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Abstract. 

A combination of northward underthrusting of the African plate and serpentiiute 
diapirism has resulted in rapid uplift of southern Cyprus during the latest Pliocene-
Quaternary; this uplift marks the culmination of a sedimentary sequence that indicates 
progressively shallower environments from the Upper Cretaceous through to the Recent. 
The Quaternary uplift was associated with the development of a succession of alluvial 
fans and marine terraces. Marine terraces in coastal southern Cyprus are developed at 
350-360m, 110-lOOm, 60-50m, 11-8m and 2-3m above the present sea-level. 

The marine sediments within each terrace reflect transgressive and then regressive 
conditions, with the deposition of sedimentary sequences in sub-littoral, littoral and 
finally subaerial environments. Shallow marine carbonate sequences crop out within the 
preserved terraces at locations outwith the influence of the major -drainage systems, 
whereas the preserved deltaic and siiciclastic littoral successions mark the continuum of 
the onshore fluvial sequences offshore. 

Alluvial fans of the Fanglomerate Group, correlatable with the early marine 
terraces, crop out on the northern flanks of the Troodos Mass if, forming extensive, 
dissected, peneplaned terraces. Later uplift resulted in the formation of channel fans and 
river terraces. Proximal sheetflood conglomerates pass distally into channelised braid-
plain environments. On the southern margin of the Troodos Massif the Fanglomerate 
Group comprises braided, channelised and floodplain sequences, although much of the 
sediment bypassed continental environments and was deposited as shallow marine facies. 

Provenance studies indicate that uplift and resulting erosion of Cyprus was 
centred on Mount Olympus, in the Troodos Massif. Field evidence indicates that 
neotectonic faulting has played a limited role during the Quaternary period, the 
development of the Polis-Paphos graben, in south-west Cyprus, is a noteable exception. 
Uranium-series dates and amino-acid data reveal that uplift of the island was reasonably 
uniform during the latest Quaternary, with a maximum rate of uplift of c. lOcm/ka. over 
the last 185ka. The available age data and geomorphological and sedimentological 
evidence indicate that uplift of the southern portion of Cyprus was most rapid in the early 
and middle Pleistocene, i.e. an average rate of c.20cmika. In the Late Pleistocene, when 
the rate of uplift was reduced, eustatic sea-level changes dominated. Anthropogenic 
induced modifications and local submergence of southern coastal areas have effected 
Cyprus during the Holocene. 

The formation and preservation of Quaternary sediments, geomorphological and 
tectonic features in southern Cyprus, represents the interaction of tectonic uplift, isostatic 
effects, eustatic sea-level changes and climate variations. 
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Chapter One: Introduction. 

1.1 OBJECTIVES AND RATIONALE. 

Many of the previous studies of the geology of Cyprus have focused on the 

evolution and emplacement of the Troodos ophiolite. Far fewer studies have examined 

the Upper Cretaceous-Recent sedimentary cover sequence, which documents the syn- and 

post-ophiolite emplacement history. Recent theses (Eaton, 1987; McCallum, 1989; 

Follows, 1990) have examined the Neogene sedimentology and the relationship between 

this and the regional tectonic framework. However, the Quaternary uplift of the island, 

which has resulted in Mount Olympus standing at 1951m above present sea-level, has 

only been described in general terms (Robertson, 1977; McCallum, 1989) and only 

limited studies have focused on the Quaternary evolution of Cyprus. Active neotectonic 

faulting has occurred along the Cyprus Arc and on Cyprus during the Quaternary and 

Recent (Kempler & Ben-Avraham, 1987; Ward & Robertson, 1987) but the relationship 

between this faulting and the tectonic uplift of Cyprus has not been examined. 

Previous studies of the Quaternary sedimentary sequence have been limited to the 

coarse fluvial conglomerates that crop out on the Mesaoria Plain but there are also other 

Quaternary sedimentary environments. What is the relationship between these and the 

fluvial conglomerates and how do these sediments vary, both temporally and spatially, 

throughout the Quaternary? What is the relationship between uplift and Quaternary 

climate changes? The Quaternary sediments should possess some evidence that sheds 

light on the unroofing and uplift of the Troodos ophiolite and southern Cyprus. 

Quaternary geomorphological features have been identified in various parts of 

Cyprus in the past (De Vaumas, 1959, 1961, 1962; Ducloz, 1965; Dreghorn, 1978) but 

these features have not be correlated throughout the island and therefore the effects of 

neotectonics and the relationship between geomorphology and the Quaternary sediments 

has not been studied. 

Quaternary eustatic sea-level changes have interacted with tectonic uplift and 

isostatic changes. The role of eustatic sea-level changes and the relative importance of 

these changes compared to tectonic uplift and isostasy and their relation to the 

geomorphology and patterns of sedimentation have not been considered in the past. 

I 

The aim of this work is to build on the immediately preceding research of 

McCallum (1989) and Follows (1990), with the following specific objectives: 



to establish a Quaternary stratigraphy that unifies previous work in local areas and 

can be applied to all geographical areas of southern Cyprus but is not dependent on 

varied sedimentary environments and geomorphological features, 

to detail the Quaternary geomorphology and sedimentology in all areas of southern 

Cyprus, 

to relate the pattern of geomorphology and sedimentology to uplift of the island 

and climatic and eustatic sea-level changes, 

to examine in detail provenance, drainage and palaeocurrent data, seeking 

evidence for progressive unroofing of the Troodos ophiolite, 

to study the evidence for neotectonic faulting and discern what effect faulting has 

had on the evolving pattern of sedimentology and geomorphology, 

to complete absolute dating of the fossil marine terraces to deduce rates of coastal 

uplift and so allow any differential uplift around the coast to be discerned, 

to compare and contrast the late Pliocene to early Pleistocene and Recent 

evolution of Cyprus, 

to examine the Quaternary environmental changes (i.e. climate and eustatic sea-

level changes) and consider whether these can be distinguished and deduce the 

relative importance of eustatic sea-level changes and tectonic uplift, 

and, most importantly, to provide a framework covering the whole of the 

Quaternary of southern Cyprus upon which future studies (geological, geographical or 

archaeological) can build. 

As limited work had been carried out in a number of areas throughout southern 

Cyprus and whole of southern Cyprus has undergone uplift it was decided to correlate the 

previous work using the whole of southern Cyprus as the field area in an attempt to 

determine the Quaternary evolution of this portion of the island. It was decided at the 

outset of this work that a detailed process orientated approach to the sedimentology 

would not be feasible due to the extent of the proposed field area and the aims of the 

project (see above). Fieldwork was not possible in the Turkish-occupied portion of the 

island, i.e near to, or north of the Greenline. Studies of the Quaternary sediments of the 

Polis-Paphos graben were minimised as these formed part of a project that was originally 

being undertaken by L.C. Ward but now forms part of a project by Ann Payne 

(Edinburgh University). 

1.2 TECTONIC SETTING OF CYPRUS, 

The Eastern Mediterranean has had a complex tectonic history, with multiple 

plate interactions resulting from the closure of the Tethys Ocean during the late 

Palaeozoic, and subsequent opening and closure of small ocean basins during the 

2 



Mesozoic and Cenozoic (Robertson & Dixon, 1984). This tectonic activity has resulted in 

the coupling of many macro- and micro-plates to form a complex mosaic of terranes, i.e. 

a discrete tectonic unit with a distinct geological history (Coney et al., 1980), in the 

Eastern Mediterranean. A intricate zone of convergence (Fig.1.1) now exists between the 

African and Arabian plates to the south and the Eurasian and Turkish/Anatolia plates to 

the north (Rotstein, 1984; Dercourt et al., 1985; Dewey et al., 1986). 

Cyprus, set in the Levantine Basin of the eastern Mediterranean (Fig.1.1) is 

situated just to the north of a present day northward-dipping oceanic subduction zone, 

delineated by the Cyprus Arc. This arc forms the boundary between the African and 

Eurasian plates which have undergone collision and accretion in the past, as reflected by 

the presence of ophiolites and allochthonous terranes. High positive Bouguer gravity 

anomalies (Fig. 1.2; Woodside & Bowin, 1970; Woodside, 1976) and evidence for high 

crustal seismic velocities (Makris et al., 1983), magnetic anomalies and heat flow 

characteristics suggest that oceanic or transitional crust is still present in the area. 

Kempler & Ben-Avraham (1987) divide the Cyprus Arc into three distinct units 

(Fig. 1.1): the western segment extends west to the Hellenic Arc following the line of the 

Giermann Fault, passing to the north of the Eratosthenes Seamount along the Florence 

Rise (Fig. 1.1). The Giermann Fault delineates an inferred plate boundary (Kempler & 

Ben-Avraham, 1987) which is thought to be undergoing oblique subduction at present 

(Rotstein & Kafka, 1982). Disturbed bathymetry, earthquake hypocentres (shallow and 

intermediate), with the seismic belt in this area following the Mediterranean Ridge, and a 

positive Bouguer gravity anomaly, support subduction of the African plate to the north, 

under the Eurasian plate (Rotstein & Kafka, 1982). Finetti (1976) suggests that the 

Mediterranean ridge is an integral part of the plate boundary and possibly an accretionary 

wedge of sediments. Many workers (Gass & Masson-Smith, 1963; McKenzie, 1970, 

1972; Dewey et al., 1973; Nur & Ben-Avraham, 1978; Dewey & Sengor, 1979) believe 

that the western end of the Cyprus Arc meets the Hellenic Arc as a cusp with the apex in 

south-west Turkey. 

In the central zone of the Cyprus Arc the Eratosthenes seamount, a possible 

oceanic plateau (Rotstein, 1984; Ben-Avraham & Nur, 1986) or micro-continental block 

(Kempler & Ben-Avraham, 1987), is at present approaching the Cyprus Arc and is 

thought to be preventing subduction. Magnetic data suggest that the sub-surface extent of 

the seamount is considerable (Makris et al., 1983); this may suggest contact with the 

subduction zone at present. The seamount is at present undergoing intense faulting as a 

possible precursor to future continued subduction (Kempler & Ben-Avraham, 1987) 

similar to that seen in the Hellenic Arc (Stride et al., 1977) and Japan trench (Le Pichon 
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et al., 1987). Seismic data (Rotstein & Kafka, 1982) suggest a subduction zone under 

central Cyprus, dipping at 25-30 0  towards the north-north-west. 

There is little evidence of a plate boundary in the eastern zone of the Cyprus Arc, 

e.g. undeformed sediments, or an arc continuing to the east into the Levant (Neev, 1975; 

Nur & Ben-Avraham, 1978). However, many authors (McKenzie, 1970, 1976, 1978; 

Dewey et al., 1973; Angelier, 1978; Sengor, 1979; Rotstein & Kafka, 1982) believe that 

there is a boundary to the east that continues into the Amamus mountains and beyond. 

Kempler & Ben-Avraham (1987) note that plate geometry in the north-east 

Mediterranean is ambiguous and the relative plate motions are uncertain. It has been 

suggested that strike-slip faulting is taking place in this area (Neev, 1975; Nur & Ben-

Avraham 1978) similar to that seen in the eastern segment of the Hellenic Arc. However, 

Rotstein & Kafka (1982) suggest that the available data are "inconsistent with a major 

transform fault in the Cyprus Arc east of Cyprus". A great amount of uncertainty still 

exists, therefore, concerning the relative plate motions along the eastern segment of the 

Cyprus Arc. 

The relative position and timing of subduction along the plate boundary in the 

Cyprus area has attracted much discussion (McKenzie, 1970; Lort, 1971; North, 1974; Le 

Pichon & Angelier, 1979; Robertson & Woodcock, 1980). Robertson and Woodcock 

(1980) proposed that a northward dipping Benioff zone south of Cyprus was initiated in 

the early Neogene. Earthquake hypocentres support this view (Kempler & Ben-Avraham, 

1987). Robertson (1990) and McCallum (1989) suggest a supra-subduction zone setting 

from the Oligocene to Late Pliocene with possible pulsed underthrusting of oceanic and 

continental fragments. Associated normal faulting and subsidence, consistent with the 

possible southward migration of the subduction zone, is also noted. Robertson et al. 

(1991) suggest that only limited subduction of Neotethyan ocean has taken place since 

the Oligocene, with slow and/or episodic subduction. Stable palaeomagnetic inclinations 

recorded in the mid- to late Miocene chalks of southern Cyprus correspond to those in the 

Pliocene marls of Cyprus; these in turn being equivalent to a 35 0N position seen today 

(Clube, 1985; Clube & Robertson, 1986; Abrahamsen & Schonharting, 1987). These 

palaeomagnetic data lead to an inference that convergence during the Neogene took place 

to the north of Cyprus. Eaton (1987) suggests that northward dipping subduction 

continued through the Lower Miocene with the formation of a series of sub-basins 

(Fig.1.3; Maroni, Eaton, 1987; Pissouri, Elion, 1983; Polemi, Orszag-Sperber et al., 

1980; Polis, Baroz et al., 1978, Orszag-Sperber et al., 1989) and sub-parallel, 

compressional lineaments (Fig. 1.3; Ayia Mavri, Yerasa, Akrotiri; Bear & Morel, 1960; 

Eaton, 1987; Robertson et al., 1991) in southern Cyprus. Associated intense deformation, 

uplift and folding during the lower Miocene has been attributed to renewed 



underthrusting and/or associated accretion to the south of the island. This Miocene 

convergence is possibly comparable to the inferred motion witnessed today resulting 

from the probable collision of a proto-seamount with southern Cyprus (Robertson, 1990). 

Underthrusting of oceanic crust was apparently reactivated in late Miocene times as a 

result of reorganised stress regimes caused by the final collision of the African and 

Eurasian plates to the east (Robertson, 1990). 

In northern Cyprus, a plate boundary between the Troodos and Kyrenia mountains 

is inferred to have existed from the Late Cretaceous to Late Eocene (Robertson & 

Woodcock, 1986). Pliocene subsidence and the almost undeformed nature of the Pliocene 

to Recent sediments in the Mesaoria Plain to the north of the Troodos Massif suggests 

that this plate boundary in northern Cyprus has been inactive since Oligocene times 

(Robertson & Woodcock, 1986; Kempler & Ben-Avraham, 1987). The Kyrenia Range 

exhibits tilted terraces (Dreghorn, 1978) which formed as a result of north-south 

compression; the terraces on the southern flank of the mountain also display east-west 

warping, with a decreasing altitude to the east and west, away from the Central Range 

(Dreghorn, 1978). The dramatic Pleistocene uplift of Mount Olympus (Robertson, 1977) 

has been attributed to large scale serpentinite diapirism (Moores & Vine, 1971). 

However, this dramatic uplift is thought to be superimposed on a basal ridge causing 

regional uplift that extends north into the Kyrenia Range and the Misis Mountains of 

southern Turkey, affecting a large area (Robertson, 1990). 

Cyprus has acted as a single structural unit since the beginning of the Quaternary 

period (Robertson, 1990). The lack of subduction at present is thought to result from the 

proximity of the Eratosthenes Seamount with Cyprus (Kempler & Ben-Avraham, 1987), 

but Robertson (1990) postulates that subduction is very likely to continue in the future 

with true continental collision resulting. The presence of an active margin type of coast, 

i.e. rugged shorelines, irregular sea cliffs, coastal mountains and elevated sea terraces, 

with former wave-cut platforms (Kennet, 1986), in Cyprus is suggestive of compressional 

tectonics, or a zone of coastal collision (Kennett, 1986). 

1.3 GEOLOGICAL HISTORY AND STRUCTURAL SETTING OF CYPRUS. 

The following introduction to the geology of Cyprus is split into two sections: 

a summary of the three tectonic terranes that constitute the island, i.e. the Troodos, 

Mamonia and Kyrenia (Fig. 1.3 and Table 1. 1), 

an outline of the sedimentary cover of Upper Cretaceous to Recent age that 

proceed the initial amalgamation of the Troodos and Mamonia terranes, and 

obduction of the Troodos ophiolite (Tables 1.2 and 1.3). 
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1.3.1 Cyprus terranes. 

1.3.1.1 The Troodos and Mamonia terranes. 

The Troodos terrane, a Late Cretaceous (92-85Ma., Mukasa & Ludden, 1987) 

ophiolite complex (Gass & Masson-Smith, 1963), dominates the island, forming an 

elongate west-north-west to east-south-east body rising to 1951m on Mount Olympus. 

The whole ophiolite stratigraphy is exposed with deep structural levels (ultramafic and 

mafic units) cropping out in the centre of the Troodos Massif (Fig. 1.4). The diabase dyke 

complex and pillow lavas lie at respectively greater distances from the ultramafic core 

forming a concentric outcrop pattern. 

The Troodos ophiolite is thought to have formed in a supra-subduction zone 

setting (Pearce et al., 1984; Clube & Robertson, 1986; Gass, 1990; Murton, 1990; 

Robertson, 1990), with genesis having taken place at a spreading centre above a young 

intra-oceanic subduction zone. Subsequent collision/subduction caused the detachment 

and rotation of the Troodos microplate (Clube & Robertson, 1986) relative to the areas to 

the south of the Arakapas fault belt (Fig. 1.3; Allerton & Vine, 1990; Bonhommet et al., 

1988), which is a fossil transform fault belt (Moores & Vine, 1971; Simonian & Gass, 

1978; Murton, 1986; Murton & Gass, 1986). Rotation of the Troodos microplate 

continued until the Early Eocene (Clube & Robertson, 1986) and totalled 90 0  

anticlockwise motion, relative to the zones to the south. Rotation along structurally weak 

strike-slip lineaments brought the Troodos terrane into contact with the continental 

margin of the Troodos ocean, i.e. the Mamonia terrane (Figs. 1.3 and 1.4). Rotation of the 

Troodos terrane caused slivers of the ophiolite stratigraphy to be caught between the 

Mambnia and Troodos terranes in south-west Cyprus (Robertson, 1990). 

The Mamonia terrane is apparently underlain by a crust of lower density and 

different origin to that of the adjacent Troodos terrane (Gass & Masson-Smith, 1963; 

Vine et al., 1973; Clube & Robertson, 1986) and is thought to have formed due to rifting 

along the north margin of Gondwana (Lapierre, 1975; Lapierre & Rocci, 1976), which 

resulted in the formation of a Red Sea-type oceanic basin (Robertson & Woodcock, 

1979). Within plate-type alkaline lavas of the Dhiarizos Group form the exposed 

structural basement (Swarbrick 1979, 1980) of the Mamonia terrane. A series of 

extrusives (Swarbrick, 1979; Swarbrick & Robertson, 1980) are overlain and interbedded 

with a sedimentary sequence that that has been interpreted as forming in a passive margin 

setting (Robertson & Woodcock, 1979). During Late Triassic to mid-Cretaceous 

sedimentation took place relatively close to a continental margin (Swarbrick & 
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Table 1, 1., Summary of the pre-Pliocene geolo g ical history of Cyprus (from Robertson, 1977, 1990: Robertson & Woodcock. 1986; Clube & 
Robertson, 1986). 

FROOI)OS TIiRRANE KYRINIA I'LRRANE MAMONI/s TEItItANE 

U. Min. Evaporites deposited an Mesinian salinity crisis U. Min. Kyrenia lineament begins to rise along growth faults; 

affects Mediterranean; tectonism dwindles in S. elastic input from the north diminishes and ntud.stoncs 

Cyprus, but N. of l'roodon gypsum is deposited and mans are deposited prior to gypsum accumulation 

in small basins. localised by active normal faults during the Mcssinian crisis. 

Olig. Deposition of chalks, with increasing marl content, (U. Olig.. Kyrenia lineament subsides drastically in extensional Mamonia terranc amalgamated with Troodos 

-M.Mio. Lefkara Fnm.) and marls, calclurbidites and conglomerates. M.Mio. setting: thick lurbidite sequence (Kythrea Flysch), Iciranc. 

with reel and igneous clasts, (l'ukhna Fnin.) signal uplift . derived from Turkey, deposited unconformably over 

of the l'roodos ophiolite and emergence related to lineament: active growth faulting in the Miocene. 

sul,duction S. of Cyprus; in M. Min. tectonic shoaling of 

basement results in narrow deformation belts inS. Cyprus, 

while extensional faulting starts to affect N. ircodon. 

U. Crct. Troodos microplate is detached and rotates 9O; a Eo. Major S-directed thrusting, associated with 

-P.o. thick sequence of pelagic chalks (L.-M. L.e(kara Firm), continental collision to the N. slices Kyrenia area 

now locally replaced by chent, is deposited as 'rroodos into a series of thrust sheets and creates 

ciuSt remains in deep carbonate depositing seas: in elongate deformation belt: variety of 

S. Cyprus some ttefonniition of chalks occurs along syntcctonic solunents. 

inferred S. edge of microplate. 

U. Crec- Thin unit of naSa It ilemus 5ea1nfleitt.1, railiotarites and U.Crct. . Metamorphosed platform subsides and is covered U. Cret. 	I tenlonit Ic clays. 	inliolarit en and votcnnoclitst cs, 

nivatstones tlepiuiited over irregular Troexios crust I., 	lent, with pelagic carbonates; bimodal solcanics including olistostrornes (Kathikas Fmai) shed from 

(Perapedhi Finn.). are extruded and breccias are shed from active fault belts area to NW. Cyprus during active strike-slip 

as Kyren ia area cranes under trnnstensionul stress lila Ii ag, associated with rotat ion of the Troodtts 

Crust of l'roiidiis 01111  iol its generated in snatll, Ncotet lynn, associates] with rotation of the 'l'riioikn niicro1,latc. nucroplate. arc juxtaposed with Mamon in units. 

ocean basin. 

M.-U. Carbonates brecciated and into - leaved with metamorphic 

Cret. slivers as platform i5 juxtaposed with iroodos-type 

crust during subduct ion. 

L. Cret.. Shallow marine limestones and dolomites deposited L. Cret.- 	Disrupted assemblage of continental margin 

Perm. on gently subsiding carbonate platform. U. 'I'nias. 	lithologies (redeposited mature sandstones 

and carbonates, lime ntucts(one and raijiolsnite) 

In tectonic contact with oceanic crustal units. 



Robertson, 1980). Amalgamation of the Troodos and Mamonia terranes occurred in the 

Late Cretaceous as a result of gravity sliding (Robertson & Woodcock, 1979) and/or 

underthrusting (Clube & Robertson, 1986), with the Mamonia terrane being juxtaposed 

with the lavas of the Troodos terrane along strike-slip faults. 

Small ophiolites are also present to the south of the Arakapas Fault Belt (the 

Limassol Forest area; "anti-Troodos Ophiolite") and in north-west Cyprus (the Akamas 

Ophiolite; Fig. 1.3). Tectonized plutonic and depleted ophiolitic extrusive units crop out 

in areas of the Limassol Forest close to the transform zone (Murton, 1986), part of the 

transfer zone. Further south, in the "anti-Troodos Ophiolite", extrusives similar to those 

of the main Troodos ophiolite crop out (MacLeod, 1990). 

1.3.1.2 The Kyrenia terrane. 

The Kyrenia terrane forms the northern backbone of Cyprus today. A complex 

lineament, the Kyrenia terrane contains the oldest stratigraphic units cropping out on 

Cyprus - the Permian Kantara Formation (Ducloz, 1972; Baroz, 1979; Robertson & 

Woodcock, 1986). The sedimentary, igneous and metamorphic units that constitute this 

terrane range from Lowest Permian to Recent (Table 1.1; Robertson, 1990). Initial 

amalgamation with the Troodos terrane probably took place in the Lower Cretaceous 

coincidental with the amalgamation of the Troodos and Mamonia terranes, but bounding 

faults remained active until the Pleistocene (McCallum, 1989; Robertson, 1990). The 

Kyrenia terrane was strongly deformed in the Eocene as a compressional front migrated 

southwards, uplifting and thrusting the Kyrenia terrane to the south (Robertson & 

Woodcock, 1986), with the resultant formation of a foreland basin. Rapid subsidence 

followed in the Oligocene with the deposition of unconformable, fluvial conglomerates 

and terrigenous turbidites in the lowest Miocene. By the Late Miocene uplift of the 

Kyrenia Lineament to the north of the Kythrea Fault (Fig.1.3) was taking place 

(McCallum, 1989). The uplift of the Kyrenia Lineament resulted in affiliated subsidence 

to the south with the onset of the evolution of the Mesaoria Basin. 

1.3.2 Late Cretaceous to nre-Quaternary sedimentary history. 

The Late Cretaceous, Palaeogene and Neogene sedimentary history of Cyprus is 

dominated by the deposition of carbonate sediments, i.e. chalks, limestones, calcareous 

mans and calcarenites. An overall shallowing of sedimentary environments supports the 

hypothesis that uplift and emergence of the Troodos Massif, specifically, and the whole 

of the island, generally, has taken place during this period (Robertson, 1977). 
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Table 1.2. Stratigraphy and age of the Cretaceous to Tertiary Troodos sedimentary cover 
sequence. 

Age Period Stratigraphy Lithology 
(Ma.) 

Pleistocene Fanglomerate Group Conglomerates and 
2.0 sandstones 

Apalos Formation  

Kakkaristra Formation Calcarenites, sandstones 
Pliocene Athalassa Formation and conglomerates 

Nicosia Formation Mans, silts, muds, 
sandstones and 

5.2 conglomerates 

Kalavasos Formation Evaporites 
Upper 

Koronia Member Reef al and bioclastic 
limestone 

Miocene 
Middle Pakhna Formation Pelagic chalks, mans, 

calcarenites 
and conglomerates 

23.4 
Lower Terra Member Reefal and bioclastic 

limestone 

35.4 Oligocene Upper Lefkara Pelagic chalk and minor 
shale 

54.9 Eocene 
Middle Lefkara Pelagic chalk and 

replacement cherts 
65.0 Palaeocene 

73.0 Lower Lefkara Pelagic chalks 

Kathikas Formation Matrix-supported Maestrichtian 
conglomerates 

Kannaviou Formation Bentonitic clay and 
tuffaceous sandstone 

83.0 Campanian 

Perapedhi Formation Umber and radiolarian 
Santonian- 91.0 chert 
Turonian 
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Table 1.3, Pup - Pleistocene sediments and tectonic history of the Mesaoria and Mari Basins. Cyprus (after McCallum, 1989). 

Mesaoria Basin Mari Basin Tectonics 

Age Formation Facies Formation Facies Uplift vs. Comments 

peneplanat ion* 

Pleistocene Fanglomerate Coarse, angular Fanglomerate Series Coarse, angular 0 Drastic uplift as compression 

to Recent Series conglomerate sheets, and Older River conglomerate and? serpentinization occurs. 

Terrace Deposits sheets. 

Apalos Mud-rich alluvial fans, 

and Upper minor conglomerate and 

Athalassa Fmn. sands. Shallow marine to Period of relative stability 

coastal carbonate sands, as compression and uplift wane. 

Upper Pliocene Kakkaristra Shelf-fan delta, shallow Vasilikos Fmn. Braided fluvial 0 Start of compression of the whole of 

to Lower and Lower marine sand bodies, deposits. Cyprus due to subduction of a 

Pleistocene Athalassa Fmn. slumped silts and minor microcontinental block; Troodos Massif 

fan-delta intercalations. • and Kyrenia Lineament uplifted. 

Period of relative stability 

Lower to Upper Nicosia Fmn. Marine silts; conglomeratic 

Pliocene fan-delta intervals along Marine silts 0 
0
• °• 

Subsidence of Mesaoria half graben 

south margin pass up into Nicosia Fmn. overlain by • • 0 • as a result of tectonic readjustment 

sandy intercalations. fan-delta facies 0 in the wake of collision in the Bitlis • . 	0 	5) \ • • • zone; ? induces extension behind the 

Miocene Pakhna Fmn. and Marl, chalky debris flows, Kalavasos Fmn. Evaporites • 0 Cyprus Arc. Possible migration of 

Katavasos Finn. evaporites. 
• 

S S the subduction zone to the south. 

* = A wider column indicates greater uplift, a narrower column indicates greater peneplanation. 
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The basal sediments, the metalliferous umbers (Boyle, 1984) and radiolarian 

cherts of the Perapedhi Formation (Upper Cretaceous) are overlain by the 1000m thick 

pelagic chalks and replacement cherts of the Lower and Middle Lefkara Formation 

(Maastrichian to Early Miocene - Mantis, 1970; Robertson, 1977). Benthic foraminiferal, 

bioturbated and reworked chalks with increased proportions of marl indicate shallower 

marine environments during the deposition of the Upper Lefkara Formation (Robertson, 

1977). The first evidence of emergence of the Troodos Massif is found within the 

Miocene Pakhna Formation (Henson et al., 1949) which contains ophiolite-derived clasts 

(Eaton, 1987; Robertson et al., 1991). The Pakhna Formation consists of mans, 

calciturbidites, chalks and calcarenites. 

Renewed subduction that is inferred to have taken place during this time resulted 

in the activation of three sub-parallel basement lineaments along the southern margin of 

the Troodos terrane (Ayia Mavri, Yerasa, Akrotiri; Bear & Morel, 1960; Eaton, 1987; 

Robertson et al., 1991). These lineaments are thought to have resulted from 

underthrusting and/or the collision of a seamount, similar to the Eratosthenes Seamount 

(Fig.1.1). Coincidental extension taking place to the north of the Troodos Mountains 

resulted in the formation of the Mesaoria basin (Fig. 1.3). Extension (Robertson et at., 

1991) is thought to have resulted from "roll-back", i.e. the subduction zone moved 

further south (Dewey, 1980; Carlson & Melia, 1984), along the subducting slab under the 

island. Uplifting fault blocks associated with the formation of these structures became 

sites for the deposition of a variety of sedimentary facies (Follows, 1990, 1991; Follows 

& Robertson, 1990; Robertson et al., 1991) with reef colonization and off-reef facies 

being recorded (Follows, 1990, 1991). The Mediterranean-wide, Messinian salinity crisis 

(Hsu et at., 1978) resulted in the formation of the evaporites of the Kalavasos Formation. 

Recent work (McCallum, 1989; McCallum & Robertson, 1990; Follows, 1990, 1991; 

Follows & Robertson, 1990; Robertson, 1990; Robertson et al., 1991) shows that 

deformation continued throughout the Upper Miocene and Pliocene with the Pliocene 

sequences of the Mesaoria Plain being deposited in a subsiding basin (McCallum, 1989; 

McCallum & Robertson, 1990). 

The Lower Pliocene marine transgression that followed the Messinian salinity 

crisis caused flooding and the deposition of the first of c.900m of Pliocene sediments. 

The Lower and Middle Pliocene (Table 1.3) sediments consist of a series of mans and 

calcarenites, i.e. the Nicosia Formation (Ducloz, 1965; McCallum, 1989; McCallum & 

Robertson, 1990; Robertson et al., 1991). The Mesaoria and Mari Basins (Fig. 1.3) to the 

north and south of the Troodos Massif, respectively, display a regressive sedimentary 

sequence with the marls of the Nicosia Formation being succeeded by calcarenite and 

fan-delta sequences in the north, i.e. the Athalassa and Kakkanistra Formations 
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respectively (Ducloz, 1965), and fluvial sediments to the south, i.e. the Vasilikos 

Formation (McCallum, 1989); these in turn are overlain by fluvial facies of the Apalos 

Formation (Ducloz, 1965; McCallum, 1989; McCallum & Robertson, 1990) and the 

Quaternary Fanglomerate Series (Ducloz, 1965). 

The Quaternary period saw the onset of accelerating uplift of the Troodos Massif 

and Kyrenia Range. This uplift resulted in the deposition of aeolian and alluvial fan 

sediments, delta, littoral and sub-littoral sequences, and the formation of a great variety 

of geomorphological features. Studies concentrating on the uplift of the Troodos Massif 

and the resultant sedimentary, geomorphological and neotectonic features constitute this 

thesis. 

1.4 PROCESSES CAUSING UPLIVF. 

Gradual uplift of Cyprus and the eastern Mediterranean region has occurred 

throughout the Tertiary; a proposition supported by regressive carbonate sequences and 

emergence (Carr & Bear, 1960; Follows & Robertson, 1990) in the Middle Miocene 

(Robertson, 1977), as well as Pliocene marine sediments that crop out 750m above the 

present day sea-level (ASL) (Harrison, 1955). Dramatic, pulsed Pleistocene uplift 

(Robertson, 1977) is thought to have been caused by diapiric serpentinite protrusion, 

superimposed on this regional Tertiary uplift. Other examples of this uplift phenomenon, 

related to past subduction, are found in the Coastal Ranges of California where a mobile 

serpentinite protrusion has taken place (Dickinson, 1966; Carlson, 1984). Diapirism and 

uplift associated with the Troodos Massif has apparently shifted westward to centre on 

Mount Olympus today (De Vaumas, 1961). 

Uplift resulted in the formation of at least three continental erosive phases (De 

Vaumas, 1959, 1961, 1962). Bear (1960) first suggested that a large hydrated serpentinite 

diapir centred on Mount Olympus had driven the Troodos up into a dome, dragging the 

rest of the island up with it. It has previously been suggested that an erosion surface that 

crops out at Mount Olympus is of Pontian age, i.e. Lower Pliocene (De Vaumas, 1961; 

Gass & Masson-Smith, 1963), suggesting that uplift has taken place since this time. Gass 

& Masson-Smith (1963) also suggest that the serpentinite was a forced solid state 

intrusion. Moores & Vine (1971) oppose solid state intrusion, stating that remnant 

magnetism indicates that the serpentinite has been remobilised resulting in randomly 

orientated remnant vectors, unlike the remnant vectors seen in the non-remobilised 

harzburgites and dunites. The process of serpentinization can result in a large volume 

increase. The presence of brucite in oceanic serpentinites suggests that an isochemical 

change has taken place with a resultant volume increase (Fig.1.5; Dmitriev, 1975; 
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Bonatti, 1976); this aids intrusion along weak structural zones (Mumpton & Thompson, 

1975). The heavy oxygen and hydrogen isotope signatures in the Troodos serpentinite 

suggest that the water that caused hydration of the serpentinite was meteoric, charged 

with evaporitic and meteoric fluids, not sea water (Magaritz & Taylor, 1974). 

Messinian evaporites found in the Mediterranean Sea to the south of Cyprus (Kidd 

& Benoulli, 1978) are thought to have contributed to the 50% thicker than normal crust 

(Woodside & Bowin, 1970; Makris et at., 1983). The lack of a distinct magnetic anomaly 

(Woodside & Bowin, 1970) suggests that large amounts of sediment and not igneous 

rocks account for the thick crust, although continental crust does appear to exist beneath 

Cyprus (Makris et al., 1983). The Messinian evaporites are thought to have been 

thrustlsubducted under Cyprus, mixed with the circulating waters (Robertson, 1990), so 

increasing the density difference between the serpentinite and overlying units. If this was 

the case, as sediment dewatering by compaction and dessication of hydrated products 

takes place a depths of less than 6km (Burst, 1976; Pittman, 1979), serpentinization is 

likely to have occurred before this depth of subduction was reached, even though 

serpentinization takes place down to depths of approximately 30km (500 °C; Bonatti, 

1976). Coleman (1977) has suggested that seipentinization follows obduction of an 

ophiolite when diapiric movement of the parental ultramafic rock takes place near the 

basal detachments. Robertson (1990) postulates that the trigger for Quaternary uplift of 

the serpentinite was the subduction of a large wedge of continental crust under Cyprus. A 

similar situation has been reported from the Mariana forearc, in the west Pacific Ocean, 

where the emplacement of serpentinite is thought to represent a tectonic response to the 

subduction of seamounts (Fryer et al., 1985). Fragments of continental crust are inferred 

within the present day Mediterranean, as well as underlying Cyprus (Makris et al., 1983); 

these are thought to have been present in the past (Eaton, 1987). Robertson & Woodcock 

(1984A, B) have also identified continental fragments that have been emplaced along the 

northern edge of the Mesozoic Tethys in the Antalya terrane of south-west Turkey. 

In summary, diapirism and underthnisting of the mantle wedge have facilitated 

the Quaternary uplift of Cyprus. Bonatti (1976) estimates that uplift rates of serpentinite 

bodies are in the order of 0.1cm/year. Harrison (1955) suggests that submergence, in the 

order of 1cm/year, of Cyprus, should have taken place to maintain isostatic equilibrium, 

as indicated by the pronounced gravity anomaly (Fig. 1.2; c.+250 mgal over the Troodos 

Massif), but this does not take the reduced Mount Olympus anomaly into account (c.+80 

mgal). The uplift of the island has obviously involved a number of geological processes, 

which will be discerned here. 
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Fig.1.5. Density (in g/cm3) of rock recovered from the ocean floor which represents the 
common constituents of the oceanic crust (after Bonatti. 1976). 
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1.5 PREVIOUS WORK. 

1.5.1 Cyprus. 

Bellamy & Jukes-Browne (1905) and then subsequently Cowper-Reed (1930) 

recognised coarse sheet conglomerates, i.e. the Fanglomerate Series, forming on hill tops 

south of Nicosia. Henson et al. (1949) first described a tufa-leaf bed in the Kyrenia 

Range, littoral deposits of the Larnacá and Limassol coastal plains, and stacked marine 

terraces, noting that some relative emergence had occurred. De Vaumas (1959, 1961, 

1962) recognised a number of marine terraces on the flanks of the Kyrenia Range; he also 

noted the asymmetry on the flanks of the Troodos mountains, with deep rejuvenated 

valleys and high ridges and concluded that the Troodos range had been peneplaned since 

the Pliocene, with the most important erosion surface dating from the Pontian, i.e. Lower 

Pliocene. De Vaumas (1959, 1961, 1962) also inferred that uplift of the island was 

spasmodic with three or four erosive, epicyclic phases; he also suggested that the Troodos 

and Kyrenia terraces can be correlated, the difference in terrace height being a 

consequence of faulting and not Quaternary eustatic sea-level changes. Studies on the 

northern flanks of the Troodos Massif identified a number of terraces related to the uplift 

of the ophiolite complex, the different terrace sets being identified by means of altimetry 

(Ducloz, 1965). Lithological variations could not be used as the terraces have the same 

field characteristics, e.g. massive conglomerates, secondary limestone and red soils. 

Ducloz (1965) introduced a stratigraphic column for the Plio-Pleistocene. This was 

subsequently revised by Turner (1971; vid. Table 1.4), who attempted to correlate the 

Quaternary of Cyprus with circum-Mediterranean events and a world-wide glacial 

chronology. Palaeontological work by Moshkovitz (1968) presents evidence for faunal 

changes throughout the Plio-Pleistocene and also concludes that early Quaternary uplift 

had taken place. Published memoirs by the Geological Survey Department also record 

evidence of Quaternary Fanglomerate Series and raised beach units (Bagnall, 1960; Bear, 

1960; Can & Bear, 1960; Bear & Morel, 1960; Gass, 1960; Moore, 1960; Pantazis, 1967; 

Wilson, 1958). Pantazis (1966) also mapped terraces of apparent Tyrrhenian age in the 

Larnaca area of south-east Cyprus. 

Turner (1971) correlated the heights of the marine terraces seen in the Paphos 

District with those of the Lebanon and Israel and also noted that fan-delta deposits exist 

in the Polis-Paphos graben of north-west Cyprus. Robertson (1977) first suggested that 

the Pleistocene was the main period of "drastic uplift" and that a period of relative 

quiescence exists today. 

19 



20 

Table 1.4. Correlation of the Ouatemary formations of Cyprus with the Mediterranean stages 
and glacial periods (after Ducloz, 1965: Turner, 1971). 
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Work on the Kyrenia mountains supports the view that rapid Quaternary uplift has 

taken place, with a suite of six terraces cropping out (Ducloz, 1968, 1972; Dreghorn, 

1978; Baroz, 1979), the marine terraces becoming progressively more tilted with 

increasing altitude. Dreghorn (1978) further showed that micropalaeontological data 

supports the existence of Pliocene, as well as Quaternary marine terraces on the Kyrenia 

Range. 

Little recent work has been carried out on the problem of uplift in Cyprus. 

Flemming (1978) studied the changes in Holocene shorelines of the north-eastern 

Mediterranean and a study of the Late Quaternary shorelines of western Cyprus was 

made by Giangrande et al. (1987). The Quaternary alluvial sediments of the Vasilikos 

Valley have been studied by Gomez (1987). Vita-Finzi (1990) utilised the 14C method in 

an attempt to quantify the Quaternary uplift of western Cyprus. 

1.5.2 Comparable studies world-wide. 

The approach to previous studies of tectonic uplift and neotectonics in the 

Mediterranean have been varied. Richards (1982) used intertidal molluscs as sea-level 

indicators, Butzer & Cuerda (1962) used regressive events on Mallorca to support a 

eustatic sea-level curve related to Quaternary glacial episodes, whereas Hearty & Hollin 

(1986) and Hearty (1987) based their work on amino-acid geochronology, linked with 

uranium series data. Vita-Finzi & King (1985) related landforms and seismicity in time 

and space in the Corinth area of Greece and concluded that relative altimetry should not 

be used as an indicator of absolute age of terraces. More recently attempts have been 

made to model the products of uplift and distinguish between eustatic sea-level and 

tectonic effects (Keraudren & Sorel, 1987; Collier, 1990); Collier (1990) concluded that 

transgressive, cyclic sediment resulted from rises in the sea-level, which are subsequently 

preserved as a result of tectonic uplift. So a high sea-level cuts a coastline which is 

subsequently uplifted and therefore preserved. Peters et al. (1985) showed that late 

Neogene subsidence in Crete was followed by Quaternary uplift; this resulted in both 

continental and littoral deposits. Crete is of particular interest as it is located in a fore-arc 

setting, similar to Cyprus. 

Leeder et al. (1990), in the Corinth area of Greece, and Maizels (1987, 1988) in 

Oman, have both recently identified pulsed continental infill and deposition in lacustrine 

and fluvial environments. Leeder et al. (1990) infers tectonic controls, whereas Maizels 

(1987, 1988) suggests that climatic, eustatic sea-level and hydrologic variations, 

superimposed on the regional tectonics in the Quaternary, controlled the deposition of the 

Sharqiya alluvial fan. Satellite imagery has been used to map alluvial terraces along the 
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Batinah coast of Oman where it has been suggested that seven terrace levels crop out 

(Abrams et al., 1988); it has been postulated that the formation of these terraces has been 

controlled by Quaternary climatic changes as uplift has been negligible and sea-level 

changes have had little effect, as terrace gradients appear to have remained unchanged 

(Abrams et al., 1988). 

Chappell (1974, 1983) and Chappell & Veeh (1978) in Papua New Guinea; Bull 

(1985) and Bull & Cooper (1986) in New Zealand and others (see Morisawa & Hack, 

1985) have all examined the product and processes of Quaternary uplift, with the 

common aim of fixing uplift both temporally and spatially, to allow the tectonic products 

to be unravelled from eustatic sea-level changes and other effects (e.g. geoidal and 

climatic variations). 

1.6 THE QUATERNARY: DEFINITIONS AND PROBLEMS, 

1.6.1 Definitions .  

The Quaternary, a sub-era (Harland et al., 1989) is divided into two epochs, the 

Pleistocene and Holocene, which stretch from approximately 2Ma. B.P. to the present 

day. The Pliocene-Quaternary boundary is artificial, as no faunal changes occur. Bowen 

(1978) states that climatic changes are the dominant characteristic (sic) of the Quaternary, 

with oxygen isotope and palaeontological studies stressing the differences between the 

Quaternary and older Pliocene period. The Quaternary has experienced approximately 30 

glacial episodes, eustatic sea-level oscillations with amplitudes in the order of 100-130m 

(Shepard, 1963) and large scale latitude displacements resulting from climatic variations 

(Kennett, 1986). 

The Pleistocene epoch was originally defined by Lyell (1839) and refined by 

Forbes (1846) as the "time distinguished by severe climatic conditions throughout the 

greater part of the northern hemisphere". The location of the boundary between the 

Pliocene and Pleistocene has proved to be problematic; it was originally fixed at the base 

of the Calabrian. Absolute age estimates for this boundary have varied from 1.6Ma. to 

2.OMa.. A date of about 2.OMa. (Selli et al., 1977) has now been chosen for the 

boundary; the stratotype is in Vrica, southern Italy. This boundary does not, therefore, 

correlate with the start of the Olduvai palaeomagnetic reversal (Fig. 1.6). The Pleistocene-

Holocene boundary is now well established, corresponding to the latest glacial/postglacial 

and European Pollen Zones Ill/TV boundaries (Morner, 1976A) 
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1.6.2 Quaternary sea-level changes. 

The large scale, relative, Quaternary eustatic sea-level changes are thought to 

have been caused and controlled by orbital forcing, i.e. Milankovitch Cycles (Croll, 1875; 

Berger et al., 1984), but isostatic changes and tecto-eustatic changes should also be 

considered. Morner (1976B) has argued that geoidal variations have caused relative sea-

level changes in the Quaternary, citing a present day example where the Maldives Islands 

and coast of Papua New Guinea show a difference in actual sea-level of 180m. Because 

the majority of work relating to sea-level curves has focused on glacial cycles and not 

hydro-isostasy and the visco-elastic nature of the earths crust, Kidson (1982) in a review 

of sea-level changes in the Holocene epoch suggests that these variables need to be 

examined before accurate sea-level curves for tectonically stable areas can be produced. 

Unfortunately at present, the change and rate of change of the geoid is poorly understood 

and therefore its relative importance in affecting the relative sea-level in the Quaternary 

is uncertain. Models seeking to represent eustatic, isostatic and tensional thinning of the 

crust have been produced (Tanner, 1968). The visco-elastic rheology of the crust 

resulting from deglaciation has been modelled to calculate the dependent relative sea-

level changes (Clark et al., 1978). Post glacial sea-level changes have been predicted 

from this model with Cyprus falling into group II or III (Fig. 1.7). Kennett (1986) argues 

that Quaternary absolute sea-level curves cannot be produced on a regional, or global 

scale. The author agrees with this argument and suggests, however, that local, absolute, 

Quaternary eustatic sea-level curves are valid in tectonically stable areas. Relative curves 

in tectonically active areas, where absolute dating of deposits has taken place, are also of 

importance as they can distinguish between tectonic uplift and eustatic sea-level change. 

1.7 THESIS ORGANISATION AND TECHNIQUES USED, 

1.7.1 Organisation. 

The full range of data obtained during the course of this research is presented in 

separate chapters; discussion and interpretation of these data form the final section of 

each chapter. The discussion and conclusions from the work as a whole are recorded in 

Chapter 10. Published papers and raw data form the appendices. Details of the collection 

available in the Department of Geology and Geophysics at Edinburgh University are 

located in Appendix A. 
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Fig.1.7. A schematic representation of the Heaviside Green function (after Clark et al., 
1978. 

Note: a) the distortion of a reference shoreline up to 15ka. after the melting of a point ice 
mass; b) the sea-level change relative to an initial reference shoreline. Cyprus probably 
falls in the region of group II or Ill. Note: t - transition. 

(a) 

0 years 
•Z 1000 years 

5000 years 
•••••15000 years 

CM 
C.) 	? 

CU .r. 
ab.c % 	d 	e 	 f 

C) 	 . 
Cl) 	 - 

- 

' 	 .....-- 

- 

It 

I I I •t. I 	ii 	I 	III 	I 	IV 	I 	\J 	I 

Ice mass East coast Cambrian Sea South Antarctica 
U.S.A. 	 America 

(b) 	 - Distance 	, 

k 

	

0 	15

a. 

( 

0G.) 
0 	 at 	b trans 	c trans 

E 
elli 	fIV 

L1J 
(I) 

H 



25 

Department 1973 Ordnance Survey map numbers of the locations and samples mentioned 

in the text, are recorded in Appendix B. All village and town names, cited in the text, 

follow the spellings recorded on the 1:50,000 Ordnance Survey maps. The use of the 

term southern Cyprus, in the text, refers to the whole of Greek portion of the island, 

whereas south Cyprus refers to the portion of Cyprus to the south of the Troodos Massif, 

to the east of Paphos and the west of Larnaca. 

1.7.2 Techniques. 

This thesis is based on extensive fieldwork in 	southern Cyprus. Standard field 

techniques, following the methods set out in Collinson & Thompson (1982), and Tucker 

(1988) were employed. Trace fossil identification through the thesis is made with the aid 

of Lindholm (1987). Clast analysis utilised visual roundness and sphericity tables 

(Krumbein, 1941; Rittenhouse, 1943) and standard techniques (Pettijohn, 1980); 

roundness, or sphericity figures recorded in the text of this thesis refer to the tables of 

Krumbein (1941) and Rittenhouse (1943). Reference to the "L" axis of a clast implies the 

longest axis of that clast. The provenance and clast analysis studies employed randomly 

positioned, 50cm square quadrants. 1:50,000 scale topographic maps were used in the 

field and these were supplemented with 1:5000 scale maps for more detailed studies. 

Field studies were guided by the 1:250,000 scale Geological Map of Cyprus (Pantazis, 

1979) and the Memoirs of the Geological Survey Department of Cyprus accompanied by 

1:30,000 scale maps. The map produced by Ducloz (Fig.5.1; 1965) was also of 

tremendous help whilst working on the central and eastern portion of the Mesaoria Plain. 

Fieldwork has been supplemented with petrological studies involving thin section 

and acetate peel analysis. Routine staining of carbonate thin sections was made, using the 

method laid out by Dickson (1965). The friable and generally poorly consolidated nature 

of the sediments led to the vacuum impregnation of the samples, with an Epotek resin 

stained with a blue dye being used as a standard preparation technique. Sediment samples 

were also examined using standard sieve techniques. Thin section identification of fauna, 

e.g. coralline algae, was achieved with the help of Scholle (1978). X-ray diffraction and 

X-ray fluorescence methods were employed to study clay mineralogy and sediment 

chemistry in more detail. Preparation of the samples to gain standard sample fraction for 

X-ray diffraction analysis followed the technique laid out in Hardy & Tucker (1988) and 

used a Phillips PW 1800 X-ray diffractometer, with CuK alpha radiation. Clay and silt 

samples taken from Geological Survey Department boreholes were dried and orientated 

X-ray diffraction samples were produced; each sample was then analysed four times 

using air dried, glycolated and heated samples (at 37 50C and 5500C), so enabling 

identification of smectite and kaolinite. X-ray fluorescence preparation followed the 



techniques laid out in Fitton et al. (1984) and Norrish & Hutton (1969). Samples were 

analysed on a Phillips PW 1450 and a Phillips PW 1480 X-ray spectrometer. 

Nannofossil analyses was undertaken by Dr. A. Lord and Dr. L. Gallagher at 

University College, London. Studies of molluscs and coral were undertaken at the British 

Museum of Natural History, under the supervision of Dr. J. Taylor and Dr. B. Rosen 

respectively. 

Satellite image studies utilised Landsat Thematic Mapper, Multispectral Scanner 

(using a Gemstone system in Edinburgh) and S.P.O.T (Satellite Probatoire pour 

L'Observation de la Terre) data. Air photographs were viewed stereoscopically. Images 

and data have supplemented fieldwork and aided the study of the geomorphology. 

Admiralty 1:100,000 scale bathymetric charts and studies of seismic data (using B.G.S 

and Shell data; after McCallum, 1989) have enabled a limited study of the off-shore 

regions to the south of the island. 

Various dating techniques have been employed to try and determine the timing of 

events in the Quaternary evolution of Cyprus. These are ' 4C method (in Professor C. 

Vita-Finzi's laboratory at University College, London), the uranium series disequilibrium 

method (using Dr. G. Shimmield's laboratory in the Department of Geology and 

Geophysics, Edinburgh) and the amino-acid racemization technique (in Dr. P. Hearty's 

laboratory in Beaufort, North Carolina, U.S.A. and Professor D. Bowen's laboratory at 

Royal Holloway and New Bedford College). The detailed procedures involved in the 
14  C 

and uranium series techniques are described in Appendix C. 

1.8 STRATIGRAPHY, 

1.8.1 Mediterranean and previous Cyprus Quaternary stratigraohv. 

The Quaternary stratigraphy used in this study is based on the work of Butzer and 

others from Mallorca. This stratigraphic column (Table 1.5) will form the backbone of 

the following discussion of previous Quaternary stratigraphic tables that have been used 

in Cyprus. The synthesized Mallorcan stratigraphy including: oxygen isotope stages 

(Shackleton, 1975; Table 1.6); amino-acid zones (Hearty, 1987; Hearty & Hollin, 1986) 

and European loess and glacial cycles (Kukla, 1975) will form the basis of the 

stratigraphic column shown in Section 1.8.2. 
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Table 1.5. Ouaternary stratigraphy of Mallorca including inferred Oxygen isotope stages (after Butzer. 1975, 1983: Hearty, 1987: Kukia, 1975: 
Shackleton, 1975). 

Marine : 	Continental 
cycle 

Elevation 
(metres) 

Faunal Characteristics 
(continental facies) 

Radiometric Age 
(ka = 1000 years) 

Inferred Oxygen 
Isotope Stage (a) 

Amino Acid 
Zone (b) 

Loess 
Cycle (c) 

A (Dunes, Early Roman) 
Z +2 to 4 Common fauna, prehistoric Post-Roman 1 A B-i 

to Medieval. 
B (Aeolianite, 3 generations) 2-4 L-B 

Y3 +0.5 to 3 Rudimentary thermopile fauna 80 ± 5 ka 5a 5a-5c=C 5=B-3 
(Argillic palaeosol ASL1) 5b 

Y2 +1.5 to 2 Partial Strombus fauna 110 ± 5 ka 5c 
Yl +9 to 15 Partial Strombus fauna 125 ± 10 ka 5e E 

C (Aeolianite, 2 generations) 6 L-C 
X2 +6.5 to 8.5 Impoverished Strombus fauna 190 ± 10 ka 7a 7a-7c=F 7=13-5 
Xl +2 to +4.5 Full Strombus fauna 210 ± 10 ka 7c 

D (Aeolianite, 2 generations) 8 L-D 
W2 +4 to 8 Common fauna >250 ka 9(?) G B-7 

(Argillic palaeosol ASL) 
Wi +22 to 25 Patella ferruginea fauna ? (?) 

E (Aeolianite, 5 generations) L-E 
V (below +11) (No data) B-9 

F (Aeolianite, 3 generations) L-F 
U +14 to 15 Patella ferruginea (large B-il 

subspecies fauna) 
G (Aeolianite, 2 generations) 

T +15-1 . 9  Patella longicosta  

(a) After Shackleton, 1975; (b) after Hearty, 1987; (c) after Kukla (1975). Where an = sign is used (i.e. 7a-7c=F) this signifies that all the preceeding 
zones/cycles are equivalent to the zone following the = sign. 



Table 1.6. Age of isotope stage boundaries and terminations from core V28-239. Ages 

are interpolated from data from core V28-238 assuming constant sedimentation rates 

(after Shackleton & Opdvke. 1976). 

Boundary Age (years BP) Boundary Age(years BP) 

1-2 13000 10-11 367000 
2-3 32000 11-12 440000 
3-4 64000 12-13 472 000 
4-5 75000 13-14 502000 
5-6 128000 14-15 542000 

6-7 195000 15-16 592000 

7-8 251 000 16-17 627 000 
8-9 297000 17-18 647000 

9-10 347000 18-19 688000 
19-20 ? 

The Quaternary stratigraphy in Cyprus has previously been based on the 

Mediterranean marine stages and linked to the classic glacial stages: Gunz, Mindel, Riss 

and Wurm (Table 1.4). Ducloz (1965) produced the first Plio-Pleistocene stratigraphic 

column for southern Cyprus based on the Fanglomerate Series, which crops out on the 

Mesaoria Plain. This stratigraphic column has been used in subsequent work and has been 

amended by McCallum (1989; Table 1.7). Gomez (1987) in has recently produced a local 

Table 1.8. The stratigraphy of the fluvial sequences from the Mesaoria Plain. the Kyrenia 

Range and the lower Vasilikos Valley (after Ducloz, 1965, 1972; Gomez, 1987 

respectively). 

Central Mesaoria 
	

Central Kyrenia 
	 Lower Vasilikos 

Plain 
	 Range 

	 Valley 

(Ductoz, 1965) 
	

Ducloz, 1972) 
	

(Gomez, 1987) 

28 

Xeri Alluvium 

Laxia Gravels 
Kambia Gravels 
Kantara Gravels 

Kyrenia Terrace 

Ayios Epikitos Terrace 
Trapeza Terrace 
Klepini Terrace 

Argakiris Kamilas 
Terrace 
Kalavasos Terrace 
Mitsinjites Terrace 
Phalakros Terrace 



All Cyprus 	 Mesaoria Plain 	 North Cyprus 	 South Cyprus 

Henson Geol. Bear Ducioz McCallum Baroz Moore Bagnall Pantazis McCallum 

etal (1949) map (1960) (1965) (1989) (1979) (1960) (1960) (1967) (1989) 

Recent Recent Alluvium Alluvium, 

Holocene Alluvium Alluvium Alluvium 
Xeri Alluvium (not beach marine dunes (not 40 RB 

studied) and 40 RB studied) 
marine Laxia Gr. six river shelly 

river 
terrace a) 

C Fang. 
terrace Fang. 

Kambia Gr. 
marine terraces Larnaca 

C) 
U 

Fang. and sand Fang. 
-'-0  

marine 
terrace Kantara Gr. river 

Fang. 120' RB  40 RB 

120 RB C) Fang. 
Apalos Fmn. Apalos terraces Fang. 

Fang. 

marine 250' RB 
Fang. th, Kakk 

VasUikos 
Ath,Fmn. Ath.Fmn 

C) ________ 
______ 

Nic.Fmn. 
Nic.Fmn. _ Ath. Ath. C) 

o 
Q 

Nic.Fmn, 
Nic, 

______ 
Nic. Fmn. 

Nic. L.L 

Myrtou Fmn. Fmn.  
missing 

Fmn. 
Fmn. 

Marl 
Myrtou Marl Nic.Fmn.  

Marl 

- 1973 Cyprus Geological Survey Map. Nic. - Nicosia, Ath. - Athalassa, Kak. - Kakkastra, Kk. - Karka, Fang. - Fanglomerate, R.B. - Raised 
beach, Fmn - Formattion, Gr. - Gravels. This table is not to scale. &..= interdigitaflon,"-".= unconformable contact., 

ID 



Table 1.9. Summary of the Quaternary stratigraphy and age data from Cyprus. 

Central Mesaoria Central Kyrenia Lower Vasilikos Continental Climate (2) Inferred Height of Age 
Plain Range Valley correlation (1) (Issar, 1979) oxygen marine (ka) 
(Ducloz, 1965) (Ducloz, 1972) (Gomez, 1987) (this work) isotope terrace 

stage () (m ASL) 

Holocene Present day 1 
fauna 

2 
3-4 

Late Xeri Alluvium Kyrenia Terr. Argakitis Kamilas F4 Tyrrhenian 5 <3 116-134 ±10 
Pleistocene Terr. (Stroinbus fauna) 6 

Laxia Gravel Ayios Epikitos Kalavasos Terr. F3 7 8-11 185-204 ± 8 
Tern 8-14 

Kambia Gravel Trapeza Terr. Mitsinjites Tern F2 Calabro-Sicilian ? 50-60 ? 
Middle to (cold marine 
Early Kantara Gravel Kiepini Terr. Phalakros Tern Fl fauna, i.e ? 100-110 ? 
Pleistocene Artica islandica) ? 

Apalos Formation ? 

Note: the numerical F1-F4 nomenclature used in this work. 
See Chapter 3 for details. 

( after Shackleton (1975). 

0 
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Holocene Recent 1 Recent alluvium 

2 Onset of F4 erosion I 

3 F4 fluvial and aeollan sequences 1 ZygI; north Troodos margin; Akrotlrl 

4 F4 carbonate and siliciclastic Cape Greco; Limassol area; Paphos 
Late Ploistocono 8-11m <3m F4 5 marine soquoncos I Dhokolla; 	Akrotlrl 

Onset of F3 erosion 

6 _ F3 fluvial and aeollan sequences North Troodos margin; Limassol area; 

Tersephanou 

7 F3 carbonate and siliciclastic Mazotos; Polls; Cape Greco; Larnaca; 

50-60m 8-11m F3 deltaic and littoral sequences Coral Bay; Petounda Point 

Onset of F2 erosion 

8 p... F2 fluvial and aeollan sequences / Paphos area; Limassol area; north Troodos margin 
Middle - .Early 100-110m 50-60m 7 F2 carbonate and siliciclastic Ormidhia area; Paphos area 

Pleistocene F2 7 littoral sequences North Troodos margin 

7 Onset of Fl erosion 

7 7 - Fl 	fluvial sequences North Troodos margin 

350-360m 100-110 Fl ? Fl marine sequences Paphos area 

7 Onset of FO erosion 

Upper Pliocene - 7 ?.Apabo 5_Formation North Troodos margin 

Early Pleistocene 350-360m 	IFO 7 FO marine sequences Mesoyl; Marathounda 



stratigraphy for the Vasilikos Valley (Table 1.8) in southern Cyprus, where sequences 

from both the central Mesaoria Plain (Ducloz, 1965) and central Kyrenia Range (Ducloz, 

1972) were correlated with that seen in the Vasilikos Valley. 

Ducloz (1972), Dreghorn (1978) and Baroz (1979) all produced stratigraphic 

columns for the Kyrenia Range. Unlike those columns produced for the southern portion 

of the island, these all show a dovetailed correlation between coastal terraces and 

continental facies. 

1.8.2 Stratigranhv used in this thesis. 

The stratigraphic column used in this thesis has combined that produced 

previously in southern Cyprus (Ducloz, 1965; Turner, 1971; Gomez, 1987; McCallum, 

1989), with the detailed stratigraphy that has been built up in Mallorca (Table 1.5). A 

tentative correlation with the northern portion of the island has been made using Gomez 

(1987). Absolute dates from this piece of work have allowed greater control, thus 

allowing a link to the oxygen isotope stages of Shackleton (1975) and the amino-acid 

zones of Hearty (1987). By linking the stratigraphy to absolute dates and the oxygen 

isotope stages it is hoped to move away from the vague Mediterranean stage terms that 

have been used previously. This will allow accurate correlation to be made between 

Cyprus and other parts of the Mediterranean, as well as other areas of the world. The use 

of isotope stages will enable a more accurate distinction between eustatic sea-level 

change and tectonic uplift, on Cyprus, to be made. The proposed stratigraphy used in this 

thesis is shown in Table 1.9. 

A summary table of stratigraphy, terrace height, sea-level and tectonic effects, and 

the timing and variety of sediments (Table 1.10) is introduced at this point, to clarify the 

relationships that will be described in the succeeding chapters. 
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Chapter Two: Geomorphology. 

2.1 INTRODUCTION, 

De Vaumas (1959, 1961, 1962) first examined the geomorphology of Cyprus, 

with further work documented in the memoirs of the Cyprus Geological Survey 

Department (e.g. Bear, 1960; Bagnall, 1960; Gass, 1960; Moore, 1960), continued with 

studies by Ducloz (1965, 1972) and Dreghorn (1978). Gomez (1987) recently examined 

the terraces of the lower Vasilikos Valley and correlated these with those on the central 

Mesaoria Plain and the Kyrenia Range (Table 1.8). 

De Vaumas (1959, 1961, 1962) produced the first geomorphological map of 

Cyprus illustrating that the Troodos Massif is asymmetric. The slopes of the Troodos 

Massif, and therefore the mature erosion surfaces, are twice as wide on the north, than 

seen to the south. De Vaumas (1959, 1961, 1962) considered that the Troodos Massif was 

peneplaned on at least three occasions prior to the Quaternary period: 

during the Upper Cretaceous; 

before the Miocene transgression; 

prior to the Pliocene marine incursion. 

Erosion of the Troodos Massif was undoubtedly taking place during the Miocene 

and Pliocene as Troodos-derived clasts are present within in sedimentary units dating 

from this time (Eaton, 1987; McCallum, 1989; Follows, 1990). 

This chapter will examine the field evidence for the Quaternary geomorphological 

features and data collected from remote sources, including: air photogrammetry, satellite 

imagery and Ordnance Survey maps. These features are grouped within sections, 

examining in turn: the drainage patterns, erosional surfaces, the coastal geomorphology 

and colluvium, with discussion of their correlation and formation. 

2.2 DRAINAGE PATTERNS, 

2.2 . 1 Introduction. 

The drainage pattern occurring in Cyprus today (Fig.2.1) consists of five major 

trends: 
i) a radial pattern of drainage centred on the Troodos Massif, locally concentrated on 

the area around Mount Olympus (Fig.2.1; Plate 2.1); 

33 



I 	

'1 

- 	 - 	
fl00n 

 k 
 

NIh 	
I 	 j 	600 

20 	
600 	

N

Gan 

PsPh 

	

' i K 	
a 	j 

	

0 	 0 	

1 	0 	

0 	 0 	

0 	
(I2ro I) 

	

arabon 	 ( a ) 	*100 

- 	 N 	 :

Er 
(a) ONjos River 

o 	
(b) Sciokhts 

Alsas River 	 'D 
Clio Dhionizas River 

(c) Yciapoloms River 	
(D IF 

(12) 	 —I 	

A 
UPOS 

	
0) [zousa River  

60 orpi 

16 

	

120 	 cr 
Sifuclutol and 	 I 

I
a HA Ky e a If' 

	

0 	

a a 	
Iopoqophic conliol 	a 

- 	

1001 3 	60 	IC 	

('0 

0 	
OaIon3fy .oII000I. 	 6 In 	10.0 

ci w 



E - Thematic mapper satellite image of southern Cyprus. 

Note: the Troodos ophiolite (dark in the centre of the plate), 
the Arakapas Fault Belt on the southern margin of the Troodos massif 
(Fig 13), 
the outline of fans developed on the north Troodos margin, 
the radial drainage pattern feeding off the Troodos Massif (Fig.2. 1), 
the development of the drainage parallel to the Polis-Paphos graben in 
the north-west of the island (Fig.2. 1). 

F - Multispectural scanner image of the north Troodos margin displaying the 
development of the drainage feeding from the ultramafic core of the 
ophiolite to the north-north-west into Morphou Bay (Fig2.1). 

Note: the dark spot in the centre of the plate marks the an area just to the 
south of Mount Olympus, i.e. the area where the ultramafic units crop out. 

G - Thematic mapper satellite image of the south Troodos Massif displaying 
the area of capture of the Kryos River by the Kouris Rvier (Fig.2.3; Plate 
2.3). 

Note: the Fl erosion surface picked Out north of Limassol (Fig.2. 19). 
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a lateral, approximately east to west, trend seen in the centre of the Mesaoria Plain, 

comprising the major rivers (e.g. Pedieos, Serakhis, Yialias, Ovgos; Fig.2.1) that 

drain out into Morphou Bay in the west and Famagusta Bay to the east (Plate 2.1); 

straight-coursed rivers that drain out to the south and south-west of the island 

(Plate 2.1); 

a trend that has been affected by pre-existing structure and topography (e.g. the 

Polis-Paphos graben in the west of the island; Plate 2.1); 

a component that represents the effects of river capture, as a result of erosion, 

during the Quaternary-Recent (Plate 2.1). 

Each component of the drainage pattern, and gorge development, will now be 

described in more detail, dealing with each group of features in turn. An interpretation of 

the components of the south Cyprus drainage pattern will be made in light of the 

classification laid down by Howard (1967). 

2.2.2 Radial drainage pattern around the Troodos Massif. 

The drainage associated with the Troodos Massif forms a radial pattern (Fig.2.1). 

The rivers to the west of the Karyotis River feed straight off the Troodos Massif into 

Morphou Bay, e.g. the Atsas River (Fig.2. 1). Rivers further east feed onto the Mesaoria 

Plain and, to the south of the Troodos Massif, on to the southern coastal plain (Fig.2. 1). 

Provenance studies based on clasts taken from the Fanglomerate Group along the north 

Troodos margin (Section 5.5), suggest that this radial pattern of drainage existed since the 

ultramafic core of the Troodos ophiolite was unroofed, as clasts derived from this small 

portion of the ophiolite (Fig.2. 1) are only found associated with the rivers feeding from 

the core of the ophiolite (Fig.2.1). Satellite imagery data (Plate 2.1) and field 

observations along the north Troodos margin support this argument and suggest that 

major alluvial sedimentation took place, along this margin, during the Quaternary. 

Proximal facies pass into distal facies from south to north across the plain in all cases 

(Section 5.3), this lack of south to north variation in the sedimentary facieslreflects little 

obvious change in the drainage pattern. 

The view that little or no change in the drainage pattern occurred during the 

Quaternary does not agree with De Vaumas (1959, 1961, 1962) who suggested that the 

focus of uplift of the Troodos Massif shifted from the east towards a present position 

beneath Mount Olympus. The hypothesis was supported by the presence of the most 

dissected portion of the piedmont in the eastern portion of the Mesaoria Plain and by the 

direction of the origin of the alluvial fans converging on a point east of Mount Olympus, 

similar to that seen on the north Troodos margin during the Miocene, when the eastern 
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part of the Trooclos Massif was being faulted and uplifted (Follows, 1990). De Vaumas's 

(1959, 1961, 1962) evidence, however, may reflect some pre-existing variation in the 

altitude of the Mesaoria Plain, resulting from previous faulting, and not a shift in the 

highest point on the Troodos Massif. 

2.2.3 The Lateral, east-west, drainage nattern through the centre of the Mesaoria 

Plain. 

The onset of fluvial sedimentation (with sub-aerial conditions) occurred in the 

Apalos Formation (McCallum, 1989). Thus the Apalos Formation is interpreted to mark 

the initiation of the east-west drainage in the centre of the Mesaoria Plain. The pattern of 

drainage through the centre of the Mesaoria Plain suggests that an east-west watershed 

exists to the west of Nicosia at the lowest north-south, and highest east-west, point in the 

Mesaoria Plain. This results in rivers running parallel to the north margin of the Troodos 

Massif and the southern margin of the Kyrenia Range, forming an axial drainage pattern 

(Fig.2.2). This component of the drainage pattern has persisted through to the present 

(Fig.2. 1). 

The drainage pattern to the west appears to be quite simple (Fig.2.1). By contrast, 

in the east, Troodos-derived gabbroic clasts are found in shallow marine siliciclastic and 

fluvial conglomerates in the vicinity of Dhekelia (Fig.2. 1; location 3-32; vid. Chapters 5 

and 6). The presence of these sediments indicates that capture of drainage occurred 

and/or the drainage pattern in the south-east of the island was more extensive during the 

Lower and Middle Pleistocene. On the plains of southern and eastern Cyprus present day 

major rivers appear to be unable to reach the sea due to possible climatic variations, a 

lack of bedload, low river gradients, or mans influence with the construction of dams. 

2.2.4 The nature of the drainag e  pattern along the southern coast of the island. 

Many of the rivers that drain the southern coast of the island show a sub-dendritic 

passing into parallel drainage pattern, with feeder streams perpendicular to the7 valleys 

(Fig.2.3). In south-west Cyprus, data from S.P.O.T. satellite imagery suggests that the 

large linear drainage systems fed extensive outwash plains that formed beneath 300m 

ASL. The S.P.O.T. data also highlights the contrast between the northern and southern 

Troodos margins. In the north, deeply incised V-shaped and hanging valleys are seen, e.g 

on the eastern side of the Karyotis River, north of Tembria, suggesting rapid 

downcutting. By contrast, on the southern Troodos margin, the river channels have a 

youthful drainage pattern proximal to the southern Troodos margin passing into a mature 

drainage pattern with wide U-shaped valleys further south (Yeropotomos and Dhiarizos 
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Rivers; Fig.2.3). This downcutting preserved channel linearity through a variety of 

ophiolite and sedimentary lithologies and structural features (Plate 2.1; Fig.2.4). 

Increased downcutting and rejuvenation of the drainage resulting from base level fall can 

be identified, as seen at Pissouri (Fig.2.5) and in the Ezousa and Yerapotomos Rivers of 

south-west Cyprus. 

The Yermasoyia River cuts straight across the Limassol Forest Block and the 

Arakapas Fault belt (Figs.1.3 and 2.1). Rivers feeding the Yermasoyia, however, have 

utilised the inherent weakness associated with the Arakapas Fault belt with channels 

cutting courses parallel to the fault belt, i.e. east-west rather than north-south. The 

Vasilikos Valley (Fig.2. 1), by contrast, exploited the weakness of the Arakapas Fault belt 

with valleys feeding into this area from the north and the south (Fig.2.1). Thus field and 

satellite evidence show that pre-existing tectonic structures did not play a major role in 

the development of the drainage pattern along the coast of the island (Plate 2.1). 

The rivers that feed from the Troodos Massif into the southern coastal areas of 

Cyprus cut through a variety of rock types, e.g. chalks, melange, cherts, sandstones and 

serpentinite, yet this does not affect their course. Faults marked on the 1:250,000 

geological map (Pantazis, 1979) are reported to control the position of some of the 

valleys in the southern coast area, e.g. the Yerapotomos River, but other rivers, e.g. the 

Dhiarizos River, cut similar courses without mapped tectonic control (Fig.2.4). 

Houghton et at. (1990) dated the fauna in channel sediments within the Maroni 

River valley (Fig.2.6), that have cut down through the Miocene sequence at Khirokitia, 

and concluded that the nannofossil and foraminiferal assemblage is Upper Pliocene in 

age. This suggests that at least part of the drainage along the southern coast of the island 

could have arisen as submarine channels before sub-aerial exposure of this area. Similar 

submarine channels transported debris flow deposits southwards during the Miocene 

(Eaton, 1987). The Maroni channel system has been mapped (Fig.2.6) indicating that the 

line of the Pliocene channel conforms with the orientation of the present day drainage. 

The Pliocene channel was also incised during the Quaternary, resulting in the deposition 

of Quaternary fluvial sediments of the Fanglomerate Group in the present Maroni River 

valley. 

The nature of the drainage pattern here, and along other areas of the coast, 

suggests that the uplift of the Troodos Massif relative to base level changes was rapid and 

possibly episodic (geomorphological studies on river valleys, C. Vita-Finzi, pers. comm., 

1989). This uplift caused deep downcutting, back cutting and the initiation of a sub-

dendritic pattern on the Troodos Massif, with a steep linear drainage pattern on the 
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Fig.2.4. The detailed geology of the Dhiarizos River valley1  displaying the wide U-shaped 
valley and the lack of impression that the lithological changes,and structures,have had on 
altering the course of the river (base map after Lapierre. 1971). 
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sea-level fall. 
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margins of the Troodos Massif. Subsequent uplift of the island resulted in renewed 

downcutting. There is no evidence to support the view that neotectonic or palaeo-tectonic 

structures dictated the pattern of drainage. Seismic data (McCallum, 1989) allow the 

Quaternary sediments to be recognised offshore. This evidence, coupled with the 

drainage pattern seen on the south coast, suggests that much of the deposition associated 

with the erosion of the Troodos Massif and Troodos cover sediments took place quite 

some distance away from the major source areas along the present coastal plain area. 

Some drainage even by-passed this area, depositing sediment offshore (McCallum et al., 

1991). 

The major control on the drainage pattern in southern Cyprus was undoubtedly 

the uplift of the island, and more specifically, the rising Troodos Massif. 

2.2.5 The effect of ore-existing tectonic structures and tonographical features on the 

drainage pattern. 

The Mesaoria Plain existed as a half graben and depo-centre in Pliocene times 

(McCallum, 1989), influencing the development of subsequent drainage patterns during 

the Quaternary. Similarly the Polis-Paphos graben (Fig.2. 1) controls the drainage pattern 

in west Cyprus. The Khrysokhou River initially flows towards the south-west, but later 

runs north-west down the axis of the graben (Fig.2. 1), iesulting in the deposition of 

sediments of the Fanglomerate Group. There is no evidence of capture during the 

Quaternary period suggesting that from the onset of fluvial action the graben controlled 

the pattern of drainage in this area. Many rivers feed back into the western limb of the 

graben, e.g. Akamas Peninsula (Fig.2.7), but have not yet breached this structure. 

S.P.O.T. satellite data reveals a major drainage divide at Polemi which is not obvious in 

the field. 

De Vaumas (1959, 1961, 1962) identified a strong rectilinear pattern of drainage 

in the area of the Arakapas Fault belt (Figs. 1.3 and 2.1), where the streams are aligned 

parallel to the fault belt. This is another example of the drainage influenced by tectonic 

structures, yet, as seen with the Polis-Paphos graben, there is little evidence to suggest 

that the structure has actually caused the drainage pattern to deviate. Large-scale active 

fault movement, e.g. in the Polis-Paphos graben and along Arakapas Fault Belt, took 

place between the Late Cretaceous and Late Tertiary (Robertson, 1990). The Quaternary 

drainage pattern later took advantage of these lines of weakness, or topographic lows, 

created as a result of these tectonic events. 
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There are only three large areas in southern Cyprus, other than the Troodos 

Massif, where pre-existing Pleistocene topography affects the drainage pattern seen. In 

the south-east of the island, a topographic 'high" occurs to the south and east of 

Xylophagou (Fig.2.8). This feature is mainly formed of Miocene limestones (Follows, 

1990), which are generally resistant to erosion, and has prevented rivers draining out to 

the far south-east of the island. The Xylophagou high was complemented by the Troulli 

topographic "high" to the east (Fig.2.8). The Troulli high is an inlier of both Troodos 

ophiolite and its sedimentary cover sequence. The Troulli Inlier and the Pano Lefkara 

area (Allerton & Gomez, 1989) further west are areas of high ground that reflect the 

palaeo-relief and the configuration of the Troodos ophiolite during its formation at a mid-

ocean ridge spreading centre in the Tethys Ocean. Quaternary uplift of the island resulted 

in these features becoming areas of high relief, e.g. the off-axis horst that now constitutes 

the mountain Stavrovouni Monastery stands on, north-west of Larnaca (Allerton & 

Gomez, 1989), linked by Lefkara chalks to the eastern margin of the Trooclos Massif. 

This area of raised relief caused the drainage flowing east across the Mesaoria Plain to 

diverge and flow to the north and east into Famagusta Bay, or south between the areas of 

high relief into Larnaca Bay. Rivers from the Troulli inlier flow in a radial pattern, with 

those rivers flowing to the south subsequently cutting back into the inlier resulting in the 

pattern seen today, with a narrow ridge separating those rivers flowing to the north and 

east from those flowing to the south (Fig.2.9). Rivers flowing from the Xylophagou high 

ground generally run perpendicular to the coast, forming a simple youthful drainage 

pattern. An exception to this pattern exists south of Ormidhia (Fig.2. 10) where a more 

mature channel system has cut down through the pre-Pleistocene sedimentary units. This 

resulted in the development of a "na" flooding the channel during, and prior to, the last 

inter-glacial. Similar embayments are seen at Pissouni (Fig.2.5; Plate 2.2) and at Happy 

Valley, in the Episkopi garrison area (Fig.2.3). These, south Cyprus embayments have no 

major rivers running into them today. A modern analogue to these examples is the 

flooded rivers valleys to the west of Ayia Napa (location 1-136; Plate 2.2). 

2.2L6 Evidence for river canture. 

The capture by the Garyllis River of the headwaters of the Vathia River at 

Phasoula and the Mersina River at Spitali is recorded by Bear & Morel (1960). Drainage 

capture is also seen in the area north-west of Limassol, where the Kryos River turns 

sharply east, and then links with the Kouris River (Fig.2.3). The Cyprus geological map 

(Pantazis, 1979) suggests that a fault in this area was responsible (marked on Fig.2.3), but 

there is no field evidence to support this argument. An oblique aerial view of this area 

taken from 5,000m (Plate 2.3), satellite imagery data (Plate 2.1) and field evidence (Plate 

2.2) indicate that similar erosion surfaces are present on both the Paramali River (that 
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E - View of the Pissouri Bay area, looking west, revealing the mature erosion 
surface capping the opposite hill and the development of the F3 (b) and F4 (a) 
terraces within the preserved overdeepened embayment. 

F - A present day flooded river valley located to the west of Ayia Napa. 

G - A panoramic view of the F! (along the crests of the hills) and F2 (bowl shaped) 
erosion surfaces preserved above the course of the Kryos River, which has been 
captured by the Kouris River, southern Cyprus. 
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runs south of the point of capture) and on the north arm of the Kryos River before it turns 

sharply east (equivalent surfaces can also be seen in the Khapotami River valley to the 

west; Plate 2.3). However, these erosion surfaces are not found in the east to west linking 

portion of the Kryos River (Plate 2.3). Evidence from Pissouri (location 3-30) shows that 

Troodos-derived clasts are found in the Quaternary fluvial channel sediments of this area 

(Section 5.5), yet no rivers drain back onto the Troodos Massif from here today. This 

evidence points to capture of the upper reaches of the rivers that feed to the south and 

west, parallel to the Khapotami River, during the Lower and Middle Pleistocene. 

The capture of the Kryos River probably resulted from headwall erosion of a 

feeder valley to the Kouris River which cut to the west (Fig.2.3). As subsequent uplift 

took place the present-day Kryos River, instead of continuing to cut down to the south, 

breached the drainage divide causing a switch in the drainage from the south to the east. 

This resulted in the development of a more youthful drainage pattern to the south of the 

east-west Kryos-Kouris link (Fig.2.3), with more mature deep U-shaped valleys to the 

east and west of this area. 

2.2.7 The formation of gorges associated with the develonment of the Quaternary 

drainage nattern. 

Gorges in the Kyrenia Range result from the rapid downcutting of drainage 

(Dreghorn, 1978). Steep valleys and gorges are also present in the Troodos Massif and 

where major channels feed from the Troodos Massif to the south, e.g. near Paphos. The 

most spectacular series of gorges in southern Cyprus are found on the western flank of 

the Akamas Peninsula, east of Lara (Fig.2.7), cutting down from a mature erosion surface 

of resistant limestones and Quaternary fluvial conglomerates, at c.350m ASL (Plate 2.4). 

These features are identifiable on S.P.O.T. satellite imagery and run out onto the terraces 

found at c. 100m. ASL. There is no evidence that these gorges are fault-controlled (Plate 

2.4). The field and S.P.O.T. data show that there was no deep incision of the drainage 

beneath lOOm ASL. 

A phase of deep channel and river down cutting in south-west and south Cyprus 

resulted in the formation of gorges and sub-surface drainage, which is related to rapid 

uplift of the island at that time. Sea-level changes could have played a role in the initial 

formation of these erosional features, but a lack of evidence for a subsequent rise in sea-

level suggests that uplift of the island was the dominant control. An example of sub-

surface drainage is seen at Tremithousa (location 3-35; 280m ASL) where a small tunnel 

has formed. The top of the tunnel, 4-5m in diameter, is found within a few metres of the 

higher portion of the Fl mature erosion surface (Section 2.3.2). The tunnel is only about 
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20m long (Plate 2.4) and drops steeply into a gorge in the Koshinas River valley. The 

channel that formed the cave has cut down through a sequence of marine and fluvial 

sediments in response to a drop in base level. 

2.3 EROSION SURFACES. 

2.3.1 North Troodos margin. 

A series of fluvial terraces and mature geomorphological surfaces extend across 

the Mesaoria Plain (Plates 2.5 and 2.6). The plain dips gently to the north at 

approximately 3-50 . These erosion surfaces were recognised by De Vaumas (1959, 1961, 

1962), Bear (1960), Gass (1960) and Moore (1960) who created the following 

stratigraphy for the Pleistocene of the Mesaoria Plain: the Fanglomerate Series (now 

replaced by the Fanglomerate Group; vid. Chapter 5); young and older river terraces; and 

Recent alluvium. Ducloz (1965) replaced the earlier Pleistocene stratigraphy of the 

Mesaoria Plain with a hierarchy based on the analysis of the Fanglomerate Group erosion 

surfaces in the eastern portion of the Mesaoria Plain; this results in four Pleistocene units 

and the Recent alluvium above the Apalos Formation (Tables 1.4, 1.7 and 1.9). All 

previous authors (De Vaumas, 1959, 1961, 1962; Bear, 1960; Gass, 1960; Moore, 1960; 

Ducloz, 1965) agree that the erosion surfaces on the Mesaoria Plain are related to uplift 

of the Troodos Massif. 

Erosion surfaces on the north Troodos margin were observed using data collected 

on a number of different scales, e.g. field evidence, air photos and satellite imagery 

(Section 1.7.2). Sedimentological data relevant to the formation of the Fanglomerate 

Group are presented in Chapter 5. 

Field evidence shows that terraces and erosion surfaces in proximal localities (i.e. 

close to the northern margin of the Troodos Massif) can be correlated with those mapped 

by Ducloz (1965) further to the east. By contrast, mature erosion surfaces in distal 

localities away from the north Troodos margin do not show the same distinct terrace 

development. Here, the highest terraces preserved today are located within 10's of metres 

of the present valley floor (location 1-12). 

The Fl erosion surface (Kantara Gravels; Ducloz, 1965), that has a patchily 
rwafl( 

developed in the eastern portion of the Mesaoria Plain, is thought to be largely absent in 

the west. The Fl erosion surface is at a greater elevation than the plain in the east 

(Fig.2.1 1) this is likely to be the case in the west too. The Fl erosion surface is identified 

close to the summit of Mount Olympus where it is deeply incised by the F2 and later 



E - A view looking south across, the F2 erosion surface, on the Mesaoria Plain 
towards the Troodos Massif. 

Note: the very shallow dip of the surface and the evidence of the present valley 
floors being lower than the erosion surface. 
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F - A view across the F2 erosion surface, looking north, towards the Kyrenia Range. 

Note: the shallow dip of the erosion surface and the ?FO erosion surface preserved at 
the foot of the Kyrenia Range. 
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G - The F2 erosion surface on the northern edge of the Troodos Massif overlying 
the Lefkara Formation and the Pillow Lavas of the Troodos ophiolite. 

H - The Fl erosion surface at Koraka Hill (location 1-9) standing proud of the F2 
erosion surface that makes up the plain in the foreground. 
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E - A view looking west across the Akaki River valley on the Mesaoria Plain 
revealing the development of the F2 (a), F3 (b) and F4 (c) erosion surfaces and 
terraces. 

F - A view looking west towards Kreatos Hill revealing the dissected F2 (a) and F3 
(b) erosion surfaces. 

G - The concave F3 erosion surface on the west of the Mesaona Plain near 
Astromeritis (location 1-27). 

Note: the gently dipping F2 erosion surface intersecting the concave F3 surface. 

H - A view looking east towards the F2 erosion surface capping mesa hills near Pera 
(location 1-97). 

Note: the dark shade of the Fanglomerate Group conglomerates capping the mans of 
the Nicosia Formation near the top of the mesas. 
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terraces. In the area of Koraka Hill (location 1-9) the Fl erosion surface crops out at 

409m ASL. Conglomerates at a similar height, probably related to this surface, are also 

seen on Kreatos Hill, just east of Mitsero. The Fl surface lies between 30-40m above the 

F2 surface in proximal localities close to the north Troodos margin; this difference 

decreases to the north and east. The Fl and F2 terraces do not intersect (Fig.2. 11) and the 

height of the projected Fl terrace at grid line 90 is higher than the elevation of the 

majority of the Mesaoria Plain. Mount Olympus stands at 1951m ASL (Figs.2.7 and 

2.12). If the Fl trace from Fig.2. 11 is continued south, as a straight line, to the latitude of 

Mount Olympus, i.e. grid line 65, then the resulting elevation of the Fl erosion surface is 

c.800m ASL. The actual presence of the Fl erosion surface close to the summit of Mount 

Olympus (c. 1900m ASL) indicates that this surface is not flat but concave, similar to the 

surfaces of De Vaumas (1961; Fig.2. 13). The presence of the F1 erosion surface close to 

the summit of Mount Olympus indicates that Quaternary uplift of Mount Olympus was in 

the order of 1900m, much greater than the equivalent uplift on the Mesaoria Plain. 

Although this agrees with Robertson (1977), it contradicts De Vaumas (1959, 1961, 

1962), who identified this erosion surface as being of Pontian age (Lower Pliocene; 

surface S3 in Fig.2. 13). There is no evidence for the presence of Quaternary marine 

sediments on the plain and the highest point on the Mesaoria Plain today is only 200m 

ASL. Thus, the uplift ratio (the uplift ratio = the absolute uplift of Mount Olympus/the 

absolute uplift of the Mesaoria Plain) was greater than 1:1, and possibly in the order of 9-

10:1. This difference in uplift possibly accounts for the intersection of the Fanglomerate 

erosion surfaces, and the apparent merger of terraces to the north of the Troodos Massif, 

although it has been assumed that the segment of the erosion surfaces on the Mesaoria 

Plain are planar. 

The F2 (Kambia Gravels; Ducloz, 1965) Fanglomerate unit, developed on the 

western portion of the Mesaoria Plain, is the most extensive erosion surface preserved 

today. Satellite imagery (Plate 2.1), supported by field studies, show that extensive 

alluvial fan development occurred with the F2 phase of the Quaternary evolution of 

southern Cyprus. Deflation has, however, resulted in the formation of the flat erosion 

surface seen today. Palaeocurrent and borehole data from the Fanglomerate Group on the 

north Troodos margin (Chapter 5) show that alluvial fans prograded north from the 

Troodos Massif and then laterally, to both the east and west, across the Mesaoria Plain. 

Although this interpretation is supported by satellite imagery and field work, only one 

phase of major alluvial fan development is preserved today. No cross-cutting fans were 

developed. This implies that much of the Fl surface was either never deposited, or has 

been extensively eroded, and channel fan development took place after the development 

of the F2 alluvial fans, during the later part of the Quaternary. Air photographs detail a 

similar pattern to the satellite data, with small channels running across the F2 erosion 
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Fig.2.12. 3-d interpolated surface topographic map of southern Cyprus, viewed from the 
south-west at an angle of 50,  with the contour map from which it was derived. 
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surface, but there is no evidence of major channel switching (Fig.2. 14). This suggests that 

the drainage pattern that existed on the north Troodos margin during the early Quaternary 

(Section 2.2), reflects that seen today (Fig.2. 1). The F2 surfaces are generally more 

continuously preserved in the west than in the east. In the east, the discontinuous F2 

erosion surface is commonly picked out above thin conglomerate caps on buttes and 

mesa-type hills, e.g. Pera, (location 1-97 and 1-98; Plate 2.6). The caps of the 

Fanglomerate Group conglomerates have extensively eroded soft Pliocene sediments. 

The F3 Fanglomerate surfaces on the north Troodos margin form less extensive 

features at a lower level than the F2 surfaces. The F3 erosion surfaces make up a series of 

paired terraces that can be correlated across and between valleys in proximal-intermediate 

areas, e.g. between Kato Moni, Orounda and Malounda (Fig.2.15), but do not form 

extensive fan sequences. The F3 surfaces were documented as forming concave slopes 

and mature erosion surfaces in the eastern part of the Mesaoria Plain (Ducloz, 1965). 

Similar concave surfaces were also recognised during this study, in the western portion of 

the Mesaoria Plain at Potami (location 1-118) and west of Astromeritis (location 1-27; cf. 

Plate 2.6; Fig.2.15). The F3' terraces can be correlated with the Laxia Gravels (Ducloz, 

1965) and the Older Fill described by Bear (1960), Gass (1960) and Moore (1960), and 

are commonly found within 15m of. the present day river channels, e.g. Tembria in the 

Karyotis Valley (location 3-61). Away from the Troodos margin the F3 terraces also 

converge with the F2 surfaces to the north (location 3-1), the height difference varying 

from 50m near Aredhiou in the south, to 6m north-east of Kato Lakatamia further north 

(Ducloz, 1965). 

The Xeri Alluvium (Ducloz, 1965) was identified as being correlatable with the 

F4 erosion surface on the Mesaoria Plain. The F4 unit also forms paired terraces that 

correlate with the Younger River Terrace of Bear (1960), Gass (1960) and Moore (1960). 

In the Astromeritis area the F4 terrace crops out lOm above the present day channel 

(Moore, 1960). The Pedieos River has cut the deepest incision recorded in the Xeri 

Alluvium (26m near Pera; Ducloz, 1965) into the underlying basement. 

