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Abstract

This thesis concerns some of the different ways in which integrable systems ad-
mit finite-dimensional reductions. The point is that partial diferential equations
which are integrable (usually in the sense of being solvable by inverse scatter-
ing) admit certain special classes of solutions, and these special solutions may be
viewed as finite-dimensional mechanical systems in their own right.

The first chapter introduces some of the important concepts and structures
associated with integrability, and includes a brief overview of some of the appli-
cations of integrable systems and their reductions in field theory.

Chapter 2 describes the scaling similarity reductions of the Sawada-Kotera,
fifth-order KdV, and Ka.up-Kupershmidt equations. Similarity solutions of these
evolution equations satisfy certain ODEs which are naturally viewed as fourth-
order analogues of the Painlevé transcendents; they may also be written as non-
autonomous Hamiltonian systems, which are time-dependent generalizations of
the integrable Hénon-Heiles systems. The solutions to these systems af€ encoded
into a tau-function, and Backlund transformations are presented which allow the
construction of rational solutions and some other special solutions.

The third chapter 18 concerned with the motion of the poles of singular solu-
tions (especially rational solutions) of the NLS equation. 1t is demonstrated that
the linear problem for NLS admits an analogue of the well-known Crum trans-
formation for Schrodinger operators, leading to the construction of a sequence of
rational solutions. The poles and zeros of these rational solutions are found to
satisfy constrained Calogero-Moser equations, and some other singular solutions
are also considered. Much use is made of Hirota’s bilinear formalism, as well as
a trilinear form for NLS related to its reduction from the KP hierarchy.

The final chapter deals with soliton solutions of the Ag) affine Toda field
theories. By writing the soliton tau-functions as determinants of a particular
form, these solutions are related to the hyperbolic spin Ruijsenaars—Schneider
system. These results generalize the connection between the ordinary (non-spin)
Ruijsenaars—Schneider model and the soliton solutions of the sine-Gordon equa-

tion.
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Chapter 1

Introduction

1.1 General Introduction

Whenever one considers the various models available to describe the physical
world, one is often struck by “the unreasonable effectiveness of mathematics”!,
General relativity and quantum mechanics, the two main pillars of twentieth cen-
tury physics, are particular examples where exact mathematical solutions display
a remarkable agreement with experimental observations. Increasingly, however,
it has been realized that most realistic models cannot be solved exactly, even in
principle. In the latter half of this century, there has been a great deal of interest
in systems of both differential and discrete equations exhibiting chaos. Coupled
with the rapid development of computer technology, this has meant that many
scientists are now largely inclined to explore their mathematical models with ap-
proximate numerical experiments. Running contrary to this trend, yet also having
come of its origins in work done with computers, the last thirty years has seen
a dramatic growth in the study of completely integrable nonlinear differential
equations, with whole hierarchies of such equations being discovered. It turns
out that these integrable systems are also relevant in a wide variety of physical
situations, ranging from the propagation of water waves to quantum gravity.
Given the inhuman accuracy and speed of computer calculations, one might
wonder why completely integrable equations should be worthy of consideration.
From a mathematical viewpoint, it transpires that such equations have many
beautiful algebraic and geometric properties, and thus are of aesthetic interest
in their own right. Taking a more pragmatic view, not only are exact solutions
extremely useful for testing the accuracy of numerical algorithms, but also many
modern physical theories (such as the Standard Model of particle physics, or the
neural network approach to brain interactions) require calculations so complicated

that modern computer power is tested to its limits, and for this reason it is of
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prime importance to develop integrable models.
The period of renewed interest in integrable systems began in the 1960s, when
it was discovered that the Korteweg-deVries (or KdV) equation,

Ut = Uger + 6”“1:,

admits exact, stable solutions in the form of superpositions of an arbitrary number
of solitary waves. These waves, which were originally observed in numerical stud-
ies, have the remarkable property that each one preserves its amplitude and speed
after interaction with the others. This was very suggestive of the behaviour of
quantum particles, and hence these special solitary waves were named ‘solitons’.
The reason for the existence of these soliton solutions turned out to be connected
to the fact that KdV has an infinite number of conservation laws, which mean
that it can be interpreted as an infinite-dimensional integrable Hamiltonian sys-
tem. Even more fundamental was the discovery that KdV can be viewed as the
isospectral deformation of an associated linear eigenvalue problem, which led to
its exact solution by the inverse scattering technique.

The original work on KdV has inspired numerous generalizations, so that
large classes of integrable evolution equations are now known. In turn, the new
methods used to solve these partial differential equations (PDEs) have produced
great insights in the understanding of integrable systems of ordinary differential
equations (ODEs). Furthermore, as well as the soliton solutions, integrable PDEs
admit many sorts of special solutions (such as rational solutions, and similarity
solutions), which may themselves be interpreted as finite-dimensional mechanical
systems. This thesis is concerned with some particular types of these finite-
dimensional reductions. As well as having interesting properties of their own,
such special solutions of PDEs are usually the ones which are most important for

applications.

The organization of the thesis is as follows. In this introductory chapter we
provide a brief review of some of the ideas behind the notion of integrability, while
giving examples that are relevant to the other chapters. Section 1.2 describes
finite-dimensional Hamiltonian mechanics, taking the (rational) Calogero-Moser
model as a prime example of an integrable system in this context. As well as
providing a simple illustration of the concept of the Lax pair, Calogero-Moser
equations reappear in Chapter 3.

Section 1.3 describes the most well-known example of an integrable hierarchy
of PDEs, the KdV hierarchy. Backlund transformations and Hirota’s bilinear
(tau-function) formalism are also introduced, since these are essential tools in

the development of the other chapters. Chapter 2 is largely concerned with the
2



similarity solutions of some fifth-order evolution equations, one of which is a
member of the KdV hierarchy.

In Section 1.4 we present a concise description of the KP hierarchy, indicating
the way in which many other integrable hierarchies (including KdV) arise as
suitable reductions of it. Chapter 3 contains a construction of rational solutions
to the NLS equation, which is yet another example of a reduction of KP; we show
how the poles and zeros of these rational solutions evolve according to constrained
Calogero-Moser equations.

Although integrable systems originally occurred in traditional areas of applied
mathematics (such as fluid mechanics), they have interesting applications in the-
oretical physics which are not quite so well-known. The purpose of Section 1.5
is to illustrate the importance of exact classical-mechanical solutions in certain
problems of quantum field theory. We outline the matrix models, used in the dis-
crete approach to 2-D quantum gravity, which have solutions in terms of ODEs of
Painlevé type. Such ODEs are naturally written as non-autonomous Hamiltonian
systems, and we make use of this idea in Chapter 2. Another area where classical
solutions are important is in finding the correct quantum description for the affine
Toda field theories; we would hope that our work on the solitons in these theories

(Chapter 4} could lead to further insights, at least at the classical level.

1.2 Integrable Hamiltonian Systems in Finite
Dimensions

Until relatively recently, there were very few systems known in classical mechanics
for which the equations of motion could be integrated explicitly or solved by
quadratures. Historically the most well-known examples of such systems are
those corresponding to motion in a central potential, free motion on spheres or
ellipsoids, and special cases of motion of a rigid body with a fixed point (see
e.g. [130] for a review). The classical approach, which reached its culmination
in the work of Jacobi, involved finding constants of the motion (in involution
with respect to Poisson brackets) and then applying the method of separation
of variables. Modern developments have required considerable generalizations
of the notion of integrability, and it is fair to say that there is no umiversally
accepted definition of what ‘integrable’ means [1565]. However, there has been
a huge increase in the knowledge of systems to which this adjective might be
applied.

With the advent of soliton theory in the 1960s, it was discovered that certain
partial differential equations, such as KdV, could be interpreted as integrable

3



Hamiltonian systems with infinitely many degrees of freedom [67]. An essential
feature of this interpretation is that integrable PDEs like KdV have an infinite
number of conserved quantities. The further understanding of integrable infinite-
dimensional systems also produced many new insights into systems with a finite
number of degrees of freedom, and led to new techniques for analyzing these.
Since finite reductions of integrable systems constitute the main subject of this
thesis, we present here a brief review of Hamiltonian mechanics in finite dimen-
sions, emphasizing the structures that will be relevant in the generalization to

the infinite-dimensional case.

1.2.1 Finite-Dimensional Hamiltonian Mechanics

The usual arena for Hamiltonian mechanics is a symplectic manifold, which con-
sists of a manifold M (of finite dimension, 2n say) together with a nondegenerate,
closed two-form w on M (symplectic form). Given any function (Hamiltonian) H

on M, the symplectic form allows the canonical definition of an associated vector
field Xy, via
dH = —ix, w. (1.2.1)

Alternatively, one may think of the symplectic form as defining an isomorphism

between vector fields and one forms, and so (1.2.1) is equivalent to
Xy = JdH, (1.2.2)

where J is the Poisson operator. Given any pair of functions f, g on M, their

Poisson bracket is defined by

{f,9} = w(X;, Xy).

By (1.2.2), the Poisson brackets may equivalently be defined using the Poisson
operator:

{f,g} = —df-Jdg. (1.2.3)
This bracket gives a Lie algebra structure to the space of functions on M. If x
denotes coordinates on M, then the flow generated by the Hamiltonian H may

be written

i(t) = {H,z}, (1.2.4)
where ¢ corresponds to time. In other words
&= Xg,
and the time derivative of any function on M is just given by

f: {va}
4



The most common setup is that M is a cotangent bundle, i.e. M = T*Q for
a configuration space ). Then the positions ¢; are the coordinates on the base

space, while the momenta p; are the fibre coordinates, and M has the canonical

a=Y pdg.
j

Thus M is a symplectic manifold with canonical two-form

one-form

w = da.

With these coordinates the Poisson operator is constant, and may be written in

the standard block form
7= 0 1
“\ -1 0

The canonical Poisson brackets between the coordinates are

{Qj-,(ﬂ:} :0={pjapk}7 {pj,Q'k} =6jka
leading to 9F 5 5
_\~(9f 9% Qi_g)
(9 =2 (apj 54; " 4,0,

for any functions f, g. The equations of motion (1.2.4) are then just Hamilton’s

equations,
dg; _ OH
dt B 6pj’
dp; _ _OH
dt 39‘3'.

Now that we have the basic concepts at hand, we can define what it means
for a Hamiltonian system to be Liouville integrable. A Hamiltonian system with
Hamiltonian H on a symplectic manifold M of dimension 2n, corresponding to
the equations of motion (1.2.4), is said to be integrable (in the sense of Liouville)
if there exist n independent constants of motion in involution. In other words,

there is a set {H, = H, Hy, ..., H,} of independent functions on M satisfying
{H_,-,Hk} = 0.

Given these n constants in involution, it is then possible (at least in principle)
to solve the equations exactly. It is often convenient (especially for the infinite-
dimensional systems which we will be describing shortly) to associate a time ¢; to
each Hamiltonian H;, and consider the commuting flows generated by all of the
H; simultaneously. Also certain modifications are necessary for non-autonomous
(time-dependent) Hamiltonian systems, which will be relevant to Chapter 2. For

a more detailed introduction to Hamiltonian mechanics, see [6].

5



1.2.2 Lax Pairs

At this point we introduce an idea which is of great importance in the theory of
integrable systems, that of the Lax pair (named after Peter Lax [108]). Given a
dynamical system describing the evolution of some quantities = (which in general
may lie in an infinite-dimensional space), suppose we have two operators, denoted
by L, P, which are functions of x taking values in some Lie algebra. Then L, P
are said to constitute a Lax pair if the equations of motion for x are equivalent
to

L=[PI1), (1.2.5)
where [, ] denotes the Lie bracket. In the case of a finite-dimensional system
these operators usually belong to a finite-dimensional Lie algebra or its corre-
sponding loop algebra, while for systems of partial differential equations L and
P are differential operators. The existence of a Lax pair immediately suggests
that a system might be integrable, as it provides a means to construct conserved
quantities, and may also lead to a way to solve the equations of motion. For
instance, the discovery that the KdV equation could be written in Lax form
(with L in that case being a Schrédinger operator) was the key to its solution
by inverse scattering. The essential feature of (1.2.5) is that it corresponds to
an isospectral deformation of the Lax operator L. We illustrate this point with
a finite-dimensional example, the Calogero-Moser system, which will reappear in
Chapter 3. The generality of the Lax technique will become apparent in Section

1.3, when we consider integrable hierarches of PDEs.

1.2.3 The Calogero-Moser System

The original Calogero-Moser system has the Hamiltonian

1 - 2 2 -2
H= 5;15- +* ) (4 -9 (1.2.6)

i<k
It was originally solved in the quantum case by Calogero [34]. This led to the
conjecture that the classical version should also be integrable, which was proved
by Moser [119]. Hamilton’s equations for (1.2.6) imply
=20 (si—a) (1.2.7)
ki
the second-order equations of motion for the Calogero-Moser system.
The key to the proof of integrability is the construction of the Lax pair, which

consists of a pair of n x n matrices L, P with entries given by

Lip = pidi+ig(l —)(a; — )™, (1.2.8)
6



Pio = —igbp Y (g5 — )" +ig(l - 6u)(g; — q) ™™ (1.2.9)

I#i
The Lax equation (1.2.5) for these particular matrices yields the equations of
motion (1.2.7) immediately. Notice that, with the conventions chosen here, L is
hermitian and P is anti-hermitian, and so up to factors of ¢ we may regard them
as being elements of the Lie algebra u(n). Choosing a unitary matrix U as the

solution to the differential equation
U=PU, U(0)=1,

it is clear that

d, .

E(U LU) =0,
and therefore

U'LU = L(0).

Thus we see that the eigenvalues of L are unchanged by this evolution, and so the
Lax equation (1.2.5) gives rise to an isospectral deformation. A more convenient

set of constants of motion are the traces of powers of L,
H, =trL™,
which are just symmetric functions of the eigenvalues. In particular we have
H 1= ij'.'
i
which is just the total linear momentum, and the Hamiltonian (1.2.6} is given by

1 1,
H=zHy = tr I, (1.2.10)

It is obvious that the set of integrals {H,,...,H,} are independent, since
Ho=Y o7 +0(™).
J

To prove Liouville integrability, it is also necessary to show that these integrals
are in involution. There are at least two different ways to do this. Moser [119]
considered the asymptotic motion of the particles as t — Zoo, where the ¢; are
well-separated, and showed that in these limits the Poisson brackets of the H,,
vanish; as these Poisson brackets are conserved, they must then be zero for all £.
A more sophisticated technique involves the construction of an r-matrix for the
Calogero-Moser system, which may be found in [18, 144]. In general, suppose that

a Hamiltonian system has a Lax pair L, P, taking values in a Lie algebra G. It

7



has been proved [20] that the eigenvalues of L are in involution if and only if the
Poisson brackets of the entries of L may be encoded into the following equation
in GRG: -

{L1, L2} = [r12, Ln] — [ra1, Lo

In the above,
L1=L®1, L2=1®L9

and the (generalized) r-matrix may be written (in a suitable basis {X,} for G)

rz= Y m™X,0X,
P

(and similarly for ry; with the tensor product reversed). The r-matrix structure is
very important for quantum integrable systems and solvable models in statistical
mechanics (see [13] and references therein). The Jacobi identity for the Poisson
structure leads to a consistency condition on the r-matrix. In the case that rq
is constant and antisymmetric, this condition becomes what is known as the
classical Yang-Baxter equation. However, the Calogero-Moser system provides
one of the original examples of a dynamical r-matrix, which is explicitly dependent
on the phase space variables. The general theory of dynamical r-matrices is still
poorly understood, and is currently an important subject for investigation (see
e.g. [54, 78]). R-matrices are also extremely important for understanding the
Poisson structures in the Hamiltonian formulation of integrable PDEs [15, 57].

The existence of a Lax pair and conserved quantities does not in itself provide
a constructive procedure for integrating the equations of motion. However, it
turns out that the Calogero-Moser system with Hamiltonian {1.2.6) can be solved
exactly by the so-called projection method [130}. A common approach to trying
to solve a mechanical system is to use symmetries to eliminate degrees of freedom,
in the hope that the reduced problem will be more tractable. Sometimes quite the
opposite can occur, so that starting from simple equations (e.g. geodesic motion)
in a large space leads to more complicated dynamics in a reduced space. If the
centre of mass motion is removed, then it turns out that the Calogero-Moser
equations (1.2.7) may be reduced from free motion on the space G of traceless
Hermitian matrices (i.e. the Lie algebra of the group SU(n) in the fundamental
representation, up to a factor of ¢). Solving the motion on the larger space is
trivial, and also provides a simple solution to the Calogero-Moser equations. The
full geometrical interpretation of this is via the method of orbits. For our present
purposes we will merely indicate how this method enables the model to be solved,

and refer the reader to [18, 95] and [130] for more detailed discussions.



Following [130], we let the coordinate X denote a traceless Hermitian matrix,
with corresponding momentum X. Then the phase space T*G has the standard

symplectic form,

w = tr (dX A dX),

and with the Hamiltonian .

= 5t X* (1.2.11)
the motion is free,
X=0. (1.2.12)
Clearly the solution to (1.2.12) 18
X = At+ B, (1.2.13)

for some constants A, B. 1t is also apparent that the commutator
¢ =1X,X] (1.2.14)

{akes the constant value {B, A}. In fact, (1.2.14) is an example of what is known
as a moment map. The reduction to the Calogero-Moser system is achieved by

choosing a very special value for C:
C=igleet—1), €= a,..., (1.2.15)

So C has (n —1) eigenvalues the same.
The position coordinates for Calogero-Moser come from diagonalizing the ma-

trix X with a unitary matrix U,
Q=UXUT, Qjk = 450k

while the Lax matrix L is obtained by applying the same unitary transformation
to X ,
L=UXU"

If P is given by
p=0U"

then (using X =0) it is simpleto show that P, L satisfy the Lax equation (1.2.5).
Also, differentiating the definition of @ leads to the equation

Q=L+[PQl. (1.2.16)

Taking the natural convention U(0) = 1 as before, the constant matrices A, B

are given by
A = L(0), B = Q(0).



If the initial value L(0) is chosen in the form (1.2.8) then [Q(0), L(0)] is indeed
given by (1.2.15), and it is possible to take U such that this value of the moment
map is preserved, i.e.

@, L]=C.
Under the reduction from variables X, X to @, L the Hamiltonian (1.2.11) is

invariant under gauging by a unitary matrix, and is just given by (1.2.10) (with
L, P as in (1.2.8),(1.2.9)). Hence we have seen that the solution @(t) to the
Calogero-Moser equations (1.2.7) is found by diagonalizing the matrix

X = L(0)¢ + Q(0).

Because of tl;e connection with the Lie algebra su(n), the Calogero-Moser sys-
tem described above is naturally connected with the root system A,_;. There are
obvious integrable generalizations to other root systems [130], as well as hyper-
bolic, trigonometric and elliptic versions (with the the potential in (1.2.6) being
replaced by a sum of Weierstrass p-functions or degenerations of this [144]). These
systems are intimately related to the pole motion of rational and elliptic solutions
to intgrable PDEs such as the KdV equation [8] and the KP equation [103, 142].
In Chapter 3 we construct rational solutions to the nonlinear Schrédinger (NLS)
equation, and show that the pole motion is governed by constrained Calogero-
Moser equations. A further variation of these equations includes the addition
of a set of spin vectors to the dynamics {71]. There are corresponding quan-
tum mechanical versions [35] {often called Calogero-Sutherland models), which
are also exactly solvable, and have many interesting connections with symmetric
polynomials and matrix models (see [19] and references).

The Calogero-Moser systems have relativistic generalizations, known as the
Ruijsenaars-Schneider models [138]. The solution of these (at least in the rational
and hyperbolic cases [135]) follows a pattern very similar to that for the Calogero-
Moser system described above. In Chapter 4 we study the connection between the
spin-generalized versions of these relativistic models and soliton solutions of affine
Toda theories. These solitons may be given in terms of a certain matrix V', with
the position coordinates of a hyperbolic spin Ruijsenaars-Schneider system being
determined from the eigenvalues of V; the eigenvalues are given by a diagonal
matrix @ satisfying an equation very similar to (1.2.16).

Having reviewed some important features of the finite-dimensional case, we
must now turn to properties of integrable nonlinear PDEs. We shall see that the
Hamiltonian formalism and Lax equations are fundamental in this setting as well.
At the risk of being unoriginal, we shall take the KdV equation (and its associated

integrable hierarchy) as our canomical example. The KdV equation has a long
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and interesting history, and although much of this is extremely well-known, it

provides a good Nlustration of most of the necessary concepts.

1.3 The KdV Hierarchy

The prototype example of an integrable nonlinear PDE is the Korteweg-de Vries
(KdV) equation,
U = Uggy + OUUL. (1.3.1)

This was first derived by Korteweg and de Vries [100] in 1895, as a description of
the evolution of long waves in a challow channel. The exact choice of coeflicients
in (1.3.1) is inessential, as they may be altered by scale transformations. An

important feature of (1.3.1) is that it admits a travelling wave solution,
u(z, t) = 2k sech? (k(z — o) + 4k%t), (1.3.2)

which is called the one-soliton solution. The original discovery of this type of
wave should really be credited to a Scottish engineer named John Scott Russell.
In August 1834, by the side of the Union Canal near Edinburgh, he ‘observed “a
large solitary elevation ... which continued its course along the channel apparently
without change of form or diminuition of speed”. He followed the wave for two
miles on horseback, and was afterwards able to recreate this phenomenon in the
laboratory, but his results were received with considerable scepticism by some of
the leading scientists at the time, such as Airy and Stokes. The modern theory of
solitons has entirely validated the work of John Seott Russell, and his important
contribution was commemorated at a recent conference ? with a visit to the Union
Canal, where a plaque was unveiled and some solitary waves were reproduced.
It is fair to say that the KdV equation was all but forgotten for the first half
of this century, until the work of Zabusky and Kruskal in 1965 [105] concerning

the Fermi-Pasta-Ulam nonlinear lattice equations,

MYn = K(yn+1 — 2yn + 'yn—l) (1 + a(yn+1 - yn—l)) . (1-3-3)

K4V arises as the continuum limit of {1.3.3). While doing numerical studies on
the periodic case, 7abusky and Kruskal observed that initial conditions given by a
cosine function evolved into a series of pulses of the form (1.3.2), and these pulses
interacted elastically before continuing with the same amplitude and speed. These
particle-like properties led them to coin the name ‘soliton’ for such special solitary

waves. It turns out that KdV has exact multi-soliton solutions, consisting of

2Nonlinear Coherent Structures in Physics and Biology, Heriot-Watt University, J uly 1995.
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nonlinear superpositions of waves like (1.3.2) with different speeds, which scatter
elastically. The existence and stability of these multi-solitons is one of the main
features that distinguishes integrable equations like KdV from other nonlinear
equations admitting solitary wave solutions. This is deeply related to the fact
that KdV has an infinite sequence of conservation laws, which we shall describe
shortly. For a more thorough account of the history of soliton theory, with full

references, we refer the reader to e.g. [5, 47, 62).

1.3.1 Hamiltonian Formulation of KdV

The numerical studies of Zabusky and Kruskal led to the undertaking of a detailed
analytical study of KdV by Gardner, Greene, Kruskal and Miura, which culmi-
nated in its solution by the inverse scattering method [66]. One of the first clues
to the integrability of KdV was the discovery of an infinite number of conservation
laws, given by

Opn | 0Jn _

o S=0 (1.3.4)

for suitable functions p,, J, of u and its z-derivatives. The first thing to notice

is that (1.3.1) is itself already in conservation form, with

2
Po = U, Jo=-—uw—3u .

The next two conserved densities and fluxes are given by

1
o= %uz, J = —uug + §u§ — 23,

1 1 9
pz = ——Q—ui +u?, Jo = v g, — 51&23 — 3ulu,, + Guui — —ut,

2
There are various constructive proofs of the existence of an infinite sequence of

such densities and fluxes, but before we mention some of these it is convenient to
introduce the Hamiltonian formalism for KdV.
Suppose for simplicity that u is either periodic or rapidly decaying on the real

line (i.e. u(z,t) — 0 as ¢ — too). Then upon integrating (1.3.4) over a suitable

d
a/pndm—ﬂ.

Thus the sequence of conservation laws yields a sequence of conserved quantities

interval, it is apparent that

for KdV. Furthermore, for a suitable Poisson structure these conserved quantities
turn out to correspond to a sequence of Hamiltonians for the KdV equation (1.3.1)
and a whole hierarchy of commuting flows known as the KdV hierarchy.

In order to extend Hamiltonian mechanics to the infinite-dimensional case,

one may generalize either the symplectic or the Poisson formalism. Here we take
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the latter option (and refer the reader to [57) for examples of the former). Given

a functional (Hamiltonian) ‘H on phase space, the Fréchet derivative1s defined as
' d
H|ulv= &-e-'H[u + €v] |e=o-

Using this, the variational derivative §H/bu is given by
H{u)v = / %vdm.

A given operator B is said to be a Hamiltonian operator (the analogue of the
Poisson operator in this context) if Poisson brackets between functionals can be
defined by F 56

{.7: ) g} == —5_1-1- B S;’
which is the analogue of (1.2.3). It is apparent that for the brackets to be skew-
symmnetric, B should be a skew-symmetric operator; the Jacobi identity is a more
complicated criterion to check. Then the flow generated by the Hamiltonian H
is just

oH

Uy — B _5_’;1,_' - (13.5)

The simplest functionals to consider are those which may be written as inte-

grals of local Hamiltonian densities, 1.e.
Hiu] = [ Hlu)dz

with Hlu] being a function of v and its s-derivatives. In that case it is easy to

see that

&H
E_auﬂ,
where o
— _AN
§.H = zj:( 0. 7y

In this situation (see Chapter 2) we shall often refer to a local density H as a
‘Hamiltonian’, although strictly it is a Hamiltonian density.
For the case of KdV, define a sequence of densities by
1

Ho = 50,
and

H,=pn
for n > 0. If the Hamiltonian is taken to be the integral' of the local density Ho,
then it is immediately apparent that (1.3.1) may be written in the Hamiltonian
form (1.3.5), with the Hamiltonian operator

B = 0z
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Explicitly, (1.3.1) may be written as
Uy = 3m6uH2.

What is less obvious is that there is a second Poisson structure associated with
KdV, with the Hamiltonian operator

B =8 + 4ud; + 2us. (1.3.6)
It is then possible to write (1.3.1) in the alternative form
Uy = B(Squ.

Thus KdV is said to be bi-Hamiltonian, since it has two Poisson (or Hamiltonian)
structures.
Given the sequence of conserved densities, it is natural to define a hierarchy

of flows, via

us, = B, Hn, (1.3.7)

or equivalently .
uy, = By Ha1. (1.3.8)

For example, the first (trivial) flow 1s
Uy = Ua,
while the third (which will reappear in Chapter 2) is
g = Usp + 10unay + 20UsUss + 30utu,.

This sequence of evolution equations 1s called the KdV hierarchy, and it is pos-
sible to show that the corresponding Hamiltonians are mutually in involution
(with respect to either Poisson structure) and hence the flows all commute. The

conserved densities may be calculated by succesively integrating
8,8, Hy = (82 + 4uds + 2uz)buHn- (1.3.9)

By taking 6.Ho = ! and setting the constant of integration at each stage to
be zero, the relation (1.3.9) serves as a recursive definition for the differential
polynomials 6, Hx (known as the Gelfand-Dikii polynomials i69]). The existence
of the hierarchy is due to the fact that B and B are compatible, in the sense
that B+ Bisalsoa Hamiltonian operator. It is also possible to obtain each flow
from the previous one by using the (integro—differential) recursion operator for
the KAV hierarchy,
R:= BB = 0% + du + 2u:0; "
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This is probably the most concise way to generate the sequence of KdV flows, in
that it does not require the computation of variational derivatives.
Recursion operators also occur in a more general context than Hamiltonian

systems [65]. The prime example of this is the Burgers equation,

Ut = Upg + 2uny,, (1.3.10)

which may be linearized, by making the Cole-Hopf substitution

u = (log[4])-,

to yield the heat equation
¢t = ¢x::°

Although (1.3.10) is not Hamiltonian and does not have soliton solutions, it has

an associated recursion operator,
R=0:4+u+u 07,
which allows the construction of a hierarchy of commuting flows:
Uy, = Kv[u], K = ug, K..1=RK,.

A general introduction to infinite-dimensional Hamiltonian theory may be found
in Chapter 11 of [62], while the references [50, 63] contain detailed treatments of
the algebraic aspects of Hamiltonian operators and recursion operators. Rather
than dwelling on the Hamiltonian theory, we prefer to introduce the Lax repre-

sentation of KdV, since this is more fundamental.

1.3.2 Lax Formalism and Inverse Scattering

The key to the integrability of KdV is its connection with the theory of linear
Schrodinger operators. More precisely, the KdV equation (1.3.1) may be written
in the form of the Lax equation (1.2.5), where the Lax operator L is just a
Schrodinger operator,

L=23%+u, (1.3.11)

and the other half of the Lax pair is the third-order operator
P =48 4 6ud, + 3u,. (1.3.12)
Lax also found an infinite sequence of operators P,, such that the L.ax equation

Le, = [Po, L] (1.3.13)
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corresponds to the n-th flow (1.3.7) of the KdV hierarchy described above [108].
Each operator P, is of degree 2n — 1, and can be constructed (along with the
associated Hamiltonian) entirely from L. To see this requires the introduction of
pseudo-differential operators, which we postpone until the next section where we
discuss the KP hierarchy.

As we have already remarked, each Lax equation (1.3.13) corresponds to an
isospectral deformation of the operator L, and so the KdV hierarchy is naturally
viewed as a commuting family of such deformations. This prompts the investiga-

tion of the Schrodinger eigenvalue problem,
L = M, (1.3.14)
together with the associated time evolution of the eigenfunction,

Vi, = Puth. (1.3.15)

The Lax equation (1.3.13) may be regarded as the consistency condition for
(1.3.14,1.3.15}, given that the eigenvalue A is time-independent. Conversely, given
the eigenvalue equation (1.3.14) and the assumption that the eigenfunction sat-
isfies (1.3.15), it is easy to show that

(Ltn = [Py L] = M) = 0. (1.3.16)

Hence if the potential u of the Schrodinger operator L evolves according to one of
the equations of the KdV hierarchy (taking the Lax form (1.3.13)), then the spec-
trum of L is unchanged by this evolution, since from (1.3.16) we see immediately
that

A, = 0.

The analysis of linear systems such as (1.3.14,1.3.15) is the key to the solution
of the associated nonlinear evolution equations by the inverse scattering tech-
nique, which can be understood as a nonlinear version of the solution of linear
equations via Fourier transforms. The inverse scattering for the KdV equation
(1.3.1) is the simplest to describe, because of the connection with Schrédinger op-
erators. The scattering theory of Schrodinger operators has been widely studied
because of its importance in quantum mechanics. Thus it is well-known that (for
rapidly decaying potentials u on the real line) the Lax operator L (as in (1.3.11)

above) has a discrete spectrum consisting of positive eigenvalues A, = k2,
L¢n = kfﬂbm

with normalizable eigenfunctions 1, (bound states), as well as a continuous spec-

trum A = —&? (corresponding to scattering states ).
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"There are three steps involved in the inverse scattering solution of the KdV
equation (1.3.1). First of all, given the potential u(z,0), one may construct the
scattering data S(0), which consists of the discrete spectrum (the eigenvalues Az)
of L together with the asymptotics of both the bound states and the scattering
states. Next, using the time evolution (1.3.15) of the eigenfunctions (which in the
KdV case must be modified by adding a constant to the operator P in (1.3.12)),
it is simple to show that the scattering data S(t) for the potential u(z,t) evolves
linearly with the time t; it is also possible to demonstrate that, within the Hamil-
tonian formalism, the scattering data corresponds to action-angle variables for
KdV [57]. The final step is the reconstruction of u(z,t) from the scattering data
S(t). It was shown by Gelfand and Levitan [68] that this may be achieved using

the solution of a linear integral equation,
K(oyst) + Fe v+ [ K@eadP+und=0, (317

called the Gelfand-Levitan-Marchenko (GLM) equation. The potential u {the
solution to KdV) of the operator [ is found from the integral kernel K, via the

formula 5
u(z,t) = 2£K(m,m;t). (1.3.18)

Hence although KdV is intrinsically nonlinear, its solution via inverse scattering
involves only linear equations at each stage.

We refer the reader to [5] for a full description of inverse scattering. The
most interesting case corresponds to the so-called reflectionless potentials, when
only the discrete spectrum of the operator L is important. By assuming that the
number of discrete eigenvalues is finite, N say, an explicit formula is obtained for

the integral kernel K, leading to
u(z,t) = 2(log det(1 + C))ze, (1.3.19)
where the N x N matrix C is given by

CmC
mn — T e kn -4 k3 .’CB .

G = 2 expl (b + ka)e = 4K + K2

The potential in (1.3.19} is the N-soliton solution to the KdV equation, and the

constants k;, c; are related to the velocity and positions of the solitons respec-

tively. It is easy to see that (1.3.2) follows from (1.3.19) with N =1. In Chapter

4 we present similar formulae for the soliton solutions of affine Toda theories.

The linear system (1.3.14,1.3.15) can clearly be generalized to the case of

" higher-order differential operators L. For example, if we take the Lax operator

L= 32 + 3?.!’.163; + 3('!1.2 + U1|z), (1320)
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and
P =042y, (1.3.21)

then the usual Lax equation (1.2.5) yields the coupled system

U = Ulze + 2”2,1‘,
1
U+ Uzt = 3taz = 2uguy o + Uz s (1.3.22)

Eliminating u, from (1.3.22) gives

1
ty 4t + (gul,za; + 2”%) =0,

which is known as the Boussinesq equation (see [60], for instance). In Section
1.4 we shall see how higher-order Lax operators arise in reductions of the KP
hierarchy.

There is a different linear system associated with KdV, which in many ways

is more convenient. Consider the matrix system

o, = F9, (1.3.23)

0 1
Fo= (A—u 0)’
Q = —Ug 4\ + 2u
- 4702 — 20y — ugy — 2u? Uy ’

and @ is either a column vector,

¢ = (iz) (1.3.25)

or a 2 x 2 fundamental solution matrix. If ® is chosen in the form (1.3.25), then
(1.3.23) is just

where

¢1,:r: = ¢‘21
¢2,:r: = ()‘ - u)éh
which (on elimination of ¢;)
L¢1 = )Wbl:

with L being the Lax operator (1.3.11) for KdV. Thus the original Lax formalism
is contained within the system (1.3.23,1.3.24), and the compatibility condition
for this system, the zero curvature equation
F, -G, +[F,G]=0,
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yields the KdV equation (1.3.1). The zero curvature equation may also be written
as a Lax equation,

a~

L= [paj’]a

by taking

=18, +F  P=¢G

The matrices F, G above clearly belong to the Lie algebra si(2). Hence
it is natural to consider the system (1.3.23,1.3.24) with matrices in other Lie
algebras, and this leads to classifications of integrable systems in terms of simple
Lie algebras [52, 61]. Alternatively, considering the eigenvalue A as a parameter on
the circle leads to a connection between KdV-type equations and loop groups and
algebras, as developed by Segal and Wilson [141]. Recently this approach to the
KdV has been refined somewhat by Schiff [140], to obtain a deeper understanding
both of symmetries and of the Backlund transformations, mapping solutions to

solutions, which we now introduce.

1.3.3 Miura Map and Biacklund Transformations

One of the remarkable properties of soliton equations like KdV is the existence of
nonlinear transformations which allow the construction of a family of solutions to
one PDE from a given solution of another (possibly the same) PDE. The general
name given to these is Backlund transformations, and historically they originally

occurred in differential geometry. In particular, the sine-Gordon equation
Uy = SINU (1.3.26)

was first studied in relation to surfaces of constant mean curvature; a Backlund
transformation for (1.3.26) was originally found by Bianchi and used to generate
families of surfaces (for further details, and the original references, see [137]). The
sine-Gordon equation is the simplest of the A affine Toda theories, for which
we discuss Backlund transformations and soliton solutions in Chapter 4.

One way of generating transformations between integrable equations is to
factorize the Lax operator [60]. The original example of this is the KdV case,

where the Schridinger operator can be written as
L =(0,+v)(0:—v),
which leads to the Miura map for the potential:

u = —v, —v° = M[v]. (1.3.27)
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This leads to the connection with another well-known integrable hierarchy, namely
the modified KdV (mKdV) hierarchy. Indeed, it may be checked directly that if
v satisfies the mKdV equation,

Vp = Vpzz — 6v’v,, (1.3.28)

and if u is given by the Miura map (1.3.27), then u must satisfy the KdV equation
(1.3.1). 1t turns out that this is intimately related to the second Hamiltonian
structure of the KdV hierarchy, because the second Hamiltonian operator may

be written in terms of v as
B=M(-8;)(MY (1.3.29)

(where M’ denotes the Fréchet derivative of the Miura map (1.3.27); * is the real
adjoint, i.e. (adi)* = (—8;Ya ). The n-th flow of the mKdV hierarchy may be

written in the Hamiltonian form
v, = (—0z)0. 8. _1[M[vl], (1.3.30)
with the sequence of Hamiltonian densities of mKdV being given by
Hon[Mp]] = Hpa[u]fu=mto)-

Using the formula (1.3.29), it is then straightforward to show that for v satisfying
the Hamiltonian flows (1.3.30) of the mKdV hierarchy, the Miura-related variable
u must satisfy flows (1.3.8) of the KdV hierarchy. Note that this Miura map is not
invertible: u being a solution of KAV does not necessarily mean that v is a solution
of mKdV. However, in Chapter 9 we shall see that for the scaling similarity
solutions of KdV and mKdV the Miura map becomes a one-one correspondence,
leading to a method for generating sequences of similarity solutions. ‘
The mKdV equation (1.3.28) and each of the flows in its hierarchy can also be
written in zero curvature form, by gauging the linear system (1.3.23,1.3.24) with

an element g of the group S L(2). In fact the gauge transformation is defined by
. 1 —-v - k 1 12
9’@( v—k —1)’ A=K,

F - F = gFg_l +gmg—1,

so that

and similarly for G. Explicit calculation shows that

- -k v
(1)
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and the formula for the gauged matrices G corresponding to each of the flows of
the mKdV hierarchy can be found in Chapter 2.

