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INTRODUCTION

The problem of extending the Quéntum Theory of Fields to
include a2 description of decay processes has provoked a rapid
growth of interest in recent years. This problem was
temporarily bye-passed in the early attempts to formulate a
relativistic Quantum Field Theoryl) for the obvious reason
that 1t was simpler initially to ignore decay phenomena and
to consider only the collision processes of stable particles,
The inadequacy of a field theory of stable particles is
evident from the fact that among the sixteen experimentally
established particles, and of course their sixteen anti=-
particles «= although not all particles are distinet from
thelr anti-particles - only foury the proton, electron,
photon and neutrino, are stable.

Let us recall the manner in which the stability restriction
was imposed. Among the known interactions between particles
three clear subdivisions are observed appropriately named
'strong', 'electromagnetic' and 'weak' according to the magni-
tudes of their assoclated coupling constants. In the past the
conventional procedure has been to assume that 'nature is most
easily described by a sequence of approximations'.a) The weak
and electromagnetic interactions are successively 'turned off'
which has the effect of forbidding all known decay processes
exhibited by the observed particles., Thus a simplified field
theory describing the strong interactions of all baryons and

mesons has evolved and has become one of the main frameworks
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for theoretical investigations in modern field theory, although
it is not clear how serious a distortion of nature is involved.
It is cerfain that a thorough treatment of unstable rarticles
must take account of the role of the 'weaker'! interactions.

Let us search the axioms of the field theory of stable
particles, which for convenience are listed in detail below,
for the critical points where unstable particles are excluded.
I. Quantum Physicsg Quantum Field Theory is an extension
of Quantum Mechanies to an arbitrary number of degrees of
freedom, In particular the vector space formed by the
stationary states of the system should be a Hilbert space and
all observables are hemitlan operators on this space.
II, Field Operators: =a set of boson ¢g(x) and fermion P(x)
Heisenberg operators exist to specify the fields associated with
the particles of the system. The quantities g(x) and P(x)
are to be interpreted in the sense of operator valued distribu-

tions such that the expressions

§°J'=t :Cn). #eu) and S J"u. a(u). 'f'(ﬂ-‘

are operators and give definlte results when g(x) 1is a teste

function belonging to the class of all infinitely differentiable

functions of compact support in space-time.

III. Relativistic Invariances If U(A, a) 1is a unitary

Lorentg operator in the Hilbert space of the state vectors where
A is a homogeneous lLorentz transformation and a 1s a trans-

lational transformation, then

Ula , ). ;60«). U-‘(.A,q) = ,5 (Ax +a)
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U, ). ‘ﬁ'(u).U Ao) = -)6' (QAx +a)
In particular hermitian displacement operators P“ exist such

that

L s QF(x)

[P).,P‘o] = O and [P/"' ’F(n.)] = e axﬂ

where F(x) 1is an arbitrary Heisenberg operator., In the
representation where the Pp are diagonal we can define the

eigenstates of Pp so

Poipox> = poip.ad
The set of such eigenstates | p, a) can be shown to span a
Hilbert space which we choose as the Hilbert space of the
system,
IV, Energv-Momentum Spectrum? A unique, invariant, nor-
malizable, lowest-energy vacuum state |0 ) exists and is

defined by
Ua,a)10y = |0 and P/“ e = O

The eigenvalue p“ of Pp has the properties

-p'= po-p*z o0 and po = ©

Ve Positive Semi-definite Metric? The norms of all vectors in
Hilbert space must be greater than or equal to zero.

VI, Microcausality:
[goo, gp)
{Foo, ¥ g]

£ (xe=yo)? < (&-3.)“
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VII. Asymptotic Conditions?

L (Frgeo1¥) = (!l;!t,,c,.u{r)

a.g'-’ t“

L (Fi1velF) = (Filbueol )

no=—> L oo
where jr and ]P' are arbitrary Heisenberg states and the 'in!
and fout! suffixes indicate free inégoing and free out-going
Helsenberg field operators.

In addition one could perhaps add an eighth axiom for the
restriction to stable particles ﬁentioned earlier,

Bven in a field theory of unstable particles we can con-
struct a complete orthonormal system of basic vectors spanning
a Hilbert space in the Heisenberg representation from the
asymptotic fields of stable particles or from the set of
eigenstates of the displacement operator Pp o Therefore the
only axioms which are obviously questionable with respect to
unstable particles are III and VII, Firstly violations of
invariance under the unitary parity operator P, charge con=
jugation operator C and the anti-unitary time reversal operator
T may be possible among weak interaction phenomena., Hance we
should strictly only allow invariance under proper Lorentz transe
formations in axiom III. We may still assume invariance uader

the PCT-transfonnation.3)’ 24)

The asymptotic properties of
field operators in axiom VII give the theory an interpretation
in tems of particles. Unfortunately it may be meaningless to
ask for the asymptotic properties of unstable particle field
operators since in the infinite time-like limits an unstable

particle does not exlist physically. In the infinite future
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only the decay products will be present and in the infinite past
only the particles asymptotically assoclated with the production
process to create the unstable particle will be present. We are
therefore prevented from interpreting an unstable particle field
in temms of a specific particle and in particular from defining
a mass to be associated with this operator, In addition some
method must be found for defining a lifetime for an unstable
particle, Notice that such a mass m and lifetime 2 will

not be unique since the uncertainty principle predicts a mass
distribution with a mean square deviation from the average

mass given by D n~ %, = Y which also has an uncertainty
DAY ~ Tz/h. It 1s clear then that we have to devise a method
of defining consistently a mean mass snd mean lifetime which will
only be reasonably accurate provided Y 1is very small or the
lifetime large. We shall find in Chapter I that the latter re-
quirement 1s a physically desirable one,

It is generally believed possible to conceive of single
unstable particle states in the Heisenberg representation as
approximate eigenstates of Pp and that the accuracy of the
approximation will depend on how long lived the particle is or
how nearly stable, Since it should only be possible to intere
pret a state as a single unstable particle state during the
lifetime of the particle itself, such a state seems a rather
elusive quantity to define in the Heisenberg representation
in which all states are stationary.

A vast literature has accumulated on the definition and

treatment of unstable particles in a variety of models using,
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largely approximate and usually non-rigorous methods. Among the
more serious treatments several have aimed at definitions of the
mass and lifetime of an unstable particle in field theory. One

4) who define

such attempt has been made by Matthews and Salam
a mass density closely related to the Lehmann spectraldensity
function.ls) The mean mass and lifetime are defined as the

first and second moments of this mass density. Unfortunately

it has been observedé) that such moments do not exist for many
physical examples unless the mass density decreases very rapldly
for large mass values, But in any event the definitions seem
much too artificial,

A speclally interesting suggestion made by Peiarls5) appears
more natural and has proved popular in later works. Peilerls
indicates that there may be a pole in the lower half plane of
the second Rlemann sheet of the propagator and that the real
and imaginary parts of the pole serve to define the mass and
lifetime of the particle propagated. This has since been
verified by Levyﬁ)_for the Lee Model with an unstable particle
and he shows further that an exponential decay tem is cone
tributed to the time dependence of the propagator by the
unphysical pole, This exponential behaviour is believed to
correspond to the quantum mechanically well-known exponential
decay law of resonance states and recelves a thorough dis-
cussion in this context by thler7) (there are many earlier
references given in this paper). Levy's methods, however, are
based on an analytic continuation through the cut in the complex
energy plane for the propagator in order to find the unphysical
sheet pole and he himself shows that the required analytie
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properties cannot easily be demonstrated in field theory. For
the case where a particle has two or more modes of decay, Levy
demonstrates with the Lee Model that it is necessary to cone-
tinue through a certain restricted region of the cut to obtain
the physically correct pole to be assoclated with an unstable
particle, We will examine this interesting conclusion with

a more general fleld theoretic model in Chapter II, Jacob and
Sachs89 have also discovered a similar unphysical pole in
perturbation theory applied to a simplified model of the decay
mechanism of an unstable particle, Fairlie and Polkinghorneg’
using a model based on a separable potential found that unstable
states can be assoclated with unphysical poles, Gunson and
Taylorlo), Oehmell) and others have found possible resonance
poles on unphysical sheets of a Mandelstam-type representation
holding for a two-particle scattering amplitude on the -
physical sheet, by continuing through the elastic region of

the physical cut in the energy variable using unitarity.

Chewl7) indicates that if an elementary unstable particle exists
in the theory of Mandelstam's double dispersion relations and
unitarity, it can be inserted into the theory as a pole of the
scattering amplitude on an unphysical sheet., The latter is

done somewhat indirectly by introduecing a C.D.D. pola‘ in the
denominator function D of the N/D mathod17) at some

physical energy which then implies a complex zero in the denomina-
tor D 1itself. The works just mentioned all hint that the

% Castillejo, Dalitz and Dyson®’) noticed that poles, now
called C.D.D. poles, can be freely added to the denominator
function D with two extra arbitrary parameters determining
the position and residue,
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fundamental ideas involved are sufficiently general to apply to
full field theory, This probable generalisation has been dealt

with to some extent by Schwingerla)

who takes the view that
unstable particle behaviour is already contained in the well-
known Lehmann spectral rEpresentationla) if weak interactions
are explicitly considered. It is important to note that there
is no need for Schwinger to leave the physical sheet in his
analysis since he derives the Breit-Wigner resonance formula
and the exponential decay law without troubling to look for
the unphysical pole. In other words Schwinger finds the
effects of the unphysical pole on the physical sheet rather
than the pole itself, This has the great asset of avolding
the difficulty with analyticity in field theory discussed

by Levy. ©Schwinger examines also the possibility that the
exponential decay law falls after a very long time and cone
cludes that the law is valid in field theory for so long as

it is meaningful to identify the state of the system as the
single unstable particle state, Hence after a very long time
the decay law becomes dependent on the observation and pro-
duction mechanisms, A very similar conclusion has been reached

n14) after

by Jacob and sachs®) in perturbation theory and Newto
examining the same problem in Quantum Mechanics with a timee
dependent wave packet formalism, In Chapter II we shall recover
some of the main points made by Schwinger in analysing the boson
propagator and consider some of the problems to be found in
looking for unphysical poles by discussing a field theoretic
model of s decay process with analytic properties of a

Mandelstam-type. In Chapter ITI we generalise to unstable
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fermions the methods used in Chapter II. Moffat13) has
suggested that Schwinger's work can be applied to single dis-
persion relations for two-particle scattering amplitudes in
field theory. The author too has thought independently along
similar lines and has analysed this generalisation in a rather
different and more thorough fashion, which will be presented
in Chapter IV, ILittle progress has yet been made to set up

an operator formalism to deal with unstable particles, Work
by Ida15) attempts to justify a conjectured definition of a
single unstable particle Heisenberg state, This may yet

prove to contain a germ of truth but much is left to be desired.
when complex masses are arbitrarily introduced and assigned to
unstable particles. In spite of the faet that in Chapters II,
ITI, and IV we have a fairly extensive dispersion relation
treatment of unstable particles in full field theory, it could
be more useful to develop an operator formalism. In view of
this we discuss briefly the possible form and properties of a
single unstable particle state in Chapter I. We restrict
ourselves to very general terms and make no rash claims to
have discovered a rigorous treatment. However some aspects of
our conjectures appear to have a general validity and throw

further light on the results of Chapter II,
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HAPT
UNSTABLY PARTICLE STATES

In the introduction we discussed the axiomatic foundation of
a gquantum field theory applicable to unstable particles., Ve
found it mostly unnecessary to alter the usual axioms for stable
particles with the notable exception of the asymbtotic conditions,
Eesentially we have to find a method of defining one particle
states for unstable particles without using time-like asymptotic
limits, It would clearly be b'est to look for a method applicable
to stable and unstable particles alike,

For stable bosons the usual procedure is to find an
operator which will project out the one-particle contribution
from the Fourier spectrum of ¢r(u) 10 and giving a2 normalis-

able state, One arrives at the projection operator!

oo L ?-'
s ,6_- S .E.‘.t'. xX(E) j Ja‘“(x). ‘{-‘CM— 3_; {1.1)
Tvoo =00 3 . s
§“=:s~(b)

where X(t) 1is a test-function possessing derivatives of all

orders, vanishing faster than any power of % +

outside a region
-2T < t < T and is approximately egqual to unity inside this
region, The asymptotic condition then ensures that (1l.1) applied

to ¢rcﬂ-) 1> produces the same effect as a free field creation

operator acting on the vacuum JO)» produces namely a one particle

# General points of notation are contained in Appendix 1,



boson state.

For an unstable boson we must reject the asymptotic limit
in (1.1) and assume the particle is created by some external
source at a finite time in an infinite region of space-time R,
We now choose the test-function X (t) to vanish outside the
region R and call the time-like extension of R in the
direction X, T = g dt . This adjustment is still in accord
with axiom ITI snd takes account of the fact that the preparation
or detection of a single particle state cannot be accomplished
instantaneously and at a geometrical point in space, Ve make a
further plausible conjecture that fa.( x) should be replaced by
some similar function ia(x) ~ fm(x) in the region R at least,
The function 1 a.( x) 1s to be suitably chosen for the projection
of an approximate onc=-particle state from ff(u) 106> whether

ﬁ(ﬂ-! refers to a stable or unstable boson, Therefore with
these general assumptions we tentatively propose to represent a

one-particle state of average energy-momentum A in the form

L] o0 it f
Ik, = - | dE x(e) \do™bo [ 00 2= $Tog 10>
'V”-'L T _i cId. 5,;
el (1.2)

or perhaps we may be permitted to write (1.2) in the simpler form

. oo G + e 3——9
¢
= m— ”® (ﬂ- .
”‘.‘) N""T'-S“J f‘ ) »n % }.‘Cﬂ-) 1o

(1.3)

where }‘(u) = I.‘(..) X)) , m”™ is the unit normal to the
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o
space-like surface & (%) , and the constant N 1is chosen such

that [k, o 1is normalised to unity, so

oo 49—. -
R R e L |
N = _’_-LJ * [NVI-<°; Py ”l,-()] nﬂé—,‘-# 3‘ ) (1.4)
where
(- =]

7 i > & t

[N "(olﬂa»)!h,-t)] s —"__r-_-g'd w! <ol goroy #"curno_)-nog; F, o)
oo oo «—>
==L\ d% | de* o (k) A&o.)’u-n'; Kt) n", ..:3_. -

-ow

We have used the usual Lehmann techniquaala) to reduce

Lol OV ;6*(1;') lod> to the spectral form if:lu"ecu‘-) Aegu-x",x‘)
by inserting a complete set of exact eigenstates of Pu between
f(x) and ﬁf(x'). The calculation is identical to the stable
particle field operator derivation. That | k, o is only an
approximate eigenstate of Pt-l- follows because j a(x) cannot

be an exact solution of the Klein=Corcéan equation and can only

be represented approximately as a plane wave solution eik‘x

with ko= !g‘ﬁ./...t' 1

To be certain that (R, o) 1is a one-particle state our
energy measurements must be sufficiently accurate to distinguish
[k, @« from many particle states, The uncertainty prineciple
then shows that there is a restriction on the time reguired to

observe | k, a) as a one-particle state, These restrictions con
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T were pointed out by Idal5) and constitute what he has called the

particle condition, They are as follows

(a) For a stable particle we must have the indeterminacy of our
energy measurement A E 1less than the difference between the
energy of a particle of mass p and momentum Xk and the energy
of the threshold state of mass u F i.e. Bt is the lowest
mass value of the continuous mass spectrum - and momentum Kk,

in the energy spectrum of P . Hence

[T}

AE ~ T << Jiz"«/u:l' _,fé'-./.’? (1.6)

Also to eliminate negative energy frequencies we nust have
-
AE ~ T << Joteut (1.7)

(b) For unstable particles the analogous relations are

AE ~ T << o5 - [iFous (1.8)

AE ~ i .}E"-t/a} - Jh eut (1.9)

where oy and By are the masses associated with the weak and
the strong interaction thresholds of the continuous spectrum

respectively.

# This is providing that the discrete one-particle representation
in the spectrum is separate from the multiple particle continuum
representation, This is not strictly true even for stable par-

ticles if we allow electromagnetic interactions,
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In addition we must have the observation time less than the
lifetime to be sure of observing the particle before decay is

too far advanced, so

-1 -t
T > ¥ = % (1.10)

In the introduction we mentioned that Y should be very
small if we wish to define accurately a mean mass and mean life-
time for en unstable particle, From (1.8) and (1,10) we discover
the explicit condition for a narrow distribution of mass for an

uns table particle, required for physical reasons, in the form

Y << JEourt - [hte ul’ s [hte (1.11)

We expect the Lehmann density function e:(KQ) to have a
discrete s-function term expressing a stable particle state
under strong interactions only, If this particle becomes un=-
stable under weak interactions we expect the § ~function to
spread out into a resonance shape in the continuous spectrum,
The forms of e.(Kg) under these two sets of conditions can be

pictured as follows

£5 (<) [esc<)+ euinty] 1
A o
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The reasons for believing these figures are to be found in
Chapters II and III,

We also expect the time dependence of a wave packet
representing the propagation of an unstable particle to be
exponentially decreasing, oSuch a wave packet or one-particle
amplitude can be represented in the Heisenberg representatioﬁ

by

3,00 = <ol ootk x>

8 Gy i 2

: j F o)
v. . > 3/
N2 T-~ 3’5“ o (1‘12)

if x 1is in the future of the region of preparation R, where
GGe-x') = & <ol TLFoo gT60] 10> (1,13)

It is only necessary to find the time dependence of G(x - x')

due to the single unstable particle contribution, The probability
that the particle has not decayed after a time + should have

the form, choosing R so that x =0 ¢ R , ‘

2 a -3t
[goool™ = lg.c0f" o (1.14)

M d
In terms of the Fourier transforms G(-k'z) and } o.(k') of
a(x - x') ena F a(x) we can write

oo F

ch'sx ~
Y B B ' (n k! . ~-h'Y) Y
3,00 N‘ﬁ_’_m)"j.l k'(nh)e . GERY. F R (1.15)

- 00



-lbe-

or, since we only wish the time dependence

g L TJH T kY ¥ (k)
(h,E) = (k)< Gk’ Ck’
F« weTa )0 “ 1.36)
where
~ o " -k
.thc) = -LJ x @ L ¢%) 'X(a}.‘)

v | @MY gk zk

(o) otherwise, (1.17)

since Ia(x) ~ el¥X  ana X (xp) ~ 1 for x, € R .
We can rewrite the energy condition in (1.17), k! ®k, in the

form

|Eh€ -Eul S AE (1.18)

where A E is the precision of our energy determination in
(1.8), (1.9) and E,, =W , Ep= ,/é‘-t/u" ?