Stable, vegetated bars are identified as the F4 surfaces on the Mesaoria Plain; 

these surfaces are located above the present day channels and within the area confined by 

the F3 terraces and erosion surfaces. These bars are commonly found within 2-5m of the 

present day valley floor, e.g. north of Ayios loannis (location 3-2). 

53 



(a) 

-= 

North 

km 
	

(1) Astromeritis (2) Persterono 
(3) Akciki (4) Poleometokho 

(b) 

- lineations  IE - drainage LLJ  - F3/F4 terrace development LI 



Fig.2.16. Schematic sketch section of the relationship between pre-Ouaternarj 
sequences, aeolian sediments, units of the Fanglomerate Group and deltaic sequences at 
Tersephanpu (location 3-16). along the south coast of Cyprus. 

Note: see Fig.2.7. for the location of Tersephanou. 
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Fig.2.15. Schematic sketch section across the F2 and F3 erosion surfaces displaying the 
development of paired terraces on the north Troodos margin. 
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2.3.2 Southern coastal areas. 

Correlation of the erosion surfaces of southern Cyprus has depended on generally 

unfossiliferous lithologies, similar to those seen on the north Troodos margin. 

Consequently, a terminology similar to that seen on the north Troodos margin has 

developed, with Fanglomerates, Older and Younger River Gravels and Recent Alluvium 

(e.g. Bagnall, 1960; Pantazis, 1966). Gomez (1987) introduced a local stratigraphy for 

the lower Vasilikos Valley (Fig.2.1) and tentatively correlated this with the north 

Troodos margin and the central Kyrenia Range (Ducloz, 1965, 1972; Table 1.8). 

McCallum (1989) introduced the term Vasilikos Formation for a series of fluvial 

sediments that crop out in a quarry at Vasilikos (Fig.2.6), correlating these sediments 

with the Pliocene Kakkaristra Formation (Table 1.3); she also identified the 

Fanglomerate, the Older and Younger River Gravels and Recent Alluvium in the 

Vasilikos area. 

The oldest known erosion surface in southern Cyprus lies at approximately 500m 

ASL along the Akamas Peninsula (Fig.2.7). A corresponding erosion surface, the 

"Pontian" surface of De Vaumas (1959, 1961, 1962), located on the southern flank of the 

Troodos Massif, may be equivalent to, or possibly older than this. A firm correlation is 

not possible. The erosion surfaces along the coastal areas of southern Cyprus do not dip 

steeply and are not tilted. The seawards dip, of 6 0  or less, of most of the coastal terraces 

in southern Cyprus may reflect the depositional dip, with exceptions occurring where the 

cliffs and terraces were overlain by later aeolian deposits (Section 2.4.7; Chapter 8). By 

contrast, the erosion surfaces related to the Kyrenia Range appear to be tilted, showing a 

steeper angle of inclination with increased altitude (Dreghorn, 1978). These data suggest 

that the coastal terraces of southern Cyprus were not subject to extensive tilting during 

their formation, unlike those in the Kyrenia Range (Dreghorn, 1978). 

Erosion surfaces are found lying above all the marine clifflines identified in 

Section 2.4. These erosion surfaces in southern Cyprus cut down into both the Troodos 

sedimentary cover sequence and Quaternary marine and fluvial sediments. Similar 

surfaces are not present around the whole of the southern coast which suggests that the 

coastline may have been eroded, or that subsequent changes in base level have removed 

evidence of their existence. The river valleys in these areas, e.g. Dhiarizos River (Fig.2.4) 

do, however, show evidence of these features with paired terraces and the presence of 

knick points and rejuvenation features, as outlined in Section 2.2.4. 
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Erosion surfaces are seen in the area between Larnaca and Paphos. One of these is 

the Fl Quaternary surface, identified in the Vasilikos Valley (Gomez, 1987), which has 



undergone extensive dissection and now comprises minor remnants that dip off the 

Troodos Massif. Though this surface is a strath feature, i.e. eroding bedrock, close to the 

Troodos Massif, it overlies Quaternary fluvial deposits in coastal areas, e.g. Pissouri 

(location 3-30; Fig.2.5). The Fl erosion surface at Pissouri is seen at lOOm ASL on the 

coast and rises to 120m ASL inland, similar to the Fl surface to the north-west of 

Tersephanou (location 3-16; Fig.2.16). 

The F2 surface is the most clearly recognised upper surface along the southern 

coast, similar to those seen on the north Troodos margin. The F2 terrace forms a series of 

longitudinal ridges that dip gently seawards (Plates 2.3 and 2.7) and has been greatly 

dissected by rivers and associated feeder streams (Fig.2.3). The F2 surface is very well 

developed in the area between Vouni and north-west of Kilani (Fig.2.3), where it lies 

between 11 lOm ASL and 700m ASL, dipping to the south at c. 10. 

The F3 surfaces cut down into the F2, with the formation of paired terraces and 

concave erosion surfaces, e.g. in the Khapotami and north Kryos River valleys (Plates 2.2 

and 2.3). The F3 features in the south can be correlated with those F3 features present on 

the north Troodos margin, and mark the development of channels within channels, 

similar to the channel fans of the north Troodos margin. The F3 surfaces are both erosive 

and form a surface over depositional sequences, e.g. Limassol (location 3-27) and on the 

northern portion of the Akrotiri Peninsula (location 3-28). The F3 erosion surface is seen 

10-15m above the present valley floor on the Akrotiri Peninsula. 

The F4 terraces are commonly found in the broad valleys along the southern 

coastal margin, e.g the 2m terrace in the Tremithios River valley, near Larnaca (Gifford, 

1978), within a few metres of the present valley floors. The F4 terraces mark the erosion 

through the F3 conglomerates and underlying basement, e.g. channels have cut down 

through the Athalassa Formation (location 3-28). The F4 features are small scale and of 

limited occurrence cropping out above the Recent valley fill that forms vegetated, stable 

bars. These F4 surfaces have prograded to a position occupied by the present day sea-

level, forming small promontories, e.g. the Pendaskinos River (Fig.2.6). The F4 

promontories are now being eroded following a reduction in the sediment supply to these 

areas during the Holocene, e.g. in the Larnaca area (Gifford, 1978). The rivers along the 

south coast quite commonly do not reach the coast today; interpreted to reflect the 

development of the F4 coastline during the oxygen isotope 5e sea-level high (Tables 1.9 

and 1.10) that followed the formation of the F3 fluvial sequences and erosion surfaces. 

The Kouris River braidplain (Plate 2.7; Fig.2. 17) and associated sediments along 

the south coast of the island, e.g Zyyi (Fig.2.6), and the Larnaca and Akrotiri salt lakes 
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PLATE 21k 

E - The F2 erosion surface dipping seaward at Cape Dolos. 

Note: the development of a break in slope with the F3 terrace beneath. 

Ak. 1P4 

5LOP. 	 Ft 

F - A view from Curium looking south-east across the Akrotiri Peninsula, the F4 
terrace and the Kouris River braidplain. 

G - Looking north-east from the western limb of the Polis-Paphos graben across the 
FO (a) and, bowl shaped, Fl (b) erosion surfaces. 
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(Fig.2.7) formed during the latest Pleistocene and Holocene. Archaeological artifacts 

(Early Bronze Age to Late Roman; I. Todd, pers. Comm., 1989) are found within the 

lowest F4 erosion surface 2m ASL today (location 3-70). Similarly a terrace within 2m 

ASL was cut into the Tremithios River in the Larnaca lowlands (Gifford, 1978). Gomez 

(1987) identified 6m of downcutting in the Vasilikos Valley, followed by aggradation 

and alluviation between 5540 and 5010 B.C.. The fluvial sediments deposited at this time 

are generally finer-grained than those seen in the lower and middle Pleistocene, i.e. Fl-

F2. Active erosion of this coast it taking place today with the erosion of archaeological 

sites at Zyyi (I. Todd, pers. Comm., 1989). 

2.3.3 South-eastern Cyprus. 

Erosion surfaces are less conspicuous in the south-eastern portion of the island. 

The subdued nature of the surfaces may result from a combination of soft underlying 

sediments, i.e. marls and calcarenites of Pliocene age, and distance from the Troodos 

Massif (compared with the development of distal terraces on the north Troodos margin; 

Section 2.3.1). The mature erosion surfaces seen in the south-east are generally associated 

with coastal features and deposition of the Fanglomerate Group did not take place. This is 

interpreted to be a consequence of the extensive Fl erosion surface at Xylophagou, which 

prevented rivers from the Troodos Massif draining out in this area. Rivers were diverted 

to the north into Famagusta Bay, or west of Xylophagou into Larnaca Bay (Section 2.2.5; 

Figs.2.1 and 2.8). Erosion surfaces cap the Fanglomerate Group sediments in the 

Dhekelia area (location 3-32) and Athalassa Formation sediments at Pyla (Fig.2.8). The 

F2 and F3 surfaces are not clearly discernible in this area, possibly as a consequence of 

the unconsolidated nature of the sediments which makes their preservation potential low. 

The F4 erosional surface is preserved in the area to the west of Dhekelia (Fig.2.8) and in 

coastal areas between Dhekelia and Xylophagou (Section 2.4.3). Evidence from all 

phases of the Quaternary evolution, i.e. F1-174, are present in the south-east of the island 

(Section 2.4.3) but a complete sequence is only seen in coastal areas. 

Erosion surfaces are associated with the development of the Fanglomerate Group 

to the north and west of Xylophagou. The Fl erosion surface to the north of Dhekelia and 

Pyla is a shallow-dipping, mature surface, covered by caliche and red soils, with only 

minor incision, e.g. north of Avgorou (Fig.2.8). The Fl surface marks the easternmost 

extent of any northward-dipping erosion surface cut into the Mesaoria Plain. The 

maximum height of the Fl erosion surface dipping to the north in this area is 98m, at 

Cape Pyla, so a change in altitude from 98m to 30m over 13km would cause the slope to 

change from 00  to <1 0  during the early part of the Quaternary. Incision is seen from 30m 

down to lOm north of Avgorou (Fig.2.8). The variation reflects uplift that can be 
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correlated with the F2 or F3. The erosion surface to the north, beneath the lOm contour, 

undulates slightly reaching sea-level 9km away, near Famagusta (Fig.2.7). 

2.3.4 The Polis-Paphos graben. 

The region enclosed by the Polis-Paphos graben forms a fourth contrasting area 

for the development of erosion surfaces during the Quaternary period. The main period of 

graben development took place between the Upper Miocene and the earlier Pliocene 

(A.H.F. Robertson, pers. comm., 1989; Follows, 1990). Local lower Quaternary footwall 

uplift (Chapter 4) was superimposed on regional uplift. The footwall uplift is largely 

absent from later sediments although some active faults are seen in the southern part of 

the graben, cutting sediments of the Fanglomerate Group (Ward & Robertson, 1987). 

The Polis-Paphos graben facilitated the formation of a concave bowl-shaped 

erosional surface which strikes north-west to south-east, parallel to its uplifted flanks. 

This bowl-shaped erosion surface represents the Fl surface in the graben (Plate 2.7). The 

surface dips quite steeply at its eastern and western extents, shallowing towards the centre 

of the graben. This has resulted in convergence and intersection of the Fl, F2 and F3 

surfaces, with each other, at lower altitudes (Fig.2.18). The Fl and succeeding erosion 

surfaces have been influenced by sea-level changes at the northern end of the graben 

(Section 2.4.2). 

The Fl surface underwent extensive incision leaving the minor remnants of this 

surface present today, preserved as a series of hills dipping towards the centre of the 

graben, i.e. at between 300-400m on the east side of the graben near the village of 

Philousa. The F2 surface cut into the underlying marl, resulting in limited preservation. 

The F3 forms longitudinal terraces in the major channels along the northern portion of 

the graben, parallel to the Khrysokhou River (Fig.2.1). The terraces can be most clearly 

distinguished in the centre of the graben, where paired terraces of F4 age are also seen. 

2.4 COASTAL GEOMORPHOLOGY. 

2.4.1 Introduction. 

Cowper-Reed (1930) and then Henson et al. (1949) made the first references to 

marine terraces in coastal Cyprus. The memoirs of the Geological Survey Department 

(Bagnall, 1960; Bear & Morel, 1960; Pantazis, 1967) documented these features in more 

detail, citing the development of 3 marine terraces at 13m, 40m and approximately 85- 

100m ASL along the coast between Larnaca and Limassol. The most extensive terrace 
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Fig.2.18. Schematic east-west section across the Polis-Paphos graben displaying: 
erosion surfaces and terraces: the effects of normal faults on the erosion surfaces: and 
sites where colluvium is likely to develop. 
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was found at 13m ASL. Turner (1971) identified a series of horizontal terraces at 366m, 

200m, 100, 43m, 23m, 13m and 3m west of the village of Kathikas on the Akamas 

Peninsula. Turner (1971) also reported the presence of a series of terraces in the Polis 

region, with the highest terraces at between 504-610m with others at 61-91m, 36-43m, 

12-21m, 5m, 3-4m and 2m ASL. Ducloz (1972) and Dreghorn (1978) documented 

similar features from the north flanks of the Kyrenia Range but none are seen in the 

Mesaoria Plain area. 

Geomorphological features including fluvial terraces and associated littoral 

sediments represent the interaction of sea-level changes and tectonic uplift in the earliest 

Quaternary (Fig.2. 19). Later Quaternary erosion resulted in cliffs, wave cut terraces and 

stepped coastal plains, e.g. the area to the north and west of Limassol. 

2.4.2 Palaeo-clifflines and associated features in south-west CvDrus. 

Outcrops of marine terraces can be grouped into a suite using SPOT satellite data, 

air photographs and field observations in south-west Cyprus close to Paphos. These 

exposures represent the most continuous sequence of marine terraces along the south 

coast of Cyprus. The terraces crop out at 350-360m, 100-10rn, 50-60m, 8-11m and less 

than 3m ASL (Fig.2.20; Plates 2.8 and 2.9), overlying a Quaternary marine sequence 

which in turn unconformably overlies Pliocene and older sediments (Chapter 7). A suite 

of corresponding terraces can also be traced along portions of the west coast of the island. 

Here, the terraces are obscured by later aeolian dunes that have transgressed across them 

(Section 2.4.7). An exception to the typical pattern occurs at Ayios Yeoryios (location 2-

27) where a terrace crops out c.25m ASL; this terrace could either be of F2 age, if 

faulting has taken place, or more likely F3 age as the F3 cliffline, i.e. exposing the F2 

carbonate sequence, in the Paphos area (see below) crops out at between 50-60m ASL. 

Absolute age data is needed to unravel this doubt. 

The Quaternary terrace related sediments, similar to those seen on the north 

Troodos margin, have been peneplaned during exposure to form generally flat, mature 

erosion surfaces. Caves associated with the formation of the marine terraces and palaeo-

clifflines are found throughout south-west Cyprus, with examples seen cutting into the F2 

cliff at Anavagos (location 2-1), associated with the formation of the 100-110m terrace. 

This erosion and peneplanation results from a change in relative base level, i.e. either 

uplift and/or a sea-level fall. Absolute uplift took place with a subsequent rise in sea-level 

allowing the formation of a cliffline, and hence a terrace (Fig.2.20). Therefore, the 

formation of the 100-11Om cliffline can be correlated with the sediments now preserved 
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E - A view, looking north-east, of the Fl (a) and F2 (b) marine terraces and 
associated clifflines taken from the P3 terrace beneath Yeroskipos, south-west 
Cyprus. 

F - Looking towards Paphos from the north showing the F1 (c), F2 (b) and F3/F4 
(a) terraces. 

Note: the cliffline identified by the break in slope to the left of (a). 

G - The F! terrace (b) with the P2 cliffline and the P2 terrace (a) above Paphos 
(location 2-3). 

Note: the Quaternary sequence (dark) lying unconformably above chalks of 
Miocene age (white) in the cliff beneath (b). 

H - An F2/F3 marine notch cut into limestones of Miocene age, south-west of Peyia, 
south-west Cyprus. 
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E - The F4 marine terrace north of Paphos. 

Note: the mature erosion surface sloping off the western limb of the Polis-Paphos 
graben. 

F - The dipping erosion surfaces on the western flanks of the Polis-Paphos graben 
between Lara and Paphos, frequently capped by aeolianite. 

Note: the F4 cliffline cutting into F3 aeolianites in the embayment in the middle of 
the plate. 

G - The F3 marine terrace capping slumped Miocene chalks at Petounda Point 
(location 3-11), southern Cyprus. 

H - The F3/F4 marine terrace at Cape Greco, south-east Cyprus. 

Note: the hummocky relief resulting from the formation of aeolian dunes. 
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in the 50-60m cliffline. On this basis, the following correlations can be made in south-

west Cyprus: 

the Pliocene erosion surface can be correlated with the sediments of the 350-360m 

cliffline, 

the Fl cliffline is seen at 350-360m ASL; the Fl erosion surface extends between 

350m ASL and hOrn ASL; correlatable sediments are preserved in the 100-10rn 

cliffline, 

the F2 cliffline is seen at 100-110m ASL; the F2 erosion surface extends from 

lOOm ASL to 60m ASL; correlatable sediments are preserved in the 50-60m cliffline, 

the F3 cliffline is seen at 50-60m ASL; the F3 erosion surface extends from 50m-

1 im ASL; correlatable sediments are preserved in the 8-11 m terrace, 

the F4 cliffline is commonly absent as the F3 terraces typically form part of the 

present day coastline; the erosion surface extends from 3m to sea-level; correlatable 

sediments are preserved in coastal terraces at <3m ASL. 

2.4.3 Palaeo-clifflines aiid associated features in south-east CyDrus. 

A suite of terraces correlated with those seen in south-west Cyprus was developed 

in the far south-east of the island. In the area from Xylophagou eastwards, four erosion 

surfaces and associated clifflines are seen, best exposed at Cape Greco and Cape Pyla 

(Figs.2.8, 2.10 and 2.21; Plates 2.9 and 2.10): 

Fl erosion surface at 80-90rn ASL, 

F2 erosion surface at 30-40m ASL, 

F3 erosion surface at 8-1 irn ASL, 

F4 erosion surface to within 3m ASL. 

The Fl and F2 terraces in south-east Cyprus are slightly lower than those seen in 

the Paphos area. The terrace sediments in south-eastern Cyprus crop out above 

Quaternary and pre-Quaternary sediments (location 1-125) and erosional surfaces have 

cut into pre'-Quaternary sediments (location 1-136). The two highest terraces are 

commonly erosional, cut into the resistant Miocene limestones, whilst Quaternary 

sedimentary sequences are frequently found on the lower two terraces. This pattern is 

similar to that seen in south-west Cyprus. Caves at <3m ASL at Cape Pyla, wave-cut 

notches at Cape Pyla and the development of solution hollows on the erosion surfaces at 

Cape Greco support a marine origin for these terraces. 

A complete suite of terraces is not seen in the area west of Xylophagou around the 

coast towards Larnaca. As mentioned previously, this may relate to the unconsolidated 

nature of the underlying basement lithologies (Section 2.3.3). The Fl, F2 and F4 erosion 



65 
Fig.2.21. 3-d interpolated surface of the topography in the Cape Greco area of south-east 
Cyorus, with accomoanvinE contour mat) showing -the marine terrace and cliffs. 

Note: a). is viewed from the west at 15°, with a vertical exaggeration of c.x30; b) is 
viewed from the east at 30°, with a vertical exaggeration of c.x35. 
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PLATE 2J1t 

E - The F4 marine terrace preserved just above present day sea-level near Paralimni, 
south-east Cyprus (location 1-120). 

F - An F3/F4 age marine terrace passing back to an F3 age cliffline and F2 age 
marine terrace near Cape Greco, south-east Cyprus. 

G - The cliffs along the south coast of the Akrotiri Peninsula with evidence for an 
F4 age wave cut platform and associated notch (a). 
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surfaces are seen, but the F3 does not appear (Fig.2.8). The Fl cliffline has actually cut 

the pre-existing topography perpendicular to the strike of the contours (Fig.2.8). This is 

the only place where this is seen, reflecting the local importance of the uplifted Troulli 

Inlier during the latest Pliocene and early Pleistocene. The Troulli Inlier local 

topographic high influenced the drainage pattern in this area during Fl and F2 times 

when large quantities of fluvial, Troodos-derived sediment were deposited. These 

sediments support an argument for a major channel running between the Fl surfaces of 

Troulli to the west and Xylophagou to the east during Fl and F2 times. The F2 surface is 

marked by a ridge, south of Ormidhia (Fig.2.8), that trends approximately north-east to 

south west. The F3 is probably represented by the dry channel feeding feeding southward 

from Ormidhia although no terrace or cliffline is preserved today. The F4 surface and 

cliffline, like those seen for the Fl and F2, was cut by wave action, resulting in the 

formation of marine clastic, e.g. Ormidhia (location 1-129), and carbonate sequences, e.g. 

Cape Greco (location 1-125), which dip at 4-60  towards the south-west, i.e. seawards. 

The only obvious terraces and clifflines preserved to the west of Dhekelia, south of Pyla, 

are correlatable with the Fl and F4 terraces of south-western and south-eastern Cyprus. 

2.4.3.1 Beach ridges of south-east Cyprus. 

Air photographs show the development of beach ridges to the north-west of Cape 

Greco (Fig.2.22). The ridges dip at 5-10 0  to the north-north-east and run parallel to the 

bathymetry on this part of the coast (Fig.2.23). The ridges are found associated the F4 

erosion surface but also show evidence for more recent erosion, probably during and 

succeeding the Holocene sea-level rise. These features are interpreted as resulting from 

foredune migration associated with a longshore current interacting with sea-level changes 

(Goldsmith, 1985). Similar modern features are seen in Tasmania and south-east 

Australia (Davies, 1980; Short, 1988). 

2.4.4 Palaeo-clifflines and associated features in south Cyorus. 

The marine terraces that crop out along the south coast of the island are 

predominantly cut into fluvial sedimentary sequences (vid. location 1-162), similar to that 

seen in the Dhekelia area. This contradicts the views of Bagnall (1960). Locally at 

Akrotiri (location 3-97) and Larnaca (location 1-130), an F3 terrace made up of carbonate 

sediments is cut to form an F4 cliff. The marine terraces (Fig.2.6) crop out at the same 

heights as those in the south-east of the island. The Fl terrace and the associated F2 

cliffline, identified by satellite imagery (Plate 2.1; Fig.2. 17), can be traced from Curium 

(Fig.2.17) to the east of Limassol, a distance of 20km. The F2 terrace now forms isolated 

erosional remnants on top of the Pliocene sediments of the Athalassa Formation at 
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Fig.2.22. Sketch of the distinct beach ridges occurring in the Cape Greco area of south-
east Cyprus. based on air photos. 6" to the mile. 
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Vounaro (Fig.2. 17) and south of Kolossi (Fig.2. 17). The F3 terrace also formed above 

Pleistocene sediments of the Fanglomerate Group but is not well preserved, fringing the 

F2 terraces at Vounaro (Fig.2. 17). The F4 terrace and cliffline is exposed beneath the 

cliffs at Curium (Plate 2.7) and extends across the Akrotiri Peninsula (Fig.2. 17). A large 

coastal plain existed along the southern coast of the island throughout the Quaternary 

period stretching from south of Larnaca round to the western side of the Akrotiri 

Peninsula. 

The marine terraces and clifflines on the south coast of the Akrotiri Peninsula 

were predominantly cut into the Mio-Pliocene and Quaternary marine carbonate 

sediments. The F4 terrace formed a wave cut platform and notch in the pre-Quaternary 

sequence (Plate 2.10) along much of the southern Akrotiri coast (location 3-96a). Some 

limited F4 sedimentary sequences are also present with an associated cliffline cutting the 

F3 sediments at Cape Zevgari (location 3-96) to the west and Cape Gata (location 3-97; 

Fig.2. 17) to the east. A high terrace has an erosion surface capping the Akrotiri peninsula 

at 50-60m ASL and caves have formed in the soft Pliocene Athalassa Formation at c.30m 

ASL. These two features could reflect the Fl and F2 phases respectively. 

A suite of terraces crop out to the south of Pissouri village are similar to those 

seen at Tersephanou (location 3-16), to the north-west of Larnaca. The Fl terrace, 

situated on the east side of Pissouri Bay (Fig.2.5), planed the Fl Fanglomerate unit and 

the earlier ?Pliocene fan-delta deposits. An erosional bench is located at 50-60m ASL. 

The F3 and F4 terraces are clearly visible on the west side of the bay (Plate 2.2), with the 

F4 terrace above the Recent storm beach, as well as forming the valley floor cover 

(Fig.2.5). However, there is no evidence to support a large, coastal plain in this area 

during the Quaternary, although the bathymetry points to the presence of a submerged 

plain (Fig.2.23), similar to that identified along the southern coast of the island, east of 

Limassol (McCallum et al., 199. 

2.4.5 Palaeo-clifflines and associated features in the Pohis-P aphos graben and along 

the north coast of the island. 

Marine, wave-cut terraces and clifflines have developed along the northern coast 

of the island. A series of terraces crop out on both the western and eastern edges of 

Khrysokhou Bay (Fig.2.7). Four dominant clifflines flank the eastern side of Akamas 

Peninsula on the west side of the Polis-Paphos graben. The high terraces at about 500m 

ASL and 320m ASL mirror those seen in the Paphos area, with the 320m terrace 

correlatable with the Pliocene terrace to the south. In the west, the Fl terrace cuts into 

basement Miocene and older sediments at c. I 00 ASL, and the equivalent terrace in the 

RR 



east has cut down into the pillow lavas of the Troodos ophiolite. There is no evidence of 

an F2 terrace. The F3 terrace lies on Quaternary fluvial, deltaic and littoral sediments in 

the centre and eastern portion of the bay but passes onto an erosional bench cutting into 

Pliocene and then progressively older basement to the west. The F3 terrace, which crops 

out at its lowest extent at lOm ASL, cuts into the pillow lavas of the Troodos ophiolite to 

the east of Argaka. The F3 terrace was cut to form the F4 cliffline and terrace within 

metres of sea-level. The F4 terrace appears to be mainly erosional although the large 

quantity of overlying Recent beach conglomerate, around much of Khrysokhou Bay, 

masks its appearance. 

F2 and F3 terraces, as well as the F4 cliff, are present in the area between Polis 

and Kato Pyrgos, eroded into the Troodos ophiolite. Locally these features are associated 

with carbonate littoral, e.g. Argaka (location 3-93), and fluvial, e.g. Limni (location 1-

166), deposition. The steeply dipping margin of the Troodos ophiolite causes a rapid 

increase in water depth offshore (Fig.2.23) that precludes the development of a coastal 

plain in this area. 

2.4.6 Bathymetric data. 

Bathymetric data indicate the presence of an offshore terrace around the south 

coast of the island to a depth of c. 1 lOm (Fig.2.23). This figure equals the inferred drop in 

sea-level during the last glacial period (40- lOka.; Dansgaard et al., 1982) proposed for 

the Central and Western Mediterranean by Shackleton et al. (1984) and is also supported 

by seismic records from coastal southern Cyprus (McCallum et al., 1991). 

2.4.7 Dune development. 

Aeolian sediments were deposited throughout coastal Cyprus during the 

Quaternary (Chapter 8). The dunes preserved at Cape Greco (location 1-125) in the 

south-east, and at Kato Paphos (location 1-57) in the south-west form a hummocky relief 

above the F3 and F4 erosion surfaces (Fig.2.20; Plates 2.9 and 2.11). Dunes banking up 

against and over the top of clifflines, are seen on the south coast at Akrotin (location 3-

96a), near Kolossi (location 3-28; Fig.9.5) and at Tersephanou (location 3-17). A similar 

depositional sequence existed along much of the west coast of the island, between Paphos 

and Lara (Fig.2.7), creating a more steeply dipping erosion surface (Plate 2.9). The 

modification of the landscape resulted in aeolian sediments enveloping clifflines and 

terraces, with the development of an erosion surface that reflects dune formation and not 

tectonic uplift and sea-level changes. The aeolian sediments modified the coastal 

geomorphology of southern Cyprus as a result of their mobility prior to cementation. 
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Fig.2.23. This map locates a series of representative topographic profiles of the southern 
Cyprus coast. 

Note: the approximate position of the coastline during the last glacial period, i.e. c.11Om 
bathymetric contour. 
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2.4.8 The effects of sea-level change on the development of the geomornhologv of 

southern Cvnrus: two case studies. 

The Akrotiri Peninsula preserves a good example of the interplay of sea-level 

change with fluvial systems, which is not seen along the north Troodos margin. The 

Akrotiri Peninsula and salt lake was first interpreted as forming as result of spit and then 

subsequent tombolo development (Bear & Morel, 1960; Plate 2.7). The cliffs beneath 

Curium (Fig.2. 17) formed during the last eustatic sea-level highstand (Chapter 3), during 

which time the Kouris and Garyllis Rivers deposited sediment into a shallow marine 

environment, i.e. onto the present day Akrotiri Peninsula, (Fig.2. 17; Chapter 6). As the 

sea-level dropped during the last glacial the rivers prograded south out onto the Akrotiri 

Peninsula and into Episkopi Bay; this resulted in the formation of an offshore terrace 

(Fig.2.23) and the gravels found in the seismic lines shot along the south coast of the 

island (McCallum et al., 1991). As sea-level rose to present levels (not the levels 

recorded for the last inter-glacial, 5-8m ASL; Mesolella et al., 1969; Bloom et al., 1974; 

Chappell, 1974; Stearns, 1976), spits prograded out from the Kouris and Garyllis Rivers; 

these eventually formed tombolos that joined the mainland to the Akrotiri high 

(Fig.2. 17). The shallow isolated patch of water caught between the tombolos developed 

into the Akrotiri Salt Lake. The presence of the F2 and F3 clifflines, both of which are 

within 60m of the present day sea-level, suggest that the Akrotiri high had been 

previously attached to the mainland during part of the Late Quaternary. This attachment 

would have occurred when the sea-level was c. lOOm lower, during previous low sea-level 

stands, i.e. glacial periods. 

The second case study comes from the Kouklia area 15km east of Paphos 

(Fig.2.7). The Kouklia terrace can be correlated with the F2 terrace found in the Paphos 

area. The Kouklia terrace comprises fluvial conglomerates, unlike the F2 terrace seen at 

Yeroskipos (Fig.2.7) which is made up of marine sediments. The Kouklia conglomerates 

prograded out over a "shelf' area during a relative drop of sea-level and as sea-level rose 

again both the marine sediments at Yeroskipos and the fluvial sediments in Kouklia were 

cut to form the present 50-60m terrace and cliff sequence. The evolution of this portion 

of the F2 terrace is summarised in Fig.2. 19. 

2.4.9 Karst. 

Formation of karst depends on the interaction between temperature, lithology, 

groundwater and biological effects (Estaban & Klappa, 1983). The climate required 

usually involves rainfall in the order 4 1000mm per annum; rainfall of this order, in 
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Cyprus, is only present on the peaks of the Troodos Massif today (Fig.2.24). However, 

karst has been identified in the Kyrenia Range, where it is thought to have formed during 

the Quaternary pluvial phases, i.e. interglacial periods. 

The karst of southern Cyprus commonly takes the form of expanded joints (rillen-

karren), solution pits, sponge-like karst and the local development of travertine deposits. 

Karst is poorly developed and is found mainly on the lower two marine terraces within 

11 m  of the present day sea-level. However, travertine deposits are located at 340m ASL 

(location 2-63a). 

The lack of karst complements the presence of caliche on the island, these 

together support an argument for the existence of a semi-arid climate, with limited 

rainfall throughout much of the Quaternary. The karstic features, formed on the lower 

terraces, today lie within metres of the present day sea-level and the water table, i.e. the 

freshwater-meteoric zone. 

2.5 COLLUVIUM. 

Colluvium, i.e. any loose heterogeneous and incoherent mass of soil and/or rock 

fragments deposited by rainwash, sheetwash, or slow continuous downslope creep, 

usually collecting at the base of a slope (Bates & Jackson, 1980), crops out throughout 

southern Cyprus. Extensive colluvial sequences are exposed in southern Cyprus, e.g. the 

Vasilikos Valley (B. Gomez, pers. comm., 1989). The colluvial sequences usually consist 

of angular, poorly sorted clasts that are derived from local sources. The colluvial units are 

generally grain-supported, structureless and have a fine grained matrix. Detailed studies 

of colluvium were not undertaken during the course of this project, but may distinguish 

between sequences that have formed as a result of faulting, land slipping of clays and hill 

slope wasting. Studies correlating the colluvial units with the sediments of the 

Fanglomerate Group may also enable the timing of Quaternary fault movement to be 

deduced, in areas of neotectonic activity, e.g. the Polis-Paphos graben (Chapter 4). 

2.6 INTERPRETATION, DISCUSSION AND CONCLUSIONS, 

2.6.1 Drainage 11atterns. 

The overall drainage pattern in southern Cyprus comprises a radial pattern, 

feeding from the Troodos Massif. In south Cyprus a sub-dendritic pattern on the Troodos 

Massif passes into a broadly parallel drainage along the coast. The classification of 

Howard (1967) can be applied to this as follows: 
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the radial drainage pattern of a dome, feeds in all directions from its centre. In 

Cyprus, the Troodos Massif, and more specifically Mount Olympus, provides a centre 

for the radial pattern, 

the presence of a dendritic to sub-dendritic drainage pattern suggests that the 

drainage cuts through a uniformly resistant rock type and that the regional slope was 

gentle at the time of drainage inception. There may also be some structural control on 

the drainage. In southern Cyprus the dendritic component of the drainage pattern 

(Fig.2.3) indicates a uniform resistance by the units of the Troodos ophiolite to 

erosion, 

the parallel drainage indicates a moderate to steep slope, but could also be related 

to elongate landforms. 

Pre-existing tectonic structures influenced the drainage pattern by providing relief 

and/or lines of weakness, e.g. the Vasilikos River exploiting the Arakapas Fault Belt. The 

tectonic influence is hard to distinguish as an independent control from uplift of the 

Troodos and Kyrenia terranes. The pattern of drainage development is largely 

independent of lithology with the location of early Quaternary channels having a greater 

influence on the preserved pattern. 

Merrius & Vincent (1989) have postulated that upland streams accumulate the 

effects of uplift, i.e. base level fall, whereas lowland rivers adjust rapidly to change. The 

steep sided valleys of the Troodos Massif reflect this argument, especially when they are 

compared to the broad, low gradient valleys on the Mesaoria Plain and the coastal areas 

of southern Cyprus. The development of gorges, hanging valleys and rejuvenation 

features within the drainage pattern of the Quaternary period in southern Cyprus supports 

the proposition of base-level changes, related to uplift, sea-level and/or climatic changes. 

De Vaumas (1959, 1961, 1962) postulated, on geomorphological grounds, that the 

centre of uplift has shifted through time, from an area to the east of Mount Olympus, 

west to Mount Olympus itself. The evidence from the drainage pattern throughout 

southern Cyprus does not support De Vaumas's view, although if the initial uplift of 

southern Cyprus was not focussed on a single area, i.e. prior to the protrusion of the 

serpentinite diapir, then the ocean floor topography, which is preserved on Cyprus today 

(Allerton & Gomez, 1989) will have controlled the location of continental and marine 

areas. Rapid, focussed uplift (i.e. underthrusting of the African plate and diapiric 

protrusion) would have brought about more abrupt changes and the difference between 

this and possible earlier steady "uniform" uplift may account for arguments put forward 

by De Vaumas (1959, 1961, 1962). 
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2.6.2 Erosion surfaces. 

Most erosion surfaces of southern Cyprus can be correlated with those seen on the 

north margin of the Troodos Massif (Gomez, 1987). However the erosion surfaces are not 

always present leading to some confusion in terminology. The coalescence of erosion 

surfaces and fluvial terraces at distal locations on the Mesaoria Plain and to the south of 

the Troodos Massif indicates that uplift has been differential, centred on Mount Olympus 

(Section 2.3; Fig.2. 12). Eustatic sea-level changes have influenced the pattern of terrace 

development in areas of southern Cyprus other than the Mesaoria Plain. This has not 

always been recognised, e.g. Bagnall (1960), as both an F3 erosion surface and the 

underlying F3 fluvial sequence have been cut to form a marine cliffline during the F4, 

e.g. south of Maroni (location 1-162). 

Pediment and depositional areas developed with the Fanglomerate Group erosion 

surfaces and associated terraces on the north Troodos margin. In proximal localities, both 

strath, where bedrock lithologies rather than alluvium is present beneath the terrace 

(Leopold et al., 1964), and alluvial fans cut into the Troodos ophiolite and the 

sedimentary cover sequence, in addition to earlier Fanglomerate Group fluvial sediments. 

Provenance studies from clasts in the Fanglomerate Group (Section 5.5) illustrated the 

progressive introduction of new lithologies indicating that backcutting into the source 

area, i.e. southwards, took place. Predominantly marine Pliocene units beneath the 

Fanglomerate Group (McCallum, 1989) are terraced as a consequence of absolute uplift 

of the island during the Pleistocene (e.g. locations 1-28 and 1-83). The lack of 

Pleistocene marine sediments on the area of the Mesaoria Plain also supports the view 

that sea-level effects are negligible and did not have a role in the formation of these 

terraces and erosion surfaces, in a similar fashion to the continental terraces of Oman 

(Abrams et al., 1988). Similar strath terraces have developed in the Cherwell River valley 

in New Zealand (Bull, 1990). 

The paired terraces throughout the Mesaoria Plain indicate a cyclic erosional 

history and pulsed environmental change, whilst unpaired terraces provide evidence for 

slow, continuous environmental change (Morisawa, 1985). Paired terraces and their 

resulting landforms arise from an increase in energy level allowing downcutting of 

channels to take place. The paired terraces and associated erosion surfaces that developed 

during the F3 and F4 phases have formed in valleys that have cut down into previous 

valleys, resulting in the development of valley fan systems (Muto, 1987). These systems 

form as a result of changes in base level, i.e. either uplift or sea-level change, with 

incision down through the previously deposited sediments and underlying basement units. 

This results in sediment reworking (Chapter 5) and the development of paired terraces 

74 



with associated erosion surfaces. Bull (1978) has classified landforms that result from 

uplift of the San Gabriel mountains in California. Class 1 landforms result from uplift 

rates in the order of 1-5m/ka. (Hooke, 1972; Smith, 1976) and result in the entrenchment 

of consolidated and unconsolidated lithologies. Entrenchment, similar to that recorded by 

Bull (1978) has taken place on Cyprus between the formation of the Fl and F2 times and 

the development of the channel fan systems. Class 5 uplift (Bull, 1978) occurs when 

uplift rates are 5cm/ka. and result in the preservation of pedimented terraces and U-

shaped valleys, similar to that seen in Cyprus at present. The high rates of uplift that 

probably occurred in Cyprus during the lower and middle Pleistocene, i.e. class 1 (Bull, 

1978), resulted in the rapid erosion of much of the Fl terrace during this period. 

Maizels (1987) proposed that Quaternary terraces seen in Oman did not form as a 

result of uplift, but from Quaternary climatic changes, with flash floods causing rapid 

downcutting and subsequent deposition. The climate on Cyprus today is typically semi-

arid with 5% of the annual precipitation occurring in the summer months, through 

thunderstorms, and 60% taking place between December and February. Relief (Fig.2. 12) 

has a great effect on the rainfallpattern with a marked windward and lee slope variation 

(Fig.2.24). The relief also affects temperature with a drop of 5 0C/1000m elevation. The 

mean temperatures throughout the year are shown below (Meteorological survey of 

Cyprus, 1986): 
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Location January April 
Max. Mm. Max. Mm 

Nicosia 15 	5 24 10 
Larnaca 16 	7 23 10 
Limassol 17 	8 22 11 
Paphos 17 	9 21 13 
Prodhromos 6 	1 15 6 

(Temperature in °C.) 

July October Average 
Max. Mm. Max. Mm. 
37 21 28 	15 19.3 
34 21 28 	16 19.3 
32 21 27 	16 19.2 
30 22 26 	17 19.3 
27 18 19 	11 16.8 

Examples of Quaternary climate change on Cyprus do exist (vid. Chapters 5 and 

7) and it is very likely that the change from cold, dry glacial times to warmer and wetter 

interglacial periods played a part in the erosion and the formation of the Quaternary 

terraces. Sancetta et al. (1973) suggested that the sea surface temperature during the last 

interglacial was higher than that seen today (Fig.2.25). Dreghorn (1978) stated that the 

slope development of northern Cyprus, with deep valleys and smooth slopes reflected a 

pluvial palaeoclimate during the Pleistocene; the later and Holocene climate resulting in 

the landscape losing its vigour. The interpretation made by Dreghorn (1978) supports that 

made by Vita-Finzi (1969) who suggested that the Mediterranean was undergoing 

climatic fluctuations during the latest Pleistocene and Holocene which had a direct and 
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Fig.2.24. A rainfall distribution map of Cyprus (annual average precipitation 1951-1980 
in millimetres. Cyprus Meteorological Survey. 1988). demonstrating the controlling 
influence of topography on the pattern of precipitation. 
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indirect, i.e. through vegetation, effect on landscape development. There is no direct 

evidence to support changes in rainfall (Dreghorn, 1978) between the Pleistocene 

intergiacials and the Holocene. This study interprets the landscape development to reflect 

rates of base-level and climatic change. The nature of climate change should also be 

considered, as periodic, e.g. flash flood, events may have a greater influence on landscape 

development, than steady state changes resulting from higher annual rainfall, as 

envisaged by Dreghorn (1978) during the Pleistocene. Anthropogenic influences on the 

formation of the most recent, stable, vegetated alluvium should not be discounted, as 

deforestation during the Holocene will also have contributed to the formation of Recent 

terrace sequences (B. Gomez, pers. comm., 1989). 

2.6.3 Coastal geomorohologv 

The four marine terraces and clifflines exposed in south-west Cyprus can be 

correlated with equivalent features in the south and south-east of the island, despite the 

height variation. This agrees with observations from other tectonically active areas of the 

Mediterranean (Hey, 1978), where large areas have undergone equivalent amounts of 

uplift with little evidence of local differential movement. The variable heights of the 

erosion surfaces in southern Cyprus may reflect some or all of the following: 

the distance of various areas from the centre of uplift, i.e. the Troodos Massif, 

a variable position on the erosion surface, e.g. that seen at Ayios Yeoryios 

(location 2-27; Section 2.4.2), 

neotectonic processes have caused the same erosion surface, in different areas to 

crop out at varying heights. 

Points i) and ii) are favoured as: 

different locations on a dipping marine erosion surface will be at different heights, 

there is minimal evidence of Quaternary neotectonic activity (Chapter 4), 

absolute dating methods (Chapter 3) have correlated the lower two terraces at the 

same heights throughout the island, 

and d) if rates of uplift are reduced in the Late Pleistocene (Table 1.10; Chapter 3), 

then sea-level changes will have had a greater control over the height of these more 

recent marine erosion surfaces, in relation to the present-day sea-level. Therefore 

their distance from the Troodos Massif is unimportant, unlike the earlier marine 

erosion surfaces, that are thought to have formed during a period of rapid uplift (this 

chapter, Chapter 3; Table 1.10). 
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The two lowest terraces can be correlated with a high degree of confidence as 

they are present around much of the coast. In comparison, the correlation of the higher 



terraces is more difficult, as they have undergone greater dissection and erosion, 

especially along the south and south-east coast where unconsolidated fluvial sediments 

have suffered extensive erosion. The formation of aeolianites has also affected the 

topography and this is likely to account for some of the anomalies that exist in the 

sequence of terraces established by Turner (1971) along the west coast of the island. 

Dune formation is generally restricted to the F2 terrace sequences (Chapters 7 and 8), 

against and/or over the F3 cliffs and the F3 and F4 erosion surfaces. Hence aeolianites 

have only had a minor modifying affect on the Fl terrace. The limited development of 

karst on the Fl, F2 and F3 terraces indicates that the zone of karst formation moved away 

from the terraces. The only well developed karst is seen on the F4 surface suggesting 

retention of these units in the zone of active karst formation. 

The following three factors all suggest that the rate of uplift was decreasing 

through the Quaternary: 

the sole development of gorges (Section 2.2.7) above the Fl terraces, 

the decrease in vertical distance between the early and later Quaternary terraces, 

and iii) evidence for limited tectonic uplift between the formation the F4 terrace and 

the present day. 

The continuity of terraces and terrace heights around the c.340kms of coast from 

Kato Pyrgos to Famagusta also suggests that, on this scale, the coastal terraces of the 

island were uplifted as a single entity, with little differential movement. The low angle of 

dip of the coastal terraces represents depositional dip which does not steepen with older 

terraces, indicating that very little rotation of these terraces has taken place in contrast to 

those on the Kyrenia Range (Dreghorn, 1978). 

The evidence from the coastal geomorphology corroborates other 

geomorphological evidence concerning the uplift of Cyprus described elsewhere in this 

chapter. The studies here do not agree with the findings of Turner (1971) who identified 

the development of seven Quaternary marine terraces, which resulted from a continuing 

fall in sea-level, from the Pliocene to date. It has been shown here (Section 2.4.7) that 

aeolian development has masked the land surface in a number of areas around the 

southern coast of the island and it is believed that Turner (1971) mistook aeolian dune 

surfaces as additional terraces. 

2.6.4 Discussion, 
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De Vaumas (1959, 1961, 1962) identified three and possibly four periods of 

erosion during the Quaternary. These data agree with Ducloz (1965) and this study which 



satisfactorily correlate the mature erosion surfaces, channel fan sequences, paired terraces 

and related marine landforms, i.e. palaeoclifflines and marine erosion surfaces (Table 

1.10), throughout Cyprus. 

Carson & Kirkby (1972) state that the rate of emergence of landmasses, resulting 

from tectonic uplift, is rapid when compared with the rate of denudation. There is 

therefore little synchronous modification of the geomorphology during periods of uplift. 

This was probably the case during the early and middle Quaternary, i.e. Fl and F2 

(Tables 1.9 and 1.10), with geomorphological modifications lagging behind the uplift 

(Penck, 1953; Merrius & Vincent, 1989). Merritts & Vincent (1989) have identified 

incision and channel steepening as the primary response to uplift which then results in the 

isolation of surfaces, entrenchment (Bull, 1978) and the development of channel fans 

(Muto, 1987). However, mature erosion surfaces are now present on the north Troodos 

margin suggesting that the period of rapid uplift was succeeded by more stable 

conditions, during which time denudation occurred. The period necessary for erosion 

surfaces and mesa hills to reach maturity is controlled by climate, i.e. the amount and 

intensity of rainfall, and the erodability of the bedrock and vegetation (Bull, 1978). If it is 

assumed that a semi-arid climate existed in Cyprus, and especially on the north Troodos 

margin, during the lower and middle Pleistocene then the time taken for the formation of 

these mature erosion surfaces and mesas, i.e. pediments and inselbergs (Bull, 1978), will 

have been in the order of 700-1300ka.. The exact time is dependent on the bedrock 

(Fig.2.26). This suggests that the formation of mature erosion surfaces above the soft 

Pliocene sediments began approximately 700ka. B.P., i.e. the early to middle Pleistocene, 

following a period of rapid uplift (Section 2.3.5) and entrenchment. This is in line with 

evidence from the north Troodos margin and coastal landforms of southern Cyprus 

(Section 2.4). 

Sea-level changes have undoubtedly played a role in the development of the 

geomorphology in the coastal zone of southern Cyprus (Muto, 1987). This has probably 

contributed to the apparently untilted nature of the marine terraces. It is unlikely 

however, that eustatic sea-level changes had a major effect on the north Troodos margin 

as the change in gradient resulting from a eustatic fall, or rise, in sea-level would be 

minimal and similar to that recorded in Oman (Abrams et al., 1988). The evidence 

presented in this chapter indicates that the whole island has been uplifted and although 

this appears to have been differential, the distance from the point of greatest uplift, i.e. 

Mount Olympus, and the presence of concave erosion surface (Section 2.3) has resulted 

in near horizontal erosion surfaces today. This is in line with evidence from other 

Mediterranean areas (Hey, 1978) but unlike that seen in the Kyrenia Range (Dreghorn, 

1978). Climatic changes have probably played a role in the dissection and entrenchment 
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of the fluvial systems throughout southern Cyprus and it is likely that the river systems 

"partially reflect Quaternary climate fluctuations within a spatial framework determined 

by tectonic activity" (Harvey & Wells, 1987), as has been suggested for fluvial systems in 

semi-arid and and conditions in south-east Spain (Harvey & Wells, 1987), Oman 

(Maizels, 1987) and Israel (Frostick & Reid, 1989). 

The data presented in this chapter indicates that the island of Cyprus experienced 

absolute uplift during the Quaternary period (Chapter 3). The presence of a suite of near 

horizontal marine terraces and associated gorges and palaeoclifflines (Sections 2.4 and 

2.6.3), indicate that uplift of the whole of southern Cyprus took place. The data from the 

coastal landforms (Section 2.4), the drainage pattern (Sections 2.2) and the fluvial 

features (Section 2.3) indicate that uplift was rapid during the lower and middle 

Quaternary and slowed during the Late Pleistocene, with evidence of submergence during 

the Holocene (Flemming, 1978). 

2.6.5 Conclusions. 

In summary, it can concluded that: 

the geomorphological features can be correlated throughout southern Cyprus, 

evidence indicates that four major erosion surface and terrace levels exist in areas 

of both marine and non-marine influence, 

that eustatic sea-level changes, uplift and climate all played a role in the formation 

of the preserved geomorphological features, 

the drainage pattern remained broadly constant for the duration of the Quaternary 

period, 

the geomorphology reflects absolute uplift of the whole of southern Cyprus, 

the differential Quaternary uplift was focussed on Mount Olympus, 

the available geomorphological evidence supports rapid uplift during the lower 

and middle Pleistocene with relative quiescence and possible submergence in the Late 

Pleistocene and Holocene (Table 1.10). 
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Chapter Three: Quaternary biostratigraphy and 
geochronology . 

3.1 INTRODUCTION. 

This chapter will examine the evidence for biostratigraphic and geochronological 

correlations of the Quaternary from Cyprus. Evidence that confirms that the F1-F4 stages 

can be correlated throughout the island will be presented. Palaeontological data, i.e. 

vertebrate, invertebrate and microfaunal, relating to the correlations, climate change and 

mammalian evolution will be described and discussed. Absolute and relative 

geochronologic dates were obtained from coral and mollusc samples during this study 

using the uranium series disequilibrium, amino-acid epimerization/racemization and 
14  C 

methods (Bowen, 1978; Lowe & Walker, 1984; Mahaney, 1984). The results obtained 

from these techniques aid the correlation and interpretation of time of formation and 

uplift of the coastal terraces. 

Biostratigraphy can be applied to Quaternary sequences, although this form of 

relative dating can be problematic. Faunal range zones are of little use as the Quaternary 

period is short and therefore faunal variations are small. Pliocene molluscan fauna are 

very similar to many of those seen throughout the Quaternary (Appendix D; Henson, et 

al., 1949; Moshkovitz, 1968). However there are exceptions, notably the introduction of a 

warm fauna (the "Senegalesse" fauna), which includes the gastropod Strombus 

bubonious. This fauna is believed to be diagnostic of the Tyrrhenian Stage (Pantazis 

1966; Moshkovitz, 1968). Assemblage zones, i.e. groups of fauna reflecting ecology and 

environment (Richards, 1982), are of greater use as they are likely to reflect Quaternary 

environmental change, e.g. climate variation (Issar, 1979). Hearty (1987) states that 

diverse marine palaeohabitats and, more importantly, very variable wave energy, 

resulting in varying coastal geomorphology in Mallorca makes faunal comparisons 

sensitive to local changes, therefore limiting the value of biostratigraphy. The same 

variety of coastal geomorphology is seen in Cyprus (Chapter 2) with the Thigh energy 

coast" in south-east Cyprus around Larnaca contrasting with wide low-lying beaches and 

terraces in the south and west of Cyprus represented by the west coast between Paphos 

and the Akamas Peninsula (Fig.3.1). A stratigraphy based on faunal variations from 

progressively higher coastal terraces would not necessarily solve chronological problems, 

as higher terraces are not necessarily older, due to the interaction between tectonic and 

isostatic uplift and frequent, high amplitude, Quaternary eustatic sea-level changes 

(Fig.3.2). 
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view that older terraces are located at higher elevations. 

Note: (1) a fall in relative sea-level (i.e. a fall in sea-level, and/or a rising landmass) 
results in the oldest terraces being preserved at the highest elevations. 

uplift at different rates in different areas results in the formation of terraces of 
the same age at different heights. 

faulting of a terrace can result in the development of stepped terraces, which 
apparently reflect a relative drop in sea-level, i.e. a drop in sea-level and/or uplift, but in 
actual fact represent terraces of the same age. 

the oldest terrace develops, a fall in relative sea-level then results in the 
formation of the intermediate age terrace, a subsequent rise in the relative sea-level can 
result in the development of the third, and youngest, terrace in an intermediate location. 
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Altimethc correlations between different parts of the Mediterranean coastline 

have also been attempted in the past (Deperet, 1918; Zeuner, 1959). In Cyprus, Pantazis 

(1966) correlated the F3 (in this study) terrace at Larnaca with a 12m high cliff in Crete, 

attributing this to the Tyrrhenian II, or Main Monastirian Stage (Table 3.1). Uplift and 

submergence of terraces as a result of tectonics illustrate that these correlations have a 

limited value (Fig.3.2). 

Table 3.1. Mediterranean marine stage names and height ASL (after Zeuner, 1959). 

Stage name Type locality Height (m ASL) 

Late Monastirian Monastir, Tunisia 7-8 
Main Monastirian Monastir, Tunisia 18-20 

Tyrrhenian Tyrrhenian Sea area 28-32 

Milizzian Milazzo promontory, 
north coast of Sicily 53-60 

Sicilian Sicily 80-100 

In summary, a desirable stratigraphy can best be achieved by the use of a 

combination of absolute and relative age data, as discussed below. 

3.2.1 Micronalaeontoiogv. 

Micropalaeontological studies of ostracods and foraminifera from the Kakkaristra 

and Athalassa Formations of the Mesaoria Plain have yielded an ?Upper Pliocene to 

Lower Pleistocene age (McCallum, 1989). Nannofossil and foraminiferal assemblages 

from submarine channels at Amathus and Khirokitia, along the southern coast of the 

island (Fig.2.6), are of latest Pliocene age (Houghton et al., 1990). Grey-green mans 

found cropping out beneath marine terraces along the southern coast of the island 

(Chapter 7) have been examined for calcareous nannofossils and foraminifera by Dr. A. 

Lord and Dr. L. Gallagher (University College London). Reworking, as a result of 

erosion, has complicated dating, limiting the study to the identification of the youngest 

species, these are as follows: 
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Cape Greco (location 1-125) and Coral Bay (location 2-25). 

Sphenolithus abies, Deflandre 

Dicoaster brouweri, Tan 

Polis (location 3-150) 

Dicoaster pentaradaitus, Tan 

Dicoaster surculus, Martini and Bramlette 

Dicoaster tamalis, Kamptner 

Gephyrocapsa 

Pseudoemiliania 

The foraminifera recorded from the marls are: 

Cape Greco (location 1-125) 

Globigerinoides quadrilobatus, d'Orbigny 

G. trilobus 

G. ruber 

Globi rota/ia sp. 

Orbulina saturalii 
Many of the tests were broken and no there was no evidence for the presence of benthic 

foraminifera. 

Maa Peninsula (location 2-22) 

Globigernoides ruber 

Nodosaria radicula, Linne 

Nodosaria rapharia 

Ivtelonis sodanii, d'Orbigny 

Perigrina dirupta, Todd 

Lenticulina sp. 

Globorotalia margaritae, Bolli and Bermudez 

These fauna suggest a Pliocene age for the mans cropping out at Cape Greco, 

Coral Bay and Polis, correlating with marls of the Nicosia Formation. 

3.2.2 Invertebrate nalaeantologv. 

Studies of the Late Pliocene and Quaternary molluscan populations have 

previously been made (Moshkovitz, 1968). The molluscan populations of Cyprus are 

summarised in Appendix D and show two major groups: those with species that are found 

throughout the Quaternary in the Mediterranean (the "fanes banales' of the French) and 

immigrant faunas. The introduction of immigrant faunas, from latest Pliocene to the 

present day, allows three climatically controlled faunal assemblages to be recognised 
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(Issar, 1979; Table 3.2). Warm water molluscs (the "Senegalesse" fauna) are present in 

the marine terrace sequences at Larnaca indicating the Tyrrhenian Stage (Pantazis, 1966; 

Moshkovitz, 1968; Table 1.9). This warm "Senegalesse" fauna is thought to have entered 

the Mediterranean from the Atlantic during the Tyrrhenian Stage, this indicates the onset 

of warmer water conditions following cooler conditions during the Early and Middle 

Pleistocene (Issar, 1979). The correlation of Quaternary sequences using the classical 

stage names has proved to be very misleading (Hey, 1975), as the faunas are longer 

ranging than suggested by Deperet (1918). Their arrival and departure is not synchronous 

and faunal facies vary from area to area throughout the Mediterranean region (Hey, 1971; 

Butzer, 1975). 

Table 3.2. Mediterranean Quaternary palaeoclimates (after Issar, 1979). 

Post Tyrrhenian 	- present day faunal assemblage 

Tyrrhenian 	- appearance of warm Senegalesse fauna 
- i.e. Strombus bubonious, Marginopora 
- the warm water fauna exist between 220ka. and lOOka. 

(Butzer, 1975; Nilsson, 1983) 

Calabro- Sicilian 	- cooling of warm Pliocene climate 
- appearance of cold marine fauna 
- i.e. Arctica islandica, Hyalinea baltica. 

Solitary corals, i.e. Trochocyathus sp. and Flabellum avicula, are located in the 

grey-green marl sequences at Maa and Coral Bay (location 2-22). These were not seen 

elsewhere. Colonies of the cosmopolitan, hermatypic, Mediterranean scieractinian coral, 

Cladocora caespitosa, are found cropping out in the two lower marine terrace levels, the 

F3 and F4, within 1 im and 3m ASL throughout southern Cyprus (Chapter 7), as well as 

within the F2 terrace (c.50-60m ASL) in the Paphos area. C. caespitosa corals are also 

present within the Pliocene sediments of the Mesaoria Plain (Moore, 1960; Gass, 1960; 

McCallum 1989). The corals typically form colonies 1-2m in diameter (Plate 3.1) and are 

found throughout the Mediterranean today, e.g. off the coast of Israel and Morocco 

(Zibrowius, 1980). However, colonies of the coral are apparently absent from the Fl 

marine terraces throughout southern Cyprus. The sedimentary environments of all the 

documented marine carbonate terraces of southern Cyprus, i.e. F1-F4, are very similar 

(Chapter 7), with rhodolithic coralline algae, rather than coral, dominating during the Fl 

and F2 (Chapter 7). 
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D - Elephant and hippopotami bones set in a matrix of fine green sand, south-east of 
Xylophagou (location 2-75). 

E - A dwarf elephant tusk (ca.60cm long), south-east of Xylophagou (location 2-
75). 

F - A colony of the coral Cladocora caespitosa from the F4 (Late Pleistocene) 
terrace at Dhekelia (location 2-84). 

Note: scale is 50cm long. 
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32.3 Vertebrate nalaeontologv. 

3.2.3.1 Introduction. 

Dwarf vertebrate fossil fauna are present on Cyprus for much of the Quaternary 

period. Interest in this fauna has recently increased with the suggestion that the human 

occupation of Cyprus pre-dates, and may have contributed to, the extinction of these 

fauna (Simmons, 1988). 

The vertebrate fauna in Cyprus was first studied and described by Bate during the 

early part of the 20 th century (Bate, 1903; 1904). The bones are distinct from those found 

on other Mediterranean islands, especially Sicily and Malta, suggesting that the fauna was 

endemic (Boekschoten & Sondaar, 1972). The occurrence of different, although closely 

related, elephants and hippopotami on widely separated islands of the Mediterranean, 

supports the argument for comparable but independent evolution of the fauna (Bate, 

1903). Geological and geophysical evidence indicate that the Troodos Massif was not a 

submerged landmass during the Quaternary (Gass, 1968) and that deep water will have 

surrounded the island even during Quaternary eustatic sea-level lows (Fig.2.23). One-way 

migration to Cyprus is thought to have occurred during the Pleistocene ("Sweepstake" 

migration; Sondaar, 1986). Elephants and hippopotami are thought to have "island-

hopped", swum, or used natural rafts to reach Cyprus (and other Mediterranean islands; 

Reese, 1989). The migration gave rise to an isolated population, a tendency to dwarfism 

of the population then followed. Potential advantages of dwarfism were (after Sondaar, 

1986): 

a lack of predators meant that the fauna did not need to be large for defence, 

a smaller size meant that a larger population could survive in a given area, 

dwarfism allowed for greater mobility in hilly terrains, and therefore greater 

access to food resources; 

a smaller size allowed the vertebrates to remain cooler, and therefore remain 

active in hotter climates for longer periods. 

The presence of large bone sites on Cyprus suggests that the endemic fauna 

suffered a dramatic demise as a consequence of social stresses, e.g. over-population and 

starvation (Sondaar, 1986), climatic and environmental changes, e.g. small temperature 

fluctuations affecting food availability (Davis, 1981), or man as a predator (Simmons, 

1988). 
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3.2.3.2 Occurrence. 

Elephants and hippopotami bones have been found in sites in both northern and 

southern Cyprus. The sites are predominantly cave deposits sited along the flanks of the 

Kyrenia Mountains and along the southern coast, e.g. Akrotiri, Cape Pyla and Kissonerga 

(Held, 1990; Fig.3. 1). The author was shown two sites, one near Emba village in the 

south-west of the island (by Dr. Costas Xenophontos) and the other to the west of 

Xylophagou in the south-east (by a quarry worker) (Fig.3. 1). Neither was a cave site, 

instead the bones were deposited by fluvial processes (Chapter 5). Mammal fossils are 

also present in Fanglomerate Group and Pleistocene beach and dune sediments on both 

the southern and northern flanks of the Kyrenia Range (Boekschoten & Sondaar, 1972). 

Bone localities on the southern slope of the Kyrenia Range have been identified as being 

Villafranchian (Upper Pliocene-Lower Pleistocene; Ducloz, 1968). 

3.2.3.3 Fauna. 

The dwarf elephant species, Elephas cypriores (Bate, 1903) differs from the 

Sicilian and Maltese species, E. melintensis, by being slightly smaller, with a more simple 

tooth construction and laterally compressed tusks. The pygmy hippopotamus 

Hippopotamus minutus (Bate, 1903) was subsequently renamed Phanouris minutus 

(Boekschoten & Sondaar, 1972) because of the differences between this and the Maltese 

and Sicilian hippos. A gazetteer of the known mammal bone sites and the fauna found at 

each one has been prepared by Held (1990). 

A bone site in Fanglomerate Group sediments at Athna, in south-east Cyprus, has 

produced elephant teeth (molars), but no hippopotamus or elephant bones (D. Reese & S. 

Held, pers. comm., 1988). The teeth are larger than those associated with E. cypriotes. 

The bones collected from the site at location 2-75 are currently being examined by Dr. 

David Reese (of the Field Museum of Natural History, Chicago). Studies of the bones 

collected, and that remain in situ, at the bone site to the south-west of Xylophagou 

(location 2-75) have revealed the following (D. Reese, pers. comm., 1990): 

elephant bones - including a tusk 120mm long with a maximum diameter of 52mm, 

an unfused femur from a young individual, a scapula, fragments of pelvis and molars 

and incisors, 

hippopotamus bones - including a femur (Plate 3.1). 

The hippopotamus bones from location 2-75 and those collected at Akrotin are of 

similar size, the elephants bones from location 2-75 are larger than the samples of E. 

cypriotes collected from Akrotiri. Many of the samples from location 2-75 are from sub- 



adult elephants. The site at location 2-75 has produced the largest collection of older 

dwarf elephant remains in Cyprus. Molar tooth samples that have been collected from 

location 2-75 can be correlated with those from the Kyrenia Range and the Athna tooth 

collection, as can an elephant tusk found in the Xylophagou area (Held, 1990). The Athna 

tooth collection and Xylophagou tusk were found in fluvial sediments of the 

Fanglomerate Group. Location 2-75 is within 2m ASL. A detailed description of the 

Fanglomerate Group sediments in which these bones were situated, can be found in 

Chapter 5. 

3.3 GEOCHRONOLOGICAL DATING METHODS. 

3.3.1 Uranium series disequilibrium method. 

3.3.1.1 Introduction. 

The uranium series disequilibrium method utilises the 2341  U and 238U isotopes and 

their daughter products, i.e. 230  Th, 226Ra. This method is based on the virtual absence of 
234w daughter products in the near-surface marine waters. Corals form a closed system 

incorporating uranium in to their exoskeleton during life (Ku, 1976) and as such should 

not contain any 230Th when living. On death, radioactive decay of 234U results in the 

production of its daughter 230Th; the ratio of 230Th/234 U being proportional to the age of 

the sample. Accurate dates rely on the following assumptions and controls: 

that original aragonite is sampled, as dissolution and recrystallization to calcite 

could result in leaching and scavenging thus giving an incorrect apparent age for the 

sample, 

the original uranium content should be similar to a modern coral (approximately 

3ppm; Fig.3.3), 

the initial 234U/238U ratio = 1.15 ± 0.015, which reflects the disequilibrium found 

in living coral and present day oceanic waters (Turekian & Chen, 1971; Bender et al., 

1979, Chen et al., 1986; Edwards et al., 1986-87). It has been shown that the 
234 238 

UI U ratio has not varied over the last 200ka. (Ivanovich & Harmon, 1982), 

which is in keeping with the known long oceanic residence time of uranium, i.e. 

400ka. (Turekian & Chen, 1971), 
226 	230 	 230 	234 

that the Raj 230  ratio agrees with ThI U age, 

that little or no 232  T is present in the sample, 

that the 230Th/2 U age is consistent with stratigraphic and other assessments. 

The method has yielded internally consistent and well constrained dates for 

samples as old as c.350ka., e.g. in New Guinea (Bloom et al., 1974; Chappell & Veeh, 
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Table 3.3. Details of the U and Th isotopic and mineralogical compositions, plus age data, for the Late 
Quaternary Cyprus corals. 

Sample Locality Terrace 
height (m) 

234U1238U 23 p.j232Th 230Thi24U 232Th 
(dpmlg) 

U 
(ppm) 

Arag. 

(%) 

Age 
(ka) 

021 Larnaca 8-11 1.10 ±0.02 68.67 ±8.15 0.84 ±0.01 0.03 2.99 90 183±2 
617a Larnaca 8-11 1.16 ±0.01 63.33 ±4.38 1.01 ±0.01 0.03 2.19 99 > 300 
617b Larnaca 8-11 1.13 ±0.02 85.50 ±7.33 1.03 ±0.01 0.02 1.97 99 > 300 
617c Lamaca 8-11 1.13 ±0.02 41.75 ±2.51 0.88 ±0.01 0.04 2.25 97 209±7 
617d Lamaca 8-11 1.06 ±0.02 84.00 ±6.18 1.11 ±0.02 0.02 1.90 98 > 300 
617e Larnaca 8-11 1.14 ±0.02 43.00 ±4.85 0.86 ±0.02 0.03 1.76 98 197 ±16 
617f Lamaca 8-11 1.07-+0.02 154.0 ±19.79 0.97 ±0.01 0.01 1.98 98 > 300 
617g Larnaca 8-11 1.09 ±0.01 41.67 ±3.49 0.77 ±0.01 0.03 2.00 85 * 
617ed Larnaca 8-11 1.07 ±0.03 39.33±2.86 0.84±0.02 0.03 1.76 92 183 ±12 
358a Coral Bay 8-11 1.11 ±0.02 163.0 ±41.98 0.82 ±0.02 0.01 2.39 91 176 ±10 
358b Coral Bay 8-11 1.11 ±0.02 146.0 ±32.38 0.86 ±0.02 0.01 2.05 94 196 ±12 
358c Coral Bay 8-11 1.11 ±0.03 176.0 ±41.97 0.90 ±0.02 0.01 2.34 93 226 ±17 
358d Coral Bay 8-11 1.08 ±0.02 111.0±22.66 0.72 ±0.01 0.01 1.92 70 * 
358e Coral Bay 8-11 1.03 ±0.03 N.a. 0.86 ±0.02 0.00 2.11 92 196 ±12 
68a/89 Akrotiri 8-11 1.11 ±0.03 247.2 ±12.48 1.00 ±0.03 0.01 1.45 99 # 
68b/89 Akrotiri 8-11 1.11 ±0.04 206.9 ±4.58 1.12 ±0.04 0.01 1.56 97 # 
68c/89 Akrotiri 8-11 1.11 ±0.04 704.0 ±352.1 1.13 ±0.03 0.00 1.50 97 # 
68d/89 Akrotiri 8-11 1.10-+0.02 51.13 ±9.25 1.03 ±0.02 0.02 1.45 91 # 
40a/89 Petounda Point 8-11 1.11 ±0.02 87.38 ±11.45 0.87 ±0.01 0.01 1.58 94 203±7 
40d/89 Petounda Point 8-11 1.11 ±0.02 114.6±20.68 0.88 ±0.02 0.01 1.42 96 209 ±15 
200a Cape Greco 8-11 1.11 ±0.02 41.67 ±3.25 0.91 ±0.02 0.03 1.67 91 229 ±16 
527a 	. Cape Greco 8-11 1.14 ±0.02 39.33 ±3.46 0.74 ±0.01 0.03 1.87 91 141 ±4 
527b Cape Greco 8-11 1.00±0.02 32.25±2.89 1.09±0.02 0.04 1.58 81 * 
529 Cape Greco 8-11 1.11 ±0.03 61.00 ±5.18 0.88 ±0.02 0.02 1.67 95 209 ±16 
336a Paphos <3 1.09 ±0.02 66.50 ±8.30 0.66 ±0.01 0.02 2.49 96 113±3 
336b Paphos <3 1.09 ±0.03 126.0±20.23 0.66 ±0.02 0.01 2.36 100 112±6 
336c Paphos <3 1.17 ±0.03 57.50 ±8.01 0.64 ±0.02 0.02 2.06 96 108 ±6 
336d Paphos <3 1.08 ±0.02 72.00 ±10.17 0.67 ±0.01 0.02 2.65 98 117±4 
336e Paphos <3 1.09 ±0.02 151.0 ±30.85 0.70 ±0.01 0.01 2.65 100 125 ±4 
598a Dhekelia <3 1.10 ±0.01 42.33±2.96 0.73 ±0.01 0.03 2.10 95 138 ±4 
598d Dhekelia <3 1.09 ±0.01 64.50 ±4.27 0.69 ±0.02 0.02 2.30 99 122 ±3 
598e Dhekelia <3 1.10 ±0.02 63.50 ±4.34 0.73 ±0.01 0.02 2.13 97 135 ±4 
598f Dhekelia - <3 1.12 ±0.01 68.00 ±4.00 0.69 ±0.01 0.02 2.35 98 123 ±3 
598g Dhekelia <3 1.15 ±0.03 62.00 ±11.09 0.72 ±0.02 0.02 2.01 99 132±7 
598ee Dhekelia <3 1.14 ±0.02 55.71 ±15.65 0.66 ±0.01 0.01 1.39 97 113±3 
P2/89 Paralimni <3 1.11 ±0.02 102.5±28.74 0.76 ±0.02 0.01 2.27 81 * 
P3/89 Paralimni <3 1.11 ±0.02 113.0 ±11.37 0.73 ±0.01 0.01 1.87 91 138±4 
P4/89 Paralimni .< 3 1.11 ±0.03 42.74±3.89 0.71 ±0.01 0.03 1.97 96 129 ±4 
P5/89 Paralimni <3 1.10 ±0.02 33.84±3.54 0.78 ±0.01 0.03 1.65 82 * 
355 Coral Bay N.a. 0.91 ±0.02 255.0 ±37.83 1.40 ±0.02 0.01 2.68 91 >300 
P1 Barbados Na. 1.15 ±0.02 N.a. 0.01 ±0.00 0.01 1.93 93 Recent 
P2 Barbados N.a. 1.16 ±0.02 N.a. 0.01 ±0.00 0.00 2.04 100 Recent 
P3 Barbados Na. 1.15 ±0.02 N.a. 0.01 ±0 00 0.00 0.74 96 Recent 

Note: 	N.a. = not, applicable. 
* 	= age invalid as the sample contains < 90 61b aragonite. 

- 23Ofl1/234TJ >1.0 (see text for explanation). 
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Table 3.4. The location and type of sample used for uranium series disequilibrium studies, plus 
chemical yields and concentrations of uranium in each sample. 

Location 
number 

Sample 
number 

Coral species Uranium 
concentration (ppm) 

Th yield 
(%) 

U yield 
(%) 

1-130 021 C.caespitosa 2.99 80 76 
1. 617a G.caespitosa 2.19 77 82 

617b C'.caespitosa 1.97 70 86 
617c C.caespitosa 2.25 72 75 
617d C'.caespirosa 1.90 78 48 
617e C.caespitosa 1.76 89 95 
617f C. ca esp itosa 1.98 83 57 
617g C.caespitosa 2.00 94 71 

It  617ed Ccaespitosa 1.76 100 92 

2-22 358a C.caespitosa 2.39 58 76 
358b G.caespitosa 2.05 63 93 
358c C'.caespitosa 2.34 57 69 
358d Ccaespirosa 1.92 73 74 
358e C.caespitosa 2.11 64 34 

3-96 C68a/89 C.caespitosa 1.45 97 100 
of C68b/89 C.caespitosa 1.56 97 86 
ff C68c/89 C'.caespitosa 1.50 96 70 
It C68d/89 C.caespirosa 1.45 96 57 

3-11 40a189 C.caespitosa 1.58 95 100 
tf 40d/89 C.caespitosa 1.42 90 77 

1-125 200a C.caespitosa 1.67 95 71 
527a C.caespitosa 1.87 83 58 
527b C.caespitosa 1.58 93 78 
529 C.caespitosa 1.67 99 83 

2-11 336a C.caespitosa 2.49 98 85 
It 336b C.caespitosa 2.36 89 88 

336c Ccaespitosa 2.06 96 83 
336d C'.caespirosa 2.65 78 42 
336e C'.caespitosa 2.65 72 51 

2-84 598a C.caespitosa 2.10 92 95 
11 598d C'.caespitosa 2.30 85 88 
of 598e C.caespitosa 2.13 94 70 

598f C'.caespitosa 2.35 99 98 
398g Ccaespitosa 2.01 65 74 
598ee C.caespitosa 1.39 99 81 

3-50 P2/89 C.caespirosa 2.27 66 42 
P3/89 C.caespitosa 1.87 70 65 
P4/89 C.caespirosa 1.97 69 29 
P5/89 C.caespitosa 1.65 72 38 

2-22 355 Fla helium sp. 2.68 83 54 

N/A P1 Porites porites 1.93 22 79 
fI P2 Poritesporites 2.04 29 73 
H  P3 Poritesporites 0.74 65 87 



1978; Chappell, 1983) and Barbados (Mesolella et al., 1969), the upper age limit for the 

method (Broecker, 1963). 

The U-series disequilibrium method has been used extensively on mollusc shells, 

but these contain only 20% of the uranium found in corals and they form an open rather 

than closed system. An open system allows uranium to be incorporated into the 
238 

molluscan shell during 
	234 

ng diagenesis, i.e. both 	U and 	U relative to 	U, resulting in 

inaccurate dates. Very few reliable dates have been produced using the U-series method 

on molluscs samples, dates being variable and inconsistent when checked against 

independent methods, e.g. 231 PaJ235U ratio (Kaufman et al., 1971). However, molluscs 

found in Pleistocene beachrock deposits from the Mediterranean have been successfully 

dated, yielding consistent results that conform to independently derived data (Stearns & 

Thurber, 1965). Broecker & Bender (1972) argue that consistent dates can be attained 

from molluscs found in a carbonate beachrock as a closed system forms rapidly as a 

result of diagenesis, permitting only minimal changes in the uranium content. 

3.3.1.2 Sampling and analytical techniques. 

The availability of corals in the F3 and F4 marine terraces in Cyprus meant that a 

recourse to molluscan samples was not necessary during this study. Samples of the coral 

Cladocora caespitosa were collected from the F3 terrace between 11 and 8m ASL (at 5 

localities: Cape Greco, Larnaca, Petounda Point, Akrotiri and Coral Bay), and from lower 

(174) terraces at less than 3m ASL (at 3 localities: Paraliinni, Dhekelia and Paphos; 

Fig.3.4; Tables 3.3, 3.4 and 3.5). The majority of the corals were sampled from colonies 

that indicated a life position, e.g. attached to and growing from the substrate, unbroken 

and growing upwards (Chapter 7; Plate 3.2). 

Samples of unaltered aragonitic coral (Plate 3.2), showing no evidence of calcite 

replacement (Husseini & Matthews, 1972), were selected for isotopic analysis, based on 

optical microscopic examination, X-ray diffraction and scanning electron microscope 

studies (Plate 3.2; Table 3.3). 

 238 
A detailed account of the experimental procedures, age model and 

234U/  I U 

decay curve data are described in Appendix C. Uranium and thorium isotopes were 

analysed by a-spectrometry using silicon surface barrier detectors following the method 

of Kaufman & Broecker (1965), Thurber et al. (1965), Veeh (1966) and Thompson 

(1973). Complete dissolution of 4.5-6.Og of sample, standard ion exchange separation 

and electrolysis, prepared the separate U and Th sources. A mixed spike of 232U and 
228 	 i 	

232 	230 	238 	234 
Th was used to determine the isotopic activities of the 	Th, 	Th, 	U and U 
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D - A colony of Cladocora caespitosa revealing a life position from the F4 (Late 
Pleistocene) terrace to the east of Paralimni, south-east Cyprus. 

E - A scanning electron microscope image of the original aragonite cross-lamellae 
structures from the valve of Glycymeris glycymeris. 

F & G - Scanning electron microscope images of the needle structure of primary 
aragonite in a specimen of the coral Cladocora caespitosa. 
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isotopes. The samples were counted for two to three days to obtain the requisite counting 

statistics. Exclusive U and Th isotope detectors were used to minimise the a-recoil 

contamination. Background counts using identical conditions were routinely determined 

prior to the counting of each sample. Three samples of recent Barbados coral (P1, P2, P3) 

were analysed as a control (Table 3.3) The errors quoted here (Tables 3.4 and 3.5) are 

calculated as one standard deviation (1) of the counting statistics. 

3.3.1.3 Results of analysis. 

The 232Th activity is consistently very low (less than 0.04 dpm/g; Table 3.3), 

indicating an absence of contamination, hence non-radiogenic 230Th is not present as a 

contaminate, and little or no thorium was introduced after death of the coral. In addition, 

the initial 230Th of the control samples (P1, P2, P3) is extremely low, consistent with a 

recent age of formation; this also rules out possible analytical contamination during 

analysis. 

234. 238 	 4 

The 	UI U ratio of the Barbados samples (1.15 ± 0.03) and younger Cyprus 

corals correspond to the expected initial ratio of modern seawater (Turekian & Chen, 

1971; Bender et al., 1979; Chen et al., 1986; Edwards et al., 1986-87) following decay 

correction (Fig.3.5). Contrasting results were, however, obtained from older samples 

collected from Larnaca, Akrotiri and Coral Bay, with initial activity 
234U/238U ratios 

greater than 1.15 ± 0.03 following decay correction (displayed as the solid line in 

Fig.3.5). 

Some other results appear to be anomalous. Specimen 355 from Coral Bay is 

considered to be unreliable for the following reasons: 
234. 238 the 	uI U activity ratios, compared with the theoretical curve (Fig.3.5), suggest 

an age greater than the upper limit of the method, c.350ka. (Broecker, 1963), 

sedimentological and nannofossil evidence (A. Lord & L. Gallagher, pers. comm., 

1989) suggest that the terrace containing the coral can be correlated with Pliocene 

marine successions found elsewhere on Cyprus. 

Of the coral samples collected from Lamaca, four yield results consistent with the 

geological and stratigraphical data, while three other samples give anomalous results. All 

the samples collected from Akrotiri (samples C68a/89-C68d/89) show anomalous results 

similar to that seen at Lamaca. These anomalous results (samples 617a,b,d and C68a189-

C68d/89; Table 3.3) have 230Th/234U  ratios greater than 1.01. It is likely that 230Th has 

been added to the system, for the following reasons: 

M. 
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results from the control samples P1, P2 and P3 militate against contamination of the 

analytical equipment, 

the 230Th/232Th ratios are high, indicating the presence of a closed system, 

high initial 234U/238U  ratios suggest that 2 U has not been lost from the samples. 

Bender et al. (1979) showed that 230Th enrichment has taken place in corals older 

than 150ka. from Barbados, with 230Th possibly being released into groundwater from 

dissolving mollusc shells. This excess 230Th has then been scavenged by the coral, 

increasing the initial 230Th/234U ratio as a consequence. The anomalous spread of ages 

obtained for the Cape Greco terrace (Fig.3.4; Table 3.3) could reflect the fact that this is a 

death assemblage, i.e. reworked, or actually represents two phases of terrace development 

(see Chapter 7 for details). 

Weighted mean average ages of the Cyprus coral samples from each location, 

excluding those data that are believed to be unreliable, are shown in Table 3.5. 

Table 3.5. Weighted mean Uranium series ages for Cyprus coral data. 

Location Terrace height 
ASL (m) 

Number of 
samples 

Age (ka.) 

Petounda Point 8-11 2 204±6 

Coral Bay 8-11 3 192 ±6 

Larnaca 8-11 4 185 ±2 

Cape Greco *  8-11 1 141±4 

Cape Greco# 8-11 2 219 ± 16 

Paralimni <3 2 134±4 

Paphos <3 5 130±4 

Dhekelia <3 6 116±2 

Note: # - younger coral from Cape Greco 
* - older corals from Cape Greco 
weighted mean - composite results which reflect the relative accuracy of the results from each 
site. 

3.3.2 Amino-acid racemization / enimerization. 

3.3.2.1 Introduction. 

The amino-acid epimerization method employs the chemical reactions that occur 

during the degradation of proteins, which release abundant and variable amino-acids 

as 



(Abelson, 1955). The method investigates the amino-acid glycine, recording the ratio 

between the D- (dextro-) and L- (levo-) isomers (D-alloisoleucine and L-isoleucine). An 

isomer results from the epimerization of stereoisomers, one of two plus substances that 

have the same elementary composition but different structure, and hence different 

properties. During life the amino-acid takes the form of the L-isoleucine; death will result 

in epimerization and D-alloisoleucine will develop. The D/L (alle/Ile) ratio will increase 

after death, from 0.0 to 1.3 ± 0.05 (Miller & Mangerud, 1985); a higher ratio signifying a 

greater relative elapsed time and hence an older sample. Two forms of amino-acids, 

bound and free, are found in fossil samples. The free amino-acids are released by natural 

diagenetic hydrolysis and are therefore absent in living samples. However, these rapidly 

become an important component after death of the sample, and comprise 30-60% of the 

total amino-acids over a period of 1- lOOka. (Wehmiller, 1988). The bound amino-acid 

remains in the polypetide form, changing little after death. The rates of epimerization of 

free amino-acids are not constant during the diagenetic history. Bound amino-acids also 

racemize at different rates depending on whether the amino-acid is terminal, i.e. at the 

end of the structure, or in an interior position. The rates are such that: 

terminal > interior = free (Mitterer & Kriasuakul, 1984). 

Taxa whose proteins hydrolyse rapidly produce a large number of terminal 

amino-acids, and therefore racemize more quickly (Wehmiller, 1988). This contrasts with 

bivalve taxa that contain a large proportion of aspartic acid which hydrolyses more 

slowly and therefore does not produce fast racemizing terminal amino-acids as quickly 

(Wehmiller, 1980; Muller, 1984). Reaction rates depend on: 

the permeability of the shells, 

the original amino-acid composition, 

the type of protein structure. 

Thus, the reaction rates vary and are dependent on the bivalve genus and species. 

that is being analysed (Lajoie et al., 1980; Miller & Hare, 1980). The rate of breakdown 

of L- to D-isomers is also sensitive to temperature and pH variations. General reviews of 

the technique include Miller (1987) and Wehmiller (1988). 

The amino-acid epimerization technique was used to study the ratio of amino-

acids from molluscan shells during the course of this project. The amino-acid ratios 

obtained are proportional to the age of the samples allowing an amino-acid stratigraphy 

to be derived. An amino-acid stratigraphy divided into four aminozones has been 

established in the western and central Mediterranean (Hearty et al., 1986; Hearty, 1987). 

Hearty et al. (1986) define an aminogroup as representing a collection of equal-age 



deposits that due to dissimilar thermal histories, yield aLle/Ile ratios that vary relative to 

the long term regional thermal gradient" (Fig.3.6). Uranium series dating is used to 

calibrate the amino-acid data across climate boundaries. The relative aminostratigraphy is 

constrained using absolute dating techniques, e.g. the U-series (Harmon et al., 1983; 

Hearty, 1987) and 14C methods (Schroeder & Bada, 1976). 

3.3.2.2 Analytical methods. 

Amino-acid epimerization analysis using high performance liquid 

chromotography (HPLC) was undertaken by Professor D.Q. Bowen and Dr. G. Sykes, in 

the laboratories of Royal Holloway and Bedford New Collage (RHBNC; see Bowen et 

al., 1985 for details), and by Dr. P. Hearty in the laboratories of Duke University, North 

Carolina. The analytical methods used for amino-acid epimerization are described in 

Hare et al. (1985) and Engel & Hare (1985). The samples were collected from coastal 

sites throughout southern Cyprus (Fig.3. 1). The samples used during the course of this 

study consisted solely of the genera Arca, Callista and Glycymeris. These genera were 

used because: 

they have a well defined shell structure (Plate 3.2), 

occur frequently, 

inter- and intra-deposition of the amino-acids is consistent, i.e. the deposition does 

not vary between shells and from each sampling site on any one shell (Hearty et al., 

1986), 
there is no evidence for species variation in the epimerization rate (Hearty et al., 

1986), 

they have been sampled from the western and central Mediterranean previously, 

therefore the variation in rates of epimerization related to temperature and pH are 

known (Hearty et al., 1986), 

a relative amino- stratigraphy constrained by U-series dates has already been 

constructed for the western and central Mediterranean (Hearty et al., 1986), 

by correlating the results obtained here with the U-series dates (Section 3.3.1), 

the known contour map for Glycymeris aIle/Ile ratio, for the last interglacial (5e sea-

level maxima), of the western and central Mediterranean (Hearty et al., 1986; Figs.3.6 

and 3.7) can be extended into the eastern Mediterranean. 

3.3.2.3 Results. 
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The data presented in Table 3.6 represents the peak height alle/Ile ratios of the 

total "free" fraction released by hydrolysis and peptide bound amino-acids, obtained from 

the samples run at RHBNC. Two or three samples were taken from each shell, the 
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Table 3.6. Detailing the location, samples and results obtained with the amino-acid 
racemization technique. 

Sample Location 
number 

Height 
m (ASL) 

Species name Amino-acid alle/Ile ratio 

a) LOND 1-130 8-11 Callista chione 0.521 ± 0.018 (3) 
496 Larnaca 

b) LOND 1-125 8-11 Glycynieris 0.231 ± 0.050 (2) 
497 Cape Greco bimaculasa 

c) LOND 1-125 8-11 Arcanoae 0.461 ± 0.074 (2) 
498 Cape Greco Arca noae 0.604 ± 0.097# 

d) LOND 1-125 8-11 G.birnaculata 0.544±0.076(3) 
504 Cape Greco 

e) LOND 1-129 < 10 G. binzaculata 0.560 ± 0.170 (2) 
499a Ormidhia 

f) 	LOND 1-129 <10 G. biniaculata 0.324 ± 0.005 (2) 
499b Ormidhia 

g) LOND 1-129 <10 G. binwculata 0.683 ± 0.029 (2) 

505a Ormidhia 
h) LOND 1-129 <10 G. birnaculata 0.390 ± 0.010 (2) 

505b Ormidhia 
i) 	LOND 1-166 10 G. binzacu!ata 0.301 ± 0.109 (3) 

500 Polis 
j) 	LOND 1-166 10 G. birnaculata 0.504 ± 0.031 (3) 

506 Polis 

Sp258 1-166 10 G.glycymeris* 

3/303/89 Polis 
C72/89 3-97 <3 G. glycymeris* 

Akrotüi 
C230/89 2-5 50 G. glycymeris* 

Paphos 
C229/89 2-3 110 G. glycymeric* 

Paphos 
sp196 1-12 8-11 

. * 
G.gycymens 

sp156 Cape Greco 
C78/89 

LOND - Analysis carried out by Prof. D.Q. Bowen and Dr. Sykes at Royal Holloway and 
New Bedford College, University of London. 
Results are reported as - Mean value ± the standard deviation between the samples 
(number of samples). 
* - Presently being analysed by Dr. P. Hearty, Duke University, North Carolina, U.S.A. 
+ - Callista chione has a similar rate of racemization to that of Glycyineris. - 

- Arca noae has slower racemization rate, such that Gly/Arca = 1.31 (Hearty et al., 
1987), the ratio is a Glycyrneris equivalent age. 
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resultant aIle/Ile ratios for each shell were then averaged to give the ratios in Table 3.6, 

with standard deviation and number of samples per shell being quoted. The letters 

referred to in the text, correspond with the letters in left hand column of Table 3.6. 

The terrace at Larnaca (location 1-130) has been successfully dated, using the U-

series method (Section 3.3.1), as being equivalent to the oxygen isotope stage 7 

(Shackleton, 1975), the penultimate sea-level high. The Polis terrace (location 1-166) at 

lOm ASL has been correlated with the Larnaca terrace (Chapter 2). The mean amino-acid 

results obtained from individual shells in the Larnaca and Polis terrace are 0.521 and 

0.504 respectively; a lower mean ratio of 0.301 was also recorded from a shell in the 

Polis terrace (Table 3.6a, i and j). 

The results from Larnaca (location 1-130; Table 3.6a) and the indexed Arca and 

Glycymeris values (see Table 3.6 for explanation) at Cape Greco (location 1-125; Table 

3.6c and d) suggest an oxygen isotope stage 7 age, in line with the U-series age data 

collected from Larnaca. Two of the samples from Ormidhia (location 1-129; Table 3.6e 

and g) have a alle/Ile ratio greater than 0.500, correlatable with the aminogroups F and G, 

i.e. oxygen isotope stages 7-11 (Hearty et al., 1986). Two other samples from Ormidhia 

(Table 3.6f and h) have alle/Ile ratios that imply a date younger than oxygen isotope 

substage 5e. Anomalously low ratios were recorded for one sample at Cape Greco 

(location 1-125; Table 3.6b), where U-series dates give average ages of 141 ± 4ka. and 

219 ± 16, but the aIle/Ile ratio implies a date younger than oxygen isotope substage 5a. 

A limited data base makes any interpretation of the amino-acid data speculative, 

although the data is broadly correlatable with Hearty et al. (1986) and that obtained using 

the U-series method (Section 3.3.1). 

