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Abstract 

We study two problems concerning algebraic numbers whose conjugates satisfy 

a certain relationship. In the first problem, the relationship is geometric: we 

classify all algebraic numbers that lie with their conjugates on a pair of straight 

lines in the complex plane. In the second problem, the relationship is algebraic: it 

concerns the conjugate dimension of an algebraic number, namely the dimension 

of the vector space (over some base field K) spanned by its conjugates. The work 

on the latter problem is based on collaboration with Arturas Dubickas, Noam 

Elkies, Bjorn Poonen and Chris Smyth. 

We begin by providing some background material, mainly galois theory. In the 

second chapter, we state the main results that solve the first problem, and quote 

previous results that classify algebraic numbers whose conjugates all lie on a single 

straight line, and those whose conjugates all lie on a (nondegenerate) conic. Thus 

the new results complete the classification of algebraic numbers whose conjugates 

all lie on any conic. 

The proofs of the solutions to the first problem are given in chapters 3-6. Note 

that the requirement of symmetry in the real axis gives us four cases to consider: 

a vertical line and the real axis, two parallel horizontal lines, two parallel vertical 

lines, and two non perpendicular lines that intersect at a single point. The most 

surprising result concerns the point of intersection of the two non perpendicular 

lines (chapter 6). It transpires that this point need not be rational, but may also 

be quadratic. 

In the final chapter, we study the second problem. For each n E N, we 

find upper and lower bounds for the degree over Q in relation to the conjugate 

dimension n, and show that these bounds can be attained. The upper bound is 

equal to the upper bound on the order of a finite subgroup of GL(Q). From a 

result by Feit, for all but seven exceptional n the maximal order of a subgroup of 

GL(Q) is equal to 2Thn!. We extend these results for base field equal to either a 

finite extension of Q or a finite field. 
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Notation 

Q The field of rational numbers. 
Z The ring of integers. 
N The set of natural numbers. 
R The field of real numbers. 
C The field of complex numbers. 

a, 3, "f' Algebraic numbers. 
Complex conjugate of a. 

Pa  Minimal polynomial of a. 
a, 0, r Autornorphisms. 

K, L, F A general field. 
K* The multiplicative group of the non zero elements of K. 

K[xi ,. . . , x] The polynomial ring of x 1 ,.. . , x 	in K. 
K(xi ,. . . , x,) The set of rational functions of x1 ,. . . , x 	in K. 

K(xi ,. . . ,x)G The C-invariant subfield of K(xi , . . . 
L/K Extension of K by L. 

Gal(L/K) Galois group of L/K. 
[L: K] Degree of extension L/K. 

K(a) Field generated by K and a. 
Tr (oz) Trace of a. 

GLTh (K) Group of invertible n x n matrices with coefficients in K. 
S Symmetric group on n symbols. 

degK (a) Degree of a over K. 
R(a) Real part of a. 

(a) Imaginary part of a. 

j Primitive j1h  root of unity. 
C1  > C2  Semidirect product of C1  by C2 . 

C1  C2  Wreath product of C1  by G2- 
S+  (p) 

2.

S(p) The lines 	(z) = p and the real axis. 
S=  (h) The lines 	(z) = 

Si (p, q) The lines 	(z) = p and 	(z) = q. 
S(C,/) The lines z=C+t 	and z=C+tv(teR). 

l=1 Ui  U1 EU2 •••EBU. 
U U 0 U T ... 	U (m times). 

GL(V) General linear group of invertible linear transformations of V. 
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Chapter 1 

Preliminaries 

We provide the background material which is assumed knowledge in subsequent 

chapters. This comes mainly in the form of galois theory. Unless otherwise stated, 

the results in Sections 1.1-1.4 below can be found in Stewart [24] and Garling [10]. 

1.1 Algebraic Numbers 

We begin with some definitions: 

Definition 1.1.1. An algebraic number is any number a E C which is a root 

of a polynomial P e Q[x]. More generally, a is algebraic over K if it is a root 

of some polynomial P E K[x] for some field K. If a is not algebraic over K, then 

it is transcendental over K. 

The following definitions are given for a general field K, but unless stated 

otherwise, we shall assume that K = Q. 

Definition 1.1.2. Let a be an algebraic number. The minimal polynomial Pc, 

of a over K is the gcd of all monic polynomials P E K[x] for which a is a root. 

Definition 1.1.3. An algebraic number a' that is also a root of the minimal 

polynomial P0, of a over K is defined to be a conjugate of a over K. The 

conjugate set of a is the set of all conjugates of a. 

Definition 1.1.4. An algebraic number a is totally real if the conjugate set of 

a are all real. 

The proof that a is a conjugate of a over Q is well known and straightforward: 

Lemma 1.1.5. Let a be an algebraic number with minimal polynomial P" [x] over 

Q [x]. Then d also has minimal polynomial Pc,[x], and so a is a conjugate of a. 



Proof. Let P be the minimal polynomial of a over Q. If P(a) = 0 then P(a) = 0 

as P has rational coefficients. Thus 

(a) = P() = 0, 

and as P is irreducible, it is the minimal polynomial of a. 
101  

Definition 1.1.6. The degree of an algebraic number a is defined to be the 

degree of the minimal polynomial of a. 

Definition 1.1.7. The trace of a, denoted Tr(a), is defined as 

where { al, .. . , ad} is the conjugate set of a. 

Definition 1.1.8. An algebraic number is unit-circular if it lies with its conju-

gate set on the unit circle J zJ = 1 in the complex plane. 

The following result, originally incorporated in [18], is stated in the form below 

in [4]: 

Proposition 1.1.9. Let /3 be a totally real algebraic number whose conjugate set 

{13i = /3,. . . , /3} all lie in the interval [-2, 2]. Define an algebraic number a by 

its minimal polynomial 

d 
P[x] 

= 	
- /3x +1) E Q[x]. 

Then a is unit-circular. 

Conversely, let a be an algebraic unit-circular number. Then either a = 1 

or —1, or /3 = a + a' is totally real, with conjugate set in [-2,2], and a has 

minimal polynomial 

P[x] = fl(x2 - /3x + 1) E 

Proof. () Let  /3 be a totally real algebraic number of degree d whose conjugate 

set all lie in [-2, 2]. If /3 = ±2, then a = 1 or —1 is unit circular. Otherwise, 

define  
/3 

+ V02 4 
a = 

2 



Then I cel = 1, and a is a root of 

Pa [ X]=fl(X2 _I3jX +i). 

Apply an automorphism to a: 

a' - ' + /3/2  4 
2 

Since 3' e [-2, 2], a' 	1, and hence a is unit-circular. 

() Let a be a unit-circular algebraic number. If a +1, then a has minimal 

polynomial Pa[] = x + 1. Otherwise, d = a' is a conjugate of a. Define 

/3 = a + a'. Any autornorphism that maps a - & must map a' 	&-, so /3 
is totally real. Also, for all conjugates /3' of 3, 

/3' = 2R(a') 	 (1.1) 

for some conjugate a' of a. Since a is unit circular, JR(a')l < 1 for all conjugates 

a' of a. Hence /3 lies with its conjugates in [-2, 2]. 

Now 

(a) 2  + (a) 2  = 1. 

So from Equation (1.1), 	 _____ 
_— /32  

2 
Since 1,31 < 2, 

and 
-1  a = 
	2 

Let Pa[z]  be the minimal polynomial of a. Then (z — a) (
Z — a-') = z 2  — 13z + 1 

is a factor of Pa, and hence 

Pa[Z] = 11(z2  — /3z + 1) 

as required. 	 LI 

1.2 Symmetric Polynomials 

Definition 1.2.1. A polynomial in the indeterminates xi,... ,x, is known as a 

symmetric polynomial if it is invariant under any permutation of {x,,. . . , x}. 
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The trace of an algebraic number c is an example of a symmetric polynomial 

in its conjugate set. 

Definition 1.2.2. Let P be a monic polynomial of degree n, and let P have 

roots t1 , t 2,. . . , t. Then the elementary symmetric polynomials (si ,. . . , s7 ) 

in t1,.. . , t are defined by 

P[x] = X,  - 31n_l + 	- 	+ (— i)s. 

So 

Si = ti+t2 + .. + tn  

82 = t l t2 + t1t3 +... + tn_ltn  

Sn = t1t2 	t,- 

Let q(81, . . sn ) be a polynomial in the elementary symmetric functions. Let 

cs' 412 	s" be a term in q. Then the weight of the term csr1 
412 . . 	s is 

defined to be m1  + 2m2  + . + nm. The largest weight amongst all such terms 

in q is called the weight of q. 

Remark. When a polynomial is expressed in terms of the indeterminates x 1 ,.. . , 

we refer to its degree, whereas if it is expressed in terms of the elementary sym-

metric polynomials, we refer to its weight. 

Theorem 1.2.3. [25] [Fundamental Theorem of Symmetric Polynomials] Let K 

be a field. A symmetric polynomial of degree r in K{xi , x2,. . . , x] may be written 

as a polynomial p(si , 82,—)    s) of weight r. 

Proof. Let f(x 1,. . . , x,) be a symmetric polynomial of degree r. The proof is by 

double induction on n and r. Consider the case n = 1. Every polynomial f(x1) 

is symmetric in x1, and s1  =XI, so f(x i) = f(si ). 

Assume the theorem is true for polynomials in n variables (for some n > 0). 

Consider polynomials in n + 1 variables x1,. . . , 

For polynomials in n + 1 variables of degree r = 0, the theorem is trivial. 

We make a second assumption, that the theorem is true for all polynomials in 

n + 1 variables of degree less than r. Let f(x 1,. . . , x+) be a polynomial in n + 1 

variables of degree r. Set x, 	= 0. Then f(x i , . . . , Xn, 0) is a symmetric poly- 

nomial in n variables, so by the first assumption, can be written as a polynomial 
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s7 ) in the elementary symmetric polynomials of weight at most r. Now 

define a new polynomial g(x1,. . . , x+i) such that 

g(xi ,. . . , x+i) = f(xi ,. . . , x+i) - (s1,. . . , sn). 

Note that g(xi ,. . . , xi) is symmetric in the x's, and since f has degree r and 

çb has weight at most r, g has degree at most r. Also, for 	= 0, g = 0, so all 

terms contain the factor x 1. Since g is symmetric, all terms must contain the 

factors x1, x2, . . , x,-, as well. So all terms of g contain the product x1x2 	x 1. 

Factoring this out of g gives 

9(x1,. .,x+i) = s+ih(xi,...,x+i), 

where h is again a symmetric polynomial of degree at most r - (n + 1). 

Recall that by the second assumption, every polynomial of degree n + 1 with 

weight less than r can be written as a polynomial in the elementary symmetric 

functions. So 

h(xi ,. . . , 	= e(si,. . . ) s+i), 

where has weight at most r - (n + 1). Therefore 

f (xi,. . . , 	= g(x1,. . . , x+i) + (si ,. . . , s) 

The right hand side is a polynomial in the si  of weight at most r. The weight 

cannot be less than r, since otherwise f would have degree less than r. Therefore 

the right hand side is exactly of weight r. This completes the proof. 	El 

Theorem 1.2.4. /25] A symmetric polynomial in K[xi ,. . . , x] can be expessed 

uniquely as a polynomial in the elementary symmetric polynomials. 

Proof. Let 	and J2 be two polynomials in the indeterminates x1,. . . , x. Sup- 

pose 

x) 	2(x1,. . , x). 

Then 

1(x1,. . . ,x) - 2(x1,. . . , x) = O(X1.... , x) 	0. 

We have to prove that 

s) 	0. 

The proof is by induction on n. The theorem is true for n = 1, since s = xi , so 



Now assume the theorem is true for all symmetric polynomials with fewer 

than n indeterminates, for some n > 1. Suppose there exists a polynomial 

xi,) 	0 of minimal degree i-n with respect to x such that (Si,.. . , s) = 

0. We arrange the terms of ((x1,.. . , x,.) in decreasing powers of x, then 

m(Xi,. . . , x_i)x + m_i(Xi, . . , 	_)' + 	+ o(xi,. . . , xn_) 	0 (1.2) 

and 

s_i)s + 	+ 0(51, . . . , s_1) = 0. 	(1.3) 

Now suppose that 00(x1,.. , x_i) = 0. Then x could be cancelled from all 

the terms in Inequality (1.2), and o(s1, . . . , s_) = 0 by the assumption, SO S 

could be cancelled in Equation (1.3). Then we would have 

,x) = m (Xi,.. . ,x_1) n  0(X1, x '  + 	+i(xi,. . . ,x_i) 	0 	(1.4) 

and 

. . ,$) = 0m(Si, . . . , s_ i)s' + 	+ i(51, . . . Sn_i) = 0 	(1.5) 

where the polynomial i, viewed as a polynomial in x,, has degree less than i-n, 

contradicting our assumption about the minimality of n-i. So 

Now let x = 0 in Equation (1.3): 

O(Si,. . ,Sn—i) = 0 

and since we have 00 (XI, . . . , x_) 	0, this gives us the required contradiction. 

1.3 Field Extensions 

We now turn our attention to fields. The following results are given for general 

fields K and L. In the following chapters on the two lines problem, when applying 

these results we take the base field K to be Q. 

Definition 1.3.1. Let L be a field and K be a subfield of L. Then we say L/K 

is an extension of K. 

Theorem 1.3.2. Suppose L/K is an extension. Under the operations 

+ : L>< L -f L, (11 , 12) -4  11 + 12, and 

x : K x LL, (k,1) i-' ki, 

L is a vector space over K. 



Definition 1.3.3. The degree of a field extension L/K, denoted [L : K], is the 

dimension of L considered as a vector space over K. 

Definition 1.3.4. Let L/K be an extension, and let a E L be algebraic over K. 

Then the smallest subfield generated by K and a is denoted K(a). It is the field 

of all elements of the form 	where a, b are polynomials in K, with b(a) 	0. 
If P, is the minimal polynomial of a, then 

K(a) K[x]/(P(x)), 

where (Pa (X)) is the ideal of K[x] generated by the minimal polynomial of a. 

Definition 1.3.5. An extension L/K is algebraic if every element a E L is 

algebraic over K. An algebraic extension L/K such that [L: K] <oc is a finite 

extension. Otherwise L/K is an infinite extension. 

Theorem 1.3.6. Suppose L/K is an extension and that a E L. Then a is 

algebraic over K if and only if [K(a) : K] < 00. If [K(a) : K] = n < oo, then n 

is the degree of the minimal polynomial Pa  of a. 

Remark. If [K(a) : K] = n < oo, then a basis for K(a)/K is furnished by 

1,a,a2,.. .,a' 

Definition 1.3.7. The set of all numbers that are algebraic over Q is a field, 

usually denoted A. The extension A/Q is infinite. Any finite extension of Q is 

called a number field. 

Definition 1.3.8. Let L be an algebraic extension of K. Then L is a simple 

extension of K if L = K(/3) for some /3 E L. 

Proposition 1.3.9. Any number field is a simple extension of Q. 

The following is known as the tower law: 

Theorem 1.3.10. Let K, L and M be fields such that K c L c M. Then 

[M: K] = [M: L][L: K]. 	 (1.6) 

Equation (1.6) requires some comment if any of the extensions are infinite. As 

one would expect, [M: K] = oo if and only if either [M: L] = oo or [L: K] oo. 

Theorem 1.3.11. Suppose MIL and L/K are algebraic extensions. Then M/K 

is algebraic. 
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We now examine different factorisations of the minimal polynomial Pa  of 0 

over K. First, we consider fields over which Pa  factorises completely. 

Theorem 1.3.12. Let a be an algebraic number with minimal polynomial Pa  

over K. Then there exists a finite extension L/K such that Pa  factorises into 

linear factors 

k(x—ai)(x—a2) ... (x—a), 

where kEI<, and a=a1,c 2,...,aEL. 

Definition 1.3.13. If Pa  factorises into linear factors over an extension L/K, we 

say that P splits over L. We say that L is a splitting field for Pa  over K if: 

Pa  splits over K 

If M/K is an extension such that P splits over M, then L c M. L can also 

be denoted by K(ai ,. . . , a71). Such a field is unique up to isomorphism. 

An extension L/K is normal if any polynomial that is irreducible over K[x] 

either splits in L or has no roots in L. 

Theorem 1.3.14. Suppose that f E K[x] is irreducible of degree n. Then there 

is a simple algebraic extension K(a)/K such that [K(a) : K] = n and f(a) = 0. 

Theorem 1.3.15. Suppose that f E K[x]. Then there exists a splitting field 

extension L/K for f, with [L: K] < n!. 

Remark. A separable extension is one in which every irreducible polynomial has 

no multiple roots. In the following section, we require our extension to be finite, 

normal and separable. However, every field with characteristic zero is separable, 

and all fields in Chapters 2-6 are number fields, so separability can be assumed. 

Definition 1.3.16. An extension that is finite, normal and separable is called a 

galois extension. 

1.4 Galois Theory 

Definition 1.4.1. If L/K is an extension, a K-automorphism r is an auto-

morphism of L such that () = for all /3 E K. 

Definition 1.4.2. Define Aut(L) to be the set of K-automorphisms of L. Then 

Aut(L) forms a group under composition of maps. This group is called the galois 

group of L/K, and is denoted by Gal(L/K). 

Gal(L/K) = {a : ci E Aut(L)}. 

11 



Suppose that f c K[x] and L/K is a splitting field extension for f over K. 

Then we call Gal(L/K) the galois group of f. We denote it by Ga1K (f) or 

Gal(f). 

Theorem 1.4.3. Suppose that f c K[x] is irreducible and that L/K is a splitting 

field extension for f. Let R denote the set of roots of f in L. Each a e Gal(f) 

defines a permutation of R, so that we have a mapping from Gal(f) into the group 

5R of permutations of R. The mapping is a group homomorphism, and is 1-1. 

The following, Proposition 10.2 in Stewart [24], shows that the Galois group 

of a polynomial f acts transitively on the roots of f: 

Proposition 1.4.4. Suppose L/K is a finite normal extension, and a, a2  are 

zeros in L of the irreducible polynomial P over K. Then there exists an automor-

phism a C Gal(L/K) such that or(al) = a2 . 

More generally, if we have algebraic numbers i3,.. . , /3 that are not conju-

gate over K, we can take an algebraic extension L/K such that the minimal 

polynomials P 1 , . . . , Pa, all split over L. Then for any choice of 	. . , /3 con- 

jugate to /3, . . . , /3 respectively, there exists 'r G Gal(L/K) such that TWO = 

Y(/3) 	The smallest such L is known as the normal closure of 

/3, and is unique up to isomorphism. 

Remark. In subsequent chapters, when we apply an automorphism a, it is under-

stood that a E Gal(L/K), where L is the normal closure of the elements we are 

mapping. 

Theorem 1.4.5. Let L/K be a finite extension. If Pc  has splitting field L/K, 

then 

Gal(L/K) I = [ L: K]. 

The subgroups of Gal(L/K) have a particular significance: 

Definition 1.4.6. Let L be a splitting field for a minimal polynomial Pc, of a. 

We consider fields M such that K c M C L, and call M an intermediate field 

of L/K. 

Let a and Pc, be defined as above, and let L be a splitting field for Pc,. 
Associated with every intermediate field M there is a group Gal(L/M) of all 

M-automorphisms of L. 

Conversely, to each subgroup H of Gal(L/K) we associate a field L   contain-

ing elements 13 e L such that (3) = for all r E H. L' is an intermediate field 

of L/K, known as the fixed field of H. 

The following is taken from Carling [10], Theorem 11.3: 
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Theorem 1.4.7 (Artin). Let K be afield, and let C be a finite group of auto-

morphisms of K. Then K is a galois extension of the fixed field 

KG = {a E K: a(a) = aVa e C} 

with galois group Gal(K/KG) = C. 

Theorem 1.4.8 (Fundamental Theorem of Galois Theory). Let L/K be a 

galois extension, with galois group Gal(L/K), let M be an intermediate field of 

L/K and let H be a subgroup of Gal(L/K). Then: 

There is an inclusion reversing bijection between intermediate fields of L/K 

and subgroups of Gal(L/K) given by 

M - Gal(L/M) 

H — L/L' 

Hence the lattice of intermediate fields of L/K is the inverted lattice of 

subgroups of Gal(L/K). 

The intermediate field M is a normal extension of K if and only if Gal(L/M) 

is a normal subgroup of Gal(L/K). 

8. If M is a normal extension of K then Gal(M/K) is isomorphic to the 

quotient group Gal(L/K)/Gal(L/M). 

Corollary 1.4.9. Let r be an algebraic number with splitting field L. Suppose 

that a(r) = r for all a E Gal(L/Q). Then r E t. 

Example 1.4.10. Let c be an algebraic number with minimal polynomial 

P=ao +a1x++ax 

over Q. Let L be a splitting field for Pa, and let a be a Q-automorphism over L. 

Since ai  is the jth  symmetric polynomial in the conjugate set of c, a(a) = a2  for 

all i. 

It is natural to ask what else is known about the galois group of an algebraic 

number. The study of which groups form galois groups of some polynomial over 

a field K is known as inverse galois theory. In Chapter 7, the question of whether 

there exists an a algebraic over K such that the galois group of a is isomorphic to 

a finite subgroup of CL(K) of maximal order for various n and K is addressed. 

Elsewhere, the following two Theorems (1.4.11) and (1.4.12) are used: 
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Theorem 1.4.11. [25, p.192] For every n E N, there exists an c of degree n 

whose minimal polynomial has galois group S over Q. 

