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Abstract 

This thesis concerns some of the different ways in which integrable systems ad-

mit finite-dimensional reductions. The point is that partial diferential equations 

which are integrable (usually in the sense of being solvable by inverse scatter-

ing) admit certain special classes of solutions, and these special solutions may be 

viewed as finite-dimensional mechanical systems in their own right. 
introduces some of the important concepts and 

structures 

The first chapter  

associated with integrability, and includes a brief overview of some of the appli-

cations of integrable systems and their reductions in field theory. 
Chapter 2 describes the scaling similarity reductions of the SawadaKotera, 

Kuper5hmdt equations. similarity solutions of these 
fifth-order KdV, and Kaup  

e
s which are naturally viewed as fourth- 

volution equations satisfy certain ODE 

order analogues of the Painlevé t ranscendents; they may also be written as non-

autonomous Hamiltonian systems, which are time-dependent 
generalizations of 

the integrable Henon-Heiles systems. The solutions to these systems are encoded 

into a taufuncti0n, and Bäcklund transformations are presented which allow the 

construction of rational solutions and some other special solutions. 

The third chapter is concerned with the motion of the poles of singular 

on 	

solu- 

ional solutions) of the NLS equation. It is d
emonstrated that 

tions (especially rat  well-known Crum trans- 
the linear problem for NLS admits an analogue of the 

formation for S chrodinger operators leading to the construction of a sequence of 

rational solutions. The poles and zeros of these rational solutions are found to 

satisfy constrained Calogero.M05er equations, and some other singular solutions 

are also considered. Much use is made of ilirota's bilinear formalism, as well as 

a trilinear form for NLS related to its reduction from the KP hierarchy. 

The final chapter deals with soliton solutions of the 
AV affine Toda field 

theories. By writing the soliton tau-functions as determinants of a particular 

form, these solutions are related to the hyperbolic spin RuijsenaarsSchneider 

system. These results generalize the connection between the ordinary (non-spin) 

Ruijsenaarseer model and the soliton solutions of the sine-Gordon equa- 

tion. 
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Chapter 1 

Introduction 

1.1 General Introduction 

Whenever one considers the various models available to describe the physical 

world, one is often struck by "the unreasonable effectiveness of mathematics". 

General relativity and quantum mechanics, the two main pillars of twentieth cen-

tury physics, are particular examples where exact mathematical solutions display 

a remarkable agreement with experimental observations. I
ncreasingly, however, 

it has been realized that most realistic models cannot be solved exactly, even in 

principle. In the latter half of this century, there has been a great deal of interest 

in systems of both differential and discrete equations exhibiting chaos. Coupled 

with the rapid development of computer t echnology, this has meant that many 

scientists are now largely inclined to explore their mathematical models with ap-

proximate numerical experiments. Running contrary to this trend, yet also having 

some of its origins in work done with computers, the last thirty years has seen 

a dramatic growth in the study of completely integrable nonlinear differential 

equations, with whole hierarchies of such equations being discovered. It turns 

out that these integrable systems are also relevant in a wide variety of physical 

situations, ranging from the propagation of water waves to quantum gravity. 

Given the inhuman accuracy and speed of computer calculations, one might 

wonder why completely integrable equations should be worthy of 
consideration. 

From a mathematical viewpoint, it transpires that such equations have many 

beautiful algebraic and geometric properties, and thus are of aesthetic interest 

in their own right. Taking a more pragmatic view, not only are exact solutions 

extremely useful for testing the accuracy of numerical algorithms, but also many 

modern physical theories (such as the Standard Model of particle physics, or the 

neural network approach to brain interactions) require calculations so complicated 

that modern computer power is tested to its limits, and for this reason it is of 

1 E.P.Wigner. 
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prime importance to develop integrable models. 

The period of renewed interest in integrable systems began in the 1960s, when 

it was discovered that the Korteweg-deVries (or KdV) equation, 

lit = 11 	+ 6uu, 

admits exact, stable solutions in the form of superpositions of an arbitrary number 

of solitary waves. These waves, which were originally observed in numerical stud-

ies, have the remarkable property that each one preserves its amplitude and speed 

after interaction with the others. This was very suggestive of the behaviour of 

quantum particles, and hence these special solitary waves were named 'solitons'. 

The reason for the existence of these soliton solutions turned out to be connected 

to the fact that KdV has an infinite number of conservation laws, which mean 

that it can be interpreted as an infinite-dimensional integrable Hamiltonian sys-

tem. Even more fundamental was the discovery that KdV can be viewed as the 

isospectral deformation of an associated linear eigenvalue problem, which led to 

its exact solution by the inverse scattering technique. 

The original work on KdV has inspired numerous generalizations, so that 

large classes of integrable evolution equations are now known. In turn, the new 

methods used to solve these partial differential equations (PDEs) have produced 

great insights in the understanding of integrable systems of ordinary differential 

equations (ODEs). Furthermore, as well as the soliton solutions, integrable PDEs 

admit many sorts of special solutions (such as rational solutions, and similarity 

solutions), which may themselves be interpreted as finite-dimensional mechanical 

systems. This thesis is concerned with some particular types of these finite-

dimensional reductions. As well as having interesting properties of their own, 

such special solutions of PDEs are usually the ones which are most important for 

applications. 

The organization of the thesis is as follows. In this introductory chapter we 

provide a brief review of some of the ideas behind the notion of integrability, while 

giving examples that are relevant to the other chapters. Section 1.2 describes 

finite-dimensional Hamiltonian mechanics, taking the (rational) Calogero-Moser 

model as a prime example of an integrable system in this context. As well as 

providing a simple illustration of the concept of the Lax pair, Calogero-Moser 

equations reappear in Chapter 3. 

Section 1.3 describes the most well-known example of an integrable hierarchy 

of PDEs, the KdV hierarchy. Bäcklund transformations and Hirota's bilinear 

(tau-function) formalism are also introduced, since these are essential tools in 

the development of the other chapters. Chapter 2 is largely concerned with the 
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similarity solutions of some fifth-order evolution equations, one of which is a 

member of the KdV hierarchy. 

In Section 1.4 we present a concise description of the KP hierarchy, indicating 

the way in which many other integrable hierarchies (including KdV) arise as 

suitable reductions of it. Chapter 3 contains a construction of rational solutions 

to the NLS equation, which is yet another example of a reduction of KP; we show 

how the poles and zeros of these rational solutions evolve according to constrained 

Calogero-Moser equations. 

Although integrable systems originally occurred in traditional areas of applied 

mathematics (such as fluid mechanics), they have interesting applications in the-

oretical physics which are not quite so well-known. The purpose of Section 1.5 

is to illustrate the importance of exact classical-mechanical solutions in certain 

problems of quantum field theory. We outline the matrix models, used in the dis-

crete approach to 2-D quantum gravity, which have solutions in terms of ODEs of 

Painlevé type. Such ODEs are naturally written as non-autonomous Hamiltonian 

systems, and we make use of this idea in Chapter 2. Another area where classical 

solutions are important is in finding the correct quantum description for the affine 

Toda field theories; we would hope that our work on the solitons in these theories 

(Chapter 4) could lead to further insights, at least at the classical level. 

1.2 Integrable Hamiltonian Systems in Finite 
Dimensions 

Until relatively recently, there were very few systems known in classical mechanics 

for which the equations of motion could be integrated explicitly or solved by 

quadratures. Historically the most well-known examples of such systems are 

those corresponding to motion in a central potential, free motion on spheres or 

ellipsoids, and special cases of motion of a rigid body with a fixed point (see 

e.g. [1301 for a review). The classical approach, which reached its culmination 

in the work of Jacobi, involved finding constants of the motion (in involution 

with respect to Poisson brackets) and then applying the method of separation 

of variables. Modern developments have required considerable generalizations 

of the notion of integrability, and it is fair to say that there is no universally 

accepted definition of what 'integrable' means [1551. However, there has been 

a huge increase in the knowledge of systems to which this adjective might be 

applied. 

With the advent of soliton theory in the 1960s, it was discovered that certain 

partial differential equations, such as KdV, could be interpreted as integrable 

3 



Hamiltonian systems with infinitely many degrees of freedom [67}. An essential 

feature of this interpretation is that integrable PDEs like KdV have an infinite 

number of conserved quantities. The further understanding of integrable infinite-

dimensional systems also produced many new insights into systems with a finite 

number of degrees of freedom, and led to new techniques for analyzing these. 

Since finite reductions of integrable systems constitute the main subject of this 

thesis, we present here a brief review of Hamiltonian mechanics in finite dimen-

sions, emphasizing the structures that will be relevant in the generalization to 

the infinite-dimensional case. 

1.2.1 Finite-Dimensional Hamiltonian Mechanics 

The usual arena for Hamiltonian mechanics is a symplectic manifold, which con-

sists of a manifold M (of finite dimension, 2n say) together with a nondegenerate, 

closed two-form w on M (symplectic form). Given any function (Hamiltonian) H 

on M, the symplectic form allows the canonical definition of an associated vector 

field XH, via 

dH= — ixHw. 	 (1.2.1) 

Alternatively, one may think of the symplectic form as defining an isomorphism 

between vector fields and one forms, and so (1.2.1) is equivalent to 

XH = JdH, 	 (1.2.2) 

where J is the Poisson operator. Given any pair of functions f, g on M, their 

Poisson bracket is defined by 

{f,g} = w(Xj,X 9 ). 

By (1.2.2), the Poisson brackets may equivalently be defined using the Poisson 

operator: 

If, g) = —df. Jdg. 	 (1.2.3) 

This bracket gives a Lie algebra structure to the space of functions on M. If x 

denotes coordinates on M, then the flow generated by the Hamiltonian H may 

be written 

±(t) = {H,x}, 	 (1.2.4) 

where I corresponds to time. In other words 

and the time derivative of any function on M is just given by 

J={H,f}. 
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The most common setup is that M is a cotangent bundle, i.e. M = T*Q for 

a configuration space Q. Then the positions qj are the coordinates on the base 

space, while the momenta pj are the fibre coordinates, and M has the canonical 

one-form 

a = E pj dqj . 

Thus M is a symplectic manifold with canonical two-form 

= dcx. 

With these coordinates the Poisson operator is constant, and may be written in 

the standard block form 

=( 0• 

The canonical Poisson brackets between the coordinates are 

{qj,qk} = 0 = {Pi,Pk}, 	Jpj, qk I = 

leading to 

{f}(ofagOf Og\ i 

for any functions f, g. The equations of motion (1.2.4) are then just Hamilton's 

equations, 

dq - OH 

dt - Dpi' 
dpj  - OH 

- 	Oqj 

Now that we have the basic concepts at hand, we can define what it means 

for a Hamiltonian system to be Lionville integrable. A Hamiltonian system with 

Hamiltonian H on a symplectic manifold M of dimension 2n, corresponding to 

the equations of motion (1.2.4), is said to be integrable (in the sense of Lionville) 

if there exist ii independent constants of motion in involution. In other words, 

there is a set {H1  = H, H2 ,. .., H$ of independent functions on M satisfying 

{H,Hk} = 0. 

Given these it constants in involution, it is then possible (at least in principle) 

to solve the equations exactly. It is often convenient (especially for the infinite-

dimensional systems which we will be describing shortly) to associate a time tj to 

each Hamiltonian H, and consider the commuting flows generated by all of the 

Hj  simultaneously. Also certain modifications are necessary for non-autonomous 

(time-dependent) Hamiltonian systems, which will be relevant to Chapter 2. For 

a more detailed introduction to Hamiltonian mechanics, see [6]. 
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1.2.2 Lax Pairs 

At this point we introduce an idea which is of great importance in the theory of 

integrable systems, that of the Lax pair (named after Peter Lax [108]). Given a 

dynamical system describing the evolution of some quantities x (which in general 

may lie in an infinite-dimensional space), suppose we have two operators, denoted 

by L, F, which are functions of x taking values in some Lie algebra. Then L, P 

are said to constitute a Lax pair if the equations of motion for x are equivalent 

to 

L = [P, L], 	 (1.2.5) 

where [, ] denotes the Lie bracket. In the case of a finite-dimensional system 

these operators usually belong to a finite-dimensional Lie algebra or its corre-

sponding loop algebra, while for systems of partial differential equations L and 

P are differential operators. The existence of a Lax pair immediately suggests 

that a system might be integrable, as it provides a means to construct conserved 

quantities, and may also lead to a way to solve the equations of motion. For 

instance, the discovery that the KdV equation could be written in Lax form 

(with L in that case being a Schrödinger operator) was the key to its solution 

by inverse scattering. The essential feature of (1.2.5) is that it corresponds to 

an isospectral deformation of the Lax operator L. We illustrate this point with 

a finite-dimensional example, the Calogero-Moser system, which will reappear in 

Chapter 3. The generality of the Lax technique will become apparent in Section 

1.3, when we consider integrable hierarches of PDEs. 

1.2.3 The Calogero-Moser System 

The original Calogero-Moser system has the Hamiltonian 

H = E + g2 	(qj - q)2. 	 (1.2.6) Pi  
j=1 	 j<k 

It was originally solved in the quantum case by Calogero [34]. This led to the 

conjecture that the classical version should also be integrable, which was proved 

by Moser [119]. Hamilton's equations for (1.2.6) imply 

2g2  1: (qj - q), 	 (1.2.7) 

kq~j 

the second-order equations of motion for the Calogero-Moser system. 

The key to the proof of integrability is the construction of the Lax pair, which 

consists of a pair of n x ii matrices L, P with entries given by 

Lik = Pj6jk + ig(1 
- 

fiJk)(q 
- qk)1, 	 (1.2.8) 

6 



l3k = 	98jk(qj —  q,) 2  + ig(l — 	— 	 (1.2.9) 

I0j 

The Lax equation (1.2.5) for these particular matrices yields the equations of 

motion (1.2.7) immediately. Notice that, with the conventions chosen here, L is 

hermitian and P is anti-hermitian, and so up to factors of i we may regard them 

as being elements of the Lie algebra u(n). Choosing a unitary matrix U as the 

solution to the differential equation 

U=PU, 	U(0)=1, 

it is clear that 

L (LJ_ 1 LU) = 0 7  

and therefore 

U'LU = L(0). 

Thus we see that the eigenvalues of L are unchanged by this evolution, and so the 

Lax equation (1.2.5) gives rise to an isospectral deformation. A more convenient 

set of constants of motion are the traces of powers of L, 

Hm = tr Lm ,  

which are just symmetric functions of the eigenvalues. In particular we have 

H1 = 

which is just the total linear momentum, and the Hamiltonian (1.2.6) is given by 

H = H2 = tr L 2 . 	 ( 1.2.10) 

It is obvious that the set of integrals {H 1 ,. . . , H,} are independent, since 

H. = 	+cJ(pml). 

To prove Liouville integrability, it is also necessary to show that these integrals 

are in involution. There are at least two different ways to do this. Moser [119] 

considered the asymptotic motion of the particles as t —* ±, where the qj are 

well-separated, and showed that in these limits the Poisson brackets of the H. 

vanish; as these Poisson brackets are conserved, they must then be zero for all 1. 

A more sophisticated technique involves the construction of an r-matrix for the 

Calogero-Moser system, which may be found in [18, 1441. In general, suppose that 

a Hamiltonian system has a Lax pair L, P, taking values in a Lie algebra G. It 
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has been proved [20] that the eigenvalues of L are in involution if and only if the 

Poisson brackets of the entries of L may be encoded into the following equation 

{ L 1 , L2} = [r12 , L i ] - [r21 ,L 2 ]. 

In the above, 

L1 =LO 1, 	L2=10L, 

and the (generalized) r-matrix may be written (in a suitable basis {X} for Q) 

=E r'"X, 0 
4L' 

(and similarly for r 21  with the tensor product reversed). The r-matrix structure is 

very important for quantum integrable systems and solvable models in statistical 

mechanics (see [13] and references therein). The Jacobi identity for the Poisson 

structure leads to a consistency condition on the r-matrix. In the case that r12  

is constant and antisymmetric, this condition becomes what is known as the 

classical Yang-Baxter equation. However, the Calogero-Moser system provides 

one of the original examples of a dynamical r-matrix, which is explicitly dependent 

on the phase space variables. The general theory of dynamical r-matrices is still 

poorly understood, and is currently an important subject for investigation (see 

e.g. [54, 78]). R-matrices are also extremely important for understanding the 

Poisson structures in the Hamiltonian formulation of integrable PDEs [15, 57]. 

The existence of a Lax pair and conserved quantities does not in itself provide 

a constructive procedure for integrating the equations of motion. However, it 

turns out that the Calogero-Moser system with Hamiltonian (1.2.6) can be solved 

exactly by the so-called projection method [130]. A common approach to trying 

to solve a mechanical system is to use symmetries to eliminate degrees of freedom, 

in the hope that the reduced problem will be more tractable. Sometimes quite the 

opposite can occur, so that starting from simple equations (e.g. geodesic motion) 

in a large space leads to more complicated dynamics in a reduced space. If the 

centre of mass motion is removed, then it turns out that the Calogero-Moser 

equations (1.2.7) may be reduced from free motion on the space Q of traceless 

Hermitian matrices (i.e. the Lie algebra of the group SU(n) in the fundamental 

representation, up to a factor of i). Solving the motion on the larger space is 

trivial, and also provides a simple solution to the Calogero-Moser equations. The 

full geometrical interpretation of this is via the method of orbits. For our present 

purposes we will merely indicate how this method enables the model to be solved, 

and refer the reader to [18, 951 and [130] for more detailed discussions. 

[4] 
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Following [1301, we let the coordinate X denote a traceless Hermitian matrix, 

with corresponding momentum X. Then the phase space T has the standard 

symplectic form, 
w = tr(dX /\dX), 

and with the Hamiltonian  
H — --tr 

2 

the motion is free, 	 (1.2.12) 1=0. 

Clearly the solution to (1.2.12) is 

	

X = At + B, 	
(1.2.13) 

for some constants A, B. It is also apparent that the commutator 

	

C = [X,X] 	
(1.2.14) 

takes the constant value [B, A]. 
In fact, (1.2.14) is an example of what is known 

as a moment map. The reduction to the CaIogeroM0ser system is achieved by 

choosing a very special value for C: 

	

C = ig(ee - 1), 	e = (1,..., W. 	(1.2.15) 

So C has (n - 1) eigenvalues the same. 

The position coordinates for Calogero-Moser come from di
agonalizing the ma- 

trix X with a unitary matrix U, 

	

Q = UxU-1 , 	Qjk = qjtSjk, 

while the Lax matrix L is obtained by applying the same unitary t
ransformation 

to X, 
L = u1u 1  

If P is given by 
p=ULr' 

then (using X = 0) it is simple to show that P, L satisfy the Lax equation (1.2.5). 

Also, differentiating the definition of Q leads to the equation 

=L+[F,Q1. 
	 (1.2.16) 

Taking the natural convention U(0) = 1 as before, the constant matrices 
A, B 

are given by 	
A=L(0), 	B=Q(0). 

41 



If the initial value L(0) is chosen in the form (1.2.8) then [Q(0), L(0)] is indeed 

given by (1.2.15), and it is possible to take U such that this value of the moment 

map is preserved, i.e. 

[Q,L]=C. 

Under the reduction from variables X, k to Q, L the Hamiltonian (1.2.11) is 

invariant under gauging by a unitary matrix, and is just given by (1.2.10) (with 

L, P as in (1.2.8),(1.2.9)). Hence we have seen that the solution Q(t) to the 

Calogero-Moser equations (1.2.7) is found by diagonalizing the matrix 

X = L(0)t +Q(0). 

Because of the connection with the Lie algebra su(n), the Calogero-Moser sys-

tem described above is naturally connected with the root system A_ 1 . There are 

obvious integrable generalizations to other root systems [130], as well as hyper-

bolic, trigonometric and elliptic versions (with the the potential in (1.2.6) being 

replaced by a sum of Weierstrass p-functions or degenerations of this [144]). These 

systems are intimately related to the pole motion of rational and elliptic solutions 

to intgrable PDEs such as the KdV equation [8] and the KP equation [103, 1421. 

In Chapter 3 we construct rational solutions to the nonlinear Schrödinger (NLS) 

equation, and show that the pole motion is governed by constrained Calogero-

Moser equations. A further variation of these equations includes the addition 

of a set of spin vectors to the dynamics [71]. There are corresponding quan-

tum mechanical versions [35] (often called Calogero-Sutherland models), which 

are also exactly solvable, and have many interesting connections with symmetric 

polynomials and matrix models (see [19] and references). 

The Calogero-Moser systems have relativistic generalizations, known as the 

Ruij senaars- Schneider models [138]. The solution of these (at least in the rational 

and hyperbolic cases [135]) follows a pattern very similar to that for the Calogero-

Moser system described above. In Chapter 4 we study the connection between the 

spin-generalized versions of these relativistic models and soliton solutions of affine 

Toda theories. These solitons may be given in terms of a certain matrix V, with 

the position coordinates of a hyperbolic spin Ruijsenaars-Schneider system being 

determined from the eigenvalues of V; the eigenvalues are given by a diagonal 

matrix Q satisfying an equation very similar to (1.2.16). 

Having reviewed some important features of the finite-dimensional case, we 

must now turn to properties of integrable nonlinear PDEs. We shall see that the 

Hamiltonian formalism and Lax equations are fundamental in this setting as well. 

At the risk of being unoriginal, we shall take the KdV equation (and its associated 

integrable hierarchy) as our canonical example. The KdV equation has a long 
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and interesting history, and although much of this is extremely well-known, it 

provides a good illustration of most of the necessary concepts. 

1.3 The KdV Hierarchy 

The prototype example of an integrable nonlinear PDE is the Korteweg-de Vries 

(KdV) equation, 
Ut = U 	+ 6uu. 	

(1.3.1) 

This was first derived by Korteweg and de Vries [100] in 1895, as a description of 

the evolution of long waves in a shallow channel. The exact choice of coefficients 

in (1.3.1) is inessential, as they may be altered by scale t
ransformations. An 

important feature of (1.3.1) is that it admits a travelling wave solution, 

u(x,i) = 2k2  sech2  (k(x - xo) + 4k3t), (1.3.2) 

which is called the one-soliton solution. The original discovery of this type of 

wave should really be credited to a Scottish engineer named John Scott Russell. 

In August 1834, by the side of the Union Canal near Edinburgh, he observed "a 

large solitary elevation ... which continued its course along the channel apparently 

without change of form or diminuition of speed". He followed the wave for two 

miles on horseback, and was afterwards able to recreate this phenomenon in the 

laboratory, but his results were received with considerable scepticism by some of 

the leading scientists at the time, such as Airy and Stokes. The modern theory of 

solitons has entirely validated the work of John Scott Russell, and his important 

contribution was commemorated at a recent conference 2 with a visit to the Union 

Canal, where a plaque was unveiled and some solitary waves were reproduced. 

It is fair to say that the KdV equation was all but forgotten for the first half 

of this century, until the work of Zabusky and Kruskal in 1965 [105] concerning 

the FermiPaSt&Ukm nonlinear lattice equations, 

= K(yn+i - 2Yn + Y.—I) (1 + a(yn+1 
 

KdV arises as the continuum limit of (1.3.3). While doing numerical studies on 

the periodic case, Zabusky and Kruskal observed that initial conditions given by a 

cosine function evolved into a series of pulses of the form (1.3.2), and these pulses 

interacted elastically before continuing with the same amplitude and speed. These 
particle-like properties led them to coin the name 'soliton' for such special solitary 

waves. It turns out that KdV has exact multi-soliton solutions, consisting of 

2 Nonlinear Coherent Structures in Physics and Biology, ll
eriot-Watt University, July 1995. 
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nonlinear superpositions of waves like (1.3.2) with different speeds, which scatter 

elastically. The existence and stability of these multi-solitons is one of the main 

features that distinguishes integrable equations like KdV from other nonlinear 

equations admitting solitary wave solutions. This is deeply related to the fact 

that KdV has an infinite sequence of conservation laws, which we shall describe 

shortly. For a more thorough account of the history of soliton theory, with full 

references, we refer the reader to e.g. [5, 47, 62]. 

1.3.1 Hamiltonian Formulation of KdV 

The numerical studies of Zabusky and Kruskal led to the undertaking of a detailed 

analytical study of KdV by Gardner, Greene, Kruskal and Miura, which culmi-

nated in its solution by the inverse scattering method [66]. One of the first clues 

to the integrability of KdV was the discovery of an infinite number of conservation 

laws, given by 	
ON 8Jn 

+ 	= 0 	 (1.3.4) 

for suitable functions p,, J, of ii and its x-derivatives. The first thing to notice 

is that (1.3.1) is itself already in conservation form, with 

p0 =u, 	—u xx  

The next two conserved densities and fluxes are given by 

= 
1  U2 , 	j1 = —uu +

1 
 u 

- 

2u3, 

P2 = 	+ U3 , 	J2  = Urflxzr - 	 - 3u2 u + 6uu - 

There are various constructive proofs of the existence of an infinite sequence of 

such densities and fluxes, but before we mention some of these it is convenient to 

introduce the Hamiltonian formalism for KdV. 

Suppose for simplicity that u is either periodic or rapidly decaying on the real 

line (i.e. u(x,t) ~ 0 as x ~ ±oo). Then upon integrating (1.3.4) over a suitable 

interval, it is apparent that 

j7 fPn dx = 0. 

Thus the sequence of conservation laws yields a sequence of conserved quantities 

for KdV. Furthermore, for a suitable Poisson structure these conserved quantities 

turn out to correspond to a sequence of Hamiltonians for the KdV equation (1.3. 1) 

and a whole hierarchy of commuting flows known as the KdV hierarchy. 

In order to extend Hamiltonian mechanics to the infinite-dimensional case, 

one may generalize either the symplectic or the Poisson formalism. Here we take 
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the latter option (and refer the reader to [57] for examples of the former). Given 

fl on phase space, the Fréchet derivative is defined as 
a functional (Hamiltonian)  

V = !_n[u + cv] L= 

Using this, the variational derivative 6fl/t5u is given by 

Sn 
fl[u]v 	-g.-vdx. J  

A given operator B is 
said to be a Hamiltonian operator (the analogue of the 

Poisson operator in this context) if Poisson brackets between functionals can be 

defined by 
r'rr- j

B
j Su Su 

which is the analogue of (1.2.3). It is apparent that for the brackets to be skew-

symmetric, B should be a skew-symmetric operator; the Jacobi identity is a more 

c
omplicated criterion to check. Then the flow generated by the Hamiltonian 

fl 

is just 
utB. 	

(1.3.5) 
TU 

The simplest functionals to consider are those which may be written as inte-

grals of local Hamiltonian densities, i.e. 

= f H[u]dx 

with H[u] being a function of u and its x derivatives. In that case it is easy to 

see that 

TU
= 8H, 

where 
SH := Ou 

In this situation (see Chapter 2) we shall often refer to a local density 
H as a 

'Hamiltonian', although strictly it is a Hamiltonian density. 

For the case of KdV, define a sequence of densities by 

I 
H0 = 

and 
H,=p,. 

for n 
> 0. If the Hamiltonian is taken to be the integral of the local density 

H2 , 

then it is immediately  apparent that (1.3.1) may be written in the Hamiltonian 

form (1.3.5), with the Hamiltonian operator 

B=O. 

13 



Explicitly, (1.3.1) may be written as 

U t  = 80oH2. 

What is less obvious is that there is a second Poisson structure associated with 

KdV, with the Hamiltonian operator 

E = 8 + 400  + 2u0. 	 (1.3.6) 

It is then possible to write (1.3.1) in the alternative form 

Ut = E&Hi. 

Thus KdV is said to be biHamiltonian, since it has two Poisson (or Hamiltonian) 

structures. 
Given the sequence of conserved densities, it is natural to define a hierarchy 

of flows, via 
= BSUHTh, 	

(1.3.7) 

or equivalently 	 - 	 (1.3.8) 
Ut8  

For example, the first (trivial) flow is 

Ut, = U0 , 

while the third (which will reappear in Chapter 2) is 

Uj = U50  + 10UU30  + 20U0u00 + 30u2 U0 . 

This sequence of evolution equations is called the KdV hierarchy, and it is pos-

sible to show that the corresponding I-Iamiltonians are mutually in involution 

(with respect to either Poisson structure) and hence the flows all commute. The 

conserved densities may be calculated by succesively integrating 

DO E UHT1  = (D + 400 + 2u0)&H8_i. 	 (1.3.9) 

By taking 45Ho = 
and setting the constant of integration at each stage to 

as a recursive definition for the differential 
be zero, the relation (1.3.9) serves  

polynomials 5H8 
(known as the Gelfand-Dikii polynomials [6911. The existence 

of the hierarchy is due to the fact that B and E are compatible, in the sense 

that B + E 
is also a Hamiltonian operator. It is also possible to obtain each flow 

from the previous one by using the (integrodifferentiaD recursion operator for 

the KdV hierarchy, 
R:=BB 1  =a+4U+ 2U0D; 1.  
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This is probably the most concise way to generate the sequence of KdV flows, in 

that it does not require the computation of variational derivatives. 

Recursion operators also occur in a more general context than Hamiltonian 

systems [65]. The prime example of this is the Burgers equation, 

Ut = u,,,, + 2uu,,, 	 (1.3.10) 

which may be linearized, by making the Cole-Hopf substitution 

U = ( log[]),,, 

to yield the heat equation 

Ot =  

Although (1.3.10) is not Hamiltonian and does not have soliton solutions, it has 

an associated recursion operator, 

1? = 8,, + u + u,,a,, 1 , 

which allows the construction of a hierarchy of commuting flows: 

ut = K, [u], 	1(1 = U,,, 	K+i = RK. 

A general introduction to infinite-dimensional Hamiltonian theory may be found 

in Chapter 11 of [62], while the references [50, 65] contain detailed treatments of 

the algebraic aspects of Hamiltonian operators and recursion operators. Rather 

than dwelling on the Hamiltonian theory, we prefer to introduce the Lax repre-

sentation of KdV, since this is more fundamental. 

1.3.2 Lax Formalism and Inverse Scattering 

The key to the integrability of KdV is its connection with the theory of linear 

Schrödinger operators. More precisely, the KdV equation (1.3.1) may be written 

in the form of the Lax equation (1.2.5), where the Lax operator L is just a 

Schrödinger operator, 

L = O + U, 	 (1.3.11) 

and the other half of the Lax pair is the third-order operator 

P = 48 + 6u8,,  + 3u,,. 	 (1.3.12) 

Lax also found an infinite sequence of operators P,, such that the Lax equation 

= [P., L] 	 (1.3.13) 
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corresponds to the n-th flow (1.3.7) of the KdV hierarchy described above [108}. 

Each operator P. is of degree 2n - 1, and can be constructed (along with the 

associated Hamiltonian) entirely from L. To see this requires the introduction of 

pseudo-differential operators, which we postpone until the next section where we 

discuss the KP hierarchy. 

As we have already remarked, each Lax equation (1.3.13) corresponds to an 

isospectral deformation of the operator L, and so the KdV hierarchy is naturally 

viewed as a commuting family of such deformations. This prompts the investiga-

tion of the Schrödinger eigenvalue problem, 

	

LTP = A5, 	 (1.3.14) 

together with the associated time evolution of the eigenfunction, 

	

= P.O. 	 (1.3.15) 

The Lax equation (1.3.13) may be regarded as the consistency condition for 

(1.3.14,1.3.15), given that the eigenvalue A is time-independent. Conversely, given 

the eigenvalue equation (1.3.14) and the assumption that the eigenfunction sat-

isfies (1.3.15), it is easy to show that 

(L - [P., L] - A.)' = 0. 	 (1.3.16) 

Hence if the potential u of the Schrödinger operator L evolves according to one of 

the equations of the KdV hierarchy (taking the Lax form (1.3.13)), then the spec-

trum of L is unchanged by this evolution, since from (1.3.16) we see immediately 

that 

= 0. 

The analysis of linear systems such as (1.3.14,1.3.15) is the key to the solution 

of the associated nonlinear evolution equations by the inverse scattering tech-

nique, which can be understood as a nonlinear version of the solution of linear 

equations via Fourier transforms. The inverse scattering for the KdV equation 

(1.3.1) is the simplest to describe, because of the connection with Schrödinger op-

erators. The scattering theory of Schrödinger operators has been widely studied 

because of its importance in quantum mechanics. Thus it is well-known that (for 

rapidly decaying potentials it on the real line) the Lax operator L (as in (1.3.11) 

above) has a discrete spectrum consisting of positive eigenvalues A. = 

Lb,. = 

with normalizable eigenfunctions 5,. (bound states), as well as a continuous spec-

trum A = —n 2  (corresponding to scattering states '4'k). 
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There are three steps involved in the inverse scattering solution of the KdV 

equation (1.3.1). First of all, given the potential u(x, 0), one may construct the 

scattering data 8(0), which consists of the discrete spectrum (the eigenvalues A) 

of L together with the asymptotics of both the bound states and the scattering 

states. Next, using the time evolution (1.3.15) of the eigenfunctions (which in the 

KdV case must be modified by adding a constant to the operator P in (1.3.12)), 

it is simple to show that the scattering data 8(t) for the potential u(x, t) evolves 

linearly with the time t; it is also possible to demonstrate that, within the Hamil-

tonian formalism, the scattering data corresponds to action-angle variables for 

KdV [57]. The final step is the reconstruction of u(x, t) from the scattering data 

8(t). It was shown by Gelfand and Levitan [68] that this may be achieved using 

the solution of a linear integral equation, 

K(x, y; t) + F(x + y; 1) + 	K(x, z; i)F(z + y; t)dz = 0, 	(1.3.17) 

called the GelfandLevitanMaItu1e0 (GLM) equation. The potential 
u (the 

solution to KdV) of the operator L is found from the integral kernel K, via the 

formula 	 09 
u(x,t) = 2-K(x,x;t). 	 (1.3.18) 

Hence although KdV is intrinsically nonlinear, its solution via inverse scattering 

involves only linear equations at each stage. 
We refer the reader to [5] for a full description of inverse scattering. The 

most interesting case corresponds to the so-called reflectionless potentials, when 

only the discrete spectrum of the operator L is important. By assuming that the 

number of discrete eigenvalues is finite, N say, an explicit formula is obtained for 

the integral kernel K, leading to 

u(x,t) = 2(logdet(1 + C)),,, 	 (1.3.19) 

where the N x N matrix C is given by 

CmCn 	 3 

CC. i 	exp[_(km+kn)X_ 4 (
3  

km+kn)u] 
'4n T "n 

The potential in (1.3.19) is the N-soliton solution to the KdV equation, and the 

constants k, cj  are related to the velocity and positions of the solitons respec-

tively. It is easy to see that (1.3.2) follows from (1.3.19) with N = 1. In Chapter 

4 we present similar formulae for the soliton solutions of affine Toda theories. 

The linear system (1.3.14,1.3.15) can clearly be generalized to the case of 

higher-order differential operators L. For example, if we take the Lax operator 

L = 8 + 3uj D + 3(u 2  + uj,), 	 (1.3.20) 
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and 

	

P = a,2 +  2u 1 , 	 ( 1.3.21) 

then the usual Lax equation (1.2.5) yields the coupled system 

• U1,t = ui,  + 2u2,, 

U2,t + U1,xi = 
1

Uiar - 2u 1 u 1 ,,, + U2,xx. 	 (1.3.22) 

Eliminating u2 from (1.3.22) gives 

i,jg + G U1,XX + 2u) = 0,
XX 

which is known as the Boussinesq equation (see [601, for instance). In Section 

1.4 we shall see how higher-order Lax operators arise in reductions of the KP 

hierarchy. 

There is a different linear system associated with KdV, which in many ways 

is more convenient. Consider the matrix system 

	

= F4)7 	 (1.3.23) 

	

ot  = G4), 	 (1.3.24) 

where 

/ 0 	1" 
F = çA— U o)' 

4A+2u '\ 

=4A 2 	 uxx 	u 	)' 

and 4) is either a column vector, 

	

= (:J 	(1.3.25) 

or a 2 x 2 fundamental solution matrix. If 4) is chosen in the form (1.3.25), then 

(1.3.23) is just 

= 02, 

2,x = (A—u) i , 

which (on elimination of 2) 
Lçb i  = 

with L being the Lax operator (1.3.11) for KdV. Thus the original Lax formalism 

is contained within the system (1.3.23,1.3.24), and the compatibility condition 

for this system, the zero curvature equation 
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yields the KdV equation (1.3.1). The zero curvature equation may also be written 

as a Lax equation, 

by taking 

L=18+F, 	P=G. 

The matrices F, G above clearly belong to the Lie algebra sl(2). Hence 

it is natural to consider the system (1.3.23,1.3.24) with matrices in other Lie 

algebras, and this leads to classifications of integrable systems in terms of simple 

Lie algebras [52, 61]. Alternatively, considering the eigenvalue X as a parameter on 

the circle leads to a connection between KdV-type equations and loop groups and 

algebras, as developed by Segal and Wilson [141]. Recently this approach to the 

KdV has been refined somewhat by Schiff [140], to obtain a deeper understanding 

both of symmetries and of the Bäcklund transformations, mapping solutions to 

solutions, which we now introduce. 

1.3.3 Miura Map and Bãcklund Transformations 

One of the remarkable properties of soliton equations like KdV is the existence of 

nonlinear transformations which allow the construction of a family of solutions to 

one PDE from a given solution of another (possibly the same) PDE. The general 

name given to these is Bäcklund transformations, and historically they originally 

occurred in differential geometry. In particular, the sine-Gordon equation 

Uxt = sin 	 (1.3.26) 

was first studied in relation to surfaces of constant mean curvature; a Bãcklund 

transformation for (1.3.26) was originally found by Bianchi and used to generate 

families of surfaces (for further details, and the original references, see [137]). The 

sine-Gordon equation is the simplest of the Ak affine Toda theories, for which 

we discuss Bäcklund transformations and soliton solutions in Chapter 4. 

One way of generating transformations between integrable equations is to 

factorize the Lax operator [60]. The original example of this is the KdV case, 

where the Schrödinger operator can be written as 

L = (3, + v)(O - 

which leads to the Miura map for the potential: 

U = 	- 	=: M[v]. 	 (1.3.27) 
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This leads to the connection with another well-known integrable hierarchy, namely 

the modified KdV (mKdV) hierarchy. Indeed, it may be checked directly that if 

v satisfies the mKdV equation, 

Vt = Vxxx - 6v2V T ) 	
(1.3.28) 

and if u is given by the Miura map (1.3.27), then u must satisfy the KdV equation 

(1.3.1). It turns out that this is intimately related to the second Hamiltonian 

structure of the KdV hierarchy, because the second Hamiltonian operator may 

be written in terms of v as 

E = M1(-8)(M')* 	
(1.3.29) 

(where M' denotes the Fréchet derivative of the Miura map (1.3.27); 
* is the real 

adjoint, i.e. (a8)* = (-8)a ). The n-th flow of the mKdV hierarchy may be 

written in the Hamiltonian form 

Vt.= 	
( 1.3.30) 

with the sequence of Hamiltonian densities of mKdV being given by 

H_1 [M[Vfl = H_4u11=M[v) .  