The low aIle/Ile ratios from Polis, Ormidhia and Cape Greco (Table 3.6b, f, h and 

i) appear to contradict the U-series, geomorphological and stratigraphic data. The samples 

collected from Polis and Ormidhia were taken from detrital sands and gravels in beach 

and deltaic environments (Chapter 6). These locations are susceptible to groundwater 

flow and therefore to leaching and contamination because of the high porosity and 

permeability of the lithologies. This leaching and contamination may have resulted in 

lower ratios than expected at these localities (P. Hearty, pers. comm., 1990). The low 

ratio at Cape Greco indicates an age postdating the aminogroup C (Fig.3.7), which is not 

consistent with the U-series (Table 3.5), geomorphological, or stratigraphic data, 

suggesting that some alteration during diagenesis (Chapter 7) affected the resultant 

aIle/Ile ratio. 
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If it is assumed that the thermal gradient, i.e. variation in temperature from area to 

area, across the Mediterranean basin today is similar to that seen during the Pleistocene 

and that the present day annual mean temperature for Cyprus is 19.1 °C (for Nicosia 

during 1970; Boucher, 1975), then aminogroups of Hearty et al. (1986) can be extended 

to include the data collected from Cyprus during this study (Fig.3.7). The mollusc 

specimens from Cape Greco plot in aminogroup F, i.e. oxygen isotope stage 7 

(Shackleton, 1975), whereas the data from Larnaca plot in an extension of aminogroup E 

(oxygen isotope substage 5e; Fig.3.7). This suggests that: 

i) the samples from Cape Greco confirm the ambiguities realised by the U-series data 

(Section 3.3. 1) and imply that the samples were: a) either reworked from the F3 

terrace sequences during the substage Se sea-level high, i.e. F4, as suggested 

previously (Section 3.3.1), or b) that the Cape Greco terrace may actually represent 

development during F3 and F4 times, i.e. stage 7 and substage 5e (Chapter 7; 

Fig.3.8), 

ii a) as the Larnaca terrace, i.e. F3, has been successfully dated using the U-series 

technique as being equivalent to the oxygen isotope stage 7 sea-level high, then the 

average mean temperature at Nicosia cannot be used as this is too high, or b) a 

continuation of the baseline drawn to indicate the base of aminogroup F is too high 

(Fig.3.7), or c) that diagenetic and/or temperature effects have produced an erroneous 

result. 

If it is assumed that the base of the aminogroup F is lower or the gradient less 

(indicated by line x-x' on Fig.3.7), which would satisfy U-series and stratigraphic data, 

then it can be concluded that the previously undated Ormidhia specimens (Table 3.6e and 

g) are of oxygen isotope stage 7 and older, and that the correlation of the Polis terrace 

(Chapter 2) with oxygen isotope stage 7, i.e. F3, and the Larnaca terrace is correct. 

The difference in aIle/Ile ratios between aminogroup E to F is minimal, so 

extremely well constrained amino-acid and modern annual mean temperature data is 

necessary if amino-acid ratios are to be used in an area that can not be constrained by U-

series dates. Finally, there is a broad correlation between the results obtained during this 

study and those of Hearty et al. (1986) but more samples need to be analysed so that 

multiple technique analysis of a terrace is achieved, as was the case during this study with 

the corals and U-series dating. This is needed before high levels of confidence can be 

placed in the data obtained here, as the method is influenced by many variables. Analysis 

of a number of specimens of Glycymeris and Arca from the U-series dated terraces, i.e 

Lamaca, Coral Bay, Petounda Point, Paralimni and Paphos, combined with other data 

(Hearty et al., 1986; Hearty, 1987) would then allow Mediterranean-wide aminogroups to 
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be distinguished, provided that the variation in mean annual temperature seen today 

reflects that seen during the Pleistocene. 

3.3.3 Radiocarbon method. 

3.3.3.1 Introduction. 

Carbon-14 is an unstable radioisotope which is produced in the upper atmosphere 

i (Libby, 1952). The 14C  mixes with oxygen to form CO  that is n global equilibrium, as a 

result of mixing. The 14C is taken up by a subsystem, e.g. mollusc shells, either aragonite 

or calcite. When the subsystem is isolated, the uptake of 14C ceases, and radioactive 

decay and disintegration to nitrogen by n-transformation takes place and an elapsed time 

since isolation can be calculated. This simple model relies on the following basic 

assumptions: 
constant carbon production has taken place over the last 50-100ka., 

rapid and uniform mixing, uptake and exchange of the radiocarbon takes place in 

the global system, i.e. atmosphere, biosphere, hydrosphere, 

the radiocarbon decay rate is constant, 

total isolation of the subsystem takes place, so that "young" or "old" carbon cannot 

be added, 
no isotopic fractionation has occurred to change the standard 14C 3C: 12C ratios. 

A comparison with modern standards, a knowledge of the half life of the ' 4C 

(5730 ± 40 years; Godwin, 1962) and the assumption that the ' 4C production rate is 

constant over time, allows a sample to be dated. The ' 4C timescale has limitations due to 

probable variation in the cosmogenic nuclide production, as have been shown by 

comparisons between ' 4C and the U-series dating method (Bard et al., 1990). Detailed 

reviews of the ' 4C method can be found in Bowen (1978) and Terasmae (1984). 

The 14C method has been applied to archaeological samples from Cyprus 

(Peltenburg, 1982, 1985, Gomez, 1987; Todd, 1987) and more recently to the question of 

uplift of the island (Vita-Finzi, 1990; this work). 

3.3.3.2 Methodology. 

Mollusc shells from the gastropod Astraea rugosa and the bivalve Glycymeris 

glycymeris were sampled during this study. One sample from each shell was taken for 

analysis. The Astraea rugosa was collected from the lower marine terrace, i.e. F4, within 

3m ASL, west of Kissonerga, on the coast north of Paphos (location 1-31a; Fig.3.1). The 



sample of Glycymeris glycymeris came from Cape Greco, south-east Cyprus (location 1-

125; Fig.3.1). 

Table 3.7. 14C results obtained during previous studies on Cyprus (after Gomez, 1987 

and Vita-Finzi, 1990). 

Location Height 

ASL (m) 

Type of sample/ 

species 

14C age 

Vasilikos Valley# N.a. In situ fire pits 6,330 ± 100 BP 

Vasilikos Valley# N.a. Carbon fragments 470 ±80 BP 
* 

Yeroskipos 30 Astraea rugosa >43,900 BP 

Coral Bay
* 
 10.6 Astraea rugosa 32,940 +7401-680 BP 

Kato Pyrgos
* 
 12 Monodonta turbinata 31,900 +7101-650 BP 
* 

Ayia Marina 13 Glycymeris violasecens >44,240 BP 
* 

Ayia Marina 12 Glycyrneris violasecens 30,710 +400/-380 BP 

Baths of Aphrodite
* 
 7 Glycymeris violasecens 39,330 +1140/-1000 BP 
* 

West of Kissonerga 10 Glycymeris violasecens 32,750 +620/-580 BP 
* 

West of Kissonerga 3.6 Glycymeris sp. 30,270 +310/-300 BP 
* 

West of Kissonerga 5.5 Spondylus sp. 31,110 +600/-560 BP 
* 

West of Kissonerga 4.0 M. turbinata + A. rugosa 30,340 +5801-500 BP 

Note: 	# = after Gomez (1987) 
* = after Vita-Finzi (1990). 

The method used here employed the scintillation facility in the laboratory of 

Professor C. Vita-Finzi, in the Department of Geological Sciences at University College 

London (UCL). The details of this method are outlined in Vita-Finzi (1983) and form 

part of Appendix C. The liquid scintillation method employs sealed vials and 

photomultipliers that detect light caused by scintillation of n-particles. The technique 

yields first order ' 4C dates. The upper limit on ages obtainable using this method, at 

UCL, is approximately 9.5ka. (Vita-Finzi, 1983). 

3.3.3.3 Results. 

The expected energy spectrum was obtained for both samples UCL1 18 and 

UCL 120 but the resultant dates obtained from this method were non-finite, i.e. >9.5ka.. 

Other '4C dates that are relevant to this work (Table 3.7) have been obtained from ashes 

within the fluvial sequences in the Vasilikos Valley (Fig.3.1; Gomez, 1987); and from 
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mollusc samples collected from the lower marine terraces in the Paphos and Polis areas 

of western Cyprus (Vita-Finzi, 1990). 

3.4 DISCUSSION AND CONCLUSIONS. 

3.4.1 Discussion. 

The palaeontological data presented in Section 3.2 indicate that the broad 

Quaternary climatic changes, that is described from Israel (Issar, 1979) are also reflected 

in the molluscan fauna of Cyprus (Moshkovitz, 1968). The present study also identifies 

changes in the presence of coral between the latest Pliocene and Recent. The apparent 

presence or absence of corals during the Quaternary in Cyprus could indicate: 

that the highest marine terrace, i.e. the Fl terrace, was formed during sea-level low 

stand, in a cold glacial period, and that the appearance of red coralline algae rather 

than coral in this terrace resulted from a drop in water temperature, or a rise in the 

salinity and nutrient levels (Thunell & Williams, 1989), during these periods, 

that the change in climate identified in other areas of the Mediterranean, e.g. Israel 

and Mallorca (Issar 1979; Butzer 1975) resulted in the introduction of a "cool water" 

molluscan fauna during the Calabro-Sicilian stage, followed by a "warm water" fauna 

during the Tyrrhenian stage. The F3 terrace at Larnaca, identified as Tyrrhenian Stage 

(Pantazis 1966; Moshkovitz 1968) on the presence of the gastropod Strombus 

bubonious actually corresponds to oxygen isotope stage 7 (Section 3.3. 1) so agreeing 

with the proposal that the "warm" water Tyrrhenian fauna were present in the 

Mediterranean from c.200ka. to 120ka. (Butzer, 1975; Nilsson, 1983). The 

occurrence of the "cool water" molluscan fauna corresponds to the dominance of red 

coralline algae in the sedimentary sequences, as seen in the Fl terrace, while the 

colonies of C. caespitosa relate to warmer periods, e.g. the Upper Pliocene and 

Tyrrhenian. 

The increase in salinity in the eastern Mediterranean during the last glacial period 

was in the order of 2 °/ (Thunell & Williams, 1989) and is likely to have been similar to 

this during the previous glacial periods, i.e. a maximum of C.41.5 °/oo. The increased 

salinity would have reduced the bottom-water oxygen concentration and then could have 

induced density stratification of the eastern Mediterranean. Circulation reversals and the 

stratification of the water is thought to have caused the eastern Mediterranean to become 

a nutrient trap during the last deglaciation at c.8ka. B.P. (Thunell & Williams, 1989). The 

nutrient levels remained apparently constant during the last glacial period, only changing 

during deglaciation. TIC data presented by Thunell & Williams (1989) indicate, that 
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nutrient levels are likely to have been similar during each of the Quaternary inter-glacial 

periods. 

Three skeletal assemblages have been identified in modern shelf carbonate 

sediments between 60°N and 600S (Lees & Buller, 1972; Lees, 1975): 

foramol ("temperate water"), where forams, molluscs and calcareous red algae are 

the dominant grain type, 

chlorozoan ("warm water"), where hermatypic corals and/or calcareous green algae 

are also present, 

chloralgal ("warm and high salinity"), where calcareous green algae are seen, but 

coral is absent because of excessive salinity (Fig.3.91 

The predicted skeletal distribution within the eastern Mediterranean today 

indicates a chioralgal to extended-chlorozoan skeletal population (Fig.3. 10; Lees, 1975), 

which is capable of coping with maximum salinities of c.45 °/oo (Fig.3.9). Limited glacial 

salinity levels falling within the range of the chlorozoan and extended-chlorozoan group, 

suggest that temperature change was the dominant control on the occurrence of foramol 

and chlorozoan groups. Available evidence concerning the time of formation of the Fl 

and F2 terraces suggests regressive conditions, indicative of: 

i) a drop in sea-level, 

and/or ii) tectonic uplift, 

and/or iii) progradation of the shoreline sediments out into the marine environment 

(Chapter 7). 

Molluscan faunal changes reflecting climate adjustments, throughout the eastern 

Mediterranean (Moshkovitz, 1968; Issar, 1979), the presence of coral in Pliocene 

sediments of the Mesaoria Plain (Gass, 1960; McCallum, 1989), but not in the Fl terraces 

in Cyprus and the fact that a temperature dependent foramol and chlorozoan relationship 

does exist, suggests that the coral/red algal relationship relates to changes in temperature 

in the Mediterranean Sea during the Quaternary. Teichert (1958) has also shown that 

hermatypic corals only exist in "warm water" but C. caespitosa colonies flourish in the 

cool winter waters, i.e. down to 10 °C, of Adriatic Sea at present (Zibrowius, 1980). Thus, 

the present evidence suggests that Quaternary coral and calcareous red algal populations 

in Cyprus may reflect climatic changes that were previously only recorded in molluscan 

populations. Overall, "cooler waters" existed in the lower-middle Pleistocene with 

warmer conditions in the latest Pliocene and middle-late Pleistocene. 

Absolute age data, to corroborate the above arguments, has not been obtained 

from the corals in the F2 terrace in the Paphos area. 
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Ill 

Fig.3.9. S.T.A.R. (Salinity Temperature Annual Ranges) diagram pair for skeletal grain 
associations in modem shelf carbonate sediments (after Lees. 1975). 

Note: the dotted lines indicate the approximate limits of near-surface salinity/temperature 
combinations existing in the modern shelf seas and lagoons. 
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The micropalaeontological evidence from the marl sequences cropping out 

beneath the F3 terrace, e.g. Cape Greco and Coral Bay, and in the Polis-Paphos graben 

(location 3-150) indicate a Pliocene age. The mans formed in water depths of c.100- 

200m (based on sedimentological features, A.H.F. Robertson, pers. Comm., 1989; and 

ostracod data, after A. Lord) and are found within 20-30m ASL, e.g. in the Polis-Paphos 

graben. This indicates that 130-230m of relative uplift has taken place along the coast 

since the Pliocene. Micropalaeontological data (Houghton et al., 1990) also indicate that 

at least some of the Quaternary fluvial channels along the south coast of Cyprus were 

active as submarine channels in the Pliocene, e.g. the Maroni River (Fig.2.6). 

The mammal fauna found in cave and fluvial sediments in southern Cyprus do 

show a progressive dwarfism through the later part of the Pleistocene. It should be 

possible, if more samples are collected, to date some of the elephant and hippopotamus 

teeth and bone using the amino-acid epimerization and ' 4C techniques (Simmons, 1988; 

Belluomini & Bada, 1985), and so allow the fluvial and cave sequences to be dated. 

The relative biostratigraphy available from Cyprus gives some indication of the 

environmental changes that took place during the Quaternary which can be used for broad 

correlation purposes. In an area where active neotectonic faulting has been occurring 

throughout the Quaternary (Chapter 4) absolute dating is necessary to correlate different 

areas of Cyprus. Absolute dates allow geomorphological correlations, determined in 

Chapter 2, to be confirmed. This work provides the first detailed study of islandwide 

Quaternary correlations, and the first major use of Quaternary dating methods, outwith 

those used for archaeological purposes. 

The necessity for absolute dates, and redefinition of much of the Mediterranean 

marine stratigraphy (Section 1.8) arises from the assumption that Quaternary terraces of 

similar age crop out at the same height, throughout the Mediterranean basin (Zeuner, 

1959; Table 3.1). The correlation based on altimetry and then supported by faunal 

evidence, e.g. the use the of the Tyrrhenian "Senegalesse" fauna which ranges over a time 

greater than one inter-glacial period (Butzer, 1975; Nilsson, 1983), has resulted in a 

confused stratigraphy. It has been shown that the "Senegalesse" fauna and the oxygen 

isotope stage 7 "Tyrrhenian" terrace, in Cyprus (Section 3.3.1), and in other areas of the 

Mediterranean basin (Bonifay & Mars, 1959), crops out 10-12m ASL and is not restricted 

to 28-32m ASL, contrary to the previous data from Cyprus (Pantazis, 1966; Table 3.1). 

The Mediterranean shorelines studied by Hey (1978) have been displaced vertically 

making nonsense of the altimetric correlations of Zeuner (1959), whilst the work of 

Flemming (1978; Fig.3.11) and Pirazzoli et al. (1991), from different Mediterranean 

112 



- 

• 	o 	12.0m per 1000 years 
, -- 	+1 .Oui per 1000 years 

0.0m per 1000 years Greece 	 - - - — 0.5m per 1000 years 
—1.Om per 1000 years Turkey 	- - - — 2.Om per 1000 years 

I' 

0 	km 	200 
0 	' 	 I  

• 	 • 	
0 	

6' 	 NO IEIAI'1VE MOVEMENT 
SUBMERGED 

Rhodes 

...... . 



regions, supports the argument for terraces at a similar elevation forming at different 

times. 

Confirmation of the geomorphological correlations of the coastal terraces 

throughout southern Cyprus, i.e. F1-F4, based on altimetry, was made using the 

Quaternary dating methods. Interpretations concerning sea-level changes and rates of 

change of uplift can also be made. 

Any interpretation involving tectonic uplift of Cyprus must take Quaternary 

eustatic sea-level changes into account. Thus, the U-series age data can be considered in 

the light of the known chronostratigraphic ages of Quaternary global oxygen isotope 

stages (Shackleton, 1987; Shackleton & Opdyke, 1973, 1976, Chappell & Shackleton, 

1986). On this basis, the 185-219ka. age of the marine terraces suggests a correlation 

with global oxygen isotope stage 7 and this, in turn, supports the view that no more than 

18m of uplift has taken place since this time, assuming that the corals formed at water 

depths of lOm (based on geomorphological and sedimentological evidence; Chapters 2 

and 7). Similarly, the lower marine terrace, less than 3m ASL, can be correlated with the 

sea-level maximum recorded by oxygen isotope substage 5e, 5-8m higher than the 

present day maximum (Stearns & Thurber, 1965; Broecker et al., 1968; Mesolella et al., 

1969; Bloom et al., 1974; Chappell, 1974; Ku et al., 1974; Stearns, 1976). If correct, the 

marine terraces less than 3m ASL have undergone little or no uplift, and may even have 

subsided, in agreement with field observations, Moshkovitz (1968) and Flemming 

(1978), but contrary to the views of Giangrande et al. (1987) and Vita-Finzi (1990; Table 

3.7). Giangrande et al. (1987) suggested that local differential neotectonic uplift and 

tilting has taken place in south-west Cyprus during the late Quaternary. However, 

terraces correlated by these authors, i.e. at Coral Bay and Kato Paphos, have proved to be 

of different ages in this study (Table 3.5). The U-series isotopic age data show that 

terraces at similar heights over widely spaced areas of coastal Cyprus (less than 11 rn  and 

less than 3m ASL) are of similar age (219-185ka. and 141-116ka.). The presence of the 

F3 terrace 8-1 lm ASL, compared to 28-32m ASL in other areas of the Mediterranean 

(Zeuner, 1959) supports the argument for relative stability since c.200ka., in line with the 

views of Bonifay & Mars (1959), for stage 7 terraces throughout the Mediterranean 

basin. The apparent absence of a substage 5a (c.75-90ka.; Stearns & Thurber, 1965; 

Lalou et al., 197 1) terrace in Cyprus, which is indicative of a slightly lower sea-level than 

the substage Se terrace, e.g. Cerveteri, Italy (Bonadonna & Bigazzi, 1970; Ambrosetti et 

al., 1972; Hearty et al., 1986), also supports the argument for the relative stability, 

limited tectonic uplift and local subsidence (Fig.3. 11) of Cyprus in the Late Pleistocene 

and Holocene. Recent amino-acid and U-series data have indicated that two substage Se 

sea-level highs may have occurred (Kaufman, 1986; Hearty, 1986; Hollin & Hearty, 
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1990), although the data here do not necessarily support this argument. More amino-acid 

analyses and more precise U-series data using isotope dilution mass spectrometry 

techniques (Edwards et al., 1986-87) may elucidate such subtle changes in sea-level. Split 

terraces are seen associated with the Fl marine sequences in the Paphos area (location 2-

2). These terraces do not appear to be fault controlled and may represent a lower-middle 

Pleistocene twin sea-level high, preserved as a result of uplift of the island during this 

period. 

Average rates of uplift can be inferred, assuming that the coral colonies developed 

at depth of lOm below sea level (see Chapter 7 for details). A maximum of 6m of uplift 

would then have occurred over the past 1 l6ka., assuming that the sea-level maxima 

during substage 5e was 5-8m higher than the present-day sea-level (Mesolella et al., 

1969; Bloom et al., 1974; Chappell, 1974; Stearns, 1976). This would give an average 

rate of uplift of c.5cm/ka. It should be noted that partial submergence ma have taken 

place during this period (see above). A maximum of 13m of uplift took place between 

141ka. and 185ka., at an average rate of c.29cm/ka. The U-series data implies that there 

is a reduction in rates of uplift over the last 219ka. 

3.4.2 Conclusions. 

The following conclusions can be drawn from this Chapter: 

U-series disequilibrium dates from C. caespitosa corals from raised marine terraces 

in southern Cyprus confirm that the F3 terraces (8-1 im ASL), correlated by means of 

geomorphology, are of similar age, 219-185ka.; as are the F4 terraces (<3m ASL) 

from different parts of the island, 141-1 l6ka., 

the older terraces (8-1 im ASL) record maximum uplift at average rates of 

c.29cm/ka. between 141-185ka. The younger terraces (< 3m ASL) indicate average 

uplift rates of c.5cm/ka. for 1 l6ka., with the exception of Cape Greco, which suggests 

a rate of c.l2cm/ka., 

correlation with the Quaternary global isotopic stages confirms that maximum 

uplift has been limited to 18m during the past 185-219ka., and also suggests that 

relative subsidence has taken place in some coastal areas over the past 1 l6ka., 

Quaternary eustatic sea-level changes, rather than tectonic uplift, have controlled 

the deposition of the exposed littoral sequences during the Late Pleistocene, 

broad Quaternary climatic variations indicated by the changes in the 

Mediterranean molluscan population have also contributed to the presence, or absence 

of corals in the Quaternary carbonate sequences, 

nannofossil evidence from the Pliocene marl sequence indicates that a minimum 

of 130m of relative uplift has taken place in coastal areas since this time, 
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the amino-acid, U-series, ' 4C and faunal evidence are consistent with each other 

and the geomorphological correlations, 

block uplift of the island has apparently taken place during the Quaternary, with 

evidence for more recent subsidence (Flemming, 1978; this study). The rate of uplift 

has varied preventing accurate altimetric correlations between Cyprus and other areas 

of the Mediterranean, in line with the views of Hey (1978). 
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Chapter Four: Neotectonics. 

4.1 INTRODUCTION. 

This chapter will review the existing published data for Quaternary neotectonic 

activity in Cyprus. Original data obtained during this study will be presented, with the 

aim of assessing the relationship between the nature of Plio-Quaternary and Quaternary 

tectonic activity on Cyprus. Data will also be collated to establish whether there is a 

broad agreement between fault, joint and other kinematic indicators, similar to that 

recorded in both compressive and extensional regimes elsewhere, e.g. the Qaraden 

segment of the Arabian graben and trough system (Hancock & Al Kadhi, 1982) and in 

the Jaca thrust-sheet top basin of the Spanish Pyrenees (Turner & Hancock, 1990). 

The neotectonic extensional grabens and basins of southern Cyprus, e.g. Pissouri 

basin (Fig.4. 1), were active until the Late Pliocene-Quaternary (Dupoux 1983; Elion 

1983; Table 4.1). The Polis-Paphos graben, in south-west Cyprus, proves to be an 

exception to the general pattern, as neotectonic faulting continued into the Quaternary 

(Ward & Robertson, 1987), and now forms the basis of a separate study by Ann Payne at 

Edinburgh University. The neotectonic basins and grabens are thought to have been 

initiated in the Miocene as a result of crustal extension related to an active margin, the 

Cyprus Arc (Robertson et al., 1991). Active Quaternary neotectonic faulting outwith the 

confines of the extensional basins is limited (Pantazis, 1966; Kluyver, 1969; Gomez, 

1987; Giangrande et al., 1987). The tectonic activity in Cyprus today is less intense than 

active neotectonics seen in the Aegean region, or other areas of the eastern Mediterranean 

(Peters et al., 1985; Flemming, 1978; Flemming & Woodworth, 1983). 

4.2. SEISMIC STUDIES. 

Seismic studies of offshore southern Cyprus show evidence for extensive faulting 

and folding until the Pliocene, related to underthrusting and correlatable with known 

WNW-ESE lineaments in southern Cyprus (McCallum, 1989; McCallum et al., 1992). 

Cessation of major deformation in the Plio-Pleistocene is suggested to have been as a 

consequence of roll-back of the Cyprus trench, during this time, to a position 

approximately 30km further south (Stride et al., 1977; Riad et al., 1981; McCallum, 

1989; McCallum et at., 1992). Reverse faulting is reported off south-west and southern 

Cyprus, the trend being parallel to the coast (Catani et al., 1983). Seismic data show that 

the Pleistocene sediments on the southern Cyprus shelf and slope form a discontinuous 

series of undeformed, uniformly bedded sediments draped over the underlying deformed 

pre-Pleistocene sedimentary sequence (Fig.4.2). This evidence agrees with seismic data 
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Table 4. 1. Details concerning the extent, timing and nature of Neogene and Quaternary faulting in the grabens and basins of southern Cyprus 
(after authors recorded at the top of each column). 

Polis-Paphos graben 
western Cyprus 
(Ward & Robertson, 1987) 

Pissouri Basin 
southern Cyprus 
(Elion, 1983) 

Polemi Basin 
western Cyprus 
(Dupoux, 1983) 

Psematismenos-Tochni 
Basin southern Cyprus 
(Dupoux, 1983) 

Type and direction Extension Extension Extension Extension 
of deformation NNW-SSE WNW-ESE NNE-SSW NNW-SSE 

Other fault sets Transverse faults Messinian extension Secondary faults Messinian extension is 
NW-SE, orthogonal is E-W extension WNW-ESE NW-SE and NNW-SSE 
to graben trend Middle Pliocene Messinian extension Middle Pliocene- 

extension is NE-SW is E-W Recent extension 
Middle Pliocene is NE-SW 
extension is NE-SW 

Time of fault Upper Miocene Messini an- Recent Messinian- Messinian- Recent 
movement (Messini an) -Recent Quaternary 

Reactivated Lower 
Cretaceous-Tertiary 
basement 

Notes Asymmetrical faults Numerous faults Normal sub-vertical 
during Calabrian faults 
extension 

Note: see Fig.4.1.. for the location of the various basins and grabens. 



collected from the slope and shelf areas off south and south-east Cyprus that reflect well 

stratified sedimentary sequences (Catani et al., 1983). 

4.3 EARTHQUAKE DATA AND BOREHOLE STRESS STUDIES. 

Small earthquakes, with both onshore and offshore epicentres, occur at regular 

intervals in the Cyprus region. The earthquakes generally have a magnitude of 2-4.5 on 

the Richter scale. There were between 326 and 390 earthquakes per annum in the period 

1984 to 1986 (Constantiou 1985, 1986, 1987). Larger, deeper earthquakes also occur, 

with notable examples in 370 A.D., 1189 A.D. and 1953 A.D. (Soren & Lane, 1981). 

Fault plane solutions from earthquakes off the southern coast of Cyprus indicate 

compression orientated WNW-ESE (Rotstein & Kafka, 1982). The Cyprus Arc has less 

associated seismicity than the Hellenic Arc to the west (Stride et al., 1977). 

Stress studies and fracture logging of the deep borehole CY-4 situated on the 

Troodos ophiolite south of the village of Palaekhori, in the dyke complex to the east of 
Mount Olympus (Haimson et al., 1990) indicate that the maximum (SH)  and minimum 

(S h) horizontal stress directions are N70 0E ± 100  and N20°W ± 150  respectively, in 

agreement with Rotstein & Kafka (1982). The vertical stress valueS, S H > Sh indicates 

normal and/or strike-slip conditions. There is no evidence of subduction related 

compression. Breakouts and hydrofracturing were predominantly vertical, strike-slip left 

lateral. The stress regime is compatible with extension across and normal to an inclined 

ENE plane, left lateral strike-slip motion is approximately E-W, in line with movement 

along the Anatolian Fault. The joints trend towards the NE and the principal extension 

regime is NNW-SSE (Haimson et al., 1990; Fig.4.3). 

4.4 FIELD EVIDENCE FOR QUATERNARY FAULTING IN SOUTHERN CYPRUS. 

Active faulting has continued from the Pliocene into the Quaternary in the 

Neogene basins of southern Cyprus (e.g. Dupoux, 1983; Elion, 1983). Minimal evidence 

for Quaternary faulting has been identified outwith these basins (Pantazis, 1966; Kluyver, 

1969; Gomez, 1987; Giangrande et al., 1987 and this study). Terraces that crop out at 

different heights in south-west Cyprus have previously been interpreted as having been 

faulted (Kluyver, 1969; Giangrande et al., 1987), but these have been misinterpreted as 

the terraces are not of the same age, having formed a different times (Chapters 3 and 7). 

The only certain piece of evidence for active faulting, outwith the extensional basins, 

during the Quaternary period, prior to this study, is found in the Vasilikos Valley 

(Gomez, 1987). 
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Two forms of data were collected and examined during this study: 

fault data from exposed faulted Quaternary sequences throughout southern Cyprus, 

joint and meso-and micro-scale fractures associated with joints. 

The following definitions are used here: 

a joint is "a fracture that traverses an outcrop and is not accompanied by any 

discernible displacement of one face of the fracture relative to the other' (after 

Hodgson, 1961), 

a fracture is a break in a rock that may or may not have associated displacement 

(Bates & Jackson, 1980), 

a mesofault has a displacement of between 1mm and Sm and a fault plane area of 

less than 1000m 2 

Joint related data was collected from lithified Quaternary and pre-Quaternary 

terraces in south-west and south-east Cyprus. No evidence of folding was recorded during 

the course of this study. 

The number of faults present in the Quaternary sequences is limited, but examples 

of normal faults were recorded in the F2 Fanglomerate unit in the western part of the 

Mesaoria Plain (location 1-105), the F2 deltaic and Fanglomerate units in the Larnaca 

area (location 3-13; Plates 4.1 and 4.3), the Fl, F2 and F4 carbonate sequences in the 

Paphos area (location 3-31; Plate 4.2) and cutting the Fl Fanglomerate unit sequences in 

the Polis-Paphos graben near Nata (Plate 4.2) and Goudhi (Plate 5.12). All the faults 

seen, with one exception in the Miocene chalks at Ayios Yeoryios (location 2-27) were 

normal, with a high angle of dip and throw varying between 10cm and 4-5m (location 1-

126 and 3-13 respectively; Plates 4.1, 4.2 and 4.3). Both sinistral and dextral fault 

movement was noted. 

Field data indicates that fault movement has occurred throughout the Quaternary 

but that this has not been extensive, although preservation of fault structures in 

unconsolidated sediments can be poor. Much of the fault movement was undoubtedly 

caused by regional tectonics and does not reflect local dewatering and overpressuring 

structures, the plotted data indicatin'1. a high degree of uniformity of dip and strike 

(Fig.4.4a), the strike varies from the WNW to NNW and ESE to SSE. Some evidence of 

overpressuring and dewatering of sediment was noted at Akrotiri (location 3-96a), where 

a series of erosion surfaces and associated steeply dipping foresets, related to intra-

Pliocene submarine movements, are seen. The structures become more densely packed 

directly beneath the erosion surfaces. There is no evidence of grain disruption, indicative 

of faulting. Two sets of near vertical structures are seen,(poorly cemented E-W set and a 
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ages of fractures cutting Quaternary and Neogene sediments of southern Cyprus. 

Note: dip/strike/trend references. 
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PLATE 43, 

A - Normal faults cutting the deltaic and Fanglomerate Group sequences in southern 
Cyprus to the west of Larnaca (location 3-13). 

Note: 50cm scale to the right of centre of photograph which is taken looking north-
east. 

B - Normal faults cutting the deltaic sequences but not the overlying Fanglomerate 
Group sequences (location 3-13). The faults dip at 700 and strike at 2000. 

C - Normal faults with throws in the order of 2-3m cutting both the deltaic and the 
Fanglomerate Group sediments (location 3-13). The fault dips at 800 and strikes 
220°. 
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A - Vertical normal fault cutting the F4 marine terrace to the south of Lara (location 
2-31). The fault has a throw of c.SOcm and strikes north-west to south-east. 

Note: the 25cm scale to the left of the fault. 

B - A series of normal faults cutting the Fanglomerate Group and younger sediments 
near the village of Nata at the southern end of the Polis-Paphos graben. 
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A - Small scale normal faults cutting shallow marine sequences in a quarry near 
Ormidhia, south-east Cyprus, viewed looking north. 

B - Displacement fractures covering the F4 marine terrace at Paphos, south-west 
Cyprus (cfFig.4.4). 

C - Plan view of cross-cutting joints in the F4 (Late Pleistocene) marine terrace at 
Paphos, south-west Cyprus. 
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well cemented N-S set, a conjugate set orientated NNW-SSE is also present. The 

structures recorded here are similar to structures seen in an accretionary complex when 

hydraulic de-watering is taking place (A.H.F. Robertson, pers. Comm., 1989). 

The joint and fracture data were collected in order to increase the data base; as 

there was a paucity of preserved fault planes. The resulting data were used to test the 

hypothesis that this data source can be used as a kinematic indicator which reflects the 

uplift of the island and the regional tectonic stresses that were active during the early 

Quaternary. 

The joint data collected during this study are plotted in the form of rose diagrams 

(Fig.4.5), with fault data being plotted on a lower hemisphere stereographic Wulff net 

(Fig.4.4a) and shown in sketches (Fig.4.4b and Plate 4.3). The relative age of the joints 

and fractures is discernible by means of cross-cutting relationships with earlier fractures 

and joints being displaced by later fractures (Pig.4.4b). This study has been restricted to 

outcrops in the south-east and south-west of the island because: 

lithified Quaternary sequences crop out extensively in these areas, 

a comparison between the early and late Quaternary and pre-Quaternary joint and 

fracture patterns, i.e. Miocene limestone outcrops, can be made within each of the 

two areas, 

the two regions can be compared. 

The joint and fracture data collected from south-east and south-west Cyprus dip 

between 700  and 900 , i.e. vertical. The joint and fracture data collected from the F4 

coastal terrace in the Paphos area and to the north, along the west coast of the island, 

suggest that three or possibly four major joint and fracture sets are present. These strike 

between: 
O0O220, 

0940-1100 , 

14001600, 

0500 0600  (Fig.4.5). 

The 0940-1100  striking joint traces dominate in the Paphos area with very 

continuous, wide joints compared to the other sets. Cross-cutting relationships, where the 

fractures are actually meso-scale faults rather than joints sensu stricto, differ from site to 

site but show the following age relationship on the F4 terrace in the Paphos area: the 0 °-

022°  set (1st) is cut by the 094 0-1100  set (2nd), which in turn is cut by the 1400-1600  set 

(3rd) (Fig.4.4b). The cross cutting relationship is not systematic and varies from west to 

east across the island (see below). The fractures from the F4 coastal terrace in south-west 
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Cyprus show both sinistral and dextral lateral movement. Little evidence for vertical 

movement on fault plane was seen in the F4 terrace of south-west Cyprus, throws being 

in the order of 10-20cm, although a maximum of 60cm was observed. 

The 00-100  striking joint set recorded in the Ayios Yeoryios area (location 2-27; 

Fig.4.5) dominates locally with the 0900-110' striking joints forming a secondary set of 

many small, laterally impersistant joints. Fractures indicate that the 090 °-110°  joint set 

pre-dates the 00-100  striking set, displacement is lateral, both dextral and sinistral, and 

generally limited to a maximum horizontal movement of 15cm. 

The joints associated with the Miocene limestones from in the Fl terrace to the 

west of Peyia (Fig.4.5) show evidence of caliche formation along the joints. The 

formation of caliche (Chapter 9) in joints is not limited to the Miocene limestone but is 

most pervasive in these units, with an apparent continuation of the horizontal caliche 

formation down the walls of the joint. This calichification usually caps the majority of the 

joint walls on the older, Miocene, limestones. Data collected from the Fl and F2 terraces 

above Paphos show clearer evidence of faulting (Fig.4.4a). The joint and fracture 

evidence from the Fl and F2 terraces cropping out to the east of Paphos show four sets 

that run approximately N-S, E-W, NE-SW and NW-SE (Fig.4.5). 

The rose diagram of combined joint and fracture data collected from the south-

west of Cyprus shows a variable pattern with segments striking between ENE-WSW and 

NW-SE dominating over NNE-SSW data (Fig.4.5). 

The combined joint and fracture data collected from south-east Cyprus indicates 

that three dominant sets are present; these run NNW-SSE, NW-SE and NNE-SSW. 

The 2700-3100  joint set is most pervasive in the F4 terrace in the area of Cape 

Pyla (locations 2-71 and 1-136; Fig.4.5). The set striking 320 0-3400  dominates along the 

F4 terrace in the Paralimni and Cape Greco areas. Fractures in the Paralimni and Cape 

Greco area show both vertical and horizontal displacement on planes dipping at between 

700  and 900. Displacement is limited to 20cm here. The cross-cutting relationship here 

indicates that the joints striking 070 0-0900  predate those striking at 320 0-3400  (Fig.4.4b). 

The Fl terrace in the Cape Greco area, cut into Miocene limestone, is generally 

poorly jointed but shows a joint pattern similar in strike to the neptunian dykes and 

fissured Miocene limestones present, i.e. E-W, ESE-WNW, N-S, NW-SE. These are 

aligned with the Famagusta graben that has been identified using Bouguer anomaly data 

(Follows, 1990). 
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The pattern of joints and fractures seen in Cyprus (Fig.4.5) can be classified in 

accordance with fracture architecture described by Hancock (1985). Between two and 

four patterns are seen in the fractures and joints observed, those prescribing the shapes K 

and I are certainly present in data collected from sites located on both Miocene and 

Quaternary outcrops (Fig.4.5). X and A may also occur. The I and K pattern appear to 

occur together almost exclusively with only two examples of a pure I pattern observed, 

e.g. in the F4 terrace to the south of Paphos and at location 1-136 on the east side of Cape 

Pyla (Fig.4.5). The presence of cross-cutting fractures that displace previous joints and 

fractures suggests that true X and A patterns may not be present as they relate to 

conjugate sets of joints that show no relative displacement. However, two X patterns 

offset from each other are present at a number of locations, e.g. near Ayia Napa and on 

the west side of Cape Greco (Fig.4.5). 

The fracture analysis undertaken during this study agrees with other kinematic 

indicators, e.g. Plio-Quaternary fault and earthquake data (Rotstein & Kafka, 1982; Table 

4.1), indicating WNW-ESE compression and faults striking between WNW-ESE and 

NNW-SSE (Fig.4.4a), in line with the down borehole data described in Section 4.3. The 

joint and fracture data (Fig.4.5) also agree in broad terms with the regional stress pattern, 

although a great deal of noise is present in this data. Hancock (1985) states that vertical 

joints in sedimentary rocks are indicative of extension, or hybrid structures, and that the I 

shape joint, or fracture pattern, indicates unidirectional extension. The K shaped pattern 

is indicative of extension in a nearly hydrostatic stress field (Engelder, 1982A, B). Closer 

examination of the dihedral angle (29) of joints, along with a consideration of the 

rheological properties of the rock types present, would be necessary to distinguish 

between hybrid and conjugate shear joints represented by the X shaped pattern. 

These joint and fractures are therefore considered useful kinematic indicators 

where a paucity of other data sources exists. There is a general consistency in the 

earthquake, down borehole, fault and joint and fracture data, in agreement with that 

recorded in extensional areas elsewhere, e.g. in the Qaraden segment of the Arabian 

graben and trough system (Hancock & Al Kadhi, 1982). 

A lack of positive fault slip data, i.e. slickensides, and fault plane solutions 

(Haimson et al., 1990) did not allow palaeo-stress tensors to be determined for the faults 

and fractures in southern Cyprus (cf. Angelier, 1984). 



4.5 DISCUSSION AND CONCLUSIONS. 

The data presented here support the argument that neotectonics have been active 

on a small scale in southern Cyprus during the Quaternary period. The rarity of large 

scale faulting, the flat bedded, well stratified nature of the Pleistocene sequences in the 

seismic sections (Catini et al., 1983; McCallum, 1989; McCallum et al., 1992) and the 

ability to accurately correlate coastal terraces from west to east around the island 

(Chapter 3) testifies to this, and indicates that southern Cyprus has acted as a single 

tectonic unit during the Quaternary. The limited and uniform southern Cyprus Quaternary 

activity follows the brutal reorganisation in the Lower Pliocene, in line with the view of 

Dupoux (1983) who suggested that tectonic activity since the Villafranchian (Upper 

Pliocene-Lower Quaternary) has been minimal. The tectonic activity that has taken place 

resulted in extensional structures evidenced by micro-fractures, faults, joints and 

earthquake data, which have resulted in tectonic lineaments striking between WNW-ESE 

and NNW-SSE. Therefore, these data back up the arguments presented in Chapter 3 for 

en masse, islandwide, tectonic uplift, similar to that seen in other Mediterranean areas 

(Fley, 1978). The Polis-Paphos graben, in south-west Cyprus, may prove to be the 

exception to this uniformity, although available data suggest an alignment of Quaternary 

structures that are in accord with that found throughout the southern portion of the island 

(Ward & Robertson, 1987). 

The conclusions concerning the Quaternary neotectonics of Cyprus that can be 

made are: 
tectonic activity since the early Quaternary has been minimal, with relative 

movement being taken up by meso-scale faults and fractures. The evidence from 

earthquakes shows that tectonic activity is still taking place. However, seismic data, 

showing the stratified undisturbed nature of the Quaternary sediments, suggest that 

this has had a minimal effect on the Quaternary sequence, 

seismic sections, earthquake foci, down borehole and fault data show a consistent 

alignment of structures, striking between WNW-ESE and NNW-SSE, 

joint and fracture data are generally aligned perpendicular to principal axes of 

extension, 

there is no evidence of Quaternary folding, 

there is very little evidence for subduction related processes, as the compression 

component of the borehole data (Haimson et al., 1990) appears to be taken up by 

strike-slip motion, 

and vi) all the data are consistent with uniform uplift of the coastal areas throughout 

the Quaternary period, in line with the evidence presented in Chapter 3. 
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Chapter Five: The Fanglomerate Group. 

5.1 INTRODUCTION. 

This chapter will examine the extent, nature and characteristics of the 

Fanglomerate Group sediments that crop out throughout southern Cyprus. The spatial 

distribution of the Fanglomerate Group sediments will be described followed by a 

geographical review of the pattern of sedimentation. Islandwide palaeocurrent data will 

be presented and compared to the geomorphological data recorded in Chapter 2. The 

provenance of the Fanglomerate Group will be deduced from borehole data and clast 

analysis. Discussion and models of possible sedimentological settings will be presented. 

The geomorphology of the drainage pattern, erosion surfaces and terraces associated with 

the Fanglomerate Group has been described in Chapter 2. 

5.1.1 Nomenclature. 

The Fanglomerate Series has been renamed the Fanglomerate Group here in line 

with modern standard stratigraphic usage, e.g. Schnek & Muller (1941) and Whittaker et 

al. (1991). The gravels of Ducloz (1965) make up the units of this group on the north 

Troodos margin. The units of Ducloz (1965) can be correlated with the Fl-F4 sequences, 

that are identified from this work (Tables 1.9 and 1.10) and used elsewhere in this thesis. 

5.1.2 Previous work. 

The Fanglomerate Group, a Quaternary continental, fluvial sequence, forms a 

series of extensive conglomeratic terraces and sheets. Bellamy & Jukes-Browne (1905) 

and Cowper-Reed (1930) described the "alluvium' on the Mesaoria Plain. Henson et al. 

(1949) state that the Fanglomerate Group is seen in the foothills of the Troodos and 

Kyrenia Mountains and caps isolated mesa hills on the Mesaoria Plain (Figs.2.7; Plate 

2.6). The Memoirs of the Geological Survey Department (Bear, 1960; Gass, 1960; Carr 

& Bear, 1960) map the extent of the Fanglomerate Group on the north flanks of the 

Troodos Massif and within the Mesaoria Plain. A detailed map of the Plio-Pleistocene 

formations, including the Fanglomerate Group, of the central and eastern Mesaoria Plain 

was produced by Ducloz (1965; Fig.5.1); this differentiated between the various stages of 

the Fanglomerate Group for the first time. Ducloz (1965) also correlated the 

Fanglomerate terraces with the Quaternary glacial chronology and the Mediterranean 

marine stages (Table 1.4). McCallum (1989) examined the Plio- Pleistocene sediments of 

the north Troodos margin in detail and concluded that this sequence indicated pulsed 

uplift of the Troodos Massif. 
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Sedimentary sequences similar to those seen on the north Troodos margin and 

southern Cyprus are also seen flanking the Kyrenia Mountains. The Fanglomerate Group 

and the Karka Formation have been identified on both the northern and southern side of 

the Kyrenia Mountain chain and on the north-west portion of the Mesaoria Plain as series 

of intermontane lacustrine, fanglomerates, screes and breccias (Moore, 1960; Ducloz, 

1968, 1972; Dreghorn, 1978; Baroz, 1979). 

5.2. GEOGRAPHICAL DISTRIBUTION AND THICKNESS VARIATION. 

The Fanglomerate Group will be discussed as a single unit here, rather than be 

divided into time slices, for the following reasons: 

borehole data do not allow distinction of units between the separate phases, i.e. Fl-

F4, of Fan glomerate Group deposition, 

the different units of Fanglomerate Group coalesce in areas of coastal southern 

Cyprus and much deposition took place beyond the present coastline (Chapter 2), 

distal areas on the north Troodos margin fall in areas inaccessible to fieldwork 

(the buffer zone between the Turkish and Greek controlled portions of the island), 

preventing data collection. The distribution of the Fanglomerate Group is more 

extensive (Fig.2.7) than outlined by the Cyprus Geological Map (Pantazis, 1979). 

The surface distribution of the Fanglomerate Group sediments gives little 

indication of the true thickness of these deposits. In south-east Cyprus, for example, the 

Fanglomerate Group is commonly only a few metres thick. The Fanglomerate Group on 

the north Troodos margin was recorded at less than 90m thick (Zomenis, 1977) and 

between 3-5m, and locally 12m, thick (McCallum, 1989). Borehole data, however, show 

that the thickness of the Fanglomerate Group varies greatly over the north Troodos 

margin (Fig.5.2). Fanglomerate Group exposures south of Mdrphou are reported to be 6-

7m thick and are thought to be underlain by the Athalassa Formation, although the 

underlying strata are not seen (Moore, 1960). 

Outcrops of the Fanglomerate Group to the south of the Troodos Massif also show 

a substantial variation in thickness. Borehole data (Fig.5.3) indicate that the conglomerate 

sequences can be up to 86m thick, although shallow marine environments may also be 

included in these figures (Chapter 6). 

The exposure and borehole data in south-east Cyprus show that the Fanglomerate 

Group consists of a thin capping unit in the area to the north of Xylophagou, while 

thicker more extensive exposures are seen to the east, in the Dhekelia area. 
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In the south-west of the island the outcrop pattern of the Fanglomerate Group is 

patchy; sequences less than 5m thick are common. Extensive exposures of the 

Fanglomerate Group are seen in the Polis-Paphos graben, but they rarely exceed an 

exposed thickness of 10-15m. 

5.3 SEDIMENTARY FACES. 

The facies of the Fanglomerate Group sediments will now be described for each 

of the following regions in turn: 

the north Troodos margin, 

south-east Cyprus, 

the southern portion of the island, from Larnaca to Episkopi, 

the western area, west of Episkopi to Paphos, 

the Polis-Paphos graben area, and east to Kato Pyrgos, 

the Kyrenia Range. 

The Fanglomerate Group facies in each of these areas will be described in 

ascending stratigraphic order. 

5.3.1 The north Troodos margin. 

5.3.1.1 Introduction. 

Four units of the Fanglomerate Group on the north Troodos margin (Tables 1.9 

and 1.10) can be distinguished from each other on the basis of altimetric studies (Ducloz, 

1965; Chapter 2). McCallum (1989) did not subdivide the Fanglomerate Group into units 

but did describe some of the sedimentary facies that exist in the eastern and central areas 

of the Mesaoria Plain (Table 5.1). 

The Fanglomerate Group onlaps onto the younger, i.e. Pliocene, portion of the 

Troodos cover sequence in the axis of the Mesaoria Plain, overstepping and cutting down 

into progressively older units of the Troodos sedimentary cover sequence and eventually 

the Troodos ophiolite basement at the southern and western extent of the Fanglomerate 

Group exposure (Fig.5.4). 

134 

5.3.1.2 The Fl and F2 Fanglomerate units (lower-middle Pleistocene). 

The Fl and F2 Fanglomerate Group units, i.e. the Kantara and Kambia Gravels of 

Ducloz (1965), are described together in view of their similar sedimentary facies and 



Table 5.1. Facies of the Fanglomerate Group (after McCallum. 1989). 

Facies 	 Description 	 Interpretrat ion 

Coarse, poorly sorted pebble-cobble conglomerates, 
boulders < 55cm diameter, clasts generally 1-10cm 
diameter. Clasts are angular to sub-rounded. Crude 

Al 	 but rare horizontal bedding, Grading is uncommon, 
Massive 	 coarsening up seen; clast fabric is matrix- to clast- 
conglomerates 	support. Matrix is silty sand. Imbrication weakly 

developed. Single beds are 1-3m thick, with planar 
or minor erosive contacts. Unfossiliferous. 

Coarse, poorly sorted, pebble-cobble and finer better 
sorted conglomerates. 2m thick, crude cross-bedded 

A2 	 sets. Mainly tabular cross-bedding, with non-erosive 
Cross-bedded 	bases; cross-bed directions are in line with clast 
conglomerates 	imbrication orientations of facies Al. Clast-supported 

with a brown, poorly to moderately sorted, sandy matrix. 
This facies is not common. Unfossiliferous. 

Brown, fine grained sands interbedded with conglomerate. 
BI 	 Poorly to moderately sorted, largely structureless with 
Interbedded 	some horizontal laminations. The thin conglomeratic 
sands and minor 	layers are 10-20cm thick, grain-supported, more mature 
conglomerates 	and better sorted that fades Al and A2; they are 

occasionally imbricated.  

Low and high concentration, coarse proximal sheet-
flow, as either i) proximal, waterlain conglomerates; 
ii) subaerial cohensionless, mass flow; or iii) an 
intermediate environment between mass flow and 
waterlain. 
Proximal, alluvial fan setting. 

Similar to facies Op (Miall, 1977), developed as crude 
longitudinal braid bars migrated on an alluvial fan 
surface. These bars probably developed during periods 
of more stable flow than facies Al. 

These conglomerates reflect initial reworking of the 
Troodos Massif and, possibly, the Pliocene sediments, 
prior to the introduction of newly-derived ophiolitic 
detritus. Sediment laden currents reaching the Troodos 
foothills decelarated and deposited their load. A lack 
of evidence for channel and bar development suggest that 
deposition mainly involved sheetflood processes. 
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geomorphological characteristics (Chapter 2). The Fl Fanglomerate unit is heavily 

dissected throughout the Mesaoria Plain (Chapter 2). The F2 Fanglomerate unit is widely 

exposed in the western portion of the Mesaoria Plain (Fig.5.5; Plates 2.5 and 2.6) and, 

like the Fl Fanglomerate unit, has been heavily dissected on the eastern portion of the 

plain. The peneplaned F2 terrace is incised by F3 channels and smaller distributary 

streams - see Chapter 2 (Potami, location 1-109; Fig.5.5). The Fl and F2 Fanglomerate 

units are overlain by red terra rossa-type palaeosols and caliche horizons (Potami, 

Astromeritis and Koraka Hill; locations 1-109, 1-15 and 1-92; Fig. 5.5) - see Chapter 9 for 

details of caliche and palaeosol development. 

i) Proximal development: 

The proximal facies of the Fl and F2 Fanglomerate sequences crop out within 

1km of the margin of the Troodos Massif, they overlie Neogene sediments in the 

Mesaoria Basin and lithologies of the Troodos ophiolite further south. The proximal Fl 

Fanglomerate unit has been largely eroded (Chapter 2), SO this description of proximal 

lithologies is based on exposures of the F2 Fanglomerate unit. 

Proximal conglomerates (Fig.5.6) of the F2 Fanglomerate unit unconformably 

overlie the Troodos basement at a number of locations along the central north Troodos 

margin (Vyzakia, Kato Moni and Malounda, locations 1-19, 1-109, 1-83, 1-86, 1-7 and 1-

8, respectively; Fig.5.5). The F2 Fanglomerate sediments unconformably cover Neogene 

sediments to the east and west away from the central Mesaoria Plain, e.g. Kato 

Koutraphas and Pera (locations 1-20 and 1-97). Sections are generally less than 15m 

thick, e.g. Vyzakia (location 1-109). Troodos basement lavas that crop out beneath the F2 

Fanglomerate unit in the central portion of the north Troodos margin are weathered, 

commonly capped by a thin caliche horizon and form an unconformable contact with the 

overlying F2 Fanglomerate unit sediments (Fig.5.6; Plate 5.1). Weathered lavas make up 

a basal portion of the sedimentary sequence at Kato Moni and Malounda (locations 1-7 

and 1-83; Figs.5.5 and 5.6). These weathered lavas form a white to orange silt and sand 

grade unit, with an irregular contact into the "fresh" lavas beneath and the conglomerates 

above. The weathered horizons are generally less than im thick. 

The proximal units at Vyzakia are made up of red, unconsolidated, massive, 

structureless and poorly sorted conglomerates. The basal contact with the lavas shows 

extensive relief, 3-4m, and is very uneven. Clasts within the proximal conglomerates are 

generally less than 80cm in diameter and angular, occasional outsized clasts are present. 

A large proportion of locally derived lava clasts are found within the proximal 

conglomerates. 
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Location 1-84 

Fig.5.7. Sketch sections of intermediate units of the Fanglomerate Group on 
the north Troodos margin. 
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underlying units and fining up structures are locally 
present. 

: Medium grain-supported conglomerates. This unit is 
Lt--N better sorted and more mature than the massive 

coarse conglomerates. 

Grain- to matrix-supported, coarse, immature 

conglomerates. The ctasts within this locally 
imbricated unit are generally sub-angular. 

Nicosia Formation (Pliocene). 
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E - coarse conglomerates of the Fanglomerate Group lying unconformably above 
pillow lavas (a) at Kato Moni (location 1-87) on the north Troodos margin. 

Note: chalk and limestones of the Miocene age crop out topographically above the 
Fanglomerate Group, 
the large number of pulses of coarse conglomerate within the sequence. 

F - F2 age conglomerates of the Fanglomerate Group (b) cropping out 
I unconformably above pillow lavas (a) at Malounda (location 1-7) on the north 

Troodos margin. 
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Inferred proximal sequences are dominated by coarse, massive, structureless, 

unconsolidated, matrix- to grain-supported conglomerates (Plate 5.2), with a dominantly 

sand and silt matrix; fine conglomerates locally constitute the matrix. Clasts within the 

proximal Fl and F2 units are generally angular to sub-angular. These conglomerates are 

very similar to Fl Fanglomerate units at Koraka Hill and correspond to the Al facies of 

McCallum (1989; Table 5.1). Few sedimentary structures exist within proximal 

sequences of the F2 Fanglomerate unit. There are two phases of development of the 

coarse conglomerate facies, Al, at Malounda and in the area of Kato Moni (locations 1-7, 

1-8 and 1-86; Figs.5.5 and 5.6; Plate 5.2). The conglomerate phases at each of the 

previously mentioned localities are coarse-grained and clasts up to 2m in diameter crop 

out at location 1-86; the units are angular to sub-angular and poorly sorted; the 

imbrication data indicate a local shift in the palaeocurrent direction from the lower to the 

upper conglomeratic units (Fig.5.6). The basal conglomerate is more commonly orange, 

whilst the upper conglomerate tends to be grey. A scoured contact is seen between the 

two conglomeratic units, with the development of caliche and finer-grained sediments, 

i.e. sands, at Kato Moni and Vyzakia (locations 1-86, 1-19 and 1-119). The basal 

conglomerates south of Kato Moni (location 1-86) are coarser-grained than the upper 

units, while the opposite pattern is seen at other exposures west of Kato Moni and at 

Malounda (locations 1-83 and 1-7 respectively), with the coarser conglomerates being 

present in the upper conglomeratic units. The basal units tend to have a greater proportion 

of locally derived lava clasts and fewer diabase and gabbro clasts than the upper unit; also 

fewer reworked clasts are present. 

ii) Intermediate development: 

Intermediate areas, between proximal and distal locations, are found between 1km 

and 5km away from the north margin of the Troodos Massif. The coarse conglomerates 

seen in exposures, on the road west of Akaki (locations 1-67 to 1-70; Figs.5.7 and 5.8); in 

the area around Orounda (locations 1-90, 1-84 and 1-89; Fig.5.7); and north of Malounda 

(locations 1-79, 1-81 and 1-91; Fig.5.7) are similar to the conglomerates that crop out at 

the base and top of the exposed sections in proximal locations (Kato Moni, location 1-

86). The coarse conglomerates resemble facies Al (McCallum, 1989; Table 5.1), with 

igneous and minor sedimentary clasts, i.e. gypsum and chalk, ranging from 10 to 50cm in 

diameter. The clasts are commonly polished brown and locally show a caliche crust. The 

conglomerates, although roughly bedded, are locally graded with fine conglomerates seen 

towards the top of some units (location 1-89; Fig.5.7). Lateral variation, with pods of fine 

conglomerate and sand, as well as the appearance of shallow channels distinguish (Plates 

5.3-5.6) this unit from the coarse structureless conglomerates that crop out in proximal 

locations. The interbedded units that crop Out between the coarse conglomeratic pulses 
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figi.9. Sketch sections of the distal sequences of the Fanglomerate Group on 
the north Troodos margin. 
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Location 1-72 
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Apalos Formation - Rapidly alternating grey sands, silts and gravels. 

Location 1-58 

Planar foresets Fine up 
A Parallel laminations 

Massive 

t Caliche and red soil 

Stream flow units 

El Fine gravels to medium sands. These sands form pinching and 

swelling units within the coarse conglomerates, aswcll as discrete 
beds that display mm-lcm thick laminations. The sands are well 
sorted. The top most portion of this unit is commonly contorted 
and ripped away by the deposition of the overlying conglomerates. 
The sands have a patchy appearance and locally,  display evidence 
of caliche formation. 

Fining up conglomerates to silty-sand unit. This unit consist of a 
coarse, generally unsorted conglomerate lag that passes up into fine 
grain-supported conglomerates and the silty-sand beds. The fine 

Mass flow unit conglomerates commonly display planar foresets that dip gently, 
i.e. <15° north-west to north, and small scale fining up structures. 
The silty-sand unit is deeply scoured by the overl-ing conglomerates. 
The fining up cycles are commonly ,  50-70cm thick. 

	

- sharp contact 	
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Stream flow units 	supported conglomerates. Vague fining up of the unit coincides 

with better sorting and increased maturity. Matrix is dominantly 
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i.e. gabbro, diabase and lavas. Imbrication of the unit is rare and 
clasts are generally sub-angular. 

Mass flow unit 
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Fig.5.1O. Logged section of the Fan1omerate Group units from Dhekelia 
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(location 2-83), south-east C yprus. 

Note: the number next to the rose diagrams refer to the number of 
measurements taken. 
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E - Illustrating the development of a second coarse pulse of conglomerates capping 
the F2 sequence at Malounda (location 1-7). 

Note: see Fig.5.6 for details. 

F - Very coarse and imbricated basal conglomerate units of the F2 age sequence at 
Vyzakia (location 1-19). 

Note: the large boulder in the centre of the picture is approximately 1.5m long, 
the photograph is taken looking towards 030°, the imbrication direction is 
towards c.3000. 

G - The contact between the Fl age Fanglomerate unit and the underlying pillow 
lava sequence at Politiko (location 1-94), an intermediate location on the 
northern margin of the Troodos Massif. 
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consist of well sorted, mature conglomerates and sands; these are laterally persistent, 

graded units. Sedimentary structures other than imbrication are present at intermediate 

locations (locations 1-89 and 1-91; Fig.5.7). The pattern of sedimentation in the Potami 

area (locations 1-28 and 1-104; Plates 5.3-5.6) mirrors other intermediate locations that 

crop out on the north Troodos margin (Fig.5.7), although large channel sequences appear 

to have cut through the Potami sequences at a later date. The coarse conglomerate at 

Potami is readily identifiable with the proximal locations seen to the south (location 1-

19), as large misfit clasts, up to 1.5m in diameter, are present. Two major conglomeratic 

phases are present in the Potami sections, separated by soil and caliche horizons (Plates 

5.3 and 5.5). The second coarse phase of conglomerate is cut by a large channel and bar 

sequence. The channel and bar sequence is approximately 200-300m wide, only 3-4m 

thick, and lateral sediment changes mark the transition from a very coarse conglomeratic 

channel fill, displaying prograding foresets, to the deposition of fine sediment and the 

formation of caliche horizons. 

Koraka Hill (location 1-92) in the central portion of the Mesaoria Plain provides a 

typical exposure of the intermediate Fl Fanglomerate unit. The unit lies unconformably 

above the Pliocene Apalos Formation. The fluvial sediments of the Apalos Formation 

mark the continuation of the Plio-Quaternary regression in the Mesaoria Basin (Chapter 

1). The Apalos Formation consists of a grey, fine grained, fluvial sequence; subordinate 

conglomerates are also present (McCallum, 1989). The contact between the Apalos 

Formation and the Fl Fanglomerate unit shows 1-2m of relief, locally, with associated 

reworking of the Apalos Formation and its caliche and palaeosols. The Fl Fanglomerate 

unit at Koraka Hill is less than 4m thick and consists of massive, red matrix- to grain-

supported conglomerates, with a subordinate silty matrix. The clasts within the 

conglomerates are angular to sub-rounded and generally less than 60cm in diameter. 

Caliche development and reddening is prevalent towards the top of the conglomerate 

sequence. The Fl Fanglomerate unit differs from the underlying Apalos Formation by: 

being red rather than grey and buff in colour, 

being coarser grained, with coarse conglomerates and a silt matrix, rather than 

silts, sands and conglomerates with a chalky matrix, 

having a greater variety of clast types, with a high proportion of gabbro and 

diabase clasts, rather than the predominance of lava clasts, that are found within the 

Apalos Formation (Section 5.5.1.1), 

the clasts are generally more angular in the Fanglomerate unit. Other intermediate 

Fl Fanglomerate units differ from the sequence at Koraka Hill as pulses of massive 

conglomerate are separated by units of sand and silt (in the area of Peratis Hill, 

locations 1-93, 1-96 and 1-99; Fig.5.7). 
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E - A view of the conglomerate sequence cropping out at proximal-intermediate 
location of the F2 age Fanglomerate unit at Kato Moni (location 1-101), 
displaying massive conglomerates, passing up into well bedded units and then 
massive conglomerates once again. 

Note: telegraph pole for scale 

F - The preserved F2 age Fanglomerate unit at Potami (location 1-104) displaying a 
general alternation between coarse conglomerates and sand and caliche 
development. 

Note: see Fig.5.7 for scale and details of the sequence. 

G - The F2 age intermediate-distal sequence preserved at Astromeritis (location 1-
68), on the north Troodos margin. 

Note: the hammer for scale, 
see Fig.5.8. for the details of the preserved sequence. 
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D - A view looking towards 0920 of the detailed cross -stratified structures of the 
intermediate F2 age Fanglomerate unit exposed at Ayios loannis (location 1-
91). 

Note: see Fig.5.8. for details and scale. 

E - A flat but locally scoured contact between the sands and conglomerates of the F2 
age Fanglomerate unit at Ayios loannis (location 1-79). 

Note: pen for scale. 

F - The develop of a thin lens of sand, less than 20cm thick, overlain by a coarse 
conglomerate unit at an intermediate location of the F2 Fanglomerate unit at 
Ayios loannis (location 2-91) on the north Troodos margin. 

G - The development of a 50cm thick, intermediate, sand unit at Potami (location 1-
104) displaying shallow and steeply dipping planar laminated, well sorted, 
coarse sands. 
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J - Illustrating the development of sands and silts capped by nodular and powder 
caliche sandwiched between coarse conglomerate units at Potami (location 1-
104) - an intermediate setting. 

K - A view of the distinct imbrication seen in the conglomerates of the 
Fanglomerate Group; this example is taken from the intermediate units of F2 
age at Potami (location 1-109). 

Note: the development of thin sands and the variation in degree of matrix- and 
grain-support within the unit. 

L - The intermediate development of two complete cycles of conglomerate 
deposition at Orounda (location 1-84). The first coarse, immature, poorly sorted 
conglomerate is capped by powdery caliche; this in turn is overlain by a second 
coarse  conglomerate (c.lm thick) which is once again overlain by caliche. 

Note: see Fig.5.7 for details. 
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D - The development of alternating units of sub-rounded medium conglomerates 
with fine well sorted conglomerates seenn at Orounda, an intermediate location 
on the north Troodos margin. 

Note: seee Fig.5.7. for details. 

E - The F! Fanglomerate unit cropping out at Peratis Hill (location 1-93); this 
section reveals coarse, poorly sorted conglomerates fining-up into a better 
sorted, medium conglomerate unit characteristic of an intermediate location. 

Note: see Fig.5.7 for details. 

F - The Fl Fang lomerate unit (dark) cutting down into the Apalos Formation (a) at 
Kato Koutraphas (location 1-72). 

G - F2 age channel cutting into the Fl Fanglomerate unit at Kato Koutraphas 
(location 1-72) on the north Troodos margin. 
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iii) Distal development: 

F2 Fanglomerate unit sediments crop out in distal localities, generally more than 

5km away from the north Troodos margin (on the main Troodos road between Akaki and 

Astromeritis, locations 1-12 and 1-27). The Fl Fanglomerate unit is not found in distal 

location on the north Troodos margin (Chapter 2). 

The F2 Fanglomerate, in distal locations, forms well bedded, poorly cemented, 

channellised deposits, revealing cross-stratification and small fining-up sequences. These 

distal units unconformably overlie the Troodos lavas and its sedimentary cover sequence 

(Plate 5.7). Silts and caliche horizons (Chapter 9) are associated with sand and gravels in 

distal localities. Sections cropping out lOkms north of the proximal F2 Fanglomerate unit 

exposures reveal a cyclic nature of deposition, with prograding fore-sets overlying 

massive, structureless conglomerate; caliche and silts cap individual cycles (Fig.5.9; Plate 

5.7). 

Channels cut down into the preserved Fl and F2 Fanglomerate unit sequences. 

The best example of this is seen at Kato Koutraphas (location 1-72; Plate 5.6), where 

Apalos Formation sediments have initially been cut by the F1 Fanglomerate unit, with an 

unconformable contact. Distal sequences of the red coloured Fl Fanglomerate unit have 

then been deposited and subsequently incised by channels of the F2 Fanglomerate, which 

are grey-red in colour. Erosion of the F2 Fanglomerate unit has subsequently lead to the 

formation of the F2 erosion surface. The F2 Fanglomerate channels are filled with a 

coarse, immature, grain-supported lag, that passes up into fine grain- to matrix-supported 

conglomerates. An uneven, scoured contact marks the introduction of immature, massive, 

poorly bedded, coarse conglomerates, representing the second coarse sediment pulse, that 

caps many of the exposed F2 sedimentary sequences on the north Troodos margin. 

5.3.1.3 The F3 Fanglomerate unit (early Late Pleistocene). 

The F3 Fanglomerate unit equates to the. Laxia Gravels of Ducloz (1965) and 

represents a channel fan system which has cut into the mature F2 erosion surfaces (Plate 

2.6; Chapter 2). The proximal to distal relationship, associated with the F2 Fanglomerate 

unit is also incidental here, with examples of the proximal development of the unit 

cropping out at Vyzakia and Tembria (locations 1-110, 1-113 and 3-66) on the west of 

the Mesaoria Plain. 
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In proximal areas the F3 Fanglomerate unit comprises coarse conglomerates 

similar to those cropping out at proximal locations in F2 Fanglomerate unit (Section 



J - Units of the Kakkaristra Formation (b) unconform ably overlain by units of the 
F2 Fanglomerate unit (a) near Akaki (location 1-12). 

K - A section of the distal channel sequences preserved at Astromeritis (location 1-
27) on the north Troodos margin. 

Note: the section is 4m high. 
see Fig.5.9. for details. 

L - Sands cropping out between conglomerate units at Astromeritis (location 1-27). 
The sands are not graded, pinch and swell and dip at c.200. 

Note: pencil for scale. 
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5.3.1.2). The sequences at Vyzakia (location 1-110) crop out at topographically lower 

levels than the F2 Fanglomerate unit and are c.4-5m thick. A similar pattern is seen to the 

north of Vyzakia (location 1-113) where the F3 Fanglomerate unit is at a topographically 

lower level than the F2 Fanglomerate unit but here the F3 unit is in the order of lOm 

thick. Although the unit is dominated by massive, unsorted, matrix- to grain-supported 

conglomerates, pockets of well sorted, grain-supported, medium grade conglomerates 

with associated pebble clusters are also present, although these units are discontinuous. 

The dominant characteristic of the proximal sequences is their chaotic nature as they have 

massive bedding and are ungraded. Some large pods of lava, greater than im in diameter 

appear to have been ripped up and incorporated into the unit; these are seen towards the 

base of the sequence. - 

The F3 proximal units (e.g. location 1-113) and the bowl-shaped erosion surfaces 

on the western side of the Mesaoria Plain are commonly capped by caliche, as well as 

silts and gravels, eroded from the F2 Fanglomerate unit. These sediments appear to form 

a colluvial deposit that cap the coarse conglomerates of the F3 Fanglomerate unit north of 

Vyzakia (location 1-113). The colluvial sediments are composed of mixed sands and fine 

to medium grain-supported gravels. Discontinuous "massive" silty bands are also 

associated with the sands and gravels. Some of the silt bands may have been derived from 

the Pliocene silts that crop out beneath the F2 Fanglomerate unit (location 1-115), as 

these have been eroded to form the bowl-shaped F3 erosion surface (Fig.2. 15). The clasts 

present within the proximal F3 Fanglomerate units in the area to the north and west of 

Vyzakia (locations 1-113 and 1-114) are dominated by diabase, with subordinate 

numbers of lava, gabbro and plagiogranite clasts. Many of the lava clasts are angular, 

reflecting derivation from local sources (Section 5.5). 

5.3.1.4 The F4 Fanglomerate unit (late Late Pleistocene). 

The F4 Fanglomerate unit, equating to the Xeri Alluvium of Ducloz (1965), crops 

out in incised valleys. The F4 Fanglomerate unit, previously described, has been from the 

central Mesaona Plain, south of Nicosia (Ducloz, 1965); this study has concentrated on 

exposures on the western portion of the Mesaoria Plain. 

The F4 Fanglomerate unit that crops out on the western Mesaoria Plain forms 

distinct, commonly vegetated, units lying within 3m of the present river channels. The 

sediments are predominantly coarse, poorly sorted, grain-supported conglomerates very 

similar to the facies Al of McCallum (1989) and to the coarse conglomerates of the F2 

and F3 Fanglomerate unit, although the F4 units have a greater proportion of grain to 

grain contacts. The clasts are predominantly spheroidal and sub-angular. Misfit, oversize 

146 



Massive 

Planar bedded 

scoured base Gauche and red soils 

Massive, coarse, immature, grain-supported 
conglomerate, vaguely bedded and containing 
ciasts up to 70cm long ("A' axis). 

Medium, grain-supported conglomerate to 
coarse sand. This unit is better sorted and more 
mature than the coarse conglomeratic unit and 

scoured base is laterally impersistent, pinching and swelling. 
The unit displays prograding foresets and small, 
shallow channels c.3m wide. 

t

i  

.17 (foresets) 

V 8 ijmw 

	

n.37 (imb) 	north 

	

0 	8 

sat. f c cong. 	 readings 

scoured basi 

ii 

Fig.5.11. Sketch section of the proximal Fanglomerate Group sequences from 147 
the sections along the south coast of Cyprus. 
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Fig.5.12. Sketch section from distal sequences of the Fanglomerate Group in 

southern Cyprus. 

Note: very rapid lateral changes in the sedimentary sequence are seen (Plate 

5.10). 
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clasts up to im in diameter crop out in sections close to Ayios loannis (location 1-79); 

similar sediments are also found further west, e.g. at Kato Moni, in the Kato Koutraphas 

area and Potami (locations 1-59, 1-83, 1-87 and 1-102, respectively). 

The sediments of the F4 Fanglomerate unit on the western Mesaoria Plain are not 

as variable as those associated with the F2 and F3 Fanglomerate units, a similar pattern is 

seen on the central Mesaoria Plain (Ducloz, 1965). Ducloz (1965) assigned extensive silt 

and sand units to the Xeri Alluvium, although these fine-grained sediments are not 

always present within the F4 Fanglomerate unit of the western Mesaoria Plain. 

The F4 Fanglomerate unit on the western part of the Mesaoria Plain crops out 

within metres of the present day valley floor, however, Ducloz (1965) also described the 

Xeri Alluvium as being present at heights greater than 20m above the valleys floors. 

5.3.2 South-eastern Cyprus. 

Units of the Fanglomerate Group in south-east Cyprus represent the easterly 

extension of the Mesaoria Plain. An extensive erosion surface, commonly capped by red 

soils and caliche, dominates while associated exposure is restricted. The units of the 

Fanglomerate Group form a thin cap over much of this area (Section 5.2). A typical 

exposure is seen in the area to the north of Dhekelia (Fig.2.7) where the Fanglomerate 

Group unconformably overlies the Pliocene Athalassa Formation and Quaternary shallow 

marine siliciclastic sequences (Chapter 6). The section resembles that seen at distal 

locations on the north Troodos margin with channellised sections of poorly sorted, 

massive, immature, coarse conglomerates being interbedded with mature sands and 

conglomerates (Fig.5.10). Both igneous and sedimentary clasts are present within the 

unit, e.g. lava, diabase, gabbro, chalk and chert (Section 5.5.1.2). Imbrication data 

indicate a variable palaeocurrent (Fig.5.10). The Fanglomerate unit is capped by caliche 

and red terra rossa-type soils. The presence of Quaternary shallow marine siliciclastic 

sediments interbedded with this sequence indicates the proximity of this unit to the 

shoreline during its deposition. 

The bone bed cropping out to the south-west of Xylophagou (location 2-75) 

consists of a well cemented, mature, green sandstone. The bone bed unit is overlain by 

coarse, poorly sorted unfossiliferous, red conglomerates. The presence of igneous and 

sedimentary clasts, e.g. grainstones, limestones, diabase, gabbro and lava, within the 

conglomerate unit indicates a derivation from a number of sources, for example the 

Troodos ophiolite and the local sedimentary cover sequence. The conglomerates are 
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unconformably overlain by a sequence of calcarenites, which, in turn are overlain by red 

silts, sands and poorly sorted, grain-supported conglomerates; these sequences suggest 

that the bone bed unit may be correlatable with the F3 Fanglomerate unit. 

The matrix encasing the mammal bones consists of a well sorted, sub-mature fine 

to medium sand. Thin section analysis shows that the major components are ophiolitic-

derived clasts and minerals, derived sedimentary clasts and abraded fossils and a calcitic 

cement (Plate 5.9). Ophiolite-derived units consist of lava, diabase lithoclasts and 

feldspar and pyroxene mineral clasts. The ophiolite-derived clasts are generally less than 

0.5mm long and sub-angular; occasional more rounded clasts no greater than 2mm long 

are also present. The derived fossil fauna are dominated by benthic and planktonic 
foraminifera. Staining indicates that the CaCO 3  is dominantly non-ferroan calcite, 

although some of the fauna stain mauve and blue, indicative of Fe-calcite. Minor abraded 

mollusc fragments are also present. Delicate ostracod shells are locally concentrated 

within the matrix. These do not appear to be abraded, or broken, suggesting that the may 

be primary and in situ. 

The pore filling cement is dominated by sparry calcite (Plate 5.9). This spar is 

variably present throughout the unit (Plate 5.9). Circumgranular equant cements surround 

grains locally. Calcitization has also taken place, relict shell structures are poorly 

preserved in some clasts and absent in others as if dissolution has occurred. No moldic 

porosity is seen (Plate 5.9). 

5.3.3 The south coast between Larnaca and the Akrotiri Peninsula. 

5.3.3.1 Introduction. 

Studies of the Fanglomerate Group on the southern margin of the Troodos Massif 

have been limited, as the Fanglomerate Group outcrop is very variable. The memoirs of 

the Geological Survey Department (Bagnall, 1960; Bear & Morel, 1960; Pantazis, 1967) 

briefly describe the Fanglomerate Group as a series of patchy outcrops of conglomerates, 

silts and sands. These sediments unconformably overlie, and consist of debris derived 

from, the Troodos sedimentary cover sequence, the Troodos ophiolite and reworked 

Fanglomerate Group sediments. 

Bagnall (1960) recognised three river terraces in the Larnaca area and correlated 

these with the marine terraces on the coast. The three terraces recognised by Bagnall 

(1960) at 80-100 feet, 25-35 feet and 10-20 feet above the valley floor are correlatable 

with the F2, F3 and F4 Fanglomerate units, respectively, of this study (Table 1.7). 
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PLATE 5k 

J - The development of two distinct fining-up sequences of medium conglomerate to 
medium sand preserved between two coarse wedges of conglomerate in the 
Fanglomerate unit at Nikitari (location 1-118) on the north Troodos margin. The 
higher of the two coarse conglomerate units is capped by soil and caliche. 

K - Sands and conglomerates of the Vasilikos Formation (b) capping the lighter 
coloured mans of the Nicosia Formation (a) at Vasilikos (location 3-23). 

L - Coarse poorly sorted and immature units of the F2 age Fanglomerate unit (b) 
cropping out unconformably above the Athalassa Formation (Pliocene) at 
Episkopi (location 3-28). 
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A - Thin section micrograph of the matrix taken from the bone bed to the south-west 
of Xylophagou (location 2-75). 

Note: the ostracod tests, planktonic foraminifera, porosity (blue) and the pore filling 
calcite cement, 
the plate represents a field of view 3mm long. 

B - Thin section micrograph of bone and the matrix that encases it. The matrix 
consists of predominantly sub-angular, reasonably well sorted diabase and lava 
clasts. 

Note: the ostracod test in the top left of the plate, 
the plate represents a field of view 6mm long. 
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Pantazis (1967) identified a Higher River Terrace and Alluvium which correlate with the 

F3 and F4 Fanglomerate units respectively (Table 1.7). Correlations between the lower 

Vasilikos Valley and other areas of Cyprus were made by Gomez (1987; Table 1.8), who 

identified four phases of Fanglomerate Group deposition correlatable with the Fl to F4 

Fanglomerate units here. 

The patchy development of the Fanglomerate units inland, away from the coast, 

makes correlation difficult. Correlation of the Fanglomerate Group, on the southern 

Troodos margin was, however, made by means of relative altimetry and correlation with 

depositional terraces and erosion surfaces (Chapter 2). Correlation at coastal sites was 

eased by the association of marine terraces and the fluvial sediments of the Fanglomerate 

Group (Chapter 2). 

5.3.3.2 The F! and F2 Fanglomerate units (lower-middle Pleistocene). 

The Fl Fanglomerate unit in coastal southern Cyprus is manifested by small, thin, 

patchy outcrops, for example to the north-west of Tersephanou (north-west of location 3-

16), and by the development of terraces within 80m of the basement units in the lower 

Vasilikos Valley (Gomez, 1987). The outcrops in the Limassol area form isolated 

exposures and cap hills. It is sometimes difficult to distinguish between the Fl and F2 

Fanglomerate units, hence their description together here. Where distinct Fl units are 

seen, they commonly consist of clasts derived from the Troodos ophiolite and its 

sedimentary cover, for example north-west of Tersephanou (north-west of location 3-16) 

where the Fl unit unconformably overlies the chalks of the Lefkara Formation. Gomez 

(1987) has distinguished between the Fl and F2 Fanglomerate units in the lower 

Vasilikos Valley, viz, the Phalarkros and Mitsinjites terraces (Table 1.8). 

The Fl and F2 Fanglomerate units that crop out in proximal-intermediate 

locations along the southern margin of the Troodos Massif form remnant, isolated 

outcrops capping hills. The sedimentary sequences are commonly 3-4m thick and 

resemble those cropping out on the north Troodos margin (Section 5.3.1). Coarse 

immature, poorly sorted conglomerates dominate the sequence, while subordinate 

quantities of finer grained sediments, red palaeosols and caliche horizons are also present 

(Fig.5.1 1). The coarse conglomerates tend to be matrix- to grain-supported and mirror the 

Al facies of McCallum (1989). Two distinct units of coarse conglomerate separated by 

finer sediments, caliche and palaeosols are seen at a number of localities - north-east of 

Zyyi (locations 1-163 and 3-20) and south of Man (location 3-21; Fig.5.11). Derived 

lava, diabase and chalk clasts constitute the largest proportion of the clasts seen within 

these units although chert, limestone, gabbro and ultramafic clasts are also present 
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locally. The presence of clasts is related to the location of the outcrop vis-a-vis the 

drainage pattern (Fig.2.1; Chapter 2). The clasts are generally sub-angular and usually 

less than 70cm along the "L" axis. The igneous-derived clasts are commonly more mature 

than those derived from the Troodos sedimentary cover sequence. 

The Vasilikos Formation (McCallum, 1989) is correlated with the Fl 

Fanglomerate unit as it unconformably overlies mans of Pliocene age at Vasilikos 

(location 3-23; Plate 5.8), crops out within 80m of sea-level and can be correlated with 

exposures cropping out at Pissouri and in the Larnaca area. The distal sediments of the Fl 

and F2 Fanglomerate units in the area between Lamaca and the Akrotiri Peninsula 

resemble the Fanglomerate exposures from the Dhekelia area, south-east Cyprus (Section 

5.3.4), as well as distal outcrops on the north Troodos margin. The distal sequences show 

a variety of sediments, including coarse conglomerates, well bedded fine and medium 

conglomerates, sands, palaeosols and caliche horizons (Fig.5. 12). The coarse 

conglomerates resemble those seen in proximal localities (see above). These are poorly 

sorted, immature and massive although some crude bedding is locally present, e.g. the 

Limassol area (location 3-26). The clasts within the conglomerates are generally 30-40cm 

along the "L" axis, sub-angular and quite immature, e.g. a roundness value of 0.5-0.6, on 

the visual roundness scale of Krumbein (1941). Outsize clasts less than 70cm long are 

also present within the conglomerate units. In the area north of Limassol (location 3-26) 

where the Garyllis River runs through its enclosed valley, coarse conglomerates of facies 

Al (after McCallum, 1989) dominate while a mixed sedimentary sequence is seen lOOm 

south of location 3-26. The mixed sedimentary sequence is more mature, better bedded 

and contains a greater proportion of sand and silt than associated with the coarse 

conglomerate unit. 

5.3.3.3 The F3 Fanglomerate unit (early Late Pleistocene). 

The F3 Fanglomerate unit crops out in many of the large river valleys along the 

south coast of Cyprus, e.g. Kouris and Pendaskinos Rivers (Fig.2.1). The F3 sections 

generally occur within 15m of the present day channels. The pattern of sedimentation in 

many of the valleys is similar. Massive, structureless, grain- to matrix-supported coarse 

conglomerates are overlain by more mature, generally well bedded and sorted 

conglomerates, sands and silts (Plate 5.10). The well bedded units are locally graded and 

commonly interbedded with palaeosol and caliche horizons (Plate 9.2). The top of the 

well bedded unit is commonly scoured. This marks the onset of the third unit; a coarse, 

structureless conglomerate, which is analogous to the basal unit. Examples of this 

sequence are seen at Alaminos, near Kophinou (locations 1-157, 1-155 and 1-162; 

Fig.5.13). These sequences mirror those F3 successions that crop out on the coast 

151 



152 
Fig.5. 13. Sketch sections of the F3 Fanglomerate units from the south coast of 
Cyprus. 
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I - Distal exposures of the F2 age Fanglomerate unit cropping Out at Yermasoya 
(location 3-24), on the southern margin of the Troodos Massif, displaying a 
series of small channels and bars picked out by the alternation between the 
conglomerate and sand units. 

Note: see Fig.5. 12 for details. 

K - A view, looking east-north-east, of the structures present in the distal channel 
sequences of the F2 age Fanglomerate unit at Yermasoya (location 3-24). 

Note: planar bedded units at the top of the plate overlying a series of progradling 
foresets (dipping to the right; south) to the right of the scale. 

L - A large channel (b) of Fl age, running 08002600, cutting through the Miocene 
chalks (a) at Kouklia (location 2-54). 
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between Lamaca and Limassol and were previously interpreted as marine sediments 

(Bagnall, 1960). It is proposed that the sequences Bagnall (1960) described are actually 

fluvial sequences. 

The typical sequence (Fig.5.13) does not always occur and the following are 

locally present: 

a lack of the well bedded units, e.g. at Khirokitia and north of Maroni (locations 

Ml and 1-165, respectively; Fig.5.13), 

extensive areas of fine sand and silt which are capped by a unit of coarse, 

immature, conglomerate, 50-60cm thick (location 1-155), 

the presence of well developed palaeosol and caliche horizons between the basal, 

massive conglomerate and the well bedded units, e.g. south of Maroni (location M5; 

Fig.5.13). 

5.3.3.4 The F4 Fanglomerate unit and Recent fluvial sediments (late Late 

Pleistocene-Recent). 

The F4 Fanglomerate unit is best exposed in the major river valleys that issue 

from the Troodos Massif and in coastal exposures. Exposures in the valleys are at lower 

topographic levels than the F3 Fanglomerate unit, as seen on the north Troodos margin 

and recorded by Gomez (1987) for the lower Vasilikos Valley. Excavation pits in the 

lower Vasilikos Valley (Gomez, 1987) show that 3 to 5 units of silts were deposited at 

this time, comprising centimetre-sized rhythmic cycles, intercalated with calcareous 

horizons. The outcrops on the secondary road between Larnaca and Limassol (locations 

1-155, 1-156 and 1-165) are generally fine grained, i.e. sand and silt grade, in contrast to 

the earlier phases of the Fanglomerate Group deposition in this area. The sands and silts 

cover much of the valley floor but massive, poorly sorted, immature conglomerates are 

also present. The conglomerates are generally grain-supported and incorporate clasts less 

than 60cm in diameter. Igneous clasts dominate the units, i.e. lava and diabase, although 

immature chalk clasts are also present. Local caliche formation has taken place above the 

conglomerate units resulting in the formation of caliche crusts on clasts of the 

conglomeratic unit (location 1-162). 

The floor of the Vasilikos Valley shows evidence of downcutting by 6m. This was 

followed by a period of aggradation and alluviation between 5540 to 5010 B.C. (Gomez, 

1987). The aggradation preceded a phase of fine-grained overbank sedimentation and 

subsequent downcutting to form an alluvial terrace within 2m of the present floodplain, 

as seen in the Tremithios Valley (Gifford, 1978). Incision into this terrace has occurred 

since Byzantine (c.330-1190 A.D.) times (Gifford, 1978). The conglomerate units cap 
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silty and sandy alluvium in many places (location 1-162). Muddy, poorly sorted alluvium 

was deposited in the Tremithios River in the Larnaca lowlands (Gifford, 1978) during the 

latest Pleistocene and early Holocene. 

The P4 units have cut down into the underlying Troodos sedimentary cover 

sequence, for example in the Maroni River valley (locations 1-156 and 1-165), showing 

that formation of the P4 unit was not purely aggradational. The valleys of the south 

Troodos margin, e.g. the Pendaskinos River valley (Fig.2.1), are presently c. 300-400m 

wide and commonly are covered in alluvium; many of these valleys contain misfit 

streams today. 

Seismic surfaces offshore along the south coast, cut by inferred channels of F4 

age, can be correlated with fluvial channels onshore, e.g. Zyyi (McCallum, 1989). These 

shallow conglomerate-filled channels are incised into floodplain conglomerates similar to 

those associated with the F4 Fanglomerate unit along the southern margin of the Troodos 

Massif. 

Coastal exposures of the F4 Fanglomerate unit are best exposed in Zyyi and 

Petounda Point (locations 3-19.and 3-10) where sections are presently being eroded by 

marine action. The sections are generally less than 2m thick and are dominated by 

massive, poorly consolidated, coarse conglomerates, well bedded sandstones, fine gravels 

and palaeosol horizons (Fig.5.14). The dominant clasts within the conglomerate units are 

chalk, lava and diabase. 

5.3.4 South-western Cyprus. 

5.3.4.1 Introduction. 

There have been no previous studies of the Fanglomerate Group sediments in 

south-west Cyprus. The Fanglomerate Group is generally poorly exposed in the Paphos 

area. Outcrops are restricted to quarries, road cuts, river sections and palaeo-clifflines. 

Five areas of exposure will be described here, in chronological order: 

the outcrops of the Fl Fanglomerate unit in the Pissouri area, 

the Fl channel sequences recorded in the road cuts north of Kouklia, at 

approximately 120m ASL, 

the F2 and F3 fluvial sequences preserved in the area to the north and east of 

Paphos cropping out in agricultural terraces in the Ezousa River valley (Fig.2.1) and 

in the palaeo-cliffline in the region of Kouklia and Akhelia, 

limited F4 exposures on the lower coastal plain between Paphos and Kouklia, 
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v) the floodplain deposits that crop out in the area of Kissonerga, north of Paphos. 

5.3.4.2 The Fl Fanglomerate unit (lower Pleistocene). 

The Fl Fanglomerate unit crops out in cliffline exposures, c. 100m ASL, at 

Pissouri (location 3-30) unconformably overlying ?Pliocene conglomeratic fan-delta and 

marl sequences. The conglomerate unit is covered by a mature erosion surface. The 

sequence (Fig.5.15) consists of rapidly changing, poorly cemented, broadly fining-up, 

channellised, conglomerates. The sequences are presently in the order of 5m thick and are 

overlain by red terra rossa-type palaeosols and thick caliche horizons (Chapter 9). The 

clasts within the conglomeratic units have been derived from the Troodos ophiolite, i.e. 

gabbro, diabase and lava and the local sedimentary sequence, i.e. chalks and mans. 

Ultramafic and Mamonia-derived clasts are not present within this sequence (see Section 

5.5 for a more detailed description and discussion of clast provenance). The palaeocurrent 

data (Fig.5.15) reveal a dominant flow from the east to the west, some evidence for 

southward flow is also present. 

5.3.4.3 Channellised F! Fanglomerate unit sequences. 

The channellised fluvial sequences lie 70-80m beneath an exposure of earlier 

fluvio-deltaic sediments (Chapter 6). The channellised sequence is probably correlatable 

with the F 1 depositional phase as the top of the exposure has been eroded to form part of 

the Fl erosional surface in this area and the F2 cliffline lies topographically beneath this 

exposure, to the south, in the area around Kouklia (Fig.5. 16). The Fanglomerate Group 

sequence is preserved in single large channels between 40 and 50m wide with a 

maximum depth of 3.5m (location 2-54). These channels (Plates 5.10 and 5.11) have cut 

down into the underlying mans of the Pakhna Formation. The channel fill sediments are 

capped by terra rossa-type soils. A cyclic sedimentary sequence is seen in the mid-point 

of the channels; a basal unit of coarse conglomerate is succeeded by a vague fining-up 

unit (fining up to fine gravels) and the cycle is completed with the deposition of a second 

coarse conglomerate unit which scours into the finer sediments beneath. The second 

coarse conglomerate unit caps the sequence (Fig.5.16). The pattern of sedimentation 

within the channel is similar to the intermediate and distal localities on the north Troodos 

margin (Section 5.3.1). 

A second channel sequence unconformably overlies the Pakhna Formation to the 

west of location 2-54. Units B, C, D, E and F are all present within this second sequence, 

although there is no major basal lag (Fig.5.16 - log B). The clast composition data from 

the conglomerates at both localities are very similar (Figs.5.16) although the second 
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Fig.5.16. Sketch section of the early Quaternary channel sequences that crop 157 
out at Kouklia 

.
(location 2-54), illustrating palaeocurrent and clast composition 

data. 

Unit F: Caliche and red soil 

Unit E: Coarse conglomerate; this unit has similar characteristics to unit B The clasts, which 
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rounded as those seen in unit B. 