The factor 3‘ (k') therefore acts as 2 kind of mass filter
since it only allows the integration over k! in (1.,16) to run
over values consisteﬁt with the energies and masses we wish to
obtain. We have used rough methods to arrive at (1,16) but the
works of Jacob and SachsB), and Newton14) indicate that the fomm
and above interpretation of (1.16) is essentially correct. It
seems likely that the mass filter introduced by Schwinger* when

discussing the unstable particle contribution to G(x - x'), can

* See Chapter II,
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be best replaced by some argument similar to that presented
here, Further it would appear better, for the sake of easier
comparison between theory and experiment, to consider the time
dependence of ga(x) as the one characterising the probability
of decay of an unstable particle rather than the time
dependence of G(x - x').

Similarly we might conjecture that an unstable fermion
statelcan be represented by

e & =
[P,g) T e— d%e ‘f‘(u) (n.Y) W ()] O0> (1.19)

where wa(x) is an approximate solution of the Dirac equation
and vanishes outside an infinite space-time preparation region.
A very similar result to (1.16) for the time dependence of the

unstable fermion wave-packet is found to be

Ap ) = ol PFOIp,x>

' oo

[Jﬂfs?ﬁ"“”ﬁmx’“ﬁ‘““ (1.20)
-0o

TANT

if x 1s in the future of the preparation region, where

S'r (e=n') = =2 <ol T [ o0 ‘rf(n‘)J o> (1.21)

Hence

o oL/
A R E) = -z.w:l"'-'r ij;.;""".s;wm..nm;cm (1.22)

o
where QL(k') is the Fourier transform of wa(x) and has mass

filter properties similar to those of (1.17) and (1.18).
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The state | k, a) defined by (1.3) is not an exact eigen-
state of P ,, but is very nearly ldentlcal with an eigenstate

of P, with real momentum k and mass p since

]
f,, lh, AD> = "._r S Jlr [P... ’#f(u)] nt 3’}“ }.‘(a)lo>
2@ ‘f‘ P
¢
S d4 9goy .
YT -L g " 3’;‘“ 3‘ () 10>
o P Wy =
N*T o )’}“ o= =00
gut T + 5
¢ —— [ d% gTo0 wM & IFL0 |,
N"‘T_‘L ’6 35- T PY o
~ ko lk,u> {1.23)

since 3a(x) —> 0 as |xol —» e , x, being a time-like
vector, in such a way that the surface integral vanishes, and we
have used axioms III and IV, and 3’a(x) ~ o¥% for x, € R.
There appears to be no reason why we should not be able to
choose J a.(x) such that ) k, aY is an eigenstate of the momentum
operator P with real momentum k as eigenvalue but such that
Ik, a? is only an approximate eigenstate of the energy operator
Po with approximate real energy JE? eigenvalue where p
is some mean value for the unstable particle mass. In the stable
particle case it would be possible to choose g“(x) =<0 g(x)1 k, ap
as a representation for 3a(x') with x, € R since G(-k'z) in
(1.15) is given by an expression of the form (-*-‘-/H‘*CG)-'
and therefore ga(x) = fa_(x) defined in Appendix 1. If we can
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find the analogous expression to ('h"'-/u"'-l-:E)" for
G(-k'g) in the unstable particle case then we can put it in
equation (1.15) and obtain a g&(X) which appears to be the

analogous representation for 3“(::) for xp =R 1in the
unstable particle case., In this way we hope that, although
Ik, o> 1s not a2 uhique state belonging to thé set of eigen-
states of Py , we may be able to express |k, a> in an
approximate way, but sufficiently accurate for experimental
purposes, so that it can be treated as if it were a unique
one-particle unstable state with 2 given real momentum and some
given energy yet to be defined. In Chapter II we will examine
G(-k'z) in the unstable particle case to find the 'discrete’
one=particle contribution from the mass spectrum and therefore
derive an expression for g (x) or H'a(x) for X, = Re

The fermion state [p, a> can be treated similarly.

Lastly we should mention that the same general conclusions

of this chapter can be drawn from Ida‘'s definition of one-

particle unstable states provided this definition is acceptable,
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CHAPTER IT

THE BOSON PROPAGATOR

We devote this entlire chapter to an analysis of the boson
propagator for the purpose of obtaining a description of the
propagation and allied properties of unstable bosons., We
first repeat some of Schwinger's workla) but in different
detall from the original.

General Properties

The following results due to Lehmann are valid for an
unstable particle field operator as well as a stable particle
field operator if we avoid Lehmann's use of C, P and T
invariance separately, so

S0
<ot pov plawyjoy = & J; e («v) A s’ 3 vy d (2.1)

<ol i‘f“"’ doviey = - CJ; e/ A O~y k) dw* (2.2)

We have only required axioms I to IV with axiom III referring

only to proper Lorentz transformations and

eRY OEMO(ke) = Gm)* L <ol fconk,.od,,uﬂfono) (2.3)
o

er(..p)gg.},})g(h,) = (.za-)’g;(ol éffo)lh,d.>< kot | p(oyio> (g.é)

where axiom V shows ¢ (kz) and e.'(kz) are real and non-negative,



The use of CPT invariance gives
<o) f&u);éffh') 1o> = <ol ¢fC"N') S-x)10Y (265)

and this or alternatively axiom VI implies, according to Lovitch

and Tanazawaeo)

, that
eix®) = e(x*) (2.6)

Therefore we can define the boson propagator for stable or

unstable particlas" as the following function

Cowy = i <ol T [gomghor]io> = -~ SJ"I:-. *6 k) (2.7)

" @)
where
o0
g (xt)
it ‘[ k:fh"-:e o 2e5)
in which
e(-‘l‘)QC-k")OCko) = (Aw)sé:'l(olé(o)lk,-()l‘ (2.9)

We can use (2.,8) to define G(-kz) as a function of a complex

variable B so

- e(xt)dr* _ o
G(2) j; - = [6%)] 161103

since e(ug) is re=2l and

# In view of (2.,6) it is also clear that the representation (2,8)
is true for particles and t‘ﬁeKE anti-particles with the same
spectral density function @(k=) for each,
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de 6@ = GEhY) (2.11)

2o-hei€
Formula (2.4) shows that G(#) 1is an analytic function of 2
apart from a2 possible cut from 2 = 0 along the whole positive
real axis on the complex &-plane and (2,11) shows that
G(-kz) is the boundary value of G(&) in the reasl axis, Hence
G(#) 1s an analytic continuation of G(-ka) into the complex
(-kz)-plane. Also a calculation of the discontinuity across

the cut in the s-plane using (2.8) gives
In GO = o (-hY) (2,12)

and 80 (2,8) is really a dispersion relation for G(&) provided
G(#) tends to zero on the infinite eirele in the s-plane, We
are assuming here that no subtractions in (2.8) are required
for convergence, We shall further assume that G(-ka) has been
normalised such that™®

Se“"J"‘ = | (2.13)

-
We shall be specially interested 1n poles or strong
variations in G(2) so it will be convenient to have a dis-
persion relation also for G'l(z) the inverse of G(z), Now

G(#) has no complex zeros since, putting 2 = -k2 + iy

ext) dt
(e h¥)* + ?"'

o
Im G(2) = JI (2.14)

# For the case of pseudoscalar mesons with a loeal Lagranglan,
(2,13) can be deduced directly,
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and this only vanishes if y = 0, EBven if y =0, G(&) has no
zeros for (-kz) € 0 but is positive and inereasing for -k2

increasing from negative values as can be seen from

d 6(2) 7 o wx
= grvdx
de -‘; x2)? (2,15)

If we can show

oo

2. ng e_ﬁ_ﬁ . -j st 4=
;-qao o (2,16)

where Pﬁ signifies the taking of the principal part of the
integral, then it follows that

G(2) ~ --é- on 2 —> infinite eircle (2.17)

A theorem has been proved by K&llengl)

Jona-Lasinioaa)

and by Ferrarl and
which asserts that (2,16) is true under very
reasonable conditions for e~(K2). If e-(uz) is integrable for

Kaa. 0 (which we have assumed in (2.13)) then the conditions are

/.{L- (w? K®). e(k'-) = ©

K*-> ce (2,18)
& d (4 (K1) ) ' = O
K*-p o0 d «* w*)V

for all integers N > N, > O. Even if e.tkg) is not integrable
the following limit is finite

L 2, ng e__"‘" Ly

e X ]

(2.19)

S e(&")JK"



—2de

if 9'(“?) can be written as a2 sum of an integrable function and
a linear combination of functions of the type (k2f( (0<Y € 1)
and (kg)T(log K'e)n where n is a positive integer, These
theorems show that (2,17) follows unless e-(Kg) 1s a rather
badly behaved function which we assume 1t is not,

Consider the function %(a) = (2"1671(2) + 1) along with
the properties of G(z) deduced above, .9(-5) has a cut along
the positive real axis, no poles except at £ = 0 and converges
to zero on the infinite circle, therefore we can write a dise

persion relation

R M j“-‘Cu‘)J-c‘
or
- d
-1 E0 ANE ~ S (k') d x*
where

{ =8 =t
S¢-hy) = e [G'ChYie) - 67'¢- -.e)]

i [eer-ie) - gekreie)]
Amik* [Nl o i

- ht
e ) s
k%) . | GERY [T (2.22)

and by comparing G"']'(O) with LG(O)] =1 e nave
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-

[j cumlu 5 0 (2.23)

which is certainly finite® because of assumptions (2.13) and

(2.18).*™

We can get a clear picture of most of the information we

have gathered about G(-ka) and G'l(-ka) from their graphs

below.

GERY G R .

:

= >
T W (- &)
E.-TE—:M F.:,.E-:cs)

The threshold of the cut in the (-kz)-plane is determined by the
lowest energy contribution to ‘1(-k2) in (2.¢). If we assume
that the threshold occurs at some positive value of -k = Koz,
which is true for many physical situations, then we move the
threshold away from the origin a2nd consider the likely behaviour

of G(-kz) and G 1(-k2) for (-kz) > 0., Since G'l(-kg) is

# In what follows we shall not ineclude the point K2 = 0 in any
spectrum and in fact we shall not explicitly consider the electro-
magnetic thresholds which appear at the origin for neutral flelds
and at all poles, We presume thelr effect does not alter the

physical conclusions of our argument.
#% See Mppendix 2,



2b-

2
0 ?

new position of the threshold, then it is possible that

a decreasinz function for all (-k I A where K02 is the
G'l(-ka) has a zero for K°2 > (-kz) > 0 and that G(-kz) has

a pole at this point., It is not at all likely that G(-ka) has a
zero first. A pole in G(-kg) would correspond to a single
particle freely propagating among the various selfeenergy
effects and might well be expected on physical grounds. The
correctness of this interpretation follows from an examination
of (2.9) with | k, ) as a one-particle state. Then @(-k°)
hes a § =function contribution when -k° 1is on the mass shell
of this particle and a pole term appears in G(-kz) at this mass

value, We now write

- -
GG = ;E:_{ g\ —‘%‘-'52-'4“" (2.24)
-— “. -
where
oo
€o + S Lemeydwt = 0, [JG (*}
Ko -!:/u
M= [I + L -““" JK‘] : [.Ez *'L- c;‘_"_‘.).du'-] >0
/B“ PR “'l-
P < Ko
and we assume e(-kz) is zero in the regions 0 § -k2< p.2 and

p2 < K< K°2

We now picture G(-ka) and G"l(-kz) as
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/

Fig. II-2(a)

The graphs above lead us to suspect and the formula (2.24)
confirms that G(-kg) may now have a zero for p.2< -ke( K,

"

G R 4

Fig., II-2(b)

giving a pole in G'l(-kg) which in turn may then vanish again

for a larger value of (-k2). Hence repetitions of our first

argument applied to G(-ke) and G™1(

a possible succession of poles and zeros.

graphically

GGH?J;/

Fig. IT=3(a)

G (R

In general we have

e
L

Fig. IT=3(b)

-k°) alternatély will produce
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Physically we do not expect more than one pole in G(-kz) since
we do not observe two single particles of different masses but
identical quantum numbers in nature. Therefore from now on we
shall consider only the possibility of one pole and one zero in
G(-kz). Schwinger derives a further spectral representation
for G(-kz) which is useful in later calculations., If G(-ka)
has no poles or zeros but only a cut along the real positive

2

axis sterting st K ° then, if k' 2< K J° , from (2.17)

(=) 6w ~ 1 as 2 —> whihank (225

Also [(K'°2 - 2) G(Eg has no poles, one zero at & = K'g and a

2 to o o, Hence log [(K'o2 - a)G(ax] has no

cut from Ko
poles but a cut chosen from K'oz to o0 and converges to zero
on the infinite circle, Therefore we can write a dispersion

relation of the form

K2

[- =4
% [(“.‘" *) G(%”} = "T;-J. mz (2.26)
":'I.

where

Jo CRY) = -f': {,&} [csc:?-a)&a)]}l

+ta -ll."t:&

S

N S Ko'+ k'~ i€ GChted€)
2 [L7 (K;;..e..-e) : L}(Gc-h‘-:e)]

i kY, ¢
= mO(-R*- kb - cot '(” EChait)) 20 (2.27)

* e(-RY)

in which the branch of the c:cﬁ:"l must be such that its value



lies between 0 and =, It follows that

o L
6®) = oo anp |4 [ ‘-‘-;’-‘f:’;-‘-‘-}

-
L ®o'

In spite of the factor (K.:,'2 - 3)_1. @(s) does not have a pole
2

(2.28)

since ,do(-kz) has a discontinuity at K'o of = which produces

a factor of (K 02 - 8) from the exponential., Since ;SO(KQ) =%

2 the formulae (2.,28) do not imply that G&(=s)

a to K°2 but only a cut from K°2 to + o

2

L ]

for K & K s K°
has a cut from 1{'0

is possible, Since e(Koz) = 0 and Ré G(Koe) > 0 then

B,(K,°) = x. Also R¢ G(=k%) ~ E% and @ (=k?) ”(—Lx:)_“‘
as -k° — e where § is a positive number, so that ﬁO(-kz) - 0

as -k2 ~»00 , It must therefore follow that the integrals in
(2,28) converge and that 0 € ’60 < =%,
Similarly for one pole at g = uz and no zeros of &(z),

the forms (2,28) will do if we ehoose k' 2< p® ana

FoCht) — k) = gocht) - nOCRLY) (2.29)

but note here that although ;61( -k2) -0 as (-k2) - o
as before we now have ,61(K°2)= 0 since R¢ G(Koz) < 0.
For the third case of a pole at g = “2 and a zero at
2

g = 02>u2 in G(8) we chooseK'°2< pe < -0241(02 and

g -hY) — f kY = &, k) -n O(-R*-u) (> ¢ h?) (2.30)

and here we have ,62(1102) = X and ,62(-1:2)—)0 as (-k2)-vao

in the same manner as ,60( -kz).
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e piecture the three functions ﬁo, di, ¢2 as

¢"'h‘) ‘r é‘ C'h"‘ A
L 4 —\‘\h‘ w ¢
G Kt T & e
Ea, [-4c¢a) F"ﬂ I -4¢h)

T- K;S /“I- ‘0‘ I‘.‘ (_h‘)
sz -4 (o)

The generalisation of this spectral representation to cases

where G(g) has many poles and zeros is perfectly straightforward.

Stable and Unstable Particle Propagation.

We are now interested in G(-kz) under two different external

conditions

(a) when only strong interactions are allowed and we can apply
the usual stable particle theory. This situation is to be
thought of as purely hypothetical.

(b) when all possible interactions are allowed (but see note at
the foot of nage 2§ ) and we have to make reasonable generalisa-

tions from the stable particle theory. This situation is the



S

realistic one,
For the case (a) where G(-ka) has the physically expected
pole and no zeros we write (2,24) as

o

s s 2
“iay a o e (xvyd K
e e 3‘, proYCT (Red1)

and we also have

-t Al o ke k? j” s3(wr)d Kt
—hE e ————
G C-ht) = A + R 2 Ke R*-€ (2.32)

s

<y 2 . 2 Ll
where G (p,") =0 and so A" = pg .[l + _L: v pAgS .

