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Abstract— Many everyday human skills can be framed in
terms of performing some task subject to constraints imposed
by the environment. Constraints are usually unobservable
and frequently change between contexts. In this paper, we
present a novel approach for learning (unconstrained) control
policies from movement data, where observations come from
movements under different constraints. As a key ingredient,
we introduce a small but highly effective modification to the
standard risk functional, allowing us to make a meaningful
comparison between the estimated policy and constrained
observations. We demonstrate our approach on systems of
varying complexity, including kinematic data from the ASIM O
humanoid robot with 27 degrees of freedom.

I. I NTRODUCTION

A wide variety of everyday human skills can be framed in
terms of performing some task subject to constraints imposed
by the physical environment [8]. Examples include opening
a door, pulling out a drawer or stirring soup in a saucepan.

In a more generic setting, constraints may take a much
wider variety of forms. For example in climbing a ladder,
the constraint may be on the centre of mass or the tilt
of the torso of the climber to prevent over-balancing. Or
in contact control [9] problems such as manipulation or
grasping a solid object, the motion of fingers is constrained
during the grasp by the presence of the object. Also in
systems designed to be highly competent and adaptive, such
as humanoid robots behaviour may be subject to a wide
variety of constraints [3], usually non-linear in actuatorspace
and often discontinuous. Consider the task of running or
walking on uneven terrain: the cyclic movement of the legs
of the runner is constrained by the impact of the feet on
the ground in a dynamic, discontinuous and unpredictable
way. A promising approach to providing robots with such
skills as running and opening doors, is to take examples of
motion from existing systems, such as humans, and attempt
to learn a control policy that somehow captures the desired
behaviour [2], [1], [13], [5]. An important component of this
is the ability to deal with the effect of constraints and the
apparent variability in the observed movement induced by
these constraints. For example one wishes to learn a policy
that allows one to open many doors of varying widths, or
stir in saucepans of varying sizes.

The focus in this paper is on modelling control policies
subject to generic constraints on motion, with the aim of
finding policies that can generaliseover different constraints.
We take a direct policy learning (DPL) approach1 [13]
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of policies directly from cost/reward feedback without theuse of a value
function, which is also sometimes referred to as DPL.

whereby we attempt to learn a continuous model of the
policy from motion data. While DPL has been studied for a
variety of control problems in recent years (for a review,
see [1] and references therein), crucially these problems
involved policies that are either directly observable from
motion data, i.e. unconstrained policies, or policies subject
to identical constraints in every observation (in which case
the constraints can be absorbed into the policy itself) [2].
The difference here is that we consider observations from
policies projected into the nullspace of a set of dynamic,
non-linear constraints, and that these constraints may change
between observations, or even during the course of a single
observation.

In general, learning (unconstrained) policies from con-
strained motion data is a formidable task. This is due to (i)
thenon-convexity of observations under different constraints,
and; (ii) degeneracy in the set of possible policies that
could have produced the movement under the constraint.
However, despite these hard analytical limits, we will show
that it is still possible to find a good approximation of
the unconstrained policy given observations under the right
conditions. Our proposal is to reformulate the standard risk
functional by introducing a projection of the estimated policy
onto the observations before calculating errors. By making
this simple, but significant alteration, we show that it is
possible to model the unconstrained policy (i) with no ex-
plicit knowledge of the constraints, and; (ii) without explicit
access to unconstrained policy vectors. Furthermore, we
show that using this approach one can fully reconstruct the
unconstrained policy given observations under a sufficiently
rich set of constraints. To validate the approach we modify
standard regression techniques to use the proposed objective
function and demonstrate robust learning for several policies
on complex, high-dimensional movement systems, subject to
realistic constraints.

II. L EARNING FROM CONSTRAINED POLICIES

Here, we characterise the problem of direct policy learning
when constraints are applied to motion. Following [13], [11],
we consider the learning of autonomous policies

u(t) = π(x(t)) , π : IRn 7→ IRd (1)

where x ∈ IRn and u ∈ IRd are some appropriately
chosen state and action vectors2 andπ is the policy mapping
between the two.

