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A Novel Method for Learning Policies from Constrained Motion

Matthew Howard, Stefan Klanke, Michael Gienger, Christiamerick and Sethu Vijayakumar

Abstract—Many everyday human skills can be framed in whereby we attempt to learn a continuous model of the
terms of performing some task subject to constraints impose  policy from motion data. While DPL has been studied for a

by the environment. Constraints are usually unobservable variety of control problems in recent years (for a review,
and frequently change between contexts. In this paper, we

present a novel approach for learning (unconstrained) combl see (1] and_ references the_re'n)’ c_rumally these problems
policies from movement data, where observations come from involved policies that are either directly observable from
movements under different constraints. As a key ingredient motion data, i.e. unconstrained policies, or policies sobj
we introduce a small but highly effective modification to the to identical constraints in every observation (in whichecas
igamngg:idsorfkbfali\?vg;nill%ea”ggilr?%tg; tgolri?;ane:j n(]:gﬁrs“trr]agifrlljzla 4 the constraints can be absorbed into the policy itself) [2].
observations. We demonstrate our approach on systems of Th? ,d'ﬁerer!ce her_e is that we consider observations frc_)m
varying complexity, including kinematic data from the ASIMO  policies projected into the nullspace of a set of dynamic,
humanoid robot with 27 degrees of freedom. non-linear constraints, and that these constraints maygeha

l. INTRGDUCTION between_observatlons, or even during the course of a single
observation.

A wide variety of everyday human skills can be framed in |, general, learing (unconstrained) policies from con-
terms of performing some task subject to constraints impoS§rained motion data is a formidable task. This is due to (i)
by the physical environment [8]. Examples include openinghe non-convexity of observations under different constraints,
a door, pulling out a drawer or stirring soup in a saucepa%gd; (i) degeneracy in the set of possible policies that
In a more generic setting, constraints may take a mucly |4 have produced the movement under the constraint.
wider variety of forms. For example in climbing a ladder, oy ever, despite these hard analytical limits, we will show
the constraint may be on the centre of mass or the tifho¢ it s still possible to find a good approximation of
of the torso of the climber to prevent over-balancing. Ofng ynconstrained policy given observations under thetrigh
in_contact control [9] problems such as manipulation ofqngitions. Our proposal is to reformulate the standarkl ris
grasping a solid object, the motion of fingers is constrainegnctional by introducing a projection of the estimatedipgl

during the grasp by the presence of the object. AlSo g the observations before calculating errors. By making
systems designed to be highly competent and adaptive, s;gohs

- . . his simple, but significant alteration, we show that it is
as humanoid robots behaviour may be subject to a wi P d

. : . : ssible to model the unconstrained policy (i) with no ex-
variety of constraints [3], usually non-linear in actuaspace it knowledge of the constraints, and; (ii) without et

and often discontinuous. Consider the task of running Acess to unconstrained policy vectors. Furthermore, we
walking on uneven terrain: the cyclic movement of the |eg§qy that using this approach one can fully reconstruct the
of the runner is constrained by the impact of the feet ofnconstrained policy given observations under a suffitient
the ground in a dynamic, discontinuous and unpredictable., set of constraints. To validate the approach we modify
way. A promising approach to providing robots with SUCI"s%andard regression techniques to use the proposed ebjecti
skills as running and opening doors, is to take examples Qinction and demonstrate robust learning for several feslic

motion from existing systems, such as humans, and attemp complex, high-dimensional movement systems, subject to
to learn a control policy that somehow captures the desiredjistic constraints.

behaviour [2], [1], [13], [5]. An important component of ¢hi
is the ability to deal with the effect of constraints and the [l. LEARNING FROM CONSTRAINED POLICIES

apparent variability in the observed movement induced biere, we characterise the problem of direct policy learning
these constraints. For example one wishes to learn a polighen constraints are applied to motion. Following [13],]]11

that allows one to open many doors of varying widths, ofve consider the learning of autonomous policies
stir in saucepans of varying sizes.