Theorem 1.4.12. [24, Lemma 14.71 Suppose that f E Q[x] is irreducible, of 

degree p for some prime p, and has exactly two non-real roots. Then the galois 

group Gal(f) of f over  Q is the symmetric group Si,. 

Theorem 1.4.13. [10, Theorem 19.6] [The Normal Basis Theorem] Let K be an 

infinite field, and let L/K be a galois extension with galois group C = {a1 ,. . . , o}. 

Then there exists I E L such that {o i (l), . . . , o(l)} is a basis for L over K. 

1.5 Group Theory 

The following is collection of group theory definitions used in Chapter 7: 

Definition 1.5.1. Let X be a set, C a finite group that acts on X, and S a 

subset of X. Then we say that S is G-stable if gS = {gs: s E S} is equal to S 

for all g E G. 

Definition 1.5.2. Let C be a group with subgroups N and K such that 

N is normal, 

NflK={e},and 

C==NK. 

Then C is a semidirect product of N and K, denoted C = N >i K. 

Remark. If K is also a normal subgroup of C, then C is a direct product N x K. 

Example 1.5.3. [12] Let v = (vi ,. . . , V,) E (Z/2Z)', let f C S, and define 

J(v) = (vf_1(l),. . . , Vf_1()) = P(f)vt ,  

where P(g) is an n x n permutation matrix that permutes x1 ,.. . , x, in the same 

manner as g E S, and v' is the transpose of v. We define the semi-direct product 

(Z/2Z)Th x 

by 

(v, p) * (w, q) = (w+(v),pq), 

where v, w E (Z/2Z), p, q E S. 

More generally, the semidirect product (Z/lZ)Th > S is defined exactly as 

above, except for ([L, v) e (Z/1Z)'1  > S, 'v = (v1 , . . . , Vn), with each vj  an element 

of the multiplicative group generated by (e2lni/l). 
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Definition 1.5.4. Let C1  and C2  be groups, with C2  acting on a finite set 

X = {x1,. . . , x}, and let 

K= fl c, 
XEX 

where Gx  C for all x E X. The wreath product of C1  and C2, denoted 

G1 C2, is the semidirect product of K by C2, where C2  acts on K by 920(gx) 

for all 92 E C2  and g E ]IEXEX  C. We call the normal subgroup K of C1  ? C2  the 

base of the wreath product. 

Example 1.5.5. Let C be a group. Consider the wreath product C S2, s E S2  

acts on (91, 92) E C2  by 

{ 
8(91, 92) 	

(gi, 92) if s is the identity element in S2 ; or 

= (92, gi) if s is the nontrivial element in S2 . 

In general, C?S, let g = (g1,. . . ,g,) E Ctm. Then s E S, acts on g by 

S (g) = (gs(l) .... ,gs(n)). 

Example 1.5.6. The semidirect product in Example 1.5.3 (Z/2Z)tm >1 Sn can be 

expressed as a wreath product (Z/2Z) S. The base of (Z/2Z) S is (Z/2Z)'. 

Definition 1.5.7. Let V be a finite dimensional vector space over a field F. 

A linear automorphism S : V - V is called a pseudo-reflection if it is of 

finite order > 1, and leaves a codimension 1 subspace fixed pointwise. A group 

C C GL(V) is a pseudo-reflection group if it is generated by its pseudo-

reflections. 

Shephard and Todd [20], classified all pseudo-reflection groups (up to isomor-

phism). The notation (ST,) that is used in Table 7.3 refers to the numbering 

of the groups used in the classification- see [20], Table VII, and also Smith [21], 

Table 7.3.1. 

Definition 1.5.8. Let F be an arbitrary field, and let V be a vector space over 

F. A reflection s is a diagonalizable linear automorphism s V -p V, which 

is not the identity map, but leaves a codimension 1 subspace fixed pointwise. 

This subspace is often called the reflecting hyperplane of s. A reflection is a 

diagonalizable pseudo-reflection, i.e. one whose order is relatively prime to the 

characteristic of F. 

All the eigenvalues of a reflection except one are equal to 1. Assuming the 

reflection s is finite of order ri, the exceptional eigenvalue is a primitive n-th root 

of unity. So in the Euclidean space F = R, as +1 are the only roots of unity, 

15 



a reflection s must have order 2. We can define s = sc, as a map that takes a 

vector a to its negative and fixes its orthogonal complement pointwise. There is 

a formula 
2(A,a) 

a, 
(a, a) 

where ( , ) is the standard inner product on Euclidean space. 

Definition 1.5.9. A root system is a finite set 1 (called roots) that satisfy 

flRa={a,—al for all aE. 

8()= 	for all aE. 

There is a group, usually denoted W, generated by the set of reflections 8a  (a E 

Definition 1.5.10. A root system I as defined in Definition 1.5.9 above is crys-

tallographic if it also satisfies 

3 2() 
(3,) '- 

for all a,8 E 4. 

The group W generated by all reflections Sc,, where a is an element of a 

crystallographic root system C1,  is known as the Weyl group of 1. 

See Humphreys [11] for more details. 

1.6 Representation Theory 

Let K be a field with zero characteristic (this condition is required for Maschke's 

theorem to hold), and C a finite group. The following definitions and results are 

taken from Ledermann [14]: 

Definition 1.6.1. A representation of C on a finite dimensional vector space 

V over K is a homomorphism 

: C - GL(V), 

from C to the group of automorphisms of V. The representation is faithful if it 

is injective. 

Example 1.6.2. A representation of the group (Z/2Z)' X  S is given by the 

signed permutation group, namely the group of n x 'ii matrices that has exactly 
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one 1 or —1 in every row and column, with zeros elsewhere. Specifically, let 

v = (vi ,... ,v) E (Z/2Z)'2 , and let i G S be a permutation matrix. For all 

J  e 1,. . . , n, if vj  is not the identity element in Z/2Z, change the non zero entry 

in column j of the permutation matrix of i to —1. The resulting matrix is a 

representation of (v, ri). 

More generally, (Z/lZ)n >i S, has a representation called the monomial matrix 

group, namely the group of n x n matrices that have exactly one non-zero entry in 

each row and column, the entry being an element of (e2'2 /1). Again for an element 

(w, A) E (Z/1Z)'2  ii S, take the permutation matrix that is a representation of ) 

let w 	(w1, . . . , W,), and for all j E 1,. . . , n, change the non zero entry in the 
th  column to w. 

Definition 1.6.3. A KG-module is a vector space V over K with a multiplica-

tion 

VxGV 

satisfying: 

v(gh) = (vg)h 

v10 =v 

(Av)g = A(vg) 

(u+v)g=ug+vg 

for all A E K, u,v E V, g,h E C. 

Definition 1.6.4. Let V be a KG-module. A KG-submodule W of V is a 

subspace of V such that wg E W for all w E W, g E C. 

A representation of a group G over a field K is equivalent to a KG-module: 

Theorem 1.6.5. If 0 : G -p GLn(K) is a representation of C over K, and 

V = K'2 , then V becomes a KG-module by defining multiplication as 

Vg = 

where v E V, g E G. 

Definition 1.6.6. A representation of a group G with no nontrivial proper G-

stable subspaces is called irreducible. Otherwise it is reducible. Let 0 be a 

reducible representation of G over a finite dimensional vector space V, and let 

W be a nontrivial proper G-stable subspace of V. Considering 0 only on W, we 

obtain a new representation of G called a subrepresentation. 
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Definition 1.6.7. A representation is completely reducible if it can be written 

as a direct sum of its irreducible subrepresentations. 

Theorem 1.6.8 (Cayley). Any finite group of order n can be represented by 

permutations acting on n objects. 

Definition 1.6.9. Let C = {gi, . . . ,g.}. The regular KG-module is defined 

to be the KG-module with vector space V having basis {gi,.. . ,g}. The reg-
ular representation of C, denoted KG, is the representation C - 8r defined 

mapping g E C to the permutation 

	

92 	g 

	

\\ gig  929 	gg 

Theorem 1.6.10 (Maschke). Let K and C be as above. Then every KG-module 

is completely reducible. 

The following result comes from the discussion following Equation (2.24) 

in [14]: 

Lemma 1.6.11. The regular representation KG of C contains dim(0) copies of 

any irreducible representation 0 of G. 



Chapter 2 

Introduction and Results 

2.1 Earlier Work 

Our aim in the following five chapters is to classify all algebraic numbers whose 

conjugate set lies on a pair of straight lines (but not a single line) in the com-

plex plane. The motivation for studying such numbers comes from previous work 

on algebraic numbers that lie with their conjugates on various conics, given be-

low. Our classification completes the classification of algebraic numbers whose 

conjugate set lie on a conic in the complex plane. 

In 1969, R.M. Robinson asked which algebraic numbers have all their conju-

gates lying on a circle in the complex plane (see [18]). This question was answered 

for circles with rational centre by Robinson himself: 

Theorem 2.1.1 (Robinson). Let a be an algebraic number whose conjugate 

set lie on a circle centred at the origin with radius R. Then for some n E N, 

R'2  = q E Q, and ozn = qu, where u is unit-circular. 

Conversely, let q E Q>o, and let u be unit-circular. Then a, defined as a root 

of a" = uq, lies with its conjugates on the circle JzJ = q. 

Proof. () Let a and all its conjugates lie on a circle J zJ = R. Let a have degree 

d. Then aa2  ... ad =ER d E Q for some e = +1. Let n e N be the smallest power 

such that R" = q E Q. Then 

a"=uq 	 (2.1) 

for some algebraic u of unit modulus. Apply an automorphism to Equation (2.1): 

= u'q. 

Since & lies on JzJ = q, lu'l = 1. Hence u is unit circular. 
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() Let q E Q>o, let u be unit-circular, and let a be a root of a'2  = uq. Then 

al = q. Apply an automorphism that maps a &. We have: 

= 

and since u is unit-circular, I&I = q. Hence a and all its conjugates lie on the 

circle I z = q. 

Robinson's question was answered for circles with totally real centre by V. 

Ennola in [5], and for circles with non totally real centre by V. Ennola and C.J. 

Smyth in [6] (for centres of degree three or four) and [7] (for centres of degree 

greater than four). If the centre C of the circle is not totally real, it transpires 

that C itself lies with all its conjugates on a circle. 

The question of finding all algebraic numbers that lie with their conjugates on 

a vertical line was answered by C.J. Smyth in [23], (see Corollary 2.1.6 below). 

In [4], C.J. Smyth and A. Dubickas find all algebraic numbers with norm +1 that 

lie with their conjugates on a pair of concentric circles with rational centre. 

All algebraic numbers that lie with their conjugates on parabolas, ellipses and 

hyperbolas are also found in [23]. This is a non-degenerate version of the two 

lines problem, and the results are given below in Theorems 2.1.2, 2.1.3 and 2.1.4. 

Notation. 	1. Parabola 

Let 3(C, F) denote the parabola with equation 

= F(x + F - C), 
4 

or in parametric form, 

z(t) = (t + iF)2  + C, 

where (C, 0) is the focus of the parabola, and F> 0. 

2. Ellipse 

Let C be the centre of the ellipse, let R > 0, c = ±1 be fixed, and B > 1. 

The equation of the ellipse (C, R, B, e)  is given by 

(x—C)2  

R2(B + B-' + 2E) 
Y

2 
+ R

2(B + B 1  - 2f) = 1, 
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or in parametric form, 

z(t) = C + R(Bt + 

where t takes values on the unit circle. 

Hyperbola 

Let C be the centre of the hyperbola, let R > 0, e = +1 be fixed, and 

= 1, B ' R. The equation of the hyperbola (C, R, B, e) is given by 

	

(x—C)2 
	

y2  

R2(2 + B + B 1 ) - R2(2 - B - B-') - 

or in parametric form, 

z(t) C + R(Bt + 

where t E R. 

We also define the following sets of algebraic numbers: 

ST  = IF F> 0 and all other conjugates of F are < 01, 

S = {B : B > 1 is real, as is B-', and all other conjugates of B lie on the unit 

circle }, 

S.qj  = {B : B lies on the unit circle, B2 	1, and all conjugates of B 	B±l  are 

real }. 

Let k(B) be the smallest positive integer such that Bk(B)  has no conjugate 

of the form wB(B),  where w 1 is a root of unity. Tk denotes the Chebyshev 

polynomial of degree k, i.e. Tk(t + t') = tk + t. 

Theorem 2.1.2 (Parabolas). Let a be an algebraic number of degree at least 9 

whose conjugate set lies on a parabola 3(C, F). Then: 

C E Q, and F E S. 

a has a conjugate of the form 

— 	3 2(+ 
1 	

n 	 2 

 C, 	 (2.2) 

where {F = F1,..., F} is the conjugate set of F, and  is totally real, with 

all its conjugates non negative. 
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Conversely, given C E Q, F E ST  and 3 totally real, with all its conjugates non 

negative, the algebraic number given by Equation (2.2) lies with its conjugates on 

q3(C, F). 

It may be possible to reduce the lower bound on deg(a) in Theorem 2.1.2 to 
5, but no further, since there exist algebraic numbers of degree 4 that lie on a 
parabola with non rational focus. 

Theorem 2.1.3 (Ellipses). Let a be an algebraic number of degree at least 25, 

whose conjugate set lies on an ellipse (C, R, B, €). Then 

C, R2  E Q, and Bk(B)  E S. 

Let 

(

= Tk(B) (a — C)e
R 	) 	

(2.3) 

Then a lies with all its conjugates on (O, 1, Bk(B),  1) 

In view of (2) above, we need only consider C = 0, R = 1, k(B) = 1, e = 1. 
Here a has a conjugate of the form u + v', where 

Ti 

v=+(2_4))(flBJ) , 	 (2.4) 

where B = B1  and either B E Q and n = 1, or {B', B',. . . , B'} is the 
conjugate set of B. Also /3 is totally real, with its conjugate set lying in the 
interval [-2, 2]. 

Conversely, let B E S and /3 be totally real, with its conjugate set lying in 
the interval [-2, 2]. Then 

a = ii + v', where ii is given by Equation (2./3, and the conjugate set of 

a lies on (0, 1, B, 1). 

Let C, R2  E Q and Bc(B) E S. 

Use (4) to define if on (0, 1, B(B), 1). Then if a is a root of Equation 
(2.3), then a lies with its conjugates on (C, R, B, e). 

Theorem 2.1.4 (Hyperbolas). Let a be an algebraic number of degree at least 

25 whose conjugate set lies on a hyperbola 5(C, R, B, e). Then 

I. C, R2  E Q, k(B) = 1 or 2, and Bk(B) E S. 
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If B +i and a is defined by Equation (2.3), then a and all its conjugates 

lie on the hyperbola .(O, 1, (eB)k(B),  1). Furthermore, if k(B) = 2 then t is 

positive. 

If B 54 ±i, then a' = (a - C)2  and all its conjugates lie on the vertical line 

= 2cR2, and so 

= 2cR2  + i13 	 (2.5) 

for some totally real 3 (cf Corollary 2.1.6). 

In view of (2) and (3), we need only consider the case B +i, C = 0, R = 

1, k(B) = 1, e = 1. Here a has a conjugate of the form v + ii- , where z-' is 

given by Equation (2.4), with B = B1 , { B',. . . , B'} is the conjugate set 

of B, and 0 totally real, with conjugate set lying in (—oc, —2] U [2, oc). 

Conversely, let B E Ss-, and 0 be totally real, with conjugate set lying in 

(—oc, —2] U [2, oc). Then 

a = v + v, where ii is given by Equation (2.4), and the conjugate set of 

a lies on YJ (0,1,B,1). 

Let C, R2  E Q, B +i, k(B) = 1 or 2, and Bk(B)  E S. Use (5) to define 
a* on YJ (0, 1, (cB)k(B),  1), with the conjugate set of a all having positive 

parameter t. Then if a is a root of Equation (2.3), a lies with its conjugates 

on 35(C,  R, B, e). 

Let C, R2  e Q, B = ±i, k(B) = 1 or 2, and let 3 totally real. Then 

a = C + (26R2  + i) 

lies with its conjugates on S) (C, R, B, €). 

Again the lower bound on deg(a) may be reduced from 25 to 7, and there exist 

algebraic numbers of degree 6 that lie on ellipses or hyperbolas with irrational 

centre. 

Notation. For an algebraic number a with conjugate aj  say, it is understood that 

by aj we mean the complex conjugate iiJ of a, and applying an automorphism 

or to the conjugates of a will map aj  i-4 aa(j) and aj  F- a) respectively. 

The following lemma, taken from [23], is the main result used in classifying 

all algebraic numbers that lie with their conjugates on a straight line (Corol-

lary 2.1.6). It is also used frequently in the subsequent work on the two lines 

problem. 
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Lemma 2.1.5. Let a, ai and a2  be distinct conjugate algebraic numbers. Then 

for any choice of signs, 

a1  + a2  z4  +2a. 

Proof. Suppose that a1  + a2  = +2a for some distinct conjugates a, a1  and a2. 

Let a3  be a conjugate of a with maximal absolute value. By Proposition 1.4.4, 

there exists an automorphism cr that maps a a3. Applying a to 

a1  ± a2  = +2a 

gives 

aa(l) + a (2)  = ±2a3. 

We know that 

a(l) + a'o,(2)1 <2Ia3 , 

SO aa(1) = +a(2) and a3  is equal to at least one of a (l) , a,(2). Applying a 

contradicts the distinctness of a, a1  and a2. 	 El 

The following is also taken from [23]: 

Corollary 2.1.6. Let a be an algebraic number that lies with its conjugates on a 

single line in the complex plane. Then a is either totally real, or is of the form 

p + it, where p E Q and t is totally real. 

Proof. Suppose that a is not totally real, so that it has a conjugate a1  = p+it V R. 

Then by Lemma 1.1.5, a1  = p - it is also a conjugate of a. So the conjugate set 

of a all lie on 	= p. Let F be the normal closure of Q(p,t). Now apply an 

automorphism a e Gal(F/(Q) that maps p p'. Then 

	

(1 	'\ 	1 
U (p) = a 	(ai  + a1)) = (aa(l)  + a (1) ), 

	

2 	 2 
so 

U(p) = p' 

must lie on (z) = p. Suppose p' 0 R. Then p has conjugates p' = p + ir and 

p' = p - ir for some r E R. But then 

p' +p' 

contradicting Lemma 2.1.5. Hence p' E R, so p' = p. Therefore, p is fixed by all 

a E Gal(F/(Q), so by Corollary 1.4.9, p  e Q. 

Now suppose t is not totally real, and apply an automorphism 'r that maps 

t 	t' 0 R. Then 

r(p + it) = T(p) + (it) = p + it' 

does not lie on R(z) = p. Hence t is totally real. 	 LI 
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2.2 Classification of Lines 

Consider the following four possible pairs of lines: 

 

I .The + Case 	 2.The = Case 	 3.The 11 Case 4.The X case 

The lines J(z) = p and the real axis R. For ease of reference, we will refer 

to these two lines as the + case. It has one real parameter, p, and u and 

all its conjugates are contained in the set 

S(p) :=RU{z: 

The two horizontal lines (z) = /7i and (z) = —v/-h- (h> 0). These two 

lines will be referred to as the = case. It also has one parameter, h, and c 

and all its conjugates are contained in the set 

S-(—h) := {z : (z) = Ohl  U {z: (z) = -}. 

The two vertical lines R(z) = p and (z) = q (p 74  q). This case will be 

referred to as the 11 case, and has two real parameters, p and q. Here c and 

all its conjugates are contained in the set 

Sj(p, q) := {z: (z) = p} U {z: (z) = q}. 

The two lines z(t) = C + tu -  (t E R, Jul = 1). This case will be referred 

to as the x case, and has two parameters, C (the point of intersection of 

the two lines) and u (equal to e20, where 0 < 0 < is the angle between 

the positive real axis and the line with positive gradient). Here c and its 

conjugates are contained in the set 

S (C, 	) := { z: z(t) = C + tu t E R, Jul= 11. 

The following proposition shows the significance of these four types of pairs 

of lines: 
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Proposition 2.2.1. Let a be an algebraic number that lies with its conjugates on 

a pair of straight lines in the complex plane. Then the pair of lines can be taken 

to be one of the four types given above, i.e. we can replace (if necessary) the pair 

of lines by one of the four types. 

Proof. Let Pa  be the minimal polynomial of a. Any algebraic number a has an 

even number of non real conjugates, since if ai  0 R is a root of Pa, then by 

Lemma 1.1.5 so is its complex conjugate a, and ZY = a if and only if a E R. 

Moreover, if a has no non real conjugates, then a and all its conjugates lie on a 

single line, the real axis R. If a has two non real conjugates, then either a and 

all its conjugates lie on a single vertical line (if the degree of a is two), or the pair 

of lines given by case (1) above. 

Suppose a has at least four non real conjugates. If all the non real conjugates 

have the same real part, then a and all its conjugates lie either on a single vertical 

line, or the pair of lines given by case (1) above. So suppose that there exists 

non-real conjugates a1, a1, a2  and al  of a such that R(ai ) 	(a2). Thus no 

three of the above four conjugates are collinear, and there exists three possible 

pairs of lines on which the conjugates lie: 

Two vertical lines, one joining a1  and a1, the other joining a2  and a. These 

lines are categorized by case (3). 

The line joining a1  and a2, and the line joining a1  and a. If (a1) = 

then the pair of lines are horizontal, and are categorized by case (2). If 

(a), then the pair of lines intersect, and are symmetric about 

the real axis, so are categorized by case (4). 