Therefore we could write

o0
-{ k) = k* ;). ! K“’CK‘) JK‘
G4 k*) ( * Mg + J;: (u!—/%:')("‘:' hi-cé€) (2.33)
so that
> 2.5 )J (s
A K S§(kt)d Kk

(e:) { = 1 -+ SK‘ (K""—-/u}‘)" (2.34)

3

and we picturs Gs(-ka) and Ggl(-kz) as in Figures II-2(a), (b).
Consider case (b) with the same particle propagating as in
Gs(-kg) above, If the particle is unstable under the introduction
of weak or electromagnetic interactions then the threshold of the
continuous spectrum will occur closer to (-k2) = 0 than the point
(=k?) = psz

or zeros of the propagators for (-kz) below the new threshold.

and we no longer expect physically to have any poles

Hence it 1s reasonable to assume in this case that we can repre-

sent the propagator G(-kg) as

s
- ety dut
G-k = | KA K-le (2.35)

vy
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and picture G(-k2} as in Figure IT=1(a) in which an extra section
of the real axis has been cut compared with Figure II-2(a), i.e.

the section K« € (-h*) € K , 1In this region we write

Ow (KY) = ¢ (w?) and we expect physically g,(x*) << @s(xt)

Hence we prefer to write (2.35) in the fomm

oo oo
cey = | emadiet | [ ecandua
K K4t R"-¢ € Yy Kb h*-C& (2,36)

where we do not necessarily imply that g, (k%) << @5(xt) for K*2 ks

We will also write

E -5
- RS L S Sw(«t)dict | sgct)dict
G("k‘l) = A‘ -i'l\w +h 4-‘!-‘[" m *hl‘_ m (2.37)
w $

We now ask the question, what happens to the function G(-kg) in
the region where Gs(-kg) has a pole? lLet us equate real and
imaginary parts for G(-ka) and C-"l(-kg) given by (2.,36), (2.37)
and by (2.28) for the region of interest K. < (k*) < &

The results are

oo
LY o (xt)d
” (~k*) = M_._.éoc'k_‘) 4 &‘w q Yy K ek
i (k2 +kY) (2.38)

vy
S i.___;_e“"’ s
f%-[‘& K a-

% (B s, kY = (KFehY) [-aing kY. 2

= o (2.39)
1 * 1 Y -’w(ﬂ‘)c‘l“ 1 Ss(dct
4\w 4’}\5 +htek qg‘: _-—-K"-bh." -+ k J..‘: —:‘-';-Ei
L p &‘:"HK‘L
= (K +h') [m glo(-ht)]. & {L&. ekt (2,40)

From (2,38) and (2,39) we get

<
W ks chY) pw-k?) = [ade g CRY)] (2.41)
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Also from (2,39) and (2,40) we get

-wh s, chY) et B -kY)
= ) ikt & dut
e AT - 2, 4t Swikt)d 1 SsC<t)d ik (2.42)
A +A5 + 'K %’J;k e k L} i

Now 1f k“as pg° then

(==

Gk = Arektohr| st oy

+“ L
% K'% k

(2.43)

and (2,42) becomes for k"= pg

ks, -kt ot & ChY) 2 (o) (hbml) +k‘7zf "":“f‘g“t (2,44)

By inspection we might expect the right hand side of (2,44)
to become small at some polnt p.2g “'32‘ Hence we expand the

last term about p.2, S0

oo pe
g Swixt)dit ~ I S, (k*)dwet — (k% & dxt J[“L's"'"‘tﬂ
%L e b /“g“; ot ¢ )ﬂfs(_" Y’ dxt*
(2.45)

for ..k2 close enough to p.2. Putting (2,45) into (2.,44) we find

~whts . (-kt) cot g kY @ (o) (R ut) (2.46)

for -k2z pzz psg and where

ol e.’.{ =g 3” ""(“"dl‘t}
(2.47)

(eﬂ)-' = (e; )-' Pg S d"/:, é-l(t [KL-chK‘,J

It is clear that the results (2.,46) and (2.,47) are only valid if
the introduction of weak Interaction terms has a very small effect

in the region of the cut near -2 = u 2, on G-l(_kZ)
S L]
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The elimination of do(-kz) from (2,41) and (2,46) gives™

e_,(-‘u-) ~ %ﬁ. i X;‘: oy (2.48)
o Hk S

for -kaz |.|.2 and

Y = w/;f,s,?t) (2.,49)

The formula (2,48) has the Breit-Wigner resonance shape we
predicted and degenerates to a & -function g, S (k2 + p.2) when Y
cannot be distinguished from zero. Thus (2.,48) reduces to a
stable particle contribution when the weak interactions are
switched off., It seems quite consistent to associate the
resonance with a particle which is almost stable, having unique

mass p and lifetime Y,

The Deca aw

The contribution of (2.48) to G(k, t) is obtained from

-iE &
Gla,b) = I“”'° G'C"l'-‘)zj’-'-‘-—-————-ﬁn._.},’a..__.alu‘
B - 2Ec T () ()
. TR _;(A-)ltl(ls;u)
b y €
~, —"-' . B d - = 2
F] '%j‘_ Kl-/‘(l‘/") J? (“/"‘)"“' (_l. nt

(2.50)

% It is perhaps not obvious that no further approximation is
involved in writing (2.48), (2.49) and more detalls of the
consistency of these results are given 1n ﬁgpendix 2, where
we also consider the effect a zero in G =k<) has on results
(2.47), (2.48), (2.49).
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and the latter integral can be evaluated by integrating round

a complex contour shown below and letting R —» oo

(K= =

T~ =R

Flg. II-5

. 25

-¢ ! ( . 1
§ J(K-;u).'f..n, (;)Hkﬁ) 2 1"..1-(’@:-.),'!&!
L (*“)&\"-&({')"

o (& oy S “i{F ) 1et (K-p0)
. S dxom). ¥. ;(g_):mu,»: S d (k=w). x,.a,(;") 1%
“w? (K;M’tap (l'."')‘ _uw-/“ (w /a.‘ + ({3’)
Therefore, vhere E, =,f§ﬁbg} (2,51)

. K= =c00
! ~E I8 -4 e . -cEalet VO - (B )1ti (k-r0y
G(k,b) > i—ﬁn. 1 R -si(i‘)r + ‘o8 JCK-»).Y._._‘;‘(?‘) #
Eu A€y

- LA CE It -5 ) el (k-
Gk R AL .;(;J (o0
P and

4Mps (Kosma)® el

(2,52)

where we have replaced the integral in (2,.52) by the first
approximation of an asymptotic power series expansion in% for

large t and obtain the correction term found by I;evye’) for the Lee

Model and by Matthews and Salamq). Levy was first to notice that

the Fourler transform of a funection G(t) vanishing below a finite

value of its argument behaves for large t like a power of t.
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8o far as the first and most important tem in (2,52) is
concerned, the time dependence of the propagator is of a
decreasing exponential type as expected. The time dependence of
the probability amplitude of an unstable particle wave packet 1s
exhibited in (1.16), It is easy to see that, if k'« k,
g“(g',t) has the same exponential decay term as G(k,t) apart

from a constant factor. We also have

ﬂ
fe (hie)|: & £ o (Ve iy
s, & ! ()

(2,53)
which shows that the particle decays with a lifetime
(Bre M) -
T, =T == (2,54)

&
and correctly gives an elongation of the lifetime for a particle
moving relativistically with momentum k. Like mass, the life-
time is usually quoted for a particle at rest and here the rest
lifetime is T = Y1,

Apart from the correction terms already found in (2,.52)
other dominant contributions to the propagator at large times will
come from terms of definite frequency such as the lowest order
thresholds, It can be shown from perturbation theory or from the
model we are shortly to discuss that a two-particle threshold at
K> = &‘2 is cha:acterised by a factor of [(« K})/K‘]%' in exY),

Since we wish Lze(lt‘-)d“" to converge then e(Kz) must decrease
faster than K"2 for large I(2. Therefore we write

e(K..) =_%; (m. > Y 3(,‘:) (2.55)

(Inru‘) o
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where B 1is a constant and 'y (Kz) is a dimensionless 'cut-off"

2 and is normalised so

function which tends to zero for large K
3’(&“.2) = 1 by choice of B, It has been shown by Schwinger
that, for ed«*) » %‘f(u‘-uw")/u'-] Y2 yhen ¥ K., , there is

a further correction term to (2.52) of the form

E 3 -cEc It
A . ('._Jﬁz.) A

Ee, \ iwiiel)

(2.56)

provided K\,"tl>> EK‘/KW « For the exponential decay term co-
il
efficient to dominate the threshold correction we must have
. \ W,
E“w) 3

w

(2.57)

and the power of the exponential decay term is a large multiple of

Y2\
gedt. v @Bl g gy Ew
g“' o $ E/"' Kw

depending on which bound of Jtl1 given above is the larger,
Hence if Y <<<« l(w is small enough there will be an extended
time interval when the exponential decay term dominates the
threshold contribution, Similarly comparing the coefficients
of the two terms in (2,52) we must have 1&I>> YE, /A (Kwzu)*
for the decay coefficient to dominate and the power of the
decay exponential is a large multiple of = 'l"/lm (K..-/u)" "
Hence, if ¥ <<<< 4 = Kw, the decay exponential dominates for

some time interval, It is interesting to note that ¥ <<<« K'W
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and ¥ <<<< (u = KW) are the identical requirements, for a
particle at rest, for a resonance to be observable in (1.11).
The question is now whether the correction terms with their
purely algebraic decrease will overwhelm the exponential decay
term after a sufficiently long time, Schwinger's view was to
introduce a mass filter to project out a single particle term
and not a kinematically equivalent combination of particles,
This is to take account of the experimental limitations in |

megsuring devices, 3Schwinger has

oo
’h, ocg,e) = Io e(u‘)dl“.'z-s-:-‘.a. . M(x) (2.58)

© I =l 2 A
and Y << Ap << uy, and b/u is the precision of the mass deter-

where Mcx) = i ! g Ikl £ QM

mination, The similarity of this perhaps artificial intro-
duction of a mass filter and the methods of Chapter I is
striking, We have taken such experimental limitations into
account in Chapter I in a basic manner by using tempered dis-
tributions and the one-particle amplitude instead of the propa-
gator, If we replace m &k, t) by ga(i_g, t) and M(X) by

1 o
m k3 = (k, EK), then apart from certain overall irrelevant

multiplicative factors, the equations (2,58) and (1.16) are

identical, From this point on our analysis will fall into

line with dchwinger's.12)

Thus like Schwinger we conclude
that the exponential law is accurate for @E)-' << (-%-‘-)lﬂ < v

but when )’(_‘.E.c) el ~ (.4,75.)‘ >> 1 where a 1is a positive number,
/Ih
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the exponential law fails and is no longer independent of obser-
vations,

The extension and application of the discussion so far in
this chapter to existing particles has been discussed by

S ‘:zhwwrj.rzg@;erl2 )

and need not be repeated here,

Let us return to the discussion in Chapter I of the
definition of unstable particle states, It can be seen from
(2.52) or (2,53) that the one-particle contribution (2,48) from
the spectral density function @(k°) to G(k, t) or g(k, t) in
plane wave form is, apart from irrelevant factors,axff-‘-ﬁlkl-{@)"'bg
and the full wave-packet expression for ga(a.) is, using (1.15),

(2.35) ena (2.48),

2¢ c ks o
guo0 = € [l oik). e L. F k)
NYeTwam)* L (R'%ut)+ (G

~r

where 3‘0‘(1:') is given approximately by (1.17). When this wave-
packet has a real momentum k' the corresponding energy is
complex E. - i &)3 % Eu which can be regarded as caused
by a complex mass Bo- % 1 Y, The above wave-packet is very
similar to £ (x) defined in Appendix 1 if the §(k° + p?) is
sprea& out into a resonance shape, Since ga_(x) appears to
have all the necessary properties we identify ga'( x) with 3@( x)
for x“ € R 1in order to define the unstable particle state
given in Chapter I without ambiguity, We shall not, however,
require to make any further reference to this state in what

follows,
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Analytic Continuation for a Model of a l'ecay Process

We.propose to forge a link between Levy's work with the
Lee model and Schwinger's work in full field theory. We shall
use a more general model than Levy but we cannot use full field
theory because of analyticity difficulties,

We mast first carefully define analytic functions for ucse
in the complex (-kz)-plane. We have already defined an analytic
continuation.of G(-kz) into the physical sheet by (2,10)., In
order to continue G(g) into the first unphysical sheet to be
reached through the real cut we must define an analytic con-
tinuation of p(Kz) into the complex Kz-plane. For real K2
we have defined p(Kz) by (2.9). If we restrict ourselves to
continuations of G(&) through the lowest energy branch line
then we shall require only the lowest energy term or terms in
the summation of (2.9). Suppose that the lowest energy con-

tribution to e(K2) comes from two-particle intermediate states

only, then consider the following set of reactions

RI P — P (@)
R II k, + k, —» D ()
R III k, + kX, — k, + Kk, (F)

where we have represented particles by their four-momenta,
In brackets we have indicated that reaction R I 1is described
by the propagator G(-kz), reaction R II Dby an invariant
'vertex' function ‘UT-kz) and reaction R III by the s-wave

projection Fo(-kz) of the invariant elastic scattering amplitude
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F(—kz, cos ), The amplitudes G, V' and F, can be considered
as elements of
G v

T = (2.59)
v R

where

V[-(h+h)'] = <ol ol hihiind
F [-(heko)?, cn®] = = Khal T(o) i ki keimd

and © 1s the scattering angle in the centre of mass system.!
The convenience of (2,59) lies in the conciseness of the
unitarity condition which can be written in the region of the

two=particle cut

» o o
Tseior = [T(s¢i0)] = 20 T(seio) (o am:o))[z“*“’]
(2.60)
where Ya B,
- 1 = = *
hars Botmemt] Lol T pyae]

_ (2.61)

and m, m, are the masses of the particles associated with the
two-particle branch cut. For complex s or £ we choose the
branches of the square roots in h(z) such that the real axis
is cut except for the region (m:L - m2)2 < & < (m1 + m2)2.

We now assume that U and F, in the physical sheet
have only the branch lines and poles associated with physical

# Further details of notation and the proof of (2,60) are
contained in Appendix 3, Note that we are neglecting iso-spin,
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intermediate states of the three reactions R I, R II, R III,
This may not be valid in full field theory, but seems plausible

10) 11) using =

from the works of Gunson-Taylor s and Oehme
Mandelstam=type representation providing there are no anomalous
thresholds, These works in particular have shown that the two
particle branch points in V and Fo have sguare rc;ot charac=
ters, The only additional results required are the reality

conditions
[ ¥
» » 2 #
ey = [RGM] | va s [ve)] (2.62)
Note that (2,60) automatically defines ¢ (k2) to be

e, (kY = ;,"' h(k*+:0) | V(o) (2.63)

From (2,60) we find T (s +io) is the boundary value of an analytic
function

T% ) 1+ 2 Tcs+co0) s ::’
L (3¢+io) = ¢ I (s+co S+¢
o hé+ioy)| ~ adae (2,64)

where
T Cszi0) = T(s+io) (2.65)

and so 'l'c is an analytic continuation of I through the two-
particle branch cut and connecting two Riemann sheets, The

elements of T have the following continuations

& .
20 [V@) A < V()
G(2) = G(®) - . i ha s J(R) = g 3
1+2:h(2)F,(2) 1+ 2th@FR)
(2.66)
F:C%) = Fg““-’

L4+ 2L h(R) Fol2)
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and now we see that the correct analytic definition for e,_(z) is

(#) = L h@ V@IVR) —> <)
i i 2 i+t Ce (2.67)

where K2 is in the two-particle cut region, We also have

€C®) = - [e(a‘)]. (2,68)

80 @u(K%i&) —) -¢ (K?) as €& —» 0, The functions g, (=),

G€ (a) have essentially the same cuts as Fo(a) with a square
root two-particle branch point, We take as the continuation of

G(a) the function
CoCa) = GC) - awi o (¥) (2.69)

<
If we wish to look for poles of G (&) it would seem easier to

look for zeros of the inverse [G"(a)] =l 4f we can define such

a function,
From (2,69) we obtain

[6%2)]” = 67) + ani g (a) ") [eccar]”

¢ (2.70)
I=dnip (2) G @)
Define another function BL(a) by

G'(2) + Aniad (R)

[coe)] ™

or - e® [67y] (2.71)
2 [1 - anip (2) G"a.)]




Now
[G"Cu'-'-:e)]-' = G(K%cE) + [ G (khce) - Gkt ce) + dn a(-c‘:-:e)s,,(u!ae)]

and so
27 (Ki€) S (K=C€) —> G (x'eie) - GT(x%iE€)

—> — AWK S (k') ae €20

therefore SL(kP~i€) —> = S5.(x%) oo €O (2.72)

and thus (2,71) defines an analytic continuation of sL(Kz).
From (2.71)we can also show

” E
Sp(xt*eie) = - [scwmi€) ] 5 s(x¥) os €20 (2.73)

7e are now in a position to look for poles of G‘(a) or

zeros of
) T T x 2 .
[ci@)] = -\:«d.‘-i-a} ‘% ..;j 5.::: + awi e SV
" < (2.74)

We now seek zeros in the lower half z-plane of [g‘(ai’-l close

to the real axis in the region between sz and the next branch

of such a zero B, and continuation

exposed by the

-y
A
[

point Kl « The position

into the first unphysical sheet of G *(a)

clockwise rotation of the cut from K2 = sz is illustrated

»~ < X
K: ", ﬁ“’
“i, ;-rﬂm‘.