[]]J Unit D: Fine to medium sands lenses within unit C 

Unit C: Well bedded (5.10cm thick), grain-supported, fine and medium conglomerates. The 
clasts within this unit are well sorted, mature and dominated by Troodos-derived Iithologies 
(mainly diabase and lava). The clasts are generally less than 5cm along the "L" axis and 
spheroidal. The unit is generally well sorted, but rare pockets of fine sand and silt are present. 
These sands and silts are well bedded forming planar units approximately 1cm thick. This unit 
is poorly cemented. The unit grades laterally, the proportion of the fine gravels and sand 
increasing towards the edge of the channel, whilst the proportion of the coarse conglomerates 
increases towards the centre. 

- . 	Unit B: A grain-supported coarse conglomerate. Locally, fine gravels and coarse sands form 
0j the basal unit of this sequence. The contact with the underlying sediments is very irregular. The 

clasts within the conglomerate unit are generally mature and poorly sorted. Derived igneous 
clasts dominate and the matrix is mainly derived from the local pre.Quatcrnary sedimentary 
sequence being chalky and fine-grained. Some fine gravel is also present within the matrix. A 
vague fining-up sequence is seen, with better sorted, smaller clasts being present towards the 
top of the unit. This unit varies laterally, with finer conglomerates arthe edges of the channel 
and very coarse conglomerates in the centre. The unit is poorly cemented throughout. 
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Fig-5.17. Sketch section of the F2 Fanglomerate units that crop out in the 
Akhelia area, east of Paphos. 
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PLATE 1L 

J - A detailed view of the Fl age channel sequence exposed at Kouklia (location 2-
54). 

Note: see Fig.5. 16 for details. 

K - A overview of the F2 age distal braid sequences (b) cropping Out above chalks 
of Miocene age east of Akhelia (location 2-45). 

L - A detailed view of the F2 age distal braid sequences cropping out in the quarries 
at Akhelia, to the east of Paphos (location 2-45). 

Note: see Fig.5.17 for details. 
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sequence contains a higher proportion of locally derived sedimentary clasts. The 

palaeocurrent data from imbrication data collected from both section indicates a flow 

towards the west to north-west (Fig.5.16). 

5.3.4.4 The Fl and F2 Fanglomerate units cropping out in the Paphos area (lower -

middle Pleistocene). 

A series of multi-channelled, fluvial Fanglomerate Group sediments of both Fl 

and F2 age crop out in the area between Yeroskipos and Kouklia (locations 2-44, 2-45, 2-

46, 2-48 and 2-63; Plate 5.11). These exposures all have similar characteristics, seaward 

dipping imbrication, lenticular beds and a general alternation between the deposition of 

conglomerate and fine silt and sand (Fig.5. 17). The units are generally poorly sorted and 

immature. The fine fractions show evidence for the formation of caliche and soil 

horizons. One palaeosol horizon is seen forming along the basal contact between the pre-

Quaternary mans and chalks, and the Pleistocene sediments, e.g. Koloni (location 2-59). 

This in turn, is overlain by a sequence of channellised conglomerates. The channels are 

generally either wide and shallow (1.3m wide by 20-30cm deep), or deeper and narrower 

(im by 50-60cm). 

5.3.4.5 The F3 and F4 Fanglomerate units in south-west Cyprus (Late Pleistocene). 

The F3 and F4 Fanglomerate units are best exposed to the south-east of Paphos. 

The fluvial sequences crop out as either river (locations 2-41 and 2-43), or coastal 

sections (locations 2-42 and 2-57). The F3 and F4 Fanglomerate unit sequences crop out 

topographically beneath the F2 cliffline and form part of a coastal plain that probably 

formed during the Late Pleistocene, i.e. F3 and F4 times. The preserved fluvial sequences 

are probably F4 in age, post-dating the formation of the F4 littoral sequence seen in 

Paphos (location 2-4) and at Paphos International Airport (location 2-50). 

The coastal sections are generally less than 2m thick and show two facies coarse, 

grain-supported, massive conglomerates (which lie above the present day storm beach 

and act as a source of sediment to the marine environment, through active present day 

erosion of these outcrops) and brown, fine sands and silts (Fig.5.18). There is a broad 

alternation of deposition between the conglomerate and sandy-silt units (locations 2-42 

and 2-57; Fig.5.18). The sedimentary sequences within the river sections consist of well 

bedded alternating conglomerates, sands and silts (location 2-41; Fig.5.18). The beds are 

laterally impersistent but are cyclic, similar to that found in the coastal sequences (see 

above; Fig.5.18). 
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5.3.4.6 Floodplain sequences of south-west Cyprus. 

Extensive fine-grained sedimentary sequences that have not previously been 

described, or included, in the Fanglomerate Group, form part of the fluvial sequence that 

crops out near Kissonerga village, north of Paphos (location 2-20). 

The sedimentary sequence consists of white to buff-brown, and locally red, 

medium sands and silts (Fig.5.19), interbedded with minor conglomerates. The 

conglomerates form a minor proportion of the unit. These are occasionally imbricated, 

poorly sorted and immature and are made up of a range of angular to rounded clasts. The 

clasts within the conglomeratic units are dominantly, although not exclusively, chalks, 

cherts and marls. Some gabbro and serpentinite clasts are also present. The conglomerates 

form grain-supported units in channels, and grain- to matrix-supported deposits where 

interbedded with the fine sands and silts. Clasts are generally less than 10cm along the 

"L" axis, although occasional clasts up to 25cm long are present. The sections reveal a 

series of fining-up sequences (Fig.5.19). The units are generally structureless although 

distinct bedding, with occasional parallel lamination, is locally present. The beds are 

laterally persistent, i.e. continuity of bedding over distances of 30-100m. Channels 

cutting these laterally persistent beds are less than 3m wide and 50-60cm deep and are 

impersistent (Fig.5.19). 

5.3.5 The Fanglomerate units of the Polis-Panhos graben. 

Sediments of the Fanglomerate Group crop out throughout the Polis-Paphos 

graben. The Fanglomerate Group sediments in the southern portion of the graben, as well 

as those on the limbs of the graben, i.e. east and west, generally rest unconformably over 

Troodos ophiolite and pre-Quaternary sequences (Plate 5.12). In the central areas, 

towards the north of the graben, the Fanglomerate Group sediments unconformably 

overlie deltaic sediments, e.g. in the Limni area (location 2-94), as seen along the south 

coast in the Mazotos area of south Cyprus (locations 3-13 and 3-18; Chapter 6). 

The outcrop pattern of the Fl Fanglomerate unit has been disrupted by 

neotectonic faulting (Chapter 4), which has resulted in some dissection of the 

Fanglomerate unit, e.g. at Nata (Plate 4.2). The F2-174 Fanglomerate units, unlike the Fl 

unit, have not been as extensively dissected by faulting and, therefore, still crop out at 

successively lower topographical levels, like that seen elsewhere in southern Cyprus. 

The extensive sediments in the Fl and F2 Fanglomerate units resemble exposures 

in the Akhelia area, e.g. east of Paphos, and distal locations on the north Troodos margin. 
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Fig-5.19. Logged sections of the floodplain sequences cropping out at 
Kissonerga to the north of Paphos (location 2-20). 
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D - Displaying the texture of the coarse conglomerate exposed in the basal unit of 
the F2 age Fanglomerate sequence at Akhelia (location 2-45), south-west 
Cyprus. 

E - A view of the Fl Fanglomerate unit sequence exposed in a quarry on the western 
limb of the Polis-Paphos graben above Goudhi. 

Note: the normal fault cutting the Fanglomerate unit sequence. 

F - Displaying the quadrant used for clast analysis. 



Plate ),IZ 

a] 
- 

1A 
 jr 

 -- 	
-. 

- 	I 	 - 

E 

- 	
- 	 pt-- - 

p-. -' •. 

- 

F _ 
- 

I 

It 

- 



The F3 Fanglomerate unit has limited exposures and is generally restricted to areas close 

to the present river courses, whilst the F4 Fanglomerate units form outcrops within 

metres of the present day channels. 

The F1-F3 Fanglomerate unit sequences consist of coarse, massive, unsorted, 

channellised, conglomerates, passing up into sands and silt, capped by caliche and 

paiaeosol horizons. The sequences are generally red or grey in colour. The channel 

sequences commonly cut down into the underlying sediments, cutting through earlier 

conglomerates and silts, as well as soils, e.g. Prodhomi (location 2-93; Fig.5.20), similar 

to that seen at Kato Koutraphas, on the north Troodos margin (Plate 5.6). The channels 

are generally 3-5m wide and shallow - less than 70cm deep, e.g. Prodhomi (location 2-

93; Fig.5.20). 

The sediments of the F4 Fanglomerate unit are finer grained than the preceding 

Fanglomerate units. The clasts within the F4 unit are also generally more mature than 

those found within the F3 Fanglomerate units, which they cut through, indicative of clast 

reworking similar to that seen on the south coast of the island (Section 5.3.3.4). 

There has been extensive dissection of the Nicosia Marls that crop out on the 

graben floor beneath the Fanglomerate units. This erosion suggests that much of the 

original Fanglomerate Group sediment, within the graben axis, may have now been 

eroded. 

5.3.6 The Fanglomerate units in the Kato Pyrgos area. 

Kato Pyrgos, abutting the north-west flank of the Troodos ophiolite, is an area 

where sediments of the Fanglomerate Group can be studied in isolation to ascertain 

whether any major provenance changes have occurred during the Quaternary. Borehole 

data show that 57.9m of conglomerates, sands and silts are locally preserved beneath the 

Pyrgos River valley, unconformably overlying lava and diabase of the Troodos ophiolite. 

The exposed sections in Kato Pyrgos are correlated by means of local geomorphological 

features, e.g. palaeo-clifflines. Exposed sequences of the F2 and F3 Fanglomerate units 

are similar to those seen on the north Troodos margin and in other areas of southern 

Cyprus, i.e. a coarse conglomerate lag overlain by well bedded sands and silts, with 

evidence of caliche horizons, which, in turn, is overlain by another coarse pulse of 

conglomerate (Fig.5.20). The matrix within the Fanglomerate units consists of fine brown 

silts and sands. The clasts of the conglomeratic units are solely Troodos-derived, i.e. lava 

and diabase. The diabase clasts tend to be more mature than the lava clasts which are 

derived from local sources. 
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Fig.5.20. Sketch section from the the Polis-Paphos graben and the Kato 
Pyrgos area of north-west Cyprus. 
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5.3.7 The Fanglomerate units of the Kvrenia Range. 

Although this area has not been studied a brief description, based on the literature 

(Moore, 1960; Ducloz. 1972) is included for comparison with the Fanglomerate Group in 

southern Cyprus. Sediments of the Fanglomerate Group crop out both to the north and 

south of the Kyrenia Range. Coarse gravels, boulder beds and immature conglomerates 

made up of angular to sub-angular, poorly sorted clasts dominate. Well bedded silts are 

also present. The units have a chalky matrix and are capped by chalky white soils 

differing from those seen on the north Troodos margin. 

5.4 PALAEOCURRENT STUDIES, 

5.4.1 Introduction, 

The majority of the palaeocurrent data presented here is derived from clast 

imbrication, although foreset readings were collected where possible, to enhance this data 

set. 

5.4.2 Palpeocurrent data from the north Troodos margin. 

Palaeocurrent data from the north Troodos margin show a swing in flow direction 

from the north-west, in the west, to the north-east, further east (Fig.5.21). The data also 

show that a change in palaeocurrent direction is quite common between two pulses of 

juxtaposed coarse conglomerate units. A shift from the north-west towards the north and 

east on the north-western flanks of Troodos, and towards the north from the north-east, 

further east, is generally present (Fig.5.2 1). 

Data collected from the north Troodos margin agree with those collected by 

McCallum (1989) and complement trends identified from aerial photographs and satellite 

images (Chapter 2). 

5.4.3 Coastal southern Cvnrus. 

The majority of the palaeocurrent data collected for the coastal areas of southern 

Cyprus (Figs.5.22) reflect the radial drainage pattern described in Chapter 2. A southward 

directed pattern dominates in the area between Larnaca and Paphos (Figs.5.3 and 5.22) 

but does vary between east-south-east and west-south-west. The variation in 

palaeocurrent direction between the deposition of the Fl and F4 Fanglomerate units is 

minimal, with a consistent flow in an arc between the east-south-east and west-south- 
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west. Some minor changes are seen; for example the change from a dominantly east-

south-east to a south-south-east flow during the deposition of the F2 and F3 

Fanglomerate units, respectively (Fig.5.22). Deviations from a radial palaeocurrent 

pattern, centred on the Troodos Massif, are locally seen; for example, the Fanglomerate 

units that crop out at Dhekelia (location 2-83; Fig.5.10), the Fanglomerate units that 

unconformably overlie braid-delta sequences east of Larnaca (location 3-14; Fig.5.22), 

the Fl Fanglomerate units that crop out in Pissouri and Kouklia areas (locations 3-30 and 

2-54 respectively; Fig.5.23) and those rivers that drain off the southern and western edges 

of the Polis-Paphos graben (e.g. locations 2-63 and 2-21: Fig.5.22). 

5.4.4 The north coast. 

Limited, i.e. clast imbrication, data collected from Kato Pyrgos and the Polis-

Paphos graben show a south to north palaeocurrent direction (Fig.5.22). 

5.5 PROVENANCE STUDIES. 

Provenance studies were carried out in the field and on clay and silt fractions from 

boreholes at Meniko and Astromeritis (Fig.5.5). The borehole samples were studied using 

X-ray diffraction and X-ray fluorescence. 

5.5.1 Clast analysis within the Fanglomerate Group. 

Clast analysis of the conglomerates of the Fanglomerate Group was undertaken 

using randomly positioned quadrants (Plate 5.12). 50 clasts taken at random from within 

each quadrant were then identified according to published methods (Boggs, 1969; 

Pettijohn, 1980; Collinson & Thomson, 1982; Tucker, 1988). Five classes of lithology 

were identified: ultramafic, gabbro, diabase, lava and sediments. Sedimentary lithologies 

were identified where diverse sedimentary clasts were present. Provenance studies of 

clasts were also undertaken within units of the Pliocene Kakkaristra and Apalos 

Formations on the north Troodos margin; this study allowed a comparison of provenance 

between the Pliocene and the Quaternary sequences to be made. 

5.5.1.1 North Troodos margin. 

In the western and central Mesaoria Plain there are a greater proportion of diabase 

and gabbroic clasts in the Fanglomerate Group conglomerates than found in the 

underlying Pliocene lithologies, which are dominated by clasts of lava (Fig.5.24). By 

contrast, in the eastern portion of the Mesaoria Plain, the provenance in the Fanglomerate 
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Group is very similar to that seen in the underlying Apalos Formation (Fig.5.24). The 

variation in clast type between the Fl and F2 Fanglomerate unit conglomerates is 

negligible. Ultramafic clasts are generally absent from the Fanglomerate Group 

sediments. The exception occurs in areas close to the Karyotis River valley, e.g. Tembria 

(location 3-61; Fig.5.24). Ultramafic clasts are also found in exposures of the 

Fanglomerate Group in the Morphou area (Wilson, 1957; Moore, 1960), where Moore 

(1960) also reports the presence of gabbro and diabase clasts. 

The F4 Fanglomerate unit and Recent sediments that are associated with river 

courses on the west side of the Mesaoria Plain contain sedimentary clasts, e.g. limestones 

of Miocene age. The igneous clasts are also generally more mature, in contrast to those 

associated with the earlier Fanglomerate units, i.e. Fl-F3. The proportions of different 

igneous clasts varies locally (Fig.5.24). The presence of sedimentary clasts, which 

indicate erosion of older sedimentary units, suggests that erosion of the Fanglornerate 

Group must have been taking place allowing the exposure and erosion of the sedimentary 

sequences. This erosion of the sedimentary sequence, coupled with the local variation in 

igneous clasts present, plus the increased maturity of the igneous clasts in the F4 

Fanglomerate unit, suggests that reworking of clasts from older, earlier, Fanglomerate 

units into the F4 and Recent sequences, has taken place. 

5.5.1.2 Clast analysis in south-east Cyprus. 

In south-east Cyprus provenance studies of the Fanglomerate Group show the 

presence of Troodos-derived clasts, as seen on the north Troodos margin, as well as clasts 

derived from the Troodos sedimentary cover sequence (Fig.5.25). The sedimentary clasts 

are dominated by chalks and limestones of Palaeogene and Neogene age. A proportion of 

the lava clasts found within units of the Fanglomerate Group at Dhekelia (location 2-83) 

differ from the Troodos lava units. This pattern reflects derivation from both the Troulli 

Inlier and the Troodos Massif (Fig.1.3 and 2.9). 

5.5.1.3 The south coast region: Larnaca to Limassol. 

The pre-Quaternary channel sequences preserved in the Khirokitia and Maroni 

area (Fig.2.6) contain many large blocks, i.e. up to 3-4m long, of reef limestones of 

Miocene age. Diabase, lava, chalk and gypsum clasts are also present within the channel 

sequences. The stratigraphically lower portions of these Pliocene channels are dominated 

by chalk clasts: greater proportions of diabase are seen higher in the sequence. Eaton 

(1987) correlated the channels with the Miocene succession. However, it is now 

recognised that these channel sequences are of Upper Pliocene age (Houghton et al., 
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1990). The clast composition in the Pliocene channels contrast with that seen in the F3 

and F4 Fanglomerate units and with the Recent channel sediments in the Maroni River 

valley (e.g. locations 1-159 and 1-165; Fig.5.25). The F3 and F4 Fanglomerate units are 

dominated by gabbro, diabase, lavas and chalk, and contain few reef limestone clasts. 

Ultramafic clasts are absent from both the Pliocene and Fanglomerate channel sequences. 

Minor proportions of locally derived, ripped-up, marl clasts, of ?Pliocene age are found 

within the Fl Fanglomerate unit south of Maroni (location 1-163; Fig.5.25). 

The clasts within the F3 and F4 Fanglomerate units are similar throughout this 

region in areas away from the N4aroni River valley. Igneous clasts are generally more 

mature than locally derived sedimentary clasts in the F3 Fanglomerate exposures 

(location 1-160). The proportion of igneous to chalk clasts is generally higher in the F3 

Fanglomerate unit than in the F4 Fanglomerate unit, where locally derived chalk clasts 

dominate, e.g. west of Kophinou (location 1-155). Gabbro clasts from the Fanglomerate 

units in the Maroni River valley have probably been derived from the small, isolated 

outcrops of the plutonic core and the sheeted dyke complex that crops out in the vicinity 

of the upper reaches of the Maroni River, as this river does not cut through the main 

plutonic complex of the Troodos ophiolite (Fig.2.1). 

The clast data from the Limassol area show a progressive increase in the 

proportion of ultramafic clasts through time, i.e. Recent > F4 > F3, as seen in the Kouris 

River (locations 3-28 and 3-69; Fig.5.25). This increase in the proportion of ultramafic 

clasts is matched by a decrease in the numbers of the diabase and lava clasts (Fig.5.25). 

Ultramafic clasts are present in the F2, F3 and F4 Fanglomerate units, as far east as 

Vasilikos (location 1-140; Fig.5.25). However, ultramafic clasts are absent from the 

Vasilikos Formation (location 3-23; Fig.5.25), which is equivalent to the Fl 

Fanglomerate unit. The proportion of mafic clasts in the units to the north and east of 

Limassol, as far as Vasilikos, varies locally (locations 3-26 and 1-140; Fig.5.25) and the 

proportion of sedimentary clasts remains reasonably consistent throughout the Quaternary 

(location 1-140; Fig.5.25). 

5.5.1.4 South-west Cyprus, the Polis-Paphos graben and the Kato Pyrgos area. 

The Fl Fanglomerate unit unconformably overlies the ?Pliocene fan-delta 

sequences in cliffline exposures in the area of Pissouri Bay in south-west Cyprus. The 

clasts within the Fanglomerate Group unit are derived from both the Troodos Massif and 

the Miocene Pakhna Formation (Fig.5.15); these data support evidence for river capture 

in this area (Section 2.2.6). 
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Studies in the Paphos area (Fig.5.26) reveal an apparently constant clast source 

during the Quaternary period, contrasting that recorded from the Fanglomerate Group 

units exposed along the south coast of Cyprus. It is, however, likely that some clast 

reworking, from earlier into later Fanglomerate units, has taken place. The variety of 

clasts present within the Fanglomerate units in the Paphos area appears to reflect, 

directly, the local geology and drainage system (Figs. 1.4, 2.1 and 2.4), with clasts derived 

from the Troodos ophiolite, the Mamonia Complex and the Troodos cover sediments. 

Mamonia-derived clasts are present in many of the units to the north and east of 

Paphos, in the Kissonerga area. The presence of ultramafic clasts reflects a Mamonia 

rather than Troodos-derived source. Diabase clasts are present in large quantities in areas 

where major source rivers have risen in the Troodos Massif, e.g. the Ezousa, 

Yerapotomos and Dhiarizos Rivers (Fig.2.1), although diabase clasts are not solely 

derived from the Troodos Massif as slivers of both diabase and gabbro are associated 

with the Mamonia Complex and crop out to the south of Marathounda, in south-west 

Cyprus. Gabbroic clasts present within the Fanglomerate units are associated with the 

Mamonia complex, as the source rivers do not cut the core of the Troodos ophiolite. A 

rich variety of sedimentary clasts, e.g. chalks, chert, quartzite, marl, limestones, 

sandstone, siltstone and mudstone, are found within the Fanglomerate units. These are 

derived, locally, from the Mamonia Complex and the pre-Quaternary Troodos 

sedimentary cover sequence. 

A large proportion of the clasts within the conglomerate sequences of the Fl and 

F2 Fanglomerate units, in the Polis-Paphos graben, are derived from the Troodos 

ophiolite. Sedimentary clasts, derived from both the Mamonia complex and the Troodos 

sedimentary cover sequence (Fig. 1.4), are also present within the units of the 

Fanglomerate Group (Fig.5.26). The F3 Fanglomerate unit contains a greater proportion 

of locally derived chalks than is the case with the Fl and F2 Fanglomerate units. The 

chalk clasts within the F3 Fanglomerate unit are commonly large and immature, e.g. at 

Skouli (location 2-96), contrasting with those derived from the Troodos ophiolite, which 

are generally more mature. The igneous clasts present within the Fl and F2 Fanglomerate 

units are generally less mature than those found within the F3 Fanglomerate unit. 

5.5.1.5 Fanglomerate units of the Kyrenia Range. 

Clasts exposed in the Fanglomerate Group on the flanks of the Kyrenia Range 

consist of units of the Hilarion, Lapithos and Kythrea Formations, e.g. limestones, chalks, 

rhyolites, sandstones, greywackes and conglomerates (Moore, 1960). These lithologies 

are all restricted to the Kyrenia Range and do not crop out elsewhere on the island. 
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5.5.2 X-ray diffraction studies. 

X-ray diffraction was utilised to study the composition of the silt and, more 

specifically, the clay fraction of samples collected from two boreholes on the north 

Troodos margin, and other related sites. 

5.5.2.1 Borehole samples. 

Clay and silt samples were separated, by suspension settling (Hardy & Tucker, 

1988), from specimens collected from two boreholes located at Meniko and Astromeritis 

(Fig.5.5). Both boreholes cut the Quaternary and the underlying ?Pliocene sedimentary 

sequence (Fig.5.27). Samples collected from the boreholes were subjected to four X-ray 

diffraction runs, i.e. air-dried, glycolated and heated to 375 °C and 550°C, facilitating the 

identification of the clay minerals present. One sample, APM 15 (from the base of the 

Meniko borehole), was also heated to 1200 °C to identify amorphous silica (Fig.5.28). 

The clay minerals were prepared and identified in accordance with Starkey et al. (1984) 

and Hardy & Tucker (1988). 

The results of the X-ray diffraction analysis are shown in Appendix E along with 

the relative peaks of the mineral phases identified. 

The clay mineralogies of the borehole samples, that date from the ?Pliocene, are 

very consistent. Smectite-chlorite mixed clays dominate, although kaolinite, 

montmorillonite and illite are also present (Fig.5.29; other X-ray diffraction plots are 

given in Appendix E). The clay mineralogies do not appear to vary between the 

boreholes. Some variation in the peak height values of the clays are seen; this suggests 

that the proportion of clays may vary between samples, although quantitive 

measurements were not made. 

The mineralogy of the clay samples is similar to that seen in two D.S.D.P. holes 

(375 and 376) that were drilled 40 km to the west of Cyprus on the Florence Rise (Hsu et 

al., 1978; Fig.1.1). The D.S.D.P. samples are rich in smectite, illite and contain 

subordinate proportions of chlorite and kaolinite. The clays in the D.S.D.P. boreholes are 

considered to have been derived from basic igneous units of the Troodos ophiolite 

(Melieres et at., 1978). Other studies to the north-west of Cyprus also reveal a high 

proportion of smectite (Shaw, 1978). McCallum (1989) notes that smectite, small 

amounts of kaolinite and illite and minor proportions of chlorite are found in the Pliocene 

sediments cropping out on the Mesaoria Plain and suggests that some of this clay could 
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Fig.5.27. Sections of the lithological variation down boreholes at Meniko and 
Astromerjtjs, from which samples were taken for X-ray diffraction and X-ray 
fluorescence studies. 
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have been derived from the smectite-rich Kythrea Flysch found in the Kyrenia Range 

(Baroz, 1979). McCallum (1989) did not discover any vertical, stratigraphical changes in 

clay mineralogy through the Plio-Pleistocene sedimentary sequence on the Mesaoria 

Plain. Similarly, this study shows that there is no perceptible change in the clay 

mineralogy during the Quaternary. 

5.5.2.2 X-ray diffraction analysis of bone bed samples from the Fanglomerate 

Group. 

Samples of matrix collected from the bone bed, which crops out to the south-west 

of Xylophagou (location 2-75; Section 5.3.2) exhibit a clay mineralogy that is markedly 

different from that seen in the borehole samples (described above) and contains only 

traces of illite (Fig.5.30). The absence of clay suggests that the unit was well washed, 

which supports evidence from the analysis of thin sections (Section 5.3.2). The samples 

also contain quartz, augite, plagioclase feldspar, hornblende and calcite (Fig.5.30), 

suggesting a basic igneous, i.e. ophiolite, source for these samples, probably from the 

Troulli Inlier and/or the Troodos Massif. The calcite present within the samples is 

probably derived from carbonate cements, the calcareous fauna and derived carbonate 

clasts (Section 5.3.2). 

55•3 X-ray fluorescence studies. 

The X-ray fluorescence technique enabled a chemical analysis of the major and 

minor elements of the silt and clay fractions, collected from Meniko (MBH 1-15) and 

Astromeritis borehole (ABH 1-15) to be made. 

The major element data, obtained from the borehole samples (Fig.5.31 and 
Appendix E), show minimal variation down the borehole. Results normalised to A1 203 , 

i.e. each element/A1 203, are constant for the majority of the borehole samples (Fig.5.31). 

The exceptions are CaO, which shows some minor variation between samples (Fig.5.31), 
and K 2 

 0 that peaks in the first sample of each borehole, i.e. the upper soil level. 

The absence of any notable change in the major elements present, in either of the 

boreholes is consistent with the X-ray diffraction results (Section 5.5.2.1). The 

consistency of the data, down each borehole, suggests that provenance changes are 
constant throughout the Quaternary. The peak in the K 2  0 from the surface samples may 

reflect potassium added to the soil as a fertilizer, or more likely, soil forming processes. 

The fluctuations in CaO possibly indicate minor caliche forming processes beneath the 

soils although the concentrations of CaO are much lower than those seen in the caliche 
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Fig.5.31. Plots of: a) the major element composition of samples collected from 
the Meniko and Astromeritis boreholes after X-ray fluorescence analysis: b) 
spider diagram of major element variations normalised to Al. 

Note: MBH - Meniko borehole, 
ABH - Astromeritis borehole, 
"Y" axis is percentage plotted on a log scale. 
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samples (Section 9.4.3). The variation in CaO, like that seen in MgO towards the base of 

the Meniko borehole, is so small that it may just reflect minor variations in local 

weathering, provenance, groundwater or sedimentary environment. The overall pattern is 

one of consistency throughout the length of each borehole. 

The trace elements are slightly more variable than the major elements (Fig.5.32). 

The normalised results (Fig.5.32) show that variations in Ni and Cr, and Zn and Cu are 

generally in phase, i.e. the trend for Ni matches that for Cr, but the two groups do not 

corroborate each other, i.e. if a peak is present for Ni and Cr, then a corresponding trough 

is present for the Zn and Cu. 

The down borehole variation in trace element composition is minimal and 

probably reflects minor, local changes by weathering, groundwater effects and the local 

presence or absence of mineral phases; although some of the change may reflect the 

capture of trace elements by clay minerals as kaolinite is commonly enriched in Ni and 

Cr and Cu is strongly bound by montmorillinite (Rich & Kunze, 1967). 

Data collected from D.S.D.P. boreholes on the Florence Rise, to the west of 

Cyprus (Fig.1. 1), show that there is some variation in concentration of trace elements in 

the Quaternary sequences (Fig.5.33; Coumes & Boltenhagen, 1978). Shaw & Bush 

(1978) state that the concentrations of trace and major elements in the Morphou sub-

province of the Cilia Basin (Fig. 1.1) reflect local sedimentary depositional environments 

and provenance, in line with that seen from the Meniko and Astromeritis borehole 

samples. 

5.6 INTERPRETATION, DISCUSSION AND CONCLUSIONS, 

5.6.1 Thickness variation. 

The variation in thickness of the Fanglomerate Group to the north of the Troodos 

margin reflects: 

a proximal, pediment to distal, depositional relationship (Fig.5.34), 

the proximity to valleys supplying sediment from the Troodos Massif (Figs.2. 1 and 

5.2), 

uplift rates and climate variation (Section 5.6.2.2) 

pre-existing relief prior to the deposition of this group (Section 2.3). 

The Fanglomerate Group sediments that unconformably overlie the Pliocene 

clastic sequences are commonly thicker than those forming capping units on mesa-type 
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Fig.5.32. Plots of the minor and trace element composition of the samples 
collected from the Meniko and Astromeritis boreholes after X-ray fluorescence 
analysis: b) ,results normalised to Al. 

Note: MBH — Meniko borehole, 
ABH - Astromerjtjs borehole, 
"Y" axis is PPM plotted on a log scale. (a) 
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Fig-5-33. Chart showing the results of U.V. guantometer analysis from 
D.S.D.P. borehole 376 drilled on the Florence Rise (after Coumes & 
Boltenhagen. 1978. 
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hills, e.g. Pera (Section 2.3). The extent of erosion on the peneplaned Quaternary terraces 

is uncertain. 

Details concerning the extent and thickness of the Fanglomerate Group exposures 

in areas other than the north Troodos margin are more difficult to discern, as much of the 

sediment appears to have by-passed the southern sub-aerial depositional areas and been 

deposited directly on to the southern coastal shelf. Estimates of the thickness of the 

fluvial sequences of the Fanglomerate Group in areas away from the north Troodos 

margin, cannot be made. The Polis-Paphos graben represents the only area of active large 

scale, Quaternary, neotectonic faulting (Section 4.4). This faulting has caused the Fl 

units of the Fanglomerate Group to be dissected and has resulted in exposures 180m ASL 

at Goudhi (Plate 5.12), on the western flank of the graben, and c.300m ASL in the south, 

at Nata (Plate 4.2). The thickest Fanglomerate Group sections were recorded at Goudhi 

and this possibly reflects the influence of tectonics. 

5.6.2 Sedimentologv. 

5.6.2.1 Introduction. 

Studies of modern and ancient alluvial fans in semi-arid climatic conditions have 

been the subject of much research, e.g. modern fans in south-west U.S.A (Blissenbach, 

1954; Hooke, 1967; Bull, 1977) and ancient fans in Scotland (Wilson, 1980; Steel, 1974). 

Blissenbach (1954) concluded that alluvial fan sequences are coarse boulder to clay size 

detritus, which is angular to rounded and has good to poor stratification, pronounced 

imbrication, cut and filled channels and four distinct sediment types: 

debris flows, 

sheetflood or streamflood sequences, 

braid channel sequences 

floodplain or playa type sequences. 

Alluvial conglomerates in semi-arid environments are distinguished from coastal 

zone conglomeratic sequences by their textural immaturity, the scoured and channellised 

flow conditions, the variation from vague to distinct stratification and the general absence 

of well defined beds (Nemec & Steel, 1984). 

Gravelly mass flow units are preferentially located on the upper and middle 

reaches of alluvial fans (Hooke, 1967). These beds are usually sheetlike, ungraded, clast-

to matrix-supported and show either no obvious stratification or crude layering, and 

generally fall into one of four categories (Fig.5.35). The mass flow units are generally 



In 

a.' 

C 

0 

C 

E 
-o 

CD 
In 

0 

T 
ationat contacts 
ect waning/waxing flow; 

narper contacts mark 
intersurge stream flow or thr, 
fluidal sediment flow 

gns of tractive 
transport: 

tream or fluidal flow 
intersurge 

debris intersurge 

clast- to 	] 
iatrix- supported 

in sand intertayers 

Ec ru—de bedd 

INOR SURGE 
NTERSURGE FLOW 

AGE 

sharp base, 
rosive to non-erosive 

stratified 
sandstone 

(waning flow eposit) 

clast-suppc-zed 
texture, 
crude imbrioation; 

crude, thick, 
irregular 

1_cro ss- stra:. 

annelised, 

rnes with large -lutes 

187 

Fig.5.35. Four sections of typical features of mass-flow deposits (after Nemec 
& Steel, 1984). 
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sheetlike, slightly to strongly channellised and display normal grading. These flows are 

intermediate between stream flows and debris flows and have previously been termed 

streamfloods (Bluck, 1967A; Steel, 1974) and sheetfloods (Wasson, 1977, 1979; Heward, 

1978A). 

Vertical type-profiles and proximal to distal variations, associated with braided 

stream sequences, are well documented (e.g. Miall, 1978; Rust, 1978). 

Floodplain and playa sequences have been recognised in ancient semi-arid alluvial 

fan sequences of Scotland, e.g. Devonian age (Steel, 1974), New Red Sandstone (Wilson, 

1980). These consist of extensive mudstone and siltstone units, caliche horizons and 

coarse grained members that commonly scour into the underlying sequence. The 

sequences are laterally extensive and generally consist of fining-up couplets. 

5.6.2.2 North Troodos margin. 

McCallum (1989) proposed the first detailed model for the deposition of the 

Fanglomerate Group on the north Troodos margin. This model proposed that valley 

incision occurred, with Fanglomerate Group sediments being deposited within these 

valleys whilst reworking of the sedimentary cover of the Troodos ophiolite was taking 

place. These valleys were subsequently flooded with newly-derived conglomerates from 

the Troodos Massif, resulting in thin sheets of sediment spreading out onto the Mesaoria 

Plain. Subsequent deep incision resulted in the formation of terraces. 

It is suggested from the data presented here, that alluvial fan development took 

place on the north Troodos margin during the early and middle Pleistocene, i.e. Fl and 

F2 times (Chapter 2). The fans were fed by rivers feeding off the Troodos Massif 

(Fig.2.1). The Fl and F2 Fanglomerate units unconformably overlie the basement 

lithologies on the western and central parts of the Mesaoria Plain but are conformable 

with the Upper Pliocene sequences in the east. This contrast suggests that either uplift 

was more intense in the west with some erosion of the underlying Troodos sedimentary 

cover sequence prior to deposition of the Fanglomerate Group, and/or that the pre-

existing topography and drainage system during the Upper Pliocene facilitated steady 

state fluvial deposition from the Pliocene, i.e. the Apalos Formation (McCallum, 1989), 

through to the Quaternary, on the eastern portion of the Mesaoria Plain. 

Climate changes probably also contributed to the architecture of the fans on the 

north Troodos margin during the early and middle Pleistocene, as well as the deposition 
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of the Fanglomerate Group through6/cjt the Quaternary, as the change from generally dry 

glacial periods to wetter interglacial periods will effect run off, erosion and the style of 

deposition. A similar interplay of processes, i.e. tectonics versus climate, has been 

described from the Dead Sea (Frostick & Reid, 1989), Oman (Maizels, 1987) and south-

east Spain (Harvey & Wells, 1987). 

There is no evidence for the presence of debris flow units in the massive 

conglomerate sequences that crop out at locations proximal to the north Troodos margin. 

The lack of debris flow sedimentation probably reflects the proportion of finer-grained 

sediment available, which in turn results from the general lack of soil cover in semi-arid 

climates which reduces the amount of fine sediment available (Harvey, 1984). The 

generally structureless, grain- to matrix-supported, poorly sorted nature of these units, 

which commonly overlie erosional bases (Section 5.3) resembles rapid deposition by 

streamflood, or sheetflood, processes, similar to that documented in the Gm 

conglomerates from the early Tertiary sequences in Wyoming (Kraus, 1984) and the 

Quaternary sequences in Spain (Harvey, 1984). The variable clast fabric within these 

sheetflood units reflects the distance that these units have travelled and the relative 

viscosity of the units. Short travelled units are generally disorganised, whereas sheared 

laminar flow results in clast orientation as a consequence of clast interaction (Lewis et 

al., 1980). The development of sheetfloods rather streamfloods is the favoured 

proposition. Sheetfloods occur as extensive thin sheets of massively bedded conglomerate 

(Blissenbach, 1954), whilst streamfloods occur when the channels are too deep for 

sheetflood development. Deposition by sheetflood processes resulted in the deposition of 

an extensive conglomerate sheet over much of the fan sequence on the north Troodos 

margin. 

Intermediate locations represent median deposition between the proximal and 

distal extremes. The development of sand units, typically 10-90cm thick, inter-bedded 

with the conglomerates indicates that shallow, rather than deeper, channels existed 

(Nemec & Steel, 1984), typical of intermediate locations on semi-arid alluvial fans, cf. 

the Quaternary of Spain (Harvey, 1984). The presence, or absence, of cross-bedding 

within conglomerate sequences has also been recognised as an indicator of channel depth, 

with cross-bedding being indicative of deeper channels (Kraus, 1984). Cross-bedding 

within these intermediate locations is thought to have occurred during the rapid fall in 

fluid and sediment discharge across a bar, as was suggested by Hein & Walker (1977), 

supporting an argument for flashy, ephemeral flow across the fans. 
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Distal locations on the north Troodos margin reflect braided stream flow 

conditions (Blissenbach, 1954; Miall, 1978) with the development of channel cut and fill, 

overbank sediments and palaeosols. These sequences also reflect the continuation of a 

proximal to distal trend, south to north across the Mesaoria Plain. Reworking and 

downcutting probably resulted in the substantial reworking of mid- and upper-fan 

sediments to distal locations. 

As uplift continued the core of the Troodos Massif is thought to have risen 

quicker than the Mesaoria Plain (Chapter 2). This resulted in erosion, with fresh Troodos-

derived clasts being made available for deposition. The variation in clast types on the 

north Troodos margin reflects this, with increased numbers of gabbro clasts in the 

Fanglomerate Group relative to the Pliocene sediments. Studies of tectonic uplift of 

source areas in Recent alluvial fans (Heward, 1978B) indicate that uplift of the hinterland 

can result in either deposition on the active fan segment, i.e. the rate of uplift is greater 

than the rate of stream dissection, or entrenchment and the deposition of a second fan 

sequence at the toe of the first fan, i.e. the rate of stream dissection is greater than the rate 

of uplift, and results in isolated hills that are dissected during continued erosion by the 

rivers. Both of these scenarios have occurred during fan development along the north 

Troodos margin and have resulted, firstly, in the deposition of the Fl Fanglomerate unit 

and then the extensive dissection of the Fl Fanglomerate unit during F2 times. A similar 

process has post-dated the formation of the F2 Fanglomerate unit with downcutting of the 

drainage along the north Troodos margin resulting in the development of channel fans 

and mature erosion surfaces (cf. Muto, 1987; Chapter 2; Fig.2.2). Distal localities were 

not uplifted as much, or as rapidly as, the proximal areas of the Mesaoria Plain (Chapter 

2). This resulted in the coalescence of the Fanglomerate Group units at distal locations 

(Figs.2. 11 and 5.34). 

5.6.2.3 Model of deposition in coastal southern Cyprus. 

The model of deposition favoured in areas away from the north Troodos margin is 

predominantly ephemeral, fluvial sedimentation. Pre-existing topography also influenced 

the pattern of sedimentation in the west of the island, e.g. the Polis-Paphos graben. 

Deposition within the southern coastal areas appears to have been controlled by a series 

of large channels. Some of these channels date back to the Pliocene and possibly the 

Miocene (Eaton, 1987; Houghton et al., 1990). The initiation of these channels before the 

Quaternary meant that a series of conduits existed prior to the onset of rapid uplift during 

the early Pleistocene. This resulted in the formation of channel fans along the south coast 

of Cyprus, with much of the sediment by-passing the island and being deposited on the 
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shelf south of Cyprus. A marked proximal to distal change in the pattern of sedimentation 

occurs along the southern margin of the Troodos Massif which probably reflects the 

emergence of a fluvial system from an enclosed channel fan (cf. Muto, 1987; Heward, 

197813) onto an open plain (Fig.6.12). This change in environment has resulted from a 

widening of the channels and the development of bars and channels rather than the 

sheetflood- stream flood deposits that are prevalent in the confined channels closer to the 

margin of the Troodos Massif. The development of braidplain sequences accounts for the 

increased sorting of sediments away from the confined channels, with grain- rather than 

matrix-supported conglomerates. Thin, coarse, matrix- to grain-supported conglomerates 

of facies Al overlie the well bedded, mature conglomerate and sand facies. These suggest 

periodic flood events that have carried their immature, poorly sorted loads on to the 

plains, beyond the confines of the restricted channels (Fig.6.12). The coarse pulses of 

facies Al are thought to be correlatable with the coarse grained capping conglomerates 

that crop out along the north Troodos margin (Section 5.3.1). 

Gravelly flow sediments, i.e. sheetflood and streamflood sequences, make up a 

minor proportion of the exposed Fanglomerate Group deposits in coastal southern 

Cyprus, where channellised, braid sequences dominate. The braid sequences commonly 

unconformably overlie deltaic sequences (Chapter 6) and this relationship suggests that 

deposition in these areas was dependent on the relative sea-level at that time. McCallum 

(1989) argues that eustatic sea-level effects are unlikely to have played a major role in the 

deposition of the Fanglomerate Group on the north Troodos margin, and evidence 

presented here (this chapter and Chapters 6 and 7) agrees with this. The deposition of 

Quaternary siliciclastic sediments in areas other than the north Troodos margin has been 

affected by relative sea-level which has dictated the precise environment of deposition 

(also see Chapter 6). It should be noted that relative sea-level changes can also include 

tectonic uplift. 

The channellised sequences in south-west Cyprus display rapid changes in 

bedding, the interbedded nature of the coarse and fine sediments and the presence of 

palaeosols with root structures, combined with the strong downstream dipping t tp ct2 
2 

imbrication, suggesting that these sediments were laid down in a fluvial braidplain 

environment. The channels are small and the conglomerates within them generally grade 

up into the finer sediments, suggesting an initial high energy pulse followed by a waning 

flow. The scoured and grain-supported nature of the conglomerates suggest that these 

were deposited as bedload, or similar, and not as mass flow deposits. The periodic high 

energy events resulted in the deposition of immature conglomerates, whilst the finer 
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grained, more mature sediments are probably related to a waning flow. The palaeosols 

and caliche horizons relate to relatively stable periods of non-deposition. 

Evidence from the exposures of the Fanglomerate Group sediments in the Polis-

Paphos graben suggest that they were deposited as channellised sequences on a braidplain 

that was initially dissected by faulting, with subsequent dissection resulting from uplift 

and sea-level changes. The dissection of the graben basement is reflected in the clast 

maturity and provenance (Section 5.5.1.4). The conglomerates at the northern end of the 

graben prograde over the deltaic sequence as a result of a relative fall in sea-level, e.g. 

near Limni (Chapter 6), similar to that seen along the southern coast of Cyprus, e.g. in the 

area between Larnaca and Limassol. This probably occurred during the deposition of the 

F3 Fanglomerate unit. The most extensive period of fluvial sedimentation in the graben 

probably occurred during the deposition of the Fl and F2 Fanglomerate units, when large 

areas of the graben appear to have been covered by fluvial sediments. The F3 

Fanglomerate unit has a more restricted out crop pattern, i.e. the south and central portion 

of the graben. 

The F4 and Holocene Fanglomerate units represent phases of continued 

alluviation, with the deposition of coarse conglomerate and increasing proportions of fine 

alluvium. The coarse conglomerates are attributed to a high energy, bedload 

environment; these pass up into stratified bar deposits. The fine grained alluvium is 

interpreted as forming in a overbank environment. The finer grained sediments 

correspond to those seen on the north Troodos margin, i.e. the Xeri Alluvium (Ducloz, 

1965). Gomez (1987) correlates the sediments seen in lower Vasilikos Valley with the 

Older and Younger Fill of Vita-Finzi (1969). The presence of two distinct phases of 

sedimentation in the Vasilikos Valley, i.e. unstratified conglomerates and channel 

sediments, and the two coarse pulses of conglomerate found in the coastal exposures at 

Zyyi and Petounda Point (Fig.5. 14), supports the presence of an Older and Younger Fill. 

These phases of development probably formed as a result of climate change as proposed 

by Fairbndge (1972), rather than major tectonic uplift. The presence of the Recent coarse 

conglomerate pulses within the Vasilikos Valley has been attributed to man and the 

effects of deforestation during Roman times (B. Gomez, pers. comm., 1989), although the 

size of clasts within these conglomerates suggest flows that are significantly less than 

those seen along the south margin of the Troodos Massif during the Pleistocene. The 

floor of the Vasilikos Valley was downcut by 6m in the early Holcene, this was followed 

by a period of aggradation and alluviation between 5540 to 5010 B.C. (Gomez, 1987); 

this preceded a phase of fine-grained overbank sedimentation and subsequent 

downcutting to form an alluvial terrace within 2m of the present floodplain, as seen in the 
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Tremithios Valley (Gifford, 1978). Incision into this terrace has occurred since Byzantine 

(c.330-1190 A.D.) times (Gifford, 1978); shards found in this terrace south of Nicosia 

support this. Muddy, poorly sorted alluvium was deposited in the Tremithios River, in the 

Larnaca lowlands (Gifford, 1978) during the latest Pleistocene and early Holocene. 

The extensive, dominantly fine-grained sediments that crop out in the area to the 

north of Kissonerga village (Section 5.3.4.6) resemble floodplain sequences that have 

been described from Recent semi-arid alluvial sequences in south-west U.S.A. 

(Blissenbach, 1954) and the New Red Sandstone and Devonian of Scotland (Steel, 1974; 

Wilson, 1980). The presence of shallow but wide conglomerate channels indicates low 

sinuosity, ephemeral streams (Leopold & Miller, 1956). The deposition of extensive silts 

is suggestive of deposition as overbank sediments, which were periodically flooded, 

resulting in the deposition of conglomerate stringers. The presence of roots and caliche 

horizons within the sedimentary sequence indicates periods of quiescence when flooding 

was not taking place. The development of thick floodplain sequences has been interpreted 

as indicating the maintenance of periodic flood activity and a lack of regional channel 

migration in semi-arid conditions (Wilson, 1980). This supports the geomorphological 

evidence from south-west Cyprus which indicates a consistent drainage pattern during the 

Quaternary (Section 2.2.4). 

5.6.3 Palaeocurrents. 

There is a general swing in palaeocurrent direction from north-west to north-east, 

from west to east across the Mesaoria Plain, reflecting a radial drainage pattern centred 

on Mount Olympus. Palaeocurrent data from other areas, away from the North Troodos 

margin, coincide with the present direction of drainage. 

The palaeocurrent data from the Fanglomerate units in southern Cyprus show a 

pattern which indicates minimal changes in the flow direction throughout the Quaternary, 

so supporting arguments put forward in Chapter 2. The general southward and radial flow 

on the south Troodos margin reflects the dominant source area, the Troodos Massif. The 

exception to this general radial pattern has resulted from the structural control imposed 

by the development of the Polis-Paphos graben which, locally, has controlled the palaeo-

flow. 

Data showing deviation from the "normal' southward directed palaeocurrent in 

southern Cyprus have been collected from fluvial sequences that were deposited outwith 

the restricted valley fan systems (Section 5.6.2.3; Fig.6.12), in areas of lower river 
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gradients, e.g. above the deltaic sequence and areas of true braidplain deposition (Section 

5.6.2.3; Chapter 6). The drop in gradient and removal of any lateral constraints on 

sedimentation may have resulted in more sinuous rivers and may explain the diverse 

palaeocurrent data seen in the Dhekelia and Pissouri area, as well as the variation in 

palaeocurrent in more distal locations on the Limassol and Paphos coastal plains. The 

possible example of a large, more sinuous flowing channel is found in the Kouklia area, 

where a large restricted channel is seen; the palaeocurrent data from this is directly 

related to the local flow direction of this channel at outcrop and not a radial pattern 

centred on Mount Olympus (Fig.5.16). 

The palaeocurrent data from the south coast of Cyprus replicates that seen on the 

north Troodos margin, with a general radial pattern. This is more clearly defined in 

proximal locations, where only minor variations in palaeoflow occur, throughout the 

Quaternary. The pattern in distal locations is more diverse, reflecting the nature of the 

coastal plain, with more variable palaeocurrents correlating with isolated rivers, e.g. 

Kouklia, and braidplain environments on low coastal plains. 

5.6.4 Provenance. 

5.6.4.1 North Troodos margin. 

The provenance of the clasts on the north Troodos margin indicate that the major 

rivers channels that ran off the ultramafic core of the Troodos ophiolite during the 

Pleistocene also erode the core of the ophiolite today, as ultramafic clasts are only found 

in the units of the Fanglomerate Group that could have been fed by the Karyotis River 

(Chapter 2). The similarity of clast types seen in both the Pliocene and Pleistocene 

sequences in the eastern Mesaoria Plain area, south of Nicosia, reflects the drainage 

pattern in as much as rivers feeding sediment into this area have never cut through the 

plutonic units of the Troodos ophiolite, i.e. the major source of ultramafic and gabbroic 

clasts to the Fanglomerate Group, although uplift was taking place. The absence of 

ultramafic clasts and the scarcity of the gabbro clasts reflect directly the lithologies of the 

ophiolite through which the rivers, that issue out on to the north-east Mesaoria Plain, 

pass. 

The presence of, or increase in, the numbers of sedimentary clasts in the later 

phases of the Fanglomerate Group deposits suggests that the unconformity between the 

Pleistocene Fanglomerate Group and underlying Pliocene sediments: 

i) did not remove a large amount of sediment, 
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or ii) in subsequent phases of the Fanglomerate deposition, i.e. containing Troodos-

derived clasts, eroded much of the previously deposited Fanglomerate sediments, but 

only minor portions of the sedimentary cover were eroded, until the latter part of the 

Quaternary, 

or iii) much of the soft Pliocene sediment broke down to form a finer fraction, now 

indistinguishable from the matrix of the Fanglomerate Group. 

Arguments i) and ii) are favoured as an unconformity is not seen in the east 

between the Fanglomerate Group and Pliocene sediments and the topmost Pliocene 

sediments further east consist of Troodos-derived conglomerates. It is hypothesized that 

as uplift continued, deeper downcutting into the Pliocene and underlying sedimentary 

sequence took place (Chapter 2); this resulted in an increased proportion of sedimentary 

clasts within the later units of the Fanglomerate Group. This suggests that the initial 

phase of uplift resulted in the deposition of Troodos-derived sediments over the 

sedimentary cover sequence and that there was minimal downcutting into the Troodos 

sedimentary cover sequence. There are exceptions to this general pattern, topographically 

high areas provided sedimentary clasts to the Fanglomerate Group throughout the 

Quaternary, e.g. Kreatos Hill, near Mitsero, on the north Troodos margin, which 

generated a limited numbers of limestone clasts throughout the Quaternary period. 

The Kyrenia Range did not influence the Fanglomerate Group deposits on the 

south of the Mesaoria Plain, as clasts derived from the Kyrenia Range are absent from the 

units of the Fanglomerate Group. 

The variation in proportion of Troodos-derived clasts present in the different 

Fanglomerate units on the north Troodos margin is negligible and could be explained as 

follows: 

i) the highest source areas of gabbro and diabase were being tapped from the earliest 

Pleistocene, 

or ii) graben structures in the Troodos Massif exposed lower crustal levels at the same 

time as diabase. 

The second argument may apply locally, as both diabase and minor numbers of 

gabbroic clasts are present in the Pliocene Kakkaristra Formation but the number of 

gabbroic clasts in the units of the Fanglomerate Group is much greater than within the 

units of the Kakkaristra Formation. This increase in the proportion of gabbro clasts 

suggests that exposure and erosion of most of the gabbro took place later than the 

exposure and erosion of the diabase. The initial exposure and erosion of the gabbro 
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source area probably occurred during rapid uplift, i.e. early-middle Quaternary, and the 

formation of the unconformity postdating the deposition of the Pliocene sequence prior to 

the deposition of the Fanglomerate Group. 

5.6.4.2 South-east Cyprus. 

Gabbro clasts found within the fluvial conglomerates of the Fanglomerate Group 

in the Dhekelia area could not have had their source in the Troulli Inlier and must, 

therefore, been derived from either isolated gabbroic outcrops seen in the eastern portion 

of the Troodos ophiolite, or from the main gabbroic body in the centre of the Troodos 

Massif. Derivation from the central body is unlikely as most of the rivers flowing from 

this area feed north and then west, rather than east. Derivation of the gabbroic clasts from 

the isolated outcrops in the east of the Troodos Massif is more likely as these rivers flow 

north and then east. The presence of gabbro clasts also supports an argument for the 

development of a more extensive drainage system, which flowed through the Dhekelia 

area and into Larnaca Bay, during the early Quaternary (Section 2.2.3). 

5.6.4.3 The south coast. 

The variation in clast provenance between Episkopi and Vasilikos to the south of 

the Troodos Massif reflects the local drainage pattern and local basement geology, as well 

as the unroofing of structurally deeper lithologies of the Troodos ophiolite and the 

Limassol Forest belt. The sedimentary clasts are markedly different from those associated 

with outcrops in south-east Cyprus. Clasts are predominantly derived from the Miocene 

Pakhna Formation, rather than the chalks and limestones of Palaeogene and Neogene age, 

which is the case further east. The Kouris River (Fig.2.1) flows from the core of the 

Troodos Massif today and can, therefore, transport clasts derived from all parts of the 

ophiolite. The paucity of ultramafic clasts in the F3 Fanglomerate units, and the increased 

proportion of these in the F4 Fanglomerate and Recent units, in the area of the Kouris 

River suggest that unroofing and erosion of the core of the ophiolite was more marked 

during the latter part of the Quaternary. By contrast, rivers further east contain large 

proportions of ultramafic clasts from F2 Fanglomerate times onwards. This reflects 

substantial erosion of a series of sources, i.e. Limassol Forest belt, during the early and 

middle Pleistocene. The absence of ultramafic clasts in the Fl Fanglomerate unit at 

Vasilikos could reflect: 

i) later local uplift and erosion of the ultramafic units through which the Vasilikos 

River valley cuts, 
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or ii) regional unroofing of the Limassol Forest belt, which did not take place until 

after the deposition of the F! Fanglomerate unit. 

5.6.4.4 South-west Cyprus. 

The proportion of clast types in south-west Cyprus are generally constant 

throughout the Quaternary, reflecting sources as diverse as units of the Mamonia terrane, 

the Troodos ophiolite and its sedimentary cover sequence. The presence of mafic and 

ultramafic units within all Quaternary units of the Fanglomerate Group reflect their 

presence in the Mamonia terrane. The two exceptions to this pattern of consistency occur 

at Pissouri and in the Polis-Paphos graben. 

In the Pissouri area, channellised Fanglomerate Group deposits have a clast 

content that was derived from not only the local sedimentary sequence but also from the 

Troodos Massif. This supports the argument for capture of the Kryos River between the 

early Quaternary and Recent (Section 2.2.6). The variation in clasts type and maturity in 

the Polis-Paphos graben between Fl and F3 Fanglomerate times suggests that: 

regional erosion occurred before and during the formation of the Fl and F2 

Fanglomerate units but that associated downcuuing into the local sedimentary 

"basement" during this time was minimal. 

the increase in the proportion of chalk clasts in the F3 Fanglomerate units reflects a 

change from regional erosion to more local erosion, resulting in the increased 

dissection of the local pre-Quaternary sediments, 

reworking of the Troodos-derived clasts was taking place during the formation of 

the F3 Fanglomerate units 

rapid erosion of the sedimentary clasts was occurring with little evidence of 

transport prior to deposition. 

5.6.5 Summary. 

The sediments of the Fanglomerate Group reflect the uplift and Quaternary 

climate changes of southern Cyprus. Sea-level changes have also influenced the 

development of the Fanglomerate Group in coastal areas of southern Cyprus (Fig.6. 12). 

The pattern of sedimentation reveals a proximal to distal relationship, with evidence for 

the development of alluvial fans, channel fans, braidplain and floodplain environments. 

The provenance of the Fanglomerate Group sediments reflect local geology and the 

drainage pattern but the dominant source and control is the Troodos ophiolite. The 

variation in provenance between the Pliocene-Pleistocene and, locally, the Pleistocene- 
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Holocene Fanglomerate units, is indicative of progressive unroofing of the Troodos 

ophiolite and its sedimentary cover sequence. Studies of borehole samples indicate that 

there has been no major change in provenance during the Quaternary, i.e. there was no 

introduction from sources other than the Troodos ophiolite and its sedimentary cover 

sequence. The palaeocurrent pattern is broadly radial, although minor variations resulting 

from structural controls, e.g. the Polis-Paphos graben, and the development of shallow 

dipping coastal plains, have facilitated some deviation from this radial pattern. The 

absence of major changes in the drainage pattern, as indicated by palaeocurrent and 

provenance studies implies that uplift of the Troodos Massif has been focussed on the 

same area throughout the Quaternary, i.e. Mount Olympus. Evidence from the sediments 

of the Fanglomerate Group indicate that there was a waning of activity through the 

Quaternary, which resulted in less exhaustive erosion and deposition during the Late 

Pleistocene-Recent, as suggested by the data from the geomorphological and dating 

studies (Chapters 2 and 3). 



Chapter Six: Siliciclastic shallow marine sediments. 

6.1 INTRODUCTION. 

Previous studies of Plio-Quaternary marine siliciclastic sedimentary sequences 

have been limited to studies of the Pliocene Kakkaristra Formation, a fan-delta sequence 

(McCallum, 1989). The Quaternary shallow marine siliciclastic sequences have received 

scant attention, the only recorded description referring to deltaic outcrops in the Polis-

Paphos graben (L. Ward pers. comm., 1987). 

This chapter will describe the geographical distribution of the Quaternary deltaic 

and siliciclastic beach sequences, their sedimentary characteristics, their relationship to 

the Fanglomerate Group (Chapter 5) and the carbonate littoral sequences (Chapter 7) and 

interpret their mode of deposition. 

6.2 GEOGRAPHICAL DISTRIBUTION AND AGE OF SILICICLASTIC SHALLOW MARINE 

SEQUENCES, 

Marine siliciclastic sediments in southern Cyprus are limited to quarry exposures 

at the northern end of the Polis-Paphos graben (location 3-106), areas along the southern 

coastal plain (locations 3-12, 3-13 and 3-18) and exposures between Dhekelia and 

Xylophagou (locations 2-78 and 2L80; Fig.2.7). The siliciclastic sediments do not form 

palaeo-clifflines, unlike the carbonate littoral sediments (Chapter 7). The regressive 

nature of these marine sediments results in fluvial sequences of the Fanglomerate Group 

unconformably overlying the shallow marine siliciclastic units. It is therefore likely that 

these shallow marine siliciclastic sediments make up much of the sub-crop beneath the 

fluvial sediments of the coastal plain of southern Cyprus (Plate 4.1). A similar pattern of 

sedimentation is likely to have developed across the Akrotiri Peninsula as borehole data 

indicate the presence of at least 86m of sands and Troodos-derived conglomerates, the 

lowest of these being 75m beneath ASL (Fig.5.3). Although the records are poor, it is 

likely that at least some of the sands and gravels found in the Akrotiri Peninsula 

boreholes were deposited in a marine environment. 

The distribution of the Quaternary deltaic sequences is very similar to that of the 

Fanglomerate Group, much of the sediment was sourced from the Troodos ophiolite and 

initially transported by fluvial action (Chapter 5). There are only three areas where 

carbonate and siliciclastic marine sequences are seen in close proximity: at the north end 

of the Polis-Paphos graben where carbonate sequences gradual replace siliciclastic marine 

sequences east of the exposures at Limni (location 3-106), i.e. away from the influence of 
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the major drainage issuing from the Polis-Paphos graben; in the Lara Bay area of western 

Cyprus (Chapter 7) and in the area between Dhekelia and Xylophagou where extensive 

deltaic and beach sequences of Fl, F2 and F3 times crop out. These sequences are 

replaced, in F4 times, by a mixed sequence of carbonate and siliciclastic littoral 

sediments (Section 7.3.6). 

The marine siliciclastic sediments crop out beneath the F3 erosion surface, which 

forms an extensive plain around much of the south and south-west coast and at the 

northern end of the Polis-Paphos graben (Figs.2. I and 2.7). The preserved marine 

siliciclastic sediments predate the formation of the F3 erosion surface. As an 

unconformity/discontinuity exists between the F3 fluvial sequences and the underlying 

deltaic sequences it is difficult to correlate these two depositional events with any great 

certainty, although the presence of coral heads within the shallow marine siliciclastic 

sequences may allow them to be dated, in the future, using the U-series method (Chapter 

3). It is likely, however, that these sequences are correlatable with the deposition of the 

F3 carbonate sequences that crop out at Petounda Point (location 3-11) and Larnaca 

(location 1-130; Chapters 3 and 7). A positive correlation can be made at the northern 

end of the Polis-Paphos graben, where F3 carbonate sequences which are laterally 

equivalent, and correlatable, interfinger with the marine siliciclastic sediments, e.g. 

Argaka (location 3-109; Chapter 7). In south-east Cyprus the marine siliciclastic 

sequences crop out beneath the F2 erosion surface and are therefore probably related to 

the F2, and possibly the Fl, phase of deposition. No direct evidence for P4 deltaic 

deposition is seen although some of the sub-crop on the Akrotiri Peninsula (Fig.5.3), and 

a portion of the sedimentary sequence identified offshore by the use of seismic methods 

(McCallum, 1989), may have been deposited in a deltaic environment during this period, 

especially those areas where majol rivers continue to feed into the Mediterranean Sea, 

e.g. the southern coast east of Limassol, Akrotiri Bay, Episkopi Bay and Khrysokhou Bay 

(Figs.2.7 and 2.17). Much of the direct evidence for the deposition of the Fl deltaic 

sequence is missing. The absence of Fl exposure may result from erosion, many of the 

Fl erosion surfaces being today truncated at the coast. The truncation of these surfaces 

has resulted in the formation of clifflines that presently cut down through the Fl fluvial, 

rather than marine, sequences. This phenomenon suggests that much of the Fl marine 

siliciclastic sequence may have been eroded away, e.g. Pissouri (location 3-30). 

200 



6.3 DESCRIPTION OF THE QUATERNARY DELTAIC SEQUENCES. 

6.3.1 South-east Cyprus. 

The most extensive marine siliciclastic sequences in south-east Cyprus crop out 

between Dhekelia and Xylophagou (Fig.6.1). The sedimentary sequence crop outs in a 

series of quarries along a 7km east-west stretch of coast. These beds provide some of the 

thickest and most continuous Quaternary sequences in Cyprus, e.g. the outcrop at location 

2-79 is approximately 25m thick and the base of the Quaternary succession is not seen 

(Plate 6.1). However, most of the exposed sections are less than lOm thick. Although the 

sediments are laterally persistent, rapid vertical changes occur and a great variety of 

sediments are seen. Borehole data indicate that the thickest sequence is in the order of 60-

65m thick and occurs in the centre of the area (Fig.6. 1). The topographic relief associated 

with the Athalassa and Nicosia Formations (Pliocene) in the east, and limestones of 

Miocene age cropping out in the west, cause the Quaternary sediments to thin rapidly 

away from the centre of the area (Fig.6. 1). Borehole data record a general coarsening of 

the Quaternary successions up sequence (Fig.6.1). Thick caliche commonly caps the 

Quaternary sequences throughout south-east Cyprus. 

6.3.1.1 The Dhekelia area. 

Outcrops in the Dhekelia area indicate the variation in relief that existed prior to 

the deposition of the Quaternary sequences (Fig.6. 1). Neogene sediments underlie the 

white grainstones, and sand and gravel sequences of Pleistocene age in the centre of the 

area. At other locations, i.e. on the periphery of the area, there is a general absence of 

Pleistocene marine sands and gravels and the Pliocene sediments pass directly into the 

sediments of the Fanglomerate Group. 

The Quaternary sequence in the Dhekelia area is only lOm thick and 

unconformably overlies calcarenites of the Athalassa Formation. The basal Quaternary 

unit varies with coarse, poorly sorted, unfossiliferous conglomerates dominating, whilst 

white grainstones containing a rich fauna, e.g. echinoids, rhodoliths and molluscs, are 

locally present. Seven sedimentary units, caliche and palaesols crop out above this basal 

sequence (Fig.5.10; Plate 6.1). 

6.3.1.2 Ormidhia area. 

The sediments in this area are very different from those to the west, i.e. in the 

Dhekelia area. Here, the effects of the palaeorelief are far less pronounced and the base of 
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the Quaternary sedimentary sequence is not seen. The following sedimentary units crop 

out: 

Unit A.• well sorted, grained-supported, mature, medium grained conglomerate. 

The unit is commonly bedded and contains mature, discoidal and spheroidal 

clasts. The matrix of this unit consists of medium to coarse sand. Both sedimentary and 

igneous clasts are present within the sequence, although the proportions of each vary 

between localities, as does the maturity of the clasts (Fig.6.2). The beds in this unit are 

generally between 30 and 50cm thick, dominantly imbricated, but some shallow dipping; 

prograding foresets are also present. The foresets generally dip towards the south and 

south-west at 100-15 (Fig.6.2). This unit is commonly bioturbated with vertical and 

horizontal burrows, e.g. Thalassinoides. A low diversity, high density molluscan fauna is 

present, e.g. Glycymeris, Pecten and Ostrea. The mollusc shells are usually abraded and 

more than 5mm thick. The beds are laterally continuous and not lenticular with beds 

being traced laterally for more than Sm. 

Unit B: well sorted, fine grained conglomerate. 

This unit consists of mature conglomerates (Fig.6.2). The beds are typically 1-

10cm thick and outsized clasts less than 5cm along the 'L' axis are present. The larger 

clasts are commonly discoidal, while the smaller clasts are more spherical. This unit is 

characteristically unfossiliferous, although a fauna, similar to that found in unit A, is 

locally present and bioturbation is extensive, e.g. Thalassinoides(Plate 6.1). The beds 

locally display small-scale fining up structures, shallow and steeply dipping foresets, 

trough-cross-stratification and convoluted beds (Plate 6.2). 

Unit C: mature, well bedded, medium to fine sands. 

This unit is made up of planar bedded medium to fine, very well sorted green and 

white sand (Fig-6.2; Table 8.1). Shallow dipping foresets (<10 0) and extensive parallel 

laminations are common, although higher angle foresets (<30 0) are also present. The beds 

are usually between 5 and 10mm thick and appear to be ungraded. Horizontal and vertical 

bioturbation is common, e.g. Thalassinoides, throughout much of this unit, and 

particularly pervasive at the base, locally destroying the bedding and sedimentary 

structures. The predominance of bioturbation results in the massive appearance of this 

unit. The unit is generally unfossiliferous. Hard white bands of calcium carbonate are 

locally interbedded with this unit. These bands are generally folded and contorted (Plate 

6.2). Some truncation surfaces are present within the unit (location 2-78) and are 
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PLATE 61 

- Quarry section in the Ormidhia area of south-east Cyprus displaying the lateral 
continuity of bedding. 

Note: the quarry face is c.7m high. 

K - Structures preserved in the fine gravel to coarse sand sequences in the 
sedimentary sequence that crops Out at Dhekelia (location 2-83). 

Note: see Fig.5. 10 for details. 

L - Thalassinoides burrows cutting across well bedded units of fine gravel and 
coarse sands at Ormidhia, south-east Cyprus (location 1-148). 
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- Convolute, planar and small fore sets preserved in the fine gravel and coarse sand 
sequences cropping out at Ormidhia (location 2-82). 

Note: see Fig.6.2 for details. 

K - Small fining up cycles from gravel to sand within small prograding foresets of 
the mature fine gravel to coarse sand units at Ormidhia (location 2-82). 

Note: the truncation surface and planar bedded units above the prograding foresets, 
see Fig.6.2 for details. 

L - Convolute bedding preserved within the sands of the sequence cropping out at 
Ormidhia (location 2-82). 

Note: the 25cm scale at the bottom left of the plate. 
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commonly overlain by a mature lag of mixed igneous and sedimentary clasts, less than 

5cm along the "L" axis. 

Unit D: shelly conglomerate. 

This unit is dominated by a low diversity hash of disarticulated, abraded 

molluscan shells. The fauna mirrors that seen in Unit A. The long axis of the shells are 

commonly orientated (Fig.6.2). The unit is generally reverse graded from a grey-green 

sandy base to conglomerates near the top. This unit shows marked lateral changes and is 

not laterally persistent, unlike units A, B and C. The shelly horizons give way to red fine 

sands and silts, with subordinate matrix-supported clasts. Palaeosols and caliche horizons 

cap this unit. 

Unit E: white wackestone. 

A thin, planar stratified and centimetre laminated wackestone. The unit dips 

towards the south. A low diversity bivjve fauna, i.e. Glycymeris and Ostrea, is present 

within the unit. 

Unit F: coarse, poorly sorted conglomerate. 

This grain-supported, unfossiliferous coarse conglomerate unit is generally poorly 

sorted containing clasts commonly less than 10cm ("L" axis). The clasts are spherical to 

discoidal and have been derived from both igneous and sedimentary sources. The matrix 

is a fine sand. The unit is unbioturbated and massive, although small channels are locally 

present. 

v) The relationship between the sedimentary units. 

The units described above commonly crop out independently of each other, e.g. 

unit C dominates the succession at location 2-78, but the units are also interbedded. An 

A-B-C-D succession is commonly seen (location 2-79) with a gradational contact 

between units A and B, whilst a sharp, conformable contact is seen between units B and 

C. Unit D can also be present between units A and C (location 2-78; Fig.6.2). The 

formation of a thin caliche cap above unit C and beneath unit D indicates the presence of 

local discontinuities in sedimentation (location 2-78; Fig.6.2). Units B and D are 

commonly missing from the sequence. Unit B is locally indistinguishable from unit A. 

The contact between unit A and the underlying sediments is usually erosional with the 

conglomerates scouring down into the underlying units (Plate 6.3). 



J - Shallow dipping planar conglomerates truncating steeply dipping conglomerate 
units to the south of Ormidhia. 

Note: the sequence is c.3m high. 

K - Fine planar bedded gravels cropping out within the deltaic sequence above the 
micrite unit at Mazotos (location 3-13), south Cyprus. 

Note: the exposed sequence is c.5m high. 

L - The micrite unit within the deltaic sequence at Mazotos (location 3-13) 
displaying its pinching and swelling nature. The micrite is capped by planar 
bedded mature fine gravels. 

Note: the scale is 50cm long. 
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Sequences containing all the units, i.e. units in the order A-B-C-D-A, etc., are 

rare; partial sequences are more common, i.e. units in the order A-B-C-A, etc.; A-B-A-B 

sequences are the most common. The variation and frequency of detrital input into this 

area (Chapter 2) has clearly influenced the sedimentary sequence more than those 

sequences cropping out in the Dhekelia area, to the west (Section 6.3.1.1). 

6.3.1.3 Outcrops west of Cape Pyla. 

This area is different again from those seen to the west. Limestones and chalks of 

Miocene age formed a positive erosional topography during the Quaternary and therefore 

restricted the deposition of Quaternary sediments (Chapter 2). The sediments to the south 

of Xylophagou (location 2-70) crop out in a coastal section approximately lOm ASL, 

although the Quaternary sequences are only 3m thick. The basal sediments 

unconformably overlie chalks of Miocene age and consist of a conglomeratic lag, largely 

derived from the underlying chalk. The conglomerates are succeeded by a thin sequence 

of well bedded, fine conglomerates which is capped by caliche. Imbrication data from the 

conglomerates indicate a bimodal current direction. This sequence passes with a 

gradational contact, both vertically and laterally, into a 80cm thick shelly grainstone that 

contains fragmented robust molluscs, e.g. Glycymeris. The shells do not appear to be 

orientated. A small conglomeratic channel has subsequently cut down through the 

Quaternary and Miocene sediments. These sections are described in more detail in 

Section 6.4. 

6.3.2 Southern Cvorus. 

The siliciclastic marine sediments that crop out along the south coast of Cyprus 

are limited to quarry exposures, the best of which are seen to the north-east of Mazotos 

(locations 3-12 and 3-13; Plates 4.1 and 6.3). 

6.3.2.1 Sedimentary units. 

i) Unit I. pro grading shelly, sands and gravels. 

The sequence at location 3-12 fines-up from prograding gravels, containing clasts 

less than 5cm diameter, into a sequence of interbedded sands and gravels (Fig.6.3). The 

foresets become steeper where the sands and gravels are interbedded, with a maximum 

dip of 200. The unit is locally very shelly, containing many abraded gastropod and 

bivalve shells, e.g. Glycymeris and Chiamys. 
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Fig6.3. A sketch section from the deltaic sequence that crops Out at Mazotos 
(location 3-13), along the south coast of Cyprus. 

Note: the units marked on the figure refer to units described in the text. 
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Unit II: well bedded, mature sands and gravels. 

A laterally persistent coarse sand and fine gravel unit crops out above the 

prograding foresets (Fig.6.3); this well bedded unit fines-up from gravel to sand. 

Bioturbation causes the sands to have a mixed and massive appearance, locally. The 

sands contain many small scale structures, e.g. small planar foresets, channels and 

ripples. The whole sequence is laterally persistent. 

Unit III: soil horizons and associated massive conglomerates. 

The sands and gravels pass up into a thin soil horizon. This, in turn, is overlain 

with an erosional contact by coarse, immature, massive conglomerates. There is little 

structure within the conglomerate unit, the exception being the development of minor 

foresets towards the top of the unit. The unit is poorly to moderately sorted and the 

largest clasts are 65cm along the 'L" axis. This conglomeratic unit is unfossiliferous, 

unconsolidated and laterally impersistent, as beds cut down through the sequence and 

mature coarse sands and fine gravels are interbedded with immature medium and coarse 

grained gravels. Channels that cut down into the poorly sorted conglomerates are more 

mature and better sorted than the background sediments. Very coarse conglomerates crop 

out, locally, throughout the unit. Clast imbrication is seen and the more mature, finer-

grained units reveal foresets, similar to those seen close Tersephanou (location 3-18). 

The pattern of sedimentation at location 3-13 is more complex than that at 

location 3-12. The base of the section is marked by the presence of medium 

conglomerates which form a series of prograding foresets, similar to unit I. These 

conglomerates, like those seen at location 3-12 (see above) are mature and well sorted. 

The foresets within the medium conglomerate unit dip towards the west at between 8 0  

and 220  (Fig.6.3). Abraded molluscan shells and fragments of coral are present within the 

unit. A sharp reactivation surface lies above the beds of medium conglomerates and is 

succeeded by clast-supported, prograding units of fine gravel to medium sand. A gross 

fining-up sequence is present within this unit, with coarse to medium sands dominating 

towards the top of the sequence. Gravel stringers are present although these are not 

laterally persistent. Small channels containing mature gravels crop out in the lower 

portion of the succession. Small vertical burrows, less than 1cm diameter, cf. the 

Thalassinoides facies, are present within the medium to coarse sand unit, as are a series 

of sedimentary structures including small scale trough cross-stratification, fining-up 

laminated sands and ripples. Evidence of soft sediment deformation is also present as are 

numerous small faults (Chapter 4). 



Unit IV. micrites. 

The white micrites rest conformably, but with an uneven contact, over the 

prograding gravel units, e.g. unit I (Fig.6.3; Plate 6.3). The micrite reaches an observed 

maximum thickness of 70cm and pinches out to the west where it is replaced laterally by 

mature, well sorted sands, similar to those seen in Unit II at location 3-12. This micrite is 

massive and structureless, and some iron staining is seen in hand specimen. Thin section 

observations show that micrite dominates but subordinate fragments of allochems are 

present. The allochems at the base of the unit account for less than 10% of the constituent 

components of the rock and are dominated by fragments of planktonic foraminifera tests. 

This part of the micrite unit can therefore be described as a mudstone. An undulose but 

sharp boundary towards the top of the unit marks the transition to a higher proportion of 

allochems, again dominated by planktonic foraminifera tests. This portion of the unit can 

be described as a wackestone. The unit is matrix-supported throughout. The wackestone 

is truncated by the overlying sands and gravels. The contact between the wackestone and 

the overlying unit is planar, with little evidence of extensive erosion, or gouging by the 

overlying clastic sediments, into the underlying micritic sequence. 

Unit V. planar bedded gravels and sands. 

The micritic unit is succeeded by three fining up cycles of planar bedded, fine 

gravel to coarse sand, interbedded with stringers of poorly sorted medium to fine gravel. 

The beds within this unit are generally structureless and between 20 and 50cm thick. The 

sands dominate making up approximately two thirds of each cycle. The contact between 

each cycle is irregular and draped but does not appear to be erosive (Fig.6.3; Plate 6.3). 

Unit VI: coarse immature conglomerates. 

An erosional contact above the planar bedded sands and gravels marks the 

introduction of coarse, poorly sorted, immature conglomerates. This unit, like the 

underlying sediments is grain-supported but, unlike the underlying units, contains a 

higher proportion of matrix and tends to be poorly bedded and locally chaotic. The unit is 

imbricated and generally better cemented than the underlying mature sediments (Fig.6.3). 

The unit coarsens away from the contact with coarse sands and fine gravels beneath, 

passing up into medium to coarse conglomerates, that contain clasts of derived caliche. 

The clasts are generally less than 8-9cm along the "L" axis and sub-mature, although 

generally more mature than those clasts associated with units of the Fanglomerate Group 

(Fig.6.3; Chapter 5). Caliche and soils that overlie the conglomerates are, in turn, 

overlain by an aeolianite sequence (Fig.6.3; Chapter 8). 
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6.3.2.2 Provenance data. 

The provenance data collected from location 3-13 indicate a strong Troodos-

derived component. Notably, ultramafic clasts are absent (Fig.6.4). The Troodos-derived 

clasts are generally more mature than the sedimentary clasts, in both the deltaic and 

overlying fluvial sequences. The clasts within the deltaic deposits vary in roundness from 

0.6 to 0.8 and most are spherical rather than discoidal. 

6.3.2.3 Palaeocurrent data. 

The palaeocurrent data indicate that sediments prograded out from the shoreline in 

an arc between east and west-north-west (Fig.6.5). The fluvial sediments that overlie the 

deltaic sequence conform to a similar overall pattern, indicative of a flow off the Troodos 

Massif (Chapter 5) but having a markedly different pattern at outcrop scale (location 3-

13; Figs.6.3 and 6.5). 

6.3.3 The Polis-Panhos graben. 

The Quaternary deltaic sediments from the northern part of the Polis-Paphos 

graben have previously been described as fan-delta sequences (L. Ward, pers. comm., 

1987). The sediments in this area, like those that crop out along the south coast of the 

island, form limited outcrop to the east of Polls (location 3-106) where active quarrying 

is taking place. Outcrops also occur where agricultural terraces have been cut in the 

hillsides to the south-east of Polis (location 1-166). 

6.33.1 Sedimentary units. 

The sedimentary sequence in this area shows a gradual facies pattern change, with 

siiciclastic marine sequences in the Limm area (location 3-106) passing laterally into 

carbonate littoral sequences further east, e.g. Argaka (location 3-109; Chapter 7). The 

sequences at Limni (location 3-106; Fig.6.6; Plate 6.4) are similar to those cropping out 

along the south coast of Cyprus (locations 3-12 and 3-13; Section 6.3.2; Fig.6.3). The 

base of a deltaic unit is exposed in the Polis area, an unconfonnity separates the 

underlying Myrtou Marls, of Pliocene age, from a basal lag. The basal lag is locally 

succeeded by a thin mixed sand unit, with subordinate gravels, which rapidly grades up 

into mediun to fine sands; thses sands are well bedded and structured, displaying trough-

cross stratification, wave laminated ripples and small-scale prograding foresets. The 

palaeocurrent data collected from this unit (Fig.6.6) indicates a flow towards the south- 
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Fig.6.5. Palaeocurrent data from the deltaic, and over lying fluvial, sequences 
along the south coast of Cyprus. 
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west. The laminated sand unit is not present in all parts of the sequence as well bedded 

gravels are commonly seen lying directly above the basal lag (similar to Unit 1; Section 

6.3.2.1). The well bedded conglomerate unit has a maximum outcrop thickness of 5m. 

The sediments that overlie the well bedded conglomerate unit display rapid 

vertical changes; intraformational unconformities are also present. At Limni (location 3-

106), the intrafonnational unconformity is overlain by medium to coarse grain-supported 

conglomerates unlike that seen at location 3-13, near Mazotos (Section 6.3.2). The 

prograding foresets at this locality dip towards the north-west to north-east (Fig.6.6). The 

delta front units are overlain by a massive, matrix- to grain-supported, chaotic 

conglomerate, with evidence of caliche formation, similar to unit VI on the south coast 

(Section 6.3.2.1). This conglomeratic unit is, in turn, overlain locally by laminated sands, 

white micritic limestones and fluvial sands and gravels. A hash of mixed gastropod and 

molluscan shells lying above the whole sequence is also present near Linini (location 3-

106). 

63.4 Deltaic sequences south-west Cyprus. 

Limited exposures of mature, well sorted conglomerates exist in south-west 

Cyprus, the only example being a small quarry to the north-east of Kouklia (location 2-

53), which crops out at 220m ASL. 

The units in the quarry sequence consist of mature, grain-supported, well bedded 

and sorted sands and gravels (Fig.6.7). The sequence fines-up from medium gravels to 

coarse sands, is unfossiliferous, and heavily bioturbated towards the top. Planar laminated 

beds dipping at <70  are seen, as are a series of prograding forests, that dip up to 20 0 . The 

beds are laterally persistent (Table 6.1) and the clasts are generally texturally mature, i.e. 

spheroidal to discoidal, and well sorted (Fig.6.7). A unimodal, north-north-east 

imbrication direction is locally present within the lower prograding beds, bimodal 

imbrication is present within the higher units, i.e. both north-north-west and south-south-

east (Fig.6.7). The beds dip towards the south-west and south-south-west (Fig.6.7). A 

distinct truncation surface exists between the steeply dipping foreset unit and the shallow 

planar bedded units (Plate 6.5). 



J - The preserved sequence of siliciclastic sediments at Kouklia (location 2-53), 
revealing planar bedded mature gravels truncating the underlying steeply 
dipping foresets. 

Note: scale is 50cm long. 

K - Planar bedded beach forests from the F3 units cropping out in the Dhekelia area. 

L - Detailed view of the planar foresets exposed in the fine gravel and coarse sand 
sequences in the beach sediments at Dhekelia (location 1-129), south-east 
Cyprus. 

Note: scale is 50cm long, 
shelly unit displaying moldic porosity at the top of the white portion of the 
scale. 

M - Displaying the cyclic nature of the gravel and sand sediments in the beach 
sequences at Dhekelia (location 1-129c). 

Note: scale is 50cm long. 



Plate 6.5 
J 

: 

0 
A 	

- 

!!t 

I-' 

r 

M 

L 
LL1 

' 

eA 
- 
	

4 

I 	 - - 

4.- 	-- 	-. -C 	 - 	 - 	
•1 - -. __ - C 	 - 

..,-. ••z . 	--' 	- .. 	--• 	

Z6-- -. 	-'.- - - 
- 

- 	 --- 	 I- 



214 

(k (WiE) DUNTIM prolli . [.J 

6.4.1. introduction. 

Siiciclastic beach sequences are preserved in a series of exposures along the coast 

between Dhekelia and Xylophagou in south-east Cyprus. These sequences vary from 

those seen elsewhere on the island as they are not related to the deltaic facies described 

above, e.g. in the Linmi mine area (location 3-106), and are not fluvial sequences that 

form small coastal cliffs, that have been cut by present, or past, marine erosion, e.g. in the 

area of Paphos, Zyyi and Vasiikos (Chapter 2 and 5). Low cliffs to the west of Larnaca 

have been described and interpreted as marine by Bagnail (1960); these are re-interpreted 

as forming in a fluvial environment. 

The discrimination of wave worked conglomerates from fluvial sequences, and 

therefore the interpretation of coarse grained beach conglomerates has relied on the shape 

and sorting of clasts, the pebble segregation and relative bed lenticularity and the 

interpretation of sedimentary successions (Bluck, 1967B; Dobkins & Folk, 1970; Clifton, 

1973; Williams & Caldwell, 1988; Gale, 1990; Postma & Nemec, 1990). This study has 

utilised the criteria previously laid down (Dobkins & Folk, 1970; Clifton, 1973) to aid the 

interpretation of these sedimentary sequences, although it is understood that a range of 

variables, including climate, relative base level changes and hydrodynamic conditions, 

affect the depositional sequences and their preservation potential. 

6.4.2 F3 and F4 siliciclastic beach sequences of south-east Cyprus. 

A series of siliciclastic beach sequences of F3 and F4 age, crop out in the area of 

coast between Dhekelia and Xylophagou. These sequences consist of coarse 

conglomerate units, which are best exposed in the area south of Onnidhia (locations 1-

128, 1-129 and 2-77), mixed conglomerate, sand sequences, e.g. south of Xylophagou 

(locations 1-129a and 2-700), and shelly hash and sub-aerial units. All of the depositional 

sequences crop out within tOrn ASL, i.e. F3 or F4 (Late Pleistocene), with the F4 

successions (e.g. location 1-129) commonly lying on the seaward side of a minor F3 cliff, 

which has been cut into the preceding fluvial and shallow marine deposits. The various 

sedimentary components of these sequences will now be described. 

6.4.2.1 Coarse conglomerate lag. 

These coarse angular, massively bedded conglomerates locally lie unconformably 

above the underlying pre-Quaternary sedimentary sequence (locations 2-700 and 2-70; 
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Fig.6.8), where c.lm of associated relief is common. The clasts within this unit are up to 

60 cm long ("L" axis) and consist of angular blocks of Miocene limestone and 

grainstones. Mature igneous clasts are also present. Whole and broken robust shells are 

found within the unit, e.g. Gfycymeris, and bioturbation is absent. 

Table 6.1. Bed continuity data from the siliciclastic sequence in south-west Cyprus 

(location 2-53). 

Note: see Fig.6.7 for the location of the units within the sequence. 

UNITE 

Beds frr y A C P Thickness Notes 

a 21 350 0.06) 70-90 30 21 Fg,imbn 
b 40 500 0.080 70-90 30 60-40 C - Mg, massive 
c 10 400 0.025 10-30 45 10 Csst 
d 15 420 0.036 50-70 10 15 Fg 
e 10 460 0.022 10-30 45 10 Csst 

UNIT A 

a 	5 500 0.010 0-10 45 8-3 Csst, p1. 
b 	8 500 0.016 0-70 10 11-19 Fg-Csst, imbn, GS 
c 	5 500 0.010 10-30 30 9-4 Csst + clasts, p1. 
d 	3 500 0.006 50-70 10 27-24 Fg-Csst, GS, imbn 
e 	3 220 0.016 0-10 45 3 Fg-Csst 
f 	9 500 0.018 70-90 30 20-11 Mg 
g 	17 500 0.034 70-90 30 20-3 Mg-Fg, OS, imbn 
h 	15 500 0.030 0-10 45 25-10 Csst + clasts, p1. 

Notes: 
i). All measurements are in cms 

it = Maximum thickness - minimum thickness 
g = Lateral extent of bed, within 500cms 
L = Lenticularity index (it/y) 
C = Estimated percentage class of pebbles >4mm 
P = Pebble segregation factor (50 - m), where in = the midpoint of the pebble percentage 

class C 
F - fine, M - medium, C - coarse, g - gravel, sst - sandstone, imbn - imbrication, p1. - parallel 

laminations 

6.4.2.2 Coarse-medium conglomerates. 

These coarse-medium conglomerate sequences (Fig.6.8) crop out unconformably 

above earlier Quaternary and Neogene sediments (location 1-129a), as well as within the 

sedimentary sequences (Fig.6.8). The conglomerates are commonly grain-supported, 

imbricated and dip at 5-100  in an arc between south and south-west, or north to north-east 

(Plate 6.5). Igneous and sedimentary clasts are present as is a high density, low diversity 



Sedimentary structures 

+ - floe up 
2 - nunebur of shells Increases op 

3' nujoleer ci clasts Inca-eases up 

I. fine dowet 
2.3 	I 2- number of shell, Increases down 

3- number of clasts increases down 

,'1 ' 

.- ' 11l''uluroaa

itr

e t(  o

u

n

io

s 

 

l

e

p 

 

t

u

s 

tl ort 

1. bedded 

lslnngern 
Teooch

(

.erem.strste 

 

flcolon 

P ' Shelly bivalvs)I3S 	liotuetuion 

 at000rnt 

 

 data 

n-do nab 

readings  

o number at readings 

Inebrtcatlun 

Fonsefr 

Location I.129c 

scoured contact 

Uthutogy 

Caliche and rod soRe 

•. Iminiturn, count, poorly 

- 

sorted, flavl.t conglomerate. 

Immature, poorly sorted. angular 

0. coon. conglomerate. The unit contains 

spherical rip-up dusts. <60cm In 

diameter derived from below. 

('.ratmm-sopporlrd. e,ediuimm to 
count eotmgtnmmicrnte. Mature. 
lnmo,'Icuted aped well sorted. 

Closts ore discoidal In ahupe. 

Fine conglomerate to coon. 
send. Matorn, discoidal. 
Imbricated clasts. 

E Grainstone contaInIng  
robust, broken bivalve shells 

[1111 Very fine sand 

Course to medium. macun [J  nunds. commonly containing 
minor grovel dusts. 

Fre'Quuternory sediments 

flimestone and chalk) 

fl'3t 

V! 

Locntton 1.151 

00° ) 

+ 	 Og S 

0 0 	5 
0, 

° 
Ob a 

3 

N 
3 

3 

tt 

It 

Location 2-71. 

draped contact 

onconfonotty 

Locution 2.70 

gradational 
 

contact 

nron(orcnity 

LocutIon 1-129 	
Location 1-1291, 

010  

t0 = 

	

contact 

I 	 LocatIon 1-129 

0 0  

L,ocation 2-711,

tn-O 	

- - 	

. 

l o I 	I 12 	m7eV.Ofl55 

nretmrnaturn I-I"r 2-lm relief on 

unconformity  

tdscn 1,2,3 

Io0l) \ shell. 	rI Looted 
lool ) 	I 
10  

I°I 
unconformity 

Location 2-71 

6.33 

n-35 
I 

tiocoofonnhty 

Lot t flee 	
0,.) 



Fig.6.9. Sketch of the structures preserved in the beach sequence near Cape Pyla 
(location 2-71a). south-east Cyprus. 
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mollusc fauna. The valves, locally (location 2-700), lie parallel to bedding at the base of 

the unit and grade up into a disorganised group towards the top. The beds are laterally 

persistent and not lenticular. The clasts are generally mature, well sorted becoming better 

sorted and more mature, as the proportion of the shells increases, up sequence. The clasts 

at the top of the unit are mostly discoidal and less than 3cm along the "L" axis. This unit 

is locally interbedded with fining up sequences of gravels and sands, and commonly 

truncates the underlying beds (Fig.6.9; Plate 6.5). 