The line joining a1  and a, and the line joining a1  and a2. The choice of 

calling a particular conjugate cei  or a is arbitrary, so the lines are catego-

rized as in case (2) above. 

If deg(a) = 4, then any of the above pairs of lines will suffice. If deg(a) > 4, 

then the conjugate set of a will lie on exactly one of the pairs of lines considered 

above. 	 LI 

2.3 Results 

The results of the two lines problem are: 

(1) The + Case 
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Theorem 2.3.1. Let p and a be totally real algebraic numbers such that a is 

negative, Q(p) C Q(a), and the minimal polynomial Pa of a factorises over Q(p) 

as 

Pa (X) = f(p,X)Qa (X), 	 (2.6) 

where 

Qa(X) 	fl f(p',x) 	 (2.7) 
p,7~p 

does not necessarily factorise, p' is a conjugate of p, f(p, x) is the minimal poly-

nomial of a over Q(p) and has at least two negative roots, and f(p', x) has all 

roots positive for p' p. Define a = p + Va. Then a has more than two non real 

conjugates, and lies with its conjugates on S+(p). 

Conversely, suppose that a is an algebraic number that has more than two 

non-real conjugates and lies with its conjugates on S+(p) for some p E R. Then 

p is totally real, a is of the form a p' + \/J, where p' is a conjugate of p, and 

a' is a conjugate of a, where a is totally real and negative, with Q(a) 	Q(p). 

The minimal polynomial Pa of a factorises over Q(p) as in Equation (2.6, where 

Equation (2.7) does not necessarily factorise, f(p, x), the minimal polynomial of 

a over Q(p), has at least two negative roots, and f(p', x) has all roots positive for 

P, P. 

Remark. Theorem 2.3.1 only considers algebraic numbers with more than two 

non real conjugates. Note that any algebraic number with exactly two non real 

conjugates lies with its conjugates on S+ (p) for some algebraic p. 

(2) The = Case 

Theorem 2.3.2. Let h be a totally real, negative, algebraic number whose conju-

gates h2, . . . , h9 are all positive. Let r be a totally real algebraic number, and let 

e_—+1forj=1,...,g.Define 

a = r + 	 + Eg . 

Then a lies with all its conjugates on S(h). 

Conversely, suppose that for some h, there exists an algebraic number a whose 

conjugate set lies on S(h). Then h is totally real and negative with conjugates 

h9 all positive, and there exists some totally real number r such that 

a=r+e1 +e2 +••+e9 , 

where e=+1 for 1<j<g. 
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(3) The 11 Case 

Theorem 2.3.3. 	1. Let p and q be distinct real algebraic numbers such that 

p, q V Q, p + q E Q and h = (j)2 is totally real with all other conjugates 

hg of h negative. Let r be a totally real algebraic number and let 

for j—_1,...,g. Define 

2 

Then a lies with all its conjugates on S11 (p, q). 

2. Let p be the real root of a non totally real cubic, with conjugates Pi and oi. 
Let 1R(pi ) = q, and let r be totally real. Define a = p + ir. Then a lies with 

all its conjugates on S11 (p, q). 

Conversely, suppose that for some distinct real algebraic numbers p and q, 

there exists an algebraic number a whose conjugate set lies on SIl (p, q). They 

either 

1. p+qEQ, p,qQ and 

p + q a 
2 

+€1+€2++fg+ir, 

where h = 
(p 

2 is totally real with conjugates h2,. . , h9 all negative, r is 

totally real, and ej = ±1 for j = 1, 	, g, or 

p is the real root of a non totally real cubic, whose non real roots have real 

part q, and a can be uniquely defined as p' + ir, where p" is a conjugate of 

p and r is totally real. 

(4) The x Case 

Theorem 2.3.4. Let C, u and a be defined in one of the following ways: 

1. Let C e Q(\/) be quadratic for some square-free n E N, with conjugate 

C' :~ C. Let u = i, and let r be totally real. Define 

C+C'  
a= 

2 	2 

where 	
Ii, 	if C <C'; 

if C'<C. 



Let C e Q(./) be quadratic for some square-free n e N, with conjugate 

C' 	C. Let u 	a±b 	be such that a C N 0, e C N, b C Z ,  k C N is 

square-free or equal to 1, and a 2  n + b 2  k = e2. Let r be totally real. Define 

C+C' C' — C 
a 2 +u 2 

Let C e Q, u = i, and define 

where r is totally real. 

. Let Ce Q, let u = u1  = e2'0  have conjugates uj',.. . ,u0,u' where uj  ER 

for 2 <j <g, and let r be totally real. Define 

a = C + r8u1u2 • 

where 
8 f1, 	ifu2  ... u9 >O; 

—1, 	ifu2  ... u9 <O, 

and r is totally real. 

5. Let C Q, let u = u1  = e20  have conjugates +u 1,. . . , +u', where u E R 

for 2<j<g. Define 

Oz = C + r \/Sulu2 . ug (ui + u 1)(u2  + ui') . (u9  + 

where 
Ji, 	if(ui+u')>O; 

- i-i, if(ui+u')<O, 

and r is totally real. 

Then a lies with all its conjugates on S><  (C, 

Conversely, let a be an algebraic number of degree at least 10 that lies with its 

conjugates on S (C, 	Then either C e Q(\/) is quadratic with conjugate 

C' z 4  C, n e N is square-free, and a can be written in one of the following forms: 

1. 
C+C' .C' C 

a 	 +rei(C'—C) 
2 	2

, 

where u = i, r is totally real and 

{ i, 	ifC'>C; 
E 	

_, ifC>C', or 
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c+c/ 

+u 
 c' - c 

+r u(u+u 
2 	2

') 

where u = a+b 	a E N>0, e E N, b E Z ,  k e N is square-free or equal e 
to 1, and r is totally real, 

or C E Q, and c can be written in one of the following ways: 

1. c = C + \/, u = i and r is totally real, or 

=C+r\/6ulu2 ..u9, 

'a = e2'6  has conjugates uj', and ull  G R for 2 < j < g, r is totally real 

and 

f i, 	ifu2  ... u9 >O; 

—1, 	ifu2  ... u9 <O, or 

 

	

a = C + rVulu2 ... u9(ui  + u')(u2  + u1) 	(n + ui'), 

'a = ul = e20  has conjugates +u where uj  e R for 2 <j < g, r is totally 

real and 
fi, 	if(u1+u 1)>O; 

—1, 	if(ui  +u 1 ) < 0. 
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Chapter 3 

Proof Of The + Case 

In this chapter, we prove Theorem 2.3.1, categorizing algebraic numbers whose 

conjugate set all lie on S(p). 

3.1 Lemmas Required For The Proof 

Lemma 3.L1. Let p and a be algebraic numbers, and define 

(3.1) 

All conjugates of a are of the form a' = p' + \/ 7, where p' is a conjugate 

of p and a' is a conjugate of a. 

For each conjugate p' of p there is a conjugate a" of a such that at least one 

of p' + \/ is a conjugate of a. Similarly, for each conjugate a' of a there 

is a conjugate p" of p such that at least one of p" + \/ is a conjugate of a. 

Proof. Let K be the normal closure of Q(a), and let a be an automorphism in 

Gal(K/(Q) that maps a a'. Then applying a to 

(a—p)2 —a=O, 	 (3.2) 

we get (a' - p')2 - a' = 0, which gives a' = p' ± 

Now for any given conjugate p' of p, apply an automorphism r E Gal(K/Q) 

that maps p F- p' to Equation (3.2). This gives 

a" = p' ± \/;7, 

where a" is a conjugate of a and a" is a conjugate of a. Similarly, applying an 

automorphism that maps a i- a' to Equation (3.2) will map a to a conjugate 

a"=p"+/J. 	 El 
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Lemma 3.1.2. Let a be an algebraic number, with more than two non-real con-

jugates, whose conjugate set lies on S+(p).  Consider a non-real conjugate of a, 

say a1, and its complex conjugate a1. Any automorphism 0 applied to a1  and a1  
results in one of the following. Either: 

1. a(l),aC) E 1, or 

. a 	and a(T)  both lie on (z) = p. 

Proof. Suppose there exists an automorphism 0 that maps a1  F-+ a (1)  = r E R 
and a1  i-4 a(T) = p+iA ' R. Let a2, al  be two non-real conjugates distinct from 
a1  and a1. Applying 0 to 

= a1  + a1  = a2 + a 

gives 

= (p + r) + iA = a (2)  + a ) , 	 (3.3) 

with a (2) , ar)  distinct from a (1) , a(T).  So 

(0 (2)  + a ) ) = A. 

If both a (2)  and a )  lie on 	= p, then equating the real parts of Equation 
(3.3) gives a (l)  = p, and so 

2a (1)  = a1  + a1, 

contradicting Lemma 2.1.5. 

If exactly one of a (2) , a(!)  lies on R(z) = p, then on equating real parts of 
Equation (3.3), we see that one of a (2) , a(2)  is equal to ar),  contradicting the 
distinctness of a1, a2  and a. Thus a (l)  and a (T)  are either both real (case 1), 
or both have real part p (case 2). 	 LI 

3.2 	Proof Of Theorem 2.3.1 

Proof. (=) Let p, a, a, f, Pa  and Qa  be defined as in the theorem. Then a = 

p + /i lies on the line J(z) = p. For some index set i, let {r} be the set of 
automorphisms that map a to any non real conjugate. Since a has more than 
two non real conjugates, at least four such Yj exist, by Proposition 1.4.4. Note 
that (a) < 0 for all i, as r(a) 0 R. Recall that Pa  factorises over Q(p)  as 

Pa  (x) = f(p,)Qa(), 
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where 

Qa() 
= fi f(p', x) 

p' ~4 

does not necesarily factorise, and all roots a' < 0 are roots of f(p, x). So Ti (p) = p 

for all i, and all non real conjugates a' of a are of the form p + VZ where a' is 

a negative conjugate of a. Hence all non real conjugates a' of a lie on 	= p, 

so a and all its conjugates lie on S(p). 

() Let a be an algebraic number that has more than two non real conjugates, 

and whose conjugate set lies on S(p). First we show that p is totally real. Let 

a1, a - , a2 and a be distinct conjugates of a that all lie on R(z) = p. Applying 

an automorphism 0 to 

a1 + a1 = a2 + al = 

gives 

a(l) + a (1) = a(2) + 011 	= 2p', 

where a (1) , a(j), a (2) and 	are distinct conjugates of a, and p' is a conjugate 

of p. By Lemma 3.1.2, either a(l) and a (1) are both real or both lie on the line 

(z) = p. If they are both real, then p' is real. Suppose they both lie on 	= p. 

Then either 

a(l) + a(1) = 

in which case p' = p is real, or 

C10(i) + a(1) = 2p + i9 = 2p' 

for some 0 E R*. But then 

a ) + a ) = 2p—iO = 2p', 

and so 2p = p' + p', contradicting Lemma 2.1.5. Hence p is totally real. 

By Lemma 3.1.1, there exists a non real conjugate a1 = p+ \/a of a. We show 

that a is totally real. Consider 

a1 - a1 = 2 \/i 	 (3.4) 

Squaring Equation (3.4) gives 

(a1 - a1)2 = 4a. 	 (3.5) 

Applying an autornorphism r to Equation (3.5) gives 

(a7(1) - a,(-f)) 2 = 4a'. 
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By Lemma 3.1.2, a- and aT(I)  are either both real, or both lie on the line 

J(z) - p. If aT(l) and 	are both real, then clearly a' E R>0. So suppose that 

a,,(1) and aT(T)  both lie on 	= p. Let a(l) = p + i9 and aTC) = p + i\, where 

9,\ER. Then 

(a(1) - a) 
2 = ((p + i9) - (p + iA))2  = (9 - A)2  e R<0. 

So a' is real, hence a is totally real. 

Next we show that Q(a) D Q(p). Suppose that p V Q(a). There is a tower 

K 

Q(a) 

Q 
where K is a splitting field for p, a and a, and Q(a) is an intermediate field of 

the galois extension K/Q. By the Fundamental Theorem of Galois Theory 1.4.8, 

K is galois over Q(a) and there exists an automorphism a e Gal(K/Q(a)) that 

maps p '-p  p' 74 p. Thus 

= 	+ \/. 

Since p' is real (as p is totally real), and a is real and negative, a0l)  does not lie 

on S+(p). So such an automorphism a does not exist, and therefore p E 

i.e. Q(p) C Q(a). 

Thus the minimal polynomial Pa  of a must factorise over a splitting field F 

for p as 

Pa  (X) = 

where 

Qa(X) = f(p', x)f(p", x)..., 

a = (a —p)2  is a root of f(p, x), a' = (a'— p')' is a root of f(p', x), a" = (a" —p")2  

is a root of f(p", x), and so on. Now f(p, x) is irreducible over Q(p), as its roots 

are conjugate over Q(p).  Furthermore, a is a root of f(p, x), so f(p, x) must be 

the minimal polynomial of a over Q(p). 
If a conjugate ai  of a is negative, then clearly ai = (a - p)2  for some a 

R, and so ai  is a root of f(p,x). Moreover, as a has more than two non real 

conjugates, there must be at least two such ai  < 0. Thus f(p, x) has at least 

two negative roots, and for every p' 74 p, the factor f(p', x) of Pa (X) has all roots 

positive, a being totally real. 	 LI 
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We can construct a "suitable" a given p as follows: 

Proposition 3.2.1. Let p be a totally real algebraic number. Then there exists 

a negative totally real algebraic number a such that p C Q(a), a has at least one 

other negative conjugate, and whenever an automorphism maps p -* p' p, then 

a 	a'> 0. 

Proof. Let q E Q be chosen such that q < p and for all conjugates p' < p of p, 

q > p'. Define b = 	Then b> 0, and for all conjugates b' 4  b of b, b> V. Let 

r E Q be such that r < b, and r > b' for all b' b conjugate to b. Let 'y Q(b) 

be totally real, and let € E Q he sufficiently small so that 

mm 	b' - rl > €7' 
b' 

for each conjugate 'y' of y.  Define 

a= r - b + €. 

Then a is a negative totally real algebraic number such that p E Q(a). Also, a 

has at least one other negative conjugate, produced for instance by acting on a by 

an automorphism that fixes Q(a) and maps 7 'y' 4 . Furthermore, whenever 

an automorphism maps p p' p, then b F- b' < r and so a '-f a' > 0. 	El 

3.3 Examples 

Example 3.3.1. Let p = -V17, and a = 1 + /i7 + 	Then 

Q(p) = 	fl Q(a) = Q(/i) 

and 

Pa(Z) = Z4  + 4z3  - 38z2  - 84z + 101. 

Note that p has conjugates p = -/i7 and p' = /i7, and Pa  factorises over 

Q(/i7) into 

(z2  + z(2 + 2) + (13 + 2))(z2  + z(2 - 2) + (13 - 2)). 

Here Qa(Z) = z2  + (2 + 2\/17)z + (13 + 2/17). The conjugates of a are 

a= 1++ 

a'=1+— 

a"=1—\/i7+\/ 
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a" = 1 —V17 — 

and the conjugates of a are 

a = p + V~a = v'17 + F1 + v;17 + v/_5 

a" =p'+ \/= 	+ Vi + 	— 

a" = p' — =V17 — V1 + 717 - 

a2 = P + 	= — + 1— 	+ 

a=p— \/j;7= -/i- i/i — 

OZ3 = P + V~~ 	V-1-7 + VI — V ~=7 — vf5- 

Here a and all its conjugates lie on S(—/i7). 

Theorem 2.3.1 describes all algebraic numbers that have more than two non-

real conjugates and lie with all their conjugates on S (p). However, if only two 

conjugates lie on the line R(z) = p, then Theorem 2.3.1 does not apply, and p 

need not be totally real. For example: 

Proposition 3.3.2. Let a be an algebraic number of degree q, where q is prime, 

such that a has exactly two non real conjugates. Then p is not totally real. 

Proof. Let C be the galois group of Gal(L/Q), where L is the normal closure of 

a, and let a1, a1 be the non-real conjugates of a, with real part p. By Theorem 

1.4.12, C = Sq. Hence p = (a1 + a1) has (q_2) + 1 real conjugates, and 2q — 4 

non real conjugates. Hence p is not totally real. 
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Chapter 4 

Proof Of The = Case 

In this chapter, we study the case where a and all its conjugates lie on S(h), a 

pair of horizontal lines symmetric in the real axis. 

4.1 Results Required For The Proof 

Notation. In the following two results, we denote the set of elements of a field K 

that are squares in K by K 2 . 

Lemma 4.1.1. Suppose that b1,. . . , bg  E K, a field of characteristic zero, and 

that 	 : K] = 29 Then 

n K = U b 1  . . . 
cE{O,1} 

Proof. Use induction on g. 

The result is trivial for g = 0. Suppose g > 1, and that 

fl K = U b' bK2  
E{O,1} 

for all r E {1,. . . , g - 11. Set Kg-1  = K(/bi,•• , 	and suppose that 

(a + c/)2  c K, where a, c E K9_ 1. Then one of a or c must equal zero, since 

Kg-1. Hence 

K(/,...,/)2flK= U 
eE{O,1} 

The result follows by induction. 	 . 
Theorem 4.1.2. Let /3 be a totally real algebraic number with conjugate set {/3' = 
3, /32,. . . , /3} such that 

Let K be the normal closure of 13 over Q. Then 
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1. [K(f/3,. . ., 	: K] = 2, 

and 

. There exists an automorphism a e Gal(K( \/,..., /)/Q) that maps 

e//J for all Oj  conjugate to /3 over  Q and all € E {-1, 11. 

Proof. 1. Since K C R, 	K, as 	R. Suppose 	E K for some 

2 < j < g. Then 

E K2, 	 (4.1) 

where P is a polynomial in Q(B',.. . , /3w). Applying an automorphism 0 E 

Gal(K/(Q) that maps j3 	/3 to Equation (4.1) gives 

contradicting /3 K2. Clearly, [K(j) : K] = 2, as K(\/)/K is non real, and 

V`02 0 K(/), so {K(\/, /3) : K(\/)] 2. We can show that 

[K(, a,..., 	) : K] = 2 

by induction on g: 

Suppose the result is true for g - 1, i.e. that 

	

{K(, a,..., 	) : K] = 29-1 

We claim that 

=2. 

Suppose that 	E K(\/, ..., 	Then by Lemma 4.1.1, 

	

/39/3jl/3j2 	Oil E K 2  

for some t < g and some t-element set S = {ji,. . . ,jt} C {1, . . . ,g - 11. Clearly 

/3 	{i3.7 ,.. . , oil  }. We choose an automorphism 'r that maps 13g F-p /3. Then 

	

/3(/3j1)(/3j2) 	(/3) E K 2  

But /3T(/3 1)r(/32) 	(/3) <0 is not in K 2. So 

[K(..... ) : K(, ..., 	)] =2. 

Therefore, by Theorem 1.3.10, 
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= [K( 	.. ... 	: K( . ... . 	)][K(, 	,..., 	) : K], 

which is equal to 229-1 = 29  by the assumption. The result follows. 

2. Since [K(\/,. .., 	: K] = 29, Ej/O_j is a conjugate of '/7 for every /3 

conjugate to 13 and all 	+1. The result follows by galois theory. 	El 

Remark. we have 

Gal(K(,..., )/K) (Z/2Z)9  

and 

Gal(K(,..., )/(Q) (Z/2Z) Gal(K/(Q). 

4.2 	Proof of Theorem 2.3.2: 

Proof. () Let a, h, r and Ej be defined as in the theorem. By Theorem 4.1.2, 

any automorphism T, when applied to a, will permute the hi's, and change the 

sign of a number of the €'s. Since r is totally real, all conjugates a' of a lie on 

S=  (h). 

(=) Let a be an algebraic number whose conjugate set lies on S(h). We begin 

by proving that all conjugates of h are real. Suppose a lies on (z) = 

Define 13 = a - TT  = 2\/7. Now apply an automorphism 0 to /3 (using an obvious 

notation): 

/3' 	(a) - 	) = a' - a" = 2(). 	 (4.2) 

Applying complex conjugation to Equation (4.2) gives 

13' = a' - a". 

We know that a' and a" lie on S(h), so /3' = y or y ± 2/7, for some 'y E R. 

Suppose /3' = 'r, ± 2\/7 for some non-zero ri e R. Then 

contradicting Lemma 2.1.5. Hence q = 0. Therefore 2(/) = ±2/J7 = 7 or 

±2\/7, which means that \/ 7 either has zero real part or zero imaginary part. 

Hence h is totally real. 
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Next we show that if h' h is a conjugate of h, then h' > 0. Suppose that h 

has a negative conjugate h' h. Apply an automorphism 0 that maps h '-f h'. 

Thus \/7 	c'J and 

(a) - 	= a' - a" = 2€/7 

for some € E ±1. We know that h' is real and negative, so 2/ has zero real 

part. By the same reasoning as above, a' - a" 'y or +2\/i, where 'y E R. But 

a' - a" lies on the line l(z) = 0, so 2vh = 2 \/i, or h' = h. So h itself is the 

only conjugate of h which is negative. Thus all of the hi are real and positive. 

Now fix a, and set 

11, 	if (a) = 
€1 = c 

1_i, if~(a)=—\/'7. 

Let 
(4.3) 

for some choice of €2, . . . , €,. We show that there exists a choice of C2, . . . , c such 

that r is totally real. 

Let h* be any positive conjugate of h, and an automorphism that maps 

h. By Theorem 4.1.2, T maps a to: 

a'=r'+•• Vh 

The other conjugates of h are permuted amongst each other, although we do 

not know what happens to the signs of their square roots. Either r' E R, which 

is what we want, or else r' = ' 2/7, where ' E R. Now substituting 	for 
c, and setting r' = 5' gives r' E R. 