Using the formula (1.3.29), it is then straightforward to show that for V satisfying 

the Hamiltonian flows (1.3.30) of the mKdV hierarchy, the Miura-related variable 

U must satisfy flows 
(1.3.8) of the KdV hierarchy. Note that this Miura map is not 

invertible: u being a solution of KdV does not necessarily mean that V S a solution 

of mKdV. However, in Chapter 2 we shall see that for the scaling similarity 

solutions of KdV and mKdV the Miura map becomes a one-one 
correspondence, 

leading to a method for generating sequences of similarity solutions. 

The mKdV equation (1.3.28) and each of the flows in its hierarchy can also be 

written in zero curvature form, by gauging the linear system (1.3.23,1.3.24) with 

an element g of the group SL(2). In fact the gauge t ransformation is defined by 

1 (—v—k 1 \ 
V - k 

so that 	
F - 	- 1  — =gFg 

and similarly for G. Explicit calculation shows that 

- (—k v\ 
V 
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and the formula for the gauged matrices O corresponding to each of the flows of 

the mKdV hierarchy can be found in Chapter 2. 

While it may be useful to use transformations between different integrable 

equations, an alternative method for generating solutions is via auto-Bãcklund 

transformations (ABTs), which relate sets of solutions to the same equation. For 

example, if ü is a solution to the KdV equation (1.3.1), and if (x, t) satisfies 

u = fi- (V 

ot  - 6/3+(- 
 xx 	 (1.3.31) 

then 

= ü + 2(log[}) 	 (1.3.32) 

is also a solution of the KdV equation. For example, starting from the trivial 

(vacuum) solution ü = 0, it is possible to generate the 1-soliton solution (1.3.2) 

to KdV. Alternatively, setting 

ü = 0, 	fi = k 2 , 	0 = (x - 12k 2 t) + sinh(2k;k+ 80t) 

it may be shown [140] that (1.3.31) holds, and this yields a mixed rational- solitonic 

solution to KdV, given by 

= 2(log[]) xx . 	 ( 1.3.33) 

Thus (1.3.31,1.3.32) constitute an ABT for KdV. By repeated application of this 

transformation, it is possible to generate sequences of solutions to KdV (in par-

ticular, soliton solutions). 

The relations (1.3.31,1.3.32) are referred to in [140] as the Galas transforma-

tion, although it seems most likely that they originally occurred in the work of 

Weiss and others (see [37, 152]) on Painlevé expansions for PDEs. We shall use the 

latter approach in Chapter 3 to investigate an ABT for the Nonlinear Schrödinger 

(NLS) equation, and thereby generate a sequence of rational solutions. We should 

also mention that there are many other ways to generate Bãcklund transforma-

tions for an integrable nonlinear PDE, such as applying a Darboux transformation 

to the Lax operator [116], or by 'dressing' the zero curvature equation (see [23] 

and references). Our investigation of the Bäcklund transformation for NLS in 

Chapter 3 is also linked to its zero curvature representation. The book [137] is 

an excellent introduction to the subject of Bäcklund transformations. 

1.3.4 Bilinear Form and Hirota's Method 

As well as the Bäcklund transformations, one of the most powerful ways of gen- 

erating exact solutions to integrable PDEs is Hirota's method. This consists of 
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making a suitable transformation of the dependent variables so that the equa-

tions in the new variables take a more transparent form. In the case of the KdV 

equation (1.3.1) the correct substitution is 

2(logr]) xx , 

and after an integration (subject to suitable boundary conditions) a bilinear equa-

tion is obtained for the new dependent variable T. This bilinear equation may be 

written concisely as 
(DDt - D)r . r = 0, 	 (1.3.35) 

by making use of the Hirota derivatives: 

k
g  .f := 

fô 	
3'\3 	

)f( 
/3 	8\k 

DiD 	
- 	- 	

g(y,zY ,z 

There are several reasons why the 
substitution (1.3.34), with its associated 

bilinear equation (1.3.35), is a judicious one. First of all, notice that for the 
N-

soliton solution (1.3.19) the variable r (which is called the tau-function) is just 

a polynomial in simple exponential functions of x and t. Hirota's direct method 

for finding solutions involves writing the tau-function as a truncated expansion 

in some parameter C, 

TO + ETj+ ...+ 

and then dete
rmining the coefficients by comparing the different powers of c in 

the bilinear equation (1.3.35). It turns out that this truncation is consistent, 

and may be used to obtain the N-soliton solution of KdV (setting c = 1 at the 

end of the analysis). In practice, once the 2-soliton has been found it is natural 

to c
onjecture an expression for the N-soliton and then prove inductively that 

it satisfies (1.3.35). Hirota used this technique to construct solitons and other 

solutions to a wide variety of nonlinear equations, and was also able to define 

Bicklund transformations within his bilinear formalism (see the references to 

Hirota starting with e.g. [791). Notice that the 
substitution (1.3.34) also looks 

appropriate in the context of the ABT (1.3.32). The wide 
applicability of the tau- 

function approach was an indication that it should have some deeper 
significance, 

but this only became apparent in i nvestigations of the algebraic structure of the 

KP hierarchy [126], which we discuss in the next section. 

Another thing to observe about the substitution (1.3.34) is that the soliton 

tau-functions may naturally be written as determinants. This is plain to see in 

the formula (1.3.19) for the N-soliton solution of KdV. More generally the tau-

function can be related to the inverse scattering approach t1271, by means of the 

GLM equation (1.3.17). Indeed, for refiectionless potentials 
u, one may consider 
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the Fredholm operator I', with symmetric kernel F(x + y; i) as in (1.3.17), and 

then using a Neumann expansion (subject to suitable analytic assumptions) it is 

possible to show that (1.3.18) leads to 

u = 2(log det(1 + 

The N-soliton formula (1.3.19) just corresponds to the case of a finite kernel. The 

relationship between tau-functions and inverse scattering has also been explored 

for the affine Toda theories [121], which are discussed in Chapter 4. 

Determinantal formulae for tau-functions play a major role in the rest of this 

thesis. Chapter 2 contains a tau-function approach to certain ODEs arising as 

similarity solutions of integrable PDEs; we are able to write some of these tau-

functions as determinants. In Chapter 3 we make much use of bilinear techniques 

to deal with the NLS equation and some Backlund transformations, and construct 

rational solutions which are written in determinantal form. The results about 

affine Toda solitons derived in Chapter 4 also depend crucially on the fact that 

these can be written in terms of determinants. 
It is not always the case that the tau-functions of soliton equations satisfy 

bilinear equations like (1.3.35). Sometimes it is necessary to use trilinear or 

even multilinear equations [73]. We shall see how the NLS equation is related 

to a trilinear equation in Chapter 3. This trilinear equation arises [125] from 

reduction of the bilinear KP hierarchy, which we now introduce. 

1.4 The KP Hierarchy 

Despite the natural interpretation of the KdV hierarchy in terms of an infinite 

sequence of times, the KdV equation is really only physically relevant in (1+1)-

dimensional situations. The original form of the inverse scattering technique 

was only applicable to problems in two dimensions, but it was found that the 

method could be extended to solve the genuinely (2+1)-dimensional Kadomtsev- 

Petviashvili (KP) equation, 

(4ut - 12uu - 	- 3u = 0. 	 (1.4.1) 

A full description of the inverse scattering transform for (1.4.1) may be found 

in Chapter 4 of [5]. For the purposes of this thesis we will only be interested 

in the formal algebraic description of the KP hierarchy, which requires pseudo-

differential Lax operators. We also describe some of the salient features of Sato's 

approach to KP, where the solutions lie in an infinite-dimensional Grassmanian, 

and the tau-function appearing in Hirota's bilinear formalism is of central impor- 

tance. 
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1.4.1 The Lax Operator for KP 

In order to define the KP hierarchy in its Lax form, it is convenient to use the 

pseudo-differential operator 

L = a + > 	 (1.4.2) 

The uj are functions of x, and O;1  is treated as the formal inverse of O. To make 

all (positive and negative) powers of ax well-defined requires the Liebniz rule 

7=0 

This allows the computation of commutators of pseudo-differential operators, 

giving them a Lie algebra structure. For any pseudo-differential operator, say 

A =>Iaja 

with in > 0, there is a natural splitting into a positive part, 

= 

and a negative part, 

A_ = 
j<o 

so that 

A=A + +A 

This leads to a decomposition of the pseudo-differential operators into a direct 

sum of the subalgebras of positive and strictly negative operators. Such decom-

positions are naturally associated with integrability [9, 15]. 

It is straightforward to calculate positive powers of the Lax operator L defined 

by (1.4.2), and then by taking their positive parts we obtain a sequence of purely 

differential operators, 

B.= (L')+. 

For example, the first three in the sequence are 

B1U, B2=O+2uj, B3=O+3uiO+3(u2+ui,). 

If the uj are now allowed to depend on an infinite set of times 1, 12, 1 3 ,..., then 

the KP hierarchy may be defined to be the sequence of commuting Lax flows 

O2 L = [B,, L]. 	 (1.4.3) 
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Clearly it is consistent to identify t 1 	x, and these Lax equations generate a 

sequence of flows for the dependent variables u. It is customary to eliminate all 

but the variable u1, and then the sequence of equations for it1 is also called the 

KP hierarchy. Upon setting it = u1, y = i 2 , I = 13, the KP equation (1.4.1) may 

be obtained from the ii = 2 and it 
= 3 cases of (1.4.3) (after elimination of it2 

and it3 [1261). 
The Lax equations (1.4.3) may also be regarded as the 

consistency conditions 

for the linear system 

Lb = 

,tn = 	
(1.4.4) 

with the spectral parameter k being timeindependeh1t, 

= 0. 

The eigenfunction 0 is known as the wave-function, or in the context of the 

algebroge0metr1c theory 11021 (where it must have particular asymptotics) it is 

called the BakerAkhiezer function. Another 
consistency condition for the system 

(1.4.4) is the sequence of zero-curvature (or ZakharovShabat) equations, 

DiEm - Oj m Bn + [Em, B1 = 0. 
 

It is also quite simple to derive this from the Lax equations (1.4.3), and the 

ordinary KP equation (1.4. 1) follows almost 
immediately  from (1.4.5) with rn = 2, 

n=3. 
Up to a scaling, it is apparent that 132 

is the Schr8dinger operator (1.3.11), 

while B3 
is the Boussinesq Lax operator (1.3.20). In fact this is no accident, 

for the KdV and B oussinesq hierarchies arise as reductions of the KP hierarchy. 

More precisely, the reduction of the KP hierarchy (also known as the p-KdV 

hierarchy) is obtained by constraining the p-th power of L to be purely differential, 

so that 
ii = 

or equivalently 
(Lv)... = 0. 

This implies that the flows corresponding to times which are multiples of p are 

all trivial, i.e. 
= 0. 

Thus the modified variables u j  are independent of the times 1, 1, t3p, 	and 

the zero curvature equations (1.4.5) become a hierarchy of Lax equations for the 
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Lax operator £ = 

Ot m E = [Bm,1] 

(non-trivial only when in is not a multiple of p). In particular, the KdV hierarchy 

arises as the 2-reduction of KP, with 

and the non-trivial flows for the odd times take the form 

= 
[(,&2 

 )
+"C]. 
	 (1.4.6) 

Note that this requires a relabelling and rescaling of the times compared with 

(1.3.13). Similarly, the Boussinesq hierarchy arises as the 3-reduction of KP. 

This may be easily seen for the lowest members of these hierarchies, since setting 

= 0 in (1.4.1) yields the KdV equation (after an integration), while putting 

Ut = 0 instead gives the Boussinesq equation. 

The KP hierarchy may also be written in Hamiltonian form [15]. This hinges 

on the fact that there is a natural definition of the trace of a pseudo-differential 

operator, 

IrA := fresAdx 

with its A = A..., being the coefficient of 0;' in A. The sequence of conserved 

quantities (Hamiltonians) for KP are then given by traces of powers of the Lax 

operator: 

(1.4.7) 

Note that in the p-reduction, all the powers L'P are purely differential and so have 

zero trace. Thus in the reduction to the KdV hierarchy, for instance, the usual 

sequence of Hamiltonians are given by the traces of the odd powers of L. The 

Hamiltonian description of KP can also be understood in terms of r-matrices, but 

we shall not dwell on this any further. 

1.4.2 Sato Theory and the Thu-Function of KP 

Sato's approach (see [126] and references) provides an alternative way to construct 

KP which is more fundamental than the Lax formulation. Starting from the 

dressing operator, 

W = 1 +wA;, 

the Lax operator (1.4.2) is obtained by 'dressing' the bare operator a., i.e. 

L = WO,W' 

gel 



Given that the dressing operator evolves according to the Sato equation, 

= BW - W8, 	 (1.4.8) 

with 

= (WOtW 1 )

+

, 

the Lax equation (1.4.3) is an immediate consequence. 

If the linear system (1.4.4) is considered, it is apparent that the Baker-Akhiezer 

function can be given by 

= th(t,k)exp[,k)], e(t,k) =tj ki, 	(1.4.9) 

where ü, is built out of the coefficients of the dressing operator, 

17) = 1+Ewjk 

An asymptotic expansion of (log 	in powers of k provides yet another way to 

generate the sequence of conservation laws for the KP hierarchy (or its reduc- 

tions [17]), and then it is natural to introduce the tau-function r(t) = r(t) as a 

holomorphic function of the times, so that 

= reaW = —(1ogr). 

The other coefficients of W can be determined from the formula 

7-(t 5  - 11jk) 
r(t5) 

In terms of the tau-function, the densities H. for the conserved quantities 

(1.4.7) are given by 

H = (log r)j, 

while for the dependent variable u 1  there is the usual Hirota substitution 

u i  = (log 

With these substitutions, it is trivial to derive the conservation laws 

= 

Also, calculating residues in the Sato equation (1.4.8) leads to the equations for 

the KP hierarchy in bilinear form, 

0D1DTh - +1(b)) 7-7=0, 	 (1.4.10) 

27 



with the Schur polynomials defined by the generating function 

= exp[(L,k)], 

and b denotes the sequence, D1 , 1  D2 , D3 ,..., of rescaled Hirota derivatives. 

Because these derivatives are skewsymmetric, the first non-trivial case of (1.4.10) 

corresponds to ii = 3, 

(D+ 3D - 4D1D3)'T . r = 01  

and it is straightforward to check that this is the bilinear form of the KP equation 

(1.4.1). 
With the basic apparatus of the tau-function and the associated BakerAkhieZer 

function, it is possible to interpret KP in terms of the Sato's Grassmanian 
Gr of 

the Hubert space L 2 (S 1 ) [46, 1411. This is achieved by taking Ic to be the coor-

dinate on the circle, and then constructing the wave-function 1/3w lying in some 

suitable subspace W. More precisely, the Hubert space has a natural decomposi-

tion into positive and negative powers of Ic, 

L2(S1) = H.1. ® H_; 

Gr contains only those subspaces W such that the projection onto H+ is invertible, 

and as 1/3w evolves according to the KP flows it remains within W. The tau-

function rw 
then corresponds to the Plucker coordinates of the subspace 

W, 

and the bilinear equations (1.4.10) are the Plucker relations of Gr. It turns 

out that there are rational solutions of KP with tau-functions given by Schur 

functions [126], 
and these can be connected with finite-dimensional Grassmanians 

and bispectral operators [94]. 

The Grassmanian Gr 
also has a nice physical interpretation as a free fermion 

Fock space [45], 
and this leads to connections with infinite-dimensional (Kac-

Moody) Lie algebras and the vertex operator 
constructions of conformal field 

theory [92]. Nimmo has also found an alternative algebraic 
construction of the 

bilinear equations of the KP hierarchy [123], based on the fact that soliton and ra-

tional solutions can be written as Wronskians. In Chapter 
3 we derive Wronskian 

formulae for rational solutions of the NLS equation, which occurs as a reduction 

of KP. 
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1.5 Reductions of Integrable Systems in Field 

Theory 
One of the remarkable features of integrable systems is that not only do they have 

many attractive properties from a mathematical point of view, but also they are 

applicable in a wide variety of physical situations. Many of the original examples 

of soliton equations appeared in fluid dynamics, plasma physics and optics, but 

for more details of these applications we refer the reader to the 
comprehensive 

accounts in [5, 47, 621 and elsewhere in the bibliography. The purpose of this 

section is to provide a brief review of some of the ways in which integrable systems 

and their reductions have been found to be of great importance in certain areas 

of theoretical physics, especially quantum field theory. 

1.5.1 Solitons and Field Theory 

Local quantum field theories currently provide the most successful framework 

for describing the fundamental particles of nature and their interactions [251. 

Nowadays the most common formulation of quantum field theory is in terms 

of the Feynman path integral, i.e. with the partition function of the theory 

being expressed as a functional integral over all the classical field 
configurations 

weighted by an exponential of the action, 

Z = J [d44 exp[—S[11. 	
(1.5.1) 

Usually the action S is given as the integral of a local Lagrangian density, and then 

in principle the correlation functions and scattering amplitudes for the theory may 

be calculated from functional integrals over suitable combinations of the fields. 

In principle it should be possible to compute these path integrals exactly, but 

in practice this is virtually never the case, and hence it is customary to write 

the Lagrangian as a perturbation of that for a free field theory and expand all 

amplitudes as a power series in a small parameter, the coupling constant. The 

terms in this perturbation expansion have a natural representation as a sequence 

of graphs (Feynman diagrams), and this technique can yield extremely accurate 

predictions of physical quantities. However, the problem with perturbation theory 

is that it makes two major assumptions, neither of which may be true in general. 

The first inherent assumption of perturbation theory is that the coupling con-

stant is small, so that each term in the expansion is smaller than the preceding one. 

An important concept in quantum field theory is that of renormalization, whereby 

the magnitude of all physical quantities depends on the energy (or distance) scale 
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of the measurements. This is particularly relevant to quantum 
chromodynaim 

ics (QCD), the model of the strong interaction which describes how quarks are 

combined with gluons to make up the hadrons. At large distances the effective 

coupling of the theory becomes very small, and so it is possible to do accurate 

perturbative calculations for lepton-hadroll scattering. On the other hand, at 

small distances the coupling is very strong (leading to quark confinement), and 

so perturbation theory breaks down. 
In order to understand how quarks are bound into the hadrons, essentially 

different nonperturbati1e techniques are required. A popular approach, requiring 

the most up-to-date computer technology, is to simulate QCD 
numerically as a 

lattice gauge theory [97]. An alternative approach is to construct exactly solvable 

models, in the hope that these will give insight into more realistic theories. In this 

area there has been much recent progress with theories possessing duality [38], 

in particular the super 
Yang-Mills theories. The latter are naturally 

and this connection 
related to certain integrable systems (Toda lattice equations),  

means that the mass spectrum can be calculated [48, 115]. 
The other main assumption behind a perturbative treatment of quantum field 

theory is that none of the relevant quantities are singular in the expansion pa-

rameter. However, if the classical theory admits soliton solutions then this is 

often violated. In the physical literature the word soliton is used to mean a sta-

ble, localized classical solution i nterpolating between two different vacua; this 

is in contrast with the more precise mathematical notion of a soliton, which is 

only appropriate for an integrable theory. Prime examples of soliton-type solu-

tions occur in two different (1+1)dimensional theories, namely the (integrable) 

sine-Gordon theory and the (non-integrable) theory. 

Both the sine-Gordon (sG) theory and the 	
theory have simple Lagangian 

densities of the form 

	

L 	 UM 
2 

with m4 [I - cos 

for sine-Gordon (sG) and 

4 r 
i 	gqi 

U ( )= ilLl  

for 04. The classical vacua are the minima of the potentials, U'(qSo) = 0, 

	

sG: 	00 r27rn7flIg,ThEZ, 

04 
:

00 = ±m/g. 
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For each theory there is a static kink soliton (using this word in the loose sense), 

sG: 	4(x)= +4(m/g)tair 1 exp[+m(x—xo)], 

= ±(m/g) tanh[m(x - x o )], 	 (1.5.2) 

and these solutions minimize the energy. For a static solution the energy is just 

= f ( 
+ U()) dx, 

so that 

.sG : 	E[] = 8(m3 /g2 ), 
4 3  0' : 	E[&]= (m /2). 	 (1.5.3) 

Clearly the solutions (1.5.2) can be made time-dependent by applying a Lorentz 

boost. 

The ± signs in (1.5.2) differentiate between kink and anti-kink solutions, and 

even at the classical level these solutions are localized around x = x 0  and may 

be identified as particles and anti-particles. The main thing to observe is that 

each solution (1.5.2), as well as its energy (1.5.3) (corresponding to the lowest 

order approximation to the particle mass in the quantum theory), is singular in 

the coupling constant g, and thus would be completely missed by conventional 

perturbation theory. So to develop the full quantum theory it is necessary to 

include a set of states corresponding to the soliton sector of the theory, as well as 

the usual vacuum sector [89]. 

The point of the preceding discussion is to emphasize the importance of clas-

sical solutions, and especially solitons, in quantum field theory. The theory is 

not integrable, but is a useful toy model which still has some features that are 

worth studying [114]. The quantum sine-Gordon model is more interesting in 

that it is one of the prime examples of an integrable quantum field theory, and so 

the results of semi-classical quantization are exact [24]. The sine-Gordon theory 

and its multi-component generalizations, the affine Toda theories, have been the 

subject of much investigation (see e.g. [31]), and we shall return to these in Chap-

ter 4. Classical solutions of more physically realistic (3+1)-dimensional theories 

of Yang-Mills type have also been studied a great deal [7], and recently there 

have been many new results concerning monopole solutions [85], which have fun-

damental connections with the Toda lattice equations [145]. Integrable systems 

also have a role to play in various attempts to construct a consistent quantum 

theory of gravity, particularly in the context of the random matrix models which 

we now introduce. 
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1.5.2 Random Matrices, Correlation Functions and the 
Painlevé Transcendents 

Random matrices have been used extensively in nuclear physics to model the 

Hamiltonians of large nuclei. The rationale behind this is that for a complicated 

system the Hamiltonian will not be known, and even if it were it would be too 

difficult to solve. Thus it makes sense to derive a description of the statistical 

behaviour of the energy levels from the eigenvalues of a large random matrix; only 

the overall symmetries of the system are needed as constraints. Random matrix 

models arise in many other contexts, such as in describing the local fluctuation 

properties of the zeros of the Riemann zeta function (see references in Mehta's 

book [117]), in determining the spectrum of the Dirac operator in QCD [149], 

and in the matrix models of 2-D quantum gravity [51, 75] (described in the next 

subsection). 

Original work of Dyson [53] showed that by imposing a simple symmetry con-

straint (invariance under unitary transformations) and statistical independence 

of matrix entries, the most general probability measure d4u on the space of N x N 

hermitian matrices (denoted H) is given by that for the Gaussian Unitary En-

semble (GUE), 

du = exp(—a tr H2  + bir H + c) W, 

where a, b and c are real constants with a > 0, and 

dH = fldH,, HdHjkdHjk 
j 	j<k 

By diagonalizing H with a unitary matrix and suitably rescaling, the joint prob-

ability density for the N eigenvalues is obtained: 

PN$(YI,...,YN) = CNpexp 	 IA(y)j$ 	(1.5.4) 
 k ij=1 

In the expression (1.5.4) CNP is a normalization constant, and 

a(y) = Iuj - Ilk) 
j<k 

is the Vandermonde determinant. For the CUE it is found that j3 = 2, but there 

are two other types of matrix ensemble corresponding to invariance under the 

orthogonal and symplectic groups, and for these ensembles the eigenvalue density 

is given by the formula (1.5.4) with 0 = 1, 4 respectively. 

The normalization constant CNP can be calculated explicitly [117], making 

use of a corollary of Selberg's integral formula [14], 

f00 	 N 	 Nr(l+i&) 

= I 	J A(y)10 [J &4tdy = (2ir)* II 
j=i 	 j=1 IN. 1  + J—oo 	-00 
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This exact evaluation is helpful because it leads to a thermodynamical model 

of the eigenvalues, treating them like a gas of N point particles on a line with 

potential 

W= 

The Gibbs measure for the system in equilibrium at inverse temperature fi is 

c'"1' 
PNP= 

with the partition function 

Z(/3) = J ... J e'dyi ... dyN. 

With this alternative interpretation in terms of statistical mechanics, a lot of hard 

probabilistic analysis is avoided, and it is possible to derive asymptotic results 

about correlations between eigenvalues in the limit N -* oo. The consideration 

of these correlations then leads to some remarkable connections with integrable 

systems. 

Following the exposition of Tracy and Widom [147], we define the n-point 

correlation functions, 

N' 	°° 	
f00 

Rp(yi,...,y4:= 
 00 J-OO 

which give the probability of finding a level (eigenvalue) around each of the points 

yi, ..., yn  with the rest being unobserved. Girko [72] has shown that the level 

density R1 0 for a very wide class of symmetric random matrices (fi = 1) tends to 

a semi-circle law in the limit N - ; after scaling the endpoints, the eigenvalues 

are distributed in a semi-circle around the mean value. It turns out that the 

n-point correlation functions can be expressed in terms of determinants involving 

the kernels of certain integral operators. To consider the scaling limit N -, , it 

is necessary to examine the local statistics of the eigenvalues in the neighbourhood 

of some point yo,  and then define new variables 

= R1 p(yo)(y - yo), 

with j  fixed as 

Yj -* Yo. 

Henceforth we consider only the GUE case (fi = 2). Expressing everything in 

the scaled variables, the relevant integral kernel is 

- isin(ir(E - 
- ir 	(e — i) 
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and the formula for the scaled n-point function is 

R2(e1,...,e) =det(R(ea,ck))j,k=i.m. 

We should emphasize that this and similar results in terms of an integral kernel K 

hold true for a large class of hermitian matrix ensembles, such as those constructed 

from the classical orthogonal polynomials [147], in particular the ensembles rele-

vant to 2-D quantum gravity [75]. A direct connection with an integrable system 

arises on considering m disjoint open intervals 4 = (a2k_1,a2k), 1 < k < in. 

A quantity of central importance is the Fredholm determinant 

D(I; A) = det(1 - k), 	 (1.5.5) 

where the integral operator is given in terms of its kernel by 

1< = 

Observe that it is possible to write 

- A(e)A'() - A'(e)A() 

where A() = 1 sin(ir). Considering the set of endpoints (denoted a) of the 

intervals 4 as times, it is then possible to obtain a system of equations in the 

dynamical variables 

	

Q3 (a) 	lim&_ aj /J(1 - 

Pj(a) := limc.aj/(1 - k) -1 A'() 

(where we have made a slight alteration to the notation of [1471). The resulting 

integrable system, known as the Jimbo-Miwa-Mori-Sato (JMMS) equations [90], 

has a natural Hamiltonian structure in terms of canonically conjugate variables 

p, qj defined by 

	

q2j 	2iQ21, 	q2j+i 	2Q2j+j, 

	

P2i 	P2j , 	q2j+1 := Q2+1. 

The Hamiltonian corresponding to the time aj is given by 

+ 	- 	
(qp - qp)2 	 (1.5.6) 

If the a1 are regarded as fixed constants then these Hamiltonians yield the well-

known integrable Neumann systems. 
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The Hamiltonians for the JMMS equations are Poisson-commuting, and are 

given by the exact one-form 

= 	Hjda = da log r, 

with the tau-function r being given by the Fredhoim determinant (1.5.5). We 

have already seen that such determinants naturally yield tau-functions of KdV 

[127], and Tracy and Widom have used their matrix model approach to derive 

similar solutions to other integrable PDEs [1481. The appearance of the times 

a1 in (1.5.6) indicates that the JMMS equations constitute a non-autonomous 

Hamiltonian system; they also have an interpretation in terms of loop algebras 

[76]. An alternative way to view them is as differential equations of Painlevé 

type, meaning that their solutions can have only poles as movable singularities. 

In particular by restricting to the case of one interval and looking at dependence 

on the interval length z, the JMMS equations reduce to a form of the Painlevé V 

equation, 

JAw - (1 	1 'j'dw'\ 2 	1 d 

dz2 - 2w 	— i)kdz) 	1 
(w_1)2 (aw+) +1w + 5+1) 	(1.5.7) 

+ 	z2 	 z 

(a, , y, 5 are parameters). 
The Painlevé equations were discovered as a result of the work of Paul Painlevé 

(see references in Chapter 7 of [51), who was studying second-order ODEs of the 

form 	 d 2W 

T-2 	TZ 

with I being a rational in w and 	and analytic in z. More specifically, Painlevé 
dz 

and his co-workers succeeded in classifying ODEs (1.5.8) such that the solutions 

have no movable singularities other than poles. It was found that (after suitable 

changes of variables) all these ODEs had general solutions in terms of classi-

cal special functions, except for six special equations which are now known as 

Painlevé I-VT (or just PI-VI). The equation (1.5.7) is the fifth of these, and its 

general solution (or sometimes the equation itself) may be referred to as a Painlevé 

transcendent, since it essentially defines a new transcendental function. 

Painlevé transcendents naturally arise as similarity reductions of certain inte-

grable PDEs [1]. For example, the first Painlevé transcendent (P1), 

JAw 2 	 (1.5.91 —=6w +z, 
dz 2  
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produces similarity solutions of the KdV equation (1.3.1), via the 
substitution 

u(x,t) = —2 (w(z(x,t)) + t), 	z = x - W. 

The c
onnection between integrable nonlinear evolution equations and the P ainlevé 

transcendents has led to a direct test for i
ntegrability using local expansions 

around a singular manifold [301; the method is usually referred to as Painlevé 

analysis, and we make use of it in Chapters 2 and 3. In Chapter 2 we study 

some fo
urth-order ODEs obtained as similarity reductions of fifth-order KdV-

type equations; these ODEs may also be written as non-autonomous Hamiltonian 

systems. 
The equations PI-VI (as well as some of their higher order analogues) have 

also arisen in various 2-D field theories (see e.g. [21, 56, 881 and below), where 

they give exact formulas for correlation functions. In this context it is essential 

to have a good understanding of the structure and 
asymptotics of the solutions 

to these ODEs, as only certain solutions are relevant for physical applications. 

These considerations are particularly important for the pj
nlevé-type equations 

occurring in the matrix models of 2-D quantum gravity, which we briefly review. 

1.5.3 Matrix Models of 2-D Quantum Gravity 
heoretical physics is to find a consistent 

One of the main unsolved problems in t  
framework for a quantum theory of gravity. Although Einstein's theory of gen- 

ometrical description of the large-scale 
eral relativity seems to be the correct ge  

s
tructure of the universe, it breaks down at very small distances, where grav-

ity (and hence s
pace-time itself) should be subject to quantum fluctuations. If 

the s
pace-time metric is treated as a quantum field, then the usual perturbative 

methods using path-integrals (1.5.1) fail due to irremovable divergences. Thus it 

is necessary to find some alternative description. In recent years one of the most 

popular approaches has been that of string theory, which 
essentially replaces the 

point particles of ordinary field theory by one-dimensional strings. While there 

are considerable conceptual difficulties with string theory, it has produced many 

physical insights as well as providing the inspiration for whole new areas of math-

ematics. For an introduction to the main concepts of string theory we refer the 

reader to Polyakov's book [1331. Here we merely wish to emphasize some of the 

c
onnections with integrable hierarchies and matrix models. 

The simplest and most successful models of quantum gravity are those in two 

dimensions. As well as being of independent interest, such models are important 

in string theory because they provide a description of the world-sheet swept out 

by a string as it evolves in space-time. In the continuum approach advocated by 
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Polyakov, the quantum picture of the string requires a suitably weighted sum (or 

path integral) over two-dimensional random surfaces corresponding to the possible 

configurations of the world-sheet. It is also necessary to allow for variations in 

the topology of these surfaces, and in two dimensions this just depends on the 

number of handles (genus). Hence if the fluctuations in the metric are ignored, 

so that the space-time background is fixed, then this approach leads to the study 

of conformal field theories on Riemann surfaces, governed by suitable extensions 

of the Virasoro algebra 

Elm , in] = (in - n)lm+n +
c 

(M 3 	 (1.5.10) 

It turns out that this algebra is related to the KdV hierarchy and certain classes of 

its solutions, and this connection can be understood in relation to matrix models. 

The matrix models constitute a non-perturbative, discrete approach to 2-D 

quantum gravity, whereby surfaces are constructed from random triangulations 

(or polygonal configurations). Generally these models describe conformal matter 

coupled to topological gravity [46], but we shall largely concentrate on the simplest 

case of pure gravity, which can be derived from the matrix integral 

ZN(t) = J exp[—tr(tH)]dH.  

The partition function (1.5.11) is given as an integral over N x N hermitian 

matrices (as for the GUE described above), and defines the one-matrix model. 

It may also be regarded as a discrete analogue of the path integral (1.5.1), and 

has a natural expansion in terms of planar diagrams [75, 151]. Each diagram 

corresponds to a surface built out of a finite number of polygons, and by taking 

N -* :c and suitably scaling the couplings t (in what is known as a double-

scaling limit) different sorts of continuum theory can be recovered. 

There are many subtleties to the way in which the partition function is scaled. 

However, it is a remarkable fact that, even before the double-scaling limit is taken, 

the sequence of partition functions are naturally related to an integrable system - 

the Toda lattice equations. Indeed, after integrating out the angular variables (as 

for the GUE) the expression (1.5.11) is reduced to an integral over the eigenvalues 

of H, 

ZN = J IA(A2Hexp[_EtjM]dAk 

(where an overall constant prefactor has been removed), and then using a certain 

Vandermonde identity [151] (which can be derived from Plucker relations), it is 

found that 
O2 Z4rv (UZN'\ 2  

ZN 	2 - = ZN_1ZN+l. 	 (1.5.12) 
Ut1 	\Ut1J 
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Thus the ZN 
are seen to be tau-functions of the Toda lattice, since with the 

substitution ON 
= log[ZN/ZN_1] the sequence of bilinear relations (1.5.12) yields 

the usual Toda equations, 

52 
N = exp[N+1 - N] - exp[N - 

Recently Aratyn and others have shown that more general matrix models sat-

isfy equations of Toda lattice type, within the framework of DarbouxBacklund 

transformations for reductions of the KP hierarchy (see [171 and references). 

The next remarkable property of the partition function (1.5.11) is that under 

suitable adjustments of the parameters t1, it has d
ouble-scaling limits correspond-

ing to the flows (1.4.6) of the KdV hierarchy subject to a constraint, 

	

['C' P1 = 1, 	 (1.5.13) 

known as the string equation. For the string equation it is found that 

3 

for some integer k, with each choice of Ic giving a different conformal model 

coupled to gravity. 
The simplest non-trivial case is Ic = i, corresponding to pure gravity, and it 

is easy to check that for this model (after an integration) the string equation is 

just the first Painlevé transcendent (1.5.9). Gross and Migdal [75] have given a 

thorough discussion of the relevant asymptotics for solutions of this string equa-

tion, and these considerations have received more attention recently [124]. In 

the double-scaling limit the partition function also becomes the square of a KdV 

tau-function, 
2 

ZN —4 T 

with the potential of the Schr6dinger operator £ given by the usual formula, 

= 2(log '00. 

Using orthogonal polynomial techniques, Douglas [51] has also shown that more 

general (p - 1)-matrix models, with partition functions 

Z f 
have double-scaling limits corresponding to the p-reduction of the KP hierarchy, 

constrained by a string equation of the form (1.5.13) (where the operator £ is of 

order p). 
T;1 
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The second Hamiltonian structure of KdV provides another direct link with 

conformal field theory. A short calculation with the second Hamiltonian operator 

(1.3.6) shows that 

{u(x), u(y)} 2  = 	- y) - 2(n(x) + u(y))6'(x - y). 

Taking periodic functions u(x) (with period 27r), define the Fourier modes by 

Un = 1 
- 	u(x)C''dx - 
2 

and then it is easy to compute their Poisson brackets, 

1 
{Um,Un}2 = 

2iri 
- (2(m - rt)Um+n - (in3 - 

which are equivalent to the Virasoro algebra (1.5.10) after a simple rescaling. It 

turns out that the second Poisson structures of the p-KdV hierarchies are simi-

larly related to some other extended conformal algebras (W-algebras). Further 

connections between integrable hierarchies and these algebras are explored in the 

thesis of de Vos [151]. Approaching these theories from a different direction, Adler 

and van Moerbeke have shown [10] that if the flows of the p-KdV hierarchy are 

subject to a constraint (1.5.13) then the tau-function can be given as a limit of a 

matrix integral; equivalently such tau-functions can be characterized as vacuum 

vectors of the Virasoro algebra, 

= 0, 

or a suitable extension. The matrix integrals of these authors are of a slightly 

different type to the ones previously considered, and are naturally related to the 

interpretation of 2-D gravity as a topological field theory [46]. There remain many 

unanswered questions concerning these matrix models, but so far the connections 

with integrable hierarchies seem to provide the most fruitful lines of enquiry. 

For the sake of clarity we review the contents of the other chapters once more. 

Chapter 2 concerns similarity reductions of some integrable fifth-order evolution 

equations. These reductions are naturally viewed as ODEs of Painlevé type, hav-

ing an interpretation as non-autonomous Hamiltonian systems; it is clear from 

the above that such equations are important for computing correlation functions 

in certain field theories. For the systems considered we construct Bäcklund trans-

formations and identify the role of the tau-function. 

Another way to obtain finite-dimensional mechanical systems from integrable 

PDEs is to look at the motion of the poles of certain classes of solutions. In 

Chapter 3 we look at some singular solutions of the NLS equation. With the 

use of a particular type of Bãcklund transformation (an analogue of the Crum 
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transformation appearing in the theory of KdV) a sequence of rational solutions 

is constructed. It is straightforward to demonstrate that the poles and zeros 

of these rational solutions evolve according to constrained Calogero-Moser equa-

tions. These results are quite natural in the light of the fact that NLS occurs as a 

reduction of KP, since rational solutions of KP are also related to the Calogero- 

Moser system (without constraints). 
Finally, Chapter 4 aims to give a dynamical description of the soliton solutions 

of the affine Toda field theories. It is shown that the solitons in the case are 

related to the Ruijsenaars-Schneider models with spin, generalizing the connection 

between the sine-Gordon solitons and non-spin Ruijsenaars.Schneider models. We 

make use of the tau-function formalism for the affine Toda theories, and give an 

expression for the N-soliton tau-functions in terms of the positions and spins of 

the N particles in a Ruijsenaars-Schneider model. 
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Chapter 2 

Non-autonomous Hénon-Heiles 
Systems 

F 

In this chapter we consider scaling similarity solutions of three integrable PDEs, 

namely the Sawada-Kotera, fifth-order KdV and Kaup-Kupershmidt equations. 