The focus in this paper is on modelling control policies u(t) =m(x(t)), w:R"—R’ 1)
subject to generic constraints on motion, with the aim 0\';vhere x € R" andu ¢ RY
finding policies that can generalisger different constraints.
We take a direct policy learning (DPL) approdcfi3]

are some appropriately
chosen state and action vectoasmd is the policy mapping
between the two.
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1To clarify the terminology used, we refer to DPL as the sujsed 2For example in kinematic control, the state vector could e joint
learning of policies from given data. This is in contrast e tlearning angles,x = q, and the action could be the velocitias= ¢, or in dynamic
of policies directly from cost/reward feedback without thee of a value control a suitable state might bg,= q, ¢, with actions corresponding to
function, which is also sometimes referred to as DPL. applied torquesu = 7.
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A. Constraint Model

In this paper we consider constraints which act as hard re-
strictions on actions available to the policy. Mathemadlyca
we say given a set df-dimensional constraints

A(x,t)u=0 2
the policy is projected into the nullspace of those constsai
u(x, t) = N(x,t)m(x()), ®3)

where N(x,t) = (I — AtA) € R¥“ is in general a
time-varying projection operator that is non-linear intsta
A(x,t) € R*? is some matrix describing the constraint
andI € R is the identity matrix. Constraints of the
form (2) commonly appear in scenarios where manipulators

Fig. 1. i IIIU(St)ration Oft two dapparently td(iloff)erent behatvie_utrct)jn?) the interact with solid objects, for example when grasping a
same policy: (a) unconstrained movemen movement @Ne y an H H

obstacle (black box) (c) the unconstrained (red) and caimgtd (black) tool or tur.nmg a crank or a pedal. Such constraints are al.so
policy over two of the joints of the finger. common in the control of redundant degrees of freedom in

high-dimensional manipulators [7], [6], [10], where padis
the form of dynamical systems [5], non-parametric modgllinSUCh as (3) are usgd, for example, to aid joint stabilisation
[11], and probabilistic Bayesian approaches [4]. under_task constraints. As. an example: Settiigto the”
L . . Jacobian that maps from joint-space to end-effector mositi
: An implicit assumption fourlld. in DPL approaches to.dat oordinates would allow any motion in the joint space
'Osbgéar‘\t/;ggngaé? gzﬁje;;%rort]gr'g;ﬂgdCgr‘ggng;?nﬂbeii\g_our rovided that the end-effector remained stationary.
strained policy [2]. By this it is meant that th)é policy Learning the unconstrained poliey(x) from observations

is observed either under no constraint (e.g. movements of the constrained actiona(x,t) is a non-trivial task for
. 9. ! veral reasons. Firstly, we commonly do not know exactly
free space such as gestures or figure drawing), or un

constraints consistent over observations (e.g. intergatith hat constraints (x, ¢) (and therefordN(x, )) are in force
-9- INteTgou in different observations. For example we may not know

3H¥ exact radius of an opening door. Secondly there is the
roblem of non-convexity of the training targets, that is the
ifferent projectionsN(x,t) cause the action vectons to

everyday behaviours, there is variability in the constisin
such as when opening doors of varying sizes or walking o

uneven terrain. Thisariability in the constraints cannot be appear different under different constraints. For example

accounted for by standgrd DPL app_roaches._ . compare the set of constrained (black) and unconstrained
As an example, consider the learning of a simple policy tgreqd) vectors for the policy shown in Fig. 1(c). Finally, the
extend ajom_ted fllnger. In Fig. 1(a) th.e .f|nger is unconstdin g degeneracy in the sense that for any given observation
and the policy simply moves the joints towards the zerghere may be multiple policies that could be projected to
(outstretched) position. On the other hand, in Fig. 1(b), @froduce that observation.
obstacle lies in the path of the finger, so that the finger move- g\yever, despite these restrictions, by reformulating the
ment is constrained — it is not able to penetrate the obstacl§;ndard DPL learning problem, we will show that it is still
so moves along f[he SL_Jrface. Th_e vector field representatiggssime to learn a good model of the polieywithout need
of the two behaviours is shown in Fig. 1(c). for explicit knowledge of the constrain®¥(x, t), and that is,
In standard DPL [13], [5], these two apparently differentas a minimum, consistent with all constrained observations
behaviours would lead to the learning of two separate poliafe turn to this in the next section.
cies (i.e. the different coloured vector fields) for extergli
the finger in the two settings. However, the fact that the gjoal 1. METHOD