The goal of DPL is to approximate the policyπ as closely
as possible [13], [11] given observations (often in the formof
trajectories) of the states and actionsu(t), x(t). In previous
work this has been done by fitting parametrised models in

2For example in kinematic control, the state vector could be the joint
angles,x ≡ q, and the action could be the velocitiesu ≡ q̇, or in dynamic
control a suitable state might be,x ≡ q, q̇, with actions corresponding to
applied torques,u ≡ τ .
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Fig. 1. Illustration of two apparently different behaviours from the
same policy: (a) unconstrained movement (b) movement constrained by an
obstacle (black box) (c) the unconstrained (red) and constrained (black)
policy over two of the joints of the finger.

the form of dynamical systems [5], non-parametric modelling
[11], and probabilistic Bayesian approaches [4].

An implicit assumption found in DPL approaches to date
is that the data used for training comes from behavioural
observations of someunconstrained or consistently con-
strained policy [2]. By this it is meant that the policy
is observed either under no constraint (e.g. movements in
free space such as gestures or figure drawing), or under
constraints consistent over observations (e.g. interacting with
the same objects/obstacles in each case). However, in many
everyday behaviours, there is variability in the constraints,
such as when opening doors of varying sizes or walking on
uneven terrain. Thisvariability in the constraints cannot be
accounted for by standard DPL approaches.

As an example, consider the learning of a simple policy to
extend a jointed finger. In Fig. 1(a) the finger is unconstrained
and the policy simply moves the joints towards the zero
(outstretched) position. On the other hand, in Fig. 1(b), an
obstacle lies in the path of the finger, so that the finger move-
ment is constrained – it is not able to penetrate the obstacle,
so moves along the surface. The vector field representation
of the two behaviours is shown in Fig. 1(c).

In standard DPL [13], [5], these two apparently different
behaviours would lead to the learning of two separate poli-
cies (i.e. the different coloured vector fields) for extending
the finger in the two settings. However, the fact that the goals
of the two policies are similar (‘extend the finger’) suggests
that in fact the movement stems from thesame policy under
different constraints. Viewed like this, instead of learning
two separate policies we would rather learn a single policy
that generalises over the different constraints.

The best policy representation of the movements in Fig. 1
is that of the unconstrained policyπ, since this gives maxi-
mal information about the behaviour. Knowingπ, or finding
a good approximation of it, we can (i) reproduce observed
constrained behaviours (cf. Fig. 1(b)) simply by applying
the same constraints, (ii) predict the unconstrained behaviour
(cf. Fig. 1(a)) in parts of the space where only constrained
movements have been seen, and; (iii) even predict behaviour
in situations where novel constraints, unseen in the training
data, apply.

A. Constraint Model

In this paper we consider constraints which act as hard re-
strictions on actions available to the policy. Mathematically,
we say given a set ofk-dimensional constraints

A(x, t)u = 0 (2)

the policy is projected into the nullspace of those constraints

u(x, t) = N(x, t)π(x(t)), (3)

where N(x, t) ≡ (I − A†A) ∈ IRd×d is in general a
time-varying projection operator that is non-linear in state3,
A(x, t) ∈ IRk×d is some matrix describing the constraint
and I ∈ IRd×d is the identity matrix. Constraints of the
form (2) commonly appear in scenarios where manipulators
interact with solid objects, for example when grasping a
tool or turning a crank or a pedal. Such constraints are also
common in the control of redundant degrees of freedom in
high-dimensional manipulators [7], [6], [10], where policies
such as (3) are used, for example, to aid joint stabilisation
under task constraints. As an example: SettingA to the
Jacobian that maps from joint-space to end-effector position
coordinates would allow any motion in the joint space
provided that the end-effector remained stationary.

Learning the unconstrained policyπ(x) from observations
of the constrained actionsu(x, t) is a non-trivial task for
several reasons. Firstly, we commonly do not know exactly
what constraintsA(x, t) (and thereforeN(x, t)) are in force
in different observations. For example we may not know
the exact radius of an opening door. Secondly there is the
problem ofnon-convexity of the training targets, that is the
different projectionsN(x, t) cause the action vectorsu to
appear different under different constraints. For example
compare the set of constrained (black) and unconstrained
(red) vectors for the policy shown in Fig. 1(c). Finally, there
is degeneracy in the sense that for any given observationu,
there may be multiple policiesπ that could be projected to
produce that observation.