Repeating the process for each of the h (i = 2,. . . , g), i.e. applying an 

automorphism that takes \/ 	€ \/i and r F- r', we obtain the sign of each 

of the -\I—hi in Equation (4.3) in order that r' E R. So there exists a choice of 

T €, €2,. . . 69 such that r e 

a=r+€ 1 +e2 ++e9 V1hI 	 (4.4) 

lies on S(h), and for each conjugate h* of h, there exists an automorphism that 

maps r '-f r' e R and h* - h. 
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We claim that for any conjugate hj  of h, 

is a conjugate of a. 

Let 7 be an automorphism that maps h* i— h and r F-+ T I  E R (such an 

automorphism exists by above). Applying T to Equation (4.4) gives 

The complex conjugate of a' is 

(4.5) 

Applying 	' to Equation (4.5) gives 

ajT+Ei+fj++€g, 

thus proving the claim. 

Now suppose there exists a conjugate 	R of r. Note that () = 
Let 0 be any automorphism that maps r i— i. Suppose 0(h*) = h for some 

conjugate h*  of h. Recall that 

is a conjugate of a. Apply 0 to a and a*:  

If () = 2S1 /7, then ç(a) does not lie on S(h), and if () = —2S1 /7, 
then (a*)  does not lie on S(h). Therefore no such 0 exists, and r is totally 

real. 	 El 

Example 4.2.1. Let h = 6 - 	- \/17 and r = 	Define 

a = r + + 	+ 	+ 

where h2 , h3  and h4  are conjugates of h. Then a and all its conjugates lie on 

S(6— V7- \/17), and deg(a)=32. 
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Chapter 5 

Proof Of The H Case 

In this chapter we prove Theorem 2.3.3, which categorizes algebraic numbers 

whose conjugate set lies on S11  (p, q), two distinct parallel lines. 

5.1 Lemmas Required For The Proof 

Lemma 5.1.1. Let /3 
0 
 Q2  be a totally real algebraic number with conjugates 

/3, /3,. . . , /3, where /3 > 0 and /3 < 0 for j = 2,. . . , g. Then —\/ is a 

conjugate of \/73. 

Proof. Let K be the normal closure of /3 over  Q. Since K C R, \//3,. .., 

K. Suppose \/3 (E K. Then for some polynomial P in K, 

/3= P(/3,...,/39) 2  E K2. 	 (5.1) 

Apply an automorphism 0 that maps /3 13j  <0 to Equation (5.1): 

= P(/3,. ..,(/3))2 	K2, 

contradicting /J V K. Hence 	K, so that x2  — 3 is irreducible over K, 

and hence over Q. Thus —/'13 is a conjugate of \/3. 	 LI 

Lemma 5.1.2. Multiplying an algebraic number by i will halve, double or preserve 

its degree. 

Proof. First note that Q(i, 13)/Q = Q(i, i/3)/Q. By Theorem 1.3.10, 

[Q(i, /3): 	= [Q(i, /3): Q(i3)J[Q(/3) : 

and 

[Q(i, /3): Q] = [Q(i, /3): Q(ifi)] [Q(i/3) : Q]. 

Now [Q(i, /3): Q(/3)] and [Q(i, /3): (Q(i/3)] have degree either 1 or 2. Consider the 

cases: 



[Q(i,) : Q(/3)] 	[Q(i,) Q(i/3)]. Here deg(0) = deg(/3). 

{Q(i,/3) Q(8)] = 2 and [Q(i,i3) Q(i/3)] = 1. Here deg(i/3) = 2deg(/3). 

[Q(i,/) : 	=1 and [Q(i,) : Q(i)] = 2. Here deg(i3) = deg(/3) 

Examples with 3 = 1 + i, 1 and i prove the existence of all three possibilities. El 

Let a be an algebraic number whose conjugate set {ai  = a, a2,.. . , a} lies 

on S11  (p, q) for some real p and q (p q), which are necessarily algebraic. 

Notation. For convenience, the lines l(z) = p and J(z) = q will be referred to 

as L and Lq , and the number of conjugates which lie on L and Lq  denoted N 

and Nq . The conjugates of a that lie on L and Lq  will be called a 1  and aq3  (for 

i and j in suitable index sets) respectively. 

Proposition 5.1.3. The number of conjugates of a that lie on each line is either 

one or an even number. 

Proof. Suppose not, say N = 2n + 1 (n > 0). Then a = p, a' = p + iA and 

	

a' = p - i\ (A E R*) all lie on L. Hence a' + 	= 2a, contradicting Lemma 

2.1.5. 

Lemma 5.1.4. Let a 1  denote a conjugate of a that lies on L, and let 0 be 

an automorphism that maps a 1  onto Lq. Then 0 maps either all or half the 

conjugates on L onto Lq . 

Proof. By Proposition 5.1.3, N is equal to one or an even number. If N = 

1, then 0 maps all conjugates on L onto Lq. So suppose N > 1. Then 

a 1 , a- , . . . , a, a- all lie on L for some c > 1. All the ap, (none of which 

are real) are related by 

a 1  + a- = a 2  + a = 	= a + a- = 2p. 	 (5.2) 

Applying 0 to Equation (5.2) gives 

aq  + a )  = a( 2 ) + a ) 	... = a() + a )  = 2p', 	(5.3) 

where aq  lies on Lq. Then 

1(aq  + afl) = 

q + l(a 1 ) = 2l1(p'). 

Thus IR(p') - Pq  (if a ( -)  lies on L) or q (if a ( -)  lies on Lq ). 2 

	

lJ(p') =P+q  implies that exactly half of aq , 	. . , a ()  lie on Lq , and 

IR(p') = q implies that all of aq, a ( -) ,. . . , a ()  lie on Lq . The result follows. LII 
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Lemma 5.1.5. Either 

The number of conjugates of c that lie on each line are equal (to ), or 

There are twice as many conjugates of ci that lie on one line than on the 

other (and so 32d and 3d). 

Proof. By Proposition 5.1.3, N and Nq  are equal to either one or an even number. 

Consider the possibility of least one of N, Nq  equal to one first. 

N = Nq  = 1 is covered by case 1. 

Let N = 1 and Nq  > 1. Then Nq  is even, so Nq  = 2c say, and 

1 	 1 	 1 
q =+ ar) = 	+ c) = ... = (cq + a), 

2 	 2 

where none of the c q  are real. Apply an automorphism T that maps aq1  H+  ap)  

where a, is the conjugate on L to q. Then 

(q) = q, = 1 (a + aT(s)) = 1 (ay(q2) + a) 	..., 	(5.4) 

where a (1-) , ar(q2 ) 1  a(), . . all lie on Lq . 

Suppose c> 1. Then equating the real parts of Equation (5.4) gives 	= q. 

This contradicts p q, so c = 1 and there must be exactly two conjugates on Lq. 

Thus Nq ==2=2Np, as in case 2. 

Now suppose that N and Nq  are both even. Let a be an automorphism that 

maps some conjugate aq that lies on Lq  onto L. By Lemma 5.1.4, a must map 

either all or half the conjugates on Lq  onto L, and either all or half the conjugates 

from L onto Lq. Consider: 

a maps half the conjugates from Lq  onto L, or 

a maps all the conjugates on Lq  onto L. 

1. Suppose a maps half the conjugates on Lq  onto L. Then if half the number 

of conjugates on L are mapped onto Lq, N = Nq. If every conjugate on L is 

mapped onto Lq, then Nq  = 2N. 

2. Suppose a maps all conjugates on Lq  onto L. Then if half the number 

of conjugates on L are mapped onto Lq, N = 2Nq. If every conjugate on L is 

mapped onto Lq , then N = Nq. 

Hence N = Nq , j Nq  or 2Nq  as required. 	 LI 



The following follows immediately from the proof of Lemma 5.1.5: 

Corollary 5.1.6. If N (resp. Nq) is equal to 4, then any automorphism either 

maps all or none of the conjugates on L onto Lq  (resp. Lq  onto LP). 

Lemma 5.1.7. Let the conjugate set of a lie on L and Lq  (and not just one of 

them). Then p,qQ. 

Proof. Suppose p E Q. Let N denote the number of conjugates on R(z) = p. If 

N = 1, then some conjugate aj = p, and as a has conjugates on (z) = q, this 

contradicts p E Q. Let N > 1. By Proposition 5.1.3, N = 2c for some c E N. 

Label the conjugates of a lying on (z) = p so that 

a 1  + a- = 	a + a 	2p. 

Apply an automorphism that maps a7  to a conjugate aq  that lies on 	= q. 

Then for some conjugate a' of a, 

aq  + a = 2p. 	 (5.5) 

Equating real parts of Equation (5.5) contradicts p 	q. Thus p ' Q. Exactly 

the same argument will show that q V Q. 	 El 

5.2 	Proof Of Theorem 2.3.3: 

Proof. () 

1. Let p and q be distinct real algebraic numbers such that p + q E Q, p, q Q 

and h = (2.a)2 is totally real, with all other conjugates h2,. . . , h, of h 

negative. Let r be totally real, and let cj  = +1 for j E {1,. . . , g}. Define 

p + q 
a= 

2 
+E+€2++€g+ir. 	(5.6) 

Clearly a E S11  (p, q). Let ci be an automorphism in the galois closure of ir 

and 	Apply a to Equation (5.6). By Theorem 4.1.2, 

p + q 

- 	2 

where r' E R and 6, 6, .. . , 6 E + 1. 

Since (a') - 	+ 	a' lies on S11  (p, q). 

Hence the conjugate set of a lies on S11  (p, q). By Lemma 5.1.1, - / is a 

conjugate of \/, so there exists an automorphism 0 that maps 	-* - \/J, 
and the conjugate set of a lie on not just one of the lines L P or Lq. 
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2. Let p be the real root of a non totally real cubic, with conjugates pi, p-1  such 

that l(pi) = q, and let r be totally real. Define 

Then (a) = p, so a E S11  (p, q). Now let ci be an automorphism in the 

galois closure of p and ir. Then 

a(p + ir) = p'  + ir'. 

If p' = p, then (a) = p, and if p' p then (a) = q, since (p') = q and 

E R. Hence the conjugate set of a lies on S11  (p, q). 

() Let a and all its conjugates lie on S11  (p, q), for some distinct real numbers p 

and q. Recall N (resp. Nq ) denotes the number of conjugates of a lying on Lp  

(resp. Lq ). Suppose without loss of generality that N < Nq. Lemma 5.1.5 gives 

N = Nq  or N = Nq . 

1. Consider N = Nq. By Lemma 5.1.7, p, q 0 Q. We can subtract 	E Q 
from the conjugates of a, so that the midpoint of p and q is the origin, and 

multiplying by i gives us an algebraic number whose conjugate set lies on S,. (--) 

(note that by Lemma 5.1.2, multiplying an algebraic number by i can double, half 

or preserve its degree). 

Inverting this process, any algebraic number that lies with its conjugates on 

Si(p, q) (and N = Nq ) can be constructed, by multiplying an algebraic number 

whose conjugate set lies on S(h) by i and adding on a rational. Hence, by 

Theorem 2.3.2, 

p+q 
a 	

2 	
+€i Vh +E2++E9 +ir- 

2. Now suppose N - and N - - 2N Consider the relationship P3 	q 	 p. 

1 	 1 	 1 
P = 	 a (a 1  + a) = ( 2  a + 	) = 	= (aPd  + a--) 

By Corollary 5.1.6, on applying an automorphism -r to p, either all of the a 1  

remain on L, or all of the conjugates are mapped onto Lq. So all conjugates p' 

of p are of the form p+i.\ or q+iO. Application of Lemma 2.1.5 top+iA shows 

that A = 0. 

46 



If q is a conjugate of p (i.e. 8 = 0), then by the relationship 

2q = (c q1  + 	 (q + c) = ... 	( q + c-), 

applying an automorphism that maps q 	p will map all of the 0qj  onto L. 

However, N < Nq , so no such automorphism exists and 8 =A 0. Now suppose 

there are at least four conjugates of p lying on Lq . Call four of them 

Pi = q + i81 , 

P2 = q + i82 , 

and 

= q - i82. 

Consider the relationship 
1 	1 

q = 	(pi  +p) = (P2 +p). 	 (5.7) 

Applying an automorphism that maps p1 E-  p to Equation (5.7), and equating 

real parts gives the required contradiction. So p has exactly two conjugates on 

Lq , hence is cubic. 

To show that r is totally real, apply an automorphism a that maps r F-p r" r 

to a = p + ir: 

a(a) = cr(p + ir) = p' + €ir', 

where p' is a conjugate of p and e ±1. Suppose that R(p) = p. If r" R, then 

IR(eir') = q - p, since lR(a(c)) =A p in this situation. But then 

= p - IR(€ir') = 2p - 

which contradicts a() lying on S11  (p, q). The same argument holds for l(p') = q. 

Hence r is totally real. 

It remains to check that the construction above does not alter the 1:2 ratio 

of conjugates on L to conjugates on Lq , i.e. that there do not exist distinct 

conjugates of r, r" and r" say, such that 

P,  ± ir' = ± ir" 

This condition is required to satisfy the uniqueness claim in Theorem 2.3.3. As-

sume such r' and r" exist. Then 

p'± ir,  —ji ir" =0. 	 (5.8) 

Applying any automorphism that maps p' H-+  p will contradict the equality of the 

real parts of Equation (5.8). 	 LII 
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5.3 Examples 

The following example is a good illustration of the case where p is quadratic: 

Example 5.3.1. Consider the equation P(z) = z4 + z3 + z2 + z + 1. Then the 

roots of P(z) are 

=e5 = .-,/-5- - - + -!W2-r5 +75, 

= 

c2=e 5 -- V-5- - - + 1 i V2- F5 - 5, 

and  
e 5 	= .—,/-5- - - -- 1 i,/-2 V5 - ~5. 

These roots lie on two vertical lines, R(z) = 	± 	Take p = 	+ 4 	4
q = 	- = 	and r = /21-/. Then p is quadratic, h  Q and 

r is totally real. Adding 1 to each conjugate, and multiplying by i gives eight 

conjugates, all of which lie on 
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Chapter 6 

The x Case 

In this chapter we examine the case where a and all its conjugates lie on the two 

lines z z(t) = C + tu 	(t C IR,u = e20  for some 0 E (0, i)). 

Notation. For convenience, the line z(t) = C + tu will be referred to as L, and 

z(t) = C+tu as L. A conjugate of a whose position is known and lies on L will 

be referred to as a with a numerical subscript, for example a1. As in previous 

chapters, an automorphism a will map a1  H-k a (l)  and a1 	a (1). If a conjugate 

is not fixed, but is known to lie on L, it will be referred to as a, with a letter as 

a subscript, and similarly, a with a letter subscript refers to some conjugate of a 

that lies on L. A conjugate that could lie on L or L will be referred to as a with 

a superscript, usually a'. 

In this chapter, when comparing phases, we will work mod it without loss of 

generality. 

Is it possible for a conjugate of a to be the point of intersection of L and 

L? A non totally real cubic is one obvious example. In the first section we show 

that no algebraic number a of degree greater than three lies with its conjugates 

on S><  (a, \/) for any u. In the second section, we show that for all algebraic 

numbers a of degree at least ten which lie with their conjugates on S><  (C, \/), C 

is totally real. In the third section we refine this result, and show that the degree 

of C for such an a is at most two. The main theorem, regarding the construction 

of all algebraic numbers a which lie with their conjugates on S><  (C, \/), is proved 

in the final two sections, firstly for a real quadratic C, and secondly for C E Q. 

Let a be algebraic, and let 

{ a1  = a, a1,.. . , ad, a} 

be the conjugate set of a, all of which lie on S>  (C, \/). Then 'u can be described 

in terms of the ai  as follows: 
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a1 -a2  a1  - a3 	a - a 	a_ - ad 
U = 	= 	= ... = 	= ... = 

a1 - al a1 - a - 	a -  - ay 	a-1  - a 

Here i j. Alternatively, in terms of the ai  and C: 

a1 -C 02 -C 	ad — C 
= ___ =•••= 	. 	 (6.1) 

a1-C ai  - C 	ad  - C 

Furthermore, C can be described in terms of the ai  by rearranging Equation 

(6.1) as follows: 

C= a
1a—a1a2  = 

a1  - a1 - a2 + a 
a1a - a1a3  

a1 - a1 - a3 + a 

ajai- - aa1 

a + aj  - a -  - a3  

This shows that C is certainly algebraic. 

ad_laa - 
a_ - ad-1 - ad + a 

(6.2) 

6.1 Proving that a and C are not conjugate 

Let a be an algebraic real number whose conjugate set lies on a pair of lines that 
intersect at a and neither of which are the real axis. We show that no such a 

exists if deg(a) > 3. We first consider the case where a has degree at least seven: 

Lemma 6.1.1. There is no real algebraic number a of degree greater than five 

that lies with its conjugates on S,, (a, \/i). 

Proof. Suppose such an a does exist, with deg(a) = 2d + 1, d> 3. Call its non 

real conjugates a1 , a1, a2, a,... , ad, a. By replacing C with a in Equation (G. 1), 

the () equations in a can be written as 

(a1  - a)(a - a) = (a1 - a)(a2 - a) 

(ai  - a)(a - a) = (a1 - a)(a3 - a) 

(ad_i  - a)(a - a) = (a—j- - a) (ad - a). 	 (6.3) 

Apply an automorphism r that maps a i— a1  to the () Equations (6.3). 

Then by Theorem 1.4.3, d - 1 of these equations are mapped to 
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(a - ai )(a" - ai ) = (a' - al) (a," - ai ) 

(a - a)(a - ai) = (a' - ai)(a - ai ) 

(a - a)(a(2d_2) - a1) = (a' - ai)(a(2d_l) - ai) 	(6.4) 

where a1, a, a', a",. . . , a 2' 11  are all distinct and make up the conjugate set 

of a. Note that d - 1 of a', all , 	a(2d_1) lie on L, and d of a', a",. . , a(2d_1) lie 

on L, one of which is a1-. The aim is to derive a contradiction by equating the 

phases of the set of Equations (6.4). There are d factors of the form (d - ai ), 

where â 74 a1  lies on L, and each of these factors has phase 9. Consider (a' - ai ), 

with respect to each of the following three cases: 

a' lies on L, 

a' = a1-, and 

a' 74 a1-, a' lies on L. 

1. Suppose a' lies on L, so that (a'—ai ) has phase 9. Then one of a",... 

is a1-. Without loss of generality, suppose one of a", a" is equal to a1-. 

(la) Let a" = a1-. Then (a" - a1) has phase , and so, from the first of 

Equations (6.4), so does (a" - ai ). This contradicts a" 74  a1. 

(ib) Let a" = a1-. Then (a" - ai ) has phase 1,  and so, from the first of 

Equations (6.4), so does (a" - ai ). This contradicts a" 74 a1-. 

Therefore a' must lie on L. 

(2) Suppose a' = a1-, so that (a' - ai ) has phase . Consider the conjugates 

a", 	. . . , a( ')  which appear on the RHS of the set of Equations (6.4). 

Suppose one of these conjugates, say a(v),  lies on L. Then (a(v) - ai ) has 

phase 9, and so (a(iv) - ai ) has phase , contradicting a(w) 74 a1-. 

Suppose the conjugates that lie on L are a", 	a(2d-2) (so they 

all appear on the LHS of the set of Equations (6.4)). Then 

(a" - ai), (a' - ai ),. . . , (Oz 
(2d-2) - ai ) 



all have phase 9. Therefore, 

(a" - a1), (a )  - ai ), . . . , (a(2d_1) - a i ) 

all have phase equal to 29 + . This implies that a", a1  and a are collinear, a 

contradiction. 

(3) Suppose a' = aj for some j 	1. Let (a' - a1) have phase 0, noting 

that 	+9 or . As above, if one of a", a(v), . . . , a(1),say a(v), lies on L, 

then (a( ')  - ai ) has phase 0, contradicting the fact that 	a1  and a' are non 

collinear. We use the first two of Equations (6.4), namely 

(a - ai)(a" - a ) (a3. - ai)(a" - ai ) 	and 

(a - a)(a(  - a') 	(a - a)(a(V) - a1). 

Therefore, as (a" - ai ), (a )  - a,),. . . , (a(2d_2) - ai ) all have phase 9, (a" - a,) 

and (a(v) - ai ) have phase 29— 0. This contradicts the non collinearity of a", 

and a1 . 

Hence there is no algebraic number a with degree greater than five that lies 

with its conjugates on S,, (a, \/ii). 

The degree of a is taken to be at least seven in order that there are at least 
two equations in the list of Equations (6.4), so as to obtain a contradiction for 
cases (2b) and (3). In the following lemma, we deal specifically with the case 

where the degree of a is five. 

Lemma 6.1.2. There is no real algebraic number a of degree five that lies with 

its conjugates on S, (a, \/). 

Proof. Suppose such an a exists. Call its non real conjugates a1, a1, a2  and a, 

with IR(ai ) <IR(a2). Apply an automorphism that maps a F-p a1 . Then 

(a, - a) (al  — a) = (a2  - a)(a1— a) 	 (6.5) 

is mapped to 
(a - a,) (a" - a1 ) 	(a' - ai)(a" - a,), 	 (6.6) 

where a', a" and a" represent some permutation of a1, a2  and a. Consider the 

two cases: 

I. a" a2, and 

2. a"=  a2 . 
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We can assume that a'=  a2. Then 

(a - ai)(a" - ai ) = (a2  - ai)(a" - al)- 	 (6.7) 

Let 0 denote the phase of (a—a' ). If a" = a1, then equating phases of Equation 

(6.7) gives 0 = , contradicting the fact that R(al) 

If a" = a, then equating phases of Equation (6.7) again gives 0 = , resulting 

in the same contradiction as above. 