We show that the resulting ODES may be written as non-autonomous Hamiltonian 

equations, which are time-dependent generalizations of the well-known integrable 

Hénon-Heiles systems. The original inspiration behind this was Fordy's discov-

ery that stationary flows of the same three PDEs yield the usual (autonomous) 

Hénon-Heiles systems. Since these PDEs all arise as reductions of the KP hierar-

chy, they each have an associated tau-function, and this tau-function is inherited 

by the scaling similarity solutions. It turns out that the (time-dependent) Hamil-

tonians are given by logarithmic derivatives of the tau-functions. The ODES 

for the similarity solutions also have inherited Bãcklund transformations, which 

may be used to generate sequences of rational solutions as well as other special 

solutions. We exhibit some of these solutions explicitly. These results on non-

autonomous Hamiltonians are an extension of the approach used by Okamoto in 

his description of the Painlevé transcendents P1-VT. Some other examples indicate 

that this approach should be applicable in a more general setting. 

2.1 Introduction 

The six Painlevé transcendents have received a considerable amount of attention 

in recent years, and have been studied from many different points of view. Their 

original discovery came about from Painlevé's classification of second-order ODES 

having no movable critical points. They have also been approached by way of 

isomonodromic deformation of linear differential equations [58], or via abelian 

integrals and algebraic geometry [124, 113]. Furthermore, they have found nu-

merous physical applications. In the matrix models of 2-D gravity [51, 751, the 
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first Painlevé transcendent (P1) is the simplest equation arising from a Heisenberg 

relation for two linear differential operators, 

[L, PI = 1, 	 (2.1.1) 

and in this context it is referred to as the string equation. The scaling limit of 

the Ising model (which describes free fermions) has correlation functions which 

are governed by Painlevé III (see [21] and references therein). The fifth Painlevé 

transcendent (PV) and some systems which generalize it were found in connection 

to correlation functions for the spectrum of random matrices (see [76, 90, 147]), 

and these same equations drive correlation functions for the quantum nonlinear 

Schrödinger equation [88]. A new development has shown that PV is also related 

to the correlation functions of the XXZ spin chain in the phase which describes 

interacting fermions [56]. 

The classification programme of Painlevé only applied to second-order ODEs 

of a particular form. As the order of the equations increases, the problem of 

classifying those which are of Painlevé type (i.e. having no movable singularities 

other than poles) becomes more and more difficult. For example, with third-order 

equations there is the possibility of natural boundaries beyond which solutions 

cannot be analytically continued (as in the case of the Chazy equation [5]). It 

would be extremely useful to have some general classification techniques for this 

type of equation, independent of the order. For instance, higher order equations 

of Painlevé type occur in the matrix models as the order of the operators in 

(2.1.1) increases. Based on the idea of deformations of Riemann surfaces, Novikov 

[124] has determined the asymptotics of some of these equations. However, as 

pointed out in [124], these techniques and the related isomonodromic methods 

are ineffective at revealing general results; detailed analysis is required for each 

particular equation considered. 

Another context in which ODEs of Painlevé type arise naturally is as similarity 

reductions of integrable PDEs. Given a PDE in 1+1 dimensions with independent 

variables x, t and dependent variable u(x, t), the problem of finding solutions is 

somewhat simplified if we seek a solution in the similarity form. That means we 

have 

u(x,t) = U(w(z),x,t), 	 (2.1.2) 

where 

Z = z(x,t) 

is the similarity variable, and on substituting U(w,x,t) into the PDE, an ODE 

for w(z) is obtained. There are various ways of finding similarity forms, the most 
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common being the classical Lie symmetry approach (although this method does 

not yield all possible similarity solutions; see [43] for a case where it fails, as 

well as references to the other techniques). Now if the original PDE has lots 

of nice properties (such as solvability by inverse scattering) then the resulting 
more precisely in 

ODE should be correspondingly manageable. This is expressed  

the conjecture of Ablowitz, Ramani and Segur (ARS 
[11), which states that all 

similarity reductions of integrable PDEs are of Painlevé type. A more detailed 

discussion, as well as some theorems which support the ARS conjecture, may be 

found in Chapter 7 of [5]. The main thing to observe is that similarity reductions 

of soliton equations inherit much of the stucture associated with integrability, 

such as Backlund transformations and solutions in terms of special functions. 

The simplest sort of similarity solution for a PDE is just the stationary flow, 

which corresponds to taking 
u=w(z) 

with z 
= x in (2.1.2). Stationary flows of integrable nonlinear evolution equa-

tions naturally lead to integrable finite- dimensional Hamiltonian systems. Indeed, 

given the zero curvature representation of the evolution equation, 

the restriction to the stationary manifold automatically yields a Lax equation: 

G. = [F,G]. 

Hence 0 becomes the Lax matrix for the 
stationary flow, and traces of powers 

of 0 yield the Hamiltonian and the other constants of motion. Some particular 

examples of this, relevant to the rest of this chapter, may be found in [26, 631. 

The general description of the reduction to stationary flows is given by Fordy in 

[64]. 
The other sort of similarity solution most commonly considered is the scaling 

similarity solution. For comparison with what follows it is worth looking at a 

well-known example. If we start with the modified KortewegdeVrie5 (mKdV) 

equation 

Vt = Vxrx - 6v2v, 	
(2.1.3) 

and notice that it has a scaling symmetry, then this gives us its scaling similarity 

solutions- More explicitly, (2.1.3) is invariant under 

t 3t, 	v Pv, 
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and so this implies that there is a similarity solution 

v(x, 1) = (-3t)y(z(x, tfl, 	 (2.1.4) 

with the similarity variable z = (-31)4x. Substituting this form into (2.1.3) we 

find that y satisfies 

= 6y 2y' + zy' + y 	 (2.1.5) 

(' denotes ), which may be integrated once to give 
dz 

Y 
11 = 2y 3 + zy + a, 	 (2.1.6) 

for some constant a. The resulting equation (2.1.6) is the second Painlevé equa- 

tion (P11). 
The example of P11 is extremely instructive, in that it is closely related to 

some of the equations we shall be studying in the rest of the chapter. The first 

thing to observe is that it may be obtained from the Hamiltonian system 

dy 	Oh 

- Op' 
dp 	Oh 

- 

with the polynomial Hamiltonian 

h = 12 _(2 + )p—(a+ )y. 
	 (2.1.7) 

Note that this Hamiltonian is non-autonomous: it has explicit dependence on the 

time z, and hence is no longer a constant of motion. Instead of a Lax equation 

(as for the stationary flows), the zero curvature representation of mKdV (2.1.3) 

yields a zero curvature representation for PIT, which we derive in Section 2.3. It 

turns out that each of the equations PT-VT may be written as a non-autonomous 

Hamiltonian system. 
In the work of Manin [113], the following Hamiltonian for PVI is presented: 

h_P2
1 	a1 p(Q+L,w). 	 (2.1.8) 

- - 

 

(2_7r Ti 

In the above, the Weierstrass p-function has periods 1 and w, with w being the 

time, the a1 are parameters, and (T0 ,...,T3) = (0,1,w,1 + w). A substitution 

(originally due to Fuchs) is required to convert this to the usual form of PVI, 

from which the other Painlevé equations PT-V may be obtained by a suitable 

limiting process. While Manin's approach is very elegant and uses the powerful 
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machinery of algebraic geometry, we do not see a simple way to extend it to higher 

order equations. We prefer to develop the alternative methods of Okamoto [128], 

who uses polynomial Hamiltonians for the Painlevé equations, and defines a tan- 

function for each of them by 

h = 4-log[r(z)]. 

In the case of PH, this tau-function essentially coincides with the tau-function of 

mKdV/KdV (after a simple scaling). Hence the Hamiltonian h is a very natural 

object from the viewpoint of the original evolution equation. Since the Painlevé 

equations can all be derived as reductions of higher-dimensional integrable equa-

tions (such as self-dual Yang-Mills [51), we expect that the tau-functions should 

occur very naturally in these reductions. 
Another feature of PIT (also inherited from mKdV) is its Bäcklund transfor-

mation, which takes a solution y, of (2.1.6) to another solution Ya+1 for parameter 

value a + 1. It is given explicitly by 

2a + 1 
Ycr+i = 	

- 2Yr + 2y + 2 

This may be viewed as a canonical transformation in the Hamiltonian framework. 

The rational solutions to the mKdV/KdV hierarchy (constructed by Adler and 

Moser in 181) reduce to give a rational solution to P11 for each integer value of a, 

in a sequence related by the Bãcklund transformation. All these solutions may 

be generated by applying this transformation starting from the solution yo = 0. 

For half-integer values of a there is a different sequence of solutions which may 

be expressed in terms of Airy functions. These results have been derived many 

times in different ways (e.g. compare the methods in [3, 931 and [1281), and the 

other Painlevé equations display the same sort of structure. 

The majority of this chapter is devoted to the the scaling similarity solutions 

of three different integrable, fifth-order evolution equations, which are known as 

the Sawada-Kotera, fifth-order KdV and Kaup-Kupershmidt equations. We show 

that the ODEs for these similarity solutions may be written as non-autonomous 

Hamiltonian systems (referred to in the text as the systems fl(I)_(0), which in-

herit Bãcklund transformations and tau-functions from the original PDEs. Each 

of these PDEs belongs to an integrable hierarchy of commuting flows, and we wish 

to illustrate some of the general features of similarity reductions of the equations 

in these hierarchies. Hence, in Section 2.2, we consider the three relevant inte-

grable hierarchies of evolution equations (the Sawada-Kotera, Korteweg-deVries 

and Kaup-Kupershmidt hierarchies), and develop a general formalism to describe 
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the scaling similarity forms of each of their flows. Each hierarchy has a corre-

sponding modified hierarchy related to it by a Miura map, and this Miura map 

extends to the similarity solutions. As a particular example of the general for-

malism, we ex
plicitly describe the one-one correspondence between the scaling 

s
imilarity solutions of the ordinary (third-order) KdV equation and those of the 

mKdV equation (i.e. solutions to PIT). We also describe this 
correspondence for 

the case of the fifth-order evolution equation in each hierarchy. To make contact 

with j5oon
odromy ideas, Section 2.3 contains a derivation of the zero curvature 

representation for each of the ODEs arising as 
similarity reductions of the flows 

of the modified hierarchies. For most of the rest of the chapter, we 
concentrate on 

the specific example of the scaling 
similarity solutions of the fifth-order evolution 

equations. 
Section 2.4 concerns some completely integrable finite dimensional Hamilto-

nian systems, known as the Henon-Ileiles systems, and their 
non-autonomous 

generalizations. We describe how (as discovered by Fordy [631) they are related 

to stationary flows of the fifth-order PDEs p
reviously introduced, and relate the 

similarity solutions of these PDEs to non-autonomous versions of the Hénon-

Tleiles systems. For example, 
stationary  flows of the fifth-order KdV equation, 

U t  = tLsz + lOnU3x + 20uu + 30u2u, 	
(2.1.9) 

may be written as a H amiltonian system, with the Hamiltonian 

1 	2 	1 	A2 

by making the identification u = q (x is the time, and A is a constant of inte-

gration). The particular ratio of terms in the potential of the above Hamiltonian 

corresponds to one of the integrable cases of the Henon-Heiles system. By a slight 

modification of Fordy's approach, we are able to relate the scaling similarity so-

lutions of (2.1.9), 

	

U = (_5t)-w(z) 	z = (_5i)-x, 

to a system with Hamiltonian 

11 	3 	A2 	 (2.1.10) 1 

h = 	+ p) + 	+ - 	- zqi.  

To do this we must identify w = q, and the time is now denoted by z. Thus 

it is apparent that the Hamiltonian (2.1.10) is time-dependent; there are similar 

Hamiltonians for the scaling similarity solutions of the S awadaK0tera and Kaup-

Kupershmidt equations. 
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It is helpful to define tau-functions for these non-autonomous Hamiltonians, 

so that e.g. for (2.1.10) we have 

h = —4-l0g[r(z)]. 

We then find Bäcklund transformations which are seen to be canonical transfor-

mations in the Hamiltonian setting. In order to derive these Bäcklund transfor-

mations, we make use of the Miura map for the similarity solutions. In particular, 

(2.1.9) is related to the fifth-order equation in the mKdV hierarchy, 

Vt = (v4 - 10(v 2v + vt4)  + 6v 5),  

by the Miura map, 

U = V - V 2 . 

This Miura map leads to a one-one correspondence between scaling similarity 

solutions of (2.1.11), 

v = (-5t)4y(z), 	z = (-5t) 15'x, 

and solutions of the system with Hamiltonian (2.1.10). Repeated application of 

the Bäcklund transformations may be used to generate sequences of solutions 

to the Hamiltonian systems. Hence (in Section 2.5) we present sequences of 

rational solutions, as well as special solutions which may be expressed in terms 

of solutions to PT. This is in contrast to the special sequences of solutions to 

the usual Painlevé equations, which are all given in terms of classical functions. 

Section 2.5 also contains a brief discussion of Painlevé analysis for these systems. 

Finally we indicate some other applications of these techniques, and suggest ways 

in which they might be developed. Some of this work has already appeared in 

[87]. 

2.2 Scaling Similarity Solutions in the Sawada-
Kotera, KdV and Kaup-Kupershmidt Hier-

archies 

Although most of this chapter is concerned with the scaling similarity solutions 

of three particular fifth-order evolution equations (one of which is the fifth-order 

KdV equation (2.1.9)) and their associated modified equations (such as (2.1.11)), 

these fifth-order equations are only particular flows of certain integrable hierar-

chies, which we will refer to as SK, KdV and KK for short. For example, the 

KdV equation ((2.2.13) below) is the first non-trivial flow in the KdV hierarchy, 
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while (2.1.9) is the next flow in this hierarchy. In this section we develop a con-

cise notation to describe the scaling similarity solutions of any one of the flows 

of SK, KdV or KK. We then apply it to some particular examples, including the 

similarity solutions of fifth-order equations which we study in detail in Sections 

2.4 and 2.5. 

2.2.1 General Description of Scaling Similarity Solutions 

Before looking at the particular non-autonomous systems which are the main 

subject of this chapter, we will consider some aspects of three different hierarchies 

of PDEs, known as the Sawada-Kotera (SK), KdV and Kaup-Kupershmidt (KK) 

hierarchies, that are needed in what follows. Each hierarchy is a sequence of 

evolution equations or flows with respect to times i, (n = 1,2,3,...), which can all 

be put into Hamiltonian form. SK and KK have only one Hamiltonian structure, 

but KdV is bi-Hamiltonian, and here we will be using the second Hamiltonian 

structure. Following Fordy [63], we are able to consider all three hierarchies at 

once. The n-th flow in each of the hierarchies can be written as 

at~ 

= (U + 8auU,, + 4aux)&Hn[u], 	 (2.2.1) 

where a = 1/2 for SK and KdV, a = 1/4 for KK, and H is the n-th Hamil-

tonian for the hierarchy in question. For the purposes of computing variational 

derivatives, we make no distinction between a Hamiltonian and its corresponding 

Hamiltonian density. For more details on these hierarchies and ways of calculating 

the sequence of Hamiltonians, see e.g. [60, 69]. 

There is also a Miura map from the modified versions of the hierarchies, given 

by 

it = 	— 2av 2 	M[V]. 

Then re-writing the Hamiltonian in terms of v and derivatives, the n-th modified 

flow may be expressed as 

Ut, = (-8)8H[M[v]]. 	 (2.2.2) 

The Miura map means that given v satisfying (2.2.2) for each ii, the corresponding 

U = 	— 2av2  satisfies (2.2.1). 

The n-th flow of the hierarchy is unchanged by the scaling 

X — fix, 	tn —* fl1in, 	it .—* 

where in = m(n) is a scale weight dependent on the hierarchy and on which flow 

is being considered. It is easy to show that each flow has a scaling symmetry by 
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looking at its Lax representation in terms of differential operators. Similarly the 

modified flow is invariant under the same scaling but with 

V —4 /3 1 v. 

	

Hence there are scaling similarity solutions looking like u = t 	w(x/fli) (up to 

rescaling of w and the similarity variable z). For convenience in what follows we 

scale the similarity variable so that 

u(x,t) = 

where 

z = xO(i), 	if- = 

The corresponding similarity solution for the modified flow is 

V = 9(t)y(z), 

with the scaled Miura map giving 

w = —y' -  2ay2  

('denotes IL throughout). dz 

In the context of an integrable hierarchy, it is customary to think of the 

dependent variable as a function of all the times, 

U = u(ij  = 

When we consider the scaling similarity solutions to the n-th flow, it is better to 

drop dependence on anything other than x and in . In fact, because of the way 

that the variables must scale, it appears to be inconsistent to consider the other 

flows simultaneously. We shall see a particular manifestation of this in Section 5, 

when we come to consider the rational solutions. It appears that the only way to 

incorporate the other flows is to allow the similarity variable to depend on some 

of the other times (as can be done to get similarity solutions of the KP equation 

[136]). Henceforth we will drop the suffix n, bearing in mind that the actual form 

of the Hamiltonian depends on which particular flow we have chosen. 

Substituting the similarity forms into the equations of motion (2.2.1) and 

(2.2.2) (and cancelling out powers of 0 on either side) yields the ODEs for 

and y. If we let ft denote the scaled Hamiltonian (expressed in terms of w with 

powers of 0 divided out) then we obtain the equations for the similarity solutions 

in the following form: 

	

(8 + 8awU + 4aw') (sft - _ z) = 0, 	 (2.2.3) 

	

5(8ft + zy) = 0. 	 (2.2.4) 
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The symbol 0 denotes derivatives with respect to z. It is worth describing how this 

scaling process works in slightly more detail. For the scaling similarity solutions, 

the left-hand side of (2.2.1) is 

Ut  = 20 
dO  
—w(z) + 02w(z), 
dt 	at 

= Om+2(2w + zw'), 

= om+2(83 + 8awU + 4aw') 	 z. 	 (2.2.5) 
Ga ) 

The crucial step is the last line (2.2.5), where the t derivative is rewritten in terms 

of the Poisson operator appearing on the right-hand side of (2.2.1). Since this 

right-hand side must also scale correctly, we have 

8H = 

To obtain E it is necessary to replace every x derivative Ukx in H by the corre-

sponding (rescaled) z derivative w(k).  Upon making use of (2.2.5) and the scaled 

Hamiltonian H, (2.2.3) follows directly from (2.2.1). A similar calculation leads 

to (2.2.4) from (2.2.2). 

Both equations (2.2.3,2.2.4) can be integrated once, and are conveniently writ-

ten in terms of 

f := 8,,ft - —z. 	 (2.2.6) 

Integration of (2.2.3) yields immediately 

d 2 	A2 - (.L)2 
+ 4awf + 	

2f 	
= 0, 	 (2.2.7) 

with A being a constant of integration. For (2.2.4), note that 

6H = (M#)*SH = (0 - 4av)8H, 	 (2.2.8) 

where M' is the Fréchet derivative of M. The scaled similarity form of this relation 

(involving y and 6ft) allows (2.2.4) to be written in terms of the quantity f and 

integrated to 

L4ayf+A=O. 	 (2.2.9) 
TZ 

•A more obvious direct integration of (2.2.4) would be 

+ zy + a = 0, 	 (2.2.10) 

50 



and in fact this is exactly equivalent to (2.2.9), 
with the constant a given in terms 

of A by 
a=A—. 4a 

Indeed, the scaled version of (2.2.8) implies 

which shows how (2.2.9) and (2.2.10) 
are related. The ODEs for the similarity 

solutions are completely specified by (2.2.7,2.2.9), together with the definition 

(2.2.6) 
and the scaled Miura map. We remark that the equations for the station-

ary flows are simply obtained by removing the —z terms from f. 

In (2.2.7) 1 
is to be thought of as a function of w and its derivatives, while in 

(2.2.9) 
it is expressed instead in terms of y and derivatives of y (replacing each 

by —y' - 2ay2 ). 
The constant of integration A is the same in both cases, as the 

Miura map becomes a one-one correspondence between the two equations. The 

form of the equations makes it p articularly simple to see the relationship between 

them. We have the scaled Miura map, 

= -y' -  2ay2, 	
(2.2.11) 

and it has an inverse given by 

f' + A (2.2.12) 

In (2.2.12) we regard f as being a function of w and its derivatives, and it is 

necessary to assume 
f 0 0 since otherwise this equation breaks down. Now 

suppose that we have a solution w of (2.2.7), and we define the modified variable 

y by the inverse Miura map. Then we may calculate directly 

2 	1 / 
 

—y-2ay = iy 1  

- 	= 

where the last line follows at once on 
rearranging (2.2.7). Hence the inverse Miura 

map (2.2.12) together with (2.2.7) implies the Miura map (2.2.11). 
This in turn 

means that f 
can be reinterpreted as a function of y and its derivatives, and 

then (2.2.12) may be rearranged to yield the ODE (2.2.9) for y. The converse 

follows by a reversal of this argument (or immediately upon scaling the usual 

Miura map for the PDEs). To make things more concrete, it is worth looking at 

some particular cases. 
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2.2.2 Similarity Solutions of KdV and P11 

The first example to consider is the scaling similarity solutions of the ordinary 

KdV equation. Putting H = u2  (the first non-trivial Hamiltonian in the KdV 

hierarchy) into (2.2.1) with a = 1/2 we obtain KdV: 

U1 = UXXX + 6uu. 	 (2.2.13) 

The scaling similarity solutions are given by 

u(x,i) = (-3t) 
2
w(z), 

with the similarity variable z = (-32)4x. After substituting into KdV and 

integrating once we find the ODE for w: 

a(a + 1) + W I  - (w')2 = 
0. 	(2.2.14) W I'  + 2w2  - zw + 

2w—z 

Using the scaled Hamiltonian H = 1 0 we find 

f=w — j, 
and substituting into (2.2.7) with this f and a = 1  does indeed give the equation 

(2.2.14) on setting A = a+ 1 . Also the Miura map U = - goes from mKdV 

to KdV. For the scaling similarity solutions (2.1.4) of mKdV (2.1.3) we find that 

there is a one-one correspondence between solutions of PIT (equation (2.1.6) of 

the previous section) and (2.2.14), given by 

W = 	- ii2 

(the scaled Miura map) and 
W I  + U 

2w—z 
the latter being a particular case of the inverse Miura formula (2.2.12). Also note 

that, in terms of y, we have 

I = - - 

and on putting this into (2.2.9) with a = , PIT results. This example is also 

considered in [3], for instance. 

2.2.3 Similarity Solutions of Fifth-Order Equations 

Our second example constitutes the main subject of this chapter. We take the 

fifth-order equations in each of the hierarchies, which (following [63]) may be 

written as 

Ut  = (u 	+ (8a - 2b)uu,, - 2(a + b)u 2 - -
20 

-abu ), 	(2.2.15) 
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where we have three cases (i),(ii),(iii), corresponding to 

1 	1 	1 	1 
a=, 	, 	, 	b=—, —3, —4, 

respectively. These are the only values of a, b for which an equation of the form 

(2.2.15) is integrable [63), and (i) and (iii) are respectively the Sawada-Kotera 

[101] and Kaup-Kupershmidt [96) equations, while (ii) is the fifth-order KdV 

equation (2.1.9). The expression (2.2.15) may be obtained from the Hamiltonian 

formalism described above (2.2.1), by taking the Hamiltonian to be 

H 	u - 

When specializing to one of the three hierarchies, it is necessary to take the correct 

values of a and b in each case. While some of the calculations we present are valid 

for arbitrary a, 6, all properties relevant to the integrability of the equations are 

lost in general. The scaling similarity solutions of (2.2.15) take the form 

u(x,t) = (-5t) 4w(z), 

where now z = (-5t)4x. We find 

f=w"—bw2 z  
4a 

and putting this into (2.2.7) we get a fourth-order ODE for w, which we prefer 

not to present in gory detail. 

It is helpful to have the explicit forms of the fourth-order ODEs for the scaling 

similarity solutions of the associated modified equations, 

v(x,t) = (-5t)5y(z). 

Using the scaled Miura map, we may express f in terms of the modified variable 

f = —y" - 4ayy" - (4a + b)(y') 2  - 4aby 2y' - 4a2 6y 4  - . 	(2.2.16) 

Then the ODE for y is (from (2.2.9)) 

y(IV) = — 2(6a + b)y 'y "  + 4a(4a - b)(y 2y" + y(y') 2 ) + 16a36y 5  + zy + a, (2.2.17) 

with 
1 

4a 

Given a solution to (2.2.17) we can then obtain a solution to the fourth-order ODE 

for w, via w = —y' - 2ay 2 . The equation for w is rather unwieldy when written 
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out in full, so rather than giving it explicitly we will write it as a Hamiltonian 

system in Section 2.4. 

On substituting in the relevant values of a and b into the equation (2.2.17) we 

find 

y(V) = -5y'y"  + 5(y2y"  + y(y1)2) - y 5  + zy + a, 	(2.2.18) 

Y 
(IV) = 10(y 2y" + y(y')2) —6y + zy + a, 	 (2.2.19) 

Y 
(V) = 5Y/Y" 

+ 5(y 2 y"  + y(y')2) - V + zy + a, 	(2.2.20) 

for (i),(ii),(iii) respectively. So (2.2.19) is the ODE for the scaling similarity 

solutions of the fifth-order mKdV equation (2.1.11). Notice that (2.2.18) and 

(2.2.20) differ only by a sign in the even (y'y") terms. Hence if Y(i)  is as solution 

to (2.2.17) for case (i), then y(iii) = will be a solution to that equation for 

case (iii) with a replaced by —a. This is because the modified hierarchies in these 

two cases are essentially the same. In fact both SK and KK have a third-order Lax 

operator, which is factorized to yield the Miura map (see [601). We shall use this 

connection between case (i) and case (iii) to derive the Bäcklund transformation 

for the scaling similarity equations. It is no longer necessary to consider (2.2.20) 

separately. 
We should like to view (2.2.18) and (2.2.19) as fourth-order analogues of PIT. 

In particular, their general solutions should not be expressible in terms of classical 

special functions, and should therefore define new transcendents. The majority 

of our results concerning these equations (2.2.18,2.2.19) involve using the Miura 

map to relate them to some non-autonomous Hamiltonian systems, as we describe 

in Section 2.4. Another important feature shared by (2.2.18) and (2.2.19) is that 

they have associated linear systems and zero curvature representations, which 

they inherit from the PDEs. Although we do not make use of the linear systems 

elsewhere, they allow an interpretation in terms of isomonodromic deformations, 

and so we present them in the next section for completeness. 

2.3 Zero Curvature Equations 

Given that the equations (2.2.18) and (2.2.19) have arisen as similarity reductions 

of integrable PDEs, we would expect them to be of Painlevé type [1]. In other 

words, all their solutions should be globally meromorphic. The usual method of 

testing for this is Painlevé analysis, which consists of finding all possible formal 

expansions of a solution around an arbitrary point z0. However, while this test 

can show that an ODE is not of Painlevé type (if a noninteger power or logarith-

mic term appears in the expansion), it is a local test, and hence is not sufficient 

54 



for proving that an equation with well-defined formal expansions is of this type. 

Painlevé's original proof that the six transcendents PI-VI have no movable singu-

larities other than poles is extremely laborious and notoriously unclear, requiring 

detailed analysis and special t ransformations for each equation. Recently Joshi 

and Kruskal [91] have given a concise proof which deals with all six equations 

on an equal footing. E ssentially their method examines solutions in the neigh-

bourhood of singularities, converting each ODE into an integral equation (by 

integrating the dominant terms) and then showing that the 
singularities must all 

be isolated poles. Unfortunately we have been unable to extend this method to 

deal with the fourth-order equations (2.2.18,2.2.19). Nonetheless, Painlevé anal- 

ysis does provide some useful information, and we present the results of this in 

Section 2.5. 
tions of Painlev Another way of understanding the solu

é equations is through 

the concept of isomonodromic deformation of a linear system. An important 

feature of the equations we consider is that the zero curvature 
representation of 

the PDEs in the modified hi erarchy scales to give the 
corresponding representation 

for their similarity solutions. Starting from a linear system, 

= GC 

the n-th flow of a hierarchy is obtained from the 
compatibility condition, 

The matrices F,G will depend on a spectral parameter k as well as on x and ç. 

To get a linear system for the scaling 
similarity solutions, it is necessary to allow 

derivatives with respect to a resealed spectral parameter (, yielding a new zero 

curvature equation, 
U( — vz+tU,v1=zo. 

(2.3.1) 

We illustrate this method in the case of the mKdV hierarchy, which for these 

purposes we write as  
— - (8)8L1_l[M1141 
At -  'Jun 

where we have shifted the labels on the Hamiltonians compared with (2.2.2), so 

that the corresponding (biHamiltOnia) flows for KdV are written as 

- (O + 8aub + 4aux )8uHn_1I*d 

= 

II 
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The zero curvature representation of the n-th flow in the mKdV hierarchy comes 

from a linear system, 

f—k v 	01 

( J X = 	
vk ) ( 02 

/ A B—C"ci\ 

(2)tn 
= 	B+C —A )2) 

In the above, k is the spectral parameter, and we have 

A = 2k(8S—i - Tn), 	B = —S n , 	C = 20rSn-i, 

where 

Sn 
= 2=0 

= 

	

+ u3 , 	Now 
(The sequence of Flamiltonians starts Ho=4u, 	Hi—ju2, H2 - 1jtL 	...)  

for the similarity solutions we express everything in terms of the new variables, 

Z = xO(tn), 	k = (0(m), 	v(x,t n) = 0(tn)y(z), 	Oj (x,t;k) = 

dO = 92'.) When everything is written in 
(For the n-th flow of mKdV we have -  
terms of these similarity variables, certain powers of 0 can be divided out, and 

fiH_1 may be eliminated using (2.2.10), to yield the new scaled linear system 

(xi) 	(-C Y'\(Xi) , 	 (2.3.2) 

v X2 	=  

fxl ) 	( X2 	= F+A —E )xJ 	
(2.3 .3) 

'  

with 
a 

= —2O8-i +2Tn - z, 	4(S = 	—i - , 	A = 2OSni. 

Again we have used the convention that a quantity with a tilde is written in terms 

of the similarity variables with powers of 0 scaled out. 

To make this more concrete, we refer back to our earlier examples. The n-th 

similarity equation in the mKdV hierarchy is the 
compatibility condition (2.3.1) 

arising from the linear system (2.3.2,2.3.3). Hence the matrix 

u=(;' 
) 
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is the same for all n, while 

(r
+A F—A 

 —: 

depends on which similarity equation is being considered. P11 (2.1.6) corresponds 

to the case ii = 2, and the entries of V are given by 

4(2  _2y2  —z, 	F = —4(y— , 	A = —2y'. 

The fourth order ODE (2.2.19) comes from the third flow of the mKdV hierarchy, 

and in that case V has entries 

= 16( - 8(2y2 - 4yy" + 2(y') 2  +6 Y4  - 

F = —16(3y - 4((y" - 2y 3 ) 	A = —8(2y' - 2y" + 12y2 y'. 

The zero curvature representation of the flows in the Sawada-Kotera and 

Kaup-Kupershmidt hierarchies, as well as in their common modified hierarchy, 

requires 3x3 matrices [60]. Hence to represent the equation (2.2.18) as the zero 

curvature condition (2.3.1) we must take 

/0 ( 0 
0 i C 

\( 0 —yJ 
/ 	—2( 2L 	9(3y+J—K 9(4+(L' \ 

V= ( 	9(4 —(L' 	(2L— 	J+2K 	, 
'\ —9(3y+J—K 	90 	(2L+ I 

where 

J = 2yy" - (V)2 +2 Y2Y/  - y 4  + z, 

K = Y 
"I  + yy" + 2(y') 2  -2  Y2YI' 	L = 3(y' + y 2 ) 

Given the zero curvature form, the initial value problem for y can be reduced 

to an inverse monodromy problem, which is solved in terms of a system of singular 

integral equations or a Riemann-Hilbert problem. This approach constitutes an 

ODE analogue of the inverse scattering transform, and has been applied in detail 

to PIT by Flaschka and Newell [58], and also by Fokas and Ablowitz [4]. The 

other similarity equations in the mKdV hierarchy are also discussed in [58], where 

they are referred to as the Painlevé II Family, and the same inverse monodromy 

scheme is outlined for the whole Family (which of course includes the equation 

(2.2.19) as its second member). However, as the order of the ODEs increases, 

the problem becomes much more complicated. Rather than trying to apply this 

scheme any further to the fourth order equations (2.2.18,2.2.19), in the next 

section we proceed to develop the Hamiltonian formalism of Okamoto, while at 

the same time generalizing some results about stationary flows due to Fordy. 
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2.4 Hénon-Heiles Systems 

2.4.1 Stationary Flows and Integrable Hénon-Heiles 

The original Hénon-Heiles system is given by a Hamiltonian with two degrees of 

freedom: 

h =+ p) + aqiq - 	 (2.4.1) 

The equations of motion are just Hamilton's equations 

dq1  - Oh 	
(2.4.2) 

dp - 	Oh 	
(2.4.3) 

(We are denoting the time by z here to make connection with our other results.) 

It has been known for some time from Painlevé analysis [40} that this system is 

integrable for only three values of the ratio r = alb (because of a scaling symmetry 

of the equations the integrability only depends on this ratio), namely 

r = —1, —1/6, —1/16. 

More recently, Fordy [63} has shown that for these integrable cases the equations 

of motion are just disguised versions of the stationary flows of some fifth-order 

soliton equations - the Sawada-Kotera, fifth-order Korteweg-deVries and Kaup-

Kupershmidt equations (all particular cases of the equation (2.2.15)). Thus the 

choice of values for a and b as given in Section 2.2 gives the right values for the 

ratio r in the cases (i),(ii),(iii) respectively. The zero curvature form of these 

PDEs yields a matrix Lax representation of the stationary flows, and then traces 

of powers of the Lax matrix give the Hamiltonian and the second constant of 

motion (which shows that these systems are indeed Lionville integrable). It was 

subsequently shown that all three systems are completely separable in suitable 

coordinates, and may be integrated in terms of theta functions of genus one (cases 

(i) & (iii)) or genus two (case (ii))[33]. 

2.4.2 Non-autonomous Hamiltonians for Scaling Similar-
ity Solutions 

Instead of looking at the stationary flows of these three fifth-order PDEs (all of 

the form (2.2.15)), we take the equations for their scaling similarity solutions, 

and rewrite them in Hamiltonian form. These similarity equations are most 
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conveniently described using the notation of Section 2.2. We have the definition 

of f in terms of w, 

f = 	- bw2 - f, 	(2.4.4) 

and on substituting this into (2.2.7) we obtain the full fourth-order ODE for w. 

As we stated previously, we prefer not to present this ODE explicitly, as it is not 

very instructive to do so. Instead, if we set 

w=qi , 	f= —aq, 

then we may rewrite (2.2.7,2.4.4) as a coupled system for q1 , q2: 

	

= bq 2-  %+ , 	 (2.4.5) 

'I 	 C) 	
A2 

	

q2 = —aq1q2 - 4a2q 	 (2.4.6) 

This coupled system just follows from Hamilton's equations (2.4.2,2.4.3), where 

now the Hamiltonian is given by 

A 2 	1 
 —bqh = (p +p) + aqjq - 	— 	— — zql. 	(2.4.7) 

4a 

Compared with (2.4.1), this has an extra inverse square term and anon-autonomous 

(time-dependent) term in the potential. 

Thus we have shown that the equations for the similarity solutions introduced 

at the end of Section 2.2 may be viewed as non-autonomous Hénon-Heiles systems. 

Because of the explicit time-dependence, the Hamiltonian is no longer a constant 

of motion, and there is no matrix Lax representation as in the autonomous case. 

However, the Hamiltonian theory of the six Painlevé transcendents, as developed 

by Okamoto [128], can be extended completely analogously to the Hamiltonian 

system defined by (2.4.7), for the three special values of the ratio r. In particular 

these three special systems, which we denote by fl(j), fl(jj), fl(jjj), have Bäcklund 

transformations which can be viewed as canonical transformations in the variables 

qj,pj, z. More precisely, we will present transformations between the Hamiltonian 

systems, 

(qj ,pj ,z) —* 

such that the two-form 

w = > dpj A dq - dh A dz 

is preserved (i.e. w = &). We have also found that each of fl(j)...(jjj) admit a 

second independent quantity, c, in involution with the Hamiltonian: 

1c, hl = 0. 
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However, c is also time-dependent. 
The construction of the Bäcklund transformations is possible due to the exis-

tence of the Miura maps. For the system fl(ii) we have (by the general arguments 

of Section 2.2) 
a one-one correspondence between its solutions and the solutions 

of the modified similarity equation (2.2.19), while both fl(j) and R(iii) have simi-

lar correspondences with (2.2.18). 
Thus the Hamiltonian approach elucidates the 

solution structure of the modified equations 
considerably. We are also able to 

define a tau-function for the Hamiltonians, via 

h(q1 (z),pj(Z), z) Oc (log[r(z)]Y 

(for some constant of proportionality, which is dependent on which of the three 

cases is being considered). As well as simplifying many of the derivations, this 

tau-function is naturally inherited from the original PDEs. 
Before dealing with these issues, we first show that the time-dependent Hamil-

tonian h 
must also satisfy a fourth-order ODE. At this point it is worth recalling 

that when we discussed the similarity solutions in Section 2.2, the relationship 

between the Miura map and its inverse was most easily seen by considering f 

alternately either as a function of w and derivatives (given by (2.4.4) in this case) 

or as a function of y and its derivatives (given by 
(2.2.16)). For the proof of the 

following proposition, it is convenient to further abuse our notation and think of 

f as a function of h and its derivatives. 

Proposition 2.1. 
If the quantity f is rewritten in terms of the Hamiltonian 

(2.4.7) by 
f = —4ah" - 16a2b(h92 - 

then h satisfies the fourth order nonlinear ODE 

- 32ah'f2 - 8af (8u2(w1)2 + ba(h') + zh' - h) - A 2  = 0. (2.4.8) 

Define a generic solution of (2.4.8) to be one for which 

f0. 

Conversely, if h is a generic solution to (2.4.8), then the functions (q3(z),p(z)) 

defined by 

= —4aW, pi = —4ah", q2 = (4W" + 16ab(h')2  + 

P2 = (4W" + l6ab(h')2  + 	
) 4 (2 h(  + 16abh'h" + 	 (2.4.9) 

 81  

satisfy Hamilton's equations (2.4.2,2.4.3) for the Hamiltonian h. 
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Proof. Given the (Hamiltonian) equations of motion, it is immediately apparent 

that 
dh Oh 	1 

- 	-- qi. 
dz 	clz 	4a 

It is then a simple matter to express (qj,pj) in terms of z, h and its derivatives. 

