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"The most exciting phrase to hear in science, the one that heralds new 
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Abstract 

FlavocytochrOme b2  from SaccharomyceS cerevisiae is a tetramer of identical 

subunits each with M 57,500. The enzyme catalyses the oxidation of L-

lactate to pyruvate and transfers electrons to cytochrome c. Each subunit 

consists of two distinct domains: an N-terminal cytochrome domain and a C-

terminal flavin domain. The flavin domain (FDH) has been expressed 

independently of the cytochrome domain and retains its ability to function as 

an L-lactate dehydrogenase. However in the absence of the haem domain 

electron transfer to cytochrome c is extremely slow. Site directed 

mutagenesis has been used to create a recognition site for cytochrome c on 

the surface of the flavin domain. Complementary charges were introduced by 

the mutations K20IE, K324A and F325E and a loop section replaced with a 

5-glycine linker (FDH5GLY). However binding studies were inconclusive as to 

whether any significant complex formation between FDH5GLY and 

cytochrome c actually occurred. 

In order to engineer an enzyme selective for glycolate over L-lactate two 

mutants have been constructed. FDHL230W incorporates the single amino acid 

change of Leu230 to tryptophan. The triple mutant (FDHmip) combines the 

mutation L230W, with T197A and A283T. FDHriup was found to 

preferentially bind glycolate over lactate with Km values of 16 MM and 26 

mM respectively. In addition FDHLZOW and FDHmw were tested for their 

ability to function as oxidases. However no significant increase in oxidase 

activity compared to wild-type was observed. 

FlavocytochrOme c3  is a fumarate reductase expressed by the marine 

bacterium Shewanella frigidimarina during anaerobic growth in the 

presence of fumarate. This soluble periplasmic enzyme is composed of three 

domains; a flavin domain containing non-covalently bound FAD, a 

cytochrome domain and a clamp domain. The active site is located in the 
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flavin domain at the interface with the clamp domain. The enzyme catalyses 

the reduction of fumarate to succinate with a kt of 509 ± 15 s_ I  and Km Of 

25 ± 2tM at pH 7.2, 25°C. Reduction of fumarate requires hydride transfer 

from the FAD and protonatiOn by an active site acid. Residues implicated in 

catalysis have been studied using site directed mutageneSis. Substitution of 

Arg402 by alanine leads to complete loss of activity whereas neither of the 

two active site histidines (His504 and His365) is essential for catalysis. The 

H365A:H504A double mutant enzyme was found to have a L1 of 0.84 ± 

0.05 s_I  at pH 7.2. Substitution of Arg402 by lysine, histidine or tyrosine led 

to a fall in "t  to 0.55 s, 0.091 s_ I  and 0.05 s respectively. Substrate 

specificity and inhibition studies have been carried out to probe the active site 

structure. Fcc3 was unable to catalyse the reduction of alternative enoates to 

fumarate. However, oxaloacetate, methylsuccinate and 3nitropropiflOate 

were found to be inhibitors of succinate oxidation with K 1  values of 5.3 j.tM, 

1.7 mM, and 0.5 mM respectively. 
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Chapter 1 Introduction to flavocytochrome b2  

1.0 Introduction to Flavocytochrome b2 

1.1 The Family of a-hydroxy acid dehydrognases/oxidases 

L-lactate dehydrogenaseis a member of the family of FMN dependent a-hydroxy acid 

dehydrogenases/oxidases that include glycolate oxidases (Lindqvist 1989, lactate 

monooxygenase (Hayaishi et al., 1957, Lockridge et al., 1972), long-chain 

hydroxyacid oxidase (Belmouden et al., 1993) and mandelate dehydrogenase (Fewson 

et al., 1988). The ultimate oxidant depends on the particular enzyme. Molecular 

oxygen is the electron acceptor for the oxidases, whereas the flavocytochromes b2  

(lactate and mandelate dehydrogenases) utilise an intramolecular haem. The 

membrane associated bacterial mandelate dehydrogenases transfer an electron from 

the reduced FMIN to a component of the electron transport chain located in the 

membrane (Mitra el al., 1993). 

 

Pvrtivatc 

(ilveolale 

 

02 

(ilyoxylatc 

Mandclae 

C) 

Ph 

Figure 1.1 Different modes of FMN re-oxidation. a) via an intramolecular hacm (flavocvtochrome 

b2), b) by molecular oxygen in oxidases (GOX) and c) to a component of the electron transport chain 

(bacterial mandelate dehvdrogenase). 
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Chapter 1 Introduction to fiavocytochrome b2  

Although the method of FMN re-oxidation is different there is significant sequence 

similarity within this family of enzymes (Lé et al., 1991). Lactate dehydrogenase from 

S. cerivisiae shall be referred to as flavocytochrome b2  (fcb 2). 

GOX HaOX LMO MDH 

(Spinach) (rat) (M. smegmalis) (I'. pu/ida) 

Fcb2  

Flavin domain 37% 37% 28% 29% 

(S. cerivisae) 
- 	 . 	 . 	 '.-'- 	 --' 	 •l.r 	 (C.C%Y' 	1cno 

Table 1.1 Sequence iclenuty tetween mc uavm uv1IIaI1 ui i.a' 	 .. . 	 - - 

chain hvdrox acid oxidase (HaOX). L-lactate monooxygeflaSC and mandelate dehydrogeflaSe (MDR). 

1.2 Flavin mononucleotide 

Flavins undergo two electron oxidation/reduction reactions, but are distinctive in 

having a stable one-electron species, a semiquinone free radical. The ability of the 

fiavin to form the semiquinone enables it to mediate electron transfer between organic 

substrate (two-electron donor/acceptor) and a one-electron donor/acceptor such as 

haem. The three stable forms of the flavin, (oxidised, semiquinone and reduced) differ 

sequentially by single electrons in their oxidation states (Figure 1.2). The oxidised 

form of the fiavin is bright yellow due to strong absorbance in the 350-450 Mn region 

of the spectrum. The functional part of the flavin, the isoalloxazine ring, is attached to 

a ribitol group of which the 5' carbon is attached to phosphate. Flavin adenine 

dinucleotide (FAD) is an adenylated derivative of FMN which undergoes virtually 

identical electron transfer reactions. The ribose side-chain is used to anchor the 

molecule to the protein. The free energy change (AG) of an oxidation-reduction 

reaction under a particular set of conditions is related to the reduction potentials of 

the redox pairs under the same conditions by the equation AG = -nFAE. 

2 



Chapter 1 Introduction to fiavocytochrome b2  

NH, 

L - 	 N N 

0+4 OH 

HO—P0 

0 0 0 

HO—P0 0-P=O 0—P=O 
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I' 
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I 
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I 

HCOH 
I 

HCOH 
I 

HCOH HCOH HCOH 

HCOH HCOH 
I 

HCOH 
I I 

CH2  CH, 'I ft 	H 

H C 	
0 	

e •, e H 	
HC 

H3C 	 N H H,C flH IC 

0 H 	0 H 	0 

Oxidised Semiquinone Reduced 

Figure 1.2 Different oxidation states of the FMN (oxidiscd.. serniquinone and reduced) 

1.3 Haem 

Cytochromes are iron containing electron transfer proteins. The characteristic strong 

colours of cytochromes are produced by the haem prosthetic group. There are three 

main classes of cytochromes distinguished by differences in their light-absorption 

spectra and designated a, b and c (Figure 1.3). The prosthetic groups of cytochromes 

have four five-membered, nitrogen-containing rings in a cyclic structure called a 

porphyrin. The four nitrogens are co-ordinated with a central Fe ion that can be either 

Fe 21  or Fe3 . Iron protoporphyrin IX is found in b-type cytochromes and is non-

covalently bound. Two histidine residues provide the fifth and sixth ligands to the Fe 

ion. Haem c is bound covalently through thioether bonds to two cysteine residues of 

the protein, e.g. cytochrome c. Haem a, found in a-type cytochromes such as 

cytochrome aa3 , a component of the cytochrome oxidase system, has a long 

isoprenoid tail attached to one of the five-membered rings. Haem containing proteins 

can mediate single electron transfers or they can couple electron transfer to carrying 

out enzymatic reactions. The driving force for carrying out redox reactions will 

depend on the potential of the haem. This is modulated by the structure and 

environment of the haem in the protein. 
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Chapter 1 Introduction to flavocytochrome b2  

F 	

q-.

Cys 

 OH 4,H,0 ,0,

S-Cys  

N

oo 	 HO 	 ')OH 	 H 

haem b 
haem a 	 protohaem DC 	 haem c 

Figure 1.3 The structure of protohaem IX (haem b). haem a and haem c. 

1.4 Flavocytochrome b2  

-o 	J- 
OH 

-o •0 10 
o 	CH3 0 	CH3  

L-lactate Pynivate 

Figure 1. 4 Flavocytochrome b2  catalyses the reaction of L-lactate to pyruvate 

Flavocytochrome b2  from Saccharomyces cerevisiae (Jacq and Lederer 1974) 

catalyses the oxidation of L-lactate to pyruvate (Figure 1.4) with subsequent transfer 

of electrons to cytochrome c (Appelby and Morton 1954) in the mitochondrial 

intermembrane space (Daum et al., 1982). It forms part of a secondary electron 

transport chain with cytochrome c terminating in cytochrome c oxidase that ensures 

growth on lactate, even if the rest of the mitochondrial electron transport chain is 

blocked. The enzyme is a homotetramer (4x58 kDa); each subunit is composed of 

two distinct domains, one of which contains FMIN, the other a haem. The crystal 

structure of flavocytochrome b2  has been solved to 2.4 A resolution (Xia and 

Mathews 1990). The asymmetric unit contains two distinguishable subunits. In one, 

substrate is absent from the active site and the cytochrome domain is resolved (Figure 

11 



Chapter 1 Introduction to flavocytochrome b2  

1.5). In the other, where pyruvate is bound at the active site no electron density is 

observed for the cytochrome domain, suggesting that it is positionally disordered. The 

closest distance between the haem and the FMN is 9.6 A. 

I 

f 

t. 

Figure 1.5 Subunit of flavocytochrome b2 . 
The flavin domain (yellow) is linked via the hinge (green) 

to the haem domain (red). The c-terminal tail (blue) forms a number of contacts with the other three 

subunits in the tetramer. Redox cofactors are shown in black. 

The active site is located in the flavin domain where dehydrogenation takes place. 

Electrons then pass one at a time to the haem and onto cytochrome c. The 

cytochrome domain and flavin binding domain are in close contact and are joined by a 

short hinge. The hinge has little influence on the lactate dehydrogenase activity of the 

enzyme but is important in orientating the two domains for efficient electron transfer 

(White el al., 1993, Sharp et al., 1994, Bell et al., 1997). The interaction with 

cytochrome c has been studied and a number of models have been proposed (Tegoni 

ci al., 1993, Short ci al., 1997). The model proposed by Short et a! (1998) in which 

one cytochrome c molecule interacts with a single fcb 2  subunit seems the most likely. 

The location of the binding site in this model enables the b 2-haem and c-haem to be as 

close together as possible. Complementary electrostatic interactions between the two 

surfaces initially orientate the two proteins prior to electron transfer. Kinetic studies 

support the idea of one main docking site (Daffet al., 1996a and 1996b). 



Chapter 1 Introduction to flavocytochrome b2  

1.4.1 Electron transfer 

The route of electron transfer in fcb 2, L-lactate —*FMN--+b2-haem--+cytochrome c, 

has been the subject of much research (Capeillére-Blandin et al., 1975, Chapman et 

al., 1991, Lederer 1991). The catalytic cycle under saturating concentrations of L-

lactate and cytochrome c is represented in Figure 1.6 (Daff et al., 1996a). Following 

substrate binding FMN is reduced and L-lactate is oxidised to pyruvate (step 1). The 

rate constant for the reduction of FMN by L-lactate has been determined by stopped-

flow kinetics to be 604 ± 60 s_ I  (Miles et al., 1992). Interdomain electron transfer then 

occurs from fully reduced FMIN to b2-haem, generating reduced haem and FMN 

semiquinone (step 2). This has been estimated to occur at —1500 s' (Chapman et al., 

1994). Electrons are then transferred from b 2-haem to cytochrome c (step 3 and step 

5). The rate of cytochrome c reduction has been shown to be in excess of 1000 s 1  

(Daff et al., 1996b). The rate limiting step (step 4) involves interdomain electron 

transfer between flavin semiquinone and haem at a rate of 120 s. The rate constant 

for this step has been shown to correlate with the driving force (\G) (Tegoni et al., 

1998) and is therefore under thermodynamic control. 

Step 5 
. . 	 L-taclate 

Step I 

F II PyTuvate 

Fast 	 600s' 

F U• 	 F: Ii 
100s' 

I20s' \\  
Step 	 Step  

Fast 	!I- 

Step 

- F U' 

(. ( 
Step 3 

Figure 1.6 Model proposed to explain the electron transfer events which make up the catalytic cycle 

of flavocvtochrome b2  in saturating amount of L-lactate and cytochrome c. F = FMN. I b 2  haem. C 

= cvtochrome c and . = electron 



Chapter 1 Introduction to fiavocytochrome b2  

1.4.2 The Flavin Domain 

The fiavin domain (FDH) has been expressed independently of the haem domain and 

retains its ability to function as an L-lactate dehydrogenase with the artificial electron 

acceptor ferricyanide but has only residual activity with cytochrome c (Balme et al., 

1995). Steady-state activity with cytochrome c as electron acceptor has fallen from 

207 ± 10 s_ I  in fcb 2  to 0.22 ± 0.05 s in FDH. However with ferricyanide rates for 

fcb 2  and FDH are 400 ± 10 s' and 273 ± 6 s -1  respectively. Until now the crystal 

structure of the flavin domain from intact fcb 2  has been used as a realistic 

representation of the isolated fiavin domain. The recent determination of the fiavin 

domain structure to 2.4 A resolution (Figure 1.7) (Mathews, personal 

communication) now allows direct comparison between it and the intact enzyme. 

Figure 1.7 The flavin domain showing the a 88  barrel structure with x helices in yellow and P sheets 

in blue. FMN is located near the center of the barrel.. 

1.4.3 Substrate Binding 

The crystal structure of fcb 2  shows pyruvate bound in the active site of one subunit 

(Xia et al., 1990) (Figure 1.8). The active site residues of fcb 2  have been studied in 

detail using site-directed mutagenesis (Chapman et al., 1991, Lederer et al., 1991). 

The carboxyl group forms an electrostatic interaction with the positively charged 

1 



Chapter 1 Introduction to flavocytochrome b2  

Arg376 and hydrogen bonds from one of the two carboxyl groups to Tyr143. Tyr143 

is believed to be important in controlling the orientation of the substrate and is 

essential for intra-molecular electron transfer (Miles et al., 1992). The keto oxygen of 

pyruvate interacts with His373, the active site base (Gaume et al., 1995). Mutation of 

His373 causes a 10 5-fold loss in activity. Tyr254 is involved in transition state 

stabilisation (Reid e. al., 1988, Gondry etal., 1995) and not as previously reported in 

Michaelis complex formation. These conserved residues occupy identical positions in 

the FDH structure (Figure 1 .8 inset) 

I Flavin Domain 

FN IN 

Lis 

Tyrl43 
	 Pyruvate 	

Try254 

Figure 1.8 The structure of flavocytochrome b 2  active site. Residues important for catalysis are 

shown. Pyruvate the product of the reaction is bound at the active site. Inset Active site of the 

isolated flavin domain. 

1.4.4 Substrate Specificity 

Sequence comparisons show that in enzymes that have L-lactate as a primary 

substrate (S. cerivisiae L-Idh, H. anomala L-ldh, and L-lactate monooxygenase from 
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M. smegmatis; Guiard et al., 1995, Black ci al., 1989 and Giegel ci al., 1990 

respectively) the equivalent of Leu230 is conserved, whereas in spinach glycolate 

oxidase the position of Leu230 is occupied by a larger tryptophan residue (Volokita et 

a! 1998). In L-mandelate dehydrogenase from P. putida Leu230 is replaced by a 

smaller glycine residue (Tsou etal., 1990). The size of this residue is therefore seen to 

correspond inversely to the size of the substrate side chain (Figure 1.9). 

GOX 
(Sp mach) 

L-LDH fcb7) 
(5 cerivisiae) 

L-MDH 
(P. pwida) 

Tiyptophan Leucine Glycme 

OCH3  

Glycolate L-Lactate L-Mandelate 

Figure 1.9 Comparison of residues at the equivalent position 230 and corresponding substrates. 

1.4.4.1 Redesign of the Active Site 

The substrate specificity of fcb2  has been investigated previously by Daff ci a! 

(1994a), Sinclair ci al., (1998). In an attempt to modify the substrate specificity in 

favour of larger substrates, three mutant enzymes: A198G, L230W and the double 

mutant Al 98G1L23 OA were studied (Figure 1.10). The Al 98G mutation was found 

to weaken substrate binding but the substrate specificity was largely unaffected. So, 

although Alal 98 influences catalysis it is not responsible for the selection of L-lactate, 



Chapter I Introduction to fiavocytochrome b2  

over other substrates. The result of the L230A mutation is to produce an enzyme that 

is selective for long-chain 2-hydroxy acids. This mutation resulted in an 80-fold swing 

in selectivity from L-lactate to 2-hydroxyoctanoate. The double mutant 

A198G/1,230A resulted in poor substrate binding properties and activity levels similar 

to those seen for 1,230A. The role of 1le326 has also been investigated (Daff PhD 

thesis 1996). The crystal structure shows this residue to be slightly further away from 

the substrate than Alal 98 or Leu230. However the side chain of 11e326 appears to be 

in contact with the side chain of Leu230. The mutation 1326A removes significant 

bulk from the active site and this enzyme was shown to create a 160-fold swing in 

substrate specificity towards 2-hydroxy octanoate. 

326 

Pyruvate 

FLeu2730] 

A1a198 

Figure 1.10 The active site of flavocytochrome b2  highlighting residues which have been studied with 

regard to substrate specificity. Leu230 is important in selecting for L-lactate. Mutation of Ala 198 

was found to weaken the substrate binding. 1le326 though farther away from the substrate contacts 

the side chain of Leu230. 

10 
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1.4.5 The hydride transfer mechanism 

The mechanism of dehydrogenation has in the past been the subject of some 

controversy (Chapman et al., 1991, Lederer 1991). Questions have revolved around 

the issue of where the electron pair resides when the substrate a-carbon hydrogen 

bond is broken. It has been deduced from recent mechanistic studies with D-amino 

acid oxidase (Mattevi et al., 1996, Harris, unpublished results) that a direct hydride 

transfer mechanism operates in this enzyme. The implications for the mechanistically 

related a-hydroxy acids is that they also proceed by hydride transfer (Figure 1.11). 

The alternative carbanion mechanism (Walsh et al., 1971) involving abstraction of a 

proton from the u-carbon is based largely on earlier experimental evidence from D- 

amino acid oxidase. 

The hydride transfer mechanism involves removal of the hydroxyl proton from the 

substrate by an active site base with concomitant loss of a hydride ion from the 

substrate to FMIN. Evidence from D-amino acid oxidase is consistent with a transition 

state in which rupture of the two substrate bonds to hydrogen is concerted (Mattevi et 

al., 1999). A highly conserved histidine residue in fcb 2, His373 acts as a base for the 

reaction. Mutation of His373 to glutamate decreases the rate of lactate oxidation by at 

least 10 5, consistent with a role for this residue as an active site base. The activity 

reported for H373Q (Miles et al., 1992) is consistent with the GIn codon being 

misinterpreted for wild-type during DNA translation. The homologous histidine in 

MDH is His274 and in GOX His254. The importance of the conserved histidine in 

catalysis has been confirmed by the results of mutagenesis studies on lactate 

monooxygenase from S. s,negm ails, fcb2  and L-MDH. A charged lysine residue 

(Lys349) is thought to stabilise the charge on the N1-C20 locus in the reduced 

flavin by electrostatic interactions. The fact that a K349R mutant exhibits no 

dehydrogenase activity supports this proposal (Reid etal., 1988). An equivalent lysine 

residue is conserved within this family of enzymes. 

11 
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[g376] 

NH 
\NH2  

H2 N 

His373 

CN 

(1k 

o 

+ [LYs349 I 
H3N 

EE~J- 	OH 

Figure 1.11 Mechanism of dehydrogenation proceeds via direct hydride transfer from substrate to 

N(5) 

1.5 Glycolate Oxidase 

0 	H 

	

Glycolate 	 - Glyoxylate 

Figure 1. 12 Glycolate oxidase catalyses me reaction oi glyQuidw Lu 

In green plants, glycolate oxidase (GOX) is one of the key enzymes m 

photorespiration where it oxidises glycolate to glyoxylate (Figure 1.12). Glycolate 

oxidase from spinach has a subunit of 40,000 M and is 37 % identical in amino acid 

sequence to the flavin domain of feb 2  (Guiard 1985, Lederer el al., 1985, Volokita et 

al., 1987) The crystal structure of GOX is available at 2.0 A resolution (Lindqvist ci 

al., 1991). GOX like FDH forms the common cx48 barrel structure (Scrutton 1994) 

(Figure 1.13). 

12 
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Figure 1.13 Glvcolate oxidase showing the a88 barrel structure with x helices in green and P sheet 

in pink. FMN (yellow) is bound at the centre of the barrel. 

When the structures of FDH and GOX are superimposed the 3 dimensional structures 

are largely identical. Conservation of the equivalent active site residues, Arg257, 

Tyr24, Tyr129 and His254 (GOX numbering) indicates that glycolate would be bound 

in a similar manner to that observed for pyruvate in fcb 2  (Figure 1.14). 

FMN F1is254 

Arg257 

TyrJ 	
Pvruvatc 

Figure 1.14 The active site structure of glvcolate oxidase (atom coloured. (iOX numbering) 

compared to flavocytochrome h 2  (blue). The structure of fcb 2  contains the product of the reaction. 

pyruvate (pink). It is predicted that glycolate would bind in a similar manner in glycolate oxidase. 

13 
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Although fcb2fFDH and GOX have a high degree of structural similarity there are 

some differences. In GOX a loop region of 29 residues between strand 4 and helix 4 

of the barrel covers the active site cleft where the substrate is bound. In fcb 2  and FDH 

the loop region of 24 residues is disordered in the crystal structure. In fcb 2  it is 

predicted that the loop is pushed to one side by the presence of the haem domain. 

This might constitute the basis of their different re-oxidation modes. The mechanism 

for the first half reaction, substrate oxidation/FIVIN reduction is conserved. The 

difference in reactivity of the fiavins to oxidants could be derived from the 

accessibility of the active site. Both the main chain and side chain conformation of 

Thr78/197 differ in the two structures. Thr197 lies in close proximity to the 

isoalloxazine ring which differs in position between the two enzymes. In fcb 2/FDH a 

hydrogen bond forms between N5 of FMIN and the main-chain amide of Alal 98. In 

glycolate oxidase where the ring system is tilted away from Thr197 a pocket with a 

water molecule is found near the re-face of the FMN ring (Figure 1.15). This pocket 

is believed to be important for oxidase activity either as a binding site for dioxygen or 

to accommodate the 04 oxygen of FMN (Walsh et al., 1980). Structures of glycolate 

oxidise, with inhibitors at the active site show the FMIN in the same orientation as in 

fcb2  (Stenberg et al., 1997). This implies some degree of mobility of the FMN in 

glycolate oxidase whereas the isoalloxazine ring of fcb 2  has the same orientation 

irrespective of whether pyruvate is bound which indicates a less mobile FMIN 

molecule. FMIN mobility in the oxidase may be important in enabling the formation of 

the C4-cc hydroperoxide which imposes bending on the otherwise planar isoalloxazine 

system. 

14 
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P:.c4a 	1• 
Thr197 

Figure 1.15 Thr197 may govern the mobilit\ of the FMN enabling a water molecule (blue) to fit into 

a pocket on the re-side of the FMN in glvcolate oxidase (black) but not in flavocytochromc h 2  

(coloured). 

In glycolate oxidase the active-site base (His254) forms hydrogen bonds to Asp 157 

and the adjacent residue Thr158. In fcb 2, the equivalent residues are Asp282 and 

A1a283 of which only the former can form a hydrogen bond with His373 (Figure 

1.16). Sequence alignments show that a threonine is conserved at this position in 

glycolate oxidase and all other family members which react with molecular oxygen 

(Lederer et al., 1991). It has therefore been suggested that the interaction of Thr158 

in GOX with His254 might play a role in governing oxidase activity. A1a283 is close 

to the active site so could also effect the substrate specificity of the enzyme. The role 

ofLeu23O in controlling substrate specificity has already been discussed. 

15 
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i_' 	 A1a253 His 54  
F373 

FMN 

GOX 	 ! FCb2 	
Leu23 t 

I 

Figure 1.16 Comparison of the active Sites of GOX and feb 2 . In GOX Thr 158 and Asp 157 each form 

hydrogen bonds to His254, the active site base. In feb 2  A1a283 is unable to form a hydrogen bond to 

H1s373. Leu230 and the equivalent residue. Trp108. control substrate specificity. 

1.6 L-lactate monooxygenase 

L-lactate monooxygenase (LMO) from M. smegmatis is a member of the L-a-

hydroxy acid oxidases. It catalyses the oxidation of L-lactate to pyruvate (Hayaishu et 

al., 1957, Lockridge et al., 1972, Ghisla and Massey 1991). LMO is unique within 

this family in that dissociation of the initial oxidation product pyruvate occurs much 

more slowly than the reaction of the reduced enzyme-pyruvate complex with oxygen. 

The resultant H202  decarboxylates pyruvate within the active site to the final 

products, acetate, CO 2  and water. The crystal structure is not available but there is 

close sequence similarity to fcb 2 . For each of the residues implicated in binding and 

catalysis there is an identical residue in the amino acid sequence of LMO (Giegel et 

al., 1990, Maeda-Yorita et al., 1995, Sanders et al., 1999, Müh et al., 1994a and 

1994b) The mutation G99A in the vicinity of the flavin resulted in a dramatic change 

in the oxygen reactivity of the enzyme (Sun et al., 1996). The G99A enzyme is 

reduced by L-lactate at a similar rate to that of wild-type enzyme but produces 

LL 



Chapter 1 Introduction to flavocytochrome b2  

pyruvate instead of the decarboxylation products. This enzyme reacts with 02 at a rate 

--100-fold slower than wild-type, Due to the very low oxygen reactivity of the 

reduced enzyme, G99A catalyses the oxidation of L-lactate to pyruvate and H 202  

instead of acetate, CO 2  and H20, the normal decarboxylation products. It is suggested 

that the small steric change close to the N(5) of the flavin causes a profound change in 

the electrostatic distribution of the isoalloxazine ring. This implies that electrostatic 

interactions provide an important factor for control of 02 reactivity. 

1.7 Flavin Reoxidation by molecular oxygen 

A detailed comparison of the active site structure of GOX and fcb 2  has suggested the 

origin of their different re-oxidation modes lies in the existence of a putative oxygen 

binding pocket on the re-side of the cofactor in GOX (Figure 1.17). The si-side of the 

flavin being crowded by catalytic residues. The amino acid sequence for long chain c-

hydroxy acid oxidase is also available but alignment with GOX does not shed any light 

on what might control oxidase activity. The first step in re-oxidation of the reduced 

flavin is the transfer of an electron from the flavin to molecular oxygen. Spin inversion 

then occurs and a covalent flavin 4a-hydroperoxide forms. This will occur if the 

distance and orientation of the flavin and superoxide is such to enable a 

thermodynamically stable bond to form. Hydroperoxide then dissociates 

heterolytically to yield oxidised flavin and hydrogen peroxide. 

17 
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Figure 1.17 Mechanism of re-oxidation of the flavin by molecular oxygen. 

1.8 Project Aims 

The flavin domain (FDH) expressed independently of the haem domain retains its 

ability to act as a lactate dehydrogenase and this project focuses on three areas that 

affect how FDH functions: - 

i) Substrate specificity and ii) reactivity towards molecular oxygen. 

Two mutant enzymes were constructed, the first involved a single amino acid change 

of Leu230 to tryptophan - FDHL230W. The second mutant was designed to encompass 

the major structural differences seen at the active sites to see if their collective effect 

yielded improved oxidase activity or glycolate selectivity. In addition to the mutation 

L230W, residue Thr197 was mutated to alanine in an attempt to create a pocket on 
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the re-side of the FMN and A1a283 was mutated to threonine. This triple mutant 

enzyme is referred to as FDHraip. 

iii) recognition for cytochrome c. 

In the absence of the haem domain direct electron transfer from flavin to cytochrome 

c is extremely slow. This is thought to be due to poor recognition between the two 

protein surfaces. The effect of creating a recognition site for cytochrome c on the 

surface of the flavin domain to increase the efficiency of electron transfer is 

investigated. 

19 
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2.0 Materials and Methods 

2.1 Buffers 

0.5 M Phosphate pH 7.0 

305 mM Na21-1PO4  solution, dibasic potassium salt 

195 mM NaH2PO4  solution, monobasic potassium salt 

0.1 M Tris.HCI pH 75, I=0.1M (Trislhydroxymethyllaminomethane) 

dH20 	 500 ml 

Trizma base 	 12.1 g 

NaCI 	 5.265g 

Adjusted to pH 7.5 using 1M HCI and made up to 11 with dH 20 

0.1 M MOPS pH 7.5 (3-IN-Morpholinolpropanesulfonic acid) 

dH20 	 500 ml 

MOPS 	 20.93 g 

Adjusted to pH 7.5 using IM HC1 and made up to 11 with dH 20 

Lysis Buffer 

Phosphate buffer pH 7.0 100 mM 

Lactate 	 10 mm 

EDTA 	 10 m 

PMSF 	 1 mm 

egg white lysozyme 	0.2 mg/ml 

L-lactate/ferricyanide activity assay 

Tris.HC1 pH 7.5,1=0.1 M. 

L-lactate lithium salt 	10 mm 

Potassium ferricyanide. 	2 mM 
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3 x SDS gel-loading buffer 

Tris.HCI pH 6.8 	50 mM 

Dithiothreitol 	 100 mM 

SDS (electrophoresis grade) 2% 

Bromophenol blue 	0.1% 

glycerol 	 10% 

SDS resolving Buffer (1.5 M Tris.HCI pH 8.8) 

Trizmabase 	 181.6g 

SDS 	 4.Og 

dH20 	 600 ml 

Adjusted to pH 8.8 with HC1 and made up to 11 with dH 20 

Stacking Buffer (0.5 M Tris.HCI pH 6.8) 

Trizma base 	 30.28 g 

SDS 	 Lug 

dH20 	 450 ml 

Adjusted to pH 6.8 with HC1 and made up to 0.5 1 with dH20 

Sxtris-glycine running buffer 

Trizma base 	 15.1 g 

glycine 	 94 	g 

10%SDS 	 50m1 

Tris-Acetate (TAE) 

Trizma base 	 242 	g 

Glacial acetic acid 	57.1 ml 

0.5 M EDTA (pH 8.0) 	100 ml 
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Tris-buffered saline (TBS) 

I MTns.HC1pH7.5 	10 ml 

4MNaC1 	 37.5 ml 

dH2O to 11 

Transfer Buffer (lOx) 

I M Tris.HCI pH 8.3 	250 ml 

Glycine 	 112.6g 

dH2O to 11 

Developing solution 

o-dianisidine 5 mg/ml 	500 111 

Imidazole 	 1 ml 

Hydrogen peroxide (30 %) 0.1 ml 

H20 	 8.4 ml 

TEG/Lysozyme 

Tris.HC1 pH 8.0 	25 mM 

EDTA 	 10 mm 

Glucose 	 50 mM 

Solution B 

Tris.HC1 pH 8.0 	40 mM 

EDTA 	 1 mm 

Na Acetate 	 0.1 M 

SDS 	 0.1% 
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2.2 Growth Media 

Luria Broth 

Bacto Tryptone 	10 gIl 

Bacto Yeast Extract 5 gIl 

NaCl 5gIl 

Soc Medium 

Terrific Broth 

Bacto Tryptone 	12 g/l 

Bacto Yeast Extract 24 g/l 

glycerol 	4 mIll 

K2HPO4 	12.54 g/l 

KFI2PO4 	2.31g/l 

Bacto Tryptone 20 g/l 

Bacto Yeast Extract 50 g/l 

NaCl 10 mm 

KC1 2.5mM 

MgSO4 10 mm 

Glucose 20 mM 

All media was sterilised prior to use at 121 °C for twenty minutes in a Kestral 

autoclave. 