Let a" = a2. We know that (a - ai ) and (a2  - a1 ) have phase 0, and 

(a1  - ai ) has phase . Equation (6.7) becomes: 

(a 	ai )(a2  - al) = (a1 - ai)(a - al). 	 (6.8) 

Let 0 denote the phase of (a - ai ). Recall that Equation (6.8) was derived 

from an automorphism that mapped a 	a1. By a similar argument applying 

an autornorphism that maps a F-+ a2  to Equation (6.5) gives 

(a - a2) (al - a2) = (a1  - a2)(a - a2). 	 (6.9) 

The LI-IS of Equations (6.8) and (6.9) have phase 29. The RHS of Equation (6.8) 

has phase ' + 0, and the RHS of Equation (6.9) has phase - . Equating the 

phases of the right hand sides gives 20 = 0, so 0 = 0 or. If = , then the 

four non-real conjugates have equal real part. This contradicts l(ai ) < 11(a2 ). If 

0 = 0, then (ai ) =i(a), and so a1  +a2  = 2a, contradicting Lemma 2.1.5. El 

We combine Lemmas 6.1.1 and 6.1.2 to give: 

Theorem 6.1.3. There exists no real algebraic number a of degree greater than 

three that lies with its conjugates on S><  (a, \/i). 

Bearing in mind the cubic case, we now assume that a is of even degree and 

not equal to C. 

6.2 Proving that C is totally real 

By Theorem 6.1.3, we know that none of the conjugate set of a are real, so a has 

even degree, say deg(a) = 2d. 

Notation. For reasons that will be made clear in Lemma 6.2.2, we will assume 

that d is at least five. Define Q and Q as the sets of conjugates of a that lie on 

L and L respectively. So 

and 
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Define the mean of the elements of ci as 

L') = 	a'. 
c'Ec1 

Then 
= 	a'. 

On applying an automorphism a to the conjugates of a, we denote the set of 

conjugates {a (') , . . . 	by a(Q), and the set of conjugates {aC),. . . 

by al). 

In this section, we assume that C 0 Q, apply an automorphism r in the galois 

closure of C, u and a that maps C -p C' C and examine what happens to u. 

Remark. If w e R, then w = 	C, and so C E Q. We consider this case in 

Section 6.5. 

Lemma 6.2.1. Let a, a2  and a3  be three conjugates of a that belong to Q. 

Choose an automorphism T that maps a1  '- a(1), a2 	a(2) and a3  H-p 

where a,-(l), a(2) and a,-(3)  all lie on the same line, L say. Then the conjugates 

a,(), 	and a,p are collinear. 

Proof. r maps u to 

OT(1) - a-(2) - a(l) - aT(3) - a(2) - a(3) 
 - 	- 

a() - aT(l) 	aT(T) - aT(3) 	a1 - aT() 

At least two of a(I), aT(2)  and aTC)  belong to one of ci or ft Let two of 

aT(L), aY(2), aT() (E ci, say a()  and  aTC)  without loss of generality. Then 

/ 	a7(l) - aT(2) - a(l) - a(3) 	
(6.11) - 

aT() - aT(2) 	a() - 

The phase of u' is zero. So (aTr) - a(3)) has phase 0. Hence aTr)  E Q. 

The other cases, such as a (l) , a (2)  and aT(3) all belonging to Ti, or a,(-f)  and 

a() belonging to ci, follow in exactly the same way. 	 El 

Lemma 6.2.2. Let a be an automorphism that maps a pair of complex conjugates 

(ai , a) (i E 1,. . . , d) to any two elements in ci or any two elements in K1. Then 

all pairs (ai, a) (j E 1,. . , d) are mapped either to two elements in ci or to two 

elements in Q, and C is fixed by a. 
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Proof. Let ci map a pair of complex conjugates (a j, a) to two elements in ft By 

taking d> 4, at least three elements of o- (ci) must be collinear, by the pigeonhole 

principle. Suppose without loss of generality that at least three elements of a(Q) 

lie on L and that a.() is one of them (for if a0j) and 	lie on L, then there 

certainly exists an aj  E ci such that a(j)  and aa  lie on L). 

Let aa, ab 	cij be distinct elements in ci such that a(a), aa(b) and a(j) are 

also in ft Applying a to the following identity: 

aa — ab aa — ai ab — a 
U = 	 = 	 = 

azF  — a% a —  a a —  a 

gives 
/ 	ao.(a) - acr(b) - aa(a) - a0() - a(b) - 	 (6.12) 

- a0 ) 	a() - ac) 	a. )  - a0 0 

By Lemma 6.2.1, a, ac7  and aj must be collinear. From the assumption 

that 	E ci, it follows that 	and 	are also elements in ft Hence tt'  E R. 

Therefore, if some aj e ci is mapped by ci to an element a-(J) E ci, then 

is also mapped to an element in Q. There must exist at least three distinct 

conjugates ak, am, a E ci such that cia(k), aC, a(m), a(), a() and 	e ft 

By Lemma 6.2.1, if 	E Tl for some p, then a01  E ft 

Now suppose a(c) = C', and let aq , ar e ci and a, a -  E Q be conjugates of 

a such that 
/ - aq  - C' - O - C' 

- ar  — C' - 
Since u' E R, C' must be collinear with aq  and ar , so C' lies on L. Similarly, C' 

is collinear with a and a, so C' lies on L. Hence a(C) = C. 	 LI 

Remark. We show in Lemma 6.3.1 that such an automorphism a defined as in 

Lemma 6.2.2 exists only if C E Q. 

Corollary 6.2.3. Let a be an automorphism in the galois closure of C, u and 

a. If a(C) = C' 	C, then a ()  and a )  do not both belong to ci or ci for all 

jE{1,...,dl. 

Proposition 6.2.4. Let T be an automorphism that maps C C' C. Suppose 

T(Q) = ft. Then (ci) = 

Proof. Suppose that r() = ci" 	ci'. Then there exists some pair aa, ad such 

that r(a) = aa and (a) = aa for some i,j. Applying 7 1  to 

aa  —C 
ad  —C 
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gives 
ai  - C/l  

U"  = 
oj - C" 

where C" 	C. By Corollary 6.2.3, no such automorphism r' exists. Hence 

Lemma 6.2.5. Any automorphism T that maps C - Cl C and Q -* Q' must 

map u 	u', where I u'i = 1. 

Proof. Consider an automorphism a that maps C C' C. Apply a to u: 

U(U) = ' 
= a(1) - o,(2) = u(1) - 

a(T) - a0() 	aiI) - 
= 	- 	= 	= 0 i(d-1) - a,7(d) 

C) - G) 	 - 	(d) 

By Proposition 6.2.4, a(Q) = cl'. 

Let i and j be such that 

- c cr(j) = max la ' -a" 
a" Ei' 

Then 
= Uo-(i) - oij) 

for some o)'  a0)  E . Since 

max a' - a" = max a' - 

10 > 1, and a similar argument gives u' 	1. Hence lu'l = 1. 	 LI 

Remark. In fact, if C V Q, we show in Lemma 6.3.3 that 'r must map 0 or d 

conjugates from Q to T2. 

Lemma 6.2.6. The point of intersection C of L and L is totally real. 

Proof. Recall that if C Q, then as noted in the remark preceding Lemma 6.2.1, 

w 

	

	C and= u. Apply an automorphism 0 that maps C i- C' C. Let 

(w) = w". By Proposition 6.2.4, q(w") = J1. So u is mapped to 

W' — C' 
U'  = - 

— C" 

and lu'l = 1, 50 Cl is real. Hence C is totally real. 	 LI 



6.3 Proving that C is rational or quadratic 

Let C V Q be totally real. Define Q, n and w as in Section 6.2, and let a have 

degree at least 10. 

Lemma 6.3.1. Let 0 be an automorphism that maps C C' C. Then does 

not map any pair of complex conjugates (aj, a) to an unordered pair (aj, aj). 

Proof. Suppose such an automorphism 0 does exist. By applying complex con-

jugation if necessary, we can assume that 

a —C' a —a' 
(u) = U' 

= a;  - C' = aj  - a" = 

Now suppose a' E l, say a' = ak. Then a" E n, by Corollary 6.2.3. If a" = a, 

then 	
aj  - C' - ak - C' 

- ak  — C" 

contradicting Equation (6.2) and the fact that C' 	C. So a" 	a. By 

Lemma 6.2.5, 1U/J = 1. So there exists am E Q such that 

Jaj - ak = a 

But then ak + am  = 2a1, contradicting Lemma 2.1.5. 

So for all r E {1,. ..,i - 1,i + 1,...,d}, a(r) E n, and by the pigeonhole 

principle, 	lies on L. Furthermore, by the same argument as above, ay 

a ) . 

Thus for each conjugate a' aj  or aj, there exists a conjugate a" a' or a' 

such that 
a'—C'=a'—C'H a"—C'= —C' 

Relabel the conjugates so that aj  is now ad, and 

al  + ad-1 = a2  + ad-2 = 	= ad-1 + ad+1 = 2p 	(6.13) 

for some point p lying on L such that (p - C') has phase 8 + : 
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Apply a suitable automorphism T that maps a1  F- ad. By the fact that 

there does not exist a conjugate a' of a such that ad + a' = 2p, we have that 

T(P) = p' P. Consider the cases (a) a(d-1) e Q and (b) a(d-1) E n- 

(a)(a) Suppose a(d-i)  lies on L. Then p' lies on L, so a(2), a(3),. . . , a_ also 

lie on L. Hence 

	

2p' = ad + a(d-1) = aa + ab ='•• 	 (6.14) 

for some 1 < a < b < d - 1. Also, there exists an am  (1 < m < d - 1) such that 

a-,-(m) = ad_a or ad-b,  say ad-a.  Then 

	

= a(,) + ay(d-m) = Od-a + a', 	 (6.15) 

where a' lies on L. Clearly ab 	ad-a, as p' 	p. So equating (6.14) and (6.15) 

gives 

aa + ab = ad_a + a'. 	 (6.16) 

From Equation (6.13), 

aa  + ad_a = ad_b + ab. 	 (6.17) 

Adding Equations (6.16) and (6.17) gives 

2aa = ad_b + a' 

contradicting Lemma 2.1.5. 

(b) Suppose a(d-1)  lies on L. Then p' does not lie on L or L. Exactly one of 

a(2) and aT (d_2) lies on L, say aT(2),  and so a(d-2) lies on L. Thus 

2p' = ad + a(d-1) = a(2) + a7(d_2). 
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Then 

ad ar(2) = a(d-2) - 

So the line through ad and r(2)  must be parallel to the line through aT(dl) and 

a7(d2), contradicting the fact that L and IL intersect at C. The result follows. El 

Corollary 6.3.2. For all conjugates ai  of a, there exists a conjugate a 	ai  or 

a7 such that 

= a— C' = a  — C'= Jal — C 

where C' C is a conjugate of C. 

Notation. we relabel the conjugates of a so that 

R(al) <(a2) < ... <(ad). 

Lemma 6.3.3. The mean w of the conjugates of a that lie on L is quadratic. 

Proof. By Corollary 6.3.2, for every aj  E ci, there exists ak c ci such that 

aa  + ak = 2w. Therefore 

2W=al+ad=a2+ad_l= ...=a+a4+1 

and 

42 +1  

Apply an automorphism 'r to W. Consider the following: 

a(l), a.,-(d) E ci, in which case (w) = w' lies on L. 

a(1), aT(d) E Ti, in which case w' lies on L. 

One of a(1), a(d) belongs to ci, and the other belongs to Q, in which case 

W/ neither lies on L nor T. 

Let a(l), a(d) E Q. Then all the ai  E ci are mapped by to a conjugate 

in Q. So T(W) = W. 

Using exactly the same argument as in (1), r(w) = Fa 

Let one of a(l), a,-(d) belong to ci and the other to Il. Then exactly one 

of each of the pairs 

(a(2), a(d1)), . . . , 	a(d+l)), (OZ T(T), aT (d)),. . . , (a, 	(dl)) 

belongs to Q. 
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Suppose without loss of generality that a(l),  a,.(2)  E ft 

Therefore a,-(d), a7-(d-1) E n. Hence 

2T (W) = 2w' = a(1) + a(d) = a(2) + a(d_1). 

So 

a1-(l) - aT(2) = a(d-1) - 

which implies that the line through 	and c,-(2)  is parallel to the line through 

a(d) and aT(d_1).  But L and L are not parallel, so no such automorphism exists. 

Therefore r(w) = w or W Hence w is quadratic. 	 El 

Corollary 6.3.4. The set of conjugates {c,. . . , a-j} = Q are either all mapped 

to conjugates in Q, or are all mapped to conjugates in E 

Lemma 6.3.5. The point of intersection C is quadratic, and either u i, or u 

is quartic with conjugates +u+1.  Any automorphism will map C, u and w in one 

of the following ways: 

1. CC,uF— uandwE--- w, 

	

. C i C,u 	u 1  and  

	

3. C i-p C', u 	—u and w H-+ w, or 

. CC',n—u' and w. 

Furthermore, all four possibilities occur. 

Proof. Apply an automorphism 0 to Equation (6.1). Consider O(w) = w or 

(a) Let (w) = w. Apply 0 to u: 

(u) = u' 	
-ad a1 - (C) = ad - (C) - w - (C) 

a— a 	azT 	a—(C)w—(C) 

By the relabelling above, 

max cV - a"I = a1 - ad. 

By the maximality of lal - adk either 

(al) a- = a1  and c% = a, or 

(a2) a- = a and a6  = a1: 
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(al) U' = 1d = u, and 

al - O(C) - ad - (C) 

aj —(C) - a—(C) 

gives 
ala —  a]-ad 	

=c. 
a1  - a1  - ad + aa 

(a2) u'  == —'u, and 

-çb(C) - ad - (C) 

a—(C) - a1—(C) 

implies that 

cb(C)== 	
alaT —  ada 

a1  + a1  - ad - aa 

(b) Let q(w) = EY. Apply 0 to U: As above, 

(u) =U, 
a1 - ad = a1  - ( C) a - q5(C) - - ql(C) 

aa  - ab aa - (C) a& - (C) - w - (C) 

By the maximality of I  a1  - a, either 

(bi) aa  a1 and ab = ad, or 

(b2) aa  = ad and ab = a1. 

Consider 

	

- -2i9 	 6.18 
w —(C) 	. 	

) 

Case (bi) implies that u' = u', and Equation (6.18) gives (C) = C. 

Case (b2) implies that u' = —u 1 , and Equation (6.18) implies that 

a1a1 - ada 
(C) = __________ 

a 1  + a1  ad - a 

So for any automorphism a, a(C) = C or C', where C'= 	 Hence 
01+aad —cj 

C is quadratic. 

Now apply an automorphism uc  that maps C 	C. Suppose ac(w) = w. 

Then ac(u) = 'u. This is case 1 above, Applying compex conjugation gives case 

2. 

Apply an automorphism a' that maps C i—* C'. Suppose ac(w) = w. Then 

oc'(u) = —u. This is case 3 above. Applying compex conjugation gives case 

4. 
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6.4 Constructing the ai  for quadratic C 

Let C E Q(/) be quadratic for some square-free n E N, with conjugate C' $ C. 

Let Q, Q and w be defined as in Section 6.2, and let o have degree at least 10. 

Lemma 6.4.1. Either u = i, or C and w E Q(u). 

Proof. Suppose that u i. Then 6 	. Recall 

(6.19) 
a-f -aa 

Suppose that w 0 Q(u). Apply an automorphism to Equation (6.19) that maps 

w F—p D but keeps n fixed. Then 	azf  and ad F-4 c for some c, cij E ft But 

then 
= 	- ad—a+1 

- c )  

This contradicts u = e210 , by our assumption 0 	. So w E 

Now suppose C 0 Q(u). Apply an automorphism that maps C 	C' 

C,uF— uandwF— w. Then 

w—C W—C' 
U— 	-- 

w—C w—C 

contradicting C' C. 	 El 

Lemma 6.4.2. We can write w and as follows: 

1 d  

2 	2 

and 
1 d 	

2 	
____ —1 — - 
	

+ 2 
U 

Proof. By Lemma 6.3.5, there exists an automorphism r that maps C F—p C", U 

—'u and w i—  w. Applying T to 

=uJ— uC+C 	 (6.20) 

gives 

W = -UZU  + uC' + C'. 	 (6.21) 

Adding Equations (6.20) and (6.21) gives 

c+c' c' - c 
2 + 2 

Applying complex conjugation will complete the proof. 	 El 
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Remark. Any real quadratic C can be written in the form c + d \/, where c, d E 

n E N is squarefree. Where appropriate, we assume that C = 	and C' = 

noting that the general case can be obtained from this by translating and 

scaling if necessary. 

Lemma 6.4.3. We can write u in the form av'+b/ 	where a e N>0, b E 

e E N, k E N is squarefree or equal to 1, and a2  + b2  = e2. 

Proof. By the above remark, we can assume that C = -,,Fn for some squarefree 

n e N. Note that u) = (u + u-') is quadratic. By Lemma 6.3.5, when C is 

mapped to itself, u is mapped to u+l, and hence R(u) i— (u), and when C is 

mapped to C' z~ C, u is mapped to —u±' and R(u) -* —IR(u). So either R(u) = 0 

(if u = i), or R(u) = h/ for some h E Q. By Theorem 1.3.10, each of the 

following extensions has degree two. 

Q 

Note that Q(u) = Q(/,i(u)). Thus i'(u) has degree two. Hence u must 

be of the form 
a+b 

e 
where a e N 0, b E Z', e E N, and k E N is squarefree or equal to 1. Finally, 

J ul = 1, so a 2 n + b 2 k = e2. 

The following result is taken from Niven and Zuckerman [17], Theorem 5.16, 

with c = —1: 

Proposition 6.4.4. Let k and n be given non zero square-free positive integers 

such that 
a 2 n + b 2 k — e2 = 0. 

A necessary and sufficient condition that such an equation has at least one non 

zero solution (a, b, e) is that n is a quadratic residue mod k, k is a quadratic 

residue mod n and nk is square-free. 

The following is the main theorem for algebraic numbers lying with their 

conjugates on S>< (C, \/) for quadratic C: 
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Theorem 6.4.5. Let C (z- Q(/) be quadratic for some square-free n E N, with 

conjugate C' z 4  C. 

1. When u = i and r is totally real define 

C+C/ C' - C 

	

a 2 
	

2 +rfci(C'—C), 

where 
Ii, 	ifC<C'; 

—1, ifC'<C. 

When u = a±b 	such that a E N>0, b E Z, e E N, k e N is square-free 

or equal to 1 and a2   + b2   = e2  and r is totally real define 

C+C' C' — C 
+ru(u+u 

	

2 	2
') 

Then a and all its conjugates lie on S. (C, \/). 

Conversely, suppose a is an algebraic number of degree at least 10 that lies with 

its conjugates on S>, (C, /i), where C Q. Then C E Q(/) has a conjugate 

C' 	C, n E N is square-free, and a can be written in one of the following forms: 

 
C+C' 

a 	
2 

where r is totally real and 

11, 	if C'> C; 
€ = 
	—1, if C> C', or 

C+C'C'—C(l) 
2 

where u = a E N>0, b E Z e E N, k E N is square-free or equal 

to 1 and a 2  n + b 2  k = e2, and r is totally real. 

Proof. (=) 1. Let u = i, let C E Q(/) be quadratic for some square-free n E N 

have a conjugate C' 7 4 C, and let r be totally real. Define 

C+C' .C' —C 
+r€i(C'—C), 

where 
Ji, 	ifC'>C; 

if C>C'. 

2 

64 



Define w = 	+ i. Then (w - C) has phase f. Hence w lies on L, and so 2 	2
does 

a = w + rci(C' - C). 

Apply an automorphism a to a. Then C and i are mapped in one of the 

following ways: 

C-*C,iF--*i, 

C-*C,iF-*-i, 

C*C',i-i,and 

CC',i-*-i. 

Consider cases 1 and 4. Here w F- w, i(C' - C) -+ i(C' - C) and r 	r' E R. 

So 	

a(a) 	
= C ± C' + C' - 

C + r'ei(C' - C), 

lies on L. 

Consider cases 2 and 3. Here w F-p W i(C' - C) 	-i(C' - C) and r 	r' E R. 

So 

a(a) = = 	r'-ci(C' - C), 

lies on L. 

Hence a and all its conjugates lie on S><  (C, \/). 

2. Let C e Q(./) for some square-free n E N have a conjugate C' C. Let 

U = 	be such that a E N>0 , b E 	e C N, k E N is square-free or equal 

to 1, and a2ri + b2k = e2. Let r be totally real. 

Define 
C+C' C - C' 

a 	u 	+ru(u+u'). 
2 	2  
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lies on L, and so does As -l+u) has phases, 	uc  2 	2  

C+C/  C — C' 
+r 

2 - 2 

Now apply an automorphism a in the galois closure of C, u and r to c. An 

automorphism will map \/ and \/' 7 in one of the following ways: 

and 	I ,' 

and 	- 

- and 

- 	and 	i' -. 

Consider case 1: 

Here u and C are fixed by a, and r/u(u —+U-1) F—p €r/u(u + u'), where 

r' E R and f = ±1, so a(a) lies on L. 