However, despite these restrictions, by reformulating the
standard DPL learning problem, we will show that it is still
possible to learn a good model of the policyπ, without need
for explicit knowledge of the constraintsN(x, t), and that is,
as a minimum, consistent with all constrained observations.
We turn to this in the next section.

III. M ETHOD

Our method works on data that is given as tuples(xn,un) of
observed states and constrained actions. We assume that all
commandsu are generated from the same underlying policy
π(x), which for a particular observation might have been
constrained, that isun = Nnπ(xn) for some projection
matrix Nn. Furthermore we assume that the projection
matrix for any given observation is not explicitly known,
i.e. our data is unlabelled with respect to the constraints in
force at the time of observation.

With only xn andun given, one may be tempted to simply
minimise

Enaive[π̃] =

N
∑

n=1

‖un − π̃(xn)‖2. (4)

3Here,A† denotes the Moore-Penrose pseudoinverse of the matrixA



Fig. 2. Illustration of our learning scheme. Left: Naive regression on
constrained commandsu1, u2 results in averaging of the observationsū in
a way that cannot explain the observed commands. Right: The projection
of the correct policyπ onto the observations matches those observations.

However this would ignore that constraints might have been
in force and correspond to a naive averaging of commands
from different circumstances (cf. Fig. 2).

If we had access to samples of either (i) the (uncon-
strained) policyπn = π(xn), or (ii) the projection matrices
Nn, we could use standard regression techniques to estimate
a policy π̃(x) by minimising an appropriate risk functional.
Specifically in the former case we could minimise

Eupe[π̃] =

N
∑

n=1

‖πn − π̃(xn)‖2. (5)

In the latter case, we could minimise

Ecpe[π̃] =

N
∑

n=1

‖un − Nnπ̃(xn)‖2, (6)

which we refer to as theunconstrained policy error (UPE)
and constrained policy error (CPE), respectively. However,
since by assumption samples ofπn andNn are not available
these functionals cannot be used to estimate the policy.

Instead, we aim to estimate a policyπ̃(·) that isconsistent
with our observedun. That is we wish to reconstruct the
policy, knowing that it is projected in some way by the
constraints. At this point a key observation can be made:
in order to uncover the unconstrained policy we must find a
policy model that can beprojected in such a way that the
observed commands are recovered. That is, we require

u(x) := Pπ(x)

for an appropriate projection matrixP, that either projects
onto the same space as the (unknown)N(x) (i.e. the image
of N), or an (even smaller) subspace of that. One such
projection, which we know to lie within this subspace, is
the 1-D projection onto the observed command itself, that is
P = ûûT , with û= u/‖u‖ (ref. Fig. 2, right). Furthermore,
since u is given, we have all the information we need to
calculate this projection and use it for learning, neatly side-
stepping the need to explicitly model the full constraint
matrix N.

With this as motivation, we replaceNn in (6) by a
projection ontoun and minimise theinconsistency which
we define as the functional

Ei[π̃] =

N
∑

n=1

‖un− ûnûT
n π̃(xn)‖2 =

N
∑

n=1

(

rn − ûT
n π̃(xn)

)2

(7)

with rn = ‖un‖, ûn = un

rn
. Sinceun = Nnπn we can write

‖un − Nnπ̃(xn)‖2 = ‖Nn(πn − π̃(xn))‖2 and recognise
that the CPE is always less than or equal to the UPE,
because the projectionsNn can only decrease the norm of
the difference between true and predicted policy. The same
argument holds for the inconsistency error (7) where the
projection onto the 1-D subspace spanned byûn, possibly
takes away even more of the error. So we can establish the
inequality

Ei[π̃] ≤ Ecpe[π̃] ≤ Eupe[π̃].