2.3 Molecular Biology 

2.3.1 DNA Digest 

Plasmid DNA 	1-2 i.il (-..5-10 pig) 

Multicore Buffer (Promega) 1.5 tl 

EcoRl 	 I il 

HindIII 	 1 tl 

dH2O 	 10 [11 

Reactants were mixed under standard sterile conditions in an Eppendorf and 

incubated at 37 °C for at least 1 hr. 
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2.3.2 DNA Ligation 

Vector DNA 	0.5 j.tl (-5 jig) 

Insert DNA 	I jil (---5-10 jig) 

5xLigase buffer (NEB 2) 	2 jil 

Bovine serum albumin 	100 jig/jil 

DNA Ligase (NEB) 	I jil 

dH20 	 6.5 jil 

Reactants were mixed under standard sterile conditions in an Eppendorf and 

incubated for 1-4 hours at room temperature. 

2.3.1 Agarose Gel Electrophoresis 

Agarose, high purity 	0.17 g 

lx TAE buffer 	 25 ml 

Ethidium Bromide (10 mg/ml) 2 jil 

Agarose gels (0.7 %) were used to determine purity and quantity of DNA and to 

separate digested DNA fragments. Agarose was dissolved in TAE buffer by heating 

then allowed to cool until room temperature before addition of ethidium bromide to a 

concentration of 0.5 pg/mI as DNA marker and poured into a the mould and comb 

inserted. Once the gel was set the comb was removed and electrophoresis buffer 

added until the gel was covered. Samples of DNA were mixed with gel loading buffer 

and loaded into the slots of the submerged gel along with 1 kb marker ladder (Gibco 

BRL). The gel was run for 30-60 minutes at 38 mA or until the dye front had 

migrated the appropriate distance. The gel was visualised under ultraviolet 

illumination and the required band cut out using a scalpel. The piece of DNA was then 

purified using the QIAEX II agarose gel extraction kit. This uses a silica matrix EZ-

GLASSMILKTm  to bind DNA, which was then eluted. 
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2.3.4 DNA Isolation 

2.3.4.1 Plasmid DNA Preparation (large scale) 

A single colony was used to inoculate 50 ml Luria Broth containing 50 mg/mI 

ampicillin which was grown overnight at 37 °C. Cells were pelleted by centrifugation 

at 4000 rpm (SLAI 500 rotor, Sorval RC-5B centrifuge) for 10 minutes in silinated 

corex tubes. Cell pellets were resuspended in 2 ml TEG/lysozyme mixed by inversion 

and left on ice for 20 minutes. To this solution 4 ml 0.2 M NaOHII% SDS was 

added, mixed by inversion and left on ice for 5 mins. 3 ml of 3 M Na Acetate pH 5.2 

was added and again the solution was mixed by inversion. The solution was spun at 

10,000 rpm for 10 minutes to remove chromosomal DNA. The supernatant was 

precipitated by adding 16 nil of EtOH and incubating on ice for 15 minutes followed 

by centrifuging at 10,000 rpm (Biofuge, pico, Heraeus) for 10 mins to pellet plasmid 

DNA. The plasmid DNA was resuspended in 4 ml solution B and then extracted with 

4 ml of phenol/chloroform 1:1. Removing the aqueous phase to a clean test-tube, the 

organic phases were combined, mixed with 8 ml ethanol, incubated on ice for 15 

minutes and centrifuged at 10,000 rpm (Heraeus, Biofuge, pico) for 10 minutes. The 

pellet was resuspended in 400 .tl TE buffer transferred to an Eppendorf and incubated 

with 20 tI boiled RNAse (10 mg/ml) at 37 °C for 1 hour. To the aqueous phase 20 j.tl 

of 4 M NaCl was added and the solution extracted with 3 x 500 .il 

phenol/chloroform followed by one extraction with 500 il chloroform. The aqueous 

phase was incubated on ice for 10 minutes with 800 tl EtOH to produce a white 

precipitate. The plasmid DNA pellet was spun in a microcentrifuge at 13,000 rpm 

(Heraeus, Biofttge, pico) for 5 minutes, excess solution removed and the pellet 

washed with 300 lii EtOH (70 %) before drying. Plasmid DNA was resuspended in 

200 tl dH20 and stored at —20 °C. 

2.3.4.2 Plasmid DNA Preparation (small scale) 

Plasmids were purified from 2-3 ml overnight culture using GFX micro plasmid prep 

kit. A single colony was used to inoculate 5 ml LB, 50 .tg/.il ampicillin which was 
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incubated at 37 °C overnight. A 1-1.5 ml culture was centrifuged for 1 minute 

(Heraeus, Biofüge, pico) 13,000 rpm, supernatant removed, additional aliquots of 

culture added centrifuged and supernatant removed. The cell pellet was resuspended 

in 300 t.tl solution I. Cells were then lysed by alkali treatment and chromosomal DNA 

and proteins denatured. The solution was then neutralised with an acetate solution and 

transferred onto a GFX column which binds DNA, washed and then eluted from glass 

fibre matrix into low ionic strength buffer (20 tl). 

2.3.5 Transformation 

Plasmid solution (5 .tl, from miniprep) was added to 200 il competent cells (E.coli 

TG1) kept on ice for 30 minutes. Cells were then subjected to heat shock at 42 °C for 

45 seconds followed by immediate immersion in ice for 2 minutes. 800 .tl SOC 

medium was added and the solution incubated at 37 °C for 1 hour with shaking. Cells 

were pelleted, resuspended in 100 .ii H20 and spread on agar/ampicillin plates which 

were then incubated at 37 °C overnight. Plates spread with vector or insert were used 

as controls. 

2.3.6 Growth and Maintenance of Cell Stocks 

Standard sterile techniques were employed. Media and equipment were sterilised at 

121 °C for twenty minutes in a Kestral autoclave to avoid contamination. 

Agar plates. 

Single colonies from transformations were streaked on agar/ampicillin plates and 

stored at 4 °C for up to 3 weeks. 

-80°C freezer stocks. 

Single colonies were used to inoculate 5 ml starter cultures. These were incubated at 

37 °C until mid-log phase then stored with glycerol at a concentration of 50 % v/v at 

—80 °C. Cell stocks were used to re-streak agar plates or used directly to inoculate 5 

ml starter cultures. 
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2.4 Hybrid PCR 

LOOI 	
FDH01 EK324A'F325E 	 FDH?GLY _ 	

Thi 5GLY I,riw 	

118 

Figure 2.1 Replacement of DNA encoding for the loop section with that encoding for 5 glycinc 

residues. 

PCR was used to replace a section of the loop region, residues 298-320 inclusive, 

with either 5 glycine or 7 glycine residue linker (Figure 2.1). Primer sequences used 

are shown in Table 2.1. Template DNA for the flavin domain contained the mutations 

K201E, K324A, F325E. 

2.4.1 Primers 

Primer DNA base sequence 

5 GLYB2LOOP GGT GGT GGT GGT GUT CAA GUT GCT TCG 

AGA GCG 

H3B2LOOP CTC CGG AAG CTT CAG AAA GTA GCC TTA 

AAGC 

5GLYB2REVCOM ACC ACC ACC ACC ACC TTT CAG CTT CAT ATC 

B-2074A-98 CTC CTG GTT GAA TTC ATG GAA ACT AAG G 

7GLYB2LOOP GGT GUT GUT GGT GGT GGT GGT GCG TTA 

TCA GCG GAA ATT GAC CC 

B2CTERMVECT GCC TAG CTT TAA GGC TAC TTT CTG 

VECTB2CTERM CAG AAA GTA GCC TTA AAG CTA GGC 

Table 2.1 DNA base sequences of primers used in ?1K reactions 
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2.4.2 PCR Conditions 

PCR conditions are described in Table 2.2. The sample was overlaid with 50 p1 

mineral oil to prevent evaporation of the sample during repeated heating and cooling 

cycles. The process was carried out for 20 cycles. PCR products were visualised by 

and purified from agarose gel electrophoresis before subsequent steps. 

Cycle Denaturation Annealing Polymerisation 

First cycle 5 mins 95 °C 2 mins 41 °C 3 mins 72 °C 

Subsequent cycle 1 min 95 °C 2 mins 41 °C 3 mins 72 °C 

Table 2.2 PCR conditions 

PCR was used to amplify the sequence of the flavin between the loop and H3 end 

introducing a region encoding for 5 glycine residues (Figure 2.2, step 1) and between 

the loop and RI end introducing complementary sequence to the 5 glycine residues 

(Figure 2.3, step 2) (Table 2.3). Reactants were mixed under sterile conditions in a 

0.5 ml microfuge tube in the following order and overlayed with 100 p1  mineral oil to 

prevent evaporation. 

Step 1 Step 2 

Template DNA 1-2 pg 1-2 pg 

Primer 5GLYB2LOOP 

(10 pmol) 

5GLYB2REVCOM 

10 pmol 

Primer H3B2LOOP (10 pmol) B2074A-98 (10 pmol) 

Mix. of four dNTPs, each at 

concentration of 10 mJ\4 

2 p1 2 p1 

Buffer 

(Promega, 1 Oxconc.) 

5 pl 5 p 1  

MgCl2 (25 mM) 3 p 1  3 p1 

H20 To 50 p 1  To 50 p 1  

Taq DNA polymerase (5 units/pi) 0.5 p 1  0.5 p1 

Table 2.3 Components of step 1 and step 2 PCR 
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Step 1 PCR 	Templat1 DNA 

R 1  11 3  

Heat to separate strands. 
Cool to anneal primers 

5GLYB21-00P 

R1 \ / 11 3  
31 

II 
298 	320 

51 	 .. ..J..J....................... 
298 	320 

/ 
DNA polymerase catalyses 

H3B2LOOP 

5'- 	3' DNA synthesis 

V 

5 .  11 II I  

I I 3 I 
298 	320 298 	320 

Heat to separate strands.  
Cool to anneal primers Repeat PCR cycles ] 

FA] 	 5GLY1321-00P 	 B 

5 	
/ 	

113 	 H3  

.

I 	........................
/5'  

R3B2LOOP 

IT 	
5GLYB2LOOP 

1 5' 	 11 3 	 298 320 	 11 3  
.................. 

298 	.. 	

. 

H3B2LOOP 

After 20 cycles of PCR the predominant product is double sanded fragments of form A and B. 

Figure 2.2 Step I PCR. Generation of the double stranded DNA fragment encoding for the flavin 

domain (yellow) between the loop and H3 end. Sequence encoding for (blue) and complementary 

(pink) to 5 glycine residues. Original loop section (green). 

OUG 



Chapter 2 Materials and Methods 

Step 2 PCR 	TemplatDNA 

R 1 	 298 320 	 Il 

Ileat to separate strands, 	- 

Cool to anneal primers 	 -, 

B2074A-98 

298 320 	 11 3  

9830 

5GLYB2REVCOM 

DNA polymerase catalyses 

5'-> 3' DNA synthesis 

R 1 	 298 320 	 U 3 	 298 320 

51 	I=1 	I 
	

3 

heat to separate strands. 

Cool to anneal primers 

FAI 298 

5' 

5GLY52REV0M 

I C 	
298320 

5 .  
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After 20 cycles of PCR the predominant product is double stranded fragments of form A and B. 

Figure 2.3 Step 2 PCR. Generation of the double stranded DNA fragment encoding for the flavin 

domain (yellow) between the loop and RI end. Sequence encoding for (grey) and complementary 

(red) to 5 glycine residues. Original loop section (green). 
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DNA fragments from PCRs step land 2 were purified from agarose gel before PCR to 

create the gene for the flavin domain with the 5 glycine replacement (Figure 2.4) 

(Table 2.4). Reactants were mixed in the following order under sterile conditions to a 

0.5 ml microflige tube and overlayed with 100 M'  mineral oil to prevent evaporation. 

Step 3 

PCR product Step I I j.il (100 pmol) 

PCR product Step 2 1 ptl(100prnol) 

dNTPs (5 mM) 2 jil 

Buffer (Promega lOxconc.) 5 jil 

MgCl 2  25 mM 3 	.tl 

Primer H3B2LOOP 2.5 	.tl 

Primer B2074A-98 2.5 jil 

dH20 (to final vol. of 50 .tl) 32.5 	.t1 

Taq DNA polymerase 5units/.t1 0.5 j.tl 

Table 2.4 Components of PCR Step3 

Step 3 PCR 
H 3  

PCR Product Step 1 
	 {3 

PCR Product Step 2 
 

R 1  

8204A-98 

% 
114 

3GTG3TGGT.GT 

I 	If 4 

H3B2LOOP 

Sequence encoding if 
for 5 glycine residues 

51 

Figure 2.4 Step 3 PCR Formation of the double stranded DNA fragment encoding for the flavin 

domain with the loop replaced by a 5 glvcine linker. 

If I  Repeat PCR cychs 

I 	'q 

GGTGGTGGTGGTGGT 
	 H  

11 3  
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Step 4 Ligation 
5Glycne 

EcoRI 
residues 

113 	

Ec

OHi

pJF118

oRI 

ndIll R I 	pJF b1l 8 

Figure 2.5 Ligation of double stranded PCR product into the expression vector pJF 11 8EH (Fürste et 

al., 1986). 

2.5 Protein Isolation and Purification 

2.5.1 Cell Growth 

2.5.1.1 pop2136 (pRC23) 

Starter cultures (5 ml) were grown overnight and were used to inoculate 1 1 flasks 

containing 500 ml Luna broth, 100 tg/m1 carbenicillin. Cultures were incubated at 

30°C shaking at 200 rpm until mid-log phase (approx. 5-6 hours). Protein over-

expression was induced by increasing the growth temperature to 42 °C for 10 hours. 

A typical growth yielded approximately 4 gY' wet cell mass. 

2.5.1.2 TG  (pJF1I8) 

Starter cultures (5 ml) were grown overnight and were used to inoculate 2 1 flasks 

containing 500 ml of Terrific broth, 50ig/m1 of ampicillin. Flasks were incubated at 

37 °C and 200 rpm until mid log phase (O.D.0,6 at 600nm). Cultures were induced 

with 0.5 mM IPTG (isopropyl-3-D-1thiogalactopyranoside) for 10-12 hours. A 

typical growth yielded approximately 8-10 g/l wet cell mass. 

2.5.2 Cell Lysis 

A typical preparation used 20-30 g of wet cell mass. The cells were snap frozen in 

liquid nitrogen, resuspended and stirred in 100 ml lysis buffer for 2 hrs at 4 °C 
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followed by sonication to ensure maximum release of protein. Sonication was carried 

out at intensity 8 for 3-4 minutes (20 sec bursts) using an MSE Soniprep 150 while the 

cells were kept on ice. Cell debris was removed by centrifugation at 15000 rpm using 

a ss34 rotor and Sorval RC-5B centrifuge. The cell lysis solution was diluted 

approximately 4-fold in dH20/1 0 % glycerol to provide the correct ionic strength for 

column chromatography. The addition of glycerol has been shown to help prevent 

flavin loss but it is not known why. 

2.5.3 Anion Exchange Chromatography 

Diethylaminoethyl, DE52 column material (Whatman) was prepared by re-suspending 

in 100 mM phosphate buffer pH 7.0 before equilibrating in 10 MM phosphate buffer 

pH 7.0. A column approximately 10 cm long and 2 cm in diameter was poured and 

washed with two column volumes of 10 mM phosphate buffer. The diluted 

supernatant was loaded directly onto the DE52. FDH binds to the column, remaining 

protein is washed through. Eluate was tested for L-lactate/ferricyanide oxidoreductase 

activity to ensure FDH was binding to the column material. The column was washed 

with 10 mM phosphate pH 7.0 until the UV absorbance at 270 nm was minimal. FDH 

was eluted with ~! 60 mM phosphate buffer in a tight band. 

2.5.4 Ammonium Sulphate Precipitation 

FDH in the eluent was precipitated with 80 % ammonium sulphate. The 80 % solution 

was stirred at 4 °C for 2 hours then centrifuged at 15000 g for 15-20 minutes to give a 

pellet containing FDH. The pellet was dissolved in the minimum of 0.1 M Tris.HCI 

pH 7.5 buffer (2-3 ml) and desalted by gel filtration chromatography. The protein 

solution was collected in fractions and its purity determined. Protein was stored at 

-80 °C 

2.5.5 Gel Filtration Chromatography 

Sephadex G25 was equilibrated in Tris.HCI pH 7.5 I=0.IM. A column approximately 

25 cm long, diameter 1-2 cm was poured. A 2-3 ml aliquot of concentrated protein 

solution were then passed through the column. 
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2.6 Purity Determination 

The purity of the protein was assessed by UV/vis spectrophotometry. A ratio of 

A270/A454  of 8 was considered pure (Figure 2.6). 

Figure 2.6 Spectrum of purified flavin domain. 

2.6.1 SDS Page Gel Electrophoresis 

4 % Stacking Gel 12 % Separation Gel 

dH20 3.05 p1 3.5m1 

0.5MTris.HC1,pH6.8 1.25m1 - 

1.5MTris.HC1,pH8.8 - 2.5m1 

10%(w/v)SDS 50p1 100 PI 

Acrylamide (30% stock) 0.65 ml 4 ml 

Ammonium persulfate (10%) 25 p1 50 p1 

TEMED 8 	tl 5 p 1  

Table 2.5 Components of SDS gel 

The polyacrylamide gel was prepared in two phases, a resolving gel for the separation 

of the protein samples and a stacking gel for the concentration of protein samples 
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before separation (Table 2.5). Gels were prepared by combining all solutions except 

TEMED. Polymerisation was initiated by addition of TEMED and ammonium 

persulfate. The resolving gel was poured between two glass plates and overlaid with 

water saturated butanol. Once polymerised (30 minutes) the water saturated butanol 

was rinsed off with distilled water and the stacking gel was prepared. The stacking gel 

was mixed and then poured in top of the resolving gel. A comb was then inserted into 

the top of the stacking gel and the gel was allowed to polymerise for 30 minutes. 

Once polymerised the gel was clamped into a vertical electrophoresis tank with I x 

running buffer. The comb was then carefully removed and the protein samples were 

loaded into the wells with one lane of prestained protein markers (BioLabs, 

broadrange). Gels were run at 200 volts for 45 minutes. The gels were stained with I 

% Coomassie blue in 40 % MeOHIIO % HOAc for 30 minutes followed by destaining 

in 40 % MeOH/IO % HOAc until bands became visible (usually 1-3 hours). 

2.6.2 Western Blotting 

An SD S-PAGE gel was run and then soaked in 1 x transfer buffer for two minutes. It 

was then assembled into a sandwich with the gel adjacent to a piece of nylon 

membrane (Hybond-N) placed between 2 x 2 layers of 3 mm filter paper and foam 

sponge, (all pre-soaked in I x transfer buffer). The proteins were then transferred 

onto the membrane by immersing the sandwich in a tank containing I x transfer buffer 

and passing a current of I Amp through it for 2 hours. The membrane was on the 

positive electrode side, since proteins migrate towards the electrode. The membrane 

was then used for immunodetection. 

The membrane filters were blocked by agitating in 20 % milk protein solution in TBS 

overnight. Milk solution was removed and 30 il rabbit antiserum 132-3 in 40 ml 5 % 

milk protein added and the solution agitated gently for 3 hrs before washing 

thoroughly in TBS for 30 minutes, changing lBS frequently. TBS buffer was then 

removed and 10 .xl goat (antirabbit) antibody in 40 ml 5 % milkprotein added and 
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again the solution was agitated gently for 2 hrs followed by copious washing as 

before. Membranes were developed by shaking the membrane in 10 ml of developing 

solution until an orange band appeared. The reaction was stopped by rinsing the 

membrane in distilled water. 

2.7 Kinetic Analysis 

2.7.1 Steady-State 

Steady-state experiments were performed on a Shimadzu 2101 UV/vis 

spectrophotometer at 25 °C. Assays were carried out in Tris.HCI pH 7.5, I = 0-IM, 

except were the ionic strength of the solution needed to be varied. Protein solution 

was kept on ice during the experiment until required and remained fully active for up 

to 2 hours. Assay solutions were made up in spectrophotometric cuvettes without 

protein and incubated in a water bath at 25 °C for 5-10 minutes prior to measurement. 

Reactions were initiated by addition of protein. The rate of change of absorbance of 

the acceptor (AA/AT) was followed over 2 minutes at the relevant wavelength. Using 

the value of AA/1\T, k was calculated from the equation shown below. Values were 

plotted against the concentrations of the substrate to generate a Michaelis-Mentefl 

curve, allowing calculation of the kinetic parameters and K. 

k (1) 
=AA/AT (min- ') x assay vol (1) / 6 x 60 (s) x p.1. (cm) x protein vol (1) x 

[protein] (M) 

where 	k = The observed reaction rate. 

F, = The extinction coefficient of cytochrome c or [Fe(CN)6] 3 . 

p.l. = The pathlength of the cuvette. 

2.7.2 Electron Acceptor Dependence 

The concentration of ferricyanide or cytochrome c was varied while the concentration 

of L-lactate was kept constant and saturating. 
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2.7.3 Pre-steady-state Kinetics 

All experiments were performed on an Applied Photophysics SF. 17 Micro volume 

stopped-flow spectrophotometer at 25 °C, in Tris.HCI pH 7.5, I=O.IM buffer. The 

reaction was initiated by the rapid mixing of protein (typically - 6 riM) and substrate 

(saturating concentrations). The reaction was monitored at 454 nm. At least 3 

consistent traces were obtained before averaging and fitting to a single exponential. 

2.8 Oxidase Activity 

2.8.1 Steady-State 

Reactions were carried out in a I ml glass cuvett with a 1 cm light path. 

Oxidase activity under steady-state conditions can be obtained by using a coupled 

assay system. 

Stock Solutions 	8 mM o-dianisidine 

0.0025 g in I ml buffer! 80 % triton x 10 

Horse Radish Peroxidase I mg/ml 

0.1 M MOPS pH 7.5 

To a solution containing 0.04 mM o-dianisidine, 2 il I-IRP (1 mg/ml), 0.5 mM L-

lactate, buffer was added to give a final volume of I ml. The reaction was initiated by 

addition of 10 j.il FDH (100 .xM). Oxidase activity was measured as an increase in 

absorbance at 440 nm corresponding to that of reduced o-dianisidine. 

2.8.2 Pre-Steady-State Analysis 

The procedure was carried out as in section 2.7.3. The concentration of protein 

samples and substrate samples were 40 1.iM and 60 .tM respectively, which on mixing 

were lowered to half these concentrations. The rate of re-oxidation of the FMN by 

oxygen saturated buffers was monitored at 454 nm over 100 ms. At least three 

consistent traces were obtained before averaging and fitting to a single exponential. 
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2.9 Redox Potentiometry 

2.9.1 Redox Solutions and Mediators 

Ferricyanide 30 mg in 5 ml 100 mM phosphate buffer pH 7.0 

L-lactate 0.01g in 5 ml 100 mM phosphate buffer pH 7.0 

HNQ (2-hydroxy- I -4-napthaquinone sulphite) 	 Em= -140 mV 

MV (Methyl Viologen) 	 Em -430 mV 

ANQ (Anthraquinone) 	 Em= -220 mV 

2.9.2 Procedure 

Redox titrations were carried out under anaerobic conditions using a calomel 

electrode. Mediator solutions were made up to concentrations of 10 mM with 

degassed buffer. Protein was fully degassed by passing through a 10 x 2 cm gel 

filtration column (sephadex G25). Protein solution was then diluted with degassed 

buffer until an absorption of 0.7 at 452 rim. (-- 60 1.tM) was obtained in a volume of 10 

ml. 10 .ti of each mediator were added. The protein solution was fully re-oxidised by 

addition of ferricyanide, then reduced in step wise increments of -5 mV by the 

addition of L-lactate and allowed to reach equilibration before recording the spectrum 

(700-250 nm). Once the protein had been fully reduced re-oxidation was carried out 

by addition of ferricyanide and the spectrum recorded at each new potential until full 

oxidation had been achieved. To analyse the data, the percentage oxidised protein was 

plotted against its corresponding potential, corrected relative to the standard 

hydrogen electrode (SHE) by Eh = E + 244 mV. This gave a sigmoidal curve which 

was fitted to a single electron Nernst equation and the midpoint calculated. The slope, 

if the system was in equilibrium is 29.5 ± 5 indicating a two electron transfer process. 

The Nernst Equation is given by: E=Eh + RT / nFln[ox]/[red] 

E = measured potential (mV) 	 EF, = mid-point potential (mV) 

T = temperature (K) 	 R = molar gas constant (J mol 1  K 1 ) 

[red] = concentration of reduced species 	F = Faraday constant (C mol') 

[ox] = concentration of oxidised species 	n = number of electrons 
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2.10 Microcalorimetry 

2.10.1 Differential Scanning Calorimetry 

Samples for calorimetry were dialysed extensively against the required buffer at 4 °C. 

Aliquots of the final dialysis buffer were used for the DSC reference and base line 

corrections. DSC was performed using a Microcal MC-2D instrument at a scan rate 

of 60 °C W. Samples and reference samples were degassed under vacuum with gentle 

stirring before being loaded, and were held under 2-3 atm N 2  pressure during DSC to 

inhibit degassing and bubble formation at higher temperatures. 

2.10.2 Isothermal Titration Calorimetry 

Protein-protein titration isotherms were measured at 25 °C using microcal Omega 

titration microcalorimeter. A typical titration sequence involved 20 injections at 3 

minute intervals of 5 1A aliquots of cytochrome c (- 300 jiM) solution into the stirred 

calorimeter cell (total volume 1.4 ml) containing FDH solution(-1 5 jiM) so that each 

titration was completed in approximately 1 hour. Control experiments for heats of 

dilution of cytochrome c and FDH were performed under identical conditions and 

used for data correction in subsequent analysis. FDH was fully reduced with sodium 

dithionite then passed down a gel filtration column to remove excess. Protein samples 

for microcalorimetry were dialysed extensively against the appropriate buffer and 

briefly degassed prior to loading in the calorimeter cell. Cytochrome c was dissolved 

in the same dialysis buffer to minimise dilution artefacts and loaded in the injection 

syringe at typically 10 to 20 x concentration of FDH. 
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3.0 The Flavin Domain of Flavocytochrome b2 

3.1 Substrate Specificity 

3.1.1 Steady-State Kinetics 

Steady-state experiments were carried out on FDH as described Section 2.7.1. The 

enzyme exhibits saturation kinetics with a Km for ferricyanide of 0.26 mM (Miles et 

a/.,1992). Hence concentrations of 3 mM ferricyanide were used for the 

determination of all steady-state parameters. Assays were carried out over a range of 

glycol ate or L-lactate concentrations (Figure 3.1). Data were then fitted to the 

Michaelis-Menten equation and '(cat and Km values were calculated for each of the 

mutant enzymes (Figure 3.2). The values obtained are compared to those of FDH WT  

and glycolate oxidase in Table 3.1. 

1.50 

1.48 

E ] 
 1.40 

1.38 

1.36 

0 	 20 	 40 	60 	 80 	100 

time s 

Figure 3.1 Examples of steady-state traces obtained for the reduction of [Fe(CN) 6] 3  by FDFIwr. The 

reaction was initiated by the addition of enzyme to the assay containing glycolate at concentrations of 

3 mlvi (red). 6 m (blue) and 15 mM (orange). 

Fre 



Chapter 3 The Flavin Domain of Flavocytocbrome b2  

Figure 3.2 A Michaelis-Menten plot for FDH with glvcolate. Individual points were calculated 

from steady-state assays. The data was fitted by least squares regression analysis to the Michaelis-

Menten equation using the program Microcal Origin. 

Substrate : L-lactate Substrate : Glycolate 

Enzyme kcat  s Kin (MM) tccat/Km 

M 1  s' 

kcat  s 1  Km (mM) k.,/Km 

M 1  s 

GOX 17.5±0.4 1.9 ± 0.2 9.21 x 103 20.0 	± 0.2 1.0 	± 0.1 20 x 103 

FDHWT  273 ±2 0.20 ± 0.05 1.36 x 106  8.4 ± 0.6 1.1 	± 	0.1 7.64 	:x io 

FDHL23OW  75.2 ± 3 3.9 ± 0.5 19.2 x 103  7.6 ± 0.6 7.3 	± 0.8 1.04 x 103 

FDH 9.5 ± 04 26 ± 3 3.7 x 	102  3.7 ± 0 .4 16.3 ± 	1.5 0.23 	x 103  

Table 3.1 Comparison of steady-state  kinetic parameters for L-lactate and glycolate dehydrogenation. 

Data for (lOX taken from Macheroux et al (1991). 

FDHwr  has a k value with L-lactate of 273 s'. Compared to this FDH LOW  shows a 

4-fold decrease in to 75 s 1  and FDH=  a 30-fold fall to 9.5 s. With glycolate as 

substrate the k values for FDHwr and FDHUZOW are similar (7.6 and 8.4 s 

respectively), a two-fold lowering in comparison with glycolate oxidase. Rates for 

FDHTPdP  decrease further to 3.7 s ' , a fifth of that seen in glycolate oxidase. 
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The value of Km, represents a measure of the affinity of the enzyme for the substrate. 

Low values indicate tight binding and high values weak binding. The Km values for L 

lactate increased from 0.2 mM for FDHwr to 3.9 mM for FDHLOW and 26 MM for 

FDHjij. The Km values for glycolate follow a similar pattern to that seen for lactate. 

Km for glycolate has increased from 1.1 mM for FDH to 7.3 mM for FDHLOW and 

16.3 mM for FDHp. Comparing values of Km for lactate and glycolate, FDHwr and 

FDHLOW both bind lactate more tightly than glycolate but this preference is reversed 

for the mutant FDHTjp which binds glycolate more tightly than lactate. Km values for 

glycolate and L-lactate are 16.3 mM and 26 mlvi, respectively 

Figure 3.3 Semi-log plot comparing K m  values for L-lactate and glycolate for GOX. FDHwr. 

FDHLOW, FDHTRff  The K, values were calculated from individual Michaelis plots. 

The enzyme efficiency, kt/Km with L-lactate has fallen from 10 6  MASA for FDI-lwr to 

103 M's for FDHL0W and 102  M's' for FDHri. Comparing values of kcat/Km 

(Figure 3.4) for L-lactate and glycolate, FDHw-r is 10 3-fold more efficient with L-

lactate than with glycolate. FDHI.23OW is still considerably better at oxidising L-lactate 

as a substrate but the difference has dropped to 30 times. In the triple mutant enzyme 

efficiency is only two-fold greater for lactate than glycolate although this has been 

accompanied by a general decrease in activity of the enzyme. 
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[-lactate 

I 	j Gtycolate 
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vvi 	 L230W 	 TRIP 

Figure 3.4 Comparison of enzyme efficiency of each for the enzymes with lactate and glycolate. 

3.1.2 Pre-steady-state Kinetic Analysis 

The pre-steady-state rates of flavin reduction by L-lactate and glycolate for each of 

the FDH mutants and FDH wr  were measured by stopped flow spectrophotometry at 

454 nm (section 2.7.3. Experiments were carried out with saturating concentrations of 

either L-lactate or glycolate. Three consistent traces were obtained before averaging 

and fitting to a single exponential (Figure 3.5). 

Figure 3.5 Pre-steady-state analysis for the reduction of FDH wr  by L-lactate was carried out by  

monitoring the rate of flavin reduction at 454 nm. The initial rise is due to the dead time of the 

instrument. This region of data was excluded from the fit. Trial fits using a range of equations were 

carried out but data was found to fit best to a single exponential. 
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Table 3.2 Pre-steady-state data for L-lactate and glvcolate reduction by FDHwr, FDHLoW and 

Enzyme L-lactate kijm  (s') Glycolate k1 11  (s'1 ) 

FDHT 258±25 6± 0.6 

FDH1,2ww 117 ± 15 5 ± 0.5 

FDHTFIP 2.9±0.5 3.1±0,5 
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Pre-steady-state k1 j1  values for mutants and FDH wr  are shown in Table 3.2. 

FDH. 

3.2 Potentiometry 

The introduction of different residues close to the FMN might affect the reduction 

potential of the flavin and therefore the driving force for the reaction (Pace et al., 

1986). It was assumed that should the triple mutant exhibit a reduction potential 

similar to wild type then the single mutant would not have a more significant effect. 