The formulae (2.4.9) result, but it is simpler to work with f, 1' instead of q, 

P2 (to avoid square roots). Substituting these expressions into (2.4.7) and rear-

ranging yields (2.4.8). As for the converse, all of Hamilton's equations are direct 

consequences of (2.4.9), apart from 

dp2 	 A 2  
2aqi q2  -_____ - 	4a2 q  

In fact, this is more easily written in terms of f and derivatives, and is equivalent 

to (2.2.7). Noticing that (2.4.8) contains the quantity 

g = 8a2 (h") 2  + ba(h') + zh' - 

satisfying 
= —4ah"f, 

it is easy to see that differentiating (2.4.8) gives 

2f (1" - 32a2h'f - 4ag) = 0. 	 (2.4.10) 

Assuming that h is generic (f' 0) implies that the bracketed expression in 

(2.4. 10) vanishes, and using (2.4.8) again to substitute for g finally leads to (2.2.7), 

as required. In fact we shall see in Section 2.5 that there are non-generic solutions 

to (2.4.8), corresponding to f 0 (with A = 0), which give degenerate solutions 

to the Hamiltonian system. D 

It is interesting to make comparison with Okamoto's equivalent result about 

the Hamiltonian (2.1.7) for P11, which satisfies a second-order ODE. The condition 

for a generic solution in that case is 

d2  h 

Using our notation of Section 2.2, this turns out to be the same condition f 0 0, 

for we have 

= 

where 
2 

I = -V - - 2 
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Also the special case f 0 (with A = 0) corresponds to the special solutions of 

P11 in terms of Airy functions. With the substitution 

Y = (log[r(z)],, 

the vanishing of f leads to 
d2 r 

+~ZT = 0, 

whence e.g. we may take 

r = Ai(-24z). 

The analogues of these solutions for the fourth-order equations (2.2.18,2.2.19) are 

related to P1, and we consider them with the rational solutions in Section 2.5. 

It is also interesting to note that all of the Hénon-Heiles systems (irrespective 

of the values of a and b) are invariant under the transformation 

qj -* p3qj, p -* p 2 pj j  z -, pz, h -. p4 h, 	(2.4.11) 

where p is a fifth root of unity. 

Hitherto we have left a and b arbitrary, but from now on we treat the spe-

cial cases fl(i)_(i) (corresponding to the scaling similarity solutions of the three 

integrable fifth-order PDEs) separately. We start by describing the Bäcklund 

transformation and tau-function for the system (u),  as this is perhaps the sim-

plest case, having the most in common with PIT. 

2.4.3 The Hamiltonian System 11 (ii) 

The Hamiltonian for fl(ii) is given explicitly by 

A 2 	1 
h,\ = 	 1q;2 — zqi . 	(2.4.12) 

We will henceforth put suffixes on all quantities to denote their dependence on A, 

as the Bâcklund transformation relates the same quantities for different values of 

this parameter. There is also the alternative parameter a = A - 1  appearing in 

(2.2.19), but A is the more natural one in that (2.4.12) depends only on A 2 , i.e. 

h A  = h_A, 

and thus the same is true for the solutions (qj (z),pj(z)) to the system with Hamil-

tonian hA. As in Section 2.2, the most convenient variables to use for this system 

are 
12 

wA = qi, 	fA =
2 q21 
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where (by (2.4.4) with a = 1/2, b = — 3) we have 

	

fA = w'+ 3w - 
	

(2.4.13) 

If we now use the Miura map, we have a one-one correspondence with solutions 

to (2.2.19). In other words, given a solution to the Hamiltonian system, we find 

a solution y = y,, to equation (2.2.19) (with a = A - ) via the formula (2.2.12), 

- f + A 

- 2fA 	
(2.4.14) 

We also have the usual Miura expression, 

	

WA = —y - y, 	 (2.4.15) 

which means that conversely a solution to (2.2.19) determines a solution to the 

system fl(ii). Before presenting the Bãcklund transformation, it is helpful to 

introduce the tau-function. 

Definition 2.1. For a solution (qj (z),pj (z)) of the system fl(jj), we have the 

Hamiltonian h,\(z) = hA (q(z),p(z),z). The tau-function associated with this 

solution is given by 

h,\(z) = J-log[TA(z)]. 

The above definition is chosen to be consistent with the tau-function of the 

KdV hierarchy, where the dependent variable u is expressed as 

u(x,t) = 2(log[7(x,t)]). 	 (2.4.16) 

For scaling similarity solutions we require that r depends on x and t only through 

the combination z = xO(t), which means we must have 

WA = 2(log[r(z)])" 

This agrees with our definition, for differentiating the Hamiltonian gives 

1 
—(log[r(z)])" = h = — qi  = 

Alternatively, if one had no a priori knowledge that the system fl(jj) was a reduc-

tion of fifth-order KdV, one would choose to define the tau-function in this way 

to fit in with the pole structure of WA found from Painlevé analysis, which may 

be seen very clearly from the rational solutions (see Section 2.5). We are now 

able to demonstrate: 
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Proposition 2.2. The Bäcklund transformation for the equation (2.2.19) may 

be written in the form 
A 

yA+i = — yA + 
TA  

(2.4.17) 

Moreover, this induces a canonical transformation from the system 'H(ii) with 

parameter A to the same system with parameter A + 1: 

q—*4j , p—*ji, z —*z, hA-*hA+1. 

The modified variable yj, may also be written in terms of the two tau-functions 

related by this transformation: 

	

yx = (log[rA_ 1 /1D'. 
	 (2.4.18) 

Proof. The first thing to observe is that WA is related to two different modified 

variables by the Miura map (2.4.15): 

WA = -y - YA = -y- - y-• 

This is a well-known property of Miura maps, but can be seen directly from the 

fact that the fourth-order ODE for WA (or equivalently hA) just depends on A 2 , so 

WA = W_A. 

The inverse Miura map (2.4.14) gives 

y±A= 
 LJ 
of A 
	 (2.4.19) 

the solutions to (2.2.19) for parameter a = ±A - . Looking at the modified 

equation (2.2.19), we see that it is unchanged on sending 

a —+ —a. 

Hence Y-A will be a solution to this equation for a = A + 1 = (A + 1) - , or in 

other words 
yA+1 = 

It is then straightforward to derive (2.4.17) using the inverse Miura formula. This 

same argument also works for P11 and the rest of the PIT Family. Note that fA 

in the right hand side of the Bäcklund transformation may be written in terms 

of YA and its derivatives. 
To define the induced transformation of the Hamiltonian system fl(ii), first of 

all it is necessary to write YA+1 in terms of the variables appearing in hA: 

	

p2q2 + A 	 (2.4.20) YA-f1 	q22 
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The Miura map produces a new solution to the fourth order equation (2.2.7) at 

parameter value A + 1, 2 

	

WA+1 = 	- 

Now we can define the new variables (4j,j) via 

= Wj, Pi = 	2 = (-2fA+1) 	P2 = 

and these will clearly satisfy the system 1l(u) with H
amiltonian h,\+1. It is simple 

to write the new variables in terms of the old, and we present the formulae here 

for completeness: 

4i = —qi -2y+i 

= -P1 - 4yA+1(q1 + 

	

42 	T2 

P2 = 	+ (A + 1)T, 	
(2.4.21) 

where 	 2 2 
T = -q + 8yA+1P1 + 8y1qi - 4q + 2z, 

and y+i is to be interpreted as the function of P2 and q 2  given by (2.4.20). For 

the sake of clarity, we present the (invertible) transformations for 
WA and y 

diagramatically 
-* 

	

 Y 	YA+1  

	

(2.4.15)j 	 1(2415)  
(2.4.21) 

WA - 	W)'+1 

A similar c
alculation yields the inverse of the transformation (2.4.21), but we 

spare the details here. It is obvious that this is a canonical t
ransformation, since 

the equations for both sets of variables are H
amiltonian. Alternatively this is 

shown directly by considering the canonical one-form, 

= 	p1dq1 - hAdz 

3=1,2 

(such that w = dv,), and its image under the t ransformation. We find 

	

-= 	(d4j _pjdqa)+(hA hA +I)dz =dx, 

with 
= 4yA+IP1 + 8y 1 qi + ! Y +1 + Alog[q2 + (A + 1)log[421. 
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The derivation if this is much facilitated by first calculating the difference in the 

Hamiltonians as 
- hA = YA+i, 	 (2.4.22) 

which also yields (2.4.18) immediately. 

In deriving (2.4.22), the working is simplified by replacing the variables p2,q 

in h,, by f,fA, to give 

1 2 	 1 	_____
ql(q

2 	 2 	4fA 

Now we may use the inverse Miura formula (2.4.14) (or equivalently (2.4.20)) to 

substitute 
f = A - 2fxyA+i, 

and then rearranging gives 

	

hA - AyA+i = E(pi,ql,fA,yA+1), 	 (2.4.23) 

with 
E(p,q,f,y) := 12 + q(q2 - I - z) - fy2. 

A similar calculation gives 

hA+1 - (A + 1)Y 	= E(i4,fA+1,yA+1). 	(2.4.24) 

Taking the difference of (2.4.24) and (2.4.23) and substituting for the quantities 

with tildes from the formulae (2.4.21) for the canonical transformation, we find 

that the right-hand side is 

E(pi7qi,fA,yA+1) - E(th,41,fA+i,YA+1) = 0, 

and thus (2.4.22) follows. This completes the proof. D 

The key to the integrability of the usual autonomous Hénon-Heiles systems 

is the existence of a second conserved quantity that Poisson commutes with 

the Hamiltonian. Although we do not have constants of motion for the non-

autonomous systems, it is straightforward to modify the results of [63] and find a 

second independent quantity in involution with the Hamiltonian (with respect to 

the standard Poisson brackets). However, we note that unlike the systems consid-

ered in [76, 147], this involutive quantity does not define a second flow commuting 

with the flow generated by h. By direct calculation we have the following: 

Proposition 2.3. If hA denotes the Hamiltonian (2.4.12) for the system 7i(II), 

then there is an independent quantity CA, given by 

CA = q2plp2 - qip2  + q24 + 	+ A2 	2  q1q - 	 (2.4.25) 
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that Poisson commutes with hA. Moreover, on removing the z term, CA reduces 

to the second constant of motion for case (ii) of the autonomous He'non-Heiles 

system. 

We now present the analogous results for both 	and fl(iii) together, since 

they are related by the Miura map to the same modified equation (2.2.18). 

2.4.4 The Hamiltonian Systems 11(i)  and 1 1 (iii) 

The Hamiltonian for 71(1) is 

2 + l q hA = (p +p) + qiq2  - - 2 1q2 - 1 zq i , 	(2.4.26) 

while for fl(iii) it is 

HA = (P + P) ++ 	- 2A 2 Q 2  - zQi. 	(2.4.27) 
2 	 2 

To avoid confusion between the two, we use lower/upper case letters for the 

variables of the systems fl(1)/71(11l) respectively. Again we find it convenient to 

use alternative variables, 

1 

	

wA=ql, 	
2 

 21 

WA=Ql, 

Hence we have (using (2.4.4) with the appropriate values of a and b) 

fA =  

F,, = W.('+4W?—z. 

The Miura map for case (i) is given by 

WA = 	- 

with the inverse, 
f + A 

2f,, 

(2.4.28) 

giving a solution to (2.2.18) for a = A—k. Although case (Hi) is related to the same 

modified equation, it will be helpful for deriving the Bäcklund transformation to 

return to the original formalism of Section 2.2, where the case (iii) Miura map 

(with a = 1/4) is 
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and the inverse, 

gives a solution to (2.2.20) for a = A - 1. The derivation of the Bãcklund 

transformation for the equation (2.2.18) (or equivalently (2.2.20)) is most easily 

achieved with the tau-functions, naturally related to the tau-functions of the 

SK/KK hierarchies (see [101, 1371 for definitions of these). 

Definition 2.2. For a solution (q(z),p1(z)) of the system 'H(i), with the Hamil-

tonian hA(z) = h(q(z),p J (z), z), the associated tau-function is given by 

h(z) = _3*dzlog[rA(z)}. 

Definition 2.3. For a solution (Q(z), Pj (z)) of the system fl(ui), with the Hamil-

tonian HA(z) = HA (Q(z),Pj(z),z) the associated tau-function is given by 

Hx 	
3d 

(z) = ---log[rA(z)]. 
2 dz 

Now we may show: 

Proposition 2.4. The Bäciclund transformation for the equation (2.2.18) may 

be written in the form 

A 	2(A + ) 	 (2.4.30) 

This is related to a canonical transformation from the system fl(i) with parameter 

A to the system fl(jjj) with parameter A - 

qj -4Q,  pa —*I, z—' z, hA-#HA_. 

The modified variable y., may also be written in terms of the two tau-functions 

related by this transformation: 

(2.4.31) 

Proof. As for case (ii), WA (and also WA) may be related to two different modified 

variables by the Miura map. Hence we see that 

- y-A = 7, 	
(2.4.32) 

YA  - Y_A = 	 (2.4.33) 

Clearly (2.4.32) constitutes a Bäcklund transformation for (2.2.18), as it relates 

two solutions for different parameter values. However, it is not very useful because 

68 



it cannot be iterated to obtain a sequence of solutions. To achieve this requires 

a canonical tranformation from flj to R (i), and then from H(iii) back to fl(I) 

with the overall change A -+ A + 3. First of all observe that on comparing 

the parameters a in (2.2.18) and (2.2.20), it is apparent that we may make the 

identification 

YA = 

and so the Miura map for case (iii) implies 

12 
W4 = - 

Since W_,\+ may be found from w2, via the formula 

W_A +1 = WA - Y'\7
(2.4.34)  

it is obvious that there is an induced canonical transformation from the system 

with Hamiltonian hA to the system with Hamiltonian H_),+ . = HA-3. This 

transformation and its inverse may be calculated explicitly in terms of coordinates, 

e.g. we have 

Qi = -qi - 

P1  = -pi +3yA(q1+y), 

Q2 =T4, 

P2 = 	YAt - 2(A - 

where 
= —2q - 12YAP1 - 6q + 6z, 

and in the above y,\ is to be interpreted as a function of P2 and q2: 

p2q2 - A 
LOA 	 2 q2  

This is the analogue of the transformation between autonomous Hénon-Heiles 

systems considered in [55, 271. We have also calculated explicitly: 

> (PjdQ —p5 dq) + (h), - HA 3)dz = 

= 3ypi - 3yqi - 	- 2(A - )log[Q2] - Alog[q 2]. 

The tau-function formula (2.4.31) follows directly from a calculation of the 

difference of the two Hamiltonians: 

hA  
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Then in terms of tan-functions, we have 

YA+3 - = 	(1og A+ /x_1 + 2log[rA/rA+31). 

On using the formulae (2.4.32,2.4.33) the Bãcklund t
ransformation (2.4.30) fol-

lows. Thus overall there is an induced canonical t
ransformation from 71(t ) to itself, 

with the parameter A -* A + 3. This is most easily understood with a diagram: 

(2.4.32) (2.4.33)  

	

y-A 	
- 

(2.4.28)j 	(2.4.28)j 	(2.4.29) 1 	(2.4.29)j 	(2A.25)j 

WA - -
i- 

(2.4.34) 	2 	
2 	(2.4.34) 

Note that in the right hand side of (2.4.30), fx may be determined entirely in 

terms of y,, and its derivatives, and similarly for 	
D 

We have also calculated the analogues of the quantity (2.4.25): 

Proposition 2.5. The Hamiltonian h (given by (2.4.26)) for the system 

Poisson commutes with the independent quantity 

1 	1 3  12 	1 	
" 	 2 22 

C'\= p1Y2  + q 2  + q1 q2 - zq2) - A p1q + 

The corresponding quantity for the Hamiltonian HA (2.4.27) of 'H(iii) is 

CA = 3 (p  + jqiq -
4A22 ) - qp1P2 - q2 - qq24  +8 A2 qi + 

2.4.5 Analogues of the Toda Lattice for Sequences of Tan-

Functions 
For many purposes, the tau-functions provide the most convenient and concise 

expressions for solutions to integrable equations. For our Hamiltonian systems 

we have seen that the tau-functions related by Bäcklund t
ransformations 

allow one to determine both the llamiltonians h and the associated modified 

variable y 
satisfying one of the equations (2.2.18,2.2.19). Hence it is useful to 

work with the tau-functions directly, as this provides an efficient way to compute 

sequences of solutions to the modified equations and their associated Hamiltonian 

systems. A particular application of this is the computation of rational solutions, 

presented in Section 2.5. 
It is well known 93, 128] that for P11, the tau-functions related by the 

Bäcklund transformation (after rescaling) satisfy the Toda lattice equation, 

	

Drx 	
(2.4.35) 

= rx_irA+1 .  
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The derivation [128} of the lattice equation (2.4.35) provides a pattern for deriving 

analogous lattice equations for any of the similarity equations decribed in the 

formalism of Section 2.2. Here we give full details for a bilinear lattice equation 

which is the analogue of (2.4.35) for the equation (2.2.19). 

For the system fl(jj), we have already seen that the definition of the tau-

function implies 

qi = WA = 2(log[TA])". 

Substituting this into (2.4.13) yields 

fATA(DTA . r,\) — 
 Z 
	

(2.4.36) 

Now we have on the one hand (from (2.4.18)) 

YA + Y-A = (log[rA+lrA_j/r,])', 

while on the other hand (using (2.4.19)) 

I/A + Y-A = (log[fA])'. 

Hence we find 

(log[fA])' = 

which we integrate and then substitute from (2.4.36) to obtain the bilinear form 

2DTA T - ZT = kATA...1TA+1. 	 (2.4.37) 

The equation (2.4.37) is the analogue of the Toda lattice equation (2.4.35). Note 

that the constant of integration k,, may be rescaled arbitrarily, since the tau-

functions can always be rescaled (without affecting Here we take the 

convention kA = —1, which ensures that the tau-functions for the rational solu-

tions are monic polynomials in z. However, the above derivation has made the 

generic assumption fA  0. This may be violated for A = 0, in which case the 

constant in (2.4.37) vanishes (i.e. k0  = 0). 

Almost identical arguments lead to the following equations for the tau-functions 

of the systems 71(1) and 71(111): 

ZT - 6T,DTA . r + 9(D 2 7-A . TA) 2  = rA_aTAl, 	(2.4.38) 

- D, TA .= TA_STA+aTA. 	(2.4.39) 

We have used the same conventions and genericity assumptions as for 7I(u). It is 

interesting to observe that these equations are no longer bilinear, and also that it 
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is consistent to assign weight one to r and weight two to in the two equations. 

However, if we consider the Miura map corresponding to the equation (2.2.18), 

WA = 	- 
2 

and use the relevant tau-function formulae, given by (2.4.31) and 

WA = 6(log[7-A])", 

then we do find a bilinear equation, 

4rj[p - 4,r,\' ~A' 3  + rfa = 0. 	 (2.4.40) 

Since it contains only second derivatives, (2.4.40) may be used to relate the tau-

functions to sequences of second-order operators. 

2.5 Painlevé Analysis and Special Solutions 

2.5.1 The Painlevé Test 

Before looking at rational solutions and some other special solutions to the equa-

tions (2.2.18,2.2.19) and the Hamiltonian systems H(j)_(iii) related to them by 

Miura maps, we briefly discuss the application of the Painlevé test to these sys-

tems. Since they are reductions of soliton equations, we expect them to pass this 

test (because of the ARS conjecture), and indeed this is the case. To apply the 

test, it is necessary to expand q and q2 as power series in Z = z - zo, where the 

constant z0  is the (movable) location of a pole. In fact, rather than using the 

coupled system (2.4.5,2.4.6) coming from the Hamiltonian equations of motion, it 

is simpler to use the pair of equations (2.2.7,2.4.4) in w = qi and  f = —aq, and 

this avoids powers of zI. First of all it is necessary to look for the leading order 

behaviour, w yZ', f BZ", as Z -* 0. As is to be expected for equations 

with the Painlevé property, for each of the cases (i)-(iii) we find certain types of 

balances with a formal series solution corresponding to each. The balances may 

be classified by their resonances, i.e. the places where arbitrary constants can 

be introduced into the Laurent series. For the Painlevé test to be satisfied there 

must be a principal balance, containing the same number of arbitrary constants 

as the order of the system. We classify the possible balances, according to which 

terms are dominant in (2.2.7,2.4.4), as follows: 

Type 1: p = —2, -y = 6/b for (ii) and (iii). ii = —2 for (ii), ii = —1 for (iii), with 

S arbitrary. There is no Type 1 behaviour for (i). 

Type 2: p = —2, ii = —4, = —3/a, S = 'y(6 - fry). 
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where z0, CO, CI, c2  are the four arbitrary constants. 

Table 2.1. List of resonances. 

Type 3: There are two sub-cases d epending on the value of A, with p = —2, 

= 6/b. 

A = 0: v = 8,4,3 for (i),(.ii),(iii) respectively, with 6 arbitrary. 

A 	0: ii = 1, 	with 62 /A2  = 	, , for (i),(ii),(iii) respectively. 

We present the list of resonances for each type of balance in Table 2.1. Note 

that Type 1 is the principal balance for (ii) and (iii), while for (i) it is Type 2. Also 

note the presence of negative resonances, as discussed in [44]. The explicit time-

dependence doesn't affect the resonances and, as the results are almost identical 

to those for the autonomous Hénon-Heiles systems (see [30, 40]), we present no 

further details of the Painlevé analysis. The only real difference introduced by 

the time-dependent term is that the coefficients in the power series contain 
z0 

ex
plicitly. For example, for the principal balance in case (ii) (Type 1) we have 

3 2 ..
1 
 zO )Z 2 +cl Z 3 +c2Z4 +O() 

W = 

	

T2 	2 
c0  

f = - 	
- 12c - ( + 6c1 )Z + co(9c - zo)Z2 -

20 	
3 

12 	 + 0(Z4 ), 

2.5.2 Rational Solutions 

Painlevé analysis is also useful for finding rational solutions. A rational solution 

must be meromorphic at z = oo, and doing an expansion about this point for 

the equations (2.2.18) and (2.2.19) it is easy to see that there can be at most one 

such solution for any a, and the expansion takes the form 

y = -z 	+ 	
(2.5.1) 

for both these equations. The form of this expansion reflects the scaling symmetry 

(2.4.11) noted p reviously. Also, for both equations there is the trivial rational 

solution yi = 0 for a = 0, and (2.5.1) can be truncated after the first term for 

precisely four non-zero values of a, namely 

a = —4, —1, 2, 3 
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for (2.2.18), and 

a=-2, —1, 1, 2 

for (2.2.19). 

The corresponding rational solutions for each of the parameter values above 

are naturally related to each other by the Bäcklund transformations constructed in 

the previous section (although we prefer to label the solutions with the parameter 

A = a + 1 ). Since the Bãcklund transformations only involve differentiations and 

algebraic operations, repeated application of them produces a sequence of rational 

solutions. For (2.2.18), if we have a solution YA  we can immediately find LI-A  (using 

the Miura map), and we can also use the Bäcklund transformation (2.4.30) to 

find YA+3.  Continuing to apply this we essentially have two related sequences 

of rational solutions, with every third integer value of a being missed out. We 

present these, with the corresponding Miura-related solutions to the systems 71(i) 

and fl(jjj), in Table 2.2; Table 2.3 contains the corresponding tau-functions. 

A —7/2 —5/2 —1/2 1/2 5/2 7/2 11/2 

YA 
4 
z - 

3(z5-24) 
z(z 5 +36) z 0 _a 

z z 

-5z4(z5+216) 
(z5 +36)(z 5 -144) 

WA 12 6  0 0 6 12 -30z3 (z+576) 
(25_144)2 

12 15z3 (z5 -144) _______ 
2(z+36) 

3  
2Z2  o o 3 

=2z 
12 

Table 2.2. Rational solutions for cases (i) and (iii). 

From an algorithmic point of view, (2.4.30) is very inconvenient, and it is better 

to use the bilinear equations (2.4.38,2.4.39) for the tau-functions. These two 

equations can be solved iteratively, obtaining a new tau-function at each step. 

A 1/2 5/2 7/2 11/2 

1 z z 2 z5-144 

f_ 1 1 z z 5 +36 

Z z 5  + 36 z 8  z 16  - 2 7 .32 z 	+ 2.3.11z6  + 2 14 .36 .11z 
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Table 2.3. Polynomial tau-functions for cases (i) and (iii). 

Rational solutions of (2.2.19) can be obtained in a similar fashion, applying the 

Bäcklund transformation (2.4.17) repeatedly starting with the solution y = 0, or 

more conveniently by iteratively solving (2.4.37) to obtain the associated sequence 

of tau-functions. We present a few of the rational solutions to (2.2.19) in Table 

2.4. However, perhaps an easier method (which proves their uniqueness) is to 

derive them from the rational solutions of the mKdV/KdV hierarchy, which were 

constructed in [8]. These rational solutions are obtained from a sequence of 

polynomial tau-functions ir (for k=0,1,2,...) depending on x = 11 and a sequence 

of parameters 12, 13,..., which after suitable scaling may be identified with the 

times of the hierarchy. The sequence of rational solutions to mKdV is given by 

the standard tau-function substitution, 

Vk = (109[7rk/rk+1])x. 

(Our irk, ij are denoted 9k, r in [81.) The sequence of polynomials has a homo-

geneity property, 

irk(flul, /9t2, ., 132k_ui k
) = /k(k+1)(j1, 12, ..., 1k), 

and so the requirement for similarity solutions that Irk should be proportional to a 

function of z = xO puts very strong constraints on the values that the parameters 

tj  may take. In particular for the n=2 flow of mKdV, to get polynomial tan-

functions of PIT requires 1 2 =40-3  and all higher tj must be zero; while for n=3 

(corresponding to (2.2.19) we have 12=0, 13 = — 1440-5 , and all higher tj  are 

zero. In Table 2.5 we present some of the irk with the corresponding polynomial 

tau-functions TA(z) of P11 and (2.2.19). 

fl\ 	11/213/215/21 7/2 	I 9/2 

YA 0 _a 
I 	z 

— 3(z5+96) 
z(z-144) 

4(215_72z10+217728z5_1741824) 
- z ( z 16_1152z10 +96765Z5 +6967296) 

W 0 2 
— 

6 
—? 

12(2b0+432z5+3456) — 
20z3( 2 15 +10082b 0 +9434883$ _47542144) — 

z2(z5_144) 2  (z-1OO8(z+4S)) 2  

Table 2.4. Rational solutions for case (ii). 
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k 3  71 ffXX 3+t2 x6+5t2x3+t3X_5t 

TA=k+L 1 Z Z 3  +j_10z_SO 

(n=2)I 

ijz I 	Z3 I 	z6 -144z 

(n=3)l 	I 	I 

X10 + 15t2x' + 7t3x" 

+35t2t3X 2  + 175tx - 

+t4x3  + i4t2 

Z 10  + 60z 7  + 11200z 

Z10 - 1008(z 5  + 48) 

Table 2.5. Polynomial tau-functions for mKdV and similarity 

- 	 reductions. 

The restriction of rational solutions of the mKdV hierarchy to the similarity 

solutions has been used in [931 to derive determinantal forms for the polynomial 

tau-functions of PIT. We are able to extend this approach to the rational solutions 

of (2.2.19). The polynomial tan-functions of mKdV, Irk in Table 2.5, can be 

written as Wronskians of Schur polynomials. The formula given in [8] is 

Irk 

with [..] denoting Wronskian 
1 , and the polynomials  Oj 

are defined recursively 

by 

for suitable constants p. This recursive definition identifies the Øj  as the se-

quence of odd Schur polynomials. If we now restrict to the scaling similarity 

solutions, we must scale these tJ,j 
so that they depend only on the similarity vari-

able z. Thus for the solutions of (2.2.19) we have pa = 16, while all other p are 

zero. Then the polynomial tau-functions are given by 

(2.5.2) 

where the sequence of scaled polynomials may be defined by 

Pi 
	4'i = 	- (2j - l)4 = 164 

l i.e. 
kx 
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The first terms in this sequence are 

01 = Z, 02 = 
1 
 z 	 b3  = ( z —384), 	= j (z - 8064?) 

It is simple to check that (up to overall scale factors) the tau-functions in Table 

2.5 are given by the determinants (2.5.2). 

2.5.3 Solutions Related to P1 

We have also found special solutions related to the first Painlevé transcendent 

(PT). If we consider the system 7-1(1) in the case A = 0, the same substitution that 

works in the ordinary (autonomous) system causes the equations of motion to 

separate. Putting 

= qi ± q2 

into Hamilton's equations for h0 , we find 

which (up to a scaling) is just two separate copies of PT. The corresponding 

solution to (2.2.18) is 

YO = (log[Q+ - 

where we assume that Q +  and Q are not equal. So applying the Bäcklund 

transformation to this we get the general solution to the system 'H(i) for A = 3j, 

and to fl(lll) for A = 3(j + ), for all integers j. However, there is also the 

degenerate case = Q, for which 

fo 	0. 

This implies that the inverse Miura map and the Bäcklund transformation both 

break down. However, it is still possible to obtain a sequence of special solutions 

for the same parameter values, and they are also related to P1. Similarly, starting 

from a degenerate solution Yo , corresponding to 

the Bäcklund transformation (2.4.30) gives a sequence of special solutions to the 

system 7-1(1) for A = (j + ), and to 71(111) for A = 3j. We explain these degenerate 

solutions in more detail for case (ii). 

The degenerate case for all three systems is A = 0, fo 	0. So in case (ii) 

w = w0  must satisfy 

W" + 3w 2  - - 0, 
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e Miura map breaks 
which is equivalent to PT (after 

rescaling w and z). The invers

that y = yo satisfies 
down in this case. However, the ordinary Miura map means 

the Riccati equation 
j'  + y2  + WO = 0. 

This is linearized by setting y = (logrY, giving 

r" + wo  = 0. 

(2.2.19) is found from an eigenfunction r of a Schrodinger 

Thus a solution yo to  0, the Backlund transformation 
operator with a P1 potential. Because fo  

(2.4.17) breaks down for the solution 
yo .However, we still have 

= 

and so we can safely apply the Backlund t
ransformation to yt = — yo to obtain a 

r all integers A, well 
corresponding solutions to the 

sequence of solutions fo  

system fl(ii). 
It is interesting to note that in Okamoto's work the parameters of each of 

Pli-VI are e
mbedded into a root space, and the 

application of Backlund transfor- 

ith the action of the affine Weyl group. Also the classical 
mations is identified w  

solutions are all o
bserved to lie in the walls of the Weyl chambers. in the case 

Of P11, the relevant root space is Al, and A is the natural p arameter in this root 

space. The walls of the Weyl chambers correspond to both the integer values of 

A (where there are solutions in terms of Airy functions) and the half-integer val- 

ues (where there are rational solutions), and the Backlund transformation gives 

for integer values of A 
a shift A •. A + 1 in the root space. The equation (2.2.19) is related to 

A 1  in 

precisely the same way, except that the special solutions  
are not given in terms of classical special functions, but are instead expressed in 

terms of solutions to the first Painlevé t
ranscendent P1. The equation (2.2.18) 

is more complicated, because there are the two different Hamiltonian systems 

fl(0(ii)(with their respective tau4unctions) 
associated to it. Nevertheless, we 

would hope to be able to view it in a similar way. In particular we observe that 

(in Section 2.3) the zero curvature 
representation of (2.2.19) involves matrices 

in the fundamental representation of s1(2), corresponding to the root space Al. 

Thus we co
njecture that the special solutions of (2.2.18) should 

correspond to 

distinguished points in the root space 
A2, since it has an 4(3) zero 

curvature 

representation. As yet we have not pursued this idea further. 
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2.6 Generalizations 

2.6.1 A Conjecture 
One of the main motivations for our approach has been the observation that 

similarity reductions of integrable PUEs provide more general examples of finite-

dimensional integrable Hamiltonian systems than purely stationary flows. We 

make the conjecture that given an integrable evolution equation with a station-

ary flow that can be written as a natural Hamiltonian system, all of its similarity 

reductions will be written as (possibly nonautonomous) integrable generaliza-

tions of this system. Thus the approach of Fordy 
[631 should extend to all such 

similarity reductions. The central step in this procedure is to take the evolution 

	

equation in the Hamiltonian form, 

Ut = B&H, 	
(2.6.1) 

with Poisson operator B, 
and show that all similarity reductions may be written 

in the form 

	

L  = 0, 	
(2.6.2) 

with w representing the similarity variables, and I containing the variational 

derivative of the Hamiltonian plus the extra terms arising from 
Rt  in (2.6.1). We 

present two further examples where this works, and thus far we have been unable 

to find a counterexample. 

2.6.2 More HénonHeiteS Systems 

First we consider "travelling wave" similarity solutions of the fifth-order equations 

of the form (2.2.15). Then we have 

z =x+k2t, 

for constants k 1 , k2. substituting into (2.2.1) gives 

k2w' = (53 + Sa(w + k1 )3 + 4aw')(w" - b(w + 

and we find that for this to be in the required form 
(2.6.2) we must take 

k2 = —4abk, 

and set 
f = in" - b(w 2  + 2km ). 
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The analogue of the equation (2.2.7) of Section 2.2 is then 

A
=0, 

2 - dl  )2 
ç4+4a(w+ki)f+ 	2f 

and the same substitutions w = qi, f = —aq lead to a system with Hamiltonian 

h = (p + p + c1q + c2q) + aqiq - 	- 	 (2.6.3) 

where the constants in front of the quadratic terms are 

= —2bk 1 , 

= 2akj . 

Thus we have Cl  = — c2 . As for ordinary Henon-Heiles, the Hamiltonian (2.6.3) 

can again only be integrable for the same three values of the ratio r = and 

there are further restrictions on the quadratic terms. In the case (i) (reduction 

of the SR equation) this gives c 1  = c2 , 
while in case (iii) (reduction of the KK 

equation) c1  = 16c2 , and these are the only integrable cases isolated by Painlevé 

analysis [40]. For the case (ii) corresponding to fifth-order KdV, the analysis of 

[40] shows that (2.6.3) is integrable for arbitrary c1 , c2 , but we have not found 

similarity reductions which lead to a Hamiltonian system of this form. 

2.6.3 Scaling Similarity Solutions to the Hirota-Satsuma 

System 

As our second example, we take PDEs whose stationary flows lead to integrable 

quartic potentials. These stationary flows are considered in [26, 27]. One of the 

PDEs considered is the Hirota-Satsuma system [82] 1  

itj = 	u3 + 3uu, - 60T, 	 (2.6.4) 

ot = 	4x - 3u, 	 (2.6.5) 

while the other one is related to it by a gauge transformation. Scaling similarity 

solutions of (2.6.4,2.6.5) are given by 

it = Ow(z), 	
0 = 

for z = xO, Lo = O. On using the scaled Hamiltonian version of (2.6.4,2.6.5) we 
dt 

obtain an equation of the form (2.6.2), with 

2e0  +e 
Btuç2 

2e3  +e' 	U3+2wO+w')' 
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(sil - z 
oft )' 

k=w 2 _e. 
On making a substitution, 

- 
I 

(q + q'\ 
 - 	- 

we are led to a system with Hamiltonian 

11 	 1 	 1 = 

This is a non-autonomous generalization of one of the integrable Hamiltonians 

with quartic potentials derived in [26]. Applying the same procedure to scaling 

similarity solutions of the other PDE there considered, we arrive at 

= 	+ Pfl -1(Q + 6QQ + 8Q) - KQ2 + Q2 + 	+ Q). 

The two PDEs are related to the same equation in a modified hierarchy, so there 

are canonical transformations between these two Hamiltonian systems, just as for 

cases (i) and (iii) of non-autonomous Hénon-Heiles. We notice that for k = 1 = 0, 

the equations of motion for h 1  are separable in coordinates qj + q2 , and (up to a 

resealing) give two copies of P11 for parameter a = 0. Also we observe that if we 

define a tau-function by 
hi (z) = (log[r(z)])', 

then this gives the (similarity solution) tau-function of the Hirota-Satsuma equa-

tion after scaling i -  by a factor of exp[z 3 /12]. 

2.7 Conclusion 

We have considered the scaling similarity solutions of the Sawada-Kotera, fifth-

order KdV and Kaup-Kupershmidt equations, and have shown that they may be 

understood as solutions to non-autonomous Hamiltonian systems fl(i(iu), which 

are time-dependent generalizations of the well-known integrable Hénon-Heiles sys-

tems. We have also used the Miura maps for each of the PDEs (relating them to 

a PDE in a modified hierarchy) to give Miura maps for these similarity solutions, 

which can in fact be inverted. More precisely, we have seen that solutions of the 

fourth-order ODE (2.2.18) are in one-one correspondence with solutions of both 

'H( i) and fl(uo, while there is also a one-one correspondence between the solu-

tions of (2.2.19) and fl(iq. These correspondences have led to natural derivations 

of Bãcklund transformations, resulting in the generation of special sequences of 
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solutions. The tau-function for each of these non-autonomous 1-lamiltonians has 

also appeared very naturally, providing a concise way to encode and generate 

solutions. 

Since the ODEs we have studied are similarity reductions of integrable PDEs, 

they should be viewed as fourth-order analogues of the Painlevé transcendents. 

In the light of our results, we believe that approaching such ODEs by way of 

associated Hamiltonian systems is extremely useful. The examples in Section 2.6 

indicate that the techniques of this chapter are quite general. We expect that they 

should apply to similarity solutions of all PDEs occurring as reductions of the KP 

hierarchy. For example, higher order stationary flows of coupled KdV equations 

lead to some of the integrable polynomial Hamiltonian systems of [54], and thus 

there should be associated non-autonomous systems. We intend to develop these 

ideas further in the future. 

Note. After this thesis was submitted, we were made aware of some recent 

results of Kudryashov concerning similarity solutions of the mKdV and KdV hier-

archies [106]. This work may be viewed as complementary to ours, and although 

it does not describe the Hamiltonian formalism for these equations, it overlaps in 

several places. 

82 



Chapter 3 

Singular Solutions of the 
Nonlinear 5rödinger Equation 

and their Pole Dynamics 

The linear problem of NLS admits an analogue of the Crum t
ransformation for 

linear Schrodinger operators. This leads to the 
construction of a sequence of sin-

gular rational solutions, which may be written in terms of Wronskians of Schur 

polynomials. Bilinear methods provide a 
straightforward way to show that the 

poles and zeros of the rational solutions evolve 
according to constrained Calogero-

Moser equations. NLS also has a trilinear form which is related to its reduction 

from the KP hierarchy. Some other singular 
solutions also appear to have inter- 

esting pole dynamics. 

3.1 Introduction  

It is well known that for many nonlinear PDEs 
solvable by inverse scattering, the 

motion of the poles of rational solutions is determined by finite-dimensional inte-

grable Ha
miltonian systems. Perhaps the canonical example is the KP hierarchy 

[103, 1421, where the pole motion with respect to each of the times is governed 

by a corresponding C a
logeroM05er flow. Similarly, rational solutions of the KdV 

and Boussinesq equations [11, 1301, as well as the Burgers equation [16], have 

poles whose equations of motion are just those of constrained CalogerOMOset 

systems, but essentially this occurs because these PDEs arise via reduction of the 

KP hierarchy. 