Naturally, for estimating the correct policy, we would rather
like to minimise anupper bound of Eupe, but it is unclear
how such a bound could be derived from the data we are
assumed given. Note that by framing our learning problem as
a risk minimisation task, we can apply standard regularisation
techniques such as adding suitable penalty terms to prevent
over-fitting due to noise.

The proposed risk functional can be used in conjunction
with many standard regression techniques. However, for the
experiments in this paper, we restrict ourselves to two classes
of function approximator for learning the (unconstrained)
policy to demonstrate how the risk functional can be used.
The example function approximators we use are (i) simple
parametric models with fixed basis functions (Sec. III-A),
and (ii) locally linear models (Sec. III-B). In the next section
we describe how these two models can be reformulated to
take advantage of the new risk functional.

A. Parametric policy models

A particularly convenient model of the policy is given by
π̃(x)=Wb(x), whereW∈ IRd×M is a matrix of weights,
and b(x) ∈ IRM is a vector of fixed basis functions. This
notably includes the case of (globally) linear models where
we set b(x) = x̄ = (xT , 1)T , or the case of normalised
radial basis functions (RBFs)bi(x) = K(x−ci)

P

M
j=1

K(x−cj)
calcu-

lated from Gaussian kernelsK(·) aroundM pre-determined
centresci, i = 1 . . .M . With this model, theinconsistency
error from (7) becomes

Ei(W) =

N
∑

n=1

(

rn − ûT
nWb(xn)

)2

=

N
∑

n=1

(

rn − vT
n w

)2
= Ei(w),

where we definedw≡vec(W) andvn≡vec(ûnb(xn)T )=
b(xn) ⊗ ûn in order to retrieve a simpler functional form.
Since our objective function is quadratic inw, we can solve
for the optimal weight vector easily:

Ei(w) =
∑

n

r2
n − 2

∑

n

rnvT
n w + wT

∑

n

vnvT
n w

= E0 − 2gTw + wT Hw

yielding
wopt = argminEi(w) = H−1g (8)

with H =
∑

n vnvT
n andg =

∑

n rnvn. For regularisation,
we use a simple weight-decay penalty term, that is, we
selectwopt

reg = argmin(Ei(w)+λ‖w‖2). This only requires
modifying the Hessian toHreg =

∑

n vnvT
n + λI.



Please note that the projection ontou introduces a cou-
pling between the different components ofπ̃, which prevents
us from learning those independently as is common in normal
regression tasks. For the same reason, the size of the Hessian
scales withO(d2M2).

B. Locally linear policy models

The basis function approach quickly becomes nonviable
in high-dimensional input spaces. Alternatively, we can fit
multiple locally weighted linear models̃πm(x) = Bmx̄ =
Bm(xT , 1)T to the data, learning each local model inde-
pendently [12]. For a linear model centred atcm with an
isotropic Gaussian receptive field with varianceσ2, we would
minimise

Ei(Bm) =

N
∑

n=1

wnm

(

rn − ûT
nBmx̄n

)2

=

N
∑

n=1

wnm

(

rn − vT
n bm

)2
= Ei(bm),

where we definedbm = vec(Bm) and vn ≡ vec(ûnx̄T
n )

similarly to the parametric case. The factorswnm =
exp(− 1

2σ2 ‖xn − cm‖2) weight the importance of each ob-
servation(xn,un), giving more weight to nearby samples.
The optimal slopesBm in vector form are retrieved by

bopt
m = arg minEi(bm) = H−1

m gm (9)

with Hm =
∑

n wnmvnvT
n andgm =

∑

n wnmrnvn.
For predicting the global policy, we combine the local

linear models using the convex combination

π̃(x) =

∑M
m=1 wmBmx̄
∑M

m=1 wm

; wm = exp

(

−
1

2σ2
‖x − cm‖2

)

.

IV. EXPERIMENTS

To explore the performance of our algorithm, we performed
experiments on data from autonomous kinematic control
policies [13] applied to three simulated plants. In our first
set of experiments we illustrate the concepts involved on
an artificial two-dimensional toy system4. We then demon-
strate our algorithm applied to higher dimensional plants
including a physically realistic simulation of the 7-DOF DLR
lightweight arm, and to whole body motion control of the
27-DOF humanoid robot ASIMO [3].

