. [ ~ iwio^+ipj

= O

(4.12)
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,.Ht)vr<*-«vW * "J [c-w")VJ£*-.?♦w«y>rf3 3 (4.13)

. ..J .T^w-'r-wt^.cw-v) ) c

W[[6-K')Vj,'J[C"-^+r.')Vj'-J "J [(*-w">Vj*J[<~-a\.w"jij1]]
2

where the factor (x - %-) does not help us to find any zero

for non-zero y. If the pole terms are dominant for some region

of % then there are no complex zeros in that region since
2 2

a / 2M • If there are any zeros in the general expression

then they must occur in complex conjugate pairs since y is
2

contained only as y • Because of the symmetry with respect
a2to a = my- we conclude that zeros occur in sets of four.

There is no reason why we should not have zeros on the real

axis occurring in pairs if the contributions of the cuts are

strong enough as can be seen from Figure IV-1. For the moment
2

we shall ignore all zeros of T(e, A ) since they can easily
-1 2

be included in T (a, A ) if they occur and they only obscure

the point we wish to make. Assuming that Im T(W^fA^) does

not have too wild a behaviour we take as the behaviour at

infinity

TCi,Ax) * ^ (4.14)
a2

where we have retained the symmetry with respect to my- and put

+ j (o*VAl)dw'z = C (4.15)
(ft**)1-
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Hence we can write a dispersion relation, choosing some convenient

constant M0? , for ["(i - h0*)"' T~V%, A1) - Cl ]
which has the same cuts as T(a, A~)» converges to zero on the

2 2 2
infinite circle, poles at a = M and a = a «• U_ | and so

T , A1) - o1") +Ai,^i-AL+/10l) * (^~ r-*o~) (it - al+ f*l0l ).

CO

. {e- - i J JXi * JSwCi]CnpM)%
(4.16)

a2
but to retain symmetry with respect to we have

X^ s. - X, S - A (4.17)

Therefore we write finally for the inverse amplitude

Tit.A1) = -t- ft,,*).

£'■"* s j - ^toJJ
CM^)V (4.18)

2 2 2
and if T has poles at M , a - M then

\ CcJ-'lMo) ~ pl)(hl-4VH0l) .

which implies that



-88-

"Vi,Ax) = £ I V^l)Jw'1.

(yj'\. H©")£W— aS K# )
£w'- MM Cw *\

r
_ , ^ , 1 ]

L-a\H^) L Wit "* W'io^^jj

a U-H^a-oS Ml) j c'1 H. ^ f JWT t

* [ w'ti + w'ifl.S-4- j ]2r w

The behaviour of T"1^/2, A2) between the cuts assuming the
zeros are the dominant terms is roughly

(4,20)

tTw^)

Fig. IV-2.

27)It has been shown by Minguzzi and Taffara'"''' that Lehmann's

dispersion relations have only been proved for stable external

particles. Hence we are strictly not allowed to extend the cuts

by introducing weak interactions to cover the poles and force

the nucleons to be unstable. We therefore do not allow such



-89-

weak interaction cuts and assume that the nucleons and pions,

which are the external particles in our scattering problem, to

be stable. The introduction of sane additional strong inter¬

action need not introduce any new cuts in the region

- (m + p.)^J< W2 < (M + y,)2 but may introduce resonances
above the thresholds of the cuts shown in Figures IV-1 and

IV-2. That resonances occur above the strong interaction

thresholds for pion-nucleon scattering is now well established

experimentally. We shall examine such a point on the physical

energy cut where we suspect strongly that there is a sharp

resonance.

Once more we can write an exponential spectral repre¬

sentation for T(W2, &2) by noting that log^ &&JJ
has no poles, converges to zero on the infinite circle, and

can be arranged to have the same cuts on the real axis as

T(«,A2). Hence
490

£ J jttwiAVJw'1/* wi'aViJ
T(Ul) « c «.

- [t
(4.21)

Hence by comparing real or dispersive and imaginary or

absorptive parts of the expressions for T and T""1" in equations

(4.9), (4.20). (4.21) with W2 >(M + ^)2
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fXv» T£W*AV)J LXyvkTCW^A1)] ~ - f-a(4.22)

- [Fn> T"Vw* A1)] c^t^C^A1) - £* T'VWJA*-) (4.23)

and since we have assumed that is close to an energy value
2

Hp where there is a sharp resonance expected then we put

UT * ^OC-w*) (4.24)

If f(r | £2) has real zeros they can be considered by the same

adjustments we made for G(a) and ,8(2) in Chapters II and III

and give poles or resonances in Im T"^" (W2, A?) which have

little interest for us.