While it may be useful to use transformations between different integrable
equations, an alternative method for generating solutions is via auto-Backlund
transformations (ABTs), which relate sets of solutions to the same equation. For

example, if @ is a solution to the KdV equation (1.3.1), and if ¢(z,t) satisfies

i = g (VB
ﬂ; ¥

L $uos _ 345,
rolie 66 + ( 5 242 ) , (1.3.31)
then

u = @ + 2(log[¢])zz (1.3.32)

is also a solution of the KdV equation. For example, starting from the trivial
(vacuum) solution & = 0, it is possible to generate the 1-soliton solution (1.3.2)
to KdV. Alternatively, setting
sinh(2kz + 8%%t)

2k
it may be shown [140] that (1.3.31) holds, and this yields a mixed rational-solitonic

solution to KdV, given by

=0, B=k, ¢=(c—12k%)+

u = 2(log[#])zz- (1.3.33)
Thus (1.3.31,1.3.32) constitute an ABT for KdV. By repeated application of this

transformation, it is possible to generate sequences of solutions to KdV (in par-
ticular, soliton solutions).

The relations (1.3.31,1.3.32) are referred to in [140] as the Galas transforma-
tion, although it seems most likely that they originally occurred in the work of
Weiss and others (see [37, 152]) on Painlevé expansions for PDEs. We shall use the
latter approach in Chapter 3 to investigate an ABT for the Nonlinear Schrodinger
(NLS) equation, and thereby generate a sequence of rational solutions. We should
also mention that there are many other ways to generate Backlund transforma-
tions for an integrable nonlinear PDE, such as applying a Darboux transformation
to the Lax operator [116], or by ‘dressing’ the zero curvature equation (see [23]
and references). Our investigation of the Backlund transformation for NLS in

- Chapter 3 is also linked to its zero curvature representation. The book [137] is

an excellent introduction to the subject of Biacklund transformations.

1.3.4 Bilinear Form and Hirota’s Method

As well as the Backlund transformations, one of the most powerful ways of gen-

erating exact solutions to integrable PDEs is Hirota’s method. This consists of
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making a suitable transformation of the dependent variables so that the equa-
tions in the new variables take a more transparent form. In the case of the KdV

equation (1.3.1) the correct substitution is
u = 2(log[7])zz (1.3.34)

and after an integration (subject to suitable boundary conditions) a bilinear equa-
tion is obtained for the new dependent variable 7. This bilinear equation may be

written concisely as

(DD, — Dyr-7=0, (1.3.35)

by making use of the Hirota derivatives:

3 k
pinte- = (2= 55 (5 2 s 0 yenr=e

There are several reasons why the substitution (1.3.34), with its associated
bilinear equation (1.3.35), is & judicious one. First of all, notice that for the N-
soliton solution (1.3.19) the variable 7 (which is called the tau-function) is just
a polynomial in simple exponential functions of z and . Hirota’s direct method
for finding solutions involves writing the tau-function as a truncated expansion
in some parameter €,

T=To+61'1+...+ENTN,

and then determining the coefficients by comparing the different powers of € in
the bilinear equation (1.3.35). It turns out that this truncation is consistent,
and may be used to obtain the N-soliton solution of KdV (setting € = 1 at the
end of the analysis). In practice, once the 2-soliton has been found it is natural
to conjecture an expression for the N-soliton and then prove inductively that
it satisfies (1.3.35). Hirota used this technique to construct solitons and other
solutions to a wide variety of nonlinear equations, and was also able to define
Bicklund transformations within his bilinear formalism (see the references to
Hirota starting with e.g. [79]). Notice that {he substitution (1.3.34) also looks
appropriate in the context of the ABT (1.3.32). The wide applicability of the tau-
function approach was an :ndication that it should have some deeper significance,
but this only became apparent in investigations of the algebraic structure of the
KP hierarchy [126], which we discuss in the next section.

Another thing to observe about the substitution (1.3.34) is that the soliton
tau-functions may naturally be written as determinants. This is plain to see in
the formula (1.3.19) for the N-soliton solution of KdV. More generally the tau-
function can be related to the inverse scattering approach [127], by means of the

GLM equation (1.3.17). Indeed, for reflectionless potentials u, one may consider
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the Fredholm operator P, with symmetric kernel F° (z + y;t) as in (1.3.17), and
then using a Neumann expansion (subject to suitable analytic assumptions) it is
possible to show that (1.3.18) leads to

u = 2(log det(1 + F))zs

The N-soliton formula (1.3.19) just corresponds to the case of a finite kernel. The
relationship between tau-functions and inverse scattering has also been explored
for the affine Toda theories [121], which are discussed in Chapter 4.

Determinantal formulae for tau-functions play a major role in the rest of this
thesis. Chapter 2 contains a tau-function approach to certain ODEs arising as
similarity solutions of integrable PDEs; we are able to write some of these tau-
functions as determinants. In Chapter 3 we make much use of bilinear techniques
to deal with the NLS equation and some Backlund transformations, and construct
rational solutions which are written in determinantal form. The results about
affine Toda solitons derived in Chapter 4 also depend crucially on the fact that
these can be written in terms of determinants.

It is not always the case that the tau-functions of soliton equations satisfy
bilinear equations like (1.3.35). Sometimes it is necessary to use trilinear or
even multilinear equations [73]. We shall see how the NLS equation is related
to a trilinear equation in Chapter 3. This trilinear equation arises [125] from

reduction of the bilinear KP hierarchy, which we now introduce.

1.4 The KP Hierarchy

Despite the natural interpretation of the KdV hierarchy in terms of an infinite
sequence of times, the KdV equation is really only physically relevant in (1+1)-
dimensional situations. The original form of the inverse scattering technique
was only applicable to problems in two dimensions, but it was found that the
method could be extended to solve the genuinely (241)-dimensional Kadomtsev-
Petviashvili (KP) equation,

(duy — 12uu, — Upzs)z — Stgy = 0- (1.4.1)

A full description of the inverse scattering transform for (1.4.1) may be found
in Chapter 4 of [5]. For the purposes of this thesis we will only be interested
in the formal algebraic description of the KP hierarchy, which requires pseudo-
differential Lax operators. We also describe some of the salient features of Sato’s
approach to KP, where the solutions lie in an infinite-dimensional Grassmanian,
and the tau-function appearing in Hirota’s bilinear formalism is of central impor-

tance.
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1.4.1 The Lax Operator for KP

In order to define the KP hierarchy in its Lax form, it is convenient to use the

pseudo-differential operator

L=08.+) ud; . (1.4.2)
i=t
The u; are functions of z, and 97! is treated as the formal inverse of 8,. To make

all (positive and negative) powers of 8, well-defined requires the Liebniz rule

o f(z) = f: n(n—1). T'(n -r+1) g;{a;-r.

r=0

This allows the computation of commutators of pseudo-differential operators,

giving them a Lie algebra structure. For any pseudo-differential operator, say
1= 5 o
p—

with m > 0, there is a natural splitting into a positive part,

m

Ay = Zaja,{,
=0
and a negative part,
A_= Zajai,
j<0
so that
A=A +A_.

This leads to a decomposition of the pseudo-differential operators into a direct
sum of the subalgebras of positive and strictly negative operators. Such decom-
positions are naturally associated with integrability [9, 15].

It is straightforward to calculate positive powers of the Lax operator L defined
by (1.4.2), and then by taking their positive parts we obtain a sequence of purely
differential operators,

B, = (Ln)+'

For example, the first three in the sequence are
B,=0,, B;= 33 + 2wy, By= 62 + 3u 10, + 3(?1,2 + ul'x).

If the u; are now allowed to depend on an infinite set of times t1, %5, t3,..., then

the KP hierarchy may be defined to be the sequence of commuting Lax flows

O, L = [Bn, L]. (1.4.3)
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Clearly it is consistent to identify t; = x, and these Lax equations generate a
sequence of flows for the dependent variables u;. It is customary to eliminate all
but the variable 4y, and then the sequence of equations for u is also called the
KP hierarchy. Upon setting u = v, ¥ = t2, ¢ = t5, the KP equation (1.4.1) may
be obtained from the n = 2 and 1 = 3 cases of {1.4.3) (after elimination of u3
and us [126]).

The Lax equations (1.4.3) may also be regarded as the consistency conditions

for the linear system

Ly = ko,
P, = Bt (1.4.4)

with the spectral parameter k being time-independent,
kt = 0.

The eigenfunction ¥ is known as the wave-function, or in the context of the
algebro-geometric theory [102] (where it must have particular asymptotics) it is
called the Baker-Akhiezer function. Another consistency condition for the system

(1.4.4) is the sequence of zero-curvature (or 7.akharov-Shabat) equations,
6tan _ 3¢mBn + [Bm, Bn] = 0. (145)

It is also quite simple to derive this from the Lax equations (1.4.3), and the
ordinary KP equation (1.4.1) follows almost immediately from (1.4.5) withm = 2,
n = 3.

Up to a scaling, it is apparent that Bs is the Schrodinger operator (1.3.11),
while Bs is the Boussinesq Lax operator {1.3.20). In fact this is no accident,
for the KdV and Boussinesq hierarchies arise as reductions of the KP hierarchy.
More precisely, the p-reduction of the KP hierarchy (also known as the pKdV
hierarchy) is obtained by constraining the p-th power of L to be purely differential,
so that

2= (L")
or equivalently
(L?)- = 0.

This implies that the flows corresponding to {imes which are multiples of p are
all trivial, 1.e.

Linp =0.

Thus the modified variables u; are independent of the times tp, t2ps taps -+ o> and

the zero curvature equations (1.4.5) become a hierarchy of Lax equations for the
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Lax operator £ = B,,
&, L = [Bn, L]

(non-trivial only when m is not a multipleof p). In particular, the KdV hierarchy

arises as the 2-reduction of KP, with
L = By,
and the non-trivial flows for the odd times take the form
By £ = [(L7F)4, L). © (1.4.6)

Note that this requires a relabelling and rescaling of the times compared with
(1.3.13). Similarly, the Boussinesq hierarchy arises as the 3-reduction of KP.
This may be easily seen for the lowest members of these hierarchies, since setting
#y = 0 in (1.4.1) yields the KdV equation (after an integration), while putting
u; = 0 instead gives the Boussinesq equation.

The KP hierarchy may also be written in Hamiltonian form [15]. This hinges
~on the fact that there is a natural definition of the trace of a pseudo-differential

operator,

trA :=/resAd:r:,

with res A = A_; being the coefficient of d;! in A. The sequence of conserved
quantities (Hamiltonians) for KP are then given by traces of powers of the Lax

operator:
H, =tr L", (1.4.7)

Note that in the p-reduction, all the powers L™ are purely differential and so have
zero trace. Thus in the reduction to the KdV hierarchy, for instance, the usual
sequence of Hamiltonians are given by the traces of the odd powers of L. The
Hamiltonian description of KP can also be understood in terms of r-matrices, but

we shall not dwell on this any further.

1.4.2 Sato Theory and the Tau-Function of KP

Sato’s approach (see [126] and references) provides an alternative way to construct
KP which is more fundamental than the Lax formulation. Starting from the

dressing operator,
W=1+ Z ch‘?;j,
i=1
the Lax operator (1.4.2) is obtained by ‘dressing’ the bare operator ., i.e.

L=WaWw
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Given that the dressing operator evolves according to the Sato equation,
o0, W = B,W — Wag, (1.4.8)
with
Bn = (Wa;:W_l)-f-a
the Lax equation (1.4.3) is an immediate consequence.

If the linear system (1.4.4) is considered, it is apparent that the Baker- Akhiezer

function can be given by
= a(t, k) exple(t, b)), €t R) =) 4K, (1.4.9)
=1
where @ is built out of the coefficients of the dressing operator,
i -
b=1+Y wik™,
i=1

An asymptotic expansion of (log ), in powers of & provides yet another way to
generate the sequence of conservation laws for the KP hierarchy (or its reduc-
tions {17]), and then it is natural to introduce the tau-function 7(t) =7(t;) as a

holomorphic function of the times, so that
wy = res W = —(log 7),.

The other coefficients of W can be determined from the formula

r(t; — 1/jk)
()

In terms of the tau-function, the densities H, for the conserved quantities

w =

(1.4.7) are given by
H, = (log 7)ct,

while for the dependent variable u; there is the usual Hirota substitution
u = (log 7)zz-

With these substitutions, it is trivial to derive the conservation laws
Oy uy = O H,.

Also, calculating residues in the Sato equation (1.4.8) leads to the equations for

the KP hierarchy in bilinear form,

(%Dlﬂn - pn+1(D)) T-T= O, (1410)
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with the Schur polynomials defined by the generating function

o0
Y pik = explé(t )
=0
and D denotes the sequence, Dl,%Dz,%D;;, ..., of rescaled Hirota derivatives.

Because these derivatives are skew-symmetric, the first non-trivial case of (1.4.10)

corresponds to n =3,
(D‘il + 3D§ - 4D1D3)T T = 0,

and it is straightforward to check that this is the bilinear form of the KP equation
(1.4.1).

With the basic apparatus of the tau-function and the associated Baker-Akhiezer
function, it is possible to interpret KP in terms of the Sato’s Grassmanian Gr of
the Hilbert space L*(S") [46, 141]. This is achieved by taking k to be the coor-
dinate on the circle, and then constructing the wave-function tw lying in some
suitable subspace W. More precisely, the Hilbert space has a natural decomposi-

tion into positive and negative powers of k,
Lz(Sl) = H+ @ H_;

Gr contains only those subspaces W such that the projection onto H, is invertible,
and as ¥w evolves according to the KP flows it remains within W. The tau-
function Tw then corresponds to the Pliicker coordinates of the subspace W,
and the bilinear equations (1.4.10) are the Pliicker relations of Gr. It turns
out that there are rational solutions of KP with tau-functions given by Schur
functions [126], and these can be connected with finite-dimensional Grassmanians
and bispectral operators [94].

The Grassmanian Gr also has a nice physical interpretation as a free fermion
Fock space [45], and this leads to connections with infinite-dimensional (Kac-
Moody) Lie algebras and the vertex operator constructions of conformal field
theory [92]. Nimmo has also found an alternative algebraic construction of the
bilinear equations of the KP hierarchy [123], based on the fact that soliton and ra-
tional solutions can be written as Wronskians. In Chapter 3 we derive Wronskian
formulae for rational solutions of the NLS equation, which occurs as a reduction

of KP.
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1.5 Reductions of Integrable Systems in Field

Theory

One of the remarkable features of integrable systems is that not only do they have
many attractive properties from a mathematical point of view, but also they are
applicable in a wide variety of physical situations. Many of the original examples
of soliton equations appeared in fiuid dynamics, plasma physics and optics, but
for more details of these applications we refer the reader to the comprehensive
accounts in [5, 47, 62] and elsewhere in the bibliography. The purpose of this
section is to provide a brief review of some of the ways in which integrable systems
and their reductions have been found to be of great importance in certain areas

of theoretical physics, especially quantum field theory.

1.5.1 Solitons and Field Theory

Local guantum field theories currently provide the most successful framework
for describing the fundamental particles of nature and their interactions [25].
Nowadays the most common formulation of quantum field theory is in terms
of the Feynman path integral, i.e. with the partition function of the theory
being expressed as a functional integral over all the classical field configurations

weighted by an exponential of the action,

Z= ] 1d6) expl-SI4ll (L5.1)

Usually the action 5 is given as the integral of a local Lagrangian density, and then
in principle the correlation functions and scattering amplitudes for the theory may
be calculated from functional integrals over suitable combinations of the fields.
In principle it should be possible to compute these path integrals exactly, but
in practice this is virtually never the case, and hence it is customary to write
the Lagrangian as a perturbation of that for a free field theory and expand all
amplitudes as a power series in a small parameter, the coupling constant. The
terms in this perturbation expansion have a natural representation as a sequence
of graphs (Feynman diagrams), and this technique can yield extremely accurate
predictions of physical quantities. However, the problem with perturbation theory
is that it makes two major assumptions, neither of which may be true in general.

The first inherent assumption of perturbation theory is that the coupling con-
stant is small, so that each term in the expansion is smaller than the preceding one.
An important concept in quantum field theory is that of renormalization, whereby

the magnitude of all physical quantities depends on the energy (or distance) scale
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of the measurements. This is particularly relevant to quantum chromodynam-
ics (QCD), the model of the strong interaction which describes how quarks are
combined with gluons to make up the hadrons. At large distances the effective
coupling of the theory becomes very small, and so it is possible to do accurate
perturbative calculations for lepton-hadron scattering. On the other hand, at
small distances the coupling is very strong (leading to quark confinement), and
so perturbation theory breaks down.

In order to understand how quarks are bound into the hadrons, essentially
different non-perturbative techniques are required. A popular approach, requiring
the most up-to-date computer technology, is to simulate QCD numerically as a
lattice gauge theory [97]. An alternative approach is to construct exactly solvable
models, in the hope that these will give insight into more realistic theories. In this
area there has been much recent progress with theories possessing duality [38],
in particular the supersymmetric Yang-Mills theores. The latter are naturally
related to certain integrable systems (Toda lattice equations), and this connection
means that the mass spectrum can be calculated [48, 115].

The other main assumption behind a perturbative treatment of quantum field
theory is that none of the relevant quantities are singular in the expansion pa-
rameter. However, if the classical theory admits soliton solutions then this is
often violated. In the physical literature the word soliton is used to mean a sta-
ble, localized classical solution interpolating between two different vacua; this
is in contrast with the more precise mathematical notion of a soliton, which is
only appropriate for an integrable theory. Prime examples of soliton-type solu-
tions occur in two different (1+1)—dimensional theories, namely the (integrable)
sine-Gordon theory and the (non-integrable) ¢ theory.

Both the sine-Gordon (sG) theory and the ¢* theory have simple Lagangian

densities of the form

= 20,40"9 — U(9)

0% -en()

for sine-Gordon (sG) and
mi 24272
oo - 25 [1- 5|

with

me
for ¢*. The classical vacua are the minima of the potentials, U'(¢o) = 0,
sG: o =2wnm[g,n € Z,

¢t o= +m/fg.
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For each theory there is a static kink soliton (using this word in the loose sense),

sG:  ¢(zx) = t4(m/g)tan~" exp[tm(z — z0)],
#':  ¢(z) = £(m/g) tanh{m(z — zo)), (1.5.2)

and these solutions minimize the energy. For a static solution the energy is just

5ol = [ (362+000)) aa
so that

sG: El¢)= i(m‘g/gz),

#*:  El¢)= §(m3/gz). (1.5.3)

Clearly the solutions (1.5.2) can be made time-dependent by applying a Lorentz
boost.

The + signs in (1.5.2) differentiate between kink and anti-kink solutions, and
even at the classical level these solutions are localized around z = z¢ and may
be identified as particles and anti-particles. The main thing to observe is that
each solution (1.5.2), as well as its energy (1.5.3) (corresponding to the lowest
order approximation to the particle mass in the quantum theory), is singular in
the coupling constant g, and thus would be completely missed by conventional
perturbation theory. So to develop the full quantum theory it is necessary to
include a set of states corresponding to the soliton sector of the theory, as well as
the usual vacuum sector [89].

The point of the preceding discussion is to emphasize the importance of clas-
sical solutions, and especially solitons, in quantum field theory. The ¢* theory is
not integrable, but is a useful toy model which still has some features that are
worth studying {114]. The quantum sine-Gordon model is more interesting in
that it is one of the prime examples of an integrable quantum field theory, and so
the results of semi-classical quantization are exact [24]. The sine-Gordon theory
and its multi-component generalizations, the affine Toda theories, have been the
subject of much investigation (see e.g. [31]), and we shall return to these in Chap-
ter 4. Classical solutions of more physically realistic (3-+1)-dimensional theories
of Yang-Mills type have also been studied a great deal [7], and recently there
have been many new results concerning monopole solutions [85], which have fun-
damental connections with the Toda latiice equations [145]. Integrable systems
also have a role to play in various attempts to construct a consistent quantum
theory of gravity, particularly in the context of the random matrix models which

we now introduce.
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1.5.2 Random Matrices, Correlation Functions and the
Painlevé Transcendents

Random matrices have been used extensively in nuclear physics to model the
Hamiltonians of large nuclei. The rationale behind this is that for a complicated
system the Hamiltonian will not be known, and even if it were it would be too
difficult to solve. Thus it makes sense to derive a description of the statistical
behaviour of the energy levels from the eigenvalues of a large random matrix; only
the overall symmetries of the system are needed as constraints. Random matrix
models arise in many other contexts, such as in describing the local fluctuation
properties of the zeros of the Riemann zeta function (see references in Mehta's
book [117]), in determining the spectrum of the Dirac operator in QCD [149],
and in the matrix models of 2-D quantum gravity {51, 75] (described in the next
subsection).

Original work of Dyson [53] showed that by imposing a simple symmetry con-
straint (invariance under unitary transformations) and statistical independence
of matrix entries, the most general probability measure du on the space of N x N
hermitian matrices (denoted H) is given by that for the Gaussian Unitary En-
semble (GUE),

dy = exp(—atr H* + btr H + ¢) dH,
where a, b and c are real constants with a > 0, and
dH = [[ dH;; [ [ RAH»SdH .
3 i<k
By diagonalizing H with a unitary matrix and suitably rescaling, the joint prob-

ability density for the N eigenvalues is obtained:

N
Prns(y1y - yn) = Cnpexp (—"12‘ Z yf) IAy)f° (1.5.4)

j=1
In the expression (1.5.4) Cnp is a normalization constant, and
Aly) = [ [ — o)
i<k

is the Vandermonde determinant. For the GUE it is found that § = 2, but there
are two other types of matrix ensemble corresponding to invariance under the
orthogonal and symplectic groups, and for these ensembles the eigenvalue density
is given by the formula (1.5.4) with 3 = 1, 4 respectively.

The normalization constant Cip can be calculated explicitly [117], making

use of a corollary of Selberg’s integral formula [14],

N N :

© [= 12 v D1+ 2)

C_l =/ .../ A s e Widy, = (27)2 S 27
Nj3 - ﬂwi (y)l I I Yi ( ) I I I‘(l n %)

i=1 j=1
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. This exact evaluation is helpful because it leads to a thermodynamical model

of the eigenvalues, treating them like a gas of N point particles on a line with

W= %Zy?—zloglya-yjl-
J

i<k

potential

The Gibbs measure for the system in equilibrium at inverse temperature 5 is

e PW

Z(8Y’

PNp =

with the partition function

Z(8) = f f e=PY dy, ...dyw.

With this alternative interpretation in terms of statistical mechanics, a lot of hard
probabilistic analysis is avoided, and it is possible to derive asymptotic results
about correlations between eigenvalues in the limit N — oo. The consideration
of these correlations then leads to some remarkable connections with integrable

systems.
Following the exposition of Tracy and Widom [147], we define the n-point

correlation functions,

N! oo o0
Rn,@(yla--'y yn) = m] f PNﬂ(yl., ---1yN)dyn+1---dyN,

which give the probability of finding a level (eigenvalue) around each of the points
Y1,...,yn with the rest being unobserved. Girko [72] has shown that the level
density Ry for a very wide class of symmetric random matrices (8 = 1) tends to
a semi-circle law in the limit N — oo; after scaling the endpoints, the eigenvalues
are distributed in a semi-circle around the mean value. It turns out that the
n-point correlation functions can be expressed in terms of determinants involving
the kernels of certain integral operators. To consider the scaling limit N — oo, it
is necessary to examine the local statistics of the eigenvalues in the neighbourhood

of some point o, and then define new variables

& = Rip(yo) (s — ¥o)s

with ¢; fixed as
Y; = Yo
Henceforth we consider only the GUE case (8 = 2). Expressing everything in

the scaled variables, the relevant integral kernel is

K(&m) = %E%(—E%)w
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and the formula for the scaled n-point function is

RnZ(El, ceey gn) = det(I{(Eﬂ {k))j,k=1‘---.n‘

We should emphasize that this and similar results in terms of an integral kernel K
hold true for a large class of hermitian matrix ensembles, such as those constructed
from the classical orthogonal polynomials [147], in particular the ensembles rele-
vant to 2-D quantum gravity [75]. A direct connection with an integrable system
arises on considering m disjoint open intervals Iy = (azk-1, azx), 1 <k<m.

A quantity of central importance is the Fredholm determinant
D(I; A) = det(1 — K), (1.5.5)

where the integral operator is given in terms of its kernel by
. m
K =) MK(En)xs(n).
J=1

Observe that it is possible to write

K(&n) =

where A(¢) = Lsin(#£). Considering the set of endpoints (denoted a) of the
intervals I, as times, it is then possible to obtain a system of equations in the

dynamical variables
Qi(a) = limgma;/A(1 = K)TTA9),

Pi(a) := limga,1/A(1 = K)TTA(€)
(where we have made a slight alteration to the notation of [147]). The resulting
integrable system, known as the Jimbo-Miwa-Mori-Sato (JMMS) equations {90},
has a natural Hamiltonian structure in terms of canonically conjugate variables
pj, ¢; defined by
G2; := 2iQaj, Q2541 = 2Q 2541,
P2 = 1Py, @1 = Qo
The Hamiltonian corresponding to the time a; is given by
m? 1 (g;p% — 9p;)’
Hy=—+pi—7) " (1.5.6)

4 4 P Rl

If the a; are regarded as fixed constants then these Hamiltonians yield the well-

known integrable Neumann systems.
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The Hamiltonians for the JMMS equations are Poisson-commuting, and are

given by the exact one-form

2m
0= Zdeaj = d, log 7,

=1
with the tau-function 7 being given by the Fredholm determinant (1.5.5). We
have already seen that such determinants naturally yield tau-functions of KdV
[127], and Tracy and Widom have used their matrix model approach to derive
similar solutions to other integrable PDEs [148]. The appearance of the times
a; in (1.5.6) indicates that the JMMS equations constitute a non-autonomous
Hamiltonian system; they also have an interpretation in terms of loop algebras
[76]. An alternative way to view them is as differential equations of Painlevé
type, meaning that their solutions can have only poles as movable singularities.
In particular by restricting to the case of one interval and looking at dependence
on the interval length z, the JMMS equations reduce to a form of the Painlevé V

fo _ (1, L) (dw)' _ld
dz2 ~ \ 2w w-1 dz z dz

+ (w—1)* (aw n g_) + w4 32&‘%55_) (1.5.7)'

z2 z

equation,

(e, B, 7, 6 are parameters).
'The Painlevé equations were discovered as a result of the work of Paul Painlevé

(sce references in Chapter 7 of [5]), who was studying second-order ODEs of the

d*w dw
e = f(E;,'w, z), (1.5.8)

with F being a rational in w and ¢ and analytic in z. More specifically, Painlevé

form

and his co-workers succeeded in classifying ODEs (1.5.8) such that the solutions
have no movable singularities other than poles. It was found that (after suitable
changes of variables) all these ODEs had general solutions in terms of classi-
cal special functions, except for six special equations which are now known as
" Painlevé I-VI (or just PI-VI). The equation (1.5.7) is the fifth of these, and its
general solution (or sometimes the equation itself) may be referred to as a Painlevé
transcendent, since it essentially defines a new transcendental function.

Painlevé transcendents naturally arise as similarity reductions of certain inte-
grable PDEs [1]. For example, the first Painlevé transcendent (PI),

d*w 9
—d—z-z" = Gw + z, (1.59)
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produces similarity solutions of the KdV equation (1.3.1), via the substitution
u(z,t) = —2 (w(z(z,1)) + 1) 2=z — 6%

The connection between integrable nonlinear evolution equations and the Painlevé
transcendents has led to a direct test for integrability using local expansions
around a singular manifold [30]; the method is usually referred to as Painlevé
analysis, and we make use of it in Chapters 9 and 3. In Chapter 2 we study
some fourth-order ODEs obtained as similarity reductions of fifth-order KdV-
type equations; these ODEs may also be written as non-autonomous Hamiltonian
systems.

The equations PT-VI (as well as some of their higher order analogues) have
also arisen in various 2-D feld theories (see e.g. [21, 56, 88] and below), where
they give exact formulas for correlation functions. In this context it is essential
to have a good understanding of the structure and asymptotics of the solutions
to these ODEs, as only certain solutions are relevant for physical applications.
These considerations are particularly important for the Painlevé-type equations

occurring in the matrix models of 2-D quantum gravity, which we briefly review.

1.5.3 Matrix Models of 2-D Quantum Gravity

One of the main unsolved problems In theoretical physics is to find a consistent
framework for a quantum theory of gravity. Although Einstein’s theory of gen-
eral relativity seems to be the correct geometrical description of the large-scale
structure of the universe, it breaks down at very small distances, where grav-
ity (and hence space-time itself) should be subject to quantum fluctuations. If
the space-time metric is treated as a quantum field, then the usual perturbative
methods using path-integrals (1.5.1) fail due to irremovable divergences. Thus it
is necessary to find some alternative description. In recent years one of the most
popular approaches has been that of string theory, which essentially replaces the
point particles of ordinary field theory by one-dimensional strings. While there
are considerable conceptual difficulties with string theory, it has produced many
physical insights as well as providing the inspiration for whole new areas of math-
ematics. For an introduction to the main concepts of string theory we refer the
reader to Polyakov’s book [133]. Here we merely wish to emphasize some of the
connections with integrable hierarchies and matrix models.

The simplest and most successful models of quantum gravity are those in two
dimensions. As well as being of independent interest, such models are important
in string theory because they provide a description of the world-sheet swept out

by a string as it evolves in space-time. In the continnum approach advocated by
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_ Polyakov, the quantum picture of the string requires a suitably weighted sum (or
path integral) over two-dimensional random surfaces corresponding to the possible
configurations of the world-sheet. It is also necessary to allow for variations in
the topology of these surfaces, and in two dimensions this just depends on the
number of handles (genus). Hence if the fluctuations in the metric are ignored,
so that the space-time background is fixed, then this approach leads to the study
of conformal field theories on Riemann surfaces, governed by suitable extensions

of the Virasoro algebra
C

Umyln] = (m —n)lpyn + E(m3 — M)mtn0- (1.5.10)

It turns out that this algebra is related to the KdV hierarchy and certain classes of
its solutions, and this connection can be understood in relation to matrix models.

The matrix models constitute a non-perturbative, discrete approach to 2-D
quantum gravity, whereby surfaces are constructed from random triangulations
(or polygonal configurations). Generally these models describe conformal matter
coupled to topological gravity [46], but we shall largely concentrate on the simplest

case of pure gravity, which can be derived from the matrix integral

ZN(§)=/exp[—tr(ithj)] dH. (1.5.11)

=0
The partition function (1.5.11) is given as an integral over N x N hermitian
matrices (as for the GUE described above), and defines the one-matrix model.
It may also be regarded as a discrete analogue of the path integral (1.5.1), and
has a natural expansion in terms of planar diagrams [75, 151]. Each diagram
corresponds to a surface built out of a finite number of polygons, and by taking
N — oo and suitably scaling the couplings ¢; (in what is known as a double-
scaling limit) different sorts of continuum theory can be recovered.

There are many subtleties to the way in which the partition function is scaled.
However, it is a remarkable fact that, even before the double-scaling limit is taken,
the sequence of partition functions are naturally related to an integrable system -
the Toda lattice equations. Indeed, after integrating out the angular variables (as
for the GUE) the expression (1.5.11) is reduced to an integral over the eigenvalues
of H,

N o0
Zy = / AP [T exol- 3 t53]
k=1 j=0

(where an overall constant prefactor has been removed), and then using a certain
Vandermonde identity [151] (which can be derived from Pliicker relations), it is
found that

28N _ (azN

2
6t2 8t1 ) = ZN_12N+1. (1512)
i
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Thus the Zy are seen to be tau-functions of the Toda lattice, since with the
substitution ¢y = log[Zn/ Zn-1] the sequence of bilinear relations (1.5.12) yields
the usual Toda equations,
on
ot

= expléns1 — ¢n] — exp[én — on-1l-

Recently Aratyn and others have shown that more general matrix models sat-
isfy equations of Toda lattice type, within the framework of Darboux-Backlund
transformations for reductions of the KP hierarchy (see [17] and references).

The next remarkable property of the partition function (1.5.11) is that under
suitable adjustments of the parameters t;, it has double-scaling limits correspond-
ing to the flows (1.4.6) of the KdV hierarchy subject to a constraint,

£, P1=1, (1.5.13)
known as the string equation. For the string equation it 1s found that
P= (L5

for some integer k, with each choice of k giving a different conformal model
coupled to gravity.

The simplest non-trivial case is k = 1, corresponding to pure gravity, and it
is easy to check that for this model (after an integration) the string equation is
just the first Painlevé transcendent (1.5.9). Gross and Migdal [75] have given a
thorough discussion of the relevant asymptotics for solutions of this string equa-
tion, and these considerations have received more attention recently [124]. In
the double-scaling limit the partition function also becomes the square of a KdV

tau-function,

2
ZIn — 75,

with the potential of the Schrodinger operator £ given by the usual formula,
u = 2(log 7)ez-

Using orthogonal polynomial techniques, Douglas [51] has also shown that more

general (p — 1)}-matrix models, with partition functions

r—1 p—2 p—1

2= [ exaliri- Vi) + L ssfitha) T1 4,
' i=1 7=1 j=1

have double-scaling limits corresponding to the p-reduction of the KP hierarchy,

constrained by a string equation of the form (1.5.13) (where the operator L is of

order p).
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The second Hamiltonian structure of KdV provides another direct link with
conformal field theory. A short calculation with the second Hamiltonian operator
(1.3.6) shows that

{u(z), u(y)}2 = —8"(z — y) - 2(u(z) + w(y))8'(z — y).
Taking periodic functions u(z) (with period 27), define the Fourier modes by

1 f" 1

Un = 5 - u(z)e " dz — Zéno,

and then it is easy to compute their Poisson brackets,

1
{tm,tn}2 = 5 (‘2(m — ) Uppn — (M — m)6m+n,g) ,

which are equivalent to the Virasoro algebra (1.5.10) after a simple rescaling. It
turns out that the second Poisson structures of the p-KdV hierarchies are simi-
larly related to some other extended conformal algebras {W-algebras). Further
connections between integrable hierarchies and these algebras are explored in the
thesis of de Vos [151]. Approaching these theories from a different direction, Adler
and van Moerbeke have shown [10] that if the flows of the p-KdV hierarchy are
subject to a constraint (1.5.13) then the tau-function can be given as a limit of a
matrix integral; equivalently such tau-functions can be characterized as vacuum

vectors of the Virasoro algebra,

or a suitable extension. The matrix integrals of these authors are of a slightly
different type to the ones previously considered, and are naturally related to the
interpretation of 2-D gravity as a topological field theory [46]. There remain many
unanswered questions concerning these matrix models, but so far the connections

with integrable hierarchies seem to provide the most fruitful lines of enquiry.

For the sake of clarity we review the contents of the other chapters once more.
Chapter 2 concerns similarity reductions of some integrable fifth-order evolution
equations. These reductions are naturally viewed as ODEs of Painlevé type, hav-
" ing an interpretation as non-autonomous Hamiltonian systems; it is clear from
the above that such equations are important for computing correlation functions
in certain field theories. For the systems considered we construct Backlund trans-
formations and identify the role of the tau-function.

Another way to obtain finite-dimensional mechanical systems from integrable
PDEs is to look at the motion of the poles of certain classes of solutions. In
Chapter 3 we look at some singular solutions of the NLS equation. With the

use of a particular type of Backlund transformation (an analogue of the Crum
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transformation appearing in the theory of KdV) a sequence of rational solutions
is constructed. It is straightforward to demonstrate that the poles and zeros
of these rational solutions evolve according to constrained Calogero-Moser equa-
tions. These results are quite natural in the light of the fact that NLS occurs as a
reduction of KP, since rational solutions of KP are also related to the Calogero-
Moser system (without constraints).