A. Toy Example

Our first experiment demonstrates the learning of uncon-
strained policies from constrained trajectories in a simple
toy example consisting of a two-dimensional system with
discontinuously switching motion constraints. As an example
policy, we used a limit cycle attractor (Fig. 3, left) of the form

ṙ = r(ρ − r2), θ̇ = ω (10)

wherer, θ are the polar representation of the Cartesian state
space coordinates (i.e.x1 = r sin θ, x2 = r cos θ), ρ is the
radius of the attractor anḋθ is the angular velocity. For the
experiments we setρ = 0.5 m and ω = 1 rad s−1 with a
sampling rate of 50 Hz. Data was collected by recording 40

4In fact even these ‘simplified’ problems are relevant to constrained
policies in low dimensional task spaces, such as end-effector space.

trajectories of length 40 time steps each, generated by the
policy from a random start state. During the trajectories the
policy was subjected to random 1-D constraints

A(x, t) = (α1, α2) ≡ α (11)

where theα1,2 were drawn from a normal distribution,αi =
N(0, 1). The constraints mean that motion is constrained in
the direction orthogonal to the vectorα in state space. These
were randomly switched by generating a newα twice at
regular intervals during the trajectory, inducing sharp turns
which can be seen in Fig. 3 (right).

We used a parametric model to learn the policy through
minimisation of the inconsistency (7) as described in Sec. III-
A. We included the regularisation term and picked the
parameterλ by minimising the inconsistency on a validation
subset. For this toy problem, we chose our function model
as a set of 36 normalised RBFs centred on a6× 6 grid, and
we simply fixed the kernel width to yield suitable overlap.
We repeated this experiment on 100 data sets and evaluated
the normalised UPE, CPE and the inconsistency5, that is,
the functionals from (5), (6) and (7) divided by the number
of data points and the variance of the policyπn on a
subset held out for testing. For comparison, we repeated
the experiment using a naive approach that attempted to
perform regression with the same RBF model directly on
the constrained observations. That is, the naive approach
attempted to minimise the functional (4).

Figure 3 shows the true policy, the trajectories we trained
on, the policies learnt using our and the naive approach,
and finally the error statistics below the plots. With an
average nUPE of 0.0027, our method outperforms the naive
approach by orders of magnitude. Notably, even with only
4 trajectories (Fig. 3, column 2) the reconstructed policy
already resembles the limit cycle, although large errors still
persist in some parts of the state space (e.g. the lower right
corner). Further to this, the top panel of Fig. 4 depicts
how the nUPE and nCPE evolve with increasing size of the
training set, showing a smooth decline (please note the log.
scale). In order to further explore the performance of our
algorithm, we contaminated the observed commandsun with
Gaussian noise, the scale of which we varied to match up to
20% of the scale of the data. The resulting nUPE roughly
follows the noise level, as is plotted in Fig. 4 (bottom).

B. Generalisation over unseen constraints

The two goals of our second set of experiments were to
characterise (i) how well the algorithm scaled to more
complex, realistic constraints and (ii) how well the learnt
policies generalised over unseen constraints. For this we used
a kinematic simulation of the 7-DOF DLR lightweight robot
(LWR-III). The experimental procedure was as follows: We
generated a random initial posture by drawing 7 joint angles
uniformly from half the range of each joint, that isxi ∼
U [−0.5xmax

i ; 0.5xmax
i ], where for examplexmax

1 = 170◦.
We set up a joint limit avoidance type policy asπ(x) =
−0.05∇Φ(x), with the potential given byΦ(x)=

∑7
i=1 |xi|

p

for p = 1.5, p = 1.8, or p = 2.0. We then generated 100
trajectories with 100 points each, following the policy under

5Actually, for u ∈ IR
2 the inconsistency is exactly equivalent to the CPE,

since both necessarily involve the same 1-D projection.



nUPE:
nCPE:

0.3788 ± 0.2688

0.1276 ± 0.1140

0.0027 ± 0.0087

0.0002 ± 0.0002

0.5709 ± 0.0853

0.0010 ± 0.0363

Fig. 3. From left to right: 1) true limit cycle policy, 2) learnt policy trained on 4 constrained trajectories, 3) learnt policy from 40 constr. traj., 4) policy
resulting from naive regression on observed commands. Trajectories are shown as dotted lines, the policy is depicted byblack arrows. The normalised
CPE and UPE (mean±s.d. over 100 data sets) are given below the figures.
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Fig. 4. Top: Normalised UPE and CPE versus data set size as a percentage
of the full K =40 trajectories of lengthN =40. Bottom: Normalised UPE
and CPE for increasing noise levels in the observedun.

4 different constraints, which we refer to as 1-2-3, 4-5-6, 1-
3-5, and 2-4-6. Here, the three numbers denote which end-
effector coordinates in task space6 we kept fixed, that is,
1-2-3 means we constrained the end-effector position, but
allowed arbitrary changes in the orientation. Similarly, 2-4-6
means we constrained they-coordinate and the orientation
around thex- and z-axis, while allowing movement inx-z
position and around they-axis. For all 4 constraint types, we
estimated the policy from a training subset, and evaluated
it on test data from the same constraint, as well as on
trajectories from the complementary constraint (e.g., 2-4-6
is complementary to 1-3-5).

For learning in the 7-D state space, we selected locally
linear models as described in Sec. III-B, where we chose
rather wide receptive fields (fixingσ2 = 3) and placed the
centres{cm} of the local models such that every training
sample(xn,un) was weighted within at least one receptive
field with wm(xn) ≥ 0.7. On average, this yielded about 50
local models.

While the linear policyπ(·) corresponding top=2.0 was
learnt almost perfectly (all normalised errors in the order

6The numbers can also be read as row indices of the6×7 Jacobian matrix.

Fig. 5. Example constrained reaching movement demonstrated by the
expert policy. Starting with hands at the sides, the teacherrobot reaches
between the barriers to grasp the ball.

of 10−9), the less linear policies (p = 1.8 and especially
p = 1.5) turned out to be a much harder problem. This can
be seen when comparing both the nUPE and nCPE for the
two policies (ref. Table I). Still, we recovered the constrained
policy in all cases to good accuracy (ref. Table I, 4th column),
with good generalisation to the complementary constraints
(ref. Table I, 5th column). We can also see that constraining
the end-effector position (1-2-3) made it more difficult to
recover the unconstrained policy compared to constraining
the orientation (4-5-6), or using mixed constraints (1-3-5
and 2-4-6). It should also be noted that running the same
experiment using the naive approach (ref. Sec.IV-A) gave
consistently poor results; for example, when training on
data under the (1-2-3) constraint, the naive approach gave
nUPE of 83.44 ± 1.20 × 10−2 for the p = 1.5 policy,
80.94 ± 1.37×10−2 for p = 1.8 and 79.62 ± 1.39×10−2

for p=2.0.

C. Grasping a Ball

The goal of our next set of experiments was to illustrate
the utility of our approach for learning from observations
of an everyday task with realistic constraints. For this we
chose an example scenario, in which a set of observations
of a demonstrator performing the task of reaching for a ball
on a table are given, and the student is expected to learn
a policy to enable it to reproduce this task. The learning
problem is complicated however, by the presence of different
obstacles on the table for each of the example trajectories,
constraining the possible motions of the hands. The goal is to
uncover a policy that accurately predicts the demonstrator’s
(unconstrained) behaviour and generalises to predict the
behaviour under novel constraints.