3.1.1 KP and Calogero-Moser  

To clarify these ideas, we briefly review the case of the KP hierarchy and its 

reduction to KdV. We follow Shiota's exposition in [142]. A polynomial tau- 



function for KP may be written in the form 

r(x,t) = fl (X - x()),  

where t = (t2, t3, ...) are the times of the hierarchy. The dependent variable in 

the original form of the KP equation is related to the tau-function by 

u(x,t) = (log[r])rr, (3.1.2) 

and so taking the polynomial tau-function (3.1.1) gives rational solutions u de-

caying at infinity, i.e. 

u = _ Ex -x()2. 

The first bilinear equation in the hierarchy is 

(D 4 + 3D ' _ 3),r . ,r = 0. 	 (3.1.3) 

(Dm denotes the derivative with respect to t., and we identify t 1 	x.) The 

usual form of the KP equation follows from (3.1.3) on dividing through by r2 , 

differentiating twice with respect to x and rewriting the resulting expression in 

terms of U: 

(4u 3  - 	- 12uu), - 3u 212  = 0. 	 (3.1.4) 

Clearly the zeros of the polynomial tau-function (3.1.1) are just the poles of the 

rational function u. Then the main result of [142] (generalizing the observation 

of Krichever [1031) is that a polynomial tau-function satisfies the KP hierarchy if 

and only if for each of the times tm (m=2,3,...,N) its zeros evolve according to 

ô (x\ 	)m( e9HmIäEj ) 
j ) - - 	

(3.1.5) 

where ,; = 'a1at2, Hm = trYtm, and Y is the N x N Moser matrix with entries 

YIk = Ejöjk + 
1 - 	

(3.1.6) 
Xj - Xk 

The equations (3.1.5) are those of the Calogero-Moser hierarchy, which is com-

pletely integrable [130]. The Hamiltonians H1 , . . . HN are N independent con-

served quantities in involution with respect to the standard Poisson brackets. 

To see what happens when we reduce from the KP hierarchy to KdV, consider 

the first (in = 2) flow given by (3.1.5). The equations of motion for the Xi, 

j = 1 1  ..., N, are 
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alxi  

- 
- 	- 	 (3.1.7) 

 k0j 

which are just the original Calogero-Moser equations for the Hamiltonian 

H2 = 	- E(x - xk) 2  

Now the KdV hierarchy is obtained from KP by making all the flows with respect 

to the even times stationary. So in particular stationarity of the 12 flow gives the 

constraint 

>>j  - Xk) = 0, 	 (3.1.8) 

kOj 

as well as = 0, for j = 1,..., N, and the 13 flow becomes simply 

= 3(x - Xk) 2 . 	 (3.1.9) 
06 	kj 

A more general form of tau-function for KP which yields interesting pole 

motion is the elliptic polynomial 

7- (x,1) = exp(a(1)x + fi)flc(x - x(t)), 	(3.1.10) 

where a is the Weierstrass sigma function. This gives 

u(x,t) = 

with p being the usual Weierstrass elliptic function'. The poles evolve according 

to the elliptic Calogero-Moser system, and in the reduction to KdV the constraint 

involves a sum of derivatives of p-functions. In fact the rational solutions may be 

obtained from the elliptic ones by letting the periods tend to infinity (and there is 

an intermediate case where only one period goes to infinity, which gives Calogero-

Moser with an inverse sine-squared or sinh-squared potential). For further details, 

and the corresponding result for the Boussinesq equation, see [11, 130]. 

3.1.2 Pole Motion for NLS 

In this chapter we consider the Nonlinear Schrödinger (NLS) equation 

't + pT - 2 2 0 = 0, 	 (3.1.11) 

'The exponential prefactor in (3.1.10) does not alter the form of the physical variable it but 
is necessary to ensure that the bilinear equation (3.1.3) is satisfied. 



and show various ways to produce singular solutions and describe the motion 

of their poles. Our approach makes much use of Bãcklund transformations and 

bilinear methods. We present a construction of rational solutions of NLS which 

has an exact analogue in the case of the KdV equation. These rational solutions 

of NLS are given by 

- 1' 
with g and f both being polynomial tau-functions of the form (3.1.1) (up to a 

constant prefactor). It is then possible to demonstrate that the poles and zeros of 

such rational solutions evolve according to constrained Calogero-Moser equations. 

We also give a description of a few other singular solutions. 

An outline of the chapter is as follows. First of all, in the next section, we 

apply the singular manifold method used in [120, 152] to (3.1.11), and are thus 

able to obtain the standard auto-Bãcklund transformation (ABT) and associated 

linear problem (zero curvature representation). In Section 3.3 we derive the 1-lirota 

bilinear form of NLS, present the ABT in bilinear form, and show how this may 

be used to produce a sequence of singular rational solutions. Rational solutions of 

the KdV hierarchy were studied by Adler and Moser [8] from the point of view of 

the Crum transformation for (linear) Schrödinger operators. We proceed to show 

in Section 3.4 that there is a Crum-type transformation for the linear problem of 

NLS, which provides a direct construction of the rational solutions (rather than 

repeated application of the ABT, which is laborious). The Crum transformation 

leads to Wronskian formulae for the rational solutions, which generalize some 

similarity solutions found by Hirota and Nakamura [83, 841 via a connection with 

the classical Boussinesq equation. Section 3.5 contains a direct derivation of the 

trilinear form for NLS, and we explain how this is connected to its reduction 

from the KP hierarchy. Following this we indicate how use of the trilinear form 

shows that the rational solutions have poles which move according to constrained 

Calogero-Moser equations, while using the bilinear form demonstrates that in fact 

the zeros of the rational solutions satisfy constrained Calogero-Moser equations 

as well (Section 3.6). We briefly discuss similarity solutions of NLS, plus some 

other sorts of singular solutions and their pole motions, in Section 3.7. Finally 

we discuss how these methods might be applied further in our Conclusion. 

3.2 NLS and the Singular Manifold Method 

The Nonlinear Schrodinger (NLS) equation 

't + 	+ 2801'?P = 0, 	 (3.2.1) 
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(where S = ±1), is one of the most ubiquitous examples of an integrable nonlinear 

equation. It is an important equation in nonlinear optics [118], as well as de-

scribing the modulation of a sinusoidal wavetrain in an isotropic elastic medium 

[131]; also it has an interesting correspondence with the Localized
-Induction- 

Approximation equations 

Eztr=l ,  

which a
pproximate the motion of a thin vortex filament (see [1461). In fact NLS is 

propriate first approximation for the evolution of any 
slowly-varying wave-

an ap 	 nonlinear system (as is shown by multipl&5c5 analysis in 
envelope in a weakly  

Chapter 8). A thorough discussion of the physical 
applications of NLS may 

be found in Gibbon's survey article ([621 1  Chapter 6), which contains a full list of 

references. 

3.2.1 NLS and AKNS 

In the form (3.2.1) NLS is really two different equations d
escribing different phys-

ical behaviours: the focussing- and 
0 focussingNL equations, corresponding 

to S = +1 and 6 = —1 respectively. Both these cases may be obtained from the 

AKNS system 	

qt , = q + 2q2r, 	
(3.2.2) 

= 	- 2qr2, 	
(3.2.3) 

on setting 2 = it, q 
= and r = 6 (for real x, t, with the bar denoting complex 

conjugate). We denote the AKNS time variable by t
2  to identify it with the second 

time of the KP hierarchy, since AKNS is a reduction of KP (we will return to 

this point when we come to derive the trilinear form of NLS later). So the two 

different NLS equations give solutions to AKNS with particular reality conditions. 

In [1341, Previato derived the hyperelliPtic quasiperiodic solutions of AKNS using 

a
lgebraic geometry, and then studied the reality conditions 

corresponding to 5 = 

±1, showing how certain limits of these solutions gave the NsolitOn formulae 

found by ilirota [80] using his bilinear f
ormalism. A simple check of leading-

order behaviour in (3.2.1) shows that 
singular-type solutions are admitted only 

in the case 6 = —1, and so because we are interested in finding pole motions we 

will henceforth consider only NLS in the form (3.1.11). 



3.2.2 Inverse S cattering and the ABT 

To make a comparison with later results we note here that the usual inverse 

s
cattering scheme for (3.1.11) is the su(1, 1) zero curvature representation 

(n) = ( k 	 (3.2.4) 

 ) ( 
_i(14r+2k) iip+2kiP \\ (vi 	325 

V2 L - 
(

- 	_i+2W i(H+ 2 k 2 ) ) 

For the case B = +1 there is a similar 
su(2) spectral problem, originally found 

by Zakharov and Shabat 11541. Their solution of NLS by the inverse scatter-

ing method was one of the first indications of the remarkable generality of this 

technique (which had p reviously only been applied to the KdV equation). 

For future reference, we also present the standard autoBacklund transforma-

tion (ABT) of NLS (studied by Boiti and Pempinelli in [291): 

Zc 	 + ) 2+52 , 	(3.2.6) 

= _ 	 )(k 	
1 2). (3.2.7) 

It is easy to verify that if 	
is any solution of (3.1.11)7 then given (3.2.6) and 

(3.2.7), 	
must also satisfy (3.1.11). For example, starting from the vacuum 

solution = 0, we apply (3.2.6) and (3.2.7), and find the singular 1soliton 

cexp[i( + (c2  - 

11) = sinhla(X - ct)] 

(We ignore the arbitrary constant shifts in x, t and the phase of , which are 

always possible.) At this point it is worth observing that the NLS equation has 

a Galilean symm
etry: given any solution of (3.1.11), then another solution is 

given by  c 2t  

( x , t) = exp i 
( - 

where ft. 

It is easy to check that if two solutions 0 and are related by the ABT (3.2.6) 

and (3.2.7) with the p a
rameter c set to zero, then the Galilean-boosted solutions 

xP and are related by (3.2.6) and (3.2.7) with the parameter c reinserted. Also 

we remark that the 1-pole rational solution 

may be found from the 1-soliton in the limit a,  c 	0 (or equivalently 

by a
pplying (3.2.6) and (3.2.7) with a = c = 0 to the vacuum solution). This 

rational solution is the first in a 
sequence which we derive later. 
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3.2.3 Application of the Singular Manifold Method 

In the rest of this section we apply a branch of Painlevé analysis pioneered by 

Weiss (see [120, 1521 and references in [301), which we will refer to as the singular 

manifold method. The usual Painlevé test for PDEs [37] involves substituting a 

Painlevé expansion of the form 

00 

u(x,i) = 4)-K 
 

into the PDE, with 4) = 4)(x, 1) being an arbitrary (non-characteristic) function 

defining the singularity manifold 4) = 0. For an integrable PDE K must normally 

be a positive integer (unless it is an example of the "weak Painlevé" property 

[301), and we may then proceed with the singular manifold method. 

The first step is to truncate the expansion at the "constant" level: 

K-i 

u(x,i) = 4)-K >i: u(x,t)4)Th  + UK(X,t). 
n=o 

While substituting the full expansion into the PDE yields an infinite set of equa-

tions for 4) and the uj, the truncated expansion should give only a finite number, 

at least for an evolution equation of the form 

u t  = F[u] 

(where F is a polynomial in u and its x-derivatives). Then the last of these 

equations is 
UKI = F[UK], 

which means that UK 
satisfies the same PDE as u, and so the truncated expansion 

constitutes an ABT. Further analysis of the equations for 4) and the uj (j = 

0,1,..., K) gives a better characterization of the ABT, and may be used to derive 

both the inverse scattering formalism and the Hirota bilinear form for the PDE 

in question. Thus the technique is of great practical value, as well as highlighting 

the intimate relationships between bilinear forms, Bäcklund transformations and 

inverse scattering (see for example [70, 99]). There are some subtleties as to when 

this truncation procedure works properly [132], but they will not concern us. 

Rather than trying to describe the general situation in any more detail, we shall 

proceed to apply the singular manifold method to the NLS equation. Essentially 

our analysis reproduces the results on the AKNS system found in [120]. 

Looking at (3.1.11), we see immediately that the leading order behaviour is 

just a simple pole in terms of the singularity manifold function 0 (which we will 



assume to be real). More precisely we find 

U0 

where 
IuoI2 = #2 

Upon setting iii = , our truncated 
expansion is just 

= 	+ ', 
	 (3.2.8) 

U O  

and we s
ubstitute this into (3.1.11) and set the terms at each order in 

0 to zero. 

We find the following four equations (the singular manifold 
equations): 

 02 u0 1 2  - 	= 0, 	(3.2.9) 

i#t 
+ 2(10gu01)r + #xr + 2uo + 	

= 0, 	(3.2.10) 

	

ZUO,t + UO,xx - 4uoI2 - 2
2  = 0, 	(3.2.11) 

iij + 	- 	= 0. 	(3.2. Z) 

	

So (3.2.9) (the coefficient of 	
3) just yields the leading order behaviour, while 

the "constant" (order 00) term (3.2.12) means that the truncated 
expansion con-

stitutes an autoBacklund t ra
nsformation for NLS, provided that these equations 

are all consistent. In fact the 
consistency is shown directly by deriving the zero 

curvature representation of NLS, which we do below. 

There are some co
nsequences of (3.2.9-3.2.12) which lead to simpler formulae. 

The derivations are made simpler by using the two equations found from (3.2.10) 

on taking real and imaginary parts: 

tot + (log[uo/i1Dx - uoI' + 

After further calculation, we find that we must have 

	

= 	
(3.2.13) 

UO'X -2ikuo -  

iuo,t = uo(4k2  + 2II2) + 	+ 	
(3.2.14) 

where k 
is a real constant. The manipulations required to derive (3.2.13) and 

(

3.2.14) are not very instructive, so we present them 
separately in Appendix A. 

Now the s
tandard ABT for NLS follows immediately. For if we 

rearrange the 

equation (3.2.8) then we have 

UO  
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which gives 

on substitution into (3.2.9). Then substituting for u 0  and 0. in (3.2.13) gives 

(0- 	= —2ik(& - ) - ( + 	- 

which is just (3.2.6) for a = 0 and c = —4k. Similarly the corresponding time part 

(3.2.7) of the auto-Bäcklund transformation may be found by making these same 

substitutions in (3.2.14). Note, however, that this truncation has not provided 

us with the full transformation (for non-zero a) needed to produce a singular 

1-soliton solution from the vacuum. For this reason we think of this transfor-

mation (with a = 0) as the "rational ABT". The standard ABT with a $ 0 

(the "solitonic ABT") could presumably be obtained by truncating the Painlevé 

expansion at some level higher than as has been found by Pickering for some 

other PDEs [132]. Since we are primarily interested in the rational solutions of 

NLS, this will not be important. 

The zero curvature form of NLS follows if we now make the "squared eigen-

function" substitution (see [120]) 

no  = -V 2 . 

Then from (3.2.9) we must have (up to a sign, which we fix) 

So in terms of v and 11, (3.2.13) and (3.2.14) give 

v. = —ikv + 	, 	 (3.2.15) 

Vt = 	z(II2 + 2k 2)V + ( i 	+ 2kb)IY. 	 (3.2.16) 

This is the same as the standard NLS spectral problem (3.2.4,3.2.5) if we replace 

' by ', set 

VI  = V, 

and make the consistent choice 

= V. 

Since we already know that the consistency condition for the spectral problem 

(3.2.15,3.2.16) is just the NLS equation for , this implies that the singularity 

manifold equations (3.2.9-3.2.12) are also consistent. We have shown how the 

singular manifold method applied to NLS can be used to derive the ABT (at 

least for rational solutions) and inverse scattering scheme. We note that the 
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choice of complex conjugate components v2 = iYj is not the usual one made 

in applications of the spectral problem (3.2.4,3.2.5) (for instance when finding 

soliton solutions), but the equation (3.2.15) will be important when we introduce 

a Crum-type transformation in Section 3.4. At this stage the analysis is much 

simplified by writing the NLS equation and its ABT in bilinear form, which we 

do in the next section. 

3.3 NLS and its Auto-Bãcklund Transformation 
in Bilinear Form 

We have seen how the singular manifold method may be used to derive both 

an inverse scattering scheme and a Bäcklund transformation for an integrable 

evolution equation. Yet another application of this method is in finding the 

Hirota bilinear form for a PDE by truncating the Painlevé expansion before the 

"constant" term (i.e. at order 1 ). For example, for the KP hierarchy (and 

also for its reduction to KdV [70]), the most general type of Painlevé expansion 

obtained by substitution into (3.1.4) has a double pole in 4): 
U0 U1 

02 0 

It is easily found that 

U0 = - 4), 
U1 = OXXI 

so that when we truncate in the usual way we find that the Bäcklund transfor-

mation relating u and u 2  has 

U = (109[4)1), 3, + U2. 

Now if we make the further truncation (i.e. set u2  = 0) and make the identification 

4) = r, then we have 

U = ( 10g[7-]) 00 , 

which leads to the bilinear form (3.1.3). 

3.3.1 The Bilinear Form 

The truncation method may be used to obtain the bilinear form of NLS, but it 

is necessary to have two tau-functions to get bilinear equations. With only one 

tau-function we find a trilinear equation instead, which will be discussed later. In 
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the truncation (3.2.8) we set i = 0, u 0  = g,= f, and then the NLS equation 

(3.1.11) becomes 

((iD, + D)g f) 
- * (Df 

f + 21g1 2 ) = 0. 

This means that if the tau-functions 1' g satisfy 

(iDe + Djg I = 0, 	 (3.3.1) 

D 2 I + 2g 2  = 0, 	 (3.3.2) 

then ' = gil satisfies (3.1.11). This is the usual Hirota bilinear form for NLS, 

as used in [801 to obtain soliton solutions. The second of these bilinears has an 

immediate consequence which we will make use of throughout the rest of the 

chapter, namely 	

101, = —( log[f]). 	 (3.3.3) 

Another consequence of (3.3.1,3.3.2) is the bilinear equation 

iDDf f - 2Dg = i-1f2. 	 (3.3.4) 

In the above 'y is a real constant, which may be set to zero without loss of 

generality (i.e. by rescaling both f and g by exp[7x1/21). In Section 3.5 we will 

show that using (3.1.11) and the substitution (3.3.3) it is possible to obtain a 

trilinear equation for f. We note here that this trilinear equation also follows 

from the bilinears (3.3.1,3.3.2) and (3.3.4) with = 0. 

3.3.2 Bäcklund Transformations in Bilinear Form 

Given a bilinear form for a PDE it is often convenient to express its Bãcklund 

transformations in terms of the tau-functions. Also, given an ABT in bilinear 

form one may generate a PDE in a new dependent variable by choosing some 

suitable combination of the tau-functions. A very common example [137] is the 

KdV equation, 
Ut = Us + 6UUX. 

It is straightforward to obtain this from the bilinear equation 

Dr(Dx - D)r . = 0, 	 (3.3.5) 

where the dependent variable is given in terms of the tau-function by 

U = 2(log[r])xr. 
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The bilinear ABT for (3.3.5) is 

(D - 30D - D)r . 	= 0, 	 (3.3.6) 

(D - 0)r 	= 0. 	 (3.3.7) 

This means that given two tau-functions T, r related by (3.3.6,3.3.7), if satisfies 

(3.3.5) then so must r (and vice-versa). The Bãcklund parameter /3 is arbitrary. 

Applying the transformation starting from the vacuum = 0 gives a 1-soliton 

solution for 0 0 and a (1-pole) rational solution for 0 = 0, which suggests that 

0 plays the same role as the parameter c in the ABT (3.2.6,3.2.7) for NLS. Now 

if we consider the bilinear equations (3.3.6,3.3.7) with the Bäcklund parameter 

set to zero, we may define a new dependent variable 

V = (log[r/f]). 

Then it is simple to demonstrate that this bilinear ABT with 0 = 0 implies that 

V satisfies the modified KdV (mKdV) equation: 

%4=V36V 2 V2 

Further examples of this may be found in [79, 811, but more relevant to our discus-

sion is the work [83] of Hirota and Nakamura concerning the classical Boussinesq 

system. 

3.3.3 Classical Boussinesq and NLS 

The classical Boussinesq equation for the dependent variable u is derived from 

the system 

Ut = (( 1 + u)v - 

Vt = (u+v2). 

In [83] it was shown that this system has a bilinear form, 

(iD+D)P•F = 0, 

(iDD+D)T•F = o. 

To make the dependent variables u, V real (for real x and t), the tau-functions 

must be taken as a conjugate pair FP, with 

u = —1 - 2 (log [FF]), 

V = 2i(log[F/F]). 
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Using the bilinear form, Hirota and Nakamura found an ABT which allowed 

the construction of a sequence of rational solutions known as "explode-decay" 

solitons. In fact these solutions all depend on the similarity variable 

X 

Z 
= -j- - 

2t 

(we have rescaled z compared with [83] to be consistent with other results below), 

and the tau-functions are written in terms of Wronskian determinants of Hermite 

polynomials. 

Another result proved in [83] is that, using the tau-functions related via the 

bilinear ABT for classical Boussinesq, one may construct new tau-functions f, g 

satisfying the bilinear equations (3.3.1,3.3.2) for NLS. More precisely, given a con-

jugate pair of classical Boussinesq tau-functions F, F which is related to another 

conjugate pair F, F' by the bilinear ABT, the NLS tau-functions are found from 

f2 = ( FF' + FT), 	 (3.3.8) 

gf = ( DF• F'). 	 (3.3.9) 

The corresponding solutions to NLS found in this way are rational, and since 

they depend essentially just on the variable z they are also similarity solutions to 

NLS. The first three of these were calculated by Hirota and Nakamura, and we 

present them in Table 3.1 below. 

n I 	1 1 	2 1 	3 

fTh I x - 12t2 1 	X9  - 72x 5 1 2  - 2160xt4  

g 1 I —2x3  + 12ixt I 3x5  - 48ix 6 t - 360x 4 t 2  + 21600 

Table 3.1. Polynomial tau-functions for NLS similarity solutions. 

The scaling similarity solutions of NLS have been considered in some detail 

by Boiti and Pempinelli [29]; they depend on the variable z and are in one-one 

correspondence with a particular case of the fourth Painlevé transcendent (Ply). 

We will return to these similarity solutions in Section 3.7, but for the moment we 

simply remark that the sequence of rational solutions found by Hirota and Naka-

mura is the same as that obtained by repeated application of the Boiti-Pempinelli 

ABT for similarity solutions, starting from the trivial similarity solution 0 = 0. 

The Hirota-Nakamura formulae, giving the explode-decay soliton solutions of the 

classical Boussinesq system in terms of Wronskians of Hermite polynomials, are 

related to certain classes of special solutions to Ply [74, 111]. These Wronskian 

determinants are special cases of formulae for rational solutions which we derive 

in the next section. 
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3.3.4 Bilinear ABT 

The method of Hirota and Nakamura is an extremely indirect way to construct 

rational similarity solutions of NLS, because it requires repeated application of 

the ABT for classical Boussinesq, as well as the substitutions (3.3.8) and (3.3.9) 

(which, as observed in [83], do not ensure that f 2  is positive definite). Instead, 

one could apply the ABT (3.2.6,3.2.7) for NLS (with a = c = 0 to get purely 

rational solutions). This too is a somewhat laborious task; substituting in the 

1-pole solution and trying to find the next rational solution from it is extremely 

difficult by this method. Hence after considering the bilinear approach of [83] we 

were led to the discovery of the following bilinear ABT for NLS (which as far as 

we know is original'): 

	

(D - ic/2)(g- f - . f) = 0, 	(3.3.10) 

	

(iDe  + a2  - c2 /4)g .j + (D + c2/4) . f = 0, 	(3.3.11) 

	

(iDe + 2 - c2 /4)ã . f + (D 2 + C2 /4)g / = 0, 	(3.3.12) 

(iDe + icD)f . f = gg -  g, 	 (3.3.13) 

Df . / = Jig/ - U  + Or2f212 . 	 ( 3.3.14) 

The bilinear relations (3.3.10-3.3.14) are such that if the pair of tau-functions , 7 
satisfy the NLS bilinears (3.3.1,3.3.2), then so dog, f. We prove this in Appendix 

B. 
In deriving the above we were led to consider its relationship with the singular 

manifold method. The connections between Painlevé analysis and the ilirota 

formalism has been considered for a number of different PDEs (including NLS) 

in the paper [701 of Gibbon et al. In particular, they show that the singular 

manifold equations (3.2.9-3.2.11) imply a Bäcklund transformation for the NLS 

bilinear equations (3.3.1,3.3.2). This means that given a pair of tau-functions , 

f satisfying the NLS bilinears, another pair g, f may be constructed from the 

relation 
g u0 g 

7 -v_  

with 0 = f/f, provided that the singular manifold equations (3.2.9-3.2.11) hold 

(where is replaced by // throughout). We have shown independently that 

(3.3.10-3.3.14) constitutes an ABT for the bilinear form of NLS (see Appendix 

B). So this means that the bilinear version of the ABT must be equivalent to the 

singular manifold equations (but only for the non-solitonic case a = 0). Rather 

'Shortly before completing this work we became aware of the reference [122] in which Nimmo 
presents a very similar set of bilinear equations. See note in Appendix B. 
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than check this, we prefer to apply the bilinear ABT to show how it generates 

rational solutions. 

It is easy to check that the bilinear ABT with a 	0 produces the singular 

1-soliton, 

\1 

	

g = cexp 	+(u2 - 	
c2 
1)t)j 	f = sinh[c(x - ct)] 

when applied to the vacuum, 

	

=o, 	j'=L 

(As before we always neglect shifts in x, it and the constant phase shift in g.) 

Since we want to generate purely rational solutions we set a = c = 0, and then 

as expected the vacuum produces the 1-pole rational solution 

	

g=l, 	f=x. 

The inclusion of the parameter c would just give this a Galilean boost; this is 

discussed in Appendix B. 

Note that the bilinear ABT is not completely symmetric under interchange of 

the tau-functions with tildes and those without: the square root sign in (3.3.14) 

introduces this asymmetry (which is clearly essential to get anything new from 

repeated application of the transformation). As with our singular manifold equa-

tions, we stick to the convention that the old quantities have tildes, while the 

sought-after new quantities do not. So, applying the rational bilinear ABT 

(a = c = 0) to the one-pole solution, we obtain the 4-pole solution 

g= —2x 3 +12ixt+7-3, f= x4 +r3x - 12t 2 , 

where 7-3 is an arbitrary constant (and again we have neglected an arbitrary shift 

in it). This solution clearly reduces to the 4-pole similarity solution f2,92  of Hirota 

and Nakamura (as in Table 3.1) in the special case ,- = 0. 

Looking at the table of similarity solutions, we see that we would expect the 

next rational solution to have nine poles (i.e. nine zeros in f). This is indeed 

the case, with more and more arbitrary constants appearing each time we apply 

the ABT (and the similarity solutions arising on setting all arbitrary constants to 

zero). By analogy with the well-known results about rational solutions of KdV [8], 

we would expect the arbitrary constants to correspond to the higher times in the 

NLS hierarchy. For the 4-pole solution we compute this directly. The equation 

for the next flow in the hierarchy (which is just a restriction of the corresponding 

flow for AKNS [41]) is 

= 3x + 611/,1 2 ?/,x , 
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which leads to the bilinear equation 

D 3g I = Dg I 

(where (3.3.1,3.3.2) 
still hold). Substituting the 4-pole solution into this bilinear 

equation, we find that we must make the identification 

'13 = — 126. 

The bilinear ABT is still a very inefficient way to generate rational solutions, 

and it is not very clear how the times for the higher flows arise as constants of 

integration. 
In the next section we reconsider the linear problem for NLS (as derived by 

the singular manifold method), and find that it admits an analogue of the Crum 

transformation for linear Schrödinger operators. By repeated application of this 

transformation, which we call the NLS Crum transformation (NCT) we are led 

to an algorithmic way in which to compute the sequence of rational solutions. 

We find that the bilinear variables g, I lead to a very concise description of 

this, as well as making more contact with the results of Gibbon et al. At the 

same time, the Crum transformation provides a natural derivation of the substi-

tutions (3.3.8,3.3.9) in terms of classical Boussinesq tau-functions. Also we are 

able to write the rational solutions in terms of Wronskian determinants of Schur 

polynomials, which generalize ilirota and Nakamura's formulae for the similarity 

solutions. 

3.4 The NLS Crum Transformation and Ratio-

nal Solutions 

3.4.1 The Crum Transformation for KdV 

The construction of the polynomial tau-functions for KdV was shown [S] to be 

most easily achieved by considering the factorization of a second order operator 

into two first order operators: 

L-A1 =_A*A. 

In the above we have the Schrödinger operator 

the first order operator 
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and its adjoint A*. The operator L is just half of the Lax pair for the KdV 

equation (or for each of the flows in the KdV hierarchy). It is straightforward to 

obtain LI in terms of V, and for A = 0 this recovers the well-known Miura map 

between a solution V of mKdV and U satisfying KdV. 

Starting from the eigenvalue equation 

(L - 	= 0, 	 (3.4.1) 

and a solution 0 $ 0, the factorization of L can be reversed to yield a new 

Schrödinger operator 

where 
L_A1 = _AA*. 

This is simply because the eigenfunction 0 yields the factorization via the formula 

A = 

and then it is straightforward to see that 	is an eigenfunction for the operator 

L, i.e. 
(L - A) 1  = 0. 

This is the Crum transformation. The rational solutions of KdV are the sequence 

of potentials of the Schrödinger operators generated by repeated application of 

this transformation, with the special choice of eigenvalue X = 0, beginning with 

the potential Uo  = 0. If we apply the same transformation to the operator L 

above, with the eigenfunction providing the factorization, then the Crum 

transformation will just lead back to the original operator L. Hence to generate 

a new potential, at each stage another eigenfunction must be found (such that it 

is linearly independent with c'). 

3.4.2 NLS Crum Transformation 

If we consider the x part of the linear problem for NLS, we find that it admits an 

analogue of the usual Cram transformation for the Schrödinger spectral problem 

(3.4.1). We start from the equation (3.2.15) found using the singular manifold 

method: 
VX  = —ikv + biY. 

This is the analogue of the eigenvalue problem for the Schrödinger operators; it 

may also be considered as a second order problem for the real or imaginary parts 

of v. We shall refer to the functions v throughout as "eigenfunctions", although 



strictly the vector with v and T as its components is the eigenfunction for the 

matrix spectral problem (3.2.4); similarly we shall refer to the functions as the 

"potentials". Using the results of Section 3.2, we define the singular manifold 

function 0 via 
= v2. 	

(3.4.2) 

Now we can define a new eigenfunction 

V 
V s  = - 

It is easy to see that V = v is a solution to the eigenvalue equation 

V = —ikV + OV, 	
(3.4.3) 

with the new potential 

The above transformation from ' to b constitutes the NLS Crum transfor-

mation (NCT). We can of course define a new singular manifold function 0 by 

= 1 v 

but up to a constant we must have 

= 

and so applying the same t ransformation again just leads back to the old potential 

. So in order to get anything new we need to find a new 
eigenfunction v' 

satisfying (3.4.3), such that v' and v are linearly independent (over the real 

numbers). It is well known that two independent solutions to a Schrbdinger 

eigenvalue problem have a Wronskian which is a non-zero constant. In this case 

the analogue of the Wronskian is the quantity 

W[v,vq := (2i)_1(v*v7 _V*V'). 	 (3.4.4) 

It can be checked directly that for any two solutions 
v, v' of (3.4.3), Wv, v'] is 

a constant, which will be non-zero when they are i
ndependent. In fact W arises 

naturally as a determinant back in the matrix f
ormulation (3.2.4). 

3.4.3 A Sequence of Rational Functions 

We proceed to construct a sequence of rational functions 	
for n = 0,1,2,... by 

repeated application of the NCT, with the eigenvalue 
k = 0, starting from the 
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vacuum Oo  = 0. These rational functions turn out to be solutions to the NLS 

equation, but we need some preliminary results before we can prove this. All the 

manipulations involved are much easier when carried out in bilinear form. Hence 

we are lead to the following equations which must be solved successively (starting 

from fo = 1, h0  = 

	

Dz hn In = hngn, 	 (3.4.5) 

	

W[h, h_1] = 	- 1)(2n + 1)f,, 	(3.4.6) 

	

Drfn+i .171 - h flp 
2 	 (3.4.7) - I  

gn+1fn — gnfn+1 - - —h 2 	 (3.4.8) 

W is as defined in (3.4.4). It is a simple matter to show that solving these 

equations is equivalent to applying the NCT repeatedly. 

Proposition 3.1. If h 71 , g71  and fn  are solutions to (3.4.5-3.4.8) with the initial 

conditions fo = 1, h0  = i, then the most general potential On  obtained by n 

applications of the NCT (with eigenvalue k = 0) to the vacuum O o  = 0 is of the 

form 

	

=gn, 	 (3.4.9) 

where 
I,I 2  = —(109[f71]). 	 (3.4.10) 

The new eigenfunctions at each stage are given by 

hn 

	

Vn = 
In
-, 	 (3.4.11) 

so that 

	

V n ,x = OnTni 	 (3.4.12) 

and the singular manifold function is obtained from the formula 

	

On 	
J'n+i 

	

= -. 	 (3.4.13) 
In 

Proof. First we consider n = 0. We may substitute for fo  and h0  in (3.4.5) 

immediately to get go = 0, which gives bo = 0. Since fo  is a constant (3.4.10) 

also holds, and clearly v0  = h0/f0  is just a constant and satisfies v o,,, = 'ov-6 = 0. 

The equation (3.4.2) for the singular manifold function gives 00 ,, = 1, and thus 

00  = f1 1fo = x + r1 , with r1  constant. As usual we neglect this translation in 

x and find ft = x, which is just what we find on solving (3.4.7). Finally (3.4.8) 

yields gi  = 1, and so 0, = 11x as expected. 
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We may proceed by induction. Assume fo, ..., f,, go,..., gn  and ho ,..., h_ 1  have 

been found. To apply the NCT we require a solution V of 

V = O.V. 	 (3.4.14) 

After a little manipulation of (3.4.5-3.4.8) we find 

Dh_1 f = 	 (3.4.15) 

which implies that V = 	= v_i/_i is a solution of (3.4.14). However, 

essentially this gives the singular manifold function -0-1 1 , and so applying the 

NCT with this V just leads back to 'n1 Hence we need a new solution v, to 

(3.4.14) such that the quantity W[v,v_ i /_i] is a non-zero constant. We find 

this by solving (3.4.5) with the normalization condition (3.4.6) (this normalization 

is chosen to ensure that each of the fn  is a monic polynomial). On dividing 

through (3.4.5) by fn it is simple to check that the new eigenfunction v is given 

by (3.4.11). Similarly dividing through (3.4.7) by the same factor produces the 

equation for the singular manifold function, that is 

- vn 2 

with çb given by (3.4.13). If we then divide (3.4.8) by ff+i on both sides then 

we find the correct equation (3.4.9) for the new potential: 

2 

fn+1 

The only thing still to verify is that the modulus of the new potential satisfies 

(3.4.10). By the inductive hypothesis we have 

(log[fm+j])rz = (log[]) - 10I2. 	 (3.4.16) 

Because we have constructed the linear problem (3.4.14) via the singular manifold 

equations (3.2.9-3.2.12), it is obvious that their purely x-dependent parts must 

be consequences of the equations for the Crum transformation. So for 4 = On 

and uo  = On(V)n+1- the equation (3.2.9) gives 

i2 _12 	 2 
Ym,r - 'Yn Ym+1 - 'Km 

while the real part of (3.2.10) implies 

= 	(I+i -'On 12 + InI2 - 

Alternatively these derivatives of On  may be computed directly using (3.4.5-3.4.8), 

and then substituting into (3.4.16) yields 

I0n+112 = —( log[fm+i])xx, 
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as required. This completes the proof. LI 

We are now able to show that the application of the Crum transformation is 

purely algorithmic, in the sense that the new potential is obtained by performing 

two integrations and then solving one algebraic equation. At this stage we also 

fix a convention for the constants of integration. 

Proposition 3.2. Given h_ 1 , fTh, g,-. found by n applications of the NCT in 

the form (3.4.5-3.4.8), the new potential n1 = g,+i/fn+i is obtained via the 

following three steps. First, integrate 

/ h,\ 	 fTst2 
= —2iJ(2n + 1)(2n - 1).-r-- 	(3.4.17) 

nfl - i  

to find h, and denote the constant of integration by s./(2n + 1)(2n - 1)r2 . Next, 

use hn  to find 	by integrating 

f 	
Il. 1 InI 2 	

(3.4.18) 
(-L-) =  

where the second constant of integration is denoted by 7-2 n+,. Finally, solve for 

g,-.+i by rearranging the algebraic relation (3.4.8) to give 

,t+i 

The constants of integration are real. 

Proof. To find a solution hn  to (3.4.5,3.4.6) (which generates a new eigenfunction 

V for the linear problem (3.4.14)), observe that 

ffl  (DX  hfl• h_ 1 ) = h_1(Dh . f,1) - h(Dh_ . M- 

Substituting for the bracketed expressions on the right hand side from (3.4.5) and 

(3.4.15), and using the normalization condition (3.4.6) yields 

Dh h,... 1  = —2i(2n + 1)(2n - 1)fg, 	(3.4.19) 

from which (3.4.17) follows instantly. Note that we can always add on any real 

multiple ofh_i to h fl  and it will still satisfy (3.4.5, 3.4.6). We choose this multiple 

to be /(n + 1)(2n - 1)r2 . The equation (3.4.18) is just the expression for the 

derivative of the singular manifold function On (written as the ratio (3.4.13) of 

two tau-functions). Hence the constant r 2  is just the arbitrary multiple of f, 

that may be added to 	LI 

It is interesting to observe that if we multiply either hfl ... 1  or h by i and remove 

the normalization factor (2n + 1)(2n - 1) then (3.4.6) and (3.4.19) are identical 
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to the substitutions (3.3.8, 3.3.9), when we identify the classical Boussinesq tau-

functions T, P' with the rescaled h, h_1 - Hence we are lead to the conjecture 

that, up to scaling, h is a tau-function for the classical Boussinesq equation, for 

all n. We postpone consideration of this matter for the moment, but henceforth 

refer to the hn as tau-functions. 

The first few NLS tau-functions found by applying the NCT are 

foi, 	go=O, 

f1 =x, 	91=1, 

12 =x+rax- 3r, 	92 = —2x 3 +6ir2x+r3, 

13 = x9  + 6r3x6 - 187- x 5  + mx" - 60r2 7-4x3  + 90r73x2  

+(rars - 1357-" - 157- ) x + 307-2r3r4 - 5,r32- 37-22  Ts, 

= 3x8 - 24ir2 x6  +67-3 X5  - 30(3r + ir4)x4 - 2(m - 30ir2 r3 )x3  

+30'r3' X2  + (-907- r3  + i(672r5 - 30r3 7-4 ))x + 135'r24  

+T3T5 - 15r + 30i(r2 r - 3rr4). 