The coarse-medium conglomerates crop out within the sequences around much of 

the coast from Ormidhia west towards Dhekelia. Bi- and unimodal imbricated clasts 

(Figs.6.8 and 6.10) indicate a dominantly north and north-east to south and south-west 

palaeocurrent. 

6.4.2.3 Fine conglomerates and coarse sands. 

The fine gravel to coarse sand units are up to 2m thick (location 1-151), well 

bedded and laterally persistent. The clasts within this unit are generally less than 3cm 

along the "L" axis and have a discoidal shape. Bioturbated, planar bedded and trough-

cross-stratified units (Plate 6.5) and a mollusc fauna, are all locally present. The planar 

bedded portions of the unit dip at between 50-100  offshore, i.e. 170°-1900  (Fig.6.8; Plate 

6.5). The trough sets display small fining-up structures from fine gravel to medium sand. 

A series of truncation surfaces cuts the trough-cross stratification, identified by gravel 

stringers. The sediments are commonly cyclic, with fine gravels passing up into coarse 

and medium sand; these sands are capped by a scoured contact and fine gravel. The beds 

are locally convoluted (cf. Plate 6.3); this is generally associated with the influx of rare, 

large clasts. Imbrication present within these units indicates a dominantly onshore 

palaeocurrent direction, i.e. towards the north-east (Figs.6.8 and 6.10). 

6.4.2.4 Sand units. 

Medium to fine, well to very well sorted, shelly sands crop out throughout the 

beach sequence. The sands occasionally contain fine gravel stringers, usually along the 

base of the bed, and matrix-supported clasts. The sands are commonly laminated, mm-cm 

thick, and display planar and trough-cross-stratification. Mollusc valves are commonly 

orientated parallel to bedding. Bedding is locally absent, although this correlates with the 

presence of pervasive bioturbation. The unit is poorly cemented and friable. 
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6.4.2.5 Sub-aerial and shelly hash units. 

A shelly hash, similar to that described previously (Section 6.3.3.1) from the Polls 

area, crops out above the conglomerates at location 2-77 (Fig.6.8). The fauna is 

dominated by Glycyrneris and Ostrea, these shells not orientated. 

Fluvial conglomerates locally cut channels into the beach sequences (location 2-

71; Fig.6.8). These conglomerates can be distiguished from the underlying units as they 

are coarse, immature and poorly sorted, although they do contain mature clasts derived 

from the underlying units. 

Caliche horizon capping the sequence commonly act as a "cement", binding the 

top unit together. Some red staining of the top most portions of the sequence occurs; this 

is attributed to the formation of dark red palaeosols that have stained these units. 

ri!b1Jiw 	p4  (I)J)j U (•XVi1 

6.5.1 Deltaic sequences of south-east Cvnrus. 

6.5.1.1 Dhekelia. 

The succession at Dhekelia (location 2-83; Fig.5.10) represents a shallow marine 

sequence. The conglomerates reflect the influence of detritus derived from continental 

sources, whilst the sands (unit A) represent the steady state background sedimentation. 

The palaeocurrent data from the conglomeratic unit indicates both an on- and offshore 

direction (Fig.6.2). The sedimentary structures within the sand units probably represent a 

variety of shallow marine littoral environments. The truncated and scoured nature of the 

conglomerates that overlie the well bedded sandstones (unit A) suggest a moderately 

rapid change in environment which resulted in the transgression of the conglomerates 

over the sands. Local changes in the relative base level have probably influenced and 

controlled the timing of deposition of these conglomerates. The absence of evidence of 

longshore currents, i.e. palaeocurrent direction parallel to the coast, suggests that the 

change from sand to conglomerate deposition resulted from the introduction of primary 

clasts into the system. This change suggests either a rise in the base level, i.e. uplift, a 

drop in sea-level or the possibility of some climatic variation, similar to that described in 

Chapter 5, which has resulted in increased numbers of clasts being supplied to the marine 

realm through increased offshore transportation of sediment. 



6.5.1.2 Ormidhia. 

The medium conglomerates, unit A, are interpreted as being deposited in an 

active, shallow, marine environment. The presence of a fauna - bioturbated horizons - 

indicates that the environment was not too harsh, however, the thick shelled, low density 

fauna does suggest a high energy environment (Bourgeois & Leithold, 1984), although 

this fauna may have been reworked into it's current position. The variable maturity of the 

clasts suggests that they have been introduced from a fluvial source during the formation 

of this unit and have been subsequently reworked by marine action. The coarse but well 

sorted nature of the clasts supports an argument for a high energy depositional 

environment. 

The well sorted conglomerates, unit B, probably formed in a high energy 

shoreface environment. The absence of a fauna and bioturbation suggests either rapid 

deposition of this part of the sequence in harsh conditions, or continuous erosion and 

deposition (cf. Howard, 1975). The finer grained and generally better sorted, and more 

mature, nature of this unit over unit A indicates an active environment, actively 

reworking and sorting these clasts derived from onshore fluvial environments. 

The green and grey sands, unit C, are interpreted as forming in an active, high 

energy shoreface environment. The presence of preserved parallel laminated and cross-

bedded sands indicates a high flow regime, possibly associated with a high sediment 

accumulation rate. The uniform grainsize of the sediments supports arguments for a high 

energy environment. The presence of occasional stringers of gravel indicates that either: 

lag deposits were reworked by large waves and currents, or that additional clasts were 

derived from locations closer to the shore. The presence of Thalassinoides burrows 

indicates a neritic-littoral environment (Crimes, 1975). The intensity of the bioturbation 

varies throughout the unit; the more massive and greatly bioturbated sediments probably 

formed in slightly deeper conditions, further away from the active wave base, i.e. the 

lower shoreface. The beds with preserved sedimentary structures probably formed in 

areas where the physical processes exceeded bioturbation, i.e. in the more active upper 

shoreface, similar to that seen in the Miocene shoreline deposits of California (Clifton, 

1981). The burrows commonly cut straight across bedding surfaces and a horizontal 

component is frequently absent. This may indicate high rates of sedimentation (cf. 

Howard, 1975). The thickness and uniformity of the sand sequences suggest that they 

formed in relatively stable conditions, the general change from massive, extensively 

bioturbated sediments in the lower parts of the sequence, to well bedded, structured and 

less bioturbated sequences towards the top of the unit may imply progressive shallowing 
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of the depositional environment, i.e. a general drop in base level and/or possible 

progradation of the shoreline. 

Unit D represents the sub-aerial component of this system. The red colouration of 

this unit is indicative of oxidation. The shelly "hash', a death assemblage associated with 

the caliche and soil is probably a storm event deposit which was washed up into the 

backshore environment. The presence of this unit indicates the continued shore 

progradation from the shoreface sequences of unit C. 

6.5.1.3 Cape Pyla. 

The Cape Pyla sequence probably represents a small beach sequence with an 

initial transgressive basal lag flooding the Miocene erosion surface. The coarse to fine 

variation in the conglomerates represents a possible storm event, followed by a lower 

energy waning component. The clasts within the conglomerates may have been subjected 

to some longshore drift east, as the major fluvial sources in this area during the 

Quaternary issued into Larnaca Bay in the Ormidhia area further west. Imbrication data 

may support an argument for longshore drift, as there is a component of the data that 

trends to the east of the azimuth indicating imbrication orthogonal to the shoreline. The 

presence of the overlying shelly grainstones implies that the source of detritus may have 

ceased, and/or this area may have become isolated from the influence of the fluvial 

sequences to the west, perhaps as a result of a change in the relative base level. The 

conglomerates that cut down into the Quaternary and Miocene sequences are interpreted 

as fluvial successions, indicative of a continuing relative regression (Fig.6.8). 

6.5.1.4 Model of deposition of the deltaic sequence in south-east Cyprus. 

The sedimentary sequences that crop out in south-east Cyprus contrast those 

Quaternary deltaic sequences that crop out elsewhere on the island, as they are not 

dominated by conglomeratic deposition (Section 6.3.2 and 6.3.3). The sediments reflect 

deposition within a shallow marine environment which has been influenced by both 

marine and fluvial controls. The lateral persistence of beds suggests that similar 

environmental conditions persisted over a large area. The vertical changes in lithology 

indicate that changes to the environment were taking place with the switch from a 

dominantly marine to a fluvial regime resulting in fluvial conglomerates flooding wave 

dominated marine sediments. 

The presence of small faults (outlined in Chapter 4) may have had some control 

over the variation in the observed sedimentation pattern, but it is more likely that local 
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environmental changes, e.g. eustatic sea-level changes and changes in the sediment 

supply resulting from local, or regional tectonic uplift and/or climatic variations, 

exercised a greater control over the pattern of sedimentation. The shallow water nature of 

these sediments makes them excellent indicators of subtle changes in the relative sea-

level and shoreline progradation. 

The pattern of sedimentation in south-east Cyprus reflects the variation in the pre-

existing relief of the basin. This changeable pattern also reflects a proximal, e.g. beach, 

delta top and delta-fluvial interface environments, to distal, e.g. delta front, environment, 

change in the environment of deposition, which in turn indicates the location of the 

palaeoshorelines. 

6.5.2 Deltaic sequences of the south coast and the Polis-Paphos graben. 

6.5.2.1 The south coast. 

The sedimentary sequences cropping out in the Mazotos area (locations 3-12, 3-13 

and 3-18; Fig.6.3) represent coarse grained proximal deltaic sequences. Fine grained 

prodelta and bottom set sediments are absent. The presence of molluscs, although 

obviously reworked, indicates deposition in a marine rather than lacustrine environment. 

The clean, well sorted, mature, grain-supported nature of the conglomerate contrasts the 

overlying fluvial sediments that contain a matrix of silts and sands. The existence of an 

intra-formational unconformity and soft sediment deformation structures (location 3-13) 

may be related to fault movement, or disturbance of the area by an earthquake; this may 

have resulted in the establishment of a submarine erosional surface, similar to that seen in 

the Crati Basin of Italy (Colella, 1988). The presence of syn-sedimentary faulting within 

the sequence (Chapter 4) supports this argument. The occurrence of finer grained units 

above the submarine erosion surface may relate to: 

i) a variable sediment supply to the delta, 

or ii) a change in the relative base level at this time as a result of faulting, which 

caused distal delta front sediments to be deposited above the coarse proximal 

sequence. The overlying sequence of horizontally bedded sands and gravels (location 

3-12), and mudstones and wackestones (location 3-13) marks the onset of regressive 

conditions. These sediments represent the delta top succession and were probably 

deposited in shallow marine conditions. Evidence from the well bedded, horizontal 

sands and gravels suggest that they were deposited in a high energy environment, 

with both physical and biological actions determining the nature of the preserved 

sediments. The micrite-wackestone sequence (location 3-13), by contrast, is likely to 

have been deposited in quiet, low energy conditions. The lack of detritus and the 
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massive nature of the bed supports this, indicating that deposition took place away 

from the influence of marine action during a period of quiescence, although the facies 

characteristics of this unit are non-diagnostic. The relative regression continued 

during and after the deposition of the micrites, suggesting that micrite deposition took 

place in areas away from active deposition of the fluvio-deltaic sediments in a lagoon, 

or on a shallow, quiet-water platform (Fig.6.1 1). 

The regressive sequence continues with the formation of caliche, later reworked 

into the fluvial sediments (location 3-13), and the progradation of a fluvial sequence over 

the delta; this indicates that the relative regression continued (Fig. 6. 11). The thickness of 

the preserved fluvial sequence and the nature of the channels suggest that this portion of 

the sequence formed in shallow channels in a braided river environment, similar to the 

distal Fanglomerate Group sediments, deposited along the south Troodos margin 

throughout the Quaternary (Chapter 5). 

In summary, the sedimentary sequences described here represent a regressive 

pattern of sedimentation in which delta front and then delta top sediments are succeeded 

by a prograding fluvial system. The whole sequence was subsequently subjected to sub-

aerial exposure (Fig.6. 11). The overall regressive nature of this system is probably related 

to the relative Quaternary sea-level changes, i.e. uplift and eustasy, although shoreline 

progradation, resulting from changes in the climate and sediment supply, cannot be 

discounted. It is likely that the pattern of sedimentation is related to all the variables 

stated above, i.e. climate, sediment supply, sea-level change and tectonic uplift, similar to 

that suggested for the deposition of the Fanglomerate Group sediments. Evidence of 

minor onlap of the delta onshore is present, as identified by the development of the 

submarine erosion surfaces and the apparent change., up section, from proximal to distal 

sequences (Fig.6.3). If these features do truly represent a proximal to distal change, then 

this may represent one of the few transgressive events preserved within the Quaternary 

sedimentary sequences of Cyprus. 

The overall palaeocurrent pattern from the deltaic sequences along the south coast 

of Cyprus indicates flow in an arc from east to west-north-west (Fig.6.5), which is in 

broad agreement with the data from the Fanglomerate Group sediments that crop out 

along the southern Troodos margin, i.e. flow away from the Troodos Massif. The 

variation in the palaeocurrent data collected from the deltaic sequences at adjoining sites 

,may result from the size of the deltas, probably indicating a number of small delta 

systems with individual feeder channels, or a single large delta with a series of lobes, fed 

from a string of fluvial channels along the coast (Fig.6.12). 
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6.5.2.2 The Polis-Paphos graben. 

The deltaic sequences in the Polis-Paphos graben represent broadly transgressive 

and then regressive systems (Fig.6.13). The unconformity over the Myrtou Mans reflects 

the onset of a transgression, with a marine conglomeratic lag being succeeded by mature, 

fine grained sediments that have been influenced by marine wave action. The 

transgressive phase continues with the progradation of a delta out over a shallow shelf. 

The lack of wave worked sands suggests that the progradation of the delta occurred quite 

rapidly, and that the deposition of the deltaic sequence was fluvially dominated; the 

absence of later reworked sediments supports this. Prodelta sediments are absent. 

Progradation of the delta was probably followed by a period of delta front switching, 

resulting in the formation of intraformational unconformities which do not reveal a 

proximal to distal facies change, unlike that seen along the south coast of the island. The 

lack of available evidence, at present, for local faulting suggests that the intraformational 

unconformities may have been the product of delta switching, although active faulting in 

the Polis-Paphos graben was occurring throughout the Pleistocene (Ward & Robertson, 

1987; Chapter 4). This faulting may have had a direct influence on delta switching, 

similar to that suggested for the deltaic sequences along the south coast, e.g. Mazotos 

(location 3-13). Active tectonics could also have influenced the supply of sediment to the 

delta from the graben and therefore had an impact on delta switching. The presence of 

bioturbation towards the top of the delta front sequences may indicate a slight shallowing 

of conditions, related to a change from delta-front to delta-top sedimentation; this pre-

dates the influx of coarse, immature conglomerates that cap much of the delta sequence 

(Fig.6.6; Plate 6.4). Reworking of the delta front sequence took place during the 

deposition of the immature conglomerates, resulting in the presence of rip-up clasts, 

reworked shells and mature clasts within the immature conglomeratic unit. The matrix-

supported fabric and chaotic nature of this immature conglomeratic unit suggests that it 

was deposited as a mass flow deposit in either a fluvial, or shallow marine environment. 

The presence of caliche horizons identifies periods of sub-aerial exposure. The pattern of 

sedimentation above this unit varies considerably, some localities revealing a true fluvial 

signature, with others passing up into well bedded, mature, laminated sands and fine 

gravels, indicative of an active beach or shallow marine environment. The presence of a 

white micritic mudstone at Limni (location 3-106), very similar to unit IV at Mazotos 

(location 3-13; Section 6.3.2), suggests that a low energy lagoon, or shallow platform, 

existed at this time. Evidence for true sub-aerial conditions are seen towards the top of 

the sedimentary sequence where mixed aeolian dunes are associated with the fluvial 

sequence, similar to that seen in the Vasilikos Formation (location 3-23). The shelly hash 

capping the sequence at Limni (location 3-106; Fig.6.6) was probably deposited in a 

storm event and resembles that seen above the F3 carbonate sequence at Argaka (location 
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Fig.6.13. Sketch of the suggested development of the deltaic sequences at the 
northern end of the Polis-Paphos graben. 

227 

T - transgression 

Fluvial conglomerates 
	 R - regression 	-. 

A 	 Thin limeston and shelly hash unit 	B 

0.0 	- 
	

Well bedded fine gravels and sands 

Unconformity 

Delta (oresets and well bedded units o(coarse 

conglomerate and fine gravels-sands 

c carbonate littoral sequence , C
/

arse conglomerate pulses 

Mature, well sorted lint gravels and sands 	
Unconformity 

1—i 
Qiintctuiary seilliiieui(s 	v 	Prc.l'lioeciic seiliiiies.its 

Pliocene sediments 	 Pillow Lava unit  

AIIIIII 
0 	km  

north 

Fig6.14. Prototypes of deltas dominated by fluvial processes distinguished on the 
basis of four different feeder/distributary systems and two ranges of basin depth 
(after Postma, 1989. 

Feeder 
system Type A Type B Type C Type 0 

HJULSTROM - TYPE 

go,  ®h0lII 

SHALLOW 

WATER  
Shoaj- wilse ptOfd. peola. 

sIs, 

DELTAS 

at
o'bwv-type 

'CinicCIbset-typ. p.01.1. 

GILBERT-TYPE MOUTH BAR-TYPE 

QEEP 
WATER 

DELTAS 

I'I co'•l , Ga..Iationiily 

I 	Glb.i'l-Iyp* 

00118 - fed $ubnar,ns 

tsn 	ay,i.in 

Della-IsO IhaiwsQ 

and lob# !ystsn. 



228 

3-109) further east. The presence of the hash suggests that the fluvial sediments were 

deposited in a environment close to sea-level and, therefore, close to the marine 

environment (Fig.6.6). 

The sequences preserved at the northern end of the Polis-Paphos graben formed 

on a low lying, flat coastal plain under the continuous influence of detritus derived from 

the graben and surrounding areas (Fig.6.13). Initial development occurred during a 

trangression prior to later development in a regressive regime (cf. Chapter 7). The pattern 

of sedimentation is likely to have been controlled by fluctuations in sea-level, uplift and 

climate. The presence of the fluvial conglomerates above the marine sequence probably 

results from progradation of the shoreline due to a variation in the sediment supply, or 

climate change. The overall regressive nature of the sequence indicates that even if the 

coarse pulse of conglomerate does represent some climatic event, it is superimposed on 

an overall drop in base level (Fig.6. 13), similar to that associated with the sediments of 

the Fanglomerate Group (Chapter 5). 

6.5.2.3 Deltaic sequences of south-west Cyprus. 

The limited outcrop pattern in the Kouklia area of south-west Cyprus has not 

facilitated the extensive study of this sequence but the following can be stated. 

The presence of well bedded units dipping approximately perpendicular to the 

palaeoshoreline (Chapter 2) and both onshore and offshore imbrication data supports the 

view that these sediments have been deposited in a marine environment. The results 

achieved from the bedding characteristics agree with that found by Clifton (1973) for 

littoral rather than fluvial sequences. The variation in the pattern of imbrication (Fig.6.7) 

may have resulted from fluvial source switching and deposition dominated by fluvial 

processes, and/or reduced marine action during the deposition of these conglomerates at 

the base of the section (Fig.6.7). The mature nature of the clasts, with discoidal and 

spheroidal shapes also supports deposition in a marine setting. 

The evidence here suggests that deposition of this sequence took place in a 

shallow marine environment fed by copious fluvial detritus. This detritus has been 

reworked in active marine conditions and deposited firstly as delta foresets and then as 

delta topsets. The evidence from clast maturity suggests that marine reworking due to 

abrasion was limited as most of the clasts have a spherical rather than discoidal shape 

(Dobkins & Folk, 1970). The pervasive nature of the burrows in the top portion of these 

sediments suggests high levels of biological activity, possible related to a reduction in the 

rate of sedimentation and/or a reduction in the detrital input into the area. The change 

from small scale delta foresets to topsets also indicates deposition in a regressive 
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regime, and/or an area of channel switching, which has facilitated the deposition of the 

fine grained sediments as the course channels have switched away. Unfortunately the 

limited exposure of this sequence does not allow a more detailed description and 

interpretation of this unit. 

The presence of this sequence at c.220m ASL suggests that these deltaic 

sequences were deposited during the late Pliocene-early Quaternary and are possibly 

related to the formation of the F1 cliffline, i.e. they form part of the Fl depositional 

sequence. 

6.5.2.4 Models of deposition of the deltaic sediments of the south coast and the Polis-

Paphos graben. 

The sequences cropping out along the south coast of the island resemble coarse 

grained equivalents of Gilbert type deltas, and are either braid- or fan-delta systems. 

McPherson et al. (1988) state that fan-deltas may be indistinguishable from braid-deltas 

on the basis of subaqueous facies alone but the variation in sorting and maturity of the 

resulting sediments will distinguish between the two systems. The fluvial dominated 

systems improve the sorting capacity of the delta, whereas mud-rich debris flows are 

more likely to occur in association with poorly sorted sediments of fan-deltas. The topsets 

are not preserved in the deltaic sequences of southern Cyprus; instead the deltaic 

sediments are overlain by thin limestones, structured sands and a prograding fluvial 

sequence. The absence of topsets may be attributed, locally, to erosion, as unconfonnity 

surfaces are present between in the deltaic and fluvial systems in the Mazotos area 

(location 3-13). Prograding sub-aerial sediments are unlikely to be present in flow 

dominated fan- or braid-deltas (Nemec & Steel, 1988); the presence of fluvial channels 

which have prograded out over the deltas suggest that the systems were stream 

dominated. As there is no evidence to support the development of alluvial fan sequences 

along the southern margin of the Troodos Massif (Chapter 5), it would be erroneous to 

refer to the associated delta sequences as fan-deltas. The deltaic systems in southern 

Cyprus should probably be described as braid-deltas, or braidplain deltas (Nemec & 

Steel, 1988) because of the alluvial feeder system which transported the Troodos-derived 

clasts into the delta environment. The classification of these systems as braidplain deltas 

is tangible, with much of the evidence concerning the development of the drainage 

system (Chapter 2) suggesting that major braided rivers in confined channels opened out 

onto braidplains at distal locations (Fig.6.12). In this way the systems are consistent with 

the classification of braidplain deltas (Orton, 1988) or braid-deltas (McPherson et al., 

1987). Postma (1989) proposed that delta architecture, rather than the alluvial feeder 

system, or basinal processes, should be used to classify deltas, and that the feeder system 

should be used as a secondary classification. This would result in the deltas along the 
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southern coast of the island between Limassol and Lamaca (location 3-13) being 

classified as shallow water type B4 deltas (Fig.6. 14) - classic Gilbert type deltas. 

The deltas of the Polis-Paphos graben have been termed fan-delta sequences in the 

past (L. Ward, pers. Comm., 1987). The evidence presented in Section 6.3.3 indicates that 

the deltas at the northern end of the Polis-Paphos graben are associated with braided river 

sequences and not the development of alluvial fans. The sequences seen in the northern 

portion of the Polis-Paphos graben (location 3-106) are therefore interpreted as being 

shallow water, type B4, braid deltas, similar to those cropping out along the south coast 

of the island. 

6.5.3 Siliciclastic beach seauences. 

6.5.3.1 South-east Cyprus 

The F3 and F4 siliciclastic sequences of south-east Cyprus form only a minor 

portion of this work. However an initial description and interpretation has been given 

here as a basis for future work. The interpretation given below is intended to indicate 

how these sediments may fit into the overall picture of Quaternary shallow and littoral 

siiciclastic marine sedimentation in southern Cyprus. 

The preserved sequences in south-east Cyprus can be split into a series of facies, 

which are interpreted below. 

Conglomerate lag: it is suggested that these coarse, sub- to immature cobbles, 

boulders and conglomerates, that lie unconformably above the limestones of Miocene age 

(e.g. location 2-700), represent an initial transgressive lag, similar to that described in 

Crete (Postma & Nemec, 1990) and from the Quaternary carbonate sequences in southern 

Cyprus (Chapter 7). 

Sands, fine gravels and grainstone sequences: The sand and fine gravel units 

form large portions of the beach sequences. Many beds display Type B foresets of 

Thompson (1937), which are indicative of a foreshore environment. The grainstone 

sequences reflect littoral deposition (similar to that described in Chapter 7). 

Conglomerate units: These conglomerate units form the main body of the 

beach sequences and probably represent berms. The generally mature nature of the clasts 

and the presence of well worn molluscan shells suggests abrasion in an active marine 

environment (similar to that seen in Tahiti; Dobkins and Folk, 1970). The presence of 

offshore dipping foresets and predominantly onshore dipping imbricated clasts (Figs.6.8 
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and 6.10), with some evidence of bimodality and chaotic, imbrication possibly indicates 

deposition in a storm environment, similar to that seen in Newton (Bluck, 1967), in the 

infill and imbricate zone (cf. Bluck, 1967; Postma & Nemec, 1990). The orientation of 

the molluscan shells at the base of the unit, the shallow seaward dipping nature of the 

beds, the apparent winnowing of the clasts out at the top of the unit to leave a shell lag 

deposit also supports deposition by storm events. 

The shelly nature of these units, the lateral persistence of many of the beds and 

the imbrication data all support deposition in a storm beach environment. However, the 

clasts maturity data have been treated with some caution as the clasts vary in maturity. It 

is suggested that this relates to three controls: 

reworking of previously deposited fluvial and marine clasts, 

variation in the length of transport of the clasts, 

the clast lithology, with sediment clasts eroding more easily and in a 

heterogeneous manner, unlike the igneous clasts derived from the Troodos ophiolite 

and the Troulli inlier. 

The problem of clast maturity has been examined by Dobkins & Folk (1970), who 

stated that the use of clasts as maturity indicators does produce consistent results for 

homogeneous lithologies, e.g. basalt and diabase. The lithologies of the Troodos 

ophiolite, therefore, are likely to give a more accurate indication of the maturity than the 

overlying sedimentary cover sequence. 

It is suggested that the fine gravels and sands form the background, fairweather 

sediment in many of the sequences, whilst the conglomerates occur as episodic pulses. 

This has yet to be proved but would explain some of the relationships between unit II and 

unit Ill. This interpretation would also support the argument for storm deposition of the 

conglomerate sequence. Kumar & Sanders (1976) state that the preservation potential of 

fairweather beach conglomerates is less than storm beaches, as they are more likely to be 

reworked; this and the presence of red soils between two pulses of conglomerate further 

support the argument for storm deposits. 

The presence of fluvial conglomerates and the formation of palaeosols and caliche 

suggest that these units, after the initial deposition of the coarse transgressive lag and the 

deposition of littoral and foreshore sediments, record a period of regression, although this 

is by no means certain. Studies have recently identified progradational gravel sequences 

in Italy (Massari & Parea, 1988) and both regressive and transgressive beach sequences in 

Crete (Postma & Nemec, 1990), it has been shown that both forms of gravelly beaches 

have the potential to be preserved. 
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6.5.4 Sunimarv. 

The shallow marine sediments of southern Cyprus have an extensive outcrop and 

probably equally extensive sub-crop. This pattern mirrors that seen for the deposition of 

the fluvial sediments of the Fanglomerate Group and is totally unlike the pattern of 

deposition of the carbonate sequences (Chapter 7), which is not altogether surprising as it 

has been shown that the major source of sediment is the rising body of southern Cyprus, 

i.e. the Troodos ophiolite and its sedimentary cover sequence, and that these shallow 

marine sequences are the identifiable end point of the fluvial system (Chapter 5). The 

variation in the pattern of siiciclastic shallow marine deposition therefore reflects the 

fluvial feeder system (Fig.6.14). 

The sequences along the south coast of the island and in the Polis-Paphos graben 

occur in locations where one would expect deltaic sedimentation to be occurring today; 

however, this does not seem to be the case. This and the change in character of 

sedimentation in south-east Cyprus, varying from extensive sand and conglomerate 

sequences in the early and middle Quaternary to what have been interpreted here as 

coarse limited beach sequences in the Late Quatermary, also supports the argument for a 

change in the pattern of sedimentation throughout the Quaternary. It is likely that this 

change results from a decline in the amount of sediment transported from the hinterland 

to the coast (Chapter 5), and/or switching of the drainage pattern. As drainage pattern 

switching has largely been ruled out (Chapter 2), except in the Dhekelia and Ormidhia 

area (Chapter 2), the former argument is preferred, with a reduction in the source 

sediments affecting the style of shallow marine sedimentation. This reduction in the 

source of sediment to the shallow marine environment probably reflects short term 

climate change (similar to that identified in Chapter 5), which has been superimposed on 

the overall reduction in rate of uplift, of the island, from the early to late Quatemnary. The 

uplift does however facilitate the erosion of pre-existing siliciclastic sequences which 

may have been the source of some of the clasts for the formation of later beach and 

shallow marine sequences, i.e. the F3 and F4 beach sequences in south-east Cyprus. 

The regressive nature of the shallow marine siiciclastic sediments reflects either 

uplift and/or a fall in sea-level (similar to that identified for the carbonate sequences; 

Chapter 7), although the individual components have not been deduced here. The pattern 

and style of sedimentation, however, probably also reflects the effect of climatic variation 

and hydrodynamic conditions that prevailed at the time of deposition of these sequences. 



Chapter Seven: Carbonate littoral and sub-littoral sediments. 

7.1 INTRODUCTION. 

Previous studies of the Quaternary marine deposits in Cyprus have been restricted 

to the following: the well exposed terraces of Late Pleistocene age, i.e. F3 and F4 

(Chapter 3), in the coastal area between Larnaca and the Akrotiri Peninsula (Bagnall, 

1960; Bear & Morel, 1960; De Vaumas, 1962; Pantazis, 1966, 1967; Moseley, 1976), the 

terraces of western Cyprus (Turner, 197 1) and along the coast to the north of the Kyrenia 

Range (Moshkovitz, 1966). Palaeontological (Moshkovitz, 1968) and isotopic age 

determination and correlation studies of the F1-F4 terraces of southern Cyprus have also 

been undertaken (Vita-Finzi, 1990; Chapters 2 and 3). This chapter will be restricted to a 

description and interpretation of the Quaternary carbonate littoral and sub-littoral 

sediments that are associated with the F1-F4 terraces in southern Cyprus. The 

geomorphology of the terraces, shallow marine siliciclastic, beach and deltaic sediments 

and related aeolianite sequences are dealt with elsewhere in this thesis (Chapters 2, 6 and 

8, respectively). 

7.2 GEOGRAPHICAL DISTRIBUTION. 

The carbonate littoral and sub-littoral sequences of southern Cyprus have a 

limited outcrop pattern (Fig.2.7), governed by the drainage pattern (Fig.2. 1), which also 

dictates the arrangement of deposition of shallow marine siliciclastic sediments (Chapter 

6). The consistent outcrop pattern of the carbonate sequences, throughout the Quaternary, 

i.e. Fl-F4, adds more weight to the argument that the drainage pattern has undergone 

minimal changes during this period (Chapter 2). 

The carbonate sequences in south-east Cyprus are generally restricted to an area to 

the east of the Xylophagou "topographic high" (Fig-2.7; Chapter 2). The Fl and F2 

terraces that crop out in the Cape Greco area are erosive with limited deposition of 

Quaternary carbonate sediments. The F3 and F4 terraces form laterally extensive 

carbonate sequences (Fig.2.7; between Cape Greco and Paralimni, and Cape Greco and 

Ayia Napa). Limited F3 and F4 carbonate sequences also crop out on the erosional 

terraces in the area of Cape Pyla, i.e. F3 and F4. Siliciclastic deposition in the Dhekelia 

area during the early and middle Pleistocene is more restricted during the late Pleistocene 

(Chapters 2 and 6), permitting the deposition of a carbonate sequence, i.e. F4 (location 2- 

84). 
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Quaternary carbonate deposition along the south coast of the island, between 

Larnaca and the Akrotiri Peninsula, is limited to sequences at Larnaca (location 1-130), 

Petounda Point (location 3-11) and along the south coast of the Akrotiri Peninsula 

(location 3-96a; Fig.2.7). These sequences are of F3 age, except for the sediments that 

crop out along the south coast of the Akrotiri Peninsula, which are of both F3 and F4 age. 

Littoral carbonate deposition is most extensive in south-west Cyprus between 

Paphos and the northern end of the Akamas Peninsula. Carbonate sequences of Fl to F4 

age crop Out (Fig.2.20) in the Paphos area. Extensive F3 and F4 carbonate terraces occur 

between Paphos, Coral Bay and Ayios Yeoryios, as well as cropping out on the western 

side of the Akamas Peninsula. 

Limited carbonate sequences of F3 and F4 age crop out at the northern end of the 

Polis-Paphos graben (Figs. 1.3 and 4.1). These sequences are located in areas outwith the 

influence of the major drainage channels on the extreme eastern edge of the graben, 

where a continuum from siliciclastic to carbonate sediments is seen (Chapter 6). F3 and 

F4 carbonate sequences also crop out in areas away from the major rivers west of Kato 

Pyrgos on the north coast of the island (locations 3-109 and 3-110; Fig.2.7). 

7.3 SEDIMENTOLOGY OF THE CARBONATE SEOUENCES, 

7.3.1 Introduction. 

Examples of the carbonate littoral and sub-littoral sedimentary sequences will be 

described in stratigraphic order, i.e. F0-F4, from localities throughout southern Cyprus, 

from Paralimni in the east to Paphos and Kato Pyrgos in the west. 

7.3.2 The FO carbonate sequences (upper Pliocene-lower Pleistocene). 

The FO carbonate sequences have a very restricted pattern of exposure, cropping 

out within the highest terrace in the Paphos area, e.g. Mesoyi (location 2-18), 

Marathounda (location 2-51), Tremithousa (location 3-35), c.350-360m ASL (Fig.2.20; 

Chapter 2). The sequences are poorly preserved and are made up of grainstones that lie 

unconformably above units of the Troodos sedimentary cover, the Mamonia Complex, 

and very coarse, angular, poorly sorted conglomerates, e.g. Mesoyi (location 2-18; 

Fig.7.1). The grainstone sequences are less than 5m thick and usually consist of well 

bedded, planar laminated, mature, medium sands. The grainstone beds at Marathounda 

(location 2-51) generally dip towards 097 0-1000  at between 100-160  and are also locally 

totally disrupted by bioturbation. The grainstones are capped by caliche and soil horizons. 
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73.3 The Fl carbonate sequences (lower-middle Pleistocene). 

7.3.3.1 Introduction. 

The exposed Fl sequence in the Paphos area (location 2-3) unconformably 

overlies chalks and limestones of Miocene and Oligocene age (Plate 7.1). The overlying 

Fl sedimentary sequence is generally less than 5m thick, although cliff sections up to 

13m thick are present locally, e.g. at the Paphinia Hotel, above Paphos (location 2-3; 

Fig.7.2). The Quaternary sediments generally make up between 50 and 100% of the 

exposed vertical sequence. The exposed cliffs are commonly in the order of 10-12m high 

(location 2-2; Fig.7.2). An unconformity surface at the base of the Fl sedimentary 

sequence shows extensive relief, up to 2m, and is overlain by a basal lag of locally 

derived clasts. The lag is succeeded by a branching coralline red algal framework, 

crustose coralline algae and rhodoliths, which in turn pass up into littoral grainstones, 

containing abundant molluscs (Fig.7.2). Caliche and soil horizons cap the Fl sequence. 

Local variations within the Fl carbonate sequence are also seen, as exemplified 

by the absence of the conglomerate lag and/or coralline red algal framework (Plate 7.1). 

Thin stringers of mature conglomerate and isolated clasts are also seen within the 

grainstone units. Limited exposures of Fl carbonate sequences also crop out in areas to 

the north of Paphos (locations 2-20 and 2-34; Fig.7.2), where they lie unconformably 

above serpentinite. These sequences have very similar characteristics to that seen in the 

localities in the Paphos area. 

7.3.3.2 Sedimentary facies. 

i) Conglomerate lag: these conglomerate sequences are dominated by locally-

derived clasts and a reworked fauna. The lateral and vertical extent of the lag along, and 

between, sections varies considerably. Clasts derived from sources close to the outcrop, 

e.g. directly beneath the conglomeratic unit, tend to be immature and contrast with clasts 

that have been transported into position. At Kissonerga (location 2-20; Fig.7.2) the lag 

unit is 60-80cm thick containing well rounded igneous clasts and abraded shells, the 

serpentinite clasts, derived from the unit that lies unconformably beneath the Fl 

carbonate sequence, are generally angular and less than 1.7m in diameter (Plate 7.1). The 

lag in the Fl succession east of Lara Point (location 2-34) is very coarse, immature and 

poorly sorted, with only locally-derived clasts present, e.g. serpentinite. By contrast, the 

lag at locations in the Paphos area is generally less than 50cm thick and consists of 
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ILI 

A - F1 carbonate sequence (dark) lying unconformably above chalks of Miocene age 
(white) exposed in an F2 age cliff above Paphos (location 2-3). 

Note: the relief on the unconformity contact. 
the chalk is c. 1.5m thick. 

B - Sedimentary structures preserved in the Fl grainstone sequences displaying 
steeply dipping foreset (a), trough-cross-stratification (b) and low angle planar-
stratification (c). 

Note: scale is 50cm long. 

C - Sedimentary structures preserved in the Fl grainstone sequences displaying 
herring bone-cross-stratification (b) and massively bedded (c) units. 

Note: scale is 50cm long. 

D - Fl carbonate sequence cropping out above serpentinite (a) north of Paphos 
(location 2-20). The conglomerate lag (b), dominated by large serpentinite clasts 
is succeeded by units of grainstone (c). 

Note: scale is 50cm long. 
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locally-derived clast, i.e. chalks, limestones, which are sub-angular to well rounded, and 

infrequently discoidal. 

Coralline algal framework and rhodoliths: small frameworks of delicate 

branching red coralline algae are present in life position attached to clasts of the lag unit; 

these are also anchored directly onto the lithologies underlying the unconformity surface, 

e.g. the serpentinite above Kissonerga (location 2-20). The algal frameworks that have 

established a hold on the unconformity surface are commonly found in the areas of local 

high relief, and not in the troughs (Fig.7.3). Encrusting and densely branched, robust, red 

algal structures, i.e. rhodoliths, are also present. A mixed high diversity and high density 

fauna is associated with the algal units which have a matrix of medium to coarse 

bioclastic sand. The succeeding grainstone units appear to swamp the algal structures, 

preventing further growth of the algae. 

Carbonate grainstones: grainstones crop out either above the coralline 

framework unit or directly above the basal lag unit. The basal grainstone contact is 

usually gradational (locations 2-20 and 2-3; Figs.7.2 and 7.3) and irregular, reflecting the 

relief of the underlying unconformity surface (Plate 7.1). The grainstones vary 

extensively, both vertically and laterally (Figs.7.2 and 7.3), with planar laminated beds 

(dipping at less than 50  seaward), herring bone-, festoon- and trough-cross-stratification, 

as well as massively bedded units being present. Most of the beds are less than 5cm thick 

(Plate 7.1). Some grading of the grainstone units is seen, although the majority of the 

grainstone units are ungraded coarse sands. Grading, where present, ranges from very 

coarse to medium sand. The grainstones units are generally submature and poorly sorted 

and are commonly interbedded with coarser, mature, stringers of derived clasts. The 

unbroken macrofaunal content of the grainstones is commonly low and occupies a death 

position. Whole thick-shelled molluscs, e.g. Pecten and Ostrea, are present locally. 

Bioturbation is generally absent, although vertical tube structures are present in the 

grainstones in outcrops above Paphos (location 2-2). Bioturbation within the grainstone 

units is very variable, as a 3-5m thick sequence of coarse grainstone to the east of Lara 

Bay shows (location 2-34); this is parallel laminated at the base passing up into massive, 

highly bioturbated grainstones at the top of the unit. 

7.3.4 The F2 carbonate sequences (Middle Pleistocene). 

7.3.4.1 Introduction. 

The F2 sequences are more extensive than their Fl counterparts, although limited 

to the west coast between Paphos and Lara (locations 2-5, 2-14 and 2-34). This terrace 
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lies unconformably above a variety of lithologies, e.g. serpentinite, chalks and limestones 

of Oligocene and Miocene age, similar to that seen with the Fl carbonate sequences. The 

variety of sediments seen within the terrace sequence is much greater than that recorded 

for the Fl sequences, although the three basic components described above and in 

Chapter 9 are present: i) basal lag above the unconformity, ii) a framework structure of 

coralline red algae, iii) grainstones. Soils, aeolianites, caliche and mixed detrital-

carbonate sequences are also associated with the F2 sequences. The F2 sequences are 

generally less than 15m thick (Fig.7.4; Plates 7.2 and 7.3). 

7.3.4.2 Sedimentary fades. 

Basal conglomeratic lag: The basal lag cropping out in the terrace to the east of 

Paphos (locations 2-5 and 2-7) consists of locally derived clasts, e.g. limestones and 

chalks, as well as clasts derived from the Mamonia Complex, e.g. serpentinite and 

diabase. The clasts are generally mature, less than 10cm along the "L" axis and rounded 

to discoidal in shape. Broken, abraded and reworked shells of Glycymeris, Ostrea and 

Pecten are seen. The unit pinches and swells reflecting the irregular contacts seen at both 

the base and top of the unit (Fig.7.4). 

Coralline red algal frameworks and coral colonies: The algal framework units 

are more prominent within the F2 than the Fl sequences (Fig.7.4). The red coralline algal 

framework present in the basal portions of the F2 sequences is delicate and branching 

(Plate 7.2), although robust, rolled rhodoliths and crustose algae structures are also 

present (locations 2-5 and 2-13; Plate 7.2). The height of the red coralline algal 

framework unit, between 0.5 and 1.5m, appears to have been controlled by two factors; 

the timing of the influx of coarse grainstones that swamped the algae and the relief on the 

underlying unconformity surface. Up 2m of relief is seen on the unconformity surface at 

location 2-5, with algae development being more restricted where the unconformity 

surface is higher. The algal build-ups nucleated on the small clasts that make up part of 

the conglomeratic basal lag. Small colonies of the scleractinian coral, Cladocora 

caespitosa, are also found in this unit (location 2-5). These coral colonies are generally 

less than 40cm in diameter. The majority of the coral colonies are found in an in situ life 

position, indicating growth upwards. The coral colonies are attached to clasts of the basal 

lag unit, or to the lithified sequences beneath the unconformity surface, e.g. limestones 

and chalks of Miocene and Oligocene age. Some isolated coral heads, in a death position, 

are also found locally within this unit (locations 2-12, 2-13 and 2-14). The matrix 

associated with the framework structures is generally an immature, poorly sorted medium 

to coarse sand grade grainstone, containing a multitude of tiny shells fragments and rare 

igneous clasts. A mixed high density, high diversity molluscan fauna including: Pecten, 
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A - F2 carbonate sequence exposed to the east of Paphos (location 2-5) with 
Miocene chalks being overlain by a thin conglomerate lag (a), which passes up, 
and laterally, into a unit of coralline algae (b) which in turn is succeeded by a 
steeply dipping grainstone sequence (c). 

Note: scale is 50cm long. 

B - The robust coralline framework unit (a) exposed in the F2 carbonate sequence at 
location 2-5; this appears to have been swamped by grainstones (b). 

Note: scale is 50cm long. 

C - Detail of the delicate coralline algal frameworks preserved in the F2 carbonate 
sequence at location 2-5. 
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PLATE 7.3. 

All the photographs on this plate were taken at the F2 exposure that crops out in 
Paphos (location 2-14). 

A - F2 carbonate sequence consisting of a transgressive lag, algal framework and 
grainstones. 

Note: see Fig.7.4 for details. 

B - Planar stratified and trough-cross stratification structures in the F2 grainstone 
unit. 

Note: scale is 50cm long. 

C - Well-laminated low-angle cross-stratified grainstones (a) passing up into a 
framework unit (b) and then back into the grainstone sequence. 

Note: hammer for scale. 
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Astraea, Venus and Glycymeris is also present within this unit. Oyster banks are seen, 

locally associated with the framework structures (location 2-5). Grainstones appear to 

swamp the algal and coral frameworks up section (Fig.7.4; Plate 7.2). 

iii) Grainstones: the grainstone units locally lie above a very thin lag sequence, 

e.g. to the north-west of Paphos, location 2-14; Fig.7.4) directly above the unconformity 

surface. This relationship results in the formation of significant grainstone sequences that 

pass up, in turn, into the framework unit and then back into the grainstone facies (Fig.7.4; 

Plate 7.3), although the majority of the F2 grainstone are preceded by basal lag and algal 

framework structures. The F2 grainstones are commonly medium to coarse sand grade, 

mature, sorted and poorly cemented. The grainstone sequences exhibit a number of 

sedimentary structures, i.e. planar-bedded and herring bone- and festoon-cross-

stratification (Plates 7.3 and 7.4), yet massive, apparently structureless units are also seen 

(Fig.7.4). The type of bedding varies both vertically and laterally, with many truncation 

surfaces being present. Whole macrofossils are generally absent from the grainstone 

sequences, although abraded broken fragments of molluscs, bryozoan, coral and 

echinoids are seen. Evidence for bioturbation and subvertical rhizocretion structures is 

seen locally (location 2-5). Portions of the F2 grainstone sequence in Paphos (locations 2-

10 and 2-12) indicate an onshore palaeocurrent direction (Fig.7.4), suggesting aeolian 

processes (Chapter 8). Field observations (Fig.7.4; Plate 7.4) suggest that littoral 

sequences may be overlain by aeolianites similar to those seen elsewhere in the F2 

sequence in Paphos (location 2-5). By contrast, other F2 grainstones sequences in the 

Paphos area (e.g. location 2-40) appear to be wholly aeolian (Chapter 8). These onshore 

palaeocurrent data contrast those data collected from F2 grainstone sequences at other 

locations in Paphos (locations 2-12 and 2-14), which indicate an offshore, i.e. from 

south-west to the south-east, and bimodal palaeocurrent direction (Fig.7.4). 

Sub-aerial succession: the F2 unit in the Paphos area is usually succeeded by 

the formation of thin caliche and soils. Thick caliche and conglomerates are also locally 

seen capping the F2 grainstone sequence in the Paphos area, e.g. east of Lara Point 

(location 2-34) and Yeroskipos (location 2-57a; Fig.7.5). 

Mixed sequences: mixed facies are seen with fluvial sediments (Chapter 5) 

cropping out in close proximity to the carbonate sequences. The interplay Detween tne 

two environments results in a sedimentary succession that consists of a coarse basal lag 

sequence, but this is either overlain by carbonate units and then succeeded by bedded 

clastic units, or vice versa. The proportion of clasts varies throughout the sequence, e.g. 

in the succession to the north of Paphos (location 2-19; Fig.7.5), with matrix-supported 

clasts from local and more distant sources appearing in the carbonate sediments. The 
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PLATE 7.4, 

A - Low angle well-laminated planar stratified grainstones (a) being succeeded by 
grainstones that dip steeply onshore (b) from the F2 carbonate terrace in Paphos 
(location 2-10). 

Note: the scale is 50cm long. 

B - Thick (c.4-5m) unit of planar stratified grainstones preserved in the F2 
carbonate terrace sequence in Paphos (location 2-10). 

Note: 50cm scale in the hollow in the cliff. 

C - Detail of the planar bedded and laminated nature of the coarse grainstone 
sequences cropping out in the F2 carbonate terraces in the Paphos area. 

D - Evidence for small slumps and convolution of the grainstone beds from the F2 
grainstone sequence in the Paphos area. 
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clastic units generally display planar-bedded seaward-dipping units, similar to that seen in 

the F3 siliciclastic beach sequences in south-east Cyprus (Chapter 6). 

7.3.5 The F3 carbonate sequences (early Late Pleistocene). 

7.3.5.1 Introduction. 

The F3 successions crop out unconformably above the Pliocene Athalassa and 

Nicosia Formations at Larnaca, Cape Greco and Coral Bay (locations 1-130, 1-125 and 2-

22, respectively; Plate 7.5), deformed Miocene and Oligocene limestones and chalks at 

Lara Point, Petounda Point and Cape Pyla (locations 2-34, 3-11 and 1-136 respectively; 

Plate 7.5), and locally above basement units in the south-east of the island, e.g. the 

Paralimni Melange, on the coast east of Paralimni. The top of the F3 unit crops out within 

11m ASL (Figs.3.4 and 3.8; Chapter 2), and associated sedimentary successions are 

generally less than Sm thick. The F3 terraces have been correlated with the penultimate 

glacial sea-level high stand (Chapter 3; oxygen isotope stage 7; Shackleton & Opdyke, 

1973). 

The sedimentary components found in the Fl and F2 terraces are also present 

within the F3 sequences (Sections 7.3.3 and 7.3.4). Minor lenses of Troodos-derived 

clasts are present within the carbonate sequences in the Larnaca and Polis areas (location 

1-130 and 3-109 respectively). Carbonate aeolianites and caliche formations are also 

present within the F3 sequences, with extensive preserved dune systems cropping out 

above the littoral sequences (Fig.3.8; Chapters 2 and 8). 

The F3 carbonate sequences from Cape Greco, Larnaca, the Paphos area and in 

the area to the east of Polis are described in the following sections. 

7.3.5.2 Cape Greco. 

The probable F3 carbonate sequence at Cape Greco unconformably overlies mans 

of the Nicosia Formation (Pliocene) and Terra Limestones (Miocene) and is, in turn, 

overlain by an F4 carbonate sequence (Figs.3.8 and 7.7). 

i) Conglomeratic lag: a coarse lag of locally derived marl and limestone clasts lies 

directly above the unconformity surface (Plate 7.6 and 7.7). Thick worn, molluscan, e.g. 

Pecren and Glycymeris, shells form part of the coarse conglomerate lag, which has a 

matrix of coarse sand. Infillèd vertical burrows, less than 2cm in diameter and up to 20cm 

deep, are seen passing down from the unconformity surface into the marls. These 



Location 1-127 - Cape Greco 

lningup 

Small scale fining 
up structures 

Location 1-130 - Larnaca 
4-5 

ec 

-I.  
J_ 

P3 

•)• '1 
I•) ..l 
I . 	i I 
Ila 	•1 

do 
000 

— Si 

oorth 

Location 1-125 - Cape Greco0 	8 

8- a 	 readings 

64, 
r (dune forese(s) 	/ 

/ 

/ 

/ 

ii 

0-19 
(planar forese(s) 

I 

5 - unconformity marking the 
postulated transition from the F3 
to the F4 carbonate sequence 
- unconformity 

Dune bedded aeoharntes 

Red soil and caliche development 

Parallel laminated medium to fine 
shell; grainstones - lower sboreface 

Planar bedded sheHy coarse to 
line shell; grainstooes foreshore 

Vague parallel laminated grainstones 

Festoon- and trough-cross- 
stratification 
Fine shelly grainstone to mudstone 
with an abundant well preserved 
shell; fauna 

Massive shelly coarse to medium grainstones 

Bivalve bank dominated by a low 
diversity, high density fauna, e.g. 
Glycymeris 
Medium mature, sorted, shelly 
conglomerates. Shells are broken 

Coarse, shelly, poorly sorted 
transgressive Lag conglomerate 

Marts - Pliocene 

Limestone - Miocene 

Coral colonies In situ 

Coral colonies locally In situ 

Bioturbation 
Mixed fauna including molluscs, bryozoa, 
coralline algae and foraminifera. 

m 

n 

(d, 



A - The F3 marine terrace lying unconforrnably above steeply dipping chalks of 
Miocene age (a) on the coast south of Xylophagou, south-east Cyprus. 

Note: the cliff is c. lOm high. 

B - The F3 marine terrace (b) cropping Out unconformably above mans of the 
Nicosia Formation (a) in Lannaca. 

C - A veneer of the F3 marine sequence unconformably overlying the well 
bedded marls of Pliocene age (a) at Coral Bay, south-west Cyprus. 

Note: the sequence is c.8-10m high. 
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All these views come from the F3-F4 carbonate sequence at Cape Greco (location 1-
125). 

A - A portion of the conglomeratic lag unit unconformably overlying marls of the 
Nicosia Formation (Pliocene). 

B - A portion of the conglomeratic lag unit unconformably overlying the limestones 
of the Terra Formation (Miocene). 

Note: lens cap for scale. 

C - A coarse conglomerate lag (a) passes up into a coarse, shelly grainstone unit (b). 

D - A portion of the very shelly grainstone unit, found above the conglomeratic lag, 
revealing whole and broken mollusc shells, heads of the coral Cladocora 
caespitosa and marl and limestone clasts derived from the underlying units of 
Pliocene and Miocene age. 
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F91  U-NAM 

All these views come form the F3-F4 carbonate sequence at Cape Greco (location 1-
125). 

A - The whole F3 sequence revealing: the unconformity and basal lag unit (a); the 
well bedded grainstone units (b); the caliche crust and overlying aeolian dunes 
(d); and the second conglomerate lag (c) which may be part of the F4 sequence. 

Note: the sequence is c.8m high. 

B - A detailed view of a 2m section of the grainstone unit, overlain by a second lag 
unit (a), displaying festoon- and trough-cross-stratification. 

C - A detailed view of the grainstone sequence with: (a) massive coarse, shelly unit; 
(b) well laminated grainstones; (c) trough-cross-stratified grainstones; and (d) 
festoon -cross-stratifed and vague planar bedded grainstones. 
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burrows appear to be of the form Lithophaga sp. (cf. Lindholm, 1987). A gradational 

contact marks the appearance of a massive, shelly, coralline unit, which contains a 

randomly orientated high diversity, high density population of molluscs, bryozoa, 

echinoid spines, coral and calcareous red algae (Plate 7.6). Local concentrations of 

bivalves are seen at Cape Greco (location 1-127). This unit is absent locally with the lag 

unit passing directly up into grainstone units. 

ii) Grainstone units: these extremely shelly, well bedded, very coarse to medium 

grained grainstones have a total thickness of less than 5m thick and commonly grade up 

from the underlying conglomeratic unit (Plate 7.6). The grainstones display a great 

number of structures including parallel laminations, trough- and festoon-cross-

stratification (Plates 7.7 and 7.8; Fig.7.7). Derived clasts are generally absent although 

whole, broken and abraded bivalve and gastropod shells are present. Small colonies of the 

coral Cladocora caespitosa are also present; these appear to be in death position. The 

grainstones are generally poorly cemented (Section 7.4.3). Some horizontal bioturbation 

is seen towards the top of the grainstone succession (Plate 7.8), although the extent of 

these structures is minimal, well-bedded grainstones are preserved throughout the 

succession. The grainstone units are locally graded, i.e. from very coarse to medium 

sands (Plate 7.8), and occasionally truncated, with a scoured contact between very coarse 

shelly sands and underlying medium grainstones (Plate 7.8). The variety of bedding 

characteristics probably represents different flow regimes, and in the case of the scoured 

contacts, possible storm events. 

The grainstones locally pass up into a lag of derived clasts, e.g. cemented 

grainstone and Terra Limestones, and a second grainstone sequence, indicative of 

deposition of the F4 sedimentary sequence (Plate 7.7). 

7.3.5.3 Larnaca. 

The basic components of the sedimentary sequence at Larnaca are very similar to 

those seen in the Cape Greco area, with a basal lag passing up into coarse grainstone 

sequences (Figs.3.4 and 7.7), although packstones are present locally (location 1-130). 

The grainstones are generally massive, locally bioturbated and contain fragments of 

molluscs. The packstone, by contrast, contains a well preserved fauna, described 

previously by Moshkovitz (1968) and Pantazis (1966). Large colonies of the coral C. 

caespitosa, up to im in diameter, in life position (Plate 3.2), are present within the 

packstone units, as are bored and delicate mollusc shells, e.g. Spondylus shells with spine 

still attached, algal plates, echinoid plates and bryozoa. This packstone lies directly above 

a basal lag of mixed Troodos- and locally-derived clasts, e.g. chert, chalk, diabase, pillow 



PLATE 7.& 

All these views come form the F3-F4 carbonate sequence at Cape Greco (location 1-
125). 

A - A truncated medium grainstone unit displaying festoon-cross-stratification (b), 
overlain by a coarse shelly grainstone (a). 

B - A well bedded grainstone unit revealing graded-bedding with fining-up from 
very coarse to medium sands. 

C - Horizontal burrows preserved in the grainstone units. 
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lavas. The clasts within the lag are submature, less than 35cm in diameter and matrix-

supported by silt. Thick shelled fossils, e.g. Ostrea and Pecten, are present within the 

basal lag unit. Small banks, less than lm high exist at the base of the lag unit representing 

relief on the unconformity surface above the Athalassa Formation. 

The grainstone and packstone units both pass up into a coarse conglomeratic unit, 

this unit is in contrast to that forming the basal lag as it better sorted and the clasts are 

rounded and discoidal in shape. This unit also contains a greater proportion of broken 

shells than seen lower in the succession and passes up into caliche horizons and massive 

fine windblown sands (Chapter 8; Gifford, 1978), that cover much of this terrace 

sequence in the area of the Larnaca Salt Lake. 

7.3.5.4 Akrotiri Peninsula. 

Limited exposures of the F3 sequences are seen at Cape Gata (location 3-97) and 

Cape Zevgari (location 3-96) at the east and west end of the Akrotin Peninsula, 

respectively. The sequence at Cape Zevgari lies unconformably above Neogene mans and 

crops out within 8m ASL. The present extent of the exposure is limited to a lag above the 

unconformity surface, which is capped by caliche. The lag is poorly sorted and contains 

clasts of marl and a mixed abraded fauna which includes rolled rhodoliths, reworked 

corals, bored bivalves and specimens of Patella. The matrix within the lag consists of a 

coarse grainstone. The preserved section at Cape Gata (location 3-97) displays three of 

the four units that are seen at Cape Greco (location 1-125). A conglomeratic lag passes up 

into a grainstone unit. The grainstone dips gently (8 0-120) seaward (3500-0150) and in 

turn passes up into caliche. At one site, solution hollows have been cut into the top of the 

grainstone unit and these have been infilled with grainstones at a later date. The infill has 

been capped by caliche. At Cape Gata the grainstones pass up into a thin caliche horizon 

(10cm thick) that, in turn, passes up into a massive, 50cm thick, poorly sorted grainstone 

(Fig.7.8) which is then capped by a second caliche horizon. A fine grained, red, silty 

horizon, displaying rhizocretion structures and rare molluscs shells lies above the second 

caliche horizon. This is overlain in turn, with an uneven contact, by a poorly bedded, 

coarse sand, containing Troodos- and local sedimentary-derived clasts and mollusc shells 

(Fig.7.8). 

7.3.5.5 West coast of Cyprus. 

The carbonate sequences along the west coast from Coral Bay to Lara Point form 

the most extensive F3 sequences cropping Out around the southern coast of the island. 

This terrace is also found locally in the area to the north of Kissonerga. The Quaternary 
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Fig.7.8. Sketch sections and field sketches of the F3 and F4 sedimentary sequences thai 
crop out on southern portion of the Akrotiri Peninsula (locations 3-96. 3-97 and 3-97aL 

Location 3-96 
F3 6 o 	Poorly sorted lag containing out of situ colonies of 

C. caespitosa, rolled rhodoliths, clasts of grainstone, 

NMa'E
lves and grainstone matrix. 

ity - apparently capped by caliche crust 

m
erate lag containing rhodoliths and mollusc shells 
stone sequence 

F4 

Recent beachrock, well cemented, dips 6° towards 310° 

0 Sea-level 

0 

South coast 

 

Dune bedded aeolianite 

Massive, grain-supported, poorly sorted yet mature conglomerate 
containing mature igneous clasts and mollusc fauna, e.g. Ostrea, 
Glycymeris, Patella. Many shells are broken and abraded 

Coarse, heavily bioturbated grainstone with limited macrofauna. 
The beds dip 10-12° towards 030-020°. 

Coarse conglomerate lag, containing large number of shells. The 
unit become better sorted, more mature and less shelly up section. 

Athalassa Formation (Pliocene) 

4 

Caliche 

Cape Gata 

. 	Poorly cemented, poorly bedded conglomerate. The unit is shelly 
and has an uneven but conformable contact with the underlying 

?'-. 	nit.

Ip X 	Very red silty soil (cf. Butzer, 1975). Contains abundant rhizocretion 
structures and occasional shells. 

( C 
C 	Massive poorly sorted, coarse, shelly grainstone 

3 , 
Caliche ) 	)j 

m>- 

'... 7 	Shelly grainstone that is well bedded and mature 

Shelly conglomerate lag 
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sequences crop out unconformably above mans, chalks and limestones of Pliocene and 

Miocene age. The mans of Pliocene age that crop Out beneath the F3 sequence at Coral 

Bay (location 2-22; Fig.7.9; Plate 7.5) dip steeply-up to 400  to the north. The marls are 

occasionally interbedded with heavily bioturbated grainstone units which are 

preferentially cemented. Solitary corals, i.e. Flabellum and Trochocyathus, are present 

within the marl sequence. The sections in the Lara Point area (locations 2-30 and 2-34; 

Fig.7. 10) shows some changes from the marl sequences seen in the Coral Bay area 

(locations 2-22 and 2-24; Fig.7.9). These mans differ from those seen at Coral Bay 

(location 2-22) as they are black, white, brown and grey-green in colour. The marls are 

generally well bedded and extensively bioturbated by 2cm wide vertical burrows, which 

are especially dense towards the top of the sequence (Fig.7. 10); these are similar to those 

seen at Cape Greco (location 1-125). Conglomeratic clasts within the marl sequence 

include coarse, less than 20cm diameter, angular intraclasts of marl and mature, well 

sorted, fine gravels, less than 2cm diameter, containing discoidal clasts of derived 

serpentinite and Mamonia sediments. The top of the marl sequence is commonly 

crenulated and disturbed, Ayios Yeoryios (location 2-27; Fig.7.9; Plate 7.9). 

The conglomeratic lags that mark the base of the F3 sedimentary sequence are 

generally mature to sub-mature, consisting of well rounded marl, serpentinite and 

Mamonia Complex sediment clasts, e.g. chert, sandstone and limestone, generally less 

than 40cm diameter. The conglomeratic lag lies above an unconformity surface that 

commonly displays moderate relief of typically 50-70cm. A coralline algal and coral 

framework is located either directly above the basal lag, or directly on the unconformity 

surface, similar to that seen in the F2 terrace in the Paphos area (location 2-5). The coral 

colonies at Coral Bay (location 2-22) are generally less than 60cm diameter and in life 

position attached to larger clasts of the lag and the underlying mans. The matrix 

associated with the coral and algal frames is very variable, from coarse to fine sand, 

massive and very shelly. The grainstone sequences that overlie both the basal lag and the 

framestones are very shelly with disorientated, thick-shelled molluscs, fragments of 

bryozoa, coral heads, algal plates and a coarse to very coarse sand matrix (locations 2-22 

and 2-27). The massive grainstones pass up into more mature, better sorted, less 

bioturbated and structured grainstone units up section (Fig.7.9). Structures seen within 

the grainstone units include trough- and festoon-cross-stratification and seaward dipping, 

planar-bedded units (Fig.7.9; Plate 7.9). Sections to the south of Lara Point (location 2-

30) show a slightly different pattern of sedimentation than is seen at Coral Bay (location 

2-22) and Ayios Yeoryios (location 2-27), with mixed clastic and carbonate sequences 

(Fig.7. 10) and the presence of intraformational conglomerates (e.g. location 2-30; Plate 

7.10). The same basic components are present with a basal lag, some algal framebuilders, 
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Fig.7.9. Section of the ?F3 sequences cropping out at Ayios Yeoryios (location 2-27) 

and the F3 terrace cropping out at Coral Bay (location 2-22). 

Note: a) is a north-east to south-west section from Coral Bay, 
b) is a north-east to south-west section from Ayios Yeoiyios. 
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PLATE 7.9. 

A - A view of the upper most portion of the marl sequence at Ayios Yeoryios 
(location 2-27) displaying well bedded (a) and then crenulated and disturbed 
mans as the erosion surface is reached. The mans are overlain, unconformably, 
by caliche, a thin conglomerate lag and very coarse cap of grainstone. 

Note: scale is 50cm long. 

B - A complex well bedded grainstone unit exposed in the ?F3 sequence at Ayios 
Yeonyios (location 2-27) displaying shallow and steeply, seaward, dipping 
cross-stratified and possibly trough-cross-stratified beds. Evidence for 
rhizocretion structures is present towards the top left of the plate. 

C - Festoon-cross-stratification preserved in the ?F3 grainstone sequence at Ayios 
Yeoryios (location 2-27), viewed towards the east-north-east. 
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well bedded shelly sandstones and grainstones and evidence of bioturbation with 

deposition of fluvial conglomerates capping the sequence (Plate 7.10). 

The probable F3 sequence at Ayios Yeoryios (location 2-27) differs from that 

seen at other localities, with possible evidence of progradation of the shoreline (Fig.7.9). 

This progradation has resulted in the deposition of a thicker grainstone unit to the south-

west, above the coralline algal framework sequence. 

7.3.5.6 The north coast between Polis and Kato Pyrgos. 

The F3 carbonate sequences along the north coast of the island shows a lateral 

change to the east, away from the influence of the Polis-Paphos graben, where 

siliciclastic beach and deltaic sediments dominate (Chapter 6). This change results in the 

presence of mixed and then carbonate dominated sequences between Argaka and Kato 

Pyrgos (locations 3-109 and 3-110; Fig.7.11). Pillow lavas of the Troodos ophiolite 

underlie the F3 terrace throughout much of the area to the west of Polis, the relief on an 

unconformity surface dictating the extent of F3 deposition. The P3 terrace to the east of 

Polis, between Argaka and Yialia (location 3-109; Fig.7.11) displays a mixed siliciclastic 

and carbonate sequence. A coarse, generally immature, basal lag grades up into a mixed 

detrital and carbonate unit. This unit is well cemented and consists of coarse to fine 

graded gravels with clasts that are less than 7cm in diameter and carbonate sediments 

which include fragmented and, locally, whole shells and small in situ coral colonies. The 

conglomerates are sub-mature (0.6-0.7 roundness) and the shells are locally banked up 

against the unconformity surface. A gradational boundary marks the upward progression 

into a coarse, shelly grainstone unit. The grainstone contains a high diversity fauna of 

small whole and large fragmented shells. Detrital clasts are also present within the unit; 

these are well sorted, mature and less than 2cm diameter. The grainstone shows rough 

bedding, with locally good parallel lamination, dipping seaward at 10 0-150. Moldic 

porosity is seen throughout the grainstone unit. The grainstone is capped by caliche. 

A cemented bank of well sorted, low diversity, high density bivalves and 

gastropods, e.g. Natica and Glycymeris - a shell "hash" - is seen topographically and 

stratigraphically above the grainstone unit. This unit is found within 50cm of the 

unconformity surface, towards the back of the palaeo-beach sequence (Fig.7.1 1). 

A second section further east away from the influence of the Polis graben-derived 

clastic sediments is seen at Kato Pyrgos (location 3-110; Fig.7.1 1). The outcrop is limited 

by the extent of the relief on the pillow lava unconformity surface and the outcrop has not 

been greatly influenced by detritus from the Polis graben. The basal lag that lies 
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A - A sequence of bioturbated grainstones (a) which are capped by a caliche horizon 
and palaeosol (b); this in turn is succeeded by aeolianite (c), exposed in the F3 
sequence at Lara (location 2-32). 

B - An example of a grainstone sequence (a) being capped by coarse fluvial 
conglomerates (b) from the F4 sequence in Paphos (location 2-19). 

C - A portion of the preserved sequence at Lara (location 2-30). The framework unit 
(a) is overlain by a coarse conglomerate lag, containing large clasts of 
grainstone (b); this is succeeded by a bedded grainstone sequence. 

Note: scale is 50cm long. 
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unconformably above the pillow lavas consists of well rounded diabase clasts, immature 

locally-derived pillow lava clasts and rounded and fragmented gastropods, bivalves, 

dentalium, algae and oysters. The lag is 0.20-1.2m thick and grain-supported. The matrix 

consists of a coarse shelly grainstone. The lag passes up, with a gradational contact, into 

coarse grainstone and detrital rich unit, with well sorted, mature clasts. This, in turn, 

passes up into coarse grainstone containing few whole shells finin-up to a medium 

grainstone, which is better sorted and bedded towards the top of thb unit. Few whole 

shells are seen in this mature grainstone, which is well laminated, even though local 

vertical burrows, less than 1cm diameter, are present towards the top of the unit. The 

laminated unit dips seaward, i.e. 300 0-3260, at 40-80. A thin, less than :30cm thick, caliche 

cap is seen towards the top of the unit. 

The present-day beach sands in the area of Kato Pyrgos (location 3-110) consist 

of dark, Troodos-derived sands, contrasting those seen during the deposition of the F3 

sequence. 

7.3.5.7 Deposition of F3 carbonate sediments on wave cut platforms. 

Limited exposures of F3 carbonate sequences are present on the gently seaward 

dipping wave cut platforms at Cape Pyla (location 1-136) and Lara Point (location 2-33). 

These exposures have a minimal lateral and vertical extent and are generally restricted to 

joints and solution hollows formed within the underlying lithologies, i.e. Miocene 

limestones, chert and chalks. The Quaternary units that crop out 1  at Lara Point are 

dominated by locally derived angular to rounded chert and chalk clasts, commonly 0.7- 

1.0m diameter, that are found in association with abundant mollusc shell, a sand matrix 

and caliche (Plate 7.11). Minor brown-red grainstones associated with colonies of coral 

(C. caespitosa), coralline red algae and molluscan shells are also prcsent. These coarse 

sands are poorly sorted and well cemented. 

7.3.6 The F4 carbonate seouences (late Late Pleistocene), 

7.3.6.1 Introduction. 

The base of the F4 sequence is only rarely exposed, as it commonly forms a 

platform within 3m ASL today. The exception to this is in south-east Cyprus where it lies 

unconformably above: the Paralimni Melange, limestones of the Terra. Member, mans of 

Nicosia Formation. The F4 sequences also crop out above earlier Quaternary sequences at 

Cape Greco (location 1-125; Fig.3.8), where the F4 terrace is seen cropping out 

unconformably above the F3 terrace; and at Dhekelia (locations 2-76 and 2-84), where 



PLATE 7.11. 

A - Locally derived, angular to rounded, clasts filling solution hollows in the F3 
terrace at Lara Point (location 2-33); this chaotic conglomerate has a sandy 
matrix and has been calichified. 

Note: the length of the plate is equivalent to c. 1.5m. 

B - Coarse mature conglomerates overlain by an aeolianite unit in the F4 sequence 
at Dhekelia (location 2-76). 

Note: the scale is 50cm long. 

C - A view of the whole of the exposed sequence in the F4 terrace at Dhekelia 
(location 2-76). 

Note: the large mounds in the foreground are coral colonies 
the scale is 50cm long. 
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the F4 littoral sequence crops out unconformably above marls of Pliocene age and 

?Quaternary mature sands (Chapter 6; Figs.3.4 and 7.12). The exposed sequences are 

generally less than 2m thick. Aiexception to this occurs at Cape Greco (location 1-125; 

Figs.3.4, 3.8 and 7.7) and Paralimni (location 3-50; Fig.3.4). The basic components, 

outlined previously (Section 7.3.5) for the F3 littoral sequences, are all present in the F4 

exposures. F4 sequences in south-east Cyprus at Dhekelia and Cape Greco, Akrotiri and 

the Paphos area are described below. 

7.3.6.2 South-east Cyprus. 

i) Cape Greco to the south of Famagusta: the exposed basal conglomeratic lag at 

Cape Greco contains solely locally derived clasts, e.g. mans, limestones as well as 

grainstones derived from the ?F3 terrace. A more diverse clast assemblage, e.g. Troodos-

derived and local sediment clasts, is seen further north, to the south of Famagusta for 

which there are three possible explanations. These are the influence of the drainage 

system issuing out through Famagusta, at this time (Chapter 2), the presence of Troodos-

derived clasts in the Paralimni Melange, the presence of locally exposed basement in this 

area. The lag passes up into the coral and algae facies and then grainstone units. These 

are succeeded by caliche, dunes and evidence of later weathering and the formation of 

solution hollows (Chapters 2, 8 and 9). A thin (5-10cm), cemented, shelly horizon similar 

to that seen capping the F3 sequence in the Polis area (location 3-109) crops out, locally, 

at the top of the grainstones towards the base of the palaeo-cliffline of the F4 sequence at 

Cape Greco (location 1-125). 

The F4 sequences within 2-3m ASL to the north of Protaras (location 1-120) have 

a knobbly appearance, similar to those seen on the coast to the north of Paphos, in the 

Cape Greco area (location 1-125) and on the south coast of the Akrotiri Peninsula 

(location 3-96a). These units resemble facies RB3 described by McCallum (1989) from 

Petounda Point (location 3-11). Fine to medium grainstones that characterise these units 

are supplemented by the presence of cobbles and pebbles of locally-derived Quaternary 

lithoclasts and older sedimentary and igneous clasts. Numerous calcitic serpulid worm 

tubes are also present, as are bored molluscan shells and calcareous algae. These units 

commonly have a knobbly appearance, some with solution hollows on exposed surfaces 

(Chapter 2) and local evidence of subsequent infilling by sediment and fossils, especially 

the gastropod, Astraea rugosa (location 1-247; Plate 7.13). McCallum (1989) interpreted 

the unit at Petounda Point as representing a fossil trottoir, an organically produced 

calcareous crust that forms in the intertidal and uppermost subtidal zone on rocky 

shorelines in warm climates (Pérès, 1967). The fauna within trottoirs is dominated by 

long, uncoiled, vermetid gastropods, calcareous algae and serpulid worms, which 
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Fig.7.12. Field sketch of the sediment relations in the F4 carbonate sequence cropping 
out at Dhekelia (location 2-76). 

N 

(7) 
Coliche  

- 	 0 	 OO 	 ,
: K 0 	Qo/2   

Discontinuity 
	

Green sandstone 

- c.50m 

Coarse, well cemented, mature conglomerates; these conglomerates are 
made up of spherical (<16cm long, A axis) lava, diabase, chert and chalk clasts. 

The unit dips 8-100  towards 1600 , clasts are imbricated parallel to 160 0 . The 
unit has a sandy matrix. A low diversity, high density mollusc population is 
present, although there is no evidence of whole shells. 

Fine well cemented, very shelly, grain-supported gravel. This unit contains 
many broken mollusc shells, high density, low diversity population, has a 

limited lateral extent and dips at between 4-8 0  towards 2070. The beds are 
c.5cm thick. The unit coarsens up into a medium conglomerate. Unevenly ,  
overlain by grainstone, i.e. unit 3. 

Medium, well sorted, mature, planar laminated grainstones. This units 

thickens to the south and dips at 10-18 0  towards 220-2300. The unit appears to 
have stifled the growth of the coral colonies of unit 4. The unit is locally heavily 
bioturbated, 70-90% of the unit in some places. Burrows and shells with the 
unit are finer and more delicate to the north becoming increasingly larger and 
more robust further south. 

Coral colonies in life position. The colonies are up to 2.3m in diameter and 
nucleated to the underlying conglomerate unit and/or mollusc shells. A high 
diversity delicate mollusc population is associated with the colonies. 

Shelly conglomeratic unit. Mature, well sorted brown and whole shelled, 
fine-medium conglomerate. There is no apparent discontinuity between this 
conglomerate unit and the surrounding medium sands. 

Fine gravel; this unit is found in the areas of low relief above unit 1 and 
consists of poorly sorted broken shells, coral fragments, as well as clasts of lava, 
diabase, chert and chalk. The unit is massive, unbioturbated and grades up 
into medium sands, i.e. unit 3. 

Steeply dipping (<36 0) medium and fine aeolian sands; these dip to the 
north, overlie the caliche and contain abundant rhizocretion structures. 
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contribute to the formation of cemented carbonate platforms, commonly 20cm thick 

(Safreil, 1966). It is interesting to note that evidence for three horizons, with 

characteristics resembling that described above, are present within the ?F3-F4 coastal 

sequence at Cape Greco (location 1-125). Lithoclasts of bound serpulid burrowed 

grainstone units are found in the lag sequence above the marls of Pliocene age, i.e. the 

base of the ?F3 sequence. Similar clasts are also present within the basal lag separating 

the ?F3 and F4 sequence and a surface similar to that described above is present above 

the F4 sequence. 

ii) Dhekelia: the F4 carbonate sequences in the Dhekelia area contrast the shallow 

water sequences that were deposited in this area during the rest of Quaternary (Chapter 6) 

with the first development of carbonate-rich facies. The sequences display the four major 

facies, described previously, i.e. a conglomerate lag, coral framework structures, 

medium-coarse sand grade grainstones and evidence of sub-aerial sedimentation with 

fluvial, dune and caliche sequences. Rapid facies changes are seen both vertically and 

laterally, and extensive relief is associated with the unconformity surface between the 

marls of Pliocene age, ?Quaternary sands and the F4 Quaternary sequence. The sequence 

seen on the coast at Dhekelia (locations 2-76 and 2-84; Fig. 7.12; Plate 7.11) contains a 

mixed, buff-brown coloured grainstone sequence that displays planar laminated beds, 

passing up into extensively bioturbated units. These are overlain by coarse conglomerates 

at coastal exposures and a carbonate aeolianite sequence, dipping at 30 0  towards the 

north, inland. The carbonate grainstones show less evidence for the presence of detrital 

sands inland. The F4 grainstones differ from the grainstones of the Athalassa Formation 

(Pliocene) by being: 

generally coarser, 

less mature, 

buff-brown rather than yellow in colour, 

less well cemented and having a reduced moldic porosity. 

The corals found in Dhekelia (location 2-76) form the largest colonies seen, i.e. 

up to 2.3m in diameter (Plate 3.1). The larger coral colonies are attached to the seaward 

side of the underlying conglomerate, whereas the smaller colonies are found nucleating 

on shells and individual conglomerate clasts (Plate 7.13). Some of the small colonies 

(generally less than 40cm diameter) are simply attached to the grainstone substrata. 

7.3.6.3 Akrotiri. 

The F4 carbonate sequences on the Akrotiri Peninsula are best exposed at Cape 

Zevgari (location 3-96) and on the south coast of the peninsula (location 3-96a). On the 
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north side of Cape Zevgari the unconformity surface above the Athalassa Formation 

passes up into an immature lag that matures upwards with well sorted, 1-2cm size, 

discoidal clasts being seen towards the top of the unit. The unit is highly fossiliferous at 

the base with the proportion of macrofossils decreasing up through the unit. The coarse 

grainstones that lie above the lag deposit are well bedded, dipping between 10 0-120  

towards 0200 0300 , i.e. offshore. This unit displays local horizontal bioturbation. 

Aeolianites lie above the grainstone unit (Fig.7.8). Shelly conglomerates are also seen 

onlapping unconformably over the F4 carbonate and Athalassa Formation sequences. 

These shelly conglomerates contrast with the F4 lithologies by having a high clastic input 

derived from the Troodos ophiolite, i.e. with a high proportion of gabbro clasts. The 

igneous clasts are mature. Blocks of well laminated grainstones are also present within 

this unit. The conglomerate is grain-supported, mature but generally poorly sorted; 

specimens of Patella and a large number of abraded, thick mollusc shells, e.g. Glycymeris 

and Ostrea, are also present as a high density, low diversity fauna. 

Sections of the F4 carbonate sequence along the south coast of the Akrotin 

Peninsula (location 3-96a) have a limited vertical extent. These sequences lie 

unconformably above a variable shelly grainstone and marl sequence (Fig.7.8; Plate 

7.12). The basal F4 unit contains blocks of well cemented, derived grainstones, 

containing corals. Troodos-derived clasts are also found within this unit, contrasting with 

the lack of Troodos-derived clasts within the Recent beach sequences. Coralline algae and 

coral frameworks are also present directly on the unconformity surface. A basal unit 

passes up into a grainstone unit that has a minimal detrital input and a dense, low 

diversity Glycymeris fauna, commonly found as in situ nestling patches (Plate 7.12). 

Extensive coastal dune formation took place after the deposition of the grainstone units 

(Chapter 8). 

7.3.6.4 Paphos. 

The F4 carbonate sequence in the Kato Paphos area form a series of exposures 

within 3m ASL (locations 2-4 and 2-11; Fig.7.13). The four basic facies described 

previously are present within these units. The lag within the F4 units contains mainly 

reworked marls derived from the well bedded marls present beneath the unconformity 

surface and blocks of Quaternary grainstones reworked into position. The clasts are 

commonly spherical, less than 50cm diameter and submature, although some blocks of 

derived grainstones up to lm diameter are present. Coral, rhodoliths, coralline red algae, 

serpulid worm tube and a high diversity, thick shelled, molluscan population, including 

Pecten, Ostrea, Conus, Strombus, Barbatia, Glycymeris and Astraea, are all present 

within the basal lag unit. These are all abraded, indicating reworking and a death 
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PLATE 732. 

A - Articulated Pecten shells in the top most portion of the Athalassa Formation 
beneath the F4 terrace on the Akrotiri Peninsula (location 3-97). 

B - A nestling patch of in situ high density, low diversity, Glycymeris shells in the 
grainstone unit of the F4 sequence on Akrotiri Peninsula (location 3-97). 

C - Arrow indicating the presence of moldic porosity within the F3/F4 carbonate 
sequence at Protaras (location 2-100). 
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A - A solution hollow on the F4 terrace at Kissonerga (location 1-247) filled a high 
density, low diversity fauna dominated by the gastropod Astraea rugosa. 

B - A small colony of Cladocora caespirosa nucleating on a bivalve in the F4 
sequence at Dhekelia (location 2-76). 

C - A thin section micrograph displaying the development of micnte and pisolitic 
caliche in the F3/F4 carbonate sequence at Protaras (location 2-100; sample 
721). 

Note: the field of view is 5mm long. 

D - A thin section micrograph of part of the F3 terrace sequence from Larnaca 
(location 1-130; sample 617) revealing a portion of the coral Cladocora 

caespitosa encrusted by coralline algae (brown). 

Note: the field of view is 12mm long. 

E - A thin section micrograph of the basal section of the Fl sequence above Paphos 
(location 2-3) displaying a large number of derived Lepidocyclina tests. 

Note: the field of view is 8mm. 
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position. The grainstone that succeeds the lag is generally of coarse to medium sand 

grade, poorly sorted and poorly bedded. Whole and abraded molluscan shells are present 

within this unit, with local pockets of the gastropod, Astraea rugosa. The bivalve Patella 

also occurs locally. A red silty-fine sand unit caps the grainstone; this contains an 

associated fauna of low diversity gastropod, i.e. A. rugosa. Similar sediments are found 

in solution hollows to the north of Paphos (location 1-247). 

Mixed carbonate and siliciclastic sequences are present in the area to the north of 

Paphos (location 2-19) where a small river channel continues to cut down to the sea 

today. The F4 carbonate sequence (Fig.7.13) passes up from a coralline red algal 

framework with an associated robust fauna, dominated by the gastropod A. rugosa, into 

well bedded, parallel laminated, coarse grainstones. This grainstone, in turn, passes up 

into a mixed unit containing a high proportion of poorly sorted, submature clasts and 

mixed lithologies, e.g. serpentinite, chalk and calcarenite. A sharp, but irregular, contact 

marks the introduction of angular, poorly sorted and well cemented conglomeratic beds 

above the mixed unit. A more recent (post 1 74) well cemented beachrock lies 

unconformably above a portion of this F4 sequence, close to the present day sea-level. 

Mixed carbonate and siliciclastic sequences are also present in the area to the east of 

Paphos, e.g. near Paphos Airport (location 2-50). The F4 crops out 1.7m ASL with a very 

shelly coarse lag containing coral, algal and mollusc remains lying unconformably above 

mans of Neogene age (Fig.7. 13). The only coarse conglomerate is seen at the base of the 

F4 unit where locally derived clasts of marl and further travelled igneous and 

sedimentary clasts, e.g. diabase, pillow lava, chalk and chert, are present. The shelly, 

conglomeratic lag unit passes up, conformably, into a mature, well bedded, centimetre 

thick, coarse grainstone. Shell fragments are present within the grainstone unit and 

bioturbation is seen towards the top of the sequence. Planar beds dipping at 12 0-160  

towards 2000-2300 , 
i.e. offshore, pass up into trough- and festoon-cross-bedded 

grainstones. The grainstone unit passes up into a conglomeratic unit that grades up from 

fine, well sorted conglomerate with dominantly well sorted, discoidal clasts, into a 

coarser submature, less well sorted conglomerate. The conglomerate unit is grain-

supported and well washed throughout. Imbrication data indicate a bimodal palaeocurrent 

direction for the lower conglomerates, parallel with the trend of the planar-bedded 

grainstones of this sequence (Fig.7.13), and a unimodal offshore component for the top 

part of the conglomerate sequence (Fig.7. 13). A more recent, well cemented beachrock 

containing blocks of grainstones derived from the F4 terrace is seen lying unconformably 

above the F4 terrace. This unit also crops out in solution hollows found within the 

topmost portion of the underlying F4 terrace, similar to that seen in the more recent 

beachrock terrace at Cape Zevgari on the Akrotiri Peninsula (location 3-96). The clasts 
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within this beachrock unit have a similar provenance to that seen in the F4 terrace, e.g. 

chalk, chert, diabase and lava clasts. 

Limited F4 carbonate sequences are also found associated with the wave-cut 

platform at Cape Pyla (location 1-136). The sediments, restricted to Joints in tfle 

limestone consist of a coarse well cemented grainstone and a locally-derived, immature, 

conglomerate unit, similar to that seen in the F3 at Lara Point (location 2-33). Thick 

oysters, i.e. Ostrea edulis, cemented to each other and the underlying limestones are 

present. The unit is generally red in colour and capped by caliche. 

7.3.7 Summary of the comoonents of the carbonate sequences. 

In summary, it has been shown in the preceding sections (Sections 7.3.2 to 

7.3.6.4) that the Fl, F2, F3 and F4 carbonate sequences that crop out throughout southern 

Cyprus display the same broad characteristics, although the sequences do vary locally. 

The attributes common to most of the carbonate sequences in southern Cyprus are, from 

base to top: 
an unconformable contact with older sedimentary and igneous sequences, 

a coarse conglomeratic lag made up of predominantly locally-derived clasts and a 

reworked abraded fauna, 

a framework unit of delicate branching and rhodolithic coralline algae and/or 

small colonies of the coral C. caespitosa. A rich mixed fauna is associated with the 

framework structures, 
very coarse to medium sand grade grainstone units, displaying a variety of 

sedimentary structures, e.g. festoon- and trough-cross stratification, bioturbation and 

local rhizocretion structures, 
evidence for sub-aerial exposure, i.e. caliche and palaeosols (Chapter 9) and/or 

deposition aeolian sequences (Chapter 8). 

7.4 PETROLOGY AND DIAGENESIS. 

7.4.1 Introduction 

The petrographic study of the carbonate terrace sequences had a fourfold aim: 

to study the differences recognised in the field at a microscopic scale, 

to ascertain whether any major petrographic variations exist between the carbonate 

terraces of different ages, e.g. FO-F4, and at different locations, e.g. Paphos compared 

to Cape Greco, 
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to determine the diagenetic history of the carbonate littoral units and to discern 

whether the pattern of diagenesis has varied between the lithification of the FO and F4 

terraces, 
to ascertain whether there are any major difference between the carbonate aeolian 

and littoral grainstone sequences on a petrographic scale (this will be described and 

discussed in Chapter 8). 

7.4.2 Petrographic analysis of the carbonate littoral and sub-littoral sequences. 

Representative suites of samples collected from the F3 and F4 sequences at Cape 

Greco and Paralimni were sectioned to allow the facies variations recorded in field to be 

examined in thin section. Point count data from the sections are shown in Tables 7.1 and 

7.2. 

The suite of specimens from the Protaras area (location 2-100; Fig.7. 14) reveals a 

basal section that coarsens up from a well sorted, submature unit, containing grains less 

than 1mm in diameter, into a coarse shelly unit. The proportion of detrital clasts, i.e 

limestone and marls, decreases up section as the proportion of red algae, shells, pore 

filling cement, moldic porosity and calcitization increase. This coarse grainstone is 

succeeded by the development of a fine pisolitic micnte (Plate 7.13). This is, in turn, 

succeeded by a shelly poorly sorted grainstone that contains a number of lithoclasts from 

the underlying units, coral heads, red algal fragments, micrite fringes and calcitized 

shells. Detrital clasts are also present within this unit. These are 5mm in diameter at the 

base of the section and decrease in size up the unit. The sections at Cape Greco (location 

1-125) show a similar pattern with coarse poorly sorted, immature, shelly and detrital 

grainstone passing up into mature grainstones, with grains generally less than 0.5mm in 

diameter. These, in turn, are succeeded by coarse, poorly sorted grainstone that contain 

lithoclasts derived from the underlying units, as well as clasts' derived from the local pre-

Quaternary sequences, i.e. mans and limestones. This higher unit also contains a 

combination of well preserved and radically altered shell structures. A mature well sorted 

grainstone succeeds the formation of the poorly sorted grainstone unit. The mature 

grainstone is composed of mature carbonate grains less than 0.5mm in diameter. These 

successions reflect that seen in the field (Section 7.3; Fig.7.7). 

The samples collected from the F4 sequence at Dhekelia have a higher proportion 

of igneous-derived detritus, i.e. derived from the Troodos Massif and the Troulli Inlier, 

than seen in the sections at Cape Greco and Protaras. The proportion of allochems in the 

grainstone units (sample 601), but not the lag unit (sample 603), at Dhekelia, e.g. mollusc 

shells, algal fragments, coral heads, echinoid fragments and benthic and planktonic 
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Fig.7.14. Logged section of the small quarry cut into the F3/F4 carbonate sequence at 
Protoras (location 2-100). 
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Table 7,1, Point count data from the Quaternary carbonate sequences, 

Location 
(sample number) 

Age Allochems Derived clasis 
Sedimentary Igneous 

Porosity Cement Total 

Pissouri 3-30 (C84/89) Pliocene 168 (34) 15 	(3) 94 (19) 27 (5) 193 (39) 497 
Polis 3-150 (C93/89) Pliocene 136 (27) 106 (21) 115 (23) 23 (5) 120 (24) 500 
Marathounda 2-51 (Mar) F0  82 (16) 215 (43) 10 	(2) 149 (30) 45 (9) 501 
Mesoyi 2-18 (Mes) F0 136 (27) 121 (24) 52 (10) 47 (9) 144 (29) 500 
Tremithousa 3-34 (C96/89) F0 110 (22) 128 (26) 5500 33 (7) 174 (35) 500 
Paphos 2-3 (22) F1 155 (31) 126 (25) 27 (5) 90 (18) 102 (20) 500 
Paphos 2-3 (312) F 1  118 (24) 203 (39) 8 (2) 100 (20) 73 (6) 502 
Paphos 2-3 (313) F 1  125 (25) 208 (42) 15 	(3) 95 (19) 58 (12) 501 
Yeroskipos 2-5 (323) F2 71 (14) 217 (43) 0 (0) 171 (34) 44 (9) 500 
Paphos 2-10 (331) F2 193 (39) 75 (15) 8 	(2) 145 (29) 80 (16) 501 
Paphos 2-10 (337) F2 214 (43) 91 (18) 12 	(2) 156 (30) 31 	(6) 499 
Cape Greco 1-125099) F3 205 (41) 125 (25) 18 	(4) 68 (14) 85 (17) 501 
Cape Greco 1-125065) F 3  127 (25) 95 (19) 48 (10) 168 (34) 63 (13) 501 
Cape Greco 1-125068) F3 185 (37) 122 (24) 24 (5) 116 (23) 54(11) 501 
Cape Greco 1-125(169) F1 188 (38) 95 (19) 107 (21) 83 (17) 27 (5) 500 
Cape Green 1-125(172) F3 131 (26) 117 (23) 52 (10) 126 (25) 74 (15) 500 
Cape Greco 1-125073) F4  243 (48) 102 (11) 8 (2) 100 (20) 48 (10) 501 
Lamaca 1-130 (8a) F3  190 (38) 85 (17) 30 (6) 160 (32) 35 (7) 500 
Lamaca 1-130 (618) F 3  196 (39) 101 (20) 47 (9) 117(23) 39 (8) 500 
Coral Bay 2-22 (358) F3 253 (51) 63(13) 4 	(1) 110 (22) 70(14) 500 
Coral Bay 2-22 (C100/89) F3 227 (46) 87 (17) 7 	(1) 143 (29) 36 (7) 500 
Argaka 3-109 (3/301) F3 107 (21) 22 	(4) 200 (40) 81 (16) 89 (18) 499 
Argaka 3-109 (3/302) F3 157 (31) 0 	(0) 25 	(5) 265 (53) 54 (11) 503 
Dhekelia 2-84 (601) F4  167 (33) 50 (10) 150 (30) 50 (10) 83 (17) 500 
Dhekelia 2-84 (603) F4  98(20) 73(15) 119 (24) 45 (9) 159 (32) 494 
Paphos 24 (314) F4  216 (43) 82 (16) 49 (10) 67 (13) 86 (17) 500 
Paphos 2-4 (316) F4  250 (50) 35 	(7) 0 	(0) 145 (29) 70 (14) 500 
Paphos 2-4 (318) Recent 237 (47) 63 (13) 13 	(3) 165 (33) 22 (4) 500 
Protaras 2-100 (720) F3/F4 110 (22) 105 (21) 61 (12) 132 (26) 91 (18) 499 
Protaras 2-100 (722) F3/F4  140 (28) 87 (17) 35 	(7) 139 (28) 99 (20) 500 
Protaras 2-100 (723) FJF4  96 (19) 76 (15) 106 (21) 204 (41) 17 	(3) 499 
Protaras 2-100 (724) FVF4 181 (36) 85 (17) 52 (10) 7? 	5) 106 (2!) 501 

Note: figures in brackets are pctceiilagcs. 



forams, match that seen throughout the Cape Greco and Protaras sections (Table 7.1). 