However, compensation effects in the triple mutant could mean that a single site 

mutation has a more significant effect than the triple mutation. The UV/vis spectra 

obtained for reductive and oxidative titrations for FDH TRn are shown in Figure 3.6. 

Figure 3.6 Redox titration spectra of FDH. The enzyme was reduced by the addition of L-lactate 

and re-oxidised by Fe(CN) 63'. Spectra were monitored at each potential. 
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Due to the length of time required at 25°C protein precipitation and evaporation of 

the solution occurred over the course of the experiment. To correct for this, spectra 

were normalised to zero absorbance at 750 nm, where no absorbance would be 

expected, and corrected by multiplying by (1-(1/X)). It was necessary to repeat the 

experiment twice; once to obtain the reductive curve and once for the oxidative curve 

using fresh protein stock each time to limit the amount of turbidity and protein 

precipitation. These data were combined and show that the reduction and oxidation of 

the enzyme is fully reversible under these conditions. The absorbances at 454 nm as a 

percentage of total FMIN absorbance were then plotted against the measured 

reduction potential for each spectrum, corrected to the standard hydrogen electrode. 

The data were fitted to a single two electron Nernst equation. The redox potential of - 

100±10 mV (Figure 3.7) compares favourably to that of FDHwr and mandelate 

dehydrogenase, (-110 mV and -119 mV respectively). So the three mutations at the 

active site have not had a significant effect on the reduction potential of the FMN. 

Figure 3.7 Plot of percentage oxidised FMN at 454 rim against measured potential (Vs SHE) 

Reduction data are shown in black re-oxidation data in green. Data were fitted to a single two 

electron Nernst equation. 

45 



Chapter 3 The Flavin Domain of FlavocytochrOme b2  

3.3 Oxidase Activity 

3.3.1 Steady-State 

Steady-state oxidase activity was measured using a coupled assay system (Figure 3.8). 

During lactate turnover hydrogen peroxide is produced as a result of FMN re-

oxidation by molecular oxygen. The reduction of hydrogen peroxide by horseradish 

peroxidase (I-LRP) present in the assay is coupled to the oxidation of o-dianisidine 

which can be monitored at 440 nm. An example trace is shown in Figure 3.12. 

OH o 

lactate 	02 	H202 	
pyruv ate 

I-I,() 

711
1 

OHRP 	 12+ 

H2.___ç—_NH2 	 - 

	

OMe 	 OMe j 
OMe 	 OMe 

Figure 3.8 Coupled assay system used to monitor oxidase activity of FDI{LOW 
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Figure 3.9 Example trace of steady-state oxidase activity of FDHLOW with L-lactate. 
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The rate of oxidase activity is much greater at the beginning of the reaction and slows 

as the reaction proceeds. It is likely that oxide and superoxide radicals produced 

during catalysis are damaging to the enzyme. As the reaction proceeds an increasing 

proportion of the enzyme becomes damaged and is unable to catalyse the reaction 

leading to lowered rates. Due to the low amounts of enzyme used in the steady-state 

assays it was not possible to test this hypothesis by analysing reaction samples by 

mass spectrometry or SDS-PAGE. Initial rates of oxidase activity were measured 

over the first 10 seconds of the reaction at saturating lactate concentrations (Table 

3.3). 

I kiim (s') 

EFDHWI 	
0.045 

FDHL230W 	 0.034 

FDH'r p 	 0.034 - 

Table 3.3 Steady-state data of oxidase activity ot r ui -lwr anu rnuiuiu. 

3.3.2 Pre-steady-State Oxidation with 02 

The pre-steady-state measurement allows the determination of oxidase activity with 

the enzyme undergoing a single reduction oxidation step. This eliminates the problem 

of the enzyme becoming damaged in subsequent turnover steps. The enzyme was first 

reduced with glycolate then flavin re-oxidation by oxygen present in the buffers was 

monitored at 454 run. At least 3 traces were obtained before averaging and fitting to a 

single exponential. The fitting range was set to allow for a time delay of 10-20 

seconds to ensure that full reduction of FMIN had been achieved (Figure 3.10). 
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Table 3.4 Pre-steady-state data for the re-oxidation of FDH and mutants by molecular oxygen. 

Enzyme kiim () 

FDHwr 0.015+0.001 

FDHL230W 0.017 ± 0.002 

FDHTIUp 0.015±0.002 
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Figure 3.10 Comparison of pre-steady-state oxidase activity for FDH wT  and FDHL23OW. Data are 

shown in black. Fits to single expontentials are shown as dotted lines, blue - FDHwr and magenta - 

FDHL:30W. Initial downward curve of the trace for L230W is due to the slower rate of reduction after 

initial mixing of this enzyme with lactate. 

3.4 Recognition for Cytochrome C 

The nature of the interaction between feb2 and cytochrome c has been previously 

studied (Daff etal., 1996). The surface of cytochrome c surrounding the haem 

consists of several positive charges arising from the side chains of Argl3, Lys72, 

Lys79 and Lys27 (Koppenol et al., 1982) (Figure 3.11). These are thought to form 

electrostatic interactions with complementary charges on the haem domain of feb 2 . 

Results are compatible with a model of one cytochrome c per haem domain and one 

main catalytically active binding site. Kinetic studies suggest a mechanism whereby 
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cytochrome c binding is slow and electron transfer rapid. The alternative mechanism 

in which complex formation is rapid and reversible but electron transfer within the 

complex is slow was found to be less likely. However cytochrome c reduction was 

still able to occur when ferrocytochrome was used as an inhibitor. This suggests that 

electron transfer occurs at more than one site and that intra-molecular transfer 

depends predominantly on the relative orientation and position of the two proteins. 

•HJ 

t 1tMJIIl. 	i1 

44, c 

Figure 3.11 Charged residues surrounding the haem of cytochrome c 

The isolated flavin domain of feb 2  shows very little activity with the physiological 

electron acceptor of fcb 2, cytochrome c (Balme et al., 1995). This is surprising 

considering the large driving force for electron transfer between the two redox centres 

is approximately 1/3 of a volt. Examination of the surface of the flavin domain around 

the solvent exposed C4a, N5 and C5a edge of the flavin show that residues are 

primarily positively charged or hydrophobic. Previous work attempted to create a 

docking site for cytochrome c on the surface of FDH. Three prominently positioned 

residues close to the flavin were engineered to complement the charges on 

cytochrome c (F. Welsh PhD thesis 1998). Two negatively charged residues were 

introduced by the mutations K20IE and F325E while simultaneously removing a 

me 
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positively charged lysine residue and a hydrophobic phenylalanine. The third mutation 

K324A also neutralised an exposed lysine (Figure 3 12). However, no increase in 

reactivity towards cytochrome c was observed. 

298 

[Ij 	. 

46 

1 
	

[ F325j 

Figure 3.12 Prominent residues around the flavin which have been mutated are coloured. The loop 

shown as a dashed line connects residues 298 and 318. 

In the crystal structures of FDH and intact fcb 2  the electron density for a large 

disordered loop of 20 amino acids is not visible. This flexible loop is situated on the 

surface of the flavin domain close to the FMIN and would normally be pushed to one 

side by the haem domain. However in the absence of the haem domain it could adopt 

a conformation that sterically blocks cytochrome c from approaching close enough for 

efficient electron transfer. Molecular modelling experiments have demonstrated that 

this is likely to occur (Figure 3.13, R. Macfle, 1998). The model predicts the closest 

edge-to-edge distances between the two redox centres would be no less than 20 A. 

For efficient electron transfer between redox centres distances of less than 14 A are 

usually required (C. Moser et al., 1992). 
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Figure 3.13 The closest approach of cvtochrome c (blue) to FDH1 (green) al1oed by the modelled 

loop (orange). 

Molecular modelling was used to re-design the loop so as to minimise its bulk but 

allow correct folding of the protein. A short amino-acid sequence of 5 or 7 glycine 

residues was found to be the most energetically favourable. Glycine residues were 

chosen to reduce attraction between the linker and the negatively charged residues 

introduced onto the surface. The minimum distance between the two redox centres 

was predicted by modelling to be approximately 13 A (Figure 3.14). 

In order to test these predictions two mutants were constructed. In combination with 

the three mutations K201E,K324A,F325E close to the flavin, the loop region was 

replaced with a short linker of 5 or 7 glycine residues. These mutants are referred to 

as FDH5G1,Y and FDH7GLy. 
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Figure 3.14 The closest approach of cvtochromc c to FDH 01 ,1. modelled 5 glycine linker in orange. 

3.4.1 Replacement of the loop 

Expression of FDH5GLY and FDH7GLY was confirmed by western blot. Purification of 

FDH7GLY proved problematic with loss of FMN and due to time constraints this 

mutant was not studied further. FDH5GLY was purified and confirmed to have a mass 

of 44014.6 (calculated 44013) by mass spectrometry (Figure 3.15). 
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34.800 
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Figure 3.15 Western Blott of FDH5GLY(A), FDH7QLY(B). FDH 01  EK324kF325(C ) and Confirmation of 

FDHSGLY by Mass spectrometry. 
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3.4.2 Steady-State Analysis 

Steady-state analysis was carried out using femcyanide and cytochrome c as electron 

acceptors (section 23. 1) (Figure 3.16 and Table 3.5). 

Figure 3.16 A Michaelis-Mentefl plot for FDH5GLY under saturating lactate conditions using 

cytochrome c as electron acceptor. Individual points were calculated from steady-state assays. The 

data was fitted by least squares regression analysis to the Michaelis-Menten equation using the 

program Microcal Origin. 

Fe(CN)63 	I Cytochrome C 

k 	(s') Km (mM) k 	(sd ) Km_(pM) 

FDHwT 273 ±1 0 0.22 ± 0.02 0.02 ± 0.01 6.3 ± 0.2 

FDHo1E,24A,F325E 14.6± 2 - 0.006±0.001 15 ± 1.0 

FDHSGLY 16.8 ± 2 0.7 ± 0.1 0.004 ± 0.001 7.3 ± 0.5 

Do,-.mtprc fer FflI4 	rind mutants with tFe(CN)613as electron acceptor and cytochromec. 

Data for FDHKOIE.K.24AJ325E was taken from F. Welsh PhD thesis 1998. 

The values of k,-. t, at saturating L-lactate concentrations, for the reduction of 

[Fe(CN)6]3  by FDHoIEj24,r325E and FDH5GLY is considerably less than for FDHvr. 

This is probably due to the electrostatic repulsion of [Fe(CN)6] 3  and the negatively 
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charged glutamate residues. Molecular modelling studies have shown that [Fe(CN) 6] 3  

is not hindered by the bulk of the loop and so rates of electron transfer are 

approximately the same for FDH01E.24A.F325E and FDH5ai.y. In contrast the 

interaction and electron transfer between FDHK201E.24Aj2.5E and the much larger 

cytochrome c is adversely effected by the steric bulk of the loop. Yet removing the 

bulk of the loop did not improve the rate of electron transfer. Km for cytochrome c 

remains approximately the same for FDH wr, FDH IE.K324&F325E and FDH5GLY. 

3.4.3 Ionic Strength Plots 

To investigate the nature of the interaction between cytochrome c and each of the 

enzymes FDHwr and FDH5GLY Michaelis plots over a range of ionic strengths from 

1=0.01 M to 1=0.40 M were obtained (Table 3.7 and 3.8). Values of log(k c t/Km) were 

plotted against 1112,  to produce the ionic strength plots shown in Figure 3.17. 

FDHSGLY 

Ionic Strength (M) keat (s 1 ) Km  (iM) k.,/Km 112 log k.,/K.,  

0.01 0.0069 - 10.8 639 0.10 2.80 

0.04 0.0041 4.1 993 0.20 3.00 

0.05 0.0035 3.9 898 0.22 2.95 

0.10 0.0036 7.3 494 0.32 2.69 

0.12 0.0028 4.4 658 0.35 2.82 

0.17 0.0030 8.4 177 0.41 2.25 

0.20 0.0037 31.5 119 0.45 2.08 

0.30 0.0030 43.6 69 0.55 1.84 

0.40 0.0036 31.6 115 0.63 2.06 

Table 3.7 Data for L-lactate dehydrogenation by FDH5GLY. The kinetic parameters, 1ç and lc. m. were 

calculated from Michaelis-Menten plots carried out at a range of ionic strengths. 
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FDHwr  

Ionic Strength (M) I k 	(s1 ) Km (1iM) k./Km II 2  log LtfKrn  

0.01 	 - 0.099 5.2 - 18929 010 4.30 

0.04 0.065 10.7 6072 0.20 3.80 

0.1 0.025 20.0 1250 - 0.32 3.10 

0.2 0 .004 69.1 58 0 45 . 1.76 

0.3 0.002 28.1 71 0.55 - 1.85 

0.4 0.002 __54_ 46 36 0.63 1.56 

-.--..-- 	1_ 	-- 
Table 3.8 Data for L-Iactate dehylrogeflaUOfl oy ruriwr. " 

calculated from Michaelis-Menten plots carried out at a range of ionic strengths. 
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Figure 3.17 Ionic strength data for FDHwr (blue) and FDH5GLY (red). The data for FDHwr have been 

fitted to the extended Debve-Huckel equation. 

Values of Km and k 1  were influenced by the ionic strength of the solution indicative 

of an interaction between oppositely charged surfaces. Data for FDHvrr were fitted to 

the extended Dubye-HUckel equation (Appendix 7.3) and show an increase in rates of 

electron transfer at low ionic strength when the interaction of two charge surfaces is 

favoured. The shape of the ionic strength plot for FDH5GLY is markedly different. As 

Km, were 
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ionic strength is lowered rates increase until 1=0.04 M, then decrease to I=0.0IM. 

There are two possible scenarios which lead up to electron transfer. Either initial 

interaction of cytochrome c is followed by translational movement to an orientation 

favourable for electron transfer or a simple Ping-Pong mechanism operates. In both 

cases too strong an interaction would slow the exchange and release process down. 

At high ionic strengths an increase in rate is observed which is thought to be due to 

the non-ideal behaviour of protein-protein interactions in this region. 

3.4.4 Microcalorimetry and Molecular Recognition 

Microcalorimetry was used to investigate the strength of the electrostatic interaction. 

Isothermal titration (ITC) and differential scanning (DSC) calorimetry techniques can 

be used to study non covalent interactions involved in biomolecular recognition 

(Cooper et al., 1993, Johnson el al., 1992). Biomolecular recognition processes rely 

on a subtle balance of non covalent forces to control and mediate binding. Interactions 

involved include hydrogen bonding, hydrophobic and electrostatic forces. The free 

energy changes associated with non-covalent interactions involve a balance between 

enthalpic and entropic contributions. 

3.4.4.1 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) involves the measurement of the differential 

heat energy uptake in a sample during a change in temperature. This experiment looks 

at the unfolding of proteins and the distinctive increase in excess heat capacity of the 

unfolded chain with respect to the folded protein. Experiments were carried out using 

a Microcal MC-21) instrument at a scan rate of 60 °C W. Dilute protein solutions 

(less than I mg/ml) were used to limit protein-protein interactions. Protein solutions 

were exhaustively dialysed in 10 mM Hepes (10.0IM) and concentrations 

determined accurately before being degassed. DSC scans were normalised by 
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subtraction of control buffer data. DSC traces showing endothermic unfolding 

transitions of cytochrome c and FDH r  individually and in a 1:1 ratio are shown in 

Figure 3.18 (Data Table 3.9). 

0.000 

-0.001 

-0.002 

0 

-0.003• 
rL 

C) 
-0.004 

-0.005 

-0.006 	 I 	• 	I 	• 	I 	• 	I 	• 	I 	I 	• 	I 	I 	• 

10 	20 	30 	40 	50 	60 	70 	80 	90 	100 110 

Temperature ( °C) 

Figure 3.18 Differential scanning calorimetry trace of cytochrome c (green). FDH (blue) and a 1:1 

mixture (red). DSC scans were carried out in one direction only and were not reversible due to 

aggregation of the enzyme at high temperature. 

The melting point of cytochrome c was determined to be 79.5 °C, much greater than 

FDH, 56.0 °C. A 1:1 mixture of FDH wr  and cytochrome c gave a melting point of 

60.0 °C, a 4 °C increase from that observed for FDH wr  alone. DSC scans for 

FDH5GLY, cytochrome c and a 1:1 mixture are shown in Figure 3.19. The melting 

point of FDHSGLY was determined to be 51.6 °C so thermal stability has decreased on 

replacing the loop section with a 5GLY linker. A 1:1 solution of cytochrome c and 

FDH5GLY exhibits a melting point of 53.2 °C an increase of 1.6 °C. However the latter 

peak was not frilly defined before exothermic aggregation of the protein took place. 
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Figure 3.19 Differential scanning calorimetry trace of cvtochrome c (green), FDHci.y (blue) and a 

1:1 mixture (red) 

Melting point 

cytochrome c 79.5 °C 

FDH q  56.0°C 

FDH 	/ cytochrome c 60.0 °C 

FDH5GLY 51.6 °C 

FDH5GLY/ cytochrome c —53 ,2 °C 

Table 3.9 Melting point temperatures of FDH wr  and FDH mutants individually and in 1:1 ratio with 

cytochrome C. 

3.4.4.2 Isothermal Calorimetric Titrations 

Isothermal calorimetry can be used to study the thermodynamics of binding initiated 

on mixing a solution of the chosen biomolecules. Aliquots of cytochrome c were 

injected into a cell (typically 20 or more injections) containing FDH5GLY until the final 

molar ratio of FDH5GLY to cytochrome c was 1:2. Experiments were carried out as 

described in Section 2.10. No binding between FDH5GLY and cytochrome c was 

observed. Exothermic enthalpy changes seen were due to the dilution of cytochrome c 

as it was titrated into the FDH solution. The example shown has been corrected for 
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baseline drift (Figure 3.20). If binding were to occur in a 1:1 ratio enthalpy changes 

would be expected to be seen within the first 10 aliquot additions. The experiment 

was repeated with fcb 2, FDHwr and FDHK  olE.K324A.F325E but no binding of cytochrome 

c was detected for any of these proteins. 

-10 	0 	10 	20 	30 	40 	50 	60 	70 

' .4 	
0O 05 	 10 	 15 	 20 

Molar Ratio 

Figure 3.20 Isothermal titration calorimetry of cvtochrome C into F131-15GLY. 

3.5 Discussion 

The isolated flavin domain has been studied with regard to recognition for substrates 

and electron acceptors. The active site of FDH has been successfully redesigned by 

creating the mutations L230W, T197A, A283T to bind glycolate preferentially over 

L-lactate (Km  for lactate 26 mM, Km for glycolate 16 mM). However this has been 

accompanied by a general decrease in enzyme efficiency as measured by kcat/Km and 

the enzyme is still more efficient at utilising lactate as a substrate than glycolate. As 

the Km values for GOX and FDH Tpdp with glycolate are 1 mM and 26 mM respectively 

there remains some clear structural differences at the active site. It is likely that 

residues directly behind those that form the active site cavity influence the orientation 

of residues and their side chains which interact with the substrate. In particular the 

large planar ring of the tryptophan may lie in a different orientation in FDH to that 

seen in GOX. It has proved much more difficult to re-design FDH to be selective for 

smaller substrates than larger ones. Whereas larger substrates can be accommodated 
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by simply removing bulk from the active site the opposite does not hold true when 

engineering selectivity for smaller substrates. 

None of the mutants studies showed any significantly improved ability to use 

molecular oxygen as an electron acceptor. All FDH enzymes were apparently sensitive 

to attack by hydrogen peroxide and superoxide radicals and their ability to act as an 

oxidase deteriorated rapidly with each subsequent turnover. What factors confer this 

protection on GOX and other oxidases has not been determined. The recently 

determined high resolution structures of D-amino acid oxidase complexed with D 

alanine, D-trifluoroalanine and L-lactate (1.2 A, 1.47 A and 1.72 A resolution 

respectively) has cast light on factors that confer oxidase activity (Umhau et al., 

2000). This enzyme, a member of the flavoprotein oxidase family catalyses the 

oxidation of D-amino acids. The hydride transfer mechanism of dehydrogenation is 

conserved but in the case of D-amino acid oxidase FAD is re-oxidised by molecular 

oxygen to yield FAD0x and H 202. The high resolution electron density of the complex 

with D-alanine enables a diatomic species proposed to be peroxide to be resolved at 

the active site on the re-side of the flavin (Figure 3.21). One atom of the species is 

placed on the flavin plane between N(5) and C(4a). The second atom lies above and 

between C5a and C9a. With fiavin monooxygenases, dioxygen activation has been 

shown to proceed via C(4a) covalent hydroperoxides which supports a link to C(4a) 

in preference to N5a. The peroxide species lies on the same side of the FMN as the 

water molecule found in GOX. This lends support to the idea that space occupied by 

the water molecule in GOX is important for oxidase activity. It is therefore not 

surprising that the single mutant FDHL23OW did not show any improvement in oxidase 

activity. This tryptophan residue has been shown to influence substrate specificity but 

it is not important for oxidase activity. FDH TRIp also showed no increase in oxidase 

activity. Although the mutation T197A was created on the re-side of the flavin this 

residue may be too far from the proposed peroxide binding site of C(4a) seen in D- 

amino acid oxidase. 
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Figure 3.21 Electron density of the FAD in D-amino acid oxidase. The high resolution electron 

density enables a diatomic species proposed to be peroxide (red) to be resolved at the active site. 

In the absence of the haem domain electron transfer direct from flavin to cytochrome 

c is extremely slow. A docking site for cytochrome c has been engineered on the 

surface of FDH however this has not led to improved electron transfer rates. Ionic 

strength studies indicate that there is an electrostatic interaction between FDHwr and 

cytochrome c. The mutant FDH5GLY displays different characteristics to FDHwr. At 

ionic strengths of less than 20 mM rate constants decrease in contrast to FDHwr 

where rate constants continue to increase. 

DSC and ITC were used to investigate the strength of this interaction. ITC detected 

no binding between the following; FDHvrr : cytochrome c, FDHK2O1E,K324A.F325E. 

cytochrome c and FDH5GLY: cytochrome c. DSC showed cytochrome c to increase the 

thermal stability of FDHwr and to a lesser extent that of FDH5GLY. As the melting 

point temperature increases in the presence of cytochrome c it would suggest that 

weak non-covalent interactions form between cytochrome c and the native 

conformation of FDH. However this is not proof of FDHlcytochrome c complex 

formation at the engineered binding site. The values obtained could be equally 
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accounted for by non-specific protein protein interactions. These results are 

inconclusive as to whether there is any significant complex formation between either 

FDH5GLy or FDHwr and cytochrome c. Another technique which could be employed 

to analyse protein-protein interactions but which was not available is ultra 

centrifugation. If there is more than one cytochrome c binding site on the haem 

domain of fcb 2  as shown by Daffet al., (1996a), then this suggests that the orientation 

and position of the two redox cofactors relative to each other may be more important 

for efficient electron transfer than actual binding. 
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4.0 Introduction 

Shewanella frigid/marina is a facultative anaerobe that can respire anaerobically using 

an extremely broad range of terminal electron acceptors. These include metal oxides 

41 of Fe3  and Mn, thiosuiphates, sulphates, sulphites and elemental sulphur, nitrates 

and nitrites, DMSO, TMAO and fumarate. Anaerobic growth of S. frigidimarina on 

fumarate results in the synthesis of several cytochromes, the most abundant of which 

is flavocytochrome c3  (Morris etal., 1994, Gordon el a!, 1998, Pealing et al., 1992). 

This soluble periplasmic enzyme catalyses the reduction of fumarate to succinate 

(Figure 4.1). An isozyme of flavocytochrome c3 , ifc3  is expressed when £ fig/marina 

is grown anaerobically in the presence of iron (50 mM iron citrate) but not in the 

presence of fumarate (Dobbin et al., 1999). Similarly Shewanella putrefaciens NMI 

expresses a fumarate reductase during anaerobic growth on fumarate (Myers and 

Myers, 1992, 1997b). This enzyme, also a flavocytochrome c3 , is termed fcc3-MR1. In 

contrast to Shewanella, E. co/i produces a membrane bound fumarate reductase. This 

enzyme expressed by the frdABCD operon (Zientz et al., 1998, Cole ci al., 1985, 

Dickie and Weiner 1979, van Hellemond 1994) under anaerobic conditions is closely 

related in structure and function to succinate dehydrogenase which plays a prominent 

role as complex II of the aerobic respiratory chain (Rossi et al., 1964, Cole 1982, 

Maklashina ci al., 1998). Succinate dehydrogenase (SDH) is expressed maximally 

during aerobic growth by the sdhABCD operon while the frdABCD operon is 

repressed. It couples the oxidation of succinate to fumarate with the reduction of 

quinone to quinol (Ackrell etal., 1993, Cooley etal., 2000). 

2H. 2c 
	OOC 	H 

H 
H 	C00- 	 H 	OO 

F umarate 
	 Succinate 

Figure 4.1 Fumarate reductases catalyse the reduction of fumarate to succinate. 
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4.1 Comparison of Fumarate Reductases 

The recent determination of the crystal structures of the membrane bound fumarate 

reductases from E. coil (Iverson et al., 1999) and W. succinogenes (Lancaster el al., 

1999), and the soluble flavoenzyme L-asparate oxidase (LASPO) (Mattevi et al., 

1999) also from E. coil along with the flavocytochromes c3  of Shewaneila 

frigidimarina (Bamford et al., 1999b, Taylor et al., 1999) and S. putrefaciens (Leys 

et al., 1999) allow aspects of the structure-function relationship to be examined. A 

summary of the different enzymes for which crystal structures are available is given in 

Table 4.1. 

Organism Enzyme Location Redox centres FAD - binding 

E. coil FRD Membrane FAD Covalent 

bound I2Fe:2S1. I4Fe:4S1. 

(3Fe:4Sj. Qp. QD 

W. succinogenes FRD Membrane FAD, I2Fe:2S1. Covalent 

bound I4Fe:4S1. I3Fe:4S1, 

2 h-type haems 

S. frigidirnarina Fcc3  Periplasm FAD Non-covalent 

NCIMB40() Soluble 4 c-type haems 

S. putrefaci ens Fcc3-MR 1 Periplasm FAD Non-covalent 

MR Soluble 4 c-type haems 

E. coil L-Aspartate Soluble FAD Non-covalent 

oxidase 

(LASPO) 

S. frigidimarina Iron induced Penpiasm FAD Non-covalent 

NCLMB400 11c3  Soluble 4 c-type haems 

Table 4.1 Comparison of the structure and redox cofactors contained within the fuinarate reductases 

from E. coil. L succinogeenes, g frigidirnarina. and S. putrfaciens. 

The flavocytochromes c3  and LASPO are soluble fumarate reductases that contain 

non-covalently bound FAD. The reaction catalysed by these enzymes is essentially 

unidirectional. In contrast, the fumarate reductases from E. co/i and W. succinogenes 

contain covalently bound FAD and the reaction is reversible. The interaction of the 

FAD with the protein environment and covalent linkage combine to raise the redox 

Me 
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potential of free FAD (-219 mV) to allow reduction of succinate (Blautt et al., 1989). 

Thus the Em of FAD/FADH2  couple in fcc3  (-152 mV) and LASPO (-216 mV) is 

appreciably lower than in, for example W. succinogenes (-20 mV) and E. co/i (-55 

mV) fumarate reductases. 

4.1.1 Global structure 

The crystal structure of flavocytochrome c3  has been solved to 1.8 A resolution 

(Taylor et al., 1999). Flavocytochrome c3  (fcc3 ) is composed of a single polypeptide 

chain (Mr 63800) that forms three distinct domains (Figure 5.2). The N-terminal 

cytochrome domain (residues 1-107) contains four c-type haems. The flavin domain 

(residues 108-364, 503-568) contains a molecule of non-covalently bound FAD. The 

overall fold of the FAD binding region has structural and topological similarities with 

known FAD binding proteins, though sequence similarity is quite low. Buried within 

the flavin domain is an octahedrally coordinated sodium ion which is close to the 

active site. The haem domain contains four c-type haems which, together with the 

FAD, form a 40 A 'molecular wire' providing efficient electron transfer to the active 

site. The clamp domain (residues 365-502) controls access to the active site. The 

isozyme of flavocytochrome c3 , ifc3  (Bamford et al., 1999b) and the fumarate 

reductase from S. putrefaciens are essentially identical to fcc 3 . The crystal structure of 

the uncomplexed ifc3  enzyme has been determined at 2.15 A resolution (Figure 4.4). 

The fumarate reductase from S. putrefaciens MRI (fcc3-MIR1), also a 

flavocytochrome c3 , shares 59% sequence identity with fcc 3  from S. frigidimarina. 

The same overall domain structure is observed but Leys ci al., (1999) distinguish a 

small section (domain IV residues 195-25 1) from the rest of the FAD binding domain 

(residues 125-168, 252-362). The clamp domain is, in the case of fcc 3-NMI, termed 

the capping domain (residues 363-502) and these two terms shall be used 

interchangeably. The haem domain consists of residues 1-104. The crystal structure of 

this enzyme has been solved for the uncomplexed form (2.9 A resolution), with 

fumarate bound (2.8 A resolution, Figure 4.3) and with succinate bound (2.5 A 

resolution) (Leys etal., 1999). 

'I'] 
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Haem Domain 

Capping Domain 

 

.141 Z- 

r ;•• lFlavin 
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Domain 
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...S \ 
	

Sodium Ion 

Active Site 

Figure 4.2 The crystal structure of flavocytochrome c3  highlighting the flavin domain (yellow), the 

clamp domain (blue) and the haem domain (green). The active site located in the flavin domain is 

bordered on one side by FAD (black) and contains a malale-like molecule (pink). A structural 

sodium ion (purple) is buried in the flavin domain close to the active site. Four c-type haems (red) 

together with the FAD direct electrons to the active site for fumarate reduction. 

L-aspartate oxidase is a flavoprotein that catalyses the oxidation of L-aspartate to 

iminoaspartate (Nasu et al., 1982). It displays the ability to use ftimarate as electron 

acceptor, so that the enzyme can function as an L-aspartate/fumarate oxidoreductase 

(Tedeschi et al., 1999). This soluble enzyme has 30 % sequence identity with the 

flavoprotein subunit of the membrane bound fumarate reductase from E. coil and is 

related to the soluble fumarate reductases from Shewanelia (Tedeschi et al., 1996). 

The structure of the apoform of L-aspartate oxidase from E. co/i has been determined 

to 2.2 A resolution (Bachela ci al., 1999, Mattevi et al., 1999, Figure 4.3). The ability 

of LASPO to utilise fumarate but not succinate is in accordance with the non-covalent 

attachment of FAD. LASPO folds into three domains: the FAD binding domain 

(residues 2-241 and 353-410), the capping domain (242-352) and the helical domain 

(414-533). The interface between the FAD-binding domain and capping-domain 
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defines a cleft in which the active site is located. The capping domain establishes 

almost no interactions with the rest of the protein. FAD is bound relatively weakly 

(Km 0.67 1.tM) in LASPO so dissociation of the cofactor in the crystal structure was 

not unexpected (Mortarino etal., 1996). 

The structures of the flimarate reductase from the facultative anaerobe E. coil (3.3 A 

resolution) and the obligate anaerobe Wolinella succinogenes (2.2 A resolution) both 

contain membrane spanning hydrophobic regions and an extramembrane hydrophilic 

region (Figure 4.3, Ohnishi et al., 2000). The K coil enzyme consists of four non-

identical subunits (Robinson and Weiner 1982, Dickie and Weiner 1979, Cole ci al., 

1985); a membrane extrinsic catalytic domain comprising FrdA (73 kDa) and FrdB, 

and a membrane intrinsic hydrophobic domain comprising FrdC and FrdD. FrdA 

contains one molecule of covalently bound FAD and is closely related to the fiavin 

domain of the soluble fumarate reductases. The fumarate reductase from W. 

succinogenes encoded by the frdABC operon consists of three subunits (Simon el al., 

1998, Lorenzen ci al., 1993, Lancaster ci al., 1999); a flavoprotein subunit (subunit 

A, 73 kDa), a subunit containing three iron sulphur clusters and a membrane spanning 

subunit. Subunit A contains the site of fumarate reduction and a molecule of 

covalently bound FAD, subunit B contains three iron sulphur centres, the menaquione 

oxidising subunit C consists of five membrane spanning helices and binds two b-type 

haems (Geisler ci al., 1993). These fumarate reductases most closely resemble the 

succinate dehydrogenase enzyme of the TCA cycle. Succinate dehydrogenase consists 

of a fiavoprotein subunit (SdhA) which contains covalently bound FAD and the 

dicarboxylic acid binding site and an iron-sulphur protein subunit (SdhB) containing 

three distinct iron-sulphur clusters (Cammack ci al., 1992). This domain is bound to 

two small integral membrane subunits (SdhC and SdhD) which are necessary to form 

the quinone binding sites found in both FRD and SDH (Cecchini ci al., 1986a). 
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Figure 5.3 Structural comparison of the membrane bound fumarate reductases from W succinogenes 

and E. coil with the soluble flavocytochromes c3  from g frigidimarina and S. putrefaciens, the 

isozyme of fiavocytochrome c3  from S. frigidimarina and L-aspartate oxidase from E. coil. 
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4.1.2 Flavoprotein Subunit 

The flavin domain of fcc3  contains a sodium ion octahedrally co-ordinated to four 

backbone carbonyls and two water molecules (Figure 4.4). Ligands are provided by 

Thr506, Met507, G1y508 and G1u534, the latter also hydrogen bonds to the FAD. A 

water molecule hydrogen bonds to His505 which lies adjacent to His504, a residue 

which is involved in the binding of fumarate. A sodium ion has also been found in the 

crystal structure of the tryptophan synthase a232 complex (Rhee et al., 1996). It has 

been suggested that this sodium ion plays a structural as well as a regulatory role. 