of the two policies are similar (‘extend the finger’) suggest oyr method works on data that is given as tuggkes, u,,) of

that in fact the movement stems from tssme policy under  gpserved states and constrained actions. We assume that all

different constraints. Viewed like this, instead of learning commandsi are generated from the same underlying policy

two separate policies we would rather learn a single polic*(x)’ which for a particular observation might have been

that generalises over the different constraints. constrained, that is1, = N,m(x,) for some projection
The best policy representation of the movements in Fig. hatrix N,,. Furthermore we assume that the projection

is that of the unconstrained poliey, since this gives maxi- matrix for any given observation is not explicitly known,

mal information about the behaviour. Knowimg or finding i.e. our data is unlabelled with respect to the constraints i

a good approximation of it, we can (i) reproduce observefbrce at the time of observation.

constrained behaviours (cf. Fig. 1(b)) simply by applying With only x,, andu,, given, one may be tempted to simply

the same constraints, (ii) predict the unconstrained hiebav minimise N

(cf. Fig. 1(a)) in parts of the space where only constrained Epnaive| ] = Z lu, — 7 (x,)|% (4)

movements have been seen, and; (iii) even predict behaviour oy

in situations where novel constraints, unseen in the tngini

data, apply. SHere, AT denotes the Moore-Penrose pseudoinverse of the matrix



with 7, = ||u,]|, G,= ‘;—: Sinceu,, = N,,7,, we can write

lu, — N,7(x,)||* = |[N,(7, — 7(x,))||* and recognise
that the CPE is always less than or equal to the UPE,
because the projectionN,, can only decrease the norm of
the difference between true and predicted policy. The same
argument holds for the inconsistency error (7) where the
projection onto the 1-D subspace spanneduiby possibly
takes away even more of the error. So we can establish the
inequality

Ei [77"] S Ecpe [7}] S Eupe [ﬁ-]

. . . o . Naturally, for estimating the correct policy, we would rath
Fig. 2. lllustration of our learning scheme. Left: Naive megsion on . L -
constrained commands: , u results in averaging of the observationsn 1K€ t0 minimise anupper bound Of_ Eype, but it is unclear
a way that cannot explain the observed commands. Right: Téjegtion how such a bound could be derived from the data we are
of the correct policyrr onto the observations matches those observationsgssumed given. Note that by framing our |eaming problem as

However this would ignore that constraints might have bee(ErISk minimisation task, we can apply standard regulagsat

in force and correspond to a naive averaging of comman chniqges such as gdding suitable penalty terms to prevent
from different circumstances (cf. Fig. 2). over-fitting due to noise. . . .

If we had access to samples of either (i) the (uncon-.The proposed risk func'uo_nal can pe used in conjunction
strained) policyr,, — 7 (x,,), or (ii) the projection matrices with many standard regression techniques. However, for the

N,,, we could use standard regression techniques to estim%ﬁéﬂerlments in this paper, we restrict ourselves to twoseas

a policy 7r(x) by minimising an appropriate risk functional. function approximator for Iea_\rnlng thg (unconstrained)
Specifically in the former case we could minimise policy to demonstrate how the risk functional can be used.

N The example function approximators we use are (i) simple

By |7 = W — (x| 5y parametric models with fixed basis functions (Sec. Ill-A),
pel7] nz::l e =7 () ®) and (i) locally linear models (Sec. I1I-B). In the next sect

we describe how these two models can be reformulated to

In the latter case, we could minimise take advantage of the new risk functional.