The example scenario was implemented using the whole



Policy Constr. nUPE nCPE Compl. nCPE

p=1.5

1 - 2 - 3 64.33±32.03 2.91±0.36 15.95±6.47
4 - 5 - 6 34.75±19.12 2.49±0.22 15.47±7.75
1 - 3 - 5 16.17± 3.81 3.20±0.27 5.10±1.07
2 - 4 - 6 10.35± 1.82 2.72±0.23 4.74±0.95

p=1.8

1 - 2 - 3 8.09± 5.76 0.47±0.08 2.27±1.13
4 - 5 - 6 5.36± 2.96 0.35±0.03 2.22±0.98
1 - 3 - 5 2.27± 0.64 0.45±0.04 0.77±0.17
2 - 4 - 6 1.42± 0.31 0.40±0.04 0.72±0.17

TABLE I

NORMALISED UPE, CPEON THE TRAINING CONSTRAINTS, CPEON COMPLEMENTARY CONSTRAINTS AND INCONSISTENCY ERROR, FOR DATA FROM

THE DLR ARM (RIGHT). ALL ERRORS NORMALISED BY THE VARIANCE OF THE POLICY. WE REPORT(MEAN ± S.D.)×10−2 OVER 100TRIALS WITH

DIFFERENT DATA SETS.

body motion (WBM) controller of the 27-DOF humanoid
robot ASIMO (see [3] for details). We set up an ‘expert’
demonstrator robot from which observations were recorded.
For simplicity, the expert’s policy was defined by an inverted
Gaussian potential

π(x) = ∇xφ(x); φ(x) = α
(

1 − e‖x−xc‖
2/2σ2

)

, (12)

where we choseσ2 = 2, α = 0.25 and the target point
xc ∈ IRn to correspond to a grasping position, with the
two hands positioned on either side of the ball. The state-
space of the policy was defined as the Cartesian position of
the two hands, corresponding to 6 DOFs in state and action
space (hereafter, the ‘task space’). In order to realise the
task space policy motion, joint-space control was performed
using inverse kinematics via the WBM controller.

The expert’s movements were constrained by the presence
of a barrier on the table with a gap in it. The constraints acted
on each of the hands so that motion in the direction normal
to the barrier surface was prevented if a hand came too close
(cf. [14]). The barrier was placed such that the expert robot
had to reach through the gap to get the ball (ref. Fig. 5). Such
state-dependent constraints are both nonlinear in the state
space and have discontinuously switching dimensionality
when either hand approaches or recedes from the barrier.

Data was collected by recordingK = 100 trajectories of
length2s at 50 Hz (i.e.N =100 points per trajectory). Start
states were sampled from a Gaussian distribution over joint
configurationsq∼N(q0, 0.1I) (whereq0 corresponds to the
default standing position) and using forward kinematics to
calculate the corresponding hand positions. The joint vector
q was clipped where necessary to avoid joint limits and self
collisions, and to ensure the start postures looked natural.

The constraints were varied by randomly changing the
width of the gap for each trajectory. The gap widths were
sampled from a Gaussian distributiondgap ∼ N(µgap, σgap)
whereµgap = 0.25m, σgap = 0.1m and the diameter of the
ball was0.15m. Fig. 5 shows the experimental set-up.

We used our algorithm to perform learning on50 such data
sets using150 local linear models, with centres placed using
k-means. For comparison, we also repeated the experiment
on the same data, using the naive approach (as described in
Sec. IV-A). That is, the same local linear models were used,
but were trained directly on the tuples(xi,ui ≡ ẋi), i =
1, . . .K × N using the risk functional (4).

To assess the performance for both methods we evaluated
the errors in predicting the policy subject to (i) the training

Data
Naive

Non−Nai.
Expert

Fig. 6. Unconstrained reaching movement for the expert policy (black
dashed), policy learnt by optimisation of the inconsistency (blue), and the
naive approach (green). Ten example constrained reaching movements used
for training are shown in red.

Constraint Naive Non-naive
Training 0.1940 ± 0.0153 0.0056 ± 0.0022

Unseen Barrier 0.4678 ± 0.0264 0.0057 ± 0.0023
Unconstrained 0.7014 ± 0.0430 0.0058 ± 0.0023

TABLE II

NORMALISED POLICY ERRORS FOR PREDICTING THE POLICY UNDER

THREE CONSTRAINT CONDITIONS FROM THE BALL-GRASPING DATA FOR

THE NAIVE AND NON-NAIVE METHODS. VALUES ARE MEAN±S.D. OVER

50 DATA SETS.

data constraints (nCPE), (ii) no constraints (nUPE), and (iii)
a novel constraint, unseen in the training data, on a set of test
data. For the latter, a barrier was placed centrally between
the robot and the ball, so that the robot had to reach around
the barrier to grasp the ball.