Therefore, in fcc 3, the sodium ion could affect the potential of the FAD, substrate 

binding and the pK 0  of His504. 

Figure 4.4 An octahedrally coordinated sodium ion is found buried in the flavin domain close to the 

active site. Ligunds are provided by four backbone carbonyls from Met507, Thr506, G1y508 and 

G1u534. Two water molecules complete the coordination sphere. 
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The flavin binding subunit of the E. co/i and W succinogefleS fumarate reductases 

bear striking resemblance to the soluble fumarate reductases from Shewaneila. In E. 

co/i the flavoprotein subunit (subunit A) is comprised of four domains (Cole 1982, 

Iverson et al., 1999). The large FAD binding domain (residues 1-50, 130-231 and 

354-414) and three other domains comprised of residues 51-129, 232-353 and 415-

575. The flavoprotein subunit of W. succinogefleS also contains a similar arrangement 

of four domains; the FAD domain (1-260 and 366-436), a capping domain (residues 

260-366), a helical domain (residues 436-554) and C-terminal domain (residues 554- 

65 5). Strict conservation of active site residues indicates that the same mechanism 

operates within this family of fumarate reductases and succinate dehydrogenases 

(SchrOder etal., 1991, Figure 4.5). 

.4 
-.4 

Fcc3 	
IQAIIPTLSVKGGVMVIEAVRGNGAI LV 	

EITTRDKAS 

FRD(E.coii) 
VQYHPTGLPGSLMTEGCRGEGGII 	

ELGPRDKVS 

FRD(WsUcC.)vQFTPPsLLTEGC 	
ELASRDVVS 

SDH(E.cOli) 
WQFIIPTGI AGAGVLVTEGCRGEGGYLL 	DLAGRDVVA 

SDH(Yeast) VQFIIPSGIYGSGCL!TEGARGEG 	
DLACRDVVS 

Fcc, 	 TPGVHHTMGGV 

FRD(E. coil) R P T A H Y T MG G I 

FRD(W.suCC.) LPMQIIYSMGGI 

SDH(E.cOil) I P TCIIYMMGGI 

SDH(Yeast) I PTVI!YNMGGI 

V H GA N R L G G NA! 

L 11 GA N R L G S N S 1. 

MH G F N R L G G N S V 

V I-I GA N R L G G N S L 

V H GA N R L GA N S L 

Figure 4.5 Conservation of active site residues in the flimarate reductases and succinate 

dehydrogeflaseS. The sequence of fcc 3  is aligned with the corresponding region of the flavoproteifl 

subunits of the fumarate reductaseS from J[ succinogeneS, E. coli, and the succinate dehydrogenasCS 

from E. co/i. and S. cerivisiac (Arikawa el al.. 1998). The conserved residues are highlighted -. 

His365 and Thr377. Arg402, 1hs504 and Arg544. 
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4.1.2.1 Mechansim 

The high resolution of the crystal structure of fcc 3  and the presence of a malate-like 

molecule in the active site has enabled a mechanism (Figure 4.7) to be proposed 

(Taylor etal., 1999, Reid etal., 2000). Catalysis is initiated by fumarate binding in the 

active site. The C4 carboxyl group is bound in a very polar environment forming two 

hydrogen bonds to Arg544 and one each to His504 and Arg402. The second 

carboxylate twists out of the plane of the molecule and forms hydrogen bonds to 

His365 and Thr377. Steric constraints imposed by the side chains of Met236 and 

Met375 are then removed resulting in closure of the clamp domain. The combination 

of these effects results in polarisation of the C2-C3 double bond and creates a 

charge at C2. Catalysis is initiated by transfer of a hydride from the FAD (N5) to C2, 

a distance of 3.35 A. The transient carbanion intermediate is stabilised by His504. 

Proton donation from Arg402 to C3 then occurs resulting in the formation of 

succinate. The malate-like molecule found in the active site is tightly bound and 

inaccessible to solvent. The crystallisation medium contained 10 mM fumarate, well 

above the Km of 25 .tM. Therefore fumarate might be expected to occupy the active 

site. However under oxidising conditions hydride transfer is not possible and instead 

nucleophilic attack at C2 by a water molecule has occurred. A hydride would be 

transferred to the si-side of fumarate but with this approach blocked by the FAD the 

water molecule has attacked from the re-side of fumarate leading to the intermediate 

with R stereochemistry. 
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Figure 4.6 The active site of flavocytochrorne c3  containing a malate-like molecule. Distances for 

hydride transfer (Arg402 —C3) and proton transfer (FAD(N5) —>C2) are shown. 
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Figure 4.7 a) Schematic representation of the mechanism of fumarate reduction by Fcc 3. b) 

Formation of the hydrated intermediate found at the active site in the crystal structure of fcc 3 . 
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4.1.2.2 Proton Delivery 

Since the active site is inaccessible to solvent, proton delivery to Arg402 occurs via a 

pathway of residues (Figure 4.8). G1u378, the central residue in this pathway, forms 

hydrogen bonds from the same carboxylate oxygen to Arg38I and Arg402. These 

three residues are completely conserved, consistent with this essential function. 

Mutation of Arg3 81 to lysine was found to lower the k cat 100-fold and mutation of 

G1u378 to alanine resulted in complete loss of activity (M. Doherty PhD thesis 1999). 

3.35 A 

99 A 

334A I 

308A 
	

Arg4O2 

g38j 	J r 

Figure 4.8 Arg381, G1078and Arg402 form a triad of residues which deliver protons to the active 

site. 

The dicarboxylic acids found at the active site of the fumarate reductases from W 

succmogefleS, E. coil and Shewanella all adopt a conformation in which the second 

carboxyl group is twisted out of plane of the molecule (Figure 4.9). The fumarate 

reductase from W. succinogenes also shows some divergence in the positions of 

conserved residues. Although in this case fumarate is bound at the active site the 

enzyme is trapped in a slightly open conformation in the crystal structure. The 

location of active-site residues resembles more closely the open conformation of ifc3 

than the catalytically active closed form of the enzyme in the substrate bound flimarate 

reductases. 
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Figure 4.9 Comparison of the active site structures of fcc 3  (a) in which a malate-like molecule is 

bound with the fuinarate reductases from S. putrefaciens complexed with fi.unarate (b) and succinate 

(c). E.co/i complexed with oxaloacetate (d) W. succinogenes complexed with fumarate (e) and the 

open conformation of iIc 3  (1). 
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4.1.3 The Clamp Domain 

Fcc3  has been crystallised in the closed conformation with the active site inaccessible 

to solvent. Evidence from the structures of LASPO (Mattevi et al., 1999) and Fcc3-

MR 1 (Leys et al., 1999) indicates that movement of the clamp domain facilitates 

access to the active site. In LASPO the orientation of the capping domain may well 

reflect the open conformation of this protein (Figure 4.22). However it is feasible that 

it could adopt different conformations leading to the opening and closing of the active 

site cleft. Arg236 is positioned on a-helix I of the capping domain and points with its 

side chain to the active site cleft. His244 is located in proximity to the flavin binding 

site. On the basis of the LASPO apoenzyme structure, it is impossible to assign a 

specific role to the residues in the active site. Nevertheless, the presence of three 

conserved arginine residues (Arg236, Arg290, Arg386) and two conserved histidine 

residues (His244 and His351) in proximity to the active site is consistent with the 

mechanism of flimarate reduction proposed. The different structures available for fcc 3-

MR 1 also indicate movement of the capping domain. In the uncomplexed enzyme the 

capping domain is rotated by approximately 12° relative to the capping domain of the 

flimarate bound enzyme and by 3° relative to the succinate complexed enzyme (Leys 

et al., 1999, Figure 4.10). As the rotation axis is close to the active site movement 

near the substrate is small. This observation suggests that in solution, the capping 

domain can rotate about a hinge resulting in a transiently enlarged cleft allowing 

access to the active site. 

Figure 4. 10 The position of the clamp domain in the structures of flavocytochrome c3  from S 

puirefaciens for the open form (blue), complexed with fumarate (red) and closed but no substrate 

present (green). 
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Active site 	 Active site 

cleft 	 cleft 

i1JJII 
L-aspartate oxidase 	Flavocytochrome c3  

Figure 4.11 Comparison of the clamp domain positions of L-aspartate oxidase (open conformation) 

and flavocytochrome c3  (closed conformation) 

4.1.4 The Haem Domain 

The haem domain of fcc 3  contains four c-type haems (Figure 4.12) each covalently 

linked to two cysteines in a CxxCH motif. Two histidines provide the fifth and sixth 

ligands (Pealing etal., 1995). The potentials of the cofactors have been determined by 

redox potentiometry and protein film voltametry studies (Turner ci al., 1999). At pH 

7.2 the FAD was found to have a reduction potential of —152 mV. The potential of 

the FAD was shown to vary with pH whereas the haems potentials (-238 mV, -196 

mV, -146 mV, -1 O2mV) were found to be essentially independent of pH. The 

assignment of reduction potentials to individual haems is not possible using these 

techniques. However a similar structural arrangement of haems is found in 

cytochrome c3 , a small electron transfer protein (11.8 kDa) also from S. frigidimarina 

(Tsapin ci al., 1996, Pike 1998). This protein is closely related to the haem domain of 

fcc3  (Reid et al., 1998). The three dimensional solution structure of the reduced 

enzyme has been determined using 2D IH-NMR. The haems form a similar 

arrangement to those of fcc 3  (Figure 4.13). By monitoring the signals for each haem 
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as the protein was oxidised it was possible to correlate particular reduction potentials 

to the signals arising from individual haems. The reduction potentials were assigned in 

order of most readily oxidised as, haemlV (-58 mV), haemfl (-113 mV), haeml (-184 

mV) and haemlll (-223 mV). The close proximity of the redox centers assures sub-

millisecond tunnelling rates through the sequence of cofactors despite the low 

reduction potential of haem3. Analogous chains with a mix of substantial endergonic 

and exergonic steps can be found in the iron sulphur cluster chain of NiFe 

hydrogenase and the haem chain of the photosynthetic reaction centre of B. viridis 

(Chen, I. P. etal., 2000). 

Figure 4.12 The arrangement of c-type haems and FAD which together form a 40 A 'molecular wire' 

for efficient transfer of electrons to the active site. Edge-to-edge distances between redox cofactors 

are all 8A or less. 
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Figure 4.13 The NMR structure of c tochrome c 3  from S. frigidimarina which has a similar 

arrangement of haems to flavoc tochromc c 3 . 

4.1.5 The Membrane Anchor Subunits 

The membrane anchor domain (subunit C) of the E. coil fumarate reductase contains 

two menaquinones which are located on opposite sides of the membrane-spanning 

region (Figure 4.14). Subunit B containing three iron sulphur clusters is solvent 

exposed. The six redox cofactors are organised into a chain with the sequence FAD-

[2Fe:2S]44Fe:4S]_[3Fe:4S]-Qp-QD (Cecchini el al., 1995, Weiner ci al., 1986, 

Werth et al., 1990, Rothery and Weiner 1998, Simpkin el al., 1985, Spencer ci al., 

1973, Cammack ci al., 1986, Kowa] ci al., 1995, Heering et al., 1997, Tsapin 1995). 

With the exception of the 27 A spacing between the two menaquinones, the redox 

cofactors are all separated by —11-14 A center to center distances. The membrane 

bound domain of the fumarate reductase from W. succinogenes also possesses three 

iron sulphur clusters but in addition two b-type haems (Lancaster ci al., 1999, 2000, 

Figure 4.15). The iron sulphur clusters: [2Fe-2S], [4FE-4S] and [3Fe:4S] are co-

ordinated by cysteine residues. The [3Fe:4S] centre is within segments that contact 

subunit C, which is comprised of five membrane spanning helices. The b-haems are 
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bound approximately perpendicular to the membrane surface. The axial histidine 

ligands to the haems are provided from the adjacent protein helices (Vibat et al., 

1998). Hydrogen bonds and salt bridges form between the haems and all four 

transmembrane helices. Distances of 9-12 A are appropriate for the efficient transfer 

between FAD and quinone. 

(a) (b) 
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2Fe-2S 
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4Fe-2S 
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Figure 5.14 Rcdox cofactors found in the membrane bound fumaratc reductases from E. co/i (a) U I 

succinogenes (b). Qp = proximal menaquinonc. QD  = distal menaquinone. OAA= oxaloacetatc. 
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4.1.6 Electron Donors 

E. co/i is able to synthesise a variety of different quinones (Figure 4.16) which form 

an electron donor/acceptor pool (van Hellemond et al., 1995). The cytoplasmic pH of 

E. coil is maintained between 7.6 and 7.8 and the composition of the quinone pool is 

controlled by oxygen. Aerobic growth induces ubiquinone production and represses 

menaquinone biosynthesis. In order to reduce terminal substrates which are lower in 

potential than oxygen under anaerobic conditions, menaquinones (-74 mV) and 

dimethylmenaquinone (+36 mV) predominate in the cell membrane. Fumarate 

reductases accept electrons from menaquinone (E=-74 mV) and 

dimethylmenaquinone (E=+34 mV) whereas succinate dehydrogenase transfers 

electrons to ubiquinone (Ohnishi et al., 2000) which has a higher standard reduction 

potential (E=+100 mV). Menaquinone is reoxidised by fumarate reductase only in the 

presence of the membrane anchor subunits C and D (Zhao et al., 1999, Cecchini et 

al., 1986a, 1986b, Sucheta et al., 1993). Analogous membrane-bound functions were 

discovered in SDH which reduces ubiquinone to ubiquinol. 

o 	 0 	 0 

II 	OH 

liii 
CR CH3Oj(\R 	

O1R 
 

o 	 0 	 0 

UQ 	 MQ 	 DMQ 

R=(CH,CHC(CH,)CH,)NH 

Figure 4.16 Ubiquinone (UQ). menaquinone (MQ) and dimethylmenaquinone (DMQ) are present in 

E. co/i. R indicates a poly-isoprenyl chain. 

The fumarate reductases of S. frigid/marina and S. putrefaciens are found in the 

periplasm and the physiological electron donor has not been determined. Electron 

transfer proteins in the periplasm could be one means of establishing a link between 

the quinol pool and the electron transport chain that supplies electrons to fcc 3 . CymA 

is a small cytochrome that is expressed by Shewanella during anaerobic growth 



Chapter 4 Introduction to Flavocytochrome c 3  

(Myers and Myers 1997a). The exact function of cymA is not established but studies 

with S. puirefaciens MIRI have shown it to be a requirement for anaerobic growth on 

fumarate (Myers and Myers 2000). It could therefore be an electron donor to the 

respiratory chain or direct to fcc3. The prominent position of the haems in fcc 3 , in 

which at least three are highly accessible to solvent, indicates that they would be easily 

reduced by a redox partner of suitable potential. 

4.2 Project Aims 

The aim of this project is to investigate the catalytic mechanism of fumarate reduction 

in flavocytochrome c3 . The following areas are studied: I) The roles of active site 

residues in Michaelis complex formation; ii) Substrate specificity; iii) Differences in 

the active site structure of the open and closed conformation of the enzyme using 

inhibition experiments iv) To determine the identity of the active-site acid; v) The 

possibility of substituting other residues for the active site acid; vi) To elucidate 

whether the mechanism is a concerted or stepwise process. 
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5.0 Materials and Methods 

5.1 Media and Solutions 

5.1.1 Growth Media (High Salt Luria Broth) 

Bacto Tryptone 	log 

Yeast Extract 	 5 g 

Sodium Chloride 	log 

All media was sterilised at 121 °C for twenty minutes in a Kestral autoclave prior to 

use. Antibiotics were added immediately prior to use from stock solutions giving final 

concentrations of 50 mgF' streptomycin sulfate and 50 mgl kanamycin. 

5.1.2 Buffers 

50 mM TrisHCI pH 7-9,1--0.5 M (Tris[hydroxymethyllaminoethane) 

dH20 	 500 ml 

Trisma base 	6.05g 

NaCl 	 5.265 g 

Adjusted to required pH using I M HCI and volume to 11 with dH 20 

50 mM CHES pH 8.6-10, 1= 0.5 M (2-IN-Cyclohexylaminolethane sulfonic acid) 

dH20 	 500 ml 

CI-LES 	 10.36g 

NaC1 	 5.265 g 

Adjusted to required pH using I M NaOH and volume to 11 with dH 20 

50 mM MES pH 5.5-6.7, 1= 0.5 M (2-N-MorpholinoJethanesuIfonic acid) 

dH20 	 500 ml 

MES 	 10.66g 

NaCl 	 5.265 g 

Adjusted to required pH using I M NaOH and volume to 11 with dH 20 

88 



Chapter 5 Materials and Methods 

50 mM MOPS pH 6.5-7.9, 1= 0.5 M (3-IN-Morpholinolpropanesulfonic acid) 

dH20 	 500 ml 

MOPS 	 10.46g 

NaCl 	 5.265 g 

Adjusted to required pH using 1 M NaOH and volume to 1 I with dI1 20. 

Lysis Buffer 

10 mM Tris.HCI pH 7.0. 

10 mM L-lactate 

10 m EDTA 

1 mM PMSF 

0.2 mg/mI egg white lysozyme 

3 x SDS gel-loading buffer 

50 mM Tris.HCI pH 6.8 

100 mM dithiothreitol 

2 % SDS (electrophoresis grade) 

0.1 % bromophenol blue 

10 % glycerol 

SDS resolving Buffer (1.5 M Tris.HCI pH 8.8) 

Tris 	 181.6g 

SDS 	 4.Og 

dH20 	 400 ml 

adjust to pH 8.8 with 1 M HCl and adjust volume to I I with dH 20 

Stacking Buffer (0.5 M Tris.HCI pH 6.8) 

Tris 	 30.28 g 

SDS 	 2.Og 

dl-120 	 450 ml 

adjust to pH 6.8 with IM HCI and adjust volume to 0.5 1 with dH2O 
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SxTris glycine running buffer 

Tris 	 l5.lg 

glycine 	 94 g 

SDS( 10%) 	50 ml 

5.2 Protein Preparation 

Recombinant enzyme was prepared using the pEGX 1 /EG301 expression vector 

system (pEGX 1  plasmid - pMMB503EI-I fee with signal sequence, EG30I - NCIMB 

400 Rif, Mcc:ahp Km'). Bacterial Strains were stored long term as DMSO stocks (-

80 °C) and up to two weeks on agar plates (-*4 °C). 

5.2.1 Growth of Recombinant and Mutant Forms of Fcc 3  

Starter flasks (50 ml Luria Broth high salt media) containing kanamycin (50 mgi1 ) 

and streptomycin (25 mgi') were grown overnight. Flasks (1 litre) containing 500 ml 

media, kanamycin (50 mgi') and streptomycin (25 mgi') were inoculated by the 

addition of 1 ml portions of starter culture and grown at 23 °C for 12 hours, 150 rpm. 

Cultures were then induced with IPTG (250 mgi') and grown for 8 hours, 200 rpm. 

Cells were harvested by centrifugation at 8,000 rpm using a SLAI 500 rotor and 

Sorval RC-5B centrifuge for 20 minutes and either frozen or used directly. 

5.2.2 Protein Abstraction 

Cells obtained from a S litre growth were resuspended in the minimum of lysis buffer 

and stirred for 1 hour at 4 °C. The cell solution was sonicated on ice at intensity 8-10 

for 3 x 20 seconds using a MSE Soniprepl50. The solution was centrifuged at 15,000 

g for 20 minutes to remove cell debris. The supernatant was decanted off and 

precipitated with 40 % ammonium sulphate stirring at 4 °C for 2 hrs followed by 
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centrifugation for 15 minutes at 15,000 rpm (SS34 rotor, Sorval RC-5B centrifuge). 

The supernatant was retained and the ammonium sulphate concentration raised to 100 

%. After stirring at 4 °C for 2 hrs fcc 3  was collected by centrifuging for 15 minutes at 

15,000 rpm (SS34 rotor, Sorval RC-5B centrifuge). The pellet was resuspended in the 

minimum volume of 10 mM Tris.I-ICI pH 8.4 and dialysed against several changes of 

buffer (5-10 mM Tris.I-ICl pH 8.4). 

5.2.3 Anion Exchange Chromatography (DE52) 

Column material (DE52 Whatman) was resuspended in 0.1 M Tris.HCI pH 8.4 then 

equilibrated in 10 mM Tris.1-ICI p1-I 8.4. Protein solution was loaded onto a column 15 

cm x 4 cm diameter. Flavocytochrome c3  bound over the top 2 cm indicated by a dark 

red band. The column was washed until the UV absorption at 270 nm was minimal 

(approx. 2 column volumes 10 mM Tris.HCI pH 8.4). A step gradient of 0.1 M NaCl 

increments was used for eluting protein. 

5.2.4 Hydroxyapatite 

Column material was prepared by equilibrating in 10 mM Tris.HCI pH 8.4. A column 

of length 4 cm x 3 cm diameter was used. Protein solution was fully dialysed in 10 

mM Tris.HCI pH 8.4 and concentrated to approximately 10 ml prior to loading. The 

column was washed with buffer until the absorption at 270 nm was minimal (approx. 

2 column volumes) before eluting protein with 0.1 M K 2 1-LP04 . 

5.2.5 Gel Filtration Chromatography 

Protein solution was concentrated to 5-10 mis before desalting by gel filtration 

chromatography (Sephadex G25). A column 15-20 cm x 2 cm diameter was prepared 

with 10 mM Tris.HC1 buffer pH 8.4 buffer. Buffer exchange into 10 mM MOPS pH 

7.8 could also be carried out if the protein was to be further purified by FPLC. 
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5.2.6 FPLC 

Protein for crystallisation was purified using an additional step. A resource Q column 

25 mg, imi capacity, was used. The column was equilibrated in 10 mM MOPS pH 7.8 

using a flow rate of 4 ml/min with a pressure limit of 3 MPa. Protein was then loaded 

onto the column and washed with 5 ml of buffer. A linear gradient from 0 to 0.5 M 

NaC1 over 20 ml was used to elute the protein. Fractions showing fumarate reductase 

activity and considered pure were combined. The column was regenerated by washing 

with 5 ml of IM NaCl followed by 5 ml of 1 M NaOH, before washing with 5m1 

ethanol at a reduced flow rate of I ml/mm prior to storing. 

5.3 Purity Determination 

Purity of tlavocytochrome C3 samples collected was assessed using a combination of 

spectrophoto metric and electrophoretic techniques (Figure 5.1). 

5.3.1 UV-Visible Spectroscopy 

Spectra were obtained for oxidised and reduced flavocytochrome C3 from 270 nm to 

650 nm. A sample of known volume (typically 50-100 j.tl) was diluted to I ml with 50 

mM Tris.HCI buffer. The relative intensities of peaks were used to determine the level 

of purity of the sample. The intensity ratio of the haem peak (409 rim) to total protein 

present (270 nm) indicates the purity of the sample. A value of A 409/A280  greater then 

4 is observed for pure protein. Reduced spectra were obtained on the addition of 

sodium dithionite. The Soret peak (418 nm) of the reduced sample was used to 

calculate the concentration of the protein sample (E = 752800 cm'). 
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5.3.2 SDS Page Gel electrophoresis 

4 % Stacking Gel 	10 % Separation Gel 

dH20 3.05 	tl 4.02 ml 

0.5 M Tris.HCI, pH 6.8 1.25 ml - 

1.5 M Trisi-ICI, pH 8.8 - 2.5 ml 

10% (w/v)SDS 50 jil 100 .tl 

Acrylamide (30 % stock) 0.65 ml 3.32 ml 

Ammonium persulfate (10 %) 25 	tl 50 il 

TEMED 8 	p 5 	p 

The polyaciylamide gel was prepared in two phases, a stacking gel for the 

concentration of protein samples and a resolving gel for the separation of the protein 

samples. Gels were prepared by combining all solutions except initiators. 

Polymerisation was initiated by addition of TFMED and ammonium persuiphate. The 

resolving gel was poured between two glass plates and overlaid with water saturated 

butanol. Once polymerised (30 minutes) the water saturated butanol was rinsed off 

with distilled water and the stacking gel was prepared. The stacking gel was mixed 

and then poured on top of the resolving gel. A comb was then inserted into the top of 

the stacking gel and the gel was allowed to polymerise for 30 minutes. Once 

polymerised the gel was clamped into a vertical electrophoresis tank with I x running 

buffer. The comb was then carefully removed and the protein samples were loaded 

into the wells with one lane reserved for prestained protein markers (BioLabs, 

broadrange). Empty lanes were filled with loading buffer to ensure smooth running of 

samples. Gels were run at 180 volts for 45 minutes. The gels were stained with 1% 

Coomassie blue in 40 % MeOH/l 0 % HOAc for 30 minutes followed by destaining in 

40 % MeOHI 10 % HOAc until bands became visible (1-3 hours). 
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Figure 5. 1 Steps in the purification procedure. Crude cell extract, after anion 

exchange chromatography (DE52), after hydroxyapatite column (HA) and after 

FPLC. 

1.8 

1.6 

14 

12 

10 08 

06 

04 

02 

00 

3M 	40 	10 	 W 	

IM 
%WAISOM 

Figure 5.2 UV/vis spectrum of purified flavocytochrome c3  

5.3.4 FAD Content Determination 

FAD content was determined by the method adapted from Macheroux el al., (1999). 

To a solution of 250-300 ig of protein in I ml of 10mM Tris.HCI pH 8.4 buffer, 150 

l.tl of trichioroacetic acid (50 %) was added and the solution mixed by inversion. The 

denatured protein was pelleted in a microcentrifuge at 13,000 rpm (microflige, pico) 
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and the supernatant removed to a clean Eppendorf. Solid sodium carbonate was used 

to adjust the pH to 7.0. The UV/vis spectrum was recorded and the concentration of 

FAD calculated (c=1 1100) as a % of the protein concentration. Typical values of 

FAD content were between 65 and 80 %. All kinetics were readjusted to 100 % 

FAD. 

5.3.5 Molecular Weight Determination by Mass Spectrometry 

The molecular weight of wild-type and mutant proteins of flavocytochrome C3 were 

determined by electrospray mass spectrometry. 

5.4 Kinetic Analysis 

5.4.1 Steady-State Kinetic Analysis 

5.4.1.1 Fumarate Red uctase Assay 

Assays were carried out at 25 °C in 50 mM Tris.HC1 p1-I 7.2 1=500 mM under a 

nitrogen atmosphere (<5 ppm) in a Belle Technology glovebox using a Shimadzu UV-

PC 1201 spectrophotometer. Enzyme activity was measured by a method adapted 

from Thomeley (1974). Disposable cuvettes (3 ml volume) with a 1 cm pathlength 

were used. To a cuvette containing 3 ml buffer and 0.2 mM methyl viologen 

(c13,000 f'cm 1 ), sodium dithionite was added until the absorption was in the 

range 1-1.5. Protein was then added to a concentration of 1-20 tM depending on 

how active the enzyme was. A control assay was carried out over 100 seconds to 

ensure there was no background 02 activity. The reaction was initiated by the addition 

of fumarate and monitored at 600 rim over 50-500 seconds. 

The following buffers systems were used for p11 profiles: 

pH 6.0-6.6,50 mM MES, 1=0.5 M 

pH 6.6-7.8,50 mM MOPS, I=0.5 M 

pH 7.2-7.5,50 mM Tris, 1= 1=0.5 M 
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pH 8.6- 9.5, 50 mM CUES, 1=0.5 M 

5.4.1.2 Succinate Oxidation Assay 

Succinate oxidation by flavocytochrome C3 was determined spectrophotometrically. 

Assays were carried out in a I ml cuvette with 1 cm pathlength. Dichioroindophenil 

(Sigma) was used as electron acceptor. This was prepared as a 4 mM stock with 

phenazine methosulfate added to a concentration of 0.27 mlvi. To I ml of buffer and 

protein, dichioroindophenil was added to a concentration of 40 PM and the reaction 

initiated by addition of succinate. The absorption at 600 nm was monitored over 100-

500 seconds. The rate of succinate oxidation was also monitored using potassium 

ferricyanide as electron acceptor. 

5.4.1.3 Inhibition Studies 

Inhibition studies were carried out using a range of molecules to test for their ability 

to inhibit fumarate reduction and/or succinate oxidation. Fumarate reductase 

inhibition assays were carried out with a funiarate concentration of 66 1iM (Km=25 

.tM). The activity was then determined in the absence and in the presence of each 

potential inhibitor (-.200 mM). For those molecules which showed inhibitory 

behaviour individual inhibition assays were then carried out for a range of increasing 

inhibitor concentrations until fumarate reductase activity approached zero. To 

ascertain the type of inhibition Michaelis plots of fumarate reduction were determined 

at three or four different inhibitor concentrations and Lineweaver-Burk plots 

constructed. Succinate oxidation inhibition studies were carried out with a succinate 

concentration of 2 fliM (Km l mM). Assay were carried out in the absence and 

presence of 500 mM inhibitor. 

5.4.2 Pre-Steady-State Kinetic 
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Stopped-flow measurements of fumarate reduction were carried out anaerobically 

using an Applied Photophysics SF.! 7MV stopped flow spectrophotometer contained 

in a Belle Technology glovebox under nitrogen atmosphere (<5 ppm). Stock solutions 

of enzyme (4-8 riM) and substrate (500 mM) were prepared in 50 mM Tris.HCI 

buffer, pH 7.2, 1=0.5 M and fully degassed. Sodium dithionite was titrated into the 

enzyme solution until full reduction of the haems was observed 

spectrophotometrically. Excess sodium dithionite was removed by passing the protein 

solution through a gel filtration (G50) chromatography column (10 cm length x 2 cm 

diameter) maintained under nitrogen. Substrate and enzyme solutions were allowed to 

equilibrate to 25 °C prior to analysis. Haem re-oxidation was monitored at 418 nm 

over a 500 ms time course. 

5.5 Solvent Isotope Studies 

Buffer and substrate solutions for solvent kinetic isotope studies were prepared by 

dissolving the appropriate reagents in D 20. The pH of the solutions was adjusted by 

addition of concentrated DO or NaOD using the equation pH = pD + 0.4 to correct 

for the reactivity of D 20 solutions towards the pH electrode. Concentrated enzyme 

stock solutions in H20 were used so that a large dilution factor leaves the isotopic 

composition of the larger volume unaffected. Typically <5 .tl was added to 3 ml 

giving the final proportion of D 20 >95 % including correction for the protium content 

of the buffer components. For proton inventory studies buffer solutions that had been 

previously adjusted to the appropriate pH were combined together to give the desired 

proportion of 1120 and D20. The reaction was monitored at I min and 30 minutes 

after preparing assays in D 20 buffer and similar rates were observed. The absence of 

any effect shows that all important hydrogenic sites are already exchanged or else are 

very slowly exchanging relative to the period of kinetic experiment. 
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6.0 Structure and Function of Flavocytochrome c3 

6.1 Probing The Active Site Structure 

The crystal structure of fcc 3  features a malate-like molecule at the active site. This is 

an artefact of the crystallisation process in which fumarate has undergone nucleophilic 

attack by water at the C2 position (Taylor et al., 1999) (Figure 6.1). The active site 

structure is therefore seen to be able to accommodate a hydroxyl group at this 

position. This raises the question - could small molecules other than fumarate be 

accommodated in the active site either as substrates or inhibitors? (Teipel el al., 1968, 

Ackrell et al., 1989) 

Figure 6.1 The active site cavity of fee ,, containing a malate-like molecule. FAD (yellow) is visible 

below the substrate (purple). To obtain this view residues above the substrate have been removed. 