If T(W^,A2) has complex zeros, say at one point aQ, then
we must include a term of the form

H. ^ ^

i~to i'^+io £ - 4*
-1 2

in T (2, A ). If aQ = x +ly0 and yQ is very small,
i.e. the poles very close to the axis, then these terms produce

resonance-like behaviour in Im T or pole-like behaviour in

T"^" which may affect the approximation in (4.24). However if

resonances are predicted experimentally then we would expect

that these complex zeros are not too important although the

resonance shape may well be altered. One wonders whether any

points which are candidates for resonances theoretically but
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are counteracted by complex zero£ can ever be found to exist.

Ignoring complex zeros we put (4.24) in (4.23) and eliminate

4 from (4.22) and (4.23) so giving the resonance formula for the
2 2 x

imaginary or absorptive part of T(W , A )

— (4.25)

where

rCA^ 4^ . JU T~V«r\ Ar) (4.26)
Mr

The re-application of this method for finding the resonance shape

and lifetime to amplitudes other than the one we have specifically

considered is quite simple.

In the case of T^ which has the same form as T^ but
has no pole terms, we can write the inverse in the form (4,18),
To get an exponential representation we must now choose the

function log ^ such that the

region (a2 - M02)< W2 <. MQ2 is not cut. With these slight
adjustments the formulae equivalent to (4.22) to (4.26) for T^
are identical in form. The shape of T^ between the cuts would
seem to be roughly one of the following curves

x It is possible to use the model introduced in Chapter II to
show that a pair of complex conjugate poles can be associated
with this resonance. The analysis of T(V72. A2) towards this
end is very similar to that given for G(-k2) in Chapter II but
is only applicable if the resonance occurs in the elastic scatter¬
ing or two-particle branch cut region of the physical cut.
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T7<w*At)

A
y

—■—" O"^ i ^w

FIR t iy-3

assuming Iin Tn is largely positive, knowing that ~!t - o
2 2

for W2 = and using the symmetry about %" • It is amusing
to note the similarity (W2, A2) has with A2) when

each has two zeros.

The dispersion relation T2 and T^, can be treated similarly.
For we have

Co

, [ w'ivs/*- w'i«>.VwJ
and picture between the cuts roughly

(4.27)

X^A1)'

1 Ĥ*
*V/v

r i
11
11
11
I »

/ i
J l
/ ;

M

$t--criy»)x
f ^

a"M! ^

r
Fig. IV-4
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Again one cannot conclusively predict complex or real zeros.

Instead of (U.lh) and (U.15) we have

T,1.(4, ~ for i—» infinite circle

(U.28)

op

- J1" * if t~~rH
CM+^)1

(U.29)

Hence the function

2 2 2
is analytic apart from poles at a = MQ , a - MQ and
the cuts of T^ and converges to zero on this infinite
circle. Therefore

-nfVfc.A*) « - C*-ni)U-a!*+n^.

O _ jf q»)J^tJVw'*a^w'V , + Nil
* L * " «J> (*'- **+ H<J) I W'i i W'iaS iy|j

(U.30)

where we have preserved the anti-symmetry with respect to

a2 -1
a = , and we picture between the cuts as
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oi^>u
k c

■) 0
a2--CHy»y V «£ a1.^ w*«iNv

Flgi f IV-?»
.

To obtain an exponential form for or we must consider

r .*1
the function log ^ —c C<&-ita)—/j • Once again
similar answers to those of (4.22) to (4.26) appear.

For T2 there are no pole terms and we picture T2 as

1 m.1
Th? form of T2 is the same as T4 but with a different value
of X in general and to find the exponential form we consider the

f -r ,,
function log £ ^c^-Ai> )j
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The results then (4,25) and (4.26) may apply to T2,
and T4 but in actual fact resonances may not appear in and
T2 for similar physical reasons that we gave in Chapter III for
why we do not expect a resonance in /S(-ja). It is simply that

and T2 have no pole terms so if a resonance is due to a
single particle contribution then it should not show up in

or T2 to give a pole like behaviour.
The application of these techniques to the other two-particle

scattering amplitudes that we mentioned earlier is ;Just as

straightforward. Calculations using unitarity to find the

dominant contributions to Im T'^W2, A2) will provide a

critical test of dispersion relations in predicting resonance

peaks•
2

If (4.2^) is approximately correct for all A in the

range 0 $ A2< 1 p,(2M - p,) then it makes a contribution to
4 2 2

the total cross-section for » ~ of

t

S i —4^ ■■ C<-***&) .

M * -, I ("S-w*> - i mv rw)l1

_ f iA1-
«r J (wv- I Mr- PCAl)J *° (4.31)

where

r rw -Cn*^)1][w^ [rtrv-c*+**)*] [riS-Crty*)*]
~

^ Mr1"

< (amprovided My1 < and Krl > o

since M-r* > .
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It is easy to verify that v ('T2) in (4.31) has a maximum

at W2 = M^ and is symmetric about = Mr2( Thus we could
write a- (W2) roughly as

(4.32)M *Kr (Wl « f*)*

where H is the average width given approximately as

(4.33)

If (4.32) is to be observable P <<<< so that we have

Breit-Wigner form of resonance in the total cross-section.