In computing the above the first few h are also needed: 

ho = 

hi  = il(x2 - 

—r ( x6 - 3ir2 x" + 2r3x3 - (9 ,r22 + 3ir4 )x 2  
. 

\ 	+6zr2 mx + T32-372T4 - 9zr23  

We note that, after setting r2  = 2t and r = 0 for j '2:  3, these f,, g, are the same 

as the similarity solutions found by Hirota and Nakamura (as in [83] and Table 

3.1), and also the hn correspond to the tau-functions which provide similarity 

solutions to the classical Boussinesq equation. 

We have shown that the application of the NCT is purely algorithmic, and 

generates a sequence of eigenfunctions v and potentials t/', satisfying the purely 

x-dependent part (3.4.12) of the NLS linear problem. However, although the 

first few terms in this sequence are clearly rational, we have yet to prove this in 

general. The proof of this follows from the fact (proved in the next subsection) 

that all the tau-functions f,, g,-., h, may be written as Wronskian determinants 

of Schur polynomials, and hence are themselves polynomials. Other Wronskian 

identities show that the tau-functions g,, fTh 
also satisfy the t part (3.3.1) of the 

NLS bilinears, and hence the sequence of potentials really do provide rational 
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solutions of the NLS equation (3.1.11)(on identifying r 2  = 2t). More generally, 

the constants r should correspond to the times of the NLS hierarchy. In fact, 

the flows of the AKNS hierarchy can be given recursively in bilinear form [120], 

D,1g . f =DtAg .  1' 	 (3.4.20) 

and on reducing to the NLS hierarchy all the odd times t2,+1 must be real while 

the even times 12n  must be purely imaginary. We postpone further discussion of 

the higher bilinears (3.4.20) for the moment. 

3.4.4 Wronskian Formulae 

At this point we make use of the sequence of Schur polynomials Pj  for j=0,l,2,..., 

defined by 

exp[C, v)] = EpiLv i , 	CU, ii) = tjv', 	tj  = X. 

From this definition it is simple to show the following identities: 

Ok Pi 
Ox' 

Otk 

= Pi-k, 	 (3.4.21) 

= .. 	 (3.4.22) OX k 

The first five Schur polynomials are 

1 
P0=i, 	Pl=X, 	P2=X 2 

 +t2, 

1 3 	 1 	12 	1 
J23 	x+t2x+t3, 714 = x4 +t2x +t3x+t2 +t4. 

We are able to demonstrate that up to scale factors, all of the f,, g,, h found 

by applying the NCT are just given by double Wronskians of Schur polynomials, 

which implies immediately that these tau-functions are themselves polynomials 

in x. To make this identification requires the constant of integration Tj to be 

proportional to t, for each j. 

In what follows, we use the following notation for the Wronskian of ii functions 

a1 ,a2 , . . . 

a1 	a2 	... 	an  

[ai , a2,... , a,]  

	

al(_,) 	a2,(Th_1)X . . . 
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With this notation we introduce the quantities 

Fn = [P2n-1, . . . ,P2n-1,(n-1)x], 

Gn = [P2m-1, .... P2n-1,nxI, 

Hn = [P2n, 	,P2n,nx]. 

These expressions are all double Wronskians of Schur polynomials, and it turns 

out that they are proportional to f,, gn, and hn  respectively. We also make use 

Of 

On =  [Pn-i, . . . ,P2n-1,(n-2)rI1 

Hn = Ep2t., . . ,P2n,(n-1)x1. 

Strictly speaking, the bars above do not denote complex conjugate, although it 

will turn out that the complex conjugate of G,-. (repectively H) is equal to G. 
(respectively H) up to a minus sign. 

The key to proving that the tau-functions generated by the NCT are propor-

tional to these Wronskians is showing that, up to scale factors, the Wronskians 

satisfy all of the bilinears (3.4.5-3.4.8). We shall see that all these bilinears may 

be reduced to Laplace expansions of certain determinants. It is also necessary 

to show that the form of these Wronskians is compatible with the algorithmic 

procedure of Proposition 3.2, by identifying the constants of integration r with 

the tj appearing in the Schur polynomials. To demonstrate this we require a few 

preliminary results. 

Proposition 3.3. The double Wronshians F, G, H, G, H satisfy analogues 

of (3.4.5,3.4.7) and the equation (3.4.19), which are given by 

= 	 (3.4.23) 

DrFn+i F. = HTR, 	 (3.4.24) 

D.H.. H 1  = 	 (3.4.25) 

They also satisfy the "conjugates" of these equations, obtained by swapping G 

with G., and H with H,. 

Proof. We will give the full details for (3.4.25), since this is (the bilinear form 

of) one of the steps in the algorithm of Proposition 3.2. We are able to show that 

(3.4.25) is equivalent to the Laplace expansion of a certain (2n + 1) x (2n + 1) 

determinant. Since (3.4.23,3.4.24) are equivalent to essentially the same sort of 

Laplace expansion, we do not consider them separately. 
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To prove (3.4.25), we let (0) denote P2n, 
and for any positive integer k we let 

(k) denote P2n-k 
So using the property (3.4.21) we may write e.g. 

11 = 

and 
= [(2),..., (n), (n + 2)]. 

In this notation, (3.4.25) is equivalent to 

-Ri),. . . , (n + 1)] . Rfl• . . , (n)] = 0. 	(3A.26) 

To see why (3.4.26) must hold, observe that it is just the Laplace expansion in 

the first (n + 1) rows of the determinant 

10) 	
(n — i) 

(n (n+1) .. 

(n) 	(n+i) 

(2) 	

. o 
1)

.  

n+i) (n+2) 72 

(n)\ 	
(2n) \(2ni)kn+') ... (2n-1) I 

(3.4.27) 

It is stra
ightforward to show that (3.4.27) vanishes, and thus (3.4.25) is proved. 

The proofs for (3.4.23,3.4.24) and the "conjugates" are almost identical. 0 

We present the analogous versions of (3.4.6,3.4.8) 
separately, as they require 

a slightly different type of Laplace expansion. 

Proposition 3.4. The following analogues of (3.4.6,3.4.8) maybe shown to hold: 

HH-.i - 	= —F, 	 (3.4.28) 

- 	 —H . = 	 (3.4.29) 

The "conjugates" of these are also satisfied. 

Proof. As before we will use the notation (k) = P2n-k• 
Then (3.4.28) just 

becomes 

0. 	(3.4.30) 
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While the three terms in (3.4.26) all consisted of products of an n x n with an 

(n + 1) x (n + 1) determinant, (3.4.30) has instead two pairs of determinants of 

order n, as well as one of order n + 1 with another of order n - 1. Thus (3.4.30) 

occurs as the Laplace expansion of the (2n + 1) x (2n + 1) determinant 

(0) 	(1) 	... 	(n — i) 	(n) 	0 

0 
(n — i) 	(ii) 	... (2n-2) (2n-1) 0 

(n) 	(n+i) ... (2n-1) 	(2n) 	1  
(1) 	 (n+1) 	0 	(2) 	... 	(n) 

0 
(n — i) 	 (2n-1) 0 	(n) 	... (2n-2) 

(ii) 	 (2n) 	1 (n+1) ... (2n-1) 
(3.4.31) 

which clearly vanishes. The equation (3.4.29) and the "conjugates" follow from 

essentially the same Laplace expansion. D 

Having proved these determinantal identities, it is now obvious that the tau-

functions found via the NCT must be proportional to the double Wronskians 

defined above. It remains to determine the scale factors and identify the i-

in terms of the tj. Note that the original scaling was chosen to make all of 

the f,-. monic polynomials, at the expense of introducing square roots into the 

normalization condition (3.4.6). 

Proposition 3.5. The tau-functions fTh, 
g,, h, found from the application of 

the NCT, as well as their complex conjugates, are all polynomials. They may be 

written in terms of the Wronshian determinants of Schur polynomials, 

f 	= (_)[] 	n! 
(2n)! 

c(n)F, 

gn 	
= (_)fl+1+[PI (2n - 1)! 

c(n - 
(n 	1)! 

= flfl+1+[fl (2n - 	
c(n - 

(n 	1)! 

h 	= (_)[P1 i 1 J2n + 1 c(n)H,, 
Tn = (_)Eq 	—i) 1 i/2n + 1 c(n)H,, 

where ' 
(n+j)! 

C(n) 
i=o 

The t j  are related to the constants of integration r by 

	

2n 
= (_) fl+i (n - 1)!n! . 	 (n!) 2  

T2 Th 
r2, 	t2n..f.1 = (_) Th 

	

(2n - 2).(2n).
1z 	

(2n)!(2n + i)!   

(3.4.32) 
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Proof. Essentially this follows immediately by induction, on comparing the al-

gorithmic steps of the NCT, equivalent to the bilinears (3.4.7,3.4.8) and (3.4.19), 

with their counterparts written in terms of the Wronskians. By Proposition 3.2, 

the tau-functions and their complex conjugates are uniquely determined at each 

step, up to the constants of integration. The formulae relating the 7j to the tj 

are found by comparing the conventions chosen in Proposition 3.2, 

= (2n - 1)(2n + 1) h_1, 	fn+I,12fl+1 = 

with the corresponding expressions obtained by differentiating the Wronskians 

and using the property (3.4.22) of Schur polynomials, 

Hn t2  = H_1, 	F+i,t2+, = Fn' 

Note that the formulae for g,. and Wn  may differ by an overall sign in front (and 

similarly for hn  and Ku). 0 

The Wronskian machinery also provides an easy proof that the tau-functions 

fin, j', satisfy the NLS bilinear equation (3.3.1), and hence with (3.4.10) this 

implies that each On  is a solution of the NLS equation (3.1.11). 

Proposition 3.6. The tau-functions g,  f, satisfy 

(iDe  + D)g,-. . fn = 0. 

	

Proof. Using the scaling properties and the fact that t = 	= —it2 , the 

proposition is equivalent to 

= DGTh . F. 	 (3.4.33) 

By the properties (3.4.21,3.4.22), it is apparent that (3.4.33) may be expanded 

out using the same notation as in (3.4.26,3.4.30). After a few cancellations the 

resulting expression, 

= 0, 

just corresponds to the Laplace expansion of a determinant of the same form as 

(3.4.27). 0 

An almost identical argument shows that h, T. satisfy the bilinear equations 

of the classical Boussinesq system, as has been proved for the rational similarity 
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solutions by Hirota [84]. We have attempted to extend this Wronskian approach 

to deal with the whole NLS (or AKNS) bilinear hierarchy (3.4.20), but the expan-

sions become too complicated to analyze directly. A full treatment would require 

an NLS analogue of the KP bilinear recursion operators developed by Nimmo 

[123]. Although we have not found a general proof that (3.4.20) is satisfied by 

the whole sequence of Wronskians, it is straightforward to see that 

	

Dj23+ , G . 	= D 2  DG . 

when n < j, because these Wronskians are independent of t2i  and t2j1, and a 

short calculation shows that it is also satisfied for ii = j + 1. In the next section 

we shall see how NLS arises as a reduction of the KP hierarchy, with the times 

given by the t. 

3.5 The Trilinear Form of NLS 

In this section, rather than using our formulae found by application of an auto-

Bäcklund transformation, we go back to the NLS equation (3. 1.11) and find that 

the complex amplitude 4 can be (almost) completely determined by a single real 

tau-function f which satisfies a trilinear equation, rather than as a ratio of two 

tau-functions satisfying the coupled bilinear equations (3.3.1,3.3.2). This is not 

really surprising when the connection is made with the way the AKNS hierarchy 

(and hence NLS) arises as a reduction of the KP hierarchy, as in the work of 

Cheng and Strammp et al [41, 1251. Rather than employing the results of these 

authors immediately, we prefer to go back to first principles to derive the trilinear 

form, since this is the route we originally took. The use of a trilinear equation may 

appear to be unnecessary when we have already discovered so much about the 

rational solutions from the auto-Bäcklund transformation. However, the trilinear 

form is useful in that it provides a simple way to determine equations of motion 

for the poles of the rational solutions. 

3.5.1 Direct Derivation of Trilinear Form 

We begin from the coupled equations for the amplitude and phase of 0. Writing 

= w exp(ix), the NLS equation (3.1.11) is equivalent to the system 

	

2w 	4w 
	= 0, 	 (3.5.1) 

	

w t  + 2(wx) = 0. 	 (3.5.2) 
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Next we define w1 = w, w2 = Xx. On differentiating (3.5.1) with respect to x 

and expressing both the resulting equation and (3.5.2) in terms of w, j = 1, 2, 

we obtain the Hamiltonian form 

/ wi) = 

	
) 6H, 	 (3.5.3) W 	

W2 

where 
2 

H = Wiw+W+?a . 

(This is not the standard Hamiltonian form for NLS, but is closely related to it. 

See [571.) If we define the new dependent variable q = —2w 1 w2 , then the system 

(3.5.3) implies the following two evolution equations for tv = wj and ?j: 

Wt = q, 	 (3.5.4) 

qt = (2w2 - Wxx + W+ 
	

(3.5.5) 

At that this stage we are ready to express everything concisely in terms of the 

single tau-function f. First we define 

A = log[f]. 

The second bilinear equation (3.3.2) for NLS implies immediately 

W = 

On substituting this into (3.5.4) and integrating once with respect to x we find 

I) = 

where the arbitrary function of time that arises can always be absorbed into f. 
Then after substituting for q and W in (3.5.5) and performing another integration 

with respect to x we obtain a PDE for A: 

AttAxx - 	- A x  + 2A + AxxA4x = 0. 	 (3.5.6)XX  

Once again the arbitrary function of time from the integration has been set to 

zero, as it can also be absorbed into the tau-function f. The equation (3.5.6) may 

now be rewritten in terms of f. There are many terms which cancel, and then 

after multiplying through by f 3  we find that, remarkably enough, the remaining 

terms may be written as a sum of two determinants: 

f f ft f f f 

fx fxx fri + fr fxx f3x = 0. 	 (3.5.7) 
frx fri At fxx f3x fir 

The equation (3.5.7) is the trilinear form of NLS. 
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3.5.2 AKNS as a Reduction of KP 

Trilinear equations, and more generally multilinear equations, provide a natural 

extension of Hirota's bilinear formalism. Grammaticos et al [73] have developed a 

useful notation for multilinear operators, and have provided a partial classification 

of integrable trilinear equations of low order. In particular, the determinants 

in (3.5.7) appear in their work as particular examples of integrable trilinears. 

Multilinear equations also arise naturally as the equations for the tau-function 

of the KP hierarchy under the so-called generalized k-constraint, which has been 

studied in detail by Cheng [41] and Strammp et al [125]. These k-constraints have 

analogues for other PDEs, leading to finite-dimensional integrable Hamiltonian 

systems [109]. 
Recall that the flows of the KP hierarchy in terms of the Lax operator L are 

given by 
8L = 

this being the compatibility condition for the linear system 

Lq = .4, 
= (L')q, 	 (3.5.8) 

where q is the wave-function. Similarly the adjoint wave-function r satisfies 

= _(L*n)+r. 

All the flows of the KP hierarchy commute, i.e. 

[Utn,Otm] = 0, 

but there is another vector field 8 (k'nown as the ghost symmetry) which acts 

on L by 
80L = [L,q8 1 r] 

and also commutes with all the flows: 

[a,,8] = 0. 

The most common reduction of KP is the k-reduction, 

= 0. 

For example, the KdV hierarchy results from the case k = 2. Because of the ghost 

symmetry, it is possible to make the more general compatible constraint, 

= q8'r, 
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-which is known as the generalized k-constraint. 

We consider in detail the case of the generalized 1-constraint, which is relevant 

to our trilinear equation (3.5.7). If we write the Lax operator as 

L=O,,+u8 1 +..., 

then the linear equation (3.5.8) for the second time flow is just a time-dependent 

Schrödinger equation 

qt2  = q,,,, + 2uq. 	 (3.5.9) 

Imposing the 1-constraint, we set 

L = ô,, + q5 1 r, 

and find immediately that 

U = qr. 

Hence the equation (3.5.9) just becomes the first half (3.2.2) of the usual AKNS 

system. Similarly the adjoint to (3.5.9) becomes (3.2.3), and Cheng has shown 

[41] that in fact the 1-constraint yields the whole AKNS hierarchy. 

At this point it is useful to mention the Kaup-Broer system 

H1, = ( H,, + 2X*H),, 

X = (.X+X* 2 +2H),,. 

This may be found from the AKNS system (3.2.2, 3.2.3) via 

H=qr, 	 (3.5.10) 

X 	= —(log[r]),,. 	 (3.5.11) 

On making the ansatz 

(log[r]),,,,, 	 (3.5.12) 

HX* = 	((log[r]),,t, - ( log[r]),,,,4, 	 (3.5.13) 

the Kaup-Broer system leads to the following trilinear equation for r: 

pp(r) j4pç(7- ) j4p(r) 

ppofr) pp1(r)  ptp2(r) 	0. 

tro (r)  pp1  (r)  ptp2  (r) 

In the above we have used the operators 

p=p(+b), 

(3.5.14) 
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which are written in terms of the Schur polynomials p(t), defined in the previous 

section. There exist numerous generalizations of the determinant (3.5.14); they 

correspond to multilinear equations for the higher flows of the AKNS hierarchy, 

or for the flows of the other k-constraint hierarchies arising as reductions of KP. 

Now we can make the connection with the trilinear (3.5.7) derived from NLS. 

We have seen we get NLS from the AKNS system by setting t2 = it, q = 

r = -v'. Hence, if we put 0 = w exp(ix) as before, the Kaup-Broer variables 

defined by (3.5.10, 3.5.11) become 

H = 

X* = —(log[w])x + Xx. 

When we also identify r = f, then the ansatz (3.5.12, 3.5.13) gives 

w = 	 (3.5.15) 

Xx = 	
Art 	 (3.5.16) 

 A 9 _.j 'xx 

agreeing with our previous formulae. Finally it is a simple matter to check that 

for imaginary time (t 2  =.it) the determinant (3.5.14) is just the sum of the two 

determinants in (3.5.7). 
The solutions of trilinear equations have been studied by Satsuma and others 

(see [77] and references therein), and take the form of double Wronskians, 

A 	A 	... A(N...1)x 

ME 

	Ar 	Arx ... 	ANx 	 (3.5.17) 

A(zsz_l)x AN 	... 

with 
= Arr. 

The polynomial tau-functions found in the previous section are particular exam-

pies of these determinants. It is a result originally due to Sato that all Wronskians 

of Schur polynomials (or in other words, Schur functions corresponding to arbi-

trary Young diagrams) satisfy the bilinear equations of the KP hierarchy [126]. 

Hence all of the tau-functions f,, g,, h,. found in the previous section satisfy KP; 

we shall come back to this point in the next section. 
We have seen that the trilinear form provides an alternative way to consider 

the solutions of NLS, in terms of a single tan-function. For a solution f of (3.5.7) 

to correspond to a bona-fide solution of NLS, there is the additional requirement 

that —(log[f])xx should be non-negative definite, since (from (3.5.15)) this gives 
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the modulus squared of the amplitude 0. Also, to find the argument x of b it 

is necessary to perform the integral of the right hand side of (3.5.16), which only 

determines the phase up to a function of I. For example, the Galilean-boosted 

one-pole solution has 

f = x - ct, 

giving 
exp[z(t + ;(i))] 

X - ci 

for some function £(). To determine this function oft it is necessary to substitute 

either directly into (3. 1.11) or into the bilinear form (3.3.1). In general, integrating 

the quantity '1. explicitly may not be easy, so it is useful to have the bilinear 

methods as well. In the next section we look at the rational solutions of NLS, 

and use both the trilinear form and the bilinear form to derive equations and 

constraints on the motion of the poles. 

3.6 Dynamics of the Poles and Zeros of Rational 
Solutions 

In Section 3.4 we constructed a sequence of singular rational solutions to NLS, 

with the amplitude in the form of a ratio of two polynomial tau-functions, 

/ 	g 
y 

The poles of are just the zeros of f, so rather than conjdering the bilinear 

equations (3.3.1,3.3.2) which involve both f and g, the motion of the poles may 

be studied directly from the trilinear equation (3.5.7) which involves f alone. 

Hence we take f in the form of a polynomial of degree N, 

f = [J(x,i), 	 (3.6.1) 

with Ij = x - x(i). Then the modulus squared of 0 is given by 

N 
1 

10I2 = —( log[J])XT = E (x - x(fl) 2  

This is the same as the form of the rational solutions to KP, under the constraint 

u = _ II 2  which we described in the previous section. The poles of 0 are at 

X = x(i). On expanding a solution to the NLS equation about a pole (which 

we allow to be complex, in contrast to the. real singular manifold function 0 of 

Section 4.2) the leading order behaviour shows that the pole positions x( t) must 

either be real or in complex conjugate pairs. 
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3.6.1 Calogero-Moser via the Trilinear Form 

Substituting the expression (3.6.1) for f into the trilinear equation (3.5.7) gives 

a polynomial P of degree 3(N - 1) in x. The equations for the pole motion may 

be found from the requirement that P, P2, and P, should vanish at x = x1, for 

j = 1,..., N. In fact, since P is of degree 3(N - 1), showing that P and its first 

and second derivatives vanish at any N - 1 of the x1 is sufficient to show that 

P is identically zero. This would suggest that the equations found for, say, the 

first N - 1 of the x1 must imply the corresponding equations for XN. Instead of 

using the trilinear equation (3.5.7) directly, we find that the calculations are made 

easier by considering the equivalent equation (3.5.6) and expanding about each 

of the (possibly complex) singular manifolds j. The highest order singularity is 

a triple pole, and their are also simple and double pole terms. 

After some calculation, the equation (3.5.6) (which is just the trilinear (3.5.7) 

divided through by f 3 ) yields 

+ B1 (t)7 2  + C1 (t)J1  = 0, 

and for this to hold we require that the coefficients at each order in 4) j  should 

vanish (for j = 1,..., N). Explicitly we find 

A1 = 
	 (3.6.2) 

kqEj 

Ii = 	( x + (i - Xk) 2 Ajk + 24aç t ) 
kOj' 

+12 	'(2A 3(A; - A1) - A -2 (A 2  + A 2 )) , 	(3.6.3)ji  
k<l 

C1 = > ((ffi - ik)A - 2(± - thk)2A - 48A;) 

k0j 

+24 
	

(A-2(A-3 + A3) - AH3(Ajk2 - A -2 )) 	(3.6.4) 

k<t 

where the dot stands for j,  LXjk = Xj - xk, and Ek<l denotes a sum over k < I 

with k j i4 1. 

We see that the vanishing of the leading order terms A1 given by (3.6.2) just 

yields the equations of the ordinary Calogero-Moser system, 

= 8(x1  - Xk). 	 (3.6.5) 

k?Ej 

This differs in sign from the equation (3.1.7) for pole motion of solutions to the 

KP equation, but this is because we have set t 2  = it in making the reduction 
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to NLS. The vanishing of the quantities B, Cj  given in (3.6.3,3.6.4) take the 

form of constraints on the motion, but do not appear to come from Hamiltonian 

reduction (as is the case for KdV pole motion discussed in the Introduction). 

It is interesting to see how the constraints are satisfied by the 4-pole solution, 

for which we have the tau-function 

f = a: + x - 12t2 . 

This has real coefficients, and the coefficients of x 3  and x 2  vanish, it is clear that 

the roots must satisfy 

X j  =0 = 

Hence it has either two complex conjugate pairs of roots or one complex conjugate 

pair and two real roots. The condition for two distinct real roots is 

16t2  + () 
31 > 0. 

In particular this condition holds for the 4-pole similarity solution (when r3  = 0, 

t 54 0), where the roots are 

31 exp[(j - 1)7r/2}(2ItD4. 

These lie at the vertices of a square in the complex plane, and move towards the 

origin until they coalesce at t = 0, and then repeat their motion in reverse. This 

pattern appears to be repeated for the 9-pole and 16-pole similarity solutions, 

with the poles lying at the vertices of squares of different sizes (and an extra pole 

at the origin in the case of the 9-pole). It would be interesting to make a further 

study of the patterns of the roots of thçse solutions (as has been done in the KdV 

case [111), but we have not pursued this. 

In order to gain a better understanding of the constraints on the x, it is 

instructive to use the bilinear equations once more. We are thus able to demon-

strate that not only the poles but also the zeros of rational solutions to NLS 

satisfy Calogero-Moser equations, and there is an interesting coupling between 

the motion of the poles and the zeros, as well as some further constraints. 

3.6.2 Coupled Equations for Poles and Zeros 

In order to consider rational solutions we start with the ansatz that the tau-

functions g and f are coprime polynomials in x, and we may assume that f is 

monic. On substituting into (3.3.2), and comparing coefficients at leading order, 

it is at once apparent that g must be of degree one less than f. The leading 
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order coefficient of g is also essentially fixed (up to multiplication by a constant 

of modulus one). More precisely we have 

I = IJer - 

as before, and 	

= VAI[J(x - yJ(t)). 

As expected, (up to inessential minus signs in the definition of g) this is precisely 

the form of the polynomial tau-functions that we found in Section 3.4 by applying 

the Crum transformation. In fact we only found rational solutions with N = it 2 , 

for integer it = 1,2,... labelling the sequence of solutions. 

With the top coefficients fixed, we substitute f and g as above into (3.3.2) 

and find 

Nfl(x - yj)(x - 	=E H(X - x k ) 2 . 	 (3.6.6) 
J=t 	 j=l kj 

Hence we may regard the yj (and their conjugates) as being determined by sym-

metric functions of the x j . We may also derive equations for the t evolution of 

the zeros yj and poles xj, by substituting into (3.3.2). If we set 

M = log[g], 

and A = log[f] as before, then (3.3.2) is equivalent to 

	

i(Mj  - A) + Mxx  + A.x  + (M - A. )2 = 0. 	 (3.6.7) 

Putting the polynomial ansatz into (3.6.7) and calculating the residues at each 

simple pole in the resulting expression gives, for each j and J, 

= 2 (E(x - Xk)' - 	- YJY') 	 (3.6.8) 

= 2(- 
	

(yj - YK) 1  ± E(y - x)_1). 	(3.6.9) 

Differentiating (3.6.8) leads to the Calogero-Moser equations (3.6.5), and similarly 

the yj must satisfy 

= 8 	(y - YK) 3  
Kj6J 

We remark that the calculation of these second-order equations is identical to 

that for rational solutions of the Benjamin-Ono equation [39], where the poles 
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., j 
 evolve according to the equation 

(3.6.8) with the yj replaced by the complex 

conjugates 7. 
We have shown that both the poles and the zeros of rational solutions to NLS 

evolve ac
cording to Calogero-Moserequations, and that these poles and zeros are 

coupled by the differential constraints (3.6.8,3.6.9), as well as the further con-

straints (3.6.6). 
As mentioned earlier, the bilinear equations 

(3.3.1,3.3.2) imply 

the trilinear equation (3.5.7). E
ssentially this is because to derive the trilinear 

equation requires that the modulus and argument of are related to the tau-

function I by (3.5.15,3.5.16). The relation (3.5.15) is equivalent to (3.3.2), while 

(3.5.16) is equivalent to the bilinear equation (3.3.4) for 'y = 0. So it is apparent 

that the vanishing of the quantities B, C, which were found via the trilinear 

formalism, must be consequences of (3.6.8,3.6.9) and (3.6.6), although we have 

not checked this directly. Thus in some sense the bilinear approach is more fun-

damental, and certainly the form of the constraints arising in this way is more 

tractable. 
Given polynomial tau -functions in the form of Wronskians of Schur polynomi- 

equations of the KP hierarchy [126], and 
als, we know that they satisfy the bilinear  

hence by Shiota's result 11421 
their zeros must evolve according to the equations 

of the CalogeroMoser hierarchy with respect to the times t. The tau-functions 

f, g, h found in Section 3.4 
all have this Wronskian form, but they also satisfy 

certain constraints corresponding to the reduction from KP. We have not tried to 

solve the NLS.constrained CalogeroMoSer system in general, but it seems most 

likely that the solutions generated by the NCT method in Section 
3.4 are the 

only ones allowed. In fact we are able to outline an argument for this when we 

consider the similarity solutions in the next section. 

ns and other singular SO 3.7 similarity solutio 
lutions 

In this section we give a brief discussion of some other singular solutions of NLS, 

to illustrate the great variety of these. Our first example concerns the scaling sim-

ilarity solutions, which were studied in detail by Boiti and Pempinelli 
[29]. The 

ODE 
for the similarity solutions turns out to be in one-one 

correspondence with 

a particular case of the fourth Painlevé t
ranscendent (Ply). PIV has a Bäcklund 

transformation, which in this case may be used to generate two sequences of ra-

tional solutions. In this way, two sequences of 
similarity solutions for NLS are 

generated. The first just corresponds to (scaled versions of) the sequence of ra-

tional solutions obtained in Section 3.4. The second sequence does not provide 
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solutions to NLS which are strictly rational, but it is simple to separate out the 

non-rational part and show that the motion of the poles is governed by (resealed) 

Calogero-Moser equations. As our other example, we consider the 2-soliton solu-

tion of NLS, and show how a certain limiting process leads to a solution which 

we refer to as a "singular 2-lump". 

3.7.1 Scaling Similarity Solutions 

Boiti and Pempinelli [29] showed that scaling similarity solutions of the NLS 

equation (3.1.11) are of the form 

= 101 exp[ix], 

where the modulus and argument of 0 are both given in terms of a function Y(z), 

II 2  = 	!_Y'(z), 	 (3.7.1) 
21 

x'(z) 
Y(z) (3.7.2) = 

We have the convention that a dash denotes differentiation with respect to the 

similarity variable z, where 

11 

	

z = xO(t), 	0(1) 
= 2 

C2  

The coupled equations for the modulus and argument of b are equivalent to a 

second-order ODE for Y, which is in one-one correspondence with the equation 

WW" = (WI)2 - 6W 4  + 8zW3 - 2z2W2 	1) 2 , 	(3.7.3) 

with p a constant. After suitable resealing of W and z, (3.7.3) is just a particular 

case of PIV. Note that PIV has two parameters, while in the above there is the 

single parameter p. Y is given in terms of W by 

	

Y = W(W - z) 2  + 	((w')2 - 2W' - 
2+1 . 	(3.7.4) 

For further details of this correspondence, we refer the reader to the original 

source. Henceforth we shall translate the results of [29] into a form more com-

patible with our previous notation. 
The first thing to observe is that the substitutions (3.7.1,3.7.2) arise naturally 

in our trilinear approach of Section 3.5, if we require that (possibly after scaling 

by suitable powers of 0) the tau-function f should only depend on the similarity 

variable z. Then we may assume that 

A(x,t) = A(z(x,1)) + rnlog[0(1)], 	 (3.7.5) 
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where A(x,t) = 10g1f(x,t)1, and we have included potential powers of 
0. If we 

now set 
Y(z) = 

then (3.7.1) and (3.7.2) follow immediately from (3.5.15) and (3.5.16) respectively. 

The second-order ODE for Y, as derived by Boiti and Pempinelli, is 
equivalent 

to the following ODE for A: 

E := (A"f + 4 ((zA" - A') 2  + (A")3  + 
112 All) = 0. 	(3.7.6) 

The trilinear form of NLS requires that A(x, fl, as given by (3.7.5), should satisfy 

(3.5.6). Using this we obtain another equation for A, 

E := A'A - (A'") 2  +2 
(,\If)3  - 4(A') 2  + 4zA'A" + 8mA" = 0. 

In fact, provided that we identify 

Tn = 1' 

this turns out to be a direct consequence of (3.7.6), for we have 

(A") 3  d f E 1 

It was shown in 291 that the ABT for NLS 
naturally leads to a Bäcklufld 

transformation for the similarity solutions. In terms of solutions to (3.7.6), this 

is given by (1 ± p) ((A") 2  + p2 ) 
A = A + 	

, 	 (3.7.7) 

+ A'A" + p2 z 

where A is a solution to (3.7.6) for p replaced by p ± 2. This is 
equivalent to 

the well-known Backlund transformation for PIV, using the one-one correspon-

dence mentioned above. For the particular case of PIV 
corresponding to (3.7.3), 

there are two families of rational solutions j74, iilj. The first family corresponds 

to even integer values of p, and may be generated by applying the Backlund 

transformation to the parent solution 

W = 

which is the rational solution to (3.7.3) for p = 2. 
Making use of the one-one correspondence, the rational solution to (3.7.6) for 

p = 2 is found from (3.7.4) to be 

A' = (log[zfl'. 
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After rescaling, this leads to the tau-function 

fi = x. 

We can apply the Bicklund transformation (3.7.7) in two directions, either in-

creasing or decreasing p by two at each stage. The solution for p = 0 is just 

A' = 0, 

with the tau-function 

fo = 1. 

The equation (3.7.6) is invariant under p —* —p, and so for this sequence of even 

integers nothing new is gained by considering the negative values of p separately. 

It is apparent that repeated application of (3.7.7) leads to a sequence of ra-

tional solutions for p = 2n, in the form 

A(z) = log [[ow]m2f(x,  1)] 

where f, is a polyomial of degree it 2  in x, which scales correctly so that A depends 

on x and 1 through the combination z alone. In particular we find 

12 = 1'— 1212, 	13 = x 9  - 72x 5 1 2  — 2160xt4 , 

just as in Table 3.1. These are the tau-functions of the rational similarity solutions 

to NLS, which are special cases of the rational solutions obtained via the NCT in 

Section 3.4. Since only these similarity solutions can lead to rational solutions of 

NLS (essentially by the uniqueness of the rational solutions to Ply), this implies 

that the rational solutions found using the NCT should be the only such solutions. 

A further consequence of this would then be that the most general solutions to 

the constrained Calogero-Moser systems of Section 3.6 are given by the poles and 

zeros of the rational solutions found in Section 3.4. 

There is a second family of rational solutions to PIV, which comes from ap-

plying the Bicklund transformation to the parent solution 

W= k z,  
corresponding to p = . By using (3.7.4), we find 

A'= 

with the associated tau-function being given by 

f. = O4 ex p[— z /27]. 
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The solution to NLS which this yields is not purely rational, but is given by 

= 9 2 exp {. 

This is clearly not a singular solution. However, the transformation (3.7.7) may be 

applied in both directions to give a sequence of solutions to (3.7.6) for p = 2(rz+ ), 

for all integers i-i. We denote the corresponding tau-functions by f+4 and find 

that they are of the form 

N(n) 

	

= 9' exp[—z/27] 11 (x - x(t)), 	 (3.7.8) 

where N(n) = rz(3n + 2), M(n) = N(n) - ( it + )2. These tau-functions clearly 

give singular solutions to NLS, with N(n) poles. After scaling away the powers 

of 0 and the exponential piece, these tau-functions may simply be characterized 

by polynomials PL(z). We list a few of these below: 

45  
P a = Z, 	P1 1, 	P± = z5  + —z, 

3 	 3 	 4 

= z16  + 135z 2  + 22:75 
 + 1002375 - 9021375 

16 	256 

By the scaling property of the similarity solutions, we know that each pole 

position xj appearing in (3.7.8) may be written as 

Xj 	
(0) 1 = x t, 

for some constant xS°. So by substituting (3.7.8) into (3.5.6) and expanding 

around each pole, we find that the leading order term gives 

= 72(x - Xk) 

k76j 

Thus the motion of poles for these singular solutions is also governed by rescaled 

Calogero-Moser equations. There are also constraints on the poles, coming from 

the other terms in the pole expansion. We have not explored these constraints any 

further, largely because this method would not apply to possible non-similarity 

generalizations of the solutions (3.7.8). Actually we would expect that NLS should 

admit solutions with tan-functions of the slightly more general form 

f = exp[p(x,] fJ(x - Xj 
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where p is a quartic polynomial in x, since Veselov has shown [150] that the KP 

equation has non-decreasing rational solutions which may be written 

u = ax  + bx  + x - (x - 

The xj  satisfy equations of Calogero-Moser type, and these involve a, b and 

C, which are functions of the times satisfying certain constraints. It would be 

interesting to see how these solutions would need to be restricted in order to 

satisfy NLS. 

3.7.2 Two-Lump Solution 

Having considered some of the similarity solutions to NLS, we now provide an 

example of a singular solution of a rather different character. It has been shown 

[2] that by applying a certain limiting procedure to the soliton solutions of KdV, 

the rational solutions may be obtained. Similarly, the same sort of limits for 

solitons of other equations, such as KP, lead to interesting solutions known as 

"lumps". We proceed to apply this method to the 2-soliton of NLS, and obtain 

a singular 2-lump solution. As far as we are aware, the lump solutions to NLS 

have not been studied. 

The 2-soliton solution to (3.1.11) may (after making a slight adaptation of 

Hirota's formulae [80]) be given by the tau-functions, 

2 

	

r 	- 

g 	2 
 ( c exp[7/ j ] + C2 exp[777] - 

a1+a2) 
a2  exp[i/ 1  + 711 + 7721  

=  
- I 

a1-a2\
2 a

1  exp[qi  + 772 + V21 	
) (3.7.9) 

fT = 1 - exp[qj  + i] - exp[ij 2  + 72] 

ex 
(a + a2)2 p[711 + 2]  + C.C. 

4 
I 	- 2 I 

+ I 	I exp[q 1  + h + 712 + /211 	 (3.7.10) 
c 1  ± a2  

where 

I/i = a(x + iat) + 770), 	aj = a + 

The real parameters aj , pj  correspond respectively to the amplitude and speed 

of the jth soliton (j = 1, 2). Each is an arbitrary complex phase, which we 

will henceforth set to zero. 

To get the 2-lump solution, we must take the limit 

Qj —40, 
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for j = 1, 2. We regard a1  and a2  as being of the same order of magnitude (a- , 

say). It is convenient to introduce the notation 

= x - 2pt, 	bj = j (x - pit). 

Expanding out the terms in (3.7.9), we find e.g. 

exp[Ijj] = exp[ib]{1+cra+O(a 2 )}, 

exp[ijj  + Yi + 7721 = exp[ib 2]{1 + 2uj a i  + 0 2 a2  + O(a2)}, 

2 

\al+a2) = 1— 
	+0(c2 ). 