Some of the forams in the sections have been derived from the pre-Quaternary 

sedimentary sequence, derived sedimentary clasts are also present within the unit (Table 

7.1). The derived clasts are mature to sub-mature. The mollusc shells have been bored 

and also coated with a micrite envelope (see Section 7.4.3 for explanation). The sections 

from Dhekelia show little variation in the constituent components from the base to the top 

of the section; the major changes in thin section relate to the variation in the ratio of 

porosity to cement (Table 7.2). 

The suite of specimens taken from the sections at Kato Pyrgos (location 3-110) 

and Argaka (location 3-109) show a pattern similar to that seen in the coarse, poorly 

sorted units at Protaras. Some derived igneous clasts, i.e. pillow lava, are present in the 

Argaka and Kato Pyrgos sections. A shelly hash overlying the section at Argaka (sample 

3/302; Table 7.1) differs from the rest of the succession, as it dominated by well 

preserved molluscan shells that have maintained their original shell mineralogy, i.e. 

aragonite, are bound by thin meniscus cements (Table 7.1) and contain small igneous 

clasts within the shell chambers. 

The sections from the F3 terrace at Larnaca (location 1-130) are more micritic 

than those seen in south-east Cyprus. Coral heads have been encrusted by red algae (Plate 

7.13), as have the well preserved bivalve. Bryzoan, echinoid, benthic and planktonic 

forams are also present in his unit. This unit is poorly cemented and has a high primary 

porosity. There is no evidence for the presence of secondary moldic porosity. This 

packstone contains a large number of well preserved shells. Small diabase and pillow lava 

clasts are also present. The packstone is succeeded, up section, by the development of 

well bedded, mature, sorted grainstone. Clasts derived from both sedimentary and 

igneous sources are present, as are worn fragments of red algae, molluscs, echinoids and 

benthic and planktonic forams. Some boring of the shells has taken place and some 

specimens also showing evidence of calcitization. Some secondary porosity is also 

present. 

Samples were collected from all the terraces in the south-west of the island, i.e. 

Upper Pliocene, F0-F4, Recent, to test the hypothesis, based on field relations, that there 

are no discernible changes in the petrology between the Upper Pliocene and Recent. Point 

count data is shown in Tables 7.1 and 7.2. 

The FO grainstone sequence was sampled at three locations, e.g. Marathounda, 

Mesoyi and Tremithousa (locations 2-51, 2-18 and 3-34, respectively). Derived 

sedimentary and igneous clasts are present within all the units. Reworked and abraded 
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Table 7.2. Ratios of point counted data collected from the carbonate sequences. 

Sample No. 
and age 

All clasts: 
porosity and 
cement 

Allochems: 
derived 
clasts 

Porosity: 
cement 

Derived 
sediment: 
derived 
igneous 
clasts 

84/89 (Plio.) 1:1 2:1 1:8 1:6 
C93/89 (Plio.) 2:1 1:2 1:5 1:1 
Mar (FO) 2:1 1:3 3:1 22:1 
Mes(F0) 2:1 1:1 1:3 2:1 
C96/89 (FO) 2:1 1:2 1:5 2:1 
22 (Fl) 2:1 1:1 1:1 5:1 
312 (Fl) 3:1 1:2 3:1 20:1 
313 (Fl) 2:2 1:2 2:1 14:1 
323 (F2) 2:1 1:3 4:1 
331 (F2) 2:1 2:1 2:1 8:1 
337 (F2) 2:1 2:1 5:1 9:1 
199 (F3) 3:1 2:1 1:1 6:1 
165 (F3) 1:1 1:1 3:1 2:1 
168 (F3) 2:1 1:1 2:1 5:1 
169 (F3) 3:1 1:1 3:1 1:1 
172 (F3) 2:1 1:2 2:1 2:1 
173 (F4) 2:1 4:1 2:1 6:1 
8a(F3) 2:1 2:1 5:1 3:1 
618 (F3) 2:1 2:1 3:1 2:1 
358 (F3) 2:1 4:1 2:1 13:1 
C100/89 (F3) 2:1 3:1 4:1 17:1 
3/301 (F3) 2:1 1:2 1:1 1:10 
3/302(F3) 1:2 6:1 5:1 
601 (F4) 3:1 1:1 1:1 1:3 
603 (F4) 2:1 1:2 1:4 1:2 
314(F4) 3:1 1:2 1:1 2:1 
316 (F4) 1:1 7:1 2:1 
318 (Recent) 2:1 3:1 8:1 4:1 
720 (F3/F4) 1:1 1:2 1:1 2:1 
722 (F3/F4) 1:1 1:1 1:1 3:1 
723 (F3/F4) 1:1 1:2 14:1 1:1 
724 (F3/F4) 2:1 1:1 1:1 2:1 

Note: all figures are to 1 significant figure. 
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planktonic and benthic foraminifera are also present, found as isolated shells and as part 

of lithoclasts of derived micritic wackestones and packstones. The derived clasts are 

commonly less than 5mm in diameter. The allochems are dominated by abraded and 

broken planktonic and benthic forams, red algae fragments, echinoid plates, bryozoa and 

bivalve and gastropod shells. The grains within all the units are generally subrounded and 

moderately sorted. The unit at Marathounda is highly porous and poorly cemented, 

whereas the sections from Tremithousa and Mesoyi are generally well cemented (Tables 

7.1 and 7.2). Secondary porosity as a result of dissolution of the fauna is also seen at 

Mesoyi. Staining indicates that the majority of the sections are made of non-ferroan 

calcite. These FO units are very similar to the Pliocene grainstones from the Polis and 

Pissouri areas (locations 3-150 and 3-30; Tables 7.1 and 7.2). Both Pliocene grainstones 

have a higher proportion of derived igneous clasts than that present within the FO 

sequences. The well cemented grainstones from Pissouri are coarser grained than seen in 

either the FO, or the Pliocene grainstones from Polis. 

The sections from the Fl terrace above Paphos (location 2-3) are dominated by 

grainstones. The basal section of the Fl terrace, directly above the unconformity, 

contains a large number of derived Lepidocyclina tests from chalks of Miocene age 

beneath the contact (Plate 7.13). The basal unit is coarse grained and contains a large 

proportion of red algal, echinoid, molluscan and foramiferal debris and derived 

sedimentary clasts (samples 312 and 313; Table 7.1). 

The F2 terrace above Paphos (locations 2-5 and 2-10) has a similar appearance to 

those sections taken from the Fl terrace. Sections taken from the framework facies 

contain abundant red coralline and encrusting algae (Plate 7.14) and poorly sorted 

molluscs, echinoids and forams (sample 32' ); Table 7.1). The grainstone units are more 

mature and contain many abraded and reworked forams and primary red algae, echinoid 

plates and molluscan shells. The allochems and derived clasts are generally less than 

3mm in diameter, sub-rounded and moderately well sorted (samples 331 and 337; Table 

7.1). All the units are poorly cemented (Table 7.1), with a porosity, to cement ratio, 

ranging between 5:1 and 2:1 (Table 7.2). 

The F3 sequences at Coral Bay (location 2-22) were collected from the 

framework facies above the basal unconformity and grainstone units. The framework 

facies is dominated by encrusting red algae, similar to that seen in the F3 section at 

Larnaca (Plate 7.14), and delicate branching red algae of the Corallinacae family, which 

probably include the genera Lithophyllum, Neogoniolithon and Corallina (Plate 7.14) as 

well as heads of the coral C. caespitosa. Small (<3mm diameter) subangular detrital 

clasts, e.g. serpentinite, and derived fragments of planktonic and benthic forams are also 



D - A thin section micrograph of encrusting coralline algal forming a bindstone 
fabric in the F3 carbonate sequence at Petounda Point (location 3-11; sample 
C41/89). 

Note: The field of view is 6mm long. 

E - A thin section micrograph displaying fragments of laminar binding and 
encrusting coralline algae with evidence of moldic porosity, from the F2 
sequence in Paphos (location 2-5b; sample XI). 

Note: the field of view is 6mm long. 

F - A thin section micrograph of binding coralline algae from the F3 sequence at 
Cape Greco (location 1-125; sample 199). 

Note: the field of view is 6mm long. 

G, H & I - Thin section micrographs of red algae of the Corallinacea family, which 
probably includes the genera Lithophyllum, Neogoniolithon and Corallina, from 
Coral Bay (location 2-22; sample C100/89). 

Note: the field of views are 4mm, 1.5mm and 2.5mm respectively. 
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present in the section (sample 358; Table 7.1). A section (sample C100/89) taken from 

the grainstone sequence above the framework facies at Cape Greco contains numerous 

large fragments of bored, aragonitic bivalves and gastropods, red algae, echinoids, 

bryozoa, benthic and planktonic forams and derived packstone, wackestone and igneous 

clasts. This unit, like the framework unit beneath, is poorly cemented and porous, with a 

porosity to cement ratio of 4:1 (Table 7.2). 

The F4 terrace in the Paphos area contains the same fauna as seen in the higher 

terraces. The grainstones from the F4 terrace have a porosity to cement ratio that varies 

from 2:1-1:1 (samples 314, 316; Table 7.2). The Recent beachrocks, like the F4 terrace, 

are generally submature grainstones, that display variable cementation, e.g. sample 318 

has a porosity to cement ratio of 8:1 (Table 7.2) which contrasts that seen in the Limassol 

and Larnaca areas were Recent beachrock cementation is pervasive. The molluscan shells 

with the Recent beachrocks have been bored, similar to that seen in many of grainstones 

from the terraces (i.e. F1-F4) in the Paphos area. 

7.4.3 Summary. 

The data described above and recorded in Tables 7.1 and 7.2 can be summarised 

as follows: 

the variety and proportion of derived clasts in any one location reflects: a) the 

position within the sedimentary sequences, e.g. lag compared to grainstone, b) the 

local basement, i.e whether that is igneous or sedimentary, c) the local influence of 

siliciclastic deposition, either through reworking, or primary deposition, e.g. the 

comparison between the Argaka sections which flank the Polis-Paphos graben and the 

F4 carbonate sequences on the foreshore at Paphos unaffected by derived clasts, 

the data show a general trend that indicates that Pliocene, FO and Fl sections are 

better cemented than the latter units but this does vary locally, e.g. the FO at 

Marathounda. Local diagenetic controls, as well as the position of the unit in any 

sedimentary sequences, influence the extent of cementation in the sections, 

the proportion and type of allochems in all the units appears to be reasonably 

constant, the slightly higher ratios reflecting lag units and the hash seen cropping out 

at Argaka (samples 173 and 3/302 respectively; Table 7.2), 

the clast to cement and porosity ratio remains quite constant throughout, 

there appears to be very little difference between the lithologies that are found 

associated with the FO terraces and those seen associated with the F4 and Recent 

terraces. Those difference that do exist between the FO and Recent sequences can be 

explained by the local variations occurring as a result of facies changes and changes 

in the local environment. 



7.4.4 Diagenesis. 

The marine sequences described above (Section 7.4.1) display a series of 

diagenetic features: micrite envelopes (Plate 7.15); the development of equant, pore 

filling and fringing, calcite spar (Plate 7.15); the formation of meniscus cements (Plate 

7.15); partial and total calcitization and neomorphism of the bivalve, gastropod and coral 

fauna, with varying degrees of preservation of the original fabric (Plate 7.15); dissolution 

of aragonitic shells, with a) the subsequent infilling of the voids with calcite (Plate 7.15) 

or b) the local development of a secondary moldic porosity (Plates 7.12 and 15); the 

formation of syntaxial overgrowths associated with echinoderm fragments (Plate 7.15) 

and, finally, the development of micrite networks and caliche crusts (Plate 9.3). 

Recent beachrocks in Cyprus, that postdate the last interglacial sea-level maxima, 

crop out around the coast today. These beachrocks which crop out above and below the 

present mean sea-level, are generally well cemented. Alexandersson (1969) during a 

study of beachrocks from the northern Mediterranean coast stated that the lithification of 

the Recent beachrocks generally decreases landward and can vary from incipient to 

advanced, with the formation of high-Mg calcite cements. The later appears to be the 

norm on Cyprus, perhaps indicating that present conditions are more conducive to quick 

beachrock formation than earlier in the Quaternary, or that these beachrock units have 

spent a longer period of time in the marine phreatic realm and this has facilitated the 

development of cohesive beachrock successions. 

Previous studies of littoral beachrock horizons in the Mediterranean (e.g. 

Alexandersson, 1969; El Sayed, 1988) have described two major diagenetic features that 

are present in Quaternary beachrocks. These are fringe cements and the development of 

micrite overgrowths. The absence of acicular aragonite associated with the development 

of micrite overgrowths differs from that recorded in beachrocks in other parts of the 

world, e.g. in San Salvador Island (Beier, 1985) and Grand Cayman (Moore, 1973), but 

agrees with that found on Cyprus. The development of micrite overgrowths in the 

shallow marine environment is now widely attributed to boring, by endolithic algae and 

fungi (Bathurst, 1966; Kobluk & Risk, 1977), and this appears to be the primary 

diagenetic feature in the majority of the Quaternary terrace sequences. The non-ferroan 

calcite cement that succeeds the formation of the micrite envelopes takes the form of a 

equant and not a fibrous cement in many of the Cyprus sections. This cement is locally 

porefihling but is more generally restricted to fringing the grains, binding them together. 

Locally this takes the form of a meniscus fringing cement, indicative of the meteoric 

rather than marine realm. Alexandersson (1969; 1972) states that the fringing cements 

from the north Mediterranean are post-depositional additions and that they have the same 
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ELATE 7,15, 

D - A thin section micrograph displaying moiclic porosity, micrite envelopes and a 
coarsening up structure in part of the F3/F4 carbonate sequence exposed at 
Protaras (location 2-100). 

Note: the field of view is 8mm long. 

E - A thin section micrograph showing the pore filling cement that developed in the 
grainstone unit of the F3/F4 sequence at Cape Greco (location 1-125; sample 
164). 

Note: the field of view is 8mm long. 

F - A thin section micrograph displaying meniscus and pendant cements developed 
in the F3/F4 sequence at Protaras (location 2-100; sample 722). 

Note: the field of view is 8mm long. 

G - A thin section micrograph showing pore filling calcite cements and the 
pervasive calcitization, with a ghost of the original structure, of bivalve shells in 
the ?F0 grainstone sequence at Pissouri (location 3-30; sample C84/89). 

Note: the field of view is 3mm long. 

H - A thin section micrograph showing complete calcitization of bivalve shells, yet 
the original fabric is still visible, from the F31174 carbonate sequence at Protaras 
(location 2-100; sample 724). 

Note: the field of view is 6mm long. 

I - A thin section micrograph showing the development of a syntaxial overgrowth 
around a echinoid fragment from the F4 carbonate sequence in Paphos (location 
2-4; sample 337). 

Note: the field of view is 1mm long. 

J - A thin section micrograph displaying a partially altered gastropod shell showing 
both its original mineralogy and fabric (red and white stripes) and an altered 
fraction (grey and red blobs). 

Note: the field of view is 1.5mm long. 

K - A thin section micrograph displaying a fragment of a bivalve shell with 
evidence of boring and the formation of a micrite envelope, from the F4 
sequence at Paralimni (location 1-120; sample 124) 

Note: the field of view is 1.3mm long. 
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Mg-content as the micrite. El Sayed (1988) states there is no evidence of vadose cements 

in the beachrocks from Alexandria, pointing to a phreatic or marine environment for the 

formation of this fringing cement. The development of fringing cements in either the 

marine or phreatic realm suggests that the original mineralogy could have been aragonite 

and that they have been altered to calcite during later diagenetic events, similar to that 

recorded by Cooper & Flores (1991). Further detailed studies, e.g. isotope, Mg and Sr, of 

the cements from the Cyprus Quaternary sequences, would determine whether the spar 

formed in marine or meteoric conditions. 

Monocrystalline syntaxial overgrowths on echinoderm fragments are a common 

diagenetic feature of the meteoric phreatic zone (Longman, 1980). The formation of 

equant calcite cements and the macroscale dissolution of aragonite, e.g. coral and 

molluscs, is also a common feature in the meteoric phreatic zone. The dissolution of 

aragonite can result in either the formation of secondary, i.e. moldic, porosity, or 

calcitization with the molds filled with a calcitic cement at a later date (Fig.7.15). Micro-

scale calcitization can also take place in the meteoric phreatic realm; this results in the 

poor preservation of the original shell structure and contrasts with neomorphism in the 

meteoric vadose zone which results in good preservation of the original shell structure 

(Fig.7.15; Plate 7.15). Microscale neomorphism of shells is believed to occur when a 

nanometre-thick water skin, about which the alteration of metastable aragonite to calcite 

takes place, moves through a rock unit (Wardlaw et al., 1978). The process of 

neomorphism allows the original structure of the specimen to be retained, due to the 

presence of insoluble organics and other matter (James, 1974). Sandberg etal. (1973) and 

James & Choquette (1984) have shown that neomorphism may be localised and not 

complete with, for example, the partial preservation of aragonite and its original structure 

in a gastropod shell, whilst the rest of the shell has been altered (Plate 7.15). James & 

Choquette (1984) also note that poorly lithified Pleistocene carbonates with a 

predominantly metastable fauna are found in the meteoric vadose zone, with rapid 

alteration being common in the meteoric phreatic zone. The formation of meniscus 

cements of fine equant crystals is restricted to the meteoric vadose zone. 

The diagenetic history of the Quaternary carbonate units within the marine and 

meteoric zones has been influenced by the presence, or absence, of water. The 

availability of fresh rainwater is dependent on the climate; the development of extensive 

caliche horizons within the Quaternary sequences on Cyprus indicates dry semi-arid 

conditions which allow both aragonite and calcite to be preserved in the meteoric vadose 

zone. Arid conditions contrast those found in humid environments where extensive 

dissolution will occur in the meteoric vadose zone (James & Choquette, 1984). James & 

Choquette (1984) suggest that extensive dissolution and calcitization of aragonite will 
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occur in the meteoric phreatic zone in areas of semi-arid climate, whilst neomorphism 

will occur in the meteoric vadose zones. Active precipitation of cements does occur in the 

meteoric vadose zones in the Quaternary carbonate of Cyprus, e.g. the precipitation of 

meniscus cements, but this is scarce. The presence of a semi-arid to and climate in 

Cyprus during the Quaternary would not promote active cementation in the meteoric 

vadose zone. 

The sedimentological and geochronological data presented earlier (Section 7.3 

and Chapter 3 respectively) indicate that the preserved Quaternary carbonate marine 

sequences have been deposited during relative regressive phases. The diagenetic evidence 

from the carbonate sequences supports this view, with the features described above 

indicating a transition from the marine (with the formation of micrite rims and some 

calcite spar) to the meteoric phreatic realm, and then to the meteoric vadose zone (with 

the development of syntaxial overgrowths, calcitization and the development of filled and 

moldic dissolved original aragonite shells). The formation of micrite networks and 

caliche is indicative of meteoric environments (see Chapter 9 for a detailed description of 

caliche development). The pattern of cementation, like the pattern of sedimentation 

(Section 7.3), appears to be constant with the FO-F4 terraces sequences having the same 

characteristics, although cementation is generally more pervasive in the late Pliocene and 

FO grainstones than the F1-F4 sequences in the Paphos area, e.g. samples C84/89, 

C93/89, C96/89, Mar, Mes (Tables 7.1 and 7.2). The variation in diagenetic features 

between different terraces, and even between sample sites on any one terrace, is more 

likely to reflect local variations in the meteoric realm as uplift of the island coupled with 

a eustatic fall in sea-level will, possibly, result in the terrace being removed from the 

meteoric phreatic, i.e. where it is permanently saturated with water, into the meteoric 

vadose zone, where saturation is sporadic. 

The variety of diagenetic features within the same unit, for example both totally 

replaced and fresh aragonite shells, suggests that some reworking has taken place. This is 

particularly evident in the Cape Greco area where the F4 terrace lies unconformably over 

the probable F3. The variation in intrashell mineralogy indicates local alteration as a 

result of a minimal period of time in the meteoric phreatic zone. The general lack of 

pervasive cements indicates that these units have only spent a short period of time in the 

marine, or meteoric, phreatic zone and have rapidly moved into the meteoric vadose zone 

where minimal alteration will occur, as a result of the semi-arid climate that Cyprus 

experiences. This argument supports the view that the carbonate sediments formed in a 

regressive regime, as continued uplift of the island, relative to sea-level, removed these 

sequences from the phreatic zone and secondly, Recent beachrocks are generally better 

cemented as they have remained within the metoeric phreatic realm. X-ray diffraction 
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data collected during the course of the U-series studies, to test whether coral had 

undergone any dissolution (Chapter 3), show how localised the dissolution changes are, 

with older terraces, e.g. Petounda Point (location 3-11), just as likely to have original 

unaltered aragonite as the lower, younger terrace at Paralimni (location 3-50), whereas 

corals in the terrace at Akrotiri (location 3-96) have undergone extensive dissolution from 

aragonite to calcite. 

It can be concluded that environment, climate and proximity to sea-level and the 

watertable are the major controls on the development of the observed cements and that 

these are largely independent of time controls. However, two broad diagenetic pathways 

are present within the Quaternary carbonate sequences (Fig.7.16). 

7.5 INTERPRETATION, DISCUSSION AND CONCLUSIONS, 

7.5.1 Introduction. 

Carbonate and clastic beach and coastal environments have been the subject of 

much study (Thompson, 1937; Reineck & Singh, 1975; Harms et al., 1975; Howard & 

Reineck, 1981; Inden & Moore, 1983; Davis, 1985) and a wide variety of transgressive 

and retrogressive facies models have been proposed. Inden & Moore (1983) distinguish 

between transgressive and regressive conditions stating that sediments are rarely 

preserved in transgressive regimes, but where these are seen a coarse lag of intra-clasts 

forming a scoured surface is subsequently overlain by a fining-up sequence of burrowed 

and/or laminated and cross-bedded grainstones, or packstones. In regressive sequences, 

where preservation of the depositional sedimentary sequence is more common, poorly 

sorted, cross-bedded grainstones will be succeeded by laminated grainstone and 

eventually sub-aerial deposits, e.g. aeolian dunes and caliche. 

Studies of modern and Quaternary siliciclastic shoreline and shallow marine 

sequences are quite extensive, e.g. California (Thompson, 1937; Howard & Reineck, 

1981), the Gulf of Gaeta, Tyrrhenian Sea (Reineck & Singh, 1975). Studies comparing 

modern and ancient high energy shorelines and fluvial sequences have also been made 

(Clifton et al., 1971; Clifton, 1973). The fewer studies of modern high energy carbonate 

shoreline and shallow marine environments include Bernard et al. (1962), Inden & Moore 

(1983). Studies of Quaternary high energy carbonate, littoral environments have been 

made (Ward & Brady, 1979; Ward et al., 1985). 



7.5.2 Interpretation, 

The Quaternary carbonate sediments from Cyprus, i.e. FO to F4 age, are believed 

to have been deposited in similar environments as a consequence of the interaction 

throughout the Quaternary of eustatic sea-level fluctuations and the tectonic uplift of the 

island. The sedimentary facies recognised during the course of this study will now be 

interpreted in turn (Fig.7. 17). 

7.5.2.1 The basal unconformity surface and conglomeratic lag sequence. 

The conglomerate lags, or ravinements (Swift, 1968) are interpreted as forming in 

a transgressive regime with reworked, earlier, locally derived clasts, worn shells and 

lithoclasts being incorporated into the lag sequence, e.g. as occurs in Southern California 

(DeCelles, 1987). Transgressive lag sequences are common components of carbonate 

shoreline successions, cropping out above eroded, bored and burrowed "basement" units 

beneath an unconformity surface (Ward & Brady, 1979; Inden & Moore, 1983; Ward et 

al., 1985). The presence of a lag deposit indicates the onset of onlap and transgression of 

the shoreline over a previously exposed and eroding surface. 

7.5.2.2 Coral and coralline algal framebuilders. 

There is no evidence of Quaternary shelf sediments preserved onshore in southern 

Cyprus today. The sediments that formed in the deepest marine waters in the Quaternary 

carbonate sequences are probably the coral and red algal framework units, which are 

restricted to the shallow marine photic zone. The framebuilders, in life position, are 

attached to clasts within the transgressive lag facies, or to the basement lithologies 

beneath the unconformity surface, and commonly crop out above lag unit, or on areas of 

positive relief associated with the unconformity surface. 

Presently the coral C. caespitosa is found in the Mediterranean in the circa littoral 

zone, commonly down to a depth of 50m (Zibrowius, 1980). Hearty (1986) reports that 

C. caespitosa is typically found in shallow, coastal waters. 

The red coralline algae forms delicate branching frameworks, or robust 

rhodoliths, and is the dominant framework structure in the Fl and F2 carbonate 

sequences. Lithophyllum, Neogoniolithon and Corallina, all member of the Corallinaceae 

family, are three of the genera present within the carbonate sequences. The Corallinaceae 

family occupy niches throughout the marine environment (Wray, 1977), but the three 

genera cited above are primarily found in shallow, i.e. down to 40m (Fig.7.18), warm 
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Fig-7.18. Depth disibution and percentage of crustose coralline algae genera in the 
Hawaiian Archipelago (after Adev etal., 1982]. 
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Fig.7.19. Growth-form continuum within the same species of free-living coralline as a 
function of depth (suggested by Wrav. 1971) and current action (observed by Bosence. 
1976) (after Wray, 1977). 
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marine waters that are subject to intermediate to strong light (Adey & Macintyre, 1973; 

Adey & Burke, 1976). Lithophyllum and Neogoniolithon are members of the subfamily 

Melobesoideae, i.e. crustose coralline algae, whereas Corallina is a member of the 

Corallinoideae subfamily, i.e. articulated coralline algae. Studies of the coralline algae 

from the Hawaiian Archipelago indicate that Neogoniolithon and Lithophyllum are 

present in water depths of <lOm and 10-40m respectively (Adey et al., 1982). Turbulent 

waters are favoured as these prevent the algae becoming choked by sediment although 

excessive currents will cause the algae to break up. However, crustose algae and the more 

robust rhodoliths can occupy an active environment close to sea-level (Adey & Burke, 

1976; Bosellini & Ginsburg, 1970). The variable location of branching coralline algae in 

the Paphos area (locations 2-5, 2-20 and 2-27) probably reflects the prevalent marine 

conditions at the time of formation. The growth of branching coralline algae on high 

ground, associated with the unconformity surface (Fig.7.3), may have been associated 

with slightly lower energy conditions and a high sediment accumulation rate in contrast 

to branching algal frameworks that formed in troughs, or flatter areas, elsewhere on the 

unconformity surface. A high energy environment with it's reduced threat of extensive 

sediment input, possibly permitted conditions that allowed the growth of extensive 

branching algal frameworks in the trough, or flat areas, created by the unconformity 

surface (Figs.7.4 and 7.9; locations 2-5 and 2-27). The general upward progression from 

branching to crustose and free-living, densely branched rhodoliths suggests an increase in 

the energy of the system up sequence (location 2-5), probably related to a shallowing 

environment at this time. The same pattern of open branching to densely branched free-

living rhodoliths was recorded in Recent forms in western Ireland (Bosence, 1976) and 

interpreted to indicate the variation in current action and depth (Fig.7. 19; Wray, 1971; 

Bosence, 1976). The correlation of coralline branch density and depth and current action 

does not always exist, as articulated coralline algae is resilient and frameworks are found 

in high energy environments, e.g. associated with pounding surf (Wray, 1977). The close 

relationship between encrusting coralline algae and coral development and the formation 

of algal crusts around the coral heads, e.g. the F3 terrace at Larnaca (location 1-130; Plate 

7.13), compares with that seen presently in the fringing reefs of Hawaii, with coralline 

algae constituting 40% of the reef surface, through binding and encrusting of the reef 

surface (Littler, 1973). The algal and coral growths and local framestones are interpreted 

as forming small frameworks in active shallow marine environments representing 

deposition and growth during a sea-level maxima. Age data from the F3 and F4 terrace 

supports this (Chapter 3). 

The massive grainstones with an associated high density and high diversity fauna 

found in close association with the framework units were also probably deposited in an 

active, shallow marine environment. Data from the ecology of the molluscs present 



within the framework and grainstone units (see below) indicate a shallow marine to 

intertidal habitat, in keeping with the shallow marine environments interpreted here 

(Moore, 1969; Richards, 1982). 

The molluscan fauna present within the carbonate sequences does not show any 

major variations throughout the Quaternary; the presence, or absence of coral and the 

warm water Senegalesse fauna being the exception. The habitat of bivalves found in the 

Quaternary carbonate sediments is shown in Table 7.3. 

The genera mentioned in Table 7.3 are not present commonly in a life position 

and are found more generally as single, detached, reworked valves. The faunal group 

indicates shallow littoral, sub-littoral and intertidal environments, with good light and 

energetic conditions, which agrees with the interpretation that the molluscan fauna of the 

F3 terrace in Larnaca is indicative of shallow marine waters, i.e. 10-30m (Moshkovitz, 

1968). The abraded, broken and locally thickened form of many of the shells, e.g. the 

Pectenids and Glycymerids at Cape Greco (location 1-125), indicates a high energy 

shallow marine environment, similar to that recorded by Stanley (1970). 

Table 7.3. Habitat of the fossil bivalves commonly found in the Quaternary sequences in 

Cyprus (habitat related to shell morphology after Moore. 1969). 
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Habitat 

Epifaunal - attached 

Cemented on to the substrata and rocks 
Byssate nestles in active environments, 
and are commonly found on wave cut benches 
Closely attached byssate 

Epifaunal - free living 

Swimmers 
Non-swimmers 

Semi-infaunal 

Littoral with very shallow water 

Infaunal 

Shallow infaunal 

Fauna! examples 

Ostrea 

Arca and Barbatia 
Mytilus and Modiolus 

Pec ten 
Glycymeris 

Pinnidae and Mytilidae 

Cardiidae and Nucula 
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7.5.2.3 Grainstones 

The grainstone sequences that generally range from massive coarse, poorly sorted 

units at the base of the succession to well bedded, locally bioturbated and then 

rhizocreted units at the top of the succession. These sequences represent a lower 

shoreface to upper shoreface, and then foreshore and backshore, succession. This 

interpretation is supported by the presence of trough cross-stratified, laminated, festoon-

and planar-dipping units, as well as generally offshore, or bimodal, palaeocurrent 

indicators, which are indicative èf the shoreface and foreshore zones, similar to those 

cropping out elsewhere in Recent and Pleistocene beach sequences (Thompson, 1937; 

Ward & Brady, 1979; Inden & Moore, 1983). The presence or absence of bioturbation 

within these sequences not only testifies to the precise location of a unit within the littoral 

environment but also to the relative rates of sedimentation during the deposition of these 

grainstone sequences, as rapid rates of sedimentation are likely to hinder the development 

of burrows. The grainstones are generally more mature and better sorted towards the top 

of the successions, in line with deposition above the upper shoreface. The vast majority 

of the sediments deposited within the beach sequences have been derived from offshore 

sources, as few lithoclasts are seen, and the sediments are generally dominated by 

carbonate grains, and not derived detritus from onshore locations. Nevertheless 

exceptions are seen, e.g. the area around Polis (location 3-109) and in the Dhekelia area 

(location 2-84). The local presence of coarse, scoured, worn, shelly horizons with derived 

coral heads and local gravel clasts interbedded with the littoral sediments, e.g. Cape 

Greco (location 1-125), may indicate deposition during storms, as strong rip currents 

which would transport this variety of sediment are commonly associated with stormy 

conditions (Davis & Fox, 1972, 1975). These coarser, poorer sorted sediments result 

from the shift of a mass of shallow marine sediment onshore. The opposite effect is seen 

to the south of Lara Point (location 2-30), where progradation of the fluvial sediments out 

over the shallow marine sequences caused the seaward transport of sediment to take , 

place, resulting in deposition over the littoral sequence. The grainstones commonly 

appear to have swamped and choked the framework structures, e.g. the F2 terrace in 

Paphos (location 2-5). This indicates that either the beach sequences were prograding 

offshore, or that a relative drop in sea-level was taking place. The latter appears to be 

more likely as the sedimentary sequence above the framework facies appears to be 

wholly regressive and the majority of the grainstone sediment came from the sea, so it is 

unlikely to form a prograding sequence purely as a consequence of sediment supply. The 

absence of fine grained sediments in this facies, with much of the grainstone being made 

up of medium to coarse sands, is in indicative of high energy shorelines (Folk & Cotera, 

1970). 



7.5.2.4 Sub-aerial deposits. 

The presence of dune, fluvial, caliche and soil sequences, which lie conformably 

above the grainstone sequences, indicates the continuation of the regressive sequence up 

into the sub-aerial environment. The presence, for example, of rhizocretion structures, 

onland dipping forests and terrestrial gastropods (Chapter 8) supports this argument. 

7.5.2.5 Diagenetic data. 

Diagenetic features, such as, the development of micrite envelopes, syntaxial 

overgrowths, calcitized and neomorphic features and porefilling, meniscus and pendant 

cements (Section 7.4.3) indicate that diagenesis of the carbonate sequences has occurred 

in the marine, meteoric phreatic and meteoric vadose zones. The pattern of diagenesis 

suggests that much of the primary diagenetic alteration occurred in the phreatic zone, 

with successive changes taking place in the vadose zone. The incomplete cementation of 

the majority of the Quaternary carbonate sediments indicates that these have undergone 

an early removal from the zones of active alteration and cementation, i.e. the phreatic 

zone in semi-arid environments, in line with that suggested by James & Choquette 

(1984). These authors highlight the residence time as an important factor controlling 

alteration and diagenesis in any one diagenetic realm. The pattern of diagenetic alteration 

in the carbonate sequences, therefore, follows the pattern of sedimentation, as deposition 

and diagenetic alteration associated with successive terraces indicates a transgressive and 

then regressive regime. Continuing regression and associated tectonic uplift resulted in 

the removal of many of the carbonate sequences away from the zones of active diagenetic 

alteration. 

7.5.3 Summary. 

Local changes are located within the terrace sequences, for example: the presence 

of solely algal frameworks, lacking corals, in the Fl terraces, the presence of detritus 

within the F3 carbonate sequences at Larnaca (location 1-130), Lara Point (location 2-30) 

and in the Polis area (location 3-109), the presence of grainstone sequences directly 

above the lag, rather than above framebuilder units (locations 2-3), the presence or lack 

of aeolianite, or fluvial sequences above the grainstone units (locations 2-34 and 2-50) 

and the presence of heavily bound bindstones associated with a micritic matrix and better 

preserved fauna, like those seen at Larnaca (location 1-130). All these factors indicate 

minor changes to the local pattern of sedimentation but this should not mask the overall 

pattern, seen throughout the Quaternary, in the carbonate littoral and sub-littoral 

sediments, which primarily represent a series of transgressive and then regressive, 
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offlapping sequences (Fig.7.20). The carbonate sequences on Cyprus are generally quite 

thin, lenticular and narrow indicative of regressive beach sequences (Scholle et al., 1983). 

The formation of the F3 and F4 coral colonies occurred during eustatic sea-level 

maxima (Chapter 3). A drop in the eustatic sea-level subsequently occurred and has been 

represented by the deposition of lower shoreface to foreshore and sub-aerial sequences, 

i.e. regressive succession. It can be concluded, therefore, that deposition of the F3 and F4 

carbonate sediments has been controlled by eustatic sea-level changes. The preservation 

of regressive carbonate sequences from 360m ASL to <3m ASL suggests that another 

relative "regressive event", of larger magnitude, has been continuing throughout the 

Quaternary, i.e. tectonic uplift and isostatic rebound of the island, and it is this that has 

caused the carbonate sedimentary sequences, the formation of which were controlled by 

the eustatic sea-level changes, to be preserved (Fig.7.20). 
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Fig.7.20. Sketch profiles of the progressive mode of formation of the FO-F4 carb 
sedimentary sequences. the marine clifflines and terraces during the Quaternary peri 
Cyprus. 
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Chapter Eight: Aeolianite formation. 

Quaternary aeolianites from Cyprus have received little attention in the past. 

Bagnall (1960), Pantazis (1967), Moseley (1976) and McCallum (1989) described and 

identified blown sands and dunes in areas along the south coast of Cyprus between 

Lamaca and the Akrotiri Peninsula. Moore (1960) recorded blown sands in the 

Kormakitis-Astromeritis area, near Morphou, suggesting that they were of Recent age. 

The aeolian sediments have all been described as poorly consolidated, mixed sands. 

These mixed sands on Cyprus are one of two types of Quaternary aeolian sediments, the 

other being carbonate aeolianites. Carbonate aeolianites have been studied in detail from 

other parts of the Mediterranean, e.g. Mallorca (Butzer, 1962, 1963, 1975), Israel 

(Yaalon & Laronne, 1971), Sardinia (Fierro & Ozer, 1974). The Quaternary aeolianites 

can yield important information concerning environmental conditions, the interaction 

between tectonic uplift and eustatic sea-level changes and explain the geomorphology 

resulting after the deposition of these units in southern Cyprus (Plates 2.9 and 2.11; 

Chapter 2 and Follows, 1990). 

8.2 GEOGRAPHICAL DISTRIBUTION. 

The Quaternary aeolian sequences (as outlined in Chapter 2) are found throughout 

southern Cyprus. The sequences can be split into two broad categories: those that are 

dominantly made up of bioclastic sediment and those that comprise mixed clastic detrital 

and carbonate sediments. Aeolian sediments are not restricted to the lower terraces; they 

are also preserved away from the present-day coastline and are found associated with the 

evolution of the F2, F3 and F4 phases of Quaternary development. 

The carbonate aeolianites are found in locations away from the influence of major 

drainage and detrital input, minoring the locations relating to the formation of the 

carbonate littoral and sub-littoral sequences (Chapter 7). These sequences crop out along 

the west coast, north of Paphos, e.g. south of Lara Bay (location 2-30), in Kato Paphos 

(location 1-57), the south coast of the Akrotiri Peninsula (locations 3-96a and 3-97) and 

in the far south-east of the island, e.g. Cape Greco (location 1-125) and in the area of 

Paralimni and Protaras (Follows, 1990). 

The mixed aeolian sediments, by contrast, are found in close proximity to the 

major river courses and associated braid-delta and fluvial sediments, e.g. on the Akrotiri 
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Peninsula (location 3-28), south-west of Tersephanou (location 3-18) and above the 

Vasilikos Valley (McCallum, 1989). 

The Quaternary aeolianites crop out either unconformably above Neogene and 

Quaternary sediments, e.g. Akrotiri (location 3-96a), or form part of a continuous 

sedimentary sequence, in both fluvial, e.g. the VIb subfacies of the Vasilikos Formation, 

south of Man (McCallum, 1989), and regressive littoral environments (Chapter 7). Dunes 

frequently form isolated topographic highs and also bank up and over palaeocliffs 

(Fig.8.1; Chapter 2). 

The estimated thickness of the aeolianite sequences vary. McCallum (1989) 

attributed a thickness of 4m for dunes of the Vasilikos Formation, i.e. the possible Fl 

equivalent at Vasiikos. Moore (1960) stated that dunes in the Kormakitis-Astromeritis 

area built up by banking against and, locally, over cliffs that are between 20 and 30m 

high. In the Paphos area (locations 1-57 and 2-40) the dunes form part of the continuous 

regressive sequence. These are generally less than 15m high and form, low isolated 

hillocks (Fig.2.20); a similar pattern is seen in the Cape Greco area of south-east Cyprus 

(location 1-126). The dunes that have formed by banking up against the cliffs along the 

south and south-west coast of the island, e.g. on the Akrotiri Peninsula (locations 3-28 

and 3-96a) and south of Lara Bay (location 2-30), appear to be less than 40m thick. The 

thickness of these aeolianites reflects the height of the cliff, against which they have 

formed. The lateral extent of the aeolianites is also dependent on the underlying 

topography. For example, at Akrotini the F4 dunes crop out within 100m of the present 

shoreline, whereas on the west coast and in south-east Cyprus, they bank over the F3 

terrace and can be traced inland for hundreds of metres. 

The mixed and carbonate aeolianite sequences are both commonly well bedded 

(cm-thick beds) and laminated. The laminations occasionally show some evidence of 

fining-up, e.g. in Paphos (location 1-57). The most common structure associated with the 

aeolianite sediments are planar dune-bedded foresets. Some trough cross-stratification 

and bedding which dips, "falsely", seaward is also present in the aeolianites that crop out 

in Paphos and Akrotiri (locations 1-57 and 3-96a respectively; Plate 8.1). The dune-

bedded foresets generally dip inland, away from the coast in an arc 450  wide; these 

foresets generally dip at between 13 0  and 30°, although beds dipping up to 39 0  are also 

seen (Fig.8.1). The "falsely" bedded aeolianites that have banked up against cliffs have 

steeply dipping foresets, i.e. up to 350, that dip both landward and seaward, e.g. on the 

Akrotiri Peninsula (locations 3-28 and 3-96a; Plate 8.1). Truncation structures are also 
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D - Aeolian sands of F4 age banked up against the cliff along the south coast of the 
Akrotiri Peninsula (location 3-96a); this has resulted in "false" bedding, with 
foresets clipping steeply towards the south (the right of the plate) away from the 
cliff, i.e. offshore. 

Note: scale is 50cm long. 

E - F4 age aeolianites on the south coast of the Akrotiri Peninsula (location 3-96a) 
clipping both into and away from the cliff, i.e. on and offshore. 

F - Steeply clipping foresets of aeolianite, filling a depression in the unconformity 
surface over the mans and calcarenites of the Athalassa and Nicosia Formation, 
along the south coast of the Akrotiri Peninsula (location 3-96a); these foresets 
dip towards the sea, i.e. away from the cliff. 

Note: scale is 50cm long. 

G - F3/4 aeolianites at Paphos (location 1-57) displaying steeply dipping foresets, 
truncation surfaces and evidence of extensive rhizocretion structures. 

Note: scale is 50cm long. 
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present; these generally dip at less than 100  and are commonly covered by a basal lag of 

coarse shell fragments and associated climbing ripples, e.g. south-west of Tersephanou 

(location 3-18) and Paphos (location 2-40; Plate 8.2). Convoluted and distorted dune beds 

are also present within the aeolianite sequences. These are characteristically located 

beneath the truncation surfaces, e.g. Paphos (location 2-40; Plate 8.2). Small channels 

have cut into the dune bedding (location 1-57), causing disruption of the beds. The 

channel structures are c.20cm wide and have an amplitude of c. 10cm. 

There is no invertebrate fauna (micro- or macro-) associated with the aeolianites, 

other than a derived fauna as a result of reworking (Section 8.4). One exception exists: a 

sample of the terrestrial gastropod Helix sp. is found in dunes cropping out at Cape Greco 

(location 1-125). Carbonate-filled, vertical, tapered, pipe structures, less than 5cm 

diameter, are present within the carbonate aeolianites. These structures have been 

calichified and can extend for 2-4m down into the dune sequences, e.g. along the west 

coast between Lara and Paphos (locations 2-34 and 1-57; Plates 8.2 and 8.3). These pipe 

structures terminate at truncation surfaces, or the top of the dunes. Similar horizontal 

pipes cover the truncation surfaces but these, unlike the vertical pipe structure, bifurcate 

and are clearly tapered (Plate 8.3). These pipes represent rhizocretion, i.e. root, 

structures. The vertical pipes are probably large taproots, similar to those recorded in 

Bermuda (Mackenzie, 1964A) and the Yucatan (Harms et al., 1974; Ward, 1975). 

The truncation surfaces on the dunes indicate a time of erosion rather than 

deposition. Rhizocretion structures beneath and parallel to the truncation surfaces suggest 

that the dunes have been vegetated and bound prior to the continuation of active 

deposition and dune coalescence. The presence of a coarse shelly lag associated with the 

truncation surfaces of the aeolianites, e.g. to the south-west of Tersephanou (location 3-

18), suggests that dune formation took place in areas proximal to the sediment source and 

that coarser debris might be rolled across the dune surface, whilst the medium sands, that 

form the dunes, were being eroded away. The crumpling and contortion of the foresets 

has been attributed to the degree of sand cohesion, and therefore, the relative moisture of 

the dunes (Glennie, 1970; McKee & Ward, 1983). The variation in dip of the dune 

foresets is likely to represent either variation in the rate of cementation of the sediment 

(Land, 1964) or the presence of vegetation on the dunes, acting as a baffle to prevent 

migration (Yaalon, 1975). Rapidly cementing dunes are likely to have foresets that dip at 

a steeper angle and this may explain the variation in dip seen between the mixed dunes 

and the carbonate dunes, as the carbonate dunes are better cemented. The carbonate dunes 

also form a hummocky topography (Chapter 2; Plate 2.13) that is not so prevalent within 

the mixed dunes. The angle of repose of the dunes is also grain size dependent, with a 

higher angles of dip being associated with coarser sands (Bagnold, 1954). The 



PLATE &2 

D - F2 age aeolianites in Paphos (location 2-40) displaying a truncation surface 
above steeply, landward, dipping aeolianites; these are overlain by shallow 
dipping, highly rhizocreted, well bedded aeolian sands. 

Note: scale is 50cm long. 

E - Steeply dipping,<300, aeolian sands (e) overlain by a truncation surface (f) 
which in turn is overlain by gently dipping, <100, aeolian sands (g). The 
truncation surface which marks the discontinuity is made up of a stoney lag 
horizon. 

F - Sequence of distorted aeolian foresets (e) beneath a truncation surface and well 
bedded aeolian sands from F2 aeolianite sequence in Paphos (location 2-40). 

Note: lens cap for scale. 
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D - Horizontal rhizocretion structures preserved on a bedding plane of the F3/F4 
aeolianite in Paphos (location 1-57). 

Note: the tapered nature of the structures indicated by the arrows. 

E - A thin section micrograph of mixed aeolian sands from Terse phanou (location 3-
17; sample C48/89). The blue resin indicates the degree of porosity of these 
sands. 

Note: the micrograph represents a field of view 12mm long. 

F - A thin section micrograph of the F3/F4 aeolian sands from Cape Greco (location 
1-125). The absence of blue resin and the abundance of micrite suggests that the 
porosity has been reduced as a result of caliche formation. 

Note: the micrograph represents a field of view 12mm long. 
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moderately sorted nature of the medium dune sands that crop out in southern Cyprus fit 

this criteria by displaying generally steeply dipping foresets. 

8.4 PETROLOGY, 

8.4.1 The mixed elastic aeolianites. 

The mixed elastic aeolianites, like the shallow marine siliciclastic sequences 

(Chapter 6), crop out in areas of extensive fluvial systems. The green and brown coloured 

sands that form these dunes are made up of mixed Troodos derived grains and grains 

derived from the local sedimentary sequences. Abraded shell debris is seen; this includes 

whole foraminiferal tests. McCallum (1989) stated that the sands from the Vasilikos 

Formation (facies VIb) are fine-grained and well sorted. The results obtained by 

McCallum (1989) do not conform to those obtained along the south coast of Cyprus for 

mixed elastic aeolianites during this study. Dry sieving indicates that the mixed elastic 

aeolianites of southern Cyprus are moderately to moderately-well sorted sands, although 

well sorted sands are locally present. A mean and median grain size of medium and fine 

sand respectively, with a symmetrical to very positively skewed distribution, indicates 

that few fractions finer, and none coarser, than the mean are seen (Table 8.1; Fig.8.2a and 

b). Dry sieved samples of sand from deltaic and beach environments are generally finer, 

i.e. fine sand to very fine sand, and commonly better sorted (Table 8. 1), with 

symmetrical, positive and negative skews. 

The grainsize analysis, although limited, indicates that the delta and beach sands, 

which are likely to be one source of sediment for the Quaternary mixed dunes, are 

generally better sorted and finer-grained than the dune sands (Fig.8.2a and b). Sorting 

and grainsize varies across a single dune and between two localities less than 1km apart, 

i.e. Akrotiri (locations 3-96 and 3-96a). These variations arise as a result of local 

hydrodynamic conditions and the local sediment source. The evidence indicates that the 

mixed dunes are generally sub-mature, moderately-well sorted and form from fine to 

medium sands. This evidence also suggests that only limited transport, probably by 

means of saltation, and sorting of the sediment has taken place, with the sediment being 

derived from the local fluvial, or exposed beach and deltaic sequences (Chapters 5 and 6). 

The Troodos-derived dark coloured portion of the sand is generally sub-mature, 

with sub-angular to sub-rounded grains. The sedimentary clasts and shell fragments are 

generally more rounded than the Troodos clasts. The maturity of the Troodos-derived 

grains increase as successively smaller size fractions were examined, but never exceeded 

the mature and rounded stage. These results agree with that found in the Kormakiti- 
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Table 8. 1. Grain size analysis of Quaternary mixed clastic aeolianites. 

Location Sample Mean 
grainsize 

Medium 
grainsize 

Sorting Skewness Environment 

Akrotiri (3-96) c69/89 1.68 1.59 (MS) 0.65 (MWS) 0:19 (PS) Aeolian 

Akrotiri (3-96) c68/89 2.46 2.57 (FS) 0.96 (MS) -0.08(S) Aeolian 

Tersephanou (3-17) c48/89 1.85 1.43 (MS) 0.52 (MWS) 0.77 (VPS) Aeolian 

Petounda Point (3-10) c36/89 1.88 1.92 (MS) 0.86 (MS) -0.06(S) Aeolian 

Mazotos (3-16) c46/89 2.88 2.74 (FS) 0.42 (WS) 0.24 (PS) Aeolian 

Maroni (3-31) c85/89 2.79 2.84 (FS) 0.56 (MWS) -0.03(S) ? Aeolian 

Petounda Point (3-10) c34/89 2.00 2.05 (FS) 0.68 (MWS) -0.10 (NS) Coastal dune 

Xylophagou (2-82) sp590 3.18 3.19 (VFS) 0.65 (MWS) -0.09(S) Delta/beach* 

Ormidhia (2-79) sp572 2.20 2.62 (FS) 0.89 (MS) -0.36 (VNS) Deltaic laminated sand* 

Ormidhia (2-79) sp569 2.98 3.00 (VFS) 0.57 (MWS) -0.01 (5) Deltaic mature sand* 

Mazotos (3-13) c65/89 2.89 2.57 (FS) 0.40 (WS) 0.74 (VPS) Deltaic mature sandstone* 

Petounda Point (3-10) c35/89 2.38 2.37 (FS) 0.44 (WS) 0.02(S) Modern beach sand 

Note: All data are recorded to 2 decimal places. 
Phi units are used throughout (where Phi = -1092d (d = diameter of grain in millimetres; after Krumbein, 1934). 
* - see Chapter 6 for details of sedimentary environment. 
Grainsize - MS = medium sand, FS = fine sand, VFS = very fine sand. 
Sorting - MS = moderately sorted, MWS = moderately well sorted, WS = well sorted. 
Skewness - VPS = very positive skew, PS = positive skew, S = symmetrical, NS = negative skew, VNS = very 
negative skew. 
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Astromeritis area (Moore 1960), where the sands are yellow, medium grained and poorly 

sorted. 

The mixed aeolian sediments have a submature appearance in thin section. The 

clasts are dominated by the presence of igneous clasts, derived from the Troodos, e.g. 

diabase and pillow lava, and locally-derived sediments, e.g. chalk; Table 8.2. The 

majority of allochems present within the mixed aeolianites, e.g. planktonic and benthic 

foraminifera, are reworked from pre-Quaternary chalks and limestones although the 

presence of red algae and abraded and well worn molluscan shells (Plate 8.3) repeats that 

seen in the Quaternary littoral sequences (Chapter 7), and are therefore likely to be 

primary, rather than secondary reworked allochems. The mixed clastic aeolianites have a 

clast to porosity and cement ratio of c. 1:1 (Table 8.2). These mixed aeolianites are poorly 

cemented, with point counting revealing cement to porosity ratios between 1:8 and 1:3 

(Table 8.2). Examination of the samples from locations 3-96 and 3-17 suggests that these 

sediments are bound by the formation of caliche. Ramifying rhizocretion structures 

preserved in these sediments (Section 8.3) have also been calichified (Plates 8.1 and 8.3). 

8.4.2 Carbonate aeoiianites. 

Petrographic studies of the carbonate aeolianites show that these units are 

dominated by the presence of reworked allochem grains of red algae, molluscs, benthic 

and planktonic foraminifera, coral, echinoid and bryzoan fragments. The grains are 

usually less than 0.5mm in diameter, broken and abraded, although locally samples are 

coarser than this, with grains up to 1.5mm in diameter, e.g. sample El from the Cape 

Greco area. Reworked local sedimentary clasts and fossils are present within the 

sediments, as are igneous clasts, although these are generally a minor component (Table 

8.2). The grains commonly have a sub-rounded to sub-angular shape and are moderately 

to quite-well sorted. The sediments frequently have a corroded appearance in thin section. 

Point counting of the thin sections shows the variation in components between mixed and 

carbonate aeolianites (Table 8.2). 

The carbonate aeolianite are generally better cemented than the mixed aeolian 

sediments, although the extent of cementation in the carbonate aeolianites does vary. The 

ratio of clasts to cement and porosity is frequently 1:1 but the ratio of porosity to cement 

can vary from c.3:1 to 1:1 (Table 8.2). The type of cement varies considerably between 

different carbonate aeolianite sequences, for example pendant and meniscus cements of 

fine spar are present in samples of aeolianite from Paphos (sample 17). Micrite envelopes 

are generally absent. Calcitization of some shell structures is seen whereas others remain 

as fresh unaltered aragonite. A secondary moldic porosity has also locally developed 
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Table 8.2, Point count data from the Quaternary peolianite sequences of southern Cyprus. 

Location and 
sample number 

Type of 
aeolianite 

Recent and 
reworked 
allochems 

Igneous 
clasts 

Porosity Cement Total Ratio of 
clasts to 
porosity 

Ratio of 
porosity 
to cement 

Paphos (1-57) 
sp.28 C 255 (49) 25 (5) 125 (24) 123 (23) 528 1:1 1:1 

Paphos (1-51) 
sp.17 C 246 (49) 3 (1) 170 (34) 82 (16) 501 1:1 2:1 

Cape Greco 
sp.B C 252 (50) 6 (1) 160 (32) 82 (16) 500 1:1 2:1 

Cape Greco 
sp. C 235 (47) 11 (2) 178 (36) 76 (15) 500 1:1 2:1 

Cape Greco 
sp. C 200 (40) 73 (14) 113 (23) 114 (23) 500 1:1 1:1 

Cape Greco 
sp. C 251 (50) 6 (1) 102 (20) 142 (28) 500 1:1 1:1 

Emba (2-17) 
sp.350 C 213 (44) 56 (11) 104 (21) 117 (24) 500 1:1 1:1 

Cape Greco (1-125) 
sp.163 C 263 (52) 15 (3) 153 (31) 69 (14) 500 1:1 2:1 

Petounda Point (3-11) 
sp.C42/89 M 162 (32) 136 (27) 179 *(36) 23 (5) 500 1:1 8:1 

Tersephanou (3-17) 

Note: Sp. - sample number 
M - mixed 
C - carbonate 
Numbers in brackets are percentages. 
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(Plate 8.3) The same pattern of cementation is seen in the aeolianites from Cape Greco 

(location 1-126; sample B-El) and Emba (location 2-17; sample 350), where porosity 

levels are high. Sample 28, also from Paphos, has a 1:1 porosity to cement ratio (Table 

8.2), dissolution and calcitization of the molluscan shell structures is high and secondary 

porosity is prevalent (Plate 8.3), as is the development of pore-filling spar cement. Some 

micrite envelopes are present and syntaxial overgrowths are locally seen associated with 

fragments of echinoids. The pattern of cementation is patchy, with well cemented areas 

lying alongside areas of higher porosity. The cements from both the carbonate and mixed 

aeolianite sequences are non-ferroan calcite. 

The variation in cementation and preservation of original mineralogy and 

structure reflects two components of the formation of the dune structures: 

the preservation of micrite envelopes, calcitized shells and fringing cements 

associated with locally derived, reworked allochems characterizes cementation in the 

marine phreatic zone, 
the fringing and pore-filling spar, as well as the development of secondary, moldic, 

porosity delineates diagenesis in the meteoric realm. The variability of meteoric 

diagenesis, both locally and at different points on the island, represents the movement 

of groundwater through the aeolianites. The development of pore and fringing spar, 

along with the establishment of a secondary moldic porosity, indicates active 

diagenesis within the phreatic and vadose meteoric realm. 

Poorly cemented sediments, containing allochems, that retain their original shell 

structure indicate a position in the vadose zone away from the areas of active diagenesis, 

similar to that recorded in Section 7.4.3. The scant cement reflects either rapid movement 

of the unit away from the active diagenetic realm or the complete absence of the unit 

from areas of active diagenesis, similar to that recorded by James & Choquette (1984). 

8.5 PALAEOCURRENT DATA. 

The palaeocurrent data (Fig-.8. 1) represents measurements collected from both the 

mixed and carbonate Quaternary aeolian sequences. The azimuth modal data for locations 

(Fig.8.1) are shown in Table 8.3. 

Additional data were collected by Follows (1990) for Quaternary carbonate 

aeolianite sequences in south-east Cyprus (Fig.8.3) and from the dunes associated with 

the Vasilikos Formation, a mixed aeolianite sequence, where a predominantly south-

westerly wind has been suggested (McCallum, 1989). The present day surface winds in 

the area of Cyprus vary throughout the year. A high percentage of northerly and 
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northeasterly winds, with an average wind speed of 12-17 knots, blow during the winter. 

Southwesterly winds predominate throughout the rest of the year, with the average wind 

speeds varying between 5-13 knots (U.S. Navy Report, 1985, Fig.8.4). 

Table 8.3. Foreset data collected from the Quaternary aeolianite sequence from southern 

Cyprus. 

Location Number of 
readings 

Mean foreset 
dip 

Vector mean 
(deg) 

Magnitude 
of vector 

1-57 81 16 076 17% 

2-10 34 25 161* 92% 

2-12 35 21 169* 43% 

2-27 70 17 270* 31% 

2-32 18 30 033 93% 

2-35 10 31 067 92% 

2-40 47 13 023 33% 

3-18 37 21 033 34% 

3-29 30 23 005 38% 

3-96 10 19 300 98% 

3-96a 19 28 299 41% 

3-101 13 27 004 95% 

EF1 40 -- 086 41% 

EF2 15 -- 005 61% 

Note: EFI and EF2 - after data taken from Follows (1990) from south-east Cyprus. EFI is a location 
close to Protaras and EF2 is a site west of Cape Greco (these data are shown in Fig.8.3). 
The magnitude of the vector indicates a level of confidence in the result; for example a low 
magnitude vector may be indicative of bimodal dipping foresets (location 3-96a; Fig. 8.1). 
* - data indicate seaward dip of foresets. 

The palaeowind system during the Quaternary is thought to have been zoned into 

belts similar to that recorded today (Opdyke, 1961); evidence from Bermuda (Mackenzie, 

196413) supports this argument. Data collected from the Gargaresh calcarenite in Libya 

(Hoque, 1975) and from the Pliocene to Holocene age aeolianites on the Mediterranean 

coast of Israel (Yaalon & Laronne, 1971) are in general agreement with Opdyke (1961). 

Hoque (1975) states that anomalies seen in the azimuth modes probably result from 

changes in the palaeowind that could possibly complement Quaternary climatic changes. 

The vector data collected from Cyprus indicate that the wind direction during the 

latter part of the Quaternary (represented by the data collected from locations 1-57, 2-35, 



Fig.8.3. Rose diagrams of palaeocurrent data from the Quaternarv carbonate aeolianite 
sequences in south-east Cyprus (after Follows. 1990). 

Note: area of palaeorelief. 
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2-40,'3-29, 3-91, 3-96, 3-96a, 3-101, EF1 and EF2) was similar to that seen today, with 

onshore winds coming from the south and south-west. The data collected from the 

Tersephanou area (location 3-18) shows the same characteristics, these dunes forming 

from mixed sediment along the south coast of the island (Fig.8.1). Follows (1990) has 

suggested that the outcrop pattern and the palaeocurrent data from the aeolianites in the 

south-east of the island indicate funnelling of the wind through gaps in the relief 

(Fig.8.3). This is probably correct but the azimuth modes also indicate a prevailing south 

to south-westerly wind, reflecting that seen elsewhere, during the Quaternary. Relief has 

also affected the data collected at Akrotiri (locations 3-97, 3-96, 3-96a), where the vector 

mean value has been influenced by dunes banking up against cliffs and the development 

seaward dipping foresets (Plate 8.1). The vector means at some localities in the Paphos 

area (locations 2-10, 2-12 and 2-27) indicate a seaward palaeocurrent direction. The 

steeply dipping, largely unfossiliferous grainstones that crop out at these locations, which 

were discussed in Chapter 7, probably represent part of the littoral sequence, rather than 

the aeolianite sequence, although their character is similar to other carbonate aeolianites 

cropping out at in the Paphos area (locations 2-40 and 1-57). Aeolianite sequences do 

crop out above littoral sequences in the F2 terraces in Paphos (location 2-5 and 2-40); 

field evidence from location 2-10, i.e. steep dipping foresets (Plate 7.4), suggests that a 

similar relationship may exist at this location, although the high -magnitude vector of 

foresets dipping to the south, may indicate otherwise. The consistency of the 

palacocurrent data from Paphos and other areas supports the argument for these sands 

being deposited in a littoral, rather than aeolian regime. This highlights one of the 

problems associated with the identification of aeolianites, as many aeolianite sequences 

may have been misidentified because of the similarity between littoral and dune sands 

(Scholle et al. 1983). Knowledge of the palaeocoastline, from sedimentological and 

geomorphological studies (Chapter 7 and 2 respectively) and previous studies of the 

Quaternary palaeowind direction in the eastern Mediterranean basin (Yaalon & Laronne, 

1971; Hoque, 1975), aid the interpretation of Quaternary aeolianite sequences in Cyprus. 

8.6 RECENT DUNE FORMATION. 

Aeolian dune formation has taken place during the Holocene and Recent. Dunes 

have developed in the area of the Larnaca Salt Lake and engulfed the Hellenistic/Roman 

aqueduct that fed Kition, ancient Larnaca, during the period between 400-700 A.D. 

(Bagnall, 1960; Gifford, 1978). Recent dunes have also developed to the east of Morphou 

Bay (Wilson, 1957; Moore, 1960) where they have blown up against, and locally over, 

coastal cliffs, which vary from 20 to 30m high. A third area of Recent dunes formation 

on the west coast of the island, the area of Lara Point, north of Paphos, was observed 
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during this study. These dunes are less than 20m high and appear to be banked up against 

Miocene age chalks. 

8.7 DISCUSSION AND CONCLUSIONS, 

Very few pre-Quaternary aeolianites have been interpreted as such (McKee & 

Ward, 1983); this situation arises from the difficulty of distinguishing between aeolian 

and other nearshore sediments, as they have a very similar composition and 

characteristics (Glennie, 1970; Section 8.4). The Quaternary Gargaresh Limestone in 

Libya has been attributed to both a marine and continental environment (Hoque, 1975), 

as the littoral sands are so similar to aeolian deposits. The same situation arose during this 

study with sands at locations 2-10, 2-12 and 2-27 having the same characteristics as the 

aeolianites. The following criteria have been used during this study to distinguish aeolian 

sediments from littoral sequences: 

a lack of fauna, except derived marine material, 

rhizocretion structures, 

fine laminated, cross-stratified sands that have steeply dipping foresets that dip 

predominantly landward, in agreement with palaeo-wind data, 

geomorphological evidence, e.g. banking up against previously formed cliffs, and 

forming small topographical features. 

The characteristics of the mixed clastic aeolianites made their environmental 

interpretation easier, as they crop out banked up against palaeo-clifflines, e.g. at Akrotiri 

(location 3-28), or above deltaic and fluvial sequences, e.g. near Tersephanou (location 3-

18), in an environment where the sedimentary sequence shows a relative regression. 

It was not possible to use the maturity, the sorting, or the fauna (other than the 

presence of non-marine gastropods) as an indicator of whether a particular outcrop 

formed in a marine or aeolian environment, as the sediment is characteristically 

moderately sorted and sub-mature, and very little transport from the source of the 

sediment has taken place. It is likely that the elapsed time between the deposition of the 

marine sand and the formation of the dunes was short, allowing minimal time for sorting, 

or increased maturity. The sand reservoir for dune formation is also the primary sand of 

the littoral environment, so the composition of one will mirror the other. These factors 

are common to many Quaternary aeolianite sequences (e.g. Butzer, 1975; Hoque, 1975). 
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8.8 MODEL OF FORMATION OF THE CARBONATE AEOLIANITES. 

The formation of aeolianites in Cyprus is dependent on three factors: wind, sand 

supply and vegetation. Climate is not an important factor influencing dune forhiation, as 

aeolianite formation takes place under very varying climatic regimes: and (Inman et al., 

1966), temperate (Messenger, 1958) and humid with high rainfall (Cooper, 1958). The 

dense vegetation in the humid tropics generally prevents dune formation and chemical 

action rapidly weathers the carbonate aeolianites (Jennings, 1964). The presence of 

vegetation is an important factor in the preservation of aeolianites, as this provides a 

baffle to the wind, and binds the sediment together (Yaalon, 1975). 

The timing of formation of Quaternary coastal aeolian dunes has been the subject 

of much debate. Two models of dune formation, relative to eustatic sea-level changes, 

have been suggested (Fig.8.5). Bretz (1960), Land et al. (1967) and Vacher (1973) 

support the concept that dune formation takes place during a eustatic sea-level high 

(Fig.8.5a and b). Sayles (1931), Fairbridge & Teichert (1953) and Maud (1968) argue 

that dune formation occurs during a low sea-level stand (Fig.8.5c and d), when a more 

arid, glacial, climate existed (Rognon & Williams, 1977; Sarnthein, 1978). A third model 

(Sarbaris et al., 1962; Hey, 1962) suggests that dunes develop between model one and 

two, following a sea-level maxima as sea-level dropped (Fig.8.5a and c). The third model 

is favoured for the Quaternary carbonate aeolianite formation in Cyprus; it has also been 

the preferred interpretation of Quaternary dune formation elsewhere in the Mediterranean 

(Hey, 1962; Sabaris et at., 1962; Butzer, 1975). The following evidence from the coastal 

Quaternary aeolianite sequences on Cyprus supports the third model: 

rapid cementation of the littoral sequences has taken place in the phreatic and 

meteoric realms (Section 7.4.3), yet carbonate aeolianites are present, this suggests 

that dune formation happened soon after the deposition of the littoral sequences, 

the littoral sequences were deposited in a regressive regime (Chapter 7); aeolianite 

deposition marks the continuation of these regression events, 

the presence of meteoric cements in the carbonate aeolianites shows that 

cementation occurred in a sub-aerial environment and not in the marine realm, as a 

result of a rising sea-level, as suggested by the formation of dunes during a sea-level 

minima (Fig.8.5c and d), 

the U-series dates (Chapter 3) from the littoral sequences indicate that they have 

formed during a eustatic sea-level maxima. The dunes lie conformably above these 

sequences, suggestive of a continuous succession to a sea-level low, i.e. regression, 

the coastal geomorphology of the west coast (Chapter 2) indicates that the 

cemented dunes that formed after the isotope 7 sea-level high, i.e. associated with the 
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Fig.8.5. Models of carbonate dune formation (after Gardiner. 1984). 
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F3 terrace development, were subsequently cut, to form a cliffline, by the 5e sea-level 

high, i.e. the development of the F4 terrace. This evidence suggests that aeolian 

formation and cementation took place between the two eustatic sea-level highs, 

the amount of sediment needed for dune formation along the south coast of the 

Akrotiri Peninsula and along the west coast, north of Paphos, is too great to have been 

present during a high sea-level. A lower sea-level during glacial periods, down to 

possibly 120m beneath the present day sea-level (Shackleton et al., 1984), would 

leave an ample reservoir of sediment available for dune formation, 

the presence of derived bioclastic sediment and abraded shells and tests in the 

coastal carbonate aeolianites, identical to those seen in the underlying littoral 

sequences, indicates that the carbonate dunes were derived from previously deposited 

littoral sediments. 
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Chapter Nine: Quaternary caliche and palaeosols: their 
formation and development. 

9.1 INTRODUCTION. 

Caliche and palaeosol development in southern Cyprus was extensive during the 

Quaternary. These lithologies were overlooked in the past and, though not a major area of 

research during this study, yield important data concerning both the Quaternary climate 

and sedimentary environments. This chapter has three aims: 

to outline the extent and nature of the caliche deposits found in southern Cyprus, 

adding to the work of Pantazis (1973), and describe field relationships, mineralogy 

and chemistry, 

to produce a model of formation of the caliche formations in Cyprus, 

to compare the caliche types, and mode of formation on Cyprus, with ancient and 

modern examples described in the literature. 

A caliche, or calcrete, is a fine grained secondary carbonate (Tucker & Wright, 

1990). The caliche deposits of Cyprus have previously been split into two divisions 

according to the characteristics of these secondary limestones: havara, which is a soft 

calcareous deposit and kafkalla, which is a hard calcareous crust. 

The caliche horizons of Cyprus were described (Wilson, 1957; Gilliland, 1960; 

Dreghorn, 1978) as forming near the surface. Gass (1960) stated that caliches probably 

formed beneath soil cover and that their formation was not necessarily dependent on the 

presence of a carbonate bedrock. Pantazis (1973) studied the formation of caliche in more 

detail, concluding that the havara was a freshwater limestone and kafkalla formed due to 

hardening of the havara. Pantazis (1973) also interpreted the thickening of the kafkalla as 

being related to both microclimatic conditions and the ability of the havara to retain water 

within a perched water table. Thus the groundwater was oversaturated with respect to 
CaCO3  and precipitated a hard crust on exposure, the kafkalla. Pantazis (1973) suggested 

that the formation of havara resulted from freshwater deposition of locally-derived 

carbonate horizons. 

Studies of caliche from South Africa (Netterberg, 1967), south-western USA 

(Machette, 1985), the Kalahari desert (Watts, 1980) and a review of caliche formation 

(Goudie, 1973; Tucker & Wright, 1990) all suggest that an ideal caliche stratigraphy 

exists (Figs.9.1 and 9.2). 
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Fig.9. 1 Caliche stratigraphy after Netterberg (1967). 

Calcified soils - Havara 

Youth 	Nodular caliche - powder caliche, hard concretions 

Honeycomb caliche - coalesced nodular caliche 

Maturity 	 Hardpan caliche - Kafkalla 

-----REWORKING ----- 

Senility 	 Boulder caliche 

Models of caliche formation stress five criteria that must be satisfied for caliche 

formation to occur (Goudie, 1973; Watts, 1980; Wright, 1990): 

a semi-arid climate with rainfall in the order of 40-60cm, although caliche does 

form in areas where the annual rainfall is greater than 60cm, 
a source of CaCO 3 , 

a relatively stable environment in areas away from active sedimentation, 

the presence of groundwater to allow capillary action to take place, 

a period of stability when the accretion rate of the caliche exceeds the rate of 

sedimentation. If sedimentation rates are greater than caliche accretion rates, then 

either caliche formation is poorly developed and immature, or does not take place 

(Fig.9.3). 

9.2 DISTRIBUTION OF CALICHE IN CYPRUS. 

Pantazis (1961) showed the distribution of caliche horizons (Fig.9.4), but this map 

failed to include caliches capping exposed limestones and many other lithologies, e.g. the 

extensive calichification of the Mesaoria Plain. However, caliches do not commonly cap 

units of the Troodos ophiolite. Caliche horizons are also preserved within the sedimentary 

sequence as in the Messinian sequences (Orszag-Sperber et at., 1989). Younger caliches 

are found as thin layers between the Pliocene Kakkaristra Formation and the 

Fanglomerate Group units on the north Troodos margin (location 1-9), whilst multiple 

caliche horizons and associated soil horizons developed near Kolossi, west of Limassol 

and south of Nicosia (locations 3-28 and 3-4; Fig.9.5a and c). The best preserved 



Fig.9.2. The stages of caliche development (after Machene, 1985). 

Note: 1- youthful and 6 - senile. 
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Fig.9.5. Sketch sections of caliche and palaeosql horizons from southern Cyprus. 

Note: sample sites are referenced in the text. 
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examples of caliche are precipitated towards the top of the Pleistocene Fanglomerate 

Group sediments, e.g. Pissouri and Kambia (locations 3-30 and 3-6; Fig.9.5f; Plate 9.1) 

where the sequences are up to 3m thick and have a stratigraphy similar to the idealised 

sequence recorded by Machette (1985) in south-west USA (Fig.9.2). 

9.3 CALICHE DEVELOPMENT ON CYPRUS 

There were two distinct environments of caliche formation on Cyprus: that 

associated with Quaternary carbonate sequences and pre-Quaternary lithologies and that 

associated with Quaternary alluvial sequences. The caliches in both cases are buff-cream 

to orange in colour. 

The caliche horizons associated with the carbonate sequences and pre-Quaternary 

lithologies tend to form single hardcrusts of caliche, e.g. Petounda Point (location 3-11) 

and west of Vasilikos (location 1-143; Plate 9.2). Exceptions to this simple crust are 

noted, e.g. at Akrotiri (location 3-96), where a hard crust of caliche is found lying 

between the Pliocene Nicosia Formation and the Quaternary littoral sequence (Fig.9.5e 

and Plate 9.2). The crust at Akrotiri has formed a boulder caliche - the senile stage of 

Netterberg (1967) - with caliche debris being incorporated within the Quaternary 

sequence. It is also common to see thin hard crusts of caliche lying between the Pliocene 

sediments and overlying Quaternary sequence throughout southern Cyprus (location 1-9; 

Fig.9.5d). Thin caliche crusts are less common between units of the Troodos ophiolite 

and the overlying Quaternary sequence, e.g. Malounda on the north Troodos margin 

(location 1-76). 

The second environment of caliche formation in Cyprus, is associated with 

palaeosols and fluvial sedimentary sequences. These caliches commonly form a 

stratigi'aphy (Fig.9.1 and 9.2) with soft havara passing up into hard, laminated and 

massive kafkalla. Examples are found at Pissouri (location 3-30; Fig.9.5f; Plate 9.1) and 

Kambia (location 3-6; Plate 9.1). Senile caliche is locally developed, e.g. on the north 

Troodos margin (locations 1-27 and 1-8; Fig.9.5b). Elsewhere, similar caliche deposits, 

e.g. the Kalahari (Watts, 1980) and the south-west USA (Machette, 1985), have been 

called pedogenic caliches, a term that will be used here. 

Pedogenic caliche is exposed in greatly varying thickness, centimetres to metres, 

with commonly two, or more, phases of caliche within a single fluvial sequence 

(locations 3-4 and 3-28; Fig.9.5a and c). Caliche crops out beneath red soils (location 1-

27; Fig.9.5b) and also provides, locally, the only cement bonding the clasts of the alluvial 

Fanglomerate Group. The most extensive example of induration occurs west of Larnaca 



PLATE 9.L 

D - A complete, juvenile to senile, caliche sequence preserved above the 
Fanglomerate Group sediments at Kambia on the north Troodos margin 
(location 3-6). Havara, calcified soil (d), merges up into powder and nodular 
caliche (e), which in turn passes up into coalesced nodules and honeycomb 
caliche (fl, which is capped by platy, brecciated caliche (g). 

Note: scale is 50cm long. 

E - Caliche sequence preserved above the Fl Fanglomerate unit at Pissouri (location 
3-30) revealing nodular, honeycomb and hardpan caliche. 

Note: see Plate 9.1d for details, 
the sequence is c.2m high. 

F - An example of a thick hardpan caliche, exposed between two soil units beneath 
the Fl erosion surface at Trimithousa (location 3-35) in south-west Cyprus. 

Note: the scale is 50cm long, 
the top of the scale marks the base of the caliche unit and the top of the lower 
soil horizon. 



Plate 9.1 

D 
4 	

$ 	 • 

:- 

1* 

E 

vft i1o,  
p. 

-'I 

a_ 

- 	 - 

F 

; 



D - A series ul U -11111 illtiulU mi mc tc FUSIS and nodules marking the uneonloim: 
between the Nicosia Formation and the Quaternary grainstone sequence on the 
Akrotiri Peninsula (location - 

Note: the sequence is c.70cm high. 
arrows mark the caliche horizons and nodules. 

E - Caliche crust capping the F4 terrace at Paralimni (location 1-120). 

F - Red palaeosol forming within the Fanglomerate Group sequence (a) on the 
Akrotiri Peninsula (location 3-28), the palaeosol is capped by a thin caliche 
horizon (b). 

Note: the cliff is c. 12m high, 
see Fig.9.5a for details. 

G - Multiple palaeosol horizons present within the units of the Fanglomerate Group 
at Astromeritis (a; location 1-27). 

Note: the scale is 50cm long. 

H - Red terra-rossa type soils capping the F3/F4 carbonate grainstone sequence at 
Protaras (location 2-100). 
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(location 3-7, Fig.9.5i), where conglomerates of the Fanglomerate Group were deposited 

above chalk and subsequent calichification has completely cemented the clasts, locally. A 

"dropstone" structure developed with conglomerate clasts supported and cemented by 

caliche. 

9.4 PETROLOGY AND GEOCHEMISTRY OF THE CALICHE HORIZONS. 

Samples of caliche were studied on a spectrum of scales, from hand specimen and 

thin section down to analysis using both X-ray fluorescence and X-ray diffraction. 

The samples used in this study are listed below: 

Sample Location Bedrock characteristics 

1-1 --- Miocene lithology 

C20/89 1-9 Apalos Formation 

C22/89 1-9 Fanglomerate Group 

C28/89 3-6 Fanglomerate Group 

C29/89 3-6 Fanglomerate Group 

C30/89 3-6 Fanglomerate Group 

C33/89 3-3 Fanglomerate Group 

C33A/89 3-9 Lefkara Formation 

C58/89 3-28 Fanglomerate Group 

C59/89 3-28 Fanglomerate Group 

C61/89 3-28 Athalassa Formation 

C81/89 3-30 Fanglomerate Group 

9.4.1 Caliche petrology, 

Hand specimens of kafkalla (Pantazis, 1973) illustrated the multitude of clasts 

incorporated into the lower, less mature, portion of caliche horizons. Kafkalla is 

documented forming both distinct laminated and massive units, commonly found where a 

thin conglomerate overlies a carbonate bedrock (location 3-7, see below). In addition, 

kafkalla forms around various nuclei, commonly in areas away from indurated caliche 

cements. Caliche rinds found on the lower faces of in situ clasts are locally laminated and 

usually less than 3mm thick, e.g. on the north Troodos Margin (locations 1-82 and 1-89). 
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Caliche taken from a crust coating Miocene limestone (sample 1-1) is 

homogeneous micrite, with little porosity. Derived planktonic foraminifera are present 



within the sample, though these and small derived clasts (less than 1mm in diameter) 

make up less than 10% of the section. 

Rough laminae and autofracturing, i.e. contemporaneous fracturing during the 

formation of the caliche, create a fabric in the caliches associated with the Fanglomerate 

Group sediments on the north Troodos margin. The autofracturing and lamination of this 

unit has resulted in microspar precipitation in voids. Gradational fabrics are created by 

the gradual reduction in numbers of clasts within the caliche up section (Plate 9.3). Thin 

sections from the north Troodos margin show clast gradation with clasts less than 1cm in 

diameter in the lower portion of the unit, fining up, with grains less than 0.1mm in 

diameter towards the top of the unit. 

Caliche cropping out above Quaternary littoral sequences comprises thin 

structureless micrite, capped by rough laminar crusts (Plate 9.3). The caliche sequence is 

generally less than 5cm thick. Irregular pisolites, i.e. small, subspherical accretionary 
bodies of CaCO3, are also present within these caliche exposures; these commonly have a 

complex nuclei and irregular laminations (Plate 9.3). A gradation of clast types is also 

present towards the top of the unit, with a smaller proportion of foraminifera tests, algal 

matter and molluscan shells corresponding to increased numbers of detrital clasts. Some 

foraminifera tests are micritised (Plate 9.3). 

The fabrics within the caliche horizons is apparently dictated by the depositional 

environment of the sediments on which they have formed (Section 9.3). 

9.4.2 X-ray diffraction data. 

X-ray diffraction studies of selected caliche horizons from Cyprus demonstrate a 

simple mineralogy with calcite, quartz, feldspar (albite to anorthite) and 

montmorillonite/illite (Appendix E) present (sample 1-1, mainly of calcite; Fig.9.6). 

There is no evidence to support the presence of aragonite in any of the samples, in 

keeping with that recorded from caliches studied elsewhere (Watts, 1980). Pantazis 

(1973) showed that the abundance and presence of other phases, e.g. calcite and feldspar, 

reflected the local provenance and hence the proximity of the outcrops to lithologies of 

the Troodos Massif, the Kyrenia Range and the Mamonia Complex (Table 9.1 a and b). 

The solely calcite mineralogy of the samples taken from the highest horizons of 

pedogenic caliche (C81/89 and C58/89) reflect the mature nature of these caliche samples 

(Fig.9.7a). The samples C20/89 and C22/89 exhibit a very similar mineralogy to that seen 
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Fig.9.6. X-ray diffraction peak height plot of a typical caliche sample capping limestone 
of Miocene age on the north Troodos margin. 

Note: Reference plots of mineral phases 20 angles are presented in Appendix E. 
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PLATE 9.3. 

E - A portion of the pedogenic caliche horizon preserved at Perakhorio (location 3-
4; sample C18/89) revealing the rapid reduction in numbers of clasts, up section, 
between the Fanglomerate Group sediments and the indurated caliche. 

Note: the reticulated structure of the mature caliche towards the top of the plate, 
the micrograph represents a field of view 10mm long. 

F - Showing the development of pisolitic and laminated caliche horizons within a 
mature caliche unit capping the F3/F4 carbonate sequence at Cape Greco 
(location 1-124; sample 151). 

Note: the micrograph represents a field of view 2mm long. 

G - Pisoliths developed within the caliche capping the F4 marine terrace at 
Paralimni (location 1-120; sample 134). 

Note: the micrograph represents a field of view 6mm long. 
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in C58/89 and C81/89 with calcite, feldspar, quartz, montmorillonite and illite present in 

both (Fig.9.7b and c). Semi-quantative comparisons of peak heights between different 

sample patterns indicates minor variation in the proportions of clay and quartz present. 

The high proportion of quartz in C22/89 is also detected in the relatively high weight 
percentage Si02  in the X-ray fluorescence sample (Fig.9.8; Section 9.4.3). Caliche was 

also sampled from the base to the top of the exposure (C28/89-C29/89-C30/89) but no 

change in mineralogy was detected (Fig.9.9). 

Caliche samples C33/89 and C33A/89 overlying different bedrock show some 

variation in the mineralogy present (Fig.9.10a and b). Although both samples contain 

calcite, feldspar, quartz and montmorillonite/illite, semi-quantative analysis showed less 

clay to be present in sample C33A/89 (from above the chalks) than C33/89 (from above 

the Fanglomerate Group); dolomite is also present (Fig.9. lOa and b). 

In summary, the mineralogy of the caliche samples is generally uniform, 

dominated by calcite. Subtle variation may relate to either local conditions, such as the 

influence of the bedrock and local provenance, e.g. the presence of dolomite in sample 

C33/89 and the mono mineralogical nature of caliche sampled above a Miocene 

limestone (sample 1-1), or the maturity of the caliche under examination. 

9.4.3 X-ray fluorescence data. 

Pantazis (1973) documented the following analysis from kafkalla samples from 

southern Cyprus: 
 CaCO3 =75-91%, 

 MgCO3  = 0.88-7.14%, 

 A1203  and Fe203  = 3.25-3.06%, 

 CaO = 42.5-51.4%, 

By comparison X-ray fluorescence analysis of caliche from this study (Fig.9.8) 

demonstrate marked variation in the geochemistry, e.g. 50% (sample 1-1; Fig.9.8e) to 
35% CaO (C29/89; Fig.9.5b and e). The weight percentage of Si0 2  varies in an inverse 

relationship with the CaO (Fig.9.8). The loss on ignition of CO 2, H 2  0 and other volatiles 

is high, suggesting that much of the CaO is derived from calcite. The following trace-

elements: Ce, Cr, Ni and Zn do not show any noticeable change between samples 

(Fig.9. 11). Sample C33/89 is taken from the caliche that caps the Fanglomerate Group 

sediments above Kandara Hill, on the north Troodos margin, whereas C33A/89 is taken 

from a caliche capping the chalks of the Lefkara Formation at Mazotos (location 3-9). 

The X-ray fluorescence data clearly reflects precipitation on different substrata with the 



Fig.9.8. Spider diagram of caliche samples subjected to major X-ray fluorescence 
elemental determination. 
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Note: sample C28/89 is taken from the base, C29/89 the middle and C30/89 top, of the 
section (location 3-6; see Plate 9.1d for details). Reference plots of mineral phases 20 
angles are presented in Appendix E. 
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Fig.9.11. X-ray fluorescence trace and minor element variation from caliche samples in 
southern Cyprus. 

Note: locations are recorded in the text. 
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caliche overlying the chalk having higher values of CaO but lower proportions of A1 203 , 

Fe203, Si02  and MgO as well as lower proportions of Cu and Pb (Fig.9.1 1). The pattern 

seen at location 3-9 matches that found for sample 1-1, a caliche overlying Miocene 

limestones. 

Similar variance is registered even in the analysis of samples from the same 

locality, e.g. the sample series C58/89, C59/89 and C61/89 from Kolossi, west of 

Limassol (location 3-28; Fig.9.8). Although C58/89 and C59/89 have similar 
characteristics, C61189 shows a noticeably higher absolute value of Si0 2  and Cr, and a 

lower value of CaO (Figs.9.8 and 9.11). 

A caliche horizon cropping out at Pera (location 3-6; samples C28/89, C29/89 and 

C30/89) exhibited a compositional variation up sequence, as the caliche progressively 
matures, changing from havara to kafkalla. The changes involve lower Si0 2, Cu and Pb 

values and an increase in CaO up the sequence (Fig.9.8 and 9.11). The caliche at this 

location overlies conglomerates of the Fanglomerate Group and hence the lowest sample 

reflects the bedrock (sample C33/89), however, the stratigraphically higher samples, and 

that seen at Pissouri (location 3-30; sample C81/89; Figs.9.8 and 9.11) also found 

overlying Fanglomerate Group sediments, reflect the composition seen in the samples 

taken from units overlying limestone and chalk lithologies (samples C33A/89 and 1-1). 

These results suggest that the chemical composition of the caliches, dominated by 

CaO, varies little in multiple caliche horizons, like those seen at locations 3-28 (samples 

C58/89 and C59/89) and 3-9 (samples C20/89 and C22/89). Although substrate has an 

effect on the composition of the caliche, as shown by samples 1-1, C33/89 and C33A/89, 

the most noticeable variations occur within mature caliches (location 3-6), where 

increasing maturity towards the top of the unit results in greater compositional changes 

from caliches found above the Fanglomerate Group sediments than those precipitated 

above limestones and chalks. The variation in composition between C61/89, and C58/89 

and C59/89, could reflect the solution source, from which the caliche is precipitated, with 

both C58/89 and C59/89 derived from palaeosols, groundwater and the Fanglomerate 

Group conglomerate. Sample C61/89 has formed on a discontinuity surface and is 

overlain by aeolianites (Chapter 8), suggesting that caliche composition will have been 

effected by a derived wind blown component, similar to that suggested for the caliches of 

Texas and north Mexico (Reeves, 1970). 
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The X-ray fluorescence results reveal that the subtle changes in caliche chemistry 

are predominantly linked to substrate type and the caliche maturity. 



9.5 SPEED AND DEGREE OF FORMATION OF RECENT CALICHE 

If caliche forms at the surface, then modern day caliche deposits in Cyprus must 

be limited. Archaeological excavations, however, in the ancient site of Tenta, near 

Kalavasos (built on Miocene chalks, limestones and mans) cut through a hard caliche 

crust that exists less than 2m beneath the present day land surface (I. Todd, pers. comm., 

1989). This implies either that caliche on Cyprus forms at sub-surface levels, as 

pedogenic deposits, in line with the views of Watts (1980) or soil development has taken 

place subsequent to caliche formation and that caliche formation in the Kalavasos area of 

Cyprus has been very rapid with hard crust forming in a maximum of lOka.. As noted 

earlier the pattern of formation of caliche associated with carbonate bedrock contrasts 

that seen on the north Troodos margin and other areas away from a carbonate bedrock, 

where the development of Recent caliche associated with the Fanglomerate Group 

sediments is limited. Limited caliche development is documented by other workers 

studying Recent alluvial sediments in Mediterranean valleys (Daloni, 1951; Vita-Finzi, 

1969). The differential formation of caliche in the Recent geological past reflects the 

importance of an abundant carbonate source. 

9.6 MODELS OF FORMATION OF THE CALICHE. 

It is proposed that two types of caliche formation took on Cyprus during the late 

Pliocene and Quaternary. 

.1 Pedogenic caliche. 

In the alluvial environment caliche formation is associated with soil development, 

similar to that seen in the Kalahari (Watts, 1980). The close relationship between 

palaeosols and caliche formation supports this argument (Fig.9.5). The formation of 

pedogenic caliche can be modelled either with capillary rise (Price, 1933), or 

groundwater flow (Wanless, 1922). The capillary rise model depends on the minerals 

being leached from soils and descending to low levels during cool, wet periods and 

ascending in hot, dry periods resulting in the precipitation of caliche. The groundwater 

model relies on the flow of groundwater close to the surface, transporting high 

concentrations of dissolved salts, e.g. Ca, with high rates of evaporation causing 

precipitation of caliche. The precipitation of the caliche is aided by artesian, hydrostatic 

pressure and a falling water table (Goudie, 1973). The precise mode of formation 

depends on local conditions as both the capillary rise of leachates and the availability of 

groundwater are important factors governing the formation of pedogenic caliche. Soil 
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horizons can be present above and below pedogenic caliche. The formation of mature 

caliche horizons occurs when caliche accretion rates exceed sedimentation rates 

(Netterberg, 1967; Wright, 1990; Fig.9.3). Mature pedogenic caliche horizons are not 

always present (location 3-4; Fig.9.5c) or totally preserved, due to channel avulsion and 

subsequent erosion, as occurs on the Akrotiri Peninsula (location 3-28; Fig.9.5a), or due 

to a lack of time for formation of mature horizons. This suggests that the sedimentary 

environment played a major role in the formation and preservation of these caliche 

formations and that residence time in the zone of active caliche formation also governs 

the development of pedogenic caliche. Additionally, the availability of carbonate, local 

variation in rainfall (Gile, 1977; McFadden, 1988) and the influence of rhizocretion 

(Wright et al., 1988) have also caused intra-basinal variation in the formation of 

pedogenic caliche. Caliche maturity therefore, does not simply relate to time. 