As expected, learning using the proposed risk functional
(7) (the ‘non-naive’ approach) performed several orders of
magnitude better than the naive approach in terms of the
numerical error measures (ref. Table II). However, the real
difference in the methods is best highlighted if we compare
trajectories generated by the two policies. In Fig. 6 we
show example trajectories for the unconstrained reaching
movement produced by the expert (black), and the policies
learnt by (i) optimisingEnaive (green), and (ii) optimising
Ei (blue). In the former the hands take a curved path to the
ball, reproducing the average behaviour of the (constrained)
demonstrated trajectories – the naive method is unable to
extract the underlying task (policy) from the observed paths



around the obstacles. In contrast, the policy learnt with the
non-naive approach better predicts the unconstrained policy,
enabling it to take a direct route to the ball that closely
matches that of the expert. The behaviour of the expert and
learnt policies can be examined in detail in the accompanying
video.

D. Learning from High-dimensional Joint-space Data

In our final experiment we tested the scalability of our
approach for learning in very high dimensions. For this we
chose a policy defined by a quadratic potential in the joint
space (i.e.x ≡ q ∈ IR27)

π(x) = −∇xφ(x); φ(x) = (x − xc)
T W(x − xc), (13)

wherexc ∈ IR27 is a target posture andW is a weighting
matrix. The policy (13) represents an attractor in joint space
that pulls the robot into a desired posture atxc. For the
experiments,xc was chosen to correspond to a reaching
posture with both arms outstretched andW=0.05I.

During data collection, the policy was constrained by the
presence of a wall placed directly in front of the robot at
random orientations and distances. The wall restricted the
movement of the hands, and this constraint was projected
back into the joint space, where the policy was operating.
This causes the policy to appear highly complex and non-
linear in the state space (joint space), with discontinuous
changes to the dimensionality of the constraints as the arms
of the robot approached the wall.

Using the formalism from Sec. III-A withb(x) = x̄,
we fitted linear models to 100 data sets, each consisting
of 100 trajectories of 100 data points. Despite the high
dimensionality, our method reached a normalised UPE of
0.291 ± 0.313 × 10−2. It is important to point out that
this result can not only be explained by our choice of a
linear model where we knew that the true policy (13) was
also linear: Direct (naive) linear regression on the observed
commands resulted in a normalised UPE of63.9 ± 3.1 ×
10−2, which again is orders of magnitude higher similar to
our results on toy data.

V. CONCLUSION

In this work, we introduced a novel approach to direct
policy learning in cases where demonstrated movements are
subject to variable, dynamic, non-linear constraints. Dueto
a small but very effective modification in the calculation of
an empirical risk, our method can recover the unconstrained
policy from arbitrarily constrained observations, without
the need for explicit knowledge of the constraints. This
allows us to learn policies that generalise over constraints,
including novel constraints, unseen in the training data. We
demonstrated our method using parametric and locally linear
function approximators to learn policies for problems of
varying size and complexity.

In future work we aim to apply our approach to seed robot
skill acquisition from variable-constraint human motion cap-
ture data. For our initial experiments, data collected using
the Vicon motion capture system7 will be used to investigate
the constrained ball grasping task. Example trajectories are
shown in Fig. 7. Please note the striking resemblance to those
generated by the artificial policy (cf. Fig. 6).

7http://www.vicon.com
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Fig. 7. Human motion capture experiments. Top: Example ballgrasping
movement. Bottom: Example trajectories of the two hands when viewed
from above (left) and the side (right). Constrained trajectories are shown in
blue, with an example unconstrained trajectory shown in red.

A further area of future work will focus on tightening
the existing bounds on error for the UPE and CPE (ref.
Sec. III). This should provide an increased level of robustness
by reducing the bias in the data toward constrained policies,
improving performance, for example, in cases where con-
straints are highly correlated in the data.
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