Consider case 2: 

Here u '' u', C 	C, and ru(u + u') I" er1u_1(u+ u'), where r' E R 

and f = ±1, so a(o) lies on L. 

Consider case 3: 
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Here u 	—u 1, C F—k C', and r/+ u-') —* Er' /u_1  (u + u-1), where 

r' E 1R and E = +1, so u() lies on L. 

Consider case 4: 

Here u '' —u, C i' C', and ru(u + u 1) I.' €r'u(u + u'), where r' e R 

and € = +1, so a(a) lies on L. 

Hence c and all its conjugates lie on S. (C, \/). 

() Now suppose oz and all its conjugates lie on S,, (C, 	for some C V Q. By 

Lemma 6.3.5, C is a real quadratic, say C E Q(/), for some squarefree n E N, 

with conjugate C' 	C. By Lemma 6.4.3, u = av+bv'7 where a e N>0,b e 

e E N, k E N is squarefree or equal to 1, and a 2  n + b 2  k = e 2. Hence either 

= i, or u has conjugates +u+l .  

Define 

as the set of conjugates of a that lie on L, and 

as the set of conjugates of c that lie on L. Define 

W =', 	 and therefore, 
a' EO 

_1 

By Lemmas 6.3.5 and 6.4.2, w = 	+ 	is quadratic. 

1. Let u = i. Then for some algebraic r E R, 

(6.22) 

where 
Ji, 	ifC'>C; 

- 1, if C>C'. 

We show that r is totally real. Apply an automorphism r to Equation (6.22). 

Consider the following: 

CC,i-*i and wH--w, 

C-C,i-+—i and wF--, 

67 



CF-C',ii and w-+EY, and 

C-C',iF--—i and wF--*w. 

Consider cases 1 and 4: 

Since w i-  w, (o) remains on L, and 

T
1 = 6  = S 

- C) 

(for some S = +1) is real. 

Consider cases 2 and 3: 

Since w '- iiY, T(a) is mapped onto L, and 

, 
y.j 

—€i(C' - C) 

(for some S = ±1) is real. 

Hence r is totally real. 

2. Let u = 	be such that a E N>0, 5 E Z ,  e E N, k E N is squarefree 

or equal to 1, and a 2  n + b 2  k = e2. Then for some algebraic r E R, 

+ ru(u + u'). 	 (6.23) 

We show that r is totally real. Apply an automorphism 'r to Equation (6.23). 

Consider the following: 

C -* C,i -* u and w h-* 

C C,u u' and w 

C 	C', u 	—u' and w F-k w, and 

C -* C',u —u and w -* w. 

Consider cases 1 and 4: 

Since w i-  w, (a) remains on L, and 

r1 =6  
+ u') 

(for some S = +1) is real. 

Consider cases 2 and 3: 



Since w W r(a) is mapped onto L, and 

T I = 6 
/u'(u + u') 

(for some 6 = +1) is real. 

Hence r is totally real. The result follows. 

Example 6.4.6. Let u = 2v+/ and C = 2 + 	The conjugates of u are 

V1 = U, It'-) = 11,,3 = -?i and u4 = -u'. Define 

a = a, = —i + (I + v/-3-) 
F~, U - 

Then a is an algebraic number of degree 8 with conjugates 

(6.24) 

all of which lie on S (2 + 	, ~ ~ 	) - 
Here w = —i, and r = 1 + \/. The minimal polynomial Pa of a is 

X8 
- 

1 0 8X6 
- 	 + 

5014X4
+ 

768x3
+ 

484x2 - 2176 
x+ 

18457 

25 	25 	25 	5 	25 

Example 6.4.7. Let u = \/g+v'Tf and C = + 	The conjugates of u are 4 

= U,U2 
= 

U 
1, 

U3 = —u and u4 = —u'. Define 

v 55 

4 
+ (1 + v/3) 

r~5 U. 
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Then a is an algebraic number of degree 8 with conjugates 

all of which lie on s ( + ,
V~L5+ 

4 

Here r = 1 + 	and the minimal polynomial of a is 

X8 JX6_ X5+326lSX4 _ 20625X3+2l°°325X2 _ 1348325x-249768025 
128 	32 	1024 	1024 	65536 

6.5 Constructing c for rational C 

Let C E Q. It can be assumed that C = 0 by translating if necessary. We 

shall state results with general C E Q, but, in the proofs, assume C = 0 (where 

convenient). Define Q, Ti and w as in Section 6.2. 

The Equations (6.1) simplify to: 

(6.26) 
a1 a2 	a 

and applying complex conjugation gives 

ay 	 aa 	0 = u 1 = e  
a1 a2 	ad 

Lemma 6.5.1. Either 

u has four non real conjugates ±u+l, and all other conjugates are real, or 

All conjugates u are real except u and u 1 
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Proof. Consider the two cases: 

—a is a conjugate of a, and 

—a is not a conjugate of a. 

Relabel the conjugates so that 

R(al) <R(a2) << lJ(a). 

Thus a1  and ad will have equal largest modulus of the a. Apply an automorphism 

that maps u F—* u'. Suppose 'I > 1. There exist conjugates a', a" such that 

ad ad 
U'  = = 

at a" 

If u' has phase 26, then a" has phase —36. Thus —30 = 6. The only solution 

that satisfies 0 < 0 < is 0 = . This gives u = i, contradicting u' > I. 2 	4 

Similarly, if u' has phase —20, then a' has phase 36. So again —30 = 6, and 

the only solution that satisfies 0 < 0 < E is 0 = E. This gives u = i, contradicting 

> 1. 

Hence if lu'l > 1, then u' has phase zero, and so u' E R. Since u' is a 

conjugate of u, it follows immediately that if lu'l < 1, then u' E R. 

Now suppose lu'l = 1. Then u' has phase +20. If u' has phase 26, then either 

= 1 (in which case u' = u), or u' = 1 (in which case u' = —u). 
UT 	 ad  

If u' has phase —20, then either u' 
= 

CT  (in which case u' = u'), or u' = 
al 	 Qd 

(in which case u' = 

Suppose that —a is not a conjugate of a. Relabel the ai  E I2 such that 

	

ai J < la2l < 	< a. 

Then for all ai,aj  E Q, 	 If lu'l = 1, then clearly u' = u or u 1. If 

U'l > 1, then 
ad ad  

U = 	= 

and as above, this implies that u' E R. Since u 1  is a conjugate of u, it follows 

immediately that, if lu'l < 1, u' E R. The result follows. 	 El 

Corollary 6.5.2. Suppose the number of conjugates of a on each line is odd. 

Then u is quadratic. 
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Proof. Let ci be odd. Apply an automorphism 0 to Equation (6.26). Thus 

0(u) = u' = 
	... = 
a(I) 	OZOR 

Suppose u' E R. For all i, if a ()  lies on L, then so does a, and similarly, if 

a ()  lies on L, then so does a. But there is an odd number of conjugates on 

L, so there must be at least one 	that contradicts this condition. Hence u 

has no real conjugates, and any conjugate of u must have phase +29. If —u is a 

conjugate of u, then —a must be a conjugate of a. But if —a is a conjugate of 

a, then the number of conjugates on L must be even. Hence the only conjugate 

ofuisu'. 	 El 

Lemma 6.5.3. Let u1  = e29  be an algebraic number such that either: 

u1  has conjugates u-1 ' and u', . . . ,u', where u ER for 2 <j <g. 

ui has conjugates +uj' and +u',. . . ,±u 1, where u E R for 2 <j <g. 

Then for any j E {1,. . . , g}, any e, . . . , 	= ±1, 

and any conjugate 

of uiu2 .. Ug  then 

is also a conjugate. 

Ii, 	in case 1; 

+1, in case 2, 

E CU1l  u Ug9  

El en1  u U99  

Proof. First, note that, in case 2, if an automorphism a maps an odd number of 

the ui  to a negative conjugate —us , then the same is true of a. 

Let eu'u 	u be any conjugate of u1u2 • u9 , with e 1 in case 1, and 

= +1 in case 2. Let be any automorphism that maps uj  i-  u1. Then 

749) = Su 2u 2 
	

(6.27) 

for some 62,. . . , = ±1, 5 = 1 in case 1, and S = +1 in case 2. Apply complex 
69  conjugation to 8umu2 

	

8uj 3u 2  . . .149. 	 (6.28) 

Now apply 	' to (6.28): 
Ej 	€ 

U99 . 

The result follows. 
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Lemma 6.5.4. Let u1  = e20  be an algebraic number that lies on the unit circle, 

with conjugates +uj', where u1  ER for j E 12,. . . , g}. Define 

= (ui  + u')(u2  + u 1). (u9  + u;1 ). 

Then 

—'y is a conjugate of y 	 Ug  is a conjugate of u1u2 • •u9 . 

Proof. (=') Suppose  —'y  is a conjugate of 'y. Then any automorphism 0 that 

maps 'y —* — must map an odd number of the pairs 

{(ui,u'),...,(u9) u')} 

to a pair of conjugates (—ui, —u'). Thus 

where €1,... ,e = ±1. By considering each i E {1, . . . ,g} in turn, if e = —1, we 

can apply Lemma 6.5.3 to find a conjugate equal to 

—u1u2 • 	u eg  . 

This process will yield a conjugate —u1u2  ... ug  of u1u2 • u9. 

(=) Suppose —u1u2 • u9  is a conjugate of u1u2 • Ug. Then any automorphism 

that maps 

u1u2  u9   —u1u2  

must map an odd number of u 	—ut' for some j E {1,. . . , g}. 
Thus 

((ui+u')(u2 +u 1) ... (u9 +u;')) 	—(u1 +u')(u2 +u') ... (u9 +u;') 

EM 

Remark. The result still holds if u = i, although here 'y = 0. This case will be 

treated separately in Theorem 6.5.5. 

The following is the main result for algebraic numbers whose conjugate set 

lies on S,, (C, \/), where C E Q: 
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Theorem 6.5.5. Let C E Q, and let a be defined in one of the following ways: 

u=i, 

u = u1  = e29  has conjugates 	and 	E JR for 2 < j < g, or 

u = u = e20  has conjugates ±u where uj  E JR for 2 <j <g. 

In case 1, define 

where r is totally real. 

In case 2, define 

a=C+r8u1u2•••u9 , 

where r is totally real, and 

J i, 	ifu2 ... ug>O; 
- 	—1, ifU2 ... Ug<O. 

In case 3, define 

a=C+r6uiu2 ... ug(ui+u)(u2+u')  ... (ug+u1), 

where r is totally real, and 

if(ui+u')>O; 

- —1, if(ui+uj')<O. 

Then a lies with all its conjugates on S><  (C, \/). 

Conversely, suppose that a is an algebraic number of degree at least 10 that 

lies with its conjugates on S (C, \/ii) for some C E Q. Then either: 

a = C + 	u = i and r is totally real, or 

 

a=C+r/uiu2 .•.u9 , 

where u = e2'9  has conjugates uj', and u 1  E JR for 2 < j < g, r is totally 

real and 

f i, 	ifu2 ... ug>O; 
- 	—1, if u2 • •u9  <0, or 
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8. 

	

a = C + rV6ulu2 ... u9(ui  + u 1 )(u2 + ui') 	(ug  + u') 

where u = u1  = e 2io  has conjugates +i4', where u j  E JR for 2 <j <g, r is 

totally real and 
6 fi, 	if(u1+u 1)>0; 

- —1, if(ui+u')<0. 

Remark. We include the case where g = 1, i.e. u has no real conjugates. 

Proof. () 1. Let C = 0, u = i and r be totally real. Define 

a=v. 

If r > 0, then a = \/e' lies on S (C, 	and if r < 0, then again 

Oz = ieT = 

lies on S (C, \/). Now apply an automorphism to a: 

a' = 

for some e = ±1. Here a' lies on S>  (C, \/), so a and its conjugates all lie on 

SX (C, ). 

Let C = 0, let u1  = e20  have conjugates uj' and u',. . . 	E R, and let 

r be totally real. Define 

a=r6u1u2•••ug , 

where 6 = 1 if u2 . . . Ug  > 0 and 6 = —1 if u2 . . . u <0. Then a lies on S (C, \/u). 

Apply an automorphism a to a: 

1 	2 U(a) = +r'6u1  u2  

where E1, ...,€g = ±1 and r' C R. If E, = 1, then asot42...u9  >0, a' lies on 

L. If ei = —1, then by the same reasoning, a'  lies on L. Hence a and all its 

conjugates lie on S><  (C, \/). 

Let C = 0, let u1  =e 2i 9   have conjugates ±u' and ±u 1 ,. . . , ±u 1  E R, 

and let r be totally real. Define 

a = r/6u1u2 • ug(ui +U ' )(U2+U ')••(Ug +u'), 

where 8 	1 if (u1 +u') >0 and 6 = —1 if(u1  +uj') <0. Then a lies on 

S><  (C, \/). We apply an automorphism a to a: 
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If a maps an even number of u 	—u, then a maps 

for some €, . . . ,€ = ±1, and 

(u1  +u )(u2 +u').. . (u9 +u ' ) 	(u'  +U)(U2+U)(Ug+U) 

Thus 

a(a) = a' = +r\/ul' u2 ...u(ui +Ull)(U2+?i2l)(Ug+Ul) 9 

where r' E R. Hence a' lies on S,, (C, \/). 

Now suppose a maps an odd number of Ui 	 Then a maps 

Cl C2 
i.' —u1  u 

for some cl, . . 	= ±1, and 

(u1 + u)(u + u) •(u + u ' ) I" —(u1  + U1 1)(U2 + u 1 ) 	(u + u) 

Thus 

a(a) = a' = 	 u(u1 + U— ') (U2 + u) 	(u9  + u), 

where r E R. Hence a' lies on S(C, \/ii), 

Therefore, the conjugate set of a all lie on S (C, \/i). 

() Let a be an algebraic number of degree at least ten whose conjugate 

set lies on a pair of lines L = C + t \/ and L = C + '/ 	(t E R), where 

C E Q and u = e20  for some 9 G (0, fl. By Lemma 6.5.1, u either has con- 

jugates . . ,u, where 'u E R for 2 < J 	g, or u has conjugates 

+u, ±u,. . . , +u, where u E R for 2 <j <g. Suppose a lies on 

1. Firstly, suppose u = i. Define r E R by 

a2  

	

r 	 (6.29) = 
2 

Apply an automorphism to Equation (6.29): r is mapped to 

	

/ 	a'2 
r - 

€2 

where € = +1. If a' lies on L, then r'  > 0 if € = 1, and r'  < 0 if € = — 1 . Similarly, 

if a' lies on L, then r'  > 0 if € = —1, and r'  <0 if € = 1. Hence r is totally real. 
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2. Let u have conjugates u', and u',. . . ,u, where 	eR for j 	2. Let 

a lie on L, and so define 'F E R by 

a=r/6u1u2ug, 	 (6.30) 

where 6 = 1 ifu2 • • u9 > 0 and  = —1 if u2 . •u <0. Let r be an automorphism 

that maps uj 	for some 	{u,. . . , u}, c1  = +1. Then 

Eg 
T (a) = a' = rf\/6U1U2 	u, 	 (6.31) 

where E2, . . . , 	+1. Suppose 'F' V R. Then 'F' = s'u 	for some s'  E R. So 

	

'F'u'. 	 (6.32) 

Substituting Equation (6.32) into Equation (6.31), we have 

	

€2 	, CI 

	

a' = 3' \/6U1 'U2 	U9  

and hence 
a = sJ8uiu2. 	. u 

where s = 'r'(s'). Repeating this process for all u E {u2 , . . . 	we obtain an 

r E IR, 62,- . -,69 ,c = +1 such that 

a = r\/6u1u22 .. 

and for every j e {1, . . . , g}, there exists at least one automorphism that maps 

r t' r' E R and ui 	u 1 . 

Next, we show that for all j E {1,. . . , 

aj  = rJ6uiu 2  . . . 	... u g 	 (6.33) 

is a conjugate of a. Let a be an automorphism that maps uj 	u and r 

C R (we have just shown that such a a exists). Applying a to Equation (6.33) 

gives  

€r'  6U1  U82 ... 

for some c = +1. Applying complex conjugation gives 

= cr'\J6 61 82 	69 . 
 (6.34) l  'U2 U9   

Now apply a 1  to Equation (6.34): 

aj  = 
rVsuiu2 . . UJ2 	

49, 
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thus proving the claim. 

Now suppose there exists an automorphism 0 such that c/(r) = 	' R. Then 

there exists u1 e {u1, . . . ,u9 } such that ç5(u1) = u ' , say u1. By the result above, 

= r\/6Ul. (6.35) 

is a conjugate of 

a TV'6U1 u. 	 (6.36) 

Applying q to Equations (6.36) and (6.35) gives 

(a) = r/ 6u1u5  2 2 	u5 g 

and  
= 	U1U52 	69  J l 

Since 	R, i = u±ls for some s E R. But if = u1s then q(a) does not lie on 

S, (C, \/), and if 	uj ' s then (a*)  does not lie on S,, (C, 	Therefore r is 

totally real. 

3. The proof is exactly the same as in 2. 

Let u = u1  have conjugates +uj', and 	. . . , 	where 	E JR for 

j > 2. Let a lie on L, and so define E JR by 

a=r6ulu2 ... Lg(u1+ui)(ug +ug '), 	 (6.37) 

where 6 = 1 if (n'  + uj ' ) > 0 and 6 = —1 if (u1  + uj 1 ) < 0. Let T be an 

automorphism that maps u j  i— t41  for some u E {u2,. . . , u}, €i = +1. Then 

	

(a) = a' r \ /6U 1U2 	92 	u(ui + u') 	(u + ç'), 	(6.38) 

where €2,.. . , € = ±1. Suppose r'  V R. Then r'  = s'u' for some s'  E R. So 

SI = f luE l 
	

(6.39) 

Substituting Equation (6.39) into Equation (6.38), we have 

a' = S\/6u 1 u 2 ...u 9 (ui +u) ... (ttg+ç1), 

and hence 

a = 8 6u1u2 u j 1 ug(u1  + l)(ug +U 1), 



where s = 7`(s). Repeating this process for all u E {u2,. . -,U ,}, we obtain an 

r E R, E2, 	, C9 = +1 such that 

	

a = r 	 2uE9(u +u ')(ug +u'), 

and for every j E {1,. . . , g}, there exists at least one automorphism that maps 

r 	r' C R and u 

Next, we show that for all j E 11,. . . , 

aj  = TUIU2 	u(ui + u') ... (u9  + u) 	(6.40) 

is a conjugate of a. Let a be an automorphism that maps u 	u and r 

E R (we have just shown that such a a exists). Applying a to Equation (6.40) 

gives 

U(Oz) = a' = €r6u81uo2 	U69 	+ u') 	(u + 

where € = ±1. Applying complex conjugation gives 

	

a' = €r 	 .u(ui + u') 	(g +u'). 	(6.41) 

Now apply a' to Equation (6.41): 

ozj = TUlU2U3 	u(ui +u)  .. . ug +iç 1), 

thus proving the claim. 

Now suppose there exists an automorphism 0 such that q(T) = 	R. Then 

there exists u1 C {ui, . . . ,u} such that (u1) = u, say u 1 . By the result above, 

(6.42) 

is a conjugate of 

(6.43) 

Applying 0 to Equations (6.43) and (6.42) gives 

	

(a) = 	 i4(ui + u') 	(u9  + ui') 

and  

+ u) (u9  + 

Since 	R, = us for some s e R. But if = u1s then (a) does not lie on 

S,, (C, 	and if = uj's then (a*)  does not lie on S,, (C, 	Therefore T is 

totally real. 	 Li 
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Example 6.5.6. Let C = 0, u = i, r = 	+ 	and 

Then a has minimal polynomial X8  + 22X4  + 9, and lies with its conjugates on 

S,<  (0, i). The algebraic number a - 2 has minimal polynomial 

Pc  : X8  - 16X7  + 112X6  - 448X5  + 1142X4  - 1968X3  + 2320X2  - 1728X + 617, 

and lies with all its conjugates on S <  (2, i). 

We use a standard method usually used for producing Salem numbers to 

construct a u of modulus 1 whose conjugates are all real except for ±u±1. 

Begin with a totally real number /3, with conjugates i31  = 3, /32,.. . , /3, such 

that 31  E [-2,2] and /3[-2,2] for i=2,...,g. 

Let/3=+. Then 

_ 13T+  /3r+ 1 = 0. 

Solving this for T gives 
= /3± /32  4 

Set 
_______ -1  

Ti,= 
2 	 2 

_______ -1 _______ 
T2 	

2 	
,••,Yg 

= 	2 

Note that r1, Ti  1  are non-real and of modulus 1, with phases 0 and —9 respec- 

tively, whilst T2, T ' , 	Tg , Tg 1  E R. Taking square roots of the conjugates of 

gives the conjugate set of an algebraic number u, whose conjugates are 

where 	e20, and uER for 2<j < g. 

Example 6.5.7. Let /3 = 3 + 	- /i7. The conjugates of /3 are: 

/33 = 3— V+ 
\/11 7,  

	

= 3++ 	. 