Havara is an integral part of the model of caliche development (Figs.9. 1 and 9.2) 

forming the youthful portion of the caliche formation hierarchy (Netterberg, 1967). The 

proposition that havara is intrinsically related to the formation of mature caliches 

disagrees with Pantazis (1973) who suggested that it was an unrelated freshwater 

carbonate. 

9.6.2 Mature crust. 

The second type of caliche consists solely of a hard mature caliche crust. These 

units cap the pre-Quaternary carbonate lithologies of the Troodos sedimentary cover 

sequence. Palaeosols are rarely associated with this type of caliche today. The local 

source of carbonate suggests that formation of this type of caliche happened quite rapidly, 

as witnessed at Tenta (see above), probably through rapid dissolution, capillary rise and 

precipitation of the underlying carbonate. Formation of a caliche crust on carbonate 

bedrock has been described by Muller & Hoffmeister (1968) from the Florida Keys 

(Fig.9. 12) and James (1972) from Barbados. The crusts of the Florida Keys were seen to 

be both laminated and massive. Similar crusts cap the exposed carbonate lithologies in 

Cyprus, where micritisation and the introduction of detrital clasts has taken place, 

suggesting some alteration in the phreatic zone and the introduction of detrital clasts on 

exposure (location 2-100). The semi-arid climate aids the rapid formation of this type of 

caliche. These formations conform to those of Muller & Hoffmeister (1968) who state 

that formation of these crusts occurs on exposed bedrock which usually borders soil 

covered areas. Similar formations were recognised in Western Australia where a direct 

correlation between bedrock type and crust formation was suggested (Woolnough, 1930). 

This correlation was criticised by Grubb (1963) who stated that the lateral transport of 

carbonate had been ignored. 
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Fig.9.12. Schematic illustration of some mechanisms responsible for subaerial caliche 
cruts (after Multer & Hoffmeister. 1968). 

Evaporation of: 
I) rising capillary CaCO5  waters  

Precipitation of 	ii) ponded meteoric solutions. 
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Fig.9.13. X-ray diffraction trace showing the mineralog -v of the palaesol sample C57/89 
from within a sequence of the Fanglomerate Group on the Akrotiri Peninsula. 

Note: see Fig.9.5 for the precise location of the sample within the section. Reference plots 
of mineral phases 20 angles are presented in Appendix E 
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Fig.9.14. X-ray fluorescence trace of the major and minor elements from the palceosol 
horizon (sample C57/89) and the caliche beneath it (sample C58/89), from the 
Fanglomerate Group on the Akrotiri Peninsula (location 3-28), and the top of the 

north Troodos margin. 

Note: details of the boreholes can be found in Chapter 5. 
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It has been shown here that two types of caliche can exist, the type of formation 

being dependent not only on the climate and groundwater flow but on the sedimentary 

environment of deposition, if any, and the bedrock on which the caliches have formed. 

In summary, the variance in the development of pedogenic caliche and caliche 

crusts results from: 
a semi-arid climate with approximately 40-60cm of rainfall, 

groundwater availability and capillary action, 

the substrata above which the caliche has formed, 

a readily available source of carbonate, 

the sedimentary environment of deposition, 

residence time within an environment of caliche formation and hence, the 

relationship between rate of sedimentation and rate of caliche formation. 

These six factors have governed the type and speed of caliche formation and 

development that has taken place. 

The palaeosols were not examined in any great detail during this study. The soils 

form single horizons capping the terraces on the north Troodos margin and carbonate 

sequences throughout southern Cyprus, e.g. Protaras (location 2-100; Plate 9.2). Multiple 

soil horizons are seen in more distal locations in southern, south-western and south-

eastern Cyprus as well as on the north Troodos margin (locations 3-28, 1-58 and 3-14, 

Fig.9.5; Plate 9.2). 

The soils are generally thin, less than Im thick, and commonly red in colour; 

though grey soils are also seen. Rhizocretion fabrics are developed within the soils. A 

close association exists between soil horizons and that of caliche, with caliche horizons 

cropping out both above and below the soil horizons (Fig.9.5c, f and h). 

The soil samples ABH1 and MBH1 were taken from terrace top soils at different 

localities on the P2 terrace on the north Troodos margin, whilst C57/89 represents a 

sample taken from within the exposed sedimentary sequence at location 3-28 (Fig.9.5). 

The palaeosol horizons associated with the caliches were analysed using X-ray diffraction 

and X-ray fluorescence. These samples, like those taken from the borehole samples on 

the north Troodos margin (Chapter 5, samples MBH1 and ABH1), had a mineralogy of 
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albite, quartz, tremolite, montmorillonite and very minor calcite (Fig.9. 13). The clay and 

silt fractions of the borehole samples (ABH1 and MBH1, Fig.5.27) were examined in 

detail and revealed that the clays present consist of: smectite, chlorite (ripidolite), 

kaolinite and montmorillonite. The X-ray fluorescence analysis of the soil horizons 

showed that the major oxide and trace element chemistry of the soils is very similar but 
minor variations are recorded in the K 20, MnO and P 2  0  5  components (Fig.9. 1 la and b). 

9.7.2 Interpretation. 

The soils from Cyprus have been described as terra-rossa-type (Pantazis, 1973; 

Dreghorn, 1978). A terra-rossa soil is generally red in colour, with an associated 

carbonate substratum and karstification (Bates and Jackson, 1980), which hold true in 

Cyprus, although karstification is generally absent. The presence of the expanding clay 

smectite, evidence for extensive rhizocretion structures and a close association with 

pedogenic carbonate suggest that these are possibly vertisols (soils that contain at least 

30% expanding clays, e.g. smectite, and display shrink and swell structures resulting 

from rapid changes between wet to dry conditions) similar to those seen in the Palaeozoic 

palaeosols of the central and southern Appalachians (Driese et al., 1990). The low CaO 

content within the soils, especially that seen in specimen C57/89 (location 3-28), may 

reflect the efficiency of the CaO leaching during caliche formation. This pattern is similar 

to that detailed in Texas and north Mexico (Reeves 1970) and Barbados (James, 1972) 
where the soils were a source of CaCO 3  for caliche formation. Reeves (1970) suggests 

that carbonic acid from rainwater combined with CO  from the atmosphere and soils 

caused the soil carbonate to dissolve and subsequently contribute towards the formation 

of caliche. The variation in the trace-element and oxide chemical composition in the soils 

probably reflects local variation in the soil provenance, the overall nature of the soil 

chemistry and physical characteristics of the soil, all suggesting that the soils studied here 

are similar. The variation seen, both in trace-elements and oxide composition between the 

soil sample (C57/89) and caliche sample (C58/89) at location 3-28, could indicate the 

preferential incorporation of minerals and trace-elements from groundwater during 

caliche formation, as well as the inclusion of clasts within the caliche from the bedrock 

and soil horizons. The concentration of Sr seen within caliche samples, e.g. C58/89, is 

also generally higher than that within juxtaposed soil samples, e.g. C57/89 (Fig.9.6c-g). 

Further investigation of the palaeosols in Cyprus is needed to give a better 

account of their spatial and temporal variation and how they compare to the present day 

soils throughout the island. 
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The proximal to distal relationship characterized by a change from single soil 

horizons to multiple sequences could be interpreted as reflecting two types of changes 

away from the margins of the Troodos Massif. The first of these changes could illustrate 

the combination of differential rates of uplift and Quaternary climatic changes (Chapters 

2 and 5), where it was suggested that the Troodos Massif was uplifted at a faster rate than 

the Mesaoria Plain and coastal southern Cyprus. This differential uplift has resulted in 

terraces with single soils horizons, similar to that recorded in the Charwell River valley, 

New Zealand, which are identified as resulting from rapid tectonic uplift and Quaternary 

climatic changes (Bull, 1990). The presence of single soil horizons on lower strath 

terraces supports an argument for absolute, rather than relative, changes in the base level. 

The formation of multiple soil horizons is indicative of tectonically stable areas (Bull, 

1990), where the soil horizons are buried under subsequent aggradational events. The 

existence of these multiple soil horizons reflects relative changes in base level, and/or 

changes in the watershed variables, e.g. stream power. The formation of multiple soil 

horizons during the Quaternary of Cyprus could also, therefore, reflect the differential 

uplift of the island. The presence of the multiple soil sequences in distal localities could 

also be explained by the sedimentary environments of deposition, as multiple soils are 

more likely to develop within distal braidplain sequences where the pattern of 

sedimentation was constantly shifting (Chapter 5). Quaternary climate changes, rather 

than tectonic uplift, can explain the formation of terraces in fluvial environments 

(Frostick & Reid, 1989; Harvey & Wells, 1987); these climatic changes cause 

aggradation, avulsion and hence facilitate the development of multiple palaeosol 

horizons. It is suggested here that the development of the soil horizons associated with 

the proximal fluvial sequences and terraces on Cyprus, e.g. across the north Troodos 

margin, reflect the strong tectonic uplift that is taking place. it is suggested that the 

formation of multiple palaeosol sequences at distal localities on Cyprus does not 

necessarily signify tectonically stable areas, as suggested by Bull (1990), but a complex 

inter-relationship between tectonic uplift, climate change and the sedimentary 

environment of deposition. 

9.8 CONCLUSIONS. 

The following conclusions can be drawn from the study of Quaternary palaeosols 

and caliche horizons on Cyprus: 

the formation of both the kafkalla and havara horizons on Cyprus reflects 

calichification, 
the substratum on which calichification has taken place will play a major role in 

the speed of caliche formation, 



the type of caliche horizon present, whether pedogenic, or caliche crust, is 

dependent on the presence of palaeosols and substratum, 

the groundwater and capillary models are both applicable to caliche formation in 

Cyprus, 

extensive caliche formation has taken place during the Pleistocene. The apparent 

lack of caliches forming on non-carbonate substratum, during the Holocene, may 

reflect climate change during this period, as identified by Vita-Finzi (1969) and 

Dreghom (1978), 

palaeosol horizons have developed throughout the Quaternary and the 

development of single, or multiple horizons reflect a combination of climate change, 

base level changes and the sedimentary environment of deposition. 
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Chapter Ten: Discussion and conclusions. 

10.1 EVOLUTION OF CYPRUS DURING THE QUATERNARY PERIOD, 

10.1.1 Upper Pliocene-lower Pleistocene: early uplift. 

The sediments within the 350-360m terrace in south-western Cyprus are 

correlated with a terrace on the southern flanks of the Kyrenia Range (Ducloz, 1968; 

Dreghorn, 1978) from which Upper Pliocene foraminifera were identified (Mantis, 

1970). The 350-360m terrace is also correlated with deposition of the Athalassa and 

Kakkaristra Formations (Table 1.9) in the Mesaoria Plain (Ducloz, 1965; McCallum, 

1989) and with submarine channels, exemplified by those at Khirokitia and Amathus 

(Houghton et al., 1990), which contain latest Pliocene (c.2.2-1.8 Ma.) nannofossils and 

planktonic foraminifera. The Kakkaristra Formation is dated by ostracods as Upper 

Pliocene to lower Pleistocene (McCallum, 1989). The 350-360m terrace, therefore was 

established during the earliest Pleistocene, after an early phase of uplift (Table 1.10). 

10.1.2 Lower Pleistocene-middlefleistocene (Fl and F2): main ohase of uplift. 

The main control on the lower to middle Pleistocene Fl and F2 Fanglomerate 

units and associated terrace deposition was tectonic. The development of large-scale 

alluvial fans on the north Troodos margin relate to drastic uplift and downcutting. 

However, climatic effects probably had considerable control over the architecture of the 

fans. A similar interplay of processes is described from the Dead Sea, Israel (Frostick & 

Reid, 1989) and south-east Spain (Harvey & Wells, 1987). 

The alluvial fans on the northern margin of the Troodos Massif were deposited as 

proximal sheetflood deposits, which pass distally into channelised braided systems. Such 

a depositional setting would account for the thickness variations in the Fl and F2 

Fanglomerate units. A pediment area bordered the Troodos Massif, with a thicker 

sedimentary succession to the north. Inter-channel areas were subject to less incision and 

survived as thin conglomeratic deposits lapping onto the Troodos Massif and pre-

Quaternary sediments. Large alluvial fans did not develop during the lower-middle 

Pleistocene to the south of the Troodos Massif. Instead, large incised channels, e.g. 

Kouris River, carried sediment from the rising Troodos Massif southwards, to areas close 

to, or beyond the present coast, e.g. Pissouri, while proximal channelised sequences 

passed out into braidplain environments, e.g. Kolossi. Seismic data suggest that a large 

propo lion of the detritus derived from the Troodos Massif at this time is now located in 

offshore slope areas (McCallum, 1989). Thus, several of the rivers may have already 
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existed in the pm-Pleistocene, e.g. Maroni and Kouris Rivers. Continued uplift associated 

with downcutting of channels on both the north and south margin of the Troodos Massif 

resulted in back cutting of the drainage towards the Troodos Massif and the development 

of mature erosion surfaces on the now isolated, dissected Fl fan-sheets and terraces. 

Further uplift also caused greater dissection of the Troodos ophiolite as deeper structural 

levels were exposed. 

The presence of ultramafic clasts (Wilson, 1958) in the Fl Fanglomerate Group, 

transported by the Karyotis River (Chapter 5), is evidence of erosion of the ultramafic 

core of the Troodos Massif in early Pleistocene, yet ultramafic clasts are not found in the 

Fl Fanglomerate unit deposits away from this area, a similar pattern to that observed 

today (Chapter 5). The implication is that the drainage pattern of the early Pleistocene 

was similar to the present (Chapters 2 and 5). Direct evidence of river capture during this 

period is seen in the Limassol area, where the Kouris River has captured the Kryos River, 

which can be traced back onto the Troodos Massif. Evidence from the Fl Fanglomerate 

unit conglomerates at Pissouri, which contain Troodos-derived clasts (Chapter 5), 

suggests that the Paramali and Evdhimou Ri'ers, which now do not rise in the Troodos 

Massif were also modified by river capture. Similarly, the presence of gabbroic clasts in 

both deltaic and fluvial deposits (Chapters 5 and 6) in south-east Cyprus points to the 

existence of a major drainage system flowing southwards, off the northern margin of the 

Troodos Massif during the lower-middle Pleistocene. As no major river channels flow in 

this area today, the suggestion that river capture has taken place is perhaps demonstrated 

in the pattern of drainage now seen, with the Pedieos and Yialias Rivers flowing out 

towards Famagusta Bay, rather than into Larnaca Bay. 

The relative uplift during the lower-middle Pleistocene, i.e. Fl and F2, also 

resulted in the formation of two palaeo-clifflines at 350-360m and 100-110M ASL 

(Chapter 2), and the deposition of regressive-upwards, sedimentary successions (Chapters 

5, 6, 7 and 8). In addition, gorges on the west coast of the island that cut down from the 

350-360m terrace to the 100-1 lOm terrace reflect rapid relative uplift, similar to that 

described from the Kyrenia Range of northern Cyprus (Dreghorn, 1978). 

Carbonate aeolian, littoral and sub-littoral sequences also developed during the 

lower-middle Pleistocene, i.e. Fl and F2. These crop out in areas away from the 

influence of the Troodos drainage systems, particularly to the west of the Akamas 

Peninsula which was a pm-existing topographic high (Fig.2.7). The offlapping carbonate 

sequence are interpreted as forming during a relative sea-level fall, i.e. a combination of a 

sea-level fall and tectonic uplift (Chapter 7). The siliciclastic quarry sequences that date 
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from this period in south-east Cyprus also represent an overall regression from deltaic to 

fluvial sequences (Chapter 6). 

Eustatic sea-level fall and tectonic uplift caused the progradation of fluvial 

channels and down-cutting into the Pleistocene carbonate sequences in the Kouklia area, 

in south-west Cyprus. A subsequent rise in sea-level, i.e. F3 related, resulted in the 

formation of the 50-60m terrace, cutting sediments from marine, fluvial and sub-aerial 

environments (Fig.2. 19). 

10.1.3 Early Late Pleistocene (0): further uDlift. 

Systematically lowered topographic levels of littoral, deltaic and fluvial 

deposition, plus the presence of extensive erosion surfaces, indicate that uplift continued 

after F2 times, i.e. Middle Pleistocene. Littoral deposits were preserved due to this 

subsequent relative uplift. The emergence allowed unconsolidated littoral sands to be 

blown onshore to form migrating dunes that banked up against and over palaeo-clifflines. 

Up to 12m of uplift and incision into the pre-existing alluvial fan system took 

place on the Mesaoria Plain during this time, resulting in the formation of channel fan 

systems (cf. Muto, 1987). Islandwide relative uplift was limited, although downcutting 

into the Pliocene and older sedimentary cover sequence and the lithologies of the Troodos 

ophiolite gave rise to sediment and Troodos-derived clasts. Reworking of Troodos-

derived clasts also continued. Widespread channels tended to be shallow, dominated by 

sands and gravels. Deltas containing much reworked, mature gravel developed along the 

axis of the Polis-Paphos graben and around the southern coast of the island. These gravels 

are interbedded with sands and overlain by a thin limestone (Chapter 6). The deltas are 

overlain locally by thin, discontinuous sequences of littoral sediments, e.g. Polis. The 

deltaic sequences are also overlain by poorly sorted. fluvial conglomerates, e.g. Larnaca 

area (Chapter 6), consistent with overall regression, as also indicated by the presence of 

sub-littoral to sub-aerial carbonate sequences, e.g. Larnaca (Chapter 7). This regression 

culminated in the formation of an extensive erosional surface (Chapter'- ) ). 

By the end of the F3, i.e. early Late Pleistocene, phase an extensive coastal plain 

had developed, extending out beyond the present coastline, as a result of a eustatic sea- 

level fall. 
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10.1.4 Late Late Pleistocene-Holocene (F4): slightly lowered base levels. 

submergence and anthronogenic influences. 

The coral ages from the late Late Pleistocene, i.e. F4, terraces correlate with the 

Tyrrhenian sea-level high (oxygen isotope stage 5e; Shackleton, 1975). Widespread 

littoral deposits in Cyprus apparently relate to this transgressive/regressive event. A 

maximum uplift in the order of 6m has taken place since this time (Chapter 3), assuming 

that the Tyrrhenian sea-level high was 5-8m higher than the present day sea-level 

(Mesolella et al., 1969; Bloom etal., 1974; Chappell, 1974; Stearns, 1976). The high sea-

level accounts for the formation of cliffs under which, apparently anomalously wide, low 

lying beaches are seen today, e.g. below Curium, and the formation and preservation of 

sea caves 2-3m ASL, e.g. Cape Pyla. 

A "transgressive model" for aeolianite formation (Land et al., 1967; Vacher 1973) 

is not favoured for the Quaternary sequences in Cyprus, as the lithified F3 dunes on the 

west coast appear to have been cut and/or eroded by the 5e sea-level high and not formed 

at that time. The F4 dunes overlie the dated littoral sequence which is correlated with the 

Se sea-level high. The high-angle of repose, lack of capping soils, dominantly onshore 

palaeocurrent directions and knowledge that a drier climate (Rognon & Williams, 1977; 

Sarnthein, 1978) is likely to have existed during a glacial episode, are all consistent with 

the hypothesis that large-scale onshore migration of aeolianites took place. Thus, the 

available evidence points to formation of the dunes during a time of falling sea-level, in 

line with evidence from other Mediterranean aeolianites (Hey, 1962; Sabaris, 1962; 

Butzer, 1975). 

Minimal uplift and incision into the pre-existing channel fan system took place on 

the Mesaoria Plain during F4 times. lslandwide relative uplift was limited, with little 

scope for erosion of the Troodos Massif, but reworking of the Troodos-derived clasts 

continued. Widespread channels tended to be shallow containing sands and gravels. 

Alluvial deposits of this age are best developed in the south and south-west of the island. 

In the north Troodos region valleys are floored by alluvial conglomerates and sands with 

a mixed clastic input. The axis of the Polis-Paphos graben and an embayment near 

Pissouri are filled with similar deposits. Excavation pits in the lower Vasilikos Valley 

show that 3 to 5 units of silts were deposited at this time, comprising centimetre-sized 

rhythmic cycles, intercalated with calcareous horizons (Gomez, 1987). Limited uplift is 

consistent with the observed minimal downcutting of pre-existing channels and the 

domination of silt and floodplain deposits to the north and south of the Troodos Massif, 

in contrast to the older fan sequences. 



Limited relative uplift of the island occurred during the period from the last 

glacial to the present. The sedimentary sequences and geomorphological changes during 

the latest Pleistocene and Holocene periods reflect anthropogenic, climatic, eustatic 

and/or continuing minor tectonic effects, in line with the views of Flemming (1978), 

Gomez (1987) and this study, but contrary to the views of Giangrande et al. (1987) and 

Vita-Finzi (1990), who suggest that rapid uplift and eetensive neotectonic faulting took 

place during this time. 

10.2 DISCUSSION, 

10.2.1 Tectonic uplift versus isostatic effects. 

The processes causing uplift were discussed in Chapter 1. These included 

northward subduction, serpentinization, possible seamount underthrusting and thickening 

of the crust beneath Cyprus. Similar processes are reported elsewhere, e.g. the Japan 

Trench (Cadet et al., 1987), the Mariana forearc (Fryer et al., 1985) and the Coastal 

Range of California (Carlson, 1984). The effect of isostatic readjustment has been 

considered in areas of glacial loading and subsequent deglaciation (Morner, 1976A; 

Clark, et al., 1978) but have received scant attention in relation to uplift of mountain belts 

(England & Molnar, 1990). England & Molnar (1990) state that surface uplift, i.e. a 

motion opposite to the gravity vector, is the crucial component to consider when uplift 

rates are being discussed as this gives an absolute figure of movement away from a 

datum, such as the geoid, or mean present day sea-level. Surface uplift is considered 

important as: 

surface uplift = uplift of rock minus exhumation. 

In other words, if the exhumation is greater than rock uplift, then surface uplift 

will be negative as a result of the isostatic readjustment, even though rock uplift is taking 

place. 

It has been shown, during the course of this study (Chapters 5 and 7), that the 

formation of the Quaternary sedimentary sequence in Cyprus has been influenced by 

climatic change, similar to that recorded elsewhere (e.g. Lees & Buller, 1972; Maizels, 

1987; Harvey & Wells, 1987; Frostick & Reid, 1989). Erosion rates are dependent on the 

magnitude of the rainfall, rock type, structure and vegetation cover (Bloom, 1978) and it 

has been documented that dramatic morphologies can occur where there has been no 

surface uplift, as exhumation exceeds rock uplift (Molnar & England, 1990). Isostatic 

readjustments take place over a timescale of 10 years (Cathles, 1978) and become 
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difficult to distinguish from surface uplift features when longer timescales are being 

considered, i.e. the Quaternary period. So climatic variations coupled with variable 

tectonic uplift rates, rock type, structure and vegetation can lead to variable exhumation 

rates and therefore variable isostatic readjustment. 

The data from the regional tectonics suggest that surface uplift has taken place in 

southern Cyprus; these data are supported by the presence of raised marine terraces and 

sediments that have been displaced relative to sea-level. The regressive nature of the 

Tertiary sedimentary sequence (Robertson, 1977; Robertson et al., 1991) and the 

presence of these marine sediments above the present day sea-level are evidence for 

surface uplift, although the erosion surfaces on the Troodos Massif and the peneplaned 

terraces and erosion surfaces on the Mesaoria Plain themselves yield limited information 

concerning surface uplift, as there is no datum against which to fix these. 

Tectonic uplift of southern Cyprus is clearly established and it is probably 

coupled with a component of isostatic readjustment that has occurred as a result of 

exhumation and tectonic uplift. The presence of erosion surfaces on the Troodos Massif 

may lead to an assumed surface uplift rate that is greater than the actual rate, hence uplift 

rates quoted here refer to the dated coastal terraces, which are well constrained. 

Numerical estimates of uplift of the Troodos Massif have not been attempted as these are 

likely to refer to a combination of the isostatic and surface uplift components. 

10.2.2 Uplift versus sea-level change. 

The Troodos Massif has been uplifted during a period of glacio-eustatic sea-level 

change. To what extent can the two processes be disentangled in the Quaternary of 

southern Cyprus? 

During the earliest Pleistocene, both tectonism and sea-level changes influenced 

erosion and deposition. The highest 350-360m terrace is only preserved in south-west 

Cyprus, probably because this area was away from the later focus of uplift and thus 

survived erosion. The dominant control on erosion and sedimentation, during the early to 

mid-Pleistocene, was drastic uplift centred on Mount Olympus, modified by glacio-

eustatic effects observed in coastal areas. The exact timing of the deposition of the 

dominant Fl sequence remains poorly known owing to the lack of datable material in the 

localised correlative littoral deposits. A late Lower Pleistocene age, i.e. c. iMa., for the 

climax of uplift is probable, if it is assumed that the mature landforms on the Mesaoria 

Plain took c.700ka. to form (Chapter 2). The correlative littoral deposits, preserved only 

in areas away from the main focus of uplift and erosion from the Troodos Massif, i.e 
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south-west Cyprus, indicate that sea-level was relatively high during part of the Fl 

depositional phase, i.e. early-middle Pleistocene, thus further emphasising the dominant 

role of tectonic uplift at this time. Regression followed, indicating sea-level fall and/or 

continued regional uplift and the period was marked by the deposition of the F2, i.e. 

middle Pleistocene, sediments. The F2 features mirror those of the Fl, with similar 

fluvial and marine sediments. Channels of F2 age cut down into Fl terraces and the pre-

Quaternary sediments suggesting that tectonic uplift, with possible associated isostatic 

effects (Section 10.2.1), continued during the F2 phase. The evidence from the Kouklia 

area in south-west Cyprus suggests that this tectonic uplift occurred during a falling, or 

low eustatic sea-level stand, allowing tectonic uplift and sea-level change to be 

differentiated in Cyprus for the first time (Fig.2 19). 

Dates from corals in the Late Pleistocene, i.e. F3, marine terraces correspond to 

oxygen isotope 7 (Shackleton, 1975) and suggest that 13m of tectonic uplift took place 

between 130ka. and 192ka. (Chapter 3). The later stages of uplift were marked by 

regressive successions of shallow marine sediments, aeolianite and caliche deposits and 

the development of palaeo-clifflines. Dissection of pre-existing erosion surfaces took 

place with fluvial channel incision, regressive braid-delta accumulation and the 

development of erosion surfaces covered with caliche and terra-ros sa- type palaeosols. 

During the F4 phase, i.e. late Late Pleistocene, since c.130ka., sea-level change, 

specifically, transgression and regression, associated with the Se sea-level high was the 

dominant control on the erosive and sedimentary features in south Cyprus, although 

limited uplift may have taken place (Chapter 3). A maximum of 6m of uplift has taken 

place in the past 1 l6ka. (Chapter 3) confirming that eustatic sea-level change and not 

tectonics has been the dominant control in the latest Pleistocene. 

During the Holocene (post-i Oka.) glacio-eustatic change has clearly dominated 

sedimentation, modified by relatively minor tectonic movements - mainly subsidence of 

some coastal regions (Flemming, 1978). Regression, resulting from an estimated sea-

level fall of 110-120m (Shackleton et al., 1984) during the last glacial (40-10ka.; 

Dansgaard et al., 1982), is widely recognisable in the form of offshore and onshore 

peneplaned surfaces and shallow conglomerate-filled channels. 

Anthropogenic influences have apparently dominated sedimentation, related to 

deforestation and agriculture during the Holocene. Gradual tectonic movements may have 

been taking place, but are not distinguishable. Silting, flooding and further downcutting 

to the present level occurred between 5540-5010 B.C. Late Holocene alluvial terraces 

were locally incised between 330-1190 A.D. (Gomez, 1987). 



10.2.3 Nature of tectonic control. 

After the inferred initiation of northwards subduction along an active margin 

south of Cyprus, probably in earliest Miocene, southern Cyprus began to emerge with 

localised compression in the south, in the Miocene, and extension in the north, i.e. the 

Mesaoria basin, in the Late Miocene-Early Pliocene (Robertson et al., 1991). Extension 

in the north was accompanied by uplift of the north Troodos margin areas that flanked the 

main graben, i.e. Mesaoria basin, with accompanying erosion and marine fan-delta 

deposition (McCallum, 1989). Focussed uplift of the Troodos Massif first became evident 

in the Late Pliocene-early Pleistocene with the deposition of the Kakkaristra and Apalos 

Formations, while marine deposition persisted on the south Kyrenia flank and probably in 

the Mesaoria basin into the early Quaternary. One alternative to explain the main tectonic 

uplift in early to mid-Pleistocene is serpentinite-driven diapiric protrusion of the 

ultramafic core of the Troodos Massif (Gass & Masson-Smith, 1963). Another is 

underthrusting of a continental fragment, or seamount, northwards beneath Cyprus during 

the Quaternary. Underthrusting of a seamount, e.g. the Eratosthenes Seamount (Fig. 1.1), 

could have triggered serpentinization and thus diapiric uplift of the Troodos Massif 

(Robertson, 1990) combined with regional uplift of the whole of Cyprus (including the 

Kyrenia Range). Serpentinite diapirism will only occur after ophiolite emplacement has 

taken place and will only continue as long as the negative buoyancy remains high enough 

to allow vertical movement to continue (Andrews-Speed & Johns, 1985; Fig.1.2), 

therefore erosion, and rates of erosion, of the lithologies above the diapir, will control the 

extent of vertical movement. The rate of erosion, coupled with isostatic effects (Section 

10.2.1), are likely to control the vertical extent and speed of protrusion of the diapir. It 

should be noted that southern Cyprus was uplifted as a single structural entity with little 

evidence of major differential faulting (chapter 4), other than in the Polis-Paphos graben 

in south-west Cyprus where extension continued into the Quaternary. This agrees with 

observations from other tectonically active areas of the Mediterranean (Hey, 1978), 

where large areas have undergone equivalent amounts of uplift with little evidence of 

active faulting and local differential movement. 

One outstanding problem is to determine whether the documented phases of 

relative uplift represent truly episodic tectonic pulses of uplift, or were instead the result 

of superimposition of the glacio-eustatic sea-level changes on a single cycle of 

accelerating and decelerating tectonic uplift. While initially favouring the first scenario 

(McCallum & Robertson, 1990), it is now believed that the second possibility is at least 

likely, especially if the rising serpentinite cliapir was the dominant control on uplift 

(Fig.10.1; Table 1.10). However, it is recognised that earth movements tend to be 

episodic and irregular over short time scales (Ambraseys, 1971; Flemming & 

326 



327 

Fig. 10.1. Schematic curves indicating the possible interaction between eustatic sea-
level change and tectonic uplift, and any associated isostatic component, in relation to 
the Quaternary evolution of Cyprus. 
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Woodworth, 1988). Resolution of this problem is unlikely without absolute ages of the 

earlier, crustal uplift phases. 

the geomorphological features can be correlated throughout southern Cyprus, 

the geomorphology reflects absolute uplift of the whole of southern Cyprus, 

the available geomorphological evidence supports rapid uplift during the lower 

and middle Pleistocene, with relative quiescence and possible submergence in the 

Late Pleistocene and Holocene (Table 1.10), 

nannofossil evidence from the Pliocene marl sequences and the presence of? 

Upper Pliocene sediments in the 350-360m marine terrace indicate that a minimum of 

c.350m absolute uplift has taken place in coastal areas since this time, 

the four Quaternary erosion surfaces and terrace levels that crop out on the 

Mesaoria Plain can be correlated with the marine and non-marine erosion surfaces 

and terraces that crop out around coastal southern Cyprus, 

U-series coral data from raised marine terraces in southern Cyprus confirm that 

the F3 terraces (8-1 im ASL), correlated by means of geomorphology, are of similar 

age, 219-185ka., as are the F4 terraces (<3m ASL) from different parts of the island 

which date from 141-1 l6ka., 

the F3 terraces (8-1 lm ASL) record maximum uplift at an average rate of 

29cm/ka. in the period 141-185ka. The younger F4 terraces (<3m ASL) indicate a 

maximum uplift at an average rate of 5cm/ka. for the last 1 l6ka., with the exception 

of Cape Greco which suggests a rate of 12cm/ka.. Correlation with the Quaternary 

global isotopic stages confirms that maximum uplift has been limited to 18m during 

the past 185-219ka. and also suggests that relative subsidence has taken place in some 

coastal areas over the past 11 6ka., 

the drainage pattern has remained broadly constant for the duration of the 

Quaternary period. This is supported by the palaeocurrent data from the sedimentary 

sequences which is broadly radial and centred on the Troodos Massif, although minor 

variations resulting from structural controls, e.g. the Polis-Paphos graben, and the 

development of shallow dipping coastal plains, have facilitated some deviation from 

this radial pattern, 

the absence of major changes in the drainage pattern suggests that the focus of 

uplift of the Troodos Massif has remained the same throughout the Quaternary, i.e. 

Mount Olympus, 
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the coastal geomorphology of the west coast indicates that the carbonate 

aeolianites that formed after the isotope 7 sea-level high, i.e. associated with the F3 

terrace development, were subsequently cut, to form a cliffline, by the 5e sea-level 

high, i.e. the development of the F4 terrace, indicating that the dune formation 

followed the sea-level maxima, 

that eustatic sea-level changes, uplift, isostasy and climate have all played a role 

in the formation of the preserved geomorphological features, 

the rate of uplift during the Quaternary has varied, thus preventing accurate 

altimetric correlations with other areas of the Mediterranean, contrary to the views of 

Turner (1971) but in line with those of Hey (1978). 

III4'f]]JJNil irz' 

the Quaternary sediments of Cyprus can be split into three broad categories: the 

siliciclastic sediments, the carbonate sediments and the secondary sediments, i.e. soils 

and caliche. The siliciclastic fluvial sediments, i.e. the Fanglomerate Group, are the 

sole components on the north Troodos margin. Siiciclastic fluvial, marine and mixed 

aeolian sequences are the dominant sediments in areas where drainage feeds from the 

Troodos Massif along the southern coast of the island. The carbonate sequences by 

contrast are restricted to sub-littoral and aeolian sequences; these have an intrinsic 

relationship and are generally located in areas remote from the influence of the 

Troodos Massifs drainage system. The secondary sediments are found throughout 

southern Cyprus, 
evidence from the sediments of the Fanglomerate Group indicate that there has 

been a waning of activity through the Quaternary. This has resulted in less exhaustive 

erosion and deposition during the Late Pleistocene-Recent, 

the deposition of the Fanglomerate Group sediments on the north Troodos margin 

reflects uplift and Quaternary climate changes, 

sea-level changes have influenced the development of the Fanglomerate Group in 

coastal areas of southern Cyprus, as is noted at distal locations where fluvial 

sediments have prograded over beach and delta successions, indicating a regressive 

sequence, 
the pattern of sedimentation of the Fanglomerate Group reveals a proximal to 

distal relationship, with evidence for the development of alluvial fans, channel fans, 

braidplain and floodplain environments, 

the provenance of the Fanglomerate Group and marine siliciclastic sediments 

reflect local geology and the drainage pattern but the dominant source is the Troodos 

ophiolite, 
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the variation in provenance between the Pliocene and Pleistocene, and locally the 

Pleistocene to Holocene, Fanglomerate units is indicative of progressive unroofing of 

the Troodos ophiolite and its sedimentary cover sequence, 

there has been no major change in provenance during the Quaternary, i.e. the 

absence of any introduction from a source other than the Troodos ophiolite and its 

sedimentary cover sequence, 

the mixed dunes crop out in both coastal and inshore settings, e.g. those 

associated with fluvial sequences as examplified by the Vasilikos Formation 

(McCallum, 1989), and are commonly associated with the regressive siliciclastic 

sequences, 
the carbonate littoral and sub-littoral sediments represent a series of transgressive, 

and then regressive, offlapping sequences, culminating in deposition of carbonate 

aeolianites. The U-series dates show that the F3 and F4 littoral sequences have 

formed during a eustatic sea-level maxima. The aeolianite sequences lie conformably 

above the littoral sequences and so formed during a sea-level fall, i.e. regression. The 

lowered sea-level during a glacial period (c.-120m ASL; Shackleton et al., 1984) 

provides an ample reservoir of sediment available for dune formation, 

the derived bioclastic sediment and abraded shells and tests in the coastal 

carbonate aeolianites, identical to those seen in the underlying littoral sequences, 

indicate that the carbonate dunes were derived from previously deposited littoral 

sediments, 
the U-series data confirm that the deposition of the F3 and F4 carbonate 

sediments has been controlled by eustatic sea-level changes rather than a relative sea-

level fall, i.e. eustatic and associated uplift, 

broad Quaternary climatic variations indicated by the changes in the 

Mediterranean molluscan population may have contributed to the presence, or 

absence, of corals in the Quaternary carbonate sequences, 

cementation of the littoral sequences has been variable and indicates diagenetic 

alteration in both the phreatic and meteoric realms, whereas the aeolian sequences 

have only undergone meteoric cementation indicating sub-aerial rather than marine 

processes, 

the formation of both the kalkalla and havara horizons on Cyprus reflects 

calichification, 

the substratum on which calichification has taken place will play a major role in 

both the speed and type of caliche formation, 

the type of caliche horizon present, whether pedogenic or caliche crust, is 

dependent on the presence of palaeosols and substratum, 

the groundwater and capillary models are both applicable to caliche formation 

in Cyprus, 
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extensive caliche formation has taken place during the Pleistocene. The apparent 

lack of caliche forming on non-carbonate substratum, during the Holocene, may 

reflect climate change during this period, as identified in Cyprus and elsewhere in the 

Mediterranean region (Vita-Finzi, 1969; Dreghorn, 1978), 

palaeosol horizons have developed throughout the Quaternary. The development 

of single or multiple palaeosol horizons reflect a combination of climate change, base 

level changes and the sedimentary environment of deposition. 

10.3.3 Neotectonics. 

block uplift of the island has apparently taken place during the Quaternary as 

geomorphological and radiometric data indicate that terraces can be correlated 

throughout southern Cyprus, 

tectonic activity since the early Quaternary has been minimal, with relative 

movement being taken up by meso-scale faults and fractures. The evidence from 

earthquakes shows that tectonic activity is still taking place. However, seismic data 

showing the stratified and undisturbed nature of the Quaternary sediments indicate 

that this has had a minimal effect on the Quaternary sequences, 

seismic sections, earthquake foci, down borehole and fault data show a consistent 

alignment of structures, striking between WNW-ESE and NNW-SSE, 

joint and fracture data are generally aligned perpendicular to principal axes of 

extension, 

there is no evidence of Quaternary folding, 

there is very little evidence for present day subduction related processes, as the 

compression component of the borehole data (Haimson et al., 1990) appears to be 

taken up by strike-slip motion. 

10.3.4 General, 

the radiometric data, i.e. amino-acid, U-series, 14C, and faunal evidence are 

consistent with each other and the geomorphological correlations, which in turn 

correlate with the sedimentological data, 

tectonic uplift has probably been the dominant control during the Lower and 

Middle Pleistocene, whereas Quaternary eustatic sea-level changes have controlled 

the deposition of the exposed littoral sequences during the Late Pleistocene, 

all the data are consistent with uniform uplift of the coastal areas throughout the 

Quaternary period, 

the uplift has been differential, and probably focussed on Mount Olympus, 

throughout the Quaternary period, 



eustatic sea-level changes, uplift, isostasy and climate have all played a role in the 

formation and preservation of the Quaternary sedimentological and geomorphological 

features in southern Cyprus, 

evidence indicates that subsidence has occurred in the latest Pleistocene and 

Holocene (Flemming, 1978; this study). 

10.3.5 Summary. 

The potential to correlate geomorphological terrace surfaces, alluvial systems and 

coastal marine and non-marine settings throughout southern Cyprus provides an ideal 

opportunity to assess the importance of tectonic uplift versus sea-level change in the 

Quaternary unroofing of the Troodos ophiolite. Following earlier uplift, the Troodos 

Massif underwent drastic, focussed uplift in the late-early to middle-Pleistocene (c. 1.5- 

lMa.), with a further weaker phase of uplift continuing into the late Late Pleistocene 

(c.130ka.). The uplift corresponded to times of high relative sea-levels, followed by 

relative regression. The dominant control in the late Quaternary was thus eustatic, 

particularly the Tyrrhenian highstand (c. 1 3Oka.). A maximum of 6m of uplift has taken 

place since 1 l6ka. and there is evidence of Holocene submergence of some coastal areas 

(Flemming, 1978). The slowing and/or cessation of tectonic uplift could correspond to 

the absence of present day subduction beneath southern Cyprus. The overall tectonic 

setting during the Quaternary involved the overriding plate of a northwards-dipping 

subduction zone, that was punctured by the diapiric protrusion of serpentinite, possibly 

associated with the collision of a seamount with the Cyprus trench. 

10.4 FURTHER WORK. 

Further studies that could provide more valuable data concerning the Quaternary 

evolution of Cyprus are: 

radiometric age determination of the in situ coral from the F2 terrace sequence; 

these data would better constrain rates of uplift and deduce whether this P2 terrace 

formed during a eustatic sea-level maxima, or minima. Radiometric dating of caliche 

formations may also possibly confirm the correlation of the erosion surfaces on the 

north Troodos margin, 

more detailed neotectonic studies, especially shallow seismic surveys off south-

western coast of Cyprus; these will allow the extent, nature and timing of neotectonic 

faulting, associated with the continuing formation of the Polis-Paphos graben, during 

the Quaternary and Recent to be deduced, 

more detailed studies of the palaeosols, and especially pollen, so that more 

accurate estimates of the Quaternary climate can be made, 
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studies of the extensive colluvial sediments may aid future studies of fault 

movement, as much of the unconsolidated sediment is likely to undergo gravity 

movement during periods of tectonic activity, 

a study similar to this, tying the sedimentology, geomorphology and neotectonics 

to the south and the north of Kyrenia Range would allow the rate and style of uplift in 

the Kyrenia Range to be compared and contrasted with the southern portion of the 

island. This complimentary study would allow conclusions concerning the regional 

setting during the Quaternary to be made, as well as deductions concerning the 

processes and nature of uplift in each of these areas. 
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APPENDIX A: SAMPLE COLLECTION IN STORE AT THE DEPARTMENT OF GEOLOGY 
AND GEOPHYSICS, EDINBURGH UNIVERSiTY, 

BOX 1. - Residue from U-series samples. 

Residue from U-series dating (including unpicked coral, picked and ground samples). 
The general samples numbers are: 

Speciman No. 	 Location 
	 Grid reference and 

sheet number 

200a, 527, 529 Cape Greco (1-125) (985,700) Sh.15 

336 Paphos (2-11) (466,465) Sh.16 

355 (Pliocene) Coral Bay (2-22) (425,565) Sh.16 

358 (Pleistocene, F3) Coral Bay (2-22) (425,565) Sh.16 

425 
* 

Paphos Airport (2-50) (523,413) Sh.22 

508a 
* 

Ayia Trias (2-74) (934,795) Sh.15 

617,021 Larnaca (1-130) (575,610) Sh.21 

598 Dhekelia (2-76) (673,713) Sh.21 

Argaka Argaka (52,81) Sh.8 

C40/89 Petounda Point (3-11) (455,487) Sh.20 

C68/89 Akrotiri (3-96) (940,255) Sh.23 

C80/89 
* 

Protaras (695,793) Sh.15 

P#/89 Paralimni (3-50) (976,737) Sit. 15 

Note: Letters on the sample bags indicate different colony, or location on colony but from the same 

terrace and same height above sea - level. 
All sheet numbers mentioned here (throughout) refer to the Cyprus 1:50,000 map series. 

* - these samples were not used during the U-series work. 

BOX 2. - Borehole and caliche residue; micropalaeo samples. 

Residue from borehole samples both crushed and ground and unsampled. 

The location of the villages and samples within the borehole can be found in figures in 
Chapter 5 of the thesis. 
ABH Astromeritis. 
MBH - Meniko. 

Crushed and ground residue after XRF analysis of caliche samples. 
The sample numbers and locations are as follows: 

Al - C20/89, A17 - C22/89 	Ayios loannis (1-9) 	(180,817) Sh.11 

A3 - C13/89, A9 - C33/89 	Ayios loannis (3-3) 	(157,815) S It. 11 

A4 - C58/89, A22 - C59/89 	Episkopi (3-28) 	 (922,354) Sh.23 

A27-C61/89 



A7 - C51/89 Sophtadhes (3-18) (489,549) Sh.21 

A8 - C16/89 Akaki (1-12) (111,881) Sh.l1 

AlO - C81/89 Pissouri (3-30) (753,352) Sh.22 

All - C25/89 Aredhiou (1-93) (202,786) Sh.11 

Al2 - C5/89 Astromeritis (1-16) (015,879) Sh.1l 

A13 - C29/89, A15 - C30/89 Pera (3-6) (238,753) Sh.12 

A26 - C28/89 
A14 - C38/89 Petounda Pt. (3-10) (480,503) Sh.20 

A16 - C4/89 Astromentis (1-27) (015,879) Sh.11 

A19 - C73/89 Akrotiri (3-97) (99,25) Sh.23 

A20 - C7/89 Kato Moni (3-1) (083,803) Sh.11 

A21 - C97/89 Tremithousa (3-35) (486,516) Sh.16 

A23 - C54/89 Zygi (3-21) (295,437) Sh.24 

A24 - C64/89 Maroni (3-31) (358,467) Sh.20 

A25 - C57/89 Limassol (3-24) (083,408) Sh.23 

A28 - C33A/89 Mazotos (3-9) (443,523) Sh.20 

A31 -I Kato Moni (08,79) Sh.11 

iii) Picked micropalaeontology slides (not utilised during the course of this work). 

257,258 Limni (1-166) F3 (49,78) Sh.8 

202,161,165,163,200 Cape Greco (1-125) F3-174 (985,700) Sh.15 

186, 193, 196 Ormidhia(1-129) F4 (700,715) Sh.14 

130a Larnaca (1-130) F3 (575,610) Sh.21 

332 Paphos (2-11) ?Pliocene (466,463) Sh.16 

iv) Invertebrate palaeontological samples - refer to Moshkovitz (1968) for details. Sample 
C93/89 was collected from the grey-green marls of Pliocene age that crop out to the south 
of Polis close to the Paphos 71 mile post on the old Paphos-Polis road, grid reference 
(487,758) Sh.8. 

BOXES 3 and 3a. - Thin sections and accompanying hand specimens. 

Thin section chips, hand specimens and thin section. 

I 
6 
8a, 8b, 617, 618 

*12, 11,C84/89 

17 
21, 22,312,313 

28 

65 
72 
123, 123b, 137, 138, 
134, 124, 120, 121 

145a, 145, 148, 149 
143, 144, 147 

150 

Kato Moni -- (08,79) Sh.11 

Kato Koutraphas (1-20) -- (974,842) Sh.10 

Larnaca (1-130) F3 (575,610) Sh.21 

Pissouri (3-30) ?Pliocene (755,352) Sh.22 

Paphos (1-51) F4 (461,475) Sh. 16 

Paphos (2-3) Fl (500,478) Sh.16 

Paphos (l-57) F4 (458,472) Sh.16 

Peristerona(1-90) -- (076,869) Sh.11 

Ayios loannis (1-92) -- (177,811) Sh.11 

Paralimni (1-120) F4 (93,79) Sh.15 

Ayia Trias (1-121) F3 (930,798) Sh.15 

Paralimni (1-123) F3 (97,71) Sh.15 



151, 152,154, 174, Cape Greco (1-124) F3-F4 (99,69)Sh.15 

158, 160,161,162,163, Cape Greco (1-125) F3-F4 (985,700) Sh.15 

165, 168, 197a, 197b, 199, 

202, 202a, 203, 203a, 172 

27, 357, 358, C100/89 Coral Bay (2-24) F3 (425,568) Sh.16 

173, 169,164,200 
190, 195,196 Ormidhia(1-129) F4 (700,715) Sh.14 

208,209 Cape Kin (1-132) F3 (554,542) Sh.21 

213,214 Cape Greco (1-135) F2-F3 (975,698) Sh.15 

216, 217, 218a, 219, Xylophagou(1-136) F3-F4 (824,698) Sh.14 

220a, 220b 
222 Xylophagou (1-137) ?F3 (819,705) Sh.14 

224 Cape Greco (1-139) F3-F4 (985,722) Sh.15 

228 Man (1-14 1) -- (265,445) Sh.24 

229 Moni (1-142) F3-F4 (217,405) Sh.24 

231 Moni (1-145) Recent (162,412) Sh.24 

244 Xylophagou (1-150) F3-F4 (725,713) Sh.14 

258 Limni (1-166) F3 (49,78) Sh.8 

316, 317, 318, 319 Paphos (2-4) F4 (454,466) Sh.16 

322,323 Yeroskipos (2-5) F2 (490,469) Sh. 16 

331,337 Paphos (2-10) F2 (483,473) Sh.16 

350 Paphos (2-17) -- (484,508) Sh.16 

400 Lara (2-30) F3 (382,656) Sh. 16 

522 Cape Pyla (2-700) F3-F4 (770,682) Sh. 14 

571 Ormidhia (2-79 F2-F3 (705,723) Sh.14 

600, 601,603, 604b Dhekelia (2-84) F4 (673,713) Sh.21 

613,614 Dhckelia(2-85) F4 (655,715) Sh.21 

720, 721, 722, 723, 724 Prouuas (2-100) F3-F4 (965,752) Sh.15 

3/301, 3/302, 3/303 Argaka(3-109) F3 (52,81) Sh.8 

B, C, D,E, El, F *Cape Greco area -- (95,71)Sh.15 

Xl Paphos (2-5b) F2 (469,483) Sh.16 

C14/89 Ayios loannis (3-3) -- (157,815) Sh.11 

C18/89 Perakhorio (3-4) -- (355,778) Sh.12 

C41/89, C42/89 Petounda Point (3-11) F3 (455,487) Sh.20 

C48/89 Tersephanou (3-17) -- (498,570) Sh.21 

C63-89 Mazotos (3-13) F3 (486,549) Sh.21 

C70/89 Pissouri (3-30a) ?Pliocene (73,33) Sh.22 

C93/89 Polis (3-150) Pliocene (487,758) Sh.8 

C96/89 Tremithousa (3-34) FO (486.516) Sh.16 

C110/89,C11l/89, Kato Pyrgos(3-l10) F3 (70,94) Sh.9 

Cl 12/89 

C229/89 Paphos (2-3) Fl (500,478) Sh.16 

C230/89 Paphos (2/50 F2 (490,469) Sh. 16 

Fl, F2, F3 Xylophagou (2-75) -- (743,703) Sh.14 

Kel Kellia Pliocene (588,713) Sh.21 

Mar A, Mar B Marathounda (2-5 1) FO (538,530) Sh.16 

Mesi Mesoyi (2-18) FO (506,528) Sh.16 

Note: * - aeolian grainstone collected from the general area to the west of Cape Greco. 



BOX 4. - Miscellaneous hand specimens. 

67 Ayios loannis (1-91) -- (168,794) Sh.11 

86 K. Koutraphas (1-105) -- (968,835) Sh.l0 

122,128 AyiaTrias(1-120) F4 (93,79) Sh.15 

146 Ayia Trias (1-121) F3/F4 (930,798) Sh.15 

156, 167, 173, 532 Cape Greco (1-125) F3-F4 (985,700) Sh.15 

175,177 Ormidhia (1-128) P3 (705,713) Sh.14 

221 Xylophagou(1-136) ?F4 (824,698) Sh.14 

223 Xylophagou (1-138) ?F3 (816,708) Sh.14 

314 Paphos (2-3) Fl (500,478) Sh.16 

335 Paphos (2-11) ?F4 (466,463) Sh.16 

402 Lara Point (2-33) F3 (365,685) Sh.16 

562 Ormidhia (2-78) -- (715,735) Sh.14 

569 	- Ormidhia(2-79) -- (705,723) Sh.14 

590 Ormidhia (2-82) -- (746,705) Sh. 14 

597 Dhekelia (2-76) F4 (673,713) Sh.21 

606 Dhekelia (2-83) F4 (660,735) Sh.21 

702 Kato Pyrgos (3-110) P3 (70,94) Sh.9 

725 Protaras (2-100) F3-F4 (965,752) Sh.15 

3/308, 31309 Vasilikos (3-23) ?F1 (273,429) Sh.24 

C34/89 Petounda Point (3-10) P3 (480,503) Sh.20 

C76/89 Ormidhia (2-79a) -- (715,731) Sh.14 



APPENDIX B: LOCATIONS CITED IN THE TEXT. 

Grid references and 1:50,000 ordinance survey sheet number of locations 
documented in the text. 

Location number Grid reference Location 

1-7 (162,775) Sh.11 Malounda 

1-8 (163,777) Sh.11 Malounda 

1-9 (180,817) Sh.11 Ayios loannis 

1-12 (111,881) Sh.11 Akaki 

1-15 (025,885) Sh.1 I Astromeritis 

1-19 (017,810) Sh.11 Vyzekia 

1-20 (974,843) Sh.1 1 Kato Koutraphas 

1-23 (582,613) Sh.21 Larnaca 

1-27 (015,879) Sh.1l Astromentis 

1-28 (017,863) Sh.11 Potami 

1-31a (964,828) Sh.10 Kato Koutraphas 

1-57 (461,475) Sh.16 Paphos 

1-58 (013,800) Sh.11 Astromeritis 

1-59 (980,848) Sh.10 Kato Koutraphas 

1-67 (004,861) Sh.11 Astromeritis 

1-68 (995,859) Sh.10 Astromeritis 

1-69 (990,856) Sh.10 Astronieritis 

1-70 (985,852) Sh.10 Astromeritis 

1-72 (973,842) Sh.10 Kato Koutraphas 

1-75 (158,777) Sh.11 Malounda 

1-76 (162,771) Sh.1l Malounda 

1-79 (167,797) Sh.1 I Ayios loannis 

1-81 (167,801) Sh.11 Ayios loannis 

1-82 (166,798) Sh.11 Aredhiou 

1-83 (167,797) Sh.11 Asedhiou 

1-84 (077,843) Sh.11 Orounda 

1-86 (074,797) Sh.i1 Kato Moni 

1-87 (074,798) Sh.1 1 Kato Moni 

1-89 (078,844) Sh.11 Orounda 

1-90 (076,8690 Sh.1 1 Orounda 

1-91 (168,794) Sh.11 Ayiosloannis 

1-92 (177,811) Sh.11 Koraka Hill 

1-93 (202,786) Sh.11 Peratis Hill 

1-94 (195,762) Sh.11 Politiko 

1-96 (193,770) Sh.l I Peratis Hill 

1-97 (235,778) Sh.12 Pera 

1-98 (232,773) Sh.12 Pera 

1-99 (203,778) Sh.11 Peratis Hill 

1-101 (084,803) Sh.l 1 Kato Moni 

1-102 (025,850) Sh.11 Potami 

1-104 (018,864) Sh.1I Potami 

1-105 (968,835) Sh.lO Kato Koutraphas 

1-109 (015,816) Sh.11 Potami 

1-110 (010,815) Sh.11 Vyzakia 

1-113 (004,827) Sh.11 Vyzakia 

1-114 (005,831) Sh.11 Vyzakia 

1-115 (005,832) Sh.11 Vyzakia 

1-117 (992,841) Sh.10 Pano Koutraphas 

1-118 (992,838) Sh.10 Pano Koutraphas 

1-119 (993,832) Sh.10 Vyzakia 

1-120 (93,79) 	Sh.15 Paralimni 

1-125 (985,700) Sh.I5 Cape Greco 

1-126 (987,718) Sh.15 Cape Greco 



1-127 (985,704) Sh.15 Cape Greco 
1-128 (705,713) Sh.14 Ormidhia 
1-129 (700,715) Sh.14 Ormidhia 
1-129a (690,714) Sh.14 Ormidhia 
1-130 (575,610) Sh.21 Larnaca 
1-136 (824,698) Sh.14 Xylophagou 
1-140 (281,453) Sh.24 Zyyi 
1-143 (223,405) Sh.24 Cape Dolos 
1-148 (715,717) Sh.14 Ormidhia 
1-151 (731,706) Sh.14 Ormidhia 
1-155 (378,549) Sh.20 Alaminos 
1-156 (39,55) 	Sh.20 Menoyia 
1-157 (398,521) Sh.20 Alaminos 
1-159 (346,529) Sh.20 Ayios Theodhores 
1-160 (354,497) Sh.20 Ayios Theodhores 
1-162 (338,435) Sh.24 Zyyi 
1-163 (325,452) Sh.24 Maroni 
1-165 (318,476) Sh.24 Maroni 
1-166 (49,78) 	Sh.8 Limni 
1-247 (441,539) Sh.16 Kissonerga 
2-1 (497,505) Sh.16 Anavagos 
2-2 (495,495) Sh.16 Paphos 
2-3 (500,478) Sh.16 Paphos 
2-4 (454,466) Sh.16 Paphos 
2-5 (490,469) Sh. 16 Yeroskipos 
2-7 (483,473) Sh.16 Paphos 
2-10 (483,473) Sh.16 Paphos 
2-11 (466,463) Sh.16 Paphos 
2-12 (473,481) Sh.16 Paphos 
2-13 (497,465) Sh.16 Yeroskipos 
2-14 (465,492) Sh.16 Paphos 
2-16 (472,500) Sh.16 Paphos 
2-17 (484,508) Sh.16 Paphos 
2-18 (506,528) Sh.16 Mcsoyi 
2-19 (472,500) Sh.16 Paphos 
2-20 (445,555) Sh.16 Kissonerga 
2-22 (425,565) Sh.16 Coral Bay 
2-24 (424,566) Sh. 16 Coral Bay 
2-25 (402,587) Sh.16 Coral Bay 
2-27 (376,624) Sh. 16 Ayios Yeoryios 
2-30 (382,656) Sh.16 Lara 
2-32 (374,670) Sh.16 Lara 
2-33 (365,685) Sh.16 Lara Point 
2-34 (381,675) Sh.16 Lara 
2-35 (385,638) Sh.16 Ayios Yeoryios 
2-40 (464,472) Sh. 16 Paphos 
2-41 (520,443) Sh.22 Akhelia 
2-42 (508,429) Sh.22 Akhelia 
2-43 (513,438) Sh.22 Akhelia 
2-44 (530,451) Sh.22 Akhelia 
2-45 (531,452) Sh.22 Akhelia 
2-46 (576,427) Sh.22 Mandria 
2-48 (588,435) Sh.22 Anarita 

2-50 (523,413) Sh.22 Akhelia 

2-51 (438,530) Sh.16 Marathounda 

2-53 (635,425) Sh.22 Kouklia 
2-54 (620,415) Sh.22 Kouklia 

2-57 (508,462) Sh.16 Yeroskipos 

2-57a (508,462) Sh.16 Yeroskipos 
2-59 (515,4600 Sh. 16 Koloni 

2-63 (523,462) Sh.16 Ayia Marathounda 



2-63a (465,593) Sh.16 Akoursos 
2-70 (760,692) Sh. 14 Xylophagou 
2-71 (755,694) Sh.14 Xylophagou 
2-75 (743,703) Sh.14 Xylophagou 
2-76 (673,713) Sh.21 Dhekelia 
2-77 (700,713) Sh.14 Dhekelia 
2-78 (715,735) Sh.14 Ormidhia 
2-79 (705,723) Sh.14 Ormidhia 
2-80 (726,717) Sh.14 Ormidhia 
2-81 (748,701) Sh.14 Xylophagou 
2-82 (746,705) Sh. 14 Xylophagou 
2-83 (660,7350 Sh.21 Dhekelia 
2-84 (673,715) Sh.21 Dhekelia 
2-93 (467,713) Sh.8 Prodhomi 
2-96 (700,713) Sh.16 Skouli 
2-100 (655,715) Sh.15 Protaras 
2-700 (770,684) Sh.14 Xylophagou 
3-1 (083,803) Sh.11 Kato Moni 
3-2 (165,815) Sh.11 Ayios loannis 
3-3 (157,815) Sh.11 Ayios loannis 
3-4 (355,778) Sh.12 Perakhorio 
3-6 (238,7530 Sh.12 Kambia 
37 (430,522) Sh.21 Mazotos 
3-9 (443,523) Sh.21 Mazotos 
3-10 (480,503) Sh.21 Petounda Point 
3-11 (455,487) Sh.21 Petounda Point 
3-12 (450,500) Sh.21 Mazotos 
3-13 (486,549) Sh.21 Mazotos 
3-14 (500,580) Sh.21 Tersephanou 
3-16 (488,581) Sh.21 Tersephanou 
3-17 (498,570) Sh.21 Tersephanou 
3-18 (489,549) Sh.21 Soplitadhes 
3-19 (313,432) Sh.24 Zyyi 
3-20 (315,449) Sh.24 Zyyi 
3-21 (295,437) Sh.24 Zyyi 
3-23 (273,429) Sh.24 Vasilikos 
3-26 (005,405) Sh.23 Limassol 
3-27 (924,373) Sh.23 Erirni 
3-28 (922,354) Sh.23 Episkopi 
3-29 (943,269) Sh.23 Akrotiri 
3-30 (755,352) Sh.22 Pissouri 
3-31 (083,408) Sh.23 Maroni 
3-32 (699,715) Sh.14 Ormidhia 
3-35 (486,516) Sh.16 Tremithousa 
3-50 (976,737) Sh.15 Paralimni 
3-61 (914,772) Sh.10 Tembria 
3-69 (918,380) Sh.23 Kouris River 
3-70 (304,426) Sh.24 Zyyi 
3-96 (942,255) Sh.23 Cape Zevgari, Akrotiri 
3-96a (985,857) Sh.23 Akrotiri 
3-97 (99,25) 	Sh.23 Cape Gata, Akrotiri 
3-101 (446,522) Sh.16 Lemba 
3-106 (49,78) 	Sh.8 Limni 

3-109 (52,81) 	Sh.8 Argaka 

3-110 (70,94) 	Sh.9 Kato Pyrgos 

3-150 (487,758) Sh.8 Polis 

Ml (305,515) Sh.20 Khirokitia 

MS (325,451) Sh.20 Maroni 
M10 (318,471) Sh.20 Maroni 



APPENDIX C: METHOD FOR RADIOCARBON AND URANIUM SERIES DISEQUILIBRIUM 

DATING, 

1.1. SAMPLE PREPARATION. 

1.1.1. Radiocarbon method. 

Sample preparation of molluscs for the 
14  C method follows that set out by Vita-

Finzi (1980). The molluscs were thoroughly cleaned using a dentist drill, a pick and an 

ultrasound bath. The specimen, once wet, was stored in distilled water to prevent any 
contamination by atmospheric CO 2*  The clean mollusc shells were subjected to a series of 

simple tests (Grant-Taylor, 1972) to ascertain whether any recrystallization of the shells 

had taken place. Aragonitic shells were used, as aragonite is metastable and will readily 

recrystallize to calcite. The test used were: 

acetate peels and subsequent microscope examination of the shell structures to 

reveal whether primary aragonite structures were still present (Plate 3.1), 

X-ray diffraction analysis. A comparison of the aragonite versus aragonite and 

calcite peaks from the sample, with known standards, set on the same machine, allows 

the proportions of aragonite to calcite to be ascertained (Fig.C. 1; Table C. 1), 

scanning electron microscope studies to examine the shell structure and locate any 

impurities in the sample (Plate 3.1). 

Table C. 1. Relative aragonite and calicte-ray diffraction peaks, with the ratio of 
aragonite to argonite plus calcite versus percentage aragonite.  

a) Readings taken at aragonite intervals of 10%. 

% Aragonite Aragonite Calcite. A+C A/A+C 
peak (A) peak (C) 

0 0 154 154 0.000 
10 4 126 130 0.031 
20 8 126 134 0.060 
30 13 127 140 0.095 
40 16 96 112 0.143 
50 19 68 87 0.218 
60 25 66 91 0.275 
70 32 50 82 0.390 
80 36 38 74 0.486 
90 39 20 59 0.661 
100 42 0 42 1.000 

b) Readings taken at aragonite intervals of 2%. 

90 49 20 79 0.620 
93 51 14 65 0.782 
95 52 10 63 0.841 
97 54 6 60 0.900 
99 61 3 64 0.953 
99.5 58.5 1.5 60 0.975 
100 50 0 50 1.000 



Fig.C1. A plot of the primary X-ray diffraction peak height of aragonite versus 
aragonite divided by aragonite plus calcite. 
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52.C2. Diagrammatic representation of the apparatus used for the preparation of 
mollusc samples for radiocarbon scintillization analyses. 
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These tests were carried in order from i) to iii), with samples being rejected if 

evidence of recrystallization or impurities were seen. Samples containing less than 90% 

aragonite, from the comparison of standard and sample X-ray diffraction peaks, were 

rejected. Samples were also identified to the generic level (and to the specific level, if 

possible) before being subjected to the rigorous preparations, outlined above. 

1.1.2. Uranium series method. 

The uranium series method utilised aragonitic corals. The coral samples were 

identified to their specific level, where possible. Cleaning of the samples followed the 

same procedure used during the radiocarbon method, with samples being routinely 

subject to X-ray diffraction, to deduce the proportion of aragonite to calcite in the coral. 

Samples containing less than 90% aragonite were not sampled and, where possible, 

samples with greater than 95% aragonite were utilised. 

1.2. METHODOLOGY. 

1.2.1. Radiocarbon method. 

The sample was broken up and weighed after it had been confirmed that 

recrystallization had not taken place, and that the sample still possessed its original 

mineralogy. The following procedure was used (Fig.C.2): 
a clean vial filled with N2  was weighed and the weight was recorded. lOml of 

Carbsorb and 5ml of Permallor were then added to the vial using an Eppendorf 

pipette. A new tip should he used for each weighing procedure, 

the vial and it's metal cap were then weighed and the weight recorded. This is the 

start weight, 

l0gms of the sample are then introduced to a glass flask (Fig.C.2), 

the neck of the flask is then cleaned and a full bottle containing 50% HC1 is then 

introduced to the system. A firm contact should be made between the flask containing 

the specimen and the bottle of HC1 (all indicator arrows should now point to the 

output end of the system), 

nitrogen is introduced to the system to wash air through. This process is complete 

when bubbles are seen in the container at the output end of the system which contains 
0.lmot AgNO3  (0.85gms/50m1 = 0.1mol), 

the sodalime container is connected to the system once the system is free of air, so 

preventing air re-entering the system, 



the magnetic stirrer is started and the HCl is introduced into the specimen flask at 
2 drops per second. A steady stream of CO  bubbles should be seen entering the 

collecting vial, 

the apparatus runs for 30 minutes, by which time the majority of the sample 

should have been digested. During this time the vial should have become quite warm 

and subsequently have cooled down again. A stream of reasonably vigorous bubbles 

should have been seen in the system throughout the 30 minute period, 

the HC1 dropper should be turned off, the specimen vial removed and the sample 

weighed. 5m1 of Permaflor should be added to the sample and the vial should then be 

weighed again, 
the sample should now undergo scintillization for 24 hours. Scintillization (in a 

TriCarb liquid scintillization analyser) should take place as soon as possible after 

sample preparation. 

1.2.2. Uranium series disequilibrium method. 

The uranium series dating was carried out in the Department of Geology and 

Geophysics at Edinburgh University, under the supervision of Dr. Graham Shimmield. 

The method utilised (x-spectrometry and made use of a silicon surface barrier detector. 

The following method was utilised: 

the samples were cleaned and the mineralogy ascertained (using X-ray diffraction 

and a comparison with standard aragonite/aragonite + calcite peaks). Samples 

containing less than 90% calcite were not analysed. Samples for analysis were ground 

to a fine powder using a pestal and mortar. Samples weighing between 6.0 and 

4.5gms were used, 

the samples were then dried at 110 °C, placed in a crucible and heated to 900 °C. 

Heating enables the CaCO 3  to be converted to CaO and causes decomposition of 

organic matter. The samples were cooled at room temperature. 

N.B. From this point on preparation should take place in a "clean air fume cupboard", 

with the filter fan on (at position 2). 

the sample was saturated with de-ionised water and digested using concentrated 

HCl, when the digestion reaction had ceased the sample was taken up to a volume of 
50m1, using 7.8mol HC1. This procedure left digested CaCO 3  and an insoluble 

residue. If less than 3 samples from the same locality are available, then both the 

soluble digest and insoluble residue should be analysed. The analysis of the residue 

involves the digestion of the insoluble fraction of the sample in a P.T.F.E crucible. 
The following steps should be followed: a) add 4m1 cone FINO 3  and lOmi conc HF to 



digest, b) add 4m1 conc HNO3  and 5m1 conc HF, to achieve complete digestion, c) 

add 4m1 HNO3  and fume to dryness, d) add lOmi 9mol HC1, e) warm the sample 

slowly and cover with a cover glass, 

a mixed 0.05m1 (for concentrations of 0 to 10ppm U and Th) spike of 228Th and 

232U (30 des/mm) is added to each sample, using an Eppendorf pipette, to allow the 

chemical yield to be deduced, 

the procedure from here is shown in the flow diagram (Fig.C.3). 

The following notes amplify the individual steps of the uranium series 

disequilibrium method given above: 

the anion exchange column uses a Bio-Rad AG1-X8 resin; 100-200 mesh, chloride 

form. The diameter of the column is 0.7cm and the resin bed is 6cm long. 50m1 (4 

column volumes) of solution should be used for each wash of the column, with 

washes taking place every 30-40 minutes. The columns should be used as soon as 

possible after they have been set up as organic material could be introduced into the 

Th system. Care should be taken to prevent the resin being disturbed when the 

solutions are added. The columns chemically separate the U and Th radionuclides and 

this allows the 234  U and 230  Th peaks to be distinguished as they have very similar 

peak a-particle energies. The anion exchange resin allows selective adsorption and 

desorption to take place. U is adsorbed by high strength HCl (7.8 mol.), whereas Th is 
adsorbed by high strength FINO 3  (8 mol.). The column procedure is outlined in 

Fig.C.3, 

232  T activity is a measure of contamination in the sample of the soluble fraction. 

If the 232  T count is high the insoluble fraction should also be analysed. This will 

reveal whether the residue is primary and was deposited at the time of formation of 

the coral, or whether it is a later feature. 230Th/234U and 234U/238U ratios for the 

insoluble residue should be consistent with those obtained when the HCI soluble, i.e. 
CaCO3, solution was analysed, 

an acidic electrolyte solution of (NH 4)2SO4  is electroplated on to a stainless steel 

disc to obtain a monoatomic layer suitable for counting. It is common practice 

(Talvite, 1972) to plate the thorium disc for twice as long as the uranium disc. The 

plating solution is placed in a P.T.F.E. beaker, mounted on a brass base plate. The 

base plate acts as the cathode (black, negative), a small coil attached to the P.T.F.E 

beaker acting as the anode (red, positive). 

samples are counted using a-spectrometry on a silicon surface barrier counter 

(Siffet, 1966 for details). Counting usually lasts for 1 0
4 counts, or for a time 

equivalent to the background count. A count of iO 4  enables the counting error due to 

nuclear statistics to be kept to 1%. A background count on the detectors is taken for 

two days before the sample is added and is used to correct the data for background 



- Fig.0, Flow chart representing the methodology used during anion exchange 
column work and plating of the uranium series samples. 

Digest sample in conc. 
HCL, when reaction ceases 
wash down in 7.8m HC1 

ANION EXCHANGE COLUMN 1. 
Wash column with im HC1 
Equilibrate column with 7.8m HCI 
Add sample 
Wash colomn at least 3 times with 7.8m HC1 

Collect Th that runs through 
the column during 7.8m HCI 
wash 

Evaporate sample to a small volume 
Add conc. HNO3 and evaporate, repeat 
to convert fully to NO3 
Take sample up in Bm HNO3 

Elute U isotopes with im HCI 

Ether extraction to remove Fe 
Add ether to U sample, agitate 
sample iand remove ether using 
a pipette, evaporate ether at 
low temperature, repeat. 

ANION EXCHANGE COLUMN 2. 
Wash column with 0.1m HNO3 
Equilibrate with 8m FIN03 
Add sample 
Wash with Sm HNO3 

Elute Th isotope with 9m HC1 

Take both samples: 
take sample down to a few drops using hot plate 
add 3cc cone HNO3 and 0.5cc H2SO4 and fume 

sample 
wash sample with 3cc of millipore water 
neutralise sample using ammonia 

wash samples into seperate stainless steel plating 
cells using 7cc im (NH4)2SO4 

Plate for 1.5 - 2 hours at 1.2 amps and then coun 
on a silicon surface barrier detector 



effects. The background count includes random counts and fixed counts, which usual 

result from detector contamination, 

all glassware and P.T.F.E. crucibles should be thoroughly washed and de-

contaminated after use. 

the age of the samples was deduced using: a) an isochron plot (Fig.C.4), b) the 

Fortran program in Appendix C of Ivanovich and Harmon (1982), or c) the tabulated 

data (Table C.2; G. Shimmield, pers. Comm., 1989) derived from the following 

formula: 

230 	(1eTh2301) 	X230Th 	 238U 

F (t) = - 	+ 	 + 	 1 - 	11 - e4Th23234)tfl 

234j 	234ui238u 	x230m -x234u 	
L 	 4 
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Table C2. Representing a 230T11I 234U and 234UF 8U age model for coral samples 
assuming an initial 234U/238 U ratio of 1,14 (data after G. Shimmield.pers. comm.. 
1988). The 230Th/U ratio represents the age of the sample. 

U/rh age model U/U age model 

234U/38.0 1.14 

Uge 230Th 2Z4LJ 2ge 2:0Th 2.540 ge 230Th 234U 

234U 2:3u ky 234J .2U k  234U 238U 

1 0.002 1.1394 73 0.454 1.1i42 0.ZS 1.o:.4 

0.0103 1.13 2 : 74 0.5004 111 148 0.7580 1.0231 
14 0.7582 1.0723 

3 0.0273 1.1388 '3 0.5051 
143 0.7o11 1.0926 

4 0.03 1.1384 7 0.50g 
142 

O 0.0451 1.1331 77 0.514 .ii: 
150 0.7680 1.0221 

0.033' 1.127 7  78 0.5122 1 
7 0.026 1.1373 '9 0.5233 1.1123 

152 0.7702 1.0215 
8.. 0.0712 1.13o' 30 0.5204 1 	1119 

ISS 07733 1.0213 
2 0.077 l.135 31 o.::: 1112 

154 0.7757 1.0210 
i: 0.0822 1.1361 32 3.3374 1.1113 

155 3.7781 1.0203 
11 1.1358 32 0.3415 s.ii: 

158 0.7804 i 	oo5 .  
1 0.1042 1.1354 84 0.5442 1.1107 

157 0.7028 1.090: 
15 0.1132 11350 3 ,754Q(. '114 

158 0.7851 1.0200 
14 0.1213 1.134o 88 Q,5549 iiio 

13 2  07273 1.0890 
15 0.1225 1.1343 8.7 0,S5' 1.1028 

120 0.7892 1.085 
lo 0.1375 1.1332 1;0 0.535 1.1025 

121 0.7912 1.0823 
17 0.L454 1.1335 e2 0.577 1.1o2 

17 0.13 11331 90 0.5712 1.1089 122 0.7241 1.0890 

12 0.1212 1.1320 91 0.5720 .ioo 123 0.7°63 1.0888 

3 	10 1.1$ 2 3.5301 11032 1o4 0.7285 1.0885 

21 1 76c, 1.1320 95 0.5342 1.1020 125 0.8008 1.0883 

22 0,134: 1 	131 24 0.51382 1.1077 188 0.8028 1.0880 

25 '3 	1213 11313 95 0.5222 1.1074 167 0.8042 1.0878 

0.1I 1.1:32 Q 0.5262 1.1071 160 0.0070 1.0075 

0.2367 1.1304 27 0.001 1.10E 1s 9  0.3021 1.0873 

0.2140 1.130: 98 0.s040 1. 10t5 170 0.0112 1.0071 

0.2213 1.1220 92 0.o07 1.10o2 171 03133 1.08o8 

25 0.2205 1.12'S 100 0.8117 1.1052 172 0.8153 1.086 

22 0.2357 1.121 101 0.5135 1.1052 173 0.6.173 1.0823 

30 '3 	2428 1.1287 102 0.6193 174 0.8193 1.0861 

31 0.248 1.1284 105 0.6235 .ios: 175 0.8213 1.0800 

5,2525 .i:o: 104 0.6287 1.1047 178 0.0233 1.0852 

O.237 1.127' 105 o.30 1103 177 0.8252 1.0054 

34 '3.2704 1.1:7: 108 0.2340 1.1041 178 0.8272 1.0851 

33 0.2773 1.1270 107 0.s37o 11038 172 0321 1.0242 

Ss 0.2841 1.1220 108 0.8412 1.1035 180 0.2310 1.0347 

37 0.207 1.1242 10 0.8447 1.1032 101 0 1.0044 

53274 1.125 110 0.6482 1. 102q 102 0.8540 1.0842 

32 0.3039 1.1255 111 0.517 1.1027 183 0.85,c 1.083' 

45 0.3104 1.125: 112 0.6551 1.1024 184 0,8305 1.0837 

41 0.3162 1.1243 113 0.6584 1.1021 185 0.0453 10825 

42 0.2 1.1345 114 0.8819 1.1018 186 0.8421 1,0652 

42 0.32 2 6 1.1241 115 0.8453 1.1015 127 ...3439 1.08.52 

44 0,3352 1.1235 116 0.6686 1.1012 1813 0.345" 1.0826 

45 0.3420 11235 117 0.8712 1.1010 10' 0.247.. 1.0823 

42 0,3482 1.1231 118 0.s752 1.1007 14 10 5,8423 1.0023 

47 0.343 1.1228 112 0.s784 1.1004 121 0.850' 1.0521 

48 0.3804 1.1224 120 0.6216 1.1001 122 0.6522 1.0312 

42 0.3864 1.1221 121 0.2842 1.0928 j2 0.0345 1.C2s 

122 0.6880 1.0225 1'4 o.25s0 1.0814 

50 0 	72 1.1217 12 = 22 0.11 1.0923 I'S O.S57 7  1 .38.12 

51 0 	70 1 	1214 124 08242 L .0'0 19 2 335.1 1.0502 

52 0:84 1111  125 2 5,7 1.C25 12 0..8slO 1.0837 

5' 0 	9 .120 125 0.7003 1.0204 18 0.8628 1.0805 

54 0.956 1.104 127 67534 1.3282 122 0.8o42 1.0803 

55 0 .4 017 
120 0.704 1.07 273 0.2458 1.0800 

OO69 1.11 2 7 .0-s 201 0.8t74 1.0778 
57 0.4125 1.1124 130 - 	. 0.7124 1.0973 202 0.88210 1.0792 
58 0.4180 1.1120 131 0,712 1,o'1 203 0.8705 1,5724 
52 0.4235 1.1107 132 0.7121 1.0242 204 0.0721 1.0722 
60 0.4290 1.1184 

203 0.0736 i.078 
61 0.4344 1.1181 134 0.7238 1.0983 20s 0.5731 j,0787 
62 0.437 1.1177 135 0.264 1.026: 207 0.8766 1.0785  
6 0 .4450 1.1174 1=6 0.7224 1.0257 205 0.8731 1.0783 
64 0.4503 1.1171 1 7 7 0.7322 1.0255 209 0.876 1.0721 
65 0.4555 1.1127 138 0.7549 1.052 210 0.3011 1.07 7 E  
66 0.4 607 1.1164 13 0.7374 1.02 	2 4 211 0.8825 1.0776  
67 0.4658 1.1161 140 0.7403 j,Q247 212 0.8840 j.57T4 
68 0.4708 1.1158 141 0.740 1.0244 213 0.8254 1.0772 
89 0.4759 1.1153 142 0.7457 1.041 214 0.8268 1.0770  
70 0.4809 1.1151 143 0.7483 1.0232 210 0.8882 1.0768  
71 0.4858 1.11 48 144 0.7509 1.0955 218 0.88gb 1.0755  
72 0.4907 1.1145 
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Simple no. 	count tue 	simple *6. 	0236 cots 	0-214 cots 	spike cOOS 	16-2)2 cots 16-230 cots spike cots 	4/-0-238 	11-11-231 	•/-Th'232 	/-1h-230 

024 172119 3.60393 5468 6066 22032 82 5140 22)75 0.070 0.032 0.004 0.028 

617* 331193 5.49068 32058 1 4369 44682 239 1 6006 42823 0.035 0.016 0.002 0.036 

GlIb 331233 4.62560 1 0342 11101 46802 07 9744 30769 0.015 0.035 0.000 0.011 

617c 331231 5.74506 12755 1 4428 40655 333 13163 39979 0.035 0.310 0.002 0.035 

6370 333233 6.54989 1002 0362 25999 882 10172 63609 0.016 0.017 0.003 0.033 

617e 90601 6.25990 3723 4356 34252 89 0562 IMS 0.023 0.02) 0.003 0.021 

6177 240362 6.5363 5101 5482 31294 49 8269 21540 0.023 0.022 0.003 0.031 

617g 040362 5.38296 5065 6398 21663 III 6307 23713 0.020 0.021 0.002 0.030 

Wed 245362 5.26230 6307 6156 29003 135 6303 37903 0.017 0.037 0.002 0.035 

358* 92646 5.19303 3889 4239 11574 16 2638 0041 0.223 0.000 0.003 0.033 

3306 92646 6,42342 1 113 5001 14118 20 2899 9706 0.030 0.028 0.002 0.027 

358c 92646 6.96148 1110 4539 30534 22 3117 0991 0.027 0.019 0.0112 0.030 

3580 111311 5.48853 1413 3733 1 3119 24 2630 13611 0.621 0,021 0.002 0.023 

359e 111371 4.00244 1 138 1581 6245 0 2543 11074 0.043 0.041 0.002 0.031 

200* 255870 6.33237 4064 1109 14192 131 6208 24721 0.010 0.039 0.002 0.036 

527* 155889 6.36101 1140 4765 14901 126 4988 21050 0.032 01020 0.003 0.036 

5216 155889 4.94922 1000 3333 1 9000 II? 4374 24430 2.023 0.024 0.014 0,018 

029* 155889 5.05012 5013 0518 21126 82 6442 28530 0.017 0.038 0.002 0.015 

336* 90401 5164097 4366 4765 12016 40 3416 34586 0.020 0.070 0.002 0.022 

1366 90101 6.24469 1110 5150 3209 22 3628 H575 0010 0.020 0.000 0.067 

136c 90401 4.51150 2067 3346 12 1131 31 2302 11199 2.029 0.001 0.607 7.020 

3360 111311 5.55075 2751 2986 7720 54 3716 14621 0.038 0.060 0.003 7.023 

336e 111371 6.00001 3199 3933 9303 28 3069 13423 0.033 0.035 0.002 0.024 

5984 329369 4.44343 11620 12858 51277 228 9082 530)7 0.015 0.035 0.072 0.930 

5980 329369 6.40153 17032 18661 41520 363 12177 41115 0.713 0.034 0.003 0.011 

598e 129369 5.38982 10M 11522 11528 151 11121 52299 0.036 0.036 0.0111 9.932 

5983 329369 6.692)3 20222 32637 12760 198 18095 15930 0.032 0.033 0.007 0411 

5981 92646 5.29717 2926 3385 11148 38 2330 10154 0.020 0.032 0.904 0.127 

508cc 83900 5.22454 3133 4236 21144 57 3200 24904 0.031 

3001 245362 5 5301 5743 5430 16500 44 11,1 11 21113 0 026 0025 0,001 0024 

Pt 85513 t 	10101 3409 3115 11210 4 II 42 1 ) 0025 0021 0002 00.4 

82 85513 489915 2530 2930 10303 0 3 3255 0 	001 0 099 0,030 0000 

03 93900 4 	61522 loll 7957 20534 1 37 IOU 0 073 0034 0 003 0 90? 

C681/87 93900 5 04458 3109 lIlt ?tQo 111 4949 2400 0 	011 9939 0003 0 037 

(686/89 91900 S 	'7411? 4341 5235 21201 32 40I ?45.l 0 	031 0 039 0 	001 0 	030 

c8c/89 80093 6,33039 3006 4125 162*8 II 6534 03i7 0 010 0 	030 0001 0 	011 

(600/89 80080 5 00003 2312 7182 13191 88 1486 22969 0 0 1 ? 0,024 0.000 0 038 

40a/89 158288 4,26746 6632 8979 40052 00 6938 43533 0 	011 0015 0003 0 	011 

40d/89 60084 0.41166 3312 3683 17989 32 3004 23514 0,018 0,939 0.00 ,  0026 

P2/89 158111 5,74999 503 656? IFIV 13 7100 20492 00?? 0023 0.002 0036 

356331 34435 6003 9052 178'5 ci 5?2 36*7? 0016 0 036 0001 0039 

P4/89 903*1 6,0 9 189 1646 3832 5689 93 2160 Opel 003o O 038 0003 0 039 

P5/80 93367 6 	10951 7342 2569 9637 112 3160 19637 0.021 0.920 0.003 0.037 
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P/jo -Rec Mio-Rec 

Mio-Ssci/ Miii -Sici/ 

P1/a -Rec Miii .Rcc 

P/jo -Rec Mio-Rcc 

Miii -Rec Miii -Rec 

P/jo -Rec Miii -Rec 

7\rr Tvrr 

Plio-Rec P/jo -Pee 

1.1 iii -Rec '1uo -R-e- 

Mio -Ca lab Mio -Laua/, 

Miii -L.l'/eist tluo-L.l'kist 

Miii -Rec Miii -P cc 

P/jo -Pee Miii -Rec 

P/ia -Rec Miii -Rec 

Mio-P/io Mio -l'luii 

Pub -P/jo Mio-Rec 

Miii -P/jo Miii Rec 

Trrr-Rec J'lio -Pee 

I'luo -Rec P1w -Pee 

Miii -P/ia Mio -1'/i'o 

P/jo !I1uo -P1w 

l'/uo Miii / 'Ii 

luo -P/jo Mliii -I'/uo 

P/ia -Rec P/u -Pee 

I'/uo -Rec P/ia -Pee 

P/jo -Pee P/ia-Pee 

P/jo -Rec P/jo -Pee 

Aft-Rec Mio-Rec 

Mio-Rec Miii -R cc 

l'/uo 

P/jo Miii -S ici/ 

Miii -Rec Miii -Pee 

Muo-P/eist Miii -/'/clSt 

J'/uii -Rec Mb -Pee 

if iv -P/ia .%-luo -i'/uo 

P/jo -S ici/ P/io-SkiI 

Miii -Rec Miii -Rec 

P/ia -Rec %f iii -Rec 

Miii -Rec Miii -Rec 

P/ia Miii -P//a 

Miii -Rec Miii -Rcc 

/'/uii -Rec Miii -Pee 

luo -Rec Miii -Pee 

P/io P/u 	-Siei/ 

P/io-Rec !'/,o Rc. 

hu) Rec Miii -Pee 

P/jo -Rec P1/a -Pee 

P/jo -R cc P/ia -Rec 

* 

* 	* 

* 	 a 

* 	* 

a 	 * 

a 	 a 

* 

* 

* 	a 	* 

a 	* 	 * 

* 

* 	* 	* 

* 	* 	 a 
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* 	* 	* 	* 

a 

* 

* 

* 	* 

* 	* 	* 

* 

* 	 * 

* 

* 	a 	 a 

* 	 * 

* 

* 	a 

* 	* 

* 

a 

* 	* 

a 

* 	* 	 * 

* 

* 	* 	 * 
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Aooendix D: The occurrence of Plio-Pleistocene molluscs from Cyprus, with a 
comparison of the age ranges of these fauna in the south-east and western 
Mediterranean (after Moshkovitz, 1968). 

Species 	 Pliocene Pleistocene 	Mediterranean stratigraph ic ra n ge 

a b 	c d 	S.E. basin 	Western basin 
Pelecypoda 
Nucu/a nucleus (L) 	 * 	* 	 P/jo -Rec 	 Miii -Rec 

N. su/cata var plana 	 * 

N. sulcata 

N. placentina 

Nuculana pci/a (L.) 

N. ftagilis  

Area noae (L) 

IJarbatua barbata (L) 

B. plicala (L.) 

&zthyarca pectwzcu/oides 

Galactea /acrea (L.) 

.4nadara pectinata 

A. di/uvii 

Glycynieris cor. (link.) 