From the crystal structures of fcc 3  from Shewanella MRI with and without 

substrate/product it can be seen that there is movement of the clamp domain by 12 1  

about a hinge at the flavin domain/clamp domain interface. This movement allows 

access to the active site by the substrate and diffusion out through a channel to release 

the product. In order to improve our understanding of the open-closed transition a 
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number of molecules were screened for their ability to act as inhibitors for both the 

reduced form of the enzyme and the oxidised form of the enzyme. Molecules found to 

be inhibitors could then be used in crystallisation trials. 

The closely related methacrylate reductase from Geobacier suifurreducens AM-1 

catalyses the reduction of methacrylate to isobutyrate (Mikoulinskaia et al., 1999). Its 

N-terminal amino acid sequence shows similarity to fcc 3 . In addition to reducing 

methacrylate, the enzyme catalyses the reduction of several a,-unsaturated 

carboxylic acids such as acrylate, crotonate and pentenoate. A similar reaction is 

catalysed by the enoate reductase from Clostridium kluyveri which catalyses the 

reduction of a broad range of a,-unsaturated carboxylic acids (enoates) (Simon et 

al., 1992). From these observations fcc 3  might be expected to be able to utilise 

alternative substrates to fumarate. The structure at the active site and the mechanism 

of reduction were considered in the selection of potential substrates. Residues at the 

active site important for fumarate binding have been studied using site-directed 

mutagenesis (Doherty PhD thesis 1999) (Table 6.1). 

kcai s'(pH 7.2) Km ltM (pH 7.2) 

Fcc3 WT 510±15 25±2 

I-1365A 51±2 259±24 

H504A 65±3 256± 23 

T377A 38±1 650±50 

R544M 0.15±0.01 715±114 

Table 6.1 Effect of active site mutations on k and K m  (Doherty PhD thesis 1999, Pankhurst, 

personal communication). 

The C  carboxyl group forms hydrogen bonds to His504 and Thr377, whereas the C2 

carboxyl forms hydrogen bonds to His365, Arg544 and Arg402 (Figure 6.2). The 

individual mutations; H504A, R544M, T377A and H365A were found to increase the 

Km values from 25 jtM to between 250.tM and 715.tM. There was a 10-fold decrease 
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in the kcat values of each of the mutants H365A, H504A and T377A but a 100-fold 

lowering for R544M. The greater effect on kcat of mutating Arg544, over the other 

active site residues, indicates that Arg544 is important not only in forming the 

Michaelis complex but also for activating the substrate by withdrawing electron 

density and polarising the double bond. Removal of hydrogen bonds to the Cl 

carboxyl group affects kcat to a lesser extent. 

I FD I' 

IFI 	I 
Thr3 

Arg544 

Figure 6.2 The active site of flavocytochrome c 3  highlighting the hydrogen bonding network. A 

malate-like molecule is bound at the active site. 

6.1.1 Substrate Specificity 

Potential substrates studied incorporate one carboxyl group and a double bond in the 

C2-C3 position (Figure 6.3). Functional groups were substituted at positions R 1 , R2  

and R3  (Table 6.4). Acrylamide which features an amide group instead of a carboxylic 

acid group and propiolic acid containing a C-C triple bond were also tested. 
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Figure 6.3 Schematic representation of the active site. Acrylate and derivatives of acrylate were 

studied as potential substrates. 
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Figure 6.4 Structures of potential substrates in comparison to fumarate (top left) 
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Steady-state and pre-steady-state analyses of potential substrates were carried out as 

described in Section 5.4. To ensure low levels of activity would be detected steady-

state assays were carried out using enzyme concentrations of 20 PM and were 

monitored over 5-10 minutes. Background traces were monitored to ensure no 

oxygen was present before the addition of 500 mM substrate. Acrylamide and 

propiolic acid were unable to be tested under steady-state conditions due to their own 

reactivity towards methylviologen. 

All traces obtained were continuous straight lines and showed no change in 

absorbance indicating that none of the molecules tested were able to act as substrates. 

This was surprising for acrylate, crotonoate and trans-2-pentenoate. These molecules 

only differ from fumarate by the absence of the second carboxyl group. If 

methacrylate reductase is able to reduce these substrates then why not fcc 3 ? There are 

several possible reasons why fee 3  is unable to catalyse the reduction of these 

molecules. Whereas it is energetically favourable for the highly polar fuinarate 

molecule to bind in the active site this may no longer be true for acrylate and 

derivatives. Even if acrylate does bind (in the active site) it may not align itself as 

fumarate does and the position of the double bond may have moved too far from the 

flavin N5 for hydride transfer to occur. It is highly unlikely that acrylate would bind to 

the pair of residues T377 and H365 through its sole carboxyl group instead of the 

H504/R544 combination, forming only two hydrogen bonds instead of a possible four. 

It may be that acrylate binds but it is no longer energetically favourable for the clamp 

domain to close. Consequently active site residues are not aligned as in the 

catalytically active form of the enzyme. With fumarate the resultant energy gained as 

the 2nd 
 carboxyl group twists out of plane and forms two hydrogen bonds is the 

driving force for the closure of the clamp domain. As it is unable to form these two 

hydrogen bonds acrylate can not provide the system with this driving force. Fumarate 

binding is therefore a prerequisite for domain closure and the differences in structure 

of fumarate and acrylate may be enough to stop this taking place. Inferences drawn 

from acrylate also apply to other acrylate derivatives. Mesaconate, a known inhibitor 
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of fcc3, proved not to be a substrate either. With a K 1  of I tM mesaconate binds 

extremely tightly in the active site in an orientation that prevents catalysis taking 

place. 

6.1.2 Inhibition Studies 

Potential inhibitors were screened for their ability to inhibit fiimarate reduction and 

succinate oxidation. Fumarate assays using 66 tM fumarate were initiated before the 

addition of 200 mM inhibitor. Rates before and after addition of the inhibitor were 

compared and those compounds which decreased the rate of fumarate reduction were 

investigated further. The same procedure was used to screen potential inhibitors of 

succinate oxidation using 2 mM succinate (K = 1.1 mM) and 200 mM inhibitor 

(Figure 6.5). Molecules that did not show any inhibition at a concentration of 200 mM 

would not bind strongly enough to be of use in crystallisation studies. Inhibitors and 

other small molecules that were tested are shown in Figure 6.6. 

Figure 6.5 Steady-state traces obtained for succinate oxidation. The reaction was initiated by the 

addition of enzyme and monitored for 20 seconds before addition of crotonoate (blue) and 

oxaloacetate (pink). 
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Figure 6.6 The structure of inhibitors (blue) and other molecules tested (black). 

Inhibition curves were then obtained for each inhibitor by measuring the rate of 

succinate oxidation with 2 mM succinate present over a range of inhibitor 

concentrations (Figure 6.7). Data were fitted to the Equation 6.1 and K 1 , the inhibition 

constant calculated. 

X [I]kObS 	 '1 
bs = 	- [ 	 I 	[S] 

	

L 	+ 	) I ) Km  

Equation 6.1 The equation used to calculate K 1, the inhibition constant. 
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Figure 6.7 Inhibition plot of succinate oxidation by oxaloacetate. Assays were carried out in the 

presence of 2 mM succinate at pH 8.5. Data were fined to Equation 6.1 using non-linear least 

squares regression analysis using the program Microcal Origin. 

Michaelis plots for succinate oxidation were obtained in the presence of at least three 

different inhibitor concentrations (Figure 6.8). At low substrate concentrations the 

inhibitor competes for the binding site and the rate of the reaction is decreased. At 

higher substrate concentrations the inhibitor is much less successful at competing with 

the substrate for the available binding sites and the degree of inhibition is negligible. 

For a true competitive inhibitor the apparent K is increased as a result of the 

inhibition but kcat remains unchanged (Table 6.2). 
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Figure 6.8. Michael is-Menten plots for succinate oxidation at different oxaloacetate concentrations 

20 iiM (red), 40 tM (purple), 50 tM (blue). Individual points were calculated from steady-state 

assays. The data were fitted by least-squares regression analysis to the Michaelis-Menten equation. 

[Oxaloacetic acid] jtM kcat s' (pH 8.5) Apparent K (mM) 

0 2.1+0.1 1.1±0.2 

20 2.0 ± 0.1 1.5 ± 0.2 

40 2.2±0.1 3.5±0.3 

50 2.0±0.1 4.2±0.3 

Table 6.2 Data for succinate oxidation over a range of inhibitor concentrations 

In the presence of a competitive inhibitor a plot of IN vs 1/[succinate] gives a 

straight line for each inhibitor concentration (Equation 6.2). These lines intercept in 

the first quadrant indicating the inhibition is competitive (Figure 6.9). 

1 	Km/ 	[I]\ 1 	1 
-= 	(1+---- + -- 

Vtnax  

Equation 6.2 The Lineweaver-Burk equation in the presence of a competitive inhibitor 
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Figure 6.9 A plot of IN versus 1/ES] plot in the presence of different fixed inhibitor concentrations of 

20 lLM (red), 40 LIM (purple), 50 tM (blue). 

All inhibitors were found to be competitive. Values of K 1  are shown in Table 6.3. 

Inhibitor Inhibition of flimarate 

reduction. (K 1) 

Inhibition of succiriate 

oxidation. (K) 

Mesaconate 1.0 1.tM 32.3 .tM 

D-Malate no inhibition 4.8 mM 

L-Malate no inhibition 6.2 mM 

Methylsuccinate no inhibition 1.7 mM 

Oxaloacetate no inhibition 5.3 1.tM 

3-nitropropionate no inhibition 0.5 mM 

Table 6.3 Inhibition constants (K 1) for the inhibition of succinate oxidation and fumarate reduction. 

(Values for (D) and (L) malate are taken from M. Doherty PhD thesis 1999) 

As mentioned previously mesaconate is a potent inhibitor of fumarate reduction (K  of 

1 j.tM) but it also inhibits succinate oxidation, though less well with a K of 32.3 jiM. It 

was the only inhibitor found to bind to both the reduced and the oxidised forms of the 

enzyme. Methylsuccinate is structurally very similar to mesaconate in that it possesses 
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a methyl group at the C2 position but does not have a double bond. Methyl succinate 

was found to inhibit succinate oxidation with a Ki of 1.7 mM but not fumarate 

reduction. This suggest the double bond is an important feature facilitating fumarate 

and mesaconate binding in the reduced form of the enzyme. If the methyl group of 

methylsuccinate is replaced with a ketone group as in oxaloacetate, the polarity of the 

molecule is increased and it binds more tightly than methylsuccinate with a Ki of 5.3 

1.tM. The ability of oxaloacetate to bind to oxidised but not reduced fcc 3  has been 

observed during protein fihn voltametry experiments. Cyclic voltamagrams show that 

oxaloacetate will bind in the active site of the oxidised enzyme but is expelled on 

reduction (Jones, personal communication). Malate, in which a hydroxyl group is 

found at C2, inhibits succinate oxidation with a Kj  of 4.8 mlvi for D-malate and 6.2 

mM for L-malate. Groups favoured at this position are small and polar such as a 

methyl, hydroxy or ketone. Molecules with an amine group at this position e.g. (D) 

and (L) aspartate, asparagine, serine and threonine do not inhibit. An explanation for 

this might be that with a pKa of 11.9 the secondary amine group will be protonated 

under the assay conditions (pH 8.4) thus preventing binding. Molecules that only 

posses one carboxyl group such as acrylic acid, crotonoate, methacrylate or an amide 

as in acrylamide do not inhibit fumarate reduction or succinate oxidation. 3-

nitropropionic acid where the second carboxyl group is replaced with a polar nitro 

group is able to inhibit succinate oxidation with a K i  of 0.52 mM. The ability of 

inhibitors to bind to the oxidised enzyme but less well (mesaconate) or not at all to the 

reduced form might be due to redox linked structural changes at the active site. 

Alternatively the redox state of the FAD, in which FAD carries a charge of —2 and 

FAD.,, is neutral, could influence the binding of the inhibitors. 
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6.2 The Active Site Catalyst 

6.21 The Roles of The Active Site Histidines 

Although there is considerable kinetic and crystallographic evidence to suggest that 

Arg402 is the active site acid there has remained some controversy over whether 

His504 or His365 could fulfil this role. Alternatively, based on the crystal structure of 

the membrane bound fumarate reductase from W. succinogenes, it has been proposed 

that a water molecule carries out this function (Lancaster et al.. 1999). In this enzyme 

a water molecule is found close to flimarate in the active site at the position occupied 

by the guanidinium group of Arg402 in fcc 3 . Although fumarate is found in the active 

site the position of residues more closely resemble those of the uncomplexed ifc 3  

(open conformation) than the closed conformation of fcc 3  (Figure 4.9). Therefore, 

although fumarate is found at the active site, the enzyme is trapped in a non-

catalytically active form. The slightly open conformation gives misleading evidence as 

to the position of active-site residues involved in catalysis. Strict conservation of 

active site residues throughout this family implies that a common mechanism operates. 

With the same reaction being catalysed the mechanism will be conserved throughout 

this family of fumarate reductases. The fcc 3  mutants H365A and H504A have been 

characterised (Doherty PhD thesis 1999) (Figure 6.10). These enzymes retain 

approximately 25% of wild-type activity consistent with both these residues being 

important for Michaelis complex formation but not with being essential for catalysis. 

Additional evidence that 14is365 is not the active site acid comes from studies on the 

E. coli fumarate reductase. The equivalent residue in this enzyme, His232 was 

mutated to a serine and similarly retained approximately 25 % of original activity 

(Schröder etal., 1991). 
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Figure 6.10 Substitution of histidine with alanine. 

The crystal structure of 1-1365A-fcc 3  has been solved to 1.8 A resolution (Doherty et 

al., 2000) (Figure 6.11). This enzyme was crystallised in the presence of fumarate 

which is found at the active site in a twisted conformation. Removing the bulk of 

His365 has created a space into which other residues have moved. The side chain of 

Met375 previously bent in conformation is now extended into the vacant space. There 

is also room for a water molecule which forms a hydrogen bond to Thr376 and 

Arg402. In comparison with the wild type structure the most significant difference is 

in the position of Arg402. In wild-type the NH of Arg402 is ideally positioned for 

proton donation to fumarate but in H365A-fcc 3  it is bent over to one side. Instead it is 

the NH2 group of Arg402 which is nearest to fumarate and which is the most 

probable route for proton donation. The alignment of Arg402 also has implications 

for the proposed proton transfer pathway (Figure 6.12). G1u378 and Arg402 are no 

longer positioned for maximum efficiency of proton delivery. These changes in the 

structure contribute to the lower level of activity observed. 
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Figure 6.11 Comparison of the active site of H365A (atom coloured) which contains fumarate with 

wild-type (blue) in which a malate-like molecule is bound. The mutation has led to changes in the 

position of Arg402. 

• • 

3.95 

Arg402 

Figure 6.12 The proton transfer pathway of U365A (atom coloured) in comparison to wild-type 

(blue). Distances between residues for H365A are shown. 
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6.2.2 H365A:H504A-fcc3 

In D-amino acid transaminase Lys145, the catalytic residue, abstracts the a-proton of 

the amino-acid substrate (Yoshimura et al., 1992). The mutant enzyme K145N still 

retains residual activity. Results suggest that in the mutant enzyme an amino-acid side 

chain other than Lys145 performs this function. Using the radiolabelled substrate D-

serine, results show that Lys267 may substitute for the NH 2  group of Lys 145 of the 

wild type enzyme to provide an alternative base that catalyses transamination although 

with reduced efficiency. To rule out the possibility that either H504 or H365 could 

compensate in the others absence as proton donor the double mutant l-1365A:l-1504A 

has been studied. The effect of the double mutation on kinetic parameters has been 

investigated. All rates have been corrected for FAD content. The molecular mass of 

H365A:I-1504A was compared to that of wild-type (63 033 Da) and the difference 

found to be 134 ± 6 Da (expected difference 132 Da). The mutations were also 

confirmed by DNA sequencing. 

6.2.2.1 The effect of H365A:H504A on k,, at  and Km  

The ability of the H365A:H504A-fcc3 enzyme to catalyse fumarate reduction has been 

determined at a range of fumarate concentrations and pH values (Figure 6.13, Table 

6.4). The fact that this enzyme is still active is compelling evidence that neither of 

these residues can be the active-site acid. Changes in the positions of active-site 

residues similar to those seen in the H365A-fcc 3  crystal structure might be expected in 

the H365A:l-1504A-fcc3 mutant enzyme. This would explain the extremely low levels 

of activity observed. 
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Figure 6.13 A Michael is-Menten plot of fumarate reduction by H365A:H504A-fcc 3  at pH 7.2. Points 

were calculated from individual steady-state assays. The data was fitted by least-squares regression 

analysis to the Michaelis-Menten equation using the program Microcal Origin. 

pH Wild-Type 

'cat (s, 
1) 

H365A:H504A-fcc3 

kcat (sd ) 

6.0 658 ± 34 0.3 ± 0.1 

7.2 509± 15 0.8±0.1 

7.5 370± 10 0.9±0.1 

9.0 210± 13 0.9±0.1 

Table 6.4 Comparison of k, 1  values obtained for wild type and U36A:t-lMJ4A-1cc3, I=U-3 Ni 

The double substitution H365A:H504A-fcc 3  has a dramatic effect on the enzyme's 

ability to bind fumarate with a value for Km in the low millimolar range (Table 6.5). 

This increase in Km is not surprising considering that each of these histidine residues 

forms hydrogen bonds to the carboxylate oxygens of fumarate. 
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pH Wild-Type 

Km (.LM) 

H365A:H504A 

Km(mM) 

6.0 43 ± 10 

7.2 25±2 --1.1 

7.5 28±3 1.8 

9.0 7± 1.5 -4.3 

Table 3.6 Comparison of K m  values obtained for wild-type and l-1365A:H504A-fcc 3  

6.2.2.2 The pH dependence of H365A:H504A-fcc3  

The pH profile of wild type fcc 3  gives a pKa  of 7.43 which is thought to correspond 

to the pKa  of His504. This residue, if protonated, would have a stabilising effect on 

the transient anion species formed following hydride transfer. The pH profile of 

1-1504A gives a very different trend to wild-type reaching a maximum rate at pH 8.5 

(M. Doherty, PhD thesis 1999). Two pKa values were obtained; 6.8 and 8.5. The rate 

of fumarate reduction for H365A-fcc 3  was essentially independent of pH. 

Electrochemical studies on H365A-fcc 3  confirmed that the rate-determining step in 

the reaction had been changed to hydride transfer from flavin to substrate (Turner, 

personal communication). 

For H365A:H504A-fcc3  the pH dependence has been modified in comparison to wild-

type (Figure 6.14). The rate of fttmarate reduction appears to increase as the p1-I 

becomes more basic, reaching a maximum at pH 7.8 after which the rate rapidly falls 

off. Two pKa  values were obtained; 6.9 ± 0.5 and 8.3 ± 0.5. Interestingly these values 

are the same within error as those obtained for H504A-fcc 3 . This indicates that the 

same two protonation sites could be contributing to the observed p1-I profiles for 

H504A-fcc3  and H365A:H504A-fcc 3 . 
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Figure 6.14 pH profiles of wild-type fcc 3  (top) and l-L365A:H504A-fcc 3  (bottom). 

6.2.3 Substitution of the Active-Site Acid 

The mechanism of fumarate reduction is thought to occur in a concerted reaction in 

which a hydride is transferred from N5 of FAD to the substrate C2 and a proton is 

donated from Arg402, the active-site acid to C3. The pI( 9  of the transient carbanion 

intermediate would be approximately 25, with a pK. of arginine of -12. Therefore 

transfer of a proton from the guanidine group to C3 would be favoured. Residues 

which fulfil the role of active site acid/base catalyst in other enzymes are lysine 
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(pKa=I0.8) or more commonly, histidine (pK6). Histidine is conserved as the 

catalytic active site residue in the famil y  of ci-hydroxy acid dehydrogenases/oxidase 

enzymes (Ghisla et al., 1989). Lysine is used as active site catalyst in aspartate 

aminotransferase (Toney et al., 1993) (AspAT), o-acetlserine suithydrylase (Rege et 

al., 1996) (OASS), D-amino acid transaniinase (Yoshimura et al., 1992), tryptophan 

synthase (Lu et al., 1993) and 5 -amino levulinate synthase (Hunter et al., 1999) 

(ALAS). 

Studies on AspAT and ALAS have shown that it is possible to substitute one of these 

active site catalytic residues for another. AspAT reversibly interconverts the 

dicarboxylic substrates aspartate and cc-ketoglutarate with glutamate and oxaloacetate 

The active site residue Lys258 of chicken AspAT was replaced with a histidine 

residue by means of site-directed mutagenesis (Ziak et al., 1990). The reaction 

comprises of transamination followed by tautomerisation and hydrolysis. The 

transamination requires a I ,3-prototropic shift to interconvert aldimine and ketimine 

intermediates. The rate of the transamination half-reaction was five orders of 

magnitude slower than the wild type enzyme and the reverse half reaction was three 

orders of magnitude slower. This suggests the histidine residue can to some extent 

substitute for Lys258 which is assumed to be the proton donor/acceptor. 5-

Aminolevulinate synthase (ALAS) catalyses the condensation of glycine and succinyl-

CoA to form CoA, carbon dioxide and 5-aninolevulinate. A conserved lysine residue 

is the active-site base. Following substrate binding the conserved lysine removes the 

C-a proton of the amino acid substrate to form a transiently observed quinonoid 

intermediate. The active site base, Lys3 13, was replaced by glycine, histidine and 

arginine (Hunter et al., 1999). In the case of glycine no quinonoid was formed 

indicating removal of the C-a proton from the substrate was not possible. The more 

conservative K3 I 3H and K3 I 3R mutants retain partial capacity to form a quinonoid 

intermediate indicating that they can substitute for lysine as the active site base. 
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6.2.3.1 Substitutions of Arg402 

A series of residues were substituted for Arg402. The mutant R402A was designed to 

illustrate the crucial role of arginine. The mutations; R402K, R402H and R402Y were 

designed to substitute arginine with residues which might be able to function as 

proton donors. The volume occupied and the length of the side chain will determine 

whether their size can be accommodated in place of arginine without major structural 

alterations (Figure 6.15). 

Arginine Alanine Lysine Histidine Tyrosine 

Figure 6.15 Structure of amino acid residues substitute tor Arg402. 

The pKa values of the functional groups will affect their ability to donate protons to 

C3 of fumarate. The pKa  values of the ionizable groups of argininc, lysine, histidine 

and tyrosine for the free amino acids are shown in Figure 6.16. The pKa values 

depend to a considerable extent upon the environment within the protein. 
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Group Ionization Reaction pK 

Gaunidinium _i 	H 2 	 H 12.5 
(of arginine) 

H 	 H 

a– Amino +  
—NH 3 	 —NH 2 	H 10.8 

(of lysine) 

Imidazolium /=\ +  
H 6.0 

(of histidine) HN ...NH 	 I-IN j 

Phenolic 01-I 
(of 

tyrosine)  _________ 
—f--OH 	 . —---O 	H 10.1 

Figure 6.16 The approximate pK a  values of the protonatable side chains of arginine, lysine, histidine 

and tyrosine. These values can vary by several pH units according to their environment within the 

protein. 

6.2.4 The Crystal Structure of R402A 

The R402A mutant as expected is completely inactive (Doherty PhD thesis). To 

confirm that the mutation had not adversely affected the position of other residues in 

the active site the enzyme was crystallised and its structure determined to 2.3 A 

resolution (Figure 6.17). Bound at the active site is a molecule of fijmarate. The 

positions of active-site residues in the R402A structure overlay almost exactly with 

the equivalent residues in wild-type. The C4 carboxyl group of fumarate is bound in 

the same position as that of the malate-like molecule in the wild-type structure. The 

C  carboxyl of flimarate lies at a distance of 3.67 A from Met375 and 3.52 A from 

Met236. These distances are slightly shorter than the equivalent distances in wild-type 

of 3.93 A and 4.03 A respectively. The space made vacant by removal of the arginine 

is now occupied by a water molecule which lies at a distance of 3.51 A from C3 of 

fumarate. C2 of Fumarate lies at a distance of 3.67 A from N5 of FAD compared to 

3.93 A for the equivalent distance in wild-type. The presence of a water molecule 
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close to fumarate confirms that a mechanism involving water as the active site acid as 

proposed by Lancaster et al (1999) can not be operational. Loss of activity is not due 

to detrimental changes in the structure of R402A but in loss of the active site catalytic 

residue. 

His504 

Figure 6.17 Comparison of the active site of R402A (atom coloured) and wild-type (green). A water 

molecule is located close to fumarate in the R402A structure. 

6.2.5 R402K-fcc3  

The conservative mutation R402K has been studied by steady-state analysis and the 

crystal structure determined to 2.0 A resolution. The ability of R402K to catalyse 

fumarate reduction has been investigated at various pH values. All rates have been 

corrected for FAD content. The difference in molecular mass of R402K in comparison 

to wild-type was found to be -36 + 10 Da (expected difference -28 Da). The mutation 

was also confirmed by DNA sequencing. Due to the extremely low activity of R402K, 

assays were carried out using enzyme concentrations of 10 [LM and were monitored 
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over 5-10 minutes (Section 5.8.1) (Figure 6.18). The kinetic parameters, kc. and Km 

are shown in Table 6.7. 
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Figure 6.18 A Michaelis-Menten plot of fumarate reduction at pH 7.2 for the mutant R402K. 

Individual points were calculated from steady-state assays. The data were fitted by least squares 

regression analysis to the Michaelis-Menten equation using the program Microcal Origin. 

At pH 7.2 the enzyme is 104  -fold  less active than wild-type and above pH 7.5 the 

enzyme is inactive. The narrow pH range in which the enzyme is active peaks at pH 

6.8 (Figure 6.21). The ability of R402K to bind fumarate has also been affected. The 

K value for fumarate is approximately twice that of wild-type at pH 7.2. Arg402 is 

able to form a hydrogen bond from the guanidinium group to the carboxylate group of 

fumarate (a distance of 2.83 A). Lysine is unable to hydrogen bond to fumarate and 

consequently K is increased. 

kcat(S) Km (t.tM) 

Wild-type R402K-fcc3  Wild-type R402K-fcc 3  

pH 6.0 658 ± 34 0.02 ± 0.01 43 ± 10 18 ± 4 

pH 7.2 509±15 0.06±0.01 25±2 66± 14 

pH 7.5 370± 10 Inactive 28±3 Inactive 

pH 9.0 210±13 Inactive 17±2 Inactive 

Table 6.7 Kinetic data for flimarate reduction at various pi -1 values by R402K-fcc 3  in comparison to 

wild-type. 
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6.2.5.1 Crystal Structure of R402K 

The R402K structure shows that lysine occupies the same space that was previously 

filled by arginine (Figure 6.19). The lysine side-chain extends to within 3.14 A of 

fumarate. The equivalent distance to C3 of the malate like molecule in wild-type is 

2.99 A. Evidently this has an effect on the rate of proton donation. Fumarate adopts a 

slightly bent conformation in the active site which enables the C2 carbon to be 

positioned just 3.25 A from the N5 of the flavin, closer than for wild-type at 3.35 A. 

Once hydride transfer occurs it is possible that fumarate moves closer to Lys402 to 

receive a proton. The proton transfer pathway has also been affected (Figure 6.20). 

The greatest change is in the distance between G1u378 and ArgILys402. This is 3.34 

A in the case of arginine and 3.50 A in the case of lysine. In wild-type Arg402 and 

Arg38 1 hydrogen bond to the same oxygen of the glutamate (378) side chain. For 

R402K, lysine hydrogen bonds to the opposite oxygen to that of Arg38 1. Arginine 

possessing a guanidinium group and a guanidino group is able to accept and donate 

protons in a concerted reaction. Lysine on the other hand only possessing an amine 

group can only receive or donate protons one at a time. It is predicted that this 

together with the increase in distance from proton donor to C3 of flimarate 

contributes to the slow rate of fumarate reduction. 

3.25 

I His5O4 

V
W  

His365 	
I Lys4O2 

Figure 6.19 Overlay of the active site of R402K-fcc 3  (atom coloured) which contains flimarate with 

wild-type (blue) which is complexed with a malate-like molecule. 
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Figure 6.20 Effects seen in the changes to the proton pathway in R402K compared to wild-type. 

6.2.6 R402H-fcc 3  

The molecular mass of R402H was determined to be (63017 ± 5) Da. A difference of 

22 Da in comparison to wild-type (expected difference -19 Da). The mutation was 

also confirmed by DNA sequencing. The ability of R402H to catalyse fumarate 

reduction was measured over a range of pH's (Table 6.8). At pH 7.2 this enzyme was 

approximately 3-fold more active than R402K. This is thought to be due to the ability 

of the histidine, like arginine to receive and donate protons to fumarate in a concerted 

process. One nitrogen of the iniidazole ring could receive protons from glutamate 378 

while the other could donate protons to fumarate. 

The ability of this enzyme to bind fumarate at pH 7.2 and above has decreased 

compared to wild-type. The active site is clearly able to accommodate the bulk of 
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bistidine in place of arginine but it is likely the positions of active-site residues 

involved in substrate binding have been adversly affected by this mutation. 

kat(S ' ) KM(tM) 

Wild-type R402H-fcc3  Wild-type R402H-fcc 3  

pH 6.0 658 ± 34 0.03 ± 0.01 43 ± 10 20 ± 5 

pH 7.2 509 ± 15 0.09 ± 0.01 25 ±2 98 ± 5 

pH 7.5 370± 10 0.81±0.01 28±3 133± 17 

pH 9.0 210± 13 0.12±0.01 17±2 892± 100 

Table 6.8 Kinetic data for R402H-fcc 3  at various pH values in comparison to wild-type. 

6.3.7 R402Y-fcc3 

The fumarate reductase activity of R402Y was determined over a range of fumarate 

concentrations and pH values (Table 6.9). All rates have been corrected for FAD 

content. The molecular mass of R402Y was determined to be (63038 ± 7) Da. A 

difference of 5 Da in comparison to wild-type (expected difference 7 Da). The 

mutation was also confirmed by DNA sequencing. This enzyme is active over the pH 

range 7.5-9.0. Remarkably at its optimum p1-I this enzyme is more active than R402K. 

kcat (i)  K ([LM) 

Wild-type R402Y-fcc 3  Wild-type R402Y-fcc3  

pH 6.0 658 ± 34 0.02 ± 0.01 43 ± 10 207 ± 25 

pH 7.2 509 ± 15 0.05 ± 0.01 25 ± 2 267 ± 44 

pH 7.5 370± 10 0.14±0.01 28±3 213 ±24 

p1-I 9.0 210 ± 13 Inactive 17 ± 2 Inactive 

Table 6.9 Kinetic data for R402Y-fcc 3  at various pH values in comparison with wild-type. 
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6.3.71 Comparison of the pH Profiles of R402K-fcc 3, R402H-fcc3  

and R402Y-fcc3  

Fumarate reductase activities of R402K, R402H and R402Y mutant enzymes were 

measured over the pH range 6.0-9.0 (Figure 6.21). Each mutant exhibits a distinctly 

different trend in activity with pH. The optimum pH values for WT - fcc3, R402K, 

R4021-I, and R402Y are 6.0, 6.8, 7.5 and 8.0 respectively with corresponding 

maximum rates of 660 s, 0.15 s, 0.075 s_ I  and 0.14 s_ I  respectively. R402K is 

inactive above pH 7.5 and R402Y is unable to catalyse fumarate reduction above pH 

8.0. It is not clear why R402K and R402Y should only be able to function over such 

narrow p1-I ranges. 
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Figure 6.21 Comparison of pH profiles for R402H (RED), R402K (green) and R402Y (blue) 

Data has been fitted to equation I described in appendix 74 enabling the resolution of two pKa 

values. 
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6.4 Solvent Isotope Effect 

6.4.1 Introduction 

Many enzymatic properties differ when the enzyme is dissolved in deuterium oxide 

rather than 1120. (Katz 1970). The solvent isotope effect arises from the isotopic 

free-energy differences for the reactant state (Michaelis complex) and transition state 

(Figure 6.22) (Schöwen 1981). Kinetic studies of solvent isotope effects in a series of 

mixtures of H 2 0 and D2 0 can in some cases allow the dissection of the isotope effect 

into its component contributions from different sites in the reactant and transition 

states (Schöwen et al., 1982). Each exchangeable hydrogenic site dissolved in 

H20/D2 0 mixtures will, at equilibrium, contain a mixture of protium and deuterium. 