Elementary unstable particles or particlesunstable under

strong interactions alone and decaying into a pion and a nucleon

would therefore contribute a resonance of the form (4.32) to

the pion-nucleon scattering cross-section.

A resonance in the unphysical region has a rather different

behaviour as a function of W2. u!e need not repeat the Schwinger

technique again since we noted the symmetry property of the
2

dispersion relations, i.e. symmetric to the replacement of W

by a2 - W2. Hence if we have a resonance in the physical region

given by (4.25) then we must also have a resonance in the

unphysical region at the symmetric point unless some selection

rule forbids it and destroys the symmetry. The resonance in the

unphysical region related by symmetry to (4.25) contributes to
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the absorptive part of the scattering amplitude the term

. (<*y~ My) p Va1)ImT (w\Ax) Z ~ ~ r~ ITT ( . • 0d (W*- mvi)% [(cS-Hi) rc^)] • J

where
v

P'CA*) « —^ . X>vs T"Val-rtv\ A1)
fa*-

x ■ . roi*) (
(c^- M-J-) (4.35)

This resonance makes a contribution to the total cross-section of the

form, for W2 in the unphysical region,

i

er(wV = ~ 1 M dCo&> (4.36)

P 2
If r(A ) is relatively insensitive to variations in A and
remains very small for ,.-1 $ cos © £ 1 then we can treat P as

a constant and integrate (4.3$) since a" a jK,*0-w»S)+jtt, + J/4v
where

£w*- (m+sa)*][w*~(n-u)*]
4 wv

-K - " (4.37)

2
Or the maximum value of A as cos © varies from -1 to +1 so

again we have O S? U.'X < X/*- I** approximately
< wl < CM ,*

* Actually the lower limit of IV2 should be slightly higher being
roughly 27p,2 for M = 7p, .
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Integrating (4.36) gives

C(WX) S . taZ%
rtTrwl

4 K'* Mr H 1

(4.38)

This has a much more complicated shape than that of the simple

symmetric Breit-7igner type. The shape can be seen more clearly

if we write (4.38) in the form

»(wv) s ^
M„r(Wi AXKW^G*)

,[ (w±Ax)(w-&*)r 7
L K-r JT^wV c*) (wt J1) ♦

(4.39)

where A2 = (M + \l)2, B2 = (M - p,)2, C2 = _ f»*f
M

D2= 2M2 + 2p.2 - Mr2 and if we choose 9n» H CS; 7p- then
A2 5? 64ji2, B2~t36h2, C2~2%2, D2~ 1%2 while if

~ 8y. ~ A then B2~ C2~ D2~ 36y.2. The larger becomes
2 2

compared to 9jx the smaller and more separate become C and D
2

if M and y, are fixed. For ^ in fact D 55 0 and
becomes negative for M,, > IOji.

For the case M,~.9p. we find a pronounced peak in er(w )
2 2 2 2

between the values -^(C + D ) and C i.e. 26\l • The shape

can be drawn roughly as follows and the sharp variation from the

maximum to point B2 is due to the factors (IT2 - A )",^{w - B2)"^
which are relatively ineffective in the region between the origin

and D2•
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Fig. IV-7.

2 2 2
As M

^ approaches (M + \i) and D and C approach B , the

peak becomes narrower and narrower and more pole like. In

contradistinction as M ^ becomes large the resonance moves to
the left and spreads more over a larger region of the axis. This

curious behaviour can be explained by noticing that the resonance

(4.34) is integrated over a range of cos e which implies a
-1 2 2

movement of the zero of RX T i.e. the point a - is
2

spread over a ranee given by the range of A as cos 0 varies

from -1 to +1. The range of A,2 is precisely K^.1 which is
2 2 2

zero at W = (M - y.) and so if the peak is close to (M -

it becomesconcentrated near this point. If the peak Is far from
2 2

(m - nr, the range of A is large and the resonance is spread
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out. The position and shape of the peak therefore depend on
p

M ^ in just the manner we found from (4.39). A similar

argument assuming the existence of an unphysical sheet pole
pQ\

has been given by Nauenberg and Pais J for a special case.