Here /3 	[-2,2], /32 < —2 and 03, 04  > 2. Then 

2 

-1_ /31 - 	/3? -4 
- 2 

U2-  
2 

'U2 	
_ 
- 

i/32- /3-4 

2 
- /3+ 	—4 

U3-  
2 

-1 'U3 _ 
- 2 

—4 
2 

-1_ 
- 	2 

Let 
= 	Ulu2U3U4(Ul + U ' )(U2 + u)(u + u 1 )(u4  + u-1) 

Then the conjugates of a are of the form 

+\/U 1 u 2 U 3 U 4 (U2  31 + u)(u + u')(  + U)(U  + ui'), 

and the minimal polynomial of c is 

+10201 Z30  + 10661656Z28  + 195321372677Z26  + 302936164793957Z24  

150786814352570848Z22  + 57907565325437379146Z20  

1110675294395665477769Z'8  + 1634135935836023470039312Z'6  

1132999867813018358721569Z'4  + 6025884468698709174321797546Z'2  

160063241880186034880482279648Z'°  + 3280364574243894576090899919557Z8  

21575630982470170797112638699677Z6  + 120189023736125788947581113608856Z4  

117257864492369852051862561201601 Z2 

+ 117257864492369852051862561201601. 

[P! 



Chapter 7 

The Conjugate Dimension 

7.1 Introduction 

The following chapter is based on a paper, 
(arXiv http://arxiv.org/abs/math.NT/0308069),  

written in collaboration with Arturas Dubickas, Noam Elkies, Bjorn Poonen and 

Chris Smyth [1]. We study the dimension of a vector space over a field K (usually 

Q) spanned by the conjugates of an algebraic number a. 

Definition 7.1.1. Let a be an algebraic number. The conjugate dimension 

of a over a field K, denoted dimK (a), is defined to be the dimension n of the 

K-vector space spanned by the conjugate set of a. 

Example 7.1.2. Let a have minimal polynomial Pa  : X6  - 2 over Q. What is 

the conjugate dimension dimQ(a) of a? 

The conjugate set of a is 

	

1 	 1 	 2 1 

	

a=26 	 a2 =w26 	 a3 =w26  

	

1 	 1 	 1 

a4 	—2 	a5  —w24 	a6  = — w 2 

where w2  + w + 1 = 0. The conjugates can be expressed as rational linear combi-

nations of a and a2  as follows: 

	

a3  = —a - a2 	a4  = — a 	a5  = —a2 	a6  = a 1  + a2 . 

Since a and a2  are linearly independent over Q, {a, a2 } is a basis for a vector 

space V over Q spanned by the conjugate set of a. Hence dimQ(a) = 2. 

Notation. Unless otherwise stated, we set n = dimK (a) and d = degK (a). 

We fix n and K, and consider what values deg(a) can take. Note that 

degK (a) is also a measure of dimension, namely the dimension of the vector 

82 



space over K spanned by the powers of a. In particular we ask what the maximal 

and minimal values of deg(a) are. 

In the main theorem, we take K = Q, for all n give upper and lower bounds 

for degQ(a), and prove that these bounds are attained. We extend the results for 

other base fields, in particular for finite fields and cyclotomic extensions of Q. 

7.2 Previous Work And The Main Theorem 

Let K = Q, and let L be a splitting field for a over K. There are two previous 

results to note. If Tr(a) 0 and Gal(L/Q) = Sd, then n = d, by C.J.Smyth [22], 

Lemma 1: 

Lemma 7.2.1. Let a be an algebraic number with conjugates a = al, .. . , 

and galois group Gal(L/Q) = Sd. Then 

av 0 

for any rationals v1,. . . , Vd not all equal. 

It has also been shown by A.Dubickas [3], Corollary 1 that n can be as small 

as [1092  d]: 

Lemma 7.2.2. Let K be a number field, and for primes pi ,... ,p72 , let L = 

,/), where 

Then Gal(L/K) 	(Z/2Z)' and there exists a E L with deg(a) = 272 and 

dimK (a) = [1092d]. 

Main Theorem. Let a be an algebraic number such that dimQ (a) = n. Then 

We have 

dimQ(a) < deg(a) <dm (n), 

where d jax (n) is the order of a maximal subgroup of GL72 (Q) (unique up to 

isomorphism) given by Table 7.1 below. 

Furthermore, for all integers n> 1, there exist algebraic numbers a, 0 with 

dimQ(a) = n = dim (j3) such that deg (a) = dmax (n) and degQ (/3) = n. 

The groups W(.) are matrix representations of the Weyl groups (see Sec- 

tion 1.5). 



n 
2 
4 
6 
7 
8 
9 

10 
all other n 

Maximal order subgroup C 	I dm (fl) = IGI 
W(G2) 
	

12 
W(F4 ) 
	

1152 
(W(E6 ), —I) 
	

103680 
2903040 

696729600 
W(E8) x W(A1 ) 

	
1393459200 

W(E8 ) >< W(C2) 
	

8360755200 
W(Bn) = W(C) = (7-/2Z)n X Sn 	2nn! 

dmax(n '2 n n!) 
3/2 

3 
9/4 
9/2 

135/2 
15/2 
9/4 

1 

Table 7.1: Maximal order subgroups of GL(Q) 

7.3 	Results used in Proof of the Main Theorem 

7.3.1 Finite Subgroups Of GL(Q) 

Let K be a field. Let a be algebraic over K, with splitting field L. Denote by 

{ ai = a, a2,. . . , ad} the conjugate set of a over K. We give the relationship 

between Gal(L/K) and a finite subgroup of GLTh (K). 

Lemma 7.3.1. Let a be a number, algebraic over a field K, such that dimK (a) 

n and deg(a) = d, and let V be the vector space spanned by the conjugates of 

a over K. Let C = Gal(L/K). There is a faithful n-dimensional representation 

p:CcGL(K) of G. 

Proof. C acts on L by linear substitutions. This action restricts to an action on 

V, since { al, . . . , ad} is C-stable. Let g E C act on V. If this action is trivial, 

then all of the a,, are fixed, so g is the identity element. Thus V is a faithful 

K-representation of C. Clearly dimK  V = n. 	 El 

Example 7.3.2. The galois group Gal(Q(a, a2)/Q) with a, a2  defined as in Ex-

ample 7.1.2 has a representation 

p: Gal(Q(a, a2)/(Q) 	GL2 (Q), 

where Gal((Q(a, a2)/Q) injects into the subgroup of GL2((Q) generated by the 

matrices 

(0 1 

Li i ) and( 0  1 ) 

of order 12. 



The maximal finite subgroups of GL((Q) in Table 7.1 are taken from Feit [8], 

who states the results from some unpublished work by Weisfeiler: 

Theorem 7.3.3. For each n E N, any maximal finite subgroup of GL(Q) is 

isomorphic to the one given in Table 7.1. 

7.3.2 More On Representations 

Lemma 7.3.4. Let K be an infinite field, and let V be a variety given by non 

trivial polynomial equations (with coefficients in K) 

	

pj(Xi,.. . ,x) = 0 	(j = 1,. ..,N). 

There exists a choice (ai , . . . , a,,) E K'2 that lies outside V. 

Proof. Use induction on n. Let P(n) denote the statement, stronger than that re-

quired for the lemma, that there exist (ai , . . . , a,) E K'2 such that pj(ai, . . . , a,,) 

0 for all j = 1,. . . , N. Consider P(1): 

Let pj(Xi) = bx + .. . + b be such that b 	0. Then take 

	

'2 
b 	

Cj 

say, noting that pj(ai) 0 for I a1 I > c3 . Choosing an element of a E K such that 

jal > max1 cj will satisfy the hypothesis. 

Now assume P(n) is true for some n e N. Consider P(n + 1): For all j, write 

Pi (X1, . . . 	 as 

qjj(xi,. . . , 

and by the inductive hypothesis, choose (ai,. . . , a,,) E K'2 such that q jj (ai ,.. . , a,,) ~ 
0 for all i,j. Again choose a 1 such that a+1 1 > max3 c3 . The result follows by 

induction. 	 LII 

Lemma 7.3.5. Let K be an infinite field, and let V1,. . , Vr be r varieties each 

given by non trivial polynomial equations (with coefficients in K) 

p(l,j)(xi, . . . ,x) = 0 	(j = 1,... ,Nr,l = 1,... ,r) 

There exists a choice (ai ,. . . , a,,) E K'2 that lies outside all of the V. 

Proof. We define each variety by the same number of equations, N say, by re-

peating some equations if necessary. The union variety is contained in the variety 

given by 

W={flp(l, j) =0 (j=1,...,N)}. 

By Lemma 7.3.4, we can choose a point outside W, and so certainly outside the 

union variety. 



Lemma 7.3.6. Let K be a field where Char(K) = 0, and let C be a finite group. 

Let lvi be a KG-submodule of the regular representation KG. Suppose C acts 

faithfully on M. Then M (KG)a for some a E M that has trivial stabilizer. 

Proof. By Maschke's Theorem 1.6.10 and Lemma 1.6.11, 

KG =Mi 

and so lvi = EDj  U, where for some li  < mi  for all i E 11,. . . , r}. We aim to 

show that the KG-module M can be generated by one element. 

An element a e M fails to generate M as a KG-module if and only if {ga 

g e G} fails to span M. Let M be n-dimensional, {a,. . . , a7 } be a basis for M 

over K, and let 

a = a1a1  + + 

where ai  E K for i = 1,... ,n. Then for all  e C, g acts on a as follows: 

ga = ag  = a9(l)al +, + a )a. 	 (7.1) 

Suppose that the multiset {ga : g E G} fails to span M. For each of the (1) 

choices of n of the Equations (7.1), the n >< n matrix whose rows are the row 

vectors of the coordinates of distinct a9  is singular. 

These matrices are all dependent on the choice of (ai , . . . , an ), so their deter-

minants can be expressed as ()= r equations 

(7.2) 

such that (ai ,. . . , a7 ) e Ktm satisfies all of the Equations (7.2). This gives us a 

variety W(pi , . . . 

Also, for every g e in C, the set 

M9  := 13 E M: g/3 = 01 

is a proper subspace of M, since M is faithful. 

Let 0 = b1a1  + .. + 	Then 

= b1g(ai ) + .. . + bg(a) 	 (7.3) 

b9(l)al + . . . + b9 02, 	 (7.4) 



and so M9  is a variety. 

By Lemma 7.3.5, we can choose c outside of W(pi,... ,Pr),  and outside M 
for each g 	e. This gives an c E M that has trivial stabilizer and generates 

M. 

The following is a partial converse of Lemma 7.3.1, i.e. starting with a finite 

group C, and a faithful n-dimensional representation of C over a field K, given 

certain conditions there exists an c, algebraic over K, satisfying dimK (c) = n 
and deg(c) = 

Lemma 7.3.7. Let K be a field with Char(K) = 0, and let C be a finite group. 

Suppose that L is a galois extension of K, with Gal(L/K) = C, and that there 

exists a faithful n-dimensional subrepresentation M of the regular representation 

of C overK. Then there exists  EL such that dimK (a) = n and deg(cI) = C. 

Proof. Let o,. . . , C71GI be the elements of Gal(L/K). By the Normal Basis The-

orem 1.4.13, there exists I E L such that 

{ai (l),. . . 0-1 GI 

is a basis for L over K. C acts on this set by permuting its elements, so the 

extension L/K, viewed as a representation of C, is isomorphic to the regular 

representation. Thus M is a subrepresentation of L. From Lemma 7.3.6, we have 

an element a E M such that dimK() n and deg() 	C. 	 El 

Remark. If G1 > dmax(n), then by the main theorem, there is no suitable faithful 

n-dimensional subrepresentation of the regular representation of C. 

Lemma 7.3.8. Let Ok  be a faithful n-dimensional representation of C over 

where C is one of the groups given in Table 7.1. Then Ok  is a subrepresentation 
of the regular representation of dimension JGJ. 

Proof. By Theorem 1.6.10 and Lemma 1.6.11, we can write the regular represen-

tation as 

KC := 	umiio 

where the U are irreducible and not isomorphic to each other, and mi  = dim(U) 
for all i E {1,. . . , r}. Suppose that Ok  is a representation of C but not a sub-

representation of the regular representation. Then by Lemma 1.6.11, it must 

contain more copies of some irreducible representation than are in the regular 

representation. Without loss of generality, let 



where ki  > 0 for all i, and in particular, k1  > m1  > 1. So an element of g E C is 

mapped by Ok  to 

(ui,. .. ,ui) u2 , . . , u2 , ... 

where u j  E GL(U), and there are ki  copies of each u. Removing a single copy of 

U1  produces a subrepresentation k'  on a lower dimensional subspace. We show 

that such a subrepresentation /k'  is faithful. 

Let g E Ker(qk/). Then 

k' (g) = (Irni , . . . , Imp 	 , 'ma , 

with k1  - 1 > 1 copies of Irnl  and ki  copies of Im  for i > 2. Thus cbk' maps 

gj '-f  'm., for each i, 50 

k (g) = (imi, . 	, 'rn1 , 'm2 , 	, 'm21 

with ki  copies of I e GL(U) for each i. Since cbk is faithful, g = l. Thus 

g E Ker(k') =' g = 1G, 

50 q' is a faithful representation on a lower dimensional subspace. Thus C 
has a faithful representation of degree less than n. This contradicts the fact that 

dma  (ii), the order of the maximal order subgroup of GL (Q), is a strictly increas-

ing function. Therefore /k  is a subrepresentation of the regular representation 

KC. 

7.3.3 Fields Of Invariants 

The following result was discovered by Chevalley [2], and can also be found in 

Humphreys [11]: 

Theorem 7.3.9 (Chevalley). Let C be a finite reflection group, and let R be the 

subalgebra of R[xi ,. . . , x] consisting of C-invariant polynomials. Then R is gen-

erated as an R-algebra by n homogeneous, algebraically independent polynomials 

of distinct degree, i.e. 

R[xi,...,xnJ — - '°R[f1,...,f]. 

Note that all groups given in Table 7.1 are finite reflection groups, apart from 

(W(E6 ), —I), which has a finite reflection group as a subgroup of index 2. The 

following proposition, from Humphreys [11], combined with Lemma 7.3.15, shows 

that —I V W(E6 ): 



Proposition 7.3.10. The scalar transformation —I G GL(Q) lies in C if and 
only if all the degrees of the polynomial generators of C have even degrees. 

Definition 7.3.11. Let L/K be an extension, and let c,. . , an be a set of 

algebraically independent elements over K that generate L. Then the c, form a 

transcendence basis and n is the transcendence degree of L/K. 

The following definition comes from Carling [10]: 

Definition 7.3.12. Suppose L/K is a finitely generated extension with transcen-

dence degree n. If we can find a transcendence basis f, . . , fn  for L over K such 
that L = K(f1 ,. . . , f), then we say that L is purely transcendental over K. 

Lemma 7.3.13. The C-invariant subfield of Q(xi ,. .. , x7 ) is (Qx1 ,. . . , 

Proof Let  = 	 x)°. We want to show that P, Q E Q[xi,. . 
the C-invariant subring of Q[xi ,. . . , xc]. Let g E C have order N. Now 

f=gf= gP —= 
P 
— 

gQ Q 

So gP = RP and gQ = RQ for some R E Q[x', . . . ,x]. Now g acts on P by 
linear substitutions, so 

deg(gP) < deg(P), 

and REQ. Now 

gNP = RNP = P 

Therefore RN = 1, hence R= +1. If R= 1, then F, Q E Q[xi ,. . . , 	and if 
R = —1, then 	, and PQ, Q2  E Q[xi , . . . , x](3  as required. 	 El 

Proposition 7.3.14. Let C be one of the groups in Table 7. 1, considered as a 
finite subgroup of GL(Q). Then the invariant subfield Q(xi ,.. . , x)°  is purely 
transcendental over Q. 

Proof. By Theorem 7.3.9, if C is a finite reflection group, then 

where the fi  are homogeneous polynomials of distinct degrees. By Lemma 7.3.13, 

For the case C = (W(E6 ), —I), 

= Q(12, 15, 16, 18, 19 , 112), 



where 'k  is a homogeneous polynomial of degree k in x1, . . . , x6. 

The element -I E C acts on Q(xi , . . , X6)n'(E6) by mapping 

The ring Q[xi ,. . . , x61C of polynomial invariants of C, namely 

Q[12, 16, 18, 112, 15 , 1519, I9 ] 

is not generated by 6 algebraically independent polynomials. However, the in-

variant subfield Q(xi , . . . , x )c is, since in this subfield, the identity 

(1T51 T9) \2 
= 1 

T512T92  

can be written as 
j

9 -  
2 - ( I5I9 ) 2/I ,  

giving 

Q(xi,. . . , x6)G 	Q(12 , 16, 18, 112, 15 , 1519 ). 

The generators of the rings of invariants of the groups given in Table 7.1 are 

known. See for example Mehta [16]. 

Lemma 7.3.15. Let C be one of the groups described in Table 7. 1, and let C 

act on x1,.. . , x, by linear transformations. The generators of the C-invariant 

subfield of Q(x 1 , . . . , x,) are homogeneous polynomials in x1 ,. . . , x with degrees 

given given in Table 7.2 below: 

n 
2 
4 
6 
7 
8 
9 

10 
all other n 

Max. order subgp C 
W(C2 ) 
W(F4 ) 
(W (E6),  -I) 

 

 

W(E8 ) >< W(A) 
W(E8) x W(C2) 

W(B) = W(C) 

Degs of generators of C-invariant subfield 
2,6 

2,6,8,12 
2, 6, 8, 10, 12, 14 

2, 6, 8, 10, 12, 14, 18 
2, 8, 12, 14, 18, 20, 24, 30 

2, 8, 12, 14, 18, 20, 24, 30, 2 
2, 8, 12, 14, 18, 20, 24, 30, 2, 6 

2,4,.. .,2n 

Table 7.2: Invariant subfields of maximal subgroups of GL(Q) 
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7.3.4 Hubert Irreducibility 

The following section is taken from the relevant parts of Völklein [26]: 

Proposition 7.3.16. The following are equivalent conditions on a field K: 

1. For every irreducible polynomial f(x, y) in two variables over K, of degree 

at least one in y, there are infinitely many b E K such that the polynomial 

f(b, y) is irreducible (in y). 

. Let L/K be a finite extension, and let hi (x,y), . . . ,h,,(x,y) E L[x][y] be 

polynomials that are irreducible in y over L(x). There exist infinitely many 

b E K such that the polynomials h, (b, y),. . . , hm(b, y) are irreducible in y. 

For any pi (x,y),. . . , pt (x,y) E K[x][y] that are irreducible and of degree 1 

when viewed as polynomials in y with coefficients in K(x), there exist in-

finitely many b E K such that none of the polynomials pi  (b, y),. . . , pt (b, y) E 

K[y] have a root in K. 

Definition 7.3.17. A field K is hilbertian if it satisfies (one of) the conditions 

given in Proposition 7.3.16. 

Proposition 7.3.18. The field  and any finite extension of Q are hilbertian. 

Lemma 7.3.19 on Hilbert Irreducibility states that given a purely transcen-

dental extension Q(x i , . . . x)/Q(x1 ,. . . , x )G with galois group isomorphic to 

C, there exists b1,. . , b, E Q such that on setting the generators of the invariant 

subfield f(x 1 , . . . , xi,) equal to bi  for 1 < i < n, we obtain a galois extension L/Q, 

where Gal(L/Q) C. 

Lemma 7.3.19 (Hubert's Irreducibility Theorem). Let x1 , . . . , xn  be inde-

terminates, K = Q(xi ,. . . , x,,), and let L be a galois extension of K with galois 

group C = Gal(L/K). Suppose that L = K(s), where 0 is a root of the poly-

nomial (irreducible in y) p(x1 , . . . , x,,y) E K[y] of degree d. Then there exist 

,x C  such that: 

the specialised polynomial 

p*(y) :=p(x,.. .,x,y) E Q[y] 

is irreducible over Q. 

The map 

Gal(K(0)/K) - Gal(Q(0*)/(Q) 

a E-4 

defined by xi  F—p x for i E 1,. . . , n, is an isomorphism. 
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Proof. (of (2); (1) follows immediately from Lemma 1.10, [26]). 

The proof is adapted from Lemmas 1.5 and 1.7 from [26]. Let A be a finite 

subset of K(9) containing 9 and invariant under C. Note that every a E A can 

be written in the form 

a=b9 

with bi  E K. 

Let 

w:K — Q 

be the evaluation homomorphism defined by substituting x, . . . , 	E Q for 

x1 ,. . . , x7  respectively, with xi,.. . , x chosen such that 	. . , x) is well de- 

fined for i= 1,.. . ,rt and 

p*(y) =p(x,. . . ,x,y) 

is irreducible over Q (such a choice is possible by Lemma 1.10, [26]). 

Let h E K[y] have 9 as a root. We show that p is a factor of h: 

By polynomial division, 

h = pq + r 
	

(7.5) 

for some q,r E K[y], with degr < deg p. Now h(0) = p(0)q(0) + r(0) = 0, so 

r(8) = 0 and, since p is the minimal polynomial of 9 over K, r 	0. Hence h 

has p as a factor, and so belongs to the ideal of K[y] generated by p, namely the 

kernel of the natural map 

p: K[y] - K[9], h(y) F- h(0). 

Factoring out the kernel of p, we have an isomorphism 

: K[y]/(p) - K[O]. 

Let 9*  be a root of p*(y).  Extend w to a map K[y] - Q[y] that fixes y. This 

maps p p', hence induces a homomorphism 

Let 	be the map obtained by composing' with . So 

a 	: K[9] 	Q[y]/(p*) 

Hence Q[y]/(p*)  is a finite extension of Q. 
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We can assume that our extension Q[y]/(p*)  is generated by 0*,  so  Q(0*) 
Q[y]/(p*) The conjugate set of 0 over K all lie in A. Call them 9 	0, . ,0d 

Let their f-images be 0 = 0",. . . ,0. Applying to the coefficients of 

P(Y) = (y - 0) 	(y - Gd) 

gives 

p*(y)= (y—Ofl ... (y—O). 