The ratio of protium to deuterium in a particular site will be equal to the ratio present 

in the bulk solvent only if the binding in the site equals the binding of an average 

water molecule. If the solute site binds its hydrogen more weakly, protium will 

accumulate while if the binding is tighter deuterium will be preferred. In order to 

identify isotopic effects for individual hydrogenic positions, rather than the aggregate 

effects, isotopic fractionation factors (4)) can be used (Schöwen 1978). 

Figure 6.22 Free energy diagram for enzyme catalysed reactions. E = enzyme, S = substrate. The 

reactant state (RS) and transition state (IS) free energy will be effected as a result of deuterium 

exchanging for protium. 
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It has been shown that Arg402 is the active site acid (Doherty et al., 2000). However 

there is no direct evidence to suggest that fumarate reduction occurs in a concerted 

mechanism or in a stepwise process. However in the R402K and R402H mutant 

enzymes a stepwise mechanism might operate. For a stepwise process, in which 

proton transfer was the rate-limiting step, contributions to the solvent isotope effect 

would arise from transfer of a single protium species. In a concerted mechanism two 

protium species should be accounted for. The solvent isotope effect can be separated 

into its separate components using the Equation 6.3. 

kD = [i'4T 

kH 	Ft'4R 

Equation 6.3 Solvent isotope effect arising from contributions from the fractionation factors in the 

reactant (4)R)  and transition (4T)  state. 

6.4.2 Solvent isotope studies on Fcc3  

Proton inventories were carried out for fumarate reduction by fcc 3-WT under steady-

state conditions at pH 7.2 (Figure 6.23) (section 5.5). The data were fitted to a 

multiple z site model. (Appendix 7.2). It was not possible to assign contributions to a 

particular site in either reactant or transition state. However the data are not 

consistent with a mechanism in which only one proton is involved in either the 

reactant or transition state (appendix 7.3). This is in agreement with the proposed 

mechanism whereby hydride transfer from the fiavin N5 to C2 of fumarate and proton 

transfer from Arg402 to C3 of fumarate occurs in a concerted process and involves 

two hydrogens. 
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Figure 6.23 Solvent isotope effect observed for wild-type at pH 7.2 fitted to a model for multiple z 

sites. Individual points were calculated from steady-state assays. 

To simplify the interpretation of experimental data the studies were repeated at pH 

9.5 (Figure 6.24). Whereas pH 7.2 is close to the pK a  value of 7.32 for wild-type, at 

pH 9.5 many residues which may have contributed to the observed isotope effect of 7 

will be unprotonated and therefore the influences from these proton sites will be 

removed. There is a reduction in the solvent isotope effect from 7 at pH 7.2 to 3.7 at 

pH 9.5 (Figure 6.24). However it was still not possible to attribute the effects 

observed to particular sites. 
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Figure 6.24 Solvent isotope effect observed for wild-type at pH 9.5. Data are fitted to a model for 

multiple z sites. Individual points were calculated from steady-state assays. 

6.4.3 Solvent isotope Studies on R402K-fcc 3  and R402H-fcc3  

Under steady-state conditions contributions to the solvent isotope effect observed in 

wild-type might arise from many different steps in the catalytic cycle. For the mutant 

enzymes R402K-fcc 3  and R402H-fcc3  proton transfer from Lys402 or I-1is402 to C3 

of fumarate might be expected to be significantly slower than other steps in the 

catalytic cycle. This would enable the rate-limiting step in isolation to be examined. 

Proton inventories were carried out at pH 7.2 where these mutant enzymes showed a 

reasonable level of activity. Solvent isotope effects for R402K and R402H were found 

to be 2.2 (Figure 6.25) and 6.4 (Figure 6.26) respectively. However results could only 

be interpreted to give aggregate fractionation values and data was fitted to a multiple 

z site model. 
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Figure 6.25 Solvent isotope effect for R402K-fcc 3 . Steady-state assays were carried out at saturating 

flimarate concentrations and pH 7.2. Data is fitted to a multiple z site model. 
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Figure 6.26 Solvent isotope effect for R402H-fcc 1  at pH 7.2. Steady-state assays were carried out at 

saturating fUmarate concentrations and pH 7.2. Data is fitted to a multiple z site model. 
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Many different protons contribute to the observed solvent isotope effect. Data for 

wild-type, R402K and R402H fitted well to a model for multiple z sites in which many 

small isotope effects add up to a much more significant aggregate effect. It was not 

possible to assign effects to individual protons. Proton hydrogenic sites are generally 

considered exchangeable if hydrogen is bound to 0. N or S. Many active-site residues 

will therefore have an influence on the solvent isotope effect. At pH 9.5 the solvent 

isotope effect is less than at pH 7.2 (7.0 and 3.7 respectively) suggesting that 

deprotonation of certain residues removes their contributions. Additionally, 

contributions may arise from the proton-transfer pathway (Figure 6.27). For fumarate 

reduction to occur protons are delivered to the active site via the triad of residues 

Arg38 1, Glu378 and Arg402. Individual steps or the cumulative effect from the 

complete pathway may add to the solvent isotope effect observed. 

+ 	 + 	 HO 	0 

H214yNH 	0 H NyN 	 N FAD 

NH 	 NH 
0 	OH 

Arg381 	G1u378 	f Arg402 	Fumarate 

Figure 6.27 The proton-transfer pathway. Blue arrows represent electron flow and green arrows show 

proton transfer. 
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6.4 Conclusions 

The aim of this work was to investigate the role of active site residues in 

flavocytochrome c3 , in particular the identity of the active site acid. Site directed 

mutagenesis has been used to confirm that Arg402 is the active site acid. Mutation of 

the active site histidines (His504 and His365) individually and in the double mutant 

(H3 65 A: H504A-fcc 3) resulted in enzymes which retained low levels of flimarate 

reductase activity confirming that neither of these residues are essential for catalysis. 

However, mutation of Arg402 to alanine results in complete loss of activity. The 

crystal structure of the R402A enzyme has been solved to 2.3 A resolution. The 

presence of a water molecule close to fumarate at the active site suggests that a 

mechanism involving water as the active site acid as proposed by Lancaster el al 

(1999) can not be operational. The conservative mutation R402K has been 

constructed and characterised by kinetic analysis and the crystal structure solved to 

2.0 A resolution. The enzyme retains fumarate reductase activity showing that lysine 

is able to substitute for arginine as the active site acid. The crystal structure shows 

that lysine occupies the same space that was previously filled by arginine. In addition 

the position of residues involved in Michaelis complex formation are almost identical 

with that seen in the wild-type structure. The lysine side-chain extends to within 3.14 

A of the C3 position of flimarate. The equivalent distance to C3 of the malate like 

molecule in wild-type is 2.99 A. However lysine is no longer positioned optimally to 

receive protons from G1u3 78. It is predicted that this together with the increased 

distance from proton donor to C3 of ftimarate contributes to the slow rate of fttmarate 

reduction. Construction of the mutant enzymes R402H-fcc 3  and R402Y-fcc3  has 

demonstrated that histidine and tyrosine are also able to substitute for Arg402. At pH 

7.2 the R402H enzyme is approximately 3-fold more active than R402K. This is 

thought to be due to the ability of the histidine, like arginine, to receive and donate 

protons to fumarate in a concerted process. 

The proposed mechanism for fumarate reduction involves hydride transfer from the 

flavin N5 to C2 of fumarate and proton transfer from Arg402 to C3 of flimarate. 
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However there is no direct evidence to suggest that fumarate reduction occurs in a 

concerted mechanism rather than as a stepwise process. This has been investigated 

using solvent isotope studies. Although the data does not prove that a concerted 

mechanism operates it is not consistent with a mechanism in which only one proton is 

transferred at a time. 

Substrate specificity studies and inhibition studies have been carried out to probe the 

active site structure. Flavocytochrome c3  was unable to catalyse the reduction of 

alternative enoates to fumarate. However, oxaloacetate, methyl succinate and 3-

nitropropinoate were found to be inhibitors of succinate oxidation with K, values of 

5.3 tM, 1.7 mM and 0.5 mM respectively. 

Future Work 

The roles of key active residues have been investigated using site-directed 

mutagenesis but there is much scope for future work. The series of mutants 

constructed to investigate residues able to substitute for Arg402 has been extended to 

include glutamine. Preliminary studies show that this enzyme is also able to catalyse 

fumarate reduction. The crystal structure of the R402H mutant is currently being 

refined and work is underway to crystalise R402Y and R402Q. The importance of the 

Met 236 and Met375 which induce the twist in fumarate, in order to activate the 

substrate, are being investigated. 

The reduction potentials of the four haem cofactors have been determined by redox 

potentiometry and protein film voltametry but it is not possible to assign potentials to 

individual haems using these techniques. To overcome this a series of mutants have 

been designed in which the axial ligands of individual haems have been mutated to 

alanine residues. These enzymes are being studies by protein film voltametry enabling 

the effected haem to be detected as a result of its change in reduction potential. 

132 



Part 2 

References 



References 

Ackrell, B. A. C., Armstrong, F. A., Cochran, B., Sucheta, A., and Yu, T., (1993) FEBS 

Letters, 326, 92-94. 

Ackrell, B. A. C., Cohran, B., and Cecchini, G., (1989) Archives of Biochemistry and 

Biophysics, 268, 1, 26-34. 

Arikawa, Y., Enomoto, K., Muratsubaki, and H., Okazaki, M., (1998) FEMS, 165, 111-

116. 

Bachela, L., Lina, C., Todone, F., Negri, A., Tedeschi, G., Ronchi, S., and Mattevi, A., 
Ada Crystailographica, D55, 549-551(1999) 

Bamford, V., Dobbin, P.S., Lee, S. Reilly, A., Powell, A. K., Richarson, D. J., and 
Hemming, A. M., (1999a), Ada Crystallographica, D55, 1222-1225. 

Bamford, V., Dobbin, P. S., Richardson, D. J., and Hemmings, A. M., (1999b) Nature 

Structural Biology, 6, 12, p1 104-1107. 

Blautt, M., Whittaker, K., Valdovinos, A., Ackrell, B. A. C., Gunsalus, R. P., and 

Cecchini, G., (1989) .1.    Biological Chemistry, 264, 23, 13599-13604. 

Cammack, R., Patil, D. S., and Weiner, J. H., (1986) Biochimica el Biophysica Acta, 870, 

545-551. 

Cammack, R., (1992), Nature, 356, 288-289. 

Cecchini, G., Thompson, C. R., Ackrell, B.A.C., Westenberg, N. D., and Gunsalus, R. P., 

(1986a) P. Nail. Acad. Sc., 83, 8898-8902. 

Cecchini, G., Ackrell, B. A. C., Deshler, J. 0., and Gunsalus, R. P., (1986b) J. Biol. 

Chem., 261, 4, 1808-1814. 

Cecchini, G., Sices, H., Shroder, I., and Gunsalus, R. P., (1995) J. Bacteriol. 177, 16, 

4587-4592. 

Chen, I-P., Maths, P., Koepke, J., and Michel, H., (2000), Biochemistry, 39, 3592-3602. 

Cole, S., (1982) Eur. .1 Biochem., 122, 479-484. 

Cole, S., Candon, C., Lemire, B. D., and Weiner, J. H., (1985) Biochemica ci Biophysica 

Ada, 811, 381-403. 

Cooley, J. W., Howitt, C. A., and Vermaas, W. F. J., (2000), J. Bacteriology, 182, 3, 714-

722. 

Dickie, P., and Weiner, J. H., (1979), Can. I Biochem., 57, 813-82 1. 

133 



References 

Dobbin, P. S., Butt, J. N., Powell, A. K., Reid, G.A., and Richardson, D. J., (1999) 
Biochem. J., 342,439-448, 

Doherty, M. K., Pealing, S. L., Miles, C. S., Moysey, R., Taylor, P., Walkinshaw, M. D., 
Reid, G. A., and Chapman, S. K., (2000) Biochemistry, 39, 10695-10701. 

Doherty, M., PhD thesis, Mechanistic Characterisation of Flavocytochrome c3 , the 
Fumarate Reductase from Shewanellafrigidimarina NCIMB400, University of 
Edinburgh, (1999) 

Geisler, V., Ullmann, R., and Kroger, A., (1994) Biochimica el Biophysica Ada, 1184, 
219-226, 

Ghisla, S. and Massey, V., (1989), Eur. .1. Biochem.,181,1-17. 

Gordon, E. H. J., Pealing, S. L., Chapman, S. K., Ward, B., and Reid, G. A., (1998), 
Microbiology, 144, 937-945. 

Heering, H. A., Weiner, J. H., and Armstrong, F. A., (1997), 1 Am. Chem. Soc., 119, 48, 
11628-11638. 

Hunter, G. A., and Ferreira, G. C., (1999), Biochemistry, 38, 3711-3718. 

Iverson, T. M., Luna-Chavez, C., Cecchini, G., and Rees, D. C., (1999) Science, 284 
1960-1966. 

Katz, J. J., and Crespi, H. L., in 'Isotope Effects In Chemical Reactions', P. 286, Van 
Nostrand-Rheinhold, Princetown, New Jersey (1970) 

Kowal, A. T., Werth, MT., Manodori, A., Cecchini, G., SchrOder, I., Gunsalus, R. P. and 
Johnson, M. K., (1995), Biochemistry, 34, 12284-12293, 

Lancaster, C. R. D., Kroger, A., Auer, M., and Michel, H., (1999), Nature, 402, 37-385. 

Lancaster, C. R. D., and Kroger, A., (2000), Biochimica et Biophysica Ada, 1459, 422-
431. 

Leys, D. Tsapin, A. S., Nealson, K. H., Meyer, T. E., Cusanovich, M. A., and Van 
Beeumen, J. J., (1999), Nature Structural Biology, 6, 12. 

Lorenzen, J. P., Kroger, A., and Unden, G., (1993), Arch. Microbiol. 159, 477-483. 

Lu, Z., Nagata, S., McPhie, P., and Wilson Miles, E., (1993), J. Biol. Chem., 268, 12, 
8727-8734. 

Macheroux, P., (1999) Methods in Molecular Biology, 131 in 'Flavoprotein Protocols' 
(Ed. Chapman, S. K., and Reid, G. A.) 1-7. 

134 



References 

Makiashina, E., Berthold, D. A., and Cechini, G., (1998), J. Bacteriology, 180, 22, 5989-

5996. 

Mattevi, A., Tedeschi, G., Bacchella, L., Coda, A., Negri, A., and Ronchi, S., (1999), 
Structure, 7, 7, 745-757 

Mikoulinskaia, 0., Akimenko, V., Galouchko, A., Thauer, R., and Hedderich, R., (1999), 
Eur. J.Biochem., 263, 346-352. 

Morris, C. J., Black, A. C., Pealing, S. L., Manson, F. D., Chapman, S. K., Reid, A. G., 
Gibson, D. M., and Ward, F. B., (1994). 1 Biochem, 302, 587-593, 

Mortarino, M., Negri, A., Tedeschi, G., Simonic, T., Duga, S., Gassen, H. G., and 
Ronchi, S., (1996), Eur. J. Biochem., 239, 418-426, 

Myers, C. R., and Myers, J. M., (1992), FEMS Microhiol. Let!., 98, 13-20. 

Myers, C. R., and Myers, J. M., (1997a), J. Bacteriology, 179, 4, 1143-1152. 

Myers, C. R., and Myers, J. M., (1997b), Let!. In App/. Microbiol., 25, 162. 

Myer, J. M., and Myer, C. R., (2000),J. Blot. Chem., 182, 1,67-75 

Nasu, S., Wicks, F. D. and Gholson, R. K., (1982), J. Biol. Chem., 257,626-632. 

Ohnishi, T., Moser, C.C., Page, C. C., Dutton, P.L. and Yano, T., (2000), Structure 8, 2, 

23-32. 

Pealing, S. L., Black, A. C., Manson, F. D. C., Ward, B., Chapman, S. K., and Reid, G. 
A., (1992), Biochemistry., 31, 12132-12140. 

Pealing, S. L., Cheesman, M. R., Reid, G. A., Thompson, A. J., Ward, B., and Chapman, 
S. K., (1995),Biochemistry, 34,6153-6158. 

Pealing, S. PhD Thesis, Flavocytochrome c3  from Shewanella Pu/refaciens: A soluble 

Fumarate Reductase, University of Edinburgh, (1994) 

Pike, A. PhD thesis, A study of the Cytochrome c3  from Shewanella NCIMB400 and The 

Flavocytochrome b2  from Saccharomyces Cerivisiae, University of Edinburgh, (1998) 

Rege, V. D., Kredich, N. M., Tai, C., Karsten, W. E., Schnackerz, K. D., and Cook, P., 
(1996), Biochemistry, 35, 13485-13494. 

Reid, G. A., Gorden, F. H., Hill, A. E., Doherty, M., Turner, K., Holt, R., and Chapman, 
S. K., (1998), Biochem. Soc. Trans., 26, 418-421. 

Reid, G. A., Miles, C. S., Moysey, R. K., Pankhurst, K. L., and Chapman, S. K., (2000), 
Biochimica et Biophysica Ac/a, 1459, 310-315. 

135 



References 

Rhee, S., Parris, K. D., Ahmed, A., Wilson Miles, E., Davies, D. R., (1996), 

Biochemistry, 35, 4211-4221. 

Robinson, J. J., and Weiner, J. H., (1982), Can. J. Biochem, 60, 811-816. 

Rossi, C., Hauber, J., and Singer, T. p., (1964), Nature, 204, 167-170. 

Rothery, R. A., and Weiner, J. H., (1998), Eur. J. Biochem., 254, 588-595, 

SchOwen, R. L., in 'Transition States of Biochemical Processes' P. 225, Plenum, New 

York (1978). 

SchOwen, K. B., and Showen, R. L., (1982), Methods in Enzymology, vol 87, p 27  

SchOwen, R. L., in 'Isotope Effects on Enzyme-catalyses Reactions' P. 64 University 
Park Press, Baltimore, Maryland. 

SchrOder, I., Gunsalus, R. P., Ackrell, B. A. C., Cochran, B., and Cecchini, G., (1991), J. 

Biol. Chem., 266, 21, 13572-13579. 

Simon, J., Gross, R., Ringel, M., Schimdt, E., and Kroger, A., (1998), Eur. J. Biochem., 

251, 418-426. 

Simpkin, D., and Ingeldew, W. J., (1985), Biochem. Soc. Trans., 13,602-607. 

Spencer, M. E., and Geuest, J. R., (1973), J. Bacteriology, 114, 563-570. 

Sucheta, A., Ackrell, B. A. C., Cochran, B. and Armstrong, F. A., (1992) Nature, 356, 

361-362. 

Sucheta, A., Cammack, R., Weiner, J., and Armstrong, F. A., (1993), Biochemistry, 32, 

5455-5465. 

Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D., (1999), 

Nature Structural Biology, 6, 12, 1108-1112. 

Tedeschi, G., Negri, A., Motarino, M., Ceciliani, F., Simonic, T., Faotto, L., and Ronchi, 

S., (1996), Eur. J. Biochem., 239, 427-433. 

Tedeschi, G., Zetta, L., Negri, A., Motarino, M., Ceciliani, F., Ronchi, S., (1997), 

Biochemistry, 36, 16221-16230. 

Tedeschi, G., Negri, A., Ceciliani, F., Mattevi, A., and Ronchi, S., (1999), Eur. I. 

Biochem., 260, 896-903. 

Teipel, J. W., Hass, G. M., and Hill, R. L., (1968),J. Biol. Chem., 243, 21, 5684-5694. 

Thorneley, R. N. F., Biochemica et Biophysica Acta, 333, 487-496. 

136 



References 

Toney, M. D., and Firsch, J. F., (1993), Biochemistry, 32, 1471-1479 

Tsapin, A. T., Bubaev, D. S., Nealson, K. H., and Keppen, 0.1., (1995), App!. Magn. 
Reson., 9, 509-516. 

Tsapin, I. A., Nealson, K. H., Meyers, T., Cusanovich, M. A., Van Beuumen, J., Crosby, 
L. D., Feinberg, B. A., and Zang, C., (1996), J. Bacteriology, 178, 21, 6386-6388. 

Turner, K. L., Doherty, M. K., Heering, H. A., Armstrong, F. A., Reid, G. A., and 
Chapman, S. K., Biochemistry, 38, 11, 3302-3309,(1999) 

Unden, G., Hackenberg, and H., Kroger, A., (1980), Biochimica ci Biophysica Acta, 591, 
275-288. 

van HeHemond, J. J., and Tielens, G. M., (1994), Biochemical Journal., 304, 321-33 1. 

van Hellemond, J. J., Klockiewicz, M., Gaasenbeek, C. P. H., Roos, M. H., and Tielens, 
A. G. M., (1995),J. Biol. Chem., 270, 52, 31065-31070. 

Vibat, C. T., Cecchini, G., Nakamura, K., Kita, K., Gennis, R. B., (1998), Biochemistry, 
37, 4148-4159. 

Weiner, J. H., Cammack, R., Cole, S., Candon, C., Honore, N., Lemire, B. D., and Shaw, 
G., (1986), P. Nail. Acad. Sc!., 83, 2056-2060. 

Werth, M. T., Cecchini, G., Manodori, A., Ackrell, B. A. C., Schroder, I., Gunsalus, R. 
P., and Johnson, M. K., (1990), P. Nail. Acad. Sc!., 87, 8965-8969. 

Yoshimura, T., Bhatia, M. B., and Manning, M., (1992) Biochem. J., 31, 11748-11754. 

Zhao, Z., Rothery, R. A., and Weiner, J. H., (1999), Eur. iBiochem. 260, 50-56. 

Ziak, M., Jaussi, R., Gehring, H., Christen, P., (1990), Eur. I Biochem., 187, 329-333, 

Zientz, E. Bongaerts, J., and Unden, G., (1998), J. Bacteriology, 180, 20, 5421-5425. 

137 



Appendix 



Appendix 

7.0 Appendix 

7.1 Abbreviations 

7.1.1 Amino Acids 

Alanine Ala A 
Arginine Arg R 
Asparagine Asn N 
Aspartic acid Asp D 
Cysteine Cys C 
Glutamic acid Glu E 
Glutamine Gin Q 
Glycine Gly G 
Histidine His H 
Isoleucine lie I 
Leucine Leu L 
Lysine Lys K 
Methio nine Met M 
Phenylalanine Phe F 
Proline Pro P 
Serine Ser S 
Threonine Thr T 
Tryptophan Trp W 
Tyrosine Tyr Y 
Valine Val V 

7.1.2 Kinetic parameters 

kcat Rate constant under saturating conditions 
kobs Observed rate 
kiim Rate constant under pre-steady-state conditions 
Km Michaelis constant 
K<  Binding constant 
K1  Inhibitor binding constant 

7.1.3 Standard units 

m 	metre °C degrees Celsius 
g 	gram M molar 
s 	second Da daiton units 

litre A angstrom 
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7.1.4 Abbreviations 

Abs Absorbance 
APS Ammonium persulfate 
Al? Adenosine triphosphate 
D20 deuterated water 
DCIP Dichioroindophenol 
DMSO Dimethyl Suiphoxide 
DTT Dithiothreitol 
E. coli Escherichia coli 
EDTA Ethylene diamine tetraacetic acid 
FAD Flavin Adenine Dinucleotide 
FMN Flavin Mononucleotide 
FPLC Fast protein liquid chromatography 
FRD Fumarate reductase 
I Ionic strength 
IPTG Isopropyl-13-thiogalactoside 
LB Luria broth 
NMR Nuclear magnetic resonance 
ox Oxidised 
PAGE Polyacrylamide gel electrophoresis 
PFV Protein film voltammetry 
red Reduced 
Ri  Ionic radius 
SDH Succinate Dehydrogenase 
SDS Sodium dodecyl sulfate 
TCA Tricarboxcylic acid cycle 
TEMED N,N,N',N'-tetramethylene diamine 
Tris Tris(hydroxymethyl) aminomethane 
liv Ultra-violet 

7.2 Derivation of the Michaelis-Menten Equation. 

k 1 	k2  

E + S 	ES—E+P 	1) 

E = enzyme, S = substrate, P = product, ES = enzyme-substrate complex. 

V = catalytic rate = k 2  [ES] 
	

2) 
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rate of formation of ES = k 1  [E][S] 	 3) 

rate of dissociation of ES = (k. + k 2) [ES] 	4) 

k2  = turnover number i.e. the number of substrate molecules converted into 

product by an enzyme molecule in a unit time when under saturating 

conditions = k8 

Assumption I 

Under steady-state the concentrations of intermediates stay the same while the 

concentrations of starting materials and products are changing. This occurs when the 

rates of formation and breakdown of ES are equal. 

k I  [E][S] = (k 1  + k2) [ES] 	 5) 

k 1 [E][S] 
[ES] = 	 6) 

(k 1  +k2) 

(k- I + k2) 	 [E][S] 
Km = 	 [ES]= 	 7) 

k 1 	 K 

The concentration of substrate-free enzyme, [E], is equal to the total enzyme 

concentration, [E 0], minus the concentration of the ES complex. 

[Eo] = [E ]+[E5] [E ] = [E]-[ES] 	 8) 

Assumption 2 

If the substrate concentration far exceeds that of the substrate-free enzyme the rate of 

the reaction is unaffected by the depletion of substrate throughout the course of the 

reaction i.e. [S]=[S o]. Substituting expression 8 for [E] into equation 7, 

[ES] = 
([E0]- [ES])[S] 

Km  

9) 
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[EØ} [S] 
[ES] = _______ 

[S] +K m 	 10) 

By substituting this expression for [ES] into equation 4 gives the Michaelis-Menten 

equation (11), 

V= kcat [ES] 

and 

k1 [E0] [ S] 
v= 

[S] +iç 	 11) 

Case 1 

The maximal rate, Vmax is attained when the enzyme sites are saturated with substrate, 

when [S]>> Km. 

V.. = k, [E0] = k 1  [E0] 

Case 2 

When the substrate concentration is much less than Km, then the rate is directly 

proportional to [S] 

[S] 	
jj

jç[E0 ] [ S] 

Km 
[S] +Km 	Km 	

and 

Case 3 

The substrate concentration equals the value of Km. 

[S] 

[S]+Km 	2[S] 	2 and 
= 	[So] - Vmax  

2 	2 

Case 4 
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The dissociation of the ES complex is more rapid than its conversion of substrate to 

product, Li>>kcat, Km  is equal to the dissociation constant, Kd, and is a measure of the 

strength of the ES complex. 

Kd = [E][S] = 

[ES] 	k 1 	and 

- k 1  +k 
Km 	

k1 	k1 

7.2.1 Competitive Inhibition 

Competitive inhibition occurs when substrate and inhibitor compete for the active site. 

	

Kni 	keat  
E+S' ,ES 

+IJrK  
El 

The dissociation constant, K is defined as, 

[E] [I] 
Ki 	

[El] 

[E] [5] 
Km = 

ES] 

[E] [I] 
[El]  

[K 1 ] 

The total enzyme concentration, [E] 1  is given by, 

+ [E] +[ES] + [El] 

Substitution of [El] gives, 
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kcat  [E] 0  [S] 

Iy 
[S] +K(1+[1]/K.) 

7.3 Debye-HUckel theory 

The picture underlying the Debye-HUckel theory is of a tendency for oppositely 

charged ions to attract each other. As a result, cations and anions are not uniformly 

distributed in solution: anions are more likely to be found near cations, and vice versa. 

The energy, and therefore chemical potential, of any given central ion is lowered by 

electrostatic interactions with its ionic atmosphere. At low concentrations, the activity 

coefficient can be calculated from the Debye-Huckel limiting law, 

(1) 	log y ± -Az 2 II 

y = activity coefficient of ion. 

z1  = charge on the ion. 

I = ionic strength of solution. 

A = 0.509 mole-'T2  for an aqueous solution at 25°C (in general, A depends on 

temperature and solvent) 

The limiting law assumes that ions are point charges and ignores some solvent effect 

which are important when studying macromolecules at high ionic strength. In order to 

take into account these effects the equation is incorporated into the Bronsted's kinetic 

relation. 

(2) 	logk2  = logk0  + 2Az+zII 

k2 =  second order rate constant. 

= second order rate constant at I 

Plotting logk2  vs 'li generates a straight line allowing calculation of the charges 

involved in the reaction between two species. It should also be noted that the equation 
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does not fit satisfactorily to data obtained at high ionic strength. However, the 

extended Debye-Brønsted equation (3) introduces a term which is linearly dependent 

on ionic strength. 

(3) 	logk2  = logk + 2Azz.4I-BI 

In this case a plot of logk 2  vs 'Ii generates a parabola which fits more accurately to 

high ionic strength data. The coefficient, B, has no simple definition but is designed to 

compensate for deviations due to short-range solvent interactions and the increasing 

dominance of the ionic radius at high ionic strength. 

(Robinson & Stokes, 1973; Perlmutter-Hayman, 1959) 

7.4 pH Dependence 

The ionisation constants for acids and bases can be described using the following 

equations. 

[A] [H] 
Ka = 

[AH] 

The pKa  of such systems is defined by; 

pKa  = - log Ka 

Rearrangement of the above equations allows derivation of the Henderson-Hasselbach 

equation; 

EI-I22 	EH + H v=t E +2W 

[H+]EEHI 	[E ] [WI 
K Al = 	 KA2  = 

[EH 221 	 [EH + I 
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Therefore the pKa can be described as the pH at which the concentration of 

protonated and deprotonated species are equal, i.e. the species is hail neutralised. 

1- [EH] 
pH = pKAl- Log L [EH22] 

1[E1 
pH = PKA2 Log L [EH] 

Equations for the three individual species can be obtained, 

[E]= 	iO 	 [EW]= 	I 

	

i±icj - 
PM +io' 	 i+ict 	+io 

	

[EH22 ] = 	10 

1 + 111fPKMPt)  + 

The total activity measured at any pH value will be a sum of the contributions from 

the three species, 

Activity = ko[E] + k 1  [EH] + k2 [EH2 2 ] 

Fitting of the experimental data to the final equation, allows the resolution of two PKa  

values. 

Activity= k0 i o'' - °+ k1+k2I 0(pH-pKA2) 

1 + iO' PH)  + 
10(pH-pK 

7.5 Solvent Isotope Effects 

If the fraction of deuterium in a mixed isotopic solvent is called n, then the isotopic 

fractionation factor, 4 j  is simply the ratio of D:H at the th  hydrogenic site relative to 

water (Figure 7.1). 
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= 

D /(1 H1  

Figure 7.1 Fractionation factor, 4 denotes the ratio of deuterium to hydrogen at a particular 

hydrogenic site. 

A simple case, in which a reactant RH, with one exchangeable hydrogen forms a 

transition state TH also with one exchangeable hydrogen, is represented in Figure 7.2. 

LOD + RH kH  [LOD + TH] 

11 	
_______ 	,J,lk +J 

LOH + RD kD  [LOH + TD] 

L=HorD 

Figure 7.2 Fractionation factors for a simple case involving one exchangeable hydrogen in the 

reactant state and one in the transition state. 

The solvent isotope effect observed can be expressed in terms of the fractionation 

factors for the single reactant and transition sites. 

kD  

kH 

Figure 7.3 The solvent isotope effect expressed in terms of fractination factors. 
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The kinetic isotope effect is then determined by the reactant state and transition state 

fractionation factors which change on activation. A considerable number of isotopic 

fractionation factors have been determined experimentally and they can be generalised 

to form the functional-group rule. This simplification means that values of 4 j  depend 

on the functional group in which the th  site is located and not on more remote features 

of the molecular environment. Thus, all alcohols can be expected to show the same 

fractionation factor, all amines the same one, etc. 

In order to identify isotopic effects for individual hydrogenic positions rather than the 

aggregate effects described by free energies of transfer isotopic fractionation factors 

can be used (Schöwen 1978). Protein hydrogenic sites are generally considered 

exchangeable if hydrogen is bound to 0, N or S and non exchangeable if bound to 

carbon. Hydrogenic sites can be classified into: 

Internal sites - exchangeable hydrogenic sites in the protein giving substantial effect 

on the free energy of transfer. 