We now have a basis for inserting resonances due to

elementary unstable particles or otherwise into dispersion

relations derived from axiomatic field theory. The theory

is capable of describing elementary stable and unstable

particles on an equal footing apart from one very important

aspect. So far we have only been able to discuss the scatter¬

ing of stable external particles and have allowed unstable

particles cnly in internal processes. No treatment has ijet
been evolved without some serious assumption or assumptions

to deal with the scattering of unstable particles. We needed

no wild assumptions in order to derive a spectral representa¬

tion for unstable particle propagators, Uhfortunately the

conditions under which dispersion relations for scattering

amplitudes have been proved in axiomatic field theory categorical¬

ly exclude unstable particles in external states.2^
In the spirit of the techniques we used on propagators the

best we can do here is to add extra strong interaction absorptive

cuts to the strong interaction cuts in (4.9) for example and

assume the dispersion relations are still valid. Let us con¬

sider then that we have an excited nucleon of mass M * capable

of decaying into a nucleon and a pion under strong interactions

but stable if we switch off some of the strong interactions. We

take the dispersion relation for the scattering of this excited

nucleon with a pion to be of the form
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ee

T^wVAM * 1 + x '—r~lHw'1^ J [ w'lw'. i t w'V/»Vw\*fej

where from (U.2)

f "ji *■
bUw\Aa) = j </»''£3Y*),T£~$)J//»>

S C**)" L I <t»'l?Co)i^><t>*lTC°>tt»> SCj^-t-k)
n l"

(U.Ul)

and

Tt'W^ A1) - i [ hl(Kr$A*-) - hi (Az-h/*A%)]

(U.U2)

If we switch off the extra strong interactions causing the in-
2 2

stability of the excited nucleon the lowest value of -pn = -(p + k)
|| O

for which Ira T ^ 0 is M which denotes a discrete pole term and
2

the continuous threshold begins at (M + p.) • In fact we have the

same situation as for pion-nucleon scattering but with M replacing

M*

If we consider all possible strong interactions so that the
2 2

excited nucleon is unstable, the lowest value of -p is M

denoting a discrete term and the continuous threshold begins at

(M + p.)' . This implies a system of cuts for T(W , A') of the

form
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w l-pL~JL

Cny+)x £ A-n*1 (M+ <^m)V ^V4'* Crt+V*)*
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Fig. IV-8.

m 2 2 *2 2
The question is what happens at the points M , A - M , M

and A2 - M' . The effect of the right (left)-hand cuts on M*2
(A - M ) should be just the broadening of a o -function to a

resonance shape in Im T that we are familiar with.

The dispersion relation (h.ho) can be written using (i+«U-2) as

OP

T<w^A1) = -±- f Jw'^hxCw'*£*.> } —— - —-i 12* J | W -w-ife wrl-Ax+i«\U]fc J

= ^ [ I dw" * dw" D>Uw*At) - bUftW'd'j?'"

I rfi a J

r_i ^ ]• L W'iAVwt^J

fl©

W w.^Wj (U.
A>V j

2+1+)

It is straightforward to show that the points M*2 and A2 - M*2
are points of resonance similar to the previous sections of this

*2
chapter. The peak at A - M in the total cross-section now

2 2
occurs between the analogous points to C and D~ which are now

2 2
between the points A and B so a sharp drop to zero can occur
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on either side of the peak.
2 2 2

The candidates for poles M and A - M occur above the
p ^ 2 2

extra strong interaction thresholds A - (M + p.) and (M + {J.) .

«»T P P
If we assume the behaviour T C„ (M - W ) for example for
2 2

W # M and CK. is a constant then we may not have a peak since
«•!. P P

Im T ) is not necessarily small. It follows then that

broad resonances appear likely which may or may not be observed.
29} 2 2

It has been conjectured ' that the resonance at A - M in the

excited nucleon-pion scattering amplitude may produce a resonance

in the pion-nucleon scattering amplitude in the same energy region,
P P

i.e. above the production threshold at W = (M + 2m-) • This can

only be settled by a reasonably accurate calculation from the

dynamics of the problem of coupling the nucleon-pion amplitude

with the excited nucleon-pion amplitude using unitarity. He
P mP

suggest however that the resonance at (A - M ) in the excited

nucleon-pion scattering may have some further resonance effect
2 p

on the pion-nucleon scattering if a resonance at (A - M ) exists.

The theory of unstable particles in dispersion relations is

also incomplete in another respect. So far we have only been able

to build in single unstable particle terms and have largely neglected

any modifications to multiple particle thresholds in which one of

the particles is unstable.
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DISOUSSION

The primary purpose of this dissertation has been to clarify

and extend a uniform theory of stable and unstable particles

developed by Sehwinger. Originally schwinger based his ideas on

the structux-e of a one-particle Green's function for a spinless

boson field. We have carried out the generalisation to one-

particle Green's functions for a spin one-half fermion field in

detail and indicated the trivial extension to a vector boson

field with mass. We have, however, taken care to avoid the

use of separate P, G and T invarianee but only required (PCT)-
invariance when considering weak interaction phenomena. This

does not alter the conclusions nor will subtractions even if

they are necessary for the dispersion relations we use. The

(PCT)-theorem ensures particles and anti-particles have equal

masses and lifetimes. We have neglected electromagnetic

thresholds which appear at poles and at zero energy since the

character of their branch points is unknown, but these also

seem unlikely to affect the resonance formulae since their

contributions to spectral functions should be zero or small close

to such branch points. The Schwinger method is essentially based

on an 'intuitively obvious' result for a one-particle Green's

function G(a) of a complex variable e

Cr Ci)
r*w» GCi) s
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whose proof requires great care with analytic properties of G(e).