N
Eepe[®] = > llun — Nt (x|, (6)  A. Parametric policy models
) n=t ) ) A particularly convenient model of the policy is given by
which we refer to as thenconstrained policy error (UPE) 7 (x)=Wb(x), whereW e R**M is a matrix of weights,
and constrained policy error (CPE), respectively. However, and b(x) € IRM is a vector of fixed basis functions. This

since by assumption samples7of andIN,, are not available notaply includes the case of (globally) linear models where
these functionals cannot be used to estimate the policy. we setb(x) = x = (x”,1)7, or the case of normalised

Instead, we aim to estimate a poligy-) that isconsistent ; ; ; o) K(x—ci)
with our observedu,. That is we wtig(h) to reconstruct the radial basis funct.|ons (RBFS)(x) = YL K(x—¢;) T
policy, knowing that it is projected in some way by thelated from Qaussmn kerngki(-). aroundM pr_e—det(_ermmed
constraints. At this point a key observation can be mad&entresci, i = 1... M. With this model, theinconsistency
in order to uncover the unconstrained policy we must find §ror from (7) become;

calcu-

policy model that can berojected in such a way that the T 2
observed commands are recovered. That is, we require E(W) = Z (Tn —u, Wb(xn))
n=1
u(x) := Pw(x) - N ry? g
for an appropriate projection matriR, that either projects - Z (T" ~Vn W) = Ei(w),

onto the same space as the (unknoMtx) (i.e. the image
of N), or an (even smaller) subspace of that. One suclhere we definedv=vec(W) andv,, =vec(i, b(x,)?)=
projection, which we know to lie within this subspace, isb(x,) ® @, in order to retrieve a simpler functional form.
the 1-D projection onto the observed command itself, that iSince our objective function is quadratic w, we can solve
P = aa’, with = u/||ul| (ref. Fig. 2, right). Furthermore, for the optimal weight vector easily:

sinceu is given, we have all the information we need to

calculate this projection and use it for learning, neatbjesi Ei(w) = Z e =2 Z raVa W w! Z VoV W
stepping the need to explicity model the full constraint n n n
matrix N. = FEy—2g"w+w/Hw
With this as motivation, we replac®, in (6) by a -
projection ontou,, and minimise theinconsistency which yielding woP" = argmin E;(w) = H 'g (8)
we define as the functional
N with H=>}" v,vl andg = > . TnVn. FOr regularisation,

N . . .
E[7] = L —, 0l 7w (x| = - — 07 (x, 2 we use a simple weight-decay penalty_term, that is, we
[#] nz::l =887 7 () [P = D (o — 87 7 (%) selectw??! = argmin(E;(w) + A[|w||?). This only requires

n=1 reg

(7)  modifying the Hessian t&1"9 = > v, vl + AL



Please note that the projection oniointroduces a cou- trajectories of length 40 time steps each, generated by the
pling between the different componentsmfwhich prevents policy from a random start state. During the trajectories th
us from learning those independently as is common in normpblicy was subjected to random 1-D constraints
regression tasks. For the same reason, the size of the Hessia _
scales withO(d?M?). Axt) = (a,2) = (11)

. . where then; » were drawn from a normal distribution,; =
B. Locally linear pohcy models i . N(0,1). The constraints mean that motion is constrained in
The basis function approach quickly becomes nonviablge direction orthogonal to the vectorin state space. These
in high-dimensional input spaces. Alternatively, we can fifyere randomly switched by generating a newtwice at

multiple locally weighted linear models.,(x) = BmX = reqular intervals during the trajectory, inducing sharmu
B,,(x",1)” to the data, learning each local model indeyyhich can be seen in Fig. 3 (right).
pendently [12]. For a linear model centred @ with an We used a parametric model to learn the policy through
isotropic Gaussian receptive field with variance we would  minimisation of the inconsistency (7) as described in Séc. |
minimise N A. We included the regularisation term and picked the
E;(B,) = Z Wam (Tn - ﬁ_};Bm)‘(n)z parameten\ by.minimising the inconsistency on a v_alidation
ot subset. For this toy problem, we chose our function model

N as a set of 36 normalised RBFs centred ai»a6 grid, and
Z W (19 — ngm)r" = E;(b), we simply fixed the kernel width to yield suitable overlap.
ot We repeated this experiment on 100 data sets and evaluated
_ N the normalised UPE, CPE and the inconsisténdat is,
where we defined,, = vec(By,) and v, = vec(1,X;)  the functionals from (5), (6) and (7) divided by the number
similarly to the parametric case. The factots,, = of data points and the variance of the poliay, on a
exp(— 5z [|Xn — em||*) weight the importance of each ob- g hset held out for testing. For comparison, we repeated
servation(x,, u,), giving more weight to nearby samples.ihe experiment using a naive approach that attempted to