External sites - sites in water molecules that are strongly interacting with the 

protem. 

Z sites-hydrogenic sites in weakly interacting water molecules or in exchangeable 

sites in proteins where the binding potential is close to bulk water so that only 

small isotope effects are produced. Such sites will be important if their aggregate 

isotope effect becomes significant. 

7.4.1 Proton Inventories 

Kinetic studies of solvent isotope effects in a series of mixtures of 1120 and D 20 can 

in some cases allow the dissection of the isotope effect into its component 

contributions from different sites in the reactant and transition states (Schöwen et al., 

1982). A solvent isotope effect of kHkD < I indicates an inverse isotope effect and net 

binding at contributing hydrogenic sites is tighter in effective transition states than in 

effective reactant state. If kHkD >1, a normal isotope effect indicates net binding is 
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looser in effective transition state than in effective reactant state. Proton inventories 

corresponding to an overall isotope effect k 0> k will give a general 'tilt' of the curve 

downwards. A number of model curves can be generated to which data can be fitted 

(Figure 7.4). For a single site in the transition state, k is linear (a), for a single site in 

the reactant state, k n  is a steep bowl shape and k is linear (d). For two sites in the 

transition state there is the opportunity even at small n, for both sites to be deuterated, 

thus the rate drops off initially more rapidly than for the one proton effect resulting in 

the downward bowing of the curve and data can be fitted to a quadratic (b). The 

larger the number of sites in the transition state the greater the curvature, but this 

effect is opposed when sites in the reactant state also contribute. If both reactant and 

transition state contribute to a solvent isotope effect possibly with multiple z sites in 

each then influences begin to oppose each other and it becomes impossible to ascribe 

the sites to a particular state and the models converge on a curve for multiple z sites 

(c). 

k=k0 (l-n+nIP) 

k=k0 (l-n+nJP 1 )2  

kn = k0 (l/P) 

k=k0 /(1-n+nP) 

Figure 7.4 Model curves generated from solvent isotope effect. A linear curve is obtained for a single 

site in the transition state (a) or a steep curve for a single site in the reactant state (d). Curve b 

corresponds to two sites in the transition state and curve c to a multiple z site model. 
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7.7 Conferences and Courses Attended 

Department of Chemistry Colloquia 

ISTAS Summer School, Structure and Function of Metalloenzymes, Oeiras, Portugal, 
Sept. 7 h-19t'  1998 

Biochemical Society Meeting (redox enzymes section), University of Leicester, Sept. 
1998 

13th International Congress on Flavins and Flavoproteins, University of Konstanz, 
Germany, 291hAug - 4th Sept. 1999 (Abstract and Poster presented) 

3rd Firbush Redox Enzymes Meeting, University of Edinburgh, 1998 

4th Firbush Redox Enzymes Meeting, University of Edinburgh, 2000 (speaker) 

Inorganic Chemistry Group Meeting, Firbush Field centre, Scotland 2000 (speaker) 

7.7 Publications 

Chapman, S. K., Welsh, F., Moysey, R., Mowat, C., Doherty, M. K., Turner, K. L., 
Munro, A. W., Reid, G. A. (1999): Flavocytochromes: tranceivers and relays in 
biological electron transfer. Biochemical Society Transactions, 27, 185-189. 

Moysey, R., Welsh, F., and Chapman, S. K., (1999) Flavins and Flavoproteins, 
Molecular Recognition in the Flavin Domain of Flavocytochrome b2. 

Doherty, M. K., Pealing, S. L., Miles, C. S., Moysey, R., Taylor, P., Walkinshaw, M. 
D., Reid, G. A., and Chapman, S. K.,(2000):Identification of the active site acid/base 
catalyst in a bacterial fumarate reductase: A kinetic and Crystallographic Study, 39, 
35, 10695-10701. 

Reid, G. A., Miles, C. S., Moysey, R., Pankhurst, K. L., and Chapman, S. K., (2000) 
Catalysis in fumarate reductase. Biochimica et Biophysica Acat, 1459, 310-315. 

149 



Enzyme-Catalysed Electron/Radical Transfer 

llJavocytochromes: transceivers and relays in biological electron transfer 
S. K. Chapman*', F. Welsh*,  R.  Moysey*,  C.  Mowat*,  M. K. Doherty*,  K. L. Turner*,  A. W. Munro 

and G. A. Reidt 
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, U.K., and 	 185 

tlnstitute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, U.K. 

Ontroduction 
Flavocytochromes are multi-centre redox pro-
teins containing both flavin and haem [1,2]. They 
catalyse a wide range of biologically important 
redox processes, including the oxidation and 
reduction of organic molecules, simple electron-
transfer reactions and the activation of molecular 
oxygen. This diversity of function is made pos-
sible by the combination of flavin and haem 
cofactors, which allows the direct coupling of 
two-electron to one-electron oxido-reductions. 
Thus flavins can act as molecular transceivers 
receiving the redox equivalents, as a hydride for 
example, and transmitting them as electrons or 
vice versa. Häem groups can -function both as 
efficient one-electron relays or as catalytic 
centres for the activation of small molecules such 
as dioxygen [1]. The combination of these cofac-
tors produces flavocytochromes with great cata-
lytic versatility, e.g. flavocytochrome P-450 BM3 
(a fatty acidmono-oxygenase), flavocytochromes 
b 2  (lactate and mandelate dehydrogenases) and 
flavocytochrome c3  (a fumarate reductase). These 
three flavocytochromes, although very different in 
reactivity, have certain structural features in 
common. They all have subunit arrangements in 
which there are two distinct domains connected 
by a short linker region of peptide (Figure 1). 
Each of these domains contains either flavin or 
haem prosthetic groups. Here we compare the 
ways in which redox equivalents are transmitted 
through the individual centres of these flavocyto-
chromes. 

Flavocytochrome P-450 BM3 
Flavocytochrome P-450 BM3 from Bacillus meg-
aterium catalyses the subterminal mono-oxygen-
ation of a range of fatty acids with chain lengths 
of 12-20 carbon atoms. The enzyme is com-
posed of a diflavin P-450 reductase fused to a 
cytochrome P-450 fatty acid mono-oxygenase in a 
single polypeptide chain (Figure 1A). Recent 
potentiometric and kinetic studies have resulted 
in a clearer understanding of the electron flow 
through this flavocytochrome [3,4]. Thus the 

'To whom correspondence should be addressed. 

FAD is initially reduced by hydride transfer from 
NADPH. The driving force for electron transfer 
from FAD to FMN is high [3], so there is rapid 
electron transfer between the two flavins. The 
next step requires electron transfer from FMN to 
the P-450 haem. However, the reduction poten-
tial of the haem is very dependent on substrate 
binding and, in the absence of substrate, electron 
transfer from flavin to haem is thermodynamic-
ally disfavoured. On binding of fatty acid, the 
haem reduction potential is elevated by more 
than 130 mV [3] and electron transfer from FMN 
to haem occurs. In essence, this substrate-
induced _switch. regulates _electron transfer- in 
flavocytochrome P-450 BM3 and effectively pre-
vents the enzyme from cycling in a futile manner, 
which would waste reducing equivalents in the 
production of H202 . Reduction of the P-450 
haem is followed by dioxygen binding and this 
initiates a classic P-450 catalytic cycle in which 
the transient formation of an oxyferryl inter-
mediate leads ultimately to the mono-oxygena-
tion of the fatty acid substrate [1,2]. In this case, 
therefore, we have a flavocytochrome that couples 
the reducing equivalents of NADPH to the acti-
vation of molecular oxygen, resulting in the 
hydroxylation of a fatty acid substrate. 

Flavocytochromes b 2  
Unlike flavocytochrome P-450 BM3, the flavo-
cytochromes b2  show little or no reactivity 
towards dioxygen. These enzymes are in fact 
2-hydroxyacid dehydrogenases; they are found in 
the intermembrane space of yeast mitochondria. 
Examples are the enzymes from Saccharomyces 
cerevisiae and Hansenula anomala, both of 
which are i-lactate dehydrogenases [2], and the 
enzyme from Rhodotorula graminis, which is an 
i-mandelate dehydrogenase [5]. All of these 
flavocytochromes b2  are homotetramers with sub-
unit molecular masses of close to 60 kDa; each 
subunit contains one flavin (FMN) and one 
haem. A three-dimensional structure is available 
for the enzyme from S. cerevisiae both in native 
[6] and recombinant (from Escherichia coli) 
forms [7]. The subunit composition is as shown 

no 



Biochemical Society Transactions 

186 

schematically in Figure 1(B) with an N-terminal 
(100 residues) cytochrome domain connected via 
a short hinge region to a C-terminal (400 resi-
dues) flavodehydrogenase domain. Electron flow 
through flavocytochrome b 2  is now fairly well 
understood [8-10] (Scheme 1). First the FMN is 
reduced by L-lactate (Step 1, Scheme 1). A carb-
anion mechanism has been proposed for this 
redox step [11], although a hydride transfer from 
lactate to flavin N-S is equally plausible, as has 
already been suggested for D-amino acid oxidase 

[12]. Two-electron reduction of FMN is followed 
by intramolecular electron transfer from flavin to 
haem, generating flavin semiquinone and 
reduced haem [8] (Step 2, Scheme 1). There 
follows the first of two intermolecular electron 
transfers from b 2  haem to cytochrome c [13] 
(Step 3, Scheme 1). This results in an oxidized 
b 2  haem, which is then re-reduced by the flavin 
semiquinone. The electron transfer from semi-
quinone to haem (Step 4, Scheme 1) is the slow-
est step in the catalytic cycle and is approx. 

Figu re I 

Schematic representation of the subunit structure of three flavocytochromes 

All three flavocytochromes have subunits in which a flavin-containing domain is fused to a 
cytochrome domain via a hinge or linker' region of peptide. The domains are shown as 
ovals or spheres with the appropriate cofactors indicated. The linker is shown as a curved 
black line. (A) Flavocytochrome P-450 BM3; (B) flavocytochrome b 2 ; (C) fiavocytochrome c 3 . 
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Scheme I 

Catalytic cycle for flavocytochrome b 2  

All rate constants shown are at 25°C, pH 7.5 and I = 0.10. Abbreviations: F, flavin; H, haem; 
Cyt c, cytochrome c. Electrons are represented by filled circles. Descriptions of the individual 
steps can be found in the text. 

Step 5 	
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Cytc. 	Cytc 
Step 3 

one-tenth as fast as the electron transfer from 
hydroquinone to haem [8]. Finally, the second 
electron is transferred from the b2  haem to cyto-
chrome c (Step 5, Scheme 1). Thus in this case 
the flavocytochrome couples the two-electron 
oxidation of L-lactate to the reduction of two 
molecules of cytochrome c. 

One area of recent controversy has con-
cerned the nature of the complex formed 
between flavocytochrome b2  and cytochrome c, 
which must be formed to permit efficient inter-
protein electron transfer. Tegoni et al. [14] 
reported a computer-generated model of what 
the flavocytochrome b 2 —cytochrome c complex 
might look like. Unfortunately, mutagenesis 
studies that examined the predictions made by 
this model led to the conclusion that it was not 
likely to represent a kinetically competent com-
plex [10,13]. More recently a new modelling 
study, consistent with mutagenesis results, has 
suggested a cytochrome c docking site on flavo-
cytochrome b 2  involving the acidic residues Glu-
63, Asp-72 and Glu-237 [10]. The study 
concluded that cytochrome c could 'sample' a 
number of different, yet similar, binding modes 
on this docking surface and that in each of these 
binding modes the edge-to-edge distance for 
electron transfer remains essentially the same 
[10]. 

An interesting question about electron flow 
through flavocytochrome b 2  is as follows: Why is 
the b 2  cytochrome domain required for electron 
transfer to cytochrome c? This is actually quite a 
fundamental question because the b 2  flavin group 
is quite capable of transferring electrons singly; 
the driving force for electron transfer to cyto-
chrome c, directly from the flavin, is more than 
300 mV. There is therefore no thermodynamic 
problem for electron transfer from b 2  flavin to 
cytochrome c and yet the individually expressed 
flavodehydrogenase domain (i.e. that lacking the 
N-terminal cytochrome domain) has virtually no 
cytochrome c reductase activity. An explanation 
for this is that there is very poor molecular 
recognition between the flavodehydrogenase 
domain and cytochrome c. 

For efficient electron transfer to occur 
between these two proteins their redox centres 
should come as close together as possible. How-
ever, an examination of the surface around the 
exposed haem-edge of cytochrome c and the sur-
face of the flavodehydrogenase domain closest to 
the flavin indicates that these two faces are 
almost totally incompatible. Both surfaces are 
predominantly positively charged and this must 
present a substantial coulombic barrier to corn-
plexation between the proteins. In addition to 
this electrostatic effect there is also a possible 
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steric problem to consider. In the crystal struc-
ture of flavocytochrome b 2  there is a length of 
peptide (residues 299-318) that shows no elec-
tron density. This portion of sequence forms a 
proteolytically sensitive loop on the surface of 
the protein. In the absence of crystal structure 
information we have used computational 
methods to model the folding and location of this 
loop (Figure 2). Results from these modelling 
studies indicate that the loop might fold directly 
over the docking site closest to the flavin. Thus 
there are both electrostatic and steric explana-
tions for the slow reactivity of the flavode-
hydrogenase domain with cytochrome c. 

To try to overcome these problems we have 
embarked on extensive protein engineering of 
the flavodehydrogenase domain to remove the 
steric block and build in a favourable recognition 
site for cytochrome c. This will involve the 
replacement of residues 298-320 with a 
sequence of seven glycine residues coupled with 
a triple mutation on the surface, of Lys-
210—*Glu, Lys-324--*Ala and Phe-325---*Glu. We 
believe that this redesign of the flavodehydrogen-
ase domain surface will make an excellent dock-
ing site for cytochrome c, which should permit 
efficient interprotein electron transfer to occur. 

Flavocytochrome c 3  
Flavocytochrome c3  is a fumarate reductase iso-
lated from the periplasm of the marine bacte-
rium Shewanella frigidirnarina NCIMB400 
(previously described as S. putrefaciens) [15]. 
Production of flavocytochrome c3  is induced, 
under anaerobic growth conditions, by the addi-
tion of fumarate [16]. Flavocytochrome c3  differs 
from the previously characterized fumarate 
reductases, which are multi-subunit and 
anchored to the inner face of the cytoplasmic 
membranee [17]. In contrast, flavocytochrome c3  
is a soluble, single-subunit enzyme found in the 
periplasm [18]. The flavocytochrome c 3  subunit 
is composed of two domains, shown schematic-
ally in Figure 1(C), a tetrahaem cytochrome 
domain (117 residues) and a flavin domain (454 
residues) that contains non-covalently bound 
FAD [18]. The cytochrome domain, located at 
the N-terminus of the protein, encapsulates four, 
bis-His ligated, c-type haems [19]. It has been 
proposed that this domain is structurally similar 
to the family of cytochromes c3  [18]. 

The mechanism of electron flow through 
flavocytochrome c3  is far less well understood 
than for flavocytochrome b 2  and flavocytochrome 
P-450 BM3. The physiological donor to the 

Figure 2 

Structure of the flavocytochrome b 2  flavodehydrogenase domain, showing the 

modelled structure of the disordered loop 

The structure contains arrows indicating /3-sheet and ribbons indicating ti-helix. The 
modelled proteolytically sensitive loop is shown in black with the start and end points 
indicated by residue numbers. The site for cytochrome c to dock closest to the flavin is 
arrowed. 
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enzyme has not yet been defined. One possibility 
might be a membrane-bound tetrahaem cyto-
chrome c related to the Nap C family, because 
such a protein has been identified in the closely 
related organism S. putrefaciens MR-1 [20]. 
Potentiometrjc and voltammetric studies on 
flavocytochrome c3  indicate that the electrons 
would first flow through the haem groups 
(reduction potentials ranging from —240 to 
- 100 mV) then to the FAD (two-electron reduc-
tion potential - 152 mV at 25 °C, pH 7.0). The 
fully reduced FAD would then reduce fumarate 
by donation of a hydride ion, as outlined else-
where [18]. 

Conclusion 
The examples described here should have made 
it clear that flavocytochromes represent a very 
versatile group of enzymes. This versatility of 
function is being exemplified with the isolation of 
new flavocytochromes with even more variations 
in reactivity. 

We thank Rhiannon Macfie, Scott Mathews, Florence 
Lederer, Malcolm Walkinshaw and Fraser Armstrong 
for their helpful discussions. We are grateful to the 
BBSRC, EPSRC, the Leverhulme Trust and Zeneca 
for their support of this work. 
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Introduction 
The cytochromes P-450 (P-450s) are a 'super-
family' of haem b-containing oxidase proteins 
[1,2], which catalyse an array of oxidative reac-
tions with a plethora of organic substrates. P-450 
enzymes are found throughout Nature, from 
organisms as simple as bacteria (and archaeons 
[3]) to higher eukaryotes. The P-450s have enor-
mous biotechnological potential because they 
catalyse the controlled activation of O,  with the 
potential for stereospecific and regiospecific 
insertion of oxygen atoms into organic molecules. 
This potential has already been realized with the 
use of the P-450s in the commercial manufacture 
of steroids [4], and the process is continually 
being developed and improved [5]. 

Mammals have numerous forms of mem-
brane-bound P-450 that catalyse various forms of 
reaction (e.g. hydroxylation, epoxidation, N-
oxidation and reductive dehalogenation) [6] and 
are vital to a number of physiological processes, 
including steroid syntheses and interconversions, 
the manufacture of eicosanoid derivatives for cel-
lular signalling, and xenobiotic detoxification. 
The importance of mammalian hepatic P-450s in 
the metabolism of drugs is a subject of great 
importance to the pharmaceutical industry. The 
P-450s, the so-called 'phase I' enzymes, repre-
sent a 'first line of defence' when the body is 
exposed to xenobiotics, and the multiple hepatic 
forms of P-450 catalyse oxidative reactions on 
thousands of drugs and other foreign chemicals 
to which the body is exposed. Examples are the 
oxidations of ethanol, aspirin, chloroform and 
polycyclic aromatic hydrocarbons. These oxida-
tions are often designed to increase the water-
solubility of xenobiotics to facilitate their 
excretion directly, or to provide functional groups 
for recognition by 'phase II' drug-metabolizing 
enzymes, such as glutathione S-transferases or 
UDP-glucuronyl transferases. However, factors 

Abbreviations used: hq, hydroquinone; ox, oxidized; 
sq, semiquinone. 
'To whom correspondence should be addressed.  

such as industrial pollution and the massive 
development of the pharmaceutical industry in 
the past century has meant that we have been 
exposed to a vast number of new chemicals that 
can act as substrates for the P-450s (many forms 
of mammalian P-450 are rather non-specific). It 
is now well recognized that the P-450s are cap-
able of converting a number of compounds into 
more dangerous, even genotoxic, derivatives. 
Examples are the epoxidations of benzo[a]pyrene 
(P-450 1A1) and aflatoxin BI (P-450 3A4) [7]. It 
is ironic that an enzyme system that evolved to 
defend the body against harmful organic com-
pounds can also be tricked into acting against it, 
due to the rate of human evolution of new chem-
icals outstripping the genetic evolution of the 
P-450s. 

Although there is intense medical and 
pharmaceutical interest in the mammalian 
P-450s, the expression and study of the struc-
tural properties of these enzymes is hampered by 
the fact that they are integral membrane proteins 
(as are their redox partners). However, the 
bacterial P-450s are soluble; this has simplified 
the overexpression and purification of these 
forms [8]. In many respects, the entire P-450 
field has been led forward by the advances made 
through kinetic, spectroscopic and structural 
analysis of a small number of bacterial forms. 
There are currently six atomic structures avail-
able for bacterial P-450s [9-14]. For the two 
most important of these enzymes (P-4SOcam and 
P-450 BM3), the structures of both substrate-
bound and free forms have been determined 
[9,10,15,16]. The camphor hydroxylase P-45Ocam 
from Pseudoinonas putida has been one of the 
most intensely studied of all enzymes over the 
last quarter of a century [17]; the analysis of this 
enzyme has provided us with most of our know-
ledge on the structure and mechanism of P-450. 
However, in the past 5-10 years there has been 
enormous interest in the characterization of the 
fatty acid hydroxylase P-450 BM3 from Bacillus 
inegaternnn [18]. This shift in emphasis results 
from the realization that P-450 BM3 uses a simi- 
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ABSTRACT: The active sites of respiratory fumarate reductases are highly conserved, indicating a common 
mechanism of action involving hydride and proton transfer. Evidence from the X-ray structures of substrate-
bound fumarate reductases, including that for the enzyme from Shewanella frigidimarina [Taylor, P., 
Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-
1112], indicates that the substrate is well positioned to accept a hydride from N5 of the FAD. However, 
the identity of the proton donor has been the subject of recent debate and has been variously proposed to 
be (using numbering for the S. frigidimarina enzyme) His365, His504, and Arg402. We have used site-
directed mutagenesis to examine the roles of these residues in the S. frigidimarina enzyme. The H365'A 
and H504A mutant enzymes exhibited lower kcat  values than the wild-type enzyme but only by factors of 
3-15 1  depending on pH. This, coupled with the increase in Km  observed for these enzymes, indicates that 
His365 and His504 are involved in Michaelis complex formation and are not essential catalytic residues. 
In fact, examination of the crystal structure of S. frigidimarina fumarate reductase has led to the proposal 
that Arg402 is the only plausible active site acid. Consistent with this proposal, we report that the R402A 
mutant enzyme has no detectable fumarate reductase activity. The crystal structure of the H365A mutant 
enzyme shows that, in addition to the replacement at position 365, there have been some adjustments in 
the positions of active site residues. In particular, the observed change in the orientation of the Arg402 
side chain could account for the decrease in kcat  seen with the H365A enzyme. These results demonstrate 
that an active site arginine and not a histidine residue is the proton donor for fumarate reduction. 

Fumarate reductases enable bacteria to respire anaerobi-
cally with fumarate as a terminal electron acceptor. In most 
cases these enzymes are membrane-bound complexes, closely 
related to succinate dehydrogenase, but in Shewanella the 
fumarate reductase is a soluble, periplasmic, tetraheme 
flavocytochrome c3 (Fcc 3 ,' Mr  63 800). The gene encoding 
Fcc3  has been cloned and sequenced (Swissprot entry 
FRDA_SHEPU), and the protein product has been shown 
to be a novel respiratory fumarate reductase (1, 2). 

Fumarate reductases from several other bacteria have been 
identified as complexes of three or, more commonly, four 
subunits that are anchored to the inner face of the cytoplasmic 
membrane (3, 4). The largest of these, FrdA, is a flavoprotein 
containing the site of substrate reduction, and this is tightly 
associated with the FrdB subunit which contains three iron—
sulfur centers that feed electrons to the flavin. These two 

This work was funded by the U.K. Biotechnology and Biological 
Sciences Research Council, BBSRC. M.K.D. and R.M. acknowledge 
studentships from the BBSRC and EPSRC. We thank SRS Daresbury 
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* Department of Chemistry, University of Edinburgh. 
§ Institute of Cell and Molecular Biology, University of Edinburgh. 
'Abbreviations: Fcc3, flavocytochrome c3 ; H365A, histidine 365 

- alanine mutation; H504A, histidine 504 alanine mutaion; R402A, 
arginine 402 - alanine mutation; FAD, flavin adenine dinucleotide. 

subunits are very closely related to succinate dehydrogenase 
subunits that catalyze the reverse reaction. The A and B 
subunits are peripheral membrane proteins that are associated 
with smaller, integral membrane proteins that transfer 
electrons from the lipophilic hydrogen carrier, menaquinone, 
to the iron—sulfur centers. Fumarate reductase from Escheri-
chia coli contains two membrane anchor subunits, FrdC and 
FrdD, that are devoid of prosthetic groups (3) whereas the 
equivalent enzyme from Wolinella succino genes contains a 
single membrane subunit that is a diheme cytochrome b (4). 

In contrast to these cytoplasmic membrane enzymes, Fcc 3  
is a soluble, single-chain enzyme found in the periplasm (5). 
Despite the differences in architecture and location, its 
function has been shown to be analogous to that of the 
membrane-bound enzymes since disruption of the gene 
encoding Fcc 3  resulted in the specific loss of the ability to 
respire with fumarate as the electron acceptor (6). The 
recently determined crystal structure of Fcc 3  (7-10) shows 
it to be composed of three domains. These have been termed 
the cytochrome domain, the flavin domain, and the clamp 
domain (7). The flavin binding domain is clearly related by 
sequence to the flavoprotein subunits of the membrane-bound 
fumarate reductases and succinate dehydrogenases (2), and 
all of the amino acid residues that have been implicated in 
substrate binding and catalysis, on the basis of chemical 
modification and mutagenesis experiments, are conserved. 

10.10211bi0008711 CCC: $19.00 © 2000 American Chemical Society 
Published on Web 08/09/2000 
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One particular histidine residue (His365 in Fcc 3 , equivalent 
to His232 in E. coli fumarate reductase) has been proposed 
as a possible active site acid/base catalyst for fumarate 
reductionlsuccinate oxidation (11, 12). In E. coli fumarate 
reductase, the substitution of His232 by serine resulted in 
an enzyme which retained 25% of its fumarate reductase 
activity but only 2% of its succinate dehydrogenase activity 
(12). Such data are consistent with this residue having a 
significant but nonessential role in enzyme activity. Retention 
of 25% of the wild-type fumarate reductase activity clearly 
indicates that an alternative proton donor must be operational. 
The recently determined high-resolution crystal structure of 
Fcc3  supports the idea that F1is365 is unlikely to be the active 
site acid (7). First, the structure shows that N5 of His365 is 
hydrogen bonded to a backbone amide group, indicating that 
the imidazole ring must be neutral. Second, N3 of His365 is 
hydrogen bonded to one of the carboxylate groups of the 
substrate with the imidazole ring too far (4.88 A) from the 
C3 carbon to which the proton must be donated (7). 

The possibility of an alternative histidine (residue 504 in 
the Fcc 3  sequence) acting as the active site acid has been 
suggested on the basis of the recent structure of an isozyme 
of Fcc3  known as iron-induced flavocytochrome c3  (10). 
There is no supporting evidence for this suggestion since 
the active site in this structure is unoccupied. Indeed, the 
suggestion is incompatible with evidence from the structures 
of the E. coli fumarate reductase (3) and the other Shewanella 
enzymes (7, 8), all of which have substrate- or inhibitor-
like molecules bound at the active site. In these cases the 
structures indicate a role in the binding of substrate but not 
in the donation of a proton to substrate C3. The highest reso-
lution Fcc 3  structure (7) clearly indicates that Arg402 is the 
most likely active site acid. This is supported by the structure 
of the related Fcc 3  from Shewanella putrefaciens MR-i (9). 

To further investigate the nature of the active site acid 
catalyst, we have examined the roles of residues His365, 
Arg402, and His504 by substituting each by alanine and in 
addition have made the H365A:H504A double substitution. 
In the present paper we describe the kinetic characterization 
of these mutant enzymes. In addition, we report the 1.8 A 
resolution crystal structure of H365A Fcc 3 . 

MATERIALS AND METHODS 

DNA Manipulation, Strains, Media, and Growth. The 
mutant enzymes H365A Fcc 3, R402A Fcc3 , and H504A Fcc 3  
were generated by site-directed mutagenesis using the method 
described by Kunkel and Roberts (13). The fccA coding 
sequence was cloned into the phagemid vector pTZ 1 8R (14) 
on an --4.8 kbp EcoRJJHindIII fragment (6) to provide the 
template. 

Mutagenic oligonucleotides GTATATCCAAGCTGCTC-
CAACACTATCTG (which substitutes histidine 365 with 
alanine), CGAAATrACTACFGCTGATAAAGCATC (which 
substitutes arginine 402 with alanine), and GTTACACCTG-
GTGTFGCTCACACTATGGGTG (which substitutes histi-
dine 504 with alanine) were obtained from PE-Applied 
Biosystems U.K. Mismatched bases are underlined. Single-
stranded DNA was screened for the required mutations by 
dideoxy chain termination sequencing (15) using the Seque-
nase version 2.0 kit (United States Biochemicals). To verify 
that no secondary mutations had been introduced, the mutated  

fccA coding sequences were fully sequenced from single-
stranded DNA: H365AfccA as above and R402A and H504A 
fccA using a Perkin-Elmer ABI Prism 377 DNA sequencer. 

To enable expression of H365A, R402A, and H504A Fcc 3 , 

the modified coding sequences were cloned individually into 
the IPTG-inducible, broad-host range expression vector 
pMMB503EH (16) on an 1.8 kbp EcoRIJHindIII fragment 
to give pCM15, pCM68, and pCM67, respectively. Following 
transformation of E. coli SM10 (17), the above plasm- ids were 
transferred to the 4fccA  Shewanella frigidimarina strain 
EG301 (6) by conjugation. Recombinant wild-type Fcc 3  was 
expressed in the same manner (6). To generate H365A: 
H504A Fcc3 , an 1.1 kbp NheIJMfeI fragment was excised 
from pCM67 (H504AfccA/pMMB503EH) and replaced with 
the corresponding fragment from pCM14 (H365A fccAl 
pTZ18R). Expression was as described above. 

Protein Purification and Kinetic Analysis. Wild-type and 
mutant forms of Fcc 3  were purified as previously reported 
(1). Protein samples for crystallization were subjected to an 
additional purification step using FPLC with a Mono Q 
column as described by Pealing et al. (18). Protein concen-
trations were determined using the Soret band absorption 
coefficient for the reduced enzyme (752.8 mM cm' at 
419 nm) (1). 

The FAD content of recombinant Fcc 3  was determined 
using the method of Macheroux (19), and all steady-state 
rate constants were corrected for the percentage of FAD 
present. 

The steady-state kinetics of fumarate reduction were 
followed at 25.0 ± 0.1 °C as described by Turner et al. (20). 
The fumarate-dependent reoxidation of reduced methyl 
viologen was monitored at 600 nm using a Shimadzu UV-
PC 1201 spectrophotometer. To ensure anaerobicity the 
spectrophotometer was housed in a Belle Technology glove-
box under a nitrogen atmosphere with the 02 level main-
tained below 5 ppm. Assay buffers contained 0.45 M NaCl 
and 0.2 mlvi methyl viologen and were adjusted to the 
appropriate pH values using 0.05 M HC1 or NaOH as 
follows: TrisHC1 (pH 7.0-9.0), MES/NaOH (pH 5.4-6.8), 
CHES/NaOH (pH 8.6-10), and CAPS/NaOH (pH 9.7-
11.1). The viologen was reduced by addition of sodium 
dithionite until an absorbance reading of around 1 was 
obtained (corresponding to around 80 itM reduced methyl 
viologen). The concentration of reduced methyl viologen 
could be varied between 100 and 20 uM with no effect on 
the rate of reaction. Fumarate was added to give a range of 
concentrations (0-350 4uM), and the reaction was initiated 
by addition of a known concentration of enzyme. 

Kinetic parameters Km  and kcat  were determined from the 
steady-state results using nonlinear regression analysis (Mi-
crocal Origin software). 

Crystallization and Refinement. Crystallization was carried 
out by hanging drop vapor diffusion at 4 °C in Linbro plates. 
Crystals were obtained with a well solution comprising 100 
mM TrisHCl, pH 7.4 (measured at 25 °C), 80 mlvi NaCl, 
17-20% PEG 8000, and 10 mlvi fumarate. Hanging drops 
of 4 uL were prepared by adding 2 1uL of 6 mg/mL protein 
(in 10 mM TrisHCl, pH 8.4) to 2 uiL of well solution. 
Needles of up to 1 x 0.2 x 0.2 mm were formed after about 
2 weeks. 