»*

Fig, II1=6
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Put 8 = x - iy where y is very small and sz € X% K12 and

L -
put [G-( z)] 2 - 0, B0 taking real and imaginary parts

w© o A
b Pu a\w - % =% g (K=2)s. (ct)d K"_.. 2l Swix¥)dt el Cwean) S.CK‘)JK"
L (kS e x" x DL LN 7 L (xS0t ’,

e i wet ; (2.75)
t 3 s
+ Li S—-E(-‘f—);-:l-‘ﬁ- - ansln S:, (’t-::) -l-.l'llz u‘b(ﬂ-i:) = O
2 7% "'}
- <} (< =]
LY 1ydct T 1yd 2
% guswc-c) 5 koS5 (kt)a In x RE S x-c
3 I o (<S5 ’1.. } 3 ___“)_ } -+ 3:, " c-})

el .“

- 2,76
-i-.!tav.lwnst;ﬁ.-f:) = © (2.76)

but if y 1is very small, which is necessary to have a sharp
resonance at all, then we approximate (2,75) and (2.76) to get

oo
Ad + AL ==~ Fﬁ‘r 5w¢"“)¢ll¢" e S s;““]dl“"

1
K—"N.. K"—u

g "'

(2.77)

- xst;(u) = 0

% @
- Pt g KUS w )it | [ Kt sgCetydut
I 1 (K‘:-u)" (k=an )t
w

g

where we have used (2,72) and assumed Lmav(x - iy) €y for

sufficiently small Yy, Hence

%
w = -\, + Aw - 2% Fc-[ Sw‘l“)d.l‘t- J S.CKI—)JKL

Q("- ) 2 (1)
oo -1 (2.78)
- s d <t 8 0etydict
I S 'tru..s () |1+ FZJ (K"-u)" *S ek 2O°

Therefore we have found a pole of G{s) at a point & = x - iy
end it is possible to show thet x = p°, y =Y where i and ¥
are the mass and lifetime values found by Schwinger and given

in (2.47), (2.49). We need only use G;]'(p.g) = 0, and then the

first equation in (2,78) becomes
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[ -4 o
sy (k2 )dict '- -[ s (K‘)Ju.'- sy~!
N HL TRy R = o) es) (5 79)
If we use (2,34) and neglect second and higher powers of (x - usz)

with respect to the first power, we obtain x = p.2 and y =% since

et e p“[ ‘&w(ut)du‘*j wtsgocrydic? (2.80)
s o)t (%)t

follows from the definition of ;' in (2,47) and (2.34).
[
From the form of G(z) this pole at = = p.2 - 1Y must occur

only in e (a) gince @(&) has no complex poles, Now (2,68) implies

that €1 (a) has a pole at the complex conjugate point 2z = p.2 + iy,

These poles at g = 2 % 7 in e (K ) are present in the I‘V(K e 1o)| .

factor in the definition of eL(K ) in (2,63), and so are independent
of the square root branch point at sz. If we exhibit the cuts and

singularities of QE(KQ) and rotate the cut from K- = Kﬁz away from

the region K2 2K,° we find with & = p° = 17
K x!': Ks
X3 4 z ’qu.
(] K* =
..\
Fi II- .

Therefore, for s =~ p.2, the poles in @, (5) exert their effects

simultaneously and we can write

w(i x gg. . —zﬂ— = ﬂ[ [} . [} }
€. T (2-2e)(2-23) ani [ 2-28  2-%, (2.81)
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where & zpz and p, contains the factor h(u-2 + 10) = h(s).
For & = K° + ie the formula (2.81) is identical with the
resonance formula (2,48).

It is also possible to see that [G‘(a)] "l st venish at
g = uz + 1Y since instead of using (2.72) in (2.77) we must
use (2.73) which involves a change of gign in the value of ¥y
in (2,78). Rotating the cut from K> = K,° in Fig, II-6 through

nearly 360° we find the two poles for G (&) as shown in FPig, II-8,

Fig, 11-8.
That there may be two complex conjugate poles was first predicted
by Gunson and Taylorlo) who reasoned that 1f°(s) has the form
given in (2,66), The denominator is a real function and must
have complex conjugate zeros if it has zeros at all, Ve have
therefore illustrated the truth of this prediction for a propa-
gator G(8) or vertex function V(s) or scattering amplitude
Fo(s) which have lMandelstam~-type analytic properties, Unfor-
tunately insufficient is yet known about the analytic properties
of \J(s), Fo(s) in full field theory, Clearly a wider know=-
ledge of such analytic properties will be of great interest,
even though Schwinger's methods of finding resonances due to

weak interactions manages to avoid such difficulties,



Levy's Ambiguous Poles

We would like to use an extension of the model we intro=-

duced in the last section, to examine an ambiguity, found by

6)

particle, In spite of the fact that there may be two complex

Levy, in defining the correct pole to assign to an unstable
conjugate poles for each rgsonance, there is no confusion in
defining the real and imaginary parts of these poles as the
mass and lifetime of an unstable particle, When we speak of
the pole we shall always infer the pole in the lower half plane
of the first unphysical sheet,

Levy congiders the case when a particle has two different
modes of decay. e shall therefore consider that there are two
weak interaction thresholds of a two-particle nature below the
strong interaction threshold, We picture G(-kz) as

G (-k*) A

/ A “.‘l.

Kw :
w K;"
Fi I1I=9,

Obviously Schwinger's arguments can be followed through
for uag in either of the regions Kw2 g k% < K'§ and |
K'; < K% < Ksa, which we will call region (1) and region (2)
respectively for convenience, If the branch points sz, K'§

are the lowest branch points and are two-particle branch points,
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then we can look for poles on the unphysical sheets with a
model similar to the one used in the last section, However,
the problem is very simply examined by Schwinger's methods,
All we wish to determine is the possible lifetimes to be
associated with unstable particles with messes in each of the
vegions (3) and (). let [-2x1x? 5,(-k*)] sna [-2=1 x® s'w(-kz)]
be the discontinuities of G"l(-kz) across the cuts in regions
(1) and (2) respectively. In region (1) we obtain an inverse
lifetime of the form [xupoaw( p.2)] but with a resonance in
region (2) we have an inverse lifetime of the form

[‘xp.po E;J(p.z)] . These definitions are independent of poles
found by various continuations, But 1f we assume suitable
analytic properties and look for poles by continuing through
region (1) as in FPig, II-10

~
1+ 1

K Ky .“:‘

xi’ "“"‘“"""‘E;:—'—:_’ i"rL—l

Fig, II-10

we find an imaginary part of the form [xupo aw(uzj] if
u2 < K&z. On the other hand if uz > K&z, Levy considers two
different continuations shown in Fig, II-ll and Fig, II-12,

A A
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where we continue through region (1) in Fig. IT=1ll and find,

2 2
as did levy, a pole with imaginary part [nppo(2sw(p ) = s'y(p ))] ’
while we continue through region (2) in Fig, II-12 and find a pole
with imaginary part nppos'w(pzzl. Levy reasons that, since
s'w(pa) may be larger than 2sw(p2), the first continuation in
Fig., II-11l finds a pole with an unphysical negative lifetime and
only the second continuation in Fig, II-12 finds the correct pole

2 > K',f, e Thus in looking for resonance poles we may have

for p
to reject some for physical reasons.x Gunson and Taylorlo) have
said that a more detailed examination of the extended Lee Model
shows that the spurious pole actually coincides with the
physical pole, The author finds this statement hard to believe
in view of the following analysis of the polology of an exten-
sion of our analytic model, To do this we add three more
reactions to those we gave earlier so that we have two twoe

particle branch cuts as the lowest energy cuts., The extra re=

actions required have the foms

R IV k{ +kj = D (V)
RV ky +ky — k!, k) (F*)
R VI kK +ky, — k5 +k (H)

where we denote R IV by an invariant 'vertex' function

V'(2), RV by the s-wave projection F;(z) of an invariant
elastic scattering amplitude F'(z, cos ) and R VI by the
sewave projection Ho(a) of an invariant centre-of-mass amplitude

H(a, cos @),

% LExample given by Levy is the decs of charged pions =n-» p + 9V,
i-%e +%Y where V“(mﬁ)'») 'Ue(mi_}.

##% Notation ?nd following analysis is very similar to that used
by Oehmell),



The new matrix of all the reactlions can be represented by

o’
T et (2,82)
- J Fe H,

v’ He F,

Unitarity gives a relation of the same form as (2,60) for T'
but in place of the matrix ( ° o ) we must write

o h@)
o (o) (o)
o h¢¥ o for(m, + m2)26 8¢ (my' + 11:2')2
o o o
(o] (o} o)
o h@ o for (my' + ma')as & € next threshold.
) o KW@
where

Vo
Weey & Lg-(m:-tm{)i’i [l'—(m.'-'n:.)zlyts _D‘f‘alﬂ‘ (2.83)

and my', m,' are the masses associated with the higher two-
particle branch cut. The above replacements give the corres-
ponding formula to (2.,64) for the continuations of T' to T'°
and I,cc depending on whether & 1s greater or less than
(mz' - m2')2 . Let us list the various continuations of the
elements, For region (1) we again ohtain the results of (2.66)

plus the following

2h (@)Y Hy(R) U (2) c H(2)
t+ ASh(2VFo () 1+2Lh(@) ()

vy s vy -

. ¢ - 4
By = By - 2ohee [He@]
I+ AL h(R) Fo @

(2.84)
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For region (2) below the next threshold

N :
G ¢y = gy - 5&5- { hewy [va] *(ieac k@ Bi) +

' ] i
+ ke [viy] e ach @I f@) - 4chiy k‘ce)v&wéem,&)}

e EhE e
Ve = £ {u‘cz)mz. NG FL@)) = 2 A U@ Ho)]
e /
VU cr) = UG 1+ 20h(2) Rzl = 2ih RIV@) Ho ()}

(25
Folt) = & {F@)(1+ 2ok @) Ri@) - 2ch Gy [Ho)] ]

F ) = { F.2) (1+2c h Fuz)) -25&5%)[%&331'}

Bi~

Hi(2) = He®» /A
A = (+2ChRYF@)) (I 2 Ka)F/@)) +4 A(é)L'ce)[HoC%ﬂ'l (2.89)

For completeness we mention that we can reach only one more
Riemann sheet, by continuing through either one of the two two-
particle branch cuts and then through the other. The new

functions on this sheet have the forms

eyt 7 T y
6%y & Gtey & 208 [v£fﬂ , v - 2
; 1+2i h(@VF, () I+ 2Sh'@) R (@)
el ok ¢ ;
FE b A 2 h@) U RIHL®) , FJ“&} - Fo C2)
I+ 2RV F () I+ 2 W@V (#)
e 3 & ¢
F%) = Fuce) - 2 k@) [Ho) ] Y, Y Ho(2)
I+ 2R @)FLR) 1+ 20 (2) Fl)

(2.86)
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The correct analytic continuation for p(Kz) in the upper two
partiecle branch cut region (2) is therefore the function

g (?) = ;'-E { h@[UR] 1+ 2: N@FER) « kU] G+ac h@E )
“hchm K VU@ H.@ |

= - [el(t”)] 2 (2.87)

Poles of G(2) or U(z), U(=), F(&), F!(2), H(2) on the
first unphysical sheets to be reached through the lower and upper
two=particle branch cuts, i.e. regions (1) and (2), occur in
complex conjugate pairs and correspond to zeros of (1 + Zih(a)Fo(a))
and A respectively, Poles on the only other unphysical sheet
are zeros of (1 I+ 21h'(a)F°'(-B)). The zeros of A cannot coine
cide with zeros of (1 + 21h(a)Fo(z)) or (1 + 21h'(a)Fo'(l))
uniess we decouple Fo(z) and Fo'(a) i.e. unless H,= 0 when
we have simply A = (1 +2ih(2)F (2))(1 + 2ih'(&)F,"(2)). Tt

is specially interesting to find that pi has poles at the zeros
of (1 + Eih(a)Fo(ﬁ)) and (1 + 21h'(a)F°'(a)) when H = O,

In fact, 1f H=2 0 we can write to first order in H,

play = L {hm v | Ke[velt | s hezy N ) V@)U &) Ho(2)
M L+LMDIRQ) 42 NRIF/R) (142 h@IFR(R)) (142 N @) FX@Y)

(2..88)

which shows a separation of the two decay modes which therefore
could be discussed as independent processes. The two lifetimes
obtained by discussing the separate contributions of each decay
process to pI'J(‘B') are known as the partial lifetimes., The

separation implies that the sum over the set of states in (2,9)
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can be split into a sum over each of two subsets, one from each
of the two decay processes., Because the modes are independent
we are allowed to identify the partial lifetimes and discuss
them separately and further deducing that an unstable particle
and its anti-particle have equal partial lifetimes as well as
equal total or physical lifetimes, If H, i1s not very small
i.e, if the coupling between the two decay modes is not
negligible, pi(a) does not exhibit a separation between the
contributions of the two modes. We can no longer discuss any
one mode independent of the other and we cannot deduce that the
partial lifetimes of a particle and its anti-particle are equal
but only that their physical lifetimes are equal, In these
conclusions we are in agreement with a very general argument
given by Metthews and Salam.4)
Let us return to the major discussion of this section.
Peles close to region (1) found by continuation of G(2)
through region (1) shown in Fig, II-10 have already been dis=
cussed and we found imaginary parts‘ of the form
[npposw(pz)] o Suppose we continue G(z) through region (2),
below the next threshold K12 > K's > sz, and look for poles
near region (1) again as shown in Fig, II=13,

F 3
el K =,
l ,z-
MMW l‘}
Fi I st °

% The real part is obtained from RR G'l(z) = 0 and is independent
of the Riemann sheet we are considering and therefore we quote the
imaginary part as being more characteristic of a complex pole.
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We find a pole with imaginary part of the form [%pp°(23&(pg) - Sw(pg)ﬂ.
Thus we have found a pole near region (1) by continuing to the left
of K'2 and a pole by continuing to the right of K'2 , but although
their real parts may coincide thelr imaginary parts will not
coincide unless .Lﬁ§p2) = sw(pa) which is not true in general.
Similarly if we avoid region (1) and continus through region (2)

we find that a pole close to region (2) may have an imaginary part
of the form [@pposé (psz If we decide to continue through

region (1) to look for a pole near ragion (2) we will find an
imaginary part of the form [np.po(as ‘,(p. ) - S'(p. ))] which is not
equal to ['up.po w(p. )] in general., However there is in general

no ambiguity in choosing the correct pole to associate with an
unstable particle, If the pole 1is close to region (1) it would

be illogical to continue through a region above the next branch

cut to look for the pole and similarly if the pole 1is close to
region (2) it seems natural to continue through region (2) to

find it, The only situation when there may be some ambiguity

is when the real part of the pole is close to the threshold at

K'%. But in this case it seems reasonable on physical grounds
to expect that s,(u?) & syu?®) 1f p®a k'3 and 1f this s
so then all the unphysical sheet poles will be nearly coincident,
and any continuation will do, If, as Levy suggested by an
example given earlier, sﬁ(p?) > EBW(pz) then the imaginary
part of a possible pole near region (2) on a sheet found by
continuing through region (1) will have the wrong sign for

the second equation in (2.77) to be true and a pole is no
longer possible, There would be no possibility of ambiguity
in such a case either. Any poles found by continuing through
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one region and looking for poles close to another only indicate
that resonance poles exist at the same real value on another
unphysical sheet, Therefore we believe that although many
poles may be associated with an unstable particle only one
complex conjugate pair directly produces a resonance in the
physical sheet and is found by continuation through a re-
stricted region of the physical cut near the resonance. In
the last section we showed in Fig, II=7 how the cut in

pg(e) can be rotated so that the effects of poles in pg(ﬂ)
can be exhibited by (2.,81) as a resonance for 2z = pz. If
pg(ﬂ) has poles near region (2) found by continuation
through reglon (1) then we can rotate the cut from K; out
of the way but not the cut from K'% unless we continue
through this cut as well., We illustrate the continuation

through region (1) by Fig, II=14,

»
-
Y
Kw lt::' x 2o Ky
*2 K
E:!g. II-!&

showing singularities and cuts of E:W(B) + pb:,(z)] e« We ecannot
now write a formula like (2.81) unless we continue through the
cut from K&a and thereby finding the correct poles directly
producing a resonance, This shows that any pair of complex

conjugate poles associated with an unstable particle produces
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a resonance in Im G(g) either directly or indirectly without
any ambiguity.

Vector Bosons

8o far we have restricted ourselves to scalar or pseudo-
scalar bosons but it is a quite straightforward matter to
extend the discussion to vector bosons. A spin 1 boson
propagator can be reduced, by choosing a divergenceless field
and using the PCT theorem or axiom VI, to

D k) = S (oo * 2432) ecerduc

“‘l'llt—te

%
& ‘J}“’- h_.:l:o)j eCK‘)JK" % hﬂj “')JK‘ (2.89)

K'eh*-C€ TR wt
where p(K?) is given by an expression of the same form as that
in equation (2,2). We could clearly consider Dpi,(-kz) in
an almost identical fashlon to the spin 0 propagator, G(-kz).
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CHAPTER III

THE FERMION PROPAGATOR

We propose to extend the methods of the last chapter to
particles of spin #. This generalisation is sufficiently
different in detall to require a thorough discussion.

If we only use the axioms I to V in the introduction, the
fermion propagator has a more complicated character than the
femiliar result obtained by Kallen and Lehmann,1®) This is
because the derivation by Kallen and Lehmann invokes explieitly
charge conjugation invariance and implicitly space inversion
invariance. Here we shall require only PCT invariance or
axiom VI since decay processes have little respect for in-
variance under transformations with P, C or T separately. We
have the following definition of the fermion propagator with

wa(x) as the fermion Helsenberg field operator

- -]
. ' " o f ‘P“’ '
- .S,‘ﬁcu) = -.<o|T[1b_‘(x)$mgto> = @-';')‘IJ‘P.L 5,4(/» (3.1)
-0
and the PCT theorem allows the assertion

<ol ﬁcurﬁ,w lo> = - (Y,-)“,<a:-ﬁ;,co> ¥, 010> (3‘2-3,,/, (3.2) *

Now define

j‘ﬁ(r) = Z<ol‘}€:(o)[f,n><’,hl‘¢z(o)fo> (3.3)

then it follows from (3.3) that

% We have chosen a hermitian system of Y matrices so that
Vs W} =280 and Yg = YyY,7,Y,. Further we define
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[.L, <P’} e [Y. [0 x.,_] o (3.4)

and we may expand (3.3) as a series involving the sixteen linearly
independent matrices formed from the Y-matrices and their pro-

ducts, With the help of relativistic invariance properties we

have
*up“’ o "é",',)a [@r"’ - ~-p ).‘p EiCP) + Sdp €L (pr) + & (xf).gﬂ es-pH+

o L0 g €4CPD o % (077) pupopr B

(3.5)

D )
where &= Y“‘Y" - T"’Y“ and therefore ' pupo =0 so we

can drop the last term in (3.5). Applying (3.4) to (3.5) gives
»
Lejepn] "= ejep 5§ = 04,38, (3.6)

and from axiom (V) it has c¢learly been shown by Loviteh and
Tomozawazo) that

v
,J-P‘ e: = [(e;'d"b‘ f’u)a"’ f-‘l""fb'—] & (3.7)

If we now insert a sum over a complete set of Helsenberg states
into (3.1) and use (3.2), (3.3) and (3.5) we obtain for the

fermion propagator in momentum space

20
(rm) = § bl 000+ g 00 13 Gy 0,000 013
e prext-ce
(3.8)

where K = _}x"- > © e« Once more we will assume that the
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spectrum does not contain the origin. In deriving (3.8) we use
the well-known ¥Xallen-Lehmann methods based only on the axioms
I to V and axiom VI or the PCT theorem (3.2).* As for the boson

propagator we assume we can normalise pl(Kz) such that

- -4

iecc“"’d"“' = | (3.9)

which certainly follows from using the equal time canonical com=-
mutation rules in a field theory derived from a local Lagrangian.