Finally, Chapter 4 aims to give a dynamical description of the soliton solutions
of the affine Toda field theories. It is shown that the solitons in the AY) case are
related to the Ruijsenaars-Schneider models with spin, generalizing the connection
between the sine-Gordon solitons and non-spin Ruijsenaars-Schneider models. We
make use of the tau-function formalism for the affine Toda theories, and give an
expression for the N-soliton tau-functions in terms of the positions and spins of

the N particles in a Ruijsenaars-Schneider model.
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Chapter 2

Non-autonomous Hénon-Heliles
Systems

In this chapter we consider scaling similarity solutions of three integrable PDEs,
namely the Sawada-Kotera, fifth-order KdV and Kaup-Kupershmidt equations.
We show that the resulting ODEs may be written as non-autonomous Hamiltonian
equations, which are time-dependent generalizations of the well-known integrable
Hénon-Heiles systems. The original inspiration behind this was Fordy’s discov-
ery that stationary flows of the same three PDEs yield the usual (autonomous)
Hénon-Heiles systems. Since these PDEs all arise as reductions of the KP hierar-
chy, they each have an associated tau-function, and this tau-function is inherited
by the scaling similarity solutions. It turns out that the {time-dependent) Hamil-
tonians are given by logarithmic derivatives of the tau-functions. The ODEs
for the similarity solutions also have inherited Backlund transformations, which
may be used to generate sequences of rational solutions as well as other special
solutions. We exhibit some of these solutions explicitly. These results on non-
autonomous Hamiltonians are an extension of the approach used by Okamoto in
his description of the Painlevé transcendents PI-VI. Some other examples indicate

that this approach should be applicable in a more general setting.

2.1 Introduction

The six Painlevé transcendents have received a considerable amount of attention
in recent years, and have been studied from many different points of view. Their
original discovery came about from Painlevé’s classification of second-order ODEs
having no movable critical points. They have also been approached by way of
isomonodromic deformation of linear differential equations [58], or via abelian
integrals and algebraic geometry [124, 113]. Furthermore, they have found nu-
merous physical applications. In the matrix models of 2-D gravity [51, 75], the
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first Painlevé transcendent (PI) is the simplest equation arising from a Heisenberg

relation for two linear differential operators,
[L,P] =1, (2.1.1)

and in this context it is referred to as the string equation. The scaling limit of
the Ising model (which describes free fermions) has correlation functions which
are governed by Painlevé III (see [21] and references therein). The fifth Painlevé
transcendent (PV) and some systems which generalize it were found in connection
to correlation functions for the spectrum of random matrices (see [76, 90, 147}),
and these same equations drive correlation functions for the quantum nonlinear
Schrodinger equation [88]. A new development has shown that PV is also related
to the correlation functions of the XXZ spin chain in the phase which describes
interacting fermions [56].

The classification programme of Painlevé only applied to second-order ODEs
of a particular form. As the order of the equations increases, the problem of
classifying those which are of Painlevé type (i.e. having no movable singularities
. other than poles) becomes more and more difficult. For example, with third-order
equations there is the possibility of natural boundaries beyond which solutions
cannot be analytically continued (as in the case of the Chazy equation [3]). It
would be extremely useful to have some general classification techniques for this
type of equation, independent of the order. For instance, higher order equations
of Painlevé type occur in the matrix models as the order of the operators in
(2.1.1) increases. Based on the idea of deformations of Riemann surfaces, Novikov
[124] has determined the asymptotics of some of these equations. However, as
pointed out in [124], these techniques and the related isomonodromic methods
are ineffective at revealing general results; detailed analysis is required for each
particular equation considered.

Another context in which ODEs of Painlevé type arise naturally is as similarity
reductions of integrable PDEs. Given a PDE in 1+1 dimensions with independent
variables z, t and dependent variable u(z,t), the problem of finding solutions is
somewhat simplified if we seek a solution in the similarity form. That means we

have

u(z,t) = U(w(z), z,1), (2.1.2)

where

z = z(z,1)

is the similarity variable, and on substituting U(w,z,t) into the PDE, an ODE

for w(z) is obtained. There are various ways of finding similarity forms, the most
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common being the classical Lie symmetry approach (although this method does
not yield all possible similarity solutions; see [43] for a case where it fails, as
well as references to the other techniques). Now if the original PDE has lots
of nice properties (such as solvability by inverse scattering) then the resulting
ODE should be correspondingly manageable. This is expressed more precisely n
the conjecture of Ablowitz, Ramani and Segur (ARS {1]), which states that all
similarity reductions of integrable PDEs are of Painlevé type. A more detailed
discussion, as well as some theorems which support the ARS conjecture, may be
found in Chapter 7 of [5]. The main thing to observe is that similarity reductions
of soliton equations inherit much of the stucture associated with integrability,
such as Backlund transformations and solutions in terms of special functions.
The simplest sort of similarity solution for a PDE is just the stationary flow,

which corresponds to taking
U = w(z)
with z = « in (2.1.2). Stationary flows of integrable nonlinear evolution equa-

tions naturally lead to integrable finite-dimensional Hamiltonian systems. Indeed,

given the zero curvature representation of the evolution equation,
F,— G, +[F,Gl=0,
the restriction to the stationary manifold automatically yields a Lax equation:
G. = [F, Gl

Hence G becomes the Lax matrix for the stationary flow, and traces of powers
of G yield the Hamiltonian and the other constants of motion. Some particular
examples of this, relevant to the rest of this chapter, may be found in [26, 63].
The general description of the reduction to stationary flows is given by Fordy in
[64].

The other sort of similarity solution most commonly considered is the scaling
similarity solution. For comparison with what follows it is worth looking at a
well-known example. If we start with the modified Korteweg-deVries (mKdV)

equation

V¢ = Vgzz — 6viv,, (2.1.3)

and notice that it has a scaling symmetry, then this gives us its scaling similarity

solutions. More explicitly, (2.1.3) is invariant under
¢ — Bz, t—pt v— B tv,
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anid so this implies that there is a similarity solution

vz, 1) = (~3t) Sy(z(z,1), (2.1.4)

with the similarity variable z = (-—3t)'%m. Substituting this form into (2.1.3) we
find that y satisfies

ym — 6y2y’ + zyf +y (2.1.5)

(' denotes £, which may be integrated once to give

y' =29+ 2y t o, (2.1.6)

for some constant a. The resulting equation (2.1.6) is the second Painlevé equa-
tion (PII).

The example of PII is extremely instructive, in that it is closely related to
some of the equations we shall be studying in the rest of the chapter. The first

thing to observe is that it may be obtained from the Hamiltonian system

dy ?_h_
dz  0p’
dgp _ _0k
dz =~ Oy
with the polynomial Hamiltonian
I SR S N

Note that this Hamiltonian is non-autonomous: it has explicit dependence on the
time z, and hence is no longer a constant of motion. Instead of a Lax equation
(as for the stationary flows), the zero curvature representation of mKdV (2.1.3)
yields a zero curvature representation for PII, which we derive in Section 2.3. It
turns out that each of the equations PI-VI may be written as a non-autonomous
Hamiltonian system.
In the work of Manin [113], the following Hamiltonian for PVI is presented:

helpro L " o; L 2.1.8

- 5P~ g Lo 3 (219)
In the above, the Weierstrass p-function has periods 1 and w, with w being the
time, the a; are parameters, and (To, -, Ts) = (0,1,w,1 + w). A substitution
(originally due to Fuchs) is required to convert this to the usual form of PVIL,
from which the other Painlevé equations PI-V may be obtained by a suitable

limiting process. While Manin’s approach is very elegant and uses the powerful
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-machinery of algebraic geometry, we do not see a simple way to extend it to higher
order equations. We prefer to develop the alternative methods of Okamoto [128],
who uses polynomial Hamiltonians for the Painlevé equations, and defines a tau-

function for each of them by

h = %log[r(z)].

In the case of PII, this tau-function essentially coincides with the tau-function of
mKdV/KdV (after a simple scaling). Hence the Hamiltonian h is a very natural
object from the viewpoint of the original evolution equation. Since the Painlevé
equations can all be derived as reductions of higher-dimensional integrable equa-
tions (such as self-dual Yang-Mills [5]), we expect that the tau-functions should
occur very naturally in these reductions.

Another feature of PII (also inherited from mKdV) is its Backlund transfor-
mation, which takes a solution ¥, of (2.1.6) to another solution ya+1 for parameter

value @ + 1. It is given explicitly by

2a0+1

Y41 = — Yo — m

This may be viewed as a canonical transformation in the Hamiltonian framework.
The rational solutions to the mKdV/KdV hierarchy (constructed by Adler and
Moser in [8]) reduce to give 2 rational solution to PII for each integer value of o,
in a sequence related by the Bicklund transformation. All these solutions may
be generated by applying this transformation starting from the solution yo = 0.
For half-integer values of o there is a different sequence of solutions which may
be expressed in terms of Airy functions. These results have been derived many
times in different ways (e.g. compare the methods in [3, 93] and [128]), and the
other Painlevé equations display the same sort of structure.

The majority of this chapter is devoted to the the scaling similarity solutions
of three different integrable, fifth-order evolution equations, which are known as
the Sawada-Kotera, fifth-order KdV and Kaup—Kupershmidt equations. We show
that the ODEs for these similarity solutions may be written as non-autonomous
Hamiltonian systems (referred to in the text as the systems H)—(i)), Which in-
herit Backlund transformations and tau-functions from the original PDEs. Each
of these PDEs belongs to an integrable hierarchy of commuting flows, and we wish
to illustrate some of the general features of similarity reductions of the equations
in these hierarchies. Hence, in Section 2.2, we consider the three relevant inte-
grable hierarchies of evolution equations (the Sawada-Kotera, Korteweg-deVries

and Kaup-Kupershmidt hierarchies), and develop a general formalism to describe
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the scaling similarity forms of each of their flows. Each hierarchy has a corre-
sponding modified hierarchy related to it by a Miura map, and this Miura map
extends to the similarity solutions. As a particular example of the general for-
malism, we explicitly describe the one-one correspondence between the scaling
similarity solutions of the ordinary (third—order) KdV equation and those of the
mKdV equation (i-e. solutions to PII). We also describe this correspondence for
the case of the fifth-order evolution equation 1n each hierarchy. To make contact
with isomonodromy ideas, Section 2.3 contains a derivation of the zero curvature
representation for each of the ODEs arising as similarity reductions of the flows
of the modified hierarchies. For most of the rest of the chapter, we concentrate on
the specific example of the scaling similarity colutions of the fifth-order evolution
equations.

Section 2.4 concerns some completely integrable finite dimensional Hamilto-
nian systems, known as the Hénon-Heiles systems, and their non-autonomous
generalizations. We describe how (as discovered by Fordy [63]) they are related
to stationary flows of the fifth-order PDEs previously introduced, and relate the
similarity solutions of these PDEs to non-autonomous versions of the Hénon-

Heiles systems. For example, stationary flows of the fifth-order KdV equation,
uy = uss + 10Uz + 20U Uzr + 30u u., (2.1.9)

may be written as & Hamiltonian system, with the Hamiltonian
1 1 X
=+t LU R A
by making the identification ¥ = ¢1 (z is the time, and A is a constant of inte-
gration). The particular ratio of terms in the potential of the above Hamiltonian
corresponds to one of the integrable cases of the Hénon-Heiles system. By a slight
modification of Fordy's approach, we are able to relate the scaling similarity so-
lutions of {2.1.9),

u = (-—5t)“%w(z), z= (-—5t)']?m,

to a system with Hamiltonian

1,5, an, L 2.3 X, L
h= 5( T+pa)+ 50 ta - 56 TP (2.1.10)
To do this we must identify w = q1, and the time is now denoted by z. Thus
it is apparent that the Hamiltonian (2.1.10) is time-dependent; there are similar
Hamiltonians for the scaling similarity solutions of the Sawada-Kotera and Kaup-

Kupershmidt equations.
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It is helpful to define tau-functions for these non-autonomous Hamiltonians,
so that e.g. for (2.1.10) we have

h = —gglog[r(z)].

We then find Backlund transformations which are seen to be canonical transfor-
mations in the Hamiltonian setting. In order to derive these Backlund transfor-
mations, we make use of the Miura map for the similarity solutions. In particular,
(2.1.9) is related to the fifth-order equation in the mKdV hierarchy,

v = (V45 — 10(v*vep + v02) + 60°) (2.1.11)

by the Miura map,

U= —v, — v

This Miura map leads to a one-one correspondence between scaling similarity
solutions of (2.1.11),

v=(=5t)ty(z), 2= (-5t)"%z,

and solutions of the system with Hamiltonian (2.1.10). Repeated application of
the Backlund transformations may be used to generate sequences of solutions
to the Hamiltonian systems. Hence (in Section 2.3) we present sequences of
rational solutions, as well as special solutions which may be expressed in terms
of solutions to PI. This is in contrast to the special sequences of solutions to
the usual Painlevé equations, which are all given in terms of classical functions.
Section 2.5 also contains a brief discussion of Painlevé analysis for these systems.
Finally we indicate some other applications of these techniques, and suggest ways
in which they might be developed. Some of this work has already appeared in
[87].

2.2 Scaling Similarity Solutions in the Sawada-
Kotera, KdV and Kaup-Kupershmidt Hier-
archies

Although most of this chapter is concerned with the scaling similarity solutions
of three particular fifth-order evolution equations {one of which is the fifth-order
KdV equation (2.1.9)) and their associated modified equations (such as (2.1.11)),
these fifth-order equations are only particular flows of certain integrable hierar-
chies, which we will refer to as SK, KdV and KK for short. For example, the
KdV equation ((2.2.13) below) is the first non-trivial flow in the KdV hierarchy,

47



while (2.1.9) is the next flow in this hierarchy. In this section we develop a con-
cise notation to describe the scaling similarity solutions of any one of the flows
of SK, KdV or KK. We then apply it to some particular examples, including the
similarity solutions of fifth-order equations which we study in detail in Sections
2.4 and 2.5.

2.2.1 General Description of Scaling Similarity Solutions

Before looking at the particular non-autonomous systems which are the main
subject of this chapter, we will consider some aspects of three different hierarchies
of PDEs, known as the Sawada-Kotera (SK), KdV and Kaup-Kupershmidt (KK}
hierarchies, that are needed in what follows. Each hierarchy is a sequence of
evolution equations or flows with respect to times ¢, (n = 1,2,3, ...), which can all
be put into Hamiltonian form. SK and KK have only one Hamiltonian structure,
but KdV is bi-Hamiltonian, and here we will be using the second Hamiltonian
structure. Following Fordy [63], we are able to consider all three hierarchies at

once. The n-th flow in each of the hierarchies can be written as

%li = (82 + Baud, + dau, )8, H,[u], (2.2.1)

where a = 1/2 for SK and KdV, a = 1/4 for KK, and H, is the n-th Hamil-
tonian for the hierarchy in question. For the purposes of computing variational
derivatives, we make no distinction between a Hamiltonian and its corresponding
Hamiltonian density. For more details on these hierarchies and ways of calculating
the sequence of Hamiltonians, see e.g. [60, 69].

There is also a Miura map from the modified versions of the hierarchies, given
by

u = —v, — 200 =: M[v].

Then re-writing the Hamiltonian in terms of v and derivatives, the n-th modified

flow may be expressed as

ov
5{; = (_ax)éan[M[U]]- (2.2.2)

The Miura map means that given v satisfying (2.2.2) for each n, the corresponding

u = —v, — 2av? satisfies (2.2.1).

The n-th flow of the hierarchy is unchanged by the scaling
z — fz, t, — 75, u — B2,

where m = m(n) is a scale weight dependent on the hierarchy and on which flow

is being considered. It is easy to show that each flow has a scaling symmetry by
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looking at its Lax representation in terms of differential operators. Similarly the
modified flow is invariant under the same scaling but with
v — B,

Hence there are scaling similarity solutions looking like u = = w(z /tw) (up to
rescaling of w and the similarity variable z). For convenience in what follows we

scale the similarity variable so that

u(z,t,) = 0% (ta)w(2),
where
de
dt,

The corresponding similarity solution for the modified flow is

v =8(tn)y(2),

with the scaled Miura map giving

z = z8(tn), = g™t

w= —y' — 2ay®

(' denotes £ throughout).
In the context of an integrable hierarchy, it is customary to think of the

dependent variable as a function of all the times,
U= U(tl =T, tz,ta, ...).

When we consider the scaling similarity solutions to the n-th flow, it is better to
drop dependence on anything other than z and t,. In fact, because of the way
that the variables must scale, it appears to be inconsistent to consider the other
flows simultaneously. We shall see a particular manifestation of this in Section 5,
when we come to consider the rational solutions. It appears that the only way to
incorporate the other flows is to allow the similarity variable to depend on some
of the other times (as can be done to get similarity solutions of the KP equation
[136]). Henceforth we will drop the suffix n, bearing in mind that the actual form
of the Hamiltonian depends on which particular flow we have chosen.
Substituting the similarity forms into the equations of motion (2.2.1) and
(2.2.2) (and cancelling out powers of § on either side) yields the ODEs for w
and y. If we let H denote the scaled Hamiltonian (expressed in terms of w with
powers of § divided out) then we obtain the equations for the similarity solutions

in the following form:
(0 + 8awd + 4aw’) (éwﬁ - éz) = 0, (2.2.3)

A6 H +zy) = 0. (2.2.4)
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The symbol @ denotes derivatives with respect to z. It is worth describing how this

scaling process works in slightly more detail. For the scaling similarity solutions,

the left-hand side of (2.2.1) is

do Jdz

_ 9pd 20%
U = ZBdt w(z)+ 0 FYid (2),

= 0™ (2w + zw'),

= ™5 + Bawd + 4aw’) (%z) . (2.2.5)

The crucial step is the last line (2.2.5), where the ¢ derivative is rewritten in terms
of the Poisson operator appearing on the right-hand side of (2.2.1). Since this
right-hand side must also scale correctly, we have

S H = ™16, H.

To obtain H it is necessary to replace every x derivative uy, in H by the corre-
sponding (rescaled) z derivative w{*). Upon making use of (2.2.5) and the scaled
Hamiltonian A, (2.2.3) follows directly from (2.2.1). A similar calculation leads
to (2.2.4) from (2.2.2).

Both equations (2.2.3,2.2.4) can be integrated once, and are conveniently writ-

ten in terms of

~ 1
fi=8,H — Pl (2.2.6)
Integration of (2.2.3) yields immediately
42 22— (gfz_)z

with A being a constant of integration. For (2.2.4), note that
6, H = (M'y*6,H = (0, — 4av)é,H, (2.2.8)

where M’ is the Fréchet derivative of M. The scaled similarity form of this relation
(involving y and 6, H) allows (2.2.4) to be written in terms of the quantity f and

integrated to

(—if— —dayf+A=0. (2.2.9)
dz

A more obvious direct integration of (2.2.4) would be

&,H + 2y +a=0, (2.2.10)
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and in fact this is exactly equivalent to (2.2.9), with the constant o given in terms

of A by

1
a=A——.
da

Indeed, the scaled version of (2.2.8) implies

6,11 = (8- 4ay) (f s 41) ,

which shows how (2.2.9) and (2.2.10) are related. The ODEs for the similarity
solutions are completely specified by (2.2.7,2.2.9), together with the definition
(2.2.6) and the scaled Miura map. We remark that the equations for the station-
ary flows are simply obtained by removing the — 4z terms from f.

In (2.2.7) fisto be thought of as a function of w and its derivatives, while in
(2.2.9) it is expressed instead in terms of y and derivatives of y (replacing each w
by —y' — 2ay?). The constant of integration ) is the same in both cases, as the
Miura map becomes a one-one correspondence between the two equations. The
form of the equations makes it particularly simple to see the relationship between

them. We have the scaled Miura map,

w=—y - 2ay%, (2.2.11)
and it has an inverse given by
i+
=i — 2.2.12
Y= 47 (22.12)

In (2.2.12) we regard f as being a function of w and its derivatives, and it is
necessary to assume f # 0 since otherwise this equation breaks down. Now
suppose that we have a solution w of (2.2.7), and we define the modified variable

y by the inverse Miura map. Then we may calculate directly

1 fIZ_A2
' =92 2 - M .
y' — 2ay 4af( Y )

= ’U),

where the last line follows at once on rearranging (2.2.7). Hence the inverse Miura
map (2.2.12) together with (2.2.7) implies the Miura map (2.2.11). This in turn
means that f can be reinterpreted as a function of y and its derivatives, and
then (2.2.12) may be rearranged to yield the ODE (2.2.9) for y. The converse
follows by a reversal of this argument {or immediately upon scaling the usual
Miura map for the PDEs). To make things more concrete, it is worth looking at

some particular cases.
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.2.2.2 Similarity Solutions of KAV and PII

The first example to consider is the scaling similarity solutions of the ordinary
KdV equation. Putting H = 1u? (the first non-trivial Hamiltonian in the KdV
hierarchy) into (2.2.1) with a = 1/2 we obtain KdV:

Uy = Ugey + OuL. (2.2.13)
The scaling similarity solutions are given by
u(z,t) = (—3t)" S w(z),

with the similarity variable z = (—St)'%:c. After substituting into KdV and
integrating once we find the ODE for w:
ala+1) +w' — (w')?

w” + 2wt — zw +
w—=z

=0. (2.2.14)

Using the scaled Hamiltonian H = iw? we find

z

f=w- 7’
and substituting into (2.2.7) with this f and a = } does indeed give the equation
(2.2.14) on setting A = e+ §. Also the Miura map u = —v, —v? goes from mKdV
to KdV. For the scaling similarity solutions (2.1.4) of mKdV (2.1.3) we find that
there is a one-one correspondence between solutions of PII (equation (2.1.6) of

the previous section) and (2.2.14), given by

w=—y -y’
(the scaled Miura map) and
_w'+a
Y= w—2

the latter being a particular case of the inverse Miura formula (2.2.12). Also note

that, in terms of y, we have
Z
f==y-y"-3,

and on putting this into (2.2.9) with @ = 1, PII results. This example is also

considered in (3], for instance.

2.2.3 Similarity Solutions of Fifth-Order Equations

Our second example constitutes the main subject of this chapter. We take the
fifth-order equations in each of the hierarchies, which (following [63]) may be

written as

U = (Uzzer + (8a — 28)ung, — 2(a + byuZ — %p—abu"s)x, (2.2.15)
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where we have three cases (i),(ii),(iii), corresponding to

I 1 1 1
- 55 57 Z, b= "‘57 "37 _41
respectively. These are the only values of a,b for which an equation of the form
(2.2.15) is integrable [63], and (1) and (iii) are respectively the Sawada-Kotera
[101] and Kaup-Kupershmidt [96] equations, while (ii) is the fifth-order KdV
equation (2.1.9). The expression (2.2.15) may be obtained from the Hamiltonian

formalism described above (2.2.1}, by taking the Hamiltonian to be

H=—-u— 1bua.

2 3

When specializing to one of the three hierarchies, it 1s necessary to take the correct
values of a and b in each case. While some of the calculations we present are valid
for arbitrary a, b, all properties relevant to the integrability of the equations are

lost in general. The scaling similarity solutions of (2.2.15) take the form
u(z,t) = (-5t)"Sw(z),

where now z = (—5t)~%z, We find

z
=w" — b — =
f=w W=

and putting this into (2.2.7) we get a fourth-order ODE for w, which we prefer
not to present in gory detail.
It is helpful to have the explicit forms of the fourth-order ODEs for the scaling

similarity solutions of the associated modified equations,

v(z,t) = (~5t) Sy(z).

Using the scaled Miura map, we may express f in terms of the modified variable

7}
f=—y" —dayy" — (da + b)(y")" — daby’y' — 4a’by* - fg- (2.2.16)

Then the ODE for y is (from (2.2.9))
y @) = ~2(6a + b)y'y" + 4a(da — b)(y*y" + y(v")?) + 16a%by® + 2y + o, (2.2.17)

with )
oa=A— E'
Given a solution to (2.2.17) we can then obtain a solution to the fourth-order ODE

for w, via w = —y' — 2ay®. The equation for w is rather unwieldy when written
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out in full, so rather than giving it explicitly we will write it as a Hamiltonian
system in Section 2.4.

On substituting in the relevant values of ¢ and b into the equation (2.2.17) we
find

y® = sy +5(y%" +y(y)) -y eyt (2.2.18)
y® = 10%" +y(¥)) — 6"+t o (2.219)
g = By'y" + 5%y +y()) v+t o (2.2.20)

for (i),(ii),(iii) respectively. So (2.2.19) is the ODE for the scaling similarity
solutions of the fifth-order mKdV equation (2.1.11). Notice that (2.2.18) and
(2.2.20) differ only by a sign in the even (y'y") terms. Hence if y;) is as solution
to (2.2.17) for case (i), then yus) = —y() will be a solution to that equation for
case (iii) with o replaced by —a. This is because the modified hierarchies in these
" two cases are essentially the same. In fact both SK and KK have a third-order Lax
operator, which is factorized to yield the Miura map (see [60]). We shall use this
connection between case (i) and case (iii) to derive the Backlund transformation
for the scaling similarity equations. It is no longer necessary to consider (2.2.20)
separately.

We should like to view (2.2.18) and (2.2.19) as fourth-order analogues of PIIL
In particular, their general solutions should not be expressible in terms of classical
special functions, and should therefore define new transcendents. The majority
of our results concerning these equations (2.2.18,2.2.19) involve using the Miura
map to relate them to some non-autonomous Hamiltonian systems, as we describe
in Section 2.4. Another important feature shared by (2.2.18) and (2.2.19) is that
they have associated linear systems and zero curvature representations, which
they inherit from the PDEs. Although we do not make use of the linear systems
elsewhere, they allow an interpretation in terms of isomonodromic deformations,

and so we present them in the next section for completeness,

2.3 Zero Curvature Equations

Given that the equations (2.2.18) and (2.2.19) have arisen as similarity reductions
of integrable PDEs, we would expect them to be of Painlevé type [1]. In other
words, all their solutions should be globally meromorphic. The usual method of
testing for this is Painlevé analysis, which consists of finding all possible formal
expansions of a solution around an arbitrary point zo. However, while this test
can show that an ODE is not of Painlevé type (if a noninteger power or logarith-

mic term appears in the expansion), it is a local test, and hence is not sufficient
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for proving that an equation with well-defined formal expansions is of this type.
Painlevé’s original proof that the six transcendents PL-VI have no movable singu-
larities other than poles is extremely laborious and notoriously unclear, requiring
detailed analysis and special transformations for each equation. Recently Joshi
and Kruskal [91] have given 2 concise proof which deals with all six equations
on an equal footing. Essentially their method examines solutions in the neigh-
bourhood of singularities, converting each ODE into an integral equation {(by
integrating the dominant terms) and then showing that the singularities must all
be isolated poles. Unfortunately we have been unable to extend this method to
deal with the fourth-order equations (2.2.18,2.2.19). Nonetheless, Painlevé anal-
ysis does provide some useful information, and we present the results of this in
Section 2.5.

Another way of understanding the solutions of Painlevé equations is through
the concept of isomonodromic deformation of a linear system. An important
feature of the equations we consider is that the zero curvature representation of
the PDEs in the modified hierarchy scales to give the corresponding representation

for their similarity solutions. Starting from a linear system,

o, = F9,
(I’t = Gip,

n

the n-th flow of a hierarchy 1is obtained from the compatibility condition,
F,—-Gs+ [F,G] = 0.

The matrices F,G will depend on a spectral parameter L as well as on z and in.
To get a linear system for the scaling similarity solutions, it is necessary to allow
derivatives with respect to a rescaled spectral parameter ¢, yielding a new zero

curvature equation,

U - V. +U,V]=0. (2.3.1)

We illustrate this method in the case of the mKdV hierarchy, which for these
purposes we write as
B (onjstla M)
where we have shifted the labels on the Hamiltonians compared with (2.2.2), so

that the corresponding (bi-Ha,miltonian) flows for KdV are written as

ou

5{- = (ai + Sauax + 40:?1.3;)6an—-1 [U],

= 0,6, Hylul.
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The zero curvature representation of the n-th flow in the mKdV hierarchy comes

(). - (F (%)
(5), = (e O

In the above, k is the spectral parameter, and we have

from a linear system,

1

A = Zk(axSn_.l - Tn), B = —'Sn, C = -—QkBISn_l,

where

n-1

S =y (4K*)éHn-1-5)
3=0
n-1 ‘

T, = Y (4K éuHo-1-;:

=0

(The sequence of Hamiltonians starts Ho=3u, H1=%u2, H2=—%u§. +2, ...) Now

for the similarity solutions we eXpress everything in terrs of the new variables,

z=2b(t), k= C0(t) o(z,tn) = 0(tn)y(2)s i@, tas k) = x5(2 0)-

(For the n-th flow of mKdV we have Edc% = §?*.) When everything is written i
terms of these similarty variables, certain powers of 8 can be divided out, and

6, H,—1 may be climinated using (2.2.10}, to yield the new scaled linear system

.- (o) e
) - (@), e

s 998 42—z, T=48a-7 AT 205n-1.

with

Again we have used the convention that a quantity with a tilde is written in terms
of the similarity variables with powers of 8 scaled out.

To make this more concrete, we refer back to our earlier examples. The n-th
similarity equation in the mKdV hierarchy is the compatibility condition (2.3.1)

arising from the linear system (2.3.2,2.3.3). Hence the matrix

o-( 8
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is the same for all n, while

= I'-A
V= ( r+A -= )
depends on which similarity equation is being considered. PII (2.1.6) corresponds
to the case n = 2, and the entries of V are given by
S =40t -yt -z, I‘=—4Cy—fg—, A = -2y

The fourth order ODE (2.2.19) comes from the third flow of the mKdV hierarchy,
and in that case V has entries
== 16(-4 _ 8C2y2 _ 4yyh' + 2(yl)2 + 6y4 — z,
I = ~16¢% —4¢(y" — 2°) - %, A= —8C%y — 29" + 124y’

The zero curvature representation of the flows in the Sawada-Kotera and
Kaup-Kupershmidt hierarchies, as well as in their common modified hierarchy,
requires 3x3 matrices [60). Hence to represent the equation (2.2.18) as the zero
curvature condition (2.3.1) we must take

0 ¢ 0
U=10y ¢ ],
¢ 0 —y
—2¢2L 9By +J— K 9+ (L
V= 9ct — (L CL-% J+2K |,
93y +J-K 9¢* (*L+¢

where
J=2y"— () + 2% ~y' + 2,
K=y"+yy"+20')V -2, L=3@+y).

Given the zero curvature form, the initial value problem for ¥ can be reduced
to an inverse monodromy problem, which is solved in terms of a system of singular
integral equations or a Riemann-Hilbert problem. This approach constitutes an
ODE analogue of the inverse scattering transform, and has been applied in detail
to PII by Flaschka and Newell [58], and also by Fokas and Ablowitz [4]. The
other similarity equations in the mKdV hierarchy are also discussed in [58], where
they are referred to as the Painlevé II Family, and the same inverse monodromy
scheme is outlined for the whole Family (which of course includes the equation
(2.2.19) as its second member). However, as the order of the ODEs increases,
the problem becomes much more complicated. Rather than trying to apply this
scheme any further to the fourth order equations (2.2.18,2.2.19), in the next
section we proceed to develop the Hamiltonian formalism of Okamoto, while at

the same time generalizing some results about stationary flows due to Fordy.
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2.4 Hénon-Heiles Systems

2.4.1 Stationary Flows and Integrable Hénon-Heiles

The original Hénon-Heiles system is given by a Hamiltonian with two degrees of

freedom:
h = l 2 2 2 _ lb 3
= 5P+ p2) + aqg; — by, (2.4.1)
The equations of motion are just Hamilton’s equations
qu‘ . ah
T E?p_j’ (2.4.2)
dpj Oh

(We are denoting the time by z here to make connection with our other results.)
It has been known for some time from Painlevé analysis [40] that this system is
integrable for only three values of the ratio r = a/b (because of a scaling symmetry

of the equations the integrability only depends on this ratio), namely
r=-1, -1/6, -1/16.

More recently, Fordy [63] has shown that for these integrable cases the equations
of motion are just disguised versions of the stationary flows of some fifth-order
soliton equations - the Sawada-Kotera, fifth-order Korteweg-deVries and Kaup-
Kupershmidt equations (all particular cases of the equation (2.2.15)}). Thus the
choice of values for a and b as given in Section 2.2 gives the right values for the
ratio r in the cases (1),(i1),(iii) respectively. The zero curvature form of these
PDEs yields a matrix Lax representation of the stationary flows, and then traces
of powers of the Lax matrix give the Hamiltonian and the second constant of
motion (which shows that these systems are indeed Liouville integrable). It was
subsequently shown that all three systems are completely. separable in suitable
coordinates, and may be integrated in terms of theta functions of genus one (cases
(i) & (iii)) or genus two (case (ii)){33].

2.4.2 Non-autonomous Hamiltonians for Scaling Similar-
ity Solutions

Instead of looking at the stationary flows of these three fifth-order PDEs (all of
the form (2.2.15)), we take the equations for their scaling similarity solutions,

and rewrite them in Hamiltonian form. These similarity equations are most
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conveniently described using the notation of Section 2.2. We have the definition

of f in terms of w,

=" — bu? — — 4.
f=w W' = o (2.4.4)

and on substituting this into (2.2.7) we obtain the full fourth-order ODE for w.
As we stated previously, we prefer not to present this ODE explicitly, as it is not

very instructive to do so. Instead, if we set

w =, f = _aqga

then we may rewrite (2.2.7,2.4.4) as a coupled system for ¢, g,:

Z
af = bei—ag+ -, (2.4.5)
; A’
! = —%agiqp — ——. 2.4.
2 aq1q2 1a?q (24.6)

This coupled system just follows from Hamilton’s equations (2.4.2,2.4.3), where
now the Hamiltonian is given by
2
b= o+ + anigd ~ b3 - ot~ e (247)
Compared with (2.4.1), this has an extra inverse square term and a non-autonomous
(time-dependent) term in the potential.

Thus we have shown that the equations for the similarity solutions introduced
at the end of Section 2.2 may be viewed as non-autonomous Hénon-Heiles systems.
Because of the explicit time-dependence, the Hamiltonian is no longer a constant
of motion, and there is no matrix Lax representation as in the autonomous case.
However, the Hamiltonian theory of the six Painlevé transcendents, as developed
by Okamoto [128], can be extended completely analogously to the Hamiltonian
system defined by (2.4.7), for the three special values of the ratio r. In particular
these three special systems, which we denote by H;), M), My, have Backlund
transformations which can be viewed as canonical transformations in the variables
g4;,Pj, 2. More precisely, we will present transformations between the Hamiltonian
systems,

(Q.‘r'apj:z) - (qhﬁjs 2),
such that the two-form

w= dej/\dqj—dh/\dz
=12
is preserved (i.e. w = @). We have also found that each of H;_(iiy admit a

second independent quantity, ¢, in involution with the Hamiltonian:

{c,h}=0.
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' However, ¢ is also time-dependent.

The construction of the Bicklund transformations is possible due to the exis-
tence of the Miura maps. For the system H;;) we bave (by the general arguments
of Section 2.2) a one-one correspondence between its solutions and the solutions
of the modified similarity equation (2.2.19}, while both H¢;y and Hii have simi-
lar correspondences with (2.2.18). Thus the Hamiltonian approach elucidates the
solution structure of the modified equations considerably. We are also able to

define a tau-function for the Hamiltonians, via

h(gs(2), p3(2), 2) o (loglr(2)])

(for some constant of proportionality, which is dependent on which of the three
cases is being considered). As well as simplifying many of the derivations, this
tau-function is naturally inherited from the original PDEs.

Before dealing with these issues, we first show that the time-dependent Hamil-
tonjan h must also satisfy a fourth-order ODE. At this point it is worth recalling
that when we discussed the similarity solutions in Section 2.2, the relationship
between the Miura map and its inverse was most easily seen by considering f
alternately either as a function of w and derivatives (given by (2.4.4) in this case)
or as a function of y and its derivatives (given by (2.2.16)). For the proof of the
following proposition, 't is convenient to further abuse our notation and think of

f as a function of k and its derivatives.

Proposition 2.1. If the quantity f is rewritten in terms of the Hamiltonian

(2.4.7) by )
oAb _ 16a2b(RNE - —
§ = —4ah" —16a b(h") o

then h satisfies the fourth order nonlinear ODE
(fY? - 32¢°H f* — 8af (Saz(h")z + G—I;Eba‘q(h')3 + zh' — h) ~A2=0. (248)
Define a generic solution of (2.4.8) to be one for which
f#0.

Conversely, if h is a generic solution to (2.4.8), then the functions (¢;(2),pi(2))
defined by

=

A — _agh” — " N
o = —dak/, p=—tak’, @ (4h + 16ab(k) +4a2) :

W

Py = (4h"’ 1+ 16ab(R)? + -z—)-

402

satisfy Hamilton’s equations (2.4.2,2.4.3) for the Hamiltonian h.
60

(2h“"’) + 16abh’R" + éﬁ) (2.4.9)



Proof. Given the (Hamiltonian) equations of motion, it is immediately apparent
that

dh Ok 1

il T
It is then a simple matter to express (g;, p;) in terms of z, h and its derivatives.
The formulae (2.4.9) result, but it is simpler to work with f, f' instead of ¢3,
ps (to avoid square roots). Substituting these expressions into (2.4.7) and rear-
ranging yields (2.4.8). As for the converse, all of Hamilton’s equations are direct
consequences of (2.4.9), apart from

i, v

— —2aq1gs — —z.
dz aq142 4022(]%

In fact, this is more easily written in terms of f and derivatives, and is equivalent
to (2.2.7). Noticing that (2.4.8) contains the quantity

g =8a*(h")? + %ba%h')a +zh' — h,
satisfying
g = —4ah”f,

it is easy to see that differentiating (2.4.8) gives
2f (f" — 32a°k' f — 4ag) = 0. (2.4.10)

Assuming that A is generic (f' # 0) implies that the bracketed expression in
(2.4.10) vanishes, and using (2.4.8) again to substitute for g finally leads to (2.2.7),
as required. In fact we shall see in Section 2.5 that there are non-generic solutions
to (2.4.8), corresponding to f =0 (with A = 0), which give degenerate solutions

to the Hamiltonian system. [

It is interesting to make comparison with Okamoto’s equivalent result about
the Hamiltonian (2.1.7) for PII, which satisfies a second-order ODE. The condition
for a generic solution in that case is

d*h
dz?
Using our notation of Section 2.2, this turns out to be the same condition f’ # 0,

for we have .
R ==
1,

where

— 2___
f==y-y -3
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Also the special case f = 0 (with A = 0) corresponds to the special solutions of
PIl in terms of Airy functions. With the substitution

y = (log[(2)]),

the vanishing of f leads to

d*r 1

2 + 527‘ =0,
whence e.g. we may take

T = Ai(—2732),

The analogues of these solutions for the fourth-order equations (2.2.18,2.2.19) are
related to PI, and we consider them with the rational solutions in Section 2.5.
It is also interesting to note that all of the Hénon-Heiles systems (irrespective

of the values of a and b) are invariant under the transformation
G = 0, pi— Ppir = pz h— otk (2.4.11)

where p is a fifth root of unity.