The optimal sloped,, in vector form are retrieved by perform regression with the same RBF model directly on
boPt — aremin E: (b..) — H-! g) the constrained observations. That is, the naive approach
" & i(brm) m 8m © attempted to minimise the functional (4).
with H, =3, WnmVa vy and 8m = 2., WnmTnVn- Figure 3 shows the true policy, the trajectories we trained
For predicting the global policy, we combine the localon, the policies learnt using our and the naive approach,
linear models using the convex combination and finally the error statistics below the plots. With an

M _ average nUPE of 0.0027, our method outperforms the naive
7(x) = M; Wy, = EXP (_%|X _ Cm||2> . approach by orders of magnitude. Notably, even with only
D ome1 Wm 20 4 trajectories (Fig. 3, column 2) the reconstructed policy
IV, EXPERIMENTS alrea_ldy_ resembles the limit cycle, although large erraik st
) persist in some parts of the state space (e.g. the lower right
To explore the performance of our algorithm, we performedorner). Further to this, the top panel of Fig. 4 depicts
experiments on data from autonomous kinematic contrglow the nUPE and nCPE evolve with increasing size of the
policies [13] applied to three simulated plants. In our firsfraining set, showing a smooth decline (please note the log.
set of experiments we illustrate the concepts involved 0gcale). In order to further explore the performance of our
an artificial two-dimensional toy SystémWe then demon- a|gorithm, we contaminated the observed Commandw”:h
strate our algorithm applied to higher dimensional plantgayssian noise, the scale of which we varied to match up to
including a physically realistic simulation of the 7-DOF BL - 2094 of the scale of the data. The resulting nUPE roughly
lightweight arm, and to whole body motion control of thefo|iows the noise level, as is plotted in Fig. 4 (bottom).
27-DOF humanoid robot ASIMO [3].
B. Generalisation over unseen constraints
A T°¥ Example- . The two goals of our second set of experiments were to
Our first experiment demonstrates the learning of uncortharacterise (i) how well the algorithm scaled to more
strained policies from constrained trajectories in a semplcomplex, realistic constraints and (i) how well the learnt
toy example consisting of a two-dimensional system witlyolicies generalised over unseen constraints. For thissee u
discontinuously switching motion constraints. As an ex®mp g kinematic simulation of the 7-DOF DLR lightweight robot
policy, we used a limit cycle attractor (Fig. 3, left) of th@fn  (LwWR-I11). The experimental procedure was as follows: We
. 2 y generated a random initial posture by drawing 7 joint angles
r=rlp=r7) f=w (10) uniformly from half the range of each joint, that is ~
wherer, § are the polar representation of the Cartesian stafé[—0.527**; 0.5z7"**], where for exampler]*** = 170°.
space coordinates (i.e = rsinf, xs = rcosf), p is the We set up a joint limit avoidance type policy agx) =
radius of the attractor anél is the angular velocity. For the —0.05V®(x), with the potential given byp(x)=5""7_, |z;|?
experiments we set=0.5 m andw =1 rad s~! with a for p = 1.5,p = 1.8, or p = 2.0. We then generated 100
sampling rate of 50 Hz. Data was collected by recording 4fajectories with 100 points each, following the policy end

4In fact even these ‘simplified’ problems are relevant to taised 5Actually, foru € IR? the inconsistency is exactly equivalent to the CPE,
policies in low dimensional task spaces, such as end-effegtace. since both necessarily involve the same 1-D projection.