Let us consider the matrix elements of (S'F(p))aﬁ with
respect to positive energy spinors uy and u, such that

(I Y-P -Orm) u‘- =0 , :.; qJ. I | - J‘ =1,a. (3,10)
and we note the results for -p2 = m2 R
ﬁj (c¥.p) KB S
¢ 21,
B’- (Cb’;)u.i = :;J (:8:,-3’.’) “‘. s O } J (3011)

It is interesting to note that the parity noneconserving terms

-

disappear” and we have

Kb= m=C €

')
,8(.%) ) ..“..‘_ S; ‘P’ "".i =I e;(ut)-(u-rﬁ.)fl-(ul-)JKt ; J'zl,.l, (3.12)
o

and further @,Si¢pruy = Ty Sp(p)u, = 0.

Also with negative energy spinors v, and v, where

# Again Iovitch and Tomozawaze) have shown that the use of the PCT
theorem can be replaced by the use of axioms VI,

#% This particular point has been made by Idals).
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(n:r.'.-m)u:’. =0 , . 'U'j = - ¥ =12, (3.13)

and we find
(- -}

v 'S; Py v, = "'S Q2 — (K-m) @, (xD) 4. WELTY

& 5 e (3e14)

and ‘\7'. s‘g (k) v, = ‘Ga S; CP) ¥, = 0,

Since we have used the PCT theorem then the 'anti-fermion'

propagator SI;,(-p) has the same expectation values 1i,e,

v 5:; (p)w = A and K.S,f(-p) w = Zém) | Therefore
the fermion and anti-fermion propagators have identical properties,
We have reduced the discussion of the fermion propagators to an
analysis of two functions 8(m) and _8(-m) which we have
expressed in terms of two spectral functions p 1 and @€,

The latter are resl and positive and obey the relation obtained

O § pPi(x?) € 2x p,(K?) (3.15)

We can consider B8(m) and B8(-m) as boundary values of an
analytic function except for a possible cut from 0 to oo
on the real axis and a square root cut from 0 to « e on the
real axis in the complex mz-plane. Therefore consider the

function
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o0
Ky = [ e2(Y) = (k¢ ST g (%) | o (3.16)

(] [P 4

where we do not allow the possibility of a zero mass intermediate
state and so the right hand cut will have a threshold at some
point greater than zero. Then we have a gap between the cuts

and we can continue from upper to lower half planes of the

physical sheet, It is straightforward to obtain the results

[8cz®]” = scwm (3,17)

&' Bzy = Al o AEw) (3,18)
2D wmale
where the latter result depends on which branch of the square
root J?' we are on. The two sheets of the Riemann surface
and the branch cut are defined by Ja8'—>m > 0 as & —» m2> 0
and by JE'=d-m < 0 as & —>» n> > 0.
The discontinuity of 8(s8) across the right hand cut gives®

for m°» 0 using (3.17), (3.18) and (3,.16)

I‘w\ /8""")

[ eaowt) - 2w g, (mr)]
(3.19)
T BG-my = T pa ()

and the discontinuity across the left hand cut gives for m2<. 0

* Note that we chose K = ,JKL' >0 and that this is

independent of the square root branch point in the z-plane.
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Ton A=w) = lmlj g.Cu‘)Ju'-

Kh\‘

Again we have assumed that the integrals we deal with converge,
We are once more interested in writing a dispersion relation for
the inverse of 4(2) 1i.e. ,5'1(5). Let us first examine .8(z)
for complex zeros. Consider g = rer‘]‘n and choose

2 =2 meig/z where «n < @ €< 1y, therefore

" m‘-el“-
(3.21)

and from (3,15) it can easily be shown that the numerator of
the integral in (3.21) 1s always positive, Hence Im .8(z) =
only if ImJ&' =0 or if € =0 or & real and positive,
If the behaviour of pl(Kz) and pa(Kz) is such that we can
apply the Ferrari and Jona-Lasinioeg) theorem, then

A@ 2 -'-J_. as # —> infinite circle (3.22)
z

provided we avoid the cuts on the real axis,

Hence [Cﬁ'.—')-')&'l(a) - 1] has cuts from 0 to =oo and
0+ to +00 on the real axis in the #-plane, no poles, and
converges to zero on the infinite cirecle, Therefore we can write

a dispersion relation in the form



-

j L (4,[ tcx)dm- *L -xt:c;ix‘) (3.23)

where for the sheet in which J&'—>m > 0, & — m°> > 0

(call 8(z) = /SI(E))

el {[#cn cer] - [AI(K':-:e)]"}

.S LXICK‘—: €) - /8 I(Kt*“ "’]
d®e K ’/SI(K;,"

2K P (KUY ~ g3 (K?)
74 I/SI(K.‘),I

2 © (3.24)

zmd'E

' [ ;&I{'u -..G-)J LJ e e)l-'j

AX(R) = —
i -w=ie)™ (-wYeiE)r

o [ DAt [ancol "}

' [/6"'(-" “r€) "(-u-.e)J
S | 8Z¢-uvy|™

- =
: [ Cencen = ] du

wi &l s g (3.25)

# Note the change 1in sign of the f‘:' factor across the square

root cut. 2
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and so the sign of X (K) 1is indefinite in the sense that it
is dependent on the dynamics of the problem. Also for the sheet
in which J&' —> -nm " (call &(&) =/3II(£)) 29 wm'>0

- Zocace)] - acol't = _falx®)
TR) = = E [ 8% e)] [82c< e)] } klj‘(z‘)l" 20

(3.26)

and

xX(w) =

2 ; fnfe;w‘) - x'e (k1) ]dw'
i | AEer|™ .

w'ty it

(3.27)

which also has an indefinite sign.

We can obtain more information from the derivative of &(z)

o0
dA@ _ 1 j‘ E&_’&Cxt)— (x+J27)? 'Culﬂdnt
di /37 0 (K!‘-%)" (2.28)

and so for real, positive B

- oo
A /3"(1‘.') € - ..l.... J ("-E,)tenf.“) JK'&
2 )

i (=2)? (3.429)
_ 1 I
Thus ‘.‘..i:...ff-’ € © for real, positive 2 and J_.f_.ﬁ.’ —3 -0
* 2

which may be

as P ¥ O+ but ﬁ(o) - J‘ [.eSCK‘)" :flci‘t)gdl‘l
e

positive, negative or zero but is certalnly finite since

. dut . dict
-S el dxt o %roy -‘-j‘ gl e (3.30)
K™ wt
-}



-
and in view of assumption (3.9),

F
Similarly J_.‘%.ﬁ.’ > © for real, positive z and Jf: 2) > e
3

as B —» 0+, In fact ,SII(B) = AEI(E} only if 2z —> 0+, If
the lower 1imit of the integrals is K‘f and I-tc.2 > Kg? the

first point or threshold where the spectral functlons are no

longer zero, we can deduce

oo 20
' P 3
- y 125
et LA )
l” o
I
Ko e K AT K=t Ko =™

A1l the information gathered about &(m) and E(-m) allows

us to picture them roughly as follows in the reglon between the

cuts

Fig, III-1,
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The curved dotted lines are the limits found in (3.,31) and since

dAom) o < and d8E™ § o , there are three types of behaviour
Tdwt dm* 7

for each of &(m) and B8(-m) envisaged,
Let us examine each type separately for B8(m) first

2 2

and so the

Type I ¢ here we have 8&(m) > 0 for O0O<m” < K}

rough forms for ,8"1(m) in this region, using (3.31) again, 1s

A7Uw) 4

/

[ 4

a;é{.(
L i

Fig, ITI=2,

This figure shows quite clearly that 8~1(n) has no zeros

and will have no zeros even if we are allowed to move the value of Kfup
*1;0!'{‘:-)2 o Physically we expect a pole of B8(m) or a zero of

.8'1(m) to appear on the real axis to represent the one fermion
contribution to the intermediate states in the propagator.

Hence this type seems to be uninteresting.
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Type ITT ¢ in this case the form of & 1(m) 1is

\\\\\

S

Fig, III-3.
Now we see that J'l(m) 1s negative and increasing in the region
2 2
0<m < K!° and there 1s a possibility that, as we increase K!°
up to K°2 ’ A'l(m) may cross the real axis, There will be a

pole in 8(m) * so we must write

B Cio = S ['_gkcm-)-cmm)e,(x'ﬂclk" (3.32)

such that

% This is strictly a pole in the variable m only not m> but
the distinetion 1s no more than academic here,



& d - A%
‘ -—
Cio * S“: gxvdw® = 1 (po) = o ) ks > o0
o0 20
(4 fiomoads *j xoadu' | o
< k2

2 2

2
where we assume there is a region M"'< m"< K~ in which p4

and p, are zero, The existence of such a pole in (3,32)
depends upon X(K) being negative and we shall consider the
implications of this later, We picture 8(m) and ,8"'1(:11)

now as
,&(vn}, W i /g.'(wﬁ ™
: ;
' L
1
]
1
i
1
' i
: :
s e ——
it =g mt e Ks
I
1
]
1
1
]
1
i
I
]
L}
Fi IIT=4(a Fi ITTI=4(b

We could continue to show that zeros and poles of 8(m) can
occur alternately along the real positive mz-axis as for the
boson propagator but since we know of no physical situation in

which there is more than one pole, we shall stop at this point

with poles. A zero of A8(m) 1is possible from Figure III-4(a) and
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this can be discussed in an analogous manner to the case of the
boson propagator with a zero., We shall not consider such zeros

for this type further,

Type II ¢ The picture of ,8"1(111) is more complicated to begin

with and is roughly shown

Fig, ITI-5.

Here we must accommodate the pole of ,S‘l(m)' and rewrite (3.23)

in the following form

T - -
s KEmt=c€ Kaerm'e € o I

e i
Ay =2 wm (:-ri Tex)dut ...I xCw)d it - _A:) (3.33)

(]
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where Lad
j Ee,(-c‘) - (Ktmo) e,(u‘)_] dw?
b K wd A
o
S M LR Sl icdia By of 4 pe 1) 8 8
s mo  dwt I X e e T r——% K9 =Listing) 'c“'g =
™ e ™mg ‘:; (K‘-‘-m&)”

> ..'_S eexdut
"l (%*wmo)*

~

o < Kf is very

The form of ,S'l(m) in the region m°2< m
similar to that of type III and we conclude that ,8'1(111) may
vanish as we increase K‘;z and so we have (3,32) and (3.33)
as valid forms of S8(m) and ,8'1(111) for this case with the
physically expected pole, The only difference here compared
with type III is that the zero of ,8(m) must be included,
There is no objection to be raised in having a zero of 8(m)

at the origin, i.e. m°2 = 0 since the pole in ,8"1(111) would
then be incorporated in the left hand cut.

Now let us turn to the consideration of 8(e-m)., It is
clear that type I for S8(-m) 1is similar to type I for 8(m)
in that no poles or zeros can occur. Types II and III for
8(m) and 8(-m) are also analogous. The point, here, is to
find exactly what behaviour is physically expected of 8(-m).
There is of course no obvious objection to zeros but we must
question the possibility of poles. We observe that it is well-
known that the one-particle contributions to the intermediate
states in the fermion propagator which are physically expected

appear to be associated with diserete § -function terms in
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pl(K2)24) while -pa(Kz) = 0 at such points and never has a

$ -function term.zo) We have already shown by (3.19) that
only 8 -function terms in pz(Kz) give poles in 8(-m). Therefore
we do not expect 8(-m) to have any poles, If we wish to forbid
poles in 8(-m) completely then the type of behaviour when

24 K°2 1s the most suitable. This

A(-m) < 0 for 0<m
would imply 8(0+) € 0 which further implies from (2.23)
that X(K) 1is predominantly negative in (3.25) but positive
in (3.27)« This is just what we required when we examined
Type III of 8(m) above for a pole to appear., The most likely
behaviour for 8(m) would then be type III., However it is still
possible for 8(m) to have poles and 8(-m) not to have poles even
1if 8(0+)> 0 so long as B8(0+) is not too large since X(K)
will have to be predominantly negative in (3.,25). From now on
we shall discuss only the behaviour of 8(m),

As in the boson case we can derive a further spectral
representation of 8(m) for later convenience. If 8(m) has no
poles or zeros and only cuts from 0 to e and from K°2 to

+ e in the mz-plane, if K'g < K°2 ’

(- ) AE@) = 1 as 2z —> infinite circle (3.34)

Also [( JE - Kc'))S(s)] has no poles, one zero at Kéa and cuts
0 to =00 and Ko2 to +e0 , Hence log [(J? - Ké)s(s)] has
no poles, a cut from K62 to +oand from 0 to = and converges
to zero on the infinite cirecle, Therefore we can write a dis-

persion relation of the fom
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Loy [CFT-wt) Ac2)] = 2 £ gl , I podst

oo = 1 Loy AK€ kg +L; Ateie)
A¢ [y -“‘; ,f(x"--‘.‘é)
REE () } - &

o [2ce (<t - 00 |

= 70&-«5)-“&-'{

also

'lewct

oo = -6 (£) - 6 ,} Ly zuc.‘,]
[}

and it follows that

o0 oo
' goadut p o1 d it
( Todee =% n <+
,3(%) = - R
A ko
e o0
! &}JK‘ i 3 CK}JK‘L
- o w2z A Khe 2

(3.35)

(3.36)

(3+37)

(3.38)

and we can choose the behaviour of #(K) in exactly the same

manner as in the boson case for the representations of tynes I

and III, For the case of type II where @8(z) must have a
zero at g = mog we need only choose Kag = mo2 in the
above formulae from (3.34) to (3.,38).

We now wish to examine 8(+m) under the two different
types of interaction (a) and (b) which we introduced in
Chapter II, For case (a) when 8(m) has no zeros and one

pole, we write (3.32) as



-Vl

3 3
Agmy = Lo o S [e" i losinan o ‘K‘ﬂflnt (3.39)
¥ m-Hs s K- - €

and (3.23) as

oo 0o
R oy e S Ty duct | I x*cydut
-l N v KawbhCE€ wKrmmbecE (3.40)
s o
= -
T S (2
2 K"—- rag* e Mg

But for 8(m) of type II we must include one zero of B(m)
1f 8(m) 1is to have a pole, e can use the above form (3.39)

for B(m) with the condition ,S(mo) = 0 and instead of (3.,40)

o9 S0
Altmyz mf t + st _..X iy dict L) I C)d s
F MJ‘-—M\ K‘ ‘1_ “‘l-__;‘ . K"'-i- H\"i-s-e 3.
Hd

e oo

-t At 5 T 5 i
with .3‘ (Ms)20 msr |+ 5 L+ ’ci‘()dit ¥ 'Xfuc)d:c s
agtm Mg 4 K=mg 4 wers

Under interactions of type (h) we consider that the first

continuum threshold ng is nearer the origin than Msa so

that 8(m) of type III under strong interactions becomes

o0
g _
R S[g,‘,"cut)-(mm)e. Gt *[ &,_(ut)-cu-t-m)e.’cut)_yu'- .

s

-

o “
Altwm) = m l-l-J 3:‘."‘_)4‘;_"1' _,,S i) dit *S X()ydut
(3.43)

KE b€ " KE -k K mtel €
“H L 1
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But when B8(m) 4is of type II under interaction type (a) there

are two possibilities, i.e. that 8(m) may have a zero in the

2

region 0 € m" < K,“r or may not. If 8(m) has no zero and is

of type II under interaction type (a) then 8(m) and 8 1(m)
are represented by (3.42) and (3,43). If B8(m) has a zero

2

then this zero will not occur at m, in general, Thus we have

in this case the form (3.42) with ,.S(mé) =0 and with

oo oo
% A I oLy Xoedut
A (m) =2 m (‘+W‘“‘ 4 Kot~ 6 *o <= w4 € (38t

In all cases we try to find the behaviour of 8(m) 1in the

region near m2 = Msg

an identification of real and imaginary parts for the two

spectral forms of £(m) in the region sz< m2 < K32

above the threshold K,°. We carry out

similar to the boson case.