Hitherto we have left a and b arbitrary, but from now on we treat the spe-
cial cases M-y (corresponding to the scaling similarity solutions of the three
integrable fifth-order PDEs) separately. We start by describing the Backlund
transformation and tau-function for the system Hj;;), as this is perhaps the sim-

plest case, having the most in common with PIL.

2.4.3 The Hamiltonian System H;
The Hamiltonian for H; is given explicitly by

1 1 A, 1
=3+ )+ sas T8 - 56— 570 (2.4.12)

We will henceforth put suffixes on all quantities to denote their dependence on A,
as the Backlund transformation relates the same quantities for different values of
this parameter. There is also the alternative parameter ¢ = A — -}5 appearing in
(2.2.19), but A is the more natural one in that (2.4.12) depends only on A% le.

hy= h—ka

and thus the same is true for the solutions (g;(2), p;(2)) to the system with Hamil-
tonian hy. As in Section 2.2, the most convenient variables to use for this system
are

1
wy=q, f[H= ~§q§,
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where (by (2.4.4) with @ = 1/2, b = —3) we have

Fr=w) + 3wk - (2.4.13)

z
5
If we now use the Miura map, we have a one-one correspondence with solutions

to (2.2.19). In other words, given a solution to the Hamiltonian system, we find

a solution y = y, to equation (2.2.19) (with a = X — 1) via the formula (2.2.12),

i+ A
= . 2.4.14
YT e ( )
We also have the usual Miura expression,
wy = -y — ¥, (2.4.15)

which means that conversely a solution to (2.2.19) determines a solution to the
system Mi;). Before presenting the Backlund transformation, it is helpful to

introduce the tau-function.

Definition 2.1. For a solution (g;j(z),p;(z)) of the system Hiy, we have the
Hamiltonian hy(z) = ha(g;(2),p;(2),2). The tau-function associated with this

solution is given by
d
ha(z) = -+ log[m(2)].

The above definition is chosen to be consistent with the tau-function of the

KdV hierarchy, where the dependent variable u is expressed as
u(z,t) = 2(log[r(z,1)})re- (2.4.16)

For scaling similarity solutions we require that 7 depends on « and ¢ only through

the combination z = 26(¢), which means we must have
wy, = 2(log[r(2)})".

This agrees with our definition, for differentiating the Hamiltonian gives

~(logl ()" = B, = ~501 = —50n

Alternatively, if one had no a priori knowledge that the system H;;y was a reduc-
tion of fifth-order KdV, one would choose to define the tau-function in this way
to fit in with the pole structure of wy found from Painlevé analysis, which may
be seen very clearly from the rational solutions (see Section 2.5}. We are now

able to demonstrate:

63



Proposition 2.2. The Bécklund transformation for the equation (2.2.19) may

be written in the form
A
Y1 =~ (2.4.17)
b

Moreover, this induces a canonical transformation from the system Hii) with

parameter A to the same system with parameter A + 1:
g — G, pj—Dbin 27 ko ha

The modified variable y, may also be written in terms of the two tau-functions

related by this transformation:

yx = (logima-1 /7)) (2.4.18)

Proof. The first thing to observe is that w) is related to two different modified
variables by the Miura map (2.4.15):

wy = -1\ — y2 = —yly — ¥\

This is a well-known property of Miura maps, but can be seen directly from the

fact that the fourth-order ODE for w) (or equivalently hy) just depends on AL so
Wy = Wi,

The inverse Miura map (2.4.14) gives

_AxA
Y+u = sz )

(2.4.19)

the solutions to (2.2.19) for parameter o = +) — 1. Looking at the modified

equation (2.2.19), we see that it is unchanged on sending

y——y, a—-a

Hence —y_x will be a solution to this equation for & = A+3=(A+1)- 1, 0rin

other words
Ya+l = —Y-x
It is then straightforward to derive (2.4.17) using the inverse Miura formula. This
same argument also works for PII and the rest of the PII Family. Note that fy
in the right hand side of the Bicklund transformation may be written in terms
of y and its derivatives.
To define the induced transformation of the Hamiltonian system H), first of

all it is necessary to write yx41 in terms of the variables appearing in hj:

P22 + A

9.4.20
9 ( )

Urgp1 = —
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The Miura map produces a new solution to the fourth order equation (2.2.7) at
parameter value A1,
Wrgl = —y&+1 - y?\+1°

Now we can define the new variables (;, ;) via
" . - TR -1
G = Wiy, 1T w’p,p g2 = ("zf)\ﬂ)’: P2 = ‘(~2f>~+1) 2f§«+17

and these will clearly satisfy the system Hio with Hamiltonian hygr- Lt is simple
to write the new variables :n terms of the old, and we present the formulae here

for completeness:

o= 6 W

h = P~ Ayprpa (@ + y§+1),

. L

gz = Tz,

5 = pnTi+ A+ 1Y%, (2.4.21)

where
Y = —g2 + 8yar1P1 + BVApa 1 ~ 4q? + 22,

and yxs1 18 to be interpreted as the function of p; and gz given by (2.4.20). For

the sake of clarity, we present the (invertible) transformations for wx and ¥

diagramatically:
(2.4.17)
Y —
(2.4.15)1 1(2.4.15)
(2.4.21)

wy ——— Wil

A similar calculation yields the inverse of the transformation (2.4.21), but we
spare the details here. It is obvious that this is a canonical transformation, since
the equations for both sets of variables are Hamiltonian. Alternatively this 1s

shown directly by considering the canonical one-form,

p =Y pidg; — hadz

j=1,2

(such that w = i), and its image under the transformation. We find

b—p=Y (Bidd; - pidag) + (hy = hagr)dz = dx;

3=1,2

with
16 -
X = 4Yr1P1 + Syi+1q1 + 'g'?)'iﬂ + ’\108[‘12] +{A+ 1) 105[‘12]-

65



. The derivation if this is much facilitated by first calculating the difference in the

Hamiltonians as
hart — ha = ¥4, (2.4.22)

which also yields (2.4.18) immediately.
In deriving (2.4.22), the working is simplified by replacing the variables ps,qs
in hy by fi,f», to give
1 1 A2 2
R ST S St
»=35h + q1(qy — i 22) + 4f
Now we may use the inverse Miura formula (2.4.14) (or equivalently (2.4.20)) to

substitute
f; = A =2y,

and then rearranging gives

ha = My = E(pr, a1 Hro o), (2.4.23)

with

E(p,¢, f,y) = %pz +q(¢*—f— %Z) - fy.

A similar calculation gives

hayr — (A + Dy = E(p1, @1, rets ¥asr)- (2.4.24)

Taking the difference of (2.4.24) and (2.4.23) and substituting for the quantities
with tildes from the formulae (2.4.21) for the canonical transformation, we find
that the right-hand side is

E(p1: a1, o ¥as1) — BB, @ Hren o) = 0,
and thus (2.4.22) follows. This completes the proof. O

The key to the integrability of the usual autonomous Hénon-Heiles systems
is the existence of a second conserved quantity that Poisson commutes with
the Hamiltonian. Although we do not have constants of motion for the non-
autonomous systems, it is straightforward to modify the results of [63] and find a
second independent quantity in involution with the Hamiltonian (with respect to
the standard Poisson brackets). However, we note that unlike the systems consid-
ered in [76, 147], this involutive quantity does not define a second flow commuting

with the flow generated by k. By direct calculation we have the following:

Proposition 2.3. If hy denotes the Hamiltonian (2.4.12) for the system My,
then there is an independent quantity c», given by '

1, 1 1
cx = @p1p2 — P + gqé + §qfq§ + Mqig;? — qui, (2.4.25)
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that Poisson commutes with hy. Moreover, on removing the z term, c reduces
to the second constant of motion for case (ii) of the autonomous Hénon-Heiles

system.

We now present the analogous results for both H;y and H;;;) together, since
they are related by the Miura map to the same modified equation (2.2.18).

2.4.4 The Hamiltonian Systems H;y and H

The Hamiltonian for H; is

by = o0} + ) + il + < — Y- Lag (2.4.26)
g 1T AT R T gT g T -
while for H;; it is
1 2 2 1 2 4 3 22
Hy = §(P1 + Fy) + ZQle + §Q1 —2X°Q7" — 2Qh. (2.4.27)

To avoid confusion between the two, we use lower/upper case letters for the
variables of the systems H(;)/H i) respectively. Again we find it convenient to

use alternative variables,

Wy = qi1, h= —3%

1
Wa=Q, P=—30
Hence we have (using (2.4.4) with the appropriate values of a and b)

1 z
o= wf\"[”iw?—i,
Py = W/'+4Wi -2z

The Miura map for case (i) is given by

Wy = —%h — ¥i, (2.4.28)
with the inverse,
AH+A
Ya= ’
21

giving a solution to (2.2.18) for @ = A—3. Although case (iii) is related to the same
modified equation, it will be helpful for deriving the Backlund transformation to
return to the original formalism of Section 2.2, where the case (iii) Miura map
(with @ = 1/4) is

Wy =-Y, — %Yf, (2.4.29)
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and the inverse,
F{+ A
B
gives a solution to (2.2.20) for & = A — 1. The derivation of the Backlund
transformation for the equation (2.2.18) (or equivalently (2.2.20)) is most easily

Y, =

achieved with the tau-functions, naturally related to the tau-functions of the
SK/KK hierarchies (see {101, 137] for definitions of these).

Definition 2.2. For a solution (g;(2),p;(2)) of the system Hi), with the Hamal-
tonian ha(z) = ka(g;(2), pi(2), 2), the associated tau-function is given by
d
ha(z) = —3Ez-log['r,\(z)].

Definition 2.3. For a solution (Q;(z), Pi(2)) of the system Hisi), with the Hamil-
tonian Hy(z) = HA(Q;(2), Pi(2),2), the associated tau-function is given by

Hy(2) = — o loglfs(4)]

Now we may show:

Proposition 2.4. The Bicklund transformation for the equation (2.2.18) may

be written in the form

A 20043
Yz = — 7 T ( 2). (2.4.30)
I F,\+%

This is related to a canonical transformation from the system H(iy with parameter

)\ to the system Hi with parameter A—3:
g —Q; pi—Py z—ozn b Heg

The modified variable yy may also be written in terms of the two tau-functions

related by this transformation:

Yy = (log[a"',\_%/rf])’. (2.4.31)

Proof. As for case (i), wy (and also W) may be related to two different modified

variables by the Miura map. Hence we see that

A

yA - y—A = 7{\_) (2-4.32)
2\

G-Ya = F (2.4.33)

Clearly (2.4.32) constitutes a Backlund transformation for (2.2.18), as it relates

two solutions for different parameter values. However, it is not very useful because
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it cannot be iterated to obtain a sequence of solutions. To achieve this requires
a canonical tranformation from H) to Hi, and then from M) back to Hii
with the overall change A — A + 3. First of all observe that on comparing
the parameters c in (2.2.18) and (2.2.20), it is apparent that we may make the

identification
Yx = '_Y_-,\-f-%’a
and so the Miura map for case (iii) implies
%14 ! 1 2
g T T 5.

Since W_y .3 may be found from wj, via the formula

3
W—A+% = Twh _2':‘)&7 (2.4.34)
it is obvious that there is an induced canonical transformation from the system
with Hamiltonian hy to the system with Hamiltonian H_,s = Hy_s. This
transformation and its inverse may be calculated explicitly in terms of coordinates,

e.g. we have

3
Ql = —th—iyi,
P = —p+3yn+9i)
Q, = 13,
| I 3. a1
Pz = —§yAT —"2()\—5)'1‘ 2,

where
T = —2¢2 - 12ysp1 — 6% + 62,

and in the above ¥, is to be interpreted as a function of p, and qo:

_ P22 — A
=32 -
93

This is the analogue of the transformation between autonomous Hénon-Heiles

Y

systems considered in [55, 27]. We have also calculated explicitly:
S (PidQ; — pida;) + (ha — Hy_g)dz = dX,
j=1,2

. 9 3
% =3yl — 3yiqn — gyf‘\ -2(A—3) log[Q2] — Alog[ga].

The tau-function formula (2.4.31) follows directly from a calculation of the
difference of the two Hamiltonians:
3
h)\ - H)‘_% = §y,\.
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Then in terms of tau-functions, we have

d L g
Yna— WA= 77 (10g[n+%/n_%] + 210g[7';\/n+3]) )

On using the formulae (2.4.32,2.4.33), the Biacklund transformation (2.4.30) fol-
Jows. Thus overall there is an :nduced canonical transformation from H; to itself,

with the parameter A — A+ 3. This is most easily understood with a diagram:

2.4.32 2.4.33
Ux -S————)) Y- — F—Y)\-l-% —(-—l’ Y_’\_% —— —Yr43
(2.4.28)“' (2.4.28)J’ (2.4.29)1 (2.4.29)1 (2.4.28)l
W), = W- — Wiy —— W__ 3 — W
> A 243 3 A5 (2a34) M3

Note that in the right hand side of (2.4.30), fx may be determined entirely in

terms of y» and its derivatives, and similarly for Fyye ad
We have also calculated the analogues of the quantity (2.4.25):

Proposition 2.5. The Hamiltonian hy (given by (2.4.26)) for the system H)

Poisson commutes with the independent quantily

1 3 ]‘ 2 ]‘ : 2 3 2 2 2
c,\=_ p1p2+gq2+§q1qz—§zqz — N piga t 3% )

The corresponding quantity for the Hamiltonian Hy (2.4.27) of His) is

1 2 1 1

Cy=3 (p% + 500 ~ 4)~2q{2) - ¢§pip2 — 5y% g} + 8N + 774

2.4.5 Analogues of the Toda Lattice for Sequences of Tau-
Functions

For many purposes, the tau-functions provide the most convenient and concise
expressions for solutions to integrable equations. For our Hamiltonian systems
Hiy-Gii) We have seen that the tau-functions related by Bicklund transformations
allow one to determine both the Hamiltonians k) and the associated modified
variable y) satisfylng one of the equations (2.2.18,2.2.19). Hence it is useful to
work with the tau-functions directly, as this provides an efficient way to compute
sequences of solutions to the modified equations and their associated Hamiltonian
systems. A particular application of this is the computation of rational solutions,
presented in Section 2.5.

It is well known [93, 128] that for PII, the tau-functions related by the

Bicklund transformation (after rescaling) satisfy the Toda lattice equation,

Dz'ﬂ =Ty = Ta—1TA+1- (2435)
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The derivation [128] of the lattice equation (2.4.35) provides a pattern for deriving
analogous lattice equations for any of the similarity equations decribed in the
formalism of Section 2.2. Here we give full details for a bilinear lattice equation
which is the analogue of (2.4.35) for the equation (2.2.19).

For the system H(;, we have already seen that the definition of the tau-
function implies

@ = wx = 2(log[n)])".
Substituting this into (2.4.13) yields

f,\ = TA_2(D:T,\ ’ TA) - (2436)

Bo|

Now we have on the one hand (from (2.4.18))

!
?

yx + y-x = (log[map1mac1 /7))

while on the other hand (using (2.4.19))

yx +y-x = (log[fi])"-

Hence we find
(log[f2])’ = (log[ra+1ma-1/73])’,

which we integrate and then substitute from (2.4.36) to obtain the bilinear form
2Dy o1 —21F = kaTao1Tar (2.4.37)

The equation {2.4.37) is the analogue of the Toda lattice equation (2.4.35). Note
that the constant of integration k) may be rescaled arbitrarily, since the tau-
functions can always be rescaled (without affecting h,,y,). Here we take the
convention k5 = —1, which ensures that the tau-functions for the rational solu-
tions are monic polynomials in z. However, the above derivation has made the
generic assumption fy # 0. This may be violated for A = 0, in which case the
constant in (2.4.37) vanishes (i.e. ko = 0).

Almost identical arguments lead to the following equations for the tau-functions

of the systems H;) and Hi:

ZT; —_ GTijTA Ty + Q(DET,\ . TA)2 = %A—%%)W%’ (2.4.38)
Zf‘f - gD:‘F,\ '7:)\ = TA—%T,\+%%A' (2439)

We have used the same conventions and genericity assumptions as for H;. It is

interesting to observe that these equations are no longer bilinear, and also that it
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is consistent to assign weight one to 7 and weight two to 7 in the two equations.

However, if we consider the Miura map corresponding to the equation (2.2.18),
Wi = —Yhy — Yins
and use the relevant tau-function formulae, given by (2.4.31) and
wy = 6(log[n])",
then we do find a bilinear equation,
4’rj’1”-‘\i% — 47:\%;\1:% + TA“JU';;% = 0. (2.4.40)

Since it contains only second derivatives, (2.4.40) may be used to relate the tau-

functions to sequences of second-order operators.

2.5 Painlevé Analysis and Special Solutions

2.5.1 The Painlevé Test

Before looking at rational solutions and some other special solutions to the equa-
tions (2.2.18,2.2.19) and the Hamiltonian systems H;)ii) related to them by
Miura maps, we briefly discuss the application of the Painlevé test to these sys-
tems. Since they are reductions of soliton equations, we expect them to pass this
test (because of the ARS conjecture), and indeed this is the case. To apply the
test, it is necessary to expand ¢ and ¢, as power series in Z = z — z;, where the
constant zp is the (movable) location of a pole. In fact, rather than using the
coupled system (2.4.5,2.4.6) coming from the Hamiltonian equations of motion, it
is simpler to use the pair of equations (2.2.7,2.4.4) in w = ¢ and f = —ag}, and
this avoids powers of Zz, First of all it is necessary to look for the leading order
behaviour, w ~ ¥Z*, f ~ 87, as Z — 0. As is to be expected for equations
with the Painlevé property, for each of the cases (i)-(iii} we find certain types of
balances with a formal series solution corresponding to each. The balances may
be classified by their resonances, i.e. the places where arbitrary constants can
be introduced into the Laurent series. For the Painlevé test to be satisfied there
must be a principal balance, containing the same number of arbitrary constants
as the order of the system. We classify the possible balances, according to which
terms are dominant in (2.2.7,2.4.4), as follows:

Type 1: p = —2,~ = 6/b for (ii) and (iii). » = —2 for (ii), v = —1 for (iii), with
§ arbitrary. There is no Type 1 behaviour for (i).

Type 2: p=—2,v=—4,7=-3/a, 6 =~(6 - b).
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Type 3: There are two sub-cases depending on the value of A, with g = -2,
= 6/b.

(2) A=0: v=28,4,3 for (i),(it),(iit) respectively, with § arbitrary.

(b) A #0: v =1, with 52X = 35, 1,5 for (1),(ii),(iii) respectively.

We present the list of resonances for each type of balance in Table 2.1. Note
that Type 1 is the principal balance for (ii) and (iii), while for (i) it is Type 2. Also
note the presence of negative resonances, as discussed in [44]. The explicit time-
dependence doesn’t affect the resonances and, as the results are almost identical
to those for the autonomous Hénon-Heiles systems (see [30, 40}), we present no
further details of the Painlevé analysis. The only real difference introduced by
the time-dependent term is that the coefficients in the power series contain Zzo

explicitly. For example, for the principal balance in case (ii) (Type 1) we have

2 3, 1
w = —7z T + (-Q_Cg B ﬁizo)Z‘2 +aZ®+af + 02,
12 1 3 1
f o= __ZC;. — 12— (5 +6e) 2+ co(9c} — T570) 2" = zaZ’ +0(Z%,

where 2o, Co, €1, C2 3T€ the four arbitrary constants.

Type 1| Type 2 Type 3(2) | Type 3(@
cone | 1,236 | 7,106 7.-1,6,1
1,036 3,168 31,06 | 3,138
1,0,2,6 | -1,-1,6,12 2,-1,0,6 2126 |

Table 2.1. List of resonances.

2.5.2 Rational Solutions

Painlevé analysis 1s also useful for finding rational solutions. A rational solution
must be meromorphic at z = 0% and doing an expansion about this point for
the equations (2.2.18) and (2.2.19) it is easy to see that there can be at most one

such solution for any &, and the expansion takes the form
y=—oz" (1 + Zmz—sj) (2.5.1)
i=1

for both these equations. The form of this expansion reflects the scaling symmetry
(2.4.11) noted previously. Also, for both equations there is the trivial rational
solution y3 = 0 for a = 0, and (2.5.1) can be truncated after the first term for

precigely four non-zero values of a, namely

a=-4, -1, 2, 3
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for (2.2.18), and .

for (2.2.19).

The corresponding rational solutions for each of the parameter values above
are naturally related to each other by the Backlund transformations constructed in
the previous section (although we prefer to label the solutions with the parameter

A=a+ %) Since the Backlund transformations only involve differentiations and
algebraic operations, repeated application of them produces a sequence of rational
solutions. For (2.2.18), if we have a solution y» we can immediately find y_, (using
the Miura map), and we can also use the Backlund transformation (2.4.30) to
find ya43. Continuing to apply this we essentially have two related sequences
of rational solutions, with every third integer value of a being missed out. We
present these, with the corresponding Miura-related solutions to the systems Hy;

and H;i;), in Table 2.2; Table 2.3 contains the corresponding tau-functions.

X [ =772 —5/2 —1/271/2]5/2] 7/2 11/2
4 3(z*—24) 1 0 2 3 —524(254-216)
Y z 2(2°+36) z T | Tz | (F)(E-14d)
_3023 (25

12 1523(z%—144 3 3 12
W)\— S T | TTEE+36)2 222 0 0 2z 22

Table 2.2. Rational solutions for cases (i) and (iii).

From an algorithmic point of view, (2.4.30) is very inconvenient, and it is better
to use the bilinear equations (2.4.38,2.4.39) for the tau-functions. These two

equations can be solved iteratively, obtaining a new tau-function at each step.

A 1/2 5/2 7/2 11/2
T 1 z P 25— 144
1':/\_3 ]. 1 z 25+36

fapz | 2 25436 | 28 | 210 —27.3%210 4 21134118 + 21435112

C T4



Table 2.3. Polynomial tau-functions for cases (i) and (iii).

Rational solutions of (2.2.19) can be obtained in a similar fashion, applying the
Bicklund transformation (2.4.17) repeatedly starting with the solution y1 = 0, or
more conveniently by iteratively solving (2.4.37) to obtain the associated sequence
of tau-functions. We present a few of the rational solutions to (2.2.19) in Table
9.4. However, perhaps an easier method (which proves their uniqueness) is to
derive them from the rational solutions of the mKdV/KdV hierarchy, which were
constructed in [8]. These rational solutions are obtained from a sequence of
polynomial tau-functions % (for k=0,1,2,...) depending on z = t; and a sequence
of parameters ¢z, t3,..., which after suitable scaling may be identified with the
times of the hierarchy. The sequence of rational solutions to mKdV is given by

the standard tau-function substitution,

vk = (log[me/mrs1])e-

(Our 7, t; are denoted B, 7; in [8].) The sequence of polynomials has a homo-

geneity property,
- 1
ﬂ'k(ﬁtla 63t21 ey ﬁﬂc Itk) = ﬁgk(k-l-l)ﬂ'k(t]_, tz, ceey i‘k),

and so the requirement for similarity solutions that 7, should be proportional to a
function of z = z8 puts very strong constraints on the values that the parameters
t; may take. In particular for the n=2 flow of mKdV, to get polynomial tau-
functions of PII requires t;=46~> and all higher ¢; must be zero; while for n=3
(corresponding to (2.2.19) we have t,=0, t; = —14407%, and all higher t; are
zero. In Table 2.5 we present some of the 7 with the corresponding polynomial
tau-functions 7y(z) of PII and (2.2.19).

X [1/213/2]5/2 /2 9/2
0 1] _2 __3(+°+96)  4(2'5 72510 421772855 -1741824)
L) ~z z 25 —144) (715 — 11527104 96768251 6967296
0 2§ 6 | _12(2'044302:°43456) | 202%(215+10082'0 +9434882° —47542144)
Wi ] z2 22 (25 —144)° (=10 —1008(2°+48))*

Table 2.4. Rational solutions for case (ii).
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ko Jol1] 2 3 4 ]

3?10 + 15t2177 + 7t33§5
e | 1|z|a®+t]e®t Bt,a® + taw — B3 | +35tataz” & 175832 — 1t3
+t42° + talo

Tazk+l 1lz]22+4 25 4 202° — 80 219 4+ 6027 + 112002

(n=2)

Tamktl 1)z 2 25 — 1442 219 — 1008(2° + 48)

(n =3)

Table 2.5. Polynomial tau-functions for mKdV and similarity

reductions.

The restriction of rational solutions of the mKdV hierarchy to the similarity
solutions has been used in [93] to derive determinantal forms for the polynomial
tau-functions of PII. We are able to extend this approach to the rational solutions
of (2.2.19). The polynomial tau-functions of mKdV, 7, in Table 2.5, can be

written as Wronskians of Schur polynomials. The formula given in (8] is

T X [';bla"',/'!)k]a

with [...] denoting Wronskian ! , and the polynomials 9; are defined recursively
by

Pioz =Pty 1= Pt = En¥j(2n-1)2>
for suitable constants pn. This recursive definition identifies the v; as the se-
quence of odd Schur polynormials. If we now restrict to the scaling similarity
solutions, we must scale these ¢; so that they depend only on the similarity vari-
able z. Thus for the solutions of (2.2.19) we have p3z = 16, while all other p, are

zero. Then the polynomial tau-functions are given by

Teyt O [P1(2)s - ,k(2)]s (2.5.2)

where the sequence of scaled polynomials may be defined by

f=tia,  B1=7 z«b;—(?j—l)wj:w@bg“’.

e
1 2 (1
'\bl,m‘ 'sb2,a: R "'bk,a:
W1, - %] = ) ._ . :
V1 (k-1)z Wale-1)e o Yk (k-1)z
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The first terms in this sequence are

1
= (2" - 80642%).

It is simple to check that (up to overall scale factors) the tau-functions in Table

1 1
I‘)bl =z, ¢2 = 623: 14b3 = '5—'(2:5 - 384): ¢4

2.5 are given by the determinants (2.5.2).

2.5.3 Solutions Related to PI

We have also found special solutions related to the first Painlevé transcendent
(PI). If we consider the system H;) in the case A = 0, the same substitution that
works in the ordinary (autonomous) system causes the equations of motion to

separate. Putting
Qe=qtq

into Hamilton’s equations for hq, we find
1 z
1 = _§Q:2|; + 51

which (up to a scaling) is just two separate copies of PI. The corresponding
solution to (2.2.18) is

yo = (log[@+ — Q-])',
where we assume that @, and Q_ are not equal. So applying the Backlund
transformation to this we get the general solution to the system M for A = 33,
and to My for A = 3(5 + %), for all integers j. However, there is also the

degenerate case (), = (), for which
fg = 0.

This implies that the inverse Miura map and the Béacklund transformation both
break down. However, it is still possible to obtain a sequence of special solutions
for the same parameter values, and they are also related to PI. Similarly, starting

from a degenerate solution Yy, corresponding to

the Biacklund transformation (2.4.30) gives a sequence of special solutions to the
system Hy; for A = 3(7+ %), and to H;;;) for A = 3. We explain these degenerate
solutions in more detail for case (ii).
The degenerate case for all three systems is A = 0, fo = 0. So in case (ii)
w = wy must satisfy
w”+3w2—-% = 0,
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which is equivalent to P1 (after rescaling w and z). The inverse Miura map breaks
down in this case. However, the ordinary Miura map means that ¥ = Yo satisfies
the Riccati equation

v+ +we="0

This is linearized by setting y = (log[r])’; giving
"+ wer = 0.

Thus a solution Yo tO (2.2.19) is found from an eigenfunction 7 of a Schrodinger
operator with a PI potential. Because fo = 0, the Backlund transformation

(2.4.17) breaks down for the solution yo. However, W€ still have

Y1 = —Y-x

and so we can safely apply the Backlund transformation to 1 = —Yo to obtain a
sequence of solutions for all integers ), as well as corresponding solutions to the
system Hi)-

It is interesting to note that in Okamoto’s work the parameters of each of
PII-V1 are embedded into a root space, and the application of Backlund transfor-
mations is identified with the action of the offine Weyl group. Also the classical
solutions are all observed to lie in the walls of the Weyl chambers. In the case
of P11, the relevant root space 18 Ai, and ) is the natural parameter in this root
space. The walls of the Weyl chambers correspond to both the integer values of
X\ (where there are solutions in terms of Airy functions) and the half-integer val-
ues (where there are rational solutions), and the Backlund transformation gives
a shift A = A+ 1in the root space. Lhe equation (2.2.19) is related to Ay in
precisely the same Way, except that the special solutions for integer values of A
are not given in terms of classical special functions, but are instead expressed in
terms of solutions to the first Painlevé transcendent PL. The equation (2.2.18)
is more complicated, because there are the two different Hamiltonian systems
Hi) i) (with their respective tau-functions) associated to it. Nevertheless, we
would hope to be able to view it in a similar way. In particular we observe that
(in Section 2.3) the zero curvature representation of (2.2.19) involves matrices
in the fundamental representation of sl(2), corresponding to the root space Ai.
Thus we conjecture that the special solutions of (2.2.18) should correspond to
distinguished points in the root space Ag, since 1t has an sl(3) zero curvature

representation. As yet we have not pursued this idea further.
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2.6 Generalizations

2.6.1 A Conjecture

One of the main motivations for our approach has been the observation that
similarity reductions of integrable PDEs provide more general examples of finite-
dimensional integrable Hamiltonian systems than purely stationary flows. We
make the conjecture that given an integrable evolution equation with a station-
ary flow that can be written as a natural Hamiltonian system, all of its similarity
reductions will be written as (possibly non-autonomous) integrable generaliza-
tions of this system. Thus the approach of Fordy (63) should extend to all such
similarity reductions. The central step in this procedure is to take the evolution

equation in the Hamiltonian form,
u, = BybuH, (2.6.1)

with Poisson operator By, and show that all similarity reductions may be written

in the form
B, f= 0, (2.6.2)

with w representing the similarity variables, and f containing the variational
derivative of the Hamiltonian plus the extra terms arising from u, in (2.6.1). We
present two further examples where this works, and thus far we have been unable

to find a counterexample.

2.6.2 More Hénon-Heiles Systems

First we consider “travelling wave” similarity solutions of the fifth-order equations
of the form (2.2.15). Then we have

w = w(z) + ki, z =z + kot,
for constants ki, k. Substituting into (2.2.1) gives
kyw' = (0° + 8a{w + k)0 + daw')(w" — blw -+ k1)),
and we find that for this to be in the required form (2.6.2) we must take
ky = —4abkd,
and set

f =w" - b(w2 + 2’01’!})).
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The analogue of the equation (2.2.7) of Section 2.2 is then

&f - (&)
—J 44 k _ Ndel
12 +4a(w + ki) f + TR 0,
and the same substitutions w = g1, f = —ag? lead to a system with Hamiltonian
Loa 2 2 2 2 1.4 L
h = §(P1 +p;+aq t+ 0242) +aqqy — 'S'b‘h - @% 3 (2-6'3)
where the constants in front of the quadratic terms are
G, = —2bk1,
C3 = Qakl.
Thus we have ¢ = —%cz. As for ordinary Hénon-Heiles, the Hamiltonian (2.6.3)

can again only be integrable for the same three values of the ratio r = %, and
there are further restrictions on the quadratic terms. In the case (i) (reduction
of the SK equation) this gives ¢; = ¢z, while in case (iii) (reduction of the KK
equation) ¢; = 16¢;, and these are the only integrable cases isolated by Painlevé
analysis [40]. For the case (ii) corresponding to fifth-order KdV, the analysis of
[40] shows that (2.6.3) is integrable for arbitrary c1, ¢z, but we have not found

similarity reductions which lead to a Hamiltonian system of this form.

2.6.3 Scaling Similarity Solutions to the Hirota-Satsuma
System

As our second example, we take PDEs whose stationary flows lead to integrable
quartic potentials. These stationary flows are considered in (26, 27]. One of the
PDEs considered is the Hirota-Satsuma system [82],

1
u = U + Juu, — 6¢¢., (2.6.4)
¢y = —¢3 — udz, (2.6.5)

while the other one is related to it by a gauge transformation. Scaling similarity

solutions of (2.6.4,2.6.5) are given by
= Puls),  6=0¢),

for z = z6, % = §*. On using the scaled Hamiltonian version of (2.6.4,2.6.5) we

obtain an equation of the form (2.6.2), with

B — 1P + 200 + uf 20+ &
v 260+ & %63+2w8+w' !
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On making a substitution,

we are led to a system with Hamiltonian
1

1
hi=5(p +p)+ 3

1,, _ _ 1
5 (¢} +6g3q; +3) + 50" + ka") + 52(ef + ).
This is a non-autonomous generalization of one of the integrable Hamiltonians
with quartic potentials derived in {26]. Applying the same procedure to scaling
similarity solutions of the other PDE there considered, we arrive at

1 1 L 1
o = 5 (PP + P}) = 15(Q1 +6Q1Q% +809) — KQa + 501" +:G01+ Qo)

The two PDEs are related to the same eqﬁa,tion in a modified hierarchy, so there
are canonical transformations between these two Hamiltonian systems, just as for
cases (i) and (iii) of non-autonomous Hénon-Heiles. We notice that for k =1=10,
the equations of motion for h; are separable in coordinates g, £ ¢y, and (up to a
rescaling) give two copies of P1I for parameter a = 0. Also we observe that if we

define a tau-function by
hi(2) = (log[r(2)})',
then this gives the (similarity solution) tau-function of the Hirota-Satsuma equa-

tion after scaling T by a factor of exp[z®/12].

2.7 Conclusion

We have considered the scaling similarity solutions of the Sawada-Kotera, fifth-
order KdV and Kaup-Kupershmidt equations, and have shown that they may be
understood as solutions to non-autonomous Hamiltonian systems H i) (isiy, which
are time-dependent generalizations of the well-known integrable Hénon-Heiles sys-
tems. We have also used the Miura maps for each of the PDEs (relating them to
a PDE in a modified hierarchy) to give Miura maps for these similarity solutions,
which can in fact be inverted. More precisely, we have seen that solutions of the
fourth-order ODE (2.2.18) are in one-one correspondence with solutions of both
My and Hay, while there is also a one-one correspondence between the solu-
tions of (2.2.19) and H;). These correspondences have led to natural derivations

of Bicklund transformations, resulting in the generation of special sequences of
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solutions. The tau-function for each of these non-autonomous Hamiltonians has
also appeared very naturally, providing a concise way to encode and generate
solutions.

Since the ODEs we have studied are similarity reductions of integrable PDEs,
they should be viewed as fourth-order analogues of the Painlevé transcendents.
In the light of our results, we believe that approaching such ODEs by way of
associated Hamiltonian systems is extremely useful. The examples in Section 2.6
indicate that the techniques of this chapter are quite general. We expect that they
should apply to similarity solutions of all PDEs occurring as reductions of the KP
hierarchy. For example, higher order stationary flows of coupled KdV equations
lead to some of the integrable polynomial Hamiltonian systems of [54], and thus
there should be associated non-autonomous systems. We intend to develop these
ideas further in the future.

Note. After this thesis was submitted, we were made aware of some recent
results of Kudryashov concerning similarity solutions of the mKdV and KdV hier-
archies [106]. This work may be viewed as complementary to ours, and although
it does not describe the Hamiltonian formalism for these equations, it overlaps in

several places.
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Chapter 3

Singular Solutions of the
Nonlinear Schrodinger Equation
and their Pole Dynamics

The linear problem of NLS admits an analogue of the Crum transformation for
linear Schrodinger operators. This leads to the construction of a sequence of sin-
gular rational solutions, which may be written in terms of Wronskians of Schur
polynomials. Bilinear methods provide a straightforward way to show that the
poles and zeros of the rational solutions evolve according to constrained Calogero-
Moser equations. NLS also has a trilinear form which is related to its reduction
from the KP hierarchy. Some other singular solutions also appear to have inter-

esting pole dynainics.

3.1 Introduction

It is well known that for many nonlinear PDEs solvable by inverse scattering, the
motion of the poles of rational solutions is determined by finite-dimensional nte-
grable Hamiltonian systems. Perhaps the canonical example 18 the KP hierarchy
[103, 142], where the pole motion with respect to each of the times is governed
by a corresponding Calogero-Moser flow. Similarly, rational solutions of the KdV.
and Boussinesq equations (11, 130}, as well as the Burgers equation [16], have
poles whose equations of motion are just those of constrained Calogero-Moser
systems, but essentjally this occurs because these PDEs arise via reduction of the
KP hierarchy.