Crystals were immersed in well solution containing 23% 
glycerol as cryoprotectant, before being mounted in loops 



Active Site Acid Catalyst in Fumarate Reductase 
	 Biochemistry, Vol. 39, No. 35, 2000 10697 

Table 1: Refinement Statistics 

refinement 24.0-1.8 A 
total no. of reflections 265 858 
unique reflections 54 333 
completeness (%) 90.7 
(1)I(a(I)) 13.8 
Rm erg  (%)' 4.9 
Rmerge ifl outer shell (1.83-1.80) (%) 11.7 
R0 .(%)" 18.14 
Rf 	(%)" 24.70 
rmsd from restraint values 

bond length (A) 0.007 
bond angle distance (A) 0.022 

Ramachandran analysis 
most favored (%) 89.1 
additionally allowed (%) 10.9 

' Rmergo = I(J) - II/(I) over all reflections. b 	= I IF0 - F01/ 
F0 ; Rf calculated with 10.7% data withheld from refinement. 

and frozen in liquid nitrogen. A data set was collected to 
1.8 A (A = 0.87 A) on station 9.6 at Daresbury synchrotron 
source using an ADSC Quantum 4 detector. The crystals 
are isomorphous with wild-type Fcc 3  with space group P21  
and cell dimensions a = 45.571 A, b = 92.172 A, c = 78.489 
A, and j3 = 1.09'. This compares with the wild-type crystal 
cell dimensions of a = 45.393 A, b = 91.946 A, c = 78.288 
A, and /3 = 91.09°: 

Data processing was carried out using the HKL package 
(21) (Table 1). The wild-type Fcc 3  structure (lqjd), stripped 
of water, was used as the initial model. Electron density 
fitting was carried out using the graphics program WITNOTP 
(22). Restraints for the heme group were calculated from 
the CNS parameter file and for the FAD from two small 
molecule crystal structures (Cambridge Crystallographic 
Database codes HAMADPH and VEFHUJ1O). Structure 
refinement was carried out using SHELXL-97 (23). 

The atomic coordinates have been deposited in the Protein 
Data Bank (accession code 1E39). 

RESULTS AND DISCUSSION 

Characterization of Recombinant Enzymes. The molecular 
mass of the recombinant wild-type enzyme was confirmed 
by electrospray mass spectroscopy to be 63 033 Da. The 
masses of the mutant enzymes were lower than this by 68 
Da for H365A (expected difference 66), 84 Da for R402A 
(expected difference 85), 59 Da for H504A (expected 
difference 66), and 134 Da for H365A:H504A (expected 
difference 132). All the mutations were further verified by 
DNA sequencing. The average FAD content of the recom-
binant enzymes was found to be the following: 73%, wild-
type; 69%, H365A; 78%, R402A; 70%, H504A; and 68%, 
H365A:H504A. This compares with typical values for the 
native (nonrecombinant) enzyme from Shewanella of around 

k 
(s-i) 480 

200 

pH 

FIGURE 1: pH dependence of fumarate reduction activity (under 
saturating conditions) at 25 °C: wild-type flavocytochrome c3  (solid 
squares); H365A flavocytochrome c3  (solid circles). 

98%. The lower flavin content of the recombinant forms is 
most likely due to thehigher levels of expression in these 
cases. All catalytic rates were corrected for the variation in 
FAD content. 

The ability of wild-type and mutant forms of Fcc 3  to 
catalyze fumarate reduction was determined over a range of 
pH values. The resulting kcat  and Km  parameters for wild-
type and mutant forms of Fcc 3  are listed in Table 2. The pH 
dependence of the rate of fumarate reduction under saturating 
substrate conditions seen with wild-type and H365A Fcc 3  is 
shown in Figure 1. The pKa  value seen for the wild-type 
enzyme is 7.4 ± 0.2, as previously reported (20). However, 
it is clear from the results shown in Figure 1 and Table 2 
that the catalytic rate of fumarate reduction seen for the 
H365A mutant enzyme is essentially independent of pH over 
the range 6.0-9.0. At pH 6.0 the value of kcat  for the H365A 
enzyme has fallen to approximately 7% of that seen with 
wild-type Fcc 3 . This effect is less dramatic at pH 9.0 where 
the kcat  for the H365A enzyme is 25% of the value seen with 
the wild-type enzyme. The magnitude of the effect of this 
mutation on activity is similar to that seen for the His232-
Ser mutation made in the E. co/i enzyme (9). 

The fact that up to 25% of the value of kcat  is retained in 
the H365A mutant enzyme is not consistent with this residue 
being an essential active site acid/base catalyst. Rather, we 
propose that the major role of this residue is in stabilizing 
the Michaelis complex. This is supported by the values of 
Km  reported in Table 2. At pH 9.0 the Km  value for the 
H365A mutant is some 30-fold larger than that seen for the 
wild-type enzyme. Previous results on the wild-type enzyme 
from pre-steady-state experiments (1) and inhibition studies 
(5) suggest that the Km  for fumarate is similar to the lCd value. 
We have therefore used the variation in the value of Km  as 
a means of determining approximate changes in the free 
energies of fumarate binding between wild-type and mutant 
enzymes. For example, at pH 9.0 the change in Km  between 

Table 2: Comparison of kcat and Km  Values for Wild-Type, H365A, H504A, and the Double Mutant H365A:H504A Fcc3 (25 °C, I = 0.45 M)0  

wild-type Fcc3 	 H365A Fcc3 H504A Fcc3 H365A:H504A Fcc3 

pH 	(s) 	K. (uM) 	k 	(s) 	Km  (uM) k 	(s) 	Km (aM) k0 (s') 	Km  (MM)" 

6.0 	658 ± 34 	43 ± 10 	47 ± 2 	113 ± 20 26 ± 1 	38 ± 3 0.28 ± 0.02 	0.08 
7.2 	509± 15 	25± 10 	51±2 	259±24 65±3 	256±23 0.84±0.10 
7.5 	370±10 	28±3 	54±2 	143±21 68±2 	200±15 0.95±0.10 	-'-4.8 
9.0 	210 ± 13 	7.0 ± 1.5 	52 ± 2 	224 ± 25 76 ± 3 	635 ± 37 0.95 ± 0.10 	--'1.3 

The R402A enzyme was inactive under all conditions. b  Values of Km (millimolar) for fumarate with the H365A:H505A enzyme were difficult 
to determine accurately due the very low activity of the enzyme. 
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wild-type and H365A enzymes equates to a difference in 
free energy for the binding of substrate of approximately 
8.6 kJ mol'. In addition, the value of kcat/Km , a measure of 
enzyme efficiency, varies between 2 x 105  and 4 x 10 M' 
S-1  over the pH range 6-9. A catalytic efficiency of 10 1  is 
typical for many native enzymes and is certainly not 
consistent with an enzyme in which the key active site acid/ 
base catalyst has been removed. 

The possibility of an alternative histidine (His504) acting 
as the acid/base catalyst has been recently suggested (10). 
However, substitution of this histidine by alanine leads to 
effects similar to those seen for the H365A mutant enzyme. 
For H504A Fcc3 the value of kcat varies from 4% of the wild-
type value (at pH 6.0) to 36% of the wild-type value (at pH 
9.0). As for H365A, the H504A mutation has large effects 
on the value of Km  particularly at high pH. For example, at 
pH 9.0 the Km  value for fumarate seen with the H504A 
enzyme is some 90-fold larger than that seen for the wild-
type enzyme (Table 2), equating to a change in free energy 
for the binding of substrate of around 11.2 kJ mol. Again, 
it is clear that His504 is not essential for catalysis but is 
important for Michaelis complex formation. 

Even for the case in which both histidines are replaced 
by alanine (H365A:H504A Fcc 3), there is still some residual 
activity. Not surprisingly, the double mutation has a large 
effect on the Km  value for fumarate, with the value now in 
the millimolar range (Table 2). In fact, the effect of the 
mutations is additive since, at pH 7.2, the loss in binding 
energy with respect to wild-type enzyme, seen for the double 
mutant (-10 kJ mol 1 ), is almost exactly the sum of the 
loss in binding energies for the two single mutants (-'.5 kJ 
mo1 1 ). The effect on kcat  is also dramatic (Table 1); however, 
the fact that there is any activity at all indicates that an 
alternative acid/base catalyst must still be operating. 

These results clearly indicate that a group other than 
His365 or His504 operates as the crucial proton donor! 
acceptor. The most likely candidate for this role has 
previously been suggested to be Arg402 (7, 9). The effect 
of substituting Arg402 by Ala is far more dramatic than that 
seen for either of the histidine mutations. In this case the 
R402A mutant enzyme was found to be completely inactive 
under all conditions. This abolition of activity is clearly not 
due to the loss of redox cofactors since the FAD complement 
was found to be equivalent to that of the recombinant wild-
type enzyme. A possible explanation for this abolition of all 
activity is that Arg402 is indeed the essential active site acid 
catalyst required for fumarate reduction. This idea is further 
supported by an inspection of the high-resolution X-ray 
structure of the wild-type enzyme which shows that the NH2 
of Arg402 is ideally positioned for proton donation at only 
2.99 A from the C3 carbon of the substrate (7). The 
mechanism proposed for the reduction of fumarate based on 
the wild-type enzyme structure (7) is shown in Figure 2. This 
mechanism is shown proceeding in a stepwise rather than 
in a concerted fashion. The only evidence for the reaction 
being stepwise comes from the crystallographic identification 
of a trapped malate-like molecule (an artifact of the crystal-
lization procedure) in the Fcc 3  structure which may represent 
an unprotonated intermediate (7). Clearly, further solution 
studies will be required to confirm the stepwise nature of 
the mechanism. Nevertheless, the mechanism shown in 
Figure 2 is entirely consistent with the roles of His365 and 
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FIGURE 2: Reaction mechanism for fumarate reduction as proposed 
by Taylor et al. (7). Catalysis is initiated by the twisting out of 
plane of the Cl' carboxylate group (on the left) of fumarate. The 
substrate is polarized by interactions with charged residues facilitat-
ing hydride transfer from N5 of reduced FAD to the substrate C2. 
Arg402 (2.99 A from C3) is ideally positioned to donate a proton 
to the substrate C3, resulting in the formation of succinate. Arg402 
is immediately reprotonated via a proton pathway involving Arg381 
and Glu378 (Figure 3). 

Arg402 that we propose on the basis of our mutagenesis 
results. The mechanism also shows His504 protonating the 
C4 carboxylate to facilitate the transient formation of a 
carbanion at C3. While such a role for His504 would clearly 
facilitate the reaction, it is obviously not essential since 
removal of the imidazole ring causes only around a 10-fold 
decrease in the kcat  value. It is possible that His504 is the 
residue with the pKa  of 7.4 observed in the wild-type enzyme. 
If so, this again shows that a protonated imidazole can 
enhance the rate of reaction but is not essential for it, since 
the rate constant at high pH, where the imidazole would be 
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H305A 1-cc; tatom - type colorst showing the proposed proton 
delivery pathway to the substrate C3 atom involving Arg381, 
G1u378. and Arg402. The distances indicated are for the wild-type 
enzyme. The altered conformation of Arg402 in the mutant enzyme 
is clearly visible. 

fully deprotonated. would be around ISo s (5 -6-fold lower 
than the value for the fully protonated state). 

The use of Arg402 as an active site acid to protonate the 

substrate clearly requires the guanidine moiety to be repro- 

tonated. Since the active site is completely closed to solvent. 

we propose that a proton transfer pathway operates involving 

Arg381, G1u378. and Arg402. This pathway (Figure 3) may 

facilitate the rapid delivery/removal of protons for catalysis. 

The Crystal Structure of l-1365A Fcc- 3 , Data to 1.8 A were 

used to refine the H365A mutant enzyme structure to a final 

R-factor of 18.1% (Table I). The final model consists of 
I -'(-i. -I- hemes. the F\_). I substrate molecule. I 

sodium ion, and 584 water molecules. As in wild-type Fcc3, 

one cis-peptide between Ala175 and Trp176 was clearly 

identified. The three C-terminal residues (569-571) were 

not located in the electron density maps. The rmsd fit of all 

backbone atoms for the wild-type and H365A mutant enzyme 
is 0.15 A. showing no significant structural differences 

between the two structures. 

Both wild-type and H365A enzymes were crystallized in 

lie presence of 10 mM fumarate. In the crystal structure of 

the mutant enzyme, a molecule of fumarate was found at 

the active site in a twisted conformation (Figure 4). This is 

in marked contrast to the wild-type structure in which 

although found in the same twisted conformation) the 

molecule at the active site is hydroxylated at the C2 position 

The active sites of the two structures are compared in 
l:i cure  5. A major difference is, of course, the replacement 

of the histidine by alanine at position 365, removing the 

original hydrogen bond between His365 N3 and a carbox-

late oxygen of the substrate. The removal of this hydrogen 

bond is entirely consistent with the increased K, value seen 

for the mutant enzyme. The void produced by the H365A 

ntutation is compensated by significant changes in side-chain 

conformations of Met375 and Arg402. Significantly, there 
is now room for a water molecule which forms it hydrogen 

bond to the backbone NH of Thr367 (N"0 = 3.2 A). This 

water is also hydrogen bonded to the side chains of Thr367 

(O ... O = 2.95 A) and Arg402 (O ... N = 3.14 A). This latter 

interaction may contribute toward stabilizing the rather 

different conformation of the Arg402 side chain, decreasing 

its effectiveness as a proton donor in fumarate reduction. In 

other words, the lower activity seen for the mutant enzyme 

arises from a less favorable orientation for proton donation 

from Arg402, rather than the loss of the imidazole ring. 

However, although the side chain of Arg402 has been altered, 

the closest distance between Arg NH2 and substrate C3 

remains at 2.99 A. 
The new conformation of Met375 in the H365A structure 

also triggers a flip in the orientation of the carbonyl group 

of Ala 169. which swings down, allowing the incorporation 

of an additional bridging water molecule between A] 69  (0) 
and \'1253 N. It is piohable that the repositioninu of 

at 4 	Stcieo e 	Ik 	luit k'1111 (\ uuItU the ,tc!I\c 	tic a tic Il(i\ InUlaili cii/\ i1k 	tic 2/ 	V u.Ip I caiiijLiicd at thu 

1.25u level. The FMN group is clearly visible at the top of the figure with the alanine residue at position 365 at the bottom left and Arg402 
at the bottom center. 
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H363A l-cc (atoln-tpc culuis). Ihe substrate molecule Is shown 
in the center surrounded by key active site residues. The substituted 
residue is labeled as H365A. Significant shifts in the positions of 
Met375 and Arg402 can be clearly seen. 

Met375 prevents the hydroxylation of fumarate as seen in 
the wild-type structure, since in the H365A structure, much 
of the space that would have been taken up by this hydroxyl-
group is now occupied by the side chain of Met375. 

Comparison with Other Futnarate Reductases. The active 
sites of each of the known fumarate reductase structures (3, 
7-9. 24) are largely well conserved structurally. In all cases, 
the bound substrate is well positioned to accept a hydride 
from N5 of the FAD cofactor, and this is clearly a key step 
in the chemical mechanism of fumarate reduction. The source 
of the proton needed to complete formation of the product 
succinate is somewhat less clear from direct observation of 
the structures and, as already discussed, has been variously 
proposed to be (using Fcc3 numbering) His365 (12). His504 
(10). and Arg402 (7-9). It would be very surprising if these 
closely related enzymes were to use different proton donors, 
especially when the residues listed above are conserved in 
all known furnarate reductases. Prior to the crystallographic 
results, it was generally expected that a histidine would act 
as the acid/base catalyst in funiarate reductases and succinate 
dehydrogenases. This expectation was based on the wide-
spread use of histidines in this role in many types of enzyme 
and the fact that chemical modification studies with succinate 
dehydrogenase indicated that a histidine residue played an 
important catalytic role (25). However, results from mu-
tagenesis studies reported in this paper rule out His365 and 
His504 as the active site acid. In addition, crystallographic 
analysis shows that His365 and His504 are each hydrogen 
bonded to substrate carboxylate oxygens and are not well 
positioned for proton transfer, being too distant from the 
substrate C3. Thus, the results described here for Fcc3 
confirm the importance of these histidine residues in substrate 
binding but rule out a key role in substrate protonation. 

The structures of two of the Shewane/la enzymes (7. 9) 
and E. coli fumarate reductase (3) clearly show NH2 of 
Arg402 close to the substrate C3. the eventual proton 
acceptor. In the structure of the Wa/inc/la enzyme, the 
position of the equivalent arginine (Arg301) has moved by 
about 3 A compared to the Shewanella and E. co/i enzyme 
structures. An overlay of the tiavin binding domains of all  

structures shows that the conserved catalytic residues of the 
flavin binding domain are very similar. The residues on the 
Hump domain differ by between I and 3 A. which corre-
ponds to an opening of the clamp in the Wound/a structures 
24). Interestingly, both Wound/a structures (with and 

without fumarate) are similar, though the clamp has closed 
a little (less than 0.5 A) when the substrate is present. In 
addition, the temperature factors of the fumarate and the 
lumarate binding residues are raised (24). suggesting that 
the protein has been trapped in a partially open conformation. 
This can be compared to the substrate-free open conformation 
cen in the structure of the iron-induced flavocytochrome 
10). The fact that the arginine side chain is somewhat altered 

in the Wolinella fumarate reductase (24) (too distant for 
elficient proton transfer) has led Lancaster and colleagues 
to propose that the proton comes instead from a water 
molecule (24). This proposal suffers several weaknesses. The 
water positioned in the active site of the Wa/inc//a enzyme 
is absent from all other substrate-bound fumarate reductase 
structures, indicating that if it is used for substrate protona-
tion, then this enzyme is fundamentally different from its 
close homologues in this key mechanistic aspect. We believe 
that the equivalent of Arg402 is the true acid catalyst, and 
we further suggest that if the Wound/a enzyme had crystal-
lized in the closed (catalytically active) form, then the 
position of the arginine side chain would have been 
comparable to all the other structures. 

In conclusion, the combined kinetic and structural evidence 
strongly suggests that Arg402 is the active site acid catalyst 
in the fumarate reductase from Shewanella. We believe that 
this conserved arginine residue fulfills this role in all 
members of the funiarate reductase family. 
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Abstract 

In the absence of oxygen many bacteria are able to utilise fumarate as a terminal oxidant for respiration. In most known 

organisms the fumarate reductases are membrane-bound iron-sulfur flavoproteins but species produce a soluble, 
periplasmic ftavocytochrome 3  that catalyses this reaction. The active sites of all fumarate reductases are clearly conserved at 
the structural level, indicating a common mechanism. The structures of fumarate reductases from two species 
have been determined. Fumarate. succinate and a partially hydrated fumarate ligand are found in equivalent locations in 
different crystals, tightly bound in the active site and close to N5 of the FAD cofactor, allowing identification of amino acid 
residues that are involved in substrate binding and catalysis. Conversion of fumarate to succinate requires hydride transfer 
from FAD and protonation by an active site acid. The identity of the proton donor has been open to question but we have 
used structural considerations to suggest that this function is provided by an arginine side chain. We have confirmed this 
experimentally by analysing the effects of site-directed mutations on enzyme activity. Substitutions of Arg402 lead to a 
dramatic loss of activity whereas neither of the two active site histidine residues is required for catalysis. © 2000 Elsevier 
Science By. All rights reserved. 

Bacterial respiration: Fumarate reductase 	Flavoprotein 

I. Introduction 

species are widespread Gram-negative 
proteobacteria and are particularly abundant in ma-
rine and freshwater sediments. They are remarkable 
in their diversity of respiratory pathways [1,2] and 
can utilise many inorganic and organic electron ac-
ceptors, including fumarate, nitrate, trimethylamine 

-oxide. thiosulphate and, more unusually, insoluble 
oxides of Fe(III) and Mn(IV). The diversity of 

* Corresponding author. Fax: +44 (131) 6508650: 
E-mail: graeme.reid@ed.ac.uk  

known respiratory pathways is matched by a large 
number of redox proteins. Several have been identi-
fied biochemically but it is clear from examination of 
the genome sequence of MR-1 (available 
at www.tigr.org ) that a very large number of unchar -
acterised cytochromes and other electron transfer 
proteins are produced. When 

NCIMB400 (formerly 	 ) is 
grown anaerobically, it produces large quantities of 
several -type cytochromes [3]. The most abundant 
of these is a 64 kDa flavocytochrome that catalyses 
methyl viologen-dependent fumarate reduction in vi-
tro [4,5]. The role of this flavocytochrome 3  (Fcc3) 
in fumarate respiration has been shown using a null 

0005-2728/00/S - see front matter © 2000 Elsevier Science B.V. All rights reserved. 
P11: S0005-2728(00)00166-3 
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mutant constructed by gene disruption [6]. The mu-
tant is incapable of fumarate respiration but path-
ways to other electron acceptors are unaffected. 
This specific defect shows not only that flavocyto-
chrome 3  is required for fumarate respiration but 
its function cannot be performed by other proteins 
produced under these conditions. This implies that 
no membrane-bound fumarate red uctase is pro-
duced. It appears, surprisingly, that the genome of 

MR-I includes an operon that is very 
similar to the operon that encodes 
the membrane-bound fumarate reductase, even 
though this strain also produces a soluble fiavocyto-
chrome 3  fumarate reductase [7]. Whether a similar 

operon is present in NCIMB400 is not yet 
known. if so then its role in fumarate respiration is 
unclear since the Fcc3 knockout strain failed to grow 
with fumarate as terminal electron acceptor. It has 
been shown that NCIMB400 produ-
ces a second flavocytochrome 3  (Ifc 3 ) which also 
efficiently reduces fumarate in vitro [8]. However, 
this protein is specifically induced by Fe(III) and its 
physiological function is poorly understood. 

species are the only bacteria known to 
produce soluble respiratory fumarate reductases. In 
other organisms fumarate is reduced by a membrane- 

bound complex of either three or four subunits [9]. 
These enzymes are closely related in structure and 
activity to succinate dehydrogenases which catalyse 
the reverse reaction. All fumarate reductases and suc-
cinate dehydrogenases contain FAD at the active site 
but electron transfer to the flavin is mediated by 
three iron-sulfur centres in the membrane-bound en-
zymes whereas the four haem centres of flavocyto-
chrome 3  perform the equivalent function. The 
FAD-binding catalytic domain or subunit is highly 
conserved within and between these groups of en-
zymes indicating that the catalytic mechanism is 
likely to be very similar in all cases. 

2. Fumarate reductase structure 

The determination of the high-resolution crystal 
structure of fumarate reductase ([10,11]; 
PDB references IQJD, 1D4C) has provided major 
insights into substrate binding and catalysis. The 
protein consists of a single polypeptide organised 
into three distinct domains (Fig. 1). The small, N-
terminal, cytochrome domain containing four haem 
groups is tethered to the flavin domain by a charged 
bent helix linker (residues 100-110). The flavin do- 

Clam 

ochrome 
omain 

Fig. 1. Domain structure of 	 fumarate reductase. The polypeptide chain is shown as a ribbon diagram with the cyto- 
chrome, Ilavin-binding and clamp domains coloured green, cyan and magenta, respectively. The haem groups are shown in red (with 
the iron in grey) and the flavin is in yellow. 
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main (residues 111-364 and 503-571, coloured cyan 
in Fig. I) holds the non-covalently bound FAD 
group. The overall fold of the FAD binding domain 
has a structural and topological similarity with 
known FAD binding proteins, though sequence sim-
ilarity is poor [12]. Buried within the flavin domain is 
an octahedrally coordinated sodium ion which is 
close to the active site and may well play a structural 
or regulatory role. The clamp domain of Fcc3 (resi-
dues 365-502) is likely to be involved in controlling 
access of substrate to the active site. It consists of 
seven short helical stretches wrapped round a four-
stranded antiparallel sheet. 

The crystallisation medium contained a 10 mM 
solution of fumarate, well above the m  of 25 jiM, 
suggesting that the active site of Fcc3 should be fully 
occupied. However, the electron density map clearly 
shows the presence of a hydrated, malate-like mole-
cule in the active site of Fcc3 (Fig. 2). It is unlikely 
that this molecule is oxaloacetate because the protein 
is crystallised from fully active enzyme in the com-
plete absence of this compound. The malate-like 
molecule is held tightly by several hydrogen bonds 
and sits in a close-fitting binding site that is com-
pletely inaccessible to solvent [10]. 

The absence of a solvent-accessible channel to the 
active site implies that there must be significant do-
main movement to enable substrate binding and 
product release. The active site is at the interface 
between the flavin-binding and clamp domains, 
both of which contribute important active site resi-
dues. We presume that the closed conformation that 
we observe when crystals are grown in the presence 
of fumarate represents a close approximation to the 
catalytically competent state. The enzyme is found in 
this form with either substrate or product bound in 
the active site [10] and it also appears that, in the 
absence of available reducing equivalents, the en-
zyme is still capable of modifying the substrate by 
nucleophilic attack [11]. The relative positions of 
the two domains are somewhat variable in the differ-
ent fumarate reductase structures and more espe-
cially in L-aspartate oxidase [13], a closely related 
enzyme that can also reduce fumarate. This protein 
was crystallised in an open conformation with no 
substrate bound - indeed the FAD cofactor had 
also dissociated. We conclude that domain move-
ment is an important feature of these enzymes with 

Arg 544 

His 365 

Fig. 2. The environment of the modified substrate in the active 

site. The malate-like molecule is shown with hydrogen bonds to 

Arg544, H1s504 and His 365 as dotted lines. The distances rele-

vant for hydride and proton transfer are indicated. 

opening being necessary for access to the active site 
and closure being essential for catalysis as described 
below. 

3. Electron transfer 

The pathway from membrane-bound quinols to 
the fumarate reductase in is not well 
understood, but a membrane-bound tetrahaem cyto-
chrome has been implicated in electron transfer to 
fumarate reductase and other terminal reductases. 
This protein, CymA [14], is related to the NirT/ 
NapC family. It is not known whether this protein 
directly reduces flavocytochrome 3  but the organi-
sation of the Fcc1 cytochrome domain, with at least 
three of its four haems highly accessible to solvent, 
indicates that electron transfer should be facile. The 
edge-to-edge distances between pairs of haems in 
Fcc3 range from a mere 3.9 A to 8.0 A and the 
shortest haem-FAD distance is just 7.4 A. All of 
these distances are commensurate with very rapid 
internal electron transfer. The thermodynamic prop-
erties of the redox centres have been determined by 
potentiometric measurements and by protein film 
voltammetry [15]. The reduction potentials of the 
haerns are low, ranging from —238 to —102 mV at 
pH 7.0 and 25°C with the FAD potential at —154 
mV, giving a substantial driving force for fumarate 
reduction. 
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4. Substrate binding and catalysis 

The malate-like molecule found in the active site is 
tightly bound and inaccessible to solvent. Its binding 
is indistinguishable from fumarate bound in the ac-
tive site of fumarate reductase from 
MR-i [11]. The C4 carboxy late is bound in a highly 
polar environment by electrostatic interaction and 
hydrogen bonds to Arg544 and Arg402 and by a 
hydrogen bond to His504 (Fig. 2). The environment 
of the Cl carboxy late is much less polar but hydro-
gen bond interactions with Thr377 and His365 are 
observed. 

Two significant features of substrate binding ap-
pear critical for the reaction mechanism (Fig. 3). 
Normally fumarate is a symmetrical, planar, sub-
strate. Reduction to succinate involves the transfer 
of a hydride from N5 of the FAD to C2 and a pro-
ton to C3 resulting in a non-planar product. This 
reaction is facilitated by an induced polarisation of 
the substrate, resulting from the charge asymmetry in 
the binding pocket and by an induced loss of planar-
ity upon binding to the enzyme. This results from the 
close interaction of the Cl carboxylate with the side 
chains of Met236 and Met375, too close to allow 
substrate to bind as a planar molecule. Met236 is 
in the fiavin-binding domain whereas Met375 is a 
clamp domain residue so it seems that the substrate 
distortion is a feature of domain closure around the 
active site. The orientation of the Cl carboxylate by 
hydrogen bonds to His365 and Thr377 may facilitate 
domain closure and provide the drive to twist the 
substrate out of the planar conformation with the 
additional effect of weakening the conjugated double 
bonds. The exceptionally polar hydrogen bonding 
environment of the C4 carboxyl group with contri-
butions from two arginines and a histidine, acts to 
polarise the fumarate. The combined steric and elec-
tronic effects then reinforce each other to generate 
considerable positive charge at C2 making it amena-
ble to nucleophilic attack. 

The flavin N5 is positioned less than 3.2 A from 
fumarate C2, poised to attack the si-face of the C2 
centre. Hydride transfer to C2 is followed by proto-
nation of C3, resulting in formation of succinate; the 
only residue sufficiently close to C3 for protonation 
is Arg402 at a distance of 2.99 A. The role of this 
residue is discussed in detail below. Under the oxi- 
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Fig. 3. The mechanism of fumarate reduction. The key residues 
are shown schematically with hydrogen bonds as dashed lines. 
The proposed mechanism is described in the text. 
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dising conditions that were used for crystal growth. 
hydride attack is not possible and instead there is 
attack by H20 on the re-face to provide the observed 
product which has -stereochemistry at C2 [10]. 

5. Proton transfer 

The structures of five fumarate reductases from 

	

[10,11,16], 	 [17] and 
[18] indicate a common mechanism 

for substrate binding and activation, suitably posi-
tioned for hydride transfer. Completion of product 
formation also requires protonation at C3 and the 
source of the proton has been the subject of some 
debate. 

Prior to the crystallographic results, it was gener-
ally expected that a histidine would act as the acid/ 
base catalyst in fumarate reductases and succinate 
dehydrogenases. This expectation was based on the 
widespread use of histidines in proton transfer in 
many types of enzyme and the fact that chemical 
modification studies with succinate dehydrogenase 
indicated that a histidine residue played an important 
catalytic role [19]. Analysis of the structure shows 
that the two active site histidines, His365 and 
His504, are each hydrogen-bonded to substrate car-
boxylate oxygens and not well positioned for proton 
transfer, being too distant from the substrate C3. To 
probe the roles of these residues and their possible 
involvement in substrate protonation as suggested 
elsewhere (e.g. [16]) we have used site-directed muta-
genesis to convert each to alanine [20]. The H365A 
and H504A mutant enzymes exhibited lower cat  val-
ues than the wild-type enzyme (Table 1) but only by 
factors of 3-15, depending on pH. This, coupled with 
the increase in m  observed for these enzymes, indi-
cates that His365 and His504 are primarily involved 

Table I 
Comparison of 	and 	values for wild-type, H365A, 
H504A and R402K Fcc3 (pH 71, 25°C, = 0.45 M) 

Form of Fcc3 (s_ 1) 
m (PM) 

Wild-type 509±15 25±10 
H365A 51±2 259±24 
H504A 65±3 256±23 
R402K 0.055±0.004 66±14 

No activity was detected with the R402A enzyme.  

O2 

H 
from solvent 

Fig. 4. The putative proton delivery pathway. Arg381 is ex-
posed to solvent and close interactions indicate a pathway for 
rapid proton transfer to the substrate via Glu378 and Arg402. 

in Michaelis complex formation and are not essential 
catalytic residues. 

The structures of two of the 	 enzymes 
[10,11] and 	fumarate reductase [17] clearly 
show NH2 of Arg402 close to the substrate C3, the 
eventual proton acceptor. When we altered Arg402 
to Ala we could not detect fumarate reductase assay 
in the recombinant enzyme, indicating a key role for 
this arginine. Interestingly we have recently substi-
tuted Arg402 with a lysine residue and the enzyme 
now exhibits activity, albeit at an extremely low level 
(Table 1). 

Since the active site is inaccessible to solvent, de-
livery of a proton to Arg402 may appear problem-
atic. However, a putative pathway for proton trans-
fer is readily observed in that G1u378 forms a bridge 
between Arg402 and a conserved surface residue, 
Arg381 (Fig. 4). These residues are completely con-
served, consistent with such an important function. 

In the structure of the fumarate reduc-
tase [18], the position of the residue equivalent to 
Arg402 in the enzyme (Arg301) has 
moved by about 3 A compared to the 
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and 	enzyme structures. An overlay of the 
fiavin binding domains of all structures shows that 
the conserved catalytic residues of the flavin-binding 
domain are very similar. The residues on the clamp 
domain differ in position by between 1 and 3 A, 
corresponding to an opening of the clamp in the 

enzyme structure [18]. It should be noted 
that this structure was determined with crystals that 
had had substrate diffused in - they may have been 
trapped in a slightly open conformation. The fact 
that the position of the arginine side chain is some-
what altered in the fumarate reductase has 
led Lancaster and colleagues to propose that the pro-
ton comes instead from a water molecule [18]. How-
ever, if the clamp domain in the enzyme is 
moved to the orientation (i.e. the closed form) seen 
in the other fumarate reductases then the position of 
the arginine side chain is comparable to that seen in 
all the other structures. Thus we are convinced that 
our mechanism (Fig. 3), involving hydride transfer 
from flavin N5 and proton transfer from this con-
served arginine residue, applies for all members of 
the fumarate reductase family. 
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