Consider first B8(m) of type III and we have

. I ﬂtw.')Ju 2 hd 't
w w, almgix) % ;'. ' Lt
3 [e;(K‘)-iKe, ‘“tﬂ . (3.45)
ol oo
M‘ ' (I’
) BT . v
w [-]
o~ K TR = - (K~Kw) Adn p‘(«). 2
(3.46)
w *© oo
W’ T ydu't X"c)di't x‘cuc')J w't
P et | omer ) Tetewr
u':

°
&
' '%S é(u')él("’ 1 fb Y (x')d'®
k't ~ ity ic®

S (K-Kw) cosf(K). & e (3.47)
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The egquations (3.45) and (3.,46) give
ir ey [ e T - -lwe'.“c'c‘)] = =[en 9‘“"]1 (3.48)
and from (3.,46) and (3.47)

- k T cot By

ad o x oo
W " S, 1 w, " S, _»¢ "
:K(lngf ?_‘ﬁd.ﬁ,,fti“_’iﬁ ‘_[W(K')JK 4_[?:(“)4-:)
k3
3

ga w'E kv . Kb <l 't
w s
(3.49)
If Kz M then using
“ $ ~f
"I(K) ~ (f‘o) (x=My) (3.50)
we have for (3.49), with (3.39), (3.40) and (3.50)
- x
W, ' W, 1 3
R B
: 2e
¥ (3.51)

and there will be some point Mz'x M 2 if weak interaction cone

s ?
tributions are small enough, such that

AR TR ot p) T (B0)  (k-t) (3.52)

Comparing (3.51) and (3.52) we conclude

% [
- s T rdut x"w)duct
M-Hs-e.oﬂ(f‘gl e *S o o (3.53)
Ko o

oo
U X KT k)d it X k) It
@Y = (o) F[l"{.:‘:‘:’ﬁ Y T
w
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which again are valid if the weak interactions have a small
enough effect in the neighbourhood of the cut at m2 = ps‘?.
Bliminating ¢ from (3.48) and (3.52) gives

w w %)
2R e (KY) ~ gl (xt)] =  Ere, 4 :
[axe er (x9)] il e (3.54)

where

Y = 4?1‘1&9"&"(”) (3.55)

The contribution of this resonance in [2Kp1(1(2) - p2(K2)] to the

time dependence of the propagator SA(x) is obtained from ®

o0 o
: i e -t'ﬁ.t,. J -?‘t
T Splpt)w = “JIIE" SeC#) uj ’J At A (3.56)

2

where -1:“2 = m~ and therefore

oo oo

;J- s; ([z,t)q,i g j ‘_‘_ﬁ! ;J’obj’ E&(sc?-)_.(nn-,;/:’g) P.(K:gdkt
2

wre P"- <€

-4

C=4
4] Lept=dngod] SO e it L7, -
F.‘f“ JEM

(-]

# From physical arguments, pz(Kz) has no § =function singue-
larities and there=fore we suspect that p';_(Kz) is the
spectral function possessing the resonance and that we could
neglect p;(Kz) in (2,54) and have instead

f':\;"“ ~ f_'_’ . —Q_ﬁ)—
w (kEpt)e (YH)
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where Eu =Jp._"+7‘.

An examination of the above algebra shows that if _8(m)
is of type II with a zero under interaction (a) and a zero
under interaction (b), the argument remains almost exactly the
game, Slight alterations are required to ,8;1 which has the
extra term wmd ‘A’m."-m'-) and to ,s-l(m) which has the extra

term wmAY/(mitw!), This means that instead of (3.51) we have

-ﬁKt"(u)th‘(K) x Ce:’) la(..’q‘) +* .—“."i_.. - .._'.‘...‘.i’..-

mt- K Y
(- =4
i p{[ "&"'(K'.Idu"'_’. " [ XVt )dw't
K"" w® K' “t (3. 58)

o

which only alters M and (plo) -1 in (3.53) to

o
As* T )d "k yd kit
"‘-’HS-_’PI:H [ 1I..s - i"‘ +F£[ T (w)dK! X< dx

Mgt- > 2 w: H"' 3 KMt
teor” & okt miEAL ‘A 2 ﬁ eNoadut [ Kkt
(g MY H"')" (et (e r)t

I.
-}

All the other results will have the same form as for type III,

If 8(m) is of type II under interaction (a) but has no

zero under interaction (b) then we write instead of (3.51)

- t
-n% K TV urt#b() x> ce,:) (R=r1g) — _ié'-'-——-
Mgt- “t

(3.60)

Kit K't- “lﬁ* K‘

(-~
e F{S ?W‘Kr)d w'* R [ lth(“f’d“l&
(-]

giving for (3.53) the results
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oo =
t L/ % T
e et (g e [t
™,

om* Kem? Kem®
o

(3.61)

€Y = (ed)" - "‘"‘-‘ + B I wt T )d Kt Jn'x “ocud ikt

(me- ""‘) (k‘-ﬂ‘)‘ Iy e

At first sight it appears that the pole at m > 1in 87Xm) has too
large a contribution for M=% Ms. However the point m 2

o
,8;1(111) has a pole is a point where we might expect ,8"1(1:1) to

where
have a strong pole=like behaviour although m°2 > %2. That this
is indeed the case follows on the same lines as Appendix 2 in
which we showed that near zeros of the boson propagator produce

a pole=like behaviour in the inverse propagator when the zero 1is

covered by a weak interaction cut. In this case we put for

K=z m,

RL A, (<) = (%) ("“"""

(3,62)
and find for szcx ms
=" .fi.-
RLAM) = @)™ (':.e.:“_.;.‘) CRLENs
where
o0
et ot Y [ conds ]
8 © ‘I. Kt_m;'l,
(o) = (moTE) - rf'“ofs ) -4 (k-md VRNV dt (3.64)
™o Co
(r=mit)?

and we also have
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My x o ¥ 'y b (3.65)
» (K‘-m'.")‘-t Cl’fu{,)

where ¥ 2 wZo [dmd eMimst) - p(met)] 2 0 (3466)

This shows that there will be a pole=like contribution to the

integrals in (3.61) due to the resonance behaviour of tF(K)
2
o L]
Thus we conclude that only minor differences in the

in (3.65) which compensates for the pole terms near m

definltions of mass, lifetime and renormalisation constant to
be assoclated with the unstable fermion, occur for each of the
propagator types. The time dependence of the probability
amplitude of an unstable fermion wave packet can be obtained
in exactly the same manner as for unstable bosons and the
same conclusions for very long times can be deduced. It is
quite straightforward to adjust the discussion of the model
which we introduced in Chapter II so that it applies to
fermions. The application to physical particles is not
difficult and it follows from the use of the (CPT)-theorem
that the masses and lifetimes of particles and their anti-
particles are identical.
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CHAPTER IV

TWO~PARTICLE SCATTERING AMPLITUDES

We complete the application of the methods used in Chapters
II, III of describing resonances in dispersion relation theory
with the consideration of dispersion relations for twoeparticle
scattering amplitudes.“ We shall restrict ourselves to
scattering amplitudes for which dispersion relations have been
proved in axiomatic field theory for strong interactions.
Therefore we shall consider only the dispersion relations
proved by Lehmann26) for the elastic scattering of the two
particle systems Y - e, n-h, e and o = E "
have a definite process in mind which contains interesting
features among the above reactions, we shall consider = -)1
scattering, If we denote the momenta of the incoming boson
and fermion by k and p and the outgoing by k' and p!
vith ok% e <k'2 = p2, op2 = p?? = M2
invariant amplitude, where J(x) = (0 - p.z)nf(x) and #(x)

we have for the

is the Helsenberg field operator describing a pion field with

mass u,

FL-(pek), 0] = -’f-; <pITC I pk D

= = MLGgek), 0] (4.1)

#% A similar approach has been published by FoffatlB) unknown to
the present author until a separate analysis had been worked out.
Dispersion relations for the inverse scattering amplitude hgvg
previously been written out by Feldman, Matthews and Salam, 5



where

-3 i(heR) 5
M [~(pek), cn®] = -IJ‘-..... - <pI[TCE),TER)]Ip> 860

!4.2)

and we have used notations similar to those in Appendix 3,
If we take account of spin and iso-spin denoting the charge
variables of the initial and final pions by indices A, A',

M can be written in the general form
Mya = B9 5, T« 40, ul T -4i[rGhek)] T,

i [raen][anl T eer (@)

where the ‘tk_ are the usual Paull matrices and we have already

defined spinors u and W in Chapter III.
According to Lehmann the amplitudes T1 and T3 satisfy

‘I\\q a,. (“’ At)J‘ﬂ

twt.le

T, 5 (w0 Y = ”j Ct)

where 2uwM = w2 - 2:&2 - M2 - p.2 and W?' = =«(p + k)a, 4A2 = (k'-k)?',

while the amplitudes T, and T, satisfy

. 2w | ImTa,@Hadw
Ty (89 = TJ T (4.5)

The relations (4.4) and (4,5) are true for fixed momentum transfer

112 which must be further restricted for pione-nucleon scattering

such that
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8 /am ~ 1
e re 3(__&“1_/“ e (4.6)

provided the spectrum allows the matrix elements {p [ J(0)I Pp>
to differ from zero, apart from discrete values of Ppo only for
-pn2 > M+ p)z. If the mass associated with the threshold of
the continuous spectrum 1s allowed to be lower than (M + p), the

condition for the validity of the dispersion relations 1327)

w,’,‘ - w:_ (Wt mg) = W, (H"vu-‘- Am,wy) 4-}&‘-!-1") Cm,=m,) > O (4,7)

vhere Wews = (metwmy) + [(mewmy) e 3 "4-'1"-2“.1“-)' and m
- 1

and m, are the smallest masses of states lpn‘) » Ipp> such
that

ol TV ipn><punl T(orto> # ©

(4.8)
<ol jeo> i pud<patjcodrioyr # 0

where (i¥pewm) 0 = Joo and -prazwmd, -put = md.

Only the amplitudes T3 and T4 have one particle terms due to
the physically expected single nucleon intermediate states., Hence
let us examine first the amplitude T3 and ignore the iso-spin
flop term., For simplicity denote T3 by plain T and rewrite

(4.4) in the form for strong interactions only

<5

T(WSaY) = ?z[ - - —-—‘—-—] + ;’j dw't T T(w't AY).

wh atert we mt
=

(.l'!i/'vd

‘ - !
‘] witwtoce wWtatewhie (4.9)
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where a' = 4A'+2Me2t , gt =l V(AW as shown in
the Appendix 3. Note that the oneeparticle poles lie between the
cuts 1if

A* < 7 pAnom) (4.10)

and that this upper limit is essentially the same as that in (4,6)
since M/p X 7 for plons and nucleons, Hence the dispersion
relation will be valld so long as the poles occur between the
strong interaction cuts. The only other relation which involves
the absorptive part of T or LW 1is the unitarity relation
which we shall use implicitly., Subtractions cause only trivial
modifications to (4.9), and we ignore them.

Now consider T(Nz, Az) as the boundary value of an analytic
function T(s, Az) given by

o
( ‘ ,
TERaL J; [i-a"ﬂ\l" B ;:-::-] : .'Lr.l‘ R T AT
(o)’
[ e {
L WRE Wi (4.11)

which has two cuts on the real axis from (M + p)2 to +oe and

2 2 2 2 M2
from |a” « (M + p) to =00 and two poles at M 4, 2~ - P -
is difficult to obtain further information about the behaviour
of T(g, Ae) in the s-plane since our knowledge of LwT 1is very
sketchy in general, If we assume that the behaviour of T(W>, A°)

between the cuts is dominated by the pole terms then we have the
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following picture noting the symmetry with respect to we =2 s
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If we are to obtain a dispersion relation for the inverse

of T(’-.\Fz,Az) we must look for complex zeros of T(Wz,Az).

Hence with & = x + 1y and putting RL T(s, Ag) =0= Im T(-E,Ag)
we have
o
3| _=(at-nt) + b ‘ j "
L — T wl‘- (S
3[ 12 -aterr|™ l%-ntl‘} w dw Ion T¢ A1),

Cﬂyd‘

N“ 5 wf:a‘
L owtan? m':.q'-q-a.-l‘]

(4.,12)

(==
T -1 ( ; )
3 l'la-&wml'- B n‘-n‘l‘;] * ;J dw' Lon TCW'™, &%)
(G

[ e~
. wtzi* IW'2a%42(? = ©
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L (e gte s -a%) J 4w T T(w'iat). Gleyte w* 2%5)
2 (PR L 1 -t ”° ‘l-‘_
[(x-ﬂt)‘.o,‘][(x-atﬂ )"-l-x"] ?’EC W ) J [(u atew'?) y ] (4.13)
Yat-an) - dw L w3 Q). (2W2aY) o
= R % ) [ fn rl");-p J[Cx-a-l-rl‘) 4-,‘1 I LSW'N“) -l-,‘J [(n-o +W“’) ;]}

where the factor (x = %;) does not help us to find any zero
for non-zero y., If the pole terms are dominant for some region
of 2 then there are no complex zeros in that region since

a2 £ 2M2. If there are any zeros in the general expression
then they must occur in complex conjugate pairs since y 1is
contained only as y2. Because of the symmetry with respect

to & = %; we conclude that zeros occur in sets of four,
There 1s no reason why we should not have zeros on the real
axis occurring in pairs if the contributions of the cuts are
strong enough as can be seen from Figure IV-=l, For the hament
we shall ignore all zeros of T(B,g&g) since they can easily
be included in T'l(a, A?) if they occur and they only obscure
the point we wish to make, Assuming that Im T(WZ,AQ) does
not have too wild a behaviour we take as the behaviour at

infinity

¢ :
TCz,A) = ';:; (4.14)

2
where we have retained the symmetry with respect to %; and put

=
gt at-2M?) +I (=W LT (w5 AY)dw? = C (4415)

tem)*
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Hence we can write a dispersion relation, choosing some convenient
2 - - -

constant M_°, for [(i-ﬂ,‘) "(2-ate M) T2 ,a%) - & l]

which has the same cuts as T(a,Az), converges to zero on the

infinite cirecle, poles a2t =& = Moa and & = a2 - Moz, and so

T (2,8%) = A, (2-1) + A (2-a% M) + (2~Mo') (2 ~ate M),

(=]
- ‘l. ¢ N i [
Ae'ed ] Torardi[ g - rior]
(pm)®
(4,16)
a2
but to retain symmetry with respect to 5 we have
Avz2-4, =-4 (4.17)
Therefore we write finally for the inverse amplitude
-f
T(2,0%) = ACa™=2ME) + (2~-MF)(2-a + HF).
o0
fctet | Totandwt[ iy + sienl]
pemy (4.18)
and 1f T has poles at M°, a° - M° then
AMatcdMd) = = (MEMI)(M=dterH) .
oo
- { [
: {c v é j %W'}A‘)Jhsl w‘ln‘*ﬁﬁa‘*ﬂ‘}} -
*ren)*

which implies that



-0C=

o0
]

T (2,8%) = (R-M)(2-o%e ut){ C'e 2 f Tw'sav)d w',
Crerd?

+
(W' MY (WS de MY) w'k 2 wtated

(WERSIWEatemd) 0 : ] }

T T (wEar)dw'™

wWEMM W Eatemt)

= (onGatem) | O
) -

‘ & [
L wZXg wZate (4.20)

The behaviour of T'l(we,,a?) between the cuts assuming the

zeros are the dominant terms is roughly

T WAy

[ 4

"
e L L L L T

Ld

L 4

4>

C
a!'-c:m/..)‘ (Mo

Flge IVa=2,

It has been shown by Minguzzi and Taffara27) that Lehmann's
dispersion relations have only been proved for stable external
particles. Hence we are strictly not allowed to extend the cuts
by introducing weak interactions to cover the poles and force

the nucleons to be unstable., e therefore do not allow such
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weak interaction cuts and assume that the nucleons and pions,
which are the external particles in our scattering problem, to
be stable. The introduction of some additional strong intere
action need not introduce any new cuts in the region

[a2 - (M + i-t)2]< W2< M + |.|.)2 but may introduce resonances
above the thresholds of the cuts shown in Figures IV-l and
IV-2, That resonances occur above the strong interaction
thresholds for pion-nucleon scattering is now well established
experimentally. We shall examine such a point on the physical
energy cut where we suspect strongly that there is a sharp
resonance,

Once more we can write an exponential spectral repre=-
-n‘)(e-&.n‘)‘rca,a})]
c
has no poles, converges to zero on the infinite cirecle, and

sentation for T(w2, Aa) by noting that lc:;gfp

can be arranged to have the same cuts on the real axis as

T(=3, A®). Hence

[- -]
1l [} f
= S pw's A‘)dw‘[u"aa " u‘k«%ij
T(2,8%) = ¢ o

(G-HV)(E-ate MY)

= [T"(e,A‘)]-'
(4.21)

Hence by comparing real or dispersive and imaginary or
absorptive parts of the expressions for T and 71 in equations
(4.9), (4.20). (4.21) with W > (M + p)z



[Zon TCwia] [T Tewt 48] = - [ain gows,any] ™ (4,22)

=[BT Wt a)] cot gaw?a®) = RE T '(w2aAY) (4.23)

and since we have assumed that w2 is close to an energy value

2

My~ where there is a sharp resonance expected then we put

(T wWs ey = 970 (HE-wh) (4.24)

If T(wz, 52) has real zeros they can be considered by the same
adjustments we made for G(&) and 8(2) 1in Chapters II and TII
and give poles or resonances in Im '1"1(142, Aa) which have
little interest for us.

If T(wz, 52) has complex zeros, say at one point 3_, then

o
we must include a term of the form

» o
= - st -+ = o e e —~
‘l?"%g %-‘E. 'E"QL"“&Q -2"0-1"5 %D

in T'l(s, 62). If 8, = x, +ly, and y, 1is very small,
i.e. the poles very close to the axis, then these terms produce
resonance-like behaviour in Im p=l or pole=like behaviour in
T'l which may affect the approximation in (4.,24), However if
resonances are predicted experimentally then we would expect
that these comblex zeros are not too important although the
resonance shape may well be altered. One wonders whether any

points which are candidates for resonances theoretically but



are counteracted by complex zeros can ever be found to exist,

Ignoring complex zeros we put (4.,24) in (4,23) and eliminate
g from (4.,22) and (4.23) so giving the resonance formula for the
imaginary or absorptive part of T(WZ, A2y *

My FV(AY)
L T(WEAY) = g+ (4,2
( ? I (wtmd) + (M- P(A‘)J" 2
where
Moy = sr_l.*:‘. Ton T M2, AY) (4.26)

The re-application of this method for finding the resonance shape
and lifetime to amplitudes other than the one we have specifically
considered is cuite simple.