-— —— —— e A -— Y
/ < | /< = \ /
\ / — ~ NN l / — ~ AN AN \ / — ~ NN l - N t
N o\ a o \ W v\ [ \
- / 1 - - P - / T \ - - \
N oV NV -Vt N \
R N T [ IS
—Z - 7 / — — —— —= — — T - 7 / A - - i I
nUPE: 0.3788 4+ 0.2688 0.0027 4+ 0.0087 0.5709 4+ 0.0853
nCPE: 0.1276 4+ 0.1140 0.0002 £+ 0.0002 0.0010 4+ 0.0363

Fig. 3. From left to right: 1) true limit cycle policy, 2) leair policy trained on 4 constrained trajectories, 3) leartiqy from 40 constr. traj., 4) policy
resulting from naive regression on observed commandsedi@jes are shown as dotted lines, the policy is depictedblagk arrows. The normalised
CPE and UPE (mealss.d. over 100 data sets) are given below the figures.
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Data (%) Fig. 5. Example constrained reaching movement demondtriagethe
expert policy. Starting with hands at the sides, the teacbbot reaches
5 . /1,,,,93577fw»ﬁ/*/’x/’7’ between the barriers to grasp the ball.
S 10 —=
L e . . .
3 / of 1079), the less linear policiesp(= 1.8 and especially
= 102] CPE p=1.5) turned out to be a much harder problem. This can
£ be seen when comparing both the nUPE and nCPE for the
2 two policies (ref. Table I). Still, we recovered the consieal
1073k ‘ ‘ ‘ policy in all cases to good accuracy (ref. Table I, 4th colymn
1 5 10 15 20 with good generalisation to the complementary constraints
Noise (%) (ref. Table I, 5th column). We can also see that constraining

Fig. 4. Top: Normalised UPE and CPE versus data set size asenpege the end-effector pos'“,on (1'2'_3) made it more dlfflcult. t_O
of the full J =40 trajectories of lengthV =40. Bottom: Normalised UPE recover the unconstrained policy compared to constraining

and CPE for increasing noise levels in the obserugd the orientation (4-5-6), or using mixed constraints (1-3-5

4 different constraints, which we refer to as 1-2-3, 4-5-6, 1and 2-4-6). It should also be noted that running the same
3-5, and 2-4-6. Here, the three numbers denote which engXPeriment using the naive approach (ref. Sec.IV-A) gave
effector coordinates in task spAcee kept fixed, that is, consistently poor results; for example, when training on
1-2-3 means we constrained the end-effector position, bd@t@ under the (1-2-3) const2ra|nt, the naive approach gave
allowed arbitrary changes in the orientation. Similarlyg® NUPE of 83.44 + 21-20 x 107 for the p = 1.5 pohcyé,
means we constrained thecoordinate and the orientation 80-94 + 1.37x107= for p = 1.8 and 79.62 + 1.39 x 10~
around thez- and z-axis, while allowing movement in-z  foF »=2.0.
position and arour_1d the-axis. For a_lll 4 constraint types, we % Grasping a Ball
estimated the policy from a training subset, and evaluate
it on test data from the same constraint, as well as ohhe goal of our next set of experiments was to illustrate
trajectories from the complementary constraint (e.g.-&-4 the utility of our approach for learning from observations
is complementary to 1-3-5). of an everyday task with realistic constraints. For this we
For learning in the 7-D state space, we selected locallghose an example scenario, in which a set of observations
linear models as described in Sec. 1II-B, where we chos@f & demonstrator performing the task of reaching for a ball
rather wide receptive fields (fixing2 = 3) and placed the On a table are given, and the student is expected to learn
centres{c,,} of the local models such that every traininga Policy to enable it to reproduce this task. The learning
sample(x,,, u,) was weighted within at least one receptiveProblem is complicated however, by the presence of differen
field with w,, (x,) > 0.7. On average, this yielded about oobstacles on the table for each of the example trajectories,
local models. constraining the possible motions of the hands. The goal is t
While the linear policyr(-) corresponding tp=2.0 was uncover a policy that accurately predicts the demonstgator
learnt almost perfectly (all normalised errors in the ordefunconstrained) behaviour and generalises to predict the
behaviour under novel constraints.
5The numbers can also be read as row indices obtfielacobian matrix. The example scenario was implemented using the whole



Policy | Constr. nUPE nCPE Compl. nCPE
1-2-3| 64.33+32.03 | 2.91£0.36 | 15.95+6.47
p=15 4-5-6| 34.75£19.12 | 2.49+0.22 | 15.47+7.75
’ 1-3-5| 16.17+ 3.81| 3.20£0.27 | 5.10+1.07
2-4-6| 10.35+ 1.82| 2.72+0.23 | 4.74+0.95
1-2-3| 8.09+ 5.76 | 0.47+£0.08 | 2.27+1.13
=18 4-5-6| 5.36t 2.96| 0.35+0.03 | 2.22+0.98
' 1-3-5| 2.27+ 0.64| 0.45+0.04| 0.77+0.17
2-4-6| 142+ 0.31| 0.40+£0.04| 0.72+0.17