P1 - P2 

This leads to 

g = 4a1 c2  (—{a 2  + 2i(pi - P2)1} exp[ibi ] - {a i  - 2i(pi  - p2)} exp[ib2])+0(0,3 ) 

Similarly, expanding the terms in (3.7.10) it is seen that the zero order and first 

order terms all cancel, as well as the Cj terms, and then 

f = 8cic2 (aia2 - 2 (P1 - P2)2 sin2[(bi - b2)]) +0(0,3) 

Thus if both g and f are rescaled by the factor 86r1 c2 , then in the limit cj -* 0 

we obtain the singular 2-lump in the form 

g = - —a 2  + z(pi - p2) 	exp[zbj] - 	a1  - z(pi - p2) 	exp[zb2], 

f = a1a2 - 2(p1 - p2)_2sin2E(bi - 	 (3.7.11) 

It is interesting to consider the pole dynamics of the 2-lump solution. To do 

so, we need only consider f given by (3.7.11). The description is much simplified 

by removing the "centre of mass" motion with a Galilean boost, 

X -* x + (p1 + p2)t, 

and using the coordinates 

X = ( p1 - p2 )x, 	T = ( p1 - P2 )2t. 

After a simple rescaling, f may then be written as 

f(X,T) = 	- 	- 2sin2 [X/2]. 
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Thus the pole positions are the two solutions X(T) (j = 1,2) of 

f(X(T),T) = 0. 

By using the Galilean boost, we have arranged the poles so that X 2  = —X1. 

The scattering image of the two poles is asymptotic to the lines X = +T, and 

is shown in Figure 3.1. Notice that the poles coalesce at X(0) = 0, when g also 

vanishes. Ideally it would be desirable to have a formula for the N-lump, and 

obtain a dynamical description of the pole motion. This could provide the basis 

for a more detailed study. 

3.8 Conclusions 

We have constructed a sequence of rational solutions of NLS, and shown that they 

correspond to constrained Calogero-Moser systems. The construction is a direct 

analogue of the Crum transformation used by Adler and Moser [8] to produce 

rational solutions of KdV. At the same time we have extended the work [83] of 

ilirota and Nakamura on the connection between some explode-decay solutions 

of the classical Boussinesq system and rational similarity solutions of NLS. It is 

worth noting that such rational solutions are mentioned (for the AKNS hierarchy) 

in [120], but an explicit formula is given only for the one-pole solution. 

Throughout the chapter we have found that direct methods, especially Bäcklund 

transformations and Hirota's bilinear formalism, provide the simplest means to 

generate solutions. We have also tried to indicate how these methods are inti-

mately related to Painlevé analysis (via the singular manifold method) and the 

inverse scattering formalism. At the same time, we have seen that NLS (or AKNS) 

is naturally viewed as a reduction of the KP hierarchy, and essentially the solu-

tions may be encoded into a single tau-function satisfying a trilinear equation. 

Although these methods have provided a great deal of information about some 

of the singular solutions of NLS, there remain many unanswered questions. 

It would be interesting to make a more detailed study of the system (3.6.8,3.6.9) 

with the constraint (3.6.6), which correspond to a coupling of the Calogero-Moser 

systems for the zeros and poles of the rational solutions. The configurations of 

the poles could be studied along the lines of [11]. At the same time it should be 

possible to consider the constraints of the whole Calogero-Moser hierarchy corre- 

sponding to the higher flows (3.4.20), but at present we lack a direct proof that 

the rational solutions constructed in Section 3.4 satisfy all these flows. We have 

also attempted a study of elliptic solutions to NLS corresponding to tau-functions 

of the form (3.1.10). These would generalize the one-pole elliptic solution (the 
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general stationary solution [29]) given by 

c(x + K) 
= 2exp[—t)x + 3ip(ec)t] (3.8.1) 

where ( is the Weierstrass zeta-function and ic is an imaginary constant. The 

p-function satisfies the differential equation 

V 
12 = 4p3 - 	- 

where the constants g, g (the Eisenstein series) are taken to be real so that p(K) 

is real and ((,c) is imaginary (see [153] for an introduction to elliptic functions). 

In the trilinear formalism of Section 3.5, the solution (3.8.1) can be encoded into 

the single tau-function I satisfying (3.5.7), 

1 	 1 
f = a(x) exp V(K)X2 + a0 tx + /3ot 2j 

where the real constants a o  and /3o  are given by 

ao = —ip'(ic), 

00 = 	- 3p() 2 . 

N-pole elliptic solutions of NLS should have pole motion corresponding to con-

strained elliptic Calogero-Moser systems, and could presumably be derived as 

suitable degenerations of the hyperelliptic solutions in [134]. Preliminary results 

suggest that there are some problems in using the ansatz (3.1.10) for the tau-

functions of such solutions. 

The singular solutions of nonlinear PDEs have received much attention re-

cently. In particular, the Darboux transformation approach of Matveev [116] 

has been used to generate new classes of solutions of KdV which are written in 

Wronskian form, some of which are singular and have interesting pole dynam-

ics (notably the negaton solutions [98]). The dynamics of the N-lump solutions 

of NLS, generalizing the 2-lump solution presented in Section 3.7, are worthy 

of investigation. Also the second sequence of scaling similarity solutions consid-

ered in that section should be particular solutions to another type of constrained 

Calogero-Moser system, and this could be explored further. We remark that the 

Darboux transformation method applies to most of the known exact solutions to 

integrable evolution equations, but we have not been able to use this to generate 

our sequence of rational solutions of NLS in a straightforward manner. 

The results of this chapter indicate that NLS has a rich variety of singular 

solutions, and there is still much work that could be done to gain a better under-

standing of their pole dynamics. 
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Note. After this thesis was submitted, we were made aware of the work 
[1391 

of Sachs, where pole motions for rational solutions the classical Boussinesq system 

are considered, and these are related to solutions of AKNS. As yet we have not 

studied this work, but we intend to consider how it relates to our results in a 

forthcoming article. 

3.9 Appendix A 
Here we start from the singular manifold equations of NLS in the form 

I uo I2  - 	= 0, 	 (3.9.1) 

	

= 0, 	 (3.9.2) 

iç6 + . (1og[tz o/Dx - Uo + 	= 0, 	 (3.9.3) 

	

jtL0 1 t + UO,xx - 4uo112 - 2
2  = 0, 	 (3.9.4) 

and show that they have the simpler consequences 
(3.2.13,3.2.14). Using (3.9.1) 

and (3.9.2) we find 

	

(log[uol + log[114)xs = —2 	 + ±
3o±12). 	(3.9.5)

OX 

Differentiating  (3.9.3) with respect to x gives

vo  
(log[uo/1)xx = ;'(-it + (U00 — -ITM.) - 	

+ UO - 	)• ( 3.9.6) 

Now differentiating (3.9.1) with respect to t we have 

tLo,tUO + U0U0,i = 

and then from (3.9.1) and (3.9.4) 
with its complex conjugate we obtain 

+ 	(loguo/1)x - 
1(u22 - 

Now in (3.9.6) we may substitute for Oxt  as above and for Ot  from (3.9.3), and 

after some rearrangement we find 

2_u 	 (3.9.7) 

	

(log[uol - log[—U01)., 2 	
OX 

Adding (3.9.5) and (3.9.7), and making use of (3.9.2) 
once more, yields 

(log[u01)xr = 2 
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which we can integrate immediately to give 

(\ 
(log[uo]) 0  + 2 i-) + 2ik = 0, 	 (3.9.8) 

for k a constant. If we use (3.9.1) and (3.9.2), then we find immediately that 

(log[uo] + log[uo]) = —2° + 
uo ) 

0. 

and on comparing this with (3.9.8) plus its complex conjugate it is apparent that 

Ic must be real. We rearrange (3.9.8) after substituting IT = t4 1  (from (3.9.1)), 

and get 

= —2ikuo - 

The above is just our previous equation (3.2.13), and it provides a new expression 

for u0,, which when put into (3.9.4) gives 

= uo(40 + 2II2)  + z( -4ik + 2 t4'). 

The latter is the equation (3.2.14), as required. Q 

3.10 Appendix B 

In this appendix we consider NLS in the bilinear form (3.3.2,3.3.1), and prove 

that it has a bilinear auto-Bäcklund transformation (ABT) given by 

(D - ic/2)(g .7 - . f) = 0, 	 (3.10.1) 

(iDe  + D 2 + 2)(. f + g .7) = 0, 	 (3.10.2) 

(iDe  + icD)f . 7 = 0 - g, 	 (3.10.3) 

Df .7= V11gl - P + c2f 272 . 	 (3.10.4) 

More precisely, this means that if the pair of tau-functions , 7 are solutions to 

the NLS bilinears (3.3.2,3.3.1), then the pair g, f will be solutions to the same 

bilinear equations provided that (3.10.1-3.10.4) are satisfied. Notice that here we 

take equation (3.10.2), obtained by adding (3.3.11) and (3.3.12), as part of the 

bilinear ABT, since the proof below only requires that this sum should vanish. 

However, (3.3.11) and (3.3.12) are both satisfied separately by all the solutions 

considered in the main body of the chapter (in particular the rational solutions). 

The proof that (3.10.1-3.10.4) constitute an ABT is considerably simplified by 

observing that, without loss of generality, we can set c = 0 from the start. This 
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follows from the fact that (as noted previously) NLS is invariant under a Galilean 

transformation, which in terms of the tau-functions can be written as 

1 fcx 	c21\ 1  
g(x,i) --+ exp L 	— 	g(x',t'), f(x,t) —* 

with 

= x — et, 	t' = t. 

On applying this transformation to both the pairs , Jand g, f in (3.10.1-3.10.4), 

the constant c may be removed. So henceforth we will assume that j , J and g, f 

are related by the equations (3.10.1-3.10.4) with c = 0. 

The most straightforward part of the proof is showing that if , J' satisfy 

(3.3.2) then so do g, I (and vice-versa by symmetry). It is helpful to make use 

of the NLS amplitude, 

I 
(and similarly ), as well as the singular manifold function, 

f 

We have already seen that, in terms of the NLS amplitude, (3.3.2) is completely 

equivalent to the equation 
(3.10.5) 

If we now re-write (3.10.1) and (3.10.4) in terms of the NLS amplitudes and the 

singular manifold function, we find 

(3.10.6) 

(log[}), = I) — 	+ c2. 	 (3.10.7) 

An immediate consequence of the equations (3.10.6,3.10.7) is the purely x-dependent 

part (3.2.6) of the usual ABT for NLS (for c = 0). On differentiating (3.10.7) 

with respect to x, we find 

1 
 (0(log[)(log[)1 = 	- 	 — ) 

+ C.C. 

Then we may substitute for ( — ) X from (3.10.6), and after cancelling out 

(log[]) (which we may assume to be non-zero) from both sides we have 

(log[f]) — (log[f]) = M, — 0I 2 . 

Thus it is apparent that (3.10.5) is satisfied if and only if 

10 = —( log[J]). 
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This is the necessary result which ensures that the x part (3.3.2) of the NLS 

bilinears holds. 
t (3.3.1) of NLS in bilinear form, we 

To show how the ABT yields the I par  

consider the quantity 

Q (Di ./) ((iD + D)gf) 
1
2 + f2  ((we  + D . 

Provided that Q vanishes, if , / satisfy (3.3.1) then so must g, f, and vice-versa. 

By direct manipulation we find 

(iDt (g I + 1) + D(g .1 + .1))!! 
Q = (DT f) 	—(S - fl(iDtf J + fj fJ) 

—2(gf - fl(Df . f) 

= —a2(Df /)fJ(gf + M 
—(5 - fl(Df . /) ( - - (Df . 

—2(Df . If (Dx (g / - . i) + gfx - 	 (3.10.8) 

= _g2f/ ((Di . 1)(g/ + f) + 2ff(gf - 

+(gJ - f) ( ( 
	f)(Y 	) +[(D0f /)2] 	(3109 

_2f-I)(gI-gf) 

The second line (3.10.8) above is obtained using (3.10.2) and (3.10.3), while to 

get (3.10.9) it is necessary to use (3.10.1) and (3.10.4). Making use of (3.10.4) 

and then (3.10.1) once more, we see that 

j)2] = c2fJUx / + f  

4 {(D x (g .1— .+2 gfx  —fx)) (f-U)± cc 

= c2 f/(f xl + IL) + {(gfx - f4(gf-f)+ c.c.]. 

Finally, substituting this expression for [(Df • J)2] into (3.10.9) leads to 

Q=0, 

as required. 0 

Note. In the reference [122] (and in Chapter 4 of [62]), Nimmo presents 

a bilinear ABT for NLS (strictly for the focussing-NLS equation 
(3.2.1) with 

S = +1). This is almost identical to the one given here, except that 
(3.10.3) and 

(3.10.4) are effectively replaced by the single equation 

(iDe + icD + D 2 - 
0

,2 )f I = —29. 	(3.10.10) 
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The imaginary part of this equation is clearly just (3.10.3), while the real part 

is a consequence of (3.10.4) (provided that (3.3.2) is satisfied as well). Although 

the equation (3.10.4) is not strictly bilinear in the usual sense, it corresponds to 

the similarity manifold equation (3.9.1), and is more fundamental than the real 

part of (3.10.10) (which is not sufficient with (3.10.1) to show the x part of the 

NLS bilinears). 
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Figure 3.1: The collision of poles in the two-lump solution. Dotted/undotted 
lines denote before/after collision. 
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Chapter 4 

Affine Toda Solitons and 
Ruijsenaars-Schneider Systems 

with Spin 

The aim of this chapter is to relate the solitons of the affine Toda theories to the 

spin extensions of the Ruijsenaars-Schneider model, the latter also being known as 

the relativistic Calogero-Moser model. We succeed in obtaining a generalization 

of the known connection between the solitons of the sine-Gordon equation and 

the (non-spin) Ruij senaars- Schneider model. The N-soliton tau-functions of the 

A' affine Toda theory are written as determinants involving a certain matrix V, 

and by diagonalizing V both the positions and spins of a hyperbolic Ruijsenaars-

Schneider model are found. 

4.1 Introduction 

We have been exploring the general phenomenon that classes of solutions of inte-

grable PDEs may be identified with finite-dimensional mechanical systems. For 

example, the pole solutions of the KP equation [103, 1421 and its reductions (such 

as KdV [11] and NLS in the previous chapter) are related to the non-relativistic 

Calogero-Moser model, while the sine-Gordon solitons are related to its relativistic 

counterpart, the Ruij senaars- Schneider model (see [22, 138]). Other more recent 

examples are the peakon solutions appearing in fibre-optics and shallow water 

waves which have associated mechanical systems [35, 36]. There is currently a 

great deal of interest in field theoretic models possessing duality [48, 115], and 

finite-dimensional integrable systems have also arisen in this context. Since the 

dynamics of the finite-dimensional systems are often easier to understand (or sim-

ulate) than the equations of motion for the full field theory, this approach gives 

qualitative information about field theories by reducing the number of degrees 
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of freedom. Recently Babelon, Bernard and Smirnov [24] have taken this corre-

spondence between field theories and mechanical systems beyond the classical to 

include the quantum regime as well, focussing on a particular N-particle sector 

of the Hilbert space for the quantum sine-Gordon model. It would be interesting 

to see whether this approach would work for the other affine Toda theories. The 

results of this chapter might be relevant to this problem. 

The original work of Ruijsenaars and Schneider [138] showed that the soli-

ton solutions of a variety of equations are related to dynamics built from the 

Hamiltonians (with canonically conjugate variables qj, p) 

N 	N 	qk-  
H, Ee" ll coth ( "  2 )' 

j 	krj 

giving the equations of motion (for either H) 

- 	

qjqk  
 sinh(q; - qi,) 

In particular, the eigenvalues i eqj of an N x N matrix associated with the tau-

function describing an N-soliton solution of the sine-Gordon equation evolve ac-

cording to (4.1.1). The variables qj, pj may, at least when they are well separated, 

be related to the positions and rapidities of N constituent single solitons; the dy-

namics of the system encodes the various soliton phase shifts. Thus the system 

governed by H+ describes how the space-time trajectories of the N constituent 

solitons interact. Of course the same system has an alternative description via 

the inverse scattering transform, which leads to action-angle variables for the soli-

tons [57]. The point of the Ruij senaars- Schneider approach is that it provides a 

dynamical description, thus making greater contact with the particle description 

of the soliton. 
The Ruij senaars- Schneider (RS) models can be seen as relativistic versions of 

the ordinary Calogero-Moser models. For instance, by considering the Hamiltoni-

ans given above, an appropriate ("non-relativistic") scaling limit of H = H+ + H_ 

yields the Calogero-Moser system with a hyperbolic potential. RS models are in-

tegrable finite-dimensional Hamiltonian systems, and have a dynamical r-matrix 

[107], which in a certain gauge turns out to be the same as the Calogero-Moser 

r-matrix [144]. A new development is Krichever and Zabrodin's construction of 

the spin-generalization of the RS models, to describe the pole motion of solutions 

of the non-abelian Toda lattice. These spin RS models are the relativistic coun-

terpart of Gibbons and Hermsen's spin-generalized Calogero-Moser models [71]. 

In [104] the elliptic spin RS models were shown to be exactly solvable in terms of 

theta functions. A simpler solution for the rational and hyperbolic versions was 
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given in [135], where integrable discretizations were also constructed. However, 

the correct Hamiltonian formulation of the spin RS models apparently remains 

elusive. 

The sine-Gordon model may be viewed as the 4') affine Toda theory with 

imaginary coupling. Thus it is natural to wonder whether the Ruijsenaars-

Schneider description of sine-Gordon solitons can be generalized to the other 

affine Toda theories, briefly reviewed in Section 4.2. The imaginary coupling case 

of these theories is of particular interest, because the solitons have real energy 

and momentum, despite the fact that the fields are complex-valued (except in the 

sine-Gordon case). This suggests that when the theory is quantized, the solitonic 

sector should be well-defined, although the theory as a whole violates unitarity 

[129]. Spence and Underwood [143] have recently used a vertex operator ap-

proach to obtain the symplectic form on the space of affine Toda solitons, and 

have proceeded to construct a sort of semi-classical theory for these solitons. Yet 

a dynamical description generalizing the sine- Gordon/Ruij senaars-Schneider cor-

respondence has proved elusive. In this chapter we provide such a generalization, 

describing the dynamics of the affine Toda solitons in terms of spin RS models. 

One new feature we have found in our correspondence is the appearance of new 

degrees of freedom, the internal spins of the model. The tau-functions for the 

affine Toda solitons are given by determinants involving a certain matrix V, and 

the spins are required to diagonalize this matrix. It does not seem possible to 

remove them from the description, as can be done in the sine-Gordon case. We 

will come back to this point in our Conclusion. 

In Section 4.2 we outline a few salient features of affine Toda theories, before 

reviewing the construction of solitons in the following section. Section 4.4 con-

cerns the symplectic form on the reduced phase-space of the N-soliton solution. 

We are then in a position to relate the affine Toda solitons to the hyperbolic 

spin RS model (Section 4.5). Our discussion is limited to the case, both for 

simplicity and to make clear the generalization of the sine- Gordon/ Ruij senaars-

Schneider correspondence. We discuss further generalizations and unresolved 

problems in the Conclusion. Most of this work has already appeared in [32]. 

4.2 Affine Toda Field Theories 

The affine Toda theories are a family of massive relativistic 2D field theories with 

Lagrangian 
in2  

L = (8&&) - — -gi E 
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Here in is a real mass parameter, Li = A U {a0 } is the set of simple roots of 

a Lie algebra g together with &o = - 	n,a (minus the highest root), the 

fla are positive integers and by convention n = 1 In light cone coordinates 

= *( + x) the equations of motion become 

in2  
0. 

20 

The classical and quantum versions of these theories have been extensively studied 

in recent years both for real and imaginary couplings. In the real coupling regime a 

beautiful structure was uncovered and exact S-matrices have been conjectured [31, 

42, 49]. The imaginary coupling regime has also been investigated and classically 

the solitons have real energy-momentum although the Lagrangian is complex (see 

[129] and references therein). 

For what follows we will be concerned only with the An(l )  theories. In this case 

the elements of A are given by 

aj = e - 

for j = 0,1,..., n, where e0 , e1, ..., e, are a basis for C" (orthonormal with respect 

to the bilinear form), and all indices are read modulo n + 1 where necessary. All 

our expressions will be in terms of the field components 

Oj =  

for which the equations of motion read 

e') = 0, 	 (4.2.1) 
20 

j=0,1, ... ,n. 

A few remarks are in order here. If we define the vector e = E j=O  e, then it 

is easy to observe from (4.2. 1) that (e, ) is a free field. Hence this part of 0 is 

often discarded, and only the part of 0 lying in < e >1  (i.e. the root space) is 

considered. Then the equations may be written instead in terms of the a fields 

w j  defined by 

(k=1

i 

 

with Aj being the fundamental dominant weights of sl(n + 1). These fields de-

termine the solitonic sector of the theory, and the soliton solutions are often 

expressed in terms of them. It has been shown [129] that when the coupling fi 
is purely imaginary, the energy and momentum of these solitons is real. In the 
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simplest case of 
41),  we just obtain the sine-Gordon theory, and all the soliton 

solutions may be taken to be real. However, for it > 1 the soliton fields are intrin-

sically complex, and it is curious that they should nevertheless have real energy 

and momentum. In the following we hope to gain a better understanding of this 

by considering the reduced phase space of the soliton solutions, and viewing the 

motion of the solitons in terms of a finite-dimensional dynamical system. 

4.3 The AP Affine Toda Solitons 

We wish to look at the A l  affine Toda theory with imaginary coupling, so we 

send fi .-* i/i in (4.2.1), and then the equations of motion become 

O8_ + 	
( 6i)3(r#i+1) - 	 = 0, 	(4.3.1) 

j = 0,1,..., it. Indices on the components of the field 0 are read modulo (it + 1) 

where necessary. As already mentioned above, in the solitonic sector of the theory 

= o. 

4.3.1 Soliton Thu-Functions 

There are various ways to construct and parametrize soliton solutions to (4.3.1). 

Perhaps the simplest methods to implement from a practical point of view are 

the application of the auto-Bäcklund transformation (ABT) derived by Fordy 

and Gibbons [59] or the bilinear formalism developed by Hirota [79]. The inverse 

scattering approach to affine Toda theories also appears to have some unusual 

features. There are also the powerful vertex operator techniques which make 

full use of the representation theory of the A
(1)  algebra [129]. While the latter 

approach is currently the most popular, we wish to make contact with the orig-

inal work of Ruijsenaars and Schneider [138], which made much reference to the 

soliton formulae of Hirota. Hence we would like to employ the form of N-soliton 

solution for (4.3.1) derived by Hollowood [86] via Hirota's direct method. The 

l-th component of the field 0 is given by 

= 
Ti 

leading to the bilinear equations 

rj + m2 (r? - rj_irj+1) = 0, 

and the soliton tau-function r1 takes the form 

Ti = 	exp ( 
	

cjckBk + 	c j ,(x, x4) . 	(4.3.2) 
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In the above the c indicates a summation over all possible combinations of 
€j 

taking the values 0 or 1, and the indices j and k take values in {i,...,N}. 

We will explain shortly what the various terms in (4.3.2) mean, and how we 

have parametrized the affine Toda solitons. For the moment we would like 

to comment that expression (4.3.2) is a rather generic form of the soliton tau-

function for an integrable PDE, the precise nature of 
Bk and (j, : depending on 

the particular PDE being considered; it may be viewed as a degeneration of the 

theta function solutions of the PDE given via algebraic geometry in which the 

run over all of the integers. Ruijsenaars and Schneider succeeded in mak-

ing the connection between their relativistic C alogeroMo5er systems and soliton 

solutions of the sine-Gordon and KdV equations, among others, by showing a 

direct correspondence between the coordinates of the N-particle system and the 

parameters of the N-soliton solution. An important part of the 
correspondence 

was that all the tau-functions of form (4.3.2) being considered in [1381 could be 

written in terms of determinants like 

det(1 +M) 

for suitable matrices M. In what follows we express the N-soliton solutions of 

the affine Toda theory in this way, and thereby obtain a relation to spin-

generalized RuijsenaarsSchneider (spin RS) systems. Recently Beggs and John-

son [281 have used a type of dressing method to find more complicated sorts of 

one-soliton solutions than were previously known, but we shall not be concerned 

with these solutions here. 

4.3.2 ABT and Soliton Determinants 

In Hollowood's original treatment [861, the tau-functions were not actually written 

explicitly as determinants. Since we want to make use of the determinantal form, 

we shall start from the formulae of Olive, Turok and Liao [110] and demonstrate 

that they lead to (4.3.2). By repeated application of the Toda ABT [59], 

- ) = f—A  

- 	
= 	A_ 1   

the authors of [110] showed that N-soliton solutions could be obtained, with the 

lth component of 0 given by 
1,2.....N 

det Tfl. 1.... l-jv 	 (4.3.3) 
= A 1 A 2  ... AN—.N 

det -t l-N+1 
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The A1 are Bäcklund parameters, and the Ts are N-by-N matrices. Before de-

scribing all the matrix elements of these, it is useful to introduce the notation 

used in [110] to parametrize the solitons. Each individual soliton making up the 

N-soliton solution has a rapidity denoted by ij, a position parameter denoted 

by Q, and a discrete parameter Oj taking values in {14Ik = 1,2,..., n} (so 

that exp(i01) is an (ii + 1)th root of unity). The different values of the discrete 

parameters Oj give ii different species of soliton, with masses 

mi  = 2msin(Gj /2). 	 (4.3.4) 

For what follows we will also need to define 

Yj = exp[zjj], 	jUt = exp 177i + 2iOj] 

In terms of these parameters the matrices appearing in (4.3.3) are given by 

(mi,2 .....N 	- 'p1 
'c' I .... l—N+i )jk - 2 I—k+i' 

where 

= (it) 	[e119' 
Q  6mj(rcosh(j)—tsinh(nj)) - 11 

For our purposes we choose the Bäcklund parameters as A1 = (at)-' (so that 

fl'...0 exp(i/31) = 1), and after absorbing all these factors into the numerator of 

the right-hand side of (4.3.3), and then multiplying the jth row of the matrices 

appearing in numerator and denominator by —(4)' (for each j), we find that it 

may be written as a slightly different ratio 

det T,.. 1  

det T 

In the above expression we have 

= Al1  - 

where (using light cone coordinates) the matrices M1  and M2 ,1 are given by 

(A'Ii)Jk = (t)k_ 1  

(M2,1)jk = 
Q()k_1 exp (mj((jLj)_1x+ - 	+ 

Now we may expand 

det tj = 	(_)1 	D(J)(Mj , M2 1), 	 (4.3.5) 
3=0 	(j) 
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where (j) 
corresponds to a distinct choice of j rows, and D(j ) corresponds to 

the determinant formed by replacing the corresponding rows in M1  by those in 

M2j. After scaling numerator and denominator of (4.3.5) by the Vandermonde 

determinant D(o) = det M1 , we find 

= : 1 , 	 (4.3.6) 

which is a ratio of two tau-fuctions of the form (4.3.2). The terms in the Hirota 

sum (4.3.2) are given by 

B,=log((Pj- 
	

++ -  
1k)(j - Pk)) 

(jj(x+, x_) = log {aj exp (mj((j)-'x+ - pjx_)/ 	+ 

where we have introduced the more convenient position parameters 

Pj — Ilk 

Pk kq6j ( 11 j_ 	0 
Henceforth we will use a j  for the positions, and the rapidities 71 as our pa-

rameters. The rapidities are all real, while the a j  are pure imaginary for solitons; 

there are different reality conditions for other types of solution (e.g. for breathers 

it is necessary to take complex conjugate pairs a, fl. Also there are the different 

values of the discrete parameters Oj giving the ii different species of soliton. To 

make a comparison with the vertex operator formulae, we note that the notation 

of reference [143] has XJ,k = exp[BJk], Q = a. 

It is a simple matter to write the tau-functions 7-1  as determinants. We set 

X1 = a(p - j)exp (ma(c"'x+ - 

and define N-by-N matrices V, B by 

= 	 (4.3.7) 
Vik -  

and 
e =diag(Ol,02,..., ON) . 

Then we find that 

	

= det (1 + e1®h/2Vcl®/2). 	 (4.3.8) 

To verify (4.3.8) 
it is necessary to expand the determinant on the right-hand side 

in terms of the principal cofactors of V, and then use Cauchy's identity: 

/ 	
í+ 	+\( 	-

tl-) 	p+ p7 det' 
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Writing the right-hand side of (4.3.2) in terms of these parameters and comparing 

with the cofactor expansion gives the required result. Note that in the A 1  (sine-

Gordon) case the Oj  must all take the value ir, which means that the matrix 

exponentials appearing in (4.3.8) are multiples of the identity, and we reproduce 

the standard result 

	

eipoo- 	- det (1 - V) 

det (i+V) 

4.4 The Reduced Symplectic Form 

In this section we describe the phase space of the N-soliton solution in terms of 

its symplectic form, before describing how spin-generalized Ruij senaars- Schneider 

systems arise in the following section. The phase space of the afilne Toda system 

has the standard symplectic form 

	

= 	
A, 8 dx. 

On substitution of the N-soliton solution into (4.4.1), one obtains (after an inte-

gration) the reduced symplectic form on the N-soliton phase space. In practice it 

is not possible to perform the integration for anything other than the one-soliton 

solution [143] (except for the sine-Gordon case, where Babelon and Bernard suc-

ceeded in showing that the integrand could be written as an exact derivative for 

both the one- and two-soliton [221). For the one-soliton phase space, the reduced 

symplectic form is (up to an irrelevant numerical factor independent of 0) 

ci = d — A dij. 
a 

The intractability of the integral (4.4.1) for the general N-soliton solution 

does not matter, as it is a standard result that as t —* + ( the out/in limits) 

the N-soliton decomposes into a superposition of N one-solitons with a shift of 

the parameters. So the symplectic form may just be written 

(N) = >i: at A d
71 ut = : da 

Th 

-— A  dijr. 	 (4.4.2) 

a 	 3 

By direct calculation using the formula (4.3.8) for the tau-functions of the N-

soliton solution, we find the relations between the out/in parameters and the 

standard ones: 
in 	out 

ii _ii 	—lJj, 

	

ain = a fi 	— 	- 	
= a flexp(Bjk) 

	

k>j 	- 	—ilk 	k>j 
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(and similarly for a7t  with the inequality reversed). This agrees with the formulae 

of Spence and Underwood [143] obtained via vertex operator arguments, where 

for their notation it is necessary to replace a1 by QI  and exp(B1k) by X1,k. So 

substituting for the in parameters into (4.4.2), we obtain the N-soliton symplectic 

form as 

• 	(N) = 
	

f2. A d771 + >i: E1k(77) sinh(71 - 7/k) d771  A dIlk, 	(4.4.3) 
aJ 	 j<k 

where 

E1k(q) = 
1 

cosh(i71 - Ilk) - cos((01 - Ok)/2) 

1 

- cosh(ij1 - 77k) - cos91 + Ok)/2) 

We observe that 	is clearly real if we choose the 71j to be real and the a1  

to be pure imaginary (which in the A' )  case coincides with the condition on a1 

for sine-Gordon solitons given in [221). This means that the matrix V defined 

in (4.3.7) is anti-hermitian, which will be important in the next section when we 

look at the dynamics of the eigenvalues of V. 

4.5 Ruijsenaars-Schneider Systems 

4.5.1 Spin RS Model 

The spin-generalized Ruij senaars- Schneider (spin RS) model was introduced by 

Krichever and Zabrodin in [104]. It is defined in terms of N particle positions 

x1 and their internal degrees of freedom (spins) given by 1-dimensional vectors a1 

and 1-dimensional covectors b, subject to the equations of motion 

= 	(b,tak)(bal)(V(xa - Xk) - V(xk - xi)), 	(4.5.1) 
k?Ej 

= E aj(bja1)V(x1 - Xk), 	 • (4.5.2) 

bt= - >i: b(bak)V(xk - xl). 	 (4.5.3) 
ki4j 

The potential V is expressed in terms of the Weierstrass zeta function, 

V(x) = ((x) — ((x+'y), 

or its rational or hyperbolic limits, which are 

1 

X X+7 

and 

V(x) = coth(x) - coth(x + ) 
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respectively. The case relevant to the afline Toda solitons is the hyperbolic limit 

with parameter 7 = 	(after a suitable scaling of the variables). The equation 

(4.5.1) is a natural generalization of the equation (4.1.1) in the ordinary RS model. 

Before making the connection with solitons, we observe some other properties 

of spin RS models. The equations (4.5.1,4.5.2,4.5.3) have the scaling symmetry 

aj  -4 ajaj , bt .... j_bt 
II 	oj 

The corresponding integrals of motion are th - l4aj , and setting them to zero 

yields 

= b3ta. 	 (4.5.4) 

It is customary (see [135]) to impose this constraint from the start, and take 

(4.5.2,4.5.3,4.5.4) as the equations of motion. These equations have a Lax pair, 

and the Lax matrix given in [135] has entries 

Lik- exp(xk_xi)bf 
- cosh(x - Xk) 

ak 	 (4.5.5) 

in the hyperbolic case relevant to our discussion; we find that the Toda solitons 

naturally yield a different Lax matrix. There is also a gauge freedom in the spins, 

which means that by rescaling a, i4 suitably, it is possible to insert the term Wa 

into the right-hand side of (4.5.2), and the term into the right-hand side 

of (4.5.3), for arbitrary functions W1(t). As we shall see, this corresponds to a 

freedom in choosing the diagonal entries of the matrix M in the Lax pair. Bearing 

all this in mind, we can now show the relationship with the soliton formulae of 

Section 4.3. 

4.5.2 Spin RS Equations from Toda Solitons 

We proceed to consider how the eigenvalues of the matrix V defined by (4.3.7) 

evolve with respect to each of the light cone coordinates, and find that a particular 

sort of spin RS model results. Since V is anti-hermitian, it may be diagonalized 

with a unitary matrix U: 

Q := UVUt = diag(iexp(qj),...,iexp(qN)). 

If we let a dot denote -, then V satisfies 

	

= (AV + VA), 	 (4.5.6) 

for the constant diagonal matrix A defined by 

A= 	diag(m i  exp(pjj ), ..., mN exp(qN)), 
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with the masses mj as given in (4.3.4). Now let uj denote the jth row of U 

(considered as a column vector, so that the uj are the left eigenvectors of V). 

Define the Lax matrix L by 

Ljk = t4Au, 

implying 

L = UAU. 

Then L satisfies the Lax equation 

	

L = [M, L], 	 (4.5.7) 

for M = UU. Differentiating the definition of Q gives 

= [M, Q1 + 

and after substituting for V from (4.5.6) and using the definition of L we find the 

identity 

LQ + QL = 2(Q + [Q, M]). 	 (4.5.8) 

Rewriting everything in components, (4.5.8) reads 

	

LJk(e 9  + e") =2(4je' bjk + 	
- 

which yields 

Ljj = 	 (4.5.9) 

and 

Mk = coth((q1 - qk)12)Lk, 

(forj $ Ic). 

When V is diagonalized we may always choose the phases of the left eigen-

vectors u j  so that Mjj = u3tü = 0. Finally, substituting for the entries of M in 

the Lax equation (4.5.7) produces the equations of motion: 

= 4j = E coth((q - qk)12)LkLk, 	 (4.5.10) 
kj 

Lik =  coth((qj 
- qk)12)(4k - 

+ E1~
a,k (coth((q - q,)/2) - coth((qj - qk)12)).LzLlk 	

(4.5.11) 

(j 	It). These equations follow from the spin RS equations with certain con- 

straints, although to see this requires comparison with the formulae (4.5.1-4.5.3) 

of Krichever and Zabrodin. 

To make contact with our equations we set x j  = qj and choose the hyperbolic 

potential 

V(q - q) = coth((q5 
- 
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In [104] the spin degrees of freedom were real, but here we allow them to be 

complex, and identify them with the eigenvectors of V by setting 

bt = i4, a = Au. 

So we have taken I = N, and in fact our spins are expressed entirely in terms of 

the eigenvectors of V and the constant matrix A; in particular the must form 

an orthonormal basis. In the notation of [104] the components of this Lax matrix 

are given by 

Lik = btaa. 

We observe that this is a non-standard choice for the components of the Lax 

matrix compared with [104, 135], where L has entries of the form (4.5.5). The 

equation (4.5.9) is immediately seen to be equivalent to the usual constraint 

(4.5.4) imposed on RS models. Also (4.5.2,4.5.3) follow from our definition of 

the spins in terms of the eigenvectors of V, and may be seen directly from the 

equations 

(UA)= MUA, 	Ot = 

In a sense these equations are more fundamental than the Lax equation (4.5.7). 

From the definition of £ in terms of the spins we can compute 'jk•  So for j = k 

(4.5.1) is equivalent to (4.5.10), while for j j k (4.5.11) is a consequence of (4.5.2) 

and (4.5.3). Note that we have also exploited the gauge freedom of the spins to 

choose Mjj = 0. 

4.5.3 Sine-Gordon and Spinless RS 

To make the correspondence between the solitons and the many-body system 

clearer, it is worth considering the sine-Gordon case in more detail and comparing 

it with the general situation. The results about sine-Gordon solitons are explained 

in detail in [22], and we have kept our notation as similar to this reference as 

possible to make comparison easier. The first thing to observe is that in the A 1  

case only knowledge of the qj  is required to specify the field components, as we 

have 
N 1—iexp(q)\ 

= 6_200I 
= fl  ( I  + iexp(qj)) * j=1 

In the general case the presence of the matrix ehl®/2  in the expression for the 

tau-functions (4.3.8) means that knowledge of both the spin vectors u (which 

make up the matrix U) and the qj  is required to evaluate these determinants. 

The essential difference is that for sine-Gordon there is only one soliton species, 

while in the A(n1)  case there are ii  different species corresponding to the different 
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allowed values of O. This difference is also apparent at the level of the equations 

of motion. In fact when we differentiate the matrix V, in the case of sine-Gordon 

we find from (4.5.6) that 

7= i(ee) 

for a certain vector e. But then conjugating the equation (4.5.6) with U we obtain 

iat = (LQ + QL), 

where ë = Ue. Actually ë is a real vector, and in terms of its components Zj we 

have 

L,k=2 	
cj e 

 
exp(qj) + exp(qk) 

Since we know the diagonal elements of L explicitly in terms of the qj (from 

(4.5.9)) the above formula means that we then know all the ëj and hence the 

off-diagonal elements of L are found to be 

coshq - 

This may then be substituted into (4.5.10,4.5.11) to give the ordinary (non-spin) 

RS equations. In this case (4.5.10) yields (4.1.1) and (4.5.11) is a consequence. 

Babelon and Bernard have shown [22] that there is a canonical transformation 

between the soliton parameters and the dynamical variables qj, 4. We discuss 

how this could possibly be extended to the A$ case in our Conclusion. 

4.6 Conclusion 

We have shown the connection between the spin-generalized Ruij senaars- Schneider 

systems and A n( ')  afline Toda solitons. The N-soliton tau-functions are determined 

by the positions qj of N particles on the line as well as an orthonormal set of N- 

dimensional spin vectors u, which are together subject to the equations of the 

hyperbolic spin RS model. This extends the known result for the sine-Gordon 

equation, where the spins are no longer part of the dynamics and there is a canon- 

ical transformation between the positions and momenta of the particles and the 

parameters of the solitons. For the general case such a transformation is no longer 

apparent, although we note that the N-soliton phase space is still of dimension 

2N, and so it is worth exploring exactly how the extra spin degrees of freedom are 

absorbed in the transition from the dynamical variables to the soliton parameters. 