We need only characterise unstable particles of mass p. or
*•1 2 •l 2

resonances in Im G by R-6G (p. ) = 0 and Im G (n ) / 0 but

very small. Then £lm G"1^2)} is essentially the lifetime
1 »1 2

or inverse width t = /Y . Also R-d G (jo. ) = 0 may be caused

by any singularity or combination of singularities. We have

considered the case of strong and weak interactions acting

together as the exact one while the case of strong interactions

acting alone is purely hypothetical, but, because of the uncer¬

tainty in jj. and Y , it was unnecessary to work with better

than first, non-zero, order terms in Y. fife have shown that

these approximations are consistent if the condition for a

resonance to be observed is true, i.e. Y <<<< n.

Much fundamental work has yet to be done towards formulating

an operator algebra for unstable particles in field theory.

We have proposed some properties of one-particle unstable states

in view of their general validity in quantum Mechanics and per¬

turbation theory. We have defined one particle states without

using the asymptotic condition so that particles are created and

annihilated at a finite time, we cannot observe particles with

perfect accuracy so a one-particle wave packet need not describe

a single particle exactly but must be almost exact to be observed

as a single particle at all. Therefore a wave packet may not be

observed as an exact one-particle wave-packet due to one or both

of the reasons (a) an imperfect experimental set-up, (b) a non-
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exact one-particle wave packet. The time dependence we observe

is that of a one-particle wave packet rather than that of a

Green's function. It is the filter effect of the unstable

particle wave packet on the Green's function which takes account

of the experimental measuring process rather than the artificial

mass filter used by Schwinger. In spite of various correction

terms to the exponential decay law for very large times, the

effect of the experimental limitations is the strongest, unless

we cannot avoid the inclusion of a threshold, electromagnetic

for example, within the energy range for observing a single

particle.

We set up a model of a decay process which may not be far

from the true situation in full field theory but we have to

assume maximal analyticity to make continuations into unphysical

sheets of G(a). Considering two-particle cuts we find not only

a pole in the lower half of the first unphysical sheet associated

with a resonance but also a complex conjugate pole. In an ex¬

tended model with two channels we are not in agreement with Levy

since we find no ambiguity in associating poles with particles

or resonances. There is, however, only one pair of complex

conjugate poles on a particular unphysical sheet which directly

produce a resonance.

The techniques which we used for propagators is usefully

applied to single dispersion relations for two-particle scatter¬

ing amplitudes similar to work by Moffat. For the sake of rigour,

however, it is necessary to consider only reactions initiating
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and terminating with stable particles. A new feature of such
'

i-

reactions may be the presence of high energy resonances in pion-

nucleon scattering occurring in a manner suggested by R.F.
«•. ■

Peierls and having a curious unsymmetrical shape.

Perhaps this more or less complete dispersion relation

treatment of unstable particles or resonances can be used as a

more rigorous basis for calculations of lifetimes even though

it will be necessary to resort to perturbation theory to find

the absorptive amplitude from unitarity.

In all the foregoing we have been unable to analyse

multiple particle thresholds where one of the particles is

unstable.

It is yet to be shown that field operators for unstable

particles exist and satisfy the usual axioms apart from the

asymptotic condition. The possible construction of such field

operators provides another interesting problem which has been

examined to some extent recently by Hama and Tanaka1^. We

have not tackled such problems here but have assumed that un¬

stable particle field operators exist or can be constructed.

Lastly, it has not been demonstrated that the presence of

a resonance in the absorptive part of a scattering amplitude or

cros3-section implies the presence of a particle. We obviously

cannot assign a particle with every little bump discernible in the

cross-sections ox' reactions,. Clearly the use of the very concept

of ,particle' becomes doubtful when one entertains such thoughts.
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APPSNDIX I : Notation in General

Any notation not explained here will be defined as it is

introduced in the text.

>c s represents a four-vector and

J***. — dKlc)*l a d J»t is the corresponding four

dimensional volume element.

I o o o

Q . . o i o o j is the metric.
4/*^ I o o i o

\o o t> -i
=1 if a m 3 and zero otherwise is the Kronecker a -symbol.

a >c. y x ~ ° iS scalar Pr°8uct of two
four-vectors.

u ^ is the d'Alembertian.

S\>0 a Sc*() 5ch%) Scx3) Sc>«o) - i%) $6*^ where £ is the Dirac symbol,

©(x) = 1 if xQ >0, 0 if xQ < 0.