In the case of T1 which has the same form as T3 but
has no pole terms, we can write the inverse in the form (4,18),
To get an exponential representation we must now choose the
function log L‘*'"J )4::' ateng), '1;(-&,4'-)] such that the
region (2% = ¥ )< W< M_? 1s not cut. With these slight

adjustments the formulae equivalent to (4,22) to (4.26) for Ty
are identical in form, The shape of Tl between the cuts would

seem to be roughly one of the following curves

#% It is possible to use the model introduced in Chapter II to
show that a pair of complex conjugate polﬁg can he associated
with this resonance., The analysis of T(! éAQ) towards this
end is very similar to that given for G(=k<) in Chanter II but
is only applicable if the resonance occurs in the elastic scatter=-
ing or twoeparticle branch cut region of the physical cut.
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assuming Im gl is largely positive, knowing ghat %%t = 0
for H2 = %r and using the symmetry about %? e It is amusing
to note the similarity T,(W*,a°) has with T3"1(342,42) when
each has two zeros.
The dispersion relation To and T, can be treated similarly.

For T4 we have
oo

Telwy ar) = -3‘[\\!‘;.:;"*&1 * w‘; nt] " .( Jon T, (W5a)d W™,

Cﬂ'l'/s)"
—‘- - .—-!—-—l—-'
Lowiwr witalew? (4.27)
and picture between the cuts roughly
TulwsaY 4 1 :
| 1
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' 1
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Again one cannot conclusively predict complex or real zeros,

Instead of (L4.14) and (4,15) we have

T (2,0 = -1%_ for 2 —» infinite circle
(L4.28)
o
C, = 31- & :'_;_ I-mT,, (w"a‘]dw'*
Heu)?
| (4.29)

Hence the function [(li-a)(i‘ﬂo‘) (i‘-a-u-ﬂo) 'T (% aY) *C‘J

is analytic apart from poles at g = Moz. a2 - Mo2 and
the cuts of Th. and converges to zero on the infinite

cirele, Therefore

T (2,0%) =

(3_*_“) { A(ar-2M3) = (=13 ) (2-a"s M}).

[c-. . S @AWt I T, (WEAYW, 4l )J}
. 4 ~ x N t Iy 7
(Hpay® (WE M) (WE eMS) w=12 w'Zate Z

(L4e30)

where we have preserved the anti-symmetry with respect to

1

2
g = -9-‘-2- , and we picture Th- between the cuts as
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To obtain an exponential form for T, or T4'1 we must consider

(2-M%) (-otart) o ]
Ao (2, A%
the function log [ Y (= a2) » (¥, 4%) « Once again

similar answers to those of (4.22) to (4.26) appear,

For T2 there are no pole terms and we picture T, as

o) p !
I
I
1
i
l
'
|
a=-(Men) : (H,ut)
l
|
|
|
|
1

Figt ;_v-6o

Th~> form of T2"1 is the same as T4"1 but with a different value

of )\“ in general and to find the exponential form we consider the

Ci'ﬂt)(%-a‘-o- M) T L 3
- . *
function log [ o (12) a (¥,4A%) .
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The results then (4.25) and (4.26) may apply to Ty Toy T3
and T, but in actual fact resonances may not appear in tli':L and
T2 for similar physical reasons that we gave in Chapter III for
why we do not expect a resonance in &8(-m)., It is simply that
Tl and To have no pole terms so if a resonance is due to a
single particle contribution then it should not show up in Tl
or T, to give a pole like behaviour,

The application of these techniques to the other twoeparticle
scattering amplitudes that we mentioned earlier 1s just as
straightforward., Calculations using unitarity to find the
dominant contributions to Im T"l(wz, a4%) will provide a
eritical test of dispersion relations in predicting resonance
peaks,

If (4,25) is approximately correct for all 42 in the
range O € A° < }_ p(2M = p) then it makes a contribution to

the total cross-section for 1~2 o~ M,‘.2 of

]
o(wY) = -"-; s L d(uns) .
My 2, 1 (HS=wr) - iM, (@M ?

Ky
: T t 8
3 :‘ [ oy S (w*- n:;“%[ Mo r(ay]*
9 (4.31)
where
K = Ewt‘ Cﬂ%)‘lfw - (H-;u)‘l by Ll"lv‘- (] f/-.d"] ["7"-' (Hyu)"]

Awt oMyt

< -:';/- (-'-H-/a) provided M < (!"i-o'.i./---.)t and 4> 0

since M+ > Ci"lg,»)" > (M-m)
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It is easy to verify that @ (‘v!z) in (4,31) has a maximum

at W = M“,,_,2 and is symmetric about W = M.,,,z. Thus we could
write c(w2) roughly as
T
ooy z = . ' (4432)
My K& (WE MY+ (M, P "

where T 1s the average width given approximately as

3 b
da*
[rcavy]™ (4.33)

A

If (4.32) 1s to be observable 7 <<<< M, so that we have
a sharp pegk in v(wz) at W N ,_2. Therefore we have a
Breit-Wigner form of resonance in the total cross-section.

Elementary unstable particles or particlesunstable under
strong interactions alone and decaying into a pion and a nucleon
would therefore contribute a resonance of the formm (4.,32) to
t_he pion-nucleon scattering cross-section.

A resonance in the unphysical region has a rather different
behaviour as a function of w2. e need not repeat the Schwinger
technique agaln since we noted the symmetry property of the
dispersion relations, i.,e. symmetric to the replacement of w2
by as:2 - hF. Hence if we have a resonance in the physical region
given by (4,25) then we must also have a resonance in the
unphysical region at the symmetric point unless some selection
rule forbids it and destroys the symmetry. The resonance in the

unphysical region related by symmetry to (4.25) contributes to
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the absorptive part of the scattering amplitude the temm

(a*-M3) M cad)

Ta T (WL AY =~ 92
I (W emd) e [aamrcay]s (439
where 3
r'iat) = —L . Iva T-‘(Q‘.ﬁ,"’ At)
@*-H3)
Mo &
T otk (4.35)

This resonance makes a contribution to the total cross-section of the

form, for wz in the unphysical region,

oWy = 2 4; d(cen® :
o J (Wi ot M3 4 [H. Pah] e

5 ol Bl & &2) is relatively insensitive to variations in AQ and
remains very small for -1 £ cos @ €1 then we can treat ™ as
a constant and integrate (4.36) since o = 2w'F((-cnB)sam‘edut

where

a . [wt- et [wicnom]

P P (4.37)

Qr the maximum value of A2 as cos 8 varies from -1 to 41 so

again we have © € K'y < f:/-- (AM-s) if approximately

(M-2u)* < WP < (M=)t JF

# Actually the lower limit of ‘_F should be slightly higher being
roughly 27;12 for M =7u



Integrating (4.36) gives

a (k3
o(wr) = e B r st LA
Ky M, MWt Lrt?, P s (Wwtam™ 2+ HI)(WEIME Ll e My —4 Ky
(4.38)

This has a much more complicated shape than that of the simple
symmetric Breit-Wigner type. The shape can be seen more clearly

if we write (4.38) in the form

gq. i v Ak
o(wr) = dr et (W=AY) W= )" e
My (W2 A% (W2 8Y) e [(WE c*)WE DY) + P DY)
(4.39)
=
where Ag = (M + 9)29 Bz = (M - 9)2’ 02 = (A—%B - r',.,
M

p*= 2v% + 232 = M,® and 1f we choose M, 9u, M x 74 then
2

22~ 64p?, B%a 3642, c®x 204%, D°x 1942 wnile if

M, ~ 8. ~ A then 132:; Caﬂ;D2=; 36p.2. The larger M, becomes

compared to 9u the smaller and more separate become 02 and 1)2

if M and p are fixed., For M_x~10p 1in fact D2;g 0 and
becomes negative for M_ > 1Op.

For the case M_~ 9% we find a pronounced peak in o'(wz)
between the values'. %(CQ + D2) amd C° {.e. z26p.2. The shape
can be drawn roughly as follows and the sharp variation from the
maximum to point B2 is due to the factors (‘.@2 - ,&2)'1(142 - ]3.2)"1
which are relatively ineffective in the region between the origin

and D2 «
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'As M, approaches (M + p) and D2 and 02 approach B2, the
peak becomes narrower and narrower and more pole like, In
contradistinction as M, becomes large the resonance moves to
the left and spreads more over a larger region of the axis, This
curious behaviour can be explained by noticing that the resonance
(4.34) 1is integrated over a range of cos © which implies a
movement of the zero of RL T™' 1i,e. the point a2 - M, 2 1s
spread over a range given by the range of A2 as cos @ varies
from =1 to 4l. The range of A2 is precisely K?,.' which is
zero at W2 = (M - p.)2 and so if the peak is close to (M = p.)2,
it becomesconcentrated near this point, If the peak is far from

(M - p)z, the range of A® 1s large and the resonance is spread
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out. The position and shape of the peak therefore depend on
_M,.2 in just the mamner we found from (4.39). A similar

argument assuming the existence of an unphysical sheet pole

has been given by Nauenberg and Paiszs) for a special case.

We now have a basis for inserting resonances due to
elementary unstable particles or otherwise into dispersion
relations derived from axiomatic field theory. The theory
is capable of describing elementary stable and unstable
particles on an equal footing apart from one very important
aspect, So far we have oniy been able to discuss the scatter-
ing of stable exteornal particles and have allowed unstable
particles only in internal processes, No treatment has get
been evolved without some serious assumption or assumptions
to deal with the scattering of unstable particles, We needed
no wild assumptions in order to derive z spee”ral representa-
tion for unstable particle propagators. Unfortunately the
conditions under which dispersion relations for scattering
amplitudes have been proved in axiomatic field theory categoricale
ly exclude unstable particles in external states.27)

In the spirit of the techniques we used on propagators the
best we can do here is to add extra strong interaction absorptive
cuts to the strong interaction cuts in (4.9) for example and
assume the dispersion relations are still valid. TLet us con-
sider then that we have an excited nucleon of mass M " capable
of decaying into a nucleon and a pion under strong interactions
but stable if we switch off some of the strong interactions. e

take the dispersion relation for the scattering of this excited

nucleon with a pion to be of the form
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oo
W',' 9 LA "t AL ! . qu 4o bo
Tiw, A" = 2w Ih"w ’A’[ WEiw-iée Y WA W iE (' :

where from (L4.2)

-:'!.,: (he h?) 2

‘ oo
e (we, &%) = J’J‘... & <p1[TCRY, TR PS>

= (am)* Z[<|-':Tcwlp..><p..lT(o>lp> SCpn-p-k)

— <PIT) [pn><pal To) Ip> Spu-prh’)]
(4.l2)

and

T Tows o™ = 3 [ Iwiayy - n(atwhay]

T

A = 44T+ 2M* Lt

(4ol42)

If we switech off the extra strong interactions causing the in-
2

stability of the excited nucleon the lowest value of =-p ° = -(p + k)2=

for whiech ImT £ 0 is #*2 vwhich denotes a discrete pole term and

the continuous threshold begins at (M'+ p)g. In fact we have the

game situation as for pion-nucleon scattering but with M* replacing

b1
il e

If we consider all possible strong interactions so that the
excited nucleon is unstable, the lowest value of -pn2 is M2
denoting a discrete term and the continuous threshold begins at

(M + 1)%. This implies a system of cuts for T(%2, A°) of the

form

2
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The question is what happens at the points M‘z, A2 - M'z, M2
and A2 - M°, The effect of the right (left)-hand cuts on N*°

(A2 - M'z) should be just the broadening of a § =function to a
resonance shape in Im T that we are familiar with,

The dispersion relation (L4.40) ecan be written using (L.L42) as

]
T(W"'A‘- H —L-j % T At (] p
s AY) pye dwir I (w .ts)l—wﬁ_w,_,.‘.e @ ———
"1-
oo “-'-H“‘
= 2] | dwt T Tovtay o [ dwn (alogay) - it o)
n o e L
M K72

] (]
..-
e [ whwkie wfin‘fw‘fce]

T = ‘L -
- % S dw' Lo Tiw s 4%) w‘l‘w" '€ = w‘-"'-'-A':bw'-i-:‘e] (Lolh)
A7

It is straightforward to show that the points N™ and A2 - u™2

are points of resonance similar to the previous sections of this

2 2

chapter, The peak at A~ = M in the total cross-section now

2
occurs between the analogous points to 02 and D~ which are now

between the points Ag and B2 g0 a sharp drop to zero can occur
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on either side of the peak.

2 2

The candidates for poles M and A" = M2 ocecur above the

extra strong interaction thresholds 2%« ¢ u)z and (M”+ u)z.

If we assume the behaviour R¢ T 22 Cl?' 2

wzx ll2 and GM is a constant then we may not have a peak since

(ME - wa) for example for
Im 773(u%, A%) 1is not necessarily small. It follows then that
broad resonances appear likely which may or may not be observed.
It has been canjecturedzg) that the resonance at A2 - M2 in the
excited nucleon-pion scattering amplitude may produce a resonance
in the pion-~nucleon scattering amplitude in the same energy region,

2 - (M + 2u)2. This ecan

i.e, above the production threshold at W

only be settled by a reasonably accurate calculation from the

dynamics of the problem of coupling the nucleon=pion amplitude

with the excited nucleon-plon amplitude using unitarity. Je

suggest however that the resonance at (A2 - M”Q) in the excited

nucleon-pion scattering may have some further resonance effect

on the pion-nucleon scattering if a resonance at (A2 - Mz) exists,
The theory of unstable particles in dispersion relations is

also incomplete in another respect, S0 far we have only been able

to build in single unstable particle terms and have largely neglected

any modifications to multiple particle thresholds in which one of

the particles is unstable.
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DISCUSSION

The primary purpose of this dissertation has been to clarify
and extend a uniform theory of stable and unstable particles
developed by Schwinger, Originally Schwinger based his ideas on
the structure of a one-particle Green's function for a spinless
boson field, We have carried out the generalisation to one=-
particle Green's functions for a spin one-half fermion field in
detail and indicated the trivial extension to a wvector boson
field with mass, e have, however, taken care to avoid the
use of‘aeparate P, C and T 4invariance but only required (PCT)-
invariance when considering'weak interaction phenomena, This
does not alter the conclusions nor will subtractions even if
they are necessary for the dispersion relations we use, The
(PCT)~-theorem ensures particles and anti-particles have equal
masses and lifetimes., We have neglected electromagnetic
thresholds which appear at poles and at zero energy since the
character of their branch points is unknown, but these also
seem unlikely to affect the resonance formulae since their
contributions to spectral functions should be zero or small close
to such branch points, The Schwinger method is essentially based
on an 'intuitively obvious' result for a one-particle Green's

function G(s) of a complex variable &

I G '(2)
[Re67'2)] "+ [BmG 2"

I G(2) =
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whose proof reguires great care with analytic properties of G(z).
We need only characterise unstable particles of mass p or
resonances in Im ¢ by REG + (ua) =0 and Im G-l(uz) A0 but
very small, Then [Im G-l(ug)] “l 48 essentially the lifetime
or inverse width 1==]VT « Also R¢ G-l(uz) = 0 may be caused
by any singularity or combination of singularities, We have
considered the case of strong and weak interactions acting
together as the exact one while the case of strong interactions
acting alone is purely hypothetical, but, because of the uncer-
tainty in p and Y , it was unnecessary to work with better
than first, non-zero, order terms in Y, #e have shown that
these approxiﬁations are consistent if the condition for a
resonance to be observed is true, i.,e. Y <<<< p,

Much fundamental work has yet to be done towards formulating
an operator algebra for unstable particles in field theory.
We have proposed some properties of one-particle unstable states
in view of their general validity in Quantum Mechanics and per-
turbation theory. Ve have defined one particle states without
using the asymptotic condition so that particles are created and
annihilated at a finite time, We cannot observe particles with
perfect accuracy so a one-particle wave packet need not describe
a single particle exactly but must be almost exact to be observed
as a single particle at all, Therefore a wave packet may not be
observed as an exact one-particle wave-packet due to one or both

of the reasons (a) an imperfect experimental set-up, (b) a non=-
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exact one-particle wave packet, The time dependence we observe
is that of a one~particle wave packet rather than that of a
Green's function, It is the filter effect of the unstable
particle wave packet on the Green's function which takes account
of the experimental measuring process rather than the artificial
mass filter used by Schwinger, In spite of various correction
terms to the exponential decay law for very large times, the
effect of the experimental limitations is the strongest, unless
we cannot avoid the includion of a threshold, electromagnetic
for example, within the energy range for ohserving a single
particle,

We set up a model of a decay process which may not be far
from the true situation in full field theory but we have to
assume maximal analyticity to make continuations into unphysical
sheets of G(&). Considering two-particle cuts we find not only
a pole in the lower half of the first unphysical sheet associated
with a resonance but also a complex conjugate pole, In an ex-
tended model with two channels we are not in agreement with Levy
since ﬁe find no ambiguity in associating poles with particles
or resonances, There is, however, only one pair of complex
conjugate poles on a particular unphysical sheet which directly
produce a resonance,

The techniques which we used for propagators is usefully
applied to single dispersion relations for two-particle scatter-
ing amplitudes similar to work by Moffat., For the sake of rigour,

however, i1t is necessary to consider only reactions initiating



and terminating with stable particles, A new feature of such
reactions may be the presence of high energy resonances in pion=-
nucleon scattering occurring in a manner suggested by R.F.
Peierls and having a curious unsymmetrical shape,

Perhaps this more or less complete dispersion relation
treatment of unstable particles or resonances cen be used as a
more rigorous basis for calculations of lifetimes even though
it will be necessary to resért to perturbation theory to find
the absorptive amplitude from unitarity.

In all the foregoing we have been unable to analyse
multiple particle thresholds where one of the particles is
unstable, |

It is yet to be shown that field operators for unstable
particles exist and satisfy the usual axioms apart from the
asymptotic condition, The poseible construction of such field
operators provides another interesting problem which has been
examined to some extent recently by Hama and Tanakale). We
have not tackled such problems here but have assumed that un-
stable particle field operators exist or can be constructed.