G. bi,nacuuata (P0/i) 

G. giyçyrneris (L) 

G. inJhatus (Br.) 

Limopsis aurUa 

L. anomaua 

Pinna nob i/is 

Pecten jacobaeus 

P. bened fetus 

P. reghiensis 

Fiabel/ipecten a/essii 

Arnu.siu,n cri.ctatun, 

Chabnysflcxuosus 

Ch. hva/ina 

Ch. ciavatus 

Ch. pesfelis 

Ch. varius 

Ch. rnu/tictruatus 

C/i. zenonis 

Ch. ange/onii 

Ch. opercuharis 

Ch. bol/enensis 

Spondvius quaedenopus 

S. crassicosta 

Plicatula rnvti/ina 

Anomia ephipiurn 

Lima lima 

Ostrea edulis 

a cucullata 

Pvcndonta cochlear 

Cha'na gryphina 

Ch. grvpho ides 

Ch. placentuna 

Lucinafragi/is 

Jagonua decussata 

Dirarice//a diva ricata 

Loripes /acteu.s 



Megaxinus trans versus * 

M. ellipticus * 	* 

P/wco ides orbicularic 

P. borealis * 

Myrtea spinifera * 

Diplodonta rotundata 

Card/ta antiquata * 

C. corbis 

C. rhoinbo idea * 

Beguina trapeza * 

B. calyculata 

B. intermedia * 	* 

acu lea/a * 

Astarteflisca * 

Cardiwn cc/I jnatu,n * 	* 

• tuberculatum 

• edu/e 

exjguurn 

Churns * 

C. erjnaceurn * 

C. acu/eaturn * 

Parvicardiwn papillaswn * 

Laevicardiurn ob/ongurn 

L. crossuns 

cypriuin * 

Mactra coralljna 

Spisula subtruncata * 

Eastonia rugosa 

Dona.x truncu/us 

Quadrans serratus * 

Gastranafragili.s 

Angu/us compressus 

Arcopagiacorbis * 

Solecurtus ant/qua/us * 

Isocardia hurnana * 

Venus verrucosa 

V. rnulijlarnel/a * 	* 

Chione gal/ma * 

C. fasciata 

C. ova/a * 

Cord topsis is/andicordes * 

Call/s/a c/i/one 

Corbu/agibba * 	* 

Panopaeafaujasi * 

Gastropoda 
Hal/otis lamellosa 

Ernarginula huardi 

E. cancellata 

E. elongata 

Djodora ira//ca * 

Pate/la caeru/aea 

Gibbula ardens 

G. magus * 

Monodonta turbinatus 

art/cu lata 

Ca/linstoina e.xasperatus 

C. striarus 

C/anu/uc coral! inus 

/)/j. Tyrr Mio-Rec 

['110 Mio-Rec 
* P/jo Mio-l'lio 

P/jo -Pleist Mjo -Rec 
* 	* Mio-Tvrr Mio-Rcc 

* P/jo -Rec P/jo .Rec 
* !'/io-Rec P/b -Rec  
* LP/ejst-Rec Pilo-Rec 

1>/jo P/jo 
* Plio-Rec PIio-Rec 
* P/b -Rec Mw -Rec 

P/jo P/b 

P/jo -Rec Mb -Rec 

P/to -Rec 1>/jo -Rcc 

Mjo -Rec Mio-Rec 
* 	* P/jo -Rec Mb -Rec 

* Mjo-Rec P/io.Rec 
* 	* P/b -Rec Plio-Rec 
* Mio-LPleist f'fw-Rec 

P/to -LPleict P/io -Rec 

P/jo -Rec P/jo -Rec 
* 	* Mb -Rec Mio-Rec 
* 	* P/jo -Rec P/jo -Rec 

* P/jo-Rec i'Ijo-Rec 

Mjo -P/jo Ml iv -['1/u 

* Tvrr-Rec ['/10 -Rec 

* i'ljo -Rec 1ljo -kv'c 

* L.P/ejsf- Tyrr ['I/o .Rc 
* ['liv -Rec P/jo .R 

* Pijo-Rec P/jo -Rec 
* Tvrr-Rec P/jo -Rec 

* Mjo-L.P/ejst Mbo-Rec 

Plio-LPlez.st Mio-Sjcjl 

P/jo-Rec PIjo -Rec 
* P/jo -Rec P/jo -Rec 

* P//v -Rec Mio-Rec 
* Mjo-L.l'IcLci Mio-Rec 

* P/jo -Rec Alio-Rcc 
* P/jo -Rec Mjo -kec 

* P/jo -Rec ,l4io-Rcc 

Mb •Plio Mio-Plio 
* 1'/jo-Rec Mjo-Rcc 

* Mb -Rec O/jgo -Rec 

Mio-L.1'/e4st Mio-1..['leict 

* Tvrr-Rcc 1'/O)-Rec 

* /vrr-Rec !'lio -Rec 

* Tvrr-Rec ,iio-Rec 

* Tvrr-Rcc l'ljo -Rec 
* Mjo -Rec Mio -Rec 

* lyrr-Rec P/b -Rec 

* Tvrr-Rcc P/jo -Rec 

Mbo-Rec Mio-Rec 

* Tvrr-Rec P/jo .Rec 

* Tvrr-Rec P/w-Rec 

* 	* LPleist-Rec Mio-Rec 

* 	* P/jo -Rec P/jo -Rec 

* LI'Ieict-Rec Mio-Rec 



C. cruciatus * P/io -Rec P/to -Rec 

Ilomaloporna sanguinewn * LP/eLtRec Alio-Rec 

Atraea rugosa * * Mio -Rec Mb -Rec 

Tricolia pu/ia * * * P/jo -Rcc P/io -Rec 

T. tenuic * Tyrr-Rec P/ei.ct-Rec 

T. speciosa * Tyrr-Rec I'lio -Rec 

TurrLtella decipiens * P/eist-Rec Pleict-Rec 

T. trip/icata * * * P/jo -Rec Mio-Rec 

7 	-jyjp * * Mio-Rec Mio-Rec 

T. pliorecens * P/jo -L.P/eisi P/jo -Sicil 

T. communis * Mio-Rec Mio-Rec 

T. bicarinata * Plio P/jo 

T. subangu/ata * 	* Mw -Ca lab Mio-Ca/ab 

T. tornata * Mba -L.Plcist Mio -Ca lab 

Tenagodus anguinas * lvrr-Rec Pleist-Rec 

Bi(riu,n latrei//ei * * LP/eist-Rec P/eLct-Rec 

B. rericulatum * * P/jo -Rec Mio-Rec 

Cerithium vulgaturn * * * Mio-Rec Mio-Rcc 

• Yulgatwn var spiiwsa * Jvrr-Rec Plei.st-Rec 

• wricosum * * Mb -('a lab Mjo -Ca lab 

Ep lion bum pseudosca barbs * P1w -L. P/cbs! P/ia 

K. communjs * Mbo-Rec Mio-Rec 

K. conimutata * P/ia -Rec P/jo -Rec 

Pyramide/la p/icosa * P/jo Mb -P/jo 

Crepidula crepidu/a * !'/ia-Rec Mio-Rec 

Xenophora crispa * * P/jo -Sjcil P/jo -Rec 

Strombus bubonius * Tirr Tvrr 

S. coronatl4s * 	* Mio-L,P/eist Mb -P/jo 

Aporrhaispesphcani * * * P/jo -Rec P/jo -Rec 

A. uttingerbanus * 	* * Mb-Ca/nb Mb -Ca lab 

Poynices /acteu.s * Tv,r CalabTvrr 

P. jesephinus * Mbo-Rec Mjo-Rcc 

P. fusca * 	* * P/ba-L Pie ist Mio-Rec 

Natica millepunctata * Sic j/-Rec Sici/-Rec 

N. figrina * * Mbo-Ca/ab i'/io-Ca/ah 

Cymatium corrugatuni * * P/ia-Tvrr P/b 

Talparia lurida * 7)irr-Rcc Pleist-Rec 

Murex rudis * * Ca/ab.1)rr Mbo-t'/io 

trunculus * P/jo -Rec P/jo -Rec 

Al.bra ndaris * * * J'/boRec P/jo -Rec 

Acamptochetus mi/raefor'nLc * 	* P/jo  

Euthria cornea * * I'/jo-Rec I'ljo-Rec 

Co/umbe/la rustica * Tvrr-Rcc i'lio-Rec 

Nassa mutab i/is * P/ia -Rec i'lju -Rec 

N ferussaci * Trrr-Rcc !'iio -Rec 

/ouisi * Ti'rr-Rec 

N. gibbosu/a * 7,vrr-Rec P/jo -Rec 

N semistriata var transitans * I'/io P/jo 

N. sernLctriata var gbgantu/a * P/jo -Rec P/io-Rec 

N. reticulata * Pilo-Rec P/jo -Rec 

N. prisn:atIca * Ca/nb J'/bo-Ca/ab 

Fusus s3'racusanus * Tyrr-Rec P/jo -Rec 

K /ongiroster * 	* P/jo P/jo-Ca lab 

Cancel/aria cancellata * P/bo-Rec P/jo -R cc 

Conus med lierraneus * P/jo -Rec P/jo -Rec 

• testudinarias * 7'vrr Trr 

Cpe/agicus * P/ba P/to 

Ringku/a auricu/ata * P/jo -Rec P/jo.Rec 

R. veniricosa * * P/to- Tvrr Mb -P/cast 



* 

Scaphander lignarius 

Scaphopoda 
Dentalwrn inaeguicostatwn 

D. vu/gaTe 

D. rectum 

D. miche/otli 

D. sexangulurn 

D. no vemcostatun, 

Fust (aria jani 

* Plio-Rec Mia-Rec 

* 	* L.Pkist-Rec P/jo -Rec 
* P/jo -Rec I'/io-Rec 

* Mia-Sicil 
* 

Mb -S ic/I 

Plio Mb -P/jo 
* Mb-P/io Mio -P/jo 

Mio-PIeLct Mio-Rec 

* P/to Mio-PIeLct 

a = Lower Pliocene, b = Upper Pliocene, c = Lower Pleistocene (Calabro-Sicilian), d = 
Middle Pleistocene (Tyrrhenian) 

Oligo = Oligocene, Mio = Miocene, Plio = Pliocene, Pleist = Pleistocene, Calab = Calabrian, 
Sicil = Sicilian, Tyrr = Tyrrhenian, Rec = Recent 



APPENDIX E: X-RAY FLUORESCENCE AND X-RAY DIFFRACTION DATA. 

The data presented in the following tables have been documented in Chapter 
5. X-ray fluorescence and diffraction data comes from the Meniko and Astromeritis 
boreholes, situated on the north Troodos margin (Fig.5.27). Detailed clay 
mineralogy is shown in figures in Chapter 5. Reference plots of the mineral phases 
generated by the X-ray diffraction studies are presented on acetate to ease 
identification. The reference plots have peak height percentages plotted along the 
"Y" axis with the 20 diffraction angle plotted along the "X' axis. The peak height 
plots of the borehole data are shown with counts on the "Y" axis versus 20 
diffraction angles on the 'X' axis. 



MBH I I11311 	2 MBII 3 MBII 4 MB!-! 5 MBII 6 MB1! 7 MBII 8 MBII 9 MBH 10 MB!-! 	II M1311 	12 MBH 13 MBH 14 MBH 15 
SiO2 56.05 56.37 55.61 55.73 57.71 58.24 60.2 60.61 61.01 5936 59.12 56.27 56.65 57.22 5734 

CD 
A1203 15.11 15.2 15.34 15.33 14.94 14.76 1197 13.69 12.94 12.59 12.82 12.08 12.38 12.56 12.64 - 

Fe203 10.36 10.79 11.37 11.25 10.82 11.34 10.13 1023 8.95 8.52 8.78 959 9.76 9.6 8.85 
MgO 346 4.34 4.56 4.4 3.77 3.55 3.01 3.46 3.36 3.46 3.07 3.56 3.5 3.27 5.17 
CaO 3.46 5.76 5.61 5.5 3.75 4,16 5.23 4.83 5.2 6.04 7.19 8.61 8.13 8.19 6.16 
Na2O 2.13 3.71 3.57 349 1.99 244 2.7 2.71 2.98 2.89 2.96 2.72 2.74 2.55 3,04 
K20 1.23 0.34 0.36 0.39 0.79 0.59 0.29 0.3 0.42 0.44 0.28 0.32 0.32 0.3 0.47 
Ti02 1.11 0.95 0.96 097 0.94 1.04 0.92 1.07 0.94 0.92 0.87 1.11 1.1 1.08 1.08 
MnO 0.2 0.16 0.17 0.17 0.17 021 0.16 0.15 0.14 0.12 0.11 0.13 0.13 0.13 0.12 
P205 0.18 0.06 0.07 007 0.06 0.06 0.07 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.05 
LOl 6.54 2.78 3.02 3.21 4.75 4.25 3.77 3.55 4.35 5.23 5.07 5.97 5.51 5.17 4.87 

Total 99.83 100.46 100.64 100.51 99.69 100.63 100.43 10065 100.32 99.63 100.32 100.42 100.25 100.12 99.79 

Ba 166.5 36.5 34.3 45.6 32.9 57.4 28.7 26.3 25.6 8.4 22.7 16.3 23.2 19 7.6 
La 20.5 2.5 4.4 15.2 7.8 3 3 6.6 6.9 4.1 2 2.2 0.3 0.4 6.8 
Ce 40.7 2.6 4.1 4.7 10.3 4.9 0.1 -6.4 -1.2 5.1 -0.8 -4.7 2.8 -9.1 3.8 
Sc 37.7 41.7 42 42.5 50.2 46.3 37.7 42.9 38 36.8 33.2 36.9 37.3 36.2 35.6 
V 256.8 2872 302.2 302.4 259.2 270 268.9 283.3 274.3 273.3 268.3 303.2 307.4 304.5 300.1 
Cr 160.2 513 50.8 60.7 246.2 263.6 176.4 290.2 345 306.3 167.9 352.5 336.4 284 285.7 
Cu 86.5 83.5 89.4 83.3 115.4 96.9 72.1 63.1 52.8 51.7 47.4 42.8 44 43.2 33.6 
Ni 61.1 25.1 29.2 28.6 54.9 45.8 27.8 44 66.4 67.1 38.6 61.1 60.3 50.3 84.4 
Zn 110.5 76.3 82.1 82 111.3 93.7 94 79.9 76.8 78.9 63.2 64.7 78.1 67.3 73.3 
Sr 1114 140 140.2 137.6 97.2 105 1225 111.2 144.1 163.2 162.1 136.1 135 144.2 192.4 
Rb 31.1 6.7 3.4 5.9 12.6 11.3 7 6.7 11.4 7.6 9 10.1 7.2 7.9 8.8 E 

Ba/Al 11.02 24 2.24 2.97 2.2 189 2.05 1.92 1.98 0.67 1.77 1.35 1.87 1.51 0.6 
l.a/Al 1.36 0.16 0.29 0.99 0.52 0.2 0.21 0.48 0.53 0.33 0.16 0.18 0.02 0.03 0.54 2. 
Ce/Al 269 0.17 0.27 0.31 0.69 0.33 0.01 -0.47 -0.09 0.41 -0.06 -0.39 0.23 -0.72 0.3 
Sc/Al 2.5 2.74 2.74 277 3.36 3.14 2.7 3.13 2.94 292 2.59 3.05 3.01 2.88 2.62 
V/Al 17 1889 19.7 19.73 17.35 1829 19.25 20.69 21.2 21.71 20.93 25.1 24.83 24.24 23.74 
Cr/Al 10.8 3.38 3.31 396 16.48 17.86 12.63 212 26.68 24.33 13.1 29.18 27.17 22.61 22.6 
Cu/Al 5.72 5.49 5.83 543 7.72 6.57 5.16 4.61 4.08 4.11 3.7 3.54 3.55 3.44 2.68 
Ni/Al 4.04 165 1.9 1.87 3.67 3.1 1.99 3.21 5.13 5.33 3.01 5.06 4.87 4 6.68 10 

Zn/Al 7.31 5.02 5.35 5.35 7.45 6.35 6.73 5.84 5.94 6.27 4.93 5.36 6.31 5.36 5.8 
Sr/Al 75 9.21 9.14 8.98 6.51 7.11 877 8.12 11.14 12.96 12.64 11.27 10.9 11.48 15.22 
Rb/Al 2.06 0.44 0.22 0.38 0.84 077 0.5 0.49 088 0.6 0.7 0.84 0.58 0.63 0.7 



ABJI 	I ABH 2 ABH 3 ARH 4 ABH 5 ABH 6 ABH 7 ABU 8 
Si02 52.2 53.03 53.38 56.43 55.6 58.5 5879 58.89 
A1203 18.07 14.35 14.74 15 15.52 13.64 1432 13.94 
Fe203 12.6 10.48 10.84 11.47 11.61 10.23 10.68 9.98 
MgO 3.21 4.38 4.22 4.12 4.32 4.05 3.9 4.31 
CaO 2.7 6.94 6.06 5.13 3.39 5.68 4.05 4.59 

-Na2O 2 3.19 2.99 3.65 3,31 2.73 2.67 3.05 
K20 0.95 0.35 0.4 0.26 0.32 0.27 0.37 0,35 
1102 1.09 1.02 1.06 1.11 1.13 0.87 0.99 0.96 
MnO 0.13 0.16 0.17 0.16 0.15 0.17 0.11 0.14 
P205 	' 0.07 0.05 0.05 0.06 006 0.06 0.05 0.05 
LO! 7,29 605 6.37 3.25 5.01 3.99 4.35 3.92 

Total 100.3 9999 100.27 100.64 100.41 100.19 100.29 100.17 

Ba 88.4 29.7 38.6 31 12.9 42.3 23.6 22.9 
La 22.3 5.2 10.6 6 6.6 -1.1 7.6 7.5 
Ce 28 2.3 6.9 -7.7 4.3 -3.7 4.3 9.5 
Sc 49.8 39.7 42.9 43.4 48.7 42.8 44.3 45.3 
V 289.4 269.9 274.1 306.2 379.8 275.3 404.5 278.4 
Cr 114.9 49.6 59.4 46.3 67.4 650.6 408.4 334.7 
Cu 80.2 77.6 86.7 57.1 101.1 69.5 59.7 55.8 
Ni 503 26 30 22.5 33.3 206.6 107.2 113.6 
Zn 87.3 85.2 91.2 73.3 97.6 69.4 71.9 82.9 
Sr 99.3 133.4 121.5 119.9 106.6 112.1 97.8 107.7 
Rb 29.1 7.8 9.5 4 2.8 4.8 8.7 8.1 E 

0. 
Ba / Al 4.89 2.07 2.62 2.07 0.83 3.1 1.65 1.64 
La / Al 1.23 0.36 0.72 0.4 0.43 -0.08 0.53 0.54 
Ce / Al 1.55 0.16 0.47 -0.51 0.28 -0.27 0.3 0.68 
Sc / Al 2.76 2.77 2.91 2.89 3.14 3.14 3.09 3.25 
V / Al 16.02 18.81 18.6 20.41 2447 20.18 28.25 19.97 
Cr / Al 6.36 3.46 4.03 3.09 4.34 47.7 28.52 24.01 
Cu / Al 444 5.41 5.88 3.81 6.51 5.1 4.17 4 
Ni / Al 2.78 1.81 2.04 1.5 2.15 15.15 7.49 8.15 
Zn / Al 4.83 5.94 6.19 4.89 6.29 5.09 5.02 5.95 
Sr / Al 5.5 9.3 8.24 7.99 6.87 8.22 6.83 7.73 
Rh / Al 161 fl1 064 0?? 016 01 061 (1R 

ABII 9 	ABH 10 	ABH 11 	AOl! 12 	ABH 13 	ABH 14 	ABH 15 
58.9 55.79 57.8 5869 59.16 59.08 59.24 

14.36 15.02 14.61 13.71 13.95 13.11 13.14 
11.18 1158 11.11 10.21 11.09 10.7 10.95 CD 

3.7 4.6 4.39 3.96 3.97 3.53 4.16 
D. 

3.34 381 4.17 5.18 3.81 5.06 4.31 
2.89 3.46 3.44 3.03 3.04 3.05 2.84 
0.43 0.31 0.26 0.22 0.34 0.3 0.36 
1.23 1.09 1.03 0.96 1.24 1.25 1.31 - 
0.15 0.23 0.16 0.14 0.14 0.14 0.16 
0.05 0.09 0.08 0.07 0.05 0.06 0.06 
4.05 3.95 3.4 4.56 3.51 4.13 3.45 

100.35 99.93 100.44 100.72 100.29 100.42 99.98 

21.8 33.5 22.6 20 19.6 18.3 8.8 
1.7 6.5 -3.1 4.6 3.2 9.6 3.4 
0.6 1.3 6.5 4 -2.2 12.8 3.6 

44.8 48.6 42.9 38.2 41.9 39.6 45.8 
292.1 288 286.6 248.9 309.6 292.6 327.9 
243.2 69.2 91 191.5 158.7 120.2 152 

59.7 89.5 70.8 59.3 76.4 62.7 64.8 
70.8 36.2 40.1 59.7 43.4 41.6 59.6 
87.4 86.7 73.4 59.7 85.3 67.7 68 
96.5 104.7 125 115.6 123.4 121.3 131.4 

9 3.2 3.2 5.8 7.3 5.7 6 

1.52 223 1.55 146 1.41 1.4 0.67 - 
0.12 0.43 -0.21 0.34 0.23 0.73 0.26 
0.04 0.09 0.44 0.29 -0.16 0.98 0.27 

CD 

3.12 3.24 2.94 2.79 3 3.02 3.49 
20.34 19.17 19.62 18.15 22.19 22.32 24.95 
16.94 4.61 6.23 1397 11.38 9.17 11.57 
4.16 5.96 ' 485 4.33 5.48 4.78 4.93 
4.93 2.41 2.74 4.35 3.11 3.17 4.54  Ls- 
6.09 5.77 5.02 4.35 6.11 5.16 5.18 
6.72 6.97 8.56 8.43 8.85 9.25 10 
061 021 022 0.12 052 041 0.46 



['able E3. X-ray diffraction peak plots from the Meniko borehole. 

Note: Meniko borehole samples are numbered AP12. 
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Table E4. X-ray diffraction peak plots from the Astromeritis boreh 

Note: Astrorneritis borehole samples are numbered APM 12 
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Late Quaternary uplift of the Troodos ophiolite, Cyprus: 

Uranium-series dating of Pleistocene coral 

Andrew J. Poole, Graham B. Shimmield, Alastair H.F. Robertson 
Department of Geology and Geophysics, University of Edinburgh. West Mains Road, Edinburgh EH9 3JW, Scotland 

ABSTRACT 
In an attempt to constrain the timing and mode of tectonic uplift of the classic Troodos  

ophiolite. colonial corals were collected from Quaternary littoral raised terraces in coastal 

southern Cyprus and dated using the uranium-series disequilibrium method. A total of 28 

samples of Cladocora coespitosa were collected at five localities from the 8-11 -m-high and 

<3-rn-high marine terraces. The corals yield systematic ages of 185-192 ka (ka = 10 3  yr) and 

116-130 ka for the 8-I1 rn and <3 m terraces, respectively. When correlated with the global 

oxygen isotope stages, the results suggest that southern Cyprus was uplifted by 18 in during 

the past 185-192 ka, as a single tectonic entity. Of this uplift, 13 m took place between 130 and 

185 ka (at -24 cm/ka), and a maximum of 6 m of uplift (at 5cm/k2) took place over the past 

116 ka, but with some evidence of coastal subsidence in more recent time. An exception, the 

extreme southeast of Cyprus (Cape Greco), was perhaps uplifted faster during the past 141 ka, 

at a rate of 12 cm/ka. 

GEOLOGIC SETTING 
The Troodos ophiolite is one of only several 

examples of oceanic lithosphere in the process of 

being emplaced onto continental crust (Gass and 

Masson-Smith, 1963). Available offshore geo-

physical data indicate that Cyprus is astride an 

active plate boundary, along which the African 

plate is being subducted northward beneath the 
Anatolian microplate (Fig. I; McKenzie, 1970; 

t.ort. 1971: Kempler and Hen-Avraham, 1987). 

Onland geologic evidence indicates that the 

pulsed uplift of southern Cyprus began in mid-

Tertiary time, and then accelerated in the late 

Pliocene-Quaternary (Robertson, 1977; McCal-

lum and Robertson. 1990). 

STRATIGRAPHY 
The corals we dated are from Quaternary 

raised marine terraces located around the mar-

gins of the Troodos ophiolite in southern Cyprus  

(Fig. 2). The terraces are present in all areas 

between I and 610 m above present-day sea 
level (Turner, 1971). During our work we rec-

ognized and correlated four distinct marine ter-

races throughout southern Cyprus (Poole and 

Robertson, unpublished). Fauna suitable for 

uranium-series method dating are absent from a 

350-rn-high Pliocene(?) terrace (W. M. Turner, 

unpublished; Ducloz, 1965; Dreghorn, 1978) 
and the highest Quaternary terraces (at -60 and 

Figure 1. Tectonic setting 
01 Cyprus In northeastern 
Mediterranean, showing 
relative motions along Cy-
prus arc (after McCallum, 
1989). 
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100 m) and are thus not considered further here. 

However, the cosmopolitan, hematitic Mediter-

ranean scieractinian coral Cladocora cacapuosa 
is abundant in the two lower marine terrace lev-

els, located within 8-I1 m and <3 m of the 

present-day sea level. The corals typically form 

colonies 1-2 m in diameter and are associated 

with a diverse mollusk fauna (Moshkovitz, 

1968) and a littoral carbonate grainstone facies. 

The marine coral-bearing terrace sediments dis-

play gradational regressive littoral successions 

(see Fig. 2) and are overlain conformably by 

I Coral Bay 
2 Paphos 
3 Dhekelia 
4 Larnace 
5 Cape Greco 

0 	3 
rn 

Rn = Regression 

1 	
Base of each section 	4 

represents present-day 	JR 
JRn sea level 

Is 
• specimen 
[j355 	 Rn 

Rn 

Figure 2. Schematic sedimentary sections and location of sampling sites. 

TABLE I. U AND Th ISOTOPIC cuMposmoNs. MINERALOGICAL AND AGE DATA FOR LATE QUATERNARY 
CYPRUS CORALS 

sample Localfly 	Tcmze 	U/U 	"fla/Th ZYW34U 	Th 	U 	Arag. Age 

Iright (nl 	 (dan/g) )ppm( 	1%) 	(ka) 

021 Laosaca S- Il 1.10±002 68.67±8.15 0.84±0.01 0.03 2,99 90 IRS 12 

6171 Lansaca 9-11 I 16±0)01 6333 ±4.38 101±0.01 003 119 99 s 300 

617b La,naca 8.11 1.13±0.02 85.50±733 1.03±0.01 0.02 1.97 99 >3(81 

617c L.antaca 8.11 1.13±002 4175±2.51 088±001 0.04 223 97 209±7 

6174 L.an±aca 8.11 1,06±002 84.00 ±6.18 1.11 ±002 0.02 1.90 98 >5151 

617e Lansaca 8-11 1.14 ±002 43.0014,85 086±002 0.03 176 98 197 ±16 

6171 Laniaca 8-11 1.07±002 1340±1979 0.97±001 001 1.98 98 >300 

6175 L.unaca 8-11 I (19 too 1 4167±349 0.77±0.01 0.03 2.00 83 

6I7ed Lamaca 8-I1 I 07 ±003 3933±286 0,84 ±002 0.03 1.76 92 IS) ±12 

158a Coral Bay 8-Il 1.11±0.02 1610 ±41.98 0.82±0.02 0.01 239 91 176 ±10 

SSRb Coral Bay 8.11 Ill ±0.02 146.0 ±32.38 0.86±002 0.01 103 94 196 ±12 

358< Coral Bay 8-11 1.11 ±003 176.0±4197 0.90±002 0.01 2.3.4 93 226 ±17 

3584 Coral Bay 0-I1 1,08 ±002 111,0 ±22.66 0.72 ±001 001 I 92 70 

358< Coral Bay 8-11 1.03±003 Na. 0.86±0.02 0.00 2.11 92 196112 

2t8)2 CapeGieco 8.11 1.1114)02 4167±3.25 091±0.02 003 1.67 91 229±16 

3272 Cape Greco 8.11 1.14 ±002 3933 ±3 46 0.74 ±0.01 0.03 1,87 91 141 ±4 

±276 Cape Greco 8-I1 1.00±0)02 32.25 ±2.89 1.09±002 004 1,59 RI 

±10 (apr'(1reco III I 	11±4)03 61110±5.18 088)4)02 1)1)2 167 9) 2119(16 

l'apI.'. -. 	I I II)))) III 61,30±030 0.116±0)01 002 240 96 III ±3 

14±6 l'aploo S I 09±0.03 1260±2023 0.66 ±1) 02 001 1 36 11(0 112 ±6 

±26c Pa1*,rrs <3 1.17±41,03 5750±001 064±002 0.02 206 96 IllS (6 

±961 Paplios c  108±002 7200 ±10.17 0.67±001 0.02 2.65 98 117±4 

13he Paplwa <3 1.09 ±0.02 1510±30.85 0.70±001 0.01 263 100 123±4 

598o I)lakelia <3 1.101,0.01 42.33±2.96 073001 003 210 95 138±4 

5984 Dhckeha >3 1.09±001 64,30 ±4.27 0,69±0.02 002 230 99 122±3 

598e L)6ekelia <3 1,10±0)1)2 63 50 t4,34 0.73 ±001 0.02 2.13 97 I ±5 ±4 

5981 l5wkelta <3 I 12±0.01 6800±4,00 0.69±0.01 0.02 2.35 98 123±3 

598g t)lwkelia <3 I 	15±11.03 62,00±11.09 0.72±0.02 0.02 2.01 99 232±7 

555 Coral Bay N a 0.91 ±002 2550±37.83 1.40±0.02 0.01 168 91 >3181 

P1 Bai4,ado± Na, 1.15±0.02 N a. 0.01 ±0100 0.01 1.93 93 Recon 

In Barbados N.a 1,16±0.02 i4.a 001±000 0.00 2,04 100 R<crni 

Not: 	Na. nrc applicable. 

'Age owaiid as the sample contains <90% aragosine.  

colianite and karst, as reported elsewhere in the 

Mediterranean (Butzer, 1975). Sedimeotological 
evidence and the presence of paleo-cliff lines, 

wave-cut notches, and paleo-shorelines suggest 

that the Cl.adocora caespiiosa colonies grew in 

shallow water, at depths not exceeding 10 m 

(Poole and Robertson. unpublished). The major-

ity of the corals sampled were in life position. 

SAMPLING AND ANALYTICAL 
TECHNIQUES 

Cladocora caespiiosa coral was collected 

from the 8-I1 m terraces at three localities 

(Cape Greco, Larnaca, and Coral Bay; Fig. 2) 

and from the <3 m terrace at two localities (Pa-

phos and Dhekelia, Fig. 2). Samples of unal-

tered aragonitic coral without signs of calcite 

replacement (Husseini and Matthews, 1972) 

were selected for isotopic analysis with optical 

microscopic examination and X-ray diffraction. 

Uranium and thorium isotopes were analyzed 

by alpha spectrometry using silicon surface bar-

rier detectors, following the method of Veeh 

(1966). Complete dissolution of 4.5-6.0 g of 

sample, followed by standard ion-exchange sep-

aration and electrolysis, prepared the separate U 

and Th sources. A mixed spike of 232U and 

8Th was used to determine the isotopic activi-

ties of the 212Th, LOn, 228U, and 2 U iso-

topes. The samples were counted for two to 

three days to obtain the requisite counting statis-

tics. Exclusive U and Th isotope detectors were 
used to minimize the alpha-recoil contamina-

tion. Background counts with use of identical 

conditions were routinely determined prior to 

the counting of each sample. Two modern sam-

ples of Ponies ponies, a Barbados coral (Pt, 

P2), were analyzed as a control (Table I). The 

errors quoted here (Table I) are calculated as 

one standard deviation (I a) of the counting 

statistics. 

RESULTS OF ANALYSIS 
As shown in Table I, the 232Th activity is 

consistently very low (less than 0.004 dpm/g). 

This indicates that little detrital clay is present as 

a contaminant and that little or no thorium was 

introduced after death of the coral. In addition, 

the initial 23oTh of the control samples (P1, P2) 

is also extremely low and is therefore consistent 

with a recent age of formation, ruling out possi-

ble analytical contamination during analysis. 

The 234U/ 238U ratio of the Barbados samples 

(1.15 ±0.03) and younger Cyprus corals corre-

sponds to the expected initial ratio of modern 

seawater (Bender et at., 1979; Chen et at., 1986; 

Edwards et at., 1986-1987) following decay 

correction. Contrasting results were, however, 

obtained from the older samples collected from 

Larnaca and Coral Bay (Table I), which exhib-

ited initial activity ratios greater than 1.14. 

following decay correction (solid line in Fig. 3). 

Some other results also appear to be anoma- 

Eolinite 
Caicrete 
Conglomerate 
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Pliocene marl 
Unconformity 

Rn 
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bus. Specimen 355 from Coral Bay is consid-

ered to be unreliable for the following reasons: 

the 2 U/ 238U activity ratios, compared with 

the theoretical curve (Fig. 3), suggest an age 

greater than the upper limit of the method, ca. 

300 ka (Broecker, 1963). Sedimentological and 

nannofossil evidence (A. Lord and L. Gallagher, 

1989, personal commun.) suggest that the ter-

race containing the coral can be correlated with 

Pliocene shallow-marine successions found else-

where in Cyprus (Poole and Robertson, unpub-

lished). Of the coral samples collected from 

Larnaca, four yield results consistent with the 

geologic and stratigraphic data, and three 

other samples give anomalous results. These 

(617a, 617b, 617d) have 230Th/114U  ratios 

greater than 1.01, and it is likely that 23&fl  has 

been added to the system, for the following rea-

sons: (I) results from the control samples Pt and 

P2 militate against contamination of the analyti-

cal equipment (2) the high 230Th/ 232m ratios 

indicate the presence of a closed system; and 

(3) high initial 2 U/ 238U ratios suggest that 

234 U has not been lost. Bender et al. (1979) 
showed that 230Th enrichment has taken place 

in corals older than ISO ka from Barbados and 

that 23GTh  could have been released into ground 

water from dissolving mollusk shells and then 

scavenged by the coral, increasing the 230Th/ 

234 U ratio as a consequence. The anomalous 

spread of ages obtained for the Cape Greco ter -
race (Fig. 2) could reflect the fact that this is a 

death assemblage, potentially containing coral of 

1.40 

1.20 

Co 
pn 

D 

N 

.00  

different ages. In this case, the two older samples 

(200a, 529) have been reworked into position 

prior to lithification, while the younger sample 

(527a) yields an age for the terrace which is 

consistent with geologic and stratigraphic data. 

DISCUSSION 

Sea-Level Changes 
Any interpretation involving tectonic uplift of 

Cyprus must first take into account Quaternary 

eustatic sea-level change. Thus, the uranium-

series age data (Tables I and 2) can be consid-

ered in the light of the known chronostratigrapb-

ic ages of Quaternary global oxygen isotope 

stages (Chappell and Shackleton, 1986). On this 

basis, the 185-192 ka age ofthe 8-I1 m marine 

terraces suggests a correlation with global oxy-

gen isotope stage 7, and this, in turn, supports 

the view that no more than 18 m of uplift has 

taken place since this time, assuming that the 

corals formed at a maximum water depth of tO 

m. Similarly, the lower marine terrace, <3 m 

above present-day sea level, can be correlated 

with the sea-level maximum recorded by oxygen 

isotope substage Se, 5-8 rn higher than the 

present-day maximum (Mesolella el al., 1969; 

Bloom et al., 1974; Chappell, 1974; Steams, 

1976). 

Uplift of the Ophiolite 
Sedimentary evidence has established that the 

Limassol Forest ophiolite of southern Cyprus 

was wholly emergent and eroding in early Mio- 

o Lornoco 
13 Coral Boy 
A Cape Greco 
*( Paphos 
* Dhekelio 
*Coral Boy (sample 355) 

Barbados 

cene time (Robertson, 1977; Eaton, 1987), 

while the main Troodos ophiotite to the north 

remained mainly submerged, with little erosion 

until early-late Pliocene time (McCallum. 1989; 

McCallum and Robertson, 1990). Strong uplift 

of the Troodos ophiolite was delayed until late 

Pliocene-early Quaternary time, as documented 

by the ophiolite-derived alluvial conglomerates 

that radiate from Mount Olympos in the center 

of the Troodos massif (Robertson, 1977; Poole 

and Robertson, unpublished). At present the al-

luvial conglomerates have only been dated using 

a late Pliocene-early Pleistocene fauna, includ-

ing ostracods (Kakkaristra Formation: McCal-

lum, 1989). Current work indicates that the 

alluvial conglomerates can be correlated with 

the higher, undated, marine terraces, while the 

8-I1 m and <3 m terraces studied here are 

distinctly younger and postdate the main phase 

of uplift (Poole and Robertson, unpublished). 

Thus, the 185-192 ka ages obtained for the 

8-I1-rn-high marine terraces imply that the 

main phase of tectonic uplift (350 m along the 

coast) must have taken place earlier. It is un-

likely that rapid uplift is still taking place. On 

the contrary, in some areas of coastal Cyprus 

(i.e., in the Limassol and Paphos regions) ce-

mented beachrock, littoral terrace deposits, and 

archaeological sites are now partially submerged 

(Moshkovitz, 1968; Flemming, 1978; Poole and 

Robertson, unpublished). 

The new uranium-series isotopic age data 

show that terraces at similar heights over widely 

spaced areas of coastal Cyprus (8-11 m and <3 

m above present-day sea level) are of similar age 

(192-185 ka and 130-116 ka). Pulsed regional 
uplift of the whole of southern Cyprus has ap-
parently taken place without the strong differen-

tial movement resulting from localized block 

faulting suggested by other workers (Giangrande 

et al., 1987) (the terraces correlated by these 

authors [i.e., at Coral Bay and Paphos] have 

proved to be of different ages in our study; see 

Table 2). The terraces along the southern coast 

1 ABlE WEIOIITEI) MfAN AGES FOR CVPRU S cOkAt. 
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of Cyprus are horizontal, or dip slightly seaward, 

as reported from other Mediterranean shorelines 

(Hey. 1978) where vertical displacements are 

similar over wide areas, only small segments of 

the coastlines being deformed. The new age data 

are consistent with regional uplift prior to 116 

ka, postdated by reduced uplift and possible 

submergence of the southern Cyprus region. The 

plate boundary still appears to be active, as sug-

gested by the presence on Cyprus of episodic 

large earthquakes of magnitude 6 or greater 

(AD. 342,1189, 1953; Soren and Lane, 1981). 

Uplift Rates 

Average rates of uplift can be inferred, assum-

ing that the coral colonies developed at a depth 

of 10 m below sea level, as stated above. A 

maximum of 6 in of uplift would then have 

occurred over the past 116 ka, assuming that the 

sea-level maxima during substage 5e were 5-8 

in higher than the present-day sea level (Meso-

lella et al., 1969; Bloom et al., 1974; Chappell, 

1974; Stearns, 1976). This would give an aver-

age rate of uplift of -5 cm/ks. It should be 

noted that in some regions partial submergence 

has taken place (see above). Thirteen metres of 

uplift took place between 130 and 185 ka, at an 

average rate of -24 cm/ks. An exception is the 

I0-m-high 141 ka terrace at Cape Greco, which 

was uplifted at a rate of 12 cm/ka, much 

quicker than elsewhere, again suggesting re-

gional uplift of southern Cyprus as a whole, as 

opposed to uplift focused on the Troodos massif. 

The apparent reduction in rates of uplift over the 

past 192 ka could reflect either the slowing or 

cessation of subduction or a switch to strike-slip 

following collision (Kempler and Ben-Avraham, 

1987; Robertson, 1990). 

CONCLUSIONS 
I. New uranium-series disequilibrium dates 

from Cladocora caespi:osa corals from raised 

marine terraces in southern Cyprus confirm that 

lithologically correlated terraces are similar in 

age, ranging from 192-185 ka for the 8-I1 m 

terraces to 130-116 ka for terraces <3 m above 

the present-day sea level. The two highest raised 

marine terraces, which are coeval with alluvial 

conglomerate deposition, are older (>300 ka). 

The older terraces (8-I1 m) record maxi-

mum uplift at average rates of 24 cm/ka be-

tween 130 and 185 ka. The younger terraces 

(<3 m) indicate average uplift rates of -5 

cm/ka for 116 ka, with the exception of Cape 

Greco, which suggests a rate of 12 cm/ks. 

Correlation with the Quaternary global 

isotopic stages confirms that maximum uplift 

has been limited to 18 m during the past 

185-192 ka and also suggests that relative sub-

sidence has taken place in some coastal areas 

over the past 116 ka. 
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Quaternary uplift and sea-level change at an active plate boundary, Cyprus 
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Abstract: A combination of northward underthrusting of the African plate and serpenhinite diapirism 
resulted in progressive uplift of Cyprus during the Quaternary. The uplift was associated with the 
development of succession of alluvial fans and marine terraces. Marine terraces in coastal southern 

Cyprus are developed at 350-360 m, 110-100 m, 60-50 m. 11-8 m and 2-3m above present sea-level. 

The terraces display sequences of regressive, deltaic. carbonate and siliciclastic sub-littoral, to littoral 
and sub-aerial type. Alluvial fans of the Fanglomerate Group crop Out on the northern flanks of the 

Troodos Massif, forming extensive, dissected, peneplaned terraces. Later uplift resulted in the 
formation of channel fans and river terraces. Proximal sheetflood conglomerates pass distally into 
channclized braid-plain environments. On the southern margin of the Troodos Massif the Fanglomer-

ate Group comprises braided, channelized and floodplain sequences, which pass laterally into littoral 

facies. Provenence studies indicate that uplift and resulting erosion of Cyprus was centred on the 
Troodos Massif (Mount Olympus). Radiometric dates indicate that uplift was rapid in the early and 
mid-Pleistocene. In the late Pleistocene-Holocene. eustatic sea-level changes and anthropogenic 
effects dominated, while the rate of uplift was reduced, with local submergence of southern coastal 

areas. 

This paper presents new field data and interpretations on 

the geomorphology, sedirnentology and tectonics, associated 

with the uplift and unroofing of the Troodos ophiolite, 

Cyprus. The Troodos Massif (Gass & Masson-Smith 1963; 

Moores & Vine 1971) is one of the few known examples of 

actively emplacing oceanic lithosphere, thus an analysis of 

the Quaternary geology sheds light on the tectonic processes 

involved and the relative roles of tectonic uplift, versus 

glacio-eustatic sea-level change. In Cyprus, successively 

developed geomorphological surfaces, alluvial features and 

coastal deposits can be stratigraphically correlated, dated 

and related to the evolution of an active plate boundary 

(Robertson 1977). 

Quaternary evolution 

The neotectonic (i.e. Miocene-Recent) evolution of Cyprus 

began with the inferred initiation of northwards subduction 

along the active Cyprus margin (Fig. 1), probably in earliest 

Miocene (Robertson et al. 1990). During the Miocene, 

compression affected areas of southern Cyprus nearest the 

trench (Eaton 1987). Extension and subsidence took place 

in northern and western Cyprus during the Late Miocene 

and Pliocene (Follows & Robertson 1990; McCallum & 

Robertson 1990). Uplift, in the Late Pliocene to Early 

Quaternary, was marked by the deposition of regressive, 

marine to non-marine sediments in both northern and 

southern Cyprus (McCallum & Robertson 1990). Combined 

seismic, stratigraphic and earthquake focal mechanism data 

indicate that an active margin exists to the south of Cyprus 

(Kempler & Ben-Avraham 1987). At present there is little 

activity along the plate boundary to the south of the island, 

but active convergence is inferred to be taking place beneath 

SW Cyprus (Kempler & Ben-Avraham 1987). 

Quaternary sedimentation in southern Cyprus 

During the Quaternary, rapid tectonic uplift, in combination 

with eustatic sea-level changes, gave rise to the following 

features in southern Cyprus, which can be correlated by 

satellite imagery, photogrammetry and field survey. 

Intermontane fluvial systems: these are dominated by 

conglomeratic alluvial and channel fan sequences on the 

Mesaoria Plain north of the Troodos Massif; proximal debris 

flow, and sheetflood sediments pass laterally into braid plain 

deposits; palaeosol and caliche horizons are also seen. 

Conglomeratic channels: channel fan sequences crop out 

along the southern flanks of the Troodos Massif; 

conglomeratic fan systems pass laterally into braid, delta 

and beach environments; off-shore sand and gravel 

sequences are also present. (iii) Coastal settings: aeolian, 

shoreface and near shore carbonate sediments crop out in 

SE Cyprus (e.g. Cape Greco. Dhekelia and Larnaca), S 

Cyprus (e.g. Petounda Point, Akrotiri), SW Cyprus (e.g. 

Paphos, Ayios Yeoryios) and east of Polis (e.g. Argaka, 

Kato Pyrgos). (iv) Island-wide geomorphological features 
and erosion surfaces: pronounced erosional surfaces on the 

Mesaoria Plain north of the Troodos Massif and to the 

south, on the coastal plains of southern Cyprus, are an 

important component of the Quaternary evolution and aid 

relative correlation; associated geomorphological features 

include caves, solution hollows and wave-cut platforms in 

coastal areas and river terraces on the Mesaona Plain. 

Quaternary stratigraphy of southern Cyprus 

Fieldwork and aerial photographs show that the terraces 

occur systematically throughout S Cyprus. with younger 

units at progressively lower topographical levels (Table I). 

Biostratigraphic control (both macro- and micro-) in the 

Quaternary is sparse, as many species are still living today. 

Changes in faunal groups may be used with caution. Gross 

climatic changes allow cold and warm faunas to be 

distinguished (Issar 1979). Ostracode (McCallum 1989) and 

nannofossil data (Houghton ci al. 1990; A. Lord & L. 

Gallagher pers. comm. 1989) have yielded Upper Pliocene 

to lower Pleistocene ages. The gastropod Strombus 
buboniu.s, described from a marine terrace in Larnaca. was 
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Fig. 1. Geological, topographic and drainage map of Cyprus. The contours heights and bathymetric depth are indicated and the two main 
active fault lineaments shown. Inset: outline tectonic setting of Cyprus in the Eastern Mediterranean. Note: the location of the areas shown in 

detail in Figs Sa and 9. and of locations mentioned in the text. 

assigned as being Tyrrhenian (Pantazis 1966; Moshkovitz 
1968), but this has not been confirmed by subsequent 
uranium series disequilibrium dating (Poole et al. 1990). It is 

likely that the Sirombus fauna existed for more than one 
warm, interglacial phase in the Late Pleistocene (Butzer 
1975). Chronostratigraphic methods that have been used to 
date and correlate marine terrace levels in Cyprus are 
uranium series disequilibrium dating (Poole ci al. 1990; this 
study) and "C dating (Vita-Finzi 1990). Correlation of 
(alluvial and marine) terrace sequences provides a third 
technique for establishing a relative chronology, as shown 
by Dc Vaumas (1960) for the Troodos Massif, Ducloz 
(1964) for the Mesaoria Plain and Gomez (1987) for the 
lower Vasilikos Valley. 

Upper Pliocene-lower Pleistocene: early uplift 

The oldest known erosive feature in Cyprus is a mature 
erosion surface of Mio-Pliocene age. approximately 
500 m ASL (above present day sea-level), along the Akamas 
Peninsula (Fig. 2). A second, distinct terrace at 350-
360 in ASL in SW Cyprus dips gently seawards. Overlying 
bioclastic grainstones are locally preserved in a small 

cliffline, east of Paphos (Fig. 2). 

Interpretation 
The 350-360 m terrace is correlated with a terrace on the 
southern flanks of the Kyrenia Range (Ducloz 1967; 
Dreghorn 1978), from which Upper Pliocene foraminifera 

were identified (Mantis 1970). The 350-360 m terrace is also 
correlated with deposition of the Athalassa and Kakkaristra 
Formations (Table 1) in the Mesaoria Plain (Ducloz 1964; 
McCallum 1989) and with submarine channels, described 

from Khirokitia and Amathus (Fig. 2) (Houghton ci al. 
1990) which contain latest Pliocene (c. 2.2-1.8 Ma) nan-
nofossils and planktonic foraminifera. The Kakkaristra 
Formation is dated by ostracodes as Upper Pliocene to 
lower Pleistocene (McCallum 1989). The 350-360 m terrace, 
therefore was established during the earliest Pleistocene, 
after an early phase of uplift. 

Lower Pleistocene-middle Pleistocene 

Intermontane fluvial system 

The main phase of uplift was marked by the deposition of 
the fluvial Fanglomerate Group, which is best exposed along 
the north margin of the Troodos Massif, where it 
unconformably overlies the sand and silt dominated Apalos 
Formation (Table 1), and is locally incised into the Troodos 

ophiolite (e.g. at Malounda). 
The Fanglomerate Group consists mainly of conglomer-

ates, with subordinate sand and silt. Proximal conglomerates 
are matrix-supported, poorly sorted, weakly consolidated 
and immature (Fig. lb). Fades pass distally into channelized 
units, comprising abundant fine-grained sediments with 
palaeosols (Fig. 3a). The Fanglomerate Group is generally 
structureless, but contains locally imbricated clasts and rare 
cross-bedding in the more distal localities. Previous 

estimates of thickness of this unit vary from 3-5 m on 

mesa-type hills in the east (McCallum 1989), to 90 m 
elsewhere (Zomenis 1977). However, this study has shown 
that the thickness of the Fanglomerate Group, varies greatly 
across the Mesaoria Plain, from proximal (piedmont), to 
distal (braid) localities (south to north), as well as along the 
axis of the plain (east to west). Provenance studies indicate 
that the Fanglomerate Group on the northern margin of the 
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Table 1. Summary of the Quaternary stratigraphy and age date from Cyprus 

Central Mesaoria 

Plain 
(Dudoz 1964) 

Central Kyrenia 

Range 

(Ducloz 1972) 

Lower Vasihkos 

Valley 

(Gomez 1987) 

S Cyprus 

correlation 

(this paper) 

Holocene 

Late Xcii Alluvium Kyrenia Terr. Argakitis Kamilas F4 

Pleistocene Ten. 

Laxial Gravel Ayios Epikitos Kalavasos Terr. F3 

Ten. 

Mid- to Trapeza Ten. Mitsinjites Tern. F2 

Early Kambia Gravel 

Pleistocene Klepini Tern. Phalakros Tern. Fl 

Kantara Gravel 
FO 

Apalos Formation 

Upper Pliocene Kakkanistra Formation 

to Early and Athalassa 

Pleistocene Formations 

Table 1. con: 

Climate 

(Issar 1979) 

Inferred 

Oxygen 
isotope staget 

Height of marine 
terrace (m ASL) 

Age 

(ka) 

Holocene Present day 
fauna 

3-4 

Late Tyrrhenian 5 <3 116-134 ± 10 

Pleistocene (Strombus fauna) 6 

7 8-11 185-204±8 

8-14 

Calobro-Sicilian ? 50-60 

Mid- to (cold marine fauna. 

Early i.e Arc:ica ,slandica) 100-110 

Pleistocene 

Upper Pliocene 
to Early 

Pleistocene 

• Note: the numerical F1-F4 nomenclature used in this paper 

t After Shackleton (1975). 
After McCallum (1989). 
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the palaeocurrent data. 

Troodos Massif differs from the earlier Apalos and 
Kakkaristra Formations (Fig. 4a—e). There is a greater 
proportion of diabase and gabbroic clasts in the 
Fanglomerate Group conglomerates in the western and 
central areas. By contrast, in the eastern area of the 
Mesaoria Plain, there is a conformable contact between the 
Fanglomerate Group and the Apalos Formation, with the 
later Fanglomerate Group showing an unchanged proven-
ance from the underlying Apalos Formation (Fig. 4k-I). 
Ultramafic clasts are not seen in the Fanglomerate Group 
along the northern margins of the Troodos Massif, although 
their occurrence is reported from outcrops of the 
Fanglomerate Group in the north, close to Morphou 

(Wilson 1958). 
Palaeocurrent data and satellite imagery confirm that a 

series of alluvial fans prograded from the north margin of 
the Troodos Massif onto the Mesaona Plain. These fans 
show a swing in drainage direction from west to east across 

the Mesaoria Plain. 

Coastal sedimentation 
The first of a series of Quaternary marine terraces is 
exposed in SW Cyprus at 100—I 10 m ASL (e.g. near 
Paphos). This terrace is correlated with the Fanglomerate 
Group (Table I). We term the successive terrace levels 
in Cyprus Fl to F4 (Table 1. Fig. 5a). Thus, the 
Fanglomerate Group represents the Ft surface. On the west 
coast. NW of Paphos, a series of gorges are cut through 
resistant Miocene limestones and chalks, from the 
350-360 m, earliest Pleistocene terrace to the level of the Fl 

surface. The 100-110 rn terrace exposed in the Paphos area 

unconformable overlies Miocene and Oligocene sediments. 
A conglomeratic lag of locally derived clasts (e.g. chalks and 

limestones) is overlain by a coralline algae framework, 
which in turn passes into a sequence of littoral grainstones, 

containing abundant molluscs (Fig. 5bA). 
At Pissouri, clifflines show ?Pliocene fan-delta sequences 
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passing unconformably up into the Pleistocene Fanglomer-
ate Group. The Fanglomerate Group crops out at 
c. 100 m ASL and comprises conglomerates, derived from 
both the Troodos ophiolite and the local sedimentary 
sequence (e.g. chalks, cherts and limestones; Fig. 4j). 
Remnant channelized sequences, up to 3m thick, after 
erosion and peneplanation, are overlain by red terra 
rossa-type palaeosols, with thick sequences of caliche (e.g. 
2-3 m thick at Pissoun). The Fanglomerate Group also 
crops out along the southern coast of Cyprus. Subsequent 
downcutting of major river channels (e.g. Kouris and 
Yermasoyia Rivers) has isolated these exposures. 

The Fanglomerate Group, additionally, crops out in SE 
Cyprus, as an easterly extension of the Mesaoria Plain. An 
extensive erosion surface is present, but associated exposure 
is restricted. Channelized conglomerates of the Fanglomer-
ate Group unconformably overlie the Pliocene Athalassa 
Formation (e.g. north of Dhekelia). These conglomerates 
are again capped by extensive caliche and soil horizons. 
Provenance studies (Fig. 4h) indicate that the clasts were

ri  derived from the Troodos ophiolite. the Troulli Inlier and 

local sedimentary sources. 

Island-wide erosion surfaces 
The Fl surface is exposed, as a plateau in two areas along 
the northern margin of the Troodos ophiolite (i.e. between 
Potami and Kato Koutraphas in the west and between 
Akaki and Malounda in the east). The undissected Fl 
conglomerate surface is locally covered by terra rossa-type 

soil and caliche. 

Interpretation: main phase of uplift 
The main control on the lower to middle Pleistocene Fl 
fanglomerate and terrace deposition was tectonic. The 
large-scale fans relate to drastic uplift and downcutting. 
However, climatic effects probably largely controlled the 
architecture of the fans. A similar interplay of processes is 

described from the Dead Sea. Israel (Frostrick & Reid 1989) 
and SE Spain (Harvey & Wells 1987). 

The presence of ultramafic clasts (Wilson 1958) in the Fl 
Fanglomerate Group, transported by the Karyotis River 
(Fig. 1; Fig. 4g) is evidence of erosion of the ultramaflc core 
of the Troodos Massif in early Pleistocene, yet ultramafic 
clasts are not found in the Ft Fanglomerate Group deposits 
away from this fan, a similar pattern to that observed today 
(Fig. 4f). The implication is that the drainage pattern of the 
early Pleistocene was similar to the present (Fig. 1). The Fl 
alluvial fans on the northern margin of the Troodos Massif 
were deposited as proximal sheetflood deposits and debris 
flows, passing distally into channelized braided systems. 
Such a depositional setting would account for the thickness 
variations in the Fl Fanglomerate unit. A piedmont area 
bordered the Troodos Massif, with a thicker sedimentary 
succession to the north. Inter-channel areas were subjected 
to less incision and survived as thin conglomeratic deposits, 
lapping onto the Troodos Massif and pre-Quaternary 
sediments. 

Large alluvial fans did not develop during the 
lower—middle Pleistocene to the south of the Troodos 
Massif. Instead, large incised channels (e.g. Kouris River) 
carried sediment from the rising Troodos Massif south-
wards, to areas close to, or beyond the present coast (e.g. 
Pissouri). Seismic data suggest that a large proportion of the 
detritus derived from the Troodos Massif at this time is now 
located in offshore slope areas (McCallum 1989). Several of 
the rivers, thus may have already existed in the 
pre-Pleistocene (e.g. Maroni and Kouris Rivers). In 
addition, gorges on the west coast of the island reflect rapid 
relative uplift, similar to that described from the Kyrenia 
Range, N Cyprus (Dreghorn 1978). 

Carbonate littoral and sub-littoral sequences also 
developed at this time; these crop out in areas away from 
the influence of the Troodos drainage systems, particularly 
to the west of the Akamas Peninsula, which was already a 
topographic high (Fig. 2). The ofliap of the carbonate 
sequence indicates that formation took place during a 
relative sea-level fall. 
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Fig. 5. (a) Contour map of SW Cyprus showing the location of the 
Pliocenc. Fl and P2 terraces and the occurrence of aeolianite in SW 
Cyprus: (b) composite sedimentary logs of the coastal carbonate 
facies. The Fl and 1`12 terrace sequence is shown in 5bA and the F3 
and F4 terrace sequence in 5bB. Note: minor colonies of rue coral 
Cladocora caespilosa are present within the P2 terrace. 

Middle Pleistocene 

Intermontane basin 
The second phase of the Fanglomerate Group (Fig. 2: Table 
1) forms a distinct horizon at topographically lower levels 
than the Fl surfaces, to the north of the Troodos Massif. 
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Fig. 6. Palaeocurrent data for the Fanglomerate Group sediments 
cropping out on the Mesaoria Plain; based on clast imbrication. 

The peneplaned Fl terrace is incised by F2 channels and 
smaller distributary streams, reworking the Fl conglomer-
ates into the F2 alluvial system (e.g. Potami). Poorly sorted 
conglomerates that comprise the P2 channel fill, generally 
8-10m thick, are locally overlain by red terra rossa-type 
palaeosols and caliche horizons (e.g. Potami and near 

Astromeritis). 
Conglomerate clasts of this age to the north of the 

Troodos Massif are dominantly gabbro, diabase and pillow 
lava, but lack ultramafic clasts, similar to the earlier Fl 
depositional phase. Clast imbrication trends are also similar 
to the Fl Fanglomerate Group; i.e. from N and NW on the 
western side of the Mesaoria Plain. to N to NE further east 
(Fig. 6). In proximal localities matrix-supported conglomer -
ates pass upwards into clast-supported, massive conglomer -
ates. Few sedimentary structures exist within proximal areas 
of the F2 Fanglomerate Group. Well bedded, more mature, 
better sorted and imbricated conglomerates occur in more 

distal areas. 

Coastal settings 
The second marine terrace level, at 50-60 m ASL forms an 
extensive cliffhine from south and east of Paphos along the 
west coast to Lara. This terrace, lying unconformably on 
earlier Miocene sediments, comprises superbly exposed 
sequences of sub-aerial, littoral and sub-littoral sediments, 
very similar to the Fl terrace (Fig. 5bA). To the south and 
east of Paphos, towards Kouklia, the 50-60 m terrace passes 
laterally into fluvial sediments that comprise moderately 
well sorted conglomerates, containing ophiolite-derived 
clasts, from all but the ultramafic core of the Troodos 
ophiolite, as well as locally derived sedimentary clasts (e.g. 

limestone, chert and chalk). 
Major rivers (e.g. Xeros, Mavrokolvmpos), which 

drained the west flank of the Akamas Peninsula, deposited 
silts, sands and minor conglomerates. These sediments pass 
northwards into red, channelized conglomeratic units at 
lower topographic level than the Fl terrace; this crops out 
further east. Sediments of F2 age along the south coast are 
dominated by Troodos-derived, fluvial conglomerates, like 
those north of the Troodos Massif. A number of exposed 
units along the south coast can be correlated viz: the 

Mitsinjites terrace in the Vasiltkos Valley (Gomez 1987; 
Table 1) with areas west of the Vasilikos Valley and 
sequences from the Akrotiri Peninsula and the Yermasoyia 

and Kouris river valleys. 
In general, an increased proportion of ultramafic and 
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locally derived sedimentary clasts (e.g. chalk, chert) are 
seen in the Recent bars of the Kouns River, relative to the 
P2 Fanglomerate Group flanking the rivers (Fig. 4m—n). 
This suggests a change in provenance and/or down cutting 

into the ultramafic core of the Troodos ophiolite. In distal 
localities (e.g. Kolossi and Zyyi) shallow channels were cut 
into the F! Fanglomerate. Still more distal deposits are seen 
further south on the Akrotiri Peninsula, where the 
Fanglomerate Group cannot be subdivided due to its patchy 
outcrop, but borehole records show conglomerates to be at 

least 70 m thick. The margin of the P2 Fanglomerate 

channels forms a mature erosion surface that intersects an 
earlier Fl erosion surface to the north, close to the core of 

the Troodos Massif. 

Braid-delta and flu vial facies 

Sand and gravel sequences of the P2 stage crop Out 
extensively in quarries between Dhekelia and Xylophagou. 
These deposits are bounded to the east by an erosion 
surface in the Xylophagou area, at c. 100 m, which is capped 

by Miocene limestones. Borehole data reveal sands and 

gravels up to 40-50 m below the present sea-level. The 
gravels consist of mixed. Troodos-derived clasts and 
sediments (e.g. limestones and chalk); these display tabular 
cross-bedded units containing a marine fauna, including the 

molluscs Givcyrneris sp. and Ostrea edulis. Texturally 

mature sediments pass up into immature, poorly sorted 
sands and gravels (similar to Fig. 7). Provenance studies 
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show that gahhro, diabase, pillow lava and sedimentary 
clasts dominate the sequence. suggesting at least partial 
derivation from the main Troodos Massif (Fig. 4i). 

Island-wide erosion surfaces and river capture 

After deposition of the P2 fanglomerate, horizontal to 

low-angle sloping surfaces, on the northern flanks of the 
Troodos Massif, were uplifted in response to a phase of 
relative uplift. The erosion surface was planated, cut by 
small channels and capped by red terra rossa-type palaeosols 

and caliche horizons. 
In coastal SW Cyprus. a 'stranded' 100—I10m cliff-line, 

cut during the P2 phase, forms the upper limit of an 
extensive coastal plain, extending down to 50 m ASL. A 
similar palaeo-cliff-line and terrace is also seen in S and SE 
Cyprus (Fig. 2). In SE Cyprus, non-depositional terraces 
and cliff-lines are cut into the exposed Miocene limestones. 

at Cape Pyla and Cape Greco. 

Interpretation: further phase of uplift 

Further relative uplift associated with downcutting of 
channels on both the north and south margin of the Troodos 
Massif, resulted in fan valley deposition (cf. Muto 1987), 
back-cutting of the drainage towards the Troodos Massif 
and the development of mature erosion surfaces on the now 
isolated, dissected Fl fan-sheets and terraces. Further uplift 
also caused greater dissection of the Troodos ophiolite as 
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deeper structural levels were exposed. Proximal channelized 
sequences passed out into braid plain ensironments (e.g. 
Kolossi in the south and Astromeritis in the north). The 
relative uplift also resulted in the formation of a 
palaeo-cliff-line at 1(X)-I 10 m ASL, and the deposition of 
regressive-upwards, sedimentary successions. The quarry 
sequences in SE Cyprus represent an overall regression from 
deltaic to fluvial sequences (e.g. Fig. 7). Carbonate 
sub-littoral and sub-aerial sediments in SW Cyprus are also 
interpreted as being of regressive origin (Fig. 5bA). 

Eustatic sea-level fall and tectonic uplift caused the 
progradation of fluvial channels and down-cutting into the 
Pleistocene carbonate sequences in the Kouklia area (Fig. 
8). A subsequent rise in sea-level resulted in the formation 
of the 50-60 m terrace, cutting sediments from marine, 
fluvial and sub-aerial environments. 

Direct evidence of river capture is seen in the Limassol 
area, where the Kouris River has captured the Kryos River, 
which can he traced back onto the Troodos Massif. 
Evidence from the Fl conglomerates at Pissouri. which 
Contain Troodos-derived clasts (Fig. 4j), suggests that the 
Paramali and Evdhimou Rivers, which now do not rise in 
the Troodos Massif were also modified by river capture. 
Similarly, the presence of gahhroic clasts in both deltaic and 
fluvial deposits (Fig. 4h-i) in SE Cyprus points to the 
existence of a major drainage system flowing southwards, off 
the northern margin of the Troodos Massif during the 
middle Pleistocene. As no major river channels flow in this 
area today, the suggestion is that river capture has taken 
place, perhaps reflected in the pattern of drainage seen, with 
the Pedieos and Yialias Rivers flowing out towards 
Famagusta Bay today. 

Early Late Pleistocene 

Coastal settings 
A distinctive feature of southern Cyprus is an extensive, flat 
coastal plain that extends around much of the coast from 
Larnaca to Paphos and into the Polis region. Sub-littoral 
and littoral facies crop out below the level of this extensive 
plain and contain intact specimens of the coral C!adocora 

caespizosa that have yielded uranium series dates of 204 ka, 
192 ka, and 185 ka for the time of formation of the terraces. 
at Petounda Point, Coral Bay and Larnaca. respectively 

(Poole et al. 1990; Table 2). 

Fig. 8. Block diagram showing the relationship between alluvial 
downcutting and terrace development during phases of relative 
uplift. Inset curve represent a single (c. 100 ka) eustatic sea-level 
Cycle. 

Table 2. New uranium series age data for Cyprus corals 

Location 	 Terrace height ASL (m) 	Age (ka) 

Petounda Point 	 8-11 	 203 ± 7 
8-11 	 209±15 

Paralimni 	 <3 	 138 ± 4 
<3 	 129±4 

Note: more extensive data are published in Poole etal. (1990). 

Littoral sequences 
The most extensive carbonate sub-littoral, to littoral 
sequences, of the early Late Pleistocene, crop Out in the 
Larnaca area, forming a small cliff less than five metres 
high, unconformably overlying Pliocene marls. The 
succession (Fig. 5bB) is made up of coarse bioclastic 
grainstones containing small colonies of the coral C. 
caespzlosa, up to one metre in diameter. Minor lenses of 
Troodos-derived conglomerates are seen within this 
carbonate facies. Remnants of a once extensive littoral 
sequence are also seen at Petounda Point, Coral Bay and 
east of Polis. The littoral sequences form part of an 
extensive coastal plain. The width of this plain narrows to a 
few hundred metres on the steeply-rising Akamas Peninsula 
in NW Cyprus. In the Polis region, mixed carbonate 
sub-littoral to littoral sequences, containing small colonies of 
C. caespitosa are overlain by elastic detritus (e.g. gabbro, 
basalt, chert, marl and limestone) transported down the axis 
of the Polis-Paphos graben by the Khrysokhou River. 

Flu vial—deltaic deposits 
Early Late Pleistocene fluvial-deltaic deposits Contain only 
minor conglomerates, relative to the scale of deposits 
associated with earlier uplift. In the Polis-Paphos graben 
the littoral sequences (see above) pass laterally into 
conglomerates dominated by ophiolite-derived clasts. The 
conglomerates contain a marine fauna (i.e. G!ycymeris sp. 
and Ostrea edulis) and are well bedded, with seawards-
dipping foresets. This facies is overlain by a thin, littoral 
sequence, capped by caliche and soil horizons. 

Mature, cross-bedded conglomerates, with interbedded 
sands, of similar inferred age are seen in quarries along the 
south coast of the island (i.e. near Mazotos). Athough 
ophiolite-derived clasts dominate, locally-derived sedimen-
tary clasts are also present (e.g. limestones and chalks). The 
relationship between these deltaic deposits and a discon-
tinuous fluvial sequence is shown in Fig. 7. Conglomerates 
are also extensively exposed beneath the coastal plains in 
both the Larnaca and Paphos areas. 

Closer to the Troodos Massif pre-existing drainage 
systems were further incised by rivers, cutting through 
Pliocene and older sediment, into the Troodos Massif and 
giving rise to sedimentary and ophiolite-derived clasts. 

Aeo!ianites 
Cross-bedded aeolianite deposits are widely developed on 
the coastal plains of west and south Cyprus (e.g. Lara. north 
of Paphos) as poorly cemented, moderately sorted, 
buff-coloured bioclastic grainstones. In SW Cyprus, the 
aeolianites were derived from carbonate littoral sediments, 
whilst in south Cyprus (e.g. Mazotos) green, elastic sands 
dominate. The dune structures are cut by extensive 
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rhizocretion, penetrating to depths of 3 to 4m below the 
palaeo-dune surface. Aeolianites are banked up and over 
pre-existing cliff-lines on the west coast. 

Erosion surfaces 

A major sub-horizontal erosion surface overlies the facies of 
this age (i.e. littoral, deltaic, fluvial) as well as the Troodos 
ophiolitic basement and its sedimentary cover. This surface 
is not clear on the Mesaona Plain to the north of the 
Troodos Massif. but is recognized in western and southern 
Cyprus, with the development of an extensive 8-11 m high 
coastal terrace. In the south-east, a terrace is not clearly 
discernable between Dhekelia and Xylopaghou, probably 
because the sediments that crop out there are poorly 
consolidated sands and gravels. A very distinct terrace and 
wave cut notch is, however, observed east of Xylophagou, 

cut on and into resistant Miocene limestones (e.g. Cape Pyla 

and Cape Greco). 

Interpretation: further uplift 

Systematically lowered topographic levels of littoral, deltaic 
and fluvial deposition. plus the presence of extensive erosion 
surfaces, together indicate that uplift continued after F2 
times (Middle Pleistocene). Littoral deposits were preserved 
due to this subsequent relative uplift. The emergence 
allowed unconsolidated littoral sands to be blown onshore to 
form migrating dunes, that banked up against and over 

palaeo-cliff-lines. 
Up to 12m of uplift and incision into the pre-existing 

channel fan system took place on the Mesaoria Plain during 
this time. Islandwide relative uplift was limited however, 
with little scope for erosion of the Troodos Massif, but 
reworking of Troodos-derived clasts continued. Widespread 
channels tended to be shallow, dominated by sands and 
gravels. Deltas containing much reworked, mature gravel 
developed along the axis of the Polis—Paphos graben and 
around the southern coast of the island. These gravels are 
interbedded with sands and overlain by thin limestone of 
probable lacustrine origin. The deltas are locally overlain by 
thin, discontinuous sequences of littoral sediments (e.g. 
Polis). The deltaic sequences are also overlain by poorly 
sorted fluvial conglomerates (e.g. Larnaca area), consistent 
with overall regression, as also indicated by the presence of 
sub-littoral to sub-aerial carbonate sequences (e.g. Lar-
naca). This regression culminated in the formation of an 

extensive erosional surface. 
By the end of the F3 (early Late Pleistocene) phase. an  

extensive coastal plain had developed, extending Out beyond 
the present coastline, as a result of a eustatic sea-level fall. 

Late Late Pleistocene 

Coastal environments 

Littoral and coastal sediments of this age are seen 
throughout southern Cyprus, at heights of less than 
3 m ASL. The pattern of sedimentation is very similar to 
that of the Quaternary period in general. Carbonate 
sequences formed in areas away from the major flyers of the 
Troodos Massif (i.e. west of the Akamas Peninsula; in SE 
Cyprus, east of the Xylophagou Fl erosion surface). 

Specimens of the coral C. caespiiosa from littoral deposits at 

Paphos and Dhekelia (Poole ci at, 1990) and Paralimni (this 

study; Table 2) were dated using the uranium series method, 
and the results establish a correlation with the last 

inter-glacial sea-level high (Table 1). 

Littoral environments 

In the Paphos region, littoral deposits crop out along the 
coast, extending up to 100 m inland. These are similar to 
those of the older 8-11 rn-high terrace (Fig. 5bB). In many 

areas this terrace lies close to, or just beneath, the present 
day sea-level, thus good vertical sections are rare. Notable is 
the presence of solution hollows filled by high abundance-
low diversity faunas, consisting primarily of the gastropod 

Astraea rugosa. This infilling may be significantly younger 

than the primary terrace. A. rugosa is not restricted to this 

lower terrace and is found in all the Quaternary terraces of 
SW Cyprus: it also ranges from Miocene to Recent 
throughout the Eastern Mediterranean basin (Moshkovitz 
1968). Similar sub-littoral to littoral terrace deposits occur 
widely at Kato Pyrgos, Paphos, Akrotiri, Dhekelia and in 
SE Cyprus. to the north and south of Paralimni. 

A Ilu vial deposits 

Alluvial deposits of this age are best developed in the south 
and south-west of the island. In the north Troodos region. 
valleys are floored by alluvial conglomerates and sands, with 
a mixed elastic input. The axis of the Polis-Paphos graben 
and an embayment near Pissouri are filled with similar 
deposits. Excavation pits in the Lower Vasilikos Valley 
(Gomez 1987) show that 3 to 5 units of silts, were deposited 
at this time, comprising centimetre-sized rhythmic cycles, 
intercalated with calcareous horizons. 

Aeolianites 

Extensive, weakly lithified aeolianites overlie the late Late 
Pleistocene terraces. Dunes from isolated 'highs' on the 
terrace relief in both SE and SW Cyprus, They display 
rhizocretion fabrics and, like the earlier aeolianites (F3) are 

banked up against palaeo-cliff-lines (e.g. Akrotiri. Fig. 9). 

In the Cape Greco area of SE Cyprus, the dunes crop out 
over a low-lying plain. Palaeocurrent data suggest onshore 

winds in both SW and SE Cyprus at this time, with possible 
funnelling of sediment through gaps in the low lying 
Miocene hills in the Cape Greco area (Follows 1990). 

(1J 

Fig. 9. Aeolianite palaeocurrent date from the Akrotin Peninsula. 
showing evidence for onshore wind. Note sketch section showing 
the banking of the aeolianite over the former cliff. 
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Erosion surfaces 
A distinct peneplaned surface of this age exists throughout 
the island (e.g. beneath the high cliffs at Curium, extending 
across the Akrotiri Peninsula). Erosion of aeolianites (F3) 
also took place in the Paphos district (e.g. Lara), resulting 
in small embayments. Sea caves are well preserved in areas 
of resistant bedrock (e.g. Miocene limestone of Cape Pyla). 
The erosion surface is overlain by red terra rossa-type 
palaeosols, locally, several metres thick in the southeast of 
the island. This soil, however, could be Recent. 

Intepretation: slightly lowered base levels 
The coral ages correlate with the Tyrrhenian sea-level 
(oxygen isotope stage 5e; Shackleton 1975). Widespread 

littoral deposits in Cyprus apparently relate to this 

transgressive/regressive event. U 1 ;lift in the order of 6 in has 

taken place since this time (Poole ci at. 1990), assuming that 

the Tyrrhenian sea-level high was 5-8 m higher than the 

present day sea-level (Mesolella et al. 1969; Bloom et at. 
1974; Chappell 1974; Stearns 1976). The high sea-level 
accounts for the formation of cliffs under which, apparently 
anomalously wide, low lying beaches are seen today (e.g. 
below Curium), and the formation and preservation of sea 

caves 2-3 m ASL (e.g. Cape Pyla). Limited uplift is 
consistent with the observed minimal downcutting of 

pre-existing channels and the domination of silt and 
floodplain deposits to the N and S of the Troodos Massif, in 
contrast to the older fan sequences. We do not favour the 
'transgressive model' for aeolianite formation (Land 1967: 
Vacher 1973), as the lithified F3 dunes on the west coast 

appear to have been cut and/or eroded by the Se sea-leel 
high, and were not formed at that time. The F4 dunes 
overlie the dated littoral sequence. which is correlated with 
the Se sea-level high. The high-angle of repose. lack of 
capping soils, dominantly onshore palaeocurrent directions 

and knowledge that a drier climate (Rognon & Williams 
1977; Sarnthein 1978) is likely to have existed during a 
glacial episode. are all consistent with the hypothesis that 
large-scale onshore migration of aeolianites took place. The 

available evidence thus points to formation of the dunes 

during a falling sea-level, in line with evidence from other 
Mediterranean aeolianites (Hey 1962; Sabaris 1962; Butzer 

1975). 

Latest glacial and Holocene period 

Clear evidence of the latest glacial event (c. 40-10 ka: 

Dansgaard et al. 1982) comes from shallow offshore seismic 

data from S Cyprus. The seismic surfaces, cut by inferred 
channels, can be correlated with fluvial channels onshore 

(e.g. Zyyi: McCallum 1989). These shallow conglomerate-
filled channels are incised into floodplain conglomerates. 

Admiralty charts indicate the presence of a planar offshore 

surface down to a depth of c. 120 m (Fig. 1), in line with the 

estimated fall in sea-level during the last glacial (-110 to 

-120m; Shackleton et at. 1984). Caves found at less than 

3 m ASL (e.g. Cape Pyla) were cut during the 5e sea-level 

high and contain a fauna of dwarf mammals, including 

hippopotami (Boekschoonten & Sondaar 1972). Other 
features apparently dating from this time include the 
formation of the extensive Kouris River braidplain and the 
Akrotiri and Larnaca salt lakes. Muddy, poorly sorted 

alluvium was deposited in the Tremithios River, in the 

Larnaca lowlands (Gifford 1978) during the latest 
Pleistocene and early Holocene. The floor of the Vasilikos 
Valley was downcut by 6 m, followed by a period of 

aggradation and alluviation between 5540 to 5010 B.C. 
(Gomez 1987). This preceded a phase of fine-grained 
overbank sedimentation and subsequent downcutting to 
form an alluvial terrace within 2 m of the present floodplain, 
as seen in the Tremithios Valley (Gifford 1978). Incision 
into this terrace has occurred since Byzantine (c. 330-

1190A.D.) times (Gifford 1978); shards found in this 
terrace south of Nicosia support this interpretation. 

Archaeological sites at Paphos. Salamis. Amathus and 
Larnaca show evidence of Recent submergence (Alexander-

son 1972; Flemming 1978; Gifford 1978). 

Interpretation: submergence and anthropogenic 
influences 
Limited relative uplift of the island occurred during the 
period from the last glacial to the present. The sedimentary 

sequences and geomorphological changes during the latest 
Pleistocene and Holocene period reflect anihropogenic, 

climatic, eustatic and/or continuing minor tectonic effects, 
in line with the views of Hemming (1978), Gomez (1987) 

and Poole ci al. (1990) but countrary to the views of 

Giangrande et al. (1987) and Vita-Finzi (1990) who suggest 

that rapid uplift and neotectonic faulting took place during 

this time. 

Discussion 

Tectonic uplift versus sea-level change 
The Troodos Massif has been uplifted during a period of 
glacio-eustatic sea-level change. To what extent can the two 
processes be disentangled in the Quaternary of southern 

Cyprus? 
During the earliest Pleistocene, both tectonism and 

sea-level changes influenced erosion and deposition. The 
highest 350-360m terrace is preserved only in SW Cyprus, 

probably because this area was away from the later focus of 
uplift and thus survived erosion. This terrace is correlated 

with the earlier pre-Fl. Fanglomerate depositional events in 
the Mesaoria basin, the Upper Pliocene-lower Pleistocene 

Kakkaristra and Apalos Formations, dated by ostracodes. 
Correlation can also be extended northwards, via the 

bioclastic Athalassa Formation of the Mesaona basin with 
the ?Upper Pliocene terrace on the southern flanks of the 

Kyrenia Range (Ducloz 1967). In southern Cyprus. Late 

Pliocene nannofossil muds and Troodos-derived conglomer-

ates infilled channels (Houghton ci at. 1990) indicating 

incision that resulted from a relative fall in sea-level. Latest 
Pliocene marine muds are also overlain by bioclastic 

limestones in southern Cyprus (near Amathus: Houghton et 

at. 1990) that are lithologically correlated with the Late 

Pliocene-earliest Pleistocene Athalassa Formation of the 
Mesaoria Plain. implying a relative rise in sea-level, that was 

probably eustatically controlled. 
The dominant control on erosion and sedimentation, 

during the early-mid-Pleistocene. was drastic uplift centred 
on Mount Olympos, modified by glacio-eustatic effects, as 
observed in coastal areas. The exact timing of the dominant 

Fl Fanglomerate remains poorly known, owing to the lack 
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of datable material in the localized correlative littoral 

deposits. A late Lower Pleistocene age (i.e. c. 1 Ma.) for the 

climax of uplift is probable. The record of ultramafic clasts 
in the alluvial conglomerates mirrors that found today, 
showing that no substantial unroofing of the Troodos Massif 
has taken place since that time. Along the north Troodos 
margin alluvial fan systems infllled the pre-existing Mesaoria 

basin, whilst along the south margin, most of the detritus 
bypassed onshore areas, probably within pre-existing 
channels; deposition then took place offshore, on the 
narrow continental shelf and slope. Except where river 
capture has occurred, drainage patterns were established as 
early as the Late Pliocene and have remained little changed 
since (itself a strong argument against many major differen-
tial tectonic movements in southern Cyprus during the 
Quaternary). The correlative littoral deposits, preserved 
only in areas away from the main focus of uplift and erosion 
of the Troodos Massif (SW Cyprus), indicate that sea-level 
was relatively high during at least part of the time of Fl 
deposition (early—mid-Pleistocene), thus further emphasiz-
ing the dominant role of tectonic uplift at this time. 
Regression followed, indicating sea-level fall and/or 
continued regional uplift, marked by the deposition of the 
F'2 (mid-Pleistocene) sediments. The P2 features mirror 
those of the Fl, with similar fluvial and marine sediments. 
P2 phase channels cut down into Fl terraces and the 
pre-Quaternary sediments, suggesting that tectonic uplift 
took place during the P2 phase. The evidence from the 
Kouklia area in SW Cyprus (Fig. 8) suggests that this 
tectonic uplift occurred during a falling, or low eustatic 
sea-level stand, allowing tectonic uplift and sea-level change 
to be differentiated for the first time in Cyprus (Fig. 8). 

During the early Late Pleistocene, the local lateral 
passage from fluvial gravels to coral-bearing littoral deposits 
in NW Cyprus shows that erosion corresponded to a time of 
relative sea-level fall, thus favouring eustatic sea-level 
changes as the main control of the F3 (early Late 
Pleistocene) alluvial system. Dates from corals in these 
marine terraces correspond to oxygen isotope 7 (Shackleton 
1975) and suggest that 13m of tectonic uplift took place 
between 130 ka and 192 ka (Poole ci al. 1990; this paper, 

Table 2). The later stages of uplift were marked by 
regressive successions of shallow marine sediments, 
aeolianite and caliche deposits and the development of 
palaeo-cliff-lines. Dissection of pre-existing erosion surfaces 
took place with fluvial channel incision, regressive fan-delta 
accumulation and the development of erosion surfaces 
covered with caliche and terra rossa type-palaeosols. 

During the F4 phase (latest Pleistocene since c. 130 ka) 

sea-level change, specifically transgression and regression, 
associated with the 5e sea-level high, was the dominant 
control on the erosive and sedimentary features in S Cyprus. 
although limited uplift may have taken place (Poole es al. 
1990). Littoral deposits developed on a broad, flooded 
peneplaned surface, with hinterland raised cliff-lines and 
caves. Extensive aeolianites migrated onshore as sea-level 
fell, exposing and reworking large areas of newly formed 
marine bioclastic sediment. A maximum of 6 m of uplift has 
taken place in the past 116 ka (Poole ci al. 1990), confirming 

that eustatic sea-level change, and not tectonics, has been 
the dominant control in the latest Pleistocene. 

During the Holocene (post- 10 ka) glacio-eustatic change 

has clearly dominated sedimentation, modified by relatively 
minor tectonic movements, mainly subsidence of some  

coastal regions (Flemming 1978). Regression, resulting from 
an estimated sea-level fall of 110-120 m (Shackleton et al. 
1984) during the last glacial (40-10 ka). is widely 
recognizable in the form of offshore and onshore 
peneplaned surfaces and shallow conglomerate-filled 
channels. 

Anthropogenic influences have apparently dominated 
sedimentation, related to deforestation and agriculture 
during the Holocene. Gradual tectonic movements may 
have been taking place, but are not distinguishable. Silting, 
flooding and further downcutting to the present level 
occurred between 5540-5010 BC. Late Holocene alluvial 
terraces were locally incised between 330-1190 AD (Gomez 

1987). 

Climatic variation 

The sedimentary environments in all the documented 
marine terraces of SW Cyprus (i.e. F1-174) are very similar; 
yet as Fig. Sb shows there is a distinct change in fauna, 
with red algal build ups and no coral in the Fl terrace 
(e.g. above Paphos; Fig. 5a). Colonies of the C. caespiiosa, 
however, occur in the P2. F3 and F4 (e.g. Coral Bay and 
Paphos) terraces, as well as in the Pliocene sediments of the 
Mesaoria Plain (McCallum 1989). The presence, or absence 
of coral can be correlated with long term, Quaternary, 
climatic variations identified in other areas in the 
Mediterranean (e.g. Israel. Issar 1979; Mallorca. Butzer 
1975). These changes resulted in the introduction of a 'cool 
water' molluscan fauna during the Calabro-Sicilian stage, 
succeeded by a 'warm water' fauna during the Tyrrhenian 
stage (Table 1) (Moshkovitz 1968). The F3 terrace at 
L.arnaca, identified as Tyrrhenian in age (Pantazis 1966; 
Moshkovitz 1968) on the presence of the gastropod. 
Strombus buboniu.s actually corresponds to oxygen isotope 
stage 7 (Poole ci al. 1990), in agreement with the proposal 
that the 'warm' water Tyrrhenian fauna were present in the 
Mediterranean from c. 200 ka to 120 ka (Butzer 1975). The 
occurrence of the 'cool water' molluscan fauna corresponds 

to the presence of red algal build ups, as seen in the Fl 
terrace, while the colonies of C. caespi:osa may relate to 
warmer periods (e.g. the Late Pliocene and Tyrrhenian). 
This correlation between the mollusc population and the 
presence, or lack of hermatypic coral and red algal 
frameworks suggests that the Quaternary assemblages on 
Cyprus behaved in a similar manner to the skeletal groups 
of Lees & Buller (1972). These authors identified two 
skeletal assemblages: foramol ('temperate water'), where 
forams, molluscs and calcareous red algae are the dominant 
grain type; and chlorozoan ('warm water'), where 
hermatypic corals and/or calcareous green algae are also 
present. Teichert (1958) also shows that hcrmatvpic corals 
only exist in 'warm water'. Thus. Quaternary coral and 
calcareous red algal populations in Cyprus may reflect 
climatic changes, that were previously only recorded in 
molluscan populations. Overall, 'cooler waters' existed in 
the early Pleistocene with warmer conditions in the latest 

Pliocene, middle and latest Pleistocene. 

Nature of tectonic control 

After the inferred initiation of northwards subduction along 
an active margin south of Cyprus, probably in earliest 
Miocene, southern Cyprus began to emerge, with localized 
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compression in the south in the Miocene and extension in 

the north (Mesaoria basin) in the Late Miocene-Early 

Pliocene (Robertson et al. 1990). Extension in the north was 

accompanied by uplift of the north Troodos margin areas 

that flanked the main graben (Mesaoria basin), with 

accompanying erosion and marine fan delta deposition 

(Nicosia Formation McCallum & Robertson 1990). 
Focussed uplift of the Troodos Massif first became evident 

in the Late Pliocene-early Pleistocene (Kakkaristra and 

Apalos Formations), while marine deposition persisted on 

south Kyrenia flank and probably in the Mesaona basin into 

the early Quaternary. One alternative to explain the main 

tectonic uplift in early to mid-Pleistocene is serpentinite-

driven diapiric protrusion of the ultramafic core of the 

Troodos Massif (Gass & Masson-Smith 1963). Another, is 

underthrusting of a continental fragment, or seamount 

northwards beneath Cyprus during the Quaternary. 

Underthrusting of a seamount (e.g. the Eratosthenes 

Seamount: Fig. 1) could have triggered serpentinization and 

thus diapiric uplit of the Troodos Massif (Robertson 1990), 

combined with regional uplift of the whole of Cyprus 

(including the Kyrenia Range). It should be noted that 

southern Cyprus was uplifted as a single structural entity 

with little evidence of major differential faulting, other than 

in the Polls graben in SW Cyprus, where extension 

continued into the Quaternary. This agrees with observa-

tions from other tectonically active areas of the Mediter-

ranean (Hey 1978), where large areas have undergone 

equivalent amounts of uplift with little evidence of active 

faulting and local differential movement. 

One outstanding problem is whether the documented 

phases of relative uplift represent truly episodic tectonic 

pulses of uplift, or whether they were the result of 

superimposition of the glacio-eustatic sea-level changes, on 

a single cycle of accelerating and then decelerating tectonic 

uplift. While initially favouring the first (McCallum & 

Robertson. 1990), we now believe that the second possibility 

is at least likely. Resolution of this problem is unlikely 

without absolute ages of the earlier, crustal uplift phases. 

In summary, an initial drastic phase of uplift of the 

Troodos Massif took place in the late early to mid-

Quaternary (c. 1.5-1.0 Ma). followed by further less 

pronounced uplirt continuing until the late Pleistocene 

(c. 130 ka). A maximum of 6  of uplift has taken place 

since 116 ka and there is evidence of Holocene submergence 

of some coastal areas (Flemming 1978). The slowing and/or 

cessation of tectonic uplift could correspond to the apparent 

absence of present day subduction beneath southern 

Cyprus. Similar uplift of 'fore-arc' areas related to the 

collision of seamounts with trenches is documented 

elsewhere (Cadet et al. 1987). 

Conclusions 
The potential to correlate geomorphological terrace 

surfaces, alluvial systems and coastal marine and non-

marine settings throughout southern Cyprus provides an 

ideal opportunity to assess the importance of tectonic uplift. 

versus sea-level change in the Quaternary unroofing of the 

Troodos ophiolite. Following earlier uplift, the Troodos 

Massif underwent drastic, focussed uplift in the late early ,  to 

mid-Pleistocene (C. 1.5-1 Ma), with a further weaker phase 

of uplift continuing into the late Late Pleistocene 

(c. 130 ka). The uplift corresponded to times of relative high 

sea-levels, followed by relative regression. After 130 ka, 

only a maximum of c. 6 m of further tectonic uplift of 

coastal areas took place. The dominant control in the late 

Quaternary was thus eustatic, particularly the Tyrrhenian 

highstand (c. 130 ka). The overall tectonic setting during the 

Quaternary involved the overriding plate of a northwards-

dipping subduction zone. that was punctured by the diapiric 

protrusion of serpentinite, possibly associated with the 

collision of a seamount with the Cyprus trench. 
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Table E5. X-ray diffraction peak reference plots of the mineral phases present with 
borehole and other samples analysed during the course of this work. 

Alpha quartz 

100.0 
80.0 5- 490 
60.0 
40.0 
20.0 H 	 J. 

0.0 	10.0 20.0 30.0 40.0 	50.0 	60.0 

100.0 Calcite . 
5- 585 

40.0 
20.0 

 

0.0 	10.0 20.0 30.0 40.0 	50.0 	60.0 

E30. 0  Ripidolite (chlorite) (Hq2. EFe 1 .7411 .2) (Si2.8A11 

60.0 
40.0 
20.0  II 1 . 	 I. 11 .  

0.0 	10.0 20.0 30.0 40.0 	50.0 	50.0 

100.0 	Thurinqite (chlorite) U.FeA1) 6 (Si  .A1) .310 (OH) 8 
60.0 7- 	78 
60.0 
40.0 

-= 

 
20.0  

0.0 	10.0 20.0 30.0 40.0 	50.0 	60.0 

100 	Grochauite (chlorite) . 0 
80.0 

(:.giFe)6(SiA1)4C10(OH)8 

= 	
60.0 

7 	165 

10 . 0 
20.0 

 

0.0 	10.0 20.0 30.0 40.0 	50.0 	60.0 
100:0 
80.0 Albite a41Si308 

60.0 
- 	466 

40.0 

f 	20.0 I I :. 
0.0 	10.0 20.0 30.0 40.0 	50.0 	60.0 

000 
80:0 	High able Na'.1Sj308 

60.0 0- 393 

40.0 
20.0 

0.0 	10.0 20.0 30.0 40.0 	50.0 	60.0 

Leuctenbergile (chlorite) 
100 0 
80.0 
60..0 

(MgAfl6(SiAi).::0(oH)s 1 - 242 

40.0 
20.0 I 1 11 1 	. I 

0.0 	1 0.0 20.0 30.0 40.0 	50.0 	60.0 
100.0 
80.0 

I 
Thuringite (ortho; chlorite) (FeAIMgMn) 6 (SIAU .010 (OH 

60.0 - - 	29 

40.0 
20.0 

0.0 	10.0 20.0 30.0 40.0 	50.0 	60.0 
100.0 	Tremolite 
80.0 1 Ca2Mg5SiE:22(OH)2 
so.oJ 13 	437 
40.01 
20.0 j I. I I 	I I HI 	l i i 	iI 	I 

0.0 	10.0 20.0 30.0 40.0 	50.0 	60.0 

20 angle 



30.0 

30.0 

30.0 

30.0 

	

1g:g 
	Pyrite 

50.0 
40.0 
20.0 

0.0 	10.0 	20.0 

	

100.0 	Enstolile 
80.0 
60.0 
.40.0 
20.0 

0.0 	10.0 	20.0 

- 	100.0 	 I 

	

80.0 	C)inochlore - ferroon 
= 60.0 
2 40.0 

• 	20.0 

0.0 	10.0 	.20.0 

100.0 j CnochIore 
80.0 
60.0 
40.0 

.20.0 

0.0 	 10.0 	 20.0 
100.0 Tremote - sodian 80.0 
60.0 
40.0 
20.0 

II!' 

0.0 	10.0 	20.0 

Ouortz - ow 
60.0 
40.0 
20.0 

I 	FeS2 
26- 801 

	

40.0 	500 	60.0 

(MgFe)SiO3 
26- 876 

	

I!,t 	1 Iii1i iJ.III iii .iilI i,. 

	

40.0 	50.0 	50.0 

(.ige) S (Si AI) 4010 (OH) 8 
29- 701 

	

40.0 	50.0 	60.0 

Mg5AI (S3A1) 010 (OH) 8 
29- 994 

	

I h I 	i 	I 

	

40.0 	50.0 	50.0 

(ca)2.3Mg9S9o22 (OH) 2 
31-1295 

	

40.0 	50.0 	60.0 

S402 
33-1151 

00 	10.0 	20.0 	30.0 	40.0 	50.0 	
60.0 

20 angle 