Thus (Q[y]/(p*))/Q  is normal, and hence galois. 

As 0 is a generator of L over K, for each i e 1,.. . , d, there is a unique o-i  E C 

such that a(0) = 0. Similarly, there is a unique o E Gal(Q(0*)/Q) such that 

o(0*) = 0. Hence (T i  i-# a is a bijection from Gal(K(0)/K) to Gal((Q(0*)/Q) .  

Now let r E K[0] be fixed. Write r 	f(0), with f(y) E K[y]. Let f*(y) E Q[y] 
be obtained by applying w to the coefficients of f. Then 

= a*((f(0))) 	a(f(0)) = f * (9*)  

= 	(f (0i)) =  (a(f(0))) = 

Hence 

= e(a(r)) 

for all r E K[0] and all a e C. In particular, 

(ay)*(0*) = (ar)*((0)) 

= e(ar(0)) = 0­*(e(T(0))) = 

Hence the map a F—p a* is an isomorphism. 

7.3.5 Conditions To Construct An Extension With Galois 
Group C 

Proposition 7.3.20. Let K be a Hilbertian field. Let C be a finite subgroup of 

GL(Q) that acts on K[xi ,. . . , xi,] by linear substitutions. If the invariant subfield 

K(xi ,. . . , x,)G is purely transcendental over K, then there exists a finite galois 

extension L/K with galois group C. 

Proof. Suppose 
K(x1,...,x )G=K(f1,..., f) 
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for some algebraically independent polynomials fi,. . . , fl, in x1,. . . , x,-. By Artin's 
Theorem 1.4.7, K(xi ,. . . , x) is a galois extension of K(f 1 ,. . . , f) with galois 
group C. Let a E K(x1,.. ,x) be such that 

K(x1,...,x) = K(f i ,...,f,a). 

Let a have minimal polynomial P(f1,. . . , f) over K(f 1 , . . . , f,). Applying 

Hilbert Irreducibility (Lemma 7.3.19), we obtain an extension L of K, with galois 

group C, generated by c, a root of Pc, ( fj,. 	f). 	 11 

7.4 Proof Of The Main Theorem 

Proof. (1) We have dimK (a) < deg(cI), from linear algebra. It follows from 

Lemma 7.3.1 that 

dimK (a) < d < dmax (), 	 (7.6) 

since if C is the galois group of a over K, then C has a representation over 

GL, (K). 

(2) The lower bound is attained for all n by applying Lemma 7.3.7 with 

K = Q and C = S, (an extension L/Q such that GaI.(L/Q) S, exists for all ri, 
by Theorem 1.4.11). 

For any given n E N, let C be the finite subgroup of GL(Q) of maximal order 

given in Table 7.1. By Lemma 7.3.8, the given n-dimensional representation is 

a subrepresentation of the regular representation. Let x1 ,. . . , x be indetermi-

nates, and let C act on {x 1 ,. . , x7 } by linear substitutions. Then the fixed field 
x )c is purely transcendental over Q by Proposition 7.3.14. 

By Proposition 7.3.20, there exists a finite galois extension L of Q with 

Gal(L/Q) C. 

From Lemma 7.3.7, there exists a E L such that degQ(a) = G1 and dimQ(a) = 
n as required. 	 El 

7.5 Attaining The Upper Bound In The Main 
Theorem 

7.5.1 Applying the Theory 

To attain d = dm,,,(), we will use a for which the extension Q(a)/Q is Galois 

with Galois group isomorphic to the maximal finite subgroup C of GL (Q) given 

in Table 7.1. 
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First of all, we need the generators of the invariant subring Q(f. . . , fr,) of 

Q (xi ,. . . , x.,). These are known, but can be calculated as follows: 

Let C act on {x1, . . . , x} by linear substitutions. Then calculate 

P[T] := fJ(T—g(xi )). 
gEC 

First suppose n 9 or 10. Then as C acts transitively on the x, the orbit of x1  
contains all of the x. Equate f i (xi ,. . . , x) to the coefficient of the highest power 

of T in P[T] that contains nontrivial homogeneous monomials in x1,. . . , x. Then 

for the next highest power of T, if the coefficient is algebraically independent of 

f', set it equal to f2.  Continue the process, at each stage checking that the 

coefficient of the power of T is not a polynomial over K in the fi  already defined. 

P[T] is an auxiliary polynomial in (T, fi,. . . , f7), that has roots (including) 

al ,. . . , an  (Q-independent such that the extension 

is galois with galois group C. Next we choose b1 ,. . . , b7  E Q such that, taking 

we have Q(c) = Q(c i ,. .. , an ). Such a choice of b1 , . . . , b is possible by Propo-

sition 1.3.9. An alternative way to produce the same o is to define 

= bx + + 

and calculate as before 

P := fl(T_g(c*)). 
9EG 

This gives a polynomial of degree G1 in T, fl,. . . , f. 
In either case, we can (theoretically) write our polynomial in terms of gen-

erators fi,. . . , fn of the invariant subfield. By Hilbert's Irreducibility Theorem 

7.3.19, there exists c1,.. . , Cn E Q such that setting 

f(x1 ,. . . , x) = c 

for 1 <i < n, P0, (resp. P) will be an irreducible polynomial in Q[T] whose roots 

are the conjugate set of a (resp. a'). Finally, if n = 9 or 10, C is a direct product 

of groups acting transitively, so the invariants of C can be found by calculating 

separately the invariants for each direct factor. 

Unfortunately, it is difficult to check that any given choice of c1 ,. . . , Cn is 

"suitable" if IGI is large 	even for ri. = 4, C = W(F4 ), such checks have proved 

difficult for Maple to handle. 
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7.5.2 The 2-Dimensional Example of Degree 12 

Example 7.5.1. An example of an algebraic number a satisfying degQ(a) = 12 
and dimQ (a) = 2 is 

a = 2(1 + 3w), 

where w2  + w + 1 = 0. The conjugate set of a is {ai  = a, a2, . . . , au}, where 

a2  = w2(1 + 3w), 

a3 = w22(1 + 3w) —a - a2 , 

	

1 	 —5 	3 a4  = 2(3 + 3w)= -7-a1  + 

	

1 	 —3 	8 a5 	2 (3 + w) = --a1  - 

	

1 	 8 	5 
a6 = 2(-1 + 2w) = -a,+ 

and {a7, . . . , a121 = {—ai , . . . , —a6}. 
The minimal polynomial of a is Pc, : X12  + 572X6  + 470596. 

Note that the corresponding finite subgroup of CL2  ((Q) is a faithful represen- 
tation of W(C2), has order twelve, and is generated by the matrices 

(0 1) 

	

/-5 8\ 

1 

 

and (37 	). \ 	J 

7.5.3 An Example Where C = W(B3) 

Corollary 7.5.2. If C = W(B) in Lemma 7.8.7, then choosing b1,. . . , b, E 
Q* all having different moduli will give an a = b1a1  + 	+ ba that satisfies 
dimQ(a) = n and degQ(a) = 211n!. 

Proof. W(B) is the signed permutation group, i.e. the group of n x n matrices 
with entries in {1, 0, —11 having exactly one non zero entry in each row and each 
column. The action of W(B) on {ai,.. . , ac,} by linear substitutions permutes 
the ai  and alternates some of their signs, so if the bi  are non zero and distinct, 
then degQ(a) = 2"n!. 

Example 7.5.3. Consider n = 3: From Lemma 7.3.15, the generators of the B3-
invariant subfield are fi = x + x + x, f2 = 4 + x + x and f = 4 + x + x. 
Setting f = 3, f2 	—5, f3  = 20 and y = x + 2x2  + 3x3  (the coefficients of 

XI, x2, x3  are chosen in accordance with Corollary 7.5.2) and eliminating x1, x, x3  
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from the system of equations 

X1  + x + = 3 

4  + x + X3  = —5 

4 + x + x = 20 

y=xi+2x2 +3x3 	 (7.7) 

gives a polynomial P2 [y]: 

Y 41 - 720y46  + 250368y44 - 55808760y42  + 8977940832y4°  

- 1115334443040y38  + 111935136044684y36 - 9369930116421360y34  

+ 669474635847318240y32 - 41498928789239602600y30  

+ 2256031043775588868224y28 - 108243353189287557369120y26  

+ 4598892825483080298681270y24 - 173073180203566336237521840y22  

+ 5744886485254097336805480768y2°  

- 166330156298436333598058893960y'8  

+ 4128375688235990189108415172320y'6  

- 85686863133757840437626064038880y' 4  

+ 1406724125150620160480427076102380y 12 

- 16502478280402427926342131451877520y'° 

+ 129901904593279344971655552454976376y  
- 521706752963137888850543724025412440y  

+ 7199059277571870164567231517716573760y  

- 14636118259595977154253380875644518880y2  

+ 30536669277214435825987335832880761681 	 (7.8) 

whose conjugates span a 3-dimensional vector space over Q. 

7.6 Fields Other Than Q 

We examine the effect on the degree of a if we change the base field of the vector 

space V from Q to either a finite extension of Q, or a finite field. 

Definition 7.6.1. Let K be an arbitrary field and ii E N be fixed. We denote 

the maximal degree of the set of numbers a, algebraic over K, with dimK (a) = n 
as DK(n). 

For example, DQ (n) = dm (). 
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7.6.1 Number Fields 

Theorem 7.6.2. If K is a number field of degree m over Q, then the degree of an 
algebraic number a where dimK (a) = n is bounded above by DQ(mn) = dm (mn). 

Proof. Let [K : Q] = m, and let a be algebraic over K such that deg(a) = d, 
dlmK(a) = n. Then by Proposition 7.3.1, there exists a subgroup of GL(K) 

of order d. An n-dimensional vector space over K can be considered as an mn-
dimensional vector space over Q, so we have an injection 

GL(K) -* GLmn ((Q). 

Thus d, the degree over K of a is bounded above by mn. 	 El 

7.6.2 Cyclotomic Extensions Of Q 

Let K be an extension of Q, and let 1 denote the number of roots of unity in K. 
Clearly I is even. The roots of unity in K are w (i = 0. . , 1 - 1), where w is 

the primitive 1th  root of 1. The n x n matrix M(K) is defined to be the group 

of all monomial matrices whose non zero entries are roots of 1 in K. 

The following result again comes from Feit [8], with a correction in the case 

I = 4, n = 2: 

Theorem 7.6.3. Let 1 E N be even. Then M((Q(w1 )) is a finite subgroup of 
GL71 (Q(w1 )) of maximal order, Ian!, except in the cases given in Table 7.3 where 
the maximal order is achieved by the listed group: 

I n I C IGI 
4 2 (GL2 (F3),w41) = ST8  96 
4 4 ST31  46080 
4 5 ST31  x (w41) 184320 
4 8 ST31  1 S2  4246732800 
6 4 ST32  155520 
6 6 ST34  39191040 
8 2 (GL2 (F3),w81) = ST9  192 

10 2 (w51) x SL2 (1F 5 ) = ST16  600 
10 4 ST16  1 S2  720000 
10 6 ST16 1S3  1296000000 
20 2 (SL2 (F5),w20I) = ST17  1200 

a b (Z/aZ)b >4 Sb abb! 

Table 7.3: Maximal Subgroups for M(Q(w1 )) for exceptional n 



The pair (a, b) in the last row of Table 7.3 refers to all a E 2N, b E N that 

have not previously occurred as a pair. 

As noted in Section 1.5, the notation ST, refers to the numbering of the clas-

sification of pseudo-reflection groups by Shephard and Todd [20]. 

Theorem 7.6.4. Let K be a field containing 1 roots of unity. Then: 

If K is hilbertian, then for all n > 0, there exists an c, algebraic over K, 

such that dirnK(a) = n and deg(c) = In n!. Hence In  n! is a lower bound 

for DK (n). 

If K = M((Q(w1 )) as given in Theorem 7.6.3, then DK(n) is bounded above 

by the order of the group given in Table 7.3. 

Proof. (1) We know that GLI (K) contains the group of order In  n!, consisting 

of the permutation matrices with powers of the wi  as its non zero entries. The 

invariant ring of this group is generated by the elementary symmetric polynomials 

of the 11h  powers of the coordinates. Therefore, by Lemmas 7.3.1 and 7.3.7, there 

exists an c such that dim jç(c) = n and degK (a) = lan! 

(2) The result follows from Lemma 7.3.1 and Theorem 7.6.3. 	 LI 

7.6.3 Attaining DK (n) for K = 

Let K = Mn(l) defined as above. For non-exceptional values of I and n, DK(n) = 

In n!. Moreover, DK (n) > Inn! for the exceptional cases. The upper bound is 

attained if the invariant subfield of K(xi ,. . . , x,) is purely transcendental over 

K. 

Example 7.6.5. Let n 2, and K = Q(i). Does there exist an c E K such that 

dimQ() (a) = 2 and degQ()(c) = 96? 

The 2-dimensional matrix representation C of the group Z4GL2(F3) of order 

96 is generated by the matrices 

0
1 and 0 1\ 

(1 ) 	(- o) 

Let C act on {x1, x 2 1 by linear transformations. Let a be an element of the 

	

representation that sends x1 	x (l)  and x2 F-* X5(2). Let S be the image of x1  

and x2  under such a mapping. Now let 

P= [J(T—x). 
xES 
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We obtain a polynomial P e Q(i)(x, y, T) of degree 24. The C-invariant subfield 
Q(i)(xi,x2)C is generated by 

t i  (xi , x2 ) =(x 2 + 	- 	- x + ix1 x2) 	 (7.9) 

(x - ix + (i - 2)xix2)(x - ix + (2i - 1)xix2 ) 

and 

t2 (XI, x2) =(x + ix)(x - ix + (2i - 2)xix2) 	 (7.10) 

(x -  (i + 1)x + 2ix1x2)(2x - (1 + i)  X2 + (2i - 2)xix2 ) 

(x + (1 - i)x - 2xi x2)(2x + (1 - i)x +2 (21 - 2)xix2 ) 

We can construct our a, a2  as follows: By Hubert's Irreducibility Theorem 7.3.19, 

there exist c1 , c2  e Q(i) such that on making the substitutions t i  (x i , x2) = c1  and 

t2 (X1,  x2) = c2, we obtain a galois extension Q(i)(ai , a2) of Q(i) with galois group 

C. The choice of t1 	1 + i, t2  = 1 is suitable, and gives 

P := 27T24 - 270(1 + i)T'6  + 270T' 2  - 810iT8  + 54(1 + i)T4  - 9 + 8i. 

In the usual way, b1 , b2  e Q(i) can be chosen such that a = b1a1  + b20Z2 is a 

generator of this extension, and dimQ()  (a) = 2, degQ()  (a) = 96 (a suitable choice 

isb1 =l and b2 =2). 

Example 7.6.6. Let K = Q(i, 	so K contains 8 roots of unity. Does there 

exist an a such that dimK (a) = 2 and degK (a) = 192? 

By Table 7.3, the finite 2-dimensional matrix group with entries in K of max-

imal order is the group C = (GL2(1F 3),w8 I) of order 192. It can be found by 

multiplying the matrix group in Example 7.6.5 by the elementsE K. The 

generators of C are: 

( 0 	i\ ) and(0 	
±t 

). 
1+i i-i I 	1-i 
7 7 	72 

The generators of the C-invariant subfield are: 

t1  = - 21x4y4  + 14x 5y3  - 14ix3y5 - 4iyx7  + 	 (7.11) 

- 4xy7  - 14ix6y2  + 14x3y5  + 14iy3x5  + 
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t2  = 310771850x24  + 310771850y24  + 6541213522480ix18y6 	 (7.12) 

+ 1572505561002x21y3  + 1 789302684540iy'9x5  + 86046736052640ix'
0y14  

+ 4288651 5300ix2y22  + 3729262200ix23y + 3948308650 1720ix15 y9  

+ 79194568238520ix'3y" + 10660358869740ix7y17 - 79194568238520ix"y13  

- 39483086501 720ix'5y9 - 10660358869740ix17y7 - 654121 3522480ix6 y'8  

- 157250556 lOOix3y2' - 1 789302684540ix'9y5 - 86046736052640ix'4y
10  

- 3729262200iy23 - 42886515300ix22y2 - 3729262200x23y 

- 839382604074y 20x4  + 157250556100y21x3  + 157250556100x21y3  

+ 3102220045771y16x8 - 10660358869740y'7x7  + 1789302684540y19x5  

+ 79194568238520y13x'1 - 39483086501720y'5  X9  - 839382604074x20y4  

+ 1789302684540x'9  Y5  - 10660358869740x17y7 - 122353879346244y'2x12  

+ 31022220045771x16y8 - 39483086501720x15y9  

+ 79194568238520x 13Y11 - 3729262200y23x. 

7.6.4 Finite Fields 

The following results on finite fields are taken from Lidi and Neddereiter [15]: 

Lemma 7.6.7. Let K be a finite field, and L/K a finite algebraic extension. The 

galois group of L/K is cyclic. 

Definition 7.6.8. Let K Fq  be a finite field. A generator of the cyclic group 

F is called a primitive element. 

Definition 7.6.9. Let f E ]Fq [x] be a nonzero polynomial. If f(0) 0, then the 

least positive integer e for which f(x) divides xe - 1 is defined to be the order 

of f, denoted ord(f(x)). If f(0) = 0, then for some (unique) h E N and g E Fq [x] 

such that g(0) 0, we have f(x) = x"g(x), and we define ord(f(x)) = ord(g(x)). 

Lemma 7.6.10. [15] Let f E IFq [x] be an irreducible polynomial over IFq  of degree 

m and with f(0) 	0. Then ord(f(x)) is equal to the order of any root of f in 

the multiplicative group qm 

Definition 7.6.11. The polynomials 

1(x) = Eaixi  
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and 

L(x) 
= 
1: ajx1i  

are called q-associates of each other. In particular, 1(x) is the conventional 

q-associate of L(x), and L(x) is the linearized q-associate of 1(x). 

Lemma 7.6.12. [15] Let f(x) be irreducible in IL'q [x], and let F(x) be its lin-

earized q-associate. Then the degree of every irreducible factor of F(x)/x in lFq [x] 

is equal to ord(f(x)). 

Using these preliminary results, we give the main result for K a finite field. 

Theorem 7.6.13. Let IF'q  be a finite field with q = pfl elements, for some prime 

p and n e N. Then DFq (n) = q  - 1. 

Proof. As usual let a be algebraic over Fq  with dimFq  (a) = n and degm.q  (a) = 

d. Lemma 7.3.1 still holds for a finite field, so the galois group of a over ]Fq  

must be a finite subgroup of CLn (lFq ), and it must be cyclic, by Lemma 7.6.7. 

The characteristic equation of an invertible matrix in GLn (IFq) is of the form 

X7  + a_ 1X' + . + aiX + a0 , where the ai  E IFq  and a0  0 is the determinant 

of the matrix. This equation splits over Fqn and so its roots are nonzero elements 

of IF'qn, therefore have order at most qfl - 1. Hence I C I < q  - 1. 

Next, we show that the upper bound for DFq (n) can be attained. Let g be a 

generator of the multiplicative group F, and let its minimal equation be 

with ci  E Fq  for i e {0. . . n}. Then by Lemma 7.6.10, ord(g(x)) = q  - 1. 

Consider the polynomial 

C(x)/x 

so that C is the linearized q-associate of g. Then by Lemma 7.6.12, G(x)/x is 

irreducible of degree q  - 1. Now let /3 and y be roots of G(x) in IF'qn, and c E Fq. 

Then /3 + and c/3 are roots of C, since (/3 + 	= /3P' + 	and c' = c, for all 

i > 0. Hence the roots of C(x)/x are the non zero elements of an n-dimensional 

vector space over lFq , so dimFq (C(x)/x) = n and degFq(C(x)/x) = qfl - 1. 	El 

Example 7.6.14. Let K = IF3  and n = 2 

generated by the matrix 

There is a cyclic group of GL2 (1F3) 
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A primitive element of the multiplicative group F 2  is given by a root of the 

characteristic polynomial of A, namely 

X2 +X+2=cX3 EF3[X]. 

We consider the polynomial 

P[X] := 	cX 1  = XI  + X2  +2. 

Let a be a root of P[X]. Then a is a primitive element of the field of 332_i = 6561 

elements. Furthermore, the conjugates of a are the non-zero elements of a 2-

dimensional 73-vector space: 

a, 2a, a3, 2a3, a3  + a, a3  + 2a, 2a3  + a, 2a3  + 2a, 

giving dimi'3 (a) = 2 and deg11.3(a) = 32 - 1 = 8. 

Example 7.6.15. Let K = F2 , and ii = . Then the cyclic group of maximal 

order over F2  is of order 2 - 1 = 7. One such generator is 

(0 0 
B=( 	101 1) - 

\\ 0 1 0 

B has characteristic equation PB[X] : X 3  + X + 1 = I: j=o c3X. PB  is 

irreducible over F2. Let 0 be a root of P[X] : Ej=0  cX2_l = X7  + X +1. Then 

3 is a primitive element of the field containing 223_i = 128 elements. Furthermore, 

the conjugates of /3 are 

/3/32/32 +/3,/3,/3 +/32,/34 +/3, 	+/32 +/3 

So the 7 = 2 3 - 1 conjugates of /3 are the non zero elements of a 3-dimensional 

]F2-vector space. 

103 