Concerning the relationship between the soliton parameters and the spin ITS 

variables, we observe that in [135] the solution of the hyperbolic spin ITS model 
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involves gauging the Lax matrix, 

L = UL0U', 

although in that case L has entries given by the formula (4.5.5). The positions 

xj of the model are found to be the eigenvalues of a matrix 

v 2tLo 

and the corresponding solutions for the matrices of the spin vectors are 

A=UA 0 , 	B=B0U' 

The degenerate case of the ordinary RS model corresponds to a special choice of 

initial conditions, 

A 0  = Bo = L 

Although the form of Lax pair we have used is slightly different, it would appear 

that the affine Toda solitons might also be understood as corresponding to special 

initial conditions of the form 

L0 A 0 =A, 	Bo=1. 

Hence there might be a better way to understand the spin degrees of freedom. 

Also it would be interesting to see what role the spins might play in the quantum 

theory. 
We would like to extend this work to the soliton solutions of the Toda systems 

corresponding to the other afline algebras [112], and at the same time elucidate 

the connections to the vertex operator constructions used in [129, 1431. It might 

also be worthwhile considering the more general sorts of solitons found by Beggs 

and Johnson [28], which have extra degrees of freedom. We intend to pursue these 

points in the future. 
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Abstract 

The solitons of affine Toda field theory are related to the spin-generalised Ruijsenaars-Schneider (or relativistic Calogero-
Moser) models. This provides the sought after extension of the correspondence between the sine-Gordon solitons and the 
Ruijsenaars-Schneider model. 

Introduction 

The purpose of this letter is to relate the solitons 
of the affine Toda system to the spin extensions of 
the Ruijsenaars-Schneider model, the latter also being 
known as the relativistic Calogero-Moser model. This 
work generalises the known connection between the 
solitonsof the sine-Gordon equation and the (non-
spin) Ruijsenaars-Schneider model. The connection 
made 'here should be viewed as part of a larger pro-
gramme that seeks to identify classes of solutions 
of PDEs with finite dimensional mechanical systems, 
wherebythe evolution of the solutions to the PDE 
is expressed as a dynamical system on the (finite-
dimensional) moduli space of solutions. Thus, for ex-
ample, the pole solutions of the KP equation [1,2] 
and its reductions (such as KdV [3]) are related to 
the non-relativistic Calogero-Moser model, while the 
sine-Gordon solitons are related to its relativistic coun-
terpart, the Ruijsenaars-Schneider model (see [4;5]). 
This programme also extends to include the peakon 
solutions appearing in fibre-optics and shallow wa- 

E-mail: hwb@ed.ac.uk.  
2 E-mail: hone@maths.ed.ac.uk.  

ter waves which have associated mechanical systems 
[6,7]. A similar connection may well underlie the ap-
pearance of finite dimensional mechanical systems in 
the study of various models possessing duality [8,9]. 
As the dynamics of mechanical systems are often eas-
ier to understand (or simulate) than the equations of 
motion for a field theory, such a programme aims at 
giving qualitative information about field theories by 
an appropriate reduction of degrees of freedom. The 
recent work of Babelon, Bernard and Smirnov [10] 
may be viewed as taking this correspondence between 
field theories and mechanical systems beyond the clas-
sical to include the quantum regime as well, though the 
ability to focus attention solely on a fixed N-particle 
sector of the full quantum Hilbert space appears to 
depend crucially on the model. Our work will reveal 
further new features in such correspondences, as well 
as provide a sought after generalisation of known re-
sults about the sine-Gordon model to the case of affine 
Toda solitons. 

Ruijsenaars and Schneider's seminal work [5] 
showed that the soliton solutions of a variety of equa-
tions were related to dynamics built from the ilamil-
tonians (with canonically conjugate variables qj, p4 

0370-2693/96/$12.00 Copyright © 1996 Elsevier science B.V. All rights reserved. 
Pit 80370-2693(96)00499-6 
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N 	N 	
—qk\ 

= >:e 	Hcoth(' 2 
)' 

td equations of motion (for either 11+) 

= 2 >:
qiqk 

 . 	 (I) 
k#j 

sinh(q1 - q) 

n appropriate scaling limit of H = H + H yields 
system of Calogero-Moser type. In particular, the 
genvalues i e; of an N x N matrix associated with 
elan function describing an N-soliton solution of the 
ne-Gordon equation evolve according to (I). The 
's and pj's may, at least when they are well sepa-
ted, be related to the positions and rapidities of N 
instituent single-solitons; the dynamics of the sys-
ni encodes the various soliton phase shifts. (More 
aails of this will be given below.) Thus the system 
)verned by H+ describes how the space-time trajec-
ries of the constituent' solitons interact. Of course 
e same system may be described via the inverse scat-
ring transform by a free system with linearly evolv-
g data: the point of the Ruijsenaars-Schneider de-
•ription is to make greater contact with the particle 
scription of the soliton. 
Viewing the sine-Gordon model as the 	affine 
)da system (with imaginary coupling) a natural 
iestion to ask is how the above results generalise 

other affine Toda systems. These systems have 
en extensively studied in recent years both for real 
id imaginary couplings. In the real coupling regime 
beautiful structure was uncovered and exact 5-

atrices have been conjectured for the theories (see 
11-13] and references therein). The imaginary cou-
ing regime has also been investigated and classically 
e solitons have real energy-momentum although 
.e Lagrangian is complex ([14] and references 
erein). Spence and Underwood [15] have recently 
ed this work to obtain the symplectic form on the 
ace of affine Toda solitons but a dynamical de-
:ription generalising the sine-Gordon/Ruijsenaars-
:hneider correspondence has proved elusive. The 
irpose of the present letter is to give this gener-
isation. Just as the affine Toda systems generalise 
.e sine-Gordon model, there are spin-generalisations 

the Ruijsenaars-Schneider systems, and it is these 
'stems which describe the dynamics of the affine 
)da solitons. These models (which have been most 

studied in the A setting) are the relativistic exten-
sion of Gibbon and Hermsen's spin generalisation of 
the original Calogero-Moser model [16]. One new 
feature we have found in our correspondence is the 
appearance of new degrees of freedom, the internal 
spins of the model. Although not needed to describe 
the solitons of the affine Toda system, these spins 
determine the matrix that diagonalises the Lax pair. 
We will comment further on this later in the letter. 

An outline of the letter is as follows. First we will 
review the construction of affine Toda solitons, and 
then in Section 3 consider the reduced symplectic 
form of the theory. We are then in a position to re-
late the affine Toda solitons to the spin-generalised 
Ruijsenaars-Schneider model in Section 4. For the 
purposes of this letter we shall limit our discussion to 
the A' case, both for simplicity and to make clear 
the generalisation of the sine-Gordon/Ruijsenaars-
Schneider correspondence. 

2. The 	affine Toda solitons 

For the A' affine Toda theory with imaginary cou-
pling, the equations of motion read 

a.a_Ø + 	(#rJ+) - e''') = 0, 

(2) 

j = 0, I ..... n. Here ± denotes differentiation with re-
spect to light-cone coordinates x± = I /xh( t±x), and 
the indices on the components of the field 4) are read 
modulo (n+ 1) where necessary. We shall be consid-
ering the solitonic sector of the theory, which means 
assuming = 0 (in other words, discarding the 
free field part of (b). 

There are various ways to construct and parametrise 
soliton solutions to (2). Perhaps the simplest meth-
ods to implement from a practical point of view are 
the application of the ]3acklund transformation derived 
by Fordy and Gibbons [17] or the bilinear formalism 
developed by Hirota [18]. There are also the pow-
erful vertex operator techniques which make full use 
of the representation theory of the A' algebra [14]. 
While the latter approach is currently the most popu-
lar, we wish to make contact with the original work 
of Ruijsenaars and Schneider [51, which made much 
reference to the soliton formulae of Hirota. Hence we 



298 	 H.W. Braden, A.N.W. 1-fune/ Physics Letters B 380 (1996) 296-302 

choose to start from the form ol'the N-soliton solution 
of (2) derived by Hollowood [19] via Hirota's direct 
method. The 1-tb component of the field 0 is given by 

= rai. , 	 ( 3) 
TI 

where the tau function 71 is of the form 

= 	exp ( eiekBm + 
e 	\)<k 	 ) 

(4) 

In the above the e indicates a summation overall possi-
ble combinations of Ej taking the values 0 or 1, and the 
indices  and k take values in f1_., N).  We will ex-
plain shortly what the various terms in (4) mean, and 
how we have parametrised the A' affine Toda soli-
tons. For the moment we would like to comment that 
expression (4) is a rather generic form of the soliton 
tau function for an integrable PDE, the precise nature 
of Bp and (jj depending on the particular PDE being 
considered; it may be viewed as a degeneration of the 
theta function solutions of the PDE given via algebraic 
geometry in which the e1's run over all of the integers. 
Ruijsenaars and Schneider succeeded in making the 
connection between their relativistic Calogero-Moser 
systems and soliton solutions of the sine-Gordon and 
KdV equations, among others, by showing a direct cor-
respondence between the coordinates of the N-particle 
system and the parameters of the N-soliton solution. 
An important part of the correspondence was that all 
the tau functions of form (4) being considered in [5] 
could be written in terms of determinants like 

det(1+M) 

for suitable matrices M. In what follows we express 
all the N-soliton solutions of the A' affine Toda the-
ory in this way, and thereby obtain a relation to spin-
generalised Ruijsenaars-Schneider systems. 

First of all we should explain the parameters of the 
Toda N-soliton which appear in (4). Each soliton has 
a rapidity denoted by m  a position parameter denoted 
by a1, and a discrete parameter Oj taking values in 
{27rk/ (n + I )]k = 1,2.....n} (so that exp(i01) is an 
(n + l)th root of unity). The rapidities are all real, 
while the at are pure imaginary for solitons (there are 
different reality conditions for other types of solution  

e.g. breathers). The different values of Oj given di 
ferent species of soliton in the A' affine Toda th 
cry whose masses are 2msin(01/2). We also need 
define 

lij  =exp(jj  

With this choice of parameters, the terms in the so 
(4) are given by 

( (t_4)(1t 
81k=log 	

y —  ttn(g —ic)1 

= log (afexP (m(e'x+ —ex 

x sin(Oj /2) 

(To make a comparison with the vertex operat 
formulae, we note that in terms of the notation 
Ref. [15],we have fifk=log(Xf,k),af=Q).Wew 
deal with the general formalism elsewhere.) 

We are now ready to write the tau functions as d 
terminants. In fact Olive, Turok and Liao [20] foui 
that determinants naturally arose when they deriv 
the N-soliton solution by the Backlund transform 
tion, but the matrices involved are not of the rig 
form for our purposes. Instead we set Xj = aj  

itT) exp (ilm(rmx+ - e"x_) sin(Oj/2)), at 

define N-by-N matrices V, 0 by 

Vjk= + 
A 

and 

0 =diag(Oi,02.....ON). 

Then we find that 

7-1  = det (I + 

To verify (6) it is necessary to expand the detern 
nant on the right-hand side in terms of the princip 
cofactors of V, and then use Cauchy's identity: 
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( 	 so! itons with a shift of the parameters. So the sym- 
det 	

- ,,_ J - 	 - 	
plectic form may just be written 

j 	k Jfk 	I 

(i4 ii) (ti - p4) 
X 

Writing the right-hand side of (4) in terms of these 
new parameters and comparing with the cofactor ex-
pansion gives the required result. Note that in the A (, ')  

(sine-Gordon) case the 0) must all take the value i, 
which means that the matrix exponentia]s appearing 
in (6) are multiples of the identity, and we reproduce 
the standard result 

del (1— V) 
= 	= 

det (1 + V) 

The reduced symplectic form 

In this section we describe the phase space of the 
N-soliton solution in terms of its symplectic form, 
before describing how spin-generalised Ruijsenaars-
Schneider systems arise in the Following section. The 
phase space of the affine Toda system has the standard 
symplectic form 

A 8 	dx. 	 (7) 

On substitution of the N-soliton solution into (7),one 
obtains (after an integration) the reduced symplectic 
form on the N-soliton phase space. In practice it is not 
possible to perform the integration for anything other 
than the one-soliton solution [15] (except for the sine-
Gordon case, where Babelon and Bernard succeeded 
in showing that the integrand could be written as an ex-
act derivative for both the one- and two-soliton [4]). 
For the one-soliton phase space, the reduced symplec-
tic form is (up to an irrelevant numerical factor inde-
pendent of 0) 

, 	
da A d77. w 
a 

The intractability of the integral (7) for the gen-
eral N-soliton solution does not matter, as it is a stan-
dard result that as t —* +00 (theout/in limits) the 
N-soliton decomposes into a superposition of N one 

W aont 

daOut 	 da' n 
A 	)". 	(8) (N) 	 Adfly 	 dy ut =   

I 	J 	 j 	
a'" 

J 

By direct calculation using the formula (4) for the tau 
functions of the N-soliton solution, we find the rela-
tions between the out/in parameters and the standard 
ones: 

777 = ,yut = 

ali1=aJfJ 
(f-4)(i'7 — i4) 

k>/J — /4)( 4 — Mk )  

= 1 fjexp(Bjk) 

loj 

(and similarly for a" t  with the inequality reversed). 
This agrees with the formulae of Spence and Under-
wood [15] obtained via vertex operator arguments, 
where in their notation a1 = Q1  and exp(B)k) = XJk. 

So substituting for the in parameters into (8), we ob-
tain the N-soliton symplectic form as 

w(N) = >' A d 
aj 

	

+ > Epjij) sinh(1 - ilk) d?73  A d27k, 	(9) 

j<k 

where 

EJk(n) = 
cosh(1 - nk) - COS( (Oi  00/2) 

- cosh(1 - Ilk) -COS( (0 + 00 

We observe that 	is clearly real if we choose the 

m to be real and the a3  to be pure imaginary (which 

in the A( ' )  case coincides with the condition on aj  for 
sine-Gordon solitons given in [4]). This means that 
the matrix V defined in (5) is anti-hermitian, which 
will be important in the next section when we look at 
the dynamics of the eigenvalues of.V. 
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4. Ruijsenaars-Schneider systems 
	

(for j 0 k). When V is diagonalised we may al- 
ways choose the phases of the left cigenvectors u1 so 

Here we consider how the eigenvalucs of the matrix 	that M1 = ut0i = 0. Substituting these into the Lax 
V evolve with respect to each of the light cone co- 	Eq. (1.1.) produces the equations of motion: 
ordinates, and find that spin-generalised Ruijsenaars- 
Schneider equations result. Since V is anti-hermitian, 	L 0  =q =>coth((qJ—qk)/2)LfkLkJ, 	( 14) 
it may be diagonalised with a unitary matrix U: 	 kj 

Q :=UVUt =diag(iexp(q1) ..... iexp(qN)). 

If we let a dot denote d/dx±, then V satisfies 	- 

(10) 

for the constant diagonal matrix A given by 

A =diag(+'.hrnexp(+ii) sin(01/2), 

,±V3nexp(nN) sin(ON/2)). 

Now let u1 denote the jth row of U (considered as a 
column vector, so that the u1 are the left eigenvectors 
of V). Define the Lax matrix L by 

Li,, = UjA Uj, 

so that 

L = UAU. 

Then L satisfies the Lax equation 

(II) 

for 	= (iu. Differentiating the definition of Q gives 

=[M,Q]+UVUt, 

and after substituting for i from (10) and using the 
definition of L we find the identity 

LQ+QL=2(Q+[Q,M]). 	 ( 12) 

Upon setting Q j 	ie 1 , then (12) in components 
reads 

L1,,(Q1+Q,,) =2(QJS/-+MJk(QJ—Qk), 

which yields 

L1=41 	 (13) 

and 

MJk = (:; 1:) Ljk =coth((q1 —q,,)/2)Lj,,, 

Ld = coth( (q1 - q,,)/2) (4k -12 

+ (coth((q1—qj)/2) 

!1=j,k 

	

- coth( (qi - q,,)/2) )L11L,,, 	 (15) 

(j 	k). These are in fact 	the spin-generalised 
Ruijsenaars-Schneider equations with certain con-
straints, although to see this requires comparison with 
the formulae of Krichever and Zabrodin [21]. 

In [211 the generalised -Ruijsenaars-Schneider 
model is defined in terms of N-particle positions x 
and their internal degrees of freedom (spins) given by 
1-dimensional vectors a1 and 1-dimensional covectors 

b, subject to the equations of motion 

I j =(l4a)(14a1)(V(x—x) —V(xk— Xi) ), 

(16) 

UI = 	a,,(ba1 ) V(x 1  - x,,), 	 (17) 
k#j 

b3 =-14(ba,,)V(x,,—xj).  
kj 

The potential V is expressed in terms of the Weier-
strass zeta function or its rational or hyperbolic limits. 
To make contact with our equations we set xj=qj 
and choose the hyperbolic potential 

V(q1 —q,,) = cothq —qk)/2). 

Then (16) generalises (1). In [21] the spin degrees 
of freedom were real, but here we allow them to he 
complex, and identify them with the eigenvectors of 
V by setting 

b=t4, a=Au. 

So we have taken 1 = N, and in fact our spins are 
expressed entirely in terms of the eigenvectors of V 
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and the constant matrix A; in particular the bt must 

form an orthonormal basis. In the notation of [21] the 

components of the Lax matrix are given by 

Ut = hla1 

There are various other constraints that we have im-

posed on our system. First the Eqs. (16), (17) and 

(18) have the scaling symmetry 

aj — aa1, 
ai 

11 

The corresponding integrals of motion are xi - btiap 
and setting them 10 zero and rewriting them in terms 

of our coordinates shows that this is equivalent to 

Eq. (13). Similarly our requirement that M1 = 0 is 

another constraint on the system. Now given these con-

straints we find that from the definition of U in terms 

of the spins we can compute L,. So for j = k (16) 

is equivalent to(14), while for j /- k(17) and (18) 

yield (15). 

To make the correspondence between the solitons 

and the many-body system clearer, it is worth consid-

ering the sine-Gordon case in more detail and com-

paring it with the general situation. The results about 

sine-Gordon solitons are explained in detail in [4], 

and we have kept our notation as similar to this refer-

ence as possible to make comparison easier. The first 

thing to observe is that in the A 1  case only knowl-

edge of the q1 is required to specify the field compo-

nents, as we have 

	

en000
'- 	= ir (I - iexp(qj) 

	

- 	4f\i+iexp(q,) 

In the general case the presence of the matrix e i(?V 2  

in the expression for the tau functions (6) means that 

knowledge of both the spin vectors u1 (which make up 

the matrix U) and the q1 is required to evaluate these 

determinants. The essential difference is that for sine-

Gordon there is only one soliton species, while in the 

case there are it different species corresponding 

to the different allowed values of Oj.  This difference is 

also apparent at the level of the equations of motion. 

In fact when we differentiate the matrix V. in the case 

of sine-Gordon we find from (10) that 

= i(ee)  

for a certain vector e. But then conjugating the 

Eq. (10) with U we obtain 

iie= (LQ+QL), 

where ë = tie. Actually ë is a real vector, and in terms 

of its components ë1 we have 

UJk=2 
exp(qj ) +exp(qk) 

Since we know the diagonal elements of U explicitly 

in terms of the qj  (from (13)) the above formula 

means that we then know all the e1  and hence the off-

diagonal elements of U are found to be 

Ut = 
cosh((q - qt)12) 

This may then be substituted into (14), (15) to give 

the ordinary (non-spin) Ruijsenaars-Schneider equa-

tions. In this case (14) yields ( I ) and (15) is a con-

sequence. Babelon and Bernard have shown [4] that 

there is a canonical transformation between the soliton 

parameters and the dynamical variables qj 4 (more 

precisely, they formulate this in terms of the variables 

Qj  = i exp(q1)). We discuss how this could possibly 

be extended to the AA1  case in our Conclusion. 

5. Conclusion 

We have shown the connection between spin-

generalised Ruijsenaars-Schneider systems and A 1  
affine Toda solitons. The soliton tau functions are de-

termined by the positions qj  of n particles on the line 

as well as an orthonormal set of n-dimensional spin 

vectors a1, which are together subject to the equa-

tions of a constrained spin-generalised Ruijsenaars-

Schneider model. This extends the known result for 

the sine-Gordon equation, where the spins are no 

longer part of the dynamics and there is a canonical 

transformation between the positions and momenta 

of the particles and the parameters of the solitons. 

For the general case such a transformation is no 

longer apparent, although we note that the N-soliton 

phase space is still of dimension 2N, and so it is 

worth exploring exactly how the extra spin degrees 

of freedom are absorbed in the transition from the 

dynamical variables to the soliton parameters. Also it 
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would be interesting to see what rOle the spins might 

play in the quantum theory. Finally there remains the 

extension to the other afline algebras and elucidating 

the connections to the vertex operator constructions 

mentioned at various points in the text. We intend to 

pursue these points in the future. 
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Abstract 

We obtain non-autonomous generalizations of the llénon-I-Jeiles sys-
tem by considering scaling similarity solutions of certain fifth-order non-
linear PDEs. The resulting equations are integrable in the sense of having 
the Painlevé property, and we exhibit Bãcklund transformations for them 
and produce some rational solutions as well as others related to the first 
Painlevé transcendent. 

1 Introduction 

In the following we will be looking at some similarity reductions of infinite di-
mensional integrable systems, which yield ODEs with the Painlevé property. One 
might wonder why such reductions of PDEs should be worthy of interest. There 
are various reasons to consider them. The first point to note is that, as described 
in Ragnisco's lecture (appearing elsewhere in this volume), if an ODE is the sta-
tionary flow of a soliton equation then it inherits some of the integrable structure 
of that soliton equation e.g. conserved quantities, Bãcklund transformations (see 
[1],[2] for examples of stationary flows related to the systems described below). 
More generally, given a PDE in 1+1 dimensions with independent variables x, I 
and dependent variable u(x, I), the problem of finding solutions is considerably 
simplified if we seek a solution in the similarity form, that is 

u(x, I) = U(w(z), x, 0, 	 (1) 

where z = z(x, I) is the similarity variable, and on substituting U(w, x, I) into the 
PDE, an ODE for w(z) is obtained. There are various ways of finding similarity 
forms, the most common being the classical Lie symmetry approach (although 
this method does not yield all possible similarity solutions; see [3] for a case where 
it fails, as well as references to the other techniques). Obviously a stationary 
flow is just a special sort of similarity solution. One may similarly find similarity 
solutions to systems of equations, and for PDEs with more independent variables, 
but we will not be interested in such complications here. 
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Once we have a similarity form, we are left with an ODE to solve. The fact is 
that if we start with a PDE which has lots of nice properties (such as solvability 
by inverse scattering) then the resulting ODE should be correspondingly man-
ageable. This is expressed more precisely in the conjecture of Ablowitz, Ramani 
and Segur (ARS), which states that all similarity reductions of integrable PDEs 
have the Painlevé property (although due to the fact that no universally accepted 
definition exists, we are being deliberately imprecise about what we mean by "in-
tegrable"). For a good account of the Painlevé property, refer to Goldstein's talk 
(in these Proceedings), and for further details as well as some theorems which 
support the ARS conjecture, see [4]. 

For comparison with what follows it is worth looking at a well-known example. 
If we start with the modified Korteweg-deVries (mKdV) equation 

Vt = VXXX - 6v 2v, 	 (2) 

and notice that it has a scaling symmetry, then this gives us its scaling similarity 
solutions. More explicitly, (2) is invariant under x -* fix, t - 13 3t, V -* fi 1 v, 
and so this implies that there is a similarity solution 

v(x, t) = (-31)4y(z(x, 1)), 	 (3) 

with the similarity variable z = (-3t)4x. Substituting this form into (2) we 
find that y satisfies 

= 6y 2y' + zy'  + y 	 (4) 

(' denotes f), which may be integrated once to give 

y"=2y3 +zy+a, 	 (5) 

for some constant a. (5) is known as the second Painlevé equation (P2), be-
ing the second exceptional equation in Paul Painlevé's classification of second 
order equations having no movable singularities other than poles (exceptional 
in the sense that its general solution cannot be expressed in terms of classical 
transcendental functions). 

In the next section we will look at three integrable hierarchies of evolution 
equations (the Sawada-Kotera, Korteweg-deVries and Kaup-Kupershmidt hier-
archies), and derive their scaling similarity forms. The third section concerns 
some completely integrable finite dimensional Hamiltonian systems known as the 
Hénon-Fleiles systems. We describe how they are related to stationary flows of 
some of the PDEs looked at in the previous section, and relate the similarity so-
lutions of these PDEs to non-autonomous versions of the Hénon-ileiles systems. 
In the last section we derive Bãcklund transformations for the non-autonomous 
equations, and show how they may be used to generate special families of solu-
tions. 



2 Some properties of the KdV, Sawada-Kotera 
and Kaup-Kupershmidt Hierarchies 

Before looking at the non-autonomous systems of the title, we will consider some 
aspects of three different hierarchies of PDEs, known as the KdV, Sawada-Kotera 
(3K) and Kaup-Kupershmidt (KK) hierarchies, that are needed in what follows. 
Each hierarchy is a sequence of evolution equations or flows with respect to times 
i, (n = 1,2,3,...), which can all be put into Hamiltonian form. 5K and KK have 
only one Hamiltonian structure, but KdV is bi-Hamiltonian, and here we will be 
using the second Hamiltonian structure. The n-th flow in each of the hierarchies 
can be written as 

= (8 + 8auO + 4au4Su Hn [u], 	 (6) 

where a = 1/2 for 3K and KdV, a = 1/4 for KK, and Hn  is the n-th Hamil-
tonian for the hierarchy in question. For the purposes of computing variational 
derivatives, we make no distinction between a Hamiltonian and its corresponding 
Hamiltonian density. For more details on these hierarchies and ways of calculat-
ing the sequence of Hamiltonians, see e.g. [7],[8]. 

There is also a Miura map from the modified versions of the hierarchies, given 
by 

U  = — v 3, - 2av 2  =: M[V]. 

Then re-writing the Hamiltonian in terms of v and derivatives, the n-th modified 
flow may be expressed as 

(7) 

The Miura map means that given v satisfying (7) for each n, the corresponding 
u = —vs, - 2av2  satisfies (6). 

The n-th flow of the hierarchy is unchanged by the scaling 

X -4 fix, 

in  -* film1 

U -4 

where in = m(n) is a scale weight dependent on the hierarchy. Similarly the 
modified flow is invariant under the same scaling but with 

V -+ /3'v. 

Hence there are scaling similarity solutions looking like u = t 	w(±).  For 

convenience in what follows we scale the similarity variable so that 

u(x,t) = 



where z = xO(t) and do = 0m+1• The corresponding similarity solution for the 
modified flow is 

V = 9(tn)y(z), 

with the scaled Miura map giving w = 	- 2ay 2  ('denotes / throughout). 
Henceforth we will drop the suffix vi. Substituting the similarity forms into 

the equations of motion (6) and (7) (and cancelling out powers of 0 on either 
side) yields the ODEs for w and y. If we let H denote the scaled Hamiltonian 
(expressed in terms of w with powers of 0 divided out) then we have simply 

(8 + 8awO + 4aw')(6H - 2-z) = 0, 	 (8) 
4a 

8(ök+zy)=0. 
	 (9) 

Both of these equations can be integrated once, and are conveniently written in 
terms of 

f := 	- Z. 

Integration of (8) yields immediately 

d 2f 
+ 4awf + A - (

c\2 
dz)  =0. 	 (10) 

dz 2 	 2f 

For (9), note that 
e5H = (M')6H = (8, - 4av)8H, 	 (11) 

where M' is the Fréchet derivative of M. The scaled similarity form of this 
relation (involving y and SH) allows (9) to be written in terms of the quantity 

f and integrated to 
df 

—4ayf+A=0. 	 (12) 

In (10) f is to be thought of as a function of w and its derivatives, while in 
(12) it is expressed instead in terms of y and derivatives of y (replacing each 
by —y' - 2ay 2 ). A is a constant of integration, and is in fact the same constant 
in both cases, as the Miura map becomes a one-one correspondence between 
the two equations. Note that the equations for the stationary flows are simply 
obtained by removing the --4 z terms from f. The form of the equations makes 
it particularly simple to see the relationship between them. The scaled Miura 
map means that if y satisfies (12) then w must satisfy (10), and this is obtained 
directly by substituting 

f'+A 
4af 

into w = — y '  - 2ay 2 . Conversely, given w satisfying (10), then the same substi-
tution for y (with I expressed in terms of w) rearranges to give (12). 
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To make things more concrete, it is worth looking at some particular cases. 
The first example to consider is the scaling similarity solutions of the ordinary 
KdV equation. Putting H = 0 (the first non-trivial Hamiltonian in the KdV 
hierarchy) into (6) with a = we obtain KdV: 

Ut = Uxxx  + 6uu 1,. 

The scaling similarity solutions are given by 

u(x,t) = (-3t)4w(z), 

with the similarity variable z = (-3t)4x. After substituting into KdV and 
integrating once we find the ODE for w: 

a(a+1) +w'—(w')2 
=0. 	 (13) W" + 2w2  - z + 

2w—z 

Using the scaled Hamiltonian ft = 	we find 

f=w — , 

and substituting into (10) with this f and a = 1  does indeed give the equation 
(13) on setting \ = a + 1 . Also the Miura map u = - goes from mKdV 
to KdV. For the scaling similarity solutions of mKdV (3) we find that there is 
a one-one correspondence between solutions of P2 (equation (5) of the previous 
section) and (13), given by 

W = —y' - 

(the scaled Miura map) and 
W/ + a 
2w—z 

Note that in terms of y, we have 

f =  -y l  - y 2  - 

and on putting this into (12) with a = , P2 results. This particular case is 
considered in [9] for example. 

As our second example we take the fifth order equations in each of the hier-
archies, which following [1] may be written as 

u t  = (u0 + ( 8a - 2b)uu. - 2(a + b) U2 - - 
20  

-abu ), 	(14) 

where we have three cases(i),,(iii) corresponding to a = , , and b 
- 

	

	
= 

, —3, —4 respectively. These are the only values of a, ii for which an equation of 
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the form (14) is integrable, and (1) and (iii) are respectively the Sawada-Kotera 
and Kaup-Kupershmidt equations (see references in [81), while (ii) is the fifth 
order KdV equation. (14) may be obtained from the Hamiltonian formalism 
described above, by taking 

1 	1 
H=—(u)

2 
 —bu3  

with the correct values of a and b for each case. Then the scaling similarity form 
is 	

u(x,i) = (-5t) 25 w(z), 

where now z = (-5t)4x. We find 

f = w" - bw2 z  - -, 
4a 

and putting this into (10) we find a fourth order ODE for w. Using the scaled 
Miura map, we may express f in terms of y: 

I = — y"' -  4ayy" - (4a + b) (y') 2  - 4aby 2y' - 4a 2  by4  - 
4a 

Then the ODE for y is (from (12)) 

y(iv) = —2(6a + b)y'y" + 4a(4a - b)(y 2y" + y(y') 2) + 16a3  by' + zy + a, (15) 

with a = A - -. Given a solution to (15) we can then obtain a solution to 
the fourth order ODE for to via to = —y' - 2ay2 . Notice that on substituting 
in the relevant values of a and b the resulting equations (15) for cases (i) and 
(iii) differ only by a sign in the even (y'y") terms. So if y is a solution to the 
equation in case (i), then Y..a = Ya is a solution to the equation in case (iii) at 
parameter value —a. This is because the modified hierarchies in these two cases 
are essentially the same. We shall be using this property in the final section to 
derive the Bäcklund transformation. 

3 Hénon-Heiles Systems 

The original 1-l6non-Heiles system is given by a Hamiltonian with two degrees of 
freedom: 

h= (p + p)  + aq1q - bq 1 , 	 ( 16) 

The equations of motion are just Hamilton's equations 

(17) 
dz - Opj' 

to 



(18) 
dz - Ox j  

(we are denoting the time by z here to make connection with results which ap-
pear below). It was known for some time from Painlevé analysis [5] that this 
system is integrable for three values of the ratio r = a/b (because of a scal-
ing symmetry of the equations the integrability only depends on this ratio), i.e. 
r = —1, —1/6, —1/16. 

More recently, Fordy [1] showed that for these integrable cases the equations 
of motion were just disguised versions of the stationary flows of some fifth order 
soliton equations - the Sawada-Kotera, fifth order Korteweg-deYries and Kaup-
Kupershmidt equations (hence the choice of values for a and b as in the previous 
section gives the right values for the ratio r in the cases (i),(ii),(iii)) . The zero 
curvature form of these PDEs yields a matrix Lax representation of the stationary 
flows, and then traces of powers of the Lax matrix give the Hamiltonian and the 
second constant of motion (which shows that these systems are indeed Liouville 
integrable). It was subsequently shown that all three systems are completely sep-
arable in suitable coordinates, and may be integrated in terms of theta functions 
of genus one (cases (i) & (iii)) or genus two (case (ii))[61. 

Instead of looking at the stationary flows of these three PDEs, we will take the 
equations for the scaling similarity solutions, and rewrite them in Hamiltonian 
form. So we have f = WI'  - bW 2  - j, and f must satisfy the equation (10). On 
setting vi = qi, f = —aq, we find 

= bq - aq 	
z 

+ -, 
4a 

U A 2  
q2  = —2aqi q2  - 	 ( 19) 

4a2q 

These are just Hamilton's equations for the system with Hamiltonian 

h= 	 - 

4a 

which is just (16) with an extra inverse square term and a non-autonomous (time-
dependent) term in the potential. So the similarity solutions introduced at the 
end of Section 2 may be viewed as non-autonomous Hénon-Heiles systems. Be-
cause of the explicit time-dependence, the Hamiltonian is no longer a constant 
of motion, and we don't get a matrix Lax representation any more. Below we 
discuss the integrability properties of these equations, as well as Bãcklund trans-
formations which generate some special families of solutions. 

7 



4 Integrability, Bãcklund transformations and 
some special solutions 

Given the zero curvature representation of the fifth order PDEs considered above, 
it is straightforward to obtain the matrix Lax representation of the equations for 
the stationary flows. It is no longer possible to do this for the corresponding non-
autonomous systems, so we have to use other methods to test their integrability. 
The most obvious thing to try is the Painlevé test, and indeed this does find 
principal balances (with four arbitrary constants in the power series solutions) in 
each of the cases (i),(ii),(iii) (for more details see [10]). A more useful approach 
from the point of view of finding exact solutions is to look at the similarity 
equations coming form the modified hierarchy. 

The variable w appearing as qi is in one-one correspondence with a solution 
y of (15), and the latter is a lot more tractable for various reasons. The zero 
curvature representation of the PDEs in the modified hierarchy scales nicely, so 
that on restricting it to the scaling similarity forms it produces a zero curvature 
representation of (15). This then means that the initial value problem for y can be 
solved in terms of an inverse monodromy problem (an ODE analogue of inverse 
scattering). This method has been pursued in detail for the second Painlevé 
transcendent P2 (see [11],[12]). In [11] the scheme is also outlined for the scaling 
similarity solutions of the higher order equations in the modified KdV hierarchy 
(referred to as the Painlevé II Family). The equation (15) in case (ii) is the next 
equation up from P2 in this family. 

A simpler approach to finding solutions is to derive the Bãcklund transforma-
tions for the equation (15) for each of the three cases. We consider (ii) first, as it 
is the simplest case and the Bicklund transformation takes the same form as for 
P2 (and indeed for the whole P2 family [13]). Everything is most conveniently 
expressed in the notation of Section 2. So we take the equation for y in the form 
(12). Now let y. denote a solution to this at parameter value a, and define 

Wa = Y. - 	 (20) 

to be the corresponding solution to (10), with A = a +, a = . Also take 

fa111+3t 	
z
Th 

2 

Now to find the Bäcklund transformation we just need to use two facts. The first 
is that given a solution y., for parameter value a, we have that y = —y is 
also a solution for parameter value —a. The second thing to notice is that under 
the scaled Miura map (20), two solutions Ya  and Y-(a+1)  correspond to the same 
value of A 2  and hence the same solution of (10), we obtain 

Ya+i = Ya + 
2a + 1 	

(21) 
2 fa 

EI 



This gives the standard transformation for P2 [9], on putting fa = W - 

To obtain the sequence of rational solutions to (15) in case (ii), we apply (21) 
repeatedly starting from yo = 0. Some of these solutions (together with the 
corresponding Wa) are given in a table below. 

T 1 2 3 

1/ a 0 

_ 
z 

- z a_ z 	z5 -144 

Wa 0 2 -  6 2 	1Oz3 (25 +576) 
- 	(z5144)2 

These solutions may also be obtained from the sequence of polynomials [14] which 
give the rational solutions of the KdV hierarchy; this is discussed in more detail 
in [10]. 

Since, as mentioned in Section 2, the equations (15) differ only by a minus 
sign for (i) and (iii), these two cases may be dealt with together. We employ the 
same notation as before, with lower case and upper case letter y corresponding to 
solutions to (15) in (i) and (iii) respectively. Also we introduce Wa = - al 

fa = w+ w— Iz,  and similarly W. = —Y - 	= W+4W —z. Using 

= 	as well as the fact that (corresponding to the same value of A 2  in each 
case) w0  = W_a_j and W. = W_a_2, we find a slightly different sort of Bãcklund 
transformation: 

2a+1 2(a+2) 
Ya+3=Ya 	 + El 

LJ a 	 1 a+1 

Again we can find a sequence of rational solutions by applying this starting at 

1/0 = 0, but now we miss out integer values in between. In fact we can find the 
solutions only for every third integer. We present a few of these in a table, with 
the corresponding Wa and W_a = - thus: 

a -4 -3 -1 0 2 3 : 1/a
2 5z 
;+z5+36 

1  
z 0 

2 
- 

2 

W a 
12 6  

—1 0 0 -p-  — 
22  

12 
Th2  

W -a 22  
15z3(z-144) 

2(z5436)2 2z2 0 0 - 	. 

One might wonder if there was any advantage in writing the equation (10) for 
to as a non-autonomous Hamiltonian system. In fact in case (i) when a = - 



(.A = 0) the same substitution that works in the ordinary (autonomous) system 
causes the equations of motion to separate. Putting 

= qi + q2 

into (19), we find 	
1 	z 

which (up to a scaling) is just two separate copies of the first Painlevé equation. 
The corresponding solution to (15) is 

= (log(Q - 

where we assume that Q.. and Q_ are not equal. So plugging this into the 
Bäcklund transformation we get a whole sequence of solutions in terms of the 
first Painlevé transcendent. For further details and results see [10]. 
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