3.1.1 KP and Calogero-Moser

To clarify these ideas, we briefly review the case of the KP hierarchy and its
reduction to KdV. We follow Shiota’s exposition in [142]. A polynomial tau-
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function for KP may be written in the form

N

r(a,t) = [ (= - ;(2), (3.1.1)

i=1
where t = (t3,13,...) are the times of the hierarchy. The dependent variable in

the original form of the KP equation is related to the tau-function by

w(,8) = (log[])az, (3.1.2)

and so taking the polynomial tau-function (3.1.1) gives rational solutions u de-

caying at infinity, i.e.
N

u=—3 (o)

i=1

The first bilinear equation in the hierarchy is

(D} +3D3 — 4D\ D3)r -7 =0, (3.1.3)

(D,, denotes the derivative with respect to t,, and we identify ¢; = z.) The
usual form of the KP equation follows from (3.1.3) on dividing through by 77,
differentiating twice with respect to z and rewriting the resulting expression in

terms of u:
(dugy — Uze — 120tz)e — 3ugr, = 0. (3.1.4)

Clearly the zeros of the polynomial tau-function (3.1.1) are just the poles of the
rational function u. Then the main result of [142] (generalizing the observation
of Krichever [103]) is that a polynomial tau-function satisfies the KP hierarchy if

and only if for each of the times ¢, (m=23,...,N) its zeros evolve according to

L()-or( ) s

where &; = 18z;/0t;, Hp = trY™, and Y is the N X N Moser matrix with entries

1“5jk

Y = €;6;
ik EJ Jk+37j_$k

(3.1.6)

The equations (3.1.5) are those of the Calogero-Moser hierarchy, which is com-
pletely integrable [130]. The Hamiltonians Hy,... Hy are N independent con-
served quantities in involution with respect to the standard Poisson brackets.

To see what happens when we reduce from the KP hierarchy to KdV, consider
the first (m = 2) flow given by (3.1.5). The equations of motion for the z;,
j=1,..,N,are
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at2 ——sz z; — ak) 75, (3.1.7)

k#j
which are just the original Calogero-Moser equations for the Hamiltonian

N
H; = Z{f — Z(mJ —z) 72

j=1 Sk
Now the KdV hierarchy is obtained from KP by making all the flows with respect

to the even times stationary. So in particular stationarity of the ¢, flow gives the

constraint
Y (zi— =) =0, (3.1.8)
k#j
as well as ¢; =0, for j = 1,..., N, and the {3 flow becomes simply
Oz, -2
5{; = 3%;(9‘:3' - :L‘k) ; (3.1.9)

A more general form of tau-function for KP which yields interesting pole

motion is the elliptic polynomial
7(z,t) = exp(a(t)z + B(2) Ha r—z;(t (3.1.10)

where o is the Weierstrass sigma function. This gives

= =S ple-=(0),

j=1
with p being the usual Weierstrass elliptic function'. The poles evolve according
to the elliptic Calogero-Moser system, and in the reduction to KdV the constraint
involves a sum of derivatives of p-functions. In fact the rational solutions may be
obtained from the elliptic ones by letting the periods tend to infinity (and there is
an intermediate case where only one period goes to infinity, which gives Calogero-
Moser with an inverse sine-squared or sinh-squared potential}. For further details,

and the corresponding result for the Boussinesq equation, see [11, 130].

3.1.2 Pole Motion for NLS

In this chapter we consider the Nonlinear Schrodinger (NLS) equation

W + Yo — 207 = 0, (3.1.11)

IThe exponential prefactor in (3.1.10) does not alter the form of the physical variable u but
is necessary to ensure that the bilinear equation (3.1.3) is satisfied.
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and show various ways to produce singular solutions and describe the motion
of their poles. Our approach makes much use of Backlund transformations and
bilinear methods. We present a construction of rational solutions of NLS which
has an exact analogue in the case of the KdV equation. These rational solutions

of NLS are given by ‘

P = F
with ¢ and f both being polynomial tau-functions of the form (3.1.1) (up to a
constant prefactor). It is then possible to demonstrate that the poles and zeros of
such rational solutions evolve according to constrained Calogero-Moser equations.
We also give a description of a few other singular solutions.

An outline of the chapter is as follows. First of all, in the next section, we
apply the singular manifold method used in [120, 152] to (3.1.11), and are thus
able to obtain the standard auto-Backlund transformation (ABT) and associated
linear problem (zero curvature representation). In Section 3.3 we derive the Hirota
bilinear form of NLS, present the ABT in bilinear form, and show how this may
be used to produce a sequence of singular rational solutions. Rational solutions of
the KdV hierarchy were studied by Adler and Moser [8] from the point of view of
the Crum transformation for (linear) Schrodinger operators. We proceed to show
in Section 3.4 that there is a Crum-type transformation for the linear problem of
NLS, which provides a direct construction of the rational solutions (rather than
repeated application of the ABT, which is laborious). The Crum transformation
leads to Wronskian formulae for the rational solutions, which generalize some
similarity solutions found by Hirota and Nakamura [83, 84] via a connection with
the classical Boussinesq equation. Section 3.5 contains a direct derivation of the
trilinear form for NLS, and we explain how this is connected to its reduction
from the KP hierarchy. Following this we indicate how use of the trilinear form
shows that the rational solutions have poles which move according to constrained
Calogero-Moser equations, while using the bilinear form demonstrates that in fact
the zeros of the rational solutions satisfy constrained Calogero-Moser equations
as well (Section 3.6). We briefly discuss similarity solutions of NLS, plus some
other sorts of singular solutions and their pole motions, in Section 3.7. Finally

we discuss how these methods might be applied further in our Conclusion.

3.2 NLS and the Singular Manifold Method
The Nonlinear Schrédinger (NLS) equation
iy + ae + 28|95 =0, (3.2.1)
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(where é = 41), is one of the most ubiquitous examples of an integrable nonlinear
equation. It is an important equation in nonlinear optics [118], as well as de-
scribing the modulation of a sinusoidal wavetrain in an isotropic elastic medium
[131]; also 1t has an interesting correspondence with the Localized-Induction-

Approxima,tion equations

which approximate the motion of a thin vortex filament (see [146}). In fact NLS is
an appropriate first approximation for the evolution of any slowly-varying wave-
envelope in a weakly nonlinear system (as is shown by multiple-scales analysis in
[47), Chapter 8). A thorough discussion of the physical applications of NLS may
be found in Gibbon’s survey article ([62], Chapter 6), which contains a full list of

references.

3.2.1 NLS and AKNS

In the form (3.2.1) NLS is really two different equations describing different phys-
ical behaviours: the focussing- and nonfocussing-NLS equations, corresponding
to § = +1 and 6 = —1 respectively. Both these cases may be obtained from the
AKNS system

Jy, = qm+2q21", (322)
re, = —rm-—2qr2, (3.2.3)

on setting t2 = it, ¢ = pandr = §¢ (for real z,t, with the bar denoting complex
conjugate). We denote the AKNS time variable by 1z to identify it with the second
time of the KP hierarchy, since AKNS is a reduction of KP (we will return to
this point when we come to derive the trilinear form of NLS later). So the two
different NLS equations give solutions to AKNS with particular reality conditions.
In [134], Previato derived the hyperelliptic quasiperiodic solutions of AKNS using
algebraic geometry, and then studied the reality conditions corresponding to & =
41, showing how certain limits of these solutions gave the N-soliton formulae
found by Hirota (80] using his bilinear formalism. A simple check of leading-
order behaviour in (3.2.1) shows that singular-type solutions are admitted only
in the case 6 = —1, and so because we are interested in finding pole motions we
will henceforth consider only NLS in the form (3.1.11).
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3.2.2 Inverse Scattering and the ABT

To make a comparison with later results we note here that the usual inverse

scattering scheme for (3.1.11) is the su(1,1) zero curvature representation

(), - (F &) 020

O i) vz (0
(m)i“(\4%+%ﬁiWW+%ﬂ)(w)‘ (325)

For the case § = +1 there is a similar su(2) spectral problem, originally found
by Zakharov and Shabat [154]. Their solution of NLS by the inverse scatter-
ing method was one of the first indications of the remarkable generality of this
technique (which had previously only been applied to the KdV equation).

For future reference, we also present the standard auto-Backlund transforma-

tion (ABT) of NLS (studied by Boiti and Pempinelli in [29]):

=)o = =)=+ DY (326)

i = S Dt (b a9 I 724 (BRI, B2
It is easy to verify that if ¢ is any solution of (3.1.11), then given (3.2.6) and

(3.2.7), ¥ must also satisfy (3.1.11). For example, starting from the vacuum
solution ¥ = 0, we apply (3.2:6) and (3.2.7), and ind the singular 1-soliton
s expli(z + (08 — D))
sinh{o(z — ct)} '
(We ignore the arbitrary constant shifts in Z, { and the phase of 3, which are

always possible.) At this point it is worth observing that the NLS equation has

a (alilean symmetry: given any solution % of (3.1.11), then another solution is

¥(a,t) = exp {i (f; - fl—t)] w(' 1),

¢ =x—ct, t=t.

given by

where

It is easy to check that f two solutions ¢ and 4 are related by the ABT (3.2.6)
and (3.2.7) with the parameter ¢ set to zero, then the Galilean-boosted solutions
¥ and ¥ are related by (3.2.6) and (3.2.7) with the parameter ¢ reinserted. Also

we remark that the 1-pole rational solution
1
.
T
may be found from the 1-soliton in the limit ¢ — 0, ¢ — 0 (or equivalently

by applying (3.2.6) and (3.2.7) with o = ¢ = 0 to the vacuum solution). This

rational solution is the first in a sequence which we derive later.
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3.2.3 Application of the Singular Manifold Method

In the rest of this section we apply a branch of Painlevé analysis pioneered by
Weiss (see 120, 152] and references in [30]), which we will refer to as the singular
manifold method. The usual Painlevé test for PDEs [37] involves substituting a

Painlevé expansion of the form

o0
u(x,t) = ¢_K Zun(a:,t)QS"

n=0
into the PDE, with ¢ = ¢(z,?) being an arbitrary (non-characteristic) function
defining the singularity manifold ¢ = 0. For an integrable PDE K must normally
be a positive integer (unless it is an example of the “weak Painleve” property
[30]), and we may then proceed with the singular manifold methed.

The first step is to truncate the expansion at the “constant” level:

K-1
u(z,t) = oK Z un(z,t)0" + ug(z,1).
n=0
While substituting the full expansion into the PDE yields an infinite set of equa-
tions for ¢ and the u;, the truncated expansion should give only a finite number,

at least for an evolution equation of the form
Uy — F[U]

(where F is a polynomial in u and its z-derivatives). Then the last of these
equations 1s

ugy = Fluk],

which means that ug satisfies the same PDE as u, and so the truncated expansion
constitutes an ABT. Further analysis of the equations for ¢ and the u; (j =
0,1, ..., K) gives a better characterization of the ABT, and may be used to derive
both the inverse scattering formalism and the Hirota bilinear form for the PDE
in question. Thus the technique is of great practical value, as well as highlighting
the intimate relationships between bilinear forms, Backlund transformations and
inverse scattering (see for example {70, 99]). There are some subtleties as to when
this truncation procedure works properly [132], but they will not concern us.
Rather than trying to describe the general situation in any more detail, we shall
proceed to apply the singular manifold method to the NLS equation. Essentially
our analysis reproduces the results on the AKNS system found in {120].

Looking at (3.1.11), we see immediately that the leading order behaviour is

just a simple pole in terms of the singularity manifold function ¢ (which we will
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assume to be real). More precisely we find

U
'd) ~ T
¢
where
fuof® = 5
Upon setting ¥1 = 1, our truncated expansion 18 just
U -
P = E + 9, (3.2.8)

and we substitute this into (3.1.11) and set the terms at each order in ¢ to zero.

We find the following four equations (the singular manifold equations):

ol — ¢z = 0 (3.2.9)

e + 26 (logluol)s + $oz + ouh + 4w = 0, (3.2.10)
tug, + Uomz 4“0\&’[2 —omgy® = 0, (3.2.11)

it + b — 2B = O (3.2.12)

So (3.2.9) (the coefficient of ¢7°) just yields the leading order behaviour, while
the “constant” (order ¢%) term (3.2.12) means that the truncated expansion con-
stitutes an auto-Bicklund transformation for NLS, provided that these equations
are all consistent. In fact the consistency :s shown directly by deriving the zero
cupvature representation of NLS, which we do below.

There are some CONsequences of (3.2.9-3.2.1‘2) which lead to simpler formulae.
The derivations are made simpler by using the two equations found from (3.2.10)

on taking real and imaginary parts:

¢$:L’ +"IIE’!ZJ + U()-'!:[J; = 05
ide + ¢z(logluo/Tol)s — wop + %P = 0

After further calculation, we find that we must have

doy = _9ikuo — 2629, - (3.2.13)
iuer = u0(4k2+2\¢|2)+¢z(—4¢k12;+2@), (3.2.14)

where k is a real constant. The manipulations required to derive (3.2.13) and
(3.2.14) are not very instructive, so We present them separately in Appendix A.

Now the standard ABT for NLS follows immediately. For if we rearrange the
equation (3.2.8) then we have

Uo = d)(d) - 11;)7
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which gives
¢z = ¢l - oI’
on substitution into (3.2.9). Then substituting for ue and ¢, in (3.2.13) gives

(¥ — )2 = —2ik(x — ) — (¥ + D)|v — ¥,

which is just (3.2.6) for ¢ = 0 and ¢ = —4k. Similarly the corresponding time part
(3.2.7) of the auto-Béacklund transformation may be found by making these same
substitutions in (3.2.14). Note, however, that this truncation has not provided
us with the full transformation (for non-zero o) needed to produce a singular
1-soliton solution from the vacuum. For this reason we think of this transfor-
mation (with ¢ = 0) as the “rational ABT”. The standard ABT with o # 0
(the “solitonic ABT”) could presumably be obtained by truncating the Painlevé
expansion at some level higher than ¢°, as has been found by Pickering for some
other PDEs [132]. Since we are primarily interested in the rational solutions of
NLS, this will not be important.

The zero curvature form of NLS follows if we now make the “squared eigen-

function” substitution (see [120])

Ug = —Uz.

Then from (3.2.9) we must have (up to a sign, which we fix)

s = [v|*.
So in terms of v and ¥, (3.2.13) and (3.2.14) give

v, = —ikv+9D, (3.2.15)
ve = —i(|9® + 26D + (i, + 2k$)T. (3.2.16)

This is the same as the standard NLS spectral problem (3.2.4,3.2.5) if we replace
¥ by ¢, set

th = v,

and make the consistent choice

(%] = 7.

Since we already know that the consistency condition for the spectral problem
(3.2.15,3.2.16) is just the NLS equation for ), this implies that the singularity
manifold equations (3.2.9-3.2.12) are also consistent. We have shown how the
singular manifold method applied to NLS can be used to derive the ABT (at

least for rational solutions) and inverse scattering scheme. We note that the
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choice of complex conjugate components v, = 77 is not the usual one made
in applications of the spectral problem (3.2.4,3.2.5) (for instance when finding
soliton solutions), but the equation (3.2.15) will be important when we introduce
a Crum-type transformation in Section 3.4. At this stage the analysis is much
simplified by writing the NLS equation and its ABT in bilinear form, which we

do in the next section.

3.3 NLS and its Auto-Backlund Transformation
in Bilinear Form

We have seen how the singular manifold method may be used to derive both
an inverse scattering scheme and a Backlund transformation for an integrable
evolution equation. Yet another application of this method is in finding the
Hirota bilinear form for a PDE by truncating the Painlevé expansion before the
“constant” term (i.e. at order ¢7!). For example, for the KP hierarchy (and
also for its reduction to KdV [70]), the most general type of Painlevé expansion
obtained by substitution into (3.1.4) has a double pole in ¢:

» Up Uy
U_F+E+u2+m
It is easily found that
Up = —¢i$
Uy = ‘bxx,

so that when we truncate in the usual way we find that the Backlund transfor-

mation relating « and u, has

u = (log[¢])z + e

Now if we make the further truncation (i.e. set uz = 0) and make the identification

¢ = 7, then we have
u = (log[])zz,
which leads to the bilinear form (3.1.3).

3.3.1 The Bilinear Form

The truncation method may be used to obtain the bilinear form of NLS, but it
is necessary to have two tau-functions to get bilinear equations. With only one

tau-function we find a trilinear equation instead, which will be discussed later. In
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the truncation (3.2.8) we set $ =0, uo =g, ¢ = f, and then the NLS equation
(3.1.11) becomes

1 ,,.
7z (GDe+ D2 f) = F (DL f+2gf) =0
This means that if the tau-functions f, g satisfy
@D+ Dg-f = 0, (3.3.1)
Dif-f+2" = 0, (3.3.2)

then ¥ = g/f satisfies (3.1.11). This is the usual Hirota bilinear form for NLS,
as used in [80] to obtain soliton solutions. The second of these bilinears has an
immediate consequence which we will make use of throughout the rest of the

chapter, namely
[WI* = —(log[f))e- (3.3.3)
Another consequence of (3.3.1,3.3.2) is the bilinear equation

iD.Df - f —2Deg -5 = ivf> (3.3.4)

In the above v is a real constant, which may be set to zero without loss of
generality (i.e. by rescaling both f and g by exp[yzt/2]). In Section 3.5 we will
show that using (3.1.11) and the substitution (3.3.3) it is possible to obtain a
trilinear equation for f. We note here that this trilinear equation also follows
from the bilinears (3.3.1,3.3.2) and (8.3.4) with v =0.

3.3.2 Backlund Transformations in Bilinear Form

Given a bilinear form for a PDE it 13 often convenient to express its Backlund
transformations in terms of the tau-functions. Also, given an ABT in bilinear
form one may generate a PDE in a new dependent variable by choosing some
suitable combination of the tau-functions. A very common example [137] is the
KdV equation,

U; = Usy + 6UUs.

It is straightforward to obtain this from the bilinear equation
D(D?—-Djr-7=0, (3.3.5)
where the dependent variable is given in terms of the tau-function by

U = 2(log[7])es-
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The bilinear ABT for (3.3.5) is

~2
(l

(D; — 38D, — D)7 -
(Dz - B)r-

0, (3.3.6)
0. (3.3.7)

=2
It

This means that given two tau-functions 7, 7 related by (3.3.6,3.3.7), if 7 satisfies
(3.3.5) then so must 7 (and vice-versa). The Backlund parameter J is arbitrary.

Applying the transformation starting from the vacuum 7 = 0 gives a 1-soliton
solution for 3 # 0 and a (1-pole) rational solution for 8 = 0, which suggests that
8 plays the same role as the parameter ¢ in the ABT (3.2.6,3.2.7) for NLS. Now
if we consider the bilinear equations (3.3.6,3.3.7) with the Backlund parameter

set to zero, we may define a new dependent variable
V = (loglr/#))..

Then it is simple to demonstrate that this bilinear ABT with 8 = 0 implies that
V satisfies the modified KdV (mKdV) equation:

Vi = Vi, — 6V2V.

Further examples of this may be found in {79, 81}, but more relevant to our discus-
sion is the work [83] of Hirota and Nakamura concerning the classical Boussinesq

system.

3.3.3 Classical Boussinesq and NLS

The classical Boussinesq equation for the dependent variable u is derived from

the system

w = ((14+u)v — vps)s,

1
t = (u+§'l)2)r

In [83) it was shown that this system has a bilinear form,

(iD,+ DY)F-F = 0,
(DD, + D))F-F = 0.
To make the dependent variables u, v real (for real z and t), the tau-functions
must be taken as a conjugate pair F,F, with
—1 — 2(log[FF)) sz,
v = 2i(log[F/F})..
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Using the bilinear form, Hirota and Nakamura found an ABT which allowed
the construction of a sequence of rational solutions known as “explode-decay”
solitons. In fact these solutions all depend on the similarity variable

z

2t

z=

=

(we have rescaled z compared with [83] to be consistent with other results below),
and the tau-functions are written in terms of Wronskian determinants of Hermite
polynomials.

Another result proved in [83] is that, using the tau-functions related via the
bilinear ABT for classical Boussinesq, one may construct new tau-functions f, g
satisfying the bilinear equations (3.3.1,3.3.2) for NLS. More precisely, given a con-
jugate pair of classical Boussinesq tau-functions F, F which is related to another

conjugate pair F’,-F_' by the bilinear ABT, the NLS tau-functions are found from

f2= %(FF' + F'F), (3.3.8)

of = 3(D.T-F) (3.3.9

The corresponding solutions to NLS found in this way are rational, and since
they depend essentially just on the variable z they are also similarity solutions to
NLS. The first three of these were calculated by Hirota and Nakamura, and we
present them in Table 3.1 below.

n |1 2 3
folz| zt-—124 z® — 72z — 2160xt?
gn | 1| —22° + 12izt | 328 — 48i25t ~ 360z*t* + 2160¢*

Table 3.1. Polynomial tau-functions for NLS similarity solutions.

The scaling similarity solutions of NLS have been considered in some detail
by Boiti and Pempinelli [29]; they depend on the variable z and are in one-one
correspondence with a particular case of the fourth Painlevé transcendent (PIV).
We will return to these similarity solutions in Section 3.7, but for the moment we
simply remark that the sequence of rational solutions found by Hirota and Naka-
mura is the same as that obtained by repeated application of the Boiti-Pempinelli
ABT for similarity solutions, starting from the trivial similarity solution ¢ = 0.
The Hirota-Nakamura formulae, giving the explode-decay S(;liton solutions of the
classical Boussinesq system in terms of Wronskians of Hermite polynomials, are
- related to certain classes of special solutions to PIV [74, 111]. These Wronskian
determinants are special cases of formulae for rational solutions which we derive

in the next section.
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3.3.4 Bilinear ABT

The method of Hirota and Nakamura is an extremely indirect way to construct
rational similarity solutions of NLS, because it requires repeated application of
the ABT for classical Boussinesq, as well as the substitutions (3.3.8) and (3.3.9)
(which, as observed in [83], do not ensure that f? is positive definite). Instead,
one could apply the ABT (3.2.6,3.2.7) for NLS (with ¢ = ¢ = 0 to get purely
rational solutions). This too is a somewhat laborious task; substituting in the
1-pole solution and trying to find the next rational solution from it is extremely
difficult by this method. Hence after considering the bilinear approach of [83] we
were led to the discovery of the following bilinear ABT for NLS (which as far as

we know is original®):

(D, —ic/2)g-F—§-F) = 0, (3.3.10)

(iDi+ o= g - f+Di+E/0g-f = 0, (3.3.11)
(D +0*—3/4)§- f+ D2+ 4)g-f = 0, (3.3.12)
(iDy + icD.)f - f = 9§ — g4, (3.3.13)
D.f-f=1\/lof —4fP + 2f2 2. (3.3.14)

-~

The bilinear relations (3.3.10-3.3.14) are such that if the pair of tau-functions §, f
satisfy the NLS bilinears (3.3.1,3.3.2), thensodo g, f. We prove this in Appendix
B.

In deriving the above we were led to consider its relationship with the singular
manifold method. The connections between Painlevé analysis and the Hirota
formalism has been considered for a number of different PDEs (including NLS)
in the paper {70] of Gibbon et al. In particular, they show that the singular
manifold equations (3.2.9-3.2.11) imply a Béacklund transformation for the NLS
bilinear equations (3.3.1,3.3.2). This means that given a pair of tau-functions ¢,
f satisfying the NLS bilinears, another pair g, f may be constructed from the

relation

U
g _w 3§

foe 7
with ¢ = f/f, provided that the singular manifold equations (3.2.9-3.2.11) hold
(where % is replaced by §/ f throughout). We have shown independently that
(3.3.10-3.3.14) constitutes an ABT for the bilinear form of NLS (see Appendix
B). So this means that the bilinear version of the ABT must be equivalent to the

singular manifold equations (but only for the non-solitonic case ¢ = 0). Rather

2Ghortly before completing this work we became aware of the reference [122] in which Nimmo
presents a very similar set of bilinear equations. See note in Appendix B.
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than check this, we prefer to apply the bilinear ABT to show how it generates
rational solutions.
It is easy to check that the bilinear ABT with ¢ # 0 produces the singular

1-soliton,

g=oep|i(S 4= Sn)]. 1 =sinblote—en)

when applied to the vacuum,

g=0, f~ =1
(As before we always neglect shifts in 2, ¢t and the constant phase shift in g.)
Since we want to generate purely rational solutions we set ¢ = ¢ = 0, and then

as expected the vacuum produces the 1-pole rational solution

g =1, f ==z

The inclusion of the parameter ¢ would just give this a Galilean boost; this is
discussed in Appendix B.

Note that the bilinear ABT is not completely symmetric under interchange of
the tau-functions with tildes and those without: the square root sign in (3.3.14)
introduces this asymmetry (which is clearly essential to get anything new from
repeated application of the transformation). As with our singular manifold equa-
tions, we stick to the convention that the old quantities have tildes, while the
sought-after new quantities do not. So, applying the rational bilinear ABT

(o = ¢ = 0) to the one-pole solution, we obtain the 4-pole solution
g= -2+ 12ixt+ 73, f=2z"+mnc—12t,

where 7, is an arbitrary constant (and again we have neglected an arbitrary shift
in t). This solution clearly reduces to the 4-pole similarity solution f3, g, of Hirota
and Nakamura (as in Table 3.1) in the special case 73 = 0.

Looking at the table of similarity solutions, we see that we would expect the
next rational solution to have nine poles (i.e. nine zeros in f). This is indeed
the case, with more and more arbitrary constants appearing each time we apply
the ABT (and the similarity solutions arising on setting all arbitrary constants to
zero). By analogy with the well-known results about rational solutions of KdV [8],
we would expect the arbitrary constants to correspond to the higher times in the
NLS hierarchy. For the 4-pole solution we compute this directly. The equation
for the next flow in the hierarchy (which is just a restriction of the corresponding
flow for AKNS [41]) is

iy = 3z + 6[0) s
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which leads to the bilinear equation
Disgf::D:gf

(where (3.3.1,3.3.2) still hold). Substituting the 4-pole solution into this bilinear

equation, we find that we must make the identification
Ty = —'12t3.

The bilinear ABT is still a very inefficient way to generate rational solutions,
and it is not very clear how the times for the higher flows arise as constants of
integration.

In the next section we reconsider the linear problem for NLS (as derived by
the singular manifold method), and find that it admits an analogue of the Crum
transformation for linear Schrédinger operators. By repeated application of this
transformation, which we call the NLS Crum transformation (NCT) we are led
to an algorithmic way in which to compute the sequence of rational solutions.
We find that the bilinear variables g, f lead to a very concise description of
this, as well as making more contact with the results of Gibbon et al. At the
same time, the Crum transformation provides a natural derivation of the substi-
tutions (3.3.8,3.3.9) in terms of classical Boussinesq tau-functions. Also we are
able to write the rational solutions in terms of Wronskian determinants of Schur
polynomials, which generalize Hirota and Nakamura's formulae for the similarity

solutions.

3.4 The NLS Crum Transformation and Ratio-
nal Solutions

3.4.1 The Crum Transformation for KdV

The construction of the polynomial tau-functions for KdV was shown [8] to be
most easily achieved by considering the factorization of a second order operator

into two first order operators:
L-x=-AA

In the above we have the Schrodinger operator

the first order operator



and its adjoint A*. The operator L is just half of the Lax pair for the KdV
equation (or for each of the flows in the KdV hierarchy). It is straightforward to
obtain U/ in terms of V, and for A = 0 this recovers the well-known Miura map
between a solution V of mKdV and U satisfying KdV.

Starting from the eigenvalue equation
(L-X¢=0, (3.4.1)

and a solution ¢ # 0, the factorization of L can be reversed to yield a new

Schrodinger operator
L=38+T,

where
L— )1 =—-AA"

This is simply because the eigenfunction ¢ yields the factorization via the formula
A= ¢6x¢—1a

and then it is straightforward to see that ¢! is an eigenfunction for the operator
L, ie.
(L-Mg¢l=0.

This is the Crum transformation. The rational solutions of KdV are the sequence
of potentials of the Schrédinger operators generated by repeated application of
this transformation, with the special choice of eigenvalue A = 0, beginning with
the potential Uy = 0. If we apply the same transformation to the operator L
above, with the eigenfunction ¢! providing the factorization, then the Crum
transformation will just lead back to the criginal operator L. Hence to generate
a new potential, at each stage another eigenfunction must be found (such that it

is linearly independent with ¢~1).

3.4.2 NLS Crum Transformation

If we consider the z part of the linear problem for NLS, we find that it admits an
analogue of the usual Crum transformation for the Schrédinger spectral problem
(3.4.1). We start from the equation (3.2.15) found using the singular manifold
method:

vy = —tkv + 'J)"ﬁ.

This is the analogue of the eigenvalue problem for the Schrodinger operators; it
may also be considered as a second order problem for the real or imaginary parts

of v. We shall refer to the functions v throughout as “eigenfunctions”, although
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strictly the vector with v and T as its components is the eigenfunction for the
matrix spectral problem (3.2.4); similarly we shall refer to the functions ¢ as the
“potentials”. Using the results of Section 3.2, we define the singular manifold

function ¢ via

¢o = vf’. (3.4.2)

Now we can define a new eigenfunction

v = v
s
It is easy to see that V = v* is a solution to the eigenvalue equation
V, = —ikV + 9V, (3.4.3)
with the new potential
2
NI
p=9-7
¢

The above transformation from 1 to i constitutes the NLS Crum transfor-

mation (NCT). We can of course define a new singular manifold function ¢* by
¢ =1l

but up to a constant we must have
-

and so applying the same transformation again just leads back to the old potential
%. So in order to get anything new we need to find a new eigenfunction v’
satisfying (3.4.3), such that v’ and v” are linearly independent (over the real
pumbers). 1t is well known that two independent solutions to a Schrodinger
eigenvalue problem have a Wronskian which is a non-zero constant. In this case

the analogue of the Wronskian is the quantity
Wiv*, 0] = (20) ("' — v*'). (3.4.4)

It can be checked directly that for any two solutions v™, v of (3.4.3), Wlv*, v is
a constant, which will be non-zero when they are independent. In fact W arises

naturally as a determinant back in the matrix formulation (3.2.4).

3.4.3 A Sequence of Rational Functions

We proceed to construct a sequence of rational functions ¥, for n = 0,1,2,... by

repeated application of the NCT, with the eigenvalue k = 0, starting from the
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vacuum v, = 0. These rational functions turn out to be solutions to the NLS
equation, but we need some preliminary results before we can prove this. All the
manipulations involved are much easier when carried out in bilinear form. Hence
we are lead to the following equations which must be solved successively (starting

from fo =1, ho =1):

Dihn fo = hagn, (3.4.5)
Wihahot] = 5= D0n S D1, (3.46)
Dofust fo = |kl (3.4.7)

Gniifo — gnfasn = —h; (3.4.8)

W is as defined in (3.4.4). It is a simple matter to show that solving these
equations is equivalent to applying the NCT repeatedly.

Proposition 3.1. If kg, g and f, are solutions to (3.4.5-3.4.8) with the initial
conditions fo = 1, ho = i, then the most general potential iy, obtained by n
applications of the NCT (with eigenvalue k = 0) to the vacuum tho = 0 is of the

form

¢n.= %, (3.4.9)
where
|toal* = —(log[fa])zs- (3.4.10)
The new eigenfunctions at each stage are given by
Un = %, (3.4.11)
so that
Unz = Ynln, (3.4.12)

and the singular manifold function is obtained from the formula

fn-i—l
n= —. 3.4.13
6. = 22 (3.4.13)

Proof. First we consider n = 0. We may substitute for fy and hg in (3.4.5)
immediately to get go = 0, which gives 1 = 0. Since fq is a constant (3.4.10)
also holds, and clearly vg = ho/ fo is just a constant and satisfies vp, = YoUg = 0.
The equation (3.4.2) for the singular manifold function gives do = 1, and thus
$o = fi/fo = = + 7, with 7 constant. As usual we neglect this translation in
z and find fi = z, which is just what we find on solving (3.4.7). Finally (3.4.8)
yields g; = 1, and so ¥y = 1/z as expected.
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We may proceed by induction. Assume fo, ..., fz; 9051 9n and hqg, ..., hn—1 have

been found. To apply the NCT we require a solution V' of
Ve = V. (3.4.14)
After a little manipulation of (3.4.5-3.4.8) we find
Dihny+ fo = hn_1n) (3.4.15)

which implies that V = hn_1/fa = Vn-1/@n-1 is a solution of (3.4.14). However,
essentially this gives the singular manifold function — -1, and so applying the
NCT with this V just leads back to . Hence we need a new solution v, to
(3.4.14) such that the quantity W[vy, Un1/$n-1] is @ non-zero constant. We find
this by solving (3.4.5) with the normalization condition (3.4.6) (this normalization
is chosen to ensure that each of the f, is a monic polynomial). On dividing
through (3.4.5) by f2 it is simple to check that the new eigenfunction v, is given
by (3.4.11). Similarly dividing through (3.4.7) by the same factor produces the

equation for the singular manifold function, that is

qbn,w = ivn|2’

with ¢, given by (3.4.13). If we then divide (3.4.8) by fafasr on both sides then
we find the correct equation (3.4.9) for the new potential:

2

On+1 Un
R
" fn.+1 " ¢'n

The only thing still to verify is that the modulus of the new potential satisfies
(3.4.10). By the inductive hypothesis we have

(log[fut1])se = (logldu])zz — [nl", (3.4.16)

Because we have constructed the linear problem (3.4.14) via the singular manifold
equations (3.2.9-3.2.12), it is obvious that their purely z-dependent parts must
be consequences of the equations for the Crum transformation. So for ¢ = ¢,
and ug = ¢n (a1 — ¥n), the equation (3.2.9) gives

i,x = ¢721,l¢n+1 - ¢nl2a
while the real part of (3.2.10) implies
q-[’n,z'z: = én(l¢n+1 - d)nl? + Ifﬁb‘ﬂ.l2 - |¢ﬂ+1|2)'

Alternatively these derivatives of ¢, may be computed directly using (3.4.5-3.4.8),
and then substituting into (3.4.16) yields

l¢n+1|2 = —(1og[fn+1])rzs
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as required. This completes the proof. [J

We are now able to show that the application of the Crum transformation is
purely algorithmic, in the sense that the new potential is obtained by performing
two integrations and then solving one algebraic equation. At this stage we also

fix a convention for the constants of integration.

Proposition 3.2. Given hn_1, fn, gn found by n applications of the NCT in
the form (8.4.5-3.4.8), the new potential Pnyy = Gnt1/ fag1 is oblained via the
following three steps. First, integrate

hn y nin
(hn—l)x = —2%\/(211 + 1)(271 - 1) }fllea (3417)

to find hy, and denote the constant of integration by V(2n +1)(2n — 1) Ton. Next,
use hy, to find fo1 by integrating

(f }“) = Bl (3.4.18)

where the second constant of integration is demoted by Tany1. Finally, solve for

gny1 by rearranging the algebraic relation (3.4.8) to give

a1 = fn—l(gnfn+l - hi)
The constants of integration are real.

Proof. To find a solution A, to (3.4.5,3.4.6) (which generates a new eigenfunction
V for the linear problem (3.4.14)), observe that

fn(D:z:hn : hn—l) = hn—l(Da:hn * fn) - hn(Da:hn—l . fn)

Substituting for the bracketed expressions on the right hand side from (3.4.5) and
(3.4.15), and using the normalization condition (3.4.6) yields

Dby haoy = —2i4/(2n +1)(2n — 1) fagn, (3.4.19)

from which (3.4.17) follows instantly. Note that we can always add on any real
multiple of hy_1 to by and it will still satisty (3.4.5, 3.4.6). We choose this multiple
to be v/(2n + 1){2n — 1) Ten. The equation (3.4.18) is just the expression for the

derivative of the singular manifold function ¢, (written as the ratio (3.4.13) of

two tau-functions). Hence the constant 7zq41 is just the arbitrary multiple of f,
that may be added to fny1. O

It is interesting to observe that if we multiply either h,_; or by, by ¢ and remove
the normalization factor \/(2n + 1)(2n — 1) then (3.4.6) and (3.4.19) are identical
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to the substitutions (3.3.8, 3.3.9), when we identify the classical Boussinesq tau-
functions F, F with the rescaled h,, hn_1. Hence we are lead to the conjecture
that, up to scaling, k., is a tau-function for the classical Boussinesq equation, for
all n. We postpone consideration of this matter for the moment, but henceforth
refer to the h, as tau-functions.

The first few NLS tau-functions found by applying the NCT are

fﬂzl? gU:Oa

h=gz, a=1,

fa= zt + mx — 3722, g2 = —922% + 6imyz + T3,

fs = z°+ 6732 — 187a° + sz’ — 607,74z + 9072752

+(T3T5 - 135'1‘51 - 157’3)33 + 307'2T3T4 - 51"32 - 31’;1’5,

gz = 3z° — Uina® + 673" — 30(375 + i)z — 2(rs — 30i7y7s) >
+30r22? 4 (9075 75 + (67275 — 307a7y))T + 13575

41ats — 1572 + 30i(7o7E — 375 74).
In computing the above the first few h, are also needed:
ho = 1,

hy = —V3(z? — ima),
6 _ 2 i 3 2 9 Y2
(i )
We note that, after setting 7, = 2t and 7; = 0 for j 2 3, these f,, gn are the same
as the similarity solutions found by Hirota and Nakamura (as in [83] and Table
3.1), and also the h, correspond to the tau-functions which provide similarity
solutions to the classical Boussinesq equation.