T before a product of operators will symbolise the time ordering

of these operators T&C*) c^) = p Cy)-t
T^{*> ^jrCy) ~

[a, bJ = ab - ba is the commutator of two operators a, b.

£a, bJ = ab + ba is the anti-commutator of two operators a, b.

Take the natural units ti = c = 1

Use * for complex conjugate and ^ for hermitian conjugate.
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A neutral, scalar or pseudoscalar, herraitian Heisenberg free

field operator /5(x) satisfying the Klein-Gordon equation
p

( Q - M. )>d(x) = 0 describing particles of mass p., has the

corrmutation rules [/(x), /J(y)j = i A (x-y) where the invariant
function is defined

oo

— oo

In order to define normalisable states we must use a discrete set

of normalisable "wave-packet" solutions of positive energy £f,(x)J
of the Klein-Gordon equation so

;An r
' j J'f. SCto) SthlyS)
-oo

These solutions form a linear vector space which becomes a Hilbert

space by defining the scalar product

(h, j>) s 1 j^£ch> =
^ t*- <x>

where
t* L s,liS.f.

"i'y. J? ■'> * +
and a space-like surface element with normal n •

M>

This result is not dependent on n. since f and f„ obey the
|x a p

Klein-Gordon equation. The system £ faJ is complete and obeys

i^c,v7 fr+ty = x ;^x)

where „

AC

;yO = ^->3 J $<>0) &Ckxyi*y JL'U"'Z)
Oo
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AC Vh-j ;y*x) - j 9(-ho) S(l**♦/*>) * '
~oo

, £#-)
r - A Sy^x }

A '»/**> = Ac^V>i-^;-c Ac~}C*-2 ;^u.x)

henever it is permissible and convenient we shall replace the

by a continuous system of plane wave amplitudes

Lit. A - Cjk^-ky*^ >*o ^ . f

is an invariant choice of plane waves which implies

s * c&-*)*k0Sck-k')

in the limit of plane waves.

;v e can expand /6{ x) in the form

where

r 27 ( c»o j* *<:»>.) 60 *"**►)}
* e»

J ^ Cu-)
-ac ^

s*
- ou

which are independent of x for free fields.
f*

Further [A A] = ^ , p and single particle states are
formed as follows |a> = /5a+ 10> having unit norm.
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Finally we shall often have occasion to use a quantity e fc, 0

which is to he regarded as a very small positive number and is

allowed to tend to zero after all other operations are completed.
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AFT"SNDIX 2 : Miscellaneous Topics from Chanter II.

n

High Energy "behaviour of G( -k )
A 00

If 1 is convergent we have the more detailed

asymptotic property £6-1**) & where

f*°
/*■» x Av-f s Coo) =■ Kvgu*)it<1 ana therefore

G-'V-fc1-) = - f

The quantity +t0 defined here is identical with the quantity called
the "bare mass in pseudoscalar meson theory "but the definition above

2l+)
is independent of the type of interaction. Schweber's ' inter¬

pretation of this asymptotic property is that at large values of

the momentum or small space-time distances the propagator G( x)

is determined by the bare mass,since x is very small the self-
23)

coupling has had no time to take effect. Ford, ' however, is of

the opinion that this asymptotic property implies a very sharp

resonance peak at very large energy which may be due to some

extremely heavy quasi-stable particle with the same quantum

numbers as the neutral boson usually associated with the propagator.

Resonance formula derivation

In Schwinge^s calculations he appears to set -h*) = sw c^y)

in obtaining the approximate equation (2.1+8). Consider the equations

from which (2.1+8) is to be obtained

-ir cs (fry*?-)
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2
. T, 2/e note here that g^&kx) > 0 if -k > from earlier

reasoning so that it is cot jrfC-k''") which has the zero or near

2 2
zero at -k = (J. . In fact we expect j6 to have a behaviour

2 2 • /» /
which is almost discontinuous,since -k m p. is almost a pole w* &c

and therefore varies ranidly from a value near % to a value near

2 2
zero close to -k = p. , i.e. passes through /2 where cot /6 = 0.

2 2 2
Hence near -k = p.', /$(-& ) varies rapidly and the centre of the

2 2
variation occurs at -k = p. • If we now write

* (-wk,)'J/.fc'j■
s el'

then we can neglect
,

compared to the other terras in this approximate equation provided
2 2

-k is near enough to p, . Therefore

Itytc* ft C-k1) Z fo' Ck'-yj.V
and with

- irx <-!**) fttkvj*
we have x

[ir f0 w
-nlkls„ C-hS) e~ C- tl) * —

2 2
and since we expect pw tq have the large behaviour at -k = p.
we can write the left hand side as tryuJ" SwO*x)
,Ve have therefore shown the approximations involved in writing