TABLE |

NORMALISEDUPE, CPEON THE TRAINING CONSTRAINTS CPEON COMPLEMENTARY CONSTRAINTS AND INCONSISTENCY ERROFFOR DATA FROM
THE DLR ARM (RIGHT). ALL ERRORS NORMALISED BY THE VARIANCE OF THE POLICYWE REPORT(MEAN = S.D.)x 1072 OVER 100 TRIALS WITH
DIFFERENT DATA SETS

Data
Naive
s Non-Nai.
= = = Expert

body motion (WBM) controller of the 27-DOF humanoid
robot ASIMO (see [3] for details). We set up an ‘expert’
demonstrator robot from which observations were recorded.
For simplicity, the expert’s policy was defined by an inverte
Gaussian potential

7o) = Vad(x); ¢lx) = o (1 - elxl27) 1)

where we choser? = 2, a = 0.25 and the target point
x. € IR" to correspond to a grasping position, with the
two hands positioned on either side of the ball. The state-
space of the policy was defined as the Cartesian position of
the two hands, corresponding to 6 DOFs in state and action
space (hereafter, the ‘task space’). In order to realise the
task space policy motion, joint-space control was perfarme
using inverse kinematics via the WBM controller. Fig. 6. Unconstrained reaching movement for the expertcpofblack
The expert’'s movements were constrained by the presendashed), policy learnt by optimisation of the inconsisjetiiue), and the
of a barrier on the table with a gap in it. The constraints(;hcte?ai"e approach (green). Ten example constrained reachingments used
. . . - r training are shown in red.
on each of the hands so that motion in the direction normal

to the barrier surface was prevented if a hand came too close

; Constraint Naive Non-naive
(cf. [14]). The barrier was placed such that the expert robot Tralning 01940 £ 0.0153 T 0.0056 £ 0.0022
had to reach through the gap to get the ball (ref. Fig. 5). Such Unseen Barrier| 0.4678 £0.0264 | 0.0057 & 0.0023
state-dependent constraints are both nonlinear in the stat Unconstrained | 0.7014 +0.0430 | 0.0058 + 0.0023

space and have discontinuously switching dimensionality TABLE II
when either hand approaches or recedes from the barrier. NormALISED POLICY ERRORS FOR PREDICTING THE POLICY UNDER
Data was collected by recording = 100 trajectories of THREE CONSTRAINT CONDITIONS FROM THE BALEGRASPING DATA FOR
length2s at 50 Hz (i.e.N =100 points per trajectory). Start tHe NAIVE AND NON-NAIVE METHODS. VALUES ARE MEAN+S.D. OVER
states were sampled from a Gaussian distribution over joint 50 DATA SETS.
configurationsy ~ N (qo, 0.1I) (whereq, corresponds to the
default standing position) and using forward kinematics télata constraints (NCPE), (ii) no constraints (NUPE), aii{ (i
calculate the corresponding hand positions. The jointorecta novel constraint, unseen in the training data, on a sesbf te
q was clipped where necessary to avoid joint limits and seffata. For the latter, a barrier was placed centrally between
collisions, and to ensure the start postures looked natural the robot and the ball, so that the robot had to reach around
The constraints were varied by randomly changing théhe barrier to grasp the ball.
width of the gap for each trajectory. The gap widths were As expected, learning using the proposed risk functional
sampled from a Gaussian distributidp,, ~ N(igap, 04ap)  (7) (the ‘non-naive’ approach) performed several orders of
whereigqp, = 0.25m, 044, = 0.1m and the diameter of the magnitude better than the naive approach in terms of the
ball was0.15m. Fig. 5 shows the experimental set-up. numerical error measures (ref. Table Il). However, the real
We used our algorithm to perform learning 6isuch data difference in the methods is best highlighted if we compare
sets using 50 local linear models, with centres placed usingrajectories generated by the two policies. In Fig. 6 we
k-means. For comparison, we also repeated the experimesttow example trajectories for the unconstrained reaching
on the same data, using the naive approach (as describedrinvement produced by the expert (black), and the policies
Sec. IV-A). That is, the same local linear models were usetkarnt by (i) optimisingE,.iv. (green), and (ii) optimising
but were trained directly on the tuplgx;,u; = %;),¢ = E; (blue). In the former the hands take a curved path to the
1,... K x N using the risk functional (4). ball, reproducing the average behaviour of the (constdjine
To assess the performance for both methods we evaluatdemonstrated trajectories — the naive method is unable to
the errors in predicting the policy subject to (i) the traigi extract the underlying task (policy) from the observed path