We have shown that the application of the NCT is purely algorithmic, and
generates a sequence of eigenfunctions v, and potentials ¢ satisfying the purely
z-dependent part (3.4.12) of the NLS linear problem. However, although the
first few terms in this sequence are clearly rational, we have yet to prove this in
general. The proof of this follows from the fact (proved in the next subsection)
that all the tau-functions fa, gn, hn may be written as Wronskian determinants
of Schur polynomials, and hence are themselves polynomtials. Other Wronskian
:dentities show that the tau-functions g,, fn also satisfy the ¢ part (3.3.1) of the

NLS bilinears, and hence the sequence of potentials 1, really do provide rational
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solutions of the NLS equation (3.1.11)(on identifying 7, = 2t). More generally,
the constants 7; should correspond to the times of the NLS hierarchy. In fact,
the flows of the AKNS hierarchy can be given recursively in bilinear form [120],

Dt,-+19 : f = DtJ»ng ‘ f, (3420)

and on reducing to the NLS hierarchy all the odd times #5,41 must be real while
the even times #;, must be purely imaginary. We postpone further discussion of
the higher bilinears (3.4.20) for the moment.

3.4.4 Wronskian Formulae

At this point we make use of the sequence of Schur polynomials p; for 7=0,1,2,...,
defined by

exp{(2, v)] = ij(ﬁ)yja () = thij th =z
j=0 =1

From this definition it is simple to show the following identities:

0*p;
a$; = Pj-k, (3.4.21)
p; 0*p;
% — G (3.4.22)
The first five Schur polynomials are
1 2
po=1, m=z p=32 + 2,

1 3 1 4 1 2 12
p3=€:1,' +t2$+t3, P4 =T -|-"'t21' +t3I+—2‘t2+t4

24 2
We are able to demonstrate that up to scale factors, all of the f,, g, A found
by applying the NCT are just given by double Wronskians of Schur polynomials,
which implies immediately that these tau-functions are themselves polynomials
in z. To make this identification requires the constant of integration 7; to be
proportional to {;, for each j.

In what follows, we use the following notation for the Wronskian of n functions

A1, 02, ..y 0n:
a1 ag e ay
(1113; ag,,,. - an_I
[a1,a2,...,8,] =
A1, (n-1)z 92, (n-1)z +++ Cnfn-1)z
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With this notation we introduce the quantities

Fn = [p‘Zn-—-la s 1p2n—1,(n—1)x]a
G, = [p‘Zn-—la can :p2n—l,n::c]1
H, = [PZna cen aP?n,nm]-

These expressions are all double Wronskians of Schur polynomials, and it turns
out that they are proportional to f,, g,, and h, respectively. We also make use
of

n - [p‘.’n—l, e ,p2n-—1,(n-—-‘2)z]:

Q)

n = [P2m +y D2n, n-l):c]

Strictly speaking, the bars above do not denote complex conjugate, although it
will turn out that the complex conjugate of G, (repectively H,) is equal to Gn
(respectively H,) up to a minus sign.

The key to proving that the tau-functions generated by the NCT are propor-
tional to these Wronskians is showing that, up to scale factors, the Wronskians
satisfy all of the bilinears (3.4.5-3.4.8). We shall see that all these bilinears may
be reduced to Laplace expansions of certain determinants. It is also necessary
to show that the form of these Wronskians is compatible with the algorithmic
procedure of Proposition 3.2, by identifying the constants of integration 7; with
the t; appearing in the Schur polynomials. To demonstrate this we require a few

preliminary results.

Proposition 3.3. The double Wronskians Fy, Gy, Hy, G, H, satisfy analogues
of (3.4.5,8.4.7) and the equation (3.4.19), which are given by

D.H, F, = H,G,, (3.4.23)
D.Fop F, = H.H,, (3.4.24)
D H, -H,_, = F,G,. (3.4.25)

They also satisfy the “conjugates” of these equations, obtained by swapping G,
with Gy, and H, with H,.

Proof. We will give the full details for (3.4.25), since this is (the bilinear form
of) one of the steps in the algorithm of Proposition 3.2. We are able to show that
(3.4.25) is equivalent to the Laplace expansion of a certain (2n + 1) x (2 + 1)
determinant. Since (3.4.23,3.4.24) are equivalent to essentially the same sort of

Laplace expansion, we do not consider them separately.
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To prove (3.4.25), we let (0) denote pan, and for any positive integer k we let
(k) denote pan-k- So using the property (3.4.21) we may write e.g.

H, = [(O)v SRR (n)]a
and
Hpro = 1(2), - (n), (n+ 2)]-
In this notation, {3.4.25) is equivalent to
[(0),...,(n - 1),(n+1)]" [(2),...,(n+1)]

_[(0)1 RS (”)] ) [(2)1 cevn (n)= (n + 2)]
1)y s (A D) (@) ()] =0 (3.4.26)

To see why (3.4.26) must hold, observe that it is just the Laplace expansion in
the first (n + 1) Tows of the determinant

o] © - (-1 (n) | (n+1)
: : : : : 0
()| (n+1) .- (2n—1)| (2n) (2n+1)
1) n+1)| (n+ 2] @ .- (n)
: 0 : : : :
(n) (2n) |(2n+ D](n+1) - (2n - 1)

(3.4.27)
It is straightforward to show that (3.4.27) vanishes, and thus (3.4.25) is proved.
The proofs for (3.4.23,3.4.24) and the “conjugates” are almost identical. O

We present the analogous versions of (3.4.6,3.4.8) separately, as they require
a slightly different type of Laplace expansion.

Proposition 3.4. The following analogues of (8.4.6,3.4.8) may be shown to hold:

HHnooy — HiHor = —F2, (3.4.28)
Gn+1'Fn—GnFn+1 = —Hﬁ (3429)

The “conjugates” of these are also satisfied.

Proof. As before we will use the notation (k) = pan—k- Then (3.4.28) just

becomes

[(0), - ()] (@) ()]
_[O)s- s (= D] {25 ()
+(1), .-, ()} [(1),...,(»)] = 0. (3.4.30)

107



While the three terms in (3.4.26) all consisted of products of an n X n with an
(n 4+ 1) x (n + 1) determinant, (3.4.30) has instead two pairs of determinants of
order n, as well as one of order n + 1 with another of order n — 1. Thus (3.4.30)

occurs as the Laplace expansion of the (2r + 1) X (2n + 1) determinant

(0) 1 ... (n=1 (n) |0

-1 M) ... @-2)|@n-1]0
(n) |[(rn+1) ... 2n—1)| (2n)
(1) n+1) |0 2 ... (») |

—

(n—1) 2n-00 (n) ... 2n-2)
(n) (2n) |1|(n+1) ... (2n—1)
(3.4.31)

which clearly vanishes. The equation (3.4.29) and the “conjugates” follow from

essentially the same Laplace expansion. O

Having proved these determinantal identities, it is now obvious that the tau-
functions found via the NCT must be proportional to the double Wronskians
defined above. It remains to determine the scale factors and identify the 7;
in terms of the ¢;. Note that the original scaling was chosen to make all of
the f, monic polynomials, at the expense of introducing square roots into the

normalization condition (3.4.6).

Proposition 3.5. The tau-functions fr, gn, hn found from the application of
the NCT, as well as their complex conjugates, are all polynomials. They may be

written in terms of the Wronskian determinants of Schur polynomials,

n!

f" = (_)[%] (2”)! c(n)Fm
I = (“)TPHHEF] ——((2;:11))'l C(n - 1)Gna
7. (_)n+1+['~‘~;—‘1 _(Qn__l_)' e(n — 1)G,,

= 1)
(=) 71 /on + 1 e(n) Hy,
2 (—)"'2n + 1 e(n)H ., (3.4.32)

>
2 3
n
p——
i
~—
wl

where

=0

The t; are related to the constants of integration 7; by
(n —1)!n!

(2n - 2)1(2n)!

(n1)”

it = () i 1 I

Ton+1-
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Proof. Essentially this follows immediately by induction, on comparing the al-
gorithmic steps of the NCT, equivalent to the bilinears (3.4.7,3.4.8) and (3.4.19),
with their counterparts written in terms of the Wronskians. By Proposition 3.2,
the tau-functions and their complex conjugates are uniquely determined at each
step, up to the constants of integration. The formulae relating the 7; to the ¢;

are found by comparing the conventions chosen in Proposition 3.2,

hﬂ."’Zn = \/(271 - 1)(271 + ]') hn—li fﬂ+1a1‘2n+1 = fﬂi

with the corresponding expressions obtained by differentiating the Wronskians

and using the property (3.4.22} of Schur polynomials,

Hn,tzu = Hn—lg Fn+l,t2,-,+1 = Fn'
Note that the formulae for g, and g, may differ by an overall sign in front {and
similarly for &, and 7;,,). O

The Wronskian machinery also provides an easy proof that the tau-functions
gn, fn satisfy the NLS bilinear equation (3.3.1), and hence with (3.4.10) this
implies that each %, is a solution of the NLS equation (3.1.11).

Proposition 3.6. The tau-functions g,, f, satisfy
(iDs + D2)gn - fr = 0.

Proof. Using the scaling properties and the fact that ¢t = 2, = —ity, the

proposition is equivalent to
D, G, - F, = DG, - F,. (3.4.33)

By the properties (3.4.21,3.4.22), it is apparent that (3.4.33) may be expanded
out using the same notation as in (3.4.26,3.4.30). After a few cancellations the

resulting expression,

[(0),...,(n—2),(n),(n+ 1)]- [(0),...,(n—1)]
_[(0)! Ty (n - 1)} (n + 1)] ) [(O)a' . -a(n - 2)1 (n)]
+[(0),...,(»)]-[(0),...,(n=2),(n+ 1)] = O,

just corresponds to the Laplace expansion of a determinant of the same form as
(3.4.27). O

An almost identical argument shows that Ay, k., satisfy the bilinear equations

of the classical Boussinesq system, as has been proved for the rational similarity
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solutions by Hirota [84]. We have attempted to extend this Wronskian approach
to deal with the whole NLS {or AKNS) bilinear hierarchy (3.4.20), but the expan-
sions become too complicated to analyze directly. A full treatment would require
an NLS analogue of the KP bilinear recursion operators developed by Nimmo
[123]. Although we have not found a general proof that (3.4.20) is satisfied by

the whole sequence of Wronskians, it is straightforward to see that
Di23‘+1Gﬂ By = Dtg,'D:cGn - Fy

when n < j, because these Wronskians are independent of t2; and tzj41, and a
short calculation shows that it is also satisfied for n = j + 1. In the next section
we shall see how NLS arises as a reduction of the KP hierarchy, with the times
given by the ;.

3.5 The Trilinear Form of NLS

In this section, rather than using our formulae found by application of an auto-
Backlund transformation, we go back to the NLS equation (3.1.11) and find that
the complex amplitude 1 can be (almost) completely determined by a single real
tau-function f which satisfies a trilinear equation, rather than as a ratio of two
tau-functions satisfying the coupled bilinear equations (3.3.1,3.3.2). This is not
really surprising when the connection is made with the way the AKNS hierarchy
(and hence NLS) arises as a reduction of the KP hierarchy, as in the work of
Cheng and Strammp et al [41, 125]. Rather than employing the results of these
authors immediately, we prefer to go back to first principles to derive the trilinear
form, since this is the route we originally took. The use of a trilinear equation may
appear to be unnecessary when we have already discovered so much about the
rational solutions from the auto-Backlund transformation. However, the trilinear
form is useful in that it provides a simple way to determine equations of motion

for the poles of the rational solutions.

3.5.1 Direct Derivation of Trilinear Form

We begin from the coupled equations for the amplitude and phase of ¢. Writing
P = w2 exp(ix), the NLS equation (3.1.11) is equivalent to the system

lwz, | 1 fwz\?
Xt + Xi - iww + n (%) +2w = 0, (3.5.1
w + 2(wxy): = 0. (3.5.2)
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Next we define w; = w, wy = x;. On differentiating (3.5.1) with respect to z
and expressing both the resulting equation and (3.5.2) in terms of w;, 7 = 1,2,

we obtain the Hamiltonian form

i w1 _ 0 —83,
w, = ( o )t - ( 6. 0 )6&11’, (3.5.3)

2
1.2

4'!1.)1
(This is not the standard Hamiltonian form for NLS, but is closely related to it.
See [57].) If we define the new dependent variable 5 = —2w,w,, then the system

where

H = wawi +w? +

(3.5.3) implies the following two evolution equations for w = w; and 7:

2 2
o= (ng—mer————w”H) : (3.5.5)

w

At that this stage we are ready to express everything concisely in terms of the

single tau-function f. First we define
A = log[f].

The second bilinear equation (3.3.2) for NLS implies immediately
w=—Ag.

On substituting this into (3.5.4) and integrating once with respect to z we find
n=—Agz,

where the arbitrary function of time that arises can always be absorbed into f.
Then after substituting for 7 and w in (3.5.5) and performing another integration
with respect to £ we obtain a PDE for A:

Auhge — A2, — A2 + 243 + ApoAy, = 0. (3.5.6)

Once again the arbitrary function of time from the integration has been set to
zero, as it can also be absorbed into the tau-function f. The equation (3.5.6) may
now be rewritten in terms of f. There are many terms which cancel, and then
after multiplying through by f* we find that, remarkably enough, the remaining
terms may be written as a sum of two determinants:

f = & [ fe Jfas

fm: f:rt ftt f:r:a: f3x f43:

The equation (3.5.7) is the trilinear form of NLS.
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3.5.2 AKNS as a Reduction of KP

Trilinear equations, and more generally multilinear equations, provide a natural
extension of Hirota’s bilinear formalism. Grammaticos et al {73] have developed a
useful notation for multilinear operators, and have provided a partial classification
of integrable trilinear equations of low order. In particular, the determinants
in (3.5.7) appear in their work as particular examples of integrable trilinears.
Multilinear equations also arise naturally as the equations for the tau-function
of the KP hierarchy under the so-called generalized k-constraint, which has been
studied in detail by Cheng [41] and Strammp et al [125]. These k-constraints have
analogues for other PDEs, leading to finite-dimensional integrable Hamiltonian
systems [109].

Recall that the flows of the KP hierarchy in terms of the Lax operator L are
given by

O L = {(L™)4, L),

this being the compatibility condition for the linear system

Lg = Aqg,
g, = (L")+q, (3.5.8)

where ¢ is the wave-function. Similarly the adjoint wave-function r satisfies
ria = =(L7)4r.
All the flows of the KP hierarchy commute, i.e.
[0s, 1) = 0,

but there is another vector field 8¢ (known as the ghost symmetry) which acts
on L by -
dcL = [L,qd7'r)

and also commutes with all the flows:
(0:,,05] = 0.
The most common reduction of KP is the k-reduction,
(LF)_ =0.

For example, the KdV hierarchy results from the case k = 2. Because of the ghost

symmetry, it is possible to make the more general compatible constraint,

(L¥)- = qd]'r,
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which is known as the generalized k-constraint.
We consider in detail the case of the generalized 1-constraint, which is relevant

to our trilinear equation {3.5.7). If we write the Lax operator as
L=0,+ud' +..,

then the linear equation (3.5.8) for the second time flow is just a time-dependent
Schrodinger equation
qt, = Qua + 2ug. (3.5.9)

Imposing the 1-constraint, we set
L =3, +q¢0]'r,
and find immediately that
u = gqr.

Hence the equation (3.5.9) just becomes the first half (3.2.2) of the usual AKNS
system. Similarly the adjoint to (3.5.9) becomes (3.2.3), and Cheng has shown
[41] that in fact the 1-constraint yields the whole AKNS hierarchy.

At this point it is useful to mention the Kaup-Broer system

H, = (H.+2X"H),,
X; = (=X;+X?+2H)..

This may be found from the AKNS system (3.2.2, 3.2.3) via

H = g, (3.5.10)
X* = —(log[r])z. (3.5.11)
On making the ansatz
H = (110g[‘r])m, (3.5.12)
HX* = 5 ((loglr])st, — (10g[7])azz), (3.5.13)

the Kaup-Broer system leads to the following trilinear equation for 7:
p(}:PS(T) P(:):PZ(T) pfipg(f)
pipg(t) pipi(7) Pg_?z (r) | =0. (3.5.14)
pips (1) pipi(7) papa(7)

In the above we have used the operators

x x 1 1
pjt = p](:lza), a = (aa:-; §at2a §3t35 ):
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which are written in terms of the Schur polynomials p;(t), defined in the previous
section. There exist numerous generalizations of the determinant (3.5.14); they
correspond to multilinear equations for the higher flows of the AKNS hierarchy,
or for the flows of the other k-constraint hierarchies arising as reductions of KP.

Now we can make the connection with the trilinear (3.5.7) derived from NLS.
We have seen we get NLS from the AKNS system by setting t; = it, ¢ = ¥,
r = —. Hence, if we put ¢ = w1 exp(ix) as before, the Kaup-Broer variables
defined by (3.5.10, 3.5.11) become

H = —w,
1
X+ = —3(loglwl)s + iXe-

When we also identify 7 = f, then the ansatz (3.5.12, 3.5.13) gives

w = —Au, (3.5.15)
A:r:t
Xe = “Hp (3.5.16)

agreeing with our previous formulae. Finally it is a simple matter to check that
for imaginary time ({; = it) the determinant (3.5.14) is just the sum of the two
determinants in (3.5.7).

The solutions of trilinear equations have been studied by Satsuma and others

(see [77] and references therein), and take the form of double Wronskians,

A Ay . Aw-ne
AL Ay ... ANz
T= : L . , (3.5.17)
Aw-12 ANz - Dov-1)s |
with
Am = A.’r:.'s-

The polynomial tau-functions found in the previous section are particular exam-
ples of these determinants. It is a result originally due to Sato that all Wronskians
of Schur polynomials (or in other words, Schur functions corresponding to arbi-
trary Young diagrams) satisfly the bilinear equations of the KP hierarchy [126].
Hence all of the tau-functions f,, gn, i found in the previous section satisfy KP;
we shall come back to this point in the next section.

We have seen that the trilinear form provides an alternative way to consider
the solutions of NLS, in terms of a single tau-function. For a solution f of (3.5.7)
to correspond to a bona-fide solution of NLS, there is the additional requirement
that —(log[f])zs should be non-negative definite, since (from (3.5.15)) this gives
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_ the modulus squared of the amplitude 3. Also, to find the argument x of ¢ it
is necessary to perform the integral of the right hand side of (3.5.16), which only
determines the phase up to a function of t. For example, the Galilean-boosted
one-pole solution has
f=z—d,
giving
_ expli( + %(0)
xz—ct ’

for some function ¥(t). To determine this function of ¢ it is necessary to substitute

either directly into {3.1.11) or into the bilinear form (3.3.1). In general, integrating
the quantity %:: explicitly may not be easy, so it is useful to have the bilinear
methods as well. In the next section we look at the rational solutions of NLS,
and use both the trilinear form and the bilinear form to derive equations and

constraints on the motion of the poles.

3.6 Dynamics of the Poles and Zeros of Rational
Solutions

In Section 3.4 we constructed a sequence of singular rational solutions to NLS,
with the amplitude in the form of a ratio of two polynomial tau-functions,

=9
%b—f-

The poles of 1 are just the zeros of f, so rather than considering the bilinear
equations (3.3.1,3.3.2) which involve both f and g¢, the motion of the poles may
be studied directly from the trilinear equation (3.5.7) which involves f alone.

Hence we take f in the form of a polynomial of degree NV,
N
f =] ®(z,0), (3.6.1)
j=1

with ®; = & — z;(t). Then the modulus squared of ¢ is given by

[]? = —(log[f])e= Z

j=1
This is the same as the form of the rational solutions to KP, under the constraint
u = —|i|*> which we described in the previous section. The poles of 3 are at
z = z;(t). On expanding a solution to the NLS equation about a pole (which
we allow to be complex, in contrast to the real singular manifold function ¢ of
Section 4.2) the leading order behaviour shows that the pole positions z ;(t) must

either be real or in complex conjugate pairs.
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3.6.1 Calogero-Moser via the Trilinear Form

Substituting the expression (3.6.1) for f into the trilinear equation (3.5.7) gives
a polynomial P of degree 3(N — 1) in 2. The equations for the pole motion may
be found from the requirement that P, P, and P, should vanish at ¢ = z;, for
j =1,..,N. In fact, since P is of degree 3(NV — 1), showing that P and its first
and second derivatives vanish at any N — 1 of the z; is sufficient to show that
P is identically zero. This would suggest that the equations found for, say, the
first N — 1 of the z; must imply the corresponding equations for £x. Instead of
using the trilinear equation (3.5.7) directly, we find that the calculations are made
easier by considering the equivalent equation (3.5.6) and expanding about each
of the (possibly complex) singular manifolds ®;. The highest order singularity is
a triple pole, and their are also simple and double pole terms.

After some calculation, the equation (3.5.6) (which is just the trilinear (3.5.7)
divided through by f3) yields

ZA (£)87° + B;(t)®;% + C;(t)8;' =0,

i=1
and for this to hold we require that the coefficients at each order in ®; should
vanish (for j = 1,..., N'). Explicitly we find

Aj = ; — 8 Z A_;k 3 . (362)
k#j

By = Y (887 + (&5 — 3:)* A5 + 2405

k#§’
+123 " 02(AF - 871 - A (AR + A7), (3.63)
k<l
C; = 3 (& - 8)AF — Ai; — 2n)PA50 — 4827
k#3
+24) (AR + AT - AR(BY - A7), (364
k<l

where the dot stands for &, A;x = z; — 24, and ', denotes a sum over k < I
dt 2 3 k<l

with k# 5 # L
We see that the vanishing of the leading order terms A; given by (3.6.2) just

yields the equations of the ordinary Calogero-Moser system,
;=8 (a5 — =)™ (3.6.5)
k#i

This differs in sign from the equation (3.1.7) for pole motion of solutions to the

KP equation, but this is because we have set t; = it in making the reduction
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to NLS. The vanishing of the quantities Bj, C; given in (3.6.3,3.6.4) take the
form of constraints on the motion, but do not appear to come from Hamiltonian
reduction (as is the case for KdV pole motion discussed in the Introduction).

It is interesting to see how the constraints are satisfied by the 4-pole solution,

for which we have the tau-function
f=z 4+ 12— 1242,

This has real coefficients, and the coefficients of 2® and z? vanish, it is clear that
the roots must satisfy
4 4
> e =0=) 2}
i=1 i=1
Hence it has either two complex conjugate pairs of roots or one complex conjugate

pair and two real roots. The condition for two distinct real roots is

[

1662 + (34‘1) > 0.

In particular this condition holds for the 4-pole similarity solution (when 75 =0,
t # 0), where the roots are

z; = 3% expl(j — )7 /2)(21th)7.

These lie at the vertices of a square in the complex plane, and move towards the
origin until they coalesce at ¢ = 0, and then repeat their motion in reverse. This
pattern appears to be repeated for the 9-pole and 16-pole similarity solutions,
with the poles lying at the vertices of squares of different sizes (and an extra pole
at the origin in the case of the 9-pole). It would be interesting to make a further
study of the patterns of the roots of these solutions (as has been done in the KdV
case [11}), but we have not pursued this.

In order to gain a better understanding of the constraints on the z;, it is
instructive to use the bilinear equations once more. We are thus able to demon-
strate that not only the poles but also the zeros of rational solutions to NLS
satisfy Calogero-Moser equations, and there is an interesting coupling between

the motion of the poles and the zeros, as well as some further constraints.

3.6.2 Coupled Equations for Poles and Zeros

In order to consider rational solutions we start with the ansatz that the tau-
functions ¢ and f are coprime polynomials in , and we may assume that f is
monic. On substituting into (3.3.2), and comparing coefficients at leading order,

it is at once apparent that g must be of degree one less than f. The leading
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order coefficient of ¢ is also essentially fixed (up to multiplication by a constant

of modulus one). More precisely we have

N

f= H(‘T - z;(t)),

i=1

as before, and

N-1

g=VN [[ = -vs®))

J=1
As expected, (up to inessential minus signs in the definition of g) this is precisely
the form of the polynomial tau-functions that we found in Section 3.4 by applying
the Crum transformation. In fact we only found rational solutions with N = n?,
for integer n = 1,2,... labelling the sequence of solutions.

With the top coefficients fixed, we substitute f and g as above into (3.3.2)

and find

N-1 N
NH (z —ys)(z—77) ZHz—:ﬂk . (3.6.6)
J=1 i=1 k#j

Hence we may regard the ys (and their conjugates) as being determined by sym-
metric functions of the z;. We may also derive equations for the ¢ evolution of

the zeros y; and poles z;, by substituting into (3.3.2). If we set
M =loglg],
and A = log[f] as before, then (3.3.2) is equivalent to
(M — A+ Moz + Ape + (Mz — A2 =0, (3.6.7)

Putting the polynomial ansatz into (3.6.7) and calculating the residues at each

simple pole in the resulting expression gives, for each j and J,

1w = 2 (Z(%‘ —a) =) (2= yJ)"l) ; (3.6.8)

k#j J
Wy = 2( ZyJ—yK +Z (ys — ;) ) (3.6.9)
K#J

Differentiating (3.6.8) leads to the Calogero-Moser equations (3.6.5), and similarly
the y; must satisfy

Ju=8) (ys—yx)™

K#J
We remark that the calculation of these second-order equations is identical to

that for rational solutions of the Benjamin-Ono equation [39], where the poles
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z; evolve according to the equation (3.6.8) with the ys replaced by the complex
conjugates T;.

We have shown that both the poles and the zeros of rational solutions to NLS
evolve according to Calogero-Moser equations, and that these poles and zeros are
coupled by the differential constraints (3.6.8,3.6.9), as well as the further con-
straints (3.6.6). As mentioned earlier, the bilinear equations (3.3.1,3.3.2) imply
the trilinear equation (3.5.7). Essentially this is because to derive the trilinear
equation requires that the modulus and argument, of i are related to the tau-
function f by (3.5.15,3.5.16). The relation (3.5.15) is equivalent to (3.3.2), while
(3.5.16) is equivalent to the bilinear equation (3.3.4) for v = 0. So it is apparent
that the vanishing of the quantities Bj, C;, which were found via the trilinear
formalism, must be consequences of (3.6.8,3.6.9) and (3.6.6), although we have
not checked this directly. Thus in some sense the bilinear approach is more fun-
damental, and certainly the form of the constraints arising in this way s more
tractable.

Given polynomial tau-functions in the form of Wronskians of Schur polynomi-
als, we know that they satisfy the bilinear equations of the KP hierarchy [126], and
hence by Shiota’s result [142] their zeros must evolve according to the equations
of the Calogero-Moser hierarchy with respect to the times t;. The tau-functions
frns Gny An found in Section 3.4 all have this Wronskian form, but they also satisfy
certain constraints corresponding to the reduction from KP. We have not tried to
solve the NLS-constrained Calogero-Moser system in general, but it seems most
likely that the solutions generated by the NCT method in Section 3.4 are the
only ones allowed. In fact we are able to outline an argument for this when we

consider the similarity solutions in the next section.

3.7 Similarity Solutions and other Singular So-
lutions

In this section we give a brief discussion of some other singular solutions of NLS,
to illustrate the great variety of these. Qur first example concerns the scaling sim-
ilarity solutions, which were studied in detail by Boiti and Pempinelli [29]. The
ODE for the similarity solutions turns out to be in one-one correspondence with
a particular case of the fourth Painlevé transcendent (PIV). PIV has a Backlund
transformation, which in this case may be used to generate two sequences of ra-
tional solutions. In this way, two sequences of similarity solutions for NLS are
generated. The first just corresponds to (scaled versions of) the sequence of ra-

tional solutions obtained in Section 3.4. The second sequence does not provide
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solutions to NLS which are strictly rational, but it is simple to separate out the
non-rational part and show that the motion of the poles is governed by (rescaled)
Calogero-Moser equations. As our other example, we consider the 2-soliton solu-
tion of NLS, and show how a certain limiting process leads to a solution which

we refer to as a “singular 2-lump”.

3.7.1 Scaling Similarity Solutions

Boiti and Pempinelli [29] showed that scaling similarity solutions of the NLS
equation (3.1.11) are of the form

¥ = || explix],
where the modulus and argument of 3 are both given in terms of a function Y(z),
1
W) = Q—tY’(z), (3.7.1)
Y(2)
! —_— .
X(z) = z+ ) (3.7.2)

We have the convention that a dash denotes differentiation with respect to the

similarity variable z, where

c=af(t),  O) = %r%.

The coupled equations for the modulus and argument of 3 are equivalent to a

second-order ODE for Y, which is in one-one correspondence with the equation

1 1
WWwW" = §(W’)2 _6W* 4+ 82W3 — 2.7W? — 5(,& —1)?, (3.7.3)
with z a constant. After suitable rescaling of W and z, (3.7.3) is just a particular
case of PIV. Note that PIV has two parameters, while in the above there is the

single parameter u. Y is given in terms of W by
_ 1 2, 1 "2 r2
= 2W(W '+ o (W) —2W' — p? + 1), (3.7.4)

For further details of this correspondence, we refer the reader to the original
source. Henceforth we shall translate the results of [20] into a form more com-
patible with our previous notation.

The first thing to observe is that the substitutions (3.7.1,3.7.2) arise naturally
in our trilinear approach of Section 3.5, if we require that (possibly after scaling
by suitable powers of §) the tau-function f should only depend on the similarity

variable z. Then we may assume that

Az, t) = Mz(z,1)) + mloglf(t)], (3.7.5)
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where A(z,t) = loglf (z,t)], and we have included potential powers of 9. If we

now set

Y(s) = —5V(e),

then (3.7.1) and (3.7.2) follow immediately from (3.5.15) and (3.5.16) respectively.
The second-order ODE for Y, as derived by Boiti and Pempinelli, is equivalent
to the following ODE for A

E = (Am)2 + 4 ((ZXI' _ X)z + (X’I).’S + “2)\11) — 0. (37-6)

The trilinear form of NLS requires that A(z,1), as given by (3.7.5), should satisfy
(3.5.6). Using this we obtain another equation for A,

E- o= Au/\(iu) _ (Xw)z + 2()\::)3 _ 4()\1)2 + 42)\1)\:; + Smxf 0.

In fact, provided that we identify
u?

m—':-—-z,

this turns out to be a direct consequence of (3.7.6), for we have

E= Q:f.i _E_
~ M\ dz (Au)z :
It was shown in [29] that the ABT for NLS naturally leads to a Backlund

transformation for the similarity solutions. In terms of solutions to (3.7.6), this

is given by

S CE: W) () + 1) (3.1.7)

:‘:_2-AH’ + AIAU + uzz

where A is a solution to (3.7.6) for p replaced by p £ 2. This is equivalent to
the well-known Backlund transformation for PIV, using the one-one correspon-
dence mentioned above. For the particular case of PIV corresponding to (3.7.3),
there are two families of rational solutions {74, 111]. The first family corresponds
to even integer values of p, and may be generated by applying the Backlund

transformation to the parent solution
W =z,

which is the rational solution to (3.7.3) for p = 2.
Making use of the one-one correspondence, the rational solution to (3.7.6) for
p = 2 is found from (3.7.4) to be

N = (logl2])"
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After rescaling, this leads to the tau-function

flza:.

We can apply the Backlund transformation (3.7.7) in two directions, either in-

creasing or decreasing p by two at each stage. The solution for p = 0 is just
N =0,

with the tau-function
fg = 1

The equation (3.7.6) is invariant under 4 — —p, and so for this sequence of even
integers nothing new is gained by considering the negative values of 4 separately.
It is apparent that repeated application of (3.7.7) leads to a sequence of ra-

tional solutions for g = 2n, in the form

Az) = log |[8()]" fu(=, 1),

2

where £, is a polyomial of degree n? in x, which scales correctly so that A depends

on « and t through the combination z alone. In particular we find
fo=a* =128,  f3 =z° - 722%* — 2160xt*,

just as in Table 3.1. These are the tau-functions of the rational similarity solutions
to NLS, which are special cases of the rational solutions obtained via the NCT in
Section 3.4. Since only these similarity solutions can lead to rational solutions of
NLS (essentially by the uniqueness of the rational solutions to PIV), this implies
that the rational solutions found using the NCT should be the only such solutions.
A further consequence of this would then be that the most general solutions to
the constrained Calogero-Moser systems of Section 3.6 are given by the poles and
zeros of the rational solutions found in Section 3.4.

There is a second family of rational solutions to PIV, which comes from ap-

plying the Backlund transformation to the parent solution

Wzéz,

 corresponding to g = 2. By using (3.7.4), we find
v=(-2Y
27/
with the associated tau-function being given by

fi= 875 exp[—z*/27].
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The solution to NLS which this yields is not purely rational, but is given by

This is clearly not a singular solution. However, the transformation (3.7.7) may be
applied in both directions to give a sequence of solutions to (3.7.6) for g = 2(n+3),
for all integers n. We denote the corresponding tau-functions by f,, L and find
that they are of the form

N(n)
Fapy = 0¥ exp[—2%/27] I1 (= —=it)), (3.7.8)

i=1
where N(n) = n(3n+2), M(n) = N(n) - (n + + 1)2. These tau-functions clearly
give singular solutions to NLS, with N (n) poles. After scaling away the powers
of 6 and the exponential piece, these tau-functions may simply be characterized

by polynomials P, 1(z). We list a few of these below:
45

=1, P% =25+—4-z,

22275 1002375 9021375
_ 16 12 aootiv 8 4
P%—z + 1352 + 5 z 4+ 16 z 556

By the scaling property of the similarity solutions, we know that each pole
position z; appearing in (3.7.8) may be written as

T; = w_(,-n)t%,

for some constant xgo). So by substituting (3.7.8) into (3.5.6) and expanding

around each pole, we find that the leading order term gives

‘-—722 = o).

k#)

Thus the motion of poles for these singular solutions is also governed by rescaled
Calogero-Moser equations. There are also constraints on the poles, coming from
the other terms in the pole expansion. We have not explored these constraints any
further, largely because this method would not apply to possible non-similarity
generalizations of the solutions (3.7.8). Actually we would expect that NLS should

admit solutions with tau-functions of the slightly more general form

N
—exp[p:ct]H (z —a;(t
i=1
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where p is a quartic polynomial in z, since Veselov has shown [150] that the KP

equation has non-decreasing rational solutions which may be written

N
u=ari+br+z— E(m — ;)72
=1
The z; satisfy equations of Calogero-Moser type, and these involve a, b and
¢, which are functions of the times satisfying certain constraints. It would be
interesting to see how these solutions would need to be restricted in order to

satisfy NLS.

3.7.2 Two-Lump Solution

Having considered some of the similarity solutions to NLS, we now provide an
example of a singular solution of a rather different character. It has been shown
[2] that by applying a certain limiting procedure to the soliton solutions of KdV,
the rational solutions may be obtained. Similarly, the same sort of limits for
solitons of other equations, such as KP, lead to interesting solutions known as
“lumps”. We proceed to apply this method to the 2-soliton of NLS, and obtain
a singular 2-lump solution. As far as we are aware, the lump solutions to NLS
have not been studied.

The 2-soliton solution to (3.1.11) may (after making a slight adaptation of

Hirota’s formulae [80]) be given by the tau-functions,

o] —ox

2
o1 exp[n] + o2 exp[ns] — (5}3,;2) oz exp(m + 7, + 12

- (M) o1explm + 02 + 7,)

oy +a2

f. = 1—exp[m+7,] — expln + 7,)

0109
—(4———ex + 7,| + c.c.
((al w7 plm + 7, )
1 — Q9 4

7 7 3.7.10
T T o explm + 7 + n2 + 7, ( )

where
= v -I-"t) (_0) Ly 0
n; = a;(2 + tagt) + UH ;=0 +1p;.
The real parameters g;, p; correspond respectively to the amplitude and speed
of the jth soliton (7 = 1,2). Each n}o) is an arbitrary complex phase, which we

will henceforth set to zero.
To get the 2-lump solution, we must take the limit

O'j—>0,
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for j = 1,2. We regard oy and o as being of the same order of magnitude (o,

say). It is convenient to introduce the notation
a; =2 —2p;t, b =pi(z—pjt).
Expanding out the terms in (3.7.9), we find e.g.
expln;] = explib{1+oja; +0(c")},
oxplm +7, +m] = explibal{l + 20101 + o222 + O(0?)},
(El - a2)2 L 4oy + 0(o?).
oy + o2 L= P2

This leads to

g = 4010 (—{az + 2i(p1 — p2) Y explibi] — {a1 — 2i(p1 — p2) 7'} expliba]) +O(c”).

Similarly, expanding the terms in (3.7.10) it is seen that the zero order and first

order terms all cancel, as well as the ? terms, and then

f = 80’10‘2 (Glaz - 2(,01 ha pz)_2 sinz[%(bl — bz)]) + 0(03).

Thus if both g and f are rescaled by the factor 8102, then in the limit 6; — 0

we obtain the singular 2-lump in the form
1 » (T » .
g = — 3% +i(p1 — p2)”" ) expliby] — 5%~ i(pr —p2)” | expliba],
. grl
f = a1d2 — 2(p1 — pg)_2 Slnz[§(b1 — bg)] (3711)

It is interesting to consider the pole dynamics of the 2-lump solution. To do
so, we need only consider f given by (3.7.11). The description is much simplified

by removing the “centre of mass” motion with a Galilean boost,
z—z+(p+ p2)t,
and using the coordinates
X=(p-pz, T=(n-p)t
After a simple rescaling, f may then be written as
fX,T)=X"- T? — 25in%[X/2].