# 2
(2.U8) and (2.1+9) to be consistent and valid if -k is close enough

to |+2.
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2 \
Zeros of G( -k )

p 2 2
: ) has a zero at -k = -o

roust he added to G~*(-k2) in equation (2.32), A term k/<-o\ kl)
o

If Gg(-k ) has a zero at -k = o then a term

*-1 2
must also he added to G (-k ) in equation (2.37) provided

o*"< *w since the introduction of weak interactions to
-1

Gq may not mean cutting the axis at -k = O hut will move
the zero and alter the residue a little at least. These extra

terms will then appear in the approximate form of R£ G*"1 near

p
+t and thereafter alter the formulae (2.1+7) only so that

oo

s-St'»•[*- • -^T,
"■>' • * iSp:,- - <SSi.'
where the extra terms tend to cancel since we expect o,v
and sQ ~ sof .

If we have > K ,'~ then G'^-k'") has no pole at -O
9 p

hut we expect a pole-like behaviour near -k = * which will

produce terms in p.2 and (pQ)~^ to almost cancel a /
and -ovi0//COv->>»X . In fact, if we put for -k2 z. -o 2

fU CrsC-tOV kl)

and find for -k2 cfc O 2* •%?' 2

2JL G- C~h~x) ~ - Cslo-r C-*'\ k
where

■O =. O - K I. =^34"'
po

(si*-r c^-r* it J (K1
*Iv
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then we also have

* ^K-0'*)V ft*')
where

ft, = ir s'0 ■&'
This term produces the pole-like behaviour we expected in g""1
and indicates what happens to zeros of Gy(-k ) when covered
by a weak interaction cut. They do not appear to have any deep

significance and we shall ignore them whenever we can.

Consistency of resonance formula.

If we calculate the contribution the approximate formula for the

Breit-Wigner resonance makes to the propagator, we find

oa

. f.ec-fc--KS) „ ^, [^fej - *rH J

The first term is the one we expect from the approximations we

made in putting Hi & '{-kx) zz (~^-y*x) with Zm.G l/J) - -&*-
2 2

The extra terms will be negligible if m- - >»> which is

satisfied if the resonance is sharp enough to dominate the

correction terms to the exponential decay laws. This condition
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is essentially the result (l.ll).

Therefore the approximations made in reaching the resonance

W P
formula for p (K ) are consistent with one another if we have

a sharp enough resonance or more accurately if the particle

condition stated in Chapter I for unstable particles is satisfied.
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APP 3PDIX 3 : 'Two Particle" Unltarity and. Gross-Sections.

Here we show that the unitarity condition can he written

concisely in the form (2.60) given in the main text. ,'e also

exhibit our conventions for defining the partial wave expansion

of amplitudes used in the main text, deriving the one particle

contributions to the absorptive part of a scattering amplitude,

and defining the differential cross-section. For simplicity we

will be considering only the centre of mass frame of reference

which is sufficient and convenient for our purposes.

The definition of the imaginary part of the propagator we
p

found in (2.12) to be ^^(-p ) where from (2.9)

g C~(>x) = (JL*) * 2 l«>l f&lo)l k,

and now we consider the case when Jp, a> • J k^ kg *n ^
2 2 2 2

a two particle in-going state with -k^ = , -kg = mg
and p = k^ + k?, therefore choosing the Lorentz frame
£ = kx + k2 =0

CO

ec-pj «</>«) £><-/>") = 6»)*ff ^Ld%>$ck*+»t)$cki+yn
-J

. +k0.1

-U £[ic^ML£lL±=!).rtk.*k*)$cfa-kit,-k^).i<°i/*ouklitx~>i''-J uk•.k».
90

- j —i >n,'Ll-J&L+ ). l<C>lj6(o) fk,kx 1
• 00 ^ • &i0

z • 1 _I±I %a„-iSF./kV?) I <»■ fkoHh,^>il«*> J i
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where we have used the fact that <©» I depends

ohly on|kf by invariance and we write

<©i t — C/6») 1 ' J" Z-i*,*kip2

where \T is closely related to what is known as the invariant

'vertex1 function which is defined later. We can finally write

as the general result

>
_ j_ . [('/>*) - ~ Cm,-wQ*J * i \TC-p1) 11e -P

C-fl )
We can derive a similar result for the absorptive part of

tf(W8}f which we can obtain by replacing ie(-x0) by £ in the
following form for \T(W2), where (fl - (x) = J(x), using

1} ^
the usual Lehmann, Symanzik and Zimmerraann ' techniques

QO

-CO

and so

:k,Mo ^WO =. j ~u.C ,X<©| 3*60] Ik
-

S

4- ^ £ I />>*> </>',"! TC»Oita>
- <ol j

- 2 $ Cf>'-kt-kx) <Olf6C<>)//»>>< />',n| JY©>!
4 C/6tt)Vx- "