Lastly, it has not been demonstrated that the presence of
a resonance in the absorptive part of a scattering amplitude or
cross~-section implies the presence of a particle., We obviously
cannot assign a particle with every little bump discernible in the
cross-sections o1i reacticons, Clcarly the use of the very concept

of "particle' becomes doubtful when one entertains such thoughts,
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APPENDIX I : |Notation in General

Any notation not explained here will be defined as it is
introduced in the text,

%y T C%iyNa Ny TNe) = Cx,C:) represents a four-vector and
g J,“J“J”’J% - JJ!.‘ J," is the corresponding four

dimensional volume element,

1o0©
= [0toO is the metric.
3/‘.-0 OO0t O
00 06-t
$

<p =1 if o = B and zero otherwise is the Kronecker 8 =-gymibol,

M J/" = %, J' = 5.} - "°J° is the scalar product of two

four-vectors.
2 2 s
d=v- 3_;‘ s %" *%;t*%::;‘ - %‘:1 is the D'Alembertian,
) ", * M,y

$40x) = Scn,) 80qy $ 00g) 800) = S%y) S(xg where $ is the Dirac symbol,

e(x) = 1 1ir x, >0, 0 if x, < O,

T before a product of operators will symbolise the time ordering
of these operators T ¢(w) 5{(,) = 8(»-:)"(’;) ﬁ(}).‘. p(a._-,.),u,) 2%
Tain 1!1'01) = 96‘-3) Y69 ]lr(J) 4-9(3-’0'{’(:)‘#&)

[A, BJ = AB - BA 1is the commutator of two operators A, B,

[A, B} = AB + BA 1is the anti-commutator of two operators A, B,

Take the natural units B = ¢ = 1

Use * for complex conjugate and t for hermitian conjugate,
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A neutral, scalar or pseudoscalar, hermitian Heilsenberg free

field operator A(x) satisfying the Klein-Cordon equation

(0 - uz);ﬁ( x) = 0 describing particles of mass u, has the
comnutation rules [;S(x), A(y)J = 1 A(x-y) where the invariant
function is defined

Aoy = :5'.-), jJ"ft c.;‘x

@n 8(’!"7“) [9‘*0) - 8(‘*9)]

In order to define normalisable states we must use a discrete set
of normalisable "wave-packet"™ solutions of positive energy {fo,( x)}

of the Klein-Gordon equation so

= c&'&

foo0 = [ doh cko) SCRP4u)

£ o

These solutions form a linear vector space which becomes a Hilbert

space by defining the scalar product

(Sur$a) =t [doron f oo 2 fom = S
-c0 A
<«
h
where ® 3 § )f.., ¢ j o7
¢ 35 MEER
end d8*(») 1is a space-like surface element with normal n .

¥
This result is not dependent on np‘ since :I.'a_ and rﬁ obey the

Klein-Gordon equation, The system {fa.} is complete and obeys

(- -]
‘Z'," fooo $lop = & A% - 7MY
where
chiney)
Am(n—-a' M) = 2 ), fi‘k OCko) S (h%ut) a ¢
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. ‘IC!I-} )

A‘-)(n-y 3 %) = C-‘ ), IJ “k 0(-ko) S(In.v..

- AQ,C’-,‘ :‘)1’

A f"-z kY A“’(n-; H /..tj R AC-’(u- b g 3 pat)

Whenever it is permissible and convenient we shall replace the

{fa( x)]’ by a continuous system of plane wave amplitudes

oo
TR [P o d%
= 1'7.1;, Sk o) Schid)

i
is an invariant choice of plane waves which implies

(.fut »,f.t') = a(amdh 8(k-k')

in the limit of plane waves,

Ve can expand A(x) in the form

o o & ot
¢(7¢] = Z (f‘ ) " C’%) -l-;‘ (¢S j‘ (x#])

ket
where
o 5 > i
‘ .
ﬁ (t}“ = "GIJB'/“'C.N) iﬁ(u} s—::‘ j‘ ‘“)
- o0
[- = =D
«T e )
$7 oy = cJ doMan Fo %‘ f, 00
- o0

which are independent of JtM for free fields,

Further [;50', ;SB"'] = SG-B and single particle states are

formed as follows ja® = ,60"" 0> having unit norm,
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Finally we shall often have occasion to use a quantity e » O
which is to be regarded as a very small positive number and is

allowed to tend to zero after all other operations are completed.
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APPENDIX 2 ¢ Miscellaneous Topics from Chapter II.
High Energy behaviour of G -kzl

[ _-J
It s SC-&H.J x* is convergent we have the more detalled
(4

asymptotic property CGehr) » (h‘-y;:)" where

o0
Mo = A+ s (w) = .[ ke (k) d ? and therefore

o0
CTChY = B ug -J' s () diet
[}

K*s R* =€

The quantity Ko defined here is identical with the quantity called
the bare mass in pseudoscalar meson theory but the definition above
is independent of the type of interaction, Schweber'a2h) inter-
pretation of this asymptotic property is that at large values of

the momentum or small space-time distances the propagator G(x)

is determined by the bare mass,since x 1s very small the self-
coupling has had no time to take effect, Ford,zs) however, is of
the opinion that this asymptotic property implies a very sharp
resonance peak at very large energy which may be due to some
extremely heavy quasi-stable particle with the same quantum

numbers as the neutral boson usually associated with the propagator,

Resonance formula derivation

In Schwinger's calculations he appears to set So(-ht) = Sw ()
in obtaining the approximate equation (2,48). Consider the eguations
from which (2.48) is to be obtained

- h S CkY et FEhY) > g (Krepu?)
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We note here that S.CRY)> 0 if -k2 > sz from earlier

reasoning so that it is cot ;6(-—1:2) which has the zero or near

zero at -k2 = p.2. In fact we expect 4 to have a behaviour

which is almost discontinuous,since k% = u? 15 almost a pole m GERY,
and therefore varies rapidly from a value near =« %o a value near

zero close to —k2 = “2’ i.e, passes through ""/2 where cot g =

Hence near -k2 = p,z, A(-L'.Q) varies rapidly and the centre of the

variation occurs at -k2 = y.z. If we now write

ﬂ{ P8 Gt - (Rl t)[ﬁ)(ksuck)ﬂl . ‘}_u’tfu-&.t)

= eo "(thte b7 e t)
then we can neglect ok
( ‘ ‘) “‘t i‘C-h‘) [ JC ‘I.‘) ( h"jl k" :/u

compared to the other terms in this approximate equation provided

-k2 is near enough to p.2. Therefore

Wt Sow ). wt g k) 2 @5 (Rt
and with

- 8
-nt Rt sy (-hY) p RV = [Lala gEkY)]
we have
[r go ptswipur)]
(k% ut) '+ [» Po M -Sw(/l-‘ﬂ
and since we expect Py tq have the large behaviour at -k

-nthts,, k') o, kY =

we can write the left hand side as T ' Swimt) O, CkY),
Ve have therefore shown the approximations involved in writing

(2,48) and (2.49) to be consistent and valid if -x° 1s close enough

to u2.
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zeros of _a{-k)
If GS(-I:Q) has a zero at =k° = 0> then a term A%e/(v% k*)

must be added to G;]'(-kz) in equation (2,32). A term A'sd /(% kt)

must also be added to G -(=k2) in equation (2.37) provided

u"<_ n:,' gince the introduction of wesk interasctions to

-1 2 2

G may not mean cutting the axis at k™ =49 but will move

8
the zero and alter the residue a little at least. These extra

terms will then appear in the approximate form of RE G~ near

u.2 and thereafter alter the formulae (2,47) only so that

1 = ‘-.! = - J 7
/" =/"'st"' E'o’ [-‘w - ﬁ:-é—u‘ -+ .A"__O_ Lh f(J. < fK‘J K]
a0

-t _ -1 -\.'I"""-igir = Ors d v
Ceo)™ = (ea.s * (1:"!"/“"-)'- E':"?,:ﬁ‘- W Ff L KEat .f:‘t(“t"“m‘”
Yar

where the extra terms tend to ecancel since we expect otz vt

and Bo ~ 30‘.

If we have ~*» ng then G 2

-1( -k2) has no pole at

but we expect a pole~like behaviour near -k2 = '02 which will

produce terms in ,u2 and (po)-l to almost cancel "So s /(ﬂ- *)

and =9 .s./(o" )t In fact, if we put for —kzz o

RLGs (-h?) = = (560%™ (o kt)

and find for ~k°a - 2a o' 2

RLG (C-h*) =~ - (sS4 2’y ('Y RY)
where

o't = - Koo Pﬁ I p“,(u‘-)clk‘-

K":- Q™

oo
(569'Y) " = (3007 Pg Cw ““_’__J Kt

ko)™
Ky ¢
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then we also have

’ L
Swint) x 3= @ .
T (KR (9)

where

R = msg o' @)
This term produces the pole-like behaviour we expected in i
and indicates what happens to zeros of GB(-kz) when covered
by a weak interaction cut., They do not appear to have any deep

significance and we shall ignore them whenever we can,

Consistency of resonance formula.

If we calculate the contribution the approximate formula for the
Breit-Wigner resonance makes to the propagator, we find
. 00

; e | ek gh . ¥,
G (hY) ‘53 K k*t-c€ = C"'z-/l:;t*‘mt

Ik + k2
Lo B (-h-KE) ee. L&"L—"w) /“L}JW]

=k (bt + (Gu)*

The first term is the one we expect from the approximations we
made in putting RE G k) x= E3'(-h*=a') with L»G-;u"') = -%}
The extra terms will be negligible if u2 - sz >>>> Yp which is
satisfied if the resonance is sharp enough to dominate the

correction terms to the exponential decay laws, This condition
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is essentially the result (1.11),

Therefore the approximations made in reaching the resonance
formula for pw(Kz) are consistent with one another if we have
a sharp enough resonance or more accurately if the particle

condition stated in Chapter I for unstable particles is satisfied.
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APPENDIX 3 3 "Two Particle" Unitarity and Cross-Sections.

Here we show that the unitarity condition can be written
concisely in the form (2,60) given in the main text, We also
exhibit our conventions for defining the partial wave expansion
of amplitudes used in the main text, deriving the one particle
contributions to the absorptive part of a scattering amplitude,
and defining the differential cross-section, For simplicity we
will be considering only the centre of mass frame of reference
which is sufficient and convenient for our purposes,

The definition of the imaginary part of the propagator we

found in (2.12) to be 7te(-p2) where from (2.9)
OC-p) O(pa) E-PY) = (am)® ‘Zko:,ﬂonk.k;a»l‘

and now we consider the case when [p, aD> = ]kl k, in >

a two particle in-going state with -k12 =M ~k22 = m22

and p = kl + kz, therefore choosing the Lorentz frame
R=k +k =0

0 -p*) B(po) p-PY) = @w) _[J , ““ SChEemt) SChEewmE) Olki,)B(Ry,).

S Cp-kimha) (ki e o). | <ot piort kikaw>|*

(-111’) “ _[: (k hlﬂ:‘)(b‘bt) S(k 1-&\)5(1’0"&!;"!5) l(m‘ﬂo)”! kt“h>’

[ 4 -
o] ok S IERT T <ot p b 31

2 41 (T [BnT) Ik -[o% k? thbim
@ﬂ)“i * .(hlg'f hlo’ S(Po I M‘ J ™ )l(OI#p’ h" )l
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where we have used the fact that (ot g1 h ko dn> depends

ohly on|kf by invariance and we write

<otgiosthyhotn> = (16m)™ U [, +ha)t]

where \V is closely related to what is known as the invariant
'vertex' function which is defined later, We can finally write

as the general result

* Y
o [ep-memd ] [P - Cnem DTy
mw (-kl)

We can derive a similar result for the absorptive part of

Py =

U‘(WQ), which we can obtain by replacing 16( -xo) by % in the

following form for 'U‘(‘ﬁf2), where ( [] - 11112)36k (x) = J(x), wusing
1

the usual Lehmann, Symanzik and Zimmermannl) techniques

-
< ck,x
V(w?) = -‘““”"T.a[.#“ <ol £ geor, Tey]1he> BE20)
and so
0o« e [ S e, 0] s

( Ch,
& (16m)'e S dbea {: { <oi#cors Pind> <Pplant Ttk >
-0

= Kol TOOpimd><pinl g0 'h?}

A
= BN G (poki-ky) <OIBO P RS> <pint Tcort he>
4 (1em¥ »

ﬁ:::)v., H Jﬁ; :)?‘S(h"' ) SCh e md ) OCky ) BCRI,) § (A )S(ﬁ'eh} ~&,).

. <ol Feor 1R b oa> <RIk T ()R>

T JFonT)—LEL_ (d(cond). Schekibigbry).

A cmr)‘ (tew)™ I (e ay) o

. <o gioyl R by in> KA R{SnITCo) (RS
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where we have put Lp'5wd> =2 (R kY Ga D> to find the two

particle state contribution with p'zh'ek) , —h/*z2m>, -h{Y = m,t

k/ekd = p’ = 0 . Ve have also used the fact that
<ol #mnh';k't-?n)(h‘:h;_&nlﬂ’(o)lll,_) depends only on | k‘l ana

cos © = ki R/ Ikl IBYI by invarience and we put
»
Kk R ol Tr 1Ra> = 46w §F [-Chivh)?, cond] |

where F( -.-'!2, cos ®) is the invariant elastic two-particle scattering

amplitude and we have 4A¥z = (k~h{)* = -2k 1(1-ce58) g5 the
invariant momentum transfer, Therefore in general

Vo - Ya '
AbsVU(W?) = Lissene Mﬂ..,_t L fruetd U4 | d ccond)[Fewt c06)] !

Ya Y
- 1 t- - L "
L e may ] [t bomm T Py g [, (w]
w‘
/
where we have used k., = k,, , ka, = k,  since |k( =K'l
and we are considering an elastic scattering amplitude F'(w2, cos ).

/e have elso defined the partial wave expansion

-
F(W? con®) = ‘2 (2h+1) FyiwoB) F (wt)
s0

{
Fwd = 4 | dcwed) Blcon®) F(W} o)
: -t

Elastic unitarity for the full amplitude F(Wz, cos ©) is
obtained by writing

Fiwters®) =  (U6™) ' Che i Tod k&Y o

.
L3

~i(horkl)x
B~ fJ",.. a® <k [3C%), TERY 1R Box)
~w
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and therefore the absorptive part is

oo -‘l .‘h"h:)“
M Bt css®) = L [4*“. <RI [TCE), TEE)] 1AL

' e -{.‘.(lt.-*kﬂx
= = [d%e Z { <kl TCIphm> <Pt TERI ALY
-do

- <hal TEENPInISPInI T(EIRID |

and putting a two-particle in-going state [ R kY in D
[/ 7 "’ 1 7
ingtead of ”:“,v\) with -h.'tz me 5 -h-.,n's "y, .‘-l-k.: = p" = k.,-l-k; ? éu% _'5;‘?.0

3
Als F(Whcos®) = QE} %‘.‘ SCPp-bi~h )< k2T IpHn><piynl Tl Ry >

3 "
@t) ‘“ .:I"?;“J:k; SCRemE) S (ke ) B ki ) Ok ) SCR e BY) SCR k)~ k~Ry),

K 1T Rkt D> Ry Ry I T RY D

EW - (gtag) J EW‘-(M.-M‘) J l h| ( h.“ h 4
Wt Idmk. . F ue.! TR

where 54&(5-") contains the integrations over the angular

directions of Xk, only.
"
. ¢ Wt Bk £lw _*1_.2_
If we expand F(w.mo),F( ’ l,l_t{'llg.l) and ( TSHITH in partial

waves we find that the last equation can be written

Abs F, (W)
. O Vi g0 !
wt =4

U'z0 f20 47

h(". h, El:: é'l’ *
P P, ( W h‘) B (TE":TET) o w[F, (w?)]
Fw {4 e) ] [w -Ch.-\ﬂs)"
Wt

NGO

i
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4

‘ ‘ b"‘. ‘ ) 5"" b'f = '/ gk

- |

after carrying out the integration of

L (Reh)h" L k") Py mp.(ﬁi) o Blth

v ()L *‘)_EJ“"“‘”I“‘“-"‘ “*®) %\ isriimi) o\ tariie
and to do this we put k, = 804 851 )5 gl' = (sin &, 0, cos &)
and Bz (siny corg ainYaing , cony ) so the integration become
; ] ' am

1 " - .
T (¥4 (4 +‘.:)S‘Jcmo)j' J(m"p)f&,‘ Peleen 8) By (o) B, (coniprcost +aimypbmPeosf)
= - °
- s‘ezﬂ s—el‘eﬂ

if we use the standard results for Legendre polynomials,

Pr (08 ooy +.0im Bndny cang)

bl
= Pa(eo®) Pr(cny) + 2 Z (l-_____"n)! P oo D) P‘“(w:'{ﬁ') I’-In‘hé
mz) (mem)l

\ i
(ae{)j Pind Poonydoe = 8,0y | _f Pon GO PR (w)dx = © T{ rfo0.
-l -
Thence 1t feollows that we have the regquired result

T " v" ‘-(Vﬂ— 3 Ya
Moo Folw?) = [irscomermil fw i PR
w

The one~particle terms in Abs F(wa, cos ©) can be got from the

above results by putting lp" Y = Lk a one particle state

with -k =m® say and k =0, k=1k, + k, =p"
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o0

A - @’ d_i ll."b * P [ h-h.-h .
Al FiwSemd) = 42 -L c-m"sc wt) OCko) S(R) S ¢ v)

Kl TN kD<) T 1RLD

= 8Choheheo) o jv Ltk I
2ke

n

w SWE LI VEDIY 2 e § (Wit

where g 1is the coupling constant and V is the invariant 'vertex'

function

<R AT RS> = (o)™ V[-(g,...g‘]s,]

where (E}I is the anti-particle states of (kll .
The differential cross-section is given in terms of the physical
amplitude f(e) by

il :
< - %flf(o)l

where Qps Q4 are the final and initial magnitudes of the three
momenta and & the angle between them, i,e, we are in the centre of
mass system that we have used throughout this appendix, The invariant
amplitude is related to f(e) by

Fiwswo®) = L w £(8)

and since we deal largely with elastic scattering, then Qe = 4 and

éc' W 4 1 S
— o= | F(Wwicen®) |
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