125



Thus the pole positions are the two solutions X;(T) (j = 1,2) of
f(X(T),1)=0.

By using the Galilean boost, we have arranged the poles so that X; = -Xi.
The scattering image of the two poles is asymptotic to the lines X = £T, and
is shown in Figure 3.1. Notice that the poles coalesce at X(0) = 0, when g also
vanishes. Ideally it would be desirable to have a formula for the N-lump, and
obtain a dynamical description of the pole motion. This could provide the basis

for a more detailed study.

3.8 Conclusions

We have constructed a sequence of rational solutions of NLS, and shown that they
correspond to constrained Calogero-Moser systems. The construction is a direct
analogue of the Crum iransformation used by Adler and Moser (8] to produce
rational solutions of KdV. At the same time we have extended the work [83) of
Hirota and Nakamura on the connection between some explode-decay solutions
of the classical Boussinesq systém and rational similarity solutions of NLS. It is
worth noting that such rational solutions are mentioned (for the AKNS hierarchy)
in [120], but an explicit formula is given only for the one-pole solution.

Throughout the chapter we have found that direct methods, especially Backlund
transformations and Hirota’s bilinear formalism, provide the simplest means to
generate solutions. We have also tried to indicate how these methods are inti-
mately related to Painlevé analysis (via the singular manifold method) and the
inverse scattering formalism. At the same time, we have seen that NLS (or AKNS)
is naturally viewed as a reduction of the KP hierarchy, and essentially the solu-
tions may be encoded into a single tau-function satisfying a trilinear equation.
Although these methods have provided a great deal of information about some
of the singular solutions of NLS, there remain many unanswered questions.

It would be interesting to make a more detailed study of the system (3.6.8,3.6.9)
with the constraint (3.6.6), which correspond to a coupling of the Calogero-Moser
systems for the zeros and poles of the rational solutions. The configurations of
the poles could be studied along the lines of [11]. At the same time it should be
possible to consider the constraints of the whole Calogero-Moser hierarchy corre-
sponding to the higher flows (3.4.20), but at present we lack a direct proof that
the rational solutions constructed in Section 3.4 satisfy all these flows. We have
also attempted a study of elliptic solutions to NLS corresponding to tau-functions

of the form (3.1.10). These would generalize the one-pole elliptic solution (the
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general stationary solution [29]) given by

¥ = 2exp|—C(k)z + 3igo(rc)t]g($ tr) (3.8.1)

(2)o(r)’

where ¢ is the Weierstrass zeta-function and & is an imaginary constant. The

p-function satisfies the differential equation

0% = 4p° — g2 — g5,

where the constants g2, g3 (the Eisenstein series) are taken to be real so that p(x)
is real and {(x) is imaginary (see [153] for an introduction to elliptic functions).
In the trilinear formalism of Section 3.5, the solution (3.8.1) can be encoded into
the single tau-function f satisfying (3.5.7),

1
f =o(z)exp [5p(r)a® + aotz + fut” |,

where the real constants ap and fo are given by
ap = —ip'(«),

1
Bo = Zg2 - 35’('“)2-

N-pole elliptic solutions of NLS should have pole motion corresponding to con-
strained elliptic Calogero-Moser systems, and could presumably be derived as
suitable degenerations of the hyperelliptic solutions in {134]. Preliminary results
suggest that there are some problems in using the ansatz (3.1.10) for the tau-
functions of such solutions.

The singular solutions of nonlinear PDEs have received much attention re-
cently. In particular, the Darboux transformation approach of Matveev [116]
has been used to generate new classes of solutions of KAV which are written in
Wronskian form, some of which are singular and have interesting pole dynam-
ics (notably the negaton solutions [98]). The dynamics of the N-lump solutions
of NLS, generalizing the 2-lump solution presented in Section 3.7, are worthy
of investigation. Also the second sequence of scaling similarity solutions consid-
ered in that section should be particular solutions to another type of constrained
Calogero-Moser system, and this could be explored further. We remark that the
Darboux transformation method applies to most of the known exact solutions to
integrable evolution equations, but we have not been able to use this to generate
our sequence of rational solutions of NLS in a straightforward manner.

The results of this chapter indicate that NLS has a rich variety of singular
solutions, and there is still much work that could be done to gain a better under-

standing of their pole dynamics.
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Note. After this thesis was submitted, we were made aware of the work [139]
of Sachs, where pole motions for rational solutions the classical Boussinesq system
are considered, and these are related to solutions of AKNS. As yet we have not
studied this work, but we intend to consider how it relates to our results in a

forthcoming article.

3.9 Appendix A

Here we start from the singular manifold equations of NLS in the form

luol? — ¢2 = 0, (3.9.1)

boe + T Fuch = O (3.9.2)

iy +62(logluo/T))z — ot + TP = O (3.9.3)
Tt + Uo.zz — tuoldp? — 2Ge¥* = 0, (3.9.4)

and show that they have the simpler consequences (3.2.13,3.2.14). Using (3.9.1)
and (3.9.2) we find

(log[uo) + log[@})zz = —2 (M + M) . (3.9.5)

T r

Differentiating (3.9.3) with respect to = gives
(log[uo/To))es = P (—10at T (ot — To)e) — $rady (it 4 ugth — o). (3.9.6)
Now differentiating (3.9.1) with respect to t we have
U g + Yoot = 2¢xPuty
and then from (3.9.1) and (3.9.4) with its complex conjugate we obtain
$o1 = (9oz(l0g[t0/ o))z + %qbr(log[uo/'ﬂa])m gD - i),

Now in (3.9.6) we may substitute for ¢s¢ as above and for ¢, from (3.9.3), and

after some rearrangement we find

T

(log[uo] — log[Tol)es = 2 ((L@’—éif—“@—‘"‘ - @_@iﬁ‘l@) . (3.9.7)

Adding (3.9.5) and (3.9.7), and making use of (3.9.2) once mOre, yields

(log{uo))ze = —2 (%) ,»,’
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which we can integrate immediately to give

s

for k a constant. If we use (3.9.1) and (3.9.2), then we find immediately that

(log[ua])s + 2 (”_"‘Z) +2ik =0, (3.9.8)

(T + uotp)

¢
and on comparing this with (3.9.8) plus its complex conjugate it is apparent that
k must be real. We rearrange (3.9.8) after substituting @ = uy"¢2 (from (3.9.1)),
and get

(log[uo] + logfug])s = —2

P

wps = —2ikuo— 2,3

The above is just our previous equation (3.2.13), and it provides a new expression

for ug s, which when put into (3.9.4) gives
tug: = uo(4k? + 20[%) + d(—4ikd) + 240,).

The latter is the equation (3.2.14), as required. O

3.10 Appendix B

In this appendix we consider NLS in the bilinear form (3.3.2,3.3.1), and prove
that it has a bilinear auto-Backlund transformation (ABT) given by

(Ds—ic/2)(g-f~5-f) = 0, (8.10.1)
(@D +D:4+0%)(G f+g-f) = 0, (3.10.2)
(iDy+icD:)f - f = 9§ — g3, (3.10.3)
D.f - f=/lof - 3P + 222, (3.10.4)

More precisely, this means that if the pair of tau-functions g, f are solutions to
the NLS bilinears (3.3.2,3.3.1), then the pair g, f will be solutions to the same
bilinear equations provided that (3.10.1-3.10.4) are satisfied. Notice that here we
take equation (3.10.2), obtained by adding (3.3.11) and (3.3.12), as part of the
bilinear ABT, since the proof below only requires that this sum should vanish.
However, (3.3.11) and (3.3.12) are both satisfied separately by all the solutions
considered in the main body of the chapter (in particular the rational solutions).

The proof that (3.10.1-3.10.4) constitute an ABT is considerably simplified by

observing that, without loss of generality, we can set ¢ = 0 from the start. This
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follows from the fact that (as noted previously) NLS is invariant under a Galilean

transformation, which in terms of the tau-functions can be written as

. 24
g(z,t) — exp [z (C—;— — %)] g(z’,t), flz,t) = f(2, 1),
with
¢ =z —d, t =t

On applying this transformation to both the pairs g, f and ¢, f in (3.10.1-3.10.4),
the constant ¢ may be removed. So henceforth we will assume that g, fandg, f
are related by the equations (3.10.1-3.10.4) with ¢ = 0.

The most straightforward part of the proof is showing that if g, f satisfy

(3.3.2) then so do g, f (and vice-versa by symmetry). It is helpful to make use
of the NLS amplitude,

-9
i
(and similarly 1,!;), as well as the singular manifold function,
p=1.
f

We have already seen that, in terms of the NLS amplitude, (3.3.2) is completely

equivalent to the equation
|¢|2 = "(log[f])z:c (3.10.5)
If we now re-write (3.10.1) and (3.10.4) in terms of the NLS amplitudes and the

singular manifold function, we find

(¥ =) = —(¥+¥)(loglé]):, (3.10.6)
(log[gh2 = v — P + 0% (3.10.7)

An immediate consequence of the equations (3.10.6,3.10.7) is the purely z-dependent
part (3.2.6) of the usual ABT for NLS (for ¢ = 0). On differentiating (3.10.7)

with respect to z, we find

(0g[6])e(10gl6])e = (6~ Dl = ) + .

Then we may substitute for (¥ — ), from (3.10.6), and after cancelling out

(log[4])= (which we may assume to be non-zero) from both sides we have

(log[f1)z= — (log[f])ax = [ ~ [f%.

Thus it is apparent that (3.10.5) is satisfied if and only if

$I* = —(log[/])ze-
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This is the necessary result which ensures that the z part (3.3.2) of the NLS
bilinears holds.
To show how the ABT yields the t part (3.3.1) of NLS in bilinear form, we

consider the quantity
Q1= (D.f - 1) (D4 D)g - £) I+ £ (6D D)3 Nl

Provided that Q vanishes, if g, § satisfy (3.3.1) then so must g, f, and vice-versa.

By direct manipulation we find
[ (inda-Fra 5+ Do F+5-D) ST
Q = (D )| —(gf —3H)EDS - [+ f oz~ fox)
_Q(Qrf - ng)(Dxf : f)
= —o™D.f- Hffef +§1)
—(of —~af)De1 - ) (g8 - 98~ (D=F - Do)
~2(Dxf - ) (Dx(g g4k f;fr) (3.10.8)

= —ofF ((Duf - F)af +3f) +2f o] - if2))

(Dt PG -3 + A1 - P )
wai-an (O o T er e ) O
The second line (3.10.8) above is obtained using (3.10.2) and (3.10.3), while to
get (3.10.9) it is necessary to use (3.10.1) and (3.10.4). Making use of (3.10.4)

and then (3.10.1) once more, We see that

LD.f TP = oTUTIF)
L1 (D F -3 D+ 20— a1) G -EN+ ce.]
P IfeF 4 £+ |aF - a8 =T+ e ]
Finally, substituting this expression for 3{(D=f - ). into (3.10.9) leads to
Q=0

as required. O

Note. In the reference [122] (and in Chapter 4 of [62]), Nimmo presents
a bilinear ABT for NLS (strictly for the focussing-NLS equation (3.2.1) with
§ = +1). This is almost identical to the one given here, except that (3.10.3) and
(3.10.4) are effectively replaced by the single equation

(4D +icDy + D% — 0*)f - F=—2g3. (3.10.10)
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The imaginary part of this equation is clearly just (3.10.3), while the real part
is a consequence of (3.10.4) (provided that (3.3.2) is satisfied as well). Although
the equation (3.10.4) is not strictly bilinear in the usual sense, it corresponds to
the similarity manifold equation (3.9.1), and is more fundamental than the real
part of (3.10.10) (which is not sufficient with (3.10.1) to show the z part of the
NLS bilinears).
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-10

Figure 3.1: The collision of poles in the two-lump solution. Dotted/undotted
lines denote before/after collision.
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Chapter 4

Affine Toda Solitons and

Ruijsenaars-Schneider Systems
with Spin

The aim of this chapter is to relate the solitons of the affine Toda theories to the
spin extensions of the Ruijsenaars-Schneider model, the latter also being known as
the relativistic Calogero-Moser model. We succeed in obtaining a generalization
of the known connection between the solitons of the sine-Gordon equation and
the (non-spin) Ruijsenaars-Schneider model. The N-soliton tau-functions of the
ALY affine Toda theory are written as determinants involving a certain matrix V,
and by diagonalizing V both the positions and spins of a hyperbolic Ruijsenaars-

Schneider model are found.

4.1 Introduction

We have been exploring the general phenomenon that classes of solutions of inte-
grable PDEs may be identified with finite-dimensional mechanical systems. For
example, the pole solutions of the KP equation [103, 142} and its reductions (such
as KdV [11] and NLS in the previous chapter) are related to the non-relativistic
Calogero-Moser model, while the sine-Gordon solitons are related to its relativistic
counterpart, the Ruijsenaars-Schneider model (see [22, 138]). Other more recent
examples are the peakon solutions appearing in fibre-optics and shallow water
waves which have associated mechanical systems {35, 36]. There is currently a
great deal of interest in field theoretic models possessing duality [48, 115], and
finite-dimensional integrable systems have also arisen in this context. Since the
dynamics of the finite-dimensional systems are often easier to understand (or sim-
ulate) than the equations of motion for the full field theory, this approach gives

qualitative information about field theories by reducing the number of degrees
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of freedom. Recently Babelon, Bernard and Smirnov [24] have taken this corre-
spondence between field theories and mechanical systems beyond the classical to
include the quantum regime as well, focussing on a particular N-particle sector
of the Hilbert space for the quantum sine-Gordon model. It would be interesting
to see whether this approach would work for the other affine Toda theories. The
results of this chapter might be relevant to this problem. '
The original work of Ruijsenaars and Schneider [138] showed that the soli-
ton solutions of a variety of equations are related to dynamics built from the

Hamiltonians (with canonically conjugate variables g;, p;)

Z ePi Hcoth(% qk)

k#j

giving the equations of motion (for either Hy)

.= 22 __did (4.1.1)

sinh(g; — 4x)’

In particular, the eigenvalues ie% of an N X N matrix associated with the tau-
function describing an N-soliton solution of the sine-Gordon equation evolve ac-
cording to (4.1.1). The variables g;, p; may, at least when they are well separated,
be related to the positions and rapidities of N constituent single solitons; the dy-
namics of the system encodes the various soliton phase shifts. Thus the system
governed by H, describes how the space-time trajectories of the N constituent
solitons interact. Of course the same system has an alternative description via
the inverse scattering transform, which leads to action-angle variables for the soli-
tons [57]. The point of the Ruijsenaars-Schneider approach is that it provides a
dynamical description, thus making greater contact with the particle description
of the soliton.

The Ruijsenaars-Schneider (RS) models can be seen as relativistic versions of
the ordinary Calogero-Moser models. For instance, by considering the Hamiltoni-
ans given above, an appropriate (“non-relativistic”) scaling limit of H = Hy +H_
yields the Calogero-Moser system with a hyperbolic potential. RS models are in-
tegrable finite-dimensional Hamiltonian systems, and have a dynamical r-matrix
[107], which in a certain gauge turns out to be the same as the Calogero-Moser
r-matrix [144]. A new development is Krichever and Zabrodin’s construction of
the spin-generalization of the RS models, to describe the pole motion of solutions
of the non-abelian Toda lattice. These spin RS models are the relativistic coun-
terpart of Gibbons and Hermsen’s spin-generalized Calogero-Moser models [71].
In [104] the elliptic spin RS models were shown to be exactly solvable in terms of

theta functions. A simpler solution for the rational and hyperbolic versions was
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given in [135], where integrable discretizations were also constructed. However,
the correct Hamiltonian formulation of the spin RS models apparently remains
elusive.

The sine-Gordon model may be viewed as the Agl) affine Toda theory with
imaginary coupling. Thus it is natural to wonder whether the Ruijsenaars-
Schneider description of sine-Gordon solitons can be generalized to the other
affine Toda theories, briefly reviewed in Section 4.2. The imaginary coupling case
of these theories is of particular interest, because the solitons have real energy
and momentum, despite the fact that the fields are complex-valued (except in the
sine-Gordon case). This suggests that when the theory is quantized, the solitonic
sector should be well-defined, although the theory as a whole violates unitarity
[129]. Spence and Underwood [143] have recently used a vertex operator ap-
proach to obtain the symplectic form on the space of affine Toda solitons, and
have proceeded to construct a sort of semi-classical theory for these solitons. Yet
a dynamical description generalizing the sine-Gordon/Ruijsenaars-Schneider cor-
respondence has proved elusive. In this chapter we provide such a generalization,
describing the dynamics of the affine Toda solitons in terms of spin RS models.
One new feature we have found in our correspondence is the appearance of new
degrees of freedom, the internal spins of the model. The tau-functions for the
affine Toda solitons are given by determinants involving a certain matrix V, and
the spins are required to diagonalize this matrix. It does not seem pdssible to
remove them from the description, as can be done in the sine-Gordon case. We
will come back to this point in our Conclusion.

In Section 4.2 we outline a few salient features of affine Toda theories, before
reviewing the construction of solitons in the following section. Section 4.4 con-
cerns the symplectic form on the reduced phase-space of the NV -soliton solution.
We are then in a position to relate the affine Toda solitons to the hyperbolic
spin RS model (Section 4.5). Our discussion is limited to the A case, both for
simplicity and to make clear the generalization of the sine-Gordon /Ruijsenaars-
Schneider correspondence. We discuss further generalizations and unresolved

problems in the Conclusion. Most of this work has already appeared in [32].

4.2 Affine Toda Field Theories

The affine Toda theories are a family of massive relativistic 2D field theories with

Lagrangian

L= l(a $,0"¢) — m® Z n..e?lae),
2 vy ﬁ2 <]

o€
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_Here m is a real mass parameter, A = A U {ap} is the set of simple roots of
a Lie algebra g together with ap = — 3. .. Rac (minus the highest root), the
ne are positive integers and by convention ns, = 1. In light cone coordinates

Ty = 71;(75 + z) the equations of motion become

2
m Blad) _
0,0-¢+ %Znaae (@) — 0,

aEA

The classical and quantum versions of these theories have been extensively studied
in recent years both for real and imaginary couplings. In the real coupling regime a
beautiful structure was uncovered and exact S-matrices have been conjectured [31,
42, 49]. The imaginary coupling regime has also been investigated and classically
the solitons have real energy-momentum although the Lagrangian is complex (see
[129] and references therein}.

For what follows we will be concerned only with the A theories. In this case

the elements of A are given by
@j = €5 — €41

for j = 0,1, ...,n, where eq, €3, ..., €, are a basis for (»+! (orthonormal with respect
to the bilinear form), and all indices are read modulo n 4 1 where necessary. All

our expressions will be in terms of the field components

$; = (e, ¢)s

for which the equations of motion read

2
B, 0_¢; + %(eﬁ(é,-—é,-“) — eﬁ(¢;‘—1—¢j)) =0, (4.2.1)

71=0,1,..,n.

A few remarks are in order here. If we define the vector e = }7_e;, then it
is easy to observe from (4.2.1) that (e, @) is a free field. Hence this part of ¢ is
often discarded, and only the part of ¢ lying in < ¢ >* (i.e. the root space) is
considered. Then the equations may be written instead in terms of the n fields
w; defined by

] .
J
= (A d) = -4
w; = (A, ¢) (;‘Ek n+le’¢)’
with A; being the fundamental dominant weights of si(n + 1). These fields de-
termine the solitonic sector of the theory, and the soliton solutions are often
expressed in terms of them. It has been shown (129] that when the coupling 3

is purely imaginary, the energy and momentum of these solitons is real. In the
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simplest case of A{l), we just obtain the sine-Gordon theory, and all the soliton
solutions may be taken to be real. However, for n > 1 the soliton fields are intrin-
sically complex, and it is curious that they should nevertheless have real energy
and momentum. In the following we hope to gain a better understanding of this
by considering the reduced phase space of the soliton solutions, and viewing the

motion of the solitons in terms of a finite-dimensional dynamical system.

4.3 The AY Affine Toda Solitons

We wish to look at the AL affine Toda theory with imaginary coupling, so we

send 8 — if in (4.2.1), and then the equations of motion become
m?
218
3 =0,1,...,n. Indices on the components of the field ¢ are read modulo {n + 1)

0y0_¢; + ——(ePi—tin) _ (P9i-1-9))) = @, (4.3.1)

where necessary. As already mentioned above, in the solitonic sector of the theory
;-‘=0 ¢; = 0.

4.3.1 Soliton Tau-Functions

There are various ways to construct and parametrize soliton solutions to (4.3.1).
Perhaps the simplest methods to implement from a practical point of view are
the application of the auto-Bécklund transformation (ABT) derived by Fordy
and Gibbons [59] or the bilinear formalism developed by Hirota [79]. The inverse
scattering approach to affine Toda theories also appears to have some unusual
features. There are also the powerful vertex operator techniques which make
full use of the representation theory of the AD algebra [129]. While the latter
approach is currently the most popular, we wish to make contact with the orig-
inal work of Ruijsenaars and Schneider [138], which made much reference to the
soliton formulae of Hirota. Hence we would like to employ the form of N-soliton
solution for {4.3.1) derived by Hollowood [86] via Hirota’s direct method. The
I-th component of the field ¢ is given by

i -1
etfd —
m

leading to the bilinear equations
DyD_7;-7; + 1'712('."‘7-2 —~ 7;-17j41) = 0,
and the soliton tau-function 7; takes the form

T = Eexp (Z ejex B + Z GjCj,l(:E.*.,:c_)) . (4.3.2)
i

€ i<k
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In the above the e indicates a summation over all possible combinations of €;
taking the values 0 or 1, and the indices j and k take values in {1,...,N}.

We will explain shortly what the various terms in (4.3.2) mean, and how we
have parametrized the AW affine Toda solitons. For the moment we would like
to comment that expression (4.3.2) is a rather generic form of the soliton tau-
function for an integrable PDE, the precise nature of Bj, and (j depending on
the particular PDE being considered; it may be viewed as a degeneration of the
theta function solutions of the PDE given via algebraic geometry in which the
¢;’s run over all of the integers. Ruijsenaars and Schueider succeeded in mak-
ing the connection between their relativistic Calogero-Moser systems and soliton
solutions of the sine-Gordon and KdV equations, among others, by showing a
direct correspondence between the coordinates of the N-particle system and the
parameters of the N-soliton solution. An important part of the correspondence
was that all the tau-functions of form (4.3.2) being considered in [138] could be

written in terms of determinants like
det (1 + M)

for suitable matrices M. In what follows we express the N-soliton solutions of
the AD affine Toda theory in this way, and thereby obtain a relation to spin-
generalized Ruijsenaars-Schneider (spin RS) systems. Recently Beggs and John-
son [28] have used a type of dressing method to find more complicated sorts of
one-soliton solutions than were previously known, but we shall not be concerned

with these solutions here.

4.3.2 ABT and Soliton Determinants

[n Hollowood's original treatment [86], the tau-functions were not actually written
explicitly as determinants. Since we want to make use of the determinantal form,
we shall start from the formulae of Olive, Turok and Liao {110} and demonstrate
that they lead to (4.3.2). By repeated application of the Toda ABT [59},

A [eiﬁ($1-¢j+1) - ei»@(&j—x-%)] ;

0.(d; — ;) = 7—%

7 m 1 [ _ip(e—d; i3 _1—Fj—1
O_(¢; — bj1) = —\EBA ' [eﬁ("s’ 8) — (Bt )],

the authors of [110) showed that N-soliton solutions could be obtained, with the
Ith component of ¢ given by

1,2, N
det T!-—1,...,1—N

B = A Ag  ANT—T2..N
1,2,..N
det TI,...,!—N+1

(4.3.3)
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The A; are Backlund parameters, and the T's are N-by-N matrices. Before de-
scribing all the matrix elements of these, it is useful to introduce the notation
used in [110] to parametrize the solitons. Each individual soliton making up the

N-soliton solution has a rapidity denoted by 5;, a position parameter denoted

by @;, and a discrete parameter 8; taking values in {(:1’;)|k = 1,2,..,n} (so

that exp(¢6;) is an (n + 1)th root of unity). The different values of the discrete

parameters 6; give n different species of soliton, with masses
m; = 2msin(6;/2). (4.3.4)
For what follows we will also need to define
+ 1.
pi =explnl,  pi =exp |n; £ b
In terms of these parameters the matrices appearing in (4.3.3) are given by
(Tf.f,:-Nﬂ)jk = Tf—k+1=

where
le — (”;l-)—l [6“6’ Qjemj(mcosh(nj)—tsinh(n_,')) _ 1] )

For our purposes we choose the Biacklund parameters as A; = (,u;’)‘l (so that
[T}=0 exp(iB¢;) = 1), and after absorbing all these factors into the numerator of
the right-hand side of (4.3.3), and then multiplying the jth row of the matrices
appearing in numerator and denominator by —(p ) (for each j), we find that it

may be written as a slightly different ratio

det j:'l--l
det T{ '

In the above expression we have
Ty = My — May,
where (using light cone coordinates) the matrices My and Ma are given by
(M) = (1f )1,

(Maa)e = Qiluy )* " exp (mj((#j)'1$+ — pz2)/V2 + iwﬁ) :

Now we may expand

N
det Tr =Y (=) ) Dii)(My, M), (4.3.5)
=0 ()
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where (j) corresponds to a distinct choice of j rows, and Dy;) corresponds fo
the determinant formed by replacing the corresponding rows in My by those in
M,,. After scaling numerator and denominator of (4.3.5) by the Vandermonde
determinant D) = det M, we find
gt = 1L (4.3.6)
Tl
which is a ratio of two tau-fuctions of the form (4.3.2). The terms in the Hirota

sum (4.3.2) are given by

B = log ((#;-* — i) — uz))
’ (u; — D) — 1))

G sr.) = log [ayex (ms(() a4 = 2 VI +i05)].

where we have introduced the more convenient position parameters

a;=-@Q;]1 (5—;—@;) :

¥
ki \H3 T He

Henceforth we will use a; for the positions, and the rapidities #; as our pa-
rameters. The rapidities are all real, while the a; are pure imaginary for solitons;
there are different reality conditions for other types of solution (e.g. for breathers
it is necessary to take complex conjugate pairs a;, @;). Also there are the different
values of the discrete parameters ; giving the n different species of soliton. To
make a comparison with the vertex operator formulae, we note that the notation
of reference [143] has X = exp|[Bji, @5 = ¢;-

Tt is a simple matter to write the tau-functions 7, as determinants. We set
X; = aj(u] — pj)exp (mj(e_"’ﬁ - 6”’56—)/\/5) :
and define N-by-N matrices V, © by

o v XX (1.3.7)

Vi = -,
’ .Uj — K
and
© = diag(6, 02, ey ON).

Then we find that
7 = det (1 + €072V 102, (4.3.8)

To verify (4.3.8) it is necessary to expand the determinant on the right-hand side

in terms of the principal cofactors of V, and then use Cauchy’s identity:

1 1 (B = )5 — )
det(—ﬁy-—#k-') =M=l L
5k

ui - T i )7 — #t)
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Writing the right-hand side of (4.3.2) in terms of these parameters and comparing -
with the cofactor expansion gives the required result. Note that in the Agl) (sine-
Gordon) case the §; must all take the value 7, which means that the matrix
exponentials appearing in {4.3.8) are multiples of the identity, and we reproduce

the standard result
gifdo _ g-isey _ det (1= V)
det (14 V)

4.4 The Reduced Symplectic Form

In this section we describe the phase space of the N-soliton solution in terms of
its symplectic form, before describing how spin-generalized Ruijsenaars-Schneider
systems arise in the following section. The phase space of the affine Toda system

has the standard symplectic form
= / (6¢: A, 69) dz. (4.4.1)

On substitution of the N-soliton solution into (4.4.1), one obtains (after an inte-
gration) the reduced symplectic form on the N-soliton phase space. In practice it
is not possible to perform the integration for anything other than the one-soliton
solution [143] (except for the sine-Gordon case, where Babelon and Bernard suc-
ceeded in showing that the integrand could be written as an exact derivative for
both the one- and two-soliton [22]). For the one-soliton phase space, the reduced

symplectic form is (up to an irrelevant numerical factor independent of )

d
W = A dn.
a
The intractability of the integral (4.4.1) for the general N-soliton solution
does not matter, as it is a standard result that as ¢ — +oo (the out/in limits)
the N-soliton decomposes into a superposition of N one-solitons with a shift of

the parameters. So the symplectic form may just be written

dao.ut da"-" :
WM =Y —I- Adnf =) —- Ao (4.4.2)
i J P

By direct calculation using the formula (4.3.8) for the tau-functions of the N-
soliton solution, we find the relations between the out/in parameters and the
standard ones:

out __

nyt =i =,

: (] — e (65 — 13)
@ = a. 2 “— =gq; | | exp(Bjx)
’ ’g(uj — )] — ) Jyj ’
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(and similarly for a* with the inequality reversed). This agrees with the formulae
of Spence and Underwood [143] obtained via vertex operator arguments, where
for their notation it is necessary to replace ¢; by @; and exp(Bj:) by X;x. So

substituting for the ¢n parameters into (4.4.2), we obtain the N-soliton symplectic

form as
da; .
w = Z —(IJ—’ Adn; + Z Eji(n) sinh(m; — gx)dn; A dig, (4.4.3)
7 i<k
where
1 1
Ejx(n) = -

cosh(n; — m) — cos((0; — 64)/2)  cosh(n; — ni) — cos((6; + 6:)/2)

We observe that w(™) is clearly real if we choose the 7; to be real and the a;
to be pure imaginary (which in the Agl) case coincides with the condition on a;
for sine-Gordon solitons given in {22]). This means that the matrix V defined
in (4.3.7) is anti-hermitian, which will be important in the next section when we

look at the dynamics of the eigenvalues of V.

4.5 Ruijsenaars-Schneider Systems

4.5.1 Spin RS Model

The spin-generalized Ruijsenaars-Schneider (spin RS) model was introduced by
Krichever and Zabrodin in [104]. It is defined in terms of N particle positions
z; and their internal degrees of freedom (spins) given by !/-dimensional vectors a;

and I-dimensional covectors b;r-, subject to the equations of motion

£, = Y _(blak)(bla;)(V(e; — z4) — V(mk — x5)), (4.5.1)
ki
a; = Zak(b};aj)V(.Tj — Zi), . (4.5.2)
ki
o= = bl(blar)V(zi — ;). (4.5.3)
k5 .

The potential V is expressed in terms of the Weierstrass zeta function,
V(z) = ((z) — ((z +7),

or its rational or hyperbolic limits, which are

1 1

and
V(z) = coth(z) — coth(z + 7)
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respectively. The case relevant to the affine Toda solitons is the hyperbolic limit
with parameter ¥ = 2 (after a suitable scaling of the variables). The equation
(4.5.1) is a natural generalization of the equation (4.1.1) in the ordinary RS model.

Before making the connection with solitons, we observe some other properties

of spin RS models. The equations (4.5.1,4.5.2,4.5.3) have the scaling symmetry

1
Yy s t it
a; = aja;, bl — = b;.
The corresponding integrals of motion are z; — b}aj, and setting them to zero
yields

&; = bla,. (4.5.4)
It is customary (see [135]) to impose this constraint from the start, and take
(4.5.2,4.5.3,4.5.4) as the equations of motion. These equations have a Lax pair,
and the Lax matrix given in [135] has entries

exp(zx — z;)

L=
i cosh(z; — zx)

blay (4.5.5)

in the hyperbolic case relevant to our discussion; we find that the Toda solitons
naturally yield a different Lax matrix. There is also a gauge freedom in the spins,
which means that by rescaling a;, b} suitably, it is possible to insert the term W;a;
into the right-hand side of (4.5.2), and the term —ij} into the right-hand side
of (4.5.3), for arbitrary functions W;(t). As we shall see, this corresponds to a
freedom in choosing the diagonal entries of the matrix M in the Lax pair. Bearing
all this in mind, we can now show the relationship with the soliton formulae of
Section 4.3.

4.5.2 Spin RS Equations from Toda Solitons

We proceed to consider how the cigenvalues of the matrix V' defined by (437)
evolve with respect to each of the light cone coordinates, and find that a particular
sort of spin RS model results. Since V is anti-hermitian, it may be diagonalized

with a unitary matrix U:
Q:=UVU! = diag(igxp(ql),...,iexp(qN)).
If we let a dot denote %, then V satisfies
V= S(AV +VA), (4.5.6)
for the constant diagonal matrix A defined by

1

A= i\/i diag(my exp(Fm), ..., mn exp(Fin)),
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with the masses m; as given in (4.3.4). Now let u; denote the jth row of U
(considered as a column vector, so that the u; are the left eigenvectors of V).
Define the Lax matrix L by

Ly = ulAuj,
implying

L =UAU".

Then L satisfies the Lax equation
L=[M,1IL], (4.5.7)
for M = UU*. Differentiating the definition of ) gives
Q=[M, Q| +UVU!,

and after substituting for V from (4.5.6) and using the definition of L we find the
identity
LQ+ QL =2(Q +[Q, M]). (4.5.8)

Rewriting everything in components, (4.5.8) reads
Lj(e® + e%) = 2(g;¢% 656 + Mjp(e® — ™)),

which yields
Li;=4; (4.5.9)

and

1
My = 5 coth((g; — q&)/2) Ljk,

(for 7 # k).
When V is diagonalized we may always choose the phases of the left eigen-
vectors u; so that M;; = u}ﬁj = 0. Finally, substituting for the entries of M in

the Lax equation (4.5.7) produces the equations of motion:

Lij = b5 = 3 coth(a; = a0)/ ) LinLis (4.5.10)
Tk
Ljx = § coth((g; — 4x)/2)(dk = &)Lt @511)

+ Y igix s(coth((g; — @:)/2) — coth{(qr — ¢x)/2)) Ljr Lux
(7 # k). These equations follow from the spin RS equations with certain con-
straints, although to see this requires comparison with the formulae (4.5.1-4.5.3)
of Krichever and Zabrodin.
To make contact with our equations we set z; = ¢; and choose the hyperbolic

potential
1
V(g — a) = 5 coth((g; — :)/2).
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In [104] the spin degrees of freedom were real, but here we allow them to be
complex, and identify them with the eigenvectors of V by setting

t_ ..t
bj-u-

31 aj = AUj.

So we have taken [ = N, and in fact our spins are expressed entirely in terms of
the eigenvectors of V and the constant matrix A; in particular the b} must form
an orthonormal basis. In the notation of [104] the components of this Lax matrix
are given by

ij = b}‘aj.

We observe that this is a non-standard choice for the components of the Lax
matrix compared with [104, 135], where L has entries of the form (4.5.5). The
equation (4.5.9) is immediately seen to be equivalent to the usual constraint
(4.5.4) imposed on RS models. Also (4.5.2,4.5.3) follow from our definition of
the spins in terms of the eigenvectors of V, and may be seen directly from the

equations

(UAy= MUA, Ut=-U'M.

In a sense these equations are more fundamental than the Lax equation (4.5.7).
From the definition of L in terms of the spins we can compute Lj;. So for j =k
(4.5.1) is equivalent to (4.5.10), while for j # k (4.5.11) is a consequence of (4.5.2)
and (4.5.3). Note that we have also exploited the gauge freedom of the spins to
choose M;; = 0.

4.5.3 Sine-Gordon and Spinless RS

To make the correspondence between the solitons and the many-body system
clearer, it is worth considering the sine-Gordon case in more detail and comparing
it with the general situation. The results about sine-Gordon solitons are explained
in detail in [22], and we have kept our notation as similar to this reference as
possible to make comparison easier. The first thing to observe is that in the Agl)

case only knowledge of the g; is required to specify the field components, as we

N 1 . _
et — e—i'@‘ﬁ’ = H (ﬂ) .
1 + iexp(q;)

i=1

have

/2 in the expression for the

In the general case the presence of the matrix e

tau-functions (4.3.8) means that knowledge of both the spin vectors u; (which

make up the matrix U/) and the g; is required to evaluate these determinants.
The essential difference is that for sine-Gordon there is only one soliton species,

while in the AY) case there are n different species corresponding to the different
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allowed values of 8;. This difference is also apparent at the level of the equations
of motion. In fact when we differentiate the matrix V, in the case of sine-Gordon
we find from (4.5.6) that

V = i(eeh)

for a certain vector e. But then conjugating the equation (4.5.6) with U we obtain

1
it = S(LQ +QL),

where € = Ue. Actually € is a real vector, and in terms of its components &; we

have .
€€k

2 .
exp(g;) + exp(gx)
Since we know the diagonal elements of L explicitly in terms of the ¢; (from

.ij==

(4.5.9)) the above formula means that we then know all the &; and hence the

off-diagonal elements of L are found to be

Ly = V450
" cosh((g; — 9x)/2)
This may then be substituted into (4.5.10,4.5.11) to give the ordinary (non-spin)
RS equations. In this case {(4.5.10) yields (4.1.1) and (4.5.11) is a consequence.

Babelon and Bernard have shown [22] that there is a canonical transformation

between the soliton parameters and the dynamical variables ¢;,¢;. We discuss

how this could possibly be extended to the A case in our Conclusion.