. <oi f6co) i kt'<x%y^k, kt i*% i Sco) ik^>
x 4tt^M0v' ^wfC.«.Vwi

. <oi fica)l ht' k{ ^Xkiki^iVt
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where we have put =. Ik,' kx > to find the two

particle state contribution with + wtl

ji / *. H.% r f>' •=. O • Ve have also used the fact that

^o| ^o) 1 (t'i Kt>^> < ^'1^I I > depends only on ik'l and
cos &■ = Ik, I./&»'/ by invariance and we put

< fc,' Aa' / TfO) / k*> S > F

Q
where P(W , cos ©) is the invariant elastic two-particle scattering

amplitude and we have 4Als - as the

invariant momentum transfer. Therefore in general

Vr. , „ . V,

AU-OiW') = 'N-c^-^J Ucl~i»[F(»IS~>9))'
^ -I

£w - i»*,t "M*] r F0 /tAiftJ *"

where we have used k.c = k/ , kAfl = ka'o since Jk( = { k'f
2

and we are considering an elastic scattering amplitude P(w , cos $).
. e have also defined the partial wave expansion

FCw\t*+&) = 2? C*JL+ •) F^Cw1)
JL*o

I

Fg(w») = 1 J dc^oB) %(<*•*) FCW$ W

2
Elastic unitarity for the full amplitude P(w , cos ©) is

obtained by writing

- Ctb*)" < kt I Tco) / k,' kx ^ >

c ,l "zi-Cki + k,) *.
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and therefore the absorptive part is

AUF(w^e) = -f UV* <*ti[xc*),-TC-l)]ik;>jjtir <*
"CO

CP —liCfc -t- ^C) H.
. j-rav' K Z1 [<fcti^$)i

and putting a two-particle in-going state { k," fex in >
instead of with -k?Ls»%,* , 1

IUh»\ c-*®) - ^r^Z1 Sep"-till JCo) lp">»Xt>",ni-J'Co)l h'x>/ O H

s jj sckU^Uki^^ech^Bik^fsck^b'osck;*k^kr^x).
—0c

< htl7{o)l k,kx*s>< k, K f T(b> 1 >

*

. rw^»n»+~«yjv'rw-^«-»n)*JVx, ujicof^ kHii)
wl V 'fc."/%•'/[ , l^'Uki'l/J

where jjJMki*) contains the integrations over the angular
directions of k," only.

/ jj( ■ / (i *' t'
If we expand F0n> cr>B) , F j ^ f£jyj~f) and F(vv4, fC"/iktl J in partial
waves we find that the last equation can be written

Ak*F£(wM
= f J_ . U) : JJlCfc.") .

W* C'so no J

1 ' ^
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i

J J<~wiU a'"> p*Cw6) **■( Itrfti)pt"(feifei) = u'.iHr+i) %u %*'r

after carrying out the integration of

faUcfc,") Pec~,t» pr[§^i) *- (jg-fo)
and to do this we put k^ at (0, 0, I ), k^' * (sin 0, cos &)
and !*»" = , cMrty ) 80 the integration become

i ..... . c' p* J7r
C^ + x ) C-i -+t) j Jc<*r©0)j 60 CcftiyO fg„ Cc<rtyrc*^+^*j»Yjii^oo9jfi)

~ Vi"

if we use the standard results for Legendre polynomials,

Py, ^ -t jojkjh )
y% .

- ?tyC^x>9) PyiCctny/) + J 2 P^*£c**o&) Py^nICcm'}/r) uoh<L
*v*ZI 6*+»l)l '

P»*ooPn<*•)</»«- - % J = © "J -r 4 o .
— • -<

Thence it follows that we have the required result

AC© —rj*"
<f<(wt>, t

.2

, 14
Wl

The one-particle terms in Abs P(W , cos e) can be got from the

above results by putting | p" , n> m lk> a one particle state
2 2

with -k = m say and k = 0, k = k^ + k2 = p"



-122-

3

AJU,?(«■,»») = ^ f —lS $CfcWl>«fe.)SC4>SC'«-fc.-IO-
/6 J C*»)J

— 90

. <kvl "3*C©>| fe><M Tcolki^

_ kCh0-k,0-Ut0) ^ | ^ ji-
2 h0

r Tr £(wl-^).| VM)iX =.

where g is the coupling constant and V is the invariant 'vertex'

function

< k, I T£o) I kx> = Cltlr)X'*- V [-Ckt+kv)*]

where <k,| is the anti-particle states of <1^/ •

The differential cross-section is given in terras of the physical

amplitude f(&) by

• £ 1'«"•
where qf, q^ are the final and initial magnitudes of the three
momenta and 9 the angle between them, i.e. we are in the centre of

mass system that we have used throughout this appendix. The invariant

amplitude is related to f(9) by

=. Lwics)

and since we deal largely with elastic scattering, then %• = Q-j, and

— =■ A ./FCW^S)/1
iJl w* "
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