around the obstacles. In contrast, the policy learnt with th
non-naive approach better predicts the unconstrainedypoli
enabling it to take a direct route to the ball that closely
matches that of the expert. The behaviour of the expert and
learnt policies can be examined in detail in the accompanyin
video.

D. Learning from High-dimensional Joint-space Data

In our final experiment we tested the scalability of our
approach for learning in very high dimensions. For this we
chose a policy defined by a quadratic potential in the joint
space (i.ex = q € R?")

W(X) = _vx(b(x); (b(x) = (X - Xc)TW(X - Xc)v (13)

wherex. € IR* is a target posture antV is a weighting
matrix. The policy (13) represents an attractor in jointcga
that pulls the robot into a desired posturexat For the 0. 7. Human motion capture experiments. Top: Example ¢palbping

experiments,x, was chosen to correspond to a reachinghovement. Bottom: Example trajectories of the two handsnwhiewed
posture with both arms outstretched ay=0.05I. from above (left) and the side (right). Constrained trajees are shown in

During data collection, the policy was constrained by th@lue, with an example unconstrained trajectory shown in red
presence of a wall placed directly in front of the robot at A further area of future work will focus on tightening
random orientations and distances. The wall restricted tHbe existing bounds on error for the UPE and CPE (ref.
movement of the hands, and this constraint was projectéc. IIl). This should provide an increased level of robassn
back into the joint space, where the policy was operatindpy reducing the bias in the data toward constrained policies
This causes the policy to appear highly complex and normproving performance, for example, in cases where con-

800
700
600

-1000 -800 -600 -400 -200

linear in the state space (joint space), with discontinuowiraints are highly correlated in the data.

changes to the dimensionality of the constraints as the arms
of the robot approached the wall.
Using the formalism from Sec. llI-A withb(z) = X,
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we fitted linear models to 100 data sets, each consistiri@well for collecting human motion data and J. Steil and
of 100 trajectories of 100 data points. Despite the higRthers at the CoR-lab at Bielefeld University for providing
dimensionality, our method reached a normalised UPE @ccess to the Vicon system.

0.291 £ 0.313 x 1072, It is important to point out that
this result can not only be explained by our choice of a
linear model where we knew that the true policy (13) was[*!
also linear: Direct (naive) linear regression on the obsérv 3
commands resulted in a normalised UPE6S{f9 + 3.1 x

102, which again is orders of magnitude higher similar to [3!
our results on toy data. [4]

V. CONCLUSION [5]
In this work, we introduced a novel approach to direct
policy learning in cases where demonstrated movements afd
subject to variable, dynamic, non-linear constraints. Bue
a small but very effective modification in the calculation of [7]
an empirical risk, our method can recover the unconstrained
policy from arbitrarily constrained observations, withiou (8]
the need for explicit knowledge of the constraints. This
allows us to learn policies that generalise over conssaint [9]
including novel constraints, unseen in the training data. W
demonstrated our method using parametric and locally tine&0]
function approximators to learn policies for problems of
varying size and complexity. [11]
In future work we aim to apply our approach to seed robot
skill acquisition from variable-constraint human moticape (12
ture data. For our initial experiments, data collected gsin[13]
the Vicon motion capture systémwill be used to investigate
the constrained ball grasping task. Example trajectories 4]
shown in Fig. 7. Please note the striking resemblance teethos
generated by the artificial policy (cf. Fig. 6).

hitp://www.vicon.com
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