4.6 Conclusion

We have shown the connection between the spin-generalized Ruijsenaars-Schneider
systems and AW affine Toda solitons. The N-soliton tau-functions are determined
by the positions g; of N particles on the line as well as an orthonormal set of N-
dimensional spin vectors uj, which are together subject to the equations of the
hyperbolic spin RS model. This extends the known result for the sine-Gordon
equation, where the spins are no longer part of the dynamics and there is a canon-
ical transformation between the positions and momenta of the particles and the
parameters of the solitons. For the general case such a transformation is no longer
apparent, although we note that the N-soliton phase space is still of dimension
2N, and so it is worth exploring exactly how the extra spin degrees of freedom are
absorbed in the transition from the dynamical variables to the soliton parameters.

Concerning the relationship between the soliton parameters and the spin RS

variables, we observe that in [135] the solution of the hyperbolic spin RS model
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involves gauging the Lax matrix,
L=ULU™,

although in that case L has entries given by the formula (4.5.5). The positions

z; of the model are found to be the eigenvalues of a matrix
XﬂegtLo
and the corresponding solutions for the matrices of the spin vectors are
A=UAO, B=B0U_1.

The degenerate case of the ordinary RS model corresponds to a special choice of
initial conditions,
Ao = Bo =1.

Although the form of Lax pair we have used is slightly different, it would appear
that the affine Toda solitons might also be understood as corresponding to special

initial conditions of the form

Hence there might be a better way to understand the spin degrees of freedom.
Also it would be interesting to see what réle the spins might play in the quantum
theory.

We would like to extend this work to the soliton solutions of the Toda systems
corresponding to the other affine algebras {112], and at the same time elucidate
the connections to the vertex operator constructions used in [129, 143}. It might
also be worthwhile considering the more general sorts of solitons found by Beggs
and Johnson [28], which have extra degrees of freedom. We intend to pursue these

points in the future.
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Abstract

The solitons of affine Toda field theory are related to the spin-generalised Ruijsenaars-Schneider (or relativistic Calogero-
Moser) models. This provides the sought after extension of the correspondence between the sine-Gordon solitons and the

Ruijsenaars-Schneider model.

1. Introduction

~"The purpose of this letter is to relate the solitons
of the affine Toda system to the spin extensions of
the Rui j§_enaars-Schncider model, the latter also being
known as the relativistic Calogero-Moser model. This
work generalises the known connection between the
solitons .of the sine-Gordon equation and the (non-
spin) Ruijsenaars-Schneider model. The connection
made here should be viewed as part of a larger pro-
gramme that seeks to identify clagses of solutions
of PDEs with finite dimensional mechanical systems,
whereby; the evolution of the solutions to the PDE
is expressed as a dynamical system on the (finite-
dimensional ) moduli space of solutions. Thus, for ex-
ample, the pole solutions of the KP equation [1,2]
and its reductions (such as KdV [3]) are related to
the non-relativistic Calogero-Moser model, while the
sine-Gordon solitons are related to its relativistic coun-
terpart, the Ruijsenaars-Schneider model (see [4,5]).
This programme also extends to include the peakon
solutions appearing in fibre-optics and shallow wa-

UE-mail: hwb@ed.ac.uk.
2 E-mail: hone@maths.cd.ac.uk,

ter waves which have associated mechanical systems
[6,7]. A similar connection may well underlie the ap-
pearance of finite dimensional mechanical systems in
the study of various models possessing duality [8,9].
As the dynamics of mechanical systems are often eas-
ier to understand (or simulate) than the equations of
motion for a field theory, such a programme aims at
giving qualitative information about field theories by
an appropriate reduction of degrees of freedom. The
recent work of Babelon, Bernard and Smirnov [10]
may be viewed as taking this correspondence between
field theories and mechanical systems beyond the clas-
sical to include the quantum regime as well, thoughthe
ability to focus attention solely on a fixed N-particle
sector of the full quantum Hilbert space appears to
depend crucially on the model. Our work will reveal
further new features in such correspondences, as well
as provide a sought after generalisation of known re-
sults about the sine-Gordon model to the case of affine
Toda solitons.

Ruijsenaars and Schneider’s seminal work [5]
showed that the soliton solutions of a variety of equa-
tions were related to dynamics built from the Hamil-
tonians (with canonically conjugate variables g;, p;)

0370-2693 /96 /512.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.
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2,; sinh(g; — qu) . (h

n appropriate scaling limitof H = H, + H_ yields
system of Calogero-Moser type. In particular, the
genvalues { ¢ of an N x N maltrix associated with
e tau function describing an N-soliton solution of the
ne-Gordon equation evolve according to (1). The
’s and p;’s may, at least when they are well sepa-
ted, be related to the positions and rapidities of ¥
nstituent single-solitons; the dynamics of the sys-
m encodes the various soliton phase shifts. (More
tails of this will be given below.) Thus the system
werned by H.. describes how the space-time trajec-
ries of the ‘constituent’ solitons interact. Of course
e same system may be described via the inverse scat-
ring transform by a free system with linearly evolv-
g data: the point of the Ruijsenaars-Schneider de-
ription is to make greater contact with the particle
scription of the soliton,
Viewing the sine-Gordon model as the Af” affine
»da system (with imaginary coupling) a natural
lestion to ask is how the above results generalise
other affine Toda systems, These systems have
en extensively studied in recent years both for real
d imaginary couplings. In the real coupling regime
beautiful structure was uncovered and exact §-
atrices have been conjectured for the theories (see
[1-13] and references therein}. The imaginary cou-
ing regime has also been investigated and classically
e solitons have real energy-momentum although
e Lagrangian is complex ([14] and references
erein). Spence and Underwood [15] have recently
ed this work to obtain the symplectic form on the
ace of affine Toda solitons but a dynamical de-
ription generalising the sine-Gordon/Ruijsenaars-
hneider correspondence has proved elusive. The
irpose of the present letler is to give lhis gener-
isation. Just as the affine Toda systems generalise
e sine-Gordon model, there are spin-generalisations
" the Ruijsenaars-Schneider systems, and it is these
stems which describe the dynamics of the affine
yda solitons. These models { which have been most

studied in the A, setting) are the relativistic exten-
sion of Gibbon and Hermsen's spin generalisation of
the original Calogero-Moser model [16). One new
feature we have found in our correspondence is the
appearance of new degrees of freedom, the internal
spins of the model. Although not needed to describe
the solitons of the affine Toda system, these spins
determine the matrix that diagonalises the Lax pair.
We will comment further on this later in the letter.

An outline of the letter is as follows. First we will
review the construction of affine Toda solitons, and
then in Section 3 consider the reduced symplectic
form of the theory. We are then in a position to re-
late the affine Toda solitons to the spin-generalised
Ruijsenaars-Schneider model in Section 4. For the
purposes of this letter we shail limit our discussion to
the A% case, both for simplicity and to make clear
the generalisation of the sine-Gordon/Ruijsenaars-
Schneider correspondence,

2. The A affine Toda solitons

For the A%!’ affine Toda theory with imaginary cou-
pling, the equations of motion read

2
3.0 d; + %(efﬂwﬁcsm) — =8y 2 g,
(2)

j=0,1,...,n Here £ denotes differentiation with re-
spect to light-cone coordinates x4 = 1/ V2(t+x), and
the indices on the components of the field ¢ are read
modulo (rn+ 1) where necessary. We shall be consid-
ering the solitonic sector of the theory, which means
assuming Zj:o ¢; = 0 (in other words, discarding the
free field part of ¢).

There are various ways to construct and parameirise
soliton solutions to {2). Perhaps the simplest meth-
ods to implement from a practical point of view are
the application of the Bécklund transformation derived
by Fordy and Gibbons [17] or the bilinear formalism
developed by Hirota [18]. There are also the pow-
erful vertex operator techniques which make full use
of the representation theory of the A{!) algebra [14].
While the latter approach is currently the most popu-
lar, we wish to make contact with the original work
of Ruijsenaars and Schneider [5], which made much
reference to the soliton formulae of Hirota. Hence we
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choose to start from the form of the N-soliton solution
of (2) derived by Hollowood [ 19] via Hirota’s direct
method. The /-th component of the field ¢ is given by

B = E, (3)
T

where the tau function 7; is of the form

= Zexp ijkajk + Zejgj,g(x+,x_)

€ <k i

(4)

In the above the € indicates a summation over all possi-
ble combinations of ; taking the values O or [, and the
indices j and k take values in {1,..., N}. We will ex-
plain shortly what the various terms in (4) mean, and
how we have parametrised the A{!? affine Toda soli-
tons. For the moment we would like to comment that
expression (4) is a rather generic form of the soliton
tau function for an integrable PDE, the precise nature
of By and {;; depending on the particular PDE being
considered; it may be viewed as a degeneration of the
theta function solutions of the PDE given via algebraic
geomelry in which the &;’s run over all of the integers.
Ruijsenaars and Schneider succeeded in making the
connection between their relativistic Calogero-Moser
systems and soliton solutions of the sine-Gordon and
KdV equations, among others, by showing a direct cor-
respondence between the coordinates of the N-particle
system and the parameters of the N-soliton solution.
An important part of the correspondence was that atl
the tau functions of form (4} being considered in [5]
could be written in terms of determinants like

det (14 M)

for suitable matrices M. In what follows we express
all the N-soliton solutions of the A{! affine Toda the-
ory in this way, and thereby obtain a relation to spin-
generalised Ruijsennars-Schneider systems.

First of all we should explain the parameters of the
Toda N-soliton which appear in (4). Each soliton has
a rapidity denoted by 7;, a position parameter denoted
by a;, and a discrete parameter ¢/; taking values in
{27k} (n+ Dk =1,2,...,n} (so that exp(if;} is an
(n + 1th root of unity}. The rapidities are all real,
while the a; are pure imaginary for solitons (there are
different reality conditions for other types of solution

e.g. breathers). The different values of &; give n di
ferent species of soliton in the A" affine Toda th
ory whose masses are 2msin(¢;/2}. We also need
define

:t=

My exp(n; & %iaj)-

With this choice of parameters, the terms in the su
(4) are given by

F— ) (uT — ur
By = log (#J‘__Pi)(l-’v{k ﬂ;:) ‘
(.fu'_f ﬂk)(#’j — M)

lxp,x_) =log (ajexp (\/im(e"’fo, —eMix_
x sin{é;/2) +ilé’j)).

{To make a comparison with the veriex operat
formulae, we note that in terms of the notation
Ref. [15], we have By, = log(X;x), a; = Q;. We w
deal with the general formalism elsewhere. )

We are now ready to write the tau functions as d
terminants. In fact Olive, Turok and Liao [20] four
that determinants naturally arose when they derive
the N-soliton solution by the Bicklund transform:.
tion, but the matrices involved are not of the rigl
form for our purposes. Instead we set X; = a j(p.;-"

;) exp (\/fm(e“?f'er —elx_) sin(ﬁj/Z)), ar
define N-by-N matrices V, ® by

VX X ’

1

Vi = =
#j- — My .

and

0= diag(f)], 92, N BN).

Then we find that
7y =det (1-+¢"®/2v"072), (¢
To verify (6) it is necessary to expand the determ

nant on the right-hand side in terms of the princip
cofactors of ¥, and then use Cauchy’s identity:
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i 1
P (N N R N
+ = ¥ =
(ﬂ'j — My )M‘ PR TR

I () = sy — 1)
(] — e Y] —a)

J<k

Writing the right-hand side of {4) in terms of these
new parameters and comparing with the cofactor ex-
pansion gives the required result. Note that in the Aﬁ b
(sine-Gordon) case the 8; must all take the value 7,
which means that the matrix exponentials appearing
in (6) are multiples of the identity, and we reproduce
the standard result

oifbn _ ot 2 9L (L= V)

det (1+V)

3. The reduced symplectic form

In this section we describe the phase space of the
N-soliton solution in terms of its symplectic form,
before describing how spin-generalised Ruijsenaars-
Schneider systems arise in the following section. The
phase space of the affine Toda system has the standard
symplectic form

Q- / (5 A5 dx. 7)

On substitution of the N-soliton solution into (7), one
obtains (after an integration) the reduced symplectic

form on the N-soliton phase space. In practice it is not .

possible to perform the integration for anything other
than the one-soliton solution [ 153] (except for the sine-
Gordon case, where Babelon and Bernard succeeded
in showing that the integrand could be written as an ex-
act derivative for both the one- and two-soliton [4]}.
For the one-soliton phase space, the reduced symplec-
tic form is (up to an irrelevant numerical factor inde-
pendent of 8)

da
{0
= A dn.
w 2 7

The intractability of the integral (7) for the gen-
‘eral N-soliton solution does not matter, as it is a stan-
dard result that as r — doc (the out/in limits) the
N-soliton decomposes into a superposilion of N one

solitons with a shift of the parameters. So the sym-
plectic form may just be written

dat™ da® .
NY 7 -
W=} g At =) A (8)
PR i

By direct calculation using the formula (4) for the tau
functions of the N-soliton solution, we find the rela-
tions between the out/in parameters and the standard
ones:

T]in_nqul_n_

j =N =0
ai_n_a_H(uj’—#E)(#}—ﬂ;)‘
= a; L ~
! s () — ) (0] =)

=ajHexp(Bjk)

k> j

(and similarly for af** with the inequality reversed).
This agrees with the formulae of Spence and Under-
wood [15] obtained via vertex operator arguments,
where in their notation a; = Q; and exp(Bp) = X;4.
So substituting for the in parameters into (8), we ob-
tain the N-soliton symplectic form as

da;
Ny “di
@ Z o A dap;
4 ' .
+ > Eu(n) sinh(n; — me)dn; A do, (9)
J<k
where
1
Eu(n) =

cosh(m; — ) —cos({8; — 6:) /2)
1
~ cosh(n; — nx) — cos{(#; +60)/2)

We observe that w'") is clearly real if we choose the
7; to be real and the a; to be pure imaginary (which
inthe A'" case coincides with the condition on a; for
sine-Gordon solitons given in [4]). This means that
the matrix V defined in (5) is anti-hermitian, which
will be important in the next section when we look at
the dynamics of the eigenvalues of V.
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4. Ruijsenaars-Schneider systems

Here we consider how the eigenvalucs of the matrix
V evolve with respect to each of the light cone co-
ordinates, and find that spin-generalised Ruijsenaars-
Schneider equations result. Since V is anti-hermitian,
it may be diagonalised with a unitary matrix t/:

Q = UW! =diagliexp(q)),....iexp{gn)).

If we let a dot denote d/dx, then V satisfies
V=3(AV+VA), {10)
for the constant diagonal matrix A given by
A = diag(+Vv2mexp(Em) sin(8,/2),

. £V 2Zmexp(Fan) sin(8x/2)).

Now let «; denote the jth row of U (considered as a
column vector, so that the «; are the left eigenvectors
of V). Define the Lax matrix L by

Ly = ulAu;,

50 that

L=UAUT.

Then L satisfies the Lax equatton

L=[ML], (1
for M = UUT. Differentiating the definition of Q gives
Q=[M,Q}+UVU,

and after substituting for V from (10) and usmg, the
definition of L we find the identity

LQ+QL=2(0+[0,M}]). (12)

Upon setting Q, = [e%, then (12) in components
reads

Li( Qi+ Q1) = 2008 + Mu(Q; — Qi)

which yields _
Ljj=4q; - 13)
and . ' S

+

(for j # k). When V is diagonalised we may al-
ways choose the phases of the left eigenvectors u; so
that M;; = aﬁu, = (. Substituting these into the Lax
Eq. (11) produces the equations of motion:

Lyj=d;=> coth((q; — qi)/2) LiLs;, (14)

k=j

Ly =3 coth((g; — g} /2) (g — ¢;) Lix
+ 3 f(coth((g; — q:)/2)

I+ .k

— coth( (g1 — qx) /2) Y LpLy (15)

(j # k). These are in fact the spin-generalised
Ruijsenaars-Schneider equations with certain con-
straints, although to see this requires comparison with
the formulae of Krichever and Zabrodin [21].

In [21] the generalised -Ruijsenaars-Schneider
model is defined in terms of N-particle positions x;
and their internal degrees of freedom (spins) given by
{-dimensional vectors a; and I-dimensional covectors

b;[, subject to the equations of motion

= (bl (bla) (V(x; — xi) = V(e = x,)),

k#j
(16)
a=Y ar(blepVix; — x0), (17)
ke
=3 bl (bja Vi — x)). S (18)
TkEj

The potential V is expressed in terms of the Weier-
strass zeta function or its rational or hyperbolic limits.
To make contact with our equations we set x; = =4
and choose the hyperbolic potential

—q:)/2).

Then (16) generalises (1). In [21] the spin degrees
of freedom were real, but here we allow them to be
complex, and identify them with the eigenvectors of
V by setting

V(g — qi) = } coth((g;

So we have taken { = A, and in fact our spins are
expressed entirely in terms of the eigenvectars of V
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and the constant matrix A, in particular the b} must
form an orthonormal basis. In the notation of [21] the
components of the Lax matrix are given by

ij=b£aj.

There are various other constraints that we have im-
posed on our system. First the Eqs. (16), (17) and
{ 18) have the scaling symmetry

‘ i ot
a; — o;a;, [J’ — 1),
&

The corresponding integrals of motion are X; — b?a‘,-,

and setting them (o zero and rewriting them in térms_

of our coordinates shows that this is equivalent to
Eq. (13). Similarly our requirement that M = 0 is
another constraint on the system. Now given these con-
straints we find that frem the definition of L in terms
of the spins we can compute L. So for j =k (16)
is equivalent to (14), while for j # k (17) and (18)
yield (15).

To make the correspondence between the solitons
and the many-body system clearer, it is worth consid-
ering the sine-Gordon case in more detail and com-
paring it with the general situation. The results about
sine-Gordon solilons are explained in detail in [4],
and we have kept our notation as similar to this refer-
ence as possible to make comparison easier. The first
thing to observe is that in the Af') case only knowl-
edge of the g, is required to specify the field compo-
nents, as we have

N 1 ,
e = om0 =TT (= Ilﬂxp(qf) .
i 1+ iexp(q;)

In the general case the presence of the matrix 9/

in the expression for the tau functions (6} means that
knowledge of both the spin vectors u; (which make up
the matrix {/) and the g; is required to evaluate these
determinants. The essential difference is that for sine-
Gordon there is only one soliton species, while in the
A{"Y case there are n different species corresponding
to the different allowed values of §;. This difference is
also apparent at the level of the equations of motion.
In fact when we differentiate the matrix V, in the case
of sine-Gordon we find from (10) that

V=i(eeh)

for a certain vector e. But then conjugating the
Eq. (10) with U we obtain

iee" = L(LQ + OL),

where & = Ue. Actually & is a real vector, and in terms
of its components &; we have

) €€,
exp(q;) +explqy)’

ij =

Since we know the diagonal elements of L explicitly
in terms of the g; (from (13)) the above formula
means that we then know all the &; and hence the off-
diagonal elements of L are found to be

L. = 44k
7 cosh((g; — g0)/2)

This may then be substituted into (14), (15) to give
the ordinary (non-spin) Ruijsenaars-Schneider equa-
tions. In this case (14) yields (1) and (15} is a con-
sequence. Babelon and Bernard have shown {4] that
there is a canonical transformation between the soliton
parameters and the dynamical variables g;, 4, (more
precisely, they formulate this in terms of the variables
Q; =i exp(gq;)). We discuss how this could possibly
be extended to the A!!) case in our Conclusion.

5. Conclusion

We have shown the connection between spin-
generalised Ruijsenaars-Schneider systems and Af"
affine Toda solitons. The soliton tau functions are de-
termined by the positions g; of n particles on the line
as well as an orthonormal set of n-dimensional spin
vectors u#;, which are together subject to the equa-
tions of a constrained spin-generalised Ruijsenaars-
Schneider model. This extends the known result for
the sine-Gordon equation, where the spins are no
longer part of the dynamics and there is a canonical
transformation between the positions and momenta
of the particles and the parameters of the solitons.
For the general case such a transformation is no
longer apparent, although we note that the N-soliton
phase space is still of dimension 2N, and so it is
worth exploring exactly how the exira spin degrees
of freedom are absorbed in the transition from the
dynamical variables to the soliton parameters. Also it
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would be interesting to see what rdle the spins might
play in the quantum theory. Finally there remains the
extension to the other affine algebras and elucidating
the connections to the vertex operator constructions
mentioned at various points in the text. We intend to
pursue these points in the future.
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Abstract

We obtain non-autonomous generalizations of the Hénon-Heiles sys-
tem by considering scaling similarity solutions of certain fifth-order non-
linear PDEs. The resulting equations are integrable in the sense of having
the Painlevé property, and we exhibit Backlund transformations for them
and produce some rational solutions as well as others related to the first
Painlevé transcendent.

1 Introduction

In the following we will be looking at some similarity reductions of infinite di-
mensional integrable systems, which yield ODEs with the Painlevé property. One
might wonder why such reductions of PDEs should be worthy of interest. There
are various reasons to consider them. The first point to note is that, as described
in Ragnisco’s lecture (appearing elsewhere in this volume), if an ODE is the sta-
tionary flow of a soliton equation then it inherits some of the integrable structure
of that soliton equation e.g. conserved quantities, Bicklund transformations (see
[1],{2] for examples of stationary flows related to the systems described below).
More generally, given a PDE in 1+1 dimensions with independent variables z, ¢
and dependent variable u(z,t), the problem of finding solutions is considerably
simplified if we seek a solution in the similarity form, that is

u(z,t) = U(w(z),z,1), (1)

where z = 2(z,1) is the similarity variable, and on substituting U(w, z, ) into the
PDE, an ODE for w(z) is obtained. There are various ways of finding similarity
forms, the most common being the classical Lie symmetry approach (although
this method does not yield all possible similarity solutions; see [3] for a case where
it fails, as well as references to the other techniques). Obviously a stationary
flow is just a special sort of similarity solution. One may similarly find similarity
solutions to systems of equations, and for PDEs with more independent variables,
but we will not be interested in such complications here.



Once we have a similarity form, we are left with an ODE to solve. The fact is
that if we start with a PDE which has lots of nice properties (such as solvability
by inverse scattering) then the resulting ODE should be correspondingly man-
ageable. This is expressed more precisely in the conjecture of Ablowitz, Ramani
and Segur (ARS), which states that all similarity reductions of integrable PDEs
have the Painlevé property (although due to the fact that no universally accepted
definition exists, we are being deliberately imprecise about what we mean by “in-
tegrable”). For a good account of the Painlevé property, refer to Goldstein’s talk
(in these Proceedings), and for further details as well as some theorems which
support the ARS conjecture, see [4].

For comparison with what follows it is worth looking at a well-known example.
If we start with the modified Korteweg-deVries (mKdV) equation

Uy = Uppx — 6'02’05-, (2)

and notice that it has a scaling symmetry, then this gives us its scaling similarity
solutions. More explicitly, (2) is invariant under ¢ — 8z, ¢t — %, v — g~ 'v,
and so this implies that there is a similarity solution

(—3t) "3y (2(z, 1)), (3)

2. Substituting this form into (2) we

v(zx,t)

with the similarity variable z = (—3t)
find that y satisfies

¥ =6y'y' + 2y’ +y (4)

(" denotes &), which may be integrated once to give

y' =2 + 2y + o, (5)

for some constant a. (5) is known as the second Painlevé equation (P2), be-
ing the second exceptional equation in Paul Painlevé’s classification of second
order equations having no movable singularities other than poles (exceptional
in the sense that its general solution cannot be expressed in terms of classical
transcendental functions).

In the next section we will look at three integrable hierarchies of evolution
equations (the Sawada-Kotera, Korteweg-deVries and Kaup-Kupershmidt hier-
archies), and derive their scaling similarity forms. The third section concerns
some completely integrable finite dimensional Hamiltonian systems known as the
Hénon-Heiles systems. We describe how they are related to stationary flows of
some of the PDEs looked at in the previous section, and relate the similarity so-
lutions of these PDEs to non-autonomous versions of the Hénon-Heiles systems.
In the last section we derive Backlund transformations for the non-autonomous
equations, and show how they may be used to generate special families of solu-
tions.



2 Some properties of the KdV, Sawada-Kotera
and Kaup-Kupershmidt Hierarchies

Before looking at the non-autonomous systems of the title, we will consider some
aspects of three different hierarchies of PDEs, known as the KdV, Sawada-Kotera
(SK) and Kaup-Kupershmidt (KK) hierarchies, that are needed in what follows.
Each hierarchy is a sequence of evolution equations or flows with respect to times
t, (n =1,2,3,...), which can all be put into Hamiltonian form. SK and KK have
only one Hamiltonian structure, but KdV is bi-Hamiltonian, and here we will be
using the second Hamiltonian structure. The n-th flow in each of the hierarchies
can be written as By

where @ = 1/2 for SK and KdV, a = 1/4 for KK, and H, is the n-th Hamil-
tonian for the hierarchy in question. For the purposes of computing variational
derivatives, we make no distinction between a Hamiltonian and its corresponding
Hamiltonian density. For more details on these hierarchies and ways of calculat-
ing the sequence of Hamiltonians, see e.g. [7],[8].

There is also a Miura map from the modified versions of the hierarchies, given
by

u = —vy — 2av? =: M{v).

Then re-writing the Hamiltonian in terms of v and derivatives, the n-th modified
flow may be expressed as

dv

T (—8:)6u Hu[M][v]]. (M)
The Miura map means that given v satisfying (7) for each n, the corresponding
u = —v, — 2av? satisfies (6).

The n-th flow of the hierarchy is unchanged by the scaling

© — Pz,

where m = m(n) is a scale weight dependent on the hierarchy. Similarly the
modified flow is invariant under the same scaling but with

v — By,

Hence there are scaling similarity solutions looking like u = t~m w(%). For

tm

convenience in what follows we scale the similarity variable so that
(@, 1) = 0(ta)u(2),

3



where z = 26(t,) and 2= = ™!, The corresponding similarity solution for the
modified flow is

v = 8(ta)y(2),

with the scaled Miura map giving w = —y’ — 2ay? (' denotes % throughout).
Henceforth we will drop the suffix n. Substituting the similarity forms into
the equations of motion (6) and (7) (and cancelling out powers of @ on either
side) yields the ODEs for w and y. If we let H denote the scaled Hamiltonian
(expressed in terms of w with powers of & divided out) then we have simply

e 1
(0® + 8awd + 4aw) (6, H — Ic;z) =0, (8)
3(6,,1{1 + zy) = 0. (9)
Both of these equations can be integrated once, and are conveniently written in
terms of 1
fi=060,H — Ez.
Integration of (8) yields immediately
& 3 - (L
) +dawf + T = 0. (10)
For (9), note that
6o H = (M6, H = (8, — 4av)b, H, (11)

where M’ is the Fréchet derivative of M. The scaled similarity form of this
relation (involving y and 6, H) allows (9) to be written in terms of the quantity
f and integrated to

df _
- —dayf+2=0. (12)

In (10) f is to be thought of as a function of w and its derivatives, while in
(12) it is expressed instead in terms of y and derivatives of y (replacing each w
by —y' — 2ay?®). X is a constant of integration, and is in fact the same constant
in both cases, as the Miura map becomes a one-one correspondence between
the two equations. Note that the equations for the stationary flows are simply
obtained by removing the —;};z terms from f. The form of the equations makes
it particularly simple to see the relationship between them. The scaled Miura
map means that if y satisfies (12) then w must satisfy (10), and this is obtained
directly by substituting

_ 1A
"~ daf

into w = —y' — 2ay®. Conversely, given w satisfying (10), then the same substi-
tution for y (with f expressed in terms of w) rearranges to give {12).




To make things more concrete, it is worth looking at some particular cases.
The first example to consider is the scaling similarity solutions of the ordinary
KdV equation. Putting H = 1u® (the first non-trivial Hamiltonian in the KdV
hierarchy) into (6) with @ = J we obtain KdV:

Uy = Ugpy + OUUL.
The scaling similarity solutions are given by
u(z,t) = (=3t) " Fw(2),

with the similarity variable z = (—3t)~3z. After substituting into KdV and
integrating once we find the ODE for w:

ala+1)+w — (w')?
2w — z

w” + 2w? — zw + =0. (13)

Using the scaled Hamiltonian H = Lw? we find

f=w"'“a

and substituting into (10) with this f and @ = 1 does indeed give the equation
(13) on setting A = a + %. Also the Miura map u = ~v, — v’ goes from mKdV
to KdV. For the scaling similarity solutions of mKdV (3) we find that there is
a one-one correspondence between solutions of P2 (equation (5) of the previous
section) and (13), given by

w= —y —
(the scaled Miura map) and
_w'ta
YT w—z

Note that in terms of y, we have

z

f==y-y-3

and on putting this into (12) with @ = 3, P2 results. This particular case is
considered in [9] for example.

As our second example we take the fifth order equations in each of the hier-

archies, which following [1] may be written as
2 _ 20 . 3
Uy = (Ugzoz + (8@ — 2b)ury, — 2(a + bus — —?)—abu )z (14)

where we have three cases (i),(ii),(iil) corresponding to @ = 3,3,% and b =
—%, —3, —4 respectively. These are the only values of a, b for which an equation of
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the form (14) is integrable, and (i) and (iii) are respectively the Sawada-Kotera
and Kaup-Kupershmidt equations (see references in [8]), while (it) is the fifth
order KdV equation. (14) may be obtained from the Hamiltonian formalism
described above, by taking

_ Lo w1, 3
H——-—z(uz) —3bu

with the correct values of @ and b for each case. Then the scaling similarity form

u(z,t) = (=5t) " Fw(z),

where now z = (—5¢)"5z. We find

f=w"—bw2—fa,
and putting this into (10) we find a fourth order ODE for w. Using the scaled

Miura map, we may express f in terms of y:

f=—y" —dayy" — (4a + b)(y')* — 4aby’y’ — 4a’by" — ﬁ

Then the ODE for y is (from (12))

y™ = —2(6a + b)y'y" + 4a(da = B)(¥*y" + y(¥)") + 16a°0y° + zy + @,  (15)

with @ = A — L. Given a solution to (15) we can then obtain a solution to

the fourth order ODE for w via w = —y' — 2ay®. Notice that on substituting
in the relevant values of ¢ and b the resulting equations (15) for cases (i) and
(ii1) differ only by a sign in the even (y'y”) terms. So if y, is a solution to the
equation in case (i), then Y_, = —y, is a solution to the equation in case (iii) at
parameter value —a. This is because the modified hierarchies in these two cases
are essentially the same. We shall be using this property in the final section to

derive the Backlund transformation.

3 Hénon-Heiles Systems

The original Hénon-Heiles system is given by a Hamiltonian with two degrees of
freedom: -

1 1
h= 501 +53) + aq1g; — 3ba3; (16)
The equations of motion are just Hamilton’s equations
dg; Oh
5. =3 17
dz 3pj’ ( )
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dpj _ dh
E&"— - _ij (18)

(we are denoting the time by 2z here to make connection with results which ap-
pear below). It was known for some time from Painlevé analysis [5] that this
system is integrable for three values of the ratio r = a/b (because of a scal-
ing symmetry of the equations the integrability only depends on this ratio), i.e.
r=-1,-1/6,-1/16.

More recently, Fordy [1] showed that for these integrable cases the equations
of motion were just disguised versions of the stationary flows of some fifth order
soliton equations - the Sawada-Kotera, fifth order Korteweg-deVries and Kaup-
Kupershmidt equations (hence the choice of values for a and b as in the previous
section gives the right values for the ratio r in the cases (i),(ii),(iii)) . The zero
curvature form of these PDEs yields a matrix Lax representation of the stationary
flows, and then traces of powers of the Lax matrix give the Hamiltonian and the
second constant of motion (which shows that these systems are indeed Liouville
integrable). It was subsequently shown that all three systems are completely sep-
arable in suitable coordinates, and may be integrated in terms of theta functions
of genus one (cases (i) & (iii)) or genus two (case (ii))[6].

Instead of looking at the stationary flows of these three PDEs, we will take the
equations for the scaling similarity solutions, and rewrite them in Hamiltonian
form. So we have f = w” — bw® — £, and f must satisfy the equation (10). On

4a?
setting w = ¢, f = —aq3, we find

A 2_ 2 i
d1 1 aq2+4a’

)\2
dalqs’

These are just Hamilton’s equations for the system with Hamiltonian

q;' = —2aq1qz2 —

1 A? 1

1 _
h==(p} +p3)+aqq; - 3be - g3 2 o2

2
which is just (16) with an extra inverse square term and a non-autonomous (time-
dependent) term in the potential. So the similarity solutions introduced at the
end of Section 2 may be viewed as non-autonomous Hénon-Heiles systems. Be-
cause of the explicit time-dependence, the Hamiltonian is no longer a constant
of motion, and we don’t get a matrix Lax representation any more. Below we
discuss the integrability properties of these equations, as well as Backlund trans-
formations which generate some special families of solutions.



4 Integrability, Backlund transformations and
some special solutions

Given the zero curvature representation of the fifth order PDEs considered above,
it is straightforward to obtain the matrix Lax representation of the equations for
the stationary flows. It is no longer possible to do this for the corresponding non-
autonomous systems, so we have to use other methods to test their integrability.
The most obvious thing to try is the Painlevé test, and indeed this does find
principal balances (with four arbitrary constants in the power series solutions) in
each of the cases (i),(ii),(iii) (for more details see [10]). A more useful approach
from the point of view of finding exact solutions is to look at the similarity
equations coming form the modified hierarchy.

The variable w appearing as ¢, is in one-one correspondence with a solution
y of (15), and the latter is a lot more tractable for various reasons. The zero
curvature representation of the PDEs in the modified hierarchy scales nicely, so
that on restricting it to the scaling similarity forms it produces a zero curvature
representation of (15). This then means that the initial value problem for y can be
solved in terms of an inverse monodromy problem (an ODE analogue of inverse
scattering). This method has been pursued in detail for the second Painlevé
transcendent P2 (see [11],{12]). In [11] the scheme is also outlined for the scaling
similarity solutions of the higher order equations in the modified KdV hierarchy
(referred to as the Painlevé IT Family). The equation (15) in case (ii) is the next
equation up from P2 in this family.

A simpler approach to finding solutions is to derive the Backlund transforma-
tions for the equation (15) for each of the three cases. We consider (ii) first, as it
is the simplest case and the Backlund transformation takes the same form as for
P2 (and indeed for the whole P2 family [13]). Everything is most conveniently
expressed in the notation of Section 2. So we take the equation for y in the form
(12). Now let y, denote a solution to this at parameter value @, and define

Wo = —y; - yczx (20)

to be the corresponding solution to (10), with A = a + 1, a = }. Also take

fa= wg—l—3w§—-{.
2
Now to find the Bicklund transformation we just need to use two facts. The first
is that given a solution y, for parameter value «, we have that y_, = —y, is
also a solution for parameter value —a. The second thing to notice is that under
the scaled Miura map (20), two solutions y, and y_(o41) correspond to the same
value of A\? and hence the same solution of (10), we obtain

200+ 1
Yot1 = —Yo T+ T (21)




This gives the standard transformation for P2 [9], on putting fo, = w, — .
To obtain the sequence of rational solutions to (15) in case (ii), we apply (21)
repeatedly starting from yo = 0. Some of these solutions (together with the
corresponding w,) are given in a table below.

a |0 1 2 3
1 2 2 5zt
Yo [0 =2 1 -3 z  F-144

1022 (2% 4576
we |0 ] =2 | =& | =2 _ 102 (z7+576)

22 z2 z2 (#°—144)2

These solutions may also be obtained from the sequence of polynomials [14] which
give the rational solutions of the KdV hierarchy; this is discussed in more detail
in [10].

Since, as mentioned in Section 2, the equations (15) differ only by a minus
sign for (i) and (iii), these two cases may be dealt with together. We employ the
same notation as before, with lower case and upper case letter y corresponding to

solutions to (15) in (i) and (iii) respectively. Also we introduce wy = —y/, — ¥Z,
fo =wll+3w? — 1z, and similarly W, = =Y, — JY2, F, = W/ 4+ 4W?2 — 2. Using
Y_o = —¥q as well as the fact that (corresponding to the same value of A? in each

case) Wy = W-q—1 and W, = W_,_,, we find a slightly different sort of Backlund
transformation:

20+1  2(a+2)
Yats e 2.far + Fa+1 .
Again we can find a sequence of rational solutions by applying this starting at
Yo = 0, but now we miss out integer values in between. In fact we can find the
solutions only for every third integer. We present a few of these in a table, with
the corresponding w, and W_, = y, — 132, thus:

o -4 -3 -1 |0 2 3
4 2 524 1 2 _3

Yo z Tz + 25436 z 0 z z
12 6 6 12

Wa | =2 T 0 0 I

_l2 | _152%:0-144) § 3 _3
W_q 22 2(z%+36)2 222 0 0

One might wonder if there was any advantage in writing the equation (10) for
w as a non-autonomous Hamiltonian system. In fact in case (i) when a = —1
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(A = 0) the same substitution that works in the ordinary (autonomous) system
causes the equations of motion to separate. Putting

Qi =qtq
into (19), we find
1 k4
no_ - 2 -
+ = ZQ:{: + 9 H
which (up to a scaling) is just two separate copies of the first Painlevé equation.
The corresponding solution to (15) is

v_y = (log(Q4 — Q)Y

where we assume that @, and Q_ are not equal. So plugging this into the
Backlund transformation we get a whole sequence of solutions in terms of the
first Painlevé transcendent. For further details and results